The Pocket Professional ™

Physics

Owner's Manual

SPARCOM®

Edition 1 Manual Reorder No. 10091–1M April 1992 Software Reorder No. 10091–1A

Notice

Sparcom Corporation shall not be liable for any errors, loss of profit, or any other commercial damage, including but not limited to special, consequential, incidental or other damages, resulting from or in any way connected with the furnishing, performance, or use of this manual or software. This manual, the accompanying software, and the examples contained herein are provided "as is" and are subject to change without notice. Sparcom disclaims any other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. (For more information about warranty, refer to Appendix A, "Warranty and Service.")

This manual and the accompanying software are © Sparcom Corporation 1992. All rights reserved. Reproduction, transmission in any form or by any means, adaptation, or translation of this manual is prohibited without prior written permission of Sparcom, except as allowed under the copyright laws.

The owner of this manual is granted a one-user, non-commercial license to use the enclosed software, and may not copy, distribute, or transfer the software under any circumstances without prior written permission of Sparcom.

Portions of this manual are © Hewlett-Packard Company 1990 and are used with permission.

Portions of this software are licensed from Armstrong Publishing, Corvallis, OR, U.S.A.

Pocket Professional and Sparcom are registered trademarks of Sparcom Corporation.

Sparcom Corporation 897 NW Grant Avenue Corvallis, OR 97330 U.S.A.

Printing History

Edition 1

April 1992

Physics Pac Changes

The following changes were made to the Physics Pac for version 2.5:

- ✓ Browser: Cursor movement and scrolling speed have been increased.
- ✓ Constant Library: Constants have been updated to conform to latest accepted values.

HP 48GX USERS ONLY: You should install the application card in Port 1 for two reasons:

1. Application cards installed in Port 1 will execute ~ 20% faster than those installed in Port 2.

2. Application cards installed in Port 2 may experience long pauses (~ 5-10 seconds or more) intermittently during operation. This is not a software defect. It is caused by the new memory architecture of the extended HP 48GX Port 2, which is different from the HP 48SX Port 2. Such pauses will not occur if the application card is operated from Port 1 of the HP 48GX or if it is operated from either port of the HP 48SX.

Physics Pac Manual Changes

These changes apply to the Physics Pac Manual, Edition 1, April 1992.

Changes for the HP 48GX

General: To display all libraries on the HP 48GX, press Furthern instead of Guran.

General: On the HP 48GX, the ITM key has been replaced by CANCEL.

General: To perform a screen dump on the HP 48GX, press ON - 100 instead of ON-WTH.

- General: To display an item too wide for the display on the HP 48GX, press Film instead of Film.
- Page 34: Loading a Value from the Stack: To access the Interactive Stack from an input screen on the HP 48GX, press and a prese and a press and a press and a press and a press and a pres
- Pages 41, 42: Graphics Environment: On the HP 48GX, the Graphics Environment menus have been re-arranged.
- Page 54: User-Defined Integrals: Item 4: On the HP 48GX, press FRO IMPE DIAG instead of FRO DEJ DIAG to tag an object.

Changes for Version 2.5

- Page 15: The search mode is now case-insensitive.
- Page 19: Constant Library: The Constant Library now includes 43 constants.
- Page 19: Using the Constant Library: Picture should contain "\pi" instead of "pi" and "Napier" instead of "Napiere."
- Page 29: Variables Screen: 1st picture should indicate radians as the default unit for θ instead of °.
- Page 31: Turning Units On: Picture should indicate 0_r as the value of θ instead of 0_-° .
- Page 31: Entering Values: Change sentence from "Type 45 as your input:" to "Type 45 and press the 2nd softkey as your input:"
- Page 31: Entering Values: 1st picture should indicate 45_° as the entry on the command line instead of 45. Also, the menu keys should read **DERING MERCEN** (GRAD) instead of **DERING GRAD**.
- Page 31: Entering Values: Delete the phrase, "(default units of ° will be assumed)".
- Page 39: Turning Units Off: Picture should indicate 1.0109 as the value of θ instead of 57.9210.

Page 40: Plotting an Equation: 2nd picture should indicate (r) as the units for θ instead of (°).

- Page 40: Entering Ranges: Example: Change sentences from "Vary θ from 30° to 60°. To do this, type 30 \Im 60 as your input:" to "Vary θ from $\pi/6$ radians (30°) to $\pi/3$ radians (60°). To do this, type .5236 \Im 1.0472 as your input:"
- Page 40: Entering Ranges: 1st picture should indicate (r) as the units for θ instead of (°), and the command line should contain the values .5236 and 1.0472.
- Page 49: Viewing an Integral: Picture should not include L and U because the integral is indefinite.
- Page 63: SI Prefixes: Picture should indicate prefixes as 1E18, 1E15,
- Page 72: Expanding a Function: 1st picture menu keys should read DEG RAD GRAD XYZ R<Z R<Z instead of PARTS PROB HYP MATR VECTR BASE.
- Page 77: Dot Products: 2nd picture menu keys should read SKIP SKIP DEL DEL DEL DEL STR instead of PARTS PROB HYPE MATE VECTE BASE.
- Page 79: Del Operator (∇): Picture has several errors.
- Page 80: Gradient: Example: Change sentence from, "Then press the fifth softkey **R**<**Z**..." to "Then press the second softkey **R**<**Z**..." to "Then press the second softkey **R**<**Z**..."
- Page 125: Orbits (Circular): Equation 2 should be $v^2 = \frac{G \cdot m1}{a}$.
- Page 127: Projectile Motion: XI, XF, YI, and YF variable descriptions are swapped.
- Appendix C: The default angle unit has been changed from ° to r.

Contents

1	Getting Started	9
	Installing and Demoving a DOM Card	0
	Installing and Removing a ROM Card	
	Installing a ROM Card	
	Removing a ROM Card	
	Starting the Physics Pac	
	Moving Around the Screen	
	Using the Main Menu	
	Items in the Main Menu	
	Summary of Operations	
	Changing the Font Size	14
	Viewing Items Too Wide for the Display	
	Using the Search Mode	
	Text Editing	
	Summary of Operations	
	Alpha Lock	
	How to Load Data from the Stack	16
	System Flags	
	User Flags	
	Memory Requirements	
	The 'SPARCOM' Directory	

2 Constant Library19

Using the Constant Library	19
Viewing a Constant	
Summary of Operations	

	Equation Library	.23
T	Using the Equation Library	23
(Categories Screen	24
	Summary of Operations	
]	Topics Screen	25
	Summary of Operations	
F	Equations Screen	
	Marking an Equation	27
	Solving Multiple Equations	
	Summary of Operations	28
١	Variables Screen	29
	Viewing the Picture	29
	Summary of	29
S	Solver Screen	30
	Turning Units On	31
	Entering Values	31
	Solving for Unknowns	
	Converting a Value	32
	Copying a Result to the Stack	
	Using the Stack for Calculations	33
	Loading a Value from the Stack	34
	Using the Wanted Feature	
	Solving for Unknowns	
	Known Variables	
	Wanted Variables	36
	Clearing Variables	36
	Purging Variables	36
	Summary of Operations	36
ł	Plotting Equations	38
	Preparing to Plot	39
	Turning Units Off	39
	Plotting an Equation	
	Entering Ranges	
	Creating an Overlay Plot	
(Graphics Environment	
	Summary of Operations	
ľ	Managing Units and Plotting	
	Managing Units and Solving	
	What Does Multiple Equation Solver Mean?	
	Using a Guess to Speed Computing Time	
	'Bad Guess(es)" Message	

.

4 Integral Tables......47

Using the Integral Tables	47
Items in Integral Tables	48
Summary of Operations	
Choosing a Section	49
Viewing an Integral	
Summary of Operations	
Solving an Integral	
Selecting Indefinite or Definite	51
Entering Limits of Integration	51
Entering Values of Constants	51
Viewing the Result	52
Simplifying the Result	
Summary of Operations	
User-Defined Integrals	
5	

5 Polynomial Solver.....55

Using the Polynomial Solver	
Solving a Polynomial	
Summary of Operations	

6 Reference Data.....59

Using Reference Data	
Items in Reference Data	
Summary of Operations	
Greek Alphabet	
Solar System Data	
Summary of Operations	
SI Prefixes	

Using Reference Formulas	65
Items in Reference Formulas	
Summary of Operations	66
Moments of Inertia	
Object Centroids	67
Trig/Hyp Definitions	
Using COT, SEC, CSC, etc.	
Trig/Hyp Pictures	
Trig/Hyp Relations	

8 Taylor Expansion.....71

Using the Taylor Expansion	
Expanding a Function	
Simplifying the Result	
Summary of Operations	

9 Vector Analysis.....75

Using Vector Analysis	75
Items in Vector Analysis	
Summary of Operations	76
Dot Products	77
Cross Products	78
Del Operator (∇)	79
Gradient	
Divergence	80
Curl	81
Laplacian	81
Simplifying Results	82

10 Programmable Commands83

Hyperbolic Commands	
COTH, SECH, CSCH, ACOTH, ASECH, ACSCH	
Polynomial Solver Command	84
PROOT	
Taylor Expansion Command	84
TYLRX	
Trigonometric Commands	
COT, SEC, CSC, ACOT, ASEC, ACSC	
User-Defined Integral Commands	86
INDEF, DEFIN	
Vector Analysis Commands	
SDOT	
SCROS	
SGRAD	
SDIV	
SCURL	
SLAPL	
Miscellaneous Commands	90
SIMPL	90
PCON	
SLVINTEG	90

A Warranty and Service91

Pocket Professional [™] Support	
Limited One-Year Warranty	
What is Covered	
What is Not Covered	
If the Card Requires Service	
Service Charge	
Shipping Instructions	
Environmental Limits	

B Summary of Operations95

Summary of Screen Softkeys	. 95
Summary of Softkey Actions	. 97

C Equation Library Reference 101

Categories and Topics	101
Angular Mechanics	
Electrical Circuits	
Electric Fields	117
Forces/Energy/Work	121
Gravitation	
Linear Mechanics	128
Magnetism	132
Optics	137
Oscillations	142
Special Relativity	147
Waves	

D	Index	55
---	-------	----

Chapter 1

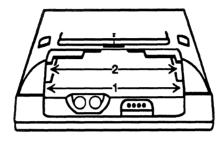
Getting Started

Sparcom's Pocket Professional[™] software is the first of its kind, developed to provide speed, efficiency and portability to students and professionals in the technical fields. When you slide the Pocket Professional[™] Physics Pac into your HP 48SX, your calculator is instantly transformed into an electronic "textbook," ready to efficiently solve your physics problems. The Physics Pac is organized into eight separate modules: Constant Library, Equation Library, Integral Tables, Polynomial Solver, Reference Data, Reference Formulas, Special Functions, and Vector Analysis... all available in an efficient, menudriven format.

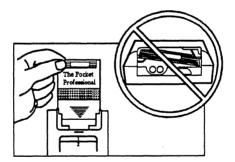
This chapter covers:

- □ Installing and Removing a ROM Card
- Moving Around the Screen
- Using the Main Menu
- Changing the Font Size
- U Viewing Items Too Wide for the Display
- Using the Search Mode
- Text Editing
- Alpha Lock
- How to Load Data from the Stack
- System Flags
- User Flags
- □ Memory Requirements
- □ The 'SPARCOM' Directory

Installing and Removing a ROM Card


The HP 48SX has two ports for installing plug-in ROM cards. You can install your Physics Pac in either port.

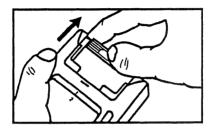
<u>WARNING</u>: Turn off the HP 48SX while installing or removing a ROM card! Otherwise, your HP 48SX memory may be erased.


Installing a ROM Card

To install a ROM card, follow these steps:

- Turn the HP 48SX off. Do not press 🕅 until you have completed the installation procedure.
- Remove the port cover. Press against the grip lines and push forward. Lift the cover to expose the two plug-in ports, as shown below:

Select either empty port for the Advanced Pocket Professional[™] card, and position the card just outside the slot. Point the triangular arrow on the card toward the HP 48SX port opening, as shown below:



- Slide the card firmly into the slot. After you first feel resistance, push the card about 1/4 inch further, until it is fully seated.
- **6** Replace the port cover.

Removing a ROM Card

To remove a ROM card, follow these steps:

- Turn the HP 48SX off. Do not press IN until you have completed the removal procedure.
- Remove the port cover. Press against the grip lines and push forward. Lift the cover to expose the two plug-in ports, as shown above.
- Press against the card's grip and slide the card out of the port, as shown below:

O Replace the port cover.

Starting the Physics Pac

After you turn on your HP 48SX by pressing \boxed{ON} , there are three ways to start the Physics Pac:

Press ENTS to display all libraries available to the HP 48SX. Find and press PHYS to enter the Physics Pac library directory. The screen displays new menukeys (softkeys) along the bottom, as shown:

1 HOME	}
4:	
2:	
1:	OOT INDEE DEFIN SIMPL MOUT

Press **PHYS** (the first softkey) to start the application. To display a screen containing the revision number and product information about the Physics Pac, press **ABOUT** (the sixth softkey). (For more information about the remaining softkeys, refer to Chapter 10, "Programmable Commands.")

- \Box Type \square PHYS ENER to start the application.
- Add the command PHYS to the CST (custom) menu. (For more information, refer to Chapter 15 of the HP 48SX Owner's Manual, "Customizing the Calculator.") After the command has been added to CST, press ST PHYS to start the application.

Moving Around the Screen

Use the A and keys to move the pointer up and down in a menu screen. Press v to move the pointer to the bottom of the screen, or to page down one screen at a time if the pointer is already at the bottom of the screen. Press A to move the pointer to the top of the screen, or to page up one screen at a time. Press v to move the pointer to the very end of the menu or press A to move the pointer to the very beginning of the menu.

Using the Main Menu

After you start the application, the Main menu appears:

Physics +CONSTANT LIBRARY EQUATION LIBRARY INTEGRAL TABLES POLYNOMIAL SOLVER REFERENCE FORMULAS TAYLOR EXPANSION
VECTOR ANALYSIS Misout Astro Print Wield Font Guit
NEULI VOIK PRINT NEM PUNT SUIT

The Main menu lists the eight modules of the Physics Pac. A module is selected by moving the pointer to the desired item and pressing ENTER.

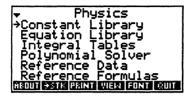
Items in the Main Menu

Each item in the Main menu is briefly described below and is discussed in detail in the various chapters of this manual.

ltem	Description	See
Constant Library	Includes 45 universal constants.	Chapter 2
Equation Library	Over 250 equations in 11 categories.	Chapter 3
Integral Tables	Nearly 100 integrals in 5 sections.	Chapter 4

Polynomial Solver	A polynomial root-finder accepting real or complex coefficients.	Chapter 5
Reference Data	Includes Greek alphabet, SI prefixes, and solar system data tables.	Chapter 6
Reference Formulas	Moments of inertia, centroids, and standard trigonometric/hyperbolics.	Chapter 7
Taylor Expansion	Taylor expansion function.	Chapter 8
Vector Analysis	Reference formulas/functions for dot, cross, del, div, curl, grad, Laplacian.	Chapter 9

Summary of Operations


Screen			Softk	eys		
Main	ABOUT	-STK	PRINT	VIEW	FONT	QUIT

Кеу	Action
ABOUT	Displays a screen containing the revision number and prod- uct information about the Physics Pac. Pressing any key erases the screen and returns to the previous menu or to the HP 48SX stack.
FONT	Toggles between the small and large fonts.
PRINT	Prompts for MONEN or MALLE to select items, and then sends those items to an IR printer.
QUIT	Quits the Physics Pac to the HP 48SX stack.
=stk	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
VICEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, entering the module selected by the pointer.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Changing the Font Size

The default font for the Physics Pac displays information in condensed, uppercase letters only. Pressing **FONT** will toggle the information to a larger font, which is case-sensitive:

The font size will remain the same until **FONT** is pressed again.

Viewing Items Too Wide for the Display

If the text of a menu item is too wide to fit within the display, an ellipsis (...) appears at the end of the line. On some screens, the **MIEW** softkey will be present—press **MIEW** to display the entire text of an item, up to one entire screen size. Once the full text has been displayed, press **ENER** or **MIEW** to the menu. At all screens, including those screens where **MIEW** is not present, pressing **F** will perform the same function. If an item does fit entirely on the screen, **MIEW** or **F** will beep and do nothing.

Using the Search Mode

When menu lists are long, it is faster to locate an item using the search mode. To initiate a search, press \square to display the following screen:

The HP 48SX is now locked in alpha-entry mode, as indicated by the alpha annunciator at the top of the screen (not shown). Alpha entry mode activates the white capital letters printed to the lower right of many keys. (For more information, refer below to "Alpha Lock" and to Chapter 2 of the HP 48SX Owner's Manual, "The Keyboard and Display.") To perform a search, enter the first letter or letters of the desired string and press $\boxed{\text{ENTER}}$. The search function is case-sensitive, and will scan through all information in the current menu. To enter a lowercase letter in the alpha entry mode, precede the letter with $\boxed{\begin{aligned} \begin{aligned} \begi$

Text Editing

The softkeys present at the search screen and at many data input screens are command line editing keys. They allow you to edit the search string or input data. Their functions are summarized below. (For more information, refer to Chapter 3 of the HP 48SX Owner's Manual, "The Stack and Command Line.")

Summary of Operations

Screen			Soft	keys		
Text Editing	∽SKIP	SKIP-	-DEL	DEL→	INS	*STK

Кеу	Action
-DEL	Deletes all characters in the current word prior to the cursor.
DEL -	Deletes all characters between the cursor's current position and the first character of the next word.
INS	Toggles between insert and type-over modes.
- SK I P	Moves the cursor to the beginning of the current word.
SKIP→	Moves the cursor to the beginning of the next word.
*STK	Activates the Interactive Stack, allowing arguments to be copied from the stack to the command line for editing by pressing ECHO .
ATTN	Clears the command line if there is text present, or aborts text entry if the command line is already blank.
ENTER	Accepts the current command line as the entry and returns to the previous menu or list.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Alpha Lock

System flag -60 controls whether or not Alpha Lock mode is set. The default setting for flag -60 is clear, which means that pressing \bigcirc places the HP 48SX in alpha-entry mode for only one character, and you must press \bigcirc to lock alpha-entry mode. If flag -60 is set, however, then pressing \bigcirc only once locks alpha-entry mode. The examples in this manual assume that flag -60 is clear, so that each \bigcirc keystroke turns on alpha-entry mode only for the following character. (For more information, refer to Chapter 2 of the HP 48SX Owner's Manual, "The Keyboard and Display.")

How to Load Data from the Stack

At all data input prompts, it is possible to copy values from the HP 48SX stack to the command line, even though the Physics Pac is executing. This is achieved through a limited version of the Interactive Stack. To activate the Interactive Stack at a data input prompt, press \checkmark , or if that does not work, press \bigcirc \bigcirc \bigcirc to display the EDIT menu and then press \bigcirc \bigcirc At this point, unless the stack is empty, the screen will display the contents of the stack. Move the pointer up and down the stack by pressing \bigcirc and \bigcirc , and when you reach the desired value, press \bigcirc to copy it to the command line for editing. To exit the Interactive Stack and return to the command line, press \bigcirc \bigcirc \bigcirc \square . After returning to the command line, you can edit the value with the editing softkeys described above. (For more information, refer to Chapter 3 of the HP 48SX Owner's Manual, "The Stack and Command Line.")

System Flags

Executing the Physics Pac will not change the flag settings or stack depth on your HP 48SX, unless you push **ESTK** at some point to leave results on the stack. For your convenience, most flag settings are preserved during operation of the Physics Pac, including the alpha-lock setting. However, for the software to operate properly, some system flags are temporarily modified during execution:

- □ Binary word size is set to 64
- Clock display is turned off
- □ Radix mark is set to "." (period)
- Last Arguments are not saved
- User Mode is turned off

When you press IT or OUT to exit the Physics Pac to the HP 48SX stack, all system and user flags are restored to their previous settings for your convenience.

WARNING: Pressing I multiple times in rapid succession may abort the Physics Pac without resetting the state of your HP 48SX. Do not do this! The Pac is designed to be tolerant of a few Im presses, but it cannot properly restore your stack and flag settings if you push Im too many times in a row.

User Flags

The display font size is controlled by the setting of user flag 57. If flag 57 is clear, the smaller display font will be used; if flag 57 is set, the larger display font will be used. Changes in the display font during operation of the Physics Pac are preserved after you quit to the HP 48SX stack.

The state of units (on or off) is controlled by the setting of user flag 61. If flag 61 is clear, units are on; if flag 61 is set, units are off. Changes in the units status during operation of the Physics Pac are preserved after you quit to the HP 48SX stack.

Memory Requirements

A minimum of about 1.7K free memory is required for the Physics Pac to operate, but more free memory is required to interactively use functions and solve equations. The precise free memory requirements vary according to the complexity of the function arguments or the number of equations you solve.

If the Physics Pac appears to be functioning incorrectly—e.g., if you attempt to create a plot or solve an equation and nothing happens—it is likely that there is not enough free memory in your HP-48SX to complete the operation. Possible solutions to the problem of too little free memory are:

- □ Simplify the problem you are solving by using a smaller subset of equations or variables, or by entering simpler symbolic arguments to the function.
- Quit the Physics Pac and delete unwanted variables from the WAR menu. (For more information, refer to Chapter 6 of the HP 48SX Owner's Manual, "Variables and the VAR Menu.")

□ Add additional free memory to your HP 48SX by merging a 32K or 128K RAM card. (For more information, refer to Chapter 5 of the HP 48SX Owner's Manual, "Calculator Memory.")

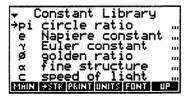
The 'SPARCOM' Directory

Most Sparcom Pocket Professional[™] Pacs create a directory 'SPARCOM' in the HOME directory of your HP 48SX. Inside the 'SPARCOM' directory, each particular Pac creates a specific subdirectory—for the Physics Pac, the name of that subdirectory is 'PHYSD'. All variables and equations for the Physics Pac are stored inside 'PHYSD', so as not to conflict with your global variables in other directories. If you are extremely low on free memory and do not need to keep any of the Physics Pac variables in your HP 48SX, you can purge the 'PHYSD' directory, using the command PGDIR. The next time you execute the Physics Pac, the 'PHYSD' directory will automatically be re-created. (For more information, refer to Chapter 7 of the HP 48SX Owner's Manual, "Directories.")

Chapter 2

Constant Library

The Constant Library lists 45 universal constants for quick reference. Constant values can be displayed on the screen, copied to the stack, or printed on an IR printer, either one at a time or all at once.


This chapter covers:

- Using the Constant Library
- Viewing a Constant

Using the Constant Library

To get to the Constant Library, follow these steps:

- Press 🔄 🖼 result to display all libraries available to your HP 48SX.
- 2 Find and press **PHYS** to enter the Physics Pac library directory.
- **③** Press the first softkey, **PHYS**, to start the Physics Pac.
- At the Main menu, make sure the pointer is at "Constant Library" and press ENTER:

Viewing a Constant

Browse through the list to find the desired constant, or use the search mode. (For more information, refer to "Using the Search Mode" in Chapter 1.) When you have found the desired constant, press **ENTER** to display the constant description and value on a full screen, **ESTIX** to copy the value to the stack, or **ERINT** to print the value on an IR printer.

Example: Look up the value of the Stefan-Boltzmann constant. Type \square \square \square S ENER to search for the letter σ . Then press ENER to view the value:

Constant Library σ Stefan-Boltzmann 5.67032E-8

PRESS CENTERS TO RETURN TO LIST ...

When you have finished viewing the value, press ENTER or ATTN to return to the Constant Library. When you have finished browsing the Constant Library, press UPP or MATTN to return to the Main menu, or ATTN to quit the Physics Pac.

Summary of Operations

Screen			Softk	eys		
Constant Library	MAIN	-STK	PRINT	UNITS	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONE or CALLE to select items, and then sends those items to an IR printer.
⊐STK	Prompts for MONEN or MALLE to select items, and then copies those items to the stack. The items are placed in a list if MALLE was chosen.
UNITS	Pressing this key toggles units, stripping units from or appending units to all values.
UP	Moves up one level in the menu structure, returning to the Main menu.

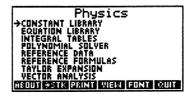
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the screen title, the constant label, and the constant value, all expanded to one screen.
ON-MTH	Dumps the current screen to an IR printer.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Chapter 3

Equation Library

This chapter introduces you to the power and flexibility of the Equation Library with several examples. The contents of the Equation Library (over 250 equations in 11 categories) are described in detail in Appendix C, "Equation Library Reference."


This chapter covers:

- Using the Equation Library
- Categories Screen
- Topics Screen
- Equations Screen
- Variables Screen
- Solver Screen
- Plotting Equations
- Managing Units and Solving
- □ What Does Multiple Equation Solver Mean?
- Using a Guess to Speed Computing Time
- "Bad Guess(es)" Message

Using the Equation Library

To get to the Equation Library, follow these steps:

- Press 🗐 📾 to display all libraries available to your HP 48SX.
- **2** Find and press **EHVS** to enter the Physics Pac library directory.
- **3** Press the first softkey, **PHYS**, to start the Physics Pac:

Categories Screen

The categories screen lists the categories in the Equation Library. Each category includes a number of topics.

Example: Calculate the horizontal range of a cannon aimed 45° above the horizontal that emits cannonballs with velocities of 250_ft/s. The first step in solving this problem is to enter the Equation Library. To do this, make sure the pointer is at "Equation Library" and press ENTER. The categories screen appears:

This screen shows the eleven categories of equations in the Physics Pac.

Summary of Operations

Screen	Softkeys					
Categories Screen	MAIN	≃STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for EONE or EALL to select items, and then sends those items to an IR printer.
- STK	Prompts for MONEN or MALLE to select items, and then copies those items to the stack. The items are placed in a list if MALLE was chosen.
UP	Moves up one level in the menu structure, returning to the Main menu.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.

ENTER	Displays the topics screen for the category selected by the pointer.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Topics Screen

The topics screen lists the topics for the current category. Each topic includes an equation or set of equations, a list of variables and descriptions, a set of default units for the equation variables, and (usually) a picture illustrating the topic.

Example (cont.): Select the category of Gravitation. To do this, make sure the pointer is at "Gravitation" and press ENTER. The topics screen for Gravitation appears:

Gravitation →ESCAPE VELDCITY GRAVITATION FREE FALLING DBJECT DRBITS (CIRCULAR) DRBITS (CIRCULAR) PRDJECTLE MOTION TERMINAL VELDCITY	
MAIN EONS VARS SOLVE PICT UP	I

This screen shows the seven topics of equations in the Gravitation category. A topic is selected by moving the pointer to the desired topic and pressing ENTER

Summary of Operations

Screen	Softkeys					
Topics Screen	MA I N	EQNS	VARS	SOL VE	P I CT	UP
	MA I N	→STK	PRINT	SOL VE	F ONT	UP

Кеу	Action
EONS	Displays the equations screen for the topic selected by the pointer.
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.

PICT	Displays the picture for the topic selected by the pointer, if one exists.
PRINT	Prompts for MONEN or MALLEN to select items, and then sends those items to an IR printer.
SOLVE	Displays the solver screen for the topic selected by the pointer.
⇒STK	Prompts for MONEN or MALLE to select items, and then copies those items to the stack. The items are placed in a list if MALLE was chosen.
UP	Moves up one level in the menu structure, returning to the categories screen.
VARS	Displays the variable screen for the topic selected by the pointer, including descriptions and default units.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the equations screen for the topic selected by the pointer.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Equations Screen

The equations screen displays the equation or set of equations for the current topic.

Example (cont.): Select the topic of Projectile Motion. To do this, make sure the pointer is at "Projectile Motion" and press **ENTER** or **ECINS**. The equations screen appears:

This screen shows the seven equations that describe projectile motion.

Marking an Equation

Example (cont.): Select the equation necessary to solve the problem. Since the problem asks only for the range, it makes sense to solve only the sixth equation. To view that equation in EquationWriter format, move the pointer to the sixth equation and press **ENTER**:

When you have finished viewing the equation, press MIER or MIN to return to the equations screen. Press MARK to mark the sixth equation. Observe that after marking the equation, the pointer is automatically incremented one location for convenience:

Projectile Motion XF=XI+VIXCDS(0)XT-1/2XGXT^2 VF=VI+VIXSIN(0)XT-1/2XGXT^2 VX=VIXSIN(0)-GXT VF=2=VX^2+VY^2 VF=2=VX^2+VY^2 → H=YI+VI^2XSIN(0)^2/(2XG)
MAIN MARK VARS SOLVE PICT UP

All further operations will involve only the marked subset of equations (in this case, the sixth equation).

Solving Multiple Equations

Just as a single equation can be selected by marking it, so can multiple equations be marked. The most common method of solving is to simply solve *all* of the equations by marking none (or all) of them and pressing **SOLVE**. The advantage of solving all of the equations at once is that you do not need to know which equations are necessary to solve a problem. The disadvantage of solving all of the equations at once is that many more variables will be solved for than those which interest you, unless you make use of the wanted feature. (For more information about the wanted feature, refer below to "Solver Screen.")

Summary of Operations

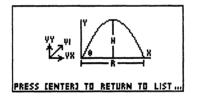
Screen	Softkeys					
Equations Screen	MAIN MAIN MAIN	MARK -STK EQWR	VARS PRINT PLOT	SOL VE SOL VE SOL VE	P I CT FONT FONT	UP UP UP

Кеу	Action
EQWR	Displays equation selected by pointer in the EquationWriter.
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
MARK	Toggles the equation selected by the pointer between marked and unmarked status, adding or removing a triangu- lar tag. Only variables in the marked set of equations will appear in the solver and variable screens.
PICT	Displays the picture for the current topic, if one exists.
2401	Plots the equation selected by the pointer, prompting for x- axis and y-axis values. Plotting is only allowed for equa- tions of the form $y = f(a, b,)$, and all but one of the vari- ables on the right-hand side of the equation must be held constant (i.e., known).
PRINT	Prompts for ONE or ALL to select items, and then sends those items to an IR printer.
SOLVE	Displays the solver screen for the current topic.
⊐STK	Prompts for MONEN or MALLE to select items, and then copies those items to the stack. The items are placed in a list if MALLE was chosen.
UP	Moves up one level in the menu structure, returning to the topics screen.
VARS	Displays the variable screen for the current topic, including descriptions and default units.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays equation selected by pointer in the EquationWriter.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Variables Screen

The variables screen displays the variables for the current topic. Only variables used by the marked set of equations are displayed. (All variables are shown if no equations are marked.)


Example (cont.): Before solving the marked equation, bring up the variable screen to verify that the range is a variable in the equation. To do this, press **VARS**. The variables screen appears:

This screen shows the names, descriptions, and default units for all of the variables used by the marked equations (in this case, the sixth equation).

Viewing the Picture

Example (cont.): View the Projectile Motion picture. To do this, press PICT:

Note the location of R, the range. When you have finished viewing the picture, press ENTER or ATTN to return to the variables screen.

You can view the picture for the current topic from the topics, equations, variables, or solver screen. However, not all topics have associated pictures.

Summary of Operations

Screen	Softkeys					
Variables	MA I N	EQNS	VIEW	SOL VE	P I CT	UP
Screen	MA I N	-STK	PRINT	SOL VE	FONT	UP

Key	Action	
EQNS	Displays the equations screen for the current topic.	
FONT	Toggles between the small and large fonts.	
MAIN	Returns to the Main menu.	
PICT	Displays the picture for the current topic, if one exists.	
PRINT	Prompts for EONE or EALLE to select items, and then sends those items to an IR printer.	
SOLVE	Displays the solver screen for the current topic.	
-STK	Prompts for MONEN or MALL to select items, and then copies those items to the stack. The items are placed in a list if MALL was chosen.	
UP	Moves up one level in the menu structure, returning to the categories screen.	
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.	
ATTN	Quits the Physics Pac to the HP 48SX stack.	
ENTER	Displays the topic, the variable name (with default units), and the full description, for the variable selected by the pointer, all expanded to one screen.	
ON-MTH	Dumps the current screen to an IR printer.	

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Solver Screen

The solver screen displays the values of equation variables for the current topic, and allows you to change variable values, convert values, purge variables, and solve for unknown variables.

Example (cont.): Solve the equation. To do this, press **SOLVE**. The solver screen is displayed:

```
Projectile Motion

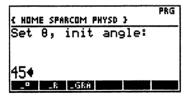
→ 0:0

R:0

R:0

MMIN SNOP(RANT CALC CONV. UP
```

This screen shows the names and values of all the variables used by the marked equation(s).


Turning Units On

Example (cont.): By default, no units are present, so turn them on. To do this, press **Example UNITS**. The solver screen will reappear, with the default units shown next to the variable values:

Entering Values

Example (cont.): Set the value of θ to 45_°. Make sure the pointer is at " θ " and press ENTER. Type 45 as your input:

Press ENTER to accept the value (default units of ° will be assumed) and return to the solver screen:

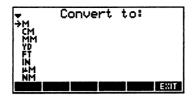
Projectile ▶8: 45_8 → VH: 0_M/S R: 0_M	Motion
MAIN CLEAR PURG CAL	C UNIT= UP

The triangular tag next to θ indicates that the value is user-defined, or known. Observe that after entering a value, the pointer is automatically incremented one location for convenience, so that more than one value can easily be entered. Since the pointer is now pointing to VI, press ENTER to enter 250_ft/s for VI. Type 250 and press the 3rd softkey as your input:

{ HOME SPARCOM PHYSD }		
Set vi, init veloc:		
250_ft/s 4 Example and examples of the second	.KPH	

Press ENTER to accept the value and return to the solver screen:

Solving for Unknowns


Example (cont.): Press **CAUC** to solve for R, the range. You will see a message describing the equation being solved. Then, the calculated value will be displayed, and the solver screen will reappear:

The asterisk tag next to R indicates that its value was just found in the last calculation.

Converting a Value

Example (cont.): The value for R was returned in the default SI units of meters. Convert the value to feet. To do this, make sure the pointer is at "R" and press

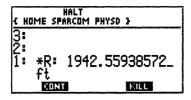
This is a list of all the dimensionally consistent units to which you can convert the value of R. Move the pointer down to FT and press ENTER. The value will be converted and the solver screen will reappear:

Projectile Motion • #5- • #50_FT/S • XR: 1942.55938572_FT	
MAIN KNOH HANT CALC CONY U	P

This is the answer to the first example problem.

Copying a Result to the Stack

Example (cont.): Copy the final result to the stack. To do this, make sure the pointer is at "R" and press **NXT NXT ESTK**:


Send	what	data?	
 ONE		ĤLL	

Press **CONE** to copy only the value of R to the stack, tagged with the variable name. (Pressing **CALL** would copy all variable values to the stack in a list.) When you quit the Physics Pac later, the value(s) will be present on the stack.

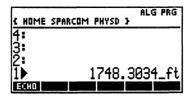
Using the Stack for Calculations

Example (cont.): Calculate the angle required to send the cannonball only 90% as far, given the same initial velocity. The first step in solving this related problem is to calculate 90% of the last result. Because this calculation cannot be done inside the Physics Pac, it will be done with the help of the HP 48SX stack.

Press mer HALT to temporarily suspend execution of the Physics Pac and exit to the stack:

HAL { Home sparce	
4:	
2:	1740 0004 04
CONT	1748.3034_ft

Press **CONT** or **E** corr to return to the Physics Pac:


Note that the display precision has changed, as desired.

Loading a Value from the Stack

Example (cont.): Load the 90% distance from the stack. To do this, make sure the pointer is at "R" and press ENER. The previous value appears:

{ HOME SPARCOM PHYSD }	PRG
<pre>{ HOME SPARCOM PHYSD } Set R, max range:</pre>	
1942.5594_ft	
_M _CM _MM _YD _FT	_IN

Press III to clear the command line. Press 🛋 to activate the Interactive Stack:

Press **ECHO** to copy the value in stack level 1 onto the command line. Then press **ENTER** or **MTN** to exit the Interactive Stack and return to the command line:

ALG PRG { Home sparcom Physd }
Set R, max range:
'1748.30344715_ft' ♦

Press ENTER to accept the value and return to the solver screen:

Using the Wanted Feature

Example (cont.): Mark θ as wanted. To do this, make sure the pointer is at " θ " and press **(FIPPEV) WANTE**:

Projectile ?0: 45_8 →▶4: 250_FT/S ▶R: 1748.3034_FT	Motion
MAIN KNOW WANT CAL	C CONV UP

The question tag next to θ indicates that the value is user-desired, or wanted.

Solving for Unknowns

Example (cont.): Press **CALC** to solve for θ , the angle. You will see a message describing the equation being solved. Then, the calculated value will be displayed, and the solver screen will reappear:

The asterisk tag next to $\boldsymbol{\theta}$ indicates that its value was just found in the last calculation.

This is the answer to the related problem.

Known Variables

Pressing **KNOW** toggles a variable between known (user-specified) and unknown. When a value is entered into a variable, it is automatically marked as known.

Wanted Variables

Pressing **WANT** toggles a variable between wanted (user-desired) and unwanted. If no variables are marked as wanted, pressing **CALC** will cause the solver to systematically search through all the equations, solving for all possible variables. However, if one or more variables are marked as wanted, then the solver will terminate immediately upon finding values for all of the wanted variables. (For more information, refer below to "What Does Multiple Equation Solver Mean?")

Clearing Variables

Pressing **CLEAR** resets values of all current variables to zero, but does not change the global copies in the 'PHYSD' directory.

Purging Variables

Pressing **PURC** purges the global copies in the 'PHYSD' directory of the current variables, but does not change the values currently stored inside the Physics Pac.

Screen	Softkeys					
Solver Screen	MATN	KNOW	WANT	CALC	CONV	UP
	MATN	EQNS	VARS	HALT	PICT	UP
	MATN	∸STK	PRINT	CALC	FONT	UP
	MATN	CLEAR	PURG	CALC	UNITS	UP

Summary of Operations

Key	Action
GALC	Stores variables values and systematically iterates through the set of marked equations in an attempt to find values for all wanted variables. Also, stores the known and found val- ues into global variables in the 'PHYSD' directory.
CLEAR	Resets values of all current variables to zero, but does not change the global copies, which are only affected by GALC and PURC operations.
CONV	Converts a variable to different units, if units are on.
EQNS	Displays the equations screen for the current topic.
FONT	Toggles between the small and large fonts.
HALT	Halts the Physics Pac so that operations can be performed on the HP 48SX stack. Pressing CONI or C control returns to the Physics Pac, while pressing KILL terminates the Physics Pac.
KNOW	Toggles the variable selected by the pointer between known and unknown status, adding or removing a triangular tag.
MAIN	Returns to the Main menu.
PICT	Displays the picture for the current topic, if one exists.
PRINT	Prompts for EONE or EALLE to select items, and then sends those items to an IR printer.
PURG	Purges the global copies (in the 'PHYSD' directory) of the current set of variables, but does not change the values cur- rently stored inside the Physics Pac.
- STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UNIT	Indicates that units are currently turned on. Pressing this key turns off units, automatically converting all variable values to SI units and then stripping the units.
UNITS	Indicates that units are currently turned off. Pressing this key turns on units, automatically appending standard SI units to the values.
UP	Moves up one level in the menu structure, returning to the topics screen.
VARS	Displays the variable screen for the current topic, including descriptions and default units.

WANT	Toggles the variable selected by the pointer between wanted and unwanted status, adding or removing a question tag.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Prompts for a value for the variable selected by the pointer.
ON-MTH	Dumps the current screen to an IR printer.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Plotting Equations

Each equation in the Equation Library can be plotted in one of two ways:

- Without the help of the Physics Pac. This procedure is recommended only if you are familiar with variable manipulation and the Plot application of your HP 48SX. (For more information, refer to Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis.")
 - ① Copy the desired equation to the stack and quit the Physics Pac.
 - ② Store the equation on the stack into 'EQ' and plot it with the HP 48SX Plot application.
 - ③ Use the HP 48SX Graphics environment to analyze the resulting plot.
- With the help of the Physics Pac. This procedure provides an easy way to plot equations, as well as a simple method for overlaying multiple plots of an equation.
 - ① (Optional) At the equations screen, mark the desired equation.
 - ② At the solver screen, enter values for (or mark as known) all but the independent and dependent variables in the desired equation. (The advantage of performing step ① is that only the variables in the desired equation will appear at the solver screen.)
 - ③ At the equations screen, move the pointer to the desired equation and press PLOT. (Important: The equation that will be plotted is the one selected by the pointer, regardless of which equations are marked.)

- Enter the X range for the plot, and either auto-scale or enter the Y range.
- **③** Use the HP 48SX Graphics environment to analyze the resulting plot.
- (Optional) Return to the solver screen and change the values of one or more known variables in the desired equation. Then plot the equation again, without clearing PICT, to create an overlay.

Preparing to Plot

Example (cont.): Plot the variation of cannonball range, R, as a function of the cannon angle, θ . For this problem, θ is the independent variable and R is the dependent variable. For the plot to work correctly, R must be unmarked as known. To do this, make sure the pointer is at "R" and press **KNOW** to unmark R as known:

Note that the triangular tag next to R has disappeared. The fact that θ is marked as found does not matter.

Turning Units Off

Example (cont.): Plotting an equation proceeds faster if units are turned off. To do this, press **Example UNIT**. The solver screen will reappear, with the values converted to default SI units (For more information, refer below to "Managing Units and Solving."):

Plotting an Equation

Example (cont.): Plot the equation. To do this, press **MAT MAT EQNS** to display the equations screen. Make sure the pointer is at the sixth equation and press **MAT MAT PLOT**. This prompt appears:

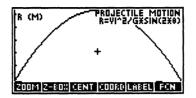
Pressing **NOT** would leave PICT intact so that the current plot would be overlaid on previous plots. For this example, press **NYESS**, to erase PICT and create a new plot. The following prompt appears:

{ HOME SPARCOM PH		PRG
Enter horiz.	range	for
→ Min Max		
+SKIP SKIP+ +DEL DI	EL÷ INS •	t STK

Entering Ranges

You must specify the range for the X axis, the axis of the independent variable. You must enter both a minimum and maximum value.

<u>NOTE</u>: Ranges cannot be entered as unit objects. If units are off, the values you enter are assumed to be in SI units, whereas if units are on, the values are assumed to be in the units of the independent variable, as indicated in the prompt.


Example (cont.): Vary θ from 30° to 60°. To do this, type 30 **Sec** 60 as your input:

{ HOME SPARCOM PH		PRG
Enter horiz. 8 (°): → Min Max	range	for
30 604		
€SKIPSKIP÷ €DEL DI	EL÷ INS •	†STK.

Press ENTER to accept those values and continue. The following prompt appears:

Pressing **NOT** would allow you to enter a minimum and maximum value for the Y axis, the axis of the dependent variable. For this example, press **YESH**, to autoscale the Y axis. The plot appears:

The equation has been plotted and the HP 48SX Graphics environment invoked. If you wish, you can now analyze the plot. (For more information, refer below to "Graphics Environment.") When you have finished, press ATN to return to the equations screen.

Creating an Overlay Plot

Example (cont.): If you wish, you could now return to the solver screen, change the value of the initial velocity, VI, and plot the equation again without clearing PICT, to see how the curve varies for a different initial velocity.

This concludes the example. You may quit the Physics Pac by pressing III.

Graphics Environment

The HP 48SX Graphics environment provides extremely useful functions for graphically analyzing functions. Explaining in detail the functionality of the Graphics environment is beyond the scope of this manual, but the behavior of selected, useful softkeys at the Graphics environment and the Function menu is explained below. (For more information, refer to Chapter 18 of the HP 48SX Owner's Manual, "Basic Plotting and Function Analysis.")

WARNING: The STOPE and TERM functions only work correctly when a plot is made with units turned off, because the HP 48SX cannot take derivatives of expressions whose variables contain unit objects.

Summary of Operations

Screen	Softkeys					
Graphics Environment	ZOOM DOT+ MARK	Z- BOX DOT - REPL	CENT LINE SUB	COORD TLINE DEL	LABEL BOX + -	FCN FIRCL KEYS
Function Menu	ROOT F X	I SECT F'	SLOPE NXEQ	AREA	EXTR	EXIT

Key	Action
AREA	Displays the area under the function defined by the X axis value of the mark and cursor.
COORD	Displays the coordinates of the cursor position.
EX.	Displays the function value at the X axis value of the cursor, and moves the cursor to that point on the function.
E AN	Plots the first derivative the current function.
FCN	Displays the Function menu for further analysis.
MARK	Places a mark (X) at the cursor location.
ROOT	Moves the cursor to the nearest root and displays the coordinate of the root.
SLOPE	Displays the slope of the function at the X axis value of the cursor, and moves the cursor to the point on the function at which the slope was calculated.
SUB	Copies the rectangle bounded by the mark and the cursor lo- cation to the stack as a graphics object (GROB).
	Moves the cursor in the indicated direction. When prefixed with \square , moves the cursor to the edge of the screen in the indicated direction.
ATTN	Exits the plot and returns to the equations screen.
FVEN	Temporarily displays the plot status menu, including the axis ranges, until 🛲 is released.
STO	Copies PICT to the stack as a graphics object (GROB).
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Managing Units and Plotting

The plotter can work either with units or without units. In general, plotting works much faster when units are off, but you may want to work with units in order to have plot axes in the desired units. There are several important points to the behavior of the unit manager as it relates to the plotter that you should understand:

- When units are on, X and Y axis range values are entered in the units of the independent and dependent variables, as set at the solver screen. For example, to enter 0_cm to 3_cm as the X axis range, set the units of the independent variable to cm at the solver screen, toggle the variable back to unknown by pressing KNOW, and later enter 0 set 3 at the X axis range prompt.
- When units are off, X and Y axis range values are entered in the default SI units of the independent and dependent variables. For example, to enter 0_cm to 3_cm as the X axis range, type 0 sec .03 at the prompt, since the default units for the independent variable will be meters.
- Plotting with units may take up to 10 times as long as plotting without units. Therefore, in cases where only the qualitative shape of the plot is important, you should plot without units to get results more quickly. In cases where the Graphics environment will be utilized to analyze a plot, it may be necessary to plot with units, so that the coordinates are in the desired units. (The coordinates will always be in default SI units for plots done with units off, and this may be inconvenient in some cases.)
- When plotting with units, the **SLOPE** and **Effect** functions may not work correctly, because the HP 48SX cannot take derivatives of expressions whose variables contain unit objects.
- When plotting with units, unsimplified units may occasionally appear on the Y axis variable. For example, if you were to plot the equation used in the example throughout this chapter, but with units turned on, you would notice that the Y axis maximum value was at 6373.2263_ft²/m, rather than the simplified value of 592.0921_m. This is a side-effect of the fact that VI has units of ft, while the constant g has units of m/s². This problem can be circumvented by plotting with units off.

Managing Units and Solving

The solver can work either with units or without units. In general, solving works much faster when units are off, but you may want to work with units in order to view answers in the desired units. There are several important points to the behavior of the unit manager as it relates to the solver that you should understand:

- 0
 - When units are on, values can be entered in any unit, as chosen from the menu presented at the entry screen. The default SI unit is always the first softkey, and entering a value without appending a unit will cause the default SI unit to be appended.
- When units are off, all values are considered to be SI units, so that equations can be solved without yielding inaccurate results. If a value is entered with a unit from the entry screen, the value is automatically converted to the default SI units, and then the unit is stripped. Thus, if units are off, and 2_cm is entered for a variable, you will see .02 at the solver screen, because the value has been automatically converted to meters.
- When units are on, the units of a desired or wanted variable can be specified in advance. Simply enter a value in the desired units into the variable. Then press KNOW to toggle the variable back to an unknown state, or press WANT to mark the variable as wanted. Then press GALC to solve for the variable; the answer will be returned in the specified units. The alternative to this process is to press GONN to convert the found value to the desired units after the solving operation has been completed.
- When CALC is pressed, all the values in the variables are stored in global copies of the variables, inside the 'PHYSD' directory. Therefore, after many uses of the Physics Pac, you may begin to notice that variables already seem to contain values when you solve equations. This is normal—the Physics Pac is automatically loading in the existing values from the global variables for convenience, as long as the units are dimensionally consistent with the units required for the variable.

Since solving with units takes a noticeably longer time, the following procedure is recommended to yield the quickest results. Start with units off, and enter all known values in the correct units by making use of the automatic conversion feature. All of the values will be converted to consistent unitless SI values. Then, solve for the desired variable(s). After the solver has completed, turn units on, to append SI units to all variables. Then, select the desired variable(s), and press **CONV** to convert them to the final units. This procedure gives the best of both worlds: no units for fast solving, but units for convenient results.

What Does Multiple Equation Solver Mean?

The Sparcom multiple equation solver is a systematic solver, not a simultaneous one. For example, it can solve this set of equations, provided it is given a user-specified value of either x or y:

$$x + y + z = 5$$
$$x + y = 3$$

However, it cannot solve this set of equations, when neither x or y is known in advance:

$$\begin{aligned} x + y &= 2\\ x - y &= 0 \end{aligned}$$

The solver iterates through a set of equations, searching for an equation with only one unknown variable. When an equation satisfying this requirement is found, it utilizes the HP 48SX root-finder (programmable command ROOT) to solve for the unknown variable. After the value is found, that variable is marked as found, and the solver continues to search. The solver does not terminate its search until one of four conditions occurs:

- **1** All equations are solved, and all variables found.
- **2** All wanted variables are found.
- No more equations can be solved, because all remaining unsolved equations have more than one unknown variable.
- A solving error occurs, such as Divide By Zero or Bad Guess(es).

All variables for which values are found in a solving operation are marked with an asterisk tag at the solver screen. If a variable is not marked with an asterisk, then it was either not marked as wanted, or a value for it was not found because of too many unknowns.

Using a Guess to Speed Computing Time

Pressing **CALC** activates the HP 48SX root-finder to calculate the solution(s). The root-finder requires an initial value on which to base its search. You can provide a guess for the HP 48SX to use; if you do not do so, the solver will supply a guess of 1. The root-finder then generates pairs of intermediate values and interpolates between them to find the solution. The time required to find the root depends on how close the initial guess is to the actual solution.

You can speed up computing time by providing a guess close to the expected solution. At the solver screen, enter your guess into the variable. Upon returning to the solver screen, the variable will be marked as known; press KNOW to toggle the variable back to unknown. Then press GALC, and the HP 48SX will use the stored value for the variable as its initial starting point. (For more information, refer to Chapter 17 of the HP 48SX Owner's Manual, "The HP Solve Application.")

"Bad Guess(es)" Message

If the HP 48SX displays the "Bad Guess(es)" message at some point after you press the **CALC** softkey, it indicates an error has been made in setting up the problem. Go back through the setup process and check for error in specifying data, such as a variable value which causes a zero in the denominator of a fraction. (For more information, refer to Chapter 17 of the HP 48SX Owner's Manual, "The HP Solve Application.")

Chapter 4 Integral Tables

The Integral Tables include nearly 100 integrals organized in six sections for quick reference: user-defined, rational, irrational, trigonometric/hyperbolic, exponential/logarithmic, and definite. You can add as many integrals as you wish to the user-defined section.

This chapter covers:

- Using the Integral Tables
- □ Choosing a Section
- Solving an Integral
- User-Defined Integrals

Using the Integral Tables

To get to the Integral Tables, follow these steps:

- Press E user to display all libraries available to your HP 48SX.
- **2** Find and press **PHYS** to enter the Physics Pac library directory.
- **O** Press the first softkey, **PHYS**, to start the Physics Pac.
- At the Main menu, make sure the pointer is at "Integral Tables" and press **ENTER**:

RATI IRRA TRIG EXP	Integral R-DEFINED ONAL TIDNAL /HYPEREDLIC /LOGARITHMIC NITE	Tables	5
MAIN	+STK PRINT V	EH FONT	UP

Items in Integral Tables

Each item in Integral Tables is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
User-Defined	User-defined indefinite and definite integrals.
Rational	Indefinite integrals involving rational arguments.
Irrational	Indefinite integrals involving irrational arguments.
Trig/Hyperbolic	Indefinite integrals involving trig/hyp arguments.
Exp/Logarithmic	Indefinite integrals involving exp/log arguments.
Definite	Definite integrals.

Summary of Operations

Screen	Softkeys					
Integral Tables	MAIN	-STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for MONEN or MALLEN to select items, and then sends those items to an IR printer.
- STK	Prompts for CONE or CALLE to select items, and then copies those items to the stack.
UP	Moves up one level in the menu structure, returning to the Main menu.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, entering the se- lected integral section.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Choosing a Section

Each of the six sections of integrals contains a group of related integrals. Each integral can be displayed in EquationWriter or text format, copied to the stack, or solved, indefinitely or definitely. You can also search for a specific integral using the search mode. (For more information, refer to Chapter 1, "Using the Search Mode.") The user-defined integral section behaves identically to all other sections, once you have entered your own integrals.

Example: Investigate the section of integrals with forms containing exponentials. To do this, make sure the pointer is at "Exp/Logarithmic" and press ENTER:

This particular section contains thirteen integrals.

Viewing an Integral

Example (cont.): View the third integral in this section in EquationWriter format. To do this, make sure the pointer is at the third equation and press $\boxed{\text{ENTER}}$. After a brief delay, the integral will be displayed in EquationWriter format:

EXP/LOGARITHMIC

$$\int_{L}^{U} EXP(A \cdot X) dX = \frac{EXP(A \cdot X)}{A}$$
PRESS centers to return to list ...

When you have finished viewing the integral, press **ENTER** or **ATIN** to return to the list. Many integrals are too large for the screen, and will be displayed with the cursor keys activated for scrolling purposes.

WARNING: While the HP 48SX is building the EquationWriter format version of an integral, key presses by the user will cause strange behavior, resulting in no display of the equation. Therefore, do not press any keys until the integral has been drawn, erased, and re-drawn with the accompanying messages. If you change your mind during a long integral build, press integral to abort the build process and return to the integral screen.

Summary of Operations

Screen	Softkeys					
Integral Section	MAIN	-STK	PRINT	SOLVE	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONE or CALLE to select items, and then sends those items to an IR printer.
SOLVE	Solves the integral selected by the pointer.
∸ STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Moves up one level in the menu structure, returning to the Main menu.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the integral selected by the pointer in the EquationWriter.
ON-MTH	Dumps the current screen to an IR printer.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Solving an Integral

The integral solving process is one of substitution and algebraic simplification.

Example (cont.): To solve the third integral, make sure the pointer is at it and press SOLVE.

Selecting Indefinite or Definite

The first step in solving an integral is choosing the type of integration to perform. You can do either definite or indefinite integrations. If you choose to perform an indefinite integration, then a constant of integration will be added to the final result.

Example (cont.): Perform a definite integration by pressing DEFIN

Entering Limits of Integration

If you choose to perform a definite integration, you will be prompted to enter limits of integration. Limits can either be real numbers, names (variables), or algebraic expressions. This means you can integrate from 0 to 1, or from A to B, or even from sin(t) to cos(t+u), provided that none of the variables used in the limits are identical to the variable of integration, always X.

Example (cont.): Integrate from 0 to 10. Type 0 set 10:

RAD I { Home sparcom physd }	PRG
Enter limits: → Lower Upper < real/cmplx/var/eqr	1)
0 10+	
€SKIP SKIP÷ €DEL DEL÷ INS ■ ↑	STK

Press ENTER to accept those limits of integration.

NOTE: Be sure to enclose algebraic limits within tic marks (').

Entering Values of Constants

When solving an integral (either indefinitely or definitely), you must specify values for all the unknown constants in the integral. This does *not* include the variable of integration, for which you do not enter a value. These constants must be constant with respect to the variable of integration, X. Like the limits of integration, the constants can either be real numbers, names (variables), or algebraic expressions.

Example (cont.): Set the value of A to tan(T), where T is a constant. Type $[TAN] \propto T$:

RAD { Home spar	COM	PHYSD	ALG I }	RG
Enter co	onst	ants	;1	
(real/o	mp1	x/va	ar/eqr	、ソ
TAN(T)				
PHATS PROF	HYP	MATE	VECTR B	Ĥ≶E_

Press ENTER to accept that constant value.

<u>NOTE</u>: If you wish to enter a name (variable) as a limit or a constant, the tic marks surrounding the name are optional. For example, T can be entered as 'T' or T.

Viewing the Result

After the limits and constants have been specified, the integration will be performed and the desired result displayed:

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **UP** to return to the integral section list, **MAIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Simplifying the Result

To simplify the result of an integration, follow these steps:

- Press **ESTK** and then **EONE** to copy the result to the stack.
- **2** Press **ATTN** to quit the Physics Pac.
- Press 🗐 📖 to display all libraries available to your HP 48SX.
- Find and press **PHYS** to enter the Physics Pac library directory.
- Press the fifth softkey, SIMPL, to simplify the expression.

(For more information, refer to "Miscellaneous Commands" in Chapter 10.)

Summary of Operations

Screen	Softkeys					
Result Screen	MAIN	→STK	PRINT	VIEW	FONT	UP

Кеу	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for EONEN or EALL to select items, and then sends those items to an IR printer.
-STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Moves up one level in the menu structure, returning to the Main menu.
VIIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the result in the EquationWriter.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

User-Defined Integrals

To add an integral to the user-defined section of the Integral Tables, follow these steps:

• Go to the HP 48SX stack.

Example: Press ITTN to quit the Physics Pac.

- Enter or recall the integral you wish to store to level 1 of the stack. The syntax of the integral must satisfy the following conditions:
 - ① The integral must be an algebraic expression. It can therefore be entered by way of the HP 48SX EquationWriter and left on the stack.

(For more information, refer to Chapter 16 of the HP 48SX Owner's Manual, "The EquationWriter Application.") The algebraic expression must include an equal sign with an integral on the left and an arbitrary expression on the right, which is the solution of the integral.

<u>NOTE</u>: The Physics Pac does not *solve* arbitrary integrals—it merely stores them for reference and provides substitution and evaluation help (refer above to "Solving an Integral"). When entering a new user-defined integral, you must derive or look up the solution to the integral and specify it as a part of the algebraic expression.

- The variable of integration should be an uppercase X. If the variable of integration of the integral on level 1 is not X, INDEE or DEFIN will automatically convert the variable of integration to X during the store process, but problems will result if X appears elsewhere in the original integral.
- ③ The HP 48SX will always require you to enter limits of integration for a valid algebraic integral, but these limits will be ignored if you choose to store the integral in an indefinite form (see below).
- (4) If you want the integral to appear with a constraint label (such as $a \neq 1$), then you should enter the integral as an algebraic, enter the constraint label as a string, and then press **PRG OBU EVAC** to tag the integral with the string.

Example (cont.): To enter the indefinite integral $\int \cos(x) dx = \sin(x)$, press **Example (cont.):** To enter the indefinite integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral $X = \sin(x)$, press **Example (cont.):** To enter the integral will be ignored. To place a constraint label on this integral, type **Example (cont.): EXEMPLE (cont.):** TEST **EXEMPLE (cont.): EXAMPLE (cont.):** The integral will be in level 1.

O To store the integral in an indefinite form (thus ignoring the limits of integration), press INDEE, or to store in a definite form (thus preserving the limits of integration), press DEFIN.

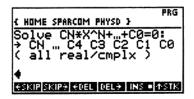
Example (cont.): Press **EXAMPLE INDEE** to store the integral indefinitely. It will now be accessible from the Integral Tables.

(For more information, refer to "User-Defined Integral Commands" in Chapter 10.)

Chapter 5 Polynomial Solver

The Polynomial Solver handles arbitrary orders of polynomials with real or complex coefficients.

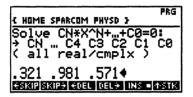
This chapter covers:

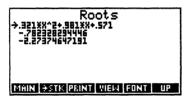


- Using the Polynomial Solver
- Solving a Polynomial

Using the Polynomial Solver

To get to the Polynomial Solver, follow these steps:


- 0 Press (I) USHAFF to display all libraries available to your HP 48SX.
- 0 Find and press **PHYS** to enter the Physics Pac library directory.
- € Press the first softkey, **PHYS**, to start the Physics Pac.
- Ø At the Main menu, make sure the pointer is at "Polynomial Solver" and press ENTER:


Solving a Polynomial

The Polynomial Solver takes as input a series of real or complex coefficients of a polynomial expression, and returns all roots—both real and complex—of that polynomial.

Example: Calculate the roots of $0.321x^2 + 0.981x + 0.571$. Type in .321 Sec. .981 Sec. .571 as your input:

Press ENTER to calculate the roots, and they will appear:

The first item is the polynomial that was solved, and the remaining items are the roots of that polynomial. The polynomial can be viewed in the EquationWriter by selecting it with the pointer and pressing $\boxed{\text{ENER}}$, and all of the items can be copied to the stack or printed on an IR printer. When you have finished viewing the results, press $\boxed{\text{UP}}$ or $\boxed{\text{MALN}}$ to return to the Main menu, or $\boxed{\text{ATN}}$ to quit the Physics Pac.

Summary of Operations

Screen	Softkeys					
Result Screen	MAIN	-STK	PRINT	VIEW	FONT	UP

Кеу	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for MONEN or MALLE to select items, and then sends those items to an IR printer.

⇒STK	Prompts for ONE or ALL to select items, and then copies those items to the stack. The items are placed in a list if ALL was chosen.
UP	Moves up one level in the menu structure, returning to the Main menu.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Either views the polynomial in the EquationWriter or dis- plays the root selected by the pointer expanded to a full screen.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Chapter 6 Reference Data

Reference Data includes tables of the Greek alphabet, standard SI prefixes, and common solar system data for quick reference.

This chapter covers:

- □ Using Reference Data
- Greek Alphabet
- Solar System Data
- □ SI Prefixes

Using Reference Data

To get to Reference Data, follow these steps:

- Press 🗐 📖 to display all libraries available to your HP 48SX.
- Find and press **PHYS** to enter the Physics Pac library directory.
- Press the first softkey, **PHYS**, to start the Physics Pac.
- At the Main menu, make sure the pointer is at "Reference Data" and press ENTER:

Items in Reference Data

Each item in Reference Data is briefly described below and is discussed in detail in the various sections of this chapter.

ltem	Description
Greek Alphabet	Uppercase and lowercase Greek letters.
Solar System Data	Commonly used solar system properties.
SI Prefixes	Commonly used SI prefixes.

Summary of Operations

Screen	Softkeys					
Reference Data	ΜΑΙΝ	- STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONEN or CALL to select items, and then sends those items to an IR printer.
-STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Moves up one level in the menu structure, returning to the Main menu.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the screen title, the item label, and the value, all expanded to one screen.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Greek Alphabet

Upon choosing Greek Alphabet from Reference Data, the following screen appears:

ALPHA AC	IDTA I.	RHO PA
BETA BB	Kappa KK	SIGMA JZ
GAMMA TY	Lambda A.S	TAU TT
DELTA SA	Mu µM	UPSILON UT
IPSILON E E	Nu Ny	PHI DA
ZETA 32	XI ¥Ξ	CHI XX
ETA Hy	DMICRON()¤	PSI ΨΨ
Theta 00	PI π∏	Omega ὦΩ
Press cente	RJ TO RETUR	In to list

This screen is a picture displaying representations of all of the uppercase and lowercase Greek letters. Many of these characters are available from the HP 48SX keyboard, but not all of them. To get a printed copy of this screen, press ON-WTH. Press ENTER or ATTN to return to Reference Data.

Solar System Data

Upon choosing Solar System Data from Reference Data, the following screen appears:

, 5	Solar	Sy	stem	Dat	a
÷SUN MER	-1164				
YENL	IS				
EART MODI					
MAR: JUPI					
SATU	RN				
MIN	÷STE I	FINT	VIEW	FONT	UP

Browse through the list to find the desired planet and press ENTER.

Example: Look up the properties of Mars. To do this, make sure the pointer is at "Mars" and press ENTER. The following screen appears:

🕶 Mars
→AVERAGE DENSITY: 3.983 EARTH GRAVITIES: .39
EARTH GRAVITIES: .39 ECCENTRICITY : .093
EQUATOR, RADIUS: 3.39465 Inclination : 1.85
MASS OF BODY : 6.4623
ROTATION PERIOD: 24.37226_H Semimajor Axis : 1.524
MAIN STR PRINT UNITS FONT UP

Browse through this screen to find the desired property, or use the search mode. (For more information, refer to "Using the Search Mode" in Chapter 1.) When you have found the desired property, press **ENTER** to display the description and

value on a full screen, **ESTK** to copy the value to the stack, or **ERINT** to print the value on an IR printer.

When you have finished browsing the list, press **UP** to return to Reference Data, **MAIN** to return to the Main menu, or **ATN** to quit the Physics Pac.

Screen			Softk	eys		
Solar System Data	MAIN	-STK	PRINT	UNITS	FONT	UP

Summary of Operations

Кеу	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONE or CALL to select items, and then sends those items to an IR printer.
` = stk	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UNITS	Pressing this key toggles units, stripping or appending units to all values.
UP	Moves up one level in the menu structure, returning to Reference Data.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the screen title, the item label, and the value, all expanded to one screen.
ON-MTH	Dumps the current screen to an IR printer.
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

SI Prefixes

Upon choosing SI Prefixes from Reference Data, the following screen appears:

▼ →EXA PETA TERA GIGA MEGA KILD HECTD DEKA	SI Prefixes (E): 10E18 (P): 10E15 (G): 10E12 (G): 10E12 (M): 10E2 (K): 10E3 (K): 10E3 (K): 10E3 (K): 10E2 (M): 10E2	
MAIN 3	STK PRINT VIEW FONT	UP

Press ENTER to display a prefix and value on a full screen, press ESTK to copy a prefix to the stack or **PRINT** to print a prefix on an IR printer.

When you have finished browsing the list, press **UP** to return to Reference Data, MAIN to return to the Main menu, or **MIN** to quit the Physics Pac.

Chapter 7

Reference Formulas

Reference Formulas includes over a hundred common formulas and pictures, including moments of inertia, object centroids, trigonometric, and hyperbolic functions, organized into five sections for quick reference.

This chapter covers:

- Using Reference Formulas
- ☐ Moments of Inertia
- Object Centroids
- Trig/Hyp Definitions
- □ Trig/Hyp Pictures
- □ Trig/Hyp Relations

Using Reference Formulas

To get to Reference Formulas, follow these steps:

- Press 🔄 🖽 to display all libraries available to your HP 48SX.
- 2 Find and press **PHYS** to enter the Physics Pac library directory.
- Press the first softkey, **PHYS**, to start the Physics Pac.
- At the Main menu, make sure the pointer is at "Reference Formulas" and press ENTER:

Items in Reference Formulas

Each item in Reference Formulas is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
Moments of Inertia	Moments of inertia for various objects.
Object Centroids	Centroids of various objects.
Trig/Hyp Definitions	Definitions of the basic trigonometric and hyper- bolic functions.
Trig/Hyp Pictures	Graphs of basic trigonometric/hyperbolic functions.
Trig Relations	Common trigonometric relations.

Summary of Operations

Screen	Softkeys					
Reference Formulas	MAIN	-STK	PRINT	VIEW	FONT	UP

Кеу	Action	
FONT	Toggles between the small and large fonts.	
MAIN	Returns to the Main menu.	
PRINT	Prompts for CONE or CALL to select items, and then sends those items to an IR printer.	
-STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.	
UP	Moves up one level in the menu structure, returning to the Main menu.	
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.	
ATTN	Quits the Physics Pac to the HP 48SX stack.	
ENTER	Displays the screen title, the item label, and the equation, all expanded to one screen.	

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Moments of Inertia

Upon choosing Moments of Inertia from Reference Formulas, the following screen appears:

- Moments of Inertia	3
→THIN ROD THIN RECT. SHEET THIN CIRCULAR SHEET	
THIN CIRCULAR RING	
SPHERE THIN SPHERICAL SHELL	
THICK SPHER. SHELL	
MAIN OSTK PRINT VIEW FONT	UP

Browse through the list to find the desired object and press ENTER.

Example: Look up the moment of inertia of a sphere. To do this, make sure the pointer is at "Sphere" and press ENTER. The following screen appears:

→DIAM	ETER:	Sph 2/5XM			
MAIN	÷stk	PRINT	VIEW	FONT	UP

Press ENTER to display the moment of inertia in the EquationWriter, press ESTIX to copy the moment of inertia to the stack or **PRINT** to print the moment of inertia on an IR printer.

When you have finished viewing the moment of inertia, press UP to return to Moments of Inertia, MAXIN to return to the Main menu, or ATR to quit the Physics Pac.

Object Centroids

Upon choosing Object Centroids from Reference Formulas, the following screen appears:

Object Centroids +ARC SEGMENT (200): RXSIN(0)/0 CIRC SECTOR (200): 2/3XRXSIN(0)/0 SEMICIRCULAR ARC: 2XR/T SEMICIRCULAR ARC: 2XR/T PARABOLIC SEGMENT: 2/5XH RIGHT PYRAMID VOL: 1/4XH HEMISPHERE VOLUME: 3/0XR
MAIN SATE PRINT VIEW FONT UP

Browse through the list to find the desired object centroid. Press ENTER to display the centroid in the EquationWriter, press **ESTIX** to copy the centroid to the stack or **ERINN** to print the centroid on an IR printer.

When you have finished viewing the centroids, press **WP** to return to Reference Formulas, **MAXIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Trig/Hyp Definitions

Upon choosing Trig/Hyp Definitions from Reference Formulas, the following screen appears:

Trig/Hyp Definitions
→SIN(0)=Y/R CDS(0)=X/R
TAN(0)=Y/X
CDT(0)=X/Y SEC(0)=R/X
CSC(0)=R/Y
SINH(U)=(EXP(U)-EXP(-U))/2 CDSH(U)=(EXP(U)+EXP(-U))/2
MAIN #STE PRINT PICT FONT UP

Browse through the list to find the desired definition. Press **ENTER** to display the definition in the EquationWriter, press **ESTK** to copy the definition to the stack or **ERTINI** to print the definition on an IR printer. Press **ENTER** to view an illustrative diagram.

When you have finished viewing the definitions, press **WPP** to return to Reference Formulas, **MAXIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Using COT, SEC, CSC, etc.

The HP 48SX does not include the COT, SEC, CSC, ACOT, ASEC, ACSC, COTH, SECH, CSCH, ACOTH, ASECH, or ACSCH functions as commands, but the Physics Pac defines them to work correctly when used in algebraics or programs. For more information, refer to "Hyperbolic Commands" and "Trigonometric Commands" in Chapter 10.)

Trig/Hyp Pictures

Upon choosing Trig/Hyp Pictures from Reference Formulas, the following screen appears:

Browse through the list to find the desired picture and press **ENTER** to view it. When you have finished viewing the picture, press **ATH** or **ENTER** to return to the list, and then press **EUPP** to return to Reference Formulas, **MATH** to return to the Main menu, or **ATH** to quit the Physics Pac.

Trig/Hyp Relations

Upon choosing Trig/Hyp Relations from Reference Formulas, the following screen appears:

Browse through the list to find the desired relation. Press **ENTER** to display the relation in the EquationWriter, press **ESTK** to copy the relation to the stack or **PRINT** to print the relation on an IR printer. Press **PRET** to view an illustrative diagram.

When you have finished viewing the relations, press **DP** to return to Reference Formulas, **MATIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Chapter 8

Taylor Expansion

The Taylor Expansion performs expansions of arbitrary functions of arbitrary variables to arbitrary orders about arbitrary points. It expands the functionality of the HP 48SX built-in command TAYLR, which only performs MacLaurin expansions about zero.

This chapter covers:

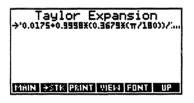
- **Using the Taylor Expansion**
- **Expanding a Function**

Using the Taylor Expansion

To get to Taylor Expansion, follow these steps:

- Press E IBAR to display all libraries available to your HP 48SX.
- 2 Find and press **PHYS** to enter the Physics Pac library directory.
- **3** Press the first softkey, **PHYS**, to start the Physics Pac.
- At the Main menu, make sure the pointer is at "Taylor Expansion" and press ENTER:

PRG { Home sparcom physd }
Expand F(V) about X: → F V Order X (eqn var int>0 real)
DEG • RAD GRAD XYZ • R42 R44


Expanding a Function

Taylor Expansion takes as input a function, an independent variable, an integer order to which to expand, and a real point about which to expand.

Example: Find the Taylor series of the function sin(ln(x)) about the point x = e to the 3rd order. To do this, type in $SNPLN \propto X$ $PPPSC \propto X \approx 3 \approx 2.7182818246$ as your input:

ALG PRG { Home sparcom physd }
Expand F(Y) about X: F V Order X (eqn var int>0 real)
))' X 3 2.7182818246 Prints Price River Statis Visitia Same

Press ENTER to calculate the specified Taylor expansion. After a delay, the result will appear:

The result can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the result, press **WPH** or **MALN** to return to the Main menu, or **MALN** to quit the Physics Pac.

<u>NOTE</u>: The setting of system flag –2 determines whether or not symbolic constants (e.g., π in the example) are manipulated numerically or symbolically. (For more information, refer to Chapter 9 of the HP 48SX Owner's Manual, "Common Math Functions.")

Simplifying the Result

To simplify the result of a Taylor expansion, follow these steps:

- Press **ESTK** and then **EONE** to copy the result to the stack.
- **2** Press **ATTN** to quit the Physics Pac.
- Press 🔄 🖽 to display all libraries available to your HP 48SX.
- 72 8: Taylor Expansion

- Find and press **PHYS** to enter the Physics Pac library directory.
- **6** Press the fifth softkey, **SIMPL**, to simplify the expression.

For more information, refer to "Miscellaneous Commands" in Chapter 10.)

Summary of Operations

Screen	Softkeys					
Result Screen	MAIN	→STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for EONEN or EALL to select items, and then sends those items to an IR printer.
=STK	Prompts for CONET or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
UP	Moves up one level in the menu structure.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Moves down one level in the menu structure, entering the se- lected integral section.

For a complete summary of operations, refer to Appendix B, "Summary of Operations.

Chapter 9

Vector Analysis

Vector Analysis includes common formulas and functions for the following: dot product, cross product, the del operator, gradient, divergence, curl, and Laplacian. All of these have corresponding programmable functions, and are capable of interactively manipulating symbolic expressions in rectangular, cylindrical, or spherical coordinates.

This chapter covers:

- Using Vector Analysis
- Dot Products
- Cross Products
- **Del Operator** (∇)
- Gradient
- Divergence
- 🗅 Curl
- **Laplacian**
- Simplifying Results

Using Vector Analysis

To get to Vector Analysis, follow these steps:

- Press 🗐 🖼 to display all libraries available to your HP 48SX.
- **2** Find and press **PHYS** to enter the Physics Pac library directory.
- **③** Press the first softkey, **PHYS**, to start the Physics Pac.
- At the Main menu, make sure the pointer is at "Vector Analysis" and press ENTER:

Items in Vector Analysis

Each item in Vector Analysis is briefly described below and is discussed in detail in the various sections of this chapter.

Item	Description
Dot Products	Common formulas and a dot product function.
Cross Products	Common formulas and a cross product function.
Del Operator (∇)	Common formulas involving the del operator.
Gradient	Definition and formulas in various coordinate sys- tems and a gradient function.
Divergence	Definition and formulas in various coordinate sys- tems and a divergence function.
Curl	Definition and formulas in various coordinate sys- tems and a curl function.
Laplacian	Definition and formulas in various coordinate sys- tems and a Laplacian function.

Summary of Operations

Screen	Softkeys					
Vector Analysis	ΜΑΙΝ	-STK	PRINT	VIEW	FONT	UP

Key	Action
FONT	Toggles between the small and large fonts.
MAIN	Returns to the Main menu.
PRINT	Prompts for CONEN or CALL to select items, and then sends those items to an IR printer.
-STK	Prompts for CONEN or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.

UP	Moves up one level in the menu structure, returning to the Main menu.
VIIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
ATTN	Quits the Physics Pac to the HP 48SX stack.
ENTER	Displays the screen title, the item label, and the value, all expanded to one screen, or displays an equation in the EquationWriter.
ON-MTH	Dumps the current screen to an IR printer.

For a complete summary of operations, refer to Appendix B, "Summary of Operations."

Dot Products

Upon choosing Dot Products from Vector Analysis, the following screen appears:

This is a list of common formulas involving dot products. The dot product function can be invoked in two ways: by pressing **SOLVE**, or by using the SDOT function described in "Vector Analysis Commands" in Chapter 10.

Example: Find the dot product of the two vectors $\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$ and $\begin{bmatrix} -1 & 5 & -9 \end{bmatrix}$. To do this, press **SOLVE** and type in 1 set 3 set 5 set 1 ¹/₂ set 5 set 9 ¹/₂ as your input:

PRG { Home sparcom physd }
Find V1.V2: → V1X 1Y 1Z V2X 2Y 2Z (all real/eqns)
1 3 5 -1 5 -94 Phats Pade Type Photo Vecto Stat

Press ENTER to calculate the numeric dot product. The following screen appears:

```
Dot Product
→-31
```

The result can be copied to the stack or printed on an IR printer. When you have finished viewing the result, press **WPM** to return to Dot Products, **MATIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Cross Products

Upon choosing Cross Products from Vector Analysis, the following screen appears:

This is a list of common formulas involving cross products. The cross product function can be invoked in two ways: by pressing **SOLVE**, or by using the SCROS function described in "Vector Analysis Commands" in Chapter 10.

Exam	ple:	Fin	id the cross product of the two vectors $\begin{bmatrix} 2x & 5y & -z \end{bmatrix}$ and
[x -	-y 3	3z].	To do this, press SOLVE and type in $\begin{array}{[c]{c} \\ \end{array}} 2 \\ \hline \end{array} X \\ \hline \end{array}$
			$Y \blacktriangleright \mathfrak{F} {\smile} \mathcal{A} Z \blacktriangleright \mathfrak{F} \mathcal{A} X \mathfrak{F} {\smile} \mathcal{A} Y \blacktriangleright \mathfrak{F}$
<u> </u>	*	α	Z as your input:

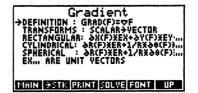
	E SPAR			ŀ	5 PRG
Finc → Vi < al	1 V1× X 1Y 1 re	V2: 12 al/	V2X eqns	şy	2Z
Y'	'-Z'	Х	'-Y'	'3:	ŧΖ۱
€SKIP	SKIPT	+DEL	DEL÷	INS -	4-STK

Press ENER to calculate the symbolic cross product. The following screen appears:

The three results are the x-, y-, and z-components of the symbolic cross product. The results can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the results, press **UP** to return to Cross Products, **MATIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Del Operator (∇ **)**

Upon choosing Del Operator (∇) from Vector Analysis, the following screen appears:



This is a list of common formulas involving the del operator.

The formulas can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished browsing the list, press **EUP** to return to Vector Analysis, **MATIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Gradient

Upon choosing Gradient from Vector Analysis, the following screen appears:

This information describes the gradient function and provides reference formulas for three coordinates systems: rectangular, cylindrical, and spherical. The gradient function can be invoked in two ways: by pressing **SOLVE**, or by using the SGRAD function described in "Vector Analysis Commands" in Chapter 10.

Example: Find the gradient of sin(xyz) in cylindrical coordinates. To do this, press **SOLVE** and type in **SN** $\bigotimes X \times Y \times Z \bigotimes \mathbb{PPP} \bigotimes X$ X **SOLVE** and type in **SN** $\bigotimes X \times Y \times Z \boxtimes \mathbb{PPP} \bigotimes X$ to set cylindrical coordinates:

R∡Z ALG PRG { Home sparcom physd }
Find ⊽F(A,B,C): → F A B C
(eqn Var Var Var)
'SIN(X*Y*Z)' X Y Z♦
DEG . RAD GRAD XYZ RZZ RZZ

Press **ENTER** to calculate the symbolic gradient. The following screen appears:

	Gradient 'COS(XXYX2)X(YX2)' 'COS(XXYX2)X(XX2)/X' 'COS(XXYX2)X(XX2)/X' 'COS(XXYX2)X(XXY)'
MAIN	N +STK PRINT VIEW FONT UP

The three results are the r-, θ -, and z-components of the symbolic gradient. The results can be viewed in the EquationWriter, copied to the stack, or printed on an IR printer. When you have finished viewing the results, press **UPP** to return to Gradient, **MALIN** to return to the Main menu, or **MIN** to quit the Physics Pac.

Divergence

Upon choosing Divergence from Vector Analysis, the following screen appears:

This information describes the divergence function and provides reference formulas for three coordinates systems: rectangular, cylindrical, and spherical. The divergence function can be invoked in two ways: by pressing **SOLVE**, or by using the SDIV function described in "Vector Analysis Commands" in Chapter 10. Refer above to "Gradient" for a relevant example.

Curl

Upon choosing Curl from Vector Analysis, the following screen appears:

This information describes the curl function and provides reference formulas for three coordinates systems: rectangular, cylindrical, and spherical. The curl function can be invoked in two ways: by pressing **SOLVE**, or by using the SCURL function described in "Vector Analysis Commands" in Chapter 10. Refer above to "Gradient" for a relevant example.

Laplacian

Upon choosing Laplacian from Vector Analysis, the following screen appears:

This information describes the Laplacian function and provides reference formulas for three coordinates systems: rectangular, cylindrical, and spherical. The Laplacian function can be invoked in two ways: by pressing **SOLVE**, or by using the SLAPL function described in "Vector Analysis Commands" in Chapter 10. Refer above to "Gradient" for a relevant example.

Simplifying Results

To simplify the results of any vector analysis operation, follow these steps:

- Press **ESTK** and then either **ONE** or **WALL** to copy one or all items to the stack.
- **2** Press **ATTN** to quit the Physics Pac.
- Press 🔄 📖 to display all libraries available to your HP 48SX.
- Find and press **PHYS** to enter the Physics Pac library directory.
- Press the fifth softkey, **SIMPL**, to simplify the expression or list.

(For more information, refer to "Miscellaneous Commands" in Chapter 10.)

Chapter 10

Programmable Commands

Programmable Commands describes the syntax and behavior of the commands located in the Physics Library menu. Most of the programmable commands are also functions, which can be used in algebraic expressions, and all can be included as a part of user-language RPL programs.

This chapter covers:

- Hyperbolic Commands
- Polynomial Solver Command
- **Taylor Expansion Command**
- **Trigonometric Commands**
- User-Defined Integral Commands
- Vector Analysis Commands
- ☐ Miscellaneous Commands

Hyperbolic Commands

This section describes the syntax and behavior of COTH, SECH, CSCH, ACOTH, ASECH, and ACSCH, which are not defined by the HP 48SX.

COTH, SECH, CSCH, ACOTH, ASECH, ACSCH

These are all standard hyperbolic functions, and all allow the same types of arguments and return the same types of results. The syntax table is shown only for COTH.

Input Stack Levels	Output Stack Levels
1: algebraic	1: 'INV(TANH(algebraic))'
or	or
1: complex number	1: COTH(complex)
or	or
1: variable name	1: 'INV(TANH(name))'
or	or
1: real number	1: COTH(real)

Polynomial Solver Command

This section describes the syntax and behavior of PROOT.

PROOT

PROOT is a command that performs the polynomial solver function. It is identical to the interactive Polynomial Solver function described in Chapter 2, "Polynomial Solver."

input Stack Levels	Output Stack Levels
1: list of real or complex (coefficients)	1: list of real or complex (roots)

Taylor Expansion Command

This section describes the syntax and behavior of TYLRX.

TYLRX

TYLRX is a command that finds the Taylor series expansion of an arbitrary function of an arbitrary variable about an arbitrary point. It expands the functionality of the HP 48SX command TAYLR by allowing specification of the point about which to expand the series.

Input Stack Levels	Output Stack Levels
4: algebraic (function)	
3: name (independent variable)	
2: integer (order)	
1: real (point about which to expand)	1: algebraic (series expansion)

Trigonometric Commands

This section describes the syntax and behavior of COT, SEC, CSC, ACOT, ASEC, and ACSC, which are not defined by the HP 48SX.

COT, SEC, CSC, ACOT, ASEC, ACSC

These are all standard trigonometric functions, and all allow the same types of arguments and return the same types of results. The syntax table is shown only for COT.

Input Stack Levels	Output Stack Levels
1: algebraic	1: 'INV(TAN(algebraic))'
or	or
1: complex number	1: COT(complex)
or	or
1: variable name	1: 'INV(TAN(name))'
or	or
1: real number	1: COT(real)

User-Defined Integral Commands

This section describes the syntax and behavior of INDEF and DEFIN, which are used to store user-defined integrals.

INDEF, DEFIN

INDEF and DEFIN are commands that store integrals into the user-defined integrals section of Integral Tables in the Physics Pac. The integrals are stored in the variable 'USRINTEG' in the 'SPARCOM' directory of your HP 48SX.

Input Stack Levels	Output Stack Levels
1: algebraic	1: empty
or	or
1: tagged algebraic	1: empty

For an example describing the entry of a user-defined integral, refer to Chapter 4, "Integral Tables."

Vector Analysis Commands

This section describes the syntax and behavior of SDOT, SCROS, SGRAD, SDIV, SCURL, and SLAPL.

SDOT

SDOT is a command that calculates the dot product of two vectors, V1 and V2.

Input Stack Levels	Output Stack Levels
6: real or algebraic (V1x)	
5: real or algebraic (V1y)	
4: real or algebraic (V1z)	
3: real or algebraic (V2x)	
2: real or algebraic (V2y)	
1: real or algebraic (V2z)	1: real or algebraic (V1·V2)

SCROS

SCROS is a command that calculates the cross product of two vectors, V1 and V2.

Input Stack Levels	Output Stack Levels
6: real or algebraic (x-comp. of V1)	
5: real or algebraic (y-comp. of V1)	
4: real or algebraic (z-comp. of V1)	
3: real or algebraic (x-comp. of V2)	3: real or algebraic (x-comp. V1×V2)
2: real or algebraic (y-comp. of V2)	2: real or algebraic (y-comp. V1×V2)
1: real or algebraic (z-comp. of V2)	1: real or algebraic (z-comp. V1×V2)

SGRAD

SGRAD is a command that calculates the vector gradient of a scalar function $F(c_1, c_2, c_3)$, where (c_1, c_2, c_3) are the three independent variables or coordinates, commonly (x, y, z) for rectangular, (r, θ, z) for cylindrical, or (r, θ, ϕ) for spherical. However, (c_1, c_2, c_3) are not restricted to those names. The gradient is returned as a list of three algebraics.

The coordinates in which the gradient will be calculated are determined by the setting of your HP 48SX polar flags (system flags -15 and -16). To set the coordinates, press for 12 mm for rectangular, 12 mm for rectangular, 12 mm for cylindrical, or 12 mm for spherical. (For more information, refer to Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Input Stack Levels	Output Stack Levels
4: algebraic (F)	
3: variable name (first coordinate)	
2: variable name (second coordinate)	
1: variable name (third coordinate)	1: list of 3 algebraics (gradient ∇F)

SDIV

SDIV is a command that calculates the scalar divergence of a vector function $\vec{F}(c_1, c_2, c_3)$, where (c_1, c_2, c_3) are the three independent variables or coordinates, commonly (x, y, z) for rectangular, (r, θ, z) for cylindrical, or (r, θ, ϕ) for spherical. However, (c_1, c_2, c_3) are not restricted to those names. The divergence is returned as a single algebraic.

The coordinates in which the divergence will be calculated are determined by the setting of your HP 48SX polar flags (system flags -15 and -16). To set the coordinates, press -15 and then either -15 and -16). To set the -16 for cylindrical, or -16 for spherical. (For more information, refer to Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Input Stack Levels	Output Stack Levels
6: real or algebraic $(\vec{F}_x \text{ or } \vec{F}_r)$	
5: real or algebraic $(\vec{F}_y \text{ or } \vec{F}_\theta)$	
4: real or algebraic $(\vec{F}_z \text{ or } \vec{F}_{\phi})$	
3: variable name (first coordinate)	
2: variable name (second coordinate)	
1: variable name (third coordinate)	1: algebraic (divergence $\nabla \cdot F$)

SCURL

SCURL is a command that calculates the vector curl of a vector function $\overline{F}(c_1, c_2, c_3)$, where (c_1, c_2, c_3) are the three independent variables or coordinates, commonly (x, y, z) for rectangular, (r, θ, z) for cylindrical, or (r, θ, ϕ) for spherical. However, (c_1, c_2, c_3) are not restricted to those names. The curl is returned as a list of three algebraics.

Input Stack Levels	Output Stack Levels
6: real or algebraic $(\vec{F}_x \text{ or } \vec{F}_r)$	
5: real or algebraic $(\vec{F}_y \text{ or } \vec{F}_{\theta})$	
4: real or algebraic $(\vec{F}_z \text{ or } \vec{F}_{\phi})$	
3: variable name (first coordinate)	
2: variable name (second coordinate)	
1: variable name (third coordinate)	1: list of 3 algebraics (curl $\nabla \times F$)

SLAPL

SLAPL is a command that calculates the scalar Laplacian of a scalar function $F(c_1, c_2, c_3)$, where (c_1, c_2, c_3) are the three independent variables or coordinates, commonly (x, y, z) for rectangular, (r, θ, z) for cylindrical, or (r, θ, ϕ) for spherical. However, (c_1, c_2, c_3) are not restricted to those names. The Laplacian is returned as a single algebraic.

The coordinates in which the Laplacian will be calculated are determined by the setting of your HP 48SX polar flags (system flags -15 and -16). To set the coordinates, press for cylindrical, or for spherical. (For more information, refer to Chapter 12 of the HP 48SX Owner's Manual, "Vectors.")

Input Stack Levels	Output Stack Levels
4: algebraic (F)	
3: variable name (first coordinate)	
2: variable name (second coordinate)	
1: variable name (third coordinate)	1: algebraics (Laplacian $\nabla^2 F$)

Miscellaneous Commands

This section describes the syntax and behavior of SIMPL and PCON.

SIMPL

SIMPL is a command that completely simplifies an algebraic or list of algebraics by repeated EXPANs and COLCTs. All other object types are ignored.

Input Stack Levels	Output Stack Levels
1: algebraic	1: simplified algebraic
or	or
1: list of algebraics	1: list of simplified algebraics

PCON

PCON is not intended for user use. It is a program that provides *some* constants from the Constant Library to equations and is necessary so that constant calls appear efficiently in equations copied to the stack by the user. PCON does not provide access to all of the constants in the Constant Library.

SLVINTEG

SLVINTEG is not intended for user use. It is a program that provides access to the integral-solving routine and must be present in the Physics Pac library menu so that you can more easily edit the USRINTEG file containing the user-defined integrals. (For more information, refer above to "User-Defined Integral Commands.")

Appendix A

Warranty and Service

Pocket Professional [™] Support

You can get answers to your questions about using your Pocket Professional[™] Pac from Sparcom. If you don't find the information in this manual or in the HP 48SX Owner's Manual, contact us in one of the following ways:

• E-Mail

From Internet: support@sparcom.com From Compuserve: >Internet:support@sparcom.com From FidoNet: To:support@sparcom.com

2 Standard Mail

Sparcom Corporation 897 NW Grant Avenue Corvallis, OR 97330 Attn: Technical Support Department

6 Telephone

(503) 757–8416 9 a.m. – 5 p.m. Pacific Standard Time

O FAX

(503) 753-7821

Limited One-Year Warranty

What is Covered

A Pocket Professional[™] Pac is warranted by Sparcom Corporation against defects in material and workmanship for one year from the date of original purchase. If you sell your card or give it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or replace (at no charge) a product that proves to be defective, provided you return the product and proof of purchase, shipping prepaid, to Sparcom.

What is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by any entity other than Sparcom Corporation.

No other warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MER-CHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURA-TION OF THIS WRITTEN WARRANTY. IN NO EVENT SHALL SPARCOM CORPORATION BE LIABLE FOR CONSEQUENTIAL DAM-AGES. Products are sold on the basis of specifications applicable at the time of manufacture. Sparcom shall have no obligation to modify or update products, once sold.

If the Card Requires Service

Sparcom will repair a card, or replace it with the same model or one of equal or better functionality, whether it is under warranty or not.

Service Charge

There is a fixed charge for standard out-of-warranty repairs. This charge is subject to the customer's local sales or value-added tax, wherever applicable. Cards damaged by accident or misuse are not covered by fixed charges. These charges are individually determined based on time and material.

Shipping Instructions

If your card requires service, ship it to the address above and:

- **1** Include your return address and a description of the problem.
- 2 Include a proof of purchase date if the warranty has not expired.
- **③** Include a purchase order, along with a check or credit card number and expiration date (VISA or MasterCard), to cover the standard repair charge.
- Ship your card, postage prepaid, in protective packaging adequate to prevent damage. Shipping damage is not covered by the warranty, so insuring the shipment is recommended.

Cards are usually serviced and re-shipped within five working days.

Environmental Limits

The reliability of a Pocket Professional[™] Pac depends upon the following temperature and humidity limits:

- Operating Temperature: 0 to 45° C (32 to 113° F).
- **2** Storage Temperature: -20 to 60° C (-4 to 140° F).
- Operating and Storage Humidity: 90% relative humidity at 40° C (104° F) maximum.

Appendix B

Summary of Operations

Summary of Screen Softkeys

Screen	Softkeys					
Categories Screen	MAIN	->STK	PRINT	VIEW	FONT	UP
Constant Library	MAIN	<u> →STK</u>	PRINT	UNITS	FONT	UP
Equations Screen	MAIN MAIN MAIN	MARK -STK EQWR	VARS PRINT PLOT	SOL VE SOL VE SOL VE	PICT FONT FONT	UP UP UP
Function Menu	ROOT F、X	I SECT F'	SLOPE NXEQ	AREA	EXTR	EXIT
Graphics Environment	ZOOM DOT+ MARK	Z- BOX DOT- REPL	CENT LINE SUB	COORD TLINE DEL	LABEL BOX + -	FCN FIRCL KEYS
Integral Section	MAIN	-STK	PRINT	SOLVE	FONT	UP
Integral Tables	MAIN	-STK	PRINT	VIEW	FONT	UP
Main	ABOUT	-STK	PRINT	VIEW	FONT	QUIT
Reference Data	MAIN	→STK	PRINT	VIEW	FONT	UP
Reference Formulas	MATN	→STK	PRINT	VIEW	FONT	UP
Result Screen	MAIN	→STK	PRINT	VIEW	FONT	UP
Solar System Data	MAIN	→STK	PRINT	UNITS	FONT	UP

Solver Screen	MATN MATN MATN MATN	KNOW EQNS -STK CLEAR	WANT VARS PRINT PURG	CALC HALT CALC CALC	CONV PICT FONT UNITS	UP UP UP
Text Editing	-SKIP	SKIP-	-DEL	DEL-	INS	STK
Topics Screen	MA I N MA I N	EQNS -STK	VARS PRINT	SOL VE SOL VE	P I CT F ONT	UP UP
Variables Screen	MA I N MA I N	EQNS -STK	VIEW PRINT	SOL VE SOL VE	P I CT F ONT	UP UP
Vector Analysis	MAIN	-STK	PRINT	VIEW	FONT	UP

Summary of Softkey Actions

Key	Action
ABOUT	Displays a screen containing the revision number and prod- uct information about the Physics Pac. Pressing any key erases the screen and returns to the previous menu or to the HP 48SX stack.
AREA	Displays the area under the function defined by the X axis value of the mark and cursor.
	Stores variables values and systematically iterates through the set of marked equations in an attempt to find values for all wanted variables. Also, stores the known and found val- ues into global variables in the 'PHYSD' directory.
CLEAR	Resets values of all current variables to zero, but does not change the global copies, which are only affected by CALC and PURC operations.
CONV	Converts a variable to different units, if units are on.
COORD	Displays the coordinates of the cursor position.
DEL	Deletes all characters between the cursor's current position and the first character of the next word.
-DEL	Deletes all characters in the current word prior to the cursor.
EQNS	Displays the equations screen for the current topic.
EQWR	Displays the equation selected by the pointer in the EquationWriter.
F	Plots the first derivative the current function.
F,X,	Displays the function value at the X axis value of the cursor, and moves the cursor to that point on the function.
FCN	Displays the Function menu for further analysis.
FONT	Toggles between the small and large fonts.
HALT	Halts the Physics Pac so that operations can be performed on the HP 48SX stack. Pressing CONT or Cont returns to the Physics Pac, while pressing CONT terminates the Physics Pac.
INS	Toggles between insert and type-over modes.
KNOW	Toggles the variable selected by the pointer between known and unknown status, adding or removing a triangular tag.
ΜΑΙΝ	Returns to the Main menu.

MARK	Places a mark (X) at the cursor location.
MARK	Toggles the equation selected by the pointer between marked and unmarked status, adding or removing a triangu- lar tag. Only variables in the marked set of equations will appear in the solver and variable screens. If no equations are marked, all will be used.
PICT	Displays the picture for the current topic, if one exists.
PLOT	Plots the equation selected by the pointer, prompting for x- axis and y-axis values. Plotting is only allowed for equa- tions of the form $y = f(a, b,)$, and all but one of the vari- ables on the right-hand side of the equation must be held constant (i.e., known).
PRINT	Prompts for CONE or CALL to select items, and then sends those items to an IR printer.
PURG	Purges the global copies (in the 'PHYSD' directory) of the current set of variables, but does not change the values cur- rently stored inside the Physics Pac.
QUIT	Quits the Physics Pac to the HP 48SX stack.
ROOT	Moves the cursor to the nearest root and displays the coordinate of the root.
SKIP-	Moves the cursor to the beginning of the next word.
-SKIP	Moves the cursor to the beginning of the current word.
SLOPE	Displays the slope of the function at the X axis value of the cursor, and moves the cursor to the point on the function at which the slope was calculated.
SOLVE	In Equation Library: Displays the solver screen for the current topic.
	At Integral Tables: Solves the integral selected by the pointer.
	In general: Executes a solving routine based on the type of data shown.
-STK	Prompts for CONE or CALL to select items, and then copies those items to the stack. The items are placed in a list if CALL was chosen.
`STK	Activates the Interactive Stack, allowing arguments to be copied from the stack to the command line for editing by pressing ECHO .
SUB	Copies the rectangle bounded by the mark and the cursor lo- cation to the stack as a graphics object (GROB).

UNIT	Indicates that units are currently turned on. Pressing this key turns off units, automatically converting all variable values to SI units and then stripping the units.
UNITS	Indicates that units are currently turned off. Pressing this key turns on units, automatically appending standard SI units to the values.
UP	Moves up one level in the menu structure.
VARS	Displays the variable screen for the current topic, including descriptions and default units.
VIEW	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.
WANT	Toggles the variable selected by the pointer between wanted and unwanted status, adding or removing a question tag.
	At Graphics environment: Moves the cursor in the indicated direction. When prefixed with P, moves the cursor to the edge of the screen in the indicated direction.
ATTN	At command line: Clears the command line if there is text present, or aborts text entry if the command line is already blank.
	In general: Quits the Physics Pac to the HP 48SX stack.
	At Graphics environment: Exits the plot and returns to the equations screen.
ENTER	At command line: Accepts the current command line as the entry and returns to the previous menu or list.
	In general: Moves down one level in the menu structure.
	At categories screen: Displays the topics screen for the category selected by the pointer.
	At equations screen: Displays the equation selected by the pointer in the EquationWriter.
	At solver screen: Prompts for a value for the variable se- lected by the pointer.
	At topics screen: Displays the equations screen for the topic selected by the pointer.
	At variable and reference data screens: Displays the screen title, the item label, and the value, all expanded to one screen.
ON-MTH	Dumps the current screen to an IR printer.

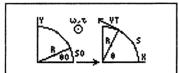
FVEN	Temporarily displays the plot status menu, including the axis ranges, until 🕅 is released.
STO	Copies PICT to the stack as a graphics object (GROB).
	Displays the entire text of an item too wide to fit on the screen, up to one entire screen size. If the item fits on the screen, this key is non-functional.

Appendix C Equation Library Reference

Equation Library Reference lists the categories, topics, equations, variables, units, and pictures contained in the Physics Pac. The Equation Library consists of 11 categories and over 250 equations.

Categories and Topics

Category/Topic	# Eqns	# Vars	Picture	Page #
Angular Mechanics				
Angular Mechanics	14	14	Yes	104
Banked Curves	3	5	Yes	105
Circular Motion	12	15	Yes	105
Momentum/Precession	5	8	No	107
Parallel Axis Theorem	1	4	No	107
Vertical Motion	2	4	No	108
Electrical Circuits				
Capacitor Basics	8	17	Yes	109
Capacitor (Cylinder)	2 3 2 2 2 8	6	No	110
Capacitor (Plate)	3	7	Yes	110
Capacitor (Sphere)	2	5	No	111
Divider (Current)	2	6	Yes	111
Divider (Voltage)	2	6	Yes	111
Inductor Basics		18	Yes	112
Inductor (Solenoid)	1	5	Yes	113
Inductor (Toroid)	1	6	Yes	113
Ohm's Law	4	4	No	114
Resistor Basics	6	14	Yes	114
Transformers	5	9	Yes	116
Electric Fields				
Coulomb's Law	5	8	No	117
Dipole	5 3 1	7	Yes	117
Disk	1	4	No	118


Line Lorentz Force Ring Sheet Surface	1 1 1 1 1	3 6 4 2 2	No No No No	118 119 119 120 120
Forces/Energy/Work Angular Forces Coulomb's Law Drag Force Frictional Forces Gravitational Forces Hooke's Law Linear Forces Lorentz Force	14 5 1 2 4 8 14 1	14 8 5 7 13 14 6	Yes No No No Yes No No	121 121 121 121 122 122 122 122 122
Gravitation Escape Velocity Gravitation Free Falling Object Orbits (Circular) Orbits (Elliptical) Projectile Motion Terminal Velocity	1 4 10 4 5 7 1	3 7 11 7 10 12 5	No No No Yes Yes No	123 123 124 125 125 126 127
Linear Mechanics Center of Mass Collisions (Elastic) Collisions (Inelastic) Linear Mechanics Rocket Science	2 3 1 14 2	14 6 4 14 8	No Yes Yes No No	128 128 129 130 131
Magnetism Charged Particle Cyclotron Dipole Solenoid Toroid Wire (Loop) Wire (Straight) Wires (Parallel)	1 4 2 1 1 1 2 1	5 8 5 4 6 8 6	Yes No Yes Yes No Yes Yes	132 132 133 133 134 135 135 135 136
Optics Brewster's Law Reflection/Refraction Spherical Mirrors Spherical Refraction Thin Lenses	2 6 5 3 4	4 10 6 7 8	Yes Yes Yes Yes Yes	137 137 138 139 140

Two-Slit Diffraction	5	11	Yes	140
Oscillations				
Mass-Spring System Pendulum (Conical) Pendulum (Simple) Pendulum (Torsional) Simple Harmonic Motion Two-Body System	8 6 4 5 5 4	13 9 7 10 9 7	Yes Yes Yes No No	142 143 143 144 145 146
Special Relativity Doppler Effect Energy/Mass/Momentum Gallilean Transform Length/Time Dilation Lorentz Transform	3 9 2 3 6	5 10 6 6 12	No No Yes Yes Yes	147 147 148 148 149
Waves Doppler Effect Organ Pipes Sound Waves Waves	1 2 6 6	5 6 11 12	Yes No No No	151 151 152 152

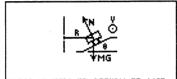
Angular Mechanics

Angular Mechanics

These equations describe the fundamental of Newtonian angular motion. They cover the concepts of work, torque, moments of inertia, and angular velocity and acceleration.

PRESS (ENTER) TO RETURN TO LIST ...

Equations				
τ=I ·α	$Ki = \frac{1}{2} \cdot I \cdot \omega i^2$	Kf= ¹ / ₂ ·I·wf ²		
W=Kf-Ki	W=⊄·(8f-8i)	Pf=τ∙wf		
Pavg= <u>H</u>	ωf=wi+α·t	8f=8i+wa∪9∙t		
8f=8i+wi·t+ ¹ / ₂ ·a·t ²	$\theta f = \theta i + \omega f \cdot t - \frac{1}{2} \cdot \alpha \cdot t^2$	ωf ² =ωi ² +2·α·(8f-8i)		
wavg= <mark>1</mark> ∙(wi+wf)	wavg= <mark>8f-8i</mark>			

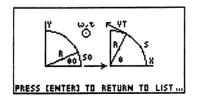

Variables	Descriptions	Units
θi	initial angular displacement	0
θf	final angular displacement	•
ωί	initial angular velocity	°/s
ωf	final angular velocity	°/s
ωavg	average angular velocity	°/s
α	angular acceleration	°/s ²
τ	torque	N∙m
I	moment of inertia	kg⋅m ²
Ki	initial kinetic energy	J
Kf	final kinetic energy	J

104 C: Equation Library Reference

w	work	J
Pf	final power	W
Pavg	average power	W
t	time	S

Banked Curves

These equations describe a vehicle moving along a banked curve. They allow calculation of the bank angle for a specified maximum velocity and allow you to vary the radius of the curve as well.


PRESS CENTERS TO RETURN TO LIST ...

Equations		
N·SIN(8)= ^{m·y²} r	N·COS(8)=m·9	TAN(θ)= <mark>y²</mark> r∙9

Variables	Descriptions	Units
N	normal force	N
H	bank angle	°
m	mass	kg
v	velocity	m/s
r	turn radius	m

Circular Motion

These equations describe the fundamentals of circular motion at a constant radius, and cover the topics of centripetal force, arc length, and tangential and total acceleration.

Equations		
Fc=m·ac	ac=w ² ·r	at=∝r
ut=wr	ac≡ <mark>ut²</mark>	a ² =at ² +ac ²
ω=2 ∙π∙ Բ	T= ‡	s=r∙θ
x=r·COS(8)	y=r·SIN(8)	²_2²+y²

Variables	Descriptions	Units
Fc	centripetal force	N
m	mass	kg
vt	tangential velocity	m/s
ac	centripetal acceleration	m/s ²
at	tangential acceleration	m/s ² m/s ²
а	total acceleration	m/s ²
θ	angular displacement	•
ω	angular velocity	°/s
α	angular acceleration	°/s °/s ²
Т	period	s
f	frequency	Hz
s	arc distance	m
х	x position	m
у	y position	m
r	radius	m

Momentum/Precession

These equations cover the basics of angular momentum and precession, based on the moment of inertia and the angular velocity.

	Equation	S
L≖I∙w	I=m·r ²	Ω= <u>ື≊າອ∙r</u> ໂ∙ພ
ω=2 ∙π•f	⊺= <u>1</u> €	

Variables	Descriptions	Units
L	angular momentum	kg·m ² /s
I	moment of inertia	kg·m ²
ω	angular velocity	°/s
m	mass	kg
r	radius	m
Ω	precession rate	°/s
Т	period	S
f	frequency	Hz

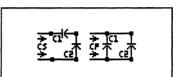
Parallel Axis Theorem

The parallel axis theorem relates the moment of inertia of a body about its centroid (center of mass) to the moment of inertia about a point a distance r from the center of mass.

Variables	Descriptions	Units
I	moment of inertia	kg·m ²
Icm	I, center of mass	kg⋅m ²
m	mass	kg
r	axis separation	m

Vertical Motion

These equations describe vertical motion in a gravitational field and the critical velocity.


Equations		
vmin ² =4·g·r+vmax ²	vc=√9*	

Variables	Descriptions	Units
r	radius	m
vmin	minimum velocity	m/s
vmax	maximum velocity	m/s
vc	critical velocity	m/s

Electrical Circuits

Capacitor Basics

These equations cover the basics of capacitor behavior, including the relations for calculating serial and parallel capacitance.

PRESS [ENTER] TO RETURN TO LIST ...

	Equations	
I= <u>C·≏V</u> ≏t	⊳V=Vf-Vi	≏t=tf-ti
q=C·V	$UC = \frac{1}{2} \cdot C \cdot V^2$	UE= <u>1</u> ∙∉0·E ²
Cp=C1+C2	$\frac{1}{C_{s}=C1+C2}$	

Variables	Descriptions	Units
I	current	A
С	capacitance	F
ΔV	voltage difference	V
∆t	time difference	s
Vi	initial voltage	V
Vf	final voltage	V
ti	initial time	s
tf	final time	s
q	charge	С
Ń.	voltage	V
UC	energy stored	J
UE	energy density	J/m ³
Е	electric field	N/C
Ср	parallel capacitance	F
Ċs	series capacitance	F
C1	capacitance 1	F
C2	capacitance 2	F

Capacitor (Cylinder)

These equations cover the capacitance of a cylinder, or a coaxial cable. Fringing effects are ignored.

Equations		
$C = \frac{2 \cdot \pi \cdot \epsilon \cdot 1}{LN\left(\frac{ro}{ri}\right)}$	e=k∙e0	

Variables	Descriptions	Units
С	capacitance	F
ε	permittivity	F/m
1	length	m
ro	outer radius	m
ri	inner radius	m
k	dielectric constant	-

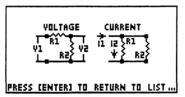
Capacitor (Plate)

These equations cover the capacitance of a plate capacitor, including the electric field between the plates. Fringing effects are ignored.

	Equation	S	
C ≖⊆'fl d	€=k •€0	E=¥	

Variables	Descriptions	Units
С	capacitance	F
3	permittivity	F/m
Α	area	m ²
d	separation	m
k	dielectric constant	-
Е	electric field	N/C
V	voltage	V

Capacitor (Sphere)


These equations cover the capacitance of a sphere. Fringing effects are ignored.

Equations		
C= <u>4∙π∵eriro</u> ro-ri	∈=k·eØ	

Variables	Descriptions	Units
С	capacitance	F
З	permittivity	F/m
ri	inner radius	m
ro	outer radius	m
k	dielectric constant	-

Divider (Current)

These equations describe current dividers and voltage dividers.

Equations		
12= <u>11-R2</u> R1+R2	V2= <u>V1-R2</u> R1+R2	

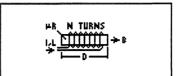
Variables	Descriptions	Units
I1	current in	A
I2	current out	А
V1	voltage in	V
V2	voltage out	V
R1	resistance 1	Ω
R2	resistance 2	Ω

Divider (Voltage)

Refer above to "Divider (Current)" in "Electrical Circuits."

Inductor Basics

These equations cover the basics of inductor behavior, including the relations for calculating serial and parallel inductance.

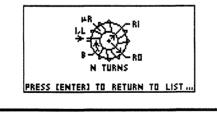

PRESS (ENTER) TO RETURN TO LIST ...

	Equations	
V= <u>−L·≏I</u> ≏t	≏I=If−Ii	ot=tf-ti
N∙ø=L∙I	$UL = \frac{1}{2} \cdot L \cdot I^2$	$UB = \frac{1}{2 \cdot \mu \theta} \cdot B^2$
Ls=ÌL1+L2	$\frac{1}{L_{P}} = \frac{1}{L_{1}} + \frac{1}{L_{2}}$	

Variables	Descriptions	Units
V	voltage	V
L	inductance	Н
ΔΙ	current	A
Δt	current difference	S
Ι	time difference	A
Ii	initial current	A
If	final current	A
ti	initial time	S
tf	final time	S
Ν	turns	-
φ	magnetic flux	Wb
UL	energy stored	J
UB	energy density	J/m ³
В	magnetic field	Т
Ls	series inductance	Н
Lp	parallel inductance	Н
LÎ	inductance 1	Н
L2	inductance 2	Н

Inductor (Solenoid)

This equation calculates the inductance of a solenoid, based on the number of turns per unit length and the cross-sectional area of the solenoid.


PRESS CENTER] TO RETURN TO LIST ...

	Equations	
L ≖ µՕ։µr։n ² ։Ո։d		

Variables	Descriptions	Units
L	inductance	Η
μr	relative permittivity	-
n	turns/unit length	1/m
A	cross-section	m ²
d	length	m

Inductor (Toroid)

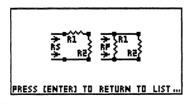
This equation calculates the inductance of a toroid, based on the total number of turns and the dimensions of the toroid.

Equations

$$L = \frac{\mu \theta \cdot \mu r \cdot N^2 \cdot w}{2 \cdot \pi} \cdot LN\left(\frac{r_0}{r_i}\right)$$

Variables	Descriptions	Units
L	inductance	H
μr	relative permittivity	-
Ň	turns	-
w	width	m
ri	inner radius	m
ro	outer radius	m

Ohm's Law

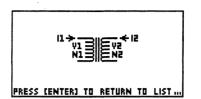

These equations explain the basic Ohm's law relations.

	Equation	S	
V=I·R	P=V·I	₽=I ² ·R	
P=V ² R			

Variables	Descriptions	Units
V	voltage	V
I	current	A
R	resistance	Ω
Р	power	W

Resistor Basics

These equations govern the fundamentals of resistance, including temperature dependence, conductivity, and relations for calculating the serial and parallel resistance.



Equations		
R≖ <u>₽·1</u> A	G= ⊄:f1	$\rho = \frac{1}{\sigma}$
R′=R·(1+α·(Tf-Ti))	Rs=R1+R2	$\frac{1}{R_{P}} = \frac{1}{R1} + \frac{1}{R2}$

Variables	Descriptions	Units
R	resistance (temperature Ti)	Ω
σ	resistivity	Ω·m
1	length	m
А	cross-section	m ²
G	conductance	S
ρ	conductivity	S/m
α	resistance temperature coefficient	1/K
R´	resistance (temperature Tf)	Ω
Ti	initial temperature	K
Tf	final temperature	K
Rs	series resistance	Ω
Rp	parallel resistance	Ω
R1	resistance 1	Ω
R2	resistance 2	Ω

Transformers

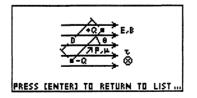
These equations describe an ideal transformer.

	Equations	
<u>V1=N1</u> V2=N2	I1·N1=I2·N2	$R2' = \frac{R2}{at^2}$
at= <mark>N2</mark> N1	V2=12·R2	

Variables	Descriptions	Units
V1	primary voltage	V
V2	secondary voltage	V
N1	primary turns	-
N2	secondary turns	-
I1	primary current	A
I2	secondary current	A
R2	load resistance from secondary	Ω
R2′	load resistance from primary	Ω
at	turns ratio	-

Electric Fields

Coulomb's Law


These equations describe Coulomb's law, the relationship between electric force, charge, and distance. They include relations to calculate the electric force due to an electric field and to calculate the potential at a given distance from a charge.

	Equations		
$F=\frac{1}{4\cdot\pi\cdot\epsilon\theta}\cdot\left(\frac{q1\cdotq2}{r^2}\right)$	F=q1-E1	F=92·E2	
V1= <u>1</u> 4·π⋅ε0·[<u>91</u>]	$\forall 2 = \frac{1}{4 \cdot \pi \cdot \epsilon \theta} \cdot \left(\frac{q2}{r}\right)$		

Variables	Descriptions	Units
F	force	N
q1	charge 1	С
q2	charge 2	С
r	distance	m
E1	electric field at q1	N/C
E2	electric field at q2	N/C
V1	electric potential from q1	V
V2	electric potential from q2	V

Dipole

These equations describe an electric dipole. They cover torque and the energy stored by the dipole's interaction with an electric field.

Equations			
₽=q∙d	τ=ρ·E·SIN(θ)	U=−P·E·COS(8)	

Variables	Descriptions	Units
р	dipole moment	C∙m
q	charge	C
d	separation	m
τ	torque	N∙m
Е	electric field	N/C
θ	angle	٥
U	potential energy	J

Disk

This equation gives the electric field due to a disk of charge at any point along the perpendicular z axis.

	Equations
$E = \frac{\sigma}{2 \cdot \varepsilon \theta} \cdot \left(1 - \frac{z}{\int_{z^{2} + r^{2}} z^{2}} \right)$	

Variables	Descriptions	Units
Е	electric field	N/C
ρ	surf charge density	C/m ²
r	disk radius	m
Z	distance	m

Line

This equations gives the electric field due to a line of charge at a distance r from the line.

Equations E=<u>2·π·e</u>Ø·r

Variables	Descriptions	Units
E	electric field	N/C
λ	linear charge density	C/m
r	distance	m

Lorentz Force

This equation describes the Lorentz force, which results from a charge moving through electric and magnetic fields.

	Equations	
F=q·E+q·v·B·SIN(8)		

Variables	Descriptions	√ Units
F	Lorentz force	N
q	charge	C
E	electric field	N/C
v	velocity	m/s
В	magnetic field	Т
θ	angle	٥

Ring

This equation gives the electric field due to a ring of charge at any point along the perpendicular z axis.

	Equations	
$E = \frac{1}{4 \cdot \mathbf{n} \cdot \epsilon \theta} \cdot \begin{pmatrix} -\frac{9 \cdot z}{3} \\ (2 \cdot 2)^2 \end{pmatrix}$		

Variables	Descriptions	Units
E	electric field	N/C
q	charge	С
r	ring radius	m
Z	distance	m

Sheet

This equation gives the electric field due to a sheet of charge.

	Equations	
E= <u>⊄</u> 2•∈0		

Variables	Descriptions	Units
Е	electric field	N/C
ρ	surf charge density	C/m ²

Surface

This equation gives the electric field due to the surface of a charged conductor.

	E= <u>0</u>
	<u> </u>

Variables	Descriptions	Units
Е	electric field	N/C
ρ	surf charge density	C/m ²

Forces/Energy/Work

Angular Forces

Refer above to "Angular Mechanics" in "Angular Mechanics."

Coulomb's Law

Refer above to "Coulomb's Law" in "Electric Fields."

Drag Force

This equation describes the drag force associated with an object moving through a fluid (including air).

	Equations	
$F=Cd\cdot\left(\frac{p\cdot y^2}{2}\right)\cdot R$		

Variables	Descriptions	Units
F	drag force	N
Cd	drag coefficient	-
σ	fluid density	kg/m ³
v	velocity	m/s
Α	cross-sectional area	m ²

Frictional Force

These equations describe the static and kinetic frictional forces encountered by an object at rest or moving along a surface.

Equations		
fs=µs·N	fk=µk·N	

Variables	Variables Descriptions	
fs	static frictional force	N
fk	kinetic frictional force	N
μs	static frictional coefficient	-

Gravitational Forces

Refer below to "Gravitation" in "Gravitation."

Hooke's Law

Refer below to "Mass-Spring System" in "Oscillations."

Linear Forces

Refer below to "Linear Mechanics" in "Linear Mechanics."

Lorentz Force

Refer above to "Lorentz Force" in "Electric Fields."

Gravitation

Escape Velocity

This equation yields the escape velocity necessary for an object to escape a planet. The object mass is assumed to be negligible in comparison with the planet mass.

	Equations	
v≖∫ <mark>2⁄Gm</mark> r		

Variables	Descriptions	Units
v	escape velocity	m/s
m	planet mass	kg
r	planet radius	m

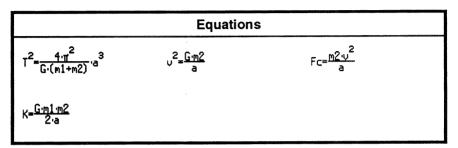
Gravitation

These equations cover the basics of gravitation, including the relationship between gravitational force, mass, and distance, and gravitational potential energy stored by two separated masses.

	Equations	\$	
F= <u>G·m1·m2</u> r ²	al= <u>Gm2</u> r	a2= <u>G·m1</u> r ²	
U= <u>-G·m1·m2</u> r			

Variables	Descriptions	Units
F	attractive force	N
m1	mass 1	kg
m2	mass 2	kg kg
r	separation	m
a1	m1 acceleration	m/s ²
a2	m2 acceleration	m/s ²
U	potential energy	J

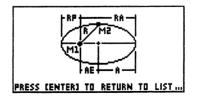
Free Falling Object


These equations describe the motion of a freely falling object in the Earth's gravitational field. They cover the concepts of gravitational potential energy, kinetic energy, and total energy.

Equations			
uf=vi-9∙t	yf=yi+vi·t-1/9·t ²	yf=yi+vf·t+ ¹ 2·9·t ²	
vf ² ≖vi ² -2⋅g⋅(yf-yi)	Ki= <u>1</u> ∙m∪i ²	Kf=1/m·uf ²	
Ui=m•9•yi	Uf=m∙9∙9f	E=Ki+Ui	
E=Kf+Uf			

Variables	Descriptions	Units
t	time	S
m	mass	kg
yi	initial y position	m
yf	final y position	m
vi	initial velocity	m/s
vf	final velocity	m/s
Ki	initial kinetic energy	J
Kf	final kinetic energy	J
Ui	initial potential energy	J
Uf	final potential energy	J
E	total energy	J

Orbits (Circular)


These equations cover Kepler's 3rd law of motion, which involves the period, separation, and masses of two objects. Included are relations to determine the velocity of a circular orbit, the centripetal force of such an orbit, and the kinetic energy of the orbiting object. The equations are *not* simplified for the case where the central mass is much greater than the orbiting mass.

Variables	Descriptions	Units
Т	period	S
m1	central mass	kg
m2	orbiting mass	kg
а	separation	m
v	velocity	m/s
Fc	centripetal force	N
K	kinetic energy	J

Orbits (Elliptical)

These equations cover Kepler's 3rd law of motion, which involves the period, separation, and masses of two objects. Included are relations to determine the aphelion and perihelion distances, based on the eccentricity of the orbit. The equations are *not* simplified for the case where the central mass is much greater than the orbiting mass, and the velocity and kinetic energy of the orbiting mass at any point along the orbit can be calculated.

Equations			
T ² = <u>4·π</u> ² G·(n1+m2)·a ³	$v^2=G\cdot(m1+m2)\cdot\left(\frac{2}{r}-\frac{1}{a}\right)$	ra=a·(1+E)	
rp=a·(1-E)	K = 2 m2·∪ ²		

Variables	Descriptions	Units
Т	period	S
m1	central mass	kg
m2	orbiting mass	kg
r	separation	m
ra	aphelion	m
rp	perihelion	m
a	semimajor axis	m
v	velocity	m/s
E	eccentricity	-
K	kinetic energy	J

Projectile Motion

These equations describe projectile motion in the Earth's gravitational field. The maximum height and range for the projectile can be determined as well.

Equations

xf=xi+vi·COS(8)·t

```
yf≖yi+vi·SIN(8)·t-<u>1</u>·9·t<sup>2</sup>
```

vy≖vi∙SIN(8)-g∙t

vx=vi℃OS(8)

H=yi+<mark>vi²·SIN(8)</mark>² 2·9

Variables	Descriptions	Units
θ	initial angle	•
vi	initial velocity	m/s
vf	final velocity	m/s
t	time	s
xf	initial x position	m
xi	final x position	m
yf	initial y position	m
yi	final y position	m
vx	x velocity	m/s
vy	y velocity	m/s
Ŕ	maximum range	m
н	maximum height	m

Terminal Velocity

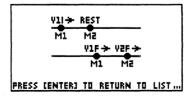
This equation governs the terminal velocity encountered by an object moving through a fluid (or air).

	Equations	
∪= <mark>[2m-9</mark> [Cd·γ·Ĥ		

Variables	Descriptions	Units
v	terminal velocity	m/s
m	mass	kg
Cd	drag coefficient	-
σ	fluid density	kg/m ³
А	cross-sectional area	m ²

Linear Mechanics

Center of Mass


These two equations allow you to calculate the center of mass of up to four distinct objects. If fewer than four objects are desired, simply leave the remaining masses zero.

Equations		
xcm= <u>x1:m1+x2:m2+x3:m3+x4:m4</u>	y _{Cm=} <u>41·m1+y2·m2+y3·m3+y4·m4</u>	
m1+m2+m3+m4	m1+m2+m3+m4	

Variables	Descriptions	Units
xcm	center of mass x position	m
ycm	center of mass y position	m
x1	m1 x position	m
x2	m2 x position	m
x3	m3 x position	m
x4	m4 x position	m
y1	m1 y position	m
y2	m2 y position	m
y2 y3	m3 y position	m
y4	m4 y position	m
m1	mass 1	kg
m2	mass 2	kg
m3	mass 3	kg
m4	mass 4	kg kg

Collisions (Elastic)

These equations describe a one-dimensional elastic collision between two objects.

Equations		
v1f= <u>m1-m2</u> .v1i m1+m2 [°] .v1i	v2f= <u>2m1</u> m1+m2 [.] v1i	$v = \frac{m1}{m1+m2} v = 1$

Variables	Descriptions	Units
m1	mass 1	kg
m2	mass 2	kg
v1i	m1 initial velocity	m/s
v1f	m1 final velocity	m/s
v2f	m2 final velocity	m/s
vcm	center of mass velocity	m/s

Collisions (Inelastic)

This equation describes a one-dimensional inelastic collision between two objects.

PRESS CENTERS TO RETURN TO LIST

	Equations	
uf= <u>uliml</u> ml+m2		

Variables	Descriptions	Units
vf	final velocity	m/s
v1i	m1 initial velocity	m/s
m1	mass 1	kg
m2	mass 2	kg

Linear Mechanics

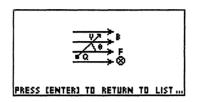
These equations describe the underlying relationships of Newtonian linear mechanics, and cover the concepts of kinetic energy, work, and power.

Equations			
F≖m∙a	Ki= <u>1</u> mvi ²	$Kf = \frac{1}{2} \cdot m \cdot vf^2$	
W=Kf-Ki	W=F·(xf-xi)	Pf=F∙∪f	
Paug=⊭ t	uf=vi+a·t	xf=xi+vavg·t	
xf=xi+vi·t+12·a·t2	$xf=xi+vf\cdot t-\frac{1}{2}\cdot a\cdot t^2$	uf ² =ui ² +2·a·(xf-xi)	
vaus=1/(vi+vf)	vavg= <u>xf-xi</u> t		

Variables	Descriptions	Units
xi	initial position	m
xf	final position	m
vi	initial velocity	m/s
vf	final velocity	m/s
vavg	average velocity	m/s
а	acceleration	m/s ²
F	force	N
m	mass	kg
Ki	initial kinetic energy	J
Kf	final kinetic energy	J
W	work	J
Pf	final power	W
Pavg	average power	W
t	time	S

Rocket Science

These equations are simple relations describing rockets and other varying mass objects.


	Equations	
R·u≖m·a	vf=vi+u·LN(^{mi} mf)	

Variables	Descriptions	Units
R	fuel consumption	kg/s
u	exhaust gas velocity	m/s
m	rocket mass	kg
a	acceleration	kg m/s ²
vi	initial velocity	m/s
vf	final velocity	m/s
mi	initial rocket mass	kg
mf	final rocket mass	kg

Magnetism

Charged Particle

This equation describes the force encountered by a charged particle moving in a magnetic field.

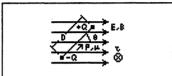
Equations

F=q·v·B·SIN(8)

Variables	Descriptions	Units
F	force	N
q	charge	С
v	velocity	m/s
В	magnetic field	Т
θ	angle	o

Cyclotron

These equations are relations explaining the behavior of a cyclotron.

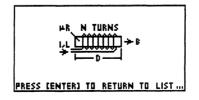

	Equation	S	
<u>r=۩י∨</u> ۹۰₿	ω <u>=9:B</u> m	$f = \frac{\omega}{2 \cdot \pi}$	
T=Ì			

Variables	Descriptions	Units
r	radius	m
m	mass	kg

v	velocity	m/s
q	charge	С
B	magnetic field	Т
f	frequency	Hz
ω	angular frequency	°/s
Т	period	S

Dipole

These equations describe a magnetic dipole and cover the concepts of torque, magnetic moment, and potential energy stored in a dipole configuration.

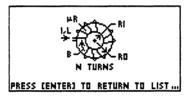

PRESS CENTER] TO RETURN TO LIST ...

Equations		
τ=µ·B·SIN(8)	U=−µ·B·COS(8)	

Variables	Descriptions	Units
τ	torque	N∙m
μ	dipole moment	J/T
B	magnetic field	Т
θ	angle	٥
U	potential energy	J

Solenoid

This equation gives the magnetic field created by a solenoid, based on the number of turns per unit length.



	Equations	
B=µ0·µr·I∙n		

Variables	Descriptions	Units
В	magnetic field	Т
μr	relative permittivity	-
I	current	Α
n	turns/unit length	1/m

Toroid

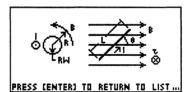
This equation gives the magnetic field generated by a toroid at a radius r, where ro < r < ri .

Equations

B=<u>µ0·µr·I·N</u> 2·11·r

Variables	Descriptions	Units
В	magnetic field	Т
μr	relative permittivity	-
Ι	current	Α
N	turns	-
r	radius	m

Wire (Loop)

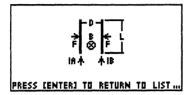

This equation describes the torque applied to a wire loop placed in a magnetic field. The torque acts to align the loop with the field.

	Equations	
τ=N·I·A·B·SIN(8)		

Variables	Descriptions	Units
τ	torque	N∙m
N	turns	-
I	current	А
A	loop area	m ²
В	magnetic field	Т
θ	angle	٥

Wire (Straight)

These equations describe the magnetic field and force due to a straight conductor. The magnetic field is correctly calculated according to a different relation inside the conductor.

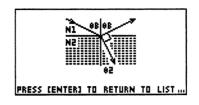

Equations		
B= <mark>μθ·μr·Ι</mark> 2·π·r	F=I·1·B·SIN(8)	

Variables	Descriptions	Units
В	magnetic field	Т
μr	relative permittivity	-
I	current	А
r	radius	m
rw	wire radius	m
F	force	N

θ angle °	1	length	m
	θ	angle	0

Wires (Parallel)

This equation describes the attractive force between two parallel wires with current flowing in the same direction.

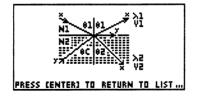

	Equations	
F≖ <mark>µØıµr·l·la·lb</mark> 2.π.d		

Variables	Descriptions	Units
F	force	N
μr	relative permittivity	-
1	wire length	m
Ia	wire A current	A
Ib	wire B current	A
d	separation	m

Optics

Brewster's Law

These equations introduce Brewster's Law, which covers the case when the angle between the reflected and refracted rays is 90°.

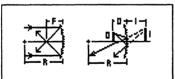


Equations		
TAN(86)= <u>n2</u> n1	8b+82=90_"	

Variables	Descriptions	Units
θь	Brewster's angle	٥
n1	index of refraction 1 -	
n2	index of refraction 2	-
θ2	angle of refraction °	

Reflection/Refraction

These equations cover Snell's Law and the basics of reflection and refraction of a light ray encountering a plane surface boundary between two mediums of differing indices of refraction. The incoming and outgoing wavelengths and velocities can also be found, as can the critical angle, which is the angle at which total internal reflection occurs.

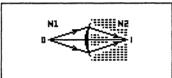


Equations			
n1·SIN(81)≖n2·SIN(82)	ni= <u>C</u> vi	n2= <u>C</u> v2	
دء <u>م</u> =1د 1=	λ2 <u>≖ λ</u> ⊓2	$\theta_{C}=RSIN\left(\frac{n1}{n2}\right)$	

Variables	Descriptions	Units
n1	index of refraction 1	-
n2	index of refraction 2	-
θ1	angle of incidence	۰
θ2	angle of refraction	۰
θc	critical angle °	
v1	light velocity in 1	m/s
v2	light velocity in 2	m/s
λ	wavelength in vacuum	m
λ1	wavelength in 1 m	
λ2	wavelength in 2	m

Spherical Mirrors

These equations govern object, image, and focal distance for spherical mirrors. Use negative values of r for convex mirrors.

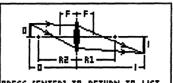

PRESS CENTERI TO RETURN TO LIST ..

Equations			
<u>1</u> + <u>1</u> = <u>1</u> 0+ <u>1</u> =F	F≖Źır	$\frac{1}{0} + \frac{1}{I} = \frac{2}{r}$	
m= <u>-1</u> 0	m´=−m ²		

Variables	Descriptions Units	
0	object distance	m
I	image distance	m
F	focal length	m
r	curvature radius	m
m	lateral magnification	-
m'	longitudinal magnification	-

Spherical Refraction

These equations govern object and image distance for spherical refraction between two mediums of differing indices of refraction.

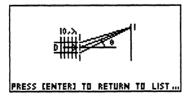

PRESS CENTER) TO RETURN TO LIST ...

Equations			
<u>n1+n2=n2-n1</u> 0 I r	_m ´= <u>n2</u> .m ²	m= <u>−n1·0</u> n2·I	

Variables	Descriptions	Units
0	object distance	m
Ι	image distance	m
r	curvature radius	m
n1	index of refraction 1	-
n2	index of refraction 2	-
m	lateral magnification	-
m'	longitudinal magnification	-

Thin Lenses

These equations are the standard thin lens approximations, and predict image and object distances based on the radii of curvature of the sides of the thin lens.

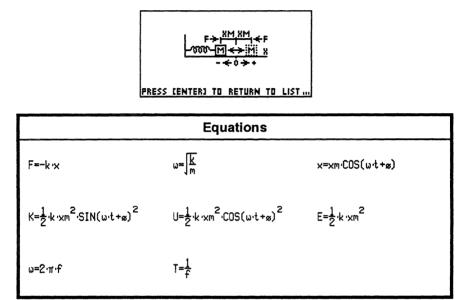

PRESS (ENTER) TO RETURN TO LIST ...

Equations $\frac{1}{0} + \frac{1}{1} = \frac{1}{F}$ $\frac{1}{F} = (n-1) \cdot \left(\frac{1}{r1} - \frac{1}{r2}\right)$ $m = \frac{-I}{0}$ $m' = m^2$

Variables	Descriptions	Units
0	object distance	m
I	image distance	m
F	focal length	m
r1	curvature radius 1	m
r2	curvature radius 2	m
n	lens index of refraction	-
m	lateral magnification	-
m'	longitudinal magnification	-

Two-Slit Diffraction

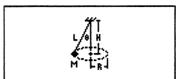
These equations cover two-slit diffraction of an incoming plane wave.


Equations		
d·SIN(8max)=m·X	d·SIN(8min) = $\left(m + \frac{1}{2}\right) \cdot \lambda$	$I=4 \cdot I0 \cdot COS\left(\frac{\alpha}{2}\right)^2$
<mark>≋=^{2·π·d}·</mark> SIN(8) ≻	א= <u>שווים</u> זיד	

Variables	Descriptions	Units
d	slit spacing	m
m	0,1,2,	-
λ	wavelength	m
θ	angle	٥
θmax	maxima angle	o
θmin	minima angle	٥
Φ	phase	٥
Ī	intensity	W/m ²

Oscillations

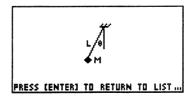
Mass-Spring System


These equations include Hooke's Law and explain the behavior of a mass-spring system. The mass position, kinetic energy, and potential energy vary according to the frequency of oscillation and the spring constant.

Variables	Descriptions	Units
F	spring force	N
k	spring constant	N/m
х	displacement	m
xm	maximum displacement	m
m	mass	kg
ω	angular frequency	kg °/s
Т	period	s
f	frequency	Hz
Φ	phase constant	•
t	time	S
K	kinetic energy	J
U	potential energy	J
Е	total energy	J

Pendulum (Conical)

These equations describe the motion of a conical pendulum, including the centripetal force acting on the oscillating mass.

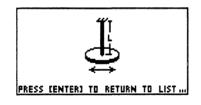

PRESS CENTERI TO RETURN TO LIST ...

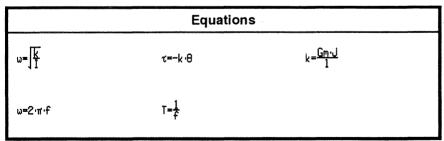
Equations			
ω= H	F=m·w ² r	H=1·COS(0)	
r=1·SIN(8)	ω=2·π·f	T≡‡	

Variables	Descriptions	Units
ω	angular frequency	°/s
F	centripetal force	N
m	mass	kg
θ	cone angle	۰
1	length	m
r	radius	m
Н	cone height	m
Т	period	s
f	frequency	Hz

Pendulum (Simple)

These equations describe the motion of a simple pendulum, including the restoring force acting on the oscillating mass.




Equations			
ω= <u>]9</u>	F=-m·9·SIN(8)	ω=2 ∙π∙f	
T≖‡			

Variables	Variables Descriptions	
F	restoring force	N
ω	angular frequency	°/s
m	mass	kg
θ	angle	۰
1	length	m
Т	period	S
f	frequency	Hz

Pendulum (Torsional)

These equations describe the motion of a torsional pendulum, including the restoring force acting on the rotating mass. The material properties of the shaft come into play.

Variables	Descriptions	Units
ω	angular frequency	°/s
τ	restoring torque	N∙m
k	torsional constant	J
θ	angle	۰
Ι	moment of inertia	kg·m ²
G	shear modulus elasticity	Pa
J	polar moment inertia	m ⁴
1	length	m
Т	period	s
f	frequency	Hz

Simple Harmonic Motion

These equations describe simple harmonic motion.

	Equations	
x=xm·COS(w·t+∞)	ບ≖−ພ·xm·SIN(ພ·t+∞)	a=-w ² ·xm·COS(w·t+ø)
ω=2·π·f	T= ↓	

Variables	Descriptions	Units	
x	displacement	m	
xm	amplitude	m	
t	time	S	
v	velocity	m/s	
a	acceleration	m/s ²	
Т	period	S	
f	frequency	Hz	
ω	angular frequency	°/s	
Φ	phase constant	0	

Two-Body System

These equations describe a two-body system by means of the reduced mass and oscillation frequency.

Equations			
μ= <u>m1·m2</u> m1+m2	ω= <mark>]</mark> μ	ω=2·π·f	
T= 1			

Variables	Descriptions	Units
μ	reduced mass	kg
m1	mass 1	kg
m2	mass 2	kg
k	spring constant	N/m
ω	angular frequency	°/s
Т	period	s
f	frequency	Hz

Special Relativity

Doppler Effect

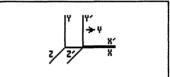
These equations present the relativistic simplifications of the Doppler effect.

Equations		
$fl=f\cdot \begin{bmatrix} 1-\frac{V}{c} \\ 1+\frac{V}{c} \end{bmatrix}$	$ft = \frac{f}{\gamma}$	$\gamma = \frac{1}{\int_{-\frac{U}{2}}^{\frac{2}{2}}}$

Variables	Descriptions	Units
f	proper frequency	Hz
fl	longitudinal frequency	Hz
ft	transverse frequency	Hz
v	velocity	m/s
γ	Lorentz factor	-

Energy/Mass/Momentum

These equations relate relativistic energy, mass, and momentum.


Equations		
קי יק	₽=₥י∨	Þ´=m´∙∪
۲=2 ۰۳۰۷ ²	K'=m·c ² ·(γ-1)	Em=m·c ²
E≖n [,] c ² יץ	E ² =(P´'C) ² +(M'C ²) ²	$\gamma = \frac{1}{\left 1 - \frac{\nabla}{2}\right ^2}$

Variables	Descriptions	Units
m	rest mass	kg
m´	relativistic mass	kg
р	classical momentum	kg·m/s
p	relativistic momentum	kg∙m/s
ĸ	classical kinetic energy	J
K´	relativistic kinetic energy	J

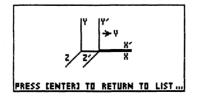
Em	mass energy	J
E	total energy	Ј
v	velocity	m/s
γ	Lorentz factor	-

Gallilean Transform

These equations describe the basic Gallilean transformation of an object from the observer frame to the object (prime) frame. All other properties (y, z, vy, vz, ax, ay, and az) remain unchanged during a Gallilean transformation, and are therefore not included.

PRESS CENTER] TO RETURN TO LIST ...

Equations

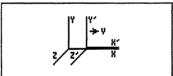

x´=x−v·t

vx′≖vx−v

Variables	Descriptions	Units
v	velocity of prime frame	m/s
t	time	S
x	x position	m
x´	x position (prime)	m
vx	x velocity	m/s
vx´	x velocity (prime)	m/s

Length/Time Dilation

These equations describe length and time dilation. The proper length is the length of the object as measured in the object (prime) frame. The dilated length is that seen by an observer with respect to whom the object is moving.



Equations		
t≖t´·v	$1=\frac{1}{\gamma}$	$\gamma = \frac{1}{1 - \frac{\sqrt{2}}{2}}$

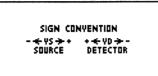
Variables	Descriptions	Units
t	time	S
ť	proper time (prime)	s
1	length	m
ľ	proper length (prime)	m
v	velocity of prime frame	m/s
γ	Lorentz factor	-

Lorentz Transform

These equations describe the basic Lorentz transformation of an object from the observer frame to the object (prime) frame. All other properties (y, z, ax, ay, and az) remain unchanged during a Lorentz transformation, and are therefore not included.

PRESS CENTERS TO RETURN TO LIST ...

Equations		
x'=(x-v·t) ~	t ´={t- <u>V'X</u> c ² '''	$\frac{\nabla x^2 = \frac{\nabla x^2 \nabla}{1 - \frac{\nabla x^2 \nabla}{2}}}{c}$
$vy' = \frac{vy}{1 - \frac{v \cdot vx}{2}} \cdot \begin{pmatrix} 1 \\ \gamma \end{pmatrix}$	$\frac{\sqrt{z}}{1-\frac{\sqrt{2}}{2}}\cdot\left(\frac{1}{\sqrt{2}}\right)$	$\gamma = \frac{1}{1 - \frac{\sqrt{2}}{2}}$


Variables	Descriptions	Units
x	x position	m
x	x position (prime)	m
t	time	S
ť	time (prime)	S
vx	x velocity	m/s
vx´	x velocity (prime)	m/s

vy	y velocity	m/s
vy	y velocity (prime)	m/s
vz	z velocity	m/s
vz´	z velocity (prime)	m/s
v	velocity of prime frame	m/s
γ	Lorentz factor	-

Waves

Doppler Effect

These equations describe the Doppler effect. Note the sign conventions displayed in the picture.

PRESS (ENTER) TO RETURN TO LIST ...

	Equations	
f'= <u>f·(u+vd)</u> v-vs		

Variables	Descriptions	Units
f	frequency	Hz
f	Doppler frequency	Hz
v	sound velocity	m/s
vd	detector velocity	m/s
vs	source velocity	m/s

Organ Pipes

These equations describe open and closed pipe frequencies for various acoustical purposes.

Equations		
fo =<u>0'no</u> 2.1	fc≖ <mark>∪·DC</mark> 4.1	

Variables	Descriptions	Units
fo	open pipe frequency	Hz
fc	closed pipe frequency	Hz
no	1,2,3,	-
nc	1,3,5,	-
1	pipe length	m

v	sound velocity	m/s

Sound Waves

These equations describe the fundamentals of sound waves. The unit of decibels is defined by storing 1 into the variable 'dB' in the 'PHYSD' directory.

Equations		
<mark>م</mark>]=∪	I= <u>1</u> ² .sm ²	$\beta = 10 \text{ LOG}\left(\frac{\text{I}}{\text{ref}}\right)$
≏Pm=∪∙ฺ₽ [,] ພ∙sm	ω=2·π·f	fb=f-f'

Variables	Descriptions	Units
v	speed of sound	m/s
В	bulk modulus elasticity	Pa
σ	density	kg/m ³
I	sound intensity	W/m ²
sm	longitudinal amplitude	m
fl	sound level	dB
ΔPm	maximum pressure change	Pa
ω	angular frequency	°/s
f	frequency 1	Hz
f	frequency 2	Hz
fb	beat frequency	Hz

Waves

These equations describe basic transverse and longitudinal waves. They cover the concepts of wave number, wavelength, maximum amplitude, and velocity.

Equations		
y=ym·SIN(k∞-w·t)	s=sm·COS(k×-w·t)	$k = \frac{2 \cdot \pi}{\lambda}$
ω= <u>2·π</u>	T= 1 ₽	∪= > ∙f

Variables	Descriptions	Units
у	transverse displacement	m
ym	transverse amplitude	m
s	longitudinal displacement	m
sm	longitudinal amplitude	m
k	angular wave number	°/m
λ	wavelength	m
x	x position	m
ω	angular frequency	°/s
t	time	s
f	frequency	Hz
Т	period	s
v	wave velocity	m/s

Appendix D

Α, Β

alpha lock 16 angular forces 121 angular mechanics angular mechanics 104 banked curves 105 circular motion 105 momentum 107 parallel axis theorem 107 precession 107 vertical motion 108 banked curves 105 Brewster's law 137

С

capacitor basics 109 cvlinder 110 plate 110 sphere 111 center of mass 128 centroids 67 changing the font size 14 charged particle 132 circuits, see electrical circuits circular motion 105 circular orbits 125 collisions elastic 128 inelastic 129 commands hyperbolic

ACOTH 83 ACSCH 83 ASECH 83 COTH 83 CSCH 83 SECH 83 miscellaneous **PCON 90** SIMPL 90 **SLVINTEG 90** polynomial solver PROOT 84 Taylor expansion **TYLRX 84** trigonometric ACOT 85 ACSC 85 ASEC 85 **COT 85 CSC 85 SEC 85** user-defined integral DEFIN 86 **INDEF 86** vector analysis SCROS 78, 87 SCURL 81, 88 SDIV 81, 88 SDOT 77, 86 SGRAD 80, 87 SLAPL 81, 89 conducting surface 120 conical pendulum 143 Constant Library

copying constants to stack 20 printing constants 20 Summary of Operations 20 using the search mode in 20 viewing a constant 20 copying data from stack 16 Coulomb's law 117, 121 cross products 78 curl 81 current divider 111 Custom Menu 12 cyclotron 132

D

data, see Reference Data definitions hyperbolic 68 trigonometric 68 Del operator, see ∇ operator diffraction two-slit 140 dilation length 148 time 148 dipole electric 117 magnetic 133 directory **HOME 18** PHYSD 18, 152 **SPARCOM 18** disk of charge 118 divergence 80 divider current 111 voltage 111 Doppler effect non-relativistic 151 relativistic 147 dot products 77 drag force 121

Ε

editing text 15 elastic collisions 128 electric dipole 117

electric fields 117 conducting surface 120 Coulomb's law 117 dipole electric 117 disk of charge 118 electric dipole 117 line of charge 118 Lorentz force 119 ring of charge 119 sheet of charge 120 surface conducting 120 electrical circuits capacitor basics 109 cvlinder 110 plate 110 sphere 111 current divider 111 divider current 111 voltage 111 inductor basics 112 solenoid 113 toroid 113 Ohm's law 114 resistor basics 114 transformer 116 voltage divider 111 ellipsis meaning of 14 elliptical orbits 125 energy relativistic, see energy/mass/ momentum energy, see forces/energy/work **Equation Library 23** Categories Screen 24 Summary of Operations 24 **Equations Screen 26** marking an equation 27 plotting equations creating an overlay plot 41 entering ranges 40

Graphics environment, see Graphics environment plotting an equation 39 preparing to plot 39 solving multiple equations 27 Summary of Operations 28 list of categories/topics 101 managing units and plotting 43 managing units and solving 44 Solver Screen 30 clearing variables 36 converting a value 32 copying a result to the stack 33 entering values 31 known variables 36 loading a value from the stack 34 multiple equation solver, see multiple equation solver solving for unknowns 32, 35 Summary of Operations 36 turning units off 39 turning units on 31 using the stack for calculations 33 using the wanted feature 35 wanted variables 36 **Topics Screen 25** Summary of Operations 25 Variables Screen 29 Summary of 29 viewing the picture 29 viewing a picture 29 escape velocity 123

F

fields electric, see electric fields font size changing 14 forces, see forces/energy/work forces/energy/work angular forces 121 Coulomb's law 121 drag force 121 frictional force 121 gravitational forces 122 Hooke's law 122 linear forces 122 Lorentz force 122 formulas, see Reference Formulas free falling object 124 frictional force 121 Function menu Summary of Operations 42 functions, see commands

G

Gallilean transformation 148 gradient 79 Graphics environment 41 Summary of Operations 42 graphs, see pictures gravitation 123 circular orbits 125 elliptical orbits 125 escape velocity 123 free falling object 124 gravitation 123 orbits circular 125 elliptical 125 projectile motion 126 terminal velocity 127 gravitational forces 122 Greek alphabet 61

H, I, J, K

harmonic motion 145 Hooke's law 122 hyperbolics definitions 68 pictures 69 relations 69 inductor basics 112 solenoid 113 toroid 113 inelastic collisions 129 inertia, moments of 67 input screens 15 installing a ROM card 10 **Integral Section** Summary of Operations 50 **Integral Tables 47** choosing a section 49 entering user-defined integrals 53 items in menu 48 solving an integral 50 definite or indefinite 51 entering constants 51 entering limits 51 simplifying the result 52 viewing the result 52 Summary of Operations 48 using the search mode in 49 viewing in EquationWriter 49

L

Laplacian 81 length dilation 148 lenses, see thin lenses line of charge 118 linear forces 122 linear mechanics 128, 130 center of mass 128 collisions elastic 128 inelastic 129 elastic collisions 128 inelastic collisions 129 linear mechanics 130 rocket science 131 loading data from stack 16 Lorentz force 119, 122 Lorentz transformation 149

M, N

magnetic dipole 133 magnetism 132 charged particle 132 cyclotron 132 dipole magnetic 133 magnetic dipole 133 solenoid 133 toroid 134 wire loop 135 parallel wires 136 straight 135 Main Menu 12 items 12 Summary of Operations 13 mass relativistic, see energy/mass/ momentum mass-spring system 142 memory free 17 requirements 17 menu keys, see softkeys mirrors plane 137 spherical 138 moments of inertia 67 momentum 107 relativistic, see energy/mass/ momentum motion angular 104 circular 105 circular orbits 125 elliptical orbits 125 free falling object 124 projectile 126 simple harmonic 145 vertical 108 moving around the screen 12 multiple equation solver

"Bad Guess(es)" message 46 understanding 45 using guesses 45

0

object centroids 67 Ohm's law 114 optics 137 Brewster's law 137 diffraction two-slit 140 mirrors plane 137 spherical 138 reflection plane 137 spherical 138 refraction plane 137 spherical 139 spherical mirrors 138 spherical refraction 139 thin lenses 140 two-slit diffraction 140 orbits circular 125 elliptical 125 organ pipes 151 oscillations 142 conical pendulum 143 mass-spring system 142 pendulum conical 143 simple 143 torsional 144 simple harmonic motion 145 simple pendulum 143 torsional pendulum 144 two-body system 146

P, **Q**

parallel axis theorem 107 particle charged 132 pendulum conical 143

simple 143 torsional 144 **Physics** revision 11 starting 11 pictures hyperbolic 69 trigonometric 69 pipes organ 151 plotting equations, see Equation Library **Polynomial Solver 55** solving a polynomial 56 viewing results 56 precession 107 projectile motion 126

R

RAM, see memory reduced mass 146 Reference Data 59 Greek alphabet 61 items in menu 60 SI prefixes 63 solar system data 61 Summary of Operations 62 using the search mode in 61 Summary of Operations 60 **Reference Formulas 65** items in menu 66 moments of inertia 67 object centroids 67 Summary of Operations 66 trigonometric/hyperbolic definitions 68 trigonometric/hyperbolic pictures 69 trigonometric/hyperbolic relations 69 reflection plane 137 spherical 138 refraction plane 137

spherical 139 relations hyperbolic 69 trigonometric 69 removing a ROM card 11 resistor basics 114 **Result Screen** Summary of Operations 53, 56 ring of charge 119 rocket science 131 ROM card environmental limits 93 installing 10 removing 11 service 92 shipping 93

S

Search Mode 14 sheet of charge 120 SI prefixes 63 simple harmonic motion 145 simple pendulum 143 softkeys summarized by action 97 summarized by screen 95 solar system data 61 Summary of Operations 62 solenoid 113, 133 sound waves 152 Sparcom address 91 **FAX 91** how to contact 91 telephone 91 special relativity 147 dilation length 148 time 148 Doppler effect 147 energy relativistic 147 Gallilean transformation 148 length dilation 148 Lorentz transformation 149

mass relativistic 147 momentum relativistic 147 time dilation 148 transformation Gallilean 148 Lorentz 149 spherical mirrors 138 spherical refraction 139 springs, see mass-spring system stack loading data from 16 starting Physics 11 summary softkeys by action 97 softkeys by screen 95 Summary of Operations 95 support 91 surface conducting 120 system flags 16 flag -60 (alpha) 16

Т

Taylor Expansion 71 expanding a function 72 simplifying the result 72 Summary of Operations 73 technical support 91 terminal velocity 127 text editing 15 Summary of Operations 15 thin lenses 140 time dilation 148 toroid 113, 134 torsional pendulum 144 transformation Gallilean 148 Lorentz 149 transformer 116 trigonometry definitions 68 pictures 69 relations 69 two-body system 146 two-slit diffraction 140

U

units dB 152 how they affect plotting 43 how they affect solving 44 turning off 39 turning on 31 user flags 17 flag 57 (font) 17 flag 61 (units) 17 user-defined integrals entering 53

V

Vector Analysis 75 cross products 78 SCROS command 78 curl 81 SCURL command 81 divergence 80 SDIV command 81 dot products 77 SDOT command 77 gradient 79 SGRAD command 80 items in menu 76 Laplacian 81 SLAPL command 81 simplifying results 82 Summary of Operations 76 ∇ operator 79 velocity escape 123 of a projectile 126 of charged particle 132 of circular orbit 125 of cyclotron particle 132 of elliptical orbit 125 of free falling object 124 of sound 151 on banked curve 105 relativistic 147 terminal 127 vertical motion 108 viewing items too wide for the display 14 voltage divider 111

W, X, Y, Z

warranty 92 waves 151, 152 Doppler effect 151 organ pipes 151 sound waves 152 waves 152 wire loop 135 parallel wires 136 straight 135 work, see forces/energy/work ∇ operator 79