
Functions and Array Handling
Routines for the HP-41

Reference Handbook

i

i

Table of Contents
Table of figures.. iii

PREFACE... v

WARNING... vii

A word about this edition of the manual... vii

FUNCTION OVERVIEW.. 1

82160 (HP-IL INTERFACE) FUNCTION GROUP.. 9

AID - Accessory ID - .. 11
ID - Device ID -.. 12
FINDAID - Find an Accessory ID - ... 14
Appendix C... .. 15
RCLSEL - Recall primary device address - .. 16
OUT - Input prefix for OUT functions -... 17
OUTAX - OUTA with repetition according to X - .. 18
OUTCR - OUTput Carriage Return - .. 18
OUTLF - OUTput Line Feed -.. 18
OUTLFX - OUTput Line Feeds by X - ... 18
OUTSPX - Output space characters - .. 19
OUTXB - Send a character by its decimal code - .. 20
OUTYBX - Send a character, several times, by its decimal code - .. 20
OUTa - OUTA with 7th bit set - .. 22
OUTaX - OUTa with repetition by X - ... 22

82163 (VIDEO INTERFACE) FUNCTION GROUP.. 23

CLEAR - CLEAR the display -... 25
CLEARO - CLEAR the display from the cursor On - ... 25
CSRDN - Move cursor down - .. 25
CSRHX - Move cursor Horizontally by X - .. 25
CSRL - Move the cursor to the left -.. 26
CSRON - Display the cursor -... 26
CSROFF - Suppress the cursor -... 26
CSRR - Move the cursor to the right -.. 26
CSRVX - Move the cursor down according to X -.. 26
CSRUP - Move the cursor up - ... 26
CTYPE - Select the type of cursor - ... 27
HOME - Put the cursor at the upper left position of the display -.. 27
SCRLDN - Scroll the display down - .. 27
SCRLUP - Scroll the display one line up -.. 27
SCRLX - Scroll the display according to X -.. 27
XYTAB - Move the cursor to position (X,Y) -.. 28
Appendix V 28

82162 (THERMAL PRINTER) FUNCTION GROUP .. 29

CLBUF - Clear the buffer -... 31
8BIT - Select "8 bit mode" - ... 31
ESCAPE - Select "Escape" mode - ... 31
PARSE - Select "Line feed on space" mode -... 31
UNPARSE - Select the "line-feed on the 24th character mode" - .. 31
TABCOL - Column tabulation - .. 32
STATUS - Recall printer status - .. 33
Appendix S1 . .. 34

ii

82905 (80-COLUMN PRINTER) FUNCTION GROUP... 35

BELL - Beep signal - ... 37
CHARSET - Character set selection - .. 37
FFEED - Form feed - ... 37
FORMLEN - Page length - ... 37
GRAPHX - Graphic output - .. 37
MODE - Printing mode - ... 38
SKIPON - Set perforation skip -... 38
SKIPOFF - Cancel perforation skip -... 38
TEXTLEN - Text length -.. 38
VSPAC - Vertical space - ... 38
Appendix P 39
Roman-8 Characters .. 40

PLOTTER FUNCTION GROUP ... 41

*CSIZE - Character size - ... 43
*LTYPE - Line Type -.. 43
COLOR - Color selection -.. 43
AXIS - Axis drawing - .. 44
*LABEL - Print the ALPHA register - ... 46
*LDIR - Writing direction in graphic mode -.. 46
*DRAW - Draw a segment - .. 46
RDRAW - Relative Drawing - .. 46
*PLREGX - Broken line plotting - .. 47
RESET - Re-initialization - .. 47
SETORG - Set origin - .. 47
*HOME - Send pen to origin -... 47
*MOVE - Move pen - .. 47
RMOVE - Relative MOVEment - .. 47
REVLF - Reverse line feed - .. 48
REVLFX - Reverse line feed by X -.. 48
BACKSP - BACKSPace - ... 48
BACKSPX - BACKSPace by X - .. 48
BOX - Box drawing - ... 48
Appendix T2 .. 49

UTILITIES ... 51

- ARRAY HANDLING FUNCTIONS - .. 53
BLDPT - Build a pointer - .. 53
BRKPT - Break pointer - .. 54
AD-LC - ADdress Line Column - .. 55
LC-AD - Line-column to address -... 56
COLPT - Create column pointer -... 57
LINPT - Create line pointer - .. 58
CLINC - Clear Increment - .. 59
GETRGX - Recall registers from X-MEMORY -.. 60
SAVERGX - Save registers to X-MEMORY -... 62
SORT - Sort numeric and/or alphanumeric data - .. 64
STO>L - Store by L-register - .. 66
RG - RG prefix - .. 68
RGAX - Registers to ALPHA or ALPHA to registers - .. 69
RGCOPY - Copy or exchange registers -... 70
RGINIT - Initialization of registers by X - .. 72
RGNb - Number of register by pointer -... 73
RGORD - Replace values in order of their ranking - ... 74
RGXTR - Register with extreme value - ... 76
RGSUM - Sum of registers - .. 78
RGVIEW - Registers input or catalog - ... 80

- OPERATIONS BETWEEN REGISTERS -... 83
RG+- - Addition or subtraction of two vectors - ... 83
RG* - Multiplication of two vectors, element to element -.. 83

iii

RG/ - Divide two vectors, element to element -.. 83
- SCALAR TO REGISTERS OPERATIONS -.. 86

RG+Y - Add constant to registers -... 86
RG*Y - Multiply registers by constant -... 86
RG/Y - Divide registers by constant -.. 86

- ALPHA REGISTER FUNCTIONS - ... 88
ALENG - Alpha LENGth -.. 88
ANUM - Search number in ALPHA -.. 89
ANUMDEL -Search ALPHA number and delete -.. 90
APPX - Append the integer part of X to ALPHA - .. 91
AROT - ALPHA Rotation - .. 92
POSA - Position of an string in ALPHA -.. 93
SUB$ - Extraction or justification of a sub-string - ... 94

- ALPHA AND X TRANSFER FUNCTIONS - .. 95
ATOXL - Transfer leftmost character of ALPHA to X -... 95
ATOXR - Transfer rightmost character of ALPHA to X -... 95
ATOXX - Transfer specified character of ALPHA to X - ... 95
XTOAL - Transfer X to leftmost character of ALPHA -... 95
XTOAR - Transfer X to rightmost character of ALPHA -... 95
YTOAX - Transfer character specified in Y to ALPHA at X - .. 96

- MEMORY ALLOCATION FUNCTIONS -.. 98
PSIZE - Programmable SIZE - ... 98
SIZE? - Number of data registers -... 98
READEM - Read all extended memory from mass storage file - ... 99
WRTEM - Write Extended Memory file - .. 100

- MISCELLANEOUS FUNCTIONS - ... 101
CHFLAG - Load flag set - ... 101
/MOD - Euclidean division - .. 103
NOP - No Operation - .. 104
TF55 - Toggle printer flag - .. 104
VKEYS - View key assignments - .. 105
X<>F - Swap the X-register and flags 0-7 -... 106
X...NN? - Compare X and a register - ... 107
Y/N - Question Yes/No -... 108

Appendix ON.. 109
ON/............... .. 109
ON/K............ .. 109
ON/A............ .. 109
ON/M. 109
ON/T. 110
ON/V............ .. 110

APPENDIX .. 111

Function Index.. 113

Table of figures

Figure 1: Video functions overlay (ON/V)... 24
Figure 2: Plotter functions overlay (ON/T) .. 42
Figure 3: ALPHA functions overlay (ON/A) ... 52
Figure 4: Array functions overlay (ON/M)... 52

iv

v

PREFACE

When the HP-41 was introduced in 1979, it represented a significant evolution in the area of handheld
programmable calculators; the ability to input, process and display alphanumeric characters. A real dialog
was now possible between the user and the calculator. This new flexibility was also enhanced with the
addition of audible tones.

In fact these advantages were only the most visible improvements. The alphanumeric keyboard induces
other new and powerful capacities.

The first possibility is very useful in program mode. Instructions are not in code, but in plain language.
Now "specialized machine language" is not adequate for the HP-41, "specialized assembly language" is
better. In fact, for this calculator, HEWLETT-PACKARD has developed an advanced language, near
FORTH, which places the HP-41 in a class by itself.

The comprehension of this potentially induces the way one will use the HP-41.

THIS LANGUAGE IS AN INTERPRETED ONE.

The instructions inserted in the calculator memory are not directly intelligible to the microprocessor.
Prior to execution they must be translated (compiled) into a succession of micro-instructions, which are
understandable to the HP-41 chip. This deciphering operation is the interpreting.

A SYMBOLIC LANGUAGE FOR THE HP-41.

A computer spends most of its time searching in its memory to transfer information from one place to
another. This information can be transformed in the process, but it is not always necessary. To execute
these transfers the microprocessor must know the data origin and destination, both are absolute addresses.

There are two types of information:

- data : numeric values or characters strings.
- instructions : which sequence represents a program.

At the machine language level this information is all numerical. But the average users are very different
from a microprocessor, they find it easier to remember words than numbers or instructions sequences:
programmers prefer symbols to numbers. So the microprocessor must link, one way or another, the symbol
and the address to get a given information. It can use catalogs that are analogous to a directory, where a
telephone number is found using a surname. The advancement of a language can be measured by its degree
of symbolism.

THE HP-41 IS MODULAR.

In the world of micro-computers the HP-41 is one of the few machines which can contain an
undetermined number of programs. Every one of them can be created, modified, erased, and (if you own a
mass storage device) saved or loaded independently.

Opposite this physical independence is a logical dependence. Any program can call a group of
instructions belonging to another program as a subroutine. This sequence of instructions need only begin
with an alphabetical label: LBL "X..." and end with RTN or END.

Therefore it is possible to divide a complicated program, into a sequence of easier ones (and so on)
according to the valuable principles of ascending programming. The problems of data handling are left to

vi

lower level subroutines, while the logical sequence of the program is clearly visible at the higher levels.
This programming technique has numerous advantages:

- It becomes very difficult to make mistakes while designing the different stages of a program. If an error
occurs, it is easy to correct because the error is quickly located within a small number of instructions.

- It is also very easy to test each subroutine to see if the output is consistent with a given input.

- Finally, some subroutines happen to be so useful that one may wish to have an assembly language
version of them. This module is a good illustration of that. Most functions included in the PANAME
ROM, were first created as subroutines in user language and published in 1982. The conception of the array
handling techniques and of most of the functions are from this period.

PROGRAMMING THE HP-41.

The HP-41 has three programming levels.

- Programs, are in fact a sequence of routines, eventually with tests in between. Always designed for a
specific purpose, the program illustrates the strategic importance of the programmer's ability. A program
must be understandable when reading it, and it must include documentation.

- Routines, represent the tactical side of programming. A routine should be short, fast, memory saving,
and modify as few variables as possible. It does a specific task.

They are general enough to be used several times in a program, even in different programs. They are
liable to stay permanently in memory. A standardization of programming techniques saves time and effort.
If a routine has all these conditions it can be considered as a new function for the HP-41 language: an
illustration of the last quality of this language: Its capacity to evolve.

- Assembly language functions. They are the elements of the language itself. A function should be
general, even more so than a routine. The two authors of this module provide us with a coherent group of
more than 120 new functions.

FIRST CONCEPT: PERIPHERALS HANDLING.

One should use this module's functions to realize what simplifications they provide when dealing with
peripherals. Either using video or printer functions, a lot of time is saved when running a program or
creating it. Plain language instructions instead of escape sequences, represents the same enhancement as
reading "SIN" instead of "31 04". "CLEAR" is better than "27 ACCHR 69 ACCHR OUTA": it is more
intelligible, and it works in trace mode. From this point of view the PANAME ROM is a great
enhancement and it solves problems which had virtually no solution before.

ANOTHER CONCEPT: ARRAYS HANDLING.

How many times did we hear that the HP-41 was not designed for array handling? Now, everyone will
see how the utilization of the stack, that we have recommended, prepared us for these new functions. The
rise of the FORTH language will give another evidence of this conception. Those lucky enough to use RPN
logic will be prepared for FORTH, which perhaps, will replace BASIC.

We hope that all those, who develop programs on the HP-41, will realize the great interest they have in
acquiring the PANAME ROM.

PHILIPPE DESCAMPS

vii

WARNING

The PANAME ROM includes new functions for the HP-41 that may inspire lots of different
applications. But as for other HP-41 functions, either built-in or plugged-in, only users with their wide
range of applications will be able to harness the benefits of these functions and routines.

The creation of this module would have been impossible without our PPC club because it facilitates the
exchange of solutions. It is very useful to share other people's knowledge and programming skills.

For the moment the PANAME ROM as a user manual, which has been made as clear and precise as
possible. But we realize our limits. Therefore we have decided to write, with everybody's help, a document
following the spirit which was at the origin of the PPC module.

If you are interested in a Solution Book for the PANAME ROM, you can put your name down with J.J.
DHENIN, BCMW 2 bis rue N. HOUEL 75005 PARIS. When the solution book is ready you will be
notified.

How do we intend to write this collective book?

Everyone will find unclear points in the original manual. We hope you will send us written questions. It
will be better if a new redaction of these points is also proposed. As a matter of fact, we are so accustomed
to these new functions that we are unable to evaluate the difficulties faced by a new user. So you are the
only ones who can help us to improve this manual.

Finally, examples are the best way to explain an application, especially when the manual is not written in
the author's native language. So we hope you will send us your own applications, short if possible.

Upon considering to your suggestions and to your work, we will be able to send you a new and better
document in the future.

Happy programming.

A word about this edition of the manual

This edition is the culmination of combining the French manual and the English translation of that
manual with additional extrapolations of some of the functions present on the module but not addressed in
either manual. The intent was to create a more complete and comprehensive manual for the PANAME
ROM available in English.

Along the way, there were a few problems and at one point, the editor sought the help of fellow HP-41
enthusiasts via the HP forum at www.hpmuseum.org. Thanks to respondents, it was discovered that two
functions, RGORD and RGXTR, were omitted from the French and English manuals because they were
buggy. The editor chose to include descriptions of those functions (which had to be written from scratch)
in this edition and included a disclaimer and discussion indicating the buggy nature of those functions.

This edition includes additional editorial changes which should make for easier comprehension and
association of related functions. The most significant of these changes include the writing of the
preliminary information regarding the functions relating to the HP-IL interface and a complete re-work of
the Utilities section. Typos and editorial inconsistencies were also corrected and some minor re-arranging
of some functions in some of the sections. A table of contents and a function index were added. The look
of the manual was patterned after that of the original with more attention placed on the consistency of the
look. Where applicable, the editor included "related functions" from pertinent HP modules for reference
purposes. The editor has also taken the liberty to create more accurate and useful keyboard overlays using
the original overlays as templates.

viii

It is assumed the reader has a working knowledge of the HP-41 and its functions. It is also assumed the
reader is familiar with the extended functions found in the X-FUNCITON module and in the HP-41CX.
Regarding the sections that are specific to a device such as the HP-IL interface, it is assumed the reader has
a familiarity with the functions native to the device. It is assumed the reader is already familiar with proper
module precautionary procedures. Therefore, subjects beyond the scope of this manual include the
precautions to be exercised in the installation and removal of the module, handling of the module, storage
of the module when not in use, etc.

In the same spirit of the original authors, this editor realizes that there is always room for improvement.
Please submit corrections or changes to markv@spectrumchemical.com for consideration.

FUNCTION OVERVIEW

This overview lists the functions in the order they appear in the PANAME ROM. The Function Index at the
end of this manual lists the functions alphabetically.

AID:
Returns the Accessory ID of the primary device to the X-register.

ID:
Returns the device ID of the primary device to the ALPHA register.

FINDAID:
FIND an AID (or class) device specified by |X| (< 0 for a class) and return its address to the X- register.

OUTAX:
OUTA with repetition. |X| indicates the number of repetitions

OUTCR:
Send decimal code 13 to the primary device (Carriage Return)

OUTLF:
Send decimal code 10 to the primary device (Line Feed)

OUTLFX:
Send decimal code 10 to the primary device (Line Feed), |X| indicates the number of times to send the
decimal code.

OUTSPX:
Send decimal code 32 to the primary device (Space), |X| indicates the number of times to send the decimal
code.

OUTXB:
Send the decimal code defined by the X-register as a character Byte to the primary device.

OUTYBX:
Send the decimal code defined by the Y-register as a character Byte to the primary device |X| times.

OUTa:
Similar to OUTA, but sets bit 7 with all the character bytes sent (for example for the inverse video on
HP82163).

OUTaX:
OUTa repeated |X| times.

RCLSEL:
Returns the address of the primary device in the X-register. If SELECT is > devices, RCLSEL returns 1.

HP82163 Functions

CLEAR:
Erase the screen.

2

CLEARO:
Erase the screen starting from the cursor.

CSRDN:
Move the cursor once downwards.

CSRHX:
Move the cursor horizontally |X| positions (to the left if X<0, to the right in the opposite case).

CSRL:
Move the cursor once to the left.

CSROFF:
Suppresses the cursor.

CSRON:
Restores the cursor.

CSRR:
Move the cursor once to the right.

CSRVX:
Move the cursor vertically |X| positions (upwards if X<0, downwards in the opposite case).

CSRUP:
Move the cursor once upwards.

CTYPE:
Select cursor type.

HOME:
Reposition cursor to (0,0).

SCRLDN:
Scroll the display one line down.

SCRLUP:
Scroll the display one line up.

SCRLX:
Scroll the display as specified by |X|. Downwards for X<0, upwards for X>0.

XYTAB:
Move the cursor to the position defined by |X| and |Y|.

HP82162 Functions

CLBUF:
Clear the print buffer.

8BIT:
Select 8-BIT mode.

ESCAPE:
Select ESCAPE mode.

3

PARSE:
Select "line feed on space" mode.
STATUS:
Returns to the X and Y registers 2 bytes indicating the status of the printer.

TABCOL:
Set absolute tabulation at the dot level as defined by |X|.

UNPARSE:
Select "line feed on decimal code 24" mode.

HP82905 Functions

BELL:
Beep.

CHARSET:
Select the character set to use; X=0 for primary, X=1 for secondary.

FFEED:
Form feed one page.

FORMLEN:
Sets number of lines per page as defined by |X|.

GRAPHX:
Indicates to printer that the next |X| bytes of data are graphic.

MODE:
Select printing mode; 0 = Normal, 1 = Expanded, 2 = Compressed, 3 = Bold-expanded, 9 = Bold.

SKIPOFF:
Cancels perforation skips.

SKIPON:
Sets perforation skips.

TEXTLEN:
Sets number of text lines per page as defined by |X|.

VSPAC:
Select the line pitch between 2 lines; |X| indicates the number of lines per inch.

4

Plotter Functions

AXIS:
Draw an axis with the following format:

t = dimension of a half tic -/-
dy = distance between 2 tics -/- on the y axis
dx = distance between 2 tics -/- on the x axis
n = number of tics

 dy

 n
 t

 dx

Data being provided as follows:
T = t, Z = dy, Y = dx, X = n.

BACKSP:
Move pen one character backward.

BACKSPX:
Move pen backward by |X| characters.

BOX:
Draw a rectangle whose 2 opposite corners have as coordinates (x1, y1) and (x2, y2), with T = y2, Z = x2,
Y = y1, X = x1.

COLOR:
Select pen color.

*CSIZE:
Select character size.

*DRAW:
Draw a line to (X,Y) coordinates.

*HOME:
Return pen to coordinates (0,0).

*LABEL:
Print the contents of the ALPHA register (impression of texts in graphic mode; follows the directions
defined by * LDIR).

*LDIR:
Defines the writing direction for *LABEL.

*MOVE:
Move the pen to (X,Y) coordinates.

5

*LTYPE:
Defines the type of line for * DRAW and RDRAW (|X| = 0 to 15).

*PLREGX:
A pointer bbb, eee being placed in the X-register, traces the broken line passing by the points
[(Rbbb),(Rbbb+1)], [(Rbbb+2),(Rbbb+3)]...[(Reee-1),(Reee)].

RDRAW:
Draw a line to (X,Y) relative to the current position of the pen.

RESET:
Moves the pen to the left margin and selects Text mode.

REVLF:
Reverse line feed.

REVLFX:
Reverse line feed |X| times.

RMOVE:
Moves the pen to (X,Y) relative to the current position of the pen.

SETORG:
Sets current pen position as the origin (0,0).

Utilities

/MOD:
Return the quotient in |Y| and the remainder in |X| of Euclidean division (that is to say calculate the
quotient and the modulo of X\Y with integers)

AD-LC:
Returns the coordinates (line,column) of an array element from its address (Rnn) and the array pointer.

ALENG:
Returns the length of the string in the ALPHA register.

ANUM:
Searches the ALPHA register, for a number. The first number found is returned to the X-register.

ANUMDEL:
In addition to ANUM, It also deletes all characters in the string from the start of the string to the last
numerical character used.

APPX:
Appends the integer part of the X-register to the left of the ALPHA register string.

AROT:
Rotates the ALPHA register string by the number of characters specified by the X-register.

ATOXL:
Deletes the first character of ALPHA and returns its decimal code to the X-register.

ATOXR:
Deletes the last character of ALPHA and returns its decimal code to the X-register.

6

ATOXX:
Returns to the X-register the character of ALPHA specified by the value of the X-register.

BLDPT:
Builds a pointer in X starting from the elements present in Z, Y and X. If X>0, X = zzz.yyyxx. If X<0 X =
code of matrix such as Z = first register of the table, Y = a number of lines, |X| = a number of columns.

BRKPT:
Break up the X-register into three numerical values.

CHFLAG:
During the construction of the program, the user defines a state of the HP-41 by using the usual instructions
(in calculation mode). In program mode XEQ " CHFLAG " places in the program 2 lines:

01 CHFLAG
02 "..." unusual alpha string.

During the execution of the program the 2 lines will configure the computer in accordance with the
situation defines in the moment of the programming.

CLINC:
Deletes increments in X-register (i.e. starting from the 4th digit after the decimal point).

COLPT:
Returns a pointer from the column number in Y and the array pointer in X.

GETRGX:
Copy the data of the current X-MEMORY file where the pointer is to the registers in main memory as
defined by the value in the X-register.

LC-AD:
Return the address (register number) of an array element from its line and column number.

LINPT:
Return the line pointer of an array knowing the line number and the array pointer.

NOP:
Do not execute any operation.

OUT:
Prefixes intended to facilitate the writing of functions.

POSA:
Returns the numerical position of a character in the ALPHA register specified in the X-register.

PSIZE:
Allocates the number of data registers specified by the X-register.

READEM:
Copies the X-MEMORY file named in the ALPHA register from a mass storage device. See WRTEM.

RG:
Prefixes to allow easier entry of related functions.

RG+-:
Execute the addition (or the subtraction) of two vectors indicated by the codes placed Y and in X.

7

RG*:
As RG+-, executes multiplication.

RG/:
As RG+-, executes division.

RG+Y, RG*Y, and RG/Y:
Carry out an arithmetic operation of the elements indicated by X, with the operand placed in Y.

RGAX:
If X<0, it copies the ALPHA register to the data registers in blocks of 6 characters. If X>0, it appends the
ALPHA register with the contents of the data registers specified by the X-register.

RGCOPY:
If X>0, copies the data registers indicated by X to the registers specified in Y. If X<0, the registers are
swapped. Admits an increment.

RGINIT:
If X>0, places 0 in the registers indicated by X. If X<0, places the numbers 1 to N in the registers.

RGNb:
Return numbers of registers specified by a code (pointer) bbb.eeeii in X.

RGORD:
Replace each value contained in the registers of data specified, by their rank.

RGXTR:
Return the register address with the most extreme (X>0 for highest, X<0 for lowest) value.

RGSUM:
Return the sum of the values specified by the code in X If X<0, calculates the sum of the absolute values.

RGVIEW:
Input or display of the registers. Details necessary.

SAVERGX:
Opposite of GETRGX. Recopy the registers indicated in X, in the current data file, starting from the pointer
and while following the increment jj; X=bbb.eeeiijj

SIZE?:
Return the number of registers allocated to the data.

SORT:
Sort by order ascending (X>0) or decreasing (X<0) the values of the registers indicated in X. Sorts alpha
and numerical.

STO>L:
Copy the value placed in X with the address specified in L, and increments L.

SUB$:
Extraction and/or justification of strings.

TF55:
Validate an invalid printer.

8

VKEYS:
Catalog assignments.

WRTEM:
Creates and fills an extended memory file on the cassette. This file is a " WRTA " of extended memory.

X...NN
Functions X=NN?. X?NN?, X<NN?. X<=NN?, X>=NN? and X>NN? work as the normal test functions
but they work between the X-register and any register specified in the Y-register.

X<>F:
Swap the X-register and the "F" register which contains a number that represents flags 0-7.

XTOAL:
Adds the first character of ALPHA and based on its decimal code in the X-register.

XTOAR:
Adds the last character of ALPHA and based on its decimal code in the X-register.

Y/N:
Simplify programs that, during their execution, ask a question for which the answer is YES or NO.

YTOAX:
Replaces the character at X in ALPHA by Y.

9

82160 (HP-IL INTERFACE) FUNCTION GROUP

This group of functions will make the HP82160 HP-IL interface easier to use.

These functions work with the HP82160 to get information about the devices on the loop and to send alpha
characters and output commands to the devices.

HP-IL protocol provides two ways to identify a device on the loop:

- device ID
- accessory ID

The device ID is a string of data messages that may include the device model number and any other
information that the device manufacturer wishes to provide. A Hewlett-Packard device ID is an ASCII-
coded character string with the letters "HP" followed by a 5-character model number and a revision letter,
and terminated by a carriage return/line feed. For example, the device ID for the HP 82905A printer is the
string "HP82905A".

The accessory ID is a numeric code that identifies a device by its general type. The code is one eight-bit
byte (decimal value from 0 to 255). Each group of 16 accessory ID numbers forms a device class, whose
number (the first four bits of the accessory ID can be obtained by dividing the accessory ID by 16 and
taking the integer part. Each entry in a class is specified by the accessory ID modulo 16 (the last four bits
of the ID).

Accessory ID
Decimal Hexadecimal Device Class

0 - 15 0 - F 0 Controller
16 - 31 10 - 1F 1 Mass Storage
32 - 47 20 - 2F 2 Printer
48 - 63 30 - 3F 3 Display
67 - 79 40 - 4F 4 Interface
80 - 95 50 - 5F 5 Instrument

96 - 111 60 - 6F 6 Graphics
112 - 239 70 - EF 7 - 14 Not defined
240 - 255 F0 - FF 15 Future extensions

For example, the accessory ID of the HP82161A Digital Cassette Drive is 16, which makes it entry 0 in the
mass storage device class. That is:

Accessory ID = 00010000
 = 1610

and
16 MCD 16 = 0

Some of the functions in this section are similar or identical to their HP-IL or EXTENDED I/O ROM
counter part. Detailed coverage of those functions is beyond the scope of this manual. It is assumed that the
reader is familiar with those functions or has the reference materials available to review those functions.

10

11

AID - Accessory ID -
__

[AID] returns the Accessory ID of the primary device. The Accessory ID is an integer in the range 0 to 255
that identifies the device type.

For instance, the Accessory ID of the HP82162A thermal printer is 32. If the primary device is a
HP82162A printer, the AID function returns 32 to the X-register.

AID INSTRUCTIONS

The AID function returns to the X-register an integer, which represents for the Accessory ID of the primary
device. To know the AID number of a device, refer to the description of the HP-IL message "Send
Accessory ID" in the device owner's manual.

If the primary device has no Accessory ID, the X-register is not changed and the error message NO
RESPONSE is displayed.

EXAMPLE 1: The routine "LOOP" lists all the devices in the loop by their Accessory ID number.

01 LBL LOOP List all devices in the loop.
02 CLx Clear LASTx.
03 SF 25 Error ignored.
04 LBL 01
05 LASTx
06 1
07 +
08 SELECT Sets the primary device.
09 RCLSEL Recall address of primary device
10 X?Y? Is this the last device?
11 STOP Stop if last device.
12 AID Get Accessory ID.
13 FC?S 25 Is there a NO RESPONSE error?
14 GOTO 02
15 PSE Pause to view accessory ID.
16 GTO 01
17 LBL 02
18 "NO DEVICE ID" Place no ID message in ALPHA register.
19 AVIEW Display Accessory ID (ALPHA register).
20 PSE
21 GTO 01 Go on to display next device.

Related functions:

I/O ROM: FINDAID, AID, ID
HP-IL ROM: FINDID, SELECT, AUTOIO, MANIO
PANAME ROM: RCLSEL

12

ID - Device ID -
__

[ID] (Device ID) returns to the ALPHA register a string containing the device ID of the primary device on
the HP-IL. The device ID is an alphanumeric string that identifies the device. Generally the ID string
indicates the device manufacturer, model number and revision letter.

For instance, the device ID of the HP-IL-RS232 interface is "HP82164A". If the primary device is the HP-
IL-RS232 interface, the ID function returns "HP82164A" to the ALPHA register.

INSTRUCTIONS FOR ID

The ID function returns the device ID of the primary device to the ALPHA register. To get the ID string of
a device, refer to the description of the HP-IL message "Send Device ID" in the device owner's manual.

If the primary device has no device ID, the ALPHA register is cleared and the HP-41 display shows NO
RESPONSE.

ID reads a maximum of 24 characters from the primary device. If the device ID has fewer than 24
characters, the HP-41 terminates input from the device when it received and End-of-Transmission message.
Carriage returns (character code 13) and line feeds (code 10) are deleted from the ID string placed in the
ALPHA register.

EXAMPLE 1: The routine "LOOP" lists all the devices in the loop by their ID name.

01 LBL LOOP List all devices in the loop.
02 CLx Clear X-register.
03 STO .L Clear L-register (LASTx).
04 SF 25 Error ignored.
05 LBL 01
06 LASTx Recall last X-register entry.
07 1
08 +
09 SELECT Sets the primary device.
10 RCLSEL Recall address of primary device
11 X?Y? Is this the last device?
12 STOP Stop if last device.
13 ID Get device ID and place it in ALPHA register.
14 FC?S 25 Is there a NO RESPONSE error?
15 "NO DEVICE ID" Place no device message in ALPHA register.
16 AVIEW Display ID (ALPHA register).
17 PSE
18 GTO 01 Go on to display next device.

13

EXAMPLE 2: This routine tests whether the primary device is an HP 3468 voltmeter. If it is, the routine
returns to a main program. Otherwise, execution halts and the HP-41 displays NOT A VOLTMETER.

01 LBL VOLT? Is primary device a voltmeter?
02 SF 25
03 ID Get device ID.
04 FC?S 25
05 GTO 01 Branches if devices does not return a device ID.
06 ASTO X Put ID into X.
07 "HP3486" Look at first 6 characters in ID.
08 ASTO Y
09 X=Y? Is primary device an HP3486?
10 RTN Yes.
11 LBL 01
12 "NOT A VOLTMETER" Displays an error.
13 AVIEW
14 STOP

Related functions:

HP-IL ROM: FINDID, SELECT, AUTOIO, MANIO
PANAME ROM: AID, FINDAID, RCLSEL

14

FINDAID - Find an Accessory ID -
__

[FINDAID] (FIND Accessory ID) Allows the HP-41 to locate a device of a specific class or type which
you specify with a number in the X-register.

INSTRUCTIONS FOR FINDAID

To locate a specific device, place the device's ID or type number in the X-register. Execute FINDAID; an
integer number, which represents the address of the located device is returned to the X-register.

If the number you entered is positive, FINDAID searches the loop starting with the primary device until it
finds a device whose accessory ID matches the number (integer part) in the X-register. If such a device is
present, its HP-IL address is returned in the X-register.

If the number you enter in the X-register is negative, FINDAID searches the loop in the same manor as
described above. However, the value returned is the address of the first device found in the device class
corresponding to the absolute value of the number in the X-register. Recall from the discussion that

device class = INT[ABS(n/16)].

Thus, when n is negative, FINDAID matches only the first four bits of the accessory ID with the first
(leftmost) four bits of the number in the X-register.

If there are no devices of the specified type or class present, 0 is placed in the X-register. DATA ERROR is
displayed if FINDAID is executed with an input outside the range -255 < n < 255.

FINDAID can be used to find the address of a desired device and then SELECT that device as that primary
device in order to send information to it.

EXAMPLE 1: FDNAIDN will return the device ID (Name) to the display. This is particularly useful if all
you have is the class of the device.

01 LBL FNDAIDN Find the device ID.
02 "AID OR CLASS?"
03 PROMPT Input Accessory ID or class of desired device.
04 SF 25 Error ignored.
05 FINDAID Address of desired device.
06 SELECT Sets the desired device as the primary device.
07 RCLSEL Recall address of primary device.
08 X?Y? Is this a valid address?
09 GTO 01
10 ID
11 FC?S 25 Is there a NO RESPONSE error?
12 "NO DEVICE ID" Place no device message in ALPHA register.
13 AVIEW Display device ID.
14 RTN
15 LBL 01
16 "NO DEVICE"
17 AVIEW
18 STOP

15

EXAMPLE 2: FINDP Returns the address of the first graphics device, starting from the primary device.

01 LBL FINDP Find a plotter
02 -96 Look for a graphics device
03 FINDAID
04 RTN

Related functions:

I/O ROM: FINDAID, AID, ID
HP-IL ROM: FINDID, SELECT, AUTOIO, MANIO
PANAME ROM: AID, ID, RCLSEL

Appendix C

For every type of accessory, this list gives the name, ID range and number related to a device type. To
search for a given accessory type, the accessory type number is put in the X-register. This list can be used
with FINDAID.

Device class Accessory ID Type identifier

Controller 0 to 15 - 1
Mass storage 16 to 31 - 16
Printer 32 to 47 - 32
Display 48 to 63 - 48
Interface 64 to 79 - 64

80 to 95 - 80
Graphic device 96 to 111 - 96

112 to 127 -112
128 to 143 -128
144 to 159 -144
160 to 175 -160
176 to 191 -176
192 to 207 -192
208 to 239 -224
240 to 255 -240

16

RCLSEL - Recall primary device address -
__

[RCLSEL] (ReCaLl SELected address) returns in the X-register, after stack lift if it is enabled, the HP-IL
address of the primary device. This address is an integer number. The RCLSEL function also checks the
loop integrity (for device with a standby mode it has the same effect as the PWRUP function, refer to the
HP82160A HP-IL ROM manual). There is a difference between the "EXTENDED I/O ROM" RCLSEL
function and the "PANAME ROM" version. The "PANAME ROM" RCLSEL function can return a value,
which is different from the last address specified by the SELECT function. This happens when the
SELECT function has been executed with an address greater than the number of devices on the loop; in this
case the address returned by RCLSEL is 1. This characteristic is useful in programs with a routine executed
once for every device on the loop. A test between the SELECT address and the address returned by
RCLSEL will check if all devices have been tested. Refer to the program LOOP in the Example section of
AID and ID, and FNDAIDN in the Example section of FINDAID, to see how this method is used.

INSTRUCTIONS FOR RCLSEL

Execute RCLSEL; an integer number, which represents the address of the primary device is returned to the
X-register as specified above.

EXAMPLE

RCLSEL can be used to save the primary device selection at the beginning of a program, which might
modify it, and to restore it upon program termination. Use RCLSEL STO nn at the beginning and RCL nn
SELECT at the end.

Related functions:

I/O ROM: FINDAID, ID, RCLSEL
HP-IL ROM: FINDID, SELECT, AUTOIO, MANIO
PANAME ROM: AID, ID, FINDAID

17

OUT - Input prefix for OUT functions -
__

Easy keyboard input of functions beginning with OUT is possible thanks to the [OUT] function. This
function is very useful when it is assigned to a key. For instance assign OUT to the [LN] key.

ASN "OUT" 15

Keystrokes: [ASN][ALPHA][O][U][T][ALPHA][1][5] Put the calculator in USER mode, then execute or
program a function which name begins with OUT, for instance OUTAX.

Keystrokes: [OUT]([LN] key)[ALPHA][A][X][ALPHA]

Without the OUT function the keystrokes would have been [XEQ][ALPHA] [O][U][T][A][X][ALPHA], so
you save 3 keystrokes every time you type a function beginning with OUT.

OUT INSTRUCTIONS

1) Assign OUT to a key and set the calculator to USER mode.

2) To execute or program a function beginning with OUT, strike:

[OUT] (It is assigned to a key)

[ALPHA]

...characters of the function name without the first three letters.

...(for instance YBX for the OUTYBX function).

[ALPHA]

18

OUTAX - OUTA with repetition according to X -
__

[OUTAX] performs one or several OUTA∗ functions, it sends the ALPHA register contents to the primary
device. The absolute value of the X-register indicates the number of times OUTA is to be performed.

If flag 17 is cleared, an End Line sequence is added to the ALPHA string every time this one is sent on the
HP-IL loop. (End Line: characters CR and LF, decimal code 13 and 10).

If Flag 17 is set, the ALPHA string is sent several times without any separation character.

INSTRUCTIONS FOR OUTAX

The string to be sent several times must be put in the ALPHA register, the number of repetitions in the X-
register, and Flag 17 must be set or cleared according to the required effect (as mentioned above). Then
execute OUTAX.

EXAMPLE: To draw a line of 40 "_*" (stands for the SPACE character) strings on a HP82905B printer,
use the following sequence. (The printer must be the primary device)

"_*" SF 17 40 OUTAX ADV

Related functions:

HP-IL ROM: OUTA, MANIO, SELECT are used to select the device.
I/O ROM: OUTAX

OUTCR - OUTput Carriage Return -
__

[OUTCR] send a CR character to the primary device. (Carriage Return: decimal code 13).

OUTLF - OUTput Line Feed -
__

[OUTLF] sends a LF character to the primary device. (Line Feed: decimal code 10).

OUTLFX - OUTput Line Feeds by X -
__

[OUTLFX] sends one or several LF characters to the primary device. (Line Feed: decimal code 10). The
number of characters is specified by the absolute value of the X-register.
(0<= X <= 999).

Instructions for OUTLFX.

Put the number of LF characters to be sent in the X-register and execute OUTLFX.

∗ HP-IL ROM function.

19

OUTSPX - Output space characters -
__

[OUTSPX] (OUTput SPaces by X) sends the number of space characters (decimal code 32) specified by
the absolute value of the X-register, (0<=X<=999), to the primary device.

INSTRUCTIONS FOR OUTSPX

Put in the X-register the number of space characters to be sent to the primary device, and execute
OUTSPX.

EXAMPLE: Numerous printers have no tabulation functions. The OUTSPX function replaces it quite well.
For instance, the program OUTAT sends to the printer an alphabetical string of a given length L,
representing the string in the ALPHA register followed, if necessary, by several space characters. If the
string in the ALPHA register is longer than L, it is shortened to the first L characters†.

The string length is limited to 24 characters because of the size of the ALPHA register.

LBL "OUTAT"
ALENG Length of alpha string.
X>Y? Is the string longer than ALENG?
GTO 01
LBL 02
SF 17 CR-LF ignored.
OUTA Send contents of ALPHA to primary device.
OUTSPX Send X number of spaces to primary device
RTN
LBL 01
DSE Y
NOP
CLX
1
E2
/
SUB$ Add characters to justify.
CLX
GTO 02
END

OUTAT use:

- Put the string length (L) in the X-register.
- Type the string in the ALPHA register.
- Execute OUTAT.

The OUTAT program destroys registers X, T, LASTx and sets flag 17.

Note: L must be a positive integer number. The text is left justified. To print a text right-justified just swap
OUTA and OUTSPX in OUTAT.

† In this case, the ALPHA register is modified by OUTAT.

20

OUTXB - Send a character by its decimal code -
__

[OUTXB] sends to the primary device, the character, which decimal code is specified by the absolute value
of the X-register. This value must be in the range 0-255.

INSTRUCTIONS FOR OUTXB

Put the decimal code of the character in the X-register, and execute OUTXB.

EXAMPLE: To send to the printer the character "\" (Decimal code 92), use the sequence: 92 OUTXB.

OUTYBX - Send a character, several times, by its decimal code -
__

[OUTYBX] sends to the primary device, one or several times, a character which decimal code is specified
by the absolute value of the Y-register. The absolute value of the X-register specifies the number of
characters to send. Restrictions: 0<=ABS(X)<=999 and 0<=ABS(Y)<=255.

INSTRUCTIONS FOR OUTYBX

Put the decimal code of the character in the Y-register and the character count in the X-register, then
execute OUTYBX.

EXAMPLE 1: To send 20 "'" characters to the printer (Decimal code 39), use the sequence:

39 ENTER^ 20 OUTYBX.

EXAMPLE 2: "PRNBLZ" (PRint NumBer with Leading Zero). This program prints numbers with leading
zeroes.

The entry conditions are:

- The X-register holds the number to be printed.
- The Y-register holds the length of the printing field (maximum number of digits).
- Select the display format.
- Execute PRNBLZ.

If the printing field cannot hold the formatted number, it is field with "*" characters.

After execution, registers X, Y, LASTx and ALPHA are lost.

LBL "PRNBLZ"
CLA Clear ALPHA register.
ARCL X Recall data in X to ALPHA.
X<0?
XEQ 00
CLX
ALENG Length of ALPHA string
X>Y? Is ALENG higher than string length?
GTO 01
48 Decimal code for "0".
X<>Y
OUTYBX Send "0" X times.
OUTA

21

RTN
LBL 00
CLX
ATOXL
OUTXB
RTN
LBL 01
CLX
42 Decimal code for "*".
X<>Y
OUTYBX
END

22

OUTa - OUTA with 7th bit set -
__

[OUTa] works like OUTA except that the 7th bit of every character sent is set. Therefor 128 is added when
the character code is smaller than 128; with two important exceptions: LF and CR characters which are
automatically sent after an ALPHA string when flag 17 is clear. (CR: carriage return, decimal code 13. LF:
line feed decimal code 10).

INSTRUCTIONS FOR OUTa

Put in the ALPHA register the string to be sent, set or clear flag 17 (see above), execute OUTa.

EXAMPLES

1) To display a string in "inverse video" mode on the HP82163 video interface, you have to add 128 to each
character code before sending the string to the interface. The OUTa function does it automatically. So to
display a string in inverse video, select the interface as the primary device, put the string in the ALPHA
register and execute OUTa. Flag 17 enables or disables the sending of an "End-of-line" sequence.

2) Some printers can automatically underline if you add 128 to the code of the character code to be
underline. The OUTa function makes this operation easier with such printers.

3) There are two ways to use special characters on the HP82905B :

- Using the secondary character set mode, which give new meanings to the codes 32 to 127.
- Using characters with codes higher than 127.

The second method is very easy to use with the OUTa function.

OUTaX - OUTa with repetition by X -
__

[OUTaX] executes several times the OUTa function (refer to it). The absolute value of the X-register
specifies the number of OUTas to be performed.

If flag 17 is clear, an "End-of-line indicator (CR and LF, decimal codes 13 and 10) is sent after each string.

If flag 17 is set the string is send several times without any other character.

INSTRUCTIONS FOR OUTaX

Put the string in the ALPHA register, the number of OUTas to be performed in the X-register, set or clear
flag 17 (see above), then execute OUTaX.

EXAMPLE

To display a line of 16 "-*" strings in "inverse video" on the HP82163 video interface (which has to be the
primary device), use the following sequence:

"-*" SF 17 16 OUTaX

23

82163 (VIDEO INTERFACE) FUNCTION GROUP

This group of functions will make the HP82163 video interface easier to use. A full control of the video
interface is possible without escape sequences or control characters. For instance to clear the screen or to
move the cursor down, CLEAR and CRSDN (CuRSor DowN) are used.

For all these functions the primary device must be the video interface. For the different ways to select a
device refer to the functions FINDAID (in this manual) and FINDID (in the HP-IL ROM HP82160A
owner's manual).

In AUTOIO mode, if the primary device has an ID other than 48 (standard video interface) an AID ERR
error message is displayed.

However in MANIO mode, this error checking is not performed. So one can use these functions with video
interfaces, such as the Mountain Computer MC00701A (AID 50), PAC-TEXT (AID 48), or KRISTAL†

MINITEL interface (AID 48).

The keyboard overlay for these functions is on the reverse side of this page.

For further information on escape sequences, refer to Appendix V.

† KRISTAL, Chemin des Clos Zirst 38240 MEYLAN (FRANCE), information processing systems
interfaces and technical applications, instrumentation and OEM approved HP ICC.

24

Figure 1: Video functions overlay (ON/V)

25

CLEAR - CLEAR the display -
__

[CLEAR] clears the display, sets the cursor to position (0,0) and selects the replacement cursor†.

INSTRUCTIONS FOR CLEAR

Execute CLEAR.

EXAMPLE

ESC E, which is sent by the function CLEAR, is the reset sequence of the HP82905B printer. So CLEAR
can be used to reinitialize this printer, but it must be performed in MANIO mode because the Accessory
identity of the HP 82905B is 33 (or 48 per the French manual).

CLEARO - CLEAR the display from the cursor On -
__

[CLEARO] (CLEAR from cursor On) clears the display, starting from the cursor and down to the end of
the display. Cursor type and position are unchanged.

INSTRUCTIONS FOR CLEARO

Execute CLEARO.

CSRDN - Move cursor down -
__

[CSRDN] (CurSoR DowN) moves the cursor one position down. If the cursor is on the bottom line of the
display, the cursor is not moved.

CSRHX - Move cursor Horizontally by X -
__

[CSRHX] (move CurSoR Horizontally by X) moves the cursor horizontally. The absolute value of X
specifies the number of characters of the move and its sign determines the direction: - For X<0, CSRHX
performs (-X) CSRLs (moves the cursor left by (-X) characters). - For X>=0, CSRHX performs X CSRRs
(moves the cursor right by X characters). For instance -1 CSRHX is equivalent to CSRL and 1 CSRHX is
equivalent to CSRR.

INSTRUCTIONS FOR CSRHX

Put a value corresponding to the desired number of moves in the X-register, then execute CSRHX.

† This is not true for every non-HP video interface.

26

CSRL - Move the cursor to the left -
__

[CSRL] (CurSoR Left) moves the cursor one position to the left. If the cursor is at position (0,0), it is not
moved.

CSRON - Display the cursor -
__

[CSRON] (CurSoR ON) switches the cursor on. It can be switched off using CSROFF.

CSROFF - Suppress the cursor -
__

[CSROFF] (CurSoR OFF) suppresses the cursor. The cursor is not visible until the next execution of
CLEAR or CSRON or the next interface initialization (Power on or HP-IL message -DCL- or -SDC-).

CSRR - Move the cursor to the right -
__

[CSRR] (CurSoR Right) moves the cursor one position to the right. If the cursor is at the end of a line, the
cursor is sent to the beginning of the next line, except if it is at the end of the last line, in which case it is
not moved.

CSRVX - Move the cursor down according to X -
__

[CSRVX] (move CurSoR Vertically by X) move the cursor vertically. The absolute value of X specifies the
number of lines of the move and its sign determines the direction : - For X<0, CSRVX performs (-X)
CSRUPs (moves the cursor up by (-X) lines). - For X>=0, CSRVX performs X CSRDNs (Moves the
cursor down by X lines).

INSTRUCTIONS FOR CSRVX

Put a value corresponding to the desired number of moves in the X-register, then execute CSRVX.

CSRUP - Move the cursor up -
__

[CSRUP] (CurSoR UP) moves the cursor one position up. If the cursor is on the first line of the display, it
is not moved.

27

CTYPE - Select the type of cursor -
__

[CTYPE] (Cursor TYPE) selects the type of cursor according to the value of X :

- For X=0, selects the "insertion" cursor (blinking arrow) ;

- For X=1 or -1, selects the "replacement" cursor (blinking block).

INSTRUCTIONS FOR CTYPE

Put a value specifying the desired type of cursor in the X-register and execute CTYPE. Beware that when
using the Mountain Computer MC00701A Video interface, the selection of the insertion cursor (Blinking
underline) selects neither "character insertion" mode nor "line insertion" mode.

HOME - Put the cursor at the upper left position of the display -
__

[HOME] moves the cursor to position (0,0).

SCRLDN - Scroll the display down -
__

[SCRLDN] (SCRolL DowN) scroll the display one line down. (So the bottom line disappears and a new
line appears at the display top.)

SCRLUP - Scroll the display one line up -
__

[SCRLUP] (SCRolL UP) scroll up the display by one line. (So the top line of the display disappears and a
new line appears at the bottom of the screen.)

SCRLX - Scroll the display according to X -
__

[SCRLX] (SCRolL as specified by X) the display is scrolled according to X. The absolute value of X
specifies the number of lines of the scroll, and its sign, the direction.

- For X<0 SCRLX performs (-X) SCRLUPs. (Scrolls the display up by (-X) lines.)
- For X>=0, SCRLX performs X SCRLDNs. (Scrolls the display down by X lines.)

INSTRUCTIONS FOR SCRLX

Put a value corresponding to the desired number of scrolls in the X-register, and execute SCRLX.

28

XYTAB - Move the cursor to position (X,Y) -
__

[XYTAB] ((X,Y) TABulate) moves the cursor to position (x,y), The column number is specified by the
absolute value of X and the line number by that of Y.

INSTRUCTIONS FOR XYTAB

Put the line number in the Y-register and the column number in the X-register then execute XYTAB.

Appendix V

Sequences sent to the primary device by the 82163 Functions group.

- ESC represents the escape character, decimal code 27.

Function(s) Sequence Characters codes

CLEAR ESC E 27 69
CLEARO ESC J 27 74
CSRDN, CSRVX for X>=0 ESC B 27 66
CSRL, CSRHX for X<0 BS 08
CSROFF ESC < 27 60
CSRON ESC > 27 62
CSRR, CSRHX for X>=0 ESC C 27 67
CSRUP, CSRVX for X<0 ESC A 27 65
CTYPE for X=0 ESC Q 27 81
CTYPE for X=1 or -1 ESC R 27 82
HOME ESC H 27 72
SCRLDN, SCRLX for X>=0 ESC T 27 84
SCRLUP, SCRLX for X<0 ESC S 27 83
XYTAB ESC % {c} {l} 27 37 col ln

29

82162 (THERMAL PRINTER) FUNCTION GROUP

This group of functions simplifies the operation of the HP82162A Thermal Printer. You will be able to use
every feature of this printer, even the one not described in the owner's manual.

These features are:

- Two different sets of characters;
- A "parse" mode;
- An absolute dot-level tabulation function, independent from any data yet in the printer buffer;
- The possibility to obtain status information from the printer.

These functions work on the first HP82162A printer on the loop starting from the primary device. If no
HP82162A printer is found on the loop, the error message "NO 82162" is displayed. The STATUS function
of the "PANAME ROM" is the only exception to this rule; refer to this function for further details.
Familiarity with the HP82162's functions is assumed in the discussion of the functions in this section.

30

31

CLBUF - Clear the buffer -
__

[CLBUF] returns the printer to power on status:

- The printer head is at the right;
- The printer buffer is empty;
- selected modes are: "escape", single width, uppercase letters, left justification, line-feed on the 24th
character.

This function is mainly used to clear the printer buffer of any data. This is the only way to do it without
switching the printer off then on.

8BIT - Select "8 bit mode" -
__

[8BIT] selects "8 bit mode", which validates the HP-41 character set. This mode is automatically selected
when a specific printer function is used. (One of the -PRINTER 2E functions of the HP-IL ROM.) This
function is useful only if the HP82162A printer is used with non-specific printer functions, such as OUTA
or OUTYBX.

ESCAPE - Select "Escape" mode -
__

[ESCAPE] selects the "escape" mode, which activates the ASCII (not HP-41) character set. In this mode,
you cannot use specific printing functions to send characters to the printer because they automatically select
the "8 bit mode". However some applications may require the use of the ASCII character set. The ESCAPE
function enables the utilization of this set, but printing must be done with the OUTA function, or related
functions, which only send characters to the primary device. Beware that in this case, the primary device
must be the printer, even though this is not necessary with specific printer functions such as PRA.

PARSE - Select "Line feed on space" mode -
__

[PARSE] selects parse mode, which enables automatic word-wrap at the end of the lines. A line feed is
performed by the printer on the space, when the next word cannot be printed completely on the current line.

UNPARSE - Select the "line-feed on the 24th character mode" -
__

[UNPARSE] disables the special mode selected by PARSE.

32

TABCOL - Column tabulation -
__

[TABCOL] enables an absolute tabulation on the dot level as opposed to SKPCOL, which permits a
relative tabulation.

By using TABCOL, it is easy to print an output with several columns (Only two columns with FMT!).

INSTRUCTION FOR TABCOL

Put the column number (0 to 167) in X and execute TABCOL.

EXAMPLE

To print the following chart:

A= 123.00 FF
B= 23.95 FS
C= 1115.70 FB

You can use the following sequence:

FIX 2 CLBUF "A=" ACA 28 TABCOL 123 ACX 91 TABCOL "FF" ACA PRBUF
"B=" ACA 28 TABCOL 23.95 ACX 91 TABCOL "FS" ACA PRBUF
"C=" ACA 28 TABCOL 1115.7 ACX 91 TABCOL "FB" ACA PRBUF

33

STATUS - Recall printer status -
__

[STATUS] returns to the Y-register an integer, which specifies the primary device's first status bit, and in
the X-register an integer, which specifies the primary device's second status bit. The effect of STATUS on
the stack depends whether stack lift is enabled or not when the function is executed:

- If stack lift is enabled:

Before After

T: t T: y
Z: z Z: x
Y: y Y: 1st status bit
X: x X: 2nd status bit

- If stack lift is not enabled:

Before After

T: t T: z
Z: z Z: y
Y: y Y: 1st status bit
X: x X: 2nd status bit

However, the LASTx-register is not modified.

The STATUS function has a specific characteristic: in MANIO mode, it returns to the X and Y registers
two numbers, which specifies the primary device's status.

- If the primary device has no status bits, STATUS returns 97 to the X and Y registers;

- If the primary device has only one status bit, STATUS returns the decimal representation of this bit to Y
register, and returns 64 to the X-register;

- If the primary device has, at least, two status bits, STATUS works with the primary device, as with the
HP82162A printer in AUTOIO mode. Status bits after the second one are ignored.

To know the number, and definition of the status bits of a device, refer to the description of the HP-IL
message "SEND STATUS" in the device manual.

The S1 appendix gives the detailed definition of the two status bits of the HP82162A printer.

34

Appendix S1

Printer Status Byte Definitions.

BIT
NUMBER

BIT
VALUE*

NAME DEFINITION

7 - - Always set to 0.
6 64 SR Service request. Set for out of paper condition, carriage jam, or

PRINT or PAPER ADVANCE key pressed. Cleared when
condition removed or by Send Status, Device Clear, Selected
Device Clear, or Loop Powder Down message.

5 32 MB Print mode/jam. Set according to:
4 16 MA } MB MA Condition

0 0 Manual print mode
0 1 Trace print mode
1 0 Normal print mode
1 1 Carriage jam (valid only if ER = 1)

3 8 ER Error condition. Set out-of-paper or carriage jam.
2 4 PA Paper Advance. Set while PAPER ADVANCE key is down.
1 2 PR Print. Set while PRINT key is down.

FI
R

S
T

B
Y

TE

0 1 LA Long advance. Set following out-of-paper condition, indicating
long carriage movement during advance. Cleared when Carriage
Return character received.

7 128 EL End of line. Set if carriage return was last byte received.
6 64 ID Idle. Set if printer is not printing.
5 32 BE Buffer empty. Set if no information is accumulated in print buffer.
4 16 EB Eight bit. Set if printer is in Eight-Bit mode.
3 8 RJ Right justify. Set if printer is set to right-justify mode.
2 4 DW Double wide. Set if printer is set to double-wide mode.
1 2 CO Column mode. Set if printer is set to column mode.

S
E

C
O

N
D

 B
Y

TE

0 1 LC Lowercase. Set if printer is in Eight-Bit mode and set to
lowercase mode

* Add the bit values for all bits that are set to "1"} to find the decimal value of the status byte.

35

82905 (80-COLUMN PRINTER) FUNCTION GROUP

This group of functions will make the HP82905B 80-column printer much easier to use. Thanks to them
you can completely control the printer without knowing escape sequences or control characters normally
needed to perform a specific task. These functions permit an easier writing or reading of programs using
the various modes of the HP82905B.

For all these functions the printer must be the primary device. Refer to FINDAID (in this manual) or to
FINDID (in the HP82160A HP-IL ROM manual) to find how to select a given device.

In AUTOIO mode, if the primary device does not have an AID of 33, the error message AID ERR is
displayed.

However, this check is not performed in MANIO mode. So they can be used with other printers using the
same escape sequences or control characters.

For more information on sequences sent by these functions, refer to Appendix P.

36

37

BELL - Beep signal -
__

[BELL] rings the "bell" of the printer for one second. This function can be used to call the attention of the
user.

CHARSET - Character set selection -
__

[CHARSET] selects the primary character set if X=0, and the secondary one if X=1. Refer to the
HP82905B printer User's Manual for information on both character sets.

FFEED - Form feed -
__

[FFEED] sends to the printer a "form feed" command, which sets the printer to the top of the next page.
Beware that you must position the paper correctly and set the number of lines per page (using FORMLEN)
prior to using FFEED.

FORMLEN - Page length -
__

[FORMLEN] defines the number of lines per page (It is related to the paper's physical form length and line
spacing selected with VSPAC).

The absolute value of X indicates the number of lines, which must be in the range 1-128. At power on or
after re-initialization with the CLEAR function (refer to this function for further information) the default
line count is 66.

GRAPHX - Graphic output -
__

[GRAPHX] indicates to the printer that the next X bytes received are binary data, not characters, each value
representing a dot column. Refer to the printer User's Manuel to find the relations between data sent and
printer output (Graphic mode paragraph).

The absolute value of X represents the number of bytes to be considered as graphic data.

38

MODE - Printing mode -
__

[MODE] selects the printing mode according to the absolute value of X :

X value: Mode: No. char./line:

0 Normal 80
1 Expanded 40
2 Compressed 132
3 Bold-expanded 66
9 Bold 80

You can combine modes "0" and "1" or "2" and "3" ; other combinations give strange results.

If X has other values than "0", "1", "2", "3", or "9", the error message DATA ERROR is displayed.

SKIPON - Set perforation skip -
__

[SKIPON] sets perforations skip mode on the printer. When this mode is on, the printing of the last text line
of a page generates a form feed: the paper is set to the beginning of the next page (the number of text lines
per page is selected with the TEXTLEN function). So nothing is printed on the perforations.

Perforations skip mode is off, at power on or after using the CLEAR function. (Refer to this function for
other information).

SKIPOFF - Cancel perforation skip -
__

SKIPOFF cancels the SKIPON function.

TEXTLEN - Text length -
__

[TEXTLEN] sets the number of text lines per page according to the absolute value of X. This number must
be in the range 1 to the number of lines per page (selected with FORMLEN). At power on or after using the
CLEAR function (refer to this function for the description of this feature), the default lines number per
page is 60.

VSPAC - Vertical space -
__

[VSPAC] selects the vertical space in line per inch according to the absolute value of X.

This number must be 6,8,9,12,18,24,36 or 72. Any other value will return DATA ERROR.

39

Appendix P

Sequences sent to the primary device by the 82905 Functions group.

- ESC represents the escape character, decimal code 27.
- {#} symbolizes the ASCII representation of a number and {par} the related character codes .

Function(s) Sequence Codes Thinkjet

BELL BEL 07
CHARSET for X=0 SI 15 Normal
CHARSET for X=1 or -1 SO 14 Bold
FFEED FF 12 FF
FORMLEN ESC &l {#} P 27 38 108 {par} 80 FL
GRAPHX ESC *b {#} G 27 42 98 {par} 71
MODE ESC &k {#} S 27 38 107 {par} 83 0 Normal (80 c/l)

1 expanded (40 c/l)
2 compressed (142 c/l)
3 expanded-compressed (71 c/l)
9 bold (80 c/l)

SKIPOFF ESC &l0L 27 38 108 48 76 skipoff
SKIPON ESC &l1L 27 38 108 49 76 skipon
TEXTLEN ESC &l {#} F 27 38 108 {par} 70 textlen
VSPAC ESC &l {#} D 27 38 108 {par} 68 vspac

40

Roman-8 Characters

 CHAR. DEC. HEX. CHAR. DEC. HEX. CHAR. DEC. HEX. CHAR. DEC. HEX.
CTL@ N

U 0 00
CTLA S

H 1 01
CTLB S

X 2 02
CTLC E

X 3 03
CTLD E

T 4 04
CTLE E

Q 5 05
CTLF A

K 6 06
CTLG B

L 7 07
CTLH B

S 8 08
CTLI H

T 9 09
CTLJ L

F 10 0A
CTLK V

T 11 0B
CTLL F

F 12 0C
CTLM C

R 13 0D
CTLN S

O 14 0E
CTLO S

I 15 0F
CTLP D

L 16 10
CTLQ D

1 17 11
CTLR D

2 18 12
CTLS D

3 19 13
CTLT D

4 20 14
CTLU N

K 21 15
CTLV S

Y 22 16
CTLW E

B 23 17
CTLX C

N 24 18
CTLY E

M 25 19
CTLZ S

B 26 1A
CTL[E

C 27 1B
CTL\ F

S 28 1C
CTL] G

S 29 1D
CTL^ R

S 30 1E
CTL_ U

S 31 1F

32 20
! 33 21
" 34 22
34 23
$ 36 24
% 37 25
& 38 26
' 39 27
(40 28
) 41 29
* 42 2A
+ 43 2B
, 44 2C
- 45 2D
. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F

@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
O 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
V 86 56
W 87 57
X 88 58
Y 89 59
Z 90 5A
[91 5B
\ 92 5C
] 93 5D
^ 94 5E
_ 95 5F

` 96 60
a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
l 108 6C

m 109 6D
n 110 6E
o 111 6F
p 112 70
q 113 71
r 114 72
s 115 73
t 116 74
u 117 75
v 118 76
w 119 77
x 120 78
y 121 79
z 122 7A
{ 123 7B
| 124 7C
} 125 7D
~ 126 7E
¦ 127 7F

41

PLOTTER FUNCTION GROUP

In addition to the HP7470A, several plotters from other manufacturers can be used with the HP-41.
TANDY, CANON... have the same mechanics and the same command set. Of course these plotters should
be interfaced with the HP-IL loop via the HP82166A GP-IO interface. The HP7470A is mentioned as it
already features the HP-IL interface.

Several manufacturers offer HP-IL interfaced plotters, or a converter and parallel interface, which can be
used with non-HP-IL plotters.

These plotters main characteristics are:

- 4 colors. The print head is in fact a set of 4 pens. The color can be changed, either by program or by a
switch during plotting.

- 11.4 cm paper, in roll. It is possible to draw, or plot on the length of the paper, so one can print large
charts. Refer to the EXAMPLE.

- Horizontally you can print 80 c/l.

- Of course, these plotters can be used with other HP-IL controllers such as the HP-75, HP-85, HP-71. So
these devices will not be outdated too quickly.

Some of the functions in this section are similar or identical to their PLOTTER ROM counter part. Detailed
coverage of those functions is beyond the scope of this manual. It is assumed that the reader is familiar with
those functions or has the reference materials available to review those functions.

The keyboard overlay for these functions is on the reverse side of this page.

42

Figure 2: Plotter functions overlay (ON/T)

43

*CSIZE - Character size -
__

[*CSIZE] (Character SIZE) selects the character size. The value of the X-register must be in the range 0-
63.

Related function:

PLOTTER ROM: CSIZE

*LTYPE - Line Type -
__

*LTYPE (*Line TYPE) specifies one of the 16 possible line types of the plotter.

The value of the X-register is considered modulo 16. The line type will be used with the *DRAW and
RDRAW functions.

Related function:

PLOTTER ROM: LTYPE

COLOR - Color selection -
__

[COLOR] selects one of the four colors according to the value of the X-register.

Related function:

PLOTTER ROM: PEN

44

AXIS - Axis drawing -
__

[AXIS] draws several kind of axis on the mini-plotter.

 -\- -|-
 -\- |
 -\- |
 -\- -|-
 -\- |
 -\- |
 -\- -|-
 -\- |
 -\- |
 -\--|-
 -\-|
 -\|
 -___|___|___|___|___|___|___|___|___|
 | | | | | | | | | |

INSTRUCTIONS FOR AXIS

AXIS uses four parameters, which must be in the stack before executing the function:
T: half-length of a tic
Z: vertical distance between two tics
Y: horizontal distance between two tics
X: number of tics

The axis is drawn from the current pen position, and the direction depends of the values in the Y and Z
registers. However, tics are always either vertical or horizontal according to the axis inclination from the
horizontal (X direction): under 45 degrees, tics are vertical, over they are horizontal.

The parameter in T makes the drawing of charts easier as in the case with arrays.

EXAMPLE: The following program draws a chart with 2 lines and C columns. Each column has a width of
W and each line a height of H. To use it, only type XEQ 'CHART' and answer the questions. (Input the
value and R/S).

01 LBL "CHART"
02 "HP82166" GP-IO Converter identification
03 FINDID Search the address of the mini-plotter.
04 SELECT Select the plotter
05 RESET Re-initialization
06 "No. COL. ?"
07 PROMPT Input the number of columns (C).
08 STO 00 R00= Number of columns.
09 "COL. WIDTH ?"
10 PROMPT Input the column's width.
11 STO 01 R01= Column's width.
12 * First chart dimension.
13 "HT. LINE ?"
14 PROMPT Input the line height.
15 STO 02 R02= Height of each line.
16 ST+ X There are 2 lines, the 2nd dimension is 2*X.
17 CHS The displacement will be down!
18 X<>Y
19 0

45

20 ENTER^
21 BOX BOX uses the 4 parameters T, Z, Y and X.
22 RCL 02
23 CHS
24 0
25 *MOVE Starting position.
26 RCL 02
27 0
28 RCL 01
29 RCL 00
30 AXIS Drawing of inside lines.
31 END

XEQ "CHART"
No. COL. ? Will print:
4.0000 RUN
COL. WIDTH ?
100.0000 RUN
HT. LINE ?
50.0000 RUN

Related functions:

PLOTTER ROM: LXAXIS, LYAXIS, XAXIS, YAXIS, XAXISO, YAXISO

46

*LABEL - Print the ALPHA register -
__

[*LABEL] prints the ALPHA register. This function is useful because the drawing can be done in four
directions in text mode: these four directions are specified with the *LDIR function.

Related functions:

PLOTTER ROM: LABEL
PANAME ROM: *LDIR

*LDIR - Writing direction in graphic mode -
__

[*LDIR] (*Lable DIRection) specifies the writing direction for *LABEL.

Unlike the LDIR function in the PLOTTER ROM which allows the user to select a discreet degree value,
there are only four choices for *LDIR:

0 to the right, 1 down, 2 to the left, 3 up.

Related functions:

PLOTTER ROM: LABEL
PANAME ROM: *LABEL

*DRAW - Draw a segment -
__

[*DRAW] draws a line segment from the current pen position to the (X,Y) coordinates.

Related function:

PLOTTER ROM: DRAW, PLOT
PANAME ROM: RDRAW

RDRAW - Relative Drawing -
__

[RDRAW] (Relative DRAWing) draws a line up to the position (X,Y) relative to the current position of the
pen.

Related function:

PLOTTER ROM: DRAW, RPLOT
PANAME ROM: *DRAW

47

*PLREGX - Broken line plotting -
__

[*PLREGX] (PLot REGisters by X) joins the points, which coordinates are specified by successive
registers.

The X-register contains a bbb,eee pointer; the integer part (bbb) specifies the register storing the first
coordinate of the first point, the fractional part (eee) specifies the register storing the second coordinate of
the last point. If in the succession of data the calculator finds one or several ALPHA strings the pen go to
the next coordinate (numeric data) without plotting (*MOVE), there it resumes plotting (DRAW).

Related function:

PLOTTER ROM: PLREGX

RESET - Re-initialization -
__

[RESET] moves the pen to the left margin and selects Text mode.

SETORG - Set origin -
__

[SETORG] (SET ORiGin) sets the current pen position has the origin (0,0).

*HOME - Send pen to origin -
__

[*HOME] sends pen to (0,0) coordinates.

*MOVE - Move pen -
__

[*MOVE] moves the pen, without plotting, to the (X,Y) coordinates.

Related function:

PLOTTER ROM: MOVE
PANAME ROM: RMOVE

RMOVE - Relative MOVEment -
__

[RMOVE] (Relative MOVEment) moves to the (x,y) position relative to the current pen position.

48

Related function:

PLOTTER ROM: MOVE
PANAME ROM: *MOVE

REVLF - Reverse line feed -
__

[REVLF] (REVerse Line Feed) moves the pen one line upward.

REVLFX - Reverse line feed by X -
__

[REVLFX] (REVerse Line Feed by X) moves the pen upward of the number of lines specifies by the
absolute value of the X-register.

BACKSP - BACKSPace -
__

[BACKSP] moves the pen one character backward.

BACKSPX - BACKSPace by X -
__

[BACKSPX] moves the pen backward by the number of characters specified by the absolute value of the
integer part of the X-register.

BOX - Box drawing -
__

[BOX] draws a rectangle, for which 2 opposite angles have the coordinates:

(x1,y1) and (x2,y2), with T=y2, Z=x2, Y=y1, X=x1.

49

Appendix T2

Minimum function set needed to use a 4 color mini-plotter with the plotter functions group.

Refer to JPC n15 June 1984 for a description of the mini-plotter.

Representation convention:

- # represents a numeric character string, eventually with a sign and no more than 4 digits
(For instance: -230; 0024);

The syntax column specifies the signification of each parameter;

Control characters (Decimal values):

17: Select TEXT mode
18: Select "GRAPH" mode
11: Reverse line feed (Text mode only)
08: Backspace (Text mode only)

GRAPHIC mode instructions

Syntax Format Action

A A Initialization
H H Home (Position (0,0))
Mx,y M#,# Move to position (x,y)
Dx,y D#,# Drawing to position (x,y)
Rx,y R#,# Relative move of (x,y)
Jx,y J#,# Relative drawing of (x,y)
Pstring Pstring Printing of the characters string "string"
Lx L# Select line type x
Cx C# Select pen x (Change color)
Sx S# Select character size x
Qx Q# Select printing direction x (For P instruction only).

GRAPHIC mode functions

The mini-plotter instructions, which correspond to these functions, need the Graphic mode. So these
functions set Graphic mode before executing the operation, and leave the mini-plotter in this mode after
execution.

Unspecific mode functions

These mini-plotter instructions must be executed in Graphic mode. So these functions set Graphic mode
before executing the instruction. However these functions are often used in Text mode. The user can
control in which mode the mini-plotter is left after execution.

50

51

UTILITIES

These functions and routines have a wide range of applications:

- Manipulation of numeric and alphanumeric arrays (one or two dimensions):

- Numeric or alphanumeric sorting;

- Character string manipulation:

- Extended memory management (HP82180A X-FUNCTION and HP82181A X-MEMORY);

- Wide range of other applications...!

The pointer used with the array handling functions is like the control number described in the Main
Memory section in the HP-41 manual. It's in the format bbb.eeeii where bbb is the beginning of the main
memory register block, eee is the end of the main memory register block, and ii is the increment or number
of registers to skip inclusive of the current register. For example, pointer 30.03402 specifies that the first
register is 30, the last register is 34 and the increment is 2, therefore, registers 30, 32, and 34 will be
selected. The ii value could also represent the number of columns of an array.

Some of the functions in this section are similar or identical to their X-FUNCTION or EXTENDED I/O
ROM counter part. Detailed coverage of those functions is beyond the scope of this manual. It is assumed
that the reader is familiar with these functions or has the reference materials available to review these
functions.

52

Figure 3: ALPHA functions overlay (ON/A) Figure 4: Array functions overlay (ON/M)

53

- ARRAY HANDLING FUNCTIONS -

BLDPT - Build a pointer -
__

[BLDPT] (BuiLD PoinTer) builds a data set pointer bbb.eeeii if X>0 or an array pointer if X<0.

INSTRUCTIONS FOR BLDPT

1) To build a bbb.eeeii data set pointer where bbb specifies the address of the first register of the data set,
eee specifies the last register of the data set and ii is the number of registers between sets:

- Put bbb in the Z-register;
- Put eee in the Y-register;
- Put ii in the X-register;
- Execute [BLDPT].

2) To build a bbb.eeecc array pointer; where bbb specifies the address of the first register used by the array,
eee specifies the last register used by the array and cc the number of columns:

- Put bbb in the Z-register;
- Put the number of lines lll of the array in the Y-register;
- Put the number of columns cc of the array in the X-register, with a negative sign;
- Execute [BLDPT].

Note: If either the X, Y, Z register contains an Alpha string, ALPHA DATA is displayed.
The pointer is built with the absolute values of bbb and eee.

EXAMPLE 1: A program has left in the Z-register the number of the first register of a set of data, in the Y-
register the number of the last register of the set, and in the X-register the number of registers between two
data. Z=25 Y=40 X=5. To calculate the data set pointer: [XEQ] "BLDPT", [FIX] 5. X= 25.04005 will
give the address of R25, R30, R35, R40.

EXAMPLE 2: A previous program has left, in the Z-register the first register nº of an array, in the Y-
register the number of lines, in the X-register the number of columns: Z=25 Y=4 X=5.
To get the array pointer, [CHS] [XEQ] "BLDPT", X=25.04405

column
nº1 nº2 nº3 nº4 nº5

line nº1 R25 R26 R27 R28 R29

line nº2 R30 R31 R32 R33 R34 ARRAY A

line nº3 R35 R36 R37 R38 R39

line nº4 R40 R41 R42 R43 R44

STACK:
for X>0 For X<0

Input: Output: Input: Output:
T: t T: t T: t T: t
Z: bbb Z: t Z: bbb Z: t
Y: eee Y: t Y: lll Y: t
X: ii X: bbb.eeeii X: cc X: bbb.eeecc
L: l L: eee L: l L: lll

54

BRKPT - Break pointer -
__

[BRKPT] (BReaK PoinTer) breaks a bbb.eeeii pointer if X>0, or an array pointer if X<0.

INSTRUCTIONS FOR BRKPT

1) To break a bbb.eeeii pointer, where bbb, in the range 0-999, is the first element of a loop or a vector;
where eee, in the same range, is the last element; and where ii is the increment. One must check that the
number in the X-register is positive, for instance with [XEQ] "ABS"; then [XEQ] "BRKPT" will return the
integer part of the X-register to the Z-register, the first 3 digits of the decimal part to the Y-register, and the
4th and 5th digits of the decimal part to the Z-register.
The pointer is saved in LASTx.

2) To break a bbb.eeecc array pointer, where bbb is the register of the first element of the array, eee is its
last register, and cc is the number of columns. One must check that the number in the X-register is
negative, for instance with [ABS] [CHS]; then [XEQ] "BRKPT" returns the first register (bbb) to the Z-
register, the number of lines lll=(eee+1-bbb)/ccc to the Y-register, and the number of columns (cc) to the
X-register.
The array pointer is saved in LASTx.

Note: If there is an Alpha string in the X-register, ALPHA DATA is displayed.

EXAMPLE 1: A program needs the elements of a bbb.eeeii pointer, where bbb is the first register of a set
of data, eee is the last one and ii the number of registers between two data in the set.
X= 25.04005 specifies registers R25, R30, R35, R40 [XEQ] "BRKPT" returns Z=25, Y=40, X=5.

EXAMPLE 2: The array pointer is 25.04405, it specifies that the array begins at R25, ends at R44, and has
5 columns. The array number of lines is returned by: [CHS] [XEQ] "BRKPT". So Z=25 (1st register), Y=4
(number of lines), X=-5 (number of columns).

column
nº1 nº2 nº3 nº4 nº5

line nº1 R25 R26 R27 R28 R29

line nº2 R30 R31 R32 R33 R34 ARRAY A

line nº3 R35 R36 R37 R38 R39

line nº4 R40 R41 R42 R43 R44

STACK:
for X>0 For X<0

Input: Output: Input: Output:
T: t T: x T: t T: x
Z: z Z: bbb Z: z Z: bbb
Y: y Y: eee Y: y Y: lll
X: bbb.eeeii X: ii X: bbb.eeecc X: cc

L: l L: bbb.eeeii L: l L: bbb.eeecc where eee=(ll*|cc|)-1+bbb

55

AD-LC - ADdress Line Column -
__

[AD-LC] (ADdress-Line-Column) returns the coordinates (line,column) of an array element from its
address (Rnn) and the array pointer.

INSTRUCTIONS FOR AD-LC

To get the line,column coordinates of an array element when you know the array pointer and the register
address of this element : Input the register number, [ENTER^], array pointer, [XEQ] "AD-LC". The
column number is returned in the X-register and the line number in the Y-register. The array pointer is
saved in L, registers Z and T are unchanged.

EXAMPLE: Calculate the coordinates of register 36 in the array A (Below), with array pointer 25,04405 in
R00. R25= first array element, R44= last array element.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº3 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 |_____|_____|_____|_____|_____|

 Input: Display:
 36 [ENTER^] 36,0000 Input register nº .
 [RCL] 00 25,04405 Recall the array pointer.
 [XEQ] "AD-LC" 2,00000 Column nº2.
 [RDN] 3,00000 Line nº3.
 [LASTx] 25,04405 The pointer is saved in L.

 STACK

 Input: Output:
 T: t T: t
 Z: z Z: z
 Y: Register nº Y: line nº
 X: Array pointer X: Column nº

 L: L L: Array pointer

Note: This function does not check if the register is part of the array.
If registers X or Y contains an Alpha string, ALPHA DATA is displayed.

56

LC-AD - Line-column to address -
__

[LC-AD] (Line-Column-ADDress) returns the register number of an array element from its line number,
column number, and array pointer.

INSTRUCTIONS FOR LC-AD

To calculate the register number of an array element, when you know its line number, column number, and
array pointer: Input line number, [ENTER^], Column number, [ENTER^], array pointer. [XEQ] "LC-AD"
returns the register number to the X-register, and places the pointer in LASTx.

EXAMPLE: Register number of the element on line 2 and column 3 of array A, with array pointer
25.04405 is saved in R00.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº3 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 |_____|_____|_____|_____|_____|

 Keystrokes: Display:

 [2] [ENTER^] 2.0000 Input line number.
 [3] 3_ Input column number.
 [RCL] 00 25.04405 Recall array pointer.
 [XEQ] "LC-AD" 32.00000 Register Nº.

STACK:

Input: Output:

T: T T: T
Z: line nº Z: T
Y: column nº Y: T
X: Array Pointer X: register nº

L: L L: Array pointer

57

COLPT - Create column pointer -
__

[COLPT] (COLumn PoinTer) returns a column pointer to the X-register, from the column number in the Y-
register, and the array pointer in the X-register.

INSTRUCTIONS FOR COLPT

1) Input the column number.

2) Put the array pointer in the X-register.

3) [XEQ] "COLPT" returns the column pointer to the X-register, and saves the array pointer in LASTx.

EXAMPLE: to gets the second column numbers of the array A, which pointer is in register 00.

 Keystrokes: Display:

 2 2_ Column number.
 [RCL] 00 25.04405 Recall pointer.
 [XEQ] "COLPT" 26.04105 2nd column pointer.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº3 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 |_____|_____|_____|_____|_____|

STACK:

Input : Output :

T: t T: t
Z: z Z: t
Y: Column Nº Y: z
X: bbb.eeeii X: b'b'b'.e'e'e'i'i'

L: l L: bbb.eeeii

Note: i'i'=ii

58

LINPT - Create line pointer -
__

[LINPT] (LINe PoinTer) returns a line pointer to the X-register, given the line number in the Y-register and
the array pointer in the X-register.

INSTRUCTIONS FOR LINPT

1) Input the line number, which pointer is needed.

2) Put the array pointer in the X-register.

3) [XEQ] "LINPT" returns the line pointer to the X-register and saves the array pointer in LASTx.

EXAMPLE: To know the registers used by the 2nd line of array A, which array pointer is saved in register
R00:

 Keystrokes: Display:

 [2] 2_ Line number.
 [RCL] 00 25.04405 Recall array pointer.
 [XEQ] "LINPT" 30.03400 2nd line pointer.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº3 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 |_____|_____|_____|_____|_____|

STACK:

Input: Output:

T: t T: t
Z: z Z: t
Y: line Nº Y: z
X: bbb.eeeii X: b'b'b'.e'e'e'i'i'

L: l L: bbb.eeeii

59

CLINC - Clear Increment -
__

[CLINC] (CLear INCrement) truncates the number in the X-register from the 4th digit of the decimal part.

INSTRUCTIONS FOR CLINC

[CLINC] replaces, in the X-register, any decimal digits after the 3rd one by 0. The old value is saved in
LASTx register L.

EXAMPLE: You want to know the first and last registers of an array.
The array pointer 25.04405 is saved in R00. Use the following sequence:

Keystrokes: Display:
[RCL] 00 25.04405 Recall the array pointer
[XEQ] "CLINC" 25.04400
[XEQ] "INT" 25.00000 1st register
[LASTx] 25.04400
[XEQ] "FRC" 0.04400
[EEX] 3 [*] 44.00000 Last register

STACK

Input: Output:
T: t T: t
Z: z Z: z
Y: y Y: y
X: bbb.eeeii X: bbb.eee

L: l L: bbb.eeeii

Note: If the X-register contains an Alpha string, ALPHA DATA is displayed.

60

GETRGX - Recall registers from X-MEMORY -
__

[GETRGX] (GET ReGisters by X) copies in the registers specified by the X-register, the data of the current
X-MEMORY file, starting from pointer position, and according to the increment in the X-register.

INSTRUCTIONS FOR GETRGX

1) Set the current file pointer to the right position with [SEEKPT] or [SEEKPTA]†.

2) The number in the X-register is a bbb.eeeiijj pointer, where bbb is the first main memory register, eee
the last main memory register where you want to copy the X-MEMORY data set, ii is the increment for the
main memory registers, and jj the increment for the X-MEMORY registers.

3) [XEQ] "GETRGX" copies the registers from the current X-MEMORY file to the main memory registers
as specified by the pointer in the X-register.

EXAMPLE: The pointer in the current X-MEMORY file "DATA" is on 10. 25.0440510 [XEQ]
"GETRGX" copies register 10, 20, 30,... from the X-MEMORY file, to registers 25, 30, 35,... in main
memory.

STACK:

The stack is unchanged by [GETRGX].

APPLICATION PROGRAMS

The figure below represents two arrays, the left one is in main memory, the right one is in X-MEMORY. In
each square is indicated the register number, and its value (a letter).

Set the X-MEMORY pointer to the first register to copy, with 12 [SEEKPT].

To copy the second column of the array B in X-MEMORY to the 3rd column of array A in main memory,
put in the X-register the pointer of the 3rd column of array A (27,04205), and add the increment for the X-
MEMORY registers (03) as 6th and 7th decimal digits:

X= 27,0420503 .

27 = bbb 1st register in main memory.
42 = eee last register in main memory.
05 = ii increment for main memory registers.
03 = jj increment for X-MEMORY registers.

[XEQ] "GETRGX" copies the registers as specified by the pointer in the X-register; the result is
represented on the second drawing.

Related function:
X-FUNCTION: GETRX

† Part of the Extended Functions found in the X FUNCTIONS module or built into the HP-41CX.

61

FIGURE 1. DATA

 Array A main Array B
 memory X-MEMORY

 col nº1 nº2 nº3 nº4 nº5 col nº1 nº2 nº3
 _____ _____ _____ _____ _____ _____ _____ _____
 ln 1 | R25 | R26 | R27 | R28 | R29 | ln nº1 | R11 | R12 | R13 |
 | A | B | C | D | E | | a | b | c |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 2 | R30 | R31 | R32 | R33 | R34 | ln nº2 | R14 | R15 | R16 |
 | F | G | H | I | J | | d | e | f |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 3 | R35 | R36 | R37 | R38 | R39 | ln nº3 | R17 | R18 | R19 |
 | K | L | M | N | O | | g | h | i |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 4 | R40 | R41 | R42 | R43 | R44 | ln nº4 | R20 | R21 | R22 |
 | Q | R | S | T | U | | j | k | l |
 |_____|_____|_____|_____|_____| |_____|_____|_____|

FIGURE 2. RESULTS (AFTER [GETRGX])

 Array A main Array B
 memory X-MEMORY

 col nº1 nº2 nº3 nº4 nº5 col nº1 nº2 nº3
 _____ _____ _____ _____ _____ _____ _____ _____
 ln 1 | R25 | R26 | R27 | R28 | R29 | ln nº1 | R11 | R12 | R13 |
 | A | B | b | D | E | | a | b | c |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 2 | R30 | R31 | R32 | R33 | R34 | ln nº2 | R14 | R15 | R16 |
 | F | G | e | I | J | | d | e | f |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 3 | R35 | R36 | R37 | R38 | R39 | ln nº3 | R17 | R18 | R19 |
 | K | L | h | N | O | | g | h | i |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 4 | R40 | R41 | R42 | R43 | R44 | ln nº4 | R20 | R21 | R22 |
 | Q | R | k | T | U | | j | k | l |
 |_____|_____|_____|_____|_____| |_____|_____|_____|

62

SAVERGX - Save registers to X-MEMORY -
__

[SAVERGX] (SAVE ReGisters by X), copies the specified registers to the current data file in X-
MEMORY starting from the pointer and following the increment all controlled by X; X=bbb.eeeiijj

INSTRUCTIONS FOR GETRGX

1) Set the current file pointer to the right position with [SEEKPT] or [SEEKPTA]†.

2) The number in the X-register is a bbb.eeeiijj pointer. bbb is the first main memory register and eee is the
last main memory register from which you want to copy the data set to the X-MEMORY file, ii is the
increment for the main memory registers, and jj the increment for the X-MEMORY registers.

3) [XEQ] "SAVERGX" copies the data from the main memory registers to the current X-MEMORY file as
specified by the pointer in the X-register.

EXAMPLE: The pointer in the current data file "DATA" in X-MEMORY is on 10. 25.0440510 [XEQ]
"SAVERGX" copies registers 25, 30, 35,... from main memory to 10, 20, 30,... in the X-MEMORY file.

STACK:

The stack is unchanged by [GETRGX].

APPLICATION PROGRAMS

The figure below represent two arrays, the left one is in main memory, the right one is in X-MEMORY. In
each square is indicated the register number, and its value (a letter).

Set the X-MEMORY pointer to the first register to copy, with 12 [SEEKPT].

To copy the 3rd column of array A in main memory to the second column of the array B in X-MEMORY,
put in the X-register the pointer of the 3rd column of array A (27,04205), and add the increment for the X-
MEMORY registers (03) as 6th and 7th decimal digits:

X= 27,0420503 .

27 = bbb 1st register in main memory.
42 = eee last register in main memory.
05 = ii increment for main memory registers.
03 = jj increment for X-MEMORY registers.

[XEQ] "SAVERGX" copies the registers as specified by the pointer in the X-register; the result is
represented on the second figure.

Related function:
X-FUNCTION: SAVERX

† Part of the Extended Functions found in the X FUNCTIONS module or built into the HP-41CX.

63

FIGURE 1. DATA

 Array A main Array B
 memory X-MEMORY

 col nº1 nº2 nº3 nº4 nº5 col nº1 nº2 nº3
 _____ _____ _____ _____ _____ _____ _____ _____
 ln 1 | R25 | R26 | R27 | R28 | R29 | ln nº1 | R11 | R12 | R13 |
 | A | B | C | D | E | | a | b | c |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 2 | R30 | R31 | R32 | R33 | R34 | ln nº2 | R14 | R15 | R16 |
 | F | G | H | I | J | | d | e | f |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 3 | R35 | R36 | R37 | R38 | R39 | ln nº3 | R17 | R18 | R19 |
 | K | L | M | N | O | | g | h | i |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 4 | R40 | R41 | R42 | R43 | R44 | ln nº4 | R20 | R21 | R22 |
 | Q | R | S | T | U | | j | k | l |
 |_____|_____|_____|_____|_____| |_____|_____|_____|

FIGURE 2. RESULTS (AFTER [SAVERGX])

 Array A main Array B
 memory X-MEMORY

 col nº1 nº2 nº3 nº4 nº5 col nº1 nº2 nº3
 _____ _____ _____ _____ _____ _____ _____ _____
 ln 1 | R25 | R26 | R27 | R28 | R29 | ln nº1 | R11 | R12 | R13 |
 | A | B | B | D | E | | a | B | c |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 2 | R30 | R31 | R32 | R33 | R34 | ln nº2 | R14 | R15 | R16 |
 | F | G | E | I | J | | d | E | f |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 3 | R35 | R36 | R37 | R38 | R39 | ln nº3 | R17 | R18 | R19 |
 | K | L | H | N | O | | g | H | i |
 |_____|_____|_____|_____|_____| |_____|_____|_____|
 ln 4 | R40 | R41 | R42 | R43 | R44 | ln nº4 | R20 | R21 | R22 |
 | Q | R | K | T | U | | j | K | l |
 |_____|_____|_____|_____|_____| |_____|_____|_____|

64

SORT - Sort numeric and/or alphanumeric data -
__

[SORT] (SORTer) sorts the registers specified in the X-register.

INSTRUCTIONS FOR SORT

1) [SORT] sorts either numeric values or alpha strings. Strings are sorted according to their ASCII code
and they are considered as being higher than numeric values.

2) The pointer in the X-register specifies the registers to sort.

3) If X>=0 values are sorted in increasing order.

4) If X<0 registers values are sorted in decreasing order.

5) While sort is done, if there is no message in the display, "SORTING" is displayed.

EXAMPLE: In array A below:

1) Sort in increasing order, the 2nd column values.

2) Sort in decreasing order, the 3rd column values.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 14 | B | 21 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 13 | 19 | 20 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº3 | 0 | A | -12 | 18 | 24 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 99 | 50 | 11 | 17 |
 |_____|_____|_____|_____|_____|

Keystrokes : Display :

2 [RCL] 00 [COLPT] 26.04105 Build 2nd column pointer.
[XEQ] "SORT" SORTING Sort is performed.
 26.04105 Done.
3 [LASTx] [COLPT] [CHS] -27.04205 3rd column pointer; the negative pointer
indicates
 a decreasing order.
[XEQ] "SORT" SORTING Sort is performed.
 -27.04205 Done.

65

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 14 | 13 | 50 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 99 | 21 | 20 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº3 | 0 | A | 19 | 18 | 24 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | B | -12 | 11 | 17 |
 |_____|_____|_____|_____|_____|

 STACK:

[SORT] leaves the stack unmodified.

66

STO>L - Store by L-register -
__

[STO>L] (STOre by L) stores the X-register value, into the register specified by the integer part of the L-
register pointer. It also increments this pointer; stack lift is not done.

INSTRUCTIONS FOR STO>L

[STO>L] uses the L-register, as an address pointer to store the X-register value.

[STOL>L] transfers the X-register value, to the register specified by the L-register. Stack lift is not done, so
several values can be input without altering registers Y, Z, T. Furthermore, The pointer in the L-register is
automatically incremented, so programs need less memory.

EXAMPLE: To input all the elements of the 1st line, of a 4 line, 5 column array, beginning with register
R25.

Keystrokes : Display :

1 1_
[RCL] 00 25.04405 Recall the pointer.
[LINPT] 25.02900 Calculate 1st line pointer.
[STO] [.] [L] 25.02900 Store it in the L-register.
50 50_ 1st line, 1st element.
[XEQ] "STO>L" 50.00000 Store it in R25.
[VIEW] [.] [L] 26.02900 Pointer has been incremented.
60 60_ 2nd element.
[XEQ] "STO>L" 60.0000 Store 2nd element.
70 70_
[XEQ] "STO>L" 70.0000
80 80_
[XEQ] "STO>L" 80.0000
90 90_
[XEQ] "STO>L" 90.0000
[LASTx] 30.0290

STACK:

Input : Output :

T: t T: t
Z: z Z: z
Y: y Y: y
X: value to store X: value stored

L: bbb L: bbb+1

Remark: The decimal part of the L-register is ignored.

Note: If there is an alpha string in the L-register, ALPHA DATA is displayed.

67

APPLICATION PROGRAM FOR STO>L

1) [STO>L] was designed, to input register values in the middle of a program. So to input, the 1st column
of the array B, which pointer is in register R00, use the following sequence:

1 RCL 00 COLPT STO L 50 STO>L 60 STO>L 70 STO>L 80 STO>L

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº 1 | 50 | | | | |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº 2 | 60 | | | | |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY A
 line nº 3 | 70 | | | | |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº 4 | 80 | | | | |
 |_____|_____|_____|_____|_____|

68

RG - RG prefix -
__

[RG] is a function, which makes easier the entry of functions beginning with "RG". This function should be
assigned to a key. For instance, assign [RG] to the [LN] key.

ASN "RG" 15

Keystrokes: [] [ASN] [ALPHA] [R] [G] [ALPHA] [LN]. Put the calculator in USER mode. Now to
execute or program a function beginning with "RG", for instance "RGVIEW", hit the following keys:

[RG] (LN key) [ALPHA] [V] [I] [E] [W] [ALPHA]

This sequence is equivalent to:

[XEQ] [ALPHA] [R] [G] [V] [I] [E] [W] [ALPHA]

So you save 2 keystrokes, every time you use a function beginning with "RG".

INSTRUCTIONS FOR RG

1) Assign [RG] to a key and set USER mode.

2) To execute or input a function beginning with "RG" :

[RG] (Assigned previously)

[ALPHA]

...function name without the first 2 letters.

...(ex. SUM for RGSUM).

[ALPHA]

69

RGAX - Registers to ALPHA or ALPHA to registers -
__

[RGAX] (ReGisters-Alpha by X) performs two functions:

1) If X<0, it copies the ALPHA register to the registers specified by the register pointer in the X-register;

2) If X>=0, it appends the registers specified by the register pointer in the X-register, to the ALPHA
register.

INSTRUCTIONS FOR RGAX

1) The [RGAX] function can be used, to save all the ALPHA register to the registers specified by the
register pointer in the X-register. In this case the pointer must be negative. When the calculator saves a
string, it appends an end string indicator to the last register used. This indicator is used when the string is
recalled; it is invisible, but a modification of the last register destroys the indicator.

2) The [RGAX] function can also be used to recall a string that was previously saved in a set of registers. In
this case, the pointer should be positive. The string is appended to the ALPHA register string. If the new
string is more than 24 characters long, only the last 24 remain in the ALPHA register. The leftmost
characters are lost. Loading stops when an end string indicator is recalled, or if there is no indicator, when a
numeric value is found. In this case, the numeric value is appended, in the current format, to the ALPHA
register, as it would be with [ARCL].

3) In both cases, [RGAX] saves the initial pointer in LASTx, and leaves a ± bbb,eeeii pointer in the X-
register. bbb is the last register used +1, eeeii is the eeeii part of the initial pointer. The first three decimal
digits of the initial pointer can be anything, because [RGAX] does not use them.

EXAMPLE: The string "ABCDEFGHIJKLMNOPQRSTUVWX" is in the ALPHA register. To save it in
even registers, starting from R10, use the following sequence:

Keystrokes : Display :
10.00002 [CHS] -10.00002_ Pointer. The negative value indicates that
 it stores ALPHA to registers.
[RG] "AX" -17.00002 The pointer specified the register following
 the last one used by [RGAX].
[RCL] 10 ABCDEF first 6 characters.
[RCL] 12 GHIJKL next 6 characters.
[RCL] 14 MNOPQR next 6 characters.
[RCL] 16 STUVWX last 6 characters.

Now, you want to send, registers R12 and R16, to the ALPHA register:

12.00004 12.00004 Register pointer to recall the string.
[XEQ] "CLA" 12.00004 clear the ALPHA register.
[RG] "AX" 17.00004 Indicate next register.
[ALPHA] GHIJKLSTUVWX Recall ends, when the last character of the
 string is found.

STACK:

Input: Output:
T: t T: t
Z: z Z: z
Y: y Y: y
X: Initial pointer X: New pointer

L: l L: Initial pointer

70

RGCOPY - Copy or exchange registers -
__

[RGCOPY] (ReGisters COPY) performs two kinds of operations:

If X>=0, [RGCOPY] copies the registers specified by the X-register pointer, to the registers specified by
the Y-register pointer.

If X<0, [RGCOPY] swaps the registers specified in the X-register, and the one specified in the Y-register.

INSTRUCTIONS FOR RGCOPY

1) The sign of the pointer in the X-register specifies if the registers have to be copied (X>=0) or swapped
(X<0).

2) Copy is performed from the registers specified by the pointer in the X-register to the registers specified
by the pointer in the Y-register. At the end the stack moves down.

 3) Swap is done between the registers specified in the X and Y registers. If there is no overlapping, swap
begins with the lower register number. If there is overlapping, the calculator begins, one way or another, so
that no information is lost.

EXAMPLE: In the array B, copy the first column to the 3rd one, then swap the 1st line and 2nd column.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 1 | 2 | 3 | 4 | 5 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 6 | 7 | 8 | 9 | 10 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 11 | 12 | 13 | 14 | 15 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 16 | 17 | 18 | 19 | 20 |
 |_____|_____|_____|_____|_____|

Suppose that the array pointer is in register R00.

Keystrokes : Display :

3 [RCL] 00 [COLPT] 27.04205 Destination pointer.
1 [LAST X] [COLPT] 25.04005 Origin pointer.
[XEQ] "RGCOPY" 27.04205 Destination pointer.
[RGVIEW] list the 3rd column R27= 1,..., R42= 16.
1 [RCL] 00 [LINPT] 25.02900 1st Pointer.
2 [LAST X] [COLPT] [CHS] -26.04105 2nd pointer.
[RG] "COPY" 25.02900 The stack moved down.

71

The final array is:

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 2 | 7 | 12 | 17 | 5 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 6 | 1 | 6 | 9 | 1O |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 11 | 1 | 11 | 14 | 15 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 16 | 4 | 16 | 19 | 20 |
 |_____|_____|_____|_____|_____|

 STACK:

Input: Output:

T: t T: t
Z: z Z: t
Y: Destination pointer Y: z
X: Origin pointer X: Destination pointer

L: l L: Origin pointer

72

RGINIT - Initialization of registers by X -
__

[RGINIT] (ReGisters INITialize) performs two kinds of initializations:

If X>=0 [RGINIT] puts zero in all the registers specified by the pointer in the X-register.

If X<0 [RGINIT] puts integers, from 1 to N, in the registers specified by the pointer in the X-register.

INSTRUCTIONS FOR RGINIT

1) When the register pointer, in the X-register, is positive, the specified registers are initialized to zero.

2) When the register pointer in the X-register is negative, the specified registers are initialized with
integers, starting with 1 and incrementing it by 1 for each register, up to the last one.

EXAMPLE: In the array B, which pointer is saved in register R00, columns 3 and 5 will be zeroed, then the
columns will be numbered from 1 to 5, throughout the first line.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | a | b | c | d | e |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | f | g | h | i | j |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | k | l | m | n | o |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | p | q | r | s | t |
 |_____|_____|_____|_____|_____|

Keystrokes : Display :
3 [RCL] 00 [COLPT] 27.04205 3rd column pointer.
[XEQ] "RGINIT" 27.04205 Initialize 3rd column to zero.
5 [LASTx] [COLPT] 29.04405 5th column pointer.
[XEQ] "RGINIT" 29.04405 Initialize 5th column to zero.
1 [LASTx] [LINPT] [CHS] -25.02900 Negative sign to indicate an
[XEQ] "RGINIT" -25.02900 initialization with integers 1 to N.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 1 | 2 | 3 | 4 | 5 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | f | g | í | i | í |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | k | l | í | n | í |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | p | q | í | s | í |
 |_____|_____|_____|_____|_____|

STACK:

The stack is unchanged by the execution of [RGINIT].

73

RGNb - Number of register by pointer -
__

[RGNb] (ReGisters, NumBer of) returns the number of registers specified by the pointer in the X-register.

INSTRUCTIONS FOR RGNb

[RGNb] returns to the X-register, the number of registers specified by a bbb.eeeii pointer in the X-register.
The pointer is saved in LASTx.

EXAMPLE: To know the number of elements of an array, which pointer is saved in register R00; then to
know the number of register per line.

Keystrokes : Display :

[RCL] 00 [CLINC] 25.04400 Registers pointer.
[XEQ] "RGNb" 20.00000 The array contains 20 registers.
1 [RCL] 00 [LINPT] 25.02900 Line pointer.
[XEQ] "RGNb" 5.00000 There are 5 registers per line.

STACK

Input : Output :

T: t T: t
Z: z Z: z
Y: y Y: y
X: Pointer X: Number of elements

L: l L: Pointer

74

RGORD - Replace values in order of their ranking -
__

Disclaimer: The following discussion is the result of spectulation and experimentation. The original
information on this function was from the one sentence description in the FUNCTION OVERVIEW section
of the French manual. We will begin with the theory of how the function should work followed by the actual
experimental findings†.

[RGORD] (ReGister ORDer) replaces register data with their order.

Replaces the data (D) in selected registers (Rnn), specified by the pointer in the X-register, by their number
in the hierarchical order of the registers selected (N) based on the data value contained in each register. 1 is
placed in the register with the highest value, 2 in the next highest down to N in the lowest.

Unlike SORT, this function doesn't arrange the registers or data based on the values in the registers, it
replaces the data in the registers with integer values in the respective registers.

INSTRUCTIONS FOR RGORD

Input a pointer in the X-register and execute RGORD. The data in the registers specified by the pointer is
replaced with numerals signifying their standing in the hierarchical order. The display is unchanged. To
view the hierarchy, execute RGVIEW.

EXAMPLE: Starting with array B below, to determine what the hierarchical order of the data in line 2 is,
start with LINPT to get the pointer 30.03400 in the X-register then execute RGORD.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -14 | 15 | 21 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 13 | 19 | -20 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 0 | 6 | 12 | 18 | 24 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 4 | 5 | 11 | 17 |
 |_____|_____|_____|_____|_____|

The resulting array is:

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -14 | 15 | 21 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 3 | 2 | 1 | 5 | 4 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 0 | 6 | 12 | 18 | 24 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 4 | 5 | 11 | 17 |
 |_____|_____|_____|_____|_____|

† J.F. Garnier at jfgarnier@wanadoo.fr sent the following: RGORD performs some kind of sorting
(ORD=order) on a block. I think that this function was kept out of the manual because it had bugs inside.

75

As another example, to determine the order of a specific column, say the 4th column, you could start by
using COLPT to generate 28.04305 in the X-register. The result after RGORD is:

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -14 | 15 | 21 | 3 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 13 | 19 | 4 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 0 | 6 | 12 | 1 | 24 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 4 | 5 | 2 | 17 |
 |_____|_____|_____|_____|_____|

STACK:

The stack is unchanged by the execution of [RGORD].

Now it's time for the experimental findings.

When first experimenting with this function, I used RGINIT to put 1, 2,...N into the registers so I would
quickly have some data to mess with. Since the data was positive and in ascending order, the function
seemed to work fine. It was only when I executed the function a second time in succession on the results it
had generated after the initialization that I noticed inconsistencies. Note below the data in descending order
and the resulting values after the execution of the data.

Data 16 14 12 10 8
Expected results 1 2 3 4 5
Actual results 4 5 2 3 1

The results get even more outrageous when negative numbers are part of the data:

Data -20 -30 12 10 8
Expected results 4 5 1 2 3
Actual results 5 22 2 3 1

This function seems to work great with positive numbers and with no more than two registers unless the
data in the registers is in ascending order. Setting and clearing flags seem to have no affect on the buggy
nature of this function. The presence of other ROMs also appears to have no affect. My conclusion is that
this function has bugs that were inherent to the code before it was burned onto the ROM.

76

RGXTR - Register with extreme value -
__

Disclaimer: The following discussion is the result of spectulation and experimentation. There was no more
information to go on than the name of the function (RGXTR) found in the PANAME ROM. We will begin
with the theory of how the function should work followed by the actual experimental findings†.

[RGXTR] (ReGister, eXTReme address) returns to the X-register the address of the register with the
highest or lowest value in a line, column or an array when the pointer is positive or negative.

INSTRUCTIONS FOR RGXTR

Input a pointer in the X-register and execute RGXTR. The address of the register containing the highest or
lowest data value will appear in the display. The pointer is saved in the LASTx register L.

EXAMPLE: To determine the address of the register with the highest value in column 1 of array B. Use
COLPT to generate 25.04005 in the X-register and execute RGXTR.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -14 | 15 | 21 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 13 | 19 | -20 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 0 | 6 | 12 | 18 | 24 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 4 | 5 | 11 | 17 |
 |_____|_____|_____|_____|_____|

Keystrokes: Display:
1 1
[RCL] 00 25.04405 Recall the array pointer
[COLPT] 25.04005 Generate column pointer
[XEQ] "RGXTR" 40.00000 Address of first register of last line

For the lowest value in line 2, use LINPT to generate 30.03400 in X, change sign and execute RGXTR.

Keystrokes: Display:
2 2
[RCL] 00 25.04405 Recall the array pointer
[LINPT] 30.03400 Generate line pointer
[CHS] -30.03400
[XEQ] "RGXTR" 33.00000 Address of first register of last line

† J.F. Garnier at jfgarnier@wanadoo.fr sent the following: RGXTR finds the maximum or minimum value
of a block (XTR=extremum). I think that this function was kept out of the manual because it had bugs
inside.

77

STACK

Input: Output:
T: t T: t
Z: z Z: z
Y: y Y: y
X: bbb.eeeii X: address

L: l L: bbb.eeeii

Now it's time for the experimental findings.

When first experimenting with this function, I used RGINIT to put 1, 2,...N into the registers so I would
quickly have some data to mess with. Since the data was in ascending order, the function seemed to work
fine. It was only when I replaced the data with random values that I noticed inconsistencies. Note below the
data in descending order. The expected result for the highest value would be 45 and for the lowest 49.

Register 45 46 47 48 49
Data 16 14 12 10 8

The results were 49 and 49 respectively. However, for column 3 of array B above, the results were 37 and
42 respectively. Negative data values don't seem to have an adverse effect on the results. When the entire
array (25.04400) was evaluated, 44 came back as the register containing the highest value however 33 was
correctly determined as the register with the lowest value. Setting and clearing flags seem to have no affect
on the buggy nature of this function. The presence of other ROMs also appears to have no affect. My
conclusion is that this function has bugs that were inherent to the code before it was burned onto the ROM.

78

RGSUM - Sum of registers -
__

[RGSUM] (ReGisters, SUM of) returns to the X-register the sum of the registers specified by the pointer in
the X-register.
If the pointer is negative, [RGSUM] performs the sum of the absolute values of the specified registers.

INSTRUCTIONS FOR RGSUM

[RGSUM] returns to the X-register, the sum of the registers specified in the X-register. If the pointer in the
X-register is negative, [RGSUM] performs the sum of the absolute values of the registers.

EXAMPLE: In the array F, which pointer is saved in register R00, one wants the total of the 1st column,
and the sum of the 4th column, but considering the absolute value of the elements.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -14 | 15 | 21 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 13 | 19 | -20 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 |
 line nº3 | 0 | 6 | 12 | 18 | 24 | ARRAY F
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 4 | 5 | 11 | 17 |
 |_____|_____|_____|_____|_____|
 | R45 | R46 | R47 | R48 | R49 |
 line nº5 | 16 | 22 | 3 | 9 | 10 |
 |_____|_____|_____|_____|_____|

Keystrokes : Display :

1 [RCL] 00 [COLPT] 25.04505 1st column pointer.
[RG] "SUM" 32.00000 Sum of elements.
4 [RCL] 00 [COLPT] 28.04805 4th column pointer.
[CHS] -28.04805 Negative. It specifies a sum of absolute values.
[XEQ] "RGSUM" 60.00000 Sum of absolute values.

STACK:

Input: Output:

T: t T: t
Z: z Z: z
Y: y Y: y
X: Pointer X: Sum

L: l L: Pointer

79

APPLICATION PROGRAMS FOR RGSUM

1) In the array F, one wants to put in the 3rd column, the percentage of the values of the 4th column, related
to its sum.

Keystrokes :: Display :

3 [RCL] 00 [COLPT] 27.04705 Destination pointer.
2 [LAST X] [COLPT] 26.04605 Origin pointer.
[RGCOPY] 27.04705 Copy the 2nd column to the 3rd one.
[XEQ] "RGSUM" 60.00000 Sum of elements.
[LAST X] [X<>Y] 60.00000 Save the pointer.
100 [/] 0.60000 To calculate the percentage.
[X<>Y] [RG/Y] 27.04705 End.

Now array F is:

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -14 | 15 | 25 | 2 | 8 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 7 | 13 | 21.6| -20 | 1 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 |
 line nº3 | 0 | 6 | 10 | 18 | 24 | ARRAY F'
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 23 | 4 | 6.6 | 11 | 17 |
 |_____|_____|_____|_____|_____|
 | R45 | R46 | R47 | R48 | R49 |
 line nº5 | 16 | 22 | 36.6| 9 | 10 |
 |_____|_____|_____|_____|_____|

The 3rd column holds the percentages!

80

RGVIEW - Registers input or catalog -
__

[RGVIEW] (ReGisters VIEW) is a multi-mode function to view, or/and modify registers.

INSTRUCTIONS FOR RGVIEW

1) [RGVIEW] is a general-purpose display, input, and print function, for main memory registers.

2) The X-register pointer specifies registers and [RGVIEW] mode. It is a bbb.eeeiij pointer.

If X>0: View in sequence the registers specified, up to the end of then, or up to an interruption with the
[R/S] key.

If X<0: View and stop on the 1st register specified. Use [SST] to access the next register. The [R/S] key
resumes the listing.

When j is an odd number, REGisters equal to 0 are ignored.

If j = 0 or 1, it is a standard catalog: the register number and its value are displayed.

If j = 2 or 3, [RGVIEW] displays the array elements to the right and the array name and elements
coordinates to the left.

If j = 4 or 5 [RGVIEW] displays the register value, followed by "=". Input is performed with the old value
still in the display.

Example: Display LUNDI=
 Input LUNDI= 10_

If j = 6 or 7 [RGVIEW] displays the vector name (1 dimension), the element coordinate, and its value.

In ALPHA mode, only the last six characters inputted are kept. A printer in NORMal or TRACE mode
prints the register catalog output by [RGVIEW].

3) [RGVIEW] works like a CATalog ([SST] and [BST] are allowed).

EXAMPLE: the following sequence performs several viewing of the array I. In some cases, registers are
modified.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 1 | 2 | 3 | 4 | 5 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 6 | 7 | 8 | 9 | 10 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 |
 line nº3 | 11 | 12 | 13 | 14 | 15 | ARRAY I
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 16 | 17 | 18 | 19 | 20 |
 |_____|_____|_____|_____|_____|

81

Keystrokes : Display :

[CF] 28 [FIX] 6 [?] 0.000000
[RCL] 00 [RGVIEW] 25= 1.000000
 30= 6.000000 View the first column.
[R/S] 35= 11.00000 Halt the catalog.
[SST] 40= 16.00000 Single stepping is
[BST] 35= 11.00000 possible in both directions.
[?] 25.044050 End the catalog.
[CLINC] 25.044000 Register pointer.
[RGVIEW] 25= 1.000000
 26= 2.000000 Automatic stepping in the
 27= 3.000000 registers and visualization
 28= 4.000000 of them.
[ON] Switch off the calculator.
[ON] [CHS] -25.044000 Pointer to stop at the first value.
[RGVIEW] 25= 1.000000
15 25= 15_ Input directly
[CHS] 25= -15_ into the register,
[EEX] 25= -15 _ exactly as normal keyboard
2 [CHS] 25= -15 -2_ input.
[R/S] 26= 2.000000 Validate data.
[BST] 25= -0.15000 verification.
[SST] [ALPHA] 26= 2.000000 Set ALPHA mode.
ABCDEF 26= ABCDEF_ Up to 6 characters
G 26= BCDEFG_ are allowed.
[?] 26= BCDEF_ It is possible to correct.
[R/S] [BST] 26= BCDEF Validation and verification.
[SST] A 27= A_ The ALPHA mode is still on.
[ALPHA] 27= 3.000000 Numeric mode.
[EEX] 2 27= 1 2_
[SST] [BST] 27= 3.000000 Unchanged : no validation with [R/S].
[?] -25.044000 Exit.
2 [EEX] 6 [CHS] 2 -6
[RCL] 00 [+] 25.044052 Array pointer.
[ALPHA] RIEN A RIEN A_ Array name.
[ALPHA] [RGVIEW] A1.1= -0.150000 Only the last character is used as
 the array name.
 A1.2= BCDEF stepping in the array,
 A1.3= 3.000000 is automatic.
[R/S] A1.4= 4.000000 [R/S] halts it.
[SST] [SST] A2.1= 6.000000 The element coordinates
[BST] A1.5= 5.000000 are displayed on the left.
19.5 A1.5= 19.5_ Quick and clear array
[R/S] . A2.1= ._ input is possible.
[R/S] A2.2= 7.000000
[BST] A2.1= 0.000000
[?] 6 [EEX] 6 [CHS] 6 -6_
[RCL] 00 [CHS] -25.044056 Vector pointer.
[RGVIEW] A1= -0.1500000 1st element of the 1st column.
[SST] A2= 0.000000 2nd element (R30).
[?] 3 [RCL] 00 [COLPT] 27.042050 3rd column pointer.
6 [EEX] 6 [CHS] [+] 27.042056
[CHS] [RGVIEW] A1= 3.000000 1st element (R27).
[ALPHA] LUNDI A1= LUNDI_
[R/S] MARDI A2= MARDI_ Input the column,
[R/S] MERCR. A3= MERCR._ element per element.
[R/S] JEUDI [R/S] [ALPHA] -27.042056 End input and clear ALPHA mode
4 [EEX] 6 [CHS] [ENTER] 0.000004 Creation of a new
3 [RCL] 00 [COLPT] [+] 27.042054 pointer.
[CHS] [RGVIEW] LUNDI= In this mode, [RGVIEW]
29 LUNDI= 29_ allows inputs while the former
[R/S] 12 MARDI= 12_ value or string
[R/S] [BST] 12.000000= is still displayed.
[?] 1 [EEX] 6 [CHS] 1 -6
[RCL] 00 [+] [RGVIEW] 25= -0.150000 In this catalog mode,
 35= 11.000000 zeros are ignored.
 40= 16.000000
 25.044051

STACK:

Input: Output:

T: t T: t

82

Z: z Z: z
Y: y Y: y
X: pointer X: pointer

L: l L: previous pointer

83

- OPERATIONS BETWEEN REGISTERS -

RG+- - Addition or subtraction of two vectors -
__

[RG+-] (ReGisters + or -) adds or subtracts, element to element, two vectors which pointers are in registers
X and Y. The sign of the X-register specifies the kind of operation.

RG* - Multiplication of two vectors, element to element -
__

[RG*] (ReGisters *) multiplies the two vectors, element to element, which pointers are in registers X and
Y.

RG/ - Divide two vectors, element to element -
__

[RG/] (ReGisters /) divides, element to element, the two vectors, which pointers are in the X and Y
registers.

INSTRUCTIONS FOR RG+- RG* RG

1) Functions [RG+-], [RG*] and [RG/] need two pointers. The operand pointer must be in the Y-register
and the operator pointer in the X-register.

2) The results are saved according to the pointer in the Y-register.

3) After execution, the X-register contains the output vector pointer.

EXAMPLE: in the Array below:

- replace the 1st column by the addition, element to element, of the 3rd and 1st column;

- then calculate the square of the 4th column elements;

- finally, divide each of the squares by the 4 first elements of the first line.

The array pointer is saved in register R00.

84

Array before execution:
Note: Indicated in each square is the register number and its initial value.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº 1 | 142 | 20 | 857 | 40 | 1 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº 2 | 285 | 12 | 714 | 14 | 2 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº 3 | 428 | 22 | 571 | 24 | 3 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº 4 | 714 | 32 | 285 | 34 | 4 |
 |_____|_____|_____|_____|_____|

Keystrokes : Display :

[CF] 28 [FIX] 5
[1] [RCL] 00 25.04405
[COLPT] 25.04005 First column pointer.
[3] [RCL] 00 25.04405
[COLPT] 27.04205 3rd column pointer.
[XEQ] "RG+-" 25.04005 Pointer of the output vector.

Now, you can check that registers R25, R30, R35, and R40, which represent the first column, are equal to
999.

[4] [RCL] 00 25.04405
[COLPT] [ENTER] 28.04305 X and Y contains the 4th column pointer.
[RG] "*" 28.04305

Now, the elements of the 4th column are:

R28= 1600 R33= 196 R38= 576 R43= 1.156

[1] [RCL] 00 25.04405
[LINPT] 25.02900 First line pointer.
[XEQ] "RG/" 28.04305

Finally, the 4th column contains the result of the division, and the array is the following.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 999 | 20 | 857 | 1.60| 1 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 999 | 12 | 714 | 9.80| 2 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY C
 line nº3 | 999 | 22 | 571 | 0.67| 3 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 999 | 32 | 285 | 722 | 4 |
 |_____|_____|_____|_____|_____|

85

STACK :

Input : Output :

T: t T: t
Z: z Z: t
Y: pointer nº1 Y: z
X: pointer nº2 X: pointer nº1

L: l L: pointer nº2

86

- SCALAR TO REGISTERS OPERATIONS -

RG+Y - Add constant to registers -
__

[RG+Y] (ReGisters + Y) adds the Y-register value to the registers specifies by the X-register.

RG*Y - Multiply registers by constant -
__

[RG*Y] (ReGisters * Y) multiplies the registers specified by the X-register, by the Y-register value.

RG/Y - Divide registers by constant -
__

[RG/Y] (ReGisters / by Y) divides the registers specified by the X-register, by the Y-register value.

INSTRUCTIONS FOR RG+Y RG*Y RG/Y

1) [RG+Y], [RG*Y], [RG/Y], need a constant in the Y-register, and a pointer in the X-register.

2) Operations are directly perform on the register value, so results replace initial values.

EXAMPLE: In Array B below:

- subtract 5 from the first column;
- multiply the 3rd line by 2;
- divide the 5th column by 6.

The array pointer is saved in register R00.

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | 1 | 2 | 3 | 4 | 5 |
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 6 | 7 | 8 | 9 | 10 |
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 11 | 12 | 13 | 14 | 15 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 16 | 17 | 18 | 19 | 20 |
 |_____|_____|_____|_____|_____|

Keystrokes : Display :

[CHS] [ENTER^] -5.00000 Input the constant.
1 [RCL] 00 25.04405
[COLPT] 25.04005 First column pointer.
[RG] "+Y" 25.04405 Pointer of result vector.

You can check that R25, R30, R35, R40 contains respectively -4, 1, 6, and 11; it is the first column of the
array.

87

2 [ENTER^] 2.00000 Input the constant.
3 [RCL] 00 25.04405
[LINPT] 35.03900 3rd column pointer.
[RG] "*Y" 35.03900

Now the 3rd line values have been multiplied by 2. R35= 12, R36= 24, R37= 26, R38= 28, R39= 30.

6 [ENTER^] 6.00000 Input constant.
5 [RCL] 00 25.04405
[COLPT] 29.04405 5th column pointer.
[RG] "/Y" 29.04405

After all these transformations, array B is:

 column nº1 nº2 nº3 nº4 nº5
 _____ _____ _____ _____ _____
 | R25 | R26 | R27 | R28 | R29 |
 line nº1 | -4 | 2 | 3 | 4 | 0.83|
 |_____|_____|_____|_____|_____|
 | R30 | R31 | R32 | R33 | R34 |
 line nº2 | 1 | 7 | 8 | 9 | 1.66|
 |_____|_____|_____|_____|_____|
 | R35 | R36 | R37 | R38 | R39 | ARRAY B
 line nº3 | 12 | 24 | 26 | 28 | 5 |
 |_____|_____|_____|_____|_____|
 | R40 | R41 | R42 | R43 | R44 |
 line nº4 | 11 | 17 | 18 | 19 | 3.33|
 |_____|_____|_____|_____|_____|

STACK:

Input: Output:

T: t T: t
Z: z Z: z
Y: scalar Y: scalar
X: pointer X: pointer

L: l L: l

The stack is unchanged by [RG+Y], [RG*Y], [RG/Y].

88

- ALPHA REGISTER FUNCTIONS -

ALENG - Alpha LENGth -
__

[ALENG] returns to the X-register the length of the current string in the ALPHA register.

INSTRUCTION FOR ALENG

Place in ALPHA the string, [ALENG] returns in the X-register the string length and the stack is lift, if it is
enable.

EXAMPLE 1: In a program, the HP-41 stops and waits for an ALPHA input. The string length is needed to
store the string in several registers. An other solution is the RGAX function that is described in this manual.

Application program for ALENG.

EXAMPLE 2: The following routine capitalizes any lowercase letters found in the ALPHA register. It uses
[ALENG] to provide a loop counter equal initially to the number of characters in the string (which must not
contain null characters).

01 LBL "CAP"
02 ALENG counts characters in ALPHA register.
03 LBL 00
04 ATOXL Places codes of leading characters into X.
05 97 The lower case letters are in the range 97 to 122.
06 X>Y?
07 GTO 01
08 CLX
09 122
10 X<Y?
11 GTO 01 If not lower case character, go to [LBL] 01
12 CLX The character codes for upper case letters
13 32 are determined by subtracting 32 from their
14 - Lowercase counterparts.
15 R^
16 LBL 01
17 RDN
18 XTOAR restores capitalized letter to ALPHA.
19 RDN
20 DSE X
21 GTO 00 branches if there is characters remaining.
22 AON
23 .END.

STACK:

Input: Output:
T: t T: z
Z: z Z: y
Y: y Y: x
X: x X: String length.

L: l L: l

Related Function:
X-FUNCTION: ALENG

89

ANUM - Search number in ALPHA -
__

[ANUM] (Alpha to NUMber) searches the ALPHA register, from left to right, for a number. The first
number found is returned to the X-register.

INSTRUCTIONS FOR ANUM

1) The ANUM function searches a numeric value in the ALPHA register string. If a number is found, it is
returned to the X-register and flag 22 is set. If a number is not found, the X-register and flag 22 are
unchanged.

2) Numbers in the ALPHA register are considered according to the status of flags 28 and 29. If a number in
the ALPHA register has a "-" sign, a negative number is returned to the X-register, when the function is
executed. Suppose that the ALPHA register contains the example 1 string:

Flag
28

Flag
29 Display

set set 1,234.5000

set clear 1,0000

clear set 1,2345

clear clear 1,2340

EXAMPLE: The ALPHA register contains the string: "PRICE: 1.234,50" read from an extended memory
ASCII file. To extract the numeric value for further use: [XEQ] "ANUM" and the number is returned to the
X-register.

 STACK

Input: Output:
T: t T: z
Z: z Z: y
Y: y Y: x
X: x X: number found in ALPHA.

L: l L: l

Related Function:
X-FUNCTION: ANUM

90

ANUMDEL -Search ALPHA number and delete -
__

[ANUMDEL] (Alpha Number DELete) searches the current string in the ALPHA register, form left to
right, for a number (represented in numerals) and returns to the X-register the value of the number. It also
deletes all characters in the string from the start of the string to the last numerical character used.

INSTRUCTIONS FOR ANUMDEL

1) ANUMDEL searches a numeric value in the string in the ALPHA register. If a number is found, it is put
in the X-register and the string is deleted up to the last numerical character of the number.

2) If the ALPHA string contains more than one number separated by non-numeric characters, ANUMDEL
uses only the first number. ANUMDEL is identical in operation to the ANUM function, except that the
ANUM function does not alter the string. The HP-41 considers execution of ANUMDEL as a numeric
entry, and sets flag 22, if a number is returned to the X-register. If the ALPHA string contains no numeric
characters, ANUMDEL clears the ALPHA register but has no effect on the stack.

3) The characters "+", "-", ".", ",", "E" (for exponent) are interpreted by ANUMDEL as numeric or non-
numeric characters according to their context in the ALPHA string. An isolated "+", is not treated as a
numeric character. A "+" or "-" symbol immediately preceding, embedded in, or following a sequence of
number digits will be interpreted exactly as if the symbols and numbers had been keyed into the X-register
(with [CHS] representing "-" and [CHS][CHS] representing "+".) For instance, ANUMDEL returns the
value -3425 if executed when the ALPHA register contains the string "34-2+5".

The status of the numeric display control flags (flags 28 and 29) determines how the Alpha string is
interpreted by ANUMDEL. For example, if both flag 28 and flag 29 are set, commas are treated as digit
separators. But commas are considered as non-numeric if flag 28 is set and flag 29 is clear. Suppose that
the Alpha register contains the example 1: "PRICE: $1,234.5XYZ". Set FIX 4 and execute ANUMDEL;
the following table shows the result according to the setting of flags 28 and 29.

Flag 28 Flag 29 X-Register Modified Alpha String

set set 1,234.5000 XYZ

set clear 1,0000 ,234.5XYZ

clear set 1,2345 XYZ

clear clear 1,2340 .5XYZ

STACK

Input: Output:
T: t T: z
Z: z Z: y
Y: y Y: x
X: x X: First numeric value found in ALPHA.

L: l L: l

91

APPLICATION PROGRAMS FOR ANUMDEL

EXAMPLE 1: Suppose that the ALPHA register contains the string "PRICE: $1,234.5XYZ", to extract the
numeric value for further use, [XEQ] "ANUMDEL" puts this number in the X-register; The ALPHA string
is deleted up to "5" included.

EXAMPLE 2: The HP 7470A Graphics Plotter can send on HP-IL an ASCII character string that describes
the current pen position. The string contains three integer numbers separated by commas: X,Y,P. X is the
pen's x-coordinate; Y is the pen's y-coordinate; P has a value of 1 if the pen is down, or 0 if the pen is up.
Suppose that the plotter has sent the string "123,456,1" to the HP-41's ALPHA register. You could use the
following keystrokes to decipher the string:

Keystrokes Display Comments
[SF 28] Ensures that a comma is not interpreted

as a radix.
[CF 29] Ensures that a comma is not interpreted

as a separator of 3 digit groups.
[ANUMDEL] 123.0000 X-coordinate.
[ANUMDEL] 456.0000 Y-coordinate.
[ANUMDEL] 1.0000 Pen is down.

EXAMPLE 3: ALPHA has the string "34/-2/5"

[CF 28]
[ANUMDEL] 34.0000
[ALPHA] /-2/5
[ALPHA][ANUMDEL] -2.0000
[ALPHA] /5
[ALPHA][ANUMDEL] 5.0000

This example shows that "/" and "*" are neither considered as "+", nor as "-", nor as ".".

Related Function:
I/O ROM: ANUMDEL

APPX - Append the integer part of X to ALPHA -
__

[APPX] (APPend X) appends the integer part of the X-register to the left of the ALPHA register string.

INSTRUCTIONS FOR APPX

1) [APPX] appends the integer part of the X-register to the left of the ALPHA register. [APPX] results
depend on flags 28 and 29. The number is written has in FIX 0 mode, except that the decimal separator is
not appended, and the number is not rounded. As for [ARCL] [APPX] does not beep, when its execution
overflows the ALPHA register capacity.

2) If at the execution of [APPX], the X-register contains an alpha string, ALPHA DATA is displayed.

EXAMPLE: The result of an area calculation is in the X-register: 1,225.7 , and the message "AREA: " is in
the ALPHA register, the APPX function appends the X-register value after the message, without integer
part rounding: ALPHA = "AREA: 1,225"

92

AROT - ALPHA Rotation -
__

[AROT] (Alpha ROTate) rotates the ALPHA register string of the number of characters specified by the X-
register.

INSTRUCTIONS FOR AROT

[AROT] rotates the ALPHA register string of the number of characters specified by the value, modulo 24,
of the X-register. The rotation is done to the left, if the X-register contains a positive number, and to the
right if it is negative. (i.e. Refer to the appendix for further information on the effect of [AROT] on null
characters).

The execution of [AROT] does not modify the stack.

APPLICATION PROGRAMS FOR AROT

EXAMPLE: The ALPHA register contains the string "AROT". To display "TARO" then "ROTA".

Input: Display:

[ALPHA] AROT AROT_
[ALPHA] 1 [CHS] -1_
[XEQ] "AROT" [ALPHA] TARO
[ALPHA] 2 2_
[XEQ] "AROT" [ALPHA] ROTA

The [AROT] function can be used with the [ANUM] and [POSA] functions to get the number of repetition
of a given string, or character, in the ALPHA register without destruction.

An operation on a device returns to the ALPHA register the following string "68.2 69.88" (a number, a
space, a number). To separately extract two numbers to be used in a program, the following sequence can
be used:

Input: Display:

[CF] 28
[XEQ] "ANUM" 68.2000 Return the first number to the X-register.
[STO] 20 68.2000 Store for future use.
32 32_ Space code.
[XEQ] "XTOAR" 32.0000 Add a space to the right of the ALPHA string.
[XEQ] "POSA" 4.0000 Search the first space in the ALPHA register.
[XEQ] "AROT" 4.0000 Rotate the string; ALPHA contains 69.88 68.2;

Without a space ALPHA would contain 69.8868.2.
[XEQ] "ANUM" 69.8800 Return 69.88 to the X-register.

Related function:
X-FUNCITON: AROT

93

POSA - Position of an string in ALPHA -
__

[POSA] (POSition in Alpha) searches the ALPHA register, from left to right, for the character or string
specified in the X-register.

INSTRUCTIONS FOR POSA

1)[POSA] searches the ALPHA register, from left to right, for the character or string specified in the X-
register. The string can be specified either by giving a character code, or by putting the string or character
in the X-register with [ASTO] [.] [X]. If the calculator finds the string in the ALPHA register, it returns the
1st character position to the X-register.

2) Positions are considered from left to right and start with position 0. If the string or character appears
several times in the ALPHA register, the calculator returns only the first position. If the string or the
character does not exist in the ALPHA register, -1 is returned.

3) The string or character code is saved in LASTx.

EXAMPLE 1: The string "ABCDEFGHIJ" is in the ALPHA register, what is the position of the 1st "D"
character?

Keystrokes : Display :

68 68_ "D" character code.
[XEQ] "POSA" 3.0000 1st "D" character position.

EXAMPLE 2: [ALPHA] [CLA] DEF [ASTO] . X
ABCDEFGHIJ [ALPHA]
[XEQ] "POSA" X=3.00

STACK:

Input: Output:
T: t T: t
Z: z Z: z
Y: y Y: y
X: code or string X: position in ALPHA

L: l L: code or string

Related function:
X-FUNCTION: POSA

94

SUB$ - Extraction or justification of a sub-string -
__

[SUB$] (SUB string) extracts a sub-string from the ALPHA register, or it right or left justifies a string,
adding spaces to the string.

INSTRUCTIONS FOR SUB$

[SUB$] modifies the ALPHA register as specified in the X-register.

- If the X-register number is an integer, the calculator extracts the |X| left characters of the initial string. If
the initial string has less than |X| characters, spaces are added to get a |X| character string; spaces are added
to the left if X<0, to the right if X>0.

- If the number in the X-register has a decimal part (bb,ee), the calculator extracts the sub-string formed of
the characters from the bb position to the ee one (The first character is in position 0). If ee is higher than the
position of the last character of the string, the extract string is the initial string, with spaces added to have a
ee-bb+1 character string. Spaces are added to the left if X<0, to the right if X>0. Beware that the sign of the
X-register is ignored if ee is not higher than the position of the last character in the ALPHA register.

If bb is higher than the position of the last character of the initial string, [SUB$] puts a ee-bb+1 space
character string in the ALPHA register.

EXAMPLE: To extract 7 characters, starting with "C", from the string
'ABCDEFGHIJKLMNOPQRSTUVW', which is in the ALPHA register:

Keystrokes : Display :
2.08 2.08 2 is the position of "C".
 8 is the position of the 7th character to extract.
[XEQ] "SUB$" 2.0800 Extract the string.
[ALPHA] CDEFGHI Sub-string.

To right justify in a 10 space field:

[ALPHA]
10 10_ Justification field length.
[CHS] -10_ Specifies right justification.
[XEQ] "SUB$" -10.0000
[ALPHA] CDEFGHI Three space have been inserted to
 right justify the string.

To put 5 spaces at the right of the string:

[ALPHA] -10.0000
15 15_ New justification field length.
[XEQ] "SUB$" 15.0000 Left justification because the X-register is
 positive.
[ALPHA] CDEFGHI
[APPEND] DEFGHI _ The ALPHA register scrolls to the left and the
 cursor is displayed after the 5 spaces.

STACK:

The stack is unmodified by [SUB$].

Note: if the ALPHA register string is 24 character long, the calculator puts in the front of the string,
characters with code 0, which are displayed as small dots before the string.

95

- ALPHA AND X TRANSFER FUNCTIONS -
These are related to the EXTENDED I/O ROM functions of the same name. You can transfer a character (a
byte of information) back and forth between the ALPHA register and the X-register using any of the next
six functions. Remember that when the byte is in the ALPHA register, it is displayed as one of the HP-41
display characters; when it is in the X-register, it is represented by a decimal number from 0 to 255.
Numbers from -255 to 255 are allowable inputs for C-to-ALPHA transfers. (The signs and fractional parts
of the numbers are ignored.) If the numbers are outside this range, the DATA ERROR message is
displayed.

ATOXL - Transfer leftmost character of ALPHA to X -
__

[ATOXL] (Alpha-TO-X Left) deletes the first character of ALPHA and returns its decimal code to the X-
register. Notice that if the first character is followed by one of more consecutive nulls, those nulls become
leading nulls and disappear from the remaining string. ATOXL returns -1 to the X-register if the ALPHA
register is empty

ATOXR - Transfer rightmost character of ALPHA to X -
__

[ATOXR] (Alpha-TO-X Right) deletes the last character of ALPHA and returns its decimal code to the X-
register. If the ALPHA register is empty, ATOXR returns -1 to the X-register.

ATOXX - Transfer specified character of ALPHA to X -
__

[ATOXX] (Alpha-TO-X by X) returns to the X-register the character of ALPHA specified by the value of
the X-register. The ALPHA register is unmodified.

XTOAL - Transfer X to leftmost character of ALPHA -
__

[XTOAL] (X-TO- Alpha Left) Opposite of ATOXL. Inserts a character in the leftmost non-null part of the
ALPHA register based on its decimal code in the X-register. If the original string in ALPHA already
contains 24 characters when you execute XTOAL, the rightmost character is lost and the string is shifted
one position to the right to create space for the new character.

XTOAR - Transfer X to rightmost character of ALPHA -
__

[XTOAL] (X-TO- Alpha Right) Opposite of ATOXR. Inserts a character in the rightmost part of the
ALPHA register based on its decimal code in the X-register, shifting the previous contents of the ALPHA
register one position to the left. If the initial string is 24 characters in length, the first character in the string
is lost when you execute XTOAR.

96

YTOAX - Transfer character specified in Y to ALPHA at X -
__

[YTOAX] (Y-TO- Alpha by X) Similar to ATOXX. Returns the character specified by the decimal code in
the Y-register to the ALPHA register at the position specified by the X-register. This replaces the character
at that position. For X>0, the positioning is from left to right, for X<0, it's from right to left.

INSTRUCTIONS FOR ATOXL, ATOXR, ATOXX, XTOAL, XTOAR, YTOAX

1) [ATOXL] deletes the leftmost character of the ALPHA register string and returns its decimal code to the
X-register. If the first character is followed by one or more null characters, the string is moved, to the left,
up to the first non null character. If the ALPHA register is empty, [ATOXL] returns -1 to the X-register.

2) [ATOXR] deletes the rightmost character of the ALPHA register string, and returns its decimal code to
the X-register. If the ALPHA register is empty, -1 is returned to the X-register.

3) [ATOXX] returns to the X-register the decimal code of the character, which position in the string, is
specified in the X-register. The ALPHA register is unmodified.

4) [XTOAL] (X-TO- Alpha Left) Opposite of ATOXL. Inserts a character in the leftmost part of the
ALPHA register defined by its decimal code in the X-register and shifts the rest of the characters one space
to the right. If there are 24 characters in the ALPHA register, including null characters, the rightmost
character is dropped.

5) [XTOAR] (X-TO- Alpha Right) Opposite of ATOXR. Inserts a character in the rightmost part of the
ALPHA register defined by its decimal code in the X-register and shifts the rest of the characters one space
to the left. If there are 24 characters in the ALPHA register, including null characters, the leftmost character
is dropped.

6) [YTOAX] (Y-TO- Alpha by X) Similar to ATOXX. Places the character specified by the decimal code
in the Y-register into the ALPHA register at the position specified by the X-register. This replaces the
character at that position. For X>0, the positioning is from left to right, for X<0, it's from right to left. The
rest of the characters in the ALPHA register are not moved.

A positive value in the X-register specifies a position in the ALPHA register string, starting form the first
no null character at the right. This first character is in position 0. This convention is the one used for the
POSA function in the X-FUNCTION ROM.

On the contrary, a negative number specifies an absolute position in the ALPHA register, it is independent
from the string. Positions are considered from right to left, -1 for the rightmost position and -24 for the left
most position. The following chart illustrates the [ATOXX] and [YTOAX] interpretation of the character
positions.

Character position character
n > 23 or r >= string length DATA ERROR
0 <= n < string length Nth character after the leftmost
n = 0 Fist character starting from the

left
-24 <= n < 0 Nth character starting from the

right and up to the register end
n < -24 DATA ERROR

If the X-register contains an Alpha string, ALPHA DATA is displayed.

97

EXAMPLE:

In this example, the ALPHA register is completely represented, null characters at the left of the register are
represented with horizontal marks, but they cannot be displayed by the calculator.

Input: Display:
[ALPHA] DECAMETRE [ALPHA] ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯DECAMETRE
0 [XEQ] "ATOXX" 68.0000 Code of "D"
4 [XEQ] "ATOXX" 77.0000 Code of "M"
6 [CHS] [XEQ] "ATOXX" 65.0000 Code of "A"
10 [CHS] [XEQ] "ATOXX" 0.0000 Null character

98

- MEMORY ALLOCATION FUNCTIONS -

PSIZE - Programmable SIZE -
__

[PSIZE] (Programmable SIZE) allocates the number of data registers specified by the X-register.

Related Function:
X-FUNCTION: PSIZE

SIZE? - Number of data registers -
__

[SIZE?] returns to the X-register the number of allocated data registers.

[SIZE?] and [PSIZE] can be used in the same program to change the number of data registers without
loosing any data.

EXAMPLE :

01
02
.... Your program
....
07 SIZE? Return to the X-register the number of data registers.
08 125 The new program needs 125 data registers.
 The current number of data registers is in the Y-register.
09 X>Y? Does the program need more data registers?
10 PSIZE Change if necessary.

Related Function:
X-FUNCTION: SIZE?

99

READEM - Read all extended memory from mass storage file -
__

[READEM] (READ Extended Memory) copies from a mass memory file (HP82161A tape drive for
instance) the whole of X-MEMORY, which was previously saved in the file with the WRTEM function.

INSTRUCTIONS FOR READEM

1) After putting the file name in the ALPHA register, [XEQ] "READEM" copies this file from the mass
memory medium to X-MEMORY.

2) If there is no HP-IL ROM, NO HP-IL is displayed.

3) If the file is not on the medium, FL NOT FOUND is displayed.

4) If there is not enough space in X-MEMORY, NO ROOM is displayed. In this case add one or two X-
MEMORY ROM.

5) If the HP-IL ROM is plug in, but there is no mass memory device on the loop, "NO DRIVE" is
displayed.

6) If the file specified was not created by [WRTEM], "FLTYPE ERR" is displayed.

Note: Before loading a set of files, [READEM] purges the X-MEMORY.

EXAMPLE: To load the file "MAT3" from the tape.

 Keystrokes : Display :

[XEQ] "EMDIR" DIR EMPTY Checks that the X-MEMORY is empty.
 If two X-MEMORY are plugged
 in, there are 600 registers available.
[ALPHA] "MAT 3" [ALPHA] 600.0000 File name in ALPHA.
[XEQ] "READEM"
 600.0000 the files are loaded into X-MEMORY.
[XEQ] "EMDIR" MATRP P012
 A D100 All these files have been read
 TEXTE A040 by READEM.

STACK:

The stack is unaffected by [READEM].

INVERSE FUNCTION: WRTEM.

100

WRTEM - Write Extended Memory file -
__

[WRTEM] (WRiTe Extended Memory) copies all the extended memory to a mass medium (HP82161A
Tape drive or HP9114).

INSTRUCTION FOR WRTEM

1) Put in the ALPHA register the file name in which all the X-MEMORY should be saved; then [XEQ]
"WRTEM" copies all the X-MEMORY to this file.

2) If there is no HP-IL ROM, NO HP-IL is displayed.

3) If there is a file with the same name on the mass medium, it is replaced by the new one.

EXAMPLE:

Keystrokes : Display :
[XEQ] "EMDIR" MATRP P012
 A D100 All these files
 TEXTE A040 were read with READEM.

[ALPHA] "MAT3" [ALPHA] 600.00 Put the file name in ALPHA
[XEQ] "WRTEM" 600.00 All the X-MEMORY files have been written on the mass
 medium.

STACK:

The stack is unchanged by [WRTEM].

INVERSE FUNCTION: READEM.

101

- MISCELLANEOUS FUNCTIONS -

CHFLAG - Load flag set -
__

[CHFLAG] (CHarge FLAGs) sets the flag set that was current when the CHFLAG function was written in
the program.

INSTRUCTIONS FOR CHFLAG

1) In RUN mode, initialize the calculator to the state needed by the program.

2) In PRGM mode, [XEQ] "CHFLAG" writes two lines, the first one is CHFLAG, the second one contains
a seven character string, which represents the given flag set. This string begins with a configuration
indicator. If this string is destroyed or replaced by a wrong one, CHFLAG execution will halt program
execution and CHFLAG ERR will be displayed.

EXAMPLE: At the beginning of a program, you want to be in DEGree mode, 3 digits ENG and with the 5
first flags (0-4) set.

While in RUN mode (PRGM indicator off) initialize the calculator as needed, then in PRGM mode [XEQ]
"CHFLAG". It writes two lines in the program: the first line is CHFLAG, the second one is a 7 character
string. When the program is executed the calculator is initialize to the needed state.

STACK:

[CHFLAG] execution does not affect the stack.

N.B : The ALPHA register is not changes by [CHFLAG]. The character string represents a set of flags, it is
not for the ALPHA register.

One must not put a test instruction before CHFLAG (as ISG or X=Y?).

Ex : FS? 01 If the flag is set
CHFLAG Reinitializes the calculator.
'-----' Initialization string.

If the test is negative (Flag 01 clear) the ALPHA register is destroyed by the configuration string.

[CHFLAG] only saves flags 00 to 43.

102

F00 to F10: user's flags.

F11: Automatic execution of current program, at power on or after reading one from mass memory.

F12 to F20: External device commands.

F12 and F13, F15 and F16 are used by the printer.

F12 Double width.
F13 Lower case letters.
F15 F16 Printing mode of HP-IL printer.
0 0 Manual
0 1 Normal
1 0 Trace
1 1 Trace and stack printing.

F16
F17 CR-LF ignored
F18
F19
F20
F21 Printing possible
F22 set by a numeric input.
F23 set by an alphanumeric input
F24 Out of range ignored.
F25 Error ignored
F26 Beep on
F27 User mode
F28 Decimal separator type.
F29 Three digit groups separator.
F31 DMY mode of TIME ROM.
F32 MANIO mode on HP-IL ROM.
F34 ADROFF mode on EXTENDED I/O.
F35 Auto start enable (AUTOSTART/DUPLICATION ROM).
F36 to F39 Number of digits for FIX, SCI, ENG.
F40 and F41 Display mode.
F42 and F43 Angular mode.

103

/MOD - Euclidean division -
__

[/MOD] (Divide MOD) calculates the modulo and the quotient of a Euclidean division, that is to say with
integers. It is an extension of the [MOD] function of catalog 3.

INSTRUCTIONS FOR /MOD

1) To calculate the modulo and quotient of the division of Y by X.

2) [XEQ] "/MOD". The quotient and modulo of the division are returned respectively to the Y and X
registers. The divisor is saved in the L-register, the dividend is lost. T and Z registers are unchanged.

3) If the X-register contains 0, the calculator displays DATA ERROR.

STACK

Input: Output:

T: t T: t
Z: z Z: z
Y: Dividend Y: quotient
X: Divisor X: Modulo

L: L L: Divisor

Application programs for /MOD

EXAMPLE 1: Calculation of the modulo and quotient of the division of 13 by 3.

Input Display

13 13 Dividend input.
[ENTER^] 3 3_ Divisor input.
[XEQ] "/MOD" 1,0000 Modulo.
[X<>Y] 4,0000 Division quotient.
[LASTx] 3,0000 The divisor is saved in the L-register.

EXAMPLE 2: A fairly quick way to calculate the decimals of the division of A by B when A<B and the
last digit of B is 9:

LBL "DIV9"
10
/ Divide X by 10
INT Take the intiger part of X
1
+ Add 1 to X
STO 01
RDN
SF 21
LBL 01
RCL 01 Recall intiger and shift stack
/MOD Calculate the modulo and the quotient
VIEW Y
10
*
+
GTO 01
END

104

So to divide 153 by 209 (153/209=0,732057...)

EXAMPLE 3: [/MOD] can be used in a short subroutine as a small base conversion! This short program,
"YBX", gives the digits of the new number; but in reverse. X and Y must be integers.

For instance 1103 [ENTER^] 8 [XEQ] "YBX" returns 7 [R/S] 1 [R/S] 1 [R/S] 2 [R/S] 0. That means: 1103
(DEC) = 2117 (OCT). This result can be checked with the DEC and OCT functions.

N.B : If it is possible to get the divisor back with X<>Y LASTx * + for a quotient >0 and with X<>Y
X<0? DSE X NOP * LASTx * + for a quotient <0, it is impossible for a quotient equal to 0.

NOP - No Operation -
__

[NOP] (No OPeration) is used after a test, when the conditional goto is not used.

EXAMPLE: In a loop one wants to increment the X and Y registers.

The following sequence will do it:

ISG Y Increment the Y-register.
NOP No OPeration.
ISG X Increment the X-register,
GTO 03 and looped if higher.

TF55 - Toggle printer flag -
__

[TF55] (Toggle Flag 55) toggles flag 55, which indicates that a printer is connected to the HP-41. This flag
cannot be modified by the user without the PANAME ROM. The TF55 function:

1) Sets flag 55 when there is no printer attached to the HP-41; this makes easier the use of some programs
(for instance in application pacs), which must be executed with flag 21 set (Printing possible). So you can
use them as subroutines, because when flag 55 is cleared, those programs halt at every VIEW or AVIEW
instructions. So with [TF55] there is no interruption.

2) Clear flag 55, when a printer is attached to the HP-41, which speed up programs when the printer is not
used. Another [TF55] puts the printer back to use.

INSTRUCTIONS FOR TF55

1) To set flag 55, when it is cleared, execute [TF55].
2) To clear flag 55, when it is set, execute [TF55].

105

VKEYS - View key assignments -
__

[VKEYS] (View KEYS) with the display of the HP-41 lists the key assignments (accessible in USER
mode) progressively starting from key R/S, from top to bottom and from right to left. For instance, if the
PROMPT function is assigned to the "ENG" key (Yellow key and [3], key code -74), the calculator will
display:

-74 PROMPT

Key listing can be:

- Halted for a while if you press any other key than [R/S] or [ON];
- Ended with the [ON] or [R/S] key. [ON] also switches off the calculator.

Note: [VKEYS] is not programmable.

Related function: CATALOG 6

106

X<>F - Swap the X-register and flags 0-7 -
__

The X<>F function swaps the X-register and an imaginary register F, which represents the status of flags 0-
7. This representation is an integer, in the range 0-255, which is the sum of the values related to the flags
set:

Flag Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

For instance, if flags 0, 1, and 3 are set, and flags 2, 4, 5, 6, and 7 are cleared, the "F" register value is:

1 (value of flag 0)
+2 (value of flag 1)
+8 (value of flag 3)
=11

INSTRUCTIONS FOR X<>F

To swap the current status of flags 0-7, with a new one:

1) Calculate (ie. above), the number related to the new status of flags 0-7 and put it in the X-register;

2) Execute X<>F.
Now, the X-register number specified the old status of flags 0-7, and flags 0-7 are set to the new status.

APPLICATION PROGRAM FOR X<>F

The XFLAGS program gives up to 80 new flags. With these extended-flags (0-79) one can:

- Set the Nth X-flag: Put N in the X-register and XSF.
- Clear the Nth X-flag: Put N in the X-register and execute XCF.
- Test the Nth X-flag: Put N in the X-register and execute XFS?.
Consequently, flag 08 of the HP-41 reflects the status (set or cleared) of the Nth X-flag.

XSF . XCF and XFS? programs use the stack and registers R00 to R09. XFS? also uses flag 08.

XFLAGS program listing :

LBL "XFLAGS" .009 RGINIT RDN RTN
LBL "XSF" XEQ 00 SF IND Y GTO 01
LBL "XCF" XEQ 00 CF IND Y GTO 01
LBL "XFS?" XEQ 00 CF 08 FS? IND Y SF 08
LBL 01 X<>F STO IND Z R^ RTN
LBL 00 STO Y 8 /MOD RCL IND Y X<>F .END.

Note: XEQ "XFLAGS" clears all X-flags 00 to 79.

107

X...NN? - Compare X and a register -
__

Functions X=NN?. X?NN?, X<NN?. X<=NN?, X>=NN? and X>NN? work as the normal test functions
(ex: X=Y?) of the HP-41, but they work, not between the X-register and other stack registers, but between
the X-register and any register specified in the Y-register. These functions are also found in the X-
FUNCTION module and are already built into the HP-41CX.

Furthermore these functions also compare alphanumeric strings.

INSTRUCTIONS FOR X...NN?

To compare the X-register and a data register r, put in Y the following:

If the r register is: Put in Y:

- a data register Rnnn - the number nnn
- the Z-register - the string 'Z'
 ('Z' ASTO.Y)
- the T-register - the string 'T'
- the L-register - the string 'L'

then compare them.

In calculator mode, the calculator displays YES or NO according to the result of the test.

In a program, X...NN? behaves like any normal test function. The line following the test is executed if the
test is true, or it is ignored if the test is false.

These functions compare numeric and alphanumeric functions, following these conditions:

1) A number is always inferior to a string.

2) Strings are compare from the code of their characters
(ex : 'AB0' < 'ABA' because the code of '0' is 48 and the 'A' one is 65.

3) A short string identical to the beginning of a larger one is considered as being inferior. (ex. "ABC" <
"ABCD").

108

Y/N - Question Yes/No -
__

[Y/N] is useful in programs, which ask for an answer Yes or No.

INSTRUCTIONS FOR Y/N

The Y/N function can only be used in a program.

1a) To ask a question:

message Y/N?

Put the message (max. 7 characters) in the ALPHA register and execute Y/N;

1b) To ask another kind of question (for instance: END Y/N) put the message in the ALPHA register,
execute AVIEW then Y/N.

2) However, when the Y/N function is executed, the calculator halts program execution and waits for a
keystroke:

- If the key hit is the ON key, the calculator is switched off:

- If the key hit is R/S, program execution is stopped and the program pointer is set to the line following
Y/N;

- If the key hit is Y (Yes), program execution resumes at the line following directly Y/N;

- If the key hit is N (No), the line following Y/N is ignored, and the program resumes execution at the
second line after Y/N (As for a false test; ie. the X=Y? function in the HP-41 user manual).

- Any other key is ignored.

EXAMPLE: The following sequence displays the question:

END Y/N?

If the user answers Yes (Y key), the program resumes execution at label 00, if the user answers NO (N key)
the program resumes execution at label 01:

"END" 1,000
Y/N
GTO 00
GTO 01

109

Appendix ON

Now, MEMORY LOST is not the only special switch-on function! With the PANAME ROM, 6 new
functions are possible when you switch-on the HP-41.

Note: ON/+ represents the function performed when you hit the [ON] key, while the + key is down. Also
you must release [ON] before +.
For instance, with ON/[?] you get a MEMORY LOST.

ON/.

Change the numeric display format: from the "American" one (1,234.25), to the "European" one (1.234,25).
This function is built in the HP-1x calculators. In fact ON/. toggles flag 28.

ON/K.

Clear all user key assignments.

ON/A.

Set the "ALPHA key assignment set", to the top rows. If one key was assigned, its assignment is not
modified (see fig. 3).

| ATOXL | ALENG | ATOXX | ANUMDEL | ATOXR |

| XTOAL | AROT | YTOAX | ANUM | XTOAR |

ON/M.

Like ON/A, but with the following "Matrix (or array) key assignments set" (see fig. 4).

| STO>L | BRKPT | COLPT | AD-LC | RGVIEW |

| RG | BLDPT | LINPT | LC-AD | CLINC |

110

ON/T.

Like ON/A, but with the following "ploTter key assignments set" (see fig. 2).

| AXIS | BOX | SETORG | RMOVE | *CSIZE |

| *HOME | RESET | *LABEL | *MOVE | *LDIR |
===
| *PLREGX | REVLFX | BACKSPX | RDRAW | *LTYPE |

| | | OUT | *DRAW | COLOR |

ON/V.

Like ON/A, but with the following "Video key assignments set" (see fig. 1).

| | SCRLUP | CLEAR | XYTAB | CTYPE |

| HOME | SCRLDN | CLEARO | CSRL | CSRR |
===
| | SCRLX | CSRVX | CSRUP | CSROFF |

| | | CSRHX | CSRDN | CSRON |

111

APPENDIX

The HP-41 uses the "Reverse Polish Notation" (RPN), to solve complex problems, without parenthesis and
with a minimum of keystrokes. This system was created by a famous polish mathematician, Lukasiewicz,
and not by the Hewlett-Packard company. It is sure that this system demands a few hours of practice for a
new user, but it is also sure that its easiness and time saving qualities are worth tenfold these few hours:

- A TIME SAVING SYSTEM: the access to memory registers is quicker in the stack with any memory
partition, than on any other type of calculator;

- A SPACE SAVING SYSTEM: an intermediate result, which does not use a register, leaves it free for
something else;

- but furthermore the STACK allows for COMPLEX MEMORY MANAGEMENT: one can use a
subroutine without modifying it, because of the memory implants the variables in the calling program.

So, subroutine parameters are past throughout the stack, calculations are done in the stack, and results are
returned to the stack: a subroutine is general, and easy to use.

In general any arithmetic treatment, with up to 4 values, can be performed in the stack.

EXAMPLE 1: roots of a ax^2 + bx + c = 0 equation.

To use the program given below:

c ENTER^ b ENTER^ a XEQ "ROOTS" .
LBL "ROOTS" ST/ Z CHS ST+ X / ENTER^ X^2
RCL Z - SQRT RCL Y SIGN * + ST/ Y .END.

For instance to solve the following equation set:

 x^2 + x -6 = 0 and
3x^2 + 2x -1 =0 -6
ENTER^ 1 ENTER^ XEQ "ROOTS" .
x'= -3 and RDN x"= 2

For the second one -1 ENTER^ 2 ENTER^ 3 XEQ "ROOTS"
x'= -1 and RDN x"= 0,3333

This example illustrates the easiness given by the arithmetic done directly in the stack.

EXAMPLE 2: HCD (Higher Common Divisor) of 2 numbers.

01 LBL "HCD" LBL 02 MOD LASTx X<>Y X#0? GTO 02 + .END.
91 ENTER^ 65 XEQ "HCD" . X = 13,00

In this example, you must put the two numbers in the X and Y registers, and the result is returned to the X-
register.

112

EXAMPLE 3: reduced fraction.

The calculation of the HCD is normally done to get the reduced form of a fraction. Also with the HCD of a
fraction it is easy to get the SCM (Smallest Common Multiplier or lowest common denominator).

01 LBL "RF" STO Z X<>Y STO T XEQ "HCD" ST/ Z ST/ Y RDN ST* Z .END.

Application: 91 ENTER^ 65 XEQ "RF" returns X= 5 and Y=7 so 91/65 = 7 / 5; the HCD and the SCM of
91 and 65 are Z = 455 and T = 13

EXAMPLE 4: calculation with two fractions.

The general rule given above is verified here because this operation uses four numbers.

LBL "F/" X<>Y LBL "F*" ST* Z RDN ST* Z RDN GTO "RF" 09 LBL "F-" CHS LBL "F+" ST* T X<>
Z ST* Z * RCL Z + X<>Y GTO "RF" .END.

Application: Which resistance should be put in parallel with a 100 ohms resistor to get a result of 80 ohms?

1 ENTER^ 80 ENTER^ 1 ENTER^ 100 XEQ "F-" . So it is a 400 ohms one.

These examples illustrate, quite well, the powerful capacities of the stack.

113

Function Index
*

*CSIZE .. 43
*DRAW.. 46
*HOME .. 47
*LABEL.. 46
*LDIR... 46
*LTYPE.. 43
*MOVE .. 47
*PLREGX .. 47

/

/MOD... 103

8

8BIT... 31

A

AD-LC.. 55
AID .. 11
ALENG .. 88
ANUM.. 89
ANUMDEL... 90
APPX... 91
AROT .. 92
ATOXL... 95
ATOXR.. 95
ATOXX .. 95
AXIS .. 44

B

BACKSP.. 48
BACKSPX ... 48
BELL.. 37
BLDPT... 53
BOX... 48
BRKPT .. 54

C

CHARSET ... 37
CHFLAG.. 101
CLBUF... 31
CLEAR .. 25
CLEARO.. 25
CLINC.. 59
COLOR.. 43
COLPT .. 57
CSRDN.. 25
CSRHX.. 25
CSRL... 26
CSROFF.. 26
CSRON ... 26
CSRR .. 26

CSRUP..26
CSRVX ..26
CTYPE...27

E

ESCAPE..31

F

FFEED...37
FINDAID ..14
FORMLEN...37

G

GETRGX ...60
GRAPHX ...37

H

HOME..27

I

ID ...12

L

LC-AD..56
LINPT ..58

M

MODE..38

N

NOP...104

O

OUT...17
OUTa...22
OUTA...18
OUTaX...22
OUTAX ..18
OUTCR..18
OUTLF...18
OUTLFX ..18
OUTSPX..19
OUTXB ..20
OUTYBX..20

P

PARSE ..31
POSA...93
PSIZE ..98

R

RCLSEL...16
RDRAW...46

114

READEM... 99
RESET .. 47
REVLF... 48
REVLFX .. 48
RG... 68
RG*.. 83
RG*Y ... 86
RG/ .. 83
RG/Y.. 86
RG+-.. 83
RG+Y... 86
RGAX .. 69
RGCOPY... 70
RGINIT .. 72
RGNb .. 73
RGORD... 74
RGSUM... 78
RGVIEW.. 80
RGXTR.. 76
RMOVE ... 47

S

SAVERGX... 62
SCRLDN.. 27
SCRLUP.. 27
SCRLX .. 27
SETORG ... 47
SIZE? .. 98
SKIPOFF... 38
SKIPON... 38
SORT .. 64

STATUS ..33
STO>L ...66
SUB$...94

T

TABCOL ..32
TEXTLEN ..38
TF55 ..104

U

UNPARSE ...31

V

VKEYS...105
VSPAC ..38

W

WRTEM...100

X

X...NN? ..107
X<>F..106
XTOAL...95
XTOAR ..95
XYTAB...28

Y

Y/N...108
YTOAX ..96

115

FUNCTION LISTING:

-ADV PRT 3C
AID
ID
FINDAID
OUTAX
aka OWWG_
OUTCR
OUTLF
OUTLFX
OUTSPX
OUTXB
OUTYBX
OUTa
OUTaX
aka OWW^_
RCLSCL

-82163 FCNS
CLEAR
CLEARO
CSRDN
CSRHX
CSRL
CSROFF
CSRON
CSRR
CSRVX
CSRUP
CTYPE
HOME
SCRLDN
SCRLUP
SCRLX
XYTAB

-82162 FCNS
CLBUF
8BIT
ESCAPE
PARSE
STATUS
TABCOL
UNPARSE

-82905 FCNS
BELL
CHARSET
FFEED
FORMLEN
GRAPHX
MODE
SKIPOFF
SKIPON
TEXTLEN
VSPAC

-PLOT FCNS
AXIS
BACKSP

BACKSPX
BOX
COLOR
*CSIZE
*DRAW
*HOME
*LABEL
*LDIR
*LTYPE
*MOVE
*PLREGX
RDRAW
RESET
REVLF
REVLFX
RMOVE
SETORG

-UTILITIES
/MOD
AD-LC
ALENG
ANUM
ANUMDEL
APPX
AROT
ATOXL
ATOXR
ATOXX
BLDPT
BRKPT
CHFLAG
CLINC
COLPT
GETRGX
LC-AD
LINPT
NOP
OUT
POSA
PSIZE
READMEM
RG
RG+-
RG*
RG/
RG+Y
RG*Y
RG/Y
RGAX
RGCOPY
RGINIT
RGNb
RGORD
RGXTR
RGSUM
RGVIEW
SAVERGX
SIZE?

SORT
STO>L
SUB$
TF55
VKEYS
WRTEM
X=NN?
X?NN?
X<NN?
X<=NN?
X>NN?
X>=NN?
X<>F
XTOAL
XTOAR
Y/N
YTOAX

The aka functions are
found in the PANAME
ROM emulator.

116

	Cover
	Table of Contents
	Table of Figures
	Preface
	Warning
	A word about this edition of the manual

	Function Overview
	82160 (HP-IL Interface) Function Group
	AID - Accessory ID
	ID - Device ID
	FINDAID - Find an Accessory ID
	Appendix C
	RCLSEL - Recall primary device address
	OUT - Input prefix for OUT functions
	OUTAX - OUTA with repetition according to X
	OUTCR - OUTput Carriage Return
	OUTLF - OUTput Line Feed
	OUTLFX - OUTput Line Feeds by X
	OUTSPX - Output space characters
	OUTXB - Send a character by its decimal code
	OUTYBX - Send a character, several times, by its decimal code
	OUTa - OUTA with 7th bit set
	OUTaX - OUTa with repetition by X

	82163 (Video Interface) Function Group
	CLEAR - CLEAR the display
	CLEARO - CLEAR the display from the cursor On
	CSRDN - Move cursor down
	CSRHX - Move cursor Horizontally by X
	CSRL - Move the cursor to the left
	CSRON - Display the cursor
	CSROFF - Suppress the cursor
	CSRR - Move the cursor to the right
	CSRVX - Move the cursor down according to X
	CSRUP - Move the cursor up
	CTYPE - Select the type of cursor
	HOME - Put the cursor at the upper left position of the display
	SCRLDN - Scroll the display down
	SCRLUP - Scroll the display one line up
	SCRLX - Scroll the display according to X
	XYTAB - Move the cursor to position (X,Y)
	Appendix V

	82162 (Thermal Printer) Function Group
	CLBUF - Clear the buffer
	8BIT - Select "8 bit mode"
	ESCAPE - Select "Escape" mode
	PARSE - Select "Line feed on space" mode
	UNPARSE - Select the "line-feed on the 24th character mode"
	TABCOL - Column tabulation
	STATUS - Recall printer status
	Appendix S1.

	82905 (80-Column Printer) Function Group
	BELL - Beep signal
	CHARSET - Character set selection
	FFEED - Form feed
	FORMLEN - Page length
	GRAPHX - Graphic output
	MODE - Printing mode
	SKIPON - Set perforation skip
	SKIPOFF - Cancel perforation skip
	TEXTLEN - Text length
	VSPAC - Vertical space
	Appendix P
	Roman-8 Characters

	Plotter Function Group
	*CSIZE - Character size
	*LTYPE - Line Type
	COLOR - Color selection
	AXIS - Axis drawing
	*LABEL - Print the ALPHA register
	*LDIR - Writing direction in graphic mode
	*DRAW - Draw a segment
	RDRAW - Relative Drawing
	*PLREGX - Broken line plotting
	RESET - Re-initialization
	SETORG - Set origin
	*HOME - Send pen to origin
	*MOVE - Move pen
	RMOVE - Relative MOVEment
	REVLF - Reverse line feed
	REVLFX - Reverse line feed by X
	BACKSP - BACKSPace
	BACKSPX - BACKSPace by X
	BOX - Box drawing
	Appendix T2

	Utilities
	Array Handling Functions
	BLDPT - Build a pointer
	BRKPT - Break pointer
	AD-LC - ADdress Line Column
	LC-AD - Line-column to address
	COLPT - Create column pointer
	LINPT - Create line pointer
	CLINC - Clear Increment
	GETRGX - Recall registers from X-MEMORY
	SAVERGX - Save registers to X-MEMORY
	SORT - Sort numeric and/or alphanumeric data
	STO>L - Store by L-register
	RG - RG prefix
	RGAX - Registers to ALPHA or ALPHA to registers
	RGCOPY - Copy or exchange registers
	RGINIT - Initialization of registers by X
	RGNb - Number of register by pointer
	RGORD - Replace values in order of their ranking
	RGXTR - Register with extreme value
	RGSUM - Sum of registers
	RGVIEW - Registers input or catalog

	Operations Between Registers
	RG+- - Addition or subtraction of two vectors
	RG* - Multiplication of two vectors, element to element
	RG/ - Divide two vectors, element to element

	Scalar to Registers Operations
	RG+Y - Add constant to registers
	RG*Y - Multiply registers by constant
	RG/Y - Divide registers by constant

	Alpha Register Functions
	ALENG - Alpha LENGth
	ANUM - Search number in ALPHA
	ANUMDEL -Search ALPHA number and delete
	APPX - Append the integer part of X to ALPHA
	AROT - ALPHA Rotation
	POSA - Position of an string in ALPHA
	SUB$ - Extraction or justification of a sub-string

	Alpha and X Transfer Functions
	ATOXL - Transfer leftmost character of ALPHA to X
	ATOXR - Transfer rightmost character of ALPHA to X
	ATOXX - Transfer specified character of ALPHA to X
	XTOAL - Transfer X to leftmost character of ALPHA
	XTOAR - Transfer X to rightmost character of ALPHA
	YTOAX - Transfer character specified in Y to ALPHA at X

	Memory Allocation Functions
	PSIZE - Programmable SIZE
	SIZE? - Number of data registers
	READEM - Read all extended memory from mass storage file
	WRTEM - Write Extended Memory file

	Miscellaneous Functions
	CHFLAG - Load flag set
	/MOD - Euclidean division
	NOP - No Operation
	TF55 - Toggle printer flag
	VKEYS - View key assignments
	X<>F - Swap the X-register and flags 0-7
	X...NN? - Compare X and a register
	Y/N - Question Yes/No

	Appendix ON
	ON/
	ON/K.
	ON/A.
	ON/M.
	ON/T.
	ON/V

	Appendix
	Function Index

