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ALGEBRA FORMULAS

Factoring Identities

ax + bx = (@ + b)x a* — b* = (a — b)a + b)
a + 2ab + b* = (a + b)? @ - b =(a - b)(&* + ab + b
@ — 2ab + b* = (a - b)’ @+ b = (a+ b)d® — ab + b

Quadratic Formula

Ifax> + bx + ¢ = 0, wherea # 0,

then
o b VP - dac
2a
Exponents Logarithms
If b>0and u, v, t are any real If u and v are positive numbers and
numbers, then t is any real number, then
b* . b = bt log,(uv) = log,u + log,v
b'/b" = b"" log, (u/v) = logyu — log,v
b = b log,(u') = tlog,u
b =1 log,1 =0
b~ = 1/b" log,b =1
Metric Units
Linear Measure Area Measure
1 meter = 1m = 39.37 inches 1km? = 1000000 m? = 0.3861 sq. miles
1 kilometer = 1 km = 0.62137 miles 1 m? = 10000 cm? = 10.765 sq. feet
Imm = 0.001 m 1 cm? = 100 mm? = 0.155 sq. inch
lcm = 0.0l m
1 km = 1000 m
Volume Measure Weight Measure
1 liter = 1 ¢ = 1.057 quarts 1 gram = 1 g = 0.03527 ounces
10 = 1000 cm? 1 kilogram = 1kg = 2.2046 pounds
I m¢ = 0.001°¢ I mg = 0.001 g
1 k¢ = 1000 ¢ 1 kg = 1000 g



GEOMETRY FORMULAS

Pythagorean Theorem For a right triangle

@+ b=

Triangle o+ B + vy =180° Perimeter = a + b + ¢

b
Parallelogram Trapezoid
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Circle by
Circumference = 2mr
Area = 7Tr2 Sphere

Surface area = 47r?
_ _ Volume = 4 7r? v
Cone (right circular)

Lateral Surface = =rf
Volume = 4 7r?h

i Cylinder (right circular)

Lateral Surface = 2nrh
Volume = =rh
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Preface

The primary goal of a precalculus course is to provide students with the essential
training needed to approach a course in calculus with the confidence necessary
for successful completion. This training involves a good understanding of the
concepts related to functions in general and to the important special cases (poly-
nomial, exponential, logarithmic, and trigonometric, or circular, functions) in
particular. Crucial to the training process is maintenance of good balance
between emphasis on understanding fundamental ideas and on developing
and expanding the basic skills of arithmetic and algebra. This is the guiding prin-
ciple adhered to by the authors. The prominent features of the book are the fol-
lowing:

1. Emphasis is on basic ideas throughout the text. Problems in Exercise Sets at
the end of each section have been carefully selected with two purposes in mind:
to provide the student with an opportunity to apply fundamental concepts, thus
leading to a better grasp of ideas, and to offer extensive practice in developing
manipulative algebraic skills that are necessary for success in the study of subse-
quent courses in calculus. Included are many problems in which students are
expected to “think through” a solution rather than solve them by rote processes.



Preface

2. The use of calculators has been integrated into the material throughout the -
text, but the primary focus is not on computations. Calculators are used when-
ever it is felt that they will contribute to the ultimate goals of the course.
Lengthy and tedious computations frequently result in distraction from funda-
mental considerations. Use of high-speed computing devices minimizes such dis-
tractions. Although calculators are primarily employed for computational pur-
poses, they can also help to motivate and develop concepts. We attempt to
exploit this role whenever possible. For instance, in Section 1.2 we consider a
calculator as a function machine to reinforce the definition of a function; then
we relate composition of functions to pressing appropriate successive keys on a
calculator.

3. Applications are included throughout the text whenever appropriate. The
numbers used are realistic since these can be handled by calculators just as
easily as the carefully selected simple numbers that commonly appear in mathe-
matics textbooks and that are chosen for the sole purpose of avoiding even
slightly cumbersome computations. Calculators can add the dimension of ap-
proximate numbers often ignored in mathematics courses.

4. Appendix A contains a relatively complete introduction to the employment
of calculators for those students who have had no previous experience with
them. Included in separate sections is a discussion of algebraic operating systems
(AOS) calculators based on algebraic entry and RPN calculators based on Re-
verse Polish Notation. Keys for elementary computations are carefully de-
scribed and followed by several detailed examples and practice problems. In
most cases, students can master this material on their own. Additional instruc-
tion on the use of special function keys is given throughout the text proper, as
needed and when appropriate. In our experience, minimal class time has been
required for calculator instruction.

5. Appendix B contains a brief review of concepts and properties of real num-
bers. This material can be included in courses that emphasize the structure of
the real-number system.

6. Appendix C includes a relatively detailed treatment of computation with
approximate numbers. This topic is often avoided in mathematics courses, but it
is important in applications.

7. Throughout the entire book, the pattern of topic presentation is the follow-
ing: introduction of basic ideas; illustration of these ideas by several examples
worked in detail; Exercise Set of problems carefully designed to practice with the
new concepts and reinforce previously encountered ideas. Also included are Re-
view Exercises that utilize the material studied up to that point.

8. A concept, a technique, or a fact can best be learned if it is encountered
frequently and in a variety of settings. We exploit this truism by including prob-
lems in Exercise Sets that repeatedly use ideas introduced in earlier sections. For
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instance, the idea of combining functions to get new functions is introduced in
Chapter 1 and it is reinforced throughout the remainder of the text in the Exer-
cise Sets. Thus, for example, after completing the study of this book, the student
should have a good understanding of composition of functions and be prepared
for the introduction to the Chain Rule in a subsequent calculus course.

9. Whenever appropriate, presentation relies heavily on graphs. The reader
should find that in many situations an accompanying picture is invaluable for
providing insight into the various algebraic techniques for problem solving. One
of the important uses of calculators is in drawing accurate graphs.

10. The Exercise Sets contain a large number of problems ranging from simple
to challenging. In each section the reader will find several easy-to-follow Exam-
ples that illustrate the various types of problems included as exercises. In some
cases, the use of calculators allows us to introduce problem-solving methods that
are not part of a traditional course.

11. Looking ahead to calculus. The fundamentals of calculus are based on con-
cepts related to limits. A thorough understanding of the ideas involved is diffi-
cult the first time they are presented. A preliminary introduction based upon
numerical examples along with geometrical interpretations gives the students an
intuitive feeling for the abstract definitions of ¢ — 8 studied in calculus courses.
Thus we have included a section “Looking Ahead to Calculus” at the end of
Chapters 2, 3, 5, and 7, in which various types of limit problems are examined
from a numerical point of view. These sections should be considered optional;
they are particularly appropriate for those situations in which programmable
calculators or microcomputers are available to students.

12. This book is designed for a one-semester or two-quarter course. A prerequi-
site of high-school geometry and intermediate algebra is assumed.

The authors would like to express their appreciation to reviewers of both
books: Ellen E. Casey, Massachusetts Bay Community College; Robert G.
Clawson, Brigham Young University; Neville C. Hunsaker, Utah State Univer-
sity; Philip H. Mahler, Henry Ford Community College; Gordon L. Nipp, Cali-
fornia State College, Bakersfield; Janet P. Ray, Seattle Central Community
College; Joshua H. Rabinowitz, University of Illinois at Chicago Circle.

Logan, Utah J. E.
November, 1981 C.dJ. E.






Foreword
to

the
Teacher

The following statements explain some of the prominent pedagogical features of
this book.

1. Order of topics. Although a sequential ordering is essential in presentation of
some of the topics, there is considerable latitude in the order in which chapters
can be studied. Chapter 1 contains the basics of functions and should be consid-
ered prerequisite for all remaining topics. The material on polynomials (Chapter
2), exponential-logarithmic functions (Chapter 3), and trigonometry (Chapters
4 and 5) can be studied in any order.

Chapters 1 through 5 essentially constitute a study of elementary functions
and should be included in any precalculus course. Chapter 7 contains material
on sequences of real numbers and provides an important introduction to the
topic of sequences and infinite series to be studied in calculus.

Although the topics within a chapter are sequential, there are some portions
that can be omitted or easily modified. For instance, in Section 2.7 the Remain-
der and Factor Theorems are important but the use of synthetic division for
evaluating polynomials can be minimized or even omitted since nested-form
techniques for polynomial evaluation by using calculators are introduced in the
preceding sections.
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Although applications are scattered throughout the book, there are some
sections that are devoted exclusively to applied problems. These provide excel-
lent experiences with problem-solving techniques and are a desirable feature in
any course. These include: Section 3.5 (exponential growth and decay); Sections
4.2, 4.6, and 4.7 (applications in trigonometry); and Section 7.6 (mathematics of
finance).

2. Notation and approximate-number solutions. Asin most mathematics texts,
we take liberties in using the “equals” symbol to include “approximately equals”;
the context of discussion should make it clear when it is so used. For instance, it
is important for the student to realize that /2 is a symbol for a number that
cannot be written explicitly in decimal form, and when we ask for solutions in
exact form, such a symbol is the only acceptable answer. On the other hand, if
we ask for a solution rounded off to or correct to five decimal places, we expect
the approximate value 1.41421.

Appendix C includes a discussion of the arithmetic of approximate numbers.
In general, approximate numbers are studied in numerical-analysis courses. In
Exercise Sets we ask students to state answers to a given number of decimal
places, rather than always apply rules of approximate-number arithmetic. We
prefer that students concentrate on the main ideas under discussion and not be
distracted by the need to apply approximate-number rules.

3. Modern approach. The approach in this book is consistent with the recom-
mendations of the National Council of Teacher of Mathematics for the curricu-
lum of the 1980’s:

The use of electronic tools such as calculators and computers should be
integrated into the core mathematics curriculum. . . Calculators and com-
puters should be used in imaginative ways for exploring, discovering, and
developing mathematical concepts and not merely for checking computa-
tional values or for drill and practice.

4. Review material. Most precalculus textbooks include a review chapter or
two at the beginning consisting of topics studied in elementary-algebra courses.
In general, students find a detailed review boring, particularly at the beginning
of a new course of study. Therefore, we have included appropriate review mate-
rial in the first section of each of the first three chapters. Sections 1.0, 2.0, and 3.0
each contain material prerequisite for that chapter and are intended for review.
The review consists of a brief summary of pertinent ideas and facts; this is fol-
lowed by a set of problems that should be considered the core of the review. The
review sections can be included as an integral part of the course, or can be given
as out-of-class assignments to be done concurrently with the work of the chap-
ter, or omitted entirely when students have good mastery of elementary algebra.
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5. Supplementary material. Three separate supplements are available. The In-
structor’s Manual contains suggested class period schedules, a brief overview of
material of each section, and lists of problems for each chapter that can be used
for tests. The Answers Booklet has anwers to all of the problems, while the
Solutions Manual includes a discussion of solutions to most of the problems of
the text.
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1.0

Functions Chapter 1

Prerequisite to the study of more advanced topics in mathematics and to appli-
cations of mathematics in real-life situations is a sound grasp of concepts related
to functions. In this chapter some of the basic notions related to functions in
general are explored, and then in later chapters our attention is focused on the
study of special classes of functions; these include polynomial, exponential, loga-
rithmic, and trigonometric functions.

Before proceeding with our task, we first present a brief review of topics from
elementary algebra that are necessary for continuing with the subsequent mate-
rial of this chapter. The problems in Exercise 1.0 should provide a good test of
how much review work is needed.

INTRODUCTORY REVIEW
The basis for most of mathematics is the real-number system. Students of this
course have already had considerable experience working with numbers without
always being aware of the basic properties involved. We begin this section with a
brief review of the various types of real numbers and the related terminology.
This course does not include a formal discussion of the structure of the real-
number system, but a brief description of their properties is given in Appendix B.
Before considering classification of real numbers, we review some notations
related to sets. Also included in this section is a brief review of the number line,
the rectangular coordinate system, the arithmetic of complex numbers, and al-
gebra skills. (There will be more of this review in Sections 2.0 and 3.0.) We are
not interested here in repeating a course in introductory algebra; however, a
brief review can be helpful (and in some cases even necessary) in refreshing or
reinforcing concepts and skills that may have been forgotten. Our primary inter-
est here is to give each student a working knowledge of the topic, which is essen-
tial for successful completion of subsequent sections of this book.

Set Notation
It is customary to use capital letters (such as A, B, and so on) to denote sets. In
many cases a given set is indicated by enclosing a listing of elements (or mem-

" bers) of the set within braces; the order in which these are listed is of no impor-

tance. For example, set A, which consists of the first four positive even integers,
can be described by

A ={2,4,6,8} or A = {6,8,2,4}.

We say that “2 is an element of A” and denote this by 2 € A. Similarly, 4 € A,
6 € A, and 8 € A. We also write 5 & A to denote “5 is not an element of A.”

Frequently it is not possible or not convenient to list the elements of a set,
and a set builder notation is used. For instance, the set B of all positive even
integers is given by

B = {x|x is a positive even integer}.

This is read “B is the set of elements x such that x is a positive even integer”; the
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vertical bar is read “such that.” There are occasions when set B will be written
by listing a few elements as follows:

B=1{2486,..),

where the context of discussion will make it clear what numbers follow after 6.

In the examples above we say that A is a finite set, while B is an infinite set.
Note that every element of A is also in B. The notation used to indicate this is
A C B; this is read “A is a subset of B.”

Subsets In general, E C F indicates that each element of E is also in F. This
does not preclude the possibility that E and F are the same set, and so we could
write E C E. If E C F and there is at least one element of F that is not in E,
then we write E C F. In this case we say that “E is a proper subset of F.” In the
examples above both A C B and A C B are acceptable—the latter simply gives
more information.

Equality of sets If E C Fand F C E, then we say that sets E and F are equal
and write E = F.

Empty set In many situations it is necessary to talk about a set with no
elements. For example, the set C, described by
C = {x|x is a real number and x2 + 1 = 0},

can have no elements since x2 is nonnegative; then x2 + 1 is positive and cannot
be equal to zero. A set such as C is called the empty or null set and denoted by the
symbol &. Thus C = &.

Combining sets There are two set operations (with associated notations) that

will be helpful in making precise mathematical statements. Suppose E and F are
any two sets. The union and intersection of E and F are sets defined as follows:

Union: EU F = {x|x € E OR x € F}
Intersection: EN F = {x|x € E AND x € F}

EUF ENF



Example 1

Solution
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The word OR as used in mathematics means x is in E or in F or in both E and F.
If E N F = @, then sets E and F are said to be disjoint. The union and intersec-
tion of sets E and F are illustrated schematically in Fig. 1.1, where the shaded
regions indicate the resulting sets.

Suppose A = {1,3,5,7}, B = {2,3,5,7,9}, C = {2,9}. Determine:

a) AUB b) ANB c)ANC d) BuC
a) AUB=1{1,23,5,79) b) ANB={357)
)ANC=9 d) BUC=B ]

Real Numbers
Most people first learn about the counting numbers in childhood; then, as their
experience broadens, the world of numbers is expanded to include fractions,
negative numbers, square roots, and so on. Students who have reached this
course in mathematics have had some exposure to the entire set of real numbers.
Here we summarize the hierarchy and terminology associated with the various
subsets of the set of real numbers. The notations introduced here will be used
throughout this book.

The set of real numbers is denoted by R. The following sets are subsets of R:

Natural numbers: N = {1,2,3,...}*
Whole numbers: W = {0, 1,2,3,...}
Integers: J ={...,-3,-2,-1,0,1,2,3,...}
Rational numbers: Q = {a/b|a and b are integers and b # 0}1
Irrational numbers: H = {x|x €E R and x & Q)

Thus any real number that is not rational is called an irrational number. The
following are examples of irrational numbers:

1 5
\/2_5\3/5’_\5/—8:%\/_’77)77—57--'

This means, for instance, that it is impossible to find integers a and b so that a/b
is exactly equal to \/2; that is, (a/b)? will never equal 2. This fact can be proved,
as we shall see in Chapter 2. Here we are more interested in proper vocabulary
and correct use of the properties of real numbers than in a careful development
of the real-number system.

*

1.

This set will also be referred to as the set of counting numbers or positive integers.

Here we are assuming that a/b is in lowest terms.
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Example 2

Solution
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Note: It is conventional to consider, say, /4 as a positive number whose square
is 4; there is only one such number, 2; and so V4 = 2. In general, if b is a
nonnegative number, then there is one and only one nonnegative number, de-
noted by /b, whose square is b.

Real numbers can be expressed in decimal notation, for example 1/4 = 0.25.
However, for many numbers the decimal representation is nonterminating. For
instance,

7 —
— = 0.636363 . .. = 0.63.
11

We say that 7/11 has a repeating, nonterminating decimal representation.
Decimal representations can be used to distinguish between rational and
irrational numbers:

A number is rational if its decimal representation is terminating or
nonterminating and repeating. A number is irrational if its decimal
representation is nonterminating and nonrepeating.

The subsets of the set of real numbers are illustrated schematically in Fig.
1.2. In Fig. 1.2(a), R is shown as the union of two disjoint sets, Q and H; Fig.
1.2(b) gives the hierachy of the subsets of Q.

Q H

0,1,2,-3,-5, V2,m, 1+ V5,

-V23,m+13,...

F
|
w3

R

(@) (®)

For each of the following, determine whether the given statement is true or false.

a)y NCQ b)JNQ=4J c)QNH=2
dJNH=J e) VI6EH f) V-8€J
a) True b) True c) True d) False

e) False (since V16 = 4) f) True (since V/—8 = —2). BE
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Example 3

Solution
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The Number Line
In many situations it is possible to describe properties of real numbers in terms
of points on a line. In geometry we learn that a line L consists of infinitely many
points. We assume that a one-to-one correspondence can be established between
the set of real numbers and the set of points on line L so that each real number x
is associated with a unique point of L, and conversely, this same correspondence
associates each point of L with a unique real number.* This correspondence,
illustrated in Fig. 1.3, gives the number line.
-2-V3 _-\5
4

I V3 w
4L L4 L
1 2

LI I hd I I } v
—4 -3 -2 -1 0 3 4
To avoid cumbersome language in reference to a number line, we take some
liberties; for instance, we say “the point 2” rather than “the point associated
with the real number 2.”
Suppose u and v are two given real numbers. The less than property of real
numbers can be described by referring to the number line, as shown in Fig. 1.4:

u is less than v, denoted by u < v, means that point « is to the left of
point v on the number line.

In later sections of this book, we will make extensive use of number line ideas
in problems related to graphing.

Show each of the following subsets of R on a number line.

a) {—1,4} b) {x|x < —2 or x > 3}
¢) {x|x>1and x <4} d) {x|-2<x< 4}
a) ———4———+—+—+—1+— b) ——t—+—+—F+—t+———
-10 4 -2 0 3
c) +—+—+—+—4+—+—+—4—+— d) +—¢——F——"F——+—++
0 1 4 -2 0 4

*

In advanced mathematics texts this is referred to as the Cantor-Dedekind axiom.
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Each set is shown as the colored portion of the number line in Fig. 1.5. The set
given in (a) consists of only two points. The open circles enclosing —2 in (b) and
4 in (c) indicate that those two points do not belong to the given sets. Part (d)
illustrates the use of shortened notation: —2 < x < 4 means —2 < xand x < 4.
The notation a < x < b can be used only if x is between a and b. |

Rectangular Coordinate System*

The idea of a number line can be expanded to establish a one-to-one correspond-
ence between the set of points in a plane and the set of ordered pairs of real
numbers. This is illustrated in Fig. 1.6, where the horizontal number line is
called the x-axis, the vertical line is called the y-axis, and the point of their
intersection is called the origin. Any point P in the plane is associated with an
ordered pair of real numbers (u, v), as shown .Thus every point in the plane has a
first name and a second name; the first is always the horizontal coordinate, and
the second is the vertical coordinate.

T

°0: (24

® (-322) oP: (4,2)

T

111

Fig. 1.6

v

b ('—27 ~3)

Fig. 1.7

The coordinate axes divide the plane into four regions called quadrants;
they are numbered I, II, ITI, IV, as shown in Fig. 1.6. The ordered pairs associated
with several points are shown in Fig. 1.7. Note that the points P:(4,2) and
Q:(2, 4) are different; this illustrates the reason for calling these pairs ordered
and leads to the following definition.

Also referred to as the cartesian coordinate system, named for the great French mathematician and
philosopher René Descartes (1596-1650).
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Fig. 1.8

Fig. 1.9
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The ordered pairs (a, b) and (c, d) are the same, or are equal, if and
only if a = c and b = d.
Equality of ordered pairs is indicated by writing (a, ) = (c, d).

Pythagorean Theorem and Distance Formula
First recall the following important theorem from geometry (Fig. 1.8):

Pythagorean theorem If a and b are lengths of the sides (or legs) of a right
triangle and c is the length of the hypotenuse, then

c2 = a? + b2 (1.1)

The converse is also true; suppose a, b, and c are lengths of the three sides of a
triangle; if ¢2 = a2 + b2, then the triangle is a right triangle.

Distance formula The Pythagorean theorem provides us with a formula for
finding the distance between two points in a plane. Let P and @ be the two
points (as illustrated in Fig. 1.9), and let d represent the distance between P and
Q. Then d is given by

d= 1—3@ = \/(xl - x2)2 + (y1 - yz)z- (1.2)
y y
Q: (x2,52)
d [ P: (x1, 1)
1Yy2=n T\
_____ d n-nl \\
P:i(x,y1) x—x O - ——-= Q: (x2,y2)
X2 — X1
X X
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Suppose the lengths of the three sides of a triangle area = 4,b = 5,¢ = 7. Is the
triangle a right triangle?

a? 4+ b2 =16 + 25 = 41, c? = 49, a? + b% £ ¢?
therefore the triangle is not a right triangle. i

Find the distance between the given points.

a) A:(3, —4) and B:(2,3) b) C:(—1, —3) and D:(1, —2)
a) AB=V@B -2+ (—4-3)2= V12 + (—-7)% = V50 = 5V/2
b) CD = V(-1 - 17 + (=3 + 2% = V(=27 + (-1 = V5 e

Arithmetic of Complex Numbers

Most of our discussion will deal with real numbers; however, there will be a few
problems in this text for which there is no solution within the system of real
numbers. For example, if we wish to find the values of x that satisfy the equation
x%2 4+ 1 = 0, it can easily be argued that there are no real-number solutions. Thus
we introduce a “new number” i, also denoted by \/—1, with the property that
i2 = —1. Hence the numbers { and —1 are solutions of x> + 1 = 0.

The set of complex numbers

The set C of complex numbers is given by

C = {u + vi|u and v are real numbers}.

If v =0, then u + vi = u; since u is a real number, we see that any real
number is also a complex number. That is, R C C.

Ifu = 0, then u + vi = vi; for any given real number v, the value vi is called
a pure imaginary number, or simply an imaginary number. For instance, we
have the following:

3 is a real number and also a complex number,
2i is an imaginary number and also a complex number,
3 — 2i is a complex number.

The set of complex numbers is the union of three disjoint sets: the real
numbers, the imaginary numbers, and numbers of the form u + vi, where u # 0
and v # 0.

The arithmetic of complex numbers follows familiar rules of algebra of bino-
mial expressions, where i is treated as if it were a variable; whenever i2 occurs,
replace it by —1. The following example illustrates how we add, subtract, multi-
ply, and divide complex numbers and write the result in the form v + vi, with u
and v real numbers.
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Perform the indicated operations and simplify.
a) (2 — 3i) + (-1 + 5i) b) (1 +1i)—(—4+ 30)
c) (1+20)-(3—-1i) d 1-38)+@1+71)
a) 2-3)+(-14+5))=2-3i—-1+4+6=2—-1)+(-3+5)i=1+2
b) 14+i)—(—44+3)=14+4i4+4-3i=1+4+4)+1-3)i=5-2
e) 14+2)8—-i)=83—i+6i—22=3+5{—2(—-1)=5+5i
d) 1—3i=(1—3i)(1—i)=1—4i+3i2
141 (1491 -1) 1-—132
1—-4i—-3 -2 — 4
T1-(-1n 2

=—-1-2 [

Algebraic Operations
We assume that the student is familiar with some of the basic properties of
algebra. Here we give several examples as a review.

Perform the indicated operations and simplify.
a) (2x — 3)(x + 1) b) (2y — 1)(42 + 2y + 1)
¢) (& — 2 +1) + (x +2) Q) 2 2

x—1 X+ 2

a) 2x —3)(x+1)=2x(x+1) —3(x+ 1)
=22 4+2x—3x—-3=2x2—x—3

b) 2y -4 +2y+1)=2y(4y> + 2y + 1) — 1(4* + 2y + 1)
=8P+ 42 +2y - 4H* -2y -1=87-1

c) x2—2x + 2 3
x+2/ x3 —2x+1 Thusx——ﬂzx2—2x+2-— 3 .
x3+2x2 x+2 x+2
— 22 —2x +1
— 2x% — 4x
2+ 1
2x + 4
-3
d) 2 3 2(x + 2) 3(x — 1)
x—1 242 (x—1x+2) (x—1)x+2)
2 4 —(3x —3 - 7
_ 2+ (3x ) x + -

(x=1(x+2)  (x—=1)(x+2)
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Factoring First let us illustrate what it means to factor a given algebraic
expression. We say that x? — 4 factors into (x 4+ 2)(x — 2) because expanding
the product (x — 2)(x + 2) and simplifying, we get x2 — 4. Thus we write
x2 — 4 = (x + 2)(x — 2) and say that x + 2 and x — 2 are factors of x2 — 4. In
elementary algebra it is understood that factoring a given expression means
writing the expression in terms of a product involving only variables and inte-
gers. Hence we would say that the expression x2 — 3 cannot be factored since it
cannot be written as a product of two factors involving x and integers. However,
x2 — 3 can be expressed as a product as follows: 2 — 3 = (x — V3)(x + V/3).

The following formulas are useful in factoring algebraic expressions. Each
can be verified by expanding the right side and simplifying.

Common factor: au + av = a(u + v) (1.3)
Perfect square: u? + 2uv 4+ v2 = (u + v)? (1.4)

u? — 2uv + v = (u — v)? (1.5)

Difference of squares: u? — v? = (u + v)(u — v) (1.6)

Factor each of the following expressions.
a) 2x2 — 8y? b) 4x2 — 12x + 9 c) 2x2 + 5x — 3
a) By using formulas (1.3) and (1.6), we obtain
2x2 — 8y% = 2(x% — 4y?) = 2[x% — (2y)?] = 2(x + 2y)(x — 2y).
b) Here formula (1.5) applies:
4x2 — 12x + 9 = (2x)? — 12x + (3)2 = (2x — 3)2.

¢) None of the given formulas apply here, but we can try various possibilities
involving factors of the type (ax + b)(cx + d), where a-c=2 and
b+-d = —3. Wefind that (2x — 1)(x + 3) yields the middle term of 5x. Hence

2x%2 + 5x — 3 = (2x — 1)(x + 3). B

Solving Equations and Inequalities
Here we illustrate solution of linear equations and linear inequalities.

Solve each of the equations.
a) 2x —3=5 b) 5 —-3x=x+4

a) Adding 3 to each side of 2x — 3 = 5, we get 2x = 8. Dividing both sides by 2
gives x = 4. Hence 4 is a solution of 2x — 3 = 5. This means that if x is
replaced by 4, the result, 2+-4 — 3 = 5, is a true statement.
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b) Adding (—x — 5) to each side of the given equation yields an equation with
all terms involving x on one side of the equals sign and the remaining terms
on the other side. Collecting like terms and simplifying gives the solution:

5—3x+4+(—x—-58)=x+4+ (—x = 5),

1
—dx = —1, ==
X X 4

Therefore } is a solution of the given equation. [

Example 10 Solve the given inequalities and show the solutions on a number line.
a) 2x —3<L"7 b) 5—3x>8

Solution The procedure for solving linear inequalities is similar to that used in Example 9
to solve linear equations, except when we multiply or divide both sides by a
negative number, the direction of the inequality must be reversed.

a) Add 3 to both sides of the given inequality and divide the result by 2; this
gives
(2x = 3)+3< 7+ 3,
2x < 10,
x < 5.

Thus any number less than 5 will satisfy the given inequality; this is shown
on the number line:

b) Subtracting 5 from both sides of the given inequality yields

(5—-3x)—5>8-5,
—3x > 3.

Now divide both sides by — 3 and reverse the direction of the inequality to get

—3x 3
<—

-3 - =3
x < -1

The solution is shown on the number line:
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Exercises 1.0

The problems of this set are grouped according to topic.

Set Notation
In problems 1 through 6, write each set by listing its elements within braces.

1. The set of counting numbers between 3 and 7
2. The set of natural numbers between 10 and 15

3. {2,3,4,5} U {1,3,5) 4. {2,3,5) N {2,4,6)

5. {1,0.1,0.01} N {1, 7,2} 6. {1, —1,4, —4) U (1,4,8)

In problems 7 through 16, determine whether each statement is true or false.

7. 5 € {2,3) 8. {2,4) C {1,2,3,4)

9. {2,4) C {1,2, 3,4} 10. {3,4,8) = {4,8, 3}

11. {3,5,7} C {x|x is an odd number} 12. 5 € {x|x is an even number}
13. 3 € {1,3,5} N {2,4} 14. @ C {2,3)

15. 4 € {x|x? — 4x = 0} 16. {—1,1} C {x|x®2 — 1 = 0}

In problems 17 through 20, sets A and B are: A = {2, 3,5, 7}, B = {2, 3, 6, 8}. List within

braces the elements of each of the following sets.

17. {x|x € A and x € B} 18. {x|x € A or x € B}

19. {y|y € A and y & B} 20. {y|y € A and y is not an even number}

Subsets of Real Numbers

In addition to the notations described in this section, let P denote the set of prime
numbers. A prime number is a positive integer greater than 1 whose only divisors are 1
and itself (see Appendix D for a table of primes):

P ={235,7,11,13,17,19, 23,29, 31, .. .}.

In problems 21 through 26, determine whether each of the given statements is true or
false.

21. a) 8EN b) —4EN c) —64€J d) 431 P

22. a) 1+ V2€Q b) 3+ V5EH ¢) TER d)r+3€H
23. a) {0} C W b) {V4} CN c)QCH d)NCW
24.a)QNH=02 b)NNQ=Q ¢) PUN=N d (0 UN=W
25. a) 107 € P b) 247 € Q c) {—-1,1}Cd dPCQ

26. {yly=n*—-n+41,nEN}CP
Number Line
In problems 27 through 30, show the given subsets of R on a number line.

27. a) {-3,5} b) {x|x <2o0rx > 5} c) {x|]x<4and x > -2}
28. a) {1.5, V/5) b) {x|x < —2 or x > 4) c) {x|x < -1} U {x|x > 2}
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29. a) {—2, 7,7 — 2} b) {x|-3<x <4} c) {x|x < V2orx>n)
30. a){\/i,%,3+\/§} b) (x]1— V5 <x<3) ) {x|x<2) N {x]x> —2)

Rectangular Coordinates
In problems 31 and 32, plot the given points and give the quadrant in which each is
located.

31. A:(3,4) B:(—-2,3) C:(5, —2) D: (-2, —4)
32. A:(1,V3) B:(1-V5,2) C:i(m,—m) D:(1 —m, —\2)
In problems 33 and 34, plot the points (x,y) given in tabular form.

33| x| -2 -1 0 1 2 34.| x | =2 -1 0o 1 2

y| -6 -3 -1 1 3 y 3 0o -1 o0 3

In problems 35 and 36, determine the distance between points P and Q. In each case give

answers in exact form and also as a decimal approximation rounded off to two places.

35. a) P:(2,4), @:(-3,2) b) P:(—1, —3), @:(2, —5)

36. a) P:(3V2, —1), @:(—V2,3) b) P:(1 — V2,4), (1 + V2, 1)

In problems 37 through 42, the two sides of a right triangle are labeled a and b, and the
hypotenuse is ¢. Two quantities are given; find the third rounded off to two decimal

places.

37. a=55b=8 38. a=17,¢c =33 39. b =243, ¢c = 48.7
40. a =5, b =12 41. a =20, b = 48 42. a = 43.73, b = 74.56
In problems 43 through 46, the lengths of three sides of a triangle are given; determine

whether or not it is a right triangle.

43.a=5,b=12,c=13 44.a=12,b=16,c=20

45. a = 24208, b = 10575, ¢ = 26417 46. a = 3784, b = 2730, ¢ = 4666
Arithmetic of Complex Numbers

In problems 47 through 50, express results in the form x + yi, where x and y are real
numbers.

47. Given u = —3 + 4i and v = 1 — i, determine

a)u+v b) u —v c)u-v d) u-+v
48. Perform the indicated operations.

a) (3 + 2i)(—1 +1) b) (1 — 27)

c) (1 —2)(1 + 2i) d) (1 -1 +19)
49. Perform the indicated operations.

a) (1 —1)+(1+1) b) i +(2—1)

¢) (2—i)+i d) [i3 +i)] = (1 —1i)
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50. Given that u = 1 — i, evaluate:
a) u? +1 b) 2 — u?
c) 1+u)+>1-u) d) uv-+>1+uw)

Linear Equations
In problems 51 through 53, solve the given equations for x.

5l.a) x+2=5 b)3x —2=5+x
52. a) 2x — 3 =2 — 3x b) (x — 1)(x + 1) = x2
53. a) 5 —3x=x —3 b) x2 + 4 = x(x + 4)

Linear Inequalities
In problems 54 through 56, solve the given inequalities.

54. a) 2x — 3< —9 b)x+4>3—6
55. a) 3—2x<x+6 b) x(x —2) > (x + 1)(x + 3)
56.a)2—x-4:§gl—x b) (1 4+ 2)(1 — %) < 22 — %)

Algebraic Operations
In problems 57 through 60, complete the statement by entering the appropriate alge-
braic expression within the parentheses.

57. x2 —y2 —x +y=x2 — 2 — ( ) 58, x —2 —x3 +2x2 =x — 2 — x¥( )

59. x2 — 2x — 4x 4+ 8 = x%2 — 2x — 4( ) 60. 1 — (x — 1)%2 = x( )

In problems 61 through 70, perform the indicated operations and simplify.

61. (x2 —2x +5) — (3x — 2) 62. (x + 3)(2x — 5) 63. (3x — 1)(x + 4)

64. (2x — 3)(2x + 3) 65. (22 + 1)(x — 3) 66. (2x — V/3)(2x + V/3)
67. (223 +3x2 —5x —3) - (2x + 1) 68. (x2 —4) =~ (x + 2) 69. (x34+2x—1) - (x—3)

70. (x3 — 4x) + (x — 2)

In problems 71 through 80, determine which expressions can be factored, and then factor
as far as possible.

71. 3x2 — 12 72. x2 + 4 78. 2x2 — 5x + 2
74. 5x2 + 7x — 6 75. 3x2 —x + 2 76. 4 — (2x — 3)?
77. (x + 4)> — 36 78. 4y + 4y + 1 79. 8x2 — 32«

80. 1 — (x — 2)?

1.1 FUNCTIONS, RELATIONS, AND GRAPHS
The concept of a function is basic for most of mathematics. Very often, elements
of two sets are associated by some rule of correspondence. For example, consider
the set A = {1, 2,3} and the rule “Associate each number in A with a number
that is one greater than its square.” This rule associates 1 with 2, 2 with 5, and 3
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with 10, and can be considered a correspondence in which each element of A
corresponds to exactly one member of the set B = {2, 5, 10}. This association can
also be described by giving the resulting set of ordered pairs: {(1,2), (2,5),
(3,10)}; or it can be thought of as a mapping of set A onto set B and shown
schematically by

1 2 3
Il
2 5 10

This leads to the definition of a function in general.

Function as a correspondence

A function f from a set D onto a set R is a rule of correspondence
that assigns to each element x of D a unique element y of ®. The
element y is called the image of x under f. Set D is called the domain
of the function, and set ® is called the range of f.

The correspondence referred to in Definition 1.1 is given by a rule usually
stated in equation or formula form, although sometimes it is described verbally
or given by a table or a graph. In many situations it will be more convenient to
use other definitions of the concept of a function. There are two such definitions,
each of which is equivalent to Definition 1.1.

Function as ordered pairs

A function is a set f of ordered pairs in which no two ordered pairs
have the same first component; that is, the set will not include or-
dered pairs (a, b) and (a, c) where b # c. The set of first components
of the ordered pairs in f is called the domain of f, and the set of
second components is called the range of f.

Function as a mapping

A function f is a mapping that associates with each element x in a
set D (called the domain of f) a unique element y in a set & (called
the range of f).

Function Notation
In most cases the rule describing the correspondence in Definition 1.1 can be
written in equation form as

y = f(x).
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This is read “y equals f at x” or “y equals f of x,” and it states that y, also denoted
by f(x), is the element of ® corresponding to x in . Here x is called the inde-
pendent variable and y the dependent variable.

As a set of ordered pairs, f can be written

f={(x,5)|x €D and y=f(x)}.
As a mapping, f is described by
fix—f(x) or D15 ®.

In the definitions above the letter f was used to denote a function. In some
discussions it will be necessary to use other letters, such as g, A, F, G, etc., to
denote functions. Accordingly, the domain and range of, say, f and g shall be
denoted by D(f), R(f) and D(g), R(g), respectively.

Let us now consider a few examples.

Suppose D = {1, 2, 3} and the rule of correspondence for fis: for each x € D, the
image y corresponding to x is one less than twice x. In formula form this rule is
given by

y = 2x — 1 for each x € D.

a) Show the correspondence by listing the ordered pairs.
b) Determine the range of f.
¢) Draw a diagram to show f as a mapping.

a) f={(1,1),(2,3),(3,5)} b) ®(f) = {1,3,5}
c) O(f) ={1,2,3} From (a) or (c) we see that fis a function.

®(f) = {1,3,5} =

A function g is described by g(x) = x? — 1 and D(g) = {—-2, —1,0, 1, 2}.

a) Give g by listing the set of ordered pairs.
b) Determine ®(g). ¢) Show g as a mapping.

a) 8= {(—2’ 3), (_11 0)7 (07 _1)) (1: O)’ (2’ 3)}
b) ®’(g) ={-1,0,3}
c) D ={0, -1,1,-2,2}
Wl

®’E) ={-1, 0 3} =

In Examples 1 and 2, both f and g are functions. However, there is an impor-
tant property that f has but g does not. Looking at part (c) of the solutions, note
that each element in the range of f has associated with it exactly one element of
D, but this is not so for g; each of the range elements 0 and 3 has two elements of
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D(g) associated with it. We say that f is a one-to-one function, whereas g is not.
This leads to the following definition.

Suppose f is a function with domain D and range ®. We say that f
is a one-to-one function (or a one-to-one mapping) if to each element
of ® there corresponds one and only one element of . That is, if b
and c are two different elements of D, then f(b) # f(c).

The following table gives a correspondence between values of u and v.

The rule of correspondence here is given by v = u? — 2u + 3. Suppose fis the set
of ordered pairs (u, v), and g is the set of ordered pairs (v, u) given in this table.
a) List the ordered pairs in f. Is f a function?

b) List the ordered pairs in g. Is g a function?

a) f={(-1,6),(0,3),(1,2), (2,3),(3,6)}; fis a function.

b) g = {(6, —1),(3,0),(2,1), (3,2), (6,3)}; g is not a function since 6 is associ-
ated with two different numbers, and so is 3. Ea

In Example 3(b) we have a set of ordered pairs that is not a function. This
occurs frequently in mathematics, so it is convenient to have a term that repre-
sents any set of ordered pairs.

Any set of ordered pairs is called a relation. The set of first compo-
nents is called the domain of the relation; the set of second compo-
nents is the range of the relation.

Thus every function is a relation, but a relation is not necessarily a function
since there are sets of ordered pairs, as seen in Example 3(b), that are not func-
tions.

Suppose set g is the set of ordered pairs given by

g={(x,y)|x €A,y €A, and x <y},
where A = {1, 2, 3,4}. List the elements in g. Is g a relation? Is g a function?
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g=1{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}. Hence g is a relation since it is a set
of ordered pairs. However, g is not a function since 1 occurs as a first component
in more than one ordered pair. 2]

Accepted Conventions

Each of the Examples 1 through 4 involves finite sets. Most of the problems of
interest to us will involve functions with domain R or a subset of R. When we are
discussing any particular function, it is important that we not only have a rule of
correspondence clearly stated but also understand the domain. In order to avoid
the need to state the domain explicitly in most problems involving a function, we
adopt the following convention.

Whenever the domain is not explicitly stated, it will be assumed that
it is the largest subset of real numbers for which the rule of corre-
spondence yields range values that are real numbers. That is, if f is
a function and x € D(f), then f(x) is a real number.

One of the outstanding features of mathematics is precision of language.
However, it is frequently too cumbersome to carry this point to the extreme,
and it becomes necessary to take some liberties with language without the fear of
causing any misunderstanding. For instance, instead of saying, “The function g
whose rule of correspondence is given by the formula g(x) = x/(x — 1) and do-
main ® = {x|x € Rand x # 1},” we shall use the abbreviated form: “The func-
tion g given by g(x) = x/(x — 1)” or occasionally we shall simply say, “The
function g(x) = x/(x — 1).”

Suppose the rule of correspondence for function f is given by f(x) = Vx + 2.

a) Determine D(f).

b) Find the values of f(x) that correspond to the following values of x: —2, —1,
0, 1, 2.4. Express results in exact form; if an answer is not an integer, give it
also in decimal form rounded off to two places.

a) For each x in D(f) we want f(x) to be a real number; that is, x + 2 must be
nonnegative, which means that x > —2. Hence D(f) = {x|x > —2}.

b) f(—2) = 0; f(=1)=1; f(0) = V2 = 1.41; f(1) = V3 = 1.73;

f(24) = V4.4 = 2.10. ]
A function g is given by g = {(x, |y = (x———l—;c(xTZ)]

a) Determine D(g).

b) Give the ordered pairs in g that correspond to the following values of x: —1, 0,
2, V5.
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Solution a) We see that the given formula yields a real number for every real-number
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value of x, except x = 1 or x = —2. For instance, if x = 1, then
1-11+2  0-3 0
which is not defined; similarly for x = —2. Therefore,
DE) ={x|x# -2,x #1}.
—1 -1 _ 1
= —1 = — —_ =
e A S R s gy R Rl
0 0
=0, = = = ,
*=0y=Gonorn - =20
2 2 1
rEAYER e+ 42
5
x=V5y= V5 = 0.43 (to two decimal places).

(V6 —1)(V5 +2)
Hence the ordered pairs of g include ( ) (0, 0), ( ) (15, 0.43).

Suppose function f is given by f(x) = x2 — 2x. Determine:

a) f(—4) b) f(3x) ) flu—1)

a) f(—4) = (—4)2 —-2(—-4) =24 b) f(3x) = (3x)? — 2(3x) = 9x? —

e) fu—1)=w-12-2w—-1)=u?—4u + 3
Graphs

6x
iz

Almost all functions and relations in this text will consist of ordered pairs of real
numbers. Such ordered pairs can be shown graphically as a set of points in a

plane.

Suppose we wish to draw a graph of a function f defined by y = f(x). In

general the procedure will consist of the following steps.
1. Determine the domain D(f).

2. Take several values of x in D(f) and find the corresponding values of y given
by the rule y = f(x). A prudent choice of x values will be necessary to get the

essential features of the graph.

3. Step 2 will yield a table of x, y values; plot the corresponding (x, y) points on
a rectangular system of coordinates with an appropriate scale for each of the

x and y axes.

4. Draw a smooth curve connecting the points plotted in Step 3. Here we need
to be careful in connecting the points, since we want to be certain that the x,
y values of any point on the curve satisfy the given rule of correspondence.
Using common sense and experience will be helpful. There are exceptions to

Step 4 (see Example 10).
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Draw a graph of the function f given by f(x) = V1 — x.

Since only those values of x are acceptable for which f(x) is a real number, we

require 1 — x > 0. Solution of this inequality gives D(f) = {x|x < 1}.
Suppose we take values of x: 1, 0, —1, —2, —3, —4 and complete the follow-

ing table in which the values of f(x) are rounded off to one decimal place.

(a) (b)

The points (x,y), where y = f(x), are now plotted as shown in Fig. 1.10(a). A
smooth curve connecting these points is shown in Fig. 1.10(b). This is the graph
of the function f. B2

In a similar manner we can draw a graph of a relation consisting of a set of
ordered pairs of real numbers by plotting several points from the given set of
ordered pairs and connecting them in an appropriate way.

Draw a graph of the relation {(x,y)|y? = x}.

Since y? = x, the values of x are nonnegative, and so the domain is the set D =
{x|x > 0}. Now make a table of x, y values that satisfy y?> = x, noting that for
each x > 0 we get two values of y: y = Vx and y = — V/x. That is, the given set
of ordered pairs can be written as

{92 =x} = {(x,¥) |y = Vx} U {(%,3)|y = — Vax}.
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Plotting these points and drawing a smooth curve through them gives the graph
shown in Fig. 1.11. Note that the given set of ordered pairs does not define a
function since for each x > 0, there are two corresponding values of y. o

In Example 8, the set of ordered pairs is a function, but in Example 9 the set
is not a function. Graphically we see that each vertical line x = &, with £ < 1,
intersects the graph in Fig. 1.10 exactly once. We cannot say the same for the
graph in Fig. 1.11 since vertical lines of the form x = % for £ > 0 intersect the
graph at two points. This leads to the following graphical characterization of a
function.

A set of ordered pairs of real numbers with domain D represents a
function if and only if every vertical line x = &, where k2 € D, inter-
sects the graph of f at exactly one point.

y y y
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|
|
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v v
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Thus, the graph shown in Fig. 1.12(a) represents a function, but those in Figs.
1.12(b) and (c) do not.

It is also helpful to note from the graphs in Fig. 1.12 that the domain of the
relations shown in (a) and (c) is implied to be the set of real numbers, whereas
the domain of the relation in (b) is {x| -1 < x < 3}.

The graph of a function need not always be a connected curve. This is illus-
trated in the following examples.

Suppose D(f) = {1,2,3...7}, and the rule of correspondence is given by: f(x) is
the number of prime numbers less than or equal to x. Draw a graph of f.

Let y = f(x). First make a table of x, y values. Recall that the set P of primes is
P =1{23,5711,13,17...}. To evaluate f(x) we simply count how many prime
numbers are less than or equal to x. For example, to evaluate f(6), we note that
the prime numbers less than or equal to 6 are 2, 3, 5; there are three of them.
Therefore f(6) = 3.

By plotting the (x, y) points given in this table, we get the graph shown in

y
4+ °
3 ° °
2r e o
1F °
/R R R RN RN S B B
1 2 3 4 5 6 7 8

Fig. 1.13. Here we do not connect the plotted points with a smooth curve since to
do so would imply that all real numbers between 1 and 7 are in D(f). That is, the
graph consists of seven isolated points. Em

Suppose D(g) = {x|1 < x < 7} and the rule of correspondence for g is: g(x) is
the number of prime numbers that are less than or equal to x. Draw a graph of g.

This is similar to Example 10, except that here all real numbers between 1 and 7
are included in the domain. Let y = g(x). In addition to the points given in
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Example 10, we must consider other domain points. It is readily apparent that
for 1 <x <2, g(x) =0; for 2 <x <3, g(x) =1; and so on.

The graph of the function g is shown in Fig. 1.14. It consists of line segments
(which do not include the right-hand endpoints) and one isolated point (7, 4).

y
4 ©
3 [ —
2 ]
1+ —0
Fig. 1.14 —d | l l I ] L x [
0 1 2 3 4 5 6 7 8

Exercises 1.1

In problems 1 through 8, a set D is given and an associated set f of ordered pairs is
described.

a) Give f by listing the ordered pairs.

b) Is f a function? Is f a one-to-one function?

c) State the range ® of f.

d) Draw a diagram that illustrates f as a mapping of D onto ®.

1. D={-1,0,1,23}; f={(x,y)|x €D and y = 3x + 1}
D ={-4,-20,24}; f={(x,y)|x € D and y = x? — 2x}
. D ={-4-1,2,5}; f={(w,v)|lu € D and 2u + 3v =1}
D ={-3-1,1,3}; f={(v,u)|v €E D and 2u + 3v =1}
.D={-1,0,1,3)} f= {(x,5)]|x € D and 322 + 2y = 1}
. D ={-2-1,0,1,2};

f={(x,y)|x € D and the value of y is obtained by squaring x and then adding 3}.
7. D = {0,1,2,3);

f = {(u,v)|u € D and the value of v is obtained by multiplying u by 1 less than u}.

8. D ={-2024);

f = {(x,y)|x € D and the value of y is the quotient of the square of x and 1 more
than x}.

S oA W

In problems 9 through 12, a set of ordered pairs is given. In each case answer the follow-
ing.

a) Is the given set a function? Is it a one-to-one function?

b) State the domain and range for the given set of ordered pairs.

¢) Give a verbal statement that could be used to describe the rule of correspondence for
the given set of ordered pairs.
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9. f={(-1,1),(0,0), (1, 1), (2,4), (3,9), (4,16)}.
10. g = {(1,2),(2,4), (3, 8), (4, 16), (5, 32)}.
11. A = {(0,0), (1,1), (4,2), (9, 3), (1, —1), (4, —2), (9, —3)}.
12. f= {(-1, —2),(0,1), (1,4), (2,7), (3, 10), (4,13)}.

In Problems 13 and 14, use the rule of correspondence between u and v given by the
following table.

13. Let f be the set of all ordered pairs (, v) given by the table.
a) Give f as a listing of ordered pairs.
b) Is f a function?
c) State the domain and range of f.

14. Let g be the set of all ordered pairs (v, u) given by the table.
a) Give g as a listing of ordered pairs.
b) Is g a function?
c) State the domain and range of g.

In problems 15 and 16, a diagram is given showing a mapping of set D onto set ®.

a) List the corresponding set of ordered pairs.
b) Is the mapping one-to-one?

15. ©: {1, 3, 5} 16. : {-2,2, —1,1, 0}

®: {0, 2, 4} ®R:{ 5 2 1}

17. A manufacturer advertises the efficiency of a car as “15 kilometers per liter.” This
describes a rule of correspondence between the amount of gasoline used (x liters)
and the distance traveled (y kilometers), thus giving a set of ordered pairs (x, y).
a) What is the domain implied by this rule?

b) In each of the following ordered pairs, the first member is given; find the corre-
sponding second member.

(1L, ), (2L, ), (3.6L, ), (10L, )

18. In problem 17, the phrase “15 kilometers per liter” can also be considered as a rule of
correspondence between the distance traveled (z kilometers) and the amount of
gasoline used (v liters), thus yielding a set of ordered pairs (u, v).

a) What is the domain implied in this set of ordered pairs?
b) Complete the following ordered pairs by determining the second member in each
case.

(45 km, ), (175 km, ), (215 km, ), (460 km, )

25
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In each of the problems 19 through 28, a function is described by the given formula.

a) Using the convention stated on page 19, determine the domain of the function.

b) Evaluate the function at the given values of the independent variable; if the result is
not a rational number, then give it in approximate decimal form rounded off to two
places.

19. f(x) =x2 — 2x + 3, x: —2,0, V5 20. g(x) = i;—;‘ x: —2,0,7

21. h(x) =8 —4x,x: —2,1,1+ /5 22. f(x) =5 —3x%, x: —1,2,1 — V3

23. g(x) = —*_ x: 2,0, 5 24, f) =L -1 & _1, 05, V3
x_2) . b b t t—l’ b b

25. g(¢) :H% — % t: —2,05, /3 26. h(x) =x — 1, x: 1,3, /7

27. f(t) = V1 —¢ ¢t: 1, =3, —\/7 28. g(x) = Va2 +1,x: —1,3, /2

In each of the problems 29 through 33, a function is described. Determine the specified
image values. If an answer is an irrational number, give result rounded off to two deci-
mal places.

29. f(x) =x*—-3x+4 a)f(0) b) f(3) ¢) f(V2)
30. /(1) =££2 a) f(~1) b) £(2) ©) f(=V3)
3L f(x) = V1+ Vx a) f(0) b) £(3) c) f(9)

32. f(x) = 3% — 2x a) f(-2) b) f(-1) c) f(4)

33. f(x) = VVx — 2 a) f(4) b) f(9) c) f(12)

34. Suppose f(x) = 2x + 3; determine a) f(4x) b) f(x + 1)
35. Suppose f(x) = 3x2 + 2x — 3; determine a) f(1 —u) b) f(3 + x)
36. Given that g(x) = p f T determine a) glu+1) b) g(1 — 3x)
37. Given that g(x) = ;’_‘:—1 determine a) gu — 1) b) 2(2x — 1)

38. Let f be a function with domain N (the set of natural numbers), and let the rule of
correspondence be given by “f(x) is the number of primes less than or equal to x”
(see Example 10 of this section). Find:

a) f(12) b) £(19) c) f(100)
Hint: Use the table of prime numbers given in Appendix D.

39. f(x) = {1 if x is a rational number,

0 if x is an irrational number.
a) f(2) b) £(0.73) ¢) f(\/5)

40. f(x) = {1 if x2 is a rational number,
: ~ |x if x2 is an irrational number.

a) f(V2) b) f(1 + V2) o) f(-9

Find:

Find:
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In problems 41 through 54, draw a graph of the given function. In each case make a table
of x, y values, plot the corresponding points, and connect them with a smooth curve
when appropriate.

41. y=2x + 1 42. y=4 —x 43. y =4 — x?
44. y =22 — 4 45. y = Vx 46. y = \V—x
47. f={(x,y)|3x + 2y = 0} 48. f = {(x,y)]|2x% + y = 0}
49. f={(x,y)[x* =1 —y =0} 50. f = {(x,¥)|2x — y = 3}
51. f = {(x,y)|y equals the greatest integer that is less than or equal to x}
52. D(f) = {-2,-1,0,1,2) and f(x) =% + 1
53. D(f) = {—4, -3, -2, -1,0} and f(x) = V—x
2x if x is rational
54. D(f) = {-V3,-1,0,1, 3} and f(x) = [x2 if x is irrational

In each of the problems 55 through 60, a graph of a relation is given.

a) Determine whether or not the graph represents a function.
b) State the domain of the relation.

55. y 56. y
/ X <
/ (-1,0) (1,0)
57. y 58. y
0,2) — "
_\ (_2’ 1)
0,-2)
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In problems 61 through 64, functions f, g, and & are described by the following graphs.
each case find the value of the function at the given values of x.

y y y
41+ 4 4|
3F 3 3k /
2+ 2+ 2+
1+ 1+ /\ —1—o
| | 1 | | | | | | | | | | x | | | 1 | | | X
—4—3—2—11_01 2 3 4 —3—2—11_0123 4 —3—2—11_01 2 3
L 5 /2_
-3 _j -3
y=f) y=g(x) y=h(x)
61. a) f(0) b) g(0) c) k(1)
62. a) f(2) b) g(1) c) h(-1)
63. a) f(-3) b) g(2) c) h(-2)
64. a) f(4) b) g(4) c) h(3)
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COMBINING FUNCTIONS

In this section we explore five ways in which given functions can be combined to
get new functions. These are referred to as sum, difference, product, quotient
and composition functions.

Sum, Difference, Product, and Quotient Functions

Two functions can be combined in four ways to give new functions in a manner
analogous to combining two numbers by any of the four arithmetic operations
+, —, X, or +. However, before we discuss the arithmetic of functions, it is
necessary to first give a definition of equality of two functions.

Equality of functions

Suppose f and g are functions with domains D (f) and D (g), respec-
tively. We say that f equals g, denoted by f = g, if and only if
(1) D(f) = D(g) and (2) f(x) = g(x) for each x in their common
domain.

The following two examples illustrate this definition.

Suppose f, g, and A are functions defined by

_ _xt—x _x34x
flx)y=x, glx) = prt h(x)_—x2+1.

a) Is f = g? b) Is f = h?

a) Since D(f) = R and D(g) = {x|x # 1}, D(f) # D(g), and therefore f # g
by part (1) of Definition 1.4.

b) First note that D(f) = D(h) = R. For each real number x,

_x3+x_ x(x2 4+ 1) —
Tax24+17 x24+1 T
Hence (1) and (2) of Definition 1.4 are satisfied; therefore f = A. B

h(x)

The rule of correspondence given by

x2 — 4
x—2

g(x) =

defines a function with domain
D(g) = {x|x #£2}.

Use algebraic simplification on the rule for g to determine a function f so
that g = f.
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x2—4_(x+2)(x—2)

Solution g(x) = = x + 2 for every real number x except 2.

x—2 (x —2)
Thus a rule for the desired function is given by f(x) =x + 2, where
D(f) = {x]|x #2}. e
Definition 1.5 Sum, difference, product, quotient functions

Suppose f and g are functions. New functions f + g, f — &, f * & and
f/g are given by

L(f+8)x)=f(x)+g(x), D(f+8) =D(f)ND(g
2. (f—8)x)=f(x) —g(x), D(f—g) =D(f)ND(g)

3. (f+8)(x) = f(x) - g(x), D(f-g) = D(f) N D(g)
_f®) X
4. (fF8)) = =, :o(—) = (x]x € D(f) N D(g)

and g(x) # 0}

It is important to realize that the rules of correspondence stated in Defini-
tion 1.5 for the four functions are not merely formal manipulations of symbols.
For instance in (1), the plus sign in f(x) + g(x) indicates the sum of two num-
bers (remember that f(x) and g(x) are numbers), whereas the plussignin f + gis
used to denote a function whose rule of correspondence assigns to each x in
D(f) N D(g) the number f(x) + g(x).

Example 3 Suppose f, g, and A are functions given by

fx)=x+1, gx) =Vx, hx)=—=2

x—1
Give formulas and corresponding domains for each of the functions:
a)f+g b) g—h c)g-h d) f/h
Solution First note that the domains for f, g, and A are, respectively,
D(f)=R, D(g) ={x[x>0)}, D) ={xx#1).
a) (f+8)x =f(x) +g(x) = (x + 1) + Vx for x € D(f) N D(g). Hence,
(f+8)@x) =x+14+Vx; D(f+g) ={x|x>0}

b) (g — h)(x) = g(x) — h(x) = Vx — p f T for x € D(g) N D(h). Thus

(g—h)(x) = Va——F=; D(g—h)={x[x>0andx#1}.
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c) (g-h)x) =g(x) h(x)= \/;(x f 1) for x € D(g) N D(h). Therefore,

(g-h)(x):;—l/;f; D(g-h)={x|x>0and x # 1}.

x) x+1  (x+Dx-1) x2-1

x)  x/(x—=1) x x

o (-1

where :0(%) = {x|x € D(f) N D(h) and A(x) # 0}. Thus

(—g—)(x)zu; fD(-;;):{x|x;éOandx;£1}. s

X

Composition of Functions
Let us consider another way of combining two functions to get a new function.
The idea is illustrated first by an example.

Suppose a spherical balloon is being inflated in such a manner that its radius
ris given as a function of time ¢ by the formula r = g(¢) = V/t, where t and r are
given in appropriate units. Since the volume V of a sphere is given as a function
of r by the formula V = f(r) = (4/3)nr3, we can also express V as a function of ¢
by replacing r with V/¢. That is,

V=1(gt) =f(Vo) =47 (Vo).

Here we have an example of combining functions g and f to get a new func-
tion given by the formula V = f(g(¢)). We call this function the composition of
f and g and denote it by fog. Thus (fog)(¢) = f(g(¢)).

The example above leads us to the following definition of composition of
functions in general.

Definition 1.6  Suppose f and g are functions. The composite function of g followed
by fis a function, denoted by f - g, which assigns to the number x the
number f(g(x)). That is,

(fo8)(x) = f(g(x)),
where D(fog) = {x|x € D(g) and g(x) € D(f)}.

Note that the domain of fo g as given here includes all of the values of x for
which f(g(x)) is meaningful. That is, we first evaluate g at x, and so x must be in
D(g); then fis evaluated at the result g(x), and so we need g(x) to be in D(f).
This is illustrated schematically in Fig. 1.15, in which b is accepted by fo g, but ¢
is not since g(c) is not in D(f).
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Fig. 1.15

Suppose f(x) = 2x + 3 and g(x) = x2 — 1. Evaluate

a) (fo£)(2) b) (fof)(—4)
a) (fog)(2) =£(g(2) =f(3) =9
b) (fof)(—4) =f(f(—4)) =f(=5) = —7. =

Suppose f(x) = V/x and g(x) = 1/(x — 1). Determine formulas and correspond-
ing domains for the composite functions:

a) fog b)g°f
a) (fog)(x) = f(g(x)) =f(x i 1) = \/xl_—l

First note that D(f) = {x|x > 0} and D(g) = {x|x # 1}. Hence the do-
main of fo g includes any number x for which x € D(g) and g(x) € D(f);
that is, x # 1 and 1/(x — 1) > 0. Thus D(fog) = {x|x > 1}.

b) (gof)(x) = g(f(x)) = g(Vx) = ﬁ

where D(gof) = {x|x >0 and x # 1}. BE

Suppose fis a function given by f(x) = V4 — x, D(f) = {x|0 < x < 4},and gis
a function defined on the set of positive integers N by the rule: “g(x) equals the
number of prime numbers less than or equal to x.” List the ordered pairs of the
functions:

a) fog b) gof
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The domains of fand gare D(f) = {x|0 <x <4} and D(g) = {1,2,3,...}. The
set P of prime numbers is P = {2, 3,5,7,11,13,17,...}.
It is also helpful to,list a few of the ordered pairs in g. For example, to

evaluate g(7), the rule for g counts the number of primes less than or equal to 7.
These are 2, 3, 5, and 7. Thus g(7) = 4. Hence,

& =1{(1,0),(2,1),(3,2),(4,2),(5,3),6,3),(7,4), (8 4), (9, 4), (10,4), (11,5) .. .}.

a) (fog)(x) = f(g(x)) = V4 — g(x). Since g(x) must be in D(f), 0 < g(x) < 4.
The listing of g shows that the acceptable values of x are 1, 2, 3, 4, ..., 10.
Therefore D(fog) = {1,2,3,...,10}.

Let us evaluate fog at a few of these values of x.
(fog)1) =V4—g(l)=V4-0=2,
(fog)2) = V4—g2)=Vi-1=153,
(fo8)3) = V4—gB)=V4-2=172,

(fog)(10) = V4 — g(10) = V4 —4 = 0.

Therefore fo g consists of the following set of ordered pairs.

fog = {(1,2),(2V3), (3, V2), (4, V2), (5,1), (6, 1), (7,0), (8, 0), (9, 0), (10, 0)}.

b) (gof)(x) = g(f(x)). Here we require that 0 < x < 4 and f(x) is a positive
integer. Since f(x) = /4 — x, we see that there are only two values of x
satisfying this requirement, namely, 0 and 3. That is, f(0) = 2 and f(3) = 1.
Therefore D(gof) = {0,3} and

(gof)0) =g(f(0)) =g2) =1, (g-f)(3) =g(f(3)) =g(1) =0.
Hence the function gof is given by gof = {(0,1), (3,0)}. iz

Note from Examples 5 and 6 that functions fo g and gof are not equal. In
general, this is so.

Suppose functions f and g are given by f(x) = 1 — x2 and g(x) = V. Determine
a formula for the function fog.

(fog)(x) =f(g(x)) = f(Vx) =1 — (Vx)? = 1 — x. Here we must be careful to
state the domain for fog. It is necessary that x € D(g) and g(x) € D(f);
and so (fo g)(x) =1 — x, where D(fog) = {x|x > 0}.

Note that the function A given by A(x) = 1 — x can be evaluated at any real
number, but such a function is not equal to f o g since f(g(x)) is not defined for
any value of x less than zero. EE

Suppose f and g are functions given by

fx) =22 —2x—1 and g(x) = Vx + L.
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In each of the following, find the roots of the given equation.

a) (fog)(x) =3x b) (feg)(x) = f(x) + 3x — 2
First find (fog)(x):

(fog)x) =f(gx)) =f(Vx+1) =(Va+ 12 -2(Vx+1) -1
=x+2Vx+1-2Vx—2—-1=x—2.

Here the acceptable values of x are given by x € D(g) and g(x) € D(f).
Thus (f o g) = {x|x > 0}. Thus function f o g is given by (f o g)(x) = x — 2 for
x> 0.

a) The equation (fog)(x) = 3x is equivalent to x — 2 = 3x and x > 0. There-
fore x must satisfy x = —1 and x > 0. Hence there is no solution.

b) The equation (fog)(x) =f(x) + 3x — 2 is equivalent to the equation
x—2=(x2—=2x —1) + 3x — 2 and x > 0. Simplifying, we get x2 — 1 =0
and x > 0. The only value of x satisfying this is x = 1, so 1 is the only solu-
tion. =

Given F as a function defined by F(x) = (1 + x)8, find two functions f and g such
that fog =F

One solution is to take f(x) = x8 and g(x) = 1 + x. Then
(fog)(x) =f(g(x)) =f(1 +x) = (1 + x)8.

Therefore (fog)(x) = F(x); also D(F) = D(fog) =R, and so fog = F. An-
other solution is given by f(x) = x3 and g(x) = (1 + x)2. It should be clear that
there are other solutions. ]

Function Machine
It is instructive to think of a function in terms of an input-output machine.
Suppose a machine is built according to the rule that describes a given function f,
so that when a number, say c, is taken from the domain D(f) and entered into
the input slot, it is processed by the machine and the corresponding f(c) exits
from the output. This is shown schematically in Fig. 1.16.

Consider the following examples.

The square machine is one that corresponds to the rule f(x) = x2, i.e, it is a
machine in which the number entered into the input is multiplied by itself. For
example, if —2 is entered, out comes 4, as shown in Fig. 1.17. This corresponds to
the ordered pair (—2,4) of f. W

The composition function machine. For two functions f and g, we can illustrate
the fo g function machine by combining the f and g machines, as shown in Fig.
1.18. In this type of machine care must be exercised in selecting the x from D(g)
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Fig. 1.16

N
Function machine ~ ~ — — — f(c)

Fig. 1.18

N\
2R
v
flg))

that is to be entered; if the output g(x) from the g component cannot be digested
by the f component (that is, if g(x) € D(f)), then the fog machine will reject
that value of x and indicate it by Error. The user of such a machine should be
aware that the only values of x that it will accept are from the set {x|x € D(g)

and g(x) € D(f)}. [ ]
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In order to describe the addition machine it is necessary to consider a function
of two variables; that is, the domain of such a function will itself be a set of
ordered pairs of real numbers. Suppose we denote the function we are describing
by C+3J; the domain of is the set () = {(y,v)|u and v are real
numbers}. The rule for the function is given by C+J((a, b)) = sum of @ and
b. The range of is given by ®(C*))=R. For example,
((3,5)) = 3 + 5 = 8. Thus we can think of as a function on the set of or-
dered pairs of real numbers (Fig. 1.19). [

\ o

i) \ |/

/A\
s -7~
machine \ ¥/ \ v/
{ 8
7'\ 7T 1T
S~—a+tb \—->(1\,;/I§)<-—/
[
|
\__\
Fig. 1.20

|
713
(f+8)@B3)=1+V3

In an analogous manner we can consider the other binary operations (=,
(= as functions of two variables.

The sum function machine. Suppose f and g are functions given by
f(x) = V4 — x and g(x) = V/x. We can “build” a machine for the f + g function
by combining the f, g, and machines. Figure 1.20 shows what happens when
the number 3 is entered into such a machine. 2]

In a similar manner we could “build” function machines for the various
types of functions described in Section 1.2. Although our discussion so far has
been in terms of fictitious machines, it does introduce us to a real function
machine, the hand-held calculator, which can be considered a truly magnificent
multifunction machine.
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Scientific Calculator as a Function Machine

In Chapters 2 and 3 polynomial, exponential and logarithmic functions are
discussed. These along with trigonometric functions constitute a set of basic
functions in the sense that almost any function we consider is one of them or can
be described in terms of sum, difference, product, quotient, or composition of
these functions.

The scientific calculator has a set of function keys we can press in an appro-
priate order to “build” any one of these basic functions. Here we discuss some of
these keys; we consider others (such as the exponential, logarithmic, and trigo-
nometric keys) in appropriate places throughout the book.

One-variable function keys We will consider the one-variable function keys
(x],G3), and(¥X). By pressing the key, we cause the calculator to become a
reciprocal machine. For example, if we enter 2 into the display by pressing the
("2 Jkey, then instruct the calculator to become a reciprocal machine by pressing
the key, it will process 2 and give 0.5 as the output in the display. This is
illustrated schematically in Fig. 1.21.

D(f)={xlx#0)

\
o/

machine

Fig. 1.21

~——05=1(2)

Note that the machine will not accept x = 0. The reader should try
pressing (° ) and and then observe the response of the calculator.

In a similar manner the (52) and keys cause the calculator to behave
like g(x) = x2 and A(x) = V/x function machines, respectively. Also we can com-
bine the (x), (2], and keys to get other functions. For example, if
f(x) = 1/x, fo g is the function given by (fog)(x) = f(g(x)) = f(x?) = 1/x2. To
evaluate fo g at 2, that is (fog)(2), we first enter 2 into the display, then press
the (G2) and keys in that order. The display will then show 0.25; that is,
(fog)(2) = 0.25.
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Suppose f(x) = 1/x, g(x) = x2, and h(x) = Vx. Evaluate each of the following
by using a calculator. Give answers rounded off to two decimal places.

a) f(—1.7) b) £(3.6) ¢) h(4.3)
d) (gof)(—13) e) (g-h)32) f) (goh)(—4.1)

a) Enter 1.7 into the calculator display and then press the change-sign key,
usually labeled (cHs) or(#/=). Next press the key, and the calculator will
show —0.5882.... Thus f(—1.7) = —0.59.

b) Entering 3.6 into the display and pressing the (52 key gives g(3.6) = 12.96.
c) Enter 4.3, press(¥x), and you get A(4.3) = 2.07.

d) (gof)(—1.3) = g(f(—1.3)). Enter —1.3, then press the and (G2 keys,
and you get (gof)(—1.3) = 0.59.

e) (goh)(3.2) = g(h(3.2)). Enter 3.2, then press the and (G2 keys, and you
get (g0 h)(3.2) = 3.20.

f) (goh)(—4.1) = g(h(—4.1)). Enter —4.1, and then press the > key. At this
point the calculator indicates Error. The reason is that —4.1 is not in D (h),
and so we conclude that (goA)(—4.1) is undefined.

A formula for go A is given by
(goh)(x) = g(h(x)) = g(Vx) = (V2)? ==,

where we must restrict the values of x to x > 0. Note that the calculator evalua-
tion procedure includes this restriction on x, as illustrated in (e) and (f).

Two-variable function keys We now consider the keys (+J,(=),(x), =),
and ("), As illustrated in Example 12, each of the binary operations +, —, X,
and -+ can be considered as a function on a set of ordered pairs of real numbers.
For example, + is a function (which we shall denote by (+)) with domain
D) = {(x,y)|x €ER,y € R} and defined by ((u,v)) = u + v. Simi-
larly, the functions (=), %], and (=) are defined by (=3 ((u, v)) = u — v;
((w,v)) = u-v; and C=J ((4, v)) = u + v, where the domains for C=) and
(x) are the same as D(+)); and D)) = {(x,¥)|x €E R,y E R and y # 0}.

In order to evaluate a given binary operation function with a calculator, it is
necessary to enter an ordered pair of numbers and then instruct it to become the
binary operation machine. We accomplish this in a natural way in the RPN
calculators by using the Enter key to separate the two numbers; it serves as
the comma of the ordered pair. For example, if it is necessary to evaluate
(=3J((6,2)) = 6 — 2, we press 6 2, and we tell the calculator to become a
subtraction machine by pressing the C=Jkey; the display will then show 4. With
calculators that use the algebraic system of entry, we press the (= Jkey between
the two numbers: 6 (= 2; this separates the 6 and 2 and prepares the calculator
to become a (=) machine. Pressing the (=J key activates the pending (= func-
tion, and the display shows the result. Thus, with algebraic calculators we evalu-

ate (=) ((6,2)) = 6 — 2 by pressing 6 (=) 2(=).
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Another calculator key that can be considered as a function defined on or-
dered pairs of real numbers is labeled (¥*J). When the ordered pair (u, v) is en-
tered and the calculator is instructed to become a machine, it will process
(u, v) by raising u to the v power; that is, the output will be u?. Thus we write
I ((4, v)) = u’. For example, for the ordered pair (4, 3) the output will be 43,
which we write in function notation as (W) ((4, 3)) = 43 = 64.

The method of calculator entry for the (Y Jfunction is similar to that for the
binary operation functions.

For RPN calculator: press u v(¥J, and the display will show u®.
For algebraic calculator: press u v(=), and the display will show u”.

On many calculators the function will process an ordered pair (u, v) only
when u is positive.* That is, the domain of the function is given by

D(E) = {(y,v)|u € R,v € R and u > 0}.

If u is positive, then u? is a positive number for any real number v. Therefore the
range of is given by

RCE) = {w|w > 0).

Note: We shall encounter problems in which we wish to evaluate an exponential
with a negative base number. For example, if we want to find the value of
(—1.43)3, we note that (—1.43)3 = —(1.43)3. Now use a calculator to evaluate
(1.43)3 and then change the sign of the result. Thus (—1.43)3 = —2.924207.

Combining calculator functions to get new functions As we have now
seen, we can combine two given functions to get a new function, such as the sum,
difference, product, quotient, or composition function. We can use these ideas
with the basic calculator functions, those given directly by calculator keys, to
get almost any of the functions that we shall encounter. It will not serve our
purpose to pursue this in detail in a general setting, but here we illustrate by a
specific example.

Suppose f and g are functions given by f(z) = u? and g(z) = Vu. Then in
calculator notation f is given by (52) (1) = u? and g is given by (w) = Vu.
The sum function f + g is then given by

(G +@0)(w) =0B(w) + (@) = u? + Vu.

Thus to evaluate f + g at u, we apply the (52 ) function to u and the function
to u, obtaining an ordered pair (x2, V). Then we apply the function to this
ordered pair to obtain u2 + \/u. This is precisely the sequence of steps used in
having a calculator evaluate u? + \/17

Here we are disregarding the trivial case u = 0 and v > 0. On some calculators the can be used to
evaluate u? when u is a negative number if v is any integer.
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Throughout most of this text we encounter numerous examples in which the
calculator is used to evaluate functions, some of which are rather complicated,
by combining basic calculator functions in an appropriate manner. In any given
situation the combination of functions used is described in terms of the sequence
of calculator keys used.

Suppose f is a function given by f(x) = % + Vx. Using a calculator, evaluate

the given expressions and round off answers to four decimal places.

a) f(4) b) £(3.48)

We can consider the given function in terms of a combination of functions
g(x) = 1/x, h(x) = x2, and ¢(x) = Vx. Then f(x) = g(h(x)) + g(x); that is, the
function f is equal to the function go 2 + q. We will not trouble ourselves with

these details but rather will illustrate how they are used to evaluate the given
expressions.

a) f(4) = 1/4% + /4. This can be evaluated as follows:
For RPN calculator: press (4 (2] (4 )(VxJ(+], and the display will
show 2.0625.*
For algebraic calculator: press (4 (2] ) (=], and the
display will show 2.0625.

b) To evaluate f(3.48) we can follow the same sequence of steps as in (a) with
3.48 in place of 4. The result is f(3.48) = 1.9480. Ea

In problems 1 through 12, functions f and g are given by

f(x) =2x — 3, g (x) = x? + 3x.

Evaluate the given expressions and give answers in exact form. If the expression is not
defined, explain why.

1 (f+2)3)

- ({)i-s

9. (fog)(-2)

2. (f—g)3) 3. (f-8)5) 4. (g-1)(0.5)
g f g

6. (7)(—1) 7. (E)(—?’) 8. (7)(1.5)

10. (g<f)(0) 11. (fog)(0) 12. (fof)(4)

In problems 13 through 21, functions f, g, and A are given by

f(x)=x;1, gx)=x*+3, h(x)= Va—4

*

It is not necessary to press the key between the (/% )and ("8 Jbecause after a function key the
calculator is automatically ready to accept a new number.
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Evaluate the given expressions and given answers in exact form. If an expression is
undefined, explain.

13. (g — )(2) 14. (g + h)(5) 15. (%) ®) 16. (%)(3) 17. (go£)(1)
18. (foh)(4) 19. (g h)(3) 20. (f-g)(=3) 21. (h o h)(20)

In problems 22 through 33, functions f, g, and A are given by
flx)y=Vx, gx)=x-3  hx)=x>+4

In each case, determine a formula for the given function and its domain.

22. f+g 23. g 24. % 25. f-g
26. f+h 27. fog 28. gof 29. hog
30. gog 31 hof 32. é 33. foh

In problems 34 through 39, solve the given equations, where f, g, and A are given by
fx) =x+3, gx)=1-2% h(x)=Va
34. f(x) —4=0 35. (f—g)x) —x2=0 36. h(x) —2=0
37. (goh)(x) —3=0 38. (foh)(x) —4=0 39. (goh)(x) —f(x) =0

40. If f(x) = 2x — 3 and g(x) = 23 3 isfog=gof?

41. If f(x) = 2x + 5 and g(x) = £5 5 isfog=gof?

In problems 42 through 47, for the given function f find a function g such that
(fog)(x) = x for each x in R.

42, f(x) =x — 4 43. f(x) =2x + 3 44. f(x) = 3 — 4x
45, f(x) =4 — 2x 46. f(x) = 1.5x + 3 47. f(x) = 6 — 1.5x
In problems 48 through 56, functions f, g, and h are given by

flx) = Vx, glx)=a2+4, h(x):xfl.

Evaluate the given expressions and give answers rounded off to two decimal places.

48. f(5) 49. g(1.43) 50. A(\/3)
51. h(r) 52. (fog)(2.4) 53. (hof)(3)
54. (f + g)(m) 55. (é) @) 56. (f + h)(L6)

57. If functions f and g are given by f(x) = x2 and g(x) = V/x, are functions fog and
g of equal? Justify your answer.
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58.

59.
60.

61.

62.

63.

64.

65.

Functions

Given that A(x) = (2x + 1)%, find functions f and g so that fo g = A. Note that there
may be more than one solution.

Given that A(x) = x2 + 2x + 1, find functions f and g such that fog = h.

Given that fis a function defined on the set of positive integers by the rule f(x) is
equal to the number of prime numbers that are less than or equal to x, and g is a
function defined by the formula g(x) = /9 — &2, find the set of ordered pairs that
belong to

a) gof b) fog
c) State the domain and range of each of the functions gof and fog.

A function machine accepts any real number and processes it by squaring it, then
multiplying the result by 5, and then subtracting 4 from that result. Find the corre-
sponding output numbers for each of the input numbers: —3, 0, 2, 5.

A function machine is given to you without instructions as to what it does except
that it will accept any real number. Suppose you wish to find out what kind of
machine it is by entering numbers and observing the outputs. Entering —1 gives 1,
0 gives 4, 1 gives 7, and 2 gives 10.

a) On the basis of this information give a rule that might describe what the machine
is doing.

b) If 16 is entered, what do you think should come out?

c) If we decide to test one more number by entering 3 and we get 37, what do you
conclude about the machine?

A function machine is designed so that it will accept any real number x, and the
corresponding output will be the largest integer that is less than or equal to x. For
each of the following numbers, give the corresponding output number:

x=4;x=—6x=247; x = —1.32, x =4 + /2.

A function machine is designed so that it can accept any positive integer and process
it as follows: If a positive integer n is entered into it, the machine will try each prime
number that is less than or equal to n to see if it divides n evenly, and it will keep
count of how many do. The corresponding output will be the “how many” number.
For example, if 12 is entered, the machine will determine that the only prime num-
bers that divide 12 evenly are 2 and 3, and therefore output corresponding to 12 is 2.

a) Find the corresponding output of this machine for each of the following input
numbers: 1, 3, 8, 15, 30, 52, 256, 420.

b) What is the smallest number that can be entered into this machine so that the
output will be 4?

Suppose p and g are two different prime numbers. Use the function machine de-
scribed in Problem 64 to determine the corresponding output when each value below
is entered.

a) p b) p? c) pq d) p%¢*

Chapter 1
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LINES AND LINEAR FUNCTIONS

One of the basic concepts in geometry is that of a line. We say two distinct lines
are parallel if and only if they are inclined in the same direction. The inclination
of a line L can be described in terms of a number called slope of L, which we now

define.

Slope of a line
Given two distinct points (x,,y;) and (x,,y,), there is exactly one
line L that passes through them. The slope of L is the number m
given by
Yoo Vs

m=>2_-1 (1.7)
Xo — X

Here we are assuming that x; # x,.

In Fig. 1.22 we illustrate four possible cases, in which the slope is positive,
negative, zero, or undefined. In (a) the slope of line L, is positive since y, — y; > 0
and x, — x; > 0. In (b) the slope of L, is negative since y, —y, <0 and
Xy — x; > 0. In (c) line L, is horizontal, and since y; = y,, the slope of L, is zero.
In (d) the line L, is vertical; since x; = x,, we see that Eq. (1.7) involves division
by zero, and so we do not associate a slope with L, but describe its inclination by
saying “L, is a vertical line.”

y y y y
Ly
L L
/y ~2<(""”) (o)
. - L, p(x1,2)
(xl, }’1) (x2, yz) (sz yl)
p(x1, Y1)

X X X X

(a) Positive slope (b) Negative slope (c) Zero slope (d) Undefined slope

Equation of a Line

A line L is determined if either (1) two points through which L passes or (2) one
point and the slope of L are given. Case 1 reduces to Case 2 if L is not a vertical
line, since we can find its slope by using Eq. (1.7). Hence it is sufficient to assume
that a point and the slope are given. Let us proceed to find an equation for L.
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Fig. 1.23
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P:(x,y)

/ Q: (x1,y1)

Suppose line L passes through the given point @: (x,,y;) and has slope m.
Let P: (x,y) be any point on L, as shown in Fig. 1.23. We want to determine an
equation that relates variables x and y. By using the coordinates of points P and
Qin Eq. (1.7), we get (y — y,)/(x — x,) (for P different from @) as the slope of L;
this must be equal to the given slope m. Therefore (y — y,)/(x — x;) = m.
This can be written as

Y=y =m(x — xy). (1.8)

Equation (1.8) is called the point-slope form of the equation of L. In this form
we see that Eq. (1.8) is also satisfied by the coordinates of @; thus we have an
equation satisfied by any point on L. Equation (1.8) can be written as
y = mx + (y; — mx,), where y, — mx, is a constant, which we shall denote by b.
Hence an equation for L is given by

Substituting 0 for x in Eq. (1.9) gives y = b, so the point (0, b) is on line L. Since
(0, b) is on the y axis, it is called the y-intercept of L, and Eq. (1.9) is called the
slope-intercept form of the equation of L.

Suppose we begin with the equation

Ax + By + C =0, (1.10)
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where A, B, and C are given numbers. If B # 0, solving for y gives

(4 (-5)

Comparing this with Eq. (1.9), we conclude that Eq. (1.10) represents a line with
slope m = — A/B and y intercept —C/B. We call Eq. (1.10) the equation of a
line in standard form.

Vertical Lines
Suppose L is a vertical line passing through the point (¢, d), as shown in Fig. 1.24.

b P: (x,y)

(c,d)
Fig. 1.24 ¥

Let P: (x,y) be any point on L. Since L is vertical, x must be equal to ¢, and y
can be any number. Therefore the equation of L is simply

x=c (1.11)

Parallel Lines; Perpendicular Lines
Suppose m, and m, are slopes of lines L, and L,, respectively. The following
useful relationships can be proved.

If m; = m,, then L, and L, are parallel lines.

Ifm, = — mi (or mym, = —1), then L, and L, are perpendicular to
1
each other.
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The converse of each of these statements is also true whenever the slopes of the
lines are defined.

Linear Functions
For given values of m and b, Eq. (1.9) describes a function,
f(x) =mx + b. (1.12)

Since such a function is related to a line, we call it a linear function. Thus a
nonvertical line is associated with a linear function. Conversely, it can be argued
that the graph of any linear function is a line.

Find an equation of the line L that passes through the points P;: (—1,2) and
P,: (3,4).
First find the slope of L by substituting into Eq. (1.7):

__4-2 _1
m=3_(-1) "2

Thus Eq. (1.8) gives
y—2=4%x+1),
which can be written as
y=3x+3 or x—2y+5=0.
Either of these is an acceptable equation of L. 5]

Suppose line L is given by the equation 2x — 3y = 6.

a) Find the slope of L and the coordinates of the x and y intercept points.
b) Sketch a graph of L.

a) Solving the given equation for y gives
y=4%x—2.

In this form the coefficient of x gives the slope m = 2/3. The x-intercept point
can be obtained by replacing y by 0 in the given equation and solving for the
corresponding value of x; this gives (3, 0), the x-intercept point. Similarly,
x = 0 gives y = —2, and so the y-intercept point is (0, —2).

b) To sketch a graph we can plot any two points satisfying the given equation—
in this case, say, the x- and y-intercept points—and then draw a line through
them. The graph is shown in Fig. 1.25. o]

Suppose point  is (—3, 1) and line L is given by 4x — 2y = 3. Find the equation
of
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Y=(2/3)*X-2

Graphof2x -3y =6

a) line L, that passes through @ and is parallel to L;
b) line L, that passes through @ and is perpendicular to L.

Solution We can solve the given equation for y to get y = 2x — §; thus the slope of L is
given by m = 2 (the coefficient of x).

a) Let m, denote the slope of L. Since L, is parallel to L, m; = m; thus m, = 2.
Therefore an equation for L, is

y—1=2(x+ 3) or y=2x+1.
b) Since L, is perpendicular to L, m, = —1/m = —1/2. An equation for L, is
y—1=—3(x + 3) or x+2y+1=0. =

Exercises 1.3
In problems 1 through 4, points P and @ are given. Determine the slope of the line

through P and Q.

1. a) P: (—2,4); : (0,1) 2. a) P: (—4,1); @: (-3, -2)
b) P: (3,5); @: (—4,5) b) P: (1,3); @: (1, —4)
3. a) P: (4, -3); @: (1, —1) 4. a) P: (-3,4); Q: (5, —1)

b) P: (-2,5); @: (-2,3) b) P: (1,3); Q: (4,3)
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In problems 5 through 8, points P and @ are given. Find an equation of the line passing
through P and Q.

5. a) P: (3,4); @: (—1,2) 6. a) P: (-3,1); @: (-1, —2)
b) P: (—2,4); Q: (1,4) b) P: (—1,3); Q: (2,3)

7. a) P: (1, —2) @: (0,0) 8. a) P: (0,0); @: (—3,5)
b) P: (—2,4); Q: (—2,5) b) P: (4,1); @: (4,5)

In problems 9 through 12, a point  and the slope m of a line L passing through @ are
given. Determine an equation of L.

9. Q: (—2,4); m=2 10. @: (1, =3); m = —4
11. @: (0,3); m = —§ 12. Q: (3,0); m =4

In problems 13 through 16, an equation of a line L is given. Determine the slope of L and
the coordinates of x- and y-intercept points of L.

13. 3x + 2y +6=0 14, 3x — 2y =6
15. 3x —4y =6 16. 3x +4y +6=0

In problems 17 through 24, sketch a graph of the given equations and label the x- and
y-intercept points.

17. 3x — 2y =4 18. 2x + 3y =6 19. y=2x -3
20. y=—x+3 21, —x+2y=4 22, 2x =6 — 3y
23. 3x =6 + 2y 24, —3x —2y+4=0

In problems 25 through 28, a point P and an equation of a line L are given. In each case,
determine:

a) Equation of line L, passing through P and parallel to L;

b) Equation of line L, passing through P and perpendicular to L.

25. P: (—2,1); 2x —3y+4=0 26. P: (1,4); x +2y =3

27. P: (-1,3); x+4=0 28. P: (-1,-3);y—5=0

In problems 29 and 30, determine whether or not the three given points are collinear (lie
on a line).

29. A: (2, —-3); B: (0,—-1); C: (—1,2)

30. A: (0, —3); B: (=2, —6); C: (2,6)

In problems 31 and 32, three points are given. Determine whether or not they are verti-
ces of a right triangle.

31. A: (0,0); B: (1,2); C: (—4,2)

32. A: (2, —2); B: (5,2); C: (—6,4)

In problems 33 through 36, determine an equation that x and y must satisfy if the point
(x,y) is always equidistant from the two given points P and Q.

33. P: (1,3); @: (3, —1) 34. P: (0, —2); @: (-2, —4)
35. P: (—3,0); @: (5,3) 36. P: (4, —2); @: (1,0)
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In problems 37 through 40, an equation of a line L is given. Determine the coordinates of
all points (x,y) that are in the first quadrant, lie on L, and have integral values of
x and y.

37. 2x + 3y =11 38. 3x + 4y = 27
39. 5x + 2y =12 40. 3x + 2y =15

In problems 41 through 45, f and g are linear functions given by
flx)=2x-1, gx)=—-x+3.

In each of the problems, find a formula for the given function and determine whether it
is a linear function.

41. f+ g 42. f-g 43. f/g 44. fog

49

45. gof

1.4 QUADRATIC FUNCTIONS; INEQUALITIES
A function f described by a formula of the form

f(x) = ax? + bx + ¢,

(1.13)

where a, b, and c are given real numbers and a # 0, is called a quadratic function.
Let us consider three related problems involving quadratic functions.

1. Solving quadratic equations, that is, finding the values of x for which

f(x) =0.
2. Sketching graphs of y = f(x).
3. Solving inequalities involving f(x).

Solving Quadratic Equations; Quadratic Formula

Two techniques commonly used in solving quadratic equations involve factoring
or application of the quadratic formula. Let us first develop the quadratic for-

mula and then illustrate with examples.

We want to determine the values of x that will satisfy the equation

ax? 4+ bx +¢c =0,
where a # 0.

(1.14)

The following steps involve completing the square and lead to a formula

giving the desired solution.

Divide by a: x? + 2x = — €.
a a
Add (b/2a)? to both sides: x% + L (L)Z —__c<c. b
a 2a a | 4a?
Factor the left side: (x + L)z _ b% —dac .
2a 4a?
7 5

Take square roots: x + i — b dac -+ Vb 4ac.

2a 4q? 2a
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Solving for x yields the quadratic formula:

—b = Vb2 — 4ac (1.15)

r= 2a

Equation (1.15) can be used to solve any quadratic equation by substituting the
coefficients a, b, and c to get the solutions. The symbol = in Eq. (1.15) is used to
denote two solutions:

—b + Vb2 — 4ac . —b — Vb2 — 4ac

2a 2a

Solve the equation 2x% 4+ 5x — 3 = 0.

The given equation can be written in factored form as (2x — 1)(x + 3) = 0.
Since a product can be zero only if one of the factors is zero, we have 2x — 1 =0
orx 4+ 3 = 0. This gives x = 1/2 or x = —3; and so 1/2 and —3 are solutions of
the given equation. B

Solve the equation x2 — x — 1 = 0.

We try to factor the left side but without success. Therefore applying the quad-

ratic formula (witha =1, b = —1, ¢ = —1) gives
(== V(-1P—40)(=1) _1=+6
- 2(1) - 2
Thus the solution set S is S = {1 +2\/5, 1 —2\/5]. ]

Solve the equation 2x2 — 6x + 5 = 0.

As in Example 2, we resort to application of the quadratic formula (with a = 2,
b= —6,c=25)to get
Lk V(=6 — 42)(5) _ 6= \/-_4= 62 _3=*i
2(2) 4 4 2
Thus there are no real number solutions. However, if the domain of

f(x) =2x% — 6x + 5 is assumed to be the set of complex numbers, then
(3 +17)/2 and (3 — i)/2 would be solutions. ]

Graphs of Quadratic Functions
We wish to draw a graph of the equation

y=ax?2+bx +c (1.16)
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for given values of the parameters a, b, and ¢, where a # 0. First, let us consider
two examples that can be used as models for discussing the general case.
Draw a graph of
y =2x2 — 4x — 6. (1.17)
Rather than make an extensive table of x, y values that satisfy the given equa-
tion, we look for some key points. These include the coordinate axes intercepts:
y-intercept: let x = 0, then y = —6; thus (0, —6) is on the graph;
x-intercepts: let y = 0, then 2x2 — 4x — 6 = 0; or 2(x + 1)(x — 3) = 0.

Thus (—1,0) and (3, 0) are the x-intercept points. Next we get an equivalent
equation by completing the square on the x terms as follows:

y=2(x>—-2x) —6=2(x>—-2x+1) —6 —2=2(x —1)2 — 8. (1.18)

Equation (1.18) can be used to get information about the graph that is not
directly apparent from Eq.(1.17). Since 2(x — 1)2 > 0, y > —8 for all values of x.
For x =1, y = —8, and so (1, —8) is the lowest point in the graph. Also, if we
take any two values of x that are symmetric about the line x =1 (say,
x; =1 — handx, =1 + h), where A is any real number, the corresponding val-
ues of y are given by

y1=2[1—-h)—-1]2—-8=2h% -8,
¥o=2[(1 + h) — 1]> — 8 = 2h% — 8.

Note that y; = y,, and so the graph is symmetric about the line x = 1, as shown
in Fig. 1.26(a).

Y=2#¥X"2-4%X-6

(a) (b) Graphofy = 2x?> — 4x — 6
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Using the information above one can draw a reasonably accurate graph of
the given equation (Fig. 1.26b). The curve is an example of a parabola* that
opens upward. - ]

Draw a graph of
y = —2x2 — 4x + 6. (1.19)
Following the same procedure as in the solution of Example 4, we get
y-intercept point is (0, 6);
x-intercept points are (—3,0) and (1, 0).
The completed square version of Eq. (1.19) is
y=—2(x+1)* +8 (1.20)

Since —2(x + 1)2 <0, we get that y < 8 for all values of x. Forx = —1,y = 8§,
and so (—1, 8) is the highest point on the graph. Also using Eq. (1.20), one can
easily show that the graph is symmetric about the line x = —1.

Using the information above, one can draw a reasonably accurate graph of the
given equation (Fig. 1.27). As in Example 4, the curve is a parabola; in this case it
opens downward.

Yy=-2%X"2-4%X+6

—4 1 2
_2 —
x=-1 —4
Graphofy = —=2x? — 4x + 6 B

*

A more detailed treatment of parabolas is given in Chapter 8.
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Graphs of Quadratic Functions in General
By following a procedure similar to that used in Examples 4 and 5, we can derive
the important features of the graph of any equation of the type

y = ax? 4+ bx + ¢, wherea # 0. (1.21)
The completed-square version of Eq. (1.21) is
b\2 | 4ac — b?
= — _— 1.22
y=afe+ L)+ 425 (122)

From Eq. (1.22) we get the following important features:

4a

2
1. If @ > 0, then a(x + 2L)2 >0, and so y > c4—a_b for all values of x.
a

Thus the graph has a lowest point given by x = ;—ab.

2. If a < 0, then a(x + i)2 <0, and so y < 4(12—a—b2 for all values of x.

2a
-b

Hence the graph has a highest point given by x = Sa

3. Also, the curve is symmetric about the line x = ;—:. In summary, we have

the following.

The graph of y = ax? + bx + ¢, where a # 0, is a parabola that

1. opens upward if a > 0 and, opens downward if a < 0;

2. has a lowest or highest point given by x = ;ab;

3. is symmetric about the vertical line x = —2—-5.

Find the maximum and minimum values of the function f given by
f(x) = 31x2 — 4.8x + 3.7 and D(f) = {x]0 <x <2}
Give answers rounded off to two decimal places.

We solve the problem by first drawing a graph of the given function. The graph is
part of the parabola y = 3.1x2 — 4.8x + 3.7 that opens upward (since a = 3.1,
and so a > 0), and the lowest point is given by

b (—4.8)

(to three decimal places).
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For this value of x, the corresponding value of y is given by

y = 3.1(.774)2 — 4.8(.774) + 3.7 = 1.84
(to two decimal places).
Therefore (0.77,1.84) is the lowest point on the graph.

Now make a table of x,y values, and since 0.77 is in D(f), we include
x =0.77, y = 1.84:

x |0 0.5 077 1 1.5 1.8 1.9 1.99

y |37 208 184 200 348 510 5.77 6'42J

The values of y in this table are determined with the aid of a calculator and are
rounded off to two decimal places. Plotting these points and drawing a curve
through them, remembering to restrict x to values in D(f), gives the curve
shown in Fig. 1.28.

Y=3.1%¥X"2-4.8%X+3.7

(2, 6.50)

(0.77,1.84)

Graphof f(x) =3.1x> —4.8x + 3.7, D (f) = {x|0=x <2}

The graph in Fig. 1.28 can now be used to give an answer to the stated
problem. The minimum value of the function—that is, the smallest value of y on
the graph—is 1.84. From the graph we also see that as x approaches 2, y ap-
proaches 6.50, but the point (2, 6.50) is not on the graph since 2 is not in D(f).
Thus it should be clear that the function does not have a maximum value.

ER
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Suppose right triangle ABC, shown in Fig. 1.29, has base CB of length 5 and
height CA of length 3. A rectangle CDEF is inscribed in the triangle, as shown.
Find the dimensions of the rectangle with maximum area.

|

I

u |
0o

F B

Let u = CF and v = CD denote the dimensions of the inscribed rectangle. The
area K is given by

K=u-v (1.23)

where u and v are variables; for example, u can be any number between 0 and 5.
There is a relationship between u and v, as can be seen from the fact that trian-

gles ACB and EFB are similar, which gives % = ‘é—g In terms of u and v and
the given dimensions, this becomes Vb = % Therefore v = 3 — %u Substi-

tuting this into Eq. (1.23) gives a formula for K as a function of u:

K = u(3 —%u).

K= —%uz + 3u, (1.24)

Thus

where 0 < u < 5.

The graph of this function, as seen in Fig. 1.30, is part of a parabola that
opens downward (since the coefficient of u? is negative), and so it has a highest
point given by
_=b_ -3 5

“=%a Ta(=3/5) 2

The corresponding value of K is given by

_ —3(5)? 5)_15
- 5 (2) +3(2)_ 4
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K=(-3/5)%U "2+3#U

~
T
—
1)
=z
N>

Graphof K = —0.6u% + 3u, 0<u<5

This is the maximum value of K. Therefore the rectangle with dimensions

_5 —3_3(5\_3
u_2 and v=3 5(2)_2

will be the one that has maximum area. 2

Quadratic Inequalities
The following examples will illustrate techniques for solving quadratic
inequalities.

Find the solution set S for the open sentence x2 — 2x — 3 < 0.

Two methods of solution are illustrated.

Method 1 Lety = x2 — 2x — 3 and draw a graph. This is a parabola that opens
upward, as shown in Fig. 1.31, where the x-intercept points (—1,0) and (3, 0)
were determined by solving the quadratic equation x2 — 2x — 3 = 0.

Solving x2 — 2x — 3 < 0 is equivalent to finding the values of x in the graph
of Fig. 1.31 for which y is negative. As seen from the graph, the solution includes
any x between —1 and 3. Thus S = {x| -1 < x < 3}.



Section 1.4 Quadratic Functions; Inequalities 57
Y=X"2-2%X-3
y
4
3 -
2 —
1 x=-1 -1<x<3 x=3
] | x o} | | | J | l j |
2 1 0 4 T T T T &1 T T
1 -1 0 3

Fig. 1.31 Graphofy =x*-2x -3

Method 2 The given inequality can be written as
(x+1)(x—-3)<0. (1.25)

We can consider all values of x by looking at three cases, as shown on the number
line in Fig. 1.32.

1. Ifx < —1,then (x + 1) < 0and (x — 3) < 0; thus (x 4+ 1)(x — 3) > 0, and
S0 x is not a solution of inequality (1.25).

2. If —1<x<3, then (x +1) >0, and (x — 3) < 0; hence we can write
(x + 1)(x — 3) <0, and so x satisfies inequality (1.25). Therefore any x for
which —1 <x < 3 will be in S.

3. Ifx > 3,then (x + 1) > 0and (x — 3) > 0; thus (x + 1)(x — 3) > 0,and so
x is not a solution of inequality (1.25).

Therefore S = {x| -1 <x < 3}.

Method 2 suggests the following format for solving the given inequality
x2—-2x —3<L0.

Solve the equation:* x2 —2x — 3 = 0.

Factor: (x + 1)(x — 3) = 0.

Solution: x = —1 or x =3

*

In general, the cut points for ax? + bx + ¢ < 0 can be found by using the quadratic formula to solve
ax? + bx + ¢ = 0. If the roots are not real numbers, the solution set is the empty set if a > 0, and R
if a <O0.
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Consider —1 and 3 as cut points on a number line, and check typical points in
each region:

1. x= -2 2. x=0 3. x=5
(=5)(-1)<0 (-3)1) <0 (6)(2) <0
False True False

This suggests that the solution is given by —1 < x < 3.

Find the solution set S for the open sentence x2 — 2x + 3 > 0.

Method 1 Let y = x2 — 2x + 3, and draw the graph shown in Fig. 1.33, where
the lowest point is given by x = —b/2a = 2/2 = 1,y = 2. From the graph we see
that for every x, the value of y is positive, and so the solution set for the given
inequality is S = R.

y=X"2-2%X+3

(1,2)

Graphofy=x*>-2x+3

Method 2 By completing the square, one can write the given inequality as
(x —1)2+2 > 0.Since (x — 1)2 >0, (x — 1)2 + 2 > 0 for every real number x.
Thus S = R. 4]
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Exercises 1.4

In problems 1 through 12, solve the given equations. In each case,

a) express solutions in exact form;

b) state whether the roots are rational, irrational, or complex (nonreal) numbers; if the
roots are irrational numbers, express them in decimal form rounded off to two deci-

mal places.

1. 2x2 —8x —2=0 2. 222+ 5x —3=0 3.3x2 —4x —-2=0
4. 2x2 —4x —-3=0 5. x2—2x—2=0 6.3x2 —4x +1=0
7.2 -2x+2=0 8.3x2+6x+1=0 9. x2-2V3x —2=0
10. 3x2 —2V/2x —1=0 11. x2 —23x — 16 =0 12. 2x2 + 15x — 35 =0

In problems 13 through 20, sketch graphs of the given functions. In each case label the
coordinates of

a) y-intercept point, b) x-intercept points, c) the highest or lowest point.
13. f(x) =2x%2 — 3x — 2 f(x) =2x2 4+ 5x — 3

e
"

15. f(x) = —x2 +2x + 3 16. f(x) = —x2 —2x + 8
17. f= {(x,y) |y = x% + 4x + 4} 18. f={(x,y) |y = —x% + 2x — 1}
19. f={(x, )|y = x® + 4x — 2} 20. f={(x,y)|y = —x% — 2x + 5}

In problem 21 through 32, find the maximum and minimum values of the given func-
tions. In any case where there is no such value, explain.

21. f(x) =x%2 +4x + 3 22. f(x) =x2+6x + 4
23. f(x) = —2x?2 +4x — 5 24, f(x) = —2x%2 — 6x + 3
25. f(x) = 1.5x2 — 4.8x — 1 26. f(x) =1.2x2 +32x — 4

27. f(x) = —x2 — 3x + 4; D(f) = {x]0 < x < 2}
28. f(x) =22 —3x — 2; D(f) = {x]0<x L2}

29. f(x) = —x2 — 3x + 3; D(f) = {x|0 <x < 2)
30. f(x) =2x2 +4x + 1; D(f) = {x| -3 <x <3}
3L f(x) = —2x% —4x + 1; D(f) = {x|0 < x < 2}
32. f(x) = —3x% — 6x + 4; D(f) = {x|0 < x < 2}

In problems 33 through 40, find the solution set for the given inequalities. Also show the
solution on a number line.

33. x2 —4x +3>0 34. x2 4+ 5x +4<0
35. 2x2 —x —3<0 36. 3x2 4+2x —8>0
37. —x242x+4<0 38. —2x2 4+3x —4<0
39. x2 —4x +4<0 40. x2 —6x + 9<0.

41. Rectangle DEFG is inscribed in an isosceles triangle ABC, as shown in Fig. 1.34.
Suppose AC = BC = 4 and AB = 2, and denote DE by x. If K represents the area of
the rectangle, find

a) a formula that gives K as a function of x, and state the domain;



60 Functions

b) the dimensions of the rectangle that has maximum area;

¢) the maximum area.

Fig. 1.34
A D E B

42. A ball is thrown vertically upward from the ground with an initial speed of 36
meters per second. The position of the ball at any time ¢ seconds after it has been
thrown is given by the formula

s = 36t — 4.9¢2,

where s is the distance (in meters) of the ball from the ground.

a) Determine the location of the ball at each of the following times: t = 1, ¢ = 2,
t=3,t=4,t=5¢t=6.

b) Draw a graph showing s ds a function of ¢.

¢) The graph in (b) does not give the path of the ball (since it goes straight up, then
down). It merely allows us to “read off ” the height of the ball at any time ¢. Use
it to get reasonable approximations of the height of the ball at times £ = 1.5 and
t =4.5.

d) How many seconds does it take for the ball to reach its highest point? How high
is it at that instant?

43. A farmer purchases a rectangular plot of land 200 m by 400 m adjacent to his prop-
erty line AB, along which there is an existing fence. He wants to fence in a corral in
the southwest corner of the newly acquired land, as shown in Fig. 1.35, and has a
total of 360 meters of fencing left over from a previous job, all of which he wants to

D 400 m C

Y 200 m

X

|
Corral |
|
|

Fig. 1.35

Chapter 1
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44.

45.

use to fence the three sides of the corral. He is interested in making a corral of
maximum area.

a) Determine the dimensions of such a corral.

b) How many square meters of the purchased land is left over after the corral has
been fenced ?

A rancher has 144 meters of fencing left over from a previous job, and he wishes to
divide it into two pieces, one of which he will use to fence a square region for holding
his horses, and the other will be used to fence a circular region as a training area.
Suppose the fence is cut at a point x meters from one end, and the piece of length x
is to be used for the training area. The rancher is interested in the amount of land
that is being fenced in, that is, the total area A of the circular and square regions.
Intuition tells him that there must be a value of x at which he should cut the 144
meters of fencing so that A is the smallest (thus leaving the largest possible area for
grazing). Is his intuition correct? If it is, determine the place where he should make
the cut, the size (radius) of the training area, and the length of the side of the
holding area.

A travel agent is proposing a tour in which a group will travel in a plane of 150
capacity. The fare will be $1400 per person if 120 or fewer people go on the tour; but
if more than 120 go, the fare per person (for the entire group) will be decreased by
$10 for each person in excess of 120. For instance, if 125 go, the fare for each will be
$1400 — $10(5) = $1350. Let x represent the total number of people who go on the
tour and T the total revenue (in dollars) collected by the agency.

a) Find T as a function of x; be certain to indicate the domain of the function.

b) Determine the number of people that will give the largest revenue.

61

1.5 ABSOLUTE VALUE FUNCTION

The idea of a number line establishes a one-to-one correspondence between the
set of real numbers and the set of points on a line. This gives us a basis for
describing geometric ideas by relating them to numbers. For instance, if we wish
to talk about the distance between two points on a line, we do so in terms of the
corresponding numbers. Thus our intuitive notion of distance suggests that on
the number line in Fig. 1.36 the distance between the point 3 and the origin (the
point corresponding to zero) is 3, and similarly the distance between —3 and 0

is also 3.* We denote this by |3| = 3 and |—3| = 3.

o

| | | | | | |
I I I T T T I I

-3 0 3

Fig. 1.36

-+

*  In Section 1.0 we indicated that we would take liberties with language and say “point 3” rather than

the correct but more cumbersome ‘“the point corresponding to the number 3.”
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This concept suggests a rule for assigning to any real number x a correspond-
ing nonnegative number that represents the distance between x and 0 on a num-
ber line. The rule for assigning values of |x| is: if x is positive or zero, then |x| is
x but if x is negative, then |x| is obtained by simply dropping the negative sign.
This rule gives the absolute value function, which we now state as a formula.

Suppose x is any real number. The absolute value function, denoted
by |x|, is defined by
x if x > 0, (1.26)
x| = .
—xifx <0.

The symbol |x| is read the absolute value of x.

As indicated above, the geometric interpretation of |x| is that it represents
the distance between the point x and 0 on a number line. In general, the distance
between any two points on a line can also be described in terms of absolute
value; this we shall do after considering the following two examples.

Given that f(x) = |x|, evaluate the following.

a) f(4) b) £(0) c) f(=2) d) f(1-5)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>