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Preface
In 1975, before the two authors met, we had both

purchased HP-25 calculators and were immediately plunged
into a mathematical fantasy land. Horrendous computations,
slick mathematical models,bits of proofs ofcomplex theorems,
all of which were only imaginable before, could suddenly be
realized on a little machine selling for an absurdly low price.
After some time spent in something of a daze, the idea began
to evolve that the amount of time spent with these calculators
might be justified by writing a book about it. We spent the
better part of the next four years producing this book. Al-
though we share the same level of enthusiasm for program-
mable calculators, our interests and skills are complementary
to the extent that what we have produced is certainly more
than twice as good as what either of us could have done alone.
While the concern of one was more with fairly elementary
programming problems and with the actual organization and
style of the book, the other was drawn to the more sophisti-
cated and difficult problems. One wrote roughly the first half
of each chapter and the other the second.

We would like to thank the staff of Hayden Book Com-
pany for their interest in and support for this project, espe-
cially Mr. Vernon Newton, who skillfully edited the entire

manuscript. The father of one of us, James B. Mohler, with his
talent and experience as a technical writer, made many helpful
stylistic suggestions. We wish to thank Texas Instruments for
giving us two TI-57s free of charge and Hewlett Packard for
lending us an HP 33E without a charger. We thank Eileen
Schauer for her elegant typing of the manuscript. Finally, and
most especially, we thank Sherry Sullivan for painstakingly
editing the entire manuscript before we submitted it to the
publisher. Her efforts substantially clarified many portions of
the text. Any errors that remain in the text are of course our
responsibility; a book of this type is bound to contain some, and
we would appreciate having them brought to our attention.

DEAN HOFFMAN

LEE MOHLER
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As the sun eclipses the stars by its brilliancy, so the man ofknowl-

edge will eclipse the fame of others in assemblies of the people if

he proposes algebraic problems, and still more if he solves them.

BRAHMAGUPTA (c. 600 AD)

 

Introduction
This book is a collection of recreational problems for pro-

grammable hand-held calculators. It was written with a twofold pur-
pose. First, it is meant to be educational. The problems are designed
to help you discover some of the fundamentals of good programming
technique. Problems are to the programmer what exercises are to the
musician, a foundation for all future learning and development. If you
work all, or even half, the problems in this book, you will be well on

your way to mastering the art of calculator programming. In the pro-
cess, you will also learn a lot of useful elementary mathematics.

Nevertheless, the book is not a textbook in programming. It
was also written for the purpose of recreation. A good deal of the
authors’ “work” on the book consisted of countless hours spent sim-
ply playing with calculators. Programmable calculators are, after all,
marvelous toys—a fact not fully acknowledged by their manufacturers
or even by many professionals, but something most “ordinary” buyers
recognize immediately. As mathematicians, we have a ready appre-
ciation of the recreational potential of programmable calculators, and
a large part of what we are trying to do here is pass the fun along to
you.

You need only a limited amount of equipment and preparation
to enjoy this book. First, of course, you need a programmable calculator
and almost any one of them will do. Most problems in the book can be
solved on the smallest programmable calculators available, say a TI-

57 or an HP-25. The single crucial requirement is that your calculator
have test keys ([x=t], [x=t], [x=y], [x=y], and the like). You don’t
need many, but you must have a few. This requirement obviously rules
out a few smaller calculators, such as the TI-55. A few of the problems

require larger calculators, and these are clearly marked. Owners of

 

 



2 Mathematical Recreations for the Programmable Calculator

large calculators, however, should not get the idea that these are the

only problems meant for them. The main ingredient in the solution of
all the problems is thought, and the thought required for any one

problem changes very little when it is worked out on larger calcula-
tors.

Second, you need to understand the fundamentals of operating
your calculator. Because this book is not based on any particular model
of calculator, we must assume that you know how to carry out routine
calculations on the model you own.!

As far as mathematical background goes, you need only a little
algebra and, on rare occasions, some trigonometry, but we assume
that you have some general interest in, and aptitude for, mathematics.
Otherwise you wouldn't own a programmable calculator and you
wouldn’t have bought this book! On the other hand, you don’t have
to be a mathematical whiz to appreciate and enjoy the book. In fact,
we have purposely written the problems with a wide range of diffi-
culty, from several that are quite easy to a few that are very difficult.

The problems are grouped into three chapters. Chapter 1 is
devoted to technique. Most of the problems develop methods that are
useful for attacking other problems in the book. We have designed the
book to allow the reader to enter it at any point and start reading.
With this in mind, we have tried to make each problem as independent
as possible of the others. Nevertheless, there are certain techniques—
such as multiple storage—occurring often enough to justify special
separate treatment. These are gathered together in Chap. 1.

Other problems in the first chapter—Loading Data, for ex-
ample—are useful in a broader context; they are simply fundamental
to all programming. Still others are more specialized and have been
included because they are interesting in their own right.

Chapter 2 is devoted to numerical recreations. These can be
described as a kind of intellectual sport man has engaged in for mil-
lennia, and to which the modern day calculator has added a new di-
mension. Many of the problems are taken from number theory, the
oldest, most “useless,” and at the same time most revered branch of

pure mathematics.

Chapter 3 deals with games. There is a close connection be-
tween mathematics and games; indeed, some philosophers have taken
the position that mathematics itself is nothing but an elaborate game.
At any rate, it is true that many games admit a mathematical de-

! Let us take this opportunity to offer some advice: Read your manual! The

more you know about the nuts and bolts of operating your calculator, the more
skillful you will become at programming. The engineers who designed your
calculator worked hard to pack as much as they could into a small space. You
owe it to yourself to exploit fully what they have produced.
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scription and consequently can be put onto a programmable calculator.
In some of the problems in Chap. 3, the calculator functions as game
equipment, while in others it takes on the more active role of player.

Following Chap. 3 are four short appendices and a glossary.
The appendices are technical aids for using and understanding the
rest of the book. They include (Appendix A) instructions on how to
read flowcharts; (Appendix B) tips on troubleshooting (what to do
when your program won't run); (Appendix C) a list of notations for
particular calculator keys; and (Appendix D) actual program listings
for a few programs in the book that fit very tightly onto small calcu-
lators.

The glossary is a collection of calculator and programming
terms designed to familiarize you with the basic language of the sub-
ject. It contains short definitions of all the technical words used in the

book. When you come across a word you don’t know, therefore, look
it up! Becoming conversant in the terminology of calculator program-
ming will greatly increase your ability to learn your way around the
subject, and it will give you a gratifying sense of professionalism as
well.

The optimal way to read this book is with a calculator, pencil,
and paper. The problems are all presented in short, straightforward
sections laying out the necessary background, and frequently the dis-
cussion involves sample computations for the reader to do. Beyond,
that you should have a pencil and calculator ready to do your own
experimenting. (In fact, all mathematical books should be read this
way because it is by doing mathematics that one achieves real under-
standing of it.) Some sections take you through a sequence of problems
leading to one that would be too hard all by itself. Others contain more
than one problem simply because the problems logically go together.

Since Chap. 1 is devoted to fundamentals, you may want to
start there, especially if you don’t have much experience with your
calculator. In working through the book, however, we urge you to try
to figure things out for yourself whenever possible. Each problem is
presented with enough accompanying information to give you a rea-
sonable chance of solving it. You should not look at our solution until
you have tried the problem! We could almost say, do not look at the
solution until you have solved the problem. If you cannot solve it with-
out additional help, read the beginning of the solution and then return
to the problem and try again.

Our solutions should be viewed only as suggestions. We have
not always given the cleverest ones possible but have aimed instead
for clarity. On the other hand, if a problem provides us an opportunity

to use a valuable trick, we have done so. Now, it is axiomatic that any

program can be improved in some way; there is no single right answer
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to a programming problem. You should therefore try to improve on
our solutions. Incorporate whatever ideas you have had for solving a
problem into our solution and make it your own. Ideally, of course,
you will have produced your own solution without having to look at
ours. In this case, you should read ours with the idea of picking up
some new wrinkles you may not have thought of.

Many of the problems and solutions are followed by notes.
Sometimes the notes comment or expand on the techniques used in
the solution. Sometimes they relate the problem to others in the book
or to mathematics or programming in general. Sometimes they place
the problem in the more human perspective of the historical evolution
of mathematics.

As we mentioned above, our solutions are not written around

any particular calculator. Each consists of a careful statement of the
techniques required and a description of the program steps in their
proper sequence. Almost all solutions are accompanied by flowcharts.
If a solution is very simple, there may be only a bare description of it
along with the flowchart. All, in any case, are written with the pre-
sumption that you have worked on the problem and have a grasp of
its main features.

We have assigned every problem in the book a difficulty rat-
ing, ranging from 1 (easy) to 4 (hard). We have also placed the easier
problems toward the front of the chapters and have given their solu-
tions in somewhat greater detail.

You no doubt know that there are two basic language types or
“logics” for calculators, algebraic and reverse Polish. The most pop-
ular algebraic calculators are made by Texas Instruments, and the
most popular reverse Polish by Hewlett-Packard. At times throughout
the book, we comment on the slight differences in technique required
by the two systems. We may use “TI” interchangeably with “alge-
braic” and “HP” interchangeably with “reverse Polish” in these
discussions. You probably have a preference for the type of logic your
own calculator uses, but you should not let this preference cause you
to ignore the other language. For there will be times when you must
understand program listings in the other language in order to adapt
them to your own calculator. Some of the parallel discussions in this
book will help familiarize you with that other language.

The fact that new programmable calculators are coming on
the market all the time makes it difficult for a book like this to keep
apace. However, we have been pleased to discover that these problems
as they stand are perfectly suited to the newer models. We would

change only two things if we were to begin writing the book again
today. First, we would make more systematic use of subroutines, since
virtually all programmable calculators now have them. Although we
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use subroutines quite a bit in the book, we do not assume that they
are built in. Second, we would have something to say about alphan-
umerics. Programmable calculators with alphanumeric displays are
now making their appearance, an example being the HP-41C. This
new capability greatly improves the flexibility of a program’s input
and output. Nevertheless, calculators like the HP-41C, although they
are very elegant, are still quite similar in basic design to their pred-
ecessors and work very well with the material in this book.





What is a trick the first time one meets it is a device the second

time and a method the third time.

W. J. LEVEQUE
Fundamentals of Number Theory

 

CHAPTER ONE

Technique

1.1 Introduction

An artist friend of ours once said that in painting, “The great-
est freedom comes from the greatest discipline.” The same is true in
programming. There are certain fundamental techniques the program-
mer needs to master so thoroughly that they need no further thought.
Only then will he be free to tackle more subtle and difficult problems.
They simply become the language he uses to express himself in a
program. The more of these techniques you yourself learn and the
more practiced you become in their use, the more freedom you will
have in creating programs.

This chapter discusses all the techniques used elsewhere in
the book. Nevertheless, you need not work your way completely
through it before moving on. You may want to plunge directly into
other chapters and return to this one when the need arises. If a prob-
lem requires a special technique, you will usually be directed to the
appropriate section in this chapter. On the other hand, we think the
problems posed in this chapter are interesting enough in their own
right to be studied by themselves. If you master most of the techniques
presented here, you will have acquired a solid foundation for more
advanced programming.

This chapter falls roughly into two halves. Sections 1.2
through 1.9 involve the more fundamental material; Secs. 1.10
through 1.16 are more specialized.
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1.2 Ten Quickies

Difficulty: 1 and 2

This section of ten topics—briefly handled and hence called
“Quickies”—is designed to familiarize you with some little tricks of
the trade that we have found useful. The problems are for the most
part simple and straightforward once you have digested the preceding
discussions. There are, however, a few cute ones.

In all the solutions, we use program listings rather than flow-
charts. We do so because we are dealing here with fine details, with
how to accomplish efficiently some of the things that flowcharts simply
tell you to do without saying how. The programs are usually incom-
plete; for example, they frequently have no R/S order in them. The
reason is that these routines are usually parts of larger programs.

As a rule, we give the listings in both algebraic and RPN
languages. Read and compare both listings; the exercise will help you
learn to translate from one language to the other. In two of the prob-
lems we give RPN owners the opportunity to do their own translations.

This section could have been extended almost indefinitely. If
you have been paying close attention to your own programming, you
probably have learned many useful little tricks that are not described
here. It is good to think about these things as you work. They are the
bread and butter of good programming.

(1) Do Nothin’ Till You Hear from Me: NOP

In a wide variety of mathematical systems, there is an object

which plays the role of nothing. In arithmetic it is the number zero.
In set theory, it is the empty set. In the language of programmable
calculators, it is the NOP (“No Operation”) key. When this step is
encountered in a program, the calculator does nothing; it simply pro-
ceeds to the next step. At first, the whole business seemsa little weird.
Why would you ever want to use such a step in a program? The concept
of “nothing” always has a paradoxical quality about it. By giving it
a name, we turn it into “something,” and yet what we are naming
is the exact opposite of “something.” No wonder the concept seems
artificial!

Well, God wouldn’t have put that key on your calculator if he
hadn’t intended for you to use it. So let’s take a closer look. Basically,

NOP allows you to write a program that can be easily modified. If you
think aboutit, you can see that you would not put NOP into a program
unless you were going to replace it by something else at one time or

' As Alfred North Whitehead said of the number zero, “You don’t go to the
store to buy zero fish.”
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another. If you had intended to leave it there permanently, you could
obviously have done just as well withoutit.

NOP can be used as a switch for turning certain parts of a
program on and off. For example, let A represent a block of steps that
is to be executed only at certain times. Put A at the bottom of the
main program. At that point in the main program where A is to be
executed, insert GTO A (or whatever GTO order is appropriate for
your calculator). At the end of block A, insert another GTO order
returning control to the step immediately following GTO A. If you
want to turn off block A, just replace GTO A with NOP. (See Fig. 1-1.)

  

  
  

    
  

      

START | START

STOR | rhe man | LNOP
PROGRAM

B B

END | L|__END

A A

GTO B GTO B

PROGRAM WITH PROGRAM WITH
A TURNED ON. A TURNED OFF.

Fig. 1-1 NOP used as a switch

Sometimes NOP is used to turn off an individual step in a
program, usually a PAUSE. PAUSEs at appropriate places allow you
to watch a program in action. When you just want the program to run
as fast as possible, the PAUSES are replaced with NOPs. See Ulam’s
Problem (p. 251) for an example. NOP can even be used to turn off
half of a key. To use solely for decrementing a memory register,
for example, place a immediately after it to prevent the program
from branching.

If your calculator lacks and keys, NOPs can be used
in the developmental stages of a program. They permit extra steps to
be inserted wherever they themselves are located, thus permitting the
program to be altered without a wholesale reorganization (only short

blocks will have to be moved). Moreover, deleted steps (including any

PAUSE or R/S used to monitor the program) can easily be replaced by

NOPs. A problem involving NOP will be discussed in Quickie No. 6.
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(2) The and Keys

Two keys on the calculator that tend to be underused are the
key, which changes the sign of the number in the display (this

key is labeled CHSon some calculators) and the key, which takes
the reciprocal of whatever is in the display. Perhaps their neglect is
due to the fact that we can do without them. One can calculate 1/x by
dividing 1 by x, and one can change the sign of x by subtracting it
from 0. But since the and keys allow us to perform these
operations in one step, we should use them for the sake of efficiency
alone.

The real problem, however, is determining when to perform
these operations in the first place. And this brings up a more likely
reason why the keys are not used: the operations they represent rarely
appear explicitly in algebraic formulas. One has to invent ways to use

them in situations where they are not clearly called for. But it is worth
learning such tricks, for the payoff is the saving of a program step or
memory. If you have a small calculator, such a saving can make the
difference between getting a program on your calculator or not.

Here is an example. Suppose that the number n is in your
display, and you want to compute (1 — n). The n is in an awkward
position. You would like to use the key sequence [1], [=], [n], [=]
(algebraic) or [1], [ENTER|, [n], [= RPN), but as soon as you push [1],
you are going to lose n. One solution is to store n and bring it back
when you need it: [o], [1], [=], [0], [=] (algebraic) or
[0], [1], [0], [=] RPN). A more efficient solution is to make use
of the fact that changing sign and adding is the same as subtracting.
Thus the following sequences will compute (1 — n), starting with n in
the display: [+], [+], [1], [=] (algebraic) or [+/-], [ENTER], [1],
(RPN). Note that one step has been shaved off the algebraic sequence,
and both sequences do away with the need for a memory. On some
RPN calculators the in the above sequence is unnecessary, so
a step can be taken off that sequence too.? Check this out on your own
calculator.

Another way to use in this problem is a consequence of
the identity: (1 — n) = — (n — 1). This says that we can find (1 — n)
by first finding (n — 1) and then changing its sign. Starting with n in
the display, the sequence looks like this: [=], [1], [=], (algebraic)
or (ENTER), [1], [=], (RPN).*

Now you may be asking yourself: What is n doing in the dis-
play in the first place? If I wanted to compute (1 — n), why didn’t I

2 The necessity of depends on where n came from and how your par-
ticular calculator behaves.

3 Again, the ENTER may or may not be necessary.
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first push [1], [=] or [1], and then put n in the display? If you
were doing the computation by hand, of course, that’s what you would
do, but inside a program, things are not always so conveniently ar-
ranged. For instance, n might be the output of a subroutine, or it
might be the input for the whole program, as in the following example.

Say you want to construct a program for plotting points on the
graph of the equation, y = \/9 — x*.* The program will take as input
the x-coordinate of a point on the graph and is to return the y-coor-
dinate from the above formula. The user will thus put x in the display,
and the program will compute /9 — x. The clever way to do this is to
square X, change its sign, add the result to 9, and take the square root
of the whole thing: [x], [+=], [+], [9], [=], [Jx] (algebraic) or [x],
[+=], [9], [+], [Jx] BPN). It can also be done, as in the previous
example, by using the identity: 9 — x2 = — (x* — 9).

Similar tricks can be employed for performing divisions, start-
ing with the divisor in the display.

Problem 1: Construct the most efficient possible key sequence for
computing values of the expression, 1/(1 — x).

Problem 2: Construct a program for computing the intensity of il-
lumination from a k-candlepower light source at various distances
from the source. The constant k will be stored in memory m,. The
distance from the source will be the input for the program. If x is the
distance (in feet) from the source, then the intensity of illumination
is given by the formula, I = k/x2.

(3) Register Arithmetic

Register arithmetic refers to operations performed in a mem-
ory rather than in the display. For example, the key sequence, sum
[0] (which is [0] on some calculators), adds the contents of
the display to memory register m,. The result is placed in m,, while
the display remains unchanged. Now suppose that we want to add the
contents of m, and m,. Ordinarily, we would use the following se-
quence:

Algebraic RPN

RCL 0 RCL 0

+ RCL 1
RCL 1 +

“The graph is a semicircle. Note that if we square both sides, the equation
takes the form, y?> = 9 — x2, which can be rewritten as x? + y?> = 9.
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We could, however, use register arithmetic instead:

Algebraic RPN

RCL 1 RCL 1
SUM 0 STO +0

Note that the key sequences are shorter. The sum is also in m, rather
than in the display. Of course, we could get it into the display by
adding [0], but sometimes it is better to have the sum in a
memory so that the display can be used for other things, particularly
in programs involving long sums (See Sec. 1.8).

Let us present another handy use of register arithmetic as a
problem: It frequently happens that the output of a program winds up
in some memory, say m,, and at the end of the program you want to
recall the contents of m, into the display and stop. At the same time

you want to clear m, in preparation for the next run of the program.

Problem: Construct a key sequence for getting the contents of m,
into the display and clearing m, without clearing the display.

(4) Parallel Computations

Another good use of register arithmetic arises when compli-
cated mathematical expressions or more than one expression involving
the same independent variable(s) need to be evaluated. The idea is to
do part of the computation in the display and another part simulta-
neously in a memory. Here is a fairly simple example: Suppose that
you want to write a program to compute values of the expression,
(x + y)/(x — y), where x and y are stored in memories m, and m,,
respectively. The straightforward way to make this computation is as
follows:

 

 

    

Algebraic Memories RPN

RCL O 0 X RCL O

+ 1 y RCL 1
RCL 1 +

= RCL O
=~ RCL 1
( —

RCL O +

RCL 1

* The right parenthesis can probably be deleted from this program (see Quickie
No. 10).
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All computations were performed in the display. A more effi-
cient method is to compute (x — y) in memory m, while (x + y) is being
computed in the display, as follows:

 

 

   

 

 

Algebraic Memories RPN

RCL 0 0 X RCL 0

+ 1 y RCL 1
RCL 1 STO -0

INV SUM 0 +

= RCL 0
+ 0 X—Yy +

RCL 0 1 y     
Try this sequence out by hand on your calculator. As you ex-

ecute each step, stop and picture what is happening. Learning this
trick will save steps in your programs time and again.

The next example saves only one step in a long sequence, but
it gives us an opportunity to introduce (or hopefully recall) a formula
every educated person should know: the law of cosines.

The law of cosines states that given any triangle ABC with
sides a, b, and c¢ and angles «, 3, and vy (see Fig. 1-2), the following

equation holds:

c? = a? + b% — 2ab cos(y)

This formula expresses the length of side c of the triangle in
terms of the lengths of the other two sides and the angle between
them. Taking square roots on both sides, we obtain:

c = Ja’ + b% — 2ab cos(y)
 

An observer situated at point C can use this formula to deter-
mine the distance between two remote points A and B if the distances
between himself and A and B are known, as well as the angle between
the two lines joining his position to points A and B. This technique is
particularly useful if the triangle is a large one, say a triangle formed
by an observer in a control tower and two airplanes in flight.

 

 

Fig. 1-2 An ordinary triangle
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Problem: Construct a program for computing c from the above for-
mula given a, b, and y. Assume that these are placed in memories my,

m;, and m,, respectively.

(5) The Key

Before reading this section, you need to know something about
loops. If you don’t know what a loop is or how one works, see Sec. 1.8.

The key is a one-step operation used for controlling loops
(“Dsz” stands for “Decrement, skip if zero”). Typically, a loop is
controlled by some kind of counter, which, in its simplest form, works
like this: Some memory, say m,, is used to store the number of times,
n, that we want the loop to be executed. Each time through the loop,
a 1 is subtracted from the contents of m,, and a check is run to see if

m, = 0. If so, the loop has been executed n times and is terminated.

If not, control is sent back to the top of the loop. The flowchart is
shown in Fig. 1-3.

When coupled with the step following it in a program,
executes this flowchart. When is executed on the TI-57, for in-
stance, it subtracts 1 from the contents of m, and then checks to see

if my, = 0. If not, control moves to the following step in the program,
a GTO order (perhaps RST) that returns control to the top of the loop.
If m, = zero, the following step is skipped, and the program continues
from the next step.

On other calculators, the key works essentially the same way,

but with minor variations. In HP calculators, the button decre-
ments a special index register (I) instead of m,. In some fancier TI
calculators, the step can be performed on more than one memory,
the choice being indicated by a number following the Dsz |. Many loops
can be efficiently controlled in this way. We will now present a prob-
lem with a very short solution.

Memory

0 Counter

Initial State of
the Memory

Number of times
loop is to be executed

 

BACK
TO THE
TOP    

BOTTOM OF THE LOOP

 
Fig. 1-3 Flowchart for the bottom of a loop
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Problem: Write a program that sums up all positive whole numbers
from 1 to n (n is to be put in by the user):

1+2+3+---+n

(6) Alternate Uses of the Skipped Step

All calculator testing functions make use of the device of skip-
ping a program step if the answer to a test question is “no,” the
skipped step usually being a GTO order that sends control elsewhere.
This device allows a calculator (or computer) to make “decisions.”
Two numbers are compared in some way by the test question. De-
pending on the outcome of the comparison, the program executes one
sequence of steps or another—those accessed via the GTO order or
those immediately following the (skipped) GTO order. On some cal-
culators, for example, the TI-58/59, the step in a program immediately
following a test question must be a GTO order, but on others, like the

TI-57, HP-25 and HP-67/97, this step can be anything. Such flexibility
can be put to some good uses.

Here is an example: Suppose that you have a pair of numbers,
n, and n,, and that you want to get your hands on the larger of the
two (see Sec. 2.15, for example). Put one of the numbers, say n,, in the

x-register and the other, n,, in the y-register (t-register on some cal-
culators). Now you want to get the larger number in the x-register
and the smaller in the y-register. If the larger number just happens
to be in the x-register, you don’t want to do anything with it at the
present time; you just want to go on with the program. If the larger
number is in the y-register, you want to transpose x and y and then
proceed with the program. You can do this by inserting the single step

(or [x=t]) immediately following the test, (Inv
on some calculators). If the contents of the x-register is smaller, the
[x=y] will get executed; if not, the step will be skipped, which is
exactly what you want to happen.

Problem 1: Construct a program for computing the absolute value
of a number. (Since calculators already have a key for this function,
the idea, of course, is not to use that key.)

Problem 2: Devise a switch for turning off a test so that—when the
switch is set—the program will behave as if the test were not there.

(7) Large Constants

There is a rough tradeoff in programming between the number
of steps and memories used. Steps can usually be eliminated from
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programs by increasing the use ofmemories, and, conversely, the num-
ber of memories can be decreased by lengthening the program.’

One should be aware of this tradeoff and try to exploit which-
ever mode will produce the most efficient overall program. For ex-
ample, it is definitely more advantageous to use memory for programs

that return values of a formula with large constants. Suppose, for
example, that we want to write a program for converting light years
to inches. Since there are approximately 3.72 xX 107 inches in a light
year, the program will multiply the input (distance in light years) by
3.72 x 10'7 to produce the desired output. Keying the constant 3.72 x
10'7 directly into the program where needed will cost seven program
steps— [3] [-] [2] [EE] [7]—since the program memory stores
only one keystroke at a time. The program will therefore look like this
(assuming that the number to be converted is sitting in the display
when the program starts):

Algebraic RPN

X Enter

3 3

7 7

2 2

EE EEX

1 1

7 7

= X

It would be much more efficient to store the constant in mem-

ory and recall it when needed, using only a single step. The program
will now look like this:

 

 

Algebraic Memories RPN

x | o | 372x107| RCL 0
RCL O X

For this particular problem, it doesn’t make a lot of difference
which program is chosen since your calculator clearly has room for
either, but in a large program, the saving of six steps is a significant
matter. When a formula to be programmed has to be embedded in a
larger program, for example, the amount of space available for it may

> Attention, TI-58/59 and HP 41C owners. This is a general remark. It does not
refer to the feature of your calculator that allows you to trade program space
for addressable memories. However, the fact that your calculator permits the
trade is another indication that the general remark is true.
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be quite limited. Section 1.4 contains a program of this type. There we
evolve a skeleton program for finding the maximum output that can
be generated by a given formula with one independent variable. A
program for this formula,

Ix) = (1 + .05x) (50000 — 5000x)

has to be embedded in the skeleton program. At this time, your prob-
lem is to write as short a program as you can for computing values of

I(x).

(8) Large Numbers

A calculator can handle numbers so large you would think
overflow would never be a problem. Yet it is easy to concoct numbers
too big for the calculator to handle. Try calculating 52°, for example.
Should such a number occur as program output, there is not much you
can do about it. It is just too big for the calculator. Sometimes, how-
ever, large numbers occur as intermediate results in a computation

whose final answer can be handled by the calculator. The problem
then is to coax the calculator past these difficult places in the com-
putation. The solution is sometimes just a matter of controlling the
order in which operations are performed.

Suppose, for example, that you want to compute the following
number:

(3.14 x 10%) (2.8 x 10%)

(5.28 x10) (9.7 x 10%)
 

If you try to compute the product in the numerator or denominator
first, you will get into trouble. The result will be much too large. The
trick is to alternate multiplication and division, but even here you
have to be a little careful. If you begin by dividing (3.14 x 105%) by
(5.28 x 10%) and then multiplying by (2.8 x 10%), the result will still
be too big (a calculator cannot handle any exponent larger than 99).
You should therefore first divide (3.14 Xx 10%) by (9.7 xX 10%), then
multiply by (2.8 x 10%), and finally divide by (5.28 x 10%), although
other orders will work too.

There is a difficulty with such computations. You have to ex-
amine the numbers involved before deciding on the order ofoperations—
not simple to do if the numbers have been generated inside a
program. Fortunately, there is a trick for dealing with very large num-
bers on a calculator, a trick that you should already have some fa-
miliarity with: logarithms. We will base our discussion on the natural
log function, which appears as on your calculator. Your calculator
also has another log button, [legx |, the common logarithm. Its prop-
erties are essentially the same as [inx |, only on a different scale.
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The value of logarithms is that they reduce numbers to a much
smaller scale. If you take the logarithms of a group of numbers, the
logs keep the same order as the numbers they came from but are much
much closer in value to one another. Compute the natural logs of 1,
2, 3, 4, 5 on your calculator, for example. The results run between 0

and 1.60943791—a rough spread of 1.6 rather than 4. Compression
gets greater as the numbers get larger. The natural logs of 100, 200,
300, 400, and 500 are compressed between about 4.605 and 6.215.%

Now try taking the natural log of the biggest number a calculator
permits: 9.999999999 x 10% (your particular calculator may accept a
few digits more or less). The result is about 230. Then try the smallest
positive number on your calculator: 1 X 107%. The result is about
—228. Thus the entire range of positive numbers on your calculator
gets compressed into the comparatively tiny range between —228 and
230 by the natural log function.” Obviously, plenty of room is available
for the logarithms of numbers that are too big (or too small) to fit on
the calculator themselves.

The scheme for dealing with numbers so large that interme-
diate results may run off the calculator, therefore, is to compress them
by taking their logarithms, to do the necessary arithmetic in their com-
pressed scale, and then to re-expand them for the final result. Because
of the nonuniform nature of the compression, noted above, arithmetic
in the compressed scale will not be the same as in the ordinary scale.
But the marvelous fact is it actually gets simpler! Multiplication and
division become addition and subtraction in the compressed scale, and
exponentiation (y*) and root extraction (INV y* or */y) become mul-
tiplication and division. Although there are no analogs in the com-
pressed scale of addition and subtraction in the real-world scale, these
two elementary operations lead to overflow problems much less often
than the other four.

The precise formulation of the connection between ordinary
arithmetic and logarithmically compressed arithmetic is contained in
‘the four rules of logarithms:

(1) In(ab) = In(a) + In(b)

(2) In(a/b) = In(a) — In(b)

(3) In(a™ = n[In(a)]

4) In("/a) = In(a)/n
Rule 1 says that to find the natural log of the product of two

numbers (that is, to find where the product of two numberslies in the

8 Note that the difference between In(5) and In(1) is exactly the same as the
difference between In(500) and In(100). This is not a coincidence.

” Logarithms, however, are not defined for negative numbers.
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compressed scale), you add the natural logs of the two numbers. Rule
2 says that to find the quotient of two numbers in the compressed scale
(that is, to find the natural log of the quotient of two numbers), you
subtract their natural logs. Thus, to find the natural log of a/bc, for
example, you would take the natural log of a and subtract the natural
logs of b and c¢. Or you could add the natural logs of b and ¢ and
subtract the result from the natural log of a. To put this symbolically,

be

We will leave you to sort out the workings of rules 3 and 4.
Now that you know how to do multiplication and division in

the compressed scale, there is only one problem left: How do you get
back to the scale you started from? It’s easy. You just apply the in-
verse natural log function, which turns out to be ex (it is called

on some calculators).
Here is a complete prescription for finding the product of two

numbers, a and b: First, take the natural logs of a and b and add them

together, giving you In(ab). Then recover ab by taking of this
result ([INV on some calculators). Following are two typical key
sequence listings for hand calculations.

in(2) = In(a) — In(b) — In(c) = In(a) — [In(b) + In(c)]

TI-57 HP-25

(key in a) (key in a)
In x In x
+ (key in b)

(key in b) In x
In x +
= ex

INV In x

Try this out on a couple of numbers for which you already know the
answer. You will see that it works.®

Now it is time for you to start doing these tricks for yourself.
Here are two problems:

1. Write a program for computing ab/cd using logarithms.
2. Write a program for computing aP.

(9) Accuracy

We are going to discuss two kinds of accuracy here: (1) the
problem of getting the best possible result in a chain calculation (one

8 The relevant identity here is: ei"* = x.

9 If your answeris slightly off, see the notes for an explanation.
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involving several operations), and (2) the problem of obtaining abso-
lutely precise results when dealing with whole numbers.

Let’s begin with a brief tour of all the numbers your calculator
is capable of expressing, assuming, for the purpose of this discussion,
that your calculator has a ten-digit display. Since a numberis just a

string of digits (let us ignore signs, decimal points, and exponents for
the moment), any string from 0 up to 9999999999 can be expressed
with a ten-digit display. That is 1 X 10! numbers already. Now, how
many numbers can you express in scientific notation? Inserting a dec-
imal point between the first and second digits of the ten-digit string
and following the string with a two-digit exponent provides a typical
number in scientific notation. As we just noted, there are 1 x 10%
possibilities for the mantissa (the ten-digit string with a decimal point
inserted), and the exponent can be anything from —99 to 99, or 199
possibilities. Consequently, there are 1 x 10" x 199, or 1.99 x 10?
possible positive numbers in scientific notation. When the negative
numbers are added, the figure doubles, to 3.98 x 102. This, in fact,

is everything. Since any number you put into your calculator can be
put in scientific notation (your calculator may not be able to show you
the entire mantissa, but it’s still there, inside), once you've counted

all the numbers possible in scientific notation, you've got them all.
Rest assured that 3.98 x 10% is a lot of numbers. If you de-

voted yourself 24 hours a day to nothing but looking at them one after
another, and if you gave each one-tenth of a second of your time, it
would take over 12,000 years to see them all! Even though your cal-
culator is ready to show you any one of those 3.98 x 10!? numbers at
any time, you will never actually see more than a tiny fraction of
them.

Next, let’s take a look at how these numbers are distributed.

The distribution is far from uniform. The two smallest positive num-
bers on your calculator are 1 xX 107% and 2 x 107%. The difference
between them is 1 x 107%. Near zero, therefore, the numbers are very

close together. How about near 1? The next number after 1 on your
calculator is 1.000000001. The difference between these two numbers
is 1 X 107°—still quite small, but 10% times as large as the difference
between 1 X 107% and 2 x 107%. And if you thought 3.98 x 10" was
big, you can imagine how large 10%is.

The other extreme is reached in the difference between the
two largest numbers on the calculator, 9.999999998 x 10% and
9.999999999 Xx 10%, which is 1 x 10%. Thus, vastly more whole num-

bers are missing between the largest two numbers on your calculator

than are present in the calculator’s entire domain of numbers. An-

other point worth noting is that there are exactly as many numbers
in your calculator between 0 and 1 as there are between 10 and infin-
ity. The former numbers are expressible as a 10-digit mantissa with
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an exponent between —99 and —1; the latter, as a 10-digit mantissa
with an exponent between 1 and 99.

The image we are trying to build up in your mind is the fol-
lowing. Near zero, the numbers are very closely packed—inconceiva-
bly close. As you move away from zero, they become less and less
dense. At the outer limits, the distance between successive numbers

is inconceivably large. The moral of this story, as far as accuracy is
concerned, is that your calculator is a lot more accurate near zero than
it is away from zero, because the gradations are finer there. Thus, if
you keep the intermediate results in a chain calculation as small as
possible, you will achieve thebest accuracy. This is only a general
rule, however; the accuracy of the outcome of many types of compu-
tations depends only on the number of digits of accuracy in the man-
tissa. In these cases, it doesn’t matter how big or small the numbers
themselves are.

Now let’s look at the other type of accuracy. There is a class
of calculations that stays entirely within the domain of whole num-
bers, calculations that have to do, in general, with counting. The

branch of mathematics devoted to this art of counting is called com-
binatorics. When doing combinatorial computations, we must be care-
ful to avoid slipping away from whole numbers. Many combinatorial
algorithms involve comparisons to see if two numbers, one or both of
which are the product of some computation, are equal. If one or the
other is ever so slightly off, we can get a “no” answer to an equality
test when the answer should be “yes.” Consequently, one must be
sure all intermediate results in a combinatorial computation remain
whole numbers. Note that this advice runs counter to the “stay close
to 0” advice in the previous paragraph.

Here is a problem to solve involving accuracy. As we noted in
the previous article, the y* key does not produce accurate results for
large numbers. Therefore, construct an accurate program for comput-
ing 2" where n is a positive whole number.

(10) The Stack

If you own a reverse Polish calculator, you know what a stack
is. If your calculator is algebraic, it has a stack too, and you need to
find out about it. The stack is where numbers are loaded in preparation
for performing operations on them. In RPN calculators, the loading is
done manually, using the and keys. The operations are
performed after loading by manipulating the stack with the [ENTER |,
[RL], and keys to move its contents into the proper locations.

In algebraic calculators, the stack is internal and not directly

accessible to the user. While numbers and operations are being keyed
into the calculator together, the calculator automatically loads the
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internal stack, storing the numbers and special codes for the opera-
tions. Because a heirarchy dictates that some operations must be ex-
ecuted before others even if they are keyed in later, the calculator
monitors each operation as it is keyed. Sometimes it will execute an
operation before the [=] key is pushed in order to save stack space.
After the user has entered all numbers and operations, he presses the
[=] key. The calculator then reads through the stack and performs the

operations in the order dictated by the algebraic heirarchy.
The internal stack and the heirarchies that manipulate its

contents are, in effect, extra memory space in your calculator. You

need to learn how they work—that is, what the calculator is going to
do each time you push a key—so that you can exploit them. Since you
can’t see inside the stack, you will not be able to figure a lot of things
out (unless you get fanatical), but at least you can watch what the
calculator does externally as a clue to what is happening inside. (RPN
owners, don’t go away! We'll have a problem for you a little later.)

First, let's make some observations about algebraic calcula-
tors. When you press the key sequence and [+], the 5 and the +
go into the stack. Notice that the 5 is now held in two places—in the
stack as well as in the display. Sometimes you can exploit this fact. If
you want to find 5 + |/5, for example, merely hit and [=]. The key
sequence for a program for computing x + |x, assuming that the user

has already placed x in the display, could be written as follows: [+ |,
[&], [=]. Here is another example. Since your calculator probably fills
in any missing closed parentheses automatically when the [=] is
pushed, leave them out if they occur at the end; the calculator will
supply them. To find (a + b)/(c + d), for example, just press [a], [+],

©), = 2 [0[0 5, [0 5
Another thing you need to know is that your calculator will

execute some operations before the [=] is pressed if it decides that
they will come first in the execution heirarchy no matter what you
key in later. If you press [x] [+], for example, the calculator
will carry out the multiplication, because once the is pushed it
knows that 3 x 5 must get executed first. This characteristic saves
space in the stack. It also places the number 15 in the stack and in
the display. Can you use it? Maybe you can. Try the following: Write

a program for computing values of ab + Jab + ¢ when a, b, and c are
placed in memories my, m,, and m, by the user.

Now a word for RPN owners. You too can use the x-in-two
places trick. When you press [ENTER |, the numberin the display moves
up to the y-register, but it also stays in the x-register. If you act fast,
you can use it. To illustrate, a program for x + \x would be as follows:
[ENTER|, [xJ, [+]. But you really need to learn how best to exploit the

1» Note that we used [=] on the (a + b) rather than parenthesis. It saves a step.
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stack and its ordinary behavior by using it whenever possible. Suppose
that you make some computation and will need the result later. It
may be possible to leave it in the stack while you do other things,
instead of storing it and having to recallit.

Here is another exercise in stack manipulation: Load your
stack so that it looks like Fig. 1-4(a). Now figure out a key sequence
for rearranging it into the pattern shown in Fig. 1-4(b).

t t

z Zz

 

(a) (b)
Fig. 1-4 Stack manipulation

Solutions for the Quickie Problems

Quickie 2, Problem 1: The key sequences for computing 1/(1 — x)

are as follows:

Algebraic RPN

+/— CHS

+ (ENTER)

1 1

= +
1/x 1/x

or or
- (ENTER)

1 1

+/— CHS

1/x 1/x

Quickie 2, Problem 2: For computing k/x? with k in m, and x in the
display, we use the following:

Algebraic RPN

x2 x2

1/x 1/x
xX RCLO

RCLO X

or or

x2 x2

RCLO

1/x

RCLO

1/x
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Notes: On RPN calculators these problems can also be handled ef-
ficiently using the button. For instance, k/x*> can be computed
using the sequence [x], [0], [x=y], and [+]. Buttons and

both have the interesting feature that if you push them twice,
you're back where you started.’ The only other button on the calcu-
lator with this propertyis or [x=t].

Quickie 3: The solution is surprisingly simple. Recall the contents
of my, and then use register arithmetic to subtract the contents of the

display (which are now the same as those of m,) from m,. This ma-
neuver turns the contents of m, into 0 and leaves the display undis-
turbed. The sequence on two popular calculators is as follows:

TI-57 HP-25

RCL O RCL O

INV SUM 0 STO -0

Quickie 4: We want to compute Va? +b? — 2abcosy. We will use reg
ister arithmetic to compute the product ab while a? + b? is being com-
puted in the display. When we compute 2abcosy in the display, ab will
be recalled. Here are the key sequences:

 

 

 

   
 

Algebraic Memories RPN

RCL 0 0 a RCL 0

x? 1 b x2
+ > RCL 1

RCL 1 Y STO x 0
Prd 0 x2
x2 +

- 2
2 RCL O

X X

RCL 0 RCL 2
X cos

RCL 2 X
cos —
= JX

Quickie 5: The details of this solution apply to the TI-57, but the
general outline will work on your calculator. Don’t skip over the TI-
57 program below. Translate it into your own calculator’s language;
it’s good practice. We will form the sum in memory register m,, stor-

'! On some calculators, this doesn’t quite work with 1/x, although in theory it
should. Check it out on your own calculator.
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ing n in m,, the loop counter. The trick is to note that the summands
we want will be generated in m, by the execution of the order.
Of course, they will appear in reverse order (n, n—1,n—-2, - - -, 1), but

that won’t make any difference. All we have to do inside the loop is
recall the contents of m, and add it to m,, using register arithmetic
(see Solution 3). When the loop is terminated by a “skip zero,” the
sum we want will be in m,. Here is the program listing for the TI-57:

 

 

    

 

Memories

0 counter

00 RCL 0 1 sum

01 SUM 1

02 Dsz us

03 RST (sends control back to 00) Initial State of the
04 RIS memories

0 n
 

    

Notes: We have kept the program short for dramatic effect. It will
be easier to use if we end with the contents of m, in the display and
clear m, to be ready for the next run. See Solution 3 for a clever way
to do this and Sec. 1.16 for a much more efficient algorithm for com-
puting this same sum.

Quickie 6: To take the absolute value of a number, you leave it alone
if it is positive and change its sign if it is negative. All you have to do
is execute the test [if your calculator doesn’t have this test, you

will have to put a 0 in the y-register (or t-register) and then run the
test x < y (or x < t)] followed by the step (=). If the contents
of the display is positive, the latter step will get skipped. Here are the

sequences for the TI-57 and HP-25:

TI-57 HP-25

c.t. x<0

(clear t-register) CHS
INV x =t

+-

To turn a test off, simply insert immediately after the
test. Either the step will get skipped or it won't; in either case, it
won't make any difference because the step doesn’t do anything.

Quickie 7: The straightforward solution is to store the three con-
stants 0.05, 50000, and 5000, in memories m,, m;, and m, and then
compute I(x) as indicated by the formula, recalling the constants as
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they are needed. Because x appears twice in the formula, it too will
have to be stored in the first step of the program. And since it will be
sitting in the display at the beginning, there’s no sense in letting it
go to waste after the step; start multiplying by 0.05, therefore,
on the way to computing 1 + .05x. Here are the program listings:

 

 

 

     

 

 

 

 

Algebraic Memories RPN

STO 3 0 05 STO 3

x 1 5000 RCL 0
RCL 0 ”

+ 2 50000

1 3 X +

~
RCL 1

x Initial State RCL 2

( of the Memories RCL 3
RCL 1

.

- 0 05 x
RCL 2 1 50000 y

x 2 5000
RCL 3

) 3    
* The second parenthesis is probably unnecessary (see Quickie No. 10).

Both of these programs can be shortened by rewriting the for-
mula for I(x). Carrying out the multiplication indicated in the original
formula and collecting the middle terms, we get: I(x) = 50000 — 2500x
—250x2 This formula can be most efficiently evaluated by storing the
three constants 50000, 2500, and —250. We store —250 rather than

250 to avoid having to change signs when —250x? is calculated in the
beginning of the program. We could also store —2500 instead of 2500,
but it turns out to make no difference. Once again x will have to be
stored at the beginning, since it appears twice. We will evaluate the
formula starting from the right so as to use the x already in the dis-
play. Here are the listings:

 

 

 

 

 

 

 

 

 

Algebraic Memories RPN

STO 3 0 —-250 STO 3

x? 1 2500 x?

ROL0 2 50000 RCLO
- 3 X RCL 1

RCL 1 RCL 3
x Initial State of the Memories x

RCL 3 0 -250 -
+ RCL 21

RCL 2 2500 +
= 2 50000

3    



Technique 27

Notes: Here is an RPN program for computing I(x) which is one step
shorter than the one just given. We leave you to unravel the mystery
of why it works.

STO 3 Memories

RCL 0 (Same as above)
X

RCL 1

 

   

RCL 3
X

RCL 2
+

Quickie 8: For Problem 1, we will assume that a, b, ¢, and d are in
memories m, through m;. To find the natural log of ab/cd, add the
natural logs of a and b and then subtract the natural logs of ¢ and d
from the result. Finally apply to recover ab/cd itself. Here are the
program listings:

 

Algebraic Memories RPN

RCL O RCL 0
In x In x
+ RCL 1

RCL 1 In x

In x +

—- RCL 2

RCL 2 In x

In x on

—- RCL 3

RCL 3 In x

In x —

= e

INV In x

Here are the program listings for Problem 2 [computations are dictated
by logarithmic rule (3)]:

 

 

    

Algebraic Memories RCLO

RCL 0 0 a In x
In x 1 b RCL 1
x x

RCL 1 ex

INV In x

Notes: In the precalculator era, logarithms were used much more
widely than today. The simplifications of arithmetic produced by log-
arithms (invented in the seventeenth century by John Napier) made
them virtually indispensible whenever computations involving un-
wieldy numbers had to be performed. Voluminous tables of logarithms,
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some accurate to as many as 20 decimal places, were published for
this purpose—an enormous project involving hundreds of people and
years of hand calculations on mechanical adding machines. Such cal-
culations are now performed inside your calculator every time you
press the Inx key, the calculations for an individual number taking
less than a second. Logarithmic principles also formed the basis for
the workings of the standard precalculator, scientific calculating de-

vice—the slide rule.
Calculators use logarithms in some of their internal compu-

tations to save you the trouble of having to do so. If you compute 22¢
first using the program given in the solution to Problem 2 and then
using your y* key, you will probably come up with the same answer
for both (the HP-67 is an exception). This shows that the calculator is
probably using the program given above, because the answer happens
to be wrong. It is clear that 22¢ should be an even whole number. If
you still think your calculator is producing the right answer, make
another check. Take the fractional part of the answer (FRAC or INV
INT). Since the correct answer must be a whole number, you should
clearly get 0. Calculators sometimes hide little discrepancies in their
guard digits.

The reason that computing 22 using logs produces errors is
that 2%¢ lies at the end of the scale, and here logarithmic compression
is extreme. The loss of resolution in the compressed scale leads to
errors. For a discussion of this issue with respect to the y* key, see
Sec. 1.10 and also Solution 9, below.

Quickie 9: The idea is to go back to the definition of 2": 2
multiplied by itself n times. We will use a loop and the key (see
Solution 5). Start with n in the register that the key decrements.
(If your calculator doesn’t have a key, put n in m, and see Fig.
1-3 for a flowchart showing how to simulate this key.) Register m, will
be used to build up 2" through successive multiplications by 2. When
the program starts, m, should have a 1 in it. Each time through the
loop we will multiply the contents of m, by 2, using register arithmetic
(see Solution 3). When the key has gotten the contents of the
memory that held n down to 0, the contents of m; will have been
multiplied by 2 for n times, and it will thus be time to quit. The desired
output of the program will be found in m;. The listing for this program
on a TI-57, which is short enough for you to translate it onto your own
calculator, is as follows:

 

00 2 Initial State
01 Prd 0 (STO x 0) Memories of Memories

02 Dsz 0 counter 0 n
 

      
03 RST (sends control

back to the top)

04 R/S

1 answer accumulator 1 1
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Notes: The program can be improved by adding steps before R/S that
recall the contents of m, into the display and put a 1 in m,, making
it ready for the next run. Just two steps will be needed if we use a
trick analogous to that in Solution 3. We leave it to you to figure out.
(Since this program is also comparatively slow, see Sec. 1-10 for ia
faster but rather elaborate routine for solving the same problem and
for a thorough discussion of the problem of computing y* accurately
when x and y are whole numbers.)

Quickie 10: To compute ab + ab +c, start with [b] [+]
While the ab is still in the display, add it to c using memory arithmetic.
Then recall this quantity and complete the calculation. Here is the
key sequence for a TI-57:

RCL 0 Memories

ROL 0 21
+ b

SUM 2 2
RCL 2

JX

 

 

 

    

To rearrange the stack, use the following sequence: R|, x = y,
Rl, x =y, Rl, Rl, R|, x =y. Here is a picture of what happens to the
stack:

 

 

4 3 4 2 1 1

3 |R74 (x=aff 1 (=) 1 (RS [RI] ¢ (°T) 2 (r=7)2
2 —»> 3 2 -» 1 »> 3 —- 4 —-> 3

1 2 ; > 4 2 1 3 4

If your stack will roll in both directions (that is, if you have RY), the
following shorter sequence will work: R}, x =y,R|, x =y,R}, x =y.

Notes: Looking at the stack reveals the difference between algebraic
and RPN calculators. Algebraic calculators are more automated. Since
they incorporate a hierarchy taken over from written algebraic expres-
sions, such expressions can be translated directly onto the calculator
more easily. Although RPN calculators make the user unravel the
hierarchy and decide in what order things should be done, they allow
him more freedom and flexibility by giving him direct access to the
stack. You have probably noticed that RPN programs usually turn out
to be the shorter of the two. The difference between the calculators is
something like that between automatic and manual transmissions:
one is easier to use but the other gets better gas mileage.
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1.3 Test Functions

Difficulty: 1

Calculator programs automatically carry out procedures that
would otherwise have to be done by hand. When we do calculations by
hand on a calculator, we engage in two different types of activity: (1)
We press the keys, and (2) we interpret the results that appear in the
display, the interpretation often requiring us to make a decision about
which keys to press next.

Let’s look at an example. Suppose that you are going to put
some money into a savings account paying interest at an annual rate

of 8 percent, compounded quarterly. At the end of each compounding
period (3 months), your money will thus be multiplied by 1.02 (that
is, it will increase by 2 percent). How long, then, will it take for your
money to double? Well, at the end of n compounding periods, your
money will have been multiplied by 1.02 n times, that is, it will have

been multiplied by 1.02". Since your money will be doubled when it
has been multiplied by 2, the question is: When does 1.02" = 2? You
could solve the equation, 1.02" = 2, for n, but suppose you have for-
gotten how? Then you will get out your calculator and simply compute
1.02" for various values of n until you find the n such that 1.02" equals
2. As each value of 1.02" is calculated, you will compare it with the
value you are trying to get, 2. If it is too large, you will adjust n
downward. If it is too small, you will increase n. Eventually, you will
zero in on the correct value, which turns out to be 35, or 8 3/4 years.

Programmable calculators have the ability to perform both
functions described above automatically. They can execute keystrokes—
this is what is going on most of the time in most programs—and they
can make decisions. The decision making powers of the calculator re-
side in its test keys: [x=y], [x=t], [INV][x=¢t], [x=0], and so forth.
Notice that you never use these keys outside a program. Their func-
tions are performed in your head when you operate the calculator
manually. Within a program, the test keys compare the size of two
numbers, and then the program takes either of two courses of action,
depending on the outcome of the comparison. The procedure is very
similar to your own when you solved the problem above. You mentally
compared the contents of the display with the number 2 and then
raised or lowered the value of n depending on whether the display was
smaller or larger.

Virtually every problem in this book involves the test keys.
They give your programmable calculator the appearance of being able
to think. It is therefore crucial that you understand exactly how these
keys work on your calculator and that you read your manual! Once
you understand the test keys, you should be able to solve the following
problem.
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Suppose that you are in a supermarket confronted with two
bottles of ketchup—one containing 24 fl. oz and costing 59¢ and the
other containing 28 fl. oz and costing 69¢. Assuming equal quality,
which is the better buy? The question can be answered by figuring out
the price per ounce (unit price) of each item and comparing the two.
Hand computations will show that the first bottle costs 2.458 (59/24)
cents per ounce and the second 2.464 (69/28) cents. Thus the first
bottle is a slightly better buy. Your problem is to automate the com-
parison on your calculator.

Problem: Write a program that takes as input the price and size
(number of units) of two different items of the same product. If the
first item is a better buy, the program is to return a 1; if the second
item is, a 2. Just to make the problem a little more interesting, have
the program return a 0 in the unlikely event that the unit prices are
equal.

Solution: We will assume that the price and size of item 1 are stored
in my and m; and of item 2 in m, and ms. You might store these four

numbers by hand before running the program, or you might automate
the process of storing data (see Sec. 1.5). Since the numbers to compare
are the two unit prices—u; = mym; and u, = my/ms;—the program
should begin by computing these two numbers. Once computed, u; and
u, should be loaded into the appropriate registers for testing to see
which is larger (or if they are equal). Different calculators use different
registers for this purpose. HP calculators use the x and y registers. TI
calculators have a special test register, labeled “t”. One number is
placed in the t-register; the other, in the x-register (the display). We
will use the language of the TI. If you have an HP calculator, just
substitute “y” for “t” in the following discussion.

This program has three possible outputs: 0, 1, and 2. Therefore,
the following three sequences will occur at three different places in
the program: a 0 followed by a stop, ([rs], [suBr], 00, or
whatever is most appropriate for your calculator), a 1 followed by a
stop, and a 2 followed by a stop. Let’s label the sequences a, b, and ¢
for convenience (you may want to label some of them in the program
itself if your calculator has labels). Now we want to direct the flow of
the program to the appropriate sequence, depending on how u; and u,
compare with one another.

This brings us to the testing functions. Let’s postulate that u,
has been placed in the t-register and u, in the x-register. The next
step in the program will be the key ([x=y] in the HP). When
this step is encountered in a program, the calculator treats it as a
question: Is x = t? If the answer is yes, the program simply continues
to the next step. If the answer is no, the calculator skips the next step



32 Mathematical Recreations for the Programmable Calculator

in the program (or, on some calculators, the next two steps) and jumps
to the following step. What should these steps following test be?
Suppose that the answer to the question, x = t?, is no. Since this means
that x < t (that is, u, < u,), item 2 is a better buy. Hence, sequence c

should immediately follow the skipped step(s) so that it will be exe-
cuted whenever the answer to the test question is “no.” Now what if

the answer to the test question is “yes”? Then, since you want to
send “control” to sequence a or b, the step immediately following the
test step should be a GTO order for doing so.

At this stage, you don’t know which sequence you want. You
know that u, is greater than or equal to u,, but you don’t know which.
Another test is needed to decide. Consequently, the GTO order in the
previous paragraph should send the program to a step containing the
test key ([x=y] in the HP). The step immediately following this
one (the step reached by a “yes” answer) should be a GTO that sends
control to sequence a, and the steps following (those reached by a “no”
answer) should be sequence b. The flowchart is shown in Fig. 1-5.
[Solution realized on a TI-58 in 27 steps.]

 

  

 

    

Memory

0 Price of item 1

, ; 1 Size of item 1

Xo ma/m 2 Price of item 2

3 Size of item 2    

 

STOP

 

Fig. 1-5 Flowchart for test functions

Notes: In this program, the step immediately following both tests
was a GTO. Almost all tests work this way; they make the program
branch. One branch is reached via the GTO order; the other, which
starts immediately after the GTO step, is reached when the GTO is
skipped because the answer to test question was “no.” On some cal-

2 On somecalculators,it is not necessary to use the key in this step since
GTO is assumed by the calculator.
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culators (certain TI models, for instance) the step immediately follow-
ing the test step must be a GTO order; the calculator will not accept
anything else. On others (the HP-25 and TI-57, for instance) the step
immediately following the test can be anything you want. The flexi-
bility can sometimes be used to advantage (see Quickie No. 6 for sug-
gestions).

When we worked this problem on the HP-25, instead of using
for the second test, we first subtracted x from y and then used

the test #0]. The next step was a and the next 2 [gro J[00]. If
you think about it a little, you will see that this sequence returns a
0 if u; = u; (x — y = 0) since the gets skipped and returns a 1 if
u; < up (x — y # 0). As a result, no branching is necessary! Using this
trick and the device of loading the original data into the stack instead
of memories m, through mj; (see Sec. 1.5), we were able to get the HP-

25 program down to 13 steps.
Here is a list of all the different tests that appear in this book

(TT owners must substitute “t” for “y”):

x<y x <0

X=<y x=<0
X>y x>0
X=y x=0

X=Yy x=0

X #y x #0

Your calculator probably has only some of these tests, but you
can generate all the others from the few you have. Suppose, for ex-
ample, that you have only the tests: x <y and x = y. If you want the
test, x = y, simply exchange x and y ([x=y on HP; on TI); then

use the test, x = y. What if you want the test, x > y? Let’s say that
you wish to execute a sequence A of program steps if this test fails and
the sequence B if it passes. You would like the program

X=>Yy

GTO 

 
 

   
but you have no key. Notice that the test, x > y, fails if and
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only if the test, x <y, passes. Therefore, the following program does

what you want:

X=Yy

GTO 

@

 
 

   
Another approach does not involve switching A and B, as fol-

lows:

x 2%5y
X=y

GTO
x=<y

GTO

A

 

 
 

   
Thus far we have three tricks: (1) interchanging x and y, (2)

interchanging blocks of program steps, and (3) breaking one test into
two tests. (In the last example, we essentially broke down the single
test, x <y, into two: Xx = y and x < y.) Using various combinations of
these three tricks, you can perform any of the six x-versus-y tests
listed above. To get the six x-versus-0 tests, just place a 0 in the y
register (t register for TI owners).

One final trick: If you have only, say, the test, x < 0, then the
test, x <y, can be made by subtracting y from x and testing the result,
x —y < 0, using the test, x <0.

1.4 Writing Programs
Difficulty: 3

The best way to learn how to write programs is to write lots
of them, for there is no substitute for practice. One of the main func-
tions of this book, in fact,is to provide you with a collection of problems
on which to sharpen your skills. For all that, you will still need expert
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advice on technique, which often consists of no more than little devices
for solving frequently encountered problems as efficiently as possible.
The function of this first chapter is to advise you on technique.

General advice is not likely to be of value until you gain some
experience in programming and can see how to apply it. It is similar
to the value of popular sayings, which frequently seem a little silly to
young people but whose meanings deepen with experience. (“Fools
rush in” becomes more meaningful the more fools one has known.)
But having made this flat declaration, we would like to give you some
general advice on writing programs. Don’t, however, try to assimilate
this material all at once; come back and reread it from time to time

as you gain experience in programming. We will begin with a general
prescription for writing a program. Then we will let you look over our
shoulder as we work out an example. Finally, we will give you a sim-
ilar problem of your own to work on.

The act of writing a program has three components: (1) finding
a method for solving the given problem; (2) turning the method into
an actual program for a particular calculator; and (3) editing, correct-
ing, and otherwise cleaning up the program. Although these tend to
be three sequential phases, one rarely passes in a straightforward
fashion from (1) to (2) to (3). Instead, one passes back and forth be-
tween them. You might discover in the course of working out your
method, for example, that you need to know exactly how one part of
the program is going to look before you can work out the other parts.
As a result, you stop and write a little program for that part. Perhaps
you then find that things don’t work quite as you expected, that you
have to go back and modify the method. Or perhaps you see how the
method can be simplified as you work on the details. In any case,

whatever the programming phase you are in, you should keep the
other phases in the back of your mind. Although your attention may
be focused on just one of them, in some sense you should be working
on all three all the time. Phases (1) and (2) can be described as the big
picture and the details, respectively. In solving any mathematical
problem, whether or not it has to do with programming, one moves
back and forth between these two, never quite letting either one go.

Nevertheless, one should ordinarily start with phase 1, the big
picture. Don’t rush into the details. Let them slowly begin to form in
the back of your mind as you think through a more or less complete
idea of the solution. Start phase (1) by fixing firmly in your mind what
the program is supposed to find, that is, what is the output? Then take
a broad overview, letting your mind drift over the various aspects of
the problem. What is the input? How are input and output related?
Have you seen other problems like this one? If so, can this problem be
solved by the same or similar methods? Try to form a mental image
of what the program is supposed to do. It may be helpful to draw a
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diagram. Hold onto your broad overview until you have a pretty com-
plete picture of the solution in your head. Then is the time for phase

(2).
Now it is time to get in close. What quantities are needed in

the various computations? Which ones need to be stored? Keep the
user in mind. What is the most convenient way to handle input and
output from his point of view (see Sec. 1.5)? The user should not have
to understand the detailed workings of the program in order to use it.
Think about efficiency, which may lead you back to phase (1). The
program probably has to make one or more central computations. If
it is a long or complicated one, you should start by writing (and testing)
subsidiary programs for these parts. You may want to turn the central
computations into subroutines (see Sec. 1.7) and then construct the
rest of the program around these central parts. Once your program is
completed, write it out in detail. Now you are ready for phase (3), the
cleanup.

Begin the process by testing the program thoroughly. Read it
through one step at a time and visualize what happens as each step
is executed. This can be a tedious job but frequently pays off by un-
covering errors, especially if your calculator is new and you are still
getting used to it. Now key your program onto the calculator. Choose
a selection of inputs for which you know what the output should be,
and run these through the program. Sometimes you may not be able
to figure out the output in advance, in which case you will just have
to check whether it seems reasonable. If the program does different
things to different inputs—that is, if it branches—be sure to test all
types of input. (See Appendix C for a brief discussion of troubleshoot-
ing.) Once the program is running properly, you are ready for the final
touches. Can it be simplified? Be on the lookout for the same set of
steps appearing at two different places; perhaps they need appear only
once, as a subroutine (see Sec. 1.7). Are all the steps necessary? It is
uncanny how often a step can simply be eliminated without affecting
the output. Sometimes a few steps can be saved by rearranging the
components of the program.

Finally you have your finished product. Write it out in detail,
along with a short description of what the program does and how it
works. Include a record of the memories used and their contents. Be
sure to include explicit directions for operating the program. This pa-
perwork, called documentation, is very important. A good bit of it will
seem unnecessary at the time because you have all of it in your head.
Two months from now, however, you will not. Nothing is more dis-
heartening than digging out a bare listing for a program you want to
use and discovering you no longer understand it. Believe us; this will

happen if you don’t document your programs.
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There is a fourth phase of programming beyond these three:
reflecting on what you have done. You can learn by looking back over
almost any problem and its solution. Did you acquire any new tech-
niques? Is this problem like others that could be solved by the same
or similar methods? Can the program be rewritten to solve a whole
class of problems? Try to grasp your solution all at once. You may find
that you produced more than you consciously realized while working
on the parts; or you may suddenly see a radical simplification of the
whole solution, which will lead you, in turn, back to phase 1.

Now we are going to let you watch us solve a programming
problem. Imagine that a publisher is currently selling a magazine for
$1 a copy. At this price she is able to sell 50,000 copies a month. For
every nickel the price is raised, sales will drop by 5000 copies, and for
every nickel it is lowered, sales will rise by 5000 copies. What price
should she charge for the magazine in order to maximize her income
from sales? (This problem is not typical of most in this book because
the role the calculator is supposed to play in solving? it is not specified.
That difference makes it all the more realistic.)

Let’s engage in a little preliminary thought (phase 1). From
the given information, we can figure out exactly what income can be
realized from any assigned price. For example, if the price is raised
10¢ to $1.10, sales will fall to 40,000 copies, and the publisher’s

monthly income will be 40,000 x 1.10, or $44,000. Since the pub-

lisher’s current monthly income is $50,000, this is clearly not the
solution we are looking for, but it at least makes clear that such a
computation can be made for any given price of the magazine. Perhaps
we can come up with a formula for the income corresponding to any
given raising or lowering of the price, and program the formula onto
the calculator. We could then rapidly compare the incomes realizable
from various prices. If we want to get fancy, we could even have the
calculator do the comparisons using its testing functions. The calcu-
lator would then systematically generate all possible raisings and low-
erings of the price of the magazine, compute the corresponding incomes
from sales, and find and store the price that generates the most in-
come.

Let’s see if this scheme can be worked out in detail (phase 2).
First, we need a formula for computing the monthly income realizable
from a given raising or lowering of the price. You may not have no-
ticed, but a choice has been made here. In general, various quantities

can be used as starting points for computing a quantity one is trying
to analyze (in this case, income from sales). We have chosen to start

13 In fact, the problem can be solved without a calculator, using calculus (see the
Notes).
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from the amount by which the price might be raised or lowered, but
we could also have started from the price itself. This decision is called
choosing the independent variable. One wants to select the indepen-
dent variable in such a way that the formula for the dependent variable
(income) is made as simple as possible. In our case, the conditions
describing the behavior of monthly income are phrased in terms of the
amount by which the price might be raised or lowered. Thus, if we
choose this latter quantity as the independent variable, it will be easy
to come up with a formula for monthly income.!*

Let us, then, construct the formula for monthly income from

sales. We will assume that the price of the magazine can be raised or
lowered only in increments of 5%. Suppose that the price of the mag-
azine is raised by x increments. The new price of the magazine would
then be $(1 + .05x). How many people would buy it? Since sales would
fall by 5000x copies, the number of copies sold per month would be
50,000 — 5000x. Thus the monthly income realizable by raising the
price by x increments—that is, x nickels—will be $(1 + .05x) (50,000
— 5000x). A similar argument will show that if the price is lowered
by x increments, then the monthly income will be $(1 — .05x) (50,000
+ 5000x). Since the latter expression is the same as [1 + .05(—x)]
[60,000 — 5000(—x)], the same formula will work in both cases if we

just put minus signs in front of the x’s representing lowerings of the
price (that is, if we treat them as negative increases). Thus the for-
mula, I(x) = (1 + .05x) (50,000 — 5000x), gives the income obtained

from raising the price x nickels, where it is understood that if x is
negative, the price is being lowered.

Now it is time for you to start following this discussion on your
calculator. Your calculator, of course, can be programmed to turn out

values of this formula. (We are assuming that you already know
enough about programming to write this type of program. If not, you
need the practice.) So go ahead and key the formula onto your calcu-
lator (see Quickie No. 7 for a helpful hint). The program should work
like this: When x is put in the display and the R/S (or whatever) button
is pushed, the calculator returns (1 + .05x) (50,000 — 5000x). Test
your program by trying it out for x = 0 and x = 2 (the latter corre-
sponding to a price increase of 10%). We already know that these values

should return 50,000 and 44,000, respectively. By experimenting with
various values of x, you will discover that the biggest return is gen-
erated when x = —5. Thus the maximum possible income will be gen-
erated by lowering the price five increments to $.75. The corresponding
monthly income is $56,250.

' There are times, however, when a seemingly unnatural choice of the indepen-
dent variable can allow one to see through a formula that looks very compli-
cated in its original form. This is the art of changing variables, which plays
a large role in mathematics, especially in the theory of equations.
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For this particular problem, what we have done so far probably
represents the best use of the calculator. Once we had a formula for
computing the monthly income corresponding to any given raising or
lowering of the price of the magazine, we programmed the formula
onto the calculator. It was then a relatively easy matter to find the
best price for maximizing monthly income by simply trying out various
values of x. In other problems of the same type, however, there may
be too many possible values of x for this to be a practical approach.
We are now going to show you, with the same problem, how the cal-
culator can be programmed to conduct a search for the optimal x.

Let’s be as clear as possible about what we want to do. When-

ever the calculator takes over a new part of a problem, the details of
that part must be made explicit. Here is the situation. We have a
formula, I(x) = (1 + .05x) (560,000 — 5000x), in which x represents the

number of increments by which the price of the magazine might be
raised or lowered, and I(x) represents the monthly income realizable
by raising or lowering the price by x increments. We seek the value
of x that will make I(x) as large as possible.

First, let’s see within what range of values the x we are look-
ing for must fall. Notice that if the price of the magazine is raised 10
increments (that is, by 50¢), sales will fall by 50,000 copies (thatis, to
0). Obviously, the optimal value of x must be less than 10. On the
other hand,if the price is lowered by 20 increments, the magazine will
be selling for nothing and will generate no income. Thus the optimal
x must also be larger than —20. What we would like to do is have the
calculator systematically generate all values of x between —20 and
10, compute the corresponding values of I(x), and find the x that gen-
erates the largest value of I(x). We cannot generate all possible values
of I(x), store them, and then compare them because there are too many.

Rather, we will somehow have to make comparisons as we go along.
Can you think of an analogous situation in which you try to pick the
best from among a large collection of objects that cannot be examined
all at once?

Suppose that you are at a sale table piled with pairs of socks,
and you want to buy just one pair. How do you find the pair you like
best? One way is the following: You pick up one pair more or less at
random and hold it in your hand. Then you start going through the
pile. As you look at each pair of socks, you compare it with the pair
in your hand. Whenever you come across a pair you like better, you
exchange it with the pair in your hand. Continuing this way until you
have gone through all the socks, you buy the pair you hold in your
hand at the end.

15 Of course, we already know what the answer is: x = —5. The following anal-

ysis, however,is based on the assumption that the problem is not yet solved.
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We are going to have the calculator do a similar search. First,
an arbitrary x and I(x), say 0 and 50,000, will be stored in a pair of

memories (which will play the role of your hand in the example above).
Next, the calculator will generate all possible x’s and I(x)’s one at a
time, starting with x = —19. As each new x and I(x) are generated,
the new I(x) will be compared with the one in memory. If the new I(x)
is larger, it will replace the one in memory, and the new x will replace
the x in memory. At the end of the routine, when all the I(x)’s have
been examined, the I(x) in memory will be the biggest possible, and
the x in memory will be the x that producesit.

Four memories will be used. To begin, m, will store the im-
possible low value of x (in this case, —20) and will successively store
all possible values of x: —19, —18, —17,.. ., 8,9, and 10. Also, m, and

m, will store the best values of x and I(x) found so far as the program
proceeds, beginning with 0 in m; and 50,000 in m,; at the end of the
routine, the values of x and I(x) we are looking for will be in these two

memories. Finally, m; will be used to store the impossibly large value
of x (in this case, 10; the technical names for — 20 and 10 in this

setting are the lower and upper bounds on the solution). After each
value of x has been generated and stored in m,, it will be compared
with the contents of ms. As soon as the contents of m, equal or exceed

the contents of m3, the routine will be terminated.

The program itself will work as follows: Increase the contents
of m, by 1 and check to see if the result is greater than or equal to the
contents of mj. If it is, stop; the routine is over. If not, take the new

contents of m, and compute I(x) from it [the program you have already
written for computing I(x) will be embedded within this larger pro-
gram]. Next, check to see if the resulting I(x) is larger than the con-

tents of m,. If it is, store the new I(x) in m,, and store the contents of

m, in m,. These are the new best values of x and I(x). If the new I(x)
is not larger than the contents of m,, skip the two storages; the values
in m, and m, are still the best yet. Finally, loop back to the second
sentence of this paragraph. The flowchart for this program is shown
in Fig. 1-6.

Problem: Suppose that a manufacturer wants to build a tin can with
a capacity of 1 liter. What should the dimensions of the can be in order
to minimize the amount of sheet metal used in its construction? This
question is equivalent to asking for the dimensions of a cylinder with
a volume of 1 liter and minimum possible surface area. Construct a
calculator program for finding the dimensions of that optimal cylinder.
Arrange it so that your answer is correct to the nearest millimeter
(tenth of a centimeter). Here are some hints: The volume formula for
a cylinder is: V = ar*h, where r is the radius of the base of the cylinder
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Fig. 1-6 Flowchart for comparison search [maximizing I(x)]

and h is the height. If r and h are measured in centimeters, then V
will be given in cubic centimeters. One liter is 1000 cubic centimeters.
The formula for the surface area of a cylinder!® is: S = 27r? + 27rh.

Solution: Because of the strong similarity between this problem and
the magazine problem, one might hope that the same basic scheme
would work. We are looking for those dimensions of a cylinder of given
volume that will minimize its surface area. The idea will be to gen-
erate various dimensions systematically, compute the corresponding
surface areas, and pick out the best of them—using the method de-
scribed in the example. The first thing we need is a formula for com-
puting the surface area of a cylinder from its dimensions.

Here we run into a problem. The formula, S = 27r* + 27rh,
has two independent variables: r and h. To generate pairs of variables

16 The expression 27r? is the area of the base and top of the cylinder, and 2n#rh
is the area of the side. If you imagine taking the top and bottom off the can,
cutting it in a vertical line down the side, and then flattening the side out,
you will get a rectangle whose base is the circumference of the base of the
cylinder (27r) and whose height is h. The area of this rectangle is thus 27rh.
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systematically is a tricky business involving nested loops (see Sec.
1.8). Moreover, we are not interested in just any old r and h. We want
only those for which the value of 7rr*h (the volume of the can) is 1000.
Actually, this restriction provides the way out of the problem. Since
the volume of the cylinder we are looking for is specified, once the
radius of the base has been given, the height will be forced to be
exactly that number h such that 7#r*h = 1000. This equation can easily
be solved for h: h = 1000/zr?. This value for h can in turn be plugged
into the formula for S, allowing us to write the latter in terms of the
single variable r: S = 27r?* + 27r(1000/7*) = 27r* + (2000/r). This is

the formula we need.
We can now generate a sequence of values of r, computing the

corresponding values of S as we go, and find and store the smallest
value of S and the r that produces it. Once r has been determined, we
can find the height of the cylinder from the formula: h = 1000/7r?.
Almost exactly the same routine used to solve the magazine problem
can be used here. The subprogram for computing I(x) will be replaced
by a subprogram for computing S(x): S(x) = 27x* + (2000/x). Once
again we leave it to you to construct this program.

Two other modifications of the previous program are required.
In the magazine problem, we were trying to maximize I(x). This time,
since we want to minimize S(x), we need to find and store that x which

yields the smallest value of S(x). Look back at the flow chart in Fig.
1-6. To find the smallest value of S(x), all we have to do is change the
previous test, I(x) > m,, to obtain the required test, S(x) < m,. Second,

in the magazine problem, we used nickels as units and were interested
only in whole numbers of these units. Thus, the contents of m, were
incremented by 1 each time through the loop (see the top box of the
flowchart in Fig. 1-6). This time we use centimeters as units, but since
we want to find the answer to the nearest tenth of a centimeter, we

will want to increment m, by .1 on each pass through the loop. We
accomplish this by changing the top box of the flow chart from m, «
m, + 1 to my, «<~ m, + .1. These two changes yield the flowchart shown
in Fig. 1-7.

Finally, we need to find the numbers to put in memories my—

mj; before the program is started. The number in m, should be a lower

bound on the solution, a number that we know to be smaller than the

number r being sought. A convenient number to use in this case is 0.
Clearly, the radius of the optimal cylinder (of any cylinder, for that
matter) is a positive number (that is, larger than 0). An upper bound
on the solution has to be stored in mj. This is a little trickier to find.

One might call 0 a natural lower bound in this problem since there
are simply no cylinders with dimensions less than 0, but since we can

imagine cylinders with dimensions as large as we like, we are going
to have to find the upper bound experimentally. Luckily, we need
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perform the experiment only in our heads (and with the help of our
calculators). Imagine a cylinder with a really large base, say a tin can
with a diameter of 1 meter. If this cylinder is to have a volume of 1000
cu cm, then, since its radius r is 50 cm, its height must be

h = 1000/7r* = 1000/2500 = 0.127 cm

It seems intuitively clear that a tin can that is 1 m wide and
about 1/8 cm high is not the most efficient possible. The top and bottom
of the can will require more than a square meter of sheet metal. If we
let the radius of the base get larger, moreover, the situation will just
get worse. The optimal radius, then, must be less than 50 cm. We

could obviously improve on this upper bound, but why bother? We are
supposed to be getting the calculator to do the work. We therefore put
50 into mg.

Now how about m; and m,? These are the memories in which

the optimal x and S(x) will be found after the program has been run.



44 Mathematical Recreations for the Programmable Calculator

We need to put something in them for comparison purposes when the
program starts. Let us select an arbitrary x, say 1; then,

S(1) = 2m(1% + (2000/1) = 27 + 2000 = 2006

Store these numbers in m; and m,, respectively. The program
is now ready to run. It should finish with the optimal values of r and
S in m; and m,, respectively: r = 5.4 cm and S = 554 sq. cm. [Solution
was realized on a TI-57 in 32 steps.]

The above program has one drawback. It is rather slow, taking
about 15 minutes to run on a TI-57. What makes it slow is the number
of x’s that the program has to check out. They range all the way from
0.1 to 49.9 in increments of 0.1—a total of 499 numbers to check.
Things can be speeded up considerably if, instead of trying to get the
answer to the nearest millimeter on the first run, we zero in on this

level of accuracy in two stages. If the step at the top of the flowchart
is changed back to its original form, my, < m, + 1, the program will
then find the optimal radius to the nearest centimeter, or 5, after

checking only 49 numbers. Since the optimal whole number radius is
5, the radius we are looking for should be somewhere between 4 and
6.” We therefore put these numbers in m, and m3; and change the first

part of the program back to its amended form, my, «< m, + 0.1 (leaving
the contents of m; and m; as they are.) Now when we run the program,
the desired answer is achieved after a check of only 19 numbers. This
approach is much faster, for the calculator has to check a total of only
78 numbers.

It is a little inconvenient to have to change the program for
the two runs, but an easy remedy is available. All we have to do is set
up a memory, say my, to store the size of increments that we want to

use in given runs of the program and then store those increments
before running the program. The first part of the program now takes
the form, m, <— m, + my. The flowchart for this improved program is

shown in Fig. 1-8.
Now it is time to take a closer look at what we have done. It

should be pretty clear that we have evolved a general technique for
finding the maximum or minimum value of a mathematical expression
with one independent variable. Suppose that Q is some quantity given
by a formula in terms of x, for example, Q = 27x? + (2000/x). We wish
to find the value of x which minimizes Q. First we must find a pair of
bounds on the solution, a number x, (the lower bound) that we know

is less than the number we are looking for and a number x, (the upper
bound) that we know is larger. Then we take an arbitrary x between
x, and x, and compute Q(x), the corresponding value of Q. These four

"This reasoning doesn’t always work (see the Notes).
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numbers are placed in memory. We also store Ax, the size of the in-
crements in which we wish to sample the numbers between x, and x,.

The program generates the numbers between x, and x, one at
a time in increments of size Ax. As each number x is generated, Q(x)

is computed. A program for computing values of Q from x will be
embedded in the larger program. If your calculator has subroutines,
the program for Q should be a subroutine, because it will then be
easier to change for different Q’s. As each value of Q(x) is computed,
it is compared with the value in memory. If smaller, this value of Q(x)
and the x which produced it replace the values in memory. As each
new x is generated, a check is run to see if x = x,. As soon as this x
occurs, the program is terminated.

The flowchart for this routine (Fig. 1-9) looks exactly like the
modified flowchart for minimizing the surface area of a 1-liter cylin-
der. To obtain a flowchart for maximizing Q, merely change the test,
Q(x) < m,, to the test, Q(x) > m,. The skeleton program (without a
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program for computing values of Q) can be programmed onto a TI-57
in 18 steps.

Notes:

Here are two other problems for you to solve with this routine:

. You have a piece of cardboard 12 cm square and want to make
an open-topped box out of it by cutting squares from the cor-
ners and folding up the resulting flaps. (see Fig. 1-10(a)]. What
size squares should you cut from the corners to maximize the
volume of the box?

. A farmer has 100 feet of fencing. He is going to make a pig
pen with it by enclosing a rectangular plot next to his barn.

The side of the barn will form one side of the rectangle, and
the fence will form the other three sides [see Fig. 1-10(b)].
What dimensions should the rectangular plot have to maxi-
mize its area?

These two problems, like the two preceding them, are ex-
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amples of problems in optimization, a large and important topic in
mathematics. Optimization problems, which appear in both pure and
applied mathematics, have played an important role in the history of
mathematics. Problems of the type given here spurred Fermat to cre-
ate the fundamentals of differential calculus before the work of New-
ton and Leibniz.

Optimization problems can be very difficult. Although com-
puters have greatly extended our ability to solve them, there are still
some whose solutions lie beyond the capabilities of even the biggest
computers. An example is the so-called traveling salesman problem.
A traveling salesman has a territory that covers, say, 25 towns. He

needs to visit each town once each month and knows the distance by
road between any two of them. His problem is to find the circuit of
minimum length that passes through all the towns. The problem ob-
viously has a solution, since there are only a finite number of possible
routes. Nevertheless, that number is incredibly large. Even in this

relatively simple case, there are 6.2 xX 10? possibilities! If a computer
were able to check out one billion of these possibilities per second, it
would take more than a million years to try them all.”® Many practical
problems—for example, airline routing problems—turn out to be of
this type.'®

In the problems we have worked on here, the number of pos-
sibilities to be checked were relatively few. Moreover, we developed a

18 No existing computer can run a billion checks per second.

“The traveling salesman problem belongs to a class of problems called NP-
Complete. It has not been proved that there isn’t a more efficient algorithm
for solving such problems, but it is strongly suspected that no shortcuts are
possible.
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strategy for avoiding having to check them all (the strategy of zeroing
in on the level of accuracy desired). Calculus also provides a strategy
for solving these four problems. It turns out that the optimal values
of the quantities involved in all of them occur at the points at which
the derivatives of the functions describing the quantities are zero. If
you have taken calculus, you have undoubtedly used this strategy to
solve optimization problems of the same sort. In problems of the trav-
eling salesman type, however, most computer scientists believe that
there simply is no strategy for quickly zeroing in on the optimal so-
lution. Since we are pretty much stuck with trying all the possibilities,
the problems are for all practical purposes unsolvable. Even if we
happened to find the optimal solution by chance, we would have no
way of knowing that there was not a better one.

Notice that the diameter and height of the optimal 1-liter can
turned out to be about equal (if they had been computed more accu-
rately, they would have turned out to be exactly equal). In the mag-
azine problem, moreover, the optimal price of 75¢ resulted in a sales
of 75,000 copies. Although conditions of “equality” of this type fre-
quently characterize optimal solutions, they are not always so simple.
The analogous condition in the cardboard box problem sounds artificial
if you don’t know calculus. See if you can find the “equality” con-
dition in the optimal pig pen problem (the optimal plot is 50 by 25 ft).

We should mention two limitations of the optimization routine
described above. One has to do with the strategy of zeroing in on the
desired level of accuracy. If the graph of the function to be optimized
contains quick jumps in value, the best whole number solution may
not be close to the best solution that has one digit after the decimal
point. Thus you might find yourself zeroing in on the wrong place.
This situation is not likely to occur unless your formula for Q is fairly
exotic, but it is something you should keep in the back of your mind.
Another limitation concerns the level of accuracy with which the op-
timal x can be determined. As you get close to the optimal value for
the quantity Q, the graph of Q tends to flatten out (a characteristic
related to the fact that the derivative, or rate of change, is 0 at the

optimal values). Once you get down to a certain level of accuracy for
x, the corresponding values of Q will be indistinguishable on the cal-
culator. Try calculating cos(0) and cos(0.001) on your calculator, for

example. We know that cos(0) is bigger, but your calculator cannot

tell the difference. Thus, beyond a certain level of accuracy, the cal-
culator will not be able to pick the truly optimal value of x. In a way
it doesn’t matter, since what you are really trying to optimize is Q,
and the x that the calculator finds will yield a Q that is virtually
indistinguishable from the correct value.
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1.5 Loading Data and Other Aesthetic
Considerations
Difficulty: 2

Almost all calculator programs require the user to supply
numbers for the program to operate on. These numbers are referred
to as the input or data for the program. The program processes the
data and returns output. The input and output constitute whatis called
the man-machine interface. They are the language in which the cal-
culator and its user talk to one another. In this section, we will discuss

various ways of supplying the calculator with data and the merits of
each.

There are basically two places into which data can be entered:
the display or a memory. Entering data in the display is easier on the
user and less likely to generate errors (he might put the data in the
wrong memory), whereas entering data in a memory is generally eas-

ier on the calculator. More about this later. First let’s look at tech-
niques for loading data through the display. The idea here is to au-
tomate the program as much as possible: The user of a program should
not have to understand how it works in order to use it. All he should
have to do is enter the data, run the program, and get the desired
output.

Let’s consider a straightforward example. You are asked to
produce a calculator program for finding the height of buildings with
a barometer. Your solution is the following: the user is to drop the
barometer off the top of the building to be measured and measure the
length of time it takes to hit the ground. If t is the length of time it
falls, then the distance it has fallen, s, is given by the formula,

s = 16t2

where s is measured in feet and t in seconds.?® A program is required
that takes t as input and returns s as output. You want to set the
program up so that the user enters t in the display and hits the run

button, and the calculator returns the value of s. The flowchart for

this program is shown in Fig. 1-11.
Now let’s consider a little more complicated example. A col-

lege admissions board uses the following scheme for rating its appli-
cants. After his application form has been analyzed, each applicant is
assigned ratings in the following four areas: (1) scholastic aptitude,
(2) scholastic achievement, (3) psychological stability, and (4) the
amount of money his parents donated to the school the previous year.

?* This formula ignores the effect of air resistance. For a discussion of this factor,
see a text on differential equations.
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Each of these ratings is a number between 0 and 100. The board has
decided that the relative importance of the four factors are 15, 15, 30,

and 40 percent, respectively. An applicant’s “net” rating is obtained
by multiplying rating (1) by 0.15, rating (2) by 0.15, rating (3) by 0.3,
rating (4) by 0.4 and then adding up the resulting numbers. A calcu-
lator program for making this computation is desired.

The program will require four pieces of data, but how should
this input be handled? The program operator could put the four num-
bers into four separate memories, but it would be easier to have the
program process the data one piece at a time, stopping at intervals to
enter the next number. The flowchart for the basic program will then
look like the one in Fig. 1-12.

This program can be improved. If you have ever used a similar
one, you know that it is easy to forget which numbers have been en-
tered. To avoid this problem, the program can be constructed to give
cues indicating which numbers have already been processed. For ex-
ample, after storing the product of 0.15 times the first rating in m,
and before the first R/S, a 1 can be put in the display to indicate that
the first number has just been precessed. Similarly, a 2 can be entered
in the display just before the second R/S, and so forth?!

Every approach to a problem has associated costs that must be
weighed against associated benefits. The price usually paid for pro-
grams that make things easy on the user is the increase in their
length. The preceding program takes 34 steps on a TI-57, a calculator
with only 50 steps available. If the problem were more complicated,
the program could easily overrun the capacity of the program memory.
Suppose, for example, that the admissions board hired a consulting

firm to revise its admission criteria and the firm recommended use of
the following expression for the net rating of each applicant:

*! Be careful when using this trick that the cue does not become an unwanted
digit in some other number (see the Notes).



Technique 51

V r,? + ry?

 

4
arctan (2 red + ry? — 2rar, -

The overriding concern would now be how to get a program for this
formula onto the TI-57.

For such programs,it is usually more efficient to load the data
into memories. Besides eliminating the cueing and stopping steps, this
arrangement allows the data to be processed more conveniently since
the calculator no longer has to wait for the user to present it piece by
piece. In the previous program, for example, since the first two ratings
are both to be multiplied by 0.15, it would be more efficient to add
them first and then multiply the sum by 0.15. In programs in which
a given piece of data is to be used more than once, space is always
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saved if it is loaded into a memory, for if the operator does not put it
in a memory, the program must.

Saving space in a program is of greater concern with small
calculators than large ones, but it is good mental discipline whatever
the size of your calculator. The best programs are those exhibiting
both virtues—user convenience and economy of steps—to the degree

appropriate for the problem to be solved and the calculator used to
solve it.

There is, however, an aesthetic consideration that runs counter

to both these values, namely, the intelligibility of the program. A
program with a lot of little extras tacked on for the convenience of the
user and a lot of little space-saving tricks worked into it as well is
likely to be very difficult for another person to understand without
outside explanation. When you write such a program, you would be
well advised to write an accompanying explanation of what it does
and how it does it. Two months from now, you will be that other person
trying to make sense out of your own program. On the other hand,
there is nothing more pleasant to read than a program that solves a
problem elegantly and at the same time explains itself as it proceeds.
When you can produce programs that are convenient to run, econom-

ical of space, and instructive to read, you may consider yourself a
master in the art of programming.

Here is a problem for you to sharpen your skills on.

Problem: If a projectile is fired from ground level at an angle of «
to the horizontal and with an initial velocity of v, ft/sec its height off
the ground after t seconds will be given by the formula,??

h = vit sin a — 16t2

and its distance downrange (horizontal distance from its starting
point) by the formula,

d = vot cos a

Write a program that takes v, and « as input and returns as
output the time and distance downrange at which the projectile strikes
the ground.

Solution: The projectile will strike the ground when h = 0. Factoring
the equation,

Votsin a — 16t2 = 0

we get

t [Vvesin a — 16t] = 0

2 Once again we are ignoring air resistance.
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which yields t = 0, the time when the projectile leaves the gun, and
t = vo sin /16, the time we are looking for. Plugging this value for t

into the formula for d,we see that the projectile will be v,? sin a cos a /
16 feet downrange when it hits the ground. The program, then, needs
to compute the two quantities, t and d.

To make the program easy on the user, we will enter the data
through the display. On TI (algebraic) calculators, v, will be entered
first. The program will begin processing v, and will stop as soon as «
is needed to continue. Since v, and « appear more than once in the
formulas, they apparently also need to be stored as soon as they have
been entered. The TI program might begin by computing v, (sin «)/16.
If so, the first few steps of a TI-57 program would look as follows:

« (user enters Vp)

STO 1
X

R/S

« (user enters a)

STOO
sin

6

The program has now computed the desired value of t and contains «
and v, in storage ready for further computations.

The HP (RPN) program doesn’t need to stop in midstream like
the TI. Instead, the user can enter bothv, and « into the stack at the

beginning. The program can then go on its own way to compute t and
d. To make the output easy to retrieve, we will conclude the program
with it in the x and y registers (TI: x and t registers) so that the user
can flip back and forth between the two outputs simply by pressing
x=y (TL. x =1t).

As a final convenience, the program should end in such a way
that it is all set to be ru a second time. On the HP-25 this is easy; we
just finish with GTO 00. This sets the program pointer back to the top
and stops the program. On a TI-57, the program should end with R/S
followed by RST. This sends you back to the top of the program as
soon as you press R/S for the next run. If your calculator has subrou-
tines, you could label the whole program a subroutine and simply call
for it as such whenever you need it.

So much for user convenience. Now how about space? Very
little space can be saved by sacrificing convenience in this program.
Two STO orders can be eliminated if the user stores the data by hand,
and a step or two might be saved by not worrying about running the
program a second time, but the loss of convenience makes these sav-
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ings not worth it. The real space-saving tricks in this program come

from being mathematically observant. Notice that the distance d we
are looking for is v, (cos a) multiplied by t, where t = v, (sin «)/16.
Consequently, t should be computed first, and d obtained from it by
multiplying by v, (cos @). The only thing you have to watch here is
that you don’t lose t when you use it to compute d. The TI-57 program
we started previously can be continued as follows:

X

x=t

RCL |

RCLO

cos

You now have t in the t register and d in the display. Notice
how t was flipped out of the way with the key just before being
eaten up by the multiplication. (See Quickie No. 10 for a further dis-
cussion of this type of trick. On HP calculators, you can use the “last
x” key to recover t after the multiplication.) This trick produces a
fairly concise (and fairly readable) program that still offers all the
user conveniences mentioned in the previous paragraph. Our TI-57
program took 19 steps, and our HP-25 program took 15. If you produce
a program with these specifications, give yourself a B+.

Another level of sophistication can be reached by the program-
mer who knows the keys and their functions. If you put v, and « in
the x and t registers (HP: x and y registers) and press the key for
conversion from rectangular to polar coordinates, the calculator will
return to you, free of charge, v, (cos a) in the x register and v, (sin «)

in the t register.” With these numbers in hand, you are a long way
toward producing t and d. [Solution was realized on an HP-25 in seven
steps; on a TI-57 in nine steps.]

Notes: When using a cue, you must be careful that it does not become
an unwanted digit of the number keyed in when the program stops.
If 1 is used for a cue and the program goes . ., 1, R/S;—for example—
the display may read 15 when the user keys in a 5. (Check it out on
your own calculator.) The problem can occur in other situations, too,

and can be murder to uncover when your program doesn’t work. It
can be avoided on HP calculators by inserting an ENTER after the 1,
and on TI calculators by inserting an equals sign.

In addition to giving cues to the user, programs can be written

23 See Sec. 2.12.
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to accept cues from the user. Say your program contains two sequences,

s; and s,. Sometimes you want the calculator to execute sequence s,

on a number entered in the display, and sometimes, sequence s,. Cues
from the user permit the calculator to decide which sequence you want.
One quite useful and economical cue is to put a minus sign on the
numbers that are to have sequence s, executed on them. A test, x < 0?,

can then be used to send control to the appropriate sequence. Partic-
ular numbers like 1, 2, and 3 can also be used as cues.

If program space is of prime importance, you may want to

“preprocess” some of the data before putting it in a memory. In other
words, you perform some of the work that the program would other-
wise have to. In less critical situations, the program may be able to
save space by preprocessing its own data. Suppose, for example, that
a program takes x and y as input and that these variables only appear

in the expression x* + y®. It will then be more economical to compute
Jx* + y* at the beginning of the program and store it for future use,
forgetting about storing x and y separately.

Although the subject has been mentioned, we have not said
enough about using the stack for loading data if you have an RPN
calculator. The stack is intermediate between the display and the
memories, sharing some of the virtues of each. It is easy to load data
into one. You need only use the key. On the other hand, the
stack functions like the memories in that data placed there can be
juggled conveniently. (See Quickie No. 10 for further remarks about
the stack.)

Finally, we have said nothing here about two major devices
for loading data that are available to owners of large calculators: user
definable keys and data cards. User definable keys can be very con-
venient for this purpose. A subroutine under a given label can be set
up whose only function is to store the number in the display in a
particular storage register. The name of this number can then be writ-
ten on a little card that is slipped into the face of the calculator as a
cue to the user. User-defined keys can also be employed to preprocess
data, making the main program less complicated.

If you own a calculator with magnetic card storage, these cards
can be used to hold large data sets that will be put back into the
calculator later for more processing (say, your checkbook records).

Data cards can also be used to expand programs beyond the apparent
capacity of your machine. You may be able to break a long program
into parts that can be stored on more than one magnetic card. The
first part does its thing and captures the result in the memories. The
contents of the memories are then dumped onto a data card while the
second part is loaded into program memory. The data is then loaded
back, perhaps after other processing is done, for further processing.
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1.6 Output

In the last problem we were concerned with input—how the
user tells the calculator what he wants it to know. Now we turn to the
other end of the process, output—how the calculator imparts its an-
swers to the user. Since input and output are the phases of computa-
tion in which the user and the calculator are in direct contact, one

should be guided by the user’s viewpoint in working on them.
Working on output is often a matter of developing little

touches to make things more convenient for the user. It is preferable,
for instance, to have the output appear in the display rather than in
a memory, from which it will have to be eventually fished out. If the
output consists of a pair of numbers, as in the previous problem, a nice
device is to have it end in the x and y registers (x and t registers on
some calculators) so that the user can see one number and then the
other by pressing (or [x=t]). You may also want to attatch cues
to the output. If a program is going to output a series of numbers,it
may be helpful to flash an identifying number—1, 2, 3, ... —before
each so that the user will know where he is in the series. If some
output is particularly significant, you may wish to emphasize it by
flashing it for more than one PAUSE or by flashing a minus sign on
and off in front ofit.

From a larger point of view, what we are trying to do is paint
a picture with the output. Every program is devised to communicate
something, the input and output being the medium. Communication
is an art, not a science. There is room for real skill and creativity here.
For instance, have you ever thought of doing something with the two
digits on the right in the scientific notation format, or with the parts
of a number that lie to the left and right of the decimal point? (See
Sec. 1.14).

The output format should enhance the message being conveyed
through the numbers. How much detail do you want to provide? More
detail usually means more numbers or more places after the decimal
point. At times, accuracy demands great detail. At other times, it leads

only to confusion. Who can assimilate all ten digits of a number that
is flashed in the display for a fraction of a second?

An important parameter in any program is speed, and output
format is frequently the controlling factor in how fast or slow a pro-
gram will run. Suppose your program is going to produce a series of
numbers leading toward some end result. You should ask yourself if
you want the user to see these numbers. Will they promote under-
standing? Is it just a matter of watching the program at work for its
own sake? Or does the user need to see the numbers to know whether
or not to stop execution? If you are going to show the numbers to the
user, you need to decide whether to do so with an R/S or a PAUSE.
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The PAUSE is faster, but R/S allows the user to digest the numbers
at his own pace. Perhaps the program can be made flexible, allowing
the user to see the numbers at some times, and at other times, when

speed is most important, dropping the PAUSEs altogether (see Ulam’s
Problem in Sec. 2.3 for an example).

Now let’s look at a concrete situation. Whenever a computa-
tional process is applied repeatedly to its own output, we say that the
process is being iterated. Compound interest, for example, is an iter-
ative procedure. Let's say that you have $100 in a savings account
that pays at an annual rate of 8 percent, compounded quarterly. The
$100 can be viewed as the initial input. At the end of each quarter,
the money in your account is multiplied by a factor of 1.02; thus at
the end of the first quarter you will have $102 in your account. This
amount is the output for the first quarter. The computational process
is multiplication by 1.02. In the next quarter the $102 becomes the
input, and the process is applied again, producing $104.04 in your
account. This output from the second iteration becomes the input for
the third iteration, which produces the third quarter’s balance of
$106.12, and so on.

Iterative procedures are used to model a wide variety of phe-
nomena. For example, economists view a nation’s economy as an it-
erative procedure. The economy is described using a number of vari-
ables: gross national product, rate of inflation, rate of unemployment,
etc. These variables are thought to be both a description of the present
state of the economy and the determining factors for the future state
of the economy (in other words, the output of the present state of the
economy and the input which will determine the next state of the
economy under the action of whatever economic laws operate in the
nation). Strict determinists would claim that the universe is an iter-
ative procedure. Each state of the universe is the product of its pre-
vious state under the operation of the unchanging laws of nature, and
these same laws will produce the next state from the present one.**

A question frequently asked of iterative proceduresis: Is there
a stable state? Thatis, is there an input that produces itself as output?
And if so, what inputs will eventually lead to the stable state? In the
compound interest example, there are no stable states; each input pro-
duces an output larger than itself. Economists would be very inter-
ested to find a stable-state economy; there are no examples in the
modern industrial world. A stable state of the universe would be very
uninteresting (nothing would change). However, astronomers still de-
bate whether the universe is cyclically stable (that is, will the present
state of the universe recur at some, perhaps remote, future time?).

24 This view of the world has been largely abandoned by physicists in the twen-
tieth century.
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Now let’s bring this discussion down to the dimensions of a
calculator.

Problem: You have a computational procedure that can be pro-
grammed on a calculator, for example, f(x) = (x + 1. The problem is
to write a program around the program for the computation, the func-
tion of which is to iterate the computation and search for stable states.
We will assume that there is no theory for finding inputs that lead to
stable states. The user is simply to choose an initial input and start
the program, which will then discover whether or not the input leads
to a stable state. Remember that this problem is supposed to be con-
cerned primarily with output. Think about how to make the output do
the most for the user.

Solution: There is one very simple solution. The program for the
computational process is followed by an R/S to allow the user to see
the output. This step is followed by a GTO order sending control back
to the beginning of the computation. When R/S is pressed a second
time, the program will loop back and run the computation again on
the contents of the display, which will be the output from the previous
run (see Fig. 1-13).

START

—
 

 x= f(x
(COMPUTE
f(x) FROM
THE VALUE IN
THE DISPLAY)

Fig. 1-13 Flowchart for stable state program

   

 
The user places his first input in the display and presses R/S.

The calculator stops with f(x) in the display. He presses R/S again and
gets the next iteration. He then keeps pressing R/S and watches the
display to see if the values are settling down toward stability. If your
calculator has subroutines, the same thing can be accomplished by
programming the computation as a subroutine (with a user-defined
key if you have one). Each run of the subroutine will then produce an
iteration of the computation, provided that you leave the results of the
last run in the display.
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Try this routine on the equation, f(x) = cos x, with the calcu-
lator in degree mode. The program will be as follows:

01 COS X

02 R/S

03 GTO 01

You will see that no matter what value you start from, the
value in the display will quickly settle down to .999847742. Now try
the same routine on the equation, f(x) = \x + 1. Here the stable value
is 1.618033989, but the program doesn’t find it so quickly. You can
save the user the trouble of repeatedly pressing R/S by replacing it
with a PAUSE (see Fig. 1-14). Now all the user has to do is watch the
display and stop the program when a stable value has been reached.

D_
xe f(x)

Fig. 1-14 Flowchart for stable state program (first revision)

 

   

 

Even this approach can get boring, however. Let's see if the
program can be speeded up even more by eliminating the PAUSE. To
do so will require the calculator to take over the former function of
the user, that of watching for the stable value to appear. The idea will
be to make the calculator store the values produced by the computation
and compare these with their successors, stopping as soon as equality
occurs. The flowchart for this approach is shown in Fig. 1-15).

This program will run itself until a repeating output is found,
but it contains a rather subtle flaw in the test, x = m,. Frequently,
stable values of functions cannot be captured with absolute precision
by the calculator because the calculator holds only finitely many dig-
its, and these may not be sufficient to express the stable value pre-
cisely. It can happen in such a case that the last digit of the successive
iteration will not settle down but rather cycle between two or more
values. Thus the test, x = m,, will never be satisfied even though the

calculator has gotten as close as it is going to get to the stable value.
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Memory
START :

0 Successive values
I of f(x)

Initial State of
the Memory

[0]pa
YES The initial input should also be

STOP in the display at the beginning
of the program.

 

x f(x)

   

NO
 

mg <x

LL.

Fig. 1-15 Flowchart for stable state program (second revision)

    
The way to get around this difficulty is to store some very small num-
ber, say 107%, in m, and replace the test, x = m,, by the test, [x — m,|
< m,. Now the program will stop as soon as the successive values

agree in the first eight digits.
Finally, we need to consider what to do in other cases where

the iterations fail to settle down toward a stable value, since without

adjustment of some kind, the program will run forever. To prevent
this, you should start in the PAUSE format—an easy procedure if the
program just outlined is written properly. Merely replace the test step
and the step immediately following it with PAUSE and a GTO (or
RST) order sending control back to the top of the program. Now the
program will work as it did in the previous flowchart. You have here
the best of both worlds, a program that will do the search automati-
cally but that can easily be modified to provide more feedback when
needed. [Solution was realized on an HP-25 in 10 steps—not including
a subprogram for computing values of f(x).]

Notes: A potential ambiguity exists in the flowchart of Fig. 1-15.
Look at the steps, x = m, and m, «< x. The second x is intended to be
the same as the first, even though it may no longer be in the display
after the test has been run. (See Appendix A for further discussion of
how to read flowcharts.) Also notice that part of the input for this
program is another program.

The program given here can sometimes be used to solve equa-
tions. Suppose that you want to solve the equation: x? — x — 1 = 0. If

the x is moved to the other side of the equals sign, the equation be-
comes: x* — 1 = x. To find an x such that x = x* — 1 is the same as
finding a stable value for the expression: x? — 1. (Think about it.) If
we try the routine given above on the expression x? — 1, and if it finds
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a stable value, the original equation is solved. Go ahead and try it.
You will find that it doesn’t work. No matter where you start, the
iterations never settle down. Eventually, they may start flipping back
and forth between 0 and —1, even for the stable values (1+ /5)/2. The
reason is that the calculator cannot express either of these numbers
precisely. As a result, the numbers you wind up with on the calculator
are not really stable. All of this illustrates that even if stable values
exist, you may not be able to find them by iteration.

If you manipulate the original equation another way, you can
solve it by finding a stable value. Isolating the x* on the left, you get
the equation: x* = x + 1. If square roots are taken on both sides, this
becomes: x = + x+1. Thus the solutions of the equation are the sta-
ble values of the expressions, yx +1 and — |x + 1. Since we have
already found the stable value of the former expression, the equation
is solved.

Stable values are sometimes called fixed points. They are one
of the BIG IDEAS in mathematics. The idea of iteration is another
one.

We have assumed throughout this section that the only type
of output your calculator will produce is numbers. However, a new
generation of calculators possess alphanumeric capabilities; that is,
the calculators can output letters and words. Such calculators have a
much more flexible output (and input) potential than their predeces-
SOrs.

1.7 Subroutines and Flags
Difficulty: 2

Your calculator may or may not have subroutines or flags. We
will now show you how to use them if you have them and how to build
them into your programs artificially if you don’t.

Many programs use the same sequence of key strokes several
times. When they do, you might well wish that the whole sequence
were just one key on your calculator, but of course it isn’t. It is on
such occasions that subroutines come in. A subroutine is a mini-pro-
gram that can be used by the main program several times.

Consider the following problem. A spherical balloon filled with
water has a radius of r, cm. How much water must be added to make

the radius equal r; cm? Let us write a program that accepts as input
the two numbers, r, and r;, and outputs the volume of water to be

added. Since the volume of a sphere of radius r is given by the equa-
tion, V = 4/3 (wr®), the balloon initially has a volume of 4/3 (7ry?).

Since we want the resulting volume to be 4/3 (7r,%), the amount to be
added is the difference, 4/3 (wr?) — 4/3 (7rry®).
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The sample programs below assume that r, is stored in mem-
ory 1 and r, in memory 2:

HP TI HP TI
RCL 1 RCL 1 RCL 2 RCL 2

3 y* 3 y*

yx 3 y* 3
m X us X

X mT X mT

4 X 4 X

X 4 X 4

3 - 3 +

+ 3 = 3

STOO = STO-0 =
RCL 2 STOO RCLO INV SUMO

RCL O

* On a TI 58/59, the RCL and STO steps each consists of two steps.

Each of the above programs has a repeating block of steps,
indicated by the braces. If your calculator has subroutines, the re-
peating block need not be written twice. Here is how we avoid doing
so. The repeating block is written only once, somewhere else in the

program memory, followed by (HP) or (TT). Then
whenever the block is needed, it is called as a subroutine (that is,

execution is transferred to the block by a subroutine order—|GsB or
[sBR|). When the calculator gets to the [RTN | or [INV | [SBR|] at the end
of the block, it automatically transfers execution back to the step fol-
lowing the one that called the subroutine.

There are two methods for transferring (or addressing) pro-
gram execution to another portion of the program memory: direct ad-

dressing and relative addressing. For some calculators (like the HP
33E) that have direct addressing, execution can be transferred directly
to a certain step number. Since these calculators do not have labels,
the instruction GSB 25, for instance, is used to transfer execution to

step 25 of a program. For other calculators (like the HP 67/97 and TI
57) that use relative addressing,” a step number cannot be addressed
directly and a label must be used: The step LBL 3 is placed in step 25.
LBLs do not do anything when encountered in program execution;
they merely serve as markers. To transfer execution to step 25, you

put in the instruction GSB 3 (or GTO 3). When the program encoun-
ters the GSB 3, it searches for the LBL 3, finds it at step 25, and

continues execution from there.

 

 

#> Still others (like TI 58/59) have both capabilities.
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The previous programs, rewritten using subroutines, are
shown below (note that we have saved three or four program steps by
using a subroutine):

HP Tr HP Tl

RCL 1 RCL 1 LBL O LBL O
GSB 0 SBRO 3 yX

STOO STOO yx 3
RCL 2 RCL 2 T X

GSB 0 SBRO X aT

STO -0 INV SUM 0 4 X
RCL O RCL 0 X 4

R/S R/S 3 +

+ 3

RTN =
INV SBR

* On a TI 58/59, the RCL and STO steps each consist of two steps.

A subroutine can itself call another subroutine. In some cal-
culators, the second subroutine can in turn call ‘a third subroutine,

and so on. The number of subroutine “levels” is limited by the kind
of calculator you have; consult your manual to see how many are
allowed.

There is an easier way to program the balloon problem—for
which no subroutines are required—by using the fact that 4/3 (=r?) —
4/3 (rry®) = 4/3 7 (r® — ry’):

HP Tr

RCL 1 (

3 RCL 1

y y
RCL 0 3

3 —

y* RCL 0
— y*

4 3

X )
™ X

X 4

3 X

+ is

3

* On a TI 58/59, the RCL and STO steps each consist of two steps.
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What if your calculator does not allow subroutines? The re-
peated block can still be set aside somewhere in the program memory
and called by a GTO statement when needed by the main program.
The problem is, how do we get the program pointer back to the correct
place in the main program? Here is a way.

We will use a memory (m3; in the flowchart of Fig. 1-16) to
keep track of the progress of the main program. Before we call the
“subroutine,” we store a number in m; to tell us where we are in the

main program. At the end of the “subroutine,” we check the number
in m; to find out where to go in the main program. The extra register
m; contains a 1 when the “subroutine” is first called and a 0 the

second time. The test, my # 0, thus tells the calculator where to re-

enter the main program.
It seems a waste to use an entire 10 to 13-digit memory merely

to store either O or 1. This is the reason that some calculators employ
flags. A flag is actually a memory that can be in one of two states—
set (=1) or clear (=0). A flag can be set, cleared, or tested. As an

example, the program of Fig. 1-16 is shown rewritten with a flag—
flag 0—in Fig. 1-17.

If flags are not available, you can use a memory as a flag, just
as we previously used m;. But what if you have no memories to spare
for this purpose? Well, here are two tricks.

START

 

 

  

 

  

 
   

 

 

     

mz |

X m

I 1 Bi

xe md |
|

mo < X | |

X<mp |

YES m3 #0

|
Lo__YNo___|

mo<* mg —x [@ /

ARTIFICIAL

"SUBROUTINE"

STOP

Fig. 1-16 Flowchart to keep track of progress of balloon program
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START Memory

0 hom ,

rem 1 r
 

 
  

SET
FLAGO     
 

  

 
  mo=<x

X* m2
CLEAR
FLAG O

 

   

 

 

 

 
moe mp—x

  

Fig. 1-17 Flowchart for balloon program rewritten with a flag

First, if one of the memories in your program, say m,, stores
only positive numbers, it can double as a flag. To clear this “flag,”
use the following: my, < |m¢|. To set the “flag”, use the following: m,
«— —|my|. Thus, the “flag” is cleared if my, > 0 and set if my, < 0. To
test the “flag”, use the test: my < 0. Take warning, however. If you
need the contents of m, in the program, remember that m, is supposed
to be positive and that each RCL 0 must therefore be followed by an
ABS (HP) or an [x] (TT) statement.

Second,if your calculator has two angular modes (degrees and
radians) and if no trigonometric functions are used in the program,
the angular mode can be used as a flag. To clear this “flag,” put the
calculator in degree mode; to set it, put the calculator in radian mode.
How is the “flag” tested? Note that since

99849715... >0 in degree mode
cos = . .

-1 < 0 in radian mode

the test, cos # < 0, will test the flag.

Problem: Write a program that accepts as input numbers a and b
and calculates
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Jat +3 —a

CTH +3-b

Solution: The numerator and denominator of c are the same, except
for the interchange of a and b. We will thus write a subroutine that
will take the number x in display and calculate (x* + 3 — x. We call
this subroutine twice—once with x = a, for the numerator, and once

with x = b, for the denominator.

The flowchart for this program (Fig. 1-18) begins with a in m,
and b in m,. It actually calculates (a — Ja* + 3)/(b — |/b* + 3), but this
expression equals (yJa* + 3 — a)/(yb* + 3 — b), or c.

 

1.8 Loops and Nested Loops
Difficulty: 2

In many of the problems in this book, you will find that a
sequence of program steps must be executed several times in a row.
A simple way to do this would be to repeat the same block of steps in
the program memory as many times as required. But if this block of
steps is too long, or if many repetitions are required, you are needlessly
wasting precious programming space. To avoid such waste, you must
use what is called a “loop.” You write the block of steps only once in
the program memory, and you place a GTO statement at the end of
the block to return execution to the beginning of the block.

Problem 1: Write a program that calculates, and pauses to output,
the numbers, cos (1), cos (2), cos (3), and so on.

This problem requires what is called an endless loop. In theory,
the calculator will just keep going on, forever calculating cosines. Ac-
tually, after 10" to 10*® iterations (depending on the accuracy of the
calculator), the loop will start to calculate the cosine of the same large
number over and over again because the 1 that the calculator attempts
to add on just gets rounded off. Don’t hold your breath, however. The
HP-25 can do about 38 iterations per minute and consequently won't
complete 10" iterations for about 500 years!

Much more common are loops programmed to terminate after
a fixed number, k, of iterations. For these, you need an extra memory,

called a counter, to keep track of the number of iterations done so far,
and also a test to terminate the program when k iterations of the loop
have been executed. Two methods are available: count-down and
count-up. In the flowcharts of Figs. 1-19(a) and 1-19(b), B denotes the
block of steps to be repeated k times.

The count-down loop is usually more convenient, for two rea-
sons. First of all, in the count-up loop, since the number k is used for
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START Memory
a

 
b

x<+mg

EXECUTE |
SUBROUTINE O I START
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Fig. 1-18 Flowchart for a program using a substitute “flag”
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START START DEE
  

      
  

      
  

      

  

Memory

ru oTome
B B

mo< mo —|I mo<+ mg +I

NO NO

YES YES

STOP ( stop)

(A) (8)

Fig. 1-19 Flowcharts for (a) count-down and (b) count-up loops
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each run through the loop, it must either be entered directly in the
program or, more often, be stored in another memory. In the count-
down loop, however, the number k is used only once—at the beginning.
Second, if you use the count-down loop, the DSZ instruction [see Sec.

1.2(5) for a full discussion] can be conveniently used both to decrement

the counter and to test whether k iterations have been performed—all
in one fell swoop.

A small difficulty sometimes occurs in iterating a loop k times.
If k = 0, you want the calculator to skip the loop entirely. Notice,
however, that in both flowcharts of Figs. 1-19(a) and (b), the input,
k = 0, causes an endless loop. (In the count-down loop, for example,

the first time the test, m, = 0?, is executed, my, = —1. The test fails,

therefore, and the loop is executed again. The values of m, get succes-
sively smaller than —1 and never pass the test, m, = 0?)

One way to handle this difficulty is to place the test at the
beginning of the loop, instead of at the end. Two variations of the
count-down loop are shown in Figs. 1-20(a) and (b).

If you have a DSZ key, it can’t be used in the flowchart of Fig.
1-20(a) as it stands; the flowchart of Fig. 1-20(b) is therefore better.
But if you don’t have a DSZ, you might as well use the flowchart of
Fig. 1-20(a) to save the trouble of adding 1 to k at the beginning.

Problem 2: Write programs that accept as input a positive integer

n and output the quantity,

12+ 22+ 3+... +k —-1)*+k?

using

(a) A count-down loop with a test at the end
(b) A count-up loop with a test at the end
(c) A count-down loop with a test at the beginning
(d) A count-up loop with a test at the beginning

Before you proceed, let us introduce you to a very useful piece
of mathematical shorthand. The Greek letter 3 (sigma) is used to rep-
resent in abbreviated form the sum of a lengthy series of numbers.
The sum, 1* + 2% + 3% +... + (k — 1)* + k?, for example, is written

k

The formal definition of such an expression is as follows: If a
and b are integers, with a < b, and if f is a function that assigns to

each integer 1 in the range a < i < b some number f(i), then the
b

expression, J, f(i), means that we must take all integers i in the range
i=a
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START START

moe k+1

¢
YES

YES

NO
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(A) (8)

Memory Memory

0]cme 0]co]
Fig. 1-20 Two variations of the count-down loop

a <1 < b, apply the function f to each one, and add up the results. In
problem 2, therefore, a = 1, b = k, and f(i) = i.

Here are some more examples:

@-1D=[(-3-11+[(-2*- 11+ [(-D*- 1] + [(0)* - 1] = 10
31

>

0

>

3 1 _ 1 1 1 1,1

“Zs+1 0+1 1+1 2+1 3+1 “12

7

>
=3

  

INT(/k) INT(3) + INT(/@) + INT(/5) + INT(B) + INT(/7)

1+2+2+2+2=9

15

dD GE-38=(15-3) =12
i=15

It is not apparent how many times some loops are to be exe-
cuted. Since these loops contain a test, they are not endless, but there
are many possibilities for the test. Perhaps the loop is to be executed
until two variables are equal, for example, or until their difference is

less than some preassigned value, or until one is less than the other.
Here is one such loop for you to try.
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Problem 3: Write a program that accepts as input a pair of integers
a and b (possible negative) with a < b and that outputs

b

2 if
i=a

A more difficult problem would be to find a solution, x, to the

equation: x = cos x. One way to do so is as follows: Start out with any
number xX, as an initial guess. Generate an infinite sequence of num-
bers—x,, X,, X3, X4, . . .—by the rule: x; = cos xy, X, = €0S X;, X3 = COS

Xp, X4 = COS Xa, .... As each new x; is generated, test to see whether

or not x; = x;_;. If not, generate the next number and keep going.
Otherwise, if x; = x;_,, we have x; = cos x;_; = cos Xx;. Thus, x = x; is

a solution, and the loop terminates.

Problem 4: Write a program to find a solution, x, to the equation,

X = COS X

using the technique described above, with x, = 0. Run your program
in both degree and radian mode (the answers will be different).

Sometimes a program will require two or more loops, one
“nested” inside the other. Referring back to the flowchart in Fig. 1-
19(a), imagine that block B contains a block C that is repeated e times
by another loop, as shown in the flowchart of Fig. 1-21.

Before we present a problem of this sort, let us introduce some
more mathematical shorthand, this time using the Greek letter II (pi).
If a and b are integers, with a < b, and if f is a function that assigns
to each integer i in the range a <i < b a number f(i), then the expres-
sion,

—
.

=a

means that we must take all integers i in the range a <b, apply f to
each one, and multiply the answers. For example, if a = —3, b = 1,
and f(i) = i%2 + 1, then

IT G2 +1) =[(=8) + 11[(-2) + 11 [(-=1) + 11 [(0) + 1] [12 + 1]
i=—3

= (10) (5) (2) (1) (2) = 200

Problem 5: Write a program, using the flowchart in Fig. 1-21, that
accepts as input any pair, k and e, of positive integers and outputs the
number,

Jj=13 [Mee
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Fig. 1-21 Flowchart of a nested loop

Solutions to Problems

Solution to Problem 1: The flowchart in Fig. 1-22 tells it all. We
use memory m, to store successively the numbers 1, 2, 3,..., whose

cosine we desire.

Solution to Problem 2: To solve Problems 2(a) and 2(b), we will of

course use the flowcharts of Fig. 1-19(a) and (b), respectively. To solve
Problem 2(c), we can use the flowchart of either Fig. 1-20(a) or (b). We
will tell you only the contents for the mysterious block B in the four
flowcharts.
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START Memory

0]come
mo<+0

 

 

 

 

    

 

Fig. 1-22 Flowchart for Problem 1

We will use memory m, to accumulate the answer. If the pro-
gram is counting down, m, will successively contain the following

numbers:

k? (k — 1» +k? (k — 2) + (k — 1) + Kk?...

while if the program is counting up, m; will successively contain these
numbers:

12,12 + 22) 1% + 2% + 3%...

Notice that the number to be added to m; is precisely the
square of the counter value, m,. The contents for block B are thus as

shown in Fig. 1-23.
There is just one thing to add: The step, m; <0, should be

placed at the beginning of each of the flowcharts in Figs. 1-19 and 1-
20 to prepare the accumulator m,. In the count-up loop of Problem
2(b), k must also be stored in some memory, say m,. The flowchart in
Fig. 1-24 shows one way to solve Problem 2(d).

Solution to Problem 3: The loop counter m, will start at b and work
its way down to a. As in Problem 2, we will accumulate the sum in

register m,. See the flowchart in Fig. 1-25.

 | Memory

 
0 Counter
 

2

mj +m +mg 1 Accumulator      
 

Fig. 1-23 Contents of block B
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Fig. 1-24 Flowchart for Problem 2(d)
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Fig. 1-25 Flowchart for Problem 3

Solution to Problem 4: You don’t need a counter here, although
you could put one in if you want to know the number of iterations the
program requires. You need only one memory, m,, to store the amount

x;. The program begins with x, in the x register. See the flowchart in
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Fig. 1-26. [Solution in degree mode, x = .998477415, was realized on

an HP67 in five iterations; solution in radian mode, x = .7390851332,

was realized in 59 iterations. The number of iterations taken varies

from calculator to calculator, depending on their accuracy, but your
final answers should be approximately the same as ours.]

Solution to Problem 5: Using the flowchart in Fig. 1-21, we set up
an “outside” loop with its counter m, = i, starting at i = k and count-

ing down. Within this loop, we set up an “inside” loop, with its
counter m; = j, starting at j = e and counting down. The inside loop
calculates

1+j=my+ my

and accumulates in register m; the product

e

[1d+3
i=1

The outside loop accumulates the total sum in register m,. We need
one more memory, my, to store input e. See the flowchart in Fig. 1-27.

To test your program, try k = 4 and e = 3. Then,
4 3 3 3 3 3

SIla+p=Ila+p+[1e+p+[1@+h+[1@+j
i=1 j=1 Jj=1 j=1 j=1 j=1

=2:3-4+3-4-5+4-5-6+5-6-7

=24 + 60 + 120 + 210 = 414.

Memo
START Y

of]x
Moe x

:
X <= COS Mo

 

 

 

   

YES

Fig. 1-26 Flowchart for Problem 4
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Fig. 1-27 Flowchart for Problem 5

Notes: See Sec. 1.6 for a discussion of Problem 4 from another point
of view.

1.9 Indirect Addressing
Difficulty: 3

In this section, we will show you how to use indirect address-
ing, if your calculator has this feature, and how to “fake it” if it does
not.
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Suppose that there are four numbers stored in memories 1
through 4 of your calculator. The instructions RCL 1, RCL 2, RCL 3,

and RCL 4 will of course bring the numbers m,, m,, m3, and m,, re-

spectively, into the display. In certain situations, however, another
part of your program will calculate a number j (where j = 1, 2, 3, or
4), and you may want the program to bring the corresponding number
m; into the display.

Problem 1: Write a program that will accept as input a number j
(where j = 1, 2, 3, or 4) and output the contents of memory j. If you
solve this problem, you may notice that it takes a lot of programming
steps to do a rather simple thing. There ought to be an easier way! If
your calculator has indirect addressing, there is. Since different cal-
culators have different instructions for using indirect addressing, how-
ever, let's take a quick look at some typical examples.

In the HP 19C/29C, the indirect addressing instruction RCL
i is executed as follows: The calculator examines the contents of the
special indirect register m,. Then it goes to the register whose address
is in m, and recalls the contents of that register. For example, if

m, = 5, the instruction RCL i is the same as the instruction RCL 5.

Moreover, the instructions STO i, STO + i, STO — i, STO x i, and

STO + i are the same as the instructions STO 5, STO + 5, STO — 5,

STO x 5, and STO + 5, respectively (if m, = 5, of course). Thus, the

following sequence of steps will solve problem 1 if j is in the display
to begin with:

STOO
RCL i

The HP 67/97 works similarly, except that the special indirect
register is memory I rather than memory 0. The corresponding steps

for Problem 1 now become

STO |

RCL i

The TI 58/59 does not have a special indirect register; any

memory may be used. For example, if memory 7 contains the number
3, steps RCL IND 7 and STO IND 7 are identical, respectively, to steps

RCL 3 and STO 3. Any memory, not just m;, can be used as the indirect
register. We could use mj; to solve Problem 1 as follows:

STO 5
RCL IND 5
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(Of course, if your calculator does not have indirect addressing, you
are stuck with faking it, as we do in our solution to Problem 1.)

The instruction DSZ [see Sec. 1.2(5)] is often used in conjunc-

tion with indirect addressing when the contents of a large block of
registers must be manipulated, the reason being that the DSZ key can
be used to decrement the indirect register.

The following problem assumes that your calculator has in-
direct addressing.

Problem 2: Write a program that outputs the sum of the squares of
registers m, through mg.

Solution to Problem 1: We want our program to branch to one of
the four steps, RCL 1, RCL 2, RCL 3, or RCL 4. We begin with j in the

x register and successively subtract 1 from x until x = 0. See the flow-
chart in Fig. 1-28.
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Y

 

xex—|

   
 

ES
RCL I —> STOP

   CD
-

NO 

xe x—I

   
 

  we oC) -

NO
 

xex—|

   
 

  
ES

RCL 3 — STOP

 &

NO 

RCL 4

   USTOP

Fig. 1-28 Flowchart for “faked” indirect addressing
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Solution to Problem 2: We set up a loop that successively recalls

memories mg through m;, squares the contents, and accumulates the

sum in register m,. Following is the program for the HP 19C/29C (we

leave you the task of translating it to whatever calculator you have):

“LBL O Memories
 

6 0 Indirect addresser
STOO 7

0

STO 7

*LBL 1

RCL i
x2

STO +7
DSz

GTO 1
RCL 7

RTN

 
Sum accumulator 

Note: If your calculator does not have indirect addressing, you can
still solve Problem 2 by manufacturing an indirect addresser as de-
scribed in the solution to Problem 1. You will find, however, that it

takes a lot of program space and illustrates why indirect addressing
is such a nice feature to have built in.

1.10 Computing y* Accurately
Difficulty: 3

Suppose that you want to compute 2%¢. You will probably use
your y* key to save yourself the trouble of multiplying 2 by itself 26
times. If you do, you may not get the right answer. Try it on your
calculator. Even if you get the correct answer (67,108,864), your cal-

culator might be fooling you. Take the fractional part; it should be
zero since 2% is obviously a whole number.

The reason that your calculator may fail to get the right an-
swer is that it uses logarithms to make the computation. The natural
log of 22% is In(22¢), or 26 In(2). Compute the latter number. This yields

the natural log of the number you want to find, and you can get the
numberitself by pressing eX INV Inx on some calculators). You should
then get the same answer that your calculator gave when you used
the y* key to find 2? (an exception is the HP 67, which uses logs to

find y* if x is not a whole number but manages to get the precise
answerif it is).”® The advantage of using logarithms to compute y* is

*¢ For a more thorough discussion of the use of logarithms in computing expo-

nential expressions and large products, see Sec. 1.2(8).
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that the technique works whether or not x is a whole number. The
disadvantage, as we have seen, is that the answer is not exact.

Let us now examine another problem. We want to write a

program for computing y* precisely when x and y are positive whole
numbers. We will consider the problem only for those numbers x and
y for which y* is small enough for your calculator to hold all the digits.
For larger numbers, there is no way to get the answer precisely.”
Assuming that your calculator will display ten digits, we would like
a program that will yield the precise value of y* whenever y* < 10"
(the first eleven-digit number). One solution is to have the calculator
multiply y by itself x times, but this algorithm is too slow (see Sec.
1.16). There is, however, another possibility. Think about the problem
a bit before reading the next paragraph.

The first approach is to compute y* using the y* key and then
round off the result to the nearest whole number. If x and y are positive
whole numbers, y* should clearly be a whole number. Then if the
calculator’s value for y* is close enough, rounding to the nearest whole
number will get it exactly. But this method raises two questions: (1)
Just how do you get the calculator to round off to the nearest whole
number? (2) Does the process outlined always work (that is, does it
always produce y* precisely)?

The answer to the first question is not too difficult. There is
an elegant solution requiring five steps at the most. If you have a TI
58/59 or HP 56/97, the problem is even easier (see the Notes). We
leave it to you to figure this out. The second question is the real heart
of the matter. The answer here is not so simple. In fact, the solution
works on some calculators but not on others. You are going to have to
investigate your own calculator to see whether the process outlined
always works or not. This, in fact, is the problem we want you to solve.

Problem: Construct a “diagnostic program” that will tell you
whether or not computing y* with the y* key and rounding off to the
nearest whole number will always give you the correct value of y*
when x and y are positive whole numbers and y* < 10%. Your program
should generate all possible values of y* smaller than 10" using the
method outlined above and should compare these with the precise val-
ues (which the program will aiso have to generate). If the method fails
for some pair of numbers x and y, the program should halt so that you
can see what x and y are. You will then need to do further analysis to
see exactly where the method breaks down so that it may be modified
and made failproof. Whatever the outcome, this program is going to
take a long time to execute. Happy hunting!

7 Unless you use double-precision arithmetic.
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Solution: First, let’s dispose of the first question. In order to round
a (positive) number off to the nearest whole number, just add 0.5 and
take the integer part. Think about it and you will see that it works.
Give yourself an A if you got this solution.?®

Now for the second, and principal, question. What we need is
a systematic way of generating all pairs of positive whole numbers x
and y such that y* is less than 10°. As each pair is generated, we will
also want to generate the precise value of y* for comparison with the
value obtained using the y* key and rounding off to the nearest whole
number.

The routine will go basically as follows: For each y we will
start at y? and successively build all powers of y (v3, y*, y°, ...) until
an exponent x is reached such that y* > 10. At this point, we go back
to the beginning, increase y by 1, set x to 2, and start over. We continue
until the first power of y (that is, y*) is greater than 10', at which
point we shall terminate the whole routine. Each successive power of
y will be built from the previous power by multiplying it by y. These
will be the precise values of y* that will then be tested against the
value obtained using the y* key and rounding off. If the test ever fails,
the program will stop.

Here are the details. Four memories will be used: y will be
stored in m,, x in m,, y* in m,, and 10in m;. The program will contain

two “nested loops” (see Sec. 1.8). The inner loop will generate a new
value of x and test the pair y*. The outer loop will use enough inner
loops to generate powers of a given value of y until a power exceeding
10" is reached. Then the loop will set y and x back to 2 and start over.

We will describe the program by starting at the top of the
outer loop, which will also be the beginning of the program. (You may
want to follow the flowchart in Fig. 1-29 as you read this.) Increase
the contents of m, by 1 (since my has a 1 in it when the program starts,
this will set m, at 2, which is what it should be). Put a 1 in m, and
put the contents of m, in m, (this sets m, at y?).

Now check to see if my? > 10. If so, you have generated all
the pairs and can now terminate the program. If not, pass to the inner
loop. Add 1 to the contents of m, (if this is the first time into the loop,

m,; will now be 2, which is what it should be). Multiply the contents

of m, by the contents of m,, leaving the result in m,. You have now

increased x by 1, and you have the precise value of y to the new x
power in my.

Check to see if m, > 10! (the contents of m,). If so, you have

generated all the powers of this particular y that you need. Loop back
to the top of the outer loop and again increase the contents of m, by

28 For further discussion, see Sec. 1.12.
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Fig. 1-29 Flowchart for accurate computation of y*

    
1, etc. If not, compute m, to the m, power using the y* key and round
off to the nearest whole number.

Now check to see if the result is equal to the contents of ms.
If so, the method has worked for this particular x and y. Loop back to
the inner loop and again multiply the contents of m, by the contents
of m,, etc. If not, the method has failed and the program should be
stopped. This completes the program. [Solution was realized on an HP-
25 in 24 steps.]

This program might stop for two reasons. First, the method
might have worked for all x and y. If so, the program will stop because
a value of y has been reached such that y*> > 10. One of these two
numbers will then be in the display. Or second, if the method failed
for some pair x and y, then the program will stop with a number less
than 10" in the display (either a correct or incorrect value of y¥).
Warning: If the program runs through all pairs without finding an
error, it will operate on the order of 100 hours before stopping.
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If the method has failed, you will want to determine the pairs
for which it is failing. Recall the contents of m, and m,. Record these

along with the correct (m,) and incorrect values of y*. You can now
continue the search for more x’s and y’s by returning the program to
the inner loop and multiplying the contents of m, by the contents of
m,, etc. (see the second sentence three paragraphs back) and starting

it up again. What you will find is that the method breaks down for
those x’s and y’s that produce a y* of nine or ten digits—a result that
can be expected on calculators without guard digits.

A calculator display that shows ten digits may or may not have
hidden digits in reserve. The HP-25, for example, shows everything it
has, whereas the TI-57 shows 10 digits but actually holds 13. The
three hidden digits, called guard digits, are used to improve the ac-
curacy of the calculator’s internal computations. Guard digits have
their advantages and disadvantages. In the present situation, they are
an advantage because they allow the calculator to compute y* accu-
rately enough for you to get its correct whole number value by round-
ing off. Guard digits become an annoyance should you want to know
the exact number the calculator is holding. Although there are ways
of digging out the hidden digits, the calculator is incapable of showing
all of them at once.

If your calculator passed the diagnostic test, producing the
actual program for computing y* for whole numbers x and y will be
easy. Just use the y* key and round off to the nearest whole number.
If this method doesn’t work for large values of y*, you will have to be
a little more devious.

The trick is to break y* into two parts small enough to be
computed precisely by our method and then multiply them to get the
precise answer. Suppose, for example, that you want to calculate 22°.
First, you must compute the values of 2!° and 2'* by rounding and then
multiply them to get 22°. The only real problem lies in generating the
15 and the 14.

Let us say that you have x in register m; and y in m, (you may
be able to handle things more efficiently with x and y somewhere else;
see Sec. 1.5). Recall x into the display and divide by 2. Since the result
will not be a whole number if x is odd, take the integer part to turn
it into a whole number. Keeping this number in the display, subtract
it from the contents of m, using register arithmetic. Now you have
two whole numbers, one in the display and one in m,, whose sum is
x (although x has now disappeared, don’t worry); each of these num-
bers approximately equals x/2. Using the y in m, and the x in the
display (rounding off, of course), now compute y*. Compute it again
with the same y but with the x in m,. Multiply the two values together
and you're done. The flowchart for this method is shown in Fig. 1-30.
[Solution was realized on an HP-25 in 21 steps.]
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Notes: Some calculators have their own devices for rounding off
numbers in the display, for example, the TI-58/59 and the HP-67/97.
This can be quite a useful function. In the present situation, you would
set the display to zero decimal places and apply the rounding function
to get the nearest whole number. The HP-67/97 have a special key for
this function; the TI-58/59 use the sequence [EE], [INV], to ac-
complish the same thing.

There are times when you will want to compute y* precisely
for an x that is a negative whole number. For example, in multiple
storage, you may want to multiply a number by 107 in order to store
it in the r'* decimal place of a number. To do so, you first find 10" and
then take its reciprocal. In the game, Number Jotto (see Sec. 3.17),
however, another trick is used, in which 107" is rounded off to an

accurate value by adding it to a number with a 1 to the left of the
decimal point, thereby making the incorrect digits at the end of the
number fall off (see Sec. 1.14 for a more thorough discussion).

1.11 Randomizers

Difficulty: 2

Many of our programs require a random number generator,
that is, a routine that will produce a random number or a sequence of
random numbers. The main problem here, of course, is that no cal-

culating device, from the programmable calculator to the largest com-
puter, can operate truly “randomly.” Turn your calculator on, punch
any sequence of keys, and observe the results. Turn it on again to-

morrow (or next year), punch the same sequence of keys, and you will
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get the same results. Computer scientists and mathematicians have
attempted to get around this problem by developing the so-called

pseudo-random number generator. Many sophisticated pseudo-random
number generators have been found, but for our applications we don’t

need to get very fancy (in fact, we can’t, since there is seldom enough
programming room).

Let us begin by describing some fundamental pseudo-random
number generators that are easy to implement, ones that will generate
a sequence of random numbers x in the range, 0 < x < 1. Each number
x thus generated will play two roles. First, they are the required ran-
dom numbers, of course. Second, each number is used as fuel to gen-

erate the next one. At the heart of these routines is some function f,

which, given any number x in the range, 0 < x < 1, returns a new
number, f(x), in the same range, that is, 0 < f(x) < 1. To use these

generators, you begin by storing an arbitrarily chosen number x, (0
< xX, < 1) in some memory, say m,. The program outputs the first
random number, x;, by the formula, x; = f(x,). It also replaces the x,

in my, with the new number, x,. The same routine is again used to

generate the second pseudo-random number, x,. Since m, now contains

x;, the formula becomes: x, = f(x;). Thus, starting from the “seed,”

Xo, an infinite sequence—x;, X,, X3, X4, . . . —of pseudo-random numbers

is generated by the formula, x; = f(x,_,), wherei =1, 2, 3, 4. . ..
Different formulations of the function f, of course, will produce

different generators, some more “random” than others. The function,
f(x) = FRAC(x + .5), for example, would be a horrible choice. If the
seed, x,, were .3125, for example, this function would generate a se-

quence—x; = .8125, x, = .3125, x3 = .8125, x, = .3125, etc.—that is

hardly random. Here are two better functions:

f(x) = FRAC(997x)
f(x) = FRAC ((7 + x)9)

Either may be used for any randomizer in this book. Although both
have drawbacks (see Notes), they are good enough for our purposes.
Your owner’s manual may suggest others, or you might invent your
own.

Here are several problems for you to try, using any of the basic
randomizers described above.

Problem 1: Write a program that accepts as input a seed, s, in the
range, 0 < s < 1, and any positive number, ¢, and then outputs a
sequence of random numbers, x;, in the range, 0 < x; < c.

Problem 2: Write a program that accepts as input a seed, s, in the
range, 0 < s < 1, and a pair of numbers, a and b, such that a <b, and
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then outputs a sequence of random numbers, x;, in the range, a < x;

<b.

Problem 3: Write a program that accepts as input a seed, s, in the
range, 0 <s < 1, and a positive integer, k, and then outputs a sequence
of random integers, x;, in the range, 0 < x; < k.

Problem 4: Write a program that accepts as input a seed, s, in the
range, 0 < s < 1, and a pair of integers, m and n, such that m < n,
and outputs a sequence of random integers, x;, in the range, m < x; <

n.

Solutions to Problems

Solution to Problem 1: Using any of our basic randomizers to pro-
duce a random number between 0 and 1, we multiply this output by
c to obtain a random number between 0 and c (see the flowchart in
Fig. 1-31, in which f represents the randomizing function).

Memory
START

0 Random number
between 0 and 1

1 c

 

 
 

    
mo - t(mg)   Initial State of

the Memory 
 

 
0 Seed
 

1 c       

Fig. 1-31 Flowchart for outputting a sequence of random numbers in the range,

0sx;<c

Solution to Problem 2: By using Problem 1 to generate a random
number x in the range, 0 < x < (b — a), and adding a to this number,

we get a random number between a and b (see the flowchart in Fig.
1-32).

Solution to Problem 3: Using our solution to Problem 1 to generate a
random number, x, in the range, 0 < x < (k + 1), and taking the
integer part of the output, we get a random integer between 0 and k,
inclusive (see the flowchart in Fig. 1-33).
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Fig. 1-32 Flowchart for outputting a sequence of random numbers in the range,
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Solution to Problem 4: Using our solution to Problem 3 to generate
a random integer, x, in the range, 0 < x < (n — m), and adding m to

this integer, we get a random integer between m and n (see the flow-
chart in Fig. 1-34).

Notes: The main drawback to our first randomizing function, f(x) =
FRAC(997x), is that certain seeds do not work well. For example, when
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Fig. 1-33 Flowchart for outputting a sequence of random numbers in the range,
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Fig. 1-34 Flowchart for outputting a sequence of random numbers in the range,

ms<x;=<n

Xo, = 0, the sequence produced—x; = 0, x, = 0, x3 = 0, . . .—is hardly

a sequence of random numbers. The HP 67/97 standard pack recom-
mends that x, should be chosen so that neither (1/2)(x,)(107) nor
(1/5)(x)(107) are integers. The HP 67/97 games pack goes further to
recommend that x, consist of the nine digits 1 through 9, following the
decimal point in some order and ending in 1, 3, 7, or 9.

Our second randomizing function, f(x) = FRAC[(7 + x)%],

which we found in the HP 25 applications manual, is not nearly so
sensitive to the choice of seed. Its drawback, however, is its slight

tendency to produce numbers closer to 0 than to 1.

1.12 The Magic Key: INT

One of the most valuable keys on your calculator—frequently
used in this book—is the (Integer Part) key. We took advantage
of it in the last two problems of the previous section, and it lies at the
heart of two basic techniques, changing bases and multiple storage,
that we will discuss in the next two sections. Since almost all problems
in Chap. 3 use a randomizer, multiple storage, or both, they conse-
quently use [INT |.

A few of the older programmable calculators, such as the SR-
52, have no key (see your owner's manual for a way to obtain
this function should it not be provided).

The basic function of the key is to allow you to divide a
number in two at the decimal point, thereby eliminating that portion
of the x register to the right of the decimal point, called the fractional
part of x and leaving only the portion to the left of the decimal point,
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called the integer part of x. Thus, INT (3.015) = 3, INT (-371) = —371,

INT (—-3.015) = —3, and INT (2.301576128 x 10?) = 2.301576128 Xx
102, (In the last example, the .301576128 is not eliminated because
the decimal point does not actually fall after the first digit 2; in non-
scientific notation, 2.301576128 x 10? = 2301576128000.00.)

There are also some useful variations on the key that
you should know. The “greatest integer” function, for instance, is
important in many applications. For any number x, the symbol [x}—
the traditional notation is [x}—is defined to be the greatest integer
less than or equal to x. Other names for |x| are “x round down” and

“the floor function.” Thus, |3.015] = 3, and [4217] = 4217, and it
would seem that there is no difference between INT(x) and |x]. In fact,

INT(x) = |x] only if x = 0 or is already an integer. Note that INT
(—3.05) = —3, whereas |—3.05] = —4 (the reason is that —4 < — 3.05

< -3)

Problem 1: Write a program that will accept as input any number,
x, and output |x].

Closely related to the greatest integer function |x] is the “least
integer” function [x], also called “x round up” or “the roof func-
tion,” which is defined as the least integer greater than or equal to
x. Thus, [3.01] =4,[3]=3,[-3] = —3, and [-3.01] = —3.

Problem 2: Write a program that will accept as input a number, x,
and output [x].

If a program requires both |x| and [x], steps can be saved with
a trick using subroutines (see Sec. 1.7). Set aside a label, say label 0,

to execute |x|, as in Problem 1. When |x| is required, call subroutine

0, using GSBO with the HP and SBRO with the TI. If [x] is required,

use the following steps:

HP TI

CHS +/—

GSBO SBRO
CHS +/—

(The reason these steps work is that [x] = —|—x]. Try this equation
out on the numbers 3.01, 3, and —3.01 to see how it works.)

Another related function is that of the “nearest integer” to
x, which we denote by <x>.2° As the name implies, <x> is the integer

? The HP-67/97 has a RND key that returns <x> in the FIX, DSP 0 mode.

Consult your owner’s manual for details. Some TI calculators will round a
number off to the number of digits in the display, using the sequence (EE,

[nv], [EE]



Technique 89

closest to x. Admittedly, this definition is ambiguous for numbers x
that are exactly half way between two consecutive integers. For ex-
ample, depending on the program you use, <37.5> = 37 or 38.

Problem 3: Write a program that accepts as input any number, x,
and outputs <x>.

Solutions to Problems

Solution to Problem 1: Notice that if [x] is not equal to INT(x), it
is equal to INT(x) — 1. Thus, [9.81] = 9 = INT(9.81) and [-13] = —13
= INT(-13), whereas |-9.81] = —10 = INT(-9.81) —1. More pre-
cisely,

_ JINT(x) if INT(x) <x
KI=1 INT) 1 ifINT) > x

(Recall that |x] < x by definition.) The flowchart for the solution is

shown in Fig. 1-35.

mo <= Xx

my «INT(x)

 

   

 

   

 

Fig. 1-35 Flowchart for inputting any number x and outputting [x]

Solution to Problem 2: As in Problem 1, [x] often equals INT(x)
but now sometimes equals INT(x) + 1. More precisely,

x] = INT(x) if INT(x) =x
"| INT®x) + 1 if INT(x) < x

The flowchart for the solution is shown in Fig. 1-36.
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mo <x

m; «= INT(x)

 

   

 

   

 

Fig. 1-36 Flowchart for inputting any number x and outputting [x]

Solution to Problem 3: Either one of two possible formulas will

work:
<x> = |x+ .5]

<x> = [x — .5]

Using the first, for example, <37.5> = 38; using the second, <37.5>
= 37. For numbers x not exactly half way between consecutive inte-
gers, the two formulas give the same answer. To produce a flowchart,
either take the flowchart from Problem 1 and replace the step, my «
X, by the step, m, «< x + .5, or take the flowchart from Problem 2 and

replace the step, my, « x, by the step, my «<x — .5.

Notes: The function “fractional part” of x appears on most calcu-
lators. The notation on the HP is FRAC; on the TI, INV INT. It is

defined by the equation, FRAC(x) = x — INT(x). Thus, FRAC(3.05) =

.05, FRAC(@3) = 0, and FRAC(-3.05) = —.05.

1.13 Changing Bases
Difficulty: 3

The numbers we ordinarily calculate with are written in the
decimal, or base 10, number system. As you know, this system rep-
resents any positive whole number by a digit or a sequence of digits
represented by the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The digit at
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the right end of the sequence counts the number of 1s, the next digit
to the left counts the number of 10s, the next digit to the left counts
the number 100s, and so forth. Since 1 = 10°, 10 = 10%, 100 = 102, etc.,

we can say that the symbol in the i! position (reading from right to
left, and calling the rightmost position the 0" one) counts the number
of 10's. Thus, 356 = (3) (102) + (7) (10) + (6) (10Y). In general, a,a,_,

... a; a, represents

(1) (ap) (10%) + (ay-o) (10%) +... + (ay (10Y) + (ay) (10°)

Let it be noted that there is nothing special about the base
number 10; any whole number b, where b = 2, can be used as a base.

We can illustrate this fact by considering base 8 (b = 8), the so-called
octal system. Each number in the octal system is represented by a
digit or a sequence of digits represented by 0, 1, 2, 3, 4, 5, 6, and 7.

(Notice, as in the decimal system, that we stop one number short of
the base.) The rightmost digit represents the number of 1s (1 = 8),
the next the number of 8s (8 = 8!), the next the number of 64s (64 =

82%), and so on. For example, 653; = 427,, since 6533 = (6) (8%) + (5)

(8Y) + (3) (8) = 427. (The subscript 8 in 653; indicates that this is an
octal number just as the subscript 10 in 427,, indicates a decimal

number. In general, then,

(2) (akag_1 EN a,a9)s = a,8% + ak 8k-1 + + a; 8! + ao 8¢

Problem 1: Write a program that accepts as input a base 8 number
and outputs its base 10 value.

If s is any integer in the range, 2< s< 10, your solution to
Problem 1 can be readily adjusted to convert from base s to base 10 by
replacing all occurrences of the number 8 by the number s.

Now, how do we convert from base 10 to base s? The answer

is remarkable. Merely take your solution to Problem 1, replace all
occurrences of 10 by s, and replace all occurrences of s by 10. The

resulting program will convert from base 10 to base s!
Suppose that s and t are integers between 2 and 10, inclusive.

How do we write a program to convert from base s to base t? In view
of the comments above, you might think that using the solution to
problem 1, with 8 replaced by s and 10 replaced by t, will do the job.
Unfortunately, this is not the case, unless either s or t happens to be
equal to 10. You will have to be a bit more clever.

Problem 2: Write a program that converts numbers from base s to
base t, where s and t are any two integers between 2 and 10. The
program will be initialized by storing s and t in a pair of memories.
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Solutions to Problems

Solution to Problem 1: We will use three memories—m ,, m ;, and

m ,. Memory m , initially stores the input number in base 8. Digits are
fished out of the right end ofm , one by one so that, for example,if the
input is 653, m , first contains a 653, then a 65, then a 6, and finally

a zero, as the digits 3, 5, and 6 are removed. Memory m , initially

contains a 1 and then the successive powers, 8!, 82%, 83, etc., needed to

evaluate Formula (2). Memory m , starts at zero and accumulates the

sum in Formula (2), working from right to left. In the example above
(6533 = 427,,, m, first contains a zero; then 3 = 3 - 8° then, 43 = 5

+ 8! + 3 - 8% and finally the answer, 427 =6-8%+ 5-8'+ 3- 8°

The flowchart for this solution in shown in Fig. 1-37. The first
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Fig. 1-37 Flowchart for inputting a number in base 8 and outputting it in base 10

box initializes everything. The next box divides m, by 10, thereby
sliding the string of digits in m, to the right by one decimal place and
pushing the rightmost digit one place to the right of the decimal point.
The next box tests to see if m, = 0 (that is, tests to see if we have used
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all the digits in m,) and displays the answer if we have. If m, # 0, we
are not done yet and must continue. The step, x = FRAC(m,), recovers
the one digit to the right of the decimal point, while the step, m, «
m, — X, removes this last digit from m,. Since the digit in x is one
digit to the right of the decimal point, it must be multiplied by 10 to
produce the actual digit. The step, m, «<— m, + 10m;x, then adds to m,
the digit 10x, multiplied by the appropriate power of 8 in m; in ac-
cordance with Formula (2). The step, m; «< 8m,, increases the power

of 8, and we then go back to the top and do the next digit.

Solution to Problem 2: The basic idea is that if a and b are integers
between 2 and 10, inclusive, then the flowchart for Problem 1, with 8

replaced by a and 10 by b, will convert from base a to base b only if
either a or b equals 10. Thus, to convert from base s to base t, we first

convert from base s to base 10, using the proceeding routine where a
= s and b = 10; then we convert the resulting output in base 10 to
base t, again using this routine where a = 10 and b = t.

Since the same routine is used twice, we use a subroutine for

it (see Sec. 1.7). The subroutine requires two more registers, ms; and
my, to store a and b, respectively. The main program is initialized by
storing s in my and t in ms.

The flowchart for converting n from base s to base t is shown
in Fig. 1-38.

Memory
START

Input number

ak

mo<n
m3<ms
m 4=-10 Output

: :

 

 

 

 

  

 

  

  
  

EXECUTE
SUBROUTINE [~~~~~7===.%( SUBROUTINE b

r
| Ss

mo<—m2 :
mze|0 =————1 m, <= 5 t

Mm4< mg moe
lI.
I { Initial State of

ro the Memory
EXECUTE ad. mo

pu cmm—- w—— - m -— —SUBROUTINE 0% mg 5 .    
  

    6 t

[femme
mo *«Mo—X

my, e—mo+mgmx

m, <=mazm,

 

   
Fig. 1-38 Flowchart for inputting a number in base s and outputting it in base t
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1.14 Multiple Storage
Difficulty: 2-3

Your calculator probably has between 8 and 30 addressable
memories (unless you happen to have a TI 58/59 or HP-41C). For
many programs, even eight memories are enough, but what if you
need more? In this section, we will show you how to get the most of
your memories, whatever their number. The basic trick to coerce each

of your memories into storing several numbers at once. For example,
if your memories have 10 significant digits each, two five-digit num-
bers can be stored in one memory. The easiest way to do so is to store
one number in the five digits to the left of the decimal point and the
other in the five digits to the right.

Problem 1: Write programs to store and recall two nonnegative in-
tegers, each with at most five digits, using only one memory as de-
scribed above.

We can take the idea even further. Assuming that each mem-
ory can hold ten digits, it can be divided up in many ways besides two
chunks of five. If the only numbers to be dealt with are the digits 0,
1,2, ...,9, say, then 10 such numbers will fit into a single memory.
If the numbers range from 0 to 99, five of them can be stored in one
memory, each occupying a two-digit chunk of the ten-digit memory.

Problem 2: Write programs to store and recall, using one memory,

the following:

(a) Ten integers, each between 0 and 9
(b) Five integers, each between 0 and 99
(c) Three integers, each between 0 and 999

Here is one final technique. Suppose that we wish to store a
bunch of numbers, all either 0 or 1. Using Problem 2(a), we can cer-
tainly get 10 such numbers per memory, but there is a way to pack in
at least 30 that uses binary (base 2) numbers (if you haven’t studied
Sec. 1.13, you should do so now before reading on).

Consider, for example, these 30 zeros and ones in a row:

000100101010001101100100000111

Doesn’t this look suspiciously like a base 2 number with 30 digits?
The largest such a number can be is 23° — 1 or 1073741823, which
occurs when all digits are a 1 in base 2. This string of zeros and ones,

then, can be stored in a single memory as a base 10 number no larger
than 1073741823.
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Problem 3: Write programs to store and recall 30 zeros or ones using

a single memory.

Other bases, of course, can be used.

Problem 4: Write a program to store and recall, using one memory,

the following:

(a) Seventeen numbers, each either a 0, 1, or 2

(b) Fifteen numbers, each either 0, 1, 2, or 3

(c) Thirteen numbers, each either 0, 1, 2, 3, or 4

(d) Eleven numbers, each between 0 and 6

Use base 3 for (a), base 4 for (b), base 5 for (c), and base 7 for (d). (We

will not give a solution for this problem; you are on your own.)

Solutions to Problems

Solution to Problem 1: We will use a single register, m,, to store
our numbers. Now think of m, as split into two halves, ¢ and r (for

left and right), by the decimal point, as follows:

Ly £ Ll. La 7C Ll

\
DECIMAL

To store in ¢ a nonnegative whole number x with at most five digits,
without disturbing r of course, use

m, < x + FRAC(m,)

The operation FRAC(m,) “clears” the ¢ register and, by adding x to
the result, places x in the cleared ¢ register. To recall ¢ is even easier;
just calculate INT(m,).

Storing and recalling r are a little more complicated. The flow-
charts for these operations are shown in Fig. 1-39. The multiplications

 

  

    

  

STOREx INrRECALL r

START START

x+x-1073 x + FRAC(mg)

mo =X x x-10°
+INT(mg)       

''

Fig. 1-39 Flowchart for storing and recalling two nonnegative integers
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by 107° and 10° shift the decimal point five places. (Caution: you might
want to use your 10* or INV log x key to calculate 10° and 107° but
check to see whether they give exact answers before using them (see
Sec. 1.10). Another possibility is to have the precise values of these
numbers—100,000 and .00001—stored in memory as in Sec. 1.2(7).

Solution to Problem 2: Since the three parts are basically the same,
we will describe problem (c) only and leave the others to you. Let us
divide memory m, into three three-digit chunks, as follows:

Here are the formulas for storing x:

Store a: m, « 10% [x + FRAC(107¢ my)]

Store b: my <— 1072 (my)

x «<x + FRAC(m,) (the x to the right of
the « is the x to be

stored)

my «10% [103 INT(1072 my) + x]

Store c: my «<— 103 INT(107 23 mg) + x

The formulas for recalling x are as follows:

Recall a: x<—INT(10* m,)

Recall b: x<— INT [102 FRAC(10®*m,) ]

Recall c: x<— INT [10° FRAC(1023 my) ]

Why these six formulas work will become clear if you go through one
example by hand.

In this solution, the numbers 107%, 1073, 10% and 10° are

needed. You could use your 10* (INV log x on TI calculators) to cal-
culate them, but that key might not give the exact answer. If it
doesn’t, you will have to key the constants in directly. Another ap-
proach is to trick the 10* into being accurate (see Sec. 3.17).

Suppose that we wish to store nine digits, a,, a,,. . ., ao, each

between 0 and 9, in a single register, m,. There are many ways to do

so, for example,
Qg Qa a a4 OCoe Ls Th

Suppose further that we want to write a program that will first accept
as input an integer i between 1 and 9 and then increase a; by 1 (without
messing with the other a’s, of course). The following step ought to do
it:

m, < m, + 10
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Since we assume that a, is not already 9, there is no carryover in
adding m, + 10.) If your 10* key returns exactly 10 for 1 <i < 9, the
program works fine. But what if it doesn’t?

In such a case, we change our strategy, storing the a’s to the
right of the decimal point and placing an extra digit 1 in the unit’s
place:

my, = 1.a;a,a3a,as5a4a,a5a9

Now we use the revised formula

my, «< m, + 107!

We may ask why this formula works whereas the previous one
did not. Let us try an example when m ,= 1.000000000 and i= 8.

On the HP-25, we find that using 10* where x = —8 gives:
1078 = 1.000000004 x 1078Thus, m,+ 1078 = 1.00000001000000004,
which the calculator rounds off to 1.000000010, the correct answer.

Notice what the artificial 1 to the left of the decimal does.

Were it not there, the calculator would store .00000001000000004 as

1.000000004 x 107% and fail to round off the 4 at the end.

Solution to Problem 3: If the 30 numbers are ay, a, a,,. . ., 229, let

us store them as follows: my, = asgas5 . .. asa,a, (base 2). Here is the

formula for recalling a;, for any i between 0 and 29, inclusive:

x « INT[2 FRAC(m,/21*1)]

To store x in the i" position is a bit harder. Here’s how:

m, < (my/2")

x «<x + FRAC(m,)

m, «22 INT(1/2 m,) + x]

The best way to understand these formulas is to pretend that
all numbers are base 2; then multiplying or dividing by 2! just shifts
the “decimal point.” (We should really call it the binary point.)

1.15 Searching
Difficulty: 3

In 1940, world population was 2.249 x 10°In 1950, it was
2.509 x 10°. If the growth rate represented by these figures remains
constant, then, t years after 1940, world population will be given by
the expression, P = 2.249 x 10° (1.116)"'°. Suppose that you want to
use this formula to find the year in which world population will reach
five billion (5 x 10%. This is an example of what is called an inverse

problem. The formula is set up to go one way. Given a time t, it readily
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returns the value of P at that time. For example, when t = 10 (in
1950), P = 2.249 x 10° (1.116)! = 2.249 x 10° x 1.116 = 2.51 x 10°.%
The question, however, calls for us to go the other way. Given a value
of P (5 billion), we are asked to find t.

One way to solve the problem is to invert the equation, that
is, solve it for t in terms of P. In this case, the equation can be inverted

without too much difficulty (if you know the trick; see the Notes). But
if you are unable to solve such an equation, you will have to search

for a solution.
To solve the problem at hand, program your calculator to re-

turn values of P for given values of t [test your program first by trying
it for t = 0 (1940) and t = 10 (1950)]. By experimenting around, you
will discover that the desired value of t lies somewhere between 72
and 73 (that is, somewhere in the year 2012). This answeris sufficient
for the present problem. Under other circumstances, however, you

might want to determine t accurate to five decimal places. You could
do so by zeroing in on the answer from above and below, but that
method would be tedious.

What we want to describe in this section is a procedure for
zeroing in on a solution that can be programmed onto your calculator
in a few steps but is nevertheless very efficient. It is called a binary
search.

To set the stage, let us say you have a formula, Q = f(x). The

righthand side of the equation is some mathematical expression that
you can program on your calculator. Given a value of Q, you are asked
to find that value of x which yields this particular Q. (As a specific
example, letting Q = x In x, find the value of x for which Q = 5280.)
We want to produce a program into which the program for computing
values of Q can be embedded and that will search out the value of x
required. It will zero in on x from above and below.

Let’s call the given value of Q the target value. In order to
start a binary search, you need a value of x, say x,, for which the
corresponding value of Q is smaller than the target value, and another
value of x, say x,, for which it is larger. The value of x we are looking
for is then somewhere between x, and x,.3! We will make a stab at the

desired x by taking it to be exactly half way between x, and x,. Ex-
pressed mathematically, x, = (x, + x,)/2. If Q is too large at x,,, then

let x, be the new x;. If Q is too small at x,,, then let x,, be the new x,.

In this way, the search area for the proper value of x is cut in half

% You can see that rounding off (2.509 x 10%)/(2.249 x 10° to three decimal
places (1.116) introduce errors in the formula; we should have obtained 2.509
x 10?

31 At least it will be with any decent luck (see the Notes).
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(since x is now trapped between x, and x;, one of these having been
changed to the x,, defined above, the distance between x, and x,is half

what it was formerly). By repeating this procedure, we can zero in on
x as closely as we like.

Problem: Write a program that carries out the above procedure. The
program should provide space for the user to include the rule for com-
puting values of Q (xo, Xx;, and the target value of Q will be stored in
memories). When (or whatever) is pushed, the program should
stop with x, in the display. When is pushed again, it should stop
with the value of Q at x, in the display (having meanwhile moved x,
into the appropriate memory). In this way, the user can continue press-
ing until a value of Q sufficiently close to the target value is
reached or until x, varies within acceptable bounds.

Once you have solved this problem, you may want to get fancy
and automate the search further. Set things up so that the user can
specify how accurately x and the target value of Q are to be approxi-
mated. The program will then recycle itself until the desired level of
accuracy is achieved.

Solution: Four memories will be used: m, will hold the number x,,

m,; will hold x;, m, will be temporary storage for x,,, and mz will hold

the target value of Q. Since the program is essentially sketched in the
statement of the problem, we can proceed directly to the details. The
flowchart is shown in Fig. 1-40.

The program begins by computing x,, and stops with this num-
ber in the display, thereby showing the user the value of x for which
Q is about to be computed. Before (or immediately after) the
order, x should be stored in m,. Next the program computes Q from x.
This part of the program is to be supplied by the user, and if your
calculator permits subroutines, you will want to make it subroutine.
If not, just leave space in the big program for the user to key in the
program for computing values of Q. In either case, the user should test
his program for Q and determine the initial values of x, and x, to be
stored in my, and m, before running the big program.

After Q has been computed from x,,, the program compares Q
with the contents of ms. If Q is greater than the target value, x, (which
is in my) is stored in m,. This will be the new value of x;. Note that

the difference between x, and x; has been cut in half. If Q is not greater
than the target value, the program then stores x, in m,, and this
becomes the new value of x,. (Be careful not to lose Q during this
testing procedure, for you want to end the program with Q in the
display; you may have to store it temporarily.) With Q in the display,
the program should end with R/S followed by RST (TI) or end with
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Fig. 1-40 Flowchart for binary search

GTO 00 or RTN or INV SBR (HP) so that the next time the user
pushes the program will return to the top and compute another
value of x. If your calculator permits subroutines, you may prefer
simply to make the whole program a subroutine to be called each time
the user wants a new x, and Q. [Solution was realized on an HP-25

in 17 steps.]

The program can be further automated as indicated in the
statement of the problem. Suppose, for example, that you want to find
a value of x yielding the target value of Q with four-digit accuracy.
The way the program is presently set up, the user will have to press

until this level of accuracy is obtained. The program can be mod-
ified, to do this on its own, as follows: First, store 107° in my. Then, at

the end of the program, instead of stopping, compute the absolute
value of the difference between Q and the target value and compare
this with my. If my is smaller, you haven’t obtained the desired level
of accuracy and must return control to the top of the program for the
next value of x. You also will want to remove the R/S from the middle

of the program so that the program will keep going until my finally
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exceeds the difference between Q and the target value. When this
happens, stop the program with Q in the display.

A similar test can be added at the end if you want to get xp,
within a certain number of digits. This time you will test the absolute
value of the difference between x, and x; against the contents of some
memory specifying the desired level of accuracy. The two tests can be
linked in series if you want to control both x and Q.

These tests should not be added to your program (except per-

haps for the sake of practice) if you have a small calculator. The reason
is that you want to save all the space you can for the user to program
in the formula for Q.

Notes: Although unlikely, it could happen that no value of x exists
between x, and x; that yields a Q equal to the target value. This
situation may occur if Q is undefined somewhere between x, and x;.

For example, suppose that Q = 1/x. Even though Q = —1 at —1 and
Q = 1 at 1, there is no x between —1 and 1 (or anywhere else) for
which Q = 0. (Observe that Q is undefined at x = 0).

If you want to automate still more of your search procedure,
you could construct a program to search for initial values of x, and x,,
thus saving the user the trouble of doing so, but it is probably more
trouble than it is worth. Since every search must start somewhere,
why automate a search for the starting point of a search? Where will
this search start?

Our original example can be solved without a calculator
search. We want to find value of t for which P = 5 x 10° where P is

given by the formula, P = 2.249 x 10° (1.116)"'°. Hence, we want to

solve the equation, 5 xX 10° = 2.249 x 10° (1.116)! for t. There is a

general rule for solving such equations, in which the unknown appears
as an exponent: Take logs on both sides of the equation.?? In the pres-
ent instance, this yields the equation, log(5 x 10% = log(2.249 x 10°
(1.116)419), which, by applying the rules of logarithms [see Sec. 1.2(8)]
simplifies to the equation, log(5) + 9 = log(2.249) + 9 + (t/10) log
(1.116). The latter equation can now be fairly easily solved, as follows:
t = 10(log 5 — log 2.249)/10g(1.116), or 72.8 (use your calculator).

1.16 Space and Time in the Calculator
Difficulty: 4

In this section, we shall describe how to measure the efficiency
of a program. Since many programs will be capable of solving any
given problem in this book, you should be capable of evaluating your
own—with the aim, of course, of improving it.

32 The converse of this rule says that to solve an equation involving the log of
the unknown, take antilogs (10* or e*) on both sides.
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Two important aspects of a program are space and time. Space,
which refers to the amount of storage used by the program, is of two
kinds: program space (that is, the number of program steps used) and
register space (that is, the number of storage registers needed). Space
is usually much more critical on a pocket calculator than on a com-
puter. The largest pocket calculators today provide for about a thou-
sand program steps and close to a hundred registers, but even mini-
computers may offer a hundred times more space.

Time, which refers to the time required to run the program,
is not usually measured in seconds or hours, but rather in the number
of basic operations the program must execute. For example, consider
the following problem: For every positive integer n, calculate

Sn=1+2+3+4+...+(n—-1) +n

A sample program to solve this problem is shown in Fig. 1-41.

Register m; successively contains 0, 1, 2, . . . , n; register m, stores the

partial sums: sy = 0;8, = 1;8, =1+2;83=1+2+3...,8,=1+

2+3+... +(n—-1) + n.

The program requires approximately 20 steps and uses only
three registers, m,, m;, and m,. Hence, the space it requires is quite

small. To measure the time it requires, we must first determine its
basic operations. By examining the flowchart, we see that there are
four of them: storing and recalling numbers, incrementing (adding 1
to) a number, adding two numbers together, and comparing two num-

Memory
START

0 n

1 Counter

 

  

 

mo <n

'

mp <0

V

mp +m +I

y
NO OUTPUT

m2 = 8p

YES

2 Accumulator      

 

 
 

   
 

 
mz + ma +m; STOP

   

Fig. 1-41 Flowchart for calculating s,wheres,=1+2+3 +... + (n —1) +n
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bers (m; < n?). Let us ignore (for the sake of simplicity) the first

operations and concentrate on incrementing, adding, and comparing.
Since register m; begins at 0 and ends at (n + 1), it is incre-

mented (n + 1) times. Register m, has n additions performed on it,
and the comparison, m; < n?, is used (n + 1) times by the program.
Altogether, we use each of our three basic operations about n times.
Evaluating s;g00, therefore, requires about 30,000 steps—100 times

the time required to evalute s;oo (300 steps)!

mo<n

{
mo<

molmo+1)

¢

mo = 5 Mg

v

Fig. 1-42 Flowchart for calculating s, by calculating ¥2an(n + 1)

 

 

 

  
 

   

Consider another program for solving the same problem (Fig.
1-42). This program calculates 1/2 n(n + 1). What has this quantity
to do with our problem? Well, in fact,

1+2+3+... +n=12nnh + 1)

For a short proof, note thats, =1 +2 +... +(n—-1) +n

ands,=n+(n-1) +... +2 + 1. Adding the two equations, we get

28, =n+DH++D+... +(a+1+Mm+1)

Since there are n terms added on the right-hand side, each term equal
ton+1,2s, = n(n + 1), or

Sm = 1/2 mn + 1)

In analyzing this program, we find that it uses fewer steps (at
most 10) and fewer memories (only 1) than Program 1. It therefore
saves more space, but, more important, it takes far less time. The

program increments only once (to calculate n + 1) and performs only

one multiplication and one division (by 2). Only three basic operations
are performed, no matter how large n is. Thus, the calculation of sg00
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takes virtually the same length of time as the calculation of s,4.?® This

great contrast in the time required by the two programs shows that
the second is definitely more efficient than the first.

Let us examine another problem. For each whole number x in
the range, 0 < x < 99, let f(x) denote the last two digits of the product
of x multiplied by 14 (that is, 14x) so that f(x) also conforms to the
range, 0 < f(x) < 99. For example, f(0) = 0, whereas f(17) = 38 (since
14 x 17 = 138 and the last two digits are 38). Now, starting with the
number 3, apply this operation repeatedly to generate the following
list in which every number is the f(x) of the previous number x:

3, 42, 88, 32, 48, 72, 8, 12, 68, 52, 28, 92, 88, 32, 48, ...

Notice that the block of ten numbers—88, 32, ... , 28, 92—repeats

over and over again, whereas the first two entries, 3 and 42, never

reappear.
We can visualize this list as shown in Fig. 1-43. Here twelve

points are labeled with the twelve different numbers occurring in the
list, and an arrow is drawn from each point to its f(x) value. As this
diagram resembles the greek letter p (rho), we call it the p-diagram
of f(x) starting at 3. Let us denote by c the number of points on the
circular part of the p-diagram, and by t the number of points in the
tail of the p-diagram. In Fig. 1-43, ¢ = 10 and t = 2. The point where
the tail enters the circle is called the leader of the p-diagram; thus,

88 is the leader of the present p-diagram.
This type of set-up occurs often (see Secs. 2-11 and 3-9, for

example). The general statement of the problem is as follows: Given
a finite collection, F, of numbers, and a function, f, assigning to each

x in F a number, f(x), also in F; and, given a number, x, € F, (1) find

the numbers, ¢c and t, associated with the p-diagram of f starting at x,,

and (2) find the leader. (In the preceding example, F represents the
collection of the 100 whole numbers x in the range 0 < x < 99; f(x)
represents the last two digits of the quantity, 14x; and x, = 3.)

We will discuss and analyze three programs for solving this
problem. Thefirst, the naive method, will be impractical in most cases.

The second is not really a method at all but offers some good ideas,
some of which are used in the third, the Pollard p method. This ap-
proach was first used by its originator in a classical number theory
problem to determine whether a number is prime. It is an excellent
example of how far a bit of cleverness can go in improving the effi-
ciency of a program.

33 The second program uses three basic operations to calculate either s;40 Or 819000.
However, your calculator will take slightly more time to calculate x00 than
S100. The reason is that the numbers involved in calculating s;00 are much
bigger than those in calculating sq.
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72

48 8

32 12

88 a

24 o -

3

Fig. 1-43 The p-diagram

Naive Method

For the series, x; = f(x), x, = f(x7), x; = f(x,), etc., we define

X, as the result of applying f to x, i times. The naive method consists
of the following: We calculate x,, x,, X,, etc., one after the other and

store them in memories m,, m,, m,, etc., as they are computed. As each

new Xx, is computed, we test whether x, = x,_,?, x; = X;_,?, and so forth,

until we reach the test, x; = x,? If none of the tests pass (that is, if x;

is a number not equal to any of the earlier x’s), then x;,, is computed,

stored in m;,,, and the process repeated. Otherwise,if x; = x; for some

j in the range, 0 <j <i — 1, we are done. We have found the first
repeating number in the diagram and consequently t = j, ¢c =i — j,
and x; is the leader. (In the example above, x, = x;, = 88 is the first
repetition; consequently t = 2, ¢ = 12 — 2 = 10, and 88 is the leader).

A flowchart for the naive method is shown in Fig. 1-44. This
flowchart actually does execute the naive method. If you cannot see
why, try working through it with a pencil and paper using the specific
example where f(x) = the last two digits of 14x and x, = 3. Now to the
analysis!

The amount of program space used here is quite reasonable.
If your calculator has indirect addressing, no more than 30 or 40 pro-
gram steps are required. The amount of storage space needed, on the
other hand, is outrageous. Besides the two registers, i and j, we need

separate registers, my, m,, ..., mg, for each of the numbers, x,, x;,

., X.+. This is a total of ¢ + t + 3 registers, or k + 3 registers, where

k is the total number of points, ¢ + t, in the p-diagram of f starting

at Xo.

This is the main reason the naive method is impractical. Even
the simple example with ¢ = 10 and t = 2 requires 15 registers (10 +
2 + 3). It will obviously not work on small calculators with only 8
registers; and it is easy to find examples that will not work on much
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Fig. 1-44 Flowchart for the naive method

larger calculators. The p-diagrams produced by random-number gen-
erators (see Sec. 3-9) can easily have a c greater than 1000!

To analyze the time taken by the naive method, take note of
the basic operations involved: storing, recalling, incrementing (i «i
+ 1), decrementing (j «<j — 1), comparing (m; = m;?;j < 0?), and
using the function f [m;,; « f(m,)]. For the sake of simplicity, however,

we shall deal with only two of these: the comparison, m; = m;, and
using the function f.

Since each of the numbers, x, = f(x), x; = f(xy), ..., Xx =

f(x), must be computed, the function f is used exactly k times. As

for the comparisons,

1. x, must be compared with x,

2. x, must be compared with x, and x,, and so on, until
3. Xx—; must be compared with x,_,, Xx_3, . . . , X1, Xo, and

4. x, must be compared with x,_;, Xx_s, . .. , X;
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The total number of comparisons is thus [(1 + 2 + 3 +... + (k —1)]

+k —t),or(1+2+3+...+ k) — t. By the same reasoning used
previously, 1 + 2 + 3 + ... + k = 1/2 k(k + 1). The total number of
comparisons is therefore 1/2 k (k + 1) — t.

Here is a summary of our analysis of the naive method:

Number of storage registers used = k + 3
Number of uses of the function f = k
Number of comparisons = 1/2 kk + 1) — t

Pseudo-Method

The second method uses only a few storage registers, but it
has drawbacks, as you will see. First, let’s program an infinite loop
to calculate the points, x, x;, = f(x), x, = f(x,) = flf(xy)], . . . , etc., in

the p-diagram of f at x,. We start the program off and wait a long time
for i to get so large that x; is on the cycle (and off the tail) of the p-
diagram. When we think we have waited long enough, we stop the
program and examine the current x4. If it is on the cycle, then x4 =
X4+c, and this information can be used to find c with a second program.

This program permanently stores x; in some memory and sets up a
loop that successively calculates the numbers, X41, Xq+2, Xa+35 - + + » Xa+js

etc. Each time through the loop, the current x4; is tested to see if x4
= Xq+;. If not, the program goes back to the top of the loop, but if x4, =
Xq4+j, then ¢ = j and we have found c. (Our loop must have a counter

to store the current value of j at the j™ time through the loop (so that
the counter is incremented by 1 every time through.)

Now that we have found c, it is easy to find t and the leader
x;. We use the fact that t is equal to the smallest i for which x; = x;,..

First we calculate x. by setting up a loop to calculate successively x,
X,, X3, ... , €tc., and stopping after exactly c iterations. There is an

easier way, though. The loop previously used for finding c is iterated
exactly c times; thus we can make it do some extra work. Let an
additional register initially store x, and apply the function f to it each
time through the loop. After c iterations, it will contain x..

Having found x., we set up a loop with two memories, initial-
ized by x, and x, to find t. Each time through the loop, the function

f is applied to both registers; at the i" time through, one register will
contain x; and the other x;... At the end of the loop, we test to see if

Xi = XiIf it does not, we go back to the top of the loop. If it does,
then i = t and the point, x; = X;;, is the leader. (For flowcharts of all

these routines, see solution to the problem for the Pollard p-method.)
The drawback to this second method is that it really isn’t a

method at all. The crucial step occurs when we “wait a long time.”
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How long should we wait? If too long, we are wasting time. If not long
enough, we are still in the tail of the p, and the second phase of the
program will never stop because the test, x4 = xg44;, Will never be

passed.

Pollard p-Method

Finally, we come to the Pollard p-method. All the troubles in
the second method were concentrated on finding any x4 at all in the
circular part of the p. Here is the stroke of genius that finds such an
X4. In the flowchart of Fig. 1-45, only two registers, m, and m,, are

used, each containing x, at first. Each time through the loop, m, is

replaced by f[f(m,)], and m, is replaced by f(m,). After i times through
the loop, then, m, contains x,; and m, contains x;. If the program stops

after d runs through the loop, then x4 = x,4 and must therefore be an
element in the circular part of the p. The reason for this is that no
element in the tail of the p equals any other point in the entire p-
diagram; consequently, the point, x4 = X,4, cannot be on the tail. Thus,

if the program does stop, it will have found a required xg.

START Memory

0 Xai

mo <= Xo
mj; *Xxo

'
mg = f (mg)

mg = f(mg)

my —f(my)

Y

 

  

    
 

 

  

   
   

Fig. 1-45 Flowchart for Pollard p-method

Can the program go on forever? It cannot; in fact, the number
of runs through the loop is at most k(= ¢ + t). Let’s take a look at the
p-diagram again. The program generates two sequences of numbers,
Xj = Xy, Xp, X3, . .. , and Xy; = X,, X4, Xg,. . . . The two sequences move
along the the p-diagram starting from x, and x, as shown in Fig. 1-46.

Moving twice as fast as x;, x, stays in front. After t iterations,

x; enters the circular part of the p, and x, is already there. Now x; and

Xz move around the circle, x; one step at a time and xy two. With xy



Technique 109
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Fig. 1-46 Movement of the two sequences, x; and xX;

gaining one step each time on x;, it eventually catches up with x;; at
this point, when x, = x;, the program stops. How long does it take? It
takes t steps for both x; and x, to get into the circle. After that, x

has to advance no more than c steps on x; to catch it. (Since there are
c steps in the entire circle, you will see that x, actually need advance
no more than c — 1 steps.) Thus, x; = x5 after no more than c + t steps.
Once x, is located, it is relatively easy to find c, t, and the leader ¢, as

we did above.

Problem: Write a program using the Pollard p-method that accepts
as input the number x,. It should return the numbers c, t, and ¢ in

the p-diagram of f starting at x,.

Solution: The solution has three phases:

1. Find any d for which x4 is in the circular part of the p-diagram.
2. Find c and x..

3.Find t and ¢.

Phase 1 was described just prior to the statement of Problem
1. Phases 2 and 3 were described in the discussion of the second

method. Here are the details.
We use five registers, m, through m,. To initialize, we place

Xo in m; through m,, and 0 into m,, which is our counter for the second

and third phase. Each time through the loop of phase 1, only m; and
m, are affected; f is applied once to m; and twice to m,. The loop is

repeated until m, = m, and we have found a point, x4 = m;, = m, =

Xs4, in the circular part. Each time through the loop of phase 2, counter

m, is incremented, f is applied to both m; and m,, and we test to see
if m; = my, repeating the loop of phase 2 until m, = m,. Since m,
begins at x4 and m, remains at x,q = x4 throughout phase 2, the loop
will take c iterations, ending with my; = ¢, m; = x4, = xq = my, M3 =

Xo, and m, (which began phase 2 at x,) now at x..
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Before we begin phase 3, we place c¢ (in m,) in m,; and x, (in

m;) also in m,. We then reinitialize counter m, to 0. Each time through

the loop of phase 3, we increment counter m,, apply f to m; and m,,
and test to see if my; = m,, continuing the loop until m; = m,. Hence,
mj will go from x, to x, and m, from x, to x...

Table 1-1 summarizes how the five registers are used in the
three phases. The arrows, f., fi Increment ‘mean that at each time
through the loop, the contents x of the given register are replaced by
f(x), flf(x)], and x + 1, respectively, and a dashed arrow, — — ——,

means that the number is unchanged. The notation, ?|, indicates which
pairs of registers are tested for equality in order to end the phase. The
flowchart is shown in Fig. 1-47.

my, == xo
m2 «+ Xo

m3 <= xo
mg <= Xo

mo <0

 

  
 

my - f (m))

mz «= f (m2)
mo = f (mp)

y
  

  

 

    

   
PHASE|

 
mo<mo+|

m= fm)
maf (mg)    

PHASE 2

 
m; ==mo

m2 <= m3

mo<20
 

' 
mo <= mo +I

mz =f (m3)

ma=1 (mg    
PHASE 3 {

STOP

 

Fig. 1-47 Flowchart for inputting x, and outputting c, t, and /
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Table 1-1. Use of Registers
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Notice that in this program the function f appears seven times.
(See Sec. 1.7 for a method of avoiding having to key it into the program
seven times.)

Let us now analyze the time taken by this program. The func-
tion f is used three times in each of the d iterations in phase 1, twice

in each of the c iterations in phase 2, and twice in each of the t iter-
ations in phase 3, for a total of 3d + 2¢ + 2t. Since d < k = ¢ + t, the

function f is used no more than 5k times. Each iteration of any of the
three loops involves one comparison test, for a total of d + ¢ + t < 2k
comparisons. The naive and Pollard methods are compared in Table
1-2.

The fact that the Pollard method uses only five, instead of k
+ 3, memories, proves its worth. The number of comparisons used, 2k,
is much smaller than 1/2 k(k + 1) — t, and there is also a great saving
of time. Admittedly, function f gets used five times more in the Pollard
p method than in the naive method, but this small disadvantage is
greatly outweighed by the advantages.

We can see from this problem that cleverness can at times

drastically improve the efficiency of a program. Some programs with
a horrendously long running time, however, cannot be improved, no
matter how clever the programmer is. That is, it has been proved that
no improvement is possible. So how do you tell the difference between

Table 1-2. Comparison of Naive and Pollard Methods
 

 

Naive Method Pollard

No. of registers k +3 5

No. of uses of f k 5k

No. of comparisons 1/2kk +1) —t 2k
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a program that can be made more efficient and one that cannot? This

is the type of question for which there are no easy or universally
applicable answers. Indeed, one of the most famous unanswered ques-
tions in computing theory is whether a class of problems called NP-
complete can be solved by methods more efficient than the known
techniques, which are so slow that the problems are for all practical
purposes unsolvable. (See the Traveling Salesman Problem in Sec.
1.14.)

The p-diagram is representative of a function that eventually
starts repeating itself when iterated. How many functions act this
way? Some of them clearly never repeat, for example, the function f(x)
= x + 1. On the other hand, any function whose rule can be pro-
grammed on a calculator must repeat eventually (that is, it must pro-
duce a p-diagram under iteration). The reason is that the calculator
is capable of outputting only finitely many different numbers. If you
program it to iterate a function, the program will necessarily repeat
some output in the long run, and once this happens, you have entered
the circular part of the p-diagram. There is a seeming paradox here,
because the calculator can clearly be programmed to compute x + 1.
Can you see the resolution?3*

34 See Sec. 1.8 for the answer.
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CHAPTER TWO

Numbers

2.1 Introduction

Although your calculator belongs to a new technology, the lan-
guage it speaks is very old. Virtually every society in history has
developed at least a rudimentary number system. In fact, the oldest
mathematical relic we possess is an animal bone inscribed with uni-

form scratches bundled in groups of five by cross-scratches the way we
still do when tallying things. The scratches obviously represent num-
bers, and the bone is a number storage and retrieval device—from
about 30,000 B.C.!

Where do numbers come from? They seem to be a spontaneous
creation of the human mind or of the world. Whatever their origins,
civilized man, starting from the “natural numbers’—1, 2, 3,.. . —has

elaborated a language of incredible richness and fecundity for the pur-
pose of investigating nature. Somehow the numbers retain a life of
their own in spite of the many uses they are put to.

The study of numbers in their own right is called number the-
ory. The oldest and one of the profoundest branches of mathematics,
it continues to attract some of the most talented mathematicians to
the present day. Almost every mathematician has tried his or her
hand at solving at least one of the many unsolved problems in number
theory—problems that are so easy to state and at the same time so

intractable to solve (see Sec. 2.3 for an example).

This chapter contains a healthy dose of number theory. In
problems such as Ulam’s Problem, Pythagorean Triples, Sums of Dig-

its, and Sums of Squares, the calculator executes algorithms that we
could no more than reason about until recently because the compu-

113
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tations involved are too laborious by hand. Other problems in the
chapter, such as Multiple Precision and Complex Arithmetic, are of a
more practical nature, but almost all are focused on numbers them-
selves. In Chap. 3, we will use numbers to model games.

2.2 The Universal Converter

Difficulty: 1

Now that the United States is changing over to the metric
system, all of us are concerned with the problem of converting from
one set of units to another. Several calculators on the market today

have buttons for doing specific metric conversions—for example, from
meters to feet—but in our opinion this is an extravagant waste of a
calculator button. All a meters-to-feet button does is multiply the con-
tents of the display by (approximately) 3.28. In fact, most unit con-
versions can be accomplished by multiplying by the appropriate con-
stant.

Problem: Write a program that will do all such conversions in both
directions. The constant for converting from the first system to the
second should be stored in a memory.! The program should then accept
numbers representing measurements in either system and convert to

the other.

Solution: To convert from system A to system B; [see flowchart in
Fig. 2-1(a)], you multiply by the constant stored in m,. Can this same
constant be used to convert from B to A? To answer this question,
imagine that you started with a number representing a measurement

SUBROUTINE FOR SUBROUTINE FOR Memory
CONVERTING FROM CONVERTING FROM ;BS BE DaSYSTEM B. SYSTEM A.

  

      

Xe-mg x xe x/mg

(A) {B)

Fig. 2-1 Conversion flowcharts

! See the notes for how you come up with this number.
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Fig. 2-2 Conversion flowchart using sign of input as cue

in system A and multiplied by the contents of m, to get the equivalent
measurement in system B. How would you recover the original mea-
surement? You would divide by the contents of m, to cancel the effect
of the previous multiplication. Now imagine that all measurements in
system B were arrived at by conversion from system A. You will then

see that the equivalent measurement in system A is obtained by di-
viding by the contents of m,. This is a simple example of a type of
reverse thinking frequently used to solve mathematical problems: You
are in state B and want to get to state A. You imagine a process that
will get you from A to B, and then you reverse it to get the desired
process in the other direction.

If your calculator has subroutines, the simplest thing to do is
to write the two conversion procedures as two distinct subroutines.
The user then simply calls the appropriate subroutine for the desired
conversion [see Fig. 2-1(a) and (b)].

If your calculator doesn’t allow for subroutines, you will have
to construct your program in such a way that the calculator can tell
which conversion you want. A nice technique is to use the sign of the
input as a cue. Let’s designate system A as the “negative” unit and
system B as the “positive.” Numbers preceded by a minus sign will
then be interpreted as measurements in system A to be converted into
system B, and vice versa. Let the program start with a test to see if

the number in the display is less than 0. If so, multiply the contents
of the display by the contents of my; if not, divide the contents of the
display by m,. As a final touch, change the sign of the result, cuing
the user that the number has been converted into the other system.

The flowchart is shown in Fig. 2-2.
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This program is preferable to the two-subroutines approach
since it is easier to think of one system of units being positive and the
other negative than it is to remember the two conversions, SBR 1 and

SBR 2 or GSB 01 and GSB 04. [Solution was realized on an HP 33E
in nine steps.]

Notes: The latter program does have the disadvantage of being in-
operative with negative units since the minus sign will be misinter-
preted by the program as a cue. As a rule, however, this will not prove
to be a serious drawback; one can always put the correct sign at the
end. If this simple device doesn’t work, the unit conversion is probably
not of the type that the program is designed to handle. A case in point
is the problem of converting from Fahrenheit to Celsius degrees.
Clearly, —10 Fahrenheit is not the simple mirror image of +10. In
fact, there is no natural connection between these two readings. You
are probably also aware that the conversion formula from Fahrenheit
to Celsius involves more than just multiplication by a constant.

How do you recognize the possibility of converting from one
system to another by multiplying by a constant? An important re-
quirement is that 0 must mean the same thing in both systems (imag-

ine what happens when you convert). This requirement rules out Fahr-
enheit-Celsius conversion. The exact requirement is that there must
be a constant ratio between measurements in one system and their
equivalents in the other. The constant ratio is, in fact, the conversion

constant. You can determine whether two systems of measurement
satisfy this condition by looking at a table of equivalent values. Divide
the entries on one side by their equivalents on the other; the answer
should always be the same. For a concrete example, get out your cam-
era and look at the ASA and DIN film-speed scales on it. Divide the
ASA readings by the equivalent DIN readings, and you will find no
constant ratio between them. Thus, ASA-DIN conversion is not accom-

plished by multiplying by a constant. On the other hand, there is a
constant ratio between feet and meter readings on the lens, and this
ratio is the conversion constant.

How do you find the conversion constant without a table of
equivalent values? You can do so but not without coming up with at
least one pair of equivalent readings. This can be a little tricky in the

case of compound units. To show you how to go about it, suppose that
you want to convert feet-per-second to kilometers-per-hour. The trick
is to reason your way through via an intermediate unit. There are

(approximately) 3281 feet in a kilometer. Thus, 1 kilometer-per-hour
is equivalent to 3281 feet-per-hour. Since a second is 1/3600th of an
hour, 1 foot-per-hour equals 1/3600 foot-per-second. One kilometer-

per-hour, then, equals 0.9114 foot-per-second (3281/3600).
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Here’s a problem that you will encounter on your tire gauge

before long. Find the conversion constant between pounds-per-square-

inch and kilograms-per-square-centimeter. (Hint: There are 28.4
grams in an ounce and 3.28 feet in a meter).

Sometimes one can come up with a constant ratio between two
systems after some adjustment of the numbers. Looking for such a
connection can lead to the correct conversion formula. If, for instance,

you subtract 32 from a Fahrenheit reading before comparing it with
the corresponding Celsius reading (thus adjusting the zeros to the
same place), you will find a constant ratio, suggesting that Fahrenheit-
to-Celsius conversion is accomplished by first subtracting 32 from the
Fahrenheit reading and then multiplying by a constant. Common con-
nections to look for are ratios between entries on one scale and powers,
roots, logs, and exponentials (antilogs) of entries on the other scale.
(One of these connections works for ASA-DIN conversion.)

Another type of conversion problem not yet considered occurs
when fractions of a given unit are expressed in an altogether different
unit that is not a simple decimal subdivision of the larger unit. Two
examples are degrees/minutes/seconds and feet/inches. Your calculator
has keys for converting back and forth between decimal degrees and
degrees/minutes/seconds (hours/minutes/seconds on some calculators).
Can you construct an analogous conversion program for feet/inches?

2.3 Ulam’s Problem

Difficulty: 1

Ulam’s problem was posed by the Polish mathematician,
Stanislaw Ulam. Consider the following algorithm. Let n be a positive
whole number. If it is even, divide it by 2; if odd, multiply it by 3 and

add 1. Applying the algorithm to the number 10 yields the number 5;
applying it to 7 yields 22. The algorithm can be iterated (that is, ap-
plied to its own output). Starting from some number, iterating the
algorithm produces a sequence of numbers. For example, starting with
10, successive iterations of the algorithm yield the sequence, 10 — 5
— 16 - 8 -> 4 —> 2 — 1. Now when the sequence reaches 1, it gets

caughtinaloop:1 >4—->2—->1—-4—->2—>1—>....
Ulam’s problem is this: If you start with an arbitrary number

n and iterate the stated algorithm, will it always crash into the 4 —
2 — 1 loop? The answer is unknown. No one has ever produced a
number that did not eventually crash. On the other hand, no one has

been able to prove that every number must eventually crash. Even

fairly small numbers can go a long way before crashing. Starting from
27, for example, 111 iterations of the algorithm are required before 1

is reached.
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Problem: Write a program that takes as input a positive whole num-

ber n. Have the calculator flash the sequence of numbers obtained

from n by successive iterations of Ulam’s algorithm. In addition, put
a counter in the program to keep track of the number of iterations.
When (and if!) the sequence reaches 1, the program should halt and
show the number of iterations it took to get to 1. Thus, for example,
starting from 7, the calculator should output the sequence, 22, 11, 34,

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1—followed by 15 (the number
of iterations). Who knows? Maybe you will discover a way to show that
Ulam’s problem has an answer and become famous.

Solution: Basically, the program will apply the algorithm to the
number n, to get a new number n,, add 1 to the counter, and flash n,.

Check to see if n, = 1. If not, substitute n, for n, and start over; if so,

recall the contents of the counter and stop.
Three memories are required, as follows:

1. my: The number to which the algorithm will be applied
2. m;: The number obtained by applying the algorithm to the

contents of m,

3. m,: The counter

The program (see the flowchart in Fig. 2- 3) starts with some
number in the display (either the first number in the sequence or the
output from the previous iteration). Store this number in m,, divide

it by 2, and store the result in m,. If the original number was even,

m,; will now contain the number obtained by applying Ulam’s algo-
rithm to it. Check this out by taking the fractional part of the number
in the display (identical to the contents of m,) and testing to see if it
is 0. If it is, everything is OK and you should skip to the next para-
graph. If not, recall m,, multiply by 3, add 1, and store the result in
m,;, which now contains the correct number.

Add 1 to the counter (m,), recall m,, and pause for one beat.

Test to see if m; = 1 (you should be able to use the 1 that was added

to m,). If it isn’t, hold the contents of m, in the display and loop back

to the beginning of the program. If it is, recall the contents of m,, clear
m, for the next run, and halt. [Solution was realized on an HP-25 in

22 steps. ]

Notes: The above program can be slicked up a little by using m,
instead of m, as temporary storage for the new output of the algorithm.
Begin by dividing the contents of m, by 2 and leave the result in m,.
Test to see if the result is a whole number. If it is, you're finished; if

not, you've done the wrong part of the algorithm. Undo the error and
produce the correct result.in one blow by multiplying the contents of
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Fig. 2-3 Flowchart for Ulam’s problem

 

m, by 6 and adding 1. Register arithmetic can be used to advantage
here.

It seems strange to some people that mathematics should still
present unsolved problems. After all (the argument runs), mathemat-
ical techniques are so mechanical, why can’t machinery be set up for
proving all possible mathematical truths? The answer is that mere
machinery is not up to the job. Although mathematical proofs are
indeed very mechanical once written down, the problem of assembling
the machinery for proving a given theorem can not only require ex-
traordinary human ingenuity, it sometimes exceeds it. Mathematics
is and always has been a human endeavor. The history of mathematics
shows how much intellectual and social conditions influence the qual-
ity and quantity of mathematics produced by a given culture in a given
era.

In the past, there were hopes that a sufficiently clever human
being might invent the ultimate theorem-proving machine, one ca-
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pable of analyzing any mathematical statement and determining
within a finite length of time its truth or falsehood. The problem was
seriously considered in the seventeenth century by Leibniz, one of the
inventors of calculus. Leibniz thought that not only mathematics, but
in fact all knowledge, might be schematized and reduced to a mecha-
nized treatment. Hilbert, in a famous speech to the First International
Congress of Mathematicians in 1900, posed for the consideration of
twentieth-century mathematicians the problem of constructing this
ultimate machine, at least for mathematical purposes. All hopes for
such a machine were dashed in 1930, however, when Kurt Godel, a

young German mathematician, proved its impossibility. Using a vari-
ation of the liar paradox (“Is the following sentence true or false?:
‘This sentence is false.” ”), Godel showed that there are statements

in number theory that are true in the sense that they have no coun-
terexamples but are nevertheless not provable from the axioms. It is
possible that Ulam’s question is of this type. If so, of course, we will
never know for sure because if we knew there were no counterexam-
ples, we would have proved the answer to be “yes.”

If counterexamples to Ulam’s problem exist, they would be of
two types. Either the number n would run into some cycle other than
the 4, 2, 1 cycle or the sequence of iterates of n would “diverge to
infinity.” The first type would be verifiable on a calculator using the
Pollard p algorithm (see Sec. 1.16). The second would not because the
numbers in the sequence would eventually overflow the calculator’s
capacity, and one would have no way of knowing if they were even-
tually going to crash or not.

2.4 Phi, Fibonacci, and the World’s Shortest

Program
Difficulty: 1

Consider the following sequence: 1, 1, 2, 3, 5, 8, 13. Can you

guess the next term? (Take your time; the problem can wait.) Since
each term of the sequence is the sum of the previous two, the answer
is 21. This innocent-looking string of numbers—the famous Fibonacci
sequence—has inspired a mass of mathematical research. There is

even a whole journal devoted to it, the Fibonacci Quarterly.

Problem: Write the shortest possible program for generating suc-
cessive terms of the Fibonacci sequence. With an HP calculator, you
should need no more than six steps. With a TI—depending on what
type you have—you should need between seven (TI-57) and nine (TI-
58) steps.

An amazing fact is that if you have an HP calculator, a pro-
gram for this sequence exists that requires only one step! Actually,
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this is not quite true since all programs have to have a step to stop
execution. On an HP-25 or 33E, this step is usually GTO 00, which
not only stops execution but sets the program pointer to 01 to ready
the program for the next run. If a program is going to accomplish
anything, therefore, it must have at least two steps. Ignoring this
control step, however, our statement is true. With the same proviso,

there is a TI-57 program requiring three steps. Other TI programs will
be slightly longer (the totals cited in the previous paragraph include
a “stop” step).

How are these short programs capable of being realized? The
answerlies in one of the curious properties of the Fibonacci sequence.
Consider the ratios of its successive terms: 1/1, 2/1, 3/2, 5/3, 8/5, 13/8,

. ... These ratios converge to the “golden ratio” [(/6 + 1)/2], which
is denoted by the Greek letter ¢ (phi). Thus, if x, and x,,, are the n'"

and n+1" term of the sequence, x,,,/x, is approximately ¢. Multiply-
ing both sides of the approximation by x,, we find that x,,; is approx-
imately ¢x,. Each successive term of the sequence, then, can be ob-
tained (approximately) by multiplying the previous term by ¢, and the
approximation gets better, not worse, as time goes on.

In order to get this approximate formula to turn out the precise
terms of the Fibonacci sequence, two tricks are needed. First, the dis-
play must be set to zero decimal places, thereby rounding each term
off to the nearest whole number and getting rid of most of the error.
The second trick is to start in the right place. If you start at 1, suc-
cessive multiplications by ¢ will almost generate the correct Fibonacci
sequence, but not quite. The cumulative approximation errors deflect
the sequence from the proper values. One should start instead with a
number that absorbs all these errors from the outset, allowing the
sequence to move toward the correct values gradually. As luck would
have it, the early terms of the sequence will then be close enough to
the correct terms if the calculator is set to zero decimal places.

The number to start with is 1/,/5.2 [Note that (1//5)¢ = .7236,
which is 1 when rounded off to zero decimal places, and that (1A5 YP?

= 1.171, which is also 1 when so rounded off.] You may verify on your
own that successive multiplications by ¢ yield better and better ap-
proximations to the correct terms of the Fibonacci sequence. We now

leave it to your use of the above information to find the shortest pro-
gram for your calculator.

Solution: First, let’s look at the “naive” solution. Each term of the

sequence is the sum of the previous two. If we denote the terms by x,,

2 For a description of the golden ratio, see the Notes in Sec. 3.15.

® We will not discuss why this is the right number. The interested reader should
look up Binet’s formula.
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X;, Xs, X3,. . ., then the defining property for the Fibonacci sequence is

given by the formula, x, = x,» + X,_;. The n'" term is the sum of the
(n—1)% and (n—2)" terms. A straightforward program for generating
the terms of the sequence will always keep the previous two terms of
the sequence, x,_, and x,;, stored in two memories, m, and m;. To

generate the next term, it will add the contents of my, and m,. It will

then store the result in m;, moving the previous contents of the latter
into m,, ready for the next run, and leaving the new contents in the

display. The HP and TI programs for this solution are as follows:

HP Tl

01 RCLO 00 RCLO
02 RCL 1 01 +

03 STOO 02 RCL 1

04 + 03 STOO
05 STO 1 04 =

06 GTO 00 05 STO 1

06 R/S

In the sophisticated solution, the program will start with 1/
Jb in the display, and each run will simply multiply the contents of
the display by ¢. Since the HP program will contain just one step—

(or multiply)—where should ¢ be? The trick is to load the stack
with ¢’s. Since the previous contents at the top of the stack will be
left there as the stack drops, these ¢’s will replenish themselves au-

tomatically. At the beginning, then, the stack should look like the
following:

¢
x 15

Press [x once, and the stack will look like this:

  

 

 

 

 

7

Zz

¢

x (1/5)¢

Press again, and the stack will look like this:

T ¢

z ¢

y |¢

x |(1/5)?    
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and so forth. With the display set to zero decimal places, the correct
terms of the Fibonacci sequence will appear. Since TI calculators don’t
provide a stack, a memory, say m,, must be used to store ¢. The TI-57

program (starting with 1//5 in the display) will then be the following:

00 Xx

01 RCLO

02 =

(03 R/S)

A little trickier, and more automatic, program would be the
following:

00 Xx

01 R/S

02 RCLO
03 RST

This program need not be reset manually after each run. If you don’t
see why the [=] is unnecessary, see Sec. 1.2(10).

Notes: Fibonacci was an early thirteenth-century mathematician
from Pisa. Far ahead of his time, and considered by many historians
to be the only European mathematician worthy of the name prior to
the fourteenth century, he is credited with discovering the sequence
that bears his name on the basis of a problem he posed in his book on
arithmetic, Liber Abaci, written in 1202. (The book advocated themer-

its of the Arabic numeral system over the Roman numerals then in
use.) The problem was formulated as follows:

How many pairs of rabbits, beginning with a single pair, will
be produced in a year if in every month each pair bears a new pair
that becomes productive from the second month on?

At the beginning, there will be one pair of rabbits. At the end
of the first month, the pair will not yet be productive, and there will
still be only one pair. At the end of the second month, the original pair
will produce one new pair, and there will be two pairs. At the end of
the third month, the original pair will produce yet another pair. The
second pair will still not be productive, and the total number of pairs
will be three. And so on until the end of the twelfth month. To express
this sequence mathematically, suppose that x, denotes the number of
pairs of rabbits existing at the end of n months. Then x, will be x,
plus the number of new pairs born in the n'" month. This last number
will be x,, because each pair that was alive two months previously

will have produced a new pair during the n** month. Thus, x, = x,
+ X,_2, and x, is seen to be the n' term of the Fibonacci sequence. The

answer to Fibonacci’s question is therefore 233, the term x,, of the

sequence.



124 Mathematical Recreations for the Programmable Calculator

Note that the one-step program given for HP calculators is a
little silly. Since it requires you to press the key and all it does
is press the key, it would be just as efficient for you to press the

key yourself. The result is truly the shortest program possible: one
with zero steps; that is, no program at all!

2.5 Sums of Digits
Difficulty: 2

An interesting function often occurring in number puzzles is
the “sum of digits” function. Denoted by S(x), it takes any positive

integer x (base 10) and computes the sum of its digits. Thus, S(340175)
=3+4+0+1+7+5=20;S(98) = 17; S(6) = 6; and so on.

Problem 1: Write a program that accepts as input a positive integer
x and outputs S(x), the sum of the digits of x.

A curious property of the function S is that x and S(x) always
leave the same remainder upon division by 9. Equivalently, x — S(x)
is always evenly divisible by 9; for example, 340175 — S(340175) =
340175 — 20 = 340155 = 9 x 37795 and 98 — S(98) = 98 — 17 = 81
=9 x9.

Let us now consider the effect of iterating the function S on
some positive integer x, that is, let us consider the sequence: x, S(x),

S[S(x)], S(S[S(x)]), .... For example, if x = 157403431, we get the

sequence: 157403431, 28,10,1,1,1, ....

For any positive integer x, S(x) < x, that is, the sum of the
digits of a number is never bigger than the number itself. Further-
more, S(x) < x in all cases except when x is a one-digit number. For
any positive integer x, therefore, the sequence of x, S(x), S[S(x)],

S(S[S(x)]), ... will consist of smaller and smaller numbers until it

reaches a one-digit number; thereafter, it merely repeats that number.
Since x and S(x) always leave the same remainder upon divi-

sion by 9,it follows that every number in this sequence will leave the
same remainder upon division by 9. In particular, when the sequence
stabilizes at a one-digit number, r, that number must be the remainder

upon dividing x by 9 (unless the repeating one-digit number is 9, when
the remainder is 0.)

Problem 2: Write a program that accepts as input a positive integer
x and calculates the remainder r upon dividing x by 9.

Solution to Problem 1: Think of input x not as a number, but as a
row of separate digits all stored in one register. What we want to do
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is fish the digits out one at a time and sum them up. The technique
for fishing them out is described in Sec. 1.14.

We will need two memories. Memory m, will initially contain
x and then decrease as digits are fished out of it. Memory m, will
initially contain 0 and then accumulate the sum of the digits S(x),
successively increasing as newly fished out digits are added to it. The
flowchart is shown in Fig. 2/4.

mo «Xx

'
m <0

 

 

 

 

 

10

YES
For m; «10m,

x= FRAC(mg)
Mo<* Mg —xX

my; =m; +x

   
 

   

  

OUTPUT
my

   

 

Fig. 2-4 Flowchart for inputting a positive integer x and outputting S(x)

Each time through the loop in this program, a new digit is
fished out of m, and summed into m,. The step, my, « my/10, slides the

decimal point one place to the left, pushing the rightmost digit of
what's left in m, past the decimal point. The test, m, = 0, prevents

the loop from going on forever; when m, = 0, all the digits have been

fished out. If m, # 0, the loop continues. The step, x « FRAC (m,),

isolates the rightmost digit of m, (the one now on the right of the
decimal point) from the rest, whereas the step, m, — x, removes this

digit from m,. The step, m, «< m, + x, sums the newly fished out digit
into register m,, and the program returns to the top of the loop.

Notice that the digits are fished out from the right side of the
decimal point, that is, they are really one-tenth of what they should
be. Hence, m, doesn’t accumulate S(x), but rather (1/10)S(x). This

accounts for the step, m, « 10m,, before outputting m,.
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Solution to Problem 2: We will set up a loop to use the flowchart
in Fig. 2-4 over and over again, beginning with an input of x and at
each stage using the resulting output for the next input as shown in
the flowchart of Fig. 2-5.

The steps inside the broken-line rectangle are from Fig. 2-4.
The step, m, «< 10m,, takes the output 10m, of this rectangle and
places it back in input m,. Before returning,it tests to see if it is done,

that is, whether or not the output now in m, is a one-digit number. If
so (if my < 9), the program is almost done; m, is the right answer r,
except for the case, my, = 9, when the right anwer is zero instead. This
exception accounts for the test, my, = 9?, and the steps following it.
Otherwise (if my, ¥ 9), m, is at least a two-digit number, and the

program goes to the top of the loop.

Notes: Although the problems in this section are of little relevance
today, they were quite important back in the days of hand computation
because they provided a simple test for checking answers and detecting
careless errors. The procedure was called “casting out nines.” It is
not infallible, but it does catch about 8 out of 9 errors. Let’s look at

a brief example and consider the sum

19815
+ 23288

= 43203

Is the anwer correct? To check, we first calculate the r-value of the

summands 19815 and 23288. For 19815, r = 6, and for 23288, r =

5. The sum of these two r-values is 11, and the r-value of 11 is 2. Here

is the test: If the sum is correct, the r-value of the answer should also

be 2, but it is not. For 43203, r = 3. The sum is therefore incorrect. It
should be 43103, for which r = 2.

There are rules for “casting out n’s” for any number n. For
casting out 6’s, the rule is: Multiply each digit, except the rightmost
one, by 4, leaving the last digit alone; add up the results; then, when
the sum is divided by 6, the remainder will be the same as when the
original number is divided by 6. Let’s try 5283 to illustrate. Using
our rule, we form the sum: (4 Xx 5) + 4 Xx 2) + (4 xX 8) + 3 = 63.

When the latter number is divided by 6, it leaves a remainder of 3,

this remainder occurring when 5283 is divided by 6 (try it out). As
in Problem 2, we can iterate this procedure until a one-digit number
is reached. Applying it to 63, we get: (4 x 6) + 3 = 27; applying it to
27, we get (4 X 2) + 7 = 15; and applying it to 15: (4 xX 1) + 5 = 9.
Now we can easily verify that division by 6 leaves a remainder of 3
(although not quite so easily as in the case of 9).
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Fig. 2-5 Flowchart for inputting a positive integer x, dividing by 9, and outputting
remainder r

   

The rule for casting out 3’s is just like the rule for casting out
9’s. As in the case of 6’s, a last division may have to be performed to
find the remainder; thus the program for Problem 2 can be modified
to find remainders upon division by 3. (See Sec. 2.11 for another al-
gorithm for finding remainders—one that is faster on a calculator but
more difficult by hand.)

2.6 Sums of Squares
Difficulty: 3

The sequence, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . ., etc.,

of (perfect) squares has inspired countless problems and puzzles (see
Sec. 2.8). In this section, we will examine what happens when we add
a few squares. Let’s consider first the simplest question concerned
with adding squares: Which numbers are the sum of two squares? The
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number 80, for example, is the sum of two squares: 80 = 16 + 64 =

42 + 82, The number 3, on the other hand,is not. Is 21 the sum of two

squares? Is 74?

Problem 1: Write a program that will accept as input any nonne-
gative integer m and that will output all pairs (x, y) of nonnegative
integers such that x < y, and

x2 +y>=m

If you solve Problem 1, use it to verify the following table:

 

m Solutions (x, y) Solutions (x, y)

0 (0,0) 20 (2,9)
1 (0,1) 21
2 (1,1) 22
3 23
4 (0,2) 24
5 (1,2) 25 (3,4),(0,5)
6 26 (1,5)

7 27

8 (2,2) 28
9 (0,3) 29 (2,5)

10 (1,3) 30
11 31

12 32 (4,4)
13 (2,3) 33

14 34 (3,5)
15 35

16 (0,4) 36 (0,6)
17 (1,4) 37 (1,6)
18 (3,3)
19
 

Notice that for some m, like 3, 6, 11, or 12, there are no so-

lutions at all to the equation, x* + y* = m, whereas for others (try m
= 32045), there are many. (If your calculator has a printer on it, per-
haps you can program it to print out the above list.)

For an easier way to determine whether there are any solu-
tions to the equation, x* + y* = m, see any text on elementary number
theory. See also the historical note at the end of this section.

Now consider the question: Which numbers are sums of three
squares?

Problem 2: Write a program that will accept as input a given non-
negative integer n and output all triples (x, y, z) of nonnegative in-
tegers such that x <y < z and

x2 +y2+2z2=n
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A list of solutions for small values of n (make your calculator

prepare it if it has a printer) should look like this:

 
n (x,y,z) (x,y,z)

0 (0,0,0) 9 (0,0,3),(1,2,2)
1 (0,0,1) 10 (0,1,3)
2 (0,1,1) 11 (1,1,3)
3 (1,1,1) 12 2,2,2)
4 (0,0,2) 13 (0,2,3)
5 (0,1,2) 14 (1,2,3)
6 (1,1,2) 15
7 16 (0,0,4)
8 (0,2,2)
 

Again, notice that certain numbers n, like 7 and 15, have no

solution. In this case, it is easy to describe precisely which numbers
n have no solution. If a and b are nonnegative integers, then a number
n equal to 43(8b + 7) admits no solution to the equation, n = x* + y*
+ z2. For example, when a = 0 and b = 0 or 1, we have the first two
such numbers: 7 and 15. All other nonnegative integers n have a so-
lution.

Problem 3: Write a program that will accept as input any nonne-
gative integer p and output all nonnegative integers, w, x, y, z, such
that w <x <y < z and

w+ x2+y2+2z2=p

To test your program, here is a list of all solutions for small
values of n:

 

Pp (w,x,y,2) Pp (w,x,y,2)

0 (0,0,0,0) 6 (0,1,1,2)

1 (0,0,0,1) 7 (1,1,1,2)
2 (0,0,1,1) 8 (0,0,2,2)

3 (0,1,1,1) 9 (0,0,0,3),(0,1,2,2)
4 (0,0,0,2),(1,1,1,1) 10 (0,0,1,3),(1,1,2,2)

5 (0,0,1,2)
 

If you extend this list to, say, p = 100, you will discover that
all 100 values of p have at least one solution in contrast to n and m
where some values had no solution. Does this go on forever? Does every
nonnegative integer p have a solution? You cannot settle this question
by using you program for ever larger and larger values of p unless you

happen to find some number p with no solution fairly early on. But
the fact is, all values of p do have a solution! Thatis, every nonnegative
integer is a sum of four squares (see the Notes).
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Solution to Problem 1: Given m, we want to find all pairs (x, y) of
nonnegative integers satisfying the equation, x* + y> = m, where x <

y. If we knew y, we could easily find x since solving the equation gives

x = ym=?
Our plan is therefore to try all possible values of y, pausing to output
the pair (x, y) if ym — y? happens to be an integer. (The test, x = INT
x?, can be used to see whether or not x is an integer.

What do we mean by “all possible values of y”? Well, since
0 < x? for any x, y> < x* + y2 = m, or y < ,/m. Also, since x < y,
obviously x*> < y% Thus, m = x* + y?> < y? + y? or \m/2 < y. We
therefore have to check only those integers y in the range \m/2 <y
< ym. We will use register m, to store these values of y successively,
beginning with INT(,m)—the largest integer in the range—and work-
ing down. Another register, mz, will permanently store m. The flow-
chart is shown in Fig. 2-6.

0 y

 

  

    
 

 
    
 

 

    
 

3 m
m 3 «Mm

y Initial State of
mo + the Memory

INT (Vmz) 0

1

NO Ls
YES

xX -—

vmz— mo2

     
 

OUTPUT
x AND
y=mg

    

     

NO YES
mo<*+mo— |

Fig. 2-6 Flowchart for inputting any nonnegative integer m and that will output all

pairs (x,y) of nonnegative integers such that x <y and x2 + y2 =m

 

In the test, ym3/2 < m,, the quantity yms/2 can be computed

directly each time through, or it can be calculated just once at the
beginning of the program and stored permanently in another register,
such as mg.
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Solution to Problem 2: Given n, we wish to find all triples (x, y, z)
or nonnegative integers such that x <y < z and

x? +y2+22 =n

If we knew z, we could find all the x’s and y’s by using Problem 1,
letting m = n — z?, to solve

x2+y2=n— 22

Our plan, then, is to try all possible values of z, pausing to output
solutions (x, y, z) as they are found.

What are “all possible values of z’? Well, since 0 < x* + y?,

it is clear that z? < x*> + y? + z? = n. Therefore, z < \n. Also, since x

< y < z, it is clear that x* < z? and y* < z% Thus, n = x* + y* + 22 <

z? + z® + 2%, or n/3 < z2 We therefore have to check only those integers
z in the range, \n/3 < z < |n. These values will be stored in memory
m;, beginning with the largest [m; = INT(n)] and decreasing to the
smallest. We will use m, to store n permanently.

The flowchart is shownin Fig. 2-7. The steps inside the broken
rectangle correspond to the flowchart in Fig. 2-6. The quantity
ym4/3, appearing in the test, ym,3 < m,?, can be calculated directly

each time it is used, or it can be just calculated once, at the beginning
of the program, and stored permanently in another register (like mj,
for example).

Solution to Problem 3: Given p, we wish to find all quadruples (x,
y, z, w) of nonnegative integers such that x <y <z < w and

XX +y*+z22+w =p

If we knew w, we could find all x’s, y’s, and z's by using Problem 2,

letting n = p — w?, to solve

X2+y?+z22=p—w

Our plan is therefore to try all possible values of w, pausing to output
solutions (x, y, z, w) as they are found.

To find the range of values of w that need to be tested, note
that 0 < x? + y? + z? and consequently that w? < x? + y? + 22 + w? =
p, or w < ,/p. Also, since x <y < z < w, we know that x> < w?, that
y?< w?and that z> < w2 Thus, p =x + y? + 22 + w? sw? + w? +
w? + w? = 4w? so that |p/4 < w. As a result, we need check only those
integers w in the range \[p/4 < w <p. These values will be stored in
register m,, beginning with the largest [m, = INT(p)] and decreasing

to the smallest. We will use mj; to store p permanently.
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Fig. 2-7 Flowchart for inputting any nonnegative integer n and outputting all triples
(x,y,z) of nonnegative integers such that x <y<zand x2 + y2 + 32 =n

The flowchart is shown in Fig. 2-8. The steps inside the bro-
ken rectangle are essentially those in the flowchart of Fig. 2-7. The
number ms/4 can be calculated anew everytime it is used in the test,

yms/4 < m,?, or it can be calculated just once at the beginning of the
program and permanently stored in some register, such as mg.

Historical note: The theory of the sums of two squares is well known
today, and using it one can answer such questions as “Which numbers
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are the sum of two squares?” and “In how many different ways is a
given number the sum of two squares?” with relative ease. At the
heart of the theory lies a theorem first expressed by Pierre de Fermat
(1601-65), as follows: If p is a prime number of the form 4n + 1, then
p is the sum of two squares in exactly one way.

Fermat, a lawyer by profession, claimed to practice mathe-
matics only as an amateur and seldom published proofs of his work.
The first published proof of his theorem came from Leonhard Euler
(1707-83). Joseph Louis Lagrange (1736-1813) was the first to pub-
lish a proof of Fermat’s assertion that every nonnegative integer is
the sum of four squares. (Euler and Lagrange are considered the
strongest mathematicians of the eighteenth century.) Later, Carl G.
J. Jacobi (1804-51) developed a formula for the number of different
ways that a given number can be expressed as a sum of four squares.

It is interesting to note that sums of three squares are harder
to deal with than sums of two or four squares. The main stumbling
block may be explained as follows. The formula,

(a? + b*(c?* + d*) = (ac + bd)? + (ad — bc)?

shows that the product of any two numbers which are themselves the
sum of two squares is again the sum of two squares. A similar formula
holds for four squares; that is, the product of two numbers which are
themselves the sum of four squares is again the sum of four squares:

(a? + b,? + c,? + d,®(a,? + b,2 + Cy? + d.? =

(aa. - bb. — CC — d.d.)? + (ab. + b,a. + c,d, —- dcy)? +

(a,c. — b.d. + ca, + d,b,)? + (ad. + b,c. - cb. + d,a,)?

However, no such formula holds for the sum of three squares! In fact,
3(= 1% + 1% + 1%) and 5(= 0% + 1% + 22) are sums of three squares, but
3 X 5(= 15) is not.

2.7 Recursions

Difficulty: 3

The Fibonacci numbers, as you may recall from Sec. 2.4, are
a sequence f, fi, f,,. . ., defined as follows: f, = 0,f;, = 1, and f, = f,_,

+ f,—, for each n = 2. Notice that even though no formula is given

here for computing f,, directly, we can still find each f, by using only
the information given above. An indirect formula of this kind is called
a recursion. Many important sequences can be defined recursions, that
is, by rules that allow you to calculate each number in the sequence

in terms of previous ones.
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Here are five examples. You should compute the first few
terms of each sequence by hand and then check them with our answers
to make sure you understand how recursions work:

(1) ap=0,a;,=1,a,=4,and a, = 3a,_; — 3a,-» + a,_3 forn=3

(2) bp=1landb, = nb,_,) forn=1

3) co=1,¢;=2,andc, = 4¢,-; — ¢c,—> for n = 2

(4) d¢y=0,d,=1,andd, = 4d,_;, — d,_,forn= 2

(5) ep = 0, and for n = 1, if n is a prime number, the e, = 1 +

en—1; if n is not prime, then e, = e,_, (a prime number is a

number larger than one that is evenly divisible only by itself
and 1)

Here is a table of the first few numbers in these sequences:

n 0 1 2 3 4 5 6 7 8

a, 0 1 4 9 16 25 36 49 64
bn, 1 1 2 6 24 120 720 5040 40320
Cn 1 2 7 26 97 362 1351 5042 18817
d, 0 1 4 15 56 209 780 2911 10864
en 0 0 1 2 2 3 3 4 4

The first sequence is nothing more than the sequence of
squares: a, = n® You might recognize the second sequence, b, = n!,
as the product of the numbers n,n — 1, n — 2, - - +, 3, 2, 1. The third

and fourth sequences are related. It turns out that for every n, ¢,2 —

3d,>2=1.[Tryit: 12-3 -0>)=1;22-3-1)=1;7* — (3 - 4% = 1;
etc.] Furthermore, the sequences c, and d, contain all pairs of non-

negative integers c and d satisfying the equation, ¢? — 3d? = 1. Finally,
although the numbers in the fifth sequence are much smaller than
the numbers in the other four,it is a much more complicated sequence,
e, being the number of prime numbers not greater than n.

Problem: Write four programs, one each for calculating the first
four sequences above using the given recursions.

Solution: We will describe only the first sequence and let you find
the others. Note that the formula,

an =3ap; — 3a, + ans

requires three previous terms to calculate the subsequent one. Thus
we need three memories to store the last three terms.

The flowchart is shown in Fig. 2-9.The first step calculates
the next term, and the succeeding three steps update the three mem-
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Fig. 2-9 Flowchart for a recursion

ories for the next term—before displaying the term x just calculated.
Be careful that you don’t lose x while you are shifting the memories
around. (You might need to use another memory to store it temporar-
ily.)

2.8 Pythagorean Triples

Difficulty: 2

Recall the famous Pythagorean theorem: If a, b, and c are the
legs and hypotenuse on a right triangle (see Fig. 2-10), then a? + b?
= c2 If a, b, and c are (positive) whole numbers satisfying this equa-

 

a

Fig. 2-10 Triangle to illustrate the Pythagorean theorem
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tion, then a, b, and c are called a Pythagorean triple. The simplest

example is the triple, 3, 4, and 5 (32 + 42 = 9 + 16 = 25 = 5%.

Pythagorean triples have fascinated mathematicians for millenia (see
the Notes). There are lots of them—infinitely many to be precise—but
they are rather thinly scattered. The next interesting one after 3, 4,
and 5 is 5, 12, and 13 (5% + 122 = 25 + 144 = 169 = 13%.*

Problem 1: Write a program that finds all Pythagorean triples.

If you manage to solve this problem and run your program,
you will soon note how slow it is since the larger the numbers in the
triples get, the longer it takes the calculator to find them. You can
imagine, then, how hard it would be to find Pythagorean triples un-
aided by any device or method. A long time ago certain clever indi-
viduals began looking for formulas that would generate Pythagorean
triples automatically.

Here is a scheme attributed to Pythagoras himself. Pythagoras

noticed that the sum of all odd numbers up to any given point always

add up to a perfect square; for example, 1 + 3 =4 =2%1+3 + 5 =
9=3%41+3+5+7=16 = 4% etc. Now suppose that the last term
in such a sum is itself a perfect square, as in the sum, 1 +3 + 5 + 7

+ 9. Then the whole sum is not only a perfect square (25 in this case)
but can be broken into two other perfect squares (namely, the sum up
to, but not including, the last term and the last term by itself), thereby
creating a Pythagorean triple in this case, 25 =1+2 +3 +5 + 7 +
9=1+3+5+17+9) =16 + 9 = 4% + 32The next sum for which
this trick worksis 1 + 3 + 5 +... + 21 + 23 + 25 since 13% = 169
=14+3+5+... +421 +23 +25=(1+3+5+...+21 +23) +
(25) = 144 + 25 = 12% + 52, yielding the Pythagorean triple, 5, 12,
and 13.

It becomes clear that any odd perfect square, m?sits at the
end of a sum of consecutive odd numbers, 1 + 3 +5 +... + (m?* — 2)

+ m?, on which we can perform this trick. We will spare you the details
that show that 1 + 3 + 5 + ... + (m* — 2) adds up to [(m? — 1)/2]*
and that the whole sum, 1 + 3 + 5 +... + (m? — 2) + m?, adds up to

[(m? + 1)/2]%, producing the Pythagoren triple, m, (m* — 1)/2, and (m?

+ 1)/2. Thus we have Pythagoras’ formula: If m is any odd number,
then m, (m? — 1)/2, and (m? + 1)/2 are a Pythagorean triple.

Problem 2: Write a program that generates Pythagorean triples by
using Pythagoras’ formula (no solution is provided).

4 An uninteresting one is 6, 8, and 10, which is just the 3, 4, and 5 triple

enlarged by a factor of two.
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Pythagoras’ scheme does not generate all Pythagorean triples.
If you solve Problem 2, you will probably notice that the program
produces only those triples a, b, and ¢ where ¢ = b + 1 [that is, %(m?
+ 1) = %(m?2 — 1) + 1]. Thus it will not generate the triple, 8, 15, and

17, which you can readily verify to be Pythagorean. What is needed
to produce all triples is a formula taking two numbers as input instead
of just one.

Let z and w be any two positive whole numbers with w < z.
Then a, b, and ¢ where a = z2 — w?, b = 2zw, and ¢c = z®> + w? are a

Pythagorean triple since a? + b? = (22 — w?)?* + (2zw)* = z* — 2z*w? +
wi + 4z22w? = z* + 2z22w? + w* = (22 + w?)?® = c% For example, let z =
7andw =4.Thena =49 — 16 =33,b=2 X 7 XxX 4 = 56, and ¢c = 49
+ 16 = 65. You can check on your own that 33, 56, and 65 are a

Pythagorean triple.
This scheme generates all triples except for a few uninterest-

ing ones. (It does not, for instance, generate the triple, 9, 12, and 15,

which is just the triple, 3, 4, and 5 enlarged by a factor of 3.)° It does
generate all “primitive” ones (that is, those that are not multiples of
others).

Problem 3: Write a program for generating all Pythagorean triples
that makes use of the preceding formulas.

Solutions to Problems

Problem 1: Since a®> + b? = ¢? and ¢ = a’ + b?, the Pythagorean
triple, a, b, and c, can be rewritten as a, b, and /a* + b®*. We thus

generate all triples, a, b, and a* + b?, checking each time to see if
Ja? + b? is a whole number. If it is, then a, b, and a? + b® are a Py-

thagorean triple, and the program stops to output it. We may as well
generate only those triples for which a < b since the others are re-
dundant (the triple, 4, 3, and 5, is no different from the triple, 3, 4,

and 5). Thus we need part of the program to generate all possible pairs
of whole numbers a, b such that a < b. This we accomplish with nested
loops (see Sec. 1.8), as shown in the flowchart of Fig. 2-11. Now all
the rest of the program has to do is compute a® + b?, store it in a
memory (should it be a whole number), and check to see if it is a whole

number (fractional part = 07). If it is, the program then outputs the
triple, a, b, and c¢. We will leave it to you to arrange the output (see

Unfortunately, it does not avoid all uninteresting triples. Note this exception,
among others: If z = 3 and w = 1, we get the uninteresting triple, 6, 8, and
10. See the Notes for more on the subject.
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Fig. 2-11 Flowchart for finding all Pythagorean triples (first part)

Chap. 1). If Ja* + b? is not a whole number, it is time to generate a
new pair, a, b, which returns to the part of the program already de-
scribed. The flowchart for the remainder of the program is shown in
Fig. 2-12.

 Ld Tr
Mp

im? + m? 1 b

 
 

        

 

Fig. 2-12 Flowchart for finding all Pythagorean triples (second part)

Problem 3: In this program we want to generate all pairs, z, w such
that w < z and to generate from each pair the triple, a, b, and c, using
the formulas given. The part of the program generating the pairs z, w
will be just like that for generating the pairs a, b in the previous
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solution, except that the test, m, > m,?, is replaced by the test, m, =

m,? The flowchart for the rest of the solution is shown in Fig. 2-13.
(Register arithmetic can be used to advantage in this program.)
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Fig. 2-13 Flowchart for generating all pairs (z,w) such that w < z and from each pair

the triple (a,b,c)

Notes: Pythagoras got his name attached to the Pythagorean theo-
rem and Pythagorean triples more or less by historical accident. Until
the twentieth century, it had been thought that there was very little
mathematics worth mentioning before his time. However, we now
know that the Egyptians and Babylonians were producing respectable
mathematics as far back as 2000 B.c., 1400 years before he lived. In-

deed, the more we learn about their work (especially that of the Ba-
bylonians) the more impressive it becomes. Clay tablets dating from
about 1800 B.c. show that Babylonians already knew how to generate
Pythagorean triples. Professor Otto Neugebaur has argued, based on
the evidence of the tablets (which are lists of Pythagorean triples and
related numbers), that the Babylonians had even discovered the gen-
eral formula used in Problem 3.

Nevertheless, Pythagoras well deserves his eminent place in
the history of mathematics. Born around 600 B.c., he is one of the great
patriarchs of science although his actual life is shrouded in legend.
Since the oldest biography of him was written approximately 600
hundred years after his death by a man (Iamblichus) who clearly re-
garded him as a divine figure, virtually all that is now “known” of
his life must be viewed with some skepticism.

The story goes that after spending the early part of his life
traveling and studying in Egypt and Babylonia, Pythagoras moved
from his native Samos (an island off the coast of modern Turkey) to
southern Italy, where he founded a school. His school was devoted to
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the study of mathematics, its motto being “All is number.” By this,
Pythagoras meant that all things are knowable through numbers. Bas-
ically, this is still the view of modern science for science seeks to know
the world through mathematical formulas, and such formulas speak
in numbers. It is for this reason that Pythagorasis credited with being
the primogenitor of the scientific worldview. Yet Pythagoras’ own
conception of the meaning of “All is number” was much broader than
the modern scientist's. He seems to have thought that literally every-
thing—man, love, justice, beauty—was explainable by numbers.

Pythagoras discovered the numerical ratios that explain the
construction of the musical scale. He thought the harmonies that the
ear perceives in music to be material manifestations of a higher har-
mony present in the numbers that govern the music. And he may have
extended this view to the whole universe, believing that all of physical
nature was merely an “imitation” of the world of numbers. His fol-
lowers, at any rate, devoted themselves to the contemplation of the
harmonies of numbers available to the mind alone. Pythagoras’ con-
ception influenced Plato, whose philosophy replaced numbers by
“forms.”

As we noted earlier, the scheme for generating Pythagorean
triples in Problem 3 produces all the “primitive” triples, those from
which all others can be derived by multiplication. From the primitive
triple, 5, 12, and 13, for example, we can generate the triples, 10, 24,

and 26 (multiply by 2); 15, 36, and 39 (multiply by 3); etc. But 5, 12,
and 13 are not themselves a multiple of any other triple. Clearly, if
we are interested in generating all Pythagorean triples, it suffices to
generate only the primitive ones—a job that the scheme in Problem
3 doesn’t do. In addition to the primitive triples, it generates some
(though not all) nonprimitive ones (see the footnote). The nonprimitive
triples can be avoided by imposing two restrictions on the numbers z
and w:

1. They should have no common divisor other than 1 (that is,
they should be relatively prime).

2. They should not both be odd (they cannot both be even either,
since 2 would then be a common divisor).

It is tricky to write a program embodying these restrictions; we leave
it to the fanatics among our readers.

Pythagorean triples can be generalized in various ways. There
are, for example, “Pythagorean quadruples,” three perfect squares
adding up to a perfect square, such as 62, 10%, 15%, and 19% One can

also find quadruples of perfect cubes (3% + 43 + 5% = 63), quintuples of

perfect fourth powers (30* + 120* + 272* + 315% = 353%), sextuples of
perfect fifth powers, and so forth. However, there are no pairs of cubes
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adding up to a perfect cube, that is, there are no triples of (positive)
whole numbers a, b, and c¢ such that a® + b® = ¢3. An incomplete proof

of this fact was given by Euler in the eighteenth century. In the nine-
teenth century, Gauss, perhaps the greatest mathematician of all time,

gave the first entirely correct proof.
Gauss’ proof was a special case of a theorem proposed by the

seventeenth-century number theorist, Pierre de Fermat. Fermat wrote
in the margin of one of his algebra books, next to a discussion of
Pythagorean triples, that for all whole numbers n larger than 2, the
equation, a" + b" = c?, has no whole number solutions. He claimed

that he had an elegant proof of this fact, but that the margin was too
small to contain it. The note was discovered after Fermat's death and
the proof has never been found. It is now referred to as Fermat’s Last
Theorem (or Lost Theorem) and is probably the most famous unsolved
problem in all of mathematics.

2.9 Permutations and Combinations

Difficulty: 2

In how many ways can Alice, Bill, and Charlie line up for a
picture? A little reflection will show that there are six ways, repre-
sented by the three-letter “words” ABC, ACB, BAC, BCA, CAB, and

CBA. Suppose now that Dan joins them. In how many ways can the
four of them line up? It turns out that there are 24 ways, a figure that
you should check. It is, of course, the same as the number of four letter

“words” that can be made by rearranging ABCD.

The number of ways n people can line up for a picture, or the
number of n-letter “words” that can be made by rearranging n dif-
ferent letters, is denoted by the symbol n! (read “n factorial”). From
the examples above, 3! = 6 and 4! = 24. There is a formula for n!, as
follows:

n!=nn —-mn — 2)... 3S)

That is, n! is the product of all positive whole numbers up to and
including n. Here is your first problem, an easy one for which we will
give no solution (see Sec. 1.8 if you have any problems, and, by the
way, 0! = 1! = 1).

Problem 1: Write a program that will accept as input any nonne-
gative integer n and output n!. (Note: Since 70! > 10%, your calculator
will only work up to an n of 69.)

Returning to Alice, Bill, Charlie, and Dan, how many three-

person pictures can be taken? Again, the answer is 24 pictures (take
all the four-person pictures and remove the person sitting on the
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right), the same total as the number of three-letter “words” except
that different combinations of letters (made from the letters ABCD)
are used.

If 1 < k < n, the number of k-letter words (consisting of k
different letters) that can be made from an alphabet of n letters is
denoted by the symbol, P(n,k), and is called the number of “permu-
tations of n things taken k at a time.” It therefore symbolizes the
number of ways in which k people out of n can line up for a photograph.
Here is a formula for P(nk):

Pnk)=nth-1)(n-2)...n—-k +1)

That is, P(n,k) is the product of all numbers from (n — k + 1) to n,

inclusive, or a product of k consecutive numbers, the largest of which
is n. [If k = n, note that P(n,n) = n!, as it should.]

Problem 2: Write a program that will accept as input whole num-
bers k and n such that 0 < k < n and then output P(n,k). [This is
another application of loops (see Sec. 1.8), and we leave the solution
to you. Note that P(n,0) = 1.]

Alice, Bill, Charlie, and Dan are to choose from among them-

selves a committee of two to go out for beer. In how many ways can
they do this? A count shows that there are six possible committees:
AB, AC, AD, BC, BD, and CD. Notice that this is not the same as the

number of two-letter “words” [P(4,2) = 12]. Each committee repre-

sents two two-letter “words;” for example, AB and BA constitute the

same committee but are different two-letter “words.”

When 0 < k < n, the total number of committees of k people
that can be selected from n people is denoted by either of the symbols

C(n,k) or . . It is called the “number of combinations of n things

taken k at a time” or “n choose k” or the “binomial coefficient n

over k.” The formula for it is

(3) “wowk) “kn-
For example:
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4\ 4!

(4) =m =+

4 4!

(4) = p=

Problem 3: Write a program that will accept as input whole num-

bers k and n such that 0 < k < n and then output . .

Solution to Problem 3: One way to do the problem is to set up a
subroutine to calculate x! as in Problem 1, use it to calculate n!, k!,

n!

“kln - KI
method will work satisfactorily if n is small, but there will be a prob-
lem otherwise. For one thing, since it involves calculating n!, which

and (n — k)!, and then evaluate the formula, (z This

is a lot larger than the answer, . , your calculator might overflow

even though (2) itself does not overflow the calculator. For example,

(7) = 2415, a figure easily handled, whereas 70! > 10° and so

overflows the calculator. Furthermore, this method may prove inac-
curate even if it does not make the calculator overflow. The error
occurs when there are more digits in n! than the calculator can hold,
causing it to round off and lose some digits.

What is needed is a method for calculating (2) that does not

-) itself [see Sec. 1.2(9)]. Rather

than perform all the multiplications for n! first, one might perform
some of the divisions in the denominator of the fraction, n!/k!(n — k)!,

along the way so as to keep the numbers small. But here another
problem presents itself. If we do these divisions, the results tf not

involve numbers much larger than

be whole numbers despite the fact that the final answer , 1s a
n
k

whole number [see Sec. 1.2(9) again]. This can also introduce some
inaccuracies.

Here is a way that seems to solve most of the problems. It will
still fail if n is much too large, but it will accommodate many more

inputs than the first method. Notice, to begin with, that

n! n!

(a7) - ==(1)n-k/ m-KMh-m-k] 0m-k'k \k
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For example, (98 ) = (12°) = 4950. Consequently, we have a choice

in calculating (2) We can calculate either (2) or (u n o): which-

ever is more convenient. It turns out that this method is quicker for
smaller k. Thus, the first step in the program is to replace k by n —
k if the latter is smaller. (Note that, in this case, k < n — k, which

implies that k < n/2.)

Now let us examine the formula,

(3) =mk/  k!(n — k)!

Observe that the term (n — k)! in the denominator is a factor of the

numerator n!. In fact, n! = nn-1) ... (m— k+ Dn -k)! =

P(n,k)(n — k)! Canceling out the common factor (n — k)! from the
: : n\ .

numerator and denominator in the formula | 8ives

 

(2) _Pok) mo -Hm-2)...-k+2)n -k +1)
k k! (D@2)3)...&k — Dk)

We can regroup to obtain

(3) (HE)(=(=)
Here, then, is our method. We set up a loop that successively

. . n
accumulates in memory mg the following products: p, = 1, p; = 1)

p= (2)(25 , ps = ©); b( = 2), and so on, untilfinally

n=)(5)(CEG) me
flowchart in Fig. 2-14 should now be clear.

At each stage in this method, memory m, is both multiplied
and divided by some numbers. Thus, the contents of m, are not nearly
so large as they would be if all multiplications were done first. Also,
since m, will always contain integers, there will be no fractions to

   

   

 
 

affect the accuracy. The reason is that p, = n , P1 = , etc., and
n

0 2

all of these are whole numbers.

When you have written your program, you should experiment
with it to see for which values of n and k it is accurate and for which

values it overflows. [Solution was realized on an HP-25 in 25 steps.]
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Fig. 2-14 Flowchart for outputting

2.10 Multiple Precision Arithmetic

Mathematical Recreations for the Programmable Calculator
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If your calculator holds only 10 digits or so, are you forever
stuck with dealing only with integers less than approximately 10%?
Try multiplying 2 by itself 40 times on your calculator. If the calcu-
lator is accurate to 10 places, the answer it gives is

24 = 1.099511628 x 10? = 1,099,511,628,000.

Of course, this answer is not correct; in fact,

2% = 1,099,511,627,776

The question is, then, can we get your calculator to deal with
such large integers accurately? Indeed we can. “Multiple precision”
is the technique of using several memories to store a single, large
number. (Don’t get this confused with “Multiple Storage,” the tech-
nique of storing several small numbers in a single memory.)
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Let us agree to store eight digits per memory. (Your calculator
holds more than eight, but don’t crowd it; we will need at least one

extra digit to play with.) Allowing two registers per number, therefore,
we can store numbers with as many as 16 digits. For example, we
would store 2* in two registers, m, and m,, by having m; = 10,995

and m, = 11,627,776 so that 2% = m,(10%) + m,.

Problem 1: Write a program to calculate the sum of two 16-digit
positive whole numbers (each entered as a pair of 8-digit numbers),
accurate to 17 digits.

Problem 2: Write a program that will successively calculate 2, 22,
23, ..., 2%, accurate to 17 digits. (Hint: Now that we know how to add

large numbers, we can easily calculate large powers of 2. Note that 2"
= 2(2n 1) = 2n1 4 2r71that is, each power of 2 can be computed by
adding the previous power of 2 to itself.)

Problem 3: Here is another application. The Fibonacci sequence is
the sequence of numbers beginning 1, 1, 2, 3, 5, 8, 13, ..., in which

each number is the sum of the previous two. These numbers get very
big very fast; the fiftieth one is already larger than 10'. Write a
program to calculate successively the first 79 Fibonacci numbers.
Use it to verify that the seventy-ninth Fibonacci number is
14,472,334,024,676,221.

Problem 4: Repeat the first three problems, but for larger numbers.
There should be room even in a small calculator to add two 24-digit
numbers. If you have a powerful calculator, you should be able to
handle 300-digit numbers. (Hint: A larger integer can be stored in
several registers as follows: Break it up into blocks of eight digits each,
starting at the decimal point, and store each block in a separate reg-
ister.)

Problem 5: Write a program that multiplies two eight-digit num-
bers and outputs the 16-digit answer in two eight-digit blocks. (Hint:
Break the numbers up into four-digit blocks.)

Solution to Problem 1: If s and t are the numbers to be added, lets

begin by storing the right-most eight digits of t in m,, and the rest of
t in ms. Thus,

s = m,(10%) + m,

t = m;(108%) + ms,
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Let x denote the (as yet unknown) right-most eight digits of (s + t);
let y be the rest of (s + t) so that

(s +t) = y(10® + x

and x and y are the numbers we are seeking.
Calculate the value ¢ where

¢ =m, + m,

which might be a nine-digit number. The right-most eight digits of ¢
comprise the number x, and the ninth digit, c, is a “carry over.”
Hence, we need to separate ¢ into two parts: ¢ = ¢(10%) + x. Now if we
divide ¢ by 108, we push the “x part” of ¢ to the right of the decimal
point, leaving the digit c just left of the decimal point. Therefore, ¢ =
INT(¢/10%) and x = ¢ — ¢(108), and we have the right-most eight digits
of the answer. The rest are calculated by the equation: y = m; + m;
+ c. The flowchart is shown in Fig. 2-15.

 

  

 

 
 

     

Memory

i 0 Right part of s

1 Left part of s
Se mg+mp
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INT(£/108)   
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Fig. 2-15 Flowchart for calculating the sum of two 16-digit positive whole numbers

accurate to 17 digits

(Notice that this procedure is analogous to adding two two-
digit numbers. We first add the right digits, writing down the right
digit of the sum. The left digit is “carried over” to the next column
containing the left digits. The left digit of the answer is the sum of
the left digits of the summands plus the carry. In fact, what is hap-
pening above can be thought of as adding two two-digit numbers in
base 10°, the digits being the numbers m,, m;, m,, and m;,. It is worth
noting also that the number c is always either 0 or 1. You can verify
for yourself that when you add two numbers together you always carry
a 1 or you carry nothing no matter what base you are working in.)
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Solution to Problem 2: We will use registers m; and m, to store the

current power of 2, as in Problem 1:

2K = 103m, + my

Since the initial power of 2, that is, 2° equals 1, we begin with m; =

0, my = 1 and, set up an “endless” loop as follows: The loop begins
by outputting the current power of 2, that is, the contents of m; and
m,. Then the next power of 2 is calculated. Since each power of 2 is
just the previous one added to itself, we use the method of Problem 1
to add the current power, in m; and m,, to itself and place the result
back in m; and m,. Then we return to the beginning of the loop. The
flowchart is shown in Fig. 2-16.

Solution to Problem 3: Since the calculator needs to remember the

last two Fibonacci numbers in order to calculate the current one, we

will store the most recently calculated Fibonacci number in m, and mj;

Memory START

0 Right part

1 Left part

A

4+ 2mg

v
C -—

INT(£/108)

¢
me2m;+c

—1mo+ /
—¢c-108

 

    

 

 

 

 

     
Fig. 2-16 Flowchart for successively calculating 2, 22, 23, . . . 254, accurate to 17 digits

and the one before that in m, and m,. Since the first two numbers are

each 1, we initialize with the values: m; = 0, my = 1, m3; = 0, and m,

= 1. Now we start an “endless” loop, which begins by outputting the
contents of m; and m,. The calculation then goes as follows: Since the

current Fibonacci number, now in m, and mj, will soon become the

next-to-last one, it should be moved to m, and m;. An easy way to do

this is first to switch the contents of m, and m, with the contents of

m, and m3, respectively. Since the next Fibonacci number is the sum
of the two previous ones, we will use the method of Problem 1 to add
the two previous numbers (still in my, m;, m,, and m;) and place the
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sum in m, and m3. Then we return to the top of the loop. The flowchart
is shown in Fig. 2-17.

Solution to Problem 4: To add together two large numbers, suppose
the right-most block of eight digits of the first number is stored in m,,
the next block of eight in m,, and so on. The second numberis stored

similarly in registers ny, n,, etc.

To save on registers, we won't use another whole set to store
the sum; it turns out that we can store the sum back in m,, m,, etc.

Calculate the value of my, + n, and split it into two pieces; the right-
most eight digits, which you store back in my, and the ninth digit (the
carry over), which you add to the contents of m,. Repeat with m, + n,,

m, + n,, and so on, until you get to the last pair, m, + n,, which does

not need to be split; just store m, + ny in m,. The sum now appears
in my, my, ..., My.

Memory
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0 Right part of next to last

Left part of next to last

 

 

 

my «0 1

moe |
m3 <0 2 Right part of last
moe |

Xx << mg
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’
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'
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'
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—c-108
mem
+m3 +c

v

Fig. 2-17 Flowchart for calculating successively the first 79 Fibonacci numbers
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If your calculator allows subroutines and indirect addressing,
they can be used to great advantage in this program, but you don’t
need them. We were able to add two 32-digit numbers (four registers
each) on the HP-25’s eight registers and 49 program steps with no
trouble. The flowcharts are shown in Figs. 2-18(a) and (b).

Solution to Problem 5; Let s and t denote the two eight-digit numbers
to be multiplied. We cannot use our X key to multiply them because the

4+ mo+ no

'
c+ INT(#108)

'
most — c-108
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Fig. 2-18 Flowchart for Problems 1, 2, and 3 using larger numbers



152 Mathematical Recreations for the Programmable Calculator

calculator cannot hold all sixteen digits of the product. We begin by
chopping s and t into four-digit chunks each, as follows:

s = 5,(10% + s,

t = t,(10%) + t,

Here, s, represents the four left-most digits of s, and s,, the four right-

most digits of s, and similar values hold for t, and t,.
It is easy to find s,;. Dividing s by 10 places the decimal point

in the middle, with four digits on each side. Hence the INT key, when
applied to the result, produces s,, as follows:

s, = INT(s/10%)

Now, of course, s, = s — s,(10%. Then, t, and t, are found similarly:

t, = INT(t/10%
to =t — t1(10%

To see what to do next, we determine the product, st:

st = [51(10%) + so] [t1(10%) + to] = 5,£;(10%) + (s1te + Set)(10%) + soto

Therefore, what we need are not the four numbers, s,, s,, t;, and t,,

but the four numbers, s,t,, sto, sot;, and set,. These can be easily com-

puted using memory multiplication (in m3, m,, m,, and m,, respec-

tively) while s;, s,, t;, and t, are being calculated. The flowchart is

shown in Fig. 2-19.

The sixteen-digit product st that we want will be calculated in
two eight-digit chunks, z, and z,, as follows:

st = z,(10%) + z,

From our formula,

st = 8,£1(10%) + (s1ty + Set)(10% + sete

= my(10%) + (m,; + m,)(10% + m,

we see that the eight-digit number my;is part of z; and the eight-digit
number m, is part of z,, but the eight- or nine-digit number (m, + m,)
is straddling the fence; the right-most four digits are part of z, and the
left-most four or five digits are part of z,.

The next step in our program calculates ¢, where ¢ = m, +
m,, and breaks it into two chunks, ¢, and ¢,, as follows:

€ = €¢,(10%) + 4

The procedure is as before:

¢, = INT(¥/10%)
€, = € — €¢,(10%)



Numbers 153
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Fig. 2-19 Flowchart for multiplying two eight-digit numbers, with the output in two

eight-digit blocks (Part 1)

   
Returning to our main formula, we have

st = my(10% + 410% + m,

= my(108) + [¢,(10%) + £,] (10%) + m,

= (mg + ¢;) (108) + [€,(10%) + my]

Using memory addition, the numbers (m; + ¢;) and [¢,(10%) + m,] can

be calculatd and stored in m3; and m,, respectively, while ¢, and ¢, are

being calculated. The flowchart, which starts where the flowchart in
Fig. 2-18 left off, is shown in Fig. 2-20.

With these new numbers in m5; and m,, we now have

st = m3(10%) + my, = z,(108) + z,

and thus we are almost done. We would completely be done if m, had
eight digits at most; then, the numbers z, and z, that we are trying to
calculate would be equal to ms and m,, respectively. The only problem
is that m, might be a nine-digit number. Consequently, we have to
separate m, into two chunks, the right-most eight digits being equal
to z, and the ninth digit, c, being carried over into my:

my, = c(108) + Z
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Fig. 2-20 Flowchart for multiplying two eight-digit numbers, with the output in two

eight-digit blocks (Part 2)

    
As before,

¢ = INT(my/108)
Zo = m, — c(108%)

Returning to the main formula, we have

st = my(10%) + my, = (m3 + ¢) (10%) + z,

Again we use memory arithmetic to add c¢ to m3; and to place z, in m,

while we calculate c and z, (see the flowchart in Fig. 2-21).
For the complete program, just string the flowcharts in Figs.

2-19, 2-20, and 2-21 together.
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Fig. 2-21 Flowchart for multiplying two eight-digit numbers, with the output in two
eight-digit blocks (Part 3)
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2.11 Infinite Precision Arithmetic

Difficulty: 3

Suppose that you want to calculate 5419351/1725033 correct
to 14 digits.® Since your calculator probably does not hold 14 digits,
some kind of trickery is called for. In the previous section we discussed
a technique for doubling (approximately) the number of digits your
calculator can handle. You might be able to treat this problem using
double-precision arithmetic (although it wouldn't be easy), but sup-
pose that you wanted the answer to be correct to 100 digits.

As a matter of fact, you were taught in grade school a tech-
nique for calculating fractions that will give you as many digits as
you want. It’s called long division, and we can use it here. Let’s
analyze this method. You will find that it is not too hard to teach to
your calculator, and it can be set up to return digits one at a time for
as long as you are willing to press the button. We will begin by
discussing only proper fractions, those fractions whose denominators
are larger than their numerators. When this problem has been solved,
the rest will be easy.

If you think you understand long division well enough, you
should not read the next paragraph and try instead to produce the
program on your own. It should take as input two positive whole num-
bers p and q such that p < q and should return, one digit at a time,
the decimal expansion of the fraction p/q. Each time the (or what-
ever) button is pushed, the program should return the next digit. After
you have conquered this problem, you may want to tackle the follow-
qing, more difficult problem.

It is well known that fractions formed from whole num-
bers have decimal expansions that either terminate in all zeros
or repeat. For example, 3/28 = .10714285714285714285714285.. ..
The repeating block here is 714285. Once you have the starting digits,
.10, and the block, 714285, you know all of the infinitely many digits

in the decimal expansion of 3/28. The problem is thus to produce a
program that will find the starting digits and the repeating block for
any fraction p/q. Note that some fractions lack one or the other of
these components. For example, 1/3 starts repeating immediately (.333
...) and 1/4 does not repeat at all (unless you want to think of it as
250000 ...). We will only sketch the solution to this more difficult
problem.

Now let's take a look at long division. We will explain the
process by looking at the decimal expansion of the fraction 5/28. Get

® You might wonder why you would want to do such a thing, since the numer-
ator and denominator are only seven digit numbers. But as a matter of fact,
this fraction gives the value of 7 correct to 14 digits.
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out a pencil and paper and do the computation as it is described so
that you will see what is going on. Since this is a proper fraction, the
quotient begins with a decimal point. First adjoin a zero onto 5, mak-
ing it 50. Next divide 28 into 50; it goes once with a remainder of 22.
Thus the first digit of the decimal expansion of 5/28 is 1. To get the
next digit, adjoin a zero to the remainder 22, making it 220. Now
divide 28 into 220; it goes seven times with a remainder of 24, and
thus 7 is the next digit in the decimal expansion. The following digit
will be found by dividing 28 into 240. At each stage, the process goes
like this: Adjoin a zero to the previous remainder (that is, multiply it
by 10) and divide the numerator into it, getting the answer in quotient
and remainder form. The heart of the technique is to determine the
largest whole number of times that the denominator “goes into” the
previous remainder times 10. This quotient will then be the next digit
in the decimal expansion. You must also find the remainder because
it will be used to generate the following digit. You might begin your
solution by solving this central problem: Given two numbers a and b,
find a/b in quotient and remainder form.

Now, how do you recognize when a decimal expansion is start-
ing to repeat itself? It will start happening as soon as a remainder
repeats itself. Continuing with the same example, the first two digits
of 5/28 are .17. The remainder generated by the 7 was 24. Multiply
this by 10 and divide by 28 to get 8 (with a remainder of 16). Continue
the division (better start at the top of your paper), and you will get
the following digits: 57142. The remainder generated by the 2 is 24,
the same remainder as above. What will happen next? The same thing
that happened the first time. A digit of 8 will be produced and the
same remainder, 16. This will in turn generate the same 5 that was
produced above, and so on. Thus the repeating block is 857142, and
the beginning block is .17.

This example shows why decimal expansions of fractions (in-
volving whole numbers) eventually repeat. Because there are only
finitely many possible remainders (each remainder must be smaller
than the divisor), a remainder must eventually repeat itself and force
the decimal expansion to start repeating. Some decimal expansions
terminate instead of repeating indefinitely. This behavior is also de-
termined by the remainders; it happens if a remainder of zero ever
occurs.

You now have enough food for thought. It is time for you to go
to work.

Solution to Infinite Precision Arithmetic

First, let’s consider the problem of quotient and remainder
division. Given two whole numbers m and n, how do you determine
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the largest whole number of times that n “goes into” m and the
remainder that is “left over” after finding the quotient? It’s easy.
First store m and n (for future use in finding the remainder). Next
divide m by n and take the integer part of the result. (Think about it,
and you will see that this is the whole number quotient you are looking
for.) Call this number x. To find the remainder, just multiply n by x
and subtract the result from m. (Think about it again. Do some ex-
amples on your calculator if you are having trouble seeing these re-
lationships.

Now let’s look at the main problem. Given p and q such that
p < q, you want to turn out the digits of p/q. To do so is fairly easy,
once the problem of quotient and remainder division has been solved.
As explained in the statement of the problem, each digit is generated
by taking the remainder from the division that produced the previous
digit (to generate the first digit, the number p is treated as the previous
remainder), multiplying it by 10, and dividing the result by q, and
getting the answer in quotient and remainder form. The whole number
quotient is the desired digit, and the remainder will be used to get the
next digit.

Here are the details: Two memories will be used: m, to store

q, and m, to store the various remainders times 10. Start with q in m,

and p in the display. Multiply by 10, and store the contents of the
display in m,. Divide this number (which is still in the display) by q
(the contents of m,), and take the integer part of the result. This is
the desired digit. Stop to display it (or you may want to just pause).
Next, multiply the contents of the display by q (m,), and subtract the
result from the contents of m,. This is the remainder used to generate
the next digit; with it in the display, loop back to the step in which
you multiply by 10.

The program operates as follows: The user stores q in m,, puts
p in the display, and pushes the button. The program runs until
it hits the stop order. It stops with the first digit of p/q in the display.
The user presses again, and the program generates the remain-
der, loops back to the top, produces the next digit, and stops again.
The user presses again, and so on. (See the flowchart to visualize
the process.)

Now what should the program do to find p/q if p is not smaller
than q? You still want to divide p by q and get the answer in quotient
and remainder form. Suppose that p/q gives a (whole number) quotient
of x and remainder r. Then, p/q = x + (r/q), and r < q. The number
x will contain all digits to the left of the decimal point, and r/q will
contain all digits to the right. You already have a program to generate
the digits of r/q. To get x, all you have to do is start performing a
quotient and remainder division. Since the program we have already

performs a quotient and remainder division, it can be used to generate
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x too. However, you need to skip the first part of the program in which
the numerator of the fraction gets multiplied by 10.

Thus the expanded program will look just like the program
described three paragraphs back except for the following: It will start
with a test to see if p < q; if so, it will move to the top of that program.
If p = q, however, the program will branch and enter the program at
the point at which the contents of the display are stored in m,. What
will happen is that on the first push of the program will stop
with all digits of p/q to the left of the decimal point in the display.
After that, it will generate the digits of r/q one at a time.” [Solution
was realized on a TI-57 in 21 steps.]

Finally, let’s have a look at the problem of finding the begin-
ning block of digits of the fraction p/q and the repeating block. We will
once again restrict our attention to proper fractions, leaving it to you
to modify the program to handle improper fractions. Recall that for
the fraction 5/28 the starting block of digits was 17 and the repeating
block was 857142. The décimal expansion of 5/28, therefore, is
.17857142857142857142. . . . Recall further that the remainders pro-
duced by the divisions that generate the digits are what determine
when and where a block starts to repeat. As soon as a remainder
repeats itself, we know that all digits back to the one produced by the
first occurrence of the repeated remainder form the repeating block.
In the case of the fraction 5/28, the first remainder is the numerator

of the fraction, 5 (perhaps we should call it the zeroth remainder),
which produces the first digit, 1, and in turn the second remainder,
22. The successive remainders (starting from 5) are 5, 22, 24, 16, 20,

4, 12, 8, 24, .... The first two remainders, 5 and 22, generate the

starting block, .17, and the next six form a repeating block of remain-
ders that will generate the repeating block of digits. We can diagram
the succession of remainders and the corresponding succession of digits
as shown in Fig. 2-22.

These diagrams should look familiar to those of you who read
Sec. 1.16. They are p diagrams, and the algorithm described in that
section can be used to find the tail and the cycle in the left-hand
diagram, which in turn will produce the right-hand diagram. That
diagram gives a complete description of the decimal expansion of 5/
28. If you discovered this solution to the problem, give yourself an A!

There is, however, a much more efficient solution that depends

on the specialized number theoretic structure of the long division al-
gorithm. One can determine at the outset which remainder will be the
first to repeat itself. In the example above, it is the third: 24. Knowing
this, it is not difficult to find the starting and repeating blocks. The

7 See the Notes for an alternative modification.
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Fig. 2-22 Flowchart for the decimal expansion of 5/28: (a) successive remainders and

(b) successive digits

starting block will consist of the two digits, 17, produced by the first
two remainders, 5 and 22. To find the repeating block, store the re-
mainder 24, which you know will eventually repeat. Then simply start
turning out digits and remainders. Each time a remainder is produced,
check to see if it is equal to the stored remainder. If so, you have

completed the repeating block.
Now, how do you find this mysterious repeating remainder?

Let p and q be the numerator and denominator of the fraction. First
cancel any 2’s or 5’s common to both the numerator and denominator.
For example, suppose that you start with the fraction 25/140. Since
there is a factor of 5 in both numerator and denominator, you cancel
it out, leaving the fraction 5/28. (This fraction happens to be in lowest
terms already; that is, there are no common factors in the numerator

and denominator. But it is not always necessary to get the fraction in
lowest’ terms; you need only get rid on the common 2’s and 5’s. Be-
cause of the structure of the decimal number system, it is easy to
recognize when these particular common factors are occurring.) Next,
look at the denominator and count (1) how many times it is divisible
by 2, and (2) how many times it is divisible by 5. Let n be the larger
of these two numbers. In the case of our example, since 28 is divisible
twice by 2 and indivisible by 5, n would be 2. It turns out that there
will be n digits in the starting block of the decimal expansion of p/q,
and, consequently, that the (n + 1)remainder will be the first re-
peating remainder.

We are not in a position to explain to you why this relationship
is true. It has to do with the fact that 10, the base of the decimal

number system, is equal to 2 times 5. However, if you are willing to
accept this relationship, we can now describe a fairly simple elabora-
tion of the fundamental program for cranking out the digits that will
determine the starting and repeating blocks.

The new program will contain the basic program for generat-
ing the digits one at a time as a subroutine (see the flowcharts in Fig.
2-23). Instead of recycling as indicated in this figure, however, the
subroutine will create just one digit each timeit is called and quit at
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Fig. 2-23 Flowchart for generating the digits of p/q (a) with p < gq and (b) for any p and

q that are whole numbers

the bottom, with the remainder in the display. (If your calculator does
not have subroutines built in, see Sec. 1.7). The program will have two
sections, A and B. Section A will generate the starting block of digits,
ending with some appropriate signal—perhaps a negative number (we
chose —0). Section B will generate the repeating block.

Here’s how the program will work. The user will figure out
the number n described in the last paragraph and store it in some
memory (if you have a larger calculator, the computation of n could
be automated and incorporated into the program). The program will
begin with a test to see if n = 0. If it is, there is no starting block, and
the program branches to section B. If not, go to section A, a loop for

generating the starting block. Each time through the loop the digit-
generating subroutine will be called once, and the contents of the
memory that started with n in it will be reduced by 1. Next, run a
check to see if it is down to zero. If not, go back to the top of the loop.
If so, give the end-of-block signal and branch to section B. Be sure to
retain the remainder from the last division. It will probably have to
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be stored somewhere during the transition from A to B, and perhaps
also at other times. Take the remainder and store it in a special place
for future reference (for example, the t-register if you have a TI cal-

culator).
Now enter section B’s loop. Each time through this loop the

digit-generating subroutine will be calld once, and the resulting re-
mainder will be checked against the stored remainder. If the two are
not equal, go back to the top of the loop. If they are equal, give the
end-of-block signal. That’s it! We will leave it to you to figure out the
details (see the flowchart in Fig. 2-24). You may want to change the
R/S in the digit subroutine to a PAUSE to speed things up. [Solution
was realized on a TI-57 in 40 steps.]

Notes: An alternate program for generating the digits of p/q where
p may or may not be greater than q can be obtained by taking the first
flowchart (which assumes that p < q) and simply moving the step, x
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Fig. 2-24 Elaboration of the program flowcharted in Fig. 2-23
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« 10x, to the bottom. This program will always turn out the digits to
the left of the decimal point at the first R/S (we have done away with
the test, x < m,). If no such digits exist, the program will output a 0.

The processes of canceling and counting factors of 2 and 5 used
in producing the number n can be facilitated by first canceling or
counting the factors of 10. These are represented by zeros at the end
of the numbers and therefore are easily canceled. Each factor of 10
contains one factor of 2 and one factor of 5. After the 10’s have been
factored out, there will be only 2’s or only 5s (or neither) left. (If
there were both, there would be a factor of 10.)

How large can the numbers p and q get before the accuracy of
these programs breaks down? Since the programs are written for in-
finite precision, it wouldn’t make much sense to run them on numbers
that cannot be precisely specified (that is, which have more digits than
your calculator will accept). In practice, this means that if, for exam-
ple, your calculator will take 10 digits, you don’t want to use the
procedures for numbers larger than 10! (the first number with 11
digits). Actually, since roundoff errors can corrupt the last digit, you
should stick with numbers smaller than 2 xX 10° to be completely safe.

All fractions dealt with in this problem have been assumed to
have whole-number numerators and denominators. This is not as
stringent an assumption as it might sound. If p and q are any numbers
whatever with finitely many digits (this description certainly includes
any numbers a calculator or computer can hold), then the fraction
p/q can be rewritten as a fraction with a whole-number numerator and
denominator. (The result, however, may be a numerator or denomi-

nator too large for these programs.) The transformation does not
change the value of the fraction, and it converts both numerator and
denominator into whole numbers.

The Pythagoreans (circa 500 B.c.) believed that any number
should be expressible as a quotient of whole numbers. Fate dealt the
Pythagoreans a cruel blow in the form of the number,2. Euclid’s
Elements contains an elegant proof that 2 cannot be equal to p/q for
any whole numbers p and q. The proof goes as follows: We may assume
that the fraction p/q has been reduced to lowest terms. Thus either p
or q must be odd (if both were even, the fraction would not be in lowest
terms). On the other hand, if p/q = 2, then p%q? = 2, or p?> = 2q% We
leave it to you to show that this relationship holds true only if both p
and q are even. Thus either p or q must be both even and odd—a fairly
decisive contradiction.

The existence of numbers not expressible as ratios of whole
numbers,irrationals as they are called, can also be demonstrated from
remarks made earlier. As we noted in the statement of the problem,
if p and q are whole numbers, then the decimal expansion of p/q must
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eventually repeat (or terminate). Thus, if x is a number with a non-
repeating decimal expansion, it cannot be a quotient of whole num-
bers. An example is when x = .101001000100001. . ..

2.12 Complex Arithmetic

Difficulty: 1

Complex numbers are numbers z of the form x + yi where x
and y are real numbers, and i represents the square root of —1. Two
sample complex numbers are 4 + 5i and {3 — i. x is called the real
part of z, and yi (or sometimes just y) is called the imaginary part. The
latter name is unfortunate because it suggests that there is something
ficticious about the numberi. In fact, complex numbers are very useful
in modeling real word pheonomena, and the mathematical subject of
complex variables, which means calculus involving complex numbers
instead of real numbers, is one of the most fundamental branches of
higher mathematics.

The object of this exercise is to get your calculator to perform
ordinary arithmetic—addition, subtraction, multiplication, division,

root extraction, and powers—on complex numbers. The applications
manual for your calculator probably has programs for these opera-
tions, but you will learn something about complex arithmetic and
about your calculator’s button for converting between rectangular and
polar coordinates if you work through this problem.

First we need to look at two schemes for representing complex
numbers. You have already seen one, x + yi, the standard or “rectan-
gular” form (the reason for this name will become clear shortly). To
store x + yi on the calculator, two memories are needed, one for x and
the other for y.2

Before looking at the other representation scheme, let’s do a
little complex arithmetic in rectangular form. Let z; and z, be two

complex numbers, where z; = x; + y;i and z, = xX, + y.i. To find z, +

Z, Z; — 29, and z,7,, just pretend that you know what you're doing and
carry out the computation. For example, z; + z, = xX; + y;i + Xp + yoi
=X; + Xo + yii + yol = (X; + Xp) + (y1 + y2)i. The real part of z;, + 2z,,

then, is simply the sum of the real parts of z; and z,, and likewise with

the imaginary part. (If you are unfamiliar with complex numbers, it
would probably be helpful for you to work out a concrete example so
that you can see what is going on here.) A similar computation will

8 Which memories you use for this purpose is a matter of convenience. For some
manipulations, it may be convenient to use the stack (if you have an RPN
calculator) or the x and t registers (if you have an algebraic calculator). These
refinements we leave to you. For the present, we will assume the use of or-
dinary addressable memories to store all numbers.
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show that z;, — z, = (x; — x3) + (y; — y2)i. These two rules can be

summarized as follows: To add or subtract two complex numbers, add

or subtract the real or imaginary parts separately. Note that the goal
in both computations is to find the real and imaginary parts of the
answer. Once these are known, the answer is determined. These rules

are so simple that it is not worth the trouble to write programs for
them; you can carry out the computations “by hand” on the calcu-
lator.

Multiplication is a little more complicated:

212 = (X; + yi) (Xg + yal) = XXo + X1¥ol + Xoyil + Yai?

= (X1X2 — Y1¥2) + (X12 + Xo¥1)1

(Remember that i? = —1!). Here a program begins to be desirable. The
other operations, which are even more complicated, can be facilitated

by the introduction of a second notation scheme.
Just as real numbers are thought of as points on a line, com-

plex numbers, which require two real numbers for their description,

are thought of as points in a plane. The complex number x + yi is
identified with the point (x,y), x and y being called the rectangular
coordinates of the point (x,y). Now, the same point can be described
via two other numbers: p, the distance from the point to the origin,
and 0, the angle that the line from the point to the origin makes with
the positive x-axis (see Fig. 2-25). These numbers, p and 6, are called

I
|

 
Fig. 2-25 Rectangular and polar coordinates for the complex number x + yi

the polar coordinates of the point. Not surprisingly, p and 6 can also
be used to describe the complex number x + yi. To see exactly how
this is done, we need to look at the conversion formulas between rec-

tangular and polar coordinates.
By examining Fig. 2-25 and recalling a little trigonometry,

you will see that x = pcos6, and y = psinf. Thus, the complex number
z = X + yi can be rewritten in terms of p and 6 as pcosf + ipsiné, or
p(cos® + isind). This is called the polar form of the complex number
z, p being called the absolute value of z and 6 the argument.
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To see the significance of polar form for complex arithmetic,
one more formula is needed. It is DeMoivre’s formula®:

el? = cosh + isinf

In the expression on the left-hand side of the equation, e represents
the base of the natural logarithms. From DeMoivre’s formula, you
can see that the complex number, z = p(cosf + isin6), can be rewritten
as follows: z = pe!’ (this form is also referred to as polar form). Now
comes the good part. Suppose that you have two complex numbers in
the above form, z = p,e'® and z, = p,e'®, and you want to multiply

them together. It’s easy to do so: z,z, = p,ei® p,ei® = p,peti =
p1p2e%1%To multiply two complex numbers in polar form, then, all
you have do is multiply absolute values and add arguments. Division
works similarly. To divide two complex numbers in polar form, divide
absolute values and subtract arguments.

Now this is all great if the numbers you are dealing with are
in polar form, but suppose that they are not. Here is where your cal-
culator’s button (or on TI calculators) comes in.
This button takes the two numbers x and y and returns the two num-
bers p and 6. Another key, [P—R], goes the other way: Given p and 6,
it returns x and y. These operations have several important uses. The
one we are presently interested in is that they allow you to convert
back and forth between rectangular and polar form. Thus, you can
perform the arithmetic in whichever form is more convenient, con-
verting to the other form if necessary (for example, if the problem is
stated in the other form).

One example will show what we mean; then it will be up to
you to see the general strategy and produce the necessary programs.
Suppose that you want to multiply the numbers, z, = 2 + 3i and z, =
5 — 2i, taking advantage of the simpler technique for multiplication
in polar form. Convert the rectangular coordinates (2,3) and (5,—2)

into polar coordinates (get out your calculator), with the following

results: p, = 3.605551275, 6, = 56.30993247°, p, = 5.385164807, and
6, = —21.80140949°. Thus, the absolute value of 2 + 3i is 3.605551275

and the argument is 56.30993247°; similarly for 5 — 2i (you do not
have to write any of these numbers down, of course; use your calcu-
lator’s memories). To get the absolute value p and argument 6 of the
product z,z,, proceed as indicated two paragraphs back—multiply ab-
solute values and add arguments: p = p;p, = 19.41648784 and 6 = 6,
+ 6, = 34.50852299. You now know the product in polar form (that

The formulas for complex arithmetic that we are about to derive using
DeMoivre’s formula could be obtained without it by using some elementary
trigonometric identities. If you don’t know DeMoivre’s formula, however, you
should learn it anyway (you will thank us later).
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is, you know p and 6). All that remains is to convert p and 6 back to
x and y (use your calculator again). You will find that x = 11 and y
= 16. Thus z,z, = x + yi = 11 + 16i. You can verify by hand that this

answer 1s correct.
It is possible to do multiplication and division without conver-

sion to polar form, of course [to find (x; + y;i)/(Xs + yi), multiply

numerator and denominator by (x, — y.i)], but fewer program steps
are involved if you do convert. Polar conversion is even more useful
when raising numbers to powers and extracting roots: z" = (pe')" =
pei)" = prein®, To raise z to the n'" power, raise the absolute value to
the n'" power and multiply the argument by n. We leave it to you to
figure out how to take n'* roots (which is the same as raising to the 1/
n'" power). Now it is time for you to get into the act with all of this
new-found knowledge and write programs for the operations of com-
plex multiplication, division, powers, and roots.

Solutions to Problems

The scheme for solving all these problems is basically the
same:

1. Convert the rectangular coordinates for the point or points
representing the complex numbers into polar coordinates.

2. Perform the indicated operations on the polar coordinates to
get the polar coordinates for the point representing the answer.

3. Convert the polar coordinates back to rectangular coordinates.

We will examine the program for multiplication in detail (see
Fig. 2-25). For the other programs we will give only the flowcharts
‘(see Figs. 2-26, 2-27, and 2-28).

Let the two numbers that you want to multiply together be
the following: z; = x; + iy, and z, = x, + iy,. We begin by assuming
that x,, y;, X;, and y, have been stored in memories m;, m,, m;, and

my, respectively. How you get them there is up to you (see Sec. 1.5).
By now you should know how to convert from rectangular to polar
coordinates on your calculator. Be sure that you know where x and y
go in and where p and 6 come out. The program should start by loading
x; and y, and then converting to polar coordinates p, and 6,. Store

these numbers back in m, and m,; (you won’t need x, and y, again).
Next, load x, and y, and convert to polor coordinates p, and 6,. Now

you want to multiply p, and p, and add 6, and 6,. This is probably
most easily accomplished with register arithmetic (HP: STO x 0 or
STO + 1; TI: SUM 0 or Prd 1). In any case, you now have p,p,, the
absolute value of z,2z,, and the argument, 6, + 0,. Load these two num-
bers and convert from polar back to rectangular form, thus obtaining
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Fig. 2-26 Flowchart for the multiplication of complex numbers
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the real and imaginary parts of z,z,. [Solution was realized on a TI-58

in 33 steps.]

Notes: The technique used in these programs of translating the prob-
lem to be solved into another language (polar form) from the one in
which it was posed (rectangular form), solving the problem in the new
language, and then translating back to the original language is one
of the big ideas in mathematics.

DeMoivre’s formula can be used to verify one of those equa-
tions that still make grown mathematicians think there is something
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magical about mathematics. This equation involves each of the five
most fundamental numbers in mathematics exactly once:

em+1=0

(As always in calculus, 7 is thought of in radians).

2.13 Egyptian Fractions and the Greedy Algorithm
Difficulty: 4

This problem has to do with rational numbers and the means
of representing them. For instance, 3/4 can be thought of in two ways:
as a number (the number .75 on your calculator) or as a string of
symbols (3, /, 4) that represent that number. Since we need to distin-
quish between the number and its representation in what follows, we
will use the word fraction to mean the representation: a pair of integers
(whole numbers) separated by a diagonal bar and with the right-hand
integer nonzero. Thus, 2/3, —2/—3, 34/51, and 22/7 are fractions

(whereas 3/0, 3.1/1, and 2/18 are not. The value of a fraction will
mean the number obtained by dividing the right-hand integer (the
denominator) into the left-hand (the numerator).

A number is said to be rational if it is the value of a fraction.
Thus, 2/3, —2/—3, and 34/51 are different fractions, but they all have

the same value, that is, that all represent the same rational number,

2/3. Though 3.1/1 and 2/18 are not fractions, they represent rational
numbers since 3.1/1 = 31/10 and 2//18 = 2/2 /9 = 14/9 = 1/3. Any
integer is a rational number; for example, 10 = 10/1, —5 = —5/1, and

0 = 0/1. (But many numbers are not rational. For example, it is im-
possible to find integers a and b such that a/b = 2. Consequently,
J2 is not rational (see the Note in Sec. 2.11). Other examples of irra-
tional numbers are 3, 17, 7, and e.

The ancient Egyptians used only rational numbers in their
arithmetic and they represented these numbers in a very unusual way,
namely, as sums of unit fractions, that is, fractions of the form 1/n.
Moreover, they never used the same unit fraction more than once in
a sum. They might have written 2/5, for example, as (1/5) + (1/10) +
(1/15) + (1/30). There are many ways of expressing a positive rational
number as a sum of different unit fractions; for an illustration, verify
that 2/5 may also be written as (1/5) + (1/10) + (1/15) + (1/60) + (1/
90) + (1/180) and as (1/3) + (1/15).

It is a fact, though not at all an obvious one, that any positive
rational number can be written as a sum of finitely many different

¥ Note that the equation is the identity that results when § = 7 in DeMoivre’s
formula. It is credited to Euler.
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unit fractions. We shall describe a method due to Leonardo of Pisa, a

mathematician of the early thirteenth century (better known as Fi-
bonacci—the same Fibonacci who formulated the Fibonacci sequence
described in Sec. 2.4). We can illustrate his method with the rational

55/34. What we need is to find a finite sequence ny, n,, . . ., of positive

integers such that 55/34 = (1/n,) + (1/ny) + .... Since the numbers

n,, N,, .- . are all supposed to be different, we might as well put them

in increasing order: n; <n, <....

Fibonacci’s technique is to find the numbers n;, n,, . . . one by

one. What must be true about n,? Well, certainly, 1 < n,. Moreover,

1/n, cannot be bigger than 55/34, that is, 1/n, < 55/34, or 34/55 < n;.

Now comes the main idea. Why not be greedy and choose n; so that 1/
n, is as big as possible? That will leave the smallest possible rational,
(565/34) — (1/n,), left over to be expressed as (1/n,) + (1/n3) + .... For

1/n, to be as big as possible, n; must be as small as possible. Therefore,
we choose n; to be the smallest integer satisfying the relationships, 1
< n, and 34/55 < n,. Surely, the smallest possible n, is 1. This gives
us the following: 55/34 = (1/1) + (1I/ny) + ..., or (65/34) — 1 = 21/34

= (1/ny) + (I/my) + ....
Now we work on n,. Surely n, > n,, or 2 < n,. Moreover, 1/n,

< 21/34, or 34/21 < n,. Again, we'll be as greedy as we can. We choose
n, to be the smallest integer satisfying the relationships, 2 < n, and
34/21 < n,. Clearly, n, should equal 2. Thus, 21/34 = (1/2) + (1/n3) +

...,or 2/17 = 4/34 = (21/34) — (1/2) = (I/ny) + (I/ny) + .... What
about n3? Well, since we want n, < nj, 3 < ns. Furthermore, 1/n; < 2/

17, or 17/2 < ng. The smallest possible such n; is 9. Thus, 2/17 = (1/9)

+ (I/my + ...,0r 1/153 = (2/17) — (1/9) = (1/ny) + (/n5) + .... For
ny, we want the smallest integer satisfying the relationships, n, > n;
(or 10 < ny and 1/n, < 1/153 (or 153 < n,). We choose n, to be 153,

and this gives us the following: 1/153 = (1/153) + (Im) + ...,or 0 =
(1/153) — (1/153) = (1/n5) + .... And we are therefore done; there is

no ns, ng, . . . . Thus, 55/34 = (1/1) + (1/2) + (1/9) + (1/153), as you can

check.

Problem: Write a program that accepts as input a pair (p,q) of pos-

itive integers and uses Fibonacci’s technique to output a sequence n,,

n,, . . . of positive integers such that p/q = (I/m) + (1/ny) + ....

Does Fibonacci’s technique always work? There is only one
way it could fail—if it never stopped. Conceivably, for some rational
p/q the algorithm will continue to crank out ever larger numbers n;,
ns, ns, . . . and never stop. (In this case, we would still have the desired

expression of p/q in some sense, but the problem requires writing p/q
as a sum of finitely many unit fractions.) In fact, this situation will
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never occur, for the algorithm will always stop after finitely many
terms are computed. (The proof is not difficult; however, it will lead
us astray to give it here. The trick is to show that the numerators of
the “leftovers”—55/34, 21/34, 2/17, and 1/153 in the example—always
decrease.)

Many mathematical problems can be solved by an algorithm,
a well-defined, step-by-step procedure that eventually produces the
answer. An algorithm often involves a decision at each stage of the
solution. For example, at the i" stage of Fibonacci’s algorithm, we
had to decide which number to choose as n;. In many problems, one
might have to evaluate each decision in terms of how it will affect

several later decisions, or even the whole algorithm. As in chess or
checkers, you often have to think ahead several moves before deciding
what move to make.

In some problems, however, it pays to be greedy. When a de-
cision is called for, don’t worry about thinking ahead; live for the
moment and grab as much as you can. Such algorithms are called
“greedy algorithms.” Fibonacci’s technique is an example of one.
When we choose n; at the ith stage to be as small as possible, we made

1/n; as big as possible and hence gobbled up as much of the number
p/q as we could.

It is surprising when greed pays because in most problemsit
won’t. Consider the following typical problem: A truck that can take
a load of 100 pounds at most pulls up to a roadside pumpkin stand
where several pumpkins of differing weights are for sale. The driver
wishes to buy as many pounds of pumpkin as he can get in his truck.
Using the greedy algorithm, he begins by buying the heaviest pump-
kin under the 100-pound limit. He continues to buy pumpkins one at
a time, each time buying the heaviest pumpkin whose weight, together
with the weight of the pumpkins already bought, does not exceed 100
pounds. He stops when this process is no longer possible.

Does greed pay here? It does not. Suppose that only one 50-
pound pumpkin and several 20-pound pumpkins are available. The
greedy algorithm chooses the 50-pound pumpkin first because it is the
heaviest. Since only 20-pound pumpkins are left now, two more can
be chosen at the second and third stages. Since the truck load now
totals 90 pounds (50 + 20 + 20), no more pumpkins can be bought.

If the driver had not been so greedy at first and thought ahead,
he would have ignored the 50-pound pumpkin and bought five 20-
pound pumpkins instead, giving him the maximum load of 100 pounds.

Solution: One way of storing a rational number in your calculator
is to store its value in a single memory (2/3 would be stored as
.6666666. . .). It is usually more accurate, however, to store numerator
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and denominator in two separate registers. Initially, we use registers
ro and r; for numerator p and denominator q, respectively, of the given
fraction, p/q. But as the program continues, r, and r, are used to store
the successive “leftovers” described above:

p_p_1
qQ q nn

p._p_1 _p 11
© q@ np n, nn

At each stage, the number n; + 1 is used to pick the next nj;

we store each successive n; + 1 in r,, beginning with r, = 1. The
flowchart is shown in Fig. 2-30.

At the ih stage, the rational py/q; is stored in r, and r,, and

n; + 1 is stored in r,. We must pick n;;; to be the smallest integer

satisfying the two equations,

rr qi
— = = SDiny
ro Pi

rs =n; +1=<n;,

The smallest integer x satisfying the equation,

Pi—<x
qi

SA
(The function [ 1, “round up,” was described in Sec. 1.12. Therefore,

the smallest n;,, satisfying both constraints is

ry
nj; = max rn y To

0

which accountsfor the first three steps following the negative response
to the test, ry = 0?, in Fig. 2-29 [Max (a,b) stands for the larger of the

two numbers, a and b].!' The next three steps update registers r,, ri,

and r, for the next stage. We want

18

'! See Sec. 1.2(6) for a fast method for getting max(a,b) on some calculators.
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Fig. 2-30 Flowchart for the Fibonacci technique with the output:

p/a=(1/n)) + (1/n,) +...

Yo Pir _ Pi1 Diy Pi — di

rh Qiv1 di Dn qi Nj+1

or

To = Pi+1 = Ni+1Pi — qi

and

ry = Qi+1 = Nj+1qi

Finally,
rs = Nj + 1

The program now returns to the top of the loop, where the test, r, =
0? determines if we are finished or not. The program outputs a 0 to
signal that it is done. [Solution was realized on an HP-25 in 30 steps.]

Note: No one knows why the Egyptians wanted to write all rational
numbers as sums of unit fractions.
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2.14 Backtrack Algorithms
Difficulty: 4 Calculator size: Medium

As we saw in Sec. 1.16, a clever trick or two can go a long way
in simplifying the search for a solution to a problem. Many problems,
however, are so hard that you might not be able to find any clever
tricks. (Some problems are so hard, in fact, that mathematicians have
proved that not even clever tricks can solve them!) For seemingly
intractable problems, you are left with only one alternative: You must
program your calculator to check every single possibility, carefully
and tediously, until it finds a solution, or even all solutions, should

you need them.

In this section, we will describe a procedure for programming
such a search, one that is suitable for many kinds of problems. The
particular problem we will examine is taken from the game of chess.

A queen is a chess piece that can move any number of squares
horizontally, vertically, or diagonally. Our problem is this: How many
ways may four queens be placed on a four-square by four-square (4 x4)
chess board so that no two of them are in a position to attack one
another directly (that is, in one move). It so happens that there are
1820 ways of placing four queens on a 4 X 4 board. In most of them,
of course, there will be queens in a direct-attack position. One obvious
way to solve the problem is to have your calculator generate the 1820
ways one after the other, checking each to see if any two queens are
in this position.

There is a better method, however. In the placement shown in

Fig. 2-31, since the two queens already on the board are in a direct-
attack position, they cannot be part of any solution. But of the 1820
ways of placing four queens on the board, 91 will place two of them in
just such a way. Thus we know that it would be a waste of time for
the calculator to check any of these 91 cases.

The idea, then,is to place the four queens on the board not all
at once, but one at a time. If the first two queens placed are in a direct-
attack position, we don’t bother to place the other two but move one
of the two queens already on the board. Similarly, if two of the three

 

 

 

       
Fig. 2-31 One of the 91 placements of queens incapable of a solution
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queens now on the board are in such a position, we don’t place the

fourth but again shift a queen already on the board. Moreover, both
the trial placing of a new queen and the moving of a previously placed
queen must be done in a systematic manner, for two reasons. First,
we don’t want the program to miss any possible solutions. Second, we
don’t want the program to waste time checking the same position
twice.

Here is our system. Since none of the four rows on the board
can contain two queens, each row must contain exactly one queen. We

will thus begin by placing the first queen in the first row, the second
queen in the second row, and so forth. Each time a queen is placed,it
will be at the extreme left of her row. Each time she is moved, it will

be one square to the right. If she falls off the right end of her row, we
will “backtrack,” that is, we will retreat one row up and shift the

now bottommost queen.
Let us now formulate this procedure precisely. We strongly

recommend that you draw a 4 X 4 board on a piece of paper, obtain
four counters representing queens, and carefully comply with the di-

rections of the following algorithm (note that for the placement of the
first queen, the algorithm proceeds directly from Step 0 to Step 2):

Step 0: Start with an empty board.
Step 1: If there are four queens on the board, go to Step 6. Other-

wise, go to Step 2.

Step 2: Place a queen in the leftmost square of the topmost empty
TOW.

Step 3: If the queen in the bottommost occupied row does not oc-
cupy a direct-attack position against any other queen, go

to Step 1. Otherwise, go to Step 4.
Step 4: If the queen in the bottommost occupied row is not in the

rightmost square of that row, move her one square to the
right, and go to Step 3. Otherwise, go to Step 5.

Step 5: Remove the queen in the bottommost occupied row. If there
are now no queens on the board, stop; all solutions have
been recorded. Otherwise, go to Step 4.

Step 6: Record the position of the queens; it is a solution. Go to
Step 4.

Following these directions, you should record exactly two so-
lutions, as shown in Fig. 2-32. It wouldn’t hurt to run through the
above procedure several times so that you will understand it better.
You can’t hope to teach your calculator what to do until you know
how to do it yourself!

There is nothing special about the number 4 in the use of four
queens on a 4 xX 4 board. We can use the same procedure to find all
ways of placing n queens (where n is any positive integer) on an n X
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Fig. 2-32 Two solutions

n board so that no two are able to attack one another directly. Just
start with n counters and an empty n X n board, and replace the 4 in
Step 1 by n. (But don’t try it with an n bigger than 8 unless you have
lots of spare time!)

Since you will probably tire fast of moving counters around
the board, it only makes sense to teach your calculator how to do it.

Problem: Write a program that accepts as input a positive integer
n such that n < 10 and that outputs all ways of placing n queens on
an n X n board so that no two queens are able to attack one another

directly, using the procedure described above.
This one is a bit of a toughie. Although the obstacles are not

hard to overcome, there are a great many of them. Consequently, we
will give the solution in a series of hints that are planned to overcome
one obstacle at a time. If you think you know how to start off, don’t
read any further; try to find a solution on your own. If you get stuck,
read just one more hint and try again.

Solution: Hint 1: Your calculator deals with numbers, but

this problem is about queens on chessboards. To make your calculator
capable of dealing with chessboards, you must find some way of having
it store the positions of the queens.

To simplify the discussion, we shall consider only the special
case for which n = 4. At any stage of the procedure, there are either
no queens on the board or as many as four. Moreover, they can’t be
positioned just anywhere. For one thing, no two of them can ever be
in the same row. Furthermore, since the rows are filled from top to
bottom, it can never be the case that an empty row will be above an
occupied row. (If you don’t understand these observations, go back
and run the procedure by hand a few more times.)

We can store the position of the queens as a number in a single
register, m,, as follows: The leftmost digit of m, indicates which col-
umn the queen in the top row occupies; the next digit to the right
indicates which column the queen in the second row down occupies;
and so forth. For example, when m, = 24, it means that there is a
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Fig. 2-33 Placement of queens when m, = 24

queen in the second column of the top row and a queen in the fourth
column of the second row (see Fig. 2-33). The two solutions in Fig. 2-
32 would therefore be represented by the numbers 2413 and 3142.
Likewise, a single queen in the upper right corner would be repre-
sented by the single digit 4, whereas an m, of 0 would denote an empty
board.

Hint 2: The program has to adjust positions on the board in
several different ways. It must add new queens, move queens, and
remove queens as required. To this end, we will use register m, to
store the positions of the queens currently on the board. We call these
queens the old queens. Since it will never be the case that a pair of old
queens attack one another, we must make sure that any queens placed
in m, do not attack the ones who are already there. We will also need
register m, to store the number of old queens.

Register m; will consist of a single digit representing the po-
sition of a new queen. Since we know which row she will have to go
in—the topmost unoccupied row—the digit in m,; represents the col-
umn into which we are attempting to place her.

Here is how to perform four of the steps in the algorithm of

the previous problem:

Step 2: To place a new queen in the leftmost square of the

topmost empty row, use

m,; «<1

(Don’t put her in with the old queens in m,; she hasn’t been

tested yet.)

Step 3: If the new queen passes the test here, she must be

placed in m, with the old queens. The operation

ms, <— 10m, + m,

moves the digits in m, one place to the left so as to make

room for the new queen and then takes her on. The step

my < mg + 1
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is used to tell the calculator that there is now one more old
queen on the board.

Step 4: To move the new queen one step to the right, use

m, <m; +1

Step 5: This is the “backtrack” step in which the new queen
having left the board, the bottommost old queen must be re-
moved from m, and rejuvenated into a new queen, her column

number then being recorded in m,. The steps are as follows:

m, <—m,/10

x «— FRAC(m,)

mMme<—IMy — X

m; «< 10x

We must also tell the calculator that there is now oneold

queen fewer by using

my << mg, — 1

We have given you all the steps you need to know except for
the hardest one: How do we test to find out whether the new queen
will attack any of the old ones? If you can’t work out a solution of
your own, read the next hint.

Hint 3: Let us suppose that m, contains the k digit number
represented by aa,. ..a,a;, which signifies that there are k old
queens on the board, occupying the first k rows. The old queen in the
top row is in column ay; the old queen in the second row down is in

column a,_,; and so on, to the old queen in row k and column a,. If the

new queen is in column j (that is, m; = j), we must test to see whether

she will attack any of the k old queens.
A diagram of the squares the new queen would attack is shown

in Fig. 2-34. Notice that she will attack the bottommost old queen if

COLUMN NUMBERS—= 1,2 «e+ j—I,j,j+I =n
 

k OCCUPIED
ROWS

 

   
\

NEW QUEEN

Fig. 2-34 Diagram of the squares the new queen would attack
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and only if a, = j — 1, j, or j + 1. She would attack the next-to-last
queen in column a, if and only if a, = j — 2, j, or j + 2. In general, for
each i in the range 1 < i < k, the new queen would attack the old
queen in column a; if and only if a; =j — i,j, orj + i.

So here is our strategy. We will place the contents of m, into
a “chopping block”—register mz. From mj3, the digits a;, a,, ..., ax
are chopped off, and we then test to see if a; = j — i,j, orj + i. If it is,

then the new queen will attack the old queen in column a;, and we
must terminate this routine and go to Step 4, as instructed by Step 3
of the original algorithm. Otherwise, we continue testing by chopping
off the next digit from m;. When we have chopped off all digits (that
is, when m3 = 0) without finding an old queen that has been attacked
by a new queen, we must return to Step 1, as instructed by Step 3 of
the original algorithm. Naturally, we must use a loop to accomplish
all this, as shown in the flowchart of Fig. 2-35. Note that we need
another memory, my, to store i.
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Fig. 2-35 Loop for testing the attack of the new queen
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Fig. 2-36 Final flowchart for the four queens chess program

Hint 4: Now let’s put all the pieces of the puzzle together. The
final flowchart for the program is shown in Fig. 2-36. The flowchart
of Fig. 2-37 compartmentalizes Fig. 2-36 to show which parts corre-
spond to Steps 0 through 6 of the original algorithm.

2.15 Sorting
Difficulty: 3

To “sort” a collection of objects means to rearrange them into
some prespecified order. It is a procedure frequently called for in com-
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Fig. 2-37 Those parts of Fig. 2-36 that correspond to Steps 0 through

6 of the original algorithm

puting, especially when a computer is being used to store large lists
of data that come to it in an unsorted fashion. Consider, for example,

a business that uses a computer to keep a list of its customers. The
customers’ names are fed to the computer more or less randomly, but
if they are to be readily retrieved, it would be a good idea to have them
in alphabetical order, and the computer needs to be able to produce

this rearrangement. Or consider a professor who keeps her students’
test scores on a computer. For making up the grade curve, she wants

to see the scores listed from lowest to highest. The scores, then, need

to be sorted.



182 Mathematical Recreations for the Programmable Calculator

Since sorting is usually required only when large amounts of
data are involved, it is not a process absolutely essential to a calcu-

lator. Nevertheless, it makes an interesting exercise.

Problem: Assume that your calculator has eight memories (if it
doesn’t, pretend for the moment that it does). Write a program that
rearranges the contents of all but one of the memories in descending
order. We leave you one remaining memory to use as you need in the
program (if you own a TI-57, you will have to keep m; free; it is the
test register, and clearly this problem is going to require comparisons).
If m; is kept free, the program should work in the following manner.
No matter what numbers are stored in m, through mg originally, the
largest number after the program has been run will be in m,, the next
largest in m;, and so on, with the smallest in mg. Thus, if the memories

looked like this before running the program:
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they should look like this after running the program:
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If your calculator has many memories, try this problem first

and then see how far you can expand your program. If your calculator
has indirect addressing, you should be able to sort the contents of all,
or almost all, its memories.

Solution: The solution we are going to describe is not the most ef-
ficient as far as time of execution is concerned (see the Notes and Sec.
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1.16). It is, however, relatively easy to describe and can be pro-
grammed onto a small calculator. The heart of the procedure is to
begin the program by recalling the contents of mg and mj, moving one
into the t-register (test register), and leaving the other in the x-reg-
ister (if you have a reverse Polish calculator, all you have to do is key
RCL 6 and then RCL 5).!* Next, move the larger of these two numbers
into the t-register (or leave it there if there already) and the smaller
into the x-register. Store the contents of the x-register in ms. Note that
the smaller of the two numbers originally in ms; and mg is now in mg

and that the larger is in the t-register.
Next recall the contents of my into the x-register. Compare the

x- and t-registers and rearrange their contents (if necessary) so that

the larger numberis in the t-register and the smaller in the x-register.
Store the latter number in ms. The larger of the three numbers orig-
inally in my, ms, and mg will now be in the t-register and the other

two in ms; and mg (not necessarily in descending order). Next, recall
the contents of m3; and compare them with the contents of the t-reg-

ister, moving the larger of these two numbers into the t-register and
storing the smaller in m,. Continue in this fashion up through the
memory registers until you have recalled the contents of m,, compared
them with that of the t-register, stored the smaller of the two numbers
in m,, and moved the larger into the t-register. The t-register will now
contain the largest of all numbers originally stored in any of the mem-
ories, m, through mg and the remaining numbers will be in m,

through ms. The contents of the t-register should therefore be placed

1n m,.

Notice that the largest number got picked up at some point
and floated to the top of the list in the t-register. For this reason, the
algorithm is called a “bubble sort.”

We are not done yet, however, for the numbers in m; through
mg are not necessarily in their correct order. If you think about it (and

we advise you to do so), you will see that although it is possible for a
number to move all the way to the top of the list during the bubble
sort, it can move down no more than one step. Clearly, some numbers
will have to move down further still. How can we make them do so?

Consider what will happen if we run through exactly the same
routine again. No comparisons involving the largest number, now in

m,, will occur until the end. Thus, the second largest number will float

upward in the t-register until it finally gets compared with the con-
tents of m,, at which point it will get stored in m,—exactly where we
want it to go. (Note also that the contents of m, will first go into the

2 Since many comparisons are going to be made in this program, we will have
frequent occasion to refer to the t-register. If you have an HP calculator, read
“y-register” for “t-register.”
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t-register and then right back into m,;). Run the procedure again, and
the third largest number will float up and get deposited in m, (the
contents of m, and m, staying where they are). Run the procedure a
total of six times, and the numbers will all wind up in their proper
positions. (We leave it to you to figure out why six runs are sufficient
to get the seven numbers arranged in their proper order).

Now, how about the total program? The procedure described
in the next-to-last paragraph will make up its main body. Basically,
this procedure looks at the contents of memories m, through m;, mov-
ing from bottom to top and comparing the numbers two at a time. It
moves the smaller number into the higher numbered register and
keeps the larger number in the t-register for further comparisons. Go
back and read through the procedure to make sure that you under-
stand it. You might want to look at the flowchart in Fig. 2-38, too.

All we have to do to complete the program is to arrange things
so that the program runs through the procedure six times and then
stops.We can do so by using m; (or, it may be more convenient to use

on some other register). Start the program with a 6 in m;. At
the end of the main procedure, put in a sequence of steps that succes-
sively subtracts 1 from the contents of m; and then checks to see if

they are down to 0. If they aren’t, go back to the top and run the main
procedure again. If they are, the procedure has run six times, and
therefore you should stop. If you happen to have a TI-57, an extra
difficulty must be considered (see Notes). [Solution was realized on a
TI-57 in 37 steps.]

If you have a calculator with indirect addressing, the above
program can be shortened considerably. Notice that in the main pro-
cedure you do the same thing over and over (see Fig. 2-38), that is,
you keep recalling the contents of a memory and comparing it with
the t-register, moving the largest number into the t-register and stor-
ing the smaller in a memory. The only things that change are the

names of the memories involved. By using indirect addressing (see
Sec. 1.9), you can change the names of the memories without having
to write down the steps again. You can also shorten the running time
by not going all the way to the top on each run through the main
procedure. After four runs, for example, the top four numbers are in
the proper place; thus, on the fifth run, you need to proceed only as
far as my (the fifth memory starting from m,) and to put the contents
of the t-register into it. This method, made possible by indirect ad-
dressing, requires the use of a counter that gets incremented (or dec-
remented, depending on how you arrange things) on each pass through
the main procedure. What we are getting involved in here is nested
loops (see Sec. 1.8). Read the Notes for further remarks on running
time.
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Fig. 2-38 Flowchart for sorting all memories but one in descending order

It shouldbe clear that there is nothing sacred about the num-

ber 7 (memories m, through mg) in this problem. The procedures out-
lined here can be used to sort the contents of any collection of memo-

ries, limited only by the capacities of your calculator. In particular,if
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your calculator permits indirect addressing, you should be able to sort
the contents of all but a few of its memories (those being reserved for
counters and indirect addresses).

Notes: If you happen to have a TI-57, an extra difficulty to consider
is this: m;, the memory you are going to use as a counter, is also the

t-register! Consequently, a certain amount of care is called for so that
the contents of m; do not get lost while tests are being run. The trick
is to move the contained number around during the program and keep
it out of the way of the rest of the numbers. Let’s look at the program
to see how this is done. When the program starts, there is a 6 in mj.
The first two steps of the program will be RCL 6 and x = t. The next
step would ordinarily be RCL 5 to set up the comparison between the
contents of mg and m;. However, when x = t is executed, the 6 which

was in m; (alias the t-register) gets pulled into the x-register. If you
now execute RCL 5, the 6 will get lost. Therefore, substitute the step
EXC 5 instead. This moves the contents of mj; into the x-register, as
you want, but it also moves the 6 safely out of the way into ms. Observe
that this maneuver costs you no extra steps. A little later in the pro-
gram you will want to store a number back in ms. If you use a simple
STO order, the 6 will get lost. Therefore, once again substitute EXC
5. Doing so, of course, pulls the 6 back into the x-register, where it is

once again in the way. Therefore, the next step, ordinarily an RCL
order, must also be changed to an EXC, and so on. Simply follow the
path of the 6 throughout the program, substituting EXCs for STOs
and RCLs whenever the 6 threatens to get wiped out. You will find in
the end that the contained number can be saved at no cost in program
steps!

As we said earlier, a “bubble sort” is not the most efficient

algorithm for arranging a list of n numbers in descending order. There
is a more efficient method called “sorting by merging.” The amount

of indirect addressing and loop nesting involved in this method, how-
ever, makes it impractical for a calculator.

2.16 The Lagrange Interpolation Formula
Difficulty: 4 Calculator: Variable

Interpolation is a method for approximating the value of a
function from other known values. Suppose that you have a table giv-
ing the logarithms of the whole numbers 1, 2, 3, ..., etc., and you

want a guess at 1og(10.82). Our table of logs gives, to four decimals,

log(10) = 1.0000 log(11) = 1.0414

The question is, can we make a reasonable guess at log(10.82) from
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this information alone? There is a well-known formula that provides

such a guess; it is called the linear interpolation formula.
If f is a function and we know the value of f(a) and f(b), where

a and b are different numbers, this formula says that a reasonable
guess for f(c) is

c—b c—a
+ f(b

a—b (b) b—a

To guess at log(10.82), therefore, we use Eq. (1) with f(x) = log x, a =
10, b = 11, and ¢ = 10.82. Hence,

(1) f(c) = f(a)  

10.82 —-11 10.82 — 10
log(10.82) = (1.0000) 10-11 + (1.0414) 11 = 10 =1.0339

[Actually, 1og(10.82) to four decimals is 1.0342.]
Let us see what is behind Eq. (1). Consider the graph of y =

f(x) shown in Fig. 2-39. The coordinates of points A and B are known,
as is the x-coordinate of point C. We wish to guess at the y-coordinate
f(c) of C. To do so, we draw the line ¢ joining A and B and make a
vertical line through C, as shown in Fig. 2-40. The point C’ where
these two lines meet has the same x-coordinate as C, namely c; fur-

thermore, its y-coordinate appears reasonably close to the number f(c).
Therefore, we use the y-coordinate of C' as a guess for f(c), and it is
this number that Eq. (1) provides.

c=(c,f(c) =?) B=(b, f(b)

 

A= (q,f(a))

Fig. 2-39 Graph of y = f(x)

To confirm that this reasoning is correct, consider the equa-
tion,

b X —ai.
abpT

 (2) y = f(a) 

Since it can be put in the form

y=mx +t
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Fig. 2-40 Construction to guess the y coordinate of C

where

_ f(a) — fib)
m= ab

t= a[f(b)] — blf(a)]

a—>b

it must be the equation of a straight line in the xy-plane. But note
that if x = a in Eq. (2), then y = f(a), and if x = b, then y = f(b).

Consequently, this straight line must pass through the points [a, f(a)],
or A, and [b, f(b)], or B, and hence must be the same as line ¢.

Since point C’ is on line ¢, its y-coordinate can be obtained by
setting x equal to c¢ in Eq. (2), thus yielding Eq. (1). We will give no
solution for the following problem; you are strictly on your own.

Problem 1: Write a program that accepts as inputs the numbers a,
f(a), b f(b), and c, and outputs the guess f(c) obtained by Eq. (1).

Our table of logs also reveals that log(12) = 1.0792. Can this
additional information help us get a better guess for log (10.82)? Yes,
it can. There happens to be another interpolation formula that can be
used to guess the value of f(c) if we know three different values, f(x,),
f(x,), and f(x3). A reasonable guess for f(c) is then

3) fle) = fix) (c — xp) (€c — X3) + f(xy) (c — xy) (c — X3)

(X1 — Xp) (X; — X3) (Xe — Xp) (Xo — X3)

(c — xy) (Cc — Xp)
fl se

+ 1x) (x3 — Xp) (X3 — Xp)

Using this formula with xX; = 10, f(x,) = 1, Xo = 11, f(x,) = 1.0414, X3

= 12, f(x;) = 1.0792, and ¢ = 10.82 gives

log(10.82) = 1.0342
a figure that is accurate to four decimals.



Technique 189

Let us examine the basis for this guess. The equation

3 (X — Xp) (X — Xy) (x — Xx) (X — X3)
y = 1x) on — X,)(X; — X3) Tx) — x)(X; — Xy)

(x x1) (x — Xp)
f(x
+10)

can be in the form: y = mx® + nx + t. Its graph, therefore, is a parabola.
Note also that when x is x;, X,, or x3, then y is f(x,), f(x,), or f(x),

respectively. Consequently, just as Eq. (1) makes a guess by passing
a straight line through two given points, Eq. (3) makes a guess by
passing a parabola through three given points. And, by the way, just
as any two points determine one and only one line, any three points
(in this case) determine one and only one parabola (or only one line,
if m = 0).

The general formula, called LaGrange’s Interpolation For-
mula, is stated as follows: If x,, X,, . . ., X, are n different numbers and

if f(x;) = yy, f(x) = ys, ..., f(X)) = yn, then a reasonable guess at f(x)

is given by

_ (222) (25) ( (22)

y=J X; — Xo X; — X

X—Xy X — X3 X — X,

(4) Tye (2 - -) (2 — ©) ( ' (2 — 2) +

om) | 2m)

Xp — Xp Xn — Xp-1

   

   

  

 

(See Sec. 1.8 for an explanation of the symbols 3 and II.)
Equation (4) is of the form

(5) y=ax"+a,x"'+...+ax +a,

where a,, a,_,, ..., a;, a, are complicated expressions involving the
known numbers x, X,, .. ., Xn, Y1, Yo, - - ., Yn. Equation (5) is called a

polynomial of degree n (or less, if a, = 0). Note also that setting x =
x; in Eq. (4) gives y = y; for each i = 1, 2, ..., n; Eq. (4), therefore,

gives the equation of the (one and only) polynomial of degree n or less

whose graph passes through all of the points (xj, y;), where i = 1, 2,

.., I.

Problem 2: Write a program that will accept as inputs the numbers
Xi, X2, +. +, Xn, Y1, ¥2, - « +» Yn, and x and that will output the number y
given by Eq. (4).



190 Mathematical Recreations for the Programmable Calculator

Naturally, since the number of storage registers your calcu-
lator has will limit the number n, you must choose the largest n avail-
able. [Our HP 67/97 program will handle an n as large as 9; a TI 58
or 59 program should be able to handle one much larger. You should
be able to handle an n of 11 or so on on an HP 19/29¢c, and perhaps an
n of 3 on an HP25(¢)]. For any n much larger than 4, you will probably

need indirect addressing (see Sec. 1.9).

Solution: The program requires many registers and indirect ad-

dressing (see Sec. 1.9). Let us store the numbers x4, xX», . . ., Xn, ¥1, ¥2,
.., Yn in registers ry, ry, . . ., ry, Sy, So, . . ., Sy, respectively. We will also

need eight other registers, as follows:

m, Register to accumulate X m, For storing x; temporarily
m; Register to accumulate II ms; For storing x

m, Counter for i mg For storing n

my; Counter for j I Indirect register

Thus, a total of (2n + 8) registers are needed. (If you are desperate
for storage registers, you can store m,, m3, and mg in one register, but
this will increase the number of program steps—see Sec. 1.14.)

The program (or the user) should begin by storing x;, x, .. .,
Xn, Yi, Y2 - - +» Yn, X, and n in registers ry, ry, . . ., pn, Sq, So, . . ., Sp, Ms,

and mg, respectively (see Sec. 1.5). The following mess must now be
evaluated:

X — Xj

y=2wnll i—
ii

 

This is, of course, the sum of the n expressions

bnIl(222) 0 -RS)

ben (222), n=l (2-2)
Xp — Xj

  

  

Let us look at one of these terms, say

EY
i=1 Xj — Xj
JF

 

and see how to evaluate it.
Consider the flowchart in Fig. 2-41, which begins with i in

register m,. This flowchart calculates t;, using the techniques de-
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scribed on pp. 66-68. Register mj stores j, beginning at the value, j =
n, and decrementing by 1 each step through the loop. Register m;
accumulates the product t;. It begins at m; = y; and successively ac-

cumulates the values

_ X - Xn _ X - Xn X - Xn-1

ms; =Yi , M3 = Yi a
Xi — Xj Xj — Xp Xi — Xp

X — X, X — Xp X — Xp2
ms =Y; Ce

Xj — Xj Xj — Xp-1 Xj — Xp-2

X — Xj X — Xj

  

 

except that the factor

X; — Xj0

is to be skipped.
The first box in the flowchart initializes registers mz; and m;,

as described above, and also stores x; in my. The test, m, =r,?, will

be answered “yes” only when r,= x; = x; or when i = j since the
numbers Xi, X», . . ., X, are all different. Thus this test will omit the

undefined factor

X — Xj

Xi — Xj

If this test is answered “no,” then i # j, and the next box updates m,.

 

   

 

m3 <= Mg

mq <r
m| <5;

Fr YES

NO

ms — mz

mem ——
Mg — my    
   

  
mz e—m3z—| +

YES

 

 
Fig. 2-41 Flowchart for calculating t;
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The next box decrements the register, my; = j, for the next run

through the loop, and the last test, my; = 0?, stops the program after
n runs through the loop. On only one of these n runs (when i = j) is
the m, register not updated, and that is at the factor to be skipped.
Hence the routine terminates with

n

X — Xj

m, = vill = t;
i=1 Xj — Xj
ii

 

We now proceed to evaluate the 3. To do so, consider the flow-
chart in Fig. 2-42. This flowchart calculates the required number y,
again using the techniques described on page 000. Register m, stores
i, beginning at i = n and decrementing by 1 on each run through the
loop. Register m, accumulates the sum,y =t, + t, + ... + t,, begin-
ning at m, = 0 and successively accumulating the numbers, m, = t,,

my=t, +t,-,m=¢t, +t,, + t,_,, etc.

Memory
START

% accumulator

[1 accumulator
 

M2 == Mg
mo=0

3
FLOWCHART
2.41

 

 

 

 

{
mo<+mo+m

 Indirect recall

Xi

' n
maempa— |

 

 

 

    
 

=
z
O
o

—~ x

 

YES

Sy Yi

OUTPUT
mo $2 Y2

STOP

 

 i

     
Fig. 2-42 Flowchart for solution to Problem Z
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The first box initializes registers m, and m,. On each run

through the loop, the flowchart in Fig. 2-40 calculates the correspond-
ing t;. The next box, m, «< m, + m,, updates m,. The next box decre-

ments m, for the next run through the loop, and the test, m, = 07,

derails the loop after n runs through the loop. Since the answer we
want, y,isnow inm, (my = t, + t, + ... + t, = y) we output m, and

stop. [Solution was realized on an HP-67 in 37 steps for n < 9.]

2.17 Random Walks

Difficulty: 2

As an example of the random walk, consider that Henry and
Ted flip coins for cigarettes. Every time the coin lands heads up, Henry
wins a cigarette from Ted; every time tails turns up, Ted wins a cig-
arette from Henry. Each begins the game with a full pack of twenty
cigarettes, and the game continues until one player wins all forty.
Other names for the random walk range from the Markov Process to
drunkard’s walk. Loosely, a Markov Process can be thought of as a
kind of machine that can be in one of several different states. It
changes from state to state according to certain probabilities, and

sometimes it just stops dead.

Problem 1: Write a program to simulate the above game. It should
keep track of how many cigarettes Henry and Ted have at each step.
It should flip a fair coin (see Sec. 3.2), display the outcome, make the
appropriate transfer of one cigarette, and display the number of cig-
arettes each player has at that point. It should then test to see whether
either player has been busted, and if not, it should go back and flip
the coin again.

In this game, for which no solution will be given, the number
of cigarettes in Henry's possession at any time, h, completely deter-
mines the state of the game, for Ted must then have (40 — h) ciga-

rettes. Thus, there are exactly 41 possible states, corresponding to h
=0,1, 2... 39, 40. At states in which h = 0 or h = 40, the game
ends, since, if h = 0, Henry’s busted, and if h = 40, Ted is. In the

other 39 states (h = 1, 2, ..., 39), the game changes either to state
(h + 1)—Henry wins a cigarette—or state (h — 1)—Ted wins a ciga-
rette. Since presumably a fair coin is being tossed, there’s a 50-50
chance for either alternative.

Problem 2: A drunkard is staggering up and down the length of a
10-foot plank floating in the middle of a swimming pool. Every 5 sec-
onds, he does one of three things:
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1. Staggers 1 foot to the right
2. Staggers 1 foot to the left
3. Stands perfectly still, in a stupor

He chooses from these alternatives with equal probability, indulging
in each one-third of the time, until finally he staggers off one end of
the plank or the other and into the water.

To simulate the drunkard’s walk on your calculator, let the
10-foot plank be represented by ten 1’s in your display, as follows:

1111111111

and let the drunkard be represented by the digit 8. Thus, the state in
which the drunkard is 3 feet from the left end of the plank would be
represented by the number 1181111111. The program should start the
drunkard in one of the two center positions 1111181111 or 1111811111
(or, if desired, at a position chosen by the user).

The whole program will constitute a loop. On each pass
through this loop, one of the three alternatives should be chosen, the
position of the 8 in the plank of 1’s adjusted accordingly, a test made
to see whether or not the drunkard has fallen off the end, and if not,
the new state should be displayed and the run repeated.

Solution: Since each stage involves a random choice among three
alternatives, we must use a randomizer. It is convenient to have a
random number generator that outputs a random integer c between
—1 and 1, inclusive (see Problem 4 of Sec. 1.11 for a way in which to
execute this). If the randomizer outputs a c¢ of —1, we move the drun-
kard one step to the right; if ¢ = 0, he stands still; and if ¢ = 1, he
moves one step to the left. We will use register m, to store a random
seed and the successive random numbers in the range, 0 < m, < 1, as
described in Sec. 1.11.

Our program stores the empty plank, 1111111111, in register
m,. [This number can be easily calculated by noting that 1111111111
= 1/9(10*° — 1).] To put the drunkard (the digit 8) in the appropriate
position on the plank, we must add the digit 7 to one of the 1’s on the
plank. For example, to place the drunkard in the third place from the
right, we have to add 700 to the plank since 1111111111 + 700 =
1111111811. Thus, we will store the current position of the drunkard
in m,. This register will contain one of the ten numbers, 7000000000,

700000000, . ., 700, 70, 7, depending on where the drunkard is located
on the plank. Thus,if the drunkard is at the extreme left of the plank,

m, = 7000000000,if he is on the third place from the right, m, = 700.

Note that regular m; serves a dual purpose. It keeps track of the drun-
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=
0 Random number

mo< SEED 1 Plank = 111111111
m

 

  

 
|

510° -1) 2 7-101
mp «7-104

DISPLAY a
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ITERATE mo,
CHOOSE
C=—1,0,0R|   

 
  

        

 

Fig. 2-43 Flowchart for the drunkard’s random walk

kard’s position and also serves as the number to be added to the plank,
m; = 1111111111, to produce the desired output.

To move the drunkard, we first test to see if ¢ = 0. If it is, we

proceed directly to output, as the poor guy is standing stock still. If c
# 0, we next test to see if ¢ < 0. If so, ¢c = —1, and we must move the

drunkard one step to the right (that is, we divide m, by 10). If not, ¢
= 1, and we must move the drunkard one step to the left (by multi-
plying m, by 10). In each of the last two cases, we must make sure
that the drunkard has not fallen off the plank before we proceed. In
the case, ¢ = —1, the drunkard will have just fallen off the right end
if m, = 0.7 (we can check this contingency by using the test, m, < 1).
If c = 1, the drunkard will have fallen off the left end if m, = 7 x 10°

(we can check this contingency by using the test, m, > 10'°). The
program stops if he has fallen off either end. Otherwise, it pauses to
display the output, m,; + m,, as discussed above, and starts all over
again. The flowchart is shown in Fig. 2-43. [Solution was realized on
an HP-25 in 49 steps.]





Reliably, at any nighttime moment (that is, nonbusiness hours)

in North America hundreds of computer technicians are effec-

tively out of their bodies, computer-projected onto cathode ray

tube display screens, locked in life-or-death space combat for

hours at a time, ruining their eyes, numbing their fingers in

frenzied mashing of control buttons, joyously slaying their

friends and wasting their employers’ valuable computer time.

Something basic is going on.

STEWART BRAND
Fanatic Life and Symbolic Death Among the Computer Bums

 

CHAPTER THREE

(Games

3.1 Introduction

Although computers (and programmable calculators) were not
invented for the purpose of playing games, it didn’t take programmers
long to figure out that the two are admirably suited to one another.
A visit to any college computing center will bear out this observation.
In addition, many of the rapidly multiplying electronic games on the
market today have at their heart a microprocessor especially designed
for their use alone. The games in bars and game arcades as well as
those played at home on a television set fall into this category.

In order for a game (or anything else for that matter) to be put
onto a programmable calculator, it must admit a description in terms
of numbers and the workings of the game must be capable of being
“modeled” in terms of the operations available on the calculator.
Many games are open to this kind of treatment in whole or in part.
There are, in fact, several specific aspects of games that can be “cal-
culatorized.”

One such, featured prominently in this chapter, is game equip-
ment: the boards, cards, dice, spinners, and other paraphernalia with

197
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which games are played. It is easy, for example, to see that the “out-
put” of a pair of dice or a roulette wheel is representable by numbers,
for this output is already in numerical form in its “natural” state.
The only difficulty is how to randomize the numbers and keep them
in the proper range.

Most of the problems in this chapter involve some modeling of
game equipment. They range in difficulty from No. 3.2, which asks
you to simulate the tossing of a coin, to No. 3.17, in which the calcu-

lator takes over a function performed by the player in traditional forms
of the game. In all these problems, the game is translated from the
real world onto the calculator without undergoing any essential
change. The equipment with which the game is played, however, is
fairly radically altered, for in each case it is replaced by the calculator.
Technically, the original equipment is simulated by the calculator.

Now, it is also possible to simulate entire games on the cal-
culator. In such cases, the game as a whole is radically altered by
being translated out of the real world into the world of numbers on
the calculator. We provide two examples of this type of game, Problems
3.12 and 3.13 (hockey and basketball). In these, the physical setting
of the game is translated onto the calculator by means of a set of
coordinates. In hockey, for example, the playing surface is replaced by
an x, y coordinate plane; the puck becomes a point in that plane; and
the goal is an interval on the x-axis. The skills required to play the

game also change, in this case from agility, stamina, and reflexes to
the ability to judge angles (numerically, of course). Such games are
related to the many electronic games in which a sport such as tennis
or skeet shooting is simulated on a cathode-ray tube.

Besides fulfilling the passive role of equipment, the calculator
can also take part as a player. Undoubtedly, the most impressive com-
puter programs of this type are those for playing chess since computers
can now play it at the Master level! Of course, one couldn’t hope to
get a strategy for such a complicated game onto a calculator, but sev-
eral fairly simple games for which a winning strategy exists can be
taught to the calculator. We provide four of them in this chapter,
Problems 3.5, 3.14, 3.15, and 3.16. Problem 3.5 is coupled with Prob-

lem 3.4 in an interesting way; they represent two sides of a guessing
game. In Problem 3.4, the calculator acts as the game equipment, re-
turning clues as the user makes guesses. In Problem3.5, the calculator
makes the guesses and the user returns the clues. Problems 3.14, 3.15,

and 3.16 are games in which the rules for a winning strategy are to
be programmed onto the calculator. Although all of the strategies are
simple enough to be put onto a small calculator (with squeezing in
some cases), none is obvious. If the player makes a single mistake, the
calculator wins.
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Finally, we must say a word about random numbers, which
play a part in almost half the games in this chapter. One of the major
divisions in the science of game theory is between games that involve
random events and those that do not. All “games of chance” fall into
the first category because they rely on such random events as rolling
a pair of dice, drawing from a deck of shuffled cards, or spinning a
wheel. Problems 3.2, 3.3, 3.4, 3.6, 3.7, and 3.8 all involve the element

of randomness.
In order to simulate random events on your calculator, you

will need to learn how to use a random number generator [we should

really say pseudo-random number generator, since no process that
uses a well-defined rule for producing a string of numbers can be truly
random (see Problem 3.9)]. Consult your owner’s manual or refer to

Sec. 1.11 for techniques. We will use the notation, x «< Rand(m,), to
mean “generate a random number between 0 and 1 from the random
number in m,.” This step will be the heart of each of the random-
number-generating routines required here. Your calculator may have
its own random number generator built in. If so, you can read the
notation, x «< Rand(m,), to mean “generate a random number between

0 and 1 using your random number generator (and place it in the
display).” The problems have been arranged in ascending order of
difficulty in the use of such a generator so that if you've never. worked
with one before, you can gradually acquire the needed skills.

Randomness can also be part of the strategy for playing a game;
for instance, the strategy of bluffing in poker must be somewhat ran-
dom if it is to be effective. We have not included an example of a
strategy of this kind in this collection of problems, but perhaps some
clever reader will be able to fill the gap.

3.2 Calculator Coin Toss
Difficulty: 1

In order to model games involving random events, you will need
to be able to generate all kinds of random numbers. Your calculator’s
applications manual will provide a program for generating a sequence of
evenly distributed random numbers between 0 and 1.! This will serve as
your basic tool for generating other sequences of random numbers.

Problem: Write a program that simulates tossing a coin, letting 0
stand for tails and 1 for heads. Each run of the program should return

randomly a O or a 1.

'If not, see Sec. 1.11.
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Solution: The idea is to separate the random numbers into two
classes, assigning a 0 to one class and a 1 to the other. You can do so
in many ways, but perhaps the easiest is to multiply the random num-
ber between 0 and 1 by 2. The result will be a random number between
0 and 2. If the numberis less than 1, return a 0. If it is greater than
or equal to 1, return a 1. If your calculator has an “integer part” key,
this operation can be accomplished neatly by taking just the integer
part of the number between 0 and 2. The flowchart is shown in Fig.
3-1. [Solution was realized on an HP-25 in 11 steps.]

Memory
TART

Random number
between 0 and 1

Initial State of
 

 

 

X *-—

RAND (mg) the Memory

Random number

| seed

mo< X

 

 

xe 2x    

st
y

STOP

Fig. 3-1 Flowchart for tossing a coin

Note: It might seem that the preceding program is slightly weighted
in favor of heads, since the “dividing line,” 1, is included in the heads
pile. The difference this makes is miniscule, of course, and can be

eliminated by not returning anything and going back for another num-
ber when a 1 turns up as the random number between 0 and 2. How-
ever, many random number generators produce a random number be-
tween 0 and 1 by taking the fractional part of some number. (This is
true of the random number generators described in Sec. 1.11, for ex-
ample). Since the number so generated can be 0 but cannot be 1, it is
slightly weighted toward 0. This effect is exactly balanced by throwing
the “dividing line” into the heads pile. You might analyze the random
number generator for your calculator from this point of view.
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3.3 Dice Roll

Difficulty: 1

Problem: Write a program to simulate a pair of dice, in which each
run produces a pair of random whole numbers between 1 and 6 (inclu-
sive). Arrange things so that the output will be a two-digit number,
with one digit preceding and the other following the decimal point, as
follows: a.b (“a” represents the number on the first die and “b” the
number on the second die).

Solution: The basic routine for solving this problem is to (1) generate
a random number between 1 and 6 and store it somewhere; (2) gen-
erate a second random number between 1 and 6, multiply it by .1, and
add it to the first number; and (3) return with the result. Since you
are going to generate a random number between 1 and 6 twice, it
would be inelegant not to use the same set of program steps both times.
This means, however, that a way of knowing which number has just
been generated is required so that you will know whether to multiply
it by .1 or not. To this end, start with 0 in the memory that is being
used to store the first number. Check the contents of the memory when
you get to the end of the random-number generating routine. If it is
0, store the number you have just generated. If it is not, then the number
you have generated is the second and must be operated on in the
manner specified. The program will need two memories:

my: Random number seed

m;: Temporary storage for the number on the first die (and
perhaps some other data; see discussion below)

The program then proceeds as follows: Recall the random num-
ber seed and use it to generate a new random number (and new seed)
between 0 and 1. Multiply the number by 6 and add 1, thereby yielding
a random number between 1 and 7. Now “round down” by taking the
integer part, the result being a random whole number between 1 and
6. At this point, since the calculator doesn’t know whetherit is on its
first or second run through the random number generating routine,
recall the contents of m,. If it is zero, store your random number—
which you now know is the number on the first die—in m, (be careful
not to lose it in the testing procedure!); then go back to the beginning
of the program for another random number. If m, is not zero, the first
die is already in m,. Consequently, multiply the present random whole
number by .1, add it to the contents of m;, and return with the result
in the display. Before quitting, erase memory m; to be ready for the
next run. The flowchart is shown in Fig. 3-2. [Solution was realized
on an HP-25 in 26 steps.]
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Fig. 3-2 Flowchart for dice roll

Note: This last sequence of events can be accomplished neatly with
register arithmetic. If you have just multiplied the number on your
second die by .1 and are ready to add it to the contents of m,, the rest
of the program can proceed as follows:

TI
SUM
01
RCL
01
INV
SUM (erases m,)

01
HP
STO + 1
RCL 1
STO — 1 (erases m,)

Note that the previous contents of m; remain in the display.
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If your calculator has subroutines, the part of the program that
generates a random whole number between 1 and 6 should be a sub-
routine. This will obviate the need for the m, = 0 test.

34 HILOI
Difficulty: 2

Here is a game sometimes played on the radio, where it is
called high-low. The player is supposed to guess a (whole) number
between some given bounds. After each guess, the player is told
whether his guess was too high or too low (or correct). On the radio
you get only one guess, but here on your own calculator, you can
program the game any way you want. Let's not make it as hard as it
is on the airwaves.

Problem: Write a program for the calculator to play the following
game: At a given signal, the calculator is to generate a random whole
number between 1 and n (n is a variable that will be stored in some
memory location; you can set it to any value, depending on how hard
you want to make the game). Once the random number is hidden in
a memory, the game begins. The player enters a series of guesses.
After each guess, the calculator returns a 1 if it was too large, a —1

if too small, and a 0 if correct. The calculator should also keep score
so that once the correct guess is entered, the calculator returns (after
the 0) the number of guesses it took the player to get the right answer.

Solution: The program has to do two separate things: (1) generate
and store the random number between 1 and n, and (2) evaluate

guesses at the number by the player and keep score. If your calculator
has user-defined keys, you can use different keys to handle these sep-
arate functions. If not, you will have to use some kind of signal to
enable the calculator to execute the part of the program you want. For
example, you might use 0 as a signal that you want the calculator to
execute Part (1) of the program. Any other number would then be

interpreted as a guess at the number already stored in m,. Thus, the
first step in the program would be to look at the number in the display
to see if it is a 0 or not. If it is, branch to Part (1). If not, treat the
number as a guess (don’t lose it in the testing process!) and branch to
Part (2).

Here are the numbers that will be needed in memory:

my Random number seed
m, Number generated in Part (1) that the player is trying

to find
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m, Scorecard that counts the number of guesses taken so
far by the player

m; n, the “upper bound” on the number in m;

If you have done the previous two problems, you should have
no trouble with Part (1) of this program. The only wrinkle here is that
the range of random numbers to be generated is supposed to be con-
trollable by the player. Having stored the upper bound on the range
of numbers to be produced in m3, the player can select whatever range
he wants by storing the appropriate number in m; before the program
is run. The number in m; then plays the role of the multiplier, 6, in
the solution to the previous problem. The only other thing required in
this part of the program, after generating the number in m,, is to erase
the scorecard (that is, store a 0 in my).

Part (2) begins when 1 is added to m. (don’t lose the guess).
Next recall m; and start comparing it with the guess to see if the latter
was too large, too small, or correct. There are two ways that you can

make the comparisons: by comparing the guess directly with m; or by
subtracting m,; from the guess and checking to see if the result is
greater than, equal to, or less than 0. Which of these is more efficient
will depend on what type of logic your calculator has and whatits
testing capabilities are. In either case, you will need two successive

tests to sort out whether the guess was too large, too small, or correct.
For example, you might first test whether m, is greater than or equal

to the guess. If it isn’t, the guess is definitely too large. If it is, you
will then have to separate “greater than” from “equal to.” If the
guess was too large or too small, return a plus or minus 1 accordingly
and “reset” the calculator for the next guess. If the guess was correct,
return a 0 for two beats, recall the number in m,, and reset (resetting

will not be necessary if you are using labels). The flowchart is shown
in Fig. 3-3. [Solution was realized on an HP-25 in 38 steps.]

3.5 HI-LOII
Difficulty: 2

In this game, the problem is the same as for the previous one
except that the roles of the calculator and the player are reversed.
This time after the number n (see previous problem) has been stored
in a memory, the player will generate and store a number between 1
and n in his own memory. It will then be the calculator’s job to find
it. Each time the calculator makes a guess, the player will enter a 1,
—1, or 0 indicating that the guess was too large, too small, or correct.

With this number as “feedback,” the calculator makes its next guess,
or, if its last guess was correct, returns the number of guesses it took
to get the right answer.
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There are various ways in which the calculator could make its
search for the correct number. One would be for it to start at 1 and
keep increasing its guess by 1 until the correct number is reached.
Obviously, this is not the best possible strategy. Notice that it makes
no use of the feedback generated by previous guesses. If you played
the previous game with your calculator, you undoubtedly used feed-
back from previous guesses to “zero in” on the correct answer. The
calculator can be programmed to do the same thing. If you or the
calculator are using the optimal strategy, it should never take more
than log(n)/log(2) guesses, rounded up to the next larger whole num-

ber, to get the right answer.
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Solution: We will start our explanation of the solution in the middle
and work toward both ends. How does the calculator make its guesses?
It remembers its last too small guess and its last too large guess and
makes its next guess exactly halfway between them (that is, the av-
erage). A small problem with this strategy is that it doesn’t always
output a whole number, but this difficulty can be taken care of by
setting the display to zero decimal places. Then, although the calcu-
lator’s guesses will cease to be whole numbers internally, the output
in the display will always be in the correct form. The memories for the
program will contain the following:

m, Last guess that was too small
my Last guess that was too large
ms; Present guess (average of m; and my)

my Scorecard (records how many guesses have been made
so far)

ms n, the upper bound on all guesses

Suppose that the calculator has made a guess and stored it in

ms. How will it make its next guess? The player will have entered a
1 or —1 (we’ll worry about O later), indicating that the guess in mj; is
too large or too small. If too large, it then becomes the last guess that
was too large, and its contents are moved into m,. The new m, and m,

are then used to make the next guess, which once again is stored in
m3. Thus, the middle part of the program goes like this: Assuming
that a 1 or —1 has been entered, the contents of m; are recalled and

stored in m, or m;, accordingly. Then the average of m; and m, is
computed and stored in mj. The program returns with this value in
the display. Somewhere in this part of the program, moreover, a 1
should be added to the scorecard.

Now how does the calculator make its first guess? Since the
logical first guess is n/2, we should have the memories set so that the
calculator will make this guess at the beginning. We will also want
to get a 0 into m; and an n into m,. These are the initial “bounds on

the solution.” A little reflection will convince you that the following
initial configuration of the memories will get the calculator to make
the right first guess if a 1 is entered in the display:

m; 0

ms, 0

ms n

my 0

ms n

Thus, the calculator should be started in this configuration.
After the player, by entering a 1, gets the calculator to make its first
guess, the memories will look like this:
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my

ms, n

mg n/2

my 1

ms

Finally, the entry of a 0 indicates that the calculator’s present
guess is correct. In this case, the correct guess should be recalled and
displayed for three beats. Next, the memories should be reset into the
“initial configuration” already discussed, to be ready for the next
round. Last, the contents of m, should be returned and shown in the

display (don’t erase my before retrieving this number!). Entering a 0
can also be used to initialize the memories for the first round of the
game, once n has been stored in ms. The flowchart is shown in Fig. 3-
4. [Solution was realized on an HP-25 in 30 steps.]

Note: The foregoing program is an example of a binary search, in
which the number being sought is trapped between a pair of numbers
that keep getting closer to one another as the program proceeds and
at each stage the search area is cut in half (hence the name for the
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Fig. 3-4 Flowchart for HI-LO II
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technique). This is an old and venerable mathematical trick still in
widespread use today, especially in connection with computers. The
earliest known example is the Babylonian algorithm for computing
square roots, an algorithm dating back to at least 1800 B.C.

It works as follows: Let x be the number whose square root is

to be found. To get the algorithm going, one must first guess an an-
swer. The guess does not have to be a good one, just something for the
algorithm to work on. Let the first guess be labelled x,. Suppose, for
the purpose of simplifying the explanation, that x, is too large (al-
though this is not necessary, as the algorithm works for any case). For
example, if x > 1, you might let x, = x. Now if you let y, = x/x,, then
Xo¥o = X. Moreover, since x, > |x, we must have y, < x (otherwise

XoYo => X). Thus JX is trapped between y, and x,, as follows: y, < JX <

Xo.

The algorithm is now ready to start generating its own
guesses. At each stage, the search area is “cut in half’ by making a
guess exactly halfway between the previous two “bounds on the so-
lution” (at this stage, x, and y,). Hence, the second guess (the cal-
culator’s first) will be the following: x, = (x, + yo)/2. As it turns out,

this guess is always too large since, in every case, |x < x,? Let y,= x/
x;. Then, as above, x;y, = x and y, < x < x;. Moreover, y, < y, (since

Xo¥o = X1y1 and x; < Xo). Thus, we have y, <y,; < [x < x; < X,. Atthis
point, x is trapped between two numbers whose distance from one
another is less than half the distance between x, and y,. The algorithm

continues to make guesses using the same scheme: x; = (x; + y,)/2;
Ys = X/X3; Xs = (X3 + y3)/2; etc. At each stage, yx will continue to get
trapped between a pair of numbers whose distance from one another

is less than half the distance between the previous two.
Thus, the numbers x;, x,, x3, . .. (also yi, y2, y3) converge very

rapidly toward x. Of course, your calculator has its own square root
function, but you might enjoy programming this one on your calculator
to see how efficient it is. See Sec. 1.15 for a further discussion of binary
searches.

3.6 Roulette

Difficulty: 2

Calculator size: Small or medium

Another game that can be simulated with a random number
generator is roulette. An American roulette wheel has 38 markers on
it: the numbers 1 through 36, 0 and 00. The wheel and a little ball are

* Another venerable fact is that |x = Xeyo < (Xo + yo)/2. This inequality, whose

technical statement is that the geometric mean of two numbers is smaller
than the arithmetic mean, has been attributed to Pythagoras.



Games 209

set in motion in opposite directions, the ball eventually coming to rest
on one of the markers. Various bets can be placed on where the ball
will land. The bet with the highest return (and the lowest chance of
paying off) is one made on the exact number of this landing spot. A
correct guess returns 37 times the original bet (including that bet).
The bet with the lowest return (and the highest chance of paying off)
is one made on the ball’s landing on an odd or even number. As these
numbers are colored red and black, respectively,® this bet is referred
to as a bet “on red” or “on black” (since 0 and 00 are colored green,
a red-black bet will be lost if either of these numbers comes up). A
winning red-black bet pays back twice the original bet.

Although other bets are possible, let’s forget about them for
the moment and consider a problem that can be programmed on a
small-capacity calculator (such as an HP-33E).

Problem: Write a program that takes bets on a particular number
and on red or black. The user is to put (1) the amount bet on a number,
(2) the number bet on, (3) the amount bet on a color, and (4) the colors

red and black (let 1 stand for red and O for black) into four different
memories. When the program is run, it first “spins the wheel” and
then returns (1) the number on the wheel, (2) the payoff on the number

bet, and (3) the payoff on the red-black bet.
If your calculator has user-defined keys, you can produce a

more automated program by using some of them to take bets. For
example, you might use key A to record a bet on red or black and key
A’ to record the amount bet. Since a calculator with user-defined keys
can probably handle a larger program as well, you might consider
adding some other bets. Two other common ones are as follows:

1. High or low, in which the bet is on the ball’s landing between
19 and 36 (high) or between 1 and 18 (low). There is no payoff
for 0 and 00, but for a winning bet the payoff is 2 for 1.

2.Dozens, in which the bet is on the ball’s landing in the first
(1-12), second (13-24), or third (25-36) dozen numbers (once

again, 0 and 00 do not pay off). The payoff here on a winning
bet is 3 for 1.

Solution: First let’s label the memories that will record the bets as

follows:

m, Number bet on

m, Amount bet on the number

® Not being roulette players, the authors did not duplicate the roulette wheel exactly.
In actuality, both odd and even numbers can be black or red.
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m; Color red or black (1 or 0, respectively)
my Amount bet on red or black

In addition, four other memories will be used, labeled as follows:

ms Random number seed (a number between 0 and 1)

mg 36

my 38

mg number that comes up on the wheel

The numbers in ms and m; are constants used by the program.
The program can be broken into three parts: (1) spinning the

wheel, (2) checking the bets and paying off the winners, and (3) dis-
playing the results. Since 00 and 0 have to be distinguished from one
another, let —1 stand for 00. Then spinning the wheelis just a matter
of generating a random whole number between —1 and 36 (inclusive).
If you have done some of the previous problems, you should have no
trouble doing this: Just use the contents of ms to generate a random
number between 0 and 1 (don’t forget to store the new number in mj),
multiply the result by 38 (the contents of m;), take the integer part
of the result and subtract 1, and then store the result in mg. This

completes the first part of the solution.
Now for the second part, the payoff on the winning bets. Recall

the contents of m, to see if they are equal to the contents of mg. If they
are, the number bet wins, and the contents of m, should be multiplied

by 37 (leaving the result in m,). If not, the bet is collected by setting

the contents of m, equal to 0. Next, check to see if the contents of mg

are < 0 (that is, if mg is either 00 or 0). If so, the red-black bet loses.

Set the contents of my equal to 0 (collect the bet), and skip directly to
the third part of the solution. If mg > 0, you must determine whether
it is odd or even (red or black) and match the result against the con-
tents of my. Begin by dividing mg by 2 and taking the fractional part
of the result, which will be 0 if mg is even and .5 if it is odd. Next

multiply by 2, giving a result of 0 if mg is even and 1 if it is odd (figures
exactly reproducing the odd-even code used for the bet in m3). Compare
this number (0 or 1) with m;. If the two are equal, the bet wins, and

the contents of m, should be multiplied by 2. If not, set the contents
of my to O.

The third part of the solution is simply a matter of recalling
and displaying the contents of mg, m,, and m,. Note that since the

winnings are now in m, and my, the player can “let the bet ride” on
the next spin of the wheel if he wishes.

The display should be set to zero decimal places for this pro-
gram. It is possible to get the calculator to output a 00 instead of —1
by checking to see if the contents of mg are less than 0 just before they
are displayed. If they are, set the display to one decimal place and
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display a 0. The output will look like this: 0.0. The display will then
have to be set back to zero decimal places before displaying the con-
tents of m, and my. The flowchart is shown in Fig. 3-5. [Solution was
realized on an HP-25 in 43 steps.]

Note: If you are writing a program to take more than two kinds of
bets, you may want to handle your output differently. It would be
confusing to have five numbers flash by when the wheel is spun (the
number on the wheel and the results of four different bets). You might,
therefore, set the calculator to stop after each number. The player can
then push to see the next number.

3.7 Blackjack Dealer
Difficulty: 3
Calculator size: Variable

In order to simulate the deal in a game of blackjack realisti-
cally, the calculator must store the entire deck of cards and keep track

of those dealt. This job is not so difficult as it sounds. In the first place,
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suits make no difference in blackjack. Second, the face cards (jack,

queen, and king) and the 10 all have the same value. Thus, there are
only ten different kinds of cards: cards worth 1 (ace) through 9 (four
of each) and cards worth 10 (16 in all).

This “deck” can be stored in just two memories on your cal-
culator (see Sec. 1.14). Cards 1 through 9 can be coded into a nine-
digit number stored in one memory. For instance, the number
1.132243123 can be used to represent a deck with one ace, three 2's,

two 3’s, two 4's, etc., left in it, whereas a fresh deck would look like

this: 1.444444444. The 1 to the left of the decimal point has no “mean-
ing”; it is there solely for a technical reason—to avoid possible errors
introduced by the use of the 10* or y* key to compute 107¥, the object
being to remove a card of denomination k from the deck (see Sec. 1.14).
If you have a medium-sized calculator, you may not need this protec-
tive device since 107% can be “built” into a memory that is initialized
at 1 and multiplied by .1 each time through the loop being used to
search the deck. The number of 10’s left in the deck can be stored in
the second memory.

Problem: Write a basic program that simulates the deal of cards
from a blackjack deck. Each run of the program should return a num-
ber from 1 through 10, and the card represented by this number should
be removed from the deck stored in the calculator’s memory. When
the deck is exhausted, the program should return a 0 (or some other
appropriate signal).

This is a program that you are not likely to use. The difficulty
is that it deals all cards “face up.” It can, however, be squeezed onto
a small calculator, and it is an interesting exercise. If you have a
larger calculator, see if you can improve on the basic program once
you have produced it. Perhaps you might assign two user-defined keys
to each player. One will deal a card “face down” into a memory and
the other “face up” into the display. If you want to be ambitious,
design a solitaire game in which the calculator plays the dealer, uses
a fixed strategy for hitting itself or not, accepts bets, and keeps track
of winnings.

Solution: Instead of attempting to “shuffle” the deck stored in
memory, it will be easier to leave it in order and draw cards from it

randomly. We do so by generating a random whole number n with a
value between 1 and the number of cards in the deck (inclusive), then

counting through the deck to the n'" card and removing it. Eight mem-
ories will be needed, as follows:

m, ‘Number of cards from 1 through 9 left in the deck

m, Number of 10’s left in the deck

ms d, the total number of cards left in the deck
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my s, a random number “seed”

ms Location number of the card drawn in a given run (the
number n as defined above)

mg Number of cards examined so far in the search for the

n'** card
my Number of the card being examined in the search for

the nt? card
mg Unexamined portion of the deck (a part of the number

stored in m,)

The program can be broken into three parts: (1) generating
the number n, (2) finding the n** card and returning it, and (3) ad-
justing the contents of the memory registers.

To generate the number n, simply generate a random whole
number between 1 and d, without forgetting to change s. (You should
know how by now;if not, see Sec. 1.11.) Next, store n in m;. Decrement

d by 1 and initialize m; at 1 (ace).
Now to find the n™ card. The deck will be “stacked” with the

10’s (cards with a value of 10) on top, followed in order by the 1’s,
2’s,..., 9s. Consequently, first recall the number in m, and check

to see if it is greater than or equal to n. If it is, the n'! card in the deck
is a 10. Decrement m, by 1 and return with a 10 showing. If it is not,
store the contents of m, in mg. You must next search the part of the

deck stored in m;. Recall the number stored in m,, take its fractional

part, and store it in mg. At this point, we pass into the loop that will
search the part of the deck containing the cards 1, 2, . . . , 9 (presently

stored in mg). Increment m; by 1. On the first pass through the loop,
the contents of m; will be 1, indicating that the aces are about to be
examined. Recall the content of mg and multiply it by 10. The effect
of the multiplication is to move the decimal point one place to the
right and divide the number into two parts. The integer part will be
the number of aces left in the deck. Keep the integer part, I, and store
the fractional part (the “rest of the deck”) in mg. Add I to the contents

of mg (keeping the result in mg), and check to see if the result is greater
than or equal to n. If it is, the n'" card (or whatever card is now
indicated in m;) is an ace. If not, we have not yet counted through
enough cards. Loop back to the sentence, “Increment m; by 1.” On

the second pass through the loop, taking the integer part of 10mg will
count the number of 2’s in the deck. Proceed through the loop and
keep looping back until the content ofmg plus I exceeds or equals n. When
it does, it indicates that the n' card in the deck is the number stored in

m;.
You have now found the n™ card in the deck. The only re-

maining thing to do to remove it from the deck and return with the
appropriate number (the content of m;) showing. If k is the number in
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m,, then this card is removed from the deck by subtracting 107 from

the contents of m;. This completes the program except for the problem

of indicating when the deck has been exhausted, that is, when the

content of m, is 1.000000000 and the content of m, is 0. Go back to

the sentence, “Recall the number stored in m, and take its fractional

part,” in the preceding paragraph. At that point, check to see if the

fractional part is 0. If it is, the deck is exhausted. (Obviously, the part

of the deck stored in m, is exhausted, and if the part stored in m, were

not exhausted, the search for the n'" card would have ended before

reaching this part of the program.) The flowchart is shown in Fig. 3-

6. [Solution was realized on an HP-25 in 49 steps.]
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Fig. 3-6 Flowchart for blackjack

Notes: Blackjack is one of the few gambling games that gives the
player any real chance against the house. (A winning strategy for
blackjack has been described by Thorpe in his book, Beat the Dealer.)
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To be put onto an HP-25 or HP-33E this program has to be
squeezed. It is doubtful that it will fit onto a TI-57. Let us point out
a few shortcuts made possible by the way things are arranged in Fig.
3-6. Note that mz—in the fifth box at the left—is decremented by 1
and that there is also a 1 in the box above it. The latter 1 can be used
to do the necessary decrementing. Just decrement m; with register
arithmetic as soon as the 1 is put in the display and before the addition
is executed. A good space saving trick in general is to ask yourself if
a number put in the display, especially a 0 or 1, can be made to do
double duty. A more subtle example of this trick involves the number
10, which happens to appear twice in Fig. 3-6. Ordinarily, putting a
10 in the display takes two program steps since 10 is a two-digit num-
ber. Notice, however, that in both of its appearances in Fig. 3-6 the 10
is preceded by a box that places a 1 in the display, and a 10 can be
obtained from a 1 in just one step with the 10* key (INV log x on some
calculators).

Finally, look at the five boxes starting with the one marked
with an asterisk in the upper right-hand corner. The object of these
five steps is to put the fractional part of the number in the display
into mg, retaining the integer part in the display. The sequence given
in Fig. 3-6 will do the job, but it is too costly. Here is a sequence that
couldn’t be described in the flowchart. Note that INT(X) =
X — FRAC(X). The trick is to form INT(X) in the display using this
formula and to get FRAC(X) into mg before the subtraction is executed,

as follows:

HP Tl

ENTER -

FRAC FRAC

STO 8 STO 8

For a discussion of this type of trick see Sec. 1.2(10).

3.8 Concentration

Difficulty: 4

Calculator size: Medium

Concentration is a game normally played with a deck of cards
that are dealt face down on a table. The players take turns turning up
two cards at a time. If the two match, the player who turned themup
collects them and gets to turn up two more. If the cards do not form
a pair, they are turned back over and the turn passes to the next
player. Play proceeds until the deck is exhausted. The player who has
collected the most cards wins. Although luck plays a role in concen-
tration, the player with the most accurate memory of cards already
turned up almost invariably wins.
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A form of concentration can be programmed for the calculator.
This version of the game will require that your calculator have indirect
addressing (see Sec. 1.9). The deck of cards will be replaced by 36
numbers (a sum chosen more or less arbitrarily), two each of the num-
bers 1 through 18. These will be stored in 36 random memory loca-
tions. After the calculator has dealt out the “deck,” the players will
take their turns by recalling the contents of two of the 36 memories.
If the numbers in the memories are the same, the player scores a point
and takes another turn.

Since most calculators don’t have 36 memories, let alone the

number of other memories required for this program, you will need to
use multiple storage (see Sec. 1.14). Since each number being stored
will have at most two digits, you can pack four such numbers into a
single memory. (In fact, since most programmable calculators will ac-
cept 10-digit numbers, you could get five 2-digit numbers in each mem-
ory. However, another digit, whose purpose is described below, will be
required in each memory). The first memory used for multiple storage
will then hold the first four numbers. The contents of the memory
might be .12071807, for example, thus indicating that the first four
numbers are 12, 7, 18 and 7, respectively.

The program for concentration has two basic components. The
first is a routine for dealing the 18 pairs of numbers randomly into
the 36 memory locations. When you program this part, you will find
that the calculator takes a long time to execute it; our first version
took 20 minutes. We don’t want to give away the solution (skip to the
next paragraph if you don’t want any hints), but we did discover a
trick for speeding things up considerably. Suppose that the calculator
is part way through the routine of dealing out the numbers. It goes
back for another number and decides to put it in the tenth of 23 re-
maining empty slots. It would be time-consuming to start at the be-
ginning and search through all the slots until the tenth empty one is
reached. To shorten the procedure, attach to each memory register
being used for multiple storage a digit to the left of the decimal point
that indicates how many empty slots remain in that register. For ex-
ample, in the middle of the routine, the contents of the first memory
might be 2.00070007. The 2 to the left of the decimal point indicates
that there are presently two empty slots in that register. This device
can greatly facilitate the search for a particular empty slot.

The second component of the program is a routine for recalling
the contents of a given slot. When activated by the players after play-
ing begins, it works like this: When a number between 1 and 36, say
19, is entered in the display, it “turns over” the nineteenth card; that
is, it goes and finds the number stored in the nineteenth slot and

returns with it in the display.
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These two routines are enough to enable one to play the game,
although the players will have to keep track of the pairs already found
and keep score on a piece of paper. The latter operations can be per-
formed by the calculator too, but we recommend that you try to pro-
gram the fundamental routines first. If you are successful here, you
should be able to figure out your own improvements to automate the
game to your satisfaction.

Solution: We will first describe the routine needed to set up the
game: the random “deal” of 18 pairs of numbers into 36 memory
slots. Because four numbers are going to be packed into one memory,
nine memories will be needed for the 36 slots. Let these be memories
m,; through m;y. The routine for filling the slots will proceed like this:

Numbers 1 through 18 will be generated one after another in a mem-
ory and then parceled out, twice each into the 36 slots. A second mem-
ory will keep track of how many slots remain to be filled at each stage.
This quantity will have two functions. First, when it reaches zero, the
routine will be terminated. Second, and more important, it will be

used in the procedure for deciding where to put each number.
Suppose that there are 25 slots left to be filled. A little reflec-

tion will show that numbers 1 through 5 have already been dealt and
that number 6 has been dealt once. We are therefore working on the

- second 6. When we now generate a random (whole) number between
1 and 25—call it k—number 6 will be dealt into the k** empty slot.

The k' empty slot will be found in a two-phase operation. As previ-
ously discussed, each memory being used for multiple storage will
have a digit to the left of the decimal point indicating how many
unfilled slots it has available. Continuing with our example, suppose
that k is 7 and that the first four storage memories look as follows:

my;: 2.05000100
mi: 3.00000003
ms: 1.01040006
m4 2.05000002

By looking at the integer parts of numbers m,; through m,,, we can
determine that the seventh empty slot is in m,,. This determination
constitutes the first phase of the search for the k'* empty slot. The
second phase is to go into m4, find the proper empty slot, and put a
6 in it.

Now for the details. The first thing to do is initialize memories
my; through m,,. Other memories have to be erased, except for a mem-

ory containing a random number seed. (Suppose that mj contains the
random number seed. Then the program will begin by recalling the
seed from m;, clearing all memories, and storing the seed back in ms.)
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Furthermore, memories mj; through m,, must all be initialized at
4.00000000 (= 4). This operation is accomplished with indirect

addressing and a little loop that stores a 4 in m;, through m,,.
Let’s pause here to look at the memories involved:

m, Indirect addressing index (HP: I)
m; Number of slots left to fill (varies from 36 to 0 during

the course of the program)
m, Number to be placed in a slot (varies from 1 to 18 dur-

ing the course of the program)
ms; k, number of the empty slot into which the number in

m;,is to be placed (a random number between 1 and

the number in m,)

my Empty slot counter
ms; Random number seed

mg Unexamined portion of the fractional part of the con-
tents of the memory m; where the k'" empty slot is
known to reside (gets used in the second phase de-
scribed above)

m;  (.01) where j is 1, 2, 3, or 4 (gets used in the second
phase)

m;—mMjg Storage for pairs of numbers 1 through 18

fo Flag indicating whether the number in m, has been used
once or twice

The program is a sequence of loops. The “big loop” is governed
by the contents of m;, which start at 36 and count down to 0, at which
point the routine is terminated. Each time through the big loop a
number in m, is put into an empty slot indicated in m; by means of
two smaller loops corresponding to the two phases described above.

Let’s assume, then, that the initialization of m,; through m,

has been done, and it is time to start the big loop. Store the number
36 in m,;. Here we pass into the big loop. Add 1 to m, (which will
contain a 0 on the first entry into the loop) and raise flag 0, indicating
the first of two uses of the number in m,. Next, generate a random
whole number between 1 and the contents of m,;. This will be the
“random location” where the number in m, is to be placed. Store it
in mj. Let k stand for the number in m;. We now must find the k
empty slot, and we are ready for the next loop.

Store the number 11 in m, and a 0 in m,. Here we pass into

the first inner loop. Recall the contents of the memory whose address
is in m, [TI: RCL IND 0; HP: RCL(i)]. (When the loop is first entered,
doing so will recall the contents of m,;.) Take the integer part and add
it to the contents of m, (keeping the result in m,). Next we add 1 to
the contents of m,, preparing for the next run through the loop. Mean-
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while, m, is accumulating the number of empty slots available in mem-
ories m,; through the m; whose integer part was just added to m,.
Hence, we recall the contents of m, and compare them with those of
m3. If the former is smaller, we haven’t found the k' empty slot yet.
We must loop back to the third sentence of this paragraph. If m, = mg,
we have found the k™* empty slot; it is somewhere in m;. The next thing
to do is go into m; and find it, which takes us into the next loop.

The function of the second inner loop is twofold. First, we want
to find the k'' empty slot, but at this point we have counted pastit;
the number in m, is greater than or equal to k. Thus, we will begin
by subtracting from m, the number of empty slots in m;. Then we will
go into m; and start looking for the empty slots one at a time (the
mechanics of this will be explained below), adding one to m4 as each
empty slot is found. When m, equals mj, the k* empty slot is found.
Second, as the above is going on, we will be building a “multiplier,”
a power of .01, to be used to put the number in m, into the proper slot
once it has been found. Suppose, for example, that we want to get the
number 6 into the second slot in m;, which presently looks like this:
2.05000002. We must multiply 6 by .0001 [=(.01)?] and add the result

to m;. The multiplier, ,0001, will get built in m; during the course of

the loop, and m; will be initialized at 1. In the loop, the slots in m;

will be examined one at a time, and as each slot is examined, m; will

be multiplied by .01. Thus, it will contain the proper multiplier when
the proper empty slot is found.

The first thing to do is initialize m; at 1. Next we want to

recall m;. (If you go back to the paragraph before last, you will see
that the number in m, is one larger than the index i that we want.
This is because m, was incremented by 1 immediately after recalling
m; and before it was discovered that m; contains the k'* empty slot.)

We get m; by subtracting 1 from m, (the same 1 used in the previous
step can be used here) and then indirectly recalling m; through m,
[RCL IND 0 or RCL(i)]. Take the integer part of m; and subtract it

from m, (see previous paragraph). Take the fractional part and store
it in ms.

Here we enter the second inner loop. We want to examine mg

two digits at a time. This is done by chopping off the first two digits
of mg on each run through the loop. Multiply mg by 100 (using memory
multiplication), thus moving the decimal point two places to the right.
Then take the reciprocal of 100 and multiply it into m;. Recall ms; and
take its integer part, which will comprise the contents of the first slot
in mg. We want to check to see if the slot is empty, but first subtract
the number in the display from mg (using memory arithmetic so that
the numberis retained). The effect of this is to chop the first two digits
off the contents of mg. Now we check to see if the number in the display
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is 0. If it isn’t, the slot is filled. Loop back to the sentence, “Multiply
mg by 100.” If it is 0, the slot is empty. |

Next we want to know if it is the right slot. Add 1 to m, and
compare the new m, with ms. If the two are not equal, we haven't
found the k™ empty slot yet. Loop back to “Multiply me by 100.” If
they are equal, we have finally found the k'™ empty slot. All that
remains is to store the number in m, in the slot. As previously ex-
plained, we do so by multiplying m, by m; (but don’t use memory
arithmetic in m,; we want to use the number in m, twice) and adding
the result to m; (using indirect addressing). Finally, subtract 1 from
m;. This has the effect of reducing the integer part of m; by 1, indi-
cating that there is one less empty slot in m;.

We have now exited the second little loop. It is time to find out
what is happening in the big loop. Decrement m; by 1 and check to
see if m, is down to 0 (using the “decrement skip if zero” key if you
have one). If it is, since the routine is finished, stop. If not, we need to
loop back for another number to store. But first check the flag f, to
see whether the number in m, was just put into a slot for the first or
second time. If the flag is up, the number has only been used once.
Since we don’t want to generate a new m,, we lower the flag and loop
back to the sentence, “Next generate a random number between 1 and
the contents of m,;,” four paragraphs back. If the flag is down, we do
want a new number and must loop back to the third sentence of that
same paragraph. This operation completes the first of the two routines
in the program.

Luckily, the second routine is easier to describe and to program
than the first. It works as follows: A player enters the number of a slot
from 1 to 36 in the display. The program then retrieves the contents
of that slot. The routine has two phases. In the first phase, it figures
out which of the memories m;; through m,, contains the desired slot

and where the slot is located in that memory. In the second phase, it
goes in and retrieves the contents of that slot in a two-part chopping
operation that chops off all digits preceding and following the ones we
want.

To realize the first phase, we need to do a little old fashioned
“quotient and remainder” division.* Suppose that we want to retrieve
the contents of slot number 23. Since there are four slots in each of
the memories m;; through m,,, the twenty-third slot will be the third
slot in memory ms Notice that 23 divided by 4 is 5 with a remainder

of 3, and the slot we want is the third in the sixth (5 + 1) memory. In

general, if we want to find the k™ slot, we divide k by 4, getting a
quotient q and remainder r. Thus, k = 4q + r. A little reflection will

*For a thorough discussion of quotient and remainder division, see Sec. 2.11.
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show that the k'" slot is then the r'" slot in the (q + 1)** memory. [The
q memories preceding the (q + 1)* contain a total of 4q slots. The
(4q + r)'" slot is therefore the rt" in the (q + 1) memory). There is a
bit of a problem here if r turns out to be 0, but we will discuss that in
the detailed description below. In the second phase, we wantto retrieve
the rt slot in mg, ,.%

To continue our example, suppose that we want to retrieve the

third slot in memory ms which might look like this: .10071308. First,
multiply this number by 10,000 (= 100%= 100""". The result is
1007.1308. Now chop off the digits to the left of the decimal point by
taking the fractional part: .1308. Multiplying by 100 yields 13.08, and
chopping off the digits to the right of the decimal point by taking the
integer part yields 13, which is the number we want. In general, to
retrieve the r'" slot in memory m, ; ;, we multiply by 100", take the
fractional part, multiply the result by 100, and take its integer part.
Now for the details.

Notice that in the above computation, it is r — 1, rather than
r, that gets used. Thus, it will be convenient if things can be arranged
so that r — 1 rather than r appears at the end of our quotient and
remainder division. This effect can be accomplished by the simple ex-
pedient of subtracting 1 from k before carrying out the division,
thereby reducing what is “left over” after the division (that is, the
remainder) by 1. More important, this trick takes care of the problem
arising when r turns out to be zero.

Let’s examine this trick a little more closely. Suppose that we
want to retrieve the contents of some slot k and when we divide k by
4 we get a quotient q and remainder 0 (don’t worry about how the
quotient and remainder are found; it will be explained shortly). Then,
k = 4q + 0 = 4q. In this case, unlike all others, the slot we are looking
for is not the r'® slot in mg, ,; it is the fourth slot in m,. (If you don’t
see this, try an example. Suppose that k = 20 and then figure out what
q is and where the k' slot is.) Thus, the number identifying the mem-
ory that the k'" slot is in (namely q) is 1 less than it is in the other
cases. Hence, we wish to arrange things in such a way that q gets
reduced by 1 for this special case so that we can always use q + 1 to
identify the memory containing the k' slot. This is exactly what will
happen if we subtract 1 from k before dividing by 4. Since 4 will “go
into” k one fewer time, q will consequently be reduced by 1. (Notice
further that the remainder will turn out to be 3, which is exactly what
it should be). Our basic algorithm for the first phase of this routine,
then, will be to subtract 1 from k, divide the result by 4, and put the

5 Here and in what follows, m, , ; refers to the (q + 1) memory being used to
store our numbers. Thus, if q is 5, m, ; ; would be m¢ rather than ms.
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answer in quotient and remainder form. The quotient and remainder
will then be used in the second phase to retrieve the contents of the
kt" slot.

Now we need to explain the mechanics of quotient and re-
mainder division. Actually, it is quite simple. To divide the number
k by the divisor d (in our case d will be 4), first store k (it will be
needed later). Next, divide the k still in the display by d, and take the
integer part of the result. This will be the “whole number of times”
that d goes into k (that is, it will be q). We store q somewhere so that
we don’t lose it. To find r, multiply q by d and subtract the result
from k. The result will be r, and we store it for later use. We might as
well store r where we originally stored k since we no longer need k.

At last, we can describe the whole routine! A player will have
entered a number k in the display. We want to retrieve the contents
of the k' slot. Subtract 1 from k and divide the result by 4, getting
the result in the quotient and remainder form described above. Store
q and r somewhere. Next add 16 to q, and store the result in m,. This
will be the address of the (q + 1)* memory storing our numbers. In-
directly recall the contents of this memory through m, (RCL IND 0),
and multiply the result by 100" (recall that r is now the r — 1 of two
paragraphs back). Take the fractional part of the result, and multiply
it by 100. Finally, take the integer part of this number, and we are
done!

There is one annoying technicality that still needs to be con-
sidered. How are we going to compute 100" in the previous paragraph?
Should we use the y* key, the difficulty is that most calculators employ
logarithms in their innards to compute y*, with the result that the
answer may not be precisely correct (this is not true of the HP-67,
which uses a different algorithm for y* when y and x are both positive
whole numbers, as they are here). This discrepancy can wreak havoc
with our multiplier 100". To make the answer precise, we need to
round it off to the nearest whole number. Some calculators have func-
tions that will do this; consult your owner’s manual. If you don’t have
this function, don’t despair; examine Sec. 1.12. (Also see Sec. 1.10 for

a further discussion of the y" key.) The flowcharts for this program are
shown in Figs. 3-7 and 3-8. [Solution was realized on a TI-58 in 205

steps.]

3.9 How Random Are These Numbers?
Difficulty: 2

In the preceding programs, you have been using random num-
ber generators for various purposes, usually to produce a random
whole number between 1 and some given number n. The question



Games 293

START Memory
0 Indirect

 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

    
 
 

 

 
       

 

1 # of empty slots
Xe mg

l 2 # to be placed

CLEAR 3 Slot to be filled

MEMORIES
| 4 Empty slot counter

5 Random #
m 5% X

I 6 Chopping block

7 |oy
mo= I

I 8 k—1

91] q
> Mm y= 4

!
10 r

1
mo<mg +1

12

13

YES
14

Dealt

NO 15 out deck

16

m,<36

I 17

18
mo<emop + |=

19

SET
FLAGO

 
REPLACE THE OLD
RANDOM NUMBER IN mg
BY THE NEW RANDOM
NUMBER IT GENERATES

mz INT (mms) + |

   

    

  
Fig. 3-7 First flowchart for concentration (cont'd on next page)



224 Mathematical Recreations for the Programmable Calculator

 

Lo

  
xe INT (mg)

 
 

 
Fig. 3-7 First flowchart for concentration (cont'd)



 

 

 
Fig. 3-7 First flowchart for concentration (cont'd)

Memory
 

k-1
  

mge—k—|

q
 

 

'
r
 

 

mg<

INT(mg/4)
 r
 

mio+mg —4mg

 

' 
moe mg + Il

 
' 

Xx <= Mmng

 
'   

Deck

    x = 100 (FRAC
(100™10}-x))   

'

Fig. 3-8 Second flowchart for concentration

225



226 Mathematical Recreations for the Programmable Calculator

arises: Just how random are these numbers? In this section we will
describe three tests that you can run.

Suppose that you are generating random numbers between 1
and n and that k is some particular number in this range. The prob-
ability of k turning up in any one run of the program should then be
1/n. Thus, in a long sequence of R runs (R being some large whole
number), k should turn up R(1/n) times. Since the probability of k
turning up twice in succession should be 1/n? in the course of R runs
this should happen (R — 1) (1/n? times [because k has only (R — 1)
chances to turn up twice in a row]. Similarly, k should show up three
times in succession (R — 2) (1/n?®) times.

Problem 1: Write a program that collects data for the above test. It
should contain a subroutine that generates random whole numbers
between 1 and n, where n is selected by the user (and stored in some
memory before the program is run). The user also selects a particular
number k in the 1-to-n range and the number of runs R of the random
number generator subroutine. When the program is run, it goes
through R runs of the above subroutine and counts (1) the number of
times that k turns up, (2) the number of double occurrences of k, and
(3) the number of triple occurrences of k.

Another problem to consider is how long it will take for your
random number generator to start repeating itself. The random num-
ber generator starts with a number called the seed and applies some
process to it to get a new number to which it applies the same process

to get a third number and so on. The numbers so generated are both
the output of the random number generator and the input used to
generate more numbers. Now suppose that after some length of time
a number that has already occurred turns up again. Then, since the
same algorithm is being applied to generate the next number, the
number that followed the original occurrence of this first number will
also be repeated on the next run of the algorithm. In fact, the algo-
rithm will repeat the entire sequence of numbers just as it produced
them originally. The random number generator will be in a “cycle.”
In many circumstances, you will want to know the length of the cycle.
For example, if you were trying to generate random whole numbers
between 1 and 500, you would not want to get caught in a cycle of

length 200, because that would mean that at least 300 numbers could

not possibly appear.
Of course, any random number generator must eventually re-

peat itself since there are only finitely many different numbers that
it can possibly produce, but the question is, starting from a given seed,

how long willit take before some number recurs and how long will
the cycle be that starts from the recurrent number. See Sec. 1.16 for
a program (the Pollard p-method) that solves this problem.
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It might seem paradoxical at first, but if your random number
generator is truly random, you can get it to generate the number =.
Here’s how it is done. Use the random number generator to produce
a sequence of random points in the “unit square” shown in Fig. 3-9.
The unit square consists of points (x, y) both of whose coordinates are
between 0 and 1. Some of these points will also fall inside the “unit
circle” (which consists of those points whose distance from the origin
is < 1). The ratio of the number of points falling inside the unit circle
to the total number of points produced should be close to the ratio of
the area of that part of the unit circle that lies inside the unit square
to the area of the unit square. A little calculation will show that the
latter ratio is n/4. Computing the former ratio for a large run of ran-
dom points in the unit square and multiplying the result by 4 should
then give a reasonable approximation of 7. The question of how good
one should expect the approximation to be will be discussed in the
solution.

Problem 2: Write a program for approximating = from your random
number generator using the method just described.

Solutions to Problems

Solution to Problem 1: For the data collecting program, you will
be given the numbers n, k, and R. These will be put into memories.

The complete memory contents will be as follows:

m; Random number seed
m, Counter for occurrences of k

ms; Counter for double occurrences of k

my Counter for triple occurrences of k
m; Repeat counter (see discussion below)
Mg k

my n

mg R

 

  
 

Fig. 3-9 Unit square
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The user will initialize m;, mg, m;, and mg. Memories m,

through m; will start at 0, m; being used to indicate whether the last
number generated was a k. (More generally, if the number in m; was
i, then the last i numbers generated are all k’s.) This number will be
used to produce the count in m; and m,.

Your program needs to do five things: It must (1) generate a
random number between 1 and n; (2) check to see if the number is a

k; (3) check to see, if it is, whether the last number was also a k; (4)

check to see, should the answers to (2) and (3) both be yes, if there has
been a triple occurrence of k; and (5) keep track of the number of runs.

Now for the details. First generate a random whole number
between 1 and n (we assume that you know how to do this by now).
Next, check to see if this numberis equal to k (the number in mg). If
it is not, set ms to 0 and go to the “end of loop” routine: Decrement
mg by 1 and check to see if it has gotten down to zero. If it has, the
program stops. If not, it goes back to step (1). If the number generated
is equal to k, add 1 to m; and to m; (which is counting how many times
in a row k has occurred). Now recall the contents of m5 and check to
see if they are = 2; if they are not, got to the “end of loop” routine.

If they are, add 1 to m3; and go on to see if the number in mj is = 3.
If it is, add 1 to my and then go to the “end of loop” routine. The
flowchart is shown in Fig. 3-10. [Solution was realized on an HP-25 in
39 steps.]

Solution to Problem 2: Let's think of the problem this way: You
make a series of random “shots” into the unit square, and if a shot

lands in the unit circle, you count it as a “hit.” Tabulate the total
number of shots and the total number of hits. The ratio of hits to shots
should be approximately 7/4; hence you multiply the ratio by 4 to get
an approximation of 7. A shot is just a random point in the unit square,
which is, in turn, just a pair of random numbers between 0 and 1. The
algorithm then, will go as follows: (1) Generate two random numbers
between 0 and 1. (2) Take the square root of the sum of the squares
of the numbers (this will be the distance of the point from the origin)
and check to see if it is less than 1. If it is, score a “hit.” Whether or

not the shot is a hit, score a shot. (3) (Optional) Calculate the ratio of
hits to shots, multiply by 4, and flash the result. (4) Go back to step
(1).

There are two possible formats for the program. A program

embodying all four parts just described uses the “dramatic effect”
format. The user gets to watch as the output slowly converges toward
7. In the “research” format, you want to collect data as swiftly as
possible, and hence step (3) is skipped. Step (4) can also be augmented
by inserting a counter, which is set for a specific number of runs and
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Fig. 3-10 Flowchart for collecting data to test the randomness of numbers

gets decremented after each passage through step (1) and (2), the pro-
gram being terminated when the count reaches 0. We will give the
details of the dramatic effect format, leaving the modifications nec-
essary for the research format to you.

Three memories will be needed:

m, random number seed

m, number of hits

ms, number of shots

The program goes as follows: Generate a random number be-
tween 0 and 1 and square it. If your calculator has reverse Polish logic,
you can let this number sit in the stack until it is ready to be added
to the square of the second number. If not, temporarily store the num-
ber, say in m3. Next, generate another random number between 0 and

1, square it, and add it to the previous squared number. Take the
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square root of the result and compare it with 1. If it is smaller, add 1
to m,, the “hit” register; if it is larger, skip this step. In either case,
go on and add 1 to m,. Now recall m; and m, and divide the former by

the latter. Multiply the result by 4 and pause with this number in the
display. Finally, go back to the beginning of the program for the next
run.

Note that the random number generator is used twice in the
program. When we programmed the solution, we wrote the random
number generator into it twice. This was not very elegant, but, on the
other hand, we were not cramped for space. In addition, it saved a

little (very little) running time, since subroutines or some sort of flag
would be required if the generator were going to do double duty. The
flowchart is shown in Fig. 3-11. [Solution was realized on an HP-25 in
33 steps.]

START Memory
0 Random number
 

 
 

    

 
        

    

  
 

 

 

 

 

 

    
  

between 0 and 1

Vv 1 Hits

X - mo +
RAND (mg) 1 m+ 2 Shots

{ i 3 Temporary memory

-— Xe Initial State of
mo x 4m /m; the Memory

v Random number

' 0
xX -—

RAND (mg)

mo <x

X

V x2 + m3

YES

mje

m, +I ’   

Fig. 3-11 Flowchart for approximating pi from a random number generator
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Notes: One step can be saved in the preceding program by modifying
the test that determines whether a point (x, y) is in the unit circle.
The program as given computes the distance from (x, y) to the origin
(0,0), or \x* + y2. It then checks whether this distance is less than 1:

JX? + y* < 1? By squaring both sides of the inequality, one can see
that (x* + y?* <1 if and only if x? + y? < 1. Thus it will suffice to run
the latter test, thereby doing away with the need to take a square
root.

If you have run the program for approximating =, you have
noticed that it doesn’t produce a very good approximation. The ob-
vious question is: How good should one expect the approximation to
be if the random number generator is working properly? It is difficult
to give a straightforward answer. We know that for longer runs the
approximation should improve; but how fast should it improve? Also,
if the random number generator is truly random, it conceivably could
produce a horrible approximation from an unlucky run. Thus we can
say only that it should produce “such and such” an approximation
with a certain probability.

It happens, for example, that a run of 100 points should pro-
duce an approximation of = with an error no larger than .1 with a
probability of .98 (that is, 98 percent of the time the approximation
should fall between 3.04 and 3.24). A run of 900 should produce an
approximation of the same level of accuracy 99.99 percent of the time.
As the desired level of accuracy goes up, however, the number of runs
required to have a decent expectation of obtaining that level of accu-
racy rises dramatically. Table 3-1 summarizes some of these expec-
tations.

Table 3-1 Probability expectations
 

 

Probability that

Length Maximum maximum error
of run error will not be exceeded

100 A 98%

900 A 99.99%
900 .01 51%

5,000 .01 90%

10,000 .01 98%
10,000 .001 18%

40,000 .001 35%

160,000 .001 65%

1,000,000 .001 98%
 

Look at the first, middle, and last entries. They are special

cases of the following rule: To get an error of less than 107% with 98
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percent certainty, it is necessary to use a run of length 10%. The last
entry says that to get an error less than 1072 with 98 percent certainty,
a run of 10° is necessary.

Before you set up your calculator to do a run of 1,000,000,
consider what will happen if your random number generator starts
repeating itself. Since it will then be producing no new information,
you cannot expect the level of accuracy to improve from that point on.
To determine the maximum degree of accuracy you can expect from
your calculator, you will first need to find out how many nonrepeating
random points you can produce in the unit square.

3.10 Scorekeepers
Difficulty: 1

Many games require a scorekeeper; this is an ideal job for your
calculator. Its memories can keep track of the scores of many players,

and it can even keep track of whose turn it is. Not only are these
programs useful in themselves, they can also be used as subprograms
in other games in this chapter. (We have, for example, included one
in our solutions to Basketball and High Low II.)

Since different games need different kinds of scorekeepers,
let’s start with an easy one.

Problem 1: Write a program to keep the cumulative score of two
players. It should work like this: Suppose that either player can score
points at any time. He keys in the points as he scores them. The
calculator should then add his points onto his total score and display
his new score.

When you try this problem, you may have a little trouble right
at the beginning. When the calculator is presented with a score, how
does it know whose score it is? (See our solution for the answer.)

In certain games, however, the players take turns on a rotating
basis, and each player can score only on his turn. (Scrabble and bowl-
ing are examples of such games.) For these games, the trouble just
mentioned vanishes. The calculator has only to keep track of whose
turn it is; consequently, when a score is entered, it knows whose score
it is.

Problem 2: Write a program to keep score for four players (called 1,
2, 3, and 4 by the calculator) who take turns on a rotating basis. It

should work like this. When a player enters the points he has earned
at the end of his turn, the calculator should first compute that player’s
new score and display it for a beat. The program should then stop,

displaying either a 1, 2, 3, or 4 to indicate whose turn it is next, and
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wait patiently for that player’s points. If your calculator has user-
defined keys, write a routine for one key to review the scores of the
four players, one by one.

Problem 3: Here is a variation on Problem 2. Suppose that there are
just three players, called 1, 2, and 3 by the calculator. Suppose also
that no player’s total score ever exceeds 999. Then the entire score-
board can be displayed at once, in a ten-digit number, as follows:

Ld Led Ld
Player eo 1st 2nd 3rd
on move score score score

 

Decimal

The first digit to the left of the decimal point will be a 1, 2, or 3,

depending on whose turn it is. Nine digits to the right of the decimal
point are divided into three groups of three, each group containing the
score of the corresponding player. For example, if it was the second
player’s turn, and he had 170 points, while the first player had 21,
and the third player 156, the display would show: 2.021170156.

Write a program to keep score in this fashion. As in Problem
2, the three players take turns on a rotating basis, and the program
should keep track of whose turn it is.

If you solved Problems 2 and 3 above, your program used the
fact that the player’s scores were entered in a definite order in order
to figure out whose score was being entered. Many games are not like
that at all, however, as the next problem shows.

Problem 4: Write a program to keep the cumulative score of six
players. It should work like this. Each of the six players has one I.D.
number, namely one of the digits 1 through 6. A player can key in
what points he has scored at any time as follows. He first keys in his
I. D. number and then the points. The program should then sum these
points in the appropriate register and halt with the new total score of
that player in the display.

Solutions to Problems

Solution to Problem 1: Let us store the first player's cumulative
score in m, and the second player’s score in m,. When a player enters

the points he has just earned, the calculator should add them to either
m, or m,, depending on whose points they are. But how is the calcu-

lator to know whose points they are? If your calculator has user defin-
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able keys, the solution is simple. Each player has his own user-defin-
able key, and hence his own little program to update his score. Each
of the two little programs would of course increment the appropriate
register (m; or m,) by the number of points keyed into the display and
then recall the contents of that register to display the players new
score. The flowchart is shown in Fig. 3-12.

If your calculator has no user-definable keys, it has to be told
whose points are being entered. A simple way to do this is to key in
the first player’s points as a positive number and the second player’s
as a negative number. (A score of zero does not need to be entered!)
The routine would begin by testing to see if the points entered were
positive or negative. It would then branch to the appropriate one of
the two little programs described above. (The second player’s points
should be subtracted from m,, for they are in the display as a negative
number.) The flowchart is shown in Fig. 3-13.

Here is a little frill you can add. Store the player’s number
(1 or 2) in the first decimal place to the right of the total scores accu-
mulated in m, and m,. Thus, a first player’s score of 20 points would
be displayed as 20.1; the same total for the second player would be
20.2. For this trick, the registers should be initialized, as follows:

m,; = .1 and m, = .2. To begin the game, this could be done by hand,

but it’s easier to write a simple routine to do it automatically.
Here is a slightly different version, which will work only if the

scores stay below 99999. It allows us to store both scores in one reg-
ister, say m,. We put the first player’s score in the five decimal places
to the left of the decimal point and the second player’s score in the
five places to the right. Thus, if the first player were winning 213 to
190, then m, = 213.00190. To update m,, the first player’s points are
simply added to m,. But the second player’s (negative) points should
first be multiplied by 10~° and then subtracted from m,. [We recom-

Memory
PLAYER | PLAYER 2

1 Player 1's score

2 Player 2's score

mem; + x moe mop+ x

 

 t 
    

    

STOP

 

d
t

Fig. 3-12 Flowchart for keeping the cumulative score of two players
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Fig. 3-13 Flowchart for program of Fig. 3-12 using calculator without user-definable

keys

mend that you initialize this program by storing 107° (.00001) per-
manently in register m; rather than having the program make the
number anew every time; see Sec. 1.2.] The flowchart is shown in Fig.
3-14.

Solution to Problem 2: Here is a simple solution. We use four reg-
isters—m,, m,, m3, and m,—to keep track of the cumulative scores of

the four players. And we write four routines, one for each player. Each
routine first sums the display into the appropriate register, recalls the
new contents of that register for a beat, then places the number of the
next player (1, 2, 3, or 4) into the display and halts. These four routines
are simply stacked up on top of one another with an appropriate GTO
statement at the bottom of the stack to reset the program pointer at

START

YES (> NO

moe mg +x memo — 107x

[ ]

  

     
 

Fig. 3-14 Flowchart for program of Fig. 3-12 allowing both scores to be stored in one

register
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the top again. Thus, after each player keys in his score, the program
halts at the beginning of the next player’s routine.

You can add the following frill (as in Problem 1) to this pro-
gram. Don’t just store each player’s score but also his number in the
first decimal place to the right of the decimal point. Thus, a display
of 948.3 would mean that the third player has a total score of 948.
(This method can be used on an HP 25 for as many as seven players.)

Here is an alternative solution. We will still use the four reg-
isters—m;,, m,, ms, and m,—to store each player’s score and his num-

ber. But this time the contents of the register will be as follows:

m, Score and player number of the player whose move it
is

my Score and player number of the player next in line
mg Score and player number of the player next in line
my Score and player number of the player last in line (the

player who just completed his move)

Consider the flowchart in Fig. 3-15, which begins with x, the
new points just keyed in by the player on the move. The first box

Xe—x +m,

'
memo

 

 

 

 

 

 

 

 

    
   DISPLAY x

FOR ONE
BEAT

 

  

 

Fig. 3-15 Flowchart for keeping score for four players taking turns on a rotating basis
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calculates the player's new score, while the next four boxes “rotate”
the contents of the registers. The last two boxes display the new score
(and player number) of the player who has just moved and the score
and player number whose move it is next, respectively.

Solution to Problem 3: Let us use register m, to store the 10 digit
scoreboard, as described in the statement of Problem 3. Our initial

task is to add the new points, x, just earned by a player to his total

score. What must be added to m,? Remember that

me= _ . Loved Loven db Luana
 

Player A 1st 2nd 3rd
number Decimal player's player’s player’s

score score score

Thus, either 1073x or 107%x or 10~°x must be added to m,, depending

on whether it is the first, second, or third player’s move, respectively.
This player’s number is the digit to the right of m,. The first step,
therefore, is

m, « m, + (1073)INT(my) (x)

Next, we must update the player number. Usually, the step

my, < my, + 1

will do, except that it changes a 3 to a 4 rather than back to a 1.
Thus, we next test to see if INT(m,) = 4. If it is, we subtract

3 from m,; otherwise, we leave it alone. In the flowchart shown in Fig.

3-16, we again begin with the number of new points, x, keyed in by
the player whose move it is.

Solution to Problem 4: If your calculator has indirect addressing,
the solution is easy. If not, it can still be done, as follows. As in the

first solution to Problem 2, each of the four players has his own register
(m;, m,, m3, or my) for his total score (and player number if you like),

and each has his own routine in the program to update that register.
But again, how does the calculator decide which of the four registers
to update? Well, the program will successively subtract 1 from the
player I.D. number, testing at each stage to see if it is still nonnega-

tive. If it is, it continues to subtract 1 and test. When the I.D. number

finally becomes negative, the program is directed to the appropriate
routine.

The flowchart shown in Fig. 3-17 begins with the new points
to be accumulated, y, and the I.D. number of the player, x. (If you have
an algebraic calculator, y will have to be stored in some register during
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mo<mo+ | +
(10-3) INT(mo)
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DISPLAY

mo

STOP

Fig. 3-16 Flowchart for keeping score for three players displaying the entire

scoreboard in a ten-digit number

testing.) For technical reasons, this particular program begins by sub-
tracting 2 from the I.D. number. Had we used the test, x > 0?, rather

than the test, x = 0?, this would not have been the case. Which version

you use depends, of course, on which of the two tests your calculator

provides.

3.11 Timers

Difficulty: 2
Calculator Size: Small

Most games requiring some thought (such as chess, checkers,
go, backgammon, and scrabble) can be enlivened by the use of a timer.
Timers can be of two types; we will consider them one at a time. The
simplest one limits the amount of time spent by each player on each
move. The players in a chess game may agree for example, to take a
maximum of 20 seconds per move. They use a timer to ring a bell 20
seconds after it is reset. A player has to choose his move, make it, and

reset the timer for his opponent’s move before the bell rings. If the
bell ever rings, the player who failed to reset it in time loses, whatever
his position on the board.

Your calculator has in its innards a clock that coordinates the
myriad tasks the chip must execute. It is not designed for keeping
absolute time, only for arranging these tasks in the proper order.
Nonetheless, the clock keeps a relatively steady beat, perhaps influ-
enced by such factors as temperature, battery charge, and the age of
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Fig. 3-17 Flowchart for keeping the cumulative score of six players

the calculator. You can therefore expect that if your calculator is called
upon to do the same calculation several times, it will take about as
long each time.

Problem 1: Write a program that will count down from a positive
integer n (input by the user) to 0 and then halt on an error message.
It shoud flash consecutively the numbers n,n — 1, n-2,..., 2, 1,

and O for one beat each and then give an error message. The message
signals that a player has overrun his time.

Problem 2: If your solution to Problem 1 was anything like ours,
you might have noticed that the time between flashes of n, n — 1,

n—2,...,2,1, and 0 was relatively constant. Let us call the time
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between flashes a unit of time. As an extra to Problem 1, you might
try to extend the unit of time in your solution to some conventional
unit, such as 5 seconds. This is easily done. Merely “fatten up” the
main loop of your program by making it do a few extraneous calcu-
lations. A little experimentation, conducted by timing your program
over long runs, should enable you to find a loop that takes close to 5
seconds to execute.

Program your calculator to act as such a timer. The program
should work as follows: The players agree on the number n of time
units allowed per move and store n in the calculator. The program
then counts down from n as described in Problem 1. If left alone, it

should reach 0, at which point it will flash an error message to indicate
that the player whose move it is has run out of time. Usually, however,
a player will stop the clock before this happens, reset it to n, and start
it again for the other player. (You should arrange your program so
that the fewest possible key strokes are required to stop, reset, and
restart the clock.)

The next type of timer does not limit each move but rather the
cumulative time a player spends on all his moves. Two clocks, there-
fore, are needed, one for each player. While a player is pondering his
move, his clock is busy counting down and his opponent’s clock is still.
After he makes his move, he presses a button to shut off his own clock
and starts his opponent’s clock from where it left off. If a player’s
clock ever runs out, he loses, whatever the current state of the game.

A player begins the game with a large number N of time units, which
he is free to apportion among his moves as he likes so long as the total
time he has spent thinking on his move does not exceed N units.

Problem 3: Program your calculator to act as such a timer in a two-
player game. At each time unit, it should display all of the following
information on one “scorecard” for one beat: (1) The number of time
units remaining on the first player’s clock should appear in the five
decimalplaces to the left of the decimal point. (2) The number of time
units remaining on the second player’s clock should appear in the five
decimal places to the right of the decimal point. (3) A negative sco-
reboard indicates that it is the first player’s move and his clock is
running. (4) A positive scoreboard indicates that the second player's
clock is running.

Solutions to Problems

Solution to Problem 1: The solution is quite easy. Consider the
flowchart shown in Fig. 3-18, which begins with m, = n. The step,
X < \m,, is the only one requiring any explanation. It is there to pro-
duce an error message when the timer has reached m, = —1.
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Fig. 3-18 Flowchart for Problem 1 involving timers

Solution to Problem 2: To solve Problem 2, let us suppose that n
has been stored initially in register m,. You need only replace the step
in the flowchart of Fig. 3-18 by the sequence shown in Fig. 3-19. Then
a player simply stops the program, resets the program counter to the
top of the program memory, and starts it off again.

=0 Timer

1 n

 

 

 

    
  

mom
 

Fig. 3-19 Flowchart for Problem 2 involving timers

Solution to Problem 3: We will use a single register, m;, to store

the number of time units remaining on both clocks, as shown below:

m= ya) oy Lia
2nd player’s

clock

1st player’s
clock

Decimal

On each run, the main loop of the program will subtract either
1 (to decrement the first player’s clock) or 107° (to decrement the
second player’s clock) from ms. The quantity to be subtracted will be
stored in m;. The constant 10~° will be permanently stored in m,. One
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more register, m,, will store either —1 or 1, depending on whether m;

should be displayed as a negative number (when it is the first player’s
move) or a positive number (when it is the second player’s move).

Now consider the flowchart shown in Fig. 3-20, which must be
initialized with my, = 1, m, = 107°, and m3 equal to the initial config-
uration of the clocks. (If, for example, each player is to be allowed

7500 time units for the game, you would begin with M; = 7500.07500.)
The first three boxes insure that m;, «<— 1 if it is the first player’s turn
and m, «< 107° if it is the second player’s. The box changes
the sign of my (= + 1) so that when a player has completed his move
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Fig. 3-20 Flowchart for Problem 3 involving timers
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and reset the program pointer, the program will automatically switch
clocks. The instruction decrements the appropriate clock,
whereas the next two boxes display the scoreboard mg, with the ap-
propriate sign (my, = + 1) for one beat. Note that the next box calcu-
lates the product of the two scores, INT m; and FRAC m;. Thus the

test

is answered no only when one of the two clocks has run out of time.
To use this program,first initialize the calculator as described

above and then start the program for the first player. As a player
completes his move, he must do three things: (1) stop the program by
punching R/S, (2) reset the program pointer to the top of the flowchart,
and (3) restart the calculator. If your calculator has user-definable
keys, you should assign one of them to this program. Then each player
will need to punch only two keys to change clocks, an R/S to stop the
program, and then the user-defined key.

3.12 Hockey

Difficulty: 3

Calculator size: Medium (or small)

This is a “simulation” game similar in principle to many
games found in bars and electronic game arcades. The game is set up
for playing in a plane with x and y coordinates, the “puck” is a point
whose position is given by a pair of coordinates, and the “goal” is a
segment of the x-axis running between —r, and r, (see Fig. 3-21). The
“radius” of the goal, r,, can be set by the players to make the game
easier or more difficult. The game has two players, a “shooter” and
a “defender.” The shooter makes a shot by selecting a pair of coor-
dinates (xo, yo) representing the initial position of the puck and the
angle a of the shot toward the goal. The defender, on the other hand,

has a “block” with which he defends the goal. The block is a movable
segment of the x-axis. He positions the block by selecting the x-coor-
dinate of its center; it then extends from (b — r,) to (b + r,) along the

x-axis (where r, is the radius of the block; see Fig. 3-21). The radius

of the block can also be set by the players.
Once the shooter has made his shot and the defender has po-

sitioned his block, the puck is “fired.” The program outputs a series
of six positions of the puck as it travels towards the goal (the number
of positions is arbitrary). The first position is (x,,y,), and the last po-

sition is (x,0), when the puck strikes the x-axis. Now, let the x-coor-
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Fig. 3-21 Positioning of the block in hockey

dinate of this point be labeled x.. If x, is between —r and r (the easy
way to check this is to see if |x, < rp), then the shot is “on goal.” If
the shot is between (b — r;) and (b + rp), that is, |x; — b| <r}), it has
been successfully blocked. If not, it scores a goal. The program checks
this situation and outputs —1 for a shot that misses the goal, 0 for a
blocked shot, and 1 for a goal scored.

This much of the program can be realized on a fairly small
calculator, an HP-29 or TI-57.In fact, with some squeezing it can be
put onto an HP-25 (see the Appendix). Set the program up so that it
will take the data one number at a time, stopping for each piece of
input (see Sec. 1.5). Or, with a reverse Polish calculator, you can load
the data into the stack and save memories. If you have a larger cal-
culator with user-defined keys and memories to burn, you can use
them to take and store the data. This approach has the advantage that
if you want to change only one or two numbers on your next shot, you
won’t have to key in all the data over again. The extra space of a

large calculator also allows you to set up a pair of scorecards, one for
each player. Player 1’s scorecard will work like this: If he has just
scored a goal, there will be a 1 in the display. The scorecard program
will multiply the 1 by .01 and add it to the rest of the player’s score,
returning with a number of the form 1.xx (where xx is his cumulative
score). Player 2’s scorecard will work similarly, returning with a num-
ber of the form 2.yy.

Solution: Our solution falls into two phases: (1) collecting and pro-
cessing the data, and (2) outputting successive positions of the puck
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and the result of the shot (—1, 0, or 1). Two memories will be used to

store the successive positions of the puck, which will be equally spaced
so that the distance between consecutive positions will be one-fifth of
the total distance traveled by the puck between (x,,y,) and (x0). The
distance is one-fifth rather than one-sixth because there are five in-
tervals between the six positions of the puck).

Call the distance between successive x-coordinates of the puck
Ax and between successive y-coordinates Ay. From Fig. 3-22 (and a
little trigonometry), one can see that Ay = yy/5 and Ax = Ay (tan «)
= (yo/5)tan a. Both Ay and Ax will be placed in memory. Each pair of
coordinates can then be obtained from the preceding pair (x,y) by sub-
tracting Ay from y and Ax from x (the puck is moving in a “negative
direction” as it goes toward the goal).

We also need to compute x,. Looking at the drawing once
again, one can see that x, = x, — y, (tan «). Incidentally, if x, or x,

turns out to be negative, these formulas remain valid. Now let’s set
up the memories as follows:

my k, a loop counter for the second phase
m, x, the x-coordinate of the successive positions of the

puck

m, y, the y-coordinate of the successive positions of the
puck

ms Ax, the difference between the x-coordinates of succes-

sive positions of the puck
my Ay, the difference between the y-coordinates of succes-

sive positions of the puck
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Fig. 3-22 Successive positions of the puck in hockey
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mg Xg, the x-coordinate of the puck when it strikes the x-
axis

mg r,, the radius of the goal

m; ry, the radius of the block

mg the result of the shot (—1, 0, or 1)

Both mg and m; will be set by the users. It is the job of the first
phase of the program to initialize the other memories from x,, y,, «,

and b (which will be keyed in by the players as the program proceeds).

We are now ready to describe this phase of the program.
The program starts with x, already keyed into the display by

the shooter. The first step is to store that number in m;. Store it also

in ms [ms will eventually contain x, — y, (tan a), which quantity gets
built in my; as the data comes in]. Next, put in a stop order for the

shooter to key in y,. The next step is to store y, in m,. Divide by 5 and
store the result in my; and my. Stop again to let the shooter key in a.
Take tan «, and, using memory arithmetic, multiply it times the con-
tents of ms; making mj; = (y¢/5)tan a and leaving tan « still in the
display. Recall m,, multiply it by tan «, and (again using memory
arithmetic) subtract the result from ms, which now becomes x, —

yo (tan a). At this point, m; through ms; have been initialized as they

should be.
Now we want to begin determining the result of the shot. We

start by storing a 1 in mg. Since the contents of mg will be adjusted or
left alone when we discover whether the shot missed the goal or was
blocked, recall the contents of mg and compare it with the absolute

value of the contents of mj. If the latter is smaller, the shot is on goal.

Leave mg alone and branch two sentences ahead to the directive, “Fi-

nally, store a 6 in m,.” If not, the shot has missed the goal. Store a

—1 in mg. Finally, store a 6 in m,. Stop the program again for the
defender to key in b, the position of the block.

At this stage, we need to determine whether or not the shot
has been blocked. Subtract the contents of ms from the contents of the

display (b), and take the absolute value of the result. Compare this

with the contents of m,. If the latter is smaller, the shot has missed

the block; leave mg alone and branch to the next paragraph. If not, the

shot has been blocked; store a 0 in mg. This completes the first phase,
and the memories are now set for the output phase.

The bulk of the second phase is a loop that outputs successive
x- and y-coordinates of the puck as it travels towards the goal. Both
m, and m, are recalled and displayed, then decremented by m; and mj,

respectively. At the bottom of the loop, m, is decremented by 1. When
m, reaches 0, the loop is terminated and the program stopped with the
contents of mg in the display. Following are the details.
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First set the display to two decimal places. This is about as
much as one can assimilate when the coordinates are flashed. The
setting is done within the program because it will get changed below.
Now the more interesting of the two coordinates of the puck is the x-
coordinate, since the final x-coordinate of the puck determines the
result of the shot. The y-coordinate always starts at y, and goes down
in equal steps to 0. Consequently, it is more or less just a reference
mark. This being the case, we prefer to output the y-coordinate first,
followed by the x-coordinate. Start, then, by recalling m, and pausing
with it in the display for one or two beats, depending on how long the

on your calculator is. Do the same for m;. Now decrement m,
and m, by the contents of m3; and m,, respectively. Decrement m, by
1 and check to see if it is down to 0. If not, loop back and display
another set of coordinates. If it is, set the display to zero decimal places,
recall the contents of mg, and terminate the program. The flowchart
is shown in Fig. 3-23. [Solution was realized on a TI-58 in 92 steps.]

Note: If you are trying to do this on an HP-25, you can dispense with
memories mg and m; by keying r, and r, directly into the program
where they are needed.

3.13 Basketball

Difficulty: 3

Calculator size: Medium

This long program requires a calculator with user-definable
keys. We also recommend that you first read or work through the
previous game (hockey), for the two are similar, and we use some of
the same ideas in our solutions to both. Basketball, however, presents
a more complicated problem because the motion takes place in three
dimensions. The calculator simulates the flight of a basketball toward
the hoop and indicates whether the shot was a hit or a miss.

We set the game up in three-dimensional space with x, y, and
z coordinates. The “court” will be the x,y plane and the “basket”
will be a circle around the z-axis 10 units above the x,y plane (see Fig.
3-24). The “ball” will be a point that starts at the position (xy, yo, 5).

Both x, and y, are input by the player, whereas 5 is the fixed initial
height of the ball. The player must also input the initial velocity of
the ball, v,; the horizontal angle of the shot, «; and the vertical angle

(angle with x,y plane) of the shot, 8. Ignoring the effects of air resis-
tance, the height of the ball off the floor at time t is given by the
formula

z=>5+v,t — 16t*
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Fig. 3-23 Flowchart for hockey

where v,_ is the vertical component of v,. The formulas for the x- and
y-coordinates of the ball at time t are

X =X — Vit

y Yo — Vyt

Il
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where v, and v,are the x and y components of v,. (These formulas
are differences rather than sums because the ball moves toward the
origin, that is, in a negative direction). The formulas for v,, v4, and

Vy, are

Vz, = VoSIing

Vx, = VoCOsBsina

Vy, = VoCosScosa

The program will work like this: The player inputs x,, yo, Vo,
a, and B, and starts the program. First, it will give six “looks” at the
ball in flight, consisting of six sets of x-, y-, and z-coordinates of the
ball at equally spaced instants of time, starting with the initial posi-
tion of the ball and ending with its coordinates as it passes through
the x,z plane (the ball should be going through the basket at or near
this time). It will not be necessary to use the formulas for the x- and
y-coordinates. Since the ball will be traveling at constant velocity in
the x- and y-directions, the x and y positions will be equally spaced
between the initial and terminal positions. Thus, the coordinates can
be computed as they were in the previous program (using Ax and Ay).

 

«—F— (x0, 0,5)
/

/
/

/ a

(xo, ¥0,0)

Fig. 3-24 Three-dimensional coordinate system for basketball
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However, the program must also figure out whether or not the ball
goes through the basket. For this it will be necessary to know the x-
and y-coordinates of the ball when it is in the plane of the hoop, that
is, when z = 10. A little algebra will show that z = 10 when t =
(Vz, = JV.2— 320)/32. (Set the value of z at 10 in the formula for z and

solve for t using the quadratic formula.) Notice that this gives two
values of t—one when the ball passes through the plane, z = 10, on
its way up, and the other on its way down. The ball should be in the
basket at the latter time, when t, = (v,, + |v,2— 320)/32. If the ball
is in the basket at time t;, the program should output a 2. Otherwise,
it returns 0 for a miss.

Finally, there should be “scorecards” for the two players.
These will be operated by a pair of user-defined keys, say A and B. If
the first player scores two points, he presses A when the 2 is returned
by the master program and “collects” his points. The calculator then
returns a three-digit number, 1.xx, which indicates that he has xx

points. The second player’s scorecard is operated by pressing B and
returns a similar score, of the form 2.yy.

Solution: We want the main program solving this problem to do
three things: (1) initialize the memories, (2) compute and display the
path of the ball, and (3) determine whether or not the ball has gone
through the basket. Five additional short programs will be used for
storing the variables x,, yo, «, 8, and v,. For example, key A might

operate a program that simply stores whatever is in the display (x,)
in memory register 1. Of course, the player could do the storage by
hand, but this way he needn’t remember where x, is supposed to be
stored. Other short programs that will be used for keeping score are
described later.

Now let’s consider the main program. In order to make its
computations, the program will need the following numbers, all of
which will be stored in memory:

m, X,, the x-coordinate of the ball’s initial position

m, Vo, the y-coordinate of the ball’s initial position
mg a, the horizontal angle of the shot
my 8, the vertical angle of the shot
my vo, the initial velocity (speed) of the ball

These numbers are put in memory by the player before the program
is run (using, let’s say, keys A, B, C, D, and E). From them, the main

program and its subroutines will compute and store the following:

ms  V,, the vertical (z) component of the ball’s initial ve-
locity
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m; Vx,, the x-component of the ball’s initial velocity
mg Vy,» the y-component of the ball’s initial velocity
my At, the length of time between two looks at the ball
my, t, the elapsed time since the ball was shot (later on,

this memory will store the time t,, at which the ball
passes through the plane of the basket on its way
down)

mi, Ax, the amount by which the x-coordinate of the ball

changes between two successive looks at the ball
m;, Ay, the amount by which the y-coordinate of the ball

changes between two successive looks at the ball
m;; x, the x-coordinate of the ball at various times

my, y, the y-coordinate of the ball at various times
ms z, the z-coordinate of the ball at time t

mis r,, the radius of the basket

m;; s1, the first player’s score

mig Ss, the second player’s score

Finally, the memory m, will be used as a loop counter during the
second phase of the program.

The players initialize memories m,¢ through m;. (We have

found that 1 is a reasonable value for r,.) The first phase of the pro-
gram initializes the remainder, memories mq through m;;s. We have

already given the formulas for the contents of mg through mg in the
statement of the problem. The length of time between successive looks
at the ball, At, is one-fifth of the time it takes for the ball to get from
its initial position to the x,z plane, which in turn happens when y =
0. Solving the equation, y = y, — v,,, for t when y = 0, we get t =

Yo/Vy,. Thus, At = y,/5vy. We now initialize m,, at 0, compute m, and

m;, as in the solution for hockey (see the flowchart in Fig. 3-25), and
initialize m,;, m,4, m;5 at X,, yo, and 5, respectively. The flowchart for

the first phase of the program is shown in Fig. 3-25.

Note that we end with a [rs]. This allows the player not to
have to watch the calculator while initialization is going on. He can
then press to see the path of the ball when he and the calculator
are ready.

The second phase of the program is a loop showing the player
six positions of the ball as it moves toward the basket. The x- and y-
coordinates are computed from the previous coordinates by substract-
ing Ax and Ay, respectively, as in hockey. The z-coordinate is computed
by first updating the time (adding At to the previous value of t) and
then using the new value of t to compute z from the formula, z = 5 +
v,t — 16t%. After the coordinates have been computed, they are dis-
played. The flowchart is shown in Fig. 3-26.
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The third and final phase of the program determines whether
or not the ball went through the basket. This is done by calculating
the distance from the ball to the z-axis at the time, t,, when the ball

is coming down through the plane of the basket. The distance should
be less than ry, the radius of the hoop. The distance from a point (x,y,z)

to the z-axis is (x* + y*. Thus, this phase of the program calculates x
and y at time t, and checks to see if |x* + y*is less than r;. If it is, the

program returns a 2; if not, a 0.
One last detail. Recall that t, = (v,,+v,2— 320) /32.

If (v,,2— 320) happens to be negative, an error message, which may
stop execution of the program, will be generated when t, is computed.
To avoid this, the program should check the sign of (v,*— 320) before
extracting its square root. If it is negative, simply branch to that part
of the program which outputs a 0. The shot is definitely a miss (what
has happened is that the ball has not reached the plane of the basket
at all). The flowchart for the third phase is shown in Fig. 3-27.

Last, let’s consider the scorecards. The scorecard for the first

player will work like this. When the appropriate key is pushed, the
program will take the contents of the display (which should be a 2),
multiply by .01, and add the result to m,;. Then m,; is recalled, added
to 1, and the result displayed. The display now reads 1.xx, where xx
is the first player’s cumulative score. If he just wants to see his score,
he can enter a 0 in the display and press his scorecard key. The second
player’s scorecard works similarly. It might also be handy to have a
third program that “erases” the scorecards (by setting the contents
of m,; and m,g to 0).

The scorecard programs should also set the display to two dec-
imal places so that the score will look right. In fact, two decimal places
make a good setting for the main program, too. If you want to get
fancy, you can have the program change the setting from two decimal
places when displaying coordinates of the ball (this being about all
one can assimilate when the coordinates are flashed) to zero when
outputting the 0 or 2. [Solution was realized on a TI-58 in 00 steps.]

 

Notes: The program can be shortened in several places, but we have
avoided such subtleties in order to keep our presentation straightfor-
ward.

There is a technicality that we have overlooked in this solu-

tion. Although it is very unlikely to come up in practice,it is probably
worth mentioning. It is possible for the ball to go through the hoop on
its upward passage through the plane, z = 10, and then drop back
through the hoop on the way down. This is not a likely event unless
you shoot from very close to the basket. Technically, such a shot should
be a miss, but the program would score it as a basket since the only
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Fig. 3-27 Flowchart for third phase of basketball

thing the program tests is what is happening when the ball is on its
way down. The ball passes through the plane of the basket on its way
up at time t’, where t' = (v, —v2 — 320 )/32. If you want to write the
program to exclude the type of shot just described, insert a test in the

third phase that makes sure that the ball is outside the hoop at time

t' (that is, |x®+> r,, at time t').
The formulas for the path of a projectile we have used in this

problem were discovered by Galileo (1565-1642), who is regarded by
many historians of science as the first modern physical scientist. His

account of the motion of projectiles was characteristic of his approach
to physical problems in general. He confined his attention to what he
could quantify and describe mathematically. He dissected each prob-
lem into its components and made idealizing assumptions, for in-
stance, that the motion under study was taking place in a vacuum.
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(The fact that there was heated debate in his day about the very pos-
sibility of the existence of a vacuum makes his choice of a vacuum as

the setting for his laws of motion all the more revolutionary.) Galileo
was in his prime during the early decades of the seventeenth century,
the century of the scientific revolution. He died in the year that New-
ton, perhaps the greatest scientist of all time, was born. Newton is
said to have remarked, “If I have been able to see further than others,

it is because I have stood on the shoulders of giants.” Galileo was one
of the giants he had in mind.

3.14 Jelly Beans

Difficulty: 4

In most of the games described so far, the calculator has had
a passive role, but there are many games in which we can make the
calculator one of the players. (HI-LO II in Sec. 3.5 was such a game.)
You can teach your calculator not only the rules, but also how to beat
your friends and enemies with a mere flick of a chip!

Consider the following game, played by two children in pos-
session of a bag of jelly beans. They agree to take turns eating some
of the jelly beans, with the following restriction. At his turn, the player
may eat exactly two, exactly five, or exactly seven jelly beans,
no more and no less. As soon as a player has no legal move (that is,
when only one or no jelly beans are left), he loses.

Here is a sample game between Jim and Sally, who begin with
a bag of 15 jelly beans. It’s Sally’s move first, and she chooses to eat
five jelly beans, leaving Jim with 10 to choose from. (Sally could have
also eaten two, leaving 13; or eaten seven, leaving 8; but those were

her only other legal choices.) Now it’s Jim’s turn, and he decides to
eat two jelly beans, leaving Sally with eight. She then eats seven jelly
beans in one gulp and laughs. For now it is Jim’s turn, and he has no
legal moves because only one bean remains. Thus, he loses, and Sally
wins.

In this game (as well as the two that follow), there are two
kinds of positions, winning positions and losing positions. Briefly, a
position is defined as either winning or losing according to how the
player about to move from the position is faring. Position 1 (that is,
the position with only one jelly bean left) is a losing position, for ex-
ample, because the player about to move (like Jim in the game above)
is losing. In fact, he has already lost. Similarly, position 0 (no jelly
beans left) is a losing position. Position 2 (two jelly beans left), how-
ever, is a winning position; the player on the move can eat the last

two jelly beans and win because he has left his opponent in losing
position 0. This fact illustrates an important rule governing losing and
winning positions.
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First Rule: If from any given position there is at least one legal
move to a losing position, then that first position is a winning one. We
have just used this rule to determine that position 2 is a winning one

since there is a move (eating two jelly beans) to a losing position (po-
sition 0). Referring to the game between Jim and Sally, we see that
position 8 is a winning position because eating seven jelly beans leaves
only 1, and 1 is a losing position. Another way of thinking of the first
rule is as follows: If there is a legal move that puts your opponent in
a losing position, then the position you are in must be a winning one.

Let us start a little list of positions to see if we can figure out
which are the winning ones and which the losing:

Position 0 1 2 3 4

Lose or win? L L W WwW

We have labeled 3 with W because by the first rule there is a legal
move to losing position 1. What about position 4? It allows only one
legal move and that is to eat two jelly beans, leaving one’s opponent
in winning position 2. Thus, 4 must be a losing position:

Position 0 1 2 3 4

Lose or Win? L L W W L

This situation illustrates another important rule governing losing and
winning positions.

Second Rule: If all legal moves from a certain position lead to
winning positions, then that position is a losing one. This is obviously
so because if a player has no choice but to put his opponent in a win-
ning position, he must be in a losing one. Positions 5, 6, 7, 8, and 9

are all winning ones by the first rule. In every case, there is at least
one move to one of the losing positions, 0, 1, or 4. From position 10,

there are only three legal moves: to 8, 5, or 3. But since 8, 5, and 3

are all winning positions, position 10 is a losing one by the second
rule. Here is a list of all positions up to 15:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LLWWILWWWWWILWWILTILW

No wonder Sally won; she went first from the winning 15!
Now, how did we construct this chart? Suppose that, we have

already worked out the status of all positions 0,1,2,...,n — 2, n —
1. We can work out the status of position n as follows. We examine
the status of all possible positions to which we can move from n. In
the jelly bean game, they are positions n — 2, n — 5, and n — 7. If at
least one of these positionsis a losing one, then n is a winning position
by the first rule. (Furthermore,it is a winning move to move to that
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losing position.) If, however, each position, n — 2, n — 5,andn — 7, is a

winning one, then n is a losing position by the second rule (we have no
choice but to place our opponent in a winning position).

Of course, there is nothing special about the numbers 2, 5, and

7. This game may be played with any set A of positive whole numbers;
all that is important is that the players decide ahead of time what
moves are legal. In the game we described above, A = {2, 5, 7}. In the

problems below, we restrict ourselves to sets A whose largest element
is at most 10.

Problem 1: Write a program that will generate the sequence of L’s
and W’s for any set of A of numbers between 1 and 10.

Problem 2: Write a program to play and win the jelly bean game
for any set A of numbers from 1 to 10. The program should accept as
input the current position (that is, the number ofjelly beans left when
it’s the calculator’s turn) and determine if it is a winning or losing
one. If a losing one, it should “fake it” by eating as few jelly beans
as possible. If it is a winning position, it should of course make a
winning move.

Solutions to Problems

Solution to Problem 1: Let M denote the largest number in A. The
key to this whole program is that the method outlined above to deter-
mine the status of position n uses the status of only some of the pre-

vious M positions. In other words, if we know the status of any M
consecutive positions, we can determine the status of the next one.
Since by assumption M < 10, we can store the status of the last M
positions in one register, m; (see Sec. 1.14). We shall store this as a

decimal consisting of 1’s and 2’s, where 1 denotes a losing position
and 2 a winning one. Digits closest to the decimal point represent the
more recent positions. For example (referring to the list given above

for A = {2, 5, 7}), when the calculator is preparing to calculate the
status of 16, m,; would contain the number .2112212222. The first 2

means that 15 is a winning position; the next two 1’s mean that 14
and 13 are losing positions, and so on.

The set A is stored in m; as a decimal consisting of 0’s and

1’s, with a 1 in each of the entries corresponding to elements of A.
For example, if A = {2, 5, 7}, then m; = .0100101, whereas if A = {1,
2,3, 10}, then m; = .1110000001.

Now, the calculator must determine if there are any losing
positions it can move to. This step corresponds to matching up m, and
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m,; decimal place by decimal place to see if both digits are ever 1.
Consider the example of position 16 again when A = {2, 5, 7}. Then,
m,; = .2112212222 and m; = .0100101. In the second decimal place of
m;, the digit 1 means that it is legal to move to position 14, and the
digit 1 of m, means that 14 is a losing position. Thus, since eating two
jelly beans at position 16 is a winning move, position 16 is a winning

one.
A good way to check a double occurence of 1 is to see if any

zeros occur among the first M decimal places of (m; — m;). Consider
the flowchart in Fig. 3-28, which begins with (m,; — m;) in m, and a

counter m, beginning at m, = M. The program “fishes out” the first
M digits of m, to the right of the decimal point one by one and checks
to see if they are zero. If it finds a zero, the current position must be

a winning one. If it does not find a 0, the position is a losing one. The
flowchart then updates register m, accordingly. Let's see how it

works.
The first box “pushes” the first digit to the right of the dec-
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imal in m, out past the decimal point. The next box peels off this digit,
calls it x, and then removes it from m,. Now x is tested to see if x =

0. If it is, we have discovered that the position is a winning one, and
we exit from the loop. Otherwise, we decrement the counter with

and test m, to see whether or not we have gone through
the loop M times. If not, we go to the beginning of the loop again and

fish out the next digit. If we are done, we again exit the loop; this time
we know we are in a losing position.

How do we update register m; with this new information? Re-
turning once again to our example, if we are determining the status
of 16, then m; = .2112212222 and m; = .0100101. Thus, m; — m,, or

2012111222, has a 0 among its first (M = 7) entries, and 16 is there-
fore a winning position. Consequently, we want to stick a 2 in front

of m; and “push” everything one place to the right. That is, we want
to change m,; from .2112212222 to .2211221222. (If 16 had been a
losing position, we would want to change m, to .1211221222 instead.)

This is precisely what the following boxes in the flowchart of Fig. 3-
28 do:
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Probably the easiest way to output the sequence of L’s and

W’s is to begin with m; = .2222222222 and run the above program
ten times, remembering to store M in m, and (m; — m;) in m, before

each run (or set up a loop to have your calculator do this!). Since the

first ten L’s and W’s (that is, 1's and 2’s) will now be in the first ten

significant figures of m,, reading from right to left, write them down.
Run the program ten more times, and you’ll have the next ten 1's
and 2’s in m,, and so on.

Solution to Problem 2: To find the status of position n, we must set
up a loop to run the solution to Problem 1 for n times. We will use m;
as a counter for this loop; it will begin with an m; of n and countits

way down an mj of 0. At the end of n runs through the loop, position
n will be losing or winning if the first digit to the right of the decimal
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in m, is a 1 or a 2, respectively. Since the operation INT(10m,) pro-

duces this digit, the program tests to see if it is a 1. If it is, the cal-
culator is losing and therefore fakes its position by outputting S, the
smallest number in A, which is permanently stored in ms. Otherwise,

the calculator is winning and must now find a winning move.
It goes about doing so as follows: When the program is looking

for zeros in (m; — m;), or m,, it uses m, as a counter, counting down

from m, = M to m, = 0. When it finds a zero, the number ofjelly beans

to be eaten by the calculator is equal to the number of times the little
loop in Problem 1 has been entered. This number can be recovered
from the status of m, at the time the digit 0 is found in my; in fact,it

is M — m, + 1, and the program should calculate and output this

number.
The flowchart in Fig. 3-29 assumes that M, S, and A have

been permanently stored in m,, m;, and m;,, respectively, and outputs

the number of jelly beans the calculator eats when the number n of
jelly beans is input. Notice that we began with m; = 1/3 rather than
2222222222 but it is easier to calculate 1/3, and 1/3 works just as

well! (Try it.) [Solution was realized on an HP-25 in 44 steps.]

3.15 Whythoff’s Game
Difficulty: 3

Here is another game at which your calculator can become an
expert and take on all comers. The game begins with two children
again in possession of a bag of jelly beans. They have eaten all the
good kinds, and the only colors remaining are orange and purple. They
decide to take turns eating the rest according to the following rules.
A child may on his turn eat either as many orange beans as he likes
or as many purple beans as he likes, or he may elect to eat both orange
and purple beans. The catch is that if he chooses to eat beans of both
colors, he must eat the same number of each. The child who eats the

last bean wins.
Any position in this game can be described by a pair of num-

bers, representing the number of jelly beans of each color remaining

in the bag. As in the jelly bean game just described, each position is
either a winning or a losing one. (If you have not read the previous
section, please turn to it now and read as far as the statement of

problem 1. You will need to know what we mean by “winning” and
“losing” positions and to understand the first and second rules stated
there in order to follow our discussion below.) For example, positions
(0,0)[no beans left], (1,2)[one orange bean and two purple beans left],
and (5,3)[five orange beans and three purple beans left] are all losing
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positions, as you should verify for yourself, but position (105,103) is a

winning position because there is at least one winning move, thatis,
a move to a losing position. The move is to eat one hundred jelly beans
of each color (ugh!), leaving your opponent in the losing position (5,3).

There turns out to be a simple way to recognize if position (a,b)
is a winning or losing one. (Why the test that we are about to describe
works is not an easy question to answer. If you want to find out the
reason, read about this game in the book Ingenuity in Mathematics by

Ross Honsberger. What is important here is that it does work, and
your calculator can easily apply it.)

Since there is no essential difference between positions (a,b)
and (b,a), we can first assume that

as<b

Then (a,b) is a losing position if and only if

a =|7r(b — a)

where 7 = %(1 + 5) and where for any number x, |x], or x “round
down,” is defined to be the greatest integer less than or equal to x.
For example, |3] = [3.1] = [3.9] = 3.6 Let’s try this rule on (5,3). Here,

sincea=3,b=5b—a=2,and 27 = 1 + ,/5, the result is that [Hb —
a) =|1+ J5] = 3 = a. Hence, (5,3) is a losing position.

You will also need this information: If (a,b) is a losing position
with a < b, then a = |b/7] and b = [ar] where for any number x, [x],

or x “round up,” is defined to be the smallest integer greater than or
equal to x. (Attention: It may well happen that although a = |b/7] and
b = [ar], yet (a,b) is not a losing position. For example, 2 = |4/7] and
4 = [27], but (2,4) is a winning position.)

Problem: Write a program that will enable your calculator to defeat
your friends (or enemies) at Whythoff's game. It should work like
this: After the player makes his move, he inputs the resulting position
into the calculator. The program first tests to see if the position is a
losing one. If it is, the calculator “fakes it” by eating one jelly bean
of the most frequent color. If the position is a winning one, the program
finds a winning move and outputs the resulting (losing) position.

Solution: Our program begins by storing the smaller of the two in-
put numbers, a, in m; and the larger one, b, in my,—using a test to
determine which is which. The difference (b — a) is stored in mj; then

[7(b — a)] is calculated and stored in m,. (Since we had no room on our

HP-25 to calculate 7, this number must be placed in m, by the user

> [x] is calculated using your key, as is the function [x] described below.
See Sec. 1.12.]
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before running the program. If you have a more versatile calculator,
you can have it calculate 7 here and store it in m,.)

Next, the program compares a with my, or [fb — a)]. If a =
my, then the input position is a losing one by the first test described
above, and the calculator “fakes it” by outputting (a, b — 1) and
halting. Otherwise, the calculator is in a winning position and must
decide what sort of a move will leave the opponent in a losing position.

It first decides whether eating a certain number d ofjelly beans
of each color is a good move. To be a good move, the resulting position
(a — d, b — d) must be a losing one. (See the first rule in Sec. 3.14.) By
the test described above, (a — d, b — d) is losing if and only if

a—-d=1((b-d —a-d)

or, equivalently, if

d=a—- 7b — a)

Thus, eating d jelly beans of each color is a good move ifd = a — 7{(b
— a)] and d is a positive number, that is, a > 7|[(b — a)]. Thus, the

calculator tests if a > 7|(b — a)] = my. If it is, the calculator “eats”

a — 7i(b — a)] of each color by outputting the resulting position (|b
—a)l,b— a+ [7b — a)]), that is, (m4, m3; + m4) and halting. Otherwise,
if a < m,, there are no good moves to be found involving both colors,
and the calculator must eat just one color.

Note that the inequality,

a<my=|nb— a)

only gets worse if a is made smaller. Thus, the calculator must eat
from the b color. But how many to eat from b? It follows from the
information given in the statement of the problem that the only pos-
sible losing positions with one coordinate a are (a, [a/7]) and (a, [aT]).
Thus, the calculator uses the test again, this time to see if (a, [a/7]) is

a losing position and outputting it if it is. If (a, |a/7]) is a winning
position, the single remaining possibility for a losing position from
(a,b) is (a, [aT]); therefore, the calculator outputs this and halts. How

does it know, in this case, that (a, [ar]) is a losing position? Since (a,b)

is a winning one, there must be at least one losing position in which
to leave the opponent. Since (a, [a7]) is the only possibility, it must be
the right one!

The flowchart for this solution shown in Fig. 3-30 begins by
looking at the two input numbers x and y (a and b). We leave it to you
to arrange how the input is entered (see Sec. 1.5).

Notes: The number (5 + 1)/2 which occurs in this problem is the
famous “golden ratio.” Like the even more famous numbers 7 and e,

it has a way of cropping up in unexpected places in mathematics
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Fig. 3-30 Flowchart for Whythoff's game

and in nature. It is, for instance, related to the “logarithmic spi-

ral,” which appears in the shell of the chambered nautilus and the
packing pattern of seeds in the sunflower. The ratio was discovered
by the Greeks, who defined it as follows.
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Let a line AB (see Fig. 3-31) be divided by a point C in such
a way that the ratio of the whole to the larger part AC is the same as
the ratio of AC to the smaller part CB, that is, AB/AC = AC/CB. The
ratio appearing on both sides of the equation is the golden ratio. If we
define AB to be of length 1 and let x denote the length of segment AC,
then the equation becomes 1/x = x/(1 — x) which upon cross multipli-
cation becomes 1 — x = x?or x* + x — 1 = 0. From the latter equation
it readily follows that x = (6 — 1)/2 (this number is also sometimes
called the golden ratio) and that 1/x, the golden ratio, is (,b + 1)/2 (to
see that this last number really is 1/x, multiply it times x and see
what happens).

A C B
&-
 

«Xx oeox

   - | >

Fig. 3-31 Proportions of the ‘golden ratio”

Here are two appearances of the golden ratio in mathematics.
First, the diagonals of a regular pentagon (see Fig. 3-32) cut one an-
other in the golden ratio. In fact, the pentagram, a regular pentagon
with all of the diagonals drawn in, contains scores of occurrences of
the golden ratio. And second, the ratios of successive terms of the
Fibonacci sequence converge to the golden ratio. You can check this
out on your calculator (see Sec. 2.4).

Fig. 3-32 Pentagram illustrating occurrences of the golden ratio

The Greeks were so enamored of the golden ratio that they
even worked it into their art and architecture. The rectangle forming
the front of the Parthenon is a “golden rectangle.” The ratio of its
base to its height is the golden ratio. The Greeks thought that this
was the most ideally proportioned of all rectangles (and a modern
study of the aesthetics of rectangles tends to show that they were
right).
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3.16 Nim

Difficulty: 4

Not only can you teach your calculator to play nim, you can
also teach it how to win! Here are the rules. Two players take turns
removing objects from several piles of objects, subject to the following
restrictions: A player must remove at least one object per turn, and
all the objects removed in a single turn must come from the same pile.
When every object has been removed, the next player has no legal
move and consequently loses. The interesting thing about nim is that
there is a relatively simple strategy for finding the best move every
time. We will describe the strategy, and it will be your problem to
teach it to your calculator.

Any position in nim can be completely described by a list of
nonnegative integers. Each entry in the list represents a pile, and the
integer in that entry represents how many objects remain in the pile.
For example, the position with three piles left—one pile of five objects
and two piles of seven objects each—can be represented by the list

(5,7,7). Note that the order of the entries is of no importance; hence,

(7,5,7) and (7,7,5) represent the same position. Furthermore, empty

piles are of no consequence; hence, (7,5,0,0,7) is no different from our

sample position.
We can restate the rules of nim as follows. A legal move con-

sists of choosing a positive entry from the list representing the position
of the game and replacing it with a strictly smaller nonnegative in-
teger. If there are no positive components (that is, if the list is
(0,0, ...,0), then the player loses.

Wecall a position a winning position if the player whose move
it is can force a win. For example, (0,0,5,0) is a winning position be-

cause he need only remove all five objects from the third pile to leave
his opponent with the list (0,0,0,0), thus winning the game. Another
example is the list (1,4). We remove three objects from the second pile,
leaving (1,1). Since our opponent can take only one object, we take the
last one and win.

On the other hand, a position is called a losing position if no

matter what move we make, we leave our opponent with a winning
position. For example, (0,0,0,0) is a losing position, as is (1,1) encoun-

tered above. Another example of a losing position is (1,1,1,1); a more

complicated example is (1,2,3). Try it! (If you haven’t recently read
the part of Sec. 3.14 about winning and losing positions, it would be
a good idea to do so now.)

When we are faced with a position, we have two tasks. First,
we must determine whether it is a winning position or a losing posi-

tion. Second,if it is a winning position, we must find a winning move—
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a move that leaves our opponent with a losing position. Both tasks can
be performed with the aid of a bizarre form of addition called nim
addition. Let us describe how, given two nonnegative integers a and
b, we compute a nonnegative integer a (© b called the nim sum of a
and b. We shall proceed by example and compute 21» 19.

The first step is to write the summands 21 and 19 in base 2
(see Sec. 1-13): 21,, = 10101, and 19,, = 10011,. Now we “add” up

each column separately, using the rules

(1) 0®0=0

(You might recognize here the familiar rules

Even + even = even

Even + odd = odd

Odd + even = odd

Odd + odd = even)

Unlike in normal addition, there is no carry over from column
to column. Thus,

10101
(®» 10011

00110

Now, 00110, = 110, = 6,,; thus, 21® 19 = 6.
Your problem eventually, of course, will be to write a program

for your calculator to play the optimal strategy in nim.

Problem 1: Write a program that will accept as input any pair of
nonnegative integers and output their nim sum, a® b.

You should be aware that nim addition shares some of the
properties of normal addition. For example,

(2) 0 a=a®»0=aforanya

Furthermore, if several integers are to be nim summed, the order is

immaterial, that is, for ali a, b, and c,

(3) @a@b)®c=a@®@bd@eo)
(4) a®b=b®a

In contrast with these familiar properties, nim addition has the fol-

lowing strange property (for any a):

(5) a®@a=0
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In other words, the nim sum of any nonnegative integer with itselfis

zero!

Now back to the game of nim. Consider the arbitrary position
(ay,as, . . ., ay). To solve the first task (determining whether a position

B is winning or losing) calculate a;(® a.® ...(® a,. Call this nim sum

a. If o # 0, the position is a winning one! For the second task (finding
the winning move), suppose that the position (a,, a,, . . ., a,) is a win-
ning one. Then, c = a, ® a,®...® a, # 0. We must change one of
the a;’s to make the resulting position nim sum to zero. What should
we change a; to if we decide to change it? It turns out that we must
change it to (a; ® 0), and here’s why:

Consider the equation,

c=a,®Ma,®..0a®...®a,

Let us take the nim sum of both sides of this equation with o:

c@o=0c@®@a®a®..®a®...(» a,

But since by property (5), co ® o = 0, the equation reads

=a,0a,®..0@000...0a,

Therefore, the a; we decide to change must be changed to o ® a;, and

the second task consists of finding some a; so that oc (® a; < a;.

Problem 2: Write a program that will accept as input a nim position.
The program should first decide if the position is a winning or losing
one. If it is a winning one, the calculator should output the winning
move. If it is a losing position, the calculator should not let on but
should “fake it” with some innocent move.

Solutions to Problems

Solution to Problem 1: Because this problem has a difficult solution
we we will present it in stages that can be taken as a series of hints.

Hint 1: Let’s first recall how to convert a number from base
10 to base 2 (see Sec. 1-13 for another discussion of the process). First
divide the number by 2, getting a quotient and a remainder. The re-
mainder (0 or 1) is the rightmost digit in the binary number. Next
divide the quotient by 2, getting yet a new quotient and a new re-
mainder. This second remainder (0 or 1) is the second digit from the
right in the binary number. This process continues by dividing each
last quotient by 2 until the quotient becomes zero.

Let us try the example of converting 55 from base 10 to
base 2:
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Quotients Remainders

2 [65
2 27
213
2
23
21
0

o
O
p
m

Consequently, 55,, = 110111,. (Notice the order in which the 1's and
0’s occur.)

Now, how do we go back from base 2 to base 10? We simply
write the sequence of powers of 2, beginning 1, 2, 4, 8, 16, .. ., from

right to left above the binary number. Then we add up the powers of
2 that lie above the 1’s in the binary number. For example, to convert
110111, to base 10, we write the powers of 2 as follows:

32 16 8 4 2 1
1 1 0 1 1 1

and then add to get 32 + 16 + 4 + 2 + 1 = 55. Not that we have
omitted 8 from the sum, because 8 was above a 0 rather then a 1.

Thus, 110111, = 55,,, as expected.

Hint 2: It seems that there is a lot to be done. There are four

basic jobs:

1. Convert a to base 2

2. Convert b to base 2
3. Calculate a@ b in base 2
4. Convert a(Pb back to base 10

Each one of them requires a loop that must be executed several times.
Do we need, then, four different loops? We do not; we can use just one

loop. Each time through this loop, a small part of each of the four jobs
will be done.

Consider the flowchart shown in Fig. 3-33, which is to begin
with my, = a, m; = b, m, = %, and m; = 0. We have labeled the steps

according to which of the four jobs are being done. There are a few
problems with this loop, not the least of which is that it never stops!
But let’s examine it anyway.

Registers m, and m, store the successive quotients of a and b,

respectively, which are needed in jobs 1 and 2. Thus, we begin by
dividing each of them by 2 as described in hint 1. Register m, stores
the successive powers of 2 needed in job 4; thus we double m, each

time through this loop. In the next step, y is either 0 or .5 (see Ap-
pendix C for a description of FRAC). It is 0 if the remainder on dividing
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Fig. 3-33 Flowchart for nim loop

m, by 2 is 0, and it is .5 if the remainder is 1. The quantity x—also 0
or .5—bears the same relation to m;, but these remainders are the

very numbers we want to calculate in jobs 1 and 2. Referring back to
formulas (1), we see that to do job 3, we must compare the remainders.
If they are equal, the corresponding binary digits of a and b are equal,
and the corresponding binary digit of a ® b is 0. If they are unequal,
the binary digit of a ® b should be 1. We accummulate a® b in ms.
According to the method given in hint 1, to do job 4 we must add a
power of 2 to ms; only when the digit in a ® b is 1. This accounts for
the test

and the box

mg; «m3; + Im,

which is only executed if x # y. See if you can fix this flowchart so
that it will stop when its job is done.

Hint 3: When is the program done? Certainly when both m,
and m; become zero, a condition we could test for every time through

the loop. However, we can improve the running time a bit by a simple
observation. Consider the following nim sum calculation (in base 2)
where b is much larger than a:

a= 10110,

b=1101011010,

a®b=1101001100,
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Note that in the leftmost five places (where a has run out of digits) b
and a (®) b agree. Why, then, make the program go through a loop ten
times, when on the last five all it’s doing is copying the last five digits
of b over again in a ® b? We can make the calculator exit the loop
after the first five digits of a ® b have been calculated and then have

it attach the rest of b onto the front of these digits. It is a little tricky
to figure out how to do this, but here is a hint: The “rest of b” is
always being stored in m,.

Hint 4: The flowchart for our 34-step program on the HP-25
is shown in Fig. 3-34. It begins with numbers a and b and ends with
a (® b in m3. The first two steps insure that a < b. The next two steps
set up the loop described in hint 3. The only difference is the test,

allowing the calculator to exit the loop when the binary digits of a
have been computed. The step ‘turns out to be the way

to attach the rest of b onto a® b.

Solution to Problem 2: We will also present the solution to this
problem as a series of units.

Hint 1: We suggest that you store the whole position (a,, a,,
.., ap) in one storage register as a list to the right of the decimal

point. If no pile contains 10 or more objects, one decimal per pile will
suffice. If any pile contains 10 or more, but no pile contains 100 or
more objects, you will need two decimal places per pile. In the descrip-
tion following, we use € to denote the number of decimal places used
per pile. (In the two examples above, € was 1 and 2, respectively.)

Hint 2: Our first job is to calculate the nim sum of all the
position numbers. Registers m;, m;, m,, and m; will be used to calcu-

late nim sums as described in Problem 1. Register ms will begin at
zero and accumulate to partial nim sums. Thus, m; will successively
be storing 0, a;, a; ® a,, a; ® a, ® ag, etc., until, finally, m; = a; ® a,
@® ...® a,. Register mg will begin with the list, mg = .a;a,a; ... of
pile numbers. The as will be successively “fished” out of mg and
nim summed into m;, as shown in Fig. 3-35.

The first step begins to fish a; out of mg by “pushing” a; to
the left of the decimal point. The next step tests to see if all the a;’s
have already been nim summed. If they have, we exit the loop with a,
®a,®...® a, in ms. Otherwise, the step | m, — INT(m,), m; « m, — m, | sets
m, = current a; and removes this a; from ms. The last step, m:®x|,
uses the program in problem 1. Now try the second (and last) job, to
find a good move.
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Fig. 3-34 Flowchart for nim sum

Hint 3: The previous job ended with the nim sum, oo = a; a,
@®...® a, in ms. Assume o # 0 so that there will be a good move. We
must find some a; so that oo @ a; < a;. Figure 3-36 shows how the

second job would go, again starting with .a,a,

steps are the “fishing” steps, identical with the ones in hint 2. And
again we calculate ms; ®m, (= 0 @ a;), but this time we compare it to
my4(= a;) to see whether or not 0 @ a; = a;. The program stops with the
pile that is to be changed (a;) stored in m, and the number of objects
to be left in that pile (0@ a;) stored in m3. Now how about putting the
pieces together?

... in mg. The first two
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Fig. 3-35 Flowchart for calculating the nim sum of all position numbers

Hint 4: We did manage to fit a program that would perform
both tasks into the 49 steps of our HP-25, but we had no room to
initialize the registers before each task. Thus, to run this program,
the position (and a few other things) had to be keyed in twice, once for
each task. Nor did we have room to “fake it” when the calculator was
losing. Finally, we could not afford the luxury of leaving the nim sum
loop when m, = 0 and tacking on the rest ofb stored in m, (as described
in hint 3). We had to alter the nim sum program by interchanging m,
and m, so that it would not leave the loop until m; = 0. This saved six
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Fig. 3-36 Flowchart for the job in hint 3
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program steps at the cost of some running time (the calculation of 2°
@ 1, for instance, would take 10 runs of the main loop rather than
only one. Naturally, if you have a stronger calculator,all these prob-
lems are easily avoided.

You have probably noticed that the flowcharts for the two jobs
to be done in hints 2 and 3 are almost identical. A great many pro-
gramming steps can be saved by using some steps twice, once in each
job. We will need a flag, however, to tell the calculator which job is
being done. We can use m;. If m; = 1, then the first job is being done;
if m; = —1, the second job. One more register, mg, will permanently

store the list, .a,a,....

This program, shown in Fig. 3-37, begins with x, where x =

Memory
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Fig. 3-37 Concluding flowchart for nim
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.2,3, . . ., and ends with y, where y = the number of objects originally
in the pile from which the calculator has chosen to remove objects and
with x, where x = the number of objects remaining in that pile after
the calculator’s move. The first two steps initialize for the first task,
and then we enter the loop. Since m; = 1 at this point, the question,

will always give a “no” answer, and we are simply duplicating the
flowchart in hint 2. We exit this loop wheno =a, ® a; @®...@ a, in

m;. We now test to see if o = 0. If so, since the calculator is lost, it

“fakes it” by removing one object from the last pile. Otherwise, if o
# 0, we set m; = —1 and enter the loop again for the second task. This
time, the question,

is always answered “yes,” and we are duplicating the flowchart in

Fig. 3-36.

3.17 Number Jotto

Difficulty: 4

There is an old word game called “jotto” or “bulls and cows”
that goes like this. One of the two players, the “code maker,” secretly
chooses any five-letter English word as the “code word.” It is the job
of the other player, the “code breaker,” to guess the code word.

The code breaker picks any five-letter English word as his
“guess word.” The code maker then gives the code breaker certain
information (described below) relating how “close” the code breaker’s
guess word is to the code word. The more guesses the code breaker
makes, the more information he has regarding the code word, and
eventually, he will guess the code word. His goal, of course, is to do so
with the least number of guesses.

The information the code breaker receives for each of his
guesses consists of two numbers, the “bulls” and the “cows.” The
number of bulls is easy to describe; it is the number of positions in
which the code word and the guess word agree. For example, if the
code word were ELECT and the guess word EDUCT, the code maker
would call three bulls: one because each word begins with E, one be-
cause each word has a fourth letter C, and one because each word ends

in T. (The code maker does not tell which three of the five positions

the three bulls refer to; that’s up to the code breaker to figure out!)



276 Mathematical Recreations for the Programmable Calculator

As another example, suppose the code breaker next guesses
ELATE. He would score two bulls, one for the initial E in both words

and one for the second letter L. Now in this case, both the code word

and the guess word contain a T. But since the code breaker doesn’t
have the T in the right place, it does not contribute to the bull count.
It does contribute to the cow count, however, for the cows count the

number of letters the guess word has in common with the codeword,
but in the wrong position. Thus, the guess ELATE scores two cows,
one for the T's and one for the E’s in the third position of ELECT
and the fifth position of ELATE. (The E’s in the first positions don’t
count as cows for they have already been counted as bulls.)

In our first example (ELECT and EDUCT), the E in the third
position of ELECT does not score a cow with the E ofEDUCT because
this E ofEDUCT has already been counted as a bull with the first E
ofELECT. This guess, therefore, does not score any cows.

Since your calculator doesn’t talk with letters, but with num-
bers, let us try a game that we call “number jotto.” It’s played in
the same way as the original game except that we will use an “alpha-
bet” a calculator can understand—the six numbers, 1, 2, 3, 4, 5, and

6—and our “words” will consist of any sequence of four, instead of

five, of these six numerical characters, for example, 3264, 5123, 4442,

ete.”

Problem: Write a program to play number jotto.

The program for this game should do two things: (1) randomly
select a four-digit word and hide it in some memory, and (2) accept
guesses at the word and return the number of bulls and cows as defined
above. Although this game can be realized on an HP-25, it strains the
poor thing severely. In the first place, (1) and (2) cannot be put in
program memory simultaneously. The program for (1) must be keyed
in first and used to generate the code word. Then the program for (2)
is keyed in. If you want to play this game on an HP-25, therefore, it
would save you a lot of work to have the human opponent fulfill the
function of (1). Second, even when (2) has been keyed in, it will require
about 25 key strokes for the player to enter each guess. (Of course,if
you have a larger calculator, these problems can be avoided.)

Our program will do more than play just four-letter word num-
ber jotto; it will also play any number, ¢ < 9, of numbers and words

of any length, h < 9. We will stick to ¢c = 6 and h = 4, however, in our

description.

"Master-Mind, a game based on jotto that is marketed by Parker Bros., replaces
the letters with colors instead of numbers.
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It will be possible for our program to play number jotto with
an “alphabet” of not just four, but any number of numerical char-
acters less than or equal to nine, and with “words” of any length
from one to nine characters, but we will stick to an “alphabet” of six
numbers and a “word” length of four characters.

Solution: If you have tried to solve this problem on your own, you
know that it is not easy. Once again, the solution presented here will
be in a sequence of steps that can be taken as a series of hints. Read
each one carefully in turn and then stop and try to execute that step.
Doing so may be enough to trigger the solution in your mind. We
should warn you, however, that the steps are not indepndent of one
another; they form parts of an integrated whole. If a given step doesn’t
reveal the complete picture to you, go on to the next step. Even if you
just want to understand our solution, you should follow the above
procedure in order to see how it all fits together. Our solution was
written for an HP-25, which explains why it contains numerous space-
saving tricks. If you have a bigger calculator, you will not need these
tricks for this particular problem. Nevertheless, they are worth know-
ing anyway; you might be able to use them later in other programs.

We will begin by describing part (2) of our program, the one
that determines the bulls and cows.

Hint 1: Let’s not try to do everything at once. We have two
main jobs, calculating the number of bulls and calculating the number
of cows. Let’s write a program to calculate the number of bulls first.

Here are some suggestions. Store a four-character word as a
decimal to the right of the decimal point, for example, .4113 or .1645.
Now fish out one character at a time from the code and guess “words”
to see if they are equal.

Hint 2: A flowchart for finding the bulls is shown in Fig. 3-
38. Register m, count the bulls, beginning at m, = 0. Registers mj;
and mg begin with the code and guess “words,” respectively. We will
need one more register, m,; m, begins at m, = 4 and counts down the

number of positions to be compared.
The first box, [m,<m, 1], simply decreases the counter. The

next box,  
ms < 10m;

mg < 10m,

pushes the leftmost digit of m; (the code “word”) and mg (the guess

“word”) further to the left, past the decimal point. The next step (after
the test
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Fig. 3-38 Flowchart for finding the bulls

to see if the four positions have been completed yet) removes those

digits from my; and mg and prepares to compare them. If they are un-
equal, we go back to the beginning and test the next pair of digits. If
they are equal, a bull is scored—|m,|—and then the next pair

of digits is tested.
Hint 3: Those cows are going to cause a little more trouble.

One way to find the number of cows is this: First, we count how many
times each digit occurs in the code and the guess “words.” For each
i, wherei = 1, 2, 3, 4, 5, or 6, let A; be the number of times i occurs in

the code “word” and let wu; be the number of times i appears in the

guess “word.” For example, if the code “word” were .1135 and the
guess “word” were .5141, then A, = 2, A, = 0, \; = 1, A, = 0, \; = 1,

and Ae = 0; likewise, M1 = 2, M2 = 0, M3 = 0, Ma = 1, Ms = 1, and Me =

0.
Now here is the promised formula, Sum (1), which you may

have to think about a little before “seeing” it:

6

(1) # bulls + # cows = O, min (Aj, w)
i=1

where min (A,u) denotes the smaller of two numbers, A and wu. Notice
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that min (Aju) represents the number of times that the character i

occurs in both “words.” In the example above, although there are no
6

bulls, there are three cows since the sum > min (A\;,u;) = min (2,2) +
i=1

min (0,0) + min (1,0) + min (0,1) + min (1,1) + min (0.0) = 2 + 0 +

0+ 0+ 1+ 0 = 3. Sure enough, the code breaker has guessed three
characters right, the two 1’s and the 5, but since he didn’t put any

of them in the right place, they were all cows.
Before we evaluate Sum (1), how about just writing a program

to calculate the A's and u's?

Hint 4: We will now consider a program to calculate the A's
and ws. It will accumulate the A\/s in mg—in the form, m; =

LAAAAsh¢—and the w;’s in my—in the form, my, = 1.Mops paflsile.

(The 1 to the left of the decimal is for rounding-off purposes; see the
solution of Problem 2 in Sec. 1.14.) We will begin with m3 = m, = 1,

with m, = 4, and with ms; and mg containing the code and guess

“words,” respectively.

In the flowchart of Fig. 3-39, we will explain only the last box
since the other steps are identical to the flowchart in Fig. 3-38. (Both
flowcharts serve the same purpose, to decrement the counter and fish
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Fig. 3-39 Flowchart for calculating the A's and u's
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out the digits in the code and guess “words” one by one.) This last
box,

 

my «my + 10%

 m; «mg + 107Y
  

uses the digits x and y (just fished out from the guess and code
“words,” respectively) to augment the corresponding wu; and A;. For
example, if digit x of the guess “word” is a 3, we must record the
presence of this 3 by incrementing us. Thus, we must add .001(= 1073)

to 1.mipaptamheptsphe.
The reason we have not written the box above as
 
my «my + 107%

m; «mg + 107 ¥    

is that if we agree to store the code and guess “words” in ms and mg
as negative decimals initially, the x’s and y’s fished out will already
be negative and we won’t have to change them.

We will, of course, use the 10* (or y*) key to execute the above
step, but since these keys are often not as accurate as we might like
(see Sec. 1.10), we use the trick of storing a 1 to the left of the decimal
point in m3 and my, thereby forcing the calculator to round itself off
(see the solution to Problem 2 in Sec. 1.14).

Hint 5: Now let's determine how to calculate Sum (1), which

was formulated in the hint 3. It actually turns out to be simpler to
calculate the quantity,

4 — #bulls — #cows.

This is for four character words, of course. With h-character words, we

would calculate h — #bulls — # cows.) Notice first that the sums,

A + Ae + Ag+ Ag + As + Ag

and

Mit pe + ps + pg + ps + Me

count the number of digits in the code and guess “words,” respec-
tively, color by color. Thus, each sum is equal to 4. From Sum (1), 4

6 6 6

— #bulls — #cows = > AN — > min (Au) = y [Ai — min (Aju).
i=1 i=1 i=1

Note, however, that A; — min (\;,u;) = max (0,\; — &;), where max (a,b)

denotes the largest of the two numbers a and b. Therefore,
6

4 — #bulls — #cows = D>, max (0A; — wy)
i=1



Games 281

Now we will accumulate the above sum in register mj, as fol-

lows. For each i, where i = 1, 2, 3, 4, 5, or 6, we will fish out digits A;

and u; and subtract. If the result, (A; — w;), is negative, we will go on

to the next i. If (\; — w;) is nonnegative, we add it to m; before going
on to the next i. Since we must again “take apart” a pair of decimals
(this time, the pair—1.\;A, ... and 1.xum, . . .—rather than the code

and guess “words”), we suggest storing them in ms; and mg, respec-
tively, and again using m, as a counter.

Hint 6: Let us first set up the steps shown in Fig. 3-40. All
these steps are explained in hint 5 except for the first one. The number
of characters, c (here, ¢c = 6), is stored in m,. The first step stores this

value in counter m,. Since we now have six pairs of numbers to check,
we begin with m, = 6.

Memory
START

counter

Cc

 

mom,

¢
Mg M3

h - bulls - cows 

 1 u's

1 A's

¥ 1 u's

mye 0

 

 

 

 

   Mego Mg

 

Fig. 3-40 Flowchart for the job in Hint 6

Now let us consider the main part of the program, shown in
Fig. 3-41. The first four boxes are identical to some boxes of the flow-

charts in hints 2 and 4 and are explained in hint 2. They decrement
the counter and fish out the next A;,u;. The next box calculates (A; —

11), and the one following that tests to see if A; — wu; = 0, incrementing

m3; by (A\; — wy) only if A; — wu; = 0. It then returns for the nexti.

With this hint we have reached the point of being able to pre-
pare a final program.

Hint 7: Notice that the three flowcharts in Figs. 3-38, 3-39,
and 3-41 have much in common. The first two duties, described in
hints 2 and 4, can be done simultaneously. The flowchart in hint 6
(Fig. 3-41) has a block of steps identical to a block of steps in the other
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Fig. 3-41 Flowchart for the main part of the jotto

two. Thus, we need only put those steps in the final program once
although we will use them in two phases.

During the first phase, we will calculate the bulls, 1.AA, . . .,

and 1.u,u, . . ., using hints 2 and 4. During the second phase, we will

use many of the same steps to calculate the quantity, 4 — #bulls —
#cows, as in hint 6. We will thus need a flag to tell the calculator
what phase it is in. To save a register, we will use m, (already being
used to store c) as a flag. We will store ¢ in m; during phase 1 and —c
in m, during phase 2.

The flowchart for our 49-step final program for the HP-25 is
shown in Fig. 3-42. The column headed “Start” indicates what the
storage registers should contain at the beginning of the program,
whereas the column headed “Stop” shows what will be in the regis-
ters when the program stops.

Notice first that since m; permanently stores the code “word,”
it does not need to be rekeyed for every new guess. Thus, the program
begins by moving it to the “chopping block,” ms. Next, the box
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places ¢ in m,, signaling the beginning of phase 1. Notice the
presence of

in two places. These are places where the calculator has to determine
what phase it is in.

All other boxes have been previously described, but there is
one more thing that must be considered. Let’s examine closely how
the two jobs described in hints 2 and 4 are combined in phase 1. Note
the sequence reproduced in Fig. 3-43. Here, x is a digit of the guess
word and y is a digit of the code word. As expected, the box
registers a bull if x = y, but the 1.A,A, . .. and 1.u,u, . . . registers are

not always incremented, as hint 4 says they should be. They are in-
cremented only when x # y. Consequently, at the end of phase 1, A,
won't count the number of 1’s in the code “word” but only the num-
ber of 1’s in the code “word” that are not counted as a bull. Moreover,

Ag, Ag, ... and uy, wo, us, . .. will be similarly affected.
Nevertheless, it turns out not to matter, for the difference (A,

— uy) is what we want, and A, and wu, will be affected by bulls in the
same way. The mistakes will cancel out, therefore, as soon as (A; —

My) is calculated in phase 2. The same process will also hold true for
the remaining (\; — u;)’s.

The program flowcharted in Fig. 3-42 is as far as we could get
on the HP-25. If you have a larger calculator, it should automatically
“set up” the registers as shown in the column labeled “Start” on the
flowchart. It should also end by recovering the bulls and cows from h,
m,, and ms. If you have room, you can include a routine to count the

number of guesses taken by the user and also to test whether or not
the last guess was correct (bulls = h?). If it was, the calculator should

indicate this fact and display the number of guesses used.
Picking a random code “word” is easy if you have a few more

registers and programming steps. At the beginning, let register m; =
0. Then choose a random digit between 1 and c¢ by the methods de-

CiYES

NO

  
mae mg +I10%
m3<—msz +107 memo + |

     

Fig. 3-43 Sequence in Fig. 3-42 where jobs in Hints 2 and 4 are combined
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scribed in Sec. 1.11. Add this digit to m; and divide the contents of m,
by 10. Repeat this operation h times, and the result will be a random
code word properly stored in mj.

3.18 Suggestions for Other Games

Dice Probabilities

Difficulty: 2

Write a program that computes the probability of rolling a
given number (input by the user) on one roll of a pair of dice. Then
write a program that computes the probability of making your point
on a given number before “crapping out” in the game of craps.

Note: The latter problem is related to the “problem of points” in
gambling. Suppose that a gambling game is interrupted after the
stakes are on the table. Player A needs m points to win, and player B
needs n points to win. What is an equitable division of the stakes? The
solution of this problem in the seventeenth century by Pascal and
Fermat led to the mathematical theory of probability.

Water Puzzle

Difficulty: 4

Before attempting this problem, you must first solve the fol-
lowing puzzle. Given an 8-liter bucket and a 5-liter bucket (and an
unlimited supply of water), use them to get exactly 6 liters of water.
Now write a program that shows how to get z liters of water from an
x-liter and a y-liter bucket. You might try to program the problem for
an Xx = 8 and a y = 5 first and then for an x and y that are variable.
The program should start with x and y stored in memories. The user
enters z, and the calculator displays the successive contents of x- and
y-liter buckets until one of them contains z liters. Notice that certain
solutions are not possible. For example, if x = 4 and y = 6, it will be
impossible to get anything but even numbers of liters from the two
buckets. More generally, if d is the greatest common divisor of x and
y, then z must be a multiple of d.

Soccer

Difficulty: 3

Calculator size: Medium

The game is similar to hockey (see Sec. 3.12) but is three-
dimensional; three coordinates are needed, therefore, to locate the ball

in space. The “goal” is a rectangle in the x,z plane. The shooter makes
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a shot by selecting his position on the field (two coordinates) and di-
rection of shot (two angles). The ball then moves in a straight line
toward the goal. The defender tries to block it with a small rectangle
that he can place somewhere in the net. If the shot hits the rectangle,
it is a blocked shot.

Shooting Gallery

Difficulty: 4

Calculator size: Medium

This is another simulation game. The player will fire a point
at a target in the x,z plane. The target consists of a bull’s-eye and two
outer rings. The player fires from some fixed location, making his shot
by selecting a pair of angles (horizontal direction and elevation). Hit-
ting the bull’s-eye scores 25 points. Hitting the other two rings scores
10 and 5, respectively. To make the game more interesting, have the
calculator select the location of the target randomly; that is, when the
appropriate key is pressed, the calculator generates a random pair of

coordinates (you may want to fix some bound on the coordinates). The
point represented by these coordinates then serves as the center of the
bull’s-eye.

Tick-Tac-Toe

Difficulty: 4
Calculator size: Large

Write a program for the calculator to play tick-tac-toe. Your
first problem will be input and output. Begin by labeling squares 1
through 9 of the playing area to identify them. If you have a printer,
you can also get the calculator to do a little graphics. Let 1 represent
a move by the calculator, 2 a move by the player, and 0 an empty
space. The “board” can then be represented by three three-digit num-
bers. A partially completed game might look like that shown in Fig.
3-44. The calculator (1) is about to win this game, even if it is the
player’s (2) move.

—
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The hard part, of course, is to develop a winning strategy that
the calculator can be taught. You can simplify things a bit by having
the calculator always make the first move. The HP-67 Games Pac has

just such a program, in which the first move always begins in the
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middle of the bottom row (to be at least sporting). Since we have solved
the problem of having the calculator make the second move, we don’t
know how hard it might be (or indeed if it is possible). If you still want
to try it, you can simplify things by allowing the player to make his
first move only in the middle of the board, in the middle of the bottom
row, or in the lower left corner. This structure essentially exhausts all

the different moves.

Bowling Scorekeeper

Difficulty: 2
Calculator size: Medium

Write a program that will keep a bowling score for two (or
more) players. Each player enters the number of pins knocked down
after every ball thrown. The program keeps track of whether it is the
player’s first or second ball and whether or not there was a spare or
a strike. (Note that since the score in a given frame is sometimes not
determined until two more balls are rolled by that player, it is not
enough to store just the cummulative score of each player!)

Bridge Scorer

Difficulty: 3
Calculator size: Medium

Write a program that will keep a bridge score. It should work
like this. At the end of the bidding, the calculator is told who won the
contract, what the contract was, and whether or not it was doubled or

redoubled. At the end of the hand, the calculator is told how many
tricks the declarer won. It then calculates whether or not the contract
was made, the penalties for undertricks, and the bonuses for over-

tricks, game bids, and slams. The calculator also keeps track of points
above and below the line for each side and determines whether or not
a side is vulnerable. (Once a side completes a game, the score for that
game is accumulated “above the line,” and the “below the line”
register is cleared for the next game.)

Battleship

Difficulty: 4

Calculator size: Large

In the game concentration (see Sec. 3.8), multiple storage was
used to store a whole rectangular array of numbers in just a few reg-
isters. A similar technique can be used to store the location of the
different types of ships employed in the game battleships. Either the
calculator randomly chooses the placement of its ships, or the human
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opponent keys in his choices. Then the other player keys in his
“bombs,” and the calculator computes the hits and misses. (We have
not tried this program ourselves, but we are certain that it can be
done. The hardest part would probably be the random selection of the
locations of the ships.)

Racetrack

Difficulty: 3

Calculator size: Medium

It is not too difficult to simulate a race car in your calculator.
You will need six registers for the racetrack game: two for the position
of the car, two for its velocity, and two for its acceleration. The driver

of the car can change its acceleration (only by a limited amount) by
keying in the change. The program then uses this information (and
Newton’s laws of motion) to compute the car’s new position, velocity,
and acceleration. Several cars can be programmed to race one another
on a track. The number of “extras” you can add to the program is
limited only by the power of your calculator. Some possible routines
you might include are: (1) determining if the player has driven off the
track or not, (2) determining whether two cars have crashed, (3) oil

slicks on the track (where acceleration immediately becomes zero), (4)
lap counters, etc. You might even write a program in which the drivers
have to make decisions in “real time”!

Other Racing Games

Difficulty: 3

Calculator size: Medium

The main routines in racetrack above—those for calculating
position, velocity, and acceleration—can be used to simulate a large
variety of racing games. Here are some possiblities.

In obstacle course, players have to wind their way through a
complicated track without going off the track or hitting one of the
many obstacles planted on the track. (The obstacle course would first
have to be drawn on paper, and the positions of cars calculated by the

program would then be penciled on the paper by the players.)
In ski slalom, players have to ski past certain checkpoints

(gates) in the right order.
In bumper cars, each player tries to hit the vulnerable side of

his opponent’s car with the invulnerable nose of his own car on an

open track.

In shootout, both player’s are equipped with a gun of a certain
range and accuracy, and the two maneuver on an open court shooting

at one another.
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Learning Engines
Difficulty: 5

Calculator size: Large

If you taught your calculator jelly beans, Whythoff's game, or
nim, you probably have found that they are not much fun to play
because the silly calculator just keeps winning. To keep it from doing
so, you could program it to choose its moves in each game randomly.
But this would make you a constant winner—a less discouraging out-
come, certainly, but just as tiresome after a while.

We have written a program for an HP-67 that strikes a balance
between these two extremes. It works like this: The user makes up
any two-person game that has 16 or less positions. For example, jelly
beans beginning with a bag of 15 jelly beans would do, for there are
exactly 16 possible positions (0, 1, 2, ..., 14, or 15 jelly beans). He

then tells the calculator the rules—that is, which positions can legally
follow which positions. (The rules can be keyed either one by one or
all together from a data card.)

Now the user and the calculator play the game. The calculator
begins playing randomly and consequently often loses to the user. It
learns from its mistakes, however, and the more it plays, the more it

learns. After about twenty quick games, the calculator has become an
expert and makes only the best moves every time! Since this is the
hardest program we have written to date, we will give you a few clues
here.

How does the calculator learn? It simply remembers the last
move it made at each turn. Whenever it reaches a position from which
there are no legal moves, it is lost and therefore resigns. But just
before resigning, it removes this last move (which must have been a
bad move) from its list of legal moves and can therefore never make
this particular bad move again.

We number the possible positions in the game 0 through 15.
For each position, the calculator must know the list of positions that
can legally follow it. This list can be encoded as a five-digit number
using the binary storage method described in Problem 3 of Sec. 1.14.
Each register can therefore store two such lists—one in the five digits
to the right of the decimal point and the other in the five digits to the
left.





 

APPENDIX A

Flowcharts
Flowcharts, a kind of universal programming language origi-

nally developed for computers, are also perfectly suited to programm-
able calculators (which are, after all, tiny computers). A flowchart is
not itself a program because it is not written in any particular pro-
gramming language. Rather, it is a diagram of what the program it
represents is supposed to do. Once understood, diagrams of this kind

can be readily translated into programs using any language you like.
The symbolism of flowcharts is very simple and easily interpreted.
That is their virtue.

So let’s get right into it. We might as well do the hardest part
first, and it will be all down hill after that. Many flowcharts in this
book make use of the symbol «, which means, roughly, “replace by.”
The name of a memory always appears to the left of the arrow. What-
ever appears to the right is to be placed in that memory. For example,
m; «< 1 means “store a 1 in memory number 1.” In a calculator

program, this flowchart notation would become the sequence 1, STO
1 (or 1, STO 01). In like manner, m; < m, means “store the contents

of m, in m,,” which would become RCL 2, STO 1 (or RCL 02, STO

01) in a calculator. Note that m; «< m, says nothing about changing
the contents of m,. After the step m; «< m, is executed, the contents

of m, and m, will be identical.!

Whenever an x appears to the left of an arrow, it always refers
to the contents of the display register (we usually don’t think of the
display register as a memory, but it is). Thus, x «< m; means “place
the contents of m, in the display” (RCL 1 or RCL 01). Since the x-

! Occasionally, the notation m; = m, will be used to indicate that the contents

of two memories are to be exchanged.
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register is where most calculator computations take place, flowchart
steps involving an x often describe a computation—for example, x «
m,; + m; or x «< m,*> + m,>. Sometimes an x appears on both sides of
the arrow, as in x « |x or x «<— x + 1. The x to the right of the arrow
then refers to the contents of the x-register before the step is executed.

A flowchart is drawn as a sequence of different shapes con-
nected by arrows. Each shape represents a program step (or steps).
The arrows indicate the order in which the steps are to be executed.
The shape

aD
is used to indicate the beginning and end of the program. Most of the
shapes in a flowchart, however, are rectangular boxes in which the
“normal” steps of the program appear.

A flowchart for a program that computes the areas of circles
appears in Fig. Al. Here we assume that the radius of the circle whose
area is to be computed will be placed in the display before the program
is run. This particular flowchart says nothing about input or output.
It only gives a recipe for the central computation that the program
has to make: First square the number in the display and then multiply
the result by =.

xex2

'
Xe TX

STOP

Fig. A1 Flowchart for computing the areas of circles

 

 

 

   

Flowcharts frequently leave the problem of input and output
to the programmer (that’s you). However, a special shape has been

reserved for input and output steps in a flowchart when they need to
be mentioned, a slanted box:

[_/
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Suppose you wanted to construct the area-of-circles program
as a loop. After the area of a given circle has been computed, the
program is to stop so that the user can take note of the answer and

enter a new radius for the next run. Control will then be sent back to
the top of the program for the new run. The flowchart for this proce-
dure might look like that in Fig. A2.

START

— xe x2

'
Xe TX

 

   
 

   
   

  

     

 

 R/S
(USER
ENTERS
NEXT)

  

Fig. A2 Flowchart for computing the areas of circles using a loop

It is easy to write a program that will execute this flowchart,
as shown below:

HP TI

01 x2 00 x2
02 = 01 x

03 x 02 =

04 R/S 03 =

05 GTO ot” 04 R/S

05 GTO 00*

*Your calculator might require a label instead of the “absolute” address given in the
GTO order here.

Note how closely the steps in these programs follow the steps in the
flowchart.

Flowcharts have great flexibility in the way they allow a com-
putation to be done. For instance, our original flowchart could be re-
written as shown in Fig. A3. Unlike the original, this one does not
indicate how 7x? is to be computed. It merely says, “Compute 7 times
the square of the number in the display and leave the result in the
display.” The user has to figure out how. In general, the flowcharts
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START

xo Tx2

¥
STOP

Fig. A3 Rewritten version of Fig. Al

 

   

for the easier problems in this book provide more detail than the oth-
ers.

Next, we need to make some comments about memories. Mem-

ories in flowcharts (and elsewhere in the book) are usually denoted by
subscripted m’s (“memory”) and r’s (“register”): m,, rs, m;, for ex-

ample.
Many problems assume that your calculator has eight memo-

ries, since all programmable calculators have at least that many.
These memories will frequently be labeled m;, m,, ..., mg or ry, rs,

..., rg. But if your calculator really does have only eight memories,
it probably does not have a memory numbered 8. Rather it has a
memory at the beginning numbered 0. You will have to watch out for
this possibility and change some of our 8s to 0’s when you write
your own programs.

Second, although it is true that mg usually denotes memory
number 6 or 06 on your calculator, it does not always do so. In some
programs involving lots of memories, we may label one set of memories

m,;, m,, ..., m and another n,, n,, ..., n,. Here the subscripts label

the numbers that will be placed in these memories, as well as the
memories themselves. Thus, it will be up to you to figure out what
actual memories on your calculator will be used for m;, n,, m,, n,, etc.

(see Sec. 2.10 for an example).

Third, whenever indirect addressing occurs in a program, we
use the notation m; or my. The former refers to the memory whose
subscript is in the indirect addressing register, and m,, refers to the
memory whose subscript is in memory m,. If m, contains a 6, for in-
stance, the m,, will denote mg. If m, contains a 10, then m,, will

denote my.
m,

Readers whose calculators have indirect addressing should al-
ready know how it works; our point is only to introduce the notation.
Others need not worry about it, since they’re going to be able to solve
the problem anyway (however, see Sec. 1.9 for some tips on how to
fake a little indirect addressing on calculators that don’t have it).

Now let’s get back to flowcharts. Thus far we have introduced

three shapes:
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for the beginning and end

for normal program steps

J
U
L

for input-output steps

There is one other special type of step occurring in a program:
testing. Test steps are marked by diamonds:

<
Diamonds have two arrows coming out of them to indicate where con-
trol is to be sent next in the program for each possible answer to this
test question. Figure A4 is a flowchart of a program to compute the
absolute value of a number. (The simpler flowchart in Fig. A5 accom-
plishes the same thing without a test.)

Since testing works differently in different calculators, you
may have to tinker a bit to get your calculator to execute a test (see
Sec. 1.3 for a few tips). Most TI calculators have a special test register,
the t-register, which is used for all testing. To execute the test, x = 0?,

on a TI, the contents of the display will have to be loaded into the t-
register first; then the test, t = 0?, will be executed. HP calculators

can execute the test, x = 0?, directly. Some of the functions of the t-
register are performed by the y-register in HP testing.

Occasionally, a flowchart will have a test such as the following:
m; = m,?. This is one of those “we're leaving it up to you” type steps.

No calculator has such a test key; you will just have to figure out how
to do it on your particular model.

 

 

  
 

 
  

 

STOP

Fig. A4 Flowchart for computing Fig. A5 Simpler version of Fig. A4

the absolute value of a number without a test
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There is one last difficulty with test steps in flowcharts. Be-
cause of the differences between calculators, whatever may have been
in the x-register before testing began may or may not be there when
the test is over. The flowchart, however, makes the (probably unwar-
ranted) assumption that nothing is changed during testing. Consider
the following portion of a flowchart shown in Fig. A6. How are you
going to execute this test? If you have a TI calculator, you will probably
use the sequence, x = t, RCL 1, x = t?. For HP calculators, the se-

quence will be RCL 1, x = y?. In both cases, the contents of the x-
register will now be the same as the contents of m,. The former con-

tents of the x-register have moved into either the t-register or the y-
register. However, the step, x «<— x + 1, refers to the former, not the

present, x, because the flowchart assumes that the former x would not

move during testing. Thus, before executing the step, x «<— x + 1, you
will have to bring the former x back. We have tried to draw attention
to this potential ambiguity whenever it occurs in a flowchart in the
text, but you will have to be on the lookout for it, too.

CEYES

NO

 

xe x4

   

Fig. A6 Portion of a flowchart to illustrate testing problems

It is now well past time to look at some flowcharts close up. In
keeping with the philosophy of this book, we will present you with
this valuable experience in the form of problems. Solutions appear at
the end of this Appendix.

Problem 1: The input for the program shown in Fig. A7 is a positive
number. What does the program do?

Problem 2: The input for this program will be two positive whole
numbers, to be placed in memories m, and m,. The program should

divide the larger of the two numbers by the smaller and output the
result. Make a flowchart for this program.

Problem 3: Write a program for your calculator that executes the
flowchart made in Problem 2.
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xex—|

    
   

Fig. A7 Flowchart for Problem 1

Most flowcharts in this book are accompanied by memory dia-
grams, tables to the right of the flowchart (usually) indicating the

contents of each memory used by the program. These diagrams help
you read the flowchart and understand what it is doing. A second
memory diagram, labeled “Initial state of the memories,” may appear
below the main memory diagram to indicate what particular numbers
should be in various memories before the program is run. In most
cases, the numbers must be placed there by the user. If a memory
appears in the main diagram but not in the initial state diagram, then
the user need not initialize it since the program will take care of it
automatically. Sometimes initialization is indicated within the flow-
chart itself (see, for example, Fig. 2-17 in Sec. 2.10). The initialization
steps that appear in the first box of the flowchart will probably not be
actual steps when the program is put on your calculator.

You should be getting the idea by now that flowcharting is a
little loose—the price that has to be paid for the flexibility of the
language. In most cases, flowcharts can be turned directly into pro-
grams for your calculator, but you should always read the accompa-
nying text carefully to make sure that you understand them before
writing your programs. Watch out, in particular, for input-output and
testing steps. It is here that flowcharts are at their most ambiguous,
and, consequently, you must be especially careful. Now let us consider
one final problem.

Problem 4: The input for the program shown in Fig. A8 will be two
positive whole numbers—a and b. What does the program do?

Solutions to Flowchart Problems

Problem 1: Although the program computes the fractional part of
x, we do not recommend using it. It is outrageously inefficient if x is
large.
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START Initial State of

 

 

the Memory

1 a

OUTPUT 2 b     
ma  

 

 

 
 

   
Fig. A8 Flowchart for Problem 4

ee 9
Problem 2: Let's call the numbers in m; and m, “a” and “b,”

respectively. The straightforward way to solve the problem is to test
first to see which numberis larger and then branch to the appropriate
division. The flowchart is shown in Fig. A9.

Another possible solution is to perform the division first and
then check to see whether you did the right thing. This flowchart is
shown in Fig. A10.

The program begins by computing m;/m,. If this was the proper
division, the answer should be greater than 1. If not, the correct an-

swer is m,/m,, simply the reciprocal of m,/m,. This flowchart contains

just as many boxes as the previous one, but you will find that it pro-
grams in fewer steps and runs faster. Since the box, x «< 1/x, is a one-

step operation, Sec. 1.2(6) can be used to advantage here.

Memo
START v

0 a

YES NO ! b

Initial State of
the Memory

Xxe—my/m, xe—m;/m; 0 a

 

 

    

  
 

        1 b  
 

'

STOP

Fig. A9 Flowchart for solving Problem 2
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START Memory
1 a

2 b

 

  

 

xem;/mj

  Initial State of
the Memory

 
 

a
    b
 

2 o

N
|
=

 
YES

x=|/x

[rr=
Cro

   

STOP

Fig. A10 Alternative flowchart for solving Problem 2

Note: The trick of making a computation, checking to see if
you did the right thing, and then adjusting the result if necessary is
often times more efficient than the usual sequence of first checking to
see which computation should be made and then making it.

Problem 3: We're not going to tell you how to put this on your own
calculator. You should be able to figure it out for yourself!

Problem 4: The program computes (a + b).





 

APPENDIX B

Testing and
Troubleshooting
Mistakes are easy to make; even the most experienced pro-

grammer makes them. After you have written your program and
keyed it into the calculator, it only makes sense to test it. If it doesn’t
seem to be working, you must then find your mistakes and correct
them.

To test your program, try it sevral times with several different

inputs. For most programs, there will be several inputs for which you
already know (or can easily calculate by hand) the numbers that the
program should output. If one of these inputs fails to produce the ex-
pected output, then you know something is amiss.

But say the program passes all your tests; is that a guarantee
that everything is all right? Probably not. In most cases, the best you
can do practically is to choose a small number of inputs to test, which
together have a good chance of catching any error.

Here is our guideline: Make sure that each and every program
step gets executed in at least cne of your tests. Consider the program
in Fig. B1, which accepts as input a number x. Here, A and B are
blocks of program steps. If you tested only positive values of x, the
block B of program steps could be full of mistakes, but you wouldn't
realize it, because block B never gets used when the input x is positive.

Your more intricate programs will have many tests, branches,
and subroutines. Each time you test an input, examine your flowchart
to see which parts of it were tested. Try to find inputs that lead pro-
gram execution to the yet untested portions of the flowchart, until
every step is tested.
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START

NOleYES

  

> @

      
a n
e
l

STOP

Fig. B1 Flowchart for troubleshooting

At times, you will have no idea what output to expect for any
input, but ways still exist to test an input. For example, even though
you cannot predict the output, there might be a simple check to de-
termine if it is consistent or not. At the very least, there will always
be some outputs that are obviously wrong. You will always have a
general idea about the nature of the expected output. In some pro-
grams, for example, the output should always be a whole number;
thus, you will know that something is wrong if your program outputs
31.52. In many programs, you will have a general idea as to the size
of the output. If your program outputs a suprisingly small or surpris-
ingly large number, you should get suspicious.

So much for testing your program. If it passes a large number
of tests, it is probably okay. But what if it produces a definitely incor-
rect output, or even produces no output and just gives an “error”

message? Then your program has at least one, and possibly many,

mistakes in it. How do you find them?
The basic technique for troubleshooting a program is to exe-

cute it one step at a time, examining the display after each step to see
if it has been executed correctly (see your manual on how to do this).
You should have your flowchart and your program listing at hand
while you are stepping through the program so that you can more
easily keep track of where you are. As the calculator executes each
step, use your flowchart and program listing to determine what it
ought to do, and then compare this with the resulting display. When
you arrive at a subroutine, most calculators will not let you single-
step through it but will execute it all at once. If the subroutine appears
to give the correct output, it’s probably okay, and you can go on. If
you suspect the subroutine is not working as it should, however, you
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should separately single-step through it. Many programmers test each
subroutine all by itself as it is written, and you should definitely do
likewise in programs using many complicated subroutines.

You will undoubtedly find it tedious to single-step through a
program; we certainly do. In long programs, where single-stepping
will take a great deal of time, you should try to make educated guesses
as to which parts of the program might contain errors. Then you can
carefully single-step through the suspect portions.

If you are at any point uncertain whether a particular portion
of the program has been executed or not in the original test, you can
insert an extra step or two in that part of the program to mark it. The
easiest step to insert is setting an unused flag. Then run your program

again, and see if the flag was set or not, to determine if the question-
able portion of the program was executed. (If you have no flags, you
can use an extra register; see Sec. 1.7.)

Now, when you find an error, consult your manual on how to
remove the offending program steps and insert the correct ones. And
when you've corrected all the mistakes you've found, you are not
done yet; there could be more. Force yourself to go back and test your
program again, paying careful attention to inputs that were previously
troublesome.





 

APPENDIX C

Program Listings
In this Appendix, we give program listings for a few programs

from Chap. 3 that fit very tightly onto a calculator with only 50 steps
of program memory. All programs are written for the HP-25 (or HP-
33E/C). Listings for the following programs are included: (1) blackjack
dealer, (2) hockey, (3) jelly beans, (4) Wythoff's game, (5) nim, and
(6) number jotto.

In blackjack dealer (Fig. C1), you should initialize 0 at
1.444444444,1 at 16, 5at 52, and 6 with seed. Each push of draws
a card and returns a 0 when the deck is exhausted. The program has
to be reinitialized (except for 6) when a new deck is used.

In hockey (Fig. C2), the program has been taken exactly from
the flowchart, except for two things: (1) r, is entered directly in the
program in step 15, saving one storage register; and (2) steps 15

through 22 represent a tricky way of getting a 1 into my;if [x,| < r, or
a — 1 if [xg] = r.. Note that [x,| = ry if and only if 1 = r,/|x,|

In jelly beans (Fig. C3), the following steps are needed to ini-
tialize the program: Store 10 in rs, store the smallest number of A in
rs, store the largest one in rg, and store the set A as a decimal of 0’s

and 1’s in r;, as described in the text. To learn the calculator’s move,

enter the number ofjelly beans left. It will display the number ofjelly
beans it “eats” on its turn.

In Wythoff’s game (Fig. C4), after you have keyed in the pro-
gram and reset the program counter, initialize by storing (1/2) (6 +

1) in r,. To learn the calculator’s move from position (c,d), punch c,

E17, d, R/S. The calculator will output the resulting position (c’,d"),

after its move, in the x and y registers.
In nim (Fig. C5), key in the program and reset the program

counter. To make the calculator move, store 0 in ry; store 1 in ry; store
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01 RCL 6 23 0 Memories

02 = 24 x c 0 cards < 10

03 + 25 FRA 10 cards
04 5 26 STO 7
05 y* 27 LAST x 2 cards counted so

06 FRAC 28 INT far
07 STO 6 29 STO + 2 3 card working

08 RCL 5 30 RCL4 4 card drawn
31 RCL2

® : 32 x=y 5 # of cards left in

11 STO 3 33 GTO 40 deck
12 STO -5 34 1 6 random # seed

13 + 35 STO +3 7 unexamined cards
14 INT 36 RCL7

15 STO 4 37 x=0

16 RCL 1 38 GTO 00

17 x=y 39 GTO 22 45 GTO 00

18 GTO 46 40 RCL 3 46 1

19 STO 2 41 CHS 47 STO -— 1

20 RCLO 42 107 48 1
21 FRAC 43 STO -0 49 0

22 1 44 RCL 3 (50 GTO 00)

Fig. C1 Blackjack dealer

the position, encoded as a decimal .w (see text), rs; and punch ris |.
If the calculator outputs 0, it is in a losing position and has resigned.
Otherwise, to learn its move, store —1 in r;, again store the position
.w in rg, and punch . When the calculator stops, its move is in the
x and y registers, encoded as follows:

“Remove all but x of the objects from a pile containing y objects”

To play number jotto (Fig. C6) with nine or less holes and nine
or less colors, the codemaker hides his code word in the calculator, and

it will give the code-breaker the number of black and white pegs for
each of his guesses. After keying in the program, fix 0, initialize the
program, and clear the register. Let Ah = the number of holes and ¢ =
the number of colors. Label the colors with the e digits 1, 2, ..., c.

 

START Punch

[v), [sto], [0], [c], [cms], [sro],
 

 

CopEMAKER To hide word a,b, . . . ,s, punch

[], [a], [b], ..., [s], [so], [7], [cLx]
CoDEBREAKER To guess word a,b, . .. ,s, punch

[ci], (570), [2], [1), (510), [3], [510], [4]; then
3 [a] ©). [&], [ns], [579], [o),
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Brack PEGS To see the number of black pegs, punch

[v], [sto], [0], [RoL],
 

WHITE PEGS To see the number of white pegs, punch

To have the calculator choose a random code word, key in this
program:

00
01 24 02

02 15 73
03 51

04 05

05 14 03
06 15 01

07 23 02

08 24 03

Store 0 in R;, c in R;, and an arbitrary number «, where 0 <

a < 1, in R,. Punch R/S an h number of times. Key in number jotto

RCL 2

wT

+

5
y*

FRAC

STO 2

RCL 3

(ror), [3], [+], [-]

x

INT
1
+

STO +7

1

0
STO +~ 7

GTO 00

09
10

11
12

13

14

15
16

17

61

14 01

01
51

23 51 07

01

00
23 7M 07

13 00

program beginning again, initialize program, and guess.

(00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

R/S)
STO 1
STO 5

R/S
STO 2

5

STO 3
STO 4

R/S
tan

STO x 3

RCL 2
x

STO -5

3 (ry)
RCL 5

ABS

1

X=y

CHS
STO 7

6
STOO

R/S

26
27

28
29

30
31

32

33
34

35

RCL 5

ABS

RCL 6

X<y

GTO 34

0

STO 7
FIX 2

RCL 2

PAUSE

RCL 1

PAUSE

RCL 3

STO - 1
RCL 4

STO - 2

1

STO -0

RCL O

X#0
GTO 35
FIX 0

RCL 7

GTO 00)

Fig. C2 Hockey

Memories
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(00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

(00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

R/S)

STOO

3

1/x

STO 1

RCL 1

STO 2

RCL 7

STO -2

RCL 6

STO 4
1

STO - 4

RCL 4

Xx <0

GTO 25

RCL 3

STO x 2

RCL 2

INT

STO — 2

X #2

GTO 11

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Fig. C3 Jelly beans

R/S)
x <y
X><y
STO 2
X><y
STO 1

STO 3
RCL O
X

INT

STO 4

RCL 1

x =y
GTO 41
X=y
GTO 45

RCL 1

RCL O

INT

STO 5

RCL 0
X

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

1

STO + 1
1

STO + 1

STO -0

RCL 0

x <0

GTO 34

RCL 3

STO +1

GTO 05

RCL 1

INT

1

X=Y
GTO 43

RCL 6

RCL 4

GTO 00
RCL 5

GTO 00

INT

RCL 5

X=Y
GTO 39
RCL 1

RCL O
X

INT

LAST x

X=yY
GTO 39
X><y
1

+

RCL 1

GTO 00
RCL 2

1

GTO 00
RCL 3
RCL 4
+

LAST x

GTO 00

Fig. C4 Whythoff's game
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RCL 6

x=0

GTO 49

INT

STO 3
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RCL 4
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X<>y

STO 1

X><y

STO 2

2

Program Listings

17

18
19

20
21

22

23
24
25

26
27

28

29

30
31

32

33

1/x

STO 0
Clx

STO 5

2
STO x 0

STO +1

STO +2

RCL 1

x=0

GTO 38
FRAC

STO —- 1
RCL 2

FRAC

STO — 2

X=Yy

* The “e” instep 0liseitheralora?2, as describedinthe text. Ife = 1, there are
at most nine objects per pile. Ife = 2, there are at most five piles, with at most
99 objects per pile.

Step

Number

l
00
01

02

03
04

05

06
07

08

09
10

11

12

13
14

15
16

17

18

19

20
21

22

23
24

Machine

Code

24 07

23 41 05
01

32
23 61 O01

01

23 41 00
15 08

23 61 05

23 61 06

24 00
15 #41

13 40

24 05
14 01

23 41 05

24 06

14 01

23 41 06
24 01

15 41

13 32

22
14 71

Fig. C5 Nim

Step Step
Name Name

\
GTO 37

RCL 7 10x

STO - 5 STO + 4

1
CHS 10%

STO x 1 STO + 3

1 GTO 06

STO -0 J

10x —

STO x 5 Xx=0

STO x 6 STO + 3

RCL 0 GTO 06

x<0 1

GTO 40 STO + 2

RCL 5 GTO 06

INT RCL 1

STO -5 x <0

RCL 6 GTO 00

INT STOO

STO - 6 RCL 3

RCL 1 STO -3

x<0 STO 5

GTO 32 RCL 4

l STO 6

X=y GTO 03

Fig. C6 Number jotto
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34 GTO 21
35 RCLO

36 STO +5
37 GTO 21

38 RCL7
39 x<0
40 GTO 44

41 RCLS5

42 STO 4
43 GTO 01

44 RCL 3
45 RCL 5
46 x=y

47 GTO 01

48 GTO 00
49 RCL 4

Step Machine
Number Code

l
25 13 87
26 15 08

27 23 51 04

28 22

29 15 08

30 23 51 03
31 13 06
32 22

33 41

34 15 51

35 23 51 03

36 13 06
37 01

38 23 51 02

39 13 06
40 24 01
41 15 #1

42 13 00

43 23 00
44 24 03

45 23 41 083

46 23 05
47 24 04

48 23 06

49 13 03





 

APPENDIX D

Notation
Frequently throughout the book we refer to particular keys on

the calculator, using the standard HP or TI notations. Sometimes
when these differ, we don’t mention the alternative. Here is a list of

equivalents for these keys:

HP TI
ABS = |x| Absolute value
CHS = +/— Change sign
D.MS = H.MS “Degrees, minutes, seconds”

E EX = EE Enter exponent

ex = INV 1n x Exponential function
FRAC = INV INT Fractional part
GSB = SBR Execute subroutine
RTN = INV SBR Return
STO + = SUM Register addition
STO — =INV SUM Register subtraction
STOX = Prd Register multiplication
STO + =INV Prd Register division
10% = INV log x Inverse common log

Testing that involves two numbers uses the y register on HP’s and
the t-register on TI's. We occasionally use y interchangeably with t
in the text.

In flowcharts and elsewhere, x refers to the contents of the

display register; m,, m,, ry, r,, etc., refer to memory registers; m, or r,

usually designates memory 1 (or 01); m, or r, usually designates mem-
ory 2, etc.

The notation x <— R and (m,) means “generate a random num-
ber between 0 and 1 from the (previous random) number in m, and
place it in m, and the display.” See Sec. 1.11 for details.

The notation “«<” appearing in the flowcharts means “place
the number indicated on the right in the memory indicated on the
left.” See Appendix A for further explanation.
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Glossary
Address (n.) The name of a memory. An addressable memory is one

whose contents can be recovered or manipulated by reference to
its name.

Algebraic logic (n.) The method of describing a sequence of algebraic
operations by the use of parentheses and a hierarchy of operations.
Most calculators use either some form of algebraic logic or RPN.

Algorithm 1. (n.) A computational recipe; in particular, a recipe that
can be programmed onto a computer and that stops in finite time
for each legal input. 2. (n.) A procedure that terminates.

Branch 1. (n.) A place in a program where control can go one of two
ways, depending on the outcome of a test. 2. (v.) To send control
to another part of the program, usually as the result of a test.

Call (v.) To order execution, usually of a subroutine.

Clear 1. (n.) The lowered state of a flag. 2. (v.) To lower (a flag). 3.
(v.) To erase; “to clear a memory.”

Control 1. (n.) The operator in control of the calculator, either the

program or the user. 2. (n.) That part of the program being exe-
cuted at a given moment.

Counter (n.) A memory used to count the number of times that some
part of a program has been executed (frequently used to control
loops).

Counterexample (n.) A specific input that fails to produce the conjec-
tured or expected output.

Cue (n.) A signal displayed by the calculator during a temporary halt
in program execution, usually used to remind the user what ad-
ditional data is required.

Data (n.) Information; specifically, numerical information processed

by the calculator. Input data is information supplied by the user
to the calculator. Output data is information supplied to the user
by the calculator.
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Decrement 1. (n.) A fixed amount by which another quantity is re-
peatedly decreased 2. (v.) To decrease by a decrement. (See also
Increment.)

Dependent variable (n.) See Independent variable
Display (n.) That part at the top of your calculator where all those

numbers magically show up.
Dividend See Division
Division (n.) The act of dividing a number y (called the dividend) by

a number x, where x # 0 (called the divisor). There two types: (1)
Real division, which outputs the quotient, y/x, and (2) quotient and
remainder division, used only when x and y are integers. It out-
puts an integer q, called the quotient, and an integer r, called the
remainder, so that y = xq + r and 0 <r < [x]. (This operation does
not appear on most calculators and must be programmed in; see,
for example, Sec. 2.11.)

Divisor See Division

Evaluate. (v.) To compute the value of a dependent variable from a
given value(s) of the independent variable(s).

Exponential function (n.) The function, x < e*, or, more generally,
any function of the form, x «<— aX, where a is a constant; for ex-

ample, x «< 10*. Exponential functions are the inverses of log
functions.

Feedback (n.) Output that is fed back into the program, usually for
the purpose of refining a computation.

Fixed point (n.) The method of representing each number by a string
of one or more digits, followed by a decimal point, followed by a
string of digits (compare with Floating point).

Flag (n.) A memory with only two possible states (“set” and
“clear”) that is used (1) in conjunction with flag-testing functions
to cause conditional branches, and (2) diagnostically, to check the
flow of control in a program or to check the state of the calculator.

Floating point (scientific notation) (n.) The method of representing
each nonzero number in the form, +(a xX 10"), where 1 < a < 10

and n is an integer (compare with Fixed point).

Function (n.) A process that unambiguously assigns to certain num-
bers, or sets of numbers, other numbers, or sets of numbers. Many

functions such as the function that assigns to every nonnegative
number its square root can be executed on your calculator by a
few key strokes; many others can be programmed into your cal-
culator.

Increment 1. (n.) A fixed amount, frequently 1, by which another
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quantity is repeatedly increased; a negative increment is called
a decrement. 2. (v.) To increase by an increment.

Independent variable (n.) A variable in a formula (or formulas) that

may take any of a range of values and whose value, perhaps in
conjunction with the values of other independent variables in the
formula, in turn determines the value of another variable (or vari-

ables), called a dependent variable. Independent variables can be
thought of as the input of a formula and dependent variables as
the output.

Indirect addressing (n.) Addressing a memory through the use of an
intermediate memory (see Indirect addressing for details).

Initial state (n.) The state the calculator must be in at the start of
program execution; in particular, the state of the memories.

Initialize (v.) To place the calculator in its initial state.
Integer (n.) A whole number, positive, negative, or zero.

Input (n.) The data to be fed to the calculator at the beginning, and
sometimes during, program execution.

Iterate 1. (v.) To repeat an algorithm or other computational proce-
dure with the output from the last run as the input for the next
run; more generally, simply to repeat. 2. (n.) The output of an
iteration.

Iteration (n.) A single repetition of an iterated procedure.

Key 1. (n.) Any one of the buttons on the face of a calculator. 2. (v.)
To perform a sequence of keystrokes.

Keystroke (n.) The act of depressing and releasing a single key on
the calculator.

Label (n.) A program step whose only purpose is to assign a name to
its location in program memory. Execution of a label has no affect
on the state of the calculator, but other parts of the program can
transfer execution to the label and hence to the steps following it
in the program.

Logic (n.) The form in which a calculator encodes, or requires the
user to encode, algebraic operations. There are two standard
forms, algebraic logic (see Algebraic logic) and RPN (see RPN).

Loop (n.) A sequence of program steps that is repeatedly executed,
usually until some test sends execution “out of the loop.”

Lower bound (n.) A number that is known to be smaller than all
possible values of some variable or unknown.

Mantissa 1. (n.) A number between 1 and 10 used as a component of
scientific notation, for example, the mantissa of 3.68 x 10" is

3.68; see also Floating point notation. 2. (n.) (archaic) A component
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of precalculator logarithms. The log of 3.68 x 10'* is 12.5658 and
.5658 is the mantissa. In the past, tables for logarithms listed
only mantissas.

Memory (also called Register) (n.) A location in the calculator in
which information can be stored and from which information can
be recalled. There are many types: data register, which stores
numbers in floating point format; program memory, which stores
program steps; addressable memory (see Address); ROM (Read
Only Memory), a memory from which information may be re-
covered but whose contents cannot be altered.

Memory arithmetic (n.) See Register arithmetic.
Model 1. (n.) A physical or mathematical picture/encoding/replica

used for experimental purposes; in particular, anencoding which
can be placed on a computer or calculator. 2. (v.) To produce a
model. 3. (v.) To operate a model.

Multiple storage (n.) Storing more than one number in a memory (see
Sec. 1.14).

Operator 1. (n.) A function. 2. (n.) A function requiring more than
one number as input, for example, addition. 3. (n.) A function

whose input is another function, for example, a routine that finds
the roots of a function.

Output (n.) The data a calculator presents to the user at the end, and
sometimes during, program execution.

Overflow (v.) To perform an operation whose result is a number of
absolute value so large that it will not fit into a data register.

II-notation (pi notation) (n.) A notation for long, systematically gen-
erated products (see Sec. 1.8).

Parameter (n.) An independent variable, or a variable whose value
must be known in order to compute the value of some other vari-
able; more generally, a piece of data that affects other data.

Parametric equations (n.) A collection of equations defining a collec-
tion of dependent variables in terms of one or more independent
variables called the parameters, for example, x = r cosf and y =
r sinf form a pair of parametric equations defining the x and y
coordinates of points on a circle of radius r in terms of the param-
eter 6.

Procedure (n.) A precisely defined sequence of instructions.
Program 1. (n.) A sequence of keystrokes to be stored in the program

memory for the calculator to execute sequentially; they are usu-
ally expected to have some definite purpose. 2. (v.) To store a
program into the program memory.

Program memory See Memory.
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Program pointer (n.) A register that keeps track of which step in a
program is to be executed next.

Programmer (n.) The person who writes a program.

Quotient See Division.

RPN (Reverse Polish Notation) (n.) A language for expressing al-
gebraic operations unambiguously without parentheses. Most cal-
culators use either RPN or the more traditional algebraic logic.

Recursion (n.) A rule for calculating each number in a sequence of
numbers from the previous numbers in the sequence.

Register (n.) A memory. Registers are of several types: storage reg-

isters, program memory registers, the x-register, etc. See also Mem-
ory.

Register arithmetic (n.) Arithmetic performed on the contents of a
memory without calling it into the display. STO +, STO x (HP),
SUM and INV SUM (TI) are some register arithmetic operations.

Remainder See Division.

Return 1. (v.) To return from a subroutine. 2. (v.) To produce as out-
put (“This subroutine returns the sum of the values in m; and

m,”’).

2-notation (sigma notation) (n.) A notation for long, systematically
generated sums (see Sec. 1.8).

Scientific notation See Floating point.

Seed (n.) A number used to initialize a random number generator or
other iterative procedure.

Sequence (n.) A list of numbers; a sequence may be infinite.
Set 1. (n.) The raised state of a flag. 2. (v.) To raise (a flag).
Simulate (v.) To model on a computer or calculator.
Step 1. (n.) A single line of a program. 2. (v.) To execute a single line

of a program.
String (n.) A list of symbols, usually digits.
Subroutine (n.) A mini-program that can be used by the main pro-

gram several times. Most calculators will automatically transfer
execution back to the proper place in the main program after the
execution of a subroutine (see Sec. 1.7).

Test 1.(n.) A comparison of two numbers (or of a single number with
some fixed number, usually 0) in a program (see also Test func-
tion). 2. (v.) To read the state of a flag.

Test function (n.) A program step that executes a test and prepares
to branch (see Test and Branch).
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Underflow (v.) To perform an operation whose result is a nonzero
number of absolute value so small that it cannot be distinguished
from 0.

Unit (n.) A fixed quantity or measure used as a standard. Conven-
tional units include feet, kilograms, watts, etc. Often a program-
mer will introduce his own convenient units for a particular prob-
lem.

Upper Bound (n.) A number that is known to be larger than all pos-
sible values of some variable or unknown.

User (n.) A person who uses a program.
User-definable keys (n.) A key whose function can be defined by the

user, rather than the manufacturer, of the calculator.

Value (n.) A particular number substituted for a variable. Indepen-
dent variables can be assigned values. Dependent variables take
on values when the values of the associated independent variables
have been assigned.

Variable 1. (n.) A symbol that may take any of a collection of nu-
merical values. 2. (n.) A memory that may store any of a collection
of numbers in a program.

x-register (n.) The memory that stores the number appearing in the
display.



 

Index

(Entries marked with an * are defined in the glossary.)

Absolute value of a complex number,

164
Accuracy, 19ff

of exponentiation, 28-29, 78ff

of random number 7 approximator,
231

Addressing* 62
indirect; see Indirect addressing

Algebraic logic* 22
Algorithm*; backtrack, 174ff

binary search, 98ff,207-208
bubble sort, 183ff

efficiency of, 101ff
Fibonacci (Egyptian fractions),
170-171

for finding the starting and
repeating blocks of a whole
number fraction, 159

greedy, 169ff
Pollard; see Pollard p method

Ulam, 117

Alphanumerics, 5, 61
Argument (of a complex number),

164
Arithmetic; complex, 163ff

infinite-precision, 155ff
multiple-precision, 146ff
logarithmically compressed, 17-19
register; see Register arithmetic
of whole numbers, 21
nim, 267-268

Arithmetic mean, 208

Babylonian mathematics, 140, 208
Backtrack algorithms, 174ff
Bases; changing, 90ff, 268-269

used in multiple storage, 94ff
Basketball, 247ff

Battleships, 287-288
Binary search, 98, 207-208

Binet’s formula, 121
Binomial coefficients, 143ff

Blackjack, 211ff

Bounds; on a solution, 42-43, 98, 208
upper, 204

Brahmugupta, 1
Branching, * 32
Brand, Stewart, 197

Bridge scorekeeper, 287
Bubble sort algorithm, 183ff
Bulls and cows, 275ff

Calculus, 47, 48, 163, 169
Carrying over, 148, 267
Casting out nines, 126
Chambered nautilus, 264

Changing bases, 90, 268-269
Changing signs, 10, 24
Changing variables, 38
Chess, 174ff, 198, 238
Coin toss, 199-200
Combinations, 142ff

Combinatorics, 21
Complex arithmetic, 163ff
Complex numbers, 163ff
Complex variables, 163
Compound interest, 30, 57
Compound unit conversions, 116-117

Concentration, 215ff
Constants; conversion, 114, 116-117

large, 15
Conversion, polar-rectangular, 54,

163ff
Conversion, rectangular-polar, 163ff

Coordinates; polar, 164

rectangular, 164
Cosines, law of, 13
Counter* 66, 14
Cue* 50, 54, 56, 115
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Data,* 49ff
Data cards, 55
DeMoivre’s formula, 165, 168

Determinism, 57
Dice, 201ff, 285
Difficulty ratings, 4
Digits, 90ff
sums of, 124ff

Division; quotient and remainderin,
155ff

Documentation, 36, 52
Double-precision arithmetic, 147ff
Drunkard’s walk, 193ff
DSZ, 9, 14, 77

e. 263, 165, 169
Efficiency of programs, 101ff, 36,

56-57
Egyptian fractions, 169ff
Egyptian mathematics, 140, 169ff
Electronic games, 197ff, 243
Elements of Euclid, 162

Empty set, 8
Euclid of Alexandria, 162
Euclid’s Elements, 162
Euler, Leonhard, 134, 142, 169

Euler’s formula, 169
Exponentiation, 18-19, 28, 147

Factorial, 142
Fermat, Pierre de, 47, 134, 142, 285

Fermat’s Lost Theorem, 142
Fibonacci (Leonardo of Pisa), 123,

170
Fibonacci sequence, 120ff, 147, 265

Fixed points, 61
Flags,* 61ff
Flowcharts, 291ff

Formulas:
area of a circle, 292-293
falling body, 49
Lagrange interpolation, 189
law of cosines, 12
linear interpolation, 187
projectile motion, 52, 254
Pythagorean triples, 132-138

quadratic, 250
rules of logarithms, 17

sum ofconsecutive whole numbers,
103

surface area of a cylinder, 41
volumeof a cylinder, 41
volume of a sphere, 61

Fractional part of a number, 84, 87,

90, 95-97, 178, 200
Fractions, 155ff

unit 169

Galileo, 254-255
Game theory, 2, 199
Games(see also individual names of

games):
of chance, 199
electronic, 197ff, 243

Gauss, Carl Friedrich, 142

Geometric mean, 208

Godel, Kurt, 120
Golden ratio, 121, 263ff, 59, 60-61

Golden rectangle, 265
Greedy algorithm, 169ff
Guard digits, 82

Hierarchy, 22, 29
Hilbert, David, 120
Hi-lo, 203ff
Hockey, 243ff

Iamblichus, 140
Imaginary part of a complex number,

163
Independent variable, * 12, 17

choice of 38
more than one, 41

Indirect addressing* 75ff, 184
Infinite precision arithmetic, 155ff
Input, * 49ff, 293-294, 297
Integer part of a number, 88, 95-97,

152, 157, 200
Interface, 49

Interpolation, Lagrange formula,
186ff

Interpolation, linear, 187
Inverse problems, 97
Inverse of log functions, 19ff
Inverse thinking, 115
Irrational numbers, 162-163
Iteration* 57ff, 66, 68, 112, 117, 124

Jacobi, Carl G. J., 134

Jelly beans, 255ff
Jotto, 275ff

Labels* 62
Lagrange, Joseph Louis, 134, 186
Law of cosines, 13
Learning engines, 289
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Leibniz, Gottfried Wilhelm, 47, 120
Leonardo of Pisa; see Fibonacci

Leveque, W.J., 7
Liar paradox, 120
Liber Abaci, 123

Linear interpolation, 187
Logarithmic spiral, 264

Logarithms, 17ff, 27, 28, 78, 101, 205
Logic* 4
Loops,* 14, 66ff
Losing position, 255, 266

Machines:
learning, 289
theorem proving, 119-120

Man-machine interface, 49
Mantissa* 20-21

Markov process, 193ff
Maximizing output; see Optimization
Mean, arithmetic; see Arithmetic

mean
geometric, see Geometric mean

Memory; see Glossary
arithmetic; see Register arithmetic
in flowcharts, 294

multiple storage, 94ff

the stack as, 22
trading program space in for
register space, 15-16

Memory diagrams, 297

Memory space; see Register space
Minimizing output; see Optimization
Model* 114, 163, 197-198

iterative procedures for; 57
Multiple precision arithmetic, 146ff
Multiple storage,* 94ff
Musical ratios, 141

Napier, John, 27

Neugebaur, Otto, 140

Newton, Isaac, 255
Nim, 266ff
NOP, 8ff
Nothing, 8
NP-complete, 47, 112

Numbers:
“All is number,” 141

complex, 163ff
conversion constants, 116-117
expressible on a calculator, 17, 20

fractional part of, 84, 87, 90, 95-97,

178, 200
fractions; see Fractions
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integer part of, 88, 95-97, 152, 157,

200
irrational, 162-163

large, 15-19

origins of, 113
rational, 169
squares, 127ff, 135, 136ff

Number jotto, 225ff
Number theory, 113, 142

Optimization, 46ff
Output, * 56ff, 293-294, 297
Overflow,* 17, 18

Pi (ar), 155, 169, 227ff, 263
Pi (II)-notation,* 70

Pascal, Blaise, 285
Paradox, liar, 120

Parallel computations, 12
Parentheses, 12

Parthenon, 265
Pentagon, 265

Pentagram, 265

Permutations, 142ff
Plato, 141

Polar coordinates, 164
Polar-rectangular conversion, 54,

163ff
Pollard p method, 104, 108ff, 120,

158, 226
Precision; infinite, 155ff

multiple, 146ff

Preprocessing data, 55
Primitive Pythagorean triples, 138,

141
Problems of points, 285
Program; see Glossary
Program efficiency, 101ff
Program intelligibility, 52
Program memory; see Glossary

Program pointer,* 64
Program space, 55, 102

Program writing, 34ff
Pseudo-random number generators,

199
Pumpkins, 171
Pythagoras, 137, 140-141, 208
Pythagoras’ formula, 137
Pythagorean theorem, 136
Pythagorean triples, 136ff
Pythagoreans, 162

Queens problem 174ff
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Quotient and remainder division,
155, 222

Rabbits, 123

Racetrack, 288
Racing games, 288
Random number generators, 83ff,

199, 222ff
Random walk, 193ff
Ratio, musical , 141
Rational numbers, 169
Real part of a complex number, 163
Reciprocals, 10, 24

Rectangular coordinates, 164
Rectangular-polar conversion, 163ff
Recursions,* 134ff
Register arithmetic, * 11-14
used to clear a memory, 24

Register space, 102
Remainders, 124ff

Reverse thinking, 115
Rho diagrams, (p-diagrams) 104, 108,

158, 226
Roulette, 208ff

Rounding, 79-80, 83, 88ff
down, 88ff
up, 88ff, 172, 205

Rules of logarithms, 18

Sigma (3) notation,* 68
Scientific revolution, 255
Scorekeepers, 232ff, 250, 287
Searching, 97ff
Seed* (for a random number

generator), 84
Shooting gallery, 286
Simulation, * 198, 243
Skipped steps, 15, 33
Slide rule, 28

Soccer, 285-286
Sorting, 180ff
by merging, 186

Space, program, 102
register, 102

Stable state, 57ff
Stack, 21ff, 29

Strategy:
blackjack, 214
buying a good pair of socks, 39
measuring height of buildings, 49

optimization, 48
solving equations by finding stable
values, 60-61

solving exponential equations, 101
zeroing in on a level of accuracy,
44-45, 48

Subroutines, * 61ff
Sumsof digits, 124ff
Sums of squares, 127ff, 68, 77
Sunflowers, 264

Test functions, * 15, 30ff
in flowcharts, 295-296

Test register, 31, 295
Testing a program, 301ff
Theorem proving machines, 119-120
Tic-tac-toe, 286
Time, 102ff
Timers, 238ff

Traveling salesman problem, 47
Troubleshooting, 301ff

Ulam, Stanislaw, 117

Ulam’s problem, 117ff
Unit conversions, 114ff
Unit fractions, 169, 173

Unit prices, 31
Unsolvable problems, 120
Unsolved problems, 113, 119, 142
Upper bounds; see Bounds
User definable keys,* 55

Variables*; changing, 38

independent; see Independent
variables

Water puzzle, 285
Whitehead, Alfred North, 8
Whythoff’s game, 260ff
Winning position, 198, 255, 266

x, 291-292

Zero, 8, 116













MATHEMATICAL RECREATIONS FOR THE
PROGRAMMABLE CALCULATOR
Dean Hoffman and Lee Mohler

Grab your calculator, a pencil and paper, and get ready to have some

fun! This collection of problems for programmable hand-held calculators

is designed to be educational as well as entertaining. All you need is a

general interest in mathematics, a little algebraic background (in rare

instances, some knowledge of trigonometry is required), and a pro-

grammable calculator that features test keys. Solutions are given for

calculators using algebraic notation (Texas Instruments) and those using

reverse Polish notation (Hewlett-Packard).

Fundamentals of good programming techniques are stressed. Problems

are presented in a straightforward style, step-by-step. with pertinent back-

ground information and sample programs categorized by difficulty level.

The reader is encouraged to improve on the given solutions, since they

are suggested only for clarity. and not necessarily the most creative

approach.

Chapter 1 deals with technique. developing methods useful in solving

problems and building programming skills. Special techniques, such as

multiple storage, are explored. Chapter 2 covers numerical recreations,

and Chapter 3 is devoted to mathematical games. Four short appendices

sharpen problem-solving skills including: how to read flowcharts, tips on

what to do when a program won't run; a list of notations for particular

calculator keys; and actual program listings for selected problems. In

addition, a glossary of calculator and programming terms is provided.

Other Books of Interest...

PROGRAMMING PROGRAMMABLE CALCULATORS
Harold S. Englesohn

Translates the jargon found in the manuals accompanying programmable cal-

culators into simple, clear instructions. Every instruction is actually illustrated in

full sample programs.

Learn to use the full computer aspects of these programmable machines: the SR52

and SR56, and the TI57, TI58, TI59 from Texas Instruments; the Commodore

PR100; and the APF programmable model. The author explains the difference

between a computation and a program by discussing how to design algorithms

for computing answers to sample problems and then translating the algorithms

into programs.

5105-0, paper, 224 pages.

PROGRAMMABLE POCKET CALCULATORS
Henry Mullish and Stephen Kochan

An in-depth examination of programmable pocket calculators pointing out their

architecture, special features, and programming techniques. Focuses on the

popular scientific calculators including: the Novus Mathematician PR; Sinclair

Scientific; and the HP-25, HP-25C, HP-55, HP-65, HP-67, HP-19C, HP-29C and

HP-33E fromHewlett Packard.Each program is shown in a schematic, illustrating

precisely how to enter and execute the program. No previous programming

experience required.

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

5175-1, paper, 224 pages.

ISBN 0-8104-5188-3
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