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PREFACE

The present text has two aims. The first aim is to use the calculator to carry out
numerical experiments which illuminate points made in the calculus course. This should
give the reader a better understanding of the calculus, and also a better realization of
how calculus can be applied to real life problems. The second aim is to show how the
techniques of calculus can be used to make the reader more efficient and more proficient
in the use of the calculator, and in so doing to illustrate the wide variety of problems in
which the calculator can be used to advantage.

Although the present text can be used as a supplement to the teaching of calculus
with any textbook, it is particularly coordinated with "Calculus and Analytic Geometry,
Fifth Edition", by George B. Thomas, Jr., and Ross L Finney. References to the latter
text are frequent. "Thomas-Finney" is condensed to "T- F", and references will appear
in such forms as: "The following are Problems 1-8 at the end of Sect. 1-4 of T-F,... ,"
or "T-F say... "

References in the present text to other places in the present text will lack any
reference to a text, as: "see Sect. 2 of Chap. IIL "

The various chapters of this text are concerned with particular calculator topics.
Any single chapter of the text is a coherent, connected whole. If all the reader desires
is to learn about that topic, he or she could read the chapter straight through.

However, as indicated by the title, this text is intended to be a supplement to
the calculus rather than an object of study in itself. Sometimes there is a good match
between this text and the calculus text. Thus the student should read our Chap. IX,
"Maxima and minima of a function of one variable, " when this subject is being consid-
ered in the calculus course. And, much later, the student should read our Chap. XIII,
"Maxima and minima of a function of several variables," when this subject is being
considered in the calculus course.

But consider Chap. VII, "Root finding. " Off and on, throughout the entire calcu-
lus course, one has to find a root from time to time. The first time will be early in the



course. There the student should read some of Chap. VII, to see how the calculator
can make it easier to find roots. However, some parts of the chapter have to do with
root finding in situations that the student will not encounter until many months later.
The student should postpone reading that part of the chapter until the time comes when
those matters are being studied in the calculus course.

In order that the student can know what to read, and when, each chapter opens
with a Sect. 0, "Guide for the reader. " In these sections, we attempt to steer the
student so that he or she will find this text a help in learning calculus, and understand-
ing it better. And, with such coordination, the material being learned in the calculus
will inevitably increase the student's skill and proficiency in using the calculator.

In the preparation of this text, we were much helped by Prof. Robert T. Moore of
the University of Washington, Seattle. He read carefully and critically early drafts of
many chapters, and proposed many ways to improve them. We may not have followed
through on his proposals as well as we should have, but the text is much the better be-
cause of his advice, and we are glad to acknowledge our debt to him.

We are grateful for many helpful suggestions from George B. Thomas, Jr., and
Ross L. Finney, the authors of the calculus text which we frequently refer to. We must
say that this text lent itself well to illustration by calculator examples.

We wish to extend our thanks to Stephen H. Quigley, the Mathematics Editor for
the Addison-Wesley Publishing Company, for the encouragement and cooperation he has
given us.

J. Barkley Rosser

March 1979
Carl de Boor
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Chapter O
A WORD ABOUT CALCULATORS

0. Guide for the reader.

This chapter is required reading. You should read it at once.

1. What kind of calculator is needed for this text?

You should have available a hand held calculator which has at least keys for the
trigonometric functions (for angles in radians as well as in degrees), exponentials and
logarithms, and square roots. It should also have some memory. It can be either of the
reverse-polish type or of the algebraic-entry type. We shall use the abbreviations RPN
and AE, respectively, for these two types. Preferably, the calculator should be pro-
grammable. We won't here explain in detail the use of any particular calculator, since
we anticipate that the various readers of this text have altogether many different makes
or models of calculators. We take it for granted that you will consult the manual for your
own calculator to learn the various fine points peculiar to your own calculator. Presum-
ably the instructor, or a teaching assistant, or a friend can help.

Presently there is a great number of pocket calculators on the market. In appear-
ance, they more or less resemble each other, but they have a bewildering variety of ca-
pabilities and prices. For less than ten dollars, one can get a first class calculator that
will add, subtract, multiply, and divide. Just right for a rug salesman, but totally in-
adequate for use with the present text.

For less than twenty—-five dollars, one has a choice of several good calculators
that can also handle trigonometry, logarithms and exponentials, square roots, and usual-
ly a few more things. With one of these, one could manage. Perhaps five percent of the
present text might be inadequately covered, but the areas there are not crucial. How-
ever, one would find oneself spending a lot of time pressing key after key to accomplish
what the programmable calculator would be doing automatically.

There are quite a number of different makes of programmable calculators that sell
for a hundred dollars or less. They vary widely in quality. Some have the reputation of
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wearing out very fast. Others are a bit deficient in their arithmetic operations. While
any of them is ostensibly suitable for use with this text, the reader might find that some
would give less than complete satisfaction.

In the present text, numerical examples are worked out mainly on the Hewlett-
Packard-33E, which is an RPN calculator, or the Texas Instruments Programmable 57,
which is an AE calculator. We will refer to these calculators for short as the HP-33E
and the TI-57, respectively. Don't expect to come up with exactly the same numerical
answers on your calculator if it isn't one of these. But, you should be getting more or
less the same answers, unless the example is supposed to illustrate some disastrous
effect of roundoff.

Besides the HP-33E and the TI-57, which are used for the examples of the present
text, programmable calculators that presently sell for less than a hundred dollars are the
Sharp PC 1201, the APF Mark 90, the Casio 501P, and some others. Note that the Radio
Shack EC-4000 is quite identical (except for the trade name) with the TI-57. If you can
find the right discount house, you may even be ahle to get a Texas Instruments Program-
mable 58 for less than a hundred dollars.

New and improved models of calculators are coming on the market so fast that by
the time you are reading this there could easily be a couple more names to add to the
list above. And some of those we named may have gone out of production.

From these, one can go on up to more elaborate and expensive calculators. Their
extra capabilities would rarely be of use in connection with the present text, but they
would be very helpful in advanced courses in engineering and science. If you contem-
plate taking such courses, and can afford such a better calculator, it might be advisable
to get it now and get used to it. In shopping for it, two things to ask for are indirect
addressing and the capability to record a program so that you can later reestablish it in
the calculator without having to key it in again, step by step.

If money is no object, you can really go overboard and get calculators with print-
ing attachments and goodness knows what else. A printing attachment is sometimes not
a bad thing to have, but it costs plenty.

2. Programming for a calculator.

To solve a problem on a calculator, one presses, or "strokes”, a succession of
keys on the calculator. A finite succession of key strokes is called a program.

Programs for RPN calculators differ appreciably from those for AE calculators. You
should read only the explanation applicable to your make of calculator. The material
devoted to these explanations will be set off by an RPN or an AE in the left margin. As
an example, we now discuss the evaluation of the expression

(0. 1) xz—l.



2. Programming for a calculator

REN To calculate (0. 1) on an RPN calculator one would use the program:
0. 2) x, 34,1, =], ]

RPN

3 To calculate (0. 1) on an AE calculator one would use the program:
(0. 2) « &3, =,1, 3, @™ .

AE

This sort of format for setting off the RPN and AE explanations will be followed
throughout the text. Note that, since you are supposed to read only one of the two ex-
planations above, we have used the same number, (0. 2), both for the RPN program and
for the AE program.

The sequence of key strokes in Program (0. 2) is to be read from left to right. The
succession of symbols has the following meaning. The first symbol is not in a box, and
means that the first step is to input the value of x into the display. This is commonly
done by successively pressing the keys for the digits of x in order from left to right,
with the decimal point in its appropriate place. Sometimes there are special keys for
constants, such as w. To input something like 3.47 X 1013, special instructions given
in the manual must be followed. Also there are assorted rules about whether one must
clear the display before attempting to input a value, and other such matters. The [7{_2']
that follows means to press the key for squaring what is in the display. This key is
identified by having xz, or something similar, engraved on it. (For some models, one
must press two keys in order to square a number, such as an invert followed by a square
root. ) The 1 that appears means to input the digit unity into the display by pressing
the unity key. We could have expressed this equivalently by writing to indicate
that the l-key is to be pressed. The [=] and E that appear mean to press the keys
so labelled. The final step, , means to press the square root key.

Consider the calculation of y from the equation

yz(x—xl) + yl(x2 - X)

(0. 3) y = % - x
2 71

Even fairly inexpensive nonprogrammable calculators usually have the capability
to store a number, which can subsequently be called into the display as often as re-
quired. Let us assume at least this memory capacity. If your calculator does not have
at least this, it is probably not really suitable for use with this text.

RPN To calculate y by (0. 3) on an RPN calculator, one could use the program:

RPN
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AE
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©.4) x, (0%, %, &, v,, (X,
x,, KcOx, @, v, X, @,
L, M, =, @, &

To calculate y by (0. 3) on an AE calculator, one could use the program:

(O' 4) X’ x’ E’ Xl’ E’ ’ yz’
7 m?yl” []]’XZ’ E’ X’ E’
@, @, x, &, x, =2

We are here assuming a parenthesis capability for the calculator. If your cal-
culator does not have this capability, you will perhaps have to resort to calculat-
ing (x - x ) storing it, then calculating yl(x2 x) then adding this to the
storedzterm and finally calculatmg X, — x| and d1v1dmg it into the stored sum
(or else multlplymg by (x;- Xl) ly. This would be pretty clumsy, and probably
would involve inputting x twice.

Some AE calculators, for example the TI-57 and other Texas Instruments cal-
culators, are hierarchical in their arithmetic. This is part of what they call their
AOS system. This means that they will carry out Multiplication and Division be-
fore Addition and Subtraction (some people remember this by thinking of "My Dear
Aunt Sally"). For example, the program

L, 4, 2,[x1, 3, [=]

will give the result 7 = 1+ (2 X 3) on a hierarchical calculator, while a calcula-
tor that isn't hierarchical would give 9 = (1 + 2) X 3 for the answer. On a hier-
archical calculator, there is no need for the first [:(] in (0. 4) before the Y1,
since y| is first multiplied by the parenthetical expression (xz - x) following it
before the addition to the expression (x - xl)yz preceding it is carried out.

Finally, we have assumed that the = key finishes off all pending parentheti-
cal expressions. For this reason, there are no closing parentheses in Program
(0. 4). 1In the unlikely case that your AE calculator does not have this feature, or
in case you want to find out the value of these parenthetical expressions, you
would have to insert two [ ]'s before the second [=] and one [J] before

the last [=] .

In Program (0. 4), we have used x and x to indicate respectively

storing x somewhere and then recalling it at the appropriate time.

We shall see in Sect. 3 of Chap. VI that there may be cases when, for a fixed

X],Y],%,,Y,, one will wish to calculate y by (0. 3) for several different x's. With
Program (0. 4), this will involve a lot of inputting of xj's and yj's. This involves
danger of error, as we shall explain shortly. As they are the same xji's and vyi's each

4



2. Programming for a calculator

time, there must be ways to circumvent some of this by storing some of these numbers
and some intermediate results in memory. Of course, this requires a calculator with
more than one memory location. For such a calculator, it is customary to refer to the
various memory locations as "registers. " We will use "register n" for the location that
one gets into or out of by pressing the digit n on the calculator.

Let us make some step by step improvements in Program (0. 4).

o]
RPN Actually, if we have an HP-33E in hand, we would not use Program (0. 4), but
possibly something like:
0. 5) x, 3100, %, (3, (031, v,, X1,
x,, [RCLO], [=], [STO+5], v, [X], [,
RCL 5], [£].
Here we use as an abbreviation for the two-stroke sequence
, [0]: it means to press the STO key followed by the 0 key. This has the
effect of storing whatever is in the display into register zero. Similarly,
stands for [RCL], [0] and means to press the RCL key followed by the 0 key.
This has the effect of reading out whatever is in register zero into the display.
stands for the three-stroke sequence , , [5]. Its execu-
tion has the effect of adding whatever is in the display to whatever is in the reg-
RPN ister five and leaving the sum in that register.
AR Actually, if we have a TI-57 in hand, we would not use Program (0. 4), but
possibly something like:
©. 5) x, [fI00], [=1, x , =1, 31031, [, v,, (4,
vy, X1, 0, x,, =, [RCLO], I, (3UM3], [=],
(=], [RCL3], [=].
Here we use as an abbreviation for the two stroke sequence
[STO], [0]: it means to press the STO key followed by the 0 key. This has
the effect of storing whatever is in the display into register zero. Similarly,
[RCL 0] stands for [RCL], [0] and means to press the RCL key followed by
the 0 key. This has the effect of reading out whatever is in register zero into
the display. [SUM 5] stands for , [5]. Its execution has the effect of
adding whatever is in the display to whatever is in register five and leaving the
AE sum in that register.

Though better is to come, we have already cut down the inputs as compared to
Program (0. 4). In the process, we have made use of register arithmetic. By this we
mean the capability of adding (or subtracting) the number in the display directly to (or
from) the number in some register, leaving the result in the same register. In subse-
quent programs, we will in the same way multiply a number in some register n by what's
in the display or divide what's in the display into the number in some register n, leaving
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the result again in that same register n.
The actual key sequence to accomplish such register arithmetic changes from cal-

culator to calculator. For example, in order to divide into register 3, the HP-33E re-
quires the key sequence

[s10], =1, [3],

while the TI-57 requires the sequence

[(INV], [2nd], [SOM], [3] .

For simplicity and uniformity, we use in this text instead the symbolic keys

[STO+n], [STO-n], [STOXn],[STO+n]

to indicate that the number N in register n is to be replaced there by the number N +x,
N-x, Nxx, and N/x, respectively, with x the number currently in the display.

You should make sure you understand how the programs given above work.

If you wish to perform a calculation that requires more than a few strokes, you
definitely should write out the program beforehand. This is particularly urgent if the
program is to be used more than once. But it is a good habit to get into even for pro-
grams which are intended to be used only once. Otherwise it is very easy to lose your
place in a calculation.

If one frequently has to use a program more than once, it is advisable to acquire a
programmable calculator. A programmable calculator allows you to store an entire pro-
gram as a package. After you press the proper program key (or keys), the calculator will
then repeat the entire program, step by step. Thus, in Program (0. 2) you could store all
the instructions after the first, in what is called "the program or "the program memory".
If at some time you wish to calculate (0. 1) for some X, you would input the x, and then
press the proper program key (or keys). The calculator would do all the rest automati-
cally, and out would come a value for

x?‘—l .

If you wish to do this for a second x, simply input the new x, press the program key
(or keys) again, and out comes the new answer. Quite a saving of time and labor, not
to mention that you do not risk making a mistake while keying through the steps of the
calculation.

If you do not own a programmable calculator, you can still carry out most of the
calculations for the present text. You will have to run through the succession of key
strokes by hand every time a program appears instead of being able to call forth the en-
tire program by pressing one or two program keys. Use of a programmable calculator
with the present text will considerably curtail the labor of calculating. However, to re-
iterate, you can mostly manage with a calculator that is not programmable, but you will

6



2. Programming for a calculator

have to take more time for the calculations.

While use of a programmable calculator will save time with Program (0. 2), it will
save much more time with Program (0. 4). One of the inconveniences of Program (0. 4) is
the six inputs of x;'s and yj's. This is particularly annoying if you have to run Pro-
gram (0. 4) several times for different x's but with the same X, Y, %, and yp. If the
xi's and yi's are 10-digit numbers, as they could well be, all this inputting could be
quite a chore, not to mention a considerable risk of pressing a wrong digit occasionally.

Let us now see what happens with a programmable calculator. We will store all of
Program (0. 4) except inputting x at the beginning. This leaves us the option of running
Program (0. 4) several times with different x's by just inputting a new x each time.
One puts the calculator into store program mode, and then just keys through Program
(0. 4) (omitting the first step) exactly as if one were performing the calculation. No
calculating is done, of course, because the calculator is busy storing the program.
When one comes to input x), one will successively press the keys for the digits of x,
from left to right. All this will be recorded, so that when the calculator repeats the pro-
gram, x| will automatically be input by the calculator. The same for yj,x,, and y;,
in their turn. So there is no more bother about having to input the xj's and yj's if one
runs the program for several different x's. The calculator does it all for you.

However, there is still a difficulty. When one is inputting an x; or a Yis each
digit uses up a register in the program memory. If an x; or y; has 10 digits, it will
use up l0 program registers. There are six such inputs in Program (0. 4). If each ofthe
xi's and vyi's has 10 digits, we would use up 60 program registers just to store the
digits. This is more program registers than are available on either of the suggested cal-
culators.

We could go to Program (0. 5), where we have reduced the number of inputs to four.
However, we could still be in trouble. Suppose x] is a 10-digit negative number in
scientific notation with a negative coefficient. What with recording two pressingsof the
change sign key, recording the exponent, etc., x] could use up 15 program registers.
Four inputs could run to 60 program registers, which are more than are available on
either of the suggested calculators.

We can still manage. Store X, ¥, %5, and y, respectively in memory registers
one, two, three, and four. Then rewrite Program (0. 5) by replacing the inputs of X, Y],

x2, and yp respectively by [RCLT] , LRCL 2], [RCL 3], and [RCL4]. One could
similarly rewrite Program (0. 4) if one chooses to store x in register zero.

Now Programs (0. 4) and (0. 5) are short enough to fit very comfortably in either of
the suggested calculators. In fact, for both calculators, though means to
press RCL followed by 1, these two key strokes are "merged" in recording the program,
so that takes up only a single program register. Indeed, some three-stroke

sequences, such as [STO + 5] or [INV SUM 5], are "merged” into a single program
register.

The steps of a program are stored in numbered program registers. On the two
suggested calculators, these program registers are identified by two digits. (In

7
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particular, register number one is called 0l. ) When you get ready to run a program, you
may not be at the beginning of the program. You can press a combination involving GTO
to get to the beginning (see your manual for details; other ways to get to the beginning
are often available). Then you press a key to make the program run.

So, if you have the x;'s and yi's stored in memory registers, and the modified
Program (0. 4) or (0. 5) stored in the program registers, and wish to calculate y for a
given x from (0. 3), you proceed as follows. Input x, press a combination to get to the
beginning of the program, press the key to run the program, sit back and relax, and
quickly y will appear.

You can add a suitable instruction to the end of Program (0. 4) or (0. 5) to take care
of getting you back to the beginning, so that if you then wish to calculate y for a dif-
ferent x all you have to do is to input the new x and press the key to run the program.

Now that we have finished explaining how to program the calculation indicated in
(0. 3), let us point out that this was altogether the wrong way to do it. We went through
all this because it seemed particularly suitable for elucidating some of the high pointsa-
bout writing and storing programs. However, it would have been much more efficient
just to point out that the equation

Y27 %)

(0. 6) AL F1 S (x—xl)
2 1

gives exactly the same value of y as does (0. 3). But the right side of (0. 6) is far

easier to program than the right side of (0. 3). The whole matter is discussed in detail

in Sect. 3 of Chap. VI, where (0. 6) appears as equation (3. 3). There everything pro-

ceeds much more easily than our treatment of (0. 3).

Moral. A calculator cannot take the place of mathematical skill; not even a pro-
grammable calculator. That is why you signed up for this calculus course, in order to
acquire additional mathematical skills. What has calculus gotto do with replacing (0. 3)
with (0. 6)? As will be pointed out in Sect. 3 of Chap. VI, (0. 6) involves the calculus
notion of slope of a line. This concept is central in doing the programming for the right
side of (0. 6).

Incidentally, (0. 3) and the equivalent formula (0. 6) are not something that we just
made up. One or the other of them was probably taught to you as the formula for inter-
polating in a table. They are much used in mathematics, and are widely used in scien-
tific calculations.

3. Errors.

A very common error in using a calculator occurs while inputting a number. It is
very easy to get a digit wrong, especially if it is a 10 digit number. It is not unusual,
when inputting a 10 digit number, to interchange two digits, or to leave one out, or to
press one twice. One should develop the habit of checking the number in the display
after inputting and before proceeding further. One should also try to write programs

8



3. Errors

that call for inputting numbers as seldom as possible. If your calculator has an adequate
supply of memory registers, it is good practice to store some intermediate results inthem
for later recall. Of course, this requires you to write out the program beforehand in or-
der to keep a record of what is where.

One can also make errors in copying out numbers from the calculator display. The
same remarks apply to this as to inputting numbers. Of course, one has to write the
final answer, but one should avoid intermediate write outs as far as possible. One
should develop the habit of checking the number after copying it from the display and
before proceeding further.

Start developing these habits right away and persist until they are thoroughly in-
grained.

Another source of error is to get the program wrong. As we said before, it is very
advisable to write out each program before using it. And you should develop the habit
of checking a program after it is written and before using it. Often, you know the an-
swer to your problem for certain special choices of the input parameters. In that case,
try the program you wrote for the problem on this special input to see if it gives the
known answer.

In writing numbers in the present text, we choose to group five digits together and
then leave a space before the next set of five (or fewer) digits. Sometimes, we will use
the decimal point as a divider between groups of digits. Thus we will write an approxi-
mation for N2 as l.4l42 13562. Some people would write this as 1. 414, 213,562. And
indeed some of the Hewlett-Packard calculators would show the number this way in the
display.

It is customary to make a distinction between precision and accuracy. Precision
has to do with the number of significant digits given. The more significant digits that
are shown, the greater the precision. There has to be an understanding about which
digits are significant. Thus, l. 4142 obviously has five significant digits. It is just as
precise as . 4142 X 1018, which also has five significant digits. It is more precise than
1. 41 X 10'18, which has only three significant digits. All three of the above are less
precise than 1 4142 13562, which has ten significant digits. However, if we write a
number as

1 4142 00000 x 10'8

or

l. 4142 00000

’

the fact that we wrote the extra zeros (which otherwise would be superfluous) signifies
that they are to be considered as significant. Both numbers have ten digit precision, in
spite of the unusual fact that the last five digits happen to come out to be zero.

Calculators are erratic in their treatment of significant final zeros. Sometimes,
significant final zeros will not be shown in the display. In some cases there will be

9



A WORD ABOUT CALCULATORS

blanks where there should be zeros, and in other cases the number is moved to the right,
leaving blanks on the left. Alternatively, a string of zeros may be shown at the end in
the display even if they are not significant.

For the numbers shown in this text, final zeros will be written only if they are
significant, except when we are citing a display on a calculator. If the calculator shows
non-significant zeros at the end, we may just copy what shows in the display (and try to
make it clear to the reader that we are just copying).

Accuracy has to do with how far off a cited number is from what would have been
the result in an ideally perfect calculation; the latter is to be considered the "correct"
value. If N is a correct value and n is the number that is obtained, then N- n is
called the absolute error and

N-n
N

is called the relative error (unless N = 0, in which case the formula has no meaning).

Suppose someone gives the estimate

)

2.7182 81828 45904 5

for w. This estimate is very precise, indeed precise to 16 significant digits. However,
it is not nearly that accurate as an estimate. The absolute error is about 0. 42 and the
relative error is about 0.13, or 13%. The much less precise estimate, 3, would be more
accurate, with an absolute error of about 0. 14 and a relative error of about 0. 045, or
4. 5% .

In giving a numerical value for something, we have tried to be careful to use =
only when we have been able to get the value exactly. This includes the situation in
which we only write down the first few significant digits of a number and indicate the
omission of the subsequent digits by the elision sign "... " Otherwise, we use =.
Thus, we will write

J0.04 = 0.2
and
V2 = 1.4142 13562 37309 5048...,
but

2 = 1.4142 13562 37310 .

10



Chapter 1

FUNCTIONS

0. Guide for the reader.

Functions are very important in calculus. TUsually the subject will be brought up in
the first week or two of the course. At that point, the reader should read this entire
Chap. I, which is mostly descriptive and has to do with means of calculating functions.
After some discussion of functions in general, the calculus turns to a study of what can
be done with, and to, functions. A second reading of Chap. I is probably advisable then.
Some points should come through more clearly at that time.

From then on, through most of the calculus course, attention is confinedalmostex-
clusively to functions which can be represented by formulas. Toward the end, your cal-
culus course may touch on the topic of differential equations. In engineering,and the ex-
perimental sciences, most differential equations have for their solution a function which
cannot be represented by a formula.

If the calculus course does touch on differential equations, the reader should then
broaden his understanding of functions by reading the last two sections of this Chap. I

vet a third time.

1. Classical definition.

Calculus is mainly a study of functions. The notion of function is explained very
early in the calculus text (see, for example, Sect. 1-6 of T-F). You should be
sure you really understand it. Indeed it would not hurt if we reiterate it herewith, For
f to be a function, f must be a rule, or procedure, or mechanism which for a given x
(in the domain of f) prescribes a unique y, called f(x).

Throughout much of calculus, and almost universally in the engineering and scien-
tific uses of calculus, the main question about some function f is: "Given a numerical
value of x, what is the unique corresponding numerical value y = fx)?"

Why should this be a problem? For f to be a function, it must prescribe y, and
uniquely so. But there are ways of prescribing y that do not give much of a clue as to

11
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how to calculate a numerical approximation for its value. Thus y may be prescribed as
the unique root of some equation. (See Chap. VII. )

For an extreme case, let f(t) be the temperature attime t atthe Greenwich Obser-
vatory. Certainly, if a person is standing at the Greenwich Observatory with a thermom-
eter, it will register one and only one temperature at any time t. So, f is unquestion-
ably a function. But who would presume to try to calculate a numerical approximation for
what the temperature was at the time when John Hancock was signing his name to the
Declaration of Independence?

However, for most functions f that the reader will encounter in calculus, there are
means to calculate a numerical approximation for y = f(x). Indeed, a fair amount of the
calculus course is concerned with developing various such methods. The advent of the
calculator is a great help with such calculations. For the rest of the chapter, we sum-
marize the main ways to calculate an approximate numerical value for y = f(x).

2. As approximated by calculator keys.

On any given pocket calculator, certain functions can be approximately evaluated
by pressing a single key (sometimes two keys). You should study the manual for your
calculator to learn what functions are thus directly available.

Typically, one might wish to evaluate \fx, for some numerical value of x. Recall
that x must be in the domain of V; that is, the value of x cannot be negative, First
one inputs x into the display. Then, with x in the display, one presses the key label-
ed \x and an approximation for \x will appear in the display.

This number in the display, representing \[x, is uniaue; it will come out the same
as long as x is the same (unless something has gone wrong with the calculator). So, in
accordance with the classical definition of function, the Jx key is a function. In ac-
cordance with the classical definition, it will work only if the independent variable, x, is
in the domainof the ¥x key. If x istakennegative in the display, then pressing the Jx key
will cause the calculator to indicate an error, and to cease operating properly. The man-
ual tells how to get it operating properly again.

Although the \yx key is unquestionably a function, it is not exactly the calculus
function "square root of", though the calculator manufacturers try to make it very close.
A difficulty is that the display can show only a certain number of digits; often 10 digits.
With only 10 digits, one cannot display the exact value of \J2. The closest one can
come is 1. 4142 13562. The good calculators will give this number (or perhaps eight
digits of it) if \2 is called for. See Chap. IV for a discussion of this source (and other
sources) of inaccuracy in the use of a calculator.

Problem 2. 1. Seewhatyour calculator gives for \2, ¥20 , and \200.

Problem 2.2. Seewhatyour calculator gives for sin (1/2), sin 2, cos (m/4), and
cos .

NOTE ESPECIALLY. For use with calculus, angles MUST be taken in RADIANS.
There is a special setting on the calculator for this. Do NOT forget to set this to radians

12



2. As approximated by calculator keys

whenever dealing with trigonometric functions.

0 0 0

2 2
Problem 2. 3. Calculate 100 x 102, 1020 x 10%0 x 102, 10%% x 10%° x
1020 x 102 , etc., until the calculator refuses to give an answer and shows an overflow

condition. Learn about this from the manual.

0 0

The function represented by the \x key differs from the calculus function "saquare
root of" in yet another way because it has a different domain. For the calculus function,
the domain consists of all nonnegative real numbers. But suppose that on a calculator
one wishes to take the square root of

0. 6931 47180 55994 .

First one has to input this into the display. But it has too many digits. If one has a 10

digit display, the closest one can come to inputting the number above is to input
6.9314 71806 X 10 1 |

In other words, the number given earlier is not in the domain of the function represented

by the Wx key, even though it is a positive real number. There are things that a calcu-
lator cannot do, and the reader must learn not to expect too much of it.

Besides the functions that are given on the reader's calculator by a single key
stroke, many others can be made by combining several key strokes into a program. For
example, suppose f is defined so that

(2.1) f(x) = \/xz -1 for x| >1 .

(For a definition of |xl, the absolute value of x, see Example 14 in Sect. 1- 6 of
T- F.) One would carry out the evaluation of f by using the following program:

RPN

| x, x4, 1, =], & .
RPN

AE 2

| x, x4, =21, 1, =1, & -
AE

Manufacturers of calculators have exercised considerable ingenuity in arranging
for the user to be able to put together simple functions to get a more complicated one.
The manuals discuss many examples of such more complicated functions that can be built
up out of a succession of individual key strokes; that is, functions that can be evaluat-
ed by a program. And, of course, the programmable calculators let one carry out the en-
tire program by pressing the appropriate program key (or keys).

Problem 2. 4, Give a program for evaluating f if f(x) is defined by:

; 2
) s6g = okl

cos X +1

(a
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b) fx) =J(&-1)/&+1)

X when x<1,

) i)

2-x when 1 <x .

What is not mentioned in the manuals is the fact that many functions cannot be
given by any program whatsoever. Finding roots of an equation often falls into this cat-
egory. (See Chap. VII. ) However, by using the ideas of calculus, one can usually find
a program whose execution will bring one very close. As a matter of fact, the various
functions represented by keys on a calculator are nothing more than built-in programs
designed to produce reasonably accurate approximations for the function values. So,with
calculus to tell us which keys to press, and the calculator to perform the calculations
quickly, we can now handle functions that used to be almost inaccessible.

3. As approximated by a table.

It has been traditional to give representations of functions by means of tables. You
may recall the tables of trigonometric functions and of logarithms from your trigonometry
text. Three small tables are given at the very end of T- F. In Table 3. 1, we reproduce
their Table 2 from p. A-21.

In the first place, the domain of x is very limited, consisting only of the values
in the first and fourth columns. However, for each x in the first column, a unique value
is given for e¥X in the second column and another unique value is given for e™¥ in the
third column. Similarly for the next three columns. So we certainly have defined two
functions, which are quite similar to the calculus functions "exponential of" and "recip-
rocal exponential of". Although the table does not pretend to give more than approximate
values of eX and e™¥, it and similar tables have been accepted for hundreds of years
as the main way to present functions. Starting somewhat later, the slide rule was also

widely used to present certain functions with very limited accuracy.

One might think that the advent of the small electronic calculator would put an end
to the dissemination of tables. Certainly, for the reader with a calculator in hand, the
three tables of T-F are quite superfluous. However, we refer the reader to Chap. XV .
There we discuss the solution of differential equations. There are cases in which the
desired solution is a function that cannot be given by any program. Nevertheless, we
shall learn in Chap.XV how to make a table of approximate values of the function which
is the solution. So then the function is represented by a table, similar to the way trigo-
nometric functions and logarithms were represented for centuries. New differential equa-
tions to be solved keep arising in various branches of science, and they will lead to
tables for new functions.

4. As approximated by interpolation.

The values given in tables of functions are usually only approximate. However,
this is also true of the values given by a calculator. If the table is prepared with suffi-
cient care, the approximate values listed can be as accurate as, or more than, those

14



4. As approximated by interpolation

Table 3.1
X e* e L X e* e
0. 00 1. 0000 1. 0000 2.5 12,182 0. 0821
0.05 1. 0513 0. 9512 2.6 13, 464 0.0743
0.10 1. 1052 0. 9048 2.7 14, 880 0.0672
0.15 1. 1618 0. 8607 2.8 16. 445 0.0608
0. 20 1. 2214 0. 8187 2.9 18, 174 0. 0550
0. 25 1. 2840 0. 7788 3.0 20. 086 0. 0498
0. 30 1. 3499 0. 7408 3.1 22.198 0. 0450
0. 35 1. 4191 0. 7047 3.2 24, 533 0. 0408
0. 40 1. 4918 0. 6703 3.3 27,113 0. 0369
0. 45 1. 5683 0. 6376 3.4 29. 964 0.0334
0. 50 1. 6487 0. 6065 3.5 33,115 0.0302
0. 55 1. 7333 0. 5769 3.6 36. 598 0.0273
0. 60 1. 8221 0. 5488 3.7 40, 447 0. 0247
0. 65 1. 9155 0. 5220 3.8 44, 701 0.0224
0. 70 2.0138 0. 4966 3.9 49, 402 0.0202
0.75 2.1170 0. 4724 4,0 54, 598 0.0183
0. 80 2. 2255 0. 4493 4,1 60. 340 0.0166
0. 85 2. 3396 0. 4274 4, 2 66, 686 0.0150
0. 90 2. 4596 0. 4066 4,3 73. 700 0.0136
0. 95 2. 5857 0. 3867 4, 4 81. 451 0.0123
1.0 2.7183 0. 3679 4,5 90. 017 0.0111
1.1 3, 0042 0. 3329 4, 6 99. 484 0.0101
1.2 3. 3201 0. 3012 4,7 109. 95 0. 0091
1.3 3. 6693 0. 2725 4, 8 121. 51 0. 0082
1. 4 4. 0552 0. 2466 4,9 134, 29 0. 0074
1.5 4, 4817 0. 2231 5 148, 41 0. 0067
1. 6 4, 9530 0. 2019 6 403, 43 0.0025
1.7 5. 4739 0. 1827 7 1096. 6 0. 0009
1. 8 6. 0496 0.1653 8 2981. 0 0. 0003
1.9 6. 6859 0. 1496 9 8103. 1 0. 0001
2.0 7. 3891 0.1353 10 22026 0. 00005
2.1 8.1662 0.1225
2.2 9. 0250 0.1108
2.3 9. 9742 0.1003
2.4 11. 023 0. 0907

given by a calculator, though usually they are not. So a table is not necessarily inferior
to a calculator on the score of accuracy of values. Usually the major drawback of a
table is the relatively small number of values listed. Thus, in Table 3.1, values of

eX are given for only 66 different values of x. Just by reading values from the table,
there would be only 66 values of x for which one would have an approximation for eX.
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Most likely, a value for x for which one would wish an estimate of e® would fail to be
one of the 66 values appearing in the table,

Fortunately there is interpolation. By interpolation, one can find approximate func-
tion values for values of x lying between those given in the table. You shouldremember
a particular way to interpolate from your trigonometry course. If not, a description of it
is given in Sect. 3 of Chap. VL

This sort of interpolation is called linear interpolation because it depends on con-
necting two points of the graph of the function by a straight line. By suitable use of the
calculator, one can perform improved types of interpolation. This gives betterapproxima-
tions for the function values for values of x lying between those given in the table.
Thus, the approximation of a function by a table is considerably improved.

There are functional relationships occurring in engineering, physics, and other
branches of science for which no formula is known, nor any means of calculating an ap-
proximation. By measurement and experiment, some values of x and y will be deter-
mined, and listed in a table. Further measurements and experiments would be expensive,
but we wish to know more about the functional relationship. Interpolation can be very
useful in such a case.

Getting back to the temperature at Greenwich Observatory, if there should happen
to be a record of the hourly temperatures for July 3, 4, and 5 in 1776, then a suitable
interpolation procedure should give a fairly accurate estimate of the temperature at the
signing of the Declaration of Independence. Possibly this calculation is not as intract-
able as was suggested earlier.

A discussion of interpolation in general is given in Chap. VI and Chap. XVII.
Problem 4. 1. By linear interpolation in Table 3. 1, getan estimate of e0- 6625_
Compare with the value for 0. 6625 given by the calculator.

Hint (for those who have forgotten how to do linear interpolation). Since 0. 6625
is one quarter of the way from the listed x-value 0. 65 to the listed x-value 0. 70, one
would expect that el 6625 would be about one quarter of the Sva%’ from the value of
1. 9155 listed for e0- 05 5 the value of 2.0138 listed for e~ O.
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Chapter I1
EVALUATION OF A POLYNOMIAL

0. Guide for the reader.

By all odds, the functions thatyou are most often called upon to evaluate are poly-
nomials. Special procedures for doing this efficiently will be given in Sect. 1. As soon
as you encounter a place in the calculus course where you are asked to get the value of
a polynomial more complicated than a quadratic, you should familiarize yourself with
Sect. 1, and be prepared to use the procedures given there.

The topics of Sect. 2, synthetic division and deflation, come up in situations such
as taking the limit of the quotient of two polynomials. When you first read Sect. 1, it
would be advisable to skim through Sect. 2, to get the general idea. Then, when you
encounter the places in calculus where you should use the procedures of Sect. 2, the
formulas should look familiar, and should remind you to make a more careful study of

Sect. 2.

Sect. 3 should be read after you are familiar with differentiating a polynomial. It is
common in calculus courses to emphasize how information about the derivative of f can
be used in plotting the graph y = f(x). For example, this topic takes up about one third of
Chap. 3 of T-F. When you reach this point in your calculus course, you should read
Sect. 3 with some care, as it is devoted to calculator examples of just this subject.

1. Horner's method.

A polynomial, p, of degree n or less can always be defined by the formula

n n-1
(1. 1) plx) = apx +ax oo ta xtal

) ’
coefficients in such a way that the index of the coefficient plus the corresponding ex-

ponent of x is n.

for certain numerical coefficients ap,a),...,a . Note that we have here indexed the

We consider the evaluation of the polynomial defined by (l. 1) at some point c , SO
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II. EVALUATION OF A POLYNOMIAL

as to get p(c). This means that we must put ¢ for x in (L. 1) and calculate

n n-1
a.c + Qa,cC +... +a c +a
0 1 n-1 n

This does not look like a very formidable calculation. With the y¥ key, we can calcu-
late cn, cn'l,. .. ,cl, c0. We multiply them respectively by a0, 8, ++,2n-],3,, and
add the products. But stop and think. It takes three or four key strokes for each use of
the y¥ key, and we also have n multiplications and n additions. Besides which, the
yX key is relatively slow in operation, and tends to be the least accurate key on many
inexpensive machines.

There is a better way to evaluate p at c from (L. 1). The trick is to rearrange

ac®+ac iy +a c+a
0 1 n-1 n

p(c)

in "nested form", as

(1. 2) p(c)

«.. ((aoc + al)c + az)c +... + an_z)c + an_l)c ta .

Now there is no need for the exponentiation key, yX. Since it turns out that we can

arrange the calculation so as also to avoid using any parenthesis keys, all we need to
do is to multiply and add n times each.

We start the calculation by evaluating the innermost parenthetical group, and then
work our way from the inside out. This means that we first calculate

b1= aoc + al .

From it, we calculate

b. = (a

2 c+al)c+a

:blc+a

0 2 2

From it, we calculate

b, = ((a0c+a

3 )c+a2)c+a3=b2c+a

1 37
and so on, until we reach

b
n

«.. ((aoc + al)c + az)c +... + an_z)c + an—l)c +a

=b c+a .
n-1 n

Clearly, by (L. 2), b, = p(c), the value of p at c, which is what we wish.

For example, let us calculate the value of

18



1. Horner's method

(1. 3) p(x) = 3x3 - 5x% - 4

at x = 2. Here ay =3, aj=-5,a, =0 and a3 = -4. We write p(x) in nested form
as

1

px) = (B3x - 5)x + 0)x - 4 .
With ¢ = 2, we then calculate

b, =ac+a = (3)@2)-5=1

1 0 1
b2= blc+a2= (D@R) +0 =2
b3= bzc+a3= 2)2)-4=0.

Thus p(2) = 0. Note how the missing ale term in (1. 3) does appear in the calculation,
as addition of a zero coefficient when forming b2'

If we put x = 2 in (L. 3), we get

p(2) = (3)2° - (5)2° - 4

(3)(8) - (5)(4) - 4

1]

24 -20-4=0 .
This agrees with our value for b3 (as it should).

We now analyze and formalize this evaluation procedure. For convenience, we de-
fine

Then the calculation proceeds through the following n +1 steps:

b =
0 0
b1 = boc + a1
b2 = blc + a2
b3 = b2c + a3
bn—Z N bn—3c o2
n-1" bn-zc * “p-1
b =b c+a
n n-1 n
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II. EVALUATION OF A POLYNOMIAL

Every line after the first follows the uniform format:
(1. 4) b = cb + a

In view of this, the calculation proceeds very simply. Start by inputting bO (that is,
aO) into the display. Then repeat n times the two following operations:

multiply by c¢

add a_ (r=1,2,3,...,n) .

As we said, n multiplications and n additions, plus inputting c and the various a 's,
takes care of the whole thing. At the end, we have by, which is p(c).

It is customary to call a specified sequence of computational steps, such as the
above, an algorithm. This particular algorithm is called Horner's method. It is much
the fastest way to calculate p(c).

When an algorithm of this sort proceeds by repeating a given set of steps over and
over, using the answer for the previous step as input for the next, then the algorithm is
called recursive. Horner's method is a good example of a recursive algorithm. On a
programmable calculator with subroutine capability, one can often use this recursive
feature to shorten the program for the algorithm. This is done in the implementations of
Horner's method given as Programs IL | and II 2 in the Program Appendix.

RPN Horner's method works especially well on an RPN calculator. Suppose one has
the stack filled as in Table 1. 1.

Table 1.1

t C

z C
r-1

Then the program

(1. 5) X1, a,

r

will replace the b._; in the stack by b.. Then arepetition of Program(l. 5) with
r+ 1 in place of r, namely

=, o, 3@,

will in turn replace the br by br+1' And so on.

RPN
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RPN

AE

1. Horner's method

So we start by filling the stack with values of ¢, which is done by inputting c
and pressing T three times. Then input aq (which is bo). We are now ready to
get bj, by, b3, ...,by successively in the display, by repeating the Program (1. 5)
with r=1,2,...,n. Thus, on a nonprogrammable calculator, after entering c in
the display, the rest of the calculation follows Program (1. 6).

(. 6) T, 8, OO, a,,

At the end of the calculation, b, = p(c) is in the display.

On an AE calculator, the basic step, (1. 4), of Horner's method may be carried
out as follows. Suppose we have br-l in the display. Then the program

will bring b, into the display instead. But this requires inputting ¢ at every step
If ¢ is an "easy" number, like 3, it can be input by pressing a single key, and
one can do no better. However, ¢ could be a 10-digit number, so that there is risk
of error every time one inputs it. Even on a nonprogrammable calculator, there is
usually at least one memory register. So let us assume that we can store c. Then
we calculate by from b,_.) by the program

. ) X1, (RO ¢, [, a, [=].

Here we have written c to indicate that the value of ¢ is to be recalled into
the display from wherever it has been stored. Thus, on a nonprogrammable calcula-

tor, after entering c in the display, the rest of the calculation follows Program
(1. 6).

(1. 6) C, a07
3, (’CD ¢, (0, a, (=1,
m,[RCL]C,m,a E7

%], [RCL] ¢, [+], a

At the end of the calculation, by = p(c) is in the display.
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II. EVALUATION OF A POLYNOMIAL

Suppose now that you have been given the coefficients and wish to evaluate the
polynomial defined by (1. 1) for several different values of c¢. On a nonprogrammable
calculator, you simply repeat (1. 6) for each different value of c. This requires input-
ting the whole succession of ar's for each value of c. If the ar's are 10-digit num-
bers, which they may well be, this is quite a chore, and entails considerable risk of
error with all that inputting.

If you have a programmable calculator, you can arrange to store Program (1. 6).
Then, upon pressing the program key (or keys), the calculator will run through Program
(1. 6) for you, including inputting the various a's. (For more details, refer to Chap. 0. )
So now, if you wish to calculate p(c) for some c's, you input any given c into the
display, press the program key (or keys), and sit back and wait for b, , which equals
p(c), to appear in the display.

In Chap. 0, you are advised to check the program after recording it. Let us again
stress this. For polynomials, there is an additional test that you can use, and which
you should use. It is easy to calculate p(l), since it is just the sum of the coefficients
So, after you have stored the program, and have checked it, run yet another test by tak-
ing ¢ =1 and seeing if b, comes out equal to the sum of the coefficients.

If you have a highdegree polynomial, there may be so many a;'s that Program (1. 6)
will take more steps than your calculator has room to store. In that case, go as far as
you can through Program (1. 6) with a stored program, arranging to stop with some by in
the display. Then you can finish Program (1. 6) by hand, inputting a/'s as you go.

Nowadays, most programmable calculators have a subroutine capability. Because
of the recursive nature of Horner's algorithm, this can be used to reduce the number of
program registers required to store the program. Program IL 1 in the Program Appendix
shows how to take advantage of this. You should use this program (or one similar to it
that you have worked up for your own calculator) for the next problem.

Problem 1. 1. (Only for those with good programmable calculators.) Evaluate p(c)
for the polynomial, p, defined by

18+ 15 14 13 12 11

7 6
(1.7) pk)=x le +3x1 +4x" 7T +5x  +6x T +7x  +8x +9x10+10x9+9x8+8x7

6
+7x +6x5+5x4+4x3+3x2+2x +1

for ¢ = -3, -2, -1, 0, 1, 2, 3.

Program (1. 6), or Program IIL 1 of the Program Appendix, if used with a programmable
calculator, involves storing the digits of the various a,'s as part of the program. For
typical examples in calculus texts, each coefficient has only one or two digits, and so
one can deal with polynomials of fairly high degree. However, one can have coefficients
that use up as many as 15 program registers apiece (see Chap. 0). In such cases, itis
advisable to store the coefficients ag,a;,...,a, beforehand in memory registers, and
in Program (1. 6) or Program II. 1 of the Program Appendix put a, where now a, is
indicated to be worked into the program. In doing this, one is limited by the number of
memory registers available. This is embodied in Program II 2 of the Program Appendix.

22



1. Horner's method

Problem 1. 2. In Prob. 11 at the end of Sect. 1-9 of T-F, there is given a table of
values of a function:

s (in ft) |10 |38 |58 |70 |74 | 70 | 58 |38 10
t (insec)| 0]0.5[1.0[1.5]20]25(3.035]40

Show by calculating its values that the polynomial, s, defined by

)

(1. 8) s(t) = —1(>t‘2 + 64t + 10

agrees with the s of the table for the values of t listed. Remember to use Horner's
method to evaluate the polynomial. That is, for the given values of t, take

s(t) = (-16t + 64)t + 10 .

The fact that (1. 8) holds for the specified values of t gives no assurance whatever
that it holds for other values of t. However, it is perhaps a not unreasonable assump-
tion that (1. 8) was intended to hold for general values of t.

Problem 1. 3. For the polynomial, p, defined by

(1. 9) p(x)=x4—4x3+2x2—4x+1 ,
calculate p(c) for ¢= -2, -1, 0, 1, 2, 3, 4, 5, 6. If you do not own a programmable
calculator, do it for ¢ = 0,1,2,3,4. (Calculate p(0) in your head, of course.) If you
do own a programmable calculator, enlarge the program so that it will also generate the
values of c for you, with convenient stops and restarts, so that you do not have to in-
put nine different values of c¢. Make a rough sketch of the graph of v = p(x). Save
this graph for subsequent use.

Remark. There is much stress in calculus on getting a careful determination of the
graph of y = f(x), by observing when the derivative of f is positive, negative, or zero.
The polynomial, p, defined by (1.9) is the derivative of the polynomial, P, defined by

5 -3
(1. 10) Pe) = % - x4 B m o i k-2
(If you cannot presently verify this, you will very soon be taught how. ) To get a careful
determination of the graph of y = P(x), you will need to know when the derivative of P,
namely p, has values which are positive, negative or zero.

Problem 1. 4. For the polynomial, p, defined by (1. 9), use your graph of it to guess
very approximately the values of ¢ (if any) for which p(c) = 0, and to identify the
values of x for which p(x) is positive, and the values of x for which p(x) is nega-
tive.

Remark., The question of determining more accurately the values of ¢ for which

p(c) = 0 is taken up in Chap. VIL For the present, guess them as well as you can by
eyeballing the graph. If p(c) = 0, we say that ¢ is a zero of p.

23



II. EVALUATION OF A POLYNOMIAL

Problem 1. 5. For the polynomial, p, defined by
(1.11) plx) = 8x" - 14x> - 9x° + 11x - 1

calculate p(c) for ¢ = -2, -1, 0, 1, 2, 3. Make a rough sketch of the graph of y =
p(x). Save this graph for subsequent use. Use your graph to guess very approximately
the values of ¢ (if any) for which p(c) = 0, and to identify the values of x for which
p(x) is positive, and the values of x for which p(x) is negative.

Problem 1. 6. Even if you do not have a programmable calculator, calculate p(c)
for ¢ = 0,1, and 2 for the p of Prob. 1. 1.

Hint. For that p, verify that

4 3 2 2
(1. 12) p(x) = {x9+x8+x7+x6+x5+x +x +x +x+1}

Remark. We cannot stress too strongly that the reader should remain alert to see
where some trick, such as above, can cut the labor of computation quite a bit.

Problem 1. 7. Even if you do not have a programmable calculator, calculate p(c)
for ¢ = -3, -2, -1, 0, 1, 2, and 3 for the p of Prob. 1. 1.

) ’ )

Remark. We just barely got through saying that you should remain alert to see
where a trick can cut the labor of computation. Verify (by multiplying both sides by
x - 1) thatif x #1, then

10
(1.13) X -1 8 7 6 6 4 3 2
— = X +X +X +X +X +X +x +x +x+1.

2. Synthetic division and deflation.

As we will show in a moment, Horner's method provides an efficient way to divide
the right hand side of (1. 1) by the linear expression x - c, if possible. There are sev-
eral reasons why one might want to carry out such a division.

For example, in trying to determine

lim p(x)/q(x)
X —=C

with p and g both polynomials, one may have to deal with the fact that both p and
q are zero at the point c¢. Then one must compute polynomials P and q) so that
pl(x) (x-c) = p(x) and qj(x)(x-c) = q(x) and consider

lim pl(x)/ql (x) .

X—=C

As another example, consider the problem of finding all the zeros of a polynomial p.
One usually finds such zeros one at a time, for example by the methods discussed in
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2. Synthetic division and deflation

Chap. VIL Having found a first zero, say, cj, one can find the remaining zeros by
finding the zeros of the "reduced" polynomial p), defined by p;(x) = p(x)/(x-c|). As
soon as one has found a zero of p;, say c,, one goes over to a further reduced polyno-
mial p,, defined by pz(x) = pj (x)/(x—cz), etc. In this way, the polynomials whose
zeros are to be found become ever simpler. In the end, one has a factorization p(x) =
ag (x - Cl) (x- c2). . (x- cn). Such a factorization is needed further on in the calculus,
when integrating rational functions by the method of partial fraction expansions.

The connection between Horner's method and the division of p(x) by a linear ex-
pression x - ¢ is contained in the following theorem.

Theorem 2.1. Let bg,bj,...,Db, be the quantities calculated during Horner's
algorithm for evaluating
n n-1
(2. 1) p(x) = apx t+ax t.o..o A x+ta
at x = ¢. This means that
(2. 2a) b0 =3,
and
(2. 2b) b =b c+a for r=1 n
r r-1 r’ ’ ’
Then
(2. 3) px) = ak)x - c) + b

with g the polynomial defined by

(2. 4) qx) = b.x +b x +... +b _x+b

To see the truth of this theorem, multiply out (x-c)q(x) + b,. By appealing to (2.4),
this gives:

n-1 n-2 n-3
xq(x) = xbox + xblx + xbzx +... 4 an—-l
n-1 n-2
-cq(x) = - cbox - Cblx -, - Cbn—ZX Cbn-l
+b = +b
n n

On the right, combine each term with the one below (or above) it, to get:

n n-1 n-2
b x +(b1-cb0)x +(b2—cb1)x +... + (b

0 ) .

- Cbn—Z)x + (brl - cb

n-1 n-1

But b0 = a, by (2. 2a), and by (2. 2b)
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II. EVALUATION OF A POLYNOMIAL

b1 - cbo = al
b2 - cb1 = a2
n-1" Cbn-Z |
b -cb = a
n n-1 n
So we get
(- clalx) +b_
=axiax"ly +a .x+a
-0 1 n-1 n°’

as claimed in (2. 3).

Corollary 1. If p is a polynomial, and p(c) = 0, then x - ¢ divides p(x) exactly

’

Proof. If p(c) = 0, that means that b, = 0. Putting b, = 0 in (2. 3) gives
(2. 5) p(x) = (x - c)ax),
which is just what the corollary claims to be the case.

Corollary 2. If p is a polynomial, c| # c,, and p(cl) = p(cz) = 0, then the quad-
ratic expression (x - cl)(x - cz) divides p(x) exactly.

Proof. Using Cor. 1, we can take c = c¢; in (2. 5). Then put x = c, in (2. 5):

p(cz) = (cz- cl)q(cz).

But p(cz) =0 and ¢, - ¢ #0, so that q(cz) = 0. So, by Cor. 1, there is a polyno-
mial r such that

alx) = (x-c,)rx).
If we substitute this into (2. 5), with ¢ = cy, we get
(2. 6) p(x) = (x - cl)(x - c?_)r(X) ,
which is just what the corollary claims to be the case.

Obviously, if we are going to make use of Thm. 2.1, we have to make a record of
the values of the by's. If we are not calculating the b/'s by a stored program, but are
going along inputting the a,'s at every step, there is plenty of time to copy off the b/'s
as they appear in the display. However, suppose we have in mind using Program IL 1 or

II. 2 of the Program Appendix, or something analogous for another calculator. It is usu-
ally considered an advantage of Programs IL 1 and IL 2 that they go rapidly through the
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2. Synthetic division and deflation

calculation, and all that one sees is b, which is p(c). But now we would like to see,
and copy down, the various br's. A very simple modification of Programs IL 1 or IIL 2
will permit this. Just add appropriately in the subroutine, as explained in the
Program Appendix. Now the program will stop every time a b, appears in the display.
After copying it down, press R/S , and the program will go on to the next b,. Check
your copying.

If there is a copious supply of memory locations, so that the ar's fill up no more
than about half the registers, one could even arrange to have the br's stored in some of
the vacant registers. This would be particularly useful if one has in mind further calcu-
lations involving the br's. It is easy enough to modify Program (1. 6) to do this by in-
serting suitable storage commands at the strategic points. Programs II 1 and IL 2 would
require extensive alterations, since the storage of the b,'s would interrupt the sub-
routine differently each time the subroutine is used. However, with the program set to
stop at each b,, one could store them one by one by hand in unused registers during the
stops.

If one is not going to use the a,'s again, the by's could be put in their place.
Details are given in Program IL 3 of the Program Appendix.

Illustration. Let us find

x‘2 +x -2
(2. 7) lim @———m—

X—==2 x" 4155 4+ 6

As x approaches -2, both the numerator and denominator approach 0, so that it looks
as though we are stuck with trying to guess a value for

0

0

But Cor. 1 for Thm. 2.1 says that if a polynomial, p, is 0 at the point -2, then p(x)
must be exactly divisible by x + 2. One can work out what the other factor is by the

algorithm of the previous section, as explained in Thm. 2.1, but for quadratics, such

as appear in (2. 7), the other factor is obvious. So we rewrite (2. 7) as

i x*2)-1) lim  X=1
X r -2 (x4+2)(x+ 3) Ko =2 X+3
=2-1 _ _
=243 3

Problem 2. 1. Evaluate:

2
(a) lim X +4x+3
X —=3 X+3
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II. EVALUATION OF A POLYNOMIAL

(b) lim x2 + 3x =10
x—>2 x-2
(C) lim ._Z_X;l____
X=~1 4 71x +5
3_
X2 y%_4
2 7% 45
(e) lim 2X7 +IX + 5
x—~-1 X 41

Problem 2. 2. For n = 3, 4, 5, 6 evaluate

xn—l

lim
XxX—1 x -1

Before you get up to n = 6 you should be able to figure out how to calculate

xn—l

— 2
X lx—l

for general n; as soon as you do, carry out the calculation for general n, and get on to
the next problem.

Problem 2. 3. For the polynomial, p, defined by
4 3
(2. 8) p(x) = x* - 4x™ +2x - 4x + 1
and for c = 4, calculate g and b, such that (2. 3) holds.
Problem 2. 4. For the polynomial, p, defined by
(2.9) px) = 8x4 - 14x3 - 9x2 +11lx -1

calculate q; and di such that

(2.10) p(x) (x+1)ql(x)+d

1

I

(2.11) plx) = (x- 3)q2(x) + d2 .

In Prob. 1.4, you were asked to state from looking at the graph where p(x) is posi-
tive or negative for the p defined by (1. 9). However, the graph went only from x= -2
to x =6 (orfrom x=0 to x =4 if you do not own a programmable calculator). So
you had to guess outside of that range. However, one can easily establish the facts.
Note that the polynomial defined by (1. 9) is the same as the one defined by (2. 8).
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2. Synthetic division and deflation

*Problem 2. 5. For the polynomial, p, defined by (1. 9) and by (2. 8), show that p(x)
is positive for x <0 and for x > 4.

Hint. If x is negative, can any term of p(x) be negative? If x > 4, note thatthe
q(x) and by, of Prob. 2.3 are both positive.

*Problem 2. 6. For the polynomial, p, defined by (1. 11) and by (2. 9), show that p(x)
is positive for x <=1 and for x > 3.

Hint. If x <- 1, note that the d; of (2. 10) is positive, while the ql(x) is nega-
tive. If x> 3, note that the d, and q,(x) of (2. 11) are both positive.

Consider the polynomial, p, defined by
(2. 12) pl) = 12x° - 24x + 4 .

According to the quadratic formula, which is (IV. 3. 1), p(ci) = 0 for

_ 3 +46 _3-+6
(2. 13) c, = 3 s c, = 3
So, by Cor. 2 to Thm. 2.1, (x - cl)(x - c2) should divide p(x) exactly. Itis easy to
see, by multiplying out, that indeed

(2. 14) p(x) = 12(x - 3+3\/—6—)(x - 3"3\[6—) )

Problem 2. 7. Using your calculator, calculate

Suppose with these approximations for c] and c,, your calculator seems to give ex-
actly, by calculation,

(2.15) px) = 12(x—cl)(x - CZ)'
Would that prove that (2. 14) is true? As a matter of fact, does your calculator give
(2.15) EXACTLY, with the approximations you calculated for ¢, and CZ? Use all the

digits that your calculator carries, and not just what it displays.

Problem 2. 8. Show that

(2. 16) 96x” - 84x - 18 = 96(x—7—“;2@)(x_b1‘@—) .

Sometimes we wish to "deflate" a polynomial. This will happen after we have
found that c¢ 1is a zero of the polynomial p, so that plc) = 0. Then, by Cor. 1 to
Thm. 2.1, we have
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II. EVALUATION OF A POLYNOMIAL

p(x) = (x-c)q(x) .

If we have the coefficients of p(x) stored in the memory registers, we may wish to dis-
card them, and put the coefficients of g(x) in their place. This would happen if we are
using Program IL 2. In the Program Appendix, we give Program IL 3 which will substi-
tute the coefficients of q(x) for those of p(x) in the memory registers.

If we are using Program (1. 6) with a nonprogrammable calculator, the question
would not arise. We start with the coefficients of p(x) written on a piece of paper. As
we work our way through Program (1. 6), we generate the coefficients of q(x), which we
write on a new piece of paper.

Problem 2. 9. With the polynomial, p, defined by
3 2
(2.17) p(x) = 8x~ +2x -5x +1

b

we have p(-1) = 0. So there is a q such that

p(x) = (x+1)ax).
Start with the coefficients of p(x) stored in the calculator and run a program to get the

coefficients of q(x) stored there instead. (If you have a nonprogrammable calculator,
simply list the coefficients of q(x).)

3. Derivative of a polynomial.

The formula (2. 3), namely
p(x) = (x-clak) +b_,
will be of use when we wish to evaluate both p(x) and p'(x) at the same point, x= c,
where p' is the derivative of p. If we differentiate both sides of the equation above

with respect to x, and use the formula for the derivative of a product (see Rule 5 of
Sect. 2-3 of T-F), we will get

p'x) = qlx) + (x - c)d (x) ,
since the derivative of the constant bn is zero. Taking x = c gives
(3.1) p'(c) = alc) .

This means that we can compute p'(c) by evaluating the polynomial q(x) at c (by
Horner's method, of course).

The above procedure gives the most efficient way to evaluate both a polynomial and
its first derivative at the same point c. If we need to evaluate only the first derivative,
then it is more efficient to form the polynomial p' directly and evaluate it by Horner's
method.
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3. Derivative of a polynomial

Problem 3. 1. For the g and p of Prob. 2.3, calculate q(4) and p'(4), and see
if they agree.

Problem 3. 2. For the q; and p of Prob. 2.4, see if ql(-l) agrees with p'(-1),
and if g,(3) agrees with p'(3).

When we undertake to get the value of the derivative of p at the point c by eval-
uating q(c), that requires knowledge of the b.'s. So at first thought, it seems as if we
have to do a lot of storing of coefficients, namely all the b.'s. However, if we manage
things efficiently, this is not so.

Recalling what q is from Thm. 2.1, we see that Horner's method for calculating
qa(c) involves the following algorithm:

= b

c1 = cc0 + b1

c, = cc1 + b2

°n-1 7 “p-2 7 bn—l

Then q(c) = Co1-

The trick is to calculate the br's and c's in parallel. Really, itis br and Cr
that go in parallel. Then two registers will suffice for their storage. Suppose by is
in one register and c; is in the other. One uses bry] and cr to calculate cryj,
which one stores in place of cy. Then one uses byy] and ar4p to calculate br4z,
which one stores in place of br+l- Then one starts over again.

At the beginning, one does a little calculation to get by and cg, and to store them.
Then one iterates the process above until one gets up to b, and cp-}, which are p(c)
and p'(c).

Presumably, one has c stored someplace, so that one does not need to input it
twice for each iteration.
RPN .
On an RPN calculator, one can manage to keep c¢ stored in the stack, so that

two memory registers will suffice, one to hold the by's and one to hold the c;'s.
Then the following fairly simple program will suffice.

e, O, CH, 0A,

a,, [8T0] ¢, (XJ, a,, (1, (3TOT b, ,
[CIX], [RCT <, (X1, (RSO by, (3], (FT0] ¢,
[CIX], (RSO b,, (K] , a,, (3], [STO] b, ,

REN [CIX] , (RS oy, (X1, (RSH bz, (3, [5T0] <2,
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[om, bz,-, 3,- [STO]b,,

X, o . 2,- Mb 1,- —
O], (T »_,, (], 2, 5], (5T0] b_

The CILX that appears is the command to clear the display. The first line of
the program fills the stack with c¢'s. The second key stroke of the second line
stores a, in the register reserved for the c/'s. But ag = ¢, so that then we have
cp appropriately stored. After the of the second line, we have b; in the
display, and it is proper then to store it in the register reserved for the b,'s.

After the in the third line, we have cy in the display. The final com-
mand, c), stores it in the register reserved for the cy's. This obliterates
cg, which is fine because we do not need c any more. The fourth line calculates
by and stores it in place of bj. This is also fine, as we do not need bj any
more,

The fifth line calculates c) and puts it in place of cy, while the sixth line
calculates b3 and puts it in place of b). Righton!

So we go smoothly along, and at the end we have cp_y, which is p'(c)
which is p(c).

, and

bn

K

You reserve whatever registers happen to be convenient to store the by's and
cr's. If you had happened to pick registers one and two respectively, then the pro-
gram shown above can be put into the schematic form embodied in Program (3. 2).

(3.2) Preparation:
c, @, O.CT,
2, (31021, [x], a,, (3, [5T0T],
Loop, to be repeated for r = 0,1,...,n-2:
[CIX], [(ReL 2] , [(X], [RCL 1), (4] , (510 2]
[C1X], [RCL1],[X], a ,,[],[STOT] .

Ifyouhave bry] in register one and c, in register two, then the first line of
the Loop puts cpy] into register two and the second line puts br4z into register
one. You repeat the Loop n-1 times, with r = 0,1,...,n-2. Then you will have
by, which is p(c), in register one and cp-1, which is p'(c), in register two.

It should occur to you that there is a subprogram in this which is repeat-
ed many times, namely Program (3. 3).

3.3 [, [(8T01],[CX], [RCL 2], [X],[RCLT1]
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3. Derivative of a polynomial

RPN Executions of this are interspersed with inputs (or recalls) of the ar's. There

is a Preparation at the beginning and a short Termination at the end. If you have a
programmable calculator, this is the sort of thing you would store as a recallable
program. On the more sophisticated calculators, it could be a subroutine.

By carrying out some stack gymnastics, you can carry all three of c, cr, and
bri; in the stack simultaneously, juggling these three quantities appropriately by
using the RJ, and x P¢y keys. This avoids using up two registers for cr and
bry1, leaving more room to store the ay's. If you like puzzles, then you'll enjoy
figuring out key sequences to do such things. Actually, a great many such key se-
quences are given in the Table 2. 5. 1 on pp. 62-86 of "Algorithms for RPN calcula-
tors, " by John A Ball, John Wiley and Sons, 1978.

For the particular case at hand, you can go from the stack configuration shown
in Table 3.1 to that shown in Table 3. 2 by the program in the first line of Table 3. 3.

Table 3.1 Table 3. 2
t C t C
z c z c
r
Cbr y cr+1
x ar+1 X Cbr+1
Table 3. 3
¢ ¢ br+1 b1r+1 br+1 ¢ ¢ cr+1 c1r+1 ¢ €
Cr € ¢ br+1 b1r+1 br+1 c € c Cr+1 ¢
Cbr cr ¢ c ccr b1r+1 br+1 ¢ br+1 c cr+1
a b b b
r+l r+l cr ccr ¢ ccr c1r+1 b1r+1 ¢ r+l ¢ r+l

Below each indicated keystroke is a vertical line, on the left of which is what was
in the stack before the stroke and on the right of which is what will be in the stack
after the stroke.

Having got to the configuration of Table 3. 2, a subsequent input of arip will
bring the configuration of Table 3. 2 to agree with that of Table 3.1, except for hav-
ing r replaced by r + 1. So the program shown above can be used as a subprogram,
to be used alternately with inputting (or recalling) values of ag, for s = 2,3,...,n.
After inputting (or recalling) ap, execute , and you will have p'(c) and p(c) in
RPN the y-register and x-register respectively.
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An actual program embodying these ideas is given as Program IIL 4 in the Program
Appendix.

On an AE calculator, it would seem that you will need three

memory registers, one to hold the b/'s, one to hold the c's. and one to hold c.
If these are available, then the following fairly simple program will suffice.

, [SIO] e,

Q

¢, 41, a,, [=], [5IO] b,,
c,, [X], c, 4], [RCL] b,, [=], [STO] ¢, ,
[RCI] b,, [X], [RCL]¢c, [4]1, a,, [=], [STO] b,,

-~
H@
[

[ RCL]
[RCh e, [X], (RCH ¢, (@, (<O b__, 5], B0 c,_,
[RCLI b, [X], [R<h ¢, (1, a,, (5], BTO) b, -

The first line of the program stores c. The third key stroke of the second line
stores a; in the register reserved for the c/'s. But ap = cj, so that thenwe have
co appropriately stored. After the [=] of the second line, we have bj in the
display, and it is proper then to store it in the register reserved for the by's.

After the [=] in the third line, we have c] in the display. The final com-
mand, c], stores it in the register reserved for the cr's. This obliterates
cg, which is fine because we do not need ¢ any more. The fourth line calculates
b, and stores it in place of bj. This is also fine, as we do not need b; any
more.

The fifth line calculates c) and puts it in place of cj, while the sixth line
calculates bs and puts it in place of bp. Right on!

So we go smoothly along, and at the end we have cp-y, which is p'(c), and

bp, which is p(c).

M

You reserve whatever registers happen to be convenient to store the b,'s, cr's
and c. If you had happened to pick registers one, two, and three respectively,
then the program shown above can be put into the schematic form embodied in
Program (3. 2).

’

(3. 2) Preparation:
c, LSTO 3],
=, a8, 307, @, G, =, 301,
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3. Derivative of a polynomial

AL Loop, to be repeated for r= 0,1,...,n-2:
[RCL 2], [x], [RCL3], [4], [RCLT1], [=], [STOZ],
RCL1], [x], [RCL3], [H], 3o =], [STO1].

If you have br+1 in register one and c, in register two, then the first line of
the Loop puts Cry4] into register two and the second line puts br+2 into register
one. You repeat the Loop n-1 times, with r= 0,1,...,n-2. Then you will have
bn, which is p(c), in register one and cp-j, which is p'(c), in register two.

It should occur to you that there is a subprogram in this which is repeat-
ed many times, namely Program (3. 3).

(3.3 [=], [(sT01], [RCL2], [Xx], [RCL3], [+], [RCLT1],

[=1, (5To2], [Rord, [x], (RoL3), (A .
Executions of this are interspersed with inputs (or recalls) of the ar's. There
is a Preparation at the beginning and a short Termination at the end. If you have
a programmable calculator, this is the sort of thing you would store as a recall-
able program. On the more sophisticated calculators, it could be a subroutine.

On some calculators there is a register exchange key which enables you to
carry along all three of byy;, ¢, and c without having to use more than two mem-
ory registers. This leaves one more register to store the a,'s. An actual program

AE of this sort is given as Program II. 4 in the Program Appendix.

As noted earlier, you could always calculate the coefficients of p'. Then you can
calculate both p(c) and p'(c) by applying Horner's method to p and p' respectively.
If you need both of p(c) and p'(c), the method given above is preferable for the fol-
lowing reason. To apply Horner's method for both p and p', you must input (or store)
coefficients for both p and p', which are nearly twice as many as for p alone. With
the method above, only the coefficients of p are involved.

In the calculus, textbooks recommend that,when one is graphing y = f(x), one not
only should plot some points (xj,yj), where yj = f(xj), but that one should draw an
arrow of slope f'(x;) through the point (xj, yj), to indicate the direction in which the
curve is moving when it passes that point. Let us try this for the polynomial, p, defin-
ed by

(3. 4) p(x) = 8x4 - 14x3 - 9x2 +1lx-1,

using Program (3. 2) or Program II 4. This is the polynomial that is defined in (1. 11).

In Prob. 1.5, you were asked to draw a graph of y = p(x) for this polynomial. You
might naturally have produced something that looked a bit like Fig. 3. 1.

However, let us follow the suggestion of the calculus text, and use the slopes at
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II. EVALUATION OF A POLYNOMIAL

Figure 3.1
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the four points shown. Values of p(x) and p'(x) are given in Table 3. 4. The disparity
between the slopes from Table 3. 4 and those shown in Fig. 3.1 is scandalous. With a

Table 3. 4
X p(x) p'(x)
-1 1 -45
0 -1 11
1 -5 -17
2 1 63

slope of +11 at the point (0,-1), it would seem as if the curve would have to get a-
bove the x-axis before x gets much larger. Letus try x = 0. 5. We have p(0.5)=1
and p'(0. 5) = -4. 5.

Let's face it. The curve shown in Fig. 3.1 has an entirely wrong shape. So we
had better give it the full treatment, as expounded in the calculus text. For this, we
use Program (3. 2) or Program IL 4 and tabulate our polynomial given by (3. 4) and its
derivative more finely between -1 and 2, say at the quarter points -1, -0.75, -0. 5,
-0.25,...,1.5, 1.75, 2. This gives Table 3. 5. From this table, it appears that p'
vanishes somewhere in the intervals (-0.75, -0.5), (0. 25, 0.5), and (1. 5, 1. 75).
Since p' is a polynomial of degree 3, it cannot vanish anywhere else, by a well known
theorem that says that a polynomial of degree n cannot vanish at more than n distinct
points. We therefore know now approximately where p'(x) is positive and where it is
negative, that is, where p is increasing and where p is decreasing. Figure 3, 2
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3. Derivative of a polynomial

Figure 3. 2
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II. EVALUATION OF A POLYNOMIAL

Table 3. 5
X p(x) p'(x)
-1 1 =45
-0.75 -5. 875 -12. 625
-0.5 -6.5 5.5
-0. 25 -4, 0625 12. 375
0 -1 11
0. 25 1 4, 375
0.5 1 - 4.5
0.75 -1.1875 -12, 625
1 -5 -17
1. 25 -9.125 -14. 625
1.5 -11. 5 - 2.5
1.75 -9. 3125 22. 375
2 1 63

contains the information from Table 3. 5 in graphical form, from which the shape of the
graph becomes quite evident.

Problem 3. 3. For the polynomial, p, defined by (1. 9), namely by

p(X)=x4—4x3+2x2-4x+l,

calculate p'(c) for ¢ =0, 1, 2, 3, 4. See if these values seem to agree fairly well

with the slopes of the approximate graph of y = p(x) that you drew for Prob. 1. 3.
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Chapter II1

DIFFERENCE QUOTIENTS

0. Guide for the reader.

Difference quotients are used to calculate slopes, and the derivative is defined as
the limit of a certain difference quotient. Hence this short chapter is required reading
as soon as either a slope or a derivative is encountered in the calculus course.

The most commonly occurring difference quotient is the one used to define the de-
rivative, namely

flx + Ax) - f(x)
AX ’

The important message of the present chapter is that one cannot calculate this, or any
other difference quotient, accurately with a calculator when the denominator is "small"
except with the aid of ideas from the calculus.

1. Slopes of lines.

A difference quotient is the quotient of two differences. The first difference quo-
tient that occurs in T- F is in Formula (1) in Sect. 1-4, namely

rise Ay Y2~ Y1
(1.1) run C Ax O ox. -x, ™
2 1
To find the slope, m, of the line through two different points P, (xl,yl) and
P?_ (XZ’YZ) by this formula, you could use the program
RPN
yz’ m, yl? E, XZ, E, Xl’ E’ E :
RPN
AE
[ v,, &3, v, 3, 3,0, %, =, x, =]
A
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III. DIFFERENCE QUOTIENTS

¥ x, @, x, =2, 39, v, @O,y 52, 50,ED, =.
AE

If X| = X, you should not carry out this procedure on the calculator. It objects
to being asked to divide by zero. If you try this anyhow, the calculator will indicate
an error and stop functioning, andyou will have to look in the manual to see how to get
it operating properly again. If x; = x,, you should properly say that the line has no
slope, but it does no harm to indulge in a bit of whimsey and say that the slope is .

If m is the slope of a line, you get the slope of a perpendicular line by taking
the negative reciprocal. With m in the display, this can be done by pressing the re-
ciprocal key and the change sign key, in either order.

Calculus books provide many problems involving the calculation of slopes of lines
and of perpendiculars, or determining equations of lines through two points or perpendi-
cular to other lines, or related problems involving difference auotients. If such prob-
lems are assigned in your calculus course, work them on your calculator, using one of
the programs given above, or something analogous. If none are assigned, work a sam-
pling from the following, which are taken from Sect. 1-4 and Sect. 1-50f T-F.

Problem 1. 1. Plot the given points A and B, and find the slope (if any) of the
line determined by them. Find the slope of a line perpendicular to AB, in each case.

1. A(1,-2), B(Z,1) 2. A(-2, -1), B(1,-2)
3. A(1,0), B(0,1) 4. A(-1,0), B(1,0)
5. A(2,3), B(-1,3) 6. A(l,2), B(1,-3)
7. A0, 0), B(-2,-4) 8. A(3,0), BO,-3)

Problem 1. 2. In the following problems, plot the points A, B, C, and D. Then
determine whether or not ABCD is a parallelogram. Say which parallelograms are rec-
tangles.

1. A(0,1), B(1,2), C(2,1), D(1,0)

2. A(-2,2), B(1,3), C(2,0), D(-1,-1)

3. A(-1,-2), B(2,-1), C(,1), D(1,0)

4. A(1,0), B(,-1), C(2,0), D(0,2)

Problem 1. 3. In the following problems, use slopes to determine whether the
given points are collinear (lie on a common straight line).

1. A(1,0), B(0,1), C(,-1)

2. A(-2,1), B(0,5), C(-1,2)
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1. Slopes of lines

3. A(-2,1), B(-1,1), C(1,5), DI(2,7)

Problem 1. 4. In each of the following problems (1 through 9), plot the given
pair of points and find an equation for the line determined by them.

1. (0,0), (2,3) 2. (1,1), (2,1)
3. (1,1), (1,2) 4. (-2,1), (2,-2)
5. (-2,0), (-2,-2) 6. (1,3), (3,1)
7. (0,0), (1,0) 8. (0,0), (0,1)

9. (2,-1), (-2,3)

Problem 1. 5.

a) Find the line L through A(-2,2) and perpendicular to the line L':2x+y = 4.

b) Find the point B where the lines L and L' of part (a) intersect

c) Using the result of part (b), find the distance from the point A to the line L'
of part (a).

Supposeyou havea curve y = f(x). Take different points Pl_(xl, f(xl)) and
P, (xz,f(xz)) on the curve. Then the slope of the secant joining those two points is the
difference quotient

f(xz) - f(xl)

i I

(1.2)

of the function f at the values x; and X5 If you hold X, fixed and let x, approach
X1, this slope approaches the slope of the curve at Pl'

For example, in Sect. 1-7 of T- F, it is shown that if

f(x) = x3— 3% + 3,
then the slope at the point P(x,f(x)) is 3x% - 3, Thus, the slope at P(2,5) is 9.
Let us take x; = 2, and xp = 2 + Ax for various values of Ax, and see if the slope
appears to be approaching 9 as Ax — 0. This is shown in Table 1. 1. (Note. Some
of the final zeros are not significant, but were merely copied from the display in the
calculator. These calculations were done on the HP-33E. At the end, a ten digit dis-
play was got by executing , which must be actuated by executing [g].)

At first sight, you might think that Table 1.1 PROVES that the slope is really 9,
since the two values 1072 on either side of x = 2 give 9 as the slope. In the first
place, no calculation performed at a point different from x = 2 can PROVE anything
about what happens at x = 2, as will be made evident in the next few pages. More to
the point, Table 1.1 is misleading. Though the calculator shows 9 zeros to the right
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III. DIFFERENCE QUOTIENTS

Table 1.1
AX calculated slope of secant
1 16.000 00000
0.1 9. 6100 00000
0.01 9.0601 00000
0.001 9. 0060 01000
0. 0001 9. 0006 00000
0. 00001 9. 0000 00000
-0. 00001 9.0000 00000
-0. 0001 8. 9994 00000
-0. 001 8.9940 01000
-0. 01 8.9401 00000
-0.1 8.4100 00000
-1 4.0000 00000

of the "9" 1in the entry corresponding to Ax = 0. 00001, leading one to think thatthe
slope of the secantis 9 to 10 significant digits, in fact only the first 4 of these

zeros are significant. When Ax gets close to 0, the calculator gives erroneous values

Y

for reasons which will be explained in the next section. In Table 1. 2 we give the exact
values of the slope of the secant for those values of Ax for which the values shown in

Table 1. 1 are incorrect.

Table 1. 2
AX true slope of secant
0. 0001 9. 0006 00010 00000
0.00001 9. 0000 60000 10000
-0. 00001 8. 9999 40000 10000
-0.0001 8.9994 00010 00000

It still appears reasonable that the slope of the curve at x = 2 is 9.

Problem 1. 6. In Example 6 in Sect. 1-8 of T- F, it is shown that the slope of

the curve y = Vx at x = 4 is 0. 25.

Find the slopes of the secants connecting

P (4, V4) and P,(4 +Ax, VA +Ax) for Ax =1, +0. l, £0.01, £0. 001, £0. 0001, and
+0. 00001, and see if this seems to substantiate that the slope at x = 4 is 0. 25.
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1. Slopes of lines

Remark,. Ifyou are going to store a program for this problem on a programmable
calculator, you might as well make it take care of changing the values of Ax. This
can be done as follows. Assign a register to store tne various values of Ax, and in-
itially put 10 in that register. Now write and store the first half of the program to do
the following. Divide what is stored for Ax by 10, and put the quotient back into the
Ax register. Then continue with the second half of the program by calculating the slope
of the secant, recalling Ax from the Ax register whenever it is needed for the calcu-
lation. Then stop. The first time you run the program, you get the slope for Ax =1.
The next time, you get the slope for Ax = 0.1. The next time, you get the slope for
Ax = 0.0L And so on. For the negative Ax's, start by storing -10 in the Ax
register.

Problem 1. 7. It will turn out that the slope of the curve y = sin x at x = n/3 is
0. 5. Find the slopes of the secants connecting

T ol -
Pl(3’ sin 3) and P2(3 +Ax, sm(3+Ax))

for Ax = 1, £0.1, £0. 01, £0. 001, £0. 0001, and +0. 00001, and see if this seems to
substantiate that the slope at x = w/3 is 0.5 (See what happens if you neglect to
use radians. Explain why the numbers you get might have been expected. )

Problem 1. 8. For

f(X)zx-fl

(see Prob. 8 at the end of Sect. 1-8 of T- F) the formula worked out for f'(x) gives
£'(1) = 0.25. So, by Formula (3) in Sect. 1-8 of T-F,

o) o HEax) - £()
Ax —0 Ax

W [—

Calculate the difference quotient

f(1 +Ax) - £(1)
AX

for Ax = +0.1, £0.01, £0.001, +0.000l, and +0.0000l, and compare with f'(1).

Problem 1. 9. The relationship between demand and price for coffee in the USA
from 1960 through 1974 was given by

(1. 3) Ad + Bp = 1.

Here A and B are constants, d is the number of pounds consumed per person per year,
and p is the price in dollars per pound. (See Prob. 19 at the end of Sect. 1-50f T-F.)
Suppose that the demand would be 20 pounds per person per year if coffee were given
away free, while nobody would drink any coffee at all if the price should rise to $3. 35
per pound. What are the values of A and B?
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IIL DIFFERENCE QUOTIENTS

2. Danger of cancellation.

Suppose we continue Prob.
the results shown in Table 2. 1.

some of them are not significant. )

l. 6 down to Ax = £1077 i10'8, and beyond. We get

’

(Again, we copy zeros from the display even though

Table 2. 1
AX calculated slope of secant

on HP-33E on TI-57 on TI-SR 50A
1077 | 0.25000 0. 24000 0. 25001
1078 0. 20000 0. 20000 0.25010
107° 0. 00000 0. 00000 0.25100
10719 | 0. 00000 0. 00000 0. 27000
10" | 0. 00000 0. 00000 1. 00000
10712 | 0. 00000 0. 00000 1. 00000
10713 | 0. 00000 0. 00000 0. 00000
~10713 | 0. 00000 0. 00000 0. 00000
-107*% | 0. 00000 0. 00000 0. 00000
~10"1 | 0. 00000 0. 00000 0. 20000
~1071% | 0. 00000 10. 00000 0. 24000
~1079 0. 00000 1. 00000 0. 25000
~1078 0. 30000 0. 30000 0. 25000
-107" | 0. 25000 0. 26000 0. 25000

We were doing fine until Ax got very close to 0, and then things went all to
pieces. On any other calculator, similar results would be forthcoming. Indeed, for an

8-digit calculator, you would probably already be getting peculiar answers at Ax = + 10_6

and if your calculator carries still fewer digits you would be in trouble still sooner.

Or consider the curve y = x~1

digits, is seen to be

= -2.0408

At x = 0.7, the slope of this, to 10 significant

16327 .

Let us calculate the slopes of the secants connecting the points at x = 0. 7 and at

x = 0.7 + Ax for Ax=+10"" for various values of n.

2. 2.

The results are given in Table

Again, we start off very well, but when Ax gets quite small and we should be
getting close to the right answer, everything goes wrong. We get better and better down
after which we get worse and worse. Onother calculators,

to Ax = 1075 or Ax = 107°

)
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2. Danger of cancellation

Table 2. 2
AX calculated slope of secant
on HP-33E on TI-57 on TI-SR 50A
107¢ -2.0120 725 -2.0120 7243 -2.0120 72434 6
1073 -2.0379 05 -2.0379 050 -2.0379 05034
107* -2.0405 3 -2.0405 25 -2.0405 2482
107° -2.0408 -2.0407 8 -2.0407 872
1076 -2.0410 -2. 0408 -2.0408 13
107! -2.0500 -2.0410 -2.0408 2
1078 -2.1000 -2. 0400 -2. 0408
1070 -2.0000 -2.0000 -2. 0410
10719 | ~10. 000 -2.0000 -2. 0400
10”1 0. 0000 0. 0000 -2. 0000
10712 0. 0000 0. 0000 -2. 0000
10713 0. 0000 0. 0000 0. 0000
-10713 0. 0000 0. 0000 ~10. 000
~107 12 0. 0000 0. 0000 -3.0000
~10” 1 0. 0000 -10. 000 -2. 1000
~107 10 0. 0000 ~3. 0000 ~2. 0500
~1079 -2.0000 -2.1000 -2.0410
~1078 -2.0000 -2. 0500 -2. 0409
-1077 -2. 0400 -2. 0410 -2. 0408 2
~107° -2. 0400 -2. 0409 -2.0408 19

similarly erratic results would be forthcoming.

To see how this happens, write out the calculation for Ax = 10'8 as done on the

HP-33E, which is a 10 digit calculator. We get

’

1. 4285 71408 - 1.4285 71429

10”8

=-2.1.

The values of f(x) = x ! at x=0.7 and x = 0.7 + 1078 are very close together, so
close that the first 8 digits agree. When we subtract, these first 8 digits cancel,
leaving us only a 2 digit answer.
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III. DIFFERENCE QUOTIENTS

Let us look at the precisions and accuracies involved in this calculation. The
HP-33E gave the approximations

(2. 1) 1. 4285 71408
(2. 2) 1. 4285 71429

for (0.7 + 10_8)—l and (0. 7)—1, respectively. These are both precise to 10 digits, but

their difference is precise to only 2 digits.

The absolute error for (2. 1) is about 1. 6 X 10_10, and that for (2. 2) is about

-4.3 x 10710, When we subtract, the absolute errors should subtract. So the absolute
error for the difference should be ‘about 5. 9 X 107 0, which it is indeed. So our sub-
traction has not made a great difference in the absolute error.

The relative error for (2.1) is about 1.1 X 10-10, and that for (2. 2) is about
-3.0 x 10~10, However, when we subtract we get a very much greater relative error for

the difference, namely about 2.9 x 107

To get the slope of the secant, we must now divide the difference of (2. 1) and (2. 2)
by 1078. This leaves the relative error unchan ed, so that it is still about 2.9 X 10~
However, it multiplies the absolute error by 10°, increasmg it to about 5.9 x 1072,

So, if we take two points with nearly equal x-coordinates, and try routinely on
the calculator to calculate the difference quotient or the slope of the secant, we will
have bad cancellation, and will come out with an answer that is neither very precise
nor very accurate.

We can calculate a much more precise and accurate answer by using a calculus
trick. For f(x) = x~1

H

1 L
flx+Ax)-f(x) x+Ax  x 1 x-(x+Ax) -1

—

AX Ax T Ax (x+Ax)x | (x+Ax)x

That is, the difference quotient can be put in the form

-1
2.3 I S
(2.3) (x + Ax)x
where there is no danger of cancellation.

If we put x = 0. 7 and Ax = 1078 in (2. 3), we get on the HP-33E the correct
slope to 10 digits, namely

-2. 0408 16297 .

But if we just subtract without using the calculus trick, we lose 8 digits, and cannot
hope to be anywhere near right.
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2. Danger of cancellation

Moral. If one wishes to calculate a difference quotient for two points very close
together, one had better use some ideas from calculus to avoid a poor result, i. e., to
avoid cancellation.

Problem 2. 1. Find the appropriate calculus trick which would allow you to calcu-
late the difference quotient (f(x + Ax) - £(x))/Ax for f accurately, in case
2
X

4
X

(@) f(x)
©) f(x)

(c) you already know how to calculate the difference quotient for the functions
g and h accurately and

n

l. f(x) = gx)h(x) 2. f(x) = gh(x)).

Hint. Look at how your calculus book derives the formulas for differentiating such
a function f (for (c)2, look up the derivation of the "chain rule").

We discuss further ways of using ideas of calculus to combat cancellation when
evaluating f(x + Ax) - f(x) for “small" Ax in Sect. 3 of Chap. IV.
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Chapter IV
SOURCES OF ERROR

0. Guide for the reader.

Almost every calculation performed on a calculator is subject to some error, for
reasons which will be explained during the course of the chapter. Manufacturers of
calculators try to design them so that the error in a single step "doesn't make any dif-
ference. " Some manufacturers take more pains with this than others. But even with the
best calculators, if one has an extended sequence of steps then the errors of the indi-
vidual steps (each by itself perhaps too small to matter) can accumulate to produce at
times a surprisingly large total error. For calculators whose manufacturers have not
kept the errors for individual steps as small as they should, this accumulation of error
can lead to very misleading final answers without the user being aware anything is
wrong.

The most common source of error is roundoff. This is discussed in Sect. 1. The
effect of roundoff error can be magnified by cancellation, as discussed in Sect. 2. Pos-
sible ways to reduce cancellation are discussed in Sect. 3. Some of these topics in-
volve ideas from differentiation. So it is best to wait until you have some familiarity
with differentiation before reading this chapter. However, you should not wait past that
point, since it is important to learn how to minimize errors.

1. Roundoff.

Your first brush with roundoff occurs when you try to enter a number into your cal-
culator which won't fit. For example, there is no way to enter the number = into your
calculator. The reason for this is that this number cannot be written exactly as a deci-
mal fraction with eight or ten digits or thirteen or a hundred. Now you may argue that
your calculator actually boasts a key marked w which supposedly puts the number =
into the display every time you press that key. But, it clearly cannot get = into the
display to more digits than the display can hold, nor can the calculator store = inter-
nally to more digits than the calculator will hold. Some users discover this discrepancy
when they use their calculator to compute sin m (in radian mode) and get a nonzero
answer. For example, sin 7 = - 4.1 X 10710 on a certain 10 digit calculator, corre-
sponding to the fact that,on that calculator, the m key delivers the number
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1. Roundoff

(1. 1) 3.1415 92654
rather than the nonterminating decimal expansion
™= 3.1415 92653 58979 32384...

On that calculator, the manufacturer has provided the value of w correctly round-
ed to 10 decimal digits. This means that the value (1. 1) of w provided is the closest
number to w obtainable if one has only ten decimal digits to work with.

More generally, to round a number x to N digits means to determine the N-digit
number which is closest to x. You can usually obtain this rounded number by writing
down the first N+1 significant digits of x, adding 5 in the (N +1)st place, and then
throwing away the (N+1)st digit. For example, rounding w to 4 digits gives

3. 1415
+_——5
3.1420

which gives 3. 142, while rounding it to 13 digits gives
3.1415 92653 5897

+ 5
3. 1415 92653 5902

which gives 3.1415 92653 590 . So, rounding does not affect only the last digit re-
retained, but may also affect earlier digits. As an extreme example, rounding the num-
ber 1.9999 99999 93 to ten digits gives the number 2.0000 00000, all of whose
digits are different from the corresponding digits of the original number. One minor ex-
ception would occur if one wishes to round 0. 99999 99999 7 to ten digits. After add-
ing 5 X 10"11, you throw away the last two digits to get the rounded ten digit number
1. 0000 00000. Butrounding 0.99999 99999 3 would give 0. 99999 99999.

There is a lazy way to fit @ number requiring more than N digits into an N-digit
calculator, called truncating. In this way, you simply throw away all the digits after
the N-th. But this is worse than rounding for two reasons. It doesn't always get the
best N-digit approximation into the calculator, so the error made may be larger than
necessary. Also, errors are less apt to offset each other in subsequent calculations,
since all numbers start out being less than or equal to what they ought to be (in absolute
value). In short, truncating is a biased way to fit numbers into the calculator.

Whether it is done by rounding or truncating or by yet another way, the error made
when trying to fit a number into an N-digit calculator is called roundoff error.

Problem 1. 1. Round each of the following numbers to 10 digits.

% = 0. 66666 €6666 66666 ...
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In2=0.69314 71805 59945 ...
m= 3.1415 92653 58979 ...
N2 = 1.4142 13562 37309...
sin 1 = 0. 84147 09848 07896 .
249 = 56294 99534 21312

tan (1. 5612 91773) = 105.20 95563 04960 ...

If a number is rounded to N digits, and the rounded value is in turn rounded to
M digits, with M < N, one will not necessarily get the same value as if the original
number had been rounded straight off to M digits.

Problem 1. 2. Invent a 6-digit number B such that, if one first rounds it to 4
digits and then rounds that result to 2 digits, one will get a different number from what
one gets if one rounds B directly to 2 digits.

Once you begin to operate on the numbers you have somehow managed to get into
your N-digit calculator, you incur further roundoff error because the results that you
should get by your calculations can usually not be written exactly as N-digit numbers.
For example, try dividing 2 by 3. But, calculators differ substantially in how they
cope with this problem. We now illustrate this with two calculators, the HP-33E and
the TI-57.

The HP-33E is a 10-digit calculator. But, in order to find out exactly what an-
swers it calculates, one has to learn some of its eccentricities. Although it is a 10-
digit calculator, the display often shows fewer than 10 digits. It can be set to show
very few digits in the display, if one wishes (see the manual), but it will still be holding
10 digits internally. At any time, one can see what the 10 internal digits are by press-
ing the MANT key (which has to be actuated by first pressing the key g). If one press-
es SCI followed by 7, 8, or 9, the display will show a 7-digit truncated approxima-
tion to what the calculator is holding internally. If one presses SCI followed by 6,
the display will show a 7-digit rounded approximation to what the calculator is holding
internally.

The TI-57 is an 11 digit calculator, but the display never shows more than 8
digits, which are a rounded version of what the calculator is holding internally. As ex-
plained in the manual, one can set the display to show fewer digits. However, often
the 8-digit display is actually giving fewer significant digits, because there are some
zeros in the lefthand spaces.

For example, if one divides 2 by 3, the display shows 0. 6666 667. The cal-
culator is actually holding

0. 66666 66666 6
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1. Roundoff

internally, but to find this out one has to use some trickery. After dividing 2 by 3,
subtract 0. 66666. Then the display shows 0. 0000 067. However, the calculator is
then actually holding

0. 00000 66666 6
internally. To show this, multiply by 100,000, whereupon the display shows 0. 6666 66.

Incidentally, one cannot key a number of more than 8 digits directly into the dis-
play of the TI-57. If one attempts to key in 1. 5612 91773 directly by pressing the
digits (and decimal point) in order, the TI-57 will accept the first 8 digits (with the
decimal point) and show them in the display, but will completely ignore the final 7 and
3. Although the TI-57 can actually hold 11 digits, it refuses to accept more than 8 if
they are just keyed in successively. In order to get 1.5612 91773 into the TI-57, you
first key in 9.1773 X 10”2 and then add 1. 5612 to it.

)

Still other calculators have still other variations of this eccentricity.

Problem 1. 3. Find out how many digits your calculator carries internally, and how
to read all of them out. Also, find out how to enter as many digits of a number as pos-
sible into your calculator.

Problem 1. 4. Each of the numbers mentioned in Prob. 1.1 is obtainable (approxi-
mately) on your calculator with a few key strokes. Use what you have learned in Prob.
1. 3 to find out how accurately your calculator provides the numbers mentioned in Prob.
1. 1. If you have an 8-digit or 9-digit calculator, replace the last line of Prob. 1.1 by

tan (1. 5612 918) = 105. 20 98551 97179 ...

Incidentally, if you should try Prob. 1.4 on an HP-33E, you would get the 10-
digit rounded numbers you were supposed to get for Prob. 1. 1. That is, the approxima-
tions given by the HP-33E are as close to the numbers as anyone can get with 10 digits.

You do not do this well with every calculator, as you possibly found out when you
tried Prob. 1.4. For example, the answers produced by the TI-57 are given in Table 1. 1,
together with their errors.

Of these approximations, only the one for w is correctly rounded to 11 digits.
The next to last number is so far off that the error is already evident from the rounded 8
digit display, which is all that calculator will let you see without a special effort on
your part.

We consider now in more detail how these two calculators cope with the fact that
the result of a calculation does not fit into the calculator. Consider, for example, the

addition of two numbers of "different" sizes. Say we wish to add

10000 00000
+ 666 66666. 67 .
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Table 1.1
expression as evaluated approximate
on TI-57 error
2/3 0. 66666 66666 6 6.7 x 107 1°
In 2 0.69314 71810 0 - 440, x 10 12
11' 3.1415 92653 6 - 1.ox10 Mt
2 1.4142 13562 0 37, x 10 M1
sin 1 0. 84147 09853 8 - 570, x 10712
249 5.6294 99652 8 x 107 ~12000. X 10°
tan (1. 5612 91773) 105. 20 95585 2 - 2200, x 1079

This would give a 12-digit sum, which is beyond the capacity of either the HP-33E or
the TI-57. In such a case, the TI-57 truncates all digits in the smaller number beyond
what would make 11 digits for the larger number. So it gives the sum

10666 66666. 6 .

For the subtraction

1 00000 00000
- 66666 66666.7

’

it truncates the second number, giving

1 00000 00000
- 66666 66666

and so gets

33333 33334

for the difference.

The HP-33E apparently adds an extra zero to the larger number, making it tempo-
rarily an 11-digit number. It then rounds the smaller number so that it does not stick
out beyond that. Then it adds (or subtracts) and, if 11 digits result, it rounds down to
10. Thus, for the first addition, the HP-33E gives 10666 66667 . For the subtraction

1. 0000 00000
- . 6666 66666 7

H

it gives
0. 33333 33333 .
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Next,we consider multiplication. When a calculator that holds N digits is asked
to calculate the product of two N-digit numbers which it is holding, it generates a prod-
uct with 2N digits (sometimes only 2N - 1). This must be reduced to N digits so the
calculator can hold an approximation for the product. Some calculators do this by round-
ing off the full product, and some by truncating it. Rounding off is preferable, of course.

The HP-33E rounds off after multiplying. Thus, the product of 1.1111 112 and
1. 1111 111 is

1. 2345 67987 65432 .
For this, the HP-33E gives the approximation
1.2345 67988,
correctly rounded to 10 places.
The TI-57 truncates after multiplying. It gives the product above internally as
1. 2345 67987 6,
truncated to 11 places. It rounds this correctly to 8 digits for the display.

Problem 1. 5. Try to find out if your calculator rounds or truncates after multiply-
ing.

We hope that you are by now convinced that your calculator usually makes an error
when carrying out any of the arithmetic operations and that these errors differ from cal-
culator to calculator, even if you start with the same numbers.

There are also errors associated with the use of the various function keys on your
calculator, such as the JVx key or the sin key and the like. We comment on this in
Chap. I . To be precise, such a key delivers a certain function exactly and without
error. But, you are usually not interested in the function given by the key, but rather in
the function written on the key, and these two functions usually differ. If, for example,
a certain 10-digit calculator delivers the answer

1. 4142 13562

when you press the \x key with the number 2 in the display, then this answer is, as
an_approximation to the number V2, in error by about 0. 373 X 107~.

The error in an answer produced by one of the calculator keys depends on the argu-
ment and also varies from calculator to calculator even if you start with the same argu-
ment. For example, the sin key delivers the answer 0. 84147 09848 on an HP-33E
and the answer 0. 84147 09853 8 on a TI-57 when the number 1 is in the display
(and the calculator is inradian mode). Forcomparison, sin 1 = 0. 84147 09848 07896...

This also shows that the error is often more than just the roundoff due to the fact that
the correct answer won't fit into the calculator.
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In short, if a key on your calculator purports to evaluate the calculus function f,
and if you enter a number x into the display and press the key, you will get

f(x) - ¢

instead of the exact value f(x). Here ¢ is the inherent calculator error. It varies from
one function to another, it varies from one x to another, and it varies from one calcula-
tor to another. We just saw an instance for the function sin. Let us see what happens

for tan. In Table 1.2 we list five values of x, together with values of their tangents

Table 1. 2
X tan x
x, | 9.5045 53935 x 107°| 9.5048 40148 20x107
x, | 15612 91772 105.20 95452 35
X3 1. 5612 91772 4 105. 20 95496 63
X4 1. 5612 91773 105. 20 95563 05
X5 102. 09 19665 102. 09 23322 61

rounded to 12 significant digits. Values of the tangents, with errors, as calculated on
two calculators are given in Table 1. 3 for the same values of x that were used in

Table 1. 3
X tan x
on HP-33E € on TI-57 €

-3 -13 -3 -13
<, | 9.5048 40148 X 10 2 x 10 9. 5048 40007 1 X 10 1411 X 10
x, | 105.20 95452 351070 | 105.20 95474 6 —2225 x 109
<, 105.20 95518 8 -2217 x 1072
x, | 105.20 95563 5x 1070 | 105 20 95585 2 -2215 x 107°
< | 102.09 23322 61 x 1070 | 102.09 23643 6 ~32099 x 102

Table 1. 2, except that we could not give a value on the HP-33E for x, since x3 is an
11-digit number and would not fit into the display of the HP-33E.

The same discussion applies to a function that cannot be approximated by pressing
a single key, but requires a succession of key strokes. That is, you would have to write
a program to evaluate f. Every key that you press in the program contributes an error,
and these errors accumulate in a complicated fashion. So, if you enter a number x into
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1. Roundoff

the display and run your program, you will get
f(x) - ¢
instead of the true value f(x).

If you use the same program to calculate f(x') for some x'# x, you obtain the
number

f(x') -¢'

and the error ¢' is, in general, different from ¢. But, typically,for x' "near" x, you
should expect all errors ' to fall into some interval (¢ ;,,¢max)- Under ideal cir-
cumstances, the calculated value for f(x) is obtained by rounding the exact value f(x)

to the number of digits carried by the calculator. In that case,

€ =-€ , =5X lO—d—llf(x)I,
max min
assuming the calculator to carry d digits. Usually, €m and ~€min will be larger
than that, but usually epax = - €min- 1t is possible, though, to have ep 4, quite dif-

ferent from -e,.;., in the presence of systematic error in the calculated function values.
In any case, we refer to the larger of the two numbers €max and -epj, as the noise
level in the calculated function values. Thus,

|calculated value of f at x - f(x)| < noise level .

For example, we would surmise from Table 1. 3 that the noise level in function values
tan x for x near 1.5612 91772 is about 4 x 1078 on an HP-33E and about 2 x 107°
on a TI-57. Of course, more function values would be required to come to a reliable
statement about the noise level. Also, one would note that, on the TI-57, all errors for
X near 1.5612 91772 agree to about three digits. In fact

(c ) = (223 x 10°°, -221 x 10°%),

N €
min’ max

which is a sign of systematic error in the algorithm used for tan on that calculator.

It is usually quite tricky if not impossible to understand how the errors made at
each step in your program for f accumulate to give the error ¢ in the final answer for
f(x). As an indication of what might be involved in the study of such error propagation,
we now discuss the situation where we are supposed to evaluate the function f at some
point X0 but have available only the approximation x3 - Ax to xg. The question is:
How does this argument error Ax affect the accuracy of the computed answer for f(xo)?

The computed answer

f(x. - Ax) - ¢'

0

is now in error on two counts. There is the calculation error ¢' and there is also the

error f(xg) - £(xg - Ax). This latter error we can gauge with the help of calculus.
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Looking forward to (1. 4) of Chap. VI, we have

flx. - Ax) = f(xO) - f' (xO)Ax .

0

So the total error in our computed answer is about
! (xO)Ax +€' .

(Recall that error = true value - approximation.) Inother words, the error Ax in the
argument xqg + Ax enters the final answer multiplied by f'(xo). Hence, the greater
lf'(xo)], the more sensitive is the final answer to the error Ax in the argument X tAX.

To be precise, Ax has also affected the calculation error, since, as we said
earlier, we cannot expect ¢' to equal the error ¢ associated with the argument X0-
But, though ¢ and ¢' could be considerably different, each is less than the noise level
in absolute value. In summary, we expect the calculated value for f(xo) to be of the
form

(1.2) f(xo) - f'(xO)Ax—e' ,
with |e'| < noise level.

We illustrate these ideas, using once again the tangent. Suppose you wish to
calculate tan (1. 104\ 2). From the accurate value of \J2 given in Prob. 1.1, you can
calculate that to 14 significant digits

1.10442 = 1.5612 91772 8599 .
This has too many digits to input in either the HP-33E or the TI-57, or most any other
calculator. Of course, you can round it off to the nearest number that can be input. For
the HP-33E, this would be
(1. 3) 1. 5612 91773 .
For the TI-57, this would be
(1. 4) 1.5612 91772 9 .

Actually, the situation is worse than that. You start off innocently to calculate
tan (1. 104V2). So you take 2 and multiply by 1.104, and think you are ready to

press the tan key. But what do you have in the display? On the HP-33E, you have
not (1. 3) but

(1. 5) 1. 5612 91772 .
On the TI-57, you have not (1. 4) but

(1. 6) 1. 5612 91772 4 .
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In order to determine the error in the numbers (1. 5) and (1. 6) as approximations to
1. 104\/2, we use a more precise approximation for 2 than given in Prob. 1. 1, and find
that

(1.7) 1.10442 = 1.5612 91772 85989 ...
We have
(1. 8) tan (1. 104N2) = 105.20 95547 54012 ...
We have

d 2

T tan X = sec X .

dx
So for f(x) = tan x, we have for Xy = 1. 1042

f'(x.) =11070 .

0
On the HP-33E, we got

Xy~ Ax = 1.5612 91772

(see (1. 5)). This is the x, of Table 1.2. So

Ax =8, 5989 x 10 10

Hence

£'(xg)Ax =95 X 10",

which is much larger than the noise level 4 X 108 surmised from Table 1. 3. So, in
this case, the error in the HP-33E value for tan x, (recorded in Table 1. 3), if consid-
ered as an approximation to tan (1. 104V2) (given in (1. 8)), is almost entirely due to
the discrepancy Ax between x, and xg = 1.104V2.

On the TI-57, we got
XO -Ax = 1. 5612 91772 4
(see (1. 6)). This is the x5 of Table 1.2. So

Ax = 4.5989 x 10 10 |

Hence

f'(xO)Ax ~ 5091 x 10 |
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This is a bit over twice the noise level which we surmised earlier from Table 1. 3. In
this case, the noise level is therefore a significant part of the error. More explicitly,
we find, with ¢ as taken from Table 1. 3 for x5, that

9

f'(xO)Ax +e¢ = (5091 - 2217) X 10 ° = 2874 X 1079

This agrees to all four digits with the error got by subtracting the value of tan X3 in
Table 1. 3 from the value given above for tan (1. 104\ 2).

Problem 1. 6. Show that you may expect difficulties in evaluating expressions of
the sort

n
(f(x))
accurately for large n.

The only simple remedy against roundoff error is to carry more digits in the calcu-
lations. Since the number N of digits which your calculator carries is fixed, this re-
quires special procedures. A common scheme is double precision in which all calcula-
tions are carried to 2N digits. For each number, the 2N most significant digits are
stored in two registers. Procedures are worked out to add, subtract, multiply and divide
two such numbers with the aid of the ordinary arithmetic of the calculator. On the more
sophisticated programmable calculators, there are programs available for this. But you
would find it quite a challenge to develop such programs yourself.

Problem 1. 7. For the argument 1.5612 91773 of the tan in Prob. 1.1, use the
accurate value of m provided in Prob. 1.1 to compute the first ten significant digits of
the difference d between (w/2) and said argument. Then use this accurate value to
calculate

n_ _ o1
tan (1. 5612 91773) = tan(2 d) = cotd = tan d
on your calculator and compare with the value given in Prob. 1.1 and in Table 1. 1.

Problem 1. 8. Use an accurate value of w/2 with the value of 1. 1042 given
in (1.7) to calculate an accurate value of

D=m/2-1.104V2 .
Then
tan (1. 104y2) = tan (m/2-D) = cot(D) = 1/tan (D).

Use this to calculate an accurate value of tan (1. 104v2), and compare with (1. 8).
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2. Cancellation.

Cancellation occurs when you subtract a number from another which is almost
equal to it. For example, let us calculate the difference 22/7 - m on a 10-digit cal-
culator. This gives

3. 1428 57143
- 3.1415 92654
0.0012 64489

Note that we incurred no roundoff error in this subtraction. So, what is the problem?

The problem becomes apparent when you compare our computed answer with the
accurate difference

22/7 - mw= 0.0012 64489 26734 ...

You now see that our computed difference, as an approximation to the number 22/7-w
is accurate only to seven digits, even though we started with approximations to 22/7
and w which are accurate to 10 digits. We lost three digits of accuracy, because we

lost three digits of precision. The first three significant digits in the two numbers 22/7
and w coincide and therefore cancel each other when we subtract.

’

In other words, cancellation is not an error in itself. Rather, cancellation allows
earlier errors to become more prominent.

Cancellation can happen in less obvious ways. For instance, consider the poly-
nomial

4
(2. 1) X -8x3+12x2+16x+4.

Let us try to calculate its value for x = 40/9. Arranged for Horner's method (see Sect. 1
of Chap. II), the polynomial has the form

((x-8)x+12)x +16)x + 4 .

With x = 40/9, we have on the HP-33E calculator
(x - 8)x =-15.802 46914 .
So when we add 12, the first digit cancels. Then
(x - 8)x +12)x =-16,899 86284 .
So when we add 16, two more digits cancel. Then
(((x = 8)x+ 12)x + 16)x =-3.9993 90400 .

So when we add 4, four more digits cancel, and we get the calculated value
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0. 00060 96000 .

Altogether, we have lost 7 significant digits through cancellation. As we were
using the HP-33E, which has 10-digit arithmetic, we cannot expect more than 3 digits
to be correct at this stage. The value of the polynomial is

-4; = 0.00060 96631 61103 49032 ...
9

So we were a bit lucky, as the fourth significant digit is nearly correct.

Cases of severe cancellation occurred in Sect. 2 of Chap. IIL In particular, look
a few lines below Table 2. 2 of Chap. III, where the first eight digits cancelled, leaving
only two correct.

Problem 2. 1. See what value your own calculator gives for the polynomial (2. 1)
when x = 40/9.

Problem 2. 2. Attempt to calculate the difference quotient

VX + Ax - x
Ax

(2. 2)
-7
for x = 3 and Ax =10 .

Remark. Calculated values of (2. 2) for x = 4 and various small values of Ax
are given in Table 2. 1 of Chap. III.

Problem 2. 3. Attempt to calculate the difference quotient

3 3
2. 3) Ux +A;<X- Ix

for x = 4 and Ax = 10-7.
Problem 2. 4. Attempt to approximate
(2. 4) fx) = x-Ilnx-2
for x = 3.1462. How many digits do you think are correct in your calculated answer?

Problem 2. 5. Try to calculate the difference quotient

sin (x + Ax) - sin (x - Ax)
2Ax

(2. 5)
-7
for x = 2 and Ax = 10 .

Problem 2. 6. Calculate
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(2. 6) sinh (L) .
,20

You will learn in due course (if you do not already know it) that sinh x is called the
hyperbolic sine of x, and is defined as

@.7) sinh x = %(e - e

If your calculator has a sinh key, use (2. 7) nevertheless for the calculation, so as to
cause cancellation.

Remark. An accurate approximation for (2. 6) is
9.5367 43164 0625 x 10 '

A famous equation is
X X X
(2. 8) € = 1+ + T+ 7+ 5T+ ..

which you will learn when you come to series in the calculus. Of course, this is an in-
finite sum, and so you cannot evaluate it by adding it up. But you will then also learn
that
(2.9) e = p (x) +R_(x)

N N

with PN the polynomial given by

2 N
(2. 10) pN(x)z 1+-ix—: +§—:+...+§——:
and
N+1
(2. 11) Ry () :—(;T_-rl_).' et

for some £ between 0 and x. It is possible to verify that

R__(-10)
‘—50—-— <5 X% 10 11 .

(2.12) —r
(5]

You would therefore expect to calculate e 10 to 10 digit accuracy by evaluating the
polynomial P at -10. And, indeed, by (2. 9) and (2. 12) this would succeed if you
could evaluate Pso to 10 digit accuracy. But unfortunately, you encounter rather
severe cancellation if you attempt to calculate p50(—10) on a calculator.

You could, of course, use Horner's method to evaluate pg,. That would give
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x 1 A 1
(...((50:+49:)x+48_,)x+... +1:)x+l .

But you would be better off to evaluate pgy in an alternate "nested form"

X

(O

X .4 X X
+1)49+1)48+...)2+1)1+1.

Use of a program with a suitable subroutine will let you carry out this calculation with
little effort.

"Problem 2. 7. Calculate an approximation for e~10 by evaluating pgy at -10.
Compare with what your calculator gives for e~10 , and see how bad the cancellation
effect is.

“Problem 2.8. In doing Prob. 1. 8, you might decide that instead of calculating D
by hand, you could shuffle off the work onto the calculator. So calculate D by calcu-
lating w/2 and 1. 104N2 on your calculator, and subtracting them. Explain why you
get such a poor answer for tan (1. 1042) this way.

In extreme cases, cancellation can be so bad that not more than one correct digit
could survive. However, roundoff will usually throw the final digit several units off
(or even the last two digits). In such a case, the answer being given by the calculator
will have nothing whatsoever to do with the correct answer. When this happens, it is
another case of the calculator producing "noise. " A particularly severe case occurs
near the end of Sect. 3 of Chap. VII

3. Some ways to reduce cancellation.

Roundoff errors are unavoidable and usually matter little, except when they are
catapulted into prominence through cancellation. It is therefore important to be on the
lookout for cancellation and to try to avoid cancellation if possible.

At times, cancellation can be reduced or avoided merely by rewriting a formula
appropriately. A famous instance of this is the quadratic formula

~b + Jb% - 4ac

(3. 1) X = >a
for the two roots of the quadratic equation
2
(3. 2) ax +4+bx +c=0.
Suppose we wish to solve
2
(3. 3) x"-200x+1 = 0.

By the quadratic formula, (3. 1), the two roots are
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200 + 440000 - 4
2 )

or

(3. 4) 100 £49999 .

On the HP-33E, we get
V9999 = 99.994 99987 .

When we use the + sign in (3. 4), we get

(3. 5) 199. 99 49999

as one root. But when we use the - sign in (3. 4), the first five digits cancel and we
get

(3. 6) 0.005 00013 ;

because of the way the HP-33E subtracts, we happen to get six significant digits. So
we have at most six significant digits of accuracy (or perhaps only five on some calcu-
lators).

Of course, six significant digits is more than one usually needs. So why worry?
There may be further cancellations in subsequent calculations, and for that reason we
would like to maintain high accuracy as much as possible, particularly when this can be
done easily, as in the present case. Take the quadratic formula, (3.1), and multiply

top and bottom by
-b ¥ b - 4ac .

This gives

2cC

T ~b3Jyb® - dac

For the equation (3. 3), this would give

(3. 7)

2
200 ¥4/40000 - 4

or

1
(3. 8) 100 49993 °

If we use the - sign on the calculator, we get something like (3. 5), but with a LARGE
cancellation. But if we use the + sign, we get
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1
199. 99 49999 °

which works out to
0. 00 50001 25006.
This is the other root, correctly rounded to 10 significant decimal digits.

We have given the procedure we did for the quadratic formula because it can be
adapted to other situations. Actually, for the specific equation (3. 3),the matter could be
handled more simply as follows. If r; and rp are roots of (3. 3), then by Cor. 2 for
Thm. 2.1 of Chap. II,

(x- rl)(x—rz)
must divide the left side of (3. 3). As the coefficient of x‘2 must be unity, we get

2
x -200x+1 = (x—rl)(x—rz).

Multiplying out the right side of this, we see that

rlr2 = 1.
So, as soon as we find that (3. 5) is an approximation for r,, wecan immediately write
down
R B 1
2 rl T 199.99 49999

This is the same result that we got above, by a different argument.

Problem 3. 1. For the formula (2. 2), find an equivalent formula that does not have
cancellation.

Hint. Use the same trick that was used for the quadratic formula.

Problem 3. 2. For the formula (2. 3),find an equivalent formula that does not have
cancellation.

Hint. Multiply top and bottom by
2 1 1 2
x +Ax)3 + (x + Ax)_gxg +x3 .
Problem 3. 3. Calculate both roots of

x2-683x—1=0

to full accuracy.
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Problem 3. 4. For the difference quotient (2. 5),find an equivalent formula that
does not have cancellation.

Hint. Remember that addition formula for the sine function,
sin (@ + B) = sin @ cos B+ sin Bcos a ,

and make use of the fact that your calculator will evaluate

sin Ax
AX

accurately for Ax near (but not at) zero. See Chapter VIII for a discussion of this latter
point.

Problem 3. 5. For the difference quotient

cos (o + Ax) - cos (@ - Ax)
2Ax ’

find an equivalent formula that does not have cancellation.
Problem 3. 6. Find a different way to write the expression
1 -cosx
for x near zero which avoids cancellation,
Hint. Multiply and divide by 1 + cos x.

Remark. In view of Problems 3.1, 3.2, 3.4 - 3. 6, it would be instructive to re-
view Prob. 2.1 in Chap. IIL

“Problem 3. 7. Find a way to calculate 10 without the cancellation that you got
in Prob. 2.7, and perform the calculation.

Hint. Recall that

-X 1
e = .
X
e
So
e—lO o1
- 10 ¢
e

If we take x = 10 in (2. 8), we get e!0 with no danger of cancellation. Furthermore,
on a 10-digit calculator, you can stop with the term
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4
10 3
431
and get el0 with 10 significant digits, since by (2. 11)
R43(10) <5 X 10_11
10 :
e

A second way to avoid cancellation is through a bit of calculus. Cancellation of=
ten occurs when a function f is evaluated near a zero, i e., near a point xqg for which
f(xg) = 0. In such a case, looking forward to (1. 4) of Chap. VI, we have
)

(3.9) f(x)Ef(xo) +f'(x0)(x- x.) = f'(xo) x - x

0 0

with the error in this approximation the smaller the closer x is to Xqg-
If now x is given to us near x;,, then there can be cancellation just in calculat-

ing x - Xq, and the approximation (3.9) may then be of little use to us. But, some-
times in such a situation, x is (or can be) given explicitly in the form

x=x0+h

and then (3. 9) can be used effectively in the form
(3.10) f(x0 + h) = f'(xo)h .

For example, in Prob. 2. 6, you experienced much cancellation when evaluating
sinh (2=20). In this case, you have f(x) = sinh x = (eX - e7%)/2 and xg = 0, so that
x = h. BSo, as soon as you have learned that

d x X
= e

dxe

you can use (3. 10) to do much better.

Problem 3. 8. Calculate sinh(z"zo) more accurately by means of (3. 10) and com-
pare with the value given after Prob. 2. 6.

Remark. In the case of the hyperbolic sine, it is very easy to do much better than
(3. 10). When you come to series, you will learn that

(3. 11) sinh x = (ex - e_x)/Z
X3 2n-1
= X437 4. +—(2n-1).' + Rn(x) ,
with
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2n+l
IR <Lcosh x) |x |
n = (2n+1)!
This can be used to show that the approximation
X3 XZ
(3.12) sinhx%x+?=x(l+'?)

has relative error less than 5 x 10711 for all x with |x| < 8.8 X 10°3, This approx-
imation should therefore be used in preference to the formula (eX - e™X)/2 whenever
sinh x is to be evaluated for this range of x.

It is a bit trickier to avoid cancellation near a zero of f if you do not know the
zero. For example, you found cancellation when you tried, in Prob. 2.4, to evaluate
the function f given by

(3.13) fx) = x-Ilnx-2

at x = 3.1462. In such a case, you will simply have to carry enough digits during the
calculation so that in the end you still retain, in spite of the cancellation, the precision
you desire. You found in Prob. 2.4 that In(3.1462) =1.1461 95375, while x - 2 =

1. 1462, hence there is cancellation of five digits when evaluating (3. 13) at x = 3. 1462.
Thus, to get f(3. 1462) nevertheless to 10 digits, you would have to calculate

In(3. 1462) somehow to 15 digits.

There is some consolation, though. Once you have obtained the number f(xo)
accurately for some xq (whether or not xqg is a zero for f), you can then safely use
the approximation

(3. 14) f(x0 +h) = f(xo) + f'(xo)h

for "small” h in order to evaluate f with the same accuracy for all x = xg +h "near

Xo.

In practice, for example for the function f given by (3. 13), one would actually
use more sophisticated approximations than (3. 14) in order to allow for relatively large
values of h. We discussed such an approximation earlier for sinh x. But the basic
idea is the same, namely, to carry out the required calculation for just one value of x,
carrying as many digits as is necessary to produce the final value to the desired accu-
racy, in spite of the cancellations along the way. After that, you have an accurate for-
mula for f(x + h) in terms of h, whose evaluation as a function of h involves no un-
due cancellation.

As a final example, consider the cubic polynomial p given by

3 2
(3. 15a) p(x) = agx” + ax” + a,x + a3

with

67



IV. SOURCES OF ERROR

(3. 15b) a, =1, a =-21213 20344, a, = 1.5 a,=-0 35355 33906.

This polynomial is discussed in Chap. VIL As is pointed out there, there is much can-
cellation when it is evaluated for x near the value x5 = 0.707. So, we now set

(3. 16) x=0.707 +h
and rewrite the polynomial as a function of h.

For this, recall from Chap. II that, in the course of using Horner's method to
evaluate this p at Xy = 0. 707, you obtain the numbers b0 = 3y, and then bi =

bi_lx0 +a;, i=1,2,3. Then you have

p(x)

2
(x - xo)[box + blx + bz] + b3

h q(x) +b 39

by Thm. 2.1 of Chap. IL. There is, as you will see below, also cancellation in the
evaluation of the quadratic polynomial q for x near xq = 0. 707, so we go through
Horner's method again, this time applied to q. This gives us Co = by, and then

c; = Gj_1Xg t by, i=1,2. As before, you have

alx) = (k= x){cx+¢c }+c,

h r(x +c. .
(x) 5
There is, for our particular linear polynomial r here, cancellation in its evaluation near

xg = 0. 707, so, a final (and trivial) application of Horner's method gives us numbers
d0 = Cy and dl = dOXO +c, so that

1

r(x) (x - XO)dO + dl

= hd0 +d1.

Now put all these calculations together and you get

(3.17) p(x):p(x0+h)=h[h{h-d +d1}+c2]+b3.

0
The only requirement is that we carry out these calculations of the bi's, ci's and di's
exactly so as not to lose accuracy. It is possible to make intelligent use of your cal-
culator here, even though we are going to carry more than eight or ten digits in the cal-
culations. See the discussion of double precision arithmetic at the end of Sect. 1. But
there is nothing wrong with carrying out these few calculations by hand on a suitably
large piece of paper. So, here goes:
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3. Some ways to reduce cancellation

0 0
0. 707 bOXO
-2.1213 20344 + a1
-1. 4143 20344 = b1
0.707 X
9 9002 42408
990 02424 08
-0. 99992 44832 08 leO
1.5 + a,
0. 50007 55167 92 = b2
0.707 X

3 50052 86175 44
3500 52861 7544

0.3 53553 39037 1944 b_x

mN
o

o
w (O]

-0. 3 53553 3906 +
-0.0 00000 00022 8056 =

Notice the cancelling of nine digits in this calculation of p(0. 707) =
by = -0.22805 6 X 1079,

‘We continue.

Sy = b0
0. 707 0%
-1. 4143 20344 + b1
-0. 7073 20344 = c1
0. 707 X
4 9512 42408
495 12424 08

-0. 50007 54832 08 c X,
0. 50007 55167 92 + b2
0. 00000 00335 84 = c,

Notice the cancelling of seven digits in this calculation of q(0. 707) =
c, = 0.33584 x 10~7. Finally,
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IVv. SOURCES OF ERROR

0 = CO =1
0. 707 dOXO
-0.7073 20344 + Cl
-0.0003 20344 = d

Even in the calculation of d;, there is cancelling of three digits.

The upshot of this calculation is that the cubic given by (3. 15a) and (3. 15b) can
also be written as

(3.18) p(0.707+h) = h[h{h 0. 320344 X 10" >} +0. 33584 X 10" ']~ 0. 22805 6X 10 °

For example, evaluation of (3. 15) at the point x = 0. 70781 25 on the HP-33E
using Horner's method gives the value 0 exactly. By contrast, using instead (3. 18),
with h = 0.00081 25, on the same calculator gives the fairly accurate value

p(0. 70781 25) = 1.2413 08594 X 10710

Problem 3. 9. Use Horner's method just once to rewrite the polynomial given by
(2. 1) accurately into the form

3 2
(x xo)(box +b1x +b2x+b3)+b4

p(x)

h q(x) +b4

with x3 = 4.45. Then use this new form to calculate p(40/9). Compare the value you
get with the incorrect value

0. 00060 96000
obtained in Sect. 2 and the correct value
4/9% = 0.00060 96631 61103...

Problem 3.10. For x =y = 0.7071, there is severe cancellation in calculating
the expressions

(3. 19) x% 4 y‘2 -1
(3. 20) 2xy - 1 .
Put x = 0.7071 +h and y = 0.7071 + k, and get expressions in h and k for which

the cancellation is considerably less severe.
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Chapter V
NUMERICAL DIFFERENTIATION

0. Guide for the reader.

Read this chapter toward the end of the instruction on differentiation. However,
pay special attention to the first four sentences of Sect. 1. Then read Sect. 3. For
this you will have to skim through Sections 1 and 2 enough to learn what the booby traps
are, and what the key formulas are. This should provide all that you need from this
chapter for your calculus course.

If you plan to go on in engineering, physics, chemistry, or such, you should not
skim too lightly over Sections 1 and 2. Now is the best time to get some help from your

instructor or teaching assistant if you should encounter a difficulty.

1. Danger of numerical inaccuracy.

Very commonly, a function is defined in terms of some formula. The rules of cal-
culus will usually enable one to write out a formula for the derivative. If one wishes
the numerical value of the derivative at some point, it is STRONGLY recommended that
one use the calculator to evaluate that formula for the derivative directly. This should
give a fairly accurate value.

However, a function can be defined as the root of an equation, or in some other
way, so that one cannot so easily write out a formula for the derivative. Presumably
one can calculate the value of the function (at least approximately).

So we come down to the following question: How can we make use of function
values to estimate a value for the derivative?

At first sight, this problem seems simple enough. Since

f(x +h) - f(x
. o
£ (x) —hll_r.no h ’
we know that the difference quotient

71



V. NUMERICAL DIFFERENTIATION

f(x+h) - f(x
(L.1) h ’

computable from function values alone, provides as good an approximation to f'(x) as
we could wish provided we choose h sufficiently small. But there is the problem:
What is "sufficiently small"? We cannot take just any old h and expect the difference
quotient (1. 1) to be a good enough approximation to f'(x). We discussed this difficulty
already in Chap. III. There we made the point that "too large” an h makes (1. 1) a
poor approximation to f'(x), while a theoretically "sufficiently small" h may make it
impossible to evaluate (1. 1) accurately on a calculator.

For example, the polynomial

£(x) = X100
has the derivative

f'(x) = 100x99

’

and therefore f'(1) = 100. Yet, with x = 1 and h = 0.1, we get

f(x+h) - f(x) _ 13780.61234 -1
h B 0.1

=1 37796.1234 .

Since we know the exact value of f'(1) in this case, we know that this number has
little to do with £'(1). So, we simply use smaller values of h. Some results are
shown in Table 1. 1, which was calculated on an HP-33E (many of the zeros shown are
just copied from the display, and are not significant).

Table 1. 1

h calculated difference quotient
107} 1 37796. 1234

1072 170. 48138 29
1073 105. 11569 80
107* 100. 49662 00
107° 100. 04950 00
107° 100. 00500 00
107’ 100. 00000 00
1078 100. 00000 00
1079 100. 00000 00
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1. Danger of numerical inaccuracy

We have carefully chosen the values of h so as to mislead the reader into jump-
ing to the conclusion that Table 1. 1 shows that as one decreases h the calculated
value of the difference quotient approaches f'(1), and indeed is exactly equal to it for
h<1077, However, let us try some other values of h. The results, as calculated on
the HP-33E, are shown in Table 1. 2.

Table 1. 2
h calculated difference quotient
1.2345 49999 x 10 ° | 100.05710 59
1.2344 99999 x 10 ° 99. 96597 821
1.2349 99999 x 10 99. 59514 178
1. 2499 99999 x 10°° 96. 00000 008
1.4999 99999 x 10 66. 66666 671
4.9999 99999 x 10 0. 00000 0000

The difference quotient (1. 1) should get closer to f'(1) as h decreases. How-
ever, as shown in Table 1. 2, the calculated approximation to the difference quotient
does not do so. At first, for h = 10'1, it is extravagantly large. But then it begins to
decrease toward f'(1). It behaves beautifully for the h's of Table 1. 1. However, for
the h's of Table 1. 2, the first two entries get closer, but subsequent entries getworse,
finally going to the entirely irrelevant value zero.

What is happening is that as h gets quite small, the two terms in the numerator
of (1. 1) get very close together, so close that when we subtract them most of the initial
digits cancel out, leaving a calculated difference that does not have too much relation-
ship to what the true difference should be. Recall that the HP-33E calculator used for
calculating the tables can hold at most 10 digits. When h gets small enough, the 10
digits of f(x + h) that the calculator can hold will be the same as the 10 digits of £f(x)
that the calculator can hold, and the calculator will have to give zero for f(x+h)-f(x),
and hence zero for (1.1). Thus for x = 1 and h = 4.9999 99999 x 10710 in Table 1.2,
the value of x + h would show on the calculator as 1.0000 00000, the same as x.

So of course the calculator will give identical values for f(x +h) and f(x). And, as
we saw, even before h gets that small, the calculator will give very few correct digits
for f(x + h) - f(x) because of cancellation of many of the initial digits (see Sect. 2 of
Chap. IV).

This is further illustrated by the fact that different calculators will give very dif-
ferent results for the entries of Table 1. 2. See the related Table IIL 2. 1, where quite
divergent results from three different calculators are cited. As h becomes smaller,
these entries are more and more contaminated by roundoff , and roundoff differs from
calculator to calculator. Therefore not only will a calculator give, for certain small
values of h, an answer which is seemingly unrelated to the true value of (1. 1), but
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V. NUMERICAL DIFFERENTIATION

these answers will differ from calculator to calculator. Or course, all calculators will
give the answer 0 when h is small enough, regardless of what f or x might be.

This is an illustration of the two horns of the dilemma when using the difference
quotient (1. 1) to approximate a derivative: Too large a step h produces numbers un-
related to the value of the derivative while too small a step h produces the value 0,
which is most likely also unrelated.

We could use a calculus trick to compute (1. 1) more accurately for the case where
f(x) = x100  Refer to Rule 2 in Sect. 2-2 of T-F. By the binomial theorem

f(x+h) = (x+h)'00

_ X100 N IOOX99h + (1002M99)X98h2 N (100)139L(98)x97h3
(100)(99)(98)(97) 96,4
+ X h

5
24 :

+ (terms in x and h) - h

00

Subtracting f(x) = x1 gives

(100)(99) (100)(99) (98)
fcan) - £00) = 100x7% + 100‘2 99) 98,2 . (100 969 98) 97,3

+ (100)(922(98)(97) x96h4 + (terms in x and h) - h° .
So
_ 2
1. 2) fxthl-£6) 100X99{1+9_9_£+12L(9_8)_(_f_1)
h 2 X 6 X
99) (98) (97 3
+i—)(—24)—(—)-(£) + (terms in x and h) - h4} .

On the right, if we neglect the terms involving h4 , we have a polynomial in h/x.
Evaluating this by Horner's method (see Sect. 1 of Chap. II) we get for x = 1 and
h=1.2345 49999 x 1075

fX+E =L~ 10006113 49 |

instead of the number given in Table 1. 2. Indeed, for x = 1 and h = 1075, we get
fix+h) - f
FEREL = 100, 04951 62

so that the value in Table 1. 1 was appreciably in error.

For still quicker evaluation of the polynomial on the right of (1. 2), we write it as
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2. Approximation of derivatives by difference quotients

99
1+2(

X =

Y+ a2y

In this particular example, we had available a calculus trick to obtain an accurate
difference quotient. But note that this trick is exactly the same trick that lets us pro-
duce the formula for f'(x) for this case. When we do not know a formula for f'(x), we
are even less likely to know such a trick for avoiding cancellation in calculating the
difference quotient. In that situation, we find ourselves on the horns of the dilemma:
Too large an h will produce an inaccurate approximation while too small an h will
induce cancellation and, again an inaccurate approximation. We must somehow choose
h appropriately in the middle.

Problem 1. 1. Find the "best" h of the form 10™" for some (positive or negative)
integer n to approximate f'(x) by (1. 1) (and without using the calculus trick), incase

(@) &) = (x/3)°° +6, x=2

(b) f(x)

(x/1olo + 1)20, x=1

() f(x) = (1010x- 1)2 x=1.

b
Remark. The exponentiation key y¥ would be appropriate for the various calcu-
lations in this section.

Note that in each part of Prob. 1.1, it was very easy to get a quite accurate value
of the derivative by carrying out the differentiation and then evaluating the formula for
the derivative by the calculator. As we said at the beginning of the section, if you can
get a formula for the derivative, then, by all means, use it.

2. Approximation of derivatives by difference gquotients.

So far, we have considered using the difference quotient

f@+h) - f(a
(2. 1) 0
as an approximation to f'(a). We now wish to argue that the so-called centered dif-
ference quotient

f(a+h) - f(@a-h)
2h

(2. 2)

is often a better approximation to f'(a). This appears to be so in a situation like the
one depicted in Figure 2. 1.

In Fig. 2.1, the derivative f'(a) is the slope of AB (2. 1) is the slope of AC.

(The discrepancy in slopes is readily apparent. ) (2. 2) is the slope of DC, which is
certainly close to the slope of AB. We now try to explain why (2. 2) is usually a better
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V. NUMERICAL DIFFERENTIATION

Figure 2.1
B
A
o™
D
a-h a a+h

approximation to f'(a) than (2. 1) is by looking at the errors in these approximations.

For this, we can use the Extended Mean Value Theorem (Special Case), as given
in Sect. 3-10 of T-F. Taking b = a + h there in Eq. (2) gives

fla+h) = £(@) +f'(@) h + £ (£) h%/2

’

for some ¢ between a and a + h.

If your text does not mention an Extended Mean Value Theorem, it may mention
Taylor series with remainder, from which the result above can be derived. In any case,
rest assured that it is true. In it, subtract f(a) from both sides, and divide by h.
This gives

(2 3) _fji“'_l'%:ﬂé)_: fl(a) +%f"(g)h ,

for some ¢ between a and a + h.

Next we consider (2.2). By the Extended Mean Value Theorem (General Case), as
given in Eq. (7) of Sect. 3-10 of T- F, but with b = a + h, we get

fa+h) = f(a) + f'(@)h +%f"(a) h® + %f"‘(él)h3

’
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2. Approximation of derivatives by difference quotients

for some gl between a and a + h.

As above, if your text does not mention an Extended Mean Value Theorem, it may
mention Taylor's series with remainder, from which the result above can be derived. So
take our word for it. Replacing in the above h by -h , we get also

£@-h) = @) - £'(@h +51"(@)h% - T’

for some gz between a and a- h. Now we subtract the second equation from the
first and divide by 2h to get

flll(g )+ flll (g )
f(@a+h)-f(a-h) . 1 2
(2. 4) °h = f'(a) + 12 h

2

for some &, and § both between a - h and a +h.
1 27?

Here we have h% in the final term on the right If h is moderately small, h?
will be very small. For example, if h is one thousandth, then h% is one millionth.
So the left side of (2. 4) should in general be much closer to f'(a) than the left side of
(2. 3). And this has been accomplished without increasing the danger of cancellation in
calculating the numerator!

In (2. 4), the he is multiplied by third derivatives of f. These could be unusu-
ally large, in which case the left side of (2. 4) would not give a very good approximation
for f'(a). In our Fig. 2.1, we had f"(x) reasonably constant, so that " (x) is fairly
close to zero. In such a case, (2. 4) should be quite good, as is suggested by Fig. 2.1.,

Figure 2. 2
A C
D
B
a-h a a+h
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V. NUMERICAL DIFFERENTIATION

Let us look at a case where the third derivatives are large, as in Fig. 2. 2. Here
the second derivative changes a lot in going from D to C, so that |f"' (x)l must be
large. The left side of (2. 3) is the slope of AC, and the left side of (2. 4) is the slope
of DC. We purposely made them of equal slope. The derivative f'(a) is the slope of
AB, decidedly different from what either (2. 3) or (2. 4) would give.

Problem 2. 1. Show that for the function f(x) = x>
in (2. 3) and (2. 4) have the same value for all h.

- x and a = 0, the errorterms

Remark. Here the difficulty is not that we have large third derivatives, but that
£7(0) = 0. So, with £ close to 0, f”(£) is small, so that (2. 3) gives an especially
good approximation for f£'(a).

Large third derivatives or zero second derivatives are not common, so that usually
(2. 4) is to be preferred to (2. 3). However, one should not put too much trust in (2. 4)
unless one has some sort of guess as to the size of the third derivative.

Let us try a numerical example. Let f(x) = e¥. 1In Table 2 on p. A-2l of T- F is
a short table of f(x) = eX, and on p. A-22 is a short table of f(n) = In n. We repro-
duce a few entries in our Table 2. 1.

Table 2.1
X e n Inn
1.2 3. 3201 0.4 -0.9163
1.3 3. 6693 0.5 -0. 6931
1.4 4. 0552 0.6 -0. 5108
1.5 4. 4817 0.7 -0. 3567
1.6 4. 9530 0.8 -0. 2231

For f(x) = e” . we have f'(x) = e, sothatat x = 1.4 we have

b b

2. 5) £1(1.4) = e * ~4 0552 .

Now take a = 1.4 and h = 0.1. Then the left side of (2. 3) gives the approximation

4. 4817 - 4. 0552
2.6 (1. 4) = =
(2. 6) £ (1. 4) L5-14 4.265 .

The left side of (2. 4) gives the approximation

4. 4 - 3.
(2. 7) f'(1. 4) = 817 - 3. 6633 = 4.062 .
1.5-1.3
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3. Complicated expressions

The improvement over (2. 6) is striking. Here the third derivative is not large and the
second derivative is not zero.

Note that already we have our points close enough together that we have lost one
significant digit by cancellation.

Problem 2.2. If f(n) = lnn, then £'(n) = n *. So f£'(0.6) =1.6667. Using the
Table 2. 1, estimate f'(0. 6) by (2. 3) and (2. 4).

Problem 2. 3. Do Prob. 11 at the end of Sect. 1-9 of T- F, namely:

11. The following data give the coordinate s of a moving body for various
values of t. Plot s vs. t on coordinate paper and sketch a smooth curve
through the given points. Assuming that this smooth curve represents the
motion of the body, estimate the velocity (a) at t = 1.0, (b) at t= 2.5,

(c) at t = 2.0.

s (nft) |10] 38| 58| 70| 74| 70| 58 | 38| 10
t (insec.)l 0,0.5] 1.0| 1.5| 2.0| 2.5| 3.0| 3.5, 4.0

Problem 2 4. In Prob. 2. 3, estimate the velocity: (a) at t=1 0, (b) at t=2.5,
(c) at t = 2.0; use first (2. 3), and then (2. 4), taking h = At = 0. 5 in each case.

Remark. It is shown in Prob. II. 1.2 that the table above in Prob. 11 of T- F
could have been derived from the equation:

(2. 8) s(t) = - 16t2+ 64t + 10 .

Problem 2. 5. Assuming that (2. 8) is the correct formula for s(t), explain why the
formula (2. 4) gives the exact velocities.

3. Complicated expressions.

In some cases where one can get a formula for the derivative, as in

X3+5 x2+2
G 1) B = %1

X -3

the expression is very complicated. To carry out the differentiation for this messy for-
mula without making a mistake could be time consuming and tedious. Particularly if one
needs only rough approximations for the derivatives, one might be well advised to use
(2. 2). If one has a programmable calculator, the calculation would be fairly easy, since
one has only to program the calculation of f(x), after which two executions of the pro-
gram, for the two input values of x, will give the needed two values of f(x).

If it should happen, by some mischance, that one does need a very accurate value
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V. NUMERICAL DIFFERENTIATION

of the derivative of (3. 1), one had better go through the labor of differentiating it. How-
ever, it might be a wise precaution to get a rough approximate derivative by (2. 2) to
check that one did not get a sign wrong, or an exponent in the wrong place, or some-
thing like that in carrying out the differentiation.

Problem 3. 1. For the f defined by (3. 1), derive the formula for f'(x), andhence
calculate f'(2). Using a = 2, see what approximations are given by (2. 2) for h= 1071,
h = 10‘2, and h = 10-3. Do these approximations appear to confirm the error term in
(2. 4), namely that dividing h by 10 should divide the error by approximately 100?

Actually, the differentiation of (3. 1) is not all that complicated if one uses
logarithmic differentiation; see Sect. 6-9 of T- F, especially Example 4 therein.
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Chapter VI

LOCAL APPROXIMATION BY A
STRAIGHT LINE

0. Guide for the reader.

Calculus provides the tangent line as a local approximation to a function. By this
we mean that the tangent line to f at a point x| describes well the behavior of f near
that point x;. In this chapter, we discuss the pros and cons to using the tangent as an
approximation in numerical work. This chapter should therefore be read as soon as the
derivative (or the differential) has been introduced in the calculus course. It would not
hurt to review the first two sections of this chapter when you encounter in the calculus
problems of such a sort as: "Approximate 9. 001 by means of differentials. "

In Sections 3 and 4, we use the secant as a local approximation. This provides the
means to do linear interpolation, which is the same thing that you were taught earlier to
call interpolation. You should find this a review, mainly devoted to how to do linear in-
terpolation efficiently on a calculator.

These local straight line approximations to f are particularly useful when trying to
determine an x for which

fx) =0,

as discussed in Chap. VIIL

1. Approximation by the tangent.

The notion of derivative is built upon the following observation, true for many func-
tions y = f(x): As you look at the function in ever greater detail for x near a fixed
point x), the function looks more and more like a straight line. In Figures 1.1, 1.2,
and 1. 3, we have shown this process for the function sin x, with x, = I. When we
concentrate on the interval from 0.9 to 1.1, a careful scrutiny is required to see the
difference between the curve and a straight line; see Fig. 1. 2. When we concentrate on
the interval from 0. 99 to 1.01, we would need a microscope to see the difference; see
Fig. 1. 3. (As we will see later, you will need many digits on your calculator to detect
this minute difference. )
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VI. LOCAL APPROXIMATION BY A STRAIGHT LINE

Figure 1.1
Yy
)\tangent
l =
Y = sinx
I I T
1 2 3
Figure 1. 2
0. 9f tangentn
y = sinx ;
Figure 1. 3
0. 85
0.8
tangent)
. )
= sinx
0.9 1 1.1 Y
0. 84
0. 83 1
0. 99 1 1. 01
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1. Approximation by the tangent

This straight line that f comes to resemble more and more as we look at ever
smaller intervals containing x; is, of course, the tangent of f at x;, i.e., the
straight line

(1. 1) y = f(xl) + f'(xl)(x - xl).

The fact that f comes to resemble this particular straight line more and more as we look
at smaller and smaller intervals is expressed in mathematical terms as follows:

(L. 2) f(x) = f(xl) + f'(xl)(x - Xl) + e (%) (x - Xl)
with lim e(x) = 0.
X=X

In words, the difference between f(x) and the tangent line
— ! -
y = fx) +f (xl)(x xl)
at x, goes to zero as x — X1 and does so faster than the difference x - X -

Incidentally, if your calculus book has not already told you this, then you should
verify now that the function f is differentiable at X if and only if for some a and b

(1. 3) fx) = a +b(x—x1) + e(x)(x—xl)

with e(x) = 0 as x — xy. If there is such an a and b, then the straight line
y=a+b(x- Xl) is necessarily the tangent, and a is necessarily f(xl), and b is
necessarily f'(xl).

Having established the tangent line as a good local approximation to f near Xy,
that is,

(1. 4) f(x1 + AX) %f(xl) + ' (xl)Ax
for "small” Ax, it seems reasonable to use it in this capacity, and calculus books
usually make much of this idea. For this purpose, (1. 4) is often rewritten in the form

(1. 5) vy +Ay =y +f' (xl)Ax ,
and f'(xl)Ax is referred to as "the principal part of Ay."

Suppose one knows f(xl) (or can very easily calculate it). Should one use (1. 4) to
estimate f(xl + Ax)? Before the advent of calculators, the answer was usually "Yes. "
However, let us stop and think a moment. One alternative is to go ahead and calculate
f(x; + Ax) outright. The other alternative is to calculate f'(xl), multiply it by Ax,
and add to the known value of f(xl). Of course, this latter gives a poorer approxima-
tion for the answer, but the underlying assumption is that it is close enough. So it is
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