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PREFACE

The present text has two aims. The first aim is to use the calculator to carry out

numerical experiments which illuminate points made in the calculus course. This should

give the reader a better understanding of the calculus, and also a better realization of
how calculus can be applied to real life problems. The second aim is to show how the

techniques of calculus can be used to make the reader more efficient and more proficient

in the use of the calculator, and in so doing to illustrate the wide variety of problems in

which the calculator can be used to advantage.

Although the present text can be used as a supplement to the teaching of calculus

with any textbook, it is particularly coordinated with "Calculus and Analytic Geometry,

Fifth Edition", by George B. Thomas, Jr., and Ross L. Finney. References to the latter

text are frequent. "Thomas-Finney" is condensed to "T- F", and references will appear

in such forms as: "The following are Problems 1-8 at the end of Sect. 1-4 of T-F,... ,"
or "T-F say... "

References in the present text to other places in the present text will lack any

reference to a text, as: "see Sect. 2 of Chap. IIL "

The various chapters of this text are concerned with particular calculator topics.

Any single chapter of the text is a coherent, connected whole. If all the reader desires
is to learn about that topic, he or she could read the chapter straight through.

However, as indicated by the title, this text is intended to be a supplement to

the calculus rather than an object of study in itself. Sometimes there is a good match

between this text and the calculus text. Thus the student should read our Chap. IX,

"Maxima and minima of a function of one variable, " when this subject is being consid-
ered in the calculus course. And, much later, the student should read our Chap. XIII,

"Maxima and minima of a function of several variables, " when this subject is being
considered in the calculus course.

But consider Chap. VII, "Root finding. " Off and on, throughout the entire calcu-
lus course, one has to find a root from time to time. The first time will be early in the



course. There the student should read some of Chap. VII, to see how the calculator
can make it easier to find roots. However, some parts of the chapter have to do with

root finding in situations that the student will not encounter until many months later.

The student should postpone reading that part of the chapter until the time comes when

those matters are being studied in the calculus course.

In order that the student can know what to read, and when, each chapter opens
with a Sect. 0, "Guide for the reader. " In these sections, we attempt to steer the
student so that he or she will find this text a help in learning calculus, and understand-
ing it better. And, with such coordination, the material being learned in the calculus

will inevitably increase the student's skill and proficiency in using the calculator.

In the preparation of this text, we were much helped by Prof. Robert T. Moore of

the University of Washington, Seattle. He read carefully and critically early drafts of

many chapters, and proposed many ways to improve them. We may not have followed

through on his proposals as well as we should have, but the text is much the better be-

cause of his advice, and we are glad to acknowledge our debt to him.

We are grateful for many helpful suggestions from George B. Thomas, Jr., and

Ross L. Finney, the authors of the calculus text which we frequently refer to. We must

say that this text lent itself well to illustration by calculator examples.

We wish to extend our thanks to Stephen H. Quigley, the Mathematics Editor for

the Addison-Wesley Publishing Company, for the encouragement and cooperation he has

given us.

J. Barkley Rosser
March 1979

Carl de Boor
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Chapter O

AWORD ABOUT CALCULATORS

0. Guide for the reader.

This chapter is required reading. You should read it at once.

1. What kind of calculator is needed for this text?

You should have available a hand held calculator which has at least keys for the

trigonometric functions (for angles in radians as well as in degrees), exponentials and

logarithms, and square roots. It should also have some memory. It can be either of the

reverse-polish type or of the algebraic-entry type. We shall use the abbreviations RPN

and AE, respectively, for these two types. Preferably, the calculator should be pro-
grammable. We won't here explain in detail the use of any particular calculator, since

we anticipate that the various readers of this text have altogether many different makes

or models of calculators. We take it for granted that you will consult the manual for your

own calculator to learn the various fine points peculiar to your own calculator. Presum-

ably the instructor, or a teaching assistant, or a friend can help.

Presently there is a great number of pocket calculators on the market. In appear-

ance, they more or less resemble each other, but they have a bewildering variety of ca-

pabilities and prices. For less than ten dollars, one can get a first class calculator that

will add, subtract, multiply, and divide. Just right for a rug salesman, but totally in-

adequate for use with the present text.

For less than twenty-five dollars, one has a choice of several good calculators

that can also handle trigonometry, logarithms and exponentials, square roots, and usual-

ly a few more things. With one of these, one could manage. Perhaps five percent of the

present text might be inadequately covered, but the areas there are not crucial. How-

ever, one would find oneself spending a lot of time pressing key after key to accomplish

what the programmable calculator would be doing automatically.

There are quite a number of different makes of programmable calculators that sell

for a hundred dollars or less. They vary widely in quality. Some have the reputation of
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wearing out very fast. Others are a bit deficient in their arithmetic operations. While

any of them is ostensibly suitable for use with this text, the reader might find that some

would give less than complete satisfaction.

In the present text, numerical examples are worked out mainly on the Hewlett-

Packard-33E, which is an RPN calculator, or the Texas Instruments Programmable 57,
which is an AE calculator. We will refer to these calculators for short as the HP-33E

and the TI-57, respectively. Don't expect to come up with exactly the same numerical

answers on your calculator if it isn't one of these. But, you should be getting more or

less the same answers, unless the example is supposed to illustrate some disastrous

effect of roundoff.

Besides the HP-33E and the TI-57, which are used for the examples of the present
text, programmable calculators that presently sell for less than a hundred dollars are the

Sharp PC 1201, the APF Mark 90, the Casio 501P, and some others. Note that the Radio
Shack EC-4000 is quite identical (except for the trade name) with the TI-57. If you can

find the right discount house, you may even be ahle to get a Texas Instruments Program-

mable 58 for less than a hundred dollars.

New and improved models of calculators are coming on the market so fast that by

the time you are reading this there could easily be a couple more names to add to the

list above. And some of those we named may have gone out of production.

From these, one can go on up to more elaborate and expensive calculators. Their

extra capabilities would rarely be of use in connection with the present text, but they

would be very helpful in advanced courses in engineering and science. If you contem-

plate taking such courses, and can afford such a better calculator, it might be advisable

to get it now and get used to it. In shopping for it, two things to ask for are indirect

addressing and the capability to record a program so that you can later reestablish it in

the calculator without having to key it in again, step by step.

If money is no object, you can really go overboard and get calculators with print-

ing attachments and goodness knows what else. A printing attachment is sometimes not

a bad thing to have, but it costs plenty.

2. Programming for a calculator.

To solve a problem on a calculator, one presses, or "strokes”, a succession of
keys on the calculator. A finite succession of key strokes is called a program.

Programs for RPN calculators differ appreciably from those for AE calculators. You

should read only the explanation applicable to your make of calculator. The material

devoted to these explanations will be set off by an RPN or an AE in the left margin. As

an example, we now discuss the evaluation of the expression

(0. 1) xz—l.
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RPN To calculate (0. 1) on an RPN calculator one would use the program:

0. 2) x, 49,1, 1, X

RPN

AL To calculate (0. 1) on an AE calculator one would use the program:

0. 2) x, X9, =, 1,3@, X1 .

AE

This sort of format for setting off the RPN and AE explanations will be followed

throughout the text. Note that, since you are supposed to read only one of the two ex-

planations above, we have used the same number, (0. 2), both for the RPN program and

for the AE program.

The sequence of key strokes in Program (0. 2) is to be read from left to right The

succession of symbols has the following meaning. The first symbol is not in a box, and

means that the first step is to input the value of x into the display. This is commonly

done by successively pressing the keys for the digits of x in order from left to right,

with the decimal point in its appropriate place. Sometimes there are special keys for

constants, such as w. To input something like 3.47 X 1013, special instructions given

in the manual must be followed. Also there are assorted rules about whether one must

clear the display before attempting to input a value, and other such matters. The [?{_2']

that follows means to press the key for squaring what is in the display. This key is

identified by having x¢, or something similar, engraved on it. (For some models, one
must press two keys in order to square a number, such as an invert followed by a square

root. ) The 1 that appears means to input the digit unity into the display by pressing

the unity key. We could have expressed this equivalently by writing to indicate

that the l-key is to be pressed. The [=] and E that appear mean to press the keys

so labelled. The final step, , means to press the square root key.

Consider the calculation of y from the equation

y (x-xl) + yl(x2 - x)2 
(Oo 3) y =

27K

Even fairly inexpensive nonprogrammable calculators usually have the capability

to store a number, which can subsequently be called into the display as often as re-

quired. Let us assume at least this memory capacity. If your calculator does not have

at least this, it is probably not really suitable for use with this text.

RPN To calculate y by (0. 3) on an RPN calculator, one could use the program:

RPN
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RPN

AE

 
AE

A WORD ABOUT CALCULATORS

(0. 4) x, [8TO] %, %, [=], v,, [X],

XZ’ X; E; yl’ , ,

x, O, x, &, 6.

To calculate y by (0. 3) on an AE calculator, one could use the program:

0. 4) x, B %, =, x, =, X, v,,
=, @, v, X1, @, x,, (@, K< %, [=],
E,m,xz, E’XI,E'

We are here assuming a parenthesis capability for the calculator. If your cal-

culator does not have this capability, you will perhaps have to resort to calculat-

ing y,(x - Xl)’ storing it, then calculating yl(xz—x), then adding this to the

storedzterm, and finally calculating x; - x; and dividing it into the stored sum

(or else multiplying by (x; - xl)'l). This would be pretty clumsy, and probably
would involve inputting x twice.

Some AE calculators, for example the TI-57 and other Texas Instruments cal-
culators, are hierarchical in their arithmetic. This is part of what they call their

AOS system. This means that they will carry out Multiplication and Division be-

fore Addition and Subtraction (some people remember this by thinking of "My Dear

Aunt Sally"). For example, the program

L4, 2,[x1, 3, [=]

will give the result 7 = 1 4 (2 X 3) on a hierarchical calculator, while a calcula-

tor that isn't hierarchical would give 9 = (1 + 2) X 3 for the answer. On a hier-

archical calculator, there is no need for the first [{] in (0. 4) before the vy,
since y; is first multiplied by the parenthetical expression (XZ - x) following it

before the addition to the expression (x - xl)yz preceding it is carried out.

Finally, we have assumed that the = key finishes off all pending parentheti-

cal expressions. For this reason, there are no closing parentheses in Program

(0. 4). In the unlikely case that your AE calculator does not have this feature, or

in case you want to find out the value of these parenthetical expressions, you

would have to insert two [ ]'s before the second [=] and one [J] before
the last [=] .

In Program (0. 4), we have used x and x to indicate respectively
storing x somewhere and then recalling it at the appropriate time.

We shall see in Sect. 3 of Chap. VI that there may be cases when, for a fixed
X],¥],%X,Y,, One will wish to calculate y by (0. 3) for several different x's. With

Program (0. 4), this will involve a lot of inputting of x;'s and yj's. This involves
danger of error, as we shall explain shortly. As they are the same xj's and yj's each

4
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time, there must be ways to circumvent some of this by storing some of these numbers

and some intermediate results in memory. Of course, this requires a calculator with

more than one memory location. For such a calculator, it is customary to refer to the
various memory locations as "registers. " We will use "register n" for the location that

one gets into or out of by pressing the digit n on the calculator.

Let us make some step by step improvements in Program (0. 4).

Actually, if we have an HP-33E in hand, we would not use Program (0. 4), but
possibly something like:

0. 5) x, 5100, x, (31, (81031, v,, [X1,
x,, [RCLO], [, (81031, v,, (X, 3,
RCL5], [£].

Here we use as an abbreviation for the two-stroke sequence
, [0]; it means to press the STO key followed by the 0 key. This has the

effect of storing whatever is in the display into register zero. Similarly,

stands for [RCL], [0] and means to press the RCL key followed by the 0 key.
This has the effect of reading out whatever is in register zero into the display.

stands for the three-stroke sequence , , [5]. Its execu-
tion has the effect of adding whatever is in the display to whatever is in the reg-

ister five and leaving the sum in that register.

Actually, if we have a TI-57 in hand, we would not use Program (0. 4), but
possibly something like:

0. 5) x, 300, @, % , @, B3, ™, v,, @,
yl’,m’XZ’E’ 7@7@@’5’

F, [RcLs), =
Here we use as an abbreviation for the two stroke sequence

, [0]; it means to press the STO key followed by the 0 key. This has
the effect of storing whatever is in the display into register zero. Similarly,

[RCL stands for [RCL], [0] and means to press the RCL key followed by

the 0 key. This has the effect of reading out whatever is in register zero into

the display. stands for , [5]. Its execution has the effect of
adding whatever is in the display to whatever is in register five and leaving the

sum in that register. 
AE

Though better is to come, we have already cut down the inputs as compared to

Program (0. 4). In the process, we have made use of register arithmetic. By this we

mean the capability of adding (or subtracting) the number in the display directly to (or

from) the number in some register, leaving the result in the same register. In subse-

quent programs, we will in the same way multiply a number in some register n by what's

in the display or divide what's in the display into the number in some register n, leaving
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the result again in that same register n.

The actual key sequence to accomplish such register arithmetic changes from cal-

culator to calculator. For example, in order to divide into register 3, the HP-33E re-
quires the key sequence

[STO], [=]1, [3],

while the TI-57 requires the sequence

(INV], [2nd], [SUM], [3].

For simplicity and uniformity, we use in this text instead the symbolic keys

 

[STO + n], [STO-n], [STOXn],[STO+n]

to indicate that the number N in register n is to be replaced there by the number N +x,

N-x, NXx, and N/x, respectively, with x the number currently in the display.

You should make sure you understand how the programs given above work.

If you wish to perform a calculation that requires more than a few strokes, you

definitely should write out the program beforehand. This is particularly urgent if the

program is to be used more than once. But it is a good habit to get into even for pro-

grams which are intended to be used only once. Otherwise it is very easy to lose your

place in a calculation.

If one frequently has to use a program more than once, it is advisable to acquire a

programmable calculator. A programmable calculator allows you to store an entire pro-

gram as a package. After you press the proper program key (or keys), the calculator will

then repeat the entire program, step by step. Thus, in Program (0. 2) you could store all

the instructions after the first, in what is called "the program or "the program memory".

If at some time you wish to calculate (0. 1) for some x, you would input the x, and then
press the proper program key (or keys). The calculator would do all the rest automati-

cally, and out would come a value for

xz—l .

If you wish to do this for a second x, simply input the new x, press the program key

(or keys) again, and out comes the new answer. Quite a saving of time and labor, not

to mention that you do not risk making a mistake while keying through the steps of the

calculation.

If you do not own a programmable calculator, you can still carry out most of the

calculations for the present text. You will have to run through the succession of key

strokes by hand every time a program appears instead of being able to call forth the en-

tire program by pressing one or two program keys. Use of a programmable calculator

with the present text will considerably curtail the labor of calculating. However, to re-

iterate, you can mostly manage with a calculator that is not programmable, but you will

6



2. Programming for a calculator

have to take more time for the calculations.

While use of a programmable calculator will save time with Program (0. 2), it will

save much more time with Program (0. 4). One of the inconveniences of Program (0. 4) is

the six inputs of x;'s and yj's. This is particularly annoying if you have to run Pro-

gram (0. 4) several times for different x's but with the same X], Y], X, and yp. If the

xi's and yj's are 10-digit numbers, as they could well be, all this inputting could be

quite a chore, not to mention a considerable risk of pressing a wrong digit occasionally.

Let us now see what happens with a programmable calculator. We will store all of

Program (0. 4) except inputting x at the beginning. This leaves us the option of running

Program (0. 4) several times with different x's by just inputting a new x each time.

One puts the calculator into store program mode, and then just keys through Program

(0. 4) (omitting the first step) exactly as if one were performing the calculation. No
calculating is done, of course, because the calculator is busy storing the program.

When one comes to input x], one will successively press the keys for the digits of x|,
from left to right. All this will be recorded, so that when the calculator repeats the pro-

gram, x) will automatically be input by the calculator. The same for y|,x,, and y;,
in their turn. So there is no more bother about having to input the xj's and yj's if one

runs the program for several different x's. The calculator does it all for you.

However, there is still a difficulty. When one is inputting an x; or a y;, each
digit uses up a register in the program memory. If an x; or y; has 10 digits, it will

use up 10 program registers. There are six such inputs in Program (0. 4). If each ofthe

xi's and yj's has 10 digits, we would use up 60 program registers just to store the

digits. This is more program registers than are available on either of the suggested cal-

culators.

We could go to Program (0. 5), where we have reduced the number of inputs to four.

However, we could still be in trouble. Suppose x| is a 10-digit negative number in

scientific notation with a negative coefficient. What with recording two pressingsof the

change sign key, recording the exponent, etc., x] could use up 15 program registers.

Four inputs could run to 60 program registers, which are more than are available on

either of the suggested calculators.

We can still manage. Store X1, Y]y %5, and y, respectively in memory registers

one, two, three, and four. Then rewrite Program (0. 5) by replacing the inputs of X1, Y],

x2, and yp respectively by [RCLI], [RCL2], [RCL 3], and [RCL4]. One could
similarly rewrite Program (0. 4) if one chooses to store x in register zero.

 

Now Programs (0. 4) and (0. 5) are short enough to fit very comfortably in either of

the suggested calculators. In fact, for both calculators, though means to
press RCL followed by 1, these two key strokes are "merged" in recording the program,

so that takes up only a single program register. Indeed, some three-stroke

sequences, such as [STO + 5] or [INV SUM 5|, are "merged” into a single program

register.

 

The steps of a program are stored in numbered program registers. On the two

suggested calculators, these program registers are identified by two digits. (In

7
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particular, register number one is called O0l. ) When you get ready to run a program, you

may not be at the beginning of the program. You can press a combination involving GTO

to get to the beginning (see your manual for details; other ways to get to the beginning

are often available). Then you press a key to make the program run.

So, if you have the xi's and yi's stored in memory registers, and the modified

Program (0. 4) or (0. 5) stored in the program registers, and wish to calculate y for a

given x from (0. 3), you proceed as follows. Input x, press a combination to get to the

beginning of the program, press the key to run the program, sit back and relax, and

quickly y will appear.

You can add a suitable instruction to the end of Program (0. 4) or (0. 5) to take care

of getting you back to the beginning, so that if you then wish to calculate y for a dif-

ferent x all you have to do is to input the new x and press the key to run the program.

Now that we have finished explaining how to program the calculation indicated in

(0. 3), let us point out that this was altogether the wrong way to do it. We went through

all this because it seemed particularly suitable for elucidating some of the high pointsa—-

bout writing and storing programs. However, it would have been much more efficient

just to point out that the equation

Yo7 ¥
(0. 6) y:yl+xz_Xl (x—xl)

gives exactly the same value of y as does (0. 3). But the right side of (0. 6) is far

easier to program than the right side of (0. 3). The whole matter is discussed in detail

in Sect. 3 of Chap. VI, where (0. 6) appears as equation (3. 3). There everything pro-

ceeds much more easily than our treatment of (0. 3).

Moral. A calculator cannot take the place of mathematical skill; not even a pro-

grammable calculator. That is why you signed up for this calculus course, in order to

acquire additional mathematical skills. What has calculus gotto do with replacing (0. 3)
with (0. 6)? As will be pointed out in Sect. 3 of Chap. VI, (0. 6) involves the calculus

notion of slope of a line. This concept is central in doing the programming for the right

side of (0. 6).

Incidentally, (0. 3) and the equivalent formula (0. 6) are not something that we just

made up. One or the other of them was probably taught to you as the formula for inter-

polating in a table. They are much used in mathematics, and are widely used in scien-

tific calculations.

3. Errors.

A very common error in using a calculator occurs while inputting a number. It is

very easy to get a digit wrong, especially if it is a 10 digit number. It is not unusual,

when inputting a 10 digit number, to interchange two digits, or to leave one out, or to
press one twice. One should develop the habit of checking the number in the display

after inputting and before proceeding further. One should also try to write programs

8
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that call for inputting numbers as seldom as possible. If your calculator has an adequate

supply of memory registers, it is good practice to store some intermediate results in them

for later recall. Of course, this requires you to write out the program beforehand in or-

der to keep a record of what is where.

One can also make errors in copying out numbers from the calculator display. The

same remarks apply to this as to inputting numbers. Of course, one has to write the

final answer, but one should avoid intermediate write outs as far as possible. One
should develop the habit of checking the number after copying it from the display and

before proceeding further.

Start developing these habits right away and persist until they are thoroughly in-

grained.

Another source of error is to get the program wrong. As we said before, it is very

advisable to write out each program before using it. And you should develop the habit

of checking a program after it is written and before using it. Often, you know the an-

swer to your problem for certain special choices of the input parameters. In that case,

try the program you wrote for the problem on this special input to see if it gives the

known answer.

In writing numbers in the present text, we choose to group five digits together and

then leave a space before the next set of five (or fewer) digits. Sometimes, we will use
the decimal point as a divider between groups of digits. Thus we will write an approxi-

mation for \2 as 1. 4142 13562. Some people would write this as I. 414, 213, 562. And

indeed some of the Hewlett-Packard calculators would show the number this way in the

display.

It is customary to make a distinction between precision and accuracy. Precision

has to do with the number of significant digits given. The more significant digits that

are shown, the greater the precision. There has to be an understanding about which

digits are significant. Thus, l. 4142 obviously has five significant digits. It is just as

precise as l. 4142 X 1018, which also has five significant digits. It is more precise than

1. 41 X 10"18, which has only three significant digits. All three of the above are less

precise than 1. 4142 13562, which has ten significant digits. However, if we write a

number as

l. 4142 00000 X lO18

or

l. 4142 00000
)

the fact that we wrote the extra zeros (which otherwise would be superfluous) signifies

that they are to be considered as significant. Both numbers have ten digit precision, in

spite of the unusual fact that the last five digits happen to come out to be zero.

Calculators are erratic in their treatment of significant final zeros. Sometimes,

significant final zeros will not be shown in the display. In some cases there will be

9
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blanks where there should be zeros, and in other cases the number is moved to the right,
leaving blanks on the left. Alternatively, a string of zeros may be shown at the end in

the display even if they are not significant.

For the numbers shown in this text, final zeros will be written only if they are
significant, except when we are citing a display on a calculator. If the calculator shows

non-significant zeros at the end, we may just copy what shows in the display (and try to

make it clear to the reader that we are just copying).

Accuracy has to do with how far off a cited number is from what would have been

the result in an ideally perfect calculation; the latter is to be considered the "correct"

value. If N is a correct value and n is the number that is obtained, then N- n is
called the absolute error and

N-n

N
 

is called the relative error (unless N = 0, in which case the formula has no meaning).

Suppose someone gives the estimate
)

2.7182 81828 45904 5

for w. This estimate is very precise, indeed precise to 16 significant digits. However,

it is not nearly that accurate as an estimate. The absolute error is about 0. 42 and the

relative error is about 0.13, or 13%. The much less precise estimate, 3, would be more
accurate, with an absolute error of about 0. 14 and a relative error of about 0. 045, or

4. 5%.

In giving a numerical value for something, we have tried to be careful to use =

only when we have been able to get the value exactly. This includes the situation in

which we only write down the first few significant digits of a number and indicate the

omission of the subsequent digits by the elision sign "... " Otherwise, we use =.

Thus, we will write

V0.04 = 0.2

and

V2 = 1.4142 13562 37309 5048...,

but

V2 = 1.4142 13562 37310 .

10



Chapter 1

FUNCTIONS

0. Guide for the reader.
 
 

Functions are very important in calculus. Usually the subject will be brought up in

the first week or two of the course. At that point, the reader should read this entire
Chap. I, which is mostly descriptive and has to do with means of calculating functions.

After some discussion of functions in general, the calculus turns to a study of what can

be done with, and to, functions. A second reading of Chap. I is probably advisable then.
Some points should come through more clearly at that time.

From then on, through most of the calculus course, attention is confinedalmostex-
clusively to functions which can be represented by formulas. Toward the end, your cal-

culus course may touch on the topic of differential equations. In engineering,and the ex-

perimental sciences, most differential equations have for their solution a function which

cannot be represented by a formula.

If the calculus course does touch on differential equations, the reader should then
broaden his understanding of functions by reading the last two sections of this Chap. I

yet a third time.

1. Classical definition.
 

Calculus is mainly a study of functions. The notion of function is explained very

early in the calculus text (see, for example, Sect. 1-6 of T-F). You should be

sure you really understand it. Indeed it would not hurt if we reiterate it herewith, For

f to be a function, f must be a rule, or procedure, or mechanism which for a given x

(in the domain of f) prescribes a unique y, called f(x).

Throughout much of calculus, and almost universally in the engineering and scien-

tific uses of calculus, the main question about some function f is: "Given a numerical

value of x, what is the unique corresponding numerical value y = f(x)?"

Why should this be a problem? For f to be a function, it must prescribe y, and

uniquely so. But there are ways of prescribing y that do not give much of a clue as to

11
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how to calculate a numerical approximation for its value. Thus y may be prescribed as

the unique root of some equation. (See Chap. VII.)
For an extreme case, let f(t) be the temperature attime t atthe Greenwich Obser-

vatory. Certainly, if a person is standing at the Greenwich Observatory with a thermom-

eter, it will register one and only one temperature at any time t. So, f is unquestion-

ably a function. But who would presume to try to calculate a numerical approximation for

what the temperature was at the time when John Hancock was signing his name to the

Declaration of Independence?

However, for most functions f that the reader will encounter in calculus, there are
means to calculate a numerical approximation for y = f(x). Indeed, a fair amount of the

calculus course is concerned with developing various such methods. The advent of the

calculator is a great help with such calculations. For the rest of the chapter, we sum-

marize the main ways to calculate an approximate numerical value for y = f(x).

2. As approximated by calculator keys.
 

On any given pocket calculator, certain functions can be approximately evaluated

by pressing a single key (sometimes two keys). You should study the manual for your

calculator to learn what functions are thus directly available,

Typically, one might wish to evaluate \[x, for some numerical value of x. Recall

that x must be in the domain of V; that is, the value of x cannot be negative, First
one inputs x into the display. Then, with x in the display, one presses the key label-

ed \Vx and an approximation for \x will appear in the display.

This number in the display, representing \x, is unique; it will come out the same

as long as x is the same (unless something has gone wrong with the calculator). So, in

accordance with the classical definition of function, the yx key is a function. In ac-
cordance with the classical definition, it will work only if the independent variable, x, is
in the domainof the \x key. If x istakennegative inthe display, then pressing the Jx key

will cause the calculator to indicate an error, and to cease operating properly. The man-

ual tells how to get it operating properly again.

Although the \x key is unquestionably a function, it is not exactly the calculus

function "square root of", though the calculator manufacturers try to make it very close.

A difficulty is that the display can show only a certain number of digits; often 10 digits.

With only 10 digits, one cannot display the exact value of \2. The closest one can

come is 1.4142 13562. The good calculators will give this number (or perhaps eight

digits of it) if 2 is called for. See Chap. IV for a discussion of this source (and other

sources) of inaccuracy in the use of a calculator.

Problem 2. 1. Seewhatyour calculator gives for 2, J20 , and \200.

Problem 2.2. Seewhatyour calculator gives for sin (1/2), sin 2, cos (m/4), and
cos .

NOTE ESPECIALLY. For use with calculus, angles MUST be taken in RADIANS.

There is a special setting on the calculator for this. Do NOT forget to set this to radians

12



2. As approximated by calculator keys

0 0 0

whenever dealing with trigonometric functions.

2
10 0Problem 2. 3. Calculate 10°° x 1020, x 10%0 % 102, 1020 x 1020 x

1020 x 102 , etc., until the calculator refuses to give an answer and shows an overflow
condition. Learn about this from the manual.

The function represented by the \&k key differs from the calculus function "square

root of" in yet another way because it has a different domain. For the calculus function,
the domain consists of all nonnegative real numbers. But suppose that on a calculator

one wishes to take the square root of

0. 6931 47180 55994 .

First one has to input this into the display. But it has too many digits. If one has a 10

digit display, the closest one can come to inputting the number above is to input

-1
6.9314 71806 x 10 .

In other words, the number given earlier is not in the domain of the function represented

by the \x key, even though it is a positive real number. There are things that a calcu-

lator cannot do, and the reader must learn not to expect too much of it.

Besides the functions that are given on the reader's calculator by a single key

stroke, many others can be made by combining several key strokes into a program. For

example, suppose f is defined so that

(2.1) fix) = Jx° -1  for x| >1 .

(For a definition of le, the absolute value of x, see Example 14 in Sect. 1-6 of

T- F.) One would carry out the evaluation of f by using the following program:

RPN
| x, x4, 1, =1, ¥ -
RPN

AE 2
| x, [x77, =1, 1, =1, [ -
AE

Manufacturers of calculators have exercised considerable ingenuity in arranging

for the user to be able to put together simple functions to get a more complicated one.

The manuals discuss many examples of such more complicated functions that can be built

up out of a succession of individual key strokes; that is, functions that can be evaluat-

ed by a program. And, of course, the programmable calculators let one carry out the en-

tire program by pressing the appropriate program key (or keys).

Problem 2. 4. Give a program for evaluating f if f(x) is defined by:

)
) f(x)z_g%jx_)_

cos x +1

(a

13
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(b) f(x) = J (x- 1)/(x+1)

x when x<1,

@ f(x)=
2-x when 1 <x .

What is not mentioned in the manuals is the fact that many functions cannot be

given by any program whatsoever. Finding roots of an equation often falls into this cat-

egory. (See Chap. VII. ) However, by using the ideas of calculus, one can usually find

a program whose execution will bring one very close. As a matter of fact, the various

functions represented by keys on a calculator are nothing more than built-in programs

designed to produce reasonably accurate approximations for the function values. So,with

calculus to tell us which keys to press, and the calculator to perform the calculations

quickly, we can now handle functions that used to be almost inaccessible.

3, _As approximated by a table.

It has been traditional to give representations of functions by means of tables. You

may recall the tables of trigonometric functions and of logarithms from your trigonometry

text. Three small tables are given at the very end of T- F. In Table 3. 1, we reproduce

their Table 2 from p. A-21.

In the first place, the domain of x is very limited, consisting only of the values

in the first and fourth columns. However, for each x in the first column, a unique value
is given for eX in the second column and another unique value is given for e¥ in the

third column. Similarly for the next three columns. So we certainly have defined two

functions, which are quite similar to the calculus functions "exponential of" and "recip-

rocal exponential of". Although the table does not pretend to give more than approximate

values of e¥ and eX , it and similar tables have been accepted for hundreds of years

as the main way to present functions. Starting somewhat later, the slide rule was also

widely used to present certain functions with very limited accuracy.

One might think that the advent of the small electronic calculator would put an end

to the dissemination of tables. Certainly, for the reader with a calculator in hand, the

three tables of T-F are quite superfluous. However, we refer the reader to Chap. XV .

There we discuss the solution of differential equations. There are cases in which the

desired solution is a function that cannot be given by any program. Nevertheless, we

shall learn in Chap.XV how to make a table of approximate values of the function which

is the solution. So then the function is represented by a table, similar to the way trigo-

nometric functions and logarithms were represented for centuries. New differential equa-

tions to be solved keep arising in various branches of science, and they will lead to

tables for new functions.

4., As approximated by interpolation.
 

The values given in tables of functions are usually only approximate. However,

this is also true of the values given by a calculator. If the table is prepared with suffi-

cient care, the approximate values listed can be as accurate as, or more than, those

14
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Table 3.1

X ex e—x X ex e—x

0. 00 1. 0000 1. 0000 2.5 12,182 0. 0821

0.05 1. 0513 0.9512 2. 6 13. 464 0.0743

0. 10 1. 1052 0. 9048 2. 7 14. 880 0.0672

0.15 1.1618 0. 8607 2.8 16. 445 0. 0608

0. 20 1. 2214 0. 8187 2.9 18. 174 0. 0550

0. 25 1. 2840 0. 7788 3.0 20. 086 0. 0498

0. 30 1. 3499 0. 7408 3.1 22,198 0. 0450

0. 35 1.4191 0. 7047 3,2 24, 533 0. 0408

0. 40 1. 4918 0. 6703 3.3 27.113 0. 0369

0. 45 1. 5683 0. 6376 3. 4 29. 964 0.0334

0. 50 1. 6487 0. 6065 3.5 33. 115 0.0302

0. 55 1. 7333 0. 5769 3.6 36. 598 0.0273

0. 60 1. 8221 0. 5488 3.7 40. 447 0. 0247

0. 65 1. 9155 0. 5220 3.8 44, 701 0. 0224

0. 70 2.0138 0. 4966 3.9 49, 402 0.0202

0. 75 2.1170 0. 4724 4.0 54, 598 0.0183

0. 80 2. 2255 0. 4493 4,1 60. 340 0.0166

0. 85 2. 3396 0. 4274 4, 2 66. 686 0.0150

0. 90 2. 4596 0. 4066 4, 3 73, 700 0.0136

0. 95 2. 5857 0. 3867 4, 4 81. 451 0.0123

1.0 2.7183 0. 3679 4, 5 90. 017 0.0111

1.1 3. 0042 0. 3329 4, 6 99. 484 0.0101

1. 2 3. 3201 0. 3012 4, 7 109. 95 0. 0091

1.3 3. 6693 0. 2725 4, 8 121. 51 0. 0082

1. 4 4, 0552 0. 2466 4, 9 134. 29 0. 0074

1.5 4, 4817 0. 2231 5 148, 41 0. 0067

1. 6 4. 9530 0. 2019 6 403. 43 0.0025

1.7 5. 4739 0. 1827 7 1096. 6 0. 0009

1. 8 6. 0496 0.1653 8 2981. 0 0. 0003

1. 9 6. 6859 0. 1496 9 8103.1 0. 0001

2.0 7. 3891 0. 1353 10 22026 0. 00005

2.1 8.1662 0.1225

2.2 9. 0250 0.1108

2.3 9. 9742 0. 1003

2. 4 11. 023 0. 0907        
given by a calculator, though usually they are not. So a table is not necessarily inferior

to a calculator on the score of accuracy of values. TUsually the major drawback of a

table is the relatively small number of values listed. Thus, in Table 3.1, values of
eX are given for only 66 different values of x. Just by reading values from the table,

there would be only 66 values of x for which one would have an approximation for e¥,
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Most likely, a value for x for which one would wish an estimate of e® would fail to be
one of the 66 values appearing in the table.

Fortunately there is interpolation. By interpolation, one can find approximate func-

tion values for values of x lying between those given in the table. You shouldremember

a particular way to interpolate from your trigonometry course. If not, a description of it

is given in Sect. 3 of Chap. VL

This sort of interpolation is called linear interpolation because it depends on con-

necting two points of the graph of the function by a straight line. By suitable use of the

calculator, one can perform improved types of interpolation. This gives betterapproxima-

tions for the function values for values of x lying between those given in the table.

Thus, the approximation of a function by a table is considerably improved.

There are functional relationships occurring in engineering, physics, and other

branches of science for which no formula is known, nor any means of calculating an ap-

proximation. By measurement and experiment, some values of x and y will be deter-

mined, and listed in a table. Further measurements and experiments would be expensive,
but we wish to know more about the functional relationship. Interpolation can be very

useful in such a case.

Getting back to the temperature at Greenwich Observatory, if there should happen

to be a record of the hourly temperatures for July 3, 4, and 5 in 1776, then a suitable

interpolation procedure should give a fairly accurate estimate of the temperature at the

signing of the Declaration of Independence. Possibly this calculation is not as intract-

able as was suggested earlier.

A discussion of interpolation in general is given in Chap. VI and Chap. XVII.

Problem 4. 1. By linear interpolation in Table 3. 1, getan estimate of e0- 6625,

Compare with the value for e0. 6625 given by the calculator.

Hint (for those who have forgotten how to do linear interpolation), Since 0. 6625

is one quarter of the way from the listed x-value 0. 65 to the listed x-value 0. 70, one
would expect that e0. 6625 would be about one quarter of the 8va_}1 from the value of

1. 9155 listed for e0- 05 {5 the value of 2.0138 listed for e O.
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Chapter 11

EVALUATION OFAPOLYNOMIAL

0. Guide for the reader.

By all odds, the functions thatyou are most often called upon to evaluate are poly-

nomials. Special procedures for doing this efficiently will be given in Sect. 1. As soon

as you encounter a place in the calculus course where you are asked to get the value of

a polynomial more complicated than a quadratic, you should familiarize yourself with

Sect. 1, and be prepared to use the procedures given there,

The topics of Sect. 2, synthetic division and deflation, come up in situations such

as taking the limit of the quotient of two polynomials. When you first read Sect. 1, it

would be advisable to skim through Sect. 2, to get the general idea. Then, when you

encounter the places in calculus where you should use the procedures of Sect. 2, the

formulas should look familiar, and should remind you to make a more careful study of

Sect. 2.

Sect. 3 should be read after you are familiar with differentiating a polynomial. It is

common in calculus courses to emphasize how information about the derivative of f can

be used in plotting the graph y = f(x). For example, this topic takes up about one third of

Chap. 3 of T-F. When you reach this point in your calculus course, you should read

Sect. 3 with some care, as it is devoted to calculator examples of just this subject.

1. Horner's methoc_:l__.

A polynomial, p, of degree n or less can always be defined by the formula

n n-1
(1. 1) p(x) = agx +ax to.o.oota_xta

for certain numerical coefficients ap,a,..., a,. Note that we have here indexed the

coefficients in such a way that the index of the coefficient plus the corresponding ex-

ponent of x is n.

We consider the evaluation of the polynomial defined by (l. 1) at some point c, SO

17



II. EVALUATION OF A POLYNOMIAL

as to get p(c). This means that we must put ¢ for x in (L. 1) and calculate

acn+acn_l+ +a .c+ta
0 1 n-1 n

This does not look like a very formidable calculation. With the y%¥ key, we can calcu-

late c?, el . ¢l c0. We multiply them respectively by a9, d),---,an-1,3y, and
add the products. But stop and think. It takes three or four key strokes for each use of

the y* key, and we also have n multiplications and n additions. Besides which, the

yX key is relatively slow in operation, and tends to be the least accurate key on many

inexpensive machines.

There is a better way to evaluate p at c¢ from (L. 1). The trick is to rearrange

acttractty +a c+a
0 1 n-1 n

1p(c)

in "nested form", as

(L. 2) p(c) 1 «.. ((aoc + al)c + az)c +... 4+ an_z)c + an—l)c + a_ .

Now there is no need for the exponentiation key, yX. Since it turns out that we can

arrange the calculation so as also to avoid using any parenthesis keys, all we need to

do is to multiply and add n times each.

We start the calculation by evaluating the innermost parenthetical group, and then

work our way from the inside out. This means that we first calculate

b1= aoc + al .

From it, we calculate

b‘2 = (aoc +al)c +a2 = blc +a.2 .

From it; we calculate

b, = (a3 c+al)c+a2)c+a3=bzc+a
0 37

and so on, until we reach

b
n

«.. ((aoc + al)c + az)c +... + an_z)c + an_l)c +a

=Db c+a .
n-1 n

Clearly, by (l.2), b = p(c), the value of p at c, which is what we wish.

For example, let us calculate the value of
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1. Horner's method

(1. 3) p(x) = 3% - 5x% - 4

at x = 2. Here ag = 3, a = -5, a, = 0 and az = -4. We write p(x) in nested form

as

p(x) (3x - 5)x +0)x -4 .

With ¢ = 2, we then calculate

bl=a00+al= 3)2)-5=1

b2= blc+a2: (D) +0 = 2

b =bzc+a3= 2)(2)-4=0.

Thus p(2) = 0. Note how the missing ale term in (1. 3) does appear in the calculation,

as addition of a zero coefficient when forming b2'

If we put x = 2 in (L. 3), we get

p(2) (3)2° - (5)2° - 4

(3)(8) - (5)(4) - 4

1] 24 - 20-4=0 .

This agrees with our value for b; (as it should).

We now analyze and formalize this evaluation procedure. For convenience, we de-

fine

Then the calculation proceeds through the following n + 1 steps:

b = a
0 0

b1 = bOc ta,

bZ = blc ta,

b3 = bzc + a

n-2 = bn—SC + an—Z

n-1 = bn-Zc + an—l

b = b c + a
n n-1 n
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II. EVALUATION OF A POLYNOMIAL

Every line after the first follows the uniform fornrat:

(1. 4) b = Cbr + a

In view of this, the calculation proceeds very simply. Start by inputting b0 (that is,

aO) into the display. Then repeat n times the two following operations:

multiply by c¢

add a_ (r=1,2,3,...,n) .

As we said, n multiplications and n additions, plus inputting c and the various a/'s,

takes care of the whole thing. At the end, we have b,, which is p(c).

It is customary to call a specified sequence of computational steps, such as the

above, an algorithm. This particular algorithm is called Horner's method. It is much

the fastest way to calculate p(c).

When an algorithm of this sort proceeds by repeating a given set of steps over and

over, using the answer for the previous step as input for the next, then the algorithm is

called recursive. Horner's method is a good example of a recursive algorithm. On a

programmable calculator with subroutine capability, one can often use this recursive

feature to shorten the program for the algorithm. This is done in the implementations of

Horner's method given as Programs IL 1 and IL 2 in the Program Appendix.

RPN Horner's method works especially well on an RPN calculator. Suppose one has

the stack filled as in Table 1. 1.

 

Table 1.1

t Cc

Z C

r-1    
Then the program

(1. 5) 7a,
r

will replace the b._; in the stack by b.. Then a repetition of Program(l. 5) with

r +1 in place of r, namely

=1, a,,, O3,
will in turn replace the br by br+l . And so on. 

RPN
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RPN

 

 
AE

1. Horner's method

So we start by filling the stack with values of ¢, which is done by inputting c

and pressing T three times. Then input 3 (which is bo). We are now ready to

get by, by, b3,. ..,bp successively in the display, by repeating the Program (1. 5)

with r=1,2,...,n. Thus, on a nonprogrammable calculator, after entering c in
the display, the rest of the calculation follows Program (1. 6).

(1. 6) [(T1, [E], [, 3,

X1, a, 3,

<1, a,, [4,

=1, a__,, O,

At the end of the calculation, b, = p(c) is in the display.

On an AE calculator, the basic step, (1. 4), of Horner's method may be carried
out as follows. Suppose we have br—l in the display. Then the program

will bring b, into the display instead. But this requires inputting c at every step

If ¢ is an "easy" number, like 3, it can be input by pressing a single key, and

one can do no better. However, c¢ could be a 10-digit number, so that there is risk
of error every time one inputs it. Even on a nonprogrammable calculator, there is

usually at least one memory register. So let us assume that we can store c. Then

we calculate by from b,..| by the program

(L. 5) [x], [RCL] ¢, [£], a,, [=].

Here we have written c to indicate that the value of ¢ is to be recalled into

the display from wherever it has been stored. Thus, on a nonprogrammable calcula-

tor, after entering c in the display, the rest of the calculation follows Program

(1. 6).

(1. 6) [STO] ¢, a,,

‘
O

4
H , 2, =

, e, (O, a,, =]

LA, (=1,

[=] .4
e, Q = o

-
[

1, a,

At the end of the calculation, by = p(c) is in the display.

c,

o
o

p
—



II. EVALUATION OF A POLYNOMIAL

Suppose now that you have been given the coefficients and wish to evaluate the

polynomial defined by (1. 1) for several different values of c¢. On a nonprogrammable

calculator, you simply repeat (1. 6) for each different value of c. This requires input-

ting the whole succession of ar's for each value of c. If the ar's are 10-digit num-

bers, which they may well be, this is quite a chore, and entails considerable risk of

error with all that inputting.

If you have a programmable calculator, you can arrange to store Program (1. 6).

Then, upon pressing the program key (or keys), the calculator will run through Program

(1. 6) for you, including inputting the various a,'s. (For more details, refer to Chap. 0.)

So now, if you wish to calculate p(c) for some c's, you input any given c into the

display, press the program key (or keys), and sit back and wait for b,, which equals

p(c), to appear in the display.

In Chap. 0, you are advised to check the program after recording it. Let us again

stress this. For polynomials, there is an additional test that you can use, and which

you should use. It is easy to calculate p(l), since it is just the sum of the coefficients

So, after you have stored the program, and have checked it, run yet another test by tak-

ing ¢ =1 and seeing if b, comes out equal to the sum of the coefficients.

If you have a highdegree polynomial, there may be so many a,'s that Program (1. 6)

will take more steps than your calculator has room to store. In that case, go as far as

you can through Program (1. 6) with a stored program, arranging to stop with some by in

the display. Then you can finish Program (1. 6) by hand, inputting ar's as you go.

Nowadays, most programmable calculators have a subroutine capability. Because

of the recursive nature of Horner's algorithm, this can be used to reduce the number of
program registers required to store the program. Program IL 1 in the Program Appendix

shows how to take advantage of this. You should use this program (or one similar to it

that you have worked up for your own calculator) for the next problem.

Problem 1. 1. (Only for those with good programmable calculators.) Evaluate p(c)

for the polynomial, p, defined by

1 17 6 4 12 10 7
(1.7) p(x):x8+2x +3x1 +4>«:15+5x1 +6x13+7x +8xll+9x +10x9+9x8+8x

6
+7x +6x5+5x4+4x3+3x2+?.x + 1

for ¢ = -3, -2, -1, 0, 1, 2, 3.

Program (1. 6), or Program IL 1 of the Program Appendix, if used with a programmable

calculator, involves storing the digits of the various a,'s as part of the program. For

typical examples in calculus texts, each coefficient has only one or two digits, and so

one can deal with polynomials of fairly high degree. However, one can have coefficients

that use up as many as 15 program registers apiece (see Chap. 0). In such cases, itis

advisable to store the coefficients ag,a;,...,a, beforehand in memory registers, and
in Program (1. 6) or Program II. 1 of the Program Appendix put ay where now a, is

indicated to be worked into the program. In doing this, one is limited by the number of

memory registers available. This is embodied in Program II 2 of the Program Appendix.
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1. Horner's method

Problem 1. 2. In Prob. 11 at the end of Sect. 1-9 of T-F, there is given a table of
values of a function:

s (in ft) |10 ]38 |58 |70 |74 | 70 |58 |38 10

t (in sec)l 0 lo.5l1.0]1.5]2.0I2.5|3.0 l3.5|4.0
 

Show by calculating its values that the polynomial, s, defined by

(1. 8) s(t) = —16t‘2 + 64t + 10

agrees with the s of the table for the values of t listed. Remember to use Horner's

method to evaluate the polynomial. That is, for the given values of t, take

s(t) = (<16t + 64)t + 10 .

The fact that (1. 8) holds for the specified values of t gives no assurance whatever

that it holds for other values of t. However, it is perhaps a not unreasonable assump-

tion that (1. 8) was intended to hold for general values of t.

Problem 1. 3. For the polynomial, p, defined by

(1. 9) p(x):x4—4x3+2x2—4x+l ,

calculate p(c) for ¢= -2, -1, 0, 1, 2, 3, 4, 5, 6. If you do not own a programmable
calculator, do it for ¢ = 0,1,2,3,4. (Calculate p(0) in your head, of course.) If you

do own a programmable calculator, enlarge the program so that it will also generate the

values of ¢ for you, with convenient stops and restarts, so that you do not have to in-

put nine different values of c¢. Make a rough sketch of the graph of y = p(x). Save

this graph for subsequent use.

Remark. There is much stress in calculus on getting a careful determination of the

graph of y = f(x), by observing when the derivative of f is positive, negative, or zero.

The polynomial, p, defined by (1. 9) is the derivative of the polynomial, P, defined by

5 .3
(1. 10) P(x)=x—5-x4+—2—§——2x2+x—2.

(If you cannot presently verify this, you will very soon be taught how. ) To get a careful

determination of the graph of y = P(x), you will need to know when the derivative of P,

namely p, has values which are positive, negative or zero.

Problem 1. 4. For the polynomial, p, defined by (1. 9), use your graph of it to guess

very approximately the values of c¢ (if any) for which p(c) = 0, and to identify the

values of x for which p(x) is positive, and the values of x for which p(x) is nega-

tive,

Remark. The question of determining more accurately the values of ¢ for which

p(c) = 0 is taken up in Chap. VIL. For the present, guess them as well as you can by

eyeballing the graph. If p(c) = 0, we say that ¢ is a zero of p.
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II. EVALUATION OF A POLYNOMIAL

Problem 1. 5. For the polynomial, p, defined by

4 2
(1.11) p(x) = 8x - l4X3-9X +11x -1

calculate p(c) for ¢ = -2, -1, 0, 1, 2, 3. Make arough sketch of the graph of y =
p(x). Save this graph for subsequent use. Use your graph to guess very approximately

the values of ¢ (if any) for which p(c) = 0, and to identify the values of x for which

p(x) is positive, and the values of x for which p(x) is negative.

Problem 1. 6. Even if you do not have a programmable calculator, calculate p(c)

for ¢ = 0,1, and 2 forthe p of Prob. 1. 1.

Hint. For that p, verify that

7 6 4 3 2 2
(1. 12) p(x) = {x9+x8+x +x +x5+x +x +x +x+1} .

Remark. We cannot stress too strongly that the reader should remain alert to see

where some trick, such as above, can cut the labor of computation quite a bit.

Problem 1. 7. Even if you do not have a programmable calculator, calculate p(c)

for ¢ = -3, -2, -1, 0, 1, 2, and 3 for the p of Prob. 1. 1.
) ) )

Remark. We just barely got through saying that you should remain alert to see

where a trick can cut the labor of computation. Verify (by multiplying both sides by

x - 1) thatif x #1, then

10
(1.13) x -1 9 8 7 6 6 4 3 2

- 1 = X 4+X +X +X +X +X 4+ X +x +x+1.

__?:. Synthetic division and deflation.

As we will show in a moment, Horner's method provides an efficient way to divide

the right hand side of (1. 1) by the linear expression x - c, if possible. There are sev-

eral reasons why one might want to carry out such a division.

For example, in trying to determine

lim p(x)/q(x)
X—C

with p and g both polynomials, one may have to deal with the fact that both p and

q are zero at the point c¢. Then one must compute polynomials p; and q; so that

pl(x) (x-c) = p(x) and qj(x)(x-c) = q(x) and consider

lim p(x)/q () .
X—C

As another example, consider the problem of finding all the zeros of a polynomial p.

One usually finds such zeros one at a time, for example by the methods discussed in
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2. Synthetic division and deflation

Chap. VIL Having found a first zero, say, c|, one can find the remaining zeros by
finding the zeros of the "reduced" polynomial pj, defined by p;(x) = p(x)/(x-c;). As

soon as one has found a zero of P, say c¢,, one goes over to a further reduced polyno-

mial p,, defined by p,(x) = p;(x)/(x- cz), etc. In this way, the polynomials whose

zeros are to be found become ever simpler. In the end, one has a factorization p(x) =

ag (x-cy) (x- CZ)' . (x- Cn)' Such a factorization is needed further on in the calculus,
when integrating rational functions by the method of partial fraction expansions.

The connection between Horner's method and the division of p(x) by a linear ex-

pression x - c¢ is contained in the following theorem.

Theorem 2.1. Let bg,bj,...,b

algorithm for evaluating

n be the quantities calculated during Horner's

n n-1
(2. 1) p(x) = agx  +ax t.o..ta_x+a

at x = c¢. This means that

(2. Za) b = a

and

(2. 2b) b =D c + a for r=1,...,n.

Then

(2. 3) p(x) 1 Q & = I e -
+ o

o

with g the polynomial defined by

(2. 4) q(x) = b.x + b.x +... +b _x+b

To see the truth of this theorem, multiply out (x-c)q(x) + b,. By appealing to (2.4),

this gives:

n-1 n-2 n-3
xq(x) = xbox -kxblx -+xb2x +... -i-xbn_1

n-1 n-2
-cq(x) = cbox - cblx - ... - cbn_zx Cbn—l

+b = +b
n n

On the right, combine each term with the one below (or above) it, to get:

n n-1 n-2
b_x +(bl—cb0)x +(b2—cbl)x +... + (b0 - cbn_z)x + (bn - ¢cb ) .

n-1 n-1

But b0 = a, by (2. 2a), and by (2. 2b)
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II. EVALUATION OF A POLYNOMIAL

1 0 1

b2 - cbl = a2

n-1 Cbn—Z = -1

b - cb = a
n n-1 n

So we get

(x - c)g(x) ‘+bn

caxtaxts +a x+a
0 1 n-1 n ’

as claimed in (2. 3).

Corollary 1. If p is a polynomial, and p(c) = 0, then x - ¢ divides p(x) exactly

Proof. If p(c) = 0, that means that b, = 0. Putting b, = 0 in (2. 3) gives

(2. 5) p(x) = (x - c)qx),

which is just what the corollary claims to be the case.

Corollary 2. If p is a polynomial, c| # c,, and p(cl) = p(cz) = 0, then the quad-

ratic expression (x - cl)(x - cz) divides p(x) exactly.

Proof. Using Cor. 1 , we can take c¢ = c¢; in (2. 5). Then put x = c, in (2. 5):

plc,) = (c,-c ale,).

But p(c,) = 0 and ¢, -c; #0
mial r such that

so that q(cz) = 0. So, by Cor. 1, there is a polyno-
) )

qlx) = (x-c,)rix).

If we substitute this into (2. 5), with ¢ = c;, we get

(2. 6) p(x) = (x - cl)(x - cz)r(X) ,

which is just what the corollary claims to be the case.

Obviously, if we are going to make use of Thm. 2.1, we have to make a record of

the values of the b.'s. If we are not calculating the b,/'s by a stored program, but are

going along inputting the a's at every step, there is plenty of time to copy off the br's

as they appear in the display. However, suppose we have in mind using Program IL 1 or

IL. 2 of the Program Appendix, or something analogous for another calculator. It is usu-
ally considered an advantage of Programs II. 1 and II 2 that they go rapidly through the

26



2. Synthetic division and deflation

calculation, and all that one sees is b, which is p(c). But now we would like to see,

and copy down, the various br's. A very simple modification of Programs II. 1 or IL 2

will permit this. Just add appropriately in the subroutine, as explained in the

Program Appendix. Now the program will stop every time a b, appears in the display.

After copying it down, press R/S , and the program will go on to the next b,. Check

your copying.

If there is a copious supply of memory locations, so that the ar's fill up no more

than about half the registers, one could even arrange to have the b,/'s stored in some of

the vacant registers. This would be particularly useful if one has in mind further calcu-

lations involving the b/'s. It is easy enough to modify Program (1. 6) to do this by in-

serting suitable storage commands at the strategic points. Programs IL 1 and IL 2 would

require extensive alterations, since the storage of the b,'s would interrupt the sub-

routine differently each time the subroutine is used. However, with the program set to

stop at each b,, one could store them one by one by hand in unused registers during the

stops.

If one is not going to use the a's again, the by's could be put in their place.

Details are given in Program IL 3 of the Program Appendix.

Illustration. Let us find

, x2+x—2
(2. 7) lim ——m

X—=2 x“415x + 6

As x approaches -2, both the numerator and denominator approach 0, so that it looks

as though we are stuck with trying to guess a value for

0

0

But Cor. 1 for Thm. 2.1 says that if a polynomial, p, is 0 at the point -2, then p (x)

must be exactly divisible by x 4+ 2. One can work out what the other factor is by the

algorithm of the previous section, as explained in Thm. 2.1, but for quadratics, such
as appear in (2. 7), the other factor is obvious. So we rewrite (2. 7) as

 lim (x+2)(x-1) lim x-1

r3 (x +2)(x+3) P X +3

-2-1
=T213 -

Problem 2. 1. Evaluate:

2
(a) lim X +4x+3
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II. EVALUATION OF A POLYNOMIAL

(b) lim x2 + 3x - 10

x—2 X-2

(c) lim ZX_I

X—~1 ox“-7x + 5

3_

X—=2 ¢“_ 4

2 7% 5

x—=-1 x3+1

Problem 2. 2. For n = 3, 4, 5, 6 evaluate

xn—l
 lim

XxX—+1 x -1

Before you get up to n = 6 you should be able to figure out how to calculate

xn-l
 lim

— 2X lX -1

for general n; as soon as you do, carry out the calculation for general n, and get on to

the next problem.

Problem 2. 3. For the polynomial, p, defined by

4 3
(2. 8) p(x) = x~ - 4x” +2x-4x +1

and for ¢ = 4, calculate g and b, such that (2. 3) holds.

Problem 2. 4. For the polynomial, p, defined by

(2. 9) p(x) = 8x4 - l4x3 - 9x2 +11x -1

calculate gq; and di such that

(2. 10) p(x) = (x+1)ql(x)+dl

(2.11) px) = (x- 3)q2(x) + d2 .

In Prob. 1.4, you were asked to state from looking at the graph where p(x) is posi-

tive or negative for the p defined by (1. 9). However, the graph went only from x= -2

to x =6 (orfrom x =0 to x = 4 if you do not own a programmable calculator). So

you had to guess outside of that range. However, one can easily establish the facts.

Note that the polynomial defined by (1. 9) is the same as the one defined by (2. 8).
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2. Synthetic division and deflation

*Problem 2. 5. For the polynomial, p, defined by (1. 9) and by (2. 8), show that p(x)
is positive for x <0 and for x > 4.

Hint. If x is negative, can any term of p(x) be negative? If x > 4, note that the

q(x) and b, of Prob. 2.3 are both positive,

*Problem 2. 6. For the polynomial, p, defined by (1. 11) and by (2. 9), show that p(x)

is positive for x <-1 and for x > 3.

Hint, If x <- 1, note that the d; of (2.10) is positive, while the ql(x) is nega-

tive. If x > 3, note that the d, and qz(x) of (2. 11) are both positive.

Consider the polynomial, p, defined by

(2.12) p(x) = le2 - 24x + 4 .

According to the quadratic formula, which is (IV. 3. 1), p(ci) = 0 for

(2. 13) c RV C 3 - N6
1 3 ’ 2 3

So, by Cor. 2 to Thm. 2.1, (x - c;)(x - cz) should divide p(x) exactly. Itis easy to

see, by multiplying out, that indeed

(2. 14) p(x) = 12 (x _i‘%fl)(x __:)’_"_fl) )

3

Problem 2. 7. Using your calculator, calculate

Suppose with these approximations for o and c,, your calculator seems to give ex-

actly, by calculation,

(2. 15) p(x) = lZ(x—cl)(x - CZ)'

Would that prove that (2. 14) is true? As a matter of fact, does your calculator give

(2.15) EXACTLY, with the approximations you calculated for ¢, and CZ? Use all the

digits that your calculator carries, and not just what it displays.

Problem 2. 8. Show that

(2. 16) 96x” - 84x - 18 = 96(x—7—+1~2@—)(x _1=N97'1697 ) .

Sometimes we wish to "deflate” a polynomial. This will happen after we have

found that c is a zero of the polynomial p, so that p(c) = 0. Then, by Cor. 1 to

Thm. 2.1, we have
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II. EVALUATION OF A POLYNOMIAL

p(x) = (x-c)a(x) .

If we have the coefficients of p(x) stored in the memory registers, we may wish to dis-

card them, and put the coefficients of q(x) in their place. This would happen if we are

using Program IL 2. In the Program Appendix, we give Program IL 3 which will substi-

tute the coefficients of q(x) for those of p(x) in the memory registers.

If we are using Program (1. 6) with a nonprogrammable calculator, the question

would not arise. We start with the coefficients of p(x) written on a piece of paper. As

we work our way through Program (1. 6), we generate the coefficients of q(x), which we

write on a new piece of paper.

Problem 2. 9. With the polynomial, p, defined by

3 2
(2.17) p(x) = 8x™ +2x -5x+1 ,

we have p(-1) = 0. So there is a g such that

p(x) = (x+1)q(x).

Start with the coefficients of p(x) stored in the calculator and run a program to get the

coefficients of q(x) stored there instead. (If you have a nonprogrammable calculator,

simply list the coefficients of q(x).)

3. Derivative of a polynomial.

The formula (2. 3), namely

p(x) = (x-clalx) +b_,

will be of use when we wish to evaluate both p(x) and p'(x) at the same point, x= c,

where p' is the derivative of p. If we differentiate both sides of the equation above

with respect to x, and use the formula for the derivative of a product (see Rule 5 of

Sect. 2-3 of T-F), we will get

p'(x) = qx) + (x - c)d (%) ,

since the derivative of the constant bn is zero. Taking x = c gives

(3. 1) p'(c) = qlc) .

This means that we can compute p'(c) by evaluating the polynomial q(x) at c (by

Horner's method, of course).

The above procedure gives the most efficient way to evaluate both a polynomial and

its first derivative at the same point c. If we need to evaluate only the first derivative,

then it is more efficient to form the polynomial p' directly and evaluate it by Horner's

method.
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3. Derivative of a polynomial

Problem 3. 1. For the q and p of Prob. 2.3, calculate q(4) and p'(4), and see

if they agree.

Problem 3. 2. For the gq; and p of Prob. 2.4, see if ql(—l) agrees with p'(-1),

and if g,(3) agrees with p'(3).

When we undertake to get the value of the derivative of p at the point c by eval-

uating q(c), that requires knowledge of the b,'s. So at first thought, it seems as if we
have to do a lot of storing of coefficients, namely all the br's. However, if we manage

things efficiently, this is not so.

Recalling what q is from Thm. 2.1, we see that Horner's method for calculating

q(c) involves the following algorithm:

=D
“0 o
c1 = cc0 + b1

c2 = cc1 + b2

-1 = Cp-2 T Py

Then ql(c) = Cooy-

The trick is to calculate the br's and c_'s in parallel. Really, it is br and Cr

that go in parallel. Then two registers will suffice for their storage. Suppose byyp is

in one register and ¢, is in the other. One uses byy; and cr to calculate crq],

which one stores in place of c¢,. Then one uses br;) and aryp to calculate br42,

which one stores in place of br+1- Then one starts over again.

At the beginning, one does a little calculation to get b} and cg, and to store them.

Then one iterates the process above until one gets up to by and cp-;, which are p(c)
and p'(c).

Presumably, one has ¢ stored someplace, so that one does not need to input it
twice for each iteration.

RPN
On an RPN calculator, one can manage to keep c¢ stored in the stack, so that

two memory registers will suffice, one to hold the b,'s and one to hold the c;'s.
Then the following fairly simple program will suffice.

c, (1, I, (A1,

3, ¢ X1, 2, (&, (BT0] b, ,

[CIX], [RCT] ¢, [X],[RCL] b, [H], [ST0]) ¢,

[C1X],[RCL]b), [X],a,, (4], [STO] b, ,

RPN [CIX], [RCI] c1, [X], [RCI] by, [+], [STO] c2, 
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[CIX], [RCL] by, [X] , a5, (], (ST0] b,

[CX,[KCDc_,,[X],[EDb,[,B0,
[CX,[®Ob_,,[X,2G, 500 b,_ -

The CILX that appears is the command to clear the display. The first line of

the program fills the stack with c¢'s. The second key stroke of the second line

stores a; in the register reserved for the c;/'s. But ap = ¢, so that then we have
cp appropriately stored. After the of the second line, we have bj in the

display, and it is proper then to store it in the register reserved for the b,'s.

After the in the third line, we have c; in the display. The final com-

mand, c, stores it in the register reserved for the c;'s. This obliterates
cp, which is fine because we do not need cp any more. The fourth line calculates
by and stores it in place of bj. This is also fine, as we do not need b; any
more.

The fifth line calculates c) and puts it in place of c;, while the sixth line
calculates b3 and puts it in place of b,. Right on!

So we go smoothly along, and at the end we have cp-;, which is p'(c), and

by, which is p(c).
>

You reserve whatever registers happen to be convenient to store the by's and

cr's. If you had happened to pick registers one and two respectively, then the pro-

gram shown above can be put into the schematic form embodied in Program (3. 2).

(3. 2) Preparation:

c, I, @.0T,

a,, 5102, [X1, 2y, (@, (5T0T],
Loop, to be repeated for r = 0,1,...,n-2:

[C1X],[RCL 2], [X],[RCL 1], [+], [STO 2],
[CIx], [ReLl), X1, o, 3], (STOT] -

Ifyouhave br4) in register one and c, in register two, then the first line of

the Loop puts cpy] into register two and the second line puts bryz into register

one. You repeat the Loop n-1 times, with r = 0,1,...,n-2. Then you will have

bn, which is p(c), in register one and cp-1, which is p'(c), in register two.

It should occur to you that there is a subprogram in this which is repeat-

ed many times, namely Program (3. 3).

(3.3 [4], [sT01], [CIX], [RCLZ], [X],[RCLT]
(+], [STO2], [CIX],[RCL1], .
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RPN Executions of this are interspersed with inputs (or recalls) of the a,'s.

3. Derivative of a polynomial

There

is a Preparation at the beginning and a short Termination at the end. If you have a

programmable calculator, this is the sort of thing you would store as a recallable

program. On the more sophisticated calculators, it could be a subroutine.

By carrying out some stack gymnastics, you can carry all three of c, cr, and

bry; in the stack simultaneously, juggling these three quantities appropriately by

using the Rl, and x Pq¢ y keys. This avoids using up two registers for cr and

bri1, leaving more room to store the a,'s. If you like puzzles, then you'll enjoy

figuring out key sequences to do such things. Actually, a great many such key se-

quences are given in the Table 2. 5.1 on pp. 62-86 of "Algorithms for RPN calcula-

tors,” by John A Ball, John Wiley and Sons, 1978.

For the particular case at hand, you can go from the stack configuration shown

in Table 3.1 to that shown in Table 3. 2 by the program in the first line of Table 3. 3.

 
 

        

 

 

 

Table 3.1 Table 3. 2

t c t C

Z C Z C
r

cbr Y Cf+l

x ar+1 X Cbr+l

Table 3. 3

>
Jr L X]R L [H S [RY][/

¢ ¢ brst Pra1 Pesr|© ¢ rr1 |1 © ¢

Cr c ¢ br+1 br+l b1r+1 c ¢ c cr+1 c

Cbr cr ¢ < Ccr br+1 br+l br+l cr+1

a b b b
r+l r+l Cr Ccr c ccr C1r+l r+l r+l ¢ r+l             
 

Below each indicated keystroke is a vertical line, on the left of which is what was
in the stack before the stroke and on the right of which is what will be in the stack

after the stroke.

Having got to the configuration of Table 3. 2, a subsequent input of Ao will

bring the configuration of Table 3. 2 to agree with that of Table 3. 1, except for hav-

ing r replaced by r + 1. So the program shown above can be used as a subprogram,

to be used alternately with inputting (or recalling) values of ag, for s = 2,3,...,n,
After inputting (or recalling) aj, execute and you will have p'(c) and p(c) in

)

RPN the y-register and x-register respectively.
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An actual program embodying these ideas is given as Program IL 4 in the Program

Appendix,

On an AE calculator, it would seem that you will need three
memory registers, one to hold the b.'s, one to hold the c;'s. and one to hold c.
If these are available, then the following fairly simple program will suffice.

, [STO]c,

,a ’CO”a

Q

,(51,5T07 b,0 1

RCT ¢, [X], (RCW ¢, (3], (RCT b, (5], (BT0] ¢,
[(RCO b, [X], [RCY ¢, (A, a,, [=], [STO] b,,
RCL <, (X1, (RSO ¢, (A, (RS b,, [=1, (310 c,,
(RCL b,, (X1, (RS ¢, (3, 2, [=], (101 b,

[RCT) ¢, X1, KT, [, b, =1, ¢
RCT] b, (X1, [RCM e, (A, a, (5], (ETO] b, -

The first line of the program stores c. The third key stroke of the second line

stores agy in the register reserved for the c/'s. But ag = ¢y, so that thenwe have

co appropriately stored. After the [=] of the second line, we have bj in the

display, and it is proper then to store it in the register reserved for the by's.

After the [=] in the third line, we have c¢] in the display. The final com-

mand, c], stores it in the register reserved for the cr's. This obliterates
cp, which is fine because we do not need cp any more. The fourth line calculates
b, and stores it in place of b;. This is also fine, as we do not need bj any
more,

The fifth line calculates c,; and puts it in place of cj, while the sixth line

calculates bz and puts it in place of bp. Right on!

So we go smoothly along, and at the end we have cp-;, which is p'(c)

which is p(c).
, and

bp,

You reserve whatever registers happen to be convenient to store the b;'s, c,'s

and c. If you had happened to pick registers one, two, and three respectively,

then the program shown above can be put into the schematic form embodied in

Program (3. 2).

)

(3. 2) Preparation:

c, [3T03] ,
X1, oy, 3002], @, ], =, (07,
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3. Derivative of a polynomial

 

AL Loop, to be repeated for r= 0,1,...,n-2:

[RCL 2], [X], [RCL3], [4], [RCL1], [=], [BTO 2],
RCL1], [x], [RCL3], [H], ar+2’ (=], [STO1].

If you have br+1 in register one and c¢, in register two, then the first line of

the Loop puts Cr4] into register two and the second line puts br+2 into register

one. You repeat the Loop n-1 times, with r= 0,1,...,n-2. Then you will have
bn, which is p(c), in register one and cp-1, which is p'(c), in register two.

It should occur to you that there is a subprogram in this which is repeat-

ed many times, namely Program (3. 3).

(3.3) [=], [STO1], [RCL2], [X], [RCL3], [+], [RCL1],

[=1, [8T02], [RCLT, [X1, [RCL3], (.

Executions of this are interspersed with inputs (or recalls) of the ar's. There

is a Preparation at the beginning and a short Termination at the end. If you have

a programmable calculator, this is the sort of thing you would store as a recall-

able program. On the more sophisticated calculators, it could be a subroutine.

On some calculators there is a register exchange key which enables you to

carry along all three of byy;, ¢, and ¢ without having to use more than two mem-

ory registers. This leaves one more register to store the a,'s. An actual program

AE of this sort is given as Program II. 4 in the Program Appendix.

As noted earlier, you could always calculate the coefficients of p'. Then you can

calculate both p(c) and p'(c) by applying Horner's method to p and p' respectively.

If you need both of p(c) and p'(c), the method given above is preferable for the fol-

lowing reason. To apply Horner's method for both p and p', you must input (or store)

coefficients for both p and p', which are nearly twice as many as for p alone. With

the method above, only the coefficients of p are involved.

In the calculus, textbooks recommend that,when one is graphing y = f(x), one not

only should plot some points (xj,yj), where yj = f(xj), but that one should draw an

arrow of slope f'(x;) through the point (xj, yj), to indicate the direction in which the

curve is moving when it passes that point. Let us try this for the polynomial, p, defin-

ed by

(3. 4) p(x) = gx* - 14x> - 9x° + 11x - 1 ,

using Program (3. 2) or Program II 4. This is the polynomial that is defined in (1. 11).

In Prob. 1.5, you were asked to draw a graph of y = p(x) for this polynomial. You

might naturally have produced something that looked a bit like Fig. 3. 1.

However, let us follow the suggestion of the calculus text, and use the slopes at
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Figure 3.1
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the four points shown. Values of p(x) and p'(x) are given in Table 3. 4, The disparity

between the slopes from Table 3. 4 and those shown in Fig. 3.1 is scandalous. With a

 

 

Table 3. 4

X p (%) p' (x)

-1 1 -45

0 -1 11

1 -5 -17

2 1 63     
slope of +11 at the point (O,—l), it would seem as if the curve would have to get a-

bove the x-axis before x gets much larger. Letus try x = 0. 5. We have p(0. 5) =1
and p'(0. 5) = -4. 5.

Let's face it. The curve shown in Fig. 3.1 has an entirely wrong shape. So we

had better give it the full treatment, as expounded in the calculus text. For this, we

use Program (3. 2) or Program IL 4 and tabulate our polynomial given by (3. 4) and its

derivative more finely between -1 and 2, say at the quarter points -1, -0.75, -0. 5,

-0.25,...,1.5, 1.75, 2. This gives Table 3. 5. From this table, it appears that p'
vanishes somewhere in the intervals (-0. 75, -0.5), (0.25, 0.5), and (1.5, 1.75).
Since p' is a polynomial of degree 3, it cannot vanish anywhere else, by a well known

theorem that says that a polynomial of degree n cannot vanish at more than n distinct

points. We therefore know now approximately where p'(x) is positive and where it is

negative, that is, where p is increasing and where p is decreasing. Figure 3, 2
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Figure 3. 2
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Table 3. 5

X p(x) p'(x)

-1 1 =45

-0.75 -5.875 -12. 625

-0.5 -6. 5 5.5

-0. 25 -4, 0625 12. 375

0 -1 11

0.25 1 4, 375

0.5 1 - 4,5

0.75 -1.1875 -12. 625

1 -5 -17

1. 25 -9.125 -14. 625

1.5 -11. 5 - 2.5

1. 75 -9. 3125 22. 375

2 1 63      
contains the information from Table 3. 5 in graphical form, from which the shape of the

graph becomes quite evident.

Problem 3. 3. For the polynomial, p, defined by (1. 9), namely by

4 2
p(x) = x —4X3+2X -4x +1,

calculate p'(c) for ¢ =0, 1, 2, 3, 4. See if these values seem to agree fairly well
with the slopes of the approximate graph of y = p(x) that you drew for Prob. 1. 3.
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Chapter I11

DIFFERENCE QUOTIENTS

0. Guide for the reader.

Difference quotients are used to calculate slopes, and the derivative is defined as

the limit of a certain difference quotient. Hence this short chapter is required reading

as soon as either a slope or a derivative is encountered in the calculus course.

The most commonly occurring difference quotient is the one used to define the de-

rivative, namely

f(x + Ax) - f(x)

AX

The important message of the present chapter is that one cannot calculate this, or any

other difference quotient, accurately with a calculator when the denominator is "small"

except with the aid of ideas from the calculus.

1. Slopes of lines.

A difference quotient is the quotient of two differences. The first difference quo-

tient that occurs in T- F is in Formula (1) in Sect. 1-4, namely

. Y, ©Y
A 2 1(1. 1) rise _ Ay _ —

run AX X =
2~ %

To find the slope, m, of the line through two different points Pl (Xl’yl) and

P (XZ’YZ) by this formula, you could use the program2
RPN

yZ, m, yl’ E’ XZ’ m’ Xl’ E’ E °

RPN
AE
L v, (=1, v, [=], =&],d, %x,, (=1, ¥, (=]

A
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III. DIFFERENCE QUOTIENTS

Yoo x, 3, x, =2, 39, v, =3,v, =, 5, XD, =.
AE

If X| = Xp, you should not carry out this procedure on the calculator. It objects

to being asked to divide by zero. If you try this anyhow, the calculator will indicate

an error and stop functioning, andyou will have to look in the manual to see how to get

it operating properly again. If X) = X3, you should properly say that the line has no

slope, but it does no harm to indulge in a bit of whimsey and say that the slope is .

If m is the slope of a line, you get the slope of a perpendicular line by taking

the negative reciprocal. With m in the display, this can be done by pressing the re-

ciprocal key and the change sign key, in either order.

Calculus books provide many problems involving the calculation of slopes of lines

and of perpendiculars, or determining equations of lines through two points or perpendi-

cular to other lines, or related problems involving difference quotients. If such prob-

lems are assigned in your calculus course, work them on your calculator, using one of

the programs given above, or something analogous. If none are assigned, work a sam-

pling from the following, which are taken from Sect. 1-4 and Sect. 1-50f T-F.

Problem 1. 1. Plot the given points A and B, and find the slope (if any) of the

line determined by them. Find the slope of a line perpendicular to AB, in each case.

1. A(l,-2), B(2,1) 2. A(-2,-1), B(1,-2)

3. A(1,0), B(0,1) 4, A(-1,0), B(1,0)

5. A(2,3), B(-1,3) 6. A(1,2), B(1,-3)

7. A0, 0), B(-2,-4) 8. A(3,0), BO,-3)

Problem 1. 2. In the following problems, plot the points A, B, C, and D. Then
determine whether or not ABCD is a parallelogram. Say which parallelograms are rec-

tangles.

1. A(o,1), B(1,2), C(2,1), D(1,0)

2. A(-2,2), B(1,3), C(2,0), D(-1,-1)

3. A(-1,-2), B(2,-1), C(2,1), D(1,0)

4. A(-1,0), B(0,-1), C(2,0), D(0,2)

Problem 1. 3. In the following problems, use slopes to determine whether the

given points are collinear (lie on a common straight line).

1. A(1,0), B(0,1), C(2,-1)

2. A(-2,1), B(0,5), C(-1,2)
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1. Slopes of lines

3. A(-2,1), B(-1,1), cC(1,5), D(2,7)

Problem 1. 4. In each of the following problems (1 through 9), plot the given

pair of points and find an equation for the line determined by them.

1. (0,0), (2,3) 2. (1,1), (2,1)

3. (1,1), (1,2) 4. (-2,1), (2,-2)

5 (-2,0), (-2,-2) 6. (1,3), (3,1)

7. (0,0), (1,0) 8. (0,0), (0,1)

9. (,-1), (-2,3)

Problem 1. 5.

a) Find the line L through A(-2,2) and perpendicular to the line L':2x+y = 4.

b) Find the point B where the lines L and L' of part (a) intersect.

c) Using the result of part (b), find the distance from the point A to the line L'

of part (a).

Supposeyou havea curve y = f(x). Take different points Pl-(xpf(xl)) and

P, (xz,f(x )) on the curve. Then the slope of the secant joining those two points is the

difference quotient

f(xz) - f(xl)

X T X
(1. 2)

of the function f at the values Xy and X5 If you hold Xy fixed and let X5 approach

X1, this slope approaches the slope of the curve at Pl'

For example, in Sect. 1-7 of T-F, it is shown that if

f(x) = x3— 3% + 3,

then the slope at the point P(x, f(x)) is 3x% - 3, Thus, the slope at P(2,5) is 9.

Let us take x; = 2, and xp = 2 + Ax for various values of Ax, and see if the slope

appears to be approaching 9 as Ax — 0. This is shown in Table 1. 1. (Note. Some

of the final zeros are not significant, but were merely copied from the display in the

calculator. These calculations were done on the HP-33E. At the end, a ten digit dis-

play was got by executing , which must be actuated by executing [g].)

At first sight, you might think that Table 1.1 PROVES that the slope is really 9,
since the two values 10~5 on either side of x = 2 give 9 as the slope. In the first

place, no calculation performed at a point different from x = 2 can PROVE anything

about what happens at x = 2, as will be made evident in the next few pages. More to

the point, Table 1.1 is misleading. Though the calculator shows 9 zeros to the right
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Table 1.1

AX calculated slope of secant

1 16.000 00000

0.1 9. 6100 00000

0.01 9.0601 00000

0. 001 9. 0060 01000

0. 0001 9. 0006 00000

0. 00001 9.0000 00000

-0. 00001 9.0000 00000

-0. 0001 8.9994 00000

-0. 001 8.9940 01000

-0. 01 8.9401 00000

-0.1 8.4100 00000

-1 4. 0000 00000   
of the "9" in the entry corresponding to Ax = 0. 00001, leading one to think thatthe

slope of the secantis 9 to 10 significant digits, in fact only the first 4 of these

zeros are significant. When Ax gets close to 0, the calculator gives erroneous values

for reasons which will be explained in the next section.

values of the slope of the secant for those values of Ax for which the values shown in

Table 1. 1 are incorrect.

 

 

 

Table 1. 2

AX true slope of secant

0. 0001 9. 0006 00010 00000

0.00001 9. 0000 60000 10000

-0. 00001 8.9999 40000 10000

-0.0001 8.9994 00010 00000  
It still appears reasonable that the slope of the curve at x = 2 is 9.

Problem 1. 6.

the curve y = Vx at x = 4 is 0. 25.
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In Example 6 in Sect. 1-8 of T- F, it is shown that the slope of

Find the slopes of the secants connecting

P;(4,\4) and P,(4 +Ax, N3+AX) for Ax =+1, +0.1, +0.0l, +0.00l, +0. 0001, and
+0. 00001, and see if this seems to substantiate that the slope at x = 4 is 0. 25.

In Table 1. 2 we give the exact

 



1. Slopes of lines

Remark. Ifyouare going to store a program for this problem on a programmable

calculator, you might as well make it take care of changing the values of Ax. This

can be done as follows. Assign a register to store tne various values of Ax, and in-

itially put 10 in that register. Now write and store the first half of the program to do

the following. Divide what is stored for Ax by 10, and put the quotient back into the

Ax register. Then continue with the second half of the program by calculating the slope

of the secant, recalling Ax from the Ax register whenever it is needed for the calcu-

lation. Then stop. The first time you run the program, you get the slope for Ax =1.

The next time, you get the slope for Ax = 0.1. The next time, you get the slope for

Ax = 0.0l And so on. For the negative Ax's, start by storing -10 in the Ax

register.

Problem 1. 7. It will turn out that the slope of the curve y = sin x at x = /3 is

0. 5. Find the slopes of the secants connecting

A ™ . TPl(3’ sin 3) and P2(3 +Ax, sm(3 + AX))

for Ax = 1, £0.1, £0. 0L, £0. 001, £0. 0001, and +0. 00001, and see if this seems to
substantiate that the slope at x = /3 is 0. 5. (See what happens if you neglect to

use radians. Explain why the numbers you get might have been expected. )

Problem 1. 8. For

X

x +1

 

f(x) =

(see Prob. 8 at the end of Sect. 1- 8 of T- F) the formula worked out for f'(x) gives

f'(1) = 0.25. So, by Formula (3) in Sect. 1-8 of T-F,

: o f(l+Ax)= (1) = lim f(l + Ax f(l

Ax —0 AX

D
f
—

Calculate the difference quotient

f(l + Ax) - (1

AX

for Ax = +0.1, £0.01, £0. 001, +0. 0001, and +0.0000l, and compare with f'(1).

Problem 1. 9. The relationship between demand and price for coffee in the USA

from 1960 through 1974 was given by

(1. 3) Ad + Bp = 1.

Here A and B are constants, d is the number of pounds consumed per person per year,

and p is the price in dollars per pound. (See Prob. 19 at the end of Sect. 1-50f T-F.)

Suppose that the demand would be 20 pounds per person per year if coffee were given

away free, while nobody would drink any coffee at all if the price should rise to $3. 35

per pound. What are the values of A and B?
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2. Danger of cancellation.

Suppose we continue Prob. 1. 6 down to Ax = i10_7, 110'8, and beyond. We get

the results shown in Table 2. I.

some of them are not significant. )

(Again, we copy zeros from the display even though

 

 

 

   

Table 2. 1

AX calculated slope of secant

on HP-33E on TI-57 on TI-SR 50A

107" 0.25000 0. 24000 0. 25001

1078 0. 20000 0. 20000 0.25010

1077 0. 00000 0. 00000 0. 25100

10719 0. 00000 0. 00000 0. 27000

107t 0. 00000 0. 00000 1. 00000

10714 0. 00000 0. 00000 1. 00000

10712 0. 00000 0. 00000 0. 00000

~107 1 0. 00000 0. 00000 0. 00000

-1071% 0. 00000 0. 00000 0. 00000

~1071 0. 00000 0. 00000 0. 20000

~1071% 0.00000 10. 00000 0. 24000

~107° 0. 00000 1.00000 0. 25000

~1078 0. 30000 0. 30000 0. 25000

~10”" 0. 25000 0. 26000 0. 25000    
We were doing fine until Ax got very close to 0, and then things went all to

pieces. On any other calculator, similar results would be forthcoming. Indeed, for an
8-digit calculator, you would probably already be getting peculiar answers at Ax = + 10"

and if your calculator carries still fewer digits you would be in trouble still sooner.

y = x"L. At x = 0. 7, the slope of this, to 10 significantOr consider the curve

digits, is seen to be

-2.0408 16327 .

Let us calculate the slopes of the secants connecting the points at x = 0. 7 and at

x = 0.7 +Ax for Ax= 107"for various values of n.
2. 2.

The results are given in Table

Again, we start off very well, but when Ax gets quite small and we should be

getting close to the right answer, everything goes wrong. We get better and better down

after which we get worse and worse. Onother calculators,to Ax = 1075 or Ax = 10”©
)

44

)



2. Danger of cancellation

 

 

 

 

Table 2. 2

AX calculated slope of secant

on HP-33E on TI-57 on TI-SR 50A

107¢ ~2.0120 725 -2.0120 7243 ~2.0120 72434 6

107> ~2.0379 05 ~2.0379 050 ~2.0379 05034

107" -2.0405 3 -2.0405 25 -2. 0405 2482

107> ~2. 0408 ~2.0407 8 ~2.0407 872

107° -2. 0410 -2. 0408 -2.0408 13

10"’ ~2. 0500 -2. 0410 -2.0408 2

1078 -2.1000 -2. 0400 -2. 0408

1077 -2.0000 -2.0000 -2. 0410

10719 -10. 000 ~2. 0000 ~2. 0400
10”11 0. 0000 0. 0000 ~2.0000
10714 0. 0000 0. 0000 ~2. 0000
10713 0. 0000 0. 0000 0. 0000

~10713 0. 0000 0. 0000 ~10. 000
~1071¢ 0. 0000 0. 0000 ~3. 0000
~10” 11 0. 0000 ~10. 000 ~2.1000
~10710 0. 0000 ~3.0000 ~2. 0500
~107° ~2. 0000 -2.1000 -2. 0410

~1078 -2. 0000 -2. 0500 -2. 0409

~10”" ~2. 0400 ~2. 0410 ~2.0408 2

1078 ~-2. 0400 -2. 0409 -2. 0408 19     
similarly erratic results would be forthcoming.

To see how this happens, write

HP-33E, which is a 10 digit calculator.

1. 4285

The values of f(x) = x~! at x=10.7
close that the first 8 digits agree.

leaving us only a 2 digit answer.

out the calculation for Ax = 1078as done on the
We get

71408 - 1.4285 71429

1078
= -2.1.

and x = 0.7 + 1078 are very close together, so

When we subtract, these first 8 digits cancel,
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Let us look at the precisions and accuracies involved in this calculation. The

HP-33E gave the approximations

(2. 1) 1. 4285 71408

(2. 2) 1. 4285 71429

for (0.7 + 10_8)—l and (0. 7)_1, respectively. These are both precise to 10 digits, but

their difference is precise to only 2 digits.

The absolute error for (2.1) is about 1. 6 X 10_10, and that for (2. 2) is about

-4.3 x 10710 When we subtract, the absolute errors should subtract. So the absolute
error for the difference should be about 5.9 X 10'10, which it is indeed. So our sub-
traction has not made a great difference in the absolute error.

The relative error for (2. 1) is about 1.1 X 10'10, and that for (2. 2) is about

-3.0 x 10~10, However, when we subtract, we get a very much greater relative error for

the difference, namely about 2.9 X 1072,

To get the slope of the secant, we must now divide the difference of (2. 1) and (2.2)

by 1078, This leaves the relative error unchanged, so that it is still about 2.9 X 1072
However, it multiplies the absolute error by 10°, increasing it to about 5.9 X 102,

So, if we take two points with nearly equal x-coordinates, and try routinely on

the calculator to calculate the difference quotient or the slope of the secant, we will

have bad cancellation, and will come out with an answer that is neither very precise

nor very accurate.

We can calculate a much more precise and accurate answer by using a calculus

trick. For f(x) = x~1
)

L 4
flx+Ax)-f(x) x+Ax x 1 x- (x+Ax) _ -1

 

—

AX AX T Ax (x+Ax)x  (x+Ax)x

That is, the difference quotient can be put in the form

-1
2.3 —_—

(2. 3) (x + Ax)x

where there is no danger of cancellation.

If we put x = 0. 7 and Ax = 10_8 in (2. 3), we get on the HP-33E the correct

slope to 10 digits, namely

-2. 0408 16297 .

But if we just subtract without using the calculus trick, we lose 8 digits, and cannot

hope to be anywhere near right.
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2. Danger of cancellation

Moral. If one wishes to calculate a difference quotient for two points very close

together, one had better use some ideas from calculus to avoid a poor result, i. e., to
avoid cancellation.

Problem 2. 1. Find the appropriate calculus trick which would allow you to calcu-

late the difference quotient (f(x + Ax) - f(x))/Ax for f accurately, in case

2
X

4
X

(@) f(x)

(b) f(x)

(c) you already know how to calculate the difference quotient for the functions

g and h accurately and

l. f(x) = g(x)h(x) 2. f(x) = gh(x).

Hint. Look at how your calculus book derives the formulas for differentiating such

a function f (for (c)2, look up the derivation of the "chain rule"),

We discuss further ways of using ideas of calculus to combat cancellation when

evaluating f(x + Ax) - f(x) for “small" Ax in Sect. 3 of Chap. IV.
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Chapter IV

SOURCES OF ERROR

0. Guide for the reac_i_g
 

Almost every calculation performed on a calculator is subject to some error, for

reasons which will be explained during the course of the chapter. Manufacturers of

calculators try to design them so that the error in a single step "doesn't make any dif-

ference. " Some manufacturers take more pains with this than others. But even with the

best calculators, if one has an extended sequence of steps then the errors of the indi-

vidual steps (each by itself perhaps too small to matter) can accumulate to produce at

times a surprisingly large total error. For calculators whose manufacturers have not

kept the errors for individual steps as small as they should, this accumulation of error

can lead to very misleading final answers without the user being aware anything is

wrong.

The most common source of error is roundoff. This is discussed in Sect. 1. The

effect of roundoff error can be magnified by cancellation, as discussed in Sect. 2. Pos-

sible ways to reduce cancellation are discussed in Sect. 3. Some of these topics in-

volve ideas from differentiation. So it is best to wait until you have some familiarity

with differentiation before reading this chapter. However, you should not wait past that

point, since it is important to learn how to minimize errors.

1. Roundoff.

Your first brush with roundoff occurs when you try to enter a number into your cal-

culator which won't fit. For example, there is no way to enter the number = into your

calculator. The reason for this is that this number cannot be written exactly as a deci-

mal fraction with eight or ten digits or thirteen or a hundred. Now you may argue that

your calculator actually boasts a key marked m which supposedly puts the number =

into the display every time you press that key. But, it clearly cannot get = into the

display to more digits than the display can hold, nor can the calculator store w inter-

nally to more digits than the calculator will hold. Some users discover this discrepancy

when they use their calculator to compute sin 7 (in radian mode) and get a nonzero

answer. For example, sinm = - 4.1 X 10710 on a certain 10 digit calculator, corre-

sponding to the fact that,on that calculator, the m key delivers the number
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1. Roundoff

(1. 1) 3.1415 92654

rather than the nonterminating decimal expansion

™= 3.1415 92653 58979 32384...

On that calculator, the manufacturer has provided the value of m correctly round-

ed to 10 decimal digits. This means that the value (1. 1) of m provided is the closest

number to w obtainable if one has only ten decimal digits to work with.

More generally, to round & number x to N digits means to determine the N-digit

number which is closest to x. You can usually obtain this rounded number by writing

down the first N+1 significant digits of x, adding 5 in the (N + 1)st place, and then

throwing away the (N+1)st digit. For example, rounding w to 4 digits gives

3. 1415

5
3. 1420

which gives 3. 142, while rounding it to 13 digits gives

3.1415 92653 5897

+ 5

3.1415 92653 5902
 

which gives 3.1415 92653 590 . So, rounding does not affect only the last digit re-

retained, but may also affect earlier digits. As an extreme example, rounding the num-
ber 1.9999 99999 93 to ten digits gives the number 2. 0000 00000, all of whose

digits are different from the corresponding digits of the original number. One minor ex-

ception would occur if one wishes to round 0.99999 99999 7 to ten digits. After add-

ing 5 X 10"11, you throw away the last two digits to get the rounded ten digit number

1. 0000 00000. Butrounding 0.99999 99999 3 would give 0. 99999 99999.

There is a lazy way to fit @ number requiring more than N digits into an N-digit

calculator, called truncating. In this way, you simply throw away all the digits after

the N-th. But this is worse than rounding for two reasons. It doesn't always get the

best N-digit approximation into the calculator, so the error made may be larger than

necessary. Also, errors are less apt to offset each other in subsequent calculations,

since all numbers start out being less than or equal to what they ought to be (in absolute

value). In short, truncating is a biased way to fit numbers into the calculator.

Whether it is done by rounding or truncating or by yet another way, the error made

when trying to fit a number into an N-digit calculator is called roundoff error.

Problem 1. 1. Round each of the following numbers to 10 digits.

22066666 66666 66666 ...
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In2=0. 69314 71805 59945 ...

m= 3. 1415 92653 58979 ...

V2 = 1.4142 13562 37309...

sin 1 = 0. 84147 09848 07896 ...

249 = 56294 99534 21312

tan (1. 5612 91773) = 105.20 95563 04960 ...

If a number is rounded to N digits, and the rounded value is in turn rounded to
M digits, with M < N, one will not necessarily get the same value as if the original

number had been rounded straight off to M digits.

Problem 1. 2. Invent a 6-digit number B such that, if one first rounds it to 4

digits and then rounds that result to 2 digits, one will get a different number from what

one gets if one rounds B directly to 2 digits.

Once you begin to operate on the numbers you have somehow managed to get into

your N-digit calculator, you incur further roundoff error because the results that you

should get by your calculations can usually not be written exactly as N-digit numbers.

For example, try dividing 2 by 3. But, calculators differ substantially in how they

cope with this problem. We now illustrate this with two calculators, the HP-33E and

the TI-57.

The HP-33E is a 10-digit calculator. But, in order to find out exactly what an-

swers it calculates, one has to learn some of its eccentricities. Although it is a 10-
digit calculator, the display often shows fewer than 10 digits. It can be set to show

very few digits in the display, if one wishes (see the manual), but it will still be holding

10 digits internally. At any time, one can see what the 10 internal digits are by press-

ing the MANT key (which has to be actuated by first pressing the key g). If one press-

es SCI followed by 7, 8, or 9, the display will show a 7-digit truncated approxima-

tion to what the calculator is holding internally. If one presses SCI followed by 6,

the display will show a 7-digit rounded approximation to what the calculator is holding

internally.

The TI-57 is an 11 digit calculator, but the display never shows more than 8

digits, which are a rounded version of what the calculator is holding internally. As ex-

plained in the manual, one can set the display to show fewer digits. However, often

the 8-digit display is actually giving fewer significant digits, because there are some

zeros in the lefthand spaces.

For example, if one divides 2 by 3, the display shows 0. 6666 667. The cal-
culator is actually holding

0. 66666 66666 6
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internally, but to find this out one has to use some trickery. After dividing 2 by 3,

subtract 0. 66666. Then the display shows 0. 0000 067. However, the calculator is

then actually holding

0. 00000 66666 6

internally. To show this, multiply by 100,000, whereupon the display shows 0. 6666 66.

Incidentally, one cannot key a number of more than 8 digits directly into the dis-

play of the TI-57. If one attempts to key in 1. 5612 91773 directly by pressing the

digits (and decimal point) in order, the TI-57 will accept the first 8 digits (with the

decimal point) and show them in the display, but will completely ignore the final 7 and

3. Although the TI-57 can actually hold 11 digits, it refuses to accept more than 8 if

they are just keyed in successively. In order to get 1.5612 91773 into the TI-57, you

first key in 9.1773 X 1072, and then add 1. 5612 to it.

Still other calculators have still other variations of this eccentricity.

Problem 1. 3. Find out how many digits your calculator carries internally, and how

to read all of them out. Also, find out how to enter as many digits of a number as pos-

sible into your calculator.

Problem 1. 4. Each of the numbers mentioned in Prob. 1.1 is obtainable (approxi-

mately) on your calculator with a few key strokes. Use what you have learned in Prob.

1. 3 to find out how accurately your calculator provides the numbers mentioned in Prob.

1. 1. If you have an 8-digit or 9-digit calculator, replace the last line of Prob. 1.1 by

tan (1. 5612 918) = 105. 20 98551 97179 ...

Incidentally, if you should try Prob. 1.4 on an HP-33E, you would get the 10-

digit rounded numbers you were supposed to get for Prob. 1. 1. That is, the approxima-

tions given by the HP-33E are as close to the numbers as anyone can get with 10 digits.

You do not do this well with every calculator, as you possibly found out when you

tried Prob. 1.4. For example, the answers produced by the TI-57 are given in Table 1. 1,

together with their errors.

Of these approximations, only the one for w is correctly rounded to 11 digits.

The next to last number is so far off that the error is already evident from the rounded 8

digit display, which is all that calculator will let you see without a special effort on

your part.

We consider now in more detail how these two calculators cope with the fact that

the result of a calculation does not fit into the calculator. Consider, for example, the
addition of two numbers of "different" sizes. Say we wish to add

10000 00000

+ 666 66666. 67 .
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Table 1.1

expression as evaluated approximate

on TI-57 error

2/3 0. 66666 66666 6 6.7 x 101°
In 2 0. 69314 71810 0 - 440, x 10 1'%

m 3,1415 92653 6 - 1.0 x 101

2 1.4142 13562 0 37, x 101!

sin 1 0. 84147 09853 8 - 570. x 107 1%

249 5.6294 99652 8 x 10°° ~12000. x 10°
tan (1. 5612 91773) 105. 20 95585 2 - 2200, x 100     

This would give a 12-digit sum, which is beyond the capacity of either the HP-33E or

the TI-57. In such a case, the TI-57 truncates all digits in the smaller number beyond
what would make 11 digits for the larger number. So it gives the sum

10666 66666. 6 .

For the subtraction

1 00000 00000

- 66666 66666.7
)

it truncates the second number, giving

1 00000 00000

- 66666 66666

and so gets

33333 33334

for the difference.

The HP-33E apparently adds an extra zero to the larger number, making it tempo-

rarily an 11-digit number. It then rounds the smaller number so that it does not stick

out beyond that. Then it adds (or subtracts) and, if 11 digits result, it rounds down to
10. Thus, for the first addition, the HP-33E gives 10666 66667. For the subtraction

1. 0000 00000

- . 6666 66666 7
)

it gives
0. 33333 33333 .
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Next,we consider multiplication. When a calculator that holds N digits is asked

to calculate the product of two N-digit numbers which it is holding, it generates a prod-

uct with 2N digits (sometimes only 2N - 1). This must be reduced to N digits so the

calculator can hold an approximation for the product. Some calculators do this by round-

ing off the full product, and some by truncating it. Rounding off is preferable, of course.

The HP-33E rounds off after multiplying. Thus, the product of 1.1111 112 and

1. 1111 111 is

1. 2345 67987 65432 .

For this, the HP-33E gives the approximation

1. 2345 67988,

correctly rounded to 10 places.

The TI-57 truncates after multiplying. It gives the product above internally as

1.2345 67987 6,

truncated to 11 places. It rounds this correctly to 8 digits for the display.

Problem 1. 5. Try to find out if your calculator rounds or truncates after multiply-

ing.

We hope that you are by now convinced that your calculator usually makes an error

when carrying out any of the arithmetic operations and that these errors differ from cal-

culator to calculator, even if you start with the same numbers.

There are also errors associated with the use of the various function keys on your

calculator, such as the Jx key or the sin key and the like. We comment on this in

Chap. I . To be precise, such a key delivers a certain function exactly and without

error. But, you are usually not interested in the function given by the key, but rather in
the function written on the key, and these two functions usually differ. If, for example,

a certain 10-digit calculator delivers the answer

1. 4142 13562

when you press the \x key with the number 2 in the display, then this answer is, as

an approximation to the number 2 , in error by about 0. 373 X 1077.

The error in an answer produced by one of the calculator keys depends on the argu-

ment and also varies from calculator to calculator even if you start with the same argu-

ment. For example, the sin key delivers the answer 0. 84147 09848 on an HP-33E

and the answer 0. 84147 09853 8 on a TI-57 when the number 1 is in the display

(and the calculator is inradian mode). For comparison, sin 1 = 0. 84147 09848 07896...

This also shows that the error is often more than just the roundoff due to the fact that

the correct answer won't fit into the calculator.
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In short, if a key on your calculator purports to evaluate the calculus function f,

and if you enter a number x into the display and press the key, you will get

f(x) - €

instead of the exact value f(x). Here ¢ is the inherent calculator error. It varies from

one function to another, it varies from one x to another, and it varies from one calcula-
tor to another. We just saw an instance for the function sin. Let us see what happens

for tan. In Table 1.2 we list five values of x, together with values of their tangents

 

 

Table 1. 2

X tan x

x| 9.5045 53935 x 107 | 9.5048 40148 20x10~3

x, 1.5612 91772 105.20 95452 35

x, 15612 91772 4 105. 20 95496 63

x, 15612 91773 105.20 95563 05

x. 102.09 19665 102. 09 23322 61    
 

rounded to 12 significant digits. Values of the tangents, with errors, as calculated on

two calculators are given in Table 1. 3 for the same values of x that were used in

 

 

 

Table 1. 3

X tan x

on HP-33E € on TI-57 €

-3 -13 -3 -13
x, 9.5048 40148 x 10 2 X 10 9. 5048 40007 1 X 10 1411 X 10

x, 105.20 95452 35 x 1072 105.20 95474 6 ~2225 x 1077

X, 105.20 95518 8 22217 x 1070

x, 105.20 95563 5% 1070 105.20 95585 2 ~2215 x 1077

x, 102.09 23322 61 x 1070 102.09 23643 6 232099 x 10" °       
Table 1. 2, except that we could not give a value on the HP-33E for x, since x3 is an
11-digit number and would not fit into the display of the HP-33E.

The same discussion applies to a function that cannot be approximated by pressing

a single key, but requires a succession of key strokes. That is, you would have to write

a program to evaluate f. Every key that you press in the program contributes an error,

and these errors accumulate in a complicated fashion. So, if you enter a number x into

54



1. Roundoff

the display and run your program, you will get

f(X) - €

instead of the true value f(x).

If you use the same program to calculate f(x') for some x'# X, you obtain the

number

f(x') - €'

and the error ¢' is, in general, different from ¢ . But, typically,for x' "near" X, you

should expect all errors ¢' to fall into some interval (¢ i,,¢max)- Under ideal cir-

cumstances, the calculated value for f(x) is obtained by rounding the exact value f(x)

to the number of digits carried by the calculator. In that case,

¢ =-e . =5x109w,
max min

assuming the calculator to carry d digits. Usually, € and ~€min will be larger

than that, but usually epax = - €min- It is possible, though, to have e5, quite dif-

ferent from -e ;. , in the presence of systematic error in the calculated function values.
In any case, we refer to the larger of the two numbers e and -epjp @s the noise

level in the calculated function values. Thus,
max

|calculated value of f at x - f(x)] < noise level .

For example, we would surmise from Table 1. 3 that the noise level in function values
tan x for x near 1.5612 91772 is about 4 X 10”8 on an HP-33E and about 2 x 107

on a TI-57. Of course, more function values would be required to come to a reliable
statement about the noise level. Also, one would note that, on the TI-57, all errors for
X near 1.5612 91772 agree to about three digits. In fact

(c ) = (-223 x 1070, 221 x 107%)1 ) & ’min’ max

which is a sign of systematic error in the algorithm used for tan on that calculator.

It is usually quite tricky if not impossible to understand how the errors made at

each step in your program for f accumulate to give the error ¢ in the final answer for

f(x). As an indication of what might be involved in the study of such error propagation,

we now discuss the situation where we are supposed to evaluate the function f at some

point X0 but have available only the approximation xy -Ax to xqg. The question is:

How does this argument error Ax affect the accuracy of the computed answer for f(xo)?

The computed answer

f(xo - Ax) - ¢

is now in error on two counts. There is the calculation error e and there is also the

error f(xg) - f(xg - Ax). This latter error we can gauge with the help of calculus.
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Looking forward to (1. 4) of Chap. VI, we have

f(x. - Ax) = f(xO) - f'(xO)Ax i
0

So the total error in our computed answer is about

f' (XO)Ax +e' .

(Recall that error = true value - approximation. ) Inother words, the error Ax in the

argument xqg + Ax enters the final answer multiplied by f'(xo) . Hence, the greater

|f'(x0)|, the more sensitive is the final answer to the error Ax in the argument xg+Ax.

To be precise, Ax has also affected the calculation error, since, as we said
earlier, we cannot expect ¢' to equal the error ¢ associated with the argument xg.

But, though ¢ and ¢' could be considerably different, each is less than the noiselevel
in absolute value. In summary, we expect the calculated value for f(xq) to be of the

form

(1. 2) f(xo) - f'(xO)Ax—e' ,

with Je'] < noise level.

We illustrate these ideas, using once again the tangent. Suppose you wish to

calculate tan (1. 104\2). From the accurate value of N2 given in Prob. 1.1, you can
calculate that to 14 significant digits

1. 10442 = 1. 5612 91772 8599 .

This has too many digits to input in either the HP-33E or the TI-57, or most any other

calculator. Of course, you can round it off to the nearest number that can be input. For

the HP-33E, this would be

(1. 3) 1. 5612 91773 .

For the TI-57, this would be

(1. 4) 1.5612 91772 9 .

Actually, the situation is worse than that. You start off innocently to calculate
tan (1. 104v2). So you take N2 and multiply by 1. 104, and think you are ready to

press the tan key. But what do you have in the display? On the HP-33E, you have

not (1. 3) but

(1. 5) 1. 5612 91772 .

On the TI-57, you have not (1. 4) but

(1. 6) 1. 5612 91772 4 .
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In order to determine the error in the numbers (1. 5) and (1. 6) as approximations to

1. 104\ 2, we use a more precise approximation for Y2 than given in Prob. 1.1, and find

that

(1. 7) 1.10442 = 1.5612 91772 85989 ...

We have

(1. 8) tan (1. 10442) = 105.20 95547 54012 ...

We have

d 2
- tan X = sec X .
dx

So for f(x) = tan x, we have for x_, = 1. 10442
0

f'(xo) ~ 11070 .

On the HP-33E, we got

x0 - Ax = 1.5612 91772

(see (1. 5)). This is the x, of Table 1.2. So

Ax =8. 5989 x 1010

Hence

£'(x,)Ax =95 X 107",

which is much larger than the noise level 4 X 10™8 surmised from Table 1. 3. S0, in

this case, the error in the HP-33E value for tan x; (recorded in Table 1. 3), if consid-

ered as an approximation to tan (1. 104V2) (given in (1. 8)), is almost entirely due to

the discrepancy Ax between x, and xp = 1.104v2.
)

On the TI-57, we got

X, -Ax = 1. 5¢€12 91772 4

(see (1. 6)). This is the x5 of Table 1.2. So

Ax = 4.5989 x 1010

Hence

)JAx = 5091 X 1077 .
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This is a bit over twice the noise level which we surmised earlier from Table 1. 3. 1In

this case, the noise level is therefore a significant part of the error. More explicitly,

we find, with ¢ as taken from Table 1. 3 for x3, that

f'(xO)Ax +¢ = (5091 - 2217) X 10'9 = 2874 X 10'9

This agrees to all four digits with the error got by subtracting the value of tan X3 in

Table 1. 3 from the value given above for tan (1. 104V2).

Problem 1. 6. Show that you may expect difficulties in evaluating expressions of

the sort

n
(f(x))

accurately for large n.

The only simple remedy against roundoff error is to carry more digits in the calcu-

lations. Since the number N of digits which your calculator carries is fixed, this re-

quires special procedures. A common scheme is double precision in which all calcula-

tions are carried to 2N digits. For each number, the 2N most significant digits are

stored in two registers. Procedures are worked out to add, subtract, multiply and divide

two such numbers with the aid of the ordinary arithmetic of the calculator. On the more

sophisticated programmable calculators, there are programs available for this. But you

would find it quite a challenge to develop such programs yourself.

Problem 1. 7. For the argument 1. 5612 91773 of the tan in Prob. 1.1, use the
accurate value of w provided in Prob. 1.1 to compute the first ten significant digits of

the difference d between (w/2) and said argument. Then use this accurate value to
calculate

m _ o1tan (1. 5612 91773) = tan(z d) = cotd = P

on your calculator and compare with the value given in Prob. 1.1 and in Table 1. 1.

Problem 1. 8. Use an accurate value of w/2 with the value of 1. 104y2 given

in (1.7) to calculate an accurate value of

D=mn/2-1.104V2 .

Then

tan (1. 104V2) = tan (r/2-D) = cot(D) = 1/tan (D).

Use this to calculate an accurate value of tan (1. 10442), and compare with (1. 8).
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2. Cancellation.

 

Cancellation occurs when you subtract a number from another which is almost

equal to it. For example, let us calculate the difference 22/7 - # on a 10-digit cal-

culator. This gives

3. 1428 57143

- 3.1415 92654

0.0012 64489

Note that we incurred no roundoff error in this subtraction. So, what is the problem?

The problem becomes apparent when you compare our computed answer with the

accurate difference

22/7 - mw= 0.0012 64489 26734 ...

You now see that our computed difference, as an approximation to the number 22/7-m

is accurate only to seven digits, even though we started with approximations to 22/7

and w which are accurate to 10 digits. We lost three digits of accuracy, because we

lost three digits of precision. The first three significant digits in the two numbers 22/7

and w coincide and therefore cancel each other when we subtract.

)

In other words, cancellation is not an error in itself. Rather, cancellation allows
earlier errors to become more prominent.

Cancellation can happen in less obvious ways. For instance, consider the poly-

nomial

4
(2. 1) X -8x3+12x2+16x+4.

Let us try to calculate its value for x = 40/9. Arranged for Horner's method (see Sect.1

of Chap. II), the polynomial has the form

((x-8)x+12)x +16)x + 4 .

With x = 40/9, we have on the HP-33E calculator

(x - 8)x =~-15.802 46914 .

So when we add 12, the first digit cancels. Then

((x - 8)x +12)x =-16.899 86284 .

So when we add 16, two more digits cancel. Then

(((x - 8)x+ 12)x + 16)x =-3,9993 90400 .

So when we add 4, four more digits cancel, and we get the calculated value
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0. 00060 96000 .

Altogether, we have lost 7 significant digits through cancellation. As we were

using the HP-33E, which has 10-digit arithmetic, we cannot expect more than 3 digits

to be correct at this stage. The value of the polynomial is

< 0.00060 96631 61103 49032 ...
94

So we were a bit lucky, as the fourth significant digit is nearly correct.

Cases of severe cancellation occurred in Sect. 2 of Chap. IIL In particular, look
a few lines below Table 2. 2 of Chap. III, where the first eight digits cancelled, leaving

only two correct.

Problem 2. 1. See what value your own calculator gives for the polynomial (2. 1)

when x = 40/9.

Problem 2. 2. Attempt to calculate the difference quotient

§[x + AX - 5[x
(2. 2) Ax

for x = 3 and Ax = 10—7.

Remark. Calculated values of (2. 2) for x = 4 and various small values of Ax

are given in Table 2. 1 of Chap. III.

Problem 2. 3. Attempt to calculate the difference quotient

2 3) 3jx +Ax - j3x

AXx

-7
for x = 4 and Ax = 10

Problem 2. 4. Attempt to approximate

(2. 4) f(x) = x-1lnx -2

for x = 3.1462. How many digits do you think are correct in your calculated answer?

Problem 2. 5. Try to calculate the difference quotient

sin (x + Ax) - sin (x - Ax)

(2. 5) 2AX

for x = 2 and Ax = 10“7 )

Problem 2. 6. Calculate
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(2. 6) sinh (—l— ) .
220

You will learn in due course (if you do not already know it) that sinh x is called the

hyperbolic sine of x, and is defined as

(2. 7) sinh x = %(eX -% )

If your calculator has a sinh key, use (2. 7) nevertheless for the calculation, so as to
cause cancellation.

Remark. An accurate approximation for (2. 6) is

9.5367 43164 0625 X 10'

A famous equation is

(2. 8) X1+E e EA

which you will learn when you come to series in the calculus. Of course, this is an in-

finite sum, and so you cannot evaluate it by adding it up. But you will then also learn

that

(2. 9) e = pN(x) + RN(x)

with PN the polynomial given by

2 N

(2. 10) Py() = 1475 457+ 4T

and

N+1

(2.11) RN(x) :(—:)lil-:l_)?eg ,

for some £ between 0 and x. It is possible to verify that

11
<5x%x 10

R__(-10)

(2.12) ‘—59————
-10

e  

You would therefore expect to calculate e_10 to 10 digit accuracy by evaluating the

polynomial Py at -10. And, indeed, by (2. 9) and (2. 12) this would succeed if you

could evaluate Pgy to 10 digit accuracy. But unfortunately, you encounter rather

severe cancellation if you attempt to calculate p50(—10) on a calculator.

You could, of course, use Horner's method to evaluate pgy. That would give
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X 1 1 1
—_— 4= o - 1.("°((50.'+49!)X+48.')X+ +1.,)x+

But you would be better off to evaluate pgy in an alternate "nested form"

X(.. (5 X X X X—_ . = = 1.
+1)9+1) 8+...)2+1)1+

Use of a program with a suitable subroutine will let you carry out this calculation with

little effort.

:'<Problem 2. 7. Calculate an approximation for e_10 by evaluating pgy at -10.

Compare with what your calculator gives for e~ 10 , and see how bad the cancellation

effect is.

“Problem 2. 8. In doing Prob. 1. 8, you might decide that instead of calculating D

by hand, you could shuffle off the work onto the calculator. So calculate D by calcu-

lating w/2 and 1.104y2 on your calculator, and subtracting them. Explain why you

get such a poor answer for tan (1. 104y/2) this way.

In extreme cases, cancellation can be so bad that not more than one correct digit
could survive. However, roundoff will usually throw the final digit several units off

(or even the last two digits). In such a case, the answer being given by the calculator

will have nothing whatsoever to do with the correct answer. When this happens, it is

another case of the calculator producing "noise. " A particularly severe case occurs

near the end of Sect. 3 of Chap. VIL

3. Some ways to reduce cancellation.

Roundoff errors are unavoidable and usually matter little, except when they are

catapulted into prominence through cancellation. It is therefore important to be on the

lookout for cancellation and to try to avoid cancellation if possible.

At times, cancellation can be reduced or avoided merely by rewriting a formula

appropriately. A famous instance of this is the quadratic formula

% = -bi\]bz—élac
(3.1)

2a

for the two roots of the quadratic equation

2
(3. 2) ax +bx +c=0.

Suppose we wish to solve

2
(3. 3) x =-200x+1 = 0.

By the quadratic formula, (3. 1), the two roots are
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200 + 440000 - 4

2 )

or

(3. 4) 100 £49999 .

On the HP-33E, we get

V9999 = 99.994 99987 .

When we use the + sign in (3. 4), we get

(3. 5) 199. 99 49999

as one root. But when we use the - sign in (3. 4), the first five digits cancel and we

get

(3. 6) 0.005 00013 ;

because of the way the HP-33E subtracts, we happen to get six significant digits. So

we have at most six significant digits of accuracy (or perhaps only five on some calcu-

lators).

Of course, six significant digits is more than one usually needs. So why worry?

There may be further cancellations in subsequent calculations, and for that reason we

would like to maintain high accuracy as much as possible, particularly when this can be

done easily, as in the present case. Take the quadratic formula, (3. 1), and multiply

top and bottom by

-b FVb° - 4ac .

This gives

(3. 7) = 2C
°7 —b¥\/b2—4ac .

For the equation (3. 3), this would give

 

2

200 ¥/40000 - 4

or

]
(3. 8) 100 49990

If we use the - sign on the calculator, we get something like (3. 5), but with a LARGE

cancellation. But if we use the + sign, we get
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1

199.99 49999

which works out to

0. 00 50001 25006.

This is the other root, correctly rounded to 10 significant decimal digits.

We have given the procedure we did for the quadratic formula because it can be

adapted to other situations. Actually, for the specific equation (3. 3),the matter could be

handled more simply as follows. If r; and rp are roots of (3. 3), then by Cor. 2 for

Thm. 2.1 of Chap. II,

(x- rl)(x- rZ)

must divide the left side of (3. 3). As the coefficient of x* must be unity, we get

2
x =-200x+4+1= (x- rl)(x- rz).

Multiplying out the right side of this, we see that

I‘lr2 = 1.

So, as soon as we find that (3. 5) is an approximation for r,, wecan immediately write

down

1 1

27 r, - 199.99 49999 °

This is the same result that we got above, by a different argument.

Problem 3. 1. For the formula (2. 2), find an equivalent formula that does not have
cancellation.

Hint. Use the same trick that was used for the quadratic formula.

Problem 3. 2. For the formula (2. 3),find an equivalent formula that does not have
cancellation.

Hint. Multiply top and bottom by

2 1 1 2
(x + Ax)3 + (x + Ax)Ix3 + x5 .

Problem 3. 3. Calculate both roots of

x2—683x—l=0

to full accuracy.
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3. Some ways to reduce cancellation

Problem 3. 4. For the difference quotient (2. 5), find an equivalent formula that
does not have cancellation.

Hint. Remember that addition formula for the sine function,

sin (@ £ B) = sin @ cos B + sin B cos a ,

and make use of the fact that your calculator will evaluate

sin Ax

Ax

accurately for Ax near (but not at) zero. See Chapter VIII for a discussion of this latter

point.

Problem 3. 5. For the difference quotient

cos (o + Ax) - cos (@ = Ax)

2AX ’

find an equivalent formula that does not have cancellation.

Problem 3. 6. Find a different way to write the expression

1 - cos x

for x near zero which avoids cancellation.

Hint. Multiply and divide by 1 + cos x.

Remark. In view of Problems 3.1, 3.2, 3.4 - 3. 6, it would be instructive to re-
view Prob. 2.1 in Chap. IIL

“Problem 3.7. Find a way to calculate e~10 without the cancellation that you got

in Prob. 2.7, and perform the calculation.

Hint. Recall that

-X 1
e = —

X
e

So

10 _ 1
- 10 ¢

e

If we take x = 10 in (2. 8), we get el0 with no danger of cancellation. Furthermore,

on a 10-digit calculator, you can stop with the term
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IV. SOURCES OF ERROR

 

  

43
10

43!

and get el0 with 10 significant digits, since by (2. 11)

Ry, 10 <5x 10M
e10 ’

A second way to avoid cancellation is through a bit of calculus. Cancellation of-

ten occurs when a function f is evaluated near a zero, i. e., near a point xy for which
f(xg) = 0. In such a case, looking forward to (1. 4) of Chap. VI, we have

(3. 9) f(x) Ef(xo) + f (xo)(x - xO) = f (xo) (x - xO)

with the error in this approximation the smaller the closer x is to X

If now x is given to us near x then there can be cancellation just in calculat-
)

ing x - X0 and the approximation (3.9) may then be of little use to us. But, some-

times in such a situation, x is (or can be) given explicitly in the form

X = x0 + h

and then (3. 9) can be used effectively in the form

(3. 10) f(xo + h) Ef'(xo)h .

For example, in Prob. 2. 6, you experienced much cancellation when evaluating

sinh (2=20), 1In this case, you have f(x) = sinh x = (eX - e™¥)/2 and X9 = 0, so that

x = h. 8o, as soon as you have learned that

d x_ x
dXe = €

you can use (3. 10) to do much better.

Problem 3. 8. Calculate sinh(Z—ZO) more accurately by means of (3. 10) and com-

pare with the value given after Prob. 2. 6.

Remark. In the case of the hyperbolic sine, it is very easy to do much better than

(3. 10). When you come to series, you will learn that

(3. 11) sinh x = (eX - e-x)/Z

X3 2n-1

= X457tAT +Rn(x) ,

with
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3. Some ways to reduce cancellation

2n+1
(cosh x) [x]|

an(X)l < (2n+1) !

This can be used to show that the approximation

3 2

(3.12) sinhxgx+3;—,=x(1+-xz-)

has relative error less than 5 X 10”11 for all x with lxl < 8.8 X 10-3. This approx-

imation should therefore be used in preference to the formula (eX - e™X)/2 whenever

sinh x 1is to be evaluated for this range of x.

It is a bit trickier to avoid cancellation near a zero of f if you do not know the

zero. For example, you found cancellation when you tried, in Prob. 2.4, to evaluate

the function f given by

(3.13) f(x) = x-lnx-2

at x = 3.1462. In such a case, you will simply have to carry enough digits during the

calculation so that in the end you still retain, in spite of the cancellation, the precision

you desire. You found in Prob. 2.4 that In(3.1462) =1. 1461 95375, while x - 2 =

1. 1462, hence there is cancellation of five digits when evaluating (3.13) at x= 3. 1462.

Thus, to get f(3. 1462) nevertheless to 10 digits, you would have to calculate

In(3. 1462) somehow to 15 digits.

There is some consolation, though. Once you have obtained the number f(xo)

accurately for some x( (whether or not xqg is a zero for f), you can then safely use

the approximation

(3. 14) f(xo + h) = f(xo) + f'(xo)h

for "small” h in order to evaluate f with the same accuracy for all x = xg +h "near

Xo.

In practice, for example for the function f given by (3. 13), one would actually

use more sophisticated approximations than (3. 14) in order to allow for relatively large

values of h. We discussed such an approximation earlier for sinh x. But the basic

idea is the same, namely, to carry out the required calculation for just one value of x,
carrying as many digits as is necessary to produce the final value to the desired accu-

racy, in spite of the cancellations along the way. After that, you have an accurate for-

mula for f(x + h) in terms of h, whose evaluation as a function of h involves no un-
due cancellation.

As a final example, consider the cubic polynomial p given by

3 2
(3. 15a) p(x) = a.x  +a,x +a.x+a

0 1 2

with
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IV. SOURCES OF ERROR

(3. 15b) a, =1, a =-2.1213 20344, a, = 1.5, a,=-0.35355 33906.

This polynomial is discussed in Chap. VIL. As is pointed out there, there is much can-

cellation when it is evaluated for x near the value xg = 0.707. So, we now set

(3. 16) x=0.707 +h

and rewrite the polynomial as a function of h.

For this, recall from Chap. II that, in the course of using Horner's method to
evaluate this p at x; = 0.707, you obtain the numbers by = a;, and then b, =
bi—lXO +a;, i=1,2,3. Then you have

p (x)
2

(x - XO)[box +bx4+ b2] + b,

h q(x) +b3 ,

by Thm. 2.1 of Chap. IL There is, as you will see below, also cancellation in the

evaluation of the quadratic polynomial q for x near x5 = 0.707, so we go through

Horner's method again, this time applied to q. This gives us Co = by, and then

C; = Cj_1%¥g tb;, i=1,2. As before, you have

qx) (x - xo) {cox + Cl'} +c,

h r(x) + c5>

There is, for our particular linear polynomial r here, cancellation in its evaluation near

xg = 0. 707, so, a final (and trivial) application of Horner's method gives us numbers
d0 = ¢ and d1 = dOXO +c, so that

]r(x) (x - XO)dO + dl

= th +d1.

Now put all these calculations together and you get

(3.17) p(x):p(x0+h)=h[h{h-d +dl}+c2]+b3.
0

The only requirement is that we carry out these calculations of the b;'s, ci's and di's

exactly so as not to lose accuracy. It is possible to make intelligent use of your cal-

culator here, even though we are going to carry more than eight or ten digits in the cal-

culations. See the discussion of double precision arithmetic at the end of Sect. 1. But

there is nothing wrong with carrying out these few calculations by hand on a suitably

large piece of paper. So, here goes:
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3. Some ways to reduce cancellation

 

 

 

 

 

 

by = -0.22805 6 X 1079,

We continue.

o~ %
0. 707 bOxO

-2.1213 20344 + 3,

-1.4143 20344 = bl

0.707 X

9 9002 42408

990 02424 08

-0. 99992 44832 08 leO

1.5 + a2

0. 50007 55167 92 = b2

0.707 X

3 50052 86175 44

3500 52861 7544

0. 3 53553 39037 1944 bZXO

-0. 3 53553 3906 + a3

-0.0 00000 00022 8056 = b3

Notice the cancelling of nine digits in this calculation of p(0. 707) =

Cy = b0

0. 707 %0

-1. 4143 20344 + bl

-0. 7073 20344 = C1

0. 707 X

4 9512 42408

495 12424 08

-0. 50007 54832 08 1%

0. 50007 55167 92 + b2

0. 00000 00335 84 = C,

calculation of q(0. 707) =

 

 

 

Notice the cancelling of seven digits in this

c, = 0.33584 x 1077. Finally,
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IV. SOURCES OF ERROR

0 = CO =1

0.707 dOXO

-0.7073 20344 + C1

-0.0003 20344 = dl

Even in the calculation of d;, there is cancelling of three digits.

The upshot of this calculation is that the cubic given by (3. 15a) and (3. 15b) can

also be written as

(3.18) p(0.707+ h) = h[h{h -0. 320344 x 10">} +0. 33584 x 10' ]-0. 22805 6 X 107

For example, evaluation of (3. 15) at the point x = 0. 70781 25 on the HP-33E

using Horner's method gives the value 0 exactly. By contrast, using instead (3. 18),

with h = 0.00081 25, on the same calculator gives the fairly accurate value

p(0. 70781 25) =1.2413 08594 X 10710 .

Problem 3. 9. Use Horner's method just once to rewrite the polynomial given by

(2. 1) accurately into the form

3 2
p(x) (x - XO)(bOX + blx + bZX + b3) + b4

h q(x) +b4

with x5 = 4.45. Then use this new form to calculate p(40/9). Compare the value you

get with the incorrect value

0. 00060 96000

obtained in Sect. 2 and the correct value

4/94 = 0.00060 96631 61103.

Problem 3. 10. For x =y = 0.7071, there is severe cancellation in calculating

the expressions

(3. 19) = + y‘2 -1

(3. 20) 2xy - 1 .

Put x = 0. 7071 + h and y = 0.7071 + k, and get expressions in h and k for which

the cancellation is considerably less severe.
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Chapter V

NUMERICAL DIFFERENTIATION

0. Guide for the reader.

Read this chapter toward the end of the instruction on differentiation. However,
pay special attention to the first four sentences of Sect. 1. Then read Sect. 3. For

this you will have to skim through Sections 1 and 2 enough to learn what the booby traps

are, and what the key formulas are. This should provide all that you need from this

chapter for your calculus course.

If you plan to go on in engineering, physics, chemistry, or such, you should not

skim too lightly over Sections 1 and 2. Now is the best time to get some help from your

instructor or teaching assistant if you should encounter a difficulty.

1. Danger of numerical inaccuracy.

Very commonly, a function is defined in terms of some formula. The rules of cal-
culus will usually enable one to write out a formula for the derivative. If one wishes

the numerical value of the derivative at some point, it is STRONGLY recommended that
one use the calculator to evaluate that formula for the derivative directly. This should

give a fairly accurate value.

However, a function can be defined as the root of an equation, or in some other
way, so that one cannot so easily write out a formula for the derivative. Presumably

one can calculate the value of the function (at least approximately).

So we come down to the following question: How can we make use of function

values to estimate a value for the derivative?

At first sight, this problem seems simple enough. Since

. . fx +h)-1fx
f'(x) —hll—r>no h ’

we know that the difference quotient
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V. NUMERICAL DIFFERENTIATION

flx+h)-f(x)(1. 1) - ,

computable from function values alone, provides as good an approximation to f' (x) as

we could wish provided we choose h sufficiently small. But there is the problem:

What is "sufficiently small"? We cannot take just any old h and expect the difference

quotient (1. 1) to be a good enough approximation to f'(x). We discussed this difficulty

already in Chap. III. There we made the point that "too large"” an h makes (1. 1) a

poor approximation to f'(x), while a theoretically "sufficiently small" h may make it

impossible to evaluate (1. 1) accurately on a calculator.

For example, the polynomial

f(x) = XlOO

has the derivative

99
)

f'(x) = 100x

and therefore f'(1) = 100. Yet, with x = 1 and h = 0.1, we get

f(x+h) - f(x) ~ 13780. 61234 - 1 _ 1 37796. 1234 |
h 0.1

Since we know the exact value of f'(l1) in this case, we know that this number has
little to do with £'(1). So, we simply use smaller values of h. Some results are

shown in Table 1. 1, which was calculated on an HP-33E (many of the zeros shown are

just copied from the display, and are not significant).

 

 

Table 1. 1

h calculated difference quotient

1071 1 37796.1234

107¢ 170. 48138 29

10”3 105. 11569 80

107 % 100. 49662 00

107° 100. 04950 00

107° 100. 00500 00

107" 100. 00000 00
1078 100. 00000 00

1079 100. 00000 00    
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1. Danger of numerical inaccuracy

We have carefully chosen the values of h so as to mislead the reader into jump-

ing to the conclusion that Table 1. 1 shows that as one decreases h the calculated

value of the difference quotient approaches f' (1), and indeed is exactly equal to it for

h <1077, However, let us try some other values of h. The results, as calculated on
the HP-33E, are shown in Table 1. 2.

 

 

Table 1. 2

h calculated difference quotient

1.2345 49999 x 10° 100. 05710 59

1.2344 99999 x 10° 99. 96597 821

1.2349 99999 x 10' 99. 59514 178

1. 2499 99999 x 10° 96. 00000 008

1.4999 99999 x 10° 66. 66666 671

4.9999 99999 x 10L 0. 00000 0000    
The difference quotient (1. 1) should get closer to f'(1) as h decreases. How-

ever, as shown in Table 1. 2, the calculated approximation to the difference quotient

does not do so. At first, for h = 10"1, it is extravagantly large. But then it begins to

decrease toward f'(1). It behaves beautifully for the h's of Table 1. 1. However, for

the h's of Table 1. 2, the first two entries get closer, but subsequent entries getworse,
finally going to the entirely irrelevant value zero.

What is happening is that as h gets quite small, the two terms in the numerator

of (1. 1) get very close together, so close that when we subtract them most of the initial

digits cancel out, leaving a calculated difference that does not have too much relation-
ship to what the true difference should be. Recall that the HP-33E calculator used for

calculating the tables can hold at most 10 digits. When h gets small enough, the 10

digits of f(x + h) that the calculator can hold will be the same as the 10 digits of f(x)

that the calculator can hold, and the calculator will have to give zero for f(x +h)-f(x),

and hence zero for (1. 1). Thus for x = 1 and h = 4.9999 99999 x 10-10 in Table 1.2,
the value of x + h would show on the calculator as 1.0000 00000, the same as x.
So of course the calculator will give identical values for f(x + h) and f(x). And, as

we saw, even before h gets that small, the calculator will give very few correct digits

for f(x + h) - f(x) because of cancellation of many of the initial digits (see Sect. 2 of

Chap. 1IV).

This is further illustrated by the fact that different calculators will give very dif-

ferent results for the entries of Table 1. 2. See the related Table IIL 2. 1, where quite

divergent results from three different calculators are cited. As h becomes smaller,

these entries are more and more contaminated by roundoff , and roundoff differs from

calculator to calculator. Therefore not only will a calculator give, for certain small

values of h, an answer which is seemingly unrelated to the true value of (1. 1), but
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V. NUMERICAL DIFFERENTIATION

these answers will differ from calculator to calculator. Or course, all calculators will

give the answer 0 when h is small enough, regardless of what f or x might be.

This is an illustration of the two horns of the dilemma when using the difference

quotient (1. 1) to approximate a derivative: Too large a step h produces numbers un-

related to the value of the derivative while too small a step h produces the value 0,

which is most likely also unrelated.

We could use a calculus trick to compute (1. 1) more accurately for the case where

f(x) = x100  Refer to Rule 2 in Sect. 2-2 of T-F. By the binomial theorem

f(x+h) = (x+h)00

_ X100 4 1OOX99h 4 §1002M99}X98h2 4 100)(99)(98 97h3

6

(100)(99)(98)

(97)

i+ 120 92498 2 X96h4+ (terms in x and h) - hS-

100Subtracting f(x) = x

(100)(99) (100)(99)(98)feah) - 60 = 100x3%4 1002 99) 98,2 , (100 969 98) 97,3

gives

(100)(99)(98)

(97).

i4 100 92498 2 Xgéh4 + (terms in x and h) - h5-

So

_
20. 2) flx+h)-f(x - 100570422 0 99)098) b

h
2 X 6 X

99)(98) (97 3
+_(__)%__l(£_) + (terms in x and h) - h4} :

On the right, if we neglect the terms involving h4 , we have a polynomial in h/x.

Evaluating this by Horner's method (see Sect. 1 of Chap. II) we get for x = 1 and

h=1.2345 49999 x 1075

fx+fl —1) +100.06113 49 |

instead of the number given in Table 1. 2. Indeed, for x = 1 and h = 10~ 5, we get

f h) -R Hx) ~ 100. 04951 62 |

so that the value in Table 1. 1 was appreciably in error.

For still quicker evaluation of the polynomial on the right of (1. 2), we write it as
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2. Approximation of derivatives by difference quotients

In this particular example, we had available a calculus trick to obtain an accurate
difference quotient. But note that this trick is exactly the same trick that lets us pro-

duce the formula for f'(x) for this case. When we do not know a formula for f'(x), we

are even less likely to know such a trick for avoiding cancellation in calculating the

difference quotient. In that situation, we find ourselves on the horns of the dilemma:

Too large an h will produce an inaccurate approximation while too small an h will

induce cancellation and, again an inaccurate approximation. We must somehow choose

h appropriately in the middle.

Problem 1. 1. Find the "best" h of the form 107" for some (positive or negative)

integer n to approximate f'(x) by (l. 1) (and without using the calculus trick), incase

(></3)50 +6, x=2

(x/lolO + 1)20 x=1

©) fk) = (10°% - 1)%,

(@) f(x)

(b) f(x)

x=1.

Remark. The exponentiation key y* would be appropriate for the various calcu-

lations in this section.

Note that in each part of Prob. 1.1, it was very easy to get a quite accurate value

of the derivative by carrying out the differentiation and then evaluating the formula for

the derivative by the calculator. As we said at the beginning of the section, if you can

get a formula for the derivative, then, by all means, use it.

2. Approximation of derivatives by difference gquotients.

So far, we have considered using the difference quotient

fl(a+h) - f(a
(2. 1) h

as an approximation to f'(a). We now wish to argue that the so-called centered dif-

ference quotient

- -2. 2) f(a+h) f(a-h)

2h

is often a better approximation to f'(a). This appears to be so in a situation like the

one depicted in Figure 2. 1.

In Fig. 2.1, the derivative f'(a) is the slope of AB. (2. 1) is the slope of AC.

(The discrepancy in slopes is readily apparent. ) (2.2) is the slope of DC, which is

certainly close to the slope of AB. We now try to explain why (2. 2) is usually a better
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V. NUMERICAL DIFFERENTIATION

    

Figure 2. 1

B

A o

D

a-h a a+h

approximation to f'(a) than (2. 1) is by looking at the errors in these approximations.

For this, we can use the Extended Mean Value Theorem (Special Case), as given

in Sect. 3-10 of T-F Taking b = a + h there in Eq. (2) gives

fla+h) = £(a) + £'(a) h + £(£) h°/2
)

for some ¢ between a and a + h.

If your text does not mention an Extended Mean Value Theorem, it may mention

Taylor series with remainder, from which the result above can be derived. In any case,
rest assured that it is true. In it, subtract f(a) from both sides, and divide by h.
This gives

f(a+h)- f(a
(2. 3) b - £'(a) +%f"(§)h

’

for some § between a and a + h.

Next we consider (2.2). By the Extended Mean Value Theorem (General Case), as
given in Eq. (7) of Sect. 3-10 of T- F, but with b = a + h, we get

fla+h) = £(a) + f'(a)h +§_-f"(a) he + ‘éf’"(gl)h3
’
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2. Approximation of derivatives by difference quotients

for some gl between a and a + h.

As above, if your text does not mention an Extended Mean Value Theorem, it may
mention Taylor's series with remainder, from which the result above can be derived. So
take our word for it. Replacing in the above h by -h, we get also

fa-h) = £(a) - £'(a)h +—;jf"(a)h2 . %f“'(gz)h3

for some gz between a and a - h. Now we subtract the second equation from the
first and divide by 2h to get

f"'(g )+ flll (g )

f@+h)-f(a-h) 1 2 2
(2. 4) h = f'(a) + 12 h

for some gl and 6,2, both between a-h and a +h.

Here we have h% in the final term on the right If h is moderately small, h2

will be very small. For example, if h is one thousandth, then h% is one millionth.
So the left side of (2. 4) should in general be much closer to f'(a) than the left side of

(2. 3). And this has been accomplished without increasing the danger of cancellation in

calculating the numerator!

In (2. 4), the h2 is multiplied by third derivatives of f. These could be unusu-

ally large, in which case the left side of (2. 4) would not give a very good approximation

for f'(a). In our Fig. 2.1, we had f"(x) reasonably constant, so that f"(x) is fairly

close to zero. In such a case, (2. 4) should be quite good, as is suggested by Fig. 2.1.

    

Figure 2. 2

A C

D

B

a-h a a+h
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Let us look at a case where the third derivatives are large, as in Fig. 2. 2. Here
the second derivative changes a lot in going from D to C, so that |f" (x)] must be

large. The left side of (2. 3) is the slope of AC, and the left side of (2. 4) is the slope

of DC. We purposely made them of equal slope. The derivative f'(a) is the slope of

AB, decidedly different from what either (2. 3) or (2. 4) would give.

Problem 2. 1. Show that for the function f(x) = x3 - x and a = 0, the errorterms

in (2. 3) and (2. 4) have the same value for all h.

Remark. Here the difficulty is not that we have large third derivatives, but that

£7(0) = 0. So, with £ close to 0, f”(§) is small, so that (2. 3) gives an especially
good approximation for f'(a).

Large third derivatives or zero second derivatives are not common, so that usually

(2. 4) is to be preferred to (2. 3). However, one should not put too much trust in (2. 4)

unless one has some sort of guess as to the size of the third derivative.

Let us try a numerical example. Let f(x) = e®. In Table 2 on p. A-2l of T- F is

a short table of f(x) = e*, and on p. A-22 is a short table of f(n) = In n. We repro-
duce a few entries in our Table 2. 1.

 

 

Table 2.1

b4 e n Inn

1.2 3. 3201 0. 4 -0. 9163

1.3 3. 6693 0.5 -0. 6931

1.4 4. 0552 0. 6 -0. 5108

1.5 4. 4817 0.7 -0. 3567

1.6 4. 9530 0.8 -0. 2231     
 

For f(x) = e”*  we have f'(x) = e® sothatat x = 1.4 we have
) )

(2. 5) f'(1. 4) = el' 4 ~40552 .

Now take a = 1.4 and h = 0.1. Then the left side of (2. 3) gives the approximation

4. 4817 - 4. 05522. 6 (1. 4) &2 ==—F—=225(2. 6) (1. 4) | -14 4.265 ,

The left side of (2. 4) gives the approximation

4. - 3.(2. 7) fl (1. 4) E—M: 4- 062 .

1.5-1.3
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3. Complicated expressions

The improvement over (2. 6) is striking. Here the third derivative is not large and the
second derivative is not zero.

Note that already we have our points close enough together that we have lost one

significant digit by cancellation.

Problem 2. 2. If f(n) = In n, then f'(n) = n-l.

Table 2. 1, estimate f'(0. 6) by (2. 3) and (2. 4).
So f'(0. 6) = 1. 6667. Using the

Problem 2. 3. Do Prob. 11 at the end of Sect. 1-9 of T- F, namely:

11. The following data give the coordinate s of a moving body for various

values of t. Plot s vs. t on coordinate paper and sketch a smooth curve

through the given points. Assuming that this smooth curve represents the

motion of the body, estimate the velocity (a) at t = 1.0, (b) at t= 2.5,

(c) at t= 2.0.

s (inft.) [10] 38 | 58] 70 | 74| 70 | 58 | 38| 10

t (insec.)l 0]0.5] 1.0| 1.5| z.ol 2.5| 3.0| 3.5, 4.0
 

Problem 2 4. In Prob. 2. 3, estimate the velocity: (a) at t =1 0, (b) at t=2.5,

(c) at t = 2.0; use first (2. 3), and then (2. 4), taking h = At = 0. 5 in each case.

Remark. It is shown in Prob. II. 1.2 that the table above in Prob. 11 of T- F

could have been derived from the equation:

(2. 8) s(t) = - 16t2+ 64t + 10 .

Problem 2. 5. Assuming that (2. 8) is the correct formula for s(t)

formula (2. 4) gives the exact velocities.

explain why the
)

3. Complicated expressions.

In some cases where one can get a formula for the derivative, as in

x3+5 x2+2

G 0 =5 [T
X -3

the expression is very complicated. To carry out the differentiation for this messy for-

mula without making a mistake could be time consuming and tedious. Particularly if one

needs only rough approximations for the derivatives, one might be well advised to use

(2. 2). If one has a programmable calculator, the calculation would be fairly easy, since

one has only to program the calculation of f(x), after which two executions of the pro-

gram, for the two input values of x, will give the needed two values of f(x).

If it should happen, by some mischance, that one does need a very accurate value
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V. NUMERICAL DIFFERENTIATION

of the derivative of (3. 1), one had better go through the labor of differentiating it. How-

ever, it might be a wise precaution to get a rough approximate derivative by (2. 2) to

check that one did not get a sign wrong, or an exponent in the wrong place, or some-

thing like that in carrying out the differentiation.

Problem 3. 1. For the f defined by (3. 1), derive the formula for f'(x), andhence

calculate f'(2). Using a = 2, see what approximations are given by (2. 2) for h= 10~ 1,

h = 10‘2, and h = 10-3. Do these approximations appear to confirm the error term in

(2. 4), namely that dividing h by 10 should divide the error by approximately 100°?

Actually, the differentiation of (3. 1) is not all that complicated if one uses
logarithmic differentiation; see Sect. 6-9 of T- F, especially Example 4 therein.
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Chapter VI

LLOCAL APPROXIMATION BYA
STRAIGHT LINE

0. Guide for the reader.

Calculus provides the tangent line as a local approximation to a function. By this

we mean that the tangent line to f at a point x| describes well the behavior of f near

that point x;. In this chapter, we discuss the pros and cons to using the tangent as an

approximation in numerical work. This chapter should therefore be read as soon as the

derivative (or the differential) has been introduced in the calculus course. It would not

hurt to review the first two sections of this chapter when you encounter in the calculus

problems of such a sort as: "Approximate 9.001 by means of differentials. "
In Sections 3 and 4, we use the secant as a local approximation. This provides the

means to do linear interpolation, which is the same thing that you were taught earlier to

call interpolation. You should find this a review, mainly devoted to how to do linear in-

terpolation efficiently on a calculator.

These local straight line approximations to f are particularly useful when trying to

determine an x for which

fx) = 0,

as discussed in Chap. VIL

1. Approximation by the tangent.

The notion of derivative is built upon the following observation, true for many func-

tions y = f(x): As you look at the function in ever greater detail for x near a fixed

point x;, the function looks more and more like a straight line. In Figures 1.1, 1.2,
and 1. 3, we have shown this process for the function sin x, with x, = 1. When we

concentrate on the interval from 0.9 to 1.1, a careful scrutiny is required to see the

difference between the curve and a straight line; see Fig. 1. 2. When we concentrate on

the interval from 0. 99 to 1.01, we would need a microscope to see the difference; see

Fig. 1. 3. (As we will see later, you will need many digits on your calculator to detect

this minute difference. )
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

Figure 1.1

g
tangent

eY = sin x

  
Figure 1. 2

 

0. 9F tangent\

  
y=sinx Figure 1. 3
 

tangent)     y = sinx

   
0. 99 1 1.01
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1. Approximation by the tangent

This straight line that f comes to resemble more and more as we look at ever

smaller intervals containing x; is, of course, the tangent of f at x;, i e., the
straight line

(1. 1) y = f(xl) + f'(xl)(x - Xl)'

The fact that f comes to resemble this particular straight line more and more as we look

at smaller and smaller intervals is expressed in mathematical terms as follows:

(1. 2) f(x) = f(xl) + f'(xl)(x - xl) + e (x)(x - Xl)

with lim e(x) = 0.
X=X,

In words, the difference between f(x) and the tangent line

y = f(xl) +f (xl)(x - Xl)

at x, goes to zero as x — X1 and does so faster than the difference x - X -

Incidentally, if your calculus book has not already told you this, then you should

verify now that the function f is differentiable at X4 if and only if for some a and b

(1. 3) f(x) = a + b(x - xl) + e (x)(x - Xl)

with e(x) = 0 as x — x;. If thereis such an a and b, then the straight line
y=a+bk- Xl) is necessarily the tangent, and a is necessarily f(xl), and b is

necessarily f'(xl).

Having established the tangent line as a good local approximation to f near X1,

that is,

(1. 4) f(x1 + AX) %f(xl) + f' (xl)Ax

for "small" Ax, it seems reasonable to use it in this capacity, and calculus books
usually make much of this idea. For this purpose, (1. 4) is often rewritten in the form

(1. 5) Yy + Ay Ey+f'(xl)Ax ,

and f'(xl)Ax is referred to as "the principal part of Ay. "

Suppose one knows f(x,) (or can very easily calculate it). Should one use (1. 4) to

estimate f(x1 + Ax)? Before the advent of calculators, the answer was usually "Yes. "

However, let us stop and think a moment. One alternative is to go ahead and calculate

f(xy + Ax) outright. The other alternative is to calculate f'(xl), multiply it by Ax,

and add to the known value of f(xl). Of course, this latter gives a poorer approxima-

tion for the answer, but the underlying assumption is that it is close enough. So it is

basically a question of which is easier to calculate, f(x; + Ax) or f' (xl). Without a
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

calculator, f'(xl) was often easier to calculate. This is the reason for problems posed

in calculus books such as the following, which are Problems 6 - 10 at the end of Sect.
2-6 of T-F:

For each of the following functions y = f(x), estimate y + Ay = f(x; +Ax) by

calculating y plus the principal part of Ay for the given data.

6. yz\fx,xl=4,Ax=O.5

7. y:éfx, X, =8, Ax=-0.5

8. v=1/x,x =2, Ax=0.1

9. y=\/—x7—+_9,x1=—4,Ax=-0.2

10, yv=x/(1 +x), x, =1, Ax = 0. 3.
1 )

However, now you have a calculator. With it, you can often calculate f(xl +AX)

straight off as easily as you can calculate f'(xl), perhaps more easily.

Problem 1.1, You will certainly have problems like the above in your calculus text.

(If your calculus text is T- F, the above is exactly it. ) Probably your instructor has

assigned some of these, to be done the calculus way. This is important because it em-

phasizes the use of the tangent as a local approximation. By all means, carry out your

assignment as given. But also calculate f(x1 + Ax) directly on your calculator for the

same assigned problems, and verify that this takes less effort than the calculus way.

That's why you bought a calculator!

As we said, calculus texts tend to give quite a bit of stress to using the tangent

line for a local approximation. Later in the section, T- F assign some more problems of

this sort, to wit Problems 9-13 at the end of Sect. 2-13, namely:

Use differentials to obtain reasonable approximations to the following:

9. 143 10. @21)°

11. 417 12. J0.12

13 @ on¥3 48012 -—1
8. 01

And again, in the next chapter, T- F give another problem of this sort. See Prob. 7

at the end of Sect. 3-8, namely:

7. The Mean Value Theorem gives the equation

f(b) = f(@) + (b - a)f' (c),

c between a and b. When all terms on the right side of this equation are

known, the equation determines f(b) for us. Usually, however, f'(c) is not
known unless f(b) is known. Butwhen b is near a, then c will also be near
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1. Approximation by the tangent

a, and the approximation

f'(c) = f'(a)

leads to the approximation

f(b) m~f(@) + (b-a)f'(d).

Using this approximation, calculate

a) V10 by taking f(x) =vx, a=9, b= 10;

2
b) (2.003) by taking £(x) = x2 a=2, b=2.003;

)

c) 1/99 by taking f(x) = 1/x, a = 100, b = 99.

Problem 1. 2. If your calculus text gives another set of problems using the tangent

line as a local approximation, proceed as in Prob. 1. 1.

The fact that, for problems in calculus texts that use the tangent line as a local
approximation, your calculator gives f(x; + Ax) directly more easily than by using (1.4)

or (1. 5) is no accident. The manufacturers of your calculator have read a calculus text or

two, and such problems gave them the clue as to what functions should be built into the

calculator. But this does not mean that the equations (1. 4) and (1. 5) are never useful.

If it turns out that f'(x,) is much easier to calculate than f(xl + Ax), then one of these

equations could be quite handy. Such a case could be where

f(x) = Vsin x + cos x .

 

Then

£1(x) = COS X —- sin x =cosx—sinx

2\ sinx + cosx 2 £(x)

If you save sin x), cos x,, and f(x;) from the calculation of f(x,), then the calcu-
lation of f'(x;) is much easier than doing a fresh calculation of f(xl + Ax). Another

case arises when, for fixed x;, you wish to calculate f(x; + Ax) for several values

of Ax. It is fairly quick to calculate f'(xl) and then use (1. 4) several times. If you

do not have a programmable calculator, this is likely the better way to proceed. If

you have a programmable calculator, you simply program it to calculate f(x). Then, for

each x = Xyt Ax, you get f(x) by inputting x and pressing the program key (keys).

Problem 1. 3. Calculate approximations for each of f(0.1), £(0. 101), £(0. 102) and

£(0. 103) if

XZ—l

f(x) = x -2

both by direct evaluation and by (1. 4), and compare efforts,
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

2. Approximation by an approximate tangent.

We discussed in Chap. V the possibility of approximating the derivative, for exam-

ple by a difference quotient

f(a) - f(b)
! o~(2. 1) f(xl)_ 2 - b

for a and b "near" x,. Since the tangent provides only an approximation to f, there

is the opportunity to replace f'(xl) in (1. 4) without appreciable further loss of accuracy

by some approximation F to f' (xl), and so to use the approximation

(2. 2) f(x. +Ax) 2f(x.) + FAx .
1 1

This is attractive if the approximation F to f'(xl) is easier to obtain than the exact

number f'(x;). For example, it looks much easier to evaluate the function

3 2
f(x)—x + 5 X 42

2 J x-1
X -3

at two points and form the difference quotient, (2. l), than to actually differentiate f

and evaluate the derivative, particularly if you have a programmable calculator.

But, since we worried in Chap. V about the possible lack of accuracy in the approx-

imation (2. 1), we must then deal with the following question: How good an approxima-

tion does F need to be in order for the right side of (2. 2) to remain a "good" approxi-

mation to f(xl + Ax)?

To answer this question, note first of all that if we make the choice of F in (2. 2)

to be the particular difference quotient

f(xl + Ax) - f(x;)
(2. 3) ’

AX
 

this would actually make (2. 2) into an equality. Therefore, our concern should really

be how well F approximates (2. 3) rather than how well it approximates f'(x,)! Second,

we note that therefore the difference between f(x; + Ax) and the right hand side of (2.2)
equals

f(x, + Ax) - f(x.)
-1 Fl Ax

AX ’

This has the consequence that, for "small" Ax, F need not be all that good an approx-

imation to (2. 3).

To illustrate this, let f(x) = x™1 andtake x, = 0.7 and Ax = 1072, Then, by
(IIL 2. 3), the true value (to 10 digits) of (2. 3) is

-2. 0407 87172.
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2. Approximation by an approximate tangent

However, from Table IIL 2. 2, a calculated value came out to be

-2. 0408 00000

(last five zeros not significant). As we are working to 10 digits, this is only a medio-

cre approximation. However, take this to be F in (2. 2). With x; = 0.7 and Ax =

1072, the right side of (2. 2) appears as

1.4285 71429 - 0.0000 20408 .

True enough, we have FAx correct to only 5 digits. However, these are to be added

to the LAST 5 digits of f(xl). When the subtraction is performed, one gets

1.4285 51021
)

which is f(x1 + Ax) correct to 10 digits.

In other words, with Ax sufficiently small, FAx affects only the rightmost digits

of the sum in (2. 2), and so needs to have only some of its leftmost digits correct.

Problem 2. 1. How accurate need the approximation F to (2. 3) be so that (2. 2)

gives 10 digit accuracy, with f as in Problem 1. 3 and X) = 0.1 and

(@) Ax = 0.003 (b) Ax = 0.0000 1 ?

Problem 2. 2. Redo the calculations of Problem 1. 3 by evaluating f at two of the

points, and then use the difference quotient at these points as the F in (2. 2) to obtain

an approximation at the remaining points. Compare effort and accuracy with that for

Problem 1. 3.

We made the point in Sect 1 that it might be easier simply to evaluate the function

f directly at x; + Ax rather than to use (1. 4), particularly if one has a programmable

calculator. The same remark applies to the use of (2. 2). But one should always keep

in mind the following. Onceone has gone to the trouble of calculating f(xl) and f'(xj)

or F, the computational effort in using (1. 4) or (2. 2) is small, certainly smaller than

for almost any function f not given by a single calculator key. It would then be cheap-

er (in the number of program steps reaquired, say) to approximate f near x; by (1.4) or

(2. 2) than to record and repeat a program for the evaluation of f.

And let us not forget that sometimes there is no program for calculating f(x). So

there is nothing to record and repeat in a programmable calculator. Refer to Chap. XV,

which deals with the solution of differential equations. There we have given a formula

for the derivative, and the problem is to recover the values of f(x). So getting an ap-

proximation for f(xl) may be an extended calculation which cannot be easily paralleled

for x; + Ax. Certainly, there is no program for calculating f(x;) which one can just

repeat to get f(xl + Ax). As we have given a formula for the derivative at the start,

this gives an approximation for F easily. Then, if Ax is sufficiently small, (2. 2)

will be very useful.
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

Problem 2. 3. Suppose that by calculating from a differential equation we have

found the approximations

f(1) =0.12345 65432

f'(1) =0. 76543 23456.

Calculate approximations for f(1 + Ax) for

-10 -9
(a) Ax = 1.2345X%10 (b) Ax = -1.2345%10

8- -7
(c) Ax= 1.2345x%10 (d) Ax = -1.2345X10

(€) Ax = 1.2345%10°

Remark. You will note that if you start with Ax as in (a), then you get

the other Ax's by successively multiplying by - 10. So, as for Prob. IIL 1. 6, you can

program the changes of Ax on a programmable calculator. This saves inputting the

other four Ax's.

3. Linear interpolation.

A commonly used choice for the approximate slope F in the linear approximation

(3. 1) f(x, + Ax) = f(xl) + FAx
)1

discussed in the preceding section, is the difference quotient

f(xz) - f(xl)

* T

with x, some point "near” x;. This is the difference quotient (2. 3) for the specific

choice Ax = x, - x;. With this choice for Ax and F, (3.1) actually becomes an
equality, as we already pointed out in the preceding section. This means that the
straight line

f(xz) - f(xl)
(3. 2) y = f(xl) To (x-x)

2 1 1

agrees with the function f at the two points Xy and xp. We also say that the
straight line interpolates to f at the points X, and x,. In other words, itis a
secant to (the graph of) f.

See Fig. 3. 1.

The straight line (3. 2) is a favorite approximating straight line, particularly in
situations where f' is not available or is hard to get. It is well suited for getting
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3. Linear interpolation

Figure 3.1

   
approximations for f(x) when x lies between xy and xp. Use of (3.2) is called
linear interpolation, because it involves the straight line (3. 2).

The formula (3. 2) is often written as

27"(3. 3) y=yl+;2—_71—(x-xl).

In this form, it should be familiar to the reader as the formula taught in high school for
interpolation in a trig or log table, when the particular argument x is not listed in the
table, but falls between two entries, X, and X,, as in Table 3. 1.
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

 

Table 3.1

X0 Y0

X1 YyX — —_—>y = ?
%2 Yo
X3 y3

    
You can easily write a program to calculate the right side of (3. 3). However, x)

and y| occur twice. If you have enough memory registers, you would store X) and Y]

when they are first input, for subsequent use. This is convenient, and reduces theever

present danger of error when inputting numbers.

Even the least expensive nonprogrammable calculator will usually have at least one

storage register. Write
Y, -vY
2 1

-— x ¢

2T M
m =

Store this in the register. Now (3. 3) takes the form

y=vy +m(x-x1).
1

Then subtract X, from x, call m out of storage to multiply the difference, and add

Y-

If you haveto use (3. 3) for more than one x with the same X1,Y1, X2, and vy,

this will save an inputting of each of these four quantities for each x after the first.

 

RPN L .
For an RPN calculator with three registers, you could use Program (3. 4).

(3. 4) Preparation:

v,, [, v, [8TO 2],[-],

%, [, =, ,=],[=1, [8TC 0],

Evaluation for a specific x:

x , [RCL 1],[=],[RCL 0], [X], [RCL 2], [4].

After execution of the Preparation, the slope m = (y2 - yl)/(xz— xl), the

abscissa x;, and the corresponding ordinate y; are stored respectively in

RJ’N registers 0,1,2. Hence we may now interpolate for as many x's as we please
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RPN

 
AE

3. Linear interpolation

between X and x by merely inputting x and running the Evaluation. On

the other hand, if we merely wish to interpolate with a single x , then the two

steps [STO 0 and can be omitted. Then register 0 is not used.

It is, of course, possible to change the Program (3. 4) to apply to points

(x,,v;) and (x,,y,) already in memory, say, x), v},X,,y, stored respective-
ly in registers 1, 2, 3, 4. Then you would replace the four steps Y2, [T] ,

Yy, by the two steps , , and the four steps x,, [T],
X, by the two steps , [RCL T]. This allows you to exe-
cute the Preparation without having to stop for inputs, after which the Evalua-

tion runs for any x upon inputting x. This would be particularly suitable for

a programmable calculator.

For an AE calculator with three registers, you could use Program (3. 4)

(3. 4) Preparation:

v,, =1, v,, [8002], [=],

(=1,

[, x,, 3, x,, 3010, (=], B0,

Evaluation for a specific x:

x, [-], [RCLT], [=], [X], [RCL O], [+], [RCL 2], [=].

After execution of the Preparation, the slope m = (yz— yl)/(xz-xl), the

abscissa X, and the corresponding ordinate y; are stored respectively in

registers 0,1,2. Hence we may now interpolate for as many x's as we please

between X, and X, by merely inputting X and running the Evaluation. On

the other hand, if we merely wish to interpolate with a single x, we could save

a step and avoid using register 0 by replacing the at the end of the

Preparation by and using

(a, x, [=1, [RCL 1], 7, [#], [RCL 2], [=]

for the Evaluation.

If we have X1,Y15%5,Y, already stored respectively in registers 1,2, 3,4,

we would modify the Preparation part of Program (3. 4) by changing the inputs Y2,

vy ,%X, and x; respectively to [RCL 4], [RCL 2], [RCL 3], and [RCL T1].

We would also omit the two steps [STO and [STO T].

 

Program (3. 4) can be adapted for use with a programmable calculator. However,

there is no point in it unless one is going to use more than one x with a given set

of x),v], %x,, Y. Since the Preparation is run only once, there is no point in ever
storing it. If (3. 4) is to be used for several x's with the same set of XY, %5,Y

2 )
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

it would be good to store the Evaluation for reruns. Review Chap. 0, where there

is a detailed discussion for a formula (0. 3), which is very similar to (3. 3).

There is ample opportunity to exercise linear interpolation in the next section.

We finish this section by recording an expression for the error in linearinterpola-

tion. It can be shown that, for a twice differentiable function f,

f(xz) - f(xl) !
(3. 5) f(x) = f(xl) +—‘X—"_—x’_‘"(x - Xl) + Sf (&,X)(x—xl)(x—xz)

2 1

for some £, in the interval containing x, x;, and x;. Thus, for x between x; and

X, , the error in the approximation (3. 2) to f(x) is bounded by the number —M(x—xZ)

with M a bound on the second derivative of f.

If, for example, f(x) = sin x, and x2 - X1 = h = . 001, then the error in linear in-
terpolation would be no bigger than 1( 001)2 = . 00000 0125. This means that we

would obtain accurate answers by linear interpolation in a six place table for sin if

the argument spacing is no bigger than 10~3 (for radian arguments, of course).

Problem 3. 1. If one linearly interpolates in a log table for x between 2 and 3,

and the arguments in the table are spaced .01 apart, how big an error could one possi-

bly incur (given that the tabulated values are as accurate as required)?

4, Linear interpolation: examples.
 

Suppose we have a table of values for some function f. In it are given sundry

values of x, opposite each of which is given an approximation for the unique y = f(x).

Inevitably, only a finite number of values for x are given, with their corresponding

approximations for y. What do you do if you wish an approximation for y = f(x)

for a value of x which is not listed in the table?

Sometimes one is lucky, and it is very easy to calculate this y = f(x) from the

definition of f. However, situations will occur where this is not the case. It could be
that the values in the table are the result of measurements from an experiment. There is

no direct way to calculate an approximation for y, and it would be expensive to run the

experiment over again, just to measure y = f(x) for the particular x in question. Even

if a formula for f is known, there could be reasons why it might be very difficult or

time consuming to approximate y by attempting a direct calculation of f(x).

One possible way to proceed is to graph the equation y = f(x). The values in the

table will give assorted points (x , vy). You could then draw a smooth curve through

these points, and try to read from the graph how high the curve is for the x in question.

Don't laugh. This may well be the best thing to do. However, there are various other

procedures, some of which might be better, particularly if a more accurate approximation

for y is desired.
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4, Linear interpolation: examples

One such scheme, which is widely used, is linear interpolation. One locates the
arguments x; and xp in the table which are next above and next below the argument

x , reads off the corresponding values y; and Y, and then uses formula (3. 3) to ob-

tain an approximation y to the sought-for value f(x). See Table 3. L

We will now present several problems involving linear interpolation. In each

problem, there will be only one x used with each set of X1,Y],%2,Y2, so there is no

point in storing Program (3. 4). Those with programmable calculators will have no ad-

vantage over those with nonprogrammable ones.

Problem 4. 1. Suppose we have Table 4. 1 for a function f.

 

 

Table 4. 1

X f(x)

1 1

4 2

9 3    
By linear interpolation, get approximations for f(2) and 1(6).

Remark. The approximation for f(2) is 1. 3333 33333, It is possible that the f

for Table 4.1 is v . If so, f(2) would be

V2 =1.4142 13562 .

This is not particularly close to 1. 3333 33333. In the first place, nobody has assured

us that the f of Table 4.1 really is ¥ . It may be that 1. 3333 33333 is actually

quite close to f(2). In the second place, it was not claimed that linear interpolation

would give a highly accurate estimate. What was claimed was that it is a procedure

that requires only pressing a few keys to accomplish, and which can often give a

reasonably good approximation. We gave a formula for the error in Sect. 3. There are

fancier interpolation procedures that usually give better approximations than linear in-

terpolation, but there was not room to discuss them.

Note, Did you use the calculator to get the estimates 1. 3333 33333 and

2. 4000 00000 for f(2) and f(6) respectively? You should have done these calcula-

tions in your head. After all, what is the slope of the line connecting (1 , 1) and

(4,2)? According to Formula (1) in Sect. 1-4 of T-F, it is the rise divided by the
run. But the rise, Ay, is 1 and the run, Ax,is 3. So the slope is 1/3. Thatis, y

goes up 1/3 unit for every unit that x goes up. But X went up one unit, from 1 to

2. So y goesup 1/3 unit, from 1 to 4/3. Thus, the approximation for f(2) is

4
3
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For f(6), the riseis 1 and the runis 5. So y goes up 1/5 unit for every unit that

X goes up. But x went up two units, from 4 to 6. So y goes up 2/5 units, from

2 to 2.4.

IMPORTANT. The calculator is a great help with hard problems. But we should re-

main alert to see when a problem can be done easily without using the calculator. Stay

alert for these opportunities to beat the calculator. This will also help you in detecting

when you have blundered, by pushing the wrong key or keys. Calculators are not for the

mentally lazy.

Problem 4. 2. For the reciprocal function, f, defined by

)

1
(4. 1) flx) = =

X

we have approximate values as given in Table 4. 2.

Table 4. 2

 

x f(x) = 1/x
 

1.0 1. 00000 00000

1.1 0. 90909 09091

1.2 0. 83333 33333

1.3 0. 76923 07692    
By linear interpolation, get an approximation for £(1/0.9). Compare with an accurate

answer.

Remark. We trust nobody evaluated f(1/0.9) by putting

——-]' ~X = 0.9 =21.1111 11111

in the display and pressing the reciprocal key. Surely, for the reciprocal function, f,

it is obvious that £(1/0.9) = 0.9. Watch out about that mental laziness.

Problem 4. 3. For sin we have approximate values as given in Table 4. 3.

 

 

  

Table 4. 3

X f(x) = sin x

0.4 0. 38941 83423

0.47942 55386

0. 0. 56464 24734

0.7 0. 64421 76872  



4. Linear interpolation: examples

By linear interpolation get an approximation for sin x for

X = = 0. 52359 87756 .

o
3

Compare with an accurate answer.

Remark. One can get an accurate answer for sin(m/6) by entering m/6 into the

display and pressing the key (or keys) that cause the calculator to calculate sin (unless

one forgot to set the calculator to operate in radians). But, we really had hoped that

the reader would notice that

'Z' radians = 30° ,

and would recall that

sin 30° =

Do
J
—

The properly trained human brain can be a great labor saving device.

Problem 4. 4. For v we have approximate values as given in Table 4. 4.

Table 4. 4

 

X f(x) = Vx
 

0.0 0. 00000 00000

0.1 0. 31622 77660

0.2 0.44721 35955

0.3 0. 54772 25575    
By linear interpolation get an approximation for 0. 04. Compare with an accurate

answer,

Remark. After all we have said, surely nobody was so inattentive as to press the

Jx key to get the exact answer

N0.04 = 0.2 .

As for the linear interpolation itself, we have x; = y; = 0, so that (3. 3) reduces to

, _0.00411 (0. 31622 77660) = (0.4)(0. 31622 77660) .14y:

><
|"
<1 N x =Xy

2 %2

You would still wish to do this final multiplication on the calculator, but surely this is

much quicker than going through Program (3. 4).

Moral. Keep your eye on the ball.
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

For curves of the form y = f(x), going through (x;, yl) and (x?_,yz), we have been

seeking to approximate the number y = f(x), for x between x; and x,. We can turn

the problem around and ask, for some y between y; and yjp, approximately what value

of x will make y = f(x) for that y. If we interchange x and vy, this is exactly the

same question we were asking earlier. So the answer is provided by interchanging x

and y in (3. 3), namely:

275
(4. 2) x=x1+y_"__;_(Y'Y1).

2 1

To calculate this, we use exactly the same program as before, except that we now input

(or store) the y's where formerly we inputted (or stored) the x's, and vice versa.

Problem 4. 5. For the f of Table 4. 1, find by linear interpolation the approximate

values of x that will make f(x) = 1.5 and f(x) = 2. 5.

Remark. If you picked up your calculator to work this problem, consider your

knuckles rapped. Naturally the two required values of x would come halfway between

1 and 4 (x = 2.5) and halfway between 4 and 9 (x = 6. 5).

Note. In case the f of Table 4.1 were  , then in Prob. 4. 1 we were trying to

evaluate \Yx and in Prob. 4. 5 we are trying to evaluate yz. And in fact, 2. 5 and 6. 5

are not terribly bad approximations for (. 5)¢ and (2. 5)2.

Problem 4. 6. For the f of Table 4. 2, find by linear interpolation an approximate

value of x that makes f(x) = 0. 8. Compare with an accurate answer.

Remark. Surely there is no difficulty about getting an accurate answer. Put f(x) =

0. 8 in (4. 1) and solve for x.

Problem 4. 7. For the f of Table 4. 3, find by linear interpolation an approximate

value of x that makes sinx = 0. 6. Compare with an accurate answer.

Remark. The accurate answer is sin~! (0. 6), which can be calculated by pressing

suitable keys on the calculator.

Problem 4. 8. For the f of Table 4. 4, find by linear interpolation an approximate

value of x that makes f(x) = 0.4. Compare with an accurate answer.

Note. Since the f of Table 4. 4 was \ , then in Prob. 4. 4 we were trying to

evalu;te vx and in Prob. 4. 8 we are trying to evaluate yz. So the exact answer is

(0. 4)« = 0. 16.

Problem 4. 9. For the function defined by

(4. 3) f(x) = x4-4x3+2x2—4x+1,

Table 4. 5 gives exact values. By linear interpolation, find an approximate value of x

that makes f(x) = 0.
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4, Linear interpolation: examples

 

 

Table 4. 5

X f(x)

0.1 0. 6161

0.2 0. 2496

0.3 -0.1199

0. 4 -0. 5104   
 

Remark. An accurate answer is approximately

0.26794 91924 .

Problem 4. 10. Consider Table 4. 6.

Table 4. 6

 

X Inx + 2
 

3.1 3.1314 02111

3.2 3.1631 50810   
 

We see that for x = 3.1, we have Inx+2> x, while for x = 3.2, we have Inx+2 <x.
So there must be an x between 3.1 and 3.2 at which the curves y = x and y =

In x + 2 cross each other. That is, there is an x such that x = In x + 2. By linear

interpolation, find this x approximately.

Hint. Define the function f by

(4. 4) fx) = x-lnx-2.

From the values in Table 4. 6, we can find the values of f(x) at x = 3.1 and x= 3.2
Now find an approximate value of x for which f(x) = 0.

Remark. An accurate value is approximately

3. 1461 93220 .

The process we have used in the last six problems, of using (4. 2) to estimate the

x which would correspond to a specified y, is sometimes called inverse interpolation.
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Chapter VII

ROOT FINDING

0. Guide for the reader.

Many problems in calculus involve finding a root of an equation. However, the

topic is treated very sketchily, if at all, in most calculus books. This is because it in-

volves numerical calculation, and practically every calculus book carefully avoids any

sort of heavy arithmetic.

At certain points in the calculus, one absolutely has to find one or more roots for

equations that arise during the solution of other problems. For example, to get maxima

and minima, one has to solve

day 0.
dx

Also, in curve sketching, one must again solve the equation above, to find where the

slope of the tangent line changes from positive to negative, or vice versa (so the func-

tion changes from increasing to decreasing, or vice versa). Also, one gets intercepts

by solving equations. If a curve is given implicitly as the locus of all points A(x,y)

in the plane which satisfy the equation f(x, y) =0 , one needs to solve this equation

for x or y to find points on the curve. In integration, when one gets to the method of

partial fractions, one must factor the polynomial in the denominator of the integrand,

which requires getting roots. If, in addition, your calculus text touches on differential
equations, you will again have to get roots of some equations there, called "character-

istic equations. "

How do calculus texts manage to avoid requiring the readers to do some numerical

calculation? They give only a few problems, quite easy ones, which are carefully con-

trived so that the roots are obvious. Thus the texts are cleverly written so that you can

get by without ever needing to learn the kind of material presented in this chapter.

But, if you go on in science or engineering you will encounter practical problems

where you have to find roots of equations. These equations will not be carefuliy con-

trived to be easy. With a calculator, you can find the roots efficiently, by methods
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1. Zeros and sign changes

explained in this chapter. If you read it now, you can get help at any tricky points from

your instructor or teaching assistant. You will also get a more realistic picture of the

practical applications of calculus.

You might read the first four sections after you have become fairly familiar with

differentiation. If your calculus text discusses Newton's method for finding roots, read

Sections 5 and 6 when you get to that point. Read Sections 7 and 8 when you get to the

relevant topic in your calculus course (see the titles of the sections). We stress the

fact that Sect. 2 of Chap. VIII has some additional material on finding roots.

1. Zeros and sign changes.

Many problems of calculus involve finding the (or a) root of an equation. Suppose,

for example, that we wish a root of the equation

(1. 1) x=1Ilnx+2.

By a root, we mean a value of x for which the equation is true.

Why would one think that the equation (1. 1) has a root? It is usually advanta-

geous to consider questions about roots in terms of zeros of functions. Define the func-

tion f by

(1. 2) f(x) = x-lnx- 2.

We say that c is a zero of a function f if and only if f(c) = 0.

It is quite clear that ¢ is a zero of the function f of (1. 2) if and only if it is a

root of the equation (1. 1).

So we are reduced to determining whether this f has any zeros. If so, how many

are there, and where?

The function f 1is defined and continuous for positive x. This allows us toprove

that f has a zero merely by exhibiting two positive numbers a and b for which

f(a)f(b) <0. For this then shows that f(a) and f(b) are of opposite sign, hence the

number 0 lies between f(a) and f(b). Therefore, by the Intermediate Value Theorem

for Continuous Functions, there must be a point ¢ between a and b for which f(c)=0.
(You find the Intermediate Value Theorem in T- F in Sect. 2-11, as Theorem 4. )

Now, by calculator

H
h
— o P
—

~
~ IR 0. 40259

(1) = -1

f(4) =0. 61371
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VII. ROOT FINDING

So there is a zero, ¢y, of f between 0.1 and 1, and a zero, c,, of f between 1

and 4. These are roots of the equation (1. 1), of course.

If a function is not continuous, it need not have a zero when it changes sign.

Consider the function, f; defined by

It is negative for negative x and positive for positive x, but it does not have a zero as

X goes from negative to positive.

Of course, we cannot tell by calculations whether a function is continuous. We
need calculus for that. Calculus is also the key when we wish to find out how many

zeros a function has.

Problem 1. 1. Show that the function f of (1. 2) has exactly two zeros, namely

those we mentioned above, the c; between 0.1 and 1 and the cp between 1 and
4.

Hint. Obviously f has a zero when and only when the graph y = f(x) crosses

(or touches) the x-axis. So graph y = f(x) for the f of (1.2). For a given x, you

can get In x by pressing one or two keys on your calculator. So you can quickly plot

a number of points on the graph. If you have chosen them judiciously, they certainly

suggest that the graph crosses the x-axis exactly twice. How can you be sure? Could

the graph have some funny wiggles between or beyond the points you have plotted? This

is where calculus comes to the rescue. Calculus texts explain carefully and thoroughly

how you can settle such questions by seeing where the derivative of f is positive or

negative; i. e., where f is increasing or decreasing. See Chap. 3 of T- F. You will

learn after a while that

d 1
(1. 3) I lnx:x.

So it is easy to find f'(x), for the f of (1. 2). And it is easy to see where it is negative

and where it is positive. So, with a few judiciously plotted points, you can readily

establish that the graph y = f(x) crosses the x-axis at exactly two points.

By calculus,you have proved conclusively that the function f of (1. 2) has one

and only one zero, c;, between 0.1 and 1. What does the calculator say? On the

HP-33E, let us calculate f(x;) for

0. 15859 433961

%

0. 15859 43397
%2

For both these x's, and calculating f(x) as (x - ln x) - 2, the calculator gives 0,
exactly.
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1. Zeros and sign changes

Does that mean we were wrong, and there are indeed two zeros of f between 0. 1
and 17? Not at all. Actually,

f(xl) = -1.96...x 1010

f(x)) = -7.26...X 10710

But the noise level in the calculated function values for f on the HP-33E (which is a

10 digit calculator) is about 1079 for x near X1, i. e, as great as, or greater than,
the function values themselves in absolute value. So the computed function values have

no significance. A further indication of this noise level can be obtained by calculating

f(x) as x - (Inx + 2). Now, the HP-33E gives

f(xl) = -4 x 1010

f(xz) = -3 x 1010

instead of zero. We discuss this difficulty with noise in Sect. 4.

An accurate value of c is

c = 0.15859 43395 63039...

A different difficulty is illustrated by the function f given by

(1. 4) f(x) = tanx - x .

Table 1. 1 was calculated on the HP-33E, and shows that f(x) is negative for

 

 

x = 102.09 19663

and positive for

X = 102.09 19666 .

Table 1.1

X f (%)

102. 09 19663 -0.0017 188

102. 09 19664 -0. 0006 766

102. 09 19665 0. 0003 657

102. 09 19666 0.0014 080     
So calculus assures us that f has a zero between those two values of x. Butona 10

digit calculator, such as the HP-33E, there are only two possible numbers between these
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VII. ROOT FINDING

two values of x, namely those shown in Table 1. 1; f(x) is not particularly close to 0

for either of these.

In other words, the HP-33E would tell us that there is NO zero of f(x) in the

stated range. That is just a shortcoming of the calculator. In fact, f(c) = 0 for

c = 102.09 19664 64907...

Even worse things can happen when you seek for zeros with a calculator, as you

will see when we get to the discussion of noise in Sect. 4 below.

2. Getting a first approximation.

Root finding can be divided into two stages: (i) getting a first approximation;

(ii) refining successive approximations. For the second stage, there are many methods

available, and we discuss two of these in Sections 3 and 5. See also Sect. 2 of Chap.
VIIL. The first stage is much harder to deal with; unfortunately, there are really no fool-

proof guidelines for finding that first approximation.

For example, what can you do to get a first approximation for a root of the equation

sin . X
(2. 1) e * - sin &% 9

As it happens,this equation has infinitely many roots. So, which root are we interested

in? Usually it is (or should be) clear from the context roughly where to look for a root,

or which root to look for. Once this is clear, then the best way to get a first approxi-

mation is to write the equation in the form

flx) =0

(recall how we got (1. 2) from (1. 1)), and then graph the function. This requires evaluat-

ing the function at a few equally spaced or judiciously chosen points. In this way, we

may eventually discover a sign change in the function; if we have first verified the func-

tion to be continuous, this proves that there is a zero between the points where the

function takes these opposite signs.

It is, of course, possible to graph such a function with quite fine spacing of the

points, and produce thereby arbitrarily good approximations to a zero; by trial and error,

so to speak. But, once one has a rough idea as to the whereabouts of a zero, it is

usually more efficient to use one of the methods for refining an approximation discussed

in Sections 3 and 5.

Problem 2. 1. Determine an interval which seems to contain the third positive root

of equation (2. 1) and no other root of that equation.

Remark. You would have to analyze a very complicated derivative to be sure.

Settle for doing a thorough job of plotting.
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3. Bisection method

Problem 2. 2. Determine an interval which contains a zero of the polynomial p

given by

4
(2. 2) p(x):x-4x3+2x2—4x+1.

Problem 2. 3. What is the total number of zeros of the p of (2.2)?

Hint. In Sect. 3 of Chap. II there is a discussion of how to plot polynomials and

their derivatives. If you use those ideas for the polynomial defined by (2. 2) and its

derivative, you should get a graph of the p of (2. 2) that would settle the matter quite

conclusively.

3. Bisection methocl.

To get started in finding a zero, you really should have located two points, a <b,

at which the continuous function f has opposite signs. Then you are assured thatthere

is a zero, c, of f somewhere between a and b. After than, we undertake to pindown
the location of ¢ better and better.

For an example, suppose that f is the polynomial p of (2. 2). In Fig. 3. 1, we

Figure 3.1

 

 

 

have drawn a bit of the graph. We find that p(0) = 1 and p(l) = -4. So we may take

a=0 and b = 1. As the graph clearly shows, there is a zero, ¢, between 0 and 1.

See Fig. 3. 1.

The idea of the bisection method is to repeatedly reduce the length of the interval

which is known to contain the zero c. Thereby, you pin down where c is. In fact we

will slice off half of the interval at each step. That is why the procedure is called the

bisection method.
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VII. ROOT FINDING

Right now, we have the interval (0, 1) that contains c. To get an interval half as
long, we cut it in two. Of course that gives two intervals, (0,0. 5) and (0. 5, 1).
Which one contains c¢? We find that p(0. 5) = -0.9375. So, at 0.5 and 1, p has the

same sign. Not so good. But, therefore at 0 and 0.5, p has opposite signs. So

there has to be a zero between 0 and 0. 5. See Fig. 3. l.

So we have got down to an interval half as long as we started with. Well, cut it

in half. This gives two shorter intervals, (0, 0.25) and (0. 25, 5). Which one contains
c ? We find that

p(0. 25) = 0. 0664 0625 .

At 0.25 and 0. 5, p has opposite signs. So there has to be a zero between 0. 25 and

0. 5. See Fig. 3. 1.

So now we cut the interval (0. 25, 0. 5) into two halves, namely the intervals

(0. 25, 0.375) and (0. 375, 0.5). We find that

p(0. 375) = -0.40991 21090 .

There never is any problem which of the shorter intervals to pick. At 0.375 and O. 5,
p has the same sign, but therefore at 0.25 and 0. 37 5, p has opposite signs. So we

get down to the interval (0.25, 0.375). See Fig. 3. 1.

We could proceed, except that it is about time to get the calculator to do all this

calculating for us. This requires us to describe carefully and in full detail what it is we

have been doing.

We have been constructing a sequence of intervals (a,,b/), for r = 0,1,... .
Specifically, for Fig. 3.1, we had

(@y, by) = 0, 1)

(al, bl) = (0, 0.5)

(@,, b,) = (0.25, 0.5)

(a,, b,) = (0.25, 0.375) .

Further, we always had

f(ar) >0 > f(br) .

This made certain that the interval (ap,b,) contains a zero of f. Now, to get from the
interval (ar, br) to the next smaller interval, we construct the midpoint

m_ = (ar + br)/Z
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3. Bisection

and consider the two intervals (ar, my) and (m, by). We choose one or the other de-
pending on the sign of the value of f at that midpoint m,. For this, we calculate

f(my).

Case 1: f(mr) = 0. Then we have actually found a zero and can stop.

Case 2: f(my) >0. Then f(m,;) and f(br) are of opposite sign, hence the interval

(mr, br) is certain to contain a zero of f. So we take apy] = My and bpyg = b, and

this insures that again

f(ar+1) >0 > f(br+l ).

Case 3: f(mr) <0. Then f(a) and f(mr) are of opposite sign, hence the interval

(ar, rr%r) is certain to contain a zero of f. 8o, we take a.; = a and b.,; = m., and

this insures that again

f(ar+1) >0 > f(br ).
+1

The whole process can be streamlined a bit as follows. Instead of carrying along

both a, and by, carry along the midpoint of the interval and its half-length, which are
respectively

ar+br b - a

r 2 ’ r 2

These numbers are really more useful, as you will see. And of course you can always

recover a, and by from m. and h.:

(3.1) a =m-h

(3. 2) b =m +h
r r r

Therefore, since f(ay) >0 > f(b.), we are assured that m, is within a distance of hy
from a zero of f. Then our algorithm takes the form:

(0) Put hr+l = hr/Z and calculate f(mr);

(1) If f(mr) = 0, STOP;
)

(2) If f(mr) >0, put

r+1 ~ r r+1’

put
>

(3) If f(mr) <0
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If you are in doubt as to whether this algorithm really carries out the same process

we described earlier, look at Figure 3. 2 where we have drawn a typical situation corre-

sponding to case 2, or step (2) in the algorithm. We find f(mr) > 0, so that the new in-

terval is going to be the interval (mr, br)- Its length is half that of (af, br), so hpyp =

hy/2 (which explains step (0)). Further, since m; is an endpoint of the new interval,
the midpoint m,,; of the new interval is hy,; away from it, or, mp1; = mp + hpyj.

Figure 3. 2

b =m+h
r r

  

 

r+l

 
\

If you have a nonprogrammable calculator, you can watch the progress of the cal-

culation and stop when it appears that you are as near to a zero as you wish (that is, hp

is as small as you would like). However, as step (0) involves the calculation of f(m,)

for successive values of m,, this could get to be a bit tedious, especially if the cal-

culation of f(x) is extensive.

We hope that you have a programmable calculator. If you do, you will find that it

has keys that will determine if f(m,) is zero, positive, or negative. These keys actu-

ate transfers to branches in a stored program. According to which case you have, the

program will go to the branch where you have stored instructions appropriate to that

case. So steps (1), (2), and (3) above can be handled in a stored program.

In the Program Appendix we give a specific storable program, called Program VIL 1,

for the algorithm above. The program stops after step (3) with hr+l in the display. If

this is small enough, you take m.,; as your approximation for the zero of f. Other-

wise, you press a program key or two, and repeat steps (0) through (3).

As an example, the f defined by

106



3. Bisection

(3. 3) f(x)=x3+x—l

is everywhere defined and continuous. We have f(0) = -1 and f(1) = 1. Hence f

has a zero between 0 and 1. So, in the preceding discussion, we take ag = 0 and
by = 1.

But, before you rush into applying the algorithm (or Program VIL 1) to this example,

you should realize that something has changed. In the present example f(ao) is nega-

tive, whereas earlier we had f positive at the left endpoint of the interval known to
contain a zero. If you check, you will find that our algorithm relied on this fact.

We could, of course, change the algorithm (or Program VIL 1) to fit this new situa-

tion. But, it is easier to fit the situation to the algorithm, as follows. Instead of look-
ing for a zero of the function f given by (3. 3), we look for a zero of its negative, that

is, of the function f given by

(3. 4) f(x):—x3—x+l.

Clearly, any zero of the function given by (3. 3) is a zero of the function given by (3. 4)

and vice versa. But now, for the function f given by (3. 4), we are back to the old

situation, in which

f@a,) >0 > f(b.).
0 0

So, we are finally ready to use the bisection algorithm to find a zero of the function
given by (3. 3), by finding instead a zero of its negative.

With ap = 0 and by =1, we have hy = 0. 5 and mg = 0. 5. Putting these into

our program, we get the values given in Table 3. 1. These were actually calculated on

the HP-33E, and transcribed from it. Needless to say, the subroutine to calculate f(x)

from x used Horner's method. If, for any value of r, we take the value m, and mark

off a distance h, on each side of it, we have an interval in which we are assured
there is a zero of f.

In Table 3. 1, the values given under f(m,) are given to the full accuracy that was

obtainable on the HP-33E Notice that most of them have fewer than 10 significant

digits. Indeed, for r = 15, we have only 5 significant digits. What is happening is

that as m, approaches the zero of f, there is more and more cancellation in calculating

f(mr). See Sect. 2 of Chap. IV for a discussion of this phenomenon.

The bisection method is sure to converge (in the absence of noise), but it does

not converge particularly fast. After N iterations, it is guaranteed to reduce the

length of the interval known to contain a zero by a factor of 2N. In other words, hy =
hO/ZN. Therefore, to reduce the initial error hg in the initial approximation mq by a

factor of 1010 would take about 33(= 10/log102) iterations. We have iterated 16

times in Table 3. 1, and do not quite have 5 digit accuracy.

Also, the method is occasionally inefficient, since it takes account of only the
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Table 3.1

r hr m, f(mrf

0 5x10! 0.5 0. 375

1 2.5x 10"} 0.75 -0. 17187 5

2 1.25x 10"} 0. 625 0. 13085 9375

3 6.25x107° 0. 6875 -0.01245 11720

4 3.125%x10°° 0. 65625 0.06112 67087

5 1.5625 x 10°° 0. 67187 5 0. 02482 98642

6 7.8125 x 10°° 0. 67968 75 0.00631 38006

7 3.9062 5x10°° 0. 68359 375 -0. 00303 73930

8 1.9531 25x 10° 0. 68164 0625 0. 00164 60044

9 9.7656 25 x 10* 0. 68261 71875 -0.00069 37410

10 4.8828 125 x 10°% 0.68212 89063 0.00047 66193
11 2.4414 0625 x 10°% 0. 68237 30469 -0.00010 84390

12 1.2207 03125 x 107 0. 68225 09766 0.00018 41208
13 6.1035 15625 x 10° 0. 68231 20118 0.00003 78488
14 3.0517 57813 x 10° 0. 68234 25294 -0.00003 52930

15 1.5258 78907 x 10° 0.68232 72706 0.00000 12781

16 7.6293 94535 x 10°° 0. 68233 49000 -0. 00001 70080     
 

sign of the function values. For example, If(mls) | is less than one 27-th of lf(ml4)l,
so that the zero ¢ should be much, much closer to m,. thanto m;,. However, for
the next approximation m; ¢, we simply average mj4 and mjg, getting a result not
nearly as good as m;g. In fact, we would have to carry on to mjq before we get
finally an approximation better than mjs.

Algorithms that usually approach the zero more rapidly are known. One is coming
up in Section 5.

Problem 3. 1. For the f of (1.2), namely

f(x) = x-1ln x - 2,

find the zero between 0.1 and 1 to about 5 digit accuracy.

Problem 3. 2. For the f of (2.2), namely
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4. The trouble caused by noise

f(x):x4—4x3+2x2-4x+1
)

find the zero between 0 and 1 to about 5 digit accuracy.

Remark. If one knows what accuracy one wishes to attain, as in the two problems

just above, one can change the programs slightly. At present, in Program VIL 1, the

program is not repeated unless the operator specifically calls for it. Instead, one could

compare h, with a preassigned tolerance; repeat the program if the tolerance is not at-

tained and otherwise read m, into the display and terminate.

4. The trouble caused by noise.

We discussed in Sect. 1 of Chap. IV the noise level associated with calculated

function values. As we stated it there,

lcalculated value of f at x = f(x) | < noise level.

Ordinarily, the noise level is of little concern since it usually contaminates only the

last one or two digits of the calculated function value. But, when x 1is near a zero of
f, then lf(x)l may well drop below the noise level and then the calculated value for

f(x) has no significance. We gave an example of this in Sect. 2. You can visualize

this as in Fig. 4. 1. There we have drawn the graph of some function f. In addition,we

Figure 4. 1

M

have drawn the functions f + noise level and f - noise level. The latter two functions

form a band which encloses the function f and within which any calculated function

value for f is bound to fall. But, - and that is the point of the noise level notion, -

the calculated values may fall anywhere within that band.
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The implication of this figure for the bisection method (or any other zero finding

methods) is clear. Very near to a zero of f, the calculated function values are mostly

noise and cannot be relied upon even to have the correct sign. In such a case, the bi-
section method would be misdirected. Further, the length of the interval in which noise

is the dominant feature of the calculated function value is approximately

5 noise level

T)]

Thus, this interval of uncertainty may be quite large in case lf' (x)| is small near azero

of f. In Fig. 4.1, for example, the situation at the right hand zero is much more dis-

mal than at the left hand zero.

Here is a particularly nasty example of the trouble caused by noise.

Consider the f defined by:

3 2
(4. 1) f(x) = x~ - 2.1213 20344x

+ 1. 5x - 0. 35355 33906 .

We calculate

£(0) -0. 35355 33906

£(1) 0.02512 62654 .

So f has a zero between 0 and 1. Let us undertake to find it by the bisection algo-

rithm. Remember to change the sign of the function before starting the algorithm. The

results, using an HP-33E, are shown in Table 4. 1.

So f(my) = 0 when m, = 0.70779 60968. Hence the latter must be a zero of f.
NOT SO:. The zero of f is 0.70771 70535, which is not even particularly close to
my.

In point of fact, from r = 10 onward, the true value of f(m,) is so nearto 0
that it is completely masked by the roundoff error. The corresponding values listed in
the column under f(mr) are noise, pure and simple. As they jump around, some nega-
tive and some positive, one of them accidentally hit 0 , at r=18. Just a fluke.

As it happens, we can show that for the f of (4. l), we have EXACTLY

(4. 2) f(x) = (x - 0.707)°>

~3.2034 4 x 10¥ (x-0.707)2

+3. 3584 X 1078 (x - 0. 707)

-2.2805 6 x 10710
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Table 4. 1

r by my f(my)

o| 5x107t 0.5 0.00888 34766
1| 2.5 x 107} 0. 75 ~0. 00007 89159
2| 1.25 x 107} 0. 625 0. 00055 35250

3] 6.25x 102 0. 6875 0. 00000 75376

4| 3125 x 10% 0. 71875 -0. 00000 15780

5| 1.5625x 10°° 0.70312 5 0. 00000 00634

6| 7.8125 x 10 ° 0.71093 75 -0. 00000 00561

7| 39062 5x10°° 0.70703 125 0. 00000 00002

8| 1.9531 25 x 10° 0.70898 4375 =0.00000 00066
9| 9.7656 25 x 10* 0.70800 78125 -0.00000 00004

10| 48828 125 x 10°* 0.70751 95313 0. 00000 00006

11| 2.4414 0625 x 10 0.70776 36719 0. 00000 00002

12 1.2207 03125 x 10°% 0.70788 57422 -0.00000 00003

13| 61035 15625 x 10 > 0.70782 47070 -0.00000 00002

14 3.0517 57813 x 10> 0.70779 41894 0. 00000 00001

15| 1.5258 78907 x 10°° 0.70780 94482 -0.00000 00002
16 7.6293 94535 x 10 | 0.70780 18188 -0.00000 00001

17 3.8146 97268 x 10°° 0.70779 80041 -0.00000 00001

18| 1.9073 48634 x 107° 0.70779 60968 0. 00000 00000
     

In Sect. 3 of Chap. IV ways to reduce cancellation are discussed. Amongst them

is a way to discover formulas like (4. 2) and to verify that they are exactly correct. In-

deed, (4.2) is the same as (3. 18) in Chap. IV.

For x near 0.7, the right side of (4. 2) is much less subject to cancellation than

the right side of (4. 1). Correspondingly, the noise level in function values computed

from (4. 2) is much lower. Using the right side of (4. 2), we find that at r = 10, f(m,)

should be only about 1. 5684 X 1010 instead of 6 x 10710, At r = 11, f(mr) is

negative, being about -5. 6138 X 10711 instead of 2 x 10-10. A partial table of the

bisection algorithm is given in Table 4. 2, using the much less noisy values of f(mr)

obtained from (4. 2). Clearly m_ is progressing satisfactorily toward the true zero

0. 70771 70535,
r

For calculation on the HP-33E using (4. 1), the interval of uncertainty is roughly
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Table 4. 2

r h, m, f(mr)

10 4.8828 125 x 10 %] 0.70751 95313 1.5684 x 101"

11| 2.4414 0625 x 10 %] 0.70776 36719 -5. 6138 x 101}

12 1.2207 03125 % 10°% 0.70764 16016 7.4262 x 10'

13| 61035 15625 % 10° 0.70770 26368 1.5721 x 10'

14| 3.0517 57813 10 > 0.70773 31544 -1.8458 X 10 1°

15| 1.5258 78907 x 10”°> 0. 70771 78956 -9. 4160 x 10 >

16| 7.6293 94535 x 10°° 0.70771 02662 7.4952 x 10L°

17 3.8146 97268 x 10°% 0.70771 40809 3.3033 x 1014

18 1.9073 48634 x 10°° 0.70771 59882 1.1876 x 1012
19 9.5367 43170 x 10" 0.70771 69419 1. 2465 x 1013

20 4.7683 71585 x 10' 0.70771 74187 -4. 0800 x 10" *>  
from 0. 707 to 0.7085. Fortunately, the interval of uncertainty is very seldom any-

where near this bad.

Problem 4. 1. For your calculator, estimate the noise level near x = 0. 707 in the

function values for the function f given by (4. 1), as calculated from (4. 1). Then de-

termine the interval of uncertainty about the zero of f near 0. 7077.

Problem 4. 2. For your calculator, estimate the noise level near x = 0. 707 in the

function values for the function f given by (4. 1), but as calculated from (4. 2). By how

much is the noise level decreased when using (4. 2) instead of (4. 1)?

Problem 4. 3. For your calculator, estimate the noise level near x = 0. 2 in the

calculated function values for the function given by (1. 2). How accurately can you hope

to determine the zero of f near 0.2°?

5. Zeros by Newton's method.

This topic is discussed in many calculus texts, for instance in Sect. 2-7 of T- F.

The idea of the method is to use the tangent line instead of the function itself when

looking for a zero. Fig. 5.1 tells the whole story.

You have somehow gotten an approximation Xy to the zero ¢ of the function f.
On evaluating f at x,, you find that f(xg)# 0. So you know that xg # c. Now, you
don't know how to find a zero of f exactly, but you have no difficulty finding a zero of
any particular straight line. So, in order to get closer to c, you determine the zero of
the tangent to f at Xq - This tangent is the straight line given by

112



5. Zeros by Newton's method

Figure 5.1

N

  

y = f(xo) + f (xO)(x - xO)

and it is very easy to find its zero x;. You only have to solve

0 = f(xo) + f'(xo)(xl -x)
0

and this gives

f (X())

(5. 1) X, = X, —W ,

(provided f'(xo) #0). If now xqp is close enough to ¢ so that the tangent is a good

approximation to f near c, then you can count on x; to be an even better approxima-

tion for ¢ than X0 is. But then, you are certain to do even better by trying the whole

process again with x; in place of xg, getting

] f )
(5. 2) X, = X ——f'—(;_l)—

And away we go, generating a sequence X0y Xy - by the formula

f(x)

(5. 3) X = x -
r+l r f'(xr)
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This is called Newton's method. If x; is close enough to c, the successive
xr's will get closer and closer to c. In such a case, we say that the xr's converge

to c. The concept of convergence is discussed in the chapter of sequences and series

in your calculus text: for example, Chap. 16 in T- F.

As an example, we try to find the larger root of

(5. 4) x=1lnx+2

by Newton's method. First we have to write the equation in the form

f(x) =0

For this, we take

(5. 5) fx) =x - Ilnx - 2.

Then by (1. 3)

, 1
(5. 6) f'ix) = 1-=.

x

A quick sketch shows the larger root to lie near 3, so we take x, = 3. Table5.1
shows the successive iterates as calculated on a TI-30. We have only recorded the an-

swers as shown in the display, i. e., we have not tricked the calculator into revealing

all the digits of the answers carried internally. The TI-30 has but one memory register,

and is AE with hierarchical arithmetic (remember My Dear Aunt Sally from Sect. 2 of

Chap. 0). So, initially, we put xg = 3 into the display. After that, we repeated the

following program.

E,m’m?a”a’z’m,reado:fif f(Xr)7

=,0, 1, &, kO, 074, 5], readoff x_, -

The convergence is fast, as is typical for Newton's method if the initial guess X is

close enough to the zero.

 

 

Table 5.1

X f(xr)

3, -. 09861 229

3.1479 184 .00117 701

3. 1461 934 . 00000 015

31461 932 - 1 x 10710

3. 1461 932 0    
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As we said in Sect. 2, root finding can be divided into two stages: (i) getting a

first approximation; (ii) refining successive approximations. We have (5. 3) to take

care of (ii). In calculus texts that discuss Newton's method, the problems assigned
usually tell you what to take for your first approximation, xg- That is, the author of

the text has taken care of (i) for you. And, with the x; suggested by the author of the

text, you get rapid convergence to a zero. How jolly.

In engineering and science courses, there is usually not anybody to help you out

by suggesting an x;. You are on your own.

There are some theorems available which guarantee convergence of Newton's

method from certain starting values Xq - But these require you to know an awful lot a-

bout the function f. On the other hand, the proof of the pudding is in the eating. So,

somehow locate a firstguess X, for example by graphing f, and start Newton's method

with it. If this leads to success, fine; if not, then you had better graph f with points

more finely spaced in order to get a betterguess. If you had a change of sign, you could

instead use the bisection method for a few steps.

As an example, we now use Newton's method to look for the smaller root of the

equation (5. 4),

x=Inx+2.

We try xg = 0. 5. Then f(xg) = -0. 80685 28190 and f'(xg) = - 1. Therefore, by (5.1),

X =0, 5 - (-0. 80685 28190)/(-1) = -0. 30685 28190 .

This is the end of the trail. We cannot form f(x;), since In x is undefined for x
negative, and hence (5. 2) cannot give us X5 As we sdid, the matter of finding a suit-

able xg is sticky.

One thing you learn in an engineering or science course is not to give up if you

don't make it on the first try. Let us experiment a bit. We calculate £(0. 4), £(0. 3),
£(0. 2), and f(0. 1). From these, we pick Xy = 0.2 as another possible starting point.

As Table 5. 2 shows, this works excellently.

 

 

 

Table 5. 2

r X f(xr) f' (Xr)

0 0.2 -0. 19056 20880 -4

1 0.15235 94780 0. 03387 20410 -5. 5634 24955

2 0.15844 78213 0. 00077 77640 -5. 3112 25940

3 0.15859 42591 0. 00000 04270 -5. 3053 98478

4 0. 15859 43396 0. 00000 00000 -5. 3053 95278      
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Part of the folklore about the Newton method is that the number of correct digits in

the approximation x, doubles for each new step. Actually, this is not so in every case.

The following application of calculus gives a more precise description of how the error

in the Newton method iterates decreases from iteration to iteration.

By the Extended Mean Value Theorem (Special Case), which is Equation (2) of

Sect. 3-10 of T- F, we have

f(c) = f(xr) + f'(xr)(c - xr) +%f”(§)(c - xr)z ,

where £ lies between c and x.. By (5. 3), we have

0 = f(xr) + f'(xr) (XH_1 - Xr) .

If we subtract this equation from the equation above, we get

flc) = f'x)(c-x_ ) + 'l—f"(g)(c - x )'2 .
r r+l 2 r

But with ¢ aroot of f(x) = 0, we get from this
’

__"
(5.7) T %T 2f' (x) (c-x)

In case

fll‘g!

(5. 8) ’Zf'(xr) '

is somewhere near unity, then indeed the number of correct digits in x.,;, after the
decimal place, would be very close to double the number of correct digits in x,, after
the decimal place. However, the number of correct digits, after the decimal place,could
differ quite a bit from the number of correct significant digits. So, even with (5. 8) close

to unity, we are not assured of doubling of the number of correct significant digits. And,

of course, there is no particular reason why (5. 8) should be anywhere near unity.

 

If (5. 8) stays somewhere near constant as r increases, we will certainly have the

rate of convergence increasing. This is what usually happens. As one can see from

(5. 7), it takes really abnormal behavior on the part of (5. 8) to prevent an increase in the

rate of convergence. Hence Newton's method usually gets the answer quite quickly.

How do we know we have the right answer? Table 5. 2 was calculated on an HP-

33E. For r = 4, it says

(5. 9) f(0. 15859 43396) = 0
)

as plain as day. How far off might the calculator be? By the Mean Value Theorem,

which is stated in Sect. 3-8 of T-F,
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(5. 10) f(x4) - f(c) = f'(f;)(x4 -q),

for some £ between x, and c. Butfor £ between x, and c, we have f'(€) very

close to f'(x4). So

(5. 11) f'(g) = -5. 3054 ,

from Table 5. 1. With the value of x, from Table 5. 2 and the following accurate value

of ¢

c = 0.15859 43395 63039 ...
’

we have

(5. 12) X, = C =3 6961 X 1071t

As f(c) = 0, we get from (5. 10) a more accurate value than given by (5. 9), namely

(5. 13) £f(0. 15859 43396) =~ -1.961 X 10_10 i

The difficulty is that we are encountering noise. This was discussed in detail in

Sect. 4 of this chapter. The noise in the illustration given there was much worse than

we are encountering here, but here it is bad enough that our calculator gave an approxi-

mation for f(x4) that was two units too high in the last digit.

Suppose we had had an accurate value for f(x,) in Table 5. 2 instead of the erro-

neous one given there. The value of f(x4)/f'(x4) would have been less than 5 x 10-11;
on a 10-digit calculator, adding this to x4 would have produced no change. Then xg

would have come out exactly the same as x4. We did the best that is possible with a

10-digit calculator, in spite of the presence of a slight amount of noise.

This is a comforting conclusion. But we managed to reach it only because we

somehow produced out of the blue the (first fifteen digits of the)exact value of c. We

usually do not have this information available. So, how do we then know how well we
did?

If we reach the point where X4l = Xp, then we have certainly done as well as

was possible, starting from the particular first guess xy we used. Usually, Xy is then

an accurate approximation for c. But it is not guaranteed to be that.

For example, take

(5. 14) f(x) = x

for ¢ > 0. Then (5. 3) would give

(5. 15) X = x -
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If xp=1 and a = 1012, then a 10-digit calculator will give x..; = X, leading one

to think that x, = X\ is a root of

(5. 16) x =0.

Some people write their program for Newton's method so that it displays only x..

Then, when x.,; agrees with x, to the desired accuracy, they take x,..; as the root.

As this example shows, this is risky.

A simple way to check the accuracy of X4 @s an approximation to a zero ¢ of

f is to evaluate f at a nearby point beyond Kt s for example at the point

).= - X
b Xr+l * (xr+1 r

If f has opposite signs at x,,; and b, and f is continuous, then you can be sure

that Xril is within |xr+1 - xrfl of a zero c. Of course, you have to have enough of

an idea about the noise level in the calculated function values to be certain that the

function values at b and Xpyp are truly of opposite sign.

Problem 5. 1. Write a program to perform the calculations for Table 5. 2.

Problem 5. 2. Use a slight variant of the program written in Prob. 5. 1 to find the

zero of

x=Inx+4+3

that is near x = 5, to ten significant digits, by Newton's Method.

Remark. This time, take x5 = 5.

To get zeros for a polynomial by Newton's method is of course very easy. Given

x., we calculate p(x,) and p'(xJ), which is easy, and plug them into (5. 3). A few

repetitions of this, and we have a good approximation for c. This would not be unduly

laborious on a nonprogrammable calculator, but with a programmable calculator, it is

extremely fast. Recall that Program II. 4 in the Program Appendix will do the following:

after putting x, into the display, p(x;) and p'(xr) will be calculated, and the program

will stop with p(xr) in the display. However, x. and p'(xr) are stored at various

places. So it is very easy to calculate Xyl by (5. 3) and put it into the display. Pro-

gram IL 4 ends with a command to go back to the beginning. Take that off and put R/S.

That will cause a halt, so that one can take time to see if p(xr) seems near enough

zero. After the R/S, put instructions to calculate Xpy1 DY (5. 3) and then an instruction

to go back to the beginning of Problem IL 4. After the stop at the end of Program IL 4,

with p(xr) in the display, press R/S. Then Xry1 Will be calculated, and appear in

the display. Press R/S again, and Program IL 4 will run again, giving p(xr ) in the

display. Press R/S again, and Xp4o will be calculated and appear in the display.

Witflw. Xr, p(xr), Xri] s p(xr+1 ),... appearing consecutively, one has some basis for

deciding when to stop.

Program II 4 was written in case we wish actually to know the values of p(c) and
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p'(c). But suppose that all we wish is to get a zero by Newton's method. Then we can

deal with polynomials of one higher degree. The idea is that we divide all the coeffi-

cients of p by aq- This will not change the zero. But now we can change Program

II. 4 a bit to take account of the fact that the leading coefficient is unity; this frees a

space to store one more coefficient. The result is embodied in Program VII 2 in the

Program Appendix.

In the next several problems, get the answer to the maximum precision available

on your calculator. These problems can be done with a nonprogrammable calculator, but

the later ones are really intended for programmable calculators using the program inthe

Program Appendix.

Problem 5. 3. By Newton's method, find the zero that is near 0 of the polynomial,
p, defined by

(5.17) p(x) = xtoaxd st - ax 1.

Problem 5. 4. By Newton's method,find the zero of the p of (5. 17) that is near 4.

Remark. In the two previous problems, we learned that

Py = 0.26794 91924

p, = 3.7320 50808

are two zeros of p. So, by Cor. 2 to Thm. 2.1 of Chap. II, (x - pl)(x - pz) must

divide p(x). By calculator

2
(X-pl)(x-pz) = x -4x-1.

Problem 5. 5. By multiplying it out, verify that

2 2
(5. 18) x4—4x3+2x2-4x+1=(x-4x+1)(x +1) .

Problem 5. 6. By Newton's method, find a zero of the polynomial, p, defined by

(5. 19) p(x) = 3x5 - 9x4 + 10x3 +3x 41 .

Problem 5. 7. By Newton's method, find all four zeros of the polynomial, p,

defined by

(5. 20) p(x) = 8x4 - l4x3 - 9x2 +1lx -1 .

Hint The graph of this is given in Fig. 3.2 of Chap. IL From this, one can read

off reasonable approximations for the four zeros. Find first the zero near 0.1. Then

deflate to a third degree polynomial by the methods given near the end of Sect. 2 of
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Chap. IL. For it, find the zero near 0. 7. Deflate again to a quadratic. Get the last

two zeros by the quadratic formula, which is (3. 1) of Chap. IV.

Problem 5. 8. By Newton's method, find constants c¢;,c,,a, and b so that

(5. 21) X - 3% - ax -1

2
= (x - Cl)(x - CZ)(X + ax + b).

Hint Proceed as for Prob. 5.7. Find a zero, c,, and deflate to a third degree
polynomial. Find a second zero, c,, and deflate to a quadratic, which will be

x% +ax + b.

Remark. By the quadratic formula, the zeros of the x% + ax + b that you get turn

out to be complex, involving imaginary numbers. So x% + ax + b is not zero for any

real x. So the polynomial expression on the left of (5. 21) has only two real zeros,

namely c; and cp.

Problem 5. 9. Show that the polynomial, p, defined by

(5. 22) p(x) = x3- 3x2+x— 1

has one and only one real zero, and find its value to high accuracy.

Hint. Find a zero, c, of (5. 22) to high accuracy by Newton's method. Then de-
flate, getting a and b so that

(5. 23) x3-3x2+x—1=(x—c)(x2+ax+b).

By the quadratic formula, the zeros of x% + ax + b turn out to be complex, so that it is

not zero for any real x.

Problem 5. 10. Find all real zeros of the polynomial, p, defined by

(5. 24) p(x) = x3 +12x - 4 .

6. _Square roots.

To find +A, with A >0, one can attempt to solve

(6. 1) f(x) = x"-A=0

by Newton's method. This gives, by (5. 3),
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since f'(x) = 2x. So we have

1 A(6. 2) X173 (xr +Xr ) .

Problem 6. 1. Show that if Xq > 0 and A>0, thenfor r>1

(6. 3) X > VA .

)

Hint. Find the minimum point for positive x of the curve

1 Ay—2&+x).

From (6. 2), we have

X - VA =
A

r+l (xr 2\/'A+x )
r

N
=

So

12
(6. 4) X1 JA = Zxr (xr JA)© .

(Incidentally, this is a special case of (5.7).) This gives

xr—\/’A 1

Xr+l “VA= _Zc?_(xr_\[A)SE(Xr—\fA) ’

So the error is diminished by at least 1/2 at each step. If X, 1is much larger than \/'A,

this is what will happen. However, when x, gets close to \fA, the error will decrease

much faster. If A>0.25, then by (6. 3) x. > 0.5 Hence by (6. 4)

(6. 5) X1" VA < (xr - \[A)Z i

Suppose at x; we have three decimal places of accuracy. Then

xr-\[A_< 10_3 .

So by (6. 5)

-6
XJA <10 .

That is, at X we have at least six decimal places of accuracy. So by (6. 5) we can

conclude that, for the formula (6. 2) the number of decimal places of accuracy doubles

with each successive iteration if A > 0. 25 and Xq >0 .
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For large x., one has to understand this last remark appropriately. Take A= 4

and xg = 10. Then, by (6.2), x; = 5. 2. However, ¥4 = 2, so that both x; and x
have zero decimal places of accuracy. As twice zero is zero, the number of decimal
places of accuracy did double.

Problem 6. 2. Use (6. 2) to approximate 2, and verify that the number of decimal

places of accuracy doubles with each successive iteration.

Remark. Formula (6. 2) is the one used internally to calculate VA in most calcu-

lators because it converges so fast. Different calculators have varied ways to choose

Xp- A common way is to choose B, with 0.1 <B <10, so that A= BX 100", for r an

integer. Then \B can be determined with five or six applications of (6. 2), taking

xg = B. Then VA is taken to be VB X 107,

Problem 6. 3. Set up Newton's method to solve

x3—A=O
)

and so derive a formula similar to (6. 2) for approximating %'A.

7. Inteqgration by partial fractions.

It is explained in the calculus text that if f and g are polynomials and one wish-

es to evaluate

(7. 1) fé%% dx

by the method of partial fractions, one has to know the factors of g(x). This involves

knowing the zeros of g, since by Cor. 1 for Thm. 2. 1 of Chap. II, x - ¢ is a factor of

g(x) if and only if c is a zero of g.

The exact procedure is explained in detail in the calculus text. See Sect. 7-6 of

T-F, for example. So we will not explain it here. But let us give an illustration.

Say we wish to evaluate

 

(7. 2) f R(x) dx

where

4

(7. 3) R(x) == X
X —4x3+2x2—4x+1

First, we have to get the numerator to be of lower degree than the denominator. But

evidently we have

122



7. Integration by partial fractions

3 24 - -(7. 4) Rx) = 1 + X 2X +4x -1

4
X —4x3+2x2—4x+l

Now by (5. 18), we have

4x3—2x2+4x-1 _ 4x3-2x2+4x—1
 

4 3 2 2
X =-4x" +2x -4x +1 (x—4x+1)(x2+l)

So we separate into partial fractions

4x3-2x2+4x-1 A B Cx + D
(7. 5) = + + 5

x4-4x3+2x2-4x+1 x=2+N3 x-2-43 x 41

By (7. 4) and the theory in the calculus text, the value of (7. 2) is

(7. 6) x+Alnx-2+43)+Bln (x-2-+3)

+%1n (x2+1)+Dtan_lx+K ,

where K is the constant of integration. So all we have to do is find the values of A,

B, C, and D.

Multiplying out (7. 5) gives

(7. 7) 4X3-2x2+4x—1:A(x-Z—\f3)(x2+l)

+ B(x - 2 +\f3)(x2 + 1)

+ (Cx +D)(x-2-43)(x -2 +43).

If we take

x=2-+3=0.26794 91924

then the terms on the right of (7. 7) that involve B, C, and D all are zero, and we get

0.00515 47760 = A(-243)(1.0717 96770 )

(we got the value on the left side of (7. 7) by Horner's method, of course). So
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VII. ROOT FINDING

(7. 8) A=-0.00138 83748 .

Now take

x=24+V3 =3, 7320 50808 .

Then the terms on the right of (7. 7) that involve A, C, and D all are zero, and we get

193.99 48453 =B (2v3)(14. 928 20323) .

So

(7. 9) B~ 37513 88375 .

Then we can write (7. 7) as

(7. 10) 4x3 - 2x2 +4x - 1 =

-0.00138 83748 (x - 3. 7320 50808)(x2 + 1)

+ 3.7513 88375 (x - 0.26794 91924)(x‘2 +1)

2
+ (Cx+D)(x - 4x +1).

Put x = 0, and get

-1 =(0.00138 83748)(3. 7320 50808)

-(3. 7513 88375)(0. 26794 91924) + D .

So

(7.11) D=0 .

Finally put D=0 and x =1 in (7.10), and get

(7.12) C=0.25.

Actually, since everything in (7. 7) involves small integers or simple multiples of

V3, it is not too hard to work out the exact values. They are

A 45 - 2643

- 24
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8. Linear differential equations with constant coefficients

B - 45 + 263

- 24

1

C= 4

D=0

However, make the problem just a shade more difficult and it would be practically im-

possible without a calculator.

Problem 7. 1. Evaluate

2
(x~ - x - 1)dx(7. 13) J ——

8x - l4x -9x +11lx-1

 

Hint. Look up your answers for Prob. 5. 7.

Problem 7. 2. Evaluate

 (7. 14) Il i
4 3

X =3x =-4x -1

Hint. Look up your answer for Prob. 5. 8.

8. Linear differential equations with constant coefficients.

The typical linear differential equation with constant coefficients (see Sect. 18-11

of T- F) has the form

dly Qiliz dy(8.1) T T ot +an_ldx+any=f(x) .

dx dx

To solve this, one finds somehow ONE solution of (8. 1) and then adds the general solu-

tion of

dy _(8. 2) 0 n | gt an_ldx+any-0.

To get the general solution of (8. 2), one tries

(8. 3) y:epx.



VII. ROOT FINDING

Substituting this into (8. 2) gives

aopnepx + alpn_lepx +... +a pepx + ane
px _

n-1

to be solved. This reduces to

n n-1 px
{aop +alp + ... +an_lp+an}e =0.

If we can find a value of p that makes the expression in the curly brackets equal to

zero, then, for that value of p, (8. 3) gives a solution of (8. 2).

In other words, we are reduced to finding zeros of p, where p is the polynomial

defined by

n n-1
(8. 4) p(x) = ayX +alx + ... +an_lx+an .

This is called the characteristic equation for (8. 2).

Given several p's that are zeros of p, we can put them into (8. 3) and get sev-

eral solutions of (8. 2). Where to go from there is explained in the calculus text, to
which we refer the reader. But let us look at an illustration.

Say we wish to solve

 
3

(8. 5) dy _L,4v, ,dvy_,dv

Recall (5. 18), which gave

X o4 b ox® —dx 41 = (k-2 +V3)(x- 2 - V3)(xZ + 1).

So evidently we can take p, = 2 +43 and p, = 2 -3 in (8. 3) to get solutions of
(8. 5). What about the factor x2 + 1? If one is not allergic to imaginary numbers, one

can use the quadratic formula (which is (3. 1) of Chap. IV) to get two zeros of it, namely

Xx=+1i. Sotry p=1i and p = -i in (8. 3). If one has two solutions of (8. 5), then a

constant times their sum is also a solution. So try

1, ix -ix
y=5@"+e )

It happens that this equals cos x. You will have no trouble verifying that y = cos x

is a solution of (8. 5). Or try
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8. Linear differential equations with constant coefficients

It happens that this equals sin x. You will have no trouble verifying that y = sin x

is a solution of (8. 5).

Problem 8. 1. Find four solutions of the form (8. 3) for

4 3 2

(8. 6) gdY_ 149y _odv, ), d¥ -y=0.
4 3 2 dx

dx dx dx

Hint. Recall your solution of Prob. 5. 7.

Problem 8. 2. Find four solutions of the form (8. 3) for

4 3
(8. 7) dv_sdy_,Iy

4 3 dx
dx dx

Hint. Recall your solution of Prob. 5. 8. For the quadratic factor, get two zeros

involving imaginary numbers by using the quadratic formula. As explained in the cal-

culus text, these two zeros can be used to introduce some cosine and sine terms into

the solution.
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Chapter VIII

LIMITS AND CONVERGENCE

0. Guide for the reader.

Calculus depends heavily on the theory of limits. Derivatives are defined as lim-

its. Integrals are defined as limits. One is frequently called upon to find the limit of

some expression.

For this reason, most calculus texts take time out after a bit to explain the main
characteristics of limits. For example, see Sect. 1-10 of T- F. After this explanation

in your text, it is advisable to read Sect. 1.

You will find that various calculations in this section will help you understand

what happens when a function approaches a limit. The calculator makes it easy for you

to carry out numerical experiments, to see what the limiting value might be. On the

other hand, the values given by calculators are mostly a trifle in error. Sometimes they

are more than a trifle in error, as when cancellation occurs, which is frequentin the
kind of limit problems encountered in differentiation. So the calculator will help you

understand limits, but for getting the exact value of a limit you must rely on calculus.

Often you do not need the exact value. Then the calculator can often be very

helpful. One instance of this is a way of getting a root of an equation by a limiting pro-

cess called fixed point iteration. This is discussed in Sect. 2. This process is quite

simple, and you may often find it more attractive, or easier to program, than the methods

given in Chap. VII for finding a root of an equation.

In Sect. 3, we discuss the Aitken 52 process as a simple example of a method

for accelerating the convergence of a sequence. This section gives you an example of

how to exploit convergence behavior of a sequence, as established by calculus, to get

to the limit more quickly.

1. Numerical illustrations.

Can the calculator be of help in finding limits? Let us look at a few examples.

In order to find out what the derivative of sin x is, one has to show that
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1. Numerical illustrations

 
(1.1) lim sin © _ 1

6—0

(PROVIDED that © is taken in radians). This result is (1) in Sect. 2-10 of T- F. In

Table 1. 1 we give values of (sin 0)/6 for values of 6 tending to zero. These were

calculated on the HP-33E, but other calculators give similar results. This looks pretty

 

 

Table 1.1

sin O

6 o

+ 1 0. 84147 09848

+ 10% 0.99998 33334

+10% 0. 99999 99983

£ 1070 1. 00000 00000

+ 108 1.00000 00000

+107 1% 1 00000 00000    
convincing, provided you feel that the HP-33E (or your own calculator) is doing an ac-

curate job of calculating sin O.

However, it does not PROVE anything. For all we know, if we could take
6 = 10'433, which is beyond the range of the calculator, (sin 6)/6 might come out to

be 0. 6. Or it could be that the limit really is 1 + 10'27, which would accord perfect-

ly with the 10-digit values in Table 1. 1.

Actually, your calculator is probably rigged to perform this limit calculation per-

fectly. On some calculators, sin 6 is calculated for O near 0 from a formula of the
form

sin @ = 9(1 - @29(9)) ,

with g a well behaved function (very likely a rational function) for which

: 1
lim g@©) = o

0—0

Thus for O close enough to 0, such a calculator returns 6 itself as the value for
sin ©. For example, on a 10-digit calculator, like the HP-33E, this is bound to happen

when ]9'51.7 X 1072, Then we have

10-10
2

16%g(0)] < -,16%5 () | IR
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VIIIL. LIMITS AND CONVERGENCE

so that subtraction of ng (©) from 1 leaves 1 unchanged. On other calculators,
sin O is obtained as (tan O)Af1 + (tan 0)2 , with tan 0 calculated in a process which
accurately builds up tan © from the accurate tangents of certain selected small angles.

This process, too, insures that, for 6 near 0, the calculator returns 6 (correctly) as

the value of tan © and therefore of sin ©.

But, as soon as the calculator obtains © as the value for sin 0, then division by
© 1is bound to produce the answer 1.

For a related example, consider

sin5%(1. 2) lim =
sin 3x

x—0

This is Prob. 7 at the end of Sect. 2-10 of T- F.

We have calculated Table 1. 2 on the HP-33E. We are sure the reader will recog-

nize the later entries as a very good numerical approximation to 5/3. So the limit is

 

 

 

Table 1. 2

sin 3x

+1 -6. 7950 97928

+10¢ 1. 6662 22231

+10°* 1. 6666 66622

£107° 1. 6666 66667

+10°8 1. 6666 66667
£10710 16666 66667  
 

doubtless 5/3, though we certainly have not proved it. By using calculus, one can

prove that the limit is indeed 5/3 on the nose.

Problem 1. 1. Explain why your calculator is apt to give the ratio M/N to full

accuracy when asked to calculate the ratio (sin Mx)/(sin Nx) for x very near 0.

Problem 1. 2. Find

) sin 2x
lim —/——

x—0 sz + X

Remark. This is Prob. 19 at the end of Sect. 2-10 of T- F.
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1. Numerical illustrations

We now consider examples where the calculator is less helpful, such as

3

(L 3) lim zx + 1
XxX—=-12x -3x-5

Table 1. 3 shows some sample calculations on the HP-33E. The "Error" entries

arise because for those values of x the denominator comes out to be zero. Calculators

 

 

Table 1. 3

3
AX ?}fi;—sforx: -1+ Ax

107 -0.42551 57593

107% -0.42854 08155

1078 0. 42857 14286

1078 -0.42857 14286

1070 -0.42857 14286

10—10 Error

—10.-10 Error

~1077 -0.42857 14286

~1078 -0.42857 14286

~107% -0.42857 14286

~107% -0.42860 20399

~107% -0.43163 81766    
will not divide by zero.

One is not inclined to doubt that the limit is approximately -0.42857 14286. If

one is astute enough to recognize that this is a very close approximation to -3/7 , one

will suspect that -3/7 is indeed the limit. Numerical answers in calculus are quite
often simple fractions'!

However, it turns out that the values we chose for Ax were quite special, de-

signed to work unusually well on a decimal digit calculator. To see this, we try some

"funny" values of x close to -1. After all, if the limit for (1. 3) is really -3/7, one

should get close to that for any value of x close to -1. But look at the numbers in

Table 1. 4. The value for Ax = 5 x 10~10 casts grave doubt whether the limit could

possibly be -3/7. On the other hand, look at the values for negative Ax.

What is happening is that we are encountering cancellation, and the value as
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VIII. LIMITS AND CONVERGENCE

 

 

 

   

Table 1. 4

x3 +1
5 for x = -1 + AX

2X - 3x-5

AX calculated value accurate value

1.23459 X 10° -0.42856 71307 -4. 2856 76492

1.2349 x 10°° -0.42858 63026 -4.2857 10505

1,239 x 107 -0.42871 97232 -4.2857 13906

.29 x10°% -0.43000 00000 -4.2857 14246

1.9 X 1070 -0.43846 15385 -4.2857 14280

5 x 10710 ~0. 50000 00000 -4.2857 14285

-5 x 10710 —0.42857 14286 -4.2857 14289

-1. 9 x 1070 -0.42857 14286 -4.2857 14292

“1.29  x 1078 -0.42857 14286 -4.2857 14326

~1.239  x 10" -0.42857 14286 -4.2857 14665

11,2349 x 1070 -0.42857 14286 -4.2857 18066

~1.23459 x 10° -0.42857 14286 -4 2857 52079 
 

given by the calculator is differing considerably from the true value for the given value

of x The true value (to 10 digits) is given in the right hand column of Table 1. 4.

Other calculators will exhibit similar phenomena, but not necessarily for the same
values of Ax.

Cancellation is discussed in Sect. 2 of Chap. IV. Some possible ways of avoid-

ing it are discussed in Sect. 3 of Chap. IV. In the present case, we can proceed as

follows. By Thm. 2.1 of Chap. II, we have

3
X +1 = (xz—x+l)(x+1)

2
2x =3x-5= (2x-5)(x+1) .

So

3 2

2x2—3x-5 2x =5
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1. Numerical illustrations

On the right side of (1. 4), there is no cancellation. This equation was used to calcu-

late the right hand column of Table 4. 1. Indeed, one can put x = -1 in the right side

of (1. 4) and determine that the limit in (1. 3) is exactly -3/7.

 

 

Table 1. 5

x3 + 1

sz -3x-5

for x = -1 + Ax krror in
value

true value given in

Ax (rounded to 10 digits) Table 1. 3

107% -0. 42551 57593 0

107% -0. 42854 08169 14 x 10710

107° -0. 42857 11224 3062 x 1010

1078 -0. 42857 14255 31 x 1010

10710 _0.42857 14286 Error

~10710 -0.42857 14286 Error

~1078 ~0. 42857 14316 -30 x 107 1°

107 -0. 42857 17347 -3061 x 1010

~107* -0.42860 20414 15 x 10”10

~10¢ -0.43163 81766 0     
As we said, the Ax's in Table 1. 3 were quite special. They strongly supported

the limit -3/7, but this was because the calculator was giving the wrong values. In

Table 1. 5, we give the correct values (calculated from the right side of (1. 4), naturally).
The disparity between the values in Tables 1. 3 and 1. 5 is quite appreciable.

Moral. Don't believe everything you see on a calculator.

Incidentally, Table 1. 5 gives a much better image of what happens when one has

a limit than Table 1. 3 does. In Table 1. 5, one sees that as x —-1 the given expres-

sion does indeed approach -3/7 , but at a steady rate; not abruptly, as one would think

from Table 1. 3.

Incidentally, you can also find that the limit in (1. 3) is -3/7 by using

1'HOpital's rule. If you differentiate both the numerator and denominator, you get the

ratio of derivatives

3xX

4x - 3
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Putting x = -1 gives =-3/7.

Problem 1. 3. Guess the limit as x — 2 of

x2 -4
(1. 5) U

x - 8

-n
by calculating its value for x = 2 + Ax for Ax = +10 |, n= 2,3,...,9, on your cal-
culator. Calculate the correct values of (1. 5) for the same values of x, and determine
the exact limit.

Remark. This is nearly the same as Example 6 in Sect. 1-10 of T-F,

A limit that occurs frequently in calculus is the derivative, defined by

f(x + h) - f(x
1. 6) f'(x) = lim( ) timL8

In trying to get a numerical approximation for f'(x) by calculator, cancellation is bound

to give difficulty. This point is discussed somewhat in Chap. III, and in detail in

Chap. V.

Since the result of cancellation depends on the roundoff error, which varies from

one calculator to another, different calculators will give quite distinct results if tried on

the right side of (L 6) for "small" h. A striking example of this is given in Table 2. 2

of Chap. III, where the right side of (1. 6) is calculated for f(x) = x™! at x = 0.7 on

three different calculators. Another example is to be found in Tables 1.1 and 1. 2 of

Chap. V, where minor differences in h are greatly exaggerated due to cancellation.

For exercises involving this point, see Problems 1. 6, 1.7, and 1. 8 of Chap. IIL

It would be instructive in each of these to use still smaller values of Ax than suggest-

ed for the problems, since the ranges of Ax for those problems were restricted to a-

void difficulty for the student.

Cancellation can arise in many other situations. In Prob. 18 at the end of Sect.

3-9 of T- F, we are asked for the limit as x—o of

(1.7) x—\/x2+x.

Some calculator results, as done on the HP-33E and the TI-30, are presented in Table
1. 6. To get the true value, without cancellation, we multiply (1. 7) by

{2
X+tVX +X

2 )

x +Vx7 +x

a trick given in Sect. 3 of Chap. IV. The result is
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1. Numerical illustrations

 

 

 

 

      

Table 1. 6

X = XZ + X

X calculated value accurate value

HP-33E TI- 30

1 ~0.41421 35620 - .41421 356 -0.41421 35624
10 ~0.48808 84800 - .48808 848 -0.48808 84817
10% -0.49875 62000 -0.49875 62 -0.49875 62112
10° -0.49987 50000 -0.49987 5 ~0. 49987 50625

10* -0.49999 00000 -0.49998 ~0. 49998 75006

10° -0.50000 00000 -0.4999 ~0. 49999 87500

10® -0. 50000 00000 -0.499 ~0. 49999 98750

10" -0.50000 00000 -0.49 ~0. 49999 99875

10% -0.50000 00000 -0.4 ~0. 49999 99988

107 0. 00000 00000 0 ~0. 50000 00000

1019 0.00000 00000 0 ~0. 50000 00000

2 -X
(1. 8) x-Vx" tx=—F7—7—

x+xE +x

If we let x —on the right side, we get -1/2 as the limit.

Observe again that the right column of Table 1. 6, where the true values are given,

gives a much more understandable picture of how (1. 7) approaches the limit -1/2 than

either column of calculated values does. Note also how the last decent value provided

by the TI-30 is spoiled by the fact that the TI-30 truncates rather than rounds.

Let us try to find the limit as 6 — 0 of

1l - cos B

92
(L9)

Calculated values, as done on the HP-33E and the TI-30, are given in Table 1.7. For

lo | < 10-5, the calculator gives cos 6 = 1 to 10 decimals, and so gives 0 for (1.9).

The true values are derived from the trigonometric identity

. 2
(1. 10) 1 czos o _ 2 sin 2(9[21

6 o
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Table 1. 7

1 - cos@

92

o calculated value accurate value

HP-33E TI-30

+1 0. 45969 76941 . 45969 769 0. 45969 76942

£10° 1 0.49958 34700 |.49958 344 0.49958 34722

1:10—2 0.49999 60000 . 49999 5 0.49999 58334

:t10—3 0. 50000 00000 . 499 0. 49999 99584

i10-4 0. 50000 00000 0.4 0. 49999 99996

:1:10_5 0. 00000 00000 0 0. 50000 00000

ilO-6 0. 00000 00000 0 0. 50000 00000      
From this one can easily conclude that the limit of (1. 9) is exactly 1/2. One can also
establish this result by two successive applications of 1'HOpital's rule.

Problem 1. 4. Find

(1.11) lim 2y tan = .
y —o Y

Remark. This is Prob. 15 at the end of Sect. 2-10 of T- F.

Note that you certainly cannot get the exact value of this limit except by calculus,

and you will do well even to guess it without calculus.

In summary: When you are trying to find

lim f(x) ,

X=X

the calculator is of help to you since it makes it easy for you to carry out numerical

experiments. You can look at values of f(x) for x closer and closer to xqg and, in
this way, form an impression of what the limiting value might be. It is even possible

to be more systematic about these experiments and use extrapolation techniques, such

as discussed in Sect. 3. But, numerical experiments cannot establish the existence of
the limit nor its exact value. For that, you need calculus.
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2. Roots by fixed point iteration

*2. Roots by fixed point iteration.
 

In Chap. VII, we discussed various ways to get a root of an equation. We discuss

here an attractive method which depends on a simple iteration.

We illustrate the ideas by considering the equation

4
(2. 1) x—4x3+2x2-4x+1=0.

Rewrite this successively as

x4—4x3+2x2—4x:-1 ,

x(x3—4x2+2x—4) = -1

-1
 (2. 2) X =3 >

X =-4x +2x-4

It was shown in Chap. VII that (2. 1) has a root near 0. So let us take

(2. 3) x. =0

as a first guess for a root. Substitute this into the right side of (2. 2). This gives a

second guess

(2. 4) x, = 0. 25 .

If this happens to be a better guess than x; was, then substituting it into the right

side of (2. 2) should give a still better guess.

If we are going to keep substituting things into the right side of (2. 2), we had

better fix it up to use Horner's method. So we write

 

-1

(2. 5) X1 T ((xr - 4)Xr + Z)Xr -4

Here we have guessed x, (for example xO), and we substitute it into the right side

of (2.2), namely the right side of (2. 5), to get a new guess x,,; (for example the x)

that we got before). It is very easy to write a program which starts with x, in the dis-

play, calculates the right side of (2. 5), and winds up with Xril in the display, ready

to run the program again.

Let us just try this out for a few r's, as shown in Table 2. 1. It looks very much

as if the x,.'s are approaching a limit, x. We express this by saying that the x.'s

are converging to a limit x. If one would continue with (2. 5) until that limit x were
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Table 2. 1

r Xr

0 0. 00000 00000

1 0.25000 00000

2 0.26778 24268

3 0.26794 83264

4 0. 26794 91879     
reached, one would have X,;; and x, the same, namely both x, and one could multi-
ply back to get (2. 1). So the x,'s are converging to a root of (2. 1).

Table 2. 1 provides strong evidence (but no proof) that to five decimals a root of

(2. 1) is x = 0.26795.

Problem 2. 1. Setup a sequence of x;'s that converge to the root of (2. 1) that

is near 4, and so get a 5 decimal approximation.

Hint. It is no use trying to do anything with (2. 5). This will always give a se-

quence of x./'s converging to about 0.26795. (See Prob. 2.7.) However, take c = 4

in Thm. 2.1 of Chap. II. This will give

4
X —4x3+2x2—4x+l = (x—4)(x3+2x+4)+17.

So we can rewrite (2. 1) successively as

 

(x-4)(x3+2x+4)=-17 ,

‘-4 - -17 ,

X +2x+4

(2. 6) X=4- 17
(x+0)x +2)x + 4

So, in place of (2. 5), take

17

(2. 7) X4l T 4- ((xr + O)xr + 2)xr + 4

Start with Xy = 4. Save your successive x.'s for future use in Sect. 3.
r

If you have already read Chap. VII, you will recall that Newton's method generates
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a sequence of xr's. We did not point it out at that time, but in fact they converge to

a zero of a function f(x), that is to a root of the equation

f(x) = 0 .

In Newton's method, each X, is defined in terms of x;. We have the same sort of
thing here; see (2. 5) and (2. 7). In this sort of circumstance, we say that the x.'s are

defined by iteration.

Notice that both (2. 2) and (2. 6) have the form

(2. 8) x = g(x) .

In trying to solve (2. 8), we are seeking an x that is carried into itself when operated

upon by the function g. Thatis, x is a fixed point of g. So we say that we have

given a fixed point iteration to find a root of (2. 1).
 

Problem 2. 2. Determine

 

 

(2. 9) s:ff5+ élr5+ 5 + &5 +...

Hint. Form 4\/ 5+ s. Putting an extra é 5+ on the right side of (2. 9) will not

change it any. So we must have

(2. 10) 5 4+ s =5 .

That is, we wish a fixed point of the g defined by

(2.11) g(x) = 54+ X .

So, as we did earlier, let us define a sequence of x,'s by the iteration

) = 45+x(2. 12 X = e

Problem 2. 3. Determine the limit of the sequence of xr's determined by the fix-

ed point iteration

(2.13) X =\x_,

with Xy a positive number.

Problem 2. 4. Vieta's formula

2 1 1 1 /1 1 1/, 1 1 /1
n‘\lzxxl(zJ“z\/z)X\/(zJ“z (2+2\/;))X
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VIIL LIMITS AND CONVERGENCE

(see Sect. 16-10 of T- F), is apparently of the form

;—aaa
mTT 1 2 3°

with the a;'s obtained by fixed point iteration,

 

1+ an

as >~ , n=0,1,2, , a0=0

Show that lim a =1 and see how accurately this formula gives
n — oo

2
T = 0. 63661 97723 67581 34307...

on your calculator.

Remark. You may stop the iteration as soon as your calculator obtains an a,

which is exactly 1 (after which the computed product Py = 3135... 3, will not change

any more with n). This will happen fairly fast. For example, aj, = 1 on an eight

digit calculator, while a6 = 1 on a ten digit calculator.

It was shown in Chap. VII that the equation

(2. 14) x=1nx+2

has two roots. They would be fixed points of the function g defined by

gx)=1n x + 2 .

Problem 2. 5. Set up the obvious fixed point iteration to generate a sequence of

Xr's that converge to a root of (2.14), and so get what appears to be an approximation to

five significant digits. If you have a nonprogrammable calculator, save your last four

xc's for future use in Sect. 3.

Problem 2. 6. Find to five significant digits the other root of (2.14) by a fixed point

iteration. If you have a nonprogrammable calculator, save your last four x,'s for fu-

ture use in Sect. 3.

Hint. As you can easily find out by experiment, the obvious fixed point iteration

for (2. 14) leads always to the same root, no matter where you start. Rewrite (2. 14) as

In x=x- 2.

Take the exponential of each side, and get

Now try the obvious fixed point iteration for (2. 15).
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3. Aitken's &2 process

Incidentally, it is easy to understand fixed point iteration with just a bit of cal-

culus. (See Prob. 4 of the miscellaneous problems for Chap. 16 of T- F.) Given that

c 1is a fixed point of the iteration function g, i. e.,

glc) = ¢,

while x., = g(xr), you get for the errors that

C XT g(c) - g(xr) :

But, assuming that g is differentiable, the Mean Value Theorem tells you that

glc) - glx) = g'(€)(c - xr)

for some £ between c and Xp- Consequently, if |g'(x)| <1 for all x near c, and

in particular, for all x between c¢ and x,, then x., iscloserto c thanis x.
)

As a special case, assume that lg'(c)l <1 and that g' is continuous. Then

lg'x)| <1 forall x closeto c. But then, once you have an x, close enough to c,

Xr41 Will be even closer, and so x,,, will be even closer than that, etc. In short,
under those circumstances, we get convergence to c¢ provided we start close enough

to c.

By the same token, if lg' (c)] > 1, then for all x "near" c, we have lg' (%) > 1,

and then, even if xr is very close to c, Xr4] is bound to be farther away. There is

then no chance to get close to such a fixed point ¢ by iteration.

This is exactly what happens in Prob, 2. 6, if you try to find the fixed point near

0. 1 of the function g given by

g(x) = In x+ 2 .

As you probably know by now, g'(x) = 1/x, and this is greater than 1 for all positive

X less than 1. So there is no hope of having fixed point iteration converge to that

fixed point with g as the iteration function.

Problem 2. 7. Show that iteration with (2. 5) has no chance of converging to the

root of (2. 1) near 4.

Al

*3, Aitken's 62 process.

The common way to try to find a fixed point of g, namely an x such that

(3.1) x = g(x),

is to set up a fixed point iteration
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VIII. LIMITS AND CONVERGENCE

(3. 2)

and hope that it converges.

is, and here is a way to do it.

Observe that trying to solve (3. 1) is

which the curves

(3. 3) Y

(3. 4) Y

cross each other.

 

If we have three consecutive x./'s, say x

 

Is there any way to speed up the convergence? There often

the same as trying to find a point (x,y) at

= X

= g(x)

rs Xp41, @nd X5, we can

 
 

estimate the x value of the point where the curves cross. This is done as follows. By

(3. 2), the points (xp,x,41) and (xp4;,%45) both lie on the curve y = g(x). See
Fig. 3. 1. So we can find the equation of the secant through these two points. Then we

Figure 3.1

Y

y=X

Y =9(x)

/‘///

secant ~

X X 1
r+2 H

7

X
X X
r+l r 
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3, Aitken's 62 process

can find the x* where the secant meets the straight line y = x. But (look again at

Fig. 3. 1), we hope that is near the x where y = x and y = g(x) cross.

The algebra for this works out as follows. The slope of the secant is

*2 7 %1
(3. 5) —

X X
r+1l r

The equation of the secant is

Xr+2_'xr+l

(3. 6) y—xr+2= X - X (X_xr+1) ’
r+l r

To find the x™ where this crosses y = x, we put v = x in (3. 6), and solve for x.
This gives

X X - (x
* r+2 r (

(3.7) x = X - 2X + x
r+2 r+1 r

An attempt to calculate by this formula will certainly result in serious cancellation,

expecially when xp, xp4y, and x.., are close to the limit. But we can write (3. 7)
in other forms, such as

2

&2 T %y
(. 8) X =Xr+2—x - 2x + x

r+2 r+1 r

The last term on the right is still subject to cancellation. However, we hope that Xpyo

is fairly close to x*. So the final term is small compared to Xryp - Even if this cor-

rection term cannot be accurately calculated, due to cancellation, an inaccurate value
will usually suffice to give x* to high accuracy. JSpecifically, suppose Xp4p is al-

ready close enough to the limit that the first five digits are correct. Then only the

final five digits need to be corrected. For this, one needs the correction term with an
accuracy of only five digits.

Indeed, (3.7) and (3. 8) can be put in still another form, even less subject to
cancellation error, specifically

Xr+l - Xr
3.9 T o= - + -

( ) X xr+2 * (xr+2 Xr+l) bl - X 1
r+2 r+l

Rf'N . . Kk . .N Here is a program for calculating x” which uses only one memory register:

143



RPN
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(3'10) XI‘-I-Z’ m’xr_*_l’ Efl) m’xr7 E?’

’Y, 1, @, ¥, RS, (x<v], &1, 1, [T,

=1, & -

The first line calculates and stores Xpp] ~ X

curly bracket in (3. 9).

e The second line calculates the

If the calculator has more than one memory register, some of the x's can

be stored, and some (or all) of the inputs in (3. 10) can be replaced by recalls.

This latter form can be easily stored as a program, if one has a programmable

calculator.

Here is a program for calculating x* which uses only one memory register:

(3'10) Xr+2, E; Xr+1’ E, @7

x., &, x, =, &, &O, &, 1, =,

=, x1, &L, =, @, 5,& -
The first line calculates and stores Xpyp = X

curly bracket in (3. 9).
41 The second line calculates the

If your calculator has an EXC or x ’< t key which exchanges the contents

of some memory register with the x- or display register, you should use it here

to avoid inputting xp4; twice. Put right after the first input of x,,,
and replace the two adjacent steps , Xppp DY [EXC]. If your calculator
has a parenthesis capability, then, even if your calculator has only one memory

register, it is possible to avoid inputting either Xpp] OF Xpyo twice. This is

done by evaluating (3. 9) from left to right, as follows:

x,,, @, @, 0D, 3@, &, %,39 0, &,
m)m’7E’m’xr’53’m’m”5’l75'

The first [STO] in the program is irrelevant to the calculation. At the point
where it is actuated, x,,, is in the display, so that the subsequent [=] and

Xry1 should produce x.,, - X,;). However, this is just aftera [{J. On some
makes of calculators, this renders the x.,, inactive. However, the [STO] re-
stores it to an active role. Similarly for the change sign instruction, [CHS]
that appears later.

)

If the calculator has more thanone memory register, someof the x;'s canbe

stored, and some (or all) of the inputs in (3.10) can bereplaced byrecalls. This latter

form can be easily stored as a program if one has a programmable calculator.
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3. Aitken's 6% process

In Table 3. 1, we show the results of applying Program (3. 10) to the results in

Table 2. 1. Under x, in Table 3.1 we merely repeat.the entries of Table 2. 1. Under

 

 

Table 3.1

r XI' X*

0 0. 00000 00000

1 0. 25000 00000

2 0. 26778 24268 0. 26914 41442

3 0. 26794 83264 0. 26794 98887

4 0.26794 91879 0.26794 091924    
x* we give the values from using (3. 9), as applied to three consecutive entries under

xr. The x* opposite r = 2 is poor, being in fact further from the true root than x,

itself. This means that we are far enough from the root that the secant (in Fig. 3. 1)

does not hit the line y = x particularly close to where y = g(x) hits it. For the next

x* we are closer, and do better. The final x* agrees to all 10 decimals with the
exact root of (2. 1), namely 2 - «3. Incidentally, if you wish to check this, do not
subtract \/3 from 2 on your calculator. This gives cancellation in calculating 2-4/3 ,

and one significant digit is lost. Use instead 1/(2 ++/3), which (mathematically) is

the same as 2 -\3 .

Use of (3. 9) to improve the approximation to a limit is called the Aitken's 62

process.

Problem 3. 1. TUse the Aitken's 62 process with the results of Prob. 2.1 to get

an approximation to about 10 digit accuracy for the root of (2. 1) that is near 4.

Remark. The root in question happens to be 2 +4/3.

Problem 3. 2. Use the Aitken's 62 process to get approximations to about 10

digit accuracy for the roots of (2. 14). Use the results of Prob. 2. 5 for the root greater

than 1 and the results of Prob. 2. 6 for the root less than 1.

Remark. 10 digit approximations forthe two roots in question are 3. 1461 93220

and 0.15859 43396.

The Aitken's &2 process is at times effective in accelerating convergence of a

sequence of xr's even if they are not generated by a fixed point iteration. This is the

case if the x.'s approach a limit L and there are constants a and k, with |k| <1,

such that

(3.11) X ~L+ak.
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VIII. LIMITS AND CONVERBENCE

Since lk| <1, we have

lim x = L.

r—oo

We raise the question: Given values of a few xr's , what can we do about guessing L?

If (3. 11) were exact instead of approximate, we could solve exactly for L from three

consecutive values of x,. We have

r
(3.12) X1~ X = ak" (k- 1),

r+l
- = k-1).(3.13) Xoo X ak™ ( )

Hence

r 2
- = ak - )X4o 2Xr+1 + X =a k 1)

So

x -x )°
r+2 r+l _ akr+2

X - 2X +x
r+2 r+l r

If we use r + 2 in place of r in (3. 11), and substitute from the last equation above,

we get

 

(x - X )'2
r+2 r+l

(3. 14) L=x.- - 2% +x
Xr+2 r+l

This can be rewritten as

X - X
r+l r

3.15 = - N-(3. 15) L=xgt- x)T 1
r+2 r+l

Since (3. 11) was only approximate, the same holds for (3. 14) and (3. 15). How-

ever, by comparing (3. 14) with (3. 8), we see that if the behavior of X, is governed

by (3.11), then Aitken's 6“ process is useful for estimating the limit L.

Consider again our problem of finding the limit as 6 —0 of

@2

If one takes successively 6 = 2, 1, 0.5, 0.25, 0.125, 0. 0625,... , each 6
being half the one before it, in (3. 16) one should get a sequence of values that con-

verges to 1/2, which is the limit of (3. 16). In Table 3. 2, we give some results of

this, calculating L by (3. 15) with the HP-33E.
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Table 3. 2

6 (1-cos 6)/6% R
calculated

2 0. 35403 67093

1 0.45969 76941

0.5 0. 48966 97524 0. 50153 83879 3. 525

0. 25 0.49740 12528 0. 50008 89596 3.877

0. 125 0. 49934 92992 0. 50000 54616 3.969

0. 0625 0. 49983 72608 0. 50000 03380 3.992

0.03125 0. 49995 92960 0. 49999 99943 3.999

0.015625 0.49998 97088 0. 49999 98039 4.013

0.0078125 0.49999 70816 0. 49999 94409 4. 125      
The values of L are considerably better than the corresponding values to their

left. Recall that the limiting value is 1/2. Note, though, that the last two extrapolated
values are not as good as their precedessors. This illustrates a computational difficul-

ty with extrapolation to the limit. Any errors in the calculated values for x,, x,4;, and
Xpio will usually be magnified by the extrapolation process, because of the cancella-

tion which occurs in the evaluation of (3. 15). These errors don't matter as long as L

itself is not too accurate an approximation to the limit. But, in our example, as ©

comes close to zero, the terms in our sequence have increasing relative error because
of cancellation in their calculation, and these errors in turn spoil the accuracy of the
extrapolated value L. This can be documented here by carrying the calculation out a-

gain using accurate values for (1 - cos 0)/6%, as calculated from (1. 10). The re-

sults are shown in Table 3. 3.
)

 

 

   

Table 3. 3

0 (1- cos 6)/62 L
accurate

2 0. 35403 67092

1 0.45969 76942

0.5 0. 48966 97526 0.50153 83882

0. 25 0.49740 12528 0. 50008 89594

0.125 0.49934 92972 0.50000 54580

0. 0625 0. 49983 72608 0. 50000 03398

0.03125 0.49995 93108 0. 50000 00204

0.015625 0.49998 98274 0.50000 00014

0. 0078125 0.49999 74568 0. 50000 00000  
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There are ways of monitoring the convergence behavior of the extrapolated values

which allow you at time to pinpoint the moment when noise begins to spoil the accuracy

of the extrapolated value. The key lies in observing the ratios

which occur explicitly in (3. 9) and (3. 15) and which,under ideal circumstances, converge
to 1/k, as can be seen from (3.11)- (3. 13). If the sequence comes from fixed point iter-
ation, then these ratios have geometric meaning. Indeed, by (3. 5), R, 1is the recipro-

cal of the slope of the secant in Fig. 3. 1. So Ry should approach l/g'(c), where c

is the desired solution. In calculations, these ratios will settle down initially, but
eventually, as cancellation becomes more severe in the evaluation of (3. 15), the ratios

will become noisy. This is shown in Table 3. 2, where we have also listed the ratios
Rr as well. Note how the difference between successive ratios first decreases, but
eventually becomes larger again. This is a clear indication that noise has become an

important part of the computed extrapolated values.

Problem 3. 3. Fine balancing scales in chemistry are read as follows: Do not wait

until the pointer comes to rest. Rather, while the pointer is still oscillating back and

forth, read off its successive extreme positions. From these, guess where it will come

to rest finally.

Use Aitken's 62 process to guess the final resting place of the pointer, given

the following extreme positions:

14. 40

le. 11

14. 57

15. 96

14. 71

15. 83 .

Use any consecutive triple of extreme positions, such as 16.11, 14. 57, 15.96. As
four such consecutive triples can be taken from the six readings given above, Aitken's
0“ process can give four approximations for the final resting place of the pointer. How
do they compare?
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Chapter IX

MAXIMAAND MINIMA OFA
FUNCTION OF ONE VARIABLE

0. Guide for the reader.

The theory of maxima and minima is thoroughly discussed in calculus texts. See,

for instance Sections 3-5 and 3-6 of T- F; in the latter section there is a subsection

entitled "Strategy for finding maxima and minima, "

Calculators can be very helpful in finding maxima and minima. So this chapter

should be read whenever you encounter maxima and minima. Most texts recommend plot-

ting the function for which you seek the maxima and minima. Obviously the calculator

can expedite this. After that, you have to find points at which the derivative is 0.

Finding a point where a function (or its derivative) is zero is discussed in Chap. VIL

Calculators can help very much there. So make sure you know the material in Chap. VIL

1. General techniques.
 

If you only wish a rough idea of the maxima and minima of a function, no theory is

required. Just plot the function in enough detail. Suppose we wish relative maxima and

minima of

 

 

(1. 1) x+1-2"

for -3 <x <3. We give some selected values in Table 1. 1. "Obviously" the value

Table 1.1

X x+1-2%

-3 -2.125

-2 -1. 25
-1 -0. 5

0 0

1 0

2 -1

3 -4     
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IX. MAXIMA AND MINIMA OF A FUNCTION OF ONE VARIABLE

increases from x = -3 to x = 0 and decreases from x = 1 to x = 3. (Actually this is

not obvious until one knows the derivative of (1. 1). ) So clearly the absolute minimum is

at x = 3, where (1. 1) has the value -4. There is a relative minimum at x = -3 where

(1. 1) has the value -2.125.

To get a better idea of the maximum, take some values of x between 0 and 1,
as in Table 1. 2. Here we first got the values at x = 0.2, 0.4, 0.6, and 0. 8, after

 

 

Table 1. 2

X x+1- Zx

0.2 0. 05130

0. 4 0. 08049

0.6 0. 08428

0.8 0. 05890

0. 42 0. 08207

0. 44 0. 08340

0. 46 0. 08446

0. 48 0. 08526

0. 50 0. 08579

0. 52 0. 08604

0. 54 0.08603

0. 56 0. 08573

0. 58 0. 08515    
which we knew we should get some values for x between 0.4 and 0. 6. The largest

value we see is 0. 08604, but the actual maximum value is likely just a shade larger.

So we say that the maximum value of (1. 1) is about 0.0861. After all, how ac-
curately do you need to know the maximum value? In most scientific situations, this is

as accurate a value as is needed. Where does the maximum occur? Between x = 0. 52

and x = 0. 54, "obviously. " (It is not obvious until one knows the derivative of (1.1).)

Of course you can do better if you can get the derivative. Suppose we need to do

better. It is still useful to do first what we have done so far, so as to get the general
idea. And indeed, most calculus texts recommend that one start by plotting the function.

So let us get the derivative, and do better. You will learn in due course that

d Xy _ _ X(1. 2) dx(x+1 2°)=1-2"1n2 .

The HP-33E gives

(1. 3) In 2 =20. 69314 71806 .

For -3 <x <0, we have Zx_<_ 1. So (1.1) does indeed increase from x = =3 to x=0.

For 1 <x <3, we have 2% > 2. So (l.1) does indeed decrease from x = 1 to x = 3.

And indeed the maximum must occur between x = 0 and x = 1. Also our original
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1. General techniques

determination of the two minima was right on the nose.

To find where the derivative is 0, we have to solve

2%In2=1.

By calculator, this gives

X
27 =1,4426 95041 .

Taking the In of both sides gives

x In2 =In (1.4426 95041)

= 0. 36651 29207 .

SO

_0,36651 29207
(1. 4) X =0.69314 71806 ~ (0. 52876 63731 .

So this is where the maximum occurs. By calculator, the value of (1. 1) at that
point is about

0. 0860 71332 .

As we said earlier, this is about 0.0861. Very seldom would one need a more accurate

estimate of the maximum value than this.

The calculus text warns you to make various tests to find out if the x that makes

the derivative equal to 0 gives a maximum or minimum. In view of Table 1.2, these

tests are superfluous here.

Problem 1. 1. Find approximately all local maxima and minima for

In x
(1. 5) "

for 1 <x <10. Do this simply by calculating enough values of (1. 5).

Problem 1. 2. Using the fact that

(1. 6) —d"‘lnx=i
dx X )

determine quite accurately all local maxima and minima of (1. 5) for 1 <x < 10.

Hint. Verify that for the number e = el , got by taking x = 1 and pressing the

e¥ key (or equivalent) on the calculator, the calculator gives In e = 1 to very high

accuracy.
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IX. MAXIMA AND MINIMA OF A FUNCTION OF ONE VARIABLE

Problem 1. 3. Consider the trapezoid ABCD shown in Fig. 1.1, with DA = 1,

Figure 1. 1

F E
 

   
D A

AB = CD = 2, and the angle O unspecified. Draw perpendiculars AE and DF from A

and D up to BC, as shown. Then

DF = AE 2 sin 6

CF= EB=2cosO.

The area of the trapezoid will be the sum of the area of the rectangle AEFD and of the

two triangles ABE and DCF, and so

(1. 7) Area = 2 sin 6 + 4 sin 6 cos 6 .

-1
(@) Why is this formula for the area incorrect if 6 > cos (0. 25)?

(b) Show that if one is seeking to maximize the area, it suffices to restrict atten-

tion to 0 <0 <w/2, since if O > m/2, then the acute angle 6' = m - 6 gives a larger
area.

In view of (b), it suffices to use (1. 7) for the area in trying to maximize the area,
in spite of (a).

Differantiating the right side of (1. 7) and expressing everything in terms of cos &

gives a quadratic formula in cos 0.

(c) Find approximately what value of 6 gives the trapezoid a maximum area, and
give the maximum area approximately.

(d) Be sure to show that your stipulated value of © does indeed make the area a

maximum.

2. Special techniques for polynomials.
 

What is special about polynomials is the fact, pointed out in Sect. 3 of Chap. II,

that there are calculator programs which, for a given x, will calculate both the polyno-
mial and its derivative for that x. See Program (3. 2) in Chap. II, or preferably Program

II. 4 in the Program Appendix. From the values of the polynomial, you can draw its

graph, which is the first step. The values of the derivative help you to find where the
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2. Special techniques for polynomials

derivative is 0.

Let us find the relative maxima and minima of the polynomial, p, defined by

4 3
(2. 1) p(x) = x - 4x +2x2~4x+l

for 0 <x <4. We first make up Table 2. 1, which gives some values of p(x) and p'(x)

for x between 0 and 4.

 

 

Table 2. 1

X p (x) p'(x)

0 1 -4

1 -4 -8

2 -15 -12

3 =20 8

4 17 76     
It would seem likely, just from the values of p(x) alone, that the absolute maxi-

mum occurs at 4, and is 17. Also that there is a relative maximum at x = 0, where

p(x) = 1. This judgement is reinforced by the values recorded for the derivative, which

verify that x = 0 and x = 4 are at least relative maxima. From the derivative values,

we see that the derivative must be 0 for at least one point between 2 and 3. Accord-

ingly, we make up Table 2. 2, calculating first for x = 2.2, 2.4, 2. 6, and 2. 8, and then

 

 

Table 2. 2

X p(x) p'(x)

2.2 -17. 286 4 -10. 688

2. 4 -19.198 4 - 8. 224

2.6 -20. 486 4 - 4.416

2. 8 -20. 862 4 0. 928

2. 76 =-20. 875 27424 - 0.2728 96

2. 77 -20. 876 53759 0. 0209 32

2.78 -20. 874 84144 0. 3190 08

2. 79 -20. 870 14319 0. 6213 56    
 

doing four more entries on the basis of what we learned from these. As the derivative is

nearly 0 at x = 2.77, we can confidently assert that near there p(x) has a minimum

value of about -20. 877.

This is certainly accurate enough for most purposes. Should we wish it more ac-

curately, or wish to be sure about where p(x) is increasing or decreasing, we can take

the derivative. By (2. 1)

(2. 2) p'(x) = é’:(x3 - 3x2 +x-1) .
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In the course of solving Prob. 4. 9 of Chap. VII, we get the factorization

(2. 3) p'(x) = 4(x - c)(x2 +ax + b),

with

(2. 4) c =2.7692 92354 .

2
You can get all the zeros of p'(x) by getting the zeros of x + ax + b by the quadratic

formula. The result is that ¢ is the only real zero of p'. For x < c, p'(x) is negative

and p(x) is decreasing. For x >c, p'(x) is positive and p(x) is increasing. So the

absolute minimum of p(x) occurs at x = c. Substituting ¢ into the right side of (2. 1)

gives

(2. 5) -20. 876 54499,

which is a close approximation to the absolute minimum value of p(x).

Problem 2. 1. Find approximate local maxima and minima for

4 2
(2. 6) x =-x -0.4x

for -3 <x < 3.

Caution. Watch that you don't miss any relative maxima or minima.

Problem 2. 2. Determine quite accurately the local maxima and minima of (2. 6)
for -3 <x < 3.

Hint. If you factor the derivative of (2. 6), analogously to our (2. 3), you shouldn't
miss any zeros of the derivative.
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Chapter X

NUMERICAL INTEGRATION

0. Guide for the reader.

The function F is an antiderivative or indefinite integral for the function f in

case F' = f. Further, if also G is an antiderivative for f, then G and F differ only
by a constant. These two facts are often expressed by writing

X

(0. 1) [ f(s)ds = Fix) + C )

where F 1is a particular antiderivative for f and C is a "constant of integration.

You will learn in the calculus the very important fact that every continuous func-

tion f has an antiderivative F. This can be put to use because the definite integral

b

(0. 2) [ f(x)dx
a

has the value expressed by

b

(0. 3) J fx)dx = F(b) - Fa);
a

this is the Fundamental Theorem of Integral Calculus. But if you wish to use (0. 3) for

the evaluation of (0. 2), you must have a means of evaluating F at a and b.

This is possible if F can be given in closed form. That is, F can be expressed

in terms of sines, cosines, exponentials, logarithms, and other functions for which you

have keys on your calculator. In short, F can be keyed in on your calculator. In such

a case, (0. 3) furnishes a ready means to calculate the value of the definite integral
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(0. 2). Then we say that (0. 3) gives the definite integral in closed form.

In calculus texts, attention is restricted almost entirely to functions f for which

an antiderivative can be given in closed form. For that reason, much of the material in

this chapter will not be needed in working the special sorts of problems given in your

calculus course. However, after you have read the definition of a definite integral in

your calculus text as a limit of sums of areas of rectangles, it will be advisable to read

Sect. 1 in order to appreciate that, even with the help of a calculator, the definition of

a definite integral does not give a practical means to calculate an approximation for its

value. You most often need something like (0. 3), or one of the more efficient approxi-

mation methods given later in this chapter.

You will encounter some pretty complicated integrals later on, so complicated that

it is easy to make a numerical mistake and get an answer that is way off. In Sect. 2 is

given a simple way to get an approximate answer by calculator, which should let you

know if you have made such a mistake. When you encounter such complicated integrals,

you should read Sect. 2.

Are there functions f with an antiderivative F that cannot be given in closed

form? Indeed there are. That does not mean that F is not a function. It only means

that such an F is not useful when it comes to evaluating definite integrals. Specifi-

cally, if F cannot be given in closed form,

b

[ f(x)dx = F(b) - F(a)
a

does not give much clue as to how to calculate an approximation for

b

f f(x) dx .

a

Some calculus texts give means for getting an approximation. If your calculus

text gives the midpoint rule or the trapezoidal rule for this purpose, you should be sure

to read Sect. 3 when you get to that point. If your calculus text gives Simpson's rule

for this purpose, you should be sure to read Sect. 4 when you get to that point.

If your calculus text gives no means other than (0. 3) to get some sort of evalua-

tion for the definite integral, the text will have to confine its definite integrals to those

with an f such that (0. 3) gives the integral in closed form. As far as the calculus

course is concerned, if you have such a text you have no need to read Sections 3 or 4.

Unfortunately, in engineering, physics, chemistry, and other quantitative sciences,

as well as economics, one does encounter f's for which an antiderivative cannot be
given in closed form, but for which a numerical approximation is needed for

b
[) dx .

a
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1. The rectangle rule

In Sections 3 and 4, methods are given for getting a numerical approximation. If you

plan to go on in one of the subjects above, you should prepare yourself by studying

Sections 3 and 4 carefully. Now is the best time to get some help from your instructor

or teaching assistant if you should encounter a difficulty in one of these sections.

One of the benefits of owning a calculator is the ability to cope with definite in-

tegrals that arise in applications and cannot be given in closed form.

One such is

X
.2

fsmy dy ,

0

which is extensively used in optics. Another is

X 2

Jet ay
0

which plays a key role in statistics, and so appears in many applied situations. There

are many others.

1. Definition of a definite integral; the rectangle rule.S———— e——

 

By definition, the definite integral,

b

(1. 1) [ fx)dx
a

is the limit of sums of the form

f(c]')h + f(cz)h + ... + f(cN)h

as N —o, We write this as

N

(1. 2) ), fle)h.
n=1

These sums are called Riemann sums, and the N-th such sum is formed as follows. Di-
vide the interval of integration, a <x <b, into N equal intervals by the N +1 points

xn=a+nh, n=20,1,...

with each subinterval of length
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b-a
h =

N

For each n=1,2,...,N, . is chosen somewhere in the n-th interval,

X <c <x
n-1— n— n

You can visualize each summand, f(c )h, in (1. 2) as an area, the area of a rec-
tangle of base h = - X1 and helght frtc) (This area turns out to be negative in

case f(c,) is negative. You will have to getused to negative areas. )

In Fig. 1.1, we have pictured one such sum, for the particular definite integral

 

 

 

 

     

1
(1. 3) —d—x—z—

0 1+x

Figure 1.1

y

1

y=1/(1+x%)

& X
* A 3

4 2 2 L 
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1. The rectangle rule

This integral gives the area under the curve

S
2

1l +x

(1. 4) y =

between x =0 and x = 1. In the figure, we have chosen each point c, to be the

left endpoint of the interval. Specifically,

c =X =a+(n-1)h, n=1,2,...,N.

The particular integral (1. 3) can be given in closed form. You should know that

 

T d -1
(1. 5) f“‘y—=tan x + C.

1+y

This says that an antiderivative F turns out to be tan_l, so that by (0. 3) and (1. 3)
we get

! dx -1 -1
(1. 6) Area = f S = tan (1) - tan (0)

0 l+4x

= & = 0.78539 81633 97448 ...

But, now pretend that you do not know a closed form for (1. 3). You might then be

tempted to use Riemann sums (1. 2) to approximate (1. 3). After all, (1. 3) is defined as

the limit of such sums. Take, for example, the Riemann sum pictured in Fig. 1. 1.

There we have four rectangles, each of width 1/4, standing side by side from x = 0 to
x = 1. Each has its upper left hand corner on the curve (1. 4), so that each has a height

1/(1 + x2), for various values of x. The heights, widths, and areas are given in Table
1. 1. The sum of the areas of the rectangles is an approximation (not too good) to the

 

 

Table 1. 1

ISt rect. an rect. 3rd rect. 4th rect.

height 1/(1+09) 1/0+ DA 170+| 10+
= 1. 00000 ~ 0.94118 = 0. 80000 - 0. 64000

width 1/4=0.25 1/4=0.25 1/4 = 0. 25 1/4 = 0. 25

appo* 0.25000 0. 23529 0. 20000 0. 16000     
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area we wish to determine. This sum of areas of rectangles is about 0. 84529. As

each rectangle sticks up above our curve, the sum should be too large, and by (1. 6),
it is.

If we use thinner rectangles, they would not stick up over the curve so badly, and

the sum of the areas of the rectangles should be closer to the area under the curve. Let

us take N rectangles, each of width 1/N. The n-th rectangle would have its upper

left hand corner at x = (n-1)/N, and so would be of height

1(1. 7) 5

So the sum of the areas of the rectangles would be

L)1 1 1 . . 1
N 2 1.2 2.2 N-1.2 ?

140 1+(fi) 1+(2) 1 +(—)

where we have factored the width, 1/N, out of each of the areas. Using the X notation,
as in (1. 2) (see Sect. 4-5 of T- F), we can condense the above to

1 1
(1. 8) N 2

|
2 n-1

n=11 + ( N )

As N goes to infinity, (1. 8) will have the area under the curve as its limit. And

the definite integral is defined as the same limit.

Let us try some calculations, to see how the limit is approached. You can pro-

gram the calculator to take n = 1,2,...,N and add up the values (1. 7), and finally

divide by N. Some results are shown in Table 1. 2, roundedto 8 digits after the dec-
imal point. Indeed, the values are approaching the area, as given by (1. 6). However,

 

 

Table 1. 2

N sums of areas of rectangles

10 0. 80998 150

100 0. 78789 400

1000 0. 78564 812

10000 0. 78542 316    
even at N = 10,000, we still have only 4 decimals correct. And taking N as large
as 10,000 leads to an extended calculation. You start the calculator going, and go to
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1. The rectangle rule

bed, and in the morning the sum is showing on the display.

So, approximating (1. 3) by using the definition is theoretically possible, but not

really practical. Fortunately, there are better ways, which we will explain in Sections

3 and 4. In preparation, we learn some useful things by further discussion of the defi-

nition of the definite integral.

The key idea of the definite integral is to divide the interval from a to b into

N equal intervals, each equal to

 (1. 9) h =

Each rectangle is of width h, and the n-th rectangle is of height

f@+ (n-1)h) .

It is more convenient to number the rectangles from 0 to N-1, so that the n-th rec-
tangle would be of height

(1. 10) f(a + nh)

and of area

(1. 11) hf(a + nh) .

So the sum of the areas of the rectangles is

N-1

(1.12) h ) f(a+nh)
n=0

and the definite integral is defined as

b N-1
(1. 13) [f(x)dx = lim ), f(a +nh) .

a N—w n=0

As we saw in Table 1. 2, (1. 12) approaches its limit rather slowly for our example,

so that for practical calculation it is not much help. Use of (1. 12) to approximate (1. 3)

is called the rectangle rule, for obvious reasons, and (1. 12) is sometimes called R(h).

One can write a formula for the difference between (1. 12) and its limit, namely

(1. 14) b_f—f'(é)h,

where £ is some number between a and b. This is proved in Sect. 5. 3 of
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"Elementary Numerical Analysis, " second edition, by S. D. Conte and Carl de Boor,
McGraw-Hill Book Co., 1972.

In other words, we have

 

 

b N-1 b o
(1. 15) J fk)dx = h), f(@+nh) +=——1'(£)h .

a n=0

Going back to (1.3) we have

f(x) = :
2

l4+x

f'(X) - -2X >

(1 +x2)

If we knew what ¢ is for some value of N, we could then use (1. 15) to calculate the
integral exactly. But, unfortunately, we have no clue what § is, except that it is be-
tween a and b.

In the case of (1. 3), we know that £ must be between 0 and 1. An elementary
calculation (f'(x) takes its minimum at x = 1/yJ3) tells us that

(1. 16) -0. 65 < f'(€) <0 .

So, taking b =1 and a = 0 in the last term on the right of (1. 15), we see that each
entry in Table 1. 2 should be more than the true value, but not by more than

 

(1.17) 0. 325h = 0. 325 .
N

Comparing with the true value, from (1. 6), we see that this is indeed so. On the other

hand, since the final term on the right of (1. 15) could be as large as (1. 17), that means

that if we wish to be sure of approximating (1. 5) to 10 decimals by (1. 8), we will have
to take N of the order of 1010, This is quite hopeless with a hand held calculator,
and would result in a very extended calculation even on a very fast big computer.

It is good there is something better, as we see below.

Incidentally, since we know the true value of (1. 3) by (1. 6), we can calculate
approximately what f'(¢) is from (1. 15) for each value of N in Table 1. 2. These are
given in Table 1. 3.

By use of (1. 15) this verifies that for this particular example, the error for the

rectangle rule "behaves like h. " By this, we mean the following. Define
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2. Approximate check on complicated integrals

 

 

       

Table 1. 3

N 10 100 1000 10000

£'(€) -0. 492 -0. 499 -0. 500 -0. 500

o B N-1 .
error (h) = 4 N

Then one has

———(—lerm;o g 25 .|

Since we do not recommend the rectangle rule for approximating definite integrals

we have not set any problems for the student for this section.
’

gfi. Approximate check on a complicated definite integral.

Fancy methods are introduced in the calculus to help integrate complicated func-

tions. These involve various substitutions, transformations, and adjustments. By the
time you get the function integrated, you may have gone through several changes, in

each of which there was a chance to get a factor wrong, or make some similar mistake.

So it is worthwhile to have some sort of check, to see if your answer is anywhere near

right.

Such a check should also be of help when your answer is correct but doesn't look

at all like the answer in the book or your friend's answer. This situation is quite com-

mon, particularly with integrals involving trigonometric functions. For example, the

three functions

COS 2X2
(cos x)7, —(sin x)2 , and 5

are all antiderivatives for the same function. Again,

sinh—l (x/a) and In|x ++/ aZ + x2 |

are antiderivatives for the same function.

To check if

COos 2x(cos x)Z and 5

are antiderivatives for the same function, calculate their difference for several values
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of X. You should get the same difference for each value of x. For a definite integral,

we can use some formulas which we will lift out of the next two sections.

We start with an easy one. In Prob. 13 at the end of Sect. 4-8 of T- F, we are
asked to evaluate -

6 sin 2x
(2. 1) f 5 dx

0 cos 2X

One thinks of taking

(2. 2) u = Cos 2X .

Since the derivative of cos is - sin, we have

ffl_i__l____
2~ u  cos 2x

u

Putting in the limits 0 and % gives

1 1 _;=1
()

N
=

as the answer.

Now let us try to check this by using the trapezoidal rule. We write (2. 1) as

T

6
f f(x)dx

0

with

(cos 2x)

The two simplest trapezoidal rules, which will be got by taking N =1 and N=2

in (3. 5) or (3. 6) ahead, are

 

b

(2. 4) [ fx)dx zb—;a— [£(a) + £(0) )
a

b b- b(2. 5) J fedx =22 {f(a) + 26(32D) + £(0) } .
a
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2. Approximate check on complicated integrals

We have for (2. 1)

b- a =% ~ 0. 52359 87756 .

The simplest trapezoidal rule approximation is, by (2. 4),

T, 1 1l o6{Zf(O) + 2f(é)} { é(O) + %(3. 4641 01615)}R

[
NE

]

Il 0. 90689 96821

As this agrees within less than 10 % , we feel encouraged. However, maybe a trape-

zoidal rule on only two points could be considerably in error. Let us try one on three

points.

Call T2 the approximation we got above. For three points, we would get, by

(2. 5),

1

IR
N
=

IR o . 62798 27663 .

According to (3. 7) ahead, T3 should be about four times closer to the true integral
than T, , suggesting that the true integral is approximately

4T3 - T‘2

(2. 6) ——3—_— ~ (0. 53501 04610 .

According to (4. 5) ahead, the simplest form of Simpson's rule is

2. 7) b—;—é‘- {£(a) + 4f ( a+b
2

 ) + £(b) } .

This gives the same value as in (2. 6).

It does look as though perhaps we made a mistake in our original integration, as

indeed we did. If we take u as in (2. 2), then

165



X. NUMERICAL INTEGRATION

du = (- sin 2x)(2dx) .

So we should have

f sin 2x -1 f (- sin 2x)(2 dx)

 

dx =
2

(cos 2x) 2 (cos 2x)

-1 -2
= d1 [

_ 1 -1
o2

_ 1

" 2 cos 2x

So

a I

6 6 1 1 1
sin 2x 1 =0 - = — .[ = ax s | 1 2(1) 2

0 (cos Zx)2 2 cos 2x 0 2(2)

The value that we got above by Simpson's rule, namely

0. 53501 04610
)

corroborates our value of 1/2 very well.

Of course, our numerical approximation could possibly still be a long way from the

true answer. Certainly, if there are appreciable irregularities of f in the interval of

integration, we should use more intervals for our trapezoidal rule or Simpson's rule.

However, the function we were considering, given by (2. 3), is very well behaved be-

tween 0 and w/6. So the close agreement between our Simpson's rule approximation

and the answer of 1/2 is a fairly good indication that the latter is correct (after our un-

fortunate blunder at first).

Problem 2. 1. Evaluate each of the following definite integrals by

b

[ fx)dx = F(b) - F(a) ,
a

where F is a suitable antiderivative of f in closed form. Then check whether you

made a mistake, by approximating the integral by the simplest Simpson's rule, namely

(2. 7).
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3. The midpoint rule and trapezoidal rule

2

(a) f Vix +1 dx

0

1
dx

(b) —
t/f% xxl 4x2 -1

3 dx© [

dx

(d) Of 2 4+ Ccos x

(e) f8 (t +2)dt

3 tNt+ 1

Remark. These integrals occur in T- F as problems at the ends of Sections, as

follows respectively: Prob. 9, Sect. 4-8; Prob. 21, Sect. 6-3; Prob. 1, Sect. 7-5;
Prob. 4, Sect. 7-8; Prob. 9, Sect. 7-9.

)

Problem 2. 2. Do the same as in Prob. 2.1 with the integral

2
32 70 (400 - (H-60)") JH

64, 32 2o VH

that will result from (2. 16) in Chap. XV if we take a = m/l16.

. 2
Hint. To get an antiderivative, substitute H = x .

3. The midpoint rule and the trapezoidal rule.

In defining the definite integral, we divided the interval from a to b into N

equal intervals, each of length h. We took rectangles of width h, filling up the

whole area, except just close to the curve. We took the heights of the rectangles to

be the values of f at the left ends of the intervals. Let us instead take the heights of

the rectangles to be the values of f at the midpoints of the intervals. This is illustrat-

ed for the case N = 4 1in Fig. 3. 1. It is clear that rectangles of these heights approx-

imate much more closely the area of the curve above the interval than when the left hand

upper corner was on the curve.

Whereas for the rectangle rule we took (1. 12) as the approximation for the definite

integral, we are now proposing to take

N-1 .
(3.1) M) = h), fa +n+5)h) .

n=0
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Figure 3.1

y

1 -\\

\\

\\

\

Nied)

(\
X; ; : 4 

If we let N—oo  this will have the definite integral as its limit

Use of this to approximate a definite integral is called the midpoint rule.

One can write a formula for how far off M(h) is from its limit, namely

b-a " (s 2(3. 2) " f"(€) h , 

where £ is some number between a and b. This is proved in the same reference we2

gave for (1. 14). So we have

b b-a 2(3. 3) J fx)ax = M) + 272 £(¢) h
a

 

In Table 3.1 we give a couple of instances of using M(h) to approximate (I. 3),
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3. The midpoint rule and trapezoidal rule

 

 

Table 3.1

M(h) plus

N M (h) correction

10 0. 78560 64964 0. 78539 81631

100 0. 78540 02467 0. 78539 81634    
 

namely

1
dx

e
0 1+ x

We clearly have a tremendous improvement over Table 1. 2, which was calculated using

the rectangle rule. We will later suggest a correction.

For N = 100, the calculation of M() for (1. 3) took only a very few minutes.

Not that one should try it unless one has a programmable calculator. The program is

very easy to write. For N = 100, it consists of the following operations. We will let

n run down from 99 to 0 instead of up from 0 to 99, because many calculators have

special commands to stop when a quantity gets to 0. We repeat the following steps

for each value of n:

1. Start with n + 1 stored in register zero, h stored in register one, and a
partial summation of the = in (3. 1) stored in register two.

2. Seeif n+1=20. If so, stop. Otherwise subtract 1 and store back in reg-

ister zero.

3. Now you have n. Using the h stored in register one, calculate

1

1+ ((n +%)h)
2

4. Add the above to what is in register two. Most calculators have a special

instruction for this.

5. Go back to the first step.

When you finish, the value of M(h) will be stored in register two.

We will set up a problem involving the approximation of

2
(3. 4) [

1 X
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It will be shown in due course, if you have not already learned it, that the value of
(3. 4) is In 2, for which your calculator will give a fairly accurate value.

If you have a nonprogrammable calculator, do (i) below only for N = 1,2,4, and

8. Incidentally, even nonprogrammable calculators usually have a key that will add

what is in the display to what is stored in a particular memory register. This greatly

speeds up the calculation of a Z, such as occurs in (3. 1).

Before attempting the problem, review the latter part of Sect. 1.

Problem 3. 1. (In five parts.)

(i)  Use the midpoint rule to approximate (3.4) for N = 1,2,4,8,16, and compare
with the calculator approximation for 1In 2. Carry your calculations to the maximum

precision possible,and save the results for future use in Sect. 4.

(ii) Should the midpoint rule give a value larger or smaller than In 2°?

(iii) Verify that the error for the midpoint rule "behaves like h¢. " That is, find

a constant, K, such that with the error given by

N-1 1

error(h):lnz—hz 1

n=0 1 +(n+z)h

one has

error gh) ~ K

h2 - '

(iv) From your value of K in (iii), estimate what value of N one should take to
give 5 decimal accuracy by the midpoint rule; that is to make

-6
|error (h) | < 5% 10 i

(v) Estimate what value of N would be required to give 10 decimal accuracy

by the midpoint rule.

Problem 3. 2. For the definite integral (3. 4), what is the largest possible value

that [f”(£)| could have, for the f£"(§) of (3.3)? Using this, how large would you have

to take N in order for the midpoint rule for (3. 4) to be guaranteed to give 5 decimal

accuracy (that is, to guarantee that the final term on the right of (3. 3) is no greater than

5 x 10~¢ in absolute value)? How large would you have to take N to guarantee 10

decimal accuracy?

It is possible to write the error (3. 2) in the midpoint rule in the alternate form

biv
ff (x)dx + .

a

o o W
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3. The midpoint rule and trapezoidal rule

For "small" h, the error should be mostly given by the first term, namely

2 Db 2
h n - ..h__ 1 '3 [ £"(x) dx = S Lf'0) ()] .

a

But this being so, computing and then adding this first term to the midpoint rule should

give us a more accurate approximation.

For example, the integrand of the integral (1. 3)

fl dx

2
0 1+x

has its derivative given by

f'(x) = - sz >

1+x7)

Consequently, the correction term becomes in this case the expression

2 2
h o ' h- -2 224[f(b)—f(a)]=24 2=—Jn/48.

(1+1)

We have added this term to the midpoint rule approximations shown in Table 3. 1, with

the resulting approximation also shown in that table. The increase in accuracy in this

example is dramatic.

Problem 3. 3. For the same values of N as in Prob. 3.1, add the correction term

hZ

= F®) - @]

to the results of Prob. 3.1, and compare with the calculator approximation for In 2.

Verify that the error for the corrected results "behaves like h4, "

Some calculus texts give something called the trapezoidal rule for approximating

definite integrals. See (1b) in Sect. 4-9 of T- F. It is derived as follows. Divide the

interval from a to b into N equal intervals, each of length h. Instead of putting a

rectangle on top of each interval, we put a trapezoid. This is shown for N = 4 in

Fig. 3. 2. The trapezoids mostly fit the curve very well. As shown in Fig. 3. 2, each

trapezoid has each of the two top corners on the curve. So the n-th trapezoid (we are

numbering from 0 to N-1) has vertical sides equal to f(a + nh) and f(a+ (h+1)h). The

area of such a trapezoid is
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Figure 3. 2

Yy

> y=l/(l+x2)

h X
Y L L 3 /

4 2 4 
%h(f(a +nh) + f@+ @+ 1)h)) .

The sum of these areas is

(3. 5) T(h) = %h {£(a) + 2f(a + h)

+2f(a +2h) +... + 2f(b - 2h)

+2f(b - h) + £(b)} .

With the Z notation, one can write (3. 5) as

] N-1

(3. 6) T(h) = Sh{f@ +f®)} +h ), f(a +nh) .
n=1

It we let N—o  this will have the definite integral as its limit.
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3. The midpoint rule and trapezoidal rule

Use of this to approximate a definite integral is called the trapezoidal rule (or

sometimes the trapezoid rule).

One can write a formula for how far off T(h) is from its limit, namely

(3. 7) - 2=t )

where § is some number between a and b. This is proved in the same reference we

gave for (1. 14), and is stated as (3) in Sect. 4-9 of T-F.

So we have

b b-a._, 2
(3. 8) aff(x)dx = T(h) - =5£"(£)n" .

In Table 3. 2 we give a couple of instances of using T(h) to approximate (1. 3).

The calculations for Table 3. 2 proceed very similarly to those for Table 3. 1.

 

 

Table 3. 2

T(h) plus
N T (h) correction

10 0. 78498 14974 0. 78539 81641

100 0.78539 39969 0. 78539 81636     
If you have a nonprogrammable calculator, do (i) below only for N = 1,2,4and 8.

Problem 3. 4. (In five parts.)

(i)  Use the trapezoidal rule to approximate (3. 4) for N = 1,2,4,8,16, and com-

pare with the calculator approximation for In 2. Carry your calculations to the maxi-

mum precision possible, and save the results for future use in Sect. 4.

(ii) Should the trapezoidal rule give a value larger or smaller than 1ln 2?

(1ii) Verify that the error for the trapezoidal rule "behaves like h2" by getting a

K such that the error is approximately Kh2 .

(iv) Using this K, estimate what value of N would be required to give 5 deci-

mal accuracy by the trapezoidal rule.

(v) Estimate what value of N would be required to give 10 decimal accuracy by

the trapezoidal rule.
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X. NUMERICAL INTEGRATION

It is possible to write the error (3. 7) in the trapezoid rule in the useful alternate

form

h2 b h4 biv_Eaff (x) dx +';26'éff (x)dx - ...

But then, as was pointed out earlier in connection with such an expansion for the error

in the midpoint rule, there is a gain in accuracy available for sufficiently small h by

evaluating the first term

and adding this number to the trapezoid rule.

For example, for the integrand of the integral (1. 3), this gives the correction term

Be-)] = - —2— - %4,
2

12 (1+1)

We have added this term to the trapezoid rule approximations given in Table 3. 2, with

the resulting approximation also shown in that table. Just as was the case with the

midpoint rule, these resulting "corrected" approximations are a great improvement in
this example.

Problem 3. 5. For the same values of N as in Prob. 3. 4, add the correction term

2h” .- S LEB) - @)

to the results of Prob. 3.4, and compare with the calculator approximation for 1ln 2.

Verify that the error for the corrected results "behaves like h%. "

4, Simpson's rule.

Some calculus texts give something called Simpson's rule for approximating def-

inite integrals. See (5) in Sect. 4-9 of T- F.

To get Simpson's rule, we proceed as follows. Take M = 2N, and divide the in-

terval from a to b into M equal parts, each of length h = (b-a)/M. We now take

the parts in pairs. We can do this, since M is an even number, M = 2N. In fact we

will have N pairs. Let a pair go from Xp to x4+ 2h. We erect vertical lines at x

and x, + 2h. On top we put a parabola which passes through the three points on the

curve where x = x., x.+h, and x, + 2h, respectively. The theory is that, since the

r
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4, Simpson's rule

parabola is curved, it fits the true curve better than the straight lines (tops of rectan-

gles or trapezoids) that we have been putting on top. So we take the area under the

parabola. We do this for each of the N pairs, and take the sum of the areas as an

approximation for the true area under the curve.

To find the area under the parabola (for each parabola) we proceed as follows. Let

2
y= AXx 4 Bx 4+ C = g(x)

be the equation of the parabola. Thatis, if y = f(x) is the curve we are trying to in-

tegrate, we have f(x) = g(x) for x = each of the values x,, x,+h, and x, + 2h,

since we are supposing that the parabola was chosen to coincide with the original curve

at these three values of x.

Now, for any ¢ whatsoever, we have g"(§) = 2A. So, taking a = X, b= Xr+2h’

2h for h, and g for f gives exactly

Xr+2h 5h 5

Il g()dx = M(2h) +< (23) (2h)
X
r

from (3. 3) and exactly

xr+2h

J aWdx = Tn - £ enen’
X

from (3. 8). Now multiply the first equation by 2 and add the second equation. This

gives

x_+2h

3 g(x)dx = 2M(2h) + T(2h) .

xI‘

So

Xr+2h 5 .

(4. 1) [ g()dx = TM(2h) + S T(h) .

X

Here, of course, we have to be using the values of g(x) in evaluating M(2h)

and T(Zh), since we are finding the area under the parabola. But these values are

taken at points where g(x) = f(x). So, on the right side of (4. 1), we may take the

M(2h) and T(2h) as referring to f(x).

We get (4. 1) for the area under each parabola, with the M(2h) and T(2h) refer-

ring to f(x). Adding them together suggests that we define the Simpson's rule approxi-

mation, S(h), for the definite integral by
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X. NUMERICAL INTEGRATION

(4. 2) S(h) = %M(Zh) +%T(2h) i

If we let h —0, S(h) will have the definite integral as its limit.

One can write a formula for how far S(h) is from its limit, namely

_b—a=21 (g)n”(4. 3) ’

where £ is some number between a and b. This is proved in the same reference we

gave for (1. 14). So we have

b

(4. 4) [ f®)dx = s(n) -
a

b-a
=2 (g)n*

In Table 4. 1 we give a couple of instances of using S(h) to approximate (1. 3).

 

 

Table 4. 1

M N S(h)

20 10 0. 78539 81633

200 100 0. 78539 81633     
 

Comparing with (1. 6), we see that, even at M = 20, we are off by only a single unit in

the 10-th decimal place; this is a remarkably small roundoff error, considering the a-

mount of calculation it took to get to S(h).

Needless to say, we calculated S(h) by (4. 2), using the values of M(2h) and

T(2h) from Tables 3.1 and 3. 2 respectively. So the calculation of S(h) presents no
particular difficulty. You just calculate M(2h) and T(2h) and use (4. 2).

Problem 4. 1. (In five parts. )

(i) Use Simpson's rule to approximate (3. 4) for M = 2,4, 8,16, and compare
with the calculator approximation for In 2. (Hint. Use (4. 2), taking M(2h) and T(2h)

from your answers for Problems 3.1 and 3. 3. Recall that M = 2N.)

(ii) Should Simpson's rule give a value larger or smaller than In 2°?

(iii) Verify that the error for Simpson's rule "behaves like pd o by getting a K

such that the error is approximately Kh?.

(iv) Using this K, estimate what value of M would be required to give 5
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4. Simpson's rule

decimal accuracy by Simpson's rule.

(v) Estimate what value of M would be required to give 10 decimal accuracy

by Simpson's rule.

Problem 4. 2. For the definite integral (3. 4), what is the largest possible value

that |f iV (¢)| could have, for the f 1V (£) of (4. 4)? Using this, how large would you

have to take M in order for Simpson's rule for (3. 4) to be guaranteed to give 5 decimal

accuracy? How large would you have to take M to guarantee 10 decimal accuracy?

Problem 4. 3. Explain why Simpson's rule will give the exact value of the definite

integral if f is a polynomial of degree 3 or less.

Suppose f is a polynomial of degree 3 or less. By Prob. 4. 3, Simpson's rule

will give the exact value of the definite integral, no matter what M is. (Don't forget

that M must be even.) Take M = 2. For the midpoint rule, we need to know only
f((@ + b)/2). For the trapezoidal rule, we need to know only f(a) and f(b). From these,

we get S(h) by (4.2). As f is a polynomial, the required values of f can quickly be

calculated by Horner's method (see Sect. 1 of Chap. II).

Problem 4. 4. Calculate a highly precise approximation for

3
2

f (x3— 5% - 3x 4 7)dx

-2

by Simpson's rule. Check by (0. 3).

It is possible to give also for the error (4. 3) in Simpson's rule an alternate ex-

pression (as we did earlier for the error in the midpoint rule and in the trapezoid rule),

namely

h4 biv 6 bvi
-1—é—0aff (x)dx+céh aff (x)dx +. ..

But, while it is possible, in principle, to calculate the first term

h4 b . 4
—— v — _.h__ m — fm‘1soaff ()dx = o [£"(b) £ (a)]

in this expansion and add it to the Simpson's rule estimate, it requires calculating

three derivatives. If the accuracy of a particular Simpson's rule estimate is not satis-

factory, it is usually much easier to rerun Simpson's rule for a somewhat larger N or

M, particularly if one has a programmable calculator with a canned Simpson's rule

program.

In Sect. 4-9, T-F derive Simpson'srule by the same basic scheme. However,
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they work out formulas for what the A, B, and C of the equation of the parabola must

be. Then they get

X +2h
r

/ g(x) dx
X
r

by actually integrating. They give

(4. 5) 2 {£(a) + 4£(a + h) + 2£(a + 21) + 4€(a + 3h)

+ 2f(a + 4h) +... + 2f(b - 4h) + 4f(b - 3h)

+ 2f(b - 2h) + 4f(b - h) + f(b) }

as the formula for Simpson's rule. One could get the same formula from our definition

(4. 2) by putting in the definitions of M(2h) and T(2h).

In (6) of Sect. 4-9, T-F, give the same formula for the error of (4. 5) that we have
given in (4. 4).

To evaluate the Simpson formula (4. 5) directly is not ail that hard, but one has to
be careful to take care of a number of details. One has to get f(a) at one end and £(b)
at the other, without 2 or 4 as coefficients. In the middle, one has to alternate the
coefficients 2 and 4, starting with 4. To accomplish this, start with -1 in register

0. Then, every time you need the next coefficient, execute

 

 

RPN 3, [RCLO], [CHS), [ST00], .
RPN
AE

I 3, [41, [RCLO], [*/-], [5TOo0], (=] .AE

The better calculators have a lot of special programs already written for them,
which one can buy. Usually one of them is a program to calculate (4. 5). The different
calculator manufacturers have a variety of mechanisms for arranging that you can use
the program conveniently on their calculators. You will have to read their manuals. If
the program is labelled only "Numerical Integration", you should check to see if it uses
Simpson's rule or one of the others. Also, if it depends on N, is that what we have
called M, or what we have called N ?
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Chapter XI

VECTOR MANIPULATION

0. Guide for the reader.

After you have learned about polar coordinates, you can benefit from reading Sec-

tions 1, 2, and 3. You should read these sections when vectors in the plane are cover-

ed in your course. Sect. 2 describes a game which may help you to become comfortable

with vectors and, in any case, is fun to play.

Sections 4, 5, and 6 deal with 3-dimensional vectors, or "vectors in space”, as
some textbooks call them. You should read these sections carefully when this topic is

covered in your course.

1. Length and direction of a vector in the plane.

We follow T- F and write a vector A in the (x,y)-plane as

(1.1) A=ai+a,]j

with 1 the unit vector in the positive direction of the x-axis, and j the unit vector in
the positive direction of the y-axis.

We assume that you have learned from your textbook how to add vectors (compo-

nentw1se) and how to multiply a vector by ascalar (again componentw1se) You should

also be aware of the fact that each vector A has a length IA l which is calculated from

its components by

)
Further, if |A|# 0, then the direction of A is, by definition, the unit vector

Q)
——r

dir(X) = -_% A=
2]

i j+_‘2_'

ry>
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XI. VECTOR MANIPULATION

For example, the vector 1 is its own direction, while the vector i +j has direction

] —

\/—-l'l-\/——J.

The direction of A, being a unit vector, can be visualized as an arrow from the

origin to a point on the unit circle. Thus

—

dir(A) = cos GAl + sin GAJ

for a unique 6, with -180° = -7 <09 <m = 180° See Fig. 1.1, where 9p is negative.A A ’ A
This Op _is the angle between the positive x-axis and the vector .IT, and is the direction
angleot A. For this chapter only, it is permissible to take angles in degrees.

 

 

Figure 1.1

Y

2 X
/ 1
&

\/ 0
— A

(@,3,)

Length and dlrectlon (or direction angle) of a vector A provide an alternative way

to describe the vector A given by (1. 1):

(1. 2) A= |A|dir(®) = (|A |cos eA)T+ (|2 | sin @A)T.

This formula tells how to calculate the components of A from its length IKI and its

direction angle @A It is just ab1t trickier to calculate length and direction angle from

the components a) and a, of A. We mentioned already that IAI= 12 + anzzc For
the direction angle, we must have

cos 9A= al/lAI, and sm@A: az/lA | .

This seems to indicate that

-1, B
QA—cos (al/lAl) and QA— sin (aZ/IAI)
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1. Length and direction of a vector in the plane

But, unthinking use of the cos_l or sin”! key on your calculator is apt to bring you

grief in this matter.

For example, the vector depicted in Fig. 1 1,

clearly points southwest, and hence makes an angle of -135° (or 225°) with the x-
axis. Also, IA] =« (—l)2 + (—1)2 = 2. But, using the cos™l key on your calculator,

you will find

GA = cos—l(al/lfl) = cos_l(—l/\/?) = 135° |

Perhaps, we fare better by using the equation sin @A = az/ IKI instead? Try it. You

will get

0, = sin—l(aZ/IKI) = sin_l(—l,(/?) = -45° |

which isn't right, either.

 

 

 

Figure 1. 2
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\ | ’ !
\ | / |

N1 '

;
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// \\

sign of
(-5-) (+,-) (++) (‘)+)

al,a

The difficulty stems from the fact that the cos™! key implements the inverse

function for cos 0, with O restricted to the interval 0 <6 <180° = w. This means
that you will find ©p correctly from evaluating the expres_s_,ion cos"l(al/ IKI) as long

as Op lies between 0 and w = 1800, i. e., as long as A points upwards or horizont_gl;

what is the same thing, as long as a, > 0. If, on the other hand, a, <0, i e, if A
points downwards, then -180° = -m <6, <0, and then

1
cos (cos QA) = - QA )
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XI. VECTOR MANIPULATION

This then tells us to calculate IKI and @A from a; and a, as follows:

— 2 2
IAI = al + 8.2

(1. 3)

cos—l(al/ II_fl), if a, > 0

@A =
_cos—l(al/ IKI), if a, < 0

Problem 1. 1. Determine the length and direction angle for each of the following

vectors:
—

@ 1: () 2i-3j: (c) -10i+47: (d -i-37.

Note. The calculation of ]KI and ©, from the components a; and a, of A

amounts to finding the polar coordinates (r, A) = (|K|, QA), with r>0, of the point with

cartesian coordinates (al, az). Fancier calculators have a special key for this conver-

sion from cartesian or Rectangular coordinates to Polar coordinates (and one for the re-

verse). If you are blessed with such a calculator, find out how to use these special
keys and get some exercise with them, for example by doing the problems in this section

and the next two.

Problem 1. 2. Describe how to use the sin"l key on your calculator correctly to

find 6p from a, and a,. (Hint. See Fig. L 2).

Problem 1. 3. An observer is looking for a tower which is supposedly 8. 3 km west

and 3.4 km south of his position. In which direction should he be looking?

Problem 1. 4. A boat is crossing a river at 6. 3 m/h, heading ESE. The river cur-
rent carries the boat in a NNE direction at 1. 7 m/h. What is the total motion of the

boat (with respect to the land), i. e., what is its speed and its course? (Recall that
SE is halfway between South and East, and that ESE is halfway between East and SE )

Remark. The two motions mentioned can each be described by a vector whose

length is the speed and whose direction is the direction of the motion. The combined

motion is the vector sum of the individual motions. Since vectors are added component-

wise, this problem then requires you to convert from polar to rectangular, add, and then

convert back from rectangular to polar.

Problem 1. 5. Determine the ground speed and the course of an airplane which

flies a heading of 168° West from North at 350 knots in a 30 knot west wind (i.e a
)

wind blowing from the west).

Remark. You reach the direction 168° West from North by going 168° counter-

clockwise from due North.

The direction angle is handy to have around when it comes to rotating coordinates.

Suppose you wish to rotate your coordinate system counterclockwise by an angle «o. If
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2. The car racing game

the point A has coordinates (aj,a,) in the old coordinate system, what will its coor-
dinates be in the new?

Since the x-axis is _k_)_eing rotated counterclockwise by an angle «, the direction

angle ©p for the vector A from the origin to the point A is decreased by « in the

new coordinates. Thus, thenew coordinates (aj,a,) of the point A are the compon-
ents of a vector of length IA l and direction angle 6, - «. Hence, particularly if your

calculator sports those special keys for converting from rectangular to polar coordinates

and back again, such a change of coordinates by rotation is easily carried out by

(i) calculating |1Y| and QA from a) and a,, and then (ii) calculating a] and a)

from ll?'l = [K] and @A' = GA— a.

Problem 1. 6. For each of the following points, calculate their new coordinates

after a counterclockwise rotation of the coordinate system by 45°:

(@ @,0); M @,-3); () (-10,1); (d) (-1,-3).

2. The car racing game.

This game is a good way to become comfortable with vectors.

The game is played on graph paper on which someone has laid out a racing course,

with start and finish line, for example as in Figures 2.1 and 2. 2. A car's position is
given by its position vector, P, with respect to a coordinate system someone has indi-

cated on the graph paper. The initial position for each car is chosen somewhere on the

starting line. In addition, each car has a velocity vector, \7, giving its current velo-
city. The initial velocity vector is zero.

This means that one must remember four numbers per car (from one move to the

next).

Time is discrete in the game, and a move consists in going from P(t) to P(t+1)

according to the formula

2. 1) P(t+1) = P(1) +El<\7(t) + TE+1).

The velocity vector at time t+1 is obtained by

2. 2) vt+l) = v(t) +a
)

with the acceleration vector a chosen by the player for each move (presumably based

on the current situation). In effect, each move consists of a unit of time during which

each player subjects his or her car to a certain constant acceleration.

The acceleration vector a is to be specified by giving its length and its direction

angle, i. e. , one specifies the two numbers r and ©, and a is then constructed as

a = r(cos6 T + sin® T).
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Figure 2. 1
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2. The car racing game

Figure 2. 2
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We expect the player here to specify © in DEGREEs.

The game is more interesting if a bound is placed on r. In an automobile, one

cannot usually get r much over 10 feet per sec? , even with a motor that is powerful

enough to "burn rubber. " So let us agree that in each time interval the player can choose

r subject to

(2. 3) 0<r<l10,

and can choose 6 at will (this allows the options of using brakes and skidding around

corners).

The convenient way to play the game is to have the current coordinates of P and

v stored at four memory registers, and to have a program which acceptstheacceleration

a= (r,0) as input, and then calculates and stores the new values of P and v

according to (2. 1) and (2. 2).

If any value of P lies on or outside the boundaries of the race course, the car is

deemed to have crashed. If, as proposed, the game is being played on graph paper, one

decides this by plotting P. For the race course of Fig. 2.1, it is not necessary to use

graph paper. Just check each time whether

400 < |P| < 450

Actually, for the race course of Fig. 2. 2 one can write a program that will tell if P is

inside the boundaries or not.

“Problem 2. L. Write such a program.

Problem 2. 2. Get together with some friends or classmates and try the following

variant of the game. Assign somehow starting points on the starting line, or let each

player choose. Each player chooses his or her accelerations as the game progresses.

Ignore the possibility of two cars crashing into each other. The players take turns ad-

vancing their cars one move. See who gets to the finish first without crashing a car.

Remark. If yOLLkeep |\7| small enough, you can insure not crashing, but some-

body with a larger |v | may get there first. If everybody crashes the first time you try

it, then make a fresh start.

Problem 2. 3. Play the game against yourself by trying to get to the finish line in

as few moves as possible.

Remark. If you keep a record of the starting point and the accelerations, you can

always see what you did by merely running through the game again.

Problem 2. 4. How should you choose the direction of the acceleration vector a

so as to change the direction of your car as much as possible?
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3. The angle between two vectors in the plane

Problem 2. 5. Lay out a different race course, possibly a figure 8, and try the

game on it

Remark. It would be good strategy to design the course so that you can write a

program for your calculator to tell you if your car is inside or outside the course.

One can introduce various fine points. We have said that a car did not crash if it

was inside the boundary at the end of each move. But it may well have sideswiped the

boundary during the move. Or, if we really wish to know if two cars, on the course to-

gether, might crash, we have to know where they go during their moves.

Problem 2. 6. Sup_Qose a bod_}: is moving in the plane subject to the constant ac-

celeration a, and let P(s) and v (s) be its position vector and its velocity vector,

respectively, at time s.

(@) Prove that then

—

(2. 4) F(t+s) = P(t) + sv(t) + (sZ/Z)a, for all s and t.

(b) Derive (2.1) and (2. 2) from (2. 4).

(c) Under what circumstances could (2. 4) be used in the game to settle an argu-

ment?

3. The angle between two vectors in the plane.
 

_.If you neeionly the direction angle @A and not the length IXI of the plane vec-

tor A= ai +a,j, and your calculator has a tan™1 key, then you can calculate ©,
from the equation tan 6, = az/al which gives

-1
(3. 1) QA = tan (aZ/ al) .

Of course, you will have to pay attention to the fact that the tan~1 key implements the

inverse function for tan 6 with O restricted to the interval -90° <6 < 90°; see Fig.3.L

Thus, with tan~1 standing for the function implemented on your calculator,

1 . I
tan (tan@A)—@A+1T, if -rr<9A< )

-1 ‘ T
tan (tan@A)—QA—Tr, if S <o,<

This means that

_l .

tan (az/al) if a > 0

— -1 _ 0 .(3. 2) 9, =¢ tan (aZ/al) 180, if a < 0 and a, > 0

-1 o .
tan (aZ/a1)+180 , if a1<0 and a2<0
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Figure 3.1
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Problem 3. 1. Determine the direction angle for each of the vectors in Prob. 1. 1

but using (3. 2).
)

Note. If your calculator has a special key for converting from rectangular to polar

coordinates, then using (3. 2) for finding ©0p is a waste of your time.

Problem 3. 2, Use (L 3) or (3. 2) to determine ¢, the angle of inclination of the

straight line through the points A(-1,-2) and B(2,-1). This is the angle which the
straight line makes with the positive x-axis. (Note that ¢ = 6, with C the vector
from A to B.)

Problem 3. 3. You may be used to determining ¢, the angle of inclination of a

straight line, from the fact that tan ¢ = m = slope of the straight line. If you calculate

¢® as tan'lm, do you have to worry about the range of tan~! as implemented on your

calculator?

For any two plane vectors

+a.j and B = blT+ bT,

for example as in Fig. 3. 2, we denote by @A B the angle from A to B measured

counter clockwise. This means that

(3. 3) o =6_-0

with @A and Op the direction angles for A and B respectively, as defined in Sect. 1,

provided we do not distinguish between angles that differ by 2.
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Figure 3. 2

 
Problem 3. 4. Calculate QA B for the vector pairs:

)

B = 4T+ ST;

41- 5§ .T N 1 | N - I =
)

1

Use (3. 3) to calculate the interior angles of the triangle whose ver-Problem 3. 5.

1), C(5,2). Verify that the sum of the angles is 180° (to withintices are A(l,1), B(3,-
calculator accuracy).

Remark. This is Prob. 17 for Sect. 8-2 of T-F.

To calculate ¥ ABC, consider the vector from B to A and the vector fromHint

B to C; etc. You should be able to do the assignment by using (L. 3) or (3. 2) just three

times.

Problem 3. 6. Calculate the angle between the straight line through the points

A(-1,-2) and B(2,-1), and the straight line through the points C(l,-4) and D(-1,?2),
using (3. 3).

The angle QA B from A to B figures in two useful equations:
)

(3. 4) |27 |B| sin @A B = alb2 - azb1
b

(3. 5) IA]IBlcoseAB: ab, +a,b,
)
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Here, (3. 4) gives the (signed) area of the parallelogram spanned by the vectors A and

B, and (3. 5) gives the scalar product, or dot product

K-E:ab +a2b
11 2

—

of the two vectors A and §

T- F discuss these matters only in the context of vectors in space. Equation (3.4)

follows from (1) and (8) of Sect. 11-7 of T-F, while (3. 5) follows from (1) and (6) in
Sect. 11-6 of T- F. (In both cases, we reduce the 3-dimensional vectors of T- F to

vectors in the plane by taking the z-components to be zero. ) But it is possible to verify

these equalities directly for plane vectors by high school trigonometry.

By (3. 5), A and B are perpendicular to each other if and only if A-B=0. The

words "orthogonal"” and "normal" are often used as synonyms for "perpendicular. "

Problem 3. 7. For the vectors A and B of Prob. 3. 4. (@), use Oa,B as calculat-
ed in that problem to verify equations (3. 4) and (3. 5) directly to within calculator ac-

curacy. Also, verify that (3. 4) gives the area of the parallelogram spanned by A and

B.

Problem 3. 6. Calculate the area of the triangle of Prob. 3. 5, using (3. 4).

Hint. The area of that triangle is half of the area of the parallelogram spanned by

the vector from B to A and the vector from B to C.

Equation (3. 5) provides us with an alternative to (3. 3) if we wish to calculate

a, B By (3.5),

 

-1 A-B o1 3y tagh,
(3. 6) QA p= Cos= cos S >

’ IA||B| \/(al+az)(bl +b2)

But you would have to pay close attention here, since you may have to change the sign

of the result of using the cos_‘_l key on your calculator. Also, assuming you have al-

ready calculated |A| and |B l, calculation of 0, p by (3. 6) reauires five arithmetic

operations and one stroke of the cos™1 key, where&s calculation of QA B by (3. 5)

under the same circumstances requires only three arithmetic operations 3dnd two strokes

of the cos™! key. Of course, if your calculator has that special key for converting

from rectangular to polar coordinates, it is even more convenient to use (3. 3) rather than

(3. 6).

The scalar product

A°B= albl + azb2

i_§ particularly handy for calculating projections, i. e., the decomposition of the vector

B into the sum of two perpendicular vectors, one of which is parallel to A. Such a
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3. The angle between two vectors in the plane

Figure 3. 3

  
decomposition is obtained as in Fig. 3. 3, where C is the point on thestralght line

through the origin and A where the perpendlcular from B hits. Let A B C be the

vectors from the origin to the points A, B, C, respectively. Then, obv1ously,

B=C+ (B-C)

while C and (B- C) are at right angles, and C is a scalar multiple of A. The vector

C is called the (perpendicular) projection of B onto (the direction of) A which is
written

Ez proj — §
A

We see from Fig. 3. 3 that

—

(|IB | cos 6, ) dir (B) .
A/ B

Since ]Xl lfi’lcos O B = A - E: by (3. 5), this says that
)

— A —

(3.7) C= proj_B = __B dir (A) =
A A

‘B>

  e 1
- A>

Another way to derive (3.7) is as follows. Since C is in the directionof A it

must be «A for some scalar «. But we W1sh B- C to be perpendicular to A That

is, we wish B- aA to be perpendicular to A So their scalar product must be zero.

That is

> W | =} > I > w [ IS g >|0 =

Solving for o gives
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XI. VECTOR MANIPULATION

as is given in (3. 7).

Here the number IB | cos @A B = A- _>/ | | which multlpllesthe unit vector

dir (A A/ |A | is called the component of B in the direction of A Its absolute value

is, of course, the length of C. That is
  

—

(3. 8) IC | = |prOjX§.! - |- El/ Ia| .

By construction,

(3. 9) E=B-C

is perpendicular to K, and hence to C. By Fig. 3,3, its length is

(3. 10) |E| = |B|]|sin O, gl

and this is the distance of the point B from the stralght linethrough the origin and A.

This can conveniently be calculated by subtracting C from B and then taking the

length. Or one can appeal to Pythagoras to verify that

(3.11) lE|" = |B] -ICc| .

Problem 3.9. For Aand B as inProb 3.4. (a), calculate prOJ B. Then calcu-

late @A E for the vector E= B- prOJXB in order to verify that A and E are at right

angles. ’

Problem 3. 10. What are the velocity components in the NE direction and the NW

direction for an airplane which moves at ground speed of 320 knots in a course of 15°

East of North?

Problem 3. 11. For each of the points in Prob. l. 6, draw the vector fromtheorlgln

to the point, then calculate its components in the dlrectlons of l+] and of —1+] and

compare with your answers to Prob. 1. 6.

4. The angle between two vectors in space.

We follow T- F and write the typical vector A in 3-space as

A= aji+a,] +a3k ,

with _i:T, and k the unit vectorsin the positive directions of the x-,y-, and z-axis,

respectively. You can visualize A as the vector from the origin to the point A(al,az,a3).

Such a vector has length

— 2 2 2
(4. 1) INERE +a2+a3 ,

and direction
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4. The angle between two vectors in space

(4. 2) dir(R) = |i|@/ 1ENT+ a,/IENT+ @/ IEDE.

But the direction of A is not given by one angle anymore, as in the plane. We must

therefore rely on the scalar product for the calculation of the angle between two vectors.

If B is also a 3-vector,

F=bT+b. T+b, Kb1 + b2 j+ b3 ,

then the scalar, or dot, product of A and B is given by

(4. 3) K-E:albl+ab + b,

See Sect. 11-6 of T-F, especially Eq. (6).

Some calculators have special statistical keys by which you can save a key

stroke or two in calculating the scalar product. However, they tie up a lot of memory

registers, so that it is not particularly good to use them.

If you are working with vectors and have a programmable calculator, it is probably

a good idea to_have available a program to calculate the scalar product. Let us assume

that A and B have been stored; a convenient way is to have al, a,, and a3 in regis-

ters one, two, and three respectively and bj, b,, and b in registers four, five, and six

respectively. Then the program is so easy to write that we leave the details to the read-

er. The point is to have the proaram stored. ready for use.

y (1) of Sect. 11-6 of T~ F, we have

X. —>: —_ —_

(4. 4) B ,AHB,COS@A,B

where Gp p is the angle between A and B
)

Since the vectors A and B are now in 3-space, we have no notion anymore of

clockwise or counterclockwise rotation. For this reason, we do not distinguish between

oa, B and OB A as we did in the plane, but take for QA B the angle between 0° and

1869 formed by A and B. Consequently, from (4. 4),

- AB
(4. 5) o = cos

A, B K’l B

with cos_l as implemented on your calculator (see the discussion in Sect. 1).

Problem 4. I. Find 0p B for the vectors
)

(4. 6) A= 3i+j-2k, B=41+ 5]+ 3k .

—

Problem 4. 2. Interpret the vectors A and B in Prob. 3.4 as 3-dimensional
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XI. VECTOR MANIPULATION

vectors with a zero z-component and calculate @A B for them by (4. 5). Compare with

your answers for Prob. 3. 4.

The perpendicular projection of B onto A is given as in the plane by

> !

 

= pro_>§>: — ._A_> .

A A-

oF(4. 7)

>

The derivation of this formula in Sect. 3 only made reference to the fact that the dot

product satisfies (4. 4), hence is valid for 3-vectors as well. In particular, the vector

(4. 8) E=B- proj_,B= B- cC
A

is a vector in theplane spanned by A and B and perpendicular to X, and Egs. (3.7)-

(3. 11) are valid for 3-dimensional vectors as well.

Problem 4. 3. For the vectors (4. 6) find pI‘OJKB then calculate @ E» with E

as in (4. 8), to show that E is at right angles to A. A

Problem 4. 4. For the vectors (4. 6),find the components of the vector

F=A- proj__/?.

B

Verify that it is perpendicular to B by showing that B- F= 0.

Remark. With your program, mentioned earlier, for calcula_t}ng the scalar product

of two vectors loaded and ready to go, you can calculate proj KB as follows.

Put the components of A into registers one, two, and three, calculating A-A =
alz + aéz + a3 as you go. This would mean the key strokes

RPN 2 2 2[ e BI00, B3, 8y, (5107, (1, (51, &, (5103), B, (@
RPN

AE 2 2 22, 3100, 7,3, »,, 51021, X1, [H, a,, (51037, &1, [=] -
AE

—_ —>

Then store A- A, in register zero, for example.

Next, put theecomponents of B into reglsters four five, and six, use your pro-

gram to calculate A- B and then divide this by A-A (stored in reglster zero), to get

A-B/A-A

into the display. After this, the key strokes

  

[STO X1], [STO X 2], [STO X 3]

194



4, The angle between two vectors in space

will bring the components of proj xB into registers one, two, and three, according to

(4. 7).

Now, if you also wish the vector E=B- proj KB: carry out the key strokes

  [RCL1], [STO-4], [RCL2], [STO - 5], [RCL3], [STO- 6]

which gets_t_he components of E into registers four, f1veand six. If you only want ffl,
—

calculate B+ B = IB.I as you input the components of B and then use (3. 11).

You_may WlSh to combine all these steps into one program, for decomposmg B in-

to proj -»B and E in which case you may as well load both A and B initially into

registers 1,2,..., 6, and only then begin the calculations.

Problem 4. 5. Same as Prob. 4. 3, but with

i+ 11 - 2k () A= 2i+10j- Lk

21+ 2j+ k= IB= 1+ 3j+4k

Remark. This is Prob. 2 and Prob. 5, respectively, for Sect. 1ll-6 of T-F.

Consider the line Ll that passes through

(4. 9) ,a3) and (b ’bZ’b3)@),a ]

and the line L2 that passes through

(4. 10) (c ) and (d ,dz,d3) )1727 %3 1

Does it make sense to talk about the angle between these two lines? We had a similar

situation in Prob. 3. 6. But there all four points were in the xy -plane. So the lines

were bound to meet somewhere (unless they coincided or were parallel, in which case

one would say that the angle between them is zero), and where they meet one has an

angle between them. But in 3 dimensions, two lines can miss each other completely

without being anywhere near parallel. However we can proceedas_1n Prob. 3. 6. Con-

sider the four points in 4. 9) and _(fl 10) as determlnmg vectors A B C and D. Then

B- A is parallel to I; and D- C is parallel to L,. As these latter two vectors pro-

ceed from the origin, we can get the angle QB—A, D-Cc between them by (4. 5).

Problem 4. 6. Find the angle between the line L; determined by the two points

A(1,0,-1), B(-1,1,0) and the line L, determined by the points C(3,1,-1), D(4,5,-2).

Remark. The next three problems are Problems 3, 6, and 7 at the end of Sect. l1-
6 of T-F.

If you are using some text other than T- F, it would be prefectly all right to work

similar problems from your own text. However, take note of the remark which follows

Prob. 4. 9.
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XI. VECTOR MANIPUILATION

Problem 4. 7. Find the interior angles of the triangle ABC whose vertices are the

points A(-1,0,2), B(2,1,-1), and C(l,-2,2). Verify that the sum of the angles is 180°
(to within calculator accuracy).

Problem 4. 8. Find the angle between the diagonal of a cube and one of its edges.

Problem 4. 9. Find the angle between the diagonal of a cube and a diagonal of one

of its faces.

Remark. Explain why it is geometrically obvious that the angles in Problems 4. 8

and 4. 9 add up to exactly 90°. So you should not have used the calculator to do Prob.

4. 9. Simply subtract the answer for Prob. 4. 8 from 90°. As we keep saying, stay

alert. NEVER work a problem on a calculator if there is some trivial way that you can

just write down the answer.

5. The vector product.

The vector product Kx E’ of two vectors in space is again a vector in space, de-

fined by

5.1 Ax B=1i(a.b_ -ab)-j@ab. -a.b) +k( - a.b);G- X B=ifab, ab,)-jlab, -ab)+klab, ab);

see Eq. (8) in Sect. 11-7 of T-F This definition insures that the scalar product of

AX B with both the vector A and the vector B is zero, as you can verify directly with

a little algebra.

If you already know determinants, then you will find it easier to remember (5. 1) in

the form

[
(5. 2) A X B = det a8, a, :

b
1 bZ b3

see Eq. (9) in Sect. 11-7 of T- F. For here, the components of A and B appear in a

very simple and orderly manner. You will then also realize at once that the scalar prod-

uct of any vector C with AX B can be calculated as

5.3 . =( ) C:(A X B) det a a, a3

bl b2. b3

(see Eq. (3) in Sect. 11-9 of T- F). This makes it explicit that

(5. 4) A-(AxB)=B-(AxB)=0
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5. The vector product

since you will then also know that any determinant with two rows the same is automati-

cally zero.

On the other hand, if you do not know determinants, then you will just have to

struggle along with Eq. (5.1) and hope to remember it somehow. You could, of course,

take the occasion and learn now how to evaluate a determinant. That knowledge will

come in handy anyway, and then you would have to remember only (5. 2).

As an aid in such a worthwhile endeavor, here is a description of how to evaluate

a determinant by expansion with respect to the top row. For example, fora 2 X 2 de-

terminant

Q
.
® —+ 1

 

For a 3 X 3 determinant, there are three terms,

  
    

R l_ei_e?j
det a) 3, a; = ¢ det ] 3, @ —czdet +c3 det

bl bZ b3 1 bZ bBJ

7 r 7 r

=c det :2 5: - czdet I a3j+ Cy det 1%

2 V3 L5y b LBy Py
= ¢, (a,bs - a, bz) - c, (a1b3 - a, bl)+c3(alb2- azbl) .

In words: Multiply each entry in the top row by the determinant left over after you have

struck out the row and the column of that entry, then change the sign of every other one

of these products, and then sum.

The vector (or cross) product Kx B is used in calculus and engineering as a

handy dev1ce forconstructmg a vector which is, by (5. 4), perpendicular to the two

vectors A and B whatever those vectors mlght be. The vector product is also useful

in area calculatlons because

(5. 5) area of parallelogram spanned by A and B = |A x B | .

See Sect. 11-7 of T-F.

Thus, consider the vectors of (4. 6), namely

(5. 6) N=3i+j-2k
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XI. VECTOR MANIPULATION

(5. 7) B = 4i+5)+3k .

By (5.1), we have

((1)(3) - (-2)(5))

-7 ((3)(3) - (2)(4))

+K((3)5) = (1)) .

So

(5. 8) Ax B=13i-17]+11k .

By (5. 5),the area of the parallelogram spanned by K_gnd B is IKX B| = \J579.

But this is twice the area of the triangle of which A and B are two sides. So the area

of said triangle is 579 /2 =120. 31.

We can verify that

—>

(5. 9) (Ax B) X B=-1061+5] +133k .

e

Problem 5. 1. Explain geometrically why the vector (KX E’) X B should be parallel

to the vector F obtained in Prob. 4. 4. From the answer for Prob. 4. 4, verify that the
two vectors are indeed parallel.

If you have a programmable calculator, it would be a good idea to construct and

keep a program for calculating .ZTX B. As with the program for calculating the scalar

product A fi: and the program for calculating the projection of B onto z%:, start with

having the components of A in registers one, two, three, and those of B in registers
four, five, six. Then calculate the first componentof A X B and store it temporarily
in register 0, calculate the second component of A X B__and__store it temporarily in reg-

ister seven. Finally, calculate the third component of A X B and store it in register

three, and now move the first component from register zero to register one, and the
second component from register seven to register two. Here is a program.

 

  

RPN
[RCL 2], [RCL6],[X],[RCL3],[RCL 3], [X],[],[STO0],
[RCL 3],[RCL4],[x],[RCLTI],[RCLE], [X],[=],

RCL 1],[RCL 5], [X],[RCL 2], [RCL 4], [X],[=], [STO 3],
IR:l:l,ISTESZI,IRCEOI,ISTGII.

RPN This takes 27 program steps

AE
RCL2],[x],[RCL6],[-],[0,[RCL3],[x],[RCL5], =], [STOO],

AE ’? R'CL4 ’E’m
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5. The vector product

 
 
 

AE
RCL 1],[x],[RCL5],[-],[d,[RCL2 ,[X],[RCL4],[=], [STO 3] ,

([RCLOJ|,[STO1],[RCL7],[STO 2] .

This takes 34 program steps. Of these, the three parenthesis key strokes may be

AE omitted on a hierarchical calculator such as the TI-57.

This replaces A by Kx B in registers one, two, three, but leaves B untouched

in registers four, five, six.

After you have stored your program for cais:ula’cin_g> AX E: it would not be a bad

idea to test it. For this, put the two vectors A and B of (5. 6) and (_§ 7) in_place.

Form KX —B: ar_l_g see if it agrees with (5. 8). But now you have A X B and B right in

place to form (A X B) X B by your program. Do that, and see if it agrees with (5. 9).

Calculating Kx B was one of those things that was almost impossible to do cor-

rectly before calculators came along. Even with a nonprogrammable calculator it is still

very hard. You start by taking the product of the second component of the first vector

with the third component of the second vector, and by the time you are half way through

you have lost your place, and have blown it. Besides which, half the terms h_zgve min_u»s

signs in front. Sprinkle a few negative numbers amongst the coefficients of A and B,

and you are bound to get a sign wrong some place. But with a carefully checked program

on your programmable calculator, there is no trouble whatsoever.

If calculating AX B was hard, then calculating (Kx B) x C was at least twice

as hard. So great efforts were made to find easier ways of calculation. Eq. (4) in Sect.

11-9 of T- F gives

—_  — — —_ —>

(5. 10) AxB)xC=(A-C)B- (B-C)A.

The right side of this is not all that easy to calculate, but before calculators it was an
improvement over the left side. But with a tested program for calculating the vector

product, the left side of (5. 10) is suddenly very easy, while the right side of (5. 10) is

still a mess. Besides which, how could one possibly ever remember it ?

So, with a programmable calculator, you can forget about formulas such as (5. 10).

Not to mention the dreadful expression that some calculus books get for

(A X B) X (C x D).

One migor point. The program we suggeg:ced for calculating K_)_( B keg_t B but

washed out A. Suppose you wish_> to_lfeep A . Just interchange A and B. Of

course, then you have calculated B X A. However,

AxB=-(Bx A&),

so that at the end you change the signs of the components of Bx A .
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XI. VECTOR MANIPULATION

If you wish to keep both A and B without having to record any coefficients in

writing, you will have to get a calculator with more than eight memory registers.

Remark. The next five problems are Problems I, 2, 3,4, and 7 at the end of Sect.

11-7 of T- F.

If you are using some text other than T- F, it would be perfectly all right to work

similar problems from your own text.

Problem 5. 2. Find AX B if A= 2i- 2j - k and B = i +5 +k .

Problem 5. 3. Find a vector N perpendicular to the plane determined by the points

A(l, -1, 2), B(2, 0, -1), and C(0 ,2,1).

Problem 5. 4. Find the area of the triangle ABC of Prob. 5. 3.

Problem 5. 5. Find the distance between thgorigin and the plane ABC of Prob.5.3

by projecting OA onto the perpendicular vector N of Prob. 5. 3.

Problem 5. 6. Using vector methods, find the distance between the line L, de-

termined by the two points A(l, 0, -1), B(-1, 1, 0) and the line L, determined by the
points C(3, 1, -1), D(4,5,-2). The distance is to be measured along a line perpendicu-
lar to both L; and L,.

Hint. Take a vector A parallel to I; and a vector B parallel to L,. Then

AX B has the direction of the line perpendicular to both- L} and L,. Take C a vector

connecting a p_)gmjt_pn L} with one on L2 , and find the length of its perpendicular pro-

jection onto A X B.

Remark. The next two problems are Problems 8 and 16 for Sect. 11-8 of T-F If

you are using some text other than T- F, it would be perfectly all right to work similar

problems for your own text. The key points to remember are that the equation of a plane

in space is of the form

ax + by +cz = d

with aT+ bT+ ck a vector perpendicular to the plane, and that the equations of a

straight line in space are of the form

with (xo, Yps zo) a point on the line and ai+ bT+ ck a vector parallel to that line.

Problem 5. 7. Find a plane through the points A(l,1,-1), B(2,0,2), C(0,-2,1).

Problem 5. 8. Show that the line of intersection of the planes
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6. Volume of a tetrahedron

Xx+2y -2z =5 and 5x -2y -z =20

is parallel to the line

  

o
o

Find the plane determined by these two lines.

6. Volume of a tetrahedron.

Suppose three vectors Z_f, —BT, and C proceed from the origin. According to the

second paragraph of Sect. 11-9 of T-F,

—
) . Ql6. 1) (Ax

is, except perhaps for sign, the volume of a parallelepiped of which K, E: and C are

three concurrent edges. Hence (6. 1) is, except perhaps for sign, six times the volume

of the tetrahedron whose vertices are the origin, A, B, and C.

To carry out the calculation of (6. 1), we store A and E on the calculato_r_‘._ Then
—

run the program for calculg_ting the vector product. Now Kx B will be where A was.

Then put C in place of B and run the program for calculating the scalar product.

Problem 6. 1. Find the volume of the tetrahedron with vertices at (0, 0, 0), (I, -1,
1), 2,1,-2), and (-1,2,-1).

Remark. This is Prob. 6 at the end of Sect. 11-9 of T-F.

Problem 6. 2. Find the volume of the tetrahedron with vertices at (1, 0, -1), (-1, L,
0), (3,1,-1), and (4,5,-2).
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Chapter XII

FUNCTIONS OF SEVERALVARIABLES

0. Guide for the reader.

You should read Sect. 1 when functions of two variables are discussed in your

course, since it provides a quick way to sketch such functions. Sect. 2 deals with

tangent planes, and you should read it as soon as you have come across derivatives for

a function of several variables.

1. Plotting a function of two variables.

It is very hard to sketch a function of more than one variable. If the function de-

pends on more than two variables, we would have to visualize something involving at

least four dimensions, and that we cannot do. But even for a function of just two vari-
ables, it isn't easy. A function f of two variables x and y is usually visualized as

a surface in 3-space, namely the surface made up of the points

(x,v,fx,v) .

But to model such a surface as a three-dimensional object takes a great deal of effort,

particularly if it is to be done accurately. The next best thing is a drawing, that is, a

two-dimensional representation of this three-dimensional object. It still takes a crafts-

man (or, these days, a computer) to make an accurate perspective drawing of such a

surface z = f(x,y), so we are looking for something simpler than that.

In industry, one usually uses sections. These are functions of one variable, ob-

tained from f by keeping one of the variables fixed, for example the functions gj given

by

g, (x) f .J (X,y])

or the functions hi given by

-
-

< 1 flx,,v) .
i
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1. Plotting a function of two variables

These are plotted in the usual way, and a sequence of them can be used to get a feeling

for the function f.

Sections are used because it is relatively easy to get information about the func-

tion out of them. But a more comprehensive view of such a function is to be had from a

map for it. By this we mean a topographic map, such as is found in many atlases. This

requires you to sketch, in the (x,y)-plane, selected level curves of the function f. To
recall, the level curve C_ for the level a consists of all points (x,y) in the plane

for which f(x,y) = «,

Ca = {x,y) : f(x,y) = a}.

You would plot Ca restricted to some rectangle (or other region) in the domain of F,

and for certain discrete levels «; <a, <... <ap For best effect, these levels should
be uniformly spaced in «, as they are on a topographic map. For then, the closer the

level curves are, the steeper the function is there. The discussion in Sect. 13-2 of T-F

is very relevant here.

It is, of course, possible, to do a beautiful job on fine graph paper from finely

spaced data. These days, it is also possible to use canned programs on bigger com-

puters to generate and then plot level curves for you. But you can produce easily rough

plots yourself, with just a little bit of effort and a calculator.

For a start, evaluate f(x, y) at all the points of a rectangular grid, say at the

points (xi , yj) with

" oX. = X_ + ih i
i 0 ’

1Y.j vgtik, §=0,...,N.

You might as well have the mesh spacing in x the same as in vy,

h =k,

unless there is a good reason not to. Then, on a piece of graph paper, draw an appro-

priate piece of the x-axis and of the y-axis and write, for each i and j, the first two

or three significant digits of the number f(x; ,yj) at the point corresponding to (x;, vj ).

This we have done in Fig. 1.1, for the specific function f given by

(1.1) f(x,y)=x3/3+x(y2—l)-y/2+l

and for

XgsX oo ¥y = -0.2,0,0.2,..., L2

Yos¥Yoo 2 ¥y = 0,0.2,...,1.2.
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XIL. FUNCTIONS OF SEVERAL VARIABLES

Figure 1.1

 
It helps here to have a programmable calculator. One would have a program for

evaluating f(x,y), which would use X,y as stored in registers I,2 say. The program

would begin by adding the step h to register 1. So, every time you push the appro-

priate program key, x would be incremented by h and f(x,y) evaluated at the current

x and y. Supposing Yj stored in register 2, and the number Xg—h initially in reg-

ister 1, the repeated execution of the program will give in sequence the numbers

f(xg,v) f(x), Y ), f(x,, Yj),. .., ready to be written down on your graph paper. This
fills or{e row of the grid. Then to get the next row, increment y. in register 2 by k
to get Yj+l there, restore Xp- h toregister 1, and you are read‘y for the next row of
function values
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1. Plotting a function of two variables

In this way, you get a table of function values. Some facts about f are already

quite evident from such a table. For example, in Fig. L 1, the smallest value occurs at

(1,0. 2), which would indicate that f has a local minimum nearby. The largest value

appears at (L. 2, 1. 2), on the boundary of the plotted region.

But if you desire a more graphical accout of f, you should now sketch in some

level curves.

The basic idea for this is as follows. Suppose it is the level « you wish to fol-

low. Then you begin by finding a rectangle

Ry j3 Xy SXSX, ¥jSY SV

for which the maximum of f over the four corners is greater than « while the minimum

over the four corners is less than o. If R . is such a rectangle, then there must be

at least two points on its boundary at Wthh f has the value « exactly, assuming (as

we do here) that f is a continuous function. So, find those two points, then connect
them with a straight line to give you a sketch of CQ on that rectangle Ri .. Of course,

this means that the curve C, goes on into neighboring rectangles. So, répeat the pro-

cess there. In this way, you pursue the curve C, from rectangle to rectangle until

either you reach again that first rectangle and the curve closes on itself, or else you

reach a rectangle on the boundary of your plotting region, and your curve Ca leaves the

region there. If you do not like loose ends, start a level curve in a boundary rectangle,

if possible.

There is, of course, no point in determining the points where C_ enters and ex-

its a rectangle exactly. If f doesn't change too much from one corner of the rectangle

to the other, you can guess the exit points by eye. If you want to be more careful, use

inverse interpolation (see Chap. VI), as you would when guessing what x givesa cer-

tain y in a table of y's against x's. For example, if f(xl, y]) =z;>a>z;

£(x541, Yj ), then by (4. 2) of Chap. VI, an approximation for the "x for which f

would be given by

@ -z,

(L 2) xoxp =o bymx)
i+l i

see Fig. 1. 2. Since x;,, - x; = h does not depend on i, it would be worthwhile to

have a little program which would have « and h built in (or stored somewhere) and

would calculate x - Xy from input z; and zj4 by

(1.3) X =X, = —_h

If the table spacing in y is the same, i e., if h = k, then the same program can be

used to find
a - Z,

(1. 4) y-y.=;‘—jz‘l“k,
J j+1 %
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Figure 1. 2

 

 

 
i. e., for finding the point y at which C, crosses some line x = Xyi if k+# h, only a

slight change is required in the program.

Let's try all this for our example. We intend to plot the level curve CO 4 from

the information about f as given in Fig. 1. l. The boundary rectangle

has a maximum corner value 0. 5] and minimum corner value 0.29, and therefore con-
tains a piece of Cp4. One exit point is on its East side, where the two corner values
0. 37 and 0. 51 bracket the level 0.4. By inverse interpolation, the relevant y-value

satisfies

0.4 - 0. 37
0. 51- 0, 37 02 = 0.04

y-0.4 =

and so you would mark this point on the x = 1. 2 line, 0. 04 up from the y = 0. 4 line.

Feel free to mark it right on Fig. 1.1! The other exit is on the North side of the rectan-

gle, since the corner values 0. 39 and 0. 51 there bracket the level 0.4. The rel-
evant x-value satisfies

(0. 2) = 0.02 .
o1 0.4 - 0.39

- 30. 51 - 0. 39

So you would mark this point in Fig. 1.1, on the y = 0. 6 mesh line, and 0. 02 to the

right of the x = 1 line. Then, before leaving the rectangle, connect the two exit points

with a straight line.

With this, you have marked already one exit of CO. 4 for the next rectangle, the

rectangle

Ré 3:15x51.2,0.6_<y_<0.8.
)
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1. Plotting a function of two variables

The other exit is on the West side of this rectangle, between the function values 0. 39
and 0. 57 written there. The relevant y-value satisfies

0.4 -0.39

y = 0.6 =" 39 (0. 2) = 0.01
)

and you would mark it, on the mesh line x =1, and 0. 0l above the mesh line y = 0. 6.

This brings you to the rectangle

R :0.8<x<1, 0.6<y<0.8
5,3 = ==

and, continuing, into rectangles R4 3, R4 > and, finally, into rectangle R4 1 where

something new happens: The curve 'C leaves that rectangle at a corner, the SE cor-

ner. It enters Rg o and then exits the plotting region at the South side of Rg -
’ )

We hope that you carried out all the details of this discussion, marking the curve

Ca as you went. If you did, you should now have drawn a level curve Cp. 4 @s it ap-

pears in Fig. 1. 3. There we have drawn C, in this manner for o = 0. 3, 0.4,...,1 4 .

Fig. 1. 3 gives us a much more detailed feeling of the behavior of f than does

Fig. 1. 1. We see the level curves Cq 5,Cp, 4 and Cgp3 concentrating on a local
minimum. We see the level curves more and more densely packed in the upper right cor-

ner, indicating a more and more rapid rise of f there. There is a similar but not quite

so rapid rise in the lower left corner. In addition, an interesting feature has emerged in

the upper left corner, a saddle point, in the rectangle

R :0.2<x<0.4 0.8 <y<1.
2,4 ’

Of course, we do not maintain that the triangle we ended up drawing there in the rectan-

gle is an accurate description of the level curve C( g5 in that rectangle. Since there

are more than two exit points for C(5 in that rectangle, we do not know how these

points are connected by the curve. But, by connecting them in all possible ways, we

have drawn attention to this special spot. For, it can be shown that f has a saddle

point in any rectangle in which some level curve has more than two exits.

Finally, the figure strongly supports the view that the maximum value of f on

-0.2<x<lL2, 0<y<l2 occursat (L2, l.2), while the minimum value occurs at a

local minimum, near (0.95, 0.25). Also, a second critical point, a saddle point, ap-
pears to be near (0. 3, 0.9).

Problem 1. . Construct again the level curves for f given by (L l), but from the

rougher mesh

i X I -0.5,0,0.5, 1.0, L5

= 0,05, 1,15
’

and compare with Fig. 1. 3.
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Figure 1. 3

 
Problem 1. 2. Sketch level curves for f as given by (L l), but for the region

-l.2 <x <0, -1.2 <y <0, and determine approximately its minimum and its maximum
there. Also, are there any saddle points? Answer these questions first, after you have
written down the table of function values, and then again, after you have also plotted
the level curves.

Problem 1. 3. Sketch level curves for the function f given by

__sin(x+y)sin (x + l <x<3, -2 <y<0
cos(x-y) +1.1 )

f(x,y) =
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2. The tangent plane

using the mesh step 0.5 in both x and y. From your sketch, determine the approxi-

mate location of the maximum and the minimum of f.

Problem 1. 4. Sketch level curves for the function f given by

0 if x=y=0 0<x, v<I,

fx,y) =

—?X‘L‘— , otherwise

X 4y

using a mesh step of 0.2 in both x and y. Then determine analytically the level

curves Cp and Co. 5 and compare with those you have drawn. Conclude that the tech-

nique discussed in this section will not reveal a discontinuity.

Remark. This discontinuity is discussed in Example 2 of Sect. 13-1of T-F.

2. The tangent plane.

For a function f of several variables x,y,...,z, the tangent plane at a point

(xo,yo,. ..,20) is described by the linear function T given by

(2. 1) T(x,y,...,2) =+ fX . (x—xo) + fyo (y—y0)+. L+ fz . (z—zo)

with each of the functions f, f,f ,...,f, evaluated at the same point (xg, vq,.-., Zg)l
Here, we have written f, for the partial derivative of f with respect to the first vari-

able, f,, for the partial derivative of f with respect to the second variable, etc. See

Eq. (32) in Sect. 13-4 of T- F.

For such a function f, the linear function T takes over the role which the tangent
line plays for a function of one variable. In particular, our discussion in Chap. VI of

the tangent line as a local approximation to f is applicable to the tangent plane T as

well.

The function T is characterized by the fact that it agrees with f at (xq,vy,-..,
zg) in value, and in every directional derivative. As a consequence, its value at some

point (x,v,...,z) "near” (x3,vq,-..,20) gives an indication of what the value of f
at that point (x,y,...,2z) might be. This indication is the more reliable, the closer
x,v,...,2) isto (xg,vg,---,20)

For this reason, the tangent plane is used frequently as a local replacement for

the function. In Chap. XIII, for example, it serves as the basis for Newton's method

when solving two equations in two unknowns. As another example, we discuss now

sensitivity analysis. We discussed this topic at the end of Sect. 1 of Chap. IV.
 

In calculations, the evaluation of a function f at a point (xq,vq,...,2zq) fails

to be perfect for several reasons. One of these is the fact that, because of the limited
number of digits carried in the calculator, or because of some earlier rounding error, the
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values in the calculator are not the numbers x;,vq,...,2q, butrather some perturba-
tions xg + Ax, yg+tAy,...,zg+Az of these numbers. This means that, even if all
goes well from then on, we would be calculating the number f(xo +AX, Yo tAY,...,

zg+Az) instead of the number f(xg,yq,...,2g). Just how big an error are we making?
The tangent plane gives an approximation for the difference,

(2. 2) f(x0 TAX, Y, TAY,. .., 2, +Az) - f(x0 Yoo zo)

=f rAx+f - Ay+... +f . Az,
X y z

with the partial derivatives all evaluated at xg,vg,-..,20- In fact, it can be shown
that (2. 2) can be made into an equality if we are prepared to evaluate all the partial

derivatives at some unknown point of the form

(x + 0 AXx, Y, +0Ay,...,z, +0Az) ,
0 0

for some © between 0 and 1. This means that if we have an indication of the size of
the first partial derivatives fy,f,,...,f; "near” (xg,vQ,- - -,20), then we canestimate
from (2. 2) the effect of an uncertainty Ax,Ay,...,Az in the arguments x,y,...,z,
respectively, on the accuracy of the calculated value f(xy + Ax, yg+Ay,...,zq+Az) as
an approximation to f(x, v, .., zq).

Problem 2. 1. Use (2. 2) to estimate in % the possible combined effect in the cal-

culated function value of a 0. 01 % error in each of the arguments, if f is as described

below and the arguments are "near" the point given below.

@) flx,y) = x+y)/(x-y) (0.9, 1. 1)

(b) f(x,y) = x (10, 10)

(©) f(x,y,z) = x¥° (100, 10, 1)

@ f(x,y) = x cos y (100, 100)

Also, determine in each of these cases whether the function is particularly sensitive to

one of the variables.

Problem 2. 2. It is stated in Example 24 of Sect. 1-6 of T- F that if the manager

of a retail store is going to order a number Q of items to put into stock, then the best

amount to ask for in a given order is

(2. 3) Q= [&H,

where

K = cost of placing the order ,

M = number of items sold per week,
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2. The tangent plane

h = holding cost for each item per week.

(@) Write an approximation for AQ, with partial derivatives evaluated at Kg=

$2.00, M = 20 radios per week, and hp = $0.05.

(b) At the values for Ko, Mg, hp given in (a)

sitive? least sensitive?

, to which variable is Q most sen-

If we take Ax = dx, Ay = dy, Az = dz, then the right side of (2. 2) is called the

differential of f; see Eq. (2) in Sect. 13-8 of T-F.

Problem 2. 3. Using differentials to approximate increments, find approximately

the amount of material in a hollow rectangular box whose inside measurements are 5 feet

long, 3 feet wide, and 2 feet deep, if the box is made of lumber that is 3 inch thick
and the box has no top.

Remark. This is Prob. 2 at the end of Sect. 13-8 of T- F.

Problem 2. 4. Find the amount of material in the box of Prob. 2. 3 by getting the

volume of the exterior of the box and subtracting the volume of the interior.

Note how much less calculation is required for Prob. 2. 4 than for Prob. 2. 3. Be-

sides which, you get a much more accurate answer in Prob. 2. 4. As we saw in Chap. VI,

with the calculating power of your calculator, it is often easier to do an accurate calcu-

lation than to approximate by differentials.
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Chapter XIII

MAXIMAAND MINIMA OFA
FUNCTION OF SEVERALVARIABLES

0. Guide for the reader.

If your calculus text does not cover this topic, you need not read this chapter.

Otherwise, read the chapter when you get to that topic in your calculus course.

A specially simple case of minimization is finding the straight line which comes

closest to fitting a set of data, in the sense of least squares. This is covered in Sect. 2.

Some calculus texts do not treat this special case. We have made Sect. 2 independent

of the rest of the chapter, so that it can be omitted in case it is not covered in your cal-

culus course.

1. Critical points.

At a maximum or a minimum of a smooth function f, which is not at the boundary of
f, all first partial derivatives must be zero. For this reason, it is customary when look-
ing for @ maximum or minimum of a function to look for points at which all the first par-

tial derivatives of the function vanish. Such points are called critical points of the

function f. Once all the critical points of f in a region are found, one determines its

maximum or its minimum by maximizing or minimizing f only over these points and, of

course, over the boundary points of the region in which the maximum or minimum of f is

sought.

For a function f of two variables, you would have to solve the two simultaneous

equations

f x,y)=0
X

(1.1)
fy(x ,v) = 0

in the two unknowns x and y, in order to locate a critical point (x,y). Your calculus

book is handicapped here, since it can use only examples for which it is pretty obvious

how to solve the equations (1. 1). But, with a little effort and a calculator, the number
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1. Critical points

of examples for which you can find critical points (to within calculator accuracy) in-

creases tremendously.

As a first step in such a calculation of critical points, you must locate such a

critical point approximately. This you might do by plotting the function, as discussed

at length in Sect. 1 of Chap. XII. An alternative is to sketch the two curves whose

equations are

f(,y) =0, fy(X,y)=0 ,

respectively, and thereby locate, at least approximately, their intersections. These in-

tersections are, of course, the critical points we are looking for.

For example, in Sect. 1 of Chap. XII, we made a sketch of the function

3 2
(1. 2) flx,y) =x/3+xly -1)-vy/2+ 1

and found that it has two critical points in the rectangle

R: -0.2<x<1.2, 0O <y<1l2 )

a minimum near (0. 95, 0. 25) and a saddle point near (0. 3, 0.9). Consider now the two
curves whose equations are, respectively, f(x,y) = 0 and f,(x,y) = 0, for this exam-
ple. We have

2 2
fx(x,y)zx +y -1, fy(x,y)=2xy-1/2.

The corresponding curves are sketched in Fig. 1. 1. The first is a circle of radius 1 and

with center at the origin, the other is a hyperbola, with the x-axis and the y-axis as its

asymptotes. These curves intersect in four points, which are approximately the points

A(0. 97, 0. 26), B(0. 26, 0.97)

C(-0.97,-0.26), D(-0.26, -0.97)

Our approximate determination of A, based on Fig. 1. 3 in Chap. XII, was really quite

good .

You can actually even determine what kind of critical point each of these four

points is, by paying attention to the directions of the gradients of f at various points.

To recall, the gradient of f at a point (x,y) is the vector

(1. 3) grad f = fX(x, v) 1+ fy(x, v) .

This vector points in the direction of greatest growth of the function at the point (x, v).

So, if the function has a minimum at some critical point, we would expect all nearby

gradients to point away from that point. If it is a maximum, we would expect all nearby
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Figure 1. 1

 
gradients to point more or less toward that point. And if some nearby gradients point

toward a critical point and others point away from it, we would be dealing with a saddle

point.

Now, once you have sketched the curves whose equations are fy (x y) = 0 and

f (x y) = 0 respectively, then you also know the regions where f 1s pos1t1ve and

where fx 1s negative. Similarly, you know the regions where is positive and those

where fy is negative. Since the numbers f (x, y) and f (x yy form the components

of the gradient, you are therefore aware of the general dlrectlon into which the gradient

points in these regions.

For example, in Fig. 1.1, f, <0 inside the circle and f, >0 outside that circle.
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1. Critical points

Again, f,, <0 between the two branches of the hyperbola and f,, > outside. So, in par-

ticular, grad f has both components negative in the region which is both inside the cir-

cle and between the two branches of the hyperbola. We have indicated this state of af-

fairs in Fig. 1.l by drawing into that region a vector in the direction of -1- T This

symbolizes the fact that, in that region, all gradients must point toward the third quad-

rant.

In the region inside the circle, but to the right of the hyperbola, f, <0 but fy > 0.

So we have drawn there a vector in the direction of the vector -i + j. This symbolizes

that, in that region, all gradients must point toward the second quadrant.

We have proceeded similarly for the other regions of the figure.

With this information, a quick look at Fig. Il1 indicates that A(0. 97, 0. 26) must
be a minimum, C(-0.97, -0. 26) must be a maximum, while the other two critical points
must be saddle points.

Problem 1. 1. For the surface

2 2
(1. 3) z = f(x,y) = 2xy - 5% -2y +4x +4y- 4 )

sketch the curves given by fx(x,y) = 0 and f,(x,y) = 0, respectively. Find and clas-

sify all critical points, using the general gradient directions at nearby points.

Problem 1. 2. Sketch the surface

(1. 4) z = f(x,y) = x2+y2

over the region R: |xl <l, Iyl <1. Find the high and low points of the surface over

R. Discuss the existence, and the values,of 9z/9x and .9z/0y at these points.

Remark. The two previous problems are Problems 4 and 7 at the end of Sect. 13-9

of T- F.

Problem 1. 3. Sketch the curves given by f(x, y) = 0 and fy(x, y) = 0, respec-

tively, for the function f of Prob. 1. 3 in Chap. XII, namely

sin(x +x)

fx,y) = cos(x-vy) + 1.1
l<x<3, -2<y<0.

Find and classify all critical points, using the general gradient directions at nearby

points.

Hint. Both fy and £, are rational functions, and hence vanish exactly when

their numerators vanish. Therefore, you can come up with pretty simple equations for

these curves, particularly if you remember that cos(e + B) = cos a cos B F sin o sin B.
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2. Least squares approximation to data by a straight line.

We follow T- F and study least squares approximation by a straight line as a sim-

ple application of how to find maxima and minima.

The problem is this. You are given some data points (xn,yn), n=1...,N in the

plane and wish to determine a straight line

(2. 1) y=mx+b

which fits the data in the best possible way.

It is not at all clear how one should define what is meant by "best" here, or what

is meant by "fitting". Of the many possibilities, we adopt here the "least squares"”

criterion which says that the straight line

y=mx+Db

is best for which the mean-square error

N

(2. 2) E(m, b) = Z [yn - (mxn + b)

n=l1

2
]

is as small as possible. For, as it turns out, this straight line is particularly easy to

determine.

Determination of this "best" line requires you to find a critical point (m"\, b"‘) of

the function E given by (2. 2). Such a critical point satisfies the equations

Em(m,b) = 0

E(m',b") ] o

We now look at these equations carefully.

Consider first Ep. Using the chain rule, we find that

N
E, (m, b) :nzlz[yn - (mx_+b)] (-1)

N N N
:—Z{Zyn—man-Zb}.

n=1 n=1 n=1

It is convenient to use here the abbreviation
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2. Least squares straight line approximation

N N
Zx:an,hence Zy=Zyn,

n=1 n=1

in terms of which the formula for E(m,b) reads

Eb(m,b) = -2{Zy - m=Zx - Nb} .

This shows that the equation Eb(m*, b*) = 0 is equivalent to the equation

(2. 3) Sy - mTx - Nb= 0

from which we get

(2. 4) b' = [Ty - m=x]/N.

Next, we look at E. We get from the chain rule that

N

Em(m,b) = L Z[yn - (mxn + b) ] (-xn)

n=1

N N 5 N

= -Z{Zynxn-man—bZ xn}
n=1 n=1 n=1

With the further abbreviation

N N 5

ZXy = Z Xnyn’ hence Zxx = Z Xn ,

n=1 n=1

this reads

Em(m,b) = - 2{Zxy - mZxx - bZx}

and shows that the equation E, (m*,b*) = 0 is equivalent to the equation

(2. 5) Xy -mSxx - bZx = 0 .

From this equation, we eliminate the b™Zx term by multiplying the equation by N and
then subtracting from it =x times equation (2. 3). This gives the new equation

NZxy - m*NZxx - =x(Zy - m*=x) = 0

from which we obtain a formula for m>‘<,

NZxy - Zx - Xy
2. 6 * =

( ) m NZxx - Zx - ZX
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For easy reference, here is an algorithmic description of how to obtain the slope

m™ and the y-intercept b" of the straight line

y = m™x + b*

which best fits (in the least square sense) certain data points (x},v(),..., &y, YN) -

Step 1. Accumulate the four sums

N N N N ,

Zx:an, ZY:ZYH, ny:ZX‘nyn,and Zxxzzxn_

n=1 n=1 n=1 n=1

Step 2. Calculate m™ = (NZxy - =x - Zy)/(NZxx - X - =x).

Step 3. Calculate b™ = (Zy - m™ >x)/N.

Remark. The better programmable calculators have special keys which help mate-

rially in carrying out Step l. For each n, you input x, and y, and then press a spe-

cial key, commonly denoted by Z+, and the calculator then adds xp,vp,x,Y,, and X2
(and even yfi?-) into certain registers, and adds | into a certain register in order to

keep track of the number of points. You are, of course, expected to put zeros initially

into each of these registers. At the end, you have all the information needed for Steps

2 and 3 (including the number N) at your fingertips. There is even a special key for

correcting a mistake made when inputting one of the points (xn, Vn)' Consult your man-

ual.

You will have to work a little harder if your calculator does not have that special

>+ key. Your task is made more difficult by the fact that your calculator then probably

has no more than just one memory register. In such a case, there is nothing to be done

but for you to add up each of the sums Zx, Zy, Zxy, and Zxx. Recall that the M+

key will accumulate a sum in the one memory register, so that you can collect two sums

at a time, for example the sum Xx in memory and the sum XZxx in the display, and

also the sum Zy in memory and the sum ZXZxy in the display. For example, in order to

form Zx and XZxx simultaneously, the typical steps, repeated N times, would be

RPN

x, M4, 2], (@ .
RPN

AE

| @, =, 3, 1 .
E

Problem 2. l. Construct the least squares straight line fit to data (xp,v,),
n=1,...,10 obtained as follows. x, = n, and yp is the value at x, of the linear

function f given by

fx) = mx- e,
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2. Least squares approximation to data by a straight line

but rounded to the nearest integer. Compare the coefficients m™ and b* you get in

this way with the coefficients m and -e of the original line.

Note. Here, e is the base for the natural logarithm (obtainable on your calculator

by evaluating eX or In"lx at x = 1). Also, an easy way to round a nonnegative num-

ber to the nearest integer is to add 0. 5 to it and then truncate it, i. e., take the inte-

ger part of the result. Many calculators have an INT key for taking the integer part.

If you are dealing with a negative number, you would have to subtract 0. 5 from it and

then use the INT key.

Problem 2. 2. A scientist has measured, at various temperatures, the pressure in

a gas filled container which is being slowly heated. Her measurements are given in the

following table.

temperature OCI 35 | 24 | 36 |49 I 74 | 100
 

pressure kg/cmzl 81 |78 | 81 I 84 [91 I 98

Calculate the average increase in pressure per degree Celsius increase in temperature

as the slope of the least squares straight line fit to these data.

Problem 2. 3. Determine a formula for the least squares fit

y=Dh

to given data (x,,vy), n=1,...,N, by a constant function. What is the number b*
called in this case?

Problem 2. 4. Write a linear equation for the effect of irrigation on the yield of

alfalfa by fitting a least-squares straight line to the following data from the University

of California Experimental Station, Bulletin No. 450, p. 8. Plot the data and draw the
line.

Table 2.1

 

x (total seasonal

depth of water 12 18 24 30 36 42

applied (inches))
 

y (average

alfalfa yield 5. 27 5.68 6.25 7. 21 8. 20 8. 71

(tons/ acre))        
 

Remark. This is Prob. 6 at the end of Sect. 13-10 of T- F
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3. The solution of a linear system of two equations in two unknowns.
 

For future developments, we need to know how to solve the pair of equations

b)

b2

(3. 1) a % + a, .y

](3. 2) a, xta,.y

for the values of the two unknowns x and y. Many calculus texts suggest Cramer's

rule as a means of finding the solution. For use on a calculator, the method of elimina-
tion is considerably superior, and we shall now explain it. In fact,a calculator program
for Cramer's rule takes from 40% to 80% more steps (depending on the kind of calculator)

than one for elimination. If you doubt this, try writing a program for Cramer's rule and

compare it with the program for elimination, which we shall give below.

The process of elimination goes as follows. Divide (3. 1) through by ayy (@assum-

ing that a;; # 0) and get a new equation

(3. 3) x+a'y=b'1

with

), = 2,/a,, bp=b/a, .

Multiply (3. 3) through by a,; and subtract it from (3. 2) in order to eliminate x. This
gives

(3. 4) al,y = b2

with

= b' =b_-a_. b= a - a__a' )
927 %27 %21%20 P27 P79

Now (assuming that al_+# 0), solve (3. 4) for y, getting
22

3.5 = b’ .
(3. 5) y=Db,/a,,

Substitute this into (3. 3), getting

3. 6 = I — 1 .(3. 6) x=Db-ay

To do this by a calculator program, you first put a;;,a;,,b;,a21, a,,, and by in

registers one through six, respectively. Then use the following program, which will put

the solutions x and y into registers three and six respectively.
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RPN  
 

 
 

 

 
  

(3.7) [RCL1], [STO+ 2], [STO <+ 3],

[RCL 2], [RCL 4], [X], [STO- 5],

[RCL 3], [RCL 4], [X], [STO-¢],

[RCL 5], [STO+ 6],

RPN This takes 17 program steps.

AE
] (3.7) [RCL1], [STO =+ 2], [STO=* 3],

[RCL 2], [x], [RCL4], [=], [STO 5],

RCL 3], [X1, [RCL4], [=], [STO 6],

[RCL5], [STO+ 6],

[RcL®, [X1, [RoLzl, [=1, .
AE This takes a total of 20 program steps.

Problem 3. 1. Solve each of the following linear systems using Program (3. 7).

Explain any error messages you receive from your calculator.

20x + 60y 78 0x + 60y 78 30x + 60y = 78

(a) (b) (c)
10x + 20y 30 10x + 20y 30 10x + 20y = 30

What should you do with a system like (b) so that Program (3. 7) will handle it success-

fully?

Once you have solved the linear system (3. 1) and (3. 2) by Program (3. 7), you can

save some inputting and some program steps in case you then have to solve another lin-

ear system for which only the right hand sides are different. In such a case, you need

not reload ajj], ajpz, az)} and az2. You need only load the new b; and by into reg-

isters three and six, respectively, and then omit the second step and the second line

from Program (3. 7).

Problem 3. 2. Use this procedure to solve the linear systems

N ] ] o20x + 60y 74 20x + 60y 1 20x + 60y

(@) (b) (c)
10x + 20y 24 10x + 20y O 10x + 20y1 I " —

4. Newton's method.
 

In this section, we present Newton's method for solving two equations in two un-
knowns. See Prob. 7 at the end of Sect. 13-8 of T- F. The occasion for this discussion

221



XIII. MAXIMA AND MINIMA OF A FUNCTION OF SEVERAL VARIABLES

is, of course, our attempt in this chapter to find critical points of a function of two var-

iables, which requires us to solve the simultaneous equations

f(x,v) =0
(4. 1)

fy(x, y) =0 .

But, the method is applicable to any system

g(x,y) = 0
(4. 2)

hix,y) = 0

of two equations in two unknowns, and we will therefore discuss it in these general
terms.

The basic idea of Newton's method is as follows. Take a guess (xo,yo) for a

solution (x,y) of (4. 2) and replace both g and h in (4. 2) by their tangent planes at

the point (xo,yo) This gives the system

g(xo,yo) + gx(xo,yo)(x - XO) +g(xo,y )y - yo) =0
(4. 3) 0

h(xo,y ) +h(xo,yo)(x-x.) +h(xo,yo)(y— yO) =0

 

which is linear in the unknowns x and y, so can be solved by Program (3. 7).

Actually, it is more convenient to think of (4. 3) as a linear system for the correc-

tions 0x = x - x5, 0y = ¥ - yg,

0 +g 0 -@ 2) gXX gyy g

- h1h®& +h d
X X Yy VY

all functions to be evaluated at (xo,yo). This you would solve for the corrections 0x

and 0y, using Program (3. 7), and then obtain a new guess

(4. 5) (Xl’yl) = (xO + 6x, y. + 0y).
0

If (xg,Y0) is "close enough" to a solution of (4. 2), then (x1 vy ) will be even closer

and a few repetitions of this process will usually procure a solutlon of (4. 2) to as many

digits as your calculator carries.

An example might be helpful. We found in Sect. 1 that the function f given by

3

(4. 6) £, v) = 55 +x6° - 1) -2 8

has a local minimum near the point (1,0). Since fx(x,y) = x2 +y2— 1, fy (x,y) = 2xy =0.5,
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the equations which this (and any other) critical point of f must satisfy are of the form

(4. 2) with

2 2
glx,y) = x +y -1

hix,y) = 2xy - 0.5

Since gx(x, y) = 2%, gy(x, y) = 2y, hg(x,y) = 2y, hy (x, y) = 2x, the Newton equations

(4. 4) for this example take the form

(Zxo)fix + (2y0)6y = - ( XS + y(z) -1)

(4. 7)

(2Y0)5X'+(2X0)5Y = -(Zxoy0 - 0. 5)

At (xo,yo) = (1,0), this simplifies to

26x =0

26y = 0.5

and so gives the new guess

b<l,yl) = (x0 + 0%, vg + 6y) = (1 +0, 0'+0.25) = (1, 0. 25) .

We try to improve this guess further. On replacing (xO, yO) in the Newton equa-

tions (4. 7) by (xl,yl), we get the new system

20x +0.50y -00625

1 o0.56x + 20y

and from this we find 6x = -0. 03333 33333, dy = 0. 00833 33333, hence

v,) = (x7,
L T 0%, Y, + 0y)

(0. 96666 66667, 0.25833 33333) .

We record these steps and further steps in Table 4. 1, as calculated on an HP-33E

 

 

Table 4. 1

r X Y, g(xr,yr) h(xr,yr)

0 1 0 0 -0. 5
1 1 0.25 0.0625 0
2l 0.96666 66667 0.25833 33333 0.00118 05560 -0.00055 55556
3 0.96592 63703 0.25881 85275 0.00000 07830 -0. 00000 07184
41 0.96592 58263 0.25881 90451 0 0        
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Table 4. 1 shows the rapid convergence of Newton's method, with the proverbial

"doubling" of the number of accurate digits quite visible.

For easy reference, we now give a concise algorithmic description of Newton's

method for solving (4. 2).

Preparation, Pick a guess (xO,yO) for a solution of g(x,y) = 0 and h(x,y) = 0.

Loop. Repeat for r = 0,1,..., until terminated at Step 4:

Step 1. Evaluate g,gy,9y,h, hy, and hy, all at the current guess (x,,vy). Form
the Newton equations

" I

«
Q0x+g 0gX gyy

1 1 ohdéx+h 6
X Yy

for the correction (6x, 6y).

Step 2. Solve the Newton equations (e. g., by Program (3. 7)).

Step 3. Calculate Koy = % 0x, and Yegp = V¢ oy .

Step 4. Stop if g and h seem small enough. Otherwise, go back to Step 1,

with r 4+ 1 in place of r.

Before attempting Prob. 4. 1, below, read the discussion that follows it.

Problem 4. 1. For each of the following functions, find a critical point near the

specified point, to the accuracy of your calculator. Then determine whether it belongs

to a local maximum, a local minimum or neither.

4 2
(@) x - 3xy + y3 4, 7)

b) <ty aydox-y (0. 5, 0)

(©) X4_‘l}qy?_er3_x_y (7, 19) .

In the problem above, if you have a nonprogrammable calculator, stop when you

think you have x and y correct to 5 significant digits each.

Unless you have one of the better programmable calculators, you may find it a bit

inadequate for the problem above. For example, neither the HP-33E nor the TI-57 can

quite accomodate the program for one iteration of the Newton algorithm given above.

However, you can manage by doing a little bit of the iteration by hand and the rest by

a stored program. Thus, for part (a), we have gy = 12x2, g,, = = by, h, = -6y, hy =

-6x + 6y. To calculate these, and store them in registers one, two, four, and five,
respectively, is not a very laborious hand calculation. Then you canrun a stored program
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4, Newton's method

which calculates g(x,y) and h(x,y), and stores them in registers three and six, then
executes Program (3. 7), and finally adds 6x to x and 0y to y. Fortunately,registers

zero and seven are available to hold x and vy.

In part (c), there is a little problem with noise. Each of g(x,y) and h(x,y) in-

volves a term larger than 1000. So, on a 10 digit calculator, roundoff error can run as

high as two or three times 1076. However, if x and y are both within two or three
units in the last place of their true values, the values of g(x,y) and h(x,y) are both

less than 10~© in absolute value. So attempts to calculate g and h will result in

small multiples of 10"6, which are composed almost entirely of roundoff, and have

nothing whatsoever to do with the true values of g and h. At the end of Sect. 2 of

Chap. 1V, this phenomenon is called noise.

In this situation, the Newton algorithm cannot get you any closer to the true values

of x and y than a few units in the last digit. When you get that close, attempts to

calculate g and h will produce quite irrelevant values for the right side of the Newton

equations, (4. 4). Then the solution of (4. 4), say by Program (3. 7), will produce quite

irrelevant values of 06x and O0y. If you persist with more iterations of the algorithm, x

and y will jump around aimlessly, not by very much.

So, you should just stop.

Let us look at a function very similar to the one defined in (4. 6), namely

3

(4. 8) f(x,y)=%+x(y2-l)—y—8.

For this function, the curves fx(x, y) = 0 and f,(x,y) = 0 are tangent to each other at

the critical point. This means that as the trial point (Xr’ yr) gets nearer and nearer to

the critical point, the lines (4. 3) get more and more parallel. This means that the solu-

tion of (4. 4) becomes more subject to error.

The result of all this is that the Newton algorithm converges very slowly, and runs

into noise at an early stage. This is shown in Table 4. 2. Observe that quite early, the

values of g and h settle into a pattern, where each is about a quarter of the one a-

bove. However, at r = 14, this pattern begins to break up, and from then on the values
of g and h are only noise.

What we are trying to solve are

2 2
(4. 9) glx,y) = x +y -1=0

(4. 10) h(x,y) 2xy -1 = 0 .

As suggested in Prob. 3.9 of Chap. IV, let us put

x=0.7071 +h, y=0.07071 +k .
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Table 4. 2

r X v, 10g (Xr’ yr) 10h (Xr’ yr)

0 1 0 0 -10

1 1 0.5 2.5 0

2 0. 8333 33333 0. 5833 33333 0. 34722 22150 -0. 2777 77785

3 0.7696 07843 0. 6446 07843 0.07815 50325 -0. 0780 94965

4 0. 7383 56782 0. 6758 56781 0.01953 12600 -0. 0195 31240

5 0.7227 31782 0. 6914 81780 0.00488 07500 -0.0048 82820

6 0. 7149 19281 0. 6992 94282 0.00122 07100 -0. 0012 20695

7 0. 7110 13032 0.7032 00530 0. 00030 51725 -0. 0003 05180

8 0.7090 59905 0. 7051 53658 0. 00007 63050 -0. 0000 76285

9 0. 7080 83328 0.7061 30234 0. 00001 90675 -0. 0000 19080

10 0. 7075 95032 0. 7066 18530 0. 00000 47625 -0. 0000 04775

11 0. 7073 50857 0. 7068 62705 0. 00000 11875 -0. 0000 01195

12 0. 7072 28841 0.7069 84721 0. 00000 02925 -0. 0000 00305

13 0.7071 67652 0.7070 45910 0. 00000 00675 -0. 0000 00080

14 0. 7071 37363 0. 7070 76200 0. 00000 00275 -0. 0000 00010

15 0.7071 22035 0.7070 91528 0. 00000 00150 +0. 0000 00005

16 0. 7071 13840 0.7070 99723 0. 00000 00100 +0. 0000 00010

17 0. 7071 13840 0. 7070 99723 0.00000 00100 +0. 0000 00010       
Then (4. 9) and (4. 10) become

-5
(4. 11) hz + 1. 4142h + kZ + 1. 4142k - 9. 59 X 10 =0

(4. 12) 2hk + 1.4142h + 1. 4142k - 1. 918 X 10_4 =0

Problem 4. 2. Find a solution (h,k) of (4. 11) and (4. 12) that is near (0, 0).

Remark. You will encounter noise again, and perhaps not get values of h and k

to more than four or five significant digits. However, adding these to 0. 7071 willgive

you x and y to 8 or 9 significant digits.

By then (indeed considerably earlier), it should occur to you that x and y are

suspiciously near to being equal. It can't hurt to put y = x in (4. 9) and (4. 10), and

see what happens. When you do, you get the exact solution

\Z
y:x:Z

What have we said about being alert? You could have tried this fairly early and saved

yourself a lot of work.

Problem 4. 3. Find a critical point of
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4 2 3
X =3xy +vy

near (0.2, 0.1).
)

Remark. This converges very slowly indeed. So you possibly wasted a lot of

time before it dawned on you to try to see if (0 , 0) is the critical point in question,which

it obviously is.

5. Damped Newton's method.
 

As with Newton's method for one equation in one unknown, Newton's method for a
system usually converges quadratically when it converges. This means the following.

If we denote by P, the vector from the origin to our n-th guess P(x,,y,), and by P the

vector from the origin to the solution P(x,y) of (4.2), then

- . 2
(5. 1) |P-Pn+l|~const|P—Pn, .

An immediate consequence of such quadratic convergence is the fact that the ratio

of successive corrections goes to zero,

  

I_P>n+l - _P>r1 I
(5. 2) B -7 —

n n-1

If this does not happen, but rather

I~1_5n+1 - Pnl
(5. 3) -p ne const# 0

n n-1

then you are almost certain to have made a mistake in your calculation of the functions

9% »9ys 9, hx,hy, h as you were constructing the Newton equations (4. 4). Since deri-

vatives of functions are usually more complex than the functions themselves, such mis-
takes are easy to make and are made all the time by people using Newton's method. You

have to watch out for them because they slow down convergence, and often prevent con-

vergence altogether.

An even more disagreeable hazard in the use of Newton's method is the requirement

that the initial guess (xq, yo) be "close enough" to a solution of (4. 2) in order to get

convergence at all. It is clear that (xq,y,) must be chosen with some care, since its
choice will influence to which solution of (4. 3) the iteration process converges (if it

does). But making a good choice often requires some elaborate sketching of the two

curves

gx,y) =0 and hix,y) =0

with a view toward determining their intersections graphically to sufficient accuracy for
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Newton's method to work.

Often such labor can be avoided by the use of the damped Newton's method. In

this method, you monitor the size of the error function E given by

(5. 4) E(x,y) = g(X,y)2 + h(X,y)2

as you go along. This means that you elaborate on Step 3 of the algorithm given in

Sect. 4, as follows.

Step 3. 1. Let Ax = 6x, Ay = 0vy.

Step 3. 2. Calculate ) = (xn + AX, v+ Ay).
(Xn+1’ yn+1

Step 3. 3. Now check whether

E(x +1) < E(xn,yn) .n+l’ 'n

If it is, go on to Step 4. Otherwise, cut Ax and Ay in half, i. e., replace Ax by
Ax/2 and replace Ay by Ay/2, and go back to Step 3. 2.

In this way, you are assured that the number E(xn,yn) decreases for each n.

This is a good thing since you are looking ultimately for some (x,y) for which E(x,y)=0.

You may (and, in any event, you should) wonder whether you'll ever get out of that

loop formed by Steps 3.2 - 3. 3. Perhaps, no matter how many times you cut Ax and Ay

in half, you'll always get

oE(xn + Ax, v+ Ay) > E(Xn’ yn).

According to calculus, this cannot be. For
of the form

each of the points (x, + Ax, y, +Ay) is
)

(xn + t0x, y_ + tdy)

for some t of the form 2_k and it would therefore follow that the function m given by

n(t) = E(xn +t0x, y 4 tby)

has 7'(0) > 0. On the other hand, you can actually calculate n'(0) since it is the

directional derivative of E at (xp, Yn) in the direction of the vector

0= (6x)i +(6y)j ,

- up to a positive factor. Precisely, you know from calculus that

n'(0) = (grad E)- & .

You can also figure out that
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)
E = Zggx + 2.hhX E = 2hh_+4 2hh .
X y X y

Putting these two facts together, you get

n'(O)_ 2[ (g9, + hhx)(GX) + (ggy + hhy) (0y) ]

1 Z[g(gxéx + gyéy) + h(hxéx + hyéy)] i

But now, since (0x,0y) solves the Newton equations (4. 4), this last expression equals

2[g(-g) + h(-h)] = =-2E

which is negative (unless g = h = 0). This shows that

E(xrl + t0x, v+ tdy) < E(xn, yn)

for all positive t near 0 and therefore guarantees that the loop formed by Steps 3. 2 -

3. 3 eventually terminates.

Of course, if you find yourself going through it too often for your taste, you might

give up on your current guess and start from another, or else put the problem on a more

powerful computer.

Problem 5. 1. Find a solution to the system

2
X+ 3- 1n|x|—y =0

2
2X - Xy - 5x = -1

near the point (2.5, 3. 5).

Problem 5. 2. The system of equations in Prob. 5.1 has a second solution, in the

fourth quadrant. Find it.

Remark. Program XIII. 1 in the Program Appendix gives an outline for the damped

Newton's method.
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Chapter XIV

SERIES

0. Guide for the reader.

You should wait until you are well into the discussion of series in the calculus be-

fore reading the material of this chapter. For instance, wait until you have learned a-

bout the series for sin x, cos x, e¥, and perhaps In (1 +x). Whether, and how,
the calculator can help with the various calculations that arise in connection with series

is a complex question, and is discussed in Sect. 1. In Sect. 2, we get off into the cal-

culation of functions that cannot be keyed in on the calculator. Often one can approxi-

mate these by series, and illustrations are given.

1. Calculation of series by calculator.

A famous series is

2 3
X X X X

(1. 1) e =}+'l"7+?+3—‘,+...

There are an infinite number of terms in the series, so that it is hopeless even to think
of adding them all up. But one of the things you learn is that if you add up the first N

terms, you get an approximation to e®X. The larger N is, the better the approximation.

Indeed, calculus gives formulas which tell how large you have to take N to approach

within ¢ of e®; it depends on x, of course, but that is taken care of by the formula.

But if you take only N terms on the right of (1. 1), you have a polynomial. A

good way to calculate a value of a polynomial is by Horner's method. Specifically, if

you stop with xN/N'! , you would calculate

1

N-1)!
 )x + l).,)x+...+—l‘1!—)x+l.=X(.. ((N! + ( (N-2

The calculation of N!, (N-1)!, etc.
formula into the alternate form

is a bother. You would do better to put the
)
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2. Series for functions that cannot be keyed in

(1. 2) ((...((Ifi\IJr1)—1\'5—1+1)§}_{—2-+...+1)§+1)f+1 i

This is a very quick calculation, even if N is fairly large, especially on a pro-

grammable calculator.

But wait. The calculator has a key labelled e¥. Simply input x and press the

eX key, and out comes an approximation for eX. No bother about how large one has to

take N. No fuss about programming (1. 2).

Most of the series treated in calculus are for the calculation of functions for which

we now have keys on the calculator. For example, e¥, sin x, cos x, In (1 +x), tan"1x
(1 + x)™ and so on. So, although the calculator could help in summing these series,

why bother? Just press the key for e¥, sin x, cos x, In (1 + x), tan'lx, (1+x)M and

so on. The same goes for the various series to calculate w. There is a w key on the

calculator.

)

Before calculators, one had to use these series to calculate these various func-
tions. And quite a labor it was. Of course people had calculated tables for numerous

of them (using the series, of course), which helped a lot. But now we have calculators.

On the other hand, the calculator gives only an approximation for eX. It is pretty

accurate. But suppose that for some x you need a more accurate approximation for eX

than your calculator gives. Well, there is the series (I 1). And your calculus text has

a formula that says how large you have to take N to get the desired accuracy. See

(2. 11) in Chap. IV. The same for sin x, cos x, and the rest.

Problem 1. 1. There is the famous series

2 4 6 8
X X X X

(1. 3) cosx=1-2,+4,—63+8.—

Suppose you stop at the term (—l)NXZN/ (2N)!, thereby getting a polynomial approxima-

tion for cos x. Analogous to (L. 2), specify Aj,Ap, A;,..., AN so that you can evalu-
ate this polynomial by calculating

2 2 2 2 2
(1. 4) (Co (A + DAX +1)AX + .. +1)AX +1)AX" +1 .

2. Series for functions that cannot be keyed in on the calculator.
 

On the whole, calculus texts avoid functions that cannot be keyed in on a calcula-

tor. However, since one can write series for some of them, a few sometimes appear in

the discussion of series.

One such is defined by

(2. 1) £(x) = fx%ldy .
0
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See Prob. 9 at the end of Sect. 16-10 of T-F.

From the result in Example 2 of Sect. 16-9 of T-F, we have

 

6 N 2N
2. 2) sin :]__zf_fzf_“x_+ L)y

: y 3' o5t 7t e (2N+1)!

with an error no greater than

2N+1
(2. 3) JXL—-—T(2N+2) "

Integrating both sides from 0 to x gives

3 xs 1 NX2N+1

(2. 4) B = x=-3Ey v 560 T TN) (eNe D))

with an error no greater than

e 5) Lt
(2N+2) ((2N+2))

The calculation of the polynomial on the right side of (2. 4) is no particular prob-

lem. For instance, if we take N = 3, the right side of (2. 4) can be written as

2 2 2
1 (x) 1, (Ex)  1,x)

(2. 6) (7 57+ s )75 7 3 ) 23 " 1) x

Problem 2. 1. Get a 5 decimal approximation for

1
(2. 7) [ Y4y .

g Y

Remark. An accurate approximation for (2. 7) is

0.94608 30704 .

Problem 2. 2. Derive the series

3 7 11 15X

. 2 XX X __X

(2. 8) 6[ siny dy = "Gy TGN 150t T

Remark. This is derived in Example 8 of Sect. 16-13 of T-F.

Problem 2. 3. Find the error if you stop with
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-1 NX4N+3

(2. 9) x
(4N+3)(2N+1) ')

on the right side of (2. 8).

Problem 2. 4. Find a formula like (2. 6) for evaluating the polynomial that would

result from stopping at -x15/(15(7"')) in the right side of (2. 8).

Problem 2. 5. Find to 5 decimals

1 2
(2.10) fsin y dy .

0

Remark. The function on the left side of (2. 8) is much used in the theory of optics.

Thus it is quite useful to be able to calculate it. However, it cannot be calculated dir-

ectly by any combination of calculator keys, so that it is good to have the series (2. 8)

for it. Because the series (2. 8) is known, and an error term is known (see your answer

to Prob. 2. 3), an ambitious calculator manufacturer could build a calculator with a key
that would give an approximation for the left side of (2. 8). Possibly this will be done

sometime, for special use by people working in optics.

Incidentally an accurate value for (2. 10) is

0. 31026 83017

as indicated in Example 9 of Sect. 16-13 of T-F. You can verify this by taking x =1

in a formula like the one you got in Prob. 2. 4.

If you put -y2 for x in (1. 1), and integrate from 0 to x, you get

X 2 3 5 7

(2. 11) fe—y dy = x - x_ X X + ...
5 ! ! !
 

This could be used for Prob. 10 at the end of Sect 16-10 of T-F. By working with the

error term for (1. 1), you could derive an error term for stopping at a certain point on the

right of (2. 11).

Problem 2. 6. Find a formula like (1. 2) for evaluating the polynomial that would

result from stopping at x9/ (9(4') in the right side of (2. 11).

Remark. The function on the left side of (2. 11) is much used in the theory of

statistics. This in turn, is considerably used in engineering and the various sciences.

4
By taking m = % and X = y~ in the equation

m(m-1) XZi m(m-1) (m-2)... (m—k+l)Xk L
1+x)™=1+mx+ 5 o
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(see (8) of Sect. 16-8 of T-F), and integrating from 0 to x, we get

  

X 5 9

2. 12) f~/l+y4dy=><+%5>({l.) +(%)(—%)9X(2.); . .

1 BE , 7
cbtseheheD

This is like what T-F do in Example 10 in Sect. 16-13. Suppose we wish

2
(2. 13) 1 +y*ay

0

Do we simply put x = 2 on the right side of (2. 12)? This will not work, since the re-

sulting series diverges, and no sensible sort of answer would be forthcoming. It is the

case (though this is not very easy to prove) that the right side of (2. 12) converges for

|x| <1 and diverges for lxl >1. So (2.12) works fine for Example 10 in Sect. 16-13

of T-F, where they take x = 0. 5. However, for x = 2, as in (2. 13), it is of no use
whatsoever.

So series cannot be used for everything.

This does not mean that we have no way to get an approximate value for (2. 13).

There is always Simpson's rule for carrying out an approximate numerical integration.

See Sect. 4 of Chap. X

Incidentally, the terms shown on the right of (2. 12) can be calculated very quickly

by means of the formula

Lo 4,Ly3 4 Ly 4, 1)1 4
(2. 14) (((C 7= 8(x) 13 % )+9)4(X)+5)2x +1)x .
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Chapter XV

DIFFERENTIAL EQUATIONS

0. Guide for the reader.

This chapter tells how to get numerical approximations for solutions of differential

equations. Most calculus texts are carefully written so as to reaquire very little calcula-

tion on the part of the reader. So the likelihood that you would be called on to use any

of the methods of this chapter during the actual calculus course is very small (especial-

ly if your text does not even consider differential equations, as some do not). But, in

most scientific or engineering endeavors, one does have to get such numerical approxi-

mations. If your interests lie in these directions, ignorance of the methods of this
chapter would put you under a handicap.

But why is there a problem? As you read through the chapter in the calculus text,

for each differential equation that they present they always come up with a solution

y = gx) .

Just program your calculator to calculate g(x). Then, every time somebody wishes an

approximate value of y for some x, you simply input that x and press the program

key (or keys).

It isn't always that easy. Consider, for example, the following very simple dif-

ferential equation

dy _ f(x) .
dx

It is so simple, it is often not even mentioned in chapters on differential equations,

But it is a differential equation nevertheless,

since it relates the value of a function and of its derivatives at each value of the inde-

pendent variable. You have, in the chapters on integration, learned how to solve this

simple differential equation. Simply find an anti-derivative F of f, that is a function

F such that F' = f, and then your solution is

y = F(x).
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But suppose F cannot be given in closed form. That is, it cannot be expressed

in terms of sines, cosines, exponentials, logarithms, and other functions for which you
have keys on your calculator. In short, F cannot be keyed in on your calculator. This

situation is discussed in Chap. X. So, here you are with the very simplest type of dif-

ferential equation possible, but there is no means to calculate the solution on your cal-

culator.

Don't think the same thing cannot happen with more complicated differential equa-

tions. Look at the Example in Sect. 18-4 of T- F. There is posed a problem, and as

usual a solution is supplied. Let us interchange x and y in that problem. Itbecomes

2 2
X" +y )dy 4+ 2xydx = 0 .

Can we get a solution of this? Certainly. Just interchange x and y in the solution

that T- F got for theirs. If we wish to satisfy the additional condition that y = 1 when

x = 1, the solution is given by

2 2
vy~ +3x7) =4 .

Does this give y in closed form? Not at all. To find what y is for a given x

one must find a root of a third degree polynomial equation. No calculator has a key for

that. Of course, we could review Chap. VII and write a program to get a root by New-

ton's method. But this is not a triviality. If values of y for several values of x are

needed, the methods of this chapter would be more efficient.

But there can be cases considerably worse than this. It is for such cases that the

methods of this chapter were devised.

This is a common situation for the differential equations that arise in engineering

and the quantitative sciences. If it is your intention to specialize in one of these areas,

it will be very helpful to know the material of this chapter. A good time to learn it is

when you are studying differential equations in your calculus course, and have such

matters fresh in your mind.

1. The Euler method.

We start by looking at first order differential equations. Typical ones are

2
(1.1) (x2+y)dy+2xydx:0 ,

dy 2
(1.2) xdx—3y_x ,

2
(1. 3) xdy - ydx = xy dx ;

these are taken from T- F, namely (L. 1) is in the Example in Sect. 18-4 (but with x and

y interchanged), (l. 2) is in Example 2 in Sect. 18-5, and (l. 3) is in the Example in
Sect. 18-6. The solutions are
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1. The Euler method

2 2
(1. 4) yly +3x)=C,

(1. 5) y:-x2+Cx3,

X x2
(1. 6) ; +—2 =C ,

respectively.

Each of these solutions involves an arbitrary constant, C. In order to determine

it, it is customary to specify for each first order differential equation a value for y to

go with some specified value of x; these are usually called initial conditions or bound-

ary conditions. Thus, let us set the initial conditions

(1. 7) y =1 when x-=1
)

(L. 8) y =3 when x =1,

(1. 9) y =1 when x=2,

respectively. This will make C = 4 in all three cases.

Each first order differential equation can be put in the form

(L. 10) Lt)

For the equations (L. 1), (L. 2), and (l. 3) the f's are given by

(1. 11) fx,y) = -—22&{—5 ,
X 4y

(1. 12) f(x, y) = ;{l'(3y + XZ) ,

(L 13) £, v) = o v +xv°)

respectively. So the problem we are undertaking is, for some specified f, to find a

solution of (L. 10), subject to some initial condition

(. 14) Y=Y, when x = Xq -

Although it is not proved in most calculus texts, it is the case that, under certain

assumptions on f, (1.10) and (1. 14) determine a function g such that

(1. 15) y = g(x)
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is a solution of (1. 10) and (L. 14). If one forms dy/dx from (l. 15) one will get the same

thing that one will get by putting g(x) for y in f(x,y). And, of course Yo = g(xo).

If (1. 10) is given in a calculus text, the author has usually been careful to choose

it so that g can be given in closed form. But in practical problems, g often cannot be

given in closed form. That is the problem with which we must cope.

Sometimes all that is required is an approximation for g(xN), or for several such.

Sometimes it is desired to find out quite a bit about g, and a table of g is called for.

At least, there is no trouble about getting the derivative of g. It is given by (L 10).

We will tell how to construct a table. If all that is required is values of y for a few

selected values of x, one just arranges that these selected values will appear in the

table.

Say we wish a table from xp out to xjpy. We already know the first entry in the

table: yy goes with x5. We choose x.'s with Xg <X} <Xp <... <Xp-] <xXN- We

refer to the corresponding y's as Y0, Y], Y25 YN-1 YN That is

. 16 = .(1. 16) v, g(x)

We set

1. 17 = -
( ) hr xr+l xr

We call h_ the step size. Commonly, one takes a lot of the h/'s equal to each other.
This corresponds to equal spacing of the xr's. Tables are customarily made up this

way. So we often write just h instead of h,.

To get to Y], we proceed as follows. Take

I.1 = - = -(L. 18) Ay Y Yg5 Ax X" Xg

Using Formula 1. 5 from Chap. VI, we have

1. 19 = '(L. 19) Yo TAY =y, +g (xO)AX .

As we said above, there is no problem about getting g'(xo). By (L. 10), itis f(xq, yo).

So we combine (L. 17), (1. 18) and (L 19) to get

1. 20 ~( ) Y| =Y, + hof(x ) .0’ Yo

But now we know y), atleast approximately. So we can just start over again,

getting

1. 21 &( ) v, =y, + hlf(xl’ yl) .

Then, of course,
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1. The Euler method

1. 22 =(L. 22) Yy =Y, H hzf(x;a’yz) :

and in general

(L. 23) Yo=Y, +hflx,v).

If we take the hr's all equal, as is customary, it is no problem to write a program

to carry out the calculation indicated in (l. 23). Start with x_,h, and y, stored at
convenient places. Make up a program that will calculate f{xr, yr) from the stored

values of x, and Y- Then multiply by h, and add to vy. This gives Veg] - Store it

in place of y,. Add h to x.. This gives x Store it in place of x.. Now your
are ready to start over again.

r+l-

If you wish to change the h.'s, it is a little more complicated, but not much. You

calculate f(xr,yr) by an appropriate subroutine, and then proceed to Vi1l and Xpy]

as above. Then you calculate hy;| by another appropriate subroutine, and put it in

place of h,.

This is called the Euler method. It is almost ridiculously simple. However, it is

not all that accurate, unless you take the hr's very small. But if you do that you have

a lot of steps, and hence a long calculation, before you get to x,;. The formula (I 19)

is not highly accurate unless Ax is quite small. That inaccuracy is built into (1. 20),

(I. 21), (1. 22), and every use of (L. 23). So Y] is not exact. In (L 21), another error is

compounded with that of Y]- And so on.

In Thm. 6.1 of Sect. 6. 4 of "Elementary Numerical Analysis,” second edition, by

S. D. Conte and Carl de Boor, McGraw-Hill Book Co., 1972, it is shown that if one
uses a constant h from Xg to xp and if f(x,y) and its partial derivatives with re-

spect to x and y are bounded from x= Xg to x = xp, then the error at x = xyy by

Euler's method is of the order of h. That is, suppose we go through with one value of

h, and then go through again with h half as much. The error the second time shouldbe

about half that of the first time.

Let us try the Euler method for the equation (l. 1), with the initial condition y =1

when x = I. Let us try to find out approximately what y is when x = 2. We know

the solution, in semi closed form, namely (L. 4) with C = 4. So all we have to do is

find a root of the equation

3
(1. 24) vy + 12y -4 =0 .

There is only one root, and it is approximately

(1. 25) 0. 33032 96009 .

(See Prob. 4, 10 of Chap. VIL)

Now let us try the Euler method. Our f(x,y) appears on the right of (L. 11). We

start at x = 1, y = 1. Let us try various h's, to see how they work. Start with h = L
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XV. DIFFERENTIAL EQUATIONS

Then X] = 2,and Y] should approximate the final answer. Putting xg = Yo = hy =1 in

(1. 20) gives y; = 0. This is not very close to (1. 25), but surely you didn't expect to

get a very good answer with such a large h.

Now try h = 0. 5. Then X) = .5 and xp = 2. So vy, should approximate the

final answer. By (L. 20), y; = 0. 5 and by (L. 21), yp = 0. 2. As predicted, the error has

been cut about in half (slightly better, in fact). In Table l. 1 we have listed the values

of yy, and its errors, for h =1, 0.5, 0. 25, and 0. 125. It is clear that the errors are

 

 

 

Table 1. 1

h YN error

1 0 0. 33033

0.5 0.2 0.13033

0. 25 0. 27066 0.05967

0.125 0. 30149 0.02884 
   

successively about half as large each time. Incidentally, if we had recorded the yr's

for h = 0. 125, we would have an approximate table of vy.

Problem 1. 1. Solve (1. 2) by the Euler method subject to the initial condition y =3

when x =1, from x = 1 outto x = 2. Make a table like Table 1. 1 giving ypn and

the error for each of h = 1, 0. 5, 0.25, and 0. 125.

Problem 1. 2. Solve (1. 3) by the Euler method subject to the initial condition y =1

when x = 2, from x = 2 outto x = 3. Make a table like Table 1. 1 giving yN and

the error for each of h =1, 0.5, 0.25, and 0. 125.

Remark. Clearly something is badly wrong. The yN Values in your table con-

firm this, without the necessity of looking at the errors.

To see what is happening, recall that the solution is given by (L 6), with C = 4.

From this we see that y goes to infinity as x approaches «8 = 2. 828. Note that the

derivative of y is given by the right side of (1. 13). Because this contains yz, if vy

gets large then its derivative gets very large, hastening the ascent to infinity.

If one tries to use the Euler method out to x = 3 for (1. 3), one will get some

numbers, as you did, but they mean nothing. The theorem we cited about the error be-

ing of the order of h depended on f(x,y) (and its derivatives)being bounded. But at

X = \/-é, f(x,y) goes to infinity. The numbers you got by the Euler method were hope-

lessly in error as you approached and passed x = \/8.

Problem 1. 3. Solve (1.3) by Euler's method subject to the initial condition y =1

when x = 2, from x = 2 to x = 1. Make a table like Table 1. 1 giving yyN and the

error for each of h = -1, -0. 5, -0. 25, and -0. 125.
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2. Improved Euler method

Actually, the solution of (1. 3) for x > 2 is not all that intractable. Once we
know that y 1is going to infinity, we set

(1. 26) u =

<

Then u will go to zero. The differential equation (1. 3) becomes

(1. 27) -xdu - udx = xdx

or

du u+x) ==
(1. 28) dx X

The initial condition becomes u = 1 when x = 2. With this, which gives C = 4 in
(1. 6), we get from (1. 6) a solution in closed form for u, namely

 (1. 29) u =

After this transformation, solution by the Euler method proceeds very smoothly.

Problem 1. 4. Solve (1. 28 by Euler's method subject to the initial condition u = 1

when x = 2, from x = 2 to x = 3. Make a table like Table 1. 1 giving uy and the

error for each of h =1, 0.5, 0.25, and 0. 125.

Moral. When you run into trouble, as in Prob. 1.2, stop and try some ideas from
calculus.

2. The improved Euler method.
 

 

Though Table 1. 1 shows that the Euler method is behaving nicely, it is clear that

if one wishes to get a quite accurate answer, one would have to take h so small that
one would get into one of those all night calculations. So we will devise an improved

Euler method.

Obviously we can concentrate on getting an improved estimate for Y] - If we suc-

ceed, we then do the same for the rest. The formula (1. 20) gave an estimate of Y] -

We will_stop and improve it before we go on to Y. Temporarily call the estimate from

(1. 20) vy

By (1. 15)

X1
(2. 1) Y, =Y, +f g'(x)dx .

0

Let us approximate the integral by the trapezoidal rule, taking N = 1 in Formula (3. 5)

of Chap. X. This gives
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hy
(2. 2) v 2y, + 5 {9'kg) +9'(x)) }.

But recall that g'(x) is given by f(x,y). So

h

4 {£6cg, vg) + £, v,) } .(2. 3) y =y0+ >

The difficulty is that y; occurs on the right side of this, and we don't yet know y;.

But we know an approximation y; for Yy - Put it in on the right side, giving

h

(2. 4) Y, =Y, +—20 {f(xo,yo) + f(xl,if'l) }.

Using the value of ;1 from (1. 20) gives finally

h0
+—é-{f(x0,y y.+h_f((2. 5) y, 2y 0 Yo tho xo,yo))}~1 )+f&0+h

0 0

As we said, we use this idea at every step, so we have

h
~ I(2. 6) y =y.t 3 {f(xr, yr) + f(xr + hr’yr + hrf(xr’yr))} i

r+l

This is called the improved Euler method, or the modified Euler method, or the Heun
method.

For calculations, it is convenient to write this in the form

1(2. 7) Yoo =Yt 5k k)

where

(2. 8) k, = hrf(xr,yr)

(2. 9) kZ: hr(xr+hr’ Yr+k1) i

For specific functions, f, there are undoubtedly all kinds of short cuts possible
in this calculation. But, for a general function, f, one would expect to calculate f(x,y)

in some subroutine or extra calculation, using x and y as stored in some fixed mem-

ory registers, say in registers one and two. That is, for calculating kl, X, and vy,

would be read from registers one and two, respectively, and for calculating kz, Xr+hr

and yr+k1 would be read from registers one and two, respectively. In addition, h, is
r

stored in register zero.

The typical program then proceeds as follows:
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2. Improved Euler method

  

  

 

 

TN @) [®eLA, 2, (X1, (5103,
calculate f(x, y) using the stored x,y, and put into display,

[RCLO], [STO +1], [x], [STO +2], [STO +3],

calculate f(x, y), using the stored x,y, and put into display,

S [RCLO], [x], [SIO+3], [RCL3], 2, [£], [5T02], [R/5)

AE
@.10) [RcLzl, [X1, 2, [=1, [STO3],

calculate f(x,y), using the stored x,y, and put into display,

[x], [RCLO], [STO+1], [=], [STO +2], [STO + 3],

calculate f(x,y), using the stored x,y, and put into display,

L x], (KL, [=1, (8T0%3, (RCL3, (=1, 2, (=1, (5107,
[R/S].

  

Instructions like [STO +1 refer to register arithmetic. See Sect. 2 of Chap. 0

for details.

The second and fourth lines in Program (2. 10) will customarily be done by calling

a subroutine which has been stored some place. We have not been more specific be-

cause calculators vary so much in their procedures for calling subroutines.

If one wishes to change h, for the next use of (2. 10), one should arrange a suit-

able means to get h..; into register zero at the end of (2.10). Usually h, stays fix-

ed, hy = h, and this detail need not be taken care of.

It is rather difficult to assess the error of the improved Euler method. In Sect. 6.5

of the reference cited in Sect. 1 above, it is stated that if f(x y) and related functions

are well behaved enough, then the 1mproved Euler method is of the order of hé In

other words, halving h should cut the error by about a factor of 4. This is borne out
in Table 2. 1, where we have recorded the results of the improved Euler method for the

 

 

Table 2.1

h yN error

1 0.5 -0. 16967

0.5 0. 36481 -0. 03449

0. 25 0. 33770 -0. 00737

0.125 0. 33201 -0. 00168     
same problem,
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) _2xy
y''= - 2 2

X +y

y(1) = 1

v. = v(@2),

that we did earlier by the Euler method; see Table 1. 1 for a record of these earlier re-

sults.

Those students with nonprogrammable calculators should do only those cases

where Ihl > 0. 25 in the next three problems.

Problem 2. 1. Do Prob 1.1 again, only with the improved Euler method.

Problem 2. 2. Do Prob. 1. 3 again, only with the improved Euler method.

Problem 2. 3. Do Prob. 1.4 again, only with the improved Euler method.

Consider a water tower that consists of a sphere of radius 20 feet on top of a

standpipe of height 40 feet; see Fig. 2. 1. At the bottom of the standpipe is a valve

that can be opened to produce a circular orifice of diameter 6 inches. If there is water

in the tower three fourths the way up in the sphere, and we open the orifice, how long

will it take for enough water to drain out that the water is only halfway up in the sphere?

That is, if H is the distance of the top of the water from the ground, and we
start with H = 70, how long will it take to get the level down to H = 60?

Torricelli's Theorem states that the flow rate through the orifice is

(2. 11) aaNZgH |

where « is a contraction coefficient, a is the area of the orifice, g is the accelera-

tion due to gravity (take it to be 32. 16 feet per secz), and H is the vertical distance

from the orifice up to the top surface of the water., Commonly « is in the neighborhood

of 0. 5. If we denote the total volume of water in the tower by V, we have

dv
(2.12) gt = (0. 5)a\(64. 32) H .

If we take a horizontal slice of the sphere dH thick (see Fig. 2. 1), we will have
approximately

4V =7 ((20)° - (H - 60)%)dH .

Taking the limit as dH goes to zero gives
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2. Improved Euler method

Figure 2.1

 

  S
orifice
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dVvav _ _ 2
aq - m(400 (H 60)7) .(2. 13)

Dividing this into (2. 12) gives

dH _ _ (0. 5)ay(64. 32)H2. 14)
dt (400 - (H - 60)°)

This is a differential equation for H in terms of t. By taking step sizes of

h = At, we can use the improved Euler method to make a table of H as a function of t.
Then we look to see for what value of t we get H = 60. Of course, this is not going

to come out exactly at any entry in the table. But, when we get a value of H > 60 for

one t and a value of H <60 for the next t, we can interpolate, by the methods of
Sect. 3 of Chap. VI, to find a value of t for which approximately H = 60.

The next problem should not be attempted by anyone who does not have a program-

mable calculator.

K

Problem 2. 4. For the situation described above, find out approximately how long

it will take for H to get from 70 feet down to 60 feet with the orifice open.

Practical problems have a way of being rather messy. To get a reasonably accu-

rate value of the time, you will need to use a fair number of steps. Actually, your cal-
culator has features that make this fairly easy. You will be using Program (2. 10), or an

equivalent. Put in two other features: (a) arrange to store not only the H for the

current value of t, but also the previous one; (b) fix it so that the calculator will test
if H <60 after each step - if it is not, it goes on to the next step automatically, but

if it is, it stops. Set up the calculation with a fairly small step size, and leave the

calculator running. It will stop the first time it gets to an H < 60. Then you interpo-

late between that and the previous one.

Don't break your back about trying to get a really accurate value of t. By (2. 11),

the rate of flow depends on the contraction coefficient, «. This is seldom known very
accurately. The value of 0. 5 that we took for « in (2. 12) could easily be off by several

per cent. So, even if we could get an exact solution of (2. 14), this exact solution
could differ by several per cent from the actual time from H = 70 to H = 60. So, get

a reasonably accurate value of t, and relax.

So your calculator can make a fairly easy problem out of this. But what about

your brain, and all this calculus that you have been learning? You are supposed to

stay alert and watch out for ways to make a problem really easy. Like the following.

Turn the equation (2. 14) upside down, getting

dt  m(400 - (H - 60)°)
dH = (0. 5)a\(64. 32) H(2. 15)
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3. A Runge-Kutta method of order 4

Now you have a differential equation for t as a function of H. But notice that t does

not appear on the right side of (2. 15). All you have to do to get t is to integrate. The

time from H = 70 to H = 60 is just

feo _m(@00 -(1-60)9) |
20 (0. 5)a\(64. 32) H ’

which is the same as

 
70 2

(400 - (H - 60)")

(2. 16) 6£ (0. 5)a\/(64. 32) H dH .

You can approximate this easily by the methods of Chap. X, on numerical integration.

Even the reader with a nonprogrammable calculator should find the next problem

very easy.

Problem 2. 5. Approximate (2. 16) by the simplest Simpson rule, namely (2. 7) of

Chap. X.

Moral. If you don't have a fancy calculator, make more use of ideas from calcu-
lus.

The results in Table 2. 1 are a great improvement over those in Table 1. 1. This

was achieved at a price. One has to evaluate the function f(x,y) once per step in the

Euler method. For h = 0. 125 in Table 1. 1, eight function evaluations were required.
By (2. 6) one must evaluate f(x,y) two times per step in the improved Euler method.

For h = 0. 125 in Table 2. 1, sixteen function evaluations were required.

Let us look again at the derivation of (2. 5). We got this by putting a guess for

vy, from (1. 20), on the right side of (2. 3). But this gives us a better guess for vy -

Suppose we put this better guess on the right side of (2. 3). It would cost us another

function evaluation, since we must now calculate f(xl,yl) for the improved Yy - But

it does give a still better guess for Y1 but not a lot better. We would now be up to

24 function evaluations for the problem of Tables 1.1 and 2.1 for h = 0.125. Can we

do better with 24 function evaluations? Indeed we can.

We could take h = 1/12 and make use of (2. 6) twelve times. That would cut the

overall error by more than a half.

If we really wish a great improvement, we could go to a Runge-Kutta method of

order 4. This would cost us 32 function evaluations to get from x =1 to x = 2 with

h =10.125.

3. A Runge-Kutta method of order 4.

There are Runge-Kutta methods of all orders, and many methods for any given
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order. Actually the Euler method is a Runge-Kutta method of order 1 and the improved

Euler method is a Runge-Kutta method of order 2. See Sect. 6. 5 of the reference cited

in Sect. 1 above. There also is given the most popular Runge-Kutta method of order 4,

namely:

(3. 1) Vo, = v gk, 2k, 2k 4 k)

where

(3. 2) k) =t1flxr,y9

(3. 3) k, = hf(xr +'§', Y, +—;'kl)

(3. 4) k, = hf(xr+%,yr +-;-k2)

(3. 5) k4:=hf(xr+t1,yr+-k3).

We have written h for h.. It is quite in order to change the step size, h, for each
step. Obviously, each step requires 4 function evaluations.

As the name "Runge-Kutta method of order 4 " would suggest, this is a method of

the order of h%. In other words, halving h should cut the error by abouta factor of 16.

This is borne out in Table 3.1, where we have recorded the results of the Runge-Kutta

 

 

Table 3.1

h YN error

1 0. 33945 32740 -9.1236 731 x 10>

0.5 0. 33077 53580 -4.4575 71 x 1074

0. 25 0.33036 04541 -3.0853 2 x 107°

0.125 0.33033 15223 -1.9214 x 107°     
method of order 4 for the same problem,

v 2xXy

Y =""%2 2
X 4y

y(1) =1

Yy v(2) ,

248



3. A Runge-Kutta method of order 4

that we did earlier; see Tables 1.1 and 2. 1.

We rounded the intermediate y 's for h = 0. 125 and recorded them in Table 3. 2,

which constitutes a short table of the solution of (1. 1), correct to 5 decimals.

 

 

Table 3. 2

X vy X y

1. 000 1. 00000 1. 625 0.49008

1. 125 0. 87628 1. 750 0. 42691

1. 250 0. 75977 1. 875 0. 37429

1. 375 0. 65556 2. 000 0. 33033

1. 500 0. 56577     
 

In programming the Runge-Kutta method of order 4, we start out with x, and Yy

stored, in registers one and two, say. As to h = hp, it is more convenient here to
store h/2 rather than h, in register zero, say. In addition, we use a register, five

say, to store y, temporarily, and a register, four say, to build up the sum k1 + Zk2 +

2k3 + k4. Note that we intend to multiply by h/2 rather than h every time the factor

h is called for in (3. 2) to (3. 5), so that instead of calculating k;,k,,k,, and k, we
calculate their halves. Hence we would in calculating (3. 1) only divide by 3 rather

than by 6.

Here is a program.

RN (3. ) ,
calculate f(x,y), using the stored x,y, and put into display,

  

[RCLO], [(STOo+1], [x], [STO 4], [STO +2],
 

calculate f(x, y), using the stored x,y, and put into display,

 

RCLO], [x], [STO + 4], [STO + 4], [RCL3], [+, [STO 2],

calculate f(x,y), using the stored x,y, and put into display,

 

[RCL O], [STO+1], [X], 2, [x], [STO+4], [RCL35], [H,[STO 2], 

calculate f(x, y), using the stored x,y, and put into display, 1 RCLO], [X1, [RSL4l, (A, 3, (51, [RSL31, (3], [(5T02], (RSl
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(3.6)  [STO 5],

calculate f(x,y), using the stored x,y, and put into display,

[x], [RCLO], [STO+1], [=], [STO4], [STO +2],

calculate f(x, y), using the stored x,y, and put into display,

[x], [RCLO], [=], [STO+4], [STO+4], [+], [RCL5], [=],

[ST0 ,

calculate f(x,y), using the stored x,y, and put into display,

[x], [RCLO], [8T0+ 11, (X1, 2, (=1, (5TO+4], [H,

[RCL 5], [=], [STO 2],

calculate f(x,y), using the stored x,y, and put into display,

x1, [RcLO1, (A, [ReL4), (=1, =, 3, (4, [RCL3], [=],

AE [STC 2], [R/S] .

After execution of Program (3. 6), you will have X and Ve in registers one

and two, respectively, in place of x, and Y- You will have Y, also in the display,

ready for the first step of Program (3. 6), which stores what is in the display into regis-

ter five.

CAUTION. At the very beginning, when Program (3. 6) has not yet been run, you

have to be sure to get Yo into the display. But this is easily done. Input h/2 and

store it into register zero, then input x, and store it into register one, and finally in-

put yq and store it into register two. Then there is Yo sitting in the display, ready

for you to run Program (3. 6).

You will put the calculation of f(x,y), from values of x and y stored in regis-

ters one and two, respectively, into a subroutine, to be called four times. While you

are at it, you might as well put a little more into the subroutine.

RPN .
In the RPN version of Program (3. 6), tack an extra step onto the

end of the subroutine. Then the subroutine will take care of four [RCL 0]'s that
appear in Program (3. 6) as written above, at the cost of one in the sub-
routine. So we have saved three program steps in the program. Altogether, the

bookkeeping details of Program (3. 6), including the in the subroutine
use up 33 program steps (including 4 subroutine calls not shown), leaving ade-

RPN quate room to program the calculation of f(x, y).
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AE
In the AE version of Program (3. 6), tack two extra steps, , LRCLO] on-

to the end of the subroutine. Then the subroutine will take care of four pairs,

, , that appear in Program (3. 6) as written above, at the cost of a

pair, , in the subroutine. So we have saved six program steps in
the program. Altogether, the bookkeeping details of Program (3. 6), including the

, in the subroutine use up 37 program steps (including 4 subroutine
AE calls not shown), leaving a good deal of room to program the calculation of f(x,y).

If h

to having

is different from hr, a change from having hr/Z stored in register zeror+l
/2 stored there can be done at the end of Program (3. 6).

hr+1

Those students with nonprogrammable calculators should do only those cases

where Ihl > 0. 5 in the next three problems.

Problem 3. 1. Do Prob. 1.1 again, only with the Runge-Kutta method of order 4.

Hint. A fairly economical program for calculating the right side of (1. 12) and put-

ting it into the display is:

   
3, [STO 3], [RCLZ], [STO x 3], [RCL1],  
 

[STO £ 3], [STO + 3], [RCL3] . 

Problem 3. 2. Do Prob. 1. 3 again, only with the Runge-Kutta method of order 4.

Problem 3. 3. Do Prob. 1. 4 again, only with the Runge-Kutta method of order 4.

With the methods you have learned, you can handle a majority of the first order

differential equations you are liable to encounter. However, you have not learned all

the methods there are, even by half. If you have trouble with a differential equation,

as earlier with Prob. 1. 2, try a transformation, or some trick from calculus. If this
fails, consult a professional numerical analyst. There are some differential equations

of such difficulty as to tax a very large, very fast, very expensive computer, even using

quite sophisticated methods. If you have happened onto one of these, you need help.

However, first try all the calculus tricks you can think of.

4. Second order equations.

These are discussed in Sections 18-7, 18-9, and 18-10 of T-F. They can usual-

ly be written in the form

4. 1) d¥ g
2

- gy
de dxX, Y,

For an initial condition, one usually specifies a value for both y and dy/dx for some

specified value of x.

Thus, consider the first two problems at the end of Sect. 18-10 of T- F, namely:
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2
d d

(4. 2) = +a‘§ = x
dx

dZ

(4. 3) —‘Zz—ry:tanx.

dx

ol .
For them, f(x,v, a‘)%) is

dy, = _dy(4. 4) f(x,y, dx) =X

d
(4. 5) f(x,v, E}X() = tanx -y

respectively. Let us set the initial conditions

1 dy _(4. 6) Y =5, Gk T 1 when x=0

_ dy _ _ _(4. 7) y =0, ax - 1 when x=0

respectively. Then the solutions are

2
(4. 8) y=75(x-1)

ooo=1
(4. 9) y = - cos x sinh (tan x)

respectively,

As we did for first order equations, we choose values of x, namely X0y X155 5oy

XN-1 9 XN s where Xq is the x for the initial condition. Corresponding to them, we

try to find approximations for y and dy/dx, namely Y0, Y15Y2,- s YN-1 YN and

Yb,y'l,y'z,,__,yi\]_l,yN.

Analogously to the Euler method, we could use the approximations

(4. 10) Vi gyr+hrf(><:r,yr,yr)

(4.11) y =y +h vy'.
r+l yr ryr

For the equation (4. 2) we have y = 0 = y' at x = 1. If we use (4. 10) and (4. 11), we

get the results shown in Table 4. 1. This seems to confirm that the errors are of the

order of h.

Let us try for an analog of the improved Euler method. For this, we use the two
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Table 4. 1

h YN error yi\T error

1 -0. 5 0.5 0 0

0.5 -0. 25 0. 25 0 0

0.25 -0. 125 0.125 0 0

0.125 -0. 0625 0. 0625 0 0

trapezoidal rule approximations

h

(4. 12) y1l“+1 §y£ +?r {f(xr’yr’yllr) * f(Xr+l’yr+1’ yllr+l)}

hr
(4.13) v =y 5 vy ty)

The difficulty, as before, is that we don't have the values for Y1Ir+1 and Yr41 O put in

the right sides of these. So we use some approximations instead, namely

yr+l = yr + fr’
ith = hf ") .wit fr c (Xr’yr’yr)

b,

Here, §1., is the approximation for yi;] obtained from (4. 10), and ¥r4] is the result
of substituting y;;; for ypy; in (4.13). With these, (4. 12) gives the still better
approximation

h
=y +._£ {yu + 3

r 2 r r+l

A A

yr+1 » Y
o~ L |

(4. 14) eyl Yy T2 {fr * hrf(XHl ’ r+l 2

. . 1 .Finally, we use this value of vi, in (4. 13) to get Yo
1

Using this procedure for (4. 2), we get the results shown in Table 4. 2. This

seems to confirm that the errors are of the order of h?.

 

 

Table 4. 2

h Yy error yi\T error

1 0 0 0 0

0.5 0 0 0 0

0.25 0 0 0 0

0.125 0 0 0 0       
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If Table 4. 2 looks too good to be true, recall that by (4. 8) the solution of (4. 2)

is a polynomial of degree two. So a method of order two could reasonably hit the an-

swers right on the nose, which is exactly what happened. By (4. 8), y' = x - 1. This

is a first degree polynomial, so that a method of order one could hit y' right on the

nose. By Table 4. 1, that is just what happened when we used (4. 10) and (4. 11).

Suppose we solve (4. 3) with the initial conditions (4. 7). What should y and y'

be when x = 1? In (4. 9) we have a formula for y. The function sinh™1 is not given

onall calculators. However, itisnotallthatrecondite. By (10) in Sect. 9-5 of T- F,
 

(4. 15) sinh_lx: ln(x+\/x2+1) i

So

s ! l4sin x
(4. 16) sinh (tan x) = In =) .

cos x

So for x = 1, we have

(4. 17 y =-0. 66251 39172

(4. 18) y' IR 0.03180 42920 .

If you have only a nonprogrammable calculator, omit the case h = 0. 125 in the

next problem.

Problem 4. 1. Solve (4. 3) by means of (4. 13) and (4. 14) subject to the initial con-

dition y = 0 and y'= -1 when x =0, from x= 0 outto x = 1. Make a table like

Table 4. 2 giving yy and yy and their errors for each of h = 1,0.5,0. 25, and 0.125.

In Sect. 18-12, T- F have quite a discussion of vibrations, confining their at-

tention almost exclusively to equations for which the solution can be given in closed

form. However, in Prob. 4 at the end of the section, they take up the case of a pendu-

lum, for which the differential equation is

(4. 19) ——=—%sin@;

here (£ is the length of the pendulum, g is the acceleration due to gravity, and © is

the angle of the pendulum, measured counterclockwise from the vertical line drawn down

from the point of support of the pendulum. Let us consider the case where f = g, re-
ducing (4. 19) to

2

(4. 20) 49 _ _sino.
dt2

Of course, T- F immediately simplify this by assuming that © remains so small

that we may approximate sin O by 6. In this case, if the pendulum reaches its right-
most swing, of amount @O , at time t = 0, the solution of the simplified equation is

254



4. Second order equations

(4. 21) e = 60 cos t .

Let us consider the following problem. Swing the pendulum to the right, clear up

to where it is horizontal (6 = m/2). At time t = 0, let it go. How long will it take to

swing down to a vertical position (6 = 0)?

We have taken & so large that sin © could not be replaced by 9. So the sim-

plified solution (4. 21) is not applicable. If it were, Og would be Tr/Z, and it would

say that © = 0 at t= w/2.

Problem 4. 2. Solve the problem posed above. That is, solve (4. 20) subject to

the initial conditions that 6 = m/2 and d6/dt = 0 at t = 0. Find out approximately
when © = 0 by interpolating in your solution. Take t at step sizes 0.2 out to the

first point where ¢ 1is negative. Record the values of © and d&/dt at each step, and

see how they compare with what would be given by the approximate solution (4. 21) with

Op = m/2.

If you have a nonprogrammable calculator, take your step size to be 0. 4.

If you wish more accuracy, just take a smaller step size. It is not necessary to

record the value of 6 after each step. You can program the calculator to take a step

size of 0. 02, run through 10 steps automatically, and then stop for you to record ©.

You would also set it to stop the first time © is negative, so that you can interpolate.

As this is a second order method, this should give about two more decimals of accuracy

than you got in Prob. 4. 2.

But hold! Are we not supposed to be alert for easier ways to do problems? Can

calculus help us here? Indeed it can. In Sect. 18-7 of T- F, it is suggested that we

define

do

which will give

2

(4. 23) d_z@ =p %

dt

So (4. 20) reduces to

dp _ .
pd@ = sin O .

If we integrate both sides with respect to ©, and use the initial condition that p = 0

when O = m/2, we will get

p = 2 cos @ .

So
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(4. 24) ‘i—f:—\IZCOSG;

we take the negative square root because ¢ is decreasing at first.

Turn (4. 24) upside down, and get

dt -1
do~ 2 cos O

So we can find t by an integration. The value of t when © = 0 is given by

I
0 2

' Tr\/ZCOSQ _0 V2 cos O

2

This is one of the better known examples of a definite integral that cannot be giv-

en in closed form. But Chap. X is supposed to tell us how to get a numerical approxi-

mation anyhow. However, we encounter a difficulty. The methods of Chap. X depend

on the derivatives of the integrand being well behaved. But for (4. 25), the integrand

and all its derivatives go to infinity at & = n/2.

In Sect. 7-9 of T- F, it is suggested that one might try various kinds of substitu-

tions. Try putting

(4. 26) 5= To %
2

Then (4. 25) transforms to

\/1T7 2
¢d ¢(4. 27) V2 |

0 Jsin q)z '

The integrand of (4. 25) went to infinity for O = m/2, which corresponds to ¢ = 0.

What happens to the integrand of (4. 27) at ¢ 0 ? We have

   

  

2

 

. ¢ : ®lim ——=—=——= = lim =N1l=1.

¢—0 Jsin ¢2 ¢—0 sin ¢2

It can also be shown that the integrand for (4. 27) has continuous derivatives for

0 <o <Nn/2 , but this is pretty intricate, so we will skip it

Anyhow, the methods of Chap. X can be used to get a highly accurate value for

(4. 27). Let us settle for something less ambitious.

Problem 4. 3. Approximate (4. 27) by the simplest Simpson rule, namely (2. 7) of

Chap. X.
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In Sect. 18-12 of T- F is considered the case of a vibration where there is friction

proportional to the velocity. Let us consider the case where the vibrating object is in

a viscuous fluid for which the deceleration caused by the fluid is proportional to the

square of the speed. Analogous to the treatment in Sect. 18-12 of T~ F, the differential

equation is

dzx dx 2
m=—"=-kx £ c(_d‘;) ,

dt

where c¢ is positive and one takes a minus sign in front of ¢ when dx/dt is positive,

and a plus sign when dx/dt is negative. To simplify the present discussion, take

m = k = ¢ = 1. Then our differential equation is like (4. l), namely

d-

(4. 28) %:f(t,X,fi),
dt

with

dx 2 dxo pe (dt) when dtZ 0

(4. 29) f(t, X, 'a') =

dx 4 - dxx+(dt) when dt‘so'

Though this looks rather intractable, it is the case that one can easily program a

calculator to calculate f.

Problem 4. 4. Solve the differential equation constituted by (4. 28) and (4. 29),

subject to the initial conditions x = 1 and dx/dt = 0 when t= 0. Find approximate-

ly the time at which the vibrating object completes its first return to positive x, the

time at which dx/dt = 0 just before x begins again to decrease.

Hint. Use (4. 13) and (4. 14) with a time step equal to 0. 5, and interpolate to

approximate the t for which dx/dt = 0.

Can we achieve a significant simplification by appealing to calculus methods?

It appears that in this case we cannot. If we wish to go through several vibrations of

our object, then dx/dt changes sign several times. So we have to keep changing the

sign of

(4
dt

in (4. 29). For calculating f on a calculator, this is no trouble at all. One tests if

dx/dt is >0 or not by a suitable key. If dx/dt> 0, the calculator goes down one

branch of the program. Otherwise, it goes down the other branch. However, if one is

trying to handle (4. 29) mathematically, one has to start over again every time dx/dt
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changes sign. And every time we start over, we have to do a root finding calculation to

determine the value of x at which the sign changes, and then a numerical integration

to find the value of t. And we wind up with a different formula every time, of course.

It is a mess. The procedure in the hint for Prob. 4. 4 can be set up easily. If you wish

high accuracy, you take a small time step, arranging for the calculator to run off quite

a number of steps, and then stop so that you can keep track of the progress of the solu-

tion. And it will then go on to the next stopping place after you press the program key

(or keys).
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PROGRAM APPENDIX
FORTHEHP-33E

Unless specifically stated otherwise, the programs are to be stored as follows.

Store the first instruction in program register 01, the next in program register 02, and

so on consecutively. Then, to run the program, simply push the R/S key, provided

program control is at the beginning of program memory. If it is not, or if you are not

sure, press RTN first.

For ease of understanding, we have prefaced each program step to which there is

a GTO with the number of the program memory register into which it is supposed to go.

Program IL 1. Evaluation of a polynomial by Horner's methoci
 

 

This program is first referred to in Sect. 1 of Chap. II. It uses Horner's method

to evaluate the polynomial, p, defined by

n n-1
(IL 1.1) p(x) = aox +alx + ... +an_1x+arl

at c. The coefficients ag,q),...,a—are to be inputin the course of storing the pro-

gram. Start with ¢ in the display.

IL 1 GTO 05],
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a_, [GsBOZ],

a_, [+], [GTO 00] .

At the end of the program, p(c) will be in the display. Note that the last instruc-

tion of the program returns control to the beginning, SO that if then you wish to calcu-

late p(c™) for some c™ other than c, just input c* and press R/S.

Unless n > 6, this program uses as many steps as, or more steps than, Program

(1. 6) in Chap. II, and the latter might better be used.

Program II 2. Evaluation of a polynomial of seventh degree by Horner's method 
 

(with previously stored coefficients).
 

The coefficients ay,a;,...,a7 are to be stored respectively in registers zero,

one, ..., seven. GStart with c in the display.

IL 2 GTO 05],

0, [, X1, [RIN],

05, (8, (3, [RCLO], [X7,

[RCL1], [GSB0Z],

[RCLZ], [G8BOZ],

[RCL3], [GSBOZ],

[RCL4], [GSBOZ],

[RCL5], [GSBOZ],

[RCL 6], [(GSBOZ),

(RCL 7], [, [GTO00] .

 

 

At the end of the program, p(c) will be in the display.

Suppose you wish to evaluate a fifth degree polynomiai. You can artifically make
a seventh degree polynomial out of it by adding the terms

7 6
O0x + 0x .

Then Program IIL2 will evaluate it. Alternatively, you can store ap, @y, .. ,a5 re-
spectively in registers zero, one,. .., five. Then replace the program line
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[RCL 5], [GSB02]

by

(RCL3], (@, [GTo00],
and omit the final two lines.

If you have a polynomial of degree higher than seven, you can work in a few lines

of Program II. 1 toward the end of Program IIL2.

There are occasions when you might wish to see the successive br's that are

calculated by Horner's method. See Sect. 2 of Chap. II for a discussion of this. To

accomplish this, change the first three lines of either Program IIL 1 or IL 2 to:

GTO 06] ,

., @, ®E, X1, [RIN],

., 0, 01, [Roral, (R7S,

Now the program will stop every time a b, appears in the display. After you have done

whatever you wish with that by, you press R/S, and the program will go on to the next

bre

Program II. 3. Deflation of a seventh degree polynomial.
 

Let the coefficients of the polynomial be stored as for Program IL 2. Start with c

in the display.

IL 3 [t1, (™, ], [RCLO],

At the end, b, has replaced a, for r = 0,1,...,6, and by = p(c) is in the display.

This program is used when one wishes to deflate a polynomial. See Sect. 2 of Chap. IL
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Program II. 4. Evaluation of a seventh degree polynomial and its derivative by
 

Horner's method.

Let the coefficients of the polynomial be stored as for Program IL 2. Start with c

in the display.

L4  [GTO13],

0, 1, E,X, BT &, @D,&4, {/, X, [RKIN],

08, 0, XIm,@, &L, X,

[RCLT], [GSEOZ],

[RCLZ], [GSBOZ],
 

[RCL 3], [GSBO0Z2],

RCLZ], [GSBO0Z],

 

[RCL5], [GSBO0Z],

(RCL 6], [GSBOZ],

[RCL7], [+], [GTO00] .

At the end, p(c) is in the display and p'(c) is in the y position in the stack. If you

press x %y , then p(c) and p'(c) will change places, bringing p'(c) into the dis-

play. Pressing x >4 y again will put them back as they were.

If you have a polynomial of degree less than seven, proceed as explained after

Program II. 2.

Program VIL 1. Bisection.

This is a program to carry out the search for a root by the bisection method. See

Sect. 3 of Chap. VIL. Start with m, and h, respectively in registers zero and one. If

f(mr) = 0, the program stops with zero in the display. Otherwise, it puts m,,; and

hr+l respectively in registers zero and one, and stops with hyy1 in the display. As

hrq4] is never zero, you can tell if you have found a zero, or if you must run the program

again.

 
 

VIL1 2, [STO= 1], [GsB 14],

[x=0], [R/5],
 

(x>0], [GTO 1 ],
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Program VII. 2. Newton's method for polynomial root finding

[RCL1], STO-0], [GTO 00],

(;[RCL1], [STO +0], [GTO 00],

subroutine .

14

The subroutine depends on what function f you are working with. It should be

written to calculate f(mr), taking m, from register zero, and to put f(my) in the display.

Program VII. 2. Newton's method forpolynomial root finding.

This is a program for approximating a zero of a polynomial of degree eight. In the

first place, we must have ag # 0, since otherwise the polynomial is of degree seven or

less, and we proceed as in Sect. 5 of Chap. VII. So we divide the polynomial by ag.

This does not change the location of any zeros of the polynomial, but it makes the lead-

ing coefficient equal to unity. We will take advantage of this.

We first store the coefficients aj, a,,...,ag respectively in registers zero, one,

., seven. We put ap in the display. Then we execute the steps

 
[SToz 0], [STO= 1], [STO= 2], [STO=:3],

[STO=+4], [STO= 5], [STO= 6], [STO=7]

Now, except for the leading coefficient (which is unity), we have stored the coefficients

of the polynomial we got by dividing the original polynomial by ag.

Now we seek a zero by Newton's method (see Sect. 5 of Chap. VII). Let X, be

an approximation to a zero. Put x, into the display. Next, for the polynomial p that

we are now dealing with, we evaluate p and p' both at x, and stop to see if p(x,)

seems near enough to 0 to satisfy us. If not, we calculate x by (5. 3) of Chap. VII,

namely
r+l

p(xr)
 

with Xpyl finally in the display, and stop for inspection. But now x,,; is in the dis-

play, and we can just repeat the process. After each stop, we simply press R/S to

get going again since the program takes care of getting us to the beginning.

viL2  [GTOT3],

., @, ®, X,ED,&,@R,E%, [/, X, [/,

LA, M\, M, E%3,
[RCLO], [GSBO0Z],
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[RCL1], [GSBOZ],

[RCLZ], [GSBOZ],

[RCL3], [GSBO0Z],
 

 

[RCL 4], [GSBO0Z],

 [RCL35], [GSBOZ],

[RCL ], [GSBOZ],

[RCL7], [4], [R/S],

>3, &, =, .

Program XIII. 1. Damped Newton's method for finding simultaneous solutions

equations.

The theory for this is given in Sect. 5 of Chap. XIIL. We seek points (x, y) such

that

glx,y) =0, h(x,y) = 0

are both true. We have a point (Xr’yr) which we hope is "close" to a simultaneous

solution, and wish to find (x yr+l) which is "closer. To monitor the closeness,

we define
r+l1°’

2 2
E(x,y) = (gx,y))” + (h(x,v)" .

So we seek (Xr+l,Yr+1) for which

E(x 1) < E(Xr’yr) .
r+l1’ yr+

Parts of the program have to be done by pressing keys by hand. Also, we have

to keep a written record of E(x,v), E(le, Yrgpp)s- -

(1) We start with xy, vy, -9(xp,vy), —h(x;,y,) respectively stored in registers
zero, seven, three, and six, and with E(x,,y,) in the display.

(2) Write down E(xr,v,).

(3) By hand, calculate gy (xy, yr), gy(xr, vy), hx&p, vy, hy (xy, yy) and store them

respectively in registers one, two, four, and five.

(4) We assume that you have stored Program (3. 7), RPN, of Chap. XIII, with
added to the end, in program registers 01 through 18.
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(5) Press RTN and R/S. This runs Program (3. 7), RPN, of Chap. XIII. This

solves the equations (4. 4) of Chap. XIII, and there are now numbers 6x and 0y re-

spectively in registers three and six. These are proposed corrections for Xy and vy,

so that we should consider taking

X = X + = + .
r+l r 0x, yr+l yr Oy

But first we have to check if this will decrease E. This requires shuffling x, v, 0x,

and 0y around a bit. This is done in the next step.

(6) Execute by hand:

 [RCL O], [STO 1], [RCL3], [STO2], [STO0],

[RCL7], [STO4], [RCLE], [STO 5], [STO 7]  

(7) Assume you have a program stored, commencing in program register 19, that

will calculate -g(x,y), -h(x,y), and E(x,y), putting them respectively in register

three, register six, and the display; the calculation is to be done taking x and y from

registers zero and seven respectively.

(8) Press GTO. 19 and R/S. This will execute the program referred to in (7).

(9) Now branch, depending on the value of E(x,y) in the display.

(a) If it seems small enough, stop, and read the values of x and y from

registers zero and seven respectively.

(b) If it is not small enough, but is smaller than E(x,y,), return to step (1).

(c) 1If it is greater than or equal to E(xy,y,), execute the following by hand:

 

[2], [STO = 2], [STO = 5],

[RCL 2], [4], [STOO],

+

)

Then return to step (8).

265



PROGRAM APPENDIX
FORTHETI-57

Unless specifically stated otherwise, the programs are to be stored as follows.

Store the first instruction in program register 00, the next in program register 01, and

so on consecutively. Then, to run the program, simply push the R/S key, provided

program control is at the beginning of program memory. If it is not, or if you are not

sure, press RST first.

Program II. 1. Evaluation of a polynomial by Horner's method.

This program is first referred to in Sect. 1 of Chap. II. It uses Horner's method

to evaluate the polynomial, p, defined by

(II. 1. 1) p(x):axn+axn_l+...+a X +a
0 1 n-1 n

at c. The coefficients a;,a;,...,a, are to be input in the course of storing the pro-
gram. Start with c¢ in the display.

IL. 1 [STO 7],

[SBR1],

), [SBR],
a,, [5BRT],

O

aO,

2_,, [SBET],

2, =1, [R781, [RST],

(BT, (=], (X1, [RCL7), (], [INVSER] .
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Program IL. 2. Polynomial evaluation

At the end of the program, p(c) will be in the display. Note that the last in-

struction of the program returns control to the beginning, so that if then you wish to

calculate p(c™) for some c™ other than c, just input c* and press R/S.

Unless n = 1, Program (1. 6) in Chap. II uses as many steps as, or more steps

than, Program IL 1, and the latter might better be used.

Program II. 2. Evaluation of a sixth degree poiynomial by Horner's method (using

stored coefficients).

The coefficients ap,a;,...,a, are to be stored respectively in registers zero,
one, ..., six. Start with c¢ in the display

IL 2 ,

: ,

[RCLT], [SBRI],

RCLZ], :

[RCL3], [SBRT],

, [SBR1],

RCL 5], [SBR1],

, [R/8], [RST],

, X1, [RCL7], [1], [INV SER] .1 [
[

-

Lbl1

At the end of the program, p(c) will be in the display.

Suppose you wish to evaluate a fourth degree polynomial. You can artificially

make a sixth degree polynomial out of it by adding the terms 0xt + Ox5

Then Program IL 2 will evaluate it. Alternatively, you can store ag,a;,...,a, re-» S4
spectively in registers zero, one, ..., four. Then replace the program line

[RCL 4], [SBR1] ,

by

[RCL 4], [=]1, (R/S], (RST],

and omit the next two lines, but not the final line.
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If you have a polynomial of degree higher than six, you can work in a few lines of

Program II. 1 toward the end of Program IL 2.

There are occasions when you might wish to see the successive by's that are

calculated by Horner's method. See Sect. 2 of Chap. II for a discussion of this. To

accomplish this, insert [R/S] between [=] and in the last line of either
Program II 1 or Program IL 2. Now the program will stop every time a br appears in

the display. After you have done whatever you wish with that b,, you press R/S, and

the program will go on to the next by.

Program II. 3. Deflation of a sixth degree polynomial.

Let the coefficients of the polynomial be stored as for Program IL 2. Start with c

in the display.

L3 [STO 7], [RCLO],

[SBR1], [RCL1], [=], [STO1],

[SBR1], [RCLZ], [=], [STO 2],

[SBR1], [RCL3], [=], [STO 3],

[SBR1], [RCL 4], [=], [STO 4],

[SBR1], [RCL5], [=], [STO 5],

[SBRT], [RCL&], [=], [R/S], [RST],

At the end, b, has replaced a, for r = 0,1,...,5, and by = p(c) is in the display.

This program is used when one wishes to deflate a polynomial. See Sect. 2 of Chap. IIL

Program II. 4. Evaluation of a fifth degree polynomial and its derivative by

Horner's method.

The coefficients ag,a;,..., ag are to be stored respectively in registers zero,

one,...; five. Start with c in the display.

IL 4 sSTO 6], [xX], [RCLO], [STO0 7], (],

[RCLT], [SBRI],

[RCL 2], [SBR1],
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Program VII. 1. Bisection

[RCL 3], [SBRIJ,

[RCL4], [SBRI],

[RCL 5], [=], [R/§], [RST],

(LeI1], (=], I, X1, XJ, [RCLE], [=],xX%31, [X], [RCLE],

[4), (INVSBR] .
At the end, p(c) is in the display and p'(c) is in register seven. If you press x > t,

then p(c) and p'(c) will change places, bringing p'(c) into the display. Pressing

x ¥¢ t again will put them back as they were.

If you have a polynomial of degree less than five, proceed as explained after

Program IL 2.

Program VII. 1. Bisection.

This is a program to carry out the search for a root by the bisection method. See

Sect. 3 of Chap. VII. Start with m, and h, respectively in registers zero and one,

and with 0 in register seven. If f(mr) = 0, the program stops with zero in the display.

Otherwise, it puts mpy; and hpy; respectively in registers zero and one, and stops

with hr+1 in the display. As hr+l is never zero, you can tell if you have found a

zero, or if you must run the program again.

VIL 1 2, Prd 1], [SBR1],

=t], [R/S],

[(INVx>1t], [GTO 2],

[RCL1], [SUMO], [R/S], [RST],

[LBI2], [RCL1], [INVSUMO0], [R/S], [RST],

, subroutine .

 

 

The subroutine depends on what function f you are working with. It should be

written to calculate f(mp), taking m, from register zero, and to put f(m,) in the dis-
play.

Program VIL. 2. Newton's method for polynomialfi”roq_f;“‘ffii_ndig@

This is a program for approximating a zero of a polynomial of degree six. In the

first place, we must have ap # 0, since otherwise the polynomial is of degree five or
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less, and we proceed as in Sect. 5 of Chap. VIL So we divide the polynomial by ag.

This does not change the location of any zeros of the polynomial, but it makes thelead-

ing coefficient equal to unity. We will take advantage of this.

We first store the coefficients aj,ap,...,a, respectively in registers zero,

one,...,five. We put ag in the display. Then we execute the steps
)

 

NV Pr , OUNVPrd 1], [INV Prd 2],

 

[INV Prd 3], [INV Prd 4], [INV Prd 5]
 

Now, except for the leading coefficient (which is unity), we have stored the coefficients

of the polynomial we got by dividing the original polynomial by ag.

Now we seek a zero by Newton's method (see Sect. 5 of Chap. VII). Let x, be

an approximation to a zero. Put x, into the display. Next, for the polynomial p that

we are now dealing with, we evaluate p and p' both at x, and stop to see if p(xr)

seems near enough to 0 to satisfy us. If not, we calculate Xpi] by (5. 3) of Chap. VIJ,

namely

p(xr)

ep1 T % p'(xr) ’

with Xr4q finally in the display, and stop for inspection. But now Xp41 is in the dis-

play, and we can just repeat the process. After each stop, we simply press R/S to

get going again since the program takes care of getting us to the beginning.

»
,,E‘{_<Il, ,

RCLO0], [SBR1],

VIL2 O O o = O ~

SBR 1],
)

RCLZ],

~

- -

SBR1],

RCL 5

g
| W

-

[

B
8
R

 

[IbI 1], , (1, X1, [x], [RCLE], [=1, X%14, X1,

EM]? 7 _mR



Program XIII. 1. Damped Newton's method

Program XIII 1. Dampg@Newton's method for finding simultaneous solutions of

equations.

The theory for this is given in Sect. 5 of Chap. XIIL We seek points (x, y) such

that

glx,y) =0, hix,y)=0

are both true. We have a point (Xr’ Y;) which we hope is "close" to a simultaneous

solution, and wish to find (x.,;, Yp4) which is "closer. " To monitor the closeness,
we define

2 2
Ex,y) = (9(x,v))” + (h(x,y))

So we seek (xp4] ,yr+1) for which

E(x 1) < E(xr, yr) .
r+1’ yr+

Parts of the program have to be done by pressing keys by hand. Also, we have

to keep a written record of Elxy,v,), E(&ri1,vr+1),- -

(1) We start with x,, v, -9y, vp), -h(x,, yy) respectively stored in registers

zero, seven, three, and six and with E(xr,yr) in the display.

(2) Write down E(x,,v,).

(3) By hand, calculate gy(x.,vy), 9y (%, vy), hx(xr,vr), hy(x, yr) and store them
respectively in registers one, two, four, and five.

(4) We assume that you have stored Program (3.7), AE, of Chap. XIII, with [R/S]
added to the end, in program registers 00 through 20, but with the following modifica-

tions: replace = 2], [STO 3], [STO- 5], [STO- 6], [STO 6], [STO

respectively by Prd 2], Prd 3], SUM 5], SUM 6], Prd 6],

:

(5) Press RST and R/S. This runs modified Program (3. 7), AE, of Chap. XIIL

This solves the equations (4. 4) of Chap. XIII, and there are now numbers 6x and 0y
respectively in registers three and six. These are proposed corrections for x, and y,,

so that we should consider taking

X = X +0x, y = + .
r+l yr Oyr+l

But first we have to check if this will decrease E. This requires shuffling x., vy, 0x,
and Oy around a bit. This is done in the next step.

(6) Execute by hand:
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[RCLO], [STO1], [RCL 3], [STO 2], [SUMO],

[RCL7], [STO4], [RCL6], [STO5], [SUMT7] .

(7) Assume you have a program stored, commencing with and beginning
in any program register after 20, that will calculate -g(x, y), -h(x, y), and E(x,y),

putting them respectively in register three, register six, and the display; the calcula-

tion is to be done taking x and y from registers zero and seven respectively.

(8) Press GTO 1 and R/S. This will execute the program referred to in (7).

(9) Now branch, depending on the value of E(x,y) in the display.

(@) If it seems small enough, stop, and read the values of x and y from

registers zero and seven respectively.

(b) If it is not small enough, but is smaller than E(x., y,), return to step (1).

(c) If it is greater than or equal to E(x;,v,), execute the following by hand:

(2], (INVPrd2], [INVPrd5],

[(RCL1], [#], [RCLZ], [=], [STO0],

[RCL 4], [#], [RCLE], [=], :

Then return to step (8).
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ANSWERS
FORSELECTED PROBLEMS

CHAPTER 1

pp. 13-14.

(@) RPN: x, [0, [x4], [In], [x*¥],[cos], x4, 1, (1],
(@) AE: x,[STO],[x2],[sin],[*],[d,[RCL],[cos],[x4]

)

)

(b) RPN: x,[1],1,[=],[ ™, [, 2, [{]
(b) AE: x,[-],1,[=] ([
(c) Note that f(x) = 1-{x - 1)2. Take it from there.

3 ]

p. 16. 1.940075 by interpolation as against 1. 939635 given by the eX key.

 

 

   
 

 

 

CHAPTER II

p. 22 c p(c) c p(c)

-3 2179 16644 1 100
-2 1 16281 2 10 46529
-1 0| 3 8716 66576
0 1

p. 23. c ple) |[c |plc)

-2 65 |3 |20
-1 12 4 17
0 1 5 |156
1 -4 |6 |a8l
2 -15      

p. 23. p(c) =0 for ¢ =0.3 and c = 3.7, approximately.
p(x) is negative for 0. 3 <x < 3.7, and positive otherwise.
 

 

p. 24. c plc) [c [pl)

-2 181 |1 -5
-1 1 |2 1
0 -1 |3 221       

p. 27-28. (a), -2; (b), 7; (), -1/3; (d), 3; (e), 1.
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28. Limit = n/2.
28. px) = (x-4)(x3+2x+4) +17.
28. px) = (x+ 1)(@8x3 - 22x% 4+ 13x - 2) + 1.

p(x) = (x - 3)(8x3 + 10x% + 21x + 74) + 221.
30. q(x) = 8x% - 6x + 1.

38. [c [pl) p'(c)

0 1 - 4
1 - 4 - 8
2 |-15 -12
3 |-20 8
4 17 76

CHAPTER III

40. 1. 3, -1/3; 2. -1/3, 3; 3. -1,1; 4. 0,0; 5 0,0; 6. ©0; 7. 2,-1/2;
2/3, =3/2.
40. 1. Rectangle; 2. Rectangle; 3. No; 4. No.

40-41. 1. Yes; 2. No; 3. No.

41. 1. 2y =3x;2. y=1; 3. x=1;4. 3x+4y+2=0, 5 x=-2;

X+y=4; 7. y=0;8 x=0;9 x+y-=1.

41. (a), x-2y+6=0; (b), 2/5, 16/5; (c), 6/N5 =2. 6832 81574.
42, AXx N4+Ax-V4)/Ax Ax N4+Ax-\4)/Ax

1 0.23606 79770 -1 0.26794 91920
0.1 0.24845 67300 -0.1 0.25158 23400
0.01 0. 24984 39000 -0.01 0. 25015 64000
0. 001 0. 24998 40000 -0.001 0. 25001 60000
0. 0001 0. 25000 00000 -0.0001 0. 25000 00000
0.00001 0.25000 00000 -0.00001 0. 25000 00000

43, AX (sin(."3l+AX)-sin(_'g.))/Ax AXx (sin(%+Ax)-sin(%))/Ax

1 0. 02262 56114 -1 0. 81884 53737
0.1 0.45590 18850 -0. 1 0. 54243 22810
0.01 0. 49566 15700 -0. 01 0.50432 17600
0. 001 0. 49956 69000 -0. 001 0. 50043 29000
0. 0001 0.49995 70000 -0.0001 0. 50004 30000
0. 00001 0.49999 00000 -0. 00001 0. 50001 00000

43. Ax (f(1+Ax)-f (1))/Ax Ax (f(1+Aax)-£(1)/Ax

0.1 0.23809 52380 -0.1 0.26315 78950
0.01 0.24875 62200 -0.01 0.25125 62800
0.001 0.24987 51000 -0.001 0.25012 51000
0. 0001 0.24998 80000 -0.0001 0.25001 30000
0.00001 0.25000 00000 -0.00001 0. 25000 00000

43, A=0.05 B=1/3.35=0.29850 74627.

47 (x + Ax}z - x2 _
(a)

AX
2X + AX .

4
4— .

(b) Letax)7-x = 4x3 + 6x2Ax + 4x(Ax)2 + (Ax)3 i
AxX
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1) g(x+Ax)h (x+Ax)- g (x)h(x) - g (x+Ax)h1X+A§x>_hgxz+h(x) g (x+Ax)-g(x) .

 

AX AX

(c2) glhx+ax))-gh(x)) glhx+ax)-g(h(x))  h(x+Ax) -h(x)
Ax - h(x+Ax) -h (x) AX ’

CHAPTER IV

pp. 49-50. 2/3 =0. 66666 66667; In 2 =0.69314 71806; w =3.1415 92654;

N2 =1.4142 13562; sin 1 =0.84147 09848; 249 =5.6294 99534 x 1014;
tan (1. 5612 91773) =105.20 95563 .
p. 50. = 0. 234951 will do.
p. 58. Its derivative is n(f(x))n“lf'(x), which is liable to be large if n is large.

p. 58. We get

 

w/2 21,5707 96326 79490
1. 5612 91773

d = 0.0095 04553 79490

By calculator 1

tan (0. 00 95045 53795

which agrees to 10 digits with the correct answer.
p. 58. We get

=~ 105. 20 95563

 

 

m/2 = 1. 5707 96326 79490
1. 1042 = 1. 5612 91772 85989

D = 0.0095 04553 93501

By calculator

1

tan (0.00 95045 53935 ~ 0320 95548,
which is a 10-digit rounded approximation to the right side of (1. 8) of Chap. IV.

p. 60,

p. 60, Are to be compared respectively with accurate answers that you can get

p. 60, by your answers to 3.1, p. 64, 3.2, p. 64, 3.4, p. 65, and 3. 8,p. 66.
p. 60-61,

p. 60. The calculator gives

In (3. 1462) + 2 = 3. 1461 95375.

If this is subtracted from x = 3. 1462, the first six digits are cancelled out. The

answer cannot be accurate to more than 4 digits on a 10 digit calculator.

p. 62. On the HP-33E, we get _
p_.(-10) = 4. 5255 00000 x 10
50 10

5

However, rounded to six significant digits, we have e "~ =4, 5399 9 X 1072 .
So we got only the first two digits correct.

p. 62. Because you did not use exceptionally accurate values for w/2 and

1. 10442 , the cancellation will cause you to get an inaccurate value for D, and

everything is inaccurate from there on.

p. 64. Vx + Ax - \Jx ny+Ax+5lx _ 1

AX VX +Ax +VUx WX + Ax +4x

p. 64. By the hint, we get
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1

Ax 2 1 1 2
3 3 3

(x + Ax) 3 + (x+Ax)” (Ax)” + (Ax)

3, p. 64. 683.00 14641 and 1.4641 25705 x 1073 .
sin(x+ Ax)-sin(x-Ax) _ (cos x)(sin Ax)
 

 

.4, p. 65. >Ax Ax

. 5 <08 (@+Ax) - cos(@-Ax) (sin o) (sin Ax)
r 2y P B 2Ax - AX '
.6, p. 65. 1 - cos x = (sinzx)/(l + cos X).
.7, p. 65. We get on the HP-33E, pg3(10) =22026. 465 82. Taking the reciprocal

gives e10 =45399 92971 x 10~5. True value, rounded to 10 digits, is
4. 5399 92976 x 1075 .

.8, p. 66. For small h, (3. 10) of Chap IV gives sinh h =h cosh h as a good

approximation.

.9, p. 70. We get

x4- 8x3 + le‘2 +16x + 4

-6
2. 3.7975x-0. 898875)+6. 25 X 10

Putting x = 40/9 in this gives 0.000 6096¢ 32588.
.10, p. 70. Instead of (3.19) and (3. 20), you get

3
= (x - 4.45)(x” - 3. 55%

h% +k% 4 1.4142h + 1. 4142k - 1. 918 x 10°

2hk 4 1.4142h + 1. 4142k — 1. 918 X 10>

CHEAPTER V

. 3, p. 79. See figure below.

 

 

  
 

o —
5

< 
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.4, p. 79. Using (2. 3), 24, -24, and -8 Using (2.4), 32, -16, and 0.
1, p. 80. p'(2) =-103.28 68175 With h = 1071 (2.2) gives -120. 61 11480;

error =17. 32. With h = 10"2, (2. 2) gives -103.43 61210; error = 0. 1493.

With h = 1073, (2.2) gives -103.28 83150; error =0. 0014975.

CHAPTER VI

1, p. 92. Let f(x) = Inx. Then f"(x) = —l/xz. For 2 < x < 3, the largest this

can be in absolute value is 1/4. With arguments 0. 01 apart, (xl—xz)‘2 = 10~4,

So the maximum error would be (1/4)(1/8)10™% = 0. 00000 3125. So linear inter-
polation would give about 5-digit accuracy.

CHAPTER VII

1, p.102. 3.4 <x <3.5.
3, p. 103. Two zeros.
1, p.108. c =0.15859.
2, p.108-109. c =0.26795.
2, p.118. c =4. 5052 41496.

6, p. 119. c =-0.25992 10499,
7, pp. 119-220. 8x4 - 14x3 - 9x2 + 11x -1 = 8(x—c1)(x—cz)(x—c3) (x-c4), where

Cl =-0.97682 35894, C2 =(0.10036 33318, C3 =(0. 64274 66710,

Cy ~1.9837 13586.

. 8, p. 120. x4 - 3x3-4x-1 = (x—cl) (x—cz) (x% + ax + b), where

c; =-0.23895 21590, c, =3.3767 69470, a =0.13781 73110,

b= 1.2393 31900 .
.9, p.120. x3-3x%+x-1= (x-c)(x®+ax+b), where c =2.7692 92354,

a =-0.32070 76460, b =3.6110 30799.

.10, p. 120. x3 +12x - 4 = (x-c)(x2+ax + b) where ¢ =0. 33032 96009,

a =0.33032 96009, b= 12. 109 11765.

3, p. 122, xp41 = {2xp + A/x2}/3.
1, p.125. According to the theory in Sect. 7-6 of T-F, if p is a polynomial of

degree less than 4, then

f p(x)dx
(x-cl)(x-cz) (x-c.) (x-c4)

= Al ln(x—cl) +AZ ln(x—cz) +A3 ln(x—c3) +A4 In (x—c4) +C,

if the c; are all different. Differentiate the above, and multiply both sides of
the equation by

2)(x-c3) (X-c4) i

Set x = c1. This will give a formula for A; in terms of p(c;) and the c;.
Write a program to evaluate this formula. By rearranging the cj's, the same pro-

gram will give the values of Az, A3, and A4. Indeed, you might as well write the

program to rearrange the ci's, so that if you run the program four times, you will

get Ay, Ay, Ag, A4 in order. Check the program by taking cj, C7,C3,Cy4 respect-

ively to be 1,2,3,4 for which the values of A}, A5, A3, A4 can easily be got. Now

(x-cl)(x-c
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use the values for the cj's from Prob. 5.7, pp. 119-120, and get

A} =-0.18025 69377, A, =-0.99086 32788, Ay =1.0438 73611,
A4 ~(, 12724 66072.

p. 125. According to the theory in Sect. 7-6 of T-F, if p is a polynomial of de-

gree less than 4, then

_plx)dx
2

(x—cl)(x—cz)(x +ax +b)

_ _ _ 2 -1 a= Al In(x cl)+A21n (x cl)+A3ln (x +ax+b)+A4 tan d(x + 2) +C,

where

2d = ———

\]4b—a2 ’

2
if c; # cy and 4b - a” > 0. Differentiate the above, and multiply both sides of

the equation by >

(x—cl)(x—cz)(x +ax +b) .

Call this the auxiliary equation. In it, put x = cj. This will give a formula for

Al . Write a program to evaluate this formula. Interchange cj and Co, and the

same program will give A;. Now that you know A]; and A;, set x = -a/2 in

the auxiliary equation, and get a formula for A4. Finally take x to be any fourth

number in the auxiliary equation, and get a formula for Aj (involving Al, AZ and

A4, but you know them). Check the program by using some "easy" values for C1,

c2, 8, and b. Now use the values of cj,cp, a, and b from Prob. 5.8, p. 120,

A Oet A = -0.21889 22344, A, = 0.0 21100 48291
A3 0.0 98895 87493, A4= -0. 0 98933 38085 .

p. 127. ePX is a solution for (p ~-0.23895 21590 or p =3.3767 69470. Also
for any values of A and B, e(~0.06890 86555x){A cos(l.1111 18130)x +
Bsin(l.1111 18130)x} is a solution.

CHAPTER VIII

 

 

       

p. 136. 2m =6.2831 85308.

p. 140.
b 140. } See answer for 3.2, p. 145.

p. 145 For x = In x + 2, we get

r X < r X x*
r r

1 1. 0000 00000 7 3. 1410 17985 3. 1462 5535¢

2 2. 0000 00000 8 3. 1445 4694¢ 3. 1461 994852

3 12.6931 47181 4,2588 91358 9 3. 1456 69824 3.14¢1 93852

4 2. 9907 10466 3.2145 41389 10 3. 1460 26848 3. 1461 93285

5 3.0955 10973 3.1524 88499 11 3. 1461 40339 3.14¢€1 93228

6 3.1299 52989 3.1468 13107 12 3. 1461 76412 3. 1461 93220
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3.2, p. 145, For x = eX~2 we get

r X, X r X, x"

1 1.00000 00000 6 |0.15874 48861 0.15859 38047
2 |0.36787 94412 7 [0.15861 82172 0.15859 43261

3 |0.19551 45341 0.13089 39882 8 |0.15859 81264 0.15859 43391

4 |0.16455 91061 0.15778 27675 9 |0.15859 49401 0. 15859 43395

5 10.15954 31446 0.15857 31991 10 0. 15859 44348 0.15859 43396

3.3, p. 1486, Taking four triples in succession, we get: 15. 30, 15. 30, 15. 30, 15. 30.

CHAPTER IX

1.2, p. 151. Iocal minimum at x = 1, function value = 0; local minimum at x = 10,
function value = (In 10)/10 & (, 23025 85093; absolute maximum at x = e, func-
tion value = 1/e =0. 36787 94412.

 

 

  

 

    
 

(i) See table:

(iii) From table, K =0. 0313

(i) Smaller, since f"(£€) >0 for f(x) =

(iv) N = 80; (v)

1/x and £ >0;
N = 25020.

1.3, p. 152. Maximum area for 6 = cos™! {{/33 - 1)/8}=0.93592 94556r

~ 53, 624 807330,

Maximum area = 3. 5203 45186.

CHAPTER X

2.2, p. 167. 1819.1 459 by the antiderivative. 1819.1 161 by Simpson's rule.

3.1, p._170. , :
N M (h) error (h)/h™ M(h)+ correction error (h) /h

I 0.66666 66667 0.026480 0.69791 66667 4.7695 x 10~3
2 0. 68571 42855 0. 029731 0. 69352 67855 6. 0737 X 10_3

4 0.69121 98913 0.030836 0.69317 30163 6.6139 x 10~3
8 0. 69266 05541 0.031144 0. 69314 88354 6. 7781 X 10~3

16 0. 69314 71806 0.031223 0. 69314 72847 6. 8223 X 10_3

 

 

       

3.2, p. 170. Max |f"(¢)] = 2, N = 130(40825) for 5 (10) place accuracy.
3.3, p. 171. See table in answer for problem 3.1, p. 170.
3.4, p. 173.

N T (h) error (h) /h2 T (h)+ correction error (h) /h4

1 |0.75 -5. 6852 X 1072 0. 6875 5. 6472 X 1073
2 |0.70833 33335 -6.0745 x 1072 0.69270 83335 7.0216 x 10~3
4 [0.69702 38095 -6.2026 x 10”2 0.69311 75595 7. 5830 x 10~3
8 |0.69412 18503 -6.2379 x 10 0. 69314 52878 7.7529 x 10”3
16 0. 69339 12019 -6.2469 x 1072 0.69314 70613 7.8184 X 10”3

() See table; (ii) larger, since f"(£) >0 for f(x) = 1/x and any £ >0;

(iii) See table, K =-0.0625; (iv) N = 112; (v) N = 35356.
3.5, p. 174, See table for answer to problem 3. 4, p.
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4.1, p. 176-177. N S(h) error (h) /h%
1 0. 69444 44443 -1.2972 x 10~3
2 0.69325 39683 -1.7086 x 10”3
4 0. 69315 45310 -1.8817 x 10~3
8 0. 69314 76527 -1.9337 X 10~
16 0.69314 72103 -1.9464 x 10~3     

(i) Calculated from answersto 3.1, p. 170, and 3. 4, p. 173, see table; (ii) larger,
since fiV(£) >0 for f(x) = 1/x and any £ > 0; (iii) see table, K =-0. 00195;
(iv) M = 10; (v) M = 160.

4.2, p. 177. max [fiv(£)| = 24; M = 14(228) for 5(10) place accuracy.

4.3, p. 177. Since fiv =0 in case f is a polynomial of degree < 3, hence (4. 3)

then vanishes.

4.4, p. 177. M(5) = 21.875, T(5) = -87.5, so S(2.5) = =14 T, .

CHAPTER XI

1.5, p. 182. Ground speed 345.01 28324 knots 172.87 908118° West from North.

1. 6, p. 183.

(@) (0.70710 67812, -0.70710 67812).
(b) (-0.70710 67812, -3.5355 33905).
(c) (-6.3639 61035, 7. 7781 74588).
(d) (-2.8284 27124, -1.4142 13563).

3.5, p. 189. tan~l(5/3) =59.036 24347°
tan"l 5 =78690 067530
tan~1(10/1) = 42. 273 68901°
Sum ~180.00 00000° .

3.8, p. 190. 5 R
4.4, p. 194 F= 1067_55_=133k
4.7, p. 196, A= cosTlN2A19)=71.068 17682

B = cos'1(15/19) =37, 863 64636
C= cos”1N2 A19)=71.068 17682

Sum =180.00 00000 .
, p. 196, cos"l(1A/3)=54.735 61033

9, p. 196. cosTlW6/3) =35 264 38968_
, b. 198. Since F is in the plane of A and B 1t must be perpendicular toA_><,B

But it was also required tobeperpendlcular to B. However, the vector (AX B)XE

is perpendlcular to ooth AX B and B.

o
1

e
—

o

5.2, p. 200. -i -;3)_;# 4&.

5.3, p. 200. c(2i+j+k), with ¢ a scalar.
5.4, p. 200. 246 =4.8989 79486.

5.5, p. 200. \6/2 =1.2247 44872.

5.6, p. 200. 11107 =1.0634 10138.
5.7, p. 200. 7x -5y -4z = 6.

5.8, pp. 200-201. 17x - 26y + 11z = -40.

6.1, p. 201. 2/3.

280



4
2.3, p. 211. 2L cubic feet.

ANSWERS

CHAPTER XII

Approximately 1.9583 33333 .

 

 

 
 

 

 

      
 

) 24

2. 4, 211. 2.0002 8935 cubic feet.

CHAPTER XIII

1.1, p. 215 High: (2/3, 4/3, 0).
1.2, p. 215. low: (0,0,0); high: (t1, +1,V2). The partial derivatives do not exist

at (0,0). They exist but are not zero at (£1,+1).
2.2, p. 219. 0.2631 06796.
2.3, p. 219. The average of the yn's.

2.4, p. 219. y = 0.123x + 3. 580.
3.1, p. 221. (a) x=1.2, y=0.9.

(b) x = 0. 4, vy = 1. 3. There is an error message because a = 0, and

so division by aj; is not permitted. Interchange the two equations,

and all goes well.

(c) There is no solution. There is an error message because al, = 0.

There is no way to get out of this, because it is not possible to get

a solution of the pair of equations. If you multiply the second equa-

tion by 3, you would be trying to get 30x + 60y equal to both 78

and 90.

4.1, p. 224. (a) Critical point is (3. 6). The early entries in the tables for (b) and (c)
have been rounded, to save writing

(b)
r Xy Yy g (xr, vr) h(xr, yr)

0 0.5 0 -0. 5 -1

1 0. 66667 -0. 25 -0. 064815 0. 52083
2 0. 65186 -0.17811 -0.018930 0.024017

3 0.65434 88 -0.17372 74 ~2.85x10 ° -2.95 x 107°
4 0.65435 52613 7| =0.17373 07240 6 2 X 10:}‘8 2 x 10~10
5 0. 65435 52613 3 -0, 17373 07240 4 1 X 10 Q

(c)

! Xr Yr g (xr, vy) h(xy, yr)

0 7 19 -73 18

1 7.1362 19. 047 1. 5593 -0. 04421

2 7.1291 548 19. 028 596 2.9384 x 1073 -4.25x 1072
3 7.1291 40940 5 19.028 56003 6 -2 x 10”7 0

5.1, p. 229. Need two cut downs at first step. After that, convergence in 4 steps to

(3. 7568 34008, 2.7798 57510) with E= 10718,
5.2, p. 229.

convergence in 4 steps to (1. 3734 78353, -1. 5249 64836), with E = 10718,

2.1
)

p. 232.

Starting, e.g., with (1, -1), need one cut down at first step.

From (2. 5), |error(N)| =

CHAPTER XIV

(2. 6) at x =1 gives 0.94608 27665.
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2.2, p. 232. Substitute y2 for x in the series
sin x = x - x3/3" +x5/5' —X7/7 +. (—l)nxzn"l/(Zrl—l)f +Rn(x),

with IRn(x)l< |x|‘n+l/(2n+l)' Then 1ntegrate.
BI4N+7

if <\N .2.3, p. 232 (4N+7)«2N+3)” if |x| <\

4 4 3
(=x) 1 f-x } 1 f—x ) X

2.4, p. 233. (((15 =6 +——) +-—) +1)—.

2.5, p. 233. From 2. 3, the expression in 2. 4, p. 233, evaluated at x = 1,

accurate enough. Its value is 0. 31026 81578 in error by 1. 439 X 10

CHAPTER XV

1.2, p. 240. h YN error

1 2. 5 -8.5

0.5 3. 63 -9. 63
0. 25 6. 053 -12. 053

0.125 12. 744 -18. 744

2. 4, p.246. At = 400 At = 200

t H t H

0 70 0 70

400 67.43 200 68. 67

800 65. 16 400 67. 44

1200 63. 06 600 66. 28

1600 6l. 07 800 65.17

2000 59.13 1000 64.11

1200 63.08

1400 62.07

1600 61.08

1800 60. 10989

2000 59. 14377

Interpolation gives Interpolation gives
       
 

 

t =1821 t =1811.4

when H = 60 when H = 60

2.4, p. 246, continued.

At = 100
t H T H
 

100 69. 32 1100 63. 59

200 68. 67 1200 63. 08

300 68. 04 1300 62. 58

400 6€7. 44 1400 62.08

500 €6. 85 1500 61. 58

600 66. 28 1600 61.09

700 65. 72 1700 60. 60

800 65. 17 1800 60. 11359

900 64. 64 1900 59. 62989

1000 64. 11 2000 59. 14772
Interpolation gives t=1823. 48 when H= 60
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2.5, p. 247. 1819.1 161.
3.1, p. 251. h YN error

1 26. 17 1. 83

0.5 27. 696 0. 304

0. 25 27.9678 0.0322

0.125 27.99738 0.00272

4.1, p. 254. h YN error YN error
 

-0. 36065 -0. 30187 0.27870 -0.24690

-0. 60260 -0. 05992 0. 06646 -0. 03465

5 -0. 64956 -0. 01295 0. 03737 -0. 00556

25 -0. 65952 -0. 00299 0. 03278 -0. 00098     -
N

U
1
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Acceleration
of convergence, 141-8
vector, 183

Accuracy, 10
AE, 1
Aitken's 6% process, 141-8
Algorithm, 20

Angle

between vectors, 187-96
of inclination, 188

Antiderivative, 155

Arccosine function, 181
Arcsine function, 181

Arctangent function, 187

Area of a triangle, 190
in space, 197-8

Bisection method, 103-9
program for, 262-3, 269

Calculator(s), 1-8
keys, 290

Cancellation (of significant digits), 44-7, 59-62,134-6
in numerical differentiation, 72-75
near a zero, 107,110

ways to reduce, 62-70
Centered difference quotient, 75

Chain rule, 47

Characteristic equation, 126
Closed form, 155,236
Continuity of a function, 100,103,155,205
Contour line, 203-7
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Convergence, 128-154

acceleration, 141-8
of fixed point iteration, 141
of Newton's method, 115-6

Cosine function, 65, 146-7, 231
Coordinates,

rotation of, 182

polar, 182
Corrected

midpoint rule, 170-1

trapezoidal rule, 174
Cramer's rule, 220
Critical point of a function, 207,212-5
Cross product of vectors, 196-201

Damped Newton's method, 227-9
Definite integral, 155
Deflation of a polynomial, 29-30

program for, 261, 268
Derivative, 39, 46-7, 65, 67, 71-80,134

directional, 209, 228
of a polynomial, 30-8

program for, 262, 268
of a power, 58, 74-5

Determinant, 197
Difference quotient, 39-47, 60, 71-80, 86

centered, 75
Differentiable, 83
Differential, 81, 84

Difference equation, 14, 235-58
linear, 125-7

homogeneous, 125

second order, 251-8

Differentiation, numerical, 71-80

Directional derivative, 209, 228
Direction

angle of a vector, 180
of a vector, 179, 193

Dot product, 190, 193
Double precision, 58

Elimination (for solving linear systems), 220

Error (s),

absolute, 10

checking for, 8-9
in midpoint rule, 168
in Newton's method, 116
in numerical differentiation, 75-7

in rectangle rule, 161
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in Simpson's rule, 176
in trapezoidal rule, 173

magnification by cancellation, 59

propagation, 55

relative, 10
roundoff, 48-58
systematic, 55

Euler's method, 236-41
improved, 241-7

program for, 243

Exponential function, 15-6, 61-2, 65, 78, 230-1

Fixed point iteration, 137-42, 148

Function

approximation, 12

definition, 11-2
keys (on a calculator), 1, 12-3, 53, 290
of two variables, 202-9, 212-5
polynomial, 17-38
rational, 122-4, 129, 131-3
tabulated, 14-6

Fundamental theorem of calculus, 155

Gradient, 213

Heun method, 242

hierarchical, 4

Homogeneous linear differential equation, 125

Horner's method, 17-22, 24-5, 30, 68-70, 230
Hyperbolic sine, 66-7

inverse, 254

Initial condition, 237

Integration, 155-78
by partial fractions, 122-5

by series, 231-4
Intermediate value theorem (for a continuous function), 99,205
Interpolation,

in a table, 16, 90
inverse, 96-7, 205
linear, 16, 88-97

July 4, 1776, 12, 16

Least squares approximation (by a straight line), 216-9

Length of a vector, 179, 192
Level curve, 203-7

Limit, 128-48
Line; see Straight line
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Linear differential equation, 125-7
Linear system of two equations in two unknowns, 220-1

program for, 221

Logarithm function, 79,92,97,100, 115,140
Maxima and minima, 149-54

of a function of two variables, 212-29
Mean value theorem, 76,77,84,116,141
Midpoint rule, 167-71

Newton's method, 112-22
damped, 227-9

program for, 264,271

for polynomial equations, 118-20

program for, 263, 269
for square roots, 120-2

for two equations in two unknowns, 221-9
Noise level (in calculated function values), 55,101,109-12,117,118,226

Order of convergence, 243,248

Partial fractions, 122
Pendulum, 254-6
Perpendicular, 194,200
Polar coordinates, 182
Polynomial (s)

evaluation, 17-22

program for, 21,259-61,266-8
reducing cancellation in, 68-71

evaluation of derivative, 30-8
program for, 31-5,262,267

maxima and minima, 152-4
zeros, 23, 36,118-20

program for, 263, 269

Precision, 9-10
Program (for a calculator), 2

Projection of a vector

onto another, 191,194
onto a plane, 198

Quadratic formula, 62-4

Reciprocal function, 45-6,94
Rectangle rule, 161
Recursive, 20

Register, 5
arithmetic, 5

Riemann sum, 157

Root finding, 98-127, 137-41

Rounding, 49
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Roundoff (error), 48-62

RPN, 1
Runge-Kutta method, 247-251

program for, 249-50

Saddle point, 207, 214,215

Scalar product, 190,193

Secant, 41-3, 81, 88, 142
Section of a function, 202
Sensitivity, 56,209
Sequence, convergent, 113-4,137

Series, 230-4
binomial, 233

for (sin x)/x, 232

x 2
for f siny dy, 232

X —yz

for f e dy, 233

for fxxll +y? dy, 234

Significant digits, 9-10
Simpson's rule, 174-8, 247
Sine function, 48, 60, 65,81,82,92,95,127,129
Slope

of a line, 8, 39-47
of the secant, 88
of the tangent, 83

Square root function, 60,95,120-2
Straight line approximation,

least squares, 216-9
local, 81-97

Synthetic division, 24-9

Tangent

function, 54,56, 58,101
line, 81-3,112-3
plane, 209-11, 222

Taylor formula with remainder, 76,77,116
Tetrahedron, volume of, 201

Trapezoidal rule, 171-4, 241,253

Triangle, area of, 190
Truncating, 49

Unit vector, 179

Velocity vector, 183

Vector(s), 179-201
acceleration, 183

angle between, 187-96
cross product, 196-201
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direction of, 179,193
dot product, 190,193
length (magnitude), 179,192
product, 196-201
unit, 179
velocity, 183

Vibration, 257-8
Vieta's formula for 2/w, 139
Volume of a tetrahedron, 201

Zero of a function, 23,99
finding a, see rootfinding, inverse interpolation
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List of calculator keys, real and symbolic, used in this text.
— 

arithmetic keys

, =], ,[£] : add, subtract, multiply, divide

exponentiation key

%]

function keys

replace the number x in the display by the number f(x). The function f is usually

written on the key.

= :f(x) = 0

HS] = [+/-] :fx) = - x

, x4] = NN, ¥X] = [NV4], [€¥] = [[NVInx],

[(Inx] = [(INVe*], [SIN], [COS], [TAN], [SIN-1]= [INVSIN],

[Cos™1] = [INvCcos), [TAN-!] = TAN]

INT] : f(x) = integer part of x

register keys

c : store the quantity ¢ somewhere

c : recall the quantity ¢ from wherever it was stored

: store the content of the display in register n

RCL n| : recall the content of register n into the display

[STO + n],[STO -n], [STO X n],[STO+ n] : with x in the display and N in

register n, store N+x, N-x, NXx, N/x inregister n.

control keys

: stop or start a program

specific RPN keys

[T] : enter into stack (pushing up the stack)
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[R]] : roll down stack

[x >( il : interchange contents of x-register and y-register

specific AE keys

[0, [OJ: parentheses; the closing parenthesis key causes evaluation of expression
finished by it.

[=] : causes evaluation of all pending expressions.
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