PocketProfessional ${ }^{\circledR}$

EE•Pro"

User's Guide

SPARCOM CORPORATION

PocketProfessional ${ }^{\circledR}$

EE•Pro'

User's Guide

SPARCOM CORPORATION

In memory of Amy Lynne Otto

Notice

This manual, the accompanying software, and the examples contained herein are provided "as is" and are subject to change without notice. Sparcom Corporation makes no warranty of any kind with regard to this manual or the accompanying software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Sparcom Corporation shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual, the accompanying software, or the examples herein.
© Copyright Sparcom Corporation 1994. All rights reserved. Reproduction, transmission in any form or by any means, adaptation, or translation of this manual is prohibited without prior written permission of Sparcom Corporation, except as allowed under the copyright laws.

The owner of this manual is granted a one-user, non-commercial license to use the enclosed software, and may not copy, distribute, or transfer the software under any circumstances without prior written permission of Sparcom Corporation.

Portions of this manual are copyrighted by Hewlett-Packard Company 1990 and are used with permission.

PocketProfessional is a registered trademark of Sparcom Corporation. EE.Pro is a trademark of Sparcom Corporation.

Customer Support

Customer satisfaction is important to Sparcom Corporation. Technical support is available Monday through Friday, 9 a.m. to 5 p.m. Pacific Coast Time. The support phone number is (503) 757-8416. Your questions are also welcome by facsimile (503) 753-7821 or by e-mail (Internet: support@sparcom.com).

Credits

$\mathrm{EE} \cdot \mathrm{Pro}^{\mathrm{TM}}$ was made possible by:

- Product Manager: Alan Fudge.
- Project Leader: Scott M. Burke.
- Conceptual Design: Megha Shyam.
- Software Development: Brian J. Maguire and Scott M. Burke.
- User's Guide: Sara Algots.
- User's Guide Editing: Scott M. Burke, Cynthia Ellis, Alan Fudge, Brian J. Maguire, Megha Shyam, Stephen A. Thomas, and Dave Voltmer.
- Beta Testers: Sara Algots, Scott M. Burke, Cynthia Ellis, Alan Fudge, John Lanz, Brian J. Maguire, and Megha Shyam, also, John Beimler, Erik Bryntse, Matt Fago, David Gadberry, Gary Hurtz, Brent Kirkwood, Dr. Thomas Metcalf, Mario Mikocevic Mozgy, John O’Donnell, Derek Seaman, Mark Spaeth, Kresimir Sparavec, Scott Tam, Jeff Thieleke, Stephen A. Thomas, Amir Volk, Dave Voltmer, Cory Walton, and Joseph Wetstein.
- Acknowledgements: Jake Schwartz and Rick Grevelle (for Computer Engineering) and Wayne Scott (for Polynomial Roots on HP 48SX).
- Special Thanks: Dave Voltmer and Stephen A. Thomas for testing and editing above and beyond the call of duty.

Sparcom Corporation

P.O. Box 927

Corvallis, OR 97339
U.S.A.

Printing History

Edition 1
Edition 2

March 1994
April 1994

Contents

Notice ...iii

Customer Support ...iii
Credits ...iv

Contents ...v

1 Getting Started... 1
Key Features of EE•Pro.. 2
How to Use This Manual .. 2
Manual Conventions ... 3
Differences between HP 48GX and HP 48SX 4
Memory Requirements.. 5
Environmental Limits.. 5
Installing and Removing a Card... 5
Starting EE•Pro.. 7
Using the Home Screen.. 8
Navigating through EE•Pro ... 8
Options Menu.. 9
Custom Settings Screen... 11
2 Analysis: Navigation Guide 15
Introduction 15
Finding Analysis 16
Analysis Screens 16
Example: Parallel RLC Circuit 20
3 AC Circuits 21
Impedance Calculations 21
Voltage Divider 22
Current Divider 23
Circuit Performance 24
Wye $\leftrightarrow \Delta$ Conversion 26
4 Polyphase Circuits 28
Wye $\leftrightarrow \Delta$ Conversion 28
Balanced Wye Load 30
Balanced Δ Load 31
5 Ladder Network 34
Using Ladder Network 34
6 Filter Design 41
Chebyshev Filter 41
Butterworth Filter 43
Active Filter 45
7 Gain and Frequency 48
Transfer Function 48
Bode Plots 50
8 Fourier Transforms 52
FFT 52
Inverse FFT 53
9 Two-Port Networks 54
Parameter Conversion 54
Circuit Performance 56
Interconnected Two-Ports 58
10 Transformer Performance 61
Open Circuit Test 61
Short Circuit Test 62
Chain Parameters 64
11 Transmission Lines 66
Line Characteristics 66
Line Parameters 68
Fault Location Estimate 69
Stub Impedance Matching 70
12 Computer Engineering 72
Binary Modes Screen 72
Binary Arithmetic. 73
Register Operations 74
Bit Operations 76
Binary Conversions 77
Binary Comparisons 78
Karnaugh Map 79
13 Algebraic Functions 81
Partial Fraction Expansion 81
Piecewise Functions 82
Polynomial Coefficients 85
Polynomial Equation 85
Polynomial Roots 86
Symbolic Simplification 87
Taylor Polynomial 88
14 Error Functions 89
Using Error Functions 89
15 Capital Budgeting 90
Using Capital Budgeting 90
16 Equations: Navigation Guide 97
Introduction 98
Finding Equations 98
Equations Screens 99
Solver Screens 100
Plotter Screens 106
Example: Overdamped Parallel RLC Circuit 110
17 Resistive Circuits 113
Variables 113
Resistance and Conductance 114
Ohm's Law and Power 114
Temperature Effect 115
Maximum Power Transfer 115
V and I Source Equivalence 116
18 Capacitance and Electric Fields 117
Variables 117
Point Charge 118
Long Charged Line 118
Charged Disk 118
Parallel Plates 119
Parallel Wires 119
Coaxial Cable 120
Sphere 120
19 Inductance and Magnetism 121
Variables 121
Long Line 122
Long Strip 122
Parallel Wires 123
Loop 123
Coaxial Cable 124
Skin Effect. 124
20 Electron Motion 125
Variables 125
Electron Beam Deflection 126
Thermionic Emission 126
Photoemission 126
21 Meters and Bridge Circuits 128
Variables 128
Amp, Volt, and Ohmmeter 129
Wheatstone Bridge 130
Wien Bridge 130
Maxwell Bridge. 131
Owen Bridge 131
Symmetrical Resistive Attenuator 132
Unsymmetrical Resistive Attenuator. 132
22 RL and RC Circuits 134
Variables 134
RL Natural Response. 135
RC Natural Response 135
RL Step Response 136
RC Step Response 136
RL Series to Parallel 137
RC Series to Parallel 138
23 RLC Circuits 139
Variables 139
Series Impedance. 140
Parallel Admittance 141
RLC Natural Response 141
Underdamped Transient 142
Critically-Damped Transient 142
Overdamped Transient 143
24 AC Circuits 144
Variables 144
RL Series Impedance 145
RC Series Impedance 146
Impedance \leftrightarrow Admittance 146
Two Impedances in Series 147
Two Impedances in Parallel 148
25 Polyphase Circuits 149
Variables 149
Balanced Δ Network 149
Balanced Wye Network 150
Power Measurements 150
26 Electrical Resonance 151
Variables 151
Parallel Resonance I 152
Parallel Resonance II 152
Resonance in Lossy Inductor 153
Series Resonance 154
27 OpAmp Circuits 155
Variables 155
Basic Inverter 156
Non-Inverting Amplifier 157
Current Amplifier 157
Transconductance Amplifier 158
Level Detector (Inverting) 158
Level Detector (Non-Inverting) 159
Differentiator 159
Differential Amplifier 160
28 Solid State Devices 161
Variables 161
Semiconductor Basics 165
PN Junctions 166
PN Junction Currents 166
Transistor Currents 167
Ebers-Moll Equations 168
Ideal Currents - pnp 168
Switching Transients 169
MOS Transistor I. 170
MOS Transistor II 171
MOS Inverter (Resistive) 172
MOS Inverter (Saturated) 172
MOS Inverter (Depletion) 173
CMOS Transistor Pair 174
Junction FET 175
29 Linear Amplifiers 176
Variables 176
BJT (Common Base) 177
BJT (Common Emitter) 178
BJT (Common Collector) 178
FET (Common Gate). 179
FET (Common Source) 179
FET (Common Drain) 180
Darlington (CC-CC) 180
Darlington (CC-CE) 181
Emitter-Coupled Amplifier 181
Differential Amplifier 182
Source-Coupled JFET Pair 182
30 Class A, B, and C Amplifiers 183
Variables 183
Class A Amplifier 184
Power Transistor 185
Push-Pull Principle 186
Class B Amplifier 186
Class C Amplifier 187
Variables 188
Ideal Transformer 189
Linear Equivalent Circuit 189
32 Motors and Generators 190
Variables 190
Energy Conversion 192
DC Generator 192
Separately-Excited DC Generator 193
DC Shunt Generator 194
DC Series Generator 194
Separately-Excited DC Motor 195
DC Shunt Motor 195
DC Series Motor 196
Permanent Magnet Motor 197
Induction Motor I 197
Induction Motor II 198
Single-Phase Induction Motor 199
Synchronous Machines 199
33 Reference: Navigation Guide 203
Introduction 203
Finding Reference 204
Reference Screens 204
34 Resistor Color Chart 207
35 Standard Component Values 209
36 Semiconductor Properties 211
37 Boolean Expressions 214
38 Boolean Algebra Properties 216
39 Transforms 218
40 Constants 220

42 Greek Alphabet... 223

Part 4: Programming \& Advanced USe

43 Programmable Commands 227
Using Programmable Commands 228
Object Syntax 228
EE Library Commands 229
AC Circuits 229
Polyphase Circuits 230
Filter Design 231
Gain and Frequency 232
Fourier Transforms 233
Two-Port Networks 233
Transformer Performance 234
Transmission Lines 235
Binary Arithmetic 235
Register Operations 236
Bit Operations 237
Binary Conversions 237
Binary Comparisons 237
Binary Modes 238
Miscellaneous Binary Operations. 238
Karnaugh Map 239
Algebraic Functions 239
Error Functions 240
Capital Budgeting 240
Reference 240
44 Programmable Screens 242
Using Programmable Screens 242
Analysis Screens 243
Equations Screens 244
Reference Screens 248
45 Tips for Using the Solver 249
Creating a Working Directory 249
How are Multiple Equations Solved? 250
Using Guesses to Improve Solving 250
Solver Icons 251
46 Tips for Using the Plotter 253

Appenolixes and molex

A Service and Warranty 257
Technical Support 257
Shipping Instructions 258
Service Charge for Out-of-Warranty Cards 258
Limited 90-Day Warranty 259
B Key and Screen Summary 260
Screen Summary 261
Key Summary 262
C User Flags 268
Flag 4: Carry Flag 268
Flag 5: Range Flag 268
Flags 13 and 14: Binary Sign Mode 269
Flag 57: Font Size 269
Flag 58: Help Text 270
Flag 61: Units 270
User Flag Summary 271
D Questions and Answers 272
General Questions 272
Analysis Questions 274
Equations Questions 275
Reference Questions 277
Index 278

Chapter 1

Getting Started

PocketProfessional ${ }^{\circledR}$ software is the first of its kind, developed to provide speed, efficiency and portability to students and professionals in technical fields. When you slide a PocketProfessional plug-in card into your HP 48GX or HP 48SX, your calculator is instantly transformed into an electronic "textbook," ready to efficiently solve your technical problems.

PocketProfessional EE•Pro ${ }^{\mathrm{TM}}$ is state-of-the-art electrical engineering software for the HP 48GX and HP 48SX calculators. Sparcom Corporation thanks all the current owners of our PocketProfessional software for their many helpful suggestions and comments.

This chapter covers:

- Key Features of EE•Pro 2
- How to Use This Manual 2
- Manual Conventions 3
D Differences between HP 48GX and HP 48SX 4
- Memory Requirements 5
- Environmental Limits 5
- Installing and Removing a Card 5
- Starting EE•Pro 7
- Using the Home Screen 8
- Navigating through EE•Pro 8
\square Options Menu 9
Custom Settings Screen 11 envelope your EE•Pro card came in. It contains important information regarding your rights.

Key Features of EE•Pro

- Highest speed and performance of any HP 48 software sold today
- Easy-to-use, menu-based interface
- Context-sensitive help text for every screen

Advanced electrical engineering analysis routines, equations, and reference tables
Integrated access to the HP 48 stack for calculations

- Comprehensive documentation for quick reference
- Learn one Pro product and you can use them all!

How to Use This Manual

This manual is designed as a learning and reference tool to be used with your PocketProfessional EE-Pro software. This section explains the layout of the manual.

Manual Organization

The manual is divided into four parts: Analysis, Equations, Reference, and Programming \& Advanced Use. These sections mirror the divisions within EE•Pro, with the addition of an advanced section for experienced users.

Part 1: Analysis includes analysis routines to perform calculations, such as AC circuit analysis, two-port networks, and computer engineering. Easy-to-use, intuitive analysis screens are available for each routine.

Part 2: Equations includes an equation library of over five hundred solvable equations organized in related groups. Full descriptions of each variable, a variety of user-selectable units, and appropriate diagrams are included.

Part 3: Reference includes reference tables based on information in standard reference books, such as Laplace transform tables, semiconductor properties, and donor and acceptor levels in silicon.

Part 4: Programming \& Advanced Use includes detailed syntax for each programmable command included in EE•Pro and other tips for experienced users.

What to Read Next．．．

To get the most information from this manual，read the following sections：
1．Read all of this chapter，＂Getting Started．＂You will learn how to install EE•Pro，and you will be introduced to the menus and screens of EE•Pro， which provide easy－to－use access to all the features．

2．Read the Navigation Guides for Analysis，Equations and Reference （Chapters 2，16，and 33）．You will learn how to use each major section of EE－Pro through step－by－step instructions and context－sensitive help．

3．Use the table of contents and index to locate further topics of interest．
4．Refer to Appendix D，＂Questions and Answers，＂to answer the most com－ monly asked questions about EE•Pro．

Manual Conventions

There are a few simple conventions used throughout this manual：
－The heading of each chapter and its modules displays a＂map＂of the path taken to get to that particular section．For example，the Impedance Calculations analysis section is in the chapter on AC Circuits，in the Analysis section．The heading shows this path．Keep in mind that there may be several sections within the AC Circuits chapter．The heading only shows the current one．

Impedance Calculations

Analysis
\quad AC Circuits
\quad Impedance Calculations
Equations
Reference
－Keys on the HP 48 keyboard are shown in a boxed typeface，such as Enite．
－Boxed typeface is also used to indicate the green and purple key labels （HP 48GX）or the blue and orange key labels（HP 48SX）located above the keys．For instance，on the HP 48 GX ，the I／O command is a green label located above the \square key，and is accessed by pressing the green shift key then the \square key．In this manual，these keystrokes are represented in the following manner：$⿴ 囗 ⿰ 丿 ㇄$

Similarly, with the HP 48SX, the I/O command is an orange label located above the Reg ke and is accessed by pressing the orange shift key then the PRG key. In this manual, these keystrokes are represented in the following manner:

- Keys which should be pressed at the same time are indicated with a hyphen between them: 00 - Do not press the minus key.
- Menu keys are located at the bottom of the HP 48 screen and correspond directly to the top row of keys on the HP 48 keyboard. They are shown in inverse typeface, such as HOME.
- Programmable commands are shown in uppercase letters, such as SIN. Uppercase is also used to show field names, like RESULT, which are displayed on the HP 48 screen.
- Steps to be followed in a particular order are numbered: $1,2,3$, etc.
- HP 48 variables/directories are listed in single quotes, such as 'SPARCOM'.
- Equation variables are shown in boldface to separate them from the text, as in: "The source current and impedance are Is and Zs, respectively."
- All examples assume that pressing α locks the Alpha entry mode. If you have set the HP 48 system flag -60, press α instead of α to lock Alpha entry mode.
- In each example, there is a box listing the mode settings for that example. To change the modes, press the ©GT key at any EE-Pro screen. Most examples are in the following modes:

MODES (Press © ${ }^{\text {CST] }}$	Coord: Format: Digits:	Degrees Rectangular Standard N/A	Result: Units: Help: Font:	Symbolic On or Off On Small

Differences between HP 48GX and HP 48SX

This manual was written using the HP 48GX as the standard, with notations made for the HP 48SX where necessary. The following keys are different between the HP 48GX and HP 48SX, but they perform the same function:

HP 48GX	HP 48SX	Description
	$\begin{aligned} & \mathrm{B} \text { LBRMM } \\ & \mathrm{ON} \text { - } \mathrm{MTH} \\ & \square \mathrm{MST} \end{aligned}$	Displays all libraries. Performs a screen dump. Displays an item if it is too wide for the screen.

Memory Requirements

A minimum of 5 Kbytes of free memory is needed for using EE-Pro, although complicated operations may require more memory. If EE-Pro seems to be functioning incorrectly, low memory may be the cause. For more information about free memory, see your HP 48 User's Guide. If you are using EE•Pro in Card Slot 2 of an HP 48GX and you receive the error message, "Insufficient Memory," you should reinstall EE-Pro in Card Slot 1, which requires less memory overhead. See "Installing and Removing a Card" below for more information about how to switch EE•Pro from Card Slot 2 to Card Slot 1.

Environmental Limits

The reliability of a PocketProfessional plug-in card depends upon the following temperature and humidity limits:

- Operating Temperature: 0 to $45^{\circ} \mathrm{C}\left(32\right.$ to $\left.113^{\circ} \mathrm{F}\right)$.
- Storage Temperature: -20 to $60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.
- Operating and Storage Humidity: 90% relative humidity at $40^{\circ} \mathrm{C}$ $\left(104^{\circ} \mathrm{F}\right.$) maximum.

Installing and Removing a Card

The HP 48GX and HP 48SX have two ports for installing PocketProfessional plug-in cards. A card can be installed in either port. Due to the manner in which the HP 48GX manages memory, EE•Pro will perform better in Card Slot 1 of an HP 48GX. EE•Pro will perform equally well in either card slot on the HP 48SX.

WARNING

Turn off the HP 48 before installing or removing a card！ Otherwise，user memory may be erased．

Installing a Card

To install a card，follow these steps：

1．Press $⿴ 囗 ⿰ 丿 ㇄$ completed the installation procedure．

2．Remove the port cover． Press against the grip lines and push forward． Lift the cover to expose the two plug－in ports，as shown to the right：

3．Select either empty port
 for the card，and position the card just outside the slot．（HP 48GX users will find that placing the card in Port 1 gives optimal performance．）Point the triangular arrow on the card toward the HP 48 port opening，as shown below：

4．Slide the card firmly into the slot．After you first feel resistance，push the card further（about $5-6 \mathrm{~mm}$ or about $1 / 4 \mathrm{inch}$ ），until it is fully seated．

5．Replace the port cover．Press ON to turn the HP 48 on．

Removing a Card

To remove a card, follow these steps:

1. Press $\boldsymbol{\Gamma}$ OFF to turn the HP 48 off. Do not turn it back on until you have removed the card.
2. Remove the port cover. Press against the grip lines and push forward. Lift the cover to expose the two plug-in ports, as shown in "Installing a Card."

3. Press against the card's grip and slide the card out of the port, as shown.
4. Replace the port cover. Press ON to turn the HP 48 on.

Starting EE•Pro

To start EE•Pro, follow these steps:

1. Install the card as described above and press to turn the HP 48 on.
2. HP 48GX: Press $\boldsymbol{\square}$ LB RAY to display the available libraries. HP 48SX: Press \square LBRAY to display the available libraries.
3. Press EE to display the EE•Pro library menu.
4. Press EE to start EE•Pro, or press ABOUT to display product information and the current version of EE•Pro. The other menu keys in the EE•Pro library menu are covered in Chapter 43, "Programmable Commands."
 stacks by pressing 0 N . You can return to EE• Pro at exactly the same point you left it, by pressing $\boldsymbol{\square}$ LoAM (TX) EN EN , or by typing $\alpha \Omega$ ER ENTER.

Using the Home Screen

The home screen appears when you start EE•Pro for the first time．It can also be reached by pressing $⿴ 囗 十$ rows from any EE•Pro screen．

The home screen lists the three major sections of EE•Pro：Analysis，Equations， and Reference．To select a section，move the highlight bar up or down（ \triangle or \square ） to the desired section and press ENTER or

$\begin{gathered} \text { NOTE } \\ \text { (aOS } \end{gathered}$	To move back to a previous screen at any time，press \square or UP ．To return to the home screen at any time，press Howl or HOME．

ABOUT Displays product information and current version of EE－Pro．
VIEW Displays the highlighted item on the screen by itself，in the large font （text view）．This is useful if the item scrolls off the right side of the screen with an ellipsis（＂．．．＂）displayed．
FIND Searches for the specified character or string．To perform a search， enter a letter or string of letters of the desired word or sequence and press ENTER．EIND only searches the current screen for a match．
OPTS Displays the options menu．See＂Options Menu，＂page 9.
PATH Displays screens chosen to reach the current screen．After pressing this key，you will see the path listing in the title bar of the screen． Press \rightarrow STK to place this path list on the stack．This can then be used to create a quick link to that specific screen．See chapter 44 ＂Programmable Screens＂for more details．
OUIT Quits EE•Pro and returns to the HP 48 stack．
At screens other than the home screen，two new menu keys may appear：
HOME Goes to the home screen．
UP Goes to the previous screen．

Navigating through EE•Pro

The HP 48 arrow keys are your navigation tools for accessing every part of EE•Pro．The right arrow takes you to the next screen．The left arrow \square takes you to the previous screen．When you have gone as far as you can go in one path，for instance：

To return to the previous screens, press:
\square Impedance Calculations
AC Circuits
Analysis
or press日狍 to return to the home screen.

The up arrow $\boldsymbol{\Delta}$ and down arrow $\boldsymbol{\nabla}$ allow you to move the highlight bar from one line to another, selecting a new topic or a new field.

Options Menu

The options menu helps you customize settings for EE-Pro and is available throughout the software. These settings apply to EE-Pro only, not to the HP 48 stack.

To access the options menu, press IOPTS or $\square_{\text {©sTI. This will display the }}$ following menu keys:
SPD: Changes the scrolling speed of the highlight bar. The bar inside the key (SPD: \mathbb{D}), shows the current level of speed: a tall bar indicates fast scrolling speed, while a short bar indicates slow
 scrolling speed. To change the speed, press the SPD: \square button to step through the choices.
UNITS Toggles units on or off. When the block inside the key appears (UNITP), units are turned on.
HELP Toggles display of help text on the bottom of the screen. When the block inside the key appears (HELPD), help is turned on.
FONTT Toggles font size between large and small. The default setting is the small font, which displays information in condensed, uppercase letters only. The large font displays information in a larger, casesensitive font.
EXIT Leaves the options menu. Returns to the regular menu.

For more options, press 团 to display the following additional menu keys (you can also display these menu keys by pressing 国 $\boxed{C S T}$):
\rightarrow STK Copies one or all of the items shown to the HP 48 stack.
Pressing this key prompts you for ONE or ALLI. If you decide not to copy the item to the stack, press 00 to cancel.

VIEWI Displays the highlighted item in a text view. This is useful if the item scrolls off the right side of the screen with "..." (an ellipsis) displayed.
If the highlighted item is an equation, pressing or $\boldsymbol{\square}$ VIEW displays the equation in graphics view.
FIIND Searches for a specified character or string. To perform a search, enter a letter or string of letters of the desired word or sequence and press EnTEP. FIND only searches the current screen for a match. See detailed explanation below, "Using the Find Option."
PRINT Prints one or all of the items shown to an HP 48 printer.
PATH Displays screens chosen to reach the current screen. After pressing this key, you will see the path listing in the title bar of the screen. Press \rightarrow STK to place this path list on the stack. This can then be used to create a quick link to that specific screen. See chapter 44 "Programmable Screens" for more details.
EEXIT Leaves the options menu. Returns to the regular menu.

Using the Find Option

To initiate a search, press FIND to display the following screen:
The HP 48 is now ready to search for the information entered at the command line. The calculator is automatically locked in alpha entry mode, which activates the capital letters printed in white to the lower right of selected keys.

To perform a search, enter a letter or string of letters of the desired word or sequence and press ENTER. The find function is not case-sensitive. FIND then searches the current screen for a match. To abort the search, press 00 (Cancel). To repeat the search, press the FIIND key again and the last search string will be displayed. Press the Eniep key to renew the search.

The menu keys on the Find screen are the standard HP 48 editing keys and are described below. To use these keys, turn the Alpha lock off by pressing α. To turn Alpha lock back on, press α.

ESKIP Moves the cursor to the beginning of the current word.
SKIP \rightarrow Moves the cursor to the beginning of the next word.
$\leftarrow D E L$ Deletes the characters from the beginning of the word to the cursor.
$D E L \rightarrow$ Deletes the characters from the cursor to the end of the word.
INS: Switches the entry mode between Insert mode (\leftarrow cursor) and Replace mode ($\boldsymbol{\|}$ cursor). A - in the menu key indicates Insert mode is active.
TSTK Allows you to copy an item from the HP 48 stack:

1. Press α to cancel the alpha-entry mode, then press TSTK to go to the HP 48 stack.
2. Use the arrow keys to select the stack level with the desired item.
3. Press ECHO then ENTER to copy the item into the 'Find' string.

Custom Settings Screen

The custom settings screen is displayed by pressing ©ST. This screen sets the default settings for the HP 48 and EE•Pro. Once you leave the EE•Pro program, these settings will still remain in effect. The custom settings screen is available throughout EE•Pro.

To change any of these settings, move the highlight bar to the desired item and press CHOOS or $+1-$. Then press OK to implement the changes, or to exit the screen without changing the settings, press CANCL or 0 .

人: (Angle measure) Press CHOOS or ENTER to select degrees, radians, or grads. Determines how angular functions interpret angular inputs and what angle measure is used to display angular outputs.
Coord: (Coordinate system) Press CHOOS or ENEE to select rectangular, polar or spherical. Determines whether complex numbers are displayed as (x, y) or $(\mathrm{r}, \Delta \theta)$.
Format: (Number format) Press CHOOS or ENEER to select Standard, Fixed, Scientific or Engineering.
Digits: (\# of decimal places displayed) Type in the desired number of decimal places. (This field disappears when Standard number format has been selected.)

Result: (Result mode) Press CHOOS or ENER to select symbolic or numeric. Determines whether some functions return symbolic or numeric results.
Units: (Units) Press CHOOS or Eniex to select on or off. Determines whether units are on or off for Equations and Reference. In the Analysis sections units are disregarded completely, so the units setting makes no difference.
Help: (Help text) Press CHOOS or ENTER to select on or off. Determines whether context-sensitive help text is displayed on the screen.
Font: (Font size) Press CHOOS or ENTER to select on or off. Determines whether items are displayed in large or small font.

Analysis

Chapter 2

Analysis: Navigation Guide

Analysis Equations Reference

This chapter is designed as a navigation guide to introduce you to the Analysis section, show you the keys available at each screen, and describe the types of input fields you will encounter. At the end of the chapter is a detailed Analysis example.

Introduction... 15
Finding Analysis .. 15
Analysis Screens .. 16
Using Analysis Routines ... 17
Analysis Menu Keys .. 18
Example: Parallel RLC Circuit 20

Introduction

EE•Pro is divided into three major sections: Analysis, Equations, and Reference. This chapter addresses the Analysis section, which includes analysis routines covering AC circuits, polyphase circuits, ladder networks, filter design, gain and frequency, Fourier transforms, two-port networks, transformer performance, transmission lines, computer engineering, algebraic functions, error functions, and capital budgeting.

The Analysis routines are indispensable tools for performing quick calculations. You can design filters, evaluate performance of two-port networks, calculate transmission line properties, design transformers or minimize logic neworks, draw the classic Bode plot, and determine capital budget constraints-all with context-sensitive help.

Finding Analysis

The Analysis section is found at the home screen of EE•Pro.

1. Start EE•Pro:

- HP 48GX: Press $\boldsymbol{\square}$ LBRARY EE EE
- HP 48SX: Press ET LERAYY EE EE.
- Press $\boldsymbol{\square}$ Howe to show the home screen.

EE•Pro is structured with a hierarchy of screens for choosing a specific topic or item. This is the home screen. To return here at any time, press $\boldsymbol{\square}$ or \rightarrow.
2. Select Analysis by moving the highlight bar to Analysis and pressing ENTER or \triangle. The screen now displays Analysis as its title and a list of Analysis sections from which to choose.

3. Choose an Analysis section by moving the highlight bar to the desired item and pressing ENTER or \triangle. This will display a list of topics for the selected section. For the purposes of this navigation guide, select AC Circuits,
 then Impedance Calculations.

Pressing UP (if available) or returns you to the previous screen. Pressing HOME (if available) or $\boldsymbol{\square}$ remarns you to the home screen.

Analysis Screens

An Analysis screen displays a list of fields for entering and displaying data. The screen to the right is the Impedance Calculations screen. To get to this screen, select Analysis, then AC Circuits, then Impedance Calculations (as described
 above). The main part of the screen contains input fields for data entry and
result fields for displaying calculated results. The help text at the bottom of the screen describes the action required for the highlighted field or the type of result to be displayed. In screens with numerous fields, you may want to turn the help text off to view more of the fields at one time. See "Options Menu," page 9 for more information.

Analysis modules which contain more than two or three result fields will display those results in a separate output screen. To view the output screen, input values for the necessary fields and press SOLVE.

Using Analysis Routines

The instructions below are general instructions for using Analysis routines. For a detailed example using Impedance Calculations, see page 20. In addition, each section in each Analysis chapter contains at least one example.

1. Choose parameters (if available). In the screen for Impedance Calculations to the right, the Config and Elements fields are choose fields and contain a list of items for selection. Press CHOOS to access this list, or
 press [7- to step through the choices.

NOTE
Some choose fields affect the appearance of the remaining fields. For instance, choosing RLC in the Elements field here displays all the remaining input fields: Freq, R, L, and C. However, if R is chosen in the Elements field, only the relevant fields Freq and \mathbf{R} appear.
2. Enter values into the edit fields. In this screen, the Freq, R, L, and C are edit fields. The values are to be entered as real numbers, but they will be interpreted as being in the units specified in the help text at the bottom of the screen. In this screen, the resistance entered in field \mathbf{R} will be assumed to be a quantity of ohms.

If an edit field requires a delimiter, it will automatically be inserted. Typical delimiters are: \{ \} for a list, [] for an array, ' ' for a symbolic expression, and \# for a binary number.
3. Press SOLVE to calculate the result of the analysis.
4. The result appears in the result field(s) - in this case, Impedance and Admittance.
Some Analysis modules have too many result fields to display on the input screen. In that case, a separate output screen is displayed with all the result fields.
5. When finished press to return to the AC Circuits screen or press \square Home to return to the home screen.

Analysis Menu Keys

The menu keys in Analysis screens change depending on the type of field that is highlighted. Analysis screens use three basic types of fields: choose fields, edit fields and result fields. These fields and their associated menu keys are outlined below. The OPTS and SOLVE menu keys are always present, regardless of the field type.

Input Screens

Input screens contain fields for entering data and, in some cases, for displaying the results of the calculations. The screen below is the Impedance Calculations input screen.

Choose Fields: These fields only accept values from a pre-defined list that is accessed by pressing CHOOS. In this example, both Config and Elements are choose fields.
CHOOS Displays the possible choices for a choose field. In the list of choices, highlight the desired item and press ENTER or OK, or press CANCL to abort the selection.

OPTS Displays the options menu. For more information, see "Options Menu," page 9.
SOLVE Performs a calculation using the inputs that have been entered. The result is displayed in the result field(s).

Edit Fields: These fields accept values entered from the keyboard. In this example, Freq, R, L, and C are edit fields.
EDIT Edits the highlighted item. The menu keys then change to the standard HP 48 editing keys. Press ENTER to save edit changes or $O \mathrm{ON}$ to cancel editing.
STACK Copies the highlighted item to

the HP 48 stack and temporarily goes to the HP 48 stack
environment. While at the stack, you can use all the normal built-in functions of your HP 48 to manipulate or change the copied item. When you have finished editing the item, press OK to leave the stack and insert the edited item into the current edit field, or press CANCL to leave the stack without changing the value of the current edit field.
OPTSI Displays the options menu. For more information, see "Options Menu," page 9.
TYPES Displays the allowed object types, such as real number, list, array, algebraic, etc. Move the highlight bar to the desired input type and press OK or ENEER to start a new item of that type, with the appropriate delimiters, on the command line. Or press CANCL to return to the Analysis screen.
SOLVE Performs a calculation using the entered values. The result is displayed in the result field(s).

Result Field: These fields display the result of a calculation. In the Impedance Calculations screen, both \mathbf{Z} and \mathbf{Y} are result fields.
\rightarrow STK Copies one or all of the items shown to the HP 48 stack. For more information, see "Options Menu," page 9.
VIEWI Displays the highlighted item in a text view. For more information,
 see "Options Menu," page 9.
OPTS Displays the options menu. For more information, see "Options Menu," page 9.
SOLVE Performs a calculation using the entered values. The result is displayed in the result field(s).

Output Screens

Output screens contain only result fields, so the menu keys are the same as those above, with the addition of an EXITT key. The screen below is the output screen from the Circuit Performance example in the AC Circuits chapter, see page 24 .
\rightarrow STKICopies one or all of the items shown to the HP 48 stack. For more information, see "Options Menu" page 9.
VIEWI Displays the highlighted item in a text view. For more information, see "Options Menu," page 9.

OPTS Displays the options menu．For more information，see＂Options Menu，＂page 9.
EXIT Returns to the input screen．

Pressing $\boldsymbol{R}_{\text {rawd }}$ will not work at an output screen．To return to the home screen，first press EXIT to return to the input screen，then press \boldsymbol{P} 回．

Example：Parallel RLC Circuit

MODES		Degrees	Result：	Symbolic
（Press ©ST）	Coord：	Polar	Units：	On or Off
	Format：	Standard	Help：	On
	Digits：	N／A	Font：	Small

Compute the impedance of a parallel RLC circuit with a 10 ohm resistor，a 1．5 Henry inductor and a 4.7 farad capacitor at a frequency of 100 hertz．

1．Go to the Impedance Calculations screen：
a．Press $⿴ 囗 \rightarrow$ rowe to go to the home screen．
b．Choose Analysis．
c．Choose AC Circuits．
d．Choose Impedance Calculations．
2．Move the highlight bar to the Config field and press CHOOS to display the two choices for this field．Move the
 highlight bar down to Parallel and press OK or ENTEQ．The circuit configuration is now set and the highlight bar will automatically move down to the next field．
3．At the Elements field press CHOOS and select RLC．
4．Enter 100 for Freq， 10 for R， 1.5 for \mathbf{L} ，and 4.7 for \mathbf{C} ．If you make a mistake while entering these values，move the highlight bar back up to the field with the incorrect value and type in the correct value．
5．Press SOLVE to calculate the impedance \mathbf{Z} and admittance \mathbf{Y} ． Because the result for the impedance is too wide for the screen，move the
 highlight bar to the \mathbf{Z} field and press VIEWI to display the full value in text view，if desired．
6．When finished press \square to return to the AC Circuits screen or press $\boldsymbol{\square}$ fore to return to the home screen．

Chapter 3

AC Circuits

This chapter covers the basic properties of simple AC circuits:

- Impedance Calculations
- Voltage Divider
- Current Divider
- Circuit Performance
- Wye $\leftrightarrow \Delta$ Conversion

Impedance Calculations

The Impedance Calculations section computes

Analysis
AC Circuits
Equations
Reference the conductance of a resistor, the impedance and admittance of an isolated inductor or a capacitor, and the impedance and admittance of a series or parallel combination of a resistor, inductor and/or capacitor.

Field Descriptions

Config: (Circuit Configuration) Press CHOOS to select Series or Parallel. Elements: (Element Combination) Press CHOOS to select R, L, C, RL, RC, LC, or RLC. Determines which of the remaining fields are visible:
Freq, R, L and/or C.
Freq: (Frequency in Hz) Enter a real number, global name, or algebraic.
R: (Resistance in Ω - only appears if $\mathrm{R}, \mathrm{RL}, \mathrm{RC}$ or RLC is chosen in
Elements field) Enter a real number, global name, or algebraic.
L : (Inductance in H - only appears if $\mathrm{L}, \mathrm{RL}, \mathrm{LC}$ or RLC is chosen in
Elements field) Enter a real number, global name, or algebraic.
C: (Capacitance in F - only appears if C, LC, RC or RLC is chosen in
Elements field) Enter a real number, global name, or algebraic.
Z: (Impedance in Ω) Returns a real or complex number, global name, or algebraic.

Y: (Admittance in S) Returns a real or complex number, global name, or algebraic.

Example

MODES			Degrees	Result:
Symbolic				
(Press ©ST)	Coord:	Polar	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Compute the impedance of a parallel RLC circuit consisting of a 10 ohm resistor, a 1.5 Henry inductor and a 4.7 farad capacitor at a frequency of 100 hertz.

1. Choose Parallel for Config and RLC for Elements.
2. Enter 100 for Freq.
3. Enter 10 for $\mathbf{R}, 1.5$ for L, and 4.7 for C.
4. Press SOLVE to calculate \mathbf{Z} and \mathbf{Y}.

Output Screen

Voltage Divider

This section computes the voltage drop across

Analysis
AC Circuits
Voltage Divider
Equations
Reference a load connected to an ideal voltage or current source. The load chain consists of impedances in series or admittances in series. The module computes the voltage across each impedance/admittance and the current through the load.

Field Descriptions

Load Type: (Type of Load) Press CHOOS to select Impedance (Z) or Admittance (Y). Determines whether the third field is Z (impedance chain) or Y (admittance chain).
Vs: (Source Voltage in V) Enter a real or complex number, global name, or algebraic.
Z: (Impedances) Enter a list of real or complex numbers, global names, or algebraics.

Y: (Admittances) Enter a list of real or complex numbers, global names, or algebraics.
IL: (Output Current in A) Returns a real or complex number, global name or algebraic.
V: (Element Voltages in V) Returns a list of real or complex numbers, global names, or algebraics.

Example

MODES		Degrees	Result:	Symbolic
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

An ideal voltage source with a $(100,20)$ AC voltage is connected to three impedances (50,0), ($100,-30$) and ($50,-50$) connected in series. Compute the load current and the voltage drop across each impedance.

1. Choose Impedances for Load Type.
2. Enter $(100,20)$ for Vs.
3. Enter $\{(50,0)(100,-30)(50,-50)\}$ for Z.
4. Press SOLVE to calculate IL and V.

Input Screen

Output Screen

Analysis
AC Circuits
Current Divider
Equations
Reference

This section computes the individual branch currents in a load defined as a set of impedances or admittances connected in parallel. The section also computes the voltage across the load.

Field Descriptions

Load Type: (Type of Load) Press CHOOS to select Impedance (Z) or Admittance (Y). This sets the third field to be Z (Impedances) or Y (Admittances).
Is: $($ Source Current in $A)$ Enter a real or

Admittances complex number, global name, or algebraic.

Z: (Impedances) Enter a list of real or complex numbers, global names or algebraics.
Y: (Admittances) Enter a list of real or complex numbers, global names or algebraics.

Impedances

VL: (Load Voltage in V) Returns a real or complex number, global name or algebraic.
I: (Currents in A) Returns a list of real or complex numbers, global names or algebraics.

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

An AC current source of $(15,20) \mathrm{amps}$ has a load consisting of three admittances: $(0.05,0),(0.001,-0.03)$ and (0.025 , -0.015) mhos, connected in parallel. Compute the current in each element and the voltage drop across the load.

1. Choose Admittance for Load Type.
2. Enter $(15,20)$ for Is.
3. Enter $\{(.05,0)(.001,-.03)(.025,-.015)\}$ for Y.
4. Press SOLVE to calculate VL and I.

Output Screen

Circuit Performance

This section computes the circuit performance

Analysis
AC Circuits
Circuit Performance
Equations
Reference of a simple load connected to a voltage or a current source. Performance parameters computed include load voltage and current, complex power delivered, power factor, maximum power available to the load, and the load impedance required to deliver maximum power.

Field Descriptions - Input Screen

Load Type: (Type of Load) Press CHOOS to select load impedance (Z) or admittance (Y). Determines whether remaining fields are $\mathbf{V s}, \mathbf{Z s}$, and $\mathbf{Z L}$ or Is, Ys, and YL, respectively.
Vs: (RMS Source Voltage in V) Enter a real or complex number, global name, or algebraic.
Zs: (Source Impedance in Ω) Enter a real or complex number, global name, or
 algebraic.
ZL: (Load Impedance in Ω) Enter a real or complex number, global name, or algebraic.
Is: (RMS Source Current in A) Enter a real or complex number, global name, or algebraic.
Ys: (Source Admittance in S) Enter a real or
 complex number, global name, or algebraic.
YL: (Load Admittance in S) Enter a real or complex number, global name, or algebraic.

Field Descriptions - Output Screen

VL: (Load Voltage in V) Returns a real or complex number, global name, or algebraic.
IL: (Load Current in A) Returns a real or complex number, global name, or algebraic.
P: (Real Power in W) Returns a complex number, global name, or algebraic.
Q: (Reactive Power in W) Returns a complex number, global name, or algebraic.
VI: (Apparent Power in W) Returns a complex number, global name, or algebraic.
日: (PF Angle in $\boldsymbol{\Delta}$) Returns a real number, global name or algebraic.
PF: (Load Power Factor) Returns a real number, global name, or algebraic.
Pmax: (Maximum Power Available in W) Returns a real number, global name, or algebraic.
YLopt: (Load Admittance for Maximum Power in S - if Admittance was chosen for Load Type at input screen) Returns a real or complex number, global name, or algebraic.

ZLopt: (Load Impedance for Maximum Power in Ω - if Impedance was chosen for Load Type at input screen) Returns a real or complex number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Calculate the circuit performance parameters for a ($125,-100$) ohm load connected to an AC voltage source with a voltage of $(10,0)$ and a source impedance of $(50,25)$ ohms.

1. Choose Impedance for Load Type.
2. Enter $(10,0)$ for $\mathbf{V s},(50,25)$ for $\mathbf{Z s}$, and ($125,-100$) for $Z \mathrm{~L}$.
3. Press SOLVE to calculate the results, which will be displayed in the output screen.

Output Screen

Wye $\leftrightarrow \Delta$ Conversion

This section converts the three impedances
Analysis
\quad AC Circuits
\quad Wye $\leftrightarrow \Delta$ Conversion
Equations
Reference

Wye $\leftrightarrow \Delta$ Conversion

Reference $\mathrm{Z} 1, \mathrm{Z} 2$ and Z 3 connected in a Y configuration to its equivalent Δ values of ZA, ZB and ZC or vice versa, as shown in the diagrams below. This section uses the clockwise notation.

Wye Configuration

Δ Configuration

Field Descriptions

Input Type: (Circuit Configuration) Press CHOOS to select $\Delta \rightarrow \mathrm{Y}$ or $\mathrm{Y} \rightarrow \Delta$. Determines whether next 3 fields (input fields) accept Δ Impedances or Z Impedances.
ZA: (Δ Impedance in Ω) Real or complex number, global name, or algebraic.
ZB: (Δ Impedance in Ω) Real or complex number, global name, or algebraic.
ZC: (Δ Impedance in Ω) Real or complex number, global name, or algebraic.
Z1: (Y Impedance in Ω) Real or complex number, global name, or algebraic.
Z2: (Y Impedance in Ω) Real or complex number, global name, or algebraic.
Z3: (Y Impedance in Ω) Real or complex number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press CsT)	Coord:	Polar	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Convert a Δ network with impedances $(125,20),(50,-58)$ and $(175,0)$ to its equivalent \mathbf{Y} values.

1. Choose $\Delta \rightarrow Y$ for Input Type.
2. Enter $(125,20)$ for $\mathbf{Z A},(50,-58)$ for ZB, and $(175,0)$ for $\mathbf{Z C}$.
3. Press SOLVE to calculate $\mathbf{Z 1}, \mathbf{Z 2}$ and Z3.

Input Screen

Chapter 4

Polyphase Circuits

Analysis
Polyphase Circuits
Equations
Reference

This chapter covers the basic principles of polyphase (3 phase) circuits:

- Wye $\leftrightarrow \Delta$ Conversion
- Balanced Wye Load
\square Balanced Δ Load

Wye $\leftrightarrow \Delta$ Conversion

This section converts the three impedances

Analysis
Polyphase Circuits
Wye $\leftrightarrow \Delta$ Conversion
Equations
Reference

Z1, Z2 and Z3 connected to form a Wye connection to their equivalent Δ values of ZA, ZB and ZC or vice versa, as shown in the diagram below. Clockwise notation is used for the conversion.

Wye Configuration

Δ Configuration

Field Descriptions

Input Type: (Circuit Configuration) Press CHOOS to select $\Delta \rightarrow Y$ or $Y \rightarrow \Delta$. Determines whether next 3 fields (input fields) accept Δ Impedances or Wye Impedances.
ZA: (Δ Impedance) Real or complex number, global name, or algebraic.
ZB: (Δ Impedance) Real or complex number, global name, or algebraic.

ZC: (Δ Impedance) Real or complex number, global name, or algebraic.
Z1: (Y Impedance) Real or complex number, global name, or algebraic.
Z2: (Y Impedance) Real or complex number, global name, or algebraic.
Z3: (Y Impedance) Real or complex number, global name, or algebraic.

Example 1

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Convert a Δ network with impedances $(10,0),(20,-60)$ and $(0,-20)$ to its equivalent Wye values.

1. Choose $\Delta \rightarrow Y$ for Input Type.
2. Enter $(10,0)$ for $\mathbf{Z A},(20,-60)$ for ZB, and $(0,-20)$ for $Z C$.
3. Press SOLVE to calculate $\mathbf{Z 1}, \mathbf{Z 2}$ and Z3.

Input Screen

Output Screen

Example 2

MODES			Degrees	Result:
Symbolic				
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Convert a Wye network with impedances
15,10 and 6 to its equivalent Δ values.

1. Choose $\mathrm{Y} \rightarrow \Delta$ for Input Type.
2. Enter $\mathbf{1 5}$ for $\mathbf{Z 1}, 10$ for $\mathbf{Z 2}$, and $\mathbf{6}$ for $Z 3$.
3. Press SOLVE to calculate $\mathbf{Z A}, \mathbf{Z B}$ and ZC.

Input Screen

Output Screen

Balanced Wye Load

In this section, three identical impedances \mathbf{Z}
Analysis
\quad Polyphase Circuits
\quad Balanced Wye Load
Equations
Reference
nalysis
olyphase Circuits
Balanced Wye Load

Reference are connected in the Wye configuration. The voltge V12 represents the line voltage from line 1 to line 2 which is the reference voltage applied to this Wye network. The voltages across lines 2 and 3 , and 3 and 1 have the same magnitude as V12, but are out of phase by -120° and 120° respectively. This section calculates the currents $\mathbf{I 1}, \mathbf{I} \mathbf{2}$, and I3 in each leg of the Wye network, line to neutral voltage in each phase V1N, V2N, and V3N, power dissipated in each phase \mathbf{P}, wattmeter readings W12 and W13 connected as shown in the figure below.

Field Descriptions - Input Screen

V12: (Reference Voltage in V across lines 1 and 2) Enter a real or complex number, global name, or algebraic.
Z: (Phase Impedance in Ω) Enter a real or complex number, global name, or algebraic.

Field Descriptions - Output Screen

V23: (Voltage in V across lines 2 and 3) Returns a real or complex number, global name or algebraic.
V31: (Voltage in V across lines 3 and 1) Returns a real or complex number, global name or algebraic.

V1N: (Voltage in V across $1 N$) Returns a real or complex number, global name or algebraic.
V2N: (Voltage in V across $2 N$) Returns a real or complex number, global name or algebraic.
V3N: (Voltage in V across $3 N$) Returns a real or complex number, global name or algebraic.
11: (Line Current 1 in A) Returns a real or complex number, global name or algebraic.
12: (Line Current 2 in A) Returns a real or complex number, global name or algebraic.
13: (Line Current 3 in A) Returns a real or complex number, global name or algebraic.
P: (Phase Power in W) Returns a real number, global name or algebraic.
W12: (Wattmeter reading in W across lines 1 and 2) Returns a real number.
W13: (Wattmeter reading in W across lines 1 and 3) Returns a real number.

Example

$\begin{aligned} & \hline \hline \text { MODES } \\ & \text { (Press CST) } \end{aligned}$	Coord: Format: Digits:	Degrees Polar Standard N/A	Result: Units: Help: Font:	Symbolic On or Off On Small

A Wye network consists of three impedances of $(5, \angle 36.87)$ ohms each and is supplied by a reference voltage of $(110,0)$ volts. Compute the line currents and the power dissipated in each leg of the network.

1. Enter $(110,0)$ for V 12 .
2. Enter the value $(5, \angle 36.87)$ for Z.
3. Press SOLVE to calculate the results, which will be displayed in the output screen.

Balanced Δ Load

In this section, three identical impedances \mathbf{Z}

Analysis
Polyphase Circuits
Balanced Δ Load
Equations
Reference are connected in a Δ configuration. The voltge VAB represents the line voltage from line A to line B which is the reference voltage applied to this Δ network. The voltages across lines B and

C , and C and A have the same magnitude as VAB, but are out of phase by -120° and 120° respectively. This section calculates the currents IA, IB, and IC in each leg of the Δ network, power dissipated in each phase \mathbf{P}, and the readings in a two-wattmeter system of power measurement WAB and WAC.

Field Descriptions - Input Screen

VAB: (Reference Voltage in V across lines 1 and 2) Enter a real or complex number, global name, or algebraic.
Z: (Phase Impedance in Ω) Enter a real or complex number, global name, or algebraic.

Field Descriptions - Output Screen

VBC: (Voltage in V across lines B and C) Returns a real or complex number, global name or algebraic.
VCA: (Voltage in V across lines C and A) Returns a real or complex number, global name or algebraic.
IA: (Line Current A in A) Returns a real or complex number, global name or algebraic.
IB: (Line Current B in A) Returns a real or complex number, global name or algebraic.
IC: (Line Current C in A) Returns a real or complex number, global name or algebraic.
P: (Phase Power in W) Returns a real number, global name or algebraic.
WAB: (Wattmeter reading in W across lines A and B) Returns a real number.
WAC: (Wattmeter reading in W across lines A and C) Returns a real number.

Example

MODES		Degrees	Result:	Symbolic
(Press CST)	Coord:	Polar	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

A Δ network consists of three impedances of 3 ohms each and is supplied by a reference voltage of $(110,0)$ volts. Compute the line currents and the power dissipated in each leg of the network.
2. Enter $(110,0)$ for VAB.

1. Enter 3 for \mathbf{Z}.
2. Press SOLVE to calculate the final results as shown in the output screen.

Chapter 5

Ladder Network

Analysis
Ladder Network
Equations
Reference

This chapter covers ladder network analysis:
a circuit reduction method by which branches of the circuit are treated as rungs (series connection) or sides (parallel or shunt connection) of a ladder.

Using Ladder Network

NOTE

In a ladder network, the order in which you enter the elements is significant.

In the examples that follow, the left end of the ladder is the input end and the right end of the ladder is the output end, where the load is connected. The elements of the ladder (from 1 to N) are entered from right to left, as you go from output to input. The input impedance Zin is calculated as if you were "looking in" to the left end of the ladder.

Field Descriptions - Input Screen

Frequency: (Frequency) Enter a real number, global name, or algebraic. Load: (Initial Load) Enter a real or complex number, global name, or algebraic.
1: (Element 1 - closest to the load)
\mathbf{N} : (Element N - furthest from the load)

Field Descriptions - Element Screen

Press ADD from the input screen to add one of the sixteen different element types.

Resistor

Can be added as a rung or side. Choose Series or Parallel for Config and enter a value for \mathbf{R}.

Inductor

(ideal inductor) Can be added as a rung or side. Choose Series or Parallel for Config and enter a value for L.

Capacitor

(ideal capacitor) Can be added as a rung or side. Choose Series or Parallel for Config and enter a value for \mathbf{C}.

RL

RL series circuit can be added as a rung. RL parallel circuit can be added as a side. Choose Series or Parallel for Config and enter a value for \mathbf{R} and \mathbf{L}.

LC

LC series circuit can be added as a rung. LC parallel circuit can be added as a side Choose Series or Parallel for Config and enter a value for L and C.

RC

RC series circuit can be added as a rung. RC parallel circuit can be added as a side. Choose Series or Parallel for Config and enter a value for \mathbf{R} and \mathbf{C}.

RLC

RLC series circuit can be added as a rung. RLC parallel circuit can be added as a side. Choose Series or Parallel for Config and enter a value for \mathbf{R}, \mathbf{L}, and \mathbf{C}.

General Impedance

Can be added as a rung or a side. Choose Series or Parallel for Config and enter a value for \mathbf{Z}.

Transformer

(ideal transformer) Can be added only in cascade connection. Specify turns ratio, by entering a value for \mathbf{N}.

Gyrator

(synthetic inductance filer) Can be added only in cascade connection. Specify gyrator parameter by entering a value for α.

Voltage-Controlled I

Can be added only in cascade connection. Specify base resistance and transconductance by entering values for $\mathbf{r b}$ and $\mathbf{g m}$.

Current-Controlled I

Can be added only in cascade connection. Specify base resistance and common base current gain by entering values for $\mathbf{r b}$ and
β.

Transmission Line

Can be added only in cascade connection. Specify characteristic impedance and electrical length by entering values for $\mathbf{Z O}$

and $\boldsymbol{\theta}$.

Open Circuited Stub

Can be added only in cascade connection.
Specify characteristic impedance and electrical length by entering values for $\mathbf{Z O}$
 and $\boldsymbol{\theta} 0$.

Short Circuited Stub

Can be added only in cascade connection. Specify characteristic impedance and electrical length by entering values for $\mathbf{Z O}$ and $\boldsymbol{\theta} 0$.

Two-Port Network

Can be added only in cascade connection.
Choose $\mathrm{z}, \mathrm{y}, \mathrm{g}, \mathrm{h}$, a, or b for Input
Parameters, and enter values for ..11, ..12,

..21, and .. 22.

Field Descriptions - Output Screen

Zin: (Input Impedance) Returns a real or complex number, global name or algebraic.
I2N1: (Forward Transfer Admittance) Returns a real or complex number, global name or algebraic.
12/11: (Current Transfer Ratio) Returns a real or complex number, global name or algebraic.
Pout/Pin: (Real Power Gain) Returns a real or complex number, global name or algebraic.
V2N1: (Forward Voltage Transfer Ratio) Returns a real or complex number, global name or algebraic.
V2/I1: (Forward Transfer Impedance) Returns a real or complex number, global name or algebraic.

To use Ladder Network:

These are general instructions for entering the elements and computing the parameters of a ladder network.

1. Enter Frequency and Load.
2. Build the ladder by adding elements to it. Press ADD to insert an element on the line below the highlight bar.
3. Choose an element type and press ENTER or OK.
4. Enter the appropriate values.
5. Press OK to return to the Ladder Network screen.
6. Repeat steps $2-5$ as needed to add more elements.
7. If you decide to delete an element, move the highlight bar to that element and press DEL.
8. Press SOLVE to compute the overall ladder network parameters.

Example 1

MODES		Degrees	Result:
(Press CST)	Coord:	Rectangular	Units:
	On or Off		
	Format:	Scientific	Help:
	Digits:	3	On

What is the input impedance of the circuit shown below at 1 MHz and
10 MHz ? 10 MHz ?

1. Enter 1E6 for Frequency.
2. Enter 50 for Load.
3. Press ADD to enter the first element.

4. In the Select Element screen, move the highlight bar to Capacitor and press ENTER or OK to enter the Edit Capacitor screen.

Select Element Screen
5. In the Edit Capacitor screen, choose Parallel for Config.
6. Enter 50E-12 for C.
7. Press $O K$ to return to the Ladder Network screen.
8. Move the highlight bar to 1: Capacitor and press ADD to enter the second element.

Edit Capacitor Screen

The ADD key adds a new element on the line below the highlight bar, so make sure the highlight bar is on the last element entered (in this case, 1: Capacitor) before adding the second element.
9. Move the highlight bar to Inductor and press ENTER or OK to enter the Edit Inductor screen.
10. Choose Series for Config
11. Enter 10E-6 for L.
12. Press OK to return to the original screen.
13. Enter the remaining two elements in the same manner as the first two: a $100 \mathrm{pF}(100 \mathrm{E}-12)$ capacitor in parallel and a 50 ohm resistor in series.
13. Press SOLVE to calculate the results, which will be displayed in the output screen.

Input Screen (completed)

To find the ladder network parameters at a second frequency of 10 MHz :

1. Press \square to return to the input screen.
2. In the Frequency field, type 10E6.
3. Press SOLVE to calculated the results, which will be displayed in the output screen.

Example 2

MODES (Press \square	\boxed{L} Coord: Format: Digits:	Degrees Rectangular Scientific	Result Units Help Font	Symbolic On or Off On Small

A transistor amplifier is shown in the figure below. The transistor is characterized by a base resistance of 2500 ohms, a current gain of 100 and is operating at a frequency of $10,000 \mathrm{Hertz}$.

This schematic can be reduced to the ladder network that appears on the next page.

1. Enter the frequency and load values:

Frequency: $10,000 \mathrm{~Hz}$
Load: 5000 ohms
2. Enter the ladder elements in the following order:
1: Capacitor: Parallel, 318E-12
2: Current-Controlled I: Enter
2500 for RB and 100 for β
3: Resistor: Parallel, 1E6
4: Capacitor: Series, 0.638E-6
3. Press SOLVE to compute the results, which will be displayed in the output screen.

Input Screen

Output Screen

Chapter 6

Filter Design

This chapter covers the basic design principles

Analysis
Filter Design
Equations
Reference for three commonly-used filters:

- Chebyshev Filter
- Butterworth Filter
- Active Filter

Chebyshev Filter

This section computes component values for

Analysis
Filter Design
Chebyshev Filter
Equations
Reference Chebyshev filters between equal terminations. Inputs are termination resistance, pass band characteristics, attenuation at some out-of-band frequency, and allowable passband ripple. The Chebyshev circuit elements are assumed to be ideal, and are illustrated below.

The order of the Chebyshev filter module is reported only in odd numbers. If the result is computed to be an even number, it will be incremented to the next higher odd number.

Odd Elements

Low Pass

Band
Elimination

Even Elements

Field Descriptions - Input Screen

Char: (Bandpass Characteristic) Press CHOOS to select Low Pass, High Pass, Band Pass, or Band Elimination.
R: (Termination Resistance in Ohms) Enter a real number, global name or algebraic.
f0: (Cutoff Frequency in Hz - for Low Pass and High Pass) Enter a real number.
(Center Frequency in Hz - for Band Pass and Band Elimination) Enter a real number.
f1: (Attenuation Frequency in Hz) Enter a real number.
$\Delta \mathrm{dB}$: (Attenuation in $d B$) Enter a real number.
Bandwidth: (Bandwidth in Hz - only appears for Band Pass or Band Elimination) Enter a real number.
Ripple: (Pass Band Ripple in dB) Enter a real number.

Field Descriptions - Output Screen

Element1: (First element in parallel) Returns a real number.
Element2: (Second element in series) Returns a real number.
Element3: (Third element in parallel) Returns a real number.
Element4: (Fourth element in series) Returns a real number.
ElementN: (nth element in series because N is always odd) Returns a real number.

Example

MODES		Degrees	Result:	Symbolic
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Design a low-pass Chebyshev filter with a cutoff at 500 Hz , a termination resistance of $50 \mathrm{ohm}, 3 \mathrm{~dB}$ pass band ripple, and a 30 dB attenuation at 600 Hz .

1. Enter 50 for $\mathbf{R}, 500$ for $\mathbf{f 0}$, and 600 for $f 1$.
2. Enter 30 for $\Delta \mathbf{d B}$ and 3 for Ripple.
3. Press SOLVE to calculate the results, which will be displayed in the output screen.

Output Screen

Butterworth Filter

This section computes the component values

Analysis
Filter Design Butterworth Filter
Equations
Reference for Butterworth filters between equal terminations. Inputs are termination resistance, pass band characteristics, and attenuation at some out-of-band frequency. The basic form of the filter is shown in the figures below:

Odd Elements

Low Pass

Band Pass

Even Elements

Field Descriptions - Input Screen

Char: (Bandpass Characteristic) Press CHOOS to select Low Pass, High Pass, Band Pass, or Band Elimination.
R: (Termination Resistance in Ohms) Enter a real number.
f0: (Cutoff Frequency in Hz - for Low Pass and High Pass) Enter a real number.
(Center Frequency in Hz - for Band Pass and Band Elimination) Enter a real number.
f1: (Attenuation Frequency in Hz) Enter a real number.
$\Delta \mathrm{dB}$: (Attenuation in $D B$) Enter a real number.
Bandwidth: (Bandwidth in Hz - for Band Pass or Band Elimination) Enter a real number.

Field Descriptions - Output Screen

Element1: (First element in parallel) Returns a real number.
Element2: (Second element in series) Returns a real number.
Element3: (Third element in parallel) Returns a real number.
Element4: (Fourth element in series) Returns a real number.
ElementN: (nth element in series (ifn is odd) or parallel (if n is even)) Returns a real number.

Example

MODES	$\angle:$	Degrees	Result:	Symbolic
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Design a 100 Hz wide Butterworth band pass filter centered at 800 Hz with a 30 dB attenuation at 900 Hz . The termination resistance is 50 ohms. The source resistance is also 50 ohms.

1. Choose Band Pass for Char.
2. Enter 50 for \mathbf{R} and 800 for $\mathbf{f 0}$, and 900

Input Screen for $\mathbf{f 1}$.
3. Enter 30 for $\Delta \mathrm{dB}$ and 100 for Bandwidth.
4. Press SOLVE to calculate the results, which will be displayed in the output screen.

Output Screen

Active Filter

This section computes element values for the

Analysis
Filter Design
Active Filter
Equations
Reference standard active filter circuits shown below. In each case, five different elements are calculated.

Low Pass Filter

High Pass Filter

Band Pass Filter

Field Descriptions - Input Screen

Type: (Filter Type) Press CHOOS to select Low Pass, High Pass, or Band Pass.
f0: (Band Cutoff in Hz) Enter a real number, global name, or algebraic.
A: (Midband Gain in $d B$) Enter a real number, global name, or algebraic.
Q: (Quality Factor: $Q=\frac{1}{\alpha}=\frac{1}{2 \zeta}$ where α is peaking factor and ζ is damping factor) Enter a real number, global name, or algebraic.
C: (Capacitor in F) Enter a real number, global name, or algebraic.

Field Descriptions - Output Screen

Element1: (First element) Returns a real number.
Element2: (Second element) Returns a real number.
Element3: (Third element) Returns a real number.
Element4: (Fourth element) Returns a real number.
Element5: (Fifth element) Returns a real number.

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Design a High Pass active filter with a cutoff at 10 Hz , a midband gain of 10 , a quality factor of 1 and a capacitor of $1 \mu \mathrm{~F}$. 1. Choose High Pass for Type.
2. Enter 10 for $\mathbf{f 0}$ and 10 for \mathbf{A}.
3. Enter 1 for \mathbf{Q} and $1 E-6$ for \mathbf{C}.
4. Press SOLVE to calculate the results, which will be displayed in the output screen.

Chapter 7

Gain and Frequency

Analysis
Gain and Frequency
Equations
Reference

This chapter covers the basic principles of circuit analysis involving a transfer function model and plots the resulting equations using the classic graphical representation referred to as Bode plots for gain or phase:Transfer Function

- Bode Plots

Transfer Function

A transfer function is defined as the ratio of an output to its input signal and is generally modified by the network between the two. In the classic sense, the transfer function is dependent upon the output and input definitions and is represented by a ratio of two polynomials of s. The roots of the numerator and denominator polynomials are referred to as zeros and poles, respectively. Transfer functions can be defined by the poles and zeros or by the coefficients of the numerator and denominator polynomials. The results computed include symbolic expressions for the transfer function and its partial fraction expansion.

Field Descriptions

Inputs: (Type of Input) Press CHOOS to select Roots or Coefficients. Determines whether the third and fourth fields are Zeros and Poles or Numer and Denom.
Constant: (Constant Multiplier) Enter a real number. Default is 1.
Zeros: (Numerator Roots - if Roots chosen for input type) Enter an array or list of real or complex numbers. The number of zeros must be less than the number of poles.

Poles: (Denominator Roots - if Roots chosen for input type) Enter an array or list of real or complex numbers. The number of poles must be greater than the number of zeros.
Numer: (Numerator Coefficients - if Coefficients chosen for input type) Enter an array or list of real or complex numbers. The number of numerator coefficients must be less than the number of denominator coefficients.
Denom: (Denominator Coefficients - if Coefficients chosen for input type) Enter an array or list of real or complex numbers. The number of denominator coefficients must be greater than the number of numerator coefficients.
H(s): (Transfer Function) Returns a symbolic expression of the form

$$
\frac{K \cdot\left(1-s / z_{1}\right)\left(1-s / z_{2}\right) \ldots}{\left(1-s / p_{1}\right)\left(1-s / p_{2}\right) \ldots}
$$

PFE: (Partial Fraction Expansion) Returns a symbolic expression of the form

$$
\frac{K_{1}}{1-s / p_{1}}+\frac{K_{2}}{1-s / p_{2}}+\ldots
$$

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Find the transfer function and its partial fraction expansion for a circuit with a zero located at $-10 \mathrm{r} / \mathrm{s}$ and three poles located at $-100 \mathrm{r} / \mathrm{s},-1000 \mathrm{r} / \mathrm{s}$ and $-5000 \mathrm{r} / \mathrm{s}$. Assume that the multiplier constant is 100000 .

1. Choose Roots for Inputs.
2. Enter 100000 for Constant, [-10] for

Zeros, and [-100-1000-5000] for Poles.
3. Press SOLVE to calculate $\mathbf{H}(\mathbf{s})$ and PFE.
4. To use this transfer function in the next example, "Bode Gain and Phase Plot," move the highlight bar to the

Output Screen $\mathbf{H}(\mathbf{s})$ field and press $\boldsymbol{\rightarrow} \boldsymbol{S T K}$. This will place the transfer function on the first level of the stack so that you can use it in the next example. At the message screen "Copy to Stack...", press ONE
5. Now you are ready to go on to the next example. Press to return to the Gain and Frequency screen and choose Bode Plots. The next example is on page 51 .

Bode Plots

The behavior of the transfer function, as the
Analysis
\quad Gain and Frequency
\quad Bode Plots
Equations
Reference

Gain and Frequency Bode Plots
Equations
Reference frequency of a sinusoidal source varies, is of great interest to engineers. A very effective way to grasp the relationship between transfer function and frequency is to plot the magnitude and argument of the transfer function on two separate graphs. These plots are often called Bode gain and phase plots. A gain plot shows the magnitude of the transfer function expressed in decibels (dB) as $20^{*} \mathrm{LOG}$ (Magnitude of Transfer Function) as a function of the logarithm of the radian frequency on the horizontal scale. The phase plot shows the argument of the transfer function expressed as the phase angle (i.e., ARG(Transfer Function)) plotted as a function of the logarithm of the radian frequency on the horizontal scale.

Field Descriptions

Xfer: (Transfer Function) Enter a symbolic expression.
Indep: (Independent Variable) Enter a global name. Default is ' \mathbf{s} '.
Plot Type: (Bode Gain or Bode Phase) Press CHOOS to select Gain or
Phase. Determines whether the y axis range fields appear as
A-Min and A-Max (for Gain) or $\boldsymbol{\theta}$-Min and $\boldsymbol{\theta}$-Max (for Phase).
ω-Min: (Minimum Frequency in $r / s-X$ axis) Enter a real number.
ω-Max: (Maximum Frequency in $r / s-X$ axis) Enter a real number.
Autoscale: (Scales the plot-hides A-min and A-max fields) Press IJCHK to select.
A-Min: (Minimum amplitude in dB (Y axis) - if Gain is chosen for Plot Type) Enter a real number.
A-Max: (Maximum amplitude in dB (Y axis) - if Gain is chosen for Plot Type) Enter a real number.
θ-Min: (Minimum amplitude in dB (Y axis) - if Phase is chosen for Plot Type) Enter a real number, which will be interpreted as degrees or radians, depending on the current setting in the Custom Settings screen.
θ-Max: (Maximum amplitude in $d B$ (Y axis) - if Phase is chosen for Plot
Type) Enter a real number, which will be interpreted as degrees or radians, depending on the current setting in the Custom Settings screen.
Label Plot: (Labels X and Yaxes) Press [VCHK to label the plot.

MODES		Degrees	Result:	Symbolic
(Press GST $)$	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Plot the gain and phase plots for the transfer function example on page 49.

Plot the Bode gain plot

1. Complete the entire example for the transfer function on page 49.
2. In the Bode Plots screen, move the highlight bar to the Xfer field and press STACK. The $\mathbf{H}(\mathbf{s})$ field result from the transfer function example

Input Screen will be on the first level of the stack. Press OK to copy it into the Bode Plots screen in the Xfer field.
3. Choose \mathbf{s} for Indep. (The default is \mathbf{s} and should rarely be changed, because the Transfer Functions screen always generates transfer functions as functions of lowercase s .)
4. Choose Gain for Plot Type.
5. Enter 0.1 for ω-Min as the start of the radian frequency plot.
6. Enter 100000 for ω-Max as the endpoint of the radian frequency plot.
7. Put a checkmark in the Autoscale field. Press TCHK if necessary.
8. Put a checkmark in the Label Plot field. Press TCHK if necessary.
9. Press ERASE to clear previous plots.
10. Press DRAW to plot the function.

Plot the Bode phase plot

1. Press oo to return to the input screen.
2. Choose Phase for Plot Type.
3. Press ERASE to erase previous plot.
4. Press DRAW to plot the function.

Output Screen - Bode gain plot

Output Screen - Bode phase plot

NOTE
This example is shown in degrees. If your HP 48 is set to radians, it will scale the vertical axis in radians.

Chapter 8

Fourier Transforms

Analysis
Fourier Transforms
Equations
Reference

This chapter covers discrete "Fast" Fourier transforms:

- FFT

\square Inverse FFT

FFT

A physical process can be monitored in two
Analysis
Fourier Transforms
$\boldsymbol{F F T}$
Equations
Reference significantly different ways. First, the process can be monitored in time domain in analog or digital form. Second, the data can be collected in the frequency domain in analog or digital form. In a variety of measurement and digital storage devices, data is gathered at regular, discrete time intervals. This data can be converted to its equivalent set in the frequency domain by the use of the so-called FFT algorithm. This algorithm maps a data array of N items to the corresponding array in the frequency domain using the following equation.

$$
H_{k}=\sum_{n=0}^{N-1} h_{n} \cdot e^{-2 \pi j \cdot k \cdot n / N}
$$

where $\mathbf{h}_{\mathbf{n}}$ is the nth element in the time domain and $\mathbf{H}_{\mathbf{k}}$ is the k th element in the frequency domain. The FFT algorithm treats the data block provided as though it is one of a periodic sequence. If the underlying data is not periodic, the resulting FFT-created wave is subject to substantial harmonic distortion. This section does not pad the input array with 0 's when the number of data points is not a power of 2 .

Field Descriptions

Time: (Time Signal) Enter an array or list of real or complex numbers.
Freq: (Frequency Spectrum) Returns spectral coefficients.

Example

MODES		Degrees	Result:	Symbolic
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Find spectral coefficients for the periodic time signal [lllll $\left.123 \begin{array}{lll}1 & 3 & 1\end{array}\right]$.

1. Enter [1 23221 1] for Time.
2. Press SOLVE to calculate Freq.

Output Screen

Analysis

Fourier Transforms
Inverse FFT
Equations
Reference

This section focuses on transforming data from the frequency domain to the time domain.
$h_{n}=\frac{1}{N} \sum_{k=0}^{N-1} H_{k} \cdot e^{2 \pi j \cdot \mathrm{k} \cdot \mathrm{n} / \mathrm{N}} \quad \begin{aligned} & \text { The inverse transform algorithm uses the } \\ & \text { relationship displayed here, where } \mathbf{H}_{k} \text { is the } \mathrm{kth} \\ & \text { element in the frequency domain and } \mathbf{h}_{\mathbf{n}} \text { is the nth }\end{aligned}$
element in the time domain.

Field Descriptions

Freq: (Frequency Spectrum) Enter an array or list of real or complex numbers.
Time: (Time Signal) Returns time signal.

Example

$\begin{aligned} & \hline \hline \text { MODES } \\ & \text { (Press CST) } \end{aligned}$	Coord: Format: Digits:	Degrees Rectangular Standard N/A	Result: Units: Help: Font:	Symbolic On or Off On Small

Given [1 234 4] as coefficients, find the original time signal.

Chapter 9

Two-Port Networks

```
Analysis
Two-Port Networks
```

Equations
Reference

This chapter covers the basic principles of two-port network analysis:

- Parameter Conversion
- Circuit Performance
- Interconnected Two-Ports

Parameter Conversion

Many electrical or electronic circuits are modelled as two-port networks with four variables, namely input voltage \mathbf{V}_{1}, input current $\mathbf{I}_{\mathbf{1}}$, output voltage $\mathbf{V}_{\mathbf{2}}$, and output current $\mathbf{I}_{\mathbf{2}}$. In broad terms, a two-port network is a black-box approach

to solving simple to sophisticated problems of electical and electronic circuits. The figure below
shows a schematic
representation of a two-
port network where all
four variables are identified.

For instance, a two-port characterized by \mathbf{z} parameters is defined by the following pair of equations:

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{I}_{1} \cdot \mathrm{Z}_{11}+\mathrm{I}_{2} \cdot \mathrm{Z}_{12} \\
& \mathrm{~V}_{2}=\mathrm{I}_{1} \cdot \mathrm{Z}_{21}+\mathrm{I}_{2} \cdot \mathrm{Z}_{22}
\end{aligned}
$$

The four components of \mathbf{z} parameters are defined as follows:

$$
\begin{array}{ll}
\mathrm{Z}_{11}=\mathrm{V}_{1} / \mathrm{I}_{1} \text { with } \mathrm{I}_{2}=0 & \mathrm{Z}_{21}=\mathrm{V}_{2} / \mathrm{I}_{1} \text { with } \mathrm{I}_{2}=0 \\
\mathrm{Z}_{12}=\mathrm{V}_{1} / \mathrm{I}_{2} \text { with } \mathrm{I}_{1}=0 & \mathrm{Z}_{22}=\mathrm{V}_{2} / \mathrm{I}_{2} \text { with } \mathrm{I}_{1}=0
\end{array}
$$

The table below lists the choices for the independent variables for two-port circuits, followed by the dependent variables and parameters associated with each set of independent variables. This section allows you to convert two-port parameters from one type to another.

Independent Variables	Dependent Variables	Two-Port Parameter Type
$\mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$	\mathbf{z}
$\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}$	\mathbf{y}
$\mathbf{I}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}$	\mathbf{h}
$\mathbf{I}_{\mathbf{2}}, \mathbf{V}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$	\mathbf{g}
$\mathbf{V}_{\mathbf{2}}, \mathbf{I}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{1}}, \mathbf{I}_{\mathbf{1}}$	\mathbf{b}
$\mathbf{V}_{\mathbf{1}}, \mathbf{I}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}, \mathbf{I}_{\mathbf{2}}$	\mathbf{a}

Field Descriptions - Input Screen

Input Type: Press CHOOS to select $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b}.
..11: Enter a real or complex number, global name, or algebraic.
..12: Enter a real or complex number, global name, or algebraic.
..21: Enter a real or complex number, global name, or algebraic.
..22: Enter a real or complex number, global name, or algebraic.
Output Type: Press CHOOS to select $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b}.
Note: The help text (e.g., "Enter P1 Impedance V1/I1 (I2=0)") shows whether the ratio is an impedance, admittance or dimensionless ratio; which port is being described; and whether it is the current or the voltage that is open.

Field Descriptions - Output Screen

..11: Returns a real or complex number, global name, or algebraic.
..12: Returns a real or complex number, global name, or algebraic.
..21: Returns a real or complex number, global name, or algebraic.
..22: Returns a real or complex number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press C CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Convert a resistive two-port network with

$$
\mathbf{z}_{11}=10, \mathbf{z}_{12}=7.5, \mathbf{z}_{21}=7.5, \mathbf{z}_{22}=9.375
$$ into its equivalent y values.

1. Choose \mathbf{z} for Input Type.
2. Enter $\mathbf{1 0}$ for $\mathbf{z 1 1}, 7.5$ for $\mathbf{z 1 2}, 7.5$ for z21, and 9.375 for $\mathbf{z 2 2}$.
3. Choose y for Output Type.
4. Press SOLVE to calculate the results which will be displayed in the output screen.

Circuit Performance

This section computes the circuit performance
Analysis
\quad Two-Port Networks
\quad Circuit Performance
Equations
Reference of a two-port network. For example, given a voltage source of a finite impedance with a finite load, this section will computes the input and output impedances, current and voltage gain, voltage gain to source, current gain to source, power gain, power available at the load, maximum power available at the load, and load impedance for maximum power deliverable to the load.

Field Descriptions - Input Screen

Parameter Type: Press CHOOS to select $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b}.
..11: Enter a real or complex number, global name, or algebraic.
..12: Enter a real or complex number, global name, or algebraic.
..21: Enter a real or complex number, global name, or algebraic.
..22: Enter a real or complex number, global name, or algebraic.
Note: The help text (e.g., "Enter P1 Impedance V1/I1 (I2=0)") shows whether the ratio is an impedance, admittance or dimensionless ratio; which port is being described; and whether it is the current or the voltage that is open.

Vs: (Source Voltage in V) Enter a real or complex number, global name, or algebraic.

Zs: (Source Impedance in Ω) Enter a real or complex number, global name, or algebraic.
ZL: (Load Impedance in Ω) Enter a real or complex number, global name, or algebraic.

Field Descriptions - Output Screen

Zin: (Input Impedance) Returns a real or complex number, global name, or algebraic.
Iout: (Output Current) Returns a real or complex number, global name, or algebraic.
Vout: (Thevenin Voltage) Returns a real or complex number, global name, or algebraic.
Zout: (Thevenin Impedance) Returns a real or complex number, global name, or algebraic.
12/11: (Current Gain) Returns a real or complex number, global name, or algebraic.
V2N1: (Voltage Gain) Returns a real or complex number, global name, or algebraic.
V2/Vs: (Absolute Voltage Gain) Returns a real or complex number, global name, or algebraic.
GP: (Power Gain) Returns a real or complex number, global name, or algebraic.
Pav: (Average Power) Returns a real or complex number, global name, or algebraic.
Pmax: (Maximum Power at ZLopt) Returns a real or complex number, global name, or algebraic.
ZLopt: (Optimum Load Impedance) Returns a real or complex number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Find the circuit performance for a transistor amplifier given the following conditions: $\mathrm{h}_{11}=125, \mathrm{~h}_{12}=.001$, $\mathrm{h}_{21}=100, \mathrm{~h}_{22}=.0025$, source voltage Vs $=0.50$, source impedance $\mathrm{Zs}=50$, and load impedance $\mathrm{Zl}=1500$.

1. Choose h for Parameter.

2. Enter 125 for h11, .001 for h12, 100 for h21, and . 0025 for $\mathbf{h 2 2}$.
3. Enter 0.5 for $\mathrm{Vs}, 50$ for $\mathbf{Z s}$ and 1500 for ZL.
4. Press SOLVE to calculate the results, which will be displayed in the output

Output Screen screen.

Interconnected Two-Ports

Two-port networks constitute basic building

Analysis

Two-Port Networks
Interconnected Two-Ports Equations
Reference blocks of linear electrical/electronic systems. In the design of large, complex systems, it is easier to synthesize the system by first designing subsections. Usually, a large and complex system can be built using simpler two-port building blocks. The two-port subsections can be interconnected in five ways:

- Cascade: The output of network 1 is connected directly to the input of network 2 .
- Series-Series: The inputs and outputs of the two networks are both connected in series.
- Parallel-Parallel: The inputs and outputs of the two networks are both connected in parallel.

- Series-Parallel: The inputs of the two networks are connected in series, while the outputs are connected in parallel.

- Parallel-Series: The inputs of the two networks are connected in parallel, while the outputs are connected in series.

NOTE

When using this section, the user needs to pay particular attention to the two-ports being interconnected in noncascaded modes. Natural laws can be violated when the two-port network contains dependent voltage or current sources and the so-called Brune's test has to be satisfied. EE•Pro does not check for Brune's test.

This section accepts parameters for either network as $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b} and yields the output in any form based on the choice made.

Field Descriptions - Input Screen

Connection: (Type of Connection) Press CHOOS to select Cascade, Series Series, Parallel Parallel, Series Parallel, or Parallel Series.
First Input Type: Press CHOOS to select $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b}.
..111: Enter a real or complex number, global name, or algebraic.
..112: Enter a real or complex number, global name, or algebraic.
..121: Enter a real or complex number, global name, or algebraic.
..122: Enter a real or complex number, global name, or algebraic.
Second Input Type: Press CHOOS to select $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b}.
..211: Enter a real or complex number, global name, or algebraic.
..212: Enter a real or complex number, global name, or algebraic.
..221: Enter a real or complex number, global name, or algebraic.
..222: Enter a real or complex number, global name, or algebraic.
Output Type: Press CHOOS to select $\mathbf{z}, \mathbf{y}, \mathbf{h}, \mathbf{g}, \mathbf{a}$, or \mathbf{b}.
Note: The help text (e.g., "Enter P1 Impedance V1/I1 (I2=0)") shows whether the ratio is an impedance, admittance or dimensionless ratio; which port is being described; and whether it is the current or the voltage that is open.

Field Descriptions - Output Screen

..11: Returns a real or complex number, global name, or algebraic.
..12: Returns a real or complex number, global name, or algebraic.
..21: Returns a real or complex number, global name, or algebraic.
..22: Returns a real or complex number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

The 2 two-port networks in the two previous examples ("Parameter Conversion," page 55, and "Circuit Performance," page 57) were described in terms of their \mathbf{z} and h parameters. If the two-ports are connected in a cascade configuration, compute the y parameters

 Input Screen - Z

Input Screen - H

Output Screen

Chapter 10

Transformer Performance

Analysis
Transformer Performance
Equations
Reference

This chapter covers important power transformer principles: The open and short circuit tests, and chain parameters, which form the basis of a two-port network approach to evaluating transformer performance:

- Open Circuit Test
- Short Circuit Test
- Chain Parameters

Open Circuit Test

The open circuit test described in this section

Analysis
\quad Transformer Performance
\quad Open Circuit Test
Equations
Reference

Field Descriptions - Input Screen

V1: (Primary RMS Voltage in V) Enter a real number, global name, or algebraic.
V2: (Secondary RMS Voltage in V) Enter a real number, global name, or algebraic.
11: (Primary RMS Current in A) Enter a real number, global name, or algebraic.
P1: (Primary Real Power in W) Enter a real number, global name, or algebraic.

Field Descriptions - Output Screen

n: (Primary to secondary turns ratio) Returns a real number, global name, or algebraic.
Q1: (Reactive power in W) Returns a real number, global name, or algebraic.

Gc: (Primary core conductance in S) Returns a real number, global name, or algebraic.
Bc: (Primary core susceptance in S) Returns a real number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

Perform an open circuit test on the primary side of a transformer using the following data: The input to primary is 125 volts, with an open circuit current of 1 ampere and a power input of 45 watts. The secondary open circuit voltage is 440 volts. Find the circuit parameters of the transformer.

1. Enter the values 125 for V 1 and 440 for V2.
2. Enter $\mathbf{1}$ for $\mathbf{I 1}$ and 45 for P1.
3. Press SOLVE to calculate the results, which will be displayed in the output screen.

Input Screen

Output Screen

Short Circuit Test

Short circuit tests are often used to determine winding impedances of a transformer and are conducted at rated values. The test consists of placing a short circuit on the secondary windings and measuring primary and secondary currents, and power supplied to the transformer. The calculated circuit parameters (i.e., resistance and reactance of primary and secondary coils) are based on the assumption that the heat dissipation in the primary and secondary windings are equal.

Field Descriptions - Input Screen

V1: (Primary RMS Voltage in V) Enter a real number, global name, or algebraic.

12: (Secondary RMS Current in A) Enter a real number, global name, or algebraic.
P1: (Primary Real Power in W) Enter a real number, global name, or algebraic.
kVA: ($k V A$ rating in $k V A$) Enter a real number, global name, or algebraic.
V1R: (Primary Voltage Rating in V) Enter a real number, global name, or algebraic.

Field Descriptions - Output Screen

n: (Primary to secondary turns ratio) Returns a real number, global name, or algebraic.
Q1: (Primary Reactive Power in W) Returns a real number, global name, or algebraic.
R1: (Primary Resistance in Ω) Returns a real number, global name, or algebraic.
R2: (Secondary Resistance in Ω) Returns a real number, global name, or algebraic.
X1: (Primary Reactance in Ω) Returns a real number, global name, or algebraic.
X2: (Secondary Reactance in Ω) Returns a real number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press ©ST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

A transformer rated at 20 kVA and 400 volts is subjected to a short circuit test. The measured current in the secondary is 85 amperes. A primary voltage of 65 volts and a power of 150 watts are applied to obtain this current in the secondary. Find the transformer parameter.

1. Enter the values 65 for $\mathrm{V} 1,85$ for $\mathbf{1 2}$, and 150 for P1.
2. Enter 20 for $\mathbf{k V A}$ and 400 for V1R.
3. Press SOLVE to calculate the results, which will be displayed in the output screen.

Output Screen

Chain Parameters

Chain parameters (or the so-called ABCD parameters) are convenient problem-solving

Analysis
Transformer Performance Chain Parameters
Reference tools used in solving transmission and distribution problems. The parameters are expressed essentially as two-port type parameters by the use of the following pair of linear equations:

Vin $=A \cdot$ Vout $-B \cdot$ Iout Iin $=C \cdot$ Vout $-D \cdot$ Iout

where Vin and Iin are input voltage and current, and Vout and Iout are output voltage and current. (All quantities in the diagram refer to the primary winding.) This approach is useful as cascaded tranformers follow two-port rules.

Field Descriptions - Input Screen

Z1: (Primary impedance in Ω) Enter a real or complex number, global name, or algebraic.
Z2: (Secondary impedance in Ω) Enter a real or complex number, global name, or algebraic.
n: (Primary to secondary turns ratio) Returns a real number, global name, or algebraic.
Gc: (Primary core conductance in S) Enter a real number, global name, or algebraic.
Bc: (Primary core susceptance in S) Enter a real number, global name, or algebraic.

Field Descriptions - Output Screen

A: (A Parameter) Returns a real or complex number, global name, or algebraic.
B: (B Parameter) Returns a real or complex number, global name, or algebraic.
C: (C Parameter) Returns a real or complex number, global name, or algebraic.
D: (D Parameter) Returns a real or complex number, global name, or algebraic.

Example

MODES		Degrees	Result:	Symbolic
(Press CST)	Coord:	Rectangular	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

A transformer has an input impedance of $(0.01,0.02)$ and a core admittance of ($0.0002,-0.001$). Find the ABCD parameter if the turns ratio is 0.2 .

1. Enter $(0.01,0.02)$ for $\mathbf{Z 1}$ and ($0.01,0.02$) for $\mathbf{Z 2}$.
2. Enter 0.2 for $\mathbf{N}, 0.0002$ for $\mathbf{G c}$, and 0.001 for $\mathbf{B c}$.
3. Press solve to calculate the results, which will be displayed in the output screen.

Input Screen

Output Screen

Chapter 11

Transmission Lines

Analysis
Transmission Lines
Equations
Reference

This chapter covers the basic principles of transmission line analysis:
\square Line Characteristics

- Line Parameters
- Fault Location Estimate
\square Stub Impedance Matching

Line Characteristics

This section computes the basic characteristics

Analysis
Transmission Lines
Line Characteristics
Equations
Reference of a transmission line from the given parameters.

Field Descriptions - Input Screen

L: (Series Inductance in H/Unit Length) Enter a real number, global name or algebraic.
R: (Series Resistance in $\Omega /$ Unit Length) Enter a real number, global name or algebraic.
G: (Shunt Conductance in S/Unit Length) Enter a real number, global name or algebraic.
C: (Shunt Capacitance in F/Unit Length) Enter a real number, global name or algebraic.
ZL: (Load Impedance in Ω) Enter a real or complex number, global name or algebraic.
d: (Distance to Load - unit length) Enter a real number, global name or algebraic.
f: (Frequency in Hz) Enter a real number, global name or algebraic.

Field Descriptions - Output Screen

Z0: (Characteristic Impedance in Ω) Returns a real or complex number, global name, or algebraic.
Y0: (Characteristic Admittance in S) Returns a real or complex number, global name, or algebraic.
$\boldsymbol{\alpha}$: (Neper Constant in 1/unit length) Returns a real number, global name, or algebraic.
β : (Phase Constant in Δ unit length) Returns a real number, global name, or algebraic.
λ : (Wavelength in unit lengths) Returns a real number, global name, or algebraic.
vp: (Phase Velocity in unit length/s) Returns a real number, global name, or algebraic.
Zoc: (Open Circuit Impedance in Ω) Returns a real or complex number, global name, or algebraic.
Zsc: (Short Circuit Impedance in Ω) Returns a real or complex number, global name, or algebraic.
$\rho:($ Reflection Coefficient) Returns a real or complex number, global name, or algebraic.
SWR: (Standing Wave Ratio) Returns a real number, global name, or algebraic.

Example

$\begin{aligned} & \hline \hline \text { MODES } \\ & \text { (Press CSTT) } \end{aligned}$		Radian Polar Standard N/A	Result Units Help Font	Symbolic On or Off On Small

A transmission line has a series inductance of $1 \mathrm{mH} / \mathrm{mile}$, a line resistance of 85.8 ohm $/$ mile, a conductance of 1.5×10^{-6} mhos/mile, and a shunt capacitance of 62 $x 10^{-9} \mathrm{~F} / \mathrm{mile}$. With a load impedance of 75 ohms at 3 miles from the load, compute the line characteristics at a frequency of 1000 Hz .
Note: For this example, the unit length is the mile, so all values will be entered with respect to miles.

1. Enter the values $0.001,85.8$, and 1.5 E 6 for L, R, and G, respectively.
2. Enter the values $62 \mathrm{E}-9,75$, and 3 for

Output Screen $\mathbf{C}, \mathbf{Z L}$, and d, respectively.
3. Enter 1000 for \mathbf{f}.
4. Press SOLVE to calculate the results and display them as shown to the right.

Line Parameters

This section computes the parameters of a

Analysis
\quad Transmission Lines
\quad Line Parameters
Equations
Reference

NOTE The algorithm used in this section solves for γ in the
following equation, where $\gamma=2+\mathrm{j} \beta$:

$$
\operatorname{TANH}(\gamma \cdot \mathrm{d})=\sqrt{\mathrm{Z}_{\mathrm{sc}} / \mathrm{Z}_{\mathrm{oc}}}
$$

In general $\boldsymbol{\gamma}$, Zsc, and Zoc have complex values. In solving for γ, there is a principal value and a set of equivalent values because of the cyclical nature of the equation. Recognizing the fact that physical parameters such as \mathbf{R}, \mathbf{L}, \mathbf{G}, \mathbf{C}, and vp are all real and positive numbers, extreme caution should be exercised when entering input data. In particular, \mathbf{d} should be less than one wavelength.

Field Descriptions - Input Screen

Zoc: (Open Circuit Impedance in Ω) Enter a real number.
Zsc: (Short Circuit Impedance in Ω) Enter a real number.
d: (Distance to Load Location) Enter a real number.
f: (Frequency in Hertz) Enter a real number.

Field Descriptions - Output Screen

R: (Series Resistance in Ω /unit length) Returns a real number.
L: (Series Inductance in H/unit length) Returns a real number.
G: (Shunt Conductance in S/unit length) Returns a real number.
C: (Shunt Capacitance in F/unit length) Returns a real number.
Z0: (Characteristic Impedance in Ω) Returns a real number.
Y0: (Characteristic Admittance in Ω) Returns a real number.
$\boldsymbol{\alpha}:$ (Neper Constant in 1/unit length) Returns a real number.
阝: (Phase Constant in \triangle unit length) Returns a real number. vp: (Phase Velocity in unit length/s) Returns a real number.

Example

MODES		Radian	Result:
Symbolic			
(Press ©ST)	Coord:	Polar	Units:
	On or Off		
	Format:	Standard	Help:
	Digits:	On	
			Font:
		Small	

A transmission line is measured to have an open circuit impedance of ($103.6645,\langle-1.57$) and a short circuit of ($34.6977, \measuredangle 1.57$) at a distance 1 unit length from the load location. All measurements are carried out at 100 MHz .
Compute all the parameters.

1. Enter (103.6645, $\langle-1.57$) for Zoc.
2. Enter (34.6977, $\langle 1.57$) for Zsc.
3. Enter 1 and 100E6 for d and f, respectively.
4. Press SOLVE to calculate the results and display them as shown to the right.

2SC: (44.6977.61.57) 0: 10000000		
Input Screen		
GSTE PUEW	DPTE	EXIT
Output Screen		

Fault Location Estimate

This section makes a best estimate of the closest possible location of a fault in a lossless transmission line.

Analysis
Transmission Lines
Fault Location Estimate
Equations
Reference

Field Descriptions

Xin: (Input Reactance in Ω) Enter a real number, global name, or algebraic.
R0: (Characteristic Resistance in Ω) Enter a real number, global name, or algebraic.
β : (Phase Constant - Δ unit length) Enter a real number, global name, or algebraic.
docmin: (Minimum distance to an open circuit fault in unit lengths) Returns a real number, global name, or algebraic.
dscmin: (Minimum distance to short circuit fault in unit lengths) Returns a real number, global name, or algebraic.

Example

MODES		Radians	Result:	Symbolic
(Press CST)	Coord:	Polar	Units:	On or Off
	Format:	Standard	Help:	On
	Digits:	N/A	Font:	Small

A transmission line measures a capacitive reactive impedance of 275 ohms. The characteristic line impedance is 75 ohms, with a phase constant of 0.025 r /length. Estimate the fault location.

1. Enter the values 275,75 , and 0.025 for Xin, RO, and β, respectively.
2. Press SOLVE to calculate the results as shown in the screen to the right.

Input Screen

Output Screen

Stub Impedance Matching

This section calculates the parameters of a

Analysis
Transmission Lines
Stub Impedance Matching Equations
Reference single-stub impedance-matching device. From the input data, the location and electrical length of an open- and shortcircuit stub is computed. Because the solution is circular in nature, there are two possible stub-locations d1 and d2.

Field Descriptions - Input Screen

ZL: (Load Impedance in Ω) Enter a real or complex number, global name, or algebraic.
R0: (Characteristic Resistance in Ω) Enter a real, global name, or algebraic.

Field Descriptions - Output Screen

$\beta * \mathrm{~d} 1$: (Electrical length from a stub at location d1 to the load in \measuredangle) Returns a real, global name, or algebraic.
$\beta * \mathrm{~d} 1-\mathrm{sc}$: (Electrical length of a short-circuited shunt stub at distance d1 from load in \triangle) Returns a real, global name, or algebraic.
$\beta * \mathbf{d 1}-\mathrm{oc}$: (Electrical length of an open-circuited shunt stub at distance d1 from load in \measuredangle) Returns a real, global name, or algebraic.
$\beta \approx \mathrm{d} 2$: (Electrical length from a stub at location d2 to the load in Δ) Returns a real, global name, or algebraic.
$\boldsymbol{\beta}$ *d2-sc: (Electrical length of a short-circuited shunt stub at distance d2 from load in \triangle) Returns a real, global name, or algebraic.
$\beta * \mathbf{d} \mathbf{2 - o c}$: (Electrical length of an open-circuited shunt stub at distance d2 from load in \measuredangle) Returns a real, global name, or algebraic.

Example

MODES (Press \square		Radians Rectangular Standard N/A	Result: Units: Help: Font:	Symbolic On or Off On Small

A transmission line has a terminating impedance of $(75,25)$ ohms and a characteristic impedance of 50 ohms. Eliminate standing waves in the transmission line using a short or open shunt stub. Determine the electrical length of the stub and its distance from the load.

1. Enter $(75,25)$ for $\mathbf{Z L}$ and 50 for $\mathbf{R O}$.
2. Press SOLVE to calculate the results, which will be displayed in the output screen.

Input Screen

Output Screen

Chapter 12

Computer Engineering

Analysis
 Computer Engineering

Equations
Reference

This chapter covers functions of interest in the design of logic systems commonly used by students and professionals in computer engineering. The modules include binary arithmetic, bit operations, comparisons and a form of logic minimization using the Quine-McCluskey algorithm:

B Binary Modes Screen

- Binary Arithmetic
- Register Operations

Bit Operations

- Binary Conversions
- Binary Comparisons
- Karnaugh Map

Binary Modes Screen

The binary modes screen, available in all Computer Engineering screens except Karnaugh Map, is displayed by pressing MODE. The first three settings will remain in effect until the user resets them again from the binary modes screen. The Carry and Range flags may be set or cleared by various functions in the Computer Engineering module. The binary modes screen simply gives the user a way to set or clear them by hand.

To change any of these settings, move the highlight bar to the desired item and press CHOOS or $+1-$. Then press OK to implement the changes, or to exit the screen without changing the settings, press CANCL or ON.

Base: (Binary Base) Press CHOOS to select Binary, Octal, Decimal or Hexadecimal.

Wordsize: (Size of Binary Number) Enter a number from 0 to 64 to set word size.
Sign: (Sign Convention) Press CHOOS to select Unsigned, One's Complement, or Two's Complement.
Carry: (Carry Flag - User Flag 4) Press CHOOS to select Set or Clear.
Range: (Range Flag - User Flag 5) Press CHOOS to select Set or Clear.

Range and Carry Flags

Whenever a binary addition results in a carry beyond the most significant bit, the carry flag will be set. If an addition does not result in a carry, the flag will be cleared. This is true for all complement modes.

Whenever binary arithmetic results cannot be represented in the current word size and complement mode, the range flag will be set.

Binary Arithmetic

This section allows you to add, subtract,

Analysis
Computer Engineering
Binary Arithmetic
Equations
Reference multiply, and divide binary numbers, as well as negate or find the absolute value of a binary number.

Field Descriptions

Binary: (Input Field) Enter a binary integer.
Binary: (Input Field) Enter a binary integer.
Operator: (Binary Operation) Press CHOOS to select:
ADD16C Add two binary or real numbers. Affects range and carry flags.
SUB16C Subtract one binary or real number from another. Affects range and carry flags.
MULT16C Multiply two binary or real numbers. Affects range and carry flags.
DIV16C Divide two binary or real numbers and return quotient. Affects carry flag only.
RMD16C Divide two binary or real numbers and return remainder. Does not affect range or carry flags.
NEG16C Negate a binary or real number. Affects range flag only.
ABS16C Find the absolute value of a binary or real number. Affects range flag only.
Result: (Binary Function Value) Returns a binary integer or real number.
Flags: (State of Carry and Range Flags) Returns Carry if carry flag is set. Returns Range if range flag is set.

Example

$\begin{aligned} & \hline \hline \text { MODES } \\ & \text { (Press CST) } \end{aligned}$	Coord: Format: Digits:	Degrees Rectangular Standard N/A	$\begin{aligned} & \hline \hline \text { Result: } \\ & \text { Units: } \\ & \text { Help: } \\ & \text { Font: } \end{aligned}$	Symbolic On or Off On Small
Binary Modes Press MODE	Base: Wordsize: Sign:	Hexadecimal 32 Unsigned	Carry: Range:	Clear Clear

Multiply a real number 256 and a binary number \#128d.

1. In the first Binary field, press TYPES to select Real Number.
2. Enter 256 in the first Binary field.
3. Enter $128 \mathrm{~d}(128 \square \mathrm{D})$ in the second Binary field.
4. Choose MULT16C for Operator.
5. Press SOLVE to calculate Result.

Register Operations

This section allows you to perform operations

```
Analysis
    Computer Engineering
        Register Operations
Equations
Reference
``` on any bit of a binary integer. Such operations include shifting bits to the left or right, rotating bits to the left or right, and shifting or rotating through the carry flag.

\section*{Field Descriptions}

Binary: (Input Field) Enter a binary integer.
N: (Number of places for shifting or rotating - appears only when SRN16C, RLN16C, RLN16C, RRN16C, RLCN16C, or RRCN16C are selected) Enter a real number.
Operator: (Binary Operation) Press CHOOS to select:
Note: All register operations set the carry flag if a 1 is rotated or shifted off the end, otherwise they clear the carry flag.
SL16C Shifts the input to the left by one bit and shifts a 0 into the rightmost position.
SR16C Shifts the input to the right by one bit and shifts a 0 into the leftmost position.

RL16C Rotates the input to the left by one bit. The leftmost bit wraps around to the rightmost position.
RR16C Rotates the input to the right by one bit. The rightmost bit wraps around to the leftmost position.
RLC16C Rotates bits left by one bit through carry. Loads the leftmost bit into the carry and moves the carry bit into the rightmost position.
RRC16C Rotates bits right by one bit through carry. Loads the rightmost bit into the carry and moves the carry bit into the leftmost position.
ASR 16C Arithmetic shift right: For One's Complement and Two's Complement, shifts bits to the right, but keeps the leftmost bit (the sign bit) the same. For Unsigned mode, which has no sign bit, a 0 is shifted into the leftmost position.
SLN16C Shifts left by \(N\) bits.
SRN16C Shifts right by N bits.
RLN16C Rotate left by N bits.
RRN16C Rotate right by N bits.
RLCN16C Rotate left by N bits through the carry.
RRCN16C Rotate right by N bits through the carry.
Result: (Binary Function Value) Returns a binary integer.

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}
\begin{tabular}{|lrlrl|}
\hline Binary Modes & Base: & Hexadecimal & Carry: & Clear \\
Press MODE & Wordsize: & 32 & Range: & Clear \\
& Sign: & Unsigned & & \\
\hline
\end{tabular}

Rotate the binary number 1256 to the right by 4 bits.
1. Enter 1256 in the Binary field.
2. Choose RRN16C for Operator.
3. Enter 4 for \(\mathbf{N}\).
4. Press SOLVE to calculate Result.

\section*{Bit Operations}

This section allows you to perform bit-specific operations. You can set a bit, clear a bit, test a bit or find the total number of bits set.

Computer Engineering Bit Operations
Equations
Reference

\section*{Field Descriptions}

Binary: (Input Field) Enter a binary integer.
Bit \#: (Bit Position - not active if \(\Sigma B\) is selected) Enter a binary integer or real number.
Operator: (Binary Operation) Press CHOOS to select
Note: All bit operations affect the carry flag only.
SB Sets the bit in the specified position.
CB Clears the bit in the specified position.
B? Tests the bit in the specified position.
IB Returns the number of bits set.
Result: (Binary Function Value) Returns a binary integer.

\section*{Example}
\begin{tabular}{|crlrl||}
\hline MODES & \multicolumn{2}{|c|}{} & Degrees & Result: \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}
\begin{tabular}{|lrlrl|}
\hline Binary Modes & Base: & Binary & Carry: & Clear \\
Press MODE & Wordsize: & 32 & Range: & Clear \\
& Sign: & Unsigned & & \\
\hline
\end{tabular}

Test the fifth bit of the binary number \#1256d in its binary form.
4. Enter 1256d (1256 回 D) for Binary.
5. Enter 5 for Bit \#.
6. Choose B? for Operator.
7. Press SOLVE to calculate Result. A
 " 1 " means the bit is set.

\section*{Binary Conversions}

This section allows you convert real numbers to binary numbers and vice versa. It also allows you to convert real numbers to IEEE format and vice versa.

\section*{Field Descriptions}

Binary: (Input Field for \(B \rightarrow R 16 C\) and IEEE \(\rightarrow\)) Enter a binary integer.
Real: (Input Field for \(R \rightarrow B 16 C\) and \(\rightarrow I E E E\)) Enter a real number.
Function: (Binary Function) Press CHOOS to select:
\(\mathrm{R} \rightarrow \mathrm{B} 16 \mathrm{C}\) Converts a real number to a binary number (decimal, binary, hexadecimal or octal). Affects the range flag only.
\(\mathrm{B} \rightarrow \mathrm{R} 16 \mathrm{C}\) Converts a binary number (decimal, binary, hexadecimal or octal) to a real number.
\(\rightarrow\) IEEE Converts a real number to the IEEE 32 bit format. The word size is automatically set to 32 bits. Affects the range flag only.
IEEE \(\rightarrow\) Converts a IEEE number to a real number. The word size is automatically set to 32 bits. Affects the carry and range flags.
Result: (Binary Function Value) Returns a binary integer.

\section*{Example}
\begin{tabular}{||rlll||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: \\
(Press CST) & Coord: & Rectangular & Units: \\
& On or Off \\
& Format: & Standard & Help: \\
On \\
& Digits: & N/A & Font: \\
& Small \\
\hline
\end{tabular}
\begin{tabular}{||rlll||}
\hline Binary Modes & Base: & Binary & Carry: \\
Press MODE & Wordsize: & 32 \\
& Sign: & Unsigned & Range: \\
Clear \\
\hline
\end{tabular}

Convert the real number 451236 to a binary number.
1. Enter 451236 for Real.
2. Choose \(\mathrm{R} \rightarrow \mathrm{B} 16 \mathrm{C}\) for Function.
3. Press SOLVE to calculate Result.

\section*{Binary Comparisons}

This section allows you to compare two

Binary Comparisons
Equations
Reference binary numbers to determine if they are the same value, unequal, greater than, less than, etc.

\section*{Field Descriptions}

Binary: (Input Field) Enter a binary integer or real number.
Binary: (Input Field) Enter a binary integer or real number.
Operator: (Binary Operation) Press CHOOS to select:
Note: All binary comparison commands affect the carry flag only.
\(==16 \mathrm{C}\) Compares two binary or real numbers. The result field shows a 1 if they are equal, otherwise 0 .
\#16C Compares two binary or real numbers. The result field shows a lif they are NOT equal, otherwise 0 .
<16C Compares two binary or real numbers. If the number in the first field is less than the number in the second field, then the result field displays a 1 , otherwise 0 .
\(>16 \mathrm{C}\) Compares two binary or real numbers. If the number in the first field is greater than the number in the second field, then the result field displays a 1 , otherwise 0 .
\(\leq 16 \mathrm{C}\) Compares two binary or real numbers. If the number in the first field is less than or equal to the number in the second field, then the result field displays a 1 , otherwise 0 .
\(\geq 16 \mathrm{C}\) Compares two binary or real numbers. If the number in the first field is greater than or equal to the number in the second field, then the result field displays a 1 , otherwise 0 .
Result: (Binary Function Value) Returns 1 (True) or 0 (False).

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CsT) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Binary Modes Press MODE & Base: Wordsize: Sign: & Binary
32
Unsigned & Carry: Range: & Clear Clear \\
\hline
\end{tabular}

Compare two binary numbers \#45312h and \#16725o and determine if they are equal.
1. Enter \(45312 \mathrm{~h}(45312\) 国 H\()\) in the first Binary field.
 second Binary field.
3. Choose \(==16 \mathrm{C}\) for Operator.
4. Press SOLVE to calculate Result.
5. The result is 0 , meaning false, so the two numbers are not equal.

\section*{Karnaugh Map}

In this section, the user is provided with a
Analysis
\(\quad\) Computer Engineering
\(\quad\) Karnaugh Map
Equations
Reference

Analysis
mputer Engineering Karnaugh Map Reference powerful tool to design efficient combinatorial logic networks. The program provides a convenient symbolic representation of the minimization method in a "sum of products form." The variable naming convention is restricted to 1 character per variable and is casesensitive. The algorithm used in developing the logic uses the defined form of minimization developed by W.V. Quine and E.J. McCluskey. The resulting output is an algebraic expression for the prime implicants. In this representation, a logic variable (e.g., A) represents its true value, while A' is used to represent its negation. most optimum solution.

\section*{Field Descriptions}

Minterms: (List if Minterms) Enter a list of real or binary numbers. Real and binary numbers can be combined in the same list.
Don't Care: (List of Don't Care Terms) Enter a list of real or binary numbers. Real and binary numbers can be combined in the same list.
Variables: (List of Variables) Enter a string or global name, with no spaces between variables.
Expr: (Prime Implicant Expression) Returns an algebraic expression.

\section*{Example}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press ©ST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Minimize a five input function with minterms at \(0,2,4,6,8,10,11,12,13\), \(14,16,19,29,30\). The input variables are \(\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}\) and Z . Find the prime implicant expression.
1. Enter \(\{0,2,4,6,8,10,11,12,13,14\), 16, 19, 29, 30\} for Minterms.
2. Enter \(\{1\}\) for Don't Care.
3. Enter VWXYZ for Vars.
4. Press SOLVE to calculate Expr.
5. Move the highlight bar to the Expr field and view the entire result by pressing VIEW.

Input Screen

Output Screen

\section*{Chapter 13}

\section*{Algebraic Functions}

Algebraic Functions

This chapter covers commonly-used algebraic functions:
- Partial Fraction Expansion
- Piecewise Functions
- Polynomial Coefficients
- Polynomial Equation
- Polynomial Roots
- Symbolic Simplification
- Taylor Polynomial

\section*{Partial Fraction Expansion}

The partial fraction expansion function

Analysis
Algebraic Functions
Partial Fraction Expansion
Equations
Reference separates a rational function of the form
\(f(x) / g(x)\) by splitting it into a sum of fractions with simpler denominators.

\section*{Field Descriptions}

Inputs: (Form of numerator and denominator) Press CHOOS to select Coefficients or Roots. Determines whether inputs for Numer and Denom are interpreted as coefficients or roots.
Constant: (Constant) Enter a real number. (Default is 1.)
Numer: (Numerator coefficients or roots) Enter an array or list of real or complex numbers.
Denom: (Denominator coefficients or roots) Enter an array or list of real or complex numbers.
PFE: (Partial fraction expansion) Returns an algebraic expression.

\section*{Example: Coefficients Format}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

What is the partial fraction expansion of the rational function \(\frac{2 x+3}{x^{3}+2 x^{2}+x}\) ?
1. Choose Coefficients for Inputs.
2. Enter 1 for Constant.
3. Enter [23] for Numer and [\(\left.12 \begin{array}{lll}1 & 1\end{array}\right]\)
 for Denom.
4. Press SOLVE to calculate PFE.

\section*{Example: Roots Format}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& & & Font: & Small \\
\hline
\end{tabular}

What is the partial fraction expansion of the rational function \(\frac{x+4}{x(x-2)(x+5)}\) ?
1. Choose Roots for Inputs.
2. Enter 1 for Constant.
3. Enter [-4] for Numer and [02 -5] for Denom.
4. Press SOLVE to calculate PFE.
5. To display PFE in graphics view, press \(\square\) or \(\square\) VIEWI.
6. Press \(\square\) and to scroll the equation.

\section*{Piecewise Functions}

Piecewise functions take on different functional forms (expressions) over different regions of the independent variable:
\begin{tabular}{|l|}
\hline Analysis \\
\(\quad\) Algebraic Functions \\
\(\quad\) Piecewise Functions \\
Equations \\
Reference \\
\hline
\end{tabular}

Algebraic Functions
Piecewise Functions
Equations
Reference
\[
f(x)= \begin{cases}\text { expression }_{1} & \text { region }_{1} \\ \text { expression }_{2} & \text { region }_{2}\end{cases}
\]

The HP 48 can manipulate and plot piecewise functions if they are entered in the IFTE (If-Then-Else) format:
\[
\mathrm{f}(\mathrm{x})=\mathrm{IFTE}\left(\text { region }_{1}, \text { expression }_{1}, \text { expression }_{2}\right)
\]

This section enables you to easily enter a piecewise function as one or more terms, where each term is specified by two fields: one for the expression (EXPR) and the other for the corresponding region (REGION). Then the appropriate IFTE representation of the piecewise function is generated.

\section*{Entry Rules}
- Use \(==\) in place of \(=\). The HP 48 uses the \(=\) operator only for assigning variables, while the \(=\) command is used to check for equality. Therefore, the region \(\mathrm{X}=0\) should be entered as ' \(\mathrm{X}==0\) '. The most common operators used in regions are found in the TEST menu: \(\square==\square, \square \neq \square<\), \(\longrightarrow \square, \square\) and \(\longrightarrow\).
- To make a section of a piecewise function undefined, enter Undefined as the expression for the term, along with the corresponding region. An Undefined term will automatically be appended to complete all one-term piecewise functions. (Note: Undefined is simply a global name that presumably does not exist in user memory and will therefore remain unevaluated when plotting.)
- Always specify terms in the function in order of increasing regions. For example, specify the term for the region \(\mathrm{X}<-3\) before the term for the region \(\mathrm{X}<3\). This is because the HP 48 will not properly evaluate expressions like ' \(-3<\mathrm{X}<3\) ', so this region must be entered as ' \(\mathrm{X}<3\) '. However, this would incorrectly imply that the corresponding expression should be used for all values of \(\mathrm{X}<3\), so you must have first entered a term for the region \(\mathrm{X} \leq-3\).
- For regions like \(X=2,3\) the entry must be split into two separate terms because the HP 48 will not recognize an expression like ' \(\mathrm{X}==2,3\) '. Therefore, enter the same expression twice, for two different regions: \(' X==2\) ' and \(' X=3\) '.

\section*{Field Descriptions}

Expr: (Expression) Enter a real number, complex number, global name, algebraic or unit.
Region: (Region of validity) Enter a real number, global name or algebraic. Pwise: (Piecewise function) Returns an algebraic expression.

\section*{Example 1}
\begin{tabular}{||rrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Define the piecewise function
\(f(x)=\left\{\begin{array}{cc}\sin (x) / x & x \neq 0 \\ 1 & x=0\end{array}\right.\)
This will require two terms.
1. Enter \(\operatorname{SIN}(\mathrm{X}) / \mathrm{X}\) for Expr.

2. Enter \(\mathrm{X} \neq 0\) for Region (key sequence:
\(\triangle \mathrm{X}\) 囵G TEST \(\neq 0\) ENIER).
3. Press ADD to create new Expr and Region fields for the second term.
4. Enter 1 for the second Expr field and \(\mathrm{X}==0\) for the Region field.
5. Press SOLVE to calculate Pwise.

\section*{Example 2}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press ©ST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline & & & \\
\hline
\end{tabular}

Define the piecewise function: \(f(x)=\left\{\begin{array}{cc}3 x+2 & x<-3 \\ 2 x+7 & -3 \leq x \leq 2 \\ 7 x-2 & x>2\end{array}\right.\)
This will require three terms.
1. Enter 3* \(\mathrm{X}+2\) for Expr and \(\mathrm{X}<-3\) for Region.
2. Press ADD to create new Expr and Region fields.
3. Enter \(2^{*} \mathrm{X}+7\) for the second Expr field and \(\mathrm{X} \leq 2\) for Region.

4. Press ADD.
5. Enter \(7^{*} \mathrm{X}-2\) for the third Expr field and \(X>2\) for Region.
6. Press SOLVE to calculate Pwise.

\section*{Polynomial Coefficients}

This section takes the roots (real or complex) of a polynomial and returns the coefficients (real or complex) of the polynomial.

Algebraic Functions Polynomial Coefficients
Equations
Reference

\section*{Field Descriptions}

Roots: (Polynomial roots) Enter an array or list of real or complex numbers. Coefs: (Polynomial coefficients) Returns a real or complex array.

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

What are the coefficients of the polynomial that has the roots 4,5 , and 6 ? (What equation results when (\(\mathrm{x}-4\)), (\(\mathrm{x}-5\)), and (\(\mathrm{x}-6\)) are multiplied?)
1. Enter [456] for Roots.
2. Press SOLVE to calculate Coefs. The
 result is [1-15 74-120], which means the polynomial is \(x^{3}-15 x^{2}+74 x-120\).

NOTE
Round-off error limits the accuracy of coefficients returned by the polynomial coefficients function, so the coefficients are automatically rounded to 8 digit accuracy.

\section*{Polynomial Equation}

This section takes the coefficients (real or

Algebraic Functions Polynomial Equation

Reference complex) of a polynomial and returns the polynomial as an algebraic expression. The coefficients must be entered in descending order, as in: [AN ... A2 A1 A0], which represents the equation \(A_{n} \cdot x^{n}+\ldots+A_{2} \cdot x^{2}+A_{1} \cdot x+A_{0}\).

\section*{Field Descriptions}

Coefs: (Polynomial coefficients) Enter an array or list of real or complex numbers.
Var: (Variable) Enter global name.
Poly: (Polynomial equation) Returns an algebraic expression.

\section*{Example}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
MODES \\
(Press \(\square\)
\end{tabular} & Coord: Format Digits: & \begin{tabular}{l}
Degrees \\
Rectangular \\
Standard \\
N/A
\end{tabular} & Result: Units: Help: Font: & \begin{tabular}{l}
Symbolic \\
On or Off \\
On \\
Small
\end{tabular} \\
\hline
\end{tabular}

The coefficients (in descending order) of an equation are 4,5 , and 6 .
1. Enter [456] for Coefs.
2. Press SOLVE to calculate Poly.

\section*{Polynomial Roots}

This section takes the coefficients (real or

Analysis
Algebraic Functions
Polynomial Roots
Equations
Reference complex) of a polynomial and returns the roots of that polynomial.

\section*{Field Descriptions}

Coefs: (Polynomial coefficients) Enter an array or list of real or complex numbers.
Roots: (Polynomial roots) Returns a real or complex array.

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \(\boxed{ }\) : & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

What are the roots of the polynomial
\(x^{2}-9=0\) ?
1. Enter [\(10-9\)] for Coefs.
2. Press SOLVE, to calculate Roots.

The result is [-3 3], which means the polynomial has the two roots 3 and -3.

NOTE Round-off error limits the accuracy of roots returned by the polynomial roots function, so the roots are automatically rounded to 8 digit accuracy. To improve the accuracy of a particular root, use the built-in HP 48 solver to solve the original polynomial equation for ' X ', using the value of the desired root returned by the polynomial roots function as a guess.

The polynomial roots function is based on a routine developed by Wayne Scott, using the Bairstow algorithm for finding quadratic factors.

\section*{Symbolic Simplification}

This section returns the simplified form of an expression.

Algebraic Functions Symbolic Symplification

\section*{Field Descriptions}

Expr: (Expression) Enter a real number, complex number, global name or algebraic.
Simpl: (Simplified expression) Returns a real number, complex number, global name, or algebraic.

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press ©ST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Simplify the expression \((x+1)^{2}+(x-5)^{3}\).

\section*{Taylor Polynomial}

This section computes the Taylor Polynomial

\author{
Analysis \\ Algebraic Functions \\ Taylor Polynomial \\ Equations \\ Reference
} of a function to the specified order about a given point.

\section*{Field Descriptions}

Expr: (Expression) Enter a global name or algebraic.
Var: (Variable) Enter a global name.
Order: (Order of Taylor polynomial) Enter a real number.
Point: (Expansion point) Enter a real or complex number, or global name.
Taylor: (Taylor polynomial) Returns an algebraic expression.

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline \hline MODES & \multicolumn{1}{|c|}{} & Radians & Result: & Symbolic \\
(Press ©ST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

What is the 2nd-order Taylor polynomial of ' \(\operatorname{SIN}(\mathrm{X})\) ' about the point \(\mathrm{X}=2\) ?
1. Enter \(\operatorname{SIN}(X)\) for Expr and \(X\) for Var.
2. Enter 2 for Order and 2 for Point.
3. Press SOLVE to calculate Taylor.

\section*{Chapter 14}

\section*{Error Functions}

\section*{Analysis}

Error Functions
Equations
Reference

This chapter covers the error function and the complementary error function:
- Error Functions

\section*{Using Error Functions}

This section computes the numerical values for the error function and complementary error function of one real argument. The definitions of the error function and complementary error function are:
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \quad \operatorname{erfc}(x) \equiv 1-\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
\]

\section*{Field Descriptions}

X: (Value) Enter a real number, global name, or algebraic.
Func: (Error function type) Press CHOOS to select ERF or ERFC.
Result: (Error function value) Returns a real number or algebraic.

\section*{Example}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
MODES \\
(Press \(\square\) CST)
\end{tabular} & Coord: Format: Digits: & \begin{tabular}{l}
Degrees \\
Rectangular \\
Standard \\
N/A
\end{tabular} & Result: Units: Help: Font: & \begin{tabular}{l}
Symbolic \\
On or Off \\
On \\
Small
\end{tabular} \\
\hline
\end{tabular}

What is the value of \(\operatorname{ERF}(.25)\) ?
1. Enter .25 for \(\mathbf{X}\).
2. Choose ERF in Func.
3. Press SOLVE to calculate Result.

\section*{Chapter 15}

\section*{Capital Budgeting}

\author{
Analysis \\ Capital Budgeting \\ Equations \\ Reference
}

This chapter covers the four basic measures of capital budgeting:
- Payback Period
- Net Present Value
- Internal Rate of Return
- Profitability Index

\section*{Using Capital Budgeting}

This section allow you to analyze the capital expenditure of a project and compare projects against one another. Four measures of capital budgeting are included in this section: Payback period (Payback), Net Present Value (NPV), Internal Rate of Return (IRR), and Profitability Index (PI). This module provides the capability of entering, storing and editing capital expenditures for nine different projects. The following definitions are important:

CF \(_{\mathbf{t}}\) : Cash Flow at time t .

Payback: The number of time periods (usually years) it takes a firm to recover its original investment.

NPV: The present values of all future cash flows, discounted at the selected rate, minus the cost of the investment.
\[
N P V=\sum_{t=1}^{n} \frac{C F_{t}}{(1+k)^{t}}-C F_{t=0}
\]

IRR: The discount rate that equates the present value of expected cash flows to the initial cost of the project.
\[
\sum_{t=1}^{n} \frac{C F_{t}}{(1+I R R)^{t}}-C F_{t=0}=0
\]

PI: The present value of the future cash flows, discounted at the selected rate, over the initial cash outlay.
\[
P I=\frac{\sum_{t=1}^{n} \frac{C F_{t}}{(1+k)^{t}}}{C F_{t=0}}
\]

\section*{Field Descriptions - Input Screen}

Project: (Project) Press CHOOS to select one one of nine unique projects or edit the current project by pressing CASH.
k: (Discount Rate per Period in \%) Enter a real number.
Payback: (Payback Period) Returns a real number.
NPV: (Net Present Value) Returns a real number.
IRR: (Internal Rate of Return) Returns a real number (\%).
PI: (Profitability Index) Returns a real number.

\section*{Field Descriptions - Project Edit Screen}

Name: (Project Name) Enter name of the project.
t0: (Investment at \(t=0\)) Enter a real number. Must be a negative number.
t1: (Cash flow at \(\boldsymbol{t = 1)}\)) Enter a real number. Can be positive or negative.
tn: (Cash flow at \(\boldsymbol{t = n})\) Enter a real number. Can be positve or negative.

Cash Flow Diagram

\section*{Example}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press ©ST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

The following projects have been proposed by your company. What is the payback period, Net Present Value, Internal Rate of Return, and Profitability Index of each project? Which is the more viable project?
\begin{tabular}{|c|c|c|c|c|}
\hline Name of Project: Investment Outlay: Cost of Capital: & \multicolumn{2}{|r|}{\[
\begin{gathered}
\hline \text { Plant } 1 \\
\$ 75,000 \text { (att }=0 \text {) } \\
12 \% \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\hline \text { Plant } 2 \\
\mathbf{\$ 7 5 , 0 0 0 \text { (at } t = 0 \text {) }} \\
\mathbf{1 2 \%} \\
\hline
\end{gathered}
\]} \\
\hline & Year & Net Cash Flow (\$) & Year & Net Cash Flow (\$) \\
\hline & 0 & -75,000 & 0 & -75,000 \\
\hline & 1 & 40,000 & 1 & 10,000 \\
\hline & 2 & 30,000 & 2 & 20,000 \\
\hline & 3 & 20,000 & 3 & 30,000 \\
\hline & 4 & 10,000 & 4 & 40,000 \\
\hline
\end{tabular}
1. With the highlight bar on the Project field, press CHOOS to select a project to edit. Select a project that has not been used (this example uses projects 1 and 2). Press OK to return to the Capital Budgeting screen.
2. Press CASH to enter the Project Edit screen and edit the cash flows.
3. Enter Plant 1 for Name.
4. Press ADD 5 times to add 5 time points and enter the cash flows at each time point from the table above. When finished, your screen should look like the Project Edit screen to the right. Be sure to enter 75,000 as a negative number. Press OK to save your changes and return to the Capital Budgeting screen.
5. Enter 12 for \(\mathbf{K}\).
6. Press SOLVE to calculate Payback, NPV, IRR, and PI.

Input Screen

Output Screen
7. Press PLOTI to show the curvilinear relationship between the Net Present Value and the Discount Rate. You will see a message screen asking if you wish to clear the previous plot. Press YES.

Plot Screen

The curve indicates that where \(\mathrm{K}=0\), the Net Present Value is simply cash inflows minus cash outflows. The IRR \% is shown at the point where NPV \(=0\). Using the built-in graphing capabilities of the HP 48, you can trace the graph to find the values for these two points. The HP 48GX will give you the exact coordinates of any point, the HP 48SX will only give you a close approximation. Press CANCL to return to the Capital Budgeting screen.
8. Repeat steps 1 through 7 for the second project. Name the project Plant 2 and input the values in the table on page 92 . When you plot the second project, press NO when you are prompted to clear the previous plot. This will overlay the second

Plot Screen II project on the first for a quick comparison of the two projects. The most viable project in terms of discounted cash flows, in this example, is the one with the highest curve: Plant 1.

\section*{Bibiography}

Campsey, B.J., and Eugene F. Brigham, Introduction to Financial Management, Dryden Press, 1985, pp. 392-400.

Van Horne, James C., Financial Management and Policy, Eighth Edition, Prentice Hall, 1989, pp. 126-132.

\section*{Equations}

\section*{Chapter 16}

\section*{Equations: Navigation Guide \\ Analysis \\ Equations \\ Reference}

\begin{abstract}
This chapter is designed as a navigation guide to introduce you to the Equations section, show you the keys available at each screen, and describe the types of input fields and symbols you will encounter. At the end of the chapter is a detailed Equations example.
\end{abstract}
Introduction 98
Finding Equations 98
Equations Screens 99
Viewing Equations 99
Displaying a Picture 99
Selecting Equations 100
Equations Menu Keys 100
Solver Screens. 100
Solving an Equation 101
Using the Stack 102
Resetting Variables 102
Converting a Value 102
Units On/Units Off 102
Font Size 103
Solver Icons 103
Solver Menu Keys 105
Plotter Screens 106
Plotting an Equation 106
Plotter Field Descriptions 108
Plotter Menu Keys 109
Example: Overdamped Parallel RLC Circuit 110
Solve the Equation 110
Plot the Equation 111

\section*{Introduction}

EE•Pro is divided into three major sections: Analysis, Equations, and Reference. This chapter addresses the Equations section, which includes equations covering resistive circuits, capacitance and electric fields, inductance and magnetism, electron motion, RLC circuits, AC circuits, motors and generators, OpAmp circuits, transformers, linear circuits, and solid state devices.

The Equations section enables you to select a specific equation or a set of equations, solve for specific variables, and plot the equations with the EE•Pro plotting functions. The three equation-related features of selecting, solving, and plotting, each have their own screen. The Equations screen displays a group of related equations, which can be selected for solving or plotting. The Solver screen allows you to enter and convert values, then solve for unknowns. The Plotter screen allows you to plot the selected equation. A diagram is often available to illustrate the variable relationships in the selected equation set and can be accessed from any of these three screens. In some cases, extra diagrams in the manual help illustrate the nature of the problems being solved.

\section*{Finding Equations}

The Equations section is found at the home screen of EE•Pro.
1. Start EE•Pro:

- Press \(\boldsymbol{\square}\) rows to show the home screen.

EE•Pro is structured with a hierarchy of screens for choosing a specific topic or item. This is the home screen. To return here at any time, press \(\square^{\text {romes}}\) or \(\boldsymbol{\square}\).
2. Select Equations by moving the highlight bar to Equations and pressing ENTER or \(\triangle\). The screen now displays Equations as its title and a list of Equations sections from which to choose.

3. Choose an Equations section by moving the highlight bar to the desired item and pressing ENTER or \(\triangle\). This will display a list of topics for the selected section. For the purposes of this navigation guide, select RLC Circuits then Overdamped Transient.

Pressing UP (if available) or \(\triangle\) returns you to the previous screen. Pressing HOME (if available) or \(\boldsymbol{\square} \boldsymbol{\square}\)

\section*{Equations Screens}

An Equations screen displays a list of related equations which can be displayed in a graphics view or selected for solving. The screen to the right is the Overdamped Transients screen.

The Equations screen is accessible from the Plotter screen or the Solver screen by pressing EQNS.

\section*{Viewing Equations}

To display an equation in a graphics view using the HP 48 EquationWriter, move the highlight bar to the desired equation and press EQWR. Press any key to return to the Equations screen.

\section*{Displaying a Picture}

To display a diagram for the current equation set, press \(\boldsymbol{P}\) ICT. If available, this menu key will also appear in the Plotter screen and the Solver screen. (Note: Variable names in pictures are always uppercase, regardless of which
 case they appear when encountered in the equations themselves.) Press any key to return to the previous screen.

\section*{Selecting Equations}

When solving a problem, one or more of the equations from the Equations screen can be selected for use at the Solver screen. Generally, you will want to solve all of the equations together, but sometimes it may be the case that you can
 quickly select a single equation or a subset of the entire equation set to speed up the solving computations. (Solving one or two equations is usually faster than solving many equations.)
To select an equation, move the highlight bar to the desired equation and press TCHK or +1 . Once selected, an equation can be unselected in the same fashion.

\section*{Equations Menu Keys}

These are descriptions of the menu keys available at Equations screens:
DCHK Checks or unchecks the highlighted equation. Only checked equations will be solved, but if none of the equations are checked, all of them will be solved.

EOWRI Displays the highlighted equation in a graphics view.
PICT Displays a picture for the equation set.
OPTS Displays the options menu. For more information, see "Options Menu," page 9 .
PLOTR Goes to the Plotter screen. For more information, see "Plotter Screens," page 106.
SOLVE Goes to the Solver screen. Solves only the checked equations (unless none are checked, in which case all are solved). For more information, see "Solver Screens" below.

\section*{Solver Screens}

A Solver screen allows you to enter values for each variable in the selected equation(s). Variables can also be edited, copied to the stack, or converted to different units. After all the known variables have been entered, you can press SOLVE to compute the values of the unknown variables.

The Solver cannot handle complex numbers. To solve a problem which requires complex inputs, use the appropriate Analysis routine.

The Solver screen is accessible from the Equations screen or the Plotter screen by pressing SOLVE.

\section*{Solving an Equation}

Below are general instructions for using Solver screens. For a detailed example using Overdamped Transient, see page 110.
1. Optional: Select equation(s) to solve. (If no equations are selected, the Solver will solve all the equations in the set.)
a. Go to the Equations screen by pressing XXT EONS.
b. Move the highlight bar to the desired equation(s) and press JCHK.
(Note: The following screens assume that none of the equations have been selected, and therefore all will be solved.)
2. Go to the Solver screen by pressing SOLVR from the Equations screen or the Plotter screen. The screen to the right is the Solver screen for Overdamped Transient.
3. Enter the known values.

a. Move the highlight bar to the desired variable.
b. Type in the appropriate value for the variable and press ENTER or a unit menu key to complete the entry.

If you make a mistake or want to change the value of a variable:
a. Move the highlight bar to the variable and press EEDIT to place it on the command line.
b. Edit the value.
c. After you have finished editing the value, press ENEed to change the value or \(\mathbb{O N}\) to abort the change.

Alternatively, to replace the existing value of a variable:
a. Move the highlight bar to the variable.
b. Type in the new value.
c. Press ENTER or a unit menu key to complete the entry.

Any time you edit or change a value, that variable will be marked as "known" with a solid circle (\(\bullet\)). See "Solver Icons," page 103.
4. Press SOLVE to solve for the remaining variables. Shaded circles (\(\bullet\)) will appear next to variables for which exact solutions have been found. See "Solver Icons," page 103.
5. Optional: Press \(\square\) to return to the RLC Circuits screen or press \(\boldsymbol{\square}\) to return to the home screen.

\section*{Using the HP 48 Stack}

There are two stack-related commands:
\(\rightarrow\) STK. Copies one or all of the variables currently on the screen to the HP 48 stack for later use, without leaving the Solver screen.
1. To access this command, press IOPTS NXT or © ©ST then \(\rightarrow\) STK.
2. You will be asked if you want to copy one or all items to the stack.
3. Choose ONE or ALLI, or press ON to abort the copy.

STACK Copies the value of the highlighted variable to the HP 48 stack for immediate use and temporarily goes to the HP 48 stack environment. For more information, see "Solver Menu Keys," page 105.

\section*{Resetting Variables}

To reset the values of variables, press [0E or WXT RESET and select ONE or ALL. This will clear the values of the selected variables at the Solver screen and will also purge the selected variables from user memory, where they are created by the solver each time you enter a value or press SOLVE.

\section*{Converting a Value}

Once a variable value has been entered, it can easily be converted to different units. To do this, highlight the desired variable and press CONV. The available units for the highlighted variable will be displayed as menu keys (press 囵 for more menu keys, if appropriate). When you have finished coverting a value, either move the highlight bar to another variable value to convert it, or press EXITT to leave the convert menu and return to the standard menu.

\section*{Units On/Units Off}

You can choose to display variable values with units (units on) or without units (units off). With units on, variable values will be displayed in the units you specify when you enter the value or when you convert the value to a different unit. If you simply enter a number and press ENien, the
default unit will be the SI unit for the variable. The default SI unit is typically displayed as the first menu key when entering a value.

With units off, variable values will be displayed as SI values without units. The units you specified will be remembered if you later turn units on again, but all values will temporarily be converted and displayed in the default SI units. SI units are used to ensure that the values sent to the solver are consistent with each other.

To access the units setting:
1. Press OPTS or \(\square\) CST and then UNITS to turn units on or off. When the block inside the key appears (UNITP), units are turned on. Press
EXITI to leave the Options menu and return to the standard Solver menu keys.
OR
2. Press \(\square\) 国 \(\boldsymbol{m}_{\text {NTS }}\) to turn units on or off. When units appear next to the values, units are turned on.

\section*{Font Size}

The small font shows variables only in uppercase, which makes it difficult to distinguish between an a and an \(\mathbf{A}\). However, it does allow more data to be displayed on the screen, making it easier to see your results.

To change the font size:
1. Press IOPTS FOONTI to switch to the larger font, which is case-sensitive. Also, pressing HELPD to turn help text off provides more room on the screen so that more of the variables can be displayed at once.
2. Press EXITT to leave the options menu and return to the standard menu.

\section*{Solver Icons}

There are several different symbols or icons used to identify different kinds of variables. To see a list of these icons, press \(\times 1\) ITCONS to display the Solver Icons screen. See Chapter 33, "Advanced Use of the Solver."

\section*{\(\checkmark\) Wanted Variables}

A check mark \((\checkmark)\) indicates that a variable is wanted. It is not necessary to mark the desired variable(s) as wanted in order to calculate their values,
because the solver will calculate the values of all unknown variables (those with no icons) if none are marked as wanted. The reason you may want to mark one or more variables as wanted is if you want the solver to stop after it has found the values of those wanted variables and not continue to calculate the values of all remaining unknown variables. If you are solving multiple equations with many variables and you only want the value of a specific variable, it is a good idea to mark that variable as wanted by selecting it with the highlight bar and pressing WWANTI. To remove a wanted icon from a variable, move the highlight bar to the variable and press IWANTI again.

The solver may still calculate the values of other unknown variables in addition to those specifically marked as wanted, most likely because it is impossible to calculate the value of the wanted variable(s) without first calculating the values of other variables.

\section*{- Known Variables}

A solid circle (\(\bullet\)) indicates that a variable is known. The values of known variables are never changed by the solver, because those variables are considered user-defined. Every time you enter a value for a variable, the variable is automatically marked as known. To remove the known icon from a variable, move the highlight bar to the variable and press IKNOWI or \({ }^{4-}\), and the solid circle will disappear, which means the variable is unknown.

\section*{* Solution Found}

A shaded circle () indicates that an exact solution was found for a variable by the Solver.

\section*{No Solution Found}

When the solver cannot find a solution, one of three messages will be displayed:

\footnotetext{
\(\sim\) No Solution (Extremum)
This message is displayed when the solver finds a point where the value of the equation approximates a local minimum or maximum, or when the solver had to stop searching because it encountered the largest (MAXR) or smallest (-MAXR) possible number.
}

\section*{* No Solution (Bad Guess)}

This message is displayed when one or more of the initial guesses are outside the domain of the equation, or when complex numbers are encountered by the Solver.
- No Solution (Constant).

This message is displayed when the equation has the same value at every point sampled.

For more information, see Chapter 33, "Advanced Use of the Solver."

\section*{Solver Menu Keys}

These are descriptions of the menu keys available at Solver screens:
EDIT Edits the highlighted variable.
Press ENTER to save edit changes or 0 O to cancel editing.
STACK Copies the highlighted variable to the HP 48 stack and temporarily goes to the HP 48
 stack environment. While at the stack, you can use all the normal built-in functions of your HP 48 to manipulate or change the copied value. When you have finished editing the value, press OK to leave the stack and insert the edited value into the current variable, or press CANCL to leave the stack without changing the value of the current variable.
PICT Displays a picture, if available.
OPTS Displays the options menu. For more information, see "Options Menu," page 9 .
CONV Displays the convert menu for the highlighted variable. For more information, see "Converting a Value," page 102.
SOLVE Solves the equation(s) using the known values. For more information, see "Solving an Equation," page 101.

Press \(\sqrt{\times x T}\) for the following menu keys:
KKNOWI Marks or unmarks the highlighted variable as known. See "Known Variables," page 104.

WWANTI Marks or unmarks the highlighted variable as wanted.
 See "Wanted Variables," page 103.
RESET Resets one or all of the variables. See "Resetting Variables," page 102.

ICONS Displays the Solver Icons screen. See Chapter 33, "Advanced Use of the Solver."

PLOTR Goes to the Plotter screen. See "Plotter Screens," page 106.
EQNS Goes to the Equations screen. See "Equations Screens," page 99.

\section*{Plotter Screens}

A Plotter screen enables you to plot any of the equations from the Equations screen. A variety of plot parameters can be specified. The HP 48 graphics environment is used to display the plots.

Below are general instructions for using Plotter screens. For a detailed example using Overdamped Transient, see page 110.

\section*{Plotting an Equation}
1. Go to the Plotter screen by pressing PLOTR from the Equations screen or Solver screen.
2. Select an equation to plot.
a. Move the highlight bar to the EQ field, which displays the equation to be plotted.
b. To choose another equation, press CHOOS and select the desired equation from the list that appears.

Selecting an equation automatically sets default values for the independent and dependent variables and units.
3. Set the values of any extra variables. (Only the independent and dependent variables will vary as the equation is plotted, so all other variables must have constant values.)
a. Press NOLVR to go to the Solver screen.
b. Move the highlight bar to each of the remaining variables in turn and type in values for them.
c. Press \(\mathbb{N \times T}\) PLOTR to return to the Plotter screen.
4. Selecting the independent variable.
a. Move the highlight bar to the INDEP field.
b. Press CHOOS or \(\uparrow+\) to select the independent variable.
c. If units are turned on, choose the desired units for the independent variable in the H -UNITS field by moving the highlight bar to that field
and pressing CHOOS. Once you have selected the desired units, press OK to return to the Plotter screen.
5. Set the horizontal range.
a. Move the highlight bar to the H-MIN and H-MAX fields and enter values for the range of the horizontal axis in the plot.
6. Select the dependent variable.
a. Move the highlight bar to the DEPND field.
b. Press CHOOS or ++- to select the dependent variable.
c. If units are turned on, choose the desired units for the dependent variable in the V-UNITS field by scrolling down to that field and pressing CHOOS. Once you have selected the desired units, press OK to return to the Plotter screen.
7. Set the vertical range \(O R\) autoscale.
- To set the vertical range: Move the highlight bar to the V-MIN and V-MAX fields and enter values for the range of the vertical axis in the plot.
- To autoscale the plot: Move the highlight bar to the Autoscale field and press \(\sqrt{ } \mathbf{C H K}\).
8. Draw the plot.
a. Optional: Press ERASE to erase any previous plots. As with the built-in plotting routines of the HP 48, you can overlay multiple plots by pressing DRAW more than once with different parameters
 without pressing ERASE between plots.
b. Press DRAW to plot the equation. (The plot shown above is from the example on page 110.)
c. Press \(0 \mathbb{O}\) to return to the Plotter screen.
9. Optional: Press to return to the RLC Circuits screen or press \(\square \boldsymbol{\square}\) to return to the home screen.

\section*{Plotter Field Descriptions}

These are descriptions of each of the fields which appear in a Plotter screen.

EQ:(Equation to plot) Press CHOOS to select an equation the current Equations screen.
INDEP: (Independent variable) This variable varies across the horizontal axis of the plot.

Changing the independent variable automatically resets the independent variable units to the default SI unit. Press CHOOS to select from the variables in current equation.
H-UNITS: (Horizontal axis units) This field contains the independent variable units. To select the units for the horizontal axis, press CHOOS. This field is only present if units are on. To turn units on or off, press \(\square\) UNITS.
H-MIN: (Horizontal axis minimum) This is the minimum value of the independent variable, which is plotted along the horizontal axis.
H-MAX: (Horizontal axis maximum) This is the maximum value of the independent variable.
DEPND: (Dependent variable) This variable varies along the vertical axis of the plot. Changing the dependent variable automatically resets the dependent variable units to the default SI unit. Press CHOOS to select from the variables in current equation. (The dependent variable should be different from the independent variable.)
V-UNITS: (Vertical axis units) This field contains the dependent variable units. To select the units for the vertical axis, press CHOOS. This field is only present if units are on. To turn units on or off, press
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{DEkN: 51} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Y-MAN: 50 \\
Autascale \\
\(\checkmark\) Lábel plat
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline EHOD & PICT & DPTE EFMEE LKM \\
\hline
\end{tabular} \(\square\) UNITS.
V-MIN: (Vertical axis minimum) This is the minimum value of the dependent variable, which is plotted along the vertical axis. This field is disregarded if autoscale is on.
V-MAX: (Vertical axis maximum) This is the maximum value of the dependent variable. This field is disregarded if autoscale is on.
Autoscale: (Autoscale vertical axis) Press \(\boldsymbol{\checkmark}\) CHK to autoscale the plot. If autoscale is checked \((\checkmark)\), the values for \(V\)-MIN and \(V\)-MAX are disregarded.
Label Plot: (Label plot) Press \(\sqrt{ }\) CHK to control whether plot is labeled (checked) or not labeled (unchecked).

\section*{Plotter Menu Keys}

The menu keys in Plotter screens change depending on the type of field that is highlighted. Plotter screens use three basic types of fields: Edit fields, Choose fields and Check fields. These fields and their associated menu keys are outlined below. The IOPTSI, ERASE and IDRAWI menu keys are always present regardless of the field type.

Choose Fields: These fields only accept values from a pre-defined list that is accessed by pressing CHOOS. EQ, INDEP, H-UNITS, DEPND, and V-UNITS are Choose fields.

CHOOS Displays the possible choices for a choose field. Highlight the desired value and press Enter or OK , or press CANCL to abort the selection.
PICT Displays a picture.

OPTS Displays the options menu. For more information, see "Options Menu," page 9.
ERASE Erases any previous plots.
DRAWI Plots the current equation. As with the built-in plotting routines of the HP 48, you can overlay multiple plots by pressing DRAWI more than once with different parameters without pressing ERASE between plots.

Edit Fields: These fields accept values entered from the keyboard. H-MIN, H-MAX, V-MIN and V-MAX are Edit fields.
EDITT Edits the highlighted item. The menu keys then change to the standard HP 48 editing keys. Press ENTER to save edit changes or 00 to cancel editing.
STACK Copies the highlighted item to
 the HP 48 stack and temporarily goes to the HP 48 stack environment. While at the stack, you can use all the normal built-in functions of your HP 48 to manipulate or change the copied item. When you have finished editing the item, press OK to leave the stack and insert the edited item into the current Edit field, or press CANCL to leave the stack without changing the value of the current Edit field.
PICTI Displays a picture (if available).
OPTS Displays the options menu. For more information, see "Options Menu," page 9.
ERASE Erases any previous plots.

Check Fields: These fields are toggle fields. A \(\checkmark\) in front of the field turns that specific control on. Autoscale and Label Plot are Check fields.
DCHK
Toggles a check mark.
PICT Displays a picture (if available).
IOPTS Displays the options menu.
ERASE Erases any previous plots.
DRAW Plots the current equation.

In all fields, press 四 for these two menu keys:
EONS Goes to the Equations screen.
See "Equations Screens."
SOLVB Goes to the Solver screen. See "Solver Screens," page 100.

\section*{Example:}

Overdamped Parallel RLC Circuit
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

An overdamped parallel RLC circuit is characterized by a 100 ohm resistor, a 40 mH inductor and a \(0.25 \mu \mathrm{~F}\) capacitor. The inital inductor current is 2 A , and the capacitor has an initial charge of 50 V . Find the voltage transient response across the parallel circuit. Plot the voltage across the capacitor during the first \(300 \mu \mathrm{~s}\).

\section*{Solve Multiple Equations}
1. Enter the Overdamped Transient screen:
a. Press 国 screen.
b. Choose Equations.
c. Choose RLC Circuits.
d. Choose Overdamped Transient.
2. At the Equations screen, make sure no equations are checked and press

SOLVR to go to the Solver screen.
3. Reset all the variable values by pressing DEL, then \(\quad\) ALL.
4. Enter the following values in the appropriate fields. Select the units by pressing the indicated menu key:
\begin{tabular}{lcl}
L: & 40 & \((\square \mathrm{MH})\) \\
C: & 0.25 & \((\square \mathrm{~F})\) \\
R: & 100 & \((\square)\) \\
V0: & 50 & \((\mathrm{~V})\) \\
IO: & 2 & \((\mathrm{~A})\)
\end{tabular}

A solid circle will appear beside the entered variables, marking them as

Solver Screen
known. If necessary, press \(\square\) UNITS to turn units on.
5. Press SOLVE. The solver will solve for the unknown variables, one by one. With the information entered, it will not be able to find values for \(\mathbf{v}\) or \(\mathbf{t}\), so you will get the message shown to the right. Press OK to continue.

The found variables are those for which values were calculated and are marked by shaded circles. You have just computed the values of the variables A1, s1, A2, and s2 in the equation \(v=A 1 \cdot e^{s l \cdot t}+A 2 \cdot e^{s 2 \cdot t}\)

Solver: Answers which determines the capacitor voltage as a function of time.

\section*{Plot one Equation}

To plot the voltage across the capacitor during the first \(300 \mu \mathrm{~s}\) :
1. Press \({ }^{N \times T}\) PLOTR to go to the Plotter screen.
2. In the EQ field, press ENTER and choose the equation pictured to the right.
3. Choose \(\mathbf{t}\) for INDEP.
4. Choose \(\mu \mathrm{s}\) for H-UNITS.
5. Enter 0 for \(\mathbf{H}-\mathrm{MIN}\) and .0003 for H-MAX.
6. Choose \(\mathbf{v}\) for DEPND.
7. Scroll down to the Autoscale field and press \(\quad\) CHK to turn autoscale on.
8. Scroll down to the Label Plot field and press \(\overline{\text { CHK }}\) to turn label the plot.
9. Press ERASE to erase any previous plots.
10. Press IDRAWI to draw the plot.
11. Optional: Press to return to the RLC Circuits screen or press \(\boldsymbol{D}^{\text {Rows }}\) to return to the home screen.

\section*{Chapter 17}

\section*{Resistive Circuits}

This chapter covers the equations relevant for dealing with simple resistive circuits.
- Resistance and Conductance
- Ohm's Law and Power
- Temperature Effects
\(\square\) Maximum Power Theorem
- V and I Source Equivalence

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline\(\alpha\) & Temperature coefficient & \(1 / \mathrm{K}\) \\
A & Area & \(\mathrm{m}^{2}\) \\
G & Conductance & S \\
I & Current & A \\
Il & Load current & A \\
Is & Current source & m \\
len & Length & W \\
P & Power & W \\
Pmax & Maximum power in load & \(\Omega * \mathrm{~m}\) \\
\(\rho\) & Resistivity & \(\Omega\) \\
R & Resistance & \(\Omega\) \\
R1 & Resistance, T1 & \(\Omega\) \\
R2 & Resistance, T2 & \(\Omega\) \\
R1 & Load resistance & \(\Omega\) \\
Rlm & Match load resistance & \(\Omega\) \\
\(\sigma\) & Source resistance & \(\mathrm{S} / \mathrm{m}\) \\
T1 & Conductivity & K \\
& Temperature 1 &
\end{tabular}
\begin{tabular}{|c|c|c|}
T2 & Temperature & K \\
V & Voltage & V \\
Vl & Load voltage & V \\
Vs & Source voltage & V \\
\hline
\end{tabular}

\section*{Resistance and Conductance}

\author{
Analysis \\ Equations \\ Resistive Circuits \\ Resistance \& Condunctance \\ Reference
}

The four equations in this section represent the basic relationships between resistance and conductance. The first equation describes the resistance \(\mathbf{R}\) of a bar with a length len and a uniform cross-sectional area \(\mathbf{A}\) with a resistivity \(\rho\). The second equation defines the conductance \(\mathbf{G}\) of the same bar in terms of conductivity \(\boldsymbol{\sigma}\) and len and \(A\). The third equation shows the reciprocity

between conductance \(\mathbf{G}\) and resistance \(\mathbf{R}\), while the fourth equation shows the corresponding reciprocity between resistivity \(\rho\) and conductivity \(\boldsymbol{\sigma}\).
\(\mathrm{R}=\frac{\rho \cdot \operatorname{len}}{\mathrm{h}}\)
\(\mathrm{G}=\frac{\sigma \cdot \mathrm{H}}{\mathrm{len}}\)
\(G=\frac{1}{R}\)
\(\sigma=\frac{1}{\rho}\)

\section*{Ohm's Law and Power}

These equations represent the fundamental

Analysis
Equations
Resistive Circuits Ohm's Law and Power Reference relationships between voltage, current and power. The first equation expresses the relationship between current \(\mathbf{I}\) and voltage \(\mathbf{V}\) in terms of the resistance \(\mathbf{R}\), the classic Ohm's law. The next four equations connect power dissipation \(\mathbf{P}\), voltage \(\mathbf{V}\), current \(\mathbf{I}\), resistance \(\mathbf{R}\) and conductance \(\mathbf{G}\). The final equation represents the reciprocity between resistance \(\mathbf{R}\) and conductance \(\mathbf{G}\).
\begin{tabular}{lll}
\(V=I \cdot R\) & \(P=V \cdot I\) & \(P=I^{2} \cdot R\) \\
\(P=\frac{V^{2}}{R}\) & \(P=V^{2} \cdot G\) & \(R=\frac{1}{G}\)
\end{tabular}

\section*{Temperature Effect}

This equation shows the effect of temperature

Analysis
Equations
Resistive Circuits
Temperature Effect
Reference on resistance. Resistance changes from R1 to \(\mathbf{R 2}\) when the temperature \(\mathbf{T 1}\) to a temperature \(\mathbf{T 2}\) is modulated by the temperature coefficient resistance \(\boldsymbol{\alpha}\).
\[
R 2=R 1 \cdot(1+\alpha \cdot(T 2-T 1))
\]

\section*{Maximum Power Transfer}

These five equations are organized to compute
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
\(\quad\) Resistive Circuits \\
\(\quad\) Maximum Power Transfer \\
Reference
\end{tabular} Equations

Resistive Circuits Maximum Power Transfer Reference load voltage VI, load current II, power dissipation in the load \(\mathbf{P}\), maximum power available in the load Pmax, and load impedance RIm needed for maximum power deliverable to the load. The first equation computes the load voltage VI of a circuit with a simple voltage source Vs, source resistance Rs, and a load resistance RI. The second equation defines the load current II in terms of Vs, Rs and RI. The power dissipation in the load resistance is defined by the third equation linking \(\mathbf{P}\) with II and VI. The fourth equation refers to maximum power available to the
 load from the voltage source Vs with its internal resistance Rs. The last equation represents load resistance value needed for a maximum power to be transferred from the source.
\[
\begin{array}{lll}
V_{1}=\frac{V_{5} \cdot R l}{R s}+R 1 & I l=\frac{U_{s}}{R s+R l} & P=I l \cdot V_{1} \\
P_{\text {max }}=\frac{V_{5}}{4 \cdot R s} & R l m=R s &
\end{array}
\]

\section*{V and I Source Equivalence}

\author{
Analysis \\ Equations \\ Resistive Circuits \\ \(V\) and I Source Equivalence \\ Reference
}

The two equations in this section represent the equivalence between a voltage source and a current source. A voltage source Vs with an internal series
 resistance of Rs is equivalent in all its functionality to a current source Is with a resistance Rs connected across it.
\[
\mathrm{I}=\frac{\mathrm{U}_{\mathrm{s}}}{\mathrm{Rs}}
\]
\[
V_{s}=I s \cdot R s
\]

\section*{Bibliography}

Edminister, Joseph A., Electric Circuits, 2nd Edition, Schaum's Outline Series in Engineering, McGraw-Hill Book Company, New York, N.Y. 1983.

Nilsson, James W., Electric Circuits, 2nd Edition, Addison-Wesley Publishing Company, Reading, MA 1987.

\section*{Chapter 18}

\section*{Capacitance and Electric Fields}

Analysis Equations

Capacitance \& Electric Fields Reference

This chapter covers the equations describing a variety of configurations where capacitive properties are calculated.
- Point Charge
- Long Charged Line
- Charged Disk
- Parallel Plates
- Parallel Wires
- Coaxial Cable
\(\square\) Sphere

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline a & Radius & m \\
A & Area & \(\mathrm{m}^{2}\) \\
b & Outer radius & m \\
C & Capacitance & F \\
c & Capacitance per unit length & \(\mathrm{F} / \mathrm{m}\) \\
d & Separation & m \\
E & Electric field & \(\mathrm{V} / \mathrm{m}\) \\
\(\mathrm{\varepsilon r}\) & Relative ermittivity & unitless \\
Er & Radial electric field & \(\mathrm{V} / \mathrm{m}\) \\
Ez & Electric field along z axis & \(\mathrm{V} / \mathrm{m}\) \\
F & Force on plate & N \\
Q & Charge & C \\
r & Radial distance & m \\
\(\rho \mathrm{l}\) & Line charge & \(\mathrm{C} / \mathrm{m}\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\(\rho s\) & Charge density & \(\mathrm{C} / \mathrm{m}^{2}\) \\
V & Potential & V \\
Vz & Potential along z axis & V \\
W & Energy stored & J \\
z & z axis distance from disk & m \\
\hline
\end{tabular}

\section*{Point Charge}

The two equations in this module represent
```

Analysis
Equations
Capacitance \& Electric Fields Point Charge
Reference

``` the radial electric field \(\mathbf{E r}\) and the potential \(\mathbf{V}\) at a location \(\mathbf{r}\) away from a point change \(\mathbf{Q}\). It is evident that the electric field is inversely proportional to the square of the distance \(\mathbf{r}\), while the potential is inversely proportional to \(\mathbf{r}\). The equations have been generalized to include \(\boldsymbol{\varepsilon r}\), the relative permittivity of the medium.


\section*{Long Charged Line}

An infinite line charge with a strength of \(\rho \mathrm{l}\)

Analysis
Equations
Capacitance \& Electric Fields Long Charged Line
Reference Coulombs per unit length exerts a radial electric field a distance \(\mathbf{r}\) away from the line. The electric field \(\mathbf{E r}\) is radial and can be easily seen to decay inversely as \(\mathbf{r}\).

\section*{Charged Disk}

There are two equations listed here describing the electric field and potential along the vertical axis through the center of a uniformly charged disk. The first
equation defines the electric field along the z -axis of the disk with a radius a and charge density of \(\rho s\), a distance \(\mathbf{z}\) from the plane of the disk. The second equation yields the electrostatic potential \(\mathbf{V z}\) at an arbitrary point along the \(\mathbf{z}\) axis.
\[
E z=\frac{\rho S}{2 \cdot \epsilon Q \cdot \epsilon r} \cdot\left(1-\frac{\operatorname{ABS}(z)}{\sqrt{a^{2}+z^{2}}}\right) \quad V_{z=}=\frac{\rho S}{2 \cdot \in Q \cdot \in r} \cdot\left(\sqrt{a^{2}+z^{2}}-\operatorname{ABS}(z)\right)
\]

\section*{Parallel Plates}

The five equations listed in this section

\author{
Analysis \\ Equations \\ Capacitance \& Electric Fields Parallel Plates \\ Reference
} describe the electrical and mechanical properties of a parallel plate capacitor. It is assumed that plate separation \(\mathbf{d}\) is small compared to the lateral dimensions so that fringing field effects can be ignored. The first equation yields the electric field \(\mathbf{E}\) at the plate for a potential difference \(\mathbf{V}\) between the plates. The second equation computes the capacitance \(\mathbf{C}\) of the system given the relative permittivity \(\boldsymbol{\varepsilon r}\) and area \(\mathbf{A}\). The third equation shows the charge on each parallel plate. The last two equations show the mechanical force \(\mathbf{F}\) on the plates and energy stored \(\mathbf{W}\) in the capacitor.
\begin{tabular}{|cll|}
\hline\(E=\frac{U}{d}\) & \(C=\frac{E D \cdot E r \cdot Q}{d}\) & \(Q=C \cdot V\) \\
\(F=\frac{\frac{-1}{2} \cdot \psi^{2} \cdot C}{d}\) & \(W=\frac{1}{2} \cdot V^{2} \cdot C\) & \\
\hline
\end{tabular}

\section*{Parallel Wires}

The equation listed here represents the

\section*{Analysis}

Equations
Capacitance \& Electric Fields Parallel Wires
Reference calculation of capacitance per unit length \(\mathbf{c}\) of a pair of transmission lines of radius \(\mathbf{a}\) and center to center spacing \(\mathbf{d}\) in a dielectric medium with a relative permittivity of \(\boldsymbol{\varepsilon r}\).

\section*{Coaxial Cable}

These three equations describe properties of a

\author{
Analysis \\ Equations \\ Capacitance \& Electric Fields Coaxial Cable \\ Reference
} coaxial cable. The first two equations show the voltage between the outer and inner conductors caryying a charge of \(\mathrm{\rho l}\) per unit length, relative permittivity \(\boldsymbol{\varepsilon r}\), and conductor diameters \(\mathbf{a}\) and \(\mathbf{b}\). The last equation computes the radial electric field \(\mathbf{E r}\)
 between the conductors while the last equation calculates the capacitance per unit length.

\section*{Sphere}

The three equations in this module compute
```

Analysis
Equations
Capacitance \& Electric Fields
Sphere
Reference

``` the potential between two concentric spheres of radius \(\mathbf{a}\) and \(\mathbf{b}\), with a charge \(\mathbf{Q}\), and separated by a medium with a relative permittivity of \(\boldsymbol{\varepsilon r}\). The second equation computes the electric field outside a sphere at a distance \(\mathbf{r}\) from the center of the sphere. The last equation computes the capacitance between the spheres.
\[
V=\frac{Q}{4 \cdot \pi \cdot \in Q \cdot \in r} \cdot\left(\frac{1}{a}-\frac{1}{b}\right) \quad E r=\frac{Q}{4 \cdot \pi \cdot \in Q \cdot \in r \cdot r^{2}} \quad C=\frac{4 \cdot \pi \cdot \in Q \cdot \in r \cdot a \cdot b}{b-a}
\]

\section*{Chapter 19}

\section*{Inductance and Magnetism}

\section*{Analysis} Equations

Inductance and Magnetism
Reference

This chapter covers the equations describing inductance and magnetic properties of typical electrical configurations.
- Long Line
\(\square\) Long Strip
- Parallel Wires
\(\square\) Loop
- Coaxial Cable
- Skin Effect

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline a & Loop radius or side & m \\
b & Side b of loop & m \\
B & Magnetic field & T \\
Bx & Magnetic field, x axis & T \\
By & Magnetic field, y axis & T \\
\(\delta\) & Skin depth & m \\
d & Strip width & m \\
D & Center-center wire spacing & m \\
f & Frequency & Hz \\
F & Force between wires & \(\mathrm{N} / \mathrm{m}\) \\
I & Current & A \\
II & Current in line 1 & A \\
I2 & Current in line 2 & A \\
Is & Current in strip & \(\mathrm{A} / \mathrm{m}\) \\
L & Inductance epr unit length & \(\mathrm{H} / \mathrm{m}\) \\
L12 & Mutual inductance & H \\
Ls & Loop self-inductance & H \\
\(\mu \mathrm{r}\) & Relative permeability & unitless
\end{tabular}
\begin{tabular}{|c|c|c|}
r & Radial distance & m \\
r 0 & Loop wire radius & m \\
\(\rho\) & Resistivity & \(\Omega^{*} \mathrm{~m}\) \\
\(\eta\) & Angle & r \\
Reff & Effective resistance & \(\Omega\) \\
T 12 & Torque & \(\mathrm{N}^{*} \mathrm{~m}\) \\
x & x axis distance & m \\
y & y axis distance & m \\
z & Distance to loop z axis & m \\
\hline
\end{tabular}

\section*{Long Line}

The magnetic field \(\mathbf{B}\) due to a current \(\mathbf{I}\) from

\author{
Analysis \\ Equations \\ Inductance and Magnetism Long Line \\ Reference
} an infinite wire in an infinitely long line is computed here at a distance \(\mathbf{r}\) from the line.
\[
B=\frac{\mu \theta \cdot I}{2 \cdot \pi \cdot I}
\]

\section*{Long Strip}

A thin conducting ribbon strip of width \(d\) is
\begin{tabular}{l}
Analysis \\
Equations \\
\(\quad\) Inductance and Magnetism \\
\(\quad\) Long Strip \\
Reference \\
\hline
\end{tabular} Equations Inductance and Magnetism Long Strip
Reference infinitely long and carrying a current Is amperes per meter. The \(\mathbf{x}\) and \(\mathbf{y}\) component of the mangetic field \(\mathbf{B x}\) and \(\mathbf{B y}\) are dependent upon the location described by \((\mathrm{x}, \mathrm{y})\) coordinates.
\[
\begin{aligned}
& B x=\frac{-\mu \theta \cdot I s}{2 \cdot \pi} \cdot\left[\operatorname{ATAN}\left(\frac{\left(x+\frac{d}{2}\right)}{y}\right)-\operatorname{ATAN}\left(\frac{\left(x-\frac{d}{2}\right)}{y}\right)\right] \\
& B y=\frac{\mu \cdot \cdot I s}{4 \cdot \pi} \cdot L N\left(\frac{\left(y^{2}+\left[x+\frac{d}{2}\right)^{2}\right]}{y^{2}+\left(x-\frac{d}{2}\right)^{2}}\right)
\end{aligned}
\]

\section*{Parallel Wires}

Two thin infinite wires carrying currents I1

\section*{Analysis}

Equations
Inductance and Magnetism Parallel Wires
Reference and \(\mathbf{I} 2\) separated by a distance \(\mathbf{D}\) exert a force of \(\mathbf{F}\) newtons \(/ \mathrm{m}\) between them and generate a tangential magnetic field \(\mathbf{B}\) at the center of one wire due to the field from the other wire. The third equation shows the expression for the tangential magnetic field \(\mathbf{B}\) between the two parallel wires. The distance \(\mathbf{x}\) is measured from the line carrying current I1, while the distance of the same point from the second line carrying a current I2. The last equation in this set computes the inductance from the two wires of diameter a with a spacing of \(\mathbf{D}\), carrying equal and opposite currents.
\[
\begin{aligned}
& B=\frac{\mu Q \cdot I}{2 \cdot \pi \cdot D} \quad F=\frac{\mu \theta \cdot I \cdot I 2}{2 \cdot \pi \cdot D} \quad B x=\frac{\mu \theta \cdot I}{2 \cdot \pi} \cdot\left(\frac{1}{x}+\frac{1}{D-x}\right) \\
& L=\frac{\mu \theta}{4 \cdot \pi}+\frac{\mu \theta}{\pi} \cdot A \operatorname{Cos} H\left(\frac{D}{2 \cdot a}\right)
\end{aligned}
\]
\begin{tabular}{l}
Analysis \\
Equations \\
\(\quad\) Inductance and Magnetism \\
\(\quad\) Loop \\
Reference \\
\hline
\end{tabular} Equations

Inductance and Magnetism Loop
Reference

\section*{Loop}

The first two equations consider a thin wire bent into a circular loop and carrying a current
I. The loop radius is a and is in the xy plane. The equation for the magnetic field \(B\) is computed along the \(z\)-axis through the center of the loop. The second equation shows the self-inductance of the loop. The last two equations represent the inductance L12 and torque T12 of a rectangular loop of sides \(\mathbf{a}\) and \(\mathbf{b}\), and carrying a current \(\mathbf{I} 2\) in the vicinity of a wire carrying a current of \(\mathbf{I 1}\) and located at distance \(\mathbf{D}\) as shown in the diagram to the left here.
\[
\begin{aligned}
& B=\frac{\mu \theta \cdot I \cdot a^{2}}{2 \cdot{\sqrt{a^{2}+z^{2}}}^{3}} \\
& L 12=\frac{-\mu \theta \cdot a \cdot \cos (\theta)}{2 \cdot \pi} \cdot L N\left(\frac{(b+d)}{d}\right)
\end{aligned}
\]
\[
L s=\mu \theta \cdot a \cdot\left[\operatorname{LN}\left(\frac{8 \cdot a}{r \theta}\right]-2\right)
\]
\[
T 12=\frac{\mu \theta \cdot a \cdot \operatorname{SIN}(\theta)}{2 \cdot \pi} \cdot I 1 \cdot I 2 \cdot L N\left(\frac{(b+d)}{d}\right)
\]

\section*{Coaxial Cable}

A coaxial transmission line with an outer
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
\(\quad\) Inductance and Magnetism \\
\(\quad\) Coaxial Cable \\
Reference \\
\hline
\end{tabular}

Analysis
Equations
Inductance and Magnetism Coaxial Cable Reference radius of inner conductor of a and inner radius of
 the outer conductor of \(\mathbf{b}\) is characterized by the inductance \(\mathbf{L}\).
\(L=\frac{\mu 0}{8 \cdot \pi}+\frac{\mu \theta}{2 \cdot \pi} \cdot L N\left(\frac{b}{a}\right)\)

\section*{Skin Effect}

These two equations represent the effect of

\author{
Analysis \\ Equations \\ Inductance and Magnetism Skin Effect \\ Reference
} high frequency on the resistance of a conductor. The first equation connects the skin depth \(\boldsymbol{\delta}\) with the frequency \(\mathbf{f}\) and the resistivity \(\rho\). The skin depth represents the RF signal penetration from the surface of a conductor. The second equation shows the relationship between the effective resistance and \(\mathbf{f}\) and \(\rho\). The effective resistance Reff is specified in terms of ohms/length/width or often specified as ohms/square.
\[
\delta=\frac{1}{\sqrt{\frac{\pi \cdot f \cdot \mu \theta \cdot \mu r}{\rho}}} \quad \operatorname{Reff}=\sqrt{\pi \cdot f \cdot \mu \theta \cdot \mu r \cdot \rho}
\]

\section*{Bibliography}

Plonsey, Robert and Robert E. Collin, Principles and Applications of Electromagnetic Fields, McGraw-Hill Book Company, Inc. 1961.

\section*{Chapter 20}

\section*{Electron Motion}

Analysis
Equations
Electron Motion
Reference

This chapter covers equations describing the properties of electrons as they are subjected to electric and magnetic fields.
- Electron Beam Deflection
- Thermionic Emission
- Photoemission

\section*{Variables}

The table below lists all the variables used in this chapter.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline A0 & Richardson's constant & \(\mathrm{A} /\left(\mathrm{m}^{2} \mathrm{~T}^{2}\right)\) \\
B & Magnetic field & T \\
d & Deflection tube diameter & m \\
f & Frequency & Hz \\
f 0 & Critical frequency & Hz \\
I & Thermionic current & A \\
L & Deflecting plate length & m \\
Ls & Beam length to destination & m \\
\(\phi\) & Work function voltage & V \\
r & Radius of circular path & m \\
S & Surface area & \(\mathrm{m}^{2}\) \\
T & Temperature & K \\
u & Velocity & \(\mathrm{m} / \mathrm{s}\) \\
\(\mathbf{u} 0\) & Electron velocity & \(\mathrm{m} / \mathrm{s}\) \\
\(\mathbf{v}\) & Vertical velocity & \(\mathrm{m} / \mathrm{s}\) \\
Va & Accelerating voltage & V \\
Vd & Deflecting voltage & V \\
y & Vertical deflection & m \\
yd & Beam deflection on screen & m \\
z & Distance along beam axis & m \\
\hline
\end{tabular}

\section*{Electron Beam Deflection}

A beam of electrons subject to accelerating voltage Va achieves a velocity \(\mathbf{v}\) as described when an electron beam with an electron velocity \(\mathbf{u 0}\) is passing through a magnetic field \(\mathbf{B}\). The last two equations show the y -deflection \(\mathbf{y d}\) at distance magnetic field \(\mathbf{B}\). The last two equations show the \(y\)-deflection yd at distance
\(\mathbf{L s}\) from the center of deflection plates separated by a distance \(\mathbf{d}\) and subject to a deflecting voltage Vd.
\[
u=\sqrt{2 \cdot\left(\frac{q}{m e}\right) \cdot v_{a}} \quad r=\frac{m e \cdot u \theta}{q \cdot B} \quad y d=\frac{L \cdot L s}{2 \cdot d \cdot V_{a}} \cdot v_{d} \quad y=\frac{q \cdot v_{d}}{2 \cdot m e \cdot d u^{2}} \cdot z^{2}
\]

\section*{Thermionic Emission}

When a material is heated to a high temperature \(\mathbf{T}\) the free electrons gain enough by the first equation. The second equation computes the radius of curvature \(\mathbf{r}\)
thermal energy, forcing a finite fraction to escape the work function barrier \(\phi\) and contribute to the external current \(\mathbf{I}\). The current also depends directly on the surface area \(\mathbf{S}\) and the so-called Richardson's constant \(\mathbf{A 0}\).
\[
I=A Q \cdot S \cdot T^{2} \cdot e^{\frac{-q \cdot \phi}{k \cdot T}}
\]

\section*{Photoemission}

These two equations represent the behavior of

\section*{Analysis}

Equations
Electron Motion Photoemission
Reference electrons when excited by photon energy. A light beam with a frequency \(f\) generates an RMS velocity \(\mathbf{v}\) for electrons that have to overcome a work function \(\phi\). The second equation shows the threshold frequency for the light beam to extract electrons from the surface of a solid.
\[
h \cdot f=q \cdot\left(\underline{q}+\frac{1}{2} \cdot m e \cdot v^{2} \quad f \theta=\frac{q \cdot(6}{h}\right.
\]

\section*{Bibliography}

\author{
Ryder, John D., Electronic Fundamentals and Applications, 5th Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ 1976. \\ Smith, Ralph J., Electronics Circuits and Devices, Second Edition, John Wiley and Sons, New York, NY 1980.
}

\section*{Chapter 21}

\section*{Meters and Bridge Circuits}

Analysis
Equations
Meters and Bridge Circuits
Reference

This chapter covers the equations describing commonly-used meters, bridges, and attenuator circuits.

Amp, Volt, and Ohmmeter
- Wheatstone Bridge
- Wien Bridge
- Maxwell Bridge
- Owen Bridge
- Symmetrical Resistive Attenuator
- Unsymmetrical Resistive Attenuator

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline C2 & Capacitance, arm 2 & F \\
C4 & Capacitance, arm 4 & F \\
Cs & Series capacitor & F \\
Cx & Unknown capacitor & F \\
DB & Attenuator loss & unitless \\
f & Frequency & Hz \\
Ig & Galvanometer current & A \\
Imax & Maximum current & A \\
Isen & Current sensitivity & A \\
Lx & Unknown inductance & H \\
Q & Quality factor & unitless \\
R1 & Resistance, arm 1 & \(\Omega\) \\
R2 & Resistance, arm 2 & \(\Omega\) \\
R3 & Resistance, arm 3 & \(\Omega\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline R4 & Resistance, arm 4 & \(\Omega\) \\
\hline Ra & Resistance, leg a & \(\Omega\) \\
\hline Radj & Adjustable resistor & \(\Omega\) \\
\hline Rb & Resistance, leg b & \(\Omega\) \\
\hline Rc & Resistance, leg c & \(\Omega\) \\
\hline Rg & Galvanometer resistance & \(\Omega\) \\
\hline Rj & Resistance in L pad & \(\Omega\) \\
\hline Rk & Resistance in L pad & \(\Omega\) \\
\hline R1 & Resistance from left & \(\Omega\) \\
\hline Rm & Meter resistance & \(\Omega\) \\
\hline Ro & Terminating resistance & \(\Omega\) \\
\hline Rr & Resistance from right & \(\Omega\) \\
\hline Rs & Series resistance & \(\Omega\) \\
\hline Rse & Series resistance & \(\Omega\) \\
\hline Rsh & Shunt resistance & A \\
\hline Rx & Unknown resistance & \(\Omega\) \\
\hline Vm & Voltage across meter & V \\
\hline Vmax & Maximum voltage & V \\
\hline Vs & Source voltage & V \\
\hline Vsen & Voltage sensitivity & V \\
\hline \(\omega\) & Radian frequency & r/s \\
\hline
\end{tabular}

\section*{Amp, Volt, and Ohmmeter}

The three equations in this section highlight

\section*{Analysis \\ Equations \\ Meters and Bridge Circuits \\ Amp, Volt, and Ohmmeter Reference} the use of resistors in extending the range of ammeters, voltmeters and ohmmeters. The first equation illustrates the use of a shunt resistor Rsh to increase the range of an ammeter with a current sensitivity Isen and a maximum range Imax. The second equation shows the use of a series resistance Rse to extend the range of a voltmeter. The third equation extends the range of a series ohmmeter with an internal resistance \(\mathbf{R m}\) and internal voltage Vs, with an adjustable resistor Radj. In a practical setup, Radj is usually set at its midpoint to compensate for variations in the component values, resulting in a systematic error in the measured result. The third equation is also applicable to a measurement system
 wherein an unknown resistance is placed in parallel to a shunt ohmmeter. In such a configuration, the meter deflection is designed to show full deflection for an infinite unknown impedance and zero deflection for a short circuit.
\[
R s h=\frac{R m \cdot I \operatorname{sen}}{I m a x}-I \operatorname{Isen} \quad R s e=\frac{\left(U_{\max }-U_{s e n}\right)}{I \operatorname{sen}} \quad I \text { sen }=\frac{U_{s}}{R_{s}+R_{m}+\frac{R_{\text {Rad }} j}{2}}
\]

\section*{Wheatstone Bridge}

These three equations represent the classic relationship in a Wheatstone bridge network with four resistor elements \(\mathbf{R x}, \mathbf{R 2}, \mathbf{R 3}\) and \(\mathbf{R 4}\). When the bridge is balanced, there is no current in the galvanometer circuit. The first equation defines the requirement for a balanced bridge. The second and third
 equations compute the voltage Vm across the bridge and the galvanometer current Ig. The special function GALV calculates the voltage across the bridge, and is a complex function of Vs, Rx, R2, R3, R4, Rg and Rs.
\[
\frac{R x}{R 2}=\frac{R 3}{R 4} \quad V_{m}=G R L V\left(R x, R 2, R 3, R 4, R 9, R s, V_{s}\right) \quad I g=\frac{V_{m}}{R g}
\]

\section*{Wien Bridge}

A Wien bridge circuit is designed to measure

\author{
Analysis \\ Equations \\ Meters and Bridge Circuits Wien Bridge \\ Reference
} an unknown capacitance \(\mathbf{C x}\). The first two equations focus on two methods of measuring \(\mathbf{C x}\) in terms
 of the branch resistances R1 and R3, series resistance Rs, and parallel resistance \(\mathbf{R x}\). The bridge can also be used to measure frequency \(\mathbf{f}\) with the third equation after setting \(\mathbf{C x}=\mathbf{C s}, \mathbf{R x}=\mathrm{Rs}\), and \(\mathrm{R} 3=2 * R 1\).
\[
\frac{C x}{C s}=\frac{R 3}{R 1}-\frac{R s}{R x} \quad C s \cdot C x=\frac{1}{\omega^{2} \cdot R s \cdot R x} \quad f=\frac{1}{\frac{2}{\pi} \cdot C s \cdot R s} \quad \omega=2 \cdot \pi \cdot f
\]

\section*{Maxwell Bridge}

A Maxwell bridge is designed to measure the

Analysis
Equations
Meters and Bridge Circuits Maxwell Bridge
Reference inductance \(\mathbf{L x}\) and its series resistance \(\mathbf{R x}\) in a bridge circuit. The input stimulus to the bridge circuit is typically an AC source with variable frequency and an AC meter detecting a null. The first two equations measure the unknown inductance \(\mathbf{L x}\) and its resistance \(\mathbf{R x}\) is by varying the capacitance Cs and its parallel resistance Rs.
 The third and fourth equations measure the quality factor Q by using either measured Lx and Rx or known Cs and Rs. The final equation links the radian frequency \(\omega\) to the frequency \(\mathbf{f}\).
\begin{tabular}{|lll|}
\hline\(L x=R 2 \cdot R 3 \cdot C s\) & \(R x=\frac{R 2 \cdot R 3}{R s}\) & \(Q=\omega \cdot\left(\frac{L x}{R x}\right)\) \\
\(Q=w \cdot C s \cdot R s\) & \(\omega=2 \cdot \pi \cdot f\) & \\
\hline
\end{tabular}

\section*{Owen Bridge}

The Owen bridge circuit is an alternative AC bridge circuit used to measure an inductance and its series resistance. The input stimulus to the bridge circuit is typically an AC source with variable frequency and an AC meter detecting a null. The inductance \(\mathbf{L x}\) is measured in terms of the capacitor C3, and the branch resistance R1 and R4. The series resistance \(\mathbf{R x}\) is measured by a ratio of the capacitors \(\mathbf{C 3}\) and \(\mathbf{C 4}\) tempered by \(\mathbf{R 2}\), the variable resistance in the \(\mathbf{L x}\) arm of the bridge.
\[
L x=C 3 \cdot R 1 \cdot R 4 \quad R x=\frac{C 3 \cdot R 1}{C 4}-R 2
\]

\section*{Symmetrical Resistive Attenuator}

Balanced resistive networks are commonly

Meters and Bridge Circuits Sym. Resistive Attenuator Reference used as attenuators in transmission line circuits. These three equations form the basis of design of an attenuator in a Tee pad, a Pi pad, a bridged Tee pad or a balanced pad configuration. These design equations compute the resistance values in the circuit given an attenuation loss DB, which is defined in decibels. The first equation defines the value of \(\mathbf{R a}\) for a Tee pad, Pi pad, a bridged Tee pad or a balanced pad configuration. The resistance \(\mathbf{R b}\) is defined by the second equation for a Tee pad or a Pi pad. The third equation defines \(\mathbf{R c}\) for a bridged Tee pad or a balanced pad configuration.

\(R b=\frac{R o \cdot 2 \cdot 10^{\frac{D E}{20}}}{10^{\frac{D E}{10}}-1}\)
\[
\mathrm{Rc}=\mathrm{Ro} \cdot\left(10^{\frac{\mathrm{DB}}{2 \boxed{ }}}-1\right)
\]

\section*{Unsymmetrical Resistive Attenuator}

\author{
Analysis \\ Equations \\ Meters and Bridge Circuits Unsym. Res. Attenuator Reference
}

Unsymmetrical resistive attenuator design equations are given in this section. These equations compute the resistance values for a minimum loss L pad of an unsymmetrical network with an impedance RI to the left of the L-network and
 an impedance \(\mathbf{R r}\) to the right of the network. The first two equations calculate \(\mathbf{R j}\) and \(\mathbf{R k}\), the resistor values of the L network. The third equation determines the minimum loss of signal strength DB.
\[
R k=\sqrt{\frac{R 1 \cdot R r^{2}}{R 1-R r}}
\]
\[
\mathrm{DB}=20 \cdot \mathrm{LOG}\left(\sqrt{\frac{(\mathrm{Rl}-\mathrm{Rr})}{\mathrm{Rr}}}+\sqrt{\frac{\mathrm{Rl}}{\mathrm{Rr}}}\right)
\]

\section*{Bibliography}

Robert L. Boylestad, Introductory Circuit Analysis, 3rd Edition, Charles E. Merrill Publishing Company, A Bell and Howell Company, Columbus, OH 43216, 1977.

Joseph A. Edminister, Electric Circuits, 2nd Edition, Schaum's Outline Series in Engineering, McGraw-Hill Book Company, New York, N.Y. 1983.

Edward C. Jordan, Editor in Chief, Reference Data for Engineers: Radio, Electronics, Computer and Communications, Seventh Edition, Howard and Sams \& Co, Inc., A Subsidiary of Macmillan, Inc., Indianapolis IN 46268, 1985.

\section*{Chapter 22}

\section*{RL and RC Circuits}

\author{
Analysis \\ Equations \\ RL and RC Circuits \\ Reference
}

This chapter covers equations for on RL and RC Circuits.
- RL Natural Response
- RC Natural Response
- RL Step Response
- RC Step Response
- RL Series to Parallel
\(\square\) RC Series to Parallel

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline C & Capacitor & F \\
Cs & Series capacitance & F \\
Cp & Parallel capacitance & F \\
f & Frequency & Hz \\
iC & Capacitor current & A \\
iL & Inductor current & A \\
IO & Initial inductor current & A \\
L & Inductance & H \\
Lp & Parallel inductance & H \\
Ls & Series inductance & H \\
Qp & Q, parallel circuit & unitless \\
Qs & Q, series circuit & unitless \\
R & Resistance & \(\Omega\) \\
Rp & Parallel resistance & \(\Omega\) \\
Rs & Series resistance & \(\Omega\) \\
\(\tau\) & Time constant & S \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|}
\(\mathbf{t}\) & Time & \(\mathbf{s}\) \\
\(\mathbf{v C}\) & Capacitor voltage & \(\mathbf{V}\) \\
\(\mathbf{v L}\) & Inductor voltage & \(\mathbf{V}\) \\
V0 & Initial capacitor voltage & \(\mathbf{V}\) \\
Vs & Voltage stimulus & V \\
\(\omega\) & Radian frequency & r/s \\
W & Energy dissipated & J \\
\hline
\end{tabular}

\section*{RL Natural Response}

These four equations define all the key

\author{
Analysis \\ Equations \\ RL and RC Circuits RL Natural Response Reference
} properties for the natural response of an RL circuit with no energy sources. The first equation shows the characteristic time constant \(\tau\) in terms of the resistance \(\mathbf{R}\) and the inductance \(\mathbf{L}\). The second equation computes the decay of the voltage \(v L\) across the inductor
 with an inital current IO. The third equation displays the decay of the inductor current iL. The final equation shows the energy dissipation properties of the circuit.
\begin{tabular}{|c}
\(\tau=\frac{L}{R}\) \\
\(W=\frac{1}{2} \cdot L \cdot I 0^{2} \cdot\left(1-e^{\frac{-2 \cdot t}{\tau}}\right)\)
\end{tabular}\(\quad u L=I 0 \cdot R \cdot e^{\frac{-t}{\tau}} \quad i L=I 0 \cdot e^{\frac{-t}{\tau}}\)

\section*{RC Natural Response}

These four equations define all the natural

Analysis
Equations
RL and RC Circuits
RC Natural Response Reference response characteristics of an RC circuit with no energy sources. The first equation specifies the characteristic time constant \(\boldsymbol{\tau}\) in terms of the resistance \(\mathbf{R}\) and the capacitance \(\mathbf{C}\). The second equation computes the decay of the voltage \(\mathbf{v C}\) across the capacitor with an initial voltage of V0. The third equation shows the decay of the capacitor current iC. The final equation computes the energy dissipation properties.
\[
\begin{gathered}
\tau=R \cdot C \quad U C=v \theta \cdot e^{\frac{-t}{\tau}} \quad i C=\frac{\nu \theta}{R} \cdot e^{\frac{-t}{\tau}} \\
W=\frac{1}{2} \cdot C \cdot V \theta^{2} \cdot\left(1-e^{\frac{-2 \cdot t}{\tau}}\right) \quad
\end{gathered}
\]

\section*{RL Step Response}

These three equations describe the response of

Analysis
Equations
RL and RC Circuits
RL Step Response
Reference an inductive circuit to a voltage step stimulus.
The first equation calculates the time constant \(\tau\) in terms of the inductance \(\mathbf{L}\) and the resistance \(\mathbf{R}\). The last two equations compute the inductor voltage \(\mathbf{v L}\) and current iL in terms of the step stimulus Vs, initial condition \(\mathbf{I O}\), time \(t\), and time constant \(\tau\).

\section*{RC Step Response}

These three equations show the step response

Analysis Equations

RL and RC Circuits RC Step Response Reference properties of an RC circuit. The first equation defines the characteristic time constant \(\tau\) in terms of the resistance \(\mathbf{R}\) and the capacitance \(\mathbf{C}\). The last two equations compute the capacitor
 voltage \(\mathbf{v C}\) and current \(\mathbf{i C}\) in terms of the step stimulus voltage \(\mathbf{V s}\), initial capacitor voltage \(V 0\), time \(t\) and time constant \(\tau\).
```

\tau=R\cdotC

```
\[
u C=U_{s}+\left(V_{0}-U_{s}\right) \cdot e^{\frac{-t}{\tau}}
\]
\[
i C=\frac{(V s-V \theta)}{R} \cdot e^{\frac{-t}{\tau}}
\]

\section*{RL Series to Parallel}

The ten equations in this section show the

RL and RC Circuits
RL Series to Parallel Reference equivalence between a series RL circuit with values Rs and \(\mathbf{L s}\) and its parallel equivalent circuit with values \(\mathbf{R p}, \mathbf{L p}\). The first equation defines the relationship between the radian frequency \(\omega\) and the frequency \(\mathbf{f}\). The second equation specifies the quality factor \(\mathbf{Q s}\) for the series circuit values Rs and Ls. The next two equations define the values of Rp and \(\mathbf{L p}\) in terms of Rs, Ls and the radian frequency \(\omega\). The fifth and sixth equations compute \(\mathbf{R p}\) and \(\mathbf{L p}\) in terms of \(\mathbf{R s}\), Ls and \(\mathbf{Q s}\). The remaining five equations show the inverse relationships, where the series equivalent values Rs and \(\mathbf{L s}\) are expressed in terms of the parallel RL
 circuit values \(\mathbf{R p}, \mathbf{L p}, \omega\) and the quality factor for the parallel RL circuit \(\mathbf{Q p}\).
\[
\begin{aligned}
& \omega=2 \cdot \pi \cdot f \quad Q s=\frac{\omega \cdot L s}{R s} \\
& \mathrm{R}_{\mathrm{P}}=\frac{\left(\mathrm{Rs}^{2}+\mathrm{w}^{2} \cdot \mathrm{Ls}{ }^{2}\right)}{\mathrm{Rs}} \\
& L_{P}=\frac{\left(\mathrm{Rs}^{2}+\mathrm{w}^{2} \cdot \mathrm{Ls}^{2}\right)}{\mathrm{w}^{2} \cdot \mathrm{Ls}} \\
& R P=R s \cdot\left(1+Q s^{2}\right) \\
& L_{P}=L_{s} \cdot\left(1+\frac{1}{Q s^{2}}\right)
\end{aligned}
\]

\section*{RC Series to Parallel}

The ten equations in this section show the equivalence between a series RC circuit with The first equation defines the radian frequency \(\omega\) in terms of \(f\). The second equation computes the quality factor Qs in terms of \(\omega\) and the series resistance Rs and capacitance Cs. The next two equations compute the parallel equivalent values as a function of \(\mathbf{R s}\) and \(\boldsymbol{\omega}\). The fifth equation computes \(\mathbf{R p}\) as a function of Rs, Cs and Qs. The remaining five equations show the inverse set of relationships where the series equivalent
 values Rs and Cs are expressed in terms of the parallel RC circuit values Rp, Cp, \(\omega\) and the quality factor for the parallel RC circuit Qp.
\begin{tabular}{|c|c|c|}
\hline \(\omega=2 \cdot \pi \cdot f\) & \[
Q_{5}=\frac{1}{w^{2} \cdot R_{5} \cdot C_{5}}
\] & \(R \mathrm{P}=\mathrm{Rs} \cdot\left(1+\frac{1}{\mathrm{~m}^{2} \cdot \mathrm{Rs}{ }^{2} \cdot \mathrm{Cs}{ }^{2}}\right)\) \\
\hline \[
C_{P}=\frac{C s}{1+w^{2} \cdot \mathrm{Cs}^{2} \cdot R s^{2}}
\] & \[
R_{P}=R s \cdot\left(1+Q_{s}{ }^{2}\right)
\] & \(Q_{P}=w \cdot R_{P} \cdot C_{p}\) \\
\hline \[
R s=\frac{R_{P}}{1+w^{2} \cdot R_{P}^{2} \cdot C_{P}^{2}}
\] & \[
C s=\frac{\left(1+w^{2} \cdot R_{P}^{2} \cdot C_{P}^{2}\right)}{w^{2} \cdot R_{P}^{2} \cdot C_{P}}
\] & \[
R s=\frac{R P}{1+Q P^{2}}
\] \\
\hline \[
C_{s}=\frac{C_{P} \cdot\left(1+Q_{P}^{2}\right)}{Q_{P}^{2}}
\] & & \\
\hline
\end{tabular}

\section*{Bibliography}

Nilsson, James W., Electric Circuits, 2nd Edition, Addison-Wesley Publishing Company, Reading, MA 1987.

\section*{Chapter 23}

\section*{RLC Circuits}

\author{
Analysis \\ Equations \\ RLC Circuits \\ Reference
}

This chapter covers all the essential equations for computing impedance and admittance, natural response, and transient behavior of RLC circuits.
- Series Impedance
- Parallel Admittance
- RLC Natural Response
- Underdamped Transient
- Critically-Damped Transient
- Overdamped Transient

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline\(\alpha\) & Neper's frequency & \(\mathrm{r} / \mathrm{s}\) \\
A1 & Constant & V \\
A2 & Constant & V \\
B & Susceptance & S \\
B1 & Constant & V \\
B2 & Constant & V \\
BC & Capacitive susceptance & S \\
BL & Inductive susceptance & S \\
C & Capacitance & F \\
D1 & Constant & \(\mathrm{V} / \mathrm{s}\) \\
D2 & Constant & V \\
f & Frequency & Hz \\
G & Conductance & S \\
I0 & Initial inductor current & A \\
L & Inductance & H \\
\(\theta\) & Phase angle & r \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|}
R & Resistance & \(\Omega\) \\
s1 & Characteristic frequency 1 & \(\mathrm{r} / \mathrm{s}\) \\
s2 & Characteristic frequency 2 & \(\mathrm{r} / \mathrm{s}\) \\
s1i & Characteristic frequency 1 (imag.) & unitless \\
s1r & Characteristic frequency 1 (real) & unitless \\
s2i & Characteristic frequency 2 (imag.) & unitless \\
s2r & Characteristic frequency 2 (real) & unitless \\
t & Time & s \\
v & Capacitor voltage & V \\
V0 & Initial capacitor voltage & V \\
\(\omega\) & Radian frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega \mathrm{d}\) & Damped resonant frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega 0\) & Classical resonant frequency & \(\mathrm{r} / \mathrm{s}\) \\
X & Reactance & \(\Omega\) \\
XC & Capacitive reactance & \(\Omega\) \\
XL & Inductive reactance & \(\Omega\) \\
Ym & Admittance magnitude & S \\
Zm & Impedance magnitude & \(\Omega\) \\
\hline
\end{tabular}

\section*{Series Impedance}

These six equations compute the series
Analysis
Equations
\(\quad\) RLC Circuits
\(\quad\) Series Impedance
Reference impedance of an RLC circuit. The first two equations focus on calculating the magnitude and phase angle of the impedance in terms of resistance the \(\mathbf{R}\) and reactance \(\mathbf{X}\). The third equation computes the reactance \(\mathbf{X}\) as the sum of the inductive and capacitive parts \(\mathbf{X L}\) and \(\mathbf{X C}\), respectively. In the fourth and fifth equations, \(\mathbf{X L}\) is computed in terms of the radian frequency \(\omega\) and inductance \(L\), while \(\mathbf{X C}\) is computed in terms of \(\boldsymbol{\omega}\) and \(\mathbf{C}\). In the last equation, \(\boldsymbol{\omega}\) is defined in terms of the frequency f.
\[
\begin{array}{ccc}
\operatorname{ABS}(Z M)^{2}=R^{2}+X^{2} & \theta=A T A N\left(\frac{X}{R}\right) & X=X L+X C \\
X L=\omega \cdot L & X C=\frac{-1}{\omega \cdot C} & \omega=2 \cdot \pi \cdot f
\end{array}
\]

\section*{Parallel Admittance}

These seven equations compute the admittance of an RLC parallel circuit. The first two equations calculate the magnitude of the admittance \(\mathbf{Y m}\) and its phase angle \(\boldsymbol{\theta}\) in terms of the conductance \(\mathbf{G}\) and susceptance \(\mathbf{B}\). The third equation calculates the conductance \(\mathbf{G}\) in terms of the resistance \(\mathbf{B}\). The next three equations compute the susceptance \(\mathbf{B}\) as a sum of its inductive and capacitive components \(\mathbf{B L}\) and \(\mathbf{B C}\), respectively. The final equation links the radian frequency \(\omega\) and frequency \(f\).
\[
\begin{array}{ccc}
\operatorname{ABS}\left(Y_{m}\right)^{2}=G^{2}+B^{2} & B=A T A N\left(\frac{G}{B}\right) & G=\frac{1}{R} \\
B=B L+B C & B L=\frac{-1}{\omega \cdot L} & B C=\omega \cdot C \\
\omega=2 \cdot \pi \cdot f &
\end{array}
\]

\section*{RLC Natural Response}

These six equations compute the generalized

Analysis Equations

RLC Circuits
RLC Natural Response
Reference complex frequencies for an RLC circuit. In general there are two complex conjugate frequencies \(\mathbf{s 1}\) and \(\mathbf{s 2}\) with real and imaginary parts \(\mathbf{s} 1 \mathbf{r}, \mathbf{s} \mathbf{1} \mathbf{i}, \mathbf{s 2 r}\), and \(\mathbf{s} 2 \mathbf{i}\), respectively. They are
 computed in terms of the classical resonant frequency \(\omega 0\), and Neper's frequency \(\boldsymbol{\alpha}\), which are defined by the final two equations.
\[
\begin{aligned}
& s \operatorname{sir}=\operatorname{RE}\left(-\alpha+\sqrt{\alpha^{2}-\omega \theta^{2}}\right) \quad s 1 i=\operatorname{IM}\left(-\alpha+\sqrt{\alpha^{2}-\omega \theta^{2}}\right) \\
& \operatorname{s2r}=\operatorname{RE}\left(-\alpha-\sqrt{\alpha^{2}-\omega \theta^{2}}\right) \quad \sin =\operatorname{IM}\left(-\alpha-\sqrt{\alpha^{2}-\omega \theta^{2}}\right) \quad \omega \theta=\sqrt{\frac{1}{L \cdot C}} \\
& \alpha=\frac{1}{2 R \cdot C}
\end{aligned}
\]

\section*{Underdamped Transient}

The six equations in this section represent the transient response of an underdamped RLC circuit. The condition for an underdamped system is that \(\boldsymbol{\omega 0}>\boldsymbol{\alpha}\). The first equation shows the classical radian frequency \(\omega 0\), which is determined by the inductance and capacitance \(\mathbf{L}\) and \(\mathbf{C}\). The Neper's frequency \(\boldsymbol{\alpha}\) is calculated in the second equation. The damped resonant frequency \(\omega \mathbf{d}\) is computed from \(\omega 0\) and \(\boldsymbol{\alpha}\) in the third equation. The fourth equation shows the voltage across the capacitor \(\mathbf{v}\), while the last two equations show the relationship of the constants \(\mathbf{B 1}\) and \(\mathbf{B} 2\) to the initial capacitor voltage \(\mathbf{V 0}\), initial inductor current
 \(\mathbf{I 0}\), the capacitor \(\mathbf{C}\) and resistor \(R\), and frequencies \(\omega d\) and \(\alpha\). The voltage across the capacitor shows an osillatory behavior with respect to the characteristic frequency \(\omega \mathrm{d}\).
\[
\begin{array}{lr}
\omega \theta=\sqrt{\frac{1}{L \cdot C}} \quad \omega=\frac{1}{2 R \cdot C} & \omega d=\sqrt{\omega \theta^{2}-\alpha^{2}} \\
\omega=B 1 \cdot e^{-\alpha \cdot t} \cdot \cos (\omega d \cdot t)+B 2 \cdot e^{-\alpha \cdot t} \cdot \operatorname{SIN}(\omega d \cdot t) & B 1=v \theta \\
B 2=\frac{-\alpha}{\omega d} \cdot v \theta-\frac{1}{\omega d \cdot C} \cdot\left(\frac{v \theta}{R}+I \theta\right) &
\end{array}
\]

\section*{Critically-Damped Transient}

The five equations in this section represent the RLC transient response of a critically-damped circuit. The condition for an critically-damped system is that \(\boldsymbol{\omega 0}=\boldsymbol{\alpha}\). The first two equations define the Neper's frequency \(\boldsymbol{\alpha}\) and the classical resonant frequency \(\boldsymbol{\omega} 0\). The third equation represents the transient response to a step function stimulus of the voltage across the capacitor \(\mathbf{v}\), as expressed in terms of the constants D1 and D2, Neper's frequency, and time \(\mathbf{t}\). The last two equations compute the constants D1 and D2 in
 terms of the capacitor voltage \(\mathbf{V 0}\) and the initial inductor current \(\mathbf{I O}\).
\[
\begin{array}{cc}
\alpha=\frac{-1}{2 \cdot R \cdot C} & \omega \theta=\sqrt{\frac{1}{L \cdot C}} \\
\mathrm{D}=-\alpha \cdot(\mathrm{V} 0+2 \cdot I 0 \cdot R) & \mathrm{D} 2=\mathrm{V} 0
\end{array}
\]

\section*{Overdamped Transient}

The seven equations in this section show the transient performance of an overdamped RLC circuit.. The condition for an overdamped system is that \(\boldsymbol{\alpha}>\boldsymbol{\omega} 0\). The first two equations define the characteristic frequencies \(\mathbf{s} 1\) and \(\mathbf{s 2}\) in terms of the Neper's frequency \(\boldsymbol{\alpha}\) and the classical resonant frequency \(\boldsymbol{\omega} 0\), which are calculated in the third and fourth equations. The fifth equation represents the transient response to a step function stimulus of the voltage across the capacitor \(\mathbf{v}\). This response is determined by the constants A1 and A2, the characteristic frequencies \(\mathbf{s} \mathbf{1}\) and \(\mathbf{s 2}\), and the time \(\mathbf{t}\). The last two equations compute the constants A1 and A2 from the initial capacitor voltage \(\mathbf{V} \mathbf{0}\), the initial inductor current \(\mathbf{I 0}\), and the characteristic frequencies s1 and s2.
\[
\begin{aligned}
& s 1=-\alpha+\sqrt{\alpha^{2}-\omega \theta^{2}} \quad s 2=-\alpha-\sqrt{\alpha^{2}-\omega \theta^{2}} \quad \omega \theta=\frac{1}{\sqrt{L \cdot C}} \\
& \alpha=\frac{1}{2 \cdot R \cdot C} \quad \omega=A 1 \cdot e^{s 1 \cdot t}+H 2 \cdot e^{s 2 \cdot t} \quad A 1=\frac{\left(V Q \cdot s 2+\frac{1}{C} \cdot\left(\frac{V Q}{R}+I \theta\right)\right]}{s 2-s 1} \\
& A 2=\frac{-\left(V Q \cdot s 1+\frac{1}{C} \cdot\left(\frac{V Q}{R}+I \theta\right)\right]}{s 2-s 1}
\end{aligned}
\]

Analysis
Equations
RLC Circuits
Overdamped Transient
Reference

\section*{Bibliography}

Nilsson, James W., Electric Circuits, 2nd Edition, Chapter 8, Addison-Wesley Publishing Company, Reading, MA 1987.

\section*{Chapter 24}

\section*{AC Circuits}

This chapter covers equations describing the properties of AC circuits.
\(\square\) RL Series Impedance
- RC Series Impedance
\(\square\) Impedance \(\leftrightarrow\) Admittance
- Two Impedances in Series
- Two Impedances in Parallel

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline B & Susceptance & S \\
C & Capacitance & F \\
f & Frequency & Hz \\
G & Conductance & S \\
I & Instantaneous current & A \\
Im & Current amplitude & A \\
L & Inductance & H \\
\(\theta\) & Impedance phase angle & r \\
\(\theta 1\) & Phase angle 1 & r \\
\(\theta 2\) & Phase angle 2 & r \\
\(\theta \mathrm{y}\) & Admittance phase angle & r \\
\(\theta \mathrm{z}\) & Impedance phase angle & r \\
R & Resistance & \(\Omega\) \\
R1 & Resistance 1 & \(\Omega\) \\
R2 & Resistance 2 & \(\Omega\) \\
t & Time & S \\
V & Total voltage & S \\
VC & Voltage across capacitor & V
\end{tabular}
\begin{tabular}{|c|c|c|}
VL & Voltage across inductor & V \\
Vm & Maximum voltage & V \\
VR & Voltage across resistor & V \\
\(\omega\) & Radian frequency & \(\mathrm{r} / \mathrm{s}\) \\
X & Reactance & \(\Omega\) \\
X 1 & Reactance 1 & \(\Omega\) \\
X 2 & Reactance 2 & \(\Omega\) \\
Ym & Admittance magnitude & S \\
Z 1 m & Impedance 1 magnitude & \(\Omega\) \\
Z 2 m & Impedance 2 magnitude & \(\Omega\) \\
Zm & Impedance magnitude & \(\Omega\) \\
\hline
\end{tabular}

\section*{RL Series Impedance}

The eight equations in this section describe the relationships of an RL series circuit. The first equation shows a sinusoidal current I defined in terms of an amplitude Im, radian frequency \(\boldsymbol{\omega}\), and time \(\mathbf{t}\). The second equation defines the magnitude of the impedance \(\mathbf{Z m}\) in terms of the resistance \(\mathbf{R}\), and the inductance \(\mathbf{L}\) and \(\boldsymbol{\omega}\). The third and fourth equations show the voltage drops VR and VL across the resistor and inductor, respectively. The fifth equation shows the instantaneous voltage across the RL circuit, the next two equations \(\bar{R}^{\text {L3 }}\), show the amplitude VM and phase \(\boldsymbol{\theta}\) of the voltage across the circuit. The final equation shows the relation between \(\omega\) and frequency \(f\).
\[
\begin{aligned}
& I=\operatorname{Im} \cdot \operatorname{SIN}(\omega \cdot t) \quad A B S(Z m)^{2}=R^{2}+w^{2} \cdot L^{2} \\
& V R=Z m \cdot \operatorname{Im} \cdot \operatorname{SIN}(\omega \cdot t) \cdot \operatorname{COS}(\theta) \quad V L=Z m \cdot \operatorname{Im} \cdot \operatorname{COS}(\omega \cdot t) \cdot \operatorname{SIN}(\theta) \\
& V=V R+V L \quad \quad U m=I m \cdot Z m \quad \theta=A T A N\left(\frac{\omega \cdot L}{R}\right] \\
& \omega=2 \cdot \pi \cdot f
\end{aligned}
\]

\section*{RC Series Impedance}

The eight equations in this section describe the relationships of an RC series circuit. The first equation shows a sinusoidal current \(\mathbf{I}\) defined in terms of an amplitude Im, radian frequency \(\omega\), and time \(t\). The second equation defines the magnitude \(\mathbf{Z m}\) of the AC impedance of the circuit in terms of the resistance \(\mathbf{R}\), capacitance \(\mathbf{C}\), and radian frequency \(\omega\). The third and fourth equations express the voltage VR across the resistor and the voltage VC across the capacitor. The sum of VR and VC represents the total voltage \(\mathbf{V}\) across the RC series circuit. The next two equations show the amplitude Vm
 and phase \(\boldsymbol{\theta}\) of the voltage across the circuit. The final equation connects \(\boldsymbol{\omega}\) with the frequency \(\mathbf{f}\).
\[
\begin{aligned}
& I=I m \cdot \operatorname{SIN}(\omega \cdot t) \quad A B S(Z m)^{2}=R^{2}+\frac{1}{(\omega \cdot C)^{2}} \\
& V R=Z m \cdot \operatorname{Im} \cdot \operatorname{SIN}(\omega \cdot t) \cdot \operatorname{COS}(\theta) \quad U C=Z m \cdot \operatorname{Im} \cdot \operatorname{COS}(\omega \cdot t) \cdot \operatorname{SIN}(\theta) \\
& V=V R+V C \quad \quad U m=I m \cdot Z m \quad \theta=A \operatorname{TAN}\left(\frac{-1}{\omega \cdot C \cdot R}\right) \\
& \omega=2 \cdot \pi \cdot f
\end{aligned}
\]

\section*{Impedance \(\leftrightarrow\) Admittance}

These ten equations describe the relationship
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
AC Circuits \\
\(\quad\) Impedance \(\leftrightarrow\) Admittance \\
Reference \\
\hline
\end{tabular}

Analysis
AC Circuits
Impedance \(\leftrightarrow\) Admittance
Reference between impedance and admittance. The first four equations focus on the impedance: its magnitude \(\mathbf{Z m}\), its real and imaginary parts \(\mathbf{R}\) and \(\mathbf{X}\), and its phase angle \(\boldsymbol{\theta z}\). The fifth and sixth equations
 link the phase and magnitude of the impedance and admittance. The last five equations focus on the admittance: its magnitude \(\mathbf{Y m}\), its real and imaginary parts \(\mathbf{G}\) and \(\mathbf{B}\), and its phase angle \(\boldsymbol{\theta} \mathbf{y}\).
\[
\begin{array}{ccc}
\operatorname{ABS}(Z m)^{2}=R^{2}+X^{2} & \theta z=A T A N\left(\frac{X}{R}\right) & R=Z m \cdot \operatorname{COS}(\theta z) \\
Y=Z m \cdot \operatorname{SIN}(\theta z) & \theta y=-\theta z & Y_{m}=\frac{1}{Z m} \\
G=Y_{m} \cdot \operatorname{COS}(\theta y) & B=Y_{m} \cdot \operatorname{SIN}(\theta y) & A B S\left(Y_{m}\right)^{2}=G^{2}+B^{2} \\
\theta y=\operatorname{ATAN}\left(\frac{B}{G}\right) & &
\end{array}
\]

\section*{Two Impedances in Series}

These eight equations characterize the manner of combining two impedances \(\mathbf{Z} 1\) and \(\mathbf{Z 2}\) in series with real and imaginary parts \(\mathbf{R 1}\) and \(\mathbf{X 1}, \mathbf{R 2}\) and \(\mathbf{X 2}\), respectively. The impedances \(\mathbf{Z 1}\) and \(\mathbf{Z 2}\) can be expressed in terms of their magnitudes \(\mathbf{Z 1 m}\) and \(\mathbf{Z 2 m}\), and phase angles \(\boldsymbol{\theta 1}\) and \(\boldsymbol{\theta 2}\) as shown by the last four equations. The resulting impedance has a magnitude \(\mathbf{Z m}\) and a phase angle \(\boldsymbol{\theta}\), as shown
 by the first two equations. \(\mathbf{R}\) and \(\mathbf{X}\) represent the real and imaginary parts of the resulting impedance, and are defined by the third and fourth equations.
\[
\begin{array}{lr}
\operatorname{ABS}(Z m)^{2}=R^{2}+X^{2} & \theta=A T A N\left(\frac{X}{R}\right) \quad R=R 1+R 2 \\
X=X 1+X 2 & A B S(Z 1 m)^{2}=R 1^{2}+X 1^{2} \\
\text { ABS }(Z 2 m)^{2}=R 2^{2}+X 2^{2} & \quad \theta 1=A T A N\left(\frac{X 1}{R 1}\right) \quad \theta 2=A T A N\left(\frac{X Z}{R 2}\right)
\end{array}
\]

\section*{Two Impedances in Parallel}
\begin{tabular}{l}
Analysis \\
Equations \\
AC Circuits \\
\(\quad\) Two Impedances in Parallel \\
Reference \\
\hline
\end{tabular}

These eight equations describe the properties of combining two impedances \(\mathbf{Z 1}\) and \(\mathbf{Z 2}\) in parallel. \(\mathbf{Z 1}\) is expressed in terms of real and imaginary parts \(\mathbf{R 1}\) and \(\mathbf{X 1}\), or of magnitude \(\mathbf{Z 1 m}\) and phase \(\boldsymbol{\theta 1}\). Similarly, \(\mathbf{Z 2}\) can be defined by real and imaginary parts \(\mathbf{R 2}\) and \(\mathbf{X 2}\) or magnitude and phase \(\mathbf{Z 2 m}\) and \(\boldsymbol{\theta 2}\). \(\mathbf{Z m}\) and \(\boldsymbol{\theta}\) are computed from known values of \(\mathbf{R 1}\), \(\mathbf{X 1}, \mathbf{R 2}\) and \(\mathbf{X 2}\).
\[
\begin{aligned}
& \operatorname{ABS}(\mathrm{Zm})^{2}=\frac{\left((\mathrm{R} 1 \cdot \mathrm{R} 2-\mathrm{Y} 1 \cdot \mathrm{~K} 2)^{2}+(\mathrm{R} 1 \cdot \mathrm{X} 2+\mathrm{R} 2 \cdot: \times 1)^{2}\right)}{(\mathrm{R} 1+\mathrm{R} 2)^{2}+(\mathrm{X} 1+\mathrm{X} 2)^{2}} \\
& \theta=\operatorname{ATAN}\left(\frac{(\mathrm{K} 1 \cdot \mathrm{R} 2+\mathrm{R} 1 \cdot \mathrm{~K} 2)}{\mathrm{R} 1 \cdot \mathrm{R} 2-\mathrm{X} 1 \cdot \mathrm{~K} 2}\right)-\mathrm{ATAN}\left(\frac{(\mathrm{X} 1+\mathrm{K} 2)}{\mathrm{R} 1+\mathrm{R} 2}\right) \\
& R=Z m \cdot \operatorname{COS}(\theta) \quad X=Z m \cdot \operatorname{SIN}(\theta) \quad \mathrm{ABS}(Z 1 m)^{2}=R 1^{2}+X 1^{2} \\
& \operatorname{ABS}(Z 2 m)^{2}=R 2^{2}+X 2^{2} \quad \text { 日1 }=A \operatorname{TAN}\left(\frac{Y 1}{R 1}\right) \\
& 82=\mathrm{ATRN}\left(\frac{\mathrm{KI}}{\mathrm{R} 2}\right]
\end{aligned}
\]

\section*{Chapter 25}

\section*{Polyphase Circuits}

\author{
Analysis \\ Equations \\ Polyphase Circuits \\ Reference
}

This chapter covers equations describing polyphase circuits.
- Balanced \(\Delta\) Network
- Balanced Wye Network
- Power Measurements

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline IL & Line current & A \\
Ip & Phase current & A \\
P & Power per phase & W \\
PT & Total power & W \\
\(\theta\) & Impedance angle & r \\
VL & Line voltage & V \\
Vp & Phase voltage & V \\
W1 & Wattmeter 1 & W \\
W2 & Wattmeter 2 & W \\
\hline
\end{tabular}

\section*{Balanced \(\Delta\) Network}

These five equations cover the essential

Analysis Equations

Polyphase Circuits
Balanced \(\Delta\) Network
Reference relationships for a balanced \(\Delta\) network. The first equation defines the line voltage \(V \mathbf{L}\) in terms of the phase voltage \(\mathbf{V p}\). The second equation defines the line current IL in terms of the phase current Ip. The third equation shows the power in each phase in terms of \(\mathbf{V p}\), Ip and
the phase delay \(\boldsymbol{\theta}\) between voltage and current. The last two equations represent the total power PT delivered to the system in terms of line voltage and current or the phase voltage and current.
\(\mathrm{VL}=\mathrm{V}_{\mathrm{P}}\)
\(\mathrm{IL}=\sqrt{3} \cdot \mathrm{IP}_{\mathrm{P}}\)
\(\mathrm{P}=\mathrm{V}_{\mathrm{P}} \cdot \mathrm{I}_{\mathrm{P}} \cdot \operatorname{COS}(\theta)\)
\(\mathrm{PT}=3 \cdot \mathrm{~V}_{\mathrm{P}} \cdot \mathrm{I}_{\mathrm{P}} \cdot \operatorname{COS}(\theta) \quad \mathrm{PT}=\sqrt{3} \cdot \mathrm{VL} \cdot \mathrm{IL} \cdot \operatorname{COS}(\theta)\)

\section*{Balanced Wye Network}

These five equations cover the essential
```

Analysis
Equations
Polyphase Circuits
Balanced Wye Network
Reference

``` relationships for a balanced star network. The first equation defines the line voltage \(\mathbf{V L}\) in terms of the phase voltage \(\mathbf{V p}\). The second equation defines the line current IL in terms of the phase current Ip. The third equation shows the power in each phase in terms of \(\mathbf{V p}, \mathrm{Ip}\) and phase delay \(\boldsymbol{\theta}\). The last two equations represent total power PT delivered to the system in terms of line voltage and current or phase voltage and current.
\begin{tabular}{|ccc|}
\hline \(\mathrm{VL}=\sqrt{3} \cdot \psi_{P}\) & \(\mathrm{IL}=\mathrm{I}_{\mathrm{P}}\) & \(\mathrm{P}=\mathrm{V}_{\mathrm{P}} \cdot \mathrm{I}_{\mathrm{P}} \cdot \operatorname{CoS}(\theta)\) \\
\(\mathrm{PT}=3 \cdot \psi_{\mathrm{P}} \cdot \mathrm{I}_{\mathrm{P}} \cdot \operatorname{CoS}(\theta)\) & \(\mathrm{PT}=\sqrt{3} \cdot \mathrm{VL}^{\prime} \cdot \mathrm{IL} \cdot \operatorname{CoS}(\theta)\) & \\
\hline
\end{tabular}

\section*{Power Measurements}

These three equations for a two-wattmeter connection are used to measure the total
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
Polyphase Circuits \\
Power Measurements \\
Reference
\end{tabular} power of a balanced network. The wattmeter readings W1 and \(\mathbf{W} \mathbf{2}\) are expressed in terms of the line current IL, line voltage VL, and phase delay \(\boldsymbol{\theta}\) between voltage and current. The final equation represents the total power delivered to the three-phase load.
\[
W 1=\mathrm{VL} \cdot \mathrm{IL} \cdot \cos \left(\theta+\frac{\pi}{6}\right) \quad W 2=\mathrm{VL} \cdot I L \cdot \cos \left(\theta-\frac{\pi}{6}\right) \quad P T=\sqrt{3} \cdot \mathrm{~V} \cdot I L \cdot \cos (\theta)
\]

\section*{Chapter 26}

\section*{Electrical Resonance}

Analysis
Equations
Electrical Resonance
Reference

This chapter covers equations describing the electrical properties of resonance in circuits made of ideal circuit elements.
- Parallel Resonance I
- Parallel Resonance II

Resonance in Lossy Inductor
- Series Resonance

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline\(\alpha\) & Damping coefficient & \(\mathrm{r} / \mathrm{s}\) \\
\(\beta\) & Bandwidth & \(\mathrm{r} / \mathrm{s}\) \\
C & Capacitance & F \\
Im & Current & A \\
L & Inductance & H \\
\(\eta\) & Phase angle & r \\
Q & Quality factor & unitless \\
R & Resistance & \(\Omega\) \\
Rg & Generator resistance & \(\Omega\) \\
Vm & Maximum voltage & V \\
\(\omega\) & Radian frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega 0\) & Resonant frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega 1\) & Lower cutoff frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega 2\) & Upper cutoff frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega \mathrm{d}\) & Damped resonant frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega \mathrm{m}\) & Frequency for max amplitude & \(\mathrm{r} / \mathrm{s}\) \\
Yres & Admittance at resonance & S \\
Z & Impedance & \(\Omega\) \\
Zres & Impedance at resonance & \(\Omega\) \\
\hline
\end{tabular}

\section*{Parallel Resonance I}

These nine equations describe the properties of a parallel resonant circuit. The first equation expresses \(\mathbf{V m}\), the voltage across the circuit, in terms of \(\mathbf{I m}\), the magnitude of the current supplied and the equivalent impedance of the parallel circuit consisting of an inductor \(\mathbf{L}\), a capacitor \(\mathbf{C}\) and a resistor \(\mathbf{R}\) at the radian frequency \(\omega\). The second equation shows the phase angle relationship between \(\mathbf{V m}\) and \(\mathbf{I m}\). The third equation connects the resonant frequency \(\boldsymbol{\omega 0}\) and reactive parameters \(\mathbf{L}\) and \(\mathbf{C}\). The equations for \(\boldsymbol{\omega 1}\) and \(\omega 2\) represent the upper and lower cutoff frequencies beyond resonance, where the impedance is half the impedance at resonance. The bandwidth \(\boldsymbol{\beta}\) is expressed in terms of \(\boldsymbol{\omega}\)
 \(\mathbf{1}\) and \(\boldsymbol{\omega} \mathbf{2}\). The last three equations calculate the quality factor \(\mathbf{Q}\) in terms of \(\mathbf{R}, \mathbf{C}, \mathbf{L}\) and \(\boldsymbol{\omega 0}\).
\begin{tabular}{cc}
\(U_{m}=\frac{I m}{\sqrt{\frac{1}{R^{2}}+\left(w \cdot C-\frac{1}{w \cdot L}\right)^{2}}} \quad \operatorname{TAN}(\theta)=\left(\omega \cdot C-\frac{1}{w \cdot L}\right) \cdot R \quad \omega \theta=\frac{1}{\sqrt{L \cdot C}}\) \\
\(\omega 1=\frac{-1}{2 \cdot R \cdot C}+\sqrt{\frac{1}{(2 \cdot R \cdot C)^{2}}+\frac{1}{L \cdot C}}\) & \(\omega 2=\frac{1}{2 \cdot R \cdot C}+\sqrt{\frac{1}{(2 \cdot R \cdot C)^{2}}+\frac{1}{L \cdot C}} \quad \beta=\omega 2-\omega 1\) \\
\(Q=\frac{\omega \cdot \theta}{\beta} \quad Q=R \cdot \sqrt{\frac{C}{L}} \quad Q=\omega \theta \cdot R \cdot C\)
\end{tabular}

\section*{Parallel Resonance II}

These seven equations represent an alternative

Analysis
Equations
Electrical Resonance Parallel Resonance II
Reference method of expressing the properties of a resonant circuit in terms of the quality factor \(\mathbf{Q}\). The first equation links \(\mathbf{Q}\) with the resonant frequency \(\boldsymbol{\omega 0}\) and the bandwidth \(\boldsymbol{\beta}\). The equations for \(\boldsymbol{\omega 1}\) and \(\omega \mathbf{2}\) show the connection between the upper and lower cutoff frequencies
and \(\omega_{0}\) and \(\mathbf{Q}\). The fourth equation computes \(\boldsymbol{\alpha}\), the damping coefficient, while the damped resonant frequency \(\omega \mathrm{d}\) is expressed in terms of \(\boldsymbol{\alpha}\) and \(\boldsymbol{\omega 0}\) or \(\boldsymbol{\omega 0}\) and \(\mathbf{Q}\). The last equation is an alternative form of equating \(\boldsymbol{\alpha}\) with \(\mathbf{Q}\) and \(\boldsymbol{\omega} \mathbf{0}\).
\[
\begin{aligned}
& Q=\frac{\omega Q}{\beta} \quad \omega 1=\omega Q \cdot\left(\frac{-1}{2 \cdot Q}+\sqrt{\frac{1}{(2 \cdot Q)^{2}}}+1\right) \quad \omega 2=\omega Q \cdot\left(\frac{1}{2 \cdot Q}+\sqrt{\frac{1}{(2 \cdot Q)^{2}}}+1\right) \\
& \alpha=\frac{1}{2 \cdot R \cdot C} \quad \omega d=\sqrt{\omega Q^{2}-\alpha^{2}} \quad \omega d=\omega Q \cdot \sqrt{1-\frac{1}{4 \cdot Q^{2}}} \\
& \quad \alpha=\frac{\omega Q}{2 \cdot Q}
\end{aligned}
\]

\section*{Resonance in Lossy Inductor}
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
\(\quad\) Electrical Resonance \\
\(\quad\) Resonance in Loss Inductor \\
Reference \\
\hline
\end{tabular}

These four equations characterize the properties of a lossy inductor in parallel with an ideal capacitor sourced from a current source with an impedance of \(\mathbf{R g} . \boldsymbol{\omega 0}\) represents the radian frequency when the admittance of the parallel circuit is purely conductive. Yes and Zees represent the impedance and admittance of the circuit at resonance. \(\omega \mathrm{m}\) represents the frequency wherein the amplitude of the voltage across the resonant circuit is at maximum.
\[
\begin{aligned}
& \omega \theta=\sqrt{\frac{1}{L \cdot C}-\left(\frac{R}{L}\right)^{2}} \quad \text { Ores }=\frac{(L+R g \cdot R \cdot C)}{L \cdot R g} \quad \text { Ores }=\frac{1}{\text { Pres }} \\
& \omega m=\sqrt{\left(\frac{1}{L \cdot C}\right)^{2} \cdot\left(1+\frac{2 \cdot R}{R g}\right)+\left(\frac{R}{L}\right)^{2} \cdot\left(\frac{2}{L \cdot C}\right)-\left(\frac{R}{L}\right)^{2}}
\end{aligned}
\]

\section*{Series Resonance}

These nine equations characterize the

\author{
Analysis \\ Equations \\ Electrical Resonance Series Resonance \\ Reference
} properties of a series resonant circuit. The
first equation connects the resonant frequency \(\omega 0\) and the reactive parameters \(\mathbf{L}\) and \(\mathbf{C}\). The second and third equations compute the magnitude \(\mathbf{Z}\) and phase \(\boldsymbol{\theta}\) of the impedance. The equations for \(\boldsymbol{\omega 1}\) and \(\boldsymbol{\omega}\) represent the upper and lower cutoff frequencies beyond resonance, where the impedance is half the impedance at resonance. The expression for \(\beta\) represents the bandwidth for the resonant circuit. The last two equations determine the quality factor \(\mathbf{Q}\) in terms of \(\mathbf{R}, \mathbf{C}, \mathbf{L}\), and \(\boldsymbol{\omega} \mathbf{0}\).
\[
\begin{gathered}
\omega Q=\frac{1}{\sqrt{L \cdot C}} \quad Z=\sqrt{R^{2}+\left(\omega \cdot L-\frac{1}{\omega \cdot C}\right)^{2}} \quad \theta=A \operatorname{ATAN}\left(\frac{\left(\omega \cdot L-\frac{1}{\omega \cdot C}\right)}{R}\right) \\
\omega 1=\frac{-R}{2 \cdot L}+\sqrt{\left(\frac{R}{2 \cdot L}\right)^{2}+\frac{1}{L \cdot C}} \quad \omega 2=\frac{R}{2 \cdot L}+\sqrt{\left(\frac{R}{2 \cdot L}\right)^{2}+\frac{1}{L \cdot C}} \quad \beta=\omega 2-\omega 1 \\
\beta=\frac{R}{L} \quad Q=\frac{\omega Q \cdot L}{R} \quad Q=\frac{1}{R} \cdot \sqrt{\frac{L}{C}}
\end{gathered}
\]

\section*{Chapter 27}

\section*{OpAmp Circuits}

Analysis
Equations
OpAmp Circuits
Reference

Seven commonly-used OpAmp circuits are presented in this chapter. An OpAmp is a direct-coupled high-gain amplifier that can be designed with the use of feedback to control its overall performance characteristics. The two inputs are labelled + and - . The manner in which input signals are connected to these terminals defines the inverting or non-inverting properties of the circuit.
- Basic Inverter
- Non-Inverting Amplifier
\(\square\) Current Amplifier
- Transconductance Amplifier
- Level Detector (Inverting)
- Level Detector (Non-Inverting)
\(\square\) Differentiator
- Differential Amplifier

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline Acc & CM current gain & unitless \\
Aco & CM gain from real OpAmp & unitless \\
Ad & Differential mode gain & unitless \\
Agc & Transconductance & S \\
Aic & Current gain & unitless \\
Av & Voltage gain & unitless \\
C1 & Input capacitor & F \\
Cf & Feedback capacitor & F \\
CMRR & CM rejection ratio & unitless \\
Cp & Bypass capacitor & F \\
fcp & 3dB bandwidth, circuit & Hz
\end{tabular}
\begin{tabular}{|c|c|c|}
fd & Characteristic frequency & Hz \\
f0 & Passband, geometric center & Hz \\
fop & 3dB bandwidth, OpAmp & Hz \\
If & Maximum current through Rf & A \\
R1 & Input resistor & \(\Omega\) \\
R2 & Current stabilizor & \(\Omega\) \\
R3 & Feedback resistor & \(\Omega\) \\
R4 & Resistor & \(\Omega\) \\
Rf & Feedback resistor & \(\Omega\) \\
Rin & Input resistance & \(\Omega\) \\
Rl & Load resistance & \(\Omega\) \\
Ro & Output resistance, OpAmp & \(\Omega\) \\
Rout & Output resistance & \(\Omega\) \\
Rp & Bias current resistor & \(\Omega\) \\
Rs & Voltage divide resistor & \(\Omega\) \\
tr & 10-90\% rise time & s \\
\(\Delta \mathrm{VH}\) & Hysteresis & V \\
VL & Detection threshold, low & V \\
Vomax & Maximum circuit output & V \\
VR & Reference voltage & V \\
Vrate & Maximum voltage rate & \(\mathrm{V} / \mathrm{s}\) \\
VU & Detection threshold, high & V \\
Vz1 & Zener breakdown 1 & V \\
\(\mathrm{Vz2}\) & Zener breakdown 2 & V \\
\hline
\end{tabular}

\section*{Basic Inverter}

These four equations define the characteristics
```

Analysis Equations
OpAmp Circuits
Basic Inverter

```

Reference of a basic inverter. The first equation links the voltage gain \(\mathbf{A v}\) to the feedback resistance \(\mathbf{R f}\) and input resistance \(\mathbf{R 1}\). The
 optimum value of \(\mathbf{R p}\) is defined by the second equation to minimize output-voltage offset due to input bias current. The first pole frequency fcp (i.e., 3 dB bandwidth) is defined by the third equation. Small signal rise time \(\operatorname{tr}\) (10 to \(90 \%\)) is defined by the fourth equation.
\(A u=\frac{-R f}{R 1}\)
\(\mathrm{RP}=\frac{\mathrm{R} 1 \cdot \mathrm{Rf}}{\mathrm{R} 1+\mathrm{Rf}}\)
fcp \(=\) fop \(\cdot \mathrm{Au} \cdot\left(\frac{\mathrm{R} 1}{\mathrm{Rf}}\right)\)
\(t r=\frac{.35 \cdot \mathrm{Rf}}{\text { fop } \cdot \mathrm{Au} \cdot \mathrm{RI}}\)

\section*{Non-Inverting Amplifier}

These four equations define the properties of a

OpAmp Circuits Non-Inverting Amplifier Reference non-inverting amplifier. The first equation expresses the voltage gain \(\mathbf{A v}\) in terms of the feedback resistor \(\mathbf{R f}\) and resistor R1. The second equation gives the value of Rp needed in
 the input circuit to minimize offset current effects. The third equation defines the 3 dB bandwidth of the circuit in terms of the first pole fop of the OpAmp and Av, R1, and Rf. The final equation expresses the small-signal rise time \(\mathbf{t r}\).
\[
\begin{aligned}
& R u=1+\frac{R f}{R 1} \quad R p=\frac{R 1 \cdot R f}{R 1+R f} \quad f c p=\frac{f o p \cdot R U \cdot R 1}{R 1+R f} \\
& t r=\frac{.35 \cdot(R 1+R f)}{f o p \cdot A u \cdot R 1}
\end{aligned}
\]

> \begin{tabular}{l} \hline Analysis \\ Equations \\ OpAmp Circuits \\ \(\quad\) Current Amplifier \end{tabular}

\section*{Reference}

Properties of a current amplifier are covered

\section*{Current Amplifier} in this section. The first equation shows the relationship between the current gain Aic with feedback resistance Rf, load resistance RI, output resistance of OpAmp Ro, voltage divide resistor Rs, and voltage gain Av. The remaining equations define the input resistance Rin and output resistance Rout of the system.
\[
\operatorname{Aic}=\frac{(R s+R f) \cdot R v}{R l+R o+R s \cdot(1+R v)} \quad \operatorname{Rin}=\frac{R f}{1+R u} \quad \text { Rout }=R s \cdot(1+R v)
\]

\section*{Transconductance Amplifier}

\author{
Analysis Equations \\ OpAmp Circuits \\ Transconductance Amplifier \\ Reference
}

The two equations in this section specify a closed loop transconductance Agc and output resistance Rout in terms of the resistance Rs and voltage gain Av.

Rout \(=\) Rs \(\cdot(1+\) Au \()\)

\section*{Level Detector (Inverting)}

The first equation in this section computes the

Analysis
Equations
OpAmp Circuits
Level Detector (Inverting)
Reference value of the resistor R1 attached to an OpAmp inverting input. The second equation calculates the hysteresis (or memory)
 \(\Delta \mathbf{V H}\) of the level detector circuit. The third and fourth equations define the upper and lower trip voltages \(\mathbf{V U}\) and VL for an ideal inverting level detector, assuming a reference voltage VR and breakdown voltages Vz1 and Vz2, in terms of Rp and Rf.
\(\quad R 1=\frac{R_{P} \cdot R f}{R_{P}+R_{f}} \quad \Delta U H=\frac{\left(U_{z} 1+U_{z} R\right) \cdot R_{P}}{R_{P}+R f} \quad V U=\frac{\left(U R \cdot R f+R_{P} \cdot U_{z} 1\right)}{R f+R_{P}}\)
\(V L=\frac{\left(U R \cdot R f-R_{P} \cdot U_{z} 2\right)}{R f+R_{P}}\)

\section*{Level Detector (Non-Inverting)}

\author{
Analysis Equations \\ OpAmp Circuits \\ Level Detector (Non-Invert.) \\ Reference
}

The first equation in this section computes the value of the resistor R1 attached to an OpAmp non-inverting input. The second equation calculates the hysteresis (or memory) \(\mathbf{\Delta V H}\) of the level detector circuit. The third and fourth equations define the upper and lower trip voltages VU and VL for an ideal inverting level detector, assuming a reference voltage VR and breakdown voltages \(\mathbf{V z 1}\) and \(\mathbf{V z 2}\), in terms of \(\mathbf{R p}\) and \(\mathbf{R f}\).
\[
\begin{array}{cc}
R 1=\frac{R_{P} \cdot R_{f}}{R_{P}+R_{f}} & \Delta U H=\frac{\left(U_{z} 1+U_{z} Z\right) \cdot R_{P}}{R_{P}+R f} \\
V \mathrm{~V}=\frac{\left(U R \cdot\left(R f+R_{P}\right)+R_{P} \cdot\left(U_{z} 1\right)\right.}{R f} & V L=\frac{\left(V R \cdot\left(R_{P}+R_{f}\right)-R_{P} \cdot\left(U_{z} Z\right)\right.}{R f}
\end{array}
\]

\section*{Differentiator}

These design equations represent all the

Analysis
Equations
OpAmp Circuits Differentiator
Reference components needed for a differentiator. The first equation defines the feedback resistor Rf in terms of the maximum output voltage Vomax and current If. Typically, If is of the order of 0.1-0.5 mA. The second equation computes the value for the resistor \(\mathbf{R p}\) used to cancel the effects of OpAmp input bias current. \(\mathbf{C 1}\) is the input capacitor required for the differentiator, and R1 is the resistor utilized for
 stability. The characteristic frequency of the differentiator fd is expressed by the fifth equation. The last two equations compute the bypass capacitor \(\mathbf{C p}\) and the feedback capacitor \(\mathbf{C f}\).
\[
\begin{array}{ccc}
R f=\frac{\text { Vomax }}{I f} & R P=R f & C 1=\frac{\text { Vomax }}{R f \cdot V_{r a t e}} \\
R 1=\frac{1}{2 \cdot \pi \cdot f d \cdot C 1} & f d=\frac{1}{2 \cdot \pi \cdot R f \cdot C 1} & C P=\frac{1 Q}{2 \cdot \pi \cdot f \theta \cdot R P}
\end{array}
\]

\section*{Differential Amplifier}

These four equations show the primary

\author{
Analysis \\ Equations \\ OpAmp Circuits \\ Differential Amplifier \\ Reference
} relationships involved in the design of a differential amplifier. The first equation computes the differential gain Ad in terms of the input and feeback resistors R1 and R3. The second equation shows the common-mode gain Aco in terms of R3, R1, and
 the common-mode rejection ratio CMMR. The third equation expands the definition of Ad from the first equation to accomodate a practical OpAmp with a finite voltage gain Av. The final equation shows the commonmode gain due to resistor mismatching.

\section*{Bibliography}

Coughlin, Robert F. and Frederick F. Driscoll, Operational Amplifiers \& Linear Integrated Circuits, Prentice Hall, Englewood Cliffs, NJ 07632, 1991.

Johnson, David E. and V. Jayakumar, Operational Amplifer Circuits - Design and Application, Prentice-Hall Inc. Englewood Cliffs, NJ 07632, 1982.

Stout, David F. (Milton Kaufman, Editor) Handbook of Operational Amplifier Circuit Design, McGraw-Hill Book Company, New York NY, 1976.

\section*{Chapter 28}

\section*{Solid State Devices}

Solid State Devices
Reference

This chapter covers equations describing a variety of solid state devices.
- Semiconductor Basics
- PN Junctions
- PN Junction Currents
- Transistor Currents
- Eber-Moll Equations
\(\square\) Ideal Currents - pnp
- Switching Transients
\(\square\) MOS Transistor I
- MOS Transistor II
\(\square\) MOS Inverter (Resistive)
\(\square\) MOS Inverter (Saturated)
- MOS Inverter (Depletion)
- CMOS Transistor Pair
- Junction FET

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline\(\alpha\) & CB current gain & unitless \\
a & Linearly graded junction parameter & \(1 / \mathrm{m}^{4}\) \\
A & Area & \(\mathrm{m}^{2}\) \\
A 1 & EB junction area & \(\mathrm{m}^{2}\) \\
A2 & CB junction area & \(\mathrm{m}^{2}\) \\
\(\alpha \mathrm{f}\) & Forward \(\alpha\) & unitless \\
Aj & Junction area & \(\mathrm{m}^{2}\) \\
\(\alpha \mathrm{r}\) & Reverse \(\alpha\) & unitless
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\beta\)
\(\beta\)
b
\(\beta \mathrm{f}\)
\(\beta \mathrm{r}\)
Cj
CL
Cox
D
DB
DC
DE
Dn
Dp
eox
es
Ec
EF
Ei
Ev
fmax
\(\gamma\)
gd
gm
gmL
Go
I
I0
IB
IC
ICB0
ICE0
ICsat
ID
ID \(\lambda\)
ID0
IDsat
IE
If
Ir
Ir0
IRG
IRG0
\(\lambda\)
Is
kD & \begin{tabular}{l}
CE current gain \\
Channel width \\
Forward \(\beta\) \\
Reverse \(\beta\) \\
Junction capacitance \\
Load capacitance \\
Oxide capacitance per unit area \\
Diffusion coefficient \\
Base diffusion coefficient \\
Collector diffusion coefficient \\
Emitter diffusion coefficient \\
\(n\) diffusion coefficient \\
p diffusion coefficient \\
Oxide permittivity \\
Permittivity \\
Conduction band \\
Fermi level \\
Intrinsic Fermi level \\
Valence band \\
Maximum frequency \\
Body coefficient \\
Drain conductance \\
Transconductance \\
Transconductance, load device \\
Conductance \\
Junction current \\
Saturation current \\
Base current \\
Collector current \\
CB leakage, E open \\
CE leakage, B open \\
Collector I at saturation edge \\
Drain current \\
Channel modulation drain current \\
Drain current \\
Drain saturation current \\
Emitter current \\
Forward current \\
Reverse current \\
E-M reverse current component \\
G-R current \\
Zero bias G-R current \\
Modulation parameter \\
Saturation current \\
MOS constant, driver
\end{tabular} & \[
\begin{gathered}
\text { unitless } \\
\mathrm{m} \\
\text { unitless } \\
\text { unitless } \\
\mathrm{F} \\
\mathrm{~F} \\
\mathrm{~F} / \mathrm{m}^{2} \\
\mathrm{~m}^{2} / \mathrm{s} \\
\mathrm{~m}^{2} / \mathrm{s}
\end{gathered}
\]
unitless
unitless \\
\hline
\end{tabular}

\begin{tabular}{c|c}
Base transit time & s \\
Time & s \\
Temperature & K \\
Charging time & s \\
Discharge time & s \\
Gate oxide thickness & m \\
Collector current rise time & s \\
Charge storage time & s \\
Storage delay, turn off & s \\
Storage delay, turn off & s \\
Transit time & s \\
Input voltage & V \\
Applied voltage & V \\
Built-in voltage & V \\
BE bias voltage & V \\
CB bias voltage & V \\
Collector supply voltage & V \\
CE saturation voltage & V \\
Drain supply voltage & V \\
Drain voltage & V \\
Drain saturation voltage & V \\
EB bias voltage & V \\
Gate voltage & V \\
Gate to source voltage & V \\
Input high & V \\
Input voltage & V \\
Input low voltage & V \\
Load voltage & V \\
Midpoint voltage & V \\
Output high & V \\
Output low & V \\
Output voltage & V \\
Pinchoff voltage & V \\
Substrate bias & V \\
Threshold voltage & V \\
Threshold voltage at 0 bias & V \\
Depletion transistor threshold & V \\
Load transistor threshold & V \\
Load transistor threshold & V \\
n channel threshold & V \\
p channel threshold & V \\
MOS transistor width & V \\
Base width & m \\
Drive transistor width & \\
Load transistor width & \\
& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
WN & n-channel width & m \\
WP & p-channel width & m \\
\(\mathbf{x}\) & Depth from surface & m \\
\(\mathbf{x d}\) & Depletion layer width & m \\
xn & Depletion width, n side & m \\
xp & Depletion width, p side & m \\
Z & JFET width & m \\
\hline
\end{tabular}

\section*{Semiconductor Basics}

Nine equations form the foundation of this
Analysis
Equations
\(\quad\) Solid State Devices
Semiconductor Basics
Reference

Analysis
Equations
Solid State Devices
Semiconductor Basics
Reference module. The first two equations define the resistivities \(\rho n\) and \(\rho p\) of \(n\) - and p-type semiconductor material in terms of the electron and hole mobilities \(\mu \mathrm{n}\) and \(\mu \mathrm{p}\) and doping densities Nd and Na . The third and fourth equations connect the electron and hole diffusion coefficients Dn and Dp, using the so-called Einstein's relationship in terms of \(\mu \mathrm{n}\) and \(\mu \mathrm{p}\) and temperature T. The next two equations compute the Fermi level EF relative to the intrinsic Fermi Level Ei in terms of temperature T, Na or Nd, and the intrinsic carrier density ni. The intrinsic Fermi level Ei is calculated by the seventh equation in terms of the conduction and valence band levels Ec and \(\mathbf{E v}\), temperature \(\mathbf{T}\) and the effective masses \(\mathbf{m p}\) and \(\mathbf{m n}\) of holes and electrons. The eighth equation illustrates the diffusion of impurities in a semiconductor subject to an infinite source with a surface concentration N0 at a depth \(\mathbf{x}\) below the surface after a time \(\mathbf{t}\), given the diffusion coefficient \(\mathbf{D}\). The diffusion equation in this case follows the complementary error function distribution. The final equation details the diffusion from a finite impurity source \(\mathbf{Q}\) over a surface area \(\mathbf{A}\) with the classic Gaussian distribution.

\section*{PN Junctions}

These seven equations cover the properties of PN junctions. The first equation shows the calculation for the built-in voltage \(\mathbf{V b i}\) for a
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
\(\quad\) Solid State Devices \\
\(\quad P N\) Junctions \\
Reference \\
\hline
\end{tabular} step junction in terms of temperature \(\mathbf{T}\), the doping densities \(\mathbf{N d}\) and \(\mathbf{N a}\), and the intrinsic density ni. The next three equations focus on the depletion layers \(\mathbf{x n}\) and \(\mathbf{x p}\) in the p and the n regions of the PN junction in terms of the dielectric constant \(\boldsymbol{\varepsilon s}\), doping densities \(\mathbf{N d}\) and \(\mathbf{N a}\), built-in voltage Vbi and the applied voltage Va. The variable xd represents the total depletion region width for a given applied voltage. The fifth equation shows the capacitance \(\mathbf{C j}\) of a PN junction in terms of \(\boldsymbol{\varepsilon s}\), junction area \(\mathbf{A j}\) and \(\mathbf{x d}\). The last two equations calculate \(\mathbf{V b i}\) and \(\mathbf{x d}\) for a linearly-graded junction with a gradient parameter a.

\section*{PN Junction Currents}

Eight equations characterize many of the

Analysis
Equations
Solid State Devices
PN Junction Currents
Reference relationships that play a key role in computing currents in PN junctions. The first two equations show the current in two alternate forms. First, the junction current \(\mathbf{I}\) in terms of the junction area \(\mathbf{A j}\), diffusion coefficients \(\mathbf{D n}\) and \(\mathbf{D p}\), diffusion lengths \(\mathbf{L n}\) and \(\mathbf{L p}\), equilibrium densities of minority carriers npo and pno, applied bias Va, and temperature T. The second equation is a simplified form of the first equation in which \(\mathbf{I O}\) is defined as the multiplier of the exponential term. The third equation calculates this saturation current IO. The so-called Generation-Recombination current IRG0 at 0 bias is calculated by the fourth equation in terms of junction area \(\mathbf{A j}\), average recombination time \(\boldsymbol{\tau 0}\), intrinsic density ni, depletion width
xd. On applying a voltage Va, this generation recombination current IRG increases exponentially, as shown by the fifth equation. The next equation computes Go, the small signal conductance, in terms of temperature \(\mathbf{T}\) and currents \(\mathbf{I}\) and \(\mathbf{I O}\). The last two equations synthesize the charge storage time ts when the diode current is switched externally from If to Ir. It is seen from these two equations that ts depends strongly upon the minority carrier lifetime \(\tau \mathrm{p}\).

\section*{Transistor Currents}

The seven equations in this section show top- level relationships between the emitter, base and collector currents IE, IB and IC, respectively. The first equation defines the common base current gain \(\alpha\) as the ratio of IC to IE. The second equation defines the common emitter current gain \(\boldsymbol{\beta}\) in terms of \(\boldsymbol{\alpha}\). The third equation represents Kirchoff's current law for the transistor. The next three equations represent alternate forms of the collector current in terms of \(\boldsymbol{\alpha}, \mathrm{IE}, \mathbf{I B}, \boldsymbol{\beta}\) and the leakage currents ICE, and ICB0. The final equation links ICE0 and ICB0 in terms of \(\boldsymbol{\beta}\).
\[
\begin{array}{ccc}
\alpha=\frac{\mathrm{IC}}{\mathrm{IE}} & \beta=\frac{\alpha}{1-\alpha} & \mathrm{IE}=\mathrm{IB}+\mathrm{IC} \\
\mathrm{IC}=\alpha \cdot \mathrm{IE}+\mathrm{ICB} 0 & \mathrm{IC}=\frac{\alpha}{1-\alpha} \cdot \mathrm{IB}+\frac{\mathrm{ICBQ}}{1-\alpha} & \mathrm{IC}=\beta \cdot \mathrm{IB}+\mathrm{ICE}
\end{array}
\]

\section*{Ebers-Moll Equations}

These ten equations show a collection of

\author{
Analysis \\ Equations \\ Solid State Devices \\ Ebers-Moll Equations \\ Reference
} relevant relationships developed by J. J. Ebers and J. L. Moll in the mid-1950s recognizing the basic reciprocal behavior of a bipolar transistor. The first three equations connect the emitter, collector and base currents IE, IC and IB in terms of forward and reverse current gain \(\boldsymbol{\alpha} \mathbf{f}\) and \(\boldsymbol{\alpha r}\) and forward and reverse currents If and Ir. The corresponding common emitter current gains in the forward and reverse directions are given by \(\boldsymbol{\beta f}\) and \(\beta \mathbf{r}\), in terms of \(\boldsymbol{\alpha} \mathbf{f}\) and \(\boldsymbol{\alpha}\). The reciprocity relationships between \(\boldsymbol{\alpha}\) and \(\boldsymbol{\alpha}\), If and \(\mathbf{I r}\), and the saturation current Is are defined by the next two equations. The last three equations help define ICE0 and ICB0 in terms of \(\boldsymbol{\alpha f}\), \(\boldsymbol{\alpha r}\), and Ir0.
\[
\begin{aligned}
& I E=I f-\alpha r \cdot I r \quad I C=\alpha f \cdot I f-I r \quad I B=(1-\alpha f) \cdot I f+(1-\alpha r) \cdot I r \\
& \beta f=\frac{\alpha f}{1-\alpha f} \quad \beta r=\frac{\alpha r}{1-\alpha r} \quad \alpha f \cdot I f=I s \\
& \alpha r \cdot I r=I s \quad I C B Q=(1-\alpha r \cdot \alpha f) \cdot I r 0 \\
& I C E Q=\frac{I r 0 \cdot(1-\alpha f \cdot \alpha r)}{1-\alpha f}
\end{aligned}
\]

\section*{Ideal Currents - pnp}

The four equations in this set form the basis of

Analysis Equations

Solid State Devices Ideal Currents -pnp Reference transistor action resulting in emitter, base and collector currents in a pnp transistor. The first three equations show the emitter, collector and base currents IE, IC, and IB in terms of emitter base area A1, diffusion coefficients \(\mathbf{D E}, \mathbf{D B}\), and \(\mathbf{D C}\), the minority carrier densities \(\mathbf{n E}, \mathbf{p B}\), and \(\mathbf{n C}\), emitter and collector diffusion lengths
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

LE and LC, base width WB, emitter-base and collector base voltages VBE and VBC, base collection junction A2 and temperature T. The last equation shows the
relationship between \(\boldsymbol{\alpha}, \mathbf{D B}, \mathbf{p B}, \mathbf{W B}, \mathbf{D E}, \mathbf{n E}\) and \(\mathbf{L E}\). The corresponding equations for an npn transistor can be derived from this equation set by proper use of sign conventions.
\[
\begin{aligned}
& I E=q \cdot A 1 \cdot\left(\frac{D E \cdot n E}{L E}+\frac{D B \cdot p B}{W B}\right) \cdot\left(e^{\frac{q \cdot v E B}{k \cdot T}}-1\right)-\frac{q \cdot A 2 \cdot D B}{W B} \cdot p B \cdot\left(e^{\frac{q \cdot \psi C B}{k \cdot T}}-1\right) \\
& I C=\frac{q \cdot A 1 \cdot D B \cdot P B}{W B} \cdot\left(e^{\frac{q \cdot \psi E B}{k \cdot T}}-1\right)-q \cdot A 2 \cdot\left(\frac{D C \cdot n C}{L C}+\frac{D B \cdot P B}{W B}\right) \cdot\left(e^{\frac{q \cdot \psi C B}{k \cdot T}}-1\right) \\
& \\
& I B=\frac{q \cdot A 1 \cdot D E}{L E} \cdot n E \cdot\left(e^{\frac{q \cdot \psi B E}{k \cdot T}}-1\right)+\frac{q \cdot A 2 \cdot D C}{L C} \cdot n C \cdot\left(e^{\frac{q \cdot \psi C B}{k \cdot T}}-1\right) \\
& \alpha= \\
& \frac{\frac{D B \cdot P B}{W B}}{\frac{D B \cdot P B}{W B}+\frac{D E \cdot n E}{L E}}
\end{aligned}
\]

\section*{Switching Transients}

These six equations show the key

Analysis Equations

Solid State Devices
Switching Transients
Reference relationships in determining switching response times of bipolar transistors. The first equation shows the base charge at the edge of saturation Qsat in terms of collector saturation current ICsat and base transit time \(\tau\) t. The collector saturation is determined (approximately) by the second equation in terms of supply voltage VCC and load resistance RLD. The third equation calculates the turn-on transient time tr in terms of base recombination time \(\tau \mathbf{B}\), ICsat, base current IB and base transit time \(\tau \mathbf{t}\). The next equation computes the storage delay tsd when the bipolar transistor is switched from the saturation region to cutoff by switching base current from IB to 0 . The penultimate equation shows the storage delay tsd2 when the base current is switched from IB to -IB. The final equation computes the saturation voltage VCEsat, the voltage drop between the collector and the emitter under full saturation, in terms of the collector and base currents IC and IB and the forward and reverse \(\boldsymbol{\alpha}\) 's \(\boldsymbol{\alpha}\) and \(\boldsymbol{\alpha}\).

\section*{MOS Transistor I}

The seven equations in this section form the

\section*{Analysis \\ Equations \\ Solid State Devices \\ MOS Transistor I \\ Reference} basic equations of charge, capacitance and threshold voltage for a MOS transistor. The first equation shows the Fermi potential \(\boldsymbol{\phi F}\) defined in terms of temperature \(\mathbf{T}\), the intrinsic carrier density \(\mathbf{n i}\), and the hole density \(\mathbf{p}\). The second equation shows the depletion layer \(\mathbf{x d}\) at the surface of a p-type semiconductor in terms of the relative dielectric constant \(\boldsymbol{\varepsilon s}\), Fermi potential \(\boldsymbol{\phi F}\), and doping density \(\mathbf{N a}\). The third equation computes the charge density \(\mathbf{Q b 0}\) accumulated at the surface of the semiconductor due to band bending. The fourth equation shows how surface charge density \(\mathbf{Q b}\) is influenced by the substrate bias VSB. A thin oxide layer with a thickness tox on the surface of the semiconductor results in a capacitance Cox per unit area. The sixth equation defines the body coefficient \(\gamma\) in terms of \(\mathbf{C o x}, \mathrm{Na}\), and \(\boldsymbol{\varepsilon s}\). The final equation computes the threshold voltage for a MOS system with a work function potential of \(\phi \mathbf{G C}\) and residual oxide charge density Qox.
\[
\begin{aligned}
& \Phi F=\frac{k \cdot T}{q} \cdot L N\left[\frac{n i}{P}\right] \\
& Q b Q=-\sqrt{2 \cdot q \cdot N a \cdot \epsilon S \cdot \epsilon Q \cdot A B S(2 \cdot \sigma F)} \\
& Q b=-\sqrt{2 \cdot q \cdot N a \cdot \epsilon S \cdot \varepsilon Q \cdot A B S(-2 \cdot \Phi F+U S B)}
\end{aligned}
\]
\[
x d=\sqrt{\frac{2 \cdot E S \cdot \epsilon D \cdot(2 \cdot \overline{9} F)}{q \cdot N a}}
\]
\[
\operatorname{Cox}=\frac{\operatorname{EOX} \cdot \in \theta}{\text { tox }}
\]
\[
\begin{aligned}
& \text { Qsat=ICsat } \cdot \tau t \quad I C s a t=\frac{V C C}{R 1} \quad t r=\tau B \cdot L N\left(\frac{1}{1-\frac{I C s a t \cdot r t}{I B \cdot \tau B}}\right) \\
& \left.t s d 1=\tau B \cdot L N\left(\frac{I B \cdot \tau B}{I C s a t \cdot \tau t}\right) \quad t s d 2=\tau B \cdot L N\left(\frac{2 \cdot I B \cdot \tau B}{I C \operatorname{sat} \cdot \tau t \cdot\left(1+\frac{I B}{I C s a t \cdot \tau t}\right)}\right)\right] \\
& \text { VCEsat }=\frac{k \cdot T}{q} \cdot L N\left(1+\frac{\frac{I C}{I B} \cdot(1-\alpha r)}{\alpha r \cdot\left(1-\frac{\frac{I C}{I B} \cdot(1-\alpha f)}{\alpha f}\right)}\right)
\end{aligned}
\]

\section*{MOS Transistor II}

These eleven equations describe the

\author{
Analysis \\ Equations \\ Solid State Devices \\ MOS Transistor II \\ Reference
} performance characteristics of a MOS transistor. The first two equations give two alternate forms for the process constant kn1 in terms of electron mobility \(\mu \mathbf{n}\), oxide capacitance per unit area Cox, relative oxide permittivity عox, and oxide thickness tox. The third equation links the process constant kn1 to the device constant kn, device length \(\mathbf{L}\), and width \(\mathbf{W}\). The fourth equation defines the drain current ID \(\boldsymbol{\lambda}\) when saturated in terms of kn, gate voltage VGS, threshold voltage VT, conductance parameter \(\lambda\), and drain voltage VDS. The fifth equation computes ID under linear or saturated conditions in terms of kn, VGS, VT, and VDS. The expression for the threshold voltage VT is defined in terms of zero substrate bias threshold voltage VTO, body coefficient \(\boldsymbol{\gamma}\), substrate bias VSB, and Fermi potential \(\boldsymbol{\phi F}\). The last four equations calculate performance parameters such as transconductance gm, transit time through the channel Ttr, maximum frequency of operation fmax, and drain conductance gd.
, co
\[
\begin{aligned}
& k n 1=\mu n \cdot C o x \\
& \mathrm{knl}_{\mathrm{I}}=\frac{\mu \mathrm{m} \cdot \in \mathrm{E} \cdot \mathrm{x} \cdot \mathrm{E}}{\text { tox }} \\
& k n=\frac{k n 1 \cdot W}{L} \\
& I D=\frac{k n}{2} \cdot(V G S-V T)^{2} \cdot(1+\lambda \cdot V D S) \\
& I D=I F T E\left[\left(V G S-V T S V D S, \frac{k \pi}{2} \cdot\left(2 \cdot(V G S-V T) \cdot V D S-V D S^{2}\right), \frac{k \pi}{2} \cdot(V G S-V T)^{2}\right)\right. \\
& V T=V T Q+\cdots \cdot(\sqrt{A B S(-2 \cdot \Phi F+U S B)}-\sqrt{2 \cdot \Phi F}) \quad 9 m=k n \cdot(V G S-V T) \\
& \operatorname{Ttr}=\frac{\frac{4}{3} \cdot L^{2}}{\mu \Pi \cdot(V G S-V T)} \\
& f_{\text {max }}=\frac{9 m}{2 \cdot \pi \cdot \operatorname{Cox} \cdot W \cdot L} \\
& \text { gd=kn•(VGS-UT) }
\end{aligned}
\]

\section*{MOS Inverter (Resistive)}

These five equations represent the design

Analysis
Equations
Solid State Devices MOS Inverter (Resistive)
Reference equations for a MOS inverter with a resistive load. The first equation specifies the device constant \(\mathbf{k D}\) for the driver transistor in terms of its gate capacitance Cox, mobility \(\mu \mathrm{n}\), width WD, and channel length LD. The second equation specifies the output voltage when input to the driver is below the threshold voltage. The third equation determines VOL, the output low voltage when the input is driven high. This equation is a quadratic in VOL, and the solution is meaningful for positive values of VOL. The next equation computs VIH in the linear region of the drain current equation. The final equation computes the midpoint voltage VM for which the driver transistor is in saturation.
\[
\begin{aligned}
& k D=\frac{\mu \Pi \cdot C O x \cdot W D}{L D} \quad V O H=V D D \\
& V O L^{2}-2 \cdot\left(\frac{1}{k D \cdot R I}+V D D-V T\right) \cdot V O L+\frac{2 \cdot V D D}{k D \cdot R I}=0 \\
& \frac{k D}{2} \cdot\left(2 \cdot(V I H-V T) \cdot V_{0}-V_{0}^{2}\right)=\frac{\left(V D D-V_{0}\right)}{R I} \\
& \frac{k D}{2} \cdot(V M-V T)^{2}=\frac{(V D D-V M)}{R I}
\end{aligned}
\]

\section*{MOS Inverter (Saturated)}

A MOS inverter with a saturated enhancement transistor load is the focus of this section. The first two equations define the device constants for the load transistor (\(\mathbf{k L}, \mathbf{W L}\), \(\mathbf{L L})\) and the driver transistor (\(\mathbf{k D}, \mathbf{W D}, \mathbf{L D}\)) in terms of the process parameters, namely mobility \(\mu\) n and gate capacitance per unit area Cox. The third equation defines the geometry ratio KR of the load and drive transistors. Output high VOH is calculated in terms of VDD, VTO and \(\gamma\). The next equation defines the input voltage Vin in terms of KR, VDD, threshold of the load and drive transistors VTL and VTD. The sixth equation defines the threshold voltage of the load transistor. The equation that follows computes
the input high VIH in terms of VDD, VTL, KR and VTO. The output voltage Vo is computed in terms of VDD, VTL, VTO and KR. The last five equations show the performance parameters of the inverter circuit. The equation for \(g m L\) defines the transconductance of the load circuit while the equation for \(\tau \mathrm{L}\) defines the characteristic time to charge the load capacitance CL. The charging time tch is the time required for the output rise to move from Vo to V1. The final two equations focus on the characteristic time \(\tau \mathbf{D}\) and discharge time tdis for the circuit.
\[
\begin{aligned}
& k L=\frac{\mu \Pi \cdot C o x \cdot W L L}{L L} \quad k D=\frac{\mu \Pi \cdot C o x \cdot W D}{L D} \quad K R=\frac{k D}{k L} \\
& V O H=V D D-(V T Q+r \cdot(\sqrt{V O H+2 \cdot \Phi F}-\sqrt{2 \cdot \Phi F})) \\
& K R \cdot\left(2 \cdot\left(V_{i n}-V T D\right) \cdot V_{0}-V_{o}^{2}\right]=\left(V D D-V_{0}-V T L\right)^{2} \\
& V T L=V T Q+\gamma \cdot\left(\sqrt{V_{0}+2 \cdot \sigma F}-\sqrt{2 \cdot \sigma F}\right) \\
& \mathrm{VIH}=\frac{2 \cdot(\mathrm{Y} D \mathrm{D}-\mathrm{VTL})}{\sqrt{3 \cdot \mathrm{KR}}+1}+\mathrm{VTD} \\
& V_{o}=\frac{(V D D-V T L+U T Q+V T Q \cdot \sqrt{K R})}{1+\sqrt{K R}} \\
& \tau L=\frac{C L}{9 m L} \quad t c h=\tau L \cdot\left(\frac{V_{1}}{V_{0}}-1\right) \\
& 9 m L=k L \cdot(V D D-V T L) \\
& \tau D=\frac{C L}{\mathrm{kD} \cdot(\mathrm{~V} 1-\mathrm{VTD})} \\
& t \text { dis }=\tau D \cdot\left(\frac{2 \cdot V T D}{V 1-V T D}+L N\left(\frac{2 \cdot(V 1-U T D)}{V_{0}}-1\right)\right)
\end{aligned}
\]

\section*{MOS Inverter (Depletion)}

These six equations are the design equations

Analysis Equations

Solid State Devices MOS Inverter (Depletion)
Reference for a MOS inverter with a depletion load. The first two equations compute device constants \(\mathbf{k L}\) and \(\mathbf{k D}\) for the load and the driver transistors in terms of their geometries WD, WL, LD, and LL. At the output low and output high, VOL and VOH, the driver is in the linear region while the load device is saturated. The fourth equation computes the threshold voltage VTL for the load transistor in terms of its zero bias threshold VTLO, Fermi potential \(\phi F\), and body coefficient \(\gamma\). The fifth equation shows the
charging time for the capacitive load. The last equation computes current in the depletion load device \(\mathbf{I O}\).
\[
\begin{aligned}
& k L=\frac{\mu \pi \cdot C o x \cdot W L}{L L} \quad k D=\frac{\mu \Pi \cdot C o x \cdot W D}{L D} \\
& \frac{k D}{2} \cdot\left(2 \cdot(v O H-v T \theta) \cdot v O L-v O L^{2}\right)=\frac{k L}{2} \cdot v T L^{2} \\
& V T L=V T L Q+r \cdot\left(\sqrt{V_{0}+2 \cdot \sigma F}-\sqrt{2 \cdot \sigma F}\right) \quad t c h=\frac{C L \cdot V L}{I 0} \quad I 0=k L \cdot V T L{ }^{2}
\end{aligned}
\]

\section*{CMOS Transistor Pair}

These five equations describe the properties of
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
\(\quad\) Solid State Devices \\
\(\quad\) CMOS Transistor Pair \\
Reference \\
\hline
\end{tabular} a CMOS inverter. The first two equations

compute device parameters for n and p channel devices. The next two equations compute input voltages VIH and VIL. The last equation compute Vin when the \(n\)-channel driver is in saturation and the p-channel device is in the linear region.
\[
\begin{aligned}
& k P=\frac{\mu n \cdot C o x \cdot W P}{1 P} \quad k N=\frac{\mu P \cdot C o x \cdot W N}{1 N} \\
& V I H=2 \cdot V_{0}+V T N+\frac{k P}{\frac{k N}{} \cdot(V D D-A B S(V T P))} \\
& 1+\frac{k P}{k N}
\end{aligned} \begin{aligned}
& V I L=\frac{\left(2 \cdot V o-V D D-V T P+\frac{k N}{k P} \cdot V T N\right)}{1+\frac{k N}{k P}} \\
& \frac{k N}{2} \cdot\left(V_{i n}-V T N\right)^{2}=\frac{k P}{2} \cdot(V D D-V i n-A B S(V T P))^{2}
\end{aligned}
\]

\section*{Junction FET}

These five equations describe the

\section*{Analysis}

Equations
Solid State Devices
Junction FET
Reference characteristics of a symmetrical junction field effect transistor. The first equation stipulates the drain current ID in terms of the electron mobility \(\boldsymbol{\mu} \mathbf{n}\), doping density \(\mathbf{N d}\), channel width \(\mathbf{b}\), channel length \(\mathbf{L}\), channel depth \(\mathbf{Z}\), supply voltage VDD, pinch-off voltage \(\mathbf{V p}\), gate voltage VG, and built-in voltage Vbi. The channel height \(\mathbf{b}\) is related to the dielectronic constant \(\boldsymbol{\varepsilon s}, \mathbf{N d}, \mathbf{V b i}\), and drain saturation
 voltage VDsat. The last two equations show the relationship for drain voltage and drain current upon saturation.
\[
\begin{aligned}
& I D=\frac{2 \cdot q \cdot Z \cdot \mu \cap \cdot N d \cdot b}{L} \cdot\left(V D D-\frac{2}{3} \cdot\left(V_{b i}-V_{P}\right) \cdot\left[\left(\frac{\left(V D D+V_{b i}-V_{G}\right)}{V_{b i}-V_{P}}\right)^{1.5}-\left(\frac{\left(V_{b i}-V_{G}\right)}{V_{b i}-V_{P}}\right)^{1.5}\right)\right] \\
& \text { IDsat }=\frac{2 \cdot q \cdot Z \cdot \mu_{n} \cdot N d \cdot b}{L} \cdot\left[V_{D s a t}-\frac{2}{3} \cdot\left(V_{b i}-V_{P}\right) \cdot\left(\left(\frac{\left(V D D+V_{b i}-V_{G}\right)}{V_{b i}-V_{P}}\right)^{1.5}-\left(\frac{\left(V_{b i}-V_{G}\right)}{V_{b i}-V_{P}}\right)^{1.5}\right]\right) \\
& b=\sqrt{\frac{2 \cdot E D \cdot E S}{q \cdot N d} \cdot(V b i+V D \operatorname{sat}-V G)} \\
& \text { VDsat }=V G-V_{P} \\
& \text { IDsat }=I D Q \cdot\left(1-\frac{V G}{V_{P}}\right)^{2}
\end{aligned}
\]

\section*{Chapter 29}

\section*{Linear Amplifiers}

Analysis Equations

Linear Amplifiers
Reference

In this chapter, linear circuit models (sometimes called small signal models) are used to make first level computations for amplifiers using bipolar or junction transistors. Device configurations include Darlington connections, emitter-coupled pair, differential amplifer and a source-coupled pair.
- BJT (Common Base)
- BJT (Common Emitter)
\(\square\) BJT (Common Collector)
- FET (Common Gate)
- FET (Common Source)
- FET (Common Drain)
- Darlington (CC-CC)
\(\square\) Darlington (CC-CE)
\(\square\) Emitter-Coupled Amplifier
- Differential Amplifier
- Source-Coupled JFET Pair

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline\(\alpha 0\) & Current gain, CE & unitless \\
Ac & Common mode gain & unitless \\
Ad & Differential mode gain & unitless \\
Ai & Current gain, CB & unitless \\
Aov & Overall voltage gain & unitless \\
Av & Voltage gain, CC/CD & unitless \\
\(\beta 0\) & Current gain, CB & unitless \\
CMMR & Common mode reject ratio & unitless \\
gm & Transconductance & S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\(\mu\) & Amplification factor & unitless \\
rb & Base resistance & \(\Omega\) \\
rc & Collector resistance & \(\Omega\) \\
rd & Drain resistance & \(\Omega\) \\
re & Emitter resistance & \(\Omega\) \\
RBA & External base resistance & \(\Omega\) \\
RCA & External collector resistance & \(\Omega\) \\
RDA & External drain resistance & \(\Omega\) \\
REA & External emitter resistance & \(\Omega\) \\
RG & External gate resistance & \(\Omega\) \\
Ric & Common mode input resistance & \(\Omega\) \\
Rid & Differential input resistance & \(\Omega\) \\
Rin & Input resistance & \(\Omega\) \\
Rl & Load resistance & \(\Omega\) \\
Ro & Output resistance & \(\Omega\) \\
Rs & Source resistance & \(\Omega\) \\
\hline
\end{tabular}

\section*{BJT (Common Base)}

These six equations represent properties of a
Analysis
Equations
\(\quad\) Linear Amplifiers
\(\quad\) BJT (Common Base)
Reference

Reference transistor amplifier connected in the common base configuration at mid frequencies. The first equation connects common base current gain \(\boldsymbol{\alpha 0}\) with common emitter current gain \(\boldsymbol{\beta 0}\). The second equation computes the input impedance Rin at the input terminals of the amplifier. Ro represents the output resistance and Ai the current gain. The final two equations cover the voltage gain Av and overall voltage gain Aov for the amplifier system. Aov includes the effect of source impedance Rs.

\section*{BJT (Common Emitter)}

These six equations represent properties of a

Analysis
Equations
Linear Amplifiers BJT (Common Emitter)
Reference transistor amplifier connected in the common emitter configuration at mid frequencies. The first equation connects common base current gain \(\boldsymbol{\alpha 0}\) with common emitter current gain \(\beta 0\). The second equation computes the input Rin, in terms of base resistance rb, emitter resistance re, and \(\boldsymbol{\beta 0}\). The output resistance \(\mathbf{R o}\) is defined by the third equation in terms of collector resistance, rc. The next equation defines current gain Ai. The final two equations cover the voltage gain \(\mathbf{A v}\) and overall voltage gain Aov for the amplifier system. Aov includes the effect of source impedance Rs.
\[
\begin{array}{llc}
\beta Q=\frac{\alpha 0}{1-\alpha \emptyset} & \text { Rin }=r b+\beta Q \cdot r e & \text { Ro }=r c \\
\mathrm{Ai}=-\beta 0 & \mathrm{~A}=\frac{-\beta Q \cdot R \mathrm{l}}{\beta 0 \cdot r e+r b} & \mathrm{Hou}=\frac{-\beta Q \cdot R \mathrm{l}}{\mathrm{RS}+\mathrm{Rin}}
\end{array}
\]

\section*{BJT (Common Collector)}

These six equations are the properties of a
Analysis
Equations
\(\quad\) Linear Amplifiers
BJT (Common Collector)
Reference

Analysis
Equations
Linear Amplifiers
BJT (Common Collector)
Reference transistor amplifier connected in the common collector configuration at the mid frequencies. The first equation connects common base current gain \(\alpha 0\) with common emitter current gain \(\beta 0\). The second equation computes the input impedance Rin in terms of base resistance \(\mathbf{r b}\), emitter resistance re, \(\boldsymbol{\beta 0}\), and load resistance RI. Ro represents the output resistance. The current gain \(\mathbf{A i}\) is shown in the next equation in terms of \(\mathbf{r c}\), \(\boldsymbol{\alpha 0}\), re, and RI. The final two equations cover the voltage gain Av and overall voltage gain Aov for the amplifier system. Aov includes the effect of source impedance Rs.
\[
\beta \emptyset=\frac{\alpha \emptyset}{1-\alpha \emptyset} \quad \operatorname{Rin}=r b+\beta Q \cdot r e+(\beta \emptyset+1) \cdot R l \quad \text { Ro }=r e+\frac{(R s+r b)}{\beta \emptyset}
\]
\(\mathrm{Ai}=\frac{\mathrm{rc}}{\mathrm{rc} \cdot(1-\alpha \theta)+\mathrm{Rl}+\mathrm{re}} \quad \mathrm{Au}=\)
FET (Common Gate)
The four equations in this section focus on an

Analysis
Equations
Linear Amplifiers
FET (Common Gate)
Reference FET amplifier in the common gate configuration. The first equation defines the amplification factor \(\mu\) in terms of transconductance \(\mathbf{g m}\) and drain resistance \(\mathbf{r d}\). The second equation computes input resistance Rin as a function of load resistance \(\mathbf{R L}\), rd and \(\mu\). Voltage gain \(\mathbf{A v}\) is defined in the third equation. The final equation computes the output resistance Ro in terms of \(\mathbf{r d}, \boldsymbol{\mu}\), and external gate resistance RG.
\[
\begin{array}{cl}
\mu=9 m \cdot r d & \operatorname{Rin}=\frac{(\mathrm{Rl}+\mathrm{rd})}{\mu+1} \quad \mathrm{~A} u=\frac{(\mu+1) \cdot \mathrm{Rl}}{\mathrm{rd}+\mathrm{Rl}} \\
\mathrm{Ro}=r d+(\mu+1) \cdot \mathrm{RG}
\end{array}
\]

\section*{FET (Common Source)}

These four equations represent the key

Analysis
Equations
Linear Amplifiers
FET (Common Source)
Reference properties of an FET amplifier in the mid frequency range. The first equation defines the amplification factor \(\mu\) in terms of transconductance \(\mathbf{g m}\) and drain resistance \(\mathbf{r d}\). The second equation computes input resistance Rin as a function of load resistance RL, \(\mathbf{r d}\) and \(\mu\). Voltage gain \(\mathbf{A v}\) is defined in the third equation. The final equation computes the output resistance.
\[
\begin{aligned}
& \mu=9 m \cdot r d \quad \operatorname{Rin}=\frac{(R l+r d)}{\mu+1} \quad \text { Ru }=-9 m \cdot\left(\frac{r d \cdot R l}{r d+R 1}\right) \\
& \text { Ro=rd }
\end{aligned}
\]

\section*{FET (Common Drain)}

The four equations in this section focus on an

Analysis
Equations
Linear Amplifiers FET (Common Drain)
Reference FET amplifier connected in the common drain configuration. The first equation defines the amplification factor \(\mu\) in terms of transconductance gm and drain resistance rd. The second equation computes input resistance Rin as a function of load resistance \(\mathbf{R L}\), rd and \(\mu\). Voltage gain \(\mathbf{A v}\) is defined in the third equation. The final equation computes the output resistance, Ro.
\[
\begin{array}{ll}
\mu=9 m \cdot r d & \operatorname{Rin}=\frac{(\mathrm{Rl}+\mathrm{rd})}{\mu+1} \quad A \nu=\frac{\mu \cdot \mathrm{Rl}}{(\mu+1) \cdot \mathrm{Rl}+r d} \\
\mathrm{Ro}=\frac{r d}{\mu+1} &
\end{array}
\]

\section*{Darlington (CC-CC)}

The Darlington configuration connected as a
Analysis
Equations
\(\quad\) Linear Amplifiers
\(\quad\) Darlington (CC-CC)

Reference common collector-common collector is a frequently-used configuration for achieving large current gains. The first two equations yield the input and output resistances Rin and
 Ro, computed in terms of emitter resistance re, load resistance \(\mathbf{R L}\), current gain \(\boldsymbol{\beta 0}\), base resistance \(\mathbf{r b}\), and source resistance Rs. The final equation computes overall current gain \(\mathbf{A i}\) for the transistor pair.

\section*{Darlington (CC-CE)}

The Darlington configuration connected as a
Analysis
Equations
\(\quad\) Linear Amplifiers
\(\quad\) Darlington (CC-CE)
Reference

Reference common collector-common emitter configuration is covered in this section. The first two equations define the
 input resistance Rin and output resistance Ro, in terms of base resistance rb, emitter resistance re, collector resistance rc, and current gain \(\boldsymbol{\beta 0}\). The final equation calculates voltage gain \(\mathbf{A v}\).

Rin=rb+B6.re
\(\mathrm{Ro}=\frac{\mathrm{rc}}{\mathrm{BD}}\)

\section*{Emitter-Coupled Amplifier}

Two classes of emitter-coupled amplifiers are

\author{
Analysis Equations \\ Linear Amplifiers \\ Emitter-Coupled Amplifier Reference
} covered in this section. The first equation shows the general relationship between \(\boldsymbol{\beta 0}\) and \(\boldsymbol{\alpha 0}\), the current gains under common base and common emitter configurations. The next three equations show the input resistance Rin, output resistance Ro, and voltage gain Av for a common collector-common base method of connection. The last three equations correspond to cascade configuration of
 the transistors, which is a combination of common emitter-common base configuration resulting in a current gain Ai with corresponding input resistance Rin and output resistance Ro.
\[
\begin{aligned}
& \beta \emptyset=\frac{\alpha ด}{1-\alpha ด} \\
& \operatorname{Rin}=\beta Q \cdot(\mathrm{re}+\mathrm{BQ} \cdot(\mathrm{Rl}+\mathrm{re})) \\
& R o=r e+\frac{(\beta \theta \cdot(r e+r b)+R s)}{\beta \theta^{2}} \quad A u=\frac{R l}{r e} \cdot\left(\frac{\beta 0 \cdot r e}{2 \cdot \beta 0 \cdot r e+R l}\right) \quad A i=-\alpha 0 \cdot \beta 0 \\
& \text { Rin=80.re+rb } \\
& \text { Ro=rc }
\end{aligned}
\]

\section*{Differential Amplifier}

These four equations cover a differential

\section*{Analysis} Equations

Linear Amplifiers Differential Amplifier Reference amplifier. The gain Ad in the differential mode of operation is given by the first equation. The second equation shows the gain Ac for a common mode input. The last two equations show input resistance for differential and common mode inputs Rid and Ric.
\[
\begin{aligned}
& \mathrm{Ad}=\frac{-1}{2} \cdot g \mathrm{~m} \cdot \mathrm{RCA} \quad \mathrm{Ac}=\frac{-\alpha 0 \cdot \mathrm{R} \cdot \mathrm{CA} A}{2 \cdot \mathrm{REA}+\mathrm{re}} \quad \mathrm{Rid}=2 \cdot(\mathrm{rb}+\mathrm{BQ} \cdot \mathrm{re}) \\
& \mathrm{Ric}=\beta 0 \cdot \mathrm{REA}
\end{aligned}
\]

Analysis
Equations
Linear Amplifiers
Source-Coupled JFET Pair Reference

The first two equations cover differential and

\section*{Source-Coupled JFET Pair}
 common mode gain for a source-coupled JFET pair. The third equation shows the amplification factor, while the last equation shows the common mode rejection ratio.

\(\mu=9 \mathrm{~m} \cdot \mathrm{rd}\)
\(A c=\frac{-\mu \cdot R D A}{(\mu+1) \cdot 2 \cdot R s+r d+R D A}\)
CMMR=9mRs

\section*{Bibliography}

Mohammed S. Ghausi, Electronic Devices and Circuits: Discrete and Integrated, Holt, Rinehart and Winston, New York NY 1985.

\section*{Chapter 30}

\section*{Class A, B, and C Amplifiers}

Analysis
Equations
Class A, B, and C Amplifiers Reference

This chapter covers equations describing the performance of Class A, B, and C power amplifiers.
- Class A Amplifier
- Power Transistor
- Push-Pull Principle
- Class B Amplifier
- Class C Amplifier

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline gm & Transconductance & S \\
hFE & CE current gain & unitless \\
hOE & CE output conductance & S \\
I & Current & A \\
IB & Base current & A \\
IC & Collector current & A \\
IIC & Current swing from operating pt. & A \\
ICBO & Collector current EB open & A \\
ICQ & Current at operating point & A \\
Idc & DC current & A \\
Imax & Maximum current & A \\
K & Constant & unitless \\
m & Constant & 1 IK \\
\(\eta\) & Efficiency & unitless \\
n & Turns ratio & unitless \\
N1 & \# turns in primary & unitless
\end{tabular}
\begin{tabular}{|c|c|c|}
N2 & \# turns in secondary & unitless \\
Pd & Power dissipated & W \\
Pdc & DC power input to amp & W \\
Po & Power output & W \\
PP & Compliance & V \\
Q & Quality factor & unitless \\
日JA & Thermal resistance & \(\mathrm{W} / \mathrm{K}\) \\
R & Equivalent resistance & \(\Omega\) \\
R 0 & Internal circuit loss & \(\Omega\) \\
R 2 & Load resistance & \(\Omega\) \\
RB & External base resistance & \(\Omega\) \\
Rc & Coupled load resistance & \(\Omega\) \\
Re & External emitter resistance & \(\Omega\) \\
R 1 & Load resistance & \(\Omega\) \\
S & Instability factor & unitless \\
TA & Ambient temperature & K \\
TJ & Junction temperature & K \\
\(\Delta \mathrm{Tj}\) & Change in temperature & K \\
V 0 & Voltage across tank circuit & V \\
V 1 & Voltage across tuned circuit & V \\
VBE & Base emitter voltage & V \\
VCC & Collector supply voltage & V \\
\(\Delta \mathrm{VCE}\) & Voltage swing from operating pt. & V \\
VCEmax & Maximum transistor rating & V \\
VCEmin & Minimum transistor rating & V \\
Vm & Maximum amplitude & V \\
VPP & Peak-peak volts, secondary & V \\
XC & Tuned circuit parameter & \(\Omega\) \\
XC1 & \(\pi\) equivalent circuit parameter & \(\Omega\) \\
XC2 & \(\pi\) equivalent circuit parameter & \(\Omega\) \\
XL & \(\pi\) series reactance & \(\Omega\) \\
\hline & & \\
& & \(\Omega\) \\
\hline
\end{tabular}

\section*{Class A Amplifier}

The eight equations in this section form the

Analysis
Equations
Class A, B, and C Amplifiers Class A Amplifier
Reference basis for analyzing a Class A amplifier with an ideal transformer coupled resistive load. The first equation specifies the equivalent load resistance \(\mathbf{R}\) from the load resistance \(\mathbf{R I}\)
 in the secondary of the transformer with a turns ratio \(n\).
The second equation defines the AC current swing \(\operatorname{\Delta IC}\) in terms of the voltage swing \(\triangle V C E\) and \(\mathbf{R}\). The next equation computes the maximum collector current Imax
in terms of ICQ and \(\mathbf{\Delta I C}\). The DC power available Pdc is shown in the fourth equation. The compliance \(\mathbf{P P}\) is defined as the full voltage swing across the emitter and collector. VPP represents the peak to peak voltage in the secondary. The final two equations compute the output power \(\mathbf{P o}\) and the conversion efficiency \(\boldsymbol{\eta}\).
\[
\begin{array}{ccc}
\mathrm{R}=\Pi^{2} \cdot \mathrm{Rl} & \Delta \mathrm{IC}=\frac{\Delta U C E}{\mathrm{R}} & \mathrm{Imax}=\mathrm{ICQ}+\Delta \mathrm{IC} \\
\mathrm{PdC}=\mathrm{VCC} \cdot \mathrm{ICQ} & \mathrm{PP}=\mathrm{VCEmax}-\mathrm{VCEmin} & \mathrm{VPP}=n \cdot \mathrm{PP} \\
\mathrm{Po}=\frac{\Delta \mathrm{IC}}{2} \cdot \mathrm{R} & \eta=\frac{\mathrm{Po}}{\mathrm{Pdc}} &
\end{array}
\]

\section*{Power Transistor}

Power amplifiers generate heat needing rapid

\author{
Analysis \\ Equations \\ Class A, B, and C Amplifiers Power Transistor \\ Reference
} transfer to the amibient. The six equations in this section focus on these thermal problems, the instability factor and the currents. The first equation defines the junction temperature TJ as linearly related to the power dissipation Pd and thermal resistance \(\boldsymbol{\theta} \mathbf{J A}\). The next two equations focus on the collector current IC and base current IB in terms of the current gain hFE, leakage current ICBO, external emitter resistance Re and external base resistance RB. The fourth equation expresses IC in terms of hFE, Re, RB, ICBO, and VBE. The instability factor \(\mathbf{S}\) is given by the fifth equation, while the final equation computes IC in terms of hFE, ICBO, a parameter \(\mathbf{m}, \mathbf{S}\), and the change in junction temperature \(\Delta \mathbf{T j}\).
\[
\begin{gathered}
T J=T A+B J A \cdot P d \\
I B=\frac{-(I C \cdot R e-V B E)}{\operatorname{Re}+R B} \\
S=\frac{\left(1+\frac{R B}{R e}\right) \cdot h F E}{h F E+\frac{R B}{R e}}
\end{gathered}
\]
\[
\begin{array}{r}
I C=h F E \cdot I B+(1+h F E) \cdot I C B O \\
I C=\frac{-h F E \cdot V B E}{h F E \cdot R e+R B}+\frac{h F E \cdot(R e+R B)}{h F E \cdot R e+R B} \cdot I C B O \\
I C=-h F E \cdot I B+S \cdot I C B O \cdot(1+m \cdot \Delta T j)
\end{array}
\]

\section*{Push-Pull Principle}

These three equations introduce the push-pull

\author{
Analysis Equations \\ Class A, B, and C Amplifiers Push-Pull Principle \\ Reference
} principle, commonly used in power amplifier design. Two transistors have their collector outputs connected to the centertapped primary winding of a transformer. The secondary winding is connected to a load R2. The first equation computes an equivalent resistance \(\mathbf{R}\) based on the maximum current supplied to the load Imax. The power output is computed by the second
 equation in terms of VCC and \(\mathbf{R}\). The final equation computes the power in terms of load resistance \(\mathbf{R 2}\) and transformer windings N1 and N2.
\[
\mathrm{R}=\frac{\mathrm{UCC}}{I \max }
\]

\section*{Class B Amplifier}

Power transistors that are connected in a push-

\author{
Analysis Equations \\ Class A, B, and C Amplifiers \\ Class B Amplifier \\ Reference
} pull mode and biased to cutoff, operate under the Class B condition where alternate half-cycles of input are of forward polarity for each transistor. The nine equations in this section define the characteristic properties of this class of amplifiers. The first equation represents the power output at any signal level in terms of the constant \(\mathbf{K}\), supply voltage VCC, and an equivalent resistance \(\mathbf{R}\). The second equation defines the DC current Idc as the average value of a sinusoidal half-wave adjusted by \(\mathbf{K}\). The next two equations focus on the DC power Pdc in terms of VCC, K, \(\mathbf{R}\), and Imax. The efficiency of power conversion \(\boldsymbol{\eta}\) is given by the next equations. The eighth equation covers the voltage across a tuned RLC circuit in terms of the transconductance gm, load resistance RL, and output conductance hOE. The final equation calculates the average collector current for a half-sine wave.
\[
\begin{aligned}
& \mathrm{Po}=\frac{K^{2} \cdot \mathrm{UCC}}{}{ }^{2} \quad \operatorname{Idc}=\frac{2 \cdot K \cdot I \max }{\pi} \quad \mathrm{Pdc}=\frac{2 \cdot K \cdot I \max \cdot \mathrm{VCC}}{\pi} \\
& P d c=\frac{2 \cdot K \cdot V C C^{2}}{\pi \cdot R} \quad \eta=\frac{P o}{P d \sigma} \quad \eta=\frac{\pi \cdot K}{4} \\
& P d=\frac{2 \cdot \varphi C C^{2}}{\pi \cdot R} \cdot\left(K-\frac{K^{2} \cdot \pi}{4}\right) \\
& V 1=\frac{9 m \cdot R l}{2 \cdot \sqrt{2}} \cdot\left(\frac{1}{1+\frac{\hbar 0 E \cdot R l}{2}}\right) \\
& I C=\frac{9 m \cdot U_{m}}{\pi} \cdot\left(\frac{1}{1+\frac{h 0 E \cdot R I}{2}}\right)
\end{aligned}
\]

\section*{Class C Amplifier}

These six equations outline the properties of a

> \begin{tabular}{|l} Analysis \\ Equations \\ Class A, B, and C Amplifiers \\ Class C Amplifier \\ Reference \end{tabular}

Class C amplifier. The first equation defines
the efficiency of conversion \(\eta\) in terms of the current \(\mathbf{I}\), the coupled-in load \(\mathbf{R c}\), and equivalent internal circuit loss resistance R0. The tuned circuit parameters have a capacitive reactance of \(\mathbf{X C}\), which is given in terms of the load voltage V0, quality factor \(\mathbf{Q}\), and power Po. XL is expressed in terms of \(\mathbf{X C}\) and \(\mathbf{Q}\), load resistance RL, and resistance R2. The equations for \(\mathbf{X C 1}\) and XC2 represent load harmonic suppression values in the output circuit.
\[
\begin{array}{ccc}
\eta=\frac{I^{2} \cdot R c}{I^{2} \cdot(R c+R \theta)} & X C=\frac{V \theta^{2}}{Q \cdot P o} & X L=\frac{X C \cdot Q^{2}}{Q^{2}+1} \\
X C 1=\frac{-R 1}{Q} & X L=\frac{1}{Q} \cdot(R 1+\sqrt{R 1 \cdot R 2}) & X C 2=\frac{-R 2}{Q}
\end{array}
\]

\section*{Chapter 31}

\section*{Transformers}

This chapter covers equations for simplified design parameters of transformers.Ideal Transformer
- Linear Equivalent Circuit

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline I1 & Primary current & A \\
I2 & Secondary current & A \\
N1 & \# primary turns & unitless \\
N2 & \# secondary turns & unitless \\
R1 & Primary resistance & \(\Omega\) \\
R2 & Secondary resistance & \(\Omega\) \\
Rin & Equiv. primary resistance & \(\Omega\) \\
R1 & Resistive part of load & \(\Omega\) \\
V1 & Primary voltage & V \\
V2 & Secondary voltage & V \\
X1 & Primary reactance & \(\Omega\) \\
X2 & Secondary reactance & \(\Omega\) \\
Xin & Equivalent primary reactance & \(\Omega\) \\
X1 & Reactive part of load & \(\Omega\) \\
Zin & Primary impedance & \(\Omega\) \\
ZL & Secondary load & \(\Omega\) \\
\hline
\end{tabular}

\section*{Ideal Transformer}

Four equations describe the properties of an

\section*{Analysis}

Equations
Transformers
Ideal Transformer
Reference ideal transformer. The first equation links the primary and secondary voltages \(\mathbf{V} 1\) and \(\mathbf{V} 2\) in terms of the primary and secondary turns \(\mathbf{N} 1\) and \(\mathbf{N} \mathbf{2}\). The second equation shows the corresponding relationship between the primary and secondary currents I1 and I2. The third equation shows the condition equating primary and secondary power. The final equation shows the impact of a load impedance \(\mathbf{Z L}\) experienced at the primary winding terminal on the primary impedance Zin.
\[
\begin{array}{cc}
\frac{\mathrm{V} 1}{\mathrm{~V} 2}=\frac{\mathrm{N} 1}{\mathrm{~N} 2} & \mathrm{I} 1 \cdot \mathrm{~N} 1=\mathrm{I} 2 \cdot \mathrm{~N} 2 \\
\mathrm{Zin}=\left[\frac{\mathrm{N} 1}{\mathrm{~N} 2}\right]^{2} \cdot \mathrm{ZL} &
\end{array}
\]

Analysis
Equations
Transformers
Linear Equivalent Circuit
Reference

The first two equations define the primary voltage and current V1 and I1 in terms of V2 and 12. The last two equations expand the equivalent resistance and reactance at the primary terminals in terms of the primary winding resistance \(\mathbf{R 1}\), secondary winding resistance \(\mathbf{R 2}\), load resistance \(\mathbf{R 1}\), and load reactance \(\mathbf{X I}\).
\[
\begin{aligned}
& \mathrm{V} 1=\frac{\mathrm{N} 1}{\mathrm{~N} 2} \cdot \mathrm{~V} 2 \quad \mathrm{I} 1=\frac{\mathrm{I} 2 \cdot \mathrm{~N} 2}{\mathrm{~N} 1} \quad \mathrm{Rin}=\mathrm{R} 1+\left(\frac{\mathrm{N} 1}{\mathrm{~N} 2}\right)^{2} \cdot(\mathrm{R} 2+\mathrm{Rl}) \\
& \mathrm{Xin}_{\mathrm{in}}=\mathrm{X} 1+\left[\frac{\mathrm{N} 1}{\mathrm{~N} 2}\right]^{2} \cdot(\mathrm{~K} 2+\mathrm{XI})
\end{aligned}
\]

\section*{Chapter 32}

\section*{Motors and Generators}

\section*{Analysis}

Equations
Motors and Generators
Reference

Thirteen sections covering various aspects of AC and DC motors and generators are included in this module:
- Energy Conversion
- DC Generator
- Separately-Excited DC Generator
- DC Shunt Generator
- DC Series Generator
- Separately-Excited DC Motor
- DC Shunt Motor
- DC Series Motor
- Permanent Magnet Motor
- Induction Motor I
- Induction Motor II
- Single-Phase Induction Motor
- Synchronous Machines

\section*{Variables}

The table below lists all the variables used in this chapter, along with a brief description and appropriate units.
\begin{tabular}{|c|c|c|}
\hline Variable & Description & Unit \\
\hline A & Area & \(\mathrm{m}^{2}\) \\
ap & \# parallel paths & unitless \\
B & Magnetic induction & T \\
Ea & Average emf induced in armature & V \\
Ef & Field voltage & V \\
Ema & Phase voltage & V \\
Es & Induced voltage & V \\
Eta & Average emf induced per turn & V \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
F \\
H \\
Ia \\
If \\
IL \\
Ir \\
Isb \\
Isf \\
K \\
Kf \\
KM \\
L \\
\(\eta\) \\
N \\
Ns \\
\(\rho\) \\
\(\phi\) \\
p \\
P \\
Pa \\
Pma \\
Pme \\
Pr \\
R1 \\
Ra \\
Rd \\
Re \\
Rel \\
Rf \\
Rl \\
Rr \\
Rs \\
Rst \\
s \\
sf \\
sm \\
T \\
Tb \\
Tf \\
Tgmax TL \\
Tloss \\
Tmax \\
Tmmax \\
Ts
\end{tabular} & \begin{tabular}{l}
Magnetic pressure Magnetic field intensity Armature current \\
Field current \\
Load current \\
Rotor current per phase \\
Backward stator current \\
Forward stator current \\
Machine constant \\
Field coefficient \\
Induction motor constant \\
Length of each turn \\
Phase delay \\
Total \# armature coils \\
\# stator coils \\
Resistivity \\
Flux \\
\# poles \\
Power \\
Mechanical power \\
Power in rotor per phase \\
Mechanical power \\
Rotor power per phase \\
Rotor resistance per phase \\
Armature resistance \\
Adjustable resistance \\
Ext. shunt resistance \\
Magnetic reluctance \\
Field coil resistance \\
Load resistance \\
Equivalent rotor resistance \\
Series field resistance \\
Stator resistance \\
Slip \\
Slip for forward flux \\
Maximum slip \\
Internal torque \\
Backward torque \\
Forward torque \\
Breakdown torque \\
Load torque \\
Torque loss \\
Pullout torque \\
Maximum positive torque Shaft torque
\end{tabular} & Pa
A/m
A
A
A
A
A
A
unitless
A/Wb
unitless
m
r
unitless
unitless
\(\Omega / \mathrm{m}\)
Wb
unitless
W
W
W
W
W
\(\Omega\)
\(\mathrm{N}^{*} \mathrm{~m}\)
N \\
\hline EQUATIONS & 32: Motors & rators \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
Va & Applied voltage & V \\
Vf & Field voltage & V \\
Vfs & Field voltage & V \\
Vt & Terminal voltage & V \\
\(\omega \mathrm{m}\) & Mechical radian frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega \mathrm{me}\) & Electrical radian frequency & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega \mathrm{r}\) & Electrical rotor speed & \(\mathrm{r} / \mathrm{s}\) \\
\(\omega \mathrm{s}\) & Electrical stator speed & \(\mathrm{r} / \mathrm{s}\) \\
Wf & Magnetic energy & J \\
XL & Inductive reactance & \(\Omega\) \\
\hline
\end{tabular}

\section*{Energy Conversion}

The four equations in this section display the

Motors and Generators Energy Conversion
Reference fundamental relationship amongst electrical, magnetic and mechanical aspects of a system. For example, the first two equations show two ways of computing energy density Wf stored in a magnetic field. The first equation uses the field intensity \(\mathbf{H}\) and flux density \(\mathbf{B}\) in a magnetic region with length \(\mathbf{L}\) and area \(\mathbf{A}\). The second equation uses the magnetic reluctance Rel and flux \(\phi\) to compute Wf. The third equation defines the mechanical force \(\mathbf{F}\) due to the flux density \(\mathbf{B}\), while the last equation shows the rms value of the emf Es induced by Ns turns moving with an angular velocity \(\omega \mathbf{\omega}\) sweeping a magnetic flux of \(\phi\).
\[
\begin{array}{ll}
W f=\frac{1}{2} \cdot H \cdot B \cdot L \cdot A & W f=\frac{1}{2} \cdot \operatorname{Rel} \cdot \sigma^{2} \\
E s=\frac{N S \cdot W S \cdot 6}{\sqrt{2}} &
\end{array}
\]

\section*{Analysis \\ Equations \\ Motors and Generators DC Generator \\ Reference}

\section*{DC Generator}

The eleven equations in this section describe the properties of a DC generator. The first equation describes the relation between electrical radian frequency \(\omega \mathrm{me}\), the mechanical angular frequency \(\omega \mathrm{m}\), and the number of poles in the generator p. The next equation expresses the emf generated per turn Eta with the relative motion of the coil with respect to the magnetic field. The next pair of
equations illustrate two ways to express induced armature emf Ea as a function of number of armature coils \(\mathbf{N}\), the number of parallel paths ap, number of poles \(\mathbf{p}\), the mechanical radian frequency \(\omega \mathbf{m}\), a machine constant \(\mathbf{K}\), and flux \(\phi\). The machine constant \(\mathbf{K}\), expressed by the fifth equation, is seen to be dependent purely on the characteristics of the machine. The next equation shows the conversion of mechanical energy available as torque \(\mathbf{T}\) and mechanical angular velocity \(\omega \mathrm{m}\) to its electrical counterpart - namely, the emf and current in the armature Ea, and Ia and the voltage and current in the field windings Ef and If. The next equation for torque connects \(\mathbf{T}\) with \(\mathbf{K}, \boldsymbol{\phi}\), and the current Ia. The armature resistance is given by the equation for Ra in terms of \(\mathbf{N}\), ap, coil length \(\mathbf{L}\), area \(\mathbf{A}\) and its resistivity \(\boldsymbol{\rho}\). Vf represents the voltage across the field winding carrying a current If and a resistance Rf. The terminal voltage Vt represents the induced voltage minus the IR drop in the armature. The final equation represents the shaft torque Ts needed to generate the induced emf, assuming a given value for equivalent loss of torque Tloss.
\begin{tabular}{|c|c|c|}
\hline wme \(=\frac{\mathrm{P}}{2} \cdot \mathrm{wm}\) & Eta \(=\frac{\mathrm{P}}{\mathrm{T}}\). \(\mathrm{um} \cdot \mathrm{m}\) & \(\mathrm{Ea}=\frac{\mathrm{N}}{\mathrm{aP}} \cdot\left(\frac{\mathrm{P}}{\mathrm{T}}\right) \cdot \mathrm{wm} \cdot \mathrm{D}\) \\
\hline Ea=K.wm.0. & \(K=\frac{N \cdot P}{a P \cdot \pi}\) & T.wm=EarIa+Ef.If \\
\hline T=K.¢.Ia & \(\mathrm{Ra}=\frac{\mathrm{P} \cdot \mathrm{N}}{\mathrm{aP}}\) (\(\cdot\left(\frac{L}{\mathrm{~A}}\right)\) & Vf=Rf•If \\
\hline Ut \(=\mathrm{K} \cdot \mathrm{wm} \cdot \mathrm{d}-\mathrm{Ra} \cdot \mathrm{Ia}\) & Ts=K.g.Ia + Tloss & \\
\hline
\end{tabular}

\section*{Separately-Excited DC Generator}

\author{
Analysis \\ Equations \\ Motors and Generators \\ Sep.-Excited DC Generator \\ Reference
}

The five equations in this section describe the properties of a separately excited DC generator. The first equation computes the field current If in terms of field voltage \(\mathbf{V f s}\), external shunt resistance Re, and field coil resistance Rf. The second equation evaluates armature induced voltage \(\mathbf{E a}\) as a function of machine constant \(\mathbf{K}\), mechanical radian frequency \(\omega \mathbf{m}\), and flux \(\phi\). The third and fourth equations are alternate forms of expressing terminal voltage \(\mathbf{V t}\) in terms of load current IL, load resistance \(\mathbf{R L}\), armature resistance Ra. The final equation shows the armature current \(\mathbf{I L}\) in terms of \(\mathbf{K}, \boldsymbol{\phi}, \boldsymbol{\omega} \mathbf{m}\), Ra and RL.
\[
\begin{array}{lc}
I f=\frac{V f s}{R e+R f} & E a=K \cdot w m \cdot(1 \\
V t=E a-R a \cdot I L & I L=\frac{K \cdot \Phi \cdot w m}{R a+R l}
\end{array}
\]
\[
E a=K \cdot \omega m \cdot 0 . \quad U t=I L \cdot R l
\]

\section*{DC Shunt Generator}

The first equation in this section expresses induced armature voltage Ea in terms of machine constant \(\mathbf{K}\), mechanial angular frequency \(\boldsymbol{\omega m}\), and flux \(\phi\). The second equation defines terminal voltage \(\mathbf{V t}\) in terms of field current \(\mathbf{I f}\), external resistance \(\mathbf{R e}\), and field coil resistance Rf. The third equation computes \(V \mathbf{t}\) in terms of load current IL and load resistance RI. The fourth equation expresses \(\mathbf{V t}\) as induced emf Ea minus armature IR drop. The armature current \(\mathbf{I a}\) is the sum of the load current IL and field current If. The final equation is an alternate form of expression for Ea.
\begin{tabular}{|ccc|}
\hline\(E a=K \cdot \mathrm{Um} \cdot \mathrm{G}\) & \(\mathrm{Vt}=(\mathrm{Re}+\mathrm{Rf}) \cdot \mathrm{If}\) & \(\mathrm{Vt}=\mathrm{IL} \cdot \mathrm{Rl}\) \\
\(\mathrm{Vt}=\mathrm{Ea}-\mathrm{Ra} \cdot \mathrm{Ia}\) & \(\mathrm{Ia}=\mathrm{IL}+\mathrm{If}\) & \(\mathrm{Ea}=\mathrm{Ra} \cdot \mathrm{Ia}+(\mathrm{Re}+\mathrm{Rf}) \cdot \mathrm{If}\) \\
\hline
\end{tabular}

\section*{DC Series Generator}

The two equations in this section describe the

Analysis Equations

Motors and Generators DC Series Generator Reference properties of a series DC generator. The first equation specifies the field current and the armature current to be the same. The second equation computes the terminal voltage \(\mathbf{V t}\) in terms of induced emf Ea, load current IL, armature resistance Ra, and series field windings Rs.
\[
I a=I f \quad U t=E a-(R a+R s) \cdot I L
\]

\section*{Separately-Excited DC Motor}

\section*{Analysis}

Equations
Motors and Generators Sep.-Excited DC Motor Reference

These eight equations form the foundation of the workings of a separately excited motor. The first equation calculates the field voltage \(\mathbf{V f}\) in terms of the field current If and field coil resistance Rf. The second equation shows the computation of terminal voltage \(\mathbf{V t}\) in terms of machine constant \(\mathbf{K}\), magnetic flux \(\phi\), mechanical radian frequency \(\omega \mathrm{m}\), armature current \(\mathbf{I a}\), and armature resistance \(\mathbf{R a}\). The third equation calculates the load torque \(\mathbf{T L}\) in terms of \(\mathbf{K}, \boldsymbol{\phi}\), Ia and Tloss. The fourth equation calculates Ea, the back emf induced in the rotor. The next equation links torque \(\mathbf{T}\) with \(\mathbf{K}, \boldsymbol{\phi}\), and \(\mathbf{I a}\). The reciprocal power relationship between \(\omega \mathrm{m}\) and \(\phi\) is shown in the next equation. The seventh equation shows the relationship between T, Tloss and TL. The last equation shows power providing a torque \(\mathbf{T}\), with an angular velocity \(\omega \mathrm{m}\).
\[
\begin{aligned}
& E a=K \cdot u m \cdot \text {. } \\
& T=K \cdot I a \cdot d \\
& \omega m=\frac{U t}{K \cdot \sigma}-\frac{R a \cdot T}{(K \cdot \sigma)^{2}} \\
& \mathrm{~T}=\mathrm{Tloss}+\mathrm{TL} \quad \mathrm{P}=\mathrm{T} \cdot \mathrm{wm}
\end{aligned}
\]
Analysis
Equations
Motors and Generators
DC Shunt Motor
Reference

Reference
Analysis
Equations
Motors and Generators DC Shunt Motor

These seven equations describe the principal characteristics of a DC shunt motor. The first equation expresses the terminal voltage \(\mathbf{V t}\) in terms of the field current If and field resistance Rf along with the external field resistance Re. The second equation defines the terminal voltage \(\mathbf{V t}\) in terms of the back emf (expressed in terms of the machine constant \(\mathbf{K}\), flux swept \(\boldsymbol{\phi}\), and angular velocity \(\boldsymbol{\omega} \boldsymbol{m}\)) and the IR drop in the armature circuit. The third equation refers to the torque available at the load TL due to the current Ia in the armature minus the loss of torque due to friction and other reasons. The fourth equation gives the definitive relationship between the back emf Ea, K, \(\phi\) and \(\boldsymbol{\omega} \mathbf{m}\). The next equation shows the reciprocal quadratic relationship between \(\boldsymbol{\omega m}, \mathbf{V t}, \mathbf{K}, \phi\),

Ra, \(\mathbf{R d}\) and \(\mathbf{T}\). The last two equations compute torque \(\mathbf{T}\) in terms of Tloss, load torque TL, flux \(\phi\), Ia, and \(K\).
\[
\begin{aligned}
& V t=(R e+R f) \cdot I f \quad U t=K \cdot(\underline{\omega} \cdot \omega m+R a \cdot I a \quad T L=K \cdot(\underline{I} \cdot I a-T l o s s \\
& E a=K \cdot \omega m \cdot \sigma \quad \omega m=\frac{U t}{K \cdot \sigma}-\frac{(R a+R d) \cdot T}{(K \cdot \Phi)^{2}} \quad T=T \operatorname{los} s+T L \\
& \text { T=K.ø.Ia }
\end{aligned}
\]

\section*{DC Series Motor}
\begin{tabular}{|l|}
\hline Analysis \\
Equations \\
Motors and Generators \\
\(\quad\) DC Series Motor \\
Reference \\
\hline
\end{tabular}

These eight equations describe the performance characteristics of a series DC motor. The first equation links the terminal voltage to back emf (Ea defined by the third equation) and the the IR drop through the armature due to armature resistance Ra, adjustable resistance Rd, and series resistance Rs. The second equation connects load torque TL with machine constant \(\mathbf{K}\), flux \(\phi\), load current IL, and the torque loss Tloss. The third equation defines the equation for the back emf in the armature \(\mathbf{E a}\) in terms of \(\mathbf{K}, \boldsymbol{\phi}\), and mechanical frequency \(\omega \mathrm{m}\). The fourth equation shows torque generated at the rotor due the magnetic flux \(\phi\) and current IL. The next relationship shows the reciprocal quadratic nature of the link between \(\omega \mathrm{m}, \mathbf{V t}, \mathbf{K}, \boldsymbol{\phi}, \mathbf{R a}, \mathbf{R s}, \mathbf{R d}\), and torque \(\mathbf{T}\). The next equation shows that the generated torque \(\mathbf{T}\) is the sum of load torque TL and lost Tloss. The last two equations show the connection between \(\mathbf{K}, \boldsymbol{\phi}\), a field constant \(\mathbf{K f}\), load current \(\mathbf{I L}\), and torque \(\mathbf{T}\).
\[
\begin{aligned}
& \mathrm{Vt}=K \cdot \boldsymbol{\sigma} \cdot \mathrm{wm}+(\mathrm{Ra}+\mathrm{Rs}+\mathrm{Rd}) \cdot \mathrm{IL} \quad \mathrm{TL}=\mathrm{K} \cdot \boldsymbol{6} \cdot \mathrm{IL}-\mathrm{Tloss} \quad \mathrm{Ea}=\mathrm{K} \cdot \mathrm{wm} \cdot \mathrm{w} \\
& T=K \cdot g \cdot I L \\
& \omega m=\frac{\mathrm{Vt}}{\mathrm{~K} \cdot \bar{\omega}}-\frac{(\mathrm{Ra}+\mathrm{Rs}+\mathrm{Rd}) \cdot \mathrm{T}}{(\mathrm{~K} \cdot \dot{\sigma})^{2}} \quad \mathrm{~T}=\mathrm{Tloss}+\mathrm{TL} \\
& K \cdot \emptyset=K f \cdot I L \quad T=K f \cdot I L^{2}
\end{aligned}
\]

\section*{Permanent Magnet Motor}

These five equations characterize the permanent magnet motor. The first equation shows the back emf \(\mathbf{E a}\) in terms of machine constant \(\mathbf{K}\), flux \(\phi\), and radian velocity \(\omega \mathrm{m}\). The second equation shows the connection between generated torque \(\mathbf{T}, \mathbf{K}, \phi\) and armature current \(\mathbf{I}\). The terminal voltage \(\mathbf{V t}\) is the sum of back emf Ea and the IR drop in the armature. The fourth equation shows conservation of various torques T, TL and Tloss. The final equation shows the quadratic relationship of \(\omega \mathrm{m}\) in terms of \(\mathbf{K}, \mathbf{V t}, \boldsymbol{\phi}, \mathbf{T}\) and \(\mathbf{R a}\).
\begin{tabular}{|c|c|c|}
\hline Ea=K.可.wm & T=K•w.Ia & \(\mathrm{Vt}=\mathrm{Ea}+\mathrm{Ra} \cdot \mathrm{Ia}\) \\
\hline T=Tloss+TL & & \[
\omega m=\frac{V t}{K \cdot(\bar{\sigma}}-\frac{R a \cdot T}{\left(K \cdot(\overline{)})^{2}\right.}
\] \\
\hline
\end{tabular}

\section*{Induction Motor I}

These eleven equations define the

Analysis
Equations
Motors and Generators Induction Motor I
Reference relationships amongst key variables in evaluating the performance of an induction motor. The first equation indicates the relationship between the radian frequency induced in the rotor \(\omega\) \(\mathbf{r}\), the angular speed of the rotating magnetic field of the stator \(\omega \mathrm{s}\), the number of poles \(\mathbf{p}\), and the mechanical angular speed \(\omega \mathbf{m}\). The next three equations describe the slip \(\mathbf{s}\) in three ways in terms of \(\omega \mathbf{r}\) and \(\omega \mathbf{s}, \omega \mathrm{m}, \mathbf{p}\), the induced rotor power per phase \(\mathbf{P r}\), and the power transferred to the rotor per phase Pma. Pma is defined in terms of the rotor current Ir and the rotor phase voltage Ema. The next two equations account for the mechanical power Pme in terms of \(\mathbf{p}, \boldsymbol{\omega}, \boldsymbol{\omega}\), Pma, and torque T. The torque equation can be expressed in terms of \(\mathbf{p}, \mathbf{P m a}\), and \(\boldsymbol{\omega} \mathbf{s}\), as shown by the next equation. The last three equations show an equivalent circuit representation of induction motor action and link power with rotor resistance \(\mathbf{R r}\), rotor current \(\mathbf{I r}\), slip \(\mathbf{s}\), and a machine constant KM.

\(s=1-\frac{P}{2} \cdot\left(\frac{\omega m}{\omega s}\right)\)
\(\frac{\mathrm{Pr}}{\mathrm{Pma}}=s\)
\[
\begin{gathered}
\text { wr }=5 \cdot \mathrm{ws} \quad \mathrm{Pma}=3 \cdot \mathrm{Ir} \cdot \mathrm{Ema} \quad \mathrm{Pme}=3 \cdot\left(\frac{\mathrm{P}}{2}\right) \cdot\left(\frac{\mathrm{wm}}{\mathrm{ws}}\right) \cdot \operatorname{Pma} \\
\mathrm{Pme}=\mathrm{T} \cdot \mathrm{wm} \quad \mathrm{~T}=3 \cdot\left(\frac{\mathrm{P}}{2}\right) \cdot\left(\frac{\mathrm{Pma}}{\mathrm{ws}}\right) \quad \mathrm{Pma}=\mathrm{Rr} \cdot \mathrm{Ir}^{2}+\frac{(1-s)}{\mathrm{s}} \cdot \mathrm{Rr} \cdot \mathrm{Ir}^{2} \\
\mathrm{~Pa}=\frac{(1-s)}{s} \cdot \operatorname{Rr} \cdot \mathrm{Ir}^{2} \quad \mathrm{Rr}=\frac{\mathrm{Rl}}{\mathrm{Km}^{2}}
\end{gathered}
\]

\section*{Induction Motor II}

These seven equations describe equivalent

\section*{Analysis \\ Equations \\ Motors and Generators Induction Motor II \\ Reference} circuit analysis of an induction motor. The first equation shows power Pma in the rotor per phase, as defined in terms of the rotor current \(\mathbf{I r}\), rotor resistance \(\mathbf{R r}\), and slip s. The second equation shows the expression for torque \(\mathbf{T}\) in terms of poles \(\mathbf{p}\), Pma and radian frequency of the induced voltage in the stator. The third equation is an alternate representation of torque in terms of terminal voltage \(\mathbf{V a}\), stator resistance Rst, Rr, inductive reactance \(\mathbf{X L}\), and \(\omega\). The equation for Tmmax represents the maximum positive torque available at the rotor, given the parameters of the induction motor Rst, Rr, XL, Va, p, and \(\boldsymbol{\omega}\). The torque equation shows a relationship between torque \(\mathbf{T}\) and slip \(\mathbf{s}\); sm represents the condition when \(\mathrm{dT} / \mathrm{ds}=0\). The sixth equation defines the so-called breakdown torque Tgmax of the motor. The final equation connects \(\mathbf{R r}\) with machine constant KM.
\[
\begin{aligned}
& \text { Pma }=\frac{\operatorname{Rr}}{s} \cdot \mathrm{Ir}^{2} \quad \mathrm{~T}=\frac{3}{2} \cdot\left(\frac{\mathrm{P} \cdot \mathrm{Pma}}{\mathrm{ws}}\right) \mathrm{T}=\frac{3}{2} \cdot\left(\frac{\mathrm{P}}{\mathrm{ws}}\right) \cdot\left(\frac{\mathrm{Rr}}{\mathrm{~s}}\right) \cdot\left(\frac{\mathrm{Va}^{2}}{\left(\mathrm{Rst}+\frac{\mathrm{Rr}}{\mathrm{~s}}\right)^{2}+\mathrm{KL}^{2}}\right) \\
& \text { Tmmax }=\frac{3}{4} \cdot\left(\frac{\mathrm{P}}{\mathrm{ws}}\right) \cdot\left(\frac{\mathrm{Va}^{2}}{\sqrt{\mathrm{Rst}^{2}+\mathrm{XL}^{2}+\mathrm{Rst}}}\right) \\
& \text { Tgmax }=-\left(\frac{3}{4}\right) \cdot\left(\frac{\mathrm{P}}{\mathrm{ws}}\right) \cdot\left(\frac{\mathrm{Va}^{2}}{\sqrt{\mathrm{Rs}^{2}+\mathrm{XL}^{2}-\mathrm{Rst}}}\right) \quad \mathrm{sm}=\frac{\mathrm{Rr}}{\sqrt{\mathrm{Rs}^{2}+\mathrm{YLL}^{2}}}
\end{aligned}
\]

\section*{Single-Phase Induction Motor}

\author{
Analysis \\ Equations \\ Motors and Generators Single-Phase Induct. Motor Reference
}

These three equations describe the properties of a single-phase induction motor. The first equation defines the slip frequency sf with respect to the forward rotating flux, the radian frequency of induced current in the rotor, and the angular mechanical speed of the rotor \(\omega \mathrm{m}\). The final two equations represent the forward and backward torques \(\mathbf{T f}\) and \(\mathbf{T b}\) for the system.
\[
s f=1-\frac{P}{2} \cdot\left(\frac{w m}{w s}\right) \quad T f=\frac{P}{2} \cdot\left(\frac{1}{w s}\right) \cdot\left(\frac{I s f^{2} \cdot R r}{2 \cdot s f}\right) \quad T b=-\left(\frac{P}{2}\right) \cdot\left(\frac{1}{w s}\right) \cdot\left(\frac{I s b^{2} \cdot R r}{2 \cdot(2-s f)}\right)
\]

\section*{Synchronous Machines}

These five equations focus on the basic

Analysis
Equations
Motors and Generators
Synchronous Machines
Reference properties of a synchronous machine. The first equation links the radian mechanical and electrical speeds \(\omega \mathrm{m}\) and \(\omega \mathbf{s}\) with the number of poles \(\mathbf{p}\). The second equation shows maximum torque Tmax in terms of current If, terminal voltage Va, p, and \(\boldsymbol{\omega}\). Pma represents the power produced in the load with a phase delay of \(\boldsymbol{\theta}\). The last two equations show torque relationships with mechanical power Pme, \(\omega \mathrm{m}\), Pma, and \(\omega\) s.
\[
\begin{array}{ll}
\omega_{m}=\frac{2}{\mathrm{P}} \cdot \mathrm{ws} & \text { Tmax }=3 \cdot\left(\frac{\mathrm{P}}{2}\right) \cdot\left(\frac{\mathrm{If} \cdot \mathrm{va}_{\mathrm{a}}}{\omega s}\right) \quad \mathrm{Pma}=\mathrm{Va}^{2} \cdot I a \cdot \operatorname{Cos}(\theta) \\
\mathrm{T}=\frac{\mathrm{Pme}}{\mathrm{wm}} & \mathrm{~T}=3 \cdot\left(\frac{\mathrm{P}}{2}\right) \cdot\left(\frac{\mathrm{Pma}}{\mathrm{ws}}\right)
\end{array}
\]

\section*{Bibliography}

Slemon, G.R. and A. Straughen, Electric Machines, Addison Wesley, Reading, MA, 1980.

\section*{Reference}

\section*{Chapter 33}

\section*{Reference: Navigation Guide}

Analysis
Equations
Reference

This chapter is designed as a navigation guide to introduce you to the Reference tables, and show you the keys available at each screen. At the end of the chapter is a detailed Reference example.
Introduction 203
Finding Reference 204
Reference Screens 204
Using Reference Tables 205
Reference Menu Keys 205
Example: Electron Charge 206

\section*{Introduction}

EE-Pro is divided into three major sections: Analysis, Equations, and Reference. This chapter addresses the Reference section, which includes Reference tables covering resistor colors, standard (or preferred) component values, semiconductor properties, Boolean expressions, Boolean algebra properties, transforms, constants, SI prefixes, and the Greek alphabet.

The Reference tables contain indispensable information for solving problems. You can find physical constants, look up properties of semiconductors, and access Fourier, Laplace, and z-transforms - all with context-sensitive help. Some Reference tables, such as Resistor Color Chart and Standard Component Values, are more sophisticated and can perform calculations. Many Reference tables include a picture for more information.

Unlike Analysis screens (which tend to be similar) and Equations screens (which tend to be identical), each Reference screen may differ significantly, depending on the type of Reference information being presented.

\section*{Finding Reference}

The Reference section is found at the home screen of EE•Pro．
1．Start EE•Pro：
－HP 48GX：Press \(⿴ 囗 十\) ERBAN EE EE
－HP 48SX：Press \(\square\) ERAN EE EE
－Press \(⿴ 囗 \rightarrow\) nomen to show the home screen．

EE•Pro is structured with a hierarchy of screens for choosing a specific topic．This is the home screen．To return here at any time，press \(\boldsymbol{\square}\) or \(\rightarrow\) ．

2．Select Reference by moving the highlight bar to Reference and pressing ENTER or \(\triangle\) ．The screen now displays Reference as its title and a list of Reference tables from which to choose．

3．Select a Reference table by moving the highlight bar to the desired item and pressing ENTER or \(\triangle\) ．This will display the selected Reference table． For the purposes of this navigation guide，select Reference，then
 Constants．

Pressing UP（if available）or returns you to the previous screen． Pressing HOME（if available）or \(\boldsymbol{\square}\) Bowe returns you to the home screen．

\section*{Reference Screens}

A basic Reference screen displays a Reference table．Most of the Reference tables contain information organized in the same manner as a printed reference book．The information may consist of data，equations，text，or a combination of
 these types．The screen pictured here is the Constants reference table．

All the screens in this chapter assume units are on．（Press IOPTSI，then UNITS to toggle units on or off．）

\section*{Using Reference Tables}

The instructions below are general instructions for using the basic Reference tables. For a detailed example using the Constants, see page 206. In addition, each section in each Reference chapter contains at least one example.
1. Choose parameters (if available). Some Reference tables have Choose fields which control the specific data to be displayed, while other Reference tables consist of only one table of data.
2. Locate the specific item of interest. If necessary, use the search feature to scan through the data to find the item. Because the search feature will only scan the labels and data displayed on the main part of the screen, it may be necessary to press DESC or VAR to toggle the positions of the help text and the data. That way, the search feature can be used to search the information normally displayed in the help text area at the bottom of the screen.
3. Optional: Press \(\rightarrow\) STK to copy the desired item(s) to the stack for use in further calculations.
4. When finished, press to return to the Reference screen or press (Howl to return to the home screen.

Some Reference tables, such as Resistor Color Chart or Standard Component Values, are more sophisticated and can perform calculations, much like Analysis routines. For these types of Reference tables, the basic steps are identical to those used in Analysis routines, as described on page 17.

\section*{Reference Menu Keys}

These are descriptions of the menu keys available in Reference screens:
\(\rightarrow\) STK Copies one or all of the items to the HP 48 stack.
VIEW Displays the highlighted item in text view.
PICT Displays a picture (if available). This menu key will not appear
 for Reference tables which do not have a picture.
OPTS Displays the option menu. For more information, see "Options Menu" page 9.
DESC. Toggles positions of data and help text (if appropriate). This menu key will not appear for Reference tables which do not have switchable help text.

SOLVE Performs a calculation using the entered values. This menu key will not appear for Reference tables which do not have a custom solving routine.

\section*{Example: Electron Charge}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Find the constant for electron charge.
1. Press DESC or VAR to toggle the position of the constant values and the help text (the constant names), so that the names of the constants are listed in the main display area with the constants themselves. This places the names of the constants where they can be accessed by the search feature, which does not search through items displayed in the help text at the bottom of the screen.
2. Press OPTS NXT FIND to activate the search feature.
3. Type the name or part of the name of the item and press ENTER. For example, type CHARGE to find the electronic charge on an electron. The search feature is not case-sensitive, so typing
 in all caps is acceptable. The e-charge is the constant q and its value is \(1.60217733 \mathrm{E}-19 . \mathrm{C}\).
4. Press EXIT to leave the options menu.

NOTE
When you exit a Reference table, the position of the data and the help text will revert to the default setting. Pressing DESC only toggles the positions while you are at a particular screen.
5. When finished press to return to the Reference screen or press \(\square\) Howe to return to the home screen.

\section*{Chapter 34}

\section*{Resistor Color Chart}

Analysis Equations Reference

Resistor Color Chart

This chapter covers the resistor color chart reference table, which is a sophisticated routine to allow you to specify the color bands of a resistor and compute the value and tolerance. Using the Resistor Color Chart screen is similar to using most Analysis screens.

\section*{Field Descriptions}

Num. of Bands: (Number of Bands) Press CHOOS to select 3, 4, or 5.
Band 1: (see table below) Press CHOOS to select color.
Band 2: (see table below) Press CHOOS to select color.
Band 3: (see table below) Press CHOOS to select color.
Band 4: (see table below) Press CHOOS to select color.
Band 5: (see table below) Press CHOOS to select color.
Value: (Resistor Value) Returns a unit object.
Tolerance: (Resistor Tolerance) Returns a percent.

\section*{Band positions represent:}
\begin{tabular}{lccc}
& 3-Band & 4-Band & 5-Band \\
Band 1 & digit & digit & digit \\
Band 2 & digit & digit & digit \\
Band 3 & mulitplier & multiplier & digit \\
Band 4 & N/A & tolerance & multiplier \\
Band 5 & N/A & N/A & tolerance
\end{tabular}

Colors represent:
DIGIT MULTIPLIER TOLERANCE
\begin{tabular}{lccc}
SILVER & - & \(\div E 2\) & \(10 \%\) \\
GOLD & - & \(\div E 1\) & \(5 \%\) \\
BLACK & 0 & xE0 & - \\
BROWN & 1 & xE1 & \(1 \%\) \\
RED & 2 & xE2 & \(2 \%\) \\
ORANGE & 3 & \(x E 3\) & - \\
YELLOW & 4 & \(x E 4\) & - \\
GREEN & 5 & \(x E 5\) & \(0.5 \%\) \\
BLUE & 6 & \(x E 6\) & \(0.25 \%\) \\
VIOLET & 7 & \(x E 7\) & \(0.1 \%\) \\
GREY & 8 & \(x E 8\) & \(0.05 \%\) \\
WHITE & 9 & \(x E 9\) & -
\end{tabular}

\section*{Using the Resistor Color Chart}
1. With the highlight bar on Num. of Bands, press CHOOS to select 3, 4 or 5. This will determine the number of Band fields that appear.
2. In each Band field, press CHOOS to select the desired color of the band.
3. Press SOLVE to find the value of the resistor and its tolerance.

\section*{Example}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{2}{|c|}{} & Degrees & Result: \\
(Press CST) & Coord: & Rectangular & Units: & On \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Find the value and tolerance of a resistor with band colors yellow, black, and green.
1. Choose 3 for Num. of Bands.
2. Choose Yellow for Band 1, Black for Band 2, and Green for Band 3.
4. Press SOLVE to calculate Value and Tolerance.

NOTE
In the small font, it is not possible to distinguish between the prefix for milli (m) and Mega (M), so be sure to switch to the large font if there is any chance of ambiguity in the value. Press OPTS FFONT to toggle the font size.

\section*{Chapter 35}

\section*{Standard Component Values}

\author{
Analysis \\ Standard Component Values Equations \\ Reference
}

This chapter covers the standard component values reference table, which is a sophisticated routine to allow you to compute the closest standard value (also known as the "preferred" value) of a resistor, capacitor, or inductor. Using the Standard Component Values screen will be similar to using most Analysis screens.

\section*{Field Descriptions}

Value: (Desired Value or Design Spec.) Enter a real number.
Tolerance: (Tolerance of Component) Press CHOOS to select a tolerace \(\pm 20 \%\) down to \(\pm .0 .05 \%\).
Component: (Type of Component) Press CHOOS to select Resistor, Inductor, or Capacitor.
Value: (Closest Standard Value to the Desired Value) Returns a unit object.
Bands: (Resistor Color Bands - if the Component is a Resistor) Returns the color bands in a resistor.

\section*{Using Standard Component Values}
1. In the Value field, enter the desired value of the component.
2. In the Tolerance field, press CHOOS or ENTER to choose the tolerance of the component.
3. In the Component field, press CHOOS or ENTER to choose the type of component.
4. Press SOLVE to find the closest standard value for the component and (if a resistor) the color bands.

\section*{Example}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press ©ST) & Coord: & Rectangular & Units: & On \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Find the closest standard value for a \(123 \Omega\) resistor at \(5 \%\) tolerance.
1. Enter 123 for Value.
2. Choose 5\% for Tolerance.
3. Choose Resistor for Component.
3. Press SOLVE to calculate Value and
 Bands.

\section*{Chapter 36}

\section*{Semiconductor Properties}

Analysis Equations
Reference
Semiconductor Properties

This chapter covers the semiconductor properties reference table. A number of different sections include a wide variety of commonly-used semiconductor data. All data can be viewed, printed, or copied to the stack for use in further calculations.

\section*{Field Descriptions}

Below is a list of fields found in each section. Due to limited space in this manual, the list has been abbreviated. The complete list of properties can be found in EE•Pro itself. All properties listed are at 300 K unless otherwise specifically stated.
\begin{tabular}{|c|c|}
\hline Module & Fields \\
\hline Semiconductors & \begin{tabular}{l}
Semiconductor: Press CHOOS or th to select Si or GaAs. \\
Atoms: (Atoms) Displays real number. \\
At Wt: (Atomic Weight) Displays real number. \\
Br Fld: (Breakdown Field) Displays real number. ...
\end{tabular} \\
\hline III-V, II-VI Compounds & \begin{tabular}{l}
Compound: Press CHOOS or th- to select compound. \\
EG: (Band Gap) Displays real number. \\
\(\mu \mathrm{n}\) : (\(n\) - Mobility) Displays real number. \\
\(\mu \mathrm{p}\) : (\(p\) - Mobility) Displays real number. ...
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Module & Fields \\
\hline Si Donor Levels & \begin{tabular}{l}
Li: Displays real number. \\
Sb: Displays real number. \\
P: Displays real number.
\end{tabular} \\
\hline Si Acceptor Levels & Mg(CD): Displays real number. \(\mathbf{M g}(C B)\) : Displays real number. Cs: Displays real number. ... \\
\hline \begin{tabular}{l}
Si02/Si3N4 \\
Colors
\end{tabular} & \begin{tabular}{l}
Color: Press CHOOS or to to select color. \\
Si02: (Film Thickness) Displays real number. \\
Si3N4: (Film Thickness) Displays real number. \\
Order: (Order) Displays real number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Using Semiconductor Properties}
1. If the first field is a choose field (Semiconductors, III-V \& II-VI Compounds, and \(\mathrm{Si} 02 / \mathrm{Si} 3 \mathrm{~N} 4\) Colors), press CHOOS or t+1- to select the desired item. The properties of that item will then be displayed in the remaining fields.
2. Scroll down to select the desired property.
3. Once you have selected a property, you can
- Press VIEWI to display it in a text view.
- Press \(\boldsymbol{\rightarrow} \rightarrow\) STK to copy one or all to the HP 48 stack.
- Press IOPTS \(\operatorname{NxT}\) PRINT to send one or all to a printer.
4. Optional: When finished, press \(\boldsymbol{\square}\) to go to the previous screen or \(\boldsymbol{B}\) foum to go to the home screen.

\section*{Example}
\begin{tabular}{|lrlrl|}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Find the density of zinc sulfide.
1. From the Semiconductor Properties menu, scroll down to III-V, II-VI

Compounds and press \(\triangle\).
2. If there are no units, press UNITS to display them.
3. In the Compound field press CHOOS to select ZnS .
4. Find the melting point by
- Scrolling down to the \(\rho\) field or
- Press OPTS NXT FIND. Type \(\rho(\square R)\) and press ENTER. (If necessary, first press \(0 \mathbb{0}\) to clear the previous search.)

5. Once you have found the density, you can
- Press VIEW to display the property in a text view.
- Press \(\rightarrow\) STK to copy one or all to the HP 48 stack.
- Press OPTS NXT PRINT to send one or all to a printer.
5. When you are finished, press 4 to return to the Semiconductor Properties screen.

\section*{Chapter 37}

\section*{Boolean Expressions}

\section*{Analysis} Equations Reference

Boolean Expressions

This chapter covers the Boolean expressions reference table，which includes 16 commonly－used Boolean expressions and also a diagram of the most commonly－used logic components．

\section*{Using Boolean Expressions}

This section lists the rules for two－valued Boolean algebra，where＂AND＂is represented by＂．＂，＂OR＂is represented by＂+ ＂，and＂NOT＂is represented by ＂＇＂
1．Scroll through the Boolean Expressions screen with \(\boldsymbol{\Delta}\) and \(\boldsymbol{\nabla}\) or search with FIND to select an expression．
2．When you have found the desired item：
－Press VIEWI to display it in a text view．
－Press \(\boldsymbol{\rightarrow} \boldsymbol{\operatorname { S T K }}\) to copy one or all to the HP 48 stack．
－Press IOPTS NxT PRINT to print one or all to a printer．
3．You can view a picture of the logic components by pressing PICTI at any time．
4．Optional：When finished，press \(\Delta\) to go to the previous screen or \(⿴ 囗 十\) rome to go to the home screen．
```

－And	$=\square$ Mand
D－DR	$\square \times$ NOK
墔 XOR	－
［－EUFFER	－

BIDLEAN EXPRESSIDNS

```

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Find the Exclusive expression.
1. Press DESC to toggle the help text and the expressions.
2. Press OPTS NXT FIND to search for the property.

3. Type EXCL and press ENTER to start the search. The highlight bar will move to the first match, which is the answer. Press EXIT to exit the options menu.
4. Press VIEW to display the property in a text view, as shown.
5. When you have finished viewing the property, press any key to return to the previous screen.
6. Optional: Press DESC to toggle the

help text and the expressions back to their original positions.

\section*{Bibliography}

Mano, M. Morris, Digital Logic and Computer Design, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979, pp 34-54.

\section*{Chapter 38}

\section*{Boolean Algebra Properties}

\author{
Analysis \\ Equations \\ Reference \\ Boolean Algebra Properties
}

This chapter covers the Boolean algebra properties reference table，which includes 10 commonly－used Boolean algebra properties and their duals．

\section*{Using Boolean Algebra Properties}

This section lists the rules for two－valued Boolean algebra，where＂AND＂is represented by＂．＂，＂OR＂is represented by＂+ ＂，and＂NOT＂is represented by ＂＇＂
1．Scroll through the Boolean Algebra Properties screen with \(\Delta\) and \(\square\) search with FIND to select an expression．
2．When you have found the desired item：
－Press VIEWI to display it in a text view．
－Press \(\rightarrow\) STK to copy one or all to the HP 48 stack．
－Press IOPTS NxT PRINT to print one or all to a printer．
3．You can view the duals of the Boolean Algebra Properties by pressing DUAL at any time．
4．Optional：When finished，press to go to the previous screen or \(⿴ 囗 十\) go to the home screen．

\section*{Example}
\begin{tabular}{||rrlll||}
\hline MODES & \(\boxed{ }\) : & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Find the expression of the Distributive Property.
1. Press DESC to toggle the help text and the expressions.
2. Press OPTS NXT FIND to search for the property.
3. Type DIST and press ENTER to start the search. (If necessary, first press \(O \mathrm{~N}\) to
 delete the previous search string.) The highlight bar will move to the first match, which is the answer. Press EXXIT to exit the options menu.
4. Press VIEW to display the property in a text view, as shown.
5. When you have finished viewing the property, press any key to return to the previous screen.
6. Optional: press DESC to toggle the help text and the expressions back to
 their original positions.

\section*{Bibliography}

Mano, M. Morris, Digital Logic and Computer Design, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979, pp 34-54.

\section*{Chapter 39}

\section*{Transforms}

This chapter covers the Transforms reference

Analysis
Equations
Reference
Transforms table, which includesdefinitions, properties, and transform pairs for continuous-time Fourier transforms, bilateral Laplace transforms, and bilateral z-transforms. All formulas can be viewed in the EquationWriter, printed, or copied to the stack for future use. However, these sections do not include any Analysis-type routines.

\section*{Using Transforms}
1. Select Fourier Transforms, Laplace Transforms, or z-Transforms and press Enter or \(\triangle\).
2. Select Definitions, Properties or Transform Pairs and press enter or \(\triangle\). By default, the forward transforms are displayed.
3. Select the desired equation and:
- Press INV to display the inverse transforms, which will switch the positions of the time and frequency functions.
- Press DESC to toggle the help text and the transform (not available in Transform Pairs).
- Press VIEWI to display the transform in a text view.
- Press \(\square\) or \(\boldsymbol{B}\) VIEWI to display the transform in a graphics view. If the graphics form is wider than the screen, press \(\triangle\) and to scroll. When you have finished viewing the transform, press any key to return to the previous screen.
- Press \(\boldsymbol{\rightarrow S T K}\) to copy one or all to the HP 48 stack.
- Press IOPTS NXI PRINT to send one or all to a printer.
4. When you have finished with Transforms, press to go to the previous screen, \(\mathbb{\square}\) rowe to go to the home screen, or to quit EE•Pro.

\section*{Example 1}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result： & Symbolic \\
（Press CST） & Coord： & Rectangular & Units： & On or Off \\
& Format： & Standard & Help： & On \\
& Digits： & N／A & Font： & Small \\
\hline
\end{tabular}

What is the definition of the Inverse
Fourier transform？
1．In the initial Transforms screen，move the highlight bar to Fourier Transforms and press ENTER or \(\triangle\) ．
2．Move the highlight bar to Definitions and press ENTER or \(\triangle\) ．
3．Move the highlight bar to the second definition and press \(\square\) VIEW to view it in a graphics view．
4．Press \(\square\) and to scroll．When you have finished viewing the transform，press any key to return to
 the previous screen．

\section*{Example 2}
\begin{tabular}{|lrlrl|}
\hline MODES & \(\Delta:\) & Degrees & Result： & Symbolic \\
（Press CST） & Coord： & Rectangular & Units： & On or Off \\
& Format： & Standard & Help： & On \\
& Digits： & N／A & Font： & Small \\
\hline
\end{tabular}

Look up the Laplace transform of the time function \(f(t)=t\) ．
1．In the initial Transforms screen，move the highlight bar to Laplace
Transforms and press ENTER or \(\triangle\) ．
2．Move the highlight bar to Transform

```

F(T): F(\$)
8(T): 1
\&(T-A): EXP(-A关S)
M(T): 1'S
|(T-A): EXP(-A⿱丷天心)<s
T: 1**

```

FETE NIE W INM DPTE DES Pairs and press ENTER or \(\Delta\) ．
3．Scroll down to \(t: 1 / s^{\wedge} 2\) and press \(\square\) VIEW to view it in a graphics view．
4．When you have finished viewing the transform，press any key to return to the previous screen．

\section*{Chapter 40}

\section*{Constants}

\author{
Analysis \\ Equations \\ Reference \\ Constants
}

This chapter covers the Constants reference table, which includes 43 commonly-used universal constants, descriptions, and units. Many of these constants are embedded in equations in the Equations sections of EE*Pro, and their values are automatically inserted during Solver computations. All constants can be viewed, printed, or copied to the stack for future use.

\section*{Using Constants}
1. Scroll through the Constants screen with \(\Delta\) and \(\nabla\) or search with

FIND to select a constant.
2. When you have found the desired item:
- Press VIEW to display it in a text view.
- Press \(\rightarrow\) STK to copy one or all to the HP 48 stack.
- Press OPTS NXT PRINT to send one or all to a printer.
3. Optional: When finished, press \(\square\) to go to the previous screen or \(\boldsymbol{\square}\) Fow to go to the home screen.

\section*{Example}
\begin{tabular}{|lrlrl||}
\hline MODES & \multicolumn{1}{|c|}{} & Degrees & Result: & Symbolic \\
(Press CST) & Coord: & Rectangular & Units: & On or Off \\
& Format: & Standard & Help: & On \\
& Digits: & N/A & Font: & Small \\
\hline
\end{tabular}

Look up the value of the Boltzmann constant.
1. Press DESC or VAR to toggle the position of the constant values and the help text, so that the names of the constants are listed in the main display area. (If necessary, first press \(O \mathbb{O}\) to clear the previous search string.)

2. Press OPTS \(\mathbb{N \times T}\) F IND to activate the search feature.
3. Type BOLTZ and press ENTER to start the search. The highlight bar will move to the first match, which is the answer. To turn units on or off, press | WXT UNITS.
4. Press NXT VIEWI to display the constant in text view as shown here.
5. When you have finished, press any key to return to the previous screen.
6. Optional: Press EXITT to exit the options menu.
7. Optional: Press DESCI or VAA to toggle the help text back to its original position at the bottom of the screen.

\section*{Constants Reference Table}
\begin{tabular}{|c|c|c|c|}
\hline Const. & Description & Const. & Description \\
\hline \(\pi\) & circle ratio & \(\mu \mathrm{q}\) & mass \(\mu\) / mass e- \\
\hline e & Napier constant & c1 & 1st radiation constant \\
\hline \(\boldsymbol{\gamma}\) & Euler constant & c2 & 2nd radiation constant \\
\hline \(\varnothing\) & golden ratio & b & Wien displacement \\
\hline \(\alpha\) & fine structure & \(\lambda c\) & e-Compton wavelength \\
\hline c & speed of light & \(\lambda \mathrm{n}\) & n Compton wavelength \\
\hline \(\epsilon 0\) & permittivity & \(\lambda \mathrm{p}\) & p+ Compton wavelength \\
\hline F & Faraday constant & NA & Avogadro constant \\
\hline G & Newton constant & \(ø 0\) & magnetic flux quantum \\
\hline g & acceleration of gravity & R & molar gas constant \\
\hline h & Planck constant & a0 & Bohr radius \\
\hline hb & Dirac constant & R \(\infty\) & Rydberg constant \\
\hline k & Boltzmann constant & \(\sigma\) & Stefan-Boltzmann constant \\
\hline \(\mu 0\) & permeability & \(\mu \mathrm{B}\) & Bohr magneton \\
\hline q & e-charge & \(\mu \mathrm{e}\) & e-magnetic moment \\
\hline em & e- charge / mass & \(\mu \mathrm{N}\) & nuclear magneton \\
\hline me & e-rest mass & \(\mu \mathrm{p}\) & p+ magnetic moment \\
\hline mn & n rest mass & \(\mu \mu\) & \(\mu\) magnetic moment \\
\hline mp & p+ rest mass & SP & standard pressure \\
\hline m \(\mu\) & \(\mu\) rest mass & ST & standard temperature \\
\hline pe & mass \(\mathrm{p}+\) / mass \(\mathrm{e}-\) classical e- radius & Vm & molar volume at STP \\
\hline
\end{tabular}

\section*{Bibliography}

Based on Cohen and Taylor, "The 1986 Adjustment of the Fundamental Physical Constants," Rev. Mod. Phys., Vol. 59, No. 4, October 1987, 1139-1145.

\section*{Chapter 41}

\section*{SI Prefixes}

Analysis
Equations
Reference
SI Prefixes

This chapter covers the SI Prefixes reference table，which includes all currently－accepted prefixes for Le Systeme International d＇Unites．All of these prefixes are recognized by the HP 48GX， and all but the most recent four of them（ \(\mathrm{Y}, \mathrm{Z}, \mathrm{y}\) ，and z ）are recognized by the HP 48SX．

\section*{Using SI Prefixes}

1．Scroll through the SI Prefixes screen with \(\Delta\) and \(\square\) or search with EIND．
2．When you have found the desired item：
－Press VIEWI to display it in a text view．
－Press \(\boldsymbol{\rightarrow S T K}\) to copy one or all to the HP 48 stack．
－Press IOPTS \(\triangle \times x\) PRINT to print one or all to a printer．
3．Optional：When finished，press \(\square\) to go to the previous screen or \(⿴ 囗 ⿰ 丿 ㇄\) go to the home screen．

\section*{Chapter 42}

\section*{Greek Alphabet}

\author{
Analysis Equations \\ Reference \\ Greek Alphabet
}

This chapter covers the Greek Alphabet reference table, which includes a picture displaying all uppercase and lowercase letters in the Greek alphabet. Many of these characters are built-in to the HP 48 fonts, but not all.

Press any key to return to the previous screen. (This is simply a display. These characters can not be copied to the stack.)
(Note that the uppercase and lowercase Greek letters alternate positions from one line to the next.)

\section*{Programming \& Advanced Use}

\section*{Chapter 43}

\section*{Programmable Commands}

This chapter covers programming with EE•Pro and includes a summary of the programmable commands. Each of these commands can be executed directly from the HP 48 stack or included in user programs. For more information about programming, see the HP 48 manual.

This chapter covers:
- Using Programmable Commands
- Object Syntax
- EE Library Commands
- AC Circuits
- Polyphase Circuits
- Filter Design
- Gain and Frequency
- Fourier Transforms
- Two-Port Networks
- Transformer Performance
- Transmission Lines
- Binary Arithmetic
- Register Operations
- Bit Operations
- Binary Conversions
- Binary Comparisons
- Binary Modes
- Miscellaneous Binary Operations
- Karnaugh Map
- Algebraic Functions
- Error Functions
- Capital Budgeting
- Reference

\section*{Using Programmable Commands}

Programmable commands can be used from the stack or incorporated into a user program. The tables in this chapter are organized to provide you with the inputs and outputs of each command, as well as the types of arguments accepted. The object syntax table lists the abbreviations used for the different argument types. For more information about writing programs see your HP 48 User's Guide.

\section*{Using Programmable Commands From the Stack}
1. Type the input argument(s). For example, type the input array for the \(\rightarrow\) FFT command \(\left[\begin{array}{llll}1 & 2 & 3 & 2\end{array}\right]\)].
2. Enter the command by either typing it or using the EE•Pro library menu:
- \(\alpha, \alpha \rightarrow\) FFT ENTER
 CMDS \(F F T \rightarrow\) FFT.

\section*{Object Syntax}

These are the various objects listed as inputs or outputs in this chapter.
\begin{tabular}{|c|c|c|}
\hline Object Syntax & Description & Examples \\
\hline \(x\) y a b c d & Real number & 1.5235 .5510 \\
\hline \(\mathrm{m} n\) & Positive integer (real number) & 123 \\
\hline (x,y) & Complex number or rectangular point & \((0,1)(1,2)(1.5,-3.3)\) \\
\hline z & Real or complex number & \(1.523(0,1)\) \\
\hline x_unit & Real number with units & 10_m/s 20.587_ft \\
\hline \{list \(\}\) & List of objects & \{ 223 \} \{ (0,1)(1,2) \} \\
\hline [array] & Real or complex array & [1223] [\((0,1)(1,2)]\) \\
\hline 'name' & Global or local name & 'X' 'Y' 'Z' \\
\hline 'symb' & Algebraic expression or name & 'SIN(X)' 'LN(Z)' 'X' \\
\hline \#bin & Binary integer & 10110 \\
\hline 'expr_x' & Real number, algebraic or global name & \[
2.7 \text { 'SIN(X)' 'X' }
\] \\
\hline 'expr_z' & Real or complex number, algebraic or global name & \(2.7(10,52)\) 'SIN(X)' 'X' \\
\hline T/F & 1 (True) or 0 (False) & 10 \\
\hline
\end{tabular}

\section*{EE Library Commands}

These are the commands in the EE•Pro library menu.
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output \\
\hline EE Runs EE•Pro & - & - \\
\hline \begin{tabular}{c}
ABOUTEE Displays the EE•Pro \\
'About' screen
\end{tabular} & - & - \\
\hline \begin{tabular}{c}
CMDSEE Displays the EE•Pro \\
commands in the menu keys
\end{tabular} & - & - \\
\hline \begin{tabular}{c}
GOEE Goes to the specified screen in \\
EE•Pro, see chapter 32
\end{tabular} & \{list \} & specified screen \\
\hline
\end{tabular}

\section*{AC Circuits}

These commands are found in the CMDS \(\quad\) AC menu. For more information, see Chapter 3, "AC Circuits."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline VZDIV Voltage Divider (Z) & \[
\begin{array}{|l|}
\hline \text { Vs: 'expr_z' } \\
\text { Z: }\left\{\mathrm{Z}_{1} . . \mathrm{Z}_{\mathrm{n}}\right\} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { IL: 'expr_z' } \\
& \text { V: }\left\{\mathrm{V}_{1} . . \mathrm{V}_{\mathrm{n}}\right\}
\end{aligned}
\] \\
\hline VYDIV Voltage Divider (Y) & \[
\begin{aligned}
& \text { Vs: 'expr_z' } \\
& \mathrm{Y}:\left\{\mathrm{Y}_{1} . . \mathrm{Y}_{\mathrm{n}}\right\} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { IL: 'expr_z' } \\
& \text { V: }\left\{\mathrm{V}_{1} . . \mathrm{V}_{\mathrm{n}}\right\} \\
& \hline
\end{aligned}
\] \\
\hline CZDIV Current Divider (Z) & \[
\begin{aligned}
& \text { Is: 'expr_z' } \\
& \text { Z: }\left\{\mathrm{Z}_{1} . . \mathrm{Z}_{\mathrm{n}}\right\}
\end{aligned}
\] & \[
\begin{aligned}
& \text { VL: 'expr_z' } \\
& \text { I: }\left\{\mathrm{I}_{\mathrm{l}} . . \mathrm{I}_{\mathrm{n}}\right\} \\
& \hline
\end{aligned}
\] \\
\hline CYDIV Current Divider (Y) & \[
\begin{array}{|l|}
\hline \text { Is: 'expr_z' } \\
\mathrm{Y}:\left\{\mathrm{Y}_{1} . . \mathrm{Y}_{\mathrm{n}}\right\} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { VL: 'expr_z' } \\
& \text { I: }\left\{\mathrm{I}_{1} . . \mathrm{I}_{\mathrm{n}}\right\}
\end{aligned}
\] \\
\hline ZCPERF Circuit Performance (Z) & \begin{tabular}{l}
Vs: 'expr_z' \\
Zs: 'expr_z' \\
ZL: 'expr_z'
\end{tabular} & \begin{tabular}{l}
VL: 'expr_z' \\
IL: 'expr_z' \\
P: 'expr_x' \\
Q: 'expr_x' \\
VI: 'expr_z' \\
\(\boldsymbol{\theta}\) : 'expr_x' \\
PF: 'expr_x' \\
Pmax: 'expr_x' \\
ZLopt: 'expr_z'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline YPERF Circuit Performance (Y) & \begin{tabular}{l}
Vs: 'expr_z' \\
Ys: 'expr_z' \\
YL: 'expr_z'
\end{tabular} & \begin{tabular}{l}
VL: 'expr_z' \\
IL: 'expr_z' \\
P: 'expr_x' \\
Q: 'expr_x' \\
VI: 'expr_z' \\
日: 'expr_x' \\
PF: 'expr_x' \\
Pmax: 'expr_x' \\
YLopt: 'expr_z'
\end{tabular} \\
\hline Y \(\leftrightarrow \Delta\) Wye to Delta Conversion & \[
\begin{aligned}
& \hline \text { Z1: 'expr_z' } \\
& \text { Z2: 'expr_z' } \\
& \text { Z3: 'expr_z' } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
ZA: 'expr_z' \\
ZB: 'expr_z' \\
ZC: 'expr_z'
\end{tabular} \\
\hline \(\Delta \leftrightarrow Y\) Delta to Wye Conversion & \begin{tabular}{l}
ZA: 'expr_z' \\
ZB: 'expr_z' \\
ZC: 'expr_z'
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Z1: 'expr_z' } \\
\text { Z2: 'expr_z' } \\
\text { Z3: 'expr_z' } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Polyphase Circuits}

These commands are found in the CMDS PHASE menu. For more information, see Chapter 4, "Polyphase Circuits."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline \(\mathbf{Y} \leftrightarrow \Delta\) Wye to Delta Conversion & \[
\begin{aligned}
& \text { Z1: 'expr_z' } \\
& \text { Z2: 'expr_z' } \\
& \text { Z3: 'expr_z' } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { ZA: 'expr_z' } \\
\text { ZB: 'expr_z' } \\
\text { ZC: 'expr_z' } \\
\hline
\end{array}
\] \\
\hline \(\Delta \leftrightarrow Y\) Delta to Wye Conversion & \begin{tabular}{l}
ZA: 'expr_z' \\
ZB: 'expr_z' \\
ZC: 'expr_z'
\end{tabular} & \[
\begin{aligned}
& \text { Z1: 'expr_z' } \\
& \text { Z2: 'expr_z' } \\
& \text { Z3: 'expr_z' }
\end{aligned}
\] \\
\hline -LOAD Balanced Delta Load & \[
\begin{aligned}
& \text { VAB: 'expr_z' } \\
& \text { Z: 'expr_z' }
\end{aligned}
\] & \begin{tabular}{l}
VBC: 'expr_z' \\
VCA: 'expr_z' \\
VAN: 'expr_z' \\
VBN: 'expr_z' \\
VCN: 'expr_z' \\
IA: 'expr_z' \\
IB: 'expr_z' \\
IC: 'expr_z' \\
P: 'expr_x' \\
WAB: 'expr_x' \\
WAC: 'expr_x'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline YLOAD Balanced Wye Load & V12: 'expr_z' & V23: 'expr_z' \\
& Z: 'expr_z' & V31: 'expr_z' \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & V1N: 'expr_z' 'expr_z' \\
& & V3N: 'expr_z' \\
& & I1: 'expr_z' \\
& & I2: 'expr_z' \\
& & I3: 'expr_z' \\
& & P: 'expr_x' \\
& & W12: 'expr_x' \\
& & W13: 'expr_x' \\
\hline
\end{tabular}

\section*{Filter Design}

These commands are found in the CMDS F ILTR menu. For more information, see Chapter 6, "Filter Design."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline CHLP Low Pass Chebyshev Filter & \begin{tabular}{l}
R: x \\
f0: x \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x \\
Ripple: x
\end{tabular} & \[
\begin{aligned}
& \text { C1: } x \\
& \text { L2: } x \\
& \text { ‥ } \\
& \text { \# of arguments: } x
\end{aligned}
\] \\
\hline CHHP High Pass Chebyshev Filter & \begin{tabular}{l}
R: x \\
f0: x \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x \\
Ripple: \(x\)
\end{tabular} & \[
\begin{aligned}
& \text { L1: } x \\
& \text { C2: } x \\
& \text { ‥ } \\
& \text { \# of arguments: } x
\end{aligned}
\] \\
\hline CHBP Band Pass Chebyshev Filter & \begin{tabular}{l}
R: x \\
f0: \(x\) \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x \\
Bandwidth: x \\
Ripple: \(x\)
\end{tabular} & C1: \(x\)
L1: \(x\)
L2: \(x\)
C2: \(x\)
‥
\# of arguments: \(x\) \\
\hline CHBE Band Elimination Chebyshev Filter & \begin{tabular}{l}
R: x \\
f0: \(x\) \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x \\
Bandwidth: x \\
Ripple: \(x\)
\end{tabular} & L1: \(x\)
C1: \(x\)
C2: \(x\)
L2: \(x\)
\# of arguments: \(x\) \\
\hline BWLP Low Pass Butterworth Filter & \begin{tabular}{l}
R: x \\
f0: x \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { C1: } x \\
\text { L2: } x \\
\text { ․ } \\
\text { \# of arguments: } x
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline BWHP High Pass Butterworth Filter & \begin{tabular}{l}
R: \(x\) \\
f0: x \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { L1: } x \\
& \text { C2: } x
\end{aligned}
\] \\
\# of arguments: x
\end{tabular} \\
\hline BWBP Band Pass Butterworth Filter & \begin{tabular}{l}
R: x \\
f0: \(x\) \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x \\
Bandwidth: x
\end{tabular} & C1: \(x\)
L1: \(x\)
L2: \(x\)
C2: \(x\)
\# of arguments: \(x\) \\
\hline BWBE Band Elimination Butterworth Filter & \begin{tabular}{l}
R: x \\
f0: \(x\) \\
f1: \(x\) \\
\(\Delta \mathrm{dB}\) : x \\
Bandwidth: x
\end{tabular} & L1: \(x\)
C1: \(x\)
C2: \(x\)
L2: \(x\)
\# of arguments: \(x\) \\
\hline ACLP Low Pass Active Filter & \begin{tabular}{l}
f0: 'expr_x' \\
A: 'expr_x' \\
Q: 'expr_x' \\
C: 'expr_x'
\end{tabular} & \begin{tabular}{l}
R1: 'expr_x' \\
C2: 'expr_x' \\
R3: 'expr_x' \\
R4: 'expr_x' \\
C5: 'expr_x'
\end{tabular} \\
\hline ACHP High Pass Active Filter & \[
\begin{aligned}
& \text { f0: 'expr_x' } \\
& \text { A: 'expr_x' } \\
& \text { Q: 'expr_x' } \\
& \text { C: 'expr_x' }
\end{aligned}
\] & \begin{tabular}{l}
C1: 'expr_x' \\
R2: 'expr_x' \\
C3: 'expr_x' \\
C4: 'expr_x' \\
R5: 'expr_x'
\end{tabular} \\
\hline ACBP Band Pass Active Filter & \[
\begin{aligned}
& \text { f0: 'expr_x' } \\
& \text { A: 'expr_x' } \\
& \text { Q: 'expr_x' } \\
& \text { C: 'expr_x' }
\end{aligned}
\] & \begin{tabular}{l}
R1: 'expr_x' \\
R2: 'expr_x' \\
C3: 'expr_x' \\
C4: 'expr_x' \\
R5: 'expr_x'
\end{tabular} \\
\hline
\end{tabular}

\section*{Gain and Frequency}

These commands are found in the CMDS GAIN menu. For more information, see Chapter 7, "Gain and Frequency."
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{|c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline XFERPZ Transfer Function, Roots & \begin{tabular}{l}
Constant: c \\
Zeros: \(\left[\mathrm{A}_{\mathrm{M}} . . \mathrm{A}_{0}\right]\) \\
Poles: \(\left[\mathrm{A}_{\mathrm{N}} . . \mathrm{A}_{0}\right]\)
\end{tabular} & \(\mathrm{H}(\mathrm{s}): ~ ' s y m b '\) \\
\hline \begin{tabular}{l}
XFERND Transfer Function, \\
Coefficients
\end{tabular} & \begin{tabular}{l}
Constant: c \\
Num: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{M}}\right]\) \\
Denom: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{N}}\right]\)
\end{tabular} & \(\mathrm{H}(\mathrm{s}):\) 'symb' \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{l}
PFER Partial Fraction Expansion, \\
Roots
\end{tabular} & \begin{tabular}{l}
Constant: c \\
Zeros: \(\left[\mathrm{R}_{1} . \mathrm{R}_{\mathrm{M}}\right]\) \\
Poles: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{N}}\right]\)
\end{tabular} & PFE: 'symb' \\
\hline \begin{tabular}{l}
PFEC Partial Fraction Expansion, \\
Coefficients
\end{tabular} & \begin{tabular}{l}
Constant: c \\
Num: \(\left[\mathrm{A}_{\mathrm{M}} . . \mathrm{A}_{0}\right]\) \\
Denom: \(\left[\mathrm{A}_{\mathrm{N}} . \mathrm{A}_{0}\right]\)
\end{tabular} & PFE: 'symb' \\
\hline
\end{tabular}

\section*{Fourier Transforms}

These commands are found in the CMDS FFT menu. For more information, see Chapter 8, "Fourier Transforms."
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline\(\rightarrow\) FFT Fast Fourier Transform & Time: [array] & Freq: [array] \\
\hline \begin{tabular}{c}
FFT \(\rightarrow\) Inverse Fast Fourier \\
Transform
\end{tabular} & Freq: [array] & Time: [array] \\
\hline
\end{tabular}

\section*{Two-Port Networks}

These commands are found in the CMMDS 2PORT menu. For more information, see Chapter 9, "Two-Port Networks."
Note: 'name' can be the global name 'z', ' y ', ' h ', ' g ', 'a', or 'b'.
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline PCON Parameter Conversion & Input Type: 'name'
..11: 'expr_z'
..12: 'expr_z'
..21: 'expr_z'
..22: 'expr_z'
Output Type: 'name' & \[
\begin{aligned}
& \text {..11: 'expr_z' } \\
& \text {.12: 'expr_z' } \\
& \text {..21: 'expr_z' } \\
& \text {..22: 'expr_z' }
\end{aligned}
\] \\
\hline PCPERF Circuit Performance & \begin{tabular}{l}
Parameter Type: 'name' \\
..11: 'expr_z' \\
..12: 'expr_z' \\
.21: 'expr_z' \\
\hline \(.22:\) 'expr_z' \\
Vs: 'expr_z' \\
Zs: 'expr_z' \\
ZL: 'expr_z'
\end{tabular} & \begin{tabular}{l}
Zin: 'expr_z' lout: 'expr_z' \\
Vout: 'expr_z' \\
Zout: 'expr_z' \\
12/I1: 'expr_z' \\
V2N1: 'expr_z' \\
V2Ns: 'expr_z' \\
GP: 'expr_z' \\
Pav: 'expr_z' \\
Pmax: 'expr_z' \\
Zlopt: 'expr_z'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline I2PCAS Inter-connected Two-Ports in Cascade configuration & \begin{tabular}{l}
1st Input Type: 'name' \\
..11: 'expr_z' \\
..12: 'expr_z' \\
..21: 'expr_z' \\
..22: 'expr_z' \\
2nd Input Type: 'name \\
..11: 'expr_z' \\
..12: 'expr_z' \\
..21: 'expr_z' \\
..22: 'expr_z' \\
Output Type: 'name'
\end{tabular} & \[
\begin{aligned}
& \text {..11: 'expr_z' } \\
& \text {..12: 'expr_z' } \\
& \text {..21: 'expr_z' } \\
& \text {..22: 'expr_z' }
\end{aligned}
\] \\
\hline 12PSS Inter-connected Two-Ports in Series-Series configuration & same as I2PCAS & same as 12PCAS \\
\hline I2PPP Inter-connected Two-Ports in Parallel-Parallel configuration & same as I2PCAS & same as I2PCAS \\
\hline I2PSP Inter-connected Two-Ports in Series-Parallel configuration & same as I2PCAS & same as I2PCAS \\
\hline I2PPS Inter-connected Two-Ports in Parallel-Series configuration & same as I2PCAS & same as I2PCAS \\
\hline
\end{tabular}

\section*{Transformer Performance}

These commands are found in the CMDS \(\times\) XxT XFMRI menu. For more information, see Chapter 10, "Transformer Performance."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline OCTST Open Circuit Test & \[
\begin{aligned}
& \hline \text { V1: 'expr_x' } \\
& \text { V2: 'expr_x' } \\
& \text { I1: 'expr_x' } \\
& \text { P1: 'expr_x' } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
n: 'expr_x' \\
Q1: 'expr_x' \\
Gc: 'expr_x' \\
Bc: 'expr_x'
\end{tabular} \\
\hline SCTST Closed Circuit Test & \begin{tabular}{l}
V1: 'expr_x' \\
11: 'expr_x' \\
P1: 'expr_x' \\
kVA: 'expr_x' \\
V1R: 'expr_x'
\end{tabular} & \begin{tabular}{l}
n: 'expr_x' \\
Q1: 'expr_x' \\
R1: 'expr_x' \\
R2: 'expr_x' \\
X1: 'expr_x' \\
X2: 'expr_x'
\end{tabular} \\
\hline CHAIN Chain Parameters & \begin{tabular}{l}
Z1: 'expr_z' \\
Z2: 'expr_z' \\
n: 'expr_x' \\
Gc: 'expr_x' \\
Bc: 'expr_x'
\end{tabular} & \begin{tabular}{l}
A: 'expr_z' \\
B: 'expr_z' \\
C: 'expr_z' \\
D: 'expr_z'
\end{tabular} \\
\hline
\end{tabular}

\section*{Transmission Lines}

These commands are found in the CIMDS [xT] XMS menu. For more information, see Chapter 11, "Transmission Lines."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline XLCHR Line Characteristics & \begin{tabular}{l}
L: 'expr_x' \\
R: 'expr_x' \\
G: 'expr_x' \\
C: 'expr_x' \\
ZL: 'expr_z' \\
d: 'expr_x' \\
f: 'expr_x'
\end{tabular} & \begin{tabular}{l}
Z0: 'expr_z' \\
Y0: 'expr_z' \\
\(\boldsymbol{\alpha}\) : 'expr_x' \\
\(\beta\) : 'expr_x' \\
\(\lambda\) : 'expr_x' \\
vp: 'expr_x' \\
Zoc: 'expr_z' \\
Zsc: 'expr_z' \\
p: 'expr_z' \\
SWR: 'expr_x'
\end{tabular} \\
\hline XLPAR Line Parameters & ```
Zoc: 'expr_z'
Zsc: 'expr_z'
d: 'expr_x'
f: 'expr_x'
``` & \begin{tabular}{l}
R: 'expr_x' \\
L: 'expr_x' \\
G: 'expr_x' \\
C: 'expr_x' \\
Z0: 'expr_z' \\
Y0: 'expr_z' \\
\(\boldsymbol{\alpha}\) : 'expr_x' \\
\(\beta\) : 'expr_x' \\
vp: 'expr_x'
\end{tabular} \\
\hline XLFAULT Fault Location Estimate & \[
\begin{array}{|l|}
\hline \text { Xin: 'expr_x' } \\
\text { R0: 'expr_x' } \\
\text { B: 'expr_x' } \\
\hline
\end{array}
\] & docmin: 'expr_x' dscmin: 'expr_x' \\
\hline XLZ Lossless Line Impedance & \[
\begin{aligned}
& \text { ZL: 'expr_z' } \\
& \text { RO: 'expr_X' }
\end{aligned}
\] & B \({ }^{\star}\) d1: 'expr_x' B*d1-sc: 'expr_x' B*d1-oc: 'expr_x' B*d2: 'expr_x' B*d2-sc: 'expr_x' B*d2-oc: 'expr_x' \\
\hline
\end{tabular}

\section*{Binary Arithmetic}

These commands are found in the CCMDS \(\times\) NTT COMP ARTH menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline ADD16C Binary Addition & \begin{tabular}{l} 
Binary: \#bin x \\
Binary: \#bin x
\end{tabular} & Sum: \#bin x \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline SUB16C Binary Subraction & \begin{tabular}{l} 
Binary: \#bin x \\
Binary: \#bin x
\end{tabular} & Difference: \#bin x \\
\hline MULT16C Binary Multiplication & \begin{tabular}{l} 
Binary: \#bin x \\
Binary: \#bin x
\end{tabular} & Product: \#bin x \\
\hline DIV16C Binary Division & \begin{tabular}{l} 
Dividend: \#bin x \\
Divisor: \#bin x
\end{tabular} & Quotient: \#bin \\
\hline RMD16C Remainder & \begin{tabular}{l} 
Dividend: \#bin x \\
Divisor: \#bin x
\end{tabular} & Remainder: \#bin \\
\hline NEG16C Binary Negation & Binary: \#bin & Result: \#bin \\
\hline ABS16C Absolute Value & Binary: \#bin & Result: \#bin \\
\hline
\end{tabular}

\section*{Register Operations}

These commands are found in the CIMDS UxT COMP REG menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|c|c|c|}
\hline Command/Description & Input(s) & Output(s) \\
\hline SL16C Shift Left & Binary: \#bin & Result: \#bin \\
\hline SR16C Shift Right & Binary: \#bin & Result: \#bin \\
\hline RL16C Rotate Left & Binary: \#bin & Result: \#bin \\
\hline RR16C Rotate Right & Binary: \#bin & Result: \#bin \\
\hline RLC16C Rotate Left Through Carry & Binary: \#bin & Result: \#bin \\
\hline RRC16C Rotate Right Through Carry & Binary: \#bin & Result: \#bin \\
\hline SLN16C Shift Left n Bits & Binary: \#bin n : \#bin x & Result: \#bin \\
\hline SRN16C Shift Right n Bits & Binary: \#bin n: \#bin x & Result: \#bin \\
\hline RLN16C Rotate Left n Bits & Binary: \#bin n: \#bin x & Result: \#bin \\
\hline RRN16C Rotate Right n Bits & Binary: \#bin n : \#bin x & Result: \#bin \\
\hline RLCN16C Rotate Left Through Carry n Bits & Binary: \#bin n: \#bin \(x\) & Result: \#bin \\
\hline RRCN16C Rotate Right Through Carry n Bits & Binary: \#bin n : \#bin x & Result: \#bin \\
\hline ASR16C Arithmatic Shift Right & Binary: \#bin & Result: \#bin \\
\hline
\end{tabular}

\section*{Bit Operations}

These commands are found in the CMDS NXT COMP BIT menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{|c|}{ Input(s) } & \multicolumn{1}{|c|}{ Output(s) } \\
\hline SB Set Bit & \begin{tabular}{l} 
Binary: \#bin \\
Bit \#: \#bin x
\end{tabular} & Result: \#bin \\
\hline CB Clear Bit & \begin{tabular}{l} 
Binary: \#bin \\
Bit \#: \#bin \(x\)
\end{tabular} & Result: \#bin \\
\hline B? Check Bit & \begin{tabular}{l} 
Binary: \#bin \\
Bit \#: \#bin \(x\)
\end{tabular} & Result: \#bin \\
\hline EB Sum of Bits & Binary: \#bin & Result: \#bin \\
\hline
\end{tabular}

\section*{Binary Conversions}

These commands are found in the CMDS NXT COMP CNVT menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{|c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline R \(\rightarrow\) B16C Real to Binary Conversion & Real: x & Result: \#bin \\
\hline B \(\rightarrow\) R16C Binary to Real Conversion & Binary: \#bin & Result: x \\
\hline \begin{tabular}{c}
\(\rightarrow\) IEEE Real to IEEE 32-bit Format \\
Conversion
\end{tabular} & Real: x & Result: \#bin \\
\hline \begin{tabular}{c} 
IEEE \(\rightarrow\) IEEE 32-bit Format to Real \\
Conversion
\end{tabular} & Binary: \#bin & Result: x \\
\hline
\end{tabular}

\section*{Binary Comparisons}

These commands are found in the CIMDS \(\triangle \times T\) COMP CCMPR menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{|c|}{ Input(s) } & \multicolumn{1}{|c|}{ Output(s) } \\
\hline ==16C Binary Equals & \begin{tabular}{l} 
Binary: \#bin \(x\) \\
Binary: \#bin \(x\)
\end{tabular} & Result: T/F \\
\hline \#16C Binary Not Equals & \begin{tabular}{l} 
Binary: \#bin \(x\) \\
Binary: \#bin \(x\)
\end{tabular} & Result: T/F \\
\hline <16C Binary Less Than & \begin{tabular}{l} 
Binary: \#bin \(x\) \\
Binary: \#bin \(x\)
\end{tabular} & Result: T/F \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline\(>16 \mathrm{C}\) Binary Greater Than & \begin{tabular}{l} 
Binary: \#bin \(x\) \\
Binary: \#bin \(x\)
\end{tabular} & Result: T/F \\
\hline\(\leq 16 \mathrm{C}\) Binary Less Than or Equal & \begin{tabular}{l} 
Binary: \#bin \(x\) \\
Binary: \#bin \(x\)
\end{tabular} & Result: T/F \\
\hline\(\geq 16 \mathrm{C}\) Binary Greater Than or Equal & \begin{tabular}{l} 
Binary: \#bin \(x\) \\
Binary: \#bin \(x\)
\end{tabular} & Result: T/F \\
\hline
\end{tabular}

\section*{Binary Modes}

These commands are found in the CIMDS \(\triangle\) CNT COMP MODES menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & Input(s) & \multicolumn{1}{c|}{ Output(s) } \\
\hline SETC Set Carry Flag & - & Set User Flag 4 \\
\hline CLRC Clear Carry Flag & - & Clear User Flag 4 \\
\hline CRRY? Check Carry Flag & - & Test Flag 4: T/F \\
\hline SETR Set Range Flag & - & Set User Flag 5 \\
\hline CLRR Clear Range Flag & - & Clear User Flag 5 \\
\hline RNG? Check Range Flag & - & Test User Flag 5: T/F \\
\hline UNSGN Set Unsigned Mode & - & \begin{tabular}{l} 
Put 48 in unsigned \\
mode
\end{tabular} \\
\hline ONES Set One's Complement Mode & - & \begin{tabular}{l} 
Put 48 in one's \\
complements mode
\end{tabular} \\
\hline TWOS Set Two's Complement Mode & - & \begin{tabular}{l} 
Put 48 in two's \\
complements mode
\end{tabular} \\
\hline CMP? Complement Mode & - & \begin{tabular}{l} 
Complement mode: \\
\(0,1,2\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Miscellaneous Binary Operations}
 These operations cannot be found in any EE•Pro screen. They are provided as programmable commands in order to complete the set of commands that are provided by the HP 16C "Computer Scientist Calculator"
\begin{tabular}{|c|l|l|}
\hline Command/Description & \multicolumn{1}{|c|}{ Input(s) } & Output(s) \\
\hline DBL \(\times\) Double-word Multiply & \begin{tabular}{l} 
Binary: \#bin \\
Binary: \#bin
\end{tabular} & \begin{tabular}{l} 
Product, 1st \(1 / 2:\) \#bin \\
Product, 2nd \(1 / 2: ~ \# b i n ~\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DBL+ Double-word Divide & Dividend, 1st \(1 / 2\) : \#bin Dividend,2nd ½: \#bin Divisor: \#bin & Quotient: \#bin \\
\hline DBLR Double-word Divide Remainder & Dividend, 1st \(1 / 2\) : \#bin Dividend,2nd ½: \#bin Divisor: \#bin & Remainder: \#bin \\
\hline LJ16C Left Justify & Binary: \#bin & Binary: \#bin n : \#bin (number of bits shifted) \\
\hline MSKL Left-justified Mask with n Bits & n : \#bin x & Binary: \#bin \\
\hline MSKR Right-justified Mask with n Bits & n : \#bin x & Binary: \#bin \\
\hline FLOAT & \begin{tabular}{l}
Binary: \#bin \({ }_{1}\) \\
Binary: \#bin 2
\end{tabular} & \begin{tabular}{l}
REAL: \\
\#bin \({ }_{1}{ }^{*}{ }^{\wedge}{ }^{\text {(\#bin }}{ }_{1}\) )
\end{tabular} \\
\hline FIXED & Real: x & 32-bit Mantissa: \#bin Exponent of 2: \#bin \\
\hline
\end{tabular}

\section*{Karnaugh Map}

These commands are found in the CMDS NXT COMP NXT menu. For more information, see Chapter 12, "Computer Engineering."
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline KMAP Karnaugh Map & \begin{tabular}{l} 
Minterms: \(\left\{\#_{1} . . \#_{\mathrm{N}}\right\}\) \\
Don't Care: \(\left\{\#_{1} . . \#_{\mathrm{M}}\right\}\) \\
Vars: 'A..Z'
\end{tabular} & \begin{tabular}{l} 
Prime Implicants: \\
'string'
\end{tabular} \\
\hline
\end{tabular}

\section*{Algebraic Functions}

These commands are found in the CMDS \(\sqrt{N \times T}\) ALGB menu. For more information, see Chapter 13, "Algebraic Functions."
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{|c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline \begin{tabular}{l} 
PFEC Partial Fraction Expansion, \\
Coefficients
\end{tabular} & \begin{tabular}{l} 
Constant: c \\
Num: \(\left[\mathrm{A}_{\mathrm{M}} . . \mathrm{A}_{0}\right]\) \\
Denom: \(\left[\mathrm{A}_{\mathrm{N}} . . \mathrm{A}_{0}\right]\)
\end{tabular} & PFE: 'symb' \\
\hline \begin{tabular}{l} 
PFER Partial Fraction Expansion, \\
Roots
\end{tabular} & \begin{tabular}{l} 
Coefficient: c \\
Num: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{M}}\right]\) \\
Denom: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{N}}\right]\)
\end{tabular} & PFE: 'symb' \\
\hline POLYC Polynomial Coefficients & Roots: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{N}}\right]\) & Coefs: \(\left[\mathrm{A}_{\mathrm{N}} . . \mathrm{A}_{0}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline POLYE Polynomial Equation & \begin{tabular}{l} 
Coefs: \(\left[\mathrm{A}_{\mathrm{N}} . . \mathrm{A}_{0}\right]\) \\
Var: 'name'
\end{tabular} & Poly: 'symb' \\
\hline POLYR Polynomial Roots & Coefs: \(\left[\mathrm{A}_{\mathrm{N}} . . \mathrm{A}_{0}\right]\) & Roots: \(\left[\mathrm{R}_{1} . . \mathrm{R}_{\mathrm{N}}\right]\) \\
\hline SIMPL Symbolic Simplification & Expr: 'expr_z' & Simpl: 'symb' \\
\hline TYLRA Taylor Polynomial & \begin{tabular}{l} 
Expr: 'symb' \\
Var: 'name' \\
Order: x \\
Point: 'expr_z'
\end{tabular} & Taylor: 'symb' \\
\hline
\end{tabular}

\section*{Error Functions}

These commands are found in the CMDS \(\times\) UTI ERROR menu. For more information, see Chapter 14, "Error Function."
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline ERF Error Function & \(\mathrm{x}: \mathrm{x}\) & Result: x \\
\hline ERFC Inverse Error Function & \(\mathrm{x}: \mathrm{x}\) & Result: x \\
\hline
\end{tabular}

\section*{Capital Budgeting}

These commands are found in the CIMDS 四 BUDGI menu. For more information, see Chapter 15, "Capital Budgeting."
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline PAYB Payback Period & Cash: \(\left[\mathrm{T}_{0} . . \mathrm{T}_{\mathrm{n}}\right]\) & Payback: x \\
\hline NPV Net Present Value & \begin{tabular}{l} 
Cash: \(\left[\mathrm{T}_{0} . . \mathrm{T}_{\mathrm{n}}\right]\) \\
Discount rat: x
\end{tabular} & NPV: x \\
\hline IRR Internal rate of return & Cash: \(\left[\mathrm{T}_{0} . . \mathrm{T}_{\mathrm{n}}\right]\) & IRR: x \\
\hline PIDX Profitability Index & \begin{tabular}{l} 
Cash: \(\left[\mathrm{T}_{0} . . \mathrm{T}_{\mathrm{n}}\right]\) \\
Discount rate: x
\end{tabular} & PI: x \\
\hline
\end{tabular}

\section*{Reference}
 information, see Chapter 35 "Standard Component Values" and Chapter 40, "Constants".
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Command/Description } & \multicolumn{1}{c|}{ Input(s) } & \multicolumn{1}{c|}{ Output(s) } \\
\hline RVAL Standard Resistor Value & \begin{tabular}{l} 
Value: \(x\) \\
Tolerance: \(y\)
\end{tabular} & \begin{tabular}{l} 
Std Value: x_unit \\
Color Bands: "string"
\end{tabular} \\
\hline LVAL Standard Inductor Value & \begin{tabular}{l} 
Value: \(x\) \\
Tolerance: \(y\)
\end{tabular} & Std Value: x_unit \\
\hline CVAL Standard Capacitor Value & \begin{tabular}{l} 
Value: \(x\) \\
Tolerance: \(y\)
\end{tabular} & Std Value: x_unit \\
\hline CONS Constant Function & Constant: 'name' & Value: \(x\) or x_unit \\
\hline
\end{tabular}

\section*{CONS: Constants}

This command provides programmable access to the values of the constants in the Constants reference table. The value of the constant will be returned with units if user flag 61 is clear or without units if user flag 61 is set. (For more information, see Appendix C, "User Flags.") CONS can be used in an algebraic expression, such as 'CONS(h)', or in a user program, such as « ' h ' CONS \(»\). CONS is also affected by system flags -2 and -3 , which control symbolic constants and numeric results-if either flag -2 or -3 is set, ' \(h\) ' CONS will return a numeric value, but if both are clear, ' h ' CONS will return 'CONS(h)', which will only evaluate to a numeric value after a built-in constant with a different value, you can place an override constant in a variable named "\$" followed by the constant name, such as '\$h'.

Example: Create an equation with a constant. The mass-energy relation is \(E=m c^{2}\). To write this as an HP 48 equation which accesses the speed of light constant included in EE•Pro, use the equation:
'E = m * CONS(c) ^ 2'

This equation will call the command CONS to access the value of the speed of light constant \(\mathbf{c}\). The value of \(\mathbf{c}\) will be returned as 299792458 _m/s if flag 61 is clear (units on), or as 299792458 if flag 61 is set (units off).

Example: Override a built-in constant. To solve gravitational problems on the moon (instead of the Earth), the acceleration of gravity \(\mathbf{g}\), must be overridden. To override the built-in value of \(9.80665 \mathrm{~m} / \mathrm{s}\) (the gravitational acceleration at the surface of the Earth), store the value \(1.55 \mathrm{~m} / \mathrm{s}\) into the variable ' \(\$ \mathrm{~g}\) '. The value of \(g\) will now be returned by CONS as \(1.55 \mathrm{~m} / \mathrm{s}\). To return to the original value, purge the variable ' \(\$ \mathrm{~g}\) ' from user memory.

\section*{Chapter 44}

\section*{Programmable Screens}

EE•Pro is designed to allow you to jump directly to any Analysis, Equation, or Reference screen from the HP 48 stack with the GOEE command. This chapter describes how to use these "programmable screens."

This chapter covers:
- Using Programmable Screens
- Analysis Screens
- Equations Screens
- Reference Screens

\section*{Using Programmable Screens}

The GOEE command, located in the library menu of EE•Pro, allows you to jump directly to a particular screen in EE•Pro.

\section*{Example: HP 48 Stack}

Browse Constants from the HP 48 stack.
1. From the HP 48 stack, type 6 回 7 ERTED to put the list \(\{37\}\) on the stack.
 EE GOEE and the Constants screen will appear.

\section*{Example: User Program}

Create a user program that goes directly to the Constants reference table from the HP 48 stack.
 the program « \(\{37\}\) GOEE » on the stack.
2. Type \(\square\) GOCONS ENTER to put the name 'GOCONS' on the stack. Press siso to store the program into GOCONS.
3. To execute GOCONS from the HP 48 stack, press GAR GOCO and the Constants screen will appear.
The program could also be stored in your custom menu for quick access. For more information, see your HP 48 User's Guide.

\section*{Analysis Screens}

This is a summary of the EE•Pro Analysis screens and their corresponding path lists for use with the GOEE command.
\begin{tabular}{|c|c|}
\hline Menu Item & Path \\
\hline Home & \{ \} \\
\hline Analysis & \{ 1 \} \\
\hline AC Circuits & \(\{11\}\) \\
\hline Impedance Calculations & \(\left\{\begin{array}{llll}1 & 1\end{array}\right\}\) \\
\hline Voltage Divider & \(\{112\}\) \\
\hline Current Divider & \{ 113 \} \\
\hline Circuit Performance & \(\{114\}\) \\
\hline Wye \(\leftrightarrow \Delta\) Conversion & \(\{115\}\) \\
\hline Polyphase Circuits & \{12\} \\
\hline Wye \(\leftrightarrow \Delta\) Conversion & \{ 121\(\}\) \\
\hline Balanced Wye Load & \{122\} \\
\hline Balanced \(\triangle\) Load & \{123\} \\
\hline Ladder Network & \{13\} \\
\hline Filter Design & \{14\} \\
\hline Chebyshev Filter & \(\{141\}\) \\
\hline Butterworth Filter & \(\{142\}\) \\
\hline Active Filter & \{143\} \\
\hline Gain and Frequency & \{15\} \\
\hline Transfer Function & \(\{151\}\) \\
\hline Bode Plots & \{ 152\(\}\) \\
\hline Fourier Transforms & \{16\} \\
\hline FFT & \{ 161 \} \\
\hline Inverse FFT & \{ 162 \} \\
\hline Two-Port Networks & \{17\} \\
\hline Parameter Conversion & \{171\} \\
\hline Circuit Performance & \{172\} \\
\hline Interconnected Two-Ports & \{173\} \\
\hline Transformer Performance & \(\{18\}\) \\
\hline Open Circuit Test & \{181\} \\
\hline Short Circuit Test & \{182\} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Chain Parameters & \{183\} \\
\hline Transmission Lines & \{19\} \\
\hline Line Characteristics & \{191\} \\
\hline Line Parameter Calculations & \{192\} \\
\hline Fault Location Estimate & \{193\} \\
\hline Lossless Line Impedance & \{194\} \\
\hline Computer Engineering & \{ 110\(\}\) \\
\hline Binary Arithmetic & \(\{1101\}\) \\
\hline Register Operations & \{1102\} \\
\hline Bit Operations & \{ 1103 \} \\
\hline Binary Conversions & \{1104\} \\
\hline Binary Comparisons & \{1105\} \\
\hline Karnaugh Map & \{ 1106 \} \\
\hline Algebraic Functions & \{ 111 \} \\
\hline Partial Fraction Expansion & \(\{1111\}\) \\
\hline Piecewise Functions & \{1112\} \\
\hline Polynomial Coefficients & \{1113\} \\
\hline Polynomial Equation & \{1114\} \\
\hline Polynomial Roots & \{1115\} \\
\hline Symbolic Simplification & \{1116\} \\
\hline Taylor Polynomial & \{1117\} \\
\hline Error Functions & \{ 112 \} \\
\hline Capital Budgeting & \{ 113 \} \\
\hline
\end{tabular}

\section*{Equations Screens}

This is a summary of the EE•Pro Equations screens and their corresponding path lists for use with the GOEE command.
\begin{tabular}{|c|c|}
\hline Menu Item & Path \\
\hline Home & \(\}\) \\
Equations & \(\{2\}\) \\
Resistive Circuits & \(\{21\}\) \\
Resistance and Conductance & \(\{211\}\) \\
Ohm's Law and Power & \(\{212\}\) \\
Temperature Effect & \(\{213\}\) \\
Maximum Power Transfer & \(\{214\}\) \\
V and I Source Equivalence & \(\{215\}\) \\
Capacitance and Electric Fields & \(\{22\}\) \\
Point Charge & \(\{221\}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Long Charged Line & \{ 222 \} \\
\hline Charged Disk & \{223\} \\
\hline Parallel Plates & \{ 224 \} \\
\hline Parallel Wires & \{ 225 \} \\
\hline Coaxial Cable & \{226\} \\
\hline Sphere & \{ 227 \} \\
\hline Inductance and Magnetism & \{23\} \\
\hline Long Line & \{231\} \\
\hline Long Strip & \{232\} \\
\hline Parallel Wires & \{233\} \\
\hline Loop & \{ 234 \} \\
\hline Coaxial Cable & \{ 235 \} \\
\hline Skin Effect & \{236\} \\
\hline Electron Motion & \{24\} \\
\hline Electron Beam Deflection & \{241\} \\
\hline Thermionic Emission & \{242\} \\
\hline Photoemission & \{243\} \\
\hline Meters and Bridge Circuits & \{25\} \\
\hline Amp, Volt, and Ohmmeter & \{ 251 \} \\
\hline Wheatstone Bridge & \{ 252 \} \\
\hline Wien Bridge & \{ 253 \} \\
\hline Maxwell Bridge & \{ 254 \} \\
\hline Owen Bridge & \{ 255 \} \\
\hline Sym. Resistive Attenuator & \{ 256 \} \\
\hline Unsym. Resistive Attenuator & \{ 257 \} \\
\hline RL and RC Circuits & \{26\} \\
\hline RL Natural Response & \{ 261 \} \\
\hline RC Natural Response & \{262 \} \\
\hline RL Step Response & \{263\} \\
\hline RC Step Response & \{264\} \\
\hline RL Series to Parallel & \{265\} \\
\hline RC Series to Parallel & \{266\} \\
\hline RLC Circuits & \{27\} \\
\hline Series Impedance & \{271\} \\
\hline Parallel Admittance & \{272\} \\
\hline RLC Natural Response & \{273\} \\
\hline Underdamped Transient & \{274\} \\
\hline Critically-Damped Transient & \{275\} \\
\hline Overdamped Transient & \{ 276 \} \\
\hline AC Circuits & \{28\} \\
\hline RL Series Impedance & \{281\} \\
\hline RC Series Impedance & \{282\} \\
\hline Impedance \(\leftrightarrow\) Admittance & \{283\} \\
\hline Two Impedances in Series & \{284\} \\
\hline Two Impedances in Parallel & \{285\} \\
\hline
\end{tabular}

Polyphase Circuits
Balanced \(\Delta\) Network
Balanced Wye Network
Power Measurements
Electrical Resonance
Parallel Resonance I
Parallel Resonance II
Resonance in Lossy Inductor
Series Resonance
OpAmp Circuits
Basic Inverter
Non-Inverting Amplifier
Current Amplifier
Transconductance Amplifier
Level Detector (Inverting)
Level Detector (Non-Inverting)
Differentiator
Differential Amplifier
Solid State Devices
Semiconductor Basics
PN Junctions
PN Junction Currents
Transistor Currents
Ebers-Moll Equations
Ideal Currents - pnp
Switching Transients
MOS Transistor I
MOS Transistor II
MOS Inverter (Resistive)
MOS Inverter (Saturated)
MOS Inverter (Depletion)
CMOS Transistor Pair Junction FET
Linear Amplifiers
BJT (Common Base)
BJT (Common Emitter)
BJT (Common Collector)
FET (Common Gate)
FET (Common Source)
FET (Common Drain)
Darlington (CC-CC)
Darlington (CC-CE)
Emitter-Coupled Amplifier
Differential Amplifier
Source-Coupled JFET Pair
\{ 29 \}
\{291\}
\{292\}
\{293\}
\(\{210\}\)
\{2 101 \}
\{ 2102 \}
\{ 2103 \}
\{2 104 \}
\{211\}
\(\{2111\}\)
\{ 2112 \}
\{2113\}
\{2114\}
\{2115\}
\{2116\}
\{2117\}
\{ 2118 \}
\{2 12 \}
\{2121\}
\{ 212 \}
\{ 2123 \}
\{ 2124 \}
\{ 2125 \}
\{ 2126 \}
\{ 2127 \}
\{2128\}
\{ 2129 \}
\{ 21210 \}
\(\{21211\}\)
\{ 21212 \}
\{ 21213 \}
\{ 21214 \}
\{ 213 \}
\{ 2131 \}
\{ 2132 \}
\{ 2133 \}
\{ 2134 \}
\{2135\}
\{ 2136 \}
\{ 2137 \}
\{ 2138 \}
\{ 2139 \}
\(\left\{\begin{array}{l}21310\}\end{array}\right.\)
\{ 21311 \}
\(\left.\begin{array}{l|rl}\text { Class A, B, and C Amplifiers } & \left\{\begin{array}{cc}2 & 14\end{array}\right\} \\ \text { Class A Amplifier } & \left\{\begin{array}{ll}2 & 14\end{array}\right\} \\ \text { Power Transistor } & \left\{\begin{array}{ll}2 & 14\end{array}\right\} \\ \text { Push-Pull Principle } & \left\{\begin{array}{ll}2 & 14\end{array}\right\} \\ \text { Class B Amplifier } & \left\{\begin{array}{ll}2 & 14\end{array}\right\} \\ \text { Class C Amplifier } & \{2 & 14\end{array}\right\}\)

\section*{Reference Screens}

This is a summary of the EE•Pro Reference screens and their corresponding path lists for use with the GOEE command.
\begin{tabular}{|c|c|}
\hline Menu Item & Path \\
\hline Home & \{ \} \\
\hline Reference & \{ 3 \} \\
\hline Resistor Color Chart & \{ 31 \} \\
\hline Standard Component Values & \{ 32 \} \\
\hline Semiconductor Properties & \{ 33 \} \\
\hline Semiconductors & \{ 3311 \} \\
\hline III-V, II-VI Compounds & \{332\} \\
\hline Si Donor Levels & \{ 333 \} \\
\hline Si Acceptor Levels & \{ 334 \} \\
\hline SiO2/Si3N4 Colors & \{ 335 \} \\
\hline Boolean Expressions & \{ 34 \} \\
\hline Boolean Algebra Properties & \{ 35 \} \\
\hline Transforms & \{ 36 \} \\
\hline Fourier Transforms & \{361\} \\
\hline Definitions & \{ 36111\(\}\) \\
\hline Properties & \{ 3612 \} \\
\hline Transform Pairs & \{ 3613 \} \\
\hline Laplace Transforms & \{ 362 \} \\
\hline Definitions & \{ 3621 \} \\
\hline Properties & \{ 3622 \} \\
\hline Transform Pairs & \{ 3623 \} \\
\hline z -Transforms & \{363\} \\
\hline Definitions & \{ 3631 \} \\
\hline Properties & \{3632\} \\
\hline Transform Pairs & \{ 3633 \} \\
\hline Contants & \{ 37 \} \\
\hline SI Prefixes & \{ 38 \} \\
\hline Greek Alphabet & \{ 39 \} \\
\hline
\end{tabular}

\section*{Chapter 45}

\section*{Tips for Using the Solver}

This chapter covers tips for using the solver in the Equations section．
－Creating a Working Directory
－How are Multiple Equations Solved？
－Using Guesses to Improve Solving
\(\square\) Solver Icons

\section*{Creating a Working Directory}

Every time the solver solves an equation，it stores the variable values into your HP 48 user memory，in the directory you were at when you ran EE•Pro．If you would prefer to organize the equation variables into a specific subdi－ rectory in your HP 48 user memory，follow these steps：

1．Quit EE•Pro to the HP 48 stack．
2．Press \(\boldsymbol{D}^{\text {rome }}\) to go to the HOME directory of your HP 48 ．
3．Press 园A to display the variables in the HOME directory．
4．Decide on a name for the work subdirectory（e．g．，WORK）．
5．Type \(\square \square\) WORK 正局 to put the name on the stack．
6．Type \(\alpha\) CRDIR ENTER to create the subdirectory＇WORK＇in your HOME directory．It should appear in the variable menu as WORK．

You have now created the subdirectory \｛ HOME WORK \}. In order to store all equation variables created by EE•Pro in \｛ HOME WORK \}, each time you run the software，first follow these steps：

1．Press \(\boldsymbol{R}^{\text {rome }}\) to go to the HOME directory of your HP 48 ．
2．Press \(\sqrt{1 A R}\) to display the variables in the HOME directory．
3．Press WORKI to switch to the \｛ HOME WORK \} subdirectory.
4．Start EE•Pro，as described in Chapter 1，＂Getting Started．＂
For more information on directories，see the HP 48 manual．

\section*{How are Multiple Equations Solved?}

The solver in the Equations section of EE•Pro is a systematic solver, not a simultaneous one. For example, the solver can solve this set of equations, provided it is given a known value of either \(x\) or \(y\) :
\[
\begin{aligned}
& x+y+z=5 \\
& x+y=3
\end{aligned}
\]

However, the solver cannot solve this set of equations, when neither \(x\) or \(y\) is known in advance:
\[
\begin{aligned}
& x+y=2 \\
& x-y=0
\end{aligned}
\]

The solver iterates through a set of equations, searching for an equation with only one unknown variable. When an equation satisfying this requirement is found, the solver uses the built-in HP 48 root-finder to solve for the unknown variable. After the value is found, that variable is marked as found, and the solver continues to search. The solver does not terminate its search until one of three conditions occurs:
- All equations are solved, and all unknown variables are found.
- All variables marked as wanted are found.
- No more equations can be solved, because all remaining unsolved equations have more than one unknown variable.

All variables for which values are found in a solving operation are marked with a shaded circle at the solver screen.

\section*{Using Guesses to Improve Solving}

Pressing SOLVE calls the built-in HP 48 root-finder to solve each equation. The root-finder requires an initial value on which to base its search for the solution. If no value exists, the solver uses a default guess of 1 , but you can provide a guess to override that value. The root-finder then generates pairs of intermediate values and interpolates between them to find the solution. The time required to find the solution (the root) depends on how close the initial guess is to the actual solution.

You can shorten the solution time by providing a guess close to the expected solution. Go to the Solver screen and move the highlight bar to the variable in question, and enter a guess. The variable will automatically be marked as known, so move the highlight bar back to the variable and press KNOW or [1-3 to unmark the variable as known, so it will be calculated by the solver. Then press SOLVE and the solver will use the current value as the initial guess for the variable.

There is another advantage to using a guess, which is that you can help the solver find a specific solution to an equation which may have multiple valid solutions or roots.

Example: Imagine solving the equation \(x^{2}=9\). Possible solutions include 3 and -3 . Both of these solutions are right, but which one do you want? If you enter a guess of -1 for \(x\), the solver will find the -3 solution, but if you enter a guess of 1 for \(x\) (which is the default guess), the solver will find the 3 solution. Depending on which solution you want, you may have to enter a guess for \(x\).

\section*{Solver Icons}

At the Solver screen, the status of variables is indicated by icons which appear to the left of the variable name. You control the presence of some of the icons, and the solver controls the presence of the other icons.

To display the icon screen from the Solver screen, press IICONS.


Press any key to return to the previous screen.

\section*{User-Controlled Icons}

You control the presence of unknown (blank icon), known, and wanted icons by pressing KKNOWI or WWANTI.

UNKNOWN: Solve if possible. The solver will calculate the values of all unknown variables, unless it first stops because all wanted variables have been found. As a result of a calculation, the solver may change the status of unknown variables to solution found or no solution. However, if there
are not enough known variables to solve for the unknown variable, the status will remain unchanged as unknown.
- KNOWN: User-defined. The values of the known variables are used to calculate the values of the unknown and wanted variables. The solver will not change the status of known variables.
\(\checkmark\) WANTED: Solve, then stop. The solver will calculate the values of all wanted variables and then stop. While solving for the wanted variables, the solver may also have to calculate the values of some unknown variables in order to find solutions to the wanted variables. As a result of a calculation, the solver may change the status of wanted variables to solution found or no solution. However, if there are not enough known variables to solve for the wanted variable, the status will remain unchanged as wanted.

\section*{Solver-Controlled Icons}

The solver places icons for solution found and no solution. Each time you change a value or press SOLVE to start a new calculation, the solution found and no solution icons are all removed and the variables reset to unknown.
- SOLUTION FOUND: Solution found. A solution found icon indicates a solution has been found for the variable. Solutions may be indicated either as zeros or sign reversals, both of which are accurate solutions.
~ NO SOLUTION: Extremum. An extremum icon indicates a solution has not been found for the variable. This occurs when the solver finds a point where the value of the variable being solved approximates a local minimum or maximum, or when the largest (MAXR) or smallest (-MAXR) number is encountered.

淡 NO SOLUTION: Bad guess. A bad guess icon indicates a solution has not been found for the variable. This occurs when the initial guess for the variable is outside the domain of the equation. An example of this is a negative value inside a square root, which will cause a bad guess error, because the solver does not support complex numbers.
- NO SOLUTION: Constant? A constant icon indicates a solution has not been found for the variable. This occurs when the value of the variable is the same at every point sampled across the domain of the equation.

For more information, see Chapter 16, "Equations Navigation Guide."

\section*{Chapter 46}

\section*{Tips for Using the Plotter}

This chapter covers advanced use of the plotter in the Equations section.
- How are Equations Plotted?

\section*{How are Equations Plotted?}

To plot an equation, it must be in the form \(y=f(x)\), where \(\mathbf{x}\) represents the independent variable and \(\mathbf{y}\) the dependent variable. The plotter must be able to isolate the dependent variable on the left side of the equation before plotting. For this reason, there are equations in which certain variables should not be selected as the dependent variable, because they cannot be isolated.

Example: How can the first equation in the RLC Circuits-Overdamped Transient module be plotted? The equation is:
\[
s 1=-\alpha+\sqrt{\alpha^{2}-w 0^{2}}
\]

In this equation, any variable can be selected as the independent variable, but only \(\mathbf{s 1}\) or \(\boldsymbol{\omega}\) should be selected as the dependent variable, because \(\boldsymbol{\alpha}\) appears more than once in the equation and cannot be isolated easily.

This table shows the possible combinations of the independent and dependent variables for the equation above and shows exactly what form the equation takes for plotting in each case.
\begin{tabular}{|c|c|c|}
\hline Dependent & Independent & Isolated Equation \\
\hline \(\mathbf{s 1}\) & \(\boldsymbol{\alpha}\) & \(s 1=f(\alpha)=-\alpha+\sqrt{\alpha^{2}+\omega 0^{2}}\) \\
\hline \(\mathbf{s 1}\) & \(\omega 0\) & \(s 1=f(\omega 0)=-\alpha+\sqrt{\alpha^{2}+\omega 0^{2}}\) \\
\hline\(\omega \mathbf{\omega}\) & \(\mathbf{s 1}\) & \(\omega o=f(s 1)=s 1 \cdot \sqrt{\alpha^{2}-S Q(s 1+\alpha)}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline\(\omega \mathbf{0}\) & \(\alpha\) & \(\omega o=f(\alpha)=s 1 \cdot \sqrt{\alpha^{2}-S Q(s 1+\alpha)}\) \\
\hline\(\alpha\) & \(\omega 0\) & Cannot isolate \(\alpha\) easily \\
\hline\(\alpha\) & \(s \mathbf{1}\) & Cannot isolate \(\alpha\) easily \\
\hline
\end{tabular}

When isolating \(\mathbf{s} 1\) or \(\omega \mathbf{0}\), the plotter also automatically selects the principal value (or branch) of the solution, if there are multiple solutions. Observe that the first three equations also have a negative solution to the square root, but the principal solution is the positive one, so that is what is used for plotting.

After plotting an equation, to examine the form of the actual equation which was plotted, quit EE•Pro and look at the variable 'EQ' in the user memory of your HP 48. (Note: 'EQ' is not created until the plot is drawn.)

\section*{Appendixes and Index}

\section*{Appendix A}

\section*{Service and Warranty}

\section*{Technical Support}

You can get answers to your questions about EE•Pro from Sparcom Corporation. If you cannot find the information in this manual or in the HP 48S/SX or HP 48G/GX User's Guide, contact us in one of the following ways:
- E-Mail

From Internet: support@sparcom.com
From Compuserve: >Internet:support@sparcom.com
From FidoNet: To:support@sparcom.com
- Standard Mail

Sparcom Corporation
Attn: Technical Support Department
P.O. Box 927

Corvallis, OR 97339, USA
- Telephone
(503) 757-8416

Monday to Friday, 9 a.m. to 12 p.m., Pacific Time
- Facsimile
(503) 753-7821

\section*{Shipping Instructions}

If your card requires service:
1. Call Sparcom Corporation for a Return Merchandise Authorization (RMA) number.
2. Ship the card back to Sparcom Corporation in the following manner:
- Include your return address, phone number and a description of the problem.
- INCLUDE YOUR RMA NUMBER WITH THE MERCHANDISE. The RMA number must be written on the outside of the package, or the package will be returned to you unopened.
- If the card is still under warranty, include the proof of purchase date.
- Include a check, purchase order, or credit card number and expiration date (VISA or MasterCard) to cover the estimated charge.
- Should the card require further service, Sparcom Corporation will notify you of the additional repairs and charges.
- Ship your card, postage prepaid, in protective packaging adequate to prevent damage. Ship the package to:

Sparcom Corporation
RMA \# \(\qquad\)
897 NW Grant Avenue
Corvallis, OR 97330, USA
- It is highly recommended that you insure the shipment.

Cards are usually serviced and reshipped within five working days.

\section*{Service Charge for Out-of-Warranty Cards}

Charges for out-of-warranty repairs are individually determined based on time and material. These charges are subject to your local sales or value-added tax, wherever applicable.

\section*{Limited 90-Day Warranty}

\section*{What Is Covered}

The card is warranted by Sparcom Corporation against defects in materials and workmanship for ninety days from the date of original purchase. If you sell your card or give it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original ninety-day period. During the warranty period, we will repair or, at our option, replace at no charge a card that proves to be defective, provided you return the card, shipping prepaid, to Sparcom Corporation. (Replacement may be made with a newer card of equal or better functionality.)

This warranty gives you specific legal rights, and you may also have other rights that vary from state to state, province to province, or country to country.

\section*{What Is Not Covered}

This warranty does not apply if the card has been damaged by accident or misuse or as the result of service or modification by other than an authorized Sparcom Corporation service center.

No other express warranty is given. The repair or replacement of the card is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE NINETY-DAY DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. IN NO EVENT SHALL SPARCOM CORPORATION BE LIABLE FOR CONSEQUENTIAL DAMAGES. Some state, provinces, or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Cards are sold on the basis of specifications applicable at the time of manufacture. Sparcom Corporation shall have no obligation to modify or update cards, once sold.

\section*{Appendix B}

\section*{Key and Screen Summary}

This appendix covers:
- Screen Summary
- Key Summary

This appendix provides a summary of the structure of EE•Pro, the different types of screens, and the keys available at each screen.

The screen summary on the following page provides a "map" of EE•Pro and how it is organized. Screens with multiple menu rows, such as the Analysis screen shown here, indicate that the menu keys change depending on which field is highlighted. In the case of the options menu, the menu keys change depending on which section you were in when you entered the options menu.


Following the screen summary is a listing of the keyboard commands that are available throughout the program and at each type of screen.

\section*{Screen Summary}


\section*{Key Summary}

\section*{EE•Pro}

The following key commands are available throughout EE•Pro.
\(\square\) or Moves the highlight bar up or down one item.
\(\square \boxed{\square} \boldsymbol{\square}\) or Moves the highlight bar to top or bottom of screen.
\(\square \square\) or \(\square \square\) Moves the highlight bar to top or bottom of list.
\(\square\) or \(\square\) Goes to the previous screen.
\(\square\) or How Goes to the home screen.
ENTER or \(\triangle\) Enters the highlighted section (in a navigation screen).

NXT or \(\square\)
CST
G CST or
PCO Vsा

ON

Goes to the next or previous menu row (if appropriate).
Goes to the custom settings screen.
Goes to the first or second page of the options menu.
HP 48GX: Displays the highlighted item in a text view.
HP 48SX: Displays the highlighted item in a text view.
Quits EE•Pro to the HP 48 stack.

\section*{Home Screen}


ABOUT Displays product information and current version.
VIEW Displays the highlighted item in text view (larger font, one item per screen). \(\square\) or VIEW displays the highlighted item in graphics view (if highlighted item is an equation, etc.).
FIND Searches for the specified character or string.
OPTS Displays the options menu, see page 266.
PATH Displays screens chosen to reach the current screen.
QUIT Quits EE•Pro to the HP 48 stack.

\section*{Navigation Screens}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ANALYSIS} \\
\hline Pubiphas cilcuis & \\
\hline & \\
\hline GATN AND FREQUENCY & \\
\hline FOURIER TRANSFDRM & \\
\hline TWD-砍 NETWORKS & \\
\hline transformmer performance & \(\downarrow\) \\
\hline HIMAE MIER FINC DFTE PATH & \\
\hline
\end{tabular}


HOME Goes to the home screen.
VIEW Displays the highlighted item in text view (larger font, one item per screen). Press \(\square\) or VIEW to display the highlighted item in graphics view (if highlighted item is an equation, etc.).
FIND Searches for the specified character or string.
OPTS Displays the options menu, see page 266.
PATH Displays screens chosen to reach the current screen.
UP Goes to the previous screen.

\section*{Analysis Input Screens}


CHOOS Displays possible choices for a choose field (Choose fields only).
EDIT Edits the highlighted item (Edit fields only).
STACK Copies the highlighted item to the HP 48 stack and temporarily goes to the HP 48 stack environment (Edit fields only).
TYPES Displays the allowed object types for an edit field (Edit fields only).
\(\rightarrow\) STK Copies one or all of the items shown to the HP 48 stack (Result fields only).
VIEW Displays the highlighted item in text view (larger font, one item per screen). Press \(\square\) or \(\square\) VIEW to display the highlighted item in graphics view (if highlighted item is an equation, etc.).
OPTS Displays the options menu, see page 266.
SOLVE Performs a calculation using the displayed values.

ENTER or Enters the highlighted section (in a navigation screen).
Edits the highlighted item (for an edit field).
Displays the possible choices (for a choose field).
Copies item(s) shown to the stack (for a result field).

\section*{Analysis Output Screens}

\(\rightarrow\) STK Copies one or all of the items shown to the HP 48 stack.
VIEW Displays the highlighted item in text view.
OPTS Displays the options menu, see page 266.
EXIT Returns to the input screen.

\section*{Equations Screens}

\(\sqrt{ }\) CHK Checks or unchecks the highlighted item for solving or plotting.
EQWR Displays the highlighted item in graphics view.
PICT Displays a picture for the equation set (if available).
OPTS Displays the options menu, see page 266.
PLOTR Goes to the Plotter screen.
SOLVR Goes to the Solver screen.

ENTER or \(\triangle\) Enters the highlighted section (in a navigation screen). Checks or unchecks the highlighted equation.
+ + Checks or unchecks the highlighted equation.

\section*{Plotter Screens}


CHOOS Displays possible choices for a choose field (Choose fields only).
EDIT Edits the highlighted item (Edit fields only).
STACK Copies the highlighted item to the HP 48 stack and temporarily goes to the HP 48 stack environment.
JCHK Checks or unchecks the highlighted item. This selects or unselects an item for solving or plotting (Check fields only).
PICT Displays a picture for the equation set (if available).
OPTS Displays the options menu, see page 266.
ERASE Erases any previous plots.
DRAW Plots the current equation.
EQNS Goes to the Equations screen.
SOLVR Goes to the Solver screen.

ENTER or \(\triangle\) Edits the highlighted item (for an edit field). Displays the possible choices (for a choose field). Checks or unchecks highlighted item (for check field). Toggles through possible choices (for a choose field).
\(\square\) WTS or Toggles units on or off.

\section*{Solver Screens}


EDIT Edits the highlighted item.
STACK Copies the highlighted item to the HP 48 stack and temporarily goes to the HP 48 stack environment.
PICT Displays a picture for the equation set (if available).
OPTS Displays the options menu, see page 266.
CONV Displays the possible units for converting the highlighted variable. The appropriate units appear in the menu keys. Press \(\sqrt{\times T T}\) and/or EXIT to return to the Solver.
SOLVE Erases any previous plots.
KNOW Marks or unmarks the highlighted variable as known.
WANT Marks or unmarks the highlighted variable as wanted.
RESET Resets one or all of the variables.
ICONS Displays the icons used to indicate variable status.
PLOTR Goes to the Plotter screen.
EQNS Goes to the Equations screen.

ENTER or \(\triangle\) Edits the highlighted variable.
+/- Marks or unmarks highlighted variable as known.
VAA Toggles positions of variable values and descriptions.
DEL Resets one or all of the variables.
\(\square\) TNTS or Toggles units on or off.

\section*{Reference Screens}

\(\rightarrow\) STK Copies one or all of the items shown to the HP 48 stack.
VIEW Displays the highlighted item in text view. Press \(\boldsymbol{\square}\) or VIEW for graphics view (if highlighted item is an equation, etc.).
PICT Displays a picture for the reference table (if appropriate).
DUAL Displays the duals of the property or expression (if appropriate).
OPTS Displays the options menu, see page 266.
DESC: Toggles position of data and help text (if appropriate).
SOLVE Activates the custom solving routine (if appropriate).

ENTER or Enters highlighted section (in a navigation screen).
Edits the highlighted item (for an edit field).
Copies item(s) shown to the stack (for a result field).
VAR Toggles position of data and help text (if appropriate).
\(\square\) Wints or Toggles units on or off.

\section*{Options Menu}


NXT


SPD:- Changes the scrolling speed of the highlight bar.
UNIT- Toggles units on or off.
HELP: Toggles display of help text at the bottom of the screen.
FONTT Toggles font size between large and small.

DESC. Toggles position of data and help text (if appropriate).
\(\rightarrow\) STK Copies one or all of the items shown to the HP 48 stack.
VIEW Displays the highlighted item in text view. Press \(\boldsymbol{\square}\) or VIEW for graphics view (if highlighted item is equation).
FIND Searches for the specified character or string.
PRINT Prints one or all of the items shown to an HP 48 printer.
PATH Displays screens chosen to reach the current screen.
EXIT Leaves the options menu.

\section*{Appendix C}

\section*{User Flags}

This appendix covers:
- Flag 4: Carry Flag
- Flag 5: Range Flag
- Flags 13 \& 14: Binary Sign Mode
- Flag 57: Font Size
- Flag 58: Help Text
- Flag 61: Units
- User Flag Summary

\section*{Flag 4: Carry Flag}

The carry flag, used by the binary commands in the Computer Engineering section of EE•Pro, is controlled by the setting of user flag 4:
- Flag 4 Clear: Places a 0 in the Carry bit.
- Flag 4 Set: Places a 1 in the Carry bit.

To change the carry flag while using EE•Pro, go to Analysis, Computer Engineering, then to one of the listed sections (e.g., Register Operations). Press MODEI, then choose Clear or Set for the Carry field.

To set or clear the carry flag from the HP 48 stack, type \(4 \Omega\) SF or 4 Q Q .

\section*{Flag 5: Range Flag}

The range flag, used by the binary commands in the Computer Engineering section of EE•Pro, is controlled by the setting of user flag 5 :
- Flag 5 Clear: Places a 0 in the Range bit.
- Flag 5 Set: Places a 1 in the Range bit.

To change the range flag while using EE•Pro, go to Analysis, Computer Engineering, then to one of the listed sections (e.g. Register Operations). Press MODEI, then choose Clear or Set for the Range field.

To change the range flag from the HP 48 stack, type \(5 \alpha \alpha\) SF or \(5 \alpha \alpha\) CF.

\section*{Flags 13 and 14: Binary Sign Mode}

The binary sign mode is controlled by the setting of user flags 13 and 14 in combination:
\begin{tabular}{lcc}
\multicolumn{1}{c}{ Mode } & Flag 13 & Flag 14 \\
Unsigned & Clear & Clear \\
One's Complement & Set & Clear \\
Two's Complement & Set & Set
\end{tabular}

To change the binary mode while using EE•Pro, go to Analysis, Computer Engineering, then to one of the listed sections (e.g. Register Operations). Press MODE, then choose Unsigned, One's Complement, or Two's Complement for the Sign field.

To set or clear flag 13 (or 14) from the HP 48 stack, type \(13 \propto \alpha\) SF or \(13 \Omega\) CF.

\section*{Flag 57: Font Size}

The display font size is controlled by the setting of user flag 57 :
- Flag 57 Clear: Small display font. The small font contains \(3 \times 5\) uppercase letters and fits eight vertical lines of text on the screen (without help text).
- Flag 57 Set: Large display font. The large font contains \(5 \times 7\) uppercase and lowercase letters and fits six vertical lines of text on the screen (without help text).

To change the font size while using EE•Pro, press OPTS, then FONT.

To change the font size from the HP 48 stack, type \(57 \Omega \alpha\) SF or \(57 \propto \alpha \mathrm{CF}\).

\section*{Flag 58: Help Text}

The presence of context-sensitive help text along the bottom of the screen is controlled by the setting of user flag 58.
- Flag 58 Clear: Help text on. Help text is displayed at the bottom of the HP 48 screen, directly above the menu keys. Help text is always displayed in the small font, regardless of the setting of flag 57.
- Flag 58 Set: Help text off. When help text is off, one or two more lines available on the screen for displaying information.

To toggle help text while using EE•Pro, press OPTS, then HELP . When the block inside the key appears (HELP \()\), the help text is turned on.

To toggle help text from the HP 48 stack, type \(58 \Omega \alpha\) SF or 58 Q CF.

\section*{Flag 61: Units}

The presence of units is controlled by the setting of user flag 61.
- Flag 61 Clear: Units on. Equations can be solved and plotted with or without units, and Reference tables can be displayed with or without units.
- Flag 61 Set: Units off.

To toggle units while using EE•Pro, press OPTS, then UNITS. When the block inside the key appears (UNIT•), units are turned on.

To toggle units from the HP 48 stack, type \(61 \alpha \alpha\) SF or \(61 \alpha \alpha\) CF.

\section*{User Flag Summary}
\begin{tabular}{|c|c|c|c|}
\hline Flag & Affects & Clear & Set \\
\hline 4 & Carry Flag & Value of Carry bit is 0 & Value of Carry bit is 1 \\
\hline 5 & Range Flag & Result within the range & Result outside the range \\
\hline \(13 \& 14\) & Binary Mode & \begin{tabular}{l} 
Unsigned: \\
One's Complement: 13 - Clear, 14 - Clear \\
Two's Complement: \(13-\) Set, 14 - Set
\end{tabular} \\
\hline 57 & Font Size & Small font (default) & Large font \\
\hline 58 & Help Text & Help text on (default) & Help text off \\
\hline 61 & Units & Units on & Units off (default) \\
\hline
\end{tabular}

\section*{Appendix D}

\section*{Questions and Answers}

This appendix lists the most common questions about EE•Pro. Scan this list before you call customer support-you might save yourself a phone call!

This appendix covers:
- General Questions
- Analysis Questions
- Equations Questions
- Reference Questions

\section*{General Questions}

These are the most commonly asked questions about general features of EE•Pro. For more information, see Chapter 1, "Getting Started."

Q I can't get out of a screen. When I quit by pressing 0 and go back into EE•Pro I'm right back where I was when I exited. How do I get back to the home screen?

A Pressing Enter usually goes into a section, but you may have a difficult time finding your way back out. The easiest way to remember how to navigate the screens is to learn that \(\boxed{\Delta}, \boxed{\nabla}, \boxed{\Delta}\), and \(\triangle\) are the only four keys you need to use to navigate through EE•Pro. \(\triangle\) and \(\square\) move the highlight bar up and down. \(\Delta\) usually enters a section, and \(\boxed{4}\) usually returns back out of a section to the previous screen. Repeatedly pressing \(\triangle\) will eventually get you to the home screen. Or press \(\boldsymbol{\square}\) to go directly to the home screen.

Q I tried pressing and \(\boldsymbol{\square}\) to go up a section but the HP 48 just beeps. How do I get out of this screen?

A Some screens allow you to make selections, such as a choose screen, or change settings, such as the Custom Settings screen. The only way to
exit these screens is by pressing OK ，which accepts the current selection or settings，or by pressing CANCL or ©N，which exits the screen without making any changes．After you have exited the screen， you should be able to go up a section by pressing \(\boldsymbol{\square}\) or \(\boldsymbol{\square}\) ．

Q Why is there a＇SPARCOM＇directory in my HP 48 user memory？（It ap－ pears as SPARC when you press 四 to display the variable menu．）

A Special parameter variables are stored in the＇SPARCOM＇directory by EE－Pro．One of those variables is＇EEPAR＇，which contains in－ formation about which screen you were at when you quit EE•Pro，so that screen will re－appear the next time you run the software．

Variables created during equation solving and plotting are not necessarily stored in the＇SPARCOM＇directory，but in whatever direc－ tory you were at when you ran the software．This is so that you can create working subdirectories to organize your sets of variables if you commonly solve different sets of equations．

Q What do three dots（．．．）mean at the end of an item on the screen？
A The three dots（an ellipsis）indicate the item is too wide to fit on the screen．To display the item in a text view，move the highlight bar to it and press VIEW or 国（HP 48GX）or 国 USTI（HP 48SX）．To display the item in a graphics view，move the highlight bar to it and press VIEW．

Q I solved a problem a long time ago，and I want to find those values again for a problem I＇m working on now，but I can＇t find them．Where are they？

A Values entered in Analysis screens are usually forgotten by EE－Pro when you leave the Analysis screen，because they are not stored in user memory．（An exception to this is the Capital Budgeting section，which does store project files in user memory．）However，values entered in Equations screens are stored in variables in user memory．Those variables will remain in whatever directory you were at when you solved the problem，unless you have cleared your HP 48 memory or reset the variables since you originally solved the problem．

Q I＇m trying to find something which I know is in EE•Pro somewhere，but the find operation keeps telling me，＂String Not Found．＂

A The find feature only searches information in the current screen．It cannot find an item if it is not displayed on the current screen．If you
need to find out where a feature is located in EE•Pro, use the table of contents or index of this manual.

Q I can't find an item in a menu. I think I'm in the right spot but I can't find the correct menu key label. Where can it be?

A Some menus have more than one page. Try pressing 囵. If the menu does have more than six items, the next menu page will be displayed.

\section*{Analysis Questions}

These are the most commonly asked questions about the Analysis section of EE•Pro. For more information, see Chapter 2, "Analysis: Navigation Guide" and your HP 48 User's Guide.

Q My screen doesn't look exactly the same as the example in the manual. What could be wrong?

A The mode settings on your HP 48 may be set incorrectly. Each example displays a box with all relevant mode settings. Press [GST to display the Custom Settings screen and verify that they match those used in the example.

Q The result isn't the value I expected. What could be wrong?
A Your HP 48 may be in an incorrect mode. For example, you may be expecting an answer in degrees but your HP 48 may be set to radians. Press [GT] to display the Custom Settings screen, correct any mode settings, and re-solve the problem.

Q When I press SOLVE, the result is an expression, not a number. Why?
A If you enter a variable name or an algebraic expression as your input, some of your results may be symbolic. If you want to further evaluate or manipulate a symbolic result, move the highlight bar to the field containing the result and press \(\rightarrow\) STK to copy it to the stack. Press ON to go to the stack where you can further evaluate the result.

Q When I press SOLVE, I get the message, "Undefined Name." Why?
A Your HP 48 may be in numeric results mode instead of symbolic results mode. Press [GTT to display the Custom Settings screen, change the result mode to Symbolic, and re-solve.

Q How can I avoid getting an "Infinite Result" error in my calculations in EE-Pro?

A You can set flag -22 (Infinite Result Exception) to return the value 9.99999999999 E 499 (MAXR) instead:
1. Go to the stack. If you are in EE•Pro, press ©oN to get to the stack.
2. Type in \(-22 \Omega \mathrm{Q} \quad \mathrm{SF}\) and press Enien. The flag is now set.
 (on the HP 48SX), then EE EET.

Q Units mode is turned on in the Custom Settings screen (GST). Why can't I enter units?

A Analysis screens do not allow unit objects. Only Equations and Reference screens have unit management.

\section*{Equations Questions}

These are the most commonly asked questions about the Equations section of EE•Pro. For more information, see Chapter 16, "Equations: Navigation Guide" and your HP 48 User's Guide.

Q I turned units off and all my values changed. What happened?
A When units are on, values can be entered and saved in any unit. When units are off, values can be entered in any unit, but the values will automatically be displayed on the screen in the default SI units. This is necessary so that when you press SOLVE to solve an equation, all the values will be consistent with each other and your answer will be correct. If you don't want to be restricted to SI units, turn units back on.

Q I entered values for some variables and pressed SOLVE, but I get the message, "Too many unknowns to finish solving." Why?

A Sometimes the solver doesn't have enough information (i.e., enough known variables) to solve for all the remaining, unknown variables. If you don't yet have an answer to your problem, then you will have to enter more known values and re-solve.

Q There are already values stored in some of my variables. How do I clear those values?

A The values remain from previous solving operations. It is okay to ignore the values, because as long as they aren't marked as known, they will be overwritten by new solutions. If you want to reset the variables, press RESET or DEE to clear one or all of the variables.

Q I entered values for some variables and pressed SOLVE, but I get the message, "Bad Guess(es)". Why?

A There are several possibilities, but in all cases, the solver has encountered trouble while trying to solve for a particular variable. The problem variable is marked with an icon indicating a bad guess error occurred while solving for that variable.

Q The solution to my problem is clearly wrong! (An angle might be negative or unreasonably large.) Why?

A This is most likely to happen when angles are involved in the equation(s) you are solving. What has happened is that the HP 48 has found a non-principal solution to your equation.

Example: Imagine solving the equation \(\sin (x)=0.5\). Solutions include: \(30^{\circ}, 390^{\circ},-330^{\circ}, 750^{\circ}\), etc., but the principal solution is \(30^{\circ}\).

If a non-principal solution is found, it may then be used to solve other equations, leading to strange results.

Example (cont.): Now imagine solving the equation \(x+y=90^{\circ}\). If x is \(30^{\circ}\), then y should be \(60^{\circ}\). But if a non-principal solution for x was found, such as \(750^{\circ}\), then the value of \(y\) will be \(-660^{\circ}\), which although technically correct, is also not a principal solution.

The way to fix this problem is to put in an initial guess for angle variables.

Example (cont.): Before solving for x , enter the value \(45^{\circ}\) for x and then press IKNOW or to unmark x as known. Now, when you press SOLVE to solve for x , the guess of \(45^{\circ}\) will be used, and it is close enough to the principal solution of \(30^{\circ}\) that the solver is very likely to find the principal solution.

Q I tried plotting an equation and got the message, "Variable Not Defined in Solver Screen." Why?

A When plotting, all variables other than the independent and dependent variables must have values. The other variables will be held constant
during plotting, but if they are undefined, this error will occur. Go to the Solver screen and enter values for the other variables in the equation you are plotting, return to the Plotter screen, and re-plot.

Q I tried plotting an equation and got the message, "Unable to Isolate." Why?

A The variable you have selected as the dependent variable occurs more than once in the equation, which means it can't be isolated. This means that you can't plot the equation with that variable as the dependent variable. (Note: In a few cases, it will actually be possible to isolate the variable, but not by a simple isolation, so the HP 48 will be unable to do so.)

\section*{Reference Questions}

These are the most commonly asked questions about the Reference section of EE•Pro. For more information, see Chapter 33, "Reference: Navigation Guide" and your HP 48 User's Guide.

Q Why is the menu key DESC available in some screen and not in others?
A Some screens have information in the help text that may be useful to view in the main display area of the screen, instead of only line by line. IDESCI will be available in these screens. When turned on, the help text information will be swapped with the data normally shown in the main display area. However, if the help text is sparse or non-existent, then IDESC will not be available.

\section*{Index}

\section*{A}

ABOUTEE, 229
AC Circuits, 21, 144
circuit performance, 24
commands, 229
current divider, 23
impedance calculations, 21
impedance to admittance, 146
RC series impedance, 146
RL series impedance, 145
two impedances in parallel, 148
two impedances in series, 147
voltage divider, 22
wye to delta conversion, 26
active filter, 45
advanced use, 225
multiple equations, 250
plotter tips, 253
solver icons, 251
solver tips, 249
using guesses, 250
working directory, 249
Algebraic Functions, 81
commands, 239
partial fraction exansion, 81
piecewise functions, 82
polynomial coefficients, 85
polynomial equation, 85
polynomial roots, 86
symbolic simplification, 87

Taylor polynomial, 88
Alpha
entry mode, 10
lock, 4
amp, volt and ohmmeter, 129
Analysis, 13
fields, see fields
finding, 16
menu keys, 18
navigation guide, 15
screen paths, 243
screens, key summary, 263, 264
using analysis functions, 17
Analysis Screens, 16
angle measure setting, 11

\section*{B}
bad guess icon, 105
balanced delta load, 31
balanced delta network, 149
balanced wye load, 30
balanced wye network, 150
basic inverter, 156
binary arithmetic, 73
binary comparisons, 78
binary conversions, 77
bit operations, 76
BJT (common base), 177
BJT (common collector), 178
BJT (common emitter), 178
Bode Gain Plot, 50

Bode Phase Plot, 50
Boolean Algebra Properties
reference table, 216
Boolean Expressions reference table, 214
Butterworth filter, 43

\section*{C}

Capacitance and Electric Fields, 117
charged disk, 118
coaxial cable, 120
long charged line, 118
parallel plates, 119
parallel wires, 119
point charge, 118
sphere, 120
Capital Budgeting, 90
commands, 240
capturing a screen, 5
card
installing, 6
removing, 7
chain parameters, 64
charged disk, 118
Chebyshev filter, 41
check fields, 110
choose fields, 18, 109
circuit performance, 24, 56
Class A, B, and C Amplifiers, 183
class A amplifier, 184
class B amplifier, 186
class C amplifier, 187
power transistor, 185
push-pull principle, 186
CMDSEE, 229
CMOS transistor pair, 174
coaxial cable, 120, 124
commands
AC circuits, 229
algebraic, 239
binary arithmetic, 235
binary comparisons, 237
binary conversions, 237
binary modes, 238
binary operations, misc., 238
bit operations, 237
capital budgeting, 240
EE library, 229
error functions, 240
filter design, 231
finding, 228
fourier transforms, 233
gain and frequency, 232
Karnaugh map, 239
object syntax, 228
polyphase circuits, 230
reference, 240
register operations, 236
transformer performance, 234
transmission lines, 235
two-port networks, 233
Computer Engineering, 72
binary arithmetic, 73
binary comparisons, 78
binary conversions, 77
bit operations, 76
commands, 235, 236, 237, 238, 239
register operations, 74
CONS, 229
constant icon, 105
Constants reference table, 220
copying an item to the stack, 10
critically-damped transient, 142
current amplifier, 157
current divider, 23
custom settings screen, 11, 72
customer support, iii

\section*{D}

Darlington (CC-CE), 180, 181
DC generator, 192
DC series generator, 194
DC series motor, 196
DC shunt generator, 194
DC shunt motor, 195
dependent variable, 107, 108
differential amplifier, 160,182
differentiator, 159

\section*{\(E\)}

Ebers-Moll equations, 168
edit fields, 18, 109
EE, 229
Electrical Resonance, 151
parallel resonance, 152
parallel resonance II, 152
resonance in lossy inductor, 153
series resonance, 154
Electron Motion, 125
electron beam deflection, 126
photoemission, 126
thermionic emission, 126
emitter-coupled amplifier, 181
energy conversion, 192
environmental limits, 5
Equations, 95
displaying a picture, 99
finding, 98
menu keys, 100
navigation guide, 97
screen paths, 244
screens, 99
screens, key summary, 264
selecting equations, 100
Solver, 100
viewing an equation, 99
Error Functions, 89
commands, 240
examples
AC circuit performance
parameters, 26
active filter, 47
balanced delta load, 33
balanced wye load, 31
binary arithmetic, 74
binary comparison, 78
binary conversions, 77
Boolean algebra properties, 217
Boolean expressions, 215
Butterworth filter, 45
capital budgeting, 92
chain parameters, 65
Chebyshev filter, 43
compute the impedance of a parallel RLC circuit, 20
Constants reference table, 206, 220
create an equation with a constant, 241
current divider, 24
delta to wye conversion, 27, 29
fault location estimate, 70
FFT, 53
find the transfer function for a circuit, 49
inverse FFT, 53
inverse Fourier transform definition, 219
Karnaugh map, 80
ladder network, 37, 39
line characteristics, 67
line parameters, 69
open circuit test, 62
overdamped parallel RLC circuit, 110
override a built-in constant, 241
partial fraction expansion, 82
piecewise function, 84
plot Overdamped Transient, 253
polynomial coefficients, 85
polynomial equation, 86
polynomial roots, 86
register operations, 75
resistor colors, 208
RLC impedance calculations, 22
Semiconductor Properties, 212
short circuit test, 63
standard component values, 210
stub impedance matching, 71

Taylor polynomial, 88
two-port circuit performance, 57
two-port parameter conversion, 56
two-ports, interconnected, 60
voltage divider, 23
wye to delta conversion, 29
extremum icon, 104

\section*{F}
fault location estimate, 69
FET (common drain), 180
FET (common gate), 179
FET (common source), 179
FFT, 52
fields
check, 110
choose, 18, 109
edit, 18, 109
result, 19
types, 18
Filter Design, 41
active filter, 45
Butterworth filter, 43
Chebyshev filter, 41
commands, 231
finding
an item, 10
Analysis, 16
commands, 228
Equations, 98
Reference, 204
flags, see user flags
range and carry, 73
font size, 9, 12, 103
Fourier Transform
commands, 233
Fourier Transforms, 52
FFT, 52
inverse FFT, 53

Bode plots, 50
commands, 232
transfer function, 48
getting started, 1
GOEE, 229
GOMATH, 242
graphics view, 10
Greek Alphabet reference table, 223
guesses, 250

\section*{H}
help, 272
help text, 9, 12
home screen, 8
key summary, 262
HP 48GX
differences from HP 48SX, 4
icons, see Solver
ideal currents - pnp, 168
ideal transformer, 189
IFTE in piecewise functions, 83
impedance calculations, 21
impedance to admittance, 146
independent variable, 106, 108
Inductance and Magnetism, 121
coaxial cable, 124
long line, 122
long strip, 122
loop, 123
parallel wires, 123
skin effect, 124
induction motor I, 197
induction motor II, 198
installing EE \(\cdot\) Pro (installing a card), 6
interconnected two-ports, 58
internal rate of return, 90
inverse FFT, 53

\section*{G}

Gain and Frequency, 48
junction FET, 175

Karnaugh map, 79
key features, 2
key summary
Analysis screens, 263, 264
EE•Pro, 262
Equations screens, 264
home screen, 262
navigation screens, 263
options menu, 266
Plotter screens, 264
Reference screens, 266
Solver screens, 265
keys, see menu keys
keystrokes, 3

\section*{L}

Ladder Network, 34
level detector, 158, 159
library menu, 7
line characteristics, 66
line parameters, 68
Linear Amplifiers, 176
BJT (common base), 177
BJT (common collector), 178
BJT (common emitter), 178
Darlington (CC-CE), 180, 181
differential amplifier, 182
emitter-coupled amplifier, 181
FET (common drain), 180
FET (common gate), 179
FET (common source), 179
source-coupled JFET pair, 182
linear equivalent circuit, 189
long charged line, 118
long line, 122
long strip, 122
loop, 123
conventions, 3
headings, explanation, 3
how to use, 2
organization, 2
what to read next, 3
maximum power transfer, 115
Maxwell bridge, 131
memory requirements, 5
menu keys
ABOUT, 7, 8
Analysis screens, 18
CHK, 100, 110
CHOOS, 109
CONV, 105
DESC, 205
DRAW, 109, 110
EDIT, 105, 109
EEPRO, 7
EQNS, 106, 110
Equations screens, 100
EQWR, 100
ERASE, 109, 110
EXIT, 9, 10
FIND, 8, 10
FONT, 9
HELP, 9
HOME, 8
ICONS, 106
KNOW, 105
OPTS, 8, 100, 105, 109, 110, 205
PATH, 8, 10
PICT, 100, 105, 109, 110, 205
PLOTR, 100, 106
Plotter screens, 109
PRINT, 10
QUIT, 8
Reference screens, 205
RESET, 105
SOLVE, 105
Solver screens, 105
SOLVR, 100, 110
SPD, 9
STACK, 105, 109

STK, 10, 205
UNITS, 9
UP, 8
VIEW, 8, 10, 205
WANT, 104, 105
menus
convert, 102
options, 9
Meters and Bridge Circuits, 128
amp, volt and ohmmeter, 129
Maxwell bridge, 131
Owen bridge, 131
symmetrical resistive
attenuator, 132
unsymmetrical resistive attenuator, 132
Wheatstone Bridge, 130
Wien Bridge, 130
modes
angle measure, 11
font size, 12
help text, 12
numeric, 12
symbolic, 12
units, 12
MOS inverter (depletion), 173
MOS inverter (resistive), 172
MOS inverter (saturated), 172
MOS transistor I, 170
MOS transistor II, 171
Motors and Generators, 190
DC generator, 192
DC series generator, 194
DC series motor, 196
DC shunt generator, 194
DC shunt motor, 195
energy conversion, 192
induction motor I, 197
induction motor II, 198
permanent magnet motor, 197
separately-excited DC generator, 193
separately-excited DC motor, 195
single-phase induction motor, 199
synchronous machines, 199
moving around the screen, 8

\section*{N}
navigation guides
Analysis, 15
Equations, 97
Reference, 203
navigation screens
key summary, 263
net present value, 90
non-inverting amplifier, 157
numeric results mode, 12

\section*{0}

Ohm's law and power, 114
OpAmp Circuits, 155
basic inverter, 156
current amplifier, 157
differential amplifier, 160
differentiator, 159
level detector, 158, 159
non-inverting amplifier, 157
transconductance amplifier, 158
open circuit test, 61
options menu, 9
key summary, 266
overdamped transient, 143
Owen bridge, 131

\section*{P}
parallel admittance, 141
parallel plates, 119
parallel resonance, 152
parallel resonance II, 152
parallel wires, 119, 123
parameter conversion, 54
partial fraction expansion, 81
parts
Analysis, 13
Equations, 95

Programming \& Advanced Use, 225
Reference, 201
paths
Analysis screens, 243
Equation screens, 244
Reference screens, 248
payback period, 90
permanent magnet motor, 197
photoemission, 126
piecewise functions, 82
entry rules, 83
Plotter
autoscale, 107
drawing the plot, 107
field descriptions, 108
field types, see fields
menu keys, 109
plotting an equation, 106
screens, 106
screens, key summary, 264
selecting an equation to plot, 106
selecting the dependent variable, 107, 108
selecting the independent variable, 106, 108
setting the horizontal range, 107
setting the vertical range, 107
tips for using, 253
plug-in card, see card
PN junction currents, 166
PN junctions, 166
point charge, 118
polynomial
coefficients, 85
equation, 85
roots, 86
simplifying, 87
Taylor, 88
Polyphase Circuits, 28, 149
balanced delta load, 31
balanced delta network, 149
balanced wye load, 30
balanced wye network, 150
commands, 230
power measurements, 150
wye to delta conversion, 28
power measurements, 150
power transistor, 185
printing an item, 10
profitability index, 90
programmable screens, 242
push-pull principle, 186
Q
questions and answers, 272

R
RAM, see memory requirements
RC natural response, 135
RC series impedance, 146
RC series to parallel, 138
RC step response, 136
Reference, 201
commands, 240
finding, 204
navigation guide, 203
screen paths, 248
screens, 204
screens, key summary, 266
using reference tables, 205
Reference tables
Boolean Algebra Properties, 216
Boolean Expressions, 214
Constants, 220
Greek Alphabet, 223
Resistor Color Chart, 207
Semiconductor Properties, 211
SI prefixes, 222
Standard Component Values, 209
Transforms, 218
register operations, 74
removing a card, 7
Resistive Circuits, 113
maximum power transfer, 115
Ohm's law and power, 114
resistance and conductance, 114
temperature effect, 115
V and I source equivalence, 116
Resistor Color Chart reference table, 207
resonance in lossy inductor, 153
result fields, 19
result mode setting, 12
RL and RC Circuits, 134
RC natural response, 135
RC series to parallel, 138
RC step response, 136
RL natural response, 135
RL series to parallel, 137
RL step response, 136
RL series impedance, 145
RLC Circuits, 139
critically-damped transient, 142
overdamped transient, 143
parallel admittance, 141
RLC natural response, 141
series impedance, 140
underdamped transient, 142
roots
of a polynomial, 86

\section*{S}
screen captures, 5
Screen Summary, 261
screens
Analysis, 16
custom settings, 11, 72
Equations, 99
home, 8
moving around, 8
Plotter, 106
programmable, 242
Reference, 204
Solver, 100
search for (find) an item, 10
sections
Analysis, 13
Equations, 95
Programming \& Advanced Use, 225
Reference, 201
semiconductor basics, 165
Semiconductor Properties
reference table, 211
separately-excited DC generator, 193
separately-excited DC motor, 195
series impedance, 140
series resonance, 154
service, 257
charges, 258
shipping instructions, 258
short circuit test, 62
SI prefixes reference table, 222
single-phase induction motor, 199
skin effect, 124
software
custom settings, 9
starting, 7
Solid State Devices, 161
CMOS transistor pair, 174
Ebers-Moll equations, 168
ideal currents - pnp, 168
junction FET, 175
MOS inverter (depletion), 173
MOS inverter (resistive), 172
MOS inverter (saturated), 172
MOS transistor I, 170
MOS transistor II, 171
PN junction currents, 166
PN junctions, 166
semiconductor basics, 165
switching transients, 169
transistor currents, 167
Solver
converting a value, 102
entering values, 101
font size, 103
icons, 251
known variables, 104
menu keys, 105
no solution found, 104
resetting variables, 102
screens, 100
screens, key summary, 265
solution found, 104
solving an equation, 101, 106
tips for using, 249
units off, 102
units on, 102
using the stack, 102
wanted variables, 103
source-coupled JFET pair, 182
Sparcom Corporation
contacting, 257
phone number, 257
speed setting, 9
sphere, 120
stack usage, 102
Standard Component Values
reference table, 209
starting EE \(\cdot\) Pro, 7
stub impedance matching, 70
switching transients, 169
symbolic results mode, 12
symbolic simplification, 87
symmetrical resistive attenuator, 132
synchronous machines, 199

\section*{T}

Taylor polynomial, 88
technical support, iii, 257
temperature effect, 115
thermionic emission, 126
transconductance amplifier, 158
transfer function, 48
Transformer Performance, 61
chain parameters, 64
commands, 234
open circuit test, 61
short circuit test, 62
Transformers, 188
ideal transformer, 189
linear equivalent circuit, 189
Transforms reference table, 218
transistor currents, 167
Transmission Lines, 66
commands, 235
fault location estimate, 69
line characteristics, 66
line parameters, 68
stub impedance matching, 70
troubleshooting, 272
two impedances in parallel, 148
two impedances in series, 147
Two-Port Networks, 54
circuit performance, 56
commands, 233
interconnected two-ports, 58
parameter conversion, 54

U
underdamped transient, 142
units setting, 9, 12
unsymmetrical resistive
attenuator, 132
user flags
flag 57, 268, 269
flag 58, 270
flag 61, 270
summary, 271
using the stack, 102

\section*{V}

V and I source equivalence, 116
variables
bad guess, 252
constant?, 252
converting, 102
dependent variable (for plotting), 107, 108
entering (for Plotter), 106
entering (for Solver), 101
entering, units on/off, 102
extremum, 252
independent variable (for plotting), 106, 108
known, 104, 252
no solution, 252
no solution found, 104, 252
resetting, 102
solution found, 104, 252
unknown, 251
wanted, 103, 252
viewing an item
graphics view, 10
text view, 10
voltage divider, 22

\section*{W}

Wheatstone Bridge, 130
Wien Bridge, 130
working directory
creating, 249
wye to delta conversion, 26,28```

