Sparcom

Pocket Professional ${ }^{\text {TM }}$ OWNER'S MANUAL

The Pocket Professional"
 General Chemistry Application Pac

Owner's Manual

SPARCOM ${ }^{\circledR}$

Edition 2 November, 1991

Manual Reorder No. 11052-A Software Reorder No. 10052-1A

Notice

Disclaimer

Sparcom Corporation shall not be liable for any errors, loss of profit, or any other commercial damage, including but not limited to special, consequential, incidental or other damages, resulting from or in any way connected with the furnishing, performance, or use of this manual or software. This manual, the accompanying software, and the examples contained in them are provided "as is" and are subject to change without notice. Sparcom disclaims any other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. For warranty information, see Appendix A.

Acknowledgements

This manual and the accompanying software are © Copyright Sparcom Corporation 1991, all rights reserved. Reproduction, transmission in any form or by any means, adaptation, or translation of this manual or software is prohibited without prior written permission of Sparcom, except as allowed under the copyright laws. The owner of this manual is granted a one-user, non-commercial license to use the enclosed software, and may not copy, distribute, or transfer the software under any circumstances without prior written consent of Sparcom.

Portions of this manual are Copyright Hewlett-Packard Company 1990 and are used with permission. Sparcom wishes to express appreciation to Hewlett-Packard's staff for their encouragement and support in the development of the Pocket Professional General Chemistry Application Pac. Pocket Professional and Sparcom are registered trademarks of Sparcom Corporation. Portions of this software were licensed from Armstrong Publishing (Corvallis, Oregon).

Sparcom Corporation
897 N.W. Grant Avenue
Corvallis, OR 97330 U.S.A.

General Chemistry Application Pac Changes

The following changes were made to the General Chemistry Application Pac for version 2.5:
\checkmark Browser: Cursor movement and scrolling speed have been increased.
\checkmark Constant Library: Constants have been updated to conform to latest accepted values.

HP 48GX USERS ONLY: You should install the application card in Port 1 for two reasons:

1. Application cards installed in Port 1 will execute $\mathbf{\sim} \mathbf{2 0 \%}$ faster than those installed in Port $\mathbf{2}$.
2. Application cards installed in Port 2 may experience long pauses ($\sim \mathbf{5 - 1 0}$ seconds or more) intermittently during operation. This is not a software defect. It is caused by the new memory architecture of the extended HP 48GX Port 2, which is different from the HP 48SX Port 2. Such pauses will not occur if the application card is operated from Port 1 of the HP 48GX or if it is oporated from either port of the HP 48SX.

General Chemistry Application Pac Manual Changes

These changes apply to the General Chemistry Application Pac Manual, Edition 2, November 1991.

Changes for the HP 48GX

General: To display all libraries on the HP 48GX, press Enstead of and
General: On the HP 48GX, the A din key has been replaced by CANCEL.
General: To perform a screen dump on the HP 48GX, press \square
General: To display an item too wide for the display on the HP 48GX, press instead of \boldsymbol{m}.
Page 1-19: On the HP 48GX, COORD has been renamed to (X.Y)

Changes for Version 2.5

General: Because the constants have been updated, some of the examples may differ slightly from the manual.
Page 1-3: Accessing the General Chemistry Application Pac: Picture menu keys should read GCAP GCON ABOUT instead of GCAP GCON DERG DERUB DERUV ABOUT.

Page 1-5: Using the Main Menu: The Constant Library now includes 31 constants.
Page 1-6: Using the Search Mode: The search mode is now case-insensitive.
Page 1-10: Using the Solver Function: After pressing SOLVE, press UNITS to turn units on.
Page 2-16: Concentration: Example 1: ma=5.8E-2_mol/kg.
Page 2-21: Ideal Gas: Example: $\rho=3.09 \mathrm{E}-3 _\mathrm{g} / \mathrm{cm}^{\wedge} 3$.
Page 2-25: Barometric Equation: Before plotting, unmark h as known.
Page 2-27: Kinetic Theory: Example: cavg=445.5382_m/s. Plot equation 1. Use autoscale instead of the y1 and y2 values.

Page 2-34: Weak Acids/Bases: Example: Use equations 1, 4, and 5, not 3-5.
Page 2-42: Free Energy: Plot equation 1.

Page 2-43: Thermodynamics: Example: $\Delta \mathrm{S}=28.7$ _cal/(mol*K).
Page 2-44: Heat Capacity: Example: $\Delta \mathrm{C}=.517 _\mathrm{J} /(\mathrm{mol} * \mathrm{~K})$.
Page 2-48: First Order: Example: $\mathrm{Ca}=.01 _\mathrm{mol} / \mathrm{l}, \mathrm{CaO}=1 _\mathrm{mol} / /$, Rate=7.7E-7_mol/(cm^3*s).
Page 2-53: Second Order (II): Example: Solve equation 2.
Page 3-3: List of Element Names and Symbols: Picture should include the title, "Elements"; 3rd picture should read GCHEMD instead of GCAPPD in status area.

Page 5-1: Using the Constants Library: The Constant Library now includes 31 constants.

Table of Contents

Chapter 1: Getting Started
Installing and Removing the Card 1-1
To Install the Application Card 1-1
To Remove the Application Card 1-2
Accessing the General Chemistry Application Pac 1-3
Using the Main Menu 1-4
Moving Around the Screen 1-5
Viewing Items Too Wide for the Display 1-5
Changing the Font Size 1-5
Using the Search Mode 1-6
Using the Equation Library 1-7
Solving a Single Equation 1-7
Accessing Equations 1-7
Selecting and Displaying Equations 1-8
Viewing Variable Definitions 1-9
Using the Solver Function 1-10
Converting Data to Different Units 1-12
Options After Solving the Equation 1-12
Managing Units 1-13
Solving Multiple Equations 1-13
Plotting One Equation 1-16
Plotting Multiple Equations 1-19
What You Should Know About the Solver 1-20
Speeding Up Computing Time 1-20
"Bad Guess" Message 1-20
Equations with Multiple Roots 1-21
Loading Values from the Stack 1-21
Sparcom's GCHEMD Directory 1-21
Equation Library Structure 1-23
Summary of Softkeys 1-24
Chapter 2: Equation Library
Atoms/Molecules 2-2
Mass/Mole/Atom 2-2
Quantum 2-3
Hydrogen Energy 2-4
$\mathrm{s}, \mathrm{p}, \mathrm{d}$ and f Orbitals 2-5
Diatomic Moment 2-9
Symmetrical Moment 2-10
Solids/Liquids 2-11
Heat Capacity 2-11
Blackbody Radiation 2-12
Equation of State 2-13
Bragg Law 2-13
Born-Haber Cycle 2-14
Melting Point 2-15
Concentration 2-15
Raoult's Law 2-17
BP/FP (Colligative) 2-18
Molarity/Dilution 2-19
Clausius Clapyron 2-19
Capillary Rise 2-20
Gases 2-21
Ideal Gas 2-21
State Changes 2-22
Gas Over Water 2-23
Barometric Equation 2-24
Van der Waal Gases 2-25
Kinetic Theory 2-26
Grahams' Law 2-28
Collision Theory 2-28
Acids/Bases 2-31
pH Function 2-31
Strong Acids 2-32
Strong Bases 2-32
Weak Acids/Bases 2-33
Henderson-Hasselbach 2-34
Titration (SA/SB) 2-35
Titration (SB/SA) 2-37
Titration (WA/SB) 2-37
Titration (WB/SA) 2-39
Thermo/Electrochemistry 2-40
Heat Transfer 2-40
Heat Engines 2-41
Free Energy 2-42
Thermodynamics 2-43
Heat Capacity 2-44
Nernst Law 2-44
Reduction 2-45
Precipitation 2-46
Kinetics 2-48
First Order 2-48
Parallel First Order 2-49
First Order Consecutive 2-50
Second Order (I) 2-52
Second Order (II) 2-53
Arrhenius Law 2-54
Fractional Life 2-55
Chapter 3: Periodic Table
Using the Periodic Table 3-1
Properties of Each Element 3-1
Moving Around the Periodic Table 3-2
Using Search and List Utilities 3-2
Using the Print Function 3-4
Summary of Softkeys 3-5
Chapter 4 : Stoichiometry
Using the Stoichiometry Function 4-1
Selecting and Displaying a Chemical Reaction 4-1
Calculating Theoretical Yields 4-2
Limiting Reagents 4-4
Stoichiometry with Solutions 4-5
Using the Species Library 4-6
Creating a Chemical Reaction 4-7
Entering Molecular Formulas 4-10
Summary of Softkeys 4-11
Chapter 5: Constants Library
Using the Constants Library 5-1
Using the GCON Function 5-2
Constants Library Softkeys 5-3
Chapter 6: Reference Library
Using the Reference Library 6-1
Example Using the Reference Library 6-2
Summary of Softkeys 6-3
Appendix A: Warranty and Service
Pocket Professional Support A-1
Limited One-Year Warranty A-1
What Is Covered A-1
What Is Not Covered A-1
If the Card Requires Service A-2
Service Charge A-2
Shipping Instructions A-2
Environmental Limits A-3
Appendix B: Questions and Answers
Questions Commonly Asked B-1
Appendix C: References

Chapter 1
 Getting Started

In This Chapter

Installing and Removing the Card Using the Main Menu
Using the Equation Library
What You Should Know About the Solver
\square Sparcom's GCHEMD Directory
\square Equation Library Structure
\square Summary of Softkeys

Sparcom's Pocket Professional ${ }^{\text {™ }}$ software is the first of its kind, developed to provide speed, efficiency and portability to students and professionals in technical fields. When you slide the Pocket Professional ${ }^{\text {™ }}$ General Chemistry Application Pac into your HP 48SX, your calculator is instantly transformed into an electronic "textbook," ready to efficiently solve your chemistry problems. The software is organized into six major sections: Equation Library, Periodic Table, Stoichiometry, Species Library, Constants Library and Reference Library. . . all in an efficient, menu-driven format.

Installing and Removing the Card

The HP 48SX has two ports for installing plug-in cards. You can install the software card in either port. Be sure to turn off the calculator while installing or removing the card. Otherwise, user memory may be erased.

To Install the Application Card

1. Turn off the calculator. Do not press on until you have completed the installation procedure.
2. Remove the port cover. Press against the grip lines and push forward. Lift the cover to expose the two plug-in ports.

3. Select either empty port for the Pocket Professional card.
4. Position the card just outside the slot. Point the triangular arrow on the card toward the calculator port opening, as shown.
5. Slide the card firmly into the slot. After you first feel resistance, push the card about $1 / 4$ inch further, until it is fully seated.

6. Replace the port cover.

To Remove the Application Card

1. Turn the calculator off. Do not press $\triangle \mathbb{O N}$ until you have completed the procedure.
2. Remove the port cover. Press against the card's grip and slide the card out of the port.

3. Replace the port cover. If you want to remove a RAM card that contains merged memory, you must free the merged memory before removing the card. Otherwise, you are likely to lose data stored in user memory. See the HP 48SX Owner's Manual for instructions.

Accessing the General Chemistry Application Pac

After you turn your calculator $\widehat{O N}$, there are three ways to start the software.

First Method: Press 5 UBAARY to display all libraries available to the HP 48SX. Find and press K\&AP to enter the General Chemistry Application Pac library directory. The screen displays new menu keys or "softkeys" along the bottom, as shown:

Press the $6 \subset A$ s softkey again to start the application.

Pressing the last softkey in the row, $\boldsymbol{A B O L}$, displays a screen containing the revision number of the software. (Press AATN to exit the revision screen). The ©CON softkey accesses the Constants Library, described in Chapter 5. The other softkeys access programs required by the software and are not available to the user.

Getting Started

Second Method: Type in the letters GCAPP (using alpha entry mode) and press ENTER.

Third Method: Add the command "GCAPP" to the CST (custom) menu (for more information, refer to Chapter 15 of the HP-48SX Owner's Manual, "Customizing the Calculator"). After the command has been added, press Csit, then press GCAP to start the software.

Using the Main Menu

After you start the application, the main menu screen appears:

```
STRY
->EQUHTION LIEFNKY
    STOIGHIDFETF%
    PEFIDGIE TAELE
    MEFIIDGIG TAELE
    SPEGIES LIEFIMFIV
    GDNSTHNTS LIEFiHFiY
        TFONT RUIT
```

The main menu lists the six main functions of the General Chemistry Application Pac in a "browser" menu format. "Browser" refers to the ability to use the cursor keys (\square, \square) to move the pointer to the menu item you wish and to press ENER to select an item or function.

Each function in the main menu is briefly described below, and is discussed in detail in the next five chapters of this manual.

Equation Library	Allows you to solve, plot and analyze over 150 equations.
Species Library*	A list of chemical compounds to be used as reactants and products when building your own chemical equations.
Periodic Table	Displays properties for each element of the Periodic Table.

Stoichiometry	Lets you enter your own chemical equation， check mass and charge balance，and per－ form theoretical yield and limiting reagent calculations．
Constants Library	Lists the values for 29 common constants．
Reference Library	Selected reference data useful in solving today＇s practical problems．

＊The Species Library is discussed in Chapter 4：＂Stoichiometry．＂

The＂softkeys＂located along the bottom of each screen give you options that relate to that screen．The following softkeys appear in the main menu screen． A summary of common softkeys used throughout the software program is given at the end of this chapter．

FONT．	Toggles between the small and medium fonts for optimum viewing of results．
QUIT．	Exits the General Chemistry Application Pac．

Moving Around the Screen

Use the \square and \square keys to move the pointer up and down in the menu list． Pressing \square moves the pointer to the bottom of the screen，or pages down（one screen at a time）if the pointer is already at the bottom of the screen．Pressing \square moves the pointer to the top of the screen，or pages up．Pressing $⿴ 囗 \square \square$ moves the pointer to the top of the list．

Viewing Items Too Wide for the Display

If the text of a topic or subtopic is too wide to fit within the display，an ellipsis （．．．）appears at the end of the line．Press 国 nsin to display the rest of the text．Press arm or ENTER to return the display to the beginning of the line．

Changing the Font Size

The default font for the General Chemistry Application Pac displays information in small，uppercase letters only．Pressing FONT．
displays the information in a medium font, which is case-sensitive. The font size stays medium (shown below) until you press FONT again:

Using the Search Mode

When menu lists are long, it may be faster to locate an item using the search mode. To initiate a search, press the α key, which displays the following screen:

The calculator is now in alpha entry mode, as indicated by the alpha (α) annunciator at the very top of the screen. Alpha entry mode overrides the function of the standard keyboard. This means that each key that has a white capital letter printed to its lower right loses its original function and types that letter onto the command line when pressed. (See the HP 48SX Owner's Manual, "The Keyboard and Display", for a complete description of how the alpha mode operates). Type the first letter or letters of the name you want to search for, to create the search string, and press EENER. The search function is case-sensitive. To enter a lower case letter in the alpha entry mode, press the \square key before typing in each letter.

Editing Text Entries

The search mode softkeys along the bottom of the screen are command line editing keys. They are built into the HP 48SX and allow you to edit the search string. Their functions are summarized below:

SIIP Moves the cursor to the beginning of the current word.
Sस1P. Moves the cursor to the beginning of the next word.

『E. Deletes all the characters in the current word to the left of the cursor.

DEI.. Deletes all the characters from the cursor's current position to the first character of the next word.

NS. Toggles between insert and typeover modes.
STI Accesses a version of the "Interactive Stack" in which only the echo function is available. (For more information on the Interactive Stack, see Chapter 3 of the HP 48SX Owner's Manual).

Using the Equation Library

The Equation Library contains over 150 equations commonly used by today's chemist, and is organized into seven main categories. The Equation Library enables you to:

- Select the equation category and topic from the main menu.
- List all the equations in a topic.
- Solve a specific equation or a set of equations.
- View a description of the variables.
- View a figure that illustrates the problem.
- Plot the equation.

Solving a Single Equation

Suppose, for example, you want to calculate the number of moles of iron (molecular weight $=55.847 _\mathrm{g} / \mathrm{mol}$) in a truck containing 1.5 metric tons of material.

Accessing Equations

The first step in solving this problem is to locate the necessary equation in the Equation Library. At the main menu, move the pointer to "EQUATION LIBRARY" and press EENER. This displays the list of categories available in the Equation Library, shown below:

```
    Equation Library
->ATOMEPMOLECULES
    salios`lioulos
    GiSES
    GHEF%\mp@code{GESECTBOCHEM}
    pgiEcipITATION
    KINETICS
```

Move the pointer to the category＂ATOMS／MOLECULES，＂and press ENTER to display the list of topics：

```
T Atoms/Molecules
->Mass/MOLE'mTOM
    LISHT
    glantum
    HYOFDIGEN ENERIGY
    s GFE:TMLS
    P Of:⿴囗十|
```



```
    O
```


Selecting and Displaying Equations

Move the pointer to the topic＂MASS／MOLE／ATOM＂and press ENTER ，or press the weds．softkey，to display the equation set for mass－to－mole conversions：

```
    Mass/Mole/Atom
*'N=GH/MWT'
    'NHTDM-S=NA゙XN'
MGIN SEMET WAFE PLIT EOLNE IP
```

This screen lists all the equations in the current topic．In the case of mass－to－ mole conversions，there are only two．You may choose to solve all the equations in a set or solve only one equation．Solving multiple equations is discussed later in this chapter．For this example，the number of moles of iron in the truck is given by the following equation（which is the first equation in the list）：

$$
n=\frac{g a}{M W T}
$$

where n is the number of moles，ga is the mass of iron and MWT is the molecular weight of iron（ $55.847 \mathrm{~g} / \mathrm{mol}$ ）．Any equation may be selected by moving the pointer to the desired equation and pressing the SEEEER
softkey. If no equation is selected, then all equations are solved. When an equation is selected, a triangular tag is placed in front of the equation:

If you want to view the equation in its full "textbook" form, move the pointer to the equation and press ENER. This displays the equation on the screen:

When a chemical equation is lengthy, pressing $\square \square$ or scrolls the screen to the left or to the right to display the entire equation. Press ENER or anT to return to the list of equations.

Viewing Variable Definitions

You can view a list that defines all the variables in the selected equation or set of equations by pressing the VARS. softkey at the equations screen. The screen below shows the definitions for each variable in the first equation of the MASS/MOLE/ATOM topic:

Getting Started

Using the Solver Function

The Sparcom "solver" is a software function that simplifies the job of setting up equations to be calculated by the HP 48SX. The solver function is discussed in more detail later in this chapter, under "What You Need to Know About the Solver."

To execute the solver, press \$区. $\boldsymbol{W E}$ at the equations screen. The variables for the selected equation(s) now appear in the screen, waiting for you to enter values, as shown:

To enter the mass of iron, move the pointer to ga and press ENTER. This displays the following screen:

Enter the mass of iron at the prompt.

After the mass has been entered, you may assign units to your entry by pressing the appropriate unit softkey. If you choose not to add units and press ENTER at the prompt, SI units will be assumed. In some cases, more units are available than the six softkeys displayed in the first screen. In these cases, press NXT to display the next page of additional units. For a complete description of units available in the HP 48SX, see Chapter 13 of the HP 48SX Owner's Manual.

In this example，press ${ }_{-}^{1}$ ． to add units of metric tons to this entry．

Press ENER to store this value into ga．This returns you to the solver screen with 1.5 ＿t of iron stored into the variable，ga：

```
    Mes:Mole/Atom
    N: '0-1.40L
*जN: '1.5-T'
-> FMWT: 'O_KGSMOL'
```


The triangular tag indicates that ga is a known variable．Repeat this procedure for the other known variable，MWT，which for iron is $55.847 \mathrm{~g} / \mathrm{mol}$ ．This results in the following screen：

With two of the three variables known in this equation，you can now solve the equation for the number of moles by pressing ©A E．．After a few moments，the calculator returns to this screen with the calculated value of n ：

Getting Started

The * by n indicates that this value was calculated and was not user specified.

Converting Data to Different Units

Suppose you want to convert the mass of iron just computed to pounds. First press 财 to view a new page of softkeys:

```
M
```

Move the pointer to the variable ga and press ©ONV. This lists all the possible units for ga:

Move the pointer to _lb (_LB when condensed font is used) and press ENTER.

This converts the mass in metric tons to pounds. If you want to use the data for further calculations, move the pointer to the data item and press ENER to place it on the calculator stack.

Options After Solving the Equation

Pressing ATM exits the General Chemistry Application Pac and places you in the calculator operating environment. Pressing \& ER resets all entries in the current topic to zero. Pressing \#enee eliminates each variable in the current topic from calculator memory.

To return to the main menu screen press \#\# multiple times. At the main menu, a new "RESUME SOLVING..." entry will have been added to the list, as shown:

Selecting the RESUME SOLVING function returns you directly to the equation set you were working with, with all previous entries still intact.

Managing Units

When solving an equation, UNIS (a toggle key) controls whether the calculations are performed in your choice of units, or in Systeme Internationale d'Unites (SI) units. When the UIIIS softkey appears, it means that all entries are converted to SI units and the unit designations are removed. UNTI indicates that the software is managing units, and that all values will contain the unit designations that you specify. All values entered without unit designations are assumed to be in (SI) units. Be aware that using designated units increases the processing time substantially.

Solving Multiple Equations

For many problems, the result of one calculation acts as the input to another. The General Chemistry Application Pac is capable of solving multiple equations, sequentially and systematically.

Selecting the Equation Set

Suppose you want to calculate the concentration in moles per liter (molarity) of HCl in water in a $100 _\mathrm{ml}$ solution that is a 36% by weight HCl with a density of $1.19 _\mathrm{g} / \mathrm{ml}$ (a standard concentrated HCl solution).

To solve this problem, move to the "CONCENTRATION" topic under the "SOLIDS/LIQUIDS" category. This topic contains 12 equations which relate the various forms of concentration of solute (labeled a) in the solvent
(labeled b) to the fundamental parameters of the solution. These equations are listed below:

$$
\begin{array}{ll}
g s=g a+g b & m a=\frac{n a}{g b} \\
n a=\frac{g a}{M W T a} & x a=\frac{n a}{n a+n b} \\
g a=w a \cdot \frac{g s}{100} & w a+w b=100 \\
g b=w b \cdot \frac{g s}{100} & n b=\frac{g b}{M W T b} \\
g s=v s \cdot \rho s & p p m a=\frac{g a \cdot 1 E 6}{g b} \\
M a=\frac{n a}{v s} & g b=v b \cdot \rho b
\end{array}
$$

These equations are displayed on the screen when you select the CONCENTRATION topic, shown below:

 for the CONCENTRATION topic, and their (SI) units are listed in the following table:

Variable	Description	Units
ga	mass solute	$1 _\mathrm{kg}$
gb	mass solvent	$1 _\mathrm{kg}$
na	moles solute	$1 _\mathrm{mol}$
nb	moles solvent	$1 _\mathrm{mol}$
MWTa	molecular weight solute	$1 _\mathrm{kg} / \mathrm{mol}$
MWTb	molecular weight solvent	$1 _\mathrm{kg} / \mathrm{mol}$
wa	weight \% solute	1

wb	weight \% solvent	1
ρb	pure solvent density	$1 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
vb	volume of solvent	1_m^3
gs	mass solution	1_kg
vs	volume solution	1_m^3
$\rho \mathrm{s}$	density solution	1_kg/m^3
Ma	molarity solution	1_mol/m^3
ma	molality solution	1_mol/kg
xa	mole fraction solution	1
ppma	solute concentration	1

Solving the Equation Set

Press Semem to execute the solver function. Enter all the information pertaining to the problem at one time, including any unit conversions you
 start the solver. The solver then steps through each equation in the list, solving those equations that contain sufficient information to calculate a solution.

When all variables are found, or all remaining equations have more than one unknown variable, the solver stops. It then lists the variables it can't find, and returns to the solver screen. The given variables and calculated results for this example are shown below:

Given
MWTa $=36.4609 _\mathrm{g} / \mathrm{mol}(\mathrm{HCl})$
MWTb $=18.0152 _\mathrm{g} / \mathrm{mol}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{wa}=36.0$
vs $=100 . . \mathrm{ml}$
$\rho s=1.19 _\mathrm{g} / \mathrm{ml}$

With the information given, the solver found all variables but two, $\rho \mathrm{b}$ and vb (no asterisk *). The solver also calculated the solution concentration in molality, in mole-fraction, and in parts-per-million, as the screen below shows:

The screen above has been graphically expanded to reveal the entire list. To see all 17 variables on the calculator screen, you must scroll through the variable list.

Tagging Variables

If you want to solve for only one variable in the list, you can "tag" it: Move the pointer to the variable you want to tag, press 四 to display the additional softkeys for this screen, and press WANT. This places a "?" tag in front of the variable you want to solve for:

If you tag Ma (molarity) and press © AIE. the solver calculates for Ma only, rather than solving for the entire set. It is possible to tag more than one variable in the list.

Plotting One Equation

Any equation in the equation library that is of the form: $\mathrm{y}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \ldots)$ can be easily plotted using the General Chemistry Application Pac. To plot an equation, the dependent variable, y (on the left), and the desired independent variable, a or bor c, etc. (on the right), must be unknown (no triangular tag). However, all other variables must be known.

Finding and Selecting the Equation

As an example, plot the titration curve (the pH versus the volume of added base) of the titration: $25 _\mathrm{ml}$ of a 0.1 _ $\mathrm{mol} / \mathrm{l}$ strong acid with a $0.1 _\mathrm{mol} / \mathrm{l}$ strong base at $25^{\circ} \mathrm{C}$. The equations that describe strong acid/strong base titrations are filed in the ACIDS/BASES category of the Equation Library, under the topic TITRATION (SA/SB). The equation screen for this topic is shown below:

Select the second equation in the list. This equation is written out below:

$$
\mathrm{pH}=-\mathrm{LOG}\left[\frac{-(\mathrm{Vb} \cdot \mathrm{Cb}-\mathrm{Va} \cdot \mathrm{Ca})}{2 \cdot(\mathrm{Va}+\mathrm{Vb})}+\frac{1}{2} \cdot\left(\left(\frac{\mathrm{Vb} \cdot \mathrm{Cb}-\mathrm{Va} \cdot \mathrm{Ca}}{\mathrm{Va}+\mathrm{Vb}}\right)^{2}+4 \mathrm{Kw}\right)^{\frac{1}{2}}\right]
$$

where:

Ca	acid concentration	$1-\mathrm{mol} / \mathrm{m}^{\wedge} 3$
Cb	base concentration	$1-\mathrm{mol}^{\wedge} \mathrm{m}^{\wedge} 3$
Va	volume of acid solution	$1-\mathrm{m}^{\wedge} 3$
Vb	volume of base titrant	$1-\mathrm{m}^{\wedge} 3$
Kw	water dissociation constant	$1-\mathrm{mol}^{\wedge} 2 / \mathrm{m}^{\wedge} 6$
pH	pH value	1

Tagging and Entering the Variables

To plot the titration curve (pH versus Vb) , $\mathrm{Ca}, \mathrm{Cb}, \mathrm{Va}$, and Kw must be tagged as known variables. Move the pointer to the second equation and press SEEECT. Then press SOLVE to enter the values for the following known variables:

$$
\begin{aligned}
& \mathrm{Ca}=0.1 _\mathrm{mol} / \mathrm{l} \\
& \mathrm{Cb}=0.1 _\mathrm{mol} / \mathrm{l} \\
& \mathrm{Va}=25 _\mathrm{ml} \\
& \mathrm{Kw}=1.01 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{l}^{2}
\end{aligned}
$$

Use the ©Ony softey to change the units of Vb to _ml for the plot.

With these four variables entered, return to the equations screen by pressing EONS. Move the pointer to the second equation and press $\boldsymbol{P L O T}$. Since this equation is of the proper form, and all but Vb has been specified on the right hand side, it may be plotted.

Entering the X and Y Coordinates

The first prompt asks whether you want to erase the previous plot and reset the axes, YeS, or whether you want the new plot drawn over any existing graphics already on the screen, Nö. To continue with this example, at the prompt enter YES to clear all previous plots from the screen.

Now enter the minimum and maximum x coordinates for the graph, starting with the x range as x 1 x 2 . Type the coordinates for the plot on the same line, separated by a space (use the key). Plot between 0 and 50 milliliters of added base, since this is approximately twice the equivalent volume:

HOME GCHEMD	
$\begin{aligned} & \text { Enter horizontal range } \\ & \text { fori Va (ml : } \\ & \text { <Min> }\langle\text { Max }\rangle \end{aligned}$	
+	
SEITESEIP 7 FISEL	\%

At the next prompt, enter the y axis limits in the same format. For this example, plot from -3 to 16 , to ensure that all portions of the plot are visible. If you press ENTER without typing in the y axis limits, the calculator autoscales the plot.

NOTE: When the independent variable has units of ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$, plots may not autoscale correctly.

Once the x and y axes limits are entered, press ENER. After several minutes of working time, the calculator draws the following plot:

Plotting Speed

The calculator takes approximately 10 minutes to draw this plot (plus an additional three minutes if autoscaling is desired). The plotting speed is limited by the HP 48SX unit manager. If the units are turned off (by pressing OMII at the solver screen) the plot takes only $\mathbf{4 0}$ seconds (plus 10 seconds for autoscaling).
However, as described earlier in this chapter under "Managing Units," when you turn off units, all user entered values are converted to SI units.
Therefore, when you enter the x -axis coordinates, you need to enter them as " $0 \quad 0.000050$ " to account for concentration units of m^{3} instead of _ml. The plot will also be displayed in SI units.

Softkeys for the Plot Function

The softkeys shown in the above plot are plot function keys in the HP 48SX. For example, pressing ©E®RB displays the (x, y) coordinates of any point on the screen indicated by the cursor. For a description of the behavior of the plot function softkeys, see Chapter 18 of the HP 48SX Owner's Manual.
 are supported by the General Chemistry Application Pac only when SI units are used (units are off).
You can remove the softkeys from the plot to expose more of the graph by pressing NXTN and KENS. Press NTN to interrupt the plotting of an equation or to return to the equation screen.

Plotting Multiple Equations

For comparison purposes, you may want to plot the same variables in an equation to a new parameter. To do this, simply answer \#we to the "clear plot first?" prompt after you have pressed PEEEX.

For example, suppose you're interested in plotting a family of titration curves on the previous graph, except with lower concentrations of acid and base solutions ($\mathrm{Ca}=0.001 _\mathrm{mol} / \mathrm{l}$ and $\mathrm{Cb}=0.001 _\mathrm{mol} / \mathrm{l}$). First, return to the solver screen and enter the new values for Cb and Ca . Then, go to the equations screen, move the pointer to the pH titration equation, and press emer At the prompt, press \#\#®. The new graph will plot over the previous one, as shown:

There is no limit to the number of times your equation can be plotted on the current axis. However, the HP 48SX plot/graphics function keys support only the most recent plot.

What You Should Know About the Solver

As you have seen in the examples in this chapter, the Sparcom solver allows you to easily specify the values and units of your equation or set of equations before sending the data to the HP 48SX numerical root-finder. For the selected equations(s), the solver screen lists all the variables, shows whether they are known (triangular tag), unknown (no tag), wanted ("?" tag), or already calculated (*); and whether units are on or off.

Once you set these parameters, pressing ©AMe. activates the HP 48SX root-finder to calculate the solution(s). The root-finder requires an initial value on which to base its search. You can provide a "guess" for the calculator to use, or the solver will provide the root-finder "guess" value of 1 . The root-finder then generates pairs of intermediate values and interpolates between them to find the solution. The time required to find the root depends on how close the initial guess is to the actual solution.

Speeding Up Computing Time

You can speed up computing time by providing the calculator a "guess" value close to the expected solution. At the variables screen, enter your guess value into the "unknown" variable. The variable will then be tagged as "known" (triangle). Press the NuOW softkey to toggle the variable back to "unknown" (no tag). Now press ©AEE.

"Bad Guess" Message

If the calculator displays the message, "Bad Guess(es)," after you press the calc.
softkey, it indicates an error has been made in setting up the problem. Go back through the set up process and check for errors in specifying data.

Equations with Multiple Roots

It is advisable to provide "guesses" for the unknown variables in equations containing multiple roots. For example, the positive root of a cubic equation is desired when solving for the H^{+}concentration in a weak acid. A guess near the desired solution will minimize the chance that the positive root will be missed in lieu of one of the negative roots.

See Chapter 17 of the HP 48SX Owner's Manual for a detailed discussion on using the root finder or HP's solver function.

Loading Values from the Stack

There are two methods of entering a value into the Sparcom solver directly from the calculator stack:

First Method: At the HOME screen make sure the value you want is on level one of the stack. Press ©C.CAP, then select RESUME SOLVING to return to the equation set you're working with. At the variables screen, move the pointer to the variable that will incorporate the value currently on the stack and press ENTER. A prompt message asks you to enter the value. Press
 the value in a limited version of the HP 48SX's interactive stack. Press ECHO then ENTER. This takes you back to the "enter value" prompt message. Press ENTER again to reveal the solver screen, showing the value incorporated into the selected variable and tagged as "known."

Second Method: Alternatively, store the desired value into a global variable in the GCHEMD directory under the same name as the equation variable. When the solver is entered, it will automatically recall the value and load it into the selected equation variable.

Sparcom's GCHEMD Directory

When you plug in the General Chemistry Application Pac for the first time, the software creates its own directory, GCHEMD, in the HOME directory of
the HP 48SX. ALL operations performed by the software take place in the GCHEMD directory. It is, therefore, the only place where global variables are created or purged by the solver level. If you purge this directory by mistake, it will be recreated in its entirety. However, all the values that you have stored in the software memory will be lost.

The variables created in the GCHEMD directory and their functions are described below:

GCpar The parameter GCpar is utilized to provide a direct path from the main menu to the solver level. GCpar is created (or rewritten) whenever the equation, solver, or variable levels of the Equation Library is exited. The three possible exit routes that trigger a GCpar update are: 1) Pressing anTi to quit the General Chemistry Pac and exit to the calculator stack, 2) Pressing © UP.. to return to the topic level, or 3) Pressing MAIN to return to the main menu level

RXNS Contains user defined reactions. To eliminate all reactions, this variable may be purged. It is recreated whenever a new reaction is built
SPEC Contains user-defined species stored in the Species Library. To eliminate all species, this variable may be purged. It is recreated whenever a new species is added

SPECCODE

Contains the index of the last species added to the Species Library. User modification or deletion of this variable will corrupt the reaction and species libraries
USRSYMBS
Contains user-defined chemical symbols

USRATWTS

Contains user-defined atomic weights

Equation Library Structure

The following figure diagrams the basic flow and function of each level of the Equation Library and Sparcom's solver interface. On the following page, the softkeys available at each level are explained in more detail.

Summary of Softkeys

CAle\% $\begin{aligned} & \text { Stores all variable values and iterates through the set of } \\ & \text { selected equations in an attempt to find values for all } \\ & \text { wanted variables. After completion of the solver process, } \\ & \text { the user is returned to the solver level, where newly found }\end{aligned}$
CEEAR Resets the values of the current variable set to zero.
EOMS: Enters the equation level of the current topic.
FIGURE Displays a figure for the currently selected topic or displays "No figure".

- ©Mr Toggles between small and medium display fonts of the HP 48SX.

KHOW Toggles the currently selected variable between known and unknown, adding or removing the triangular tag.

MAIN Returns to the main menu.
Puor. Prompts the user for x -axis and y -axis values (with option for autoscale y). This feature only works for equations of the form $y=f(a, b, \ldots$.$) where y$ and one variable on the right are unknown.

PuFe Purges the global copies (in the GCHEMD directory) of the current variable set displayed in the solver level.
©UI؟. Exits the General Chemistry Application Pac.
Select Marks or unmarks the currently selected equation with the triangular tag. Only variables in the marked equations will appear in the solver and variable levels. If no equations are selected, all will be used.

SOMV Enters the solver level of the currrent topic.
15TK Copies selected entry to calculator stack.
UMIT Toggle key. Indicates that units are on.
UNITS Toggle key. Indicates units are off. When off, all variables are assumed to be SI if entered with no units or are converted to SI units.
U世\# Moves up one level in the software menu structure.
WAS: Enters the variable level for the current topic.
WEW: Displays the full text entry for a variable description or value if the description is too wide to fit on the screen.
WAMT Toggles the currently selected variable between wanted and not wanted, adding or removing the symbol "?". If no variables are marked "wanted," all variables are assumed to be wanted.
EENER Prompts for the value of the currently selected variable. If the selected variable already contains a value, that value is copied to the command line for editing. Pressing π - clears the command line, or returns you to the variables screen if the command line is already empty.
ATITH Generally used to exit a function or application.

Getting Started

Notes:

Chapter 2
 Equation Library

In This Chapter

The Equation Library for the General Chemistry Application Pac contains over 150 equations organized into seven main categories, each containing one or more topics. Each topic includes a description, an equation or set of equations, a complete list of variables, a set of units for all variables, and a working example. The examples in this chapter often give results in units different from the SI units used by the software. To match the printed results with those shown on the calculator, convert the units using the procedure described in Chapter 1. Some of the equation sets also include a figure to illustrate the topic more fully.

Atoms/Molecules
\square Solids/Liquids
\square Gases
\square Acids/Bases
\square Thermo/Electrochemistry

Precipitation Kinetics

In the Equation Library, the following constants are used:

pi	π
g	Acceleration due to gravity
R	Universal gas constant
NA	Avogadro's number
c	Velocity of light
h	Planck's constant
k	Boltzmann's constant
q	Electron charge
R ∞	Rydberg's constant
ao	Bohr radius
σ	Stefan-Boltzmann
F	Faraday constant

Atoms/Molecules

In this category, equations relating to the fundamental relationships of elements and molecules are contained in the following topics:

\author{

- Mass/Mole/Atom
 - $\mathrm{s}, \mathrm{p}, \mathrm{d}$ and f Orbitals
 - Light
 - Diatomic Moment
 - Quantum
 - Symmetrical Moment
 - Hydrogen Energy
}

Mass/Mole/Atom

These equations relate the mass of a sample to its number of moles and number of atoms.

1) $n=\frac{g a}{M W T}$
2) Natoms $=N A \cdot n$

Variable	Description	Units
n	number of moles	$1-\mathrm{mol}$
ga	mass of sample	$1-\mathrm{kg}$
MWT	molecular weight of sample	$1-\mathrm{kg} / \mathrm{mol}$
Natoms	number of atoms	1

Example: How many atoms and moles are contained in a 45 _lb sample of iron (molecular weight $=55.847 _\mathrm{g} / \mathrm{mol}$)?

Given
$\mathrm{ga}=45 \mathrm{lb}$
MWT $=55.847 _\mathrm{g} / \mathrm{mol}$

Result

$\mathrm{n}=365.5 \mathrm{~mol}$
Natoms $=2.201 \mathrm{E} 26$

Light

These equations relate the frequency, wavelength, photon energy, and wavenumber of light.

1) $\lambda=\frac{c}{\gamma}$
2) $E=h \cdot \gamma$
3) $n u b a r=\frac{1}{\lambda}$

Variable	Description	Units
λ	wavelength	$1-\mathrm{m}$
γ	frequency	$1-\mathrm{Hz}$
E	photon energy	$1-\mathrm{J}$
nubar	wavenumber	$1-1 / \mathrm{m}$

Example: Calculate the frequency, photon energy, and wavenumber of light from a He-Ne laser $\left(\lambda=6328 _\AA\right)$.

$$
\begin{aligned}
& \text { Given } \\
& \lambda=6328 _\AA
\end{aligned}
$$

Result

$\gamma=4.738 \mathrm{E} 14 _\mathrm{Hz}$
$\mathrm{E}=3.139 \mathrm{E}-19 \mathrm{~J}$
nubar $=15803 _1 / \mathrm{cm}$

Quantum

Two fundamental equations of quantum mechanics are included here. The first equation relates the de Broglie wavelength of a particle to its momentum, and the second equation relates particle mass to its inherent energy.

1) $\lambda l=\frac{h}{m \cdot v}$
2) $E=m \cdot c^{2}$

Variable	Description	Units
λl	de Broglie wavelength	$1 _\mathrm{m}$
m	mass	$1-\mathrm{kg}$
V	velocity	$1-\mathrm{m} / \mathrm{s}$
E	energy	$1-\mathrm{J}$
h	Planck's constant	$1-\mathrm{J} \cdot \mathrm{s}$
c	speed of light	$1 _\mathrm{m} / \mathrm{s}$

Example: What is the de Broglie wavelength of a 1.0 _oz bullet moving at 600 _ft/s? What is the bullet's inherent energy?

Given

$\mathrm{m}=1.0$ _oz
$v=600 _\mathrm{tt} / \mathrm{s}$

Result

$\lambda \mathrm{l}=1.28 \mathrm{E}-25$ _nm
$\mathrm{E}=2.55 \mathrm{E} 15$ _J

Hydrogen Energy

These equations relate the energy, wavelength, and frequency of transition to their initial and final quantum numbers in a one-electron atom.

1) $E=\frac{-R \infty \cdot z^{2}}{n i^{2}}$
2) $\Delta E=-R \infty \cdot Z^{2} \cdot\left(\frac{1}{n f^{2}}-\frac{1}{n i^{2}}\right)$
3) $\gamma=\frac{\Delta E}{h}$
4) $\lambda I=\frac{c}{\gamma}$

Variable	Description	Units
E	energy	$1 _\mathrm{J}$
Z	nuclear charge	1
ni	initial quantum number	1
nf	final quantum number	1
$\Delta \mathrm{E}$	energy change	$1 _\mathrm{J}$
γ	frequency	$1 _\mathrm{Hz}$
λI	wavelength	$1 _\mathrm{m}$

Example: What is the wavelength and frequency of the blue emission line $(\mathrm{nf}=2$ and $\mathrm{ni}=4)$ in the Balmer series of hydrogen? Use all four equations.

> Given
> $Z=1$
> $\mathrm{ni}=4$
> $\mathrm{nf}=2$

Result

$$
\begin{aligned}
& \mathrm{E}=-1.36 \mathrm{E}-19 \mathrm{E}^{2} \\
& \Delta \mathrm{E}=-4.09 \mathrm{E}-19 _\mathrm{J} \\
& \gamma=6.17 \mathrm{E} 14 _\mathrm{Hz} \\
& \lambda \mathrm{I}=486 _\mathrm{nm}
\end{aligned}
$$

s,p,d and f Orbitals

These equations describe the angular and radial portions of the Schroedinger one-electron atom. They are grouped by azimuthal quantum number ($\mathrm{s}, \mathrm{p}, \mathrm{d}$ or f). Note that the wavefunction, φ_{nlm}, is given by: $\varphi_{\mathrm{nlm}}=\mathrm{R}_{\mathrm{nl}} \cdot \mathrm{X}_{\mathrm{Im}}$ The normalization constant given below is provided for reference only and guarantees that the integrated probability over all space is unity.

$\rho=\frac{2 \cdot Z \cdot r}{a o}$

Radial Functions:

(1s) $R n I=R 10=Z^{3 / 2} \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{2}{a o^{3 / 2}}
$$

(2s) $\quad R 20=Z^{3 / 2} \cdot(2-\rho) \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{a o^{3 / 2} \cdot 2 \cdot \sqrt{2}}
$$

(3s) $R 30=Z^{3 / 2} \cdot\left(6-6 \cdot \rho+\rho^{2}\right) \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{2 o^{3 / 2} \cdot 9 \cdot \sqrt{3}}
$$

(4s) $\quad R 40=Z^{3 / 2} \cdot\left(24-36 \cdot \rho+12 \cdot \rho^{2}-\rho^{3}\right) \cdot e^{-\rho / 2}$

Equation Library

$$
\text { constant }=\frac{1}{\mathrm{ao}^{3 / 2} \cdot 96}
$$

(2p) $R 21=Z^{3 / 2} \cdot \rho \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{\mathrm{ao}^{3 / 2} \cdot 2 \cdot \sqrt{6}}
$$

(3p) $R 31=Z^{3 / 2} \cdot(4-\rho) \cdot \rho \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{\mathrm{ao}^{3 / 2} \cdot 9 \cdot \sqrt{6}}
$$

(4p) R41 $=Z^{3 / 2} \cdot\left(20-10 \cdot \rho+\rho^{2}\right) \cdot \rho \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{\mathrm{ao}^{3 / 2} \cdot 32 \cdot \sqrt{15}}
$$

(3d) $R 32=z^{3 / 2} \cdot \rho^{2} \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{\mathrm{ao}^{3 / 2} \cdot 9 \cdot \sqrt{30}}
$$

(4d) R42 $=z^{3 / 2} \cdot(6-\rho) \cdot \rho^{2} \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{\mathrm{ao}^{3 / 2} \cdot 96 \cdot \sqrt{5}}
$$

(4f) R43 $=z^{3 / 2} \cdot \rho^{3} \cdot e^{-\rho / 2}$

$$
\text { constant }=\frac{1}{a 0^{3 / 2} \cdot 96 \cdot \sqrt{35}}
$$

Angular Wave Functions

(s) $X m l=X 00=\frac{1}{2} \cdot \sqrt{2}$
(p) $\mathrm{X}_{10}=\operatorname{COS}(\Theta) \quad$ constant $=\frac{1}{2} \cdot \sqrt{6}$
(p) $\quad X 11=\operatorname{SIN}(\Theta)$
constant $=\frac{1}{2} \cdot \sqrt{3}$
(d) $X 20=3 \cdot \cos ^{2}(\Theta)-1$
constant $=\frac{1}{4} \cdot \sqrt{10}$
(d) $\mathrm{X} 21=\operatorname{SiN}(\Theta) \cdot \operatorname{COS}(\Theta) \quad$ constant $=\frac{1}{2} \cdot \sqrt{15}$
(d) $X 22=\operatorname{SiN}^{2}(\Theta)$
constant $=\frac{1}{4} \cdot \sqrt{15}$
(f) $\quad X_{30}=\frac{5}{3} \cdot \cos ^{3}(\Theta)-\cos (\Theta)$

$$
\text { constant }=\frac{3}{4} \cdot \sqrt{14}
$$

(f) $X 31=\operatorname{SIN}(\Theta) \cdot\left(5 \cdot \operatorname{Cos}^{2}(\Theta)-1\right)$

$$
\text { constant }=\frac{1}{8} \cdot \sqrt{42}
$$

(f) $\quad X 32=\operatorname{SiN}^{2}(\Theta) \cdot \operatorname{COS}(\Theta)$

$$
\text { constant }=\frac{1}{4} \cdot \sqrt{105}
$$

(f) $X 33=\operatorname{SIN}^{3}(\Theta)$

$$
\text { constant }=\frac{1}{8} \cdot \sqrt{70}
$$

Variable	Description	Units
ρ	normalized distance	1

Equation Library

r	distance from nuclei	1_m
Z	nuclear charge	
R10	1s radial function	1
R20	2s radial function	1
R30	3s radial function	1
R40	4 s radial function	1
R21	2 p radial function	1
R31	3 p radial function	1
R41	4 p radial function	1
R32	3d radial function	1
R42	4d radial function	1
R43	4 f radial function	1
X10	$\mathrm{p}(\mathrm{m}=0)$ angular function	1
X11	$p(m=1)$ angular function	1
X20	d ($m=0$) angular function	1
X21	d ($m=1$) angular function	1
X22	d ($m=2$) angular function	1
Х30	$f(m=0)$ angular function	1
X31	$f(m=1)$ angular function	1
X32	$f(m=2)$ angular function	1
Х33	$f(m=3)$ angular function	1
Θ	azimuthal angle	1- ${ }^{\circ}$
ao	Bohr radius*	1_m

* Bohr radius is defined as $5.2917706 \mathrm{E}-11$ _m and is not entered by the user.

Example: At what distance from the hydrogen atom $(Z=1)$ is the first node in the 3 s radial function? There are two nodes in the 3 s radial function. The easiest way to solve this problem is to plot the 3 s function versus ρ, find ρ at the first node, then solve for r.

After entering $Z=1$, plot the R30 function (in s orbitals) from $\rho=0$ to $\rho=10$, as shown below (autoscale y):

$$
\begin{aligned}
& x 1=0 \\
& x 2=10 \\
& \text { autoscale } y
\end{aligned}
$$

Move the cursor to the first node and press ©区\&RD to display the (x, y) coordinates of the node. This yields:

The first node occurs at $\rho=1.23$. Pressing returns to the EQNS screen. Press SOMV to go to the solver screen. Enter $\rho=1.23$ and press AAE. The result of the calculation is $\mathrm{r}=0.033 _\mathrm{nm}$.

Diatomic Moment

The first equation in this subtopic relates the moment of inertia of a diatomic molecule to its molecular geometry. The second equation relates the rotational constant to the moment of inertia.

$$
I=\frac{1}{N A} \cdot\left(\frac{m 1 \cdot m 2}{m 1+m 2}\right) \cdot r^{2} \quad B=\frac{h}{8 \pi^{2} \cdot l \cdot c}
$$

Variable	Description	Units
l	moment of inertia	$1-\mathrm{kg} \cdot \mathrm{cm}^{\wedge} 2$
m 1	mass of 1	$1-\mathrm{kg} / \mathrm{mol}$
m 2	mass of 2	$1-\mathrm{kg} / \mathrm{mol}$
r	internuclear distance	$1-\mathrm{m}$
B	rotational constant	$1 _1 / \mathrm{cm}$

Equation Library

Example: What is the moment of inertia and rotational constant of HCl ? Assume the interatomic distance between H and Cl to be $1.27460 _\AA$, and get the gram molecular weight from the Periodic Table function.

Given

$$
\begin{aligned}
& \mathrm{m} 1=1.00797 _\mathrm{g} / \mathrm{mol} \\
& \mathrm{~m} 2=35.453 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{r}=1.27460 _\AA
\end{aligned}
$$

Result

$\mathrm{I}=2.644 \mathrm{E}-40 \mathrm{~g} \cdot \mathrm{~cm}{ }^{\wedge} 2$
$B=10.59 _1 / \mathrm{cm}$

Symmetrical Moment

These equations relate the moment of inertia of a bent symmetrical molecule to the internuclear geometry.

$$
\begin{aligned}
& I x=\left(\frac{2}{N A}\right) \cdot\left(\frac{m 1 \cdot m 2}{2 \cdot m 1+m 2}\right) \cdot r^{2} \cdot \cos ^{2}\left(\frac{\theta}{2}\right) \\
& I y=\left(\frac{2}{N A}\right) \cdot m 1 \cdot r^{2} \cdot \sin ^{2}\left(\frac{\theta}{2}\right) \\
& I z=I x+l y
\end{aligned}
$$

Variable	Description	Units
ly	moment of inertia about y	$1-\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2^{2}$
lx	moment of inertia about x	$1-\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$
lz	moment of inertia about z	$1-\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2^{2}$
m 1	mass of 1	$1-\mathrm{kg} / \mathrm{mol}$
m 2	mass of 2	$1-\mathrm{kg} / \mathrm{mol}$
r	internuclear distance	$1-\mathrm{m}$
Θ	bond angle	$1-$

Example: What is the moment of inertia of water?

```
Given
r = 0.96_\AA
m1 = 1.0079_g/mol
m2 = 15.9994_g/mol
\Theta = 104.9_
```


Given

```
\(r=0.96 \_\AA\)
\(\mathrm{m} 1=1.0079 \_\mathrm{g} / \mathrm{mol}\)
\(\mathrm{m} 2=15.9994 \_\mathrm{g} / \mathrm{mol}\)
\(\Theta=104.9^{\circ}\)
```


Result

$1 \mathrm{x}=1.02 \mathrm{E}-40 \mathrm{~g} \cdot \mathrm{~cm}^{\wedge} 2$
$\mathrm{ly}=1.94 \mathrm{E}-40 \mathrm{~g} \cdot \mathrm{~cm}^{\wedge} 2$
$\mathrm{lz}=2.96 \mathrm{E}-40 \mathrm{~g} \cdot \mathrm{~cm}{ }^{\wedge} 2$

Solids/Liquids

The following topics contain equations describing characteristics of solids and liquids.

Heat Capacity	- Concentration
- Blackbody Radiation	- Raoult's Law
- Equation of State	- BP/FP (Colligative)
Bragg Law	- Molarity/Dilution
- Born-Haber Cycle	- Clausius Clapeyron
- Melting Point	- Capillary Rise

Heat Capacity

The Einstein and Debye models of solids yield equations which predict heat capacity at different temperatures. These two equations are included here.

$$
\begin{aligned}
& \text { Einstein: } \quad C V E=3 \cdot R \cdot\left(\frac{\Theta e}{T}\right)^{2} \cdot \frac{e^{-(\Theta \mathrm{e} / \mathrm{T})}}{\left(1-e^{-(\Theta \mathrm{e} / \mathrm{T})}\right)^{2}} \\
& \text { *Debye: } \quad C v D=9 \cdot R \cdot\left(\frac{T}{\Theta d}\right)^{3} \cdot \int_{0}^{(\Theta \mathrm{d} / \mathrm{T})} \cdot \frac{x^{4} \cdot e^{\mathrm{x}} \cdot d x}{\left(e^{\mathrm{x}}-1\right)^{2}}
\end{aligned}
$$

*This equation can take several minutes to solve. Note that given a single heat capacity at a certain temperature, it is not possible to solve uniquely for the Debye or Einstein temperatures. Both the Debye and Einstein temperatures are defined by the equation: $\Theta=h \nu_{m} / k$.

Variable	Description	Units
CVE	Einstein heat capacity	$1-\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$
CvD	Debye heat capacity	$1-\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$
$\Theta \mathrm{e}$	Einstein characteristic temperature	$1-\mathrm{K}$
$\Theta \mathrm{d}$	Debye characteristic temperature	$1-\mathrm{K}$
T	temperature	$1 _\mathrm{K}$

Example: The Debye characteristic temperature of Pb is $\Theta \mathrm{d}=88 _\mathrm{K}$. Estimate the heat capacity of Pb at $20 _\mathrm{K}$ and $25^{\circ}{ }^{\circ} \mathrm{C}$. First enter $\Theta \mathrm{d}$ and $\mathrm{T}=20 _\mathrm{K}$, and solve for CvD . Next enter $\mathrm{T}=25^{\circ}{ }^{\circ} \mathrm{C}$ and solve again for CvD .

Given
©d $=88$ K
$\mathrm{T}=20 _\bar{K}$
$\mathrm{T}=25_{-}^{\circ} \mathrm{C}$

Result

$\mathrm{CvD}=11.1 _\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K}) @ 20 _\mathrm{K}$
$\mathrm{CvD}=24.8 _\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K}) @ 25_{-}^{\circ} \mathrm{C}$

Blackbody Radiation

The equations which describe the emission at various frequencies and the total emission of an ideal blackbody are shown below:

$$
E \gamma=\frac{8 \pi \cdot h \cdot \gamma^{3}}{c^{3} \cdot\left(e^{h \cdot \gamma / k \cdot T}-1\right)} \quad E T=\sigma \cdot T^{4}
$$

Variable	Description	Units
$\mathrm{E} \gamma$	energy density	$1-J \cdot \mathrm{~s} / \mathrm{m} \wedge 3$
ET	total energy density	$1-\mathrm{W} / \mathrm{m} \wedge 3$
T	absolute temperature	$1-\mathrm{K}$
γ	frequency	$1-\mathrm{Hz}$

Example: What is the total output of a radiating surface at 5000 _K? At what frequency does emission fall to zero?

Given

$\mathrm{T}=5000 \mathrm{~K}$

Result

$$
\mathrm{ET}=35439500 _\mathrm{W} / \mathrm{m}^{\wedge} 2
$$

To solve the second part of the problem, set $\mathrm{T}=5000 _\mathrm{K}$ and plot $\mathrm{E} \gamma$ versus γ over a wide range of frequencies (this example uses $1 \mathrm{E} 12_{-} \mathrm{Hz}$ to $2 \mathrm{E} 15 _\mathrm{Hz}$), as shown:

Move the cursor to the low frequency and high frequency intersection (where intensity is zero) and press COORD. This displays the approximate coordinates of the low frequency limit of $\sim 8.7 \mathrm{E} 12 _\mathrm{Hz}$ and the high frequency limit of $\sim 1.2 \mathrm{E} 15 _\mathrm{Hz}$. Note that a more accurate determination of the intercept may be obtained by using a more expanded graph.

Equation of State

This equation is general to solids and relates volume, pressure and temperature.

$$
V T P=V o \cdot\left(1+\alpha s \cdot\left(t 2-0_{-}^{\circ} \mathrm{C}\right)\right) \cdot\left(1-\rho s \cdot\left(p 2-1_{-} \mathrm{atm}\right)\right)
$$

Variable	Description	Units
VTP	volume at any temperature \& pressure	$1 _\mathrm{m}^{\wedge} 3$
Vo	reference volume	$1-\mathrm{m}^{\wedge} 3$
$\alpha \mathrm{~s}$	thermal expansion coefficient	$1-1 / \mathrm{K}^{2}$
t2	temperature	$1-\mathrm{K}$
$\rho \mathrm{s}$	compressibility coefficient	$1-1 / \mathrm{Pa}$
p2	pressure	$1 _\mathrm{Pa}$

Example: A $1.000 _\mathrm{cm}^{3}$ solid has a coefficient of expansion of $\alpha \mathrm{s}=1.03 \mathrm{E}-4-1 / \mathrm{K}$ and a compressibility coefficient of $\rho \mathrm{s}=2.86 \mathrm{E}-6$ _1/atm. What is the volume at $360{ }^{\circ} \mathrm{F}$ and pressure of $1800 _$psi?

Given

$$
\begin{aligned}
& \mathrm{Vo}=1.000 _\mathrm{cm}^{\wedge} 3 \\
& \alpha \mathrm{~s}=1.03 \mathrm{E}-4 _1 /{ }^{\circ} \mathrm{C} \\
& \rho \mathrm{~s}=2.86 \mathrm{E}-6 _1 / \mathrm{atm} \\
& \mathrm{t} 2=3600^{\circ} \mathrm{F} \\
& \mathrm{p} 2=1800 _\mathrm{psi}
\end{aligned}
$$

Bragg Law

The Bragg diffraction law describes the diffraction that occurs when electromagnetic radiation impinges on planes of atoms separated by a distance d.

$$
\operatorname{SIN}(\Theta)=\frac{n \cdot \lambda d}{2 \cdot d}
$$

Variable	Description	Units
Θ	diffraction angle	1_{-}°
n	order	$1-$
λd	wavelength	$1 _m$
d	distance between planes	$1 _m$

Equation Library

Example: At what angle does the ($\mathrm{hkl}=100$) first-order diffraction occur when $\mathrm{Cu} \alpha$ radiation $\left(\lambda \mathrm{d}=1.44 _\AA\right)$ impinges on $\mathrm{NaCl}\left(\mathrm{d}=5.627 _\AA\right)$?

Given

$$
\begin{aligned}
& d=5.627 \AA \AA \\
& n=1 \\
& \lambda d=1.44 _\AA
\end{aligned}
$$

Born-Haber Cycle

Lattice energies in a salt are difficult to measure. However, they may be calculated from other thermodynamic quantities by means of the Born-Haber Cycle.

$$
\Delta H f m x=\Delta H c r y+\Delta H f m g+\frac{1}{2} \Delta H f x 2 g+I m g+A x g
$$

Variable	Description	Units
$\Delta H f m x$	heat of formation of $m x$	$1-\mathrm{J} / \mathrm{mol}$
$\Delta H c r y$	heat of crystalization of $m x$	$1-\mathrm{J} / \mathrm{mol}$
$\Delta H f m g$	heat of formation of gaseous m	$1-\mathrm{Jmol}$
$\Delta H f \times 2 g$	heat of formation of gaseous $\times 2$	$1-\mathrm{Jmol}$
Img	ionization energy of m	$1-\mathrm{Jmol}$
$A \times g$	electron affinity of x	$1 _\mathrm{Jmol}$

Example: Given the energies of each step in the Born-Haber Cycle, calculate the heat of formation of $\mathrm{NaCl}(\mathrm{s})$.

Given

Δ Hcry $=-779.0 _\mathrm{kJ} / \mathrm{mol}$
$\Delta \mathrm{Hfmg}=108.4 _\mathrm{kJ} / \mathrm{mol}$
$\Delta \mathrm{Hfx} 2 \mathrm{~g}=243.3 _\mathrm{kJ} / \mathrm{mol}$
Img $=495.7 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Axg}=-367.7_{-} \mathrm{kJ} / \mathrm{mol}$

Melting Point

This equation is the integrated form of the Clapyron equation and relates the melting point at any temperature to pressure.

$$
P_{2}=P_{1} \cdot\left(\frac{\Delta H f u s}{\Delta V f u s}\right) \cdot L N\left(\frac{T 2 m}{T 1 m}\right)
$$

Variable	Description	Units
P2	pressure	$1 _\mathrm{Pa}$
P1	reference pressure	$1-\mathrm{Pa}$
ΔH Hfus	heat of fusion	$1-\mathrm{J} / \mathrm{mol}$
Δ Vfus	volume change upon fusion	$1-\mathrm{m}^{\wedge} 3 / \mathrm{mol}$
T1m	reference melting point	$1-K$
T2m	new melting point	$1 _\mathrm{K}$

Example: What is the melting point of water under 3400_atm, given the values of Δ Hfus and Δ Vfus below?

Given	Result
$\mathrm{P} 2=3400 _$atm	T2m $=249.1_{-} \mathrm{K}$
$\mathrm{P} 1=1.0_{-}$atm	
Δ Hfus $=1.4363 \mathrm{kcal} / \mathrm{mol}$	
$\mathrm{T} 1 \mathrm{~m}=273.16 _\mathrm{K}$	
Δ Vfus $=-1.61 _\mathrm{cm}^{\wedge} 3 / \mathrm{mol}$	

Concentration

The concentration of a solute in a solution is often given in molarity ($\mathrm{mol} / \mathrm{l}$), molality ($\mathrm{mol} / \mathrm{kg} \mathrm{)} ,\mathrm{~mole} \mathrm{fraction} \mathrm{(no} \mathrm{units)} ,\mathrm{and} \mathrm{parts-per-million} \mathrm{(no} \mathrm{units)}$. In the case of a solute "a" dissolved in a solvent " b ", the following equations relate these concentrations to various parameters of the solution.

1) $g s=g a+g b$
2) $m a=\frac{n a}{g b}$
3) $n a=\frac{g a}{M W T a}$
4) $x a=\frac{n a}{n a+n b}$
5) $g a=w a \cdot \frac{g s}{100}$
6) $w a+w b=100$

Equation Library

7) $g b=w b \cdot \frac{g s}{100}$
8) $n b=\frac{g b}{M W T b}$
9) $g s=v s \cdot \rho s$
10) $\mathrm{ppma}=\frac{g a \cdot 1 E 6}{g b}$
11) $M a=\frac{n a}{v s}$
12) $g b=v b \cdot \rho b$

Variable	Description	Units
ga	mass solute	1_kg
gb	mass solvent	1_kg
na	moles solute	1 _mol
nb	moles solvent	1_mol
MWTa	molecular weight solute	1_kg/mol
MWTb	molecular weight solvent	1_kg/mol
wa	weight \% solute	1
wb	weight \% solvent	1
$\rho \mathrm{b}$	pure solvent density	1_kg/m^3
vb	volume of solvent	1 - ${ }^{\wedge} 3$
gs	mass solution	1_kg
vs	volume solution	1_m^3
ρ s	density solution	1_kg/m^3
Ma	molarity solution	1_mol/m^3
ma	molality solution	1_mol/kg
xa	mole fraction solution	1
ppma	solute concentration	1

Example 1: Calculate the molality of Br^{-}in a $1000 _\mathrm{g}$ solution containing 4600 ppm of the ion.

Given

$\mathrm{gb}=1000 _\mathrm{g}$
$\mathrm{MWTa}=79.904 \mathrm{~g} / \mathrm{mol}$
$\mathrm{ppma}=4600$

Result

$\mathrm{ma}=5.8 \mathrm{E}-2 \mathrm{~mol} / \mathrm{kg}$

Example 2: Given that the density of a solution of $5.0 _\mathrm{g}$ of toluene and $225.0 _\mathrm{g}$ benzene is $0.876 _\mathrm{g} / \mathrm{mol}$, calculate the solution concentration in: a) molarity, b) mole fraction, and c) weight percentage.

Given	Result
$\mathrm{ga}=5.0 _\mathrm{g}$	$\mathrm{Ma}=0.206 _\mathrm{mol} / \mathrm{l}$

$$
\begin{aligned}
& \mathrm{gb}=225.0 _\mathrm{g} \\
& \mathrm{MWTa}=92.1402 _\mathrm{g} / \mathrm{mol} \\
& \rho \mathrm{~s}=0.876 _\mathrm{g} / \mathrm{ml} \\
& \text { MWTb }=78.1134 _\mathrm{g} / \mathrm{mol}
\end{aligned}
$$

$$
x a=.0185
$$

$$
w a=2.17
$$

Other variables solved for are:

$$
\begin{array}{ll}
\mathrm{na}=0.054 _\mathrm{mol} & \mathrm{gs}=0.23 _\mathrm{kg} \\
\mathrm{nb}=2.88 _\mathrm{mol} & \mathrm{vs}=0.263 _\mathrm{l} \\
\mathrm{wb}=97.8 & \mathrm{ma}=0.24 _\mathrm{mc}
\end{array}
$$

Raoult's Law

When non-volatile solutes are added to a liquid solvent, the vapor pressure is lowered. The relationship which describes the vapor pressure lowering of a solvent, b, by the addition of a solute, a, is called Raoult's Law.

1) $P=x b \cdot P$ in
2) $\Delta P=-x a \cdot P i n$
3) $\Delta P=P-P i n$
4) $n a=\frac{g a}{M W T a}$
5) $n b=\frac{g b}{M W T b}$
6) $x a=\frac{n a}{n a+n b}$
7) $x b=\frac{n b}{n a+n b}$
8) $x a=1-x b$

Variable	Description	Units
P	solvent partial pressure	$1 _\mathrm{Pa}$
xb	solvent mole fraction	1
Pin	solvent \cdot initial pressure (pure)	$1 _\mathrm{Pa}$
$\Delta \mathrm{P}$	pressure difference	$1 _\mathrm{Pa}$
xa	solute mole fraction	$1-$
na	moles of solute	$1 _\mathrm{mol}$
ga	mass of solute	$1 _\mathrm{kg}$
MWTa	molecular weight of solute	$1 _\mathrm{kg} / \mathrm{mol}$
MWTb	molecular weight of solvent	$1 _\mathrm{kg} / \mathrm{mol}$
nb	moles of solvent	$1 _\mathrm{mol}$
gb	mass of solvent	$1 _\mathrm{kg}$

Example: Calculate the vapor pressure lowering caused by the addition of $100 _g$ sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ to $1000 _g$ of water if the initial vapor pressure of water at $25{ }^{\circ}{ }^{\circ} \mathrm{C}$ is 23.8 _torr.

Given

Pin = 23.8_torr
$\mathrm{ga}=100 _\mathrm{g}$
$\mathrm{MWTa}=342.2992 \mathrm{~g} / \mathrm{mol}$
MWTb $=18.0152 _\mathrm{g} / \mathrm{mol}$
gb $=1000 _g$

Result
$\Delta P=-0.125$ _torr
$P=23.68$ torr
$x a=5.24 \times 10^{-3}$
$\mathrm{na}=0.292 \mathrm{~mol}$
$\mathrm{xb}=0.995$

BP/FP (Colligative)

When a non-volatile soluble material is added to a solvent, the freezing point of the solvent is lowered and the boiling point is raised. The following equations describe this behavior.

1) $\Delta T b=K b \cdot m a$
2) $m a=\frac{n a}{g b}$
3) $n a=\frac{g a}{M W T a}$
4) $\Delta T f=-K f \cdot m a$

Variable	Description	Units
$\Delta \mathrm{Tb}$	boiling point elevation	$1 _\mathrm{K}$
Kb	ebullioscopic constant	$1 _\mathrm{K} \cdot \mathrm{kg} / \mathrm{mol}$
ma	solute concentration in molality	$1 _\mathrm{mol} / \mathrm{kg}$
na	moles of solute	$1 _\mathrm{mol}$
gb	mass of solvent	$1 _\mathrm{kg}$
ga	mass of solute	$1 _\mathrm{kg}$
MWTa	molecular weight of solute	$1 _\mathrm{kg} / \mathrm{mol}$
$\Delta \mathrm{Tf}$	freezing point depression	$1 _\mathrm{K}$
Kf	cryoscopic constant	$1 _\mathrm{K} \cdot \mathrm{kg} / \mathrm{mol}$

Note that once calculated, the values of $\Delta T b$ and $\Delta T f$ may not be converted into other temperature values. When entering a value for $\Delta T f$, it must be negative.

Example: What is the freezing point depression and boiling point elevation of a solution composed of $100 _$g ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in $900 _\mathrm{g}$ water?

$$
\begin{aligned}
& \text { Given } \\
& \mathrm{Kb}=0.52 _\mathrm{K} \cdot \mathrm{~kg} / \mathrm{mol} \\
& \mathrm{gb}=900 _\mathrm{g} \\
& \mathrm{ga}=100 _\mathrm{g} \\
& \mathrm{MWTa}=62 _\mathrm{g} / \mathrm{mol} \\
& \mathrm{Kf}=1.86 _\mathrm{K} \cdot \mathrm{~kg} / \mathrm{mol}
\end{aligned}
$$

Result

$\Delta \mathrm{Tb}=0.932{ }^{\circ} \mathrm{C}$
$\mathrm{ma}=1.79 _\mathrm{mol} / \mathrm{kg}$
$\mathrm{na}=1.61 \mathrm{~mol}$
$\Delta \mathrm{Tf}=-3.33_{-}{ }^{\circ} \mathrm{C}$

Molarity/Dilution

The following equations relate the final concentration of solute to the initial concentration after dilution.

1) $M i=\frac{n a}{V}$
2) $n a=\frac{g a}{M W T a}$
3) $\mathrm{Vf} \cdot \mathrm{Mf}=\mathrm{Vi} \cdot \mathrm{Mi}$

Variable	Description initial concentration, Molarity
Mi	moles of solute
na	initial volume
Vi	mass of solute
ga	molecular weight of solute
MWTa	final volume
Vf	final concentration
Mf	solution volume
V	

Units
$1-\mathrm{mol} / \mathrm{m} \wedge 3$
$1-\mathrm{mol}$
$1-\mathrm{m} \wedge 3$
$1-\mathrm{kg}$
$1-\mathrm{kg} / \mathrm{mol}$
$1-\mathrm{m} \wedge 3$
$1-\mathrm{mol} / \mathrm{m}^{\wedge} \wedge 3$
$1 _\mathrm{m} \wedge 3$

Example: $4.5060 _\mathrm{g}$ of NaOH is added to a $250.00 _\mathrm{ml}$ volumetric flask. $10.00_{-} \mathrm{ml}$ of this solution is then diluted to $500.00_{\mathrm{Z}}^{\mathrm{ml}}$ in a second volumetric flask. What is the final concentration?
Given
ga $=4.5060 _\mathrm{g}$
$\mathrm{MWTa}=39.99707 _\mathrm{g} / \mathrm{mol}$
$\mathrm{V}=250.00 _\mathrm{ml}$
$\mathrm{Vi}=10.00 _\mathrm{ml}$
$\mathrm{Vf}=500 _\mathrm{ml}$

Result

$\mathrm{Mi}=0.4506 \mathrm{~mol} / \mathrm{l}$
$\mathrm{Mf}=9.013 \times 10^{-3} \mathrm{~mol} / \mathrm{l}$
$\mathrm{na}=0.1127 _\mathrm{mol}$
$\mathrm{Vi}=10.00_{\mathrm{Z}} \mathrm{ml}$
$\mathrm{Vf}=500 _\mathrm{ml}$

Clausius Clapyron

The Clausius Clapyron equation relates the vapor pressure of a liquid to temperature.

$$
L N\left(\frac{P}{P_{O}}\right)=\frac{\Delta H v}{R} \cdot\left(\frac{1}{T_{O}}-\frac{1}{T}\right)
$$

Variable	Description	Units
P	vapor pressure	$1 _\mathrm{Pa}$
$\Delta H \mathrm{Hv}$	heat of vaporization	$1-\mathrm{J} / \mathrm{mol}$
To	reference temperature	$1-\mathrm{K}$
T	temperature	$1-\mathrm{K}$
Po	reference vapor pressure	$1 _\mathrm{Pa}$

Example: The vapor pressure of white phosphorus has the values: P at $\left(76.6^{\circ} \mathrm{C}\right)=1.0 _\mathrm{mmHg}, \mathrm{P}$ at $\left(197.3^{\circ}{ }^{\circ} \mathrm{C}\right)=100.0 _\mathrm{mmHg}$. Calculate the heat of vaporization of liquid phosphorus.

$$
\begin{aligned}
& \text { Given } \\
& \text { Po }=1.0-\mathrm{mmHg} \\
& \mathrm{To}=76 . \mathrm{\sigma}^{\circ}{ }^{\circ} \mathrm{C} \\
& \mathrm{P}=100.0^{-} \mathrm{mmHg} \\
& \mathrm{~T}=197.3^{-}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Result

$\Delta H v=12.47 \mathrm{kcal} / \mathrm{mol}$

Capillary Rise

These equations describe the capillary rise phenomenon observed with fluids. The first equation is an approximate equation, assuming no interaction between the capillary surface and the liquid ($\Theta=0_{-}^{\circ}$), and no edge effects. The second equation includes these contributions.

$$
h=\frac{2 \cdot \gamma l}{\rho l \cdot g \cdot r}
$$

$$
h e x=\frac{2 \cdot \gamma l \cdot \cos (\Theta)}{(\rho l-\rho v) \cdot g \cdot r}-\frac{r}{3}
$$

Variable	Description
h	capillary rise
$\gamma \mathrm{l}$	surface tension
$\rho \mathrm{l}$	liquid density
r	capillary radius
Θ	meniscus angle
$\rho \vee$	vapor density
hex	capillary rise (exact)

Units
$1-\mathrm{m}$
$1-\mathrm{N} / \mathrm{m}$
$1-\mathrm{kg} / \mathrm{m} \wedge 3$
$1-\mathrm{m}$
$1-\mathrm{o}$
$1-\mathrm{kg} / \mathrm{m} \wedge 3$
$1-\mathrm{m}$

Example: A capillary ($\mathrm{r}=0.100 _\mathrm{mm}$) is inserted into a fluid ($\gamma \mathrm{I}=46.0 _\mathrm{dyn} / \mathrm{cm}$) with a density of $1.06 _\mathrm{g} / \mathrm{cm}^{\wedge} 3$. The contact angle is measured to be $76^{\circ}{ }^{\circ}$ and the vapor has a density of $1.0 _\mathrm{g} / \mathrm{l}$. What is the predicted capillary rise using the simple and exact expressions?

Given

$$
\begin{aligned}
& \gamma=46.0 _\mathrm{dyn} / \mathrm{cm} \\
& \rho^{\prime}=1.06 _\mathrm{g} / \mathrm{cm}^{\wedge} 3 \\
& \mathrm{r}=0.10 _\mathrm{mm}
\end{aligned}
$$

Result

$\mathrm{h}=88.5 \mathrm{~mm}$
hex $=21.4 _\mathrm{mm}$
$\Theta=76{ }^{\circ}$
$\rho v=1.0 _\mathrm{g} / \mathrm{l}$

Gases

The equations in this topic describe the pressure, temperature, and volume relationships of ideal and non-ideal gases as well as kinetic and collision theory.

- Ideal Gas
- State Changes
- Gas Over Water
- Barometric Equation

■ Van der Waals Gas

- Kinetic Theory
- Graham's Law
- Collision Theory

Ideal Gas

An "ideal" gas behaves according to the equations below.

1) $P=\frac{n \cdot R \cdot T}{V}$
2) $n=\frac{m g}{M W T}$
3) $\rho=\frac{m g}{V}$

Variable	Description	Units
P	pressure	$1 _\mathrm{Pa}$
n	moles of gas	$1-\mathrm{mol}$
T	temperature	$1-\mathrm{K}$
V	volume	$1-\mathrm{m}^{\wedge} 3$
mg	mass of gas	$1-\mathrm{kg}$
MWT	molecular weight	$1-\mathrm{kg} / \mathrm{mol}$
ρ	density	$1 _\mathrm{kg} / \mathrm{m} \wedge 3$

Example: A 2.889 _g sample of gas with unknown molecular weight expands to 933 _ ml at a pressure of 735 mmHg and at a temperature of $311_{-}^{\circ} \mathrm{C}$.
Assuming ideal gas behavior, what is its molecular weight?

Given

$$
\begin{aligned}
& \mathrm{P}=735 _\mathrm{mmHg} \\
& \mathrm{~V}=933^{\circ} \mathrm{ml} \\
& \mathrm{~T}=31^{\circ} \mathrm{C} \\
& \mathrm{mg}=2.889 _\mathrm{g}
\end{aligned}
$$

Result

$\mathrm{n}=3.62 \times 10^{-2}-\mathrm{mol}$
$\rho=3.09 \times 10^{-2} \mathrm{~g} / \mathrm{cm}^{\wedge} 3$
$\mathrm{MWT}=79.9 _\mathrm{g} / \mathrm{mol}$

Equation Library

State Changes

For an ideal gas undergoing a change in pressure, temperature, volume, or mass (a state change), the following equations apply.
(complete state change)

1) $\frac{P_{1} \cdot V_{1}}{n 1 \cdot T_{1}}=\frac{P_{2} \cdot V_{2}}{n 2 \cdot T_{2}}$
2) $\frac{P_{1} \cdot V_{1}}{T 1}=\frac{P 2 \cdot V_{2}}{T 2}$
(n constant)
3) $P_{1} \cdot V_{1}=P 2 \cdot V_{2}$
(n, T constant)
4) $\frac{P_{1}}{T 1}=\frac{P 2}{T 2}$
(n, V constant)
5) $\frac{V 1}{T 1}=\frac{V 2}{T 2}$
(P, n constant)
6) $P_{1} \cdot V_{1}=n 1 \cdot R \cdot T_{1}$
7) $P 2 \cdot V 2=n 2 \cdot R \cdot T 2$

Note: The first five equations are not independent relations. To solve a problem using this equation set, first select the appropriate equations (n constant, P and V constant, etc..).

Variable	Description	Units
P 1	initial pressure	$1-\mathrm{Pa}$
V 1	initial volume	$1-\mathrm{m}^{\wedge} 3$
n 1	initial moles	$1-\mathrm{mol}^{2}$
T 1	initial temperature	$1-\mathrm{K}$
P 2	final pressure	$1-\mathrm{Pa}$
V 2	final volume	$1-\mathrm{m}^{\wedge} 3$
n 2	final moles	$1-\mathrm{mol}^{2}$
T2	final temperature	$1 _\mathrm{K}$

Example: A 45.0 _ml sample of gas at $246 ـ^{\circ} \mathrm{C}$ and $1.68 _\mathrm{mmHg}$ is compressed and cooled to 36.0 _ ml and $25^{\circ}{ }^{\circ} \mathrm{C}$. What is the final pressure?

To solve this problem, select the second equation and press SOME (since moles remain constant in this problem). Then:

Given

P1 $=1.68 \mathrm{mmHg}$
$\mathrm{V} 1=45 \mathrm{ml}$
$\mathrm{T} 1=246^{\circ} \mathrm{C}$
$\mathrm{V} 2=36$ _ml
$\mathrm{T} 2=25_{-}^{-}{ }^{\circ} \mathrm{C}$

Gas Over Water

Consider the general chemical reaction:

$$
\mathrm{aA}+\text { Reactants } \rightarrow \mathrm{bB}(\mathrm{~g})+\text { Products }
$$

Often, the gaseous product is collected by displacing liquid from a graduated cylinder filled with water. The following equations relate the volume, temperature, pressure, and number of moles of gas to the quantity of reactant consumed in the reaction. Note that the vapor pressure of water at the temperature of collection, Pw , must be included to account for the partial pressure of water vapor in the graduated cylinder.

1) $n a=\frac{a}{b} \cdot n b$
2) $n b=\frac{g b}{M W T b}$
3) $n a=\frac{g a}{M W T a}$
4) $P b \cdot V=n b \cdot R \cdot T$
5) $n t=n b+n w$
6) $P t=P b+P w$
7) $P t \cdot V=n t \cdot R \cdot T$

Variable	Description	Units
na	moles a	$1 _\mathrm{mol}$
a	a coefficient, reactant	1
b	b coefficient, gaseous product	1
nb	moles b	$1 _\mathrm{mol}$
gb	mass b	$1-\mathrm{kg}$
MWTb	molecular weight b	$1 _\mathrm{kg} / \mathrm{mol}$

ga	mass a	$1 _\mathrm{kg}$
MWTa	molecular weight a	$1 _\mathrm{kg} / \mathrm{mol}$
Pb	partial pressure of gas	$1-\mathrm{Pa}$
V	collected gas volume	$1 _\mathrm{m}^{\wedge} 3$
T	temperature	$1-\mathrm{K}$
nt	total moles collected	$1 _\mathrm{mol}$
nw	moles of water collected	$1-\mathrm{mol}$
Pt	total pressure	$1 _\mathrm{Pa}$
PW	water partial pressure	$1 _\mathrm{Pa}$

Example: Consider the decomposition of CaCO_{3} according to the reaction:
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ (g)
When $4.6 _\mathrm{g}$ of CaCO_{3} decomposes, what volume of gas is collected at 1.0 atm and $26{ }^{\circ}{ }^{\circ} \mathrm{C}$? Note that the partial pressure of water at $26{ }_{-}^{\circ} \mathrm{C}$ is 25.0_torr. Use all seven equations.

Given
$\mathrm{a}=\mathrm{b}=1$
MWTb $=44.0098 _\mathrm{g} / \mathrm{mol}\left(\mathrm{CO}_{2}\right)$
MWTa $=100.0892 _\mathrm{g} / \mathrm{mol}\left(\mathrm{CaCO}_{3}\right)$
$\mathrm{ga}=4.6 \mathrm{~g}$
$\mathrm{T}=26_{-}^{\circ} \mathrm{C}$
$\mathrm{Pt}=1.0_{-} \mathrm{atm}$
$\mathrm{Pw}=25.00$ _torr

Result

$V=1.17$ I
$\mathrm{nb}=4.6 \overline{0} \times 10^{-2} \mathrm{~mol}$
$\mathrm{gb}=2.02 \times 10^{-3-}-\mathrm{kg}$
$\mathrm{Pb}=0.967$ atm
$\mathrm{na}=4.60 \times 10^{-2} \mathrm{~mol}$
$\mathrm{nt}=4.75 \times 10^{-2} \mathrm{~mol}$
$\mathrm{nw}=1.56 \times 10^{-3} \mathrm{~mol}$

Barometric Equation

The barometric equation describes the variation in pressure and concentration of a gas above sea level.

1) $P=P_{O} \cdot \operatorname{EXP}\left(\frac{-M W T \cdot g \cdot h}{R \cdot T}\right)$
2) $\mathrm{Co}_{0}=\frac{P_{o}}{R \cdot T}$
3) $C=\frac{P}{R \cdot T}$

Variable	Description	Units
P	pressure at height, h	1_Pa
Po	reference pressure	1_Pa
MWT	molecular weight of gas	1_kg/mol
h	height above sea level	1-m
T	temperature	1_K
Co	reference concentration	1_mol/m^3
C	concentration at height, h	1_mol/m^3

Example: What is the pressure and concentration of air (average molecular weight $=29 _\mathrm{g} / \mathrm{mol}$) at a height of $1.0 _\mathrm{km}$ above sea level? Plot the pressure of air versus height above sea level (Assume T is $75^{\circ} \mathrm{F}$).

Given
Po = 1.0_atm
MWT $=29$ g $/ \mathrm{mol}$
$\mathrm{h}=1 \mathrm{~km}$
$\mathrm{T}=75_{-}{ }^{\circ} \mathrm{F}$

Result

$$
P=0.89 _ \text {atm }
$$

$$
\mathrm{Co}=4.1 \mathrm{E}-2 \mathrm{~mol} / \mathrm{l}
$$

$$
\mathrm{C}=3.6 \mathrm{E}-2 _\mathrm{mol} / \mathrm{l}
$$

Plotting the barometric equation yields:

$$
\begin{array}{ll}
\mathrm{x} 1=0 _\mathrm{km} & \text { autoscale } \mathrm{y} \\
\mathrm{x} 2=50^{2} \mathrm{~km} &
\end{array}
$$

Van der Waal Gases

The Van der Waals equation is a semi-empirical equation of state for a non-ideal gas:

1) $p=\frac{n \cdot R \cdot T}{V-n \cdot b}-\frac{n^{2} \cdot a}{V^{2}}$
2) $Z=P \cdot \frac{V}{n \cdot R \cdot T}$
3) $T c=\frac{8 \cdot a}{27 \cdot b \cdot R}$
4) $V c=3 \cdot n \cdot b$
5) $P C=\frac{a}{27 \cdot b^{2}}$
6) $n=\frac{g a}{M W T}$

Variable	Description
p	pressure of gas
n	moles of gas
V	volume of gas
T	absolute temperature
a	Van der Waal's constant (attractive)
b	Van der Waal's constant (repulsive)
Z	compressibility factor
Tc	critical temperature
Vc	critical volume
Pc	critical pressure
ga	mass of gas
MWT	molecular weight of gas

Units
1_Pa
1_mol
1_m^3
1_K
1_m^6. $\mathrm{Pa} / \mathrm{mol}{ }^{\wedge} 2$
1_m^3/mol
1
1_K
1_m^3
1_Pa
1_kg
1_kg/mol

Example: A 8000_g sample of nitrogen (N_{2}) is compressed in a vessel to $100 _1$ at $300{ }^{\circ} \mathrm{C}$. What is the pressure?
Given
$T=300-{ }^{\circ} \mathrm{C}$
$\mathrm{V}=100-\mathrm{I}$
$\mathrm{b}=0.03913 \mathrm{I} / \mathrm{mol}$
$\mathrm{a}=1.390 \mathrm{I}^{2} \cdot \mathrm{~atm} / \mathrm{mol}^{2}$
$\mathrm{ga}=8000 _\mathrm{g}$
$\mathrm{MWT}=28.0134 _\mathrm{g} / \mathrm{mol}$

Result

$\mathrm{p}=139.9$ _atm
$\mathrm{n}=285.7_{-} \mathrm{mol}$
$Z=1.04$
$\mathrm{Tc}=128.3 \mathrm{~K}$
$\mathrm{Vc}=33.54 \mathrm{I}$
$\mathrm{Pc}=33.6$ _atm

Kinetic Theory

The velocity distribution of gas molecules is expressed by Maxwell-Boltzman statistics. Equation 1 provides the probability that velocity is in the range of C to $\mathrm{C}+\mathrm{dC}$. The next three equations give net results of Maxwell-Boltzmann distribution function for all velocities: the most probable velocity (cmp), the average velocity (cavg) and the rms velocity (crms).

1) $f C=4 \pi\left(\frac{M W T}{2 \pi \cdot R \cdot T}\right)^{3 / 2} \cdot C^{2} \cdot \operatorname{EXP}\left(\frac{-M W T \cdot C^{2}}{2 \cdot R \cdot T}\right) \cdot d C$
2) $c m p=\left(\frac{2 \cdot R \cdot T}{M W T}\right)^{1 / 2}$
3) $\operatorname{cavg}=\left(\frac{8 \cdot R \cdot T}{\pi \cdot M W T}\right)^{V_{2}}$
4) $\mathrm{crms}=\left(\frac{3 \cdot R \cdot T}{M W T}\right)^{v_{2}}$

Variable	Description	Units
fC	probability that velocity is within dC	1
MWT	molecular weight of gas	$1 \mathrm{~kg} / \mathrm{mol}$
T	absolute temperature	$1-\mathrm{K}$
C	velocity of molecules	$1-\mathrm{m} / \mathrm{s}$
dC	velocity range	$1-\mathrm{m} / \mathrm{s}$
cmp	most probable velocity	$1-\mathrm{m} / \mathrm{s}$
cavg	average velocity	$1-\mathrm{m} / \mathrm{s}$
crms	root mean-square velocity	$1 _\mathrm{m} / \mathrm{s}$

Example: What is the average velocity of an oxygen molecule at 300 _K? Use equation 3.

> Given
> $\mathrm{MWT}=31.9988 _\mathrm{g} / \mathrm{mol}$
> $\mathrm{T}=300 _\mathrm{K}$

Result

cavg $=395 _\mathrm{m} / \mathrm{s}$

For an oxygen molecule, plot the velocity distribution at $\mathrm{T}=300$ _ K and $\mathrm{T}=$ 1000_K (assume dC = 1_m/s). This yields:

$$
\begin{aligned}
& \mathrm{x} 1=0 \\
& \mathrm{x} 2=2000 \\
& \mathrm{y} 1=6.0 \mathrm{E}-4 \\
& \mathrm{y} 2=3 \mathrm{E}-3
\end{aligned}
$$

Note that the maximum shifts from $\mathrm{C}=400 _\mathrm{m} / \mathrm{s}$ to $\mathrm{C}=707 \mathrm{~m} / \mathrm{s}$ with the increase in temperature.

Grahams' Law

Thomas Graham discovered (in 1830) that the effusion rate of gases was inversely proportional to the square root of the masses.

$$
\begin{aligned}
& f=\left(\frac{M W T 2}{M W T 1}\right)^{V_{2}} \\
& f=\frac{r 1}{r 2}
\end{aligned}
$$

Variable	Description	Units
f	enrichment factor	1
MWT2	molecular weight of gas 2	$1 _\mathrm{kg} / \mathrm{mol}$
MWT1	molecular weight of gas 1	$1 _\mathrm{kg} / \mathrm{mol}$
r1	rate of effusion of gas 1	$1 _\mathrm{m}^{\wedge} 3 / \mathrm{s}$
r2	rate of effusion of gas 2	$1 _\mathrm{m}^{\wedge} 3 / \mathrm{s}$

Example: What is the enrichment factor of nitrogen compared to oxygen?

Given
MWT2 $=28.0134 _\mathrm{g} / \mathrm{mol}$
MWT1 $=31.9988 _\mathrm{g} / \mathrm{mol}$

Result
$\mathrm{f}=0.9357$

Collision Theory

The Maxwell Boltzman distribution function leads to the following collision and transport parameters (see Adamson, 1979 for a detailed description).

1) $\operatorname{cavg}=\left(\frac{8 \cdot R \cdot T}{\pi \cdot M W T}\right)^{V_{2}}$
2) $n=\frac{N A \cdot P}{R \cdot T}$
3) $Z=\frac{1}{4 \cdot N A} \cdot n \cdot \operatorname{cavg}$
4) $Z 1=\frac{2 \cdot d^{2} \cdot\left(\left(\frac{\pi \cdot R \cdot T}{M W T}\right)^{1 / 2}\right) \cdot n^{2}}{N A}$
5) $\lambda m f p=\frac{1}{\sqrt{2} \cdot \pi \cdot d^{2} \cdot n}$
6) $D=\frac{1}{2} \cdot \operatorname{cavg} \cdot \lambda m f p$
7) $\rho=\frac{M W T \cdot P}{R \cdot T}$
8) $\eta=\frac{1}{2} \cdot \rho \cdot \operatorname{cavg} \cdot \lambda m f p$
9) $n=\frac{\rho \cdot N A}{M W T}$

Variable	Description cavg
average velocity	
MWT	absolute temperature
molecular weight	
n	particle density
P	pressure
Z	surface collision frequency
Z1	bimolecular collision frequency
d	collision diameter
$\lambda \mathrm{mfp}$	mean free path
D	self diffusion coefficient
ρ	density of gas
η	viscosity coefficient

Units

1_m/s
1_K
1_kg/mol
$11 / \mathrm{m}^{\wedge} 3$
1_Pa
1_mol/(m^2.s)
1_mol/(m^3•s)
1 m
1_m
1_m ${ }^{\wedge}$ 2/s
1_kg/m^3
1_kg/(m•s)

Equation Library

Example: Calculate the surface collision frequency, bimolecular collision frequency, mean free path, and viscosity coefficient of O_{2} (Molecular weight $=31.9988 \mathrm{~g} / \mathrm{mol}$) at $25{ }^{\circ} \mathrm{C}$.

Given

$$
\begin{aligned}
& \mathrm{P}=1.0 _\mathrm{atm} \\
& \mathrm{~T}=25^{\circ} \mathrm{C} \\
& \mathrm{MWT}=31.9988 _\mathrm{g} / \mathrm{mol} \\
& \mathrm{~d}=3.61 _\AA
\end{aligned}
$$

Result

$$
\begin{aligned}
& \mathrm{cavg}=444 \mathrm{~m} / \mathrm{s} \\
& \mathrm{n}=2.46 \mathrm{E} 19-1 / \mathrm{cm}^{\wedge} 3 \\
& \mathrm{Z}=0.454 _\mathrm{mol} /\left(\mathrm{cm}^{\wedge} 2 \cdot \mathrm{~s}\right) \\
& \mathrm{Z} 1=1.29 \mathrm{E} 5 \mathrm{~mol} /\left(\mathrm{cm}^{\wedge} 3 \cdot \mathrm{~s}\right) \\
& \lambda \mathrm{mfp}=701 _\bar{\AA} \\
& \mathrm{D}=0.156 _\mathrm{cm}^{\wedge} \wedge 2 / \mathrm{s} \\
& \rho=1.31 \mathrm{E}-3 \mathrm{~g} / \mathrm{cm}^{\wedge} 3 \\
& \eta=2.04 \mathrm{E}-4 _\mathrm{g}(\mathrm{~cm} \cdot \mathrm{~s})
\end{aligned}
$$

Acids/Bases

In this category, the pH of solutions of strong acids and bases, weak acids and bases, and titration curves are included.

- pH Function	■	Titration (SA/SB)
Strong Acids	Titration (SB/SA)	
Strong Bases	■	Titration (WA/SB)
Weak Acids/Bases	■	Titration (WB/SA)
Henderson-Hasselbach		

Note that in the equation library, SA indicates a strong acid, SB a strong base, WB a weak base, and WA a weak acid. Although it is common to denote concentrations of ions in solution with brackets, i.e $\left[\mathrm{H}^{+}\right]$, this notation is not supported by the HP 48SX. Therefore, all concentrations are enclosed by parenthesis.

pH Function

The following equations define $\mathrm{pH}, \mathrm{pOH}, \mathrm{pKb}, \mathrm{pKa}$ and pKw for aqueous systems. Note that in all cases, concentrations used in the " p " function must be in moles/liter. Concentrations in SI or other units are converted to moles/liter prior to the calculation.

1) $\mathrm{pH}=-\mathrm{LOG}(H)$
2) $\mathrm{pOH}=-\mathrm{LOG}(\mathrm{OH})$
3) $p K w=-L O G(K w)$
4) $p K a=-L O G(K a)$
5) $\mathrm{pKb}=-$ LOG $(K b)$
6) $K w=K a \cdot K b$
7) $\mathrm{Kw}=\mathrm{H} \cdot \mathrm{OH}$

Variable	Description	Units
H	hydrogen ion concentration	1_mol/m^3
OH	hydroxide ion concentration	1_mol/m^3
Kw	water dissociation constant	1_mol^ $2 / \mathrm{m}^{\wedge} 6$
Ka	acid dissociation constant	1_mol/m^3
Kb	base dissociation constant	1_mol/m^3
pH	pH function	1
pOH	pOH function	1
pKw	pKw function	1
pKa	pKa function	1

Example: The hydrogen ion concentration in a sample $\left(\mathrm{H}^{+}\right)=0.01 _\mathrm{mol} / \mathrm{l}$ at $25_{-}^{\circ} \mathrm{C}$. What is $\mathrm{pH}, \mathrm{pOH}$ and OH ? Use equations $1,2,3$ and 7 .

Given

$\mathrm{H}=0.01 \mathrm{~mol} / \mathrm{l}$
$\mathrm{Kw}=1.01 \mathrm{E}-14 \mathrm{~mol}^{2} / \mathrm{l}^{2}$

Result

$\mathrm{pH}=2$
$\mathrm{OH}=1.01 \times 10^{-12} \mathrm{~mol} / \mathrm{l}$
$\mathrm{pOH}=12.0$
$\mathrm{pKw}=14.0$

Strong Acids

This set of equations defines the concentration of hydrogen ion and the resulting pH made by dissolving a strong acid in water.

$$
\begin{aligned}
& H=n \cdot \frac{g a}{M W T a \cdot V} \\
& p H=-\operatorname{LOG}(H)
\end{aligned}
$$

Variable	Description	Units
H	hydrogen ion concentration	$1-\mathrm{mol} / \mathrm{m} \wedge 3$
ga	mass of acid	$1-\mathrm{kg}$
MWTa	molecular weight of acid	$1-\mathrm{kg} / \mathrm{mol}$
V	volume of solution	$1-\mathrm{m} \wedge 3$
pH	pH function	1
n	Number of hydrogen ions per molecule	1

Example: $0.50 _\mathrm{g}$ of a diprotic acid (MWT $=98.0734 _\mathrm{g} / \mathrm{mol}$) is dissolved in 100 _ml of water. What is the pH ?

Given
$\mathrm{ga}=0.50 \mathrm{~g}$
$V=100$ ml
MWTa $=98.0734 _\mathrm{g} / \mathrm{mol}$
$\mathrm{n}=2$

Result

$\mathrm{H}=0.101 \mathrm{~mol} / \mathrm{l}$
$\mathrm{pH}=0.991$

Strong Bases

This set of equations defines the concentration of hydroxide ion and the resulting pH made by dissolving a strong base in water.

1) $\mathrm{OH}=n \cdot \frac{g b}{M W T b \cdot V}$
2) $H=\frac{K w}{O H}$
3) $\mathrm{pH}=-\operatorname{LOG}(H)$

Variable	Description	Units
OH	hydroxide ion concentration	$1-\mathrm{mol} / \mathrm{m}^{\wedge} 3$
H	hydrogen ion concentration	$1-\mathrm{mol} / \mathrm{m}^{\wedge} 3$
gb	mass of base	$1-\mathrm{kg}$
MWTb	molecular weight of base	$1-\mathrm{kg} / \mathrm{mol}$
V	volume of solution	$1-\mathrm{m} \wedge 3$
pH	pH function	$1-$
Kw	water dissociation constant	$1-\mathrm{mol}^{\wedge} 2 / \mathrm{m}^{\wedge}{ }^{\wedge} 6$
n	Number of hydroxide ions per molecule	1^{-}

Example: 4.5617_g of primary standard $\mathrm{NaOH}\left(\mathrm{MWT}=39.99707 _\mathrm{g} / \mathrm{mol}\right)$ is dissolved in a 500 ml volumetric flask. What is the pH ?

```
Given
gb = 4.5617_g
MWTb = 39.99707_g/mol
V = 500 ml
Kw = 1.01 }\times1\mp@subsup{0}{}{-14}\mp@subsup{\textrm{mol}}{}{2}/\mp@subsup{|}{}{2
n=1
```


Given

```
\(\mathrm{gb}=4.5617\) _g
MWTb \(=39.99707\) _g \(/ \mathrm{mol}\)
\(\mathrm{V}=500 \_\mathrm{ml}\)
\(\mathrm{Kw}=1 . \overline{0} 1 \times 10^{-14} \mathrm{~mol}^{2} / \|^{2}\)
\(\mathrm{n}=1\)
```


Result

$\mathrm{pH}=13.35$
$\mathrm{H}=4.43 \times 10^{-14} \mathrm{~mol} / \mathrm{l}$
$\mathrm{OH}=0.228 _\mathrm{mol} / \mathrm{l}$

Weak Acids/Bases

These six equations allow calculation of pH for a solution composed of a weak acid or a weak base.

1) $H^{3}+K a \cdot H^{2}-(C a \cdot K a+K w) \cdot H-K a \cdot K w=0$
2) $\mathrm{OH}^{3}+K b \cdot O H^{2}-(C b \cdot K b+K w) \cdot O H-K b \cdot K w=0$
3) $\mathrm{Kw}=\mathrm{H} \cdot \mathrm{OH}$
4) $\mathrm{pH}=-\operatorname{LOG}(H)$
5) $C a=\frac{g a}{M W T \cdot V}$
6) $C b=\frac{g b}{M W T \cdot V}$

Equation Library

Variable	Description	Units
Ca	acid concentration	1_mol$/ \mathrm{m}^{\wedge} 3$
Cb	base concentration	$1 \mathrm{~mol} / \mathrm{m}^{\wedge} 3$
Ka	acid dissociation constant	1_mol/m^ 3
Kb	base dissociation constant	1_-mol/m^3
Kw	water dissociation constant	1_mol ${ }^{\text {2/ }}$ へ 2
H	hydrogen concentration	1_mol/m^3
OH	hydroxide concentration	1_mol/m^3
pH	pH value	1
ga	mass of acid	1_kg
gb	mass of base	1_kg
MWT	molecular weight	1_kg/mol
V	primary standard volume	11

Example: 0.3862 grams of iodic acid, $\mathrm{HIO}_{3}(\mathrm{Ka}=0.162)$, is dissolved in 1.0 liter of water. What is the pH ? Use equations 3-5.

Given

$$
\begin{aligned}
& \mathrm{ga}=0.3862 _\mathrm{g} \\
& \mathrm{Ka}=0.162 _\mathrm{mol} / \mathrm{l} \\
& \mathrm{~V}=1.0 _1 \\
& \mathrm{MWT}=175.9106 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{KW}=1.01 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{l}^{2}
\end{aligned}
$$

Result

$\mathrm{Ca}=2.20 \times 10^{-3} \mathrm{~mol} / \mathrm{l}$
$\mathrm{H}=2.17 \times 10^{-3} \mathrm{~mol}_{\mathrm{m}} / \mathrm{ll}$
$\mathrm{pH}=2.66$

Note that when solving for the hydrogen ion concentration, it is important to seed the solver properly to ensure that the positive root is found.

Henderson-Hasselbach

Henderson-Hasselbach is an approximate expression relating the observed pH of a solution composed of a weak acid and its conjugate base.

1) $C a=\frac{g a}{M W T a \cdot V}$
2) $C c b=\frac{g b}{M W T b \cdot V}$
3) $p K a=-L O G(K a)$
4) $p H=p K a-L O G\left(\frac{C a}{C c b}\right)$

Variable	Description
Ca	acid concentration
ga	mass acid
MWTa	acid molecular weight

Units
1_mol/m ^ 3
1_kg
1_kg/mol

V	volume	$1 _\mathrm{kg} / \mathrm{m}^{\wedge} 3$
Ccb	base concentration	$1-\mathrm{mol} / \mathrm{m}^{\wedge} 3$
gb	mass base	$1-\mathrm{kg}$
MWTb	molecular weight of base	$1 _\mathrm{kg} / \mathrm{mol}$
pKa	pKa function	1
Ka	acid dissociation constant	$1 _\mathrm{mol} / \mathrm{m}^{\wedge} 3$
pH	pH value	1

Example: 0.45 grams of $\mathrm{NaCH}_{3} \mathrm{COCOO}$ are placed in a beaker known to contain $100 _\mathrm{ml}$ of $0.01 _\mathrm{mol} / \mathrm{l}$ acetic acid. What is the resulting pH ? (The Ka of acetic acid is $1.78 \times \overline{10} 0^{-5} \mathrm{~mol} / \mathrm{l}$).

```
Given
```

Given
$\mathrm{gb}=0.45 _\mathrm{g}$
MWTb $=110.04467 _\mathrm{g} / \mathrm{mol}$
$\mathrm{V}=100 \mathrm{ml}$
$\mathrm{gb}=0.45 _\mathrm{g}$
MWTb $=110.04467 _\mathrm{g} / \mathrm{mol}$
$\mathrm{V}=100 \mathrm{ml}$
$\mathrm{gb}=0.45 _\mathrm{g}$
MWTb $=110.04467 _\mathrm{g} / \mathrm{mol}$
$\mathrm{V}=100 \mathrm{ml}$
$\mathrm{gb}=0.45 _\mathrm{g}$
MWTb $=110.04467 _\mathrm{g} / \mathrm{mol}$
$\mathrm{V}=100 \mathrm{ml}$
$V=100 \mathrm{ml}$
$V=100 \mathrm{ml}$
Result
pKa $=4.75$
$\mathrm{Ccb}=4.09 \times 10^{-2}$ _ $\mathrm{mol} / \mathrm{l}$
$\mathrm{Ca}=0.01 \mathrm{~mol} / \mathrm{l}$
$\mathrm{Ca}=0.01 \mathrm{~mol} / \mathrm{l}$
$\mathrm{Ka}=1.78 \times 10^{-5} \mathrm{~mol} / \mathrm{l}$
$\mathrm{Ka}=1.78 \times 10^{-5} \mathrm{~mol} / \mathrm{l}$
$\mathrm{pH}=5.36$

```

\section*{Result}

Note that the Henderson-Hasselbach equation is valid when the acid to base concentration is \(10<\) acid/base \(<0.1\).

\section*{Titration (SA/SB)}

The following equations describe the pH of a solution obtained when a sample of strong monoprotic acid is titrated with a monoprotic strong base.
1) \(V e=\frac{C a}{C b} \cdot V a\)
2) \(\mathrm{pH}=-\operatorname{LOG}\left(\frac{-(\mathrm{Vb} \cdot \mathrm{Cb}-\mathrm{Va} \cdot \mathrm{Ca})}{2 \cdot(\mathrm{Va}+\mathrm{Vb})}+\frac{1}{2} \cdot\left(\left(\frac{\mathrm{Vb} \cdot \mathrm{Cb}-\mathrm{Va} \cdot \mathrm{Ca}}{\mathrm{Va}+\mathrm{Vb}}\right)^{2}+4 \mathrm{Kw}\right)^{\frac{1}{2}}\right)\)
3) \(\mathrm{pH}=-\operatorname{LOG}(H)\) 4) \(\mathrm{Cb}=\frac{g b}{M W T \cdot V}\)
\begin{tabular}{lll} 
Variable & Description & Units \\
Ca & acid concentration & 1 mol \(/ \mathrm{m}^{\wedge} 3\) \\
Cb & base (titrant) concentration & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
Ve & equilibrium volume & \(1-\mathrm{m}^{\wedge} 3\) \\
Va & volume of acid solution & \(1 \_\mathrm{m}^{\wedge} 3\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Vb & volume of base titrant & 1_m \({ }^{\text {¢ }}\) \\
\hline Kw & water dissociation constant & \(1 \mathrm{~mol}^{\wedge} 2 / \mathrm{m}^{\wedge} 6\) \\
\hline H & hydrogen ion concentration & 1_mol/m^ 3 \\
\hline pH & pH value & 1 \\
\hline gb & mass of base primary standard & 1_Kg \\
\hline MWT & molecular weight of base & \(1 \mathrm{~kg} / \mathrm{mol}\) \\
\hline V & primary standard volume & 1_m^3 \\
\hline
\end{tabular}

Example: A primary standard solution was made by adding 0.3986_g of \(\mathrm{NaOH}\left(\mathrm{MWT}=39.99707 \_\mathrm{g} / \mathrm{mol}\right.\) ) to \(1.000 \_1\) of water. A \(100 \_\mathrm{ml}\) acid sample of unknown concentration was titrated to an equivalent point of 49.68 _ml at \(25^{\circ} \mathrm{C}\). What is the concentration of acid and predict the pH curve expected for such a titration.

Given
\[
\begin{aligned}
& \mathrm{gb}=0.3986 \_\mathrm{g} \\
& \mathrm{MWT}=39.99707 \_\mathrm{g} / \mathrm{mol} \\
& \mathrm{~V}=1.000 \mathrm{I} \\
& \mathrm{Kw}=1.01 \times 10^{-14} \_\mathrm{mol}^{2} / \mathrm{l}^{2} \\
& \mathrm{Ve}=49.68 \_\mathrm{ml} \\
& \mathrm{Va}=100 \_\mathrm{ml}
\end{aligned}
\]

\section*{Result}
\(\mathrm{Ca}=4.951 \times 10^{-3} \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{Cb}=9.966 \times 10^{-3} \mathrm{~mol} / \mathrm{l}\)

With Ca and Cb calculated and tagged as knowns, you may plot pH versus the volume of added base, Vb , as shown (after changing Vb to ml ):
\[
\begin{aligned}
& \mathrm{x} 1=0-\mathrm{ml} \\
& \mathrm{x} 2=100 \_\mathrm{ml} \\
& \mathrm{y} 1=-3 \\
& \mathrm{y} 2=16
\end{aligned}
\]


\section*{Titration (SB/SA)}

The following equations describe the pH of a solution obtained when a sample of strong monoprotic base is titrated with a monoprotic strong acid.
1) \(V e=\frac{C b}{C a} \cdot V b\)
\[
\begin{aligned}
& \mathrm{pH}=-\operatorname{LOG}(\mathrm{Kw})+\operatorname{LOG}\left(\frac{-(\mathrm{Va} \cdot \mathrm{Ca}-\mathrm{Vb} \cdot \mathrm{Cb})}{2 \cdot(\mathrm{Va}+\mathrm{Vb})}+\frac{1}{2} \cdot\left(\left(\frac{\mathrm{Va} \cdot \mathrm{Ca}-\mathrm{Vb} \cdot \mathrm{Cb}}{\mathrm{Va}+\mathrm{Vb}}\right)^{2}+4 \mathrm{Kw}\right)^{\frac{1}{2}}\right) \\
& \text { 3) } \mathrm{pH}=-\operatorname{LOG}(H) \\
& \text { 4) } \mathrm{Ca}=\frac{g a}{M W T \cdot V}
\end{aligned}
\]
\begin{tabular}{ll} 
Variable & Description \\
Ca & concentration of acid titrant \\
Cb & concentration of base \\
Ve & equilibrium volume \\
Va & volume of acid solution \\
Vb & volume of base titrant \\
Kw & dissociation constant of water \\
H & hydrogen concentration \\
pH & pH value \\
ga & mass primary standard \\
MWT & molecular weight \\
V & primary standard volume
\end{tabular}

> Units
> \(1 \_\mathrm{mol} / \mathrm{m}^{\wedge} 3\)
> \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\)
> \(1 \_\mathrm{m}^{\wedge} 3\)
> \(1-\mathrm{m}^{\wedge} 3\)
> \(1-\mathrm{m}^{\wedge} 3\)
> \(1-\mathrm{mol}^{\wedge} 2 / \mathrm{l}^{\wedge} 2\)
> \(1 \_\mathrm{mol} / \mathrm{m}^{\wedge} 3\)
> 1
> \(1-\mathrm{kg}\)
> \(1-\mathrm{kg} / \mathrm{mol}\)
> \(1 \_\mathrm{m}^{\wedge} 3\)

Example: Plot the family of titration curves, starting with 25 _ml of 0.1 , 0.001 , and \(.00001 \_\mathrm{mol} / \mathrm{l}\) of base, with identical concentrations of acid.


\section*{Titration (WA/SB)}

The following equations describe the concentration of \(\mathrm{H}^{+}\)in a solution made from a titration of a weak acid with volume of strong base.
1) \(H^{3}+\left(\frac{C b \cdot V b}{V a+V b}+K a\right) \cdot H^{2}-\left(\frac{C a \cdot V a-C b \cdot V b}{V a+V b} \cdot K a+K w\right) \cdot H\)
\(-K a \cdot K w=0\)
2) \(V b=V a \cdot \frac{\left(\left(\frac{C a \cdot K a}{K a+H}\right)-H+\frac{K w}{H}\right)}{\left(C b+H-\frac{K w}{H}\right)}\)
3) \(\mathrm{pH}=-\operatorname{LOG}(H)\)

Note that the first two equations are equivalent. When solving for the hydrogen ion concentration, it is important to seed the solver properly to ensure that the positive root is found.
\begin{tabular}{ll} 
Variable & \begin{tabular}{l} 
Description \\
Ca
\end{tabular} \\
Cb & \begin{tabular}{l} 
acid concentration \\
base (titrant) concentration
\end{tabular} \\
Ka & acid dissociation constant \\
Kw & water dissociation constant \\
Va & volume acid solution \\
Vb & volume base titrant \\
H & hydrogen concentration \\
pH & pH value
\end{tabular}

\section*{Units}

1_mol/m^3
1_mol/m^3
1_mol/m^3
1_mol^2/l^2
1_m^3
1_m^3
1_mol/m^3
1

Example: What will be the pH of a \(25^{\circ}{ }^{\circ} \mathrm{C}\) solution made by mixing \(25.0 \_\mathrm{ml}\) of \(0.1 \_\mathrm{mol} / \mathrm{l} \mathrm{HAc} \cdot\left(\mathrm{Ka}=1.78 \times 10^{-5} \_\mathrm{mol} / \mathrm{l}\right)\) with \(10.00 \_\mathrm{ml}\) of \(0.10 \_\mathrm{mol} / \mathrm{l}\) \(\mathrm{NaO} \overline{\mathrm{H}}\) ? How much does the pH change if 2.50 ml of additional NaOH are added? 2.50_ml more?
\[
\begin{aligned}
& \text { Given } \\
& \mathrm{Ca}=0.1 \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{Cb}=0.1-\mathrm{mol} / \mathrm{l} \\
& \mathrm{Kw}=1.01 \mathrm{E}-14 \_\mathrm{mol} 2 / 12 \\
& \mathrm{Ka}=1.78 \mathrm{E}-5 \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{Va}=25.0 \_\mathrm{ml} \\
& \mathrm{Vb}=10.0-\mathrm{ml}
\end{aligned}
\]

Result
\[
\begin{aligned}
& 10.0 \mathrm{ml} \\
& \mathrm{H}=2.67 \times 10^{-5} \mathrm{~mol} / \mathrm{l} \\
& \mathrm{pH}=4.57 \\
& 12.50 \mathrm{ml} \\
& \mathrm{H}=1.78 \times 10^{-5} \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{pH}=4.75 \\
& 15.0 \mathrm{ml} \\
& \mathrm{H}=1.19 \times 10^{-5} \mathrm{~mol} / \mathrm{m} \\
& \mathrm{pH}=4.92
\end{aligned}
\]

\section*{Titration (WB/SA)}

The following equations describe the concentration of \(\mathrm{H}^{+}\)in a solution of a weak base titrated with a weak acid.
1)
\(O H^{3}+\left(\frac{C a \cdot V a}{V a+V b}+K b\right) \cdot O H^{2}-\left(\frac{C b \cdot V b-C a \cdot V a}{V a+V b} \cdot K b+K w\right) \cdot O H\)
\(-K b \cdot K w=0\)
2) \(V a=V b \cdot \frac{\left(\left(\frac{C b \cdot K b}{K b+O H}\right)-O H+\frac{K w}{O H}\right)}{\left(C a+O H-\frac{K w}{O H}\right)}\)
3) \(\mathrm{Kw}=\mathrm{H} \cdot \mathrm{OH}\)
4) \(\mathrm{pH}=-\) LOG \((H)\)

Note: Equations 1 and 2 are equivalent. When solving for the hydrogen ion concentration, it is important to seed the solver properly to ensure that the positive root is found.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Units \\
\hline Ca & concentration of acid titrant & 1_mol/m \({ }^{\wedge} 3\) \\
\hline Cb & concentration of base (titrant) & \(1 \mathrm{~mol} / \mathrm{m}^{\wedge} 3\) \\
\hline Kb & dissociation constant of base & 1_mol/m^3 \\
\hline Kw & water dissociation constant & 1_mol \({ }^{\text {2/ }}\) へ 2 \\
\hline Va & volume of added titrant & 1_m \({ }^{\text {c }} 3\) \\
\hline Vb & volume of base solution & 1_m^3 \\
\hline H & hydrogen concentration & 1_mol/m^3 \\
\hline OH & hydroxide concentration & \(1 \_\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
\hline pH & pH value & 1 \\
\hline
\end{tabular}

Example: \(10.0 \_\mathrm{ml}\) of \(0.1 \_\mathrm{mol} / \mathrm{l} \mathrm{HCl}\) is added to \(30.0 \_\mathrm{ml}\) of \(0.1 \_\mathrm{mol} / \mathrm{l}\) \(\mathrm{NH}_{4} \mathrm{OH}\left(\mathrm{Kb}=\overline{1} .80 \times 10^{-5}{ }_{-}^{-} \mathrm{mol} / \mathrm{l}\right)\). What is the pH ?

\section*{Given}
\(\mathrm{Ca}=0.100 \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{Cb}=0.100 \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{Kb}=1.80 \times 10^{-5} \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{Kw}=1.01 \mathrm{E}-14 \mathrm{~mol}^{2} / \mathrm{I}^{2}\)

\section*{Result}
\(\mathrm{H}=2.81 \times 10^{-10} \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{OH}=3.59 \times 10^{-5} \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{pH}=9.55\)

\section*{Equation Library}
\(\mathrm{Va}=10.0 \mathrm{ml}\)
\(\mathrm{Vb}=30.0 \_\mathrm{ml}\)

\section*{Thermo/Electrochemistry}

Seven topics in this category focus on thermal and thermodynamic properties, and electrochemical reactions.
- Heat Transfer
- Heat Engines
- Free Energy
- Thermodynamics
- Heat Capacity
- Nernst Law
- Reduction

\section*{Heat Transfer}

The following relations describe the heat flow equations which govern the flow of heat between two bodies of different temperatures with no phase change.
1) \(q a=m a \cdot c p a \cdot(T f-T a) \quad\) 2) \(q b=m b \cdot c p b \cdot(T f-T b)\)
3) \(q a=-q b\)
4) \(T f=\frac{m b \cdot c p b \cdot T b+m a \cdot c p a \cdot T a}{m a \cdot c p a+m b \cdot c p b}\)
5) \(\mathrm{cpa}=\frac{C p a}{M W T a}\)
6) \(c p b=\frac{C p b}{M W T b}\)

\begin{tabular}{lll} 
Variable & Description & Units \\
qa & heat flow in or out of material a & \(1 \_J\) \\
qb & heat flow in or out of material b & \(1 \_\mathrm{J}\) \\
ma & mass of a & \(1 \_\mathrm{kg}\) \\
mb & mass of b & \(1 \_\mathrm{kg}\)
\end{tabular}
\begin{tabular}{lll} 
cpa & specific heat of a & \(1 \_\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\) \\
cpb & specific heat of b & \(1 \_\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\) \\
Cpa & molar heat capacity of a & \(1 \_\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\) \\
Cpb & molar heat capacity of b & \(1 \_\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\) \\
Tf & final temperature & \(1 \_\mathrm{K}\) \\
Ta & temperature of a & \(1 \_\mathrm{K}\) \\
Tb & temperature of b & \(1 \_\mathrm{K}\) \\
MWTa & molecular weight of a & \(1 \_\mathrm{kg} / \mathrm{mol}\) \\
MWTb & molecular weight of b & \(1 \_\mathrm{kg} / \mathrm{mol}\)
\end{tabular}

Example: Suppose a \(20 \_\)g block of copper at \(90{ }^{\circ}{ }^{\circ} \mathrm{C}\) is placed in \(100 \_\mathrm{g}\) of water at \(25.0^{\circ}{ }^{\circ} \mathrm{C}\). What is the final temperature?
```

Given
cpa (copper) $=0.385 _\mathrm{J} /(\mathrm{g} \cdot \mathrm{K})$
$\mathrm{ma}=20 \mathrm{~g}$
$\mathrm{Ta}=90^{\circ} \mathrm{C}$
cpb (water) $=4.184 _\mathrm{J} /(\mathrm{g} \cdot \mathrm{K})$
$\mathrm{mb}=100 _\mathrm{g}$
$\mathrm{Tb}=25{ }^{\circ} \mathrm{C}$

```

Cannot solve for MWTa, MWTb, Cpa, and Cpb.

\section*{Heat Engines}

The thermal efficiency and coefficient of performance for a thermodynamic heat engine are given by the equations below.
1) \(\eta=1-\frac{T c}{T h}\)
2) \(\operatorname{Cop}=\frac{T c}{T h-T c}\)
\begin{tabular}{lll} 
Variable & Description & Units \\
\(\eta\) & thermal efficiency & 1 \\
Cop & coefficient of performance & 1 \\
Tc & temperature of cold reservoir & \(1 \_K\) \\
Th & temperature of hot reservoir & \(1 \_K\)
\end{tabular}

Example: What is the operating efficiency and coefficient of performance of an engine operating between a temperature of \(459{ }^{\circ} \mathrm{F}\) and \(25{ }^{\circ} \mathrm{C}\) ?

\section*{Given}
\(\mathrm{Th}=459{ }^{\circ} \mathrm{F}\)
\(\mathrm{Tc}=25^{\circ}{ }^{\circ} \mathrm{C}\)

\section*{Result}
\(\eta=0.42\)
Cop \(=1.4\)

\section*{Equation Library}

\section*{Free Energy}

The following equations define free energy.
\[
\Delta G=\Delta H-T \cdot \Delta S
\]
\[
\Delta G=-R \cdot T \cdot L N(K e q)
\]
\begin{tabular}{lll} 
Variable & Description & Units \\
\(\Delta G\) & free energy change & \(1-\mathrm{J} / \mathrm{mol}\) \\
\(\Delta H\) & enthalpy change & \(1-\mathrm{J} / \mathrm{mol}\) \\
\(T\) & temperature & \(1-\mathrm{K}\) \\
\(\Delta S\) & entropy change & \(1-\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\) \\
Keq & equilibrium constant & \(1^{-}\)
\end{tabular}

Example: The reaction below has a \(\Delta \mathrm{H}\) and a \(\Delta \mathrm{S}\) of \(+37.6 \_\mathrm{kJ} / \mathrm{mol}\) and 58.5 J \(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}\) at \(25{ }^{\circ}{ }^{\circ} \mathrm{C}\).
\[
\mathrm{NOCl}(s) \rightarrow \mathrm{NO}(g)+\frac{1}{2} \cdot \mathrm{Cl}_{2}(g)
\]

Is this a spontaneous reaction? If not, at what temperature is it spontaneous?
```

Given
$\Delta \mathrm{H}=37.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{S}=58.5 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{T}=25{ }^{\circ} \mathrm{C}$

```

\section*{Result}
\[
\begin{aligned}
& \Delta G=20.2 \_\mathrm{kJ} / \mathrm{mol} \\
& \mathrm{Keq}=2.94042 \mathrm{E}-4 \\
& (\mathrm{Ln} \text { Keq }=-8.13)
\end{aligned}
\]

The reaction is non-spontaneous at \(25{ }_{-}{ }^{\circ} \mathrm{C}\), solving for the equilibrium temperature where \(\Delta \mathrm{G}=0\).

Given
\(\Delta G=0\)
\(\Delta \mathrm{H}=37.6 \mathrm{~kJ} / \mathrm{mol}\)
\(\Delta \mathrm{S}=58.5 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})\)

Result
\(\mathrm{T}=369{ }^{\circ} \mathrm{C}\)
\(\mathrm{Keq}=1\)
(Ln Keq = 0)

Note: To solve this problem the temperature "T" must be "Unknown"
\(\Delta \mathrm{G}\) vs. T is plotted below (Note: Temperature variable T must be converted to _K before this plot is generated):
\(\mathrm{x} 1=200\)
\(\mathrm{x} 2=800\)
\(y=\) autoscale


\section*{Thermodynamics}

Empirical heat capacities are usually of the form given in the first equation. Enthalpy and entropies are obtained by simple integration over temperature.
1) \(C p=A+B \cdot T+C \cdot T^{2}+\frac{D}{T^{2}}\)
2) \(\Delta H=A \cdot T+\frac{B}{2} \cdot T^{2}+\frac{C}{3} \cdot T^{3}-\frac{D}{T}-H 298\)
3) \(\Delta S=2.303 \cdot A \cdot \operatorname{LOG}(T)+B \cdot T+\frac{C}{2} \cdot T^{2}-\frac{1}{2} \cdot \frac{D}{T^{2}}-S 298\)
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Units \\
\hline Cp & heat capacity & 1_J/(mol*K) \\
\hline \(\Delta \mathrm{H}\) & enthalpy at T & 1_J/mol \\
\hline \(\Delta\) S & entropy at T & 1_J/(mol*K) \\
\hline A & empirical constant & \(1 \mathrm{~J} /(\mathrm{mol}\) K \()\) \\
\hline B & empirical constant & \(1_{-}^{-} \mathrm{J} /\left(\mathrm{mol} \mathrm{K}^{\wedge}{ }^{\text {2 }}\right.\) ) \\
\hline C & empirical constant & 1_J/(mol*K^3) \\
\hline D & empirical constant & 1_J*K/mol \\
\hline T & absolute temperature & 1_K \\
\hline H298 & enthalpy at 298 K & \(1 \mathrm{~J} / \mathrm{mol}\) \\
\hline S298 & entropy at 298_K & 1_J/(mol*K) \\
\hline
\end{tabular}

Example: What is the heat capacity, enthalpy and entropy of \(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\) at 600_K? The appropriate constants are given below:

\section*{Given}

A \(=26.12 \mathrm{cal} /(\mathrm{mol} * \mathrm{~K})\)
\(B=4.388 \times 10^{-3}{ }_{\text {_cl }} /\left(\mathrm{mol} * \mathrm{~K}^{\wedge} 2\right)\)
\(C=0\)
\(D=-7.269 \times 10^{5}\) _cal \(\cdot \mathrm{K} / \mathrm{mol}\)
\(\mathrm{T}=600 \mathrm{~K}\)
\(\mathrm{H} 298=10.422 \_\mathrm{kcal} / \mathrm{mol}\)

\section*{Results}
\(\mathrm{Cp}=26.73 \_\mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K})\)
\(\Delta \mathrm{H}=7.251 \_\mathrm{kcal} / \mathrm{mol}\)
\(\Delta \mathrm{S}=28.43 \_\mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K})\)
\[
\mathrm{S} 298=142.03 \_\mathrm{cal} /(\mathrm{mol} \cdot \mathrm{~K})
\]

\section*{Heat Capacity}

For any material, the following equations relate the difference in heat capacity at constant volume and pressure to fundamental parameters of the material.
\[
\Delta C=\frac{\alpha^{2} \cdot V \cdot T}{\varepsilon} \quad \Delta C=C p-C V
\]
\begin{tabular}{lll} 
Variable & Description & Units \\
\(\Delta C\) & heat capacity difference & \(1 \_\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\) \\
\(\alpha\) & expansion coefficient & \(1 \_1 / \mathrm{K}\) \\
\(V\) & molar volume & \(1 \_\mathrm{m}^{\wedge} 3 / \mathrm{mol}\) \\
\(T\) & temperature & \(1 \_\mathrm{K}\) \\
\(\varepsilon\) & compressibility coefficient & \(1 \_1 / \mathrm{Pa}\) \\
\(C p\) & heat capacity (constant pressure) & \(1 \_\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\) \\
CV & heat capacity (constant volume) & \(1 \_\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})\)
\end{tabular}

Example: What is the difference in the heat capacities at constant volume and pressure for water at \(25^{\circ}{ }^{\circ} \mathrm{C}\) ?

\section*{Given}
\(\alpha=2.07 \times 10^{-4} 1 / \mathrm{K}\)
\(V=18.087 \_\mathrm{cm}^{3} / \mathrm{mol}\)
\(\mathrm{T}=25_{-}^{\circ} \mathrm{C}\)
\(\varepsilon=45.3 \times 10^{-6}-1 / \mathrm{atm}\)

\section*{Nernst Law}

The Nernst Law relates the electrode potential to the concentrations of materials in a reaction of the form: \(a A+b B \rightarrow c C+d D\).
1) \(E=E O-2.303 \cdot \frac{R T}{n \cdot F} \cdot \operatorname{LOG}(Q)\)
2) \(Q=\frac{(C)^{\mathrm{c}} \cdot(D)^{\mathrm{d}}}{(A)^{\mathrm{a}} \cdot(B)^{\mathrm{b}}}\)
3) \(E O=2.303 \cdot \frac{R T}{n \cdot F} \cdot \operatorname{LOG}(K)\)
4) \(\Delta G=-n \cdot F \cdot E\)
5) \(\Delta G o=-n \cdot F \cdot E o\)
\begin{tabular}{lll} 
Variable & Description & Units \\
E & cell potential & \(1 \_\mathrm{V}\) \\
Eo & standard cell potential & \(1 \_\mathrm{V}\) \\
T & temperature & \(1 \_\mathrm{K}\) \\
n & moles electrons & 1 \\
Q & reaction quotient & 1 \\
a,b,c,d & product/reactant coefficients & 1 \\
A,B,C,D & product/reactant concentrations & \(1 \_\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
\(\Delta \mathrm{G}\) & free energy change & \(1 \_\mathrm{J} / \mathrm{mol}\) \\
\(\Delta\) Go & standard free energy change & \(1 \_\mathrm{J} / \mathrm{mol}\) \\
K & equilibrium constant & \(1-\)
\end{tabular}

Example: Calculate the half-potential, measured at \(49{ }^{\circ} \mathrm{C}\), for the reaction

if \(\mathrm{Eo}=0.34 \_\mathrm{V}\) and \(\left[\mathrm{Cu}^{+2}\right]=5.0 \_\mathrm{mol} / \mathrm{l}\).
Given
\(\mathrm{EO}=0.34 \mathrm{~V}\)
\(\mathrm{~T}=49_{-}^{\circ} \mathrm{C}^{-}\)
\(\mathrm{n}=2\)
\(\mathrm{~A}=5\)
\(\mathrm{a}=1\)
\(\mathrm{~B}=\mathrm{C}=\mathrm{D}=1\)
\(\mathrm{~b}=\mathrm{C}=\mathrm{d}=0\)

\section*{Reduction}

The following equations describe the quantity of \(a\) produced by electrolytic reduction for time \(t\) by the chemical equation: Reactant \(+\mathrm{ne}^{-} \rightarrow \mathrm{aA}\).
1) \(Q=A \cdot t\)
2) \(n e=\frac{Q}{F}\)
3) \(n a=\left(\frac{a}{n}\right) \cdot n e\)
4) \(m a=M W T a \cdot n a\)
\begin{tabular}{lll} 
Variable & Description & Units \\
Q & charge & \(1 \_C\) \\
A & current & \(1 \_A\) \\
t & time & \(1 \_S\)
\end{tabular}
\begin{tabular}{lll} 
ne & moles of electrons & \(1 \_\mathrm{mol}\) \\
na & moles of a produced & \(1 \_\mathrm{mol}\) \\
a & coefficient of a & 1 \\
n & coefficient of n & 1 \\
ma & mass of a produced & \(1 \_\mathrm{kg}\) \\
MWTa & molecular weight of a & \(1 \_\mathrm{kg} / \mathrm{mol}\)
\end{tabular}

Example: An electrolytic cell is constructed in which silver chloride is reduced to silver metal and chloride ion according to the reaction
\[
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}
\]

A current of 50 mA is passed through the cell for \(4.5 \_\mathrm{h}\). What is the mass of silver deposited?

\section*{Given}
\[
\begin{aligned}
& t=4.5 \_h \\
& A=50.0 \_\mathrm{mA} \\
& \mathrm{a}=\mathrm{n}=1 \\
& \mathrm{MWTa}=107.87 \_\mathrm{g} / \mathrm{mol}
\end{aligned}
\]

\section*{Result}
\[
\begin{aligned}
& \mathrm{Q}=810 \_\mathrm{C} \\
& \mathrm{ne}=8.40 \times 10^{-3} \mathrm{~mol} \\
& \mathrm{na}=8.40 \times 10^{-3} \mathrm{~mol} \\
& \mathrm{ma}=0.906 \_\mathrm{g}
\end{aligned}
\]

\section*{Precipitation}

The condition for precipitation of a salt in water defines the solubility product Ksp . For a salt of the solubility of the form AaBb , the solubility product is defined as \(K s p=[A]^{a}[B]^{b}\).

The following equations relate the solubility product to the overall solubility of the salt.
\(A B\)
\[
K s p=f a \cdot f b \cdot s^{2}
\]

A2B
\[
K s p=4 f a^{2} \cdot f b \cdot s^{3}
\]

AB2
\[
K s p=4 f a \cdot f b^{2} \cdot s^{3}
\]

A3B
\[
K s p=27 \mathrm{fa}^{3} \cdot \mathrm{fb} \cdot \mathrm{~s}^{4}
\]

AB3
\[
K s p=27 f a \cdot f b^{3} \cdot s^{4}
\]

A2B3
\[
K s p=108 \mathrm{fa}^{2} \cdot f b^{3} \cdot s^{5}
\]

A3B2
\[
\begin{aligned}
& K s p=108 f a^{3} \cdot f b^{2} \cdot s^{5} \\
& s=\frac{g a}{M W T \cdot V}
\end{aligned}
\]
\begin{tabular}{lll} 
Variable & \begin{tabular}{l} 
Description \\
Ksp
\end{tabular} & \begin{tabular}{l} 
solubility product
\end{tabular} \\
fa & activity coefficient of a & Units \\
fb & activity coefficient of b & \(\star\) \\
S & solubility & \({ }^{*}\) \\
ga & mass of a & 1 \\
MWT & molecular weight of a & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
V & volume & \(1-\mathrm{kg}\) \\
\end{tabular}
* Units of Ksp depend on the stoichiometric ratios within the dissolving species.
**Activity coefficients are equal to 1 if ideal.

Example: What is the solubility of \(\mathrm{BiI}_{3}(\mathrm{~s})\left(\mathrm{AB} 3, \mathrm{~K} p=8.1 \times 10^{-19}\right)\) in a solution such that, at equilibrium, \(\mathrm{fBi}^{+3}=0.110\) and \(\mathrm{fI}^{-}=0.200\). How many grams of \(\mathrm{Bil}_{3}\) are dissolved in \(100 \_\mathrm{ml}\) at equilibrium? Compare your results assuming ideality and non-ideality.
Case 1: Non-Ideal

\section*{Given}
\(\mathrm{fb}=0.200\)
\(\mathrm{fa}=0.110\)
\(\mathrm{Ksp}=8.1 \times 10^{-19} \mathrm{~mol}^{4} / \mathrm{l}^{4}\)
\(\mathrm{V}=100 \mathrm{ml}\)
MWT \(=589.6939 \_\mathrm{g} / \mathrm{mol}\)
Case 2: Ideal
```

Given
$\mathrm{fb}=1$
$\mathrm{fa}=1$
Ksp $=8.14 \times 10^{-19} \mathrm{~mol}^{4} / \mathrm{l}^{4}$
$V=100 \mathrm{ml}$
$\mathrm{MWT}=589.6939 _\mathrm{g} / \mathrm{mol}$

```

\section*{Result}
\(\mathrm{s}=7.6 \times 10^{-5} \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{ga}=4.5 \mathrm{mg}\)

\section*{Result}
\(\mathrm{s}=1.3 \times 10^{-5} \mathrm{~mol} / \mathrm{l}\)
\(\mathrm{ga}=0.776 \mathrm{mg}\)

\section*{Kinetics}

Chemical kinetics is the study of the time dependence of chemical reactions. The following topics represent common kinetic studies.
\begin{tabular}{|c|c|}
\hline First Order & - Second Order (II) \\
\hline - Parallel First Order & - Arhenius Law \\
\hline - First Order Consecutive & - Fractional Life \\
\hline Second Order ( I) & \\
\hline
\end{tabular}

\section*{First Order}

A reaction: \(\mathrm{A} \xrightarrow{k 1 s t}\) Products, which proceeds in first order, behaves according to the following equations.
1) Rate \(=k 1 s t \cdot \mathrm{Ca}\)
2) \(C a=C a o \cdot e^{-k 1 s t \cdot t}\)
3) thalf \(=\frac{L N(2)}{k 1 s t}\)
\begin{tabular}{lll} 
Variable & Description & Units \\
Rate & rate of reaction & \(1 \_\mathrm{mol} /\left(\mathrm{m}^{\wedge} 3 \cdot \mathrm{~s}\right)\) \\
k 1 st & rate constant & \(1-1 / \mathrm{s}\) \\
Ca & concentration \(\mathrm{A}(\mathrm{t})\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
Cao & concentration \(\mathrm{A}(\mathrm{t}=0)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
t & time & \(1 \_\mathrm{s}\) \\
thalf & half life & \(1 \_\mathrm{s}\)
\end{tabular}

Example: At \(25{ }^{\circ} \mathrm{C}\), a first order reaction takes 15.0 minutes to reach the point where half the initial concentration of the reactant has been consumed (half life). How long before less than \(1 \%\) is left over?
```

Given
$\mathrm{Ca}=1.0 _\mathrm{mol} / \mathrm{l}$ (assumed)
Cao $=0.01 _\mathrm{mol} / /$ (assumed)
thalf $=15$ _min

```

\section*{Result}
\(\mathrm{k} 1 \mathrm{st}=7.7 \times 10^{-4}{ }^{1} 1 / \mathrm{s}\)
\(\mathrm{t}=5979\) _s \(\quad-\)
Rate \(=7.7 \times 10^{-6} \mathrm{~mol} /\left(\mathrm{m}^{\wedge} 3^{\star} \mathrm{s}\right)\)

If the reaction is heated to \(125{ }^{\circ} \mathrm{C}\), the reaction has a half life of only 1.0 min. Under these conditions, how long does it take to reach \(1.0 \%\) of initial concentration: Plot the reactant concentration vs. time for these two cases.
\(\mathrm{x} 1=0 \_\mathrm{s}\)
\(\mathrm{x} 2=6000\) s
autoscale y


Given
thalf \(=1.0 \mathrm{~min}\)
Cao \(=1.0 \_\mathrm{mol} / \mathrm{l}\)
\(\mathrm{Ca}=0.01 \_\mathrm{mol} / \mathrm{l}\)

Result
k 1 st \(=1.16 \times 10^{-2}{ }^{2} 1 / \mathrm{s}\)
\(\mathrm{t}=398\) _s

\section*{Parallel First Order}

The following reactions describe concentrations of reactants for first order, irreversible, parallel reactions of the form:

1) \(A=A o \cdot e^{-(k b+k c) \cdot t}\)
2) \(B=B o+\frac{k b \cdot A o}{(k b+k c)} \cdot\left[1-e^{-(k b+k c) \cdot t}\right]\)
3) \(C=C o+\frac{k c \cdot A o}{(k b+k c)} \cdot\left[1-e^{-(k b+k c) \cdot t}\right]\)
\begin{tabular}{lll} 
Variable & Description & Units \\
B & concentration \(B(t)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge}{ }^{3}\) \\
Bo & concentration \(B(t=0)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
kb & rate constant for reaction \(B\) & \(1_{-} 1 / \mathrm{s}\)
\end{tabular}

\section*{Equation Library}
\begin{tabular}{lll} 
Ao & concentration \(\mathrm{A}(\mathrm{t}=0)\) & \(11 \mathrm{~mol} / \mathrm{m}^{\wedge} 3\) \\
kc & rate constant for reaction C & \(1-1 / \mathrm{s}\) \\
t & time & \(1-\mathrm{s}\) \\
C & concentration \(\mathrm{C}(\mathrm{t})\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
Co & concentration \(\mathrm{C}(\mathrm{t}=0)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
A & concentration \(\mathrm{A}(\mathrm{t})\) & \(1 \_\mathrm{mol} / \mathrm{m}^{\wedge} 3\)
\end{tabular}

Example: A parallel reaction can produce two products with rate constants of \(1.0 \_1 / \mathrm{s}\) and \(0.5 \_1 / \mathrm{s}\). Starting with \(1 \_\mathrm{mol} / \mathrm{l}\) of initial reactant, plot the concentration profiles of A, B and C vs. time.

\section*{Given}
\[
\begin{aligned}
& \mathrm{Bo}=0 \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{kc}=0.5 \_1 / \mathrm{s} \\
& \mathrm{~kb}=1.0-1 / \mathrm{s} \\
& \mathrm{Co}=0 \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{Ao}=1.0 \_\mathrm{mol} / \mathrm{l}
\end{aligned}
\]
and
\(\mathrm{x} 1=0\)
\(\mathrm{x} 2=5\) s
\(y 1=-0.1363\)
\(\mathrm{y} 2=1.0\)


\section*{First Order Consecutive}

The simplest form of consecutive reactions is a series of first order reactions of the form:
\[
A_{\rightarrow}^{k 1} B \xrightarrow[\rightarrow]{k 2} C^{k 3} D
\]

These four equations describe the kinetics of such a system.
1) \(A=A o \cdot e^{-k 1 \cdot t}\)
2) \(B=B o \cdot e^{-k 2 \cdot t}+\frac{k 1 \cdot A o}{k 2-k 1} \cdot\left(e^{-k 1 \cdot t}-e^{-k 2 \cdot t}\right)\)
3) \(C=C o e^{-k 3 \cdot t}+B o \cdot\left(\frac{k 2 \cdot e^{-k 2 \cdot t}}{k 3-k 2}-\frac{k 2 e^{-k 3 \cdot t}}{k 3-k 2}\right)+\)
\[
A o\left(\frac{k 1 \cdot k 2 e^{-k 1 \cdot t}}{(k 3-k 1)(k 2-k 1)}-\frac{k 1 \cdot k 2 e^{-k 2 \cdot t}}{(k 3-k 2)(k 2-k 1)}+\frac{k 1 \cdot k 2 e^{-k 3 \cdot t}}{(k 3-k 2)(k 3-k 1)}\right)
\]
\begin{tabular}{lll} 
Variable & Description & Units \\
A & concentration \(A(t)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge}{ }^{\wedge} 3\) \\
Ao & concentration \(A(t=0)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
B & concentration \(B(t)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3^{3}\) \\
Bo & concentration \(B(t=0)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
C & concentration \(C(t)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3^{3}\) \\
Co & concentration \(C(t=0)\) & \(1-\mathrm{mol} / \mathrm{m}^{\wedge} 3\) \\
k1 & rate constant for \(A \rightarrow B\) & \(1^{-1 / \mathrm{s}}\) \\
k2 & rate constant for \(B \rightarrow C\) & \(1^{-1 / \mathrm{s}}\) \\
k3 & rate constant for \(C \rightarrow D\) & \(1-1 / \mathrm{s}\) \\
\(t\) & time & \(1 \_\mathrm{s}\)
\end{tabular}

Example: Irreversible successive first order reactions kinetics is often used to describe radioactive decay. Consider the progressive series of reactions:
\[
A \xrightarrow{5.01 / n} B \xrightarrow{2.51 / n} C \xrightarrow{4.5-1 / n} D
\]
where \(\mathrm{A}(\mathrm{t}=0)=1.0 \_\mathrm{mol} / \mathrm{l}\) and \(\mathrm{Bo}=\mathrm{Co}=0 \_\mathrm{mol} / \mathrm{l}\). Plot the concentration of \(B\) and \(C\) vs. time, and determine the point where the maximum concentration of each material occurs.
\[
\begin{aligned}
& x 1=0-s \\
& x 2=6000-s \\
& y 1=-0.1363 \\
& y 2=1
\end{aligned}
\]

\(\mathrm{A}(\) maximum \()=0.00 \_\mathrm{s}\)
\(B\) (maximum) \(=0.50 \_\mathrm{mol} / \mathrm{l},{ }^{\sim}\) 969_s
\(C\) (maximum) \(=0.22 \_\mathrm{mol} / \mathrm{l}, \sim 1800 \_\mathrm{s}\)

\section*{Second Order (I)}

These three equations describe the concentration versus time for a second order reaction of the form: \(\mathrm{aA} \rightarrow\) products.
1) Rate \(=k 2 n d \cdot \mathrm{Ca}^{2}\)
2) \(\mathrm{Ca}=\frac{\mathrm{CaO}}{(1+a \cdot k 2 n d \cdot t \cdot \text { Cao })}\)
3) thalf \(=\frac{1}{a \cdot \text { Cao } \cdot k 2 n d}\)
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Units \\
\hline Rate & rate of reaction & 1_mol/(m^3.s) \\
\hline k2nd & rate constant & \(1 \mathrm{~m}^{\wedge} 3 /(\mathrm{mol} \cdot \mathrm{s})\) ) \\
\hline Ca & concentration A (t) & 1_mol/m^3 \\
\hline Cao & concentration A ( \(\mathrm{t}=0\) ) & 1_mol/m^3 \\
\hline a & stoichiometric coefficient & 1 \\
\hline t & time & 1_s \\
\hline thalf & half life & 1_s \\
\hline
\end{tabular}

Example: The thermal decomposition of \(\mathrm{HI}(2 \mathrm{HI} \rightarrow \mathrm{H} 2+\mathrm{I} 2)\) proceeds in second order in HI. In this reaction, a \(0.10_{-} \mathrm{mol} / \mathrm{l}\) of HI sample reacts for 10 minutes in a spectrophotometer. After 10 minutes the concentration is 0.08 _mol\(/ \mathrm{l}\). What is the rate constant and half life?
\[
\begin{aligned}
& \text { Given } \\
& \mathrm{Cao}=0.10 \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{Ca}=0.08 \_\mathrm{mol} / \mathrm{l} \\
& \mathrm{t}=10.0 \_\mathrm{min}
\end{aligned}
\]

\section*{Result}
k2nd \(=2.08 \times 10^{-3} \mathrm{I} /(\mathrm{mol} \cdot \mathrm{s})\)
thalf \(=40 \_\)min
\(a=2\)

\section*{Second Order (II)}

The following equations describe concentrations versus time for a second order reaction of the form: \(\mathrm{aA}+\mathrm{bB} \rightarrow\) products.
1) Rate \(=k 2 n d \cdot \mathrm{Ca} \cdot \mathrm{Cb}\)
2) \(f=\left(\frac{C b o}{C a O}\right) \cdot \exp ((a \cdot C b o-b \cdot C a o) \cdot k 2 n d \cdot t)\)
3) \(f=\left(\frac{C B}{C A}\right)\)

Variable Description
Rate rate of reaction
k2nd rate constant
\(\mathrm{Ca} \quad\) concentration \(\mathrm{A}(\mathrm{t})\)
\(\mathrm{Cb} \quad\) concentration \(\mathrm{B}(\mathrm{t})\)
f reactant ratio
Cao concentration A \((t=0)\)
Cbo concentration B \((t=0)\)
a
t
b stoichiometric coefficient of b
concentration \(B(t=0)\)
stoichiometric coefficient of a time

Units
1_mol/(m^3•s)
\(1 \_\mathrm{m}^{\wedge} 3 /(\mathrm{mol} \cdot \mathrm{s})\)
1_mol/m^3
1 _mol/m^3
1
1_mol/m^3
1_mol/m^3
1
1
1_s

Example: The reaction of ethylene bromide with potassium iodide in \(99 \%\) methanol proceeds in second order according to the following reaction:
\[
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}+3 \mathrm{KI} \xrightarrow{\mathrm{k} 2 n d} \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{KBr}+\mathrm{Kl}_{3}
\]

At \(59.72_{-}^{\circ} \mathrm{C}\), k 2 nd is reported to be \(5.0 \times 10^{-3}\) _ \(1 /(\mathrm{mol} \cdot \mathrm{s})\) when the initial concentration of ethylene bromide and potassium iodide are \(0.02864 \_\mathrm{mol} / \mathrm{l}\) and 0.1531 _mol \(/ \mathrm{l}\), respectively. Calculate the reactant ratio at \(0.1 \_\mathrm{h}, 0.5 \_\mathrm{h}\), \(1.0_{-} \mathrm{h}\) and 10 hr.
```

Given
Cao $=0.02864 \mathrm{~mol} / \mathrm{l}$
$\mathrm{Cbo}=0.1531 _\mathrm{mol} / \mathrm{l}$
k2nd $=5.0 \times 10^{-3} \mathrm{I} /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{a}=1$

```

\section*{Result}
\(f\left(0.1 \_h\right)=6.03\)
\(f(0.5\) h) \(=9.78\)
\(\mathrm{f}\left(1 \_\mathrm{h}\right)=17.9\)
\(f\left(10 \_h\right)=9.5 E 5\)

\section*{Equation Library}
\(b=3\)
\(\mathrm{t}=0.5 \mathrm{~h}\)
\(x 1=0\)
\(x 2=10\)
\(y=\) autoscale


\section*{Arrhenius Law}

These equations describe the Arhenius Law, which relates the rate constant to the temperature and activation energy of the reaction.
\[
\begin{aligned}
& k 1=A e^{-(E a /(R \cdot T))} \\
& L N\left(\frac{k 1}{k 2}\right)=-\left(\frac{E a}{R}\right) \cdot\left(\frac{1}{T 1}-\frac{1}{T 2}\right)
\end{aligned}
\]
\begin{tabular}{lll} 
Variable & Description & Units \\
k1 & rate constant at T1 & 1 \\
K2 & rate constant at T2 & 1 \\
A & pre-exponential & 1 \\
Ea & activation energy & \(1-\mathrm{J} / \mathrm{mol}\) \\
T1 & temperature at k1 & \(1-\mathrm{K}\) \\
T2 & temperature at k2 & \(1 \_\mathrm{k}\)
\end{tabular}

Example: The rate constants for the rearrangement of methyl isonitrile are \(2.52 \times 10^{-5}{ }_{-} 1 / \mathrm{s}\) and \(3.16 \times 10^{-3}{ }_{-} 1 / \mathrm{s}\) at \(189.7_{-}^{\circ} \mathrm{C}\) and \(251.2^{\circ}{ }^{\circ} \mathrm{C}\) respectively. From this data, calculate the activation energy and pre-exponential for this reaction.

\section*{Given}
\(\mathrm{k} 1=2.52 \times 10^{-5}\)
\(\mathrm{k} 2=3.16 \times 10^{-3}\)
\(\mathrm{T} 1=189.7^{\circ}{ }^{\circ} \mathrm{C}\)
\(\mathrm{T} 2=251.2^{\circ}{ }^{\circ} \mathrm{C}\)

\section*{Result}
\(\mathrm{Ea}=159 \mathrm{~kJ} / \mathrm{mol}\)
\(\mathrm{A}=1.96 \times 10^{13}\)

\section*{Fractional Life}

The time necessary for a given fraction of a reagent to react will depend on the initial concentrations of reactants and the rate expression for the reaction. The following equations calculate the time necessary for the reactant to reach to a fraction of its original concentration.
\[
\begin{aligned}
& \text { if } n o \neq 1 \text {, then tfract }=\frac{\left(\frac{1}{1-f}\right)^{n o-1}-1}{(n o-1) \cdot a \cdot k g e n \cdot \text { Cao }^{\mathrm{no-1}}} \\
& \text { if } n o=1 \text {, then tfract }=\frac{-L N(1-f)}{k g e n}
\end{aligned}
\]
\(\left.\begin{array}{lll}\text { Variable } & \begin{array}{l}\text { Description } \\ \text { tfract }\end{array} & \text { fractional life }\end{array}\right]\) Units
*The units of kgen will be in the units of (time) \({ }^{-1}\), times the units of Cao to the (1-no) power. Note that only one equation is shown in the calculator.

Example: A second order reaction ( \(2 \mathrm{~A} \rightarrow\) products) proceeds with a rate constant of \(1.03 \times 10^{-3} \_1 /(\mathrm{h} \cdot \mathrm{mol})\). If the initial concentration of A is 0.01 mol \(/ \mathrm{l}\), how long will it take for \(10 \%\) of A to react? How about \(25 \%\), \(50 \%\), or \(75 \%\) ?

\section*{Given}
\[
\begin{aligned}
& \text { no }=2 \\
& \text { kgen }=1.03 \times 10^{-3}-1 / \mathrm{h} \\
& \text { Cao }=0.01 \\
& \mathrm{a}=2 \\
& \mathrm{f}=0.10
\end{aligned}
\]

\section*{Result}
\[
\begin{aligned}
& \text { tfract }=1.94 \mathrm{E} 7 \text { s } 10 \% \\
& \text { tfract }=5.82 \text { E7 s } 25 \% \\
& \text { tfract }=17.5 \text { E7_s 50\% } \\
& \text { tfract }=52.4 \text { E7_s 75\% }
\end{aligned}
\]

Notes:

\section*{Chapter 3}

\section*{Periodic Table}

\section*{In This Chapter}

The Periodic Table function is a quick reference tool that provides basic information, such as mass number, electron configuration, oxidation state, and atomic weight, for each element.

\section*{Using the Periodic Table}

The Periodic Table screen displays after selecting this topic at the main menu. The figure below illustrates the information given on the screen for each element:


In the Periodic Table display, each square represents one element. The square, black cursor marks the selected element. The element name, mass number, symbol, atomic number and molecular weight, are displayed.

\section*{Properties of Each Element}

Press PROPS or ENTER to view a list of properties for the current element:


\section*{Periodic Table}

Use the cursor keys to scroll down the list to the desired property. Pressing ENTER places the data on the calculator stack.

The properties listed for each element (if available) are:


Atomic Number (Table)
Atomic Weight (Table)
Oxidation State
\(\square \quad\) Physical State
\(\square \quad\) Atomic Radii
\(\square \quad\) First Ionization Potential
Group and FamilyMass Number (Table)DensityElectron Configuration
\(\square\) Electronegativity (Pauling's)
\(\square\) Covalent Radii
\(\square\) Boiling Point
\(\square\) Melting Point

\section*{Moving Around the Periodic Table}

Use the cursor keys ( \(\nabla, \square, \square, \boxed{\Delta}\) ) to move the pointer to any element. Pressing the key with a cursor key moves the cursor to the beginning or end of the current row or column. Pressing EAST eliminates the element information from the screen and allows you to quickly move from element to element using the cursor keys. Press FAST again to retrieve the screen information.

\section*{Using Search and List Utilities}

To search for a particular element press the FRND softkey. At the prompt, type in the symbol or atomic number of the element you want to search for, as shown:


If you are entering an element's symbol, the second letter must be lower case. Lower case entries are made by pressing before typing in the letter. Press EENER to move to the Periodic Table screen containing the element you were searching for, in this case, chlorine:


\section*{List of Element Names and Symbols}

Pressing 4 SS\% displays the names and symbols of all the elements in the Periodic Table, in alphabetical order:
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { PACtinium } \\
& \text { BIUminum }
\end{aligned}
\] & (RC) \\
\hline Armericium & ( \(\mathrm{Am}^{\text {m }}\) \\
\hline Ant imony & (Sb) \\
\hline \(\mathrm{Ar}^{-90 \%}\) & ( Hr ) \\
\hline Arsenic & ( \(\mathrm{Als}^{\text {\% }}\) \\
\hline Astatime & (At) \\
\hline Cider michatw & CLEFIN \\
\hline
\end{tabular}

\section*{Searching for a Property}

To search for particular property, press \(\alpha\) at the list of properties screen. At the "search for" prompt, type in the desired variable, remembering that searches are case sensitive. For example, to search for the covalent radii of chlorine, type in "Cov" at the prompt, as shown:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\{ hame gchppo \} Phig} \\
\hline Search for: & \\
\hline Cou GEKIPESKIT 9 FDEL & \\
\hline
\end{tabular}

Then press ENER to initiate the search. The following screen displays:


Press EXIf to return to the Periodic Table screen.

\section*{Editing Text Entries During a Search}

The search mode softkeys ( ЕSKIP \&DEL NS ) along the bottom of the search screen are command line editing keys. They are built into the HP 48SX and allow you to edit the search string. Their functions are summarized below:
\#STIF Moves the cursor to the beginning of the current word.
SKIP. Moves the cursor to the beginning of the next word.
WEI. Deletes all the characters in the current word to the left of the cursor.

DEI. \(\rightarrow\) Deletes all the characters from the cursor's current position to the first character of the next word.

MS. Toggles between insert and typeover modes.

\section*{Using the Print Function}

You can send data from the Periodic Table directly to an infrared (IR) printer compatible with the HP 48SX via the infrared port. Follow the instructions in the printer manual regarding operating and positioning the printer relative to the HP 48SX.

When you press the PRIMI softkey at the Periodic Table screen, the next
 current element is sent to the printer. Pressing EEED prints only the data item currently selected by the pointer.

\section*{Summary of Softkeys}

MAN Returns to the main menu.
\#STIC Copies selected entry to calculator stack.
PRINT Sends selected data to an IR printer.
UMIS Toggles units on and off. When off, all variables are assumed to be SI .

UNITE Indicates that units are on.
EXIT\% Exits to the Periodic Table or list of elements
FONT Toggles the display font between large and small.
TABIE Returns to the Periodic Table display from the element list.
Props Displays a list of various properties for each element.
नIND Initiates a search for an element name, number, symbol or property.

MST\% Displays an alphabetical listing of elements and symbols.
AST\% Toggles fast display mode on and off.
ASTI Indicates that fast mode is on.
ATW: Places the atomic weight of the current element on the stack as a tagged object

\section*{Periodic Table}

Notes:

\section*{Chapter 4 \\ Stoichiometry}

\section*{In This Chapter}

The stoichiometry function allows you to build new chemical reactions, and perform theoretical yield and limiting reagent calculations, for liquid, solid, gas and solution reactions. The Species Library, which stores the chemical species needed to form these chemical reactions, is also discussed.
\(\square \quad\) Using the Stoichiometry Function
\(\square\) Using the Species Library
\(\square\) Creating a Chemical Reaction
\(\square\) Summary of Softkeys

\section*{Using the Stoichiometry Function}

The stoichiometry function is designed for you to enter, name, and store your own chemical reactions in the calculator's memory. The software checks for mass and charge balance and allows you to easily calculate theoretical yields and limiting reagents. Two chemical reactions, methane combustion and permanganate reduction, are included in the software as examples to demonstrate the stoichiometry function.

When you select STOICHIOMETRY at the main menu for the first time, only the two sample chemical reactions appear on the screen. As you enter and name your own reactions, they are added to the list. The next three sections use the sample reactions to illustrate how to access reactions and calculate theoretical yields and limiting reagents. The remaining sections explain how to build, check, and edit your own chemical reactions.

\section*{Selecting and Displaying a Chemical Reaction}

Select STOICHIOMETRY at the main menu screen and press ENTE to display the reactions currently available in the calculator's memory:
```

MTOICHIOMETRY

```

When you first use the General Chemistry Application Pac, only the two sample reactions are listed on the STOICHIOMETRY menu. Move the pointer to METHANE COMBUSTION and press the softkey for the Chemical Equation Writer, CHEW, to view the methane combustion reaction, shown below:
\begin{tabular}{|c|}
\hline SPARCOM Chermichl equition writer \\
\hline \(\mathrm{CH}_{49}+2 \mathrm{O}_{29} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{1}+\mathrm{CO}_{\mathrm{z}_{9}}\) \\
\hline Piess lenterij to metukn to list ... \\
\hline
\end{tabular}

Press EENTER to return to the STOICHIOMETRY menu screen. For reactions that are too lengthy to fit on the screen, use the \(\square\) and \(\square\) keys to scroll the display to the right or to the left. The figure below illustrates what a long reaction (in this case, the permanganate reaction) would look like if the screen were wide enough to display all the data at once.

Press to return to the STOICHIOMETRY menu screen.

\section*{Calculating Theoretical Yields}

Suppose you want to calculate the mass of \(\mathrm{O}_{2}\) required to react with \(1 \_\mathrm{g}\) of \(\mathrm{CH}_{4}\) during combustion. Move the pointer to the METHANE COMBUSTION reaction and press \(\overline{\$ T O L E}\). This displays all reactants (labeled R) and products (labeled P) in the reaction, as shown:
\begin{tabular}{|c|}
\hline  \\
\hline  \\
\hline
\end{tabular}

At this point the reaction is checked for mass and charge balance. If it is not balanced, a warning message appears, giving you the option of continuing, despite the imbalance.

\section*{Entering a Quantity of a Reactant}

To enter a quantity of a reactant (or product), move the pointer to that species and press ENTER. Enter 1, then press the appropriate unit softkey to append a unit to your entry, as shown:
\begin{tabular}{|c|c|}
\hline \{ HDME GCHEMO \} & Pfig \\
\hline Enter quantity of 1CH4[g]: & \\
\hline  & \\
\hline
\end{tabular}

Press ENTER to store \(1 \_\mathrm{g}\) as the quantity of \(\mathrm{CH}_{4}\) :
\begin{tabular}{|c|}
\hline  \\
\hline  \\
\hline
\end{tabular}

All quantities are displayed in brackets. To perform a theoretical yield calculation, press CALC. The quantity of the single, specified reactant (or product) is used to calculate the theoretical yields of all the other components, in grams.
\begin{tabular}{|c|}
\hline METHANE COMEUSTION \\
\hline  \\
\hline  \\
\hline
\end{tabular}

To convert the mass of oxygen (or any reactant or product) into units other than grams, move the pointer to the reactant or product you want to covert (in this case, \(\mathrm{O}_{2}\) ) and press ©ONV. This displays a list of available units:


Move the cursor to pounds and press ENTER. This converts the mass of oxygen from grams to pounds:


To perform another theoretical yield calculation, first press © CIER to reset all quantities to zero.

\section*{Limiting Reagents}

Suppose a reaction vessel contains \(1 \_\)g of CH4 and \(1 \_g\) of O2. The reaction will proceed until all of one reactant is consumed, leaving other reactants. The reactant that is totally consumed is termed a limiting reagent. To solve such a problem, simply enter both quantities into the stoichiometry list, as shown:
```

 METHANNE COMEUSTION
 &: [1-6] 1[CH[G]
 &:{1-6) 誰[(G)
 ->P:{0} टH20[L}
P: (0) 1602(G)
CALC CDNNOLEFIN MIEND FSTK EXIT

```

Press EAlC. to start the calculation. The result is shown below:

This shows that all the \(\mathrm{O}_{2}\) is consumed in the reaction (it's the limiting reagent) whereas only 0.25 g of \(\mathrm{CH}_{4}\) was consumed. Limiting reagent calculations may be performed with any number of reactants and products specified.

\section*{Stoichiometry with Solutions}

In some cases, reactions are most convenient if they proceed with reactants and/or products in the form of solutions. For example, consider the reaction of 25 ml of 0.01 mol \(/ \mathrm{l}\) of potassium permanganate, according to the permanganate reaction. To calculate theoretical yields in this case, simply select the permanganate reactant and press ENTER. Type in 25 _ml and press ENTER. The next screen asks you to enter the molarity of the permanganate solution. Type in \(0.01 \_\mathrm{mol} / \mathrm{l}\) at the prompt:


Press ENTER to place the volume and concentration onto the stoichiometry list for permanganate, as shown:
\begin{tabular}{|c|}
\hline \multirow[b]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Press © © ILe to initiate the theoretical yield calculation for this reaction. The result is shown below:

PERMAPIGAHATE
f：\｛002015日＿G\} 日H[HQJ+1

\(\rightarrow\) F：\｛06980日？


P：\｛．0180152＿鸟\} 4H20[L]
CGLCICDNMCLEMR WIEN FSTK EXIT

\section*{Using the Species Library}

The Species Library stores the chemical species，or＂building blocks，＂used to form new chemical reactions．When you first use the General Chemistry Application Pac，the Species Library includes the following default species：
\begin{tabular}{ll}
\(\mathrm{CH}_{4}(\mathrm{~g})\) & \(\mathrm{CO}_{2(\mathrm{~g})}\) \\
\(\mathrm{Fe}^{+2}{ }_{(\mathrm{aq})}\) & \(\mathrm{Fe}^{+3}{ }_{(\mathrm{aq})}\) \\
\(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\) & \(\mathrm{H}^{+1}(\mathrm{aq})\) \\
\(\mathrm{MnO}_{4}^{-1}{ }^{(\mathrm{aq})}\) & \(\mathrm{Mn}^{+2}{ }_{(\mathrm{aq})}\) \\
\(\mathrm{O}_{2(\mathrm{~g})}\) & \(\mathrm{OH}^{-1}{ }_{(\mathrm{aq})}\)
\end{tabular}

To view these chemical species，select SPECIES LIBRARY at the main menu：


All chemical species must be entered into the Species Library before they can be used to build a chemical reaction．To add a new species to the Species Library，press the \(\overline{\mathrm{ADD}}\) softkey．The prompt asks for the formula，and optional state and charge，of the new chemical species：
\begin{tabular}{|c|c|}
\hline \｛ HOTHE GCHEM 10 \} & \\
\hline \multicolumn{2}{|l|}{Enter chemical species} \\
\hline \multicolumn{2}{|l|}{Formula［State］tCharge：} \\
\hline （L） & \\
\hline
\end{tabular}

Suppose you want to add NaOH to the list．Type N A O H，as shown：


Press ENTER to place NaOH into the Species Library:


The softkeys along the bottom of the Species Library screen allow you to add, edit, or delete species from the list, evaluate their molecular weight and percent element composition, and display each species on the screen. The softkeys function in the Sparcom Chemical Equation Writer format.

To evaluate the molecular weight of any species in the list, for example \(\mathrm{MnO}_{4}{ }^{-1}\) (aq), simply move the pointer to that species and press MWT\%. The molecular weight and the percent composition are then displayed on the screen, as shown:
\begin{tabular}{|c|}
\hline \[
\begin{gathered}
\operatorname{HnO4}[\exists 9]-1 \\
118.9356-9 / \mathrm{mol} \\
053.8: 1 \mathrm{~N} 4.2 \mathrm{z}
\end{gathered}
\] \\
\hline  \\
\hline
\end{tabular}

Press 5 STO to store the molecular weight on the calculator stack. Pressing EENER returns you to the Species Library. Press CheW to display the species on the screen:

\section*{Creating a Chemical Reaction}

To perform stoichiometric calculations you must enter your own chemical reactions. Each entry consists of a name, a list of reactants and products, and
their corresponding stoichiometric coefficients. Reactants and products are selected from the Species Library.

Upon entering the STOICHIOMETRY function of the General Chemistry Application Pac, all stored reactions are listed on the screen, as shown:


Suppose you wish to add the chemical reaction for the dissociation of water, given by:
\[
\mathrm{H}_{2} \mathrm{O}[\mathrm{l}] \rightarrow \mathrm{H}_{[\text {aq }]}^{+}+\mathrm{OH}_{[\mathrm{aq}]}^{-}
\]

Press the ADD softkey. At the prompt, type in the name of the reaction:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\{ HOTME GCHETMG \} PFits} \\
\hline Enter rėヨこtion &  \\
\hline \multicolumn{2}{|l|}{WHTER DISSOCIATION} \\
\hline GSKIPSKIP\% GOEL DEL? & INE DTSTK \\
\hline
\end{tabular}
(in this case WATER DISSOCIATION) and press ENTER. To edit or delete a reaction, press \(\mathbb{E D H}\), or BEEHETE You are then prompted to enter the reactions and products for the reaction:


The "PRESS ADD" prompt indicates that no reactants or products have
 places you in the SPECIES LIBRARY where you will select a reactant from the sprecies in the list. Scroll down the list until you find H2O[L] and press ENTER


The prompt then asks for the stoichiometric coefficient, which in this case is 1. Type 1 at the prompt and press ENTER:


This places \(\mathrm{H}_{2} \mathrm{O}\) on the reaction list, labeled R for reactant. The coefficient 1 preceeds the species entry on the list.


Press © ADP P to add a product species. Once again, scroll down the list until you find \(\mathrm{OH}\left[\mathrm{aql}-1\right.\) and press ENER. Repeat this procedure to add \(\mathrm{H}^{+}\) to the reaction list as a product (look for \(\mathrm{H}[\mathrm{aq}]+1\) ). If you make a mistake, press DELETE to delete a reactant. Pressing EDIF allows you to enter a replacement species and new stoichiometric coefficient. This results in the complete reaction listing for the WATER DISSOCIATION reaction, as shown:

WATER DISSOCIRTION
\(\rightarrow \mathrm{F}: 1 \mathrm{HED[L}]\)
1H[AR +1
10H[MQD-1

GOOE MOD F DEEFTE EOIT STOLC IP

Press STOIC to peform stoichiometric calculations on this reaction．You may press ॠUP to return to the main menu with the pointer at the reaction that you just added，as shown：
\begin{tabular}{|c|}
\hline  \\
\hline ［1］［EMITChem \\
\hline
\end{tabular}

Press CLEW to view the reaction on the screen：


\section*{Entering Molecular Formulas}

Species formulas consist of a series of element symbols and chemical groups of element symbols in parenthesis．Optional trailing multipliers may be entered to indicate more than one of a given element or group．Fractional multipliers may be entered，in decimal format．
You may optionally include a state and／or charge in the format given in the prompt．A shortcut for entering the state is unlocking alpha－entry mode（by pressing and pressing the appropriate softkey．Charges must be preceded by the sign（either + or－）．Parentheses may be entered by either pressing \(\square \square\) or the two softkeys shown in the display．（Note that \(\div\) does not require unlocking alpha－entry mode．）

Some examples of acceptable chemical formulas are：
Compound
HCl
\(\mathrm{HNO}_{3}\)
\(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\)
\(\mathrm{H}^{+}[\mathrm{aq}]^{2}\)
\(\mathrm{C}(\mathrm{CH})_{3}+\)
\(\mathrm{Ca}(\mathrm{OH})_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\)

Input
HC BL \(^{2}\)
HNO3
C 回A 国
H （aq］+1
C \(\square\) CH3 \(\triangle(\square 3+1\)
C国A

After unlocking alpha-entry mode to enter parentheses or to move the cursor, it is necessary to press \(⿴\) once or twice to relock alpha-entry mode for subsequent alphabetic entry. For more information, see the HP 48SX Owner's Manual.

In some cases, it may useful to abbreviate large entries in the Species Library or to define new symbols. For example, suppose you are interested in performing stoichiometric calculations on the esterification reaction of a carboxylic acid by an alcohol:
R-COOH + Rz-OH -> Products.

To enter this reaction, you must enter the species \(\mathrm{RCO} 2 \mathrm{H}, \mathrm{Rz}-\mathrm{OH}\), and Pro into the Species Library. After these are entered, you will be prompted for the molecular weight (in \(-\mathrm{g} / \mathrm{mol}\) only) of the unknown symbols \(\mathrm{R}, \mathrm{Rz}\), and Pro. Once defined, these symbols are accessible to all species in the Species Library.

You must enter these user-defined symbols as single uppercase letters, optionally followed by one or two lowercase letters. Once created, a user defined symbol can not be modified or deleted except by deleting the USRSYMBS and USRATWTS files in the GCHEMD directory.

\section*{Summary of Softkeys}

The following table lists the softkeys and their respective functions for the Stoichiometry and Species Library in the General Chemistry Application Pac.

\section*{Stoichiometry Softkeys}

ADP \(\quad\) Adds a new chemical reaction to the list.
ADP \(\mathrm{F} \quad\) Adds a reactant from the Species Library and a stoichiometric coefficient to the selected chemical reaction.

ADO P Adds a product from the Species Library and a stoichiometric coefficient to the selected chemical reaction.
©Aㅌ.. Utilizes the current species quantities to perform theoretical yield or limiting reagent calculations.
© CEW Displays a chemical reaction on the screen in the Sparcom Chemical Equation Writer format.

CuEA Clears all quantities in the stoichiometry function.
Conv/ Converts a quantity to a different unit.
DEHETE Deletes a chemical reaction or a reactant or product from a chemical reaction.

EDIT Edits a chemical reaction or a reactant or a product.
ENTER Allows you to specify the quantity of a reactant or product.
ExIた Exits the Stoichiometry solving screen.
STI. Copies selected entry to calculator stack.
STOL Enters the stoichiometry solving screen after the selected chemical reaction is mass and charge balanced.

UP Moves up one level in the menu structure.
WIEW Displays entries too wide to fit on the screen. It is not functional if the line does fit on the screen. ADD

\section*{Species Library Softkeys}

ABP Adds a new chemical species to the Species Library.
Chew Displays a chemical species on the screen in the Sparcom Chemical Equation Writer format.

DEFETE Deletes a chemical species from the Species Library.
EDITI Edits a chemical species.
MWT\% Displays the molecular weight and percent composition of the selected species.

UP® Returns to the main menu.

\section*{Chapter 5}

\section*{Constants Library}

\section*{In This Chapter}

The Constants Library is a collection of useful constants commonly used in general chemistry.
\(\square \quad\) Using the Constants Library
\(\square\) Constants Library Softkeys

\section*{Using the Constants Library}

Select the Constants Library from the main menu screen:
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

The Constants Library menu lists 29 constants and their symbols, listed below:
\begin{tabular}{|l|l|}
\hline pi & \(\pi\) \\
\hline g & Acceleration of gravity \\
\hline R1 & \begin{tabular}{l} 
Universal gas constant - \\
J/(mol*K)
\end{tabular} \\
\hline R2 & Gas constant - \({ }^{*}\) atm/(mol*K) \\
\hline NA & Avogadro's number \\
\hline c & Velocity of light \\
\hline\(h\) & Planck's constant \\
\hline\(k\) & Boltzmann's constant \\
\hline hb & Dirac's constant \\
\hline\(q\) & Electron charge \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline\(\varepsilon o\) & Permittivity of vacuum \\
\hline me & Electron mass \\
\hline\(r e\) & Classical electron radius \\
\hline mp & Proton rest mass \\
\hline\(R \infty\) & Rydberg's constant \\
\hline\(\alpha\) & Fine structure constant \\
\hline ao & Bohr radius \\
\hline\(\mu \mathrm{B}\) & Bohr magneton \\
\hline\(\lambda\) & Wavelength for 1 eV \\
\hline\(\lambda c\) & Compton's wavelength \\
\hline\(\sigma\) & Stefan-Boltzmann \\
\hline c 1 & First radiation constant \\
\hline c 2 & Second radiation constant \\
\hline Vt & Thermal voltage at 300 K \\
\hline\(\mu \mathrm{o}\) & Permeability of free space \\
\hline\(\phi \mathrm{o}\) & Magnetic flux quantum \\
\hline F & Faraday constant \\
\hline\(\mu \mathrm{Le}\) & Electron magnetic moment \\
\hline\(\mu \mathrm{p}\) & Proton magnetic moment \\
\hline
\end{tabular}

\section*{Using the GCON Function}

You can extract the value of any constant without entering the General Chemistry Application Pac with the GCON( ) function. In all cases, the constant name must be prefixed with a ' \(\$\) ' symbol, accessed by \(⿴ 囗 \rightarrow 4\). For example, suppose you want to retrieve the speed of light:

\section*{User Program Method}

Inside a user program, use the commands '\$c' GCON or 'GCON(\$c)' EVAL to call for the speed of light.

\section*{Stack Method}

Type '\$c' into level 1 of the stack and press the Gcom library softkey or type the letters GCON and press ENIE.

The constant value will have SI units if units are selected (i.e., if flag 61 is clear); otherwise, the value will have no units.

\section*{Constants Library Softkeys}

VALUS Displays the value of the constant with units on the screen. Press ENTER to return to the constants list.

WTV. Places a copy of the selected constant on the calculator stack. Whether or not the value has units appended is controlled by the units key setting, which can be toggled at the Equation Library screen.

OOT Toggles between large and small display font.
UP\% Exits to the main menu.
MAN Exits to the main menu.

Notes:

\section*{Chapter 6}

\section*{Reference Library}

\section*{In This Chapter}

The Reference Library is a collection of useful data commonly used in general chemistry.
\(\square\) Using the Reference Library
\(\square\) Summary of Softkeys

\section*{Using the Reference Library}

When you select the Reference Library from the main menu, the following screen appears:


The Reference Library application, accessed from the main menu, consists of 10 topics. To access a given topic, move the pointer to the desired topic and press ENTER. The 10 Reference Library topics are described below:
\begin{tabular}{|l|l|}
\hline PKas & \begin{tabular}{l} 
The dissociation constants of se- \\
lected weak acids.
\end{tabular} \\
\hline Common anions & \begin{tabular}{l} 
Names and formulas of common \\
anions.
\end{tabular} \\
\hline Air composition & \begin{tabular}{l} 
Percent composition (by volume) \\
of air at sea level.
\end{tabular} \\
\hline Vapor pressure \(-\mathrm{H}_{2} \mathrm{O}\) & \begin{tabular}{l} 
Vapor pressure of pure water at se- \\
lected temperatures.
\end{tabular} \\
\hline
\end{tabular}

Reference Library
\begin{tabular}{|l|l|}
\hline Water Kw vs. T & \begin{tabular}{l} 
Dissociation constant of water at \\
selected temperatures.
\end{tabular} \\
\hline Van der Waals & \begin{tabular}{l} 
Van der Waals constants for se- \\
lected gases.
\end{tabular} \\
\hline Colligative & \begin{tabular}{l} 
Normal boiling point, freezing \\
point, ebullioscopic constant and \\
cryoscopic constant for common \\
solvents.
\end{tabular} \\
\hline Expansion/Compressibility & \begin{tabular}{l} 
Coefficient of expansion and coeffi- \\
cient of compressibility of four com- \\
mon materials.
\end{tabular} \\
\hline PKsps & \begin{tabular}{l} 
Solubility product constants (at 25_ \\
\\
C) for common precipitates.
\end{tabular} \\
\hline Bond Energy/Distance & \begin{tabular}{l} 
Energies and distances for com- \\
mon bonds.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example Using the Reference Library}

Suppose you need the vapor pressure of water at \(25^{\circ}{ }^{\circ} \mathrm{C}\) for a gas law calculation you're working on in the calculator stack. Use the cursor keys to move the pointer to the VAPOR PRESSURE - H2O menu item. Press ENTER to display the following screen:


Move the pointer to \(25^{\circ} \mathrm{C}\) and press ENIER. This copies the value 23.8 torr onto the calculator stack. You need to exit the Pac to continue your calculation on the stack.

\section*{Summary of Softkeys}

Fon. sizes.

UP/: Moves up one level in the menu structure.
UAN\# Exits to the main menu.
STW. Copies selected entry to calculator stack.
PRIN\% Allows you to print a data field or the entire list of data to an IR printer.

Al. \(\&\) Sends all the data in a list to an IR printer.
ONE\% Sends the data in the field selected by the pointer to an IR printer.

UNIS Toggles key. Indicates units are off. When off, all variables are assumed to be SI.
yMIT Toggle key. Indicates that units are on.

\section*{Appendix A \\ Warranty and Service}

\section*{Pocket Professional Support}

You can get answers to your questions about using your Pocket Professional card from Sparcom. If you don't find the information in this manual or in the HP 48SX Owner's Manual, contact us in writing, at :
Sparcom Corporation
Attn: Technical Support Dept.
897 NW Grant Avenue, Corvallis, OR 97330, U.S.A. (503) 757-8416
or send E-mail:
from Internet: from Compuserve: from FidoNet:
support@sparcom.com
> Internet:support@sparcom.com
To:support@sparcom.com

\section*{Limited One-Year Warranty}

\section*{What Is Covered}

The Pocket Professional is warranted by Sparcom Corporation against defects in material and workmanship for one year from the date of original purchase. If you sell your card or give it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or replace (at no charge) a product that proves to be defective, provided you return the product and proof of purchase, shipping prepaid, to Sparcom.

\section*{What Is Not Covered}

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by any entity other than Sparcom Corporation.

No other warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. IN NO EVENT SHALL SPARCOM CORP. BE LIABLE FOR CONSEQUENTIAL DAMAGES. Products are sold on the basis of specifications applicable at the time of manufacture. Sparcom shall have no obligation to modify or update products, once sold.

\section*{If the Card Requires Service}

Sparcom will repair a card, or replace it with the same model or one of equal or better functionality, whether it is under warranty or not.

\section*{Service Charge}

There is a fixed charge for standard out-of-warranty repairs. This charge is subject to the customer's local sales or value-added tax, wherever applicable. Cards damaged by accident or misuse are not covered by fixed charges. These charges are individually determined based on time and material.

\section*{Shipping Instructions}

If your card requires service, ship it to Sparcom Corporation, 897 NW Grant Avenue, Corvallis, OR 97330, U.S.A.
- Include your return address and a description of the problem.
- Include proof-of-purchase date if the warranty has not expired.
- Include a purchase order, along with a check, or credit card number and expiration date (VISA or MasterCard) to cover the standard repair charge.
- Ship your card, postage prepaid, in adequate protective packaging to prevent damage. Shipping damage is not covered by the warranty, so insuring the shipment is recommended.

Cards are usually serviced and reshipped within five working days.

\section*{Environmental Limits}

The reliability of the Pocket Professional depends upon the following temperature and humidity limits:
- Operating temperature: 0 to \(45^{\circ} \mathrm{C}\left(32\right.\) to \(\left.113^{\circ} \mathrm{F}\right)\).
- Storage temperature: -20 to \(60^{\circ} \mathrm{C}\left(-4\right.\) to \(\left.140^{\circ} \mathrm{F}\right)\).
- Operating and storage humidity: \(90 \%\) relative humidity at \(40^{\circ} \mathrm{C}(104\) \({ }^{\circ}\) F) maximum.

Notes:

\section*{Appendix B}

\section*{Questions and Answers}

\section*{Questions Commonly Asked}
Q. I can't find the ©CAP subdirectory in the Library menu. How can I verify that the card and the calculator are functioning properly?
A. There are several possibilities:
a. Check to make sure that the card is properly seated in the calculator port.
b. Turn the calculator off and on.
c. The calculator checks the application card when it turns on. If an "Invalid Card Data" or a "Port Not Available" message is displayed, the card may require service.
Q. What do three dots (...) mean at the end of a display line?
A. The three dots indicate that the object is too long to show on one line. To view the complete object, use the cursor keys to move the arrow to
 the browser.
Q. I'm using the Equation Library to solve a problem. After selecting the equations and entering values for the variables, the calculator displays "Too many unknowns." What's wrong?
A. Not enough variables were specified to completely solve the problem. You will have to specify more values and solve again.
Q. I'm using the Equation Library to solve a problem. After selecting the equations, I'm ready to enter values for my variables. I find that some of the variables have values already displayed. What's wrong?
A. The variables with values displayed indicate that these variable names have been used in solving another equation. To start with a clean slate of values, you can use CuEAR to reset the values of all variables to 0 .
Q. While using the Equation Library, I turned units off and all the numbers changed. What's wrong?
A. In no-units mode, the Equation Library assumes that all values are SI in order for the equations to solve correctly. Therefore, when units are turned off, all values are first converted to SI units, then the unit tags are eliminated.
Q. While using the Equation Library to solve an equation set, intermediate answers are given. Why?
A. The Sparcom's equation solver engine has the ability to solve a set of equations in a systematic fashion. The result of computation from each equation is reported, to keep you informed of the solver's progress.
Q. The calculator displays "Bad Guess(es)" while running the Equation Library. What's wrong?
A. The HP 48SX root finder encountered variable values or units that prevented a solution. You may need to start the root finding process by providing a proper "seed" value. See Chapter 1 for details.
Q. While solving for an angle, I got an answer that was too large: For example, \(8752^{\circ}\) instead of the expected answer of \(112^{\circ}\).
A. The calculated result may be offset by integer multiples of \(360^{\circ}\). By seeding the variable properly, or by solving in no-units mode, you should be able to avoid this problem.
Q. I solved a problem some time ago, and I'm trying to recall those calculated values for a problem I'm working on now. The values from the past calculation have changed. What's wrong?
A. Most likely, the same variable name was used in solving another equation, so you will not be able to recall the old values.
Q. While searching a list of information, I used the alpha key, but the search function didn't work. Why?
A. Since the search function is case-sensitive, you most likely entered the letters in the incorrect case.

\section*{Appendix C References}
A. Adamson, "Physical Chemistry," Academic Press, 1979
P.W. Atkins, "Physical Chemistry," W.H. Freeman and Company, 1986

Gordon Barrow, "Physical Chemistry," McGraw-Hill Book Company, 1988
T.L. Brown and H.E. Lemay, "Chemistry the Central Science," Prentice Hall, 1977
G. Castellan, "Physical Chemistry," Addison-Wesley, 1971

Adon Gordus, "Schaum's Outline Series on Analytical Chemistry", McGraw Hill Book Company, 1985
Charles Hill, "Chemical Engineering Kinetics and Reactor Design," John Wiley and Sons, 1977
J. C. Kotz and K. F. Purcell, "Chemistry and Chemical Reactivity," Saunders College Publishing, 1987
M.J. Moran and H. N. Shapiro, "Fundamentals of Engineering Thermodynamics," John Wiley and Sons, 1988
D. R. Pitts and L. E. Sissom, "Schaum's Outline Series on Heat Transfer", McGraw Hill Book Company, 1977
"Handbook of Chemistry and Physics", Chemical Rubber Company, 65th edition, 1985.

Sargent-Welch Scientific Company. Periodic Table of the Elements. 1980.

\section*{Index}

\section*{A}

Accessing Available Libraries, 1-3
Accessing equations, 1-7
Accessing the General Chemistry Pac, 1-3
Acids/Bases, 2-31, 2-34
Henderson-Hasselbach equation, 2-34
pH Function, 2-31
Strong Acids, 2-32
Strong Bases, 2-32
Titration (SA/SB), 2-35
Titration (SB/SA), 2-37
Titration (WA/SB), 2-37
Titration (WB/SA), 2-39
Weak Acids/Bases, 2-33
Activity Coefficient, 2-47
Adding Products, 4-8
Adding Reactants, 4-8
Adding Stoichiometric coefficients, 4-9
Adding units, 1-10
Additional Units Softkeys, 1-10
åp, 2-55
Atomic Number, 3-2
Atomic Radii, 3-2
Atomic Weight, 3-2
Atoms/Molecules, 2-2
Diatomic Moment, 2-9
Hydrogen Energy, 2-4
Light, 2-2
Mass/Mole/Atom, 2-2
Quantum, 2-3
s, p, d and forbitals, 2-5
Symmetric Moment, 2-10
Autoscaling Y, 1-18
Average velocity, 2-27
Azimuthal quantum number, 2-5

\section*{B}

Bad guesses, 1-20
Balmer series, 2-4
Bent Molecules, 2-10
Boiling point elevation, 2-18
Boiling point of elements. 3-2
Born-Haber Cycle, 2-14

\section*{C}

Calculating Molecular weights, 4-7
Capillary rise, 2-20
Chemical Equation Writer, 4-2
Clapyron Equation, 2-15
Clausius-Clapyron equation, 2-19
Colligative Properties, 2-18
Compressibility Coefficient, 2-13
Conjugate base, 2-34
Constants Library, 1-5, 5-1 - 5-4
Covalent Radii, 3-2

\section*{D}
de Broglie wavelength, 2-4
Debye Heat Capacity Model, 2-11
Default units, 1-13
DEL, 1-7, 3-4
Density of elements, 3-2
Displaying a constant on the screen, 5-3
Displaying equations, 1-8

\section*{E}

Editing Text Entries, 1-6, 3-4
Editing the Browser, 1-5
Effusion Rates, 2-28
Einstien Heat Capacity Model, 2-11
Entering Electrical Engineering Analysis, 4-1, 4-11
Electron Configuration, 3-2
Electronegativity, 3-2
Element mass number, 3-2
Element Physical State, 3-2
Ellipsis ..., 1-5
Environmental limits of card, A-3
Equation Library, 1-4, 1-7

\section*{F}

Family, 3-2
Freezing point lowering, 2-18

\section*{G}

Gases, 2-21
Barometric equation, 2-24

Collision Theory, 2-28
Graham's Law, 2-28
Ideal Gas, 2-21
Kinetic Theory, 2-26
State Changes, 2-22
Van der Waal equation, 2-25
Gases
Gas over water, 2-23
GCAPPD Directory, 1-21
GCpar Variable, 1-22
Global Variables, 1-22
Group, 3-2

\section*{H}

He-Ne laser, 2-3
HP 48SX equationwriter, 1-9
Hydrogen wave functions, 2-5

\section*{I}

Initializing, 1-21
Installing an Application Card, 1-1
lonization Potential. 3-2

\section*{K}

Key
ATTN, 1-5
CST (Custom Menu), 1-4
Library, 1-3
On, 1-3
Visit, 1-5
Kinetics, 2-48
Arrhenius Law, 2-54
Consecutive First Order. 2-50
First Order, 2-48
Fractional Life, 2-55
Parallel First Order, 2-49
Second Order (I), 2-52
Second Order (II), 2-53

\section*{L}

1, 2-24

\section*{M}

Main Menu, 1-4
Managing Units, 1-13
Maxwell-Boltzman, 2-26
Mean Free Path, 2-29
Melting point of elements, 3-2
Merged Memory, 1-3

Molality, 2-15
Molarity, 2-15
Mole-fraction, 2-15
Moment of Inertia, 2-9
Most probable velocity, 2-27
Moving around the screen, 1-5

\section*{N}

Nodes, 2-9

\section*{0}

ON key, 1-2
Operating Efficiency of heat engines, 2-41
Oxidation State, 3-2

\section*{P}

Parts-per-million, 2-15
Periodic Table, 1-4, 3-1
Finding Properties, 3-1
Moving around, 3-2
Searching for an property, 3-3
Plotting -Proper form of equations, 1-16
Plotting equations, 1-16
Plotting multiple graphs, 1-19
pMWT,, 2-33, 2-35
Precipitation, 2-46
A2B molecule, 2-46
A2B3 molecule, 2-47
A3B molecule, 2-46
A3B2 molecule, 2-47
AB molecule, 2-46
AB2 molecule, 2-46
AB3 molecule, 2-46
Print function, 3-4
Putting constants on the stack, 5-3

\section*{R}

Reference Data pKas of common acids, 6-1
Reference Library, 1-5, 6-1-6-4
Air Composition, 6-1
Bond Distances, 6-2
Bond Energies, 6-2
Common Anions, 6-1
Expansion Coefficients, 6-2
Solubility Products, 6-2
Van der Waals Constants of Gases, 6-2
Vapor Pressure of water, 6-1
Water Dissociation constants, 6-2
References, C-1

Removing an Appplication Card, 1-2
Root-mean-square velocity, 2-27
RXNS Variable, 1-22

\section*{S}

Search Mode. 1-6
Seeding the Solver, 1-20
Selecting equations, 1-8
Service
Service charge. A-2
Shipping instructions, A-2
Service (if card requires), A-2
SI units, 1-13
Softkey
ABOUT, 1-3
ADD, 4-8
ALL, 6-3
CALC, 1-11. 1-15
ChEW, 4-2
CIEAR. 4-4
CONV. 1-12, 4-4
COORD. 1-19. 2-9. 2-12
ECHO. 1-21
EQNS. 1-8
FAST, 3-2
FIND, 3-2
FONT, 1-5, 3-1, 3-5, 6-2-6-3
GCON, 1-3
INS, 1-7, 3-4
KEYS, 1-19
KNOW, 1-20
MAIN, 5-3, 6-3
MWT\%,4-7
ON, 1-1
ONE. 6-3
PIM, 1-3
PLOT, 1-18
PRINT, 6-3
PROP. 3-1
QUIT, 1-5, 3-1, 6-2
SKIP, 1-6, 3-4
SOLVE, 1-10, 1-15
STK, 1-7
STOIC, 4-2
UNITS, 1-13, 3-5
UP, 1-13, 6-3
Value, 3-5
VARS. 1-9
WANT, 1-16
Solids/Liquids, 2-11
Blackbody Radiation. 2-12
Born-Haber Cycle, 2-14

BP/FP Colligative, 2-18
Bragg Law, 2-13
Capillary rise, 2-20
Clausius-Clapyron equation, 2-19
Concentration, 2-15
Dilution, 2-19
Equation of State, 2-13
Heat Capacity, 2-11
Melting Point, 2-15
Raoult's Law, 2-17
Solving a single equation, 1-7
Solving equations, 1-10
Solving multiple equations, 1-13
SPEC Variable, 1-22
SPECCODE Variable, 1-22
Species Library, 1-4
Spontaneity, 2-42
Stoichiometry, 1-5
Creating Chemical Equations, 4-7
Limiting Reagents, 4-4
Selecting chemical equations, 4-1
Stoichiometry with solutions, 4-5
Theoretical Yields, 4-2
Summary of Functions
Periodic Table, 3-5
Reference Library, 6-3
Stoichiometry, 4-11

\section*{T}

Tagging Variables (calculated), 1-12
Tagging variables (knowns), 1-11
Tagging variables (want), 1-16
Textbook form of equations, 1-9
Thermo/Electrochemistry, 2-40
Free Energy, 2-42
Heat Capacity, 2-44
Heat Engines, 2-41
Heat Transfer, 2-40
Nernst law, 2-44
Reduction, 2-45
Thermodynamics (Calculations), 2-43
Transport, 2-28

\section*{U}

Unit conversion, 1-12
USRATWTS Variable, 1-22
USRSYMBS Variable, 1-22

\section*{V}

Vapor Pressure Lowering, 2-17
Variable Definitions, 1-9
Viewing Wide Entries, 1-5
Viscosity Coefficient, 2-29

\section*{W}

Warranty, A-1

\section*{Sparcom}

Sparcom Corporation 897 NW Grant Avenue Corvallis, OR 97330
To order any Sparcom product that your retailer does not carry, call: (503) 757-8416 or FAX (503) 753-7821

Printed in USA © 9/91```

