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ALGEBRA FORMULAS

 
 

Factoring Identities

ax + bx = (a + b)x

a + 2ab + b* = (a + b)?

a> — 2ab + b* = (a — b)

Quadratic Formula

If ax? + bx + ¢ = 0, wherea # 0,
then

~b + Nb—dac
* 2a

Exponents

Ifb>0and u,v, t are any real

numbers, then

bY . bY — hutv

b“/b" — bv

(b")' — pH!

b= 1
b"= 1/b"

a> — b> = (a — b)a + b)

a — b= (a - b)d®> + ab + b

a + b= (a + b)(a* — ab + bP)

Logarithms

If u and v are positive numbers and

t is any real number, then

log, (uv) = log,u + log,v

log, (u/v) = logyu — log,v

log, (u') = tlog,u

Metric Units

Linear Measure

I meter = 1m = 39.37 inches

1 kilometer = 1 km = 0.62137 miles

Imm = 0.001 m

Icm = 0.01 m

1 km = 1000 m

Volume Measure

I .057 quarts1 liter = 1

1000 cm?

1

0.001 ¢

000 ¢N
S
S

1

1

I m

1k

Area Measure

1 km? = 1000000 m? = 0.3861 sq. miles
1 m?> = 10000 cm? = 10.765 sq. feet
1 cm? = 100 mm? = 0.155 sq. inch

Weight Measure

1 gram = 1g = 0.03527 ounces

1 kilogram = 1kg = 2.2046 pounds

1 mg = 0.001 g

1 kg = 1000 g



GEOMETRY FORMULAS

Pythagorean Theorem For a right triangle

a? + b= ct  

Triangle a +B + vy = 180° Perimeter = a + b + ¢

 

   

 

Parallelogram Trapezoid

Area = bh 4 a Area = +h (b; + by)

by
[

b |

h

|

q ml

Circle by

Circumference = 2@r

Area = nr? Sphere

Surface area = 477?
Volume = 4 nr’ \

Cone (right circular)

~

h

Lateral Surface = nr/

Volume = + 7r?h
 

Lateral Surface = 2nrh0
Volume = nr?h |

7 ~N

Cylinder (right circular)

h
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Preface

The primary goal of a precalculus course is to provide students with the essential

training needed to approach a course in calculus with the confidence necessary

for successful completion. This training involves a good understanding of the
concepts related to functions in general and to the important special cases (poly-
nomial, exponential, logarithmic, and trigonometric, or circular, functions) in
particular. Crucial to the training process is maintenance of good balance
between emphasis on understanding fundamental ideas and on developing

and expanding the basic skills of arithmetic and algebra. This is the guiding prin-

ciple adhered to by the authors. The prominent features of the book are the fol-

lowing:

1. Emphasis is on basic ideas throughout the text. Problems in Exercise Sets at

the end of each section have been carefully selected with two purposes in mind:

to provide the student with an opportunity to apply fundamental concepts, thus

leading to a better grasp of ideas, and to offer extensive practice in developing
manipulative algebraic skills that are necessary for success in the study of subse-

quent courses in calculus. Included are many problems in which students are

expected to “think through” a solution rather than solve them by rote processes.
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2. The use of calculators has been integrated into the material throughout the -
text, but the primary focus is not on computations. Calculators are used when-
ever it is felt that they will contribute to the ultimate goals of the course.
Lengthy and tedious computations frequently result in distraction from funda-
mental considerations. Use of high-speed computing devices minimizes such dis-
tractions. Although calculators are primarily employed for computational pur-
poses, they can also help to motivate and develop concepts. We attempt to
exploit this role whenever possible. For instance, in Section 1.2 we consider a
calculator as a function machine to reinforce the definition of a function; then

we relate composition of functions to pressing appropriate successive keys on a
calculator.

3. Applications are included throughout the text whenever appropriate. The
numbers used are realistic since these can be handled by calculators just as
easily as the carefully selected simple numbers that commonly appear in mathe-
matics textbooks and that are chosen for the sole purpose of avoiding even
slightly cumbersome computations. Calculators can add the dimension of ap-
proximate numbers often ignored in mathematics courses.

4. Appendix A contains a relatively complete introduction to the employment
of calculators for those students who have had no previous experience with

them. Included in separate sections is a discussion of algebraic operating systems
(AOS) calculators based on algebraic entry and RPN calculators based on Re-

verse Polish Notation. Keys for elementary computations are carefully de-
scribed and followed by several detailed examples and practice problems. In
most cases, students can master this material on their own. Additional instruc-

tion on the use of special function keys is given throughout the text proper, as
needed and when appropriate. In our experience, minimal class time has been
required for calculator instruction.

5. Appendix B contains a brief review of concepts and properties of real num-
bers. This material can be included in courses that emphasize the structure of

the real-number system.

6. Appendix C includes a relatively detailed treatment of computation with
approximate numbers. This topic is often avoided in mathematics courses, butit
is important in applications.

7. Throughout the entire book, the pattern of topic presentation is the follow-
ing: introduction of basic ideas; illustration of these ideas by several examples
worked in detail; Exercise Set of problems carefully designed to practice with the
new concepts and reinforce previously encountered ideas. Also included are Re-
view Exercises that utilize the material studied up to that point.

8. A concept, a technique, or a fact can best be learned if it is encountered

frequently and in a variety of settings. We exploit this truism by including prob-
lems in Exercise Sets that repeatedly use ideas introduced in earlier sections. For
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instance, the idea of combining functions to get new functions is introduced in
Chapter 1 and it is reinforced throughout the remainder of the text in the Exer-
cise Sets. Thus, for example, after completing the study of this book, the student
should have a good understanding of composition of functions and be prepared
for the introduction to the Chain Rule in a subsequent calculus course.

9. Whenever appropriate, presentation relies heavily on graphs. The reader
should find that in many situations an accompanying picture is invaluable for

providing insight into the various algebraic techniques for problem solving. One
of the important uses of calculators is in drawing accurate graphs.

10. The Exercise Sets contain a large number of problems ranging from simple

to challenging. In each section the reader will find several easy-to-follow Exam-
ples that illustrate the various types of problems included as exercises. In some
cases, the use of calculators allows us to introduce problem-solving methods that
are not part of a traditional course.

11. Looking ahead to calculus. The fundamentals of calculus are based on con-

cepts related to limits. A thorough understanding of the ideas involved is diffi-
cult the first time they are presented. A preliminary introduction based upon

numerical examples along with geometrical interpretations gives the students an
intuitive feeling for the abstract definitions of ¢ — § studied in calculus courses.
Thus we have included a section “Looking Ahead to Calculus” at the end of
Chapters 2, 3, 5, and 7, in which various types of limit problems are examined

from a numerical point of view. These sections should be considered optional;
they are particularly appropriate for those situations in which programmable
calculators or microcomputers are available to students.

12. This book is designed for a one-semester or two-quarter course. A prerequi-
site of high-school geometry and intermediate algebra is assumed.

The authors would like to express their appreciation to reviewers of both
books: Ellen E. Casey, Massachusetts Bay Community College; Robert G.
Clawson, Brigham Young University; Neville C. Hunsaker, Utah State Univer-

sity; Philip H. Mahler, Henry Ford Community College; Gordon L. Nipp, Cali-
fornia State College, Bakersfield; Janet P. Ray, Seattle Central Community

College; Joshua H. Rabinowitz, University of Illinois at Chicago Circle.

Logan, Utah J. E.

November, 1981 C.J. E.





Foreword
to

the
Teacher

The following statements explain some of the prominent pedagogical features of
this book.

1. Order of topics. Although a sequential ordering is essential in presentation of
some of the topics, there is considerable latitude in the order in which chapters
can be studied. Chapter 1 contains the basics of functions and should be consid-
ered prerequisite for all remaining topics. The material on polynomials (Chapter
2), exponential-logarithmic functions (Chapter 3), and trigonometry (Chapters
4 and 5) can be studied in any order.

Chapters 1 through 5 essentially constitute a study of elementary functions

and should be included in any precalculus course. Chapter 7 contains material
on sequences of real numbers and provides an important introduction to the

topic of sequences and infinite series to be studied in calculus.
Although the topics within a chapter are sequential, there are some portions

that can be omitted or easily modified. For instance, in Section 2.7 the Remain-

der and Factor Theorems are important but the use of synthetic division for
evaluating polynomials can be minimized or even omitted since nested-form
techniques for polynomial evaluation by using calculators are introduced in the
preceding sections.

ix
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Although applications are scattered throughout the book, there are some
sections that are devoted exclusively to applied problems. These provide excel-
lent experiences with problem-solving techniques and are a desirable feature in
any course. These include: Section 3.5 (exponential growth and decay); Sections

4.2, 4.6, and 4.7 (applications in trigonometry); and Section 7.6 (mathematics of

finance).

2. Notation and approximate-number solutions. Asin most mathematics texts,
we take liberties in using the “equals” symbol to include “approximately equals”;

the context of discussion should make it clear when it is so used. For instance, it

is important for the student to realize that 1/2 is a symbol for a number that

cannot be written explicitly in decimal form, and when we ask for solutions in
exact form, such a symbolis the only acceptable answer. On the other hand, if
we ask for a solution rounded off to or correct to five decimal places, we expect

the approximate value 1.41421.
Appendix C includes a discussion of the arithmetic of approximate numbers.

In general, approximate numbers are studied in numerical-analysis courses. In
Exercise Sets we ask students to state answers to a given number of decimal
places, rather than always apply rules of approximate-number arithmetic. We
prefer that students concentrate on the main ideas under discussion and not be

distracted by the need to apply approximate-number rules.

3. Modern approach. The approach in this book is consistent with the recom-
mendations of the National Council of Teacher of Mathematics for the curricu-

lum of the 1980’s:

The use of electronic tools such as calculators and computers should be
integrated into the core mathematics curriculum. . . Calculators and com-

puters should be used in imaginative ways for exploring, discovering, and
developing mathematical concepts and not merely for checking computa-

tional values or for drill and practice.

4. Review material. Most precalculus textbooks include a review chapter or
two at the beginning consisting of topics studied in elementary-algebra courses.
In general, students find a detailed review boring, particularly at the beginning

of a new course of study. Therefore, we have included appropriate review mate-
rial in thefirst section of each of the first three chapters. Sections 1.0, 2.0, and 3.0

each contain material prerequisite for that chapter and are intended for review.
The review consists of a brief summary of pertinent ideas and facts; this is fol-
lowed by a set of problems that should be considered the core of the review. The
review sections can be included as an integral part of the course, or can be given

as out-of-class assignments to be done concurrently with the work of the chap-
ter, or omitted entirely when students have good mastery of elementary algebra.
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5. Supplementary material. Three separate supplements are available. The In-
structor’s Manual contains suggested class period schedules, a brief overview of
material of each section, and lists of problems for each chapter that can be used
for tests. The Answers Booklet has anwers to all of the problems, while the
Solutions Manual includes a discussion of solutions to most of the problems of
the text.
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Functions Chapter 1

Prerequisite to the study of more advanced topics in mathematics and to appli-
cations of mathematics in real-life situations is a sound grasp of concepts related
to functions. In this chapter some of the basic notions related to functions in
general are explored, and then in later chapters our attention is focused on the
study of special classes of functions; these include polynomial, exponential, loga-
rithmic, and trigonometric functions.

Before proceeding with our task, we first present a brief review of topics from
elementary algebra that are necessary for continuing with the subsequent mate-

rial of this chapter. The problems in Exercise 1.0 should provide a good test of
how much review work is needed.

INTRODUCTORY REVIEW
The basis for most of mathematics is the real-number system. Students of this

course have already had considerable experience working with numbers without
always being aware of the basic properties involved. We begin this section with a
brief review of the various types of real numbers and the related terminology.
This course does not include a formal discussion of the structure of the real-
number system, but a brief description of their properties is given in Appendix B.

Before considering classification of real numbers, we review some notations
related to sets. Also included in this section is a brief review of the number line,

the rectangular coordinate system, the arithmetic of complex numbers, and al-
gebra skills. (There will be more of this review in Sections 2.0 and 3.0.) We are

not interested here in repeating a course in introductory algebra; however, a
brief review can be helpful (and in some cases even necessary) in refreshing or

reinforcing concepts and skills that may have been forgotten. Our primary inter-
est here is to give each student a working knowledge of the topic, which is essen-
tial for successful completion of subsequent sections of this book.

Set Notation

It is customary to use capital letters (such as A, B, and so on) to denote sets. In

many cases a given set is indicated by enclosing a listing of elements (or mem-
' bers) of the set within braces; the order in which these are listed is of no impor-

tance. For example, set A, which consists of the first four positive even integers,

can be described by

A=1{2468 or A={6824).

We say that “2 is an element ofA” and denote this by 2 € A. Similarly, 4 € A,

6 € A, and 8 € A. We also write 5 & A to denote “5 is not an element of A.”

Frequently it is not possible or not convenient to list the elements of a set,

and a set builder notation is used. For instance, the set B of all positive even
integers is given by

B = {x|x is a positive even integer}.

This is read “B is the set of elements x such that x is a positive even integer”; the
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Fig. 1.1
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vertical bar is read “such that.” There are occasions when set B will be written

by listing a few elements as follows:

B=1{24,86,...),

where the context of discussion will make it clear what numbers follow after 6.

In the examples above we say that A is a finite set, while B is an infinite set.
Note that every element ofA is also in B. The notation used to indicate this is

A C B; this is read “A is a subset of B.”

Subsets In general, E C F indicates that each element of E is also in F. This

does not preclude the possibility that E and F are the same set, and so we could
write E C E. If E C F and there is at least one element of F' that is not in E,

then we write E C F. In this case we say that “FE is a proper subset of F.”’ In the
examples above both A C B and A C B are acceptable—the latter simply gives
more information.

Equality of sets If E C F and F C E, then we say that sets E and F are equal
and write E = F.

Empty set In many situations it is necessary to talk about a set with no
elements. For example, the set C, described by

C = {x|x is a real number and x2 + 1 = 0},

can have no elements since x? is nonnegative; then x2 + 1 is positive and cannot
be equal to zero. A set such as Cis called the empty or null set and denoted by the

symbol @. Thus C = 9.

Combining sets There are two set operations (with associated notations) that
will be helpful in making precise mathematical statements. Suppose E and F are
any two sets. The union and intersection of E and F are sets defined as follows:

Union: EU F = {x|x € E OR x € F}

Intersection: ENF = {x|x € E AND x € F}

 

EUF ENF



Example 1

Solution

Functions Chapter 1

The word OR as used in mathematics means x is in E or in F or in both E and F.

IfENF = J, then sets E and F are said to be disjoint. The union and intersec-
tion of sets E and F are illustrated schematically in Fig. 1.1, where the shaded

regions indicate the resulting sets.

Suppose A = {1,3,5,7}, B = {2,3,5,7,9}, C = {2,9}. Determine:

a) AUB b) ANB c) ANC d) BUC

a) AUB ={1,23,5,79) b) ANB =1{357)
c) ANC=2 d) BUC=B -

Real Numbers
Most people first learn about the counting numbers in childhood; then, as their
experience broadens, the world of numbers is expanded to include fractions,
negative numbers, square roots, and so on. Students who have reached this
course in mathematics have had some exposure to the entire set of real numbers.
Here we summarize the hierarchy and terminology associated with the various
subsets of the set of real numbers. The notations introduced here will be used
throughout this book.

The set of real numbers is denoted by R. The following sets are subsets of R:

Natural numbers: N 22: 3,...)°

Whole numbers: W 1,2

Integers: J
Rational numbers: Q

Irrational numbers: H

Thus any real number that is not rational is called an irrational number. The

following are examples of irrational numbers:

se 1 5
VE VB —¥E LEMEns,

This means, for instance, thatit is impossible to find integers a and b so that a/b

is exactly equal to \/2; thatis, (a/b)? will never equal 2. This fact can be proved,

as we shall see in Chapter 2. Here we are more interested in proper vocabulary

and correct use of the properties of real numbers than in a careful development
of the real-number system.

 
*

+

This set will also be referred to as the set of counting numbers or positive integers.

Here we are assuming that a/b is in lowest terms.
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Fig. 1.2

Example 2

Solution
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Note: It is conventional to consider, say, \/4 as a positive number whose square
is 4; there is only one such number, 2; and so V4 = 2. In general, if b is a

nonnegative number, then there is one and only one nonnegative number, de-
noted by \/b, whose square is b.

Real numbers can be expressed in decimal notation, for example 1/4 = 0.25.
However, for many numbers the decimal representation is nonterminating. For
instance,

7 —

— = 0.636363... = 0.63.
11 0

We say that 7/11 has a repeating, nonterminating decimal representation.
Decimal representations can be used to distinguish between rational and

irrational numbers:

A number is rational if its decimal representation is terminating or
nonterminating and repeating. A number is irrational if its decimal
representation is nonterminating and nonrepeating.

The subsets of the set of real numbers are illustrated schematically in Fig.
1.2. In Fig. 1.2(a), R is shown as the union of two disjoint sets, Q and H; Fig.

1.2(b) gives the hierachy of the subsets of Q.

 

Q H

0,1,2,-3,-5, V2, mm, 1+ V5,

-V23,m+13,...-B
I
W |

w
i

    

 

R

(a) (b)

For each of the following, determine whether the given statement is true or false.

a) NCQ b)JNQ=4J c)QNH=9

dA) JNH=J e) V16 € H f) V-8€J

a) True b) True c) True d) False

e) False (since 1/16 = 4) f) True (since v/—8 = —2). mg
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The Number Line

In many situationsit is possible to describe properties of real numbers in terms
of points on a line. In geometry we learn that a line L consists of infinitely many
points. We assume that a one-to-one correspondence can be established between
the set of real numbers and the set of points on line L so that each real number x
is associated with a unique point of L, and conversely, this same correspondence
associates each point of L with a unique real number.* This correspondence,
illustrated in Fig. 1.3, gives the number line.

-2-V3 _-\/5
| /

l a | ° l ] | /
I or —&— T —®

-4 3 2-1 0

N
=

[0

®

—
_
—

N
o

W
w

A

To avoid cumbersome language in reference to a number line, we take some
liberties; for instance, we say “the point 2” rather than “the point associated
with the real number 2.”

Suppose u and v are two given real numbers. The less than property of real
numbers can be described by referring to the number line, as shown in Fig. 1.4:

u is less than v, denoted by u < v, means that point « is to the left of

point v on the number line.

In later sections of this book, we will make extensive use of number line ideas

in problems related to graphing.

Show each of the following subsets of R on a number line.

  

  

a) {—1,4} b) {x|x< —2 or x > 3}

c) {x|x >1 and x < 4} d) {x|-2 <x <4}

a) ——+—+4—+—+—+—+—+—+— b) ————t—+—t+———
-10 4 -2 0 3

¢) —+—+—+—+—4+—+—+—4++— d) —+—4—+——"——+—4+—+—1+-
0 1 4 - 0 4

 

* In advanced mathematics texts this is referred to as the Cantor-Dedekind axiom.



Section 1.0 Introductory Review 7

Each set is shown as the colored portion of the number line in Fig. 1.5. The set
given in (a) consists of only two points. The open circles enclosing —2 in (b) and
4 in (c) indicate that those two points do not belong to the given sets. Part (d)

illustrates the use of shortened notation: —2 < x <4 means —2 < x and x < 4.

The notation a < x < b can be used only if x is between a and b. a

Rectangular Coordinate System®*
The idea of a numberline can be expanded to establish a one-to-one correspond-
ence between the set of points in a plane and the set of ordered pairs of real
numbers. This is illustrated in Fig. 1.6, where the horizontal number line is

called the x-axis, the vertical line is called the y-axis, and the point of their

intersection is called the origin. Any point P in the plane is associated with an
ordered pair of real numbers (u, v), as shown .Thus every point in the plane has a
first name and a second name; the first is always the horizontal coordinate, and
the second is the vertical coordinate.

  

  

y y

— °(: (2,4)

ETT TT Rwy) 5

|
® (— - oP: (4,2I | I (-3,2) (4.2)

| =
|

C 0 x I Loo,
0 u

= °(3,-1)
IIT Iv

. ®(-2,-3
Fig. 1.6 Fig. 1.7 An

The coordinate axes divide the plane into four regions called quadrants;
they are numbered I, II, III, IV, as shown in Fig. 1.6. The ordered pairs associated

with several points are shown in Fig. 1.7. Note that the points P:(4,2) and

Q:(2, 4) are different; this illustrates the reason for calling these pairs ordered

and leads to the following definition.

 

* Also referred to as the cartesian coordinate system, named for the great French mathematician and
philosopher René Descartes (1596-1650).
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The ordered pairs (a, b) and (c, d) are the same, or are equal, if and

only if a = ¢c and b = d.

Equality of ordered pairs is indicated by writing (a, b) = (c, d).

Pythagorean Theorem and Distance Formula

First recall the following important theorem from geometry (Fig. 1.8):

Pythagorean theorem If a and b are lengths of the sides (or legs) of a right

triangle and c is the length of the hypotenuse, then

c? = a? + b2 (1.1)

The converse is also true; suppose a, b, and c are lengths of the three sides of a
triangle; if ¢2 = a2? + b2, then the triangle is a right triangle.

 

Distance formula The Pythagorean theorem provides us with a formula for

finding the distance between two points in a plane. Let P and @ be the two
points (as illustrated in Fig. 1.9), and let d represent the distance between P and
Q. Then d is given by

 

 

 

d=PQ = V(x; — 2,2 + (3; — 72). (1.2)

y y

Q: (x2, y2)
P: (x1, y1)

4 1Y2 = 01

A] yi2 ~~
P:(x1,y1) x2—x1 ot _——_= Q: (x2, y2)

X2 — X1

X X    
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Suppose the lengths of the three sides of a triangle area = 4, b = 5,c¢ = 7. Is the
triangle a right triangle?

a? + b%2 =16 + 25 = 41, c? = 49, a? + b% # c?

therefore the triangle is not a right triangle.

Find the distance between the given points.

a) A:(3, —4) and B:(2, 3) b) C:(—1, —3) and D:(1, —2)

a) AB= VB 27+ (—4-32=VIZ2+ (-72 = V60 = 512
b) CD = (1-12 + (3+ 2)2=V(-22 + (-12= 5 =

 

 

Arithmetic of Complex Numbers

Most of our discussion will deal with real numbers; however, there will be a few

problems in this text for which there is no solution within the system of real
numbers. For example, if we wish to find the values ofx that satisfy the equation

x2 + 1 = 0, it can easily be argued that there are no real-number solutions. Thus
we introduce a “new number” i, also denoted by \/—1, with the property that

i2 = —1. Hence the numbers i and —i are solutions of x2 + 1 = 0.

The set of complex numbers

The set C of complex numbers is given by

C = {u + vi|u and v are real numbers}.

If v = 0, then © + vi = u; since u is a real number, we see that any real

number is also a complex number. That is, R C C.
If u = 0, then u + vi = vi; for any given real number v, the value vi is called

a pure imaginary number, or simply an imaginary number. For instance, we

have the following:

3 is a real number and also a complex number,

2i is an imaginary number and also a complex number,

3 — 21 is a complex number.

The set of complex numbers is the union of three disjoint sets: the real

numbers, the imaginary numbers, and numbers of the form u + vi, where u # 0

and v # 0.
The arithmetic of complex numbers follows familiar rules of algebra of bino-

mial expressions, where i is treated as if it were a variable; whenever i2 occurs,

replace it by —1. The following example illustrates how we add, subtract, multi-
ply, and divide complex numbers and write the result in the form u + vi, with u

and v real numbers.
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Perform the indicated operations and simplify.

a) (2-31) + (—1+ 57) b) (1 +1) —(—4 + 30)

c) 1 +2)-(3—-1) d) (1-3) +141)

a) 2-3) +(-14+5)=2-3i—-1+5=2—-1)+(-3+5i=1+2%

b) 144i) —(—4+3)=14+i+4+4-3=14+4)+1-3)i=5-2

ec) 1+2)3—-i)=3—-i+6i—212=3+51—2(-1)=5+5i

1-3 (1—-3)1—=i) 1-—4i+ 3
1+: Q+)1-—i) 1-22

1-4-3 —2 — 4

“1-(—1) 2

 d)

 =-1-2i ew

Algebraic Operations
We assume that the student is familiar with some of the basic properties of
algebra. Here we give several examples as a review.

Perform the indicated operations and simplify.

  

a) (2x —3)(x +1) b) (2y — 1)(4* + 2y + 1)

. 2 3
c) (x3 —2x +1) +(x +2) d 5-712

a) 2x —3)(x +1) =2x(x +1) — 3(x +1)

=22 4+ 2x —-3x—-3=2x2—-—x—3

b) (2y —1)(4y* + 2y +1) = 2y(42 + 2y + 1) — 1(* + 2y + 1)
=8P +42 +2y —4y? —2y—1=83-1

 

  

 

c) x2 —2x +2 5
x+2/ x8 — 2x +1 Thus —=2¢ _,2 9p .9_ 3 .

x3 + 2x2 x + 2 x +2

— 2x2 —2x +1

— 2x2 — 4x

2x +1

+
-3

d) 2 3 2(x + 2) 3(x — 1)

x—1 x42 (x=1D(x+2) (x—=1)x+2)

2x +4 — (3x — 3 — 7_ + (3x ) x + -

(x =1)(x +2) = (x—1)(x+2)
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Factoring First let us illustrate what it means to factor a given algebraic
expression. We say that x2 — 4 factors into (x + 2)(x — 2) because expanding
the product (x — 2)(x + 2) and simplifying, we get x? — 4. Thus we write
x2 —4 = (x + 2)(x — 2) and say that x + 2 and x — 2 are factors of x2 — 4. In

elementary algebra it is understood that factoring a given expression means
writing the expression in terms of a product involving only variables and inte-

gers. Hence we would say that the expression x2 — 3 cannot be factored since it

cannot be written as a product of two factors involving x and integers. However,

x2 — 3 can be expressed as a product as follows: x2 — 3 = (x — V3)(x + V3).

The following formulas are useful in factoring algebraic expressions. Each

can be verified by expanding the right side and simplifying.

Common factor: au + av = a(u + v) (1.3)

Perfect square: u? + 2uv + v? = (u + v)? (1.4)

2 —2uv + 2 = (u — v)P (1.5)

Difference of squares: u? — v? = (u + v)(u — v) (1.6)

Factor each of the following expressions.

a) 2x2 — 8y? b) 4x2 — 12x + 9 c) 2x2 + 5x — 3

a) By using formulas (1.3) and (1.6), we obtain

2x2 — 8y% = 2(x? — 4?) = 2[x* — (2)*] = 2(x + 2y)(x — 2y).

b) Here formula (1.5) applies:

4x2 — 12x + 9 = (2x)? — 12x + (3)? = (2x — 3)2

c) None of the given formulas apply here, but we can try various possibilities
involving factors of the type (ax + b)(cx + d), where a-c=2 and

b-d = —3. We find that (2x — 1)(x + 3) yields the middle term of 5x. Hence

2x2 + 5x — 3 = (2x — 1)(x + 3). BE

Solving Equations and Inequalities

Here we illustrate solution of linear equations and linear inequalities.

Solve each of the equations.

a) 2x —3=5 b) 5 —-3x=x+4

a) Adding 3 to each side of 2x — 3 = 5, we get 2x = 8. Dividing both sides by 2
gives x = 4. Hence 4 is a solution of 2x — 3 = 5. This means that if x is

replaced by 4, the result, 2-4 — 3 = 5, is a true statement.
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b) Adding (—x — 5) to each side of the given equation yields an equation with
all terms involving x on one side of the equals sign and the remaining terms
on the other side. Collecting like terms and simplifying gives the solution:

5-3x+4+(—x—-5)=x+4+ (=x =H),

—4x = —1 m=x , x=

Therefore 1 is a solution of the given equation. =

Example 10 Solve the given inequalities and show the solutions on a number line.

a) 2x —3<7 b) 5—-3x>8

Solution The procedure for solving linear inequalities is similar to that used in Example 9
to solve linear equations, except when we multiply or divide both sides by a
negative number, the direction of the inequality must be reversed.

a) Add 3 to both sides of the given inequality and divide the result by 2; this

gives

(2x —3)+3<7+3,
2x < 10,

x < 5.

Thus any number less than 5 will satisfy the given inequality; this is shown

on the number line:

b) Subtracting 5 from both sides of the given inequality yields

5—3x) —5>8—-5,

—3x > 3.

Now divide both sides by — 3 and reverse the direction of the inequality to get

 —3x 3
<—,

-3 — -3

x < —1.

The solution is shown on the number line:
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Exercises 1.0
The problems of this set are grouped according to topic.

 

Set Notation
In problems 1 through 6, write each set by listing its elements within braces.

1. The set of counting numbers between 3 and 7

2. The set of natural numbers between 10 and 15

3. {2,3,4,5} U {1,3,5} 4. {2,3,5} N {2,4,6}

5. {1,0.1,0.01} N {1,, 2% 6. {1, —1,4, —4} U {1,4,8)}

In problems 7 through 16, determine whether each statement is true or false.

7. 5 € {2,3} 8. {2,4} C {1,2,3,4}

9. {2,4} C {1,2,3,4)} 10. {3,4,8} = {4, 8,3}

11. {3,5,7} C {x]|x is an odd number} 12. 5 & {x|x is an even number}

13. 3 € (1,3,5} N {2,4} 14. 3 C {2,3}

15. 4 € {x|x? — 4x = 0} 16. {—1,1} C {x|x® — 1 = 0}

In problems 17 through 20, sets A and Bare: A = {2,3,5,7}, B = {2, 3, 6, 8}. List within

braces the elements of each of the following sets.

17. {x|x € A and x € B} 18. {x|x € A or x € B}

19. {y|y € A and y & B} 20. {y|y € A and y is not an even number}

Subsets of Real Numbers
In addition to the notations described in this section, let P denote the set of prime
numbers. A prime number is a positive integer greater than 1 whose only divisors are 1
and itself (see Appendix D for a table of primes):

P ={23,5,7,11,13,17,19, 23, 29, 31, . .}.

In problems 21 through 26, determine whether each of the given statements is true or
false.

21. a) 8EN b) —4 EN c) —64E€J d) 431€P

22. a) 1+ V2€Q b) 3+ V5EH ¢) TER d)7+3€H

23. a) {0} CW b) {V4} CN c) QCH d) NCW

24.2) QNH=0 b) NNQ=Q c) PUN=N d) (0 UN=W

25. a) 107 € P b) 247 ¢ Q c) {-1,1} Cd d PcQ

26. {y|ly=n?—-—n+41,n€EN} CP

Number Line
In problems 27 through 30, show the given subsets of R on a number line.

27. a) {—3,5} b) {x|x <2orx > 5} c) {x|]x <4 and x > —-2}

28. a) {1.5, \/5) b) {x|x < —2 or x > 4} c) {x|x < -1} U {x|x > 2}
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29. a) {—2,7,7 — 2) b) {x]|-3< x < 4) c) {x|x < V2orx >)

30. a) (V3.3 + V2) b) {x|1 — Vb <x <3} ¢) {x|x <2} Nn {x|x > -2)

Rectangular Coordinates

In problems 31 and 32, plot the given points and give the quadrant in which each is
located.

31. A:(3,4) B:(-2,3) C:(5, —2) D:(—-2, —4)

32. A:(1, V3) B:(1-5,2) C:im,—7) D:(1-m —V2)

In problems 33 and 34, plot the points (x,y) given in tabular form.

  

33. x =2 -1 0 1 2 34. x -2 -1 0 1 2
  

      y|-5 -3 —-1 1 3 y| 38 0 —-1 0 3
  

In problems 35 and 36, determine the distance between points P and @. In each case give
answers in exact form and also as a decimal approximation rounded off to two places.

35. a) P:(2,4), @:(-3,2) b) P:(—1, —3), Q:(2, —5)

36. a) P:(3V2, —1), @:(-V2,3) b) P:(1 — V2,4), @:(1 + V2, —1)
In problems 37 through 42, the two sides of a right triangle are labeled a and b, and the
hypotenuse is c. Two quantities are given; find the third rounded off to two decimal
places.

37. a=5,b=38 38. a =17,¢c = 33 39. b =24.3, c = 48.7

40. a =5,b =12 41. a = 20, b = 48 42. a = 43.73, b = 74.56

In problems 43 through 46, the lengths of three sides of a triangle are given; determine

whether or not it is a right triangle.

43. a =5,b=12,¢c = 13 44. a = 12, b = 16, c = 20

45. a = 24208, b = 10575, ¢c = 26417 46. a = 3784, b = 2730, ¢c = 4666

Arithmetic of Complex Numbers

In problems 47 through 50, express results in the form x + yi, where x and y are real

numbers.

47. Given u = —3 + 4i and v = 1 — i, determine

a) u+v b) u —v c)u-v d) u-+v

48. Perform the indicated operations.

a) (3 + 2i)(—1 +1) b) (1 — 2i)

c) (1 — 2i)(1 + 20) d) i(1 —)1 +1)

49. Perform the indicated operations.

a) (1-1) +1471) b) i + (2-1)

¢) 2—i)+i d) [i(3 + i)] + (1 — i)
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50. Given that u = 1 — i, evaluate:

a) u? +1 b) 2 — u?

c) 1+u)+-1-u) d) uv-+ (1+ u

Linear Equations

In problems 51 through 53, solve the given equations for x.

5l. a) x +2=5 b)3x —2=5+x

52. a) 2x —3=2 — 3x b) (x — 1)(x + 1) = x?

53. a) 5 — 3x =x — 3 b) x2 + 4 = x(x + 4)

Linear Inequalities

In problems 54 through 56, solve the given inequalities.

54. a) 2x — 3< —9 b) x +4>3x—6
55. a) 3 —2x <x + 6 b) x(x — 2) > (x + 1)(x + 3)

56. a) 2-3 <1 x b) (1 + x)(1 — x) < 2(2 — x)

Algebraic Operations
In problems 57 through 60, complete the statement by entering the appropriate alge-
braic expression within the parentheses.

57. x2 — 2 —x +y=x%2—y2 — ( ) 58. x — 2 — x3 4+ 2x2 =x — 2 — x¥( )

59. x2 — 2x — 4x + 8 = x2 — 2x — 4( ) 60. 1 — (x — 1)2 = x( )

In problems 61 through 70, perform the indicated operations and simplify.

61. (x2 — 2x + 5) — (3x — 2) 62. (x + 3)(2x — 5) 63. (3x — 1)(x + 4)

64. (2x — 3)(2x + 3) 65. (2x2 + 1)(x — 3) 66. (2x — V/3)(2x + V3)

67. (2x3 4+ 3x2 —5x — 3) +- (2x +1) 68. (x2 —4) + (x + 2) 69. (x3 +2x —1) = (x — 3)

70. (x3 — 4x) + (x — 2)

In problems 71 through 80, determine which expressions can be factored, and then factor

as far as possible.

71. 3x2 — 12 72. x2 + 4 73. 2x2 — 5x + 2

74. 5x2 + Tx — 6 75. 3x2 — x + 2 76. 4 — (2x — 3)?

77. (x + 4)? — 36 78. 4y2 + 4y + 1 79. 8x2 — 32x*

80. 1 — (x — 2)?
 

1.1 FUNCTIONS, RELATIONS, AND GRAPHS
The concept of a function is basic for most of mathematics. Very often, elements
of two sets are associated by some rule of correspondence. For example, consider

the set A = {1,2, 3} and the rule “Associate each number in A with a number
that is one greater than its square.” This rule associates 1 with 2, 2 with 5, and 3
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with 10, and can be considered a correspondence in which each element of A
corresponds to exactly one member of the set B = {2, 5, 10}. This association can
also be described by giving the resulting set of ordered pairs: {(1, 2), (2,5),

(3,10)}; or it can be thought of as a mapping of set A onto set B and shown
schematically by

1 2 3

ll
2 5 10

This leads to the definition of a function in general.

Function as a correspondence

A function f from a set D onto a set R is a rule of correspondence
that assigns to each element x of D a unique element y of ®. The
element y is called the image ofx underf. Set D is called the domain
of the function, and set ® is called the range of f.

The correspondence referred to in Definition 1.1 is given by a rule usually
stated in equation or formula form, although sometimes it is described verbally
or given by a table or a graph. In many situations it will be more convenient to
use other definitions of the concept of a function. There are two such definitions,

each of which is equivalent to Definition 1.1.

Function as ordered pairs

A function is a set f of ordered pairs in which no two ordered pairs
have the same first component; that is, the set will not include or-
dered pairs (a, b) and (a, c) where b # c. The set of first components

of the ordered pairs in f is called the domain of f, and the set of
second components is called the range of f.

Function as a mapping

A function f is a mapping that associates with each element x in a
set D (called the domain of f) a unique element y in a set ® (called
the range of f).

Function Notation

In most cases the rule describing the correspondence in Definition 1.1 can be

written in equation form as

y = f(x).
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This is read “y equals f at x” or “y equals f of x,” and it states that y, also denoted
by f(x), is the element of ® corresponding to x in D. Here x is called the inde-

pendent variable and y the dependent variable.
As a set of ordered pairs, f can be written

f={(xy)|x €D and y=f(x)}

As a mapping, f is described by

fi x—f(x) or D5 @.

In the definitions above the letter f was used to denote a function. In some

discussions it will be necessary to use other letters, such as g, A, F, G, etc., to

denote functions. Accordingly, the domain and range of, say, f and g shall be
denoted by D(f), R(f) and D(g), R(g), respectively.

Let us now consider a few examples.

Suppose D = {1, 2, 3} and the rule of correspondence for fis: for each x € D, the

image y corresponding to x is one less than twice x. In formula form this rule is

given by

y = 2x — 1 for each x € D.

a) Show the correspondence by listing the ordered pairs.

b) Determine the range of f.

¢) Draw a diagram to show f as a mapping.

a) f={(1,1),(2,3),(3,5)} b) R(f) = {1, 3,5}
c) D(f) ={1,2,3} From (a) or (c) we see that f is a function.

A function g is described by g(x) = x2 — 1 and D(g) = {-2, —1,0,1, 2}.

a) Give g by listing the set of ordered pairs.

b) Determine ®(g). ¢) Show g as a mapping.

a) 8 = {(-2, 3), (—1, 0), (0, —1), (1, 0), (2, 3)}

b) &(g) = {-1,0,3}
c) Dg ={0 -1,1,-2,2}

l/
Rg) ={-1, 0, 3} =

In Examples 1 and 2, both f and g are functions. However, there is an impor-
tant property that f has but g does not. Looking at part (c) of the solutions, note

that each element in the range of f has associated with it exactly one element of
D, but this is not so for g; each of the range elements 0 and 3 has two elements of
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D(g) associated with it. We say that f is a one-to-one function, whereas g is not.

This leads to the following definition.

Suppose f is a function with domain D and range ®. We say that f
is a one-to-one function (or a one-to-one mapping)if to each element
of ® there corresponds one and only one element of D. Thatis, if b
and c are two different elements of D, then f(b) # f(c).

The following table gives a correspondence between values of u and v.

 

 

    

The rule of correspondence here is given by v = u? — 2u + 3. Suppose fis the set
of ordered pairs (u, v), and g is the set of ordered pairs (v, ©) given in this table.

a) List the ordered pairs in f. Is f a function?

b) List the ordered pairs in g. Is g a function?

a) f={(-1,6), (0,3), (1,2), (2,3), (3,6)}; fis a function.

b) g = {(6, —1),(3,0), (2,1), (3,2), (6,3)}; g is not a function since 6 is associ-
ated with two different numbers, and so is 3. Vos

In Example 3(b) we have a set of ordered pairs that is not a function. This
occurs frequently in mathematics, so it is convenient to have a term that repre-

sents any set of ordered pairs.

Any set of ordered pairs is called a relation. The set of first compo-
nents is called the domain of the relation; the set of second compo-
nents is the range of the relation.

Thus every function is a relation, but a relation is not necessarily a function

since there are sets of ordered pairs, as seen in Example 3(b), that are not func-

tions.

Suppose set g is the set of ordered pairs given by

g={(xy|xEA y€EA, and x y},

where A = {1, 2, 3,4}. List the elements in g. Is g a relation? Is g a function?
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g=1{(1,2),(1,3),(1,4),(2,3),(2,4), (3,4) }. Hence g is a relation since it is a set

of ordered pairs. However, g is not a function since 1 occurs as a first component

in more than one ordered pair. i

Accepted Conventions

Each of the Examples 1 through 4 involves finite sets. Most of the problems of
interest to us will involve functions with domain R or a subset of R. When we are
discussing any particular function, it is important that we not only have a rule of
correspondence clearly stated but also understand the domain. In order to avoid
the need to state the domain explicitly in most problems involving a function, we
adopt the following convention.

Whenever the domain is not explicitly stated, it will be assumed that
it is the largest subset of real numbers for which the rule of corre-
spondence yields range values that are real numbers. That is, if f is
a function and x € D(f), then f(x) is a real number.

One of the outstanding features of mathematics is precision of language.
However, it is frequently too cumbersome to carry this point to the extreme,
and it becomes necessary to take some liberties with language without the fear of
causing any misunderstanding. For instance, instead of saying, “The function g

whose rule of correspondence is given by the formula g(x) = x/(x — 1) and do-
main = {x|x € Rand x # 1},” we shall use the abbreviated form: “The func-
tion g given by g(x) = x/(x — 1)” or occasionally we shall simply say, “The

function g(x) = x/(x — 1).”

Suppose the rule of correspondence for function f is given by f(x) = Vx 2.

a) Determine D(f).

b) Find the values of f(x) that correspond to the following values of x: —2, —1,
0, 1, 2.4. Express results in exact form; if an answer is not an integer, give it

also in decimal form rounded off to two places.

a) For each x in D(f) we want f(x) to be a real number; that is, x + 2 must be

nonnegative, which means that x > —2. Hence D(f) = {x|x > —2}.

b) f(-2) = 0; f(=1) = 1; f(0) = V2 = 1.41; f(1) = V3 = 1.73;

(2.4) = V4.4 = 2.10. a

A function g is given by g = la y)|y =nh

a) Determine D(g).

b) Give the ordered pairs in g that correspond to the following values of x: —1, 0,

2, V5.
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a) We see that the given formula yields a real number for every real-number

 

 

 

value of x, except x = 1 or x = —2. For instance, if x = 1, then

1-1)1+2) 0:3 0°

which is not defined; similarly for x = —2. Therefore,

Dg) ={x|x # -2,x #1}.

—1 —1 1
b = —1, = = ==,

) x YEIo D(—1+2 —2 "2

0 0

FERYE0-D0+2  —2

2 2 1
= 2,==

rEAY=Ee Der 42

5
x = 5, y=V5= 0.43 (to two decimal places).

(V6 — 1)(V5 +2)

Hence the ordered pairs of g include (1 1), (0, 0), (= 1), (V5,043). A

Suppose function f is given by f(x) = x2 — 2x. Determine:

a) f(—4) b) f(3x) c) flu—-1)

a) f(—4) =(—4)2 —2(—4) =24 b) f(38x) = (3x)? — 2(3x) = 9x2 — 6x

¢) fu—-1)=w-12-2u—-1) =u? — 4u + 3 jE

Graphs

Almost all functions and relations in this text will consist of ordered pairs of real

numbers. Such ordered pairs can be shown graphically as a set of points in a

plane.

Suppose we wish to draw a graph of a function f defined by y = f(x). In
general the procedure will consist of the following steps.

1. Determine the domain D(f).

2. Take several values of x in D(f) and find the corresponding values ofy given
by the rule y = f(x). A prudent choice ofx values will be necessary to get the
essential features of the graph.

3. Step 2 will yield a table of x, y values; plot the corresponding (x, y) points on
a rectangular system of coordinates with an appropriate scale for each of the
x and y axes.

4. Draw a smooth curve connecting the points plotted in Step 3. Here we need
to be careful in connecting the points, since we want to be certain that the x,
y values of any point on the curve satisfy the given rule of correspondence.
Using common sense and experience will be helpful. There are exceptions to
Step 4 (see Example 10).
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Draw a graph of the function f given by f(x) = V/1 — «x.

Since only those values of x are acceptable for which f(x) is a real number, we

require 1 — x > 0. Solution of this inequality gives D(f) = {x|x < 1}.
Suppose we take values of x: 1,0, —1, —2, —3, —4 and complete the follow-

ing table in which the values of f(x) are rounded off to one decimal place.

 

 

   fx) 0 1 14 17 2 22
 

1 /

  
(a) (b)

The points (x,y), where y = f(x), are now plotted as shown in Fig. 1.10(a). A

smooth curve connecting these points is shown in Fig. 1.10(b). This is the graph

of the function f. fam

In a similar manner we can draw a graph of a relation consisting of a set of
ordered pairs of real numbers by plotting several points from the given set of
ordered pairs and connecting them in an appropriate way.

Draw a graph of the relation {(x,y)|y* = x}.

Since y? = x, the values of x are nonnegative, and so the domain is the set D =
{x|x > 0}. Now make a table of x, y values that satisfy y? = x, noting that for
each x > 0 we get two values of y: y = Vx and y = — V/x. That is, the given set
of ordered pairs can be written as

{(x, 9)=x} = {(x,7)|y = Vx} U {(x,9)|y = — Vx}.
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Plotting these points and drawing a smooth curve through them gives the graph
shown in Fig. 1.11. Note that the given set of ordered pairs does not define a
function since for each x > 0, there are two corresponding values of y. a.

In Example 8, the set of ordered pairs is a function, but in Example 9 the set
is not a function. Graphically we see that each vertical line x = &, with 2 < 1,

intersects the graph in Fig. 1.10 exactly once. We cannot say the same for the
graph in Fig. 1.11 since vertical lines of the form x = & for 2 > 0 intersect the

graph at two points. This leads to the following graphical characterization of a

function.

A set of ordered pairs of real numbers with domain D represents a
function if and only if every vertical line x = k, where £ € D, inter-
sects the graph of f at exactly one point.

< =
<

~
<

(DS
  / s(n ’ A ’|

|

v v v
(a) (b) ©
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Thus, the graph shown in Fig. 1.12(a) represents a function, but those in Figs.
1.12(b) and (c) do not.

It is also helpful to note from the graphs in Fig. 1.12 that the domain of the
relations shown in (a) and (c) is implied to be the set of real numbers, whereas

the domain of the relation in (b) is {x| —1 <x < 3}.
The graph of a function need not always be a connected curve. This is illus-

trated in the following examples.

Suppose D(f) = {1, 2,3... 7}, and the rule of correspondence is given by: f(x) is
the number of prime numbers less than or equal to x. Draw a graph of f.

Let y = f(x). First make a table of x, y values. Recall that the set P of primesis
P={235,711,13,17...}. To evaluate f(x) we simply count how many prime

numbers are less than or equal to x. For example, to evaluate f(6), we note that

the prime numbers less than or equal to 6 are 2, 3, 5; there are three of them.

Therefore f(6) = 3.

 

 

    

By plotting the (x,y) points given in this table, we get the graph shown in

 

y

4 ®

3 oe ©
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11,
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Fig. 1.13. Here we do not connect the plotted points with a smooth curve since to

do so would imply that all real numbers between 1 and 7 are in D(f). That is, the

graph consists of seven isolated points. LL]

Suppose D(g) = {x|1 < x < 7} and the rule of correspondence for g is: g(x) is
the number of prime numbers that are less than or equal to x. Draw a graph of g.

This is similar to Example 10, except that here all real numbers between 1 and 7
are included in the domain. Let y = g(x). In addition to the points given in
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Example 10, we must consider other domain points. It is readily apparent that
for 1 <x <2 g(x) =0; for 2 <x <3, g(x) =1; and so on.

The graph of the function g is shown in Fig. 1.14. It consists of line segments
(which do not include the right-hand endpoints) and one isolated point (7, 4).
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Exercises 1.1

In problems 1 through 8, a set D is given and an associated set f of ordered pairs is
described.

 

a) Give f by listing the ordered pairs.

b) Is f a function? Is f a one-to-one function?

c) State the range ® of f.

d) Draw a diagram that illustrates f as a mapping of D onto ®.

1. D={-1,0,1,2,3}; f= {(x,y) |x € D and y = 3x + 1}

D={—-4,-2024};f={(x,y)|x €D and y = x2 — 2x}

cD ={-4,-1,25}; f= {(u,v)|u € D and 2u + 3v = 1}

cD ={(-3,-1,13}; f= {(v,u)|]v €E D and 2u + 3v = 1}

DD ={-10,1,3}f={(x,y)|x € D and 3x? + 2y = 1}

DD ={-2-101,2};
f= {(x,y)|x € D and the value of y is obtained by squaring x and then adding 3}.

7. D ={0,1,2,3};
f= {(u,v)|u € D and the value of v is obtained by multiplying u by 1 less than u}.

8. D={-20,24};
f= {(x,y)|x € D and the value of y is the quotient of the square of x and 1 more
than x}.

S
S

O
U

k
h
W
D

In problems 9 through 12, a set of ordered pairs is given. In each case answer the follow-
ing.

a) Is the given set a function? Is it a one-to-one function?

b) State the domain and range for the given set of ordered pairs.

¢) Give a verbal statement that could be used to describe the rule of correspondence for
the given set of ordered pairs.
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9. f={(-1,1),(0,0), (1,1), (2,4), (3,9), (4,16)}.

10. g = {(1, 2), (2, 4), (3, 8), (4, 16), (5, 32)}.

11. A = {(0,0), (1,1), (4,2), (9, 3), (1, —1), (4, —2), (9, —3)}.

12. f= {(-1, —2),(0,1), (1, 4), (2,7), (3,10), (4, 13)}.

In Problems 13 and 14, use the rule of correspondence between u and v given by the
following table.

 

 

    

ul -1 0 1 2

v 1 0 1 4

13. Let f be the set of all ordered pairs (u, v) given by the table.

14.

a) Give f as a listing of ordered pairs.

b) Is f a function?

c) State the domain and range of f.

Let g be the set of all ordered pairs (v, u) given by the table.

a) Give g as a listing of ordered pairs.

b) Is g a function?

c) State the domain and range of g.

In problems 15 and 16, a diagram is given showing a mapping of set OD onto set R.

a) List the corresponding set of ordered pairs.

b) Is the mapping one-to-one?

15.

17.

18.

D: {1, 3, 5} 16. D: {—2,2, —1,1, 0}

®: {0, 2, 4) ®:{ 5 2 1)
A manufacturer advertises the efficiency of a car as “15 kilometers per liter.” This

describes a rule of correspondence between the amount of gasoline used (x liters)
and the distance traveled (y kilometers), thus giving a set of ordered pairs (x, y).

a) What is the domain implied by this rule?

b) In each of the following ordered pairs, the first member is given; find the corre-

sponding second member.

(1L, ), (2L, ), (3.6L, ), (10L, )

In problem 17, the phrase “15 kilometers per liter” can also be considered as a rule of

correspondence between the distance traveled (uz kilometers) and the amount of

gasoline used (v liters), thus yielding a set of ordered pairs (u, v).

a) What is the domain implied in this set of ordered pairs?

b) Complete the following ordered pairs by determining the second member in each
case.

(45 km, ), (175 km, ), (215 km, ), (460 km, )
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In each of the problems 19 through 28, a function is described by the given formula.

a) Using the convention stated on page 19, determine the domain of the function.

b) Evaluate the function at the given values of the independent variable; if the result is
not a rational number, then give it in approximate decimal form rounded off to two

 

 

places.

19. f(x) = x2 — 2x + 3, x: —2,0, \/5 20. g(x) = : 0 ¥ -2,0, 7

21. h(x) =3 — 4x, x: =2,1,1 + 6 22. f(x) =5— 3x2, x: —1,2,1 — \/3

23. g(x) = ZL» ~2,0, V5 24. f(t) =-1 t: —1, —0.5, \/3

25. g(t) = iy — <4 t: —2, 05, V3 26. h(x) =x — 1, x: 1,3, \/7

27. ft) = V1—t t: 1, =3, —\7 28. g(x) = Vx +1, x: —1,3, V2

In each of the problems 29 through 33, a function is described. Determine the specified
image values. If an answer is an irrational number, give result rounded off to two deci-

mal places.

29. f(x) =x*—-3x +4 a) f(0) b) f(3) c) f(V2)

30. f(t) = 113 8) f(~1) b) £(2) 0) f(=V3)
31. f(x) = V1 + Vx a) f(0) b) £(3) c) f(9)

32. f(x) = 3% — 2x a) f(-2) b) f(—-1) c) f(4)

33. f(x) = VVx — 2 a) f(4) b) (9) c) (12)

34. Suppose f(x) = 2x + 3; determine a) f(4x) b) f(x +1)

35. Suppose f(x) = 3x2 4+ 2x — 3; determine a) f(1 —u) b) (3 + x)

36. Given that g(x) = =, determine a) g(u+1) b) g(1 — 3x)

37. Given that g(x) = aa determine a) g(u—-1) b) g(2x — 1)

38. Let f be a function with domain N (the set of natural numbers), and let the rule of

correspondence be given by f(x) is the number of primes less than or equal to x”

(see Example 10 of this section). Find:

a) f(12) b) f(19) c) f(100)
Hint: Use the table of prime numbers given in Appendix D.

39. f(x) = E if x is a rational number, Find:

0 if x is an irrational number.

a) f(2) b) (0.73) c) f(\/5)

40. f(x) = 1 if x2 is a rational number,
’ ~ |x if x2 is an irrational number.

a) (V2) b) f(1 + V2) c) f(—3%)

Find:
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In problems 41 through 54, draw a graph of the given function. In each case make a table

of x, y values, plot the corresponding points, and connect them with a smooth curve

when appropriate.

41. y=2x +1 42, y=4 — x 43. y = 4 — x?

44. y = x2 — 4 45. y = x 46. y = V—x

47. f= {(x,5)[3x + 2y = 0} 48. f = {(x,y)|2x% + y = 0}

49. f= {(x,)|x> = 1 —y = 0) 50. f= {(x,y)|2x —y = 3)
51. f = {(x,y)| y equals the greatest integer that is less than or equal to x}

52. D(f) ={-2,-1,0,1,2} and f(x) = x2 + 1

53. D(f) ={—-4,-3,—-2,-1,0} and f(x) = V—x

54. D(f) = {— V3, —-1, 0, 1, V3) and f(x) — (2 if x is rational

x? if x is irrational

In each of the problems 55 through 60, a graph of a relation is given.

a) Determine whether or not the graph represents a function.

b) State the domain of the relation.

55. y 56. ~<

   é x
/ (-1,0) (1,0)

57. y 58.

  

  

y

0,2) —

(2, 1)

X X

(—4,0) (4,0) ~~

o, -2)
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59. y

60. y

  

 
In problems 61 through 64, functions f, g, and A are described by the following graphs. In
each case find the value of the function at the given values of x.
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y =f) y=8x) y=h(x)

61. a) 7(0) b) g(0) c) h(1)

62. a) £(2) b) g(1) c) h(-1)

63. a) f(-3) b) g(2) c) h(-2)

64. a) f(4) b) g(4) c) h(3)
 



Section 1.2

1.2

Definition 1.4

Example 1

Solution

Example 2

Combining Functions 29

COMBINING FUNCTIONS
In this section we explore five ways in which given functions can be combined to

get new functions. These are referred to as sum, difference, product, quotient
and composition functions.

Sum, Difference, Product, and Quotient Functions

Two functions can be combined in four ways to give new functions in a manner
analogous to combining two numbers by any of the four arithmetic operations
+, —, X, or +. However, before we discuss the arithmetic of functions, it is

necessary to first give a definition of equality of two functions.

Equality of functions

Suppose f and g are functions with domains D(f) and D(g), respec-

tively. We say that f equals g, denoted by f = g, if and only if

(1) D(f) = D(g) and (2) f(x) = g(x) for each x in their common

domain.

The following two examples illustrate this definition.

Suppose f, g, and A are functions defined by

 _ I x3 4xfo) =x glx) ="—7, hx)=5-7

a) Isf=g? b) Is f = A?

a) Since D(f) = R and D(g) = {x|x # 1}, D(f) # D(g), and therefore f # g

by part (1) of Definition 1.4.

b) First note that D(f) = D(A) = R. For each real number x,

xX 4x x(x2 +1) _

Tx2 41 x241

Hence (1) and (2) of Definition 1.4 are satisfied; therefore f = A. EE

h(x) 

The rule of correspondence given by

x2 — 4

x — 2
 g(x) =

defines a function with domain

D(g) = {x|x #2}.

Use algebraic simplification on the rule for g to determine a function f so

that 8g = f..
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x2 —4 (x + 2)(x—2)
 g(x) = — = TE) =x + 2 for every real number x except 2.

Thus a rule for the desired function is given by f(x) =x + 2, where

Df) = {x]x #2}. ~

Sum, difference, product, quotient functions

Suppose f and g are functions. New functions f + g,f — g, f+ g and

f/g are given by

L(f+8)x)=f(x)+4g(x), D(f+8)=D(f)ND(g
2. (f-8)x)=f(x) — g(x), D(f—g) =D(f)ND(g)

5 (F=fal, DUd=NOL)
4 (f/g)(®) =, o(1)- (xx € D(f) N D(g)

£(x) and g(x) # 0)

It is important to realize that the rules of correspondence stated in Defini-
tion 1.5 for the four functions are not merely formal manipulations of symbols.
For instance in (1), the plus sign in f(x) + g(x) indicates the sum of two num-

bers (remember that f(x) and g(x) are numbers), whereas the plus signin f + gis

used to denote a function whose rule of correspondence assigns to each x in
D(f) N D(g) the number f(x) + g(x).

Suppose f, g, and h are functions given by

 fxy=x+1, gx)= Va, h(x) = ——.

Give formulas and corresponding domains for each of the functions:

a)f+8& b) g —h c)g-h d) f/h

First note that the domains for f, g, and A are, respectively,

D(f) =R, D(g) = {x|x > 0}, Dh) = {x|x #1}.

a) (f+ 8)x =f(x) + g(x) = (x +1) + Vx for x € D(f) N D(g). Hence,

(f+8)x)=x+1+ Vx; D(f+g ={x|x>0}

b) (g — h)(x) = g(x) — h(x) = Vx — - t - for x € D(g) N D(h). Thus 

(8 = h(x) = Vx — —F=; D(g—h) ={x|x>0and x #1}.
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 c) (g-h)x) =g(x) h(x) = VE (= x -) for x € D(g) N D(A). Therefore,

 

 

(8+ h)x) = ==; D(g-h) = {x|x > 0 and x # 1).

F\(o f(x) x+1  (x+Dx-1) «22-1
D (5)=F=Teen

where o(1) = {x|x € D(f) N D(A) and A(x) # 0}. Thus

(£m =2=1, D(L) = (x]x #0 and x 2 1). —

Composition of Functions

Let us consider another way of combining two functions to get a new function.

The idea is illustrated first by an example.
Suppose a spherical balloon is being inflated in such a manner that its radius

ris given as a function of time ¢ by the formula r = g(¢) = VV, where ¢ and r are

given in appropriate units. Since the volume V of a sphere is given as a function
of r by the formula V = f(r) = (4/3)nr3, we can also express V as a function of ¢

by replacing r with V/z That is,

V=[(g®) =f(Vt) = 47(VO)>.

Here we have an example of combining functions g and f to get a new func-
tion given by the formula V = f(g(#)). We call this function the composition of
f and g and denote it by fog. Thus (fog)(t) = f(g(t)).

The example above leads us to the following definition of composition of
functions in general.

Suppose f and g are functions. The composite function ofg followed
by f is a function, denoted by fo g, which assigns to the number x the
number f(g(x)). That is,

(fo8)(x) = f(g(x)),
where D(fog) = {x|x € D(g) and g(x) € D(f)}.

Note that the domain of fo g as given here includes all of the values of x for

which f(g(x)) is meaningful. That is, we first evaluate g at x, and so x must be in

D(g); then fis evaluated at the result g(x), and so we need g(x) to be in D(f).

This is illustrated schematically in Fig. 1.15, in which bd is accepted by fo g, but ¢
is not since g(c) is not in D(f).
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Fig. 1.15   

 
Suppose f(x) = 2x + 3 and g(x) = x2 — 1. Evaluate

a) AN b) (fof)(—

a) (fog) Je)) =f(3) = 09.
b) (fofe =f(f(—4"= f(—=5) = —T7. -

Suppose f(x) = Vx and g(x) = 1/(x — 1). Determine formulas and correspond-

ing domains for the composite functions:

 

a) fog b)gof

a) (fog)(x) = f(g(x)) = (= : ) =i
First note that D(f) = {x|x > 0} and D(g) = {x|x # 1}. Hence the do-
main of fo g includes any number x for heh x € D(g) and g(x) € D(f);
that is, x #1 and 1/(x — 1) > 0. Thus D(fog) = {x|x > 1}.

b) (gof)(x) (x) = 8(Vx) = ———) (gof)(x) = g(f(x) = g(Vx =

where D(gof) = {x|x > 0 and x # 1}. KE

Suppose fis a function given by f(x) = V4 — x, D(f) = {x|0 <x <4},and gis

a function defined on the set of positive integers N by the rule: “g(x) equals the

number of prime numbers less than or equal to x.” List the ordered pairs of the

functions:

a) fog b) gof
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The domains offand gare D(f) = {x|0 <x <4} and D(g) = {1,2,3,...}. The

set P of prime numbers is P = {2,3,5,7,11,13,17,...}.

It is also helpful to, list a few of the ordered pairs in g. For example, to
evaluate g(7), the rule for g counts the number of primes less than or equal to 7.

These are 2, 3, 5, and 7. Thus g(7) = 4. Hence,

g = {(1, 0), (2, 1), (3, 2), (4, 2), (5, 3),(6, 3), (7, 4), (8, 4), (9, 4), (10, 4), (11, 5) hi J

a) (fog)(x) = f(g(x)) = V4 — g(x). Since g(x) must be in D(f), 0 < g(x) < 4.
The listing of g shows that the acceptable values of x are 1, 2, 3, 4, ..., 10.

Therefore D(fog) = {1,2,3,...,10}.

Let us evaluate fog at a few of these values of x.

(fog)1) =V4—g(1)=V4-0=2,

(fog8)2) =V4—g2)=V4-1= V3,

(fog)=V4—g@B)=Vi-2=2

(fog)(10) = V4 — g(10) = V4 —4 = 0.

Therefore fog consists of the following set of ordered pairs.

fog ={(1,2),(2V3), (3, V2), 4, V2), (5,1), (6,1), (7,0), (8,0), (9, 0), (10, 0) }.

b) (gof)(x) = g(f(x)). Here we require that 0 < x < 4 and f(x) is a positive
integer. Since f(x) = \/4 — x, we see that there are only two values of x
satisfying this requirement, namely, 0 and 3. That is, f(0) = 2 and f(3) = 1.

Therefore D(gof) = {0,3} and

(gof)0) =g(f(0)) =g2) =1, (g°f)3) =g(f(3)) =g(1) =0.

Hence the function gof is given by gof = {(0, 1), (3,0)}. HE

Note from Examples 5 and 6 that functions fog and go f are not equal. In

general, this is so.

Suppose functions f and g are given by f(x) = 1 — x2 and g(x) = V/x. Determine
a formula for the function fog.

(fog)(x) =f(g(x)) = f(Vx) =1 — (Vx)? = 1 — x. Here we must be careful to
state the domain for fog. It is necessary that x € D(g) and g(x) € D(f);
and so (fo g)(x) =1 — x, where D(fog) = {x|x > 0}.

Note that the function A given by A(x) = 1 — x can be evaluated at any real

number, but such a function is not equal to fo g since f(g(x)) is not defined for
any value of x less than zero. a

Suppose f and g are functions given by

f(x) =x%2 —2x —1 and glx) = Vx + 1.
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In each of the following, find the roots of the given equation.

a) (fog)(x) = 3x b) (fog)(x) = f(x) + 3x — 2

First find (fo g)(x):

(fog)(x) =f(gx) =f(Vx +1) = (Vx +12 -2(Vx +1) — 1
=x 4+2Vx+1-2Vx-2—-1=x—-2.

Here the acceptable values of x are given by x € D(g) and g(x) € D(f).

Thus (fog) = {x|x > 0}. Thus function fo g is given by (fo g)(x) = x — 2 for
x > 0.

a) The equation (fo g)(x) = 3x is equivalent to x — 2 = 3x and x > 0. There-
fore x must satisfy x = —1 and x > 0. Hence there is no solution.

b) The equation (fog)(x) = f(x) + 3x — 2 is equivalent to the equation

x —2=(x%2—-2x —1) + 3x — 2 and x > 0. Simplifying, we get x2 —1=0
and x > 0. The only value of x satisfying this is x = 1, so 1 is the only solu-

tion. iw

Given F as a function defined by F(x) = (1 + x)5, find two functions fand g such

that fog = F.

One solution is to take f(x) = x% and g(x) = 1 + x. Then

(fog)(x) =f(g(x)) =f +x) = (1 + x)8.

Therefore (fog)(x) = F(x); also D(F) = D(fog) =R, and so fog = F. An-

other solution is given by f(x) = x3 and g(x) = (1 + x)2. It should be clear that

there are other solutions. Si)

Function Machine
It is instructive to think of a function in terms of an input-output machine.
Suppose a machine is built according to the rule that describes a given function f,

so that when a number, say c, is taken from the domain D(f) and entered into

the input slot, it is processed by the machine and the corresponding f(c) exits
from the output. This is shown schematically in Fig. 1.16.

Consider the following examples.

The square machine is one that corresponds to the rule f(x) = x2,i.e. it is a

machine in which the number entered into the input is multiplied by itself. For
example, if —2 is entered, out comes 4, as shown in Fig. 1.17. This corresponds to
the ordered pair (—2, 4) of f. vee

The composition function machine. For two functions f and g, we can illustrate
the fog function machine by combining the f and g machines, as shown in Fig.
1.18. In this type of machine care must be exercised in selecting the x from D(g)
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Fig. 1.16

 

\
~

Function machine ~—— f(c)

 

Fig. 1.17
g(x)

  
~   Fig. 1.18
 

TN

71 \
v

f(g(x))

that is to be entered; if the output g(x) from the g component cannot be digested
by the f component (that is, if g(x) € D(f)), then the fog machine will reject
that value of x and indicate it by Error. The user of such a machine should be
aware that the only values ofx that it will accept are from the set {x|x € D(g)

and g(x) € D(f)). mn
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In order to describe the addition machine it is necessary to consider a function
of two variables; that is, the domain of such a function will itself be a set of

ordered pairs of real numbers. Suppose we denote the function we are describing
by : the domain of is the set D((+)) = {(u,v)|u and v are real
numbers}. The rule for the function is given by (+J((a, b)) = sum of a and
b. The range of is given by ®(+)) = R. For example,
((3,5)) = 3 + 5 = 8. Thus we can think of as a function on the set of or-
dered pairs of real numbers (Fig. 1.19). Vi]

(a,b) —— —— <

  /

Se — a+b N=(LVI)=   
  Fig. 1.20 

(f+9B3)=1+V3

In an analogous manner we can consider the other binary operations(=,
(+) as functions of two variables.

The sum function machine. Suppose f and g are functions given by

f(x) = V4 — x and g(x) = Vx. We can “build” a machine for the f + g function

by combining the f, g, and machines. Figure 1.20 shows what happens when

the number 3 is entered into such a machine. _

In a similar manner we could “build” function machines for the various

types of functions described in Section 1.2. Although our discussion so far has
been in terms of fictitious machines, it does introduce us to a real function

machine, the hand-held calculator, which can be considered a truly magnificent

multifunction machine.
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Scientific Calculator as a Function Machine
In Chapters 2 and 3 polynomial, exponential and logarithmic functions are
discussed. These along with trigonometric functions constitute a set of basic
functions in the sense that almost any function we consider is one of them or can
be described in terms of sum, difference, product, quotient, or composition of

these functions.
The scientific calculator has a set of function keys we can press in an appro-

priate order to “build” any one of these basic functions. Here we discuss some of
these keys; we consider others (such as the exponential, logarithmic, and trigo-
nometric keys) in appropriate places throughout the book.

One-variable function keys We will consider the one-variable function keys
(x),G2), and(Vx). By pressing the key, we cause the calculator to become a
reciprocal machine. For example, if we enter 2 into the display by pressing the
(C2 Jkey, then instruct the calculator to become a reciprocal machine by pressing

the key, it will process 2 and give 0.5 as the output in the display. This is
illustrated schematically in Fig. 1.21.

    B(f)= {xk #0},

 Fig. 1.21   
~——05=1(2)

Note that the machine will not accept x = 0. The reader should try
pressing (© and and then observe the response of the calculator.

In a similar manner the (x2) and keys cause the calculator to behave
like g(x) = x2 and A(x) = Vxfunction machines, respectively. Also we can com-

bine the , (2), and keys to get other functions. For example, if
f(x) = 1/x, fo g is the function given by (fog)(x) = f(g(x)) = f(x?) = 1/x2. To
evaluate fog at 2, that is (fo g)(2), we first enter 2 into the display, then press

the (52) and keys in that order. The display will then show 0.25; that is,
(fog)(2) = 0.25.
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Suppose f(x) = 1/x, g(x) = x2, and h(x) = Vx. Evaluate each of the following

by using a calculator. Give answers rounded off to two decimal places.

a) f(—1.7) b) (3.6) c) h(4.3)

d) (gof)(—13) e) (g0h)(3.2) f) (goh)(—4.1)

a) Enter 1.7 into the calculator display and then press the change-sign key,
usually labeled (cHs] or (+/=). Next press the key, and the calculator will
show —0.5882.... Thus f(—1.7) = —0.59.

b) Entering 3.6 into the display and pressing the (52) key gives g(3.6) = 12.96.

c) Enter 4.3, press(¥x), and you get A(4.3) = 2.07.

d) (gof)(—1.3) = g(f(—1.3)). Enter —1.3, then press the and (G2) keys,
and you get (gof)(—1.3) = 0.59.

e) (g0h)(3.2) = g(A(3.2)). Enter 3.2, then press the and (G2) keys, and you
get (go h)(3.2) = 3.20.

f) (goh)(—4.1) = g(h(—4.1)). Enter —4.1, and then press the key. At this
point the calculator indicates Error. The reason is that —4.1 is not in D(A),

and so we conclude that (go A)(—4.1) is undefined.

A formula for go A is given by

(goh)(x) = g(h(x)) = g(Vx) = (Vx)? =x,
where we must restrict the values of x to x > 0. Note that the calculator evalua-

tion procedure includes this restriction on x, as illustrated in (e) and (f). IH

Two-variable function keys We now consider the keys(+J,(=],(x], (=),
and (YX). As illustrated in Example 12, each of the binary operations +, —, X,
and + can be considered as a function on a set of ordered pairs of real numbers.
For example, + is a function (which we shall denote by (+ J) with domain
DF) = {(x,y)|x €E R,y €E R} and defined by ((w,v)) = u + v. Simi-
larly, the functions(=J,( x), and (C=) are defined by (=I ((x, v)) = u — v;

((w,v)) = u-v; and C=J ((u, v)) = u + v, where the domains for C=) and
(x3 are the same as D(+)); and D(=)) = {(x,y)|x ER,y € R and y # 0}.

In order to evaluate a given binary operation function with a calculator, it is

necessary to enter an ordered pair of numbers and then instruct it to become the

binary operation machine. We accomplish this in a natural way in the RPN
calculators by using the Enter key to separate the two numbers; it serves as

the comma of the ordered pair. For example, if it is necessary to evaluate

(=J((6,2)) = 6 — 2, we press 6 2, and we tell the calculator to become a
subtraction machine by pressing the (=Jkey; the display will then show 4. With
calculators that use the algebraic system of entry, we press the (=Jkey between

the two numbers: 6 (= 2; this separates the 6 and 2 and prepares the calculator

to become a (=) machine. Pressing the (= key activates the pending C= func-
tion, and the display shows the result. Thus, with algebraic calculators we evalu-

ate C=) ((6,2)) = 6 — 2 by pressing 6 (=) 2(=.
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Another calculator key that can be considered as a function defined on or-
dered pairs of real numbers is labeled (¥*J). When the ordered pair (u, v) is en-
tered and the calculator is instructed to become a machine, it will process
(u, v) by raising u to the v power; that is, the output will be u*. Thus we write

((4, v)) = u®. For example, for the ordered pair (4, 3) the output will be 43,
which we write in function notation as ((4,3)) = 43 = 64.

The method of calculator entry for the (¥*J function is similar to that for the

binary operation functions.

For RPN calculator: press u v(¥), and the display will show u®.

For algebraic calculator: press u v(=], and the display will show u”.

On many calculators the function will process an ordered pair (u, v) only
when u is positive.* That is, the domain of the function is given by

D(™) = {(y,v)|u € R,v € R and u > 0}.

If u is positive, then u? is a positive number for any real number v. Therefore the
range of (YJ is given by

RED) = {w|w > 0}.
Note: We shall encounter problems in which we wish to evaluate an exponential
with a negative base number. For example, if we want to find the value of
(—1.43)3, we note that (—1.43)3 = —(1.43)3. Now use a calculator to evaluate

(1.43)3 and then change the sign of the result. Thus (—1.43)3 = —2.924207.

Combining calculator functions to get new functions As we have now
seen, we can combine two given functions to get a new function, such as the sum,
difference, product, quotient, or composition function. We can use these ideas
with the basic calculator functions, those given directly by calculator keys, to

get almost any of the functions that we shall encounter. It will not serve our
purpose to pursue this in detail in a general setting, but here we illustrate by a
specific example.

Suppose f and g are functions given by f(z) = u? and g(z) = Vu. Then in

calculator notation fis given by (52) (¢) = u? and g is given by (uv) = Vu.
The sum function f + g is then given by

(CD +E))(uw) =GE)(u) + (u) =u? + Vu

Thus to evaluate f + g at u, we apply the (x? Jfunction to u and the function
to u, obtaining an ordered pair (x2, V/u). Then we apply the function to this
ordered pair to obtain u2? + \/u. This is precisely the sequence of steps used in

having a calculator evaluate u? + Vu.

 

Here we are disregarding the trivial case © = 0 and v > 0. On some calculators the can be used to

evaluate u¥ when u is a negative number if v is any integer.
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Throughout most of this text we encounter numerous examples in which the
calculator is used to evaluate functions, some of which are rather complicated,
by combining basic calculator functions in an appropriate manner. In any given
situation the combination of functions used is described in terms of the sequence

of calculator keys used.

Suppose f is a function given by f(x) = 5 + Vx. Using a calculator, evaluate

the given expressions and round off answers to four decimal places.

a) f(4) b) 7(3.48)

We can consider the given function in terms of a combination of functions
g(x) = 1/x, h(x) = x2, and g(x) = Vx. Then f(x) = g(h(x)) + g(x); that is, the

function f is equal to the function go A + q. We will not trouble ourselves with
these details but rather will illustrate how they are used to evaluate the given
expressions.

a) f(4) = 1/42 + V/4. This can be evaluated as follows:

For RPN calculator: press (4(20x) (+, and the display will
show 2.0625.*

For algebraic calculator: press (4 (2) Ca) C=), and the
display will show 2.0625.

b) To evaluate f(3.48) we can follow the same sequence of steps as in (a) with

3.48 in place of 4. The result is f(3.48) = 1.9480. wa

 

In problems 1 through 12, functions f and g are given by

f(x) =2x — 3, g(x) = x2 + 3x.

Evaluate the given expressions and give answers in exact form. If the expression is not

defined, explain why.

1. (f+ 8)3)

‘(feo
9. (fog)(—-2)

2. (f—2)3) 3. (f-8)(5) 4. (g-1)(0.5)

g \_ g6. (8) 7. (£) 3) 8. (8) as

10. (g-f)(0) 11. (f-£)(0) 12. (fof)(4)

In problems 13 through 21, functions f, g, and A are given by

fay =%=1  gx)=a2+3 hx) = Vz-4 
X

 

* It is not necessary to press the key between the and (4Jbecause after a function key the

calculator is automatically ready to accept a new number.
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Evaluate the given expressions and given answers in exact form. If an expression is
undefined, explain.

13. (2 — )(©2) 14. (g + B)(6) 15. (%) (8) 16. (£8) 17. (gof)(1)

18. (fo h)(4) 19. (go h)(3) 20. (f-2)(—=3) 21. (ho h)(20)

In problems 22 through 33, functions f, g, and A are given by

f(x) = Vx, gx)=x-3  h(x)=2x%+4

In each case, determine a formula for the given function and its domain.

22. f+g 23. : 24. : 25. fg

26. f+ h 27. fog 28. gof 29. hog

30. gog 31. hof 32. ; 33. foh

In problems 34 through 39, solve the given equations, where f, g, and A are given by

f(x) =x + 3, g(x) =1— x2, h(x) = Vx.

34. f(x) —4=0 35. (f—g)(x) —x2=0 36. hix) —2=0

37. (goh)(x) —3=0 38. (foh)(x) —4=0 39. (goh)(x) — f(x) =0

40. If f(x) = 2x — 3 and g(x) = x 5 3 is fog=gof? 

41. If f(x) = 2x + 5 and g(x) = £5 O isfog=gof? 

In problems 42 through 47, for the given function f find a function g such that

(fog)(x) = x for each x in R.

42. f(x) =x — 4 43. f(x) = 2x + 3 44. f(x) = 3 — 4x

45. f(x) = 4 — 2x 46. f(x) = 15x + 3 47. f(x) = 6 — 15x

In problems 48 through 56, functions f, g, and A are given by

 f(x) = Va, gx) =a2+4, hx)=_—"=.

Evaluate the given expressions and give answers rounded off to two decimal places.

48. f(5) 49. g(1.43) 50. A(V/3)

51. A(m) 52. (fog)(2.4) 53. (hof)(3)

54. (f + g)(m) 55. (4) 2) 56. (f + h)(16)

57. If functions f and g are given by f(x) = x2 and g(x) = Vx, are functions fog and

g of equal? Justify your answer.
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58.

59.

60.

61.

62.

63.

64.

65.

Functions

Given that A(x) = (2x + 1)%, find functions f and g so that fo g¢ = A. Note that there

may be more than one solution.

Given that A(x) = x2 + 2x + 1, find functions f and g such that fog = A.

Given that f is a function defined on the set ofpositive integers by the rule f(x) is
equal to the number of prime numbers that are less than or equal to x, and g is a

function defined by the formula g(x) = V9 — x2, find the set of ordered pairs that

belong to

a) gof b) fog
c) State the domain and range of each of the functions gof and fog.

A function machine accepts any real number and processes it by squaring it, then

multiplying the result by 5, and then subtracting 4 from that result. Find the corre-
sponding output numbers for each of the input numbers: —3, 0, 2, 5.

A function machine is given to you without instructions as to what it does except
that it will accept any real number. Suppose you wish to find out what kind of

machine it is by entering numbers and observing the outputs. Entering —1 gives 1,
0 gives 4, 1 gives 7, and 2 gives 10.

a) On the basis of this information give a rule that might describe what the machine
is doing.

b) If 16 is entered, what do you think should come out?

c) If we decide to test one more number by entering 3 and we get 37, what do you
conclude about the machine?

A function machine is designed so that it will accept any real number x, and the

corresponding output will be the largest integer that is less than or equal to x. For
each of the following numbers, give the corresponding output number:

x=4x=—6;x=247, x = —1.32; x = 4 + /2.

A function machine is designed so that it can accept any positive integer and process

it as follows: If a positive integer n is entered into it, the machine will try each prime
number that is less than or equal to n to see if it divides n evenly, and it will keep

count of how many do. The corresponding output will be the “how many” number.

For example,if 12 is entered, the machine will determine that the only prime num-

bers that divide 12 evenly are 2 and 3, and therefore output corresponding to 12 is 2.

a) Find the corresponding output of this machine for each of the following input
numbers: 1, 3, 8, 15, 30, 52, 256, 420.

b) What is the smallest number that can be entered into this machine so that the

output will be 4?

Suppose p and q are two different prime numbers. Use the function machine de-

scribed in Problem 64 to determine the corresponding output when each value below

is entered.

a) p b) p? c) pq d) p%¢*

Chapter 1
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LINES AND LINEAR FUNCTIONS
One of the basic concepts in geometry is that of a line. We say two distinct lines

are parallel if and only if they are inclined in the same direction. The inclination

of a line L can be described in terms of a number called slope of L, which we now

define.

Slope of a line

Given two distinct points (x,,y,) and (x,,y,), there is exactly one

line L that passes through them. The slope of L is the number m
given by

Yo —N1

Xo — Xq

Here we are assuming that x; # x,.

In Fig. 1.22 we illustrate four possible cases, in which the slope is positive,

negative, zero, or undefined. In (a) the slope ofline L,is positive since y, — y; > 0
and x, — x; > 0. In (b) the slope of L, is negative since y, — y; <0 and
xX, — xy > 0.In (c) line L, is horizontal, and since y;, = y,, the slope of L, is zero.

In (d) the line L, is vertical; since x, = x,, we see that Eq. (1.7) involves division

by zero, and so we do not associate a slope with L, but describe its inclination by

saying “L, is a vertical line.”

 
     

y y y y

Ly

Ly Ly |x
FF 1 y1)

(ez. 32) AN (x1, y1)

Ls (x1 ’ y2)
(x ) (x2, y1)

AT1 (x2, 2)
(x1, y1)

x x x x

(a) Positive slope (b) Negative slope (c) Zero slope (d) Undefined slope

Equation of a Line

A line L is determined if either (1) two points through which L passes or (2) one

point and the slope of L are given. Case 1 reduces to Case 2 if L is not a vertical

line, since we can find its slope by using Eq. (1.7). Hence it is sufficient to assume
that a point and the slope are given. Let us proceed to find an equation for L.



44
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P: (x,y)

7 Q: (x1, ¥1)

— ’

 
Suppose line L passes through the given point @: (x,,y,) and has slope m.

Let P: (x,y) be any point on L, as shown in Fig. 1.23. We want to determine an
equation that relates variables x and y. By using the coordinates of points P and
Qin Eq. (1.7), we get (y — y,)/(x — x,) (for P different from @) as the slope of L;

this must be equal to the given slope m. Therefore (y — y,)/(x — x;) = m.
This can be written as

 

y—y=m(x — xq). (1.8)
 

Equation (1.8) is called the point-slope form of the equation of L. In this form
we see that Eq. (1.8) is also satisfied by the coordinates of @; thus we have an
equation satisfied by any point on L. Equation (1.8) can be written as

y = mx + (y, — mx,), where y, — mx, is a constant, which we shall denote by b.
Hence an equation for L is given by

Substituting 0 for x in Eq. (1.9) gives y = b, so the point (0, d) is on line L. Since

(0, b) is on the y axis,it is called the y-intercept of L, and Eq. (1.9) is called the

slope-intercept form of the equation of L.
Suppose we begin with the equation

Ax + By + C = 0, (1.10)
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where A, B, and C are given numbers. If B # 0, solving for y gives

_(_4A _C
y= 5) + 5)

Comparing this with Eq. (1.9), we conclude that Eq. (1.10) represents a line with

slope m = — A/B and y intercept —C/B. We call Eq. (1.10) the equation of a

line in standard form.

Vertical Lines

Suppose L is a vertical line passing through the point (c, d), as shown in Fig. 1.24.

® P: (x,y)

¢ (c,d)

Fig. 1.24 x
 

  
Let P: (x,y) be any point on L. Since L is vertical, x must be equal to c, and y

can be any number. Therefore the equation of L is simply

 

x =c (1.11)
 

Parallel Lines; Perpendicular Lines

Suppose m, and m, are slopes of lines L,; and L,, respectively. The following
useful relationships can be proved.

If m; = m,, then L, and L, are parallel lines.

Ifm, = — Se (or mm, = —1), then L, and L, are perpendicular to
1

each other.



46

Example 1

Solution

Example 2

Solution

Example 3

Functions Chapter 1

The converse of each of these statements is also true whenever the slopes of the

lines are defined.

Linear Functions

For given values of m and b, Eq. (1.9) describes a function,

f(x) = mx + b. (1.12)

Since such a function is related to a line, we call it a linear function. Thus a

nonvertical line is associated with a linear function. Conversely, it can be argued
that the graph of any linear function is a line.

Find an equation of the line L that passes through the points P;: (—1, 2) and
P,: (3,4).

First find the slope of L by substituting into Eq. (1.7):

_ 4-32 1
m=E3_(—1n) "2

Thus Eq. (1.8) gives

y—2=3x+1),

which can be written as

y=3x+3% or x-—-2y+5=0.

Either of these is an acceptable equation of L. aE

Suppose line L is given by the equation 2x — 3y = 6.

a) Find the slope of L and the coordinates of the x and y intercept points.

b) Sketch a graph of L.

a) Solving the given equation for y gives

y=%x —2.

In this form the coefficient ofx gives the slope m = 2/3. The x-intercept point
can be obtained by replacing y by 0 in the given equation and solving for the
corresponding value of x; this gives (3,0), the x-intercept point. Similarly,

x = 0 gives y = —2, and so the y-intercept point is (0, —2).

b) To sketch a graph we can plot any two points satisfying the given equation—

in this case, say, the x- and y-intercept points—and then draw a line through
them. The graph is shown in Fig. 1.25. oe

Suppose point @ is (—3, 1) and line L is given by 4x — 2y = 3. Find the equation

of
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Y=(2/3)%X-2

y

 

 
Graphof2x —3y=6

a) line L, that passes through @ and is parallel to L;

b) line L, that passes through @ and is perpendicular to L.

Solution We can solve the given equation for y to get y = 2x — 3; thus the slope of L is
given by m = 2 (the coefficient of x).

a) Let m, denote the slope of L,. Since L, is parallel to L, m, = m; thus m, = 2.
Therefore an equation for L, is

y—1=2(x + 3) or y=2x +1.

b) Since L, is perpendicular to L, m, = —1/m = —1/2. An equation for L, is

y—1=—3(x +3) or x+2y+1=0. me

 
Exercises 1.3

In problems 1 through 4, points P and @ are given. Determine the slope of the line

through P and Q.

1. a) P: (—2,4); Q: (0,1) 2. a) P: (—4,1); Q: (-3, —2)

b) P: (3,5); @: (—4,5) b) P: (1,3); @: (1, —4)

3. a) P: (4, -3); Q: (1, —1) 4. a) P: (-3,4); Q: (5, —1)

b) P: (2,5); Q: (—2,3) b) P: (1,3); Q: (4,3)
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In problems 5 through 8, points P and @ are given. Find an equation of the line passing
through P and Q.

5. a) P: (3,4); @: (—-1,2) 6. a) P: (—3,1); @: (—1, —-2)

b) P: (—-2,4); Q: (1,4) b) P: (—1,3); Q: (2,3)

7. a) P: (1, —-2) @: (0,0) 8. a) P: (0,0); @: (—3,5)

b) P: (—2,4); @: (—2,5) b) P: (4,1); Q: (4,5)

In problems 9 through 12, a point @ and the slope m of a line L passing through @ are

given. Determine an equation of L.

9. Q: (—2,4); m = 2 10. @: (1, —=3); m = —4

11. @: (0,3); m = —3 12. @: (3,0); m = 3

In problems 13 through 16, an equation of a line L is given. Determine the slope of L and

the coordinates of x- and y-intercept points of L.

13. 3x +2y + 6=0 14. 3x — 2y =6

15. 3x —4y=6 16. 3x +4 +6=0

In problems 17 through 24, sketch a graph of the given equations and label the x- and
y-intercept points.

17. 3x — 2y =14 18. 2x + 3y =6 19. y=2x —-3

20. y= —x +3 21. —x+2y=4 22. 2x = 6 — 3y

23. 3x = 6 + 2y 24. —3x—-2y+4=0

In problems 25 through 28, a point P and an equation of a line L are given. In each case,
determine:

a) Equation of line L, passing through P and parallel to L;

b) Equation of line L, passing through P and perpendicular to L.

25. P: (—2,1); 2x —3y+4=0 26. P: (1,4); x +2y=3

27. P: (-1,3); x +4=0 28. P: (—1,-3); y—5=0

In problems 29 and 30, determine whether or not the three given points are collinear (lie

on a line).

29. A: (2, -3); B: (0, —-1); C: (—-1,2)

30. A: (0, —3); B: (—=2, —6); C: (2,6)

In problems 31 and 32, three points are given. Determine whether or not they are verti-

ces of a right triangle.

31. A: (0,0); B: (1,2); C: (—4,2)

32. A: (2, -2); B: (5,2); C: (—6,4)

In problems 33 through 36, determine an equation that x and y must satisfy if the point

(x,y) is always equidistant from the two given points P and @.

33. P: (1,3); @: (3, —1) 34. P: (0, —2); Q: (—2, —4)

35. P: (-3,0); @: (5,3) 36. P: (4, —2); : (1,0)
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In problems 37 through 40, an equation of a line L is given. Determine the coordinates of

all points (x,y) that are in the first quadrant, lie on L, and have integral values of
x and y.

37. 2x + 3y = 11 38. 3x + 4y = 27
39. 5x + 2y = 12 40. 3x + 2y = 15

In problems 41 through 45, f and g are linear functions given by

f(x) =2x — 1, g(x) = —x + 3.

In each of the problems, find a formula for the given function and determine whether it
is a linear function.

41. f+ g 42. f-g 43. f/g 44. fog 45. gof
 

1.4 QUADRATIC FUNCTIONS; INEQUALITIES
A function f described by a formula of the form

f(x) = ax? + bx + c, (1.13)

where a, b, and c are given real numbers and a # 0, is called a quadratic function.

Let us consider three related problems involving quadratic functions.

1. Solving quadratic equations, that is, finding the values of x for which

f(x) = 0.
2. Sketching graphs of y = f(x).

3. Solving inequalities involving f(x).

Solving Quadratic Equations; Quadratic Formula

Two techniques commonly used in solving quadratic equations involve factoring

or application of the quadratic formula. Let us first develop the quadratic for-
mula and then illustrate with examples.

We want to determine the values of x that will satisfy the equation

ax? + bx +c =0, (1.14)

where a # 0.

The following steps involve completing the square and lead to a formula

giving the desired solution.

 

Divide by a: x2 + by = 2,
a a

Add (b/2a)? to both sides: x? + 2x + (2) __c, bb
a 2a a 4a?

Factor the left side: (+ + 2) =—dac
2a 4a?

2 __ \/b2 —

Take square roots: x + — = =*= b dac = + b dac
2a 4a? 2a
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Solving for x yields the quadratic formula:

 

—b =x Vb? — 4ac (1.15)

r= 2a
 

Equation (1.15) can be used to solve any quadratic equation by substituting the
coefficients a, b, and c to get the solutions. The symbol + in Eq. (1.15) is used to

denote two solutions:

_ —b+ Vb® — 4ac _ —b— Vb? — 4ac

2a 2a

Solve the equation 2x2 4+ 5x — 3 = 0.

The given equation can be written in factored form as (2x — 1)(x + 3) = 0.

Since a product can be zero only if one of the factors is zero, we have 2x — 1 = 0
orx + 3 = 0. This gives x = 1/2 or x = —3; and so 1/2 and —3 are solutions of

the given equation. Bn

Solve the equation x2 — x — 1 = 0.

We try to factor the left side but without success. Therefore applying the quad-

 

ratic formula (with a =1, 6 = —1, ¢c = —1) gives

Lo —(=DEVEDT 4D) 1x VE
- 2(1) - 2

Thus the solution set Sis S = peal1-8) Vo]

Solve the equation 2x2 — 6x + 5 = 0.

As in Example 2, we resort to application of the quadratic formula (with a = 2,
b= —6,c=05) to get

_ 6 V(—6)2 — 4(2)(5) 6x V—-4 6x2 3=*i

- 2(2) - 4 4 2 7

Thus there are no real number solutions. However, if the domain of

f(x) =2x? — 6x + 5 is assumed to be the set of complex numbers, then

(3 +1)/2 and (3 — 7)/2 would be solutions. VL]

 

Graphs of Quadratic Functions

We wish to draw a graph of the equation

y=ax® + bx + ¢ (1.16)
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for given values of the parameters a, b, and c, where a # 0. First, let us consider

two examples that can be used as models for discussing the general case.

Draw a graph of

y = 2x2 — 4x — 6. (1.17)

Rather than make an extensive table of x, y values that satisfy the given equa-
tion, we look for some key points. These include the coordinate axes intercepts:

y-intercept: let x = 0, then y = —6; thus (0, —6) is on the graph;

x-intercepts: let y = 0, then 2x2 — 4x — 6 = 0; or 2(x + 1)(x — 3) = 0.

Thus (—1,0) and (3,0) are the x-intercept points. Next we get an equivalent

equation by completing the square on the x terms as follows:

y=2(x2-2x) —6=2(x>2—-2x +1) —6—-2=2(x —1)2 —8. (1.18)

Equation (1.18) can be used to get information about the graph that is not
directly apparent from Eq.(1.17). Since 2(x — 1)2 > 0, y > —8 for all values of x.
For x = 1, y = —8, and so (1, —8) is the lowest point in the graph. Also, if we

take any two values of x that are symmetric about the line x = 1 (say,
x; =1 — hand x, = 1 + A), where Ah is any real number, the corresponding val-

ues of y are given by

y= 2[(1 —h) — 1] — 8 = 2h% — 8,
¥o = 2[(1 + Ah) — 1]2 — 8 = 2h — 8.

Note that y, = y,, and so the graph is symmetric about the line x = 1, as shown
in Fig. 1.26(a).

y=2%X"2-4%X~6

 \
4

< h——0

 
 

   
(a) (b) Graphofy = 2x? — 4x — 6
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Using the information above one can draw a reasonably accurate graph of
the given equation (Fig. 1.26b). The curve is an example of a parabola* that
opens upward. -

Draw a graph of

y= —2x% — 4x + 6. (1.19)

Following the same procedure as in the solution of Example 4, we get

y-intercept point is (0, 6);

x-intercept points are (—3, 0) and (1, 0).

The completed square version of Eq. (1.19) is

y= —2(x + 1)? + 8. (1.20)

Since —2(x + 1)? <0, we get that y < 8 for all values of x. For x = —1,y = 8§,

and so (—1, 8) is the highest point on the graph. Also using Eq. (1.20), one can
easily show that the graph is symmetric about the line x = —1.
Using the information above, one can draw a reasonably accurate graph of the
given equation (Fig. 1.27). As in Example 4, the curve is a parabola; in this case it
opens downward.

Y=-2%X"2-4%X+6

y

lok

  
 

|
—-4 =3 -2 -1 0 1 2

-2 —

x=-1 —4

Graphofy = —2x> — 4x + 6 bi
 

* A more detailed treatment of parabolas is given in Chapter 8.
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Graphs of Quadratic Functions in General

By following a procedure similar to that used in Examples 4 and 5, we can derive
the important features of the graph of any equation of the type

y= ax? + bx + c¢, wherea # 0. (1.21)

The completed-square version of Eq. (1.21) is

b\? 4ac — b?= — —_— 1.22y ax + 2) + (1.22)

From Eq. (1.22) we get the following important features:

4a
1. If a > 0, then af + 2)° > 0, and so y >= for all values of x.

a a

Thus the graph has a lowest point given by x =a

2. If a <0, then ax XY 2)° <0, and so y < dac=b for all values of x.
2a

—bHence the graph has a highest point given by x =5

3. Also, the curve is symmetric about the line x = 2. In summary, we have

the following.

The graph of y = ax? + bx + ¢, where a # 0, is a parabola that

1. opens upward if a > 0 and, opens downward if a < 0;

2. has a lowest or highest point given by x = = >

3. is symmetric about the vertical line x = Ba

Find the maximum and minimum values of the function f given by

f(x) = 3.1x2 — 48x + 3.7 and D(f) ={x]0 <x <2}.

Give answers rounded off to two decimal places.

We solve the problem by first drawing a graph of the given function. The graph is
part of the parabola y = 3.1x2 — 4.8x + 3.7 that opens upward (since a = 3.1,

and so a > 0), and the lowest point is given by

b (—4.8)
20_on74

x 2a 531) 0
(to three decimal places).
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For this value of x, the corresponding value of y is given by

y = 3.1(.774)? — 4.8(.774) + 3.7 = 1.84

(to two decimal places).

Therefore (0.77, 1.84) is the lowest point on the graph.
Now make a table of x,y values, and since 0.77 is in D(f), we include

x =0.77 y= 184:

 

x 0 0.5 0.77 1 1.5 1.8 1.9 1.99
 

   y 37 208 184 200 348 510 577 6.42
 

The values ofy in this table are determined with the aid of a calculator and are
rounded off to two decimal places. Plotting these points and drawing a curve
through them, remembering to restrict x to values in D(f), gives the curve
shown in Fig. 1.28.

¥Y=3.1¥X"2-4.8%X+3.7

(2, 6.50)

 

(0.77, 1.84)

  
Graphoff(x) =3.1x> —4.8x + 3.7, D(f) = {x|0=x <2}

The graph in Fig. 1.28 can now be used to give an answer to the stated
problem. The minimum value of the function—thatis, the smallest value ofy on
the graph—is 1.84. From the graph we also see that as x approaches 2, y ap-
proaches 6.50, but the point (2, 6.50) is not on the graph since 2 is not in D(f).

Thus it should be clear that the function does not have a maximum value.
=
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Suppose right triangle ABC, shown in Fig. 1.29, has base CB of length 5 and
height CA of length 3. A rectangle CDEF is inscribed in the triangle, as shown.
Find the dimensions of the rectangle with maximum area.

   u

F B

Let u = CF and v = CD denote the dimensions of the inscribed rectangle. The
area K is given by

K =u: v, (1.23)

where © and v are variables; for example, u can be any number between 0 and 5.
There is a relationship between u and v, as canbe seen from the fact that trian-

EF _ AC
gles ACB and EFB are similar, which gives FB= CB In terms of u and v and

the given dimensions, this becomes 5 v _-— 3. Therefore v = 3 — Zu Substi- 

tuting this into Eq. (1.23) gives a formula for K as a function of u:

K = u(3 - 34).

K = — Zu? + 3u, (1.24)

Thus

where 0 < u <5.

The graph of this function, as seen in Fig. 1.30, is part of a parabola that

opens downward (since the coefficient of u?2 is negative), and so it has a highest

point given by

_=b_ 3 5
“=a T 2-3/5) 2

The corresponding value of K is given by

_ —3(5)? S5Y_15
K=— (2) +3(2) = 1
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K=(=3/5)% "2+3#U

S
H I

— N
i
n

- >
a

~
~

J l 
Graphof K = —0.6u> + 3u, 0<u<5

This is the maximum value of K. Therefore the rectangle with dimensions

_5 _g3_3(5\_3u=y and v=3 3(2)=2

will be the one that has maximum area. =e

Quadratic Inequalities

The following examples will illustrate techniques for solving quadratic

inequalities.

Find the solution set S for the open sentence x? — 2x — 3 < 0.

Two methods of solution are illustrated.

Method 1 Lety = x2 — 2x — 3 and draw a graph. This is a parabola that opens

upward, as shown in Fig. 1.31, where the x-intercept points (—1,0) and (3, 0)

were determined by solving the quadratic equation x2 — 2x — 3 = 0.
Solving x2 — 2x — 3 < 01s equivalent to finding the values of x in the graph

of Fig. 1.31 for which y is negative. As seen from the graph, the solution includes
any x between —1 and 3. Thus S = {x| —-1 <x < 3}.
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y=X"2-2%X-3

4

3+

2 |

1+ x=-1 -1<x<3 x=3

a — H+
_1 -1 0 3

Fig. 1.32

 

 
Fig. 1.31 Graphofy=x*-2x-3

Method 2 The given inequality can be written as

(x + 1)(x — 3) <0. (1.25)

We can consider all values ofx by looking at three cases, as shown on the number
line in Fig. 1.32.

1. Ifx < —1,then (x + 1) <O0and (x — 3) <0; thus (x + 1)(x — 3) > 0, and

so x is not a solution of inequality (1.25).

2. If —1<x<3, then (x +1) >0, and (x — 3) <0; hence we can write

(x + 1)(x — 3) <0, and so x satisfies inequality (1.25). Therefore any x for

which —1 <x < 3 will be in S.

3. Ifx >3,then (x +1) > 0and (x — 3) > 0; thus (x + 1)(x — 3) > 0, and so

x is not a solution of inequality (1.25).

Therefore S = {x| —1 <x < 3}.
Method 2 suggests the following format for solving the given inequality

x2 —-2x —3<0.

Solve the equation:* x2 — 2x — 3 = 0.

Factor: (x + 1)(x — 3) = 0.

Solution: x = —1 or x =3.

 

In general, the cut points for ax? + bx + ¢ < 0 can be found by using the quadratic formula to solve

ax? + bx + c¢ = 0. If the roots are not real numbers, the solution set is the empty set if a > 0, and R

if a <0.
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Consider —1 and 3 as cut points on a number line, and check typical points in
each region:

1. x= -2 2. x=0 3. x=5

(=5)(-1) <0 (=3)(1) <0 (6)(2) <0
False True False

This suggests that the solution is given by —1 <x < 3. wi

Example 9 Find the solution set S for the open sentence x2 — 2x + 3 > 0.

Solution Method 1 Let y = x2 — 2x + 3, and draw the graph shown in Fig. 1.33, where

the lowest point is given by x = —b/2a = 2/2 = 1,y = 2. From the graph we see
that for every x, the value of y is positive, and so the solution set for the given
inequality is S = R.

y=X"2-2%¥X+3

(1,2)

Fig. 1.33 | =  
Graphofy =x? —2x +3

Method 2 By completing the square, one can write the given inequality as

(x — 1)24+2>0.Since (x — 1)2 > 0, (x — 1)2 + 2 > 0 for every real number x.

Thus S = R. oe
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Exercises 1.4
In problems 1 through 12, solve the given equations. In each case,
 

a) express solutions in exact form;

b) state whether the roots are rational, irrational, or complex (nonreal) numbers; if the

roots are irrational numbers, express them in decimal form rounded off to two deci-

mal places.

1. 2x2 —- 3x —2=0 2. 2x2 4+ 5x —-3=0 3. 3x2 —-4x—-2=0

4, 2x2 — 4x —3=0 5. x2 —2x —2=0 6. 3x2 —4x +1=0

7.22 2x +2=0 8. 3x2 4+6x+1=0 9. x2 -2V3x —-2=0

10. 3x2 — 22x —1=0 11. x2 —- 23x — 16 =0 12. 2x2 + 15x — 35 =0

In problems 13 through 20, sketch graphs of the given functions. In each case label the
coordinates of

b) x-intercept points, c) the highest or lowest point.

14. f(x) = 2x2 + 5x — 3

16. f(x) = —x2 —2x + 8

a) y-intercept point,

13. f(x) = 2x% — 3x — 2

15. f(x) = —x2 + 2x + 3

17. f= {(x,9)|y = 22 + 4x + 4) 18. f= {(x,)]y = —x% + 2x — 1)
19. f= {(x,y)|y = x* + 4x — 2} 20. f= {(x,5)|y = —x% — 2x + 5)

In problem 21 through 32, find the maximum and minimum values of the given func-
tions. In any case where there is no such value, explain.

21.

23.

25.

217.

f(x) =x2 + 4x + 3

f(x) = —2x% + 4x — 5
f(x) =15x2 —48x — 1

fx) = —ax? — 3x + 4 D(f) = {x]0 < x < 2)
28. f(x) =x2 —3x — 2; D(f) = {x]0 <x <2}

29. f(x) = —x%2 — 3x + 3; D(f) = {x|0 <x <2)
30. f(x) =2x2+4x + 1; D(f) = {x| -3 <x <3}

31. f(x) = —2x2 —4x + 1; D(f) = {x]|0 <x < 2}

32. f(x) = —3x2 — 6x + 4; D(f) = {x]0 < x < 2)

22. f(x) =x2+4+6x +4

24. f(x) = —2x2 —6x + 3

26. f(x) =1.2x2 + 32x — 4

In problems 33 through 40, find the solution set for the given inequalities. Also show the
solution on a number line.

33. x2 —4x +3>0 34. x2 + 5x +4<0

35. 2x2 —x —3<0 36. 3x2 +2x —8>0

37. —x24+ 2x +4<0 38. —2x2 4+ 3x —4<0

39. x2 — 4x +4<0 40. x2 — 6x + 9 <0.

41. RectangleDEFGis inscribedin an isosceles triangle ABC, as shown in Fig. 1.34.
Suppose AC = BC = 4andAB = 2, and denote DE by x. IfK represents the area of

the rectangle, find

a) a formula that gives K as a function of x, and state the domain;
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b) the dimensions of the rectangle that has maximum area;

c) the maximum area.

Fig. 1.34
A D E B

42. A ball is thrown vertically upward from the ground with an initial speed of 36
meters per second. The position of the ball at any time ¢ seconds after it has been

thrown is given by the formula

s = 36t — 4.9t2%,

where s is the distance (in meters) of the ball from the ground.

a) Determine the location of the ball at each of the following times: t = 1, t = 2,

t=3,t=4,t=5,t=6.

b) Draw a graph showing s as a function of ¢.

¢) The graph in (b) does not give the path of the ball (since it goes straight up, then
down). It merely allows us to “read off” the height of the ball at any time ¢. Use
it to get reasonable approximations of the height of the ball at times ¢ = 1.5 and
t =4.5.

d) How many seconds does it take for the ball to reach its highest point? How high

is it at that instant?

43. A farmer purchases a rectangular plot of land 200 m by 400 m adjacent to his prop-
erty line AB, along which there is an existing fence. He wants to fence in a corral in

the southwest corner of the newly acquired land, as shown in Fig. 1.35, and has a

total of 360 meters of fencing left over from a previous job, all of which he wants to

D 400 m C
 

Y 200 m

  Fig. 1.35 
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44.

45.

use to fence the three sides of the corral. He is interested in making a corral of
maximum area.

a) Determine the dimensions of such a corral.

b) How many square meters of the purchased land is left over after the corral has

been fenced?

A rancher has 144 meters of fencing left over from a previous job, and he wishes to

divide it into two pieces, one of which he will use to fence a square region for holding
his horses, and the other will be used to fence a circular region as a training area.
Suppose the fence is cut at a point x meters from one end, and the piece of length x

is to be used for the training area. The rancher is interested in the amount of land

that is being fenced in, that is, the total area A of the circular and square regions.
Intuition tells him that there must be a value of x at which he should cut the 144
meters of fencing so that A is the smallest (thus leaving the largest possible area for
grazing). Is his intuition correct? If it is, determine the place where he should make

the cut, the size (radius) of the training area, and the length of the side of the

holding area.

A travel agent is proposing a tour in which a group will travel in a plane of 150

capacity. The fare will be $1400 per person if 120 or fewer people go on the tour; but
if more than 120 go, the fare per person (for the entire group) will be decreased by
$10 for each person in excess of 120. For instance, if 125 go, the fare for each will be

$1400 — $10(5) = $1350. Let x represent the total number of people who go on the
tour and T the total revenue (in dollars) collected by the agency.

a) Find T as a function of x; be certain to indicate the domain of the function.

b) Determine the number of people that will give the largest revenue.
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1.5 ABSOLUTE VALUE FUNCTION
The idea of a number line establishes a one-to-one correspondence between the
set of real numbers and the set of points on a line. This gives us a basis for
describing geometric ideas by relating them to numbers. For instance,if we wish

to talk about the distance between two points on a line, we do so in terms of the

corresponding numbers. Thus our intuitive notion of distance suggests that on
the number line in Fig. 1.36 the distance between the point 3 and the origin (the
point corresponding to zero) is 3, and similarly the distance between —3 and 0

is also 3.* We denote this by |3| = 3 and |—3| = 3.

Fig. 1.36 1 ] l |

+ 1

 

* In Section 1.0 we indicated that we would take liberties with language and say “point 3” rather than

the correct but more cumbersome ‘“‘the point corresponding to the number 3.”



62

Definition 1.8

Example 1

Solution

Example 2

Solution

Functions Chapter 1

This concept suggests a rule for assigning to any real number x a correspond-
ing nonnegative number that represents the distance between x and 0 on a num-
ber line. The rule for assigning values of |x| is: if x is positive or zero, then |x| is
x but if x is negative, then |x| is obtained by simply dropping the negative sign.
This rule gives the absolute value function, which we now state as a formula.

Suppose x is any real number. The absolute value function, denoted
by |x|, is defined by

x if x > 0, (1.26)
|x| = :

—-xifx <0.

The symbol |x| is read the absolute value of x.
As indicated above, the geometric interpretation of |x| is that it represents

the distance between the point x and 0 on a number line. In general, the distance
between any two points on a line can also be described in terms of absolute
value; this we shall do after considering the following two examples.

Given that f(x) = |x|, evaluate the following.

a) f(4) b) £(0) c) f(-2) d) f(1- V5)

a) Since 4 > 0, we use the first part of Eq. (1.26), that is, f(4) = |4| = 4.

b) Similarly, 0 > 0, and so f(0) = |0] = 0.

c¢) Since —2 < 0,thesecond part of Eq. (1.26) gives f(—2) = |—2| = —(=2) = 2.

d) Similarly,1 — /56 <0,andsof(1—V5) =|1—-V5] = —(1-V5) = V6 — 1.

 

Ee

Draw a graph of y = |x|.

Y=ABS(X)

y

3 l

2 }—

1 —

Fig. 1.37 | | l | l lx
-3 -2 -1 0 1 2 3 

Graph of y = |x|
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Using Eq. (1.26), we get

x if x > 0,
y=|x| =

—x if x <0.

Thus the graph consists of two half-lines: y =x if x > 0 and y = —x if x < 0.
This is shown in Fig. 1.37. -

Distance Between Two Points

To illustrate, let points A, B, and C correspond to the numbers —4, 2, and 5,
respectively, on a number line, as shown in Fig. 1.38.

Fig. 1.38 | | | | | |

The distance between A and B is 6 and is given by |2 — (—4)| = 6 or by

| —4 —2| = 6; the distance between B and Cis 3 and is given by [5 — 2| = 3 or by
|2 — 5| = 3. This suggests the following definition.

Suppose x and y are any two real numbers. The distance between
points x and y on a number line is given by |x — y| or by |y — x|.

Elementary Properties of Absolute Value

If u and v are any two real numbers, then

1. |u| > 0; that is, |u| is always a nonnegative number;

2. |—u] = Ju];

  

3. |B = uF;

4. Vi2 = |u|; (1.27)

5. luv] = |u| |v;

u| ul
s 1 = T7 0;HE

7. lu + v| <'|u| + |v].

The statements given in (1.27) can be proved by considering various cases for

u and v; thatis,u > 0,u <0,v > 0, v < 0. We leave it to the reader to carry out

the details.
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Solving Equations Involving Absolute Value

The following examples illustrate methods that can be used to find roots of an
equation involving absolute-value expressions.

Solve the equations.

a) |x —2|=3 b) |x + 3| = 4

a) Geometrically, the given equality states that x is a point that is three units

from 2 on the number line. Looking at Fig. 1.39, we see that x = —1 orx = 5,
are such points, and so —1 and 5 are solutions.

N
N
8

Analytically, if the absolute value of a number (x — 2 in this case) is 3,
then that number must be 3 or —3. Thus x — 2 = —3 orx — 2 = 3, and so

x= —1lorx=>5.

b) The given equation can be written as [x — (—3)| = 4; geometrically, this says

that x is a point on the number line that is four units from —3. There are two
such points given by x = —7 or x = 1. Thus —7 and 1 are solutions. Analyti-
cally, the given equation is equivalent to x + 3 = —4 or x + 3 = 4. There-
fore x = —7 or x = 1. we

Solve the equations.

x —1 
  

 
 

a) =1 b) |x—-1+1=0

—1 —-1 —-1
a) Using Statement 6 of (1.27) we get = 3| = - 3] | = [* 3 | . Thus the

given equation is equivalent to |x — 1) = 3,andsox — 1 =3orx — 1 = —3.
Therefore x = 4 or x = —2, and so 4 and —2 are solutions.

b) Using Statement 1 of (1.27), we note that |x — 1| > 0 for every real number

x. Therefore adding 1 to |x — 1| cannot yield zero for any value of x. Thus the
given equation has no solutions. a

Find the solution set S for the following open sentences.

a) x? —4x +3=0 b) x2 — 2|x| —=3=0

a) Using Statement 3 of (1.27), we can replace |x?| by x2, and so the given equa-
tion becomes

x2 —4x +3 =0.
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This is a quadratic equation that can be solved by factoring

(x — 1)(x —=3)=0.

Thus the solution set is S = {1, 3}.

b) Using Eq. (1.26), we can replace |x| by x if x > 0 and by —x if x < 0. Consider

two cases:

Case 1. For x > 0, the given equation becomes x? — 2x — 3 = 0; this can

be solved by factoring, (x — 3)(x + 1) = 0, and so x = 3 or x = —1. Since

x = —1 does not satisfy x > 0, we discard it as a possible solution. However, 3
is a solution.

Case 2. For x <0, the given equation becomes x2 + 2x — 3 = 0; this can

be solved by factoring, (x + 3)(x — 1) = 0, and so x = —3 or x = 1. Since

x = 1 does not satisfy x < 0, it is discarded. However, x = —3 does satisfy

x < 0, and it yields a solution. Therefore the solution set is {—3,3}. IH

Find the roots of 2x — |x — 1| = 3.

We can replace |x — 1] by x — 1ifx — 1 > 0 (thatis,x > 1), and by —(x — 1) if
x — 1 <0 (that is,x < 1). Thus the given equation can be analyzed in two cases:

Casel. x >1and 2x — (x — 1) = 3; that is, x > 1 and x = 2. Therefore 2 is

a solution.
Case 2. x <1 and 2x + (x — 1) = 3; that is, x <1 and x = 4, and so this

yields no solution.
Therefore the solution set for the given equation is {2}. a

Find the solution set S for |x + 3| + x + 3 = 0.

We consider two cases: x > —3 and x < —3.

Case 1: x > —3 and (x + 3) + x + 3 = 0. Thisgives —3 as a solution.

Case 2: x < —3 and —(x + 3) + x + 3 = 0; since any x will satisfy this

equality, we have all x < —3 as solutions.
Thus S = {x|]x < —3]}. fe

Solving Inequalities Involving Absolute Value

A property that is frequently useful in dealing with inequalities that involve
absolute value is:

Suppose c is a given positive number. Then

1. |u| < cis equivalent to —c <u <c;thatisu > — cand u < c; (1.28)

2. |u| > c is equivalent to u < —c or u > c.
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For instance, |u| < 3 says that u is a point on the numberline that is within three
units of the origin. Thus u is any point between —3 and 3, as shown in Fig.
1.40(a), and so —3 <u < 3.

 

 4

= v

w
]

;
V w

(a) (b)

The inequality |u| > 3 tells us that u is a point on the numberline that is
more than three units from the origin. This is shown in Fig. 1.40(b), and so

u< —3oru>3.

Example 8 Find the solution set for each of the following inequalities.

a) |x —3 <2 b) 2x + 5] > 3

Solution In each case show the result on a number line.

a) Using Statement 1 of (1.28), we can replace the given inequality by

—2 <x — 3< 2; that is,

x—3>-2 and x — 32.

In each of these we can add 3 to both sides to get

x>1 and x <5.

This can be written as 1 < x < 5, and the solution set is

S = {x|]1 <x <5}.

Set S is shown in Fig. 1.41, in which the open circles at 1 and 5 indicate that
these values are not in S.

Fig. 1.41 |
 

4 | | | & l
Tr 1 | I T I

0 1 5

b) Using Statement 2 of (1.28), we can replace the given inequality by

2x +5 < -3 or 2x +5 > 3.

This gives x < —4 or x > —1, and so the solution set is

S={x|jx < —4 or x> —1}.

The set S is shown in Fig. 1.42, in which solid circles at —4 and —1 indicate
that these values are in S.

Fig. 1.42 + | } + l —
 

—4 -1 0 iY
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Graphs of Functions Involving Absolute Value
Here we illustrate by examples techniques that can be applied to drawing graphs
of functions involving absolute value.

Example 9 Draw a graph of the function given by y = |x —1| + x.

Solution First express the given function in terms of a formula that does not involve

absolute value. This can be done by replacing |x —1| by x — 1 if x > 1, and by

—(x-1Difx <1:

x=) +x=2x—-1ifx > 1,

YT x= +x=1 if x <1.

From this we see that the graph consists of two half-lines, as shown in Fig. 1.43.
a

Y=ABS(X-1)+X y=X "2-3*ABS(X)-4

y y

3k 4

y=2x-1Lx=1 2r

2

l l |
—6 2 4 6

y=1x<1
o

1

| | | lL
-3 -2 -1 0 1 2 3

Fig. 1.43  Graphofy= |x —1|+ x

Fig. 1.44 Graphofy =x*— 3 |x| — 4

Example 10 Draw a graph of y = x2 — 3|x| — 4.

Solution First replace |x| in the given equation by x if x > 0, and by —x if x <0.

taco
Yy
~ x2 43x —4if x <0.

This gives portions of two parabolas:

y=x2—-3x —4= (x + 1)(x — 4) for x > 0,

y=x243x—4=(x+4)(x —1) for x <0.

The graph is shown in Fig. 1.44.
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Exercises 1.5
In problems 1 through 4, evaluate the given expressions. Give answers in exact form.

L fx) =1+ |x|

 

a) £(3) b) f(—4) 0) f(1 — V3)

2. g(x) = 2

a) g(3) b) g(—4) c) g(1 — 3)

3. f(x) =x + 2x — 1] —1

2) £3) by f(~1) o (252)
1— |x|

4. g(x) = T 5 [x]

a) (1) b) f(~1) ¢) f(1 — V3)
In problems 5 and 6, functions f and g are given by f(x) = 3 + |x|, g(x) = x? — 2|x]|.

Evaluate the given expressions in exact form.

 

5. a) (f+ 8)(-1) b) (g — f)(4) c) (fo8)(-2)

6. 8) (f+) b (2) 0) (82)
7. Given that f(x) = x2 — x and g(x) = |x — 1], find formulas for

a) (fog)(x) b) (£) ¢) Give the domains of fo g and L

8. Given that f(x) =+and g(x) = |x + 1], find formulas for

a) (fo g)(x) b) (go f)(x) c) Give the domains of fog and go f.

In each of the problems 9 through 24, find the solution set for the given equation.

9. |x — 1] =2 10. [3x — 4] = 2 11. LE =1 12. [2=2| =

13. 2x + |x = 2| =1 14. |x — 3 +x =3 15. x + |x —-1] =1 16. 4x + |x —1 +4=0

17. |x = 2 =x — 2 18. 3 —x|=3 —x 19. |—x| +2=0 20. |—x-1+1=0

21. x2 -3Va2 —4=0 22. 224+2Vx2-3=0 23. x2—|x—-1—-3=0 24. x2—3|x|—-4=0

In problems 25 through 30, find the solution set S for each of the given inequalities. In
each case show S on a number line.

25. [x — 1 <1 26. |x +2 <3 27. |x| +2 < 2x

28. 3-21 —x|<0 29. |x| —x>1 30. |—x| —x>0

In problems 31 through 34, give formulas that do not use absolute value for the given
functions.

31. f(x) =x —2| +x 32. f(x) =2x — |x + 1]

33. f(x) = |x? + |x +1 +3 34. f(x) =x? — |x —1] — 4
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In problems 35 through 40, sketch graphs of the functions described by the given equa-

tions.

35. y = |x — 2 36. y = [3x + 6 37. y =x — |x + 2

38. y=|x+3 +x 39. y=x2 — |x| — 2 40. y = x% + 2|x| — 3

In problems 41 and 42, determine the domain and range for each of the given functions.

If necessary, draw a graph and use it to find the range.

41. a) f(x) = |x| b) g(x) =1 — |x|
42. a) f(x) =1—|1 + x| b) g(x) =|1 — x| —x
 

1.6 GRAPHS OF CONIC SECTIONS
In this section graphs of relations that play a special role in geometry and cer-
tain applications are discussed. The curves considered here are circles, parabo-
las, ellipses, and hyperbolas, which are referred to as conic sections because they

are the result of intersecting cones by planes. In Section 1.4 we have already
noted that the graph of a quadratic function, f(x) = ax? + bx + c, where a # 0,

is a parabola. Formal definitions of conic sections and detailed discussion will be
included in Chapter 8. We consider only special cases here and rely on examples
to illustrate the various curves and their related equations.

Fig. 1.45 x

 
Circles

A circle with its center at the origin and having a given radius r is the set of all

points P: (x, y) that are r units from the center, as shown in Fig. 1.45. Translat-

ing this into a mathematical statement gives \/x2 + y2 = r. For r > 0, this is
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equivalent to

x2 + y2 = r2, (1.29)

Thus Eq. (1.29) represents a circle with center at the origin and radius r.
An equation of the type ax? + by? = c, where a, b, and c are nonzero num-

bers, all have the same sign, and a = b represents a circle with center at the

origin and radius \/c¢/a since it can be written as x2 + y2 = c/a.

Although the set of (x,y) points described by Eq. (1.29) does not define a

function, we can solve for y and consider the circle as the union of two sets of
points given by

y= f(x) = Vr? — x2 and y=g(x) = — Vr2 — x2 (1.30)

Functions f and g have domain ® = {x| —r < x < r} and represent half-circles,

as shown in Fig. 1.46.

 

 
 

 

y

(0, r)

(=r,0) 0,0) (r,0)
® ® * ° x

(=r,0) 0,0) (r,0) *

O, =r)
LEX "2+4*Y "2=23

(a) Graph of y = Vr2—x? (b) Graph of y = — Vr? — x? y

Fig. 1.46

 
 

Fig. 1.47 Graph of 4x? + 4y? = 25
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Draw a graph of 4x2 + 4y? = 25.

The given equation is equivalent to

25 5\?22 42-29 _ (2)2 4r=2=(3)
This represents a circle with center at the origin and radius 5/2. The graph is
shown in Fig. 1.47. |

Parabolas
Suppose we consider graphs of equations of the form y = ax? or x = ay?, where a
is a given nonzero number. In Section 1.4 we noted that y = ax? represents a
parabola that opens upward if a > 0 and downward if a < 0. If the roles ofx and

y are interchanged, the resulting equation, x = ay?, will represent a parabola
that opens to the right if @ > 0 and to the left if a < 0. This is illustrated in the

following examples.

Draw graphs of the following: a) y = 4x? b) y = —2x2

a) Since the coefficient of x2 is positive, the graph is a parabola that opens
upward. It is a simple matter to determine several pairs of x, y values that
satisfy the given equation and then draw the graph shown in Fig. 1.48(a).

b) The coefficient of x2 is negative, and so the parabola opens downward, as
shown in Fig. 1.48(b).

 

   

y=-2%X"2

y

Y=4%X"2
2 —

y

gL I
-2 -=1/0 1 2

6 2}

4 —4 +

2 + —6

] 1 ] 1 x -8 +

-2 -1 0 1

(a) Graph of y = 4x? (b) Graph of y = —2x?

Fig. 1.48 a
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Example 3 Draw graphs of the following:

a) x = 4y? b) x = —y2

Solution Each of the given equations represents a parabola; the one in (a) opens to the

right, and the one in (b) opens to the left.

a) Solving the given equation for y gives

1y=f=2Vx or y=glx)=-5Vx
where f and g are functions with domain D = {x|x > 0}; the following table

gives values of each for several values of x in D.

 

x 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 9.0
 

fx) O 0.35 0.50 0.61 0.71 0.87 1.00 1.12 1.50
 

   gx)| 0 -03 -050 -061 -071 -087 —-100 -112 —1.50
 

Plotting the points given in the table and drawing the corresponding
curves, we get the graphs shown in Fig. 1.49(a) and (b). The graph of the given

equation is the set of all points shown in Fig. 1.49(a) along with those shown
in (b); this graph is shown in Fig. 1.49(c). We see that the given equation does
not define a function where x is considered the independent variable.

  

   

Y=0.5*SQR(X) Y=-0.5*SQR(X) X=4%Y"2

y y y

2+ 2 2

1+ 1 1+

Fig. 1.49 1 ] | | L | | | | L | | ] | L

of 1 2 3 4 5 0NJ1 2 3 4 5 ONL 2 3 4 5

1} 1p 1}

2+ 2 -2 +

(a) Graph of y = 3Vx (b) Graph of y = —-1Vx (c) Graph of x = 4y?

b) This is similar to (a), in which the given equation is equivalent to

y=F(x)=V—x or y=0G(x)=—V-—x

Here F and G are functions, each having domain » = {x|x < 0}. The graphs
are shown in Fig. 1.50.
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Y=8QR(-X) Y=-SQR(-X) yr 2=-X

y y

2 2 2

1 1 1

Fig. 1.50 I I 1 1 | | 1 1 | x
-4 -3 -2 -1 -4 -3 2 -1 (0 -4 -3 2 -1 JO

-1 “1 ~1

-2 2k 2

(a) Graphofy = V — x (b) Graphofy = = V — x (c) Graph of y?> = —x WE

Ellipses

Let us consider equations of the type

ax? + by? =c. (1.31)

Example 4

Solution

If a, b, and c are nonzero numbers all having the same sign, and if a = b, Eq.

(1.31) represents a circle (see Example 1). Now suppose we consider the same

situation, except a # b; then the graph of Eq. (1.31) is an ellipse with center at

the origin. This is illustrated by the following example.

Draw a graph of 4x2 + 9y? = 36.

Solving the given equation for y in terms of x gives

y=fx) = 25-2 or y=glx) = — 2/9 _ 22.

The domain OD of functions f and g is given by

D = {x9 —-x%22>0} or D={x-3<x<3}.

Using several values of x from set D, we get the following table, which gives the
corresponding values off(x) and g(x); plotting the points in this table and draw-

ing the corresponding curves gives the graphs shown in Fig. 1.51(a) and (b). It is

clear that f(—x) = f(x) and g(—x) = g(x) for all x in D, and so it is sufficient to

compute values for positive x only. However, we have included both in the table
for emphasis.

The graph of the given equation is the ellipse shown in Fig. 1.51(c); it is the

set of all points in Fig. 1.51(a) along with those in (b). We see from the graphs

that f and g are functions, and that the given equation does not describe a
function in which x is the independent variable.
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x -30 -=25 -2.0 —-15 -1.0 —0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

f(x) 0 1.11 1.49 1.73 1.89 1.97 2.00 1.97 1.89 1.73 1.49 111 0

g(x) 0 —111 -149 -173 -189 —-197 —-200 -—197 —-18 —173 —149 —111 0

Y=(2/3)*SQR(9-X 2) Y=(-2/3)*SQR(9-X "2) LHX "2+qRY "2=34

y y y

22 an

Fig. 1.51 | | || x LL) || |
3-2-1, [01 2 3 APS HE

2 2 =)

(a) Graph of y = V9 — x? (b) Graphofy = =3V9 — x2 (c) Graph of 4x2 + 9y> =36 [Hl

Hyperbolas

So far we have seen that the graph of an equation of the form

ax? + by? = c,

where a, b, and c are given nonzero numbers,is either a circle,if a, b, and c all

have the same sign and a = b, or an ellipse,if a, b, and c all have the same sign

and a # b.
Suppose a and b have opposite signs. Then the graph will be a hyperbola.

The following examples illustrate such cases.

Example 5 Draw a graph of x2 — y2 = 4.

Solution The coefficients of x2 and y2? have opposite signs, and so the graph is a hyperbola.

Solving the given equation for y gives

y=f(x)=Vx?—-4 or y=g(x)=-

All points (x, y) satisfying either of these two equations are on the graph of the
given equation. Note that the domain of f and of g is

D={xlx<-2 or x > 2}

x2 —4. (1.32)

The following table gives values off(x) and g(x) for several values of x in set D;

f(—x) = f(x) and g(—x) = g(x) for all x in D, and so each entry in the table

corresponds to two points.
The graphs of y = f(x) and y = g(x) and the given equation are shown in

Fig. 1.52. We see from the graphs that f and g are functions, and that the given
equation does not describe a function in which x is the independent variable.
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x +20 +25 +3.0 *+3.5 +4.0 *5.0 +6.0 *7.0 +8.0

f(x) 0 1.50 2.24 2.87 3.46 4.58 5.66 6.71 7.75

g(x) 0 —-150 —-224 —-287 —-346 —458 —-566 —-6.71 7.75

Y=8QR(X "2-4) Y=-SQR(X "2-4) X"2-Y"2=4

y y

6 6

4 4

2 2

Fig. 1.52 lL I | L 1
6-4 _,| 2 46 6-4 J, 2\ 4 6

—4 —4
—6 —6

(a) Graph of y = Vx? — 4 (b) Graph of y = = Vx? — 4 (c) Graph of x* — y> = 4 mm

Example 6 Draw a graph of 9y? — 4x2 = 36.

Solution Solving for y gives

y=fx)=2 +9 or y=g(x) = —2 Va +9. (133)

The graph of the given equation is a hyperbola consisting of all points (x, y)
satisfying either of the equations in Eq. (1.33). The domain off and ofg is the set

 

x 0 =+0.5 *1.0 *1.5 +2.0 +2.5 +3.0 +4.0 +5.0 *6.0
 

f(x) 2.00 2.03 2.11 2.24 2.40 2.60 2.83 3.33 3.89 4.47
 

   gx) —2.00 -—-203 -—-211 -—-224 —-240 -—-260 -—-2.83 -—-333 —-3.89 —447
 

Y=(2/3)*SAR(X “2+9) Y=(~2/3*SQR(X "2+9) GRY "2-4%X "2=36

y y y

4 4

2
  

  
(a) Graphofy =3Vx?+9  (b) Graphofy = —3Vx2 +9 (c) Graph of 9y? — 4x? = 36
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of real numbers R. Proceeding as in Example 5, we have the following table and
the corresponding graphs shown in Fig. 1.53. Note from the graphs that f and g
are functions, and that the given equation does not describe a function in which
x is the independent variable. se

Degenerate Cases

Consider the equation ax? + by? = c for the case where a and b are positive and
c is negative or zero, and also the case in which a and b have opposite signs and
¢ = 0. The following example illustrates these situations. Each represents what
we call a degenerate case of the family of equations given ax? + by? = c.

Give a graphical interpretation of each of the following equations.

b) 2x2 +32 +5=0 c) x2 —4y>=0

a) There is only one pair of real numbers x, y that satisfy the given equation,
namely, x = 0 and y = 0. Thus the graph is a single point, the origin.

b) Since 2x2 > 0 and 3y? > 0 for all real numbers x and y, then clearly there are
no x, y pairs that satisfy the given equation. There is no graph associated

with the given equation; this can be described by saying that the set

{(x,y)]2x% + 3y? + 5 = 0} is the empty set ¢.

c) The given equation can be written as (3x — 2y)(3x + 2y) = 0. This is equiva-
lent to

a) x24+32=0

3x —2y=0

and so the graph of the given equation consists of two lines, as shown in Fig. 1.54.

QEX"2-4%Y "2=0

or 3x +2y =0,

 Graph of 9x? — 4y2 = 0
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Exercises 1.6
In each of the problems below, perform the following steps:
 

a) First identify the type of curve represented by the given equation.

b) Solve the given equation for y; if the result is not a function, then write it in terms of
two functions, as illustrated in the examples of this section.

¢) Draw graphs of the function or functions in (b), and then draw a graph of the given
equation; in each case label the coordinates of the x- and y- intercept points.

If the given equation is a degenerate case, indicate that fact, and draw a graph if there is

one.

1. x2 +y2=9 2. 9x2 + 92 = 16 3. x2 + 4y2 =12

4, 4x2 + y2 = 16 5. 4x2 —y=0 6. 3x2 —y=0

7. 16x + 92 =0 8. 9x +4y2=0 9. 9x —y2=0

10. 16x — 92 = 0 11. 42% + 492 = 9 12. 4x2 + 92 = 16
13. 3x2 + 32 =0 14. x2 4+2y2+1=0 15. x2 —y2 =9

16. y2 — x2 =4 17. 4x2 = 9y% + 36 18. 4x2 = 9)? — 36

19. 4x2 — 252 = 0 20. 3x2 — 42 =0 21. 9x2 — 4y% = 36

22. x2 — 4y = 0 23. x2 +32 +1=0 24. x2 —y2 +1=0
 

1.7 GRAPHS AND FUNCTION PROPERTIES
When you are drawing graphs of functions,it is useful to check for symmetry
properties with respect to the y axis or the origin. Such properties will be de-
scribed in terms of odd functions and even functions. Several examples are dis-
cussed in this section, in which graphs are used to get properties of functions
that are not readily apparent from their algebraic descriptions.

Symmetry
Symmetry properties of graphs of functions are illustrated in the following
examples.

Example 1 Draw a graph of the function A defined by A(x) = x* — 4x2.

Solution Let y = x* — 4x2. Our first inclination is to make a table of x,y values that

satisfy this equation. However, before doing that, observe the following:

h(—x) = (—=x)* — 4(—x)2 = x* — 4x2 = h(x).

Thus A(—x) = h(x) for each real number x. This tells us that if (a, b) is any

point on the graph of A, then (—a, d) is also on the graph. The two points (a, b)
and (—a, b) are symmetric about the y-axis, as illustrated in Fig. 1.55. Therefore

the graph ofy = x* — 4x2 is symmetric with respect to the y-axis, and it is suffi-
cient to draw the graph for points involving nonnegative values of x and then

reflect this about the y-axis to get the remaining portion of the graph.
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Fig. 1.55 I
—a a

Let us now proceed with the task of making a table of x, y values in which

only nonnegative numbers for x are included.

x 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

y 0 -02 -094 -193 -300 -—-381 -—-394 -—-287 0 538 14.06

Y=X"4-4¥X"2, X >=0 Y=X"4-4¥X "2

y y

10 | 10k

8 I 8

6 6

4r 4

2+ ob

Fig. 1.56 _ | | Lo I lL 5
-3 -2 -1 © 1 2 3 -3 2 3

-2 —

—4 |

—6 — —6 |— 
(a) Graphofy = x* —4x?, x = 0

 
(b) Graph of y = x* — 4x2
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Plotting these points and drawing a curve through them gives the portion of
the graph shown in Fig. 1.56(a). Reflecting this about the y-axis gives the remain-
der of the graph, as shown in Fig. 1.56(b); this reflection is illustrated by two

pairs of points with dotted lines between them. Vd

Example 2 Draw a graph of the function g given by g(x) = 4x — x3.

Solution As in Example 1, let us first look at g(—x):

g(—x) =4(—x) — (=x) = —4dx + x3 = —(4x — x3) = —g(x).

Thus g(—x) = —g(x) for each real number x; this tells us that if (a, b) is any

point on the graph, then (—a, —b) is also on the graph. Since the two points
(a, b) and (—a, —b) are symmetric about the origin (as illustrated in Fig. 1.57),

the graph ofg is symmetric with respect to the origin. Therefore it is sufficient to
draw the portion for which the points have nonnegative values of x and then
reflect this about the origin to get the remaining portion. Let us now make a
table of x, y values including only nonnegative values of x.

x 0 025 050 075 100 125 150 1.75 2.00 2.25 2.50 2.75 3.00

y 0 098 188 258 300 305 263 164 0 -239 -563 —-980 -—-15

y

bl _e
~~ (a,b)

Fig. 1.57 1 a lL x
—a Pd ~ a

_ ~~

e -b I

(=a, = b)  
These points are plotted and a graph is drawn, as shown in Fig. 1.58(a). Then

the graph is completed by reflecting about the origin to get the curve shown in
Fig. 1.58(b); this reflection is illustrated by two pairs of points with dotted lines
between them.
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Fig. 1.58
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Y=4%X-X"3, X >=0 Y=4%X-X"3

  

 

  
(a) Graphofy = 4x — x3, x= 0 (b) Graphofy = 4x — x3 =

Even and Odd Functions

In Example 1 we observed that the function A(x) = x* — 4x2 has the property
that A(—x) = A(x) for every value of x. In Example 2 the function
g(x) = 4x— x3 has the property that g(—x) = —g(x) for every value of x. The

formula for A involves terms with even-number exponents only, and that for g

has terms with odd-number exponents only. This suggests the following defini-
tion and terminology.

Suppose f is a function with domain D(f) such that
x € D(f) implies —x € D(f). Then

1. fis called an even function if f(—x) = f(x) for each x in D(f);

2. fis called an odd function if f(—x) = —f(x) for each x in D(f).

If f is an even function, the graph of y = f(x) is symmetric with respect to

the y-axis. If fis an odd function, the graph ofy = f(x) is symmetric with respect
to the origin.

In each of the following determine whether the given function is even, odd, or

neither.

a) f(x) = V1 — x? b) g(x) = x? + x

c) h(x) = Vx — 2x8 d) F(x) = |x| + x2.
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a) f(—x) = V1 — (=x)? = V1 — 2% = f(x)
Therefore f(—x) = f(x) for each x in D(f), and so f is an even function.

b) g(—x) = (=x)? + (—x) = x2 — x. Since x2 — x is not equal to g(x) = x2 + x

nor to —g(x) = —x% — x for all x, then g is neither an even nor an odd
function.

c) h(—x) = V—=x — 2(—x)3 = — Vx + 2x3 — (Vx — 2x3) = —h(x).

Therefore h(—x) = —h(x) and A is an odd function.

d) F(—x) =|—x| + (=x)? = |x| + x2 = F(x). Thus F(—x) = F(x), and so Fis

an even function. as

Draw a graph of the function f given by f(x) = x2 — 2|x| — 8.

First check to see if f is an even or odd function.

f(—=x) = (=x)? — 2|—x| — 8 = a2 — 2|x| — 8 = f(x).

Therefore f is an even function, and it is sufficient to draw the graph for x > 0
and then reflect that portion of the graph about the y-axis.

For x > 0, |x| = x and so we want to draw the graph of y = x2 — 2x — 8

for x > 0. This is part of a parabola that opens upward, and the lowest point is
given by x = —b/2a =2/2=1, y =12 — 2(1) — 8 = —9. Thus the graph of
f(x) = x? — 2|x| — 8 and x > 0 is shown in Fig. 1.59(a). This is reflected about

the y-axis to get the graph of the given function, as shown in Fig. 1.59(b).

y=X"2-2*%ABS(X)-8, X > =0 Y=X"2-2*¥ABS(X)-8

y y

6 6

4 4

ro

I
T

T
T

No I

 

I
T
o
—
_

N
o

W
w
W

i
N

w
n a      

-10 |, -9)   
(a) Graphofy=x>—2|x|-8,x=0 (b) Graphofy =x>—2|x|—8 =e
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Suggestions for Drawing Graphs
Throughout the remaining portion of this book graphs of functions will be used
in problem solving. Although plotting points is an essential part of drawing
graphs, we should be aware that there may be important features of a graph that
are not easily seen from a set of isolated plotted points. Here we list some steps
that frequently yield important information and in general should be followed in

drawing a graph of a function given by y = f(x).

1. Determine D(f); this helps decide values of x to be included in a table.

2. Whenever possible find other equivalent formulas for f(x) that may be more
suitable for use in answering certain questions. Whenever the given formula
is simplified, remember the result is valid only for x in D(f).

3. Find intercept points when possible. The y-interceptis given by [0, f(0)]; the
x-intercepts are determined by solving the equation f(x) = 0.

4. Determine symmetry properties if there are any. If f(—x) = f(x) for all
x € D(f), then the graph is symmetric with respect to the y-axis; if
f(—=x) = —f(x), it is symmetric with respect to the origin.

5. Consider large values of x (when such are in D(f)) to determine features of
a graph at extreme places. A convenient notation is “x — 0,” which indi-
cates “x becomes large” and is read “x approaches infinity.”

The following example illustrates the use of these steps.

Draw a graph of y = f(x) given by

flay = 2. (1.34)

a) From Eq. (1.34) note that D(f) = R. Also observe that x2 + 1 > x2 for any x,

and so x2/(x? + 1) < 1. Hence 0 < y <1 for any x.

b) Although it appears that Eq. (1.34) cannot be simplified, we can write f(x) in

equivalent form as follows (divide x2 + 1 into x2):

1

x2 +1
 fx) =1— (1.35)

This equation is used in (e) below.

¢) y-intercept: for x = 0, y = 0/(02 + 1) = 0, and so (0,0) is the y-intercept

point;

x-intercept: if y = 0, then x2/(x2 + 1) = 0, and so x = 0. Thus (0, 0) is the

only x-intercept point.

d) Check for symmetry:
(—x)? x2

f ( —X) = > = > =

(=x)? +1 x2+41

Thus f(—x) = f(x) for all x € D(f), and so f is an even function and its

f(x). 
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graph is symmetric with respect to the y-axis. Hence the table below includes

only nonnegative values of x.

e) Using Eq. (1.35), we see that asx — o0,f(x) — 1;alsoasx — — oo, f(x) — 1.

This tells us that as x becomes large positively or negatively, y becomes close
to 1.

The considerations above essentially give the outstanding features of the
desired graph. However,it is a simple matter to make a table of x, y values that

will allow us to draw a more accurate graph.

 

x| 0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5 8
 

   y| 0 020 050 069 080 08 090 092 094 0.96 0.98
 

Using all of the information above, we can now plot a reasonably accurate
graph of the given function. This is shown in Fig. 1.60.

y=X"2/(X"2+1)

L111 L111
—-6-5-4-3-2-10 1 2 3 4 5 6 

x2

x? +1 ER
 Graphofy =

Draw a graph of the relation given by the equation

2x2 — \/3lxly + y2 = 20. (1.36)

First note that if (x,,y,) is any pair satisfying Eq. (1.36), then (—x,,y,) also

satisfies the equation. Thus the curve is symmetric about the y-axis, and so we

can draw the curve for x > 0 and reflect that portion about the y-axis.

The given equation can be considered as a quadratic equation in y, and using
the quadratic formula, we can solve for y as follows:

2 — (V3x)y + (222 — 20) = 0, x > 0,

V3x + 1/80 — 5x2
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Fig. 1.61
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or

V3x — 1/80 — 5x2
5

Using a calculator and several values of x in 0 < x < 4, we can determine points
(x,y) that satisfy Eq. (1.37). Plotting these points gives the portion of the curve

from A to B shown in Fig. 1.61. Similarly, using Eq. (1.38), we get the points of
the curve from B to C. Reflecting about the y-axis gives the February 14 curve
shown in Fig. 1.61.

y= (1.38)

2%X "2-5QR(3)*ABS(X)*Y+Y "2=20

  

 

 

—4 —

 
Graph of 2x — V3 |x |y + y*=20 oe

Properties of Functions from Graphs

Here we are interested in developing those ideas that are necessary for the intro-

duction of inverse functions, which will be discussed in the next section. Graphs
will be used to help us determine the following.

1. The range of a function

2. Increasing functions, decreasing functions

3. One-to-one functions

Range of a function The range of a function f, denoted by ®(f), is the set of

all second components of the ordered pairs that describe f. That is, if

f={(x,y)ly = f(x)}, then ®(f) = {y|(x,y) € f}. In geometrical terms,
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®R(f) is the set of all second coordinates (the y values) of the points

that are on the graph of f.

In many cases, drawing a graph of a given function will aid in determining its

range, as illustrated in the following examples.

Example 7 Find the range of the function f defined by f(x) = x2 + 1.

Solution First draw a graph ofy = x2 + 1, as shown in Fig. 1.62. The graph should makeit

clear that the y values that occur for points on the curve are those for which
y > 1. Thus

Rf) = {ly > 1}.

y=X"2+1

y

10 +

 

 

Fig. 1.62 | 

 

 
Range of y = x? + 1 [|

Example 8 Determine the range of the function g given by g(x) = —2x? + 4x — 3.

Solution This is an example of a quadratic function (see Section 1.4). The graph of
y = g(x) is a parabola that opens downward (since the coefficient of x? is nega-
tive), and the highest point is given by
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The corresponding value of yis y = —2(1)2 + 4(1) — 3 = —1.
The graph of y = —2x2 + 4x — 3 is shown in Fig. 1.63. From this graph we

conclude that ®R(g) = {yly < —1}.

y=-2#X"2+4%X~3

 

 

 

y

I l I Ly
3

Range of y = —2x2 + 4x — 3 Ea

2
Findthe f the functi =in range of the function f(x) T+ =

The graph of this function is shown in Fig. 1.60 (Example 5). Looking at the
graph, we conclude that the set of y values for points on the curve is
{10 <y <1}. Therefore R(f) = {y0 <y <1}. |

Increasing, decreasing functions A function f given by y = f(x) is said to be

an increasing function if the values of y increase as x increases; similarly, fis a

decreasing function if the values ofy decrease as x increases. We state this in the

following definition.

Suppose f is a function and b and c are any two numbers in D(f)
with b < c¢. Then fis an increasing function if f(b) < f(c), and fis a
decreasing function if f(b) > f(c).

In geometrical terms, Definition 1.11 tells us that as we move from left to right

on the graph of the function, it is increasing if the graph always rises and it is
decreasing if the graph always falls. These ideas are illustrated in Fig. 1.64; in (a)
the function f is increasing, and in (b) the function g is decreasing.
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Fig. 1.65
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8 (b)

 

 

gO F———-  
(a) (b)

In general, to determine whether a function is increasing, decreasing, or
neither, we shall draw a graph and rely on intuition rather than give an analyti-
cal proof to justify conclusions, as illustrated in the following example.

In each of the following determine whether the function is increasing, decreas-
ing, or neither.

a) f(x) =2x —1 b) g(x) = —x3 ¢) h(x) =x —2x — 3

Graphs of the given functions are shown in Fig. 1.65. Using them, we arrive at the
following conclusions:

a) fis an increasing function; b) g is a decreasing function;

c) h is neither an increasing nor a decreasing function.

y=-X"3 y=X"2-2%¥X-3y=2%X-1

 

—4 BP   

 

—-6

(a) Graph off(x) = 2x — 1 (b) Graph of g (x) = —x3 (c) Graphof h(x) =x*-2x-3 1H
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One-to-one functions As indicated throughout this chapter, a function f can
be considered as a mapping between two sets, the domain and range, such that
each member of D(f) is mapped into exactly one member of ®(f). If this map-

ping (or correspondence) has the additional property that no two distinct ele-
ments of D(f) map into the same element of R(f), then f is said to be a one-

to-one function. This is stated formally in the following definition.

Definition 1.12 A function f is said to be a one-to-one function if every element of
®(f) is the image of exactly one element of D(f); that is, no two

ordered pairs of f have the same second component.

In general, we shall use a graph to determine whether or not a given function
is one-to-one. Thus it will be helpful to have the following geometrical charac-
terization of when a relation is a one-to-one function.

Suppose g is a relation (a set or ordered pairs of real numbers). If
each vertical line intersects the graph of g in at most one point (so
there are no ordered pairs with the same first elements), then g is a
function. If, in addition, each horizontal line intersects the graph of
gin at most one point (so there are no ordered pairs with the same
second elements), then g is a one-to-one function.

Applying this criterion to the graphs shown in Fig. 1.66, we can conclude
that the functions corresponding to the graphs of (a), (b), and (d) are one-to-one,

but that of (c) is not.

Fig. 1.66 \ /\ \_

(a) (b) © (d)

In Fig. 1.66 we observe that the function corresponding to the graph in (a)is

increasing and one-to-one; similarly, in (b) the function is decreasing and one-

to-one. Geometric intuition suggests the following theorem.
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Fig. 1.67
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a) If fis an increasing function, then it is one-to-one.

b) If f is a decreasing function, then it is one-to-one.

Note that Theorem 1.1 gives sufficient conditions for a function to be one-

to-one; it does not state that if a function is one-to-one, then it is an increasing or

a decreasing function. For instance, the function corresponding to Fig. 1.66(d) is
one-to-one, but it is neither increasing nor decreasing.

In each of the following, determine whether or not the given function is one-
to-one.

a) f(x) = x? b) g(x) = Vx ¢) h(x) = —Vx dd) F(x) = Vx

The graphs of the given functions are shown in Fig. 1.67 (see pages 89 and 90).

 
 

y=X"2 Y=5QR(X)

y

gl y

3

6 -

2+

4

1F

2 —

l | x | I
-2 -1 0 1 2 0 1 2 3 4 5  

(a) Graph of y = x? (b) Graph of y = Vx

a) From the graph of y = x2 it is clear that f is not one-to-one.

b) Looking at the graph of y = \/x, we see that g is a one-to-one function.

c) The graph of y = — \/x shows that A is a one-to-one function.

d) The domain of F is given by D(F') = {x|x < 0}, and the graph is shown in
Fig. 1.67(d). We conclude that F is a one-to-one function.
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¥=-8QR(X)

y =5QR(-X)

y
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0 1 2 3 4 5
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Fig. 1.67 | l l x

-5 4 -3 -=2 -1 0
-3 —

(c) Graphofy = — Vx (d) Graphofy = V — x =

Exercises 1.7

In problems 1 through 14, determine whether the given function is an even function, an

odd function, or neither.

 

1. f(x) =1 — 3x2 2. g(x) =x3 —x 3. g(x) = x3 + 4x

4. f(x) = V1 — x2 5. f(x) =x2—-3x +5 6. g(x) =x — 3x2

7. h(x) = Va? 8. h(x) = Va® — 2x 9. f(x =>

10. EEre 11. g(x) = x2 + |x| 12. f(x) = x + |x

13. f(x) = (x — 1)%2 + 2x 14. f(x) = (2x + 1)? — 4x

In problem 15 and 26, draw a graph of the given functions. In each case determine if the
graph is symmetric with respect to the y-axis or the origin, and use this information in

drawing the curve.

15. f(x) = 4 — 2x 16. f(x) = 3x + 6 17. f(x) = x3 — x

18. f(x) = 3 — x2 19. g(x) = Tos? 20. g(x) = x - |x|

21. f(x) = (x2 — 4) * |x| 22. f(x) = 4x — x3 23. f(x) = |x + 3| — x

24. g(x) = = * 25. f(x) = © == 26. f(x) = x2 + 2x + 1
x +1 x — 2

In problems 27 through 38, determine the domain and the range of given functions. If
necessary, draw a graph of the function and use it to get your answer.
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27. f(x) =1 + 3x 28. g(x) =1— 2x 29. g(x) = 1.53 — 247x

30. f(x) = 1.27 + 3.56x 31. g(x) =x2—4 32. f(x) =x2+3x —4

33. f(x) = —V—x 34. f(x) = ET 35. f(x) = VE — [|

_ x2 —x _ xr 4+ 2 _36. f(x) = 1 37. f(x) = 10 38. f(x) = V1 — x

In each of the problems 39 through 50, determine whether the given function is

 

 

a) increasing, decreasing, or neither, b) one-to-one.

39. f= (2,0), (0,1), (2,3), (4,4)) 40. 7={0,1), (1 vo v2) (a2 v3)
41. g(x) = 5 — 3x 42, g(x) =2x — 5 43. f(x) = Vx + 3

4. f(x) = — Vx —-1 45. f(x) = 4 — x — 3x2 46. g(x) = 3 + x — 2x2

47. g = {(x,y)|]y =x + 4x — 1 and x > —2} 48. f= {(x,y)|y = —x% — 2x and x < 2}

— 1 if 1 2 21f19. fm =| TH VETS 50. f(a) =FEZ
—x—-1if —1 <x <0 x if x <0

51. Draw a graph of the relation given by the equation 2x2 — 2|x|y + y* = 16. (See
Example 6.)

1.8 INVERSE FUNCTIONS

Definition 1.13

Example 1

In the preceding section we introduced the idea of a function f being one-to-one;
thatis, each element of D(f) is mapped into exactly one element of ®(f), and no
two elements of D(f) are mapped into the same element. This suggests that if
the first and second components of each pair of f are interchanged, the resulting
set of ordered pairs will also be a function. Such a function will be called the
inverse of f and denoted by f~1. Thus we have the following definition.

Iffis a one-to-one function, then the set of ordered pairs obtained by
interchanging the first and second components of each pair in f is
called the inverse function of f and is denoted by f~1.*

The following examples illustrate Definition 1.13.

Suppose function fis given by f = {(1, 3), (2,5), (3,7)}. Find f~! and state the

domain and range of f~1.

 

The symbol f~! is used here to denote a function that is related to f; it does not imply that —1 is a
negative exponent.
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First note that f is a one-to-one function, and so it has an inverse function.

Interchanging the first and second components of each ordered pair in f gives

1={@1), (5,2), (7,3)}

D(FAH=1357, G&(FH=(123} a

Suppose f is a function given by the formula f(x) = 2x — 1.

a) Show that f is a one-to-one function.

b) Determine f1.

a) The graph ofy = 2x — 1is a line, shown in Fig. 1.68. Geometric intuition tells

us that each vertical line intersects the graph at one point, and each horizon-

tal line intersects the graph at one point. Therefore f is a one-to-one function.

y=2%¥X-1

A

/5

Graphofy =2x — 1

 
b) The rule of correspondence that gives ordered pairs (x,y) for f is given by

ffy=2x-1 or f={(xy)y=2x-1}. (1.39)

In order to get the rule of correspondence that gives the (x, y) ordered pairs

for f~1, we can interchange the roles ofx and y in Eq. (1.39) and then solve for
y in terms of x. Hence,

fflix=2y—1 or flLy= ih
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Therefore

Fay =2tl oo fe EEE —BA (1.40)

To illustrate the interchange of components, note that the ordered pair (3, 5)

is in f (as seen from Eq. (1.39)), and (5, 3) is in f=! (as seen from Eq. (1.40)).
EE

Example 3 The area A of a circle of radius r is given by the formula

A = ar. (1.41)

This defines a function g as the set of ordered pairs

g={(rA)A = =r?}.

a) Show that g is a one-to-one function.

b) Find a formula for g—1.

Solution a) The fact that r represents the radius of a circle implies that » > 0. Thus
D(g) = {rlr > 0}. The graph of g is shown in Fig. 1.69; from it we conclude
that g is a one-to-one function.

A=(PD¥*R"2

 Fig. 1.69

 

 
Graph ofA = mr?

b) The function given by Eq. (1.41) is used in situations in which the radius of a
circle is given and we want to find the corresponding area. However, there are
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situations in which the area of a circle is known and we wish to find the

corresponding radius. This will be given by the inverse ofg. Thus, in consider-
ing g~1, we shall think of the set of ordered pairs (A, r), where A and r are

related by

g1={(A,r)A =ar?}. (1.42)

This can be written as

A
gt ={@nr=/=]

Tv

} A
Hence a formula for g—1is g71(A) = /—. ea

™

It is worth taking a closer look at the two techniques used in finding the
inverse functions in Examples 2 and 3. In Example 2, f~! was determined as a set
of (x,y) ordered pairs by interchanging the roles of x and y in the equation
defining f (Eq. (1.39)) and then solving for y in terms of x. In Example 3, g was

given as a set of (r, A) ordered pairs and we found g—! as a set of (A, r) ordered
pairs by simply solving the equation defining g (Eq. (1.41)) for r in terms of A.
Thus, in Example 2 the interchange of the components of the ordered pairs in f
was achieved by leaving the names of the ordered pairs as is, that is (x,y), and

interchanging the roles of the variables in the defining equation of f. In Example
3 the interchange of components was accomplished by interchanging the ordered
pair variables.

In most cases in which variables x and y are used to describe a one-to-one
function, we shall consider x the independent variable (the first component of
the ordered pairs) in both f and f~!; thus we shall follow the procedure illus-
trated in Example 2 to determine f~1. However, when a function occurs in appli-
cations, it is preferable to follow the pattern of Example 3.

Properties of Inverse Functions

The following properties follow immediately from Definition 1.13. Suppose f is a
one-to-one function; then

a) D(f1) = R(f) and R(f) = D(f)

b) (fH)1=f
¢) (flof)(x) =x for any x € D(f) and (fof1)(x) = x for any x € D(f?)

Suppose function f is given by

f(x) = — Vx. (1.43)

a) Show that f is a one-to-one function.

b) Find f~! and state its domain and range.
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Solution a) The graph of

is shown in Fig. 1.70; from it we can see that fis a one-to-one function. Also

D(f) = {«lx > 0} and &(f) = {yy <0}.

 

Y==-5GR(X)

y

Fig. 1.70 | | | | 1
0 1 2 3 4 5

—-1F

-2

3+ 
Graphofy = —Vx

b) To find f~! we can interchange the roles of x and y in Eq. (1.44) and then solve
for y as follows:

x= —1\/y, x2 =y.

Therefore y = f~1(x) = x2 where

DH =&() ={xlx <0} and Rf?) =D(f) = {yy > 0}. we

Example 5 Suppose function f is given by f(x) = 2x — 1. Show that (f1of)(x) = x and

(feofD(x) =x.

Solution In Example 2 we found that f(x) = % > 1 Hence 

(2-1) +1
2 -_

(FofN(x) = F(FLx)= (2 t L) = 2(2+1) —1==x ie

(fref)x) =ff(x) =f2x -1) =
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Fig. 1.71
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Graphs of Inverse Functions

Suppose fis a one-to-one function. Here we illustrate how the graph ofy = f(x)

is related to the graph of y = f(x). First note the following: Points (a, b) and
(b, a) are symmetric about the line y = x, as illustrated in Fig. 1.71. This sug-

gests that the graph of y = f(x) can be obtained by reflecting the graph of
y = f(x) about the line y = x; this is indeed so.

ab a.)

 
On the same system of coordinates draw graphs of f and f~1, where f is given by

f= {(—-1, —2), (2, —1), (3, 4)}.

Note that f~lis given by f=! = {(—2, —1), (—1, 2), (4, 3)}. The graph off consists

of three points, shown as solid circular dots in Fig. 1.72. The graph off=! consists
of the three points shown as open circular dots. Each point of f=! is a reflection
about the line y = x of a corresponding point of f.
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Example 7 Suppose function g is given by g(x) = x2, where D(g) = {x|x < 0}. Draw graphs
of y = g(x) and y = g(x) in the same system of coordinates.

Solution The graph ofy = g(x) = x? is a half-parabola, as shown by the solid black curve
in Fig. 1.73. The inverse function is given by solving x = y2 for y and remember-
ing that we want y <0 (since x <0 in g(x)). Thus y = — Vx, and so
g(x) = — Vx. Reflecting the graph of y = g(x) about the line y = x gives the
graph ofy = g~1(x), as shown by the colored curve in Fig. 1.73. This is the graph
ofy = —Vx, x > 0.

 

 
 

Y=INW(G(X))

y

6
/

/

4 I / 7
/

/
/

2 7
/

/
Fig. 1.73 | 7 I I
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Exercises 1.8
In problems 1 through 4, a function fis given as a set of ordered pairs. First convince

yourself that fis a one-to-one function; then give f~1 as a set of ordered pairs.

1. f= {(=2, 0), (0, 1), (2, 3), (4, 4)} 2. f= {(, 2), (3, 4), (4, 5), (5, 3)}

3. f={(1,3), (2,4), (3, V5), (4, V6)} 4. f={(0,1), (1, V2), (-2, V3), (-3,2)}
In problems 5 through 24,

a) determine whether or not the given function f is one-to-one; if it is, then

b) find a formula giving the inverse function as y = f~1(x), and state the domain of f-1.

5. f(x) =3 — 2x 6. f(x) =1—2x 7. f(x) = x2 + 1 8. f(x) = Vx

9. f(x) = V—x 10. f(x) = 4 — x? 11. f(x) = Vx —1 12. f(x) = Vx +1

13. f(x) = x3 14. f(x) = —x8 15. f(x) = |x| — 2x 16. f(x) = |x| —x +1

17. f(x) = and x > 0 18. f(x) =x2—1and x > 0 
x2 +
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19. f(x) = andx > 1 20. f(x) = 2 and x > 0

21. f(x) = x2 — 2x and x > 2 22. f(x) =x2 —2xand x <0

23. f(x) =x? —-2x+1landx >1 24. f(x) =x? —2x+1land x <1

In problems 25 through 30, a one-to-one function fis given. Find f~!; then show that

(flef)(x) =x for x € D(f) and (fo f)(x) = x for x € D(f).

25. f(x) =4 — 2x 26. f(x) =2x + 3 27. f(x) =x2—1landx >0

28. f(x) = Vx + 2 29. f(x) = VI— =x 30. f(x) = 2 and x > 0

In problems 31 through 36, a one-to-one function is given. On the same system of coordi-

nates draw graphs of the function and the corresponding inverse function.

31. f(x) = 2x 32. f(x) =2x +3 33. f(x) =x%,x2>1

34. f(x) = x2, x < —1 35. f(x) = Vx —1 36. f(x) = V1 —-2x,x<0

37. The volume V of a sphere of radius r is given by the formula

V = 4s,
3

This defines V as a function f of r. Find a formula for f~! that expresses r as a

function of V; then use the result to complete the following table. Give results
rounded off to two decimal places.

 

Vil 2 372 564
 

   r
 

38. A ball is dropped from the top of a building 32 meters high. The position of the ball
at any time ¢ seconds after it has been dropped is given by the formula s = 4.9¢2,
where s is the distance in meters from the top of the building. Thus s is a function f

of t. Find

a) D(f), b) a formula for f! in terms of t = f(s);

c) use the result to determine the time it takes for the ball to fall 4 m, 12 m, 23.4 m.

Give results rounded off to two decimal places.

39. A ball is thrown vertically upward from the ground. Its position ¢ seconds after it

has been thrown is given by s = 39.2¢t — 4.9¢2, where s is the distance in meters from

the ground. Suppose we restrict our discussion to the time interval during which the
ball is going up; then the formula defines a one-to-one function for s = f(¢).

a) Find D(f). (Hint: Recall the discussion related to “highest point”in Section 1.4.)

b) Determine a formula that gives ¢ = f~1(s), and use it to find how many seconds it

takes for the ball to reach a distance 10 m, 48 m, 60 m, 75 m. Give results rounded

off to two decimal places.
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40. Suppose rectangle DEFG is inscribed in an isosceles triangle ABC, as shown in Fig.
1.74, where AC = BC = 3 and AB = 2. Let DE = «x.

a) Find a formula that gives the area K of the rectangle as a function of x.

b) Give the domain and range of f.

c) Is f a one-to-one function?

d) Find the value(s) of x, rounded off to two decimal places, that will give a rectan-

gle of area 0.5.

 

 

Review Exercises
In the following problems give numerical answers in exact form unless otherwise specified.

1. Does the set g = {(—1, 2), (0, 4), (1,6), (2, 8)} determine a function? State the do-

main and range of g.

2. Suppose set D is given by D = {—3, —1, 1, 3} and the set of ordered pairs f is

f={(x,y)lx € OD and y is 2 less than x}.

Write out the set of ordered pairs for f. Is f a function?

In problems 3 through 16, functions f, g, and A are given by f(x) =2x — 1,

g(x) =—x2, and A(x) = |x + 1] — x.

3. Give the domains of f, g, and A.

. Determine a formula for (f + g)(x) and give the domain of f + &.

. Determine a formula for (gof)(x) and give the domain of gof.

. Give a formula for (hof)(x) and state the domain of A of.

. Give a formula for (f/g)(x) and state the domain of f/g.J
O
S

O
U
=

8. Express A(x) in terms of formulas that do not involve absolute value.

In problems 9 through 12, evaluate the given expressions.

9. a) (f+ g)(0) b) (f/h)(—-1)

10. a) (h — f)(2) b) (f-h)(-3)

11. a) (foh)(=2) b) (gof)(-1)

12. a) (hof)(0) b) (goh)(-1)
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In problems 13 through 16, evaluate the given expressions and state results rounded off
to three decimal places.

13. (0.483) 14. (f/g)(0.287) 15. (go£)(0.372) 16. (h/g)(0.631)

In problems 17 through 20, solve the given equations, where functions f and g are given
by f(x) = 2x — 3, g(x) = x2 — 2x — 4.

17. (f+ &)(x) +6 =0 18. (g/f)(x) +4 =0

19. (gof)(x)+1=0 20. (fog)(x) +11 =0

21. Find an equation of the line that passes through points (—1, 2) and (1, —3).

22. Determine the slope of the line given by 3x — 6y + 5 = 0.

23. Find an equation of the line passing through (1, 4) and perpendicular to the line

2x +y = 3.

24. Find an equation of the line passing through (—2,1) and parallel to the line

2x — 3y = 5.

25. Is there a line that passes through the three points (—1, 3), (3, 2), and (7, 1)? If there

is, find its equation.

26. Is the point (2, —3) on the curve given by x2 — 3x — 2y + 1 = 0?

27. Suppose function f is given by f(x) = V/3 — x. Is f an increasing function? Is f a
one-to-one function?

28. Does the curve represented by the equation y = x3 — 21/x2? + x pass through the
point (—1, —4)?

In problems 29 through 32, draw graphs of the given equations. In each case,

label the coordinates of the x- and y-intercept points.

29. 2x —y=4 30. 3x + 2y =6

3Ll. y=x2—4x + 3 32. y=x2 —4x + 4

In problems 33 through 36, determine the coordinates of (a) the x-intercept, (b) the

y-intercept, and (c) the highest or lowest points.

33. y=3x2 —6x +3 34. y=2x2 — 3x +1

35. y= —2x%2 + 5x — 3 36. y= —x%2 + 3x + 10

In problems 37 through 44, find the solution set for the given equations or inequalities.

37. x2 + 3x —1=0 38. x2 4+4x —-5=0

39. x +3 +1=5 40. 2x +3 +x =0
41. x2 — 3x —4>0 42. 2x2 + x —3<0

43. |x — 3| + x<0 44, x + |x — 1] <3

In problems 45 through 52, sketch the curves represented by the given equations.

 

45. 4x? + 9y%2 = 36 46. x2 —y2 =4

47. x2 —- 34x —y—4=0 48. y = V4 — x?
2

49. y = — \0 — a2 50. y =X —1
x—-1
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4 — x2

x + 2
 51. y = 52. y=|x —2| — x

In problems 53 through 60, determine whether the given function is one-to-one. If it is,
find the corresponding inverse. In each case specify the domain and range of the inverse

function.

53. f(x) =5—x 54. f(x) = Vx + 2

55. f(x) = —V—x 56. f(x) =x%2 —4

57. f(x) =x2 — 2x + 1 and x > 2 58. f(x) =4 —xand x <0

59. f(x) =6 —3xand x <0 60. f(x) =x2—x—2and x >1
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Polynomial functions occur frequently in both theoretical and applied mathe-
matics. They assume an even greater significance in the modern world of high-
speed computing since their values are calculated using only the arithmetic op-
erations of addition, subtraction, and multiplication. In Section 2.1 we shall
discuss a useful technique for evaluating polynomial functions using the calcula-

tor. Many complicated functions that occur in applications can be approximated
by polynomials, as the student will see in calculus when studying the topic of
power series.

We assume that the student has already developed some skills in working
with polynomials. However, in Section 2.0 we provide a review of some tech-

niques that are needed in working through this chapter.

REVIEW OF ELEMENTARY ALGEBRA
OF POLYNOMIALS AND FRACTIONS
A formal definition of polynomial functions will be given in the next section, but
we assume that the student is already somewhat familiar with such functions. In

this section we review some skills in working with algebraic expressions involving

polynomials.

Factoring

Section 1.0 contains a brief review of factoring certain types of simple polynomi-
als. Here we consider additional types of expressions that can be factored.

Factoring formulas for the sum or difference of two cubes

 

ad + b% = (a + b)(a® — ab + b?), (2.1)
 

 

ad — bd = (a — b)(a? + ab + b2). (2.2)
 

Factor 8x6 + 27.

The given expression can be written as the sum of two cubes, as follows:

8x6 + 27 = (2x2)3 + 35.

Applying Eq. (2.1) gives

8x8 + 27 = (2x2 + 3)(4x* — 6x2 + 9). -

Factoring by grouping terms The next two examples illustrate how certain

expressions can be factored by first grouping terms in an appropriate manner.

Factor 3x3 — 4x2 — 3x + 4.
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Grouping the first two terms and the last two terms gives a common factor, as
follows:

3x3 — 4x2 — 3x +4 =x2(3x — 4) — (Bx — 4) = (3x — 4)(x2 — 1)

= 38x —4)(x + 1)(x — 1). Vo

Factor x* — x2 + 6x — 9.

Grouping the last three terms gives a difference of two squares that can be

factored.

xt — x2 46x —9=a%— (x2 —-6x+9) = (x2) — (x — 3)2

= [x% + (x — 3)][x® — (x — 3)]
= (x2 + x — 3)(x%2 — x + 3). a

Elementary Operations with Polynomials

In the exercise set at the end of this section, several problems involving addition,

subtraction, multiplication, and division of polynomials are included. Here we
give an example in which one polynomial is divided by another.

Divide 3x* — x3 4+ 2x2 — 5 by x2 — 2x — 1.

We can divide polynomials by using a long-division algorithm analogous to that

for dividing numbers:

3x2 + 5x + 15

x2 — 2x —1/3x* — x3 + 2x2 — 5
 

 3xt — 6x3 — 3x2 3x2(x2 — 2x — 1)

5x3 + 5x2 — 5 Subtract

5x3 — 10x2 — 5x 5x(x?2 — 2x — 1)
 

15x2 + 5x — 5 Subtract

15x2 — 30x — 15 15(x2 — 2x — 1)

35x + 10 Subtract
 

Thus we get a quotient g(x) = 3x2 + 5x + 15 and a remainder r(x) = 35x + 10.

This can be expressed in equation form as follows:

 
4 3 2 _3x* — x3 + 2x O _ 3,2 + 5x +15 + 35x + 10 -.

x2 —2x —1 x2 _2x—1"

Algebraic Fractions

Elementary operations with algebraic expressions of the type

f(x)
g(x)’

where f(x) and g(x) are polynomials, occur frequently. A fundamental property
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in working with fractions is

f(x)h(x) fx) 2.3)
g(x)h(x) ~ g(x)

The property stated in Eq. (2.3) is useful in two situations:

f(x)h(x) f(x)
1. Replacing——— by —— is involved in simplifying or reducing a fraction

g(x)h(x) g(x)
to lowest terms.

fx) fx)h(x) . : : :
2. Replacing — by ———— is in addition and subtr n of fractionsp g 7) y 2h) used add ubtraction o ,

in which the first step involves getting equivalent fractions with common
denominators.

The following examples illustrate techniques for simplifying fractions and
for adding, subtracting, multiplying, and dividing fractions.

8x3 — 64

Solution First factor the numerator and the denominator, and then apply the property
given by Eq. (2.3), as follows:

8x3 — 64 8(x3—8) _ 8(x3 — 23) 24x — 2)(x2 + 2x + 4)
 

 

47% — 16 4(x% — 4)  4(a% — 22) A(x — 2)(x + 2)

2x? 4 2x + 4)
= 13 .

3 _ 2
Thus we have 8x” 64 = 202" + 2x + 4) for all x except 2 and —2. il

4x2 — 16 x + 2

2 2x — 1
Example 6 Perform the indicated subtraction:  

x —1 x+ 2°

Solution In adding or subtracting two fractions, we first express each as an equivalent
fraction with common denominators. Using the property stated in Eq. (2.3), we
get

2 2(x + 2) d 20 —1 (2x —1)(x —1)

x—1 x-1x+2 2 x+2 (x+2x—-1
  

When these are substituted into the given expression, we get the subtraction of
two fractions with common denominators. The result will be a fraction in which
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the numerator is the difference of the corresponding numerators and the denom-
inator is the common denominator, as indicated in the following.

2 2x — 1 _ 2(x + 2) 2x —1)(x — 1)

x—1 x+2 (x-Dx+2 (x+2)0(x-1)

2x +2) — (2x — 1)(x — 1)

 

 

 

 

(x — 1)(x + 2)

2x +2 — (2x2 — 3x +1)

TT -D+2)
_ —2x*+06x +1 _ —2x°+56x+1 i;

(x — 1)(x + 2) x2 +x —2

Formulas for the product and quotient of two algebraic fractions follow.

 

f(x) p(x) f(x)p(x)
2%) 9) ~ g0a®) (24)
 

 

 

f(x) p(x) f(x) qx) _ f(x)g(x) 25)
glx) qx) glx) p(x) glx)p(x)’
 

x + 2 LX +x —2
Example 7 Perform the indicated division and simplify: s+ hr —3 ZL 4x_6

Solution First apply Eq. (2.5), then factor the resulting numerator and denominator, and

finally simplify, as follows:

  

 

x +2 Lx 4x—2 x + 2 x2 +x —6 bv Eq. (2.5

222 + 5x —3  x24+x—6 2x2 45x —3 x24 x —2 (by Eq. (25)

x+2)(x2 +x —6
X ) (by Eq. (24))T(x + 5x — 3)(x2 +x — 2)

(x + 2)(x + 3)(x — 2)

= Gx Dx 19x +x —1) Pv factoring)
 

—Ct (by Eq. (2.3))

x — 2=“ [|
2x2 — 3x +1
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Exercises 2.0

3
E E 1 —————xample 8 xpress ( ox ) a (+ —4 + 3) as a simple fraction in lowest terms.

Solution First express the numerator and denominator as single fractions; then the prob-
lem becomes one of dividing two fractions:

 

 

3 3 x2 —2x—3 x2 —4x+ 31—-—2 Je (x-4+23)= +
( a. (+ +3) x2 — 2x x

_x*—2x—3, x
x2 — 2x x2 —4x + 3

x(x? — 2x — 3)
 

= (x2 — 2x)(x2 — 4x + 3)

_ x(x —3)(x +1)

x(x = 2)(x — 3) (x =1)

_ x +1 _ x +1

TT (x=20(x=1) x2 —-3x+2°

 

 

Hence

3 3 x +11—-—2 Jo(x-44+2)=—2F+1
NN (x +3) x2 — 3x + 2

for all x except 0, 1, and 2. [|

 

Factoring

In problems 1 through 10, factor the given expressions as far as possible.

1.

4.

7.

10.

x3 + 27 2. 27 — 8x3 3.8 —-(2-1x)3

27 — (x — 3)3 5. x3 — 2x2 +x — 2 6. 4x3 + 6x2 4+ 2x + 3

xt —ax3 —x% +x 8. x3 —-2x2 —x +2 9, x* — x2 —4x — 4

4x2 — 4x +1 — 9xt

Operations with Polynomials
In problems 11 through 18, perform the indicated operations on the given polynomials.
Express answers in simplified form.

11.

13.

15.

17.

19.

(4x2 — 3x +1) + (x2 + 2x — 1) 12. (— 3x3 — 5x + 4) + (x2 — 4)

2x3 — 3x2 +4x +5) —(—x3+4x—-1) 14. (x* — 5x2 —3x +5) — (x* —2x3 —3x +1)

(x2 + 2x — 4) (x2 — 2x + 4) 16. (2x2 — x) (x3 +1)

(x3 —2x +4) — (x —1)(x2+x—-1) 18. (2x3 — 3x2 +x —1) — (2x + 1)(x2%2 — 3)

Divide 2x* — 3x3 + x2 — 3x + 4 by x2 — 2x — 1, and determine the quotient and
remainder.
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20. Perform the indicated division, and determine the quotient and remainder:

(xt —2x3 —x24+x—3) + (x2 —x + 2)

21. Find a number k such that when x3 4+ 3x2 — 2x + 3k is divided by x + 3, the re-

mainder will be zero.

22. Find a number & such that (2x3 + x2 + 4x — 2k) + (x — 3) will have a remainder of

Zero.

Operations with Fractions

In problems 23 through 30, express the given fractions in lowest terms.

x2 —2x +1 x2 — 4x + 3 1 — x2

23. x2 — x 24. x2 —2x — 3 25. 2x2 + x — 1

x3 — 27 8x3 + 125 8 — (x —1)3
Yh .— a
6 2x2 — bx — 3 21 2x2 + bx 28 (x2 + 3)(x — 3)

27 — (1 — x)3 x3 — 3x2 —x +3

29. 8 + 2x — x2 30. x2 —4x + 3

In problems 31 through 48, perform the indicated operations, and express answers as a
single fraction in lowest terms.

   

    

  

   

    

  

 

3 x x —3 3x — 1 1 -— 2x
31. 2. JA = 2 Tar

x—1 x42 3 t+ 33 Xx x +1

2 2 2gq X+2 x-—4 CX 42x xP —2x +1 x —3x—4 x+4
x—1 2x+1 35 x2 —1 x + 2 36 x2 — 16 x —1

3 1 2x3 + 4x2 x2+x+1 2242 x2 —4 x +237,—aXAX Jr Xrrr . =
Tox x2 —1 38 x x3 —1 39 2x +1 x -—2

9x2 + 6x + 1 3x +1 x 3x — x2 xt—1 x3 —2x242x—2
40. + 41. a . +

x x2 — 2x 8 — x8 x — 2 42 x + 2 2x + 4

2

43. (CE -2ED)  (s- 2 ) 44. (E215) + (4-221)
x —1 x x2 — x x x2 — x

2 3x a ( 2-1)
45. (1 — = + {4 — 51> . — = (x2 —

2+) x? 4+ x 46. {x x +1 a

2 4+ xX x

47. x — 3 48. 3 — Tx-3
6 + x 2-1
 

2.1 POLYNOMIAL FUNCTIONS:
INTRODUCTION AND DEFINITIONS
Perhaps the most useful functions that we study are the polynomial functions.
They occur frequently in applications, and they also form a basis for the theoret-

ical study of more complicated functions that can be approximated by polyno-
mials. The latter are studied in calculus under infinite series.
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We have already encountered examples of polynomial functions in the pre-

ceding chapter. The linear and quadratic functions discussed in Sections 1.3 and
1.4 are examples of polynomial functions. Let us now state a formal definition of
polynomial functions, introduce some related terminology, and then consider
several examples.

Polynomial functions

Any function P that can be expressed by a formula of the type

Pxy=ax*+a,"t+... + a,x + a, (2.6)

where n is a positive integer or zero, and @,, @,_;, . . . , a4, @, are

given numbers, is called a polynomial function. If a, # 0, we say
that P has degree n. The numbers a,, a,_,, . . . , a,, a, are the coeffi-
cients of P. The coefficient of x" is called the leading coefficient of P,
and a, is called the constant term.

When P(x) is written as in Eq. (2.6) with the highest-degree term first and

with successive terms decreasing in degree, we say the polynomialis in standard

form.

If P(x) = a,, where a, # 0, then we call P(x) a constant polynomial with

degree zero. The special case in which P(x) = 0 for all x € R is called the zero
polynomial; we do not associate any degree with it.

Unless otherwise stated, for all polynomials discussed in this text the coeffi-

cients will be real numbers.* Sometimes we want to restrict the coefficients to

rational numbers or to integers; such cases will be referred to as “polynomials

over the rational numbers,” or “polynomials over the integers.”
Note that for every real number x the formula given by Eq. (2.6) yields a real

number P(x). This implies, according to the convention stated in Section 1.1

(p. 19), that the domain of any polynomial function is the set of real numbers.

For each of the following, determine whether the given function is a polynomial

function:

1
f(x) =2x — 5, g(x) =1— 2x — 3x2, h(x) = pram

Functions f and g are polynomial functions; the standard form for g(x) is
g(x) = —3x%2 — 2x + 1. Function h(x) cannot be written in the form given by

Eq. (2.6), and so A is not a polynomial function.

 
* Polynomials with complex-number coefficients are studied in courses in complex variables.
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Note that D(h) = {x|x # 0, x # 2} whereas the domain of any polynomial
function is R. PN

For each of the following polynomial functions, determine its degree, leading
coefficient, and constant term. In each case write the polynomial in standard
form.

a) f(x) =3x*—2x3 +5 b) g(x) =1 — 2x — 3x2

c) h(x) =4(2x3 — x2 +x — 3) d) F(x) =x5 + 2x* — x

a) f(x) is in standard form as given. The degree of f is 4, leading coefficient is 3,
and constant term is 5.

b) g(x) = —3x2 — 2x + 1 is the standard form for g(x). The degree of g is 2,

leading coefficient is —3, and constant term is 1.

c) h(x) = 8x3 — 4x2 4 4x — 12 is the standard form for A(x). Degree of A is 3,

leading coefficient is 8, and constant term is —12.

d) F(x) isin standard form as given. Degree of F'is 5, leading coefficient is 1, and

constant term is 0. a

Suppose f, g, and A are polynomial functions given by

flx)=2x3—x +1, g(x) =xd Latta, h(x) = x* + V3x2 — V2.

In each case determine whether the polynomial is “over the rational numbers,”
“over the set of integers,” or neither.

Function f is a polynomial over the rational numbers and over the set of inte-

gers; g is a polynomial over the rational numbers; 4 is neither. wa

Suppose f and g are functions given by f(x) = 2x — 1 and g(x) = x2 — 1. For

each of the following functions, determine whether it is a polynomial function;if
it is, give the degree.

a) f+g b) f-g c) f/g d) fog

a) (f+ 8)(x) =f(x) + g(x) = (2x — 1) + (2? = 1) = x* + 2x — 2.
Hence f + g is a polynomial function of degree 2.

b) (f +8)(x) = f(x) g(x) = (2x — I)(a? — 1) = 24% — x® — 2x + 1.
Function f - g is a polynomial function of degree 3.

c) (Dw = ACH = 2-1 Function ! is not a polynomial function.
g gx) x*-1 8g

d) (fog)(x) =f(g(x)) =f(x?—1) =2(x2 — 1) — 1 = 22% — 3.
Hence fog is a polynomial function of degree 2. a.
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Using a Calculator to Evaluate

Polynomial Functions
In subsequent sections of this chapter we shall be interested in drawing graphs

and finding zeros of polynomials. This requires evaluating functions at several
values of the independent variable. Thus there is a need to learn techniques for
doing this efficiently with the aid of a calculator. Let us consider an example to
illustrate the method of expressing a polynomial in nested form and using it to
evaluate the function.

Suppose f is a polynomial function given by

f(x) = 3x3 + 2x2 — 5x + 4. (2.7)

Evaluate:

a) f(2.4) b) f(—1.6)

Function f(x) can be evaluated by using the formula in Eq. (2.7) and the
calculator key. However, as noted in Section 1.2, the (%*] key on many calcula-
tors cannot be used directly to evaluate an exponential expression when the base
numberis negative, such as (—1.6)3. Although we can express (—1.6)3 as —(1.6)3

and then use the (Y¥Jkey, we can avoid the need for using the (b*J key by first
expressing f(x) as a formula in nested form. Equation (2.7) can be written as

f(x) =[(8x + 2)x —5]x + 4. (2.8)

The reader should expand this equation to see that it is equivalent to Eq. (2.7)
and should also observe the pattern for getting Eq. (2.8) in terms of the coeffi-
cients of f.

The formula given in Eq. (2.8) is called the nested form for the polynomial f.
Now suppose c is any given number, and we want to evaluate

f(c) =[(8c + 2)c — 5]c + 4.

Starting with the inside parentheses, we have the following sequence of steps:

multiply 3 by c¢ and add 2, multiply the result by ¢ and subtract 5, multiply the
result by ¢ and add 4. Thus we have an easy-to-follow pattern in which we

repeatedly multiply by ¢ and add a coefficient (subtracting 5 is equivalent to
adding —5, the coefficient of x).

a) According to Eq. (2.8),

(24) =[(3(2.4) + 2)(2.4) —5](2.4) + 4.

Since the number 2.4 occurs several times, it is good practice to store it by
using the key and recall it as needed with the key.* The following
are suggested key stroke sequences for algebraic and RPN calculators.
 

For calculators that have more than a single memory it is necessary to follow and (RCL) with a
memory address; see your owner’s manual if necessary.
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Using an AOS calculator, press

2.4 (870) CO C3(x (Rey) (+) 20 (x (Rey) (=J 50] x) (Rey) (+) 4(=D

The result is f(2.4) = 44.992.

Using a RPN calculator, press

2.4 (s10) 3 (Rey) (XJ 2 (+ (Rey) (x) 5 (= (Rey) (x 4(+

The display will show 44.992.

b) To evaluate f( —1.6) we can follow a sequence of key strokes similar to that in

(a), except that we replace the 2.4 by 1.6, or 16, (chs) at the start. This
gives f(—1.6) = 4.832. Le

Example 6 Express f(x) = —3x* + 2x3 + 5x — 6 in nested form.

Solution The coefficient of x2 is zero, and so we have

f(x) = {[(=3x + 2)x + 0]x + 5}x — 6.

Exercises 2.1

In problems 1 and 2, determine whether the given functions are polynomial functions.

 

 

1. a) f(x) = 23 + 1 b) g(x) = = + 3 ¢) h(x) = x 4 247 — 23

2. a) f(x) =xt—x b) g(x) =1—x + x2 — «8 c) h(x) mi

In problems 3 through 10, determine the degree, leading coefficient, and constant term

for the given polynomial functions. In each case write the polynomial in standard form,

and tell whether or not it is “over the rational numbers.”

3. f(x) = 3x — 2x3 + x2 —x + 3 4. g(x) =5 +x — x8

5. g(x) =x + x2 — x8 6. f(x) = V2x3 — 3x2 + x

7. f(x) = 2(x — 1)(x% + 1) 8. f(x) =3(1 —x)(x® +1)

9. g(x) = V3(1 — 2x + 32?) 10. f(x) = V5(x + 1)(x + 1)(x% — x)
In problems 11 through 16, suppose f and g are polynomial functions given by

f(x) = 3x2 + 2x and g(x) = x2 — 1. In each case, determine whether the given function

is a polynomial; if it is, give its degree and its leading coefficient.

11. f+ & 12. 2 13. 1 14. fg 15. fog 16. gof

In problems 17 through 24, round off answers to two decimal places.

17. Given that f(x) = 2x3 — x2 + 5x + 1, determine:

a) f(1.5) b) f(—2.3)

18. Given that g(x) = 4x3 + x2 — 6x + 3, determine:

a) g(2.7) b) g(—0.8)
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19.

20.

21.

22.

23.

Given that g(x) = 2 + 3x — 5x2 — 2x3, find:

a) £(0.7) b) g(-2.1)
Given that f(x) = 3 — 5x + 2x2 — 4x3, find:

a) f(L.7) b) f(—1.2)

Given that f(x) = 3x* — 243 + 522 + x — 3, find F(R)

Given that g(x) = 2x* — 4x3 — 2x2 — x — 1, find (A520).

Given that f(x) = x3 — 2x + 1, find f(1.36). 24. Given that f(x) = 2x3 — 3x — 4, find f(—0.53).

In problems 25 through 28, complete the given table, in which y = g(x). In each case
round off answers to two significant digits.

  

  

       
 

  

  

25. g(x) = x3 — x2 — 3x — 4 26. g(x) = 2x3 + 3x2 — 4x — 6

x —148 —-043 0 083 1.64 x [13 14 141 142 1414 1415

y y

27. g(x) =x3 — 5x + 1 28. g(x) = x* — 2x3 — x2 — 3x — 2

x —23 -—-24 -—-233 -—-234 2331 x —05 —-06 —059 —0.595 —0.599

Jy y        

In problems 29 through 31, find a polynomial that satisfies the given conditions.

29.

30.

31.

32.

P has degree 1, leading coefficient 4, and P(—1) = —3.

P has degree 2, leading coefficient —3, and P(3) = —4.

P has degree 3, leading coefficient 2, and P(2) = —1.

Suppose f and g are polynomial functions of degree m and n, respectively, with

m > n. For each of the following what can be said about the given function in
reference to whether it is always, sometimes, or never a polynomial function. In

each case, what meaningful statement can be made about the degree ifit is a poly-

nomial?

a)f+g b) f—g c)f-g d) f/g e) fog
 

2.2 GRAPHS OF POLYNOMIAL FUNCTIONS
Drawing an accurate graph of a polynomial function of degree greater than 2 can

become an involved process. About all we can do, without the tools of calculus, is

to determine several points on the graph and connect them with a smooth curve.

Whenever possible, we look for “key points,” such as the x- and y-intercept

points, and we also take advantage of any symmetry properties that may occur.

In any particular case the degree of difficulty in drawing a graph depends on the
formula that describes the polynomial function. This fact is illustrated in exam-
ples below.
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Polynomial Functions of Degree 0, 1 or 2
Polynomial functions of degree 0, 1, or 2 have already been discussed in Sections
1.3 and 1.4. There we called polynomials of degree 0 or 1 linear functions because

their graphs are straight lines. Polynomials of degree 2 are called quadratic func-
tions, and we saw that their graphs are parabolas that open upward or down-
ward. We shall not repeat the discussion in Sections 1.3 and 1.4, but the reader
may wish to review that material at this point.

Polynomial Functions of Degree Greater than 2
In the next three examples we illustrate graphs of polynomial functions in which
the formula is given in factored form.

Draw a graph of the polynomial function given by

f(x) = (x — I)(x — 3)(x + 2). (2.9)

The polynomial function given by Eq. (2.9) has degree 3, as one can see by
multiplying the factors on the right to get

f(x) = x3 — 2x2 — 5x + 6. (2.10)

We are interested in getting a table of x, y values that satisfy the equation

y = f(x). First, let us get some key points.

y-intercept point: Substituting x = 0 into Eq. (2.10) gives y = 6. Thus the
y-intercept point is (0, 6).

x-intercepts: Lety = 0 and use Eq. (2.9) toobtain (x — 1)(x — 3)(x + 2) = 0.

Thus 1, 3, and —2 are the values ofx that give y = 0. That is, the x-intercept

points are (1,0), (3,0), and (—2, 0). These are included in the table below.

Symmetry: f(—x) = (—x)3 =2(—x)? — 5(—x) + 6 = —x3 — 2x2 + 5x + 6.

Thus f(—x) # f(x) and f(—x) # — f(x), and so the function is neither even

nor odd. Hence the graph is not symmetric with respect to the y-axis or the
origin.

To get a table of x, y values, first get a formula for fin nested form. From Eq.

(2.10) we have

f(x) =[(x — 2)x — 5]x + 6. (2.11)

Using a calculator when necessary, along with formula (2.11), we construct the
following table.

 

—-2.5 -2 -15 -1 -05 0 05 1 1.5 2 2.5 3 35 4 |
 

  —9.63 0 5.63 8 7.88 6 313 0 -263 -—-4 -338 0 6.88 18 |
 

Now plot (x,y) points from this table and draw a smooth curve through
them to get the graph shown in Fig. 2.1.
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Y=(X-1)¥X-3)*(X+2)

 

 

y

8 —

6

4 |—

2 |—

| Ly
-4 3 -2 -1 0 1 2 3 4

-2 —

—4 —

—6 |—

Graphoff(x) = (x — 1)(x — 3)(x + 2) [|

Draw a graph of y = (x — 1)2(x + 2).

This example is similar to Example 1, except that the factor (x — 1) occurs
twice. How does this influence the graph? In Example 1 the graph crosses the

x-axis at each of the x-intercept points, as Fig. 2.1 shows.
Drawing a graph of the given equation by proceeding in a manner similar to

that of Example 1 gives the curve shown in Fig. 2.2. The reader is encouraged to
make a table of x, y values and verify the curve shown.

Y=(X-1)"2¥(X+2)

 

 
Graphofy = (x — 1)? (x + 2)
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Note that the curve in Fig. 2.2 passes through the point (1, 0) but does not
cross the x-axis at that point. This always happens when the given equation has
a linear factor to an even power, such as (x — 1)2 in this case. :

Draw a graph of y = (x — 1)3(x + 2).

This example is similar to Example 2, except that (x — 1) occurs as a factor
three times in the given equation. Following a procedure similar to that in Ex-
ample 1, we get the graph shown in Fig. 2.3. The curve crosses the x-axis at the
point (1, 0). This will always happen when a linear factor occurs to an odd power,
such as (x — 1)3 in this case. The reader should make a table of x, y values,

including several values of x near 1, to verify the graph shown. Near the point
(1,0) the curve becomes almost horizontal.

Y=(X-1)"3%(X+2)

 

-10 — 
Graphofy = (x — 1)3 (x + 2) a

a) Draw a graph of the function given by f(x) = x* + x3 — 9x2 — 8x + 14.

b) From the graph, what can we conclude about the x-intercept points and the

range of f?

Solution a) This example is similar to the preceding three examples, except that the
formula describing f is not in factored form, and therefore it is not a simple
matter to determine the x-intercept points of y = f(x). However, we can at
least get the y-intercept point easily. If x = 0, then y = 14; hence (0, 14) is the

y-intercept point.
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In order to evaluate f at given values of x, first get the formula for f in
nested form:

f(x) = {[(x + 1)x — 9]x — 8}x + 14.

The next question is: What values of x should we include in the table of x, y

values? It is probably wise to plot some integer values first and then see
where it might be helpful to include in-between values of x. This is how the
following table was constructed.

 

x -4 -3 -27 -25 -2 -15 -1 -07 -05 O
 

   y 94 11 3.5 1.2 2 74 13 15.1 15.7 14
 

 

| 0.5 1 1.5 1.7 2 25 3 4
 

79 -1 -98 -123 -14 -76 17 158   
 

Plotting the (x,y) points from this table and drawing a curve through
them gives the graph shown in Fig. 2.4.

Y=X"4+X"3-9¥X "2-8*¥X+14

y

20

 

 

 -20 +

Graph off(x) = x* + x> — 9x? — 8x + 14
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b) From the graph in Fig. 2.4 we conclude the following, although tools of calcu-

Graphs of Polynomial Functions

lus would be required for rigorous proofs.

1. There are exactly two x-intercept points; the first point is at (b, 0), where
b is slightly less than 1, and the other is (c, 0), where c¢ is approxi-

mately 2.6.

. ®(f) = {y|y > —14}. At this point we must accept this as a conjecture.

Although we could include more values of x near 2 in our table (see

Problem 30) and see that the corresponding values of y are greater than
—14, we would still not have a proof. Techniques of calculus are required
to prove that our conjecture is indeed true.

 

In problems 1 through 24, draw a graph of the given function. In those cases in which the

given formula is not in factored form, factor it if possible; doing so will help in determin-

ing the x-intercept points.

©
3

O
t

Ww
W
=

11.

13.

15.

17.

19.

21.

23.

fx) =3x —-1

CE8(x)= —x2 + 2x + 3

fx) =x — x

fx) =x —2x2 + 1

g(x) = —x8

f(x) =x*

g(x) = (1 —x)(x + 3)(x

fx) =x3 —1

g(x) =x3 — 2x2 — x + 2

g(x) = (x + 1)%(x — 3)

f(x) =(x = 1)*

f(x) = x3 — 4x2 + 4x

®
S
S
B
N

10.

12.

14.

16.

18.

20.

22.

24.

— 2)

8x) =x2—-3x—4

f(x) =3 — 2x

C8(x)= —x2 + 4

f(x) =x — x3

glx) =x* -1

f(x) = x(x — 1)(x + 3)

g(x) =x% — 2x2 + x

f(x) =x3 4+ 2x2 —-3x — 6

f(x) =(x —1)(x® + 1)

f(x) = (x + 1)(x — 2)3

f(x) = x* — 4x2

f(x) = x* — 2x3 + x2

In problems 25 through 28, draw graphs of the given functions.

25.

27.

29.

30.

fx) =x3—x—6

f(x) =x*+x3 + 2x2 +x — 2

26.

28.

g(x) =x3 —x%2 — 5x —3

f(x) =x* — Tx? — 2x + 4

Draw a graph of f(x) = x3 — 2x2 — x — 1. Use your graph to arrive at a reasonable

conjecture concerning the x-intercept points. Also determine the range of f.

In the solution of Example 4(b) on p. 118 we arrived at a conjecture that

®R(f) = {y]y > —14}. Complete the following table to give additional support for

this conclusion. Recall that f(x) = x* + x3 — 9x2 — 8x + 14.

 

x 1.9 199 21 2.01
 

f(x)    
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SYNTHETIC DIVISION;
REMAINDER AND FACTOR THEOREMS

Synthetic Division
One of the basic properties of integers is stated in the Euclidean algorithm:

If m and n are any integers, where n > 0, then there exist unique

integers q¢ and r such that m =n-q + r, where 0 <r <n.

Dividing both sides of this equation by n gives

m_q+ ZL.
n n

This is the familiar form of expressing the result of dividing m by n and getting
quotient ¢ and remainder r. For instance, dividing 21 by 5, we get a quotient of

4 and remainder of 1. This can be expressed as 21/5 = 4 + 1/5.

For polynomials, a result that is analogous to the Euclidean algorithm is
stated in the following theorem.

Division algorithm

Suppose p(x) is any polynomial and c is a real number. There is a
polynomial g(x) and a real number r such that

p(x) = (x — c)g(x) + r. (2.12)

Dividing both sides of Eq. (2.12) by x — ¢, we get

px) = q(x) +
X —C XxX —¢C

  

Thus, if p(x) is divided by x — c, the quotient is q(x) and the remainder is r.

Find the quotient and remainder when p(x) = 4x3 — 3x2 4+ x — 5 is divided by

x — 2.

Using the method of long division, we have

 

 

4x2 + 5x + 11

x —2[4x3 —3x2+ x —5

4x3 — 8x2

5x2 + x —5

5x2 — 10x

11x — 5

11x — 22

17
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Thus, q(x) = 4x2 + 5x + 11, and r = 17. iE

Synthetic Division

The long-division algorithm of dividing p(x) by x — c¢ can be condensed into a

process called synthetic division. This is illustrated in the following example.

Dividep(x) = 4x3 — 3x2 — 12x + 8 by x — 2, and find the quotient g(x) and the

remainder r.

Applying the long-division algorithm gives

4 x2 + 5x —2
x —2/(4)x® —3 x? — 12x + 8

4 x3 — 8 x?

(5)x2 — 12x + 8
5 x2 — 10x

£2x +8

—-2x+4

@

 

 

Thus g(x) = 4x2 + 5x — 2, and r = 4.

Note that the coefficients of g(x) and the remainder occur in the long-division

process in the order shown by the circled numbers. Inspection shows that the
first coefficient of g(x) is the same as the leading coefficient of p(x), and then

each subsequent coefficient is the result of multiplying the preceding coefficient

by —2 and subtracting the product from the corresponding coefficient of p(x).
For example, the coefficient 5 is the result of —3 — (—2)(4) = 5; —2 comes from

—12 — (—=2)(5); and the remainder 4 comes from 8 — (—2)(—2) = 4. Thus we

have a simple recursive pattern for getting the coefficients of q(x) and r. The
arithmetic in this pattern can be simplified if we multiply by 2 rather than —2
and add instead of subtract.

All of this suggests that the long-division process shown above can be con-
densed by eliminating all superfluous writing, as follows:

 

 

 

Coefficients ofp(x)
— _A

~~ “4 r

dx) =x-2; 2 4 -3 -12 8
~7

Bring 7 « 24=38 « 2:5=10 o 2:(-2)=—-4

down 4 7 7 7
~ / / /
“a 7 / /

4 5 -2 4
C v J ee

Coefficients of q(x) r el

We call the method illustrated in Example 2, the synthetic division technique
for dividing p(x) by d(x).
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Use synthetic division to find the quotient and remainder when

p(x) = 2x* — 16x2 4+ 5x — 4

is divided by x + 3.

The coefficient of x3 in p(x) is 0, and it must be included in the listing of coeffi-

cients of p(x).

-3/2 0 —-16 5 —4
—6 18 —6 3

2 —6 2 —1 1
~ Ny’

 

q(x) r

Thus, g(x) = 2x3 — 6x2 + 2x — 1, and r = —1. |

Synthetic Division and Nested Form
In Section 2.1 we introduced the idea of expressing a polynomial in nested form,

which we used to evaluate p(x) at given values of x.

We now take a closer look at the steps involved in this evaluation process

and see how it is related to synthetic division.

Suppose p(x) = 2x3 — 5x2 + 4x + 1. Compare the synthetic division process of
dividing p(x) by x — ¢ with that of evaluating p(c) by using nested form for p(x).

In the synthetic-division computations, let us denote the coefficients of the quo-

tient by b,, b,, and b, so that we can see where they occur in the nested-form
computation.

cl 2 —5 4 1

 

 

2c (2¢ — 5)c [(2c — 5)c + 4]c (2.13)

2 2 —5 (2c—5)c+4 [(2c—5)c+4)c+1
7 7 7 \
bo by b, r = p(c)

We now look at the sequence of steps involved in evaluating p(c) by using the
nested form for p(x); that is,

p(x) =[(2x — 5)x + 4]x + 1. (2.14)

Comparing (2.13) and (2.14), we see that the nested-form algorithm for evaluat-

ing p(c) also gives us the quotient and remainder when dividing p(x) by (x — ¢).

We get the coefficients of q(x) by looking at the results in the steps just preced-

ing the multiplication by c.

Also note in (2.13) that the remainder is equal to p(c). This illustrates the

Remainder theorem, which is given later in this section.
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pl)= [ @c = 9) c + 4] c + 1
I I
(I
| 1 bo
I
I
I
| |&—b;—>
|

le »|

 A ~ v

Example 5 Using a calculator, find the quotient and remainder when

p(x) = 2.4x3 — 3.5x% + 51x — 3.2

is divided by x — 1.6.

Solution Let the quotient be denoted by g(x) = b,x? + b,x + b,. Coefficients b,, b,, b,
and also the remainder can be found by using the formula for p in nested form

and evaluating p(1.6) as follows:

p(x) =[(2.4x — 3.5)x + 5.1]x — 3.2.

 

p(1.6)= [ (2.4(1.6) — 3.5) (1.6) + 5.1] (1.6) — 3.2
| |
||
| 1 bo |
||
| |[&——b—¥ |

le b, —»

|
j¢ r P| 

With an algebraic calculator we can carry out the sequence of computations

above as follows:

LAERHERnsCTI
|

gives b, gives b,

(Rens.Joc)tre (=J3.2=

gives b, gives r
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With a RPN calculator we can use the following sequence of steps:

1.6(s10)2.4 (x)35(=) (x5.1 (xJ3.2(=)

gives b, gives b, gives b, gives r

The result from either sequence is g(x) = 2.4x2 + 0.34x + 5.644 and

r = 5.8304. —

Remainder Theorem

Suppose p(x) is a polynomial and c is a real number. By Theorem 2.1 there is a
polynomial g(x) and a number r such that

p(x) = (x — ¢c)q(x) +r.

If this is used to evaluate the function p at c, we get

plc)=(c—c)g(c) +r=0+r=r.

Hence r = p(c). This result is stated as a theorem.

Remainder theorem

If polynomialp(x)is divided by x — ¢, then the remainderis equal to

p(c). That is, r = p(c) and p(x) = (x — c)g(x) + p(c).

If p(x) = 3x16 + 2x7 — x* + 1 is divided by x + 1, what is the remainder?

Performing the long division to get the remainder r would be a lengthy proce-
dure. Using Theorem 2.2, we can find r by evaluating p(—1). Thus

r=p(-1)=3(-1)® +2(-1)" = (-1)!+1=3-2-1+1=1 1H

Supposep(x) = 2x* — 4x2 + 12x — 6. Determinep(—3) by using the Remainder

theorem.

We can find p(—3) by evaluating directly:

p(—3) = 2(—3)* — 4(—3)2 + 12(-3) — 6.

However, in general it is simpler to use synthetic division, in which p(x) is di-
vided by x — (—3); by Theorem 2.2 the remainder will be equal to p(—3).

-3/2 0 —4 12 — 6
—6 18 —42 90

2 —6 14 -30

Therefore p(—3)= 84. Ha
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In the synthetic-division algorithm for dividing polynomial p(x) by x — c,

the Remainder theorem tells us that the number in the lower right corner can be
interpreted as either the remainder of the division problemp(x) + (x — ¢) or the

value of p(x) at c, that is, p(c).

Factor Theorem

We say that 3 is a factor of 6 because 6 can be expressed as a product of 3 and
another integer; that is, 6 = 3 + 2. In an analogous manner we say that polyno-
mial g(x) is a factor of polynomial p(x) if there is a polynomial h(x) such that

p(x) = g(x)h(x).
For instance, x2 — 1 is a factor of 2x3 + 3x2 — 2x — 3 because

2x3 4+ 3x2 — 2x — 3 = (x2 — 1)(2x + 3).

Suppose p(x) is a given polynomial and c¢ is a given number. We wish to

determine if x — c is a factor of p(x). The following theorem will be helpful.

Factor theorem

Suppose p(x) is a polynomial and c is a given number; x — c is a
factor of p(x) if and only if p(c) = 0.

The proof of this theorem comes in two parts.

1. The if part: If p(c) = 0, then by Theorem 2.2 r = 0. Equation (2.12) gives

p(x) = (x — ¢) * q(x), and so x — c is a factor of p(x).

2. The only if part: If x — cis a factor ofp(x), then by definition of factor there
is a polynomial g(x) such that p(x) = (x — ¢)g(x). Substituting c¢ for x in

this equation gives p(c) = (¢ — ¢)g(c) = 0.

Use the Factor theorem to show that x + 3 is a factor of p(x) = 2x3 + 5x2 —

2x + 3.

If we can show that p(—3) = 0, then by the if part of the Factor theorem x + 3

is a factor of p(x):

p(—=3)=2(-3834+5(—-3)2—-2(-3)+3=-54+45+6+3=0 1H

Find a polynomial p(x) of degree 3, with leading coefficient 1, that satisfies
p(=1) =0, p(1) = 0, and p(2) = 0.

By the if part of the Factor theorem we conclude that (x + 1), (x — 1), and

(x — 2) are factors. Therefore

px) =(x+1)(x —1)(x — 2) =a — 2x2 — x + 2. a
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In problems 1 through 6, use synthetic division to find the quotient q(x) and remainder r

when p(x) is divided by d(x). In each case write the result in the form given by Eq.

(2.12): p(x) = d(x) - q(x) +r.

1. p(x) =3x2 = 2x +1; d(x) =x — 2 2. p(x) = 4x3 + 3x2 — 5x — 4; d(x) =x — 3

3. p(x) = 3x* — 2x2 4+ 3x — 5; d(x) =x + 2 4. p(x) =2x* + 4x3 — x + 6; d(x) =x + 3

5. p(x) = 3 — 2x + 5x2 — 4x3; d(x) =x — 3 6. p(x) =5 —4x — 3x2 — x3; d(x) =x — 2

In problems 7 through 10, use synthetic division to find the quotient and remainder in
the given division problems.

7. (2x3 — 3x2 +4x +1) = (x — 3) 8. (x* — 2x3 — 2x2 — 2x — 3) = (x — 3)

9. (x54 32) ~ (x — 2) 10. (x8 — 64) ~ (x — 2)

In problems 11 through 14, use the nested-form technique illustrated in Example 5 to
find the quotient and remainder when p(x) is divided by d(x).

11. p(x) = 3x3 — 2x2 + 3x — 4; d(x) =x + 24 12. p(x) = 2x3 + 2x2 — 6x — 5; d(x) =x + 14

13. p(x) = x3 + 2x — 3; d(x) =x — 1.2 14. p(x) = —2x3 + 3x2 — 5; d(x) =x — 2.3

In problems 15 through 18, use the Remainder theorem to help solve the given problems.

15. Find the remainder when p(x) = 4x12 — 3x8 4 5x3 — 2x + 3 is divided by x + 1

16. Find the remainder when p(x) = x1° — 64x* + 3 is divided by x — 2.

17. Given that p(x) = 2x3 — 3x2 + 5x — 4, find p(—3).

18. Given that p(x) = 5x* — 4x2 + 2x — 4, find p(2).

In problems 19 through 28, use the Factor theorem to help solve the given problems.

19. Show that x + 1 and x — 1 are factors of x6 — 1.

20. Show that x — 1 is a factor of x5 — 1, and x + 1 is not a factor.

21. Is x + 2 a factor of x10 — 8x8 + 16x5?

22. Is x + 3 a factor of x6 + 3x5 + x2 + 3x?

23. For what positive integers n is x + 1 a factor of x® + 1?

24. For what positive integers n is x — 1 a factor of x" + 1?

25. Find % such that x + 2 is a factor of 2x3 + 4x2 + kx — 3.

26. Find k such that x + 1 is a factor of x2° — 3x17 4 kx* — 5x.

27. Find k such that x — 1 is a factor of x36 — kx?! + 7x10 — 3k.

28. Find k such that x — 3 is a factor of 27x* — 81x23 + kx.

In problems 29 through 32, use the Factor theorem to help find a polynomial p(x) of

degree 3 with leading coefficient 1 and satisfying the given conditions. Give answers in
expanded form.

29. p(—2) =0, p(—1) = 0, and p(1) = 0. 30. p(0) = 0, p(2) = 0, and p(4) = 0.

31. p(—=1) =0, p(1) = 0, and p(1.4) = 0. 32. p(—2) =0, p(2) = 0, and p(3.5) = 0.
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ZEROS OF POLYNOMIAL FUNCTIONS
A number c is called a zero of the polynomial function p if the value ofp at c is

zero; that is, p(c) = 0. We also say that c is a solution or root of the equation

p(x) =0.
In our discussion of graphs of polynomial functions in the preceding section,

we were interested in locating the x-intercept points. One does so by finding the
roots of p(x) = 0, and that is precisely our concern in this section.

Ifp is a constant (nonzero) polynomial, then obviously p has no zeros. If p
is the zero polynomial, then any real number is a zero of p.

Zeros of Polynomial Functions of Degree 1

Any polynomial function p of degree 1 is given by a formula of the type p(x) =
ax + b, where a # 0. In this case p has exactly one zero, which is given by
x = —b/a; that is,

p(-2) = a(-2) + b=0.
a a

Zeros of Polynomial Functions of Degree 2
Polynomial functions of degree 2 are of the form p(x) = ax? + bx + c, where

a # 0. The zeros of p are the roots of the equation ax? + bx + ¢ = 0. The

quadratic formula can be applied to get two roots given by

—b + Vb? — dac —b — Vb? — 4ac
en and XIDen,

2a 2a

In general, these are two different numbers, but in special cases, where

b2 — 4ac = 0, they are equal.

Zeros of Polynomial

Functions of Degree Greater Than 2
We already have general formulas for finding the roots of polynomial equations
of degree 1 or 2. Formulas can be derived for solving the general polynomial

equations for degree 3 and degree 4, but they are complicated to state and cum-

bersome to use in any particular problem. Mathematicians have spent consider-

able effort attempting to find formulas for solving general polynomial equations

of degree 5 or greater, but amazingly, there are no such formulas. This fact was

first proved by the Norwegian mathematician Niels Henrik Abel (1802-1829).
In discussing methods for finding zeros of polynomials of a degree greater

than 2, we shall therefore be satisfied with developing some techniques that are

helpful in solving the problem for any given polynomial. This is the approach

taken in this section and in the next section. We shall use theorems of the pre-

ceding section and state some additional theorems that will be helpful in the
search for zeros of a given polynomial. Let us first consider some examples.
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Determine whether or not —1 and 2 are zeros of p(x) = x3 + x2 — 2x — 2.

p(=1)=(=1)34(-1)2 —2(—1) — 2 =0, and so —1 is a zero.

p(2) =23 422 — 4 — 2 = 6, and so 2 is not a zero. m

Find the zeros of p(x) = (x — 3)(x + 1)(x + 2).

Since x — 3 is a factor of p(x), by the Factor theorem 3 is a zero ofp. Similarly
—1 and —2 are also zeros of p. Thus p has exactly three zeros. =

Find the zeros of p(x) = (x — 2)%(x + 3)3.

We can writep(x) asp(x) = (x — 2)(x — 2)(x + 3)(x + 3)(x + 3). Sincex — 21s

a factor ofp(x), by the Factor theorem 2 is a zero ofp. Since x — 2 occurs twice
as a factor of p(x), we say that 2 is a zero of multiplicity 2. Similarly, —3 is a
zero of multiplicity 3. We say that p has five zeros, even though there are only
two distinct zeros. mu

As noted in Example 3, a polynomial function can have multiple zeros. In

general, if (x — c¢)* is a factor ofp(x) and (x — c)¥*1is not a factor, then we say ¢

is a zero of p of multiplicity k.
In Examples 2 and 3 it was a simple matter to find the zeros of a polynomial

function because the formula for p(x) was given in factored form. Ifp(x) is given
in standard form, finding the zeros ofp is in general considerably more difficult.
The next two theorems will be helpful in solving such problems.

A polynomial function of degree n has at most n zeros.*

The statement in this theorem can be proved by using the Factor theorem.

Suppose p has more than n zeros; call the first n + 1 of them c;, ¢,,..., Cc,
Applying the Factor theorem gives

px) =(x —c)(x —cp) --- (x — cpp1)8(x), (2.15)

where g(x) is a polynomial. Expanding Eq. (2.15), we see that p(x) is a polyno-

mial of degree greater than n. This contradicts the hypothesis that p(x) is a
degree n, and so p cannot have more than n zeros.

 

In advanced courses, polynomial functions are defined over the set of complex numbers. In that

setting it can be shown that every polynomial of degree n has exactly n zeros in the set of complex
numbers, where any zero of multiplicity & is counted % times.
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Rational-root theorem

Suppose p is a polynomial function given by

py=ax*+a,31+ vv +ax+a,

where a,, a,_,,..., a,, a, are integers. If the rational number k/m
(in lowest terms) is a root of p(x) = 0, then & divides a, and m di-

vides a, evenly.

This theorem can be proved by using the Factor theorem and divisibility
properties of integers. The following examples illustrate its application.

Suppose p(x) = x3 — 6x — 4. Find the roots of p(x) = 0.

Wefirst look for rational roots. If there is a rational root 2/m, then by Theorem

2.5, k must divide the constant term —4 and m must divide the leading coeffi-

cient, which is 1. Therefore the only rational numbers that are possible roots are
1, —1,2, —2,4, —4. We can now try these to see if any one actually is a root. It

is easy to check 1 and —1 by substituting directly into the given formula to get
p(1) = —9 and p(—1) = 1, and so neither is a root.

We can now try the remaining possibilities by substituting into the given

formula or by synthetic division, as we now illustrate.

2010 —6 —4 2/1 0 —-6 —4
2 4 —4 —2 4 4

1 2 -2 1 —2 —2 [0]

2) Factor of p(x) p(—2)

Thus p(—2) = 0, and so —2 is a root. Synthetic division also gives factors of

p(x):

p(x) = (x + 2)(x% — 2x — 2).

Hence the roots ofp(x) = 0 are given by solving(x + 2)(x%2 — 2x — 2) = 0. Since

a product can be zero only if one of the factors is zero, we see that other roots are

given by solving the quadratic equation x2 — 2x — 2 = 0. Applying the quad-

ratic formula gives

2+ V(—=2)2— 4(1)(-2) 1+ 3

2
 

Therefore the solutions to x3 — 6x — 4 = 0 are —2, 1 + /3, and 1 — V/3. The

given equation has one rational root and two irrational roots. |]
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Find the rational roots of the equation

x +3x2+ix+3=0.

Multiplying both sides of the given equation by 2, we get

2x 4+ 3x2 +x +3=0. (2.16)

Applying the Rational-root theorem to Eq. (2.16) gives us the following possible
rational roots: 1, —1, 3, —3,3, —1, 3, —3. Since all coefficients in Eq. (2.16) are
positive, it is obvious that there are no positive roots (this eliminates four of the
eight possible rational roots). We now try —1 by synthetic division.

 

-32 03 13
13 -f 3

2-13 —3 [
Note that the numbers in the bottom row alternate in sign. Convince yourself
that there is no need to try numbers smaller than —1 since such a number will
give a result larger than % in the lower right corner in synthetic division. Hence
—1, —3, —3 cannot be roots of the given equation.

We conclude that the given equation has no rational roots; if there are any
real-number roots, they are irrational. In the next section we shall consider

techniques for finding irrational roots. es

Find the roots of p(x) = 0, where p(x) = 3x3 — x2 + 2x — 8.

First look for rational roots. According to Theorem 2.6, if there are any rational
roots, they will come from the set

+1, +2, +4, +8, +1 +2 +4 +8

Note that the coefficients of p(x) alternate in sign. Hence, if x is a negative
number, the corresponding value ofp(x) will be negative, and so there will be no

negative roots. Thus we can eliminate eight of the possible rational roots. Trying
the positive numbers, we eventually get

34/3 -1 2 -8

4 4 8

3 3 6 [0]

)
Factor of p(x) p(3)

 

Thus 4 is a root, and the other roots will come from solution of 3x2 + 3x + 6 = 0.
Dividing by 3 and solving x2 + x + 2 = 0 by using the quadratic formula gives
two complex numbers:



Section 2.4

Definition 2.2

Example 7

Solution

Zeros of Polynomial Functions 13 1

Therefore the given equation has only one real-number solution, which is 4.

fo
Algebraic Numbers
In this section we have been discussing zeros of polynomial functions over the set
of integers. Actually we are talking about an important subset of the real num-
bers called the algebraic numbers, defined as follows:

An algebraic number is a real number that is a root of a polynomial
equation with integer coefficients.

Clearly, any rational number a/b is an algebraic number since it is a root of
bx — a = 0, where a and b are integers. In Example 4 we saw that 1 + 1/3 and
1 — \/3areroots ofx3 — 6x — 4 = 0, and so they are algebraic numbers. A natu-
ral question is: Are there any real numbers that are not algebraic numbers? The
answer is: Yes, there are many, although at this point you may be acquainted

with only a few such numbers, the most famous of which is the number 7. As
your knowledge of the real-number system increases, you will learn that there
are infinitely many real numbers that are not algebraic. The set of nonalgebraic
numbers, which is an important subset of |, is called the set of transcendental

numbers.*

Prove that 2 + 1/5 is an algebraic number.

We need to find a polynomial function p with integer coefficients such that
2 + 1/5 is a root ofp(x) = 0. The Factor theorem tells us that [x — (2 + V/5)]
must be a factor of p(x). Suppose we try [x — (2 — V/5)] as another factor of
p(x). Will the product give a polynomial with integral coefficients?

p(x) = [x — (2 + V5)][x — (2 — V5)]

=[x — 2 — V5][x — 2 + V5]

=[(x — 2) — V5][(x — 2) + V5]
= (x — 2)? — (V5)?
=x2—4x4+4-5

=x — 4x — 1.

Therefore the equation x2 — 4x — 1 = 0 has integral coefficients with 2 + 1/5 as

aroot, and so 2 + /5is an algebraic number. The reader should note that in the

above steps we regrouped terms of the two factors to get a product of the form
(a — b)(a + b), which is equal to a? — b2 This simplifies the process of multi-

plying the two factors. Ke
 

In general, it is difficult to prove that a numberis transcendental. In 1882 Lindemann proved that «=

is transcendental.
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Exercises 2.4
In problems 1 through 9, find a polynomial function p with leading coefficient 1 and the
given numbers as zeros of p. Express answers in expanded form.

 

1. —=2,1,3 2.0, 24 3. —4, —1,4

4, —1,2,2 5. —3,1,1,1 6. —V2, —1,0, V2

7.1,1+V5,1- 15 8. —1,1,1+V2 1-2 9.0, —1, V/3

In problems 10 through 13, determine the zeros of the given polynomial; give the multi-
plicity of each zero.

10. p(x) = (x — 1)(x + 2)(x + 5) 11. p(x) = x(x + 2)(x — V/5)
12. p(x) = (x + 2)%(x — 3)? 13. p(x) = x%(x — 1)%(x + 2)

In problems 14 through 17, a polynomial p(x) and a number c are given. Determine
whether or not c is a zero of p.

14. p(x) = x3 + 4x2 — x — 4; c = —4 15. p(x) = x3 — V2x2 + 3x — 3V2; c = V2

16. p(x) = x1° — 32; ¢c = —\/2 17. p(x) = x* + 3x3 + x2 —4x — 4; c = =2

In problems 18 through 20, determine whether or not the Rational-root theorem can be
applied to yield any information concerning roots of p(x) = 0 for each of the given

polynomials.

18. a) p(x) = 2x* — 3x2 + 5x — 1 b) p(x) = 4x3 — 2x2 + /3x + 3

19. a) p(x) = 5x3 + V3x — 4 b) p(x) = 2x* — 3x3 + 1.4x — 3.2

20. a) p(x) = x3 — 3.5x2 + 7.3x — 3 b) p(x) = 2x3 — 7x2 + 4x — 3

In problems 21 through 32, find all rational roots of the given polynomial equations.

a) Use Theorem 2.5 to list all possible rational roots.

b) Remove any that can obviously be eliminated if the polynomial has special features,

such as in Examples 5 and 6.

¢) Check the remaining ones.

21, x3 — 4x2 + 2x —8=0 22, 4x3 — 4x2 — 19x +10 =0

23. x3 —25x2 -Tx —-15=0 24, 3x3 + 11x2 + 12x +4 =0

26. x3 — 3x2 — Ux —-1=0 26. x3 — 3.522 + 05x + 5=10

27. 5x3 + x2 — 16x —3=0 28. x3 —3x +2=0

29. 18x3 + 27x2 + 13x +2=0 30. x3 + ¥x2 +x +2=0

31. x* + 4x3 — 5x2 — 36x — 36 =0 32. 4x* + 24x3 + 3522 — 6x —9=0

In problems 33 through 36, use the Rational-root theorem to factor the polynomials.

33. p(x) = 2x3 + 3x2 + 3x + 1 34. p(x) = 3x3 — 4x2 + Tx — 2

35. p(x) =2xt + x3 + x2 +x —-1 36. p(x) = 3x* + 5x3 — 4x2 — 10x — 4

In problems 37 through 40, show that the given number is algebraic.

37. —1— 2 38.2 + V5 39, V5 40, 12
2 3
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IRRATIONAL ZEROS OF POLYNOMIAL FUNCTIONS
In the preceding section we saw that if the coefficients of a polynomial p(x) are

rational numbers, then by applying the Rational-root theorem and using syn-
thetic division we can determine all the rational roots of the equation p(x) = 0.

Irrational roots can also be found in exact form if the problem can be reduced to
that of solving quadratic equations (see Example 4 of the preceding section). If
the degree of p(x) is greater than 2 and there are no rational roots, then other

techniques for finding irrational roots are needed. Although there are many
iterative methods studied in numerical analysis courses, it is not in our interest

to present them here. We shall see how to find decimal approximations for irra-
tional roots by considering properties of graphs. Before stating an important
property of graphs of polynomial functions, we first state a theorem that will
give some information concerning how many roots a polynomial equation may
have.

In advanced courses in the theory of complex variables, polynomial func-
tions are studied in a more general setting in which they are defined over the
set of complex numbers. In such situations it can be shown that a polynomial
function of degree n has exactly n zeros. Also, if the coefficients are real numbers
then the nonreal complex-number zeros come in pairs. This implies the following
theorem.

Supposep(x) is a polynomial of degree n. The number of real zeros of
p is equal to n or is less than n by an even number.*

Using Theorem 2.6, what can you conclude about the number of zeros in each of
the following:

a) p(x) = 4x3 — 3x2 + 2x — 1 b) f(x) = 5x* — 3x3 + 2x — 2

a) The degree ofp is 3, and so the number of zeros is 3 or 1. That is, there is
definitely at least one real-number zero.

b) The degree of f is 4, and so the number of zeros is 4, 2, or 0. |

As suggested above, properties of graphs of polynomial functions will be used
to aid in the search for zeros. Let p be a polynomial function, and consider the
graph of y = p(x). To determine the x-intercept points, let y = 0 and find the

values of x that satisfy the equation p(x) = 0. These are precisely the zeros ofp.
Thus we shall look for points where the graph crosses the x-axis. The following

property will be helpful in finding such points.

 

Recall that in this text our discussion is restricted to polynomial functions with real-number coeffi-

cients and the set of real numbers as domain.
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Important Property of

Graphs of Polynomial Functions
The graph of a polynomial function is a smooth, continuous (unbroken) curve,
such as those shown in Fig. 2.5. The graph will have no gaps, holes, or sharp
corners. For instance, none of the curves shown in Fig. 2.6 can be graphs of
polynomial functions.

y y

Fig. 2.5 \/ Xx —_— xX

y y y

NV
As a consequence of this continuity property, we get the following useful

criterion for locating zeros, which is stated as a theorem.

  

   

  

y y

~N

(c,p (0) (b,p (b))

Fig. 2.7 AN , — x A ’/ \|
\/

(c,p (c)

(b,p (b))   
p(b)<0, p()>0 pb)>0, p()<0
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Suppose p is a polynomial function and b and c¢ are numbers such
that p(b) and p(c) have opposite signs. Thenp has at least one zero
between b and c.

Geometrically, this theorem states that the graph ofy = p(x) crosses the x-axis
at least once between the point (b, p(b)) and (c, p(c)). This is illustrated in
Fig. 2.7.

The following examples illustrate a procedure for finding irrational zeros.

Locate the zeros of the function given by f(x) = x3 — 5x — 1.

Theorem 2.6 tells us that the number of zeros is either 3 or 1. Let usfirst look for

rational-number zeros. Applying Theorem 2.5, we find that the only possible

rational zeros are 1 and —1. Evaluating f at these values gives f(1) = —5 and
f(=1) = 3.

Hence, neither is a zero, and so there are no rational zeros. However, since

f(1) <0 and f(—1) > 0, Theorem 2.7 tells us that there is at least one zero

between —1 and 1.
We now begin our search for irrational zeros by drawing a graph ofy = f(x).

The (x, y) points given by the following table are plotted and the graph is drawn,
as shown in Fig. 2.8.

 

x -3 -2 -1 0 1 2 3 Y=X"3-5%X-1
 

    

—6F 
Graphofy =x3—5x— 1
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The zeros off correspond to the x-intercept points of the graph. From Fig. 2.8

we see that fhas three zeros, labeled a, b, and c. All three are irrational numbers;

a is between —3 and —2, b is between —1 and 0, and c is between 2 and 3. This

problem is continued in the next example. |

In Example 2, three zeros off(x) = x3 — 5x — 1 were located. Each is an irratio-
nal number. Find a two-decimal-place approximation for the largest of these.

The portion of the graph for x between 2 and 3 has been enlarged in Fig. 2.9.
From this diagram our first estimate of c¢ is 2.3. Evaluating f at 2.3 gives
(2.3) = —0.33. Since f(2.3) < 0, we conclude from the diagram that ¢ > 2.3, and

so we try 2.4. We find that f(2.4) = 0.82, and again from the diagram we see that
¢ < 2.4. Thus c is bracketed between 2.3 and 2.4. Figure 2.10 shows an enlarged
version of the graph of y = f(x) for 2.3 < x < 2.4. From this diagram our next
guess for c is 2.33. Evaluating f at 2.33 gives (2.33) = —0.0007; since f(2.33) < 0,

c > 2.33, as the diagram shows. We try 2.34 and get f(2.34) = 0.1129. Since

(2.34) > 0, we see from the diagram that ¢ < 2.34. We now try 2.335 and get
(2.335) = 0.0559. Hence we conclude that 2.330 < ¢ < 2.335, and so 2.33 is the

desired approximation for c.

y=X"3-5%X~-1

3,11)

(2.4, 0.82)

1 2 ¢ 3 2.30 c 2.40

Fig. 2.10 (2.3,0.33)
(2, -3)

Graphofy=x3-5x—1for2=x=<3
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Note that the graph drawn in Fig. 2.10 appears to be a line segment; actually
it is not, but a straight-line approximation provides us with a good guess for the

next approximate value of c. Vi]

Locate the zeros of f(x) = x* — 3x3 — x2 + 3x + 3. If any of these is an irratio-

nal number, determine the smallest, correct to one decimal place.

According to the Rational-root theorem, the possible rational roots are —3, —1,

1, 3. First evaluate f at each of these to see if any may be a zero, and at the same

time include the results in the following table in preparation for drawing the
graph ofy = f(x), as shown in Fig. 2.11. We express f(x) in nested form and use a
calculator to get the y values. Note that in the table we started with integral
values of x and then included additional values of x where the curve appears to
be turning.
 

x —-2 —-1 0 1 2 3 4 -05 05 1.5 2.5
 

y 33 3 3 3 -3 3 63 169 394 019 -3.56    
 

 
Graphof x* — 3x3 — x2 + 3x +3p

From the graph in Fig. 2.11 we conclude that f has two irrational zeros,
labeled b and c; b is between 1 and 2, and c is between 2 and 3. To find a decimal

approximation for b, we note from the table that f(1.5) = 0.19 and f(2) = —3,

and so b is bracketed between 1.5 and 2. We now try 1.55 and get

(1.55) = —0.15; thus b is bracketed between 1.50 and 1.55. Therefore 1.5 is the

desired one-decimal-place approximation for b. =
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Exercises 2.5
In problems 1 through 8, do the following.
 

a) Using Theorem 2.6, what can you conclude about the possible number of zeros of f?

b) Draw a graph ofy = f(x). Include in your table of x, y pairs all values of x that might
possibly be rational zeros of f.

¢) From the graph what can you now conclude about the number of zeros of f?

1. f(x) =x3 — 5x — 2 2. f(x) =x3—3x —1

3. f(x) =a3 +242 — 3x — 1 4. f(x) =a — x2 —3x +1

5. f(x) =x* — 3x3 — x2 + 3x + 2 6. f(x) =x* — 3x3 —x24+3x—1

7. f(x) = x* — x3 — 2x2 + 3 8. f(x) =x* — x3 —2x2 —1

In problems 9 through 14, locate the irrational zeros of f between consecutive integers;
then determine the smallest, correct to one decimal place.

9. f(x) =x —2x — 5 10. f(x) = x3 — 3x2 — 3

11. f(x) = x3 4+ 2x2 — 3x + 2 12. f(x) = x3 — 2x2 — x + 3

13. f(x) = x* — 4x3 — 2x2 + 12x + 1 14. f(x) = x* — 3x3 — x2 + 5x —1

In problems 15 through 20, locate the irrational zeros of f between consecutive integers;
then determine the largest, correct to two decimal places.

15. f(x) = x3 — 3x2 —- 3 16. f(x) = x3 — 3x — 1

17. f(x) = x3 4+ 2x2 — 3x — 2 18. f(x) = x3 + 3x2 —x — 4

19. f(x) =xt —x3 — 2x2 + x — 1 20. f(x) =x* — 2x3 — x2 + 3x — 3
 

2.6 RATIONAL FUNCTIONS
Suppose f and g are polynomial functions. In Chapter 1 we saw how new func-
tions can be obtained by combining f and g in any of five ways. It is easy to show

that f+ g,f — &f*& and fog are also polynomial functions. In general, how-

ever, f/g is not a polynomial function. Let us now investigate such functions.

Definition 2.3 Suppose f and g are polynomial functions, where g(x) is a nonzero
polynomial. The function f/g is called a rational function. That is,
the function A given by A(x) = f(x)/g(x) is a rational function.

The following example illustrates some properties of rational functions.

2x

x—1

2x

 Example 1 Draw a graph of the rational function f given by f(x) =

 Solution First get a table of x, y values that satisfy the equation y = T Included in
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the table are the x- and y-intercept points:

2(0 0
y-intercept: x = 0, then y = 20== 0

2x x-intercept: y = 0, then T= 0, and so x = 0.

Therefore (0, 0) is both an x- and a y-intercept point. The function f is not de-

fined at 1, but we include several values ofx near 1 in the table in order to see the

behavior of the graph in that region. Also included are some large values of x
(both positive and negative), even though the corresponding points will not be
drawn in our diagram. These give us some idea of the graph at extreme
values of x.

 

x|-100 -100 -5 -3 -2 -1 0 05 09 099 101 11 15 2 3 10 100
 

   y 1.98 182 167 15 13 1 0 -2 -—-18 —198 202 22 6 4 3 222 2.02
 

SKF

a
I

~ |

 
 xGraph of y = 1

Plotting the points given in the table and drawing a curve through them
gives the graph shown in Fig. 2.12. |

The graph in Fig. 2.12 illustrates some features that are in general peculiar
to rational functions. For values of x slightly less than 1, the corresponding
values ofy are negatively large; similarly, when x is slightly greater than 1, y is
positively large. This is denoted by

lim f(x) = —o0 and lim f(x) = 00.
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These equations are read: “As x approaches 1 from below, f(x) approaches nega-
tive infinity” and “As x approaches 1 from above, f(x) approaches infinity,”
respectively. The vertical line whose equation is x = 1 is called a vertical as-
ymptote of the graph of y = f(x).

From the graph in Fig. 2.12 we note that for large values of x (positive or
negative) the corresponding values of y are near 2. This feature is denoted by

lim f(x) = 2 and Lim f(x) = 2.

The first of these equations is read: “As x approaches infinity, f(x) approaches
the number 2”; the second is read in a similar way. The horizontal line y = 2 is
called a horizontal asymptote of the graph of y = f(x).

Graphs of Rational Functions
Here we summarize a few steps that should be included in drawing graphs of
rational functions. Suppose 4 is a rational function given by A(x) = f(x)/g(x).

Also suppose polynomials f(x) and g(x) have no common zeros (we shall illus-
trate the case in which there are common zeros in Example 6); this condition is
described by saying f(x)/g(x) is in lowest terms.

1. Find the roots of f(x) = 0; these will give the x-intercept points.

2. Find the roots of g(x) = 0; these will give vertical asymptotes. For instance,

ifg(b) = 0, then the graph of 2 will approach the line x = b as x gets close to
b. The line x = b is called a vertical asymptote of the graph.

3. Determine what happens to values of A(x) as x becomes large positive or
large negative. For instance, if lim A(x) = c, then the graph gets close to the

T—0

horizontal line y = c¢. Such a line is called a horizontal asymptote of the

graph.

The next example illustrates a technique for determining the behavior of ra-
tional functions for large values of |x|.

Discuss the behavior of the given rational functions for large values of |x|.

4x3 —3x +1 _ x2 —4 x41
a) f(x) = ———5—3 b) g(x) = o— c) h(x) = =—

In each case, first divide the numerator and denominator by x*, where & is the

degree of the denominator. Using the resulting formula, we can determine the

behavior of the function when |x| is large.

a) Dividing numerator and denominator by x3 gives

3 142 +L
fla) =" 3x +1 _ 2
BT- 3

x3
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We see that —3/x2, 1/x3, —3/x3 become small as x becomes large (positive or
negative). Hence f(x) is very nearly equal to 4/2 = 2 for large values of x.
This is denoted by lim f(x) = 2 and lim f(x) = 2.

T—0 I>—o0

b) Dividing numerator and denominator by x* gives

 

1 _4
x2 —4 _ x? xt

8X) =a= g_ 1
Br)x

Since 1/x2, —4/x*, —1/x3 become small as x becomes large, g(x) approaches

0/2. Hence lim g(x) = 0 and lim g(x) = 0.
T->© r—>—00

¢) Dividing numerator and denominator by x gives

x +L
x 1

h(x) = = =x + —.
x 1 x
  

The term 1/x approaches zero when x becomes large, and so A(x) approaches
x. In terms of a graph, we say that the graph ofy = h(x) approaches the line
y = x as x becomes large. We call the line y = x an oblique asymptote for the
graph of y = h(x). oe

In general, the graph of a rational function will have an oblique asymptote
whenever the degree of the numerator is one greater than that of the denomina-
tor.

Example 3 Draw a graph of f(x) =TE Give equations of any asymptotes.

Solution x-intercept: There is no value of x that will give y = 0, and so there is no
x-intercept point.

y-intercept: For x = 0, y =To = = = 1; thus (0, 1) is the y-intercept
point.

Vertical asymptotes: The denominator is zero for x = 1, and sox =1is a

vertical asymptote. Also note that lim f(x) = oo and lim f(x) = oo. Thus y
r— r—

becomes positively large when x approaches 1 from below or above.

Horizontal asymptotes: limToT — 0 and lim G 1 0

line y = 0 (the x-axis) is a horizontal asymptote.

= 0. Hence, the

Incorporating all of the above information along with a few plotted points
gives the graph shown in Fig. 2.13.
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y=1/(X-1)"2

y
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Craphol y= Gy wo

Example 4 Draw a graph of y = g(x), where

 x2 —xxX) =g(x) pa

Give equations of any asymptotes.

Solution x-intercepts: These are given by solving x2 — x = 0. Thus (0, 0) and (1, 0) are

x-intercept points.

y-intercept: If x = 0, then y = 0, and so (0, 0) is the y-intercept point.

Asymptotes: The denominator is zero for x = —1. Therefore the linex = —1
is a vertical asymptote. Horizontal or oblique asymptotes are determined by

considering the behavior of the function g when x becomes large.

Behaviorfor large x: Instead of dividing numerator and denominator by x to

a power, let us divide x + 1 into x2 — x. This gives x — 2 as the quotient and

2 as the remainder. Therefore g(x) can be written as

2

x +1
 gx) =x—-2+

From this result note that the difference between g(x) and (x — 2) ap-

proaches zero as x becomes large, positively or negatively. That is,

 lim [g(x) — (x — 2)] = lim= =
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This tells us that when x becomes large, the graph of y = g(x) comes very
near the line y = x — 2.

In the following table we include large values of x to substantiate this con-
clusion. The line y = x — 2 is an oblique asymptote for the graph of y = g(x).
By including the features discussed above and plotting the points given in the
table, we get the graph shown in Fig. 2.14.

 

x -4 -3 -25 -2 -11 -101 -099 -09 -05 O 0.5 1 2 3 4
 

gx) -7 -6 -—-58 -—-6 23 —203 197 17 1.5 0 -017 0 067 15 24   
 

 

 

x 10 100 1000 ce —10 —100 —1000

y = g(x) 8.18 98.02 998.002 ... -—1222 -102.02 —1002.002

y=x—2 8 98 998 ce —-12 —102 —1002    
Y=(X"2=-X)/(X+1)

 

  

y

| — 20

Fig. 2.14 |

— —20

Graph of = X-x
Poy +1 | Be

Example 5 Draw a graph of y = f(x), where f(x) = pan Give equations of any

asymptotes.
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x-intercepts: The numeratoris zero only when x = 0. Thus (0, 0) is the only

x-intercept point.

y-intercept: If x =0, y=0/(02 +1) = 0, and so (0,0) is the y-intercept

point.

Asymptotes: The denominator is not equal to zero for any value of x; hence
there are no vertical asymptotes. Dividing numerator and denominator of

f(x) by x2? gives

1/x

I)==
From this we see that f(x) approaches zero when x becomes large, positively
or negatively. Thus y = 0 (the x-axis) is a horizontal asymptote.

: — = —X = —X = — .Symmetry: (=x) = = wag =
Therefore f(—x) = —f(x) for all values of x, and so the graph is symmetric

with respect to the origin. This suggests that it is sufficient to include only

nonnegative values of x in the following table. Plotting points given in this
table and incorporating the features discussed above, we get the graph
shown in Fig. 2.15.

 

 

1.0 1.5
Y=X/(X"2%1)

2.0 3 4 10 100
 

y 0 040 0.50 046 0.40 0.30 024 0.10 0.01 y 
 

 
xX

Graph of y = Z+1 -

Example 6 Draw a graph of the rational function y = f(x) given by f(x) = (x2 — 1)/(x + 1).

Solution We can get a simpler formula for f(x) as follows:

2-1 (x4+1)(x—=1
flo) =—— == — ) x1 for x #1. 
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Y=(X"2-1)/(X+1)

Fig. 2.16 Lo,

 

 
x2 -1

x+1
 Graphof y=

Therefore the graph of y = f(x) consists of the same points as the graph of
y = x — 1 without the point (—1, —2). That is, the graph is a line with a “hole”
in it, as shown in Fig. 2.16. The open circle about the point (—1, —2) indicates it
is not included in the graph. 2

Exercises 2.6

In problems 1 through 6, determine the behavior of the given rational function for
positively large and negatively large values of x.

 

4x2 + 2x — 1 x2 4+ 2x + 3 2x — 3

2x2 — 3 3x2 — 2x +1 2x2 — 3x — 4

LEW =mrm IW== 6.10) =—2—7—
In problems 7 through 16, for the given functions determine the equations of

  

a) the vertical asympotes b) the horizontal asymptotes.

_ _ 2x —3 3x24 2x +1

_ 3x24 2x +1 _ 2x +1 _ 2x + 4
10. g(x) = —2r1 11. f(x) = Prx_2 12. f(x) =55—3
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13. f(x) =So

15. f(x) = — .
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x? — 2x
2 WI==

x2

16. f(x) = 57%
In each of the problems 17 through 28, draw a graph of the given rational function.
Indicate any asymptotes with dotted lines in your diagram, including oblique asymp-
totes. Also label the x- and y-intercept points on your graph.

 

 

 

 

  

_ x _ 2x +3 _ x?
17. f(x) = —— 18. f(x) = ——+ 19. f= Fmr5—7

x2 3 3
. ER ——— . ED rn 2. =20. fx) ppEp 21. g(x) = 22. g(x) =

x2 —4 x2 — 2x — 3 x3
. = 24, = 25. =23. f(x) = fx)

=

=—5= fx)

=

57"

2%4x x3 — 4x I
26. fx) = =—5~ 27. f(x) = 4 28. fx) ="

In problems 29 through 32, draw a graph of the rational function f/g.

29. f(x) =x —-1;g(x) =x +1 30. f(x) =1— x2; g(x) = x?

31. f(x) =x2 + 2x +1; g(x) =x2 + x 32. f(x) =x? g(x) =x3 1

In problems 33 through 36, a function fis defined by the given set of ordered pairs. Draw

a graph of f.

33. f={(x,y)|x + xy — y= 0} 34. f= {(x,5)|x® + x% — y = 0}

35. f={(x,y)[x* —x + xy —y = 0} 36. f= {(x,5)]x* + x + x% — 2xy — 3y = 0}
 

2.7 Looking Ahead to Calculus
The single most important concept in the study of calculus involves the notion

of limit and limiting processes. Limits occur in a variety of different settings, and

they are basic to the fundamental ideas of differentiation and integration. It is

not our intention to present a formal study of limits here. However, through

numerical examples we can help the reader to develop an intuitive feeling for
limits in preparation for the abstract ideas that will be presented in calculus.

In Section 1.3 we introduced the idea of slope of a line. Here we look at the
more general notion of slope of a curve.

A fundamental idea in calculus is that the slope of a tangent line to a curve
can be approximated to any desired degree of accuracy by the slope of a secant

line. A secant line through point P on the curve is a line passing through P and
another nearby point @ on the curve, as illustrated in Fig. 2.17 (a). Now suppose

@ moves along the curve toward P. As it continues to approach P, the corre-
sponding secant lines approach a fixed line called the tangent line to the curve at
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Fig. 2.17

Definition 2.4
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0 / La /L,
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(d) (e)

P. Thisis illustrated in the sequence of diagrams shown in Fig. 2.17 (b), (c), and

(d), in which the secant lines L,, L,, L, approach the tangent line L shown in (e).
Note that in each of the diagrams in Fig. 2.17, point is drawn to the right of

P. We want also to consider the situation in which @ approaches P from the left;
we leave it to the reader to draw corresponding diagrams.

The following definition will serve to illustrate the notion of slope of a curve.

The slope of the tangent line to a curve at a point P on the curve is
the limiting value of the slopes of the secant lines as point @ ap-
proaches P.

The slope of the curve at point P is the slope of the tangent line

at P.

Notation: Suppose a curve is given by the equation y = f(x) and P:(c, f(c)) is a

point on the curve. Let nearby points @ be given by (¢ + A, f(c + h)), where A
assumes small values (positive and negative). The slope m, of the secant line

through P and @ is given by

_fle+h)—f(e) flc+h)—flc)
PT (e+ h)—c h
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We are interested in determining the limiting value of this difference quotient as
h approaches zero.* This limiting value is denoted by

lim £€ + h) — fle)
h—=0 h

Thus the slope m of the tangent line to the curve at point (c, f(c)) is given by

 

m = lim
h—0
 

 

Example 1 Suppose f(x) = x2 — 4x + 5.

a) Draw a graph ofy = f(x) and locate the point P on the curve given by x = 3.

b) Make a table of values of the difference quotient for several values of A ap-
proaching 0; include both positive and negative values of A.

¢) From the table in (b) guess the limiting value of the difference quotients as A
approaches 0, thus getting the slope -of the tangent line to the curve at P.

Y=X "2-4#X+5

Fig. 2.18 | IL
-1 5

 

 
Graphof y=x2— 4x +5

Solution a) f(3) =32 — 4:3 + 5 = 2. Hence P is given by (3, 2). The graph is shown in

  

Fig. 2.18.

— 2 _ — [32 — 4.py L221) fd) _[B+4) HH +0] [3 4-3+51_,

 

*
In calculus this limiting value is called the derivative of f(x) at c.
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Solution
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h 05 01 001 000 -05 —01 —00l —0001

34h) —f(38+1-13)) 8 |95 21 200 200 15 19 199 1.999   
 

c) We see that the limiting value is 2. Hence

m= limCFG_, -
h—0 h

Find an equation of the line that is tangent to the curve y = \/x + 1 at the point
P: (1, V2). Give answer with numbers rounded off to two decimal places.

First find the slope of the tangent line by evaluating the limit given in Eq. (2.17).

fA+h —f1) _ VO+A+1-VI+1_ V2+h—12= > .

 

 

 

 

h — h

h 0.5 0.1 0.01 0.001 —05 —0.1 —0.01 —0.001

V2 +h— V2
7 0.334 0.349 0.353 0.3535 0.379 0.358 0.354 0.3536   
 

From the values in the table* we conclude that

fon [+ B) = f(D)
0hlim = 0.354 (to three decimal places).

Hence the slope of the tangent line is 0.354, and its equation is given by

y — V2 = 0.354(x — 1).

This can be written as

y = 0.35x + 1.06,

where the numbers are rounded off to two decimal places. hay

Find an equation of the tangent line to the curve y = \/4 — x? at the point
(—1, V3). Draw a graph and show the tangent line.

First determine the slope of the tangent line by evaluating the limit given in
Eq. (2.17):

f(-1+RA)—f(-1)  VA-—(-1+hA?-V4—(-1)) V3+2h-h—3
h - h - h
 

 

Note that we have not included extremely small values of x in the table. Calculators cannot handle

such numbers without introducing substantial round-off errors.
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Example 4

Solution

 

 

   
 

Polynomial Functions Chapter 2

h 0.5 0.1 0.01 0.001 —0.5 -0.1 -0.01 —0.001

V3 2h — h2 — \/3
oF 041 0.54 0.574 0.5770 0.82 0.62 0.581 0.5777

Y=SQR(4—-X"2)

y

 
Graph ofy= V4 — x?

From the values in the table we conclude that

lim F(=1 + h) — f(=1)
h-0 h

Thus the slope of the tangent line is 0.577 and its equation is given by
y — V3 = 0.577(x + 1). This can be written as y = 0.577x + 2.309. The graph is
shown in Fig. 2.19. ke

 = 0.577 (to three decimal places).

Find the slope of the curve given by y = x/(x — 1) at the point P: (3, 3/2). Draw

a graph and show the tangent line at P.

Let f(x) = x/(x — 1), and first get the difference quotient,

ers’. 1 3+h a AER °]
h Trl@+m-1 2] Rl2¥r 2]

The following table gives values of the difference quotient corresponding to val-
ues of A approaching 0.
From the values given in the table we conclude that

f3 +h) —f(3) _
lim—= —0.25.

Thus the slope of the curve at point Pis —0.25. The graph is shown in Fig. 2.20.
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h 0.2 0.05 0.001 -0.1 —0.02 —0.001
 

 h
f+ h) —f(3)

 —-0.227 —-0.244 —-0.250 -0.263 —0.253 —0.250  
 

Fig. 2.20 _l

Exercises 2.7

Y=X/(X-1)

—4 + 
Graphofy=x

x—1

 

 

In each of the problems 1 through 12, a function f and a number c¢ are given.

a) Draw a graph of y = f(x).

b) Locate the point P: (c, f(c)) on the graph and draw a tangentline to the curve at P.

¢) Determine the slope of the tangent line.

L. f(x) =2x2 +x —-3; c= —1

3. f(x) =4x — x3; ¢c=15

5. f(x) = Vx —1;¢c=5

7. f(x) = V9 — x2; c= —2

9
2

FE)=

11. f(x) = 1 + Vx; c = 4

 ;¢e=0

2. f(x) =x3 + 3x2 —x—3;¢c=2

4. f(x) = (x + 1)(x + 2) (x — 3); c = —2

6. f(x) =—Vx—-1,¢c=5

8. f(x) = Vx2 —9;¢c=5

10. fa) = mic = 4

12. f(x) =14+ V—x; c= —1

In problems 13 through 24, find an equation of the line tangent to the curve at the point
P. In each case draw a graph and show the tangent line.

13. y=x2 —-1; P:(1,0) 14. y = 3 + 2x — x2; P:(1,4)
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15. y = Vx + 1; P:(4,3) 16. y = —2—; P:(4,1)
Vx

417. y = —=—; P:(-3,2) 18. y = V9 — x2; P:(—1, V8)
V1 —x

19. y = — V9 — 2%; P:(—1, — V8) 20. y = PE Pi(1,1)

21. = —*2_. P:(2,1) 22. y= —%°_. p1, —1)YErr 4, Y= Al, =

23. y= V1 — x; P:(-3,2) 24. y=1+= P:(4, 2)
xX

 

Review Exercises
In all problems involving numerical answers, give results in exact form unless otherwise
specified.

1. Given that f(x) = x3 — 3x2 — 2x + 4, evaluate

a) f(—2) b) f(1.6)

. Given that g(x) = —4x3 + 5x2 + 6x — 3, evaluate

a) g(3) b) g(—2.5)

In problems 3 and 4, give answers rounded off to two decimal places.

3.

 

 

 

Suppose f(x) = —2x* + x3 + 2x2 — 3x + 5; write f(x) in nested form and evaluate

a) f(1 + V3) b) f(2 — 3V?2)

. Suppose f(x) = x* — 4x3 — 3x2 + 5x — 4; write f(x) in nested form and evaluate

a) f(r +1) b) f(V3 — 7)

. Complete the following table for f(x) = —2x3 + 4x2 + 5x — 1. Then sketch a graph

of y = f(x).

x -3 -2 -—-1 0 05 1 2 3 14

f(x)   
 

. Sketch a graph of y = (x + 1)2(x — 2)(x — 4). Label the x- and the y-intercept

points.

. Sketch a graph of y = x® — 4x3. Label the x- and the y-intercept points.

. Suppose f(x) = x3 + 2x2 — 4x — 8. Factor and then sketch a graph of y = f(x);

label the x- and the y-intercept points.

Find a polynomial of degree 3, having leading coefficient 1 and zeros —2, —1, and 3.

Give answer in expanded form.
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10. Find a polynomial of degree 4 with leading coefficient 1, having —2 as a double zero

and —1 as a double zero. Give answer in expanded form.

11. Determine all zeros of the polynomial f(x) = x3 — 5x2 + 4x.

12. Determine all zeros of the polynomial f(x) = x3 — 4x2 — 4x + 16.

13. Sketch a graph of y = f(x), where f(x) = x3 — 2x2 + 3x + 1. From your graph de-
termine the number of roots of f(x) = 0 and their location between consecutive

integers.

14. a) List all possible rational roots of 2x3 — 3x2 — 5x + 3 = 0.

b) Are any of these roots?

15. Find the quotient and remainder when 3x3 — 4x2 — 5x — 2 is divided by x + 1.

16. If x* — 3x2 + 2x — 5 is divided by x — 3, what are the quotient and remainder?

17. Determine the remainder when 3x16 4 2x10 — 5x3 + 3x2 — 1 is divided by x + 1.

18. Determine the value of & so that when x3 — 2x2 — kx + 5 is divided by x + 1, the
remainder will be —3.

19. Find all rational-number zeros of f(x) = 2x3 — 3x2 — 12x — 5.

20. Find all rational-number zeros of f(x) = 2x3 + 9x2 + 7x — 6.

21. Locate the roots of x3 — 5x + 3 = 0 between consecutive integers. Determine the
largest, correct to one decimal place.

22. Locate the zeros of f(x) = 3x3 — 2x2 — x + 1 between consecutive integers. Deter-

mine the smallest, correct to one decimal place.

23. Determine the domain of the function f, where

_ x
f(%) = F———-

24. Determine the equations of the horizontal and vertical asymptotes for

_ 2?
YE4

25. Sketch a graph of y = 4/(x + 1).

26. Sketch a graph of y = x/(x — 1).

In problems 27 through 30, do the following.

a) Give the coordinates of the x- and the y-intercept points.

b) Determine equations of any horizontal and vertical asymptotes.

c) Sketch a graph of y = f(x).

27. flay =3£2 28. flo) = 228 29. flax) = X= 2x —3_2x*—8 __x+1
2 2 _x 2 x — 1 30. f(x) = -_—x-2
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3.0

Definition 3.1

Exponential and Logarithmic Functions Chapter 3

In Chapter 2 we studied an important class of functions called the polynomial
functions. An example of such a function is f(x) = x3. Suppose g is a function
given by g(x) = 3°. Note the difference between f and g: In the formula for g the
independent variable x occurs as an exponent and the base is constant, whereas
for f the exponent is constant. Functions such as g are called exponential func-
tions. In this chapter we shall study such functions. After exploring properties of
exponential functions, we shall see that each such function has an inverse func-

tion associated with it. These inverse functions are called logarithmic functions.

In order to understand exponential functions, we first consider definitions

and properties of quantities of the type b%, where b and u are real numbers. This

is done in three stages: (1) u is an integer; (2) u is a rational number; (3) u is an

irrational number. The student should already be somewhat familiar with case
1, but a brief review is included in Section 3.0 along with a review of square roots;
cases 2 and 3 are discussed in the following two sections. This will give us the
basics of exponential functions, and then we can proceed with the introduction

of logarithmic functions in Section 3.3.

REVIEW OF INTEGRAL
EXPONENTS AND SQUARE ROOTS

Integral Exponents

The expression b™, where m is any integer, is defined in three stages (m > 0,

m < 0, m = 0), as follows:

Suppose b is a real number.

a) Positive integer exponents: If m > 0, then

b" =b:b+b+ ...b (m factors of b) (3.1)

b) Negative integer exponents: If n > 0 and b # 0, then

nal
i b" (3.2)

c) Zero exponent: If b # 0, then

b° =1 (3.3)

Note that 0° is not defined.
The definitions above, along with mathematical induction (a topic to be

studied in Chapter 7), permit us to establish the following properties of expo-

nents. These form the rules that govern the algebraic manipulations of exponen-
tial expressions.
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Theorem 3.1 Rules of exponents

Suppose m and n are integers, and b and c are nonzero real numbers.
Then

€D) boon = bmn (E2) T= mr (BI) (bm)= bm

(E4) (b-c)"=bm-cm (EB) (2)"= In
cm

 

Simplify

Example 1 a) 3%-32 b) sz c) (81)2%(3-2)¢

Solution a) 36.372 =36+-2 =3¢4=-3.3-3-3=81

£_@P_2_ps_poy
c) (81)%-(372)% = (3%)2-(372)t = 38.38 = 38+(-® — 30 — | -

Example 2 Express without negative exponents and simplify.

 

 

 

 

 

 

 

341 x2 _4x1-5
a) (x=2-y3)2 p) X—F e) ——) ( y°) ) Ti ) pr—

Solution a) (x72-y3)72 = (x72)2: (y3)2 =ut-y6=ut/yb

1 14 x3
— +1

py Fil _ a _ x 14x 1
x +1 x+1 x+1 a3 x41

(1421 —x4+2?) 1-—x42x?

— x(x + 1) - x3

1 _4_
0) Aida? 5 _ a x _1—4x—5x%, x°

x25x — 1) 5x — 1 x2 5x — 1
x2

—1)(5x — 1_ )(5x 1)( +X) 1, .
ox — 1

Example 3 Evaluate (0.0000384)(13600000) and express result rounded off to three signifi-

cant digits.
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Solution

Definition 3.2

Example 4

Solution

Exponential and Logarithmic Functions Chapter 3

First write each of the given numbers in scientific notation (see Appendix C),

then multiply, and round off, as follows:

(0.0000384)(13600000) = (3.84 - 10-5)(1.36 + 107) = (3.84)(1.36) - 10% = 522.

Therefore the product is 522 rounded off to three significant digits. a]

Square Roots

Suppose c is a nonnegative real number. Then V/c is the nonnegative
real number that, when squared, yields c. That is, (1c)? = c.

Note that for ¢ > 0, Definition 3.2 states that \/c is a positive number. For

example, \/4 = 2 and not +2; this is part of the definition. However, when we

ask for solutions of x2 = 4, there are two answers, 2 and —2, whereas 2 is the

only solution for the equation x = \/4. That is, the two equations x2 = 4 and

x = \/4 are not equivalent; x2 = 4 is equivalent to x = \/4 or x = — V/4.

If c¢ is any real number, then ¢? is nonnegative. It is a temptation to write

Ve? = c. If c is replaced by, say, 4, we get \/42 = 4, which is a true statement;

but if ¢ is replaced by, say, —4, then we get \/(—4)2 = —4, which is a false
statement since the left side is V/(—4)2 = \/16 = 4. This suggests the following.

For any real number c,

Ve? = ||. (3.4)

Analogous to rules (E4) and (E5) for exponents, the following two rules

are useful in working with square roots:

 

(S1) Ifa > 0and b > 0, then Va+-b = Va- Vb.

(S2) If a > 0 and b > 0, then Va/b = a/b.
 

Simplify

a) V2: 8 b) SH ¢) VETF122

a) V2-V/8=12-8=116=4



Section 3.0

Example 5

Solution

Example 6

Solution
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yVIB+ V32_ 9-24 VI6-2 _ V9: V2+ VI6- V2
V2 v2 Va

3V2 +4V2 72= 7% = vi

c) 52% + 122 = \/25 + 144 = 1/169 = 13

Note that V/52 = /25 = 5 and 12% = \/144 = 12, and so

V52 + 12% # 6? + 122 -

V2 —-3

1-2

V2 —-3

1-2

a) To rationalize the denominator means to express the given number in terms
of a fraction without square roots in the denominator. This can be done by

multiplying the numerator and denominator of the given fraction by 1 + V/2,
as follows:

V2-3 _ (V2-3)1+ V2) _ac_T1-2v2Lm

1-vV2 (1-121 + V2) — (V2)? —1

FosEenar(32 7 7
1-v2 (1-V3)(Ve+3) 1-2v2 1-2v2 2v2-1

ot]

 

 

a) Rationalize the denominator of

b) Rationalize the numerator of

  

b) 

Find the solution set for the equation \/1 — 3x — x = 9.

First isolate the radical by adding x to both sides of the given equation:
V1 — 3x = x + 9. Squaring both sides will get rid of the square root, but it may
introduce extraneous solutions, so it will be necessary to check the resulting
answers:

(VI=3x)% = (x + 9)?

Expanding and simplifying, we get

1 — 3x = x2 + 18x + 81,

x2 + 21x + 80 = 0,

(x + 5)(x + 16) = 0,
x= —5 or x = —16.

Therefore —5 and —16 are possible solutions. Substituting these into the
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Exponential and Logarithmic Functions

given equation, we get:

Forx = —5: LHS = V1 — 3(=5) — (—5) = 4 + 5 = 9; so —5 is a solution.

For x= —16 we

7 + 16 = 23, so —16 is not a solution.

Thus the solution set is S = {—5}.

Chapter 3

get LHS = 1 — 3(—16) — (—16) = V/49 + 16 =

Find the solution set for the equation x2 — 21/x2 — 3 = 0.

Replacing V/x2 by |x| gives x2 — 2|x| — 3 = 0. Consider two cases:

1. Forx > 0, we have x2 — 2x — 3 = 0, which givesx = —1 or x = 3. Thus 3 is

2. Forx <0, we get x2 4+ 2x — 3 = 0, which givesx = 1 orx = —3. Thus —3is

Solve the equation V3x + 4 + Vx + 3 = 0.

Example 7

Solution

a solution.

a solution.

The solution set is S = {—3, 3}.

Example 8

Solution Here we get the answer by observing that /3x + 4 > 0 and V/x > 0. If such

numbers are added to 3, the result cannot be equal to zero. Therefore the solu-
tion set is the empty set S =0

 

In problems 1 through 20, simplify the given expressions. In each case state answers in
exact form, and tell whether the given number is rational or irrational.

 

 

4 . 3-1 . 2-2

1. 61 2

4.31.2-2\-1

+ (Fr) 5
-3 _

7. 2 5 8
2-3

10. V/3- 27 64 11

13. 3 + V5 + V11)° 14

2

16. (A520) _ & + vB) 17
2 2

19. (V3 -1)2+2(V3-1)—2 20

9.33

To271

. (27% 4 471)3

. V3. V12

105 (1/35)!

V3

(V2 — V3)(V2 + V3)

. V(V5 + 1)(V6 = 1)

. (V3)t —2(V/3)3 —4(V/3)2 + 3

3. (V5)3(/125)-1

40 . 3-4. 5\2

6 (“5=—)
V1001 - \/7

\/143

12. (1 + V2)(2 — V3)

9.

 0 (0-052)2 2

18. (1 + V3)2 —2(1 + V3) — 2
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In problems 21 through 30, evaluate the given expressions and round off answers to four
significant digits.* Appendix A includes instructions for using a calculator.

 

 

21. (0.0000004385) + (6534200000) 22. (3.74 - 10-8)(5.43 - 107)

(2.47 + 10-%)(3.42 - 102) \23. TH 24. (6.54 10%)(3.57 10-3 + 8.56 10-2)

25. 1/348.76 26. \/(357 - 102)(8.36 - 10-4)

2.43)3 — (1.58)*. V2.4)? (36) _—27. V(24)2 + (3.6) 28 256)

09. V2 + V3 so. (SVE Y
V5 — V2 "\V7 + V19

In problems 31 through 42, simplify the given expressions. In each case determine the set
of values of x for which the given expression is defined.

x + x1
2.44 2 —4 -31. x2-x 32. (4x2)(2x) 33. po

34. /12x3 - \/3x 35. (x2 —-1)° 36. (x2 — 5x + 6)°

37. (1 + Vx)(2 — Vx) 38. V1 — 2x + x2 39. V1 —(1 + x)(1 —x)

2(—2 __ -1

40. 2Vx — 3VZ — (VE +2) 41 (23 + 52% + 6x)° 42. omy

In problems 43 through 46, rationalize the denominator.

43.1 aa, V3-1 45. 20 46.+
V2 +1 V3 +1 1-27 V3 — V2

In problems 47 through 50, rationalize the numerator.

47. V3 48. V5-1 49. V3- 50. vid
6 4 V2 + V3 3

In problems 51 through 60, find the solution set for the given equations. Check for

extraneous solutions when necessary.

51. 3x1 + 4 = 4x! + 2 52. 3x24x1—-4=0

x2 +x141 x4 — 3x73 _53. ====3 54. =—— = 4

55. V3x +1=2 56. Vx? — 2x = 3

57. V2x + 1+ Vx +1=0 58. V1—x=x+5

59. 3x2 + Vx2 —4=0 60. x2 —5Vx2 +6=0

In problems 61 through 70, determine which of the given statements are true. In each

case give a reason for your answer.

 

* See Appendix C for discussion of significant digits.
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61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Exponential and Logarithmic Functions Chapter 3

The solution set for++ Vx + 1 = 0 is the empty set.

The only real numbers for which \/—x is defined is x = 0.

There are no real numbers x for which the expression—+—is defined.

The equation—+—= 1 has no solutions.

The equation x2 — 41/x2 = 0 has three solutions.

The equation x2 + Vx + 1 = 0 can have no solutions.

The equation x2 = \/—x2 has no solutions.

The expression \/x3 + /x yields an irrational number for every positive real num-
ber x.

The equation \/x2 = —x has only 0 as a solution.

The expression (Vx — 1)? is defined and equal to 1 for every x greater than or equal
to zero.
 

3.1

Example 1

Solution

RATIONAL-NUMBER EXPONENTS
In Section 3.0 properties of integral exponents were reviewed. Now we focus our
attention on exponents that are rational numbers.

How are expressions of the type 21/3, 4-2/3 51/4 and so on, defined? The
definitions we make are guided by a desire to have the rules of exponents (E1)
through (E5) stated in Section 3.0, valid when the exponents are any rational

numbers. After all, integers are rational numbers, and we want our definitions

and properties to be consistent with those discussed in Section 3.0. This is illus-
trated in the following example.

How should each of the following be defined so that property (E3) is valid for

rational-number exponents?

a) 31/2 b) 41/3

a) Since (E3) is to hold for rational numbers,

(31/2)2 = 31/242 — 31 — 3.

Therefore 31/2 is a number whose square is 3. Suppose we denote this number

by c; that is, ¢ = 31/2. Then ¢2? = 3, and c is a root of the equation x2 — 3 = 0.
In Chapter 2 we learned that the only possible rational roots of this equation

are 1, —1, 3, and —3. It is easy to show that none of these actually is a root,

and so 3/2 must be an irrational number. We define 3/2 as the positive

solution of the equation x2 — 3 = 0 and techniques studied in Section 2.5 can
be applied to find a decimal approximation to 31/2,

b) Since (E3) is to hold for rational numbers,

(41/3)3 = 41/31) — 41 — 4,

Thus 41/3 is a number whose cube is 4. By a procedure similar to that in (a) it

can be argued that 41/3 is an irrational number; that is, it is a root of
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x3 — 4 = 0. We can show that this equation has only one solution, and we

define 41/3 as that number. Decimal approximations to 41/3 can be found by
using techniques discussed in Section 2.5.

How should the following be defined so that property (E3) is valid for rational-

number exponents?

a) (—4)V2 b) (—8)V/3

a) Let ¢ = (—4)1/2. Assuming property (E3) to be valid for rational numbers,

we get

cz = [(—4)1/2]? — (—4)1/2@ = (—4)! = —4.

Thus c?2 +4 =0, and so c is a root of the equation x2 + 4 = 0. Since
x2 4 4 > 0 for every real number x, we conclude that c is not a real number.

Thus, within the context of real numbers, (—4)1/2 is undefined.

b) Let d = (—8)V/3. In a manner similar to that in (a), we conclude that d must

be a root of the polynomial equation x3 + 8 = 0. By methods of Chapter 2 it
can show that this equation has exactly one real root, which is —2. We define
(—8)1/3 to be equal to —2 and write (—8)V/3 = —2. we

The discussion in Examples 1 and 2 will help guide us in defining u/" in
general, where n is any positive integer and u is a real number. The expression

ul/™ is to be a root of the polynomial equation

x" —u=0. (3.5)

Using techniques discussed in Chapter 2, we can show the following.

If u > 0, then Eq. (3.5) has exactly one nonnegative root.

If u <0, then Eq. (3.5) has exactly one real root for n odd, and has no

solutions for n even.

This leads us to the following definition, in which we first define u'/* and
then u™/™,

Let u be a real number and n be a positive integer. Then u1/" is given
by the following.

1. If u > 0, u/" is that nonnegative number satisfying x" — u = 0.

2. If u < 0 and n is odd, ©/" is that unique real number satisfying

x" —u=0.

If u < 0 and n is even, then u!/" is not defined(as a real number).
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Example 3

Solution
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Now suppose r is any rational number; that is, »r = m/n, where m and n are

integers, n > 0, and m/n is in lowest terms. Then u’ is given by

ur = um/n — (wl/m)m, (3.6)

provided that u!/" is a real number as defined above.
Definition 3.3 states that u™/" is defined for all cases except when u is a

negative number and n is an even integer.
Note that in Eq. (3.6), (u/")™ involves a number u!/" raised to an integer

power m. We can show that if we raise u to the m powerfirst to get «™ and then

apply Definition 3.3, the resulting numberis the same as that given by Eq. (3.6).
Thus uv’ is also given by

 
u = umn — (um)1/n, (3.7)

 

We canillustrate the need for requiring m/n to be in lowest terms in Defini-

tion 3.3 by considering (—8)¥3 and (—8)?/¢. As shown in Example 2,

(—8)13 = —2. According to Eq. (3.7), (—8)?¢ would be equal to
((—8)2)1/6 = (64)1/6 = 2, and so (—8)%/¢ would not be equal to (—8)1/3. There-
fore, when expressions of the type (—8)2/6 are encountered, it is necessary to first

write the exponent in lowest terms.
By Definition 3.3 and Theorem 3.1, it can be proved that the rules of expo-

nents are valid for rational-number exponents.

If r and s are any rational numbers, and u and v are any nonzero real
numbers, for which u", u%, v", and v*® are real numbers (as defined

above), then

(E1) wou =uts (E2) u/ut = urs (E3) (u")s = urs

(E4) (uv) =u" -v (E5) (v/v) =u"/v"

Evaluate each of the following.

45/3 _ 42/3
a) 31/2 . 33/2 b) (21/3) = (2-5/3) c) 5173

Here we use the rules of exponents as stated in Theorem 3.2.

a) 31/2.3%/2 = 31/243/2) — 32 — 9

b) (21/3) = (2-5/3) = 91/3-(=5/3) — 9(1/3+45/3) — 92 — 4
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45/3 _ 42/3 (22)5/3 _ (22)2/3 9210/3 _ 94/3 21/3(29/3 _ 23/3)

©) —%z = 01/3 =" oi;3 21/3

=23_921-8-2=6 =

Radical Notation
Expressions involving rational-number exponents are frequently written in radi-
cal notation as stated in the following definition.

Suppose n is an integer greater than 1,

Vu = ut/n, (3.8)

where u is any real number for which u!/" is defined.

We read V/u as “the nth root of u.” When n = 2, it is conventional to write Vu

rather than Vu.
Using Eq. (3.7) and Eq. (3.8), we get

umn = Jum. (3.9)

In working with radicals, the following properties are frequently useful.

Vu-v =u, (3.10)

Vujv = uf. (3.11)

These are generalizations of corresponding properties (S1) and (S2) for square

roots given on p. 158.

In Egs. (3.10) and (3.11) we are assuming that u, v, and n are numbers such

that Vu and V/v are defined (as real numbers); that is u/» and v'/* are defined

as stated in Definition 3.3.

Write each of the following in radical form and simplify.

a) 34/3 b) (—4)2/3

a) 33 = V3 = VBL = V27-3=V27-V/3=3V3
b) (—4)%3 = V(—4)2=V16= V8-2 = V8V2=2V2 -
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x —1

Vx — 1

Multiplying the numerator and denominator by Vx + 1 gives

x—1 _ (x-1Vr+1) _@-1(Vx+1) _ VEL.
Vx—1 (Vx—1(Vx +1) x —1

Rationalize the denominator of

 

Thus

———— = VX + 1,
Vx — 1

where the equality is valid for all x > 0 and x # 1. =

Use a calculator to find decimal approximations for the following. Give answers

rounded off to three decimal places.

a) V5 b) (—4)3/5 c) (2.43)256

a) Pressing the 5 and keys gives \/5 = 2.236.

b) Here we can use the key, but the base number must be positive. There-
fore we first get

(—)¥5= {AF= YAP = — VB = —(4)
and then evaluate 43/3 by using the key. This gives (—4)3/5 = —2.297.

c¢) Using the key gives (2.43)2-56 = 9.708. yl

Prove that 1 + V/5 is an irrational number.

First find a polynomial equation with integer coefficients having 1 + V/5 as a
root; then use the Rational-root theorem given in Section 2.4 to show that it has
no rational roots. Then we can conclude that 1 + +/5 must be an irrational

number.

Let x = 1 + v/5. Isolating the radical, x — 1 = V/5, and raising both sides to

the third power gives

(x — 1)3 = (V5)? =5.
Expanding the left side* and collecting like terms gives

x3 —3x2+3x—-6=0. (3.12)

From the way Eq. (3.12) was developed,it should be clear that 1 + V/5 is a root.

We can now check to see if Eq. (3.12) has any rational roots. Using the

Rational-root theorem and the fact that the coefficients alternate in sign, we

 

Use the formula (a — b)3 = a3 — 3a2b + 3ab? — b3.
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need to check only 1, 2, 3, and 6 as possibilities. It is easy to verify that none of

these is a root. Therefore 1 + V/5 is an irrational number. a

A water tank has the shape of an inverted right circular cone of radius 1.6 m and
height 4.8 m. Suppose water flows into the tank at the constant rate of 0.25 m3
per minute. As the water levelrises, the surface has a circular shape of increasing
radius r, as shown in Fig. 3.1. Suppose the tank is empty at the start.

a) Find a formula for r (in meters) as a function of time ¢ (in minutes) after the

start.

b) Use the result in (a) to find the radius of the water surface at time ¢ = 8

minutes.

|
0

 

   sy__ 4

A

a) Water flows into the tank at a constant rate of 0.25 m3 per minute, and so the

volume V in the tank at time ¢ is given by

V =025¢t (3.13)

Volume V is also given by the formula for volume of a cone:

V = 1ar?h. (3.14)

But r and 4 are related, as we can see from ratios of corresponding sides of
similar triangles, AABC and AADE. That is, h/r = 4.8/1.6, or h = 3r. Sub-

stituting into Eq. (3.14) gives

V = ars. (3.15)
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Equating the two expressions for V from (3.13) and (3.15), we get 7r3 = 0.25 ¢,

and solving this for r gives the desired function

Vt

Yrs (3.16)

Since 0 < r < 1.6, the domain of the function given by Eq. (3.16) is restricted
to 0 < t < 47(1.6)3; that is, 0 < t < 51.47 (to two decimal places).

b) Substituting £ = 8 into Eq. (3.16) gives the corresponding radius,

V8
Za
 

Exercises 3.1 

In problems 1 through 15, perform the given arithmetic operations and simplify your
results. Give answers in exact form.

1. 35/2 .3-3/2 2. 4-1/2.83/2 3. 35/2 3-1/2

4. 54/3 - 5-2/3 5. (38)2/3 6. (5-1/3)6

7. 51/3 .1352/3 8. (213/2.31/2) . 71/2 9. 8-16-34

10. (1/8 — V2)? 11. (V16 + V2)3 12. (V2. V12) ~ V3
5/2 __ 3/2 3/4. 3 12

13.— 14.2 15. VI0072 + 12242

In problems 16 through 27, evaluate the given expressions and give answers rounded off
to three decimal places.

16. 53/4 17. 42/3 _ 35/4 18. (1.6)-24

19. v5 — V5 20. (—16)3/5 21. (—1.47)%/3

22. (1 + 7)~4/5 23. V1 + V5 24. (1 — /3)%5

25. (V2 + V/5)-1/2 26.+ 27. (4 — \/32)V/5

In problems 28 through 33, perform the indicated algebraic operations and simplify your
answers. Give results without negative exponents.

28. x52. x=3/2 29. (v= + =) 30. x(a + Va)
x

2

31x + xt (VE - =o) 32. Va + Va® 33. (Vx + V2(Vx — V2)

34. Rationalize the denominators of

8 2 x —4aye b) —=4 c
) V5 +1 ) 05 Vor ) Va—2

35. Rationalize the numerators of

a) 1-3 b)

(a+

v3)? ) Vx-3
2 4 x9

In problems 36 through 41, evaluate the given expressions, where functions f and g are
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given by

f(x) =x2—-2, gx) =x +.

In each case in which the result is a rational number, give the answer in exact form;
otherwise give the answer in decimal form rounded off to two places.

36. f(V/5) 37. (f + &)(V/3) 38. (fo8)(V2)

. 139. (go/)(V5) 10. (F-8)(\V/2) 41. (g (vs + 2)

In problems 42 through 45, prove that the given numbers are irrational.

42. \/5 — 2 43. V3 +2 44. V4 +1 45. V2 —1

46. The volume V of a sphere of radius r is given by the formula V = §ar3.

a) Solve for r and get a formula that gives r as a function of V.

b) Use the result in (a) to find the radius of a sphere whose volumeis 148.4 cm3. Give

answer rounded off to one decimal place.

47. A spherical balloon is being inflated in such a manner that its radius r is given by
r = 1 + 2V/t, where ¢ represents the time in seconds after inflation begins and r is
measured in centimeters. The balloon will burst if the radius exceeds 15 cm.

a) Find a formula that gives the volume of the balloon as a function of ¢, and state
the domain of this function.

b) Whatis the volume at the end of 4 seconds? Whatis it at the end of one minute?

48. Suppose an inverted circular cone of height 20 cm and base of radius 10 cm is par-
tially filled with water. Let r represent the radius of the water surface and A the

height, as shown in Fig. 3.2.

a) Find a formula for the volume V of water as a function of r.

  Fig. 3.2
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b) Use (a) to find r as a function of V. Then find r when the volume of water is

1200 cm3.

49. Suppose x = 1 + V/3,y = V3 + V13 + 4/3, and z = 110771,/40545.

a) Isx =»? b) Is x = 2? c) Isy=2?
 

3.2 EXPONENTIAL FUNCTIONS
In Section 3.1 we discussed rational number exponents. Before we introduce
exponential functions, it is necessary to consider the matter of irrational expo-

nents.

Irrational Number Exponents

In drawing a graph of the function defined by f(x) = 3%, we first find pairs of
numbers x, y that satisfy y = 3%, and then use these to draw the graph. In Sec-
tion 3.1 we defined 3° for x-any rational number. However, for x = \/2 we are

confronted with the question: What does 3V2 mean? The answerto this question
is not simple, but we can get some idea of what is involved by looking at the
successive decimal approximations to 1/2; these are 1, 1.4, 1.41,1.414, 1.4142, . . .

Since each of these is a rational number, we can apply Definition 3.3, and so each
number of the following sequence has been defined:

31, 314 gleegldidz (3.17)

If the sequence of numbers in (3.17) gets close to (we say converges to) a fixed

real number, then we define 3V2 as that number. Actually, the sequence in (3.17)

does converge, but we are not prepared to argue that here. However, we can get

some idea that this is so by using a calculator to get the following table, where
the results are rounded off to four decimal places.

 

x 1 14 1.41 1.414 1.4142 1.41421 1.414213
 

   3* 3 4.6555 4.7070 4.7277 4.7287 4.7288 4.7288
 

Concepts from calculus are required to give a rigorous definition of 3” for

irrational numbers x. After that, it is possible to prove that the rules of expo-
nents (E1) through (E5) are valid when the exponents are any real numbers.

A number such as 3V2 is an irrational number, and so it cannot be repre-
sented as a finite decimal. To get a decimal approximation for 3vVZ, we could
evaluate several terms of the sequence given in (3.17), as we have done in the

table, but fortunately the calculator is prepared to do something of this type
automatically for us. The key instructs the calculator to execute such a

program and thus gives an approximation correct to several decimal places. The

procedure is as follows:

With an Algebraic calculator, press 3, (J, 2, x), (=).



Section 3.2

Definition 3.5

Exponential Functions 171

With a RPN calculator, press 3, NT) 2(x) (b*J. The result is
3V2 = 4.72880 (to five decimal places).

Exponential Functions
The above discussion of 3V2 gives us some idea of what is involved in formulating
a definition of 4% for any real number x. In Section 3.1 we allowed b to be a

negative number for some rational-number exponents—for example, (—4)1/3—
but when x is an irrational number, & must be a positive number.

We are now ready to introduce the idea of an exponential function.

If b is any given positive real number and b # 1, then the function f
given by the formula f(x) = b® is called the exponential function
with base b.

The reason for the condition b # 1 is that 1? is equal to 1 for all x; and thus 1°
is a constant function, which we prefer not to include as an exponential function.

 

 

 

Example 1 Draw a graph of y = 3%.

Solution First complete the following table, then plot the corresponding (x, y) points and

draw a graph, as shown in Fig. 3.3.

y=3"X
x -3 —2 —-1 -05 0 05 1 15 2 3

y
y 0.04 0.11 0.33 058 1 173 3 520 9 27  
 

Fig. 3.3 |  

 

Graph of y = 3*

From the curve in Fig. 3.3, note that f(x) = 37 is an increasing function; the

domain and range of f are given by

D(f) = {x|x is a real number}, R(f) = {yy > 0}. a

Example 2 Draw a graph of y = (1/3)* = 3-2.

Solution Following the pattern of Example 1, we make a table of x,y values, plot the
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corresponding points, and draw the curve, as shown in Fig. 3.4. It is instructive to
compare the x,y values in this table with those in the table of Example 1.

 

x —3 -2 -15 —-1 -05 0 05 1 2 3
 

   y 27 9 5.20 3 1.73 1 058 033 011 0.04
 

¥Y=(1/3)"X

 

A

— N
o

w

= |
w |
N
o |
— o
S

Graphofy = (3

From the graph of Fig. 3.4 we see that the function g given by g(x) = (1/3)*
is a decreasing function with domain and range

D(g) = {x|x is a real number}, @®R(g) = {yy > 0}. wa

Suppose f is a function given by f(x) = (1 + x)1/?, where x > —1 and x # 0.
Make a table off(x) values for several values of x near zero. From the table draw
a conclusion regarding the behavior of f(x) as x approaches zero.
Note: The function f given here is not an exponential function since the base,
1 + x, is not a constant.

Use a calculator to complete the following table of f(x) values for the given

values of x.
  

  

      

x f(x) x f(x)

1 2 —-0.8 7.47674

0.5 2.25 —0.5 4

0.2 2.48832 —0.2 3.05176

0.1 2.59374 —-0.1 2.86797

0.01 2.70481 —0.01 2.73200

0.001 2.71692 —0.001 2.71964

0.0001 2.71815 —0.0001 2.71842
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From the values off(x) in the above table we conclude that (1 + x)/¢ appears to

be approaching a number (as x approaches 0) that is between 2.71815 and 2.71842.
ie

The Number e
In Example 3 we observed that as x approaches zero, (1 + x)'/% appears to ap-
proach 2.718. . . as a limit. This is actually true (as is shown in calculus), and the

limiting value is a transcendental number denoted by e:

e = 2.718281828459045235360287. . .

The number e is an important number that occurs frequently in applied as well
as theoretical problems in mathematics.*

Draw a graph of y = e®.

First make a table of x,y values, then plot the corresponding points and draw a
curve through these points, as shown in Fig. 3.5. Some calculators have an
key, so the value ofy can be determined directly by pressing the key after x
is entered in the display. For calculators that do not have an key, we suggest
using the key, where 2.718281828 (rounded off to calculator capacity) is first
stored with the key and recalled with the key when needed. In Section
3.4 methods for evaluating e? without first storing e will be given. In the table
the values of y have been rounded off to two decimal places.

 

—2 —-1.5 -1 -05 0 05 1 1.5 2 2.5 3
 

  y 0.05 0.08  0.14 0.22 0.37 061 1 1.65 272 448 7.39 1218 20.09
 

Y=EXP(X)

y

w
n

L
E
E
L
A

 

 
Graphofy =e*

 

* The letter e is used in honor of the Swiss mathematician Leonhard Euler (1707-1783), one of the

greatest mathematicians of all time.
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From the graph in Fig. 3.5 we conclude that F(x) = e? is an increasing func-
tion with domain and range given by

D(F) = {x|x is a real number}, R(F) = {y|y > 0}. .

The above examples suggest the following general conclusions concerning expo-
nential functions:

The domain and range of G(x) = b® are given by

D(G) = {|x is a real number},

®(G) = {yy > 0}.

If 0 < b <1, then G is a decreasing function; if b > 1, G is an in-

creasing function.

Exercises 3.2

In problems 1 through 10, use a calculator to evaluate the given expression. If your
calculator indicates Error for any problem, explain why. Give answers rounded off to
three decimal places.

1. 3v2 2. (V2)? 3. 573 4. 7248 5. eV3

6. Vi—e? 7. (1 —e)? 8. e~2/3 9. (1 —e)2/3 10. Ver —1

11. Which is greater (a) 3V3 or (1/3)3, (b) e3 or 3¢?

12. Which is greater (a) 5V5 or (1/5), (b) #¢ or e™?

 

In problems 13 through 27, draw a graph of the given functions.

Note: —3% means — (3%) and not (—3)?; similarly, —3=% means — (37%).

 

13. y=2* 14. y = (1/2)* 15. y = (1.53)*

16. y = (1.53)~* 17. y=e™* 18. y = 2¢°

19. y=(e — 1) 20. y= (<5) 21. y= (LEY

22. y = 1(e* +e) 23. y=1+¢€° 24, y = = 3°

25. y= —37° 26. y = 3/2 27. y = 1(e* — e™®)

28. Given that f(x) = 1 — 572, evaluate each of the following correct to two decimal

places.

a) f(0) b) f(1) c) (1/2) d) f(-2) e) f(—0.24)

29. Given that g(x) = 1/(1 + e®) evaluate each of the following correct to two decimal

places.

a) g(0) b) g(1) c) 8(2) d) g(-3) e) g(—0.64)

30. The predicted population P of a certain city is given by the formula

P = 450000(1.08)"/12
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where n is the number of years after 1980. Find the predicted population for each
of the following years. Round off answers to the nearest thousand.

a) 1985 b) 1990 c) 1995 d) 2000

31. A function that occurs frequently in the study of probability and statistics is given

by

_1 —22/2f(x) = Tat ,

where x is any real number. Compute the corresponding values of f(x) to two deci-

mal places for x equal to 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0. Plot a graph of

y = f(x). Note that f(—x) = f(x) and use this to draw the graph for negative values

of x.

32. In Example 3 we discussed the function f(x) = (1 + x)/*, where x > —1 and x # 0.

Explain these restrictions on values of x.

In problems 33 through 38, functions f, g, and A are given by

f(x) =x2% — 3, g(x) =e* —1, h(x) = 3% + 3-2.

Evaluate each of the given expressions and round off answers to three decimal places.

33. (f+ 8) 34. (f-8)(-1) 35. (foh)(2)

36. (hog)(—3) 37. (hof)(V2) 38. (1/8)(2)
39. Determine the values of x that satisfy the equation x2 = 2% as follows:

a) Complete the table.

 

x -1 -08 -07 -05 0 1 2 3 4 5
 

 

2+     
b) Draw graphs of y = x2 and y = 2° on the same system of coordinates, using

values from the table.

¢) Use the graphs to help determine the roots of x2 = 27%; give answers correct to

one decimal place.

40. Determine the roots of x3 = 3%. Follow instructions similar to those of Problem 39,

using values from the following table.

 

x 0 1 2 245 250 275 3 4
 

x?
 

3*     
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LOGARITHMIC FUNCTIONS
In the preceding section we defined exponential functions given by f(x) = &°,
where b is a given positive number and b # 1. We noted that f is an increasing
function for b > 1 and a decreasing function for 0 << b < 1. In Section 1.8 inverse

functions were introduced, and it was noted that an increasing or decreasing
function is one-to-one, and consequently its inverse relation is a function. Thus

the inverse of any exponential function is also a function, which we shall call a
logarithmic function.

In Section 1.8 we illustrated a useful technique for determining a formula for
some inverse functions. For instance, suppose g is a function defined by

gy=3x-—2. (3.18)

To get a formula for g-! we can interchange x and y in Eq. (3.18) obtaining

Then solving for y gives

-1. _X + 2
g * Yy 3

Now suppose we attempt a similar approach to determine a formula for the
inverse function of f, given by

fiy=23° (3.19)

Sincef is increasing, we can be certain that its inverse is a function. Interchang-

ing x and y in Eq. (3.19) gives x = 3%. In this case, we cannot solve for y in terms
of x in a simple manner, as we did in the above example. We could express the
inverse function as a set of ordered pairs and denote it by the symbol f~1, as used
in general situations:

f= {(x,y)x = 3}. (3.20)

However, inverses of exponential functions play an important role in applied as
well as theoretical mathematics, and so they deserve special names. These func-
tions are called logarithmic functions. The function given in Eq. (3.20) is denoted

by logs, which is read “log base 3 function.” For example

log; = {(x,)|x = 3¥}

means that log; is a function defined by y = log,x if and only if x = 3v.

Now let us return to inverses of exponential functions in general and state

the following definition.
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Definition 3.6 Suppose b is a given positive number and b # 1. The logarithmic
function base b, denoted by log, is defined by

y = log,x if and only if x = bv.

That is, log, is the inverse of the exponential function with base b.

The domain and range of the log, function are given by

D(log,) = {x|x > 0}, ®R(log,) = R.

Graphs of Logarithmic Functions
The following example illustrates a procedure for drawing a graph of a logarith-
mic function.

Example 1 Draw a graph of the function given by

y = log,x. (3.21)

Solution Since log, is the inverse of the exponential function given by f(x) = 3%, we can
draw its graph by simply reflecting the graph shown in Fig. 3.3 about the line
y = x. Or we can get a table of x, y values satisfying Eq. (3.21) by interchanging
the x and y values in the table shown on p. 171. This gives the following table,

which can be used to draw the graph of y = log,x.

 

 

   
 

LOG BASE 3
x 0.04 0.11 0.33 058 1 173 3 520 9 27

y
y -3 -2 —-1 -05 0 0.5 1 1.5 2 3

| y=3*

3
/

/

21
/

 
Graphofy =log;x

In Fig. 3.6, the broken curve is the graph ofy = 3%, and the solid curve is the

graph of y = log,x.
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Properties of Logarithmic Functions
We now state three useful properties that form a basis for algebraic manipula-
tion of logarithmic functions. They are analogous to corresponding properties
(E1), (E2), and (E3) for exponential functions discussed in the preceding
sections.

Suppose uz and v are positive numbers and ¢ is any real number. Then

(L1) log,(u - v) = log,u + logy (L2) log,(%) = log,u — log,v

(L3) log,(u') = t(log,u)

We shall prove the statement given by property (L1); proofs for the other
two are similar.

Let log,u = A and log,v = k. Using Definition 3.6, we get

u=>bh and v = bk.

Since (L1) involves the product u + v, we multiply and use property (E1) to get

u-v=>bh-bk = bk,

Applying Definition 3.6 to u * v = b*t* gives

log,(u-v) = h + k.

Replacing A by log,u and k by log,v, we have

log,(u - v) = log,u + log,v.

Note: Properties (L1), (L2), and (L3) involve logarithms of products, quotients,
and powers. We do not give similar formulas for sums and differences because

there are no simple results for log,(v + v) and log,(u — v).

There are a few additional properties of logarithmic functions that are worth
noting. Let us evaluate log,x for x = 1 and x = b.

Let log,1 = c¢; then 4° = 1, and so ¢ = 0. Thus log,1 = 0.

Let log,b = d; then b% = b, and so d = 1. Thus log,b = 1.

These two special cases occur frequently, and so we label them as property (L4)

for easy reference.

(L4) log,1 =0 and lobb =1
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Since the log, function and the exponential function with base b are inverses
of each other, we have the following identities.

(L3) bs ==x for x>0

(L6) log,(b°) =x for xER.

Let us consider several examples illustrating the use of properties (L1)
through (L6) and Definition 3.6.

Evaluate each of the following and give answers in exact form.

a) log,8 b) log,,(0.0001) c) log,(41/2)

a) Let log,8 = r. By Definition 3.6, 2" = 8 = 23. Thus r = 3, and so log,8 = 3.

b) Let log,,(0.0001) = q. By Definition 3.6,10¢ = 0.0001 = 10%, and so ¢ = —4.

Thus log,,(0.0001) = —4.

c) Let log,(4 V2) = m. By Definition 3.6, (0.5)™ = 41/2 = 2221/2 — 25/2,

Hence (0.5)™ = 25/2, But (0.5) = (2) = or = 2-™, Thus 2-™ = 25/2, and so

m = —5/2. Therefore log,41/2 = —2.5. ed)

Given that log,3 = 0.6826 and log.6 = 1.1133 (correct to four decimal places),
evaluate the given expressions. Give answers rounded off to three decimal places.

a) log;2 b) log;(log,8) c) (log;12) + (log;3)

a) log,2 = log,(6/3) = log;6 — log;3 = 1.1133 — 0.6826 = 0.4307. Here we used
property (L2). Thus we have log;2 = 0.431.

b) From Example 1(a) we have log,8 =3. Therefore log;(log,8)
log:3 = 0.6826. Rounding off to three decimal places, we have log;(log,8)

0.683.

c) First we evaluate log;12. Using (L1) and (L3), we get

log12 = log;(22 - 3) = log,(22) + log;3 = 2log;2 + log,3.

Using log,2 = 0.4307 (from part (a)) and log,3 = 0.6826, we get

log;12 = 2(0.4307) + 0.6826 = 1.5440.

Thus (log;12) + (logs3) = (1.5440) + (0.6826) = 2.2619. Rounded off to three

decimal places, (log;12) + (log;3) = 2.262. i
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Combine 3log:2 + (3/2) log:8 — (1/2)log;32 and express the result as log, of a

number.

3log:2 + (3/2) log;8— (1/2) log;32 = log;23 + log,8%/2 — log,321/2

by (L3)

93. 83/2 93. 99/2
T log,(2-2) 7 log,2-2) 7 log;(2°) = log,32.

by (L1), (L2) by (E3) by (E1), (E2)

Therefore the given expression is equal to log,32. 5]

Suppose p and q are positive numbers. Write the following as linear combina-

tions of log,p and log,q.

 pVa)a) log,(pg?) b) logy
a) log,(pq®) = log,p + log,q® log,p + 3log,qT

  

by (L1) by (L3)

on(20) = oP)
T log,p — log,q'/? T log,p — Slog me

by (L2) by (L3)

Solve the equations:

a) logs(2x + 5) — logg(x) = 1 b) log,(2x — 5) — logs(x) = 1

 a) Applying (L2) to the given equation, we get logy(22+ 5) = 1. Using Defini-

tion 3.6, we get (2x + 5)/x = 3. Thus 2x + 5 = 3x, and so x = 5.

As a check we wish to see if 5 actually satisfies the given equation. Re-

placing x by 5 in the left-hand side gives

LHS = log,(2 +5 + 5) — log,(5) = log,15 — log,5 = log,> = log,3 = 1.

Hence 5 is a solution of the given equation.

b) Following a pattern similar to that in (a), we get x = —5. Now substituting
—5 for x in the left-hand side of the given equation gives

LHS = logy(—10 — 5) — logz(—5) = logz(—15) — logs(—5).

Since —15 and —5 are not in the domain of the log; function, that is,

logs(—15) and logs(—5) are not defined, we see that —5 is not a solution of

the given equation. Thus, there is no real number x that satisfies the given

equation. we
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Solve for x: log,,x + log,,(x + 48) = 2.

Applying (L1), we can write the given equation as log,[x(x + 48)] = 2.
Using Definition 3.6 gives x(x + 48) = 102. The quadratic equation

x2 + 48x — 100 =0

can now be solved by factoring: (x + 50)(x — 2) = 0. Hence —50 and 2 are solu-

tions to the quadratic equation.
We now check to see if these are solutions to the given equation. Replacing x

by —50 yields

LHS = log,,(—50) + log,,(—50 + 48) = log,,(—50) + log,,(—2).

This gives an undefined result since —50 and —2 are not in the domain of log,
and so —50 is not a solution.

If we replace x by 2 in the original equation, it is easy to verify that 2 is a

solution. Therefore the solution set for the given equation is {2}. =

Need to Check Answers

In Examples 6 and 7 we indicated a need to check answers resulting from inter-

mediate steps to see if they actually are solutions to the given equations. To see
the reason for this let us take a closer look at the steps involved in the solution of

Example 7.
Let f represent the function given by the left-hand side of the given equa-

tion:

f(x) = log,,x + log,,(x + 48).

The domain of f is given by

Df) ={xjx>0 and x + 48 > 0} = {x|x > 0}.

The first step in our solution involves the function g given by

g(x) = log x(x + 48).

The domain of g is given by

D(g) = {xx(x + 48) > 0} = {xj]x >0 or x << —48}.

Since D(g) # D(f), functions f and g are not equal. In fact, D(f) C D(g),

and so there may be values of x that are solutions to an equation involving g(x)

but are not solutions to the corresponding equation involving f(x). This is so in

Example 7.

Determine the domains of functions f and g given by

a) f(x) = logy(x? — 5x + 6) b) g(x) = logs(x — 2) + logs(x — 3)
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Solution Here we use the fact that D(log;) = {u|u > 0}.

a) D(f)={x|x2=5x+6>0} ={x|(x —2)(x —3) >0} ={x|x<20rx > 3}.

 Df): +—t+—¢
0 2 w

b) Dg) ={x[x —2>0 and x —3>0} = {x|x > 3}.

D(g): —t—
0

  

w
&

We conclude that D(f) # D(g), and hence functions f and g are not equal.
oi)

Exercises 3.3

In problems 1 through 15, evaluate the given expressions and give answers in exact form.
If the given expression is not defined, tell why.

 

1. log,(32) 2. log,(1/27) 3. log,(125//5)

4. log,(49//7) 5. log,,100 6. log,,1000
7. log,,(0.0001/+/0.0001) 8. log,(1/e) 9. log,(10/3)

10. log,(logs5) 11. log,(log,1) 12. logg(log,3)

13. log,(logs(1/5)) 14. log,(log,,0.1) 15. log,(41/2)

In problems 16 through 24, p and g are positive numbers. Write the given expressions as
linear combinations of log,p and log,q (see Example 5).

16. log,(p*q°) 17. log,(p'5q?) 18. log,((VP¢)/(p V4)

19. log,(p32 q¥/3) 20. logyEL) 21. log(A=).p>q

22. log,(bVpq) 23. log,(pq/b) 24. log,(%/(pq))

In problems 25 through 40, use the following to evaluate the given expression and give
answers rounded off to four decimal places:

log;2 = 0.43068, log,3 = 0.68261, log,7 = 1.20906,

log,11 = 2.18266, log,22 = 2.81359

25. log;6 26. log,63 27. log,75 28. log;2

29. log,66 30. log, \/44 31. log; \/54 32. log,(log,9)

33. log;(V/21) 34. log,99 35. log10.5 36. log,(\/14/5)

37. log,(logs25) 38. (logz9)(log;42) 39. (log;33) + (logs81) 40. log,70 — logz4

In problems 41 through 45, write each of the given expressions as log, of a number for the

given b (see Example 4).

41. logs5 + log;20 42. 2logzb — logg4 43. ilog4 + %log,27 — }tlog,64

44. 3log,3 — 21log,9 + 2log,5 45. }log,5 — 1log,20 + }log,81



Section 3.4 Using a Calculator to Evaluate Logarithmic Functions 183

In problems 46 through 55, solve for the indicated letter. When necessary, be certain to
check to see that your solution satisfies the given equation.

46. If log;x =4,thenx =. 47. If log,16 = 2, then b=.

48. If log,(&) =y, then y =__. 49. If log;(3x —1) =1,thenx=

50. If log;(4x) — log;(2x — 1) =2,thenx =_____.

51. If logs(2x) + logy(5x) = log;10, then x=

52. If log,(&) = —3,then b=____. 53. If log;25 + log,27 = 2x + 1, then x=

54. a) If log,x% — log,(x + 6) =0,thenx =_____. 55. If log;ox + log,o(x +3) = 1, thenx = _____

b) If 2log,x — log,(x + 6) =0, then x =.

In problems 56 through 67, determine whether the given statement is true, false, or

meaningless. A statement is meaningless if any part of it is undefined. Give reasons for

your answers.

 

56. log,9 — log;2 = log,(4.5) 57. log;(3) + log;2 = log:3

1-3
58. log,(3% + 42) = 21og,3 + 2log4 59. log; 5 ) = log,(1 — V3) — log,2

60. log,,100 — log,,0.01 = 4 61. log(3) = logs3/log;2

262. lo (2—)=1 (V5 — 1) — log,28s V5 + 1 gs 85

63. log,(log,3) = —1 64. logs(1 + log,4) =1

65. If f(x) = logg(x? — 4) and g(x) = logg(x — 2) + logg(x + 2), then f = g.

66. If f(x) = logg[(1 — x)(1 + x)], then f(x) <0, for all x in D(f).

67. If f(x) = log;(=+2) and g(x) = logs(x + 2) — logy(x — 3), then f = g.

In problems 68 through 76, state the domain of the given functions.

68. f(x) = log,o(1 + x) 69. f(x) = log; V/25 — x? 70. g(x) = logs(—x)

71. h(x) = logs(—x2 + 8x — 15) 72. f(x) = logs(x — 4) + logx 73. g(x) = logs[(x — 4)x]

74. f(x) = log,(1 — |x|) 75. h(x) = log,(x + 1) — logyx 76. f(x) = log,(e~?)
 

3.4 USING A CALCULATOR TO
EVALUATE LOGARITHMIC FUNCTIONS
In the examples of the preceding section, we were able to evaluate logarithms

by converting to exponential form. For example, to evaluate log, 27 we

let log, V/27 = y. This is equivalent to 3% = 1/27 = 33/2. Thus y = 3/2, and

SO log, 27 = 3/2. However, attempting a similar procedure to evaluate

log;6.4 = x, we have 3° = 6.4. Since 6.4 cannot be expressed as a simple power of
3, we are unable to complete the solution as we did in the first example. In this
section we introduce techniques by which a calculator can be used to solve such

problems.
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Common and Natural Logarithms
For computational purposes, the base of logarithms that is frequently used is
b = 10. Since it is cumbersome to write the subscript 10 in log,, each time, we
shall write log and it is understood that the base is 10. For theoretical as well as
computational purposes,it is an interesting fact that the transcendental number
e = 2.718281828. . (see Example 3 of Section 3.2) occurs naturally as a base of
logarithms in the study of calculus. To avoid writing log, each time, we replace it
by In. Thus we have the following notation.

 

log,,x 1s written as log x;

logx is written as In x.
 

The notation adopted here is consistent with that appearing on scientific calcu-
lators.

Logarithms with base 10 are called common logarithms, whereas those with
base e are called natural logarithms.

Logarithms With Calculators
Most scientific calculators have both and (Cn keys. We shall consider sev-
eral examples that will illustrate the use of these keys. Some calculators have
the (Un) key but not the key; we shall see that this is sufficient for our
purposes.

The and (Un) keys represent functions of one variable. If a positive
number x is entered into the display of the calculator and then the (in key is
pressed, the result In x will appear almost immediately in the display; it is not

necessary to press the (=) key on algebraic calculators. Similarly the key
gives log x for any positive number x in the display.

Evaluate each of the following, correct to four decimal places.

=r)a) In 2 b) log 0.0037 c) In( 2-Vi7Ath19 o 3
a) Pressing the keys (2) and (in) gives In 2 = 0.6931.

b) If the calculator has a key, then entering 0.0037 into the display and

pressing gives log 0.0037 = —2.4318. If there is no('?s] key, log 0.0037 can
be evaluated by using Eq. (3.22), given below, with & = 10 and u = 0.0037.

1+ V5 1+ V5
5 ) we first compute —g and, with the result in

1+ V5
2

c) To evaluate In(

the calculator display, press the (Un key. This gives In( ) = 0.4812.
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(=)
case the calculator indicates Error; the reason is that (2 — \/17)/3 is a

negative number and so is not in the domain of the In function. That is,

(=) 1s undefined. fa

d) To evaluate In we follow a procedure similar to that in (c¢). In this

Change of Base
In using a calculator to evaluate log,u, where b is a positive number and b # 1,it
is necessary to convert to logarithms with base e or base 10. This can be done as

follows:

Let log,u = t, which is equivalent to b' = u. Taking In of both sides of this

equation gives In b* = In u, which is equivalent to saying #(In b) = ln u. Thus

t = In u/In b. Therefore we have the following formula, which expresses log,u in
terms of In © and In b:

_ Inu
log,u = nb (3.22)

Similarly, using log in place of In in the above discussion we get

log u
°° 3.23
log b ( )

log,u =

Evaluate each of the following, and give answers rounded off to four decimal

places.

a) log,7.5 b) log,(0.0348)

The formula given in Eq. (3.22) or (3.23) can be used in each of these problems.

We choose Eq. (3.22) since some calculators have a (in key but not a key.

 _In75 _
a) log;7.5 = m3 = 1.8340

b) log,(0.0348) = 0.0348 — —2.0865 nn

Inverse Logarithms

In the above examples all the problems were of the following type: Given a
positive number u, find log u or In u. We are now interested in the inverse prob-

lem: Given the value of logu or Inu, determine u. For example, given that
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log u = 0.4735, we wish to find u. The notation that has been traditionally used

is u = Antilog 0.4735. However, since this actually involves the inverse of the log
function, we shall denote it by uz = 1og—10.4735. This is read, “u is the inverse log
of 0.4735.”

As another example of notation, if In v = 1.2654, then we can write that

v = In~11.2654, and say, “v is the inverse In of 1.2654.” *

So far, in the two examples being considered here, we merely introduced
some notation. Let us proceed to actually determine u and v. Since the log
function is defined as the inverse of the function given by f(x) = 10%, the inverse

of the log function must be this exponential function. Therefore, if

log u = 0.4735, then

u = log=10.4735 = 100-4735,

This is precisely what Definition 3.6 tells us; log u = 0.4735 implies u = 100-4735,
We can now determine u by using a calculator, as follows:{

1. If your calculator has a key, then evaluate 10%473% by pressing
after entering 0.4735 into the display. This gives u = 2.9751 (to four places).

2. If your calculator does not have a but has an key, then with 0.4735
in the display, pressing the and keys gives u = 2.9751.

Similarly, the In function and the function given by f(x) = e® are inverses of
each other, so the solution of Inv = 1.2645 is v = In—11.2654 = e1-265¢, Thus v

can be found pressing the and (Cn) keys or by using the key after
entering 1.2654. Therefore v = 3.5445 to four decimal places.

The discussion above illustrates the following:

and keys are inverses of each other;

Ce Jand (Cn keys are inverses of each other.

Thus we have the following special cases of properties (5) and (L6).

(L7) 1082 — x for all x >0 and log(10%) = x for x € R.
(L8) er =x forall x >0 and In(e*) =x for x € R.

 

The notation adopted here is consistent with that used for inverse functions in general (see Section
1.8).

If your calculator does not have and keys but has (Cin Jand keys, proceed as follows:

Express the original problem, log u = 0.4735, in equivalent In form by using the change-of-base

formula given in Eq. (3.22). That is, with b = 10, In ¥ = (In 10) log «. Therefore In = (In 10)logu =

2.30259 log u = (2.30259)(0.4735) = 1.0903. Thus u = 19993 which can be evaluated by using the

key, or the and (in) keys.
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To evaluate 10* or e, first enter u into the display. Pressing

or and gives 10* in the display; (3.24)

or and (Cn) gives e* in the display. (3.25)

In each of the following, solve for v, correct to four decimal places.

a) v = log=10.243 b) Inv = 1.345 c) logv = —1.4382

d) e’ = 0.456 e) 10° = 1.4837 £) In((2v +1) — In 3 = 1.48

a) Since v = log=10.243 = 10%243, following instructions stated in (3.24) gives
v = 1.7498.

b) Inv = 1.345 is equivalent to v = In=11.345, or v = e345, Following (3.25)
gives v = 3.8382.

c) log v = —1.4382 is equivalent to v = log—1(—1.4382), or v = 10-14382, Using
(3.24) gives v = 0.0365.

d) e® = 0.456 is equivalent to v = In 0.456. Enter 0.456 and press the (in key to

get v = —(.7853.

e) 10° = 1.4837 is equivalent to v = log 1.4837. This can be evaluated by using
the (les) key to get v = 0.1713.

If the calculator does not have a key, then take In of both sides of the

given equation to get vin 10 = In 1.4837. Thus v = In 1.4837/In 10, which

can be evaluated by using the (Cn and (5 keys.

f) The given equation is equivalent to In[(2v + 1)/3] = 1.48. Thus
(2v + 1)/3 = e148, and so v = (3el4® — 1)/2. Now use (3.25) to find e148 and

then continue with the remaining arithmetic operations. This gives
v = 6.0894. Va}

Evaluate each of the following. Give answers in exact form.

a) ein b) 10-8? c) log(10-49)

a) By property (L8), el® 5 = 5.

b) By properties (L3) and (L7), 10-085 = 105" = 5-1 = 1,

¢) By property (L7), log(104°) = —4.5. =

Solve the equation

2In(2v — 1) + 2lnv = 1. (3.26)

Dividing both sides of the given equation by 2 and then using property (L1), we
get In[v(2v — 1)] = 1/2. Using Definition 3.6 gives v(2v — 1) = e¥/2 = /e. Thus
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we have a quadratic equation to solve,

202 —v — Ve =0. (3.27)

Applying the quadratic formula gives

_1xV1+8Ve
= 1 .

Evaluating by calculator, we get 1.1917 and —0.6917 as solutions to Eq. (3.27). It
is necessary to check these to see if they are solutions to the given equation.
Replacing v in Eq. (3.26) by each of these values, we can easily see that 1.1917 is
the only solution. f

 
1

Find the domain of f(x) = In (£ : ) Then draw a graph of y = f(x).

x +1

Xx
 o(f) = 1] > 0} = {ax >0 or x< —1}.

To draw a graph ofy = f(x), first make the following table. Then draw the graph
shown in Fig. 3.7.

 

-2 -15 -11 -1.01 -1001 0.001 0.01 O01 05 1 2 3 10
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Fig. 3.7

Y=LN(X+1)/X)

y

IN
N
o

|

L110 ql free

8-6 IN? 2 4 6 8

|   
 Graph off(x) = In (221)
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We see that x = —1 and x = 0 are vertical asymptotes, and y = 0 is a hori-
zontal asymptote for the curve in Fig. 3.7.

Solve the equation

5% = 3-412, (3.28)

Give answers correct to three decimal places.

Taking In of both sides of Eq. (3.28) gives In 5? = In (3 - 41-?). Applying proper-
ties (L1) and (L3), we get

xIn5=1In3 + (1 — x)In4,

xIn5=In3 +1n4 —x1In4,

xIn5 +xIn4 =1n3 + In4,

x(In5 4+In4) =1In3 + In 4,

In3 + 1n4

*“+4

We can now evaluate this expression by using a calculator. However, we can

simplify slightly by using (L1) to get x = In 12/In 20. Using a calculator gives
x = 0.829. Substituting 0.829 for x in Eq. (3.28), we can check to see that 0.829 is

a solution. a

Find the roots of the equation e=* — x = 0 correct to two decimal places.

In this example x appears in a linear term as well as in the exponent. Such

equations are more difficult to solve than others considered in this section. If we
write the problem as e? = x and take In of both sides (as we did in Example 7),

the resulting equation is —x = In x. However, this does not help in solving for x.
Therefore we use a different approach and solve by a process of estimation.

We can get information about how many roots there are and their approxi-
mate values by drawing graphs. Suppose the graphs of y = e=* and y = x are
drawn on the same set of coordinates, as shown in Fig. 3.8. Let (¢, d) denote the

point of intersection of these two curves; then d =e and d =c¢, so e* =c.
Hence c is a solution to the equation e=? = x.

Figure 3.8 shows that there is only one point of intersection. From the graph
a reasonable estimate of c is 0.6. Evaluating e=? for x = 0.6 gives e~%6 = 0.55, and
so it is clear from the graph that cis to the left of 0.6. We now try x = 0.5, and so

e0% = 61. Thus we see that c¢ is to the right of 0.5. Trying 0.57 gives
e057 = 0.57. This tell us that x = 0.57 is the desired solution to two decimal
places. (See Problem 70 of this section for an interesting way to solve this prob-

lem.)
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Y=EXP (=X), Y=X

 

Fig. 3.8 __L
o
t
—
—

 
Graphsof y=e™* and y = x i

Exercises 3.4

If your calculator should indicate Error while you are solving any problem in this set,

determine the reason.

 

In problems 1 through 12, evaluate the given expression and give answers rounded off to

four decimal places.

1. In5 2. In 0.47 3. log 1.87 4. log 0.0435

5. In (1.56% + 2.732) 6. log (2.43/5.75) 7. In (2 — /5.43) 8. log[(2 — V/6)/5]

9. log [(1 + V/3)/8] 10. log,6 11. log,3.47 12. log,(V/3 — 1)

In problems 13 through 18, evaluate and give answers in exact form.

13. eln (1.43) 14. 10Qlog (2.54) 15. log (1070-42)

16. In (e32) 17. en? 18. e302

In each of the problems 19 through 42, determine the value of v correct to four decimal

places.

19. v = log—1(0.478) 20. v = log—1(—0.587) 21. Inv = 1.532 22. v = In~1(1.378)

23. logv = —0.372 24. lnv=1- V3 25. 10° = —0.473 26. e’ = 0.875

27. e¥ = 1.238 28. e? = —0.471 29. 10= 1.378 30. e2’ = 0.431

31. B+) = 0.475 32. v = 10-047 33. v = e071 34. evtl = 3e2v-1

35. e?~1 = 1.362 36. 10-“+D = 3.473
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37. log (3v + 4) =log2 + log (v? + 1) 38. In(2v — 5) —In7 = 243

39. In (v — 5) + In2.43 = 1.56 40. In (e*-1) = e~16

41. In (el™3) = 4 42. InQv+1)+lnv=1

In each of the problems 43 through 50, determine whether the given statement is true,

false, or meaningless. A statement is meaningless if any part of it is undefined. Give
reasons for your answers.

43. 10188 — 8 44, em3 = 1/3 45. end — 1/3 46. log (log! —4) = —4
47. In"1(In 3) = 3 48. en 6-In2) — 3 49, en 23 — gq 50. In (e2 + e3) = 5

In problems 51 and 52, find the domains of the functions.

51. a) f(x) =n (x — 2) b) g(x) = log(x?2 — x — 2) — log(x + 1)

52. a) f(x) = log(x + 1) + log(x — 1) b) g(x) = log(x? — 1)

In problems 53 through 59, draw graphs of the given functions. In each case label the

coordinate intercept points.

53. f(x) =n (x — 2) 54. f(x) = log (x2 — 1) 55. f(x) = log (—x)

 56. g(x) = 1 + Inx 57. g(x) =Inx — In (x — 1) 58. h(x) = In e = )

59. f(x) = ln e*1

In problems 60 through 63, solve the given equations. Give solutions rounded off to two
decimal places.

60. 8 = 3-5 61. 5* =3-81-¢ 62. e? —2x=0 63. e2% —x=0

In problems 64 through 69, functions f, g, and A are given by

f(x) = Inx, g(x) =e, h(x) = x2.

Express answers correct to three decimal places.

64. Evaluate (f + g£)(1.25) 65. Evaluate (go h)(0.5)

66. Evaluate (gof)(0.21) 67. Evaluate (A of)(0.68)

68. For what value of x is (fo g)(x) = x?

69. For what value of x is (go f)(x) = x?

70. In Example 8 we found the root of e* — x = 0 by an estimation process. Try the

following with your calculator. Enter any number into the display of your calcula-

tor, and then press the keys in the given sequence.

a) If your calculator has an key, press (+=) (Ce) Ce*J, and so on. Thatis,

press the change-sign key and the key repeatedly. After each look at

the display. Continue until you see something interesting, and then given an

intuitive explanation of what is happening by using graphs similar to the one in
Example 8.

b) If your calculator does not have an key, then carry out the instruction of

(a), but replace the key by and (in keys. This is equivalent to(*), as
we saw in (3.25).
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APPLICATIONS OF EXPONENTIAL FUNCTIONS
There are many instances in real life in which experimental evidence indicates
that the quantity of a certain substance varies exponentially with respect to
time. For example, the population of a bacteria culture, such as yeast or E. coli,

increases when the bacteria divide. When the population is small, it will tend to
increase slowly, but as time goes on, the population becomes larger, and the rate
of increase becomes greater. This is an example of a growthprocess, in which the
bacteria population can be described as an exponential function of time.

As another example, the disintegration process of a radioactive substance is
such that all atoms have an equal chance of disintegrating. As time passes, the
number of atoms present becomes smaller, and the rate of disintegration is de-
creased. This is an example of a decayprocess, in which the amount of material
present can be expressed as an exponential function of time.

When money is invested in a bank account in which interest is compounded
continuously, the accumulated value of the investment ¢ years later can be ex-
pressed as an exponential function of ¢{. This is another example of a growth
process.

An exponential growth or decay process can be formulated mathematically
as follows. Suppose A represents the amount present at any time ££. Then A is
given by the formula

A = Age, (3.29)

where A, is the amount present at time ¢ = 0, and & is a constant that can be
determined for any particular growth or decay process. For instance, in the ex-

ample of bacteria population, k is a positive number determined experimentally
and is dependent on the unit of time being used, the kind of bacteria, and the

nutrient. For a growth process k is a positive number, but for a decay process &

is a negative number.
The following examples illustrate application of Eq. (3.29) in specific

growth or decay processes.

The growth of a culture of bacteria E. coli in a solution containing inorganic
salts and glucose is being observed. At the start, £ = 0, it is determined that the

population consists of 10% bacteria per milliliter. One hour and 12 minutes later

the number is doubled. Let N represent the number of bacteria per milliliter at
any time ¢ hours after the start of observation.

a) Determine the formula that gives N as a function of

b) How many bacteria per milliliter will there be at the end of two hours?

c) How long will it take to have 107 bacteria per milliliter?
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Solution a) Applying Eq. (3.29) gives

N = Nek. (3.30)

The value ofN is determined by using ¢ = 0, N = 10%, and so N, = 106. Thus
N = 10%¢*!. To find k we can substitute the given information, ¢ = 1.2 hours,
N = 2-108 into this equation to get 2 + 106 = 108e!-2*, Thus we need to solve
2 = e1% for k. We can do so by applying the In function to both sides to get

In2 =Ine'? = 12% Ine = 12k, kh =12
1.2

Substituting into Eq. (3.30) gives*

N = 108 elin2)/1.21¢ (3.31)

b) Replacing ¢ by 2 in Eq. (3.31) gives N = 3 174 802.

¢) Replacing N by 107 in Eq. (3.31) and solving for ¢, we get

107 = 106 eln2/121 10 = lm2/12 p10 = 02—2¢
1.2

12In1
t = 1.2In10 = 3.986 hours.

In 2

Thus at the end of 3 hours and 59 minutes, the number of bacteria per milli-
liter will be increased tenfold. 2

Carbon Dating

In chemistry and physics we learn that everything in nature is made up of atoms
and each atom has a nucleus. Most materials are stable, which means that if

they are left undisturbed they do not change with time. There are some materi-
als (such as uranium) which change constantly by the emission of rays of energy
and streams of atomic particles from the nuclei. Such materials are called radio-
active, and we say that the nuclei decay.

Any microscopic sample of radioactive material contains a large number of
radioactive nuclei. These do not all decay at once, since the decay is a random
process that occurs over a period of time. The quantitative measure of the rate of

decay of a given radioactive isotope is given in terms of its half-life. The half-life
of an isotope is the time (in years, days, or seconds) that it takes for half of the

given sample to decay. For example, the half-life of carbon 14 is 5730 years. If at

some time a piece of petrified wood contains 10 grams of 4C, then after 5730
years it will contain 5 grams; after 11460 years it will have 2.5 g of *C, and so on.

Some radioactive isotopes decay very rapidly while others take a long time.
For example, the half-life of uranium 238 is 4.5 billion years while that of polo-

 
. /1.2 . .* Since en 2/1.2t — t/1.2In2 — In"? _ 21/12 we see that N is also given by N = 106 .92t/1.2,
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nium is only 0.00016 seconds. The following illustrates an application of radioac-
tive decay which is sometimes referred to as carbon dating.

The element carbon has three isotopes 12C, 13C, and 4C; the first two of
which are stable, but 4C is radioactive. The loss of #C through radioactive
decay is compensated for by cosmic radiation so in living organisms the ratios

between the three isotopes are maintained at approximately 100 to 1 to 0.01 for
12C to 13C to #C. These are the ratios for any living organism, but when an
organism dies, the number of #C atoms decreases, and the amount A of 4C
present t years after death is given by

A = Ager. (3.32)

This equation forms the basis for the method used by archeologists to estimate
the age of unearthed bones. That method is illustrated in the following example.

a) What percentage of *C remains 4000 years after the death of an organism?

b) The ratio of 12C to 14C in the bones of a skeleton is measured and found to be
100 to 0.004. Determine the number of years since death occurred.

First determine k by substituting 5730 for ¢ and 0.5 A, for A in Eq. (3.32):

0.5A, = Ae730,

Solving for k gives k = (In 0.5)/5730 = —0.000121. When we replace £ by this
number, Eq. (3.32) becomes*

A = Aelm 0.5)/5730]¢_ (3.33)

a) Let A, represent the amount of #C present when ¢ = 4000. Since A, is the
amount of 14C present at ¢ = 0, the percent of 14C at the end of 4000 years is
given by (A,/A,) - 100. Substituting 4000 for ¢ into Eq. (3.33), we get

— 400011 0.5)/5730A =Age :

Dividing both sides of this equation by A, and multiplying by 100 gives

A, 100 = 100e40001n 0.5/5730 — 1.6.
Ag

Hence about 62% of the 14C isotope still remains in the bones of the skeleton
after 4000 years.

b) Here we assume that death occurred at time ¢ = 0. Suppose ¢, represents the
number of years that elapsed until the skeleton was discovered. At time ¢ = 0
the ratio of 12C to 4C is approximately 100 to 0.01, and at time ¢, the ratio is
found to be 100 to 0.004. Thus the proportion of 4C still remaining after ¢,

 

3 /57 . .Since ein 0.5/5730¢ — g(t/5730In 0.5 — In(0.5¢/5730) _ (5t/5730 — (3)1/5730 = 2-t/5730 A is also given by

A =A. .2-t/5730
0 .
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years is 0.004/0.01 = 0.4, or 40 percent. That is, when ¢ = t,, A = 0.4 A. Sub-

stituting this into Eq. (3.33) gives

04 A, — A,eln 0.5/57300t,

Solving this equation for ¢,, we have

_57301In 04
1 mos Con

Thus the skeleton is approximately 7600 years old. Vd

Another type of problem in which exponential functions occur is computa-
tion of compound interest.

Suppose $1000 is invested at a bank that pays interest at the rate of 8% per
year.* Find the value of the investment at the end of one year if interest is
compounded

a) annually b) semiannually ¢) quarterly d) daily e) continuously

Let A represent the value of the $1000 investment at the end of one year. Use the
formula where interest equals principle times rate times time.

a) A = 1000 + 1000(0.08)(1) = 1000(1 + 0.08) = 1080

b) At the end of the first six months, the investment is worth

B, = 1000 + (1000)(0.08) > — 1000 (1 + 008),

We now consider the amount of B; as being invested for the next six months
to get

2
A =B,+ B,(008)1 = B(1 + 058) — 1000(1 + 008) — 1081.60.

¢) We can follow the procedure used in (b) and compute the successive values of

the investment at the end of 3, 6, 9, and finally 12 months. This would give

4

A= 1000(1 4 008) — 1082.43.

d) Following a procedure similar to that in (b) and (c), we get

0.08 \365
A= 1000(1 + 28) = 1000(1.08328) = 1083.28.

 

The interest rate is usually stated as a percent per year. For example, for an 8 percent interest,

r = 0.08.
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e) Suppose we continue the procedure illustrated above and determine the
value A,, of the investment when interest is compounded m times per year.
We get

A, = 1000(1 + 208)"
m

We now ask: “What happens to A,, when m becomes large?” The problem here
reminds us of the problem discussed in Example 3 of Section 3.2, in which we saw
that f(x) = (1 + x)1/* approaches the number e as x approaches zero. In order to
express our problem in this form, let x = 0.08/m; then m = 0.08/x, and we get

A,, = 1000(1 + x)°%/c = 1000[(1 + x)V/*]00%8,

Therefore, when m — oo, x — 0, and so A,, — 1000e%%8 = 1083.29. Therefore,

when interest is compounded continuously, the value at the end of one year of

the $1000 investment is A = 1000e%°8 = $1083.29. [|

The preceding example suggests the following generalizations.

Suppose a sum of P dollars is invested at an interest rate of r. The
value A of such an investment at the end of ¢ years is given by the
following.

1. If interest is compounded m times per year, then

t

A= A(1 + Ly". (3.34)
m

2. If interest is compounded continuously, then

A = Pe. (3.35)

Example 4 Suppose $2400 is invested and the rate of interest is 8.75 percent. Find the value
of this investment at the end of 10 years if interest is compounded

a) semiannually b) quarterly c) continuously

Solution Here t = 10 and interest at 8.75% gives r = 0.0875.

a) We can use Eq. (3.34) with m = 2 to get

A= 2400(1 + pip — 5651.20.
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b) Using Eq. (3.34) with m = 4, we get

0.0875
4
 

4:10
A= 2400(1 + ) = 5703.25.

c) Here we use Eq. (3.35) to get

A = 24000087510 — 575730.
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In Example 1, use the formula N = 106 - 2/12 to get the answers to parts (b) and (c).

Assume that bacteria reproduce according to the law described in Example 1, that

is, they double in number every 1.2 hours. Suppose a solution contains 10 000 bacte-
ria at the start of an experiment. How many bacteria will there be at the following
times?

a) 12 hours later b) one day later c) two days later

. Using the method in Example 2, determine the following.

a) What percentage of 1*C remains 10 000 years after death?

b) Find the “age” of a skeleton in which the ratio of 12C to 14C is found to be 100 to
0.001.

. How many years will it take for a given amount of 1#C to decay to one-fourth of the

given amount?

. A chemist finds that in three days a sample of iodine-131 decays to 77 percent of the

original amount. Find the half-life of 1311,

. Radium 226 is a radioactive isotope of radium with a half-life of 1620 years. A
sample of 226Ra contained 10 grams in 1900. How many grams will there be in the
following years?

a) 2000 b) 3000

. Strontium-90 is a radioactive isotope of strontium that occurs as a component in

the fallout of thermonuclear explosions and that contaminates the soil. Thus it
becomes a radiation hazard through progressive concentration in the bones of peo-
ple and animals. The half-life of %Sr is 29 years. What percentage of the Sr pro-

duced by a thermonuclear test in 1965 will still be present in 1985?

. The population of a certain city is increasing at an exponential rate, given by Eq.

(3.29). In 1950 the population was 120 000, and in 1970 it was 164 000. What is the

expected population in each of the following years?

a) 1990 b) 2050
. A biologist finds that in a certain nutrient solution the number of bacteria tripled in
two hours. How many times the original number will there be at the end of each of
the given periods?

a) four hours b) five and a half hours

Given that $300 is invested at 8} percent interest for 20 years, find the value of this

investment if interest is compounded

a) semiannually b) quarterly c) continuously
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11. How much money should be invested at 814% so that it will be worth $6000 twelve
years from now if interest is compounded continuously?

12. What rate of interest is required so that $4500 will be worth $6400 in five years if

interest is compounded

a) continuously? b) quarterly?

13. A father wants to purchase a savings certificate to be used for his son’s college
expenses 12 years from now. He has $4000 to invest and has a choice between two

certificates, one that pays 83% interest compounded semiannually and one that

pays 81% compounded continuously. Which plan would earn him more and by how
much?

14. What rate of interest is necessary so that an investment will double itself in eight
years when interest is compounded continuously?

15. Janet has a $3000 savings certificate that her mother purchased for her 10 years ago.
It pays 6.5% interest compounded continuously. She needs $6000 to buy a car and
wants to use the money from the savings certificate to pay cash for it. Does she have
enough? If not, how much longer will she have to wait until the certificate is worth
$6000? If it is enough, how much money will be left over after she pays for the car?

16. How many years does it take for a bank savings account to triple if interest is paid at
the rate of 7.5% and is compounded continuously?

17. A sum of $2500 was deposited 10 years ago in a savings account that paid 6.5%
interest compounded continuously. The bank has just decided to increase the rate

of interest to 6.75%. How much will there be in the account five years from now?

18. An inflation rate of r percent per year means that the cost of an item is r percent
more than a year ago; thus the cost at the end of ¢ years can be calculated by using

formula (3.34), where m = 1. That is, A = P(1 + r)!. Assume that the rate of infla-

tion is 8% and that you had to pay $50 000 for your home in 1980. What would be the
cost of a corresponding home in the year 2100? Before you perform any calculations,

make a guess of what you think the answeris.

19. A sum of money is invested with interest of r percent compounded annually.

a) Complete the following table giving the number N of years it takes an invest-

ment to double in value. Give answers rounded off to the nearest whole number.

b) Multiply r and N,as indicated in the third row of the table, and discover the Rule

of 72.

 

 

 

    
20. Complete a table similar to that of problem 19, but assume that interest is com-

pounded continuously.
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3.6 Looking Ahead to Calculus

Example 1

Solution

In Example 3 of Section 3.2, we introduced the number e as the limiting value of

the function f given by f(x) = (1 + x)1/% as x approaches 0. This is denoted by

lim 1+ x)" =e =271828...
r-

In this section we consider other problems of this type and continue the discus-
sion of Section 2.7, in which we introduced the notion of slope of a curve. The
following examples illustrate our intuitive numerical approach to limit concepts.

Determine lim rr - 1 Give answer rounded off to two decimal places.
r-0

 

Let f(x) = (2° — 1)/x, and make a table giving values of f(x) corresponding to

values of x (both positive and negative) approaching 0.* The values of f(x) are

rounded off to three decimal places.

 

 

    

x 0.5 0.1 001 0.001 ~--- -0.5 -0.1 -0.01 -0.001

f(x) 0.828 0.718 0.696 0.693 --- 0.586 0.670 0.691 0.693

2r —-1 From the values seen in the table, we conclude that lim = 0.69. .
-0

Frequently we are interested in determining the behavior of a function at

extreme values of the independent variable. For instance, if x assumes large
positive values, do the corresponding values off(x) approach a fixed number? As
an example, consider the function given by f(x) = 2x2/(x? — x). For large values

of x, both the numerator and denominator are large numbers, and the corre-
sponding values of f(x) are not immediately obvious. However, in this case we
can divide the numerator and denominator by x2, and so f(x) can be written as

_ 2

==wm
As x becomes large, 1/x approaches zero, and we conclude that f(x) approaches
2. This is denoted by

2lim f(x) = lim —2%
T—>0 ro X° — X

= 2. 

 

Note that we do not include extremely small values of x in the table. Calculators cannot handle such

numbers without introducing round-off errors.
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In general, we cannot get a formula for the given function in the form that
will allow us to evaluate lim f(x), as we did in the above illustration. However, in

r—0

many instances by considering numerical values of f(x) for large values of x, we
can get a good idea of the limiting value of f(x).

Suppose f, g, and A are functions given by

4 T 2z

fla) = (1 +1, gx) = (1+1, hx) = (1+) :
x x x

Evaluate

a) lim f(x) b) lim g(x) c) lim h(x)
r=00

Let us first make a table giving values of f(x), g(x), and A(x) for large values of

x. The entries in the last two columns are given to six decimal places.

 

x 10 100 1000 10000 100 000 1 000 000
 

f(x) 1.464 1.041 1.004 1.004 1.000040 1.000004
 

g(x) 2.594 2.705 2.717 2.718 2.718268 2.718280
    h(x) 6.728 7.316 7.382 7.388 7.388982 7.389049
 

From the values of f(x), g(x), and A(x) given in the table, we conclude:

1\2

a) lim (1 + Ly —1 b) lim (1 + Ly — 2.71828 c¢) lim (1 + 1) * = 7.38005
I-00 x I—0 x roo

The limiting value in (b) appears to be the number e; in fact, it is e, as will be

seen in calculus. Similarly, the limiting value of A(x) appears to be e? (check by
evaluating e?). =

In Example 2 one is tempted to use the following intuitive argument:
1 + (1/x) approaches 1 as x — oo, and so in all three cases we have a number

very near 1, and 1 to a power should approach 1 as a limiting value. However,
there is an important difference: the exponent off(x) is a fixed number, whereas
in both g(x) and A(x) it involves a variable. Our intuitive argument leads us to

the correct result for f(x) but not for g(x) or A(x).

Find the slope of the line that is tangent to the curve y = 3% at the point P:(0, 1).
Draw a graph and show the tangent line L.
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Let f(x) = 3%. The slope m of the tangent line at P is given by

. fO+h)—fO) . 3-1
m=lim———F= lim

h—0 h h—0

(see Eq. (2.17), page 148). To evaluate this limit we make a table giving values of

(3" — 1)/h corresponding to values of A (both positive and negative) near zero.
Note that the table does not include extremely small values of A since such

numbers would introduce calculator round-off errors.

From the values of (3" — 1)/A given in the table we conclude that m = 1.099

(to three decimal places). The graph is shown in Fig. 3.9.

 

 

 

 

   
 

 

 

h 0.5 0.1 0.01 0.001 0.0001 --- —-0.1 —0.01 —0.001 —0.0001

h

3 = ! 1146 116 1.105 1.0092 10987 --- 104 1.093 1.0980 1.0986

y=3"X

y

3 eee

L

2 —

1
SS P: (0,1)

Fig. 3.9 J | | | | [

-3 2 7 0 1 2 3

—-1 —

Graph of y = 3% a

Example 4 Find an equation of a line that is tangent to the curve y = 4e~* at the point

P:(1,4/e). Give answer with numbers rounded off to two decimal places.

Solution The slope m of the tangent line is given by

. fa +h) —fQ) . 4e140 _ 4-1
m —= Im—m—m = im————|

h—=0 h h—0 h

Let us make a table giving values of the difference quotient for values of x near

Zero.
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h 0.1 0.01 0.001 0.0001 +--+ —0.1 —0.01 -0.001 —0.0001

MBA —140 —146 —1.4708 —14715 --- —1556 —148 —14723 —1.4716

From the values appearing in the table we conclude that m = —1.472
(to three decimal places). Hence an equation for the tangent line is

y — (4/e) = —1.472(x — 1). This can be written as y = —1.47x + 2.94, where

the numbers are rounded off to two decimal places.

Exercises 3.6
 

In problems 1 through 10, determine the given limits. Give answers correct to two deci-
mal places (see Examples 1 and 2).

    

 

1. lim¥=1 2. lim 3= 1 3. lim &-—1 4. lim & =
z-0 X z-0 X z-0 X -1 Xx — 1

Bt or Vix— .
5. im 6. lim (1 + 2x)V/* 7. lim —-*—1 8. lim (1 _ 2)

2-0 x 2-0 7-3 x —3 Too x

9. lim (xe) 10. lim Y2-*—1
om m1

In problems 11 through 15, a function f and a point P are given. Find the slope of a line
that is tangent to the curve y = f(x) at P. Draw a graph and show the tangent line. Give

answers rounded off to two decimal places (see Example 3).

11. f(x) = e®; P:(1,e) 12. f(x) = e%; P:(—1,¢e)

13. f(x) = In x; P:(1,0) 14. f(x) = Inx; P:(2,In2)

In x
15. f(x) =— P:(1,0)

In problems 16 through 20, a function f and a number c¢ are given. Find an equation of

the line that is tangent to the curve y = f(x) at the point P:(c, f(c)). Give answers with
numbers rounded off to two decimal places (see Example 4).

16. f(x) = 2e%, ¢c=0 17. f(x) =lnx; c =e

18. f(x) =xlnx; c=1 19. f(x) = xe%; ¢c = —1

20. f(x) = In(—x); ¢c = —-2
 

Review Exercises

In each of the problems give answers in exact form wheneverit is reasonable to do so.
Otherwise express results in decimal form rounded off to three decimal places. In prob-
lems involving undefined quantities, give reasons for an “undefined” answer.

In problems 1 through 15, evaluate the given expression.

1. log 8 2. log 1/43 3. In23 4. log(V2 + V3)
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5. In(36%) 6. log(In 48) 7. In(log 48) 8. in(22V6)

9. log.8 10. log,(\V5 + V12) 11. log,(log 24) 12. logg(e3)

13. log(ln 0.6) 14. log,(1 — V2) 15. log,(27/3)

In problems 16 through 24, the functions f and g are defined by f(x) = e® + e3;
g(x) = 3In(2x — 1). Evaluate the given expressions.

16. (0) 17. (f-£)(0.2) 18. (gof)(—2) 19. f(—=5/2)

20. g(4) 21. (f-8)(2) 22. (f/8)(3) 23. (f + 8)(V2)

24. (fog)(V/3)

In problems 25 through 36, solve the given equations.

25. Ine? = 3 26. loge* = 3 27.1 -In(2x +1) =3

28. log(lnx) =1 29. In(logx) =1 30. e*1 =4

31. 3% = 101° 32. log1043¢ =1 33. 3*-1=4

34. 5° = 3(7*) 35. 2¢° +1=0 36. 3¢ —1=0

37. Plot a graph of y = e~®. 38. Plot a graph of y = 4°.

39. Plot a graph of y = 1 — 3°.

40. Find the domain of each of the following functions.

 

 

a) f(x) =In(x —3) + Inx b) g(x) = In[x(x — 3)]

41. Find the roots of

a)n(x —1) + nx =1 b) In[x(x —1)] =1

42. Find the roots of

a) nx +1) —lnx=1 b) (12) = 1

x +1
43. Draw a graph of y = 1 + In(x — 1). 44. Draw a graph of y = In 0)

45. Given that y = x(27%) and x > 0, make a table of x, y values that satisfy the equa-

tion, using values of x beginning with x = 0 and then at 0.5 units apart until you

reach 3.0. Plot these points and then make a reasonable estimate of the value of x
that makes y a maximum. Refine your estimate by more computations, and then
find the maximum value of y.

46. Strontium-90 has a half-life of 29 years. What percent will remain after 60 years?

47. Carbon-14 has a half-life of 5730 years. How many years will it take for 75% ofit to

disappear?

48. A sum of $1640 was invested 16 years ago at 8% interest compounded quarterly.

What is the current value of the investment?

49. Determine the current value of an investment of $3250 that was made 25 years ago
at the rate of 8.25% compounded continuously.

50. In how many years will an investment be doubled if interest is 6% compounded

quarterly?
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4.1

Trigonometric (Circular) Functions Chapter 4

In the preceding two chapters we studied some important types of functions,
namely polynomial, exponential, and logarithmic functions. Equally important
in applications and in theoretical mathematics are the trigonometric functions,
which we shall introduce in this chapter. There are six such functions, and each
is defined either on the set of real numbers R or a subset of R.

As the name indicates, trigonometry pertains to the study of measurements
related to triangles. As far back as 3000 years ago, the Egyptians and Babylo-
nians used properties of triangles to establish land boundaries and explore as-
tronomy. In modern times the ideas related to the solution of triangles are still
important in several areas of application, but trigonometric functions have be-

come an integral part of the study of calculus, as well as many advanced courses
in mathematics. Trigonometric functions play a key role in the solutions of a
wide range of applied problems in physics, engineering, and several other fields.

Historical development and applications involving triangles lead us to the
introduction of trigonometric functions defined on measures of angles. The unit
of angular measure that has traditionally been used in such areas as surveying
and navigation is the degree. However, for theoretical purposes in calculus it
becomes necessary to define trigonometric functions on real numbers. One can
conveniently do so by choosing another unit of angular measure called the ra-
dian. Before stating definitions of the trigonometric functions, we first discuss
angular measure.

ANGLES AND UNITS OF ANGULAR MEASURE
The study ofplane trigonometry suggests that we begin with a given plane. All

the geometric figures discussed, such as lines, rays, angles, and triangles, are
subsets of this plane. In geometry, a ray is defined as a half line together with its
endpoint, and an angle is the union of two rays with a common endpoint. The
idea of measure of angle is also introduced but usually limited to angles with

measures less than or equal to 180° (or sometimes 360°).

It now becomes necessary to extend the notion of angular measure beyond

that studied in geometry. Eventually we shall want to have angle measure ex-
pressed as a real number (radian measure), and it will be useful to have a corre-

spondence between the angles in the plane and the set of real numbers. In order
to do this, it is convenient to think of an angle as being generated by a ray that is

rotated about its endpoint from its initial position to a final position. The ray
corresponding to the initial position is called the initial side of the angle, and

that in the final position is called the terminal side of the angle. The point about
which rotation takes place is called the vertex of the angle. The definition of an
angle is now extended to be the union of two rays, together with the rotation.
Measure of an angle is then described in terms of “amount of rotation.” This

allows us to have angles with measures greater than 180° (indeed greater than

360°); we can also have angles with negative measures by using direction of
rotation. A directed angle will have positive measure if the rotation is counter-

clockwise and negative measure if the rotation is clockwise. For purposes of
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brevity we shall frequently say “the angle is positive” to mean “the measure of
the angle is positive.”

In Fig. 4.1(a) angle A is shown with initial and terminal sides labeled, as well
as with an arrow indicating direction of rotation. The arrow is used to indicate

both the direction and the extent of rotation. Figure 4.1(b) shows angle B, in

which the rotation is more than a complete revolution. Angles A and B are
positive angles, and angle C (Fig. 4.1c) is negative.

 

Initial side C

(a) (b) (©

Two widely used units of angular measure are degrees-minutes-seconds and
radians. Scientific calculators frequently include a third unit of angular meas-
ure, the grad.” This unit is rarely encountered, however, and it will not be used
in this text.

Degrees, Minutes, Seconds

If the initial side of an angle is rotated counterclockwise one complete revolu-
tion, the measure of the corresponding angle is defined to be 360 degrees, denoted
by 360°. Thus an angle of 1° is one in which the initial side is rotated counter-
clockwise 1/360 of a revolution. For more refined measurements, the units of

minutes and seconds are used; they are defined as follows:

60 minutes equals one degree, denoted by 60’ = 1°.

60 seconds equals one minute, denoted by 60” = 1’.

On a calculator, minutes and seconds must be entered as a decimal

part of a degree.

For example, 30°15’ = 30.25°, and 42°12'45” = 42.2125°. Figure 4.2 illustrates
degree measure of several angles. For brevity we write A = 90° to denote that

the measure of angle A is 90°, and similarly for other angles.

 

A grad is one hundredth of a right angle; that is, 400 grads is equivalent to a complete revolution.
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- A B=45 L.

D = 180°

E = —180° F=0°
Orrell

I=270°  
Radian Measure

Although measure of angles in degrees is useful in some fields of application,it is
more convenient to use another unit of measure for theoretical work in mathe-

matics, as well as in many applied areas. This unit, the radian, is defined as
follows:

An angle with vertex at the center of a circle and subtending an arc

of length equal to the radius of the circle has measure one radian.

In Fig. 4.3(a) an angle of measure 1 radian is shown. In this case we write § = 1
radian.* In general, the radian measure of any angle is defined as follows (see Fig.

4.3b).

Suppose «a is an angle with vertex at the center of a circle of radius r

and subtending an arc of length s, where r and s are measured in the
same units. The radian measure of «a is defined as

a = Sradians.t
r

 

In trigonometry angles are frequently indicated by Greek letters a (alpha), 8 (beta), y (gamma),

0 (theta), ¢ (phi), and so on.

Note that this definition is independent of the size of circle. That is, in Fig. 4.3(b) the two ratios s/r

and s’/r’ are equal; this is a fact from geometry.
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(a) (b)

If r=4cm and s = 3 cm, then a = 3 cm/4 cm = 3/4. Since the cm units “can-

cel,” the result is a real number, and it is not necessary to write “radians” after

3/4. In this text we shall write « = 3/4 (a = 0.75 in calculator display form) or

a = 3/4 rad to mean « is an angle having radian measure 3/4. =

When the measure of an angle is given as a real number (with no
unit designation) it will be understood that the unit ofmeasure is the
radian.

For example, § = 15 means that 6 is an angle whose measure is 15 radians.

Express 36°16’23” in decimal form correct to four decimal places.

Since 60’ = 1°, then 16’ = 16/60 degree. Also 3600” = 1°, so 23” = 23/3600 de-

gree. Therefore

16 23o / 7 — — 2 °.36°1623 (36 + 30 + 2) degrees 36.2731

The computation of the result is easily done with a calculator.”

Express 64.276° in degrees, minutes and seconds (to the nearest second).

64.276° = 64° + (0.276)(60’) = 64° + 16.56’

= 64° + 16’ + (0.56)(60”) = 64°16'34".

Note: In order to get maximum accuracy, we suggest the following steps. Record

the 64°, enter 0.276 into the calculator, and multiply by 60. Then record the

 

Throughout the entire text we assume that a calculatoris used to do most of the arithmetic computa-

tions. Appendix A includes calculator instructions.
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whole number part of the result (16). Then subtract 16 from the display and
multiply the result by 60. This gives the number of seconds. me

Degree-Radian Relationships

If the initial side of an angle is rotated counterclockwise one complete revolu-
tion, the measure in degrees of the corresponding angle is 360°. The same angle
in radians has measure s/r, where, in this special case, s is the circumference of

the circle of radius r; that is, s = 27r, and so s/r = 2#r/r = 27. Thus we have

360° and 27 radians as measures of the same angle, and we write 360° = 27

radians. Dividing both sides of this equality by 2 gives

180° = 7 radians. (4.1)

From Eq. (4.1) we get the following:

 

1° = Teo radians = 0.017453 radians;

(4.2)

= 57.296° = 57°1745".1 radian = 180°
Tw
 

Equations (4.2) can be used to convert the measure of an angle from one unit to

the other. However, the decimal numbers involved are difficult to remember, and

we suggest that the student remember the equality stated in (4.1) and use it as
a starting point for conversions.

Change 30° to an equivalent measure in radians.

Since 1° = 7/180 radians, 30° must be 30 times 7/180 radians; that is,

30° = (30)(25)rad = grad

= 0.5236 (to four decimal places). i

Express 147°32’ in radian measure correct to four decimal places.

We first convert 147°32’ to a decimal number of degrees, and then multiply the

result by 7/180. We have

32\° 32 TT .
147°32' = (147

+

22) =(1 oz) (7

_

( + 2) ( 47 + 22) (125) radians

= 2.5749 rad. 2]
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Express 2.5 radians in terms of degrees (to three decimal places).

mT
Since 1 radian = (£22), we have 2.5 radians = 2.5 (£8) = 143.239°. im

TT

Convert 137/4 radians to degree measure.

This is similar to Example 6: re = (£87) (£82) = 585°. [|
4 TT

It should be clear from the above examples that we have the following two rules:

 

 

 

To convert from degrees to radians, multiply by 180"

. . 180
To convert from radians to degrees, multiply by —.

aT

Exercises 4.1
1. Illustrate by a sketch each of the following angles. A protractor may be useful, but if

one is not available, then a reasonably approximate drawing will be sufficient.

a) A = 135° b) B = 720° ¢) C = —60° d) D = —540°

e) E = 210° f) F = 10° g) G = —300° h) H = 22°30

2. In each part of Fig. 4.4, determine the measure (in degrees) of the angle. Use a
protractor or make a reasonable estimate.

Fig. 4.4
LN Lo
SE

3. Illustrate by a sketch each of the following angles given in radian measure.

a) A =2«7

e) E= —
2

177iim =T =7b) B=; 0) C= d) D=7

37 9 T
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4. In each part of Fig. 4.5 determine the measure in radians of the angle shown. Ex-

10.

11.

12.

13.

press answers in exact form, using =. Estimate if necessary.

~
ST]

Fig. 4.5
F

. For each of the following, sketch one angle that satisfies the given conditions.

2) 0<9< 2 b) r<o< ¢) —71<I< —2

Qo e) MoT £) 6 > 27

. Express the given angle as a decimal number of degrees correct to three decimal

places.

a) 156°37 b) 215°18'36”

. Express the given angle as a decimal number of degrees correct to four decimal
places.

a) 48°39'42” b) —(75°12'41")

. Express the given angle in degrees and minutes correct to the nearest minute.

a) 24.36° b) 149.375°

. Express the given angle in degrees, minutes, and seconds correct to the nearest

second.

a) 37.583° b) 321.5764°

Express the given angle in radian measure. Write your answer in two forms: exact
(using 7), and as a decimal correct to three places.

a) 60° b) —135° c) 225° d) 720°

Follow instructions of problem 10 for

a) 120° b) 315° c) 22.5° d) —330°

Express the given angle in radian measure, and round off answers to three decimal

places.

a) 23.53° b) —48.635° c) 237°48 d) 121°40'31” e) 437°23

Convert to radian measure, and round off results to two decimal places.

a) 64.431° b) 229°47'30” c) —(36°23'08") d) 148.012° e) 472.37°
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14.

15.

16.

17.

Each of the following numbers represents the measure of an angle in radians. Con-
vert to the corresponding measure in degrees, and express the result in exact form.

7 2m 37 23m Tm

2) % b) —33 ©) 3 Dd Zs ®) 1g

Follow instructions of problem 14 for

37 Tm 117 157

In each of the following, the given number represents an angle in radian measure.
Convert to degrees and express the result in two forms: decimal number correct to
three decimal places, and degrees, minutes, and seconds correct to the nearest

second.

a) 1.15 b) 2.48 c) 0.0493 d) —-5.76 e) 64

Follow instructions of problem 16 for

1+V5
2
 a) 1.37 b) 0.0034 c) d) —345 e) 30

 

4.2 APPLICATIONS INVOLVING RADIAN MEASURE
In this section we consider examples that illustrate applications of radian
measure.

Arc Length

In Section 4.1 radian measure of an angle was defined as follows:

 

9 =2, (4.3)
r
 

where the angle has its vertex at the center of a circle of radius r, and s is the

length of the intercepted arc, as shown in Fig. 4.6. Equation (4.3) can be written
in equivalent form as

 

s=rb. (4.4)
 



214

Example 1

Solution

Example 2

Fig. 4.7

 

Trigonometric (Circular) Functions Chapter 4

Find the length of arc of a circle of radius 64.87 meters that is intercepted by a

central angle of 23°37".

We must first express the given angle in radians:

6 = 23°37 = (23 + 37/60) + (7/180) radians.

Substituting into Eq. (4.4) gives

s = 64.87(23 + 37/60) * (7/180) meters.

The computation can be done by calculator, then rounded to two decimal places

to get s = 26.74 m. —

The distance from the earth to the moon is approximately 384 000 km. If the
angle subtended by the moon from a point on the earth is measured as 30’50”,
then we can approximate the diameter of the moon by assuming it to be the arc
of a circle, as shown in Fig. 4.7. That is, the diameter of the moon is approxi-

mately equal to s, where

TT
«——km = 3444 km.
180 3444

Velocity of Rotation*
Suppose we have a circular wheel of radius » = 10 cm that is rotating about its

center O, and P is a point on the circumference, as shown in Fig. 4.8. Suppose
also that point P travels a distance of s = 20 cm each second. We say the linear
velocity of P is 20 cm per second and write v = 20 cm/sec. During each second
the radial line OP rotates through an angle § = s/r = 20 cm/10 cm = 2 radians.
We say that the angular velocity of rotation is 2 radians per second and denote
this by w = 2rad/sec (w is the Greek letter omega).

P

Fig. 4.8

 
* Velocity is a vector quantity. The direction of motion is assumed to be clear from the problem

description.
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The above example illustrates the problem of a point P moving in a circular
path. We associate two types of velocity: v (linear velocity) tells us “how fast” P

is moving, and w (angular velocity) tells us how fast the central angle § is chang-
ing (that is, how fast the radial line OP is rotating). Both v and w represent
measures of how fast P is moving at any given instant. In general, v and w are
functions of time. In the special case in which P is moving at a constant speed,

we call such a motion uniform circular motion. We shall limit our discussion to

this case and leave the general case in which v varies with time for calculus.

We wish to determine the equation that gives the relationship between v and
w. Suppose point P moves to point @, a distance of s, in time ¢ (see Fig. 4.9). Then
v = s/t. During the same time the radial line OP rotates through a central angle
of §, and w = 6/t. Since s = rf, we get

v=2=L rf) =r
t t t

Thus we have

 

UV = rw, (4.5)

 

where w is in radians per unit of time.

The wheel of a turbine rotates at the rate of 648 revolutions per minute, and the

distance from the center to a point P on the outer edge is 96.3 cm. What is the

linear velocity of point P?

Since 1 rev = 27 rad, w = 648 rev/min = 648(27) rad/min. Substituting into Eq.

(4.5) gives

  v = (648)(27)(96.3) C1 — (648)2m)(96.3) m _ 395)m -
min 100 min min

The diameter of each wheel of a bicycle is 70 cm. Suppose a person riding the
bicycle travels at a constant speed and is timed at 3 minutes over a distance of
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two city blocks, where the length of a block is 200 meters. Find the angular

velocity of a spoke of a wheel.

Each time the wheel (or a spoke) makes one revolution, the bicycle moves for-
ward a distance equal to the circumference of the wheel, 707 cm. Therefore,

when the bicycle travels two blocks (400 m, or 40,000 cm), the number of revolu-

tions of a wheel is 40 000/(707). It takes 3 minutes to make this number of

revolutions, and so

  
"— 40 000/(707) rev — 60.63 rev

3 min min.

Expressing w in radians per second, we have

o = (6063)(@2n) rad _ oo rad =
60 sec sec

Area of a Sector of a Circle

A sector of a circle is defined to be the region bounded by two radial lines and the
intercepted arc of the circle. Figure 4.10 shows two regions associated with the
same radial lines. In order to distinguish between these two, we always indicate
the central angle of the sector. Figure 4.10(a) shows the sector with central angle
a, Fig. 4.10(b) the sector with central angle S.

  
(a) (b)

From the study of geometry we know that in any given circle the areas of

two sectors are proportional to the corresponding central angles. That is, in
Fig. 4.11

 

Area of sector AOB _ Area of sector COD

0 a ’

In particular, if we let sector COD be the entire circle so that a = 27 and the
area is mr? we get

Area of sector AOB _ 7r? _ r?
0 T 2 2°

That is, the area of sector AOB equals 0r2/2.
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Exercise 4.2

1.

Fig. 4.11  ~ —NS—

Therefore the area of the sector of a circle of radius r and central angle 6 in
radians is given by

Area = 0r2/2. (4.6)

Example 5 Find the area of the sector of a circle of radius 2.54 cm and central angle 73°24’.

Solution We first convert 73°24’ to radians and then substitute into Eq. (4.6):

73°24’ = (73 + 24/60) - (7/180) radians.

Therefore

Area = (1/2)(73 + 24/60) - (7/180) + (2.54)? = 4.13 cm? fs

 

Suppose the radius of a circle is 37.43 cm. Find the length of arc intercepted by the

given central angle. Give answers in cm rounded off to two decimal places.

a) 36° b) 73°23 c) 3.58

. The radius of a circle is 75.23 cm. Find the length of arc intercepted by the given
central angle. Give answers in cm rounded off to two decimal places.

a) 187°1%5 b) 177/12 c) 18°15'35”

. Given that the radius of a circle is 25.32 cm,find the central angle that subtends the
given arc. Give answers in radians correct to two decimal places.

a) s = 1247 cm b) s = 60.53 cm c) s =2945cm

. Given that a central angle of 68°35’ subtends an arc of a circle of length 47.53 cm,
find the radius of the circle. Give your answer in centimeters correct to two decimal

places.

. Suppose point P moves along a circular path with a radius of 3.57 m and center at O.

Find the total distance traveled by P if the radial line OP sweeps out the given
angle. Give answers in meters rounded off to two decimal places.

a) 257° b) 1440° c) 97/2 d) 357

. In problem 5 the point P travels a distance of 47.55 m. Through what angle does OP
sweep? Give your answer (a) in radians correct to four decimal places and (b) in

degrees correct to two decimal places.
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7.

10.

11.

12.

13.

14.

15.

16.

Find the velocity v of a point on the rim of a wheel of radius 24.37 cm if it is rotating
at the given angular velocity.

a) w = 5.4 rad/sec b) w = 1247 rad/min ¢) w = 63.5 rev/min d) w = 124 deg/sec

. A wheel of diameter 127.48 cm is rotating at a constant rate. Find the angular
velocity if a point on the rim is moving at the given speed. Give answers correct to

two decimal places in rad/sec and in rev/sec.

a) v = 348 cm/sec b) v = 2.75 m/sec

. Find the angular velocity of the minute hand of a clock in each of the following
units.

a) rev/hr b) rev/min c) deg/min d) rad/min

Find the angular velocity of the second hand of a clock in each of the following

units.

a) rev/min b) deg/hr c) rad/sec

The length of the minute hand of a clock from the pivot point to the tip is 6.5 cm.
Find the linear velocity of its tip in each of the following units.

a) cm/hr b) cm/min c) cm/sec

The length of the hour hand of a clock from the pivot point to the tip is 5.2 cm. Find
how far its tip will travel in the given time.

a) 2 hours b) 3 hours and 40 minutes ¢) 16 hours and 32 minutes

Find the linear velocity of the tip of a propeller blade that is 2.48 m from the pivot
point to its tip and is rotating at 640 rev/min. Express your answer in m/min,
rounded off to two decimal places.

The length of the minute hand of a clock is 8.5 cm and the length of the hour hand is
6.1 cm. Give answers in meters, rounded off to two decimal places, and find the ratio
of the distance in (a) to that in (b).

a) How far will the tip of the minute hand travel in a year? Assume 365 days in a
year.

b) How far will the tip of the hour hand travel in a year?

Assume that the earth is spherical with radius 6400 km and that it rotates about an

axis through the north and south poles once every 24 hours. How fast is a point on
the equator moving in km/hr because of rotation?

A trundle wheel is an instrument used to measure distance (Fig. 4.12). It consists of

a wheel pivoted at one end of a handle so that it can turn freely. The operator holds
the other end of the handle and rolls the wheel (without slipping) along the path
whose distance is to be measured. A “meter trundle wheel” is one whose circumfer-
ence is one meter. Suppose Diane wants to measure the length of a Logan city block.
She rolls her meter trundle wheel the length of the block and counts 196 clicks

(indicating 196 revolutions). She moves at a constant speed, and it takes her 3

minutes and 36 seconds. Give answers rounded off to two decimal places.

a) What is the length of the block in meters?

b) What is her linear velocity?

c¢) What is the angular velocity of the wheel in rev/sec? In rad/sec?
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17.

18.

19.

20.

21.

22.

23.

Fig. 4.12 

A satellite travels around the earth and makes one revolution every 4.5 hours. As-
suming that the orbit is a circle of radius 7240 km, find how fast it is traveling in
km/hr. Give answer correct to the nearest whole number.

A circle has radius 17.3 cm. Find the area correct to two decimal places of the sector
of the circle having the given central angle.

a) 24° b) 37°53 c) 7/3 d) 3.56
The radius of a circle is 1.26 m, and the area of a sector is 0.8764 square meters. Find

the central angle in each of the following.

a) radians (four decimal places) b) degrees (two decimal places)

What is the measure in radians of the smaller angle between the hour and minute
hands of a clock at the times given?

a) 1:15am. b) 1:45 p.m.

A pulley of diameter 31.64 cm is driven by a belt (Fig. 4.13). If 32 meters of belt
pass around the pulley without slipping, through what angle does a radial line OP
on the pulley turn? Express the answer in each of the following.

a) radian measure (four decimal places)

b) degree measure (two decimal places)

 

P

Fig. 4.13  

In problem 21 suppose it takes 24 seconds for the 32 meters of belt to pass around

the pulley. Find the angular velocity of the pulley in each of the following.

a) rad/sec b) deg/sec

Assume that the earth travels about the sun in a circular orbit (actually it is an
ellipse that is nearly circular), and the distance between the earth and the sun is 149

million kilometers.

a) A radial line from the sun through the earth sweeps out an angle of how many

radians in a day? (Assume that it takes 365.25 days to travel once around the
sun.)

b) What is the angular velocity of the radial line in radians per hour?

c¢) What is the linear velocity of the earth in kilometers per hour?
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24.

25.

26.

27.

28.

29.

30.

A treadle sewing machine is driven by two wheels with a belt passing around them,
as shown in Fig. 4.14. The sewing machine used by Mot’l the tailor has the following
measurements: The diameter of the larger wheel is 31 cm, and that of the smaller

wheel is 7 cm. If Mot’]l treadles his machine at a fixed rate so that in 45 seconds the

larger wheel turns through 63 revolutions, find the angular velocity of each wheel
(assume the belt does not slip). Express each answer in the following units

a) rev/sec b) rad/sec

Fig. 4, 14 ~—__"

Using the information of problem 24, suppose P is a point on the belt. Find the linear
velocity of Pin centimeters per second. Also determine how far point P travels when
the sewing machine is operated at the given rate for 8 seconds.

The area of a given sector of a circle is 265.78 cm?2, and the length of the arc is

36.3 cm. Find the following.

a) The radius of the circle in centimeters to one decimal place

b) The central angle of the sector in radians to two decimal places

Given that the area of a circular sector is 24.32 square meters and the radius is

6.47 m, find the length of arc of the sector. Give answer in meters correct to two
decimal places.

The front wheel of a tricycle is 51.4 cm in diameter, and each rear wheel has a
diameter of 23.5 cm.

a) Through how many revolutions will each wheel turn if the tricycle travels along

a straight path for a distance of 48 meters.

b) Express each answer in number of radians the wheel will turn.

It is between one and two o’clock, and the angle measured clockwise from the hour

hand to the minute hand is 64°15’. What time is it? Give the answer correct to the

nearest minute.

a) A certain pickup truck comes factory-equipped with standard-size tires. The
diameter of such a tire is 29 inches. The speedometer is calibrated with this size

Chapter 4
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tire. If the truck travels for one hour at a constant speed with the speedometer
reading 55 mi/hr, how many revolutions will a wheel make?

b) The owner of the truck prefers larger tires and replaces the originals with tires of

30.75 inches diameter. Now he travels for one hour at a constant speed with the
speedometer reading 55 mi/hr; thus each wheel will make the same number of
revolutions as in (a). How far does he go during that hour? By how many miles
per hour is he violating the 55 mi/hr speed limit?
 

4.3 TRIGONOMETRIC FUNCTIONS

Fig. 4.15

Six important functions are introduced in this section. They occur frequently in
applications and in subsequent study of mathematics, and so we give them spe-
cial names: sine, cosine, tangent, cotangent, secant, and cosecant. These func-

tions are abbreviated to sin, cos, tan, cot, sec, and csc. Before giving their defini-

tions it is first necessary to talk about an angle in standard position.

Angles in Standard Position
Each of the trigonometric functions will be defined on a set of measures of

angles. We can think of any given angle as being placed in a standard position in
reference to a system of rectangular coordinates. An angle is in standard posi-

tion when the vertex of the angle is located at the origin of a rectangular coordi-
nate system and the initial side lies on the positive x-axis. Figure 4.15 illustrates
angles in standard position. Angles «a, 8, and y are positive angles, and § is nega-

tive.

Terminal

a B Y

Initial d

(a) (b) (0) (d)

When the terminalside of an angle in standard position is located in a given
quadrant, the angle is said to be in that quadrant. For example, in Fig. 4.15, a is
in quadrant I, 8 is in quadrant III, y is in quadrant II, and § is in quadrant IV.

If the terminal side of an angle 6 coincides with one of the coordinate axes, then 6

is called a quadrantal angle and is not said to be in any quadrant.

When two angles are placed in standard position and their terminal sides

coincide, we say that the two angles are coterminal. For example, a = 45° and

B = 405° are coterminal since 405° = 360° + 45°. Similarly 210° and —150° are

coterminal since 210° = 360° + (—150°). Note that #§ and 8 + k - 360° (where k

is any integer) are coterminal angles.
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For each of the following, draw a figure with the given angle shown in standard
position. An approximate freehand sketch is sufficient.

a) 64° b) —155° c) 450°

64° 450°

-155°

(a) (b) (c)

Determine the quadrant in which each of the given angles is located, and draw a
sketch of each in standard position.

a) A = — (37/4) b) B= —-5 c) C=175

Since —7< —37/4< —7/2, angle A is in quadrant III. Similarly,

—27 < —5 < —37/2, and so Bis in quadrant I; 27 < 7.5 < 57/2, and so C is in

quadrant I. Sketches are given in Fig. 4.17.

A
Draw an angle of measure —2.48 in standard position. Then draw the smallest
positive angle § that has the same terminal side as —2.48, and determine the
measure of 6 correct to two decimal places.

The angle of measure —2.48 is shown in Fig. 4.18(a), and 6 is shown in (b). The

measure of 6 is given by 6 = 27 — 2.48 = 3.80.

0

—2.48

(a) (b)
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Determine all angles that are coterminal with 120°. Give two specific ones.

The set of all angles coterminal with 120° is given by

{120° + k- 360°|k is an integer}.

Examples of two specific angles from this set are:

k = 2 gives an angle measure 840°,

k = —1 gives an angle of measure —240°. Eu

Trigonometric Functions

Let 6 be an angle in standard position and P:(x, y) be any point (other than the

origin) on the terminal side of 6. Let r be the distance from the origin to P; that
is,r = Vx? + y2. Note that r represents a positive number. Suppose a perpendic-

ular is drawn from P to the x-axis and the point of intersection is called A, as
shown in Fig. 4.19. Right triangle PAO is called a reference triangle for 6.

Pi: (x1, 57)

P: (x,y) ,
1 1

v

0

Aa
p
o
2

v

0, Xq 1  
We define the six trigonometric functions of angle # as follows:

If 6 is an angle in standard position and P:(x,y) is a point on the
terminal side of 6, then

sin = =, tan = —, sec =

(4.7)
cos ==, cot = =, csc =

where r = \/x2 + »2

’

R
I
R
R
w

N
R
N
R

R
y
R
N

Several observations can be made:

1. The above definitions are independent of the point P taken on the terminal
side. That is, if P,:(x,,y,) is some other point on the terminal side and
ry = Vx,2 + y,%, then the two right triangles OAP and OA,P, shown in Fig.
4.19 are similar; hence the ratios of corresponding sides are equal.
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2. In Definition 4.2 each of the given rules of correspondence defines a func-
tion. That is, for any given angle 6 a corresponding unique real numberis
determined by the ratio indicated in (4.7), whenever this ratio does not in-

volve division by zero.

3. For quadrantal angles the reference triangle becomes a line segment. How-
ever, the above definitions are in terms of x, y, r, and so we can use them in

that form. For example, for 0° we can take the point (1, 0) on the terminal

side; then r=1, and we have sin 0° =y/r=0/1=0, cos0° =

x/r =1/1 = 1, and so on.

4, If the terminal side of 6 coincides with the y-axis, then x = 0 and
tan § = y/0 and sec # = r/0 are not defined. Similarly, if the terminal side of

0 coincides with the x-axis, then y = 0 and cot § = x/0 and csc = r/0 are

   

not defined.

5. From (4.7) it is easy to see that the following reciprocal relations hold:

cn 1 _ 1
sind = =o’ cost = oo tanf = Sg

. . (4.8)

cot f = —— sec f = cost’ csc = snd

Trigonometric Functions

for Special Angles: 30°, 45°, 60°

There are two right triangles in which the sides are related in a simple manner,
and so the trigonometric functions for the angles of these triangles can be ex-

pressed in exact form. The reader is reminded of the following properties encoun-

tered in the study of geometry.
If one angle of a right triangle is 45° then the other is also 45°, and the

triangle is isosceles. Hence the lengths of the two sides are equal. Suppose both

are taken to be 1 unit in length; by the Pythagorean theorem the length of the

hypotenuse is given by V/12 + 12 = 1/2, (see Fig. 4.20a). Thus point P:(1, 1) is on
the terminalside of a 45° angle in standard position, with r = 1/2, as shown in

Fig. 4.21(a). Values for the trigonometric functions of 45° can now be found. For

example, sin 45° = 1/1/2 = V/2/2; using a calculator to express V2/2 in decimal

form, we get sin 45° = 0.7071 (to four decimal places). We say that 1/2/2 is an

exact form for sin 45°, and 0.7071 is the decimal approximation rounded off to
four places.

In a right triangle with one angle equal to 30° and the other 60°, the hypote-
nuse is twice as long as the shorter side (the side opposite the 30° angle). This
property can be seen in Fig. 4.20(b), in which triangle ABD is an equilateral

triangle and triangles ACB and DCB are congruent. Thus, if the length of side
AB is taken as 2, the side opposite the 30° angle must be 1. By the Pythagorean

theorem the length of BC is 1/22 — 12 = 1/3.



Section 4.3 Trigonometric Functions 225

 

B

\
\
—\

\
30°] 30° \

\
\

2 \
\

V3 \
\
\
\
\

60° 60°
 _ 2 Fig. 4.20
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Fig. 4.21    
(2) (b) ©

Now suppose an angle of 30° is placed in standard position. We can take
point P on the terminal side so that r = 2; then P is the point (1/3, 1), as shown

in Fig. 4.21(b). Trigonometric function values for 30° can now be found:

sin 30° = 1/2, cos 30° = V/3/2, tan 30° =1//3,

cot 30° = V/3, sec 30° = 2//3, csc 30° = 2.

In a similar manner, for an angle of 60° in standard position, point P can be
taken as (1, V/3) with r = 2, as shown in Fig. 4.21(c). Thus the trigonometric

function values for 60° are given by sin 60° = \/3/2, cos60° = 1/2,

tan 60° = V/3, cot 60° = 1/1/3, sec 60° = 2, csc 60° = 2/3.

Becoming familiar with definitions of the six trigonometric functions as
stated in Definition 4.2 is absolutely essential. In the remaining portion of this

section we illustrate the use of these with several examples. In each case we shall
proceed with the following steps.

1. Sketch the given angle in standard position, and indicate it with a curved
arrow.

2. Take a convenient point P:(x, y) on the terminal side, and draw a reference

triangle to the x-axis.



226

Example 5
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Fig. 4.22

Example 6

Solution

Fig. 4.23
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3. Use the Pythagorean theorem as needed to get x, y, or r; remember that ris

always positive and the signs (+ or —) for x and y are determined by the

quadrant in which P is located.

4. Use Definition 4.2 to determine the desired trigonometric function values.

Suppose 6 is an angle in standard position and the point (—3, 4) is on the termi-
nal side of 4. Find the values of the six trigonometric functions of 6.

Figure 4.22 shows a reference triangle for 6 in which point P is taken as (—3, 4),

and so r = \/(—3)2 + 42 = 5. Therefore

sin 0 = 4/5, tan 0 = 4/—3, sec = 5/(-3),

cos = —3/5, cot = —3/4, csc = 5/4.

  

P (-3, 4)

|

4) 5

0
0 \ -

_3
HE

Evaluate the six trigonometric functions for 315°. Express each answer first in
exact form and then in decimal form correct to four places.

In Fig. 4.23 we see that the reference triangle for 315° is a 45° right triangle. It

is therefore convenient to take (1, —1) as the point P, and so r=

V12 + (=1)2 = V/2. Applying Definition 4.2 gives sin 315° = —1/V/2 =
— 12/2 (exact form).

315°

I
N

—
0

S

P:(1,-1)
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Using the calculator to evaluate —1/2/2, we get sin 315° = —0.7071.

Similarly,

1 9
cos 315° = —— — v2, cos 315° = 0.7071

V2 2

tan 315° = oN = _1; tan 315° = —1.0000

cot 315° = + = _1; cot 315° = —1.0000

9
sec 315° = v2 NY sec 315° — 1.4142

9
csc 315° = v2 = —72; csc 315° = —1.4142 i

Evaluate sin(—27/3) and tan(—27/3). Express answers in exact form.

Sketch § = —27/3. The reference triangle for § = —2#/3 is a 30°, 60° right
triangle, so we can take P as (—1, — /3) (see Fig. 4.24). Applying Definition 4.2
gives

 sin 27) = = and tan ry. 8 3
3)7 2 M~73)=1 = V2

-1

LJ

| |on

3
I
I
I

v

 
-V3

2

P:(-1,-V3)

fa

Evaluate each of the following.

a) sin 180° b) cos 180° c) tan 90° d) sec(—540°).

We first draw the diagrams shown in Fig. 4.25.

a) Take point P as (—1,0), and so r = 1. Hence sin 180° = y/r = 0/1 = 0.

b) Take Pasin (a) and apply Definition 4.2 to get cos 180° = x/r = —1/1 = —1.
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LoFig. 4.25 .
P: (-1,0)

Example 9

Solution

Fig. 4.26

Example 10

Solution
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P: (0,1)

P: (~1,0) —540°

(a), (b) © @

v a v 4

 

c) Let P be (0,1), and so r = 1. Applying Definition 4.2 gives tan 90° = y/x =

1/0. Since division by zero is not defined, we say that tan 90° is undefined.

d) Figure 4.25 (d) shows —540° in standard position. Note that the terminal side
coincides with the negative x-axis, and so we can take the point P as (—1, 0)

and r = 1. Thus sec(—540°) =r/x =1/—-1 = —1.

Suppose 6 is an angle in the second quadrant and cos # = —0.7. Find sin § and
tan # in (a) exact form; (b) decimal form correct to three places.

Since 4 is in the second quadrant and cos § = —0.7 = —7/10, we get the refer-
ence triangle shown in Fig. 4.26 by taking x = —7, r = 10; y is given by y =
V10%2 — (=7)? = /51.

. . . V61 V51
a) Using Definition 4.2 gives sin § =0 tan 0 =—

b) Using a calculator to evaluate the exact-form answers, we get sin § = 0.714;
tan § = —1.020.

 

P: (-7,V51)

|
10

V51

| 0b N , 
Suppose 6 is an angle in the third quadrant and tan § = 3/4. Find the remaining
five trigonometric functions of 6.

Since tan § = 3/4 = —3/—4 and 0 is in quadrant III, we can take (—4, —3) as

the point to determine a reference triangle, as shown in Fig. 4.27:

r=V(=38)2 + (—4)2 = 25 = 5.
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Fig. 4.27 >

Therefore

. -3 —4 —4 4
sinf = —, cos) = —, cot = ——=—,

5 5 -3 3

5 5
sec) = —, csc = —. Hi

—4 -3

Exercises 4.3

In problems in which drawing an angle is required, a reasonable freehand sketch is

sufficient.

1. In each of the following, draw a figure illustrating the given angle in standard

position.

a) 40° b) 220° c) —220° d) 725° e) —460°

2. Draw a figure illustrating the given angle in standard position.

a) 22 b) 3.41 c) —1.80 d) 8.8 e) — 17
4 11

3. Determine the quadrant in which the given angle lies (that is, the quadrant in which
the terminal side is located).

a) 37° b) 335° c) —125° d) 580° e) —480°

4. Determine the quadrant in which the given angle lies.

a) — 37 b) oe c) 3.56 d) 8.47 e) —5.40

5. Draw a figure with the given angle in standard position. Then draw the smallest

positive angle that has the same terminal side, and determine its measure.

a) —100° b) 540° c) —540° d) — Be e) —4.32

 

 

 

. For each of the given pair of angles, determine whether the second one is coterminal

with the first one.

a) 60°, 240° b) —45°, 315° c) -o, 5

d) =, —7 e) 30°, 750° f) a -&

. Find three angles that are coterminal with § = 90°.
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8. Find three angles that are coterminal with § = —=/6.

9. Determine the set of all angles that are coterminal with § = —2=/3.

10. Determine the set of all angles that are coterminal with § = 30°.

11. In each of the following, find the set of all angles that are coterminal with an angle
that has its terminal side passing through the given point.

a) (1,1) b) (—3, —3) c) (1, V3)
12. Determine the set of all angles that are coterminal with the angle in standard

position whose terminal side passes through the given point.

a) (0, 3) b) (0, —5) c) (5,0) d) (—-2.3,0)

13. Suppose § is an angle in standard position and the point (4, —3) is on the terminal
side of §. Evaluate the six trigonometric functions for §. Express each answer in

(a) exact form; (b) decimal form correct to two places.

14. The point (2, 3) is on the terminal side of angle «, Find the six trigonometric func-
tions for a, and give answers in exact form.

In problems 15 through 23, evaluate the given expression and give answers in exact form.

 

 

15. a) sin 60° b) cos 60° ¢) sin 210° d) cos 210°

16. a) tan 30° b) sec 30° c) tan 300° d) sec 300°

17. a) cot —45° b) csc —45° c) cot 405° d) csc 405°

18. a) sin 225° b) cos 330° c) tan 135° d) cot 150°

19. a) sin 5 b) tan be c) cos- z) d) cos 21

bn mm 17 in (17720. a) cos 1 ) b) sec ( 1 ) c) tan ( 3 ) d) sin177)

21. a) sin 90° b) cos 0° c) tan 270° d) sec 180°

22. a) sin (- 2) b) tan = c) cot(—m) d) sec(—4w)

23. a) secI) b) cos(177) c) tan( Ir) d) sin (= + 2)

24. In the table below, write a + sign or a — sign to indicate the sign of the correspond-
ing entry.

0 sind cosf tanh cotf sec csc

124°

—320°

3.04

—1.16    
In problems 25 through 31, give each answer in

a) exact form b) in decimal form correct to three decimal places
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25.

26.

27.

Given that 6 is an angle in the second quadrant and cos § = —3/5, find the other
five trigonometric functions of 6.

Given that sin « = —3/4 and the terminal side of « is in the fourth quadrant, find

the remaining five trigonometric functions of a.

Given that cot 8 = 3/4 and B is in the third quadrant, find the other five trigono-

metric functions of f.

 

28. Given that tan y = —1.2 and the terminal side of vy is in the second quadrant, find

the remaining five trigonometric functions of y.

29. Given that sin § = —0.25 and tan 6 is negative, find the remaining five trigonometric

functions of 6.

30. Given that tan = —3 and 6 is a second quadrant angle, find the remaining five

trigonometric functions of 6.

cos 27 — sin 47 + tan 27

31. Evaluate — 5 5

sin o — tan 5 + sec =~

32. Verify that sin(a — B) = sin a cos 8 — cos a sin 3 for each of the following pairs of

values of a and B.

_2r p_ 7 _T pg _8m p_ 17 _ 5m p_

Hint: In each case evaluate the left-hand side and the right-hand side of the equation for
the given a and B, and then verify that the two resulting numbers are equal.

33. Verify that (sin 6)? + (cos 8)? = 1 for each of the given values of 6.

a) 0 = 60° b) 6 = 150° c) =m

34. Verify that sin(20) = 2(sin #)(cos 8) for the given values of 4.

a) 6 = 90° b) 6 = 30° c) o=21

35. Verify that (sec 8)? — (tan #)2 = 1 for the given values of 4.

a) 6= — 2 b) 6 = 225° ¢) 0 = 495°

36. For which of the given angles a and B is cos(a + 8) = cosa + cos 8?

a)a=m,8=0 b) a=0,8=73 c) a = 45°, B = 45°

d) « = 120°, B = 30°
 

4.4 EVALUATING TRIGONOMETRIC FUNCTIONS
In the preceding section we introduced the six trigonometric functions and saw
how they can be evaluated for several special angles by applying the given defini-
tions. However, if we wanted to determine sin 37° applying the definition, we
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could draw an angle of measure 37° by means of a protractor and then construct

a reference triangle and measure the lengths of the sides. These measurements
can only give a crude approximate evaluation of sin 37°. There is, of course, an
easier way, and that is by applying a calculator, which will give an accurate
result correct to several decimal places.

All scientific calculators have keys labeled (sin), Cees), and (tan), There are also
keys that will allow the operator to put the calculator in degree, radian, or grad
mode. The owner’s manual that comes with the calculator describes this feature
and should be consulted to make certain it is understood.*

Evaluate sin 37°.

First be certain that your calculator is in degree mode. Then press keys 3, 7,(Csin J),
The display will read 0.6018 on many calculators, but if greater decimal accu-

racy is desired, the operator can have the calculator display more decimal digits
(the owner’s manual has instructions for doing this). Thus we can get, accurate
to nine decimal places, sin 37° = 0.601815023. i]

Evaluate cot 64°.

The calculator does not have a key labeled cot. However, as we observed in (4.8),

the cotangent function is the reciprocal of the tangent, and so we have cot 64° =
1/tan 64°. With the calculator in degree mode, press keys 6, 4,(tan) (11x), The

display will give cot 64° = 0.487732589. The student should note at this point
that 1/tan 64° and tan(1/64)° are not equal. That is, the (x) key should be

pressed after the key. fe

Evaluate cos 24°31’43” correct to five decimal places.

We first convert 24°31’43” into a decimal number of degrees, as follows:

31 43 \°24°31'43" = (24 — ——) .
+ 60 7505)

Be sure your calculator is in degree mode, and carry out the following sequence

of steps: Evaluate 24 + 31/60 + 43/3600, and then, with the result in the dis-

play, press to get cos 24°31'43” = 0.90975. =

Evaluate sin 1.2 correct to four decimal places.

Note that sin 1.2 means sine of 1.2 radians. Place the calculator in radian mode;

then press 1.2,(sin); and the value will appear in the display: sin 1.2 = 0.9320.

i

 

See Appendix A for basic calculator instruction.
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Example 5 Evaluate sec(—2.47) and round off answer to five decimal places.

Solution Since the calculator does not have a key labeled sec, we use (4.8) to get

sec(—2.47) = 1/cos(—2.47). To evaluate this, we place the calculator in radian

mode, then press 2.47, change sign,(ees ), (x). This gives sec(—2.47) = —1.27741.
=

Example 6 Evaluate tan 450°.

Solution Place the calculator in degree mode; press 450 and (tan]), and the display will

indicate Error. Applying Definition 4.2, we see that tan 450° is undefined. Some
calculators give 9.9 x 10% as the value of tan 450°; such a large number should
alert us to the fact that the calculator is sending a special message. Eu]

Example 7 Given that f(x) = V/1 — x2 and g(x) = cos x, evaluate each of the following.

Give answers rounded off to four decimal places.

a) (f+ 8)(1/2) b) (fog)(—2) c) (f/8)(0.64)

Solution Note that the statement of the problem implies that x is in radians, so be certain

that your calculator is in radian mode.

a) (F+9)(3) “a +g(3)

/1 -(5) + “(z = aL + cos(0.5) = 1.7436.

b) (fog)(—2) = f(g(—2)) = f(cos(— = V1 — (cos(—2))2 = 0.9093.

0.64) 1 — (0.64)0) (£) 0s _ IY ( .a — — = 0.9580. a
g £(0.64) cos 0.64
 

Exercises 4.4
 

In problems 1 through 20, use a calculator to evaluate the given expressions, and give

answers rounded off to four decimal places.

1. sin 28° 2. cos 72° 3. sec 35° 4. csc 17°

5. sin 43°21’ 6. cos 12°37'41” 7. tan(—31.48°) 8. sec 148.16°

9. co0s(251°23'53") 10. sin(478°15") 11. sin 0.4 12. tan(w/3)

13. sec(7/2) 14. csc 3.23 15. cos(37/17) 16. tan(—27/47)

17. csc(2.78 + 5m) 18. cot(37/8) 19. tan(—8.32) 20. sin(1 — /5)

In problems 21 through 36, evaluate the given expressions. Give answers correct to four

decimal places.

3.56 sin 24°17 23. 2 tan 35°12’ 24. 65.48 csc 43°18’
21. (2.48) sin 73°16 22, TesindTol 1 — (tan 35°12')2
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25. tan(37/13) 26. sec 1.47 27. cos(77/17) . 8:54sin(6m/11)
sin(3w/7)

29. (sin 23°48’)2 + (cos 23°48’)? 30. sec(31°12'36")

31. cot(72°15'41”) 329, 1 1
csc(3m/8) sec(37/8)

33. sin(2) 34. sin 37° cos 56° — sin 56° cos 37°

L508) in (35) (sin 5) — 2(cos 5)35. ( 3 sin 10 36. 3 {sin 5 2 cos 5

In problems 37 through 48, evaluate the given expressions where

f(x) =1 + x, g(x) = sin x, h(x) = Vx — 1.

Give answers rounded off to two decimal places. If any of the given expressions are not

defined as a real number, tell why.

37. (F+2)(Z) 38. (fo2) (2) 39. (hog) (2) 10. (g + h)(3)

41. £)w 42. (5) 43. (hog) (3) 44. (gof)(—4)

45. (g£)(0) 46. (gog)(4) 47. (£) 2.5) 48. (5) wes
 

4.5 CIRCULAR FUNCTIONS;
PERIODIC PROPERTIES AND GRAPHS
In Section 4.3 we defined trigonometric functions whose domains are sets of
measures of angles. If angles are measured in radians, then the domains can be
considered as sets of real numbers. When trigonometric functions are studied in

calculus,it is assumed that their domains consist of real numbers. In this section

circular functions are introduced, and we shall see that they are the same as

trigonometric functions in which angular measure is in radians. In anticipation
of this fact, we shall even use the same names for the circular functions as for the

corresponding trigonometric functions.

An equation of a circle with center at the origin and having a radius of 1 is
given by

x2 + y? = 1. (4.9)

Such a circle is called the unit circle. Consider a point P starting at point A:(1, 0)

and moving along the unit circle. Let S denote the directed distance P traverses,
where distance is taken as positive if P travels counterclockwise and negative if



Section 4.5 Circular Functions; Periodic Properties and Graphs 235

it moves clockwise from point A. Thus with each directed distance S, we have a
corresponding real number s.*

Definition 4.3 Circular sine and cosine functions

Suppose s is any real number and a point starts at A:(1,0) and
moves along the unit circle a directed distance corresponding to s
and reaches point P:(u, v), as shown in Fig. 4.28. Two circular func-

tions, denoted by sin and cos, are defined by

sin s = v(the second component of P),

 

cos s = u(the first component of P).

y
4

a P: (u,v) = (cos s, sin 5)

Fig. 4.28 » x
\_ A: (1,0)

 
Definitions of four additional circular functions are now stated in terms of

sin s and cos s; these definitions are obviously motivated by corresponding prop-

erties of trigonometric functions from Section 4.3.

Definition 4.4 Let s be any real number, and sin s and cos s be as given in Defini-
tion 4.3. The four circular functions, denoted by tan, cot, sec, and

csc, are defined by

  

 

sin 8 COS §
tan s = ; cots = ——,

COS § sin s

1 1
secs = —, CSCS = —.

sin Ss

 

* Here we are thinking of distance S as having a unit of measure associated with it (for example,

centimeters), and s is the corresponding number without the unit of measure. For instance, if

S = 3 cm, then s = 3.
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y
A

P: (u,v)

; S
|v

0

[] » x

u A: (1,0)

 
If we take a closer look at the circular functions given in these definitions, it

is easy to see that they are precisely the same as the corresponding trigonometric
functions defined in Section 4.3 in which angles are measured in radians. For
instance, let § be an angle in standard position, as shown in Fig. 4.29. (The
diagram shows @ as an acute angle, but the discussion holds for angles of any
size.) If # is in radians, then the corresponding arc length s is given by
s=r+0=1-6 =40. According to Definition 4.2, where point P on the terminal
side is taken on the unit circle, the trigonometric function values for sin § and
cos f are given by

sind =2=Y =,
1

u
cosh =%=-Y_y

r 1

But by Definition 4.3, v = sin s and © = cos s. Therefore

sinf = sins and cos = coss.

We are not interested here in carrying out all the details to show that each

circular function is equal to the corresponding trigonometric function. The im-
portant fact is that in either case we have defined six functions that have do-
mains consisting ofsets of real numbers. It is in this setting that the student will
encounter trigonometric (or circular) functions in calculus.

We shall refer to the six functions we are discussing here interchangeably as

either trigonometric or circular functions. One might ask: Why talk about the

same thing in two different contexts? The reason is that in the setting in which
trigonometric functions are introduced,it is convenient to relate the functions to
triangles and use them in problems related to triangles, but using circular func-

tions provides us with simple means for deriving several important properties of

these functions. This is illustrated in the following discussion.
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Periodic Properties

Suppose s is any real number. Then the same point P on the unit circle is associ-
ated with s and with s + k(27), where & is any integer (zero, positive, or nega-
tive). According to Definition 4.3, we get

 

sin(s + 2k7) = sin s and cos(s + 2kw) = cos s. (4.10)
 

This tells us that the sine function (the cosine function as well) repeats itself
every 27 units, and so it is called a periodic function. Using Eq. (4.10) and Defini-
tion 4.4, we can make similar statements for the other circular functions.

Identities for Circular Functions

An equation is an identity if its solution set is the set of all real numbers for
which both sides of the equation are defined. Here we illustrate derivation of a

few basic identities for circular functions; several others will be discussed in

Chapter 5.

1. Suppose point P:(u, v) on the unit circle is associated with a real numbers,
and M is the corresponding point associated with s + #, as shown in Fig.
4.30. Since the circumference of the unit circle is 27r = 27 + 1 = 27, point M
is diametrically opposite P, and so it is given by (—u, —v). Using Definition
4.3 as related to M gives sin(s + 7) = —v and cos(s + 7) = —u. But in rela-

tion to point P, sins = v and cos s = u. Therefore, we get the identities

 

sin(s + 7) = —sin s and cos(s + m) = —coss. (4.11)
 

v
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Using Eq. (4.11) and Definition 4.4, we easily derive the identities

 

tan(s + 7) = tans and cot(s + 7) = cot s. (4.12)
 

2. In a manner similar to (1), suppose P:(u, v) is associated with real number s;

then the corresponding point associated with s + 7/2 is 6:(—v, u), as shown

in Fig. 4.31. Hence, by Definition 4.3,

sin (s + 7) =U =COSS and cos + 7) = —p = —sins.

Therefore we get the identities

 

sin (s + 2) = COS S$ and cos (s + 7) = —sins. (4.13)

 

~
<

=
<

  

((—v,u
Q:( ) ~T P: (u,v)

2

P: (u,v) $

s
Fig. 4.31 » x Fig. 4.32

(1,0) (1,0)

-s

T: (u, —v)

 

  
3. Figure 4.32 shows points P and T related to numbers s and —s, respectively.

From this and Definition 4.3 we get the identities

 

sin(—s) = —sins and cos(—s) = cos s. (4.14)
 

Applying Eq. (4.14) and Definition 4.4 gives

 

tan(—s) = —tans, cot(—s) = —cot s,
(4.15)

sec(—s) = secs, csc(—s) = —cscs.
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From Egs. (4.14) and (4.15) we conclude that sin, tan, cot, and csc are

odd functions, and that cos and sec are even functions.

4. Suppose s is any real number; the associated point on the unit circle is
(cos s, sin s). Since this point must satisfy Eq. (4.9), we get the identity

 

(cos $)2 + (sins)? = 1. (4.16)
 

We shall see numerous occasions in which this identity is applied. It will also
be written as

cos?s + sin?s = 1.

In a similar manner several other identities for circular functions can be

derived. Some of them are included in Exercises 4.5. We shall delay further

consideration of identities until Chapter 5.

Periodic Functions

In the above discussion we noted that if g is any of the circular functions, then

g(s + 27) = g(s) for every real number s for which g is defined. Thus function g

repeats itself over an interval of length 27. Any function that repeats itself over
consecutive intervals of fixed length is called a periodic function.

Manyscientific investigations involve phenomena that are of a cyclic nature
and that can be described in terms of periodic functions. It is an interesting and
important fact that practically all periodic functions can be expressed as linear
combinations of sine and cosine functions.* It is this fact that makes trigonome-
try extremely useful in application of mathematics to many real-life problems.

Suppose f is any function with the property that there is a positive
number p such that

f(x + p) = f(x) (4.17)

for all x in the domain off. We say that f is a periodic function. Letp
be the smallestpositive number for which Eq. (4.17) holds; thenp is

called the period of f.

We shall now draw a graph of each of the trigonometric functions and use it

to determine the period of that function.

 

* This is the basis for a broad topic in advanced mathematics called Fourier series.
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Graph of the Sine Function
We could make a table of x, y values that satisfy the equation y = sin x and then
use the corresponding (x,y) points to draw the graph. However, we can gain
considerable insight into the behavior of the sine function by considering it as a
circular function.

When one draws a graph in the x, y rectangular system of coordinates, it is
customary to call x the independent variable; that is, we draw a graph of y =
sin x. Thus, in applying Definition 4.3, we shall replace s by x and think of x as
being associated with arc length (not as the x coordinate of P). In order not to

get variables confused, we shall denote the coordinates of P by (u,y), as illus-

trated in Fig. 4.33. Therefore, according to Definition 4.3, we have y = sin x,

where x is any real number associated with the directed arc length of a point

moving from A to P.

We can now proceed to draw the graph of y = sin x by letting point P:(u, y)

start at A and move along the unit circle (counterclockwise for x > 0). We record

the corresponding points T(x, y) on the graph shown in Fig. 4.34.
When Pisat A, x =0,y = 0; so Tis at A,:(0, 0). As P moves from A to B,

x increases from 0 to 7/2, and the corresponding values ofy increase from 0 to 1;
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then point 7 moves from A,:(0,0) to B;:(7/2,1). As P moves from B to C, x

increases from 7/2 to 7, and the corresponding values of y decrease from 1 to 0;
this gives the points of the graph from B,; to C,. As P moves from C to D, x

increases from 7 to 37/2, and y decreases from 0 to —1; this gives the points on
the graph between C, and D,. As P moves from D to A, x increases from 37/2 to
27, and y increases from —1 to 0, giving the corresponding points 7" between D,
and A, in Fig. 4.34.

The procedure above gives us one complete cycle of the sine curve. Since we

know that sin(x + 27) = sin x for each real number x, we can continue the

graph as indicated by the broken portion of the curve.
From the graph in Fig. 4.34 we see that p = 27 is the smallest positive num-

berp such that sin(x + p) = sin x for each real number x. Thus we can conclude
the following from the graph.

The sine function is periodic with period 27. The domain and range
of the sine function are given by

D(sin) =R, (@&(sin) ={y|-1<y<1}.

Graph of the Cosine Function
We can draw a graph of u = cos x by following a procedure similar to that used
above to draw the graph of the sine function. Note that we are calling the de-
pendent variable u. In Fig. 4.33 the first coordinate of P:(u, y) gives the value of
cos x for any given real number x; that is, u = cos x. We omit the details and

draw the curve shown in Fig. 4.35, with the solid portion corresponding to the
points (x, u) that we get as point P moves counterclockwise around the unit
circle from point A in Fig. 4.33.
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From the curve in Fig. 4.35, we see that p = 27 is the smallest positive num-
ber p such that cos(x + p) = cos x for every real number x. Therefore we con-

clude the following.

The cosine function is periodic with period 27. The domain and
range of the cosine function are given by

D(cos) = R, ®R(cos) = {u|—-1 <u <1}.

Graph of the Tangent Function
We shall draw a graph of the tangent function by first making a table of x, y

values that satisfy y = tan x. By plotting these points, we shall get the curve
shown in Fig. 4.36. In selecting what values of x to use in the table, note that Eq.
(4.12) gives tan(x + 7) = tan x for each real number x for which tan x is defined.

Thus it is sufficient to make a table in which x is between —#/2 and 7/2. Also,

from Eq. (4.15) we have tan(—x) = —tan x for each x in (tan); this tells us

that the graph of y = tan x is symmetric about the origin. Therefore it is suffi-
cient to make a table for 0 < x < 7/2. The tangent function is not defined at

7/2; we include several values of x near 7/2 = 1.570796 . . . .

 

x|0 02 050 07 100 125 150 1.52 155 1.56 1.57
 

   y 0 026 055 093 156 3.01 141 19.7 481 926 1256
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In Fig. 4.36 the portion of the curve from 0 to A corresponds to the points in
the table. Since the curve is symmetric about the origin, the portion of the curve
from 0 to B is obtained by reflecting points from 0 to A about the origin. The
remaining branches (broken portions) of the curve come from the periodic prop-
erty given by tan(x + 7) = tan x.

From the graph in Fig. 4.36 we conclude the following.

The tangent function is periodic with period #. The domain and
range of the tangent function are given by

D(tan) = {x|x # 2 + km, kis an integer}, ®(tan) = R.

We also note from the graph that the dashed vertical lines through x equal
7/2, 3n/2, ..., —w/2, —3w/2, ... are vertical asymptotes to the graph of the

tangent function.

Graph of the Cotangent Function

We can draw a graph of y = cot x by following a procedure similar to that used

above in drawing a graph of the tangent function. We omit the details and give

the graph (Fig. 4.37).

From the graph in Fig. 4.37, we conclude the following.
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The cotangent function is periodic with period =. The domain and

range of the tangent function are given by

D(cot) = {x|x # km, kis an integer}, ®R (cot) = R.

We also note that the cotangent curve has vertical asymptotes, given by
x = km, where k is an integer.

Graph of the Secant Function

Since sec(x + 27) = sec x, in making a table of x, y values that satisfy y = sec x,
it is sufficient to include values of x in the interval —« to 7. From Eq. (4.15) we

have sec(—x) = sec x for every x in D (sec); this tells us that the graph is sym-
metric about the y-axis; hence it is sufficient to include in our table values of x
between 0 and 7. The secant function is not defined at 7/2, but we include

several values of x near 7/2 = 1.57 . . . in the following table.

 

x| 0 025 050 0.75 1.00 125 150 1.56 1.57
 

y|1l 103 114 137 18 317 141 92.6 1256    
 

x 1.58 1.60 1.75 2.00 2.25 2.50 2.75 3.00 T
 

y —109 -342 -561 -240 -159 -125 -—-1.08 -—-1.01 -1    
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We now plot the points given in this table and draw the curve corresponding
to x between 0 and 7; then from symmetry about the y-axis we draw the curve
for x between 0 and —=. This gives us the solid portion of the curve shown in Fig.
4.38. The remainder of the curve (broken portion) can now be drawn by using the
identity sec(x + 27) = sec x.

From Fig. 4.38 we conclude the following.

The secant function is periodic with period 27. The domain and
range are given by

D(sec) = {x|x # 2 + km, kis an integer},

R(sec) = {y|y < —1 or y>1}

Note that the vertical lines given by x = (2k + 1)7/2, where k is any integer,

are vertical asymptotes of the secant curve.

Graph of the Cosecant Function
Following a procedure similar to that used to draw a graph of the secant func-
tion, we get the graph of y = csc x, shown in Fig. 4.39.

From the graph in Fig. 4.39, we conclude the following.
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The cosecant function is periodic with period 27. The domain and
range are given by

D(csc) = {x|x # km, kis an integer},

®R(csc) = {y|]y< -1 or y2>1}.

Note that y = cscx has infinitely many vertical asymptotes, given by

x = km, where k is any integer.

Exercises 4.5
 

In problems 1 through 8, use Definitions 4.3 and 4.4 or identities derived in this section to

derive the given identities.

1. a) sin(7 — s) = sins

2. a) sin (z —- 5) = COS §

3. a) sin (3 + 5) = —cCoS S$

4. a) sin (2 — 5) = —COSS§

5. a) tan(7 + s) = tans

b) cos(m — s) = —coss

b) cos (2. _ 5) =sins

b) cos (& + 5) =sins

37 :
b) cos (& —- 5) = —sin s

b) cot(w + s) = cots

6. a) sec(m + s) = —secs b) csc(7 + s) = —cscs

7. a) tan (2 + 5) = —cots b) cot (2 + 5) = —tans

8. a) sec (3 + 5) = —cCsCS b) csc (z + 5) = secs

9. Draw a graph of the sine function by first making a table of x, y values that satisfy

the equation y = sin x; plot these points, and then draw the curve. Use the identities
derived in this section, such as sin(x + 27) = sin x and sin(—x) = —sin x, to con-

vince yourself thatit is sufficient to include in the table values of xin 0 < x < 7. For

values of x, use 0, 0.25, 0.50, 0.75, . . ..

10. Follow instructions similar to those in problem 9 for y = cos x.

11. Draw a graph of y = tan x by considering y = sin x/cos x and using information

from the graphs of y = sinx and y = cos x in Figs. 4.34 and 4.35. Determine the

vertical asymptotes by noting the values of x for which cos x = 0.

In problems 12 through 14, follow instructions similar to those given in problem 11 to

draw a graph of the given function.

1
COS 13. y =secx = 1 14. y = cscx = —
sin x cos x sin x

15. If f(x) = 1 — sin x, is f(7 — x) = f(x) for every x € R?

12. y = cotx =   
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16. If f(x) = sinx + cos x, is f(7 + x) = —f(x)?

17. Given that g(x) = x)?1, find D(g).

18. Given that g(x) = x)? find D(g).

19. If f(x) = (sin x)? + (cos x)?, what is the range of f?

20. If f(x) = x sin x, is f an odd function? An even function?
 

Fig. 4.40

4.6 SOLVING RIGHT TRIANGLES
As noted earlier, the word trigonometry implies the study of measurements re-

lated to triangles. The historical development of the subject was indeed moti-

vated by practical needs in areas such as surveying, navigation, and architecture.

Let us first describe a situation that involves triangles in its solution. Sup-
pose we wish to determine the height of a mountain peak, and there is no con-
venient way to measure it directly. One approach is to locate two points A and B
on the ground, as shown in Fig. 4.40, and measure the distance between them.

With surveying instruments, angles a and 8 can be measured. With this much
information we can determine the height A by using trigonometric properties of
right triangles (see problem 24).

A triangle has six parts: three angles and three sides. When we say “angle of
a triangle,” we mean the angle formed by the two rays that contain two sides of
the triangle and have the vertex as their common end point. To “solve a triangle”
means that measurements of some of these parts are given (usually sufficient to
describe a unique triangle), and the remaining parts are to be determined from
the given information. In this section problems involving right triangles only are
considered. Solving general triangles is discussed in the following section.

Standard labeling of parts of a right triangle is shown in Fig. 4.41, in which
the right angle is at vertex C, side a is opposite angle a, side b is opposite angle ,
and the hypotenuse is denoted by c. Note that a letter is used to refer to a part of
the triangle or to its measure; for instance, b denotes the side AC or the length of

side AC.
Since the sum of the angles of any triangle is 180°, angles a and 3 of a right

triangle are acute angles. It will be convenient to state definitions of trigonomet-
ric functions of these angles by referring to the sides of the triangle.

Fig. 4.41 
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Fig. 4.42

Example 1

Solution

Trigonometric (Circular) Functions Chapter 4

(ba)

  
Suppose a coordinate system is chosen such that right triangle ABC is situ-

ated as shown in Fig. 4.42, with angle a in standard position. Point B:(b, a) is on

the terminal side of angle a; applying Definition 4.2 gives

sina = &, cosa =2, tana = 2,
c Cc b
5 (4.18)

cota = —, seca =<, csca =<.
a b a

In order to avoid the need to place an angle of a right triangle in standard
position to determine its trigonometric function values, let us introduce the
following notation: opp(a), adj(a), and hyp will denote the side opposite «, the

side adjacent to a, and the hypotenuse, respectively. The results given in (4.18)
can be written as

 

   

 

: opp(a) adj(a) opp(a)
sin a = hyp cosa = hyp , tan a = adja)’

dia) b b (4.19)

adjla yp yp
cota = ———, seca = ————, csca = .

opp(a) adj(a) * oppla)
 

In a similar manner, the trigonometric function values for angle 8 can be

stated in terms of the sides of the triangle. For instance,

opp(B)

_

b adj(B) a
hyp - an cos f3 hyp -

In the following examples, a calculator will be useful for numerical compu-
tations.

  sin 8 =

In a right triangle a = 32.4 cm, a = 40°. Find b, c, and B.

Draw a right triangle and denote the given parts as shown in Fig. 4.43. To deter-
mine side b the first step is to look for an equation that involves b and the given
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Fig. 4.43

Example 2

Fig. 4.44

Solution
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parts. We could use either tan « = a/b, which gives b = a/tan a, or cot a = b/a

to get b = a cot a. Since the calculator does not have a key labeled cot, we
choose the first of these:

b = a/tan a = 32.4/tan 40° = 38.6 cm.

To determine the hypotenuse c¢, we could use any of three equations: sin a =
a/c; csca = c/a; ¢c = Va? + b2 In general,it is a good practice to use a rela-

tionship that involves only the given parts, if possible. That is, the third option
has a slight disadvantage because we might make an error in solving for b. The
second has the disadvantage of involving csc a, and our calculator does not have
a csc key. Therefore, we decide on the first:

¢ = a/sin a = 32.4/sin 40° = 50.4 cm.

To determine 3, we know from geometry that the sum of the measures of the

three angles of a triangle is 180°; that is, a + 8 + 90° = 180°. Therefore
B = 180° — 90° — a = 90° — 40° = 50°.

Given c¢ = 16.25 cm and 8 = 68°24’. Find the area of the triangle.

B

 

A b Cc

Area = (1/2)ab, so let us first find sides a and b. From sin 8 = b/c we get

b = c¢sin B, and from cos 8 = a/c we get a = c cos 8. Hence

Area = (1/2)(c cos B)(c sin B).
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Example 3

Solution

 
Example 4

Solution
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Substituting the given information and evaluating gives

2 a1 2( o /’ o ’Area — Cc Sn heosh _ (16.25)%(sin we cos 68°24’) 4519 cm? EE
 

Given that a = 37.4 cm, b = 63.3 cm, find ¢, a, and BS.

c = Va? + b2 = \/(37.4)? + (63.3)2 = 73.5 cm.
 

B

  
For angle a we use tana = a/b = 37.4/63.3, or tan a = 0.59084. We are now

confronted with the problem of finding « when we know tan a. This is the inverse
of the problem of finding tan a« when « is given. The subject of inverse trigono-
metric functions will be discussed formally in Chapter 5, and here we merely

point out that scientific calculators can be used to find an angle corresponding to
a given value of a trigonometric function. The calculator keys that correspond to

inverse functions are usually labeled (sin-7), (cos=7), (tan=T), or there is an key,
which is to be followed by the appropriate (sinJ, (eos), (tan key. This is illustrated
by the above problem in which tan a = 0.59084 and we wish to determine a.

If the calculator has an key, enter the number 0.59084 into the display,
and with calculator in degree mode, press the and keys in that order.
The display will read 30.5763° (to four decimal places).

If the calculator has a (tan-Tkey, then with 0.59084 in the display and with the
calculator in degree mode, press (tan-7, The display will read 30.5763°. Thus
a = 30.5763° = 30°35’. To find B, use 8 = 90° — a, and so 8 = 59°25’. RE

Given that « is an acute angle and

a) sin a = 0.4835, find a in degrees correct to two decimal places.

b) cos a = 0.6897, find « in radians correct to three decimal places.

a) Place the calculator in degree mode, enter the number 0.4835 into the dis-

play, and then press and (sin] (or Gn=Y). The display will show 28.91°.
Thus a = 28.91°.
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Fig. 4.46

Example 5

Solution

Fig. 4.47
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b) Place the calculator in radian mode, enter the number 0.6897 into the dis-

play, and then press and (or(ees=1). The display will show 0.810. That
is, a = 0.810 radians. a

In certain applicationsit is necessary to use angles measured from a horizon-
tal line of sight. An angle formed by a horizontal ray and an observer’s line of
sight to an object above the horizontal is called the angle of elevation. If the
object is below the horizontal, then the angle between the horizontal and the

line of sight is called the angle of depression. These terms are illustrated in

Fig. 4.46.

® Object

    Angle of
elevation Horizontal

v v

    

 
Angle of
depression

Horizontal

® Object

From a window 25 meters above the ground, the angle of elevation to the top of
a nearby building is 24°20’, and the angle of depression to the bottom of the
building is 14°40’. Find the height of the building.

In Fig.4.47 we wish to findA, which is equal to BC + CD. We know
CD =AE =25m, so h=BC+ 25m. From triangle ACD we have

 

AC = CD/tan 14°40’ = 25/tan 14°40’. Using triangle ABC, we have

BC = AC tan 24°20’. Thus

25 tan 24°20’
h=254+=22"""=" —6820m.tT tan 14°40 m

B

~-7
Je |

-

20 "
AFSLTTT “

~~ |
E D in



252

Exercises 4.6
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Accuracy of Measurements

Note that in Example 3 angle 8 was determined to the nearest minute. This was
done primarily to illustrate the technique for getting such accuracy. In applied
work the degree of accuracy of computed values as well as measured values will
depend on several factors and on the way the results will ultimately be used. It

is pointless to calculate the height of a mountain peak in meters to four decimal
places and use such a number on a map.

In practical applications involving measurements of angles and lengths,
along with the associated computations, one of the first questions that must be
resolved is: What degree of accuracy should be used? Naturally, the answer
depends on the particular problem and the way the results will subsequently be
applied. We cannot expect computed values to be reliable to more significant
digits than the starting data, which in applications are usually physical meas-
urements.

The accuracy of computation in problems that involve approximate num-
bers is discussed in Appendix C. It should be understood that the rules stated
there form a practical guide to be used in applied problems. In this text, as in
most mathematics texts, no effort is made to be completely consistent with these
rules. Most of our problems are mathematical in nature, and our primary goalis
to provide the student with examples that will lead to a better understanding of
the basic mathematical concepts being discussed. Thus, in most of the problems
that involve computations, the reader is asked to find a result correct to a given
number of decimal places or to a given number of significant digits. Furthermore,
in many problems we say, for example, that the length of a side of a triangle is
24.3, and we do not even specify the units. In practical applications, such as in
physics, chemistry, or engineering, the units will be specified, and there should
be no problem in following the rules given in Appendix C, which govern compu-

tations with approximate numbers.

 

Unless otherwise specified, supply answers involving lengths in the given units correct to
two decimal places, angles in degrees and minutes correct to the nearest minute, and

areas rounded off to the nearest whole number.

In problems 1 through 10, standard notation as described in this section is used to denote
sides and angles of right triangles.

1. a = 35°24’; a = 3.27 cm; find b, c, B.

2. a = 56cm, b = 33 cm; find ¢, a, B.

3. a =175 cm, ¢ = 337 cm; find b, «a, B.

. B=65.72°, a = 32.5 m; find b, c, a, and the area of the triangle.

. b=2730m, ¢c = 4666 m; find a, a, B.

4

5. a = 27°17’, ¢ = 56.5 cm; find a, b, B, and the area of the triangle.

6

7 . a =24208 m, b = 10575 m; find ¢, a, B.
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12.

13.

14.

15.

16.

17.

. B =42°30, b = 3.25 cm; find aq, c, a.

. b=17356cm, c = 131.42 cm; find a, a, 8, and the area of the triangle.

10.

11.

a = 37.43°, ¢ = 64.56 cm; find a, b, B, and the area of the triangle.

A line passes through points (5,2) and (8, 15). Find the acute angle at which it
intersects the x-axis.

Find the area in cm? correct to two decimal places of an equilateral triangle having a

side of length 12.56 cm.

Find the area in m? correct to two decimal places of an isosceles triangle that has
two sides of length 2.47 m; the angle opposite one of them is 41°37’.

The lengths of sides of a parallelogram are 38.4 cm and 64.8 cm, and an interior angle

is 115.65°. Find the area in cm? correct to one decimal place of the parallelogram.

A regular polygon is inscribed in a circle of radius 57 cm. Find the area in cm? correct

to one decimal place of the polygon of the following description.

a) four sides (a square) b) six sides (a hexagon)

c) eight sides (an octagon) d) n sides

You wish to fence a triangular piece of land with dimensions given by a = 236 m and
a = 70° (see Fig. 4.48). Find the total amount of fencing you must purchase.

Fig. 4.48

Q
I
=

You wish to mount an antenna and have purchased a tower that is 12.48 meters tall.

The tower is to be anchored from the top by three guy wires, each of which is to be
7.36 meters from the base (Fig. 4.49). How much guy wire do you need?

12.48 m

Fig. 4.49

7.36 m

18. If the elevation of the sun is 17.48° at 5 P.M. on December 21, the shortest day of the

year, how far east of a retaining wall 5.48 meters tall should one locate plants

requiring year-round full sun?

19. The distance from the base to the top of the Leaning Tower of Pisa is 54.6 m, and it
makes an angle of 84°45’ with the horizontal. How far does the top overhang the
base?
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20.

21.

22.

23.

24.

25.

In Fig. 4.50 line segment AB is a diameter of the circle of radius 24 cm, and C is a

point on the circle with length of arc AC equal to 27.3 cm. Find the length of
chord AC.

Hint: Let 0 be the central angle shown in Fig. 4.50; use definition of radian measure
to find 4. Recall facts from geometry about measures of central and inscribed angles
in a circle.

A segment ofacircle of radius 4.56 cm is shown as the shaded region between chord

AB and arc AB (Fig. 4.51). If the central angle # is 1.15 radians, what is the area of

the segment?

 
Fig. 4.51

 

A surveyor starts at point A in Fig. 4.52 and measures AB = 41.32 m, BC = 37.53 m,

6 = 137.44°. Find the distance from A to C and angle a.

A triangular piece of land is bounded by two farm roads that intersect at right

angles and a highway that intersects one of the roads at an angle of 24.5°, as shown
in Fig. 4.53. You wish to purchase the property and know that the previous owner

required 843 meters of fencing to enclose it. Land sells at $2.50 per square meter in

this region. How much does the property cost?

 

 

Fig. 4.53

Chapter 4

  

 

=.

A surveyor wishes to determine the height A of a mountaintop above the horizontal

ground, as shown in Fig. 4.54. He observes the angles of elevation from two points A

and B on the ground and in line with the mountaintop, and he measures the dis-

tance from A to B. These measurements are: a = 43°30’, 8 = 32°20’, and

AB = 256 m. Find the height of the mountaintop above the horizontal ground level.
Give answer to the nearest meter.

From point A, which is 8.1 meters above the horizontal level of the ground, the angle
of elevation of the top of a tower CB is « = 32°30’,and the angle of depression of the
base is 8 = 16°40’ (see Fig. 4.55). Find the height CB of the tower. Give the answer in

meters correct to one decimal place.
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26.

27.

28.

29.

30. 

Fig. 4.55

A sector with central angle 72° is cut out of a circular piece of tin of radius

16.48 cm. The edges of the remaning piece are joined together to form a cone. Find

the volume of the cone. See inside front cover for a formula giving volume of a cone.

Suppose A, B, and C are vertices of a right triangle, and «a is the measure of the angle

at A, as shown in Fig. 4.56. Also suppose the length of AB is 1. Extend side CA to.

point D such that the length of AD is also 1.

a) Show that the angle CDB is equal to a/2.

b) Use right triangle BCD to find tan a/2. Specifically, show that it can be ex-

pressed in the form tan a/2 = sin a/(1 + cos a). This is a useful identity, which

will be seen again in Chapter 5.

In problem 24 of Exercises 4.2 Mot’l’s treadle sewing machine was described (see Fig.
4.57). The radii of the two wheels are r; = 3.5 cm and r, = 15.5 cm. The distance
between the centers is EF = 56 cm. Find the length of the belt that goes around the
two wheels. In the diagram, E and F are centers of the wheels, points A, B, C, and D

are points at which the belt is tangent to the respective wheels, and line BG is

parallel to EF. Give answer in centimeters correct to one decimal place.

 

Fig. 4.57 D

A right triangle is inscribed in a circle of radius 5.6 cm. One angle of the triangle is

64°. Find the lengths of the two sides.

The area of a right triangle is 6.73 cm?2, and one ofits angles is 36°. Find the length of

the hypotenuse.  
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31. The perimeter of a right triangle is 8.56 m, and one of its angles is 23°30’. Find the

lengths of the two sides.

32. One angle of a right triangle is 47°30’, and its perimeter is 15.48 cm. Determine the
area of the triangle.
 

4.7

Fig. 4.58

 

LAW OF COSINES AND LAW OF SINES

Techniques used in the preceding section apply to the solution of right triangles.
We now consider the general case, in which triangles are not necessarily right
triangles. Although it is true that solving a general triangle can be reduced to
problems involving right triangles, it is desirable to have formulas that can be
applied directly.

Suppose A, B, and C are vertices of a triangle, as shown in Fig. 4.58. Greek

letters a, B, and y are used to denote the three angles and a, b, c¢ to represent the

three sides. As indicated in Fig. 4.58, angle a has vertex at A and side a is opposite
a; likewise for B, 8, b and C, vy, c. Thus a triangle has six parts: three angles and

three sides. In general, three given parts, at least one of which is a side, is suffi-
cient to describe a specific triangle, and our problem is to determine the remain-
ing three parts. First we develop two sets of formulas; these are called the Law of
cosines and the Law of sines.

 

 

Law of Cosines

Figure 4.59 shows triangle ABC in which D is the base of the altitude from

vertexA. _
Let h = AD and x = CD. From right triangle ADC we get x = b cos y and

h = b sin vy. Applying the Pythagorean theorem to right triangle ADB, we have

c2=h%+ (a — x) = h?% + a? — 2ax + x2.

Substituting x = b cosy and A = b sin y gives

(bsin vy)? + a? — 2a(b cos vy) + (b cos y)?

a? + b?[(sin vy)? 4 (cos y)?] — 2abcosy

=a? + b%2 —2abcosy,

c?
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a

hy

||
D

where in the last step the identity given in Eq. (4.16) was used to replace

(sin y)? + (cos vy)? by 1. Thus we have*

c?2 = a? + b? — 2ab cosy.

In a similar manner we can develop analogous formulas for a? and 52. The
set of three equations, listed in (4.20), is called the Law of cosines for tri-

angle ABC.

 

Q N
o

Il b% + ¢? — 2bc cos a,

b% = a? + ¢? — 2ac cos B, (4.20)

c?2 =a? + b% — 2ab cosy.
 

The technique used to solve a triangle depends upon the given information.
Problems can be classified into the following four cases, in which the given three
parts are:

1. Two sides and the included angle;

2. Three sides;

3. Two sides and an angle opposite one of them;

4. One side and two angles.

The Law of cosinesis particularly suitable for solving triangles described by

cases 1 and 2, but the Law of sines is better suited for case 4. Case 3 presents a

special problem in that it is possible for the given information to describe either

one triangle, two triangles, or no triangle. For this reason, case 3 is usually

referred to as the “ambiguous case.” We shall illustrate through example how
this case can be handled by using the Law of cosines involving solution of a
quadratic equation; due to calculators, this problem presents no special diffi-
culty in computation of answers.

 

In the derivation of this formula, the diagram used shows y as an acute angle. Actually the final result

holds if y is any angle between 0° and 180°. See problem 16 of Exercises 4.7.
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Given two sides and the included angle. Suppose a = 33.24, b = 47.37, and
y = 38°15’. Find ¢, a, and B.

 

Solution

Example 2

Solution

To find ¢, apply the third equation of (4.20) to get

c? = (33.24)2 + (47.37)2 — 2(33.24)(47.37)cos 38°15".

Using a calculator to evaluate the right-hand side and then pressing the key
gives ¢ = 29.59.

Suggestion: In order to get maximum calculator accuracy, store the full decimal
value of c¢ in the calculator, and then use that value in subsequent computations
in determing a and gS.

To determine «a, use the first equation of (4.20) in the form

b2 + ¢? — a?
Cosa = 2be

Evaluating this expression gives a = 44.0589° = 44°04’.
In a similar manner the second equation of (4.20) can be used to get

B = 97°41’. We could have determined 8 by using 8 = 180° — (a + y), but we

prefer to use this as a check on our computations. That is, we see that

a+ B+ y=44°04" + 97°41’ + 38°15’ = 180°. oe

Given three sides. Suppose a = 56.84, b = 83.45, and ¢ = 51.63. Find angles «, 83,

and 7.

Apply the first equation of (4.20) to get

b? + c2 — a?  (83.45)% + (51.63)% — (56.84)?

2bc - 2(83.45)(51.63)

This gives a = 42.0491° = 42°03’. In a similar manner the second and third
equations of (4.20) give 8 = 100°29’ and y = 37°28’.

As a check, adding the computed values of a, 83, y gives

a+ B+ vy =42°03 + 100°29" + 37°28= 180°. a

cosa = 
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Example 3

Solution

Fig. 4.61
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Given two sides and an angle opposite one of them. Suppose a = 17.48,
b = 25.63, and a = 37°48’. Find ¢, 8, and vy.

If the given values of a, b, and a are substituted into the first equation of (4.20),

a? = b2% + c2 — 2bc cos a,

the result is a quadratic equation in c,

c?2 — (2bcosa)c + (b%2 — a?) = 0.*

Applying the quadratic formula gives

c = [2b cos a = \/(—2b cos a)? — 4(b% — a?)] + 2

= bcos a = Va? — b1 — (cos a)?].

From Eq. (4.16), 1 — (cos a)? is identically equal to (sin «)?, and so

¢ = bcosa + (bsina) (4.21)

Substituting the given values of a, b, and « into Eq. (4.21) gives

c = 25.63 cos 37°48’ + 1/(17.48)% — (25.63 sin 37°48’)2.

 

 

 

We can now evaluate this result by calculator. To avoid recording any intermedi-

ate computations, first evaluate the square root part, store it by using the
key, and recall it when needed by using the key.! Thus we get two answers:
c, = 27.91873 and c, = 12.58462. In order to be consistent with the given data,
we round off to two decimal places: ¢; = 27.92 and ¢, = 12.58.

In this example we see that there are two solutions; these are illustrated in
Fig. 4.61. The second triangle in Fig. 4.61 is obtained from the first by rotating

side a about the top vertex, as indicated in the diagram.

1

\& Bi

C1

 

 

 

Substituting the values of a, b, and a at this point gives
c? — [2(25.63)cos 37°48']c + (25.632 — 17.482) = 0.

That is, ¢2 — 40.5033 ¢ + 351.3465 = 0. This is the quadratic equation that determines c, but it is not

necessary to record the intermediate numbers that appear as the coefficient of ¢ and the constant
term. It is simpler to solve the quadratic equation for the general case and then substitute the values

of a, b, and a into the final result, shown in Eq. (4.21).

The and keys may be labeled differently on some calculators (see Appendix A or owner’s

manual).
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Fig. 4.62

Trigonometric (Circular) Functions Chapter 4

Angles $3, and vy, can now be found by using

a? + c2 — b?

2ac,

These give 8, = 63°59’ and vy, = 78°13".

As a check, we note that a + 8, + vy; = 37°48 + 63°59’ 4+ 78°13’ = 180°.

To find B, and v,, note that

B, = 180° — B, = 180° — (63°59’) = 116°01’,

vo = 180° — (a + B,) = 26°11". wa

a? + b? — ¢2
and cosy, = abcos fB; =

The Ambiguous Case

In Example 3 two sides and an angle opposite one of them were given; the third
side was determined by solving a quadratic equation, and two solutions, given by
Eq. (4.21), were found. A geometrical interpretation of Eq. (4.21) can be given by
considering the diagram shown in Fig. 4.62. From right triangle ACD, we get

CD = bsina and AD = b cos a. Applying the Pythagorean theorem to right
triangle BCD gives

DB = Va? — (CD)? = Va? — (bsin a).

 

 

A 1%) E

le ~ JI

Therefore ¢; = AD + DB and ¢, = AD — ED = AD — DB, and so

 

c, = bcosa + Va? — (bsin a)?
: (4.22)

¢, = bcosa — Va? — (bsin a)?
 

Evaluating c, and c, in Example 3 resulted in two positive numbers, giving
two solutions. In general, however, any one of the following possibilities might
occur:
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Fig. 4.63
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1. ¢, and c, are positive numbers, giving two solutions;

2. ¢, = cy, which implies a? — (b sin a)? = 0, and so a = b sin a, which tells us

that ABC is a right triangle;

3. c, is positive and c, is negative, giving one solution since a side of a triangle
cannot have negative length;

4. c, and c, are complex nonreal numbers, giving no solutions; in this case
a < b sin a, which tells us that the given side a is not long enough to reach
side ¢ when drawn from vertex C.

Eqs. (4.22) can be applied when sides a, b, and angle a are given. If two other
sides and an angle opposite one of them are given, it is a simple matter to write
the equations corresponding to those given in (4.22). In any problem, we suggest
that the reader draw a diagram similar to that in Fig. 4.62 and then derive
corresponding formulas from geometrical considerations similar to those leading
to Egs. (4.22).

Law of Sines

Figure 4.63 shows triangle ABC, in which D is the foot of the altitude A from
vertex B.

  
 

B

[

I
h

Oo

D Cc

From right triangle ADB, h = c¢ sina; and from right triangle BDC,

h = asin y. Therefore c sin a = a sin y. Dividing both sides by ac, we can write
this equation as

sina _ siny (4.23)
a Cc
 

In a similar manner (see problem 32) we can show that

sina _ sin 8 (4.24)
a b

Equations (4.23) and (4.24) can be written in compact form to give the Law

of sines:

 

 

sina _ sinf8 _ siny
a = bh (4.25)
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Example 4

Solution

Fig. 4.64

Example 5

Solution
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The derivation of Eq. (4.25) was based on Fig. 4.63, in which angles a and y
are acute. The Law ofsines is still valid if one of the angles is obtuse (see prob-
lem 32).

Given one side and two angles. Suppose b = 5.834, a = 64°12’, and y = 47°47’.

Find a, c¢, and BS.

To find B, use 8 = 180° — (a + vy) and get 8 = 68°01’. To determine a, apply the

Law of sines in the form

a — bsina _ 5.834 sin 64°12’
~ sinB ~~ sin 68°01
 

This gives a = 5.664. Similarly,

c= bsiny _ 5.834 sin 47°47
= 4.659. 

sin = sin 68°01’

 

 

A c B 3

Area of a Triangle

The area K of a triangle is given by the familiar formula from geometry,

K = 5(Base) . (Altitude). (4.26)

Instead of deriving various formulas for K, depending on the given information,
we suggest that in each case you draw a diagram showing the given parts; decide

on one of the sides as the base, determine the corresponding altitude, and then
use Eq. (4.26). This is illustrated by the following example, in which three sides
of a triangle are given.

Suppose a = 34, b = 48, and ¢ = 28. Find the area of triangle ABC.

Triangle ABC is shown in Fig. 4.65. Suppose we take b to be the base and A the
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corresponding altitude. From right triangle BCD, A = a sin y, where y can be

determined by using the Law of cosines. The area K is given by

K= 3b h= bla sin y) = 2(48)(34) sin v, (4.27)

where

a? + b2 — c2 _ 342 4 482 _ 282
2ab © 2(34)(48)

Using a calculator, we first evaluate the right-hand side of Eq. (4.28) and then,

with the result in the display, press and (or(ees=Y) to get y in the display;
we then continue with Eq. (4.27) to find K. The result is K = 467.22 (to two

decimal places). |

 cosy = (4.28)

In Example 5 we illustrated how the area of a triangle can be determined
when the three sides are known. It is a good exercise in algebra to follow a similar
pattern for the general case to get the following formula for K in terms of a, b,
and c,
 

K = V/s(s — a)(s — b)(s — ¢c),* (4.29)

where s is the semiperimeter

1
S = 5 la + b +c ).

This formula can be applied to the problem in Example 5 to check the solution
there.

 

The formula given in Eq. (4.29) is called Heron’s Formula in honor of the famous Greek philosopher-

mathematician Heron of Alexandria (A.D. 75).
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Exercises 4.7
In problems 1 through 15, use the given data to find the remaining three parts of the
triangle. Give answers involving length rounded off to the same number of significant
digits* as the given data, and give angles correct to the nearest minute.

 

1. a =36,b =67, y =43° 2. a =24,b="73, y=130°

3. a =85c=42, = 83°24 4. a = 41.32, b = 57.56, y = 61°12’

5. a = 248, b = 1.75, a = 124° 6. a =17,b =45,¢c =50

7. a = 31.5, b = 634, c = 41.6 8. a=17,b =25 a = 37°

9. a =27°,B="T73°% a =16 10. 8 = 67°, y = 26°, a = 463

11. a = 47°, y = 112°, ¢c = 81 12. 8 = 61°47, y = 82°15, b = 63.54

13. a = 2730, ¢ = 4666, a = 32° 14. a = 47.3, b = 32.5, c = 405

15. a = 73.46°, B = 23.75°, c = 4.875

16. In this section the derivation of the Law of cosines was based on Fig. 4.59, in which
angle y was acute. Suppose vy is obtuse, as shown in Fig. 4.66. Derive the Law of

cosines for this case. That is, show that ¢2 = a2 + b2 — 2ab cosy.

A

 

 

17. If triangle ABC is a right triangle with y = 90°, show that the third equation given

in (4.20) reduces to the Pythagorean theorem.

18. A ship sails due east from point A for a distance of 48.6 km; then it changes direction
by an angle of 16°40’ toward the south, as shown in Fig. 4.67. After the ship sails

37.8 km in the new direction, how far is it from point A?

Fig. 4.67 o 3.6m
A

 

 

* See Appendix C for a discussion of significant digits.
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19. A surveyor wants to find the distance from point A to a point C on the opposite side
of the river. He locates a point B on his side of the river, measures the distance AB

and the two angles a and B, as shown in Fig. 4.68. The measurements are

AB =1324m, a = 78°, 8 = 53°. Find the distance AC.

20. If a = 3.76, b = 5.34, and y = 48°50’, find the altitude to side b; then determine the

area of the triangle correct to two decimal places.

21. In order to measure the height of clouds at night, two observers 136 meters apart are
located at points A and B with a spotlight at point L, which is in line with A and B.
A vertical beam of light from L is reflected from the bottom of the clouds at point C,
and the observers measure the angles of elevation « and 8 at A and B. These are
a = 74° and B = 58°, as shown in Fig. 4.69. How far above the earth is the bottom of

the clouds?

 

h

BFig. 4.68 Fig. 4.69 0
L

 

B

22. From point A on top of a building, the angle of depression of a point C on the ground
is observed to be a = 54° (see Fig. 4.70), and from a window at point B, 15 meters

directly below A, the angle of depression is 8 = 42°. Find the height of the building.

AKT,_————

 \

Fig. 470 ON

23. An equilateral triangle is inscribed in a circle of radius 4.56. Find the perimeter of
the triangle.

24. A square is inscribed in a circle of radius 4.56. Find the area of the square.
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25. A surveyor wants to find the width d of a river. She notices a tree T on the opposite
bank and takes two points A and B along the bank on her side of the river. She
measures the distance x between A and B and the two angles a and S, as shown in
Fig. 4.71, and finds x = 19.8 meters, a = 33°, 8 = 124°. From these measurements,

calculate the width of the river.

26. A technique for determining an inaccessible height is the following: A surveyor
locates two points A and B and measures the distance between them. Then the
angles a, B, § are measured. This is illustrated by Fig. 4.72, in which points A, B, C

are the plane of the ground, D is directly above C, angle 6 is the angle of elevation of
point D from B, and a and 8 are angles of triangle ABC. Show that

d sin a tan 6

~ sin[180° — (a + B)]°

Fig. 4.71

  
Fig. 4.73

27. In problem 26, suppose that we want to determine the height 2 of a mountain peak

and points A and B are such that d = 463 meters, 0 = 47°20’, 8 = 63°10,

a = 46°40’. Find A.

28. A dime, a nickel, and a quarter are placed on a table so that they just touch each

other, as shown in Fig. 4.73. The diameters of the dime, nickel, and quarter are

1.75 cm, 2.25 cm, and 2.50 cm, respectively. Find the length of the smaller part of the

circumference of the quarter between the two points where it touches the dime and

the nickel. In the diagram, N, @, and D, respectively, are the centers.
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29. In problem 28 the centers of the coins form a triangle. Find the measure of the
smallest angle to the nearest degree.

30. Points A and B are located on opposite sides of a lake (see Fig. 4.74). From point C,

which is on a nearby hill, the angles of depression to A and B are observed to be

a = 12° and B = 17°, respectively. If the hill is inclined at 27° with the horizontal

and point D at the base of the hill is 48 meters from C, whatis the width of the lake?

Fig. 4.74

 

31. On a rectangular set of coordinates, the locations of two forest ranger stations are

given as A:(15, 32), B:(84, 15). A fire is spotted at point C, and angles a and B are

measured, as shown in Fig. 4.75: a = 20°, 8 = 117°. Locate the fire by finding the
coordinates of C.

a >
»

Fig. 4.75 » x  
32. In order to complete the proof of the Law of sines given in this section,it is neces-

sary to show that (sin a)/a = (sin B)/b. The diagram in Fig. 4.63 is adjusted as

shown in Fig. 4.76. Prove that sin a/a = sin 8/b. Use sin(180° — 8) = sin 8 from

problem 1(a), Exercises 4.5.

 
Fig. 4.76
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33. Suppose a triangle ABC is inscribed in a circle, as shown in Fig. 4.77. Show that each
of the ratios appearing in the Law of sines,

ae __b _ _c
sina = sin siny’

is equal to the diameter of the circle. That is, show diameter = a/sin a. Hint: Point

D is selected so that side DB passes through the center O of the circle. Recall from
geometry that angle CDB is equal to angle CAB (angle a). Also BD is a diameter,

and so angle BCD is a right angle.

34. To determine the distance between points A and B on opposite sides of a lake, a

surveyortakes pointsCand D, as shown in Fig. 4.78, and gets the following measure-
ments: AC = 206 m, CD = 263m, DB = 185m, y = 126°, and # = 104°. Using this
information, find the distance across the lake correct to the nearest meter.

C   
Fig. 4.78 4

Fig. 4.77

Chapter 4

 
 

35. A vertical tower is located on a hill that is inclined at an angle of 12° with the
horizontal (see Fig. 4.79). From point A, which is 43 meters down the hill from the
base B of the tower, the angle of elevation of C at the top of the tower is a = 37°.
Find the height of the tower.

36. Given a circle of radius 8.435 with a central angle § = 52°35’, as shown in Fig. 4.80,
find the area of the shaded region between the chord and arc.

Cc

Fig. 4.80

Fig. 4.79
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37. The area of triangle ABC is 246.3 m?, a = 31.4 m, and b = 17.5 m. Find angle y to
the nearest minute.

38. If the area of triangle ABC is 25.46 m2, a = 46°, and 8 = 82°, find the lengths of the

three sides. Give answers in meters correct to two decimal places.

39. Quadrilateral OABC is inscribed in aquarter circle, as shown in Fig. 4.81, with
length of AB equal to 2 and length of BC equal to 4. Find the area of quadrilateral

OABC and express the answer as & + IN/m, where k, I, and m are positive integers.

C

Fig. 4.82 F
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Fig. 4.81 |
0 A

40. Consider a regular pentagon ABCDE with sides of length 1, as shown in Fig. 4.82.
Let r be the length of a diagonal (such as CE).

a) Show that each of the two angles labeled a is equal to 36°, and each of the angles

labeled B is 72°. Thus triangles ACE and BCF are similar.

b) Show that CF = 1 and BF = r — 1; then, using the corresponding-ratios prop-
erty of similar triangles, prove that r satisfies the equation 72 — r — 1 = 0. Solve

this in exact form to get the well-known number called the golden ratio.

¢) Apply the Law of cosines to triangle ACE to find cos 72° = 1/2r = 1/(1 + V5).
Thus we have expressed cos 72° in exact form. Check by getting a decimal ap-

proximation of 1/(1 + V5), and compare with the calculator value of cos 72°.

 

 

Review Exercises
1. In each of the following, make a sketch showing the given angle in standard posi-

tion. A reasonable approximation is sufficient.

a) 135° b) —240° ¢) or

d) —137° e) —2.34 f) in

2. Determine the quadrants in which the given angles are located.

a) 235° b) 4.705 c) —247

d) —640° e) 841° f) 30
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In problems 3 through 10, give answers in exact form.

3. Evaluate each of the following.

a) sin 90° b) tan 30° ¢) sec 150° d) cos(—240°)

e) tan(—180°) f) csc 450° g) cot(—315°) h) sin 270°

4. Evaluate each of the following.

a) cos 37 b) cot(—m) c) sin 27 d) cos (- 27)

Tm 37 T aT 57
e) tan 5 f) sec 35 g) sec (= — z) h) csc (3 + =)

5. If § is an angle in the third quadrant and tan # = 4/3, determine each of the
following.

a) sin 0 b) sec d c) cos(d + 7) d) tan(d — =)

TT TT
e) csc (6 — 7) f) cos (0 + 7)

6. In each of the following, determine # from the given information.

a sing = — YZ andr <9 <2 b) cosh = — and 0< 6 <=

c) tan = —1l and 27 <0 < —7 d) sec = —1 and 0 <0 < 27

7. In each of the following, determine a from the given information.

a) sina = —1 and 0° < a < 360° b) csca =2 and —90 < a < 90°

c) cosa = ~~ and 0 < a < 180° d) tana = —1 and —90° < a < 90°

8. Given that a = 37/2, 8 = 7/3, and y = 57/6, evaluate each of the following.

a) sin a b) tan y c) cos(a — B)

d) sec(B + v) e) sec(y — a) f) cos(a + vy — B)
9. Given that a = 30°, 8 = 90°, and y = 210°, evaluate each of the following.

a) sin(a + vy) b) sina + sin y c) cos(a — B)

d) cosa — cos 8 e) tan 2y f) 2tany

10. Given that cos = —0.75 and tan 6 is negative, determine each of the following.

a) sin 6 b) cot d c) sec (¢ = 7) d) tan(@ + =)

In problems 11 through 16, evaluate the given expressions and give answers correct to

four decimal places.

11. a) sin 43° b) tan 154° c) cos 57°16’

d) cot 48° e) sec 327°12’ f) sin(—231°)

12. a) cos 1.43 b) sin 3.86 c) tan (52) d) cot (2)
12 5



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Review Exercises

a) sin(53° + 75°) b) sin 53° + sin 75°

a) tan(1.36 + 2.14) b) tan 1.36 + tan 2.14

a) (sin 153°)% + (cos 153°)? b) (sin 1.5)2 + (cos 1.5)2

oT TT a \2 om)?
a) 2 (sin 2) (cosa b) (cos z) — (sin 7)

In each of the following, determine whether the given statement is true or is false.

a) 7 and —= are coterminal angles.

b) — Sr and — 5 are coterminal angles.

c) 210° and — or are coterminal angles.

d) An angle in standard position with terminal side passing through the point

(—1, 2) is coterminal with 150°.

Draw a graph of y = 2 sin x by first making a table of several x, y pairs that satisfy
the given equation. Use degree measure for the x values.

Follow instructions in problem 18 for y = 2 cos x.

If y = —tan x, make a table of x, y values that satisfy the equation, starting with
x = —2.0 and then increasing by 0.2 for successive values of x up to x = 2.0. Plot the

corresponding points, and draw a graph of y = —tan x.

The hypotenuse of a right triangle is 37.42 cm, and one angle is 48°12’. Find the
lengths of the two sides. Give answers correct to four significant digits.

If ABC is an isosceles triangle with AB = AC = 4.73, and the angle opposite AB is
52°14’, find the length of the altitude from A to BC. Then find the area of the

triangle. Give answers correct to two decimal places.

If the hypotenuse of a right triangle is 24.3 cm, and one of the sides is 15.4 cm, find
the length of the other side correct to three significant digits. Determine the angles
correct to the nearest minute.

In problems 24 through 32, parts of a triangle are given (using conventional notation, as

described in this chapter). First, determine if the given information is sufficient to deter-

mine a triangle. If it is, find the remaining parts. Give answers correct to the accuracy
consistent with the given information.

24.

25.

26.

27.

28.

29.

30.

31.

32.

b=32,c=47 a = 18°

a=15b6=20,c=40

a = 625°, 3 = 23.6°, ¢c = 3.47

a=34,b=46c=40

B = 64°12", b = 32.5, ¢c = 23.8

a = 30°, B =60°y =90°

a = 48°, B = 74°, y = 58°, a = 436

a = 36°, B=65° a=364,b=253

B = 32°14, y = 64°18’, a = 42.53

271
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33. InFig. 4.83, the length of CD and angles a and f are measured and found to be:

CD = 137m, a = 44°, 8B = 123°. Find the distance from A to B and from A to C.

Fig. 4.83 D

 
A

Cc

34. In Fig. 4.84, O is the center of a circle, AB is tangent to the circle at B, and C is

a point on the circle and on OA, as shown. If the radius of the circle is 12 cm and the

length of arc BC is 9 cm, what is the area of the shaded region?

Fig. 4.84
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Definition 5.1

Trigonometric Identities, Inverse Functions, Equations, Graphs Chapter 5

Problem solving in mathematics frequently involves a sequence of steps in which
the problem is restated in a different but equivalent form until ultimately it is
reduced to a form that can be solved by familiar techniques. For example, in

algebra the student learns to solve the equation x2 — x — 6 = 0 by replacing

x2 — x — 6 by (x — 3)(x + 2), so that the problem then becomes one of solving

(x — 3)(x + 2) = 0. In this form the problem can be solved by resorting to a

theorem which states thatif the product of two numbersis zero, then one of the
two numbers must be zero. That is, x — 3 = Oorx + 2 = 0; so 3 and —2 are the

solutions.

In this example we call the equation x2 — x — 6 = (x — 3)(x + 2) an iden-

tity, because it is satisfied by every real number. That is, if we replace x by any

given real number in the expression on the left-hand side of the equals sign and
in the expression on the right-hand side, the two resulting numbers will be equal.
However, the equation x2 — x — 6 = 0 does not have this property, since it

is satisfied by only two values of x. We call such an equation a conditional

equation.

An equation that is satisfied by all values of the variable (or varia-
bles) for which both the left-hand side and the right-hand side are
defined is called an identity.

For example, (x2 — 4)/(x — 2) = x + 2 is an identity since it is satisfied by

all real numbers x except 2, a value of x for which the left-hand side is not
defined. The student has already encountered several identities, such as the

factoring formulas

x2 —y2=(x + yx —y), x24 2xy+y2= (x+y)?

and so on. It is helpful to have a collection of identities involving trigonometric
functions. We have already seen some of these in Section 4.5, such as

sin? + cos? = 1, given by Eq. (4.16); this identity was used in deriving the law

of cosines, Eq. (4.20).

This chapter includes a large number of identities with which the student

should become familiar. These may be difficult to “memorize,” but through fre-
quent encounters while solving numerous problems, students eventually find

that they know them. In subsequent sections of this chapter the usefulness of

identities will become apparent through several examples in which a problem is
solved by using identities to obtain an equivalent problem, the solution of which
is possible by familiar techniques.
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BASIC IDENTITIES
The following equations are satisfied by each value of 6 for which both sides of
the given equation are defined. That is, they are identities.

  

  

 
 

  

 

  

  

  

  

      

  

(L1) csc= —1 (1.2) sec = —L
sin 6 cos 0

(1.3) cot = —1 (L4) sin(—0) = —sin¥
tan 6

(1.5) cos(—0) = cos d (1.6) tan(—60) = —tan 6

t _ sin 6 } _ cos 0
(1.7) and cos 0 (1.8) cot 0 py

(1.9)* sin% + cos? = 1 (1.10) 1 + tan?) = sec2d     

 

(I.11) 1 + cot20 = csc2d
   

Note: Identities (I.1) through (I.11), as well as others developed in the next two
sections, are listed inside the back cover for easy reference.

Proofs that (I.1) through (1.9) are identities have already been given in

Chapter 4. Identity (I.10) can be derived as follows:
Dividing both sides of (I.9) by cos? and then using (I.2) and (1.7) gives

(1.10):

sin20

cos2f

cos? 1
= , tan2d 1 = sec?d.

cos26 cos26 +
 

Identity (I.11) can be proved in a similar manner.

Identities (I.1) through (I.11) can be used to derive or prove several other

identities. The following examples illustrate techniques for proving trigonomet-

ric identities.

 

The notation sin20 means (sin 6)?; that is, we first get sin § and then square the result. However, sin 62
means we first square § and then get the sine of the result. In general, sin? and sin §% are not equal.
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Example 1 Prove that cos x tan x = sin x is an identity.

Solution Let LHS and RHS represent “left-hand side” and “right-hand side,” respec-
tively, of the given equation.

 LHS = cos x tan x = (cos x) (S22) = sinx = RHS.
cos X

given by (1.7) algebra given

The transitive property of equality allows us to conclude that LHS = RHS.
Hence the given equation is an identity. ey

 Example 2 Prove that 1 —secx _ cosx — 1; ,p identity.
l1+secx cosx +1

1 cosx — 1

 

 

1 —
Solution LHS — 1 —secx _ cosXx _ cos X _ cosx — 1 _ S

1 4+ secx 14 1 cosx +1 cosx +1

cos Xx COS X

given by (1.2) algebra algebra given

Therefore LHS = RHS, and the given equation is an identity. i]

secxcscx + 2
Example 3 Prove that (sinx + cos x)? = is an identity.

 

 

Sec x csc x

Solution LHS = (sinx + cos x)? = sin%x + 2sinx cos x + cos?x = 1 + 2 sin x cos x,

given algebra by (1.9)

RHS — Secxcscx + 2 _ secxcscx 2

1 Sec X CSC Xx 1 SECX CSCX SecXx cscx

given algebra

=1—2=1 + 2 sin x cos x.
Sec x CSC x

algebra by (I.1) and (1.2)

By the transitive property of the equals relation, we conclude that LHS = RHS.
Thus the given equation is an identity. Ee

Example 4 Is the function f(x) = Eyes odd, even, or neither?

} —x sin(—x —x — si i
Solution f(—=x) = + sin(—x) _ xX smx (F225) = —f(x).

| —x| |x| |x|
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Here we used (I.4) to justify the second equals sign. Since f( —x) = —f(x), fis
an odd function. oii:

Determine the domain and range of the function f(x) = cos x sec x.

Note that cos x is defined for all x in R, and sec x is defined for all x in R except
w/2, 3n/2,..., —m/2, —3w/2,.... Therefore

D(f) = [x12 € R and x # Chron k is an integer.

Using (I.2) and algebra, we get

 f(x) = (cos x)(sec x) = (cos x) (=) = for all x € D(f).

Thus R(f) = {1}. tis

Technique for Proving Identities

Note that in the above examples we did not begin our proof with the given
equation and manipulate it until we got an obvious equality. Here we emphasize
an important point of logic. A proof consists of a logical sequence of statements
in which the final statement is the statement to be proved.

We illustrate our point with a simple example. Suppose we wish “to prove”
that 1 = 2. If we are allowed to start with 1 = 2 as the first step, then our
“proof” could proceed as follows:

1=2

0:1=0-2, (multiply both sides by 0)

0=0.

Since 0 = 0 is an obvious equality, can we conclude that 1 = 2? Clearly not; the
only conclusion we can make from the sequence above is that “if 1 = 2, then
0 = 0,” which is a true statement.

The important point this example illustrates is that it is not logically accept-
able to begin a proof with the statement to be proved, perform algebraic manipu-
lations on it, obtain an obvious equality, and then conclude that the starting
statement is true. If such a procedure is followed and if it can be shown that the

steps are reversible, then the proof is valid. However, the steps in reverse are a
necessary part of the proof and should be included. What step or steps in the
above faulty proof are not reversible?

Suggestion: As illustrated in Examples 1, 2, and 3 above, the best technique in
communicating a proof, we believe, is to work independently with either or both
of the left- and right-hand sides of the given equation to show that each reduces
to the same expression. The final statement of LHS = RHS then follows from
the transitive property of the equals relation.
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1. Which of the following are identities?

3x — 2 1 3x(x — 2)3 _ 2 _ Ine — 42 _ =a) x3+1=(x+ 1)(x x +1) b) xe x i ri Err _2

In problems 2 through 40, prove that the given equation is an identity.

10.

12.

14.

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

36.

sin 0 cot § = cos

. cotd = csch cost

. cosxtanx = sinx

. cotxsecx = cscx

 cot x =cscx — sinx
sec x

in(—6sin(=9) _ 4on(—0)
cos

sec f(csc — sind) = csc f cos d

sinf _ 1—cosf
1+ cosf sinf

1+ tanf _ 1 + coté 

 

sec f csc

eee ed = 2secx
1 —sinx 1+ sinx

sin 6 14 cos 2

1 + cosé sin ~~ siné

sec — cos § = sin(—60)tan(—0)

1 + tan?x = tan x sec x csc x

cot(—x)cos(—x) =sinx — csc x

1 — sin(—x)

cos X
= tanx + secx

1 — (sinx — cosx)? = 2sinx cosx

cosx _ 14 sinx

1 —sinx CoS X

tan?x — sec2x = —1

3.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

 

1 —cosx

.cosxsecx =1

. 1 — cos?x = cos2x tan?x

. sin?x = (1 — cos x)(1 + cos x)

sin x csc x
= tan x

cot x

sec csc = tan+ cotd

— _ 2TT cosx = (cot x csc x)

CSC X

Cos Xx

1
sec a — Cos a

tan x + cotx =

cotacsca =

sec?x + csc?x = sec2x csc2x

(cosx + 1)(secx — 1) =secx — cosx

sin%x — cos?x = sin?x — cosx

tanf + secd 1 4 sind
sinf cot ~~  cos2d
 

cos sinéf
- = secf cscl

sin 6 cos 6
  

1 —cosx _secx —1

1+ cosx secx +1
 

csc(—x)

cot(—x) + tan(—x) = cosx

sectx — tan*x = sec2x(sin2x + 1)

tanx + tan?x = sectx — secx
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1 = secf + tané 39 cotx + tanx _ 4

‘sec — tan 6 "  secxcscx

40. sin2x tan2x + sin2x = tan2x

In problems 41 through 45, determine whether the given functions are odd, even, or

neither.

 

41. a) f(x) = sin x cos x b) g(x) = sinx + cos x

42. a) f(x) = xcosx b) g(x) =x + coxx

43. a) f(x) = e®s? b) g(x) = esine

44. a) f(x) = V1 — sin’ b) g(x) = V/secx — 1

_ sinx _ x2 4 cosx
45. a) f(x) = sex b) g(x) = =——===

In problems 46 through 50, determine the domain and range of each of the given

functions.

46. f(x) = cos x tan x 47. f(x) = sin?x + cos?x

48. f(x) = 1 — tanx cot x 49. f(x) = V1 — sin’x

50. f(x) = esin’e . gcos?r

 

5.2 SUM AND DIFFERENCE IDENTITIES
Expressions of the type sin(a + 8) occur frequently, and we might ask: Is
sin(a + B) = sin a + sin 8 for all values of « and 8? The answer is no. For in-

stance, if a = 7/2 and B = 7/2, then sin(7/2 4+ 7/2) = sin7 = 0, whereas

sin 7/2 + sin7/2 = 1 + 1 = 2. Hence the equation is not an identity. The next

question is: Can we find a simple formula that gives sin(a 4+ 8) in terms of
trigonometric functions of a and of 8? The answer to this is included in the

following set of identities, which are called the sum and difference formulas.

 

(1.12) sin(a + B) = sin a cos 8 + cos a sin 8

 

 

(I.13) sin(a — B) = sin a cos 8 — cos a sin 8

 

 

(1.14) cos(a + 8) = cosa cos 8 — sin a sin 8

 

 

(I.15) cos(a — 8) = cosa cos 8 + sin a sin 8  
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(1.16) tan(a +
) = tan a + tan 3
~ 1—tanatanp
 

 

(1.17)  tan(a — B) =—

1 + tan a tan   

Chapter 5

We first prove identity (I.14) by using the diagrams of Fig. 5.1, in which «
and f are shown as positive angles and points A and B are on the corresponding
terminal sides, one unit from the origin. From the definitions of circular func-

tions, the coordinates of A and B are given by

B:(cos(—p), sin(—p)) = (cos B, —sin p).A:(cos a, sin a),

— A: (cos a, sin a)

 

aa SN

7 VN
/ \ \

/ VN
Fig. 5.1 ! © ao

\ 0 -8 \ !
{ \

\ /B. (cos B, — sin B)

N ss~N
~ ~~ 

(a)

 

(b)

Let d be the distance between points A and B. Using the distance formula
given by Eq. (1.2), we obtain

d? = (cos a — cos 8)? + (sin a + sin B)2.

After applying some simple algebra and using identity (I.9) twice, we get

d? = 2 — 2(cos a cos B — sin a sin B). (5.1)

Now looking at triangle AOB of Fig. 5.1 (b), in which the points A, O, and B

are taken from Fig. 5.1(a), and applying the Law of cosines, we get

d? =12 + 12 — (2)(1)(1)cos(a + B) = 2 — 2 cos(a + RB). (5.2)
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From Egs. (5.1) and (5.2) we have

2 — 2(cosacosfB —sinasinf) = 2 — 2 cos(a + PB).

Thus cos(a + B) = cos a cos 8 — sin a sin B, and this is identity (1.14).

Note: The diagrams of Fig. 5.1 show a and f as positive acute angles. A proof
similar to that above could be given for a and B of any size.

Identity (I.14) along with identities established earlier can now be used to
prove the remaining identities given above. The following is a proof of (I.15), in

which (1.14), (1.5), and (I.4) are used.

cos(a — B) = cos(a + (—pB)) = cos a cos(—fB) — sin a sin(—)

= cos a cos 8B + sin a sin B.

This gives identity (1.15): cos(a — 8) = cos a cos 8 + sin a sin .

Identity (I.12) can now be established by using (I.15) and two identities that
are given in Chapter 4, namely,

sin (z — 0) = cos 0 and cos (Z — 0) = sin 6. (5.3)

We proceed as follows:

sin(a + B) 7 cos z — (a + p| 7 cos [& — « — |
2

by Eq. (5.3) algebra

T cos (2 — a) cos B + sin (Z — a) sin B.

by (1.15)

Now we apply Eq. (5.3) to get the desired identity:

sin(a + B) = sin a cos 8 + cos a sin S.

Identity (1.16) can now be proved as follows:

sin(a + B) _ sinacosB + cosasin tana + tan pf

1 cos(a + B) 1 cos a cos B — sin a sin 8 1 1 —tanatanB’

by (1.7) by (1.14), (1.15) algebra and (1.7)

Il tan(a + B)

The last step involves dividing numerator and denominator by cos a cos 8 and
then applying (1.7).

Proofs of (I.13) and (I.17) are left as exercises (see problem 2).
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sin Xx — COs X
; is an identity.

sin x + cox x
Example 1 Prove that tan (+ — 7) =

 

. _ 4) tanx — 1Solut LHS = t ( _ 7) tan x tan(r/4) _
otution an \* 4 1 1 + tan x tan(w/4) 1 1 + tanx

given by (1.17) since tan 7 =1

_ (sinx/cos x) — 1 _ sin x — cos x — RHS

7 1 + (sin x/cos x) 1 cos x + sin x 1

by (1.7) algebra given

Hence LHS = RHS, and the given equation is an identity. J]

 

Example 2 Evaluate sin 75° and express the answer in exact form.

Solution Using sin 75° = sin(30° + 45°), applying (1.12), and evaluating the result gives

sin 75° = sin(30° + 45°) = sin 30° cos 45° + cos 30° sin 45°

S1VEL VBVETV+ V6). a

Example 3 Evaluate cos7 and give the answer in exact form.

Solution Using cos 7/12 = cos (3 — 7), applying (I.15), and evaluating the result gives

7 TT «TM eT
cos T= cos (2 — B)=esiogrenies

12 4 6 4 6

_ VIVE VEL _
=2tT3 (VE + V2) ol

Example 4 Prove that

sinx cosy = Slsin(x + y) + sin(x — y)] (5.4)

is an identity.

Solution Adding the two equations given in (I.12) and (I.13) with « = x and 8 = y, we
have sin(x + y) + sin(x — y) = 2sinx cosy. This is equivalent to the given

equation. all

An identity of the type given in Example 4 is useful in two types of prob-

lems: expressing a product as a sum, or expressing a sum as a product (factoring).

This is illustrated in the next example.
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Exercises 5.2

1.

2.

3.

Example 5 a) Express sin 5a cos 3a as a sum.

b) Express sin 4a + sin 2a as a product.

Solution a) Substituting x = 5a, y = 3a into Eq. (5.4) gives

sin 5a cos 3a = 2 [sin(5a + 3a) + sin(ba — 3a)] = 2lsin 8a + sin 2a].

Thus sin 5a cos 3a = 2 sin 8a + 2 sin 2a is an identity.

b) Equation (5.4) can be written as

sin(x + y) + sin(x — y) = 2 sin x cos y. (5.5)

Letx + y = 4a and x — y = 2a. Adding these two equations gives 2x = 6a, or

x = 3a. Similarly, subtracting gives 2y = 2a, or y = a. Substituting x = 3a,

y = «a into Eq. (5.5) gives

sin 4a + sin 2a = 2 sin 3a cos a.

Thus the given expression has been written as a product. a

 

Derive a formula for cot(a + B) in terms of cot a and cot 5.

Prove that the equations given in (1.13) and (1.17) are identities.

Establish each of the following cofunction identities.

a) sin (2 +0) = cos b) cos(Z +6) = —sin §

. (37 37 .
c) sin (37 — 9) = —cos fd d) cos (37 — 9)= —sin 0

. (37 37 .
e) sin 5 tO = —cosf f) cos - +0 = sin §

. In each of the following, prove that the given equation is an identity.

a) sin(180° — 0) = sin § b) cos(180° — f) = —cos 6

c) tan(180° — 0) = —tané d) sin(180° 4 6) = —sin 6

e) cos(180° + 8) = —cosf f) tan(180° + 0) = tan @

. Evaluate each of the following. Give answers in exact form.

a) cos 75° b) sin 195° c) tan 285°

d) cot 15° e) sec 255° f) csc(—75°)

. Evaluate each of the following. Give answers in exact form and then use your

calculator to evaluate the result correct to two decimal places. As a check, evaluate

directly by calculator (make certain it is in radian mode).

117Tm 57
a) tan5 b) sec (- 2) c) cos5
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. 23m . 137 257d) TE e) sin ~~ f) ese o-

7. Given that tanx = 2 and x + y = T find tan y.

8. Given that tana = 3 and tan(a + 8) = — 2, find tan S.

9. Given that x — y = & and tany = 3, find tan x.

10. Given that tan(x — y) = -2 and tan x = 0.4, find tan y.

In problems 11 through 17, determine whether or not the given equation is an identity.

mT _ 14 tanx cfm \_ 1 _ .
11. tan(Z + x) = 1 tan 12. sin (2 x) = (cos x V3sin x)

13. SINT _ gu (2 _ 4) 14. sec(a + B) = seca + sec 3

15. csc (3 — x) = sec 16. sin x + sin 2x = sin 3x

17. cos (2 + x) = —sinx

18. Use cos 75° = cos(30° + 45°) to get cos 75° in exact form. Similarly, express sin 75°

in exact form.

19. Use cos 72° = any (see Exercises 4.7, problem 40) along with identity (1.9) to
+

find sin 72° in exact form.

20. Use problems 18 and 19 and cos 3° = cos(75° — 72°) to get cos 3° in exact form.

21. Prove that each of the following equations is an identity.

a) cos x cosy = 3[cos(x + y) + cos(x — y)]

b) sin x sin y = 4[cos(x — y) — cos(x + ¥)].

22. Using Eq. (5.4) or the identities given in problem 21, express each of the following
products as a sum or difference (see Example 5).

a) (sin 36)(cos 560) b) (cos 36)(cos 40) c) (sin 2y)(sin 4y)

d) (cos 3x)(sin(—>5x)) e) (sin 2y)(sin(—4y)) f) (sin 3x)(sin 2x)

23. Using Eq. (5.5) or the identities given in problem 21, express each of the following as

a product (see Example 5).

a) sin 5a + sin 3a b) cos 5a + cos 3a c) cos 3a — cos a

24. In each of the following write the given expression in terms of sin x and cos x.

sul) weld oe
d) sin(2x) e) cos(2x) f) sin (2 -— 7)
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25. Evaluate each of the following. Express your answers in exact form.

a) sin = cos— + sin —— cos = b) cos 160°cos 25° + sin 160°sin 25°
4 12

¢) cos247° + sin%47°

12 4

d) tan 37° — tan 67°

1 + tan 37° tan 67°

26. If a, B, and y are the angles of a triangle, prove that

a) siny = sina cos 8 + cos a sin f3 b) cosy = sin a sin 8 — cos a cos 8
 

5.3

Example 1

Solution

Example 2

DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
Useful identities can be derived from the addition formulas given in Section 5.2.
The following are called double-angle identities.

 

(1.18) sin 20 = 2 sin 6 cos 6

 

 

(1.19) cos 20 = cos? — sin%0 = 1 — 2sin%) = 2 cos?) — 1

 

 

2 tan 6    
These are special cases of (1.12), (I.14), and (1.16), in which we take a = 0

and B = 6 (see problem 1).

The double-angle identities are useful in simplifying certain trigonometric
expressions, and the student should become familiar with them. We consider
some examples in which these identities, along with (I.1) through (1.17), are
used.

2 tan x
is an identity.

1 + tan?x
Prove that sin 2x =

LHS = sin 2x = 2 sin x cos x.

given by (1.18)

RES — 2 tan x = 2tanr _ (Zenx)  ( 1 ) = 2sin x cosa
 

1 1 + tan2x 1 sec2x COS X cos2x

given by (1.10) by (1.2), (1.7) algebra

Therefore LHS = RHS, and the given equation is an identity. [|

Suppose sin § = 3/5 and cos 6 is negative. Evaluate in exact form.

a) sin 26 b) cos 26
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I
I

0
Fig. 5.2 [1 N 

If sin # > 0 and cos § < 0, then @ is an angle in the second quadrant, as shown in

Fig. 5.2.

a) To find sin 26, use (I.18) to get sin 20 = 2sinf cos = 2(§)(—%) = — 42.

b) To find cos 26, use (1.19) to get cos 20 = cos?d — sin?) = (—%)? — (8)? = £.
oy

Example 3 Express sin 3x as a function of sin x.

Solution sin 3x = sin(2x + x) = sin 2x cos x + cos 2x sin x

7 7
algebra by (1.12)

= (2 sin x cos x) cos x + (cos2x — sin®x) sin x

7
by (1.18), (1.19)

= 3 sin x cos2x — sin3x = 3 sin x(1 — sin2x) — sin3x
7 7

algebra by (1.9)

= 3sinx — 4 sin3x.
T

algebra

Therefore sin 3x = 3 sin x — 4 sin3x is an identity. be

Example 4 Suppose sin § = 0.3487 and 0° < 6 < 90°. Using a calculator, evaluate each of
the following correct to four decimal places.

a) sin 20 b) cos 20 c) tan 26

Solution Enter 0.3487 into the display. Then with the calculator in either degree or radian
mode, press and (sin keys (or key), which gives in the display; multi-
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ply by 2 and store the result, using the key. Using the key as needed,
gives

a) sin 260 = 0.6536 b) cos 26 = 0.7568 c) tan 26 = 0.8637

Note: On some calculators the store and recall keys may be labeled otherwise
than and (ReL), mm

Half-angle Formulas

Writing identity (1.19) in the form cos 2x = 1 — 2 sin%x and replacing x by 6/2,
we get cos § = 1 — 2sin?(A/2). Solving for sin(f/2) gives

sin 9 = f1—cosb for each 6 for which sin 9 > 0,
2 2 2 =

6 /1 —
sin5% Tool for each 6 for which sin <0.

These two equations are ordinarily written as

(1.21) sin £- = + Jrmeel

where the == means not that we get two values for sin(6/2) but that we select the

sign that is consistent with the sign of sin(6/2), depending on the quadrant in
which 6/2 is located.

In a similar manner, using identity (I.19) in the form cos 2x = 2 cos?x — 1,
replacing x by 6/2, and solving for cos(6/2) gives

122)

|

cosy=x

[
1

HBC

The + or — sign in (1.22) is selected to agree with the sign of cos(6/2).

We can now derive an identity for tan(f/2) by using (I.21) and (1.22) along

with (1.7):

1.93 t 0 1 — cosé

(1.23) any = V 1 + cosé

 

   

 

   

 

+
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Identity (I.23) can be expressed in a more desirable form that does not in-

volve the = sign. Instead of manipulating (I.23) directly, we can proceed as

follows. Identities (1.18) and (I.19) can be written in the form

sin = 2sin 4 cos and 1+ cos = 2 coszd
2 2 2

respectively. Dividing the left sides and the right sides of these two equations

gives

 

. 92sin& cos sin
sin 2 2 2 — tan 2

1+ cosf 20 6 2°
2 cos 5 cos 5

Thus

0 sin 6
tan — = ——mm————.
ang 1 + cosé

An alternative form of this equation is

tan 0 — 1 — cos¥

2 sinf

(see problem 16 of Exercises 5.1). Therefore the following are useful identities for
tan(0/2):

 

(1.24) tan 0 — sinf _ 1—cosé
2 1+cosf  sinf
 

 

 

 

Evaluate each of the following and express the answer in exact form.

a) sin 22°30’ b) cos 112.5° c) tan 12

Using identities (1.21), (1.22), and (1.24) gives the following.

45\° [T—cosds® 1
a) sin 22°30 = sin (5) _ [locosds” V2 2

2

225\° /1 225° 1
b) cos 112.5° = cos (=) = — EAE —3 2 — V2.

Ta V3
l—cos— 1-— (-%)

c) tan mm _ tan m/6 _ 6
12 2 Tr
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Example 7

Solution
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Given that cos = —3/5 and 180° < 0 < 270°, evaluate in exact form:

inf 8 9a) sin 5 b) cos 5 c) tan 5

First note that 90° < 0/2 < 135°, and so sin(/2) is positive, and cos(8/2) is

negative. From Fig. 5.3, sin = —4/5. Now use identities (1.21), (1.22), and
(1.24) to get the following.

[1 —cosLi 1-(=9 _ 205
a) sin=

0 1 1+cosfol V5
b) cos —5 = =——

6 sin ¢ —4 _
c) tan — = 5

52 1 + cosé 1+
 

 
Evaluate sin 15° in exact form in two ways:

a) By using (1.13) b) By using (1.21)

a) sin 15° = sin(45° — 30°) = sin 45° cos 30° — cos 45° sin 30° = (V6 — V/2)/4.
Therefore

V6 — V2
1 .

1 —cos30° 1

2 a)

sin 15° = 11/2 — V/3.

It appears that we get two different answers for sin 15°. We leave it for the
reader to evaluate each with a calculator to see if they both represent the same
number (see problem 47 of Exercises 5.3). a

sin 15° =

b) sin 15° = sin (3) == 2 — V/3. Therefore
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Example 8 Suppose sin(§/2) = 0.6843 and 0° < 6 < 180°. Use a calculator to evaluate each

of the following correct to four decimal places.

a) sind cos 20 c) tan s

Solution Enter 0.6843 into the display. Then with the calculator in degree (or radian)
mode, press and Cin] (or Ein=") keys, then multiply by 2 (this gives 8), and
store into memory with the key. Using the key as needed, gives the

 

following.

a) sin 6 = 0.9980 b) cos 20 = —0.9919 ¢) tan 4 — 0.3957 WE

Exercises 5.3

1. By replacing a by 6 and 8 by # in identities (1.12), (I.14), and (I.16), show that

identities (1.18), (1.19), and (1.20) follow.

2. Given that cos = —12/13, and 6 is in the second quadrant, find the following in

exact form.

a) sin 26 b) cos 26 c) tan 20

3. Given that sinf = —5/13 and cos § = 12/13, find the following in exact form.

a) sin 26 b) cos 26 c) tan 20

4. Suppose cos § = 0.5873 and 0° < 8 < 90°. Using a calculator, evaluate the following
correct to four decimal places.

a) sin 260 b) cos 260 c) tan 26

5. Suppose sin § = 0.4385 and 0 < § < 7/2. Using a calculator, evaluate correct to four

decimal places each of the following.

a) sin 260 b) cos 30 c) cot 36

In problems 6 through 9, evaluate the given expressions in exact form. Check your
results by using a calculator.

6. a) sin 67°30’ b) cos(—22.5°) ¢) sin 105° d) cos 105°

7. a) tan 165° b) cos(247.5°) c) tan(—195°) d) cos 285°

. oT 5 . 117 137
8. a) sin ro b) cos ~= c) sin =o d) tan —o-

197 . Tm . 217 5
9. a) cos8 b) sin (- =) ¢) sin “8 d) tan (- 2)

10. Evaluate each of the following in exact form.

a) sin 15° cos 15° b) sin2105° — cos2105° c)1l1-2 sin? 27.

11. Evaluate each of the given expressions, and give answers rounded off to five decimal

places. In each case check to see if the two given expressions are equal.

a) 2sin 37° cos 37° and sin 74° b) co0s?21° — sin?21° and cos 42° ¢) 1 — 2sin?0.65 and cos 1.3



Section 5.3 Double-Angle and Half-Angle Formulas 291

12. Given that 0 < 6 < 7 and cosf = —0.6, evaluate in exact form sin §/2 + sin 26.

13. Suppose —90° < # < 90° and sin § = —0.6. Evaluate in exact form sin 8/2 + sin 26.

In problems 14 through 33, prove that the given equations are identities.

14. (sin + cos)? = 1 + sin 20 15. 1 _92sinfcosth
csc 260

0 . 0 A .
16. tan 5 = cscf — cot d 17. sin 3 + cos o =1+sinéf

18. (cos x + sin x)(cos x — sin x) = cos 2x 19. cos 2x tan 2x = sin 2x

20. cos?X — sin?X = cosx 21. tan > = Secx
2 2 2 sin x sec x

22. sin 2x tan x = 2sin%x 23. (1 4 tan x) tan 2x = _2tanx
1 —tanx

24. 2sin2% = sinx tan * 25. 2 cos? =+
2 2 2 tan x

26. tan fsin 20 = 1 — cos 26 27. sin 20 sec § = 2 sin §

28. cotx — tanx = 2 cot 2x 29. 2csc2x = tanx + cotx

30. cos*x — sin%x = cos 2x 31. 1-—tanx = sec 2x — tan 2x
1 + tanx

32. cos 3x = 4 cos®x — 3cosx 33. cos 4x = cos*x — 6sin2x cos2x + sinx

In problems 34 through 40, determine whether or not the given equations are identities.

34. sin 2x + sin 3x = sin 5x 35. sin? 2: =1- cos?

36. cot 5 — tan & = 2cotx 37. (sin 6x + cos 6x)? =1

38. sec 2x + tan 2x = tan (x + =) 39. (cotx — tan x) tan 2x = 2

40. (sinx — cos x)? = 1 — sin 2x

41. Given that sin o = — 5 find cos §. Hint: Use (1.21).

42. Given that cos 2 we Z, find cos §. Hint: Use (1.22).

In problems 43 through 46, evaluate the given expressions in exact form, where a and 8
are given by

sina = 3 and Tas,

tan= — = and -3<B<3.
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2

43. sin ( 5
235)

44. sin (a + 2) 45. cos(a + 28) 46. tan (“7 f)
2

47. In Example 7 we concluded thatV2 and Sve — V/3 represent the same

number.

a) Use your calculator to check this conclusion (at least to the decimal-place capac-
ity of the calculator).

b) Prove that they actually are equal without using a calculator and without refer-
ring to the fact that both represent sin 15°.

48. Triangle ABC is inscribed in a circle, as shown in Fig. 5.4, where Q is the center of

the circle, a is one angle, and a is the opposite side. Prove that the diameter d of the
circle is given by d = a/sin a.

 

Fig. 54 4
 

Hint: Note that angle BQC is equal to 2a. (Why?) Now use the Law of sines on
triangle BQC and identity (1.18) to get the result.

Note: This problem also appeared in Exercises 4.7 as problem 33. However, the

solution suggested there is quite different.
 

5.4 INVERSE TRIGONOMETRIC FUNCTIONS
By looking at the graphs of the trigonometric functions in Section 4.5, we can
easily see that the corresponding inverse relations are not functions, since hori-
zontal lines intersect the graphs at more than one point (in fact, at infinitely
many points). However, by restricting the domains, we can get functions whose
inverse relations are functions. We proceed to do so for the sine, cosine, and
tangent functions.

Inverse Sine Function

Consider the function Sin defined by

Sin(x) = sin x and D (Sin) = H — 5 <x< 7).



Section 5.4

Fig. 5.5

Definition 5.2

Inverse Trigonometric Functions 203

Y=8IN(X)

y
2

 -2 +

Graph of y =Sinx

From the graph of y = Sin x, as shown in Fig. 5.5, we see that for each value of
yin —1 < y <1 there is exactly one corresponding value of x associated with it
on the curve. That is, the inverse of the Sin function is also a function; we

denote it by Sin~—1. As suggested in our discussion of inverse functions in Section

1.8, interchanging the x and y variables gives x = Sin y, and then “solving for y”
we get y = Sin~1x. This result merely involves symbolism used to denote the

inverse sine function. We now give a formal definition.

The inverse sine function, denoted by Sin~1, is given by

Xk

Sin"? = {(x,2)] -1 <x<1,x=siny and ~Z<y<

 

We use the capital letter S in Sin~! to distinguish the inverse sine function from the inverse sine

relation, given by

sin™! = {(x,y)|x = sin y}.

In some textbooks, for a given value ofxin —1 < x < 1, Sin~! x is referred to as theprincipal value of

the inverse sine relation for that value of x.
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In Section 1.8 we saw that the graph of an inverse function can be obtained
by reflecting the graph of the function about the line y = x. Thus,if the graph

shown in Fig. 5.5 is reflected about y = x, we get the graph of y = Sin~lx, as
shown in Fig. 5.6. The domain and range of the Sin~! function are given by

 

(Sin= (s|-1<x <1), AE=[-T<y<I)

¥--ARCSIN(X)

y
™

> P(Lx: (+3)

Ly
-2 -1 1 2

 (*+-3) _ TL

2 2

Graph of y =Sin~ lx

Note on notation: In some textbooks the function Sin~1is denoted by Arcsin. In
this book we shall use Sin~! and Arcsin interchangeably, so that the reader will
become familiar with both notations in anticipation of notation that may be
used in later calculus courses.

In the context in which trigonometric functions are introduced as functions

on measures of angles,it is helpful to think of Sin~lx as that angle between or

equal to —7/2 and 7/2 whose sine is equal to x. For instance, Sin~11 is the

angle 7/6.

Evaluate and give answers in exact form.

1
a) sar2 b) Arcsin (- 5)
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Solution a) Let Sin=1(1/2/2) = a. According to Definition 5.2, sina = 2/2 and

Fig. 5.7

Example 2

Solution

—7/2 < a < 7/2. Thus «a is in the first quadrant (since sin a > 0), as shown
in Fig. 5.7, from which we see that a = 7/4. Therefore, Sin—1(1/2/2) = =/4.

b) Let Arcsin(—4) = 8. According to Definition 5.2, sinf = —3 and

—7/2 < B < m/2. This tells us that 8 is an angle in the fourth quadrant, as
shown in Fig. 5.8, from which we see that B= —x/6. Therefore

Arcsin(—4%) = —=/6.

Fig. 5.8 

S

  
In Example 1 we were able to evaluate the Sin~! function at \/2/2 and —1/2

and express the result in exact form. However, if we wish to evaluate Sin—10.47,
we see that we cannot proceed in a similar manner, since the resulting angle in
the reference triangle is not one we can easily recognize (such as 7/6, 7/4, or 7/3).

However, we can use a calculator to get the result correct to several decimal

places. Calculators are programmed so that the values of inverse trigonometric
functions are consistent with the definitions given in this section (such as Defini-
tion 5.2).

Evaluate and give results rounded off to four decimal places.

a) Sin~1(0.47) b) Arcsin (252) &) Sin-1 (255)
2

First place the calculator in radian mode.

a) Enter 0.47 into the calculator display, and then press and (sin (or on
some calculators*). The display will give 0.4893. Thus Sin=1(0.47) = 0.4893.

b) First evaluate (1 — 1/5)/2; then, with the result in the display, press (INV)

and (Gein) (or Gin=Y) to get Arcsin[(1 — /5)/2] = —0.6662.

 

On most calculators the keys and (sin) (or sin-1)) are used to evaluate the Sin! function.
However, some calculators have a key labeled that is used in place of (INV).
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¢) As in (b), first evaluate (1 + \/5)/2 and then press and (sin) (or Gin-1).
The calculator will indicate Error because (1 + /5)/2 is greater than 1 and

so is not in D(Sin~1). That is, Sin1[(1 + /5)/2] is not defined. Es

Inverse Cosine Function

The inverse cosine function can be introduced in a manner similar to that used

above for the inverse sine function.

Suppose the function Cos is defined by

Cos(x) = cos x and D(Cos) = {x0 <x <7}.

From the graph ofy = Cos x, shown in Fig. 5.9, we see that the inverse of Cos is
also a function; we denote it by Cos(or by Arccos) and define it as follows.

The inverse cosine function, denoted by Cos™1, is given by

Cosl={(x,y)| -1<x<l,x=cosy,and0<y< 7).

 

 

Y=COS(X) Y=ARCCOS(X)

y y

(-1,m) T+

0,1)
1 ¢

| x m

w >
2

“lr (m1) (1,0Fig. 5.10 : x
-1 1

Fig. 5.9  
Graph of y = Cosx

 
Graph of y =Cos™ lx

The graph ofy = Cos1x is shown in Fig. 5.10. The domain and range of the
Cos™! function are given by

D(Cos™?) ={x|-1<x<L 1}, ®R(Cos™!) = {y|0 <y << 7}.
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a) Evaluate Cos1(— V3/2) and give the result in exact form.

b) Evaluate Arccos(0.735) rounded off to four decimal places.

a) Let Cos1(— V/3/2) = a. According to Definition 5.3, cosa = — \/3/2 and

0 < a < 7. This tells us that « is an angle in the second quadrant, as shown
in Fig. 5.11, from which we see that a = 57/6. Thus Cos1(— \/3/2) = 57/6.

b) Place the calculator in radian mode. Enter 0.735 into the display, and then

press and (or les=Y) to get Arccos 0.735 = 0.7451.

 
Inverse Tangent Function

Suppose function Tan is defined by

Tan(x) = tan x and D(Tan) = [+ _ 5 <lx< 7).

From the graph ofy = Tan x, shown in Fig. 5.12, we see that the inverse of Tan is

also a function. We denote it by Tan1(or Arctan) and define it as follows:

Y=TANX)

y

0
3

N
3
3

 
Graph ofy=Tanx
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Definition 5.4 The inverse tangent function, denoted by Tan, is given by

Tan! = [21% ER, x = tan, and - Z<y<Z}

The graph of y = Tan~1x is shown in Fig. 5.13. The domain and range of the
Tan! function are given by

D(Tan"1) = R, ®(Tan?!) = I — z <y<< 7).

Y=ARCTAN(X)

Fig. 5.13 i

 
Graph of y=Tan™ lx

Example 4 a) Evaluate Tan~!(—1/3) and give the answer in exact form.

b) Evaluate Arctan(1.57) rounded off to four decimal places.

Solution a) Let Tan!(—1/3) = a. According to Definition 5.4, Tana = —\/3 and

—7/2 < a < m/2. This tells us that a is an angle as shown in Fig. 5.14. We

note that « = —/3 and so Tan"}(—V/3) = —=/3.

Fig. 5.14
 

E
E
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b) With the calculator in radian mode, enter 1.57 into the display; then press
(nv) and (or n=7) to get Arctan(1.57) = 1.0037. we

Example 5 Evaluate and give answers in exact form.

a) sin (sin 2) b) sin (2 Sin—13

Solution a) Let Sin—1(1/4) = 0. Then from Definition 5.2 we see that sin § = 1/4 and

—m/2 < 0 < 7/2. Therefore 6 is an angle as shown in Fig. 5.15, and so

. . 1 . 1
S +1) = 0 =—.*sin ( 11 4 sin 4

b) Let 6 be as in (a); we want to evaluate sin[2 Sin~1(1/4)] = sin 26. Applying

the double-angle identity sin 260 = 2 sin 0 cos 6 and reading the values of sin 6
and cos # from Fig. 5.15 gives

sin (2 int) =2 (3) (M22) = V5
4 4 8

Fig. 5.15 6
 

 
Example 6 Evaluate and give answers in exact form.

a) sin[Tan"}(—%) + Tan1(§)] b) sin[4 Tan=1(—3)]

Solution a) Let Tan"1(—5/12) = a and Tan"1(4/3) = B. From Definition 5.4,

—_5 _nm us _4 _7 ™tan a = 5 yg <a<3 and tan f= =, yg <B<3-

Thus a and B are angles as shown in Fig. 5.16. We want to evaluate

sin(a + B), and so we apply identity (1.12), sin(a + B8) = sin a cos 8 +
cos a sin B. Using the diagrams in Fig. 5.16, we can evaluate the right-hand

side to get

fr5)+m8](+E) + 02)8)- 2
* It might be helpful to state a problem such as (a) in words: “We want the sine of an angle whose sine

is 1.” This is not so different from the popular quiz question: “Who is buried in Grant’s tomb?”
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— [|
S]

W
w

o
w

[
1
_
_

  
b) Let Tan—1(—3/4) = 6. By Definition 5.4,tanf = —3/4and —7/2 <0 < 7/2.

Thus 6 is an angle as shown in Fig. 5.17; we want to evaluate sin(f/2). Using

the half-angle identity (I.21) with a minus sign before the square root, since
6/2 is obviously in the fourthof(look at Fig. 5.17), we© eet

3 /1cos— 0 _ 1—
sin BE Tan! (-=== sin cos

2 4

 

 

 
Evaluate sec[Tan"10.348 — 2 Cos~1(—0.735)]. Give answer rounded off to four
decimal places.

Place the calculator in radian mode,* and first evaluate the angle Tan=1(0.348) —

2 Cos~1(—0.735). With the result in the display, press and to get

sec[Tan=1(0.348) — 2 Cos™1(—0.735)] = —3.9742. =

Find all values of x that satisfy the inequality 5 Sin-1x — 4 < 0.

The given inequality is equivalent to Sin~1x < 4/5. To solve this inequality it is

instructive to look at the graph ofy = Sin~1x, as shown in Fig. 5.18. The solution
set consists of those values of x that correspond to points on the curve for which

 

Definitions 5.2, 5.3, and 5.4 imply that the inverse trigonometric function values are real numbers,

that is, in radians if considered as angular measure. In this problem the correct answer would be
obtained even if the calculator operated in degree mode.
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y < 4/5; these points are those between @ and P. Thus the solution set is
{x| —=1 < x < c}, where Sin~!c = 0.8. The value c is given by ¢ = sin 0.8. With
the calculator in radian mode, evaluate sin 0.8 to get ¢ = 0.717 (to three decimal
places). The solution set is S = {x| —-1 <x < 0.717}.

 

 

Y=ARCSIN(X)

y

™ ™

2[ (3)

08fF—— fr (c,0.8)

I
I

é | x
-1 c 1

_TL
T 20:(-1.-3)

Graph of y =Sin~ lx oe

. 13 . _1 8 1 17
Is Sin-!= Sin"!— = Sin"1 —?Example 9 Is Sin z + Sin 17 in 85

Solution As a first step, evaluating the left-hand side and the right-hand side by using a
calculator in radian mode, we get

LHS = Sint 2 + Sin!= — 1.133458435,

RHS = Sint2 — 1.133458435.

This is reasonably convincing evidence that the answer to the question is yes.

However, two numbers could agree out to several decimal places and yet differ at

some place beyond. Thus we give the following noncalculator proof.

Let Sin~1(3/5) = a and Sin=1(8/17) = B. Since a + f is an angle in the first

quadrant (from the above computations of LHS), and Sin=1(77/85) = y is also
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an angle in the first quadrant, it is sufficient to show that sin(a + 8) = sin y.
But sin y = 77/85, and so we wish to show that sin(a + 8) = 77/85. Using (1.12)
and reading off values from Fig. 5.19, we get

sin(a¢ + B) = sina cos 8 + cosa sin 8 = (2) (£2) + (3)() = Te

Thus a + B and y are in the first quadrant, and sin(a + 8) = sin vy, and so we can

conclude that a + 8 =v. [|

Exercises 5.4

In this exercise set there may be some problems in which the given expression is not
defined. If a calculator is used, the display will show Error. Explain what part of the
problem is responsible for such a result.

 

In problems 1 through 3, make a table of x, y values that satisfy the given equation, and

then draw a graph.

1. y = Sinx 2. y = Cosx 3. y=Tan«x

In problems 4 through 24, evaluate the given expressions and give answers in exact form.

4. Sin~11 5. Cos™1(—-1) 6. Tan"1(—1)

7. Arcsin- —) 8. Cos! (2) 9. Aretan (~ 2)
V2 2 3

. 3 2 . 2
10. Sin + (- I) 11. Cos! (Z) 12. A —

2/3 0s Ve resin 3

13. sin (sin23) 14. tan (Tan14) 15. Cos! (sin 2)
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16. cos(2 Cos™10) 17. sin (sin 2) 18. cos 3 Tan? (- 3]

19. tan(2 Tan~13) 20. sec |cost (- 3) 21. tan |Cos (2) + Sin! (- 3)

22. Sin! (cos 7) 23. cos (z + sin-1£) 24. tan |Tan-1(2) Cos- 2)

In problems 25 through 36, evaluate the given expressions and give answers rounded off
to two decimal places.

25. Sin~1(0.3768) 26. Arccos(0.5732) 27. Tan™1(—1.483)

28. Cos1— 29. Arcsinre 30. Arctan —
2 4 3

31. Cos(sin 48°) 32. Sin! (cos 2) 33. cos (2 sin2)
vw

. 1 5 i .
34. sin (Cost1212) 35. cos(2 Sin~10.4 + Cos~10.6) 36. sin(1.6 — Tan"14)

In problems 37 through 40, give reasons for your answers.

TE: . 15 ~156 5 2 13 T1 1 — 1 1 = =21937. Is Sin 5 + Sin 13 = Sin 5 38. Is Tan™ 3 + Tan! 5 5

39. Is Tan1(1) + Tan1(2) — Tan"}(—3) = =? 40. Is Sin! : + Sin—w= = Cos!=?

In problems 41 through 47, determine all values of x that will satisfy the given equalities
or inequalities. Give answers in exact form when it is reasonable to do so, otherwise
rounded off to two decimal places.

41. a) 2Sin"lx +1 =0 b) 2Cos™lx —3=0

42, a) Tan"lx = 1 b) 3Sin"lx +4 =0

43. a) 2Coslx +1 <0 b) 1 + Tan"lx <0

44. a) cos(Sin"1x) <0 b) tan(Cosx) <0

45. a) sin(Cos1x) <0 b) tan(Sin~1x) <0

46. a) sin(Sin~x) = x b) Sin(sin x) = x

47. a) cos(Cosx) = x b) Cos(cos x) = x

48. A movie marquee on Main Street is 1.5 meters wide, and its bottom edge is 4 meters
above the sidewalk, as shown in Fig. 5.20. A person with eye level 2 meters above the
sidewalk and x meters from the point P directly below the edge of the marquee, is
walking along Main Street and observes that the view of the marquee (as measured

by angle 6) is small when far away (when x is large), but as the person gets closer, 6

gets larger until it reaches a maximum, and then it begins to get smaller until it

becomes 0° when the observer is directly underneath the edge of the marquee. For a

given person, A is a fixed number, and # can be considered as a function of x. Show
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50.
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that it is given by

1.5x_T Voraem|b=Tan eTGs = RH)

Hint: Note that # = 8 — a. Use the two right triangles involving angles a and 8 and
the identity

tan 8 — tan «at —a)=-2RP
an(f a) 1 + tan Stan a

Suppose the person in problem 48 is Janet, whose eye level above the sidewalk is 1.5

meters.

a) Show that her “view” of the marquee is given by § = Tan"!eh

b) Use your calculator and the result in (a) to complete the following table, which

gives her view for different values of x. The given values of x are in meters.

Express 6 in radians rounded off to three decimal places.

Chapter 5

 

x 40 25 20 10 8 6 5 4 35 32 31 30 28 25 20 15 1.1 05
 

   
 

c) Using the results in (b), make a reasonable estimate of how far from point P

Janet should stand to get the “best view” (that is, the largest value of 4).

Suppose the person in problem 48 is Preston, whose eye level above the sidewalk is

2 meters.

a) Show that his “view” of the marquee is given by § = Tan! (32).
x2 +7

b) Make a table similar to that in problem 49.

c) How far from point P should Preston stand to get the “best view”?
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SOLUTION OF TRIGONOMETRIC EQUATIONS
An equation is an identity if it is satisfied by all values of the variable (or varia-

bles) for which both sides are defined; otherwise,it is called a conditional equa-

tion. Techniques for solving conditional equations involving trigonometric func-
tions are discussed in this section. These are illustrated by considering a variety

of examples.

Find the solution set for 2 sin x — 1 = 0. Give answer in terms of real numbers

(radians).

This is a linear equation in sin x. First solve for sin x, obtaining sin x = 1. Thus
we wish to determine all angles x whosesine is 1. Thesine function is positive for
angles in the first or second quadrants. Two solutions, 7/6 and 57/6, are shown

in Fig. 5.21. All other solutions are angles that are coterminal with one of these
two. Thus the solution set S is given by

S={elx=Z +k 20 or x=" + k-2mkis an integer,

    

y y

2 Sm
2 1 1 6A
/6 x 1 X

i"

Find the solution set for equation 2sin2x — cos?x — 5sinx — 1 = 0. Express
answer in terms of real numbers rounded off to four decimal places.

In the given equation use identity (I.9) to replace cos2x by 1 — sin2x. After sim-
plifying, we get a quadratic equation in sin x that can be solved by factoring:

3sin?x — 5sinx — 2 = 0,

(sinx — 2)(3sinx + 1) = 0.

Hence sin x = 2 or sin x = —1. Since —1 < sin x < 1, there is no value of x for

which sin x = 2. To find solutions for sinx = —3, use a calculator to get
Sin~!(—1) = —0.3398 as one solution. This angle is in quadrant IV, but there is

another angle 3.4814 in quadrant III, whose sine is —4, as shown in Fig. 5.22. All

other solutions will be coterminal with one of these two angles, and so the solu-

tion set S is given by

S={x|x=-03398 + k-27r or x =3.4814 + k- 27}.
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Find the solution set for the equation sin 2x — 1/3 cos 2x = 0, where the replace-
ment set is {x|0 < x < 27}. Give results in exact form.

The given equation involves both the sine and cosine functions, but we can
expressit in terms of a single function, as follows: Add V/3 cos 2x to both sides of
the given equation, and then divide by cos 2x to get

sin 2x V3

cos 2x

Using identity (1.7) gives tan 2x = 1/3. Recall that tan 2x > 0 for 2x in the first

or third quadrants. Thus two values of 2x, 7/3 and 47/3, are shown in Fig. 5.23;

other values are given by angles coterminal to these. Thus

2x =Z + k-27 or ox = 37 Lb. on
3 3

Solving for x, we get

x=g thea or x=2T 4 kom

y y

2 v3
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The values of £ that will give solutions in the interval 0 < x < 27 are given by
k =0 or k = 1, and so the solution set S is given by

s={z,In 20 >| od
~l6°6’3 3)

Find all values of x that will make 3 sin(2x — 7) a maximum. Give answers in

exact form.

Since the maximum value of sin is 1, the problem is to determine all values of

x for which sin(2x — 7) = 1; this will make 3 sin(2x — Z) = 3, which is its maxi-

mum value. Recall that sin% = 1, and so all solutions will be given by

2x — Fr =3+k2m

Solving for x, we get

xX = me + ka.

Therefore 3 sin(2x — 7) will assume a maximum value at each x in the set S

given by

S = x12 = 37 4 ko, kis an integer. =

Equations of the Form asinx 4+ bcosx =c¢

An equation of the form a sin x + b cos x = ¢ (where a, b, c are given numbers
and a, b are not both zero) can be solved as follows: divide both sides of the

equation by Va? + b2 to get

sin x + (5.6)
a b c
_ ——C08 X=

a? + b? a? + b® a? + b?

Figure 5.24 shows an angle a that has its terminal side passing through the point
(a, b). (The diagram shown is for a negative and b positive.)

(a,b)

Va? + b?
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Since a and b are given, angle «a is determined. Note that
cosa = a/Va? + b% and sin a = b/Va? + b2 and so Eq. (5.6) can be written as

Cc

Vaz + 52

The left-hand side of this equation reminds us of the identity for the sine of a
sum of two angles, and indeed it can be replaced by sin(a + x) (see identity

(I.12) of Section 5.2). Therefore, the given equation can be written in equivalent

form as

cos a Sin xX + sin a cos x =

sin(a + x) =—% (5.7)
+b2’

and this is the form we can use to find the solution set.

Find the solution set for the equation 3 sin x — 4 cos x = 5, where the replace-
ment set is {x|0 < x < 27}. Express results rounded off to three decimal places.

We first divide both sides of the given equation by+= V/25 = 5:

3sinx —gcosx = £. (5.8)

Plot the point (3, —4), and let a be the angle shown in Fig. 5.25. We see that

cosa = 3/5 and sina = —4/5, and substituting these into Eq. (5.8) gives

sin x cos a + cos x sin a = 1. This can be written as

sin(x + a) = 1. (5.9)

Angle a is given by a = Sin~1(—4/5), and using a calculator, we get

a = —0.9273. Therefore Eq. (5.9) becomes

sin(x — 0.9273) = 1. (5.10)

Hence,

x — 09278 = T+ k + 2r or x = 09273 + + k + 2m.

 

S
E

3, —4) 
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The only value of k& that will give a solution satisfying 0 < x < 2is zero. Thus,

x = 0.9273 + 5 = 2.4981,

and the solution set is given by S = {2.498}. rh

Solve the equation sin 2x — sin x = 0. Express answer in terms of real numbers
in exact form.

Using (I.18) to replace sin 2x in the given equation by 2sinx cosx gives
2 sin x cos x — sin x = 0. This can be written as sin x(2 cos x — 1) = 0. Therefore

the given equation is equivalent to sin x = 0 or cos x = . From sin x = 0 we get
solutions of the form x = k=, and cos x = 1 gives

x =+ 2kr or x= —7 + 2k.

Therefore the solution set S is

S = {als = kr or x = + 2kn or x= —Z + 2km k is an integer].

 

Express answers in exact form whenit is reasonable to do so. Otherwise use a calculator

and give results rounded off to two decimal places.

In problems 1 through 8, find all solutions and give answers in radians.

1. 2cosx +1=0 2. 2sinx + V3=0

3. V3tanx —1=0 4. secx —2=0

5. tan2x — 1 =0 6. V3sinx —4=0

7. cos?x + 2cosx +1=0 8.1 —4sin2x =0

In problems 9 through 16, find all solutions and give answers in degrees.

9, 2sinx+1=0 10. 2cosx + V3=0

11. V3cotx +1 =0 12. V3secx —2=0

13. V3cosx —4=0 14. 2sin(x + 30°) —=1=0

15. 2cos(x + 60°) +1 =0 16. 2sin%x + 5sinx —3=0

In problems 17 through 41, find the solution set where the replacement set is

{x|0 < x < 27}. Note: This implies that x is in radians.

17. 2sinx — V3 =0 18. 2sin x — sin?x = cos?x

19. 2secx — V3 =0 20. cotx + V/3=0

21. 35sinx —24=0 22. 3cosx —2=0

23. 3sinx — 5cosx =0 24, 2sinx + 3cosx =0

25. 2sin2x + cos2x = 0 26. 4 — tan%2x = 0
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27. sin%x + 2sinx +1 =0 28. cos?2x —3cosx —2=0

29. 2sec’x — 3secx —2=0 30. 2sin%x + 2sinx —1=0

31. 3cos®x +4cosx +2=0 32. 25sin2x = 30sinx + 7

33. cos?x — 1.5cosx — 048 = 0 34. sin?x — 24sinx —1.8=0

35. 9sin%x — 6sinx +1 =0 36. tan%x — 4tanx +3 =0

37. V3sinx + cosx = 2 38. sinx + cosx =1

39. 2cos?x —sinxcosx = 0 40. sinx + cos x = 2

41. sin?x + 2cos?x = 1

In problems 42 through 45, for each of the given functions f find all values of x that will

give the maximum value of f(x).

42. f(x) = 2 sin (2x _ 7), D(f) = {x]0 < x < 2)

43. f(x) = 3 cos (2 + 7), Df) ={x|7 <x < 37}

44. f(x) =4 — cos 3x, D(f) = {x| —7 < x < 37)

Hint: 4 — cos 3x is maximum when cos 3x is minimum.

45. f(x) = 3 — 2sin4x, D(f) = {x]|0 < x < 27}

Hint: 3 — 2 sin 4x is maximum when sin 4x is a minimum.
 

5.6 GRAPHS OF GENERAL SINE AND COSINE FUNCTIONS
In Section 4.5 we discussed graphs of y = sin x and y = cos x; see Figs. 4.34 and
4.35. We observed that these functions are periodic with period 27, and so it is
sufficient to draw their graphs over an interval of one period.

In applications, particularly in engineering and physics, one frequently en-

counters the more general functions given by

y=asin(bx +¢) and y= acos(bx + c), (5.11)

where a, b, and c are called parameters; that is, they are specified real numbers

in any particular case. We make the obvious exceptions that a # 0, b # 0.
We shall investigate properties of graphs of functions given by Eqs. (5.11) by

considering a sequence of particular cases in order to determine what role each of
the three parameters plays.

Example 1 Draw a graph of y = 3 sin x.

Solution In order to draw the graph ofy = 3 sin x,first draw the graph ofy = sin x. This is
shown by the broken curve in Fig. 5.26. To draw the graph of y = 3 sin x, note
that for any given value of x the value ofy is 3 times the corresponding value of

y in y = sin x. Thus we get the solid curve shown in Fig. 5.26.
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Y=3*SIN(X)
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Graph of y = 3sinx Hk

From the graph in Fig. 5.26, we note that the function given by y = 3 sin x is

periodic with period 27. The graph is a “sine curve” that oscillates about the

x-axis and reaches a maximum distance of three units above and below the axis.
We describe this by saying that the amplitude ofy = 3 sin x is 3. In general, then,
we can conclude that y = a sin x is a sine curve with period 27 and amplitude |a|.
Parameter a plays the part of amplitude.

Example 2 Draw a graph of y = sin 2x.

Solution Since the sine function has period 27, it will be sufficient to draw a graph of the
given function over the interval 0 < 2x < 27; that is, 0 < x < 7. The following

table gives pairs of x, y values satisfying the given equation for x in this interval.

These are used to draw the solid portion of the curve shown in Fig. 5.27. Since

Y=SIN(2#X)
x|lo = 7 3 m7 bm 3m Tm

8 4 8 2 8 4 8 Y

VE, AB Vz VE i
yo = tr 0-5 tt -50 ! Ve

\ /
\ /
\ /
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Graph of y = sin 2x
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sin 2(x + 7) = sin(2x + 27) = sin 2x, the graph can be continued as shown by
the broken portion of the curve in Fig. 5.27.

We see from the graph of Fig. 5.27 that the function given by y = sin 2x is

periodic with period =. Hn

Example 2 suggests the following generalization: The function given by
y = sin bx is a “sine curve” with period 27/|b|, where the absolute value of b is
used because we want the period to be a positive number. Parameter b plays the
role of the period.

Draw a graph of y = sin (+ + 7).

Since the sine function has period 2, it is sufficient to draw a graph for values of
x satisfying 0 < x + 7/4 < 27; that is, —7/4 < x < 7n/4. The following table

gives pairs ofx, y values satisfying the given equation for x in this interval. These

are used to draw the solid portion of the curve shown in Fig. 5.28(a). Since

sin IE + 27) + z] = sin (x + 7) + 2r = sin (x + 7),

the graph can be continued as shown by the broken portion of the graph in
Fig. 5.28(a).
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(a) Graph of y = sin (x + 2) (b) Graph of y = sin x

In Fig. 5.28(b) the graph of the standard sine function, y = sin x, is shown.

Looking at the two graphs in Fig. 5.28, note that if the graph of the standard sine
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function is translated horizontally to the left =/4 units, we get the graph of

y = sin(x + 7/4). Such a horizontal translation is called a phase shift. We say
that the graph of y = sin(x + 7/4) has a phase shift of 7/4 to the left. r

Example 3 suggests that in general the parameter ¢ in y = a sin(bx + c)
plays the role ofphase shift.

The preceding three examples lead us to the following generalization (which

can be proved although we are not interested in doing so here):

The graph of y = a sin(bx + c¢), where a # 0 and b # 0, is a sine

curve with period 27/|b|, amplitude |a|, and phase shift |c/b|. Thatis,

to get the graph ofy = a sin(bx + c), move the graph ofy = a sin bx
horizontally a distance of |c/b| units to the left if ¢/b > 0 and to the

right if ¢/b <0.

If we replaced sine by cosine in the above discussion we would arrive at
similar corresponding results. We shall merely state the following general con-
clusion.

The graph of y = a cos(bx + c), where a # 0 and b # 0, is a cosine

curve with period 27/|b|, amplitude |a|, and phase shift of |c/b|.

Draw a graph of y = —4sin(7/2 — 2x).

We can first write the given equation as y = —4 sin[ — (2x — 7/2)]. Using the
identity sin(—6) = —sin § gives y = 4 sin(2x — 7/2). Therefore the graph is a

sine curve with period 27/2 = 7, amplitude 4, and phase shift of (7/2) + 2, or 7/4

to the right. This is shown in Fig. 5.29, in which the graph ofy = 4 sin 2x (shown

as the broken curve) is moved to the right 7/4 units to get the graph of the given
equation shown as the solid curve.

As a check, we suggest locating a few “key points” on the graph, such as
x-intercepts and highest or lowest points. These are given in the following table

for the primary cycle given by 0 < 2x — 7/2 < 27; that is, 7/4 < x < 57/4.

 

no
)
3 | 3 |

|
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Y==4*SIN(PI/2-2%*X)

 

 

 
Graph of y = —4 sin 3 - 2)

Note: Since sin(7/2 — 2x) = cos 2x is an identity, we could have written the

given equation as y = —4 cos 2x and used this equation to draw the graph.
_

Draw a graph of y = sinx + cos x.

First apply a technique similar to that used in Section 5.5 (see Example 5), in

which the given equation can be written as

y= Ve(sinx + cos)
V2 V2

Since sin 7/4 = 1/V/2 and cos 7/4 = 1/1/2, we can write

y = VE(sin x cos 2 + cos sin I).

Using identity (1.12) gives y = V/2 sin(x + =/4). From this equation we see that

the graph of the given functionis a sine curve with period 27, amplitude \/2, and

phase shift of 7/4 to the left. This is shown as the solid curve in Fig. 5.30; the
broken curve is the graph of y = 1/2 sin x.
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Y=SINOQO+COS(X)

Fig. 5.30
 

 

 
Graphofy =sinx + cos x |]

 Exercises 5.6

In each of the following, give the period, amplitude, and phase shift. Then draw a graph
of the given equation.

1. y=2sinx 2. y= —3sinx 3. y= —2cosx 4. y = cos 2x

5. y = 3sin(—2x) 6. y = 3 cos(—2x) 7. y = 3sin(nx) 8. y = —2cos(—mx)

9. y = 2sin (2x) 10. y = sin (x + 7) 11. y= 2cos(x — 7) 12. y = 3sin(x — 7)

13. y = ~3sin (2x -7) 14. » = 2 cos (mx — 7) 15. y = 4sin (27x — 2) 16. y = 3sin(Z — 22)

17. y =sinx — cos x 18. y =sinx + V3cosx 19. y = V/3sinx —cosx 20. y =2sinx + 2cosx
 

5.7 Looking Ahead to Calculus
In Sections 2.7 and 3.6 we introduced ideas related to limits. Here we continue

that discussion with examples involving trigonometric functions.

Example 1 Determine lim2x
r—

Solution First we make a table giving values of (sin x)/x corresponding to values of x near
zero both positive and negative.* However, since f(x) = (sin x)/x is an even func-

 

* Note that we do not include extremely small values of x in the table. Calculators cannot handle such

numbers without introducing substantial round-off errors.
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tion, it is sufficient to use only positive values of x. Since x represents a real

number, place the calculator in radian mode.

 

x 0.5 0.1 0.01 0.001
 

sin x 0.959 0.998 0.99998 1.00000    
From the values of (sin x)/x appearing in the table, we conlude that

._sinx
lim =—/—= =1. bid
r-0 X

Determine lim x (Z — Tan12:).
Xr—>0

We make a table giving values of x(7/2 — Tan"12x) corresponding to large val-
ues of x. First place the calculator in radian mode.

 

x 10 100 1000
 

   x(m/2 — Tan"12x) 0.49958 0.499996 0.500000
 

From values appearing in the table, we conclude that

lim x (2 — Tanz) = 0.5. i
Z—0

Determine the slope of the line that is tangent to the curve y = cos x at the point

P:(n/3,1/2). Draw a graph and show the tangent line.

The slope m of the tangent line is given by

cos(Z + 7) — cos T cos(Z +h) - 1

m = lim 7 = lim 7
 

First we make a table giving values of the difference quotient corresponding to

values of A approaching zero. Place the calculator in radian mode.

 

h 0.5 0.1 0.01 0.001 ... =05 —-0.1 —0.01 —0.001
 

cos(m/3 + h) — 1/2
h -0953 -0.89%0 —-0869 —-08663 ... —0.708 —0.840 —0.864 —0.8658  
 

From the table of values of the difference quotients, we conclude that

m = —0.866. The graph is shown in Fig. 5.31.
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Fig. 5.31
 

 

 
Example 4 Find an equation of the line that is tangent to the curve y = Sin~x at the point

P:(1/2, 7/6). Give result with numbers rounded off to three decimal places.

Solution The slope m of the tangent line is given by

Se+ hn) — sin1 Se + h) _
m = lim = lim 2

h—0 h h—0 h

o
a

  

After placing the calculator in radian mode, we get the following table giving
values of the difference quotient corresponding to values of A approaching zero.

 

 

h 0.5 0.1 0.01 0.001 ... =05 -01 -0.01 -0.001

Sin-}(1/2 + A) — 7/6 2.094 1.199 1.159 1.1551 ... 1.047 1.121 1.151 1.1543

h    
 

From the table of values we conclude that m = 1.155, and so an equation of the

tangent line is given by y — 5 = 1.155( — 1) This can be written as

y = 1.155x — 0.054. -

Exercises 5.7
 

In problems 1 through 10, evaluate the given limits. Give answers rounded off to two

decimal places.

. . \

1. lim SIL2% 2. lim S32 3. lim 1 =n 4. lim 1— Sh 2x

z-0 z- z-0 z-

. 4 — Tan! . Sin12 ) 1 ) 2
5. lim Tan"'x 6. lim Dib 7. lim x sin — 8. lim x tan —

r-1 In xX z-0 xX I-00 xX I-00 X

9. lim 2Cosx—1 10. lim 2Sinx

—1

z-m/3 3x — 7 z-7/6 6x — 7
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In problems 11 through 14, a function f and a number c are given. Determine the slope of
the line that is tangent to the curve y = f(x) at the point (c, f(c)).

11. f(x) =sinx; ¢c = 5 12. f(x) = xcosx; ¢ =3

13. f(x) = tanx; c = I 14. f(x) = x%inx; c = 1

15. Suppose f(x) = sin x. The slope of the line that is tangent to the curve y = f(x) at

the point (c, f(c)) depends on the given value of c. Denote this slope by m(c). In each
of the following give answers rounded off to three decimal places.

a) Determine m(c) for each of the values of c in the following table.

 

c 0 1 15 34 -08
 

   m(c)
 

b) Complete the following table giving values of cos c corresponding to the values of
c used in (a).

 

 

  Cos ¢  
 

c¢) Compare the results obtained in (a) and (b) and guess a formula that will give the

value of m(c) for any real number c. Use the formula to determine m(2.5) and

m(—/5).
 

Review Exercises
In problems 1 through 8, prove that the given equations-are identities.

1. cosx tanx = sin x 2. csc sin 20 = 2 cos @

2
3. 2sin2X = SIX 4. sinxtanX = 1 — cos x

2 14 cosx 2

2
5. (sinZ — cos 2) =1-—sinx 6. 2sin(x + 2) = Vsin+ cos

7. cos (2 + x) = cos x tan(—x) 8. cost5 — sin*X = cos x

In problems 9 through 20, evaluate the given expressions in exact form, where a and 8

are angles that satisfy

sin a =

u
w and 5 <a<m

tan 8 = — and _
Tm m

p
t S
|
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9. sin 2a 10. sin 5. 11. sin(a + B) 12. tan G + 7)

13. cos 2p 14. sec?a — tana 15. cos 2(a — B) 16. cos &

17. tan 2a 18. sina + cos? 19. cos (a + 7) 20. cos (z + 2a)

In problems 21 through 26, evaluate the given expressions in exact form. Give answers as
real numbers (radians).

121. Sint (— 22) 22. Cos(- 5) 23. Cos~1(—1) — Tan-1(—1)

24. Tan! (- +) 25. Sin! (cos Br 26. Cos! (cos or
V3 3 3

In problems 27 through 32, evaluate the given expressions in exact form, where a and 8

are given by

a = Sin~1(—32), BS = Tan™133.

27. cos(a + B) 28. sin 2a 29. tan £

30. tan(a — B) 31. cos (a + 7) 32. sin & ¥ B)

In problems 33 through 40, evaluate the given expressions, and given results rounded off
to three decimal places.

33. sin(Sin~10.4362) 34. Sin~10.4 + Cos10.5 35. Cos1(tan 123°)

-1 5m TT —-1 -1 1
36. Tan cot 7m 37. cos 7 Cos™1041 38. Cos 5 tan 0.75

39. sin(Sin~10.45 — Cos™! — 0.32) 40. sec (sin113)

In problems 41 through 48, assume that the replacement set is {x|0 < x < 27} and solve

the given equations. Express answers in exact form whenever it is reasonable to do so;
otherwise give results rounded off to three decimal places.

41. 2cosx —1=0 42. 2sing — V3=0 43. 3sinx — 5cosx = 0

44. sin®x + 2 cos?x = 2 45. 3sinx —4cosx =5 46. 3cos?x + cosx —1=0

47. tan (& — x) = COS X 48. cos?x —sin2x = 0

49. 2 — Sin"lx = 0 50. 1 — 2Sin"x = 0
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In problems 51 through 56, evaluate the given expressions, where functions f, g, and h are

given by

f(x) = Sinlx, g(x) = cos x, h(x) = V1 — x2.

Give answers in exact form whenever it is reasonable to do so, otherwise round off to two

decimal places.

51. (fog) (z) 52. g+1)(Z) 53. (hog)(1)

54. (f- 2) (z) 55. (£)w 56. (fo h) (5)

In problems 57 through 64, determine whether the given statement is true or false. Give
reasons for your answers. Recall that D(f) and ®(f) denote the domain and range of
the function f, respectively.

57. sin (£2) is not defined. 58. 3 is in D(Sin~)

59. 3 is in ®R(Sin™1) 60. 5 < TanY(=1) <n

coin TY — 1 ein TN — 1
61. Sin (sin a = sin (sin z) 62. Sin (sin 7) = sin (sin 7)

63. Cos! (sin 2) = sin (Cos z) 64. \/1 — sin?x = cos x for every x > 0.
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Fig. 6.1

6.1

Systems of Equations and Inequalities Chapter 6

Suppose the hypotenuse of a right triangle is 17 and the perimeter is 40, and we
wish to determine the lengths of the two sides. Here we are given two relations,
and we want to find two “unknown” quantities.

Let x and y represent the lengths of the two sides, as shown in Fig. 6.1. From
the given information, x and y must satisfy the two equations

x2 + y2 = 172,
x + y+ 17 = 40.

 

Thus the problem becomes one of solving the system of equations

x? + y2 = 289,

Thatis, we want to determine pairs of numbers x and y that will simultaneously

satisfy these two equations.

For example, it is a simple matter to check that x = 8, y = 15 is a solution

since 82 + 152 = 64 + 225 = 289 and 8 + 15 = 23. Similarly, we can check to
see that x = 15, y = 8 is also a solution.

Developing techniques for determining solutions of systems of equations of
this type is one of our primary concerns in this chapter. We shall delay discus-
sion of details related to the solution of the system in this example until Exam-

ple 1, Section 6.4.

In Sections 6.1 and 6.2, techniques for solving systems of linear equations are

studied; Section 6.3 deals with systems of linear inequalities, and in Section 6.4

we discuss nonlinear systems.

SYSTEMS OF LINEAR EQUATIONS; MATRICES
A linear equation in two variables x and y is one that can be written in the form

ax + by = c,

where a, b, and c¢ are given numbers with not both a and b equal to zero.

Similarly,

ax + by +cz=d

represents a linear equation in three variables x, y, and z. In general, a linear
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equation in n variables x, x,, ..., x, can be written as

a1%; + xX; + +++ + aX, = b,

where a4, a,, ..., a, and b are given numbers and not all a, are zero.
Suppose we are given two linear equations in two variables:

ax + by = cy, (6.1)
a,x + b,y = cy,

and we wish to determine pairs of numbers x, y that satisfy both of these equa-

tions. Such pairs of numbers, if there are any, are called solutions to the system of
equations given in (6.1).

Geometrically, each of the equations in (6.1) represents a line. A solution to

the system will be a point (x,y) that is on both lines. Two lines intersect at

exactly one point, or they are parallel and do not intersect, or they coincide, that

is, are the same line, and thus have infinitely many points in common. Thus the
system of equations will have

1. Exactly one solution, in which case the system is called independent; or

2. No solutions, in which case the system is called inconsistent; or

3. Infinitely many solutions, in which case the system is called dependent.

In general, a given system of n linear equations in m variables will have exactly
one solution, or no solutions, or infinitely many solutions.

We now consider two techniques that can be used to solve a system of linear
equations. These are referred to as the method ofsubstitution, and the method of

elimination. It will be helpful to introduce the idea of matrices in connection
with the method of elimination.

Method of Substitution
In solving a system of two linear equations, we can solve one of the equations for

one of the variables and substitute the result into the other equation. This gives
an equation in one variable, the solution of which leads to the solution of the
system. This procedure is illustrated in the following two examples.

Use the method of substitution to solve the system of equations

—3x+ y= 5,

2x — 3y = —8.

Solving the first equation for y gives y = 3x + 5, and substituting this into the
second equation we get

2x — 3(3x + 5) = —8§,

2x — 9x — 16 = —8,

—-T7x= 1,

x = —1.
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Thus the x value in the solution is —1, and the y value can be determined by

replacing x by —1 in either of the given equations. Using the first equation gives

y= 2.

Therefore the desired solution is given by x = —1, y = 2. tm

Solve the system of equations by substitution.

—3x + 6y = 5,

xX — 2y = 4.

Solving the second equation for x gives x = 2y + 4, and substituting this into the
first equation, we get

—3(2y + 4) + 6y = 5,

—6y — 12 + 6y = 5,

Qy = 17.

Since 0 - y = 0 for every value of y, we conclude that the given system of equa-
tions has no solution. We say that the system is inconsistent. a

Method of Elimination
Two systems of linear equations are called equivalent if their solution sets are
identical. Suppose Sis a system of linear equations. Any of the following elemen-

tary operations on S will yield a system of equations that is equivalent to S:

a) Interchange any two equations of S;

b) Replace any equation E with an equation obtained by multiplying both sides
of E by a nonzero number;

c) Replace any equation of S by the sum of that equation and a multiple of

another equation of S.

The first goal in solving a system of n linear equationsis to get an equivalent
system in which one of the equations has zero coefficients for n — 1 of the varia-

bles (referred to as the elimination of n — 1 variables). If the coefficient of the

remaining variable is not zero, we can solve for it; if it is zero and the constant

term is not zero, then there are no solutions; if the constant term is zero, there

are infinitely many solutions. We can achieve our first goal by a sequence of

elementary operations. This and the concluding steps in solving a system of

linear equations by elimination are illustrated in the following examples. Before

considering examples, however, let us introduce some notation that will be help-

ful in describing the sequence of elementary operations.
Suppose the equations of a system of linear equations S are denoted symbol-

ically by E,, E,, ..., E,. The following illustrates the notation we shall use to

indicate elementary operations on S.
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1. E, & E, indicates E, and E, are interchanged.

2. 4E, — E, tells us that E, is multiplied by 4 and the resulting equation
becomes E, of the equivalent system.

3. E, + 4E, — E, indicates that the sum of E, and 4 times E, becomes equa-
tion E, of the equivalent system.

4. 2E, + (—4)E, — E, tells us that the sum of 2 times E; and —4 times E,
becomes equation E, of the equivalent system.

Example 3 Use the method of elimination to solve

E,;: x+3y=-3,

E,, 3x+2y= 5.

Solution We can eliminate x by multiplying E, by —3 and adding the result to E,. Thus
elementary operation E, + (—3)E, — E, gives the equivalent system

E;: x+43y=-3

E,: 0x —"T7y= 14.

Solving E, for y gives y = —2; substituting —2 for y in E, and solving for x gives
x = 3. Therefore the solution to the given system is given by x = 3, y = —2.

we

Example 4 Give a geometric interpretation of the solution of the system of equations given

in Example 3.

Solution The given equations E, and E, represent lines, as shown in Fig. 6.2. The two lines

y
E\ -4 |

Fig. 6.2 |
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intersect at the point (3, —2). Since (3, —2) is on both lines, x = 3 and y = —2

will satisfy both of the given equations, and those values are the desired solution.

a

Use the method of elimination to solve

E,: 2x — by + 3z = —4,

E,: x—2y—3z= 3,

Ey: —3x + 4y + 22 = —4.

Although we could first aim to eliminate any one of the three variables by apply-
ing elementary operations, the fact that the coefficient of x in E, is 1 suggests
that we concentrate on eliminating x, since this will involve simple computa-
tions. In the following sequence of steps we first interchange E, and E,, then in
steps (2) and (3) we eliminate x in the second and third equations. In step (4) we

eliminate y in the third equation.

1. E, » E, 2. E,+(-2)E, > E,

E;: xX—2y—-3z= 3, E,: xX—2y—3z= 3,

E,: 2x — 5y + 32 = —4, E,: Ox — y+ 92 = —10,

Ey: —3x + 4y +22 =—4. E;: —3x+4y+2z2= -4.

3. E, + 3E, > E, 4. E, + (—-2)E, —> E,

E;: x-2y—-3z= 3, E;: x-2y— 3z= 3,

E,: 0x — y+ 9z = -10, E,: 0x —- y+ 9z = -10,

Ey: Ox —-2y—-T7z= 5. E;: Ox + Qy — 252 = 25.

Using the system of equations obtained in step (4), we get our solution as fol-
lows: Solve E, for z to get z = —1; substitute z = —1 into E,, and solve for y to
get y = 1; substitute z = —1, y = 1 into E,, and solve for x to get x = 2. There-

fore x =2, y=1, z= —1 constitute the solution to the given system of

equations.

Solve the system of equations

E,: x4 2y —2z2=3,

E,: 2x + 3y — 3z = 1,

E;: —4x — 5y + 5z = 3.

We first eliminate x by applying elementary operations shown in steps (1) and

(2); then in (3) we eliminate y.

1. E, + (-2)E, — E, 2. Ej + 4E, — Ey
E;: xX+2y—2z= xX+2y—2z= 3,

E,: Ox — y+ z= -5, E,, Ox — y+ z= -5,

E;; —4x—-5y+5z= 3. E;: Ox + 3y —3z = 15.

&o ty =.
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3. E; + 3E, —> E,

E;: x+2y—-2z2= 3,

E,, Ox—- y+ z= -5,

E;: Ox + 0y+0z= 0.

From the system of equations obtained in step (3) we conclude that Ej,is satis-
fied by all real numbers, and so the solution will consist of any x, y, z that satisfy

E, and E,. Suppose we let z = ¢, where ¢ is any real number; then from E,,

y = t + 5. Substitutingz = ¢t,y = t + 5into E, givesx + 2(¢ + 5) — 2¢ = 3, and
so x = —17. Therefore, the given system of equations has infinitely many solu-

tions given by

x=-Ty=t+5,z =t{,

where ¢ is any real number. For example, each of the following will give a
solution:

t=0givesx = -7,y=5,t=0;

t=3givesx = -7,y=8,2 = 3;

t= —\2gvesx = —-T7,y=5— 12, z= —2.

We say that the given system of equations is dependent. en

Systems of Linear Equations as Matrices

A close inspection of the solutions given in the preceding examples shows that
the method of elimination involves a process of applying elementary operations
along with careful bookkeeping. We can streamline the entire process by first
noting that it is not necessary to carry along the variables in each step; second,

the essential parts of the given system of linear equations are the coefficients of

the variables and the numbers on the right-hand side of the equations.
Let us consider the solution given for Example 5. The given system is

2x — 5y + 3z = —4,

x—2y—3z= 3, (6.2)

_3x + 4y + 22 = —4.

The coefficients of x, y, z and the constants on the right-hand side can be repre-

sented by rectangular arrays of numbers, as follows:

2 -=5 3 —4

A= 1 -2 -3|, B = 3 | (6.3)

-3 4 2 —4

Such rectangular arrays of numbers are called matrices (plural for matrix). Ma-
trix A, with three rows and three columns, is called a three-by-three (or 3 X 3)

matrix; matrix B, with three rows and one column, is said to be a three-by-one

matrix. Matrix A is called the matrix of the coefficients, and it is said to be a
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square matrix since it has the same number of rows and columns. The numbers
inside the brackets are called elements of the matrix; for instance, —3 is the
element in the second row and third column of A. Also, in a square matrix the

sequence of numbers from upper left to lower right (that is, the 2, —2, 2) consti-

tutes the main diagonal of the matrix.
The system of equations given in (6.2) can be represented as a matrix as

follows:

2 -5 3 | —4
cC=|1 -2 =-3 | 3]. (6.4)

—3 4 21 —4

This is a three-by-four matrix, and it is called the augmented matrix. Note that
matrix C completely describes the system of equations given in (6.2) if we re-
member that the first column is associated with the variable x, the second with y,

and the third with z. We can now get a sequence of equivalent matrices in a
manner similar to that in which we obtained a sequence of equivalent systems of

equations. Here we show the operations on rows of matrices that are analogous
to the elementary operations with equations in the solution for Example 5.

1. R, & R, 2. R, + (—iI
1 -2 -3 | 3 EE -3 | 3

C,=| 2 -5 8 | —4|. 0 9 | —10(.
—3 4 2 | —4 3 2 | —4

3. R, + 3R, > R, 4. R, + (—2, =» Ey

1 —-2 -3 | 3 1 3 | 3

C;=10 -1 9 | —10{. c=lo 1 ol 10]
0 —2 —-7 1 5 0 0 —2 | 25

In the solution of Example 5 we solved the system of equations correspond-
ing to matrix C,. However, we can continue performing elementary row opera-

tions to get the following equivalent matrices.

5. (-1)R, > R,; —%R; —> R, 6. R, + 2R, > R,

(1 -2 -3 | 3] 1 0 -21 | 23
C;=|0 1 —-9 | 10]. Co=|0 1 —-9 | 10}.

0 0 1 1 —1] oOo 0 11 -1

7. R, + 21R; > R;; R, + 9R; > R,

(1 0 0 | 2]

c,=|0 1 0 | 1].

0 0 1 | —1  
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The system of equations corresponding to matrix C,isx = 2,y = 1,z = —1.

Therefore the solution to the given system of equations is given by x = 2, y = 1,

z= —1.

Matrix C; is an example of a row-reduced echelon matrix. In such a matrix
the elements corresponding to the coefficients of the variables are zero except for
those along the main diagonal, which are ones or zeros.

Elementary Row Operations on Matrices

The elementary operations on a system of linear equations described earlier
translate into corresponding elementary row operations on matrices, as follows:

a) Interchange any two rows;

b) Replace any row by a nonzero multiple of itself;

¢) Replace any row by the sum of itself and a multiple of some other row.

For instance, in the solution of the example above: in step (1)—R, «<> R,—we
applied (a); in step (5)—(—1)R, — R,; —(1/25)R; — R,—we applied (b) twice;

and in step (7)—R, + 21R; —» R,; R, + 9R; — R,—we applied (c) twice.
We now summarize the essential features of solving a system of linear equa-

tions by using the technique of row-reduction to echelon form:

1. Write the augmented matrix associated with the given system of equations,
remembering which columns correspond to which variables.

2. Use any of the elementary row operations (a) through (c) to get a sequence

of equivalent matrices.

3. The ultimate goal is to obtain an equivalent augmented matrix in which the

corresponding coefficient matrix has zeros for all of its elements except the
elements of the main diagonal, each of which is a zero or a one. If the main
diagonal elements of the row-reduced echelon matrix are all one, then the
given system has a unique solution; otherwise the system is either inconsist-
ent (no solutions) or dependent (infinitely many solutions).

Example 7 Solve the system of linear equations

3x —y=—1,

x+y= 3.

Solution The augmented matrix corresponding to the given system is

3 —1 | —1
\ 1 | 5)

We can get a sequence of equivalent matrices, as follows:

1. R, & R, 2. R, + (=3)R, > R,

|
|

1 1! 3 ! 1 ’]

5 BE 0 —4 —10
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3. —1R, R, 4. R, + (-1)R, —> R,—

5 1 ’] 5 01]

0 1] 3 0 11/3

|

From the final matrix we see that the desired solution is given by x = 1, y = 3.

Example 8 Solve the system of linear equations

x —3y +2z = 11,

—2x+ y+3z= 4,

3x + 2y — 4z = 8.

Solution The augmented matrix associated with this system is

1 -3 21 1
-2 1 3 | 4.

3 2 —4 | —8

The following sequence of elementary row operations leads us to the solution.

1. R, + 2R, —» R,; R, + (—=3)R, > R, 2. —1R, > R,

1 -3 2 | 11 1 -3 2 11

0 -5 7! 2 0 1 I] -%
0 11 —10 | —41 0 11 —10 | —41

3. R, + 3R, >» R; R; + (-11)R, > R, 4. %R, —> R,

Loo yy -B Loy
ER 0 1% | -%
0 0 Z| o 0 11 3

5. R, + ¥R, > R; R, + IR, > R,

1 0 0 2

0 1 0 | —-1

oOo 0 11 3

Therefore, from the matrix in step (5) we see that the desired solution is x = 2,

y=-1,2z=3. oa

Example 9 Solve the system of linear equations

2x — 4y = 3,

—3x + 6y = 1.
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The augmented matrix associated with this system of equations is

2 —4 | ~

-3 6 | 1f

We can get a sequence of equivalent matrices as follows:

1. 3R, > R, 2. R, + 3R, > R,

22 bY-3 6 | 1 0 0 -1

At this point we see that the second row is associated with the equation

Ox+0-y=—-1

Clearly, there are no values of x and y that will satisfy this equation. Thus the

given system of equations has no solution, and we say that the system is incon-
sistent. He

Solve the system of equations

(6.5)

This is not a system of linear equations in x and y. However, it is a system of

linear equations in 1/x and 1/y. Suppose we let © = 1/x and v = 1/y; then the

given system can be written as

3u + 20 =

—u + 3v = —

~

(6.6)

H
O

H
o
r

We can solve system (6.6) for u and v, and then the solution to system (6.5) will

be given by x = 1/u, y = 1/v.

The augmented matrix for system (6.6) is

20~1 31 -3

The following sequence of elementary row operations leads us to a row-reduced

echelon matrix.

1. Ry & R, 2. (-1)R, —» R,

[7 3 He

3 2 3 2 |

w
i
n
H
O

e
d

B
O
T
H
o
I
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3. R, + (—3)R, > R, 4. AR, > R,

ld bt0 11 | —-Y4 0 1 | —%

Therefore, from step (5) we get u = 4, v = —1 as the solution for system (6.6).

The solution for system (6.5) is given by x = 4, y = —2. [|

Example 11 A parts manufacturing firm finds that each week its machines are not used
during a total of 18 machine hours, and there is a total of 34 surplus labor hours
each week. In order to utilize these resources, the management decides to pro-
duce two additional products, A and B. To make each unit of A requires 2 ma-

chine hours and 4 labor hours. Each unit of B requires 3 machine hours and 5
labor hours. How many units of A and of B can be produced if the available
resources are completely used?

Solution Let x represent the number of units of A and y the number of units of B that can
be produced. Then 2x + 3y represents the number of machine hours required to
produce x units of A and y units of B; we want this number to be equal to 18.
That is, 2x + 3y = 18 (machine hours).

Similarly, to produce x units of A and y units of B requires 4x + 5y labor
hours, and so we have 4x + 5y = 34 (labor hours). Thus we have the following

system of linear equations.

2x + 3y = 18,

4x + 5y = 34.

This system can be solved by the matrix row-reduction technique to get x = 6,

y = 2 as the solution. Therefore the firm can produce 6 units of A and 2 units of
B each week. m=

Exercises 6.1

Solve each of the given systems of linear equations. If the system is dependent (infinitely
many solutions), describe all solutions and then give three specific solutions (see Exam-
ple 6).

 

In problems 1 through 6,

a) Solve by using the method of substitution;

b) Draw graphs to show solutions graphically.

1. x+ y= 4, 2. —-3x-— y=35, 3. 2x + 4y =3,

3x —2y = —3 —x+2y=4 x+2y=15
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5. 4x — 2y = 3,

—2x + y=5

In problems 7 through 16, solve by using the method of elimination.

7.x +2y=1,

x— y=4

x J)
10. — += = ,0 5 tg 0

5x y

FR
13. 2x — y + 32 = 1,

x+y —5z=2,

3x — 22 =3

xy z _
16. S+5- 7=-1

x Zz _
3+ z= 8
2x y 3z

3 ts" 7-7°

8. 3x +4y=-2,

—x—- y= 1

11. 0.3x — 0.4y = —0.2,
—-x4+ y= 1

14. x+3y— z=1,

2x + y+ 3z=0,

4x +9 +72 =2
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6. 0.3x + 1.5y = 3.0,
14x — 0.2y = 3.2

9. 4x — 12y = 3,
—x4+ 3y=1

12, x+ y+ z= 1,

2x — y— z 5,

—X+2y—3z2=—4

156. —x —y = 2,

3x + 4z = 5,

4x +y + 42 =3

In problems 17 through 30, solve the given systems of equations by using the method of

augmented matrices and elementary row operations to reduce to echelon form.

17. x +3y=5,

3x — y=

x y 1

20. 3+ 7=-79
3x by 1

Tt 32

23. 2 _4_
xy
3.5 _ 2

xy

26. xX+2y— 2= 1,
—2x 4+ y+ 2z2=-2,

—x +8 + z=

29. 2x — 4y + z = 4,
x 3z _
3 T 5 =2

Y 132=5
2

2

18.

21. 4x — 8y = —5,

24. 2x + 6y + 3z=1,

4x + 2y + z = 2,

—2x+4+3y—6z=9

27. —x— y+3z2= 1,

30. 0.5x + 1.5y — 0.52

—1.5x — 2.5y + 0.52

— 0.5y + 1.52

19. 6x — 12y = 7,

4x — 8y = -5

22. 01x —13y =1.0,

—04x + 0.5y = 0.7

25. x —2y + 32 = —4,

5+ 3+ z= 3,

x y 2LX_2_ 9it 371

28. 3x + 4y + 4z —1,

6x —2y +22 = —2,

2y + 62 = —6
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31. A manufacturer has two different models of the same machine, model A and model

B. If machine A operates for five hours and machine B for three hours, a total of 70

items can be produced. If each machine operates for four hours, a total of 80 items
can be produced. How many items can be produced by each machine in one hour?

32. A 32-pound mixture of peanuts, cashew nuts, and walnuts contains four times as

many pounds of peanuts as cashews and three times as many pounds of cashews as

walnuts. How many pounds of each does the mixture contain?

33. The cost of a sandwich, a drink, and a piece of pie is $2.50. The sandwich costs a
dollar more than the pie, and the pie costs twice as much as the drink. What is the
cost of each?

34. A rectangular lot has a length-to-width ratio of 4 to 3. If it takes 168 meters of fence
to enclose it, what are the dimensions of the lot?

35. Suppose x grams of food A and y grams of food B are mixed and the total weight is
2000 grams. Food A contains 0.25 units of vitamin D per gram, and food B contains
0.50 units of vitamin D per gram. Suppose the final mixture contains 900 units of
vitamin D. How many grams of each type of food does the mixture contain?

36. A total of $3600 is invested in three different accounts; the first account earns

interest at a rate of 8%, the second at 10%, and the third at 12%. The amount

invested in the first account is twice as much as that in the second account. If the

total amount of simple interest earned is $388, how much is invested in each

account?

37. Suppose x grams of food A, y grams of food B, and z grams of food C are mixed

together and the total weight is 2400 grams. The vitamin D and calorie content of
each food is given in the table.

 

 

38.

 

Units of vitamin D
Food per gram Calories per gram

A 0.75 14

B 0.50 1.6

C 1.00 1.5    
Suppose the 2400-gram mixture contains a total of 1725 units of vitamin D and

3690 calories. How many grams of each type of food does it contain?

Dessert consists of chocolate pudding with whipped cream, and we are interested in
the energy (calorie) and vitamin A content. The necessary information is given in

the table.

How much pudding (in cups) and whipped cream (in tablespoons) will give a

dessert with 283 calories and 674 units of vitamin A?
 

 

  

Energy Vitamin A
Food (calories) (units)

Chocolate pudding 385 390
(1 cup; 260 g)

Whipped cream 26 220
(1 tbsp)    
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39. Two pipelines A and B are used to fill a tank with water. The tank can be filled by
having A run for 3 hours and B run for 6 hours, or it can be filled by having both of
the supply lines open for 4 hours. How long would it take for A to fill the tank alone?

How long would it take for B to fill the tank alone?

40. Suppose a, 8, and y represent the measures (in degrees) of three angles of a triangle.
Angle a is twice as large as 3, and y is 54° more than three times a. Determine a, 8,

and vy.

41. Two circles are such that the circumference of the first is twice that of the second,

and the radius of the first is 4 greater than that of the second. Find the area of each
circle.

In problems 42 and 43, the given systems of equations have infinitely many solutions. In

each case find the specific solutions for which

a) z =2 b) z= -3

42, x —2y— z= 1, 43. 1.5x — 2.5y + 1.2z = 04,
2x + y—2z=-3, 21x + 04y — 3.22 = 24,

x+8 — z2=-9 51x — 4.6y — 0.82 = 3.2
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6.2 DETERMINANTS; CRAMER’S RULE; PARTIAL FRACTIONS
Solutions to systems of linear equations can be described in terms of deter-
minants. Let us consider the general system of two linear equations in two

variables.

E;: ax+ by=cy,

E,: a,x + byy = c,,
(6.7)

where a,,b,,¢,,a4,b,,c, are given numbers. We can “eliminate” y by the following
operation on E, and E,: bE, + (—b,)E, (that is, multiply E, by b, and E, by
(—b,), and add the resulting equations). This gives

(a,b, — bya,)x = cb, — bic.

Solving for x, we get

ab, — bya,
(6.8)

Similarly x can be eliminated by the operation a,E; + (—a,)E,: this gives

a,Cy — C1Qy

a,b, — bia,
(6.9)

Note that the denominators of the results in Egs. (6.8) and (6.9) are the

same, and they are related to the coefficient matrix

A=" 2]
a, b,

In fact, this leads us to the definition of the determinant of a two-by-two matrix.
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Definition 6.1 With each two-by-two matrix

A er [> “a,

a, b,

we associate a number called the determinant of A, denoted by |A|
and given by

|A| = a,b, — b,a,. (6.10)

Another notation that is commonly used in place of |A| is det(A). Here
“det” can be considered a function with domain the set of two-by-two matrices
and range the set of real numbers. Thatis,

D(det) = {A | A is a two-by-two matrix}, ®R (det) = R.

Solutions to a system of two linear equations in two variables can now be
stated in terms of determinants, as follows:

Cramer's Rule

If the determinant of the coefficient matrix is not zero, then the

system of equations

ax + by = cy, a,x + byy = c,

has a unique solution given by

    
¢; by a, ¢

c; b, ay, Co
xX =—" BE—— 6.11

a; b y a; b, ( )

a, b, a, b,    

Cramer’s rule tells us that x and y are given by ratios of two determinants:

The denominator is the determinant of the coefficient matrix, and the numera-

tor is the determinant of the matrix obtained by replacing the coefficients of

the variable in question by the numbers on the right-hand sides of the two

equations.

Now let us consider some examples in which Cramer’s rule is used.

Example 1 Solve the system of equations

x—3y= 6,

—2x+y=-"1.
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Solution Applying Cramer’s rule gives

Example 2

Solution

Example 3

Solution

 

   

6 —3
_ 1-7 ile -(=3-n_6-2_-15_,
ETT 31D) =-(=3)(=2) 1-6 5 ©

—2 1

1 6
_ lez 1n-6)-2) _ -T+125

Y=ET1 3" MD) =-(=3)(-2 1-6  —5_ ~~
—2 1

Thus the solution is given by x = 3, y = —1. =

Solve the system of equations

 

2x — 6y = 1,

—3x + 9y = 6.

Applying Cramer’s rule gives

1 —

x= 5 0 (1) = (=6)(5) 39

N 7 — | PO- OED 0]
-3 9

Here we see that the determinant in the denominator is zero, and this suggests

that there may be no solution. It is a simple matter to verify that there is indeed

no solution by considering the operation 3E, + 2E, — E,, which leads to the
equivalent system

2x — 6y = 1,

O-x+0-y=13.

Clearly, there are no numbers x, y that will satisfy the second equation. There-
fore we conclude that the given system of equations is inconsistent. Ee

Solve the system of equations

4x — 2y = 3,

—2x + y= —15.

Applying Cramer’s rule gives

3 _ 4 3
1s | 0 | Cs) 0

= 4 —2; 0 YT 1 —2 "Oo
5 IP
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Here we have a situation similar to that in Example 2 involving division by zero.
However, in this case the numerators are also zero, and this suggests that we
may have many solutions. Applying the elimination method with the elemen-
tary operation E, + 2E, — E, gives the equivalent system

Ox+0-y= 0,

—2x + y= -—15.

The first equation is satisfied by any pair of numbers x, y, and so any pair that
also satisfies the second equation will be a solution. Thus we can assign an

arbitrary number to x and take y = 2x — 1.5 as the corresponding value of y to

give us infinitely many solutions. For instance, x; = 0, y; = —1.5; x, = 2,

Yo = 2.5; x3 = —4, y; = —9.5 are three particular examples of solutions. The
given system is dependent. =

The solutions shown in Examples 2 and 3 suggest that we first evaluate the

determinant of the coefficient matrix. If it is zero, we choose another method of

solution, since Cramer’s rule is not helpful for solving dependent or inconsistent

cases.

System of Three Equations in Three Variables

The general system of three linear equations in three variables can be written as

a,x + by + c;z2 =d,

a,x + byy + cz = d,, (6.12)

asx + byy + cz = dj,

where the a,’s, b,’s, ¢;’s, and d,’s are given numbers.

If we pursued a development similar to that of the two-by-two case given

above, we would find that the solution can be expressed as ratios of determi-

nants, where we must give an appropriate definition of the determinant of a

three-by-three matrix. We shall omit the details, which require some careful
algebraic manipulations, and merely present the results.

If we carried out the solution of the system in (6.12) by the method of elimi-
nation, we would find that the denominators for x, y, and z are all the same and

are given by

Note that D contains six terms, each of which is a product of three elements of

the coefficient matrix,

a; by ¢

A=la, b, c]. (6.14)

as by; cj
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Also note that each term of D is the product of an element from each row (each
has 1, 2, 3 subscripts) and each column (each has a, b, c).

In a manner analogous to the two-by-two case, the determinant of matrix A
is defined as the number D given in Eq. (6.13). This is denoted by |A| or by
det(A).

a; b, ¢

|A| = det(A) = a, b, Cy

a b, o (6.15)

Perhaps the first reaction is that this definition is hopelessly complicated to
remember and to apply. However, a few observations will help considerably. The
six terms of the right side of Eq. (6.15) can be grouped into three pairs so that a,

b,, c, (the first row of A) can be factored out of the respective pairs, as follows:

|A| = ay(bye3 — c3b3) — by(aye; — cpa3) + cy(azb; — bray).

The three expressions within parentheses on the right remind us of determinants

of two-by-two matrices, and indeed they are. Thus |A| can be written as

b, c,

by; c;

The result given in Eq. (6.16) is considerably easier to remember by observing
the following pattern: Each of the three terms on the right-hand side consists of

an element from the first row of matrix A multiplied by the determinant ob-
tained by crossing out the row and column ofA in which that element appears.
That is, a,,b;, and c, are multiplied respectively by the determinant of the
remaining two-by-two matrices,

a, b,

a; b;

ay, Cy

as Cj
A] = a, _ (6.16)

      1 Cy

ar—br-er Lobe] arbre

ay by, cl, a; B92 Cf, a; by C2 |

a3 by c; a; bs; c; as; by ¢3

The three two-by-two determinants in Eq. (6.16) are called the minors of

elements a,,b,,c,, respectively. This leads us to the following definition of a
minor of any element of A.

The minor of any element of the matrix A is the determinant of the
two-by-two matrix obtained by crossing out the row and column of

A in which that element appears.
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For example, the minor of element b; is

a, c¢1 A = a,c, Cy.
 

 

a, GC

Returning to Eq. (6.16), we must still associate the proper + or — sign with
each of the three minors on the right. This leads to the idea of cofactors, which
will allow us to state properties of |A| in reasonably simple terms. The signs (+
or —) in front of the three terms of Eq. (6.16) suggest the following:

Cofactor of a, = (+1) + (Minor of a,),

Cofactor of b; = (—1) + (Minor of b,),

Cofactor of ¢; = (+1) * (Minor of c,).

Thus we have the following theorem, which is essentially a restatement of
Definition 6.2.

The determinant of the three-by-three matrix A is given by the sum
of products of each element of the first row by its corresponding
cofactor.

Let us now take another look at the right-hand side of Eq. (6.15). We can

group the six terms into three pairs so that we can factor a,,b,,c, (the elements
of the second row), respectively, out of the pairs, as follows:

a, G a; b,

a; bsl’

b, c
Al = —a, 5 ! 0 — c, (6.17)

3      az Cj

Eq. (6.17) suggests a result similar to that given in Theorem 6.1; that is, |A| is
equal to the sum of the products of each element of the second row of matrix A
with its corresponding cofactor, where the cofactors of a,,b,,c, are respectively
given by

by, ¢

by c3

a, ¢ a, b

a; bg
(~1)-

  
, (+1)

  
’ (-1)-

  az C3

This leads us to the definition of the cofactor of any element of the matrix A.

The cofactor of any element of A is the product of its minor and
(—1)*4, where i is the row number and j is the column number in
which the element appears.
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For example,

Cofactor of by = (—1)3+2. |%1 4
  
a c, = (-1) (a,c, — cya,).

It should now be clear that there are other ways of combining the six terms
of the right side of Eq. (6.15) that would lead to results similar to that given in
Theorem 6.1. In fact, we can prove the following result, which tells us that we
can evaluate |A| by using any row or any column of A.

The determinant of a three-by-three matrix A is the sum of the
products of each element of any row (or any column) with its corre-

sponding cofactor.

Although discussion above was limited to 2 X 2 or 3 X 3 square matrices,

one can generalize Theorem 6.2 by considering matrix A to be a square matrix of
any size. For example, the determinant of a 4 X 4 matrix is the sum of four
terms, each of which involves the determinant of a 3 X 3 matrix.

Find the determinant of the matrix

4 2 0

A= 3 5 1

-2 1 3

by expanding (a) by the elements of the first row, (b) by the elements of the
second column.

   

   

a) 14] = @-v|] +are

|

Drone]

=(4)(15—-1) +209 +2) = 78.

+ 3 1 4 0 4 0
b) [A] = (=2)(=D¥2| | + G(-D*2)| | a] + (W(=1*2 | 0

=2(9 +2) +5(12—-0)— (4-0) =78. _

Let us now return to the problem of solving the system of linear equations

given in (6.12). Cramer’s rule, as stated for a system of two linear equations, can

be generalized to systems of any number of linear equations. The following ex-
ample illustrates its application to a system of three linear equations.
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Use Cramer’s rule to solve the system of equations

3x —4y + 2z = 1,

2x + y = 0,

—x +2y— z=23.

Let A represent the matrix of the coefficients:

3 —4 2

A= 2 1 0].

—1 2 -1

Expanding by the elements of the third column (here we take advantage of the
fact that one element is zero) gives

IA| = (2)(—=1)1+3 3 1
1
| + (1p |

  

This gives |A| = —1.
Cramer’s rule can be applied as follows: To find x, replace the coefficients of

xin A (the first column) by the column of constants of the given equations; then

divide the determinant of the resulting matrix by |A| to get x. Proceed in a
similar manner to find y and z:

 
 

  
 

  
 

1 —4 2

0 1 0 1 2
1(=1 2+2 |

L_ 13 2 —1| ) 3 il _-7_.
- |A| - —1 To-1 7

3 1 2

2 0 1 2
2(—1)2+1 |

yol=t 8 il 3 11 _14_
- A] = —1 T—_1-

3 —4 1

2 1 0 — 1 12(—1)2+1 | 1)(—1)2+2 |1 9 3 (—1) 3 + (D(=1)>2| 3
2 = = = —38.

Al —1

Thus the solution is given by x = 7, y = —14, z = —38. Ee

2x 0 -1

Solve the equation |—2 x 3|=0.

1 -1 2
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Evaluating the given determinant by the elements of the first row gives

23) | +077=ox |

—1 2
That is,

4x2 + 6x — 2 +x = 0,

4x2 + Tx — 2 =0.

Thus the given equation is equivalent to the quadratic equation

4x2 4+ 7x — 2 = 0. This can be solved by factoring: (4x — 1)(x + 2) = 0. There-

fore 4x — 1 =0or x + 2 = 0; and so x = 1, x = —2 are two solutions.

Partial Fractions

In dealing with fractions, we learn how to add, subtract, multiply, or divide two

fractions. For example, to add 3/(x — 1) and 5/(x + 2) we first express each as

equivalent fractions with a common denominator and then add the resulting
fractions, as follows:

3 5 3(x + 2) 5(x — 1)

ri x12 GoD +2  x-Dx+2)
3(x +2) +5(x—-1) 8x +1

(x —1D(x +2)  x224+x-—2"

 

 

The following example illustrates the reverse problem.

Given the fraction _8x+1
x2 4+x—2

expressions and whose sum is equal to the given fraction.

find two fractions whose denominators are linear

 

  

 

The given fraction can be written as 8x+1 and it is reasonable to
(x — 1)(x + 2)

attempt to find two numbers a and b such that

a b 8x +1

x—1 x42 Gx-Dx+2) (6.18)

Adding the two fractions on the left-hand side of Eq. (6.18) gives

a + b _alx +2) 4+ bx —-1) (a + b)x + (2a — b)

x—1 x+2  (x=Dx+2 =  (x—=1x+2)

Thus Eq. (6.18) is equivalent to

2m —(a + b)x + (2a b) _ 8x +1 (6.19)

(x — 1)(x + 2) (x — 1)(x + 2)

Note that the denominators of Eq. (6.19) are the same, and so it will be an



344

Example 8

Solution

Example 9

Solution

Systems of Equations and Inequalities Chapter 6

identity if the numerators are identically equal. Thus a and b must satisfy

a+ b=28,

2a — b = 1.

Solving this system of linear equations gives a = 3 and b = 5. Substituting into
Eq. (6.18), we get the identity

8x +1 3 5
x_1Dx+2) x-1"x+2 -
 

The technique for expressing a fraction as the sum of fractions with simpler
denominators, as illustrated in this example, is called the method of partial
fractions.

as a sum of fractions with linear denominators.
2

Express rier)

x3 —x

It is reasonable to attempt to find numbers a, b, and c that will make the follow-

ing an identity.

6x2 + 3x +1 6x2 + 3x +1 _a b 4 _C

x3 — x x(x +1Dx—-1 x x41 x-—-1°

Adding the three fractions on the right side of (6.20) and collecting like terms in

the numerator, we get

(6.20)   

6x2 + 3x +1 _(@+b+cx?+(=b+c)x—a

x(x + 1)(x —1) x(x + 1)(x = 1)

This equation will be an identity if we can find a, b, and c such that

 

 

a+ b+ c=6,

—b + c=3,

—Qa = 1.

Solving this system of linear equations givesa = —1, b = 2, ¢c = 5. Therefore the
solution is

26x" +3x +1 _ —1 2 5 i.

x3 —x x x+1 x-1

x2 + 11x + 5

(x — 1)(x + 2)?

Looking at the denominator of the given fraction, one can reasonably assume

that it is a common denominator of three fractions whose denominators are

(x — 1), (x + 2), and (x + 2)2. Thus we look for three numbers a, b, and ¢ such

Express as a sum of fractions.



Section 6.2 Determinants; Cramer’s Rule; Partial Fractions 345

that

xX +1lx+15 a + b + Cc
(x—Dx +22 x—-1 x+2  (x+ 2)?

Adding the fractions on the right and collecting terms in the numerator, we get

x2 + 11x + 15 _(a+b)x®+ (4a + b+ c)x + (4a — 2b — ¢)

(x — 1)(x + 2)% (x — 1)(x + 2)?

Equating corresponding coefficients of the two numerators gives

a+ b = 1,

da + b +c =11,

4a — 2b — ¢ = 15.

 

The solution to this system of linear equations is given by a = 3, b = —2, and

¢ = 1. Therefore

x2 4+ 11x +5 3 2 1= — . .
(x —-—1)(x +22 x-1 x12 xx 2e

Exercises 6.2

In problems 1 through 6, find the determinants of the given matrices. 

1 -2 01 1 0
La=|, | 2.4=|, 2 3.B=, .]

4. B =| 1 | 5. B = [0 ~ 6. A = [V8 —]
-1 1 —0.7 0.8 4 12

In problems 7 through 12, apply Cramer’s rule to the given systems of equations. In cases
where there are infinitely many solutions, describe all solutions, and give three particu-

lar solutions.

7. x—2y=1, 8. b5x— y= -1, 9. 2x —4y=1,

x + y=2 3x +2y= 4 —3x + 6y=-2

10. 3x —2%= 4, 1. 3_5_9 12. 2_1_ 4
3 , xy xy
Trt Y=- _2,1_3 _1,.1__1

x x 2y 2

In problems 13 through 16, find the determinant of the given matrices. In each case,
evaluate by using the elements of a row and then by using elements of a column to get a

check on your answers.

1 0 2 -1 3 2

13. A=|-1 2 -3 14. A = 2 -1 4

0 1 4
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2 4 -3 02 -0.1 0

15. B=|1 -1 4 16. B = 3.1 14 -05

2 -5 1 —-0.8 0 0.3

In problems 17 through 20, use Cramer’s rule to solve the given systems of equations.

17. x—y+ z= 3, 18. 3x —y +22 = 0, 19. 2x — y = 3, 20. 2 _34_
xy z

2x + y = 1, x+y = 2, x+ y—2z2= 2, 1 4

x — 32=-2 y—2z=1 —x +5 —62= 1 x3 = 4,

1_7,.4_ 5

xy 2

In problems 21 through 24, solve the given equations for x.

3 x x 4 0 1 0 x x —2x 1

21. | 9 4 =2 22,2 2 —x|=0 23. 3 -1 2|=-2 24. 3x 1 -2|=0

0 1 1 1 -5 3 0 2x 2x +1 -—38      

 

25. Determine three integers such that their sum is 48, the first is 4 more than twice the

second, and the second is 52 less than the third.

26. A mixture of 50 pounds of peanuts, cashew nuts, and walnuts costs a total of $49. If
peanuts cost $0.80 per pound, cashews cost $1.10 per pound, and walnuts cost $1.20

per pound, and if the mixture contains twice as many pounds of peanuts as of
walnuts, how many pounds of each does the mixture contain?

27. A mixture of one-half cup of chocolate pudding and 3 tablespoons of whipped cream
contains 330 calories; one-third cup of pudding and one tablespoon of cream con-
tains 170 calories. How many calories are there in one cup of pudding? In one
tablespoon of cream?

28. Suppose a, 8, and y represent the number of degrees in the three angles of a triangle,

and «a is 20° more than the sum of 8 and vy; also « is 60° greater than S. Find the
measures of the three angles.

29. Two pipes, A and B, supply water to a reservoir, while pipe C (located at the bottom)

drains the reservoir. When all three pipes are open, it takes 18 hours to fill the

reservoir. If pipes A and B are open and C is closed, it takes 12 hours to fill the

reservoir. If A and C are open and B is closed, it takes 24 hours to fill the reservoir.

How many hours does it take to fill the reservoir if only pipe A is open?

30. A breakfast menu is to consist of oatmeal, whole milk, and fresh orange juice. We

are interested in the protein-calcium-vitamin C content, and the following table

gives the pertinent information.

 

Food Protein Calcium Vitamin C
 

Oatmeal 5g 22 mg 0 mg
(1 cup; 245g)

Milk 8g 291 mg 2 mg
(1 cup; 244 g)

Orange juice 2g 27 mg 124 mg
(1 cup; 248 g)     
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How many cups of each (oatmeal, milk, orange juice) are required to get a

breakfast of 9 g of protein, 185.7 mg of calcium, and 125 mg of vitamin C?

In each of the following, use the method of partial fractions to express the given fraction

as a sum of fractions with simple denominators.

 

4c — 3 8 — 7 —8 14x

SL (x — 2)(x + 3) 32. (2x — 1)(x + 1) 33. 3x2 — 4x — 4 34. 3x2 + 5x — 2

—10x — 4 5x2 + x 2x2 — 10x + 15 9x2 — 4x + 1

38. x3 — 4x 36. 23 + x2 —2x —1 37. (x + 1)(x — 2)2 38. 2x3 — x2

6.3 SYSTEMS OF LINEAR INEQUALITIES

Fig. 6.3

In the preceding sections of this chapter we discussed systems of linear equa-

tions; in most cases the problems encountered had exactly one solution. We now

consider systems of linear inequalities in which generally there are infinitely
many solutions. For cases involving only two variables, the best way to describe
such results is graphically as sets of points in a certain region of the x-y plane.
For this reason our discussion will be limited to linear inequalities in two varia-
bles. Problems involving more than two variables are studied in advanced

courses.
In the following examples we first consider graphs of a single linear inequal-

ity; then problems involving systems of linear inequalities are discussed. Exam-
ples 6 and 7 illustrate how applied problems can be formulated mathematically

in terms of a system of linear inequalities. This is essentially the first step in the
solution of linear programming problems.

Graphs of Linear Inequalities
A point on a line divides the line into two half-lines. In a similar manner, a line L

in a given plane partitions the plane into two half-planes H, and H,, as shown in
Fig. 6.3. Just as the set of points on line L can be described algebraically as a
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(-1,6) 86

(-1,2) @2

Fig. 6.4
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linear equation in x and y (a linear equality), so the set of points of a half-plane
can be described by a linear inequality. This is illustrated with an example.

Discuss the relations given by

a) 2x + y =4, b) 2x + y < 4, c) 2x +y > 4.

The graph of the given equation (a) is a line L, as shown in Fig. 6.4(a). This
means that each pair of real numbers x, y satisfying the equation corresponds to

the point (x, y) on the line, and the converse. For instance, x = — 1, y = 6 satis-
fies the equation since 2(—1) + 6 = 4 is a true statement, and so (—1, 6) ison L;

but x = —1, y = 2 does not satisfy the equation since 2(—1) + 2 = 4 is a false
statement, and so (—1,2) is not on L. However, x = —1, y = 2 satisfies the

inequality given in (b) since 2(—1) + 2 < 4 is a true statement. It should be

clear after checking several points that any point below L will satisfy the ine-
quality given in (b). Thus the graph of inequality 2x + y < 4 is the half-plane H,
(not including L), as shown in Fig. 6.4(b); note the broken line for L, indicating

that L is not included. We shall call such a half-plane an open half-plane. In a
similar manner, the graph of 2x + y > 4 is the open half-plane H,, as shown in
Fig. 6.4(c).

28X+Y=4 2TY <4 2%X+Y >4

y y

1

 

 

 

 —-4 .

(a) Graphof2x + y =4 (b) Graphof2x + y <4 (c) Graphof2x + y > 4

Thus line L partitions the plane into three disjoint subsets: L itself and the

two half-planes H, and H,. In terms of set notation, we have

{(x,y)|2x + y = 4} is the set of points on L,

{(x,5)|2x + y < 4} is the set of points in H,,

{(x,y)|2x + y > 4} is the set of points in H,. LL

More generally, we have the following: A linear equation ax + by = c

(where not both a and b are zero) describes a line L, and the inequalities
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ax + by < c and ax + by > c describe open half-planes. To determine which of
the two half-planes corresponds to which inequality, we can take any “test
point” (x,, y;) not on L and check to see which of the two inequalitiesis satisfied
when x is replaced by x, and y by y,.

Draw a graph of the inequality x + 2y > 3.

The > relation means all pairs x, y that satisfy either x + 2y > 3 or x + 2y = 3.
Thus the graph consists of all points in the half-plane x + 2y > 3 along with the
points on the line L: x + 2y = 3. To determine which half-plane we want, take
(0, 0) as a test point; since 0 + 2-0 > 3 is not a true statement, (0, 0) is not in

the half-plane we want. The graph of the given inequality is shown in Fig. 6.5.
Note that L is drawn as a solid line, which indicates that it is included in the

graph. The graph is an example of a closed half-plane, meaning that the line is
included.

X+2%y >=3

y   
 

 
Graph of x+2y=3 ~

Systems of Linear Inequalities

Techniques for solving systems of linear equations were introduced in the pre-

ceding two sections. Methods for solving systems of linear inequalities are illus-
trated by the following examples.

Solve the system of linear inequalities

x + 2y <3,

—-3x + y <b.

Describe the solution graphically.
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Fig. 6.6

Example 4

 

Systems of Equations and Inequalities Chapter 6

We want the set S of all points (x,y) that simultaneously satisfy both of the
inequalities. That is, S = A N B, where

A={(x,y]x+2y <3}, B={(xy]-3x+y<5}

Geometrically, A and B are half-planes, and so S is the set of all points that are
in both half-planes. This is shown in Fig. 6.6. Point P is called a cornerpoint of
S; the coordinates of P are determined by solving the system of linear equations

x + 2y = 3,

—3x + y=0>5.

The solution to this system is given by x = —1, y = 2; thus P is the point
(—1, 2). Note that P is not in the solution set, since it is not in set B.

X+2¥%Y <=3 & -3*¥Xt¥Y <5

6H
/

/

 

Graph ofx+2y=3and —-3x+y<5 EB

Solve the system of inequalities

x+2y< 3,

3x + y< 5

—3x + 8y > —23.
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Note that the first two inequalities are the same as those given in Example 3.

Thus the solution set consists of all points that are in both set S (shown in Fig.
6.6) and the set

C= {(x,y)| —3x + 8 > —23}.

Set C is the closed half-plane above the line —3x + 8y = —23 (since test point

(0,0) isin C). Thus the solution set is shown in Fig. 6.7. The solution set consists

of all points inside triangle PM@ and the line segments PM and QM, excluding
points P and @. The corner points P, M, are determined by solving the systems
of linear equations

Pf x + 2y = 3, mf THY 3, (or y= 5,

1=3x + y=>5; "18x — 8y = 23; 3x — 8y = 23.

The solutions of these give P:(—1,2), M:(5, —1), and @:(—3, —4). In Fig. 6.7

points P and @ are shown with open circles to indicate that they do not belong to
the solution set. Point M is shown with a solid circle to indicate that it is in-

cluded in the solution set.

X4+2%Y < =3 §& -3*X+Y <5 & —3*¥X+B*¥Y > =-23

 
Graph ofx+2y=3, —3x+y <5, and —3x+8y = —23 a

Solve the system of inequalities

—2x +4y > 9.

We first draw graphs of the two lines L,;: x — 2y = —2 and L,: —2x + 4y = 9.
These are parallel lines, and the half-planes H, and H, corresponding to the two
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inequalities are shown in Fig. 6.8. Since the two half-planes have no points in
common, the solution set S is the empty set. This is indicated by writing S = 0.

X-2¥Y >=-2 & —2%¥Xt4%Y >9

y

 
Example 6

Solution

Graph of x—2y = —2 and —2x+4y>9 ne

A musical sponsored by the student association is to be held in the school audito-
rium, which has a seating capacity of 1500. Ticket prices are $5 each for the 500
reserved seats and $3 each for the remaining 1000 general-admission seats. The
student council determines that the total cost of presenting the musical will be

$3700. How many reserved-seat tickets and how many general-admission tickets

must be sold if no financial loss is to be incurred?

Let x and y represent the numbers of reserved-seat and general-admission tick-

ets, respectively, to be sold. We want all integers x and y that will satisfy the

following inequalities: x > 0, y > 0, x < 500, y < 1000, and 5x + 3y > 3700.

The solution set for this system of inequalities is shown in Fig. 6.9.

Any point inside or on triangle ABC with integral coordinates will satisfy

the given conditions and represent a no-loss situation. For example, 400 reserved
tickets and 600 general-admission tickets sold will be a solution. In fact, the

corresponding revenue would be 5(400) + 3(600) = $3800, a profit of $100.

Clearly there are several other solutions. However, x = 200, y = 700 is not a

solution; the revenue would be 5(200) + 3(700) = $3100, a loss of $600.
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y

\ Sx + 3y = 3700
yd

A: (140, 1000) C: (500, 1000)
1000 |

— o

| (200,700)
(400, 600)

500 ]
_ B: (500,400)

Fig. 6.9 [I | IL N_ x
500 700\ yo 

Example 7 Diane wishes to have tuna salad and a chocolate milk shake for lunch. She plans
her diet scientifically and is interested in the iron-protein-fat content of her
lunch. The following constraints are to be satisfied:

a) At least 2 mg of iron;

b) At least 24 g of protein;

c¢) Not more than 30 g of fat.

The following table gives the pertinent nutrient values, where one unit means
100 grams. Determine how many units of tuna salad and how many units of milk

shake will give a lunch that satisfies the desired constraints.

 

Food Iron Protein Fat
 

Tuna salad 2 mg 30g 20g
2 units (1 cup)

Milk shake 1 mg 9g 10g
3 units (1 cup)       

Solution Let x and y denote the number of units of tuna salad and chocolate milk shake,
respectively, that she can have for lunch. Translating the verbal statements of
the problem into mathematical statements, we have the following.
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a) Tuna salad contains £ mg/unit of iron, and the milk shake has § mg/unit of

iron. Thus “at least 2 mg of iron” translates into

1
—y > 2.*+3y2

This is equivalent to 3x + y > 6.

b) Similarly, “at least 24 g of protein” translates into

30 9
_ —_— 24.g Xt 32

This is equivalent to 5x + y > 8.

¢) The constraint “not more than 30 g of fat” gives

20 10= — 30.g +3 YS

This is equivalent to 3x + y <9.

Therefore any pair of numbers x, y satisfying the following system of ine-
qualities is acceptable:

3x+y>6; bHx+y>8 3x+y<9 x>0;, y>0.

The solution set for this system is shown in Fig. 6.10.

y
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Thus we see that Diane has considerable choice in how much of each she can

have for lunch. For example, x = 1, y = 3 (that is 100 g of tuna salad and 300 g of
milk shake) will satisfy the requirements. Similarly x = 1.5, y = 4 will also do it.

However, x = 2, y = 4 is not acceptable, since it does not satisfy requirement (c).

 

In problems 1 through 10, draw graphs of the given inequalities. In each case give two

specific pairs of x,y values that satisfy the given inequality.

1.x +2y<4

5. x+y +4<0

9. 5x + 3y <0

2. —x+y>3 3.2x —3y > 6 4, —4x —2y <9

6. 2x >y—4 7. y > 2x 8. 3x —2y <0

10. 4 > 3x — 2y

In problems 11 through 14, draw graphs of the given sets.

11. {(x,y)|2x + y < 0} 12. {(x,y)|2x + 3y > 6} 13. {(x,y)|x +2 > 0} 14. {(x,y)|y + 3 > 0}

In problems 15 through 25, draw graphs of the regions described by the given systems of
linear inequalities. In each case, determine the coordinates of any corner points, and
label such points on your graph. Indicate whether or not these points belong to the
solution set of the given system (see Examples 3 and 4).

15. x+y< 4,

2x —y << —1

19. —x + 2y <5,

2x + y>0,

3x — y<5

23. x + y <3,

|x| > 2

16. 3x —2y > 5, 17. x — 2y > 4, 18. 3x — 4y <6,

—x — y< —5 x > 2, |x| < 2,

y<3 y<3
20. 4x + 3y < 16, 21. 3x -—2y> -3, 22, y < 2x,

—x + y> —4, —3x + 2y > —14, |x| <3,
6x + y> 10 4x + 3y < 13 y<2

24. 2x — 4y > 5, 25. 3x — 6y > 8,

—Xx+2y>14 —x + 2y > 3,

x+ y<4

In problems 26 through 30, determine whether or not each of the pairs given in (a) and
(b) belong to the given system of inequalities.

26. x —3y< 4

2x + y<3

x—3y>1
28. (2 y<m

x <2 -—1
30.
x < 4

a) x=-1,y=2

b)x=1y=-5

a) x=0,y=0

b)x=-1,y=3

a)x=1Ly=1

b) x = V2, y= —05

a)x=1y=-1

b) x =V2, y=

a) x=0,y=1

b) x= —4,y=—V2

97 (at y>-3
: bx +2y< 1

y< 2x29, HS 3

In problems 31 through 35, draw graphs of the regions corresponding the given sets.

Determine the coordinates of any corner points, and indicate whether or not they belong
to the given set.

31. {(x,y) |x +y>2,x + 2y <5} 32. {(x,y)|2x —y <4, |x| <3,y+1>0)
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33.

35.

36.

37.

38.

{(x,)|x>0,y > 0, x + 2y < 4}

(x, )|x>1,y>2,x+y<6,x—y<0}

A concert is to be presented in an auditorium that has a seating capacity of 800. The

price per ticket for 200 of the seats is $6, and for the remaining 600 seats it is $3. The
management determines that the total cost for presenting the concert will be $2100.
Draw a graph to show the various possible pairs of numbers of $6 and $3 tickets that
must be sold so that the concert does not result in a financial loss.

A rancher who wants to purchase some lambs and goats cannot spend more than
$800 and wants at least 5 lambs and at least 4 goats. The cost of each lamb is $80,

and the cost of each goat is $50. How many of each can the rancher buy? Draw a
graph to help you list all possible pairs, keeping in mind that lambs and goats come
in whole numbers (assume they are live ones).

At a fish cannery two kinds of tuna are packed into cans, chunk style and solid pack.
Limits on storage space and customer demand lead to the following conditions.

a) The total number of cases produced per day is to be not more than 3000.

b) The number of cases of chunk style is to be at least twice the number of cases of
solid pack.

¢) The number of cases of solid pack produced per day is to be at least 600.

How many cases of each type can be produced each day and still satisfy the given

constraints? Draw a graph of the solution set, and show the coordinates of the
corner points.

In problems 39 through 41, use information from the following table, which gives nutri-
ent values of four foods A, B, C, and D, where one unit means 100 grams.

39.

40.

34. {(x,)|x>0,y>0,x + 2y > 4}

 

 

       

Ener Vitamin C Iron Calcium Protein Carbohydrates
Food (calories/unit) (mg/unit) (mg/unit) (mg/unit) (g/unit) (g/unit)

A 200 2 0.5 10 2 15

B 100 3 1.5 4 3 30

Cc 300 0 2.0 20 9 10

D 400 1 0.0 5 3 10   
In preparing a menu, determine how many units of A and of B can be included so
that the combined nutrient values will satisfy the following constraints.

a) At least 8 mg of vitamin C

b) At least 18 mg of calcium

c¢) Not more than 800 calories

How many units of A and of C can be included in a menu to contribute the fol-

lowing?

a) At least 3 mg of vitamin C

Chapter 6
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b) At least 40 mg of calcium

¢) Not more than 60 g of carbohydrates

How many units of C and of D will give a combined total satisfying the following
constraints?

a) At least 2 mg of vitamin C

b) At least 15 g of protein

¢) Not more than 6 mg of iron

d) Not more than 2100 calories
 

6.4 NONLINEAR SYSTEMS

Example 1

Solution

Fig. 6.11

Let us now consider systems of equations and inequalities that include quadratic

expressions. Techniques for solving such systems will be illustrated through the
following examples. The first example was used to introduce the discussion of
this chapter.

Suppose the hypotenuse of a right triangle is 17 and the perimeter is 40. Deter-
mine the lengths of the two sides.

Let x and y denote the lengths of the two sides, as shown in Fig. 6.11. From the

given information, x and y must satisfy the equations

x? + y2 = 17? = 289 (hypotenuse is 17)

and

x + y + 17 = 40 (perimeter is 40).

Thus we wish to solve the system of equations

lm 621)
The problem is similar to those discussed in preceding sections, except that the
first equation of (6.21) is not linear. We can use the method of substitution as

follows: Solving the second equation of (6.21) for y in terms of x, y = 23 — x, and

substituting this into the first equation gives

x2 + (23 — x)2 = 289.
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This is a quadratic equation that can be solved as follows:

x2 — 23x + 120 = 0,

(x — 8)(x — 15) = 0.

This gives x = 8 or x = 15. The corresponding values ofy can be determined by

substituting each of these values ofx into the second equation of (6.21). Thus we
get two solutions, given by x = 8, y = 15 or x = 15, y = 8. This tells us that the
lengths of the two sides are 8 and 15. =

Solve the system of equations

2x + y = 10,
(6.22)

x? + y2 = 25.

Draw a graph and give a geometric interpretation of the solution.

Solving the first equation for y, y = 10 — 2x and substituting this into the sec-
ond equation gives x2 + (10 — 2x)? = 25. This is equivalent to the quadratic
equation x2 — 8x + 15 = 0, which can be solved by factoring to get x = 3 or

x = 5. Substituting each of these values of x into the first equation of (6.22) and

solving for the corresponding values of y gives two solutions, x = 3, y = 4 or
x=25y=0.

Graphically, the first equation of (6.22) corresponds to a line and the second
to a circle, as shown in Fig. 6.12. The two points of intersection of the line and
circle correspond to the two solutions of the given system of equations.

X"2+Y"2=25 & Y=-2%X+10

 

 —-6F

Graph of x2 + y?=25andy = —2x + 10 s
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Solve the system of equations

x 2y = —4,+ (6.23)
y=2x2—-2x — 3.

Illustrate the solution graphically.

Substituting the expression given in the second equation of (6.23) into the first

gives

x + 2(x%2 — 2x — 3) = —4.

This is equivalent to

2x2 — 3x — 2 =0,

2x + 1)(x — 2) = 0.

Thus x = —1 or x = 2; the corresponding values of y can be found by using
either of the equations of (6.23). Thus the solution to the given system is given
by x = —4, y= —% or x = 2, y = —3. The graphs of the given equations are

shown in Fig. 6.13. The line and parabola intersect at points (—1, —1) and
(2, —3); these correspond to the solutions of the given system of equations.

Xt+2%yY==4 & Y=X"2-2%X-3

 

 
Graphofy = —0.5x —2andy = x* — 2x — 3 a
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Solve the system of equations

2x = 3,ty (6.24)
x2 4+y=1

Give a graphical interpretation of the result.

From the first equation of (6.24), y = 3 — 2x. Substituting this into the second

equation gives

2+ 3—-2x)=1,

x2 —-2x+2=0.

Using the quadratic formula to solve this equation, we get

2+V4-8 2x\V—-4 2=+2 .
Xx = 2 = = =1=*1

2 2
 

Since our replacement sets are restricted to real numbers, we conclude that the
solution set S for the given system is the empty set and write S = 0.

The graphs corresponding to the two equations in (6.24) are given in Fig.
6.14. The line and parabola do not intersect.

2%¥X+Y=3 & X"2+Y=1

 

y

4 ee

3

2 —

1+

| | / | x
-3 -2 -1 0 1 2 3

—1F

2+ 
Graphofy = —2x + 3andy = 1 — x? ii]
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Draw a graph of the inequality

y>x2—x—6. (6.25)

Just as a line partitions the plane into three disjoint sets, so the parabola
y = x2 — x — 6 will partition the plane into three disjoint sets: the parabola
itself and two regions separated by the parabola. These regions are described by
the two inequalities y > x? — x — 6 and y < x? — x — 6.

The graph of y = x2 — x — 6 = (x — 3)(x + 2) is shown in Fig. 6.15. Using

(0, 0) as test point, we see that 0 > 02 — 0 — 6 is a true statement, and so (0, 0)

belongs to the region we want. That is, the inequality given in (6.25) corresponds
to all points inside or on the parabola, as shown in Fig. 6.15.

Yy>=X"2-X-6

y

 —6
Graphofy=x>— x — 6 Ee

Solve the system of inequalities

y<x +2,
(6.26)

y> x2 —x — 6.

Show the solution graphically.

The second inequality corresponds to the region inside or on the parabola
y =x2 — x — 6 (see Example 5), and the first inequality corresponds to the

half-plane below the line y = x + 2. Thus the system given in (6.26) corresponds
to the intersection of these two sets, and it is shown in Fig. 6.16. The “corner
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points” are found by solving the system of equationsy = x + 2,y = x2 — x — 6.

The solutions are: x = —2, y = 0 or x = 4, y = 6. These points are not in the

solution set.

Y<Xt2 & Y>=X"2-X-6

 

 
Graphofy <x +2andy=x2—x —6 ay

Exercises 6.4
In problems 1 through 10, solve the given systems of equations, and draw graphs to
illustrate the solutions geometrically.

 

1. y = 3x + 4, 2. 2x — 3y + 26 = 0, 3. y= —=3ux, 4, y=2x + 2,

y = x2 x2 4+ y2 =169 y= —2x2 — 4x xy =4

5. 2x + 3y = —3, 6. y = 5x — 10, 7. y = 2x, 8. x + y=4,

xy = —3 y=x24+x-—6 y=x2+3 x2 +y2=1

9. y= x2 — 4x + 4, 10. 3x — y = 5,

y=-2x2+ x +16 x2 +y2=25

In each of the problems 11 through 16, draw a graph of the given set.

11. {(x,y)|y < x® + 5x + 6} 12. {(x,y)|x? + y* < 25} 13. {(x,5)|x% + y* — 4 <0}
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14. {(x,y)|y > x? — 1} 15. {(x,y)]|y> > 1 — x?} 16. {(x,y)|x% + y? <1}

In problems 17 through 21, draw graphs to illustrate the solution sets for the given
system of inequalities.

17. y > x? — 1, 18. y<x2 42x —-3, 19.y< —x2-2x+3, 20.y>x2-1, 21. y>x?—4,

x+2y<10 x+2y<1 x+y<l, y<x +45, y > x,
x—y>1 |x| <2 y < 3x

22. The perimeter of a rectangle is 40 cm and the area is 96 cm?. Find the dimensions of

the rectangle.

23. Find the dimensions of a rectangle that has a diagonal of length 13 cm and perime-

ter of 34 cm.

24. One side of a rectangle is 3 cm longer than twice the other side, and its area is

230 cm?. Find the dimensions of the rectangle.

25. The altitude of a triangle is twice as long as the corresponding base. The area of the
triangle is 36 cm?. Determine the length of the altitude and base.

Review Exercises
In problems 1 through 10, solve the given systems of equations. If a system is dependent

(has infinitely many solutions), describe all solutions, and then give two specific ones.

13x —2 = 35 2. —2x+ y= 3, 3. 2 _Y_ 4
2 3

x— y=-1 bx —3y = —4
x + J = -2

4 2

4. 04x + 0.6y = 0, 5. x —2y+ z=3, 6. x + 2y = 2,

1.3x — 1.2y = 2.52 —2x+ y— z2=0, 3x —4y + z= -2,

4x — 3y +22 =1 x + 3z = —8

7. x+2%— 5z= 1, 8 x— y+ z= 3 9. 2-2, 10. 2+ 22 2,
3x +29 + z= -2 5x — dy +32 = 2, 5 : . : 5

—_ = — _ — —_—_——_ = — = —4+==-13x —2y +172 = =-17 x—2y+3z2=16 > 5 i

In problems 11 through 14, evaluate the determinants of the given matrices.

1 2 0 -3 2 —1
— 3-1 2 5

1.4 =° ! 2.5= |)? ad 13. A = {3 2 —1| 14. B=| 2 2 3
2 5 2-V6  V3+1 5 4 2 5 4 —1

In problems 15 through 18, draw graphs of the set of points (x,y) satisfying the given

inequalities.

15. 2x — y <1 16. x + y > 1

17. y<xand x —y <2 18. 2x + y<4andx —2y >1
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In problems 19 through 22, draw graphs of the regions described by the given systems of
inequalities. In each case determine the coordinates of all corner points.

19. x — y <4, 20. 2x —y > 8, 21. x > 0, 22. x > 0,

2x + y 22, 2x + y <4, y2>0, y 20,
x+2y<4 x—y<8 2x + 3y < 18, x <3,

2x + y <10 y <5,

3x +2y<13

In problems 23 through 26, use the method of partial fractions to express the given

fraction as sums of fractions with simple denominators.

x +5 6x 2x — 3 2x2 — 2x — 328.2 2%CDGTD 25. Sy 2.22 

27. A firm makes two models, A and B, of a product. The manufacture of each model

requires a process in which two machines, I and II, are used. The number of hours

each machine works on each model is given by the table.

28. The following table gives the protein-calcium content for oatmeal and milk.

 

 

  

Machine Model A Model B

I 1.5 3

II 3.5 2.5   
Machine I is used for a total of 36 hours per week and machine II is used for a

total of 39 hours per week. How many of each model are manufactured per week?

 

 

  

Food Protein Calcium

Oatmeal 5g 20 mg
(1 cup)

Milk 8g 300 mg
(1 cup)    

Determine the amount (in cups) of oatmeal and of milk that will give a serving
containing 12 g of protein and 383 mg of calcium.
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This chapter includes a variety of topics having a common theme in that each
can be described in terms of functions defined on the set N, or a subset of N,

where N = {1,2,3,...}.

Sequences are discussed in the first three sections, followed by mathematical
induction (involving sequences of statements). The Binomial theorem is intro-
duced in Section 7.5 and the chapter concludes with topics from mathematics of
finance, in which ideas from preceding sections are applied.

SEQUENCES
If a function f has domain N, then we say that f is a sequence function. The
image values of f are given by

FQ), £2), f3),...,f(n),.... (7.1)

This listing can be considered as an ordered collection with f(1) the first term,

f(2) the second term, and so on; the nth term is f (n). The ordered listing given in

(7.1) is called the sequence associated with the function f.

Any sequence described by (7.1) is referred to as an infinite sequence because

the domain of the function fis the infinite set N. There are situations in which
the domain of fis a finite set {1,2, 3, ..., m}, where m is a given positive integer.

The ordered listing f(1), f(2), f(3), ..., f(m) is called a finite sequence.

If the terms in (7.1) are real numbers, the sequence is called a real-number

sequence. Unless there is an explicit statement to the contrary, it will be as-
sumed that we are dealing with sequences of real numbers. It is customary to
use subscript notation, in which f(n) is denoted by, say a,, and so (7.1) becomes

Ay, Qos Qgy vey Opps vee (7.2)

Weshall also indicate this sequence by {a, }>_,. Occasionally it is convenient to

begin a sequence at some integer greater than 1, say m; in such cases the se-
quence a,a,4, -.. 1s denoted by {a,}r_,..

Let us now consider some examples illustrating these ideas.

List the first four terms of the sequence described by

a) f(n) =2n b) gin) =2n — 1

a) Let a, =f(n); thena, =2-1 = 2, a, =2+2=4,

a; =2+3 =6, a, =2-4=_8.

Thus {2n};_,is the sequence of positive even integers: {2,4,6,8,...,2n,...}.

b) Let b, = g(n); then b; =2-1-1=1, b,=2-2-1=3,

b;=2-3-1=5, b,=2-4-1=1.

Thus {2n — 1};_, is the sequence of positive odd integers: {1,3,5,...,

2n —1,...}. SE

Suppose 2, 4, 6 are the first three terms of a sequence. Determine the next two

terms.



Section 7.1

Solution

Example 3

Solution

Example 4

Solution

Sequences 367

Most of us would assume that the person proposing this problem is thinking of
the sequence ofpositive even integers; thatis, a, is given by a, = 2n. In this case
the next two terms would be 8, 10. However,it is possible that a, is given by

a, =2n + (n — 1)(n — 2)(n — 3),

in which case a, = 14, and a; = 34. In fact, the proposer of this problem could
have been thinking of many other sequence functions, each of which would give
a sequence starting with 2, 4, 6. _

Example 2 illustrates an important fact: An infinite sequence is not com-

pletely described by listing the first few terms—indeed, not even by listing the
first million terms. If one wishes to be unambiguous, then it is necessary to
clearly understand what the sequence function is.

In most problems considered here, the sequence function will be given by a

formula. However, there will be occasions when this is not possible and we must

settle for a verbal description of f(n), as illustrated by the following example.

Find the first eight terms of the sequence given by “c, is the number of prime
numbers less than or equal to n.”

The set of prime numbers is given by

P={23,5,711,13,17,19, 23,29, 31, 37, .. .}.

Applying the function “rule” gives c¢; = 0,¢c, = 1,¢3 =2,¢, = 2, ¢; = 3, cg = 3,
c; = 4, cg = 4. That is, the sequence starts as 0, 1, 2, 2, 3, 3, 4, 4,4, 4, 5,5, ....

There is no simple formula that allows us to evaluate c, for various values of n,
even though c, is unambiguously defined for each value of n.

The sequence of this example is somewhat more complicated than those

given in Example 1. For instance, if we want the millionth term of the {c,}>_,
sequence, a rather extensive table of prime numbers would be required. Hl

In the following example we illustrate a finite sequence.

List the terms of the sequence defined by f(n) = V/25 — n2.

Here we have the implicit assumption: f(1), f(2), . .. are to be real numbers. The
domain of fis 1, 2, 3, 4, 5, and so we have the finite sequence \/24, \/21, 4, 3, 0.

a

Sequences Described Recursively

In some cases it is not convenient or not possible to give the sequence function
explicitly by a formula, but it is possible to describe it recursively. That is, the

nth term can be defined as a function of preceding terms. This is illustrated in
the following examples.
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The sequence {a, }>_, is described by

1 if = 1,2, = gon (7.3)
2a,, if n>1

Write the first four terms of {a, }7_,, and determine another expression that can
be used to find a,.

We write a; =1,a,=2'a, =2,a;=2-a,=4, a, = 2a; = 8. These terms
can be written as follows: a, = 2°, a, = 21, a; = 2%, a, = 23. Observing the pat-
tern suggests that a, is given by the formula

a, =2"1forn=1,23,.... (7.4)

Although this formula is based on observations of only four terms, a rigorous

proof that it is valid for all values of n can be given by using mathematical
induction (see Section 7.4). fs

In Example 5 the same sequence is described in two different ways. In Eq.

(7.3) the rule for a, is given recursively whereas in Eq. (7.4) a, is given by a
formula. The following example illustrates a sequence described recursively
that cannot be described easily by a simple formula.

Determine the first six terms of the sequence {b,}>_, described by b, = 1,

b,=1and b, =b,, +b,, for n> 2.

Here b,=1, b,=1, by=b,+b,=1+1=2, by,=b;+b,=2+1=3,

b;=b,+0;=3+2=5,b;=b;+b,=5+3=8. Ba

Fibonacci Sequence

The recursive formula describing b, in Example 6 tells us that after the first two
terms each subsequent term is the sum of the preceding two terms. Thus the
first several terms of {b,}>_, are:

1,1,2,3,5, 8,13, 21, ...

This is a well-known sequence that was first introduced by Leonardo of Pisa
(who was also called Fibonacci) around the year 1200. In his honor, any sequence

in which each term is the sum of the preceding two is called a Fibonacci
sequence.

Partial Sums of a Sequence

Associated with a sequence {a,}7_, of real numbers is another sequence, de-
noted by {S,}>_,, in which the terms are sums defined by

S; = ay; S, =a, + a,; S;=a,+a, +a; ...

In general S, is given by

S,=a,+a,+ --- + a,. (7.5)
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Sums of the type indicated in Eq. (7.5) are called partial sums. They occur
frequently, and it is convenient to introduce a shorthand notation using the

Greek letter 2 (sigma). Then S, is denoted by Z}_, a,, that is,

S,=> a =a+a+ (7.6)
k=1

+ a,.

Note the use of the letter k as a subscript variable; 2;_, a, means add the terms
obtained by replacing 2 with 1, 2, 3, ... until you reach the number n. The
sequence {S,}>_, is called the sequence of partial sums associated with the

sequence {a,}>_,.
An important topic in advanced mathematics is the study of “infinite sums,”

indicated by a, + a, + a; + ---. Such a sum is called an infinite series and is
denoted by 2,_, a;.

Find the partial sum sequence associated with {2n — 1}>_,.

The first few terms of the given sequence are 1, 3, 5, 7, 9, .... The partial sum

sequence is given by

S;=1;8=1+4+3=4S;=143+5=95,=1+3+5+7=16;....

These can be written as S; = 12, S, = 22, S; = 32, S, = 4%, ... In this form we
observe that there appears to be a simple pattern giving a formula for S, ; that is,
S, = n?. In summation notation this is written as

S,=>2k—-1)=1+3+5+-.-4+02n-1) =n?
k=1

From the above computations we see that this formula is valid for n = 1, 2, 3,

and 4. After the discussion of mathematical induction in Section 7.4, a proof will
be given that this is a valid formula for every natural number n. Cl

Find the first four terms of the partial sum sequence associated with the se-
quence given by a, = 1/n2

The first four values of S, are given by

1 2
1 1 1 1 1 0

JEST = 2 ESET Eg

3
1 1 1 1 49

2.7 127 22732 36

4
1 1 1 1 1 205

S=2m=vwteteEte=1r -
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Note: In Example 7 we were able to observe a simple formula to describe S,.
However, there is no such formula in Example 8, and each sum must be added;

there is no simple formula for S, other than

1 1 1 1
S,=ptmtat+3

Find a sequence that approximates the area of a circle of radius 1.

Inscribe a regular polygon of n sides in a circle of radius 1, as shown in Fig. 7.1.
We can get an approximation to the area of the circle by the area, a,, of the
polygon; a, is given by the sum of the areas of n triangles such as AAOB. Let
the central angle be 6, as shown, where § = 360°/n. In Fig. 7.1(b) note that

AB = 2MB = 2sin(0/2) and h = cos(6/2).

 Area of AAOB = Z(AB)h m= (2 sin 2) (cos 2) = sing = 1 sin rt .
2 2 2

 

(a) (b)

Therefore a, = n-1sin(360°/n) = (n/2)sin(360°/n). Thus the sequence

{a,}n=3 is given by

 

To get an approximation to the area of the circle, we can calculate a, for large

values of n. For example, a,,, = 3.13953; as, = 3.14151; aq, = 3.14157,
@10000 = 3.14159. =
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Exercises 7.1
In problems 1 through 4, find the first four terms of the given sequences {a,}*_, and

{0,)5=1-

 

1. a) a, = n? b) b, = 2" 2. a)a,=2"-1 b) b, = 271

—_ n _ (=1)nt1 _ 1 n—1 _ 1 n—1

3. a) a, = (1) Bb, =pr 4. a) a= (3) b) b= (-3)

In problems 5 through 8, sequence functions are given. Find the first four terms of the
corresponding sequences. Give answers in exact form.

 5. f(n) = Vn 6. f(n) = Vif + 1 7. g(n) = (1 + 1) 8. g(n) = — -

In problems 9 through 12, write each of the given sums in expanded form; then evaluate

the sum. Give answers in exact form.

4 5 1 6 6 1 k=1

9.8, =S (+1) 10. S,= ———— IL S, = S[l — (=1)F¢] 12. S, = (- 3)
: 2, ° 2 k(k + 1) 6 2 6 2 2k=1

In each of the problems 13 through 16, the first four terms of a sequence {a,}>_, are
given. As illustrated in Example 2, this is not sufficient information to determine a
unique sequence. Find a formula that will give a sequence in which the first four terms
agree with the given sequence.

4 2 4 8 16
15. =, —

1 2 313. 3,7, 11, 15, ... 5.5.5.5... EEETE 16. 3, —5,7, —-9, ...

In problems 17 through 20, write the given sums in sigma notation.

1 1 1 1
17. s, = 13 + 23 + 33 + 43 18.5, =F +m tgtto

1 1 (=1)»1

21. Consider the decimal expansion of 1 = 0.14285. ...

a) Suppose qa,is defined to be the nth decimal digit of this decimal expansion (for
instance a; = 2). List the first seven terms of {a, };;_,. What are a,,, a,,, and a,,?
What is ag, where k is any positive integer?

Hint: The decimal expansion for # is a repeating decimal.

b) Suppose b, is given by

b — (7 if the nth decimal digit of 1 is odd,
n 1 if the nth decimal digit of % is even.

List the first seven terms of {b, }7_,. What are bg, b,;, and b,,?

22. Consider the sequences given in Problem 21.

a) The sum ofthe first six terms of {a, }>_, is 27. Use this to find the sum of the first
72 terms. What is the sum of the first 6N terms, where N is any positive integer?

b) Suppose S, = Z,_, b,. Find a formula for Sy, where N is any positive integer.



372 Functions on Natural Numbers

23.

24.

25.

26

27.

28.

29.

30.

31.

32.

Consider the decimal expansion of 7/10 = 0.31415926535897932384 . ..
a) Suppose a, is defined to be the nth decimal digit of 7/10; for instance, a; = 4.

List the first six terms of the sequence {a, }7_,. Give a,¢. Is there a formula for a,
in general?

b) Suppose b, is given by

b =
n

H if the nth digit of #/10 is odd,

1 if the nth digit of 7/10 is even.

List the first six terms of {b, }7_,. Give b,,. Is there a formula for b, in general?

Find all of the terms of the sequence given by a, = \/16 — n?,

Find all of the terms of the sequence given by b, = \/6n — n2

Suppose a sum of $100 is invested at 6 percent interest compounded n times per
year. At the end of one year the value, A,, of the investment is given by
A, = 100(1 + 0.06/n)". Find the first five terms in this sequence. Give answers

rounded off to two decimal places.

Find the first six terms of {S,}7_, for the sequence {1/n(n + 1)}2_,. Use these
terms to guess a simple formula for S,.

Find the first six terms of {S,}>_, for the sequence {1/2"}2_,. Use these terms to
guess a simple formula for S,.

Suppose the sequence {a, }7_, is given recursively by

a = (5 if n = 1,

" \2a,, ifn>1

a) Find the first five terms of the sequence.

b) Find a formula that gives a, in closed form.

Suppose the sequence {b, }>_, is given recursively by

bh — E ifn=1,

"nb, +3 ifn>1L

a) Find the first five terms of the sequence.

b) Determine a formula in closed form for b,.

Approximate the circumference of a circle of radius 1 by finding a sequence giving
the perimeter of inscribed polygons. See Example 9.

Sequence {a, }_, is defined as follows: a, is any given positive integer, and for n > 1

the terms are given recursively by

a, .
rt if is even,

Apiq = 2 “

3a, +1 if a, is odd.

This rule tells us that whenever a term in the sequence is even, divide it by 2 to get

the next term;if a term is odd, multiply it by 3 and add 1 to get the next term. For

each of the following starting values, determine several terms of the sequence; in
each case continue until you see something interesting happening.

a) a; =4 b) a; =5 c) a; =10 d) a, =21

Chapter 7

e) a, = 34
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In problems 33 and 34, a function f and a number c are given. Let sequence {a,}*_, be
defined by a, = f(c), a, = f(a,), a; = f(a,), .... In general,

0,1 =fla,) for n=1,23,....

Give the first eight terms of the sequence; record results rounded off to two decimal

places in each case. Observe the results and arrive at interesting conjectures.

33. f(x) =e*

a) c=1 b) ¢c =05 c)c=2

34. f(x) = 3°

a) c=0.5 b) ¢c =0.6 c)c=15
 

7.2 ARITHMETIC SEQUENCES
There are two special types of sequences that occur frequently and have many
applications. Arithmetic sequences are studied in this section and geometric se-
quences are discussed in the next section.

An arithmetic sequence is characterized by the following property: After the
first term, each term is obtained from the preceding term by adding a fixed
number. That is, a,,; = a, + d, where d is a constant; d is called the common
difference between any two consecutive terms of the sequence. Arithmetic se-
quences are also commonly referred to as arithmetic progressions.

The following are examples of arithmetic sequences:

3,7,11,15,...; d= 4

83, —2, —-7,...;d=-5

1,2,3,%...;d=1

In general, suppose {a, };>_, is an arithmetic sequence with common differ-
ence d. To determine a formula for a,, let uslist a few terms of the sequence and
look for a pattern:

a, = ay,

a, = a, + d,

a;=0a,+d= (a, +d) +d=a, + 2d,

a, =a; +d= (a, +2d)+d=a, + 3d.

Observe that each term is the sum of the first term and a multiple of d, where the
multiple is 1 less than the number of the term. This suggests the following
formula:

 

a, =a, + (n—1)d. (7.7)
 

Our claim is that the formula given by Eq. (7.7) is valid for every positive integer
n. The discussion above substantiates this for the first four values of n, but for
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the remaining positive integers it is still a guess. In order to prove our claim, a
technique called mathematical induction is needed. This will be discussed in

Section 7.4 (see Exercise set 7.4, problem 27). Let us now derive a relatively

simple formula for the sum of the first n terms of an arithmetic sequence. First
write S, in normal order; then write it in reverse order, and add the resulting

equations, term by term, as follows:

S,= a + (+d) +(a,+2d) + ---+(a,—d)+ aq,
S, = a +(@—-d)+(@—-2d)+ ---+(a;+d)+ a

28, = (a, +a,) + (a; +a,) + (a; +a,) + --- + (a; +,) + (a; + a,)

Therefore, 2S, = n(a, + a,), and solving for S, gives the desired formula:

 

S _ n(a; + a)
n = 2 (7.8)

Equation (7.8) gives a formula for finding the sum of any number of terms of an
arithmetic sequence. A convenient way to remember this formula is to think of

the sum as the average ofthe first and last terms, (a; + a, )/2, multiplied by the

number of terms n; this seems intuitively reasonable for an arithmetic sequence.
An alternative expression for S, can be derived by using Eq. (7.7) to replace

a, in Eq. (7.8) by a, + (n — 1)d:

nS, = g(a; + a,) = 2la; + a, + (n — 1)d] = F[2a, + (n — 1)d],

 

S, = 52a, + (n — 1)d]. (7.9)
 

Equation (7.9) gives a formula for S, in terms of a,, d, and n. It is more difficult

to remember than Eq. (7.8), but occasionally it is convenient to use. We suggest

deriving it from Eqs. (7.7) and (7.8) whenever it is needed.

Determine whether or not the following can be considered as the first three
terms of an arithmetic sequence.

a) 2, 6,10 b) 5, 2, —1 c) 2,4,8

d) x2 — 2x, (x — 1)2, x2 — 2x + 2

Here a,, a,, a; will be the first three terms of an arithmetic sequence if
d =a, — a,, and d = a; — a,—that is, if a, — a, = a; — a,.
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a) 6—-2=10—6 b) 2 —5=—1—2 c)4—2#£8—4

da, —-a,=x-12-(x*-2x)=1l;a;—a,=22—2x +2 —(x—-1)2=1;

thus a, — a, = a; — a, for every real number x.

Therefore the sequences given in (a), (b), and (d) are the first three terms of

arithmetic sequences, but that in (¢) is not. Ki

Find the tenth term and the sum of the first ten terms of the arithmetic se-

quence 15,11, 7, 3, ....

Here a, = 15 and d = —4. Using Eq. (7.7) gives

a; = 15+ (10 — 1)(—4) = 15 — 36 = —21.

Substituting into Eq. (7.8) gives

a, + 2) _ 102 + (—21)
: |= 10(—3) = —30. .

Evaluate the sum > (3k — 4).

16
SU Bk—4)=(3-1—4)+ (3-2-4) + (3-3-4) + (3-4-4) + --- + (3-16 — 4)
k=1

=-142+4+5+8+11+ .-. + 44.

This is the sum of an arithmetic sequence where a, = —1, a, = 44, n = 16, and
d = 3. Applying Eq. (7.8) gives

16

S (3k — 4) = 16A= 344. =
k=1 2

The fourth term of an arithmetic sequence is 9, and thefifteenth term is 64. Find
the sum of the first 20 terms.

Equation (7.8) gives S,, = 20(a; + @,,)/2 = 10(a, + a,,); thus we first need to

find a, and a,, Using the given information and Eq. (7.7), we get

a, =9 gives 9 =a, + 3d,

a,s = 64 gives 64 = a, + 14d.

The solution to this system of equationsis given by a, = —6 and d = 5. To find
ayy use Eq. (7.7) with n = 20, a; = —6, and d = 5: a,p = —6 + 19:5 = 89.
Therefore

Sy, = 10(a; + ayy) = 10(—6 + 89) = 830. Kay
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A person accepts a job with a salary of $12 500 for the first year and is promised
an increase of $800 for each subsequent year.

a) What will the salary be during the tenth year?

b) How much will this person earn during the ten years of employment?

¢) How many years will it take this person to earn a total of more than one

million dollars?

Here we have an arithmetic sequence with a, = 12500 and d = 800.

a) Using Eq. (7.7) gives a,, = 12 500 + 9(800) = $19 700.

b) Substituting into Eq. (7.8) gives

12 500 19 700
S10 = 10(Fem. $

¢) Equation (7.9) can be used to get a formula that gives the total earnings S, in
n years.

S, = S202 500) + (n — 1)(800)] = 400 n2 + 12100 n.

) — 161 000.

We want n such that

400 n2 4+ 12100 n > 1 000 000

4n% 4+ 121 n — 10000 > 0.

The solution will be the smallest positive integer n such that

S —121 + /1212 + 4(4)(10 000)
= 37.11.

2(4)
 

Hence in 38 years the person’s total earnings will surpass a million dollars

and in fact will be

Ss = $1 037 400 dollars. ms

 

In problems 1 through 16, some information is given describing an arithmetic sequence
{a,}r—,- Find the indicated quantities.

1. a, = —4,d = 5. Find 2. a, =5,d= —2. Find

a) ag b) a, a) ay, b) a,,

3. a, = —3,d = 4. Find 4. a, = 12, d = —3. Find

a) a;5 b) S;; a) a; b) Sy,

5. a, = 16, d = —5. Find . a, =—8 d=23. Find

a) Sie b) S,; a) Si; b) Si6

. a, = 5, a,, = 122. Find

a) d b) S,,

. a; = —15, az, = 109. Find

a) d b) S,,
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9. a5; = 8, agg = —48. Find 10. a; = —5, a;; = —41. Find

a) a, b) S,, a) d b) S,,

11. a, = 16, S, = 22. Find 12. a; = 0, S; = 30. Find

a) a, b) d a) a b) Si

13. a, = 3, d = &. Find 14. a; = 5, a,, = 11. Find

a) ag b) Sq a) a; b) S;;

15. a, = 6, S;; = 0. Find 16. ag = —1, S;; = 8. Find

a) a; b) a; a) a, b) d

17. Find the sum of all integers between 200 and 500 that are divisible by 3.

18. Find the sum of all integers between 100 and 500 that are divisible by 7.

In problems 19 through 22, evaluate the given sums.

19.

23.

25.

26.

27.

28.

29.

30.

31.

32.

33.

32 24 10 /9 20 k
> @k— 1) 20. 36-3) 21. 3 (54 + 1) 2. 3 (5 - =)

Given that f(x) = 2x — 5, find Zoo, f(k). 24. Given that g(x) = 3 — 2x, find =>, g(k).

Find the value of x such that the numbers x + 2, 2x — 4, 5x — 4 will be three

consecutive terms of an arithmetic sequence.

Determine x such that the numbers x — 1, 2x + 5, 5x — 1 will be the first three

terms of an arithmetic sequence; then find the tenth term.

Determine x such that the numbers x + 1, 3x — 5,6x + 6 will be the first, third, and

fifth terms of an arithmetic sequence; then find the eighth term.

Find x such that the numbers x2, 2x + 1, 2x — 1 will be the first three terms of an

arithmetic sequence.

A ball is dropped from the Goodyear blimp 2000 meters above the ground. During
the first second it falls 4.9 m, during the second second it falls 3(4.9) m, during the

third second it falls 5(4.9) m, and so on.

a) Find how far it falls during the twentieth second.

b) Find the total distance it falls during the first 20 seconds.

Suppose {a,}:_, and {b, }7_, are arithmetic sequences with a, = 10, a, = 13 and
b, = 16, b, = 21. Consider the first 100 terms of each sequence; how many numbers
do they have in common?

Suppose {a,}>_, and {b,}_, are arithmetic sequences, with a; = 10, a, = 13 and
b, =16, b, = 21. Let {c,}7_, be defined by ¢, =a, + b, forn =1,2,3,.... Is
{c,}r-, an arithmetic sequence? If so, what is the common difference?

If {a,}r_, and {b, }_, are arithmetic sequences and {c, };7_, is a sequence defined by
c, =a, + b,,is {c,}r-, an arithmetic sequence? If so, what is the common differ-
ence?

Let {b,}7_, be an arithmetic sequence given by b, = 3, b, = 7.

a) Give the first five terms of {b,}>_,, and of {b2}=_,.

b) Is {b2}>_, an arithmetic sequence?
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34. If{a,}>_,is an arithmetic sequence,is the sequence {a2}7_, always, sometimes, or
never an arithmetic sequence? Give reasons.

35. Upon graduation from college a 23-year-old engineering studentis offered a job with
a starting salary of $24,000 during the first year and an increase of $1200 in each
subsequent year.

Chapter 7

a) What will the engineer’s salary be during the eighth year?

b) What will total earnings be during the first eight years of employment.

c) How old will this engineer be when total earnings amount to more than a million

 

7.3 GEOMETRIC SEQUENCES
In the preceding section we studied arithmetic sequences, in which each term
after the first is obtained by adding a fixed number d to the preceding term.
Geometric sequences are characterized by the following property: Each term
after the first is obtained by multiplying the preceding term by a fixed number.

This is equivalent to saying that the ratio of any term to the preceding term is
a fixed number. The common ratio will be denoted by r; consecutive terms are

related by the formula

a,.,=ra, for n=1,23,....

Let us derive a formula for a, by listing a few terms and looking for a pat-
tern: a, =a; a, =a,°'r; a3=a,*r= (ar) r=a;r% a,=az'r=
a,r?-r = a,r3; .... Thus the first four terms of {a,}>_, are

— q.r0: — q.rl — q.r2 — q.r3a, = ar’ a, = ar; a; = are; a, = are.

The pattern here suggests the following formula for the general term,

 

a, =a," for n=1,2,3,.... (7.10)
 

Mathematical induction can be used to give a formal proof that the result stated
in Eq. (7.10) is valid (see Exercise set 7.4, problem 28).

The sum S, of the first n terms of a geometric sequence is given by

S,=a,+a,r+a;r?+-.. +a,r"%. (7.11)

A formula for S, can be derived as follows: Multiply both sides of Eq. (7.11) by r

and then subtract the resulting equation from Eq. (7.11).

S,=a,+ar+a;r?+..- +a,r"2 + ar"?!

rS, = ar + ar +... + ar"! + ar.
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Subtracting the second equation from the first gives S, — rS, = a, — a,r™. This
is equivalent to (1 — r)S, = a, — a,r", and solving for S, gives the desired
formula.
 

g hz ar _al-r) (7.12)
1—r l1—r
 

 

This can also be written as

 

ar" — a; ar" —1)
 = 7.13
r—1 r—1 ( )
 

Which of the following can be considered as the first three terms of a geometric
sequence?

a) 2, 6, 18 b) i, —1¢ c) x, x3, x° d) 4,2,0

)Each of the sequences in (a), (b), and (c) constitute the first three terms of a(
)geometric sequence since for (a), r = 3; for (b), r = —1; for (c), r = x2. For (d) we

have

2 1
Se _2__2 and 2 _9_
a, 4 2 a, 2

Thus, a,/a, # as/a,, and there is no common ratio. fo

Find the tenth term and the sum of the first ten terms of a geometric progression
in which the first three terms are 2, 1, 1.

From the given information, a; = 2 and r = . Substituting into Egs. (7.10) and
(7.12) gives

ao = arf = ar? = (2)(3)° = 5k4;

a; —a,r® 2 -—2(1/2)1° 1023

1—-r 1-1/2 = 256°
 

S10 =

Suppose {a, }>_, is a geometric sequence with a, = 1/27 and a; = —1/729. Find
the first term, the common ratio, and the sum of the first seven terms.

We wish to find a,, r, and S,. Using Eq. (7.10) with n = 4 and n = 7 gives
a, = a,r® and a, = a,ré. Use the given information to get

ar?=5 and a,;% = —. (7.14)
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Solving this system of equations for a, and r by dividing the second by the first,
we get

ar 1 (3)

ard” \ 729) 7 \27)

Simplifying gives r3 = —z%, and so r = V/—z = —1. Substituting r = —3
into either of the equations in (7.14)—say, the first—we get a,(—3)3 = &,

and so a, = —1.
We can now find S,; by using Eq. (7.12),

  
Ss — a, — ar’ _ —-1—(=1)(-1/3)7 _ _ 547

7 1—r 1—(=1/3) 729

Thus we have

a,=-1, r=-4% S,=-34. wn

Infinite Geometric Series
Although it is not possible to add infinitely many numbers, in some cases mean-
ing can be given to such sums by considering a limit process. This is illustrated
with the geometric sequence {a, };—,, for which a, = 1 and r = 1. First get a
formula for the sum of n terms by using Eq. (7.12).

Cpl, 1S,=l+5+5+ +53

1— (1/2) 1 1

S=oig-t-w=
Now consider what happens to S, when n becomes large. The term 1/2"~1 ap-
proaches zero, and so S, approaches 2. We say that the sum of the infinite series
S=1+4+%1+1+ -..is 2 and write

1 1 1
=1 — = “on _S=1l+5+5+ +55

In 2 notation this is written as

 

In general, suppose {a, }>—, is a geometric sequence in which —1 <r <1.1In
considering the sum

n

§ ="
n

as n becomes large, we see that n occurs only in a,r". Since —1 <r <1, a,r"
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approaches zero as n becomes large, and so S, approaches a,/(1 — r). Therefore
S is given by the formula

 

a,

1-—r
 S=a,+a;r+a;r2+ ... = for —1<r<1. (7.15)

 

This defines the sum of an infinite geometric series. We say the series converges
toa,/(1 —r).Ifr>1o0rr< —1 and a, # 0, the geometric series has no sum

because S, does not approach any number as n becomes large (see problem 52).
Such an infinite series is said to diverge.

a) Write the infinite geometric series 3 — 1 +1 — 1 + ... using 2 notation.

b) Find its sum.

a) For the given series, a, = 3 and r = — 4. The nth term is given by

3 1 n—1 (=1)1

a, = ay =3(- 3) = "gnz

Therefore the given series can be written as

© (=1)n1

>gr
n=1

b) Since r = —1 satisfies —1 <r <1, Eq. (7.15) can be applied to get

> (1) a; 3 9

>, 32 T1—_r 1-—(-1/3) 4°
n=1

 

Rational Numbers And Repeating Decimals

A rational number is one that can be expressed as a quotient (or a ratio) of two

integers. For example, 4, 1, 4397 — 2 are rational numbers. Numbers can also be

represented in decimal notation. For instance,

3=07500...; 1=0333...; 4997 = 1.24151515....

Note that in each of these cases we have a “repeating decimal” in which the

decimal digits, after a certain point, repeat in a cycle. The notation commonly

used to denote repeating decimals is a bar above the repeating portion. Thus

3=0750; 1=03; 497 =12415; —2= —0.285714.

The repeating-decimal feature characterizes rational numbers. Irrational

numbers can also be represented as infinite decimals, but the digits do not follow

a repeating pattern.
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Example 5 Express the repeating decimal number 1.354 as a quotient of two integers.

Solution The given number can be written as follows:

1.354 = 1.3545454 ... = 1.3 + 0.054 + 0.00054 + 0.0000054 + - - -.

Observe that after the 1.3 we have an infinite geometric series with a; = 0.054
and r = 0.01. Substituting these numbers into Eq. (7.15) gives

0054 _ 13 54 _ 149 -1.354 = 1.3 = = i
35 + 1-001 10 990 110

Exercises 7.3

1. Which of the following can be considered the first three terms of a geometric se-

 

quence?

a) 3, 6,12 b) 1, —2,4 c) 3, —1.2, 0.48 d) 2,4,6

2. Which of the following can be considered three consecutive terms of a geometric

sequence?

a) 5, 10, 20 b) 0.1, 0.01, 0.001 c) 16, 10, 4 d) 3, —-3,3

In problems 3 through 6, the first three terms of a geometric sequence are given. Find the

eighth term and the sum of the first eight terms.

3.34 —3,1 4.1, —4,1 5. 5, 2.5, 1.25 6. 5.1, 0.51, 0.051

In problems 7 through 12, suppose {a,};_, is a geometric sequence. Using the given
information, determine the indicated quantities.

7. a; = 8, r =2; find a, and a. 8. a, = —4, r = —3}; find a4 and a,,.

=2 = Ll: —_— 8 — 1.

— . — . — — 1.11. a; = —§; a,, = g; find a,, r, and S,,,. 12. a; = %, a; = — 4; find a,, r, and Sg.

In problems 13 through 16, a geometric series is described by the first term and common

ratio. Determine the number of terms n that correspond to the given sum S,.

138. a, =%,r=4S, =4 14. a, =2,r=3, S, = 6560

15. a, = —16, r= —4,S, = —%} 16. a, = 27, r= -4%,S, =¢

In problems 17 through 20, evaluate the indicated sums.

 

 

5 \ 5 1 6 . 10 1617. S 2 18. > i 19. S 3(0.1) 20. >) ot
k=1 k=1 k=1 k=1

In problems 21 through 24, evaluate the sum >, f(k) for the given function f.

21. f(x) =a 22. f(x) = = 23. f(x) = 3(0.1) 24. f(x) = (0.2)!

In problems 25 through 28, find x such that the given expressions are the first three
terms of a geometric sequence.

25. 2x — 1; 2x — 3; 4x + 1 26. x — 1; x +1; x +4
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27. x2 +1; x; 2 28. x +4; x — 2; 2x + 1

In problems 29 through 32, (a) write the given infinite geometric series using 2 notation,
and (b) find its sum.

29.8 +4424 -.. 30.6-2+2_2,

31. 1.8 + 0.018 + 0.00018 + -- 32. 2.4 — 0.024 + 0.00024 — -..

In problems 33 through 36, determine whether or not the given infinite series converges.
If it does, find the number to which it converges.

© 3 k © 3 k—1 © 3 k—1 ©

_9 9 9 k—138.3 4( 2) 3. 3 ( 2) 5. 3 8(- 2) 36. 350.)

In problems 37 through 42, find the repeating decimal expansions for the given rational
numbers.

105 38. 2 39. 1 40. 10 41. L 42. 2
37. 12 11 7 13 13

In problems 43 through 50, express the given repeating decimal number as a quotient of

two integers, and simplify answers.

43. 1.23 44. 3.155 45. 1.581 46. 1.5045

47. 0.3636 48. 0.363 49. 0.142857 50. 0.857142

51. The sequence of partial sums {S,}>_, associated with the geometric sequence
{($)}>_, is an increasing sequence; that is, S,,; > S, foreachn = 1,2, 3,.... Since
r=4%4>1, S, becomes large when n is large. What is the smallest value of n such
that S, > 8? Hint: Find a formula for S, and then, using a calculator, evaluate S,
for various values of n until you find a value of n for which S, > 8and S,_; <8. Or
you may wish to use logarithms.

52. A city has a population of 50,000 at the end of 1980, and the population is increasing
at a rate of 10% each year. What will its population be at the end of 1990?

53. The first swing of a bob on a pendulum is 20 cm. On each subsequent swing it travels
# as far as the preceding swing. Whatis the total distance it travels before essentially
coming to rest?

54. A rubber ball is dropped from the top of the Washington monument (170 meters

high). Suppose each time it hits the ground it rebounds £ of the distance of the

preceding fall.

a) What is the total distance it travels up to the instant it hits the ground the fifth

time?

b) What is the total distance it travels before it essentially comes to rest?

55. Prove that the infinite geometric series does not converge if r > 1 or r < —1, and

a, # 0. Hint: Consider the following cases: (1) r = 1; (2) r = —1; (3) r > 1, and see

what happens to a,7® in S, = (a, — a,r*)/(1 —r) when n becomes large;
(4) r < —1; follow suggestion of (3).
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MATHEMATICAL INDUCTION
In mathematics, as well as in any area of communication, one of our primary

concernsis to determine whether a given statementis true or false. For instance,

the following three statements are true:

V6 — V21
V3 > 1.5; 7 5 2 — V3;

x = 3 is a root of x2 — 2x — 3 = 0;

and the following three are false:

4 < 2; 35-10 =1;

4 is in the set {x|x? — 2x < 0}.

Thus each of these can be viewed as a sentence to which we can assign a true or
a false value. Such a sentence is said to have a truth value and is called a state-
ment.

If we consider a sentence such as x2 — 2x — 3 = 0, we cannot say it is true or

false unless we replace x by a specific number. For instance, replacing x by 4
yields 42 — 2 +4 — 3 = 0, which is a false statement, whereas replacing x by —1

gives (—1)2 — 2(—1) — 3 = 0, which is a true statement.

The sentence x? — 2x — 3 = 0 is an example of an open sentence, that is, a

sentence which involves a variable and to which we do not assign a truth value.
Let us consider still another example. The sentence “The sum of the first n

positive odd integers is equal to n? for each positive integer n” is a statement that
happens to be true. This statement can be expressed in mathematical terms as:

> (2k —1) =n? for n=1,2,3,.... (7.16)
k=1

In expanded notation this is

1+43+5+---4+2n—-1)=n% for n=1,2,3,....

To better understand what this means, we denote Eq. (7.16) by P(n). Thus

1
P(1) represents the statement > 2k —1)=12%,0r 1 = 13

k=1

2
P(2)is > (2k —1) =2%0r1 +3 =2%

k=1

3
P(3) is > (2k —1)=3%o0r1+ 34 5 =3% and so on.

k=1

We see that P(1), P(2), and P(3) are true statements. To say that the statement

given in (7.16) is true means that each statement in the sequence P(1), P(2),
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P(3),... 1s a true statement. We have verified the truth of the first three, but it

1s impossible to directly verify the truth of all the remaining statements—P(4),
P(5), P(6), ...; there are too many of them. The primary goal in this section is

to introduce a technique of proof, called mathematical induction, that can be

used to prove that statements such as (7.16) are true. See Example 2 for a proof
of (7.16). Note that the expansion of (7.16) involves the open sentence

1+3+5+.-. 4+ (2n —1) =n?

to which we do not assign a true or false value by itself. But when the quantifier
“forn = 1,2, 3,...” is attached, as in (7.16), then the result is a statement. That

is, P(n) is either true for each positive integer n = 1, 2, 3, ..., or there is at least

one value of n for which P(r) is false.

Before stating the Principle of mathematical induction, we present a brief
discussion to illustrate the need for proving statements that appear to be obvi-
ously true.

Inductive Inference
The common usage of the word induction implies a process of arriving at a
general statement from particular cases. In mathematics as well as in all areas of
science, many important discoveries are made by observing particular instances,
and by drawing general conclusions from these observations. Consider the fol-
lowing simple example.

The algebraic expression n? — n + 41 is evaluated for several values of n, where
n € N, with the results shown in the table. Formulate general conclusions sug-

gested by this table.

 

n 1 2 3 4 5 6
 

   n2—n+41 41 43 47 53 61 71
 

Our first observation is that all of the numbers in the second row are odd inte-

gers. Hence a general conclusion would be: “They are all odd.” However, such a

statement is not mathematically precise. We can say it better as follows:

n? —n + 41 is an odd number for each n =1, 2, 3, .... (7.17)

From the given table we can see that the statement in (7.17) is true for the first

six values of n, but we are claiming considerably more than that when we say

that statement (7.17) is true. Of course, we could extend the table to include a

few more values of n, but that still would not be sufficient. To prove that state-

ment (7.17) is true requires an argument other than a direct verification for all

values of n (see problem 21).

Our second observation is that the numbers in the second row of the table

are prime numbers. Thus we arrive at a generalization and claim that

n2 — n + 41 is a prime number for eachn =1, 2, 3, .... (7.18)
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Our claim is that the statement (7.18) is true. From the numbers in the table, the

best we can be certain of is that n? — n + 41 is a prime number for n = 1, 2, 3,

4, 5, and 6. We could get more evidence by extending the table. After n = 6 the
next four values in the second row of the table are 83, 97, 113, 131. We can check

to see that each of these is a prime number, (see Appendix D), and this gives us
a stronger feeling that the statement in (7.18) is true. However, there are still

many values of n we have not yet tried. Suppose we try n = 41; the value of
n? —n + 41 is 412 — 41 4 41 = 412, and this clearly is not a prime number.
Suddenly our strong feeling that (7.18) is a true statementis shattered. Thus we
have proved that statement (7.18) is false of finding a counterexample.

This example is interesting because n? — n + 41 is a prime number for the
first 40 cases.”

Another conclusion concerning the second row of the table is that they differ
by 2, 4, 6, and so on. Again we want to state this in precise mathematical lan-
guage. Here is a good example of the value of introducing appropriate notation.
Let f(n) = n2 — n + 41. Then we can say that

fin +1) —f(n) =2n foreach n=1, 2, 3, ... is a true statement. (7.19)

We leave it to the reader to prove by evaluating f(n + 1) — f(n) that state-

ment (7.19) is true. The reader may also be interested in stating other claims

(generalizations) suggested by the given table. [|

We now introduce a principle that will be useful in proving the truth of
many statements of the type: P(n) forn = 1, 2, 3, .... The situation is that we

have a sequence of statements P(1), P(2), P(3), ..., each of which is either true

or false. Suppose we let S denote the set of all values of n for which P(n) is a
true statement. That is,

S = {n|P(n) is true}.

To claim that P(n) is true for every natural number 7 is equivalent to claiming
that S contains all the natural numbers; that is, S = N. Suppose we can prove
that (a) 1isin S, and (b) 2 + 1 is in S whenever % is in S. Then it is intuitively

reasonable to conclude that S contains all the natural numbers. For instance,

from (a) we know 1 € S; now using 2 = 1 in (b), we conclude that 2 € S; now

using 2 = 2 in (b), we can say that 3 € S; and so on.t That is the essence of the

Principle of mathematical induction, which we now state.

 

Discovered by the Swiss mathematician Leonhard Euler (1707-1783).

In popular terms we might describe this as the domino effect: when dominoes are lined up vertically
and the first one falls, it knocks down the second domino, which in turn knocks down the third; and

SO on.
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Principle of Mathematical Induction

Let S be a subset of the set of natural numbers N. If set S has the

following two properties: (A) 1 € S and (B) 2 € S implies that
(BR + 1) € S, then set S contains all the natural numbers; that is,

S = N.

Let us now see how this principle can be applied to prove statements similar
to those discussed earlier in this chapter.

Prove that the statement 27_, (2/ — 1) =n? for each n = 1, 2, 3, ... is true.

Let S represent the set of natural numbers for which the given equality yields a
true statement; that is,

= (n > (2 — 1) = n}.
j=1

We wish to prove that S contains all the natural numbers. The Principle of
mathematical induction provides us with a technique for doing this. We must
show that S has the two properties stated in (A) and (B).

Property (A) says that the number 1 is in S. To verify this we must show
that >.j=1 (&] — 1) = 121s a true statement. This follows from the fact that both

sides are equal to 1. Hence S has property (A).

To prove that set S has property (B) it is necessary to show that if & is any
fixed (but unspecified) positive integer in S, then its successor (2 + 1) in also in

S. Thus our problem can be stated as follows:
Suppose k € S, SO2—1(2f — 1) = k2. Using this supposition, show that

(k +1) € S; that is, Dd—1oj — 1) = (2 + 1)2. In expanded notation we can say

this as follows: Given

 

1+34+54+--- +((2k—-1) =k (7.20)

Using (7.20), we show that

1+3+5+---4+Ck—-1)+R2k+1)=(k+1)> (7.21)

We can accomplish this by adding (2k + 1) to both sides of (7.20):

[1+3+5+.-- +2k—-1]+ (2k +1) =k + (2k + 1).

Clearly this is equivalent to the equation in (7.21), since the left sides are identi-

cal and the right sides are equal because

R2+ 2k +1)=Fk2+2k+1=(k + 1)

Hence set S has property (B), and by the Principle of mathematical induction,
S = N. This is equivalent to saying that the given statement is true. _-
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Prove that 32" — 1 is divisible by 8, where n is any natural number.

Let S = {n|3% — 1 is divisible by 8}. We wish to show that S = N; this can
be done by mathematical induction. To show that set S has property (A) we
must verify that 321 — 1 is divisible by 8. This is immediate since
321 _ 1 =9 — 1 = 8. To show that set S has property (B) we must argue the
following: Given that

32k — 1 is divisible by 8, (7.22)

show that

32k+D _ 1 is divisible by 8. (7.23)

The definition of “divisible by 8” and (7.22) tell us that there is an integer m such

that

3% — 1 = 8m. (7.24)

Using this, we wish to prove that there is an integer g such that

32k+1) _ 1 = 8q. (7.25)

We can start with the left side of (7.25) and manipulate it into a form in which

we can apply the information given in (7.24), as follows:

32k+1D _ 1 —32%+2 _ 1 =32%k.32 _1=32%.9_1

=3%:9-9)+(9-1) by adding and subtracting 9

—9(3%% —1) + 8 and grouping

=9(8m) + 8 by using (7.24)

= 89m + 1) by factoring.

Therefore 32k+V _ 1 = 8(9m + 1). Since m is an integer, (9m + 1) is an integer,
and so this is the value of g that can be used in (7.25). Thus set S has properties

(A) and (B), and so S = N. [|]

 

In each of the problems 1 through 4, an open sentence P(n) is defined, with n assuming
positive integer values 1, 2, 3, . . . Give the statements that correspond to P(1), P(2), P(3),

and P(4); in each case determine whether the corresponding statement is true or false.

1. P(n): n3 4+ n>2n% 42 2. P(n): n® —n2=4n — 4

3. P(n): 3" > 3n 4. P(n): n? — n + 5 is an odd integer

In problems 5 through 8, determine the smallest positive integer n that will yield a false

statement when it is substituted into the given open sentence.

5. n3 + 11ln = 6(n% + 1) 6. n2 — n + 17 is a prime number. Use table in

Appendix D.

7. n2 << 2n 8. 2" < (n + 1)2
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In each of the problems 9 through 20, an open sentence P(n) is given. Use mathematical

  

induction to prove that the corresponding statement, “P(n) for eachn =1,2,3,...,” is

true.

nn +1)
9.1+2+3+ -+n=—"7p— 10. 24+44+6+ --- +2n=n(n +1)

n n

11. > m? =3n(n + 1)(2n + 1) 12. > m3 = inn + 1)?
m=1 m=1

n n

13. > 2m-1 =2n _ 1 14. > 3m=1(3" - 1)
m=1 m=1

1 1 1 _, 1
15. +++ +g =2 on—1

16. 12 +32 +52 4+ ... + (2n — 1)2 =in(2n + 1)(2n — 1)

17. 1:2 +2:-3+ 34+... + n(n +1) =inn + 1)(n + 2)

18. n3 + 2n is divisible by 3 19. 4" — 1 is divisible by 3 20. 2" >n

21. Prove that n? — n + 41 is an odd integer for each n =1, 2, 3, ...

a) by mathematical induction,

b) by algebraic technique using n? — n + 41 = n(n — 1) + 41.

22. Suppose fis a function with domain the set of positive integers and defined as a sum

—_ ’ 1

f=255+
a) Make a table giving the values of f(n) for n = 1, 2, 3, and 4.

b) From the table in (a), extended if necessary, formulate a general conclusion that

gives f(n) in terms of a simpler formula. Prove that your formula is valid for each
n=1223....

In problems 23 through 26, determine whether the given statement is true or false. Give

reasons for your answer.

23. n(n + 1)(n + 2) is divisible by 6 foreach n =1, 2, 3, ....

24. > (2m — 3) =n(n —2) foreachn=1,2,3,....
m=1

n

25. > @mt—-1)=2"-n-1foreachn=123,....
m=1

1\*

26. 2(1 +1) <5foreachn=123,....

27. Suppose {a, }*-, is an arithmetic sequence, as defined in Section 7.2. Prove that the

result stated in Eq. (7.7), a, = a, + (n — 1)d,is valid.
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28.

29.

30.

Suppose {a, }7—, is a geometric sequence, as defined in Section 7.3. Prove that the
result stated in Eq. (7.10), a, = a,r"1, is valid.

Suppose sequence function f is given by f(n) = n? — 39n + 421, D(f) = N.

a) Evaluate f(n) forn=1,2,3,..., 8.

b) Are all values of f(r) in (a) prime numbers? Use table of prime numbers in

Appendix D.

c¢) What is the smallest value of n for which f(n) is not a prime number?

For the sequence function given in problem 29,

a) Prove that f(60 + k2) = (k%2 + k + 41)(k2 — k + 41) fork = 0,1, 2,... This gives

a sequence of composite numbers for f(n).

b) Prove that f(60 + 41k) = 41(41k2 + 81k + 41) for k =0,1, 2, ...

c) Is f(61 + 41k) a composite number for every 2 =0,1,2,...?
 

7.5 BINOMIAL EXPANSION FORMULA
In Chapter 3 we noted that a product raised to a power follows the simple
formula (a * b)" = a™ + b". However, raising a sum to a power does not follow a
similarly simple formula; that is, in general (a + b)" # a™ + b". Expanding

(a + b)" by direct multiplication for several values of n will lead us to a formula
for the general case:

n=1 (a+bl=a+b,

n=2: (a+ b)?=a?+ 2ab + b?

n=3 (a+b) = (a+ b)la+ b)?=ad3+ 3a%b + 3ab? + b3,

n=4: (a+ b*= (a+ b)a + b)3 = a* + 4a3b + 6a2b? + 4ab3 + b%,

n=>5(a+b) =(a+ b)a+b)*
= a® + 5a*b + 10a3b? + 10a2b3 + 5ab* + bE.

From these special cases we arrive at some generalizations. Expanding (a + 5)"

and collecting like terms yields the following.

1. We get (n + 1) terms;

2. Each term is of the type c - a®b?, where c is an appropriate coefficient and

S+t=n;

3. The expansion can be written so that for consecutive terms the exponent of

a decreases by 1 and the exponent of b increases by 1.

It is not easy to guess what the coefficients are before the multiplication is

done, but we can get some insight by looking at how like terms collect in the
multiplication for (a + b)° = (a + b)(a + b)*For this we first write (a + b)¢in

expanded form:

(a + b)* = a* + 4a3b + 6a2b? + 4ab3 + b4.

Then we multiply both parts of the above equation first by a and then by b, and
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add the results collecting like terms:

ala + b)* = a® + 4a*b + 6a3b? + 4a%b3 + ab?
bla + b)* = a*b + 4a3b? + 6a2b3 + 4ab* + bd

(a + b)(a + b)* = a® + 5a*b + 10a3b2 + 10a2b3 + 5ab* + b°

This suggests the following pattern for the coefficients, where we indicate how

the last row is obtained from the preceding row:

 

(a + b)° 1

(a + bd)? 1 1

(a + b)? 1 2 1

(a + b)3 1 3 3 1

(a + b)* 1 4 A
J \ / \ p\ A\

@+p 1° SEY Mod MY EY
The above array (continued) is known as Pascal’s triangle. The coefficients of

the expansion of (a + b)" can be found for any value of n by continuing the
array to the appropriate number of lines.

In order to describe the binomial coefficients in general without relying on

Pascal’s triangle,it is helpful to introduce some notation. We need a symbol to
denote the product of several consecutive positive integers; for instance,
1-2-3-4-5-61is denoted by 6!, which is read “six factorial.” In general, for any
positive integer n we define n factorial as the product of all positive integers 1
through n. This is denoted by

n'=1:-2:3...n. (7.26)

We can also express n! by the recursive formula for n > 2:

n! =n(n — 1)! (7.27)

It is convenient to have (7.27) hold also for n = 1:

'=1-(1-1)! or 1=1-0!

Thus we shall define 0! to be equal to 1.

 

0! =1.
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Binomial Coefficients

The symbol (#) is commonly used to denote the coefficients of the binomal ex-

pansion. This is defined by

 

 

pfBALERS (7.28)

k k!
 

where n is any positive integer and k is a positive integer with 2 < n. For 2 = 0
we define

Equation (7.28) can be written in compact form, as follows: Multiplying
numerator and denominator by (n — k)! gives

(7) = nn-1).---(n—k +1) } (n — RB)!

k k! (n — k)!

nn-1)...n—k+1)n—-kn-~k-1)...2-1

k(n — k)!

 

 

_ n!
~ kl(n — kB)!

Thus an equivalent form of Eq. (7.28) is

() -HT (7.29)

The following examples illustrate factorial and binomial coefficient
notations.

Evaluate

6! (n + 1)!
a) 4! b) oy Dm

a) 4! =1:2-3-4=24
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6! 1:2:3:4:5-6 _ r.~_
b) 37 = 1.9.3 =4:5-6=120

(n+1)! 1-2...(n—=-1)-nn+1) )

Vu~ Tem-n CC retD=ri4n -

Evaluate

5 8 12

a) 3) b) (6) ©) (%7)
a) To apply Eq. (7.28) with n =5 and k = 3, we first have (n —k +1) =

(5 — 3 + 1) = 3 (this gives the last factor of the numerator). Thus

5 5-4-3 _

()=352-m0

b) Using Eq. (7.28), again we first calculate (n —k +1) =(8 —6 +1) = 3,

and so

(§)=2:1-5-5:2:3 57 _o

6/ 1:-2:3-4:5-6 1-2

c¢) Since either (7.28) or (7.29) will give (12), we choose here to illustrate the use

of (7.29):

(7) = 12! _1:2-3.--8-9-10-11-12 _9-10-11-12 _ qr

4) 4012-4)! (1-2:-3-4)(1-2:-3...8 ~~ 1:2-3-4 ’

oe

Evaluate

a (0): (1): 2): (3): (2):0/’ \1/)’\2/° \3)’ 4)’

5 5 5 5 5 5

b (0): (2): (3): G): G): 6):) 0 1 2 3 4 5

4\ _ ..(4\ _ ,. (4\ _ 4-3 _, (4 4-3-2 _ 4 4:3-2-1

a) (0)=1()=4()= =6 (3) = 3! = 4(5) = FT
5 5 5 5 5 5

b) (5) L; (3) 5; (5) 10; (5) 10; () 5; (2) !

Observation of the results in Example 3 leads to several generalizations.
First, we see that () = (4), (3) = (3), and so on. This suggests the important
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symmetric relationship for the binomial coefficients:

0-0") oan
We can easily prove this relationship by applying Eq. (7.29) to both sides of Eq.
(7.30) to get

 

") = n! ( n ) = n! _ n!
(%  Rkl(n — Rk)!’ n—*k]  (n=~R[n-n-Ek]  (n—k)k!

Therefore, (£) = (,,";)-

Looking at the results in Example 3, we also see that the sequences of coeffi-
cients in a and b are precisely the numbers in the last two rows of Pascal’s
triangle (see p. 391). Actually Pascal’s triangle can be written as follows:

(a + bh: (2) ()

(@ + 0 6 GC)
@ + by 6 © 6 6)
wer) GQ) GGG)
cron (0 6 6 @ 6

The two rows of Pascal’s triangle associated with (a + b)"! and

(a + b)" are

ero(050) (7) C262) (2)-G)
(a + by": (7)

~~ ~~ SL + 7 Not 7

0 © oo 0)1 2 k n

This suggests the following identity for binomial coefficients.

0
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Suppose n and k are positive integers with n > 2 and 2 < n. Then

Go)+CxY)=0G) (7.31)

Verification that Eq. (7.31) is indeed an identity is left to the reader (see prob-
lem 38).

Finally, the row of Pascal’s triangle associated with (a + b)”, along with our

earlier observations, suggests a formula for (a + b)".

 

 

Binomial Expansion Formula

Suppose n is a positive integer. Then

 
n

@+0y = ()aro~ (7.32)
k=0
 

We arrived at formula (7.32) by observing several particular instances (a
process of inductive inference), and at this point it should be considered a conjec-
ture. The result is precisely the type of statement discussed in the preceding
section: Formula (7.32) holds for n = 1, 2, 3, .... This suggests proof by mathe-

matical induction. Such a proof can indeed be given, but since it is somewhat
lengthy,it is not included here. We urge the reader to give details of the proof
and suggest the use of identity (7.31) in the process.

Expand (x — 2y)*.

Using (7.32) with n = 4, a = x, and b = —2y gives

4

w= 3))r2
=0k

(5) + ({)x(-2) + (5)x-22 + (5)x(—2 + (3)-2

= x* — 8x3y + 24x2y%2 — 32xy3 + 16y4. _

Find the fourth term in the expansion of (x2 — 2y)12,

Using (7.32) with n = 12,a = x2, b = —2y, we get the expansion of (x? — 2y)12 as

12

(2 — 22 = 3 (3) Gerrzor(ay)
k=0
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With the expansion in this form, the fourth term is given by 2 = 3. Thus we have
as the fourth term:

(7) (x2)12-3(—2y)3 =12(x2)°(—8y3)

= (220)(x18)(—8y3) = —1760x18y3, aE

Example 6 If (x* — 2/x)1% is expanded and each term is simplified, we get terms involving x
to various powers. Find the term that involves x2.

Applying (7.32) with n = 10, a = x2, b = —2/x and then performing some alge-
braic simplification gives

(==) :betJ)k=0

Solution

10

— S (——2)koo)20-3k

k=0

In this form we can first find the value of £ that gives 8 as the exponent of x.
That is, £ is determined by 20 — 3k = 8. Solving this equation gives 2 = 4.
Therefore, the term involving x8 is the fifth term in the expansion and is given by

 

  

(— 2% (10)a034 = 16 (109-8:7)qs — 3360x°, i

Exercises 7.5
In problems 1 through 16, evaluate the given expressions.

1. 5! 2. 7! : = 4. 0

5. — 6. ge 7. TET 8. ET

pA 10. 8 28 11. H 12. ()

13. (12) 14. (19) 15. () 16. (7)

In problems 17 through 20, verify the given equations by evaluating each side.

show that each is a particular case of Eq. (7.30) or Eq. (7.31).

(5) = (6) ts(9) = (2)

Then
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15. (9) + (9)= (2) 20. (5) + (3) = 5)
In problems 21 through 28, expand the given expressions and simplify the results.

21. (2x + y)* 22. (2x — y)* 23. (x2 —1)¢ 24. (x2 + 1)8

25. (x2 — y)° 26. (x2 — 3y) 27. (x _ zy 28. (x + zy

In problems 29 through 32, find the indicated term in the expansion of the given
expression.

29. (x — y)12; sixth term 30. (x? — 2y)19; seventh term

AY 3\8. ..:
31. (= —_ 2) ; fourth term 32. (+ — 2) ; third term

For each of the problems 33 through 36, in the expansion of the given binomial expres-
sion with terms simplified, find the term that involves the given power of x.

2 \16 } }
33. ( — Z) ; the term involving x7

15
34. (+ - 2) ; the term involving x2°

8
35. (2 — 3) ; the constant term (that is, involving x°)

12
36. (2° — 3) ; the constant term (that is, involving x°)

In problems 37 through 40, n and & are positive integers with 2 < n. Prove that the given
equations are identities.

gr. (1) =n=hrl( nm) 8. (P21) + (* 71) = (2)
n n n n . - )

39. (6) + (7) + (3) Toe t (7) = 2". Hint: Expand (1 + 1)~.

40. (5) _ (7) + (3) _ (5) bod (=) (2) — 0. Hint: Expand (1 — 1)".

7.6 MATHEMATICS OF FINANCE
Concepts studied in this chapter can be applied to problems involving finance.
Let us consider a variety of problems involving simple interest, compound inter-

est, and amortization.

When you borrow money from a bank, you are expected not only to repay

the amount borrowed within a specified period of time but also to pay a fee for

the use of the money for that period. This fee is called interest. Similarly, if you

deposit money in the bank, the bank pays you interest for the use of your money.
The amount invested or borrowed is called principal, denoted by P. The interest
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rate, r, determines the percentage of the principal that will be paid as interest
when the principal has been kept for a specified time (interestperiod). Thus the
amount of interest earned in one interest period is given by

I=r-P

where r is the decimal form of the interest rate, which is usually stated as a
percentage.

If the principal is kept for longer than one interest period, the total amount
of interest may be calculated in two different ways. For instance, suppose $1000
is invested at 10 percent interest per year for two years. The interest earned
during the first year is (0.10)(1000) = 100 dollars; suppose interest for the second

year is also determined in the same way, (0.10)(1000) = 100 dollars. Then the

total interest earned for the two years is $200, and the value of the investment at

the end of two years is 1000 + 200 = 1200. In this case we say that interest has

been computed as simple interest. Now suppose interest is computed as follows:
Interest for the first year is (0.10)(1000) = 100 dollars, and the value of the

investment at the end of the first year is $1100. If interest for the second year is
computed on this amount, then it is (0.10)(1100) = 110 dollars. The total inter-

est for the two years is $210 and the value of the investment at the end of two

years is $1210. In this case we call it compound interest; it includes interest on
interest.

Simple Interest

Simple interest is defined by

I=P-r-n. (7.33)

where P is the amount invested (or borrowed) for n interest periods at interest

rate r per period. The accumulated value of P at the end of n periods of time is
given by

A =P + Prn = P(1 + rn). (7.34)

The following two examples illustrate applications of simple interest.

Whatis the total repayment of a loan of $500 for four monthsif the interest rate
is 15% per year?

Using formula (7.34) with P = 500, r = 0.15, t = 4/12 gives

A = 500 + 500(0.15)(s%) = 500 + 25 = 525 dollars.

Here we are considering r as the rate per year (interest period is one year)
and n = 4/12 = 1/3 of a year.

We could consider the interest period as one month, in which case the rate

would be 15/12 = 1.25 percent per month. Then in formula (7.34) we would use
P = 500, n = 4, r = 0.0125, which would yield the same result as above,

A = 500 + 500(0.0125)(4) = 525 dollars. ou
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Suppose a home improvement loan of $3600 is to be repaid in 12 monthly pay-
ments of $300 plus the interest on the unpaid balance for that month. If the rate
of interest is 18% per year, what is the total sum to be repaid?

Let a, represent the amount to be paid at the end of the first month; that is, a,
is the sum of $300 and the interest on $3600 for one month. Thus

a, = 300 + 3600(8) — 300 + 54 = $354.

Let a, be the amount to be repaid at the end of the second month; that is, a, is
equal to $300 plus the interest on $3600 — $300 = $3300 for one month. Thus

a, = 300 + 3300 (&18) (1) = 300 + 49.50 = 349.50 dollars.

Continuing with a, (the amount repaid at the end of the third month) and so on
to a,, (the amount repaid at the end of the twelfth month), we get a; = 345.00;
a, = 340.50; ...; a,, = 304.50.

The sequence {a, } 12, is an arithmetic sequence with a, = 354, a,, = 304.50,
and d = —4.50. From Eq. (7.8)

S,, = 12 (824+.204:0) — 3951.

Therefore the amount to be repaid is $3951. fa

Compound Interest
Compound interest is similar to simple interest, except that interest is paid not
only on the principal but also on the previously accumulated interest. This can
be illustrated as follows:

Suppose a sum (or principal) ofP dollars is invested, and the interest rateper

yearis r. If interest is compounded annually, what is the value of the investment

at the end of n years? It is customary to state the interest rate as a percentage;
for instance, interest at 12% means that r = 0.12. Let us denote the value of the

investment at the end of n years by A, . The value of the investment at the end of

the first year consists of P dollars invested for one year, and so

Aj =P+P-r-1=P1 +r).

The value at the end of the second year, A,, is equivalent to an investment ofA,
dollars for one year at interest rate r. That is,

A, =A +A, r'1=A1+r)=PAQ +r) +r)=P1+r3

In a similar manner, A, is equivalent to an investment of A, dollars for one
year at interest rate r, and so we have

A; =A, + Ar=A,1+r)=PQ1 + r?1 +r) =PQ1+ rp



400

Example 3

Solution

Functions on Natural Numbers Chapter 7

In general, using inductive inference, we get

A, =P1 +n" (7.35)

Now suppose interest is compounded semiannually. What modifications are
necessary in formula (7.35) to get the corresponding A? The rate of interest r is

usually given as the rate per year, so the rate for half a year is r/2. The number
of interest periods in n yearsis 2n. If we follow a procedure similar to that above,

we get

r 2n

A = P(1 + 7) (7.36)

In general, if interest is compounded m times per year, then the rate of interest
for each interest period is r/m, and the number of interest periods in n years is
m + n. Therefore

A, — p(1 + Z)™

m

Thus we have the important result for computing compound interest:

Suppose a sum of P dollars is invested at an interest rate per year of
r. If interest is compounded m times per year, and A, represents the
amount of the investment at the end of n years, then

A, = P(1 + Z)™. (7.37)
m

Note that the sequence of numbers

r\m r 2m r \3m

Ay =P(1+ LY, 4,=P(1 +L) , 4, =P(1+L) y en
m m

is a geometric sequence with a common ratio of (1 + r/m)™.

Suppose a sum of $1000 is invested at 8% interest compounded quarterly. What
is the value of this investment at the end of 10 years?

Applying formula (7.37) with P = 1000, » = 0.08, m = 4, and n = 10 gives

0.08 \4'10
A, = 1000 (1 + 098) = 1000(1.02)4° = 2208.04.

Therefore the value of the investment at the end of 10 years is $2208.04. Hl

Interest Compounded Continuously
In Eq. (7.37) m represents the number of times per year interest is compounded.

Compounding interest continuously implies that we are interested in what hap-
pens to A, as m becomes large. Let us concentrate on A, = P(1 + r/m)™,
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where P, r, and n remain fixed, and only m varies. Suppose we let x = r/m; then

m = r/x, and Eq. (7.37) can be written as

A, = P(1 + zy" = P(1 + x)™/* = P[(1 + x)V=]™. (7.38)

As m becomes large, x = r/m approaches zero. Thus we can ask what happens to
(1 + x)as x approaches zero? In Section 3.2 the number e was introduced as
the limiting value of f(x) = (1 + x)/* as x approaches zero (see p. 172). Thus, in

Eq. (7.38) we conclude that A, approaches Pe™ as m becomes large. This gives
the following result for interest compounded continuously:

If the sum of P dollars is invested at a yearly rate of r compounded
continuously, the value A, of the investment at the end of n years is
given by

A = Pem. (7.39)

Suppose $1000 is invested at 8 per cent. What is the value of the investment at
the end of 10 years if interest is compounded in each of the following ways?

a) Annually b) Daily ¢) Continuously

a) Substituting P = 1000, r =0.08, m =1, n=10 into Eq. (7.37) gives

A, = 1000(1 + 0.08)1° = 2,158.93.

b) Using Eq. (7.37) as in part (a) and changing m to 365 gives

A, = 1000(1 + 0.08/365)365'10 = 2,225.35.

¢) Using Eq. (7.39) with P = 1000, r = 0.08, and n = 10 gives

A, = 1000210009 — 2225.54.

The amount at the end of 10 years is $2,158.93 if interest is compounded annu-
ally, $2,225.35 if compounded daily, and $2,225.54 if compounded continuously.

ws

Note on calculator round off error: When calculations involve small or large
numbers, one must be aware of possible round off errors. Suppose in Example 4

we are interested in determining the value of the investment when interest is
compounded each minute. This is given by

0.08 )

525600
 A= 1000(1 +

Using a calculator that operates with 10-digit capacity gives A,, = 2223.12,
while one with 13-digit capacity gives A,, = 2225.54. The correct answer is

2225.54. If interest is compounded each second, the 13-digit machine gives
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Ao = 2224.99, while the correct result is 2225.54. Round off error is a topic of
major concern in numerical-analysis courses.

What rate of interest compounded annually is equivalent to 6% compounded
continuously?

Let r be the desired rate of interest. At the end of n years, P dollars will be worth
P(1 + r)"if interest is compounded annually at rate r and Pe%%" if compounded
continuously at 6%. We want to find r such that these two are equal. That is

P(1 + r)" — Pe0-06n

Dividing by P and then taking the nth root of both sides gives

1+ r= e006 or r=e%% _1=0.0618 = 6.18%.

Thus money compounded annually at 6.18% would yield the same amount as it

would if invested at 6% compounded continuously. w=

Present Value

In planning for future expenditure, whether for education, recreation, or retire-

ment, we often ask the question “What amount should be invested now in order

to accumulate a given sum at the end of n years?”. This amounts to solving for P
in Eq. (7.37) or Eq. (7.39), where A, is the given amount. Thus, if interest is

compounded m times per year,

 

P=A, (1 + Ly). (7.40)
m
 

If interest is compounded continuously,

P= Ae. (7.41)

We call P the present value of the final amount A, over n years.

How much should be invested now, so that the investment will be worth $10 000

at the end of 8 years if the interest rate is 6% compounded

a) Quarterly b) Continuously

a) Substituting A, = 10,000, r = 0.06, m = 4, and n = 8 into Eq. (7.40) gives

—4(8)

P = 10,000 (1 + 06) “® _ 6209.93.
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Thus $6209.93 invested now would be worth $10,000 in 8 years if interest is
compounded quarterly.

b) Applying Eq. (7.41), we get

P = 10000e—80-00 — 6187.83.

Therefore, $6187.83 invested now would be worth $10 000 in 8 yearsif interest

is compounded continuously. ]

Amortization refers to the elimination of a debt through periodic payments.
An amortization schedule shows the division of the payments into interest
charges and the reduction of principal. Let us illustrate by considering the prob-
lem of repaying a home loan, a topic that is or will be of interest to most of us.

Repaying a Home Loan
Suppose you get a loan from a bank for the purchase of a home, and you agree to
repay the loan in monthly payments over a period of years. If the agreed interest
rate is r, then in current banking practice this means you will pay interest at the

rate i = r/12 each month on the unpaid balance of the loan. This is equivalent

to a yearly interest rate of r compounded monthly. For instance, if the bank
advertises a rate of 15 per cent, it means that you pay interest at a rate

i = 0.15/12 = 0.0125 per month on the unpaid balance of the loan. The deter-
mining factor for most people in this situation is not the amount of interest paid
over a period of time but the amount the bank expects to be repaid each month.
Let us now derive a formula that will give the amount of the monthly payment.

For a loan of A dollars at an interest rate of i per month to be repaid over a

period of n months, what should each monthly payment R be? The bank looks
at the situation as follows: The sum ofA dollars now would be worth A(1 + 7)"

at the end of n months. The total value of n monthly payments, each of R

dollars, should also be worth A(1 + i)". That is, the total amount repaid, 7, at

the end of n months should be

T, = A(1 + i)".
Figure 7.2 illustrates the contribution of each payment of R dollars to 7, as

shown in the last column. Thus the total value of the n payments is given by

T,=R+R(1+i)+R1+i?+--- + RA +i)"2+ RQ +i)"

This is the sum of n terms of a geometric sequence, in which the first term is
a, = R and the common ratio is r = 1 + i. Using formula (7.13) gives

_ayr*—a;, RA +i)"—R R[(1+1)"—1]

"TT r—1 (14-1 i ’

Equating this value of 7, with that given by 7, = A(1 + i)", we get

R[(L +i)" —1] _: - Al +)"
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Contribution to
At the end

 

 

 

Interest: 2 months

of month 2 +++ (n=2) (n—-1) n T,

R R Ultimate R
_Payment R R R ——

Penultimate payment
| — R(1+i)

Interest: 1 month

Antepenultimate payment
| p pay > R(1+i)?

Second payment
 

Interest: (n—2) months

First payment  > R(1+i)"!
Interest: (n—1) months

Solving for R gives

Al +1)"

1+)" —-1"

By multiplying numerator and denominator by (1 + i)", we get

Al
1-1 +)

Therefore the monthly payment R on a loan of A dollars for n months at a

monthly interest rate of i is given by

R =

R =

 

AQ+m Ai

T+)" =1 1—-@Q+i)"
 (7.42)

 

What monthly payment is required by a bank on a 30-year loan of $48 000 at 12

per cent interest? Whatis the total amount paid on this loan at the end of 30
years?

Using formula (7.42) withA = 48 000, = 0.12/12 = 0.01, and n = 30(12) = 360,

we get

B= 48000(1.01)36°(0.01)

- (1.01)360 — 1

Evaluating by a calculator gives R = $493.73 as the amount to be paid each
month for 30 years. The total amount paid at the end of 30 years is

(493.73)(12)(30) = $177 742.80. oe



Section 7.6

Example 8

Solution

Exercises 7.6

Mathematics of Finance 405

Amortization schedule. For the loan discussed in Example 7, suppose we wish to
determine how much of each of the first three monthly payments contributes

toward reducing the principal and how much is interest.

At the end of the first month the interest due on $48,000 at 12% is

I, = 48 000(0.12)(75) = 480.

Thus $480 of the first payment of $493.73 is interest, and $13.73 is the amount
the principal is reduced. At the end of the first month we still owe
P, = 48000 — 13.73 = 47 986.27 dollars.

The interest paid during the second month is

I, = 47986.27(0.12)(s) = 479.86.

Therefore $479.86 of the second payment is interest and $13.87 goes toward

payment of the loan. At the end of the second month the amount remaining to
be paid on the principal is

P, = 47986.27 — 13.87 = 47 972.40.

During the third month,

I, = (47 972.40)(0.12)(3) = 479.72,

and so the monthly payment consists of $479.72 interest and $14.01 toward re-

duction of the debt.

Summarizing the above results in tabular form gives the first three entries of
an amorization schedule.
 

 

Month Amount of R Amount of R that Outstanding
n that is interest ($) reduces debt ($) principal ($)

1 480.00 13.73 47,986.27

2 479.86 13.87 47,972.40

3 479.72 14.01 47,958.39      
 

We see that the amount of monthly payment that goes toward the reduction of

the debt is discouragingly small. However, 25 years later the situation has re-
versed, and the amount that is interest is very small. J

 

In the following problems interest rates are given as rates per year. For instance a rate of

18% is 18% per year; the corresponding rate per month is (18/12)%, or 1.5%.

Problems 1 through 4 refer to simple interest.

1. What total payment is due on a loan of $800 for six months if the interest rate

is 10%?

2. What is the interest on $2000 for 9 months at a rate of 12%?



406 Functions on Natural Numbers

3. A home improvement loan of $4800 is to be repaid in 24 monthly installments, each

of $200 plus interest on the unpaid balance. If the interest rate is 15%, what is the
total sum to be repaid? (See Example 2.)

. Banks usually discount (deduct interest from the principal) before a short-term
loan is made. Borrowing $1000 for 6 months means that the bank will give you P
dollars now and you repay $1000 in six months. If the interest rate is 15%, what is
the value of P?

In problems 5 through 8, determine the value of the investment at the end of the given
number of years if interest is compounded in each of the following ways

a) Annually b) Quarterly c) Monthly d) Continuously

5.

7.

9.

10.

11.

12.

13.

14.

15.

16.

Principal of $2000 at 8% for 10 years. 6. Principal of $1000 at 12% for 20 years.

Principal of $2500 at 73% for 16 years. 8. Principal of $5000 at 81% for 24 years.

Suppose you perform a service for which you expect to be paid, and you are given

the choice of being paid (a) $1500 immediately or (b) by a note for $2000 payable in
three years. Assume that you do not need the money immediately, and that the

$1500 could be invested at 12% compounded monthly. Which would be the better
choice?

Suppose in problem 9 you are given the choice between (a) immediate payment of

$1500 or (b) a note for $2000 payable in 2 years. If you can invest the $1500 at 10%

compounded continuously, which would be the better choice?

What rate of interest compounded annually is equivalent to 8% compounded con-

tinuously?

What rate of interest compounded annually is equivalent to 8% compounded

monthly?

Suppose you purchase a home and need a loan of $40,000. If the bank advertises a

rate of 13%, what will the monthly payments be if you get

a) a 20-year loan? b) a 30-year loan?

Suppose you wish to borrow $25,000 from a bank at a rate of 12%. If your financial

situation is such that you can afford no more than $260 for your monthly payments,

will you be able to afford

a) a 30-year loan? b) a 25-year loan?

If $1000 is deposited at the beginning of each year for 20 years at 6% interest com-
pounded annually, how much will be in the account at the end of 20 years?

Suppose $100 is deposited at the beginning of each month in an account that pays

8% interest compounded monthly. How much will be in the account at the end of 10

years?

Chapter 7

 

7.7 Looking Ahead to Calculus
Limit concepts were introduced intuitively in Sections 2.7, 3.6, and 5.7. Let us
continue that discussion as it relates to functions with domain N, that is,

sequences.
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A sequence {a, }_, of real numbers is said to converge to a numberc if for
large values of n, the corresponding sequence numbers approach c.* The number
c is called the limit of the sequence, and we write

lima, = c.

As an illustration, consider the sequence given by a, = n/(n + 1). The first

few terms are given by

D
O

w
i
n

H
j

G
i
b

) ) )

Note that the sequence values are increasing as n increases, but they never

become greater than 1. Intuition leads us to conclude that this sequence con-
verges to 1, and we write

lim —"*  —
noo N+ 1

 

As another example, consider the sequence described by b, = n?/(n + 1).

The first few terms are given by
W
k
s

w
o 16 25

5» 62 °°"’D
j

) )

Here the sequence values increase as n increases. Note that they become indefi-

nitely large and do not approach any fixed number. We say that sequence {b, }:_,
diverges.

In the above examples, the sequence functions are relatively simple, and it
was an easy matter to decide intuitively whether or not the sequence converges.

In the following examples that is not so, but we can get some insights by evaluat-

ing the sequence functions for several large values of n and from these arrive at

conjectures concerning convergence. Proofs that our conjectures are valid must
be deferred to courses in calculus.

Does the sequence {n'/"}>_, converge?

The first few terms of the sequence are given by 1, \/2, V/3, V4, V/5, .... Let

f(n) = n1/" and make a table giving values of f(n) corresponding to large values
of n:
 

n 10 100 1000 5000 100000
 

   f(n) |1.259 1.047 1.0069 1.0017 1.000115
 

From the values of f(n) in the table we conjecture that the given sequence

converges to the number 1, and we write lim,n'/" = 1. a.

 

* The idea of convergence of sequences will be defined more precisely in calculus.
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A sequence function is given by f(n) = n sin #/n. Does the sequence converge?

The first few terms of the sequence are given by

fl) =sinm =0, f(2) = 2sin 5 =2, fd) = 3sin 3 = 2598, ....

The following table will give some insight concerning the behavior of f(n) for
large values of n:

 

n 10 100 1000 4000 1000000
 

  f(n) 3.090 3.141 3.1416 3.14159  3.141592654   
Looking at the values of f(r) given in the table, we conjecture that the

sequence converges to a number we recognize as being =. Therefore

. . qa
lim nsin — = 7. tam

nn—oo

A sequence is described recursively by a, = V2 and a,,, = V2 + a, for n = 1,
2,3, .... Build a table giving several values of a,, and make a conjecture about

the convergence of {a,}>_;.

The first few terms of the sequence are given by

a, =V2 a= V2H+ V2  as=V24+V24 VE...

These are expressed in approximate decimal form and included in the table:

 

n 1 2 3 4 5 6 7 8
 

a 1.414 1.848 1.962 1.990 1.998 1.9994 1.9998 1.99996    
From the values of a, in the table it appears reasonable to conjecture that

the sequence converges to the number 2. |

 

In problems 1 through 10, sequence functions are given. Make a table giving values of
f(n) corresponding to large values of n. Use your table to arrive at conjectures about

convergence of the sequence {a,}_,, where a, = f(n).

 

L fn) = Gn)» 2 fm) = (1+1) 3. fn) = (1-2) 4. fn = (1+ 2%)

5. f(n) = wan 6. f(n) = Ime 7. f(n) = n sin 27 8. f(n) = n tan=

9. f(n) = Vn(vVn +1 — Vn) 10. f(n) = (In n)/
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In problems 11 and 12, sequences are described recursively. Make a table giving the first

eight terms. Using the values of a, in your table, arrive at a conjecture concerning
lim

11.

12.

n—00 a,.

a,=V3anda,,,=V3+a,forn=123,...

a,=V5anda,,;=V5+a,forn=1,23,...
 

Review Exercises
In problems 1 through 4, a formula is given for the nth term of a sequence.

4
a) Find the first four terms. b) Evaluate >’ a.

k=1

1 1 1
1. =1-—= 2. mee 3. =3n-1 4, =—a, an a, gn—1 Qn n %n n(n + 2)

5. The first three terms of an arithmetic sequence are 3, 8, 13. Find the following.

a) The 24th term b) The sum of the first 24 terms

6. In an arithmetic sequence a, = 16 and a,; = —2, find the following.

20 n

a) ay, b) > a, c¢) The number of terms n such that >’ a, = —140.
k=1 k=1

7. Find the values of x such that x2, x, —3 are three consecutive terms of an arithmetic

10.

11.

12.

13.

14.

15.

16.

sequence.

. The first three terms of a geometric sequence are 3, 3, 4. Find the following.

a) The fifth term b) The sum of the first five terms.

. Suppose a sequence {a,}y_, is given by a, = 1 + 1/2".

a) Write out the first four terms.

b) Is this a geometric sequence?

¢) Find the sum of the first four terms.

In a geometric sequence, a; = 4 and r = . Find the number of terms n such that the
sum S, is 899.

Find the repeating decimal expansion for the following.

a) 1 b) c) &
Express the repeating decimal 0.727272... (that is, 0.72) as a fraction of two integers.

Provethat 3+ 9+ 15+ -.. + (6n —3)=3n2forn=1,2,3,....

Is 3n3 + 6n divisible by 9 for each n = 1, 2, 3, ...? Give reasons for your answer.

Is“3" < (n + 3)2forn = 1,2,3,...” atrue statement? If so, give a proof. If not, give

a counterexample.

Use the binomial expansion formula to expand (2x — 1/x)5.
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17. Evaluate:

Shr v (3) 9 (5) +)
18. Find the fourth term in the expansion of (x + 2y)&.

19. Suppose (x2 + 1/x)1% is expanded and the resulting terms are simplified. Find the

term that involves x8.

20. Find the sum of all positive integers less than 400 that are divisible by both 2 and 3.

21. Suppose sequence {a, }>_, is given by a, = (1 — 1/n)". Find the following and give
answers rounded off to five decimal places.

a) a b) aq, €) @1000 d) @14,000

22. Suppose $1000 is invested at 8% interest compounded quarterly. The accumulated
value A, of the investment at the end of n years is given by

A, = 1000 (1 + 008)" dollars.

Find the first four terms of the sequence {A, }7_,. Give results rounded off to the
nearest cent.

23. Suppose $2400 is invested at 7% per cent interest. Determine the value of the invest-
ment at the end of 12 years if interest is compounded in each of the following ways.

a) Annually b) Quarterly c) Continuously

24. What rate of interest compounded continuously is equivalent to 6 per cent com-

pounded quarterly?

25. Suppose you get a 30-year loan of $50,000 for the purchase of a house. If the rate of

interest is 12 per cent, how much are the monthly payments?

In problems 26 through 30, evaluate the given sums.

15 50 0 1 k © 1 k 5

26. > @k—1) 20. 3 Gk+2) 28 (5) 20. > 3(5) 30. 3 (2% — k)
k=1 = k=1 k=1k=1
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One of the significant contributions to the development of mathematics was the
introduction of coordinate systems, which provides a link between algebra and
geometry. In many cases, solution of a complex algebraic (or analytic) problem

can be achieved by considering it in geometric terms. Geometric insight provides
the key that is frequently not available in the algebraic setting. Similarly, many
geometric problems can be more easily analyzed by algebraic methods. The mar-
riage of algebra and geometry is referred to as analytic geometry.

We have already used methods of analytic geometry in earlier sections of
this book. Let us now explore some properties of well-known plane curves called
conic sections. These were studied as early as the third century B.c. by Apollo-
nius, who became known to his contemporaries as “The Great Geometer.”

Consider a surface in the shape of a vertical double right circular cone, as
shown in Fig. 8.1. The intersection of such a cone by a plane will be a curve, the
shape of which depends on the angle at which the plane is inclined. The cases of
interest to us are those illustrated in Fig. 8.2. In (a) the plane is horizontal, and
the resulting intersection is a circle; in (b) the plane is parallel to a line generat-

ing the cone, and the curve of intersection is a parabola; in (c) the plane is
inclined at an angle between those in (a) and in (b), and the corresponding curve
is an ellipse; in (d) the plane is vertical, and the intersection, which is in two

parts, is called a hyperbola.
The definitions that we shall use to describe these curves will be given in

terms of points, lines, and distances, rather than intersections of planes and
cones. We shall derive equations of the conic sections and see that in each case
we get an equation of the type

Ax? + Bxy + Cy + Dx + Ey + F = 0, (8.1)

where A, B, and C will not all be equal to zero. Just as we saw in Section 1.6 that

linear equations in x and y, such as ax + by + ¢ = 0, are associated with lines,
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Fig. 8.2

 

 

 

 

(a) (b) (©

so we shall see that quadratic equations in x and y, given by Eq. (8.1), corre-

spond to conic sections. It is possible to show that our definitions are equivalent
to the corresponding ones described in terms of intersecting cones by planes, but

it is not of interest to do so here.

8.1 CIRCLE; PARABOLA

Definition 8.1 A circle is the set of all points in a plane, each of which is a given
distance, called the radius, from a fixed point, called the center.

Suppose the fixed point is given as the origin (0, 0) and the given distanceis
denoted by r (Fig. 8.3). Then the set of points (x, y), each of which is a distance r

Fig. 8.3 Z 
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from (0, 0), must satisfy the equation

V(x — 02+ (y—02=r. (8.2)

Squaring both sides of Eq. (8.2) gives

 

x2 + y? = r2 (8.3)

Equation (8.3) represents a circle with center at the origin and radius r.
Now suppose we consider the general situation with the center at point

(Ah, k) and radius r (Fig. 8.4). The corresponding circle is represented algebrai-
cally by the equation

 

(x — Rh)? + (y — kb)? = r2, (8.4)
 

 

 

 
Equation (8.4) is called the standard form of the equation of a circle. The ex-

panded form of Eq. (8.4) is

x2 4+ y2 —2hx — 2ky + h2 + k2 —r2 =0. (8.5)

Note that this is a special case of Eq. (8.1) in which A =1, B=0, C=1,

D= —-2h, E= —2k, F=h2 + k%2_—r2
Here we have an instance of a geometrical figure (a circle) being represented

algebraically by Eq. (8.5). The process can be reversed. Suppose we have an
algebraic equation of the form

x22 4+y2+ax+by+c=0. (8.6)

The corresponding geometrical figure is a circle (or in a degenerate case it may
represent a single point or no points; see Example 4).
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Circle; Parabola
4 1 5

Draw a graph of the curve corresponding to the equation x2 4 y2 = 4.

The curve is a circle with center at (0, 0) and radius r = 2. The graph is shown in

 

 

Fig. 8.5.

X"2+Y"2=4

y

(0,2)

x
(-2,0) (2,0)

o, -2)

Graph of x? + y?=4 aS

Find an equation for the circle with center at (—2, 1) and radius r = 3.

Replacing 2Aby —2, k by 1, and r by 3in Eq. (8.4) gives (x + 2)2 4+ (y — 1)? = 32.
This can be written as x? 4+ y2 + 4x — 2y — 4 = 0.

Describe the curve given by the equation 4x2 + 4y%2 4+ 16x — 12y — 39 = 0.

We can write the given equation in the form of Eq. (8.4) by completing the

square on the x and y terms, as follows: First divide through by 4 and rearrange

terms:

x2 + 4x +2 — 3y =.

Completing the square on the x terms and on the y terms gives

(+4x +4) + (0-3 +P=F+4+1
(x +2) + (y — 3)? = 42

Comparing this with Eq. (8.4), we see that A = —2,k = §, r = 4; and so the given

equation represents a circle with center at (—2, 3) and radius 4. This is shown in

Fig. 8.6.
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LEX "2HL4RY 2+]6¥X-12%Y=39

 

 

 
Graph of 4x? + 4y2 + 16x — 12y — 39 = 0 a

What geometrical figure is associated with the following algebraic equation?

X2+y2+2x —4y + 8=0.

Our initial impulse is to conclude that the given equation represents a circle.
Completing the square on the x and y terms gives

(x +12 + (y — 2)? = -3.

It is easy to see that there are no real numbers x and y that will satisfy this
equation since the left side will always be a nonnegative number and cannot
equal —3. Since the given equation is equivalent to this one, we conclude that
there is no associated geometrical figure. Sn

Find an equation for a semicircle with center at (1, —3), radius 1, and points A

and B as endpoints of a diameter, where A:(0, —3) and B:(2, —3).

The point midway between A and B is (1, —3). Using Eq. (8.4) with A =1,
k= —3,and r =1 gives (x — 1)2 + (y + 3)2 = 1 as an equation for the given
circle. There are two semicircles with diameter AB (see Fig. 8.7), arc ACB and

arc ADB. In arc ACB, y > —3 and in arc ADB, y < —3. The equation of the

circle can be written in the form

(y+32=1-— (x —1)2
y+3==xV1-(x—-1)>2

y= —-3=% 2x — x2
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(X-1)"2+(Y+3)"2=1

 

y

| | ] | x

-1 0 1 2 3

—1}+

Cc: (1,-2)
-2 l-

A: (0, -3) ¢ ° B: (2,-3)
\ (1, -3) /

\ /
\ /
N 7

—4 + SN —e—

D:(1,-4) 
Graph of (x — 1)? + (y +3)?=1

Thus we have two equations: y = —3 + \/2x — x2 corresponds to arc ACB, and
y = —3 — V/2x — x? corresponds to arc ADB. Each of these describes a function

with domain equal to {x|0 <x < 2}. we

Parabola
Ourdefinition of a parabola is in terms of a given line D, called the directrix, and
a given point F, called the focus.

For a given line D and point F not on D, the corresponding parabola
is the set of all points havingthe property that P is equidistant
from F and D; that is, PF = PQ), as shown in Fig. 8.8, where @ is a
point on D with PQ perpendicular to D.

The line through F and perpendicular to D is called the axis of the parabola.

The point V, which is on this line and midway between F and D, is called the
vertex of the parabola.



418 Analytic Geometry: Conics and Parametric Equations Chapter 8

 

 

 
  

  

 

 

Fig. 8.8 x

Special case Suppose we consider the special case in which F is the point
(p, 0), where p # 0, and D is given by the equation x = —p, as shown in Fig. 8.9

(whichillustrates the case wherep > 0). If we apply Definition 8.2, the equation
PF = PQ becomes

Vix =p)? + (y — 0= V[x — (=p) + (y — »)

Vv

4

0: =p.) 4 — ——

| \
I \
| \

Fig. 8.9 ¢ 3 x
| (=p, 0) F:(p,0)
I

I
I
I

vD  
Squaring both sides and simplifying gives

2 = 4px. (8.7)
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Thus we have the following result: the equation y2 = 4px represents a pa-
rabola with vertex V:(0, 0), focus F:(p, 0), directrix D: x = —p, and axis y = 0

(the x-axis). Ifp > 0, then the parabola opens to the right; ifp < 0, the parabola

opens to the left.

Another special case If in the above discussion we had taken F as (0, p) and D

as y = —p, then the resulting equation of the parabola would have become

x2 = 4py. (8.8)

Equation (8.8) represents a parabola with vertex V:(0, 0), focus F:(0, p), directrix

D: y = —p, and axis x = 0 (the y-axis).
Ifp > 0, the parabola opens upward, as shown in Fig. 8.10(a); ifp < 0, then

the parabola opens downward as shown in Fig. 8.10(b). Parabolas represented by

Eqs. (8.7) and (8.8) are said to be in standard position.

  

  

y
y

0p el2
x

xX

EE53 he
(@p>0 (<0

Parabolas not in standard position Suppose F and V are not on the coordi-

nates axes, say F:(h + p,k) and D: x = h — p, where p # 0; this will give
V:(h, k) as the vertex, as shown in Fig. 8.11 (which illustrates the case for p > 0).

Also the axis of the parabola is y = k. If we apply the definition of a parabola,

PF = PQ becomes

Vix — (+ p)P + [y—kP = Vx — (Ah —D)F + [vy - 2
Squaring both sides and simplifying gives

 
 

 

(y — Rk)? = 4p(x — h). (8.9)
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D:x=h-

  pV

Equation (8.9) represents a parabola with vertex V:(A, k), focus F:(h + p, k),

directrix D: x = Ah — p, and axis y = k.
Ifp > 0, the parabola opens to the right, whereas ifp < 0 it opens to the left.
In an analogous manner, a parabola with a vertical axis is given by

 

(x — h)2 = 4p(y — k). (8.10)
 

Equation (8.10) represents a parabola with vertex V:(h, k), focus F:(h, k + p),

directrix: D: y = k — p, and axis x = A.
Ifp > 0 the parabola opens upward; ifp < 0 the parabola opens downward.

Figure 8.12 illustrates the case for p > 0.

 

y

® F: (hk +p)
|
|
I
|

T—1
I

| Vi(h,k)

x
I

4¢-—-———t———-———- | -_———— > 
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Solution
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Draw a graph of y2 = —6x. Give the coordinates of the vertex and focus and the

equation of the directrix.

First note that the given equation is of the form y? = 4px, therefore 4p = —6,
and so p = —3. Thus the given equation represents a parabola with focus
F:(—-3,0), vertex V:(0, 0), and directrix D: x = §. The graph is shown in Fig. 8.13.

 

  

Y "2=-6%X

y

4 4

I
|

|
|
I
I
I

| } | lx

—4 | 2 4

I

|
|
I
|
I
|

3
v D:x=3

Graph ofy= —6x |

Draw a graph of y2 + 2y — 8x + 25 = 0. Determine the coordinates of the ver-

tex and focus.

Completing the square on the y terms and rearranging terms gives

(y + 1)2 = 8(x — 3). Comparing this equation with that given by Eq. (8.9), we

conclude that the given equation represents a parabola with vertex V:(3, —1)
and focus F:(5, —1), since 4p = 8 and so p = 2. The graph is shown in Fig. 8.14.
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y "2+2%y-8¥X+25=0

 
Graph ofy>+2y—8x+25=0 Hh

Applications of Parabolas
There are numerous instances in which parabolas occur in applied problems. We
mention a few of them here.

Parabolic mirrors Parabolic mirrors are constructed by rotating part of a
parabola about its axis, for example, rotating the arc of y2 = 4px from point 0 to

point A about the x-axis as shown in Fig. 8.15(a).

y y

Fig. 8.15      
(a) (b)
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Suppose the surface of a reflecting telescope is a parabolic mirror, and we
take a cross section, as shown in Fig. 8.15(b), where F is the focus located at

(p, 0). If the telescope is pointed at a distant star, the incoming rays of light from
the star are essentially parallel to the axis of the parabola. An interesting prop-
erty of a parabolic surface is that each of the rays will be reflected through the
focus. This is proved in calculus. Thus the eyepiece of a telescope is located at
the focus to get a clear image of the star.

The same principle applies to parabolic radio telescopes. Also, in a spotlight
the reflecting surface is a parabolic mirror with the light source at the focus; this
produces a parallel beam of light.

Trajectories When an object (such as a golf ball) moves near the surface of the
earth under the influence of gravity only, its path is parabolic. Here we neglect
secondary factors, such as air resistance.

Suspension bridges A suspended cable hangs very nearly in the shape of a

parabola if the weight of the cable is negligible in comparison with the weight it
supports and the weight is uniformly distributed along the cable. Bridges sup-
ported by cables in this fashion are called suspension bridges. Most of the large
bridges in the world are this type. An example is the San Francisco Golden Gate
Bridge.

 

In each of the problems 1 through 12, identify the type of curve associated with the given
equation. If there is no curve, explain why not. If it is a circle, determine the coordinates
of the center and give the radius. If it is a parabola, determine the coordinates of its
vertex and focus and the equation of the directrix. Draw a graph of the curve.

L.x24+2—-9=0 2. 3x2 4+ 3y2 =16

3. 2 —-8x=0 4. x2 +8 =0

5. x2 4+y2 —2x +6y+6=0 6. x2 +2 42x +2=0

7. 4x2 + 42 — 12x —16y + 7=0 8. 3x2 +32 +8x—-6y+3=0

9. 4x +2 —-2y+9=0 10. x2 + 2x — 8 +9=0

11. 12x2 — 12x + 20y — 17 =0 12. 9y2 + 24y — 12x +28 = 0

In problems 13 through 16, determine the equation of a circle having the given center C
and radius r. Give the answer both in standard form and in simplified expanded form.

13. C:(2,4); r = 2 14. C:(-3,-1); r=3

15. C:(—2,0); r=2 16. C:(3, —%); r=3%

In problems 17 through 24, determine the equation of the parabola having the given
focus F, directrix D, or vertex V.

17. F: (2,0); D: x = —2 18. F:(0, =3); D: y=3

19. V:(0,0); F:(0, —1) 20. V:(0,0); F:(—4,0)
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21. F: (1,2); D: x = 3 22. F:(-3,1); D: x = —=5

23. V:(3, —4); F:(3,0) 24. V:(2, —1); F:(0, —1)

25. There are two semicircles having (—1, 0) and (3, 0) as diameter endpoints. Find the

equation and draw a graph of each. Does each equation define a function with x as

the independent variable?

26. There are two semicircles that have diameters with endpoints (0, 0) and (—4, 0).

Find the equation and draw a graph of each of them.

27. The parabola y? = —4x consists of an upper half and lower half. Draw a graph of
each half, and find the corresponding equation.

28. The parabola y?2 — 2y — 9x + 1 = 0 consists of an upper half and a lower half. Draw

a graph of each half, and find the corresponding equation.

29. Suppose a driven golf ball travels a distance of 200 meters as measured along the
ground, and during its flight it reaches a maximum height of 50 meters. Consider the
tee (point from which the ball leaves the ground) as the origin of a coordinate

system with positive x-axis along the ground in the direction that the ball takes.
Find an equation that describes the path of the ball, assuming that the path is

parabolic.

30. The diameter of a parabolic mirror is 20 cm, and it is 10 cm deep at its center. How

far is the focus from the vertex?
 

8.2 ELLIPSE
An ellipse is defined in terms of two given points and a distance, as follows:

Definition 8.3 Let F, and F, be two given points in the plane, and suppose & is a
number greater than the distance between F; and F,. The ellipse
associated with these given quantities is the set of all points P, as
shown in Fig. 8.16, such that

FP + FP=E. (8.11)

Fig. 8.16

Points F, and F, are called foci of the ellipse. The definition of an ellipse
states that the sum of the distances from a point P on the ellipse to the two foci
is constant. For instance, if a piece of string £ units long having endpoints an-
chored at F, and F, is stretched taut with a pencil and a curve is then traced, the
result will be an ellipse. The point midway between F; and Fi,is referred to as the



Section 8.2

Fig. 8.17

Ellipse 425

center of the ellipse. If the center is at the origin and the foci are on the x-axis or
on the y-axis, we say the ellipse is in standard position.

Ellipse in Standard Position

Foci on the x-axis Suppose the two foci are on the x-axis with coordinates
F,:(c,0) and F,:(—c, 0), where c > 0, and for convenience take 2 = 2a, where

a > c. Let P:(x,y) be any point on the ellipse, as shown in Fig. 8.17. If we apply

Definition 8.3 to this orientation, F,P + F,P = k becomes

V(x —¢)? + (y — 0)? + V(x + ¢)? + (y — 0)? = 2a. (8.12)
 

 

 

 
This can be written as

=)?= 2a — +c)?+
Squaring both sides of this equation and simplifying gives

aV(x + ¢)? + 2 = a® + cx.

Again squaring both sides, simplifying, and rearranging, we get

(a? — ctx? + ay? = a?(a? — c?). (8.13)

Since a >c¢ > 0, a? — ¢2 > 0. For convenience, denote a? — c? by b?%, where

b > 0. That is,

b = V a? — c? (8.14)

Then Eq. (8.13) can be written as b%x? 4 a?y® = a2b?. Dividing both sides by
a?b? gives the following standard form.

re += 1. (8.15)
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Thus Eq. (8.15) represents an ellipse in standardposition with foci on the x-axis
having coordinates F;:(c, 0), F5:(—c, 0), where a, b, and c are related by

c2 =a? — b2. (8.16)

The ellipse given by Eq. (8.15) is symmetric with respect to the x-axis, the
y-axis, and the origin. The x-intercepts are A:(a,0) and B:(—a, 0), and the

y-intercepts are C:(0, b) and D:(0, —b), as shown in Fig. 8.18. The line segment

AB is called the major axis, and each of the endpoints A and B is called a vertex
of the ellipse; the line segment CD is called the minor axis of the ellipse. Note
that a is always greater than b since a? = b? + c2Also note that the foci lie on
the major axis.

 

y

C:(0,b)

B:(—a,0) ~ ~ A: (a, 0)

Fy F ’

D: (0, —b) 
Foci on the y-axis Suppose we take the foci on the y-axis as F;:(0, c),

F,:(0, —c) and proceed as above; the resulting equation is

x2 2

S —1, (8.17)

where again ¢? = a? — b2.
The ellipse represented by Eq. (8.17) is shown in Fig. 8.19; the vertices are

A:(0, a) and B:(0, — a). The major axis is line segment AB, and the minor axis is

line segment CD. Note that Eqs. (8.15) and (8.17) are equations for ellipses in

standard form. The right side is always 1, and a? is the larger of the two denomi-
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A: (0, a)

 

D: (-b,0) C: (b, 0)

B: (0, —a) 
nators on the left side. Also the length of the major axis is 2a and the length of
the minor axis is 2b.

Draw a graph of x? 4+ 4y? = 16. Determine the coordinates of the vertices and
foci. How long is the major axis?

First write the given equation in standard form. Divide both sides by 16 to get

x2 py
16 + 4 — 1.

The larger of the two denominators is 16, so take a? = 16 and b? = 4. Thus the
vertices are given by V,:(4, 0), V,:(—4, 0). The major axis is on the x axis; hence

the foci are on the x-axis at (¢, 0) and (—c, 0). Substituting 4 for a and 2 for b into

c? = a? — b2 gives ¢ = 2/3. Therefore F:(2 V3, 0) and F,:(-2 V3, 0) are coordi-

nates of the foci. The graph is shown in Fig. 8.20. The major axis is the length of

the segment between V, and V,; its length is 8.

XT 2+4%Y"2=16

y

o
.

Vy: (—4,0) -2 2 Vi: (4,0)

 
Graph of x2+4y?=16
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Ellipse Not in Standard Position

Suppose the ellipse shown in Fig. 8.18 is moved horizontally and vertically (this
is called a translation) so that the center is located at a point (A, £) in the plane
(see Fig. 8.21). In this position the equation of the ellipse becomes

 

— h)2 — k)2(x ) LW ) _
 

 

= = 1. (8.18)

y

|

Lh, k + b)

Voi (h—a,k) Vii(h+a,k)

(h, k — b)

  
Equation (8.18) represents an ellipse with center at (A, k); vertices at

Viith + a,k), Vy:(h — a,k); foci at Fy:(h + c,k) and F,:(h — c, k). Again

c? = a? — b% The major axis is the line segment V,V,,.
Similarly, if the ellipse in Fig. 8.19 is translated so thatits center is at (A, &),

the corresponding equation is

 

— h)2 — p)2

S mL +0 = 1 (8.19) 

 

The graph of Eq. (8.19) is shown in Fig. 8.22. The vertices are V,:(h,k + a),
V,i(h, kB — a), and the foci are F:(h, k + c), F,:(h, k — c), where once again c is

given by ¢? = a? — b2.
Equations (8.18) and (8.19) are called standard form equations of an ellipse

with center at (h, k). If each of these equations is written in expanded form, the

result is an equation of the type

Ax? + Cy2 + Dx + Ey + F = 0,
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Vii(h,k +a)

(h—b,k) (h + b, k)

| Vai (hk — a)

  
where A and C have the same sign. If A = C, then the curve is a circle, which

can be considered as a special case of an ellipse where the foci F, and F;, coincide
(at the center of the circle).

Draw a graph of the ellipse whose equation is

9x2 + 4y2 — 18x + 16y — 11 = 0.

Give the coordinates of the center, the vertices, and the foci.

The first step is to write the given equation in standard form. Thus we complete
the square on the x terms and the y terms, as follows:

9(x2 — 2x) + 4(y* + 4y) = 11

(x2 —2x +1) +4(y> +4y+4)=11+9 +16

I(x — 1)? + 4(y + 2)? = 36.

Dividing both sides by 36 gives

 

(x —1)2  (y+2)? t—5 =!

Since 9 is the larger of the two denominators on the left, we take a2 = 9, b2 = 4.

This equation fits the standard form given by Eq. (8.19). Therefore the center is

at (1, —2); vertices are V,:(1, —2 + 3) = (1,1) and V,:(1, —2 — 3) = (1, —5). To

get the foci we need ¢, which is given by ¢2 =a%2 — 42 =9 — 4 = 5. Thus
¢ = V/5, and so the foci are F;:(1, -2 + v5) and F,:(1, —2 — V5). The graph is

shown in Fig. 8.23.
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GRY"2+4#Y "2-18¥X+16%Y-11=0

y

Vi: (1, 1)

 

  
—1)2 2

Graph of E=1L O22 =

Determine an equation of the ellipse with vertices V;:(1,2), V,:(—3,2) and

length ofminor axis equal to 3. Draw a graph and find the coordinates of the foci.

The given information suggests an equation of the type given by Eq. (8.18). We

need only the given information to make a sketch of the graph, as shown in Fig.
8.24. This will help in finding A, &, a, and b. The center will be halfway between

1 -3
V, and V,, which is the point C: (12, 2) or (—1, 2). Therefore h = —1

and k = 2. Also the distance between the two vertices is 4, and this equals 2a;

thus a = 2. The length of the minor axis is given as 3, and so 2b = 3 or b = 3/2.
Substituting this information into Eq. (8.18) gives

(x +12 (y—-22°
22 (3/2)2
 

as the desired equation. To find the coordinates of the foci, first determine c as
follows:

/ 2 o
c= Va? —- b= 2 (3) = s-2_ V1
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GEXT2HLELFY "2+1B*X64*¥Y+37=0

  

 

- —— 1: (1,2)

 
2 —9)2

Graph of “211 0-27 =1

Therefore the coordinates of the foci are

7 | 7
Fi (1 + 72) and Fe(-1- 27.2). rd

Applications of Ellipse

Elliptic domes Some buildings have domes that are elliptical in shape. The
interior of the dome can be considered to be formed by an ellipse that is revolved
about its major axis. Sound emanating from one focusis reflected from any point
on the dome through the other focus; thus a whisper at one focus can be heard

clearly by a person located at the other focus but not necessarily by others in the

room. A room with an elliptical-shaped dome is commonly referred to as a “whis-

pering gallery.” Both the Capitol in Washington and the Mormon Tabernacle in

Salt Lake City have whispering galleries. Historical rumor suggests that John C.

Calhoun was aware of this property of the Statutory Hall, where the House of
Representatives met in his time, and used it to eavesdrop on his adversaries.

Orbits Johannes Kepler discovered that the planets travel in (very nearly) an
elliptical orbit around the sun, with the sun at one focus. Artificial satellites
travel about the earth in elliptical orbits.
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Exercises 8.2

In problems 1 through 12, find the coordinates of the vertices and the foci for the given

ellipse, and sketch a graph.

 

LE 222
3. 9x2 + 2 =16 4, x2 + 2y?2 =16

7. (x +3)? + 16(y — 3)? = 16 8 4(x +14) + (y+ 25)2=4

9. 9x2 + 4y% — 18x — 27 = 0 10. 4x2 + 9y2 — 4x + 24y — 19 = 0
11. x2 +22 + 2x — 8 + 5=0 12. x2 + 4y2 — 8 —8=0

In problems 13 through 20, determine an equation of the ellipse described by the given
properties. In each case sketch the ellipse.

13. The foci are F;:(3,0), F,:(—3, 0), and vertices are V;:(5, 0), V,:(—5, 0).

14. The foci are F,:(0, 2), F,:(0, —2), and vertices are V,:(0, 4), V,:(0, —4).

15. The foci are (3,2) and (3, —2), and the length of the major axis is 6.

16. The vertices are (1,5) and (1, 1), and the length of the minor axis is 3.

17. The vertices are (3, —1), (—1, —1), and the ellipse passes through (1, 0).

18. The ellipse is in standard position and passes through points (3,1) and (1, V/3).

19. The center is at (3, —1), the major axis is horizontal of length 4, and a focus is at

(4.5, —1).

20. The center is at (—3, 0), one vertex is at (—3, 3), and the length of the minor axis

is 4.
 

8.3 HYPERBOLA
The definition of a hyperbola is similar to that of the ellipse in that two points
and a distance are given.

Definition 8.4 Let F; and F, be two given points in the plane, and suppose % is a
positive number less than the distance between F, and F,. The hy-
perbola associated with these quantities is the set of all points P
such that

FP — F,P = +k. (8.20)

The diagram in Fig. 8.25 illustrates two points P, and P, on the hyperbola where

F,P, — F,P, = —k and F,P, — F,P, = k. As with the ellipse, each of the given
pointsis called a focus, and the point C midway between F, and F, is called the
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center of the hyperbola. The line through F; and F; is called the principal axis of

the hyperbola. The two points at which the hyperbola intersects the principal
axis are called the vertices of the hyperbola. If the center is at the origin and the
foci are on either the x- or the y-axis, then the hyperbola is said to be in standard
position.

Hyperbola in Standard Position

Foci on the x-axis Suppose the foci are the points F:(c, 0) and F,:(—c, 0),

where c is a given positive number, and the constant k in Definition 8.4 is taken
for convenience to be £ = 2a, where 0 < a < c. If we apply the definition for this

orientation (as shown in Fig. 8.26). Eq. (8.20) becomes

F,P — F,P = 2a (for points such as P),

 

= 8.21
F,Q — F,Q = —2a (for points such as Q). ( )

That is, the hyperbola consists of all points (x, y) such that

V(x —¢)?2 + (y — 0)2 — V(x + ¢)? + (y — 0)? = *=2a. (8.22)

    ~ ~d

Fi: (c, 0)
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In the preceding section we encountered an equation similar to this (see
Eq. 8.12), which we simplified by squaring twice. In an analogous manner, Eq.
(8.22) can be written as

TET 1, (8.23)

where b? = ¢? — a?. Remember the distance between F, and F,, equal to 2c,is

greater than 2a, so ¢? — a2 > 0. When y = 0, x = =*a, and so the vertices are

given by V,:(a, 0) and V,:(—a, 0). It can be shown that the lines y = (b/a)x and

y = —(b/a)x are oblique asymptotes. This fact is useful in drawing the graph of
a hyperbola.

Foci on the y-axis If the foci are F:(0, ¢), F,:(0, —c), then the hyperbola is as

shown in Fig. 8.27, and its equation is the same as Eq. (8.23) with x and y inter-
changed,

a? b?
=1, (8.24)

 

 

    p F,: (0, —¢) 
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where again b? = ¢Z — a2. The vertices are V,:(0, a) and V,:(0, —a). The lines

y = (a/b)x and y = —(a/b)x are oblique asymptotes.

Example 1 Draw a graph of y2/4 — x2/9 = 1, and determine the coordinates of the vertices

and the foci.

Solution The given equation is a particular case of Eq. (8.24) witha = 2, b = 3, and so it

represents a hyperbola with vertices at V:(0,2) and V,:(0, —2). To determine

the coordinates of the foci, we need c; since ¢2 = a? + b2, ¢c = V4 + = V13.

The foci are given by F;:(0, V13), F,:(0, — V/13). The graph can be drawn by

plotting V, and V, along with several pairs of values of x, y that satisfy the
equation. Also it is helpful to draw the asymptotes y = (2/3)x andy = —(2/3)x,
as shown in Fig. 8.28.

FEY "2-4¥X"2=36

y

p Fi: (0, V13)   

   

 

Fig. 8.28 5 7 x

) Fy: (0, —VI3) 
22

Graph of yz 14-9

Hyperbola Not in Standard Position

Hyperbola with horizontal axis If the hyperbola shown in Fig. 8.26 is trans-
lated in such a way that the center is located at (A, £), as shown in Fig. 8.29, an
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equation for the resulting hyperbola is given by

 

(x —h)? (y—Fk)?

a? - b2 =
 1. (8.25)
 

The coordinates of the vertices are V,:(h + a, k), V,:(h — a, k), and the coordi-

nates of the foci are Fj:(h + c,k) and F,:(h — c, k), where c is given by

c? = a? + b2. The hyperbola has two oblique asymptotes; these are lines
through (A, £) having slope b/a and —b/a, respectively.

Hyperbola with vertical axis If the hyperbola shown in Fig. 8.27 is trans-
lated in such a way that its center is at (A, £), as shown in Fig. 8.30, the corre-

sponding equation is

 

(y—R? _ (x= hp _= = 1. (8.26) 

 

The coordinates of the vertices are V,:(h, 2 + a), V,:(h, k — a), and the coordi-

nates of the foci are Fj:(h,k + c) and F,:(h, k — c), where c2 = a? + b%. The

hyperbola described here also has two oblique asymptotes, the lines through
(h, k) with slope a/b and —a/b, respectively.
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Equations (8.25) and (8.26) are called equations of hyperbolas in standard

form with center at (A, k). If each of these is written in expanded form, the result

will be an equation of the type

Ax? + Cy? + Dx + Ey + F = 0,

where A and C have opposite signs.

Draw a graph of (x — 1)2/4 — (y + 1)2/9 = 1. Give the coordinates of the cen-
ter, the vertices, and the foci. Also give the equations of the asymptotes.

The given equation is a particular case of Eq. (8.25), and so the graph is a hyper-
bola with horizontal axis, where A = 1, k = —1, a = 2, and b = 3. The center is

at (1, —1); the vertices are V,:(3, —1), V,:(—1, —1). To determine the foci, we

need c, which is given by ¢ = \/4 + 9 = 1/13. Therefore the coordinates of the

foci are F):(1 + V13, —1), F,:(1 — V13, —1). The asymptotes are two lines

through (1, —1) having slopes § and — 3, respectively. The equations are given by

li: y — (=1) = (3/2)(x — 1),

which simplifies to 3x — 2y = 5; and

ly: 3x + 2y = 1.

The graph is shown in Fig. 8.31.
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Q¥X "2-4%Y"2-18¥X-B*Y-31=0

y

Fig. 8.31 x

—1)2 2
Graph ofea=1

bie

Example 3 Draw a graph of the hyperbola given by the equation 4x2 — y2 — 2y + 3 = 0.
Give the coordinates of the center, vertices, and foci. Also determine the equa-

tion of the asymptotes.

Solution By completing the square in y, we get

4x2 — (> + 2y) = —3

4x2 — (> +2y +1) = -3 —-1

4(x — 02 — (y+ 1)? = —4.

Dividing both sides by —4 gives an equation of the hyperbola in standard form:

(+1? (=-02
4 1

This is a particular case of Eq. (8.26) with h = 0,2 = —1,a = 2,and b = 1. The

hyperbola opens up and down (has a vertical principal axis) with center at
(0, —1) and vertices V;:(0,1) and V,:(0, —3). To determine the foci, first find c,
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using 2 = a? + b%, ¢c = V4 + = \/5, and so the foci are F:(0, —1 + V5),
F,:(0, —1 — V5). The asymptotes are two lines through (0, —1) having slopes

+2; that is, (y + 1)/x = 2 or (y + 1)/x = —2. Thus the asymptotes are

lyy=2x—-1 and [= -2x-1.

The graph is shown in Fig. 8.32.

4¥X "2-Y "2-2%Y+3=0

 

  
Graph of 4x?—y?-2y+3=0 a

Application of Hyperbola

The location of a distant source of sound can be determined by placing sound

receiving devices at different locations. Suppose two receivers are located at

points F; and F,, and suppose sound waves emanating from a source such as

thunder or a cannon arrive at F, and F,, at different times. The difference in these
times is sufficient to determine a hyperbola with foci at F; and F, on which the
sound source lies. If still another receiver (say, Fj) is used, then in a similar

manner its location along with that of one of the other receivers will determine a
second hyperbola on which the source lies. The intersection of these hyperbolas
will determine the location of the sound source, as illustrated in Fig. 8.33.



440 Analytic Geometry: Conics and Parametric Equations Chapter 8

Exercises 8.3

   
Sound source

Fig. 8.33

 

In problems 1 through 12, do the following.

a) Find the coordinates of the center, vertices, and foci of the given hyperbola;

b) Give equations of the asymptotes;

¢) Sketch a graph.

x2 y? xy
Log-7=1 2. r—16=1

3. 2 —8x2=16 4, x2 —2y24+16=0

(x —1)2 (y+1)? x? (y—=1)Jl D7+ JED
5 4 9 1 6 8 2

T.(x+22-(y—-12+4=0 8. 4x — 32 —20y +32 =4
9. x2 —4y2 4+ 2x +16y —19=0 10. 8x2 — 4y2 + 8x + 16y — 18 =0

11. 4x2 —y2 + 8x + 3y +14 =0 12. x2 —4y2 —12y + 7=0

In problems 13 through 20, determine an equation of the hyperbola having the given

properties. In each case sketch the hyperbola.

13.

14.

15.

16.

17.

18.

19.

20.

Foci F:(3,0); F,:(—3,0); vertices V;:(2,0); V,:(—2,0)

Foci F,:(0, 4); F,:(0, —4); vertices V,:(0, 2); V,:(0, —2)

Vertices V;:(3, 2), V,:(3, —2) and passing through the point (4, 4).

Center (—2,1); a vertex at (—2, 3) and focus at (—2, 4).

Center at (3, —1); a vertex at (1, —1) and a focus at (0, —1).

Foci (4,2), (—4,2); a vertex V,:(2,2).

Vertices V,:(3,0), V,:(—3,0) and asymptote y = x.

Vertices V:(0, 1), V,:(0, —1); and asymptote y = 2x.
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TRANSLATION AND ROTATION OF AXES
When a curveis given in the plane, the equation describing it will depend on the
position of the coordinate system we choose. Ordinarily we are interested in
using the coordinate system that will give us the simplest equation. On the other
hand, for a given equation graphing is frequently made easier by changing from
one set of axes to another. Transformations involving a translation or a rotation
of coordinates are often helpful.

Translation of Coordinates
Suppose we have two systems of rectangular coordinates, the x, y system and the
X, Y system, that are positioned so that the x-axis and the X-axis are parallel
and the y-axis and the Y-axis are parallel, as shown in Fig. 8.34. A change from
the x, y system to the X, Ysystem can be thought of as moving the axes horizon-
tally a directed distance A and vertically a directed distance k. Such a transfor-
mation is called translation of coordinates.

y Y

 

 

-
_
—
-

   
Each point Pin the plane has associated with it a pair of numbers relative to

the x, y system and a different pair of numbers relative to the X, Y system. In
order to avoid confusion as to which pair we mean, we shall use (x, y) to denote

the coordinates of a point in the x, y system and [X, Y] to denote the coordinates
of the same point relative to the X, Y system. For instance, in Fig. 8.35, @ is the
origin of the X, Y system and has coordinates (A, k) in the x, y system and [0, 0]

in the X, Y system. Similarly, the coordinates of O, the origin of the x, y system,

are denoted either by (0,0) or [—A, —&].

Let us first derive transformation equations that will enable us to determine
the name of a point in one system if it is known in the other system. Let point P
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Fig. 8.35
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Solution
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y Y

rrr———-— — ————0 P:(x,y)
I IXY)

|
Y |

I
|
{ X

7 0: (hk) |

k I
I

hn —X—

L l x
0 . (0, 0) Ne J

[—h, —k] r  
be any point in the plane. From the diagram in Fig. 8.35 we see that

ey (8.27)
y=Y + k.

Solving these equations for X and Y gives

a (8.28)
Y=y-—kFk

Equations (8.27) and (8.28) are called transformation equations relating the x, y

system and X, Y system of coordinates.

Suppose the x, y coordinate system is translated in such a way that the origin of

the new system is at the point (—2, 3).

a) Draw the new coordinates.

b) Give the transformation equations.

¢) Given points A and B as A:(3, 5) and B:[ —3, —1], locate these points in your

figure and label each with names in both coordinate systems.

a) The two coordinates systems are shown in Fig. 8.36, where O is the origin of

the original system and @ is the origin of the new system.

b) Substituting 2 = —2 and k = 3 into the transformation equation (8.27) and

(8.28) gives

x=X—2, X =x+ 2,
or

y=Y + 3, Y=y-3.
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Fig. 8.36

Example 2

Solution
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Y y

- 6 |

A: (3,95)
: J [5.2]

| | | | | | | X

0: (-2, 3) 3

° ’ — 2
B:(-5,2)

1 ] ] 1 1 | 1 l x

-5 —-4 -3 =-2 -10 1 2 3 
¢) For point A: x = 3, y = 5. Substituting these into the transformation equa-

tions X =x+2,Y=y—3gives X=3+2=5,Y=5—3=2 Thus the
point A:(3,5) can also be denoted by A:[5, 2]. Similarly, B:[ —3, —1] can be
written as B:(—5,2) by using the transformation equations x = X — 2,
y=Y + 3, where X = —3, Y = —1. Points A and B are shown in Fig. 8.36.

Ki

In Section 8.2 we saw that an equation such as

9x2 + 4y%2 + 36x —24y + 36 = 0

represents an ellipse. By a translation of coordinates, find a simpler equation for
this curve; then draw a graph of the equation.

First write the given equation in standard form by completing the square on the
x terms and the y terms, as follows:

9(x% + 4x) + 4(y?> — 6y) = —36

I(x? +4x +4) +4(y? —6y +9) = —36 + 36 + 36

 

9(x + 2)2 + 4(y — 3)2 = 36

(x +2? (y—382
1 5 =1. (8.29)

This form suggests that we should choose the X, Y system of coordinates such

that

X=x+ 2,

Y=y-3
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Fig. 8.37
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Then Eq. (8.29) becomes

Xz Y?
49

This is an equation for an ellipse in standardposition relative to the X, Y coordi-
nate system. The graph, relative to the X, Y system, can be quickly drawn. Now
sketch in the x, y coordinates using x = 0 and y = 0 to find the coordinates of the
origin of the x, y system relative to the X, Y system: X =0 + 2 =2 and
Y = 0 — 3 = —3. Therefore the origin of the x, y system has coordinates [2, —3],
and so we sketch the x, y axes through this point parallel, respectively, to the X
and Y axes. Figure 8.37 shows a completed graph. If the X, Y axes are erased (or
ignored), the graph relative to the original coordinates remains.

= 1.

QEX "2+4%Y "2+36#X~24*#Y+36=0

 

 

 

  
X

(-2, 3)

[0, 0]
—

1 | ] x

—-4 =2 oO, 0) 2 4

(2, -3]

Graph of 9x? + 4y? + 36x — 24y + 36 = 0 =

In this and preceding sections all the equations we have encountered are of

the form

Ax? + Cy> + Dx + Ey + F = 0, (8.30)

where not both A and C are zero. The type of curve represented by Eq. (8.30),

except for degenerate cases, is determined by the values of the coefficients A
and C:

Parabola: if A:-C = 0 (one of A or C is zero)
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Ellipse: if A+C>0 (A and C have the same sign)

Hyperbola: if A+-C <0 (A and C have opposite signs)

At the beginning of this chapter we indicated that the general quadratic
equation in x and y,

Ax? + Bxy + Cy? + Dx + Ey + F = 0,

represents a conic section, except for degenerate cases. In the remaining portion
of this section we shall illustrate how a rotation of coordinates can be used to
transform an equation of this form into an equation of the type given by Eq.
(8.30). The presence of the Bxy term, with B # 0, will suggest that the equation
represents a conic section with axes that are not horizontal or vertical. First let
us introduce the idea of changing coordinates by rotation.

Rotation of Coordinates
Suppose we consider two systems of rectangular coordinates in which the x’, y’
system is obtained by rotating the x, y system about the origin counterclockwise
through an acute angle 6, as shown in Fig. 8.38. Each point P in the plane can be
given either by coordinates relative to the x, y system or the x’, y’ system. In
order to avoid confusion,let (x, y) denote the coordinates of P relative to x, y and

(x,y) relative to x’, y'.

 

y

y'

mmm=A P(x)
~ I'\ x,y")

~~

rr IA
, | \ x

A

*
Fig. 8.38 8 [1 x

0 B 
Let r = OPand a be as shown in Fig. 8.38, where x’ = OA, y = AP, and

x = OB, y = BP. From right triangle OAP we have

x’ =rcosa and y = rsin a. (8.31)

Also from right triangle OBP we get

x =rcos(a + 0) and y = rsin(a + 6). (8.32)
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Using trigonometric identities (see 1.12, 1.14 on p. 279), we can write the equa-
tions in (8.32) as

Xx =rcosacosf — rsin asin 6,

y =rsinacosf + rcos asin 6.

Using (8.31), we can replace r cos a by x’ and rsin a by y’ to get

 

x = (cosf)x’ — (sinf)y,
(8.33)

y = (sinf@)x’ + (cos 8)y'.
 

The equations in (8.33) are transformation equations from x’, y’ to x, y associated
with rotating the x, y coordinate axes counterclockwise through an acute angle 6.

Solving the system of equations in (8.33) for x and y gives the corresponding
transformation equations from the x, y system to the x’, y’ system (see prob-

lem 20):

 

x = (cos6)x + (sin 0) y, (8.34)
y = (—sinf)x + (cosf)y.
 

Suppose the x, y system of rectangular coordinates is rotated counterclockwise
through an angle of 30°.

a) Draw a diagram showing the two systems of coordinates.

b) Locate points A and B, given by A:(4, 3) and B:{ —3, 5), and label them with

reference to each coordinate system; round off coordinates to two decimal

places.

a) The two systems of coordinates are shown in Fig. 8.39.

b) Locate points A and B by using A:(4, 3) and B:{—3, 5). The transformation

equations given in (8.33) and (8.34) are

v3, _1x = (cos 30°)x’ — (sin 30°)y =— — 77

V31
| y= (sin 30°)x’ + (cos 30°)y = —x' + —';

2 2

( 3 1

x’ = (cos 30°)x + (sin 30°)y = Ve, + 5

1 3
| = (—sin 30°)x + (cos 30°)y = — 5% +L } 
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~ A: (4,3)4

(4.96, 0.60)
le ® ,

xX

 
For point A: x = 4, y = 3; so

v= (2) ax (5) 5-006
2 2

= (1). v3). _y= 14+ (Y 3 = 0.60.

Thus A is also given by A:{4.96, 0.60) (rounded off to two decimals). Similarly,

for B:

V3 1

1 3y= (3) + (Ze — 2.83.
2 2

Thus the “name” of point B in the x, y system is (—5.10, 2.83). A

Suppose the x, y coordinate system is rotated through an angle of § = 45°. Find
the equation relative to the new system of coordinates that corresponds to
xy = 1. Draw the graph of this equation.

Substituting § = 45° into the equations in (8.33) gives

1 1
x=—7"-y), y=—72&+Y).

V2 V2 Y

Thus the given equation, xy = 1, becomes

LwoyyLw+y=1
V2 V2



448 Analytic Geometry: Conics and Parametric Equations Chapter 8

Simplifying this gives (x’)?2 — (»’)? = 2. In standard form this becomes

(x) ()

(VoR (Ver
We recognize this as the equation of a hyperbola with vertices at (V2, 0),
{—V?2,0), having asymptotes y’ = +x’. Note that y = x’ is the y-axis, and
y = —x’ is the x-axis. Now sketch the curve relative to the x’, y’ coordinates, as
shown in Fig. 8.40. Of course, this is also a graph of the original equation. Thatis,
the graph of xy = 1 is a hyperbola with the line y = x as the principal axis.

  

y

u Vii (1,1)
(V2,0)

45°
Fig. 8.40 | ! | | | | x

V, (-1,-1) ~
(=Vv2,  

Graphofxy = 1

Exercises 8.4 

In problems 1 through 4, suppose the x, y coordinate system is translated in such a way

that the origin @ of the new system is the given point.

a) Draw the two coordinate systems.

b) Give transformation equations corresponding to Eqs. (8.27) and (8.28).

c) Locate the points A:(3, 4) and B:[3, —2], and label each with names in both coordi-

nate systems.

1. Q:(1,3) 2. Q:(5,3) 3. Q:(2, —3) 4. Q

In problems 5 through 10, by a suitable translation of coordinates express the given
equation in terms of new coordinates giving an equation of the conic in reduced stan-

dard form. Use your result to draw a graph.

5. x2 4+2y2 +4x —8y —4=0 6. x2 4+6x—y+4=0

7.2 +4y—-3x+1=0 8. x2 —y2 — 4x +2y+8=0

9. x2 +y24+6x —2y+6=0 10. x2 + 4y2 —4x —8y —8=0

(=3, —-1)
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In problems 11 through 14, the x, y axes are rotated counterclockwise through an angle
of 45° to give a new set of axes (see Egs. (8.33) and (8.34)). Points are labeled (x, y) and

(x’,y') relative to the original and new axes, respectively. In each case a given point is
identified by a name relative to one of the coordinate systems. Find the name of the
point relative to the other axes. Round off results to one decimal place.

11. a) (0,0) b) (0, 0) 12. a) (1,2) b) (3,5)

13. a) (-3,2) b) (4, —1) 14. a) (3, —5) b) (3, —5)

In each of the problems 15 through 19, an equation of a curve is given relative to the
x, y system of coordinates. By a rotation of axes through the given angle 6, find the

equation of the curve relative to the new system of coordinates. Draw the original and
the new systems of

15. xy = 4; 6 = 45°

coordinates, and sketch a graph of the curve.

16. xy = —9; 0 = 45°

17. 2x2 + V3xy + y2 = 5; 6 = 30° 18. 2x2 — \/3xy + y2 = 20; 6 = 60°

—3
19. 34x2 — 24xy + 41y? = 200; § = Sin—

5

20. Solve the system of equations given by (8.33) to get the system in (8.34).
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Example 1

Solution

PARAMETRIC EQUATIONS
In many applications that involve a moving object in the x, y plane it is natural
to express the position of the object by giving the x and y values in terms of time

t. That is, x = f(t) and y = g(¢) determine the position (x, y) at any given time ¢.
As the object moves in the plane, it traces out a curve (or a path), and we say

that the curve is described by the equations

x =f), y=_g), (8.35)

where f and g are functions. These are called parametric equations of the curve,
and ¢ is referred to as a parameter.

In this setting, since ¢ represents time, we would implicitly assume in most
situations that ¢ > 0. However, there are many cases in which we shall not think

of a moving object and we want to talk about Eq. (8.35) in a broader sense; that
is, t may assume values in an interval that could include negative as well as
positive numbers.

Here we shall be content with illustrating through examples some of the

ideas related to parametric equations.

Draw a curve described by the parametric equations x = 4 — £2, y = ¢, where

0<t3.

First, construct a table of x, y values for several values of £; then plot the (x,y)

points and draw the curve, as shown in Fig. 8.41. Numbers in the table are
rounded off to two decimal places. If the given parametric equations describe the
path of a moving object, then it starts at point A, moves along the curve, and at
the end of three units of time is at point B.
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X=4-T°2, Y=T

y

B:(-5,3)

\ 3
t=3

2

1 |—

t=0
Fig. 8.41 | = 1

-6 -4 -2 0 2 A=(4,0) 6

Graph of x=4—-F£ and y =¢ L

Example 2 The parametric equations

x = cos i, y = sin 7t,

where 0 < ¢ < 4, give the position of a moving particle in the x, y plane. Assume ¢

is in seconds and x, y are in centimeters. Describe the motion.

Solution We draw the curve corresponding to the given parametric equations, using x, y
values from the following table. The curve is shown in Fig. 8.42. The particle
moves counterclockwise in a circular path (see problem 11) with center at the
origin and radius one centimeter; it starts at A (¢ = 0), moves to Bin 0.5 seconds,

then to C (¢ = 1), and so on until it has moved around the curve twice. It is at

point A at the end of four seconds.

 

t [0 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00 25 3 35 4
 

x |1 071 0 —-0.71 -1 -071 0 0.71 1 0 -1 0 1
 

y [0 071 1 0.71 oO -071 -1 -071 0 1 0 -1 0   
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Parametric Equations
45 1

X=COS(PI*T) & Y=SIN(PI*T)

 

 

y

B

Cc A
x

D

Graph of x = cos wt and y = sin mt oR

Draw a graph of the curve given by the parametric equations

where —1 <t <2.

As in the preceding examples, we make a table giving x, y values to be used in
plotting the curve. The graph is shown in Fig. 8.43. The curve described by the
given parametric equations appears to be a line segment joining points A and B.
In the following example we shall see that this is indeed so.

 X=1+2%T, Y=-1+T
0 05 10 15 20
 

 

    

 

A: (-1,-2)A

Graph of x =1+2tand y=—1+1¢ gm
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Solution

Fig. 8.44
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By eliminating ¢ in the parametric equations

x=1+2¢ and y=-1+41, -1<t<2,

determine the equation of the curve in terms of x and y.

Solving the second equation for ¢, ¢ = y + 1, and substituting into the first equa-

tion gives x = 1 + 2(y + 1). This is equivalent toy = 4x — 3. Since —1 <¢t < 2
andt = (x — 1)/2,then —1 < (x — 1)/2 < 2,and so —1 < x < 5. Thus we have

the line segment shown in Fig. (8.43), given by

y=3x-3 -1<x<6b. bc

Graph the curve given by the parametric equations

x = sin ¢, y = cos?t,

where t is any real number. Determine an equation in terms of x and y that

describes this curve.

We can eliminate the parameter ¢ by squaring both sides of the first equation,
x? = sin?, and adding this to the second equation:

x2 + y = sin?t + cos?t.

Since sin?t + cos?t is identically equal to 1, we get x2 + y = 1. This is equivalent
toy = 1 — x2, but it is necessary to restrict the values of x since x = sin ¢ and
—1 < sin t < 1. Therefore the points on the curve are given by

y=1— x2 -1<x<1.

This is an arc of a parabola, as shown in Fig. 8.44.

X=SIN(T), Y=(COS(T)"2

y

A: (0,1)

B: (1,0)
- X
 

 

1 
Graph of x =sin¢ and y = cost
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If the given parametric equations described a moving particle with time
t > 0, then the particle would start at point A (¢ = 0), move to point B (¢ = 7/2),

then back to A (¢ = 7), then to C (¢ = 37/2), then to A (¢ = 27), then to

B (t = 57/2), and continue moving along the arc of the parabola indefinitely.

=n

Exercises 8.5

In problems 1 through 5, draw the curve described by the given parametric equations. In

each case make a table (as illustrated in examples of this section) to get several points
(x,y) on the curve.

 

lL.x=¢ty=4-1,0<t<3 2. x=ty=V4—-12 —2<t<2

.x=Vt,y=V4—-10<t<4 4. x = coswt,y =sinwt, 0 < t <1

5. x=3+4+ty=2-t -3<t<2

In problems 6 through 10, the given parametric equations describe a moving particle
where time ¢ is in seconds and x, y are in centimeters. Draw graphs and use them to

discuss the motion of the particle.

6. x=1—-¢ty=t0<t<4 7.x =4cost,y=3sint,0<t<

8. x=1+4+4sint, y= —-3+2cost,0<t< 27 9. x = cos?wt, y = sin’nt, 0 < t < 4

10. x =sint, y =cos2t, 0 <t <7

In problems 11 through 16, eliminate the parameter and get an equation in terms of x
and y that describes the given curve. Be certain to give the restrictions on the x or y
values that must accompany your equation. Draw a graph of the curve.

11. x = cos nt, y = sin «wt 12. x =2 +sint,y = cost, 0 <t <5

13. x =1—-12,y=1+2t% —-1<t <2 14. x = cost, y=cos2t, 0 <t <7

15. x = tant, y = sec’, 0 < t <4 16. x = cost, y = sect, 0 < t <

17. By eliminating the parameter, show that the parametric equations

x=xy+ at, y=y,+ bt, tany real number,

where a and b are given numbers, represent a straight line.
 

Review Exercises
In problems 1 through 8, sufficient information is given to determine a conic section.

Write its equation. Give answers in

a) Standard form b) Simplified expanded form

1. Circle with center at (—2,1) and radius 4.

2. Circle with center at (0, —3) and radius /5.

3. Parabola with focus at (3,0) and vertex at (0, 0).
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J
O

O
U
= . Parabola with focus at (1, —2) and directrix y = 2.

. Ellipse with center at (1, 4), focus at (1, 2), and vertex at (1,0).

. Ellipse with foci at (4, —1) and (0, —1), and vertex at (5, —1).

. Hyperbola with center at (1, —1), focus at (4, —1), and vertex at (3, —1).

8. Hyperbola with vertices at (1, 3) and (1, —1) and focus at (1, —2).

In problems 9 and 10, find the coordinates of the center and the radius of the circle
corresponding to the given equation.

9.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

x2 4+y24+2x—4y+1=0 10. x2 4+ y2 —-2y —2=0

For the parabola whose equation is y = x2 — 2x, find the coordinates of the
(a) vertex and (b) focus, and (c) draw a graph of the parabola.

For the parabola whose equation is x2 — 2x + 2y — 5 = 0, draw a graph and label

the coordinates of the vertex and focus.

Determine the coordinates of the (a) center and (b) foci, and (c) draw a graph of the

ellipse given by

9x2 + 4y2 — 8y — 32 = 0.

Determine the coordinates of the (a) center and (b) vertices, and (c) draw a graph of

the hyperbola whose equation is

x2 —9y2 —4x — 5 =0.

Draw a graph of y = 1/4 — x2. What type of curve is this?

Draw a graph of y = 1 + \/4 — x2. What type of curve is this?

Assuming that each of the given equations represents a nondegenerate conic sec-

tion, identify the type of curve.

a) x2+2y—-3=0 b) 2x2 +42 —x+y=0

¢) x2 —»24+2x—-3y+1=0 d) 4 — x2 =y?

Transformation equations corresponding to a translation of coordinates are given

by
x=X—-1, y=Y + 2

a) Draw a diagram showing the two sets of coordinate axes relative to each other.

b) Label each of the origins relative to the (x,y) system and the [X, Y] system.

In each of the following, the name of a point P is given relative to one of the

coordinate systems described in problem 18. Locate P in your diagram, and deter-

mine its name relative to the other coordinate system.

a) P:(3,4) b) P:[—1, 2] c) P:[0, 3]

Each of the following is an equation of a curve in the x, y or the X, Y system of

coordinates described in problem 18. Determine the equation of the same curve

relative to the other coordinate system.

a) x2 +> +2x—4y+1=0 b) X2-2X-2Y-3=0

Draw a graph of the curve given in parametric equations by x = 2¢, y = V4 — 4¢2,

0<t<L1

Chapter 8
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INTRODUCTION
Many problems involve equations relating two variables. We have seen thatit is
helpful to have geometrical representations of such relationships, since these can

frequently provide insights that are not readily apparent from the equation it-
self. In some problems the situation is reversed in that we have a problem de-
scribed geometrically and it becomes useful to consider it in an algebraic setting,
which usually means an equation relating two variables. The form of the equa-
tion we get depends to a large degree on the reference (or coordinate) system we
decide to use. So far, all our geometrical representations have been relative to a
rectangular (or cartesian) system of coordinates. This has served us well for most

problems. However, there are situations in which a given geometrical problem
translates into a cumbersome equation when rectangular coordinates are used.

A system of coordinates known as polar coordinates can be particularly useful in
many situations.

As indicated at the beginning of this book, our geometrical considerations
are restricted to a given plane (in future courses the student will encounter
problems requiring three-dimensional geometry). A rectangular system of coor-

dinates begins with two perpendicular lines. It is customary to take these lines as
horizontal and vertical and call them the x-axis and y-axis, respectively. On each
axis we have a one-to-one correspondence between points and real numbers. This

provides us with a system that has a one-to-one correspondence between pairs of
real numbers (x,y) and points P in the plane.

For the system ofpolar coordinates we begin with a ray (half line), which we

call the polar axis; its endpoint is called the polar origin (point O), as shown in

Fig. 9.1.

0 Polar axis

v

Polarorigin

Let point P be any point (other than O) in the plane. Consider the ray OP

(see Fig. 9.2(a)) as the terminalside of the directed angle 8 obtained byrotating

the polar axis about point O through the angle of measure §. We call OP the 6

ray. If the distance from O to P is denoted by r, where r is a positive number,

then polar coordinates of P consist of the ordered pair r and 6, denoted by [r, #].*
This is shown in Fig. 9.2(b).

In many situations it is convenient to allow the first member of the ordered
pair [r,0] to be a negative number. Suppose we consider the ordered pair
[—r,0 + 7], where r is a positive number. The pair [—r, 8 + 7] represents the
point that is a directed distance of —r along the (§ + 7) ray; we interpret this as

 

We use the bracket notation [r, f] as the name of a point in polar coordinates

corresponding name (x,y) in rectangular coordinates.
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0 ray

P

0

oO Polar axis

 

(a) (b)

 

¥ 0 + = ray

meaning r units in the opposite direction, which is along the # ray. This puts us

at P:[r, 6]. Therefore both [r,6] and [ —r, # + =] are names in polar coordinates
of the same point P, as shown in Fig. 9.2(c).

It is clear that the # ray and the (0 + 27) ray are the same; so [r, 0] and
[r,0 + 27) represent the same point. In fact, the point P shown in Fig. 9.2 can be
represented by any of the ordered pairs [r,0 + 2k] or [—r,0 + (2k + 1)7],
where k is any integer.

The above discussion indicates how we name any point P in the plane in

terms of polar coordinates. The special case where P is the polar origin is de-
noted by [0, 8], where # can have any value.

Note that in polar coordinates we do not have the luxury we have in rectan-

gular coordinates, in which there is a one-to-one correspondence between points
in the plane and ordered pairs of real numbers. In polar coordinates each point P
can be represented by infinitely many ordered pairs; however, a given ordered

pair is associated with exactly one point. Although the lack of a one-to-one

correspondence is an undesirable feature of polar coordinates, it does not create
a serious problem.

We remind the reader that the definition of equality of ordered pairs is

given by

 

(a,b) = (c,d) ifand only if a=c¢ and b=d.
 

We retain this definition for ordered pairs [r, §], and we do not say that [r, 6]
equals [ —r,0 + 7] even though they both represent the same point.

For each of the following, draw a diagram to illustrate the given ray.

a) 30° ray b) 480° ray c) — or ray d) or ray
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480° ray

30° ray

oO oO
(a) (b)

oO o

5m 3
6 © g (d) -

In each of the following, give two other names for the given ray.

a) 45° ray b) «7 ray c) 2.5 ray d) —2.5 ray

a) 405° ray; (—315°) ray

b) 37 ray; —3= ray

c) (2.5 + 27) ray = 8.78 ray; (2.5 — 27) ray = —3.78 ray

d) (—2.5 + 27) ray = 3.78 ray; (—2.5 + 47) ray = 10.07 ray

In (c) and (d) the results have been rounded off to two decimal places. fe

Point P, shown in Fig. 9.4, is on the 30° ray at a distance 2 from the polar origin.
Give four different names for P in polar coordinates.

30° ray

oO

Any of the following pairs can be used as the name of point P:

[2, 30°]; [2, 30° + 360°] =[2, 390°]; [2,30° — 360°] =[2, —330°];

[—2,30° + 180°] = [—2, 210°].

Suppose point P is 3 units from the polar origin on the 77/6 ray. Let @ be the

point obtained by reflecting P about the line / perpendicular to the polar axis

and passing through the polar origin. Give four different names for in polar
coordinates.
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Solution From Fig. 9.5 we see that point @ is on the 117/6 ray and 3 units from O.
Therefore @ can be represented by any of the following ordered pairs:

pa} fogh [5 [ok

Fig. 9.5 oO

11m
—— ray

Example 5 In each of the following, draw a sketch to illustrate the point corresponding to
the given ordered pairs in polar coordinates.

a) [2,40°] b) [—3,580°]  ¢) 3 By d) [—4, —37].

Solution (Fig. 9.6)

580° + 180° ray

   

  

 

 

40° ray

[—3, 580°]

[2, 40°]

—t—t+—+— o —ttt
o

Fig. 9.6 (a) (b)
580° ray

—3m ray [—4, —3m]

+ i 1 ! * >
o
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In each of the following, a point is described relative to a polar axis with polar origin

O. Draw a diagram showing the given point, and then give four different ordered
pairs [r, #] that name the point in polar coordinates.

a) P is 3 units from O on the 50° ray.

b) Q is 4 units from O on the (—60°) ray.

c) Tis 2 units from O on the 540° ray.

. In problem 1, suppose each of the points P, @, and T is reflected about the polar
origin O to get new points P,, @,, and T}, respectively. For each of these points, give
an ordered pair [r, §] that can be used to represent the point in polar coordinates.

. In problem 1, suppose that each of the points P, @, T is reflected about the line
through the polar axis to get new points P,, @,, T,, respectively. For each of these
points, give an ordered pair [r, #] that corresponds to the point in polar coordinates.

. In each of the following, a point is described relative to a polar axis with polar origin
O. Draw a diagram showing the given point, and then give four different ordered

pairs of real numbers [r, ] that can be used to name the point in polar coordinates.

a) P is 2 units from O on the 27/3 ray.

b) @ is 3 units from O on the —117/12 ray.

c) T is 4 units from O on the 177/6 ray.

. In problem 4, suppose that each of the points P, @, T is reflected about the polar
origin to get points P,, Q,, T},respectively. For each of these points, give an ordered
pair [r, 6] of real numbers that is a name for the point in polar coordinates.

. In problem 5, suppose each of the points P,, @,, T; is reflected about the line through
O perpendicular to the polar axis to get points P,, @,, T,, respectively. For each of
these points, give an ordered pair [r, #] of real numbers that can be used to represent
the point in polar coordinates. How are P,, @,, T, geometrically related to P, Q, T of
problem 4?

. In each of the following, draw a diagram that illustrates the point corresponding to
the given ordered pairs.

a) [3,60°] b) [—4,45°] c) [—2,180°] d) [—3, —450°]

. In each of the following, draw a diagram showing the point that corresponds to the
given ordered pairs.

a) 44 b) [-3, Z| ¢) [2,177] d) [—2, —2.36].
3

. In each part of problem 7, the given pointis reflected about the polar origin. Give an

ordered pair of real numbers [r, §] that represents the new point in polar coordi-
nates.

In each part of problem 8, the given point is reflected about the line through the

polar axis. Give an ordered pair [r, 8] of real numbers that can be used to represent
the new point.
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GRAPHS IN POLAR COORDINATES
In earlier parts of this book we encountered a variety of problems in which an
equation was given in the form y = f(x), and then by means of a system of

rectangular coordinates, a graph (curve) corresponding to the given equation
was drawn. The analogous problem in polar coordinates is: Given r = (8), draw
a curve that corresponds to this equation.

Sketch the curve whose equation in polar coordinates is r = 2 sin 6.

We first determine several ordered pairs [r, #] that satisfy the given equation.
These are shown in the following table. Note that it is not necessary to continue

with larger values of 6, since sin(f + 7) = —sin # is an identity, and so

[7,0 + 7] =[2sin(@ + 7),0 + 7] =[—2sind,0 + 7].

Therefore

[r,0 + 7] =[—2sin6,0 + 7] and [r,0] =[2sin 6,0]

represent the same point.
In a similar manner we can show that negative values of # produce no points

that are not already included in the points given by 0 < 6 < 7.
We now plot the points given in the table and draw the curve shown in Fig.

9.7. The curve is a circle (see Exercise set 9.3, problem 11).

 

o
l
3

Ww
]
3

R=2%SIN(B)

 

~ o = 5  > > 5   

Example 2

Solution

Fig. 9.7 | JAgua

0
v

Graph of r = 2sin 6 _

Sketch the curve whose equation in polar coordinates is r = 1 + cos 6.

As in Example 1, we first make a table giving ordered pairs [r, 6] that satisfy the
given equation. Values of r are given in decimal form to two places. Since
cos(f + 27) = cos fis an identity, it is clear that we get no new points by consid-
ering values of # that are outside the interval 0° < 6 < 360°. Plot these points

and draw the curve, as shown in Fig. 9.8. The curve is an example of a cardioid.
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R=1+C05(6)
6 0° 45° 90° 135° 180° 225° 270° 315° 360°

r|2 171 1 0.29 0 0.29 1 1.71 2

Fig. 9.8 ] L_5

0 1 2 3

Graphofr=1+ cos 6 .

Example 3 Sketch the curve whose equation in polar coordinates is r = 3.

Solution As in the preceding two examples, first make a table of ordered pairs [r, 8]. The
variable # does not appear explicitly in the given equation; if this causes any
problems, we can write the equation in equivalent form as r = 3 + 0-6. The
value of ris 3 for every value of 6, and so the corresponding points are on a circle
with center at the polar origin and radius 3, as shown in Fig. 9.9.

R=3

Fig. 9.9 l ] ]

v

Graphofr=3 mm

Example 4 Sketch the curve whose equation in polar coordinates is r = sin 34.

Solution First note that sin 3(f + 7) = —sin 30 is an identity. Thus

[r,0 + 7] =[sin3(0 + 7),0 + 7] =[—3sind, 0 + 7].
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Also[r,0] =[3sin 6,0]. But [—3sin 6,8 + =] and [3 sin 6, § ] represent the same
point. Hence it is sufficient to use values of § in the interval 0 < § < 7, as seen in

the following table.

 

T 5 T Tm 2m 37 5 117r rT om 7
12 6 4 3 12 2 12 3 4 6 12
 

   r{0 071 1 071 O -071 -1 -071 0 071 1 0.71 0
 

Plotting the points given in this table and connecting them in the appropri-
ate manner gives the three-leaf rose shown in Fig. 9.10.

R=GIN (3%6)

4
: /
| / 7]
ly

|

 

F3]
Graph of r = sin 36

Note in Example 4 that r = 0 for values of 6 such as 0, 7/3, 27/3, and «7. In

each case the point is the origin, and the curve comes into the origin tangent to

the corresponding # ray (as shown in Fig. 9.10 for § = #/3). This illustrates a
general situation: If r = (6) and f(f,) = 0, then the curve comes into the origin

tangent to the 6, ray.

Sketch the curve whose equation in polar coordinates is given by r = —#6, where

6 > 0.

Note that the given equation implies that radian measure is to be used for # since

r is a real number. First make a table of ordered pairs [r, 0] that satisfy the
equation; # is given in exact form, and r is rounded off to two decimal places.
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Plotting these points and drawing a curve through them gives a spiral, as
shown in Fig. 9.11. The curve begins at the polar origin and, as 6 increases, winds

around in the counterclockwise direction, as illustrated.

 

3m 5 3m Tm
—_ T —_ — _ 2m
4 4 2 4| N

E
]

 

  r|{0 -079 -157 -236 -314 —-393 —471 550 —6.28  
 

R=-6,6>=0

Fig. 9.11
 v

 
Graphofr=—-60,6=0 -

Exercises 9.2

In each of the following, sketch the curve that corresponds to the given equation in
polar coordinates.

 

1. r = cos @ 2. r=3cosf 3. r=2 4. r = —2sinéf

5. r=1 + sinf 6. r=1—siné 7. r=1 — cos#é 8. r = 3 + sin%f + cos?d

9. r = sin 26 10. r = cos 30 11. r = cos?0 — sin2%f 12. r2 =4

13. r = cosf tan @ 14. r = sin2f 15. r = sin (0 + =) 16. r = cos(@ + 7)

17. r=1 + 2cosf 18. r=2 — sind 19. r = 0, where 6 > 0 20. r = 3, where 6 > 1
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RELATIONSHIP BETWEEN POLAR
AND RECTANGULAR COORDINATES
Suppose the polar axis is taken in such a way that it coincides with the positive
x-axis, as shown in Fig. 9.12, and let P be any point in the plane. The name of
point P is (x, y) relative to the x, y coordinate system, and [r, ] relative to the
polar coordinate system.

P: (x,y)

[r,6]

~<
I = 

The following equations give the relationship between rectangular and polar
coordinates:

 

x =rcosé, y = rsiné. (9.1)
 

 

rz = x2 + y?, tan § = 2. (9.2)

 

The equations given in (9.1) are transformation equations from polar to
rectangular coordinates. For each pair [r, 0], there is precisely one pair (x,y)
corresponding to it.

The equations given in (9.2) are known as the transformation equations
from rectangular to polar coordinates. Note that for a given pair (x,y) we can
get multiple pairs [r, 8], each of which represents the same point. Since r can be
taken as Vx? + ¥2 or as — \/x? + »?, and 0 satisfying tan § = y/x is multiple-
valued, we must be careful to match appropriate values of r and 6. Thisis illus-
trated in the following examples.
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In each of the following, find all ordered pairs [r, §] that are associated with the
given point in rectangular coordinates.

a) (3,4) b) (2, -1)

Solution a) We use Eq. (9.2) as follows (see Fig. 9.13): First find [r,0] where r > 0;

Fig. 9.13

b)

r= 3% + 42 = 5, and 0 satisfies tan § = 4/3, where 6 is in the first quad-

rant. Hence § = 53.13°. This gives the set of ordered pairs

A = {[5,53.13° + k-360°]|k is any integer}.

Now find [r,0], where r<0, r= —V3%2 4+ 42= —5, and 0 satisfies

tan § = 4/3, where 0 is in the third quadrant. This gives the set of ordered

pairs

B = {[-5,233.13° + k-360°]|k is any integer}.

Therefore the name in polar coordinates of the point associated with (3, 4) is

given by any one of the ordered pairs in the union of sets A and B, where 6
values are rounded off to two decimal places.

In a manner similar to (a), we have: For r > 0, r = V/(=2)2 + (—=1)% = /5,

and 0 satisfies tan § = 4, where 0 is in the third quadrant (Fig. 9.14). Thatis,

r=1V5and 8 = 3.61 + k- 27. For r < 0, r = —/5, and 0 satisfies tan = 1,

where 6 is in the first quadrant. That is, r = —\/5 and 6 = 0.46 + k - 27.
Therefore the point (—2, —1) is represented in polar coordinates by any of
the ordered pairs in the set

{[V5,361 + Ek - 27]|k any integer} U {[— /5,0.46 + k - 27]|k any integer},

where 6 values are rounded off to two decimal places.

 

  

y

4 P:(3,4) y

3r
r

2 + 6
-2 -1

1k Fig. 9.14 | AA x
0

0, ] [1 x | 7

0 1 2 3 “1k

(-2, -1)

oe 
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In each of the following, the given ordered-pair names a point P in polar coordi-
nates. Find the corresponding name in rectangular coordinates.

a) [4, 60°] b) [—3, 180°] c) 4 =3r| d) [—2, 2.48]

Use the equations in (9.1), which are valid for all values of § and r.

a) x = 4cos 60° = 4(1/2) = 2; y = 4sin 60° = 4(1/3/2) = 21/3. Therefore the
point in rectangular coordinates is given by (2, 21/3).

b) x = —3c0s180° = —3(—1) = 3; y = —3sin 180° = —3(0) = 0. Hence the

given point is (3, 0) in rectangular coordinates.

c) x = 4cos(—3n/4) = —21/2; y = 4sin(—37/4) = —2+/2. Thus the given

point is denoted by (—21/2, —21/2) in rectangular coordinates.

d) x = —2c0s248 = 1.58; y = —25sin 2.48 = —1.23 (to two decimal places).

Therefore [ —2, 2.48] is represented by (1.58, —1.23) in rectangular coordi-
nates. Lo

Find an equation in polar coordinates that describes the same set of points (same
curve) as x2 4+ y2 — 2x = 0 in rectangular coordinates.

Substituting x = r cos § and y = rsin § into the given equation gives

(rcos)? + (rsin)2 — 2(rcosf) = 0,

r?[cos?f + sin20] — 2rcos§ = 0.

This is equivalent to r2 — 2r cos = 0. Thus r(r — 2 cos) = 0, and sor = 0 or

r=2cosf. Since r = 0 gives only the polar origin as a point, and from
r = 2 cos 6 we get the point [0, 7/2], which is also the polar origin, we can ignore
r = 0 in our solution. That is, r = 2 cos 6 will describe the same set of points as
x2 4+y2—-2x=0. =

Find an equation in rectangular coordinates that describes the same set of

points in polar coordinates as

r=2sinf + cosé.

Since a direct substitution for r and 6 from Eq. (9.2) would involve replacing r
by Vx? + y?, it is simpler to first multiply both sides of the given equation by r:

r2 = 2rsinf + rcosé.

Now replacing r? by x? + y2, rsin by y, and r cos § by x, we get

x2 +5? =2y + x.

Note: In this example we should check the possibility that we may have intro-
duced some extraneous points by multiplying both sides of the given equation by
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r. This can occur only if we have multiplied by the value of r equal to zero. Since
r = O represents the origin, the only possible extraneous point is the origin. Thus
we must check to see if the origin is also a point on the curve represented by the
polar equation. We see that 2sinf + cos = 0 for § = Tan1(—3) = —0.46;
that is, [0, —0.46] satisfies the given equation, and so the origin is on the given
curve. =

Example 5 Draw a graph of the equation § = 2 in polar coordinates. Then find an equiva-

lent equation in rectangular coordinates.

Solution The graph of § = 2 is a line through the origin, as shown in Fig. 9.15. Since
tan § = y/x, the corresponding equation in rectangular coordinates is
tan 2 = y/x, or y = x(tan 2). In decimal form this is y = —2.19x.

 

Fig. 9.15

Exercises 9.3

For each answer that is to be expressed in decimal form, give the result correct to two

decimal places.

 

1. In each of the following, a point is given in rectangular coordinates. Find one name
of the point in polar coordinates.

a) (—1,1) b) (—1, — V3) c) (m4) d) (—1.57,2.43)
2. For each of the points given in problem 1, give the set of all possible ordered pairs

[r,0] that can be used as polar coordinates for the given points.

3. Express each of the following in polar coordinates with » > 0 and 0 < 6 < 27.

a) (-3,3) b) (1, 3) 0 (m.- +V5)
4. Express each of the following in polar coordinates, using the smallest positive angle

6 and r <0.

a) (4, -3) b) (— V3, V3) c) (2.52, —2m)
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5. Express each of the following in rectangular coordinates.

a) 2 z] b) - ,— Z| c) [2.24, —0.37]

6. Express each of the following in rectangular coordinates.

a) [0, 30°] b) [4, —630°] c) [—2,47°37']

7. In each of the following, determine whether or not the given pair satisfies the equa-

tion r2sin § = 1.

a) 12] b) -L _ z] c) | va.| d) [0, 0] e) [12]

8. In each of the following, the coordinates of a point P are given in rectangular
coordinates. Determine whether or not P lies on the curve whose equation in polar
coordinates is r = 1 + cos.

a) (0,0) b) (0,1) c) (2,0) d) (++2 2%)
9. Let [ry, 0,] be polar coordinates of point P and [r,, 8,] be polar coordinates of point

Q. Let d represent the distance between P and @. Show that d is given by
 

d = \/r? + r3 — 2r,r,cos(d, — 0,).

10. Use the result in problem 9 to find the distance between the given pairs of points.

TT 37a) [3,0], [r, 7] b) 1 7]. Ebn

c) [—34,32°], [1.6,47°] d) [24,32], [3.7, —0.64].

In problems 11 through 18, find an equation in rectangular coordinates that describes
the same set of points (same curve) as the given equation in polar coordinates.

11. r = 2siné 12. r = 4 cos fl 13. 30 =4 14. rcosf = 3

15. r(1 — sin) = 2 16. r(1 + cosf) = 2 17. r = 2 cos(f + 7) 18. r = cos 26

In problems 19 through 22, find an equation in polar coordinates that describes the same

set of points (same curve) as the given equation in rectangular coordinates. Then sketch

the curve, using the equation either in rectangular or in polar form.

19. x2 +2 =1 20. 2xy = 3 21. 3x —y=0

22. x2 + y2 +x = Va? + y?

23. Are all points on the curve whose equation is r = sin § also on the curve with

equation r csc # = 1? Give reason for your answer.

24. Express r = sin 26 as an equation in rectangular coordinates.

25. Suppose P is a point in the plane given in polar coordinates by [ —2, 7]. Is P on the
curve whose equation is r = 1 + cos §? Hint: P is also given by [2, 0].
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Review Exercises
In any problem in which both rectangular and polar coordinates are used, assume that
the positive x-axis coincides with the polar axis.

1. In each of the following, the name of a point is given in rectangular coordinates.

Give one name of the point in polar coordinates.

a) (1,0) b) (3,0) c) (4,4) d) (-2,2)

e) (—V3, 1) f) (V2, —V2) g) (0,4) h) (0, —3)
2. Find the name in polar coordinates for the given points. Give r and 6 (in radians) to

two decimal places with » > 0 and 0 < 6 < 27.

3. In each of the following, a name of a point is given in polar coordinates. Draw a
diagram illustrating the point, and then give the name of the point in rectangular
coordinates.

aT 5 97 — 372) [47] by [2,57] ¢) [4,7] a |-1,%] o [-3=]
4. Follow the instructions of problem 3. Give answers to two decimal places.

a) Ee or b) [—4, 3.47] ¢) [2.3, 1.35] d) B17] e) [3, —4.32]

In problems 5 through 12, an equation is given in polar coordinates. Draw a graph of the
corresponding curve.

5. r =siné 6. r2=16 7. r = 2sin(—§6) 8. r=cosf —1

9. r=3secl 10. r = cos 20 11. 2r = 6, where § > 0 12. r = sin 0 +3)

13. Find an equation in polar coordinates that describes the same curve as x2 + y? = 4.
Draw a graph of the curve.

14. Find an equation in polar coordinates that describes the same curve as
x2 + v2 + y = Vx? 4+ y2 Draw a graph of the curve.

15. Draw a graph of r(1 + cos #) = 1. Then find an equation in rectangular coordinates

that describes the same curve.

16. Draw a graph of rsin § = 3. Then find an equation in rectangular coordinates that

describes the same curve.
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INTRODUCTION
The system of real numbers is essential in the development of pure mathematics,
as well as in applications of mathematics. However, even such a simple problem
as finding the roots of the equation x2 + 1 = 0 has no solution in the set of real
numbers. To remedy this situation we introduce a number denoted by i (also
written as \/—1) with the property i2 = —1. Thus the solutions to x2 + 1 = 0
are ; and —i. Similarly, the quadratic equation x2 — 4x + 5 = 0, which can be
written as (x — 2)2 + 1 = 0, has no solution in the set of real numbers. However,

x —2=1iandx — 2 = —i give solutions 2 + i and 2 — i. The solutions in these
examples, called complex numbers, lead us to the following definition.

The set C given by C = {u + vi|u and v are real numbers} is called
the set of complex numbers.

Note that if we take v = 0 in Definition 10.1, the complex number u + vi
becomes simply u, a real number. Thus the set of real numbers R is a subset of

C. If we take u = 0 and v # 0, the resulting complex number is vi. Such a num-

ber is called an imaginary number. We shall refer to u as the real part and v as

the imaginary part of the complex number u + vi.
Basic properties of real numbers related to the four binary operations (+, —,

X, +) and the order relations (< and >) are discussed in Section 1.0 and

Appendix B. Now that the set R is extended to the set C,it is of interest to define
addition, subtraction, multiplication, and division of complex numbers. Since
R C C, we want these definitions to be such that when they are applied to real

numbers, the properties stated in Appendix B are still valid. In the system of
complex numbers, it is not possible to define an order relation similar to that of
“less than” for the real numbers; that is, we do not talk about one complex
number being less than a second unless both are real numbers.

First let us define equality of two complex numbers.

Suppose a, b, ¢, and d are real numbers. We say that the complex
numbers a + bi and c¢ + di are equal if and only if a = cand b = d.

Binary operations on complex numbers

Suppose a + bi and ¢ + di are two complex numbers, where a, b,c,

and d are real numbers. Their sum, difference, product, and quotient

are given by the following.

Addition: (a+ bi)+(c+di)=(a+c)+(b+d)

Subtraction: (a+ bi)—(c+di)=(a—c)+ (b—d)
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Multiplication: (a + bi): (c + di) = (ac — bd) + (ad + bc)i

arb (gre) (boa);
c+di \c2 +d? cz +dz)”’

where ¢ and d are not both zero.

Division:

Addition and subtraction as stated in Definition 10.3 appear to be natural,
but the definitions of multiplication and division require some explanation.

These are motivated by thinking of a + bi and ¢ + di as algebraic expressions to
which we can apply the familiar rules of algebra, except that we replace i2 by

—1. Thus for multiplication we have

(a + bi): (c + di) = ac + adi + bci + bdi?

ac + (ad + be) + bd(—-1)

= (ac — bd) + (ad + bc).

For division the first step in the following sequence involves multiplying the
numerator and denominator by ¢ — di; this gives the real number c2 + d? in the
denominator, as seen in the third step.

a+ bi (a+ bi)(c—di) ac+ bci— adi — bdi?
 

 

c+di (c+ di)c—di) c2 — d2i?

_ (ac + bd) + (bc — ad)i = (G5) (22):

- c? + d? “\e? + d? cz +d2]”

Actually, we shall follow the pattern above for multiplying or dividing two
complex numbers, rather than substitute into Definition 10.3.

In the process of division described above, the numerator and denominator
were multiplied by ¢ — di. We call ¢ — di the conjugate of ¢ + di.

Suppose z = x + yi, where x and y are real numbers. The conjugate
of z, denoted by Zz, is given by z = x — yi.

A complex number is in standard form if it is written as a + bi, where a and
b are real numbers. For instance, (1 + i)/i represents a complex number that

can be written in standard form as follows:

+i _ (A+) —i—  —i+1
EEa
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Square Roots

The square root of a nonnegative real number b is defined to be a number x
satisfying x2 = b. For instance, the square root of 4 is a number x satisfying
x2 = 4; there are two such numbers, 2 and —2. We choose 2 as the principal
square root and write \/4 = 2.

In a similar manner, we can talk about the square root of a negative real
number. For example, \/—4 is a number z satisfying 22 = —4. Since
(20)2 = 4i2 = 4(—1) = —4 and (—2i)%2 = 4i2 = 4(—1) = —4, we see that z = 2i

or z = —2i. We choose 2i as the principal square root of —4 and write
V—4 = 2i.

In general, suppose b is a positive real number. Then

V=b= bi.

Let us now recall the square root property for real numbers: If a and b are
nonnegative real numbers, then a/b = ab. This can be generalized to the

following.

Square root property

Suppose a and b are real numbers such that not both are negative.
Then VaVb = Vab.

Note that the conclusion stated in the square root property is not valid if
both a and b are negative numbers. For instance, if a = —3 and b = —12, then

V=3V=-12 = (V/3i)(V12i) = V/3V12i2 = V/36(—1) = —6;

whereas \/(=3)(=12) = 1/36 = 6.

Thus, whenever we have \/ —b, where b > 0, it is good practice to write it as

Vbi before performing algebraic manipulations. Thus is illustrated in the fol-

lowing example.

Evaluate (2 + VV —-3)(2 — V =3).

2+ V=3)2—-V=3)=(2+ V3i)2 — V38i) = 22 — (1/3i)?
=4-3i2=44+3="1. EE

From the above discussion note that we can determine the square root of

any real number. We could continue with the investigation of the square root of

any complex number a + bi where b # 0. For instance,it is a simple matter to
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2 V2.\ :
show that— + =i) = i (see problem 6a), and so we could define \/i as the

2 2, yo . . .
number ve 4 Ah However, it is not in our interest to pursue this matter

further at this point. See Section 10.5 for a discussion of roots of complex
numbers.

Write each of the following as complex numbers in standard form.

a) (3 + 41) + (5 — 8i) b) (2 —3t) — (—4 +1)
c) 3—4i)2 +1) d) 1-30) + (3+ 4)

a)B3+4)+(B5—-8)=(3+5)+(4—-8)i=8-—4i.

b) 2-3) —(—4+i)=2+4)+(-3—-1)i=6 — 41.

c)B3—4)2+i)=6+3i —8 —42=6—5i+4=10 — 5i.

1-3 (1-3)3—-4) 3-— 13; + 12:2
 d 1-3)+B@+4)=

 

3+4 (3+ 4i)3—4i) 9-162

_ 3-18-12 _ -9-13 _ —-9 13. -
9 + 16 25 25 25

Given that f(z) = 23 4 222 — 3, find f(1 + i).

fA4+i)=04+1)34+20+1)2-3=1+3+3i2+i3+2(1 +2 +1? —3

=14+3i—-3—-i+2+4+4—-—2—-—3=—-5+ 61.

Note that we used the familiar rules of algebra, treating ¢ as though it were a
variable and replacing i2 by —1. we

Given that z = 2 — i, find the following.

  

a) Z b) z-2 0) Z

a) z2=2+1

b) 2:2=02—-i)2+i)=4—i2=44+1=5

Z 241 @24+0Q2+i) 4+4i+i2 444-1 3 4.
© ETTeer i_z ~ 4+1 571% -

Find the roots of 222 4+ 2iz — 1 = 0.
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We apply the quadratic formula* to get

 

—2i += (2)? — 4(2)(-1) 20+ V-4+8 1. 1

- 2(2) - 4 2 2

Therefore the roots are given by 2 =4 — i and 2 = —1 — 1. a

Is 1 + V/3i a zero of the polynomial P(z) = 22 — 22 + 4?

To answer this question, we evaluate P(1 + 1/3i) to see whether the result is

equal to zero:

P(1 + V3i) = (1 + V3i)2 —2(1 + V3i) + 4
= (1+ 2V3i + 3i%) —2—2V3i + 4

=1+4+2V3i—-3-2-2V3i+4

=(1-3-2+4) + (2V3 -2V3)i
=0+4+0:=0.

Therefore the answer to the question is yes. i]

 

Express answers in a + bi form, where a and b are real numbers.

1. Evaluate each of the following.

 

a) i b) i¢ ¢)i% dy 17
e) (—i)3 f) (=i)° g) (=i)? h) (=)

2. Evaluate each of the following.

1 3+1 ‘4 _ 9720 1a) I b) 3 c) 2 3i d) =D

3. Evaluate each of the following.

a) V9: 16
V9
 d

) —16

a) 22

 

b) V9V-16 c) V-9V-16

e) ———9 f) — —9
V16 V/—16

4. Evaluate each of the following for z = 1 — i.

b) = 0) 322 — 22°

e) (2)3 f) z +2d) z-z

 

* It can be shown that the quadratic formula is valid for quadratic equations whose coefficients are
complex numbers.
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5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Given that f(z) = 2 — 32 — 22, evaluate each of the following.

a) f(—2) b) f(1 + i) c) f(

. Show that the following are true.

a) (+5)= b) (Js 25)= _i

Show that the following are true.

V3 1.) 1 V3.)

Given that f(z) = 22 + iz — 3, evaluate the following.

a) f(1 +1) b) f(—3i)

Express each of the following in standard a + bi form.

a) V—4+ (3 -5V—-4) b) (V—48 +2) — V/-27 c) V-82 + V-=-2)

1 Vo)
d) (1 —8)(1 — v8 e) —— f) ——) (1+ V=8)(1 V=8) a )

In each of the following, determine the roots of the given equation.

a) 22 -324+4=0 b) 322 +2 —-1=0 c) 224+416=0

Determine the roots of the given equations.

a) 222 -3iz+2=0 b) 224+ 2iz4+3=0

c) 22-32+1=0 d) 2i22+2z2+4+i=0

Given that z = x + iy, where x and y are real numbers, prove the following.

2+ 2
a) The real part of z is equal to 5

2-2

21
 b) The imaginary part of z is equal to

Determine real numbers x and y that satisfy the equation

x—3y— Bx +y)i=-7+1

Solve the equation z — 3Z = 1 + i for z. Hint: let z = x + iy; then find x and y.

Determine all pairs of real numbers x, y such that x2 + 2x + yi = 2 + y + (8 — x)i.

a) Is 1 + i a root of the equation 22 —z +1 — { = 0?

b) Is 1 — i a root of the equation given in (a)?

Is —3i a solution of the equation 223 — 22 + 182 — 9 = 0?

Is 1 — \/5i a zero of the polynomial given by f(z) = 23 — 22 + 4z + 6?

a) Is 1 — i a root of the equation 23 — 322 + 22 — 1 — i = 0?

b) Is 1 + i a solution of the equation given in (a)?
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20. a) Is 1 + /3i a solution of the equation 23 — 322 4+ 62 — 4 = 0?

b) Is 1 — V/3i a root of the equation given in (a)?

In problems 21 through 25, evaluate the given expressions, where f and g are functions

with domain C and defined by f(z) = 2z — 1, g(2) = 22 + =.

21. (f+ &)(1 — i) 22. (f-2)1 + V=3) 23. (2) 0)
24. (fog)(1 +10) 25. (gof)(1 +1)
 

10.2 GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS
The set of complex numbers C is given by

C = {x + iy|x and y are real numbers and i? = —1}.

We can establish a correspondence between C and the set of points in the plane
in a natural way: For each complex number x + iy, associate the point (x,y) in
the plane, and indicate this correspondence by

x+y «> (x,).

In this setting the plane is referred to as the complex plane, where points are
labeled either by (x, y) or by x + ty. The real numbers are associated with points
on the x-axis (x « (x, 0)), and the imaginary numbers correspond to points on
the y-axis (yi « (0,y)). Thus the x-axis is called the real axis, and the y-axis is
referred to as the imaginary axis. Some examples of this correspondence are
illustrated in Fig. 10.1.

Imaginary axis

 

4 |—

-34+3i
° 3¢ 3i

4+ 2;
2 °

1+

Fig. 10.1 | | l l | | L Real axis
-4 -3 -2 -1 1 2

° -1 +
—2—1i

-2 ¢ —2

- °
2-3;

4} 



Section 10.2 Geometric Representation of Complex Numbers 479

In some problemsit is useful to associate each complex number with a geo-
metric vector, as shown in Fig. 10.2(a), in which the origin is the initial point and
x + ty is the terminal point. Figure 10.2(b) illustrates some examples of this
correspondence.

x + iy -2+4i i

Fig. 10.2 1 1 | |

  
(a) (b)

Representation of complex numbers by geometric vectors provides us with a
convenient geometric interpretation of the sum of complex numbers. The sum

(a + bi) + (c + di) is associated with the geometric vector represented by the
diagonal of the parallelogram illustrated in Fig. 10.3.

 

(a+ bi) + (c+ di)
b+d —————————— TT TT TTT TT T=

5 _ 77 |

dr-=—===~"- Ta 7 |c+ di , ‘

/
/ |

nd
ft___

ja + bi |

Fig. 10.3
a a+c 

Example 1 For each of the given complex numbers, show the corresponding point (x,y) in

the complex plane. Also, draw the corresponding geometric vector.

a) 5 + 3i b) —3 + 3i c) 7 — 2 d) 3i
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Solution (Fig. 10.4)

5
5,3(-2 J (0,3) 5.3)

243i 5+ 3i

Fig. 10.4 ] ] ] ] | | ] ]

(, -2)

w™—2 om 
Example 2 Illustrate each of the following by a diagram using geometric vectors.

a) (4 +2) + (1+ 3) b) (1-4) +(=2+1) ¢) (B+) — (1+ 3)

Solution The solutions are shown in Fig. 10.5, where in (c) we use

B+) —1+3)=0B+1) + (-1- 3).

 

  

   

i | 1+3i

-2+1 B 34

Fig. 10.5 11 LL L111 11 Ll |

u \ A\ \,/
— \ 4 2-2

~ SEA a F
~ FY 1-4 1-3

(a) (b) (©) .

Exercises 10.2

In problems 1 through 8, give the ordered pair of real numbers associated with the given
complex number.

1. 3 + 5i 2. —3 +1 3. 4i 4. \/5

4+ 2 6. 1 — mi 7. i(1 — V/—4) 8. —

 

1-1
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In problems 9 through 12, give the complex number associated with the given ordered
pair.

9. (0, —4) 10. (5,2) 11. (—4, —3) 12. (V2, —V/3)

In problems 13 through 16, illustrate the given complex number by drawing the associ-
ated geometric vector.

13. —1 + 3i 14. —4 — 5i 15. — V2 +i 16. —
— 2i

In problems 17 through 20, illustrate geometrically the given sum or difference.

17. (2 + 3) + (6 +17) 18. (1 — 3i) + (4 + 27) 19. (4 — i) — (3 + 51) 20. (2 — 31) — (5 + 21)

21. Given that z = 3 — 4i, on the same set of axes show the points associated with the

 

 

following.

a) z b) —=z c) z Q 242

2-2 =£ .e) 5 ) Vz+2

22. Given that z = —1 + i, give the ordered pairs corresponding to the following.

a) 2? b) (2)? c) > d) 22 +2 + 1

23. Given that z = —1/2 + (1/3/2)i, draw the geometric vector associated with the

following.

a) z b) 2? c) d) Vz 2 
(2)?

24. Let z = 2(1 + V/3i). Express each of the following in standard form.

a) z2 b) 23 c) z* d) 2°

25. Suppose point P:(x,y) is associated with the complex number x + iy. State the
conditions on x and y that characterize each of the following.

a) P is on the positive real axis. b) P is on the imaginary axis.

¢) P is in the first quadrant. d) P is to the right of the imaginary axis.

e) P is below the real axis.

10.3 TRIGONOMETRIC FORM FOR COMPLEX NUMBERS
We continue the development of the preceding section, in which complex num-
bers are represented as points in the complex plane or as geometric vectors.
Suppose x + iy is associated with point P:(x,y) in the complex plane, as shown
in Fig. 10.6. Let r denote the distance from the origin O to P, and 6 the directed
angle that OP makes with the positive real axis. Since cos = x/r and
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P: (x + iy)

(x,y)

I 
sin = y/r, we have x = rcos# and y = rsin 6. Hence

 

x +1iy=rcosf + irsinf = r(cosf + isin @).
 

The result, r(cos 6 + isin 8), is called the trigonometric form or the polar form
of the complex number z = x + ty. The real number r is given by

r= a+?
and is called the absolute value or the modulus of z; it is frequently denoted by

|z|. Since r is the length of the geometric vector associated with z, it is sometimes
referred to as the length of z.

The angle 6 is called an argument of z and is denoted by 6 = arg z. It is
determined by the two equations

Xx
Y and cos =

or by tan § = y/x, with proper quadrant selection for 4.

Note that # is not unique, since we can add or substract any integral multi-
ple of 27 (or 360°) to a given 6, and the resulting angle can be used in place of 4.

The smallest nonnegative angle that can be used for § is sometimes called the
principal argument of z. Also, note that

sin 0 =

zZ=(x+iy)(x — iy) = x2 — 122 = x2 + y%2 =r?

and so

In the special case where P is the origin (0, 0), we take r = 0 and do not

specify any particular corresponding value of 6.

Representing complex numbers in trigonometric form is particularly useful
in problems that involve multiplication or division.
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Multiplication of Complex Numbers in Polar Form
Let 2, = ry(cos fd, + isin f,) and 2, = ry(cos 0, + isin §,) be complex numbers
in polar form. Let us consider the product z, + z,, using the polar-form expres-
sions.

2,29 =ry(cosf; + isin f,) * ry(cosf, + isin f,)

= ryry[(cos 8, cos 0, — sin, sin §,) + i(sin 6, cos f, + cos 4, sin 6,)]

riro[cos(d, + 0,) + isin(f, + 6,)],

where in the last step we used identities 1.12 and 1.14 of Chapter 5. Therefore

 

2,2, =riry[cos (0, + 0,) + isin(d, + 0,)]. (10.1)
 

From Eq. (10.1) a geometric interpretation of the product of two complex
numbers can be given: 2, * 2, is a complex number and has length r,r, and argu-
ment 6, + 0,. This is stated as follows:

 

12125] = 124] © |24] and arg(z,z,) = arg z, + arg z,. (10.2)
 

Note: The addition of arguments in the product of complex numbers suggests
that a complex number can be expressed in exponential form. This is indeed true.
In advanced mathematics courses one learns that z can be expressed as
z = ret? where eis the irrational number 2.71828. . introduced in Section 3.2.

Division of Complex Numbers in Polar Form
Let z, and z, be complex numbers expressed in polar form, as above, and suppose
2, #0. Then

 

21 _ Micos(d, — 8,) + isin(, — 6,)]. (10.3)
29 To
 

The proof of Eq. (10.3), which is similar to that of (10.1), is left as problem 1.

From Eq. (10.3) note that the modulus and argument of z,/z, are given by

 

al _ Al= and arg (2) = arg z, — arg 2,. (10.4)
|2,] z2  29
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In Examples 1, 2, and 3, complex numbers z,, z,, 25, and z, are given by

2, =1+41, 2, = V3 — i, 2; = —2 — 21/34, 2, = —3 + 4.

Express the following in polar form.

a) 2, b) z, c) 23 d) z,

a) r, = |z,| =+= \/2, and 0, = n/4 = 45° (see Fig. 10.7(a)). Therefore

2, = v2(cos Z + isin)

= V/2(cos 45° + isin 45°).

b) r, = | 2, = V(V/3)2 + (=1)% = V4 = 2, and 6, = 117/6 = 330° (see Fig.

10.7(b)). Thus

2y = 2(cos 127 + isin 117)

= 2(cos 330° + isin 330°).

c¢) From Fig. 10.7(c) we see that

zy = 4(cos 27 + isin 47)

= 4(cos 240° + isin 240°).

 

 

 

  

 

21 = 1+i 1m

| 6 TN V3
LU]

| —1
2

m |
4 1

0 1 z,=V3-i

(a) (b)

24 = 3+ 4

|

5
4 |

|
| 2.2143

0 A
-3   

(© (@)
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d) From Fig. 10.7(d) we see that §, = Cos™!(—32) = 2.2143 = 126.87°. Therefore

2, = 5(cos 2.2143 + isin 2.2143)

= 5(cos 126.87° + isin 126.87°). mm

Find the following. Express each answer both in polar form and in rectangular
form. Use two-decimal place values for approximate answers.

a) z,°2, b) 25-2, C) 2,°2,° 24

In each case the formula given by Eq. (10.1) is used.

a) z2,°2, = (V2)(2)[cos(45° + 330°) + isin(45° + 330°)]

= 2V/2[cos 375° + isin 375°]

= 21/2(cos 15° + isin 15°) (polar form)

= 2.73 + 0.73i. (rectangular form).

b) 23:2, = (4)(5)[cos(240° + 126.87°) + isin(240° + 126.87°)]

= 20[cos 366.87° + isin 366.87°]

= 20(cos 6.87° + isin 6.87°) (polar form)

= 19.86 + 2.39. (rectangular form).

_ Ur, 47) enzo 17, 47C) 2,2, 23 = (VD@)4)] cos(Z + z + 3 ) + isin (2 + 5 + 5 )|

== 8v3|cos 412 + isin 417|

= 8122(cos1 + isin te) (polar form)

= —2.93 — 10.93.. (rectangular form). i.

Evaluate the following. Express each answer in both polar form and rectangular
form.

We use Eq. (10.3).

5 VE
a) 2X = —5—Leos(45° — 330°) + isin(45° — 330°)]

V2
= —5—[cos(—285%) + 1sin(—285°)] (polar form)

V2
= —5[cos 285° — isin 285°]

= 0.18 + 0.68:. (rectangular form).
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b) 22 = =[ cos _ 22143) + isin (5 _ 22143) |
4

5 3

= 2[cos(1.9745) + 1sin(1.9745)] (polar form)

= —0.31 + 0.74. (rectangular form). ws

Express 3(cos 60° — isin 60°) in polar form.

Method 1. For a complex number to be in polar form, it must be expressed as
r(cos @ + isin #), where r > 0. The given number is not in polar form because of

the minus sign. However, since cos(—60°) = cos60° and sin(—60°) =

— sin 60°, we can write

3(cos 60° — isin 60°) = 3[cos(—60°) + sin(—60°)],

which is in polar form. Since —60° and 300° are coterminal angles, this can also
be written as 3(cos 300° + isin 300°).

Method 2. Write the given number in rectangular form first.

. 3vV3 3.
3(cos 60° — isin 60°) = 333,

From Fig. 10.8 we see that 3(cos 300° + i sin 300°) is a polar form of the given
number.

300° 3V3

C
N

 
Express —4(cos 120° + isin 120°) in polar form.

The given number is not in polar form, because the —4 is not an acceptable
value for r (we require r > 0). The given number can be written as follows:

—4(cos 120° + isin 120°) = 4[ —cos 120° + i(—sin 120°)]

= 4[cos(180° + 120°) + ¢sin(180° + 120°)]

= 4(cos 300° + isin 300°).

Note that we used identities cos(180° + #) = —cos # and sin(180° + §) = —sin
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with 0 = 120°. Thus

—4(cos 120° + isin 120°) = 4(cos 300° + i sin 300°),

which is in polar form.

We encourage the reader to follow Method 2 of Example 4 to get the
solution. ed

Express 3(sin 47° — i cos 47°) in polar form.

3(sin 47° — i cos 47°) = 3[cos(270° + 47°) + isin(270° + 47°)]

= 3(cos 317° + isin 317°).

Here we used identities cos(270° + 6) = sin 6 and sin(270° + 0) = —cos 6 with

6 = 47°. Thus the polar form of the given number is

3(cos 317° + isin 317°). a

 

In each of the problems of this exercise, give answers in exact form whenever it is

reasonable to do so; otherwise use a calculator and state the results in decimal form

(two places for degree measure, four places for radian measure).

1. Given that z, and z, are complex numbers expressed in polar form, prove that

21 = Dicos(d, — 6,) + isin(d, — 6,)].
Ze Ip

2. Express each of the given numbers in polar form.

a) —3 b) 1-1: c) —1i d) 1+ V38i

3. Express the following in polar form.

a) 7 b) 3 — 4i c) i5 — it d) 12 — 5i
4. Express the following in polar form.

 . . . 1 1
-3 — 2-2-3 = owa) —3— 3 b) 5: l c) : d) Fr

5. Express the following in rectangular form.

° ad ° o ia ° 47 |. . 4ma) 3(cos45° + isin 45°) b) 5(cos 180° + isin 180°) c) cos ~~ + Lsin =~

6. Express the following in rectangular form.

a) cos - =) + isin (- =) b) cos 450° + isin 450° c) 3(cos 137° + isin 137°)

7. Determine why the given number is not in polar form. Then express it in polar form.

a) 4(cos 45° — isin 45°) b) —3(cos 300° + isin 300°) c) —cos2T + isin 57
6 6
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8. Express the following in polar form.

a) 3(—cos % + isin z) b) —5(cos 40° — isin 40°) ¢) —cos 120° — isin 120°

In problems 9 through 12, perform the indicated operations and express answers in
(a) polar form, (b) rectangular form. Hint: Write numbers in polar form first and then

use Eq. (10.1) or Eq. (10.3).

9. (cos 15° + isin 15°) + (cos 30° + isin 30°)

10. 4(cos 47° — isin 47°) «+ (cos 43° — isin 43°)

8(cos 150° + isin 150°) 1 cos 50° + isin 50°

4(cos 30° + sin 30°) * cos 80° — isin 80°
 

In problems 13 through 15, let z; = 3(cos 210° — isin 210°), z, = 6(sin 60° + cos 60°).

Evaluate the given expressions by using Eq. (10.1) or Eq. (10.3).

13. 2, 2, 14. z, + 2, 15. L
22

In problems 16 through 20, let z, = \/3 + iand 2, = —2 + 2i. Express each of the given

numbers in polar form.

16. a) z, b) z, 17. a) z, b) z, 18. a) 2,2, b) z,: 2,

19. a) 2, +2, b) Zz+3, 20. a) L bp) L
21 2)

21. Given that z = r(cos @ + isin #) represents a complex number in polar form, show
that the following are true.

a) 22 = r?(cos 20 + isin 26) b) 23 = r3(cos 30 + isin 36)

22. Given that z = r(cosf + isin §) represents a complex number in polar form and
r # 0, show that the following are true.

1 1 1
a) ~ = 1 cos(~0) + isin(—0)] b) == —zlcos(—26) + isin(—260)]

23. Use problem 21 to evaluate the following.

a) (V2 — V2i)? b) (1 + V3i)
24. Use problem 22 to evaluate the following.

1 1b) ——

YT ) Bae
 

 

10.4 DEMOIVRE’S THEOREM
Suppose z is a complex number in polar form, z = r(cos § + isin 6). Applying
Eq. (10.1) to the special case where both z, and z, are taken to be z gives

z+ z=r-r[cos(@ + 6) + isin (§ + 6)],

22 = r2?(cos 20 + isin 26).
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If Eq. (10.1) is applied again with z;, = z and z, = 22, we get

23 = r3(cos 30 + isin 30).

This suggests that in general

 

2" = r*(cos nf + isin nf) (10.5)
 

for each positive integer n. This is indeed a true statement; the readeris asked to
give a formal proof in problem 16.

Taking r = 1 in Eq. (10.5) gives the special case

 

(cos@ + isin §)" = cos nf + isin nd
 

for each positive integer n. This is known as DeMoivre’s theorem.*
Equation (10.5) is stated for n a positive integer. For exponents that are not

positive integers, we follow a pattern similar to that already encountered in
algebra. We first define z*, where k is zero, then for & a negative integer.

Definition 10.5 : Zero exponent

If z# 0, then 2° = 1.

Negative-integer exponent

If n is any positive integer and z # 0, then z™" = =.

We now investigate z™", where n is a positive integer. Let
2 =r(cosf + isin). Then

27" = L (by Definition 10.5)
z

_ 1

~ r*(cos nf + isin nf)

=L( cos 0 + isin 0 )
~ r*\cos nf + isin nf

= r~"[cos(—nb) + isin(—nb)]. (by Eq. (10.3))

 (by Eq. (10.5))

(since 1 = cos 0 + isin 0)

 

* Named after the French-born English mathematician Abraham DeMoivre (1667-1754).
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Thus we have

z™" = r"[cos(—nf) + isin(—nb)].

This is precisely Eq. (10.5) for negative integer exponents.
Equation (10.5) also holds for n = 0 since 2° = 1 and

r%cos(0+60) + isin(0+0)] =1-(cos0 + isin 0) = 1.

Therefore the formula given by Eq. (10.5) is generalized to

If z =r(cosf + isin) and n is any integer, then

2" = r"(cos nf + isin nf). (10.6)

Example 1 Express each of the following as a complex number in both polar form and
rectangular form.

a) (1 +i)® b) (—1 + V/3i)8 c) (3 — 4i)*

Solution a) We first express 1 + i in polar form and then use the formula given by

Eq. (10.6):

(1 +i) = [V2(cos 45° + isin 45°)]6 = (/2)8[cos(6 + 45°) + isin(6 - 45°)]

= 8(cos 270° + isin 270°) (polar form)

= 8[0 + i(—1)] = —8i. (rectangular form)

b) (—1 + V/3i)® = [2(cos2 + isin 27)

— feos(s-22) isin(s- 22)= 27] cos (8 3 + 1sIin(8 3

= 256 cos 137 + I sin 167]

_ 256] cos (47 + 4) + isin (47 4 27)

= 256 cosZT + isini| (polar form)

1 4 V3
256 - 5 + i(- 3)|

= —128 — 128V/3.. (rectangular form)

c)83—4i)* =[r(cosf + isinf)]* = r*(cos40 + isin 40), where r=5 and

6 = Sin~1(—4/5) (see Fig. 10.9). Using a calculator, we evaluate

40 = 4 Sin~1(—%) = —212.52°.
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. 3
Fig. 10.9 nl

0
I
| —4

SN |
|

Therefore,

(3 — 4i)* = 625[cos(—212.52°) + isin(—212.52°)] (polar form)

= —527 + 336i. (rectangular form)

Example 2 Evaluate each of the following, and express answers in both polar form and
rectangular form.

a) [2(cos 22°30" + isin 22°30’)]* b) (cos 45° — isin 45°)°

Solution a) Using Eq. (10.6) gives

[2(cos 22°30" + isin 22/30")]* = 2%[cos 4(22°30’) + i sin 4(20°30’)]

= 16(cos 90° + isin 90°) (polar form)

= 161. (rectangular form)

b) First express cos 45° — isin 45° in polar form as

cos 45° — isin 45° = cos(—45°) + isin(—45°).

Applying Eq. (10.6) we have

(cos 45° — isin 45°) = [cos(—45°) + isin(—45°)]°

= cos 5(—45°) + isin 5(—45°)

= cos(—225°) + isin(—225°) (polar form)

2
— V2 + V2i. (rectangular form)

2 2 pe

Example 3 Express sin 40 and cos 46 as identities in terms of sin § and cos 6.

Solution Substituting n = 4 into DeMoivre’s theorem gives

(cos 0 + isin 8)* = cos 40 + isin 46.

Using the binomial expansion on the left-hand side of this equation, we get

cos? + 4(cos3d sin 6)i + 6(cos?d sin26)i2 + 4(cos 6 sin30)i3 + (sin%f)i*

= cos 40 + isin 44.
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Nowusei?2 = —1,i13=i2+i= —iandi* =i2:i2 = (—1)(—1) = 1, and we col-
lect real and imaginary terms to get

[cos— 6 cos? sin20 + sind] + [4 cos? sin 6 — 4 cos 0 sin30]i

= cos 40 + isin 44.

Using the definition of equality of two complex numbers (see Definition 10.2), we

get

sin 40 = 4 cos36 sin  — 4 cos 6 sin3f,

cos 40 = cos? — 6 cos?d sin2%0 + sin%f.

These are identities. [|

By using the technique illustrated in Example 3, we can solve the general
problem of determining identities in which sin nf and cos nf are expressed in
terms of sin # and cos 6.

Exercises 10.4
 

In the following problems, give answers in exact form whenever it is reasonable to do so;

otherwise state results in decimal form, with numbers rounded off to two decimal places,

angles to two places for degree measure and four places for radian measure. Express
answers in both polar form and rectangular form.

In problems 1 through 8, perform the indicated operations.

 

 

1. a) (cos 30° + isin 30°)5 b) [2(cos — 45° + isin — 45°)]* c) (cos 40° + isin 40°)73

9. a) (cos 47° + isin 47°) b) 3 (cos 3 + isinI ¢) [cos(—20°) + i sin(—20°)]-8
3 3

Ca 16
3. a) [2(cos 150° — isin 150°)]3 b) [2(cos 45° — ism B5°)TF

° * a o 814. a) [—3(cos 20° + isin 20°)]¢ b) [—3(cos 7/12 + isin 7/12)"

5. a) (—1+1i)8 b) (V3 — i) c) 1+1:)3

a 1 1\66. a) (V2 + V2i) b) T=ar c) (2 +i)

_ we 6 (2 + 2)*
7. a) (—=1 + 0)*- (1 + V3i) DBT

8. a) (1—1i)3-(1+ i) b) (2 — 3i)2- (4 + 3i)*

In problems 9 through 12, z = 1 — i and w = — \/3 + i. Evaluate the given expression.

9. 2¢ — 2 10. 23 - wt 11. 24 — wt

12. 2% 4+ 23 4+ 22 + 2 + 1 Hint: The identity (z — 1)(z* + 23 + 22 + z + 1) = 2° — 1 may be useful.



Section 10.5 Roots of Complex Numbers 493

13. Given that f(z) = 2* — 223 + 2, find the following.

a) f(i) b) f(—1 + i)

14. In Eq. (10.6) take n = 2, r = 1 and get identities (1.18) and (I.19) of Chapter 5.

15. Express sin 36 and cos 36 as identities in terms of sin # and cos 6 (see Example 3).

16. Prove that z" = [7(cos 8 + isin #)]" = r*(cos nf + isin nf) for each positive integer
n. Hint: Use mathematical induction.
 

10.5

Definition 10.6

ROOTS OF COMPLEX NUMBERS
In Section 10.1 we discussed the problem of determining the square root of any
real number and arrived at the following: Suppose c is a nonnegative real num-
ber. Then V/c is that nonnegative solution of x2 = ¢, and \/—c is equal to the

imaginary number /ci. In this section we are interested in the general problem
of determining the nth roots of any complex number z = a + bi, where n is an
integer greater than or equal to 2.

Suppose z is a given complex number. The nth roots of z are the
solutions of the equation w" = z.

Although we were able to talk about the square root of a real number, we
shall make no attempt to define the nth root of z in general. Definition 10.6 refers
to “the nth roots of z,” and we do not select a particular solution of w" = z and
call it the principal value or the nth root of z as we did for the square root of a
real number.

Let us proceed with the problem of solving the equation w" = z, where z is
a given complex number. For the trivial case of 2 = 0, the solution is w = 0.
Hence, in the following we shall assume that z # 0. Suppose z and w are ex-

pressed in polar form as

z =r(cosf + isin@),

w = R(cosa + isin a).

Then w" = z becomes

[R(cos a + isin a)]" = r(cos@ + isin @).

Applying Eq. (10.6) to the left side gives

R"™(cos na + isin na) = r(cos@ + isin 8).

From the definition of equality of two complex numbers (see Definition 10.2), it

follows that

R" cos na = rcos 6 and R" sin na = rsiné.
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Solving this pair of simultaneous equations for R and «a (see problem 21) gives

n n n

where k is any integer. Therefore w™ = z has solutions given by

 

 

w, =r» [cos (£ + 2rk) + isin(£ + 20) |. (10.7)

If we let k take on various integral values, we see that wg, w,, w,, . . . , w,_,

will be n distinct complex numbers. These are given by

 

6 .. 0wy, = r/*| cos — + isin —|,
n n

wy, =r» cos (2 +20) + isin(£

(10.8)

|

)
))

- _ 9 2n—1
n= | n n n n

+27),n

w, = rin cos (2 +47) 1 isin(£ +4

S
|

 
 

Suppose we evaluate w, by replacing £ by n in Eq. 10.7. This gives

w, = ri/n] cos (£ + 2m) + isin(£ + 2mm) |

= ri/» [cos (£ pb 2) + isin (£ + 27) |
n n

= ri/m [cos £ » isin 2| = w,.
n n

In a similar manner we can show that each value of £ for which 2 > n or

k < 0 will give a w,, that is already included in Egs. (10.8).

Geometrically, the n numbers given by (10.8) are located on the circle with

center at the origin and radius V/r; they are equally spaced around the circle
with the angle between any two consecutive values being 27/n. These are shown
in Fig. 10.10.

 

* The solution for R involves r/"; here r is a positive real number, and r'/* has been defined in
Section 3.1.
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Find the four roots of z¢ + 1 = 0.

We wish to solve for the roots of the equation z* = —1. First we express —1 in
polar form: —1 = cos 7 + isin 7. Substituting n = 4, r = 1, and § = = into Eq.
(10.7) gives

_ 7 2mk . fm 27k
w, = cos (T+ 4 ) + isin (7 + 22%)

— m 7 qin (TT TT= cos (2 + & 7) + isin (2 + k 7).

Replacing k by 0, 1, 2, and 3 gives the four roots w,, w,, w,, and wy, respectively.

VEE, VE, VE= YZ v2;
2 2 i=—-7 2

v2 V2, v2 V2

Wy

Solve the equation 24 — 222 + 2 = 0.

The given equation is quadratic in 22. Solving for 22? by use of the quadratic
formula gives

o  —(=2)EV(=2)2—4(1)(2) 2+ —4
= = =1=*1

2 2(1) 2 B
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and

1+ i=2(cos45° + isin 45°),

1 — i = 2(cos 315° + isin 315°).

Using (10.8) with n = 2, we get the following solutions: 22 = 1 + i gives

1 o °

Ww, = (V3) cos22° + i sin 45 
2

= V2(cos 22.5° + isin 22.5°) = 1.10 + 0.46i,

1 ° ° ° °oeHonI)in
= v/2(cos 202.5° + isin 202.5°) = —1.10 — 0.46%;

 

22 =1 — i gives

1 ° °

wy = (VB) cos3° + isin ne

= V2(cos 157.5° + isin 157.5°) = —1.10 + 0.46i,

1 ° o ° °

Ww), = (V2)"2 cos (325 + 2] ) + isin (215 + et )|

= V/2(cos 337.5° + isin 337.5°) = 1.10 — 0.46:.

 

    

Therefore the solution set for the given equation is

{1.10 + 0.46, —1.10 + 0.46i, —1.10 — 0.46:, 1.10 — 0.46:},

where the numbers are given to two decimal places. The numbers in the solution
set are shown in Fig. 10.11, in which the radius of the circle is V/2.

Fig. 10.11
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Example 3 Find the square roots of —3 — 4i.

Solution We want to solve the equation w? = —3 — 4i. We first express —3 — 4i in polar
form:

—3 — 4i = 5(cos 0 + isin 8),

where 0 is the angle shown in Fig. 10.12. Substituting into (10.8) with n = 2 gives

6 , 0wy = 5/%(cos & + isin 2),

0 2m ca (0, 2m— pl/2 g g,4amwy; =295 [cos (4 + 7) + isin (& + a]

= 51/2 [cos(£ + ) + isin(£ + 7)

0 . .._ 0_ E1/2 Y=5 [ cos 5 1 sin ’]

0 .. 0= ~5/2(cos & ow isin) = —Ww,.

0
Fig. 10.12 -3 IN

 
We can write w, in better form by using the half-angle identities. Since
a <0 << 3/2, then 7/2 < 0/2 < 37/4, and so §/2 is an angle in the second quad-

rant. Therefore cos 6/2 is negative, and sin 6/2 is positive. Since cos = —3/5

(see Fig. 10.12),

0 /1 + cos él [1+ (—3/5) 1
COS— = — —_— _—= ——,

2 2 2 V5

LyLLCLI 2

2 2 2 V5
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Exercises 10.5

Thus we have

0 . 0 1 21 .
w, = V5(cos L + isin 2) = vE(-+2) = —14 2i,

0 2 2 V5 V5

w, = —w,=1- 2

Therefore the square roots of —3 — 4i are —1 + 2; and 1 — 2i. wn

 

In the problems of this exercise, express answers in polar form. Then give answers in
rectangular form as exact numbers when reasonable, otherwise to two decimal places.

1.

. Determine the fourth roots of i.

. Find the fifth roots of 1 — \/3i.

. Determine the roots of the equation z¢ +1 —i = 0.

®
a
S

G
U
W
N

Find the cube roots of 1.

. Find the sixth roots of —1, and show the results in a diagram.

Determine the sixth roots of 64(cos 126° + i sin 126°).

. Find the fourth roots of 16(/3 + i).

. Determine the fourth roots of (1/3 — i)3.

 
\—2

. Determine the cube roots of (2 — ‘) .
V2

In problems 10 through 13, solve the given quadratic equations.

10.

12.

14.

15.

16.

17.

18.

19.
20.

21.

22 —-(2+3)z—1+3i=0 11. 22-32 +3—-i=0

222 + 2V2(—=1+1i)z2—-1-2i=0 138. 22 4+2+1—-i=0

Find the roots of the equation 24 + 1 = 0.

Find the roots of the equation 23 + 22 + iz + i = 0. Hint: Factor first.

Find the roots of the equation 25 + 223 — 22 — 2 = 0. Hint: Factorfirst.

Find the square roots of 3 — 4i.

Find the square roots of 3 + 4i.

Find the square roots of —5 + 12i.

Find the roots of 22 — iz — 1 +i = 0.

In the derivation of Eq. (10.7) we encountered the problem of solving the following
two equations simultaneously for R and a in terms of r and 6:

R™ cos(na) = rcosé, R" sin(na) = rsiné.

Carry out the solution and show that R =r?» and a = (0 + k * 27)/n.

Hint: First eliminate a by squaring each of the given equations and then adding the
resulting equations. Use identity (1.9) twice. After getting R, substitute the result in
either of the given equations and then solve for a.
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Review Exercises
In problems 1 through 12, evaluate the given expressions and express results in standard

form. Give answers in exact form wheneverit is reasonable to do so; otherwise give them

correct to two decimal places.

1. (1 +i)3 2. (3 — 20)? 3. (1+ 2i)*

4. (V3 +i)8 5. (1 +i)2 6. 625(3 + 4i)~*

: on (3 + 4) (1 + 2i)(3 + 4i)3
7. (1+i)V8—i)y* "d+ 8) SYao

6 12

10. (2 _ 5) 11. (146) — (1 — i) 12. (3 + V5)

In problems 13 through 15, the function fis defined on the set of complex numbers and is

given by f(z) = 3 — 4i + 22%, where z is any complex number. Evaluate the given expres-
sions in exact form, and state answers in standard form.

13. f(=3) 14. f(2 — 2i) 15. f(1 — /3i)

In problems 16 through 20, give answers in standard form.

16. Solve the quadratic equation 22 + (2 — i)z — i = 0.

17. Find the cube roots of (1/3 — i). 18. Find the fourth roots of 3 — £i.

19. Solve the equation 2% + (1 + i)22 +i = 0. 20. Solve the equation 22 — 2iz — 2 = 0.
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There are two types of scientific calculators suitable for studying a Precalculus

course. One type involves algebraic entry while the other is based on the Reverse
Polish Notation (RPN). The entry system depends upon the electronic circuitry

installed in the calculator during its manufacture. The basic difference between
using the algebraic entry and RPN is the order of pressing the four arithmetic-

function keys. Calculators with algebraic entry place the binary operation be-
tween the two numbers, such as 2 (+J3(=), whereas in the RPN machines, the
arithmetic operation follows both numbers after they are entered into the calcu-
lator; for instance, 2 3 (+Jis the sequence that evaluates the sum of 2 and 3.

One basic feature common to both entry systems is the use of real numbers
in decimal form. Calculators operate with rational approximations of all real
numbers correct to the capacity of the particular machine. Calculators cannot
handle imaginary numbers directly. When an attempt is made to find \/—4, the

calculator will display Error in some way. In this case the error indication tells

us that \/—4 is not a real number. Another instance when the calculator indi-

cates error occurs during an attempt to divide by zero. A good way to find the
type of error indication a calculator displays is to press the keys 0 and (1x),
Whenever the error symbol is displayed, the user should be alerted to the fact

that the calculator is being asked to perform an unacceptable operation.
Each entry system has its advantages and disadvantages. Students are urged

to evaluate each system and choose the calculator that fits their interests and
needs best. Appendix A is devoted to helping the student become proficient in
using the calculator. We discuss separately algebraic calculators (Section A.1)
and RPN calculators (Section A.2).

ALGEBRAIC CALCULATORS
Algebraic calculators can easily be identified by the presence of an (=) key on
the keyboard. Some calculators with algebraic entry are preprogrammed to fol-
low the conventional hierarchy of arithmetic operations, whereas others perform
operations sequentially as entered into the calculator. To determine whether a
calculator uses the hierarchy of arithmetic, calculate 2 + 3 + 5 by pressing 2
3 5 (=). If the display shows 17, the calculator is accepting the entire
sequence of instructions and then performing the multiplication before the addi-

tion. In this case we say that addition is a pending operation. It is performed
only after the entire sequence is entered, and the machine can then respond
according to the conventional priority of multiplication and division over addi-
tion and subtraction. On the other hand,if the display shows 25, the machine is

performing the operations in the order in whic) they are entered. Thatis,it is
performing the calculation (2 + 3) - 5.

Texas Instruments is a major manufacturer of calculators with algebraic
entry. Some of their less sophisticated models do not follow arithmetical hierar-

chy; however, most of their scientific calculators use the so-called algebraic

operating system (AOS) and are preprogrammed to follow the hierarchy of arith-

metic in calculations. In the instructions given here we assume that all algebraic
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calculators have AOS. Ifthis is not the case, the order of entry can be adjusted
as necessary. For example, 2 + 3 + 5 can be calculated by pressing 3 5 2
=).

Using the Keys =) =EEO006D
In order to use the calculator efficiently, it is helpful to know something about
the operation of the machine. The series of examples given below is designed to
help the reader make some important observations involving the order in which
pending operations are carried out in an AOS calculator.

Calculate 5 — 7 + 4.

Press the calculator keys corresponding to the numbers and operations, as writ-

ten from left to right, carefully watching the display to see when a given com-

mand is executed. Press 5 (=) 7 4 (=). wn

Calculate 5 — 7 + 4-3.

Press 5 (=J7 4 3(=1. Observe how all pending operations are executed
when the (=) key is pressed. ne

CalculateAA

Press 5(=17 4 (+) 3(=). Note that the numerator is evalu-
ated after the right-parenthesis key is pressed. As an alternative solution,

press 5 (=J7 4 (=)(=)3(=). Thus, when the left-parenthesis key CJ is
not entered, one can use the (=) key to compute the numerator before dividing
by 3. Voi

Calculate 5 — 7 + 4 - 32.

Press 5 (=J7 4 3 (2) (=). Note that pressing (52) squares only the
contents of the display. Pressing (=) executes all pending operations. _

Calculate 5 — 7 + (4 + 3)2.

Press 5(=J7 C4 3JG2) =]. The problem requires that 4 - 3 be
multiplied before squaring. Parentheses keys are used here to accomplish this.

i]

Calculate 5 + (=7 + 4+ 3).

Press 5 (=) (CO)73=) (+4 3(0O (=). The parentheses serve to compute
the divisor before the division is carried out. Special note should be taken of the
use of the change-sign key (+/=). This key changes the sign of the number in the
display. The calculator will not accept the sequence 5(=(J(=]7....Sucha
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sequence treats the (=) 7 command as subtraction rather than a negative num-

ber, but the algebraic calculator cannot accept two operation commands in se-

quence (such as (=) and (=). by

Clearing the Calculator
If the last key pressed is(C=, all pending operations have been executed, and the
calculatoris ready for a new problem without having the clear key pressed. Some
calculators have a clear-entry key that clears only the number in the display,
whereas a separate key is used to clear all pending operations. Other calculators
have a key labeled ©N/©) that serves three purposes. It is used to turn the calcula-
tor on; then, during computations,if it is pressed once, the number in the display

only will be cleared; if it is pressed twice in succession, all pending operations are
also cleared.

The clear-entry feature is especially useful since one of the most frequent
mistakes is to key in an incorrect number after the calculator already has several

pending operations. We illustrate this in the following example, where a 7 rather
than an 8 was entered, and this mistake is corrected by using the clear-entry key.

Example 7 Evaluate 2 + 3:5 — 24 ~ 6 + 8.

Solution Press 2 (+ J)3(xJ)5(=J)24 (=) (+) 7 NE g(=]. =

Exercises A.1
 

Calculations in problems 1 through 15 involve integers only. This is intended to allow
the student to mentally follow the arithmetic and observe when the pending operations
are performed by the calculator. Some important features of the calculator are illus-
trated in these problems; therefore the student is encouraged to consider each calcula-
tion carefully.

1.5437 2. (5+3)-7 3. (5+3)—7
4. (5 + 3)(=7) 5. 24+12+-3—17 6.2+12 (3-17)

(15 —4) +5 (15 —4) +5 (1/2) — 8
LE 2485-7 Yr

10. (1/2) — (3/4) 11. 2:32 + 4-52 12. (2:3)2 + (4-5)?

13. (2-3 + 4-5)? 14. (355) . 52 15. (3-42) = (252)

Use your calculator to solve problems 16 through 30. Answers correct to three decimal

places are provided for a quick check.

16. (1.87)(34.61) + 3.872 17. (45.9 — 29.76) + 52.86 18. 45.9 — 29.762 + 52.86

563 + 284 284 52.9 - 0.387619. —187 20. 563 + 187 21. 13

22. 122 + 52 — 2-5-12-0.9848 23. (122 + 52 — 2-5 -12)(0.9848) 24. (—37.48 + 59.32)? — 31.97
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(15.39 — 4.72) + 5 (15.39 — 4.72) - 525. (37.48 — 59.32)2 — 31.97 96,— gng.5 ,—( ) 2.3 +378:543 27. Saas

91.8 + 4.322 2 3 7 (2/7) + (3/8)og,+4.32%; 59, 99. 2,3 _ 7 2/7)+
5.12 377173 30- 1/6) + 1/7)

Answers to Exercises A.1

16. 68.593

20. 578.187

24. 445.016

28. 229.593

17. 313.360 18. — 786.898 19. 45.294

21. 0.963 22. 50.824 23. 48.255

25. 445.016 26. 43.721 27. 2.337

29. 0.542 30. 2.135
 

Example 1

Solution

Example 2

Solution

Using the Keys
Scientific calculators have several keys in addition to the basic keys described in
the preceding section. Here we shall consider the use of five more keys and defer
discussion of others until the appropriate places in the text. The and
keys give the reciprocal and the square root, respectively, of the number in the
display. The (¥*Jkey operates by entering a positive number y, followed by (4),
then the number x, followed by (=J. For example, to evaluate 73, keys are

pressed in the following order: 7 3 (=), and the result 343 appears in the
display. Similarly, to find V/7, we evaluate 71/3 by pressing the following keys: 7

30x] (=), which gives /7 = 1.9129 (to four decimal places).
A lengthy computation frequently involves the evaluation of intermediate

numbers that must be recorded and used later to complete the calculation. Sci-
entific calculators allow the user to store a number with the key* and recall
it when needed with the key, thus avoiding the necessity of recording inter-
mediate steps. This feature will be illustrated in examples given in this section.

Calculate /3.92 + 7.32

Press 3.902) 7.32)JX]. The display shows 8.2764727. Alterna-
tive solution:

Press 3.9 (2) 7.3G2) (=).

This method uses the (= Jkey to calculate the radicand before taking the square

root. i]

Calculate 123 — 45,

Press 12 (¥J3 (= 4 5 (=). The diplay shows 704. _

 

Some calculators have multiple storage capacity and require a number address to follow the

key. The owner’s manual that accompanies such a calculator gives details.
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Example 3

Solution

Example 4

Solution

Example 5

Solution

Example 6

Solution

Example 7

Solution

Example 8

Solution
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Calculate v/24.3 - v/32.7.

The problem can be rewritten as (24.31/3) + (32.715); then press

24.3 30x) 32.7 50x) (C=).

The displays shows 5.8180615. Note that when the key is pressed in this
sequence, at that point the calculator evaluates (24.3)!/3; in this computation it

is not necessary to press the (=) key before the key. bh

 

Calculate 1/1.32 + 2.82 — 2(1.3)(2.8)(0.3215).

Press

1.363) 2802) (=) 2 1.3 2.8 0.3215 (=J (x.

The display shows 2.6813206. al]

1
v5.61 + 24.93

Press 5.61 24.93 Gx). The display shows 0.18095287. Il

Calculate

Calculate1+ V4.22 + 3.97.
5.23 + 3.84

Press

52 (J) 3 (F038) 4(=) r)(sm0) 4.22) (FJ 3.97(=)

vx) (3) (Rey) (=.

The display shows 4.6515201. Storage is used to hold the first part while the
second part is being calculated. al

Calculate (5.873)3 + 3(5.873)2 — 9(5.873) + 4.

Press

5.873(s10) (J 3 (+ 3(xD (Rey) (2) (=) 9 (x) (Rey) (+ 4 (=).

The display shows 257.19166. Use of the key eliminates the need to key in
the four-digit number 5.873 three separate times.

Note. The key will function only when the base is positive. The calculator
will indicate an Error if the base is negative. om

Use the calculator to evaluate the following.

a) 5.3 — 9.7 b) V/—12.97 c) (—3.1)¢ d) (—3.1)5

a) Press 5.3 (=19.7 (¥). The display will indicate an Error. This is
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predictable since 5.3 — 9.7 = —4.3, and the square root of a negative number
is not a real number.

b) Rewrite V/—12.97 as (—12.97)/3 and press 12.97 3 x)=]; the
result indicates an Error. This is because the calculator will not accept a
negative base y when the key is used. However v/—12.97 is a real number
equal to — V/12.97. We therefore calculate v/12.97 by pressing 12.97 3
(x)=), The display shows 2.3495. Therefore we have v/—12.97 = — 2.3495,

¢) When evaluating (—3.1)4, the calculator will indicate an Error if we press 3.1

*#=(¥J4 (=), but we know that (—3.1)* = (3.1)%, and this can be calculated
by using the (Y* key. Press 3.1 4(=). The display shows 92.3521. Thus
(—3.1)% = 92.3521.

d) Since (—3.1)5 = —(3.1)3, we first evaluate (3.1)° by pressing 3.1 5(=).
The display shows 286.2915, so we conclude that (—3.1)° = —286.2915.

[|

Exercises A.1 (continued)

Use a calculator to solve the following problems. Answers rounded off to three decimal

places are given as a check.

 

 

1. \/47.23 + 52.18 2. V/39.4 + (5.8)(7.3) 3. \/54.6 — 31.93

4. 1/(9.1)(3.6) — (7.28)(5.97) 5. 9.22 + 4.12 6. \/(3.87 + 9.4) - 4.832

7. v/12.96 8. v/—243.78 9. /32.786 10. v/17.39

1 1 1 1 2 3 5 1 1 1 5 711. = + = + = + = 12. £2 424 2 18. — + — +— 14. 24
2 3 4 5 3 4 6 V2 V3 V4 Viz V3

15. V/3.47% + 29.33 16. (—4.3)2 + (—5.9)3 17. (—4.1)3 + (—5.9)*
  

18. V/11.92 4 13.22 — 2(11.9)(13.2)(0.4937) 19. [11.9% + 13.22 — 2(11.9)(13.2)](0.4937) 20. V4 — V2

Answers to Exercises A.1 (continued)

1. 9.970 2. 9.041 3. 4.761 4. Imaginary number

5. 10.072 6. 17.595 7. 2.349 8. -6.247 9. 2.010

10. 2.042 11. 1.283 12. 2.250 13. 1.784 14. 5.485

15. 29.494 16. —186.889 17. 1142.815 18. 12.679 19. 0.913 20. 1.608
 

The problems given in Exercises A.2 (pp. 516-517) provide an opportunity
for additional practice in using AOS calculators. The student is urged to do most

of them.

A.2 RPN CALCULATORS
Calculators using Reverse Polish Notation (RPN) can easily be identified by the
presence of the key (and the absence of the C=Jkey). A major manufacturer
of RPN calculators is Hewlett-Packard (HP). In the following discussion we

shall describe the operation of RPN calculators consistent with HP scientific
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calculators. The student should be able to adapt the treatment found here to
other brands quite easily by referring to the owner’s manual.

Registers and Use of Stack

The only external means of communication between the calculator and its user

is through the keyboard and the numbers appearing in the display. At any time
there is only one number in the display; however, the calculator accepts several
numbers and stores them for recall on keyboard command. The places used to
store the numbers are called registers and may be thought of as physical places
inside the machine where a number is kept until needed. HP machines have four
such registers. The content of one register is displayed by the machine. This is
called the X register. Registers not visible to the user are called Y, Z, and T.
These four registers form the stack or automatic memory of the machine. In
order to use RPN calculators efficiently,it is essential to understand the opera-
tion of the stack.

If we represent the stack as a mailboxlike set of compartments
vz)where X,Y, Z, and T are the addresses for the boxes, then we
can visualize what is happening inside the calculator. When a sequence of digit
keys is pressed, the corresponding number appears in the X register. Pressing the

key shifts the number into the Yregister, and the machine is ready to accept
a second number. For example, pressing 2 gives(C2[J); when we follow
this with (ENT), we get[), If we now press 3, the 2 in the X register is
replaced by 3 and the 2 in the Y register remains. Pressing shifts the con-
tents as shown: X —- Y —» Z — T — lost, retaining the number entered in the
X register as well as in the Y register. The series of key strokes

2 (enT) 3 (ENT) 1 5 (ENT) 4

provides us with this arrangement of numbers in the stack: [15132),
Observe that the 15 was placed in the Y register without pressing key

between 1 and 5. This feature best describes the purpose of the key which is

to separate the numbers entered into the machine. Pressing the (ENU key after 4
will give(4[15losing the 2 (and the calculator is now ready to accept
a new number in the X register). It may appear that having only a four-stack

capacity is a serious limitation; but this is not so, since we can perform most of
our computations without any additional registers, as will be demonstrated in

the following examples. In fact, some RPN calculators have only three register
stacks, and they perform adequately in most problems.

For arithmetric operations only the numbers in the X and Y registers are
used directly. If x is in X and y is in Y, then pressing any one of the keys (+),
(=J, (x), or C= gives the corresponding result y + x,y — x,y X x, or y + x in
the display.

For example, to evaluate 2 + 3, press 2 3toget(3121J; then
pressing the key givesT_TTo evaluate 15 — 4, press (1) (5)
(enT)(C4 J(C=1); the result will show 11 in the display. Similar steps are followed in

the operations of multiplication and division.
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Example 1

Solution 1

Example 2

Solution
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In the following examples the grids indicate the content of each register
after the key shown in the left column has been pressed. A blank register does
not necessarily mean an empty register (contains 0), but rather that we are not

concerned with its content in our computation.

Note. Two solutions are given for some of the following problems. It is important
for the reader to understand that there are several methods for solving a given
problem. After some practice with the calculator, the user will discover efficient
keying patterns.

Calculate 7 + 6 * 4.

Press 7 6 4 Cx). Solution 2 We evaluate 6 +4 + 7 by
pressing 6 4 70.

 

  

 
 

  

 
 

 
 

 
 

              

Key |X| Y| Z| T

7 7 Key |X Y Z| T

ENT) 7 7 6 6

6 6 7 ENT] 6 6

ENT) 6 6 7 4 46

4 4 6 7 24

24 7 7 7 24

31 31
  

Note. In Solution 2, the key was not pressed before the 7. The machine
knowsit is receiving a new number after any operation, and in this example it is
not tempted to write 247. Solution 1 is a less natural way to perform the compu-
tation, but it illustrates how helpful it is to know the contents of the registers.

a

Calculate 5-3 — 4.

 

Key X Y Z| T
 

5 5
 

ENT 5 5
 

 

 

       
3 3 5

15

4 4 15

(=n
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Example 3 Calculate 7 + 3(4 + 6).

Solution 1

Example 4

Solution 1

 

 

  

  

  

  

  

  

  

  

              

Key X Y |X| T Solution 2 Evaluate (4 + 6) -3 + 7.

7 7

ENT 717 Key X Y |X| T

3 37 4 4

33817 ENT) 4 4

4 4 317 6 6 4

4 |4] 8 |7 10

6 6 4|3|7 3 310

10317 30

30 7 7 7 30

37 37
  

Note. In Solution 1, all the numbers are entered into the stack, and then the

operations are performed in the appropriate order. In Solution 2, operations are
performed sequentially according to the conventional principle of beginning
within the parentheses. This is a more efficient method in terms of number of
steps. LL]

Calculate (15 — 4) - 3 + 2.

(Key 15 means we press Solution 2 2 + 3(15 — 4)

the digit keys 1 and 5  

 

  

  

  

  

  

  

  

  

   

in that order.) Key |X| Y Z| T

2 2

Key |X| Y Z| T 2 2

15 15 3 3] 2

15 15 EE)

4 4|15 15 [15] 8 2

(=) |n ENT) 1515 8 2

3 3 11 4 4 |15| 3 2

33 (=) |1|3|2]|2

2 2 33 33122] 2

35 3B 222             
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Note. Solution 2 is given to illustrate the contents of the registers when the T
register is used. Once a number (2, in this case) is entered into the T register, it
remains there and shifts into the Z and then the Y register as the content of the

Y register is being used in an operation. This property of the stack is useful in
performing some computations (see Example 7 on p. 514).

The contents of the Y, Z, and T registers can be displayed by using the roll

key (BY). For example, continuation of Solution 2 by pressing the key four
times would give the results shown below.

 

 

 

 

        

  

  

  

  

  

          

35 2 2 2

2223

2 |235] 2

2132] 2

35 2 2 2 -.

Example 5 Given that f(x) = 5x2 — 4x + 1, evaluate f(3).

Solution To evaluate f(3) = 5-32 — 4-3 + 1, we proceed in the following way.

Key |X Y |Z T ENT 4 4 45

3 3 3 3 4 45

ENT) 3 3 12 45

9 (=) 33

5 5 9 1 1 33

45 34

4 4 |45 CO -       
The (cvs) and Keys
The (cis) key changes the sign of the contents of the X register only and must be
used to enter a negative number into the machine. The (cts) key does not shift

the content of the X register to Y; hence it is necessary to use the key to
separate numbers after the (Hs) key is pressed and before a new numberis en-

tered. The key interchanges the contents of the X and Y registers and leaves

the contents of Z and T undisturbed. This key is frequently used in lengthy
calculations involving subtraction and/or division.
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Example 6 Calculate —3 + 4-5.

Solution 1

Example 7

Solution

 

 

 

 

 

 

 

 

      

Key |X Y Z| T

3 3

(chs) -3

(ent) -3|-3

4 4 |-3

(ent) 4 4 |-3

5 5 4 |-3

(x)|2 |-3

(+17   

Appendix A

Solution 2 Treat it as a subtraction.

 

 

 

 

 

 

 

 

     

Key |X Y Z| T

3 3

ENT 3 3

4 4 3

4 413

5 54 3

20 3

xy 3 120

=) |17    
Note. Solution 2 is given to illustrate the use of the (**v) key. It should be clear
that a more efficient sequence of keys is possible by first evaluating 4 - 5 and then
subtracting 3 from the result.

Given that f(x) = 4x* + 5x2, find f(—3).

We wish to evaluate 4(—3)* + 5(—3)2.

 

 

 

 

 

 

 

 

      

Key |X Y Z| T

3 3

(chs) -3

(ent) -3|-3

(ent) -3|-3|-3

(en) -3|-3|-3|-3

9 |-3|-3|-3

(x) |-27,-3|-3|-38

(x)|8|-3|-3|-3   
Overflowing the Stack

 

 

 

 

 

 

 

        

Hi

4 4 81|-3|-3

324| —3| —3| —-3

(xov) —3|324| —3| —3

—3| —3|324| —3

(x) 9 [324] -3|-3

5 519 |324|-3

45 (324 —-3| -3

369 —3| —3|-3

Thus, f(—3) = 369. IH

Occasionally a given sequence of keying instructions results in overflowing the
stack, and an alternative method must be devised to perform the calculations.

Obviously, with the numbers used in these examples, one would simply do some
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Example 8

Solution
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of the calculations mentally; however, if the numbers involved happen to be,
say, four-digit numbers,it is helpful to be able to do all of the arithmetic with
the calculator.

 

 

  

  

  

  

  

  

  

25
Calculate ———=—

2 + 3(4 + 2)

Key |X| Y Z| T the denominator, reenter the numera-

5 2 tor, and then use the key as fol-
lows: _

ENT 25 25 2 2 4 3 2

2 2 25 6 3 2

ENT) 2 2 25 18 2

3 3212 20

ENT 3 3 2 125 25 251 20

4 41322 20 25

ENT) 4 4 3 2 (=) [125              

At this point the numerator is lost.
However, we can continue to evaluate

A more judicious choice of keying the denominator would avoid the overflow

problem encountered in the above example. Also, storage registers are available
that would alleviate the problem. We shall discuss the use of storage keys later.

2

Clearing the Calculator
Calculators have various keys for clearing parts of the machine. One key that
clears the display only (that is, the X register) is generally labeled and is

especially useful in correcting an error when a wrong numberis entered into the

display. Some of the more sophisticated calculators have special keys for clearing

only the storage registers, or the prefix, or the program in programmable calcula-
tors. The owner’s manual explains how these keys operate in a particular calcu-
lator. In fact, the reader is urged to consult the owner’s manual whenever there
is a question concerning the operation of any key.

If one wishes to clear the entire machine, turning the calculator off and then
on will do it, except for the sophisticated calculators with a continuous memory.

It is not always necessary to clear the stack (or even the display) before begin-
ning a new computation, since only the numbers entered for a given calculation
are used and the content of the other registers is irrelevant.
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Exercises A.2

1. For each indicated calculation two keying methods are given. In each key sequence,

fill in a grid giving the contents of the X, Y, Z, and T registers after each command
has been executed by the calculator. Determine which method evaluates the given
calculation correctly.

 

    

    

    

                
      

      

           
    

a) 8:4-5 b) (7+ 4)-8 c) (9:6) ~ (4-7) d) [10 — 5(7 + 3)

Key Key Key Key Key Key Key Key

8 8 7 7 9 9 10 7

nT aj
4 4 4 4 6 6 5 3

5 5 8 8 4 4 7 5

==
x) 7 7 3 10

=) =)

=) x)

=)

2. Determine what numerical expression is being evaluated by each given sequence of
keystrokes.

a) Key b) Key c) Key d) Key e) Key f) Key

2 5 5 5 4 1

nT
4 4 4 4 6 4

ENT x) 4
1 2 3 3 3 =)

= = = =a Ent 1
3 2 2 6

3 = (xy) x) 5

=) =)

7

=)   
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3. Give a sequence of keys that will correctly evaluate each of the given expressions. In

each case make a grid showing the contents of all stack registers after each key has
been pressed.

a) 2+3+4—6 b)2—4+5:7 c)4+246=+3

4+6 — —d 53 e) 3(2 6) + 4(5 2)

In the following problems, evaluate the given expression using a calculator. Make a grid
whenever necessary to get a sequence of keys giving the correct answer. Your computa-
tions can be checked with the answers given to four decimal places.

 

4. (L4 + 3.6)(2.1) 5. (3.8 — 4.3)(6.3) 6. 29 + 1.6 + 3

1.96 + 2.3 43 + 2.6 5.46.9 — 1.2) + 4 1,1, 17,+ . 14.98 — +26 5469-12) 1.1.1
42 — 3.1 8. 14.98 5.7 9 7+ 4.3 10. 2+5+7

3,4,2 SE 2:42 5-4-3 (28)+ 88A 12. 52 + 7-5 3 13. 2522 14. (28) 4 29

3.48 — (1.23)(4.75)
— 4 — 3

15. 5(—1.32)* + 4(-1.32) 16. ST — 254357 — 6.75)

17. If f(x) = 1.47x — 5.36, find f(3.4) 18. If f(x) ==20x find f(—5.7)

2

19. If f(x) = 7.3x% — 4.1x + 3.5, find f(3.78) 20. If f(x) = 2%>S50= 18 find f(—4.3).

Answers for Exercises A.2
4. 10.5000 5. —3.1500 6. 3.4333 7. 3.8727
8. 13.7695 9. 3.0779 10. 0.5929 11. 1.8357

12. 57 13. 1 14. 2.7877 15. 5.9799
16. —0.1433 17. —0.3620 18. —1.6775 19. 92.3073 20. 5.9716
 

The Keys (x2) (/x] (s10) (Rey) (bv) (Vx)
There is no one correct way to perform a given calculation, although some meth-
ods of key entry may be more efficient than others. In the preceding section we

considered an example in which we evaluated f(x) = 5x2 —4x + 1 atx =3. A

more efficient sequence of keys would include the use of the (2) key. Pressing
the G2)key squares the content of the X register, while the contents of the other

registers remain unchanged. This is illustrated in the following grid, where we
evaluate f(3), given that f(x) = 5x2 — 4x + 1.

The and keys operate in a manner similar to that of(x2): pressing
(¥Jtakes the square root of the numberin the X register and displays the result,
while pressing (1xJtakes the reciprocal of the number appearing in the X register
and displays it. Each of these keys leaves the contents of the Y, Z, and T registers

unchanged.
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Example 1

Solution
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Key X Y Zz T Remarks

5 5

ENT 5 5

3 3 5

x2) 9 5 32 is evaluated

45 5-32in X

4 4 45

4 4 45

3 3 4 45

12 45 3-4in X

(=J)| 33 5-32 —4-3in X

1 1 33

34 5-32 —4:3+1in X         
All scientific calculators have at least one memory storage, and some have

several. When the key is pressed, the content of the X register is placed in a
memory storage separate from any of the stack registers. Pressing the recall key

will return that number to the X register whenever it is needed and also
retain the number in the memory.

If a calculator has more than one memory storage, it is necessary to tell the
machine the address of the particular memory to be used. For instance, if the
calculator has eight memories numbered 0 through 7, the storage command

consists of followed by one of the numbers 0 through 7. Similarly for recall,
press followed by the number 0 through 7 corresponding to the address
where the number is stored.

1+V67 2

x , find f(5) correct to four decimal places.
3x — 4
 Given that f(x) =

We wish to evaluate

1 2oY8)-
We first evaluate (1/5 + 1) = 2 and store the result for future use. The grid

shows decimal values correct to two places.
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Example 2 Evaluate

Key X Y Zz T Remarks

5 5

2.23

1 1 2.23

3.23

2 2 3.23

(=) 161 (V6 +1) +2in X

1.61 (V5 + 1) + 2 stored in R,
1 and still in X

(x2) 261 Square of (\/5 + 1) + 2

7 7 2.61

18.32 Numerator in X

RCL) 1.61 18.32 (V5 + 1) + 2 recalled and
1 numerator moved to Y

3 3 1.61 18.32

4.85 18.32

4 4 4.85 18.32

(=) 085 18.32 Denominator in X and
numerator in Y

(=) 21.4567 Answer

11
V2 VB

519

Solution Here we use the key since this is simpler than using the C= key to evaluate
1 = V2 and 1 + V/3. The grid shows numbers to four decimal places.
 

 

 

 

 

 

 

       

Key X Y Z T Remarks

2 2

1.4142 V2in X

0.7071 1/V2in X

3 3 10.7071

1.7321 0.7071 V3in X

0.5774 0.7071 1/V/3in X and 1/1/2in Y

(= (0.1298 Answer (to four places)  
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Example 3

Solution

Example 4

Solution
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3.52

V1.63% + 3.752

We begin by evaluating the denominator and then use the key.

Evaluate

 

 

 

 

 

 

 

 

 

        

Key X Y Zz T Remarks

1.63 1.63

(2) 2.6569 1.632 in X

3.75 3.75 2.6569

(x2) [14.0625] 2.6569 3.75% in X; 1.632 in Y

16.7194

4.0889 Denominator in X

0.2446 Reciprocal of denominator

3.52 3.52 0.2446

0.8609 Answer (to four places) i.
 

Another convenience for evaluating polynomial functions of degree greater

than 2 and exponential functions in general is the key. This key raises the
number in the Y register to the power given in the X register.

We continue with an example where the key is used.

Evaluate f(x) = 4x3 + 5x2 — Tat x = 3 — V2.

The problem is to evaluate 4(3 — /2)3 + 5(3 — V/2)2 — 7. We first evaluate
3 — 1/2, store the result, and recall it when needed.

 

 

 

 

 

 

 

        

Key X Y Zz T Remarks

3 3

ENT 3 3

2 2 3

141... 3

=) 1.58... 3—V2inX

(sT0)4 1.58... 3 — 12 in X and
stored in R,

3 i 3 1.58. ..
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| %) 3.98. . | (3—V2)3%in X

4 4 3.98...

15.95. .

4 1.58... 15.95... 3 — V/2 recalled to X

(x2) 2.51... 15.95... (3-V2)?%in X

5 5 2.51... 15.95...

12.57... 15.95... 53 — V2)2in X

28.52. .. 4(3 — V2) + 5(3 — V2)?

7 7 28.52. ..

=) 21.5248 Answer (to four places) w=

Exercises A.2 (continued)

       
 

 

Evaluate the following expressions to three decimal places. Check your answers with

those given at end of this exercise set.

1. Given that f(x) = 3x2 — 2x + 1, find (2.13).

2. Evaluate f(x) = 1.6x2 — 2.4x + 4.1 at x = 2.46.

3. Find the value of g(x) = 5x2 + > at x = —1.57.

1 1 1 1 1
4, Evaluate o + 3 + 7 + + + &-

. 1 .
5. Given that f(x) = 1 ———————, find the following.i) =1+ av im 2

a) f(2) b) f(—1.48)

6. Evaluate the following expressions by using the C7 key on your calculator.

27\ 7 1 dl 21) (+5)a) (24.67)(64 + 27) 2 b) 5 (24.67) 64 + a0) 180

7. Given that u = 2.21, v = I t = 126.43 (+5): order these three numbers from

smallest to largest.

8. Evaluate.

T 2(35.61)(180) 2(35.61)(34.64)7

a) (34.63) (385) 34.637 b) 180

9. Evaluate.

a) 1 +VT b) (* +VY 0 - +TY
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10.

11.

13.

15.

16.

The following numbers may be used as rational approximations of =. Calculate each
number and use the ("J key on your calculator to determine the decimal-place
accuracy.

 

 

22 333 355 208341

a) T P) To6 °) 13 4) “6317
Evaluate. 12. Evaluate.

a) (/5.38)3 b) 5.382 a) 24.3 + 36.8 b) v24.3 + V/36.8

Evaluate. 14. Given that f(x) = 3x* — 8x2 + 12, find f(1.43).

V3 —1
a) ———— b) 2 — V3) Ari )2— V3

Given that f(x) = got , find the following.

a) f(3) b) (2.3) c) f(—1.8) d) f(1)

Given that g(x) = x5 + x* + x3 + x2 + x + 1, find the following.

a) g(3) b) g(2.3) c) g(—1.8) d) g(1)

Compare these results with the answers in problem 15. What conclusions can you

draw about the functions f and g?

17. Evaluate.

a) Vv24.7 — \/36.8 b) 24.7 — 36.8

1— 3
18. Evaluate (5) . 19. Evaluate V(1 — V/3)2 — 1.

20. Given that f(x) = 3x* — 4x3 + x — 5, find the following.

1 5a) £(3) b) f(—1.2) ¢) f(r) d) (22)

Answers for Exercises A.2 (continued)
1. 10.351 2. 7.879 3. 11.688 4. 1.450

5. a) 1.600 b) 1.243 6. a) 27.750 b) 342.301

7. u=2210,v=2199,t =2207; v<t<u 8. a) 6.561 b) 6.561

9. a) 1.215 b) 1.477 c) 1.795

10. Agreement with =: a) 2 places b) 4 places c) 6 places d) more than 8 places

11. a) 12.479 b) 12.479 12. a) 7.817 b) 10.996

13. a) 0.268 b) 0.268 14. 8.186

15. a) 364 b) 113.105 c) —11.790 d) Error, why?

16. a) 364 b) 113.105 c) —11.790 d) 6
17. a) —1.096 b) Error, why? 18. —0.236 19. Error, why?

20. a) 133 b) 6.933 c) 166.344 d) 0.236
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A careful development of the properties of real numbers requires mathematical
proofs in which each step is justified by axioms or previously proved theorems.
Since many mathematical statements involve the idea of equality, we first state
postulates that form the basis for working with the equals sign (=).

Axioms for Equals

Let x, y, and z be elements of a given set S. Then the following properties hold:

Reflexive property: x =X.

Symmetric property: If x =y, then y = x.

Transitive property: If x =yand y =z, then x =z.

Substitution property: Ifx = y, then we may replace x by y in any expres-
sion involving x.

The system of real numbers can be characterized as a complete ordered field.

First we state axioms that describe this system as a field and then give some
theorems that follow from these axioms and form a basis for the algebra of real
numbers. Consider the set R along with the two arithmetic operations of addi-
tion and multiplication (subtraction and division are defined later in terms of

these). We say that addition is a binary operation on R, which means that for

each x and y in R there is a unique real number denoted by x + y. Similarly,

multiplication is a binary operation denoted by x - y.

Many of the fundamental properties of real numbers are introduced in the
elementary grades. This is done informally and primarily through examples. For
instance, adding 2, 3, and 5, we write 2 + 3 + 5 = 10 and are not really con-

cerned about whether we arrive at the result by a sequence of binary operations
(2 + 3) + 50r by 2 4+ (3 + 5); in either case we arrive at the same answer. Ex-

amples of this type lead to generalizations that we accept as axioms satisfied by

the system of real numbers. The following list of axioms forms a basis for impor-
tant properties of real numbers.

Field Axioms for the System of Real Numbers

In dealing with the set of real numbers R along with the binary operations of
addition and multiplication we assume the truth of the following properties
called postulates, or axioms.

For any x, y, and z in R, the following properties hold.

Associativity: x+y)+z=x+ (y + 2),

(xy) z=x°(y*2).

Commutativity: X+y=y+x,
X*y=y-*X.

Distributivity: x (y+2)=(xy) + (x2).
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Identity elements: R contains unique numbers 0 and 1 with
special properties:

X+0=x and x°1 =x.

Inverses: For each x, R contains numbers —x and 1/x

such that

x+(—x)=0 and x+2=1for x #0.

Subtraction and division can now be defined in terms of addition and multi-

plication.

Definition B.1 Suppose x and y are real numbers. Then,

Subtraction: x — yis given by x —y =x + (=).

Division: x+yisgivenby x +y=x-Tfory#0,

Note that x + y is also written as x/y.

More Properties of Real Numbers

We now state several important properties that form a basis for the operational
rules in the algebra of real numbers. All of these can be proved by using the
above definitions and axioms.

In the following theorems, suppose x, y, z, and w are any real numbers.

Theorem 1 If x = y, then

X+2=y+2z, X—2=y—2, X*2=Yy*2,

X.Y
—== f 0.TEs or 2

Theorem 2 Ifx+y=0,thenx = —yand y = —x.

1 1
Ifx-y=1, th =—andy=—.xy en x = on y==
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Theorem 3 If x + y =x, theny = 0.

Ifx-y=x, theny = 1.

Theorem 4 —(—x)==x and —(x+y)=—x—

1 1 1.1
Theorem 5 —_— and —_—=,

(1/x) X*y x y

Theorem 6 (=x)y=—(x'y), (=x) (=y) =x,

(-1)x = —=x, O-x=0.

Theorem 7 If x-y=0, then x = 0 or y = 0 or both.

Theorem 8 x+y-z2=(x+2)+(y 2),

x (y—2)= (x+y) — (x2),

(y—-2)x= (yx) — (22x)

Theorem 9 : =X, 2 =1 for £0.

Theorem 10 Equality of fractions

Suppose y # 0, w # 0. Then

fal if and only if x-w =y-z.

Theorem 11 Reducing fractions

 2'X _X where y#0,z #0.
z2'y JY
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Theorem 12 If y #0, then —Xn2

y — y

Theorem 13 Algebra of fractions

If 2 #0, w # 0, then

Addition: 2 J. 2ty
2 2 2

Subtraction: X.Y =2%"7
Z 2 2

Multiplication: 2.22)
2 Ww Zw

visi x yy x uw
Division: wm. for 0

Zz ww zz. y i

Order Relations

We first assume that R contains a subset P, called the positive numbers, such
thatifx € Py € P,thenx + y € Pand x+y € P. Also,if z is any number in R,

then exactly one of the following is true: z € Por —z € Porz = 0. If x € P, we
say that —x is a negative number.

We now define the less than order relation, denoted by (<), as follows:

Suppose x and y are in R. Then x < y (read “x is less than y”) if

and only if there is a positive number z such that x + z = y.

Other order relations are defined in terms of (<) as follows:

x <y (read “x is less than or equal to y”’) means x <y or x = y;

x > vy (read “x is greater than y”’) means y < x;

x > y (read “x is greater than or equal to y”’) means y <x or y = x.

Basic properties of the “less than” relation are given in Theorem 14.
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Theorem 14 Suppose x < y. Then

x 4+u<y+ u for any u in R;

u-x <u-+y for any positive number u;

ux > u-y for any negative number wu.

System of Real Numbers
It can be shown that the system consisting of the set ofrational numbers and the
usual binary operations of addition and multiplication forms an ordered field.
However, the property of being an ordered field is not sufficient to characterize
the system of real numbers. At the beginning of Appendix B we referred to a
complete ordered field. The property of being complete is studied in advanced
courses in mathematics.

Exercises B

In problems 1 through 10, justify the given statements on the basis of definition, axioms,
or theorems given in the discussion above. Each variable represents a real number.

1. If 3x +1=2x +1, then Bx +1) —-1=2x +1) — 1.

2. If 4 + x = 4, then x = 0.

3 3-5 —2 2

 

 

 

 

SY Y xrTx +3

5, If (x +1)(x —4) =0,thenx +1=0o0rx —4 =0.

6. If x(x +3) =0,thenx =0o0rx +3=0.

4 2 4-2 4x%y 2x 2x 4x 2x + 4x

. 2 6 y
11. In the following proof of pa 7 = 3,» Bive a reason for each step.

Step Reason

2 6 _ 2 y
x yx 6

2 y_ 2%
x 6 x-6

2_ 2%
x6 6x

y__%
6x ~ (2:3)x

2y 2%
(2-3)x ~ 2+(3x)

2 _y

2.(3x) ~ 3x    
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Therefore

2 6
xy 3x

12. Suppose x and y are real numbers and x < y. Prove each of the following.

a) x + u<y + u for any u € R.

b) If u is a positive number, then ux <u -y.

c) If u is a negative number, then ux > uy.

13. Given that u is a positive number, prove that 0 < u.

14. Given that u is a positive number, prove that —u < 0.

15. Given that x <y, prove that 0 <y — x.

529
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Approximate Numbers Appendix C

In most applications of mathematics to real-life problems, we encounter two
types of numbers: exact and approximate. Examples of exact numbers are 1/2,
4/13, m. However, when these numbers are expressed in decimal form we have

1 =10.5; 4 = 0.307692307 . . . ; m= 3.141592 . . ..

The decimal representation of 1/2 is finite, whereas for 4/13 and for = it is infi-
nite. There is no problem in replacing 1/2 by 0.5, but when the decimal represen-
tation of 4/13 or of 7 is required, it becomes necessary to round off and use only
an approximate decimal value. This is one source of approximate numbers.

Another source of approximate numbers comes from applications involving
measurements, and in almost all cases the results are expressed as approximate
numbers (limited to the degree of accuracy of the measuring instruments). Ap-
proximate numbers are then used in formulas to compute other quantities, and

so the final numbers are, of necessity, also approximate. In the following discus-
sion our primary goalis to establish rules that can be used in problems involving
computations with approximate numbers. In order to do this, we first discuss
significant digits, scientific notation, and rounding off numbers.

Notation. In the main body of the text we used the symbol = to mean both the
exact and the approximate equality, and its meaning was clear from the context.
In this Appendix we wish to emphasize approximate equality, and so we use the
symbol = to denote approximately equal to.

SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION
For a better understanding of approximate numbers, it may be helpful to con-
sider some examples first. Suppose that four different objects are measured and

their lengths are determined as:

a = 24.3 cm, b = 0.00407 m, c = 832.0 cm, d = 34 700 cm.

This means that a is an approximate number representing a length that is actu-

ally somewhere between 24.25 and 24.35 cm. Similarly, the exact value of b is

somewhere between 0.004065 and 0.004075 m, and that of c is between 831.95 and

832.05 cm.

In the case of d it is not clear what accuracy is implied. For example, d might
have been measured as 347 meters, in which case the exact value is somewhere

between 346.5 and 347.5 m (that is, d is actually between 34 650 and 34 750 cm).

It is possible that d was measured to the nearest tenth of a meter (nearest
10 cm), in which case we would write d = 347.0 m. This implies that d is some-

where between 346.95 and 347.05 m (that is, d is between 34 695 and 34 705 cm).

Similarly, if d has been measured accurately to the nearest centimeter, then

d = 34 700 means that 34 699.5 < d < 34 700.5 cm.

Thus the examples above lead to the following question: When a numberis

represented in decimal form, which of the digits are significant?

For a = 24.3 cm, all three digits 2, 4, 3, are meaningful in expressing accu-
racy of the measurement; thus we say that a has three significant digits.
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For b = 0.00407 m, the zero before the decimal and the two zeros after the

decimal merely serve the purpose of telling us where the decimal is located, but
the remaining digits 4, 0, 7 give information about the accuracy of measurement.
If b were expressed in centimeters, then b = 0.407 cm, and we would not even

encounter the two zeros immediately after the decimal point. Thus & has three
significant digits.

In the case of ¢ = 832.0 cm, the zero after the decimal tells us that the

measurement was made to the nearest tenth of a centimeter, and we do not need

to be told where the decimal is located. Therefore all four digits 8, 3, 2, 0 are

significant.
In the case of d = 34 700 cm, the two zeros are certainly necessary to locate

the decimal point, but it is not clear whether they give us any information about
the accuracy of measurement or not. Thus we would say that 3, 4, 7 are signifi-

cant digits, and an additional statement is required concerning the significance
of the two zeros. A convenient way to give this information is to use scientific
notation. Thus, if d is accurate to the nearest meter (nearest 100 cm), then we

write d = 3.47 X 10% cm, and this indicates that only the 3, 4, 7 are significant

digits. If d is accurate to the nearest 10 cm, then we write d = 3.470 X 104 cm

and 3, 4, 7, 0 are significant digits. In a similar way, d = 3.4700 X 10% cm implies
that d is measured to the nearest centimeter, and so all of the digits 3, 4, 7, 0, 0

are significant.

The above discussion leads us to the following general statement concerning
significant digits: When a number is written in decimal form, its significant
digits begin with the first nonzero digit on the left and end with the last digit on
the right that definitely gives information about the accuracy of the number.

That is, all nonzero digits are significant, whereas zeros that merely serve
the purpose of locating the decimal point are not, but all other zeros are. In cases
when it is not clear whether a zero merely indicates the place of the decimal
point (as in d above), scientific notation is useful. To represent a number in

scientific notation, we write it as a product of a number between 1 and 10 and a
power of 10; all digits of the factor between 1 and 10 are significant.

Determine which digits are significant in the following numbers.

a) 37.543 b) 136.1030 c) 240.00

d) 0.0048 e) 0.00480 f) 70400

a) All five digits are significant.

b) All seven digits are significant (including the zero at the end).

¢) The three zeros are significant, and so the number has five significant digits.

d) Only the 4 and 8 are significant digits.

e) The 4, 8, and final 0 are significant digits.

f) The digits 7, 0, 4 are significant, but we cannot say without further informa-

tion whether the last two zeros are significant. ee
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Write each of the numbers given in Example 1 in scientific notation.

a) 37.543 = 3.7543 X 10
b) 136.1030 = 1.361030 X 102
c) 240.00 = 2.4000 X 102
d) 0.0048 = 4.8 x 10-3
e) 0.00480 = 4.80 x 10-3
f) 70400 = 7.04 x 10* would indicate that only 7, 0, 4 are significant digits.

70 400 = 7.040 x 10* would say that 7, 0, 4, 0 are significant digits.

70 400 = 7.0400 Xx 10% would tell us that all five digits are significant. Ill

The following numbers are expressed in scientific notation. Write them in ordi-
nary decimal form.

a) 2.78 x 10* b) 347 x 1074 c) 3.40 x 103 d) 4.800 x 107!

a) 27800 b) 0.000347 c) 3400 d) 0.4800 =

ROUNDING OFF NUMBERS
When a numberis given in decimal form,it is frequently necessary to express it
as an approximate number with fewer significant digits. We call this the process
of rounding off a number and illustrate with the following examples.

Round off the following numbers to three significant digits.

a) 3476 b) 24.74 c) 73.80 d) 0.473501
e) 2435 f) 69.95 g) m h) 7/2

a) The number 3480 = 3.48 Xx 103 has three significant digits, and it is an ap-
proximation to a number between 3475 and 3485. Since the given number
3476 is in this range, we say that 3476 rounded off to three significant digits is

3.48 x 103.

Similarly for (b), (c), (d) we get the following.

b) 24.7 c) 73.8 d) 0.474

e) Here we encounter a borderline case in which it is not clear whether we

should round off to 2430 or 2440. Both appear to be equally good, and so we
shall adopt the rule that we round up and use 2440 = 2.44 Xx 102 as the
answer. *

f) This is similar to (e), and so 70.0 is the approximation of 69.95 with three

significant digits.

 

Some textbooks give a slightly different rule in which the number is sometimes rounded up and other

times it is rounded down.
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g) Since 7 = 3.14159 . . . , we round off to 3.14.

h) 7/2 = 1.57079 . . . rounded off to three significant digits is 1.57. =

COMPUTATIONS WITH APPROXIMATE NUMBERS
When approximate numbers are used in computations,it is natural to ask: “How
many significant digits should we retain in the final result?” To give an answerit

is helpful to consider some examples. We first take the problem of multiplying or
dividing two approximate numbers, and then we study addition and subtraction

of such numbers.*

Multiplication and Division of Approximate Numbers

Suppose the length and width of a rectangular object are measured with a ruler
marked in millimeters and are found to be / = 16.4 cm, w = 8.6 cm. We wish to

find the area of the rectangle. Since Area = [ X w, we get

Area = (16.4 x 8.6) cm? = 141.04 cm?2.

This is a computed value based on the measurements of / and w expressed as
approximate numbers. How many of the five digits in 141.04 are really meaning-
ful and not misleading in terms of stating the actual area of the object?

On the basis of the given information about / and w, all we can say is that

16.35 <1 < 16.45 cm and 8.55 < w < 8.65 cm.

This implies that

16.35 x 8.55 < A < 16.45 Xx 8.65 cm?.

That is, all we can really say about the actual area is

139.7925 < A < 142.2925 cm?. (C.1)

This is the best claim we can make about the area on the basis of the given
measurements.

Our computed value of A = 141.04 cm? is certainly in the range given by
expression (C.1), but stating that A = 141.04 cm? implies that we know

141.035 < A < 141.045 cm?. This says considerably more than we actually do

know.

Suppose we round off the computed value to three significant digits:

A = 141 cm? This implies that 140.5 << A < 141.5 cm?2, and clearly this still

claims more than the inequality given in (C.1). Therefore we try rounding off to

two significant digits: A = 140cm? = 1.4 xX 102cm2. This means that

135 < A < 145 cm?, and making such a statement is consistent with the ine-

quality given by (C.1).

 

The general problem of accuracy in computations involving other operations (such as square root,

logarithm, etc.) is a topic for numerical-analysis courses.
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In conclusion, rounding off the computed value of the area to two significant
digits results in the best statement we can make that is consistent with what the
given measurements tell us about the actual area. Since / was measured to three
significant digits and w to two significant digits, this suggests that we should
round off the product to the smaller number of significant digits of the measured
values.

The problem of dividing two approximate numbers is similar. Suppose
a = 34.6 and b = 84 are approximate numbers, and we wish to determine
c¢ = a + b. Using a calculator to evaluate c, we get

_ 346
~ 84

How many digits should we retain in the answer? Since 34.55 < a < 34.65 and
8.35 < b < 8.45, we obtain

=41190....

34.55 34.65

8.45 <3p< 8.35"

Thus, all we know about c is that

4.0888 < c¢ < 4.1497 (to four decimal places). (C.2)

If we round off c¢ to three significant digits (¢ = 4.12), then we are saying that
4.115 < ¢ < 4.125, and this is not consistent with what we know about c, as given

by (C.2). If we round off to two significant digits (¢c = 4.1), then we imply that
4.05 < ¢ < 4.15, which is in agreement with statement (C.2). Since a = 34.6 has

three significant digits and b = 8.4 has two significant digits, this example sug-
gests that the quotient of two approximate numbers should be rounded off to the
smaller number of significant digits of the two measured values.

The above examples suggest the following.

Rule for multiplying and dividing approximate numbers

In the multiplication and division of approximate numbers, the re-
sult should be rounded off to the smallest number of significant
digits in the data used.

For example, suppose x = 47.36, y = 17.5, z = 5.2, and we wish to evaluate
u = (xy) + z. Since the numbers of significant digits in x, y, z are four, three, two,

respectively, we should retain two significant digits for u. Thus

u = (47.36 x 17.5) + 52 = 159.3846 . . . ,

and so we have u = 160 = 1.6 Xx 102. If this value is to be used in subsequent
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computations, then we should use one more significant digit (x = 159) for that
purpose, but we must remember that in the final round off, u is accurate to only
two significant digits.

Addition and Subtraction of Approximate Numbers
When one is adding or subtracting approximate numbers, the situation is a little

different from that of multiplying or dividing. For example, suppose a bank
reports that a certain fund has $248 000 in it, where this is accurate to the
nearest thousand dollars. Now suppose that $72.35 is added to this fund. It
would be misleading to say that the fund now has $248 072.35 in it. We would say
that the fund still has $248 000 in it to the nearest thousand dollars (based on

the given information). That is, we would write 248 000 + 72.35 = 248 000.

It is clear from this example that when we add two approximate numbers,
we are not interested in the number of significant digits each has, but we are
primarily interested in the level ofprecision of each number. We say that the
level of precision of 248 000 is the nearest thousand, and that of 72.35 is the
nearest hundredth; thus the level of precision of 72.35 is greater than that of
248 000.

As another example, suppose x, y, and z are approximate numbers given by
x = 24.65, y = 0.036, z = 132.4. The levels of precision of x, y, z are hundredths,

thousandths, tenths, respectively. Common sense would suggest that the sum

X+y+2z=2465 + 0.036 + 132.4 = 157.086

should be rounded off to the nearest tenth, since z is no more accurate than the

nearest tenth, and we cannot expect x + y + z to be more accurate. Thus

x +y+2z=1571.

The above examples lead us to the following common-sense rule.

Rule for adding and subtracting approximate numbers

In the addition and subtraction of approximate numbers, the result
should be rounded off to the lowest level of precision in the data
used.

Linear and Angle Measurements

When one is solving triangles, the angle and length measurements are usually

given as approximate numbers. Therefore it is desirable to have a guide that can

be used to determine the angle measurements with an accuracy corresponding to
that of the length measurements. For angles that are not too close to 0° or 90°,

the following table provides a satisfactory rule.
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Lengths accurate to Corresponding angles accurate to
 

Two significant digits Nearest degree

Three significant digits Nearest 10’

Four significant digits Nearest minute

Five significant digits Nearest tenth of a minute     
In the following examples, suppose x, y, 2, u, v, t are approximate numbers

given by

x = 348, y= 0.0360, z = 3251, u = 5.004,

v= 84000 (only 8 and 4 are significant),

t = 24800 (the tens 0 is significant).

Write the above numbers in scientific notation.

x = 3.48 x 10°, y =3.60 X 10-2, z = 8.251 Xx 103,

u = 5.004 x 10°, v = 8.4 x 10%, t = 2.480 x 10%, ba

Give the number of significant digits in each of the numbers above.

In x there are three; y has three; z has four; u has four; v has two; ¢ has four.

we

State the level of precision of the given numbers.

The level of precision of x is hundredths, ofy is ten thousandths, of z is units, of

u is thousandths, of v is thousands, and of ¢ is tens. we

Using the rule for multiplication and division of approximate numbers, evaluate
the following.

a) xz b) 2 c)u-t

a) xz = (3.48)(3251) = 11 313.48. Since x has three and z has four significant

digits, the result should be rounded off to three significant digits. Thus
x+z=11300 = 1.13 x 10%

y+v . (0.0360)(84 000)

x 3.48
The smallest number of significant digits of x, y, and v is two, and so the
answer should be rounded off to two significant digits. That is,

= 868.9655 . . . . b)

yu = 870 = 8.7 x 102.
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Example 9

Solution

Example 10

Solution

Approximate Numbers dS39

¢) Both u and ¢ have four significant digits, and so u « ¢ should be rounded off to
four significant digits: u - ¢ = (5.004)(24 800) = 1.241 x 105. ci

Using the rule for addition and subtraction of approximate numbers, evaluate
the following.

a) x +y b) z+¢ Cc) u—x d) v+t¢ e) x+z—u

a) x + y = 3.48 + 0.0360 = 3.516. Since the level of precision ofx is hundredths

and that of y is ten thousandths, we round off the sum to hundredths:

x + y= 352.

b) z + t = 3251 + 24 800 = 28 051. The level of precision of z is units and that
of t is tens, and so we round off the sum to tens:

z + t= 28050 = 2.805 x 10%

c) u —x = 5.004 — 3.48 = 1.524. The result should be rounded off to the near-

est hundredth, and so we have u — x = 1.52.

d) v + t= 84000 + 24 800 = 108 800. Since v is correct to the nearest thousand

and ¢ is accurate to the nearest tens, we round off the sum to the nearest

thousand:

v + t= 109000 = 1.09 x 10°.

e) x +z —u = 348 + 3251 — 5.004 = 3249.476. Since the least precise of x, z, u

is z (to the nearest unit), we round off the result to the nearest unit:

x +z —u = 3249. ]

Using the rules for computation with approximate numbers, evaluate the

following.

a) z — xu b) t= 

a) Wefirst evaluate xu:

xu = (3.48)(5.004) = 17.41392 = 17.41.

Therefore

z — xu = 3251 — 17.41 = 3233.59 = 3234.

Note that in the final computation we used an extra digit for xu.

b) We first evaluate v — ¢:

v — t= 84000 — 24 800 = 59 200 = 59 000 = 5.9 Xx 10%

Thus

v—¢ . 59200 — 17011494 . .. = 17000 = 1.7 10%
x 348 101149 X
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Note that in the final computation we used v — ¢ = 59 200 (an extra significant
digit), but we rounded off the final result to two significant digits. -

Example 11 The radius of a circle is measured as r = 6.41 cm. Find the area of the circle.

Solution We use the formula Area = 7r2. Since r is measured to three significant digits,
the result should be rounded off to three significant digits. We use = as given by
the calculator and find that

Area = 7(6.41)2 = 129.082 . . . cm? = 129 cm?.

Exercises C
 

In problems 1 through 7, suppose x, y, 2, u, v, t are approximate numbers given by

x = 64.75, y= 4830, z = 0.0045, u = 0.0370, v = 3005.2,

t = 3100 (the tens 0 is significant and the units 0 is not).

1. Write each of the above numbers in scientific notation.

2. Determine the number of significant digits in each of the above numbers.

3. State the level of precision of each of the above numbers.

4. Round off the above numbers to two significant digits.

Using the rules for computing with approximate numbers, evaluate the expressions
given in problems 5 through 7.

 

5. a) xu b) vz c)t+y d) (wy) =z

6. a) x +y b) u —=z c)y—t d)y—-x-v

7. a) x2 — u b) 2° c) y+ ut

8. The radius of a circle (measured accurately to the nearest millimeter) is found to be

r = 2.476 m. Find the circumference and area of the circle.

9. The radius of a sphere is measured as r = 3.47 cm. Find the surface area and volume

of the sphere.

10. The lengths of the edges of a rectangular box are measured to the nearest millimeter

and found to be

a = 23.4 cm, b =12.8 cm, ¢c = 84cm.

Determine the volume and the total surface area of the box.

11. The speed of light is approximately 3 X 10° km/sec. A light-year is defined as the

distance travelled by light in one year. Assuming 365 days in a year, find the number
of kilometers in a light-year. Express your answer in scientific notation.

12. The hypotenuse and an angle of a right triangle are measured and found to be

32.4 cm and 23°40’, respectively. Calculate the area and the perimeter of the tri-
angle.
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Answers for Exercises C

1. x =6475 x 10 y = 4.83 x 103 z =45 x 1078
u = 3.70 x 102 v = 3.0052 x 103 t =3.10 x 103

3. x, hundredths; y, tens; z, ten thousandths; u, ten thousandths; v, tenths; ¢, tens

5. a) 2.40 b) 14 c) 0.642 d) 4.0 x 10°

7. a) 0.25 b) 0.589 c) 4.94 x 103

9. 3.78 cm?; 175 cm? 11. 9 X 102km
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544 Table of Prime Numbers

 

 

151
157
163
167
173

179
181
191
193
197

199
211
223
227
229

233

241
251
257

263
269
271

281

283
293
307
311
313

317
331
337
347
349

353
359
367
373
379

383
389
397
401
409

419
421
431
433
439

443

457
461
463

467
479
487
491
499

503
509
521
523
541

547
557
563
569
971

877
o87
593
999
601

607
613
617
619
631

641
643
647
653
659

661
673
677
683
691

701
709
719
727
733

739
743
751
757
761

769
773
787
797
809

811
821
823
827
829

839
853
857
859
863

877
881
883
887
907

911
919
929
937
941

947
953
967
971
977

983
991
997
1009
1013

1019
1021
1031
1033
1039

1049
1051
1061
1063
1069

1087
1091
1093
1097
1103

1109
1117
1123
1129
1151

1153
1163
1171
1181
1187

1193
1201
1213
1217
1223

1229
1231
1237
1249
1259

1277
1279
1283
1289
1291

1297
1301
1303
1307
1319

1321
1327
1361
1367
1373

1381
1399
1409
1423
1427

1429
1433
1439
1447
1451

1453
1459
1471
1481
1483

1487
1489
1493
1499
15611

1523
15631
15643
1549
15653

1559
1567
1571
1579
1583

1597
1601
1607
1609
1613

1619
1621
1627
1637
1657

1663
1667
1669
1693
1697

1699
1709
1721
1723
1733

1741
1747
1753
1759
1777

1783
1787
1789
1801
1811   
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Exercises 1.0, pages 13-15

1.

7.

13.

19.

23.

25.

27.

31.

317.

43.

47.

49.

53.

57.

63.

69.

75.

 

 

 

 

{4, 5, 6} 3. {1,2,3,4,5} 5. {0.1,1}

False 9. True 11. True

False 15. True 17. {2,3}

{5, 7} 21. a) True b) False c¢) True d) True

a) True b) True c¢) False d) True

a) True b) False ¢) True d) True

a) —4——————1—++ 29. a) ——¢———jo—+—jo—+—
-3 0 5 -2 Om=-2 =

b) e—4———¢—+—+o—+—1> b) —o——+—+—+—+—++—
0 2 5 -3 0 4

¢) ————————— ¢) +—————fo—t—o—4—>
-2 0 4 0 V2 =

Ain I, Bin II, Cin IV, D in III 35. a) V29; 5.39 b) 13; 3.61

9.43 39. 42.20 41. 52

Yes 45. Yes

a) —-2+4+3i b) —-4+5 ¢)l1+7 d) —35+ 050

a) —i b) —02+04i cc) -1—-21 d) —-2+1 51. a) 3 Db) 35

a)2 b)1 55. a) x > —1 Db) x < -0.5

x —y 59. x — 2 61. x2 — 5x + 7

3x2 + 11x — 4 65. 2x3 — 6x2 + x — 3 67. x2 +x — 3

2 43x +11 + —2_ 71. 3(x — 2)(x + 2) 73. (2x — 1)(x — 2)
x — 3

Does not factor 77. (x — 2)(x +

Exercises 1.1, pages 24-28

1. a) f= {(-1, -2),(0,1), (1, 4), (2,7), (3,10)}
d —-1 0 1
Vl

-2 1 4

¢) R(f) = {—2,1,4,7,10}

. a) f= {(—4, 3), (—1, 1), (2, —1), (5, -3)}

dd) —-4 -1 2 5
EN
3 1 —-1 -3

10) 79. 8x2(1 — 2x)(1 + 2x)

b) Yes; Yes

2 3

Vo
7 10

b) Yes; Yes ¢) R(f)={-3, -1,1,3}

. a) f= {(=1, —1), (0,05), (1, —1), (3, —13)} b) Yes; No
¢) R(f)={-13,-1,05} d) -1 0 1 3

Vol Vo
~1 05 —1 —13
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{(0,0), (1,0), (2,2), (3,6)} b) Yes; No ¢) ®(f) = {0,2,6}a) f= {(0,0),
do 2 3

l I
002 6O

S
«
+

9. a) Yes; No b) D(f)={-1,0,1,23,4}; ®R(f) ={0,1,4,9, 16}

c¢) f(x) equals the square of x

11. a) No; No b) D(h) {0,1,4,9}; ®R(h) = {-3, —2, —1,0, 1,2, 3}
¢) h(x) = Vx or h(x) — Vx

13. a) f= {(—1,1),(0,0), (1,1), (2,4)} b) Yes

c) D(f)={-1,0,1,2} R(f) ={0, 1,4}
15. a) {(1,0), (3,2), (5,4)} b) Yes

17. a) © = {x]|x > 0} Db) {(1, 15), (2, 30), (3.6, 54), (10, 150)}

19. a) D(f) = ®R Db) f(—=2) = 11, f(0) = 3, f(\/5) = 3.53

21. a) DA) =R b) h(—-2) =11, A(1) = —1, A(1 + V5) = —9.94

23. a) D(g) = {x|x #2} b) g(-2) = —1, g(0) = 0, g(\/5) = 21.18
25. a) D(g) = {tt # —1,t #0} b) g(—2) = —(}), g(0.5) = — (4), g(/3) = —0.21

27. a) D(f) = {t|t <1} b) f(1) =0,f(=3) =2 f(— V7) = 191
29. a) 4 b)4 cc) 176 3l.a) 1 b) 165 c)2

33.a) 0 b)1 ¢) 121

35. a) 3u? —8u +2 b) 3x2 + 20x + 30

w?—2ut+l1 ph Axf-dx+1 39 51 p)1 ¢)0
u 2x

37. a) 

41. y 43. y 45. y

/ 0,4)

0,1)
l x

/ | Xx X

[(=2,00[ 2,0)

 

 

    
47. y 49. y

 

 

LN[00 *

(, -1)
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53.

1
-4 -3 -2 -1  

57. a) No b) {x|—-4 <x <4}

61. a) 0 b) —3

Exercises 1.2, pages 40-42

1. 21

7. Undefined

13. 6.5

19. Undefined

25. Vax(x — 3); {x|x > 0}
31. x + 4; {x|x > 0}

37. No solution

x —3

2

49. 6.04

55. 0.18

43. 

59. f(x) = x2, g(x) = x + 1; other possible answers

63. 4; —6; 2; —2; 5

Exercises 1.3, pages 47-49

l.a) —3 Db)O

15.

21.

27

33

39

45.

51

57

65. a) 1

63. a) 3 Db) 2

280 5.

—7 11.

18 17.

0 23.

«Vx — 3; {x|x > 3) 29.

.Vx2 +4; R 35.

. No solution 41.

4 — x
5 417.

. 1.47 53.

. No, D(fog) # D(gof)

61. 41;

b)l1 ¢)2 d)2

5 a) x —2y+5=0 b)y—4=0

9. 2x —y+8=0

13. —3; (-2, 0), (0, —3)

17. y

 / (0, -2)

 

55. a) Yes b) R

59. a) Yes b) R

c) —2

—2.75

-3

3

x2 +4,

x2 — 6x + 13; R

-2

Yes

2(6 — x)

3

2.37

 

—4; 16; 121

3. a) —% b) Undefined

7.a) 2x +y=0 b)x+2=0

11. 3x + 5y = 15

15. 3; (2, 0), (0, —3

19. y

/ (0, -3) 

)

/[
re
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21. y 23. y

xX

2,0)
0,2)

o, -3) 

~(-4,0) ’

25.8) 2x —3y=—7 b)3x+2=-4 27.a)x+1=0 b)y—3=0
29. No 31. Yes 33. x —2y=0

35. 16x + 6y = 25 37. (1,3), (4,1) 39. (2,1)

41. x + 2; Yes 43. 22-1 No 45. —2x + 4; Yes
—x + 3

Exercises 1.4, pages 59-61

2 + 10
1. a) —0.5, 2 b) Rational 3. a) —g b) Irrational; —0.39, 1.72

5. a) 1 = \/3 b) Irrational; —0.73,2.73 7. a) 1+=i b) Complex

9. a) V/3=*= 1/5 Db) Irrational; —0.50, 3.97

 

 

+ ~/

11. a) 23VD b) Irrational; —0.56, 2.86

13. y 15. y 17. y

0,4)

(=0.5,0) (2,0)

o, -2) NN 2 25 (-2, 0)

4 8 
21. Min of f(x) is —1; no max

 

 

23. Max of f(x) is —3; no min 25. Min of f(x) is —4.84; no max
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27. Max of f(x) is 4; min is —6

31. Max of f(x) is 1; min is —15

35. S={x|-1<x<15}

29. Min of f(x) is —7; no max

33. S={x|x<lorx>3}

37. S={x|x<1— V6orx>1+ 5}

39. S={2) 41. a) K=(V152/2)(2 —x),0<x <2 b)1by Vi5/2 ¢) V15/2

43. a) 90m by 180m b) 63 800 m?

45. a) T =

Exercises 1.5, pages 68-69

l..a)4 b)5 ¢) V3

7. a) (fog)(x) =|

1400x if 0<x<120

2600x — 10x2 if 120 < x < 150

3.a)l12 b)4 co)

b) x = 130 gives max of $169 000

3+ V5
2
 5.a) 3 b)1l ¢)3

x2 —3x +2ifx>1 f _ xifx>1

2—x  ifx<l b (z)@=|g —xifx <1

c) D(f-g) =R; o(1)= {x]x #1}

 

  

 

9. S={-1,3) 11. S = {1,3} 13. S = {—1)
15. S = {x|x < 1) 17. S = {x|x > 2) 19. S = 0

21. S = {—4,4) 2. 5 = fo,V1T) 25. S = {x]0 < x < 2)

27. S = {x|x > 2} 29. S={x|x < —1}

[2x —2if x > 2

31. f(x) = | 2if x <2
(x2 +x+4ifx > —133.TEE 35.

0,2)

X

(2,0)

37. y 39. y

X

X

(-2,-2) ONJ(2,0)

/ 0, -2) 
41. a) D(f) =R, R(f) = {y|y > 0}

 
b) D(g) =R, R(g) = {y|ly <1}
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Exercises 1.6, page 77

1. a) Circle b) y= V9 — x2; y = —V/9 — x2

c) y y

0,3)

I (530 3,0)
(-3,0) (3,0) \/

0, -3)  
3. a) Ellipse b) y =1V12 — x2; y = —1V/12 — x2

c) y y

(0, V3)

VIZ, VIZ,
LrMt’ ~~

o, -V3)  
5. a) Parabola b) y =4x2 ¢) y

551

y

 CIN
\ 

 CY1
 

  
7. a) Parabola b) y =%4V—-x;y= —%4V—x

c) y y
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9. a) Parabola b) y =3Vx; y= —3Vx

c) vy y

  

  
11. a) Circle b) y =05V9 — 4x2; y = —0.5V/9 — 4x2

c) y y

(0, 1.5)

7 (-1.5,0) (1.5,0)
 X X

(-1.5,0) (1.5,0) \/

  

 

 

0,-1.5)

13. Graph is the point (0, 0)

y

X

15. a) Hyperbola b) y = Vx2 —-9; y= —Vx2-9

c) y y

\ / . (3,0) (3,0)

(-3,0) (3,0) /

  

 

 

<

 

C
I
\
/

 

 

~
~
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17. a) Hyperbola b) y =4Vx2—-9;y = —%x?2-9

c) y y y

N / (=3,0 3.0) |
xX xX 
  

/T
N\

   

   

   

   

X

19. a) Two lines b) y = 04x; y = —0.4x

c) y y y

X X X

21. a) Hyperbola b) y =3Vx%2—4;y=—35Vx?—-4

c) y y y

(2,0) (2,0) .

(=2,0) (2,0)

   
23. No graph

Exercises 1.7, pages 90-91

1. Even 3. Odd 5. Neither 7. Even

9. Odd 11. Even 13. Even
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15. Neither 17. Origin

y y

\ 0,4)

(-1,0)

(1,0)

(2,0)
x

\

19. Origin 21. y-axis

y y

x
’ (=2,0) 2,0)

23. Neither 25. Neither

y y

\ (2,2)

(-3,3)

X

X

27. D(f)=R,R(f)=R 29. D(g) =R,R(g)=R

31. D(g) =R; R(g) = {yy > —4} 33. D(f) = {x| <0}; Rf) = {y]y <0}
35. D(f) = {x|—4 <x <4}; ®R(f) = {¥|0 <y < 2)
37. D(f) = {x|x # =-2}; R(f) = {y|y # -2)
39. a) Increasing b) One to one 41. a) Decreasing b) One to one

43. a) Increasing b) One to one 45. a) Neither b) Not one to one

47. a) Increasing b) One to one 49. a) Neither b) One to one
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51. y

(- V3, 0)

 
09

©, =

555

xX

(V3,0)

4)

Exercises 1.8, pages 97-99

1.

5.

9.

11.

13.

15.

17.

19.

21.

23.

25.

29.

31.

f1 = {(0, —2), (1, 0), (3, 2), (4, 4)}

a) One to one

a) One to one

a) One to one

a) One to one

a) One to one

a) One to one

a) One to one

a) One to one

a) One to one

fx) = 45% ; D(fH)=R

3. ft = {(V5, 3), (Ve, 4), (3, 1), (4, 2)}

b) f(x) =7 D(fHY=R 7. a) Not one to one

b) fx) = —x% D(f1) = {x|x > 0}

b) f~Xx) = x2 + 1, D(f~!) = {x|x > 0}
b) f~1(x) = Vx; D(f~) =R

_ _ [=x if x <0, “1b) Fe) = {Th fen So PU) =R

b) fix) = [2Df) = (x0 <x <1)

b) f(x) = 3; DF) = {x0 <x < 1)

b) fix) = 1+ VI+ x Df) = (x]x > 0)
b) fix) = 1 + Va DF) = {x|x > 0)

27. fx) = Vx + 1; D(fY) = {x|x > —1}

 

fix) =1—x2 D(f1) ={x|x > 0}

fx) = 5 33. f(x) = Vx, x >0

y

1y=fx

J yer
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35. f(x) =x2+1,x>0

317.

39.

y

y=f"1(x)

opoTI=i
[

(1,0)

Fv) = fo v|1 2 3.72 5.64

r| 062 0.78 096 1.10

 
 

 

   
 

 

a) D(f)={t|0<t<4) b)|s|10 48 60 75
 

  t {026 151 206 3.17  
 

Review Exercises, pages 99-101

1.

3.

5.

7.

11.

17.

23.

217.

29.

Yes; D(g) = {—1,0,1,2); R(g) = {2,4,6,8)
Df) =R; D(g) ={x|-1<x <1}; D(A) =R

(8of)x) =2Vx —x% D(gof)={x]0<x <1)

Nay=22=L. o(L)=(x]-1<x<1} 9. a)0 b) —3(2) :

 

z V1 — x?’

a) 5 b) Undefined 13. 0.876 15. 0.967

-1,1 19. 1, 3 21. 5x +2y+1=0

x—2y+7=0 25. Yes; x +4y—11=0

f is not an increasing function; f is one to one

y 31. y

20 0,3)

(1,0)

A®9 \_/6
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33. a) (1,0) b) (0,3) ¢) Lowest point (1, 0)

35. a) (3,0), (1,0) b) (0, —3) ec) Highest point (3, 3)
 
-3+ Vv13 -3- V137. + Ve *) 39. (—7,1)

2 2

41. {x|x < —1lorx > 4} 43. Empty set

45. Ellipse 47. Parabola

y y

0,2)
TN

on]

x X

SN” oo
(0, —4)

©, -2)

 

 
49. Semicircle 51. Line with point (—2, 4) missing

y y

(~3,0) 3,0) (=2,4)

NL aS
53. f(x) =5—-x; D(fH)=R; R(f1) =R

55. fx) = —x%, D(fYH) ={x|x <0}; Rf) ={y|y <0}

57. f"Ux) = 14 Vx; Df) = {xx > 1}; Rf) = {yy > 2}

59. f(x) = £2; Df) = {x]x <6); R(F= (yy <0)

 

   

 

Exercises 2.0, pages 108-109

1. (x + 3)(x2 — 3x +9) 3. x(x2 — 6x + 12)

5. (x — 2)(x2 +1) 7. x(x + 1)(x — 1)2

9. (x + 1)(x — 2) (x2 +x + 2) 11. 5x2 — x

13. 3x3 — 3x2 + 6 15. x* — 4x2 + 16x — 16

17. 3 19. g(x) =x2 +x +5; r(x) =8x +9
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x —1 1—x. - . 25.21 2 23 Z 2x — 1

2 2 _ 227. 4x? — 10x + 25 99. X 5x + 13 31. X + 2x + 6

x 4 — x x2 4x —2

2 2 _ 3 233. 5x2 + x — 1 35 X x gq. 2% + 2x° + 2x

x? 4+ x x +1 x +1

x2 — 4x + 4 1 1
, ——T 41, ———— 48,

39 2x +1 x3 — x2 — 2x — 12 3x2 — 3x — 2

45. 1 q7, 32-1
3

Exercises 2.1, pages 113-114

1. a) Yes b) No ¢) Yes

Leading Constant Over the
Problem Degree coefficient term rational numbers? Standard form

3 4 3 3 Yes xt —2x3 + x2 —x +3

5 3 —1 0 Yes x3 + x2 +x

7 3 2 —-2 Yes 2x3 — 202 + 2x — 2

9 3 3V3 V3 No 3V3x3 — 23x + V3

11. Yes; 2, 4 13. No 15. Yes; 4, 3 17. a) 13 b) —40.12

19. a) 096 b) —7.83 21. 23.80 23. 0.80

25. x —148 —043 0 0.83 1.64

y =5.0 -3.0 —40 —-6.6 —7.2

27. x —23 —24 —2.33 —-234 —-2331

y 0.33 —-0.82 0.00066 —0.11 —0.011   
 

29. P(x) =4x +1

31. Any polynomial of the type P(x) = 2x3 + bx? + cx + d, where

4b + 2¢ +d = —-17



Answers to Odd-Numbered Exercises

Exercises 2.2, page 119

1. y

(0,  

 

 

 

 

5.

(-1, 0)

/ 1,0)

9.

X

13.

(1,0)
-3,0)| 20
 

 
o, —6)

xX

0,3)

of
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(1,4)

“o\

  

  

7. y

0,1)

(-1,0) (1,0)

11. y

Xx

15. y

Jao :

(©, -1)
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17. y

 

 

  

(LO),TN.
/ ao 2,0)

21. y

0,1)

NN. x
(1,0)

25. y

 —
29. ®R(f) = R; x intercept at about x = 2.4

 

(, —6)

 

 

 

 

19. y

(-1,0) (3,0)

(O, -3)

23. y

(2,0)

217. y

 o, -2)
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Exercises 2.3, page 126

1 (x —2)3x +4) +9 3. (x + 2)(3x3 — 6x2 4+ 10x — 17) + 29

5. (x — 3)(—4x%2 — 7x — 23) — 66 7. q(x) = 2x2 4+ 3x + 13, r = 40

9. g(x) = x* + 2x3 + 4x2 + 8x + 16, r = 64

11. g(x) = 3x2 — 9.2x + 25.08, r = —64.192

13. g(x) = x? + 1.2x + 3.44, r = 1.128 15. r=1 17. p(—=3) = —100

19. p(—1) = 0 and so (x + 1) is a factor; p(1) = 0 and so (x — 1) is a factor

21. p(—2) = 0 and so (x + 2) is a factor

23. x + 1 is a factor if n is an odd positive integer 25. —3/2 27. 2

29. p(x) =x34+2x2 —x—-2 Bl. p(x)=x3—-14x2—-x +14

Exercises 2.4, page 132

1. p(x) =x3—2x2 —5x + 6 3. p(x) = x3 + x? — 16x — 16

5. p(x) =x* — 6x2 + 8x — 3 7. p(x) = x3 — 3x2 — 2x + 4

9. p(x) = x3 + (1 — V3)x%2 — 3x 11. 0, —2, \/5, each of multiplicity one

13. 0 and 1 of multiplicity two; —2 of multiplicity one 15. \/2 is a zero

17. —2 is a zero 19. a) No b) Yes 21. a), b) 1,2, 4,8 <¢) 4is a root

23. a), b) +1, +3,

25. a), b) *=1, £3,

27. a), b) +1, +3,

29. a), b) —1, —2, 3 —% —% 4 —% —4 c¢) —% —4%, —1%areroots

31. a), b) +1, +2, +4, +6, £9, +18 +36 ¢) —3, —2, —2, 3 are roots

33. p(x) = 2x + 1)(x2 +x + 1) 35. p(x) = (x + 1)(2x — 1)(x%2 + 1)

37. —1 — \/2is a root of x2 + 2x — 1 = 0, an equation with integer coefficients

1+ V5
2

+3 ¢) —3$is a root~-

I+
1+

+
N
O

O
i
o
l

B
o
l

+ le
o

c) —1, —4, 3 are roots

> c¢) —1is a root

I+
o
o

~
- W w
l o 9

39. is a root of x2 — x — 1 = 0, an equation with integer coefficients

Exercises 2.5, page 138

1. a) 3or1l Db) y 3. a) 3orl b) y

c) 3 c) 3

AL
(=2,0)

ol x
Te1X 2

0, -2) 0, -1)   
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5. a) 4,20r 0 b) y 7. a) 4,2,or 0 b) y

c) 2 \/ c¢) No zeros

1\ 1 x
 

   
9. Only one zero; 2.1 to one decimal place

11. Only one zero; —3.2 to one decimal place

13. Four zeros: between —2, —1; —1, 0; 2, 3; 3, 4; smallest is — 1.6 to one decimal place

15. Only one zero; 3.28 to two decimal places

17. Three zeros: between —3, —2; —1, 0; 1, 2; largest is 1.34 to two decimal places

19. Two zeros: between —2, —1; 1, 2; largest is 1.91 to two decimal places

Exercises 2.6, pages 145-146

1. 4,4 3. 0,0 5. 00, — 00

7.a)x=-2 b)y=3 9a) x=1L,x=-1 b)y=3

11. a)x=-2,x=1 b)y=0 13. a) x =—-2 b)y=1

15. a) x =0 b)y=0

 

 

   
 

 

17. y 19. y

|

|

gore a
T X | 1 Xx

__ x=lx=2 x 4

21. y 23. y

/
9 eo"

(0, -2)

x (-2,-4)  
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25. y
Z

/Z,
7

7/7
Ve

7/7

X

7/7
7

7/7
/

4
7

29. y

|

—-4 |_y=1

aLy@.0
x=-1 0, -1)

33. y

 

 
Exercises 2.7, pages 151-152

1. Slope at (—1, —2) is —1

5. Slope at (5,2) is 0.25

9. Slope at (0,1) is —0.5

13. y = 2x — 2

17. y = 0.25x + 2.75

21. y = 0.75x — 0.50

Review Exercises, pages 152-153

1. a) —12 Db) —2.784

563

 

 

 

 

 

27. y

(2,2)

xX

(-2, =2)

31. y

__y=t l====" }

“

35. y

X

(1, -1)

 
3. Slope at (3,4) is —2.75

7. Slope at (—2, V/5) is 0.894

11. Slope at (4, 3) is 0.25

15. y = 0.25x + 2

19. y = —0.354x — 3.182

23. y = —0.25x + 1.25

3. a) —79.30 Db) —40.08
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(-1L,O\| 1
(0, = 1)

l xX

| 
9. f(x) =x3—-Tx —6

13. One zero, between —1 and 0

17. r =12

 x
(=2,0) (2,0)

  
11. 0,1, 4

15. q(x) =3x2 — Tx +2, r= —4

19. —1 is the only rational zero

21. Irrational roots between: —3, —2; 0, 1; 1, 2; largest is 1.8 to one decimal place

23. D(f) ={x|x # —1,x #2}

27. a) (—3,0); (0,3)
b)x=2,y=-1

 
Exercises 3.0, pages 160-162

1. 2

11. 1

8
13. 1 15. 0

3. 1 5. 32

25. y

110, 4)

x=-11 \__

I
xX

 
29. a) (3, 0), (-1, 0); (0, 3)

b) x = 1; y = x — 1 is an oblique

asymptote

c) y

(0)

1.0]
/]    

9. 7

19. 0
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21. 2865 23. 19.37 25. 18.68 27. 7.240 29. 3.828

31. x5 R 33. 1/x; {x|x # 0} 35. 1; {x|x # —1,x #1}

37. 2 + Vx — x; {x|x > 0) 39. |x; R

41. 1; {x|x #0,x # —2,x # —3) 43. V2 —1

1 145. —1 — 2/7 47. —— 49, —— 51. S = {}
23 5+ 2V6 12)

53. S = {1} 55. S = {1} 57. S=40 59. S={-1,1}

61. True 63. True 65. True 67. False 69. False

Exercises 3.1, pages 168-170

1. 3 3. 27 5. 81 7. 45 9.1

11. 54 13. —140 15. 1585 17. —1.428 19. 0.215

21. 1.293 23. 1.341 35. 0.523 27. —1.106

29. x + 2 + 1
x

1 1 1
31. 2 33. x — 2 35. a) — b e) —m——

) 1+ V3 ) 4-23 Vx +3

37. 3.31 39. 1 41. 199

43. \/3 + 2s a root of x2 — 4x + 1 = 0; an equation with integer coefficients and no

45.

417.

rational roots

V/2 — 1isaroot of x3 + 3x2 + 3x — 1 = 0; an equation with integer coefficients and
no rational roots

a) V = 47(1 + 2V/¢)3 domain is {£|0 < t < 49}
b) t = 4sec, V = 523.60 cm; t = 60sec, V is not defined

49. a) Yes b) No ¢) No

Exercises 3.2, pages 174-175

1. 4.729 3. 0.062

11. a) 3V3 is greater

5. 0.177

b) ed is greater

13. y 15.

0,1)

 

7. 2.952 9. 1.435

0,1)
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17. y 19. y

(0,1) (0,1)

| ’ *

21 y 23. y

0,2)
0,1) __—1_y=1

X X

25. y 217. y

X

(0, -1)

 

  
29. a) 0.50 Db) 0.27 ¢) 0.12 d) 0.95 e) 0.65

31. y 33. —0.282 35. 80.012 37. 3.333

39. Three solutions: 2, 4, —0.8 (to one

(0, 0.40) decimal place)

I
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Exercises 3.3, pages 182-183

 

 

1.5 3.3 5.

9. —1 11. Undefined 13.

17. $log,p + 2logyg 19.

21. log,p + log,q 23.

25. 1.1133 27. 2.6826 29.

33. 0.4729 35. 1.4610 37.

41. log;100 43. log,9 45.

49. x = 2 5l. x =1 53.

57. True 59. Meaningless 61.

65. False 67. False 69.

71. D(A) = {x]|3 <x <5} 73.

75. D(A) = {x|x > 0}

Exercises 3.4, pages 190-191

1. 1.6094 3. 0.2718 5.

9. —0.4666 11. 0.7730 13.

17. 4 19. 3.0061 21.

25. No solution 27. —0.2135 29.

33. 0.4916 35. 0.6545 37.

41. -1 43. True 45.

49. False 51. a) D(f) = {x|x > 2}

53. y 55.

E =2

|,
|/ (3,0)

I

57. 59.

  —
—
—
—
—
—
—
—
—
—

567

2 7. —2

Undefined 15.

3log,p + 4log,q

log,p + log,g — 1

D
o
l

3.8136 31. 1.8155

0.4307 39. 1.1656

log,3 47. b=4

x=2 55. x = 2

False 63. Meaningless

D(f) = x] -5 <x <5)
D(g) ={x|x<0orx>4}

2.2912 7. Undefined

1.43 15. —0.42

4.6274 23. 0.4246

—0.1392 31. —0.5815

—1,2 39. 6.9584

Meaningless 47. True

b) D(g) = {x|x > 2}

y

 

(1,0)

J Oo, -1)
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61. 0.86 63. 0.43 65. 1.284 67. 0.149

69. (gof)(x) =e? =2x,x>0

Exercises 3.5, pages 197-198
1. b) N=3174802 c¢) 3 hours 59 minutes

3. a) 30% b) approximately 19000 years 5. 7.96 days 7. 62%

9. a) 9 times b) 20.5 times 11. $2163.57 13. 8.75% earns $85.52 more

15. Needs to wait 8 months 17. $6711.29

 

19. r 4 6 8 9 12 18 24
 

N 18 12 9 8 6 4 3
 

rN [72 72 72 72 72 72 72     
Exercises 3.6, page 202

 

   

1. 1.39 3. 1.00 5. 0.92 7. —0.50

9. 0 11. 2.72 13. 1.00 15. 1.00

17. y = 0.37x 19. y = 5.44x + 2.72

Review Exercises, pages 202-203

1. 0.903 3. 3.135 5. 10.751 7. 0.520

9. 1.292 11. 0.166 13. Undefined 15. 3.5

17. Undefined 19. 12.265 21. 24.799 23. 6.167

25. 3 27. —0.432 29. 522.735 31. 0.434

33. 2.262 35. No solution

37. y 39. y

y=1

X

0,1)

X

41. a) 2.223 b) —1.223, 2.223 43. y

x=1
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45. Maximum value of y is 0.5307 to four decimal places

49. $25 563.23

4) Exercises 4.1, pages 211-213

1. a) b) c)

e B =T720°

Ne A = 135°

e) f) g)

E = 210°

F=10°

G = —300°

 

5. a) b)

 

47

569

. 11460 years

 

d)

&) >
~D —54(°

h)

H = 22°30’
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11.

13.

15.

17.

f)

 

. a) 48.6617° Db) —75.2114° 9. a) 37°34’59” b) 321°34'35”

a) zr, 2.094 b) In, 5.498 ©) 750393 d) —2 5.760

a) 1.12 b) 401 ¢) —064 d) 2.58 e) 824

a) 135° b) —630° cc) 110° d) —3060° e) 675°

a) 78.495°; 78°29'43” b) 0.195°; 0°11'41” ¢) 92.707°; 92°42'23"
d) —197.670°; —197°40'14” e) 1718.873°; 1718°52'24"

Exercises 4.2, pages 217-221

1.

5.

7.

9.

11.

13.

19.

23.

25.

a) 2352cm b) 47.94cm cc) 134.00 cm 3. a) 049 Db) 239 ¢) 1.16

a) 16.0lm b) 89.72m ¢) 5047m d) 392.54m

a) 131.60 cm/sec b) 30389.39 cm/min ¢) 9723.20 cm/min d) 52.74 cm/sec

a) lrev/hr b) 1/60rev/min ¢) 6deg/min d) 7/30 rad/min

a) 4084cm/hr Db) 0.68cm/min ¢) 0.011 cm/sec

9972.67 m/min 15. 1675.52 km/hr 17. 10109 km/hr

a) 1.1041rad b) 63.26° 21. a) 202.2756 rad b) 11589.54°

27 7

a) geez; 0.0172rad/day  b) ote; 0.000717rad/hr  c) 106798 km/hr

136.35 cm/sec; 1090.76 cm 27. 7.52 m 29. Time is 1:17

Exercises 4.3, pages 229-231

1. a) b) c)

40° 220°

—220°

d) e)

G —460°

725° 
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3.a)I b)IV ¢) III d) III e) III

5. a) 260° b) 180° ¢) 180° d) 57/4 e) 1.96

7. Any angle of the type 90° + £-360°, k €J 9. (0|0 = — 20 4 kom € J)

11. a) (010 = 45° + k- 360°} b) {0]6 = 225° + k - 360°)

13.

25.

217.

29.

31.

c) {616 = 120° + & - 360°)

 

sin 0 cos tan cot 0 sec 0 csc 0
 

a) —3/5 4/5 —3/4 —4/3 5/4 —-5/3

b) —060 0.80 -07 —-133 1.25 —1.67   
 

 

 

   
 

 

 

Problem a) b) c) d)

15 V3/2 1/2 —1/2 —3/2

17 -1 —V2 1 V2

19 1/2 -1/V3 1/2 —1/2

21 1 1 undef -1

23 2 -1 1/V3  —1/2

sin 0 tan 0 cot 0 sec 0 csc 0

a) 4/5 —4/3 -3/4 —-5/3 5/4

b) 0.800 —1.333 —0.750 —1.667 1.250   
 

 

sin 8 cos tan f8 sec 8 csc
 

a) —4/5 —-3/5 4/3 -5/3 —5/4

b) —0800 —-0.600 1.333 —1.667 —1.250   
 

 

    

cos 0 tan 0 cot 0 sec 0 csc 0

a) V15/4 —1/V/15 —\15 4/3/15 —4

b) 0.968 —0.258 —3.873 1.033 —4.000
 

V3, 1.866
2 >
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Exercises 4.4, pages 233-234

1. 0.4695 3. 1.2208 5. 0.6865 7. —0.6123 9. —0.3190

11. 0.3894 13. Undefined 15. 0.8502 17. —2.8267 25. 1.9882

21. 2.3750 23. 2.8083 25. 0.8859 27. 0.2737 29. 1.0000

31. 0.3199 33. 0.4643 35. 1.0419 37. 3.57 39. Undefined

41. 2.38 43. 0 45. 0.84 417. 0.17

Exercises 4.5, pages 246-247

In problems 1 through 8, let P:(a, b) correspond to s and draw diagrams similar to

that in problem 1 below. In each case use congruent triangles to determine the

coordinates of point @. For example, in problem 1, point @:(—a, b) corresponds to

(m — 8).

 

 

1. Q:(—a,b)

0 P: (a,b)

§

3. Q:(b, —a) 5. Q:(—a, —b) 7. Q:(=b, a)

9. See Fig. 4.34 11. See Fig. 4.36 13. See Fig. 4.38

15. Yes 17. {x|x = (2k + 1). k € J) 19. {1}

Exercises 4.6, pages 252-256

1. b =4.60cm; c = 5.64 cm; B = 54°36" 3. b = 288 cm; a = 31°17; 8 = 58°43

5. B =62°43; a = 25.90 cm; b = 50.21 cm; Area = 650 cm?

7. ¢c = 26417 m; a = 66°24’; 3 = 23°36’

9. a 108.90 cm; a = 55°58’; B = 34°02’; Area = 4005 cm?

11. 77°00 13. 3.03 m?

  15. a) 6498.0 cm? b) 8441.1cm? c) 9189.6 cm?  d) 32497 sin we cos wy

17. 4347m 19. 5.00 m 21. 2.47 cm? 23. $62 029.49 25. 25.3 m

29. 10.07 cm; 4.91 cm 3l. a =147m; b =339m

Exercises 4.7, pages 264-269

1. ¢c = 48; B = 1056°53"; a = 31°07’ 3. b =90; a = 69°06’; y = 27°30

5. ¢c = 1.03; B = 35°48’; y = 20°12’ 7. a = 25°35"; B = 119°39’; y = 34°46’

9. y=80°b=34; c=35 11. 8 =21°; a = 64; b = 31
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13. Two solutions: b; = 5114, 3; = 83°05, vy, = 64°55’;
b, = 2800, B, = 32°55’, y, = 115°05'

15. vy = 82°47; a = 4.711; b = 1.979

19. 140.1 m 21. 149m 23. 23.69 25. 229m 27. 388m

29. 52° 31. (107,42) 35. 23m 37. 63°42 39. 5 +412

Review Exercises, pages 269-272

  

1. a) b) c)

135° 2

20 sm
2

d) e) f)
17m

:—137° A ~2.34 =

1 _2 _1 _3. a) l b) 7 c) 7 d —-1 e0 f)1 g1 h)-1

5.a) —4 b) -3 of di e3 Ni
7. a) 270° b) 30° c) 135° d) —45°

V3 V3 29. a) — —- b) 0 ¢)3 d) —- e) V3 D7

11. a) 0.6820 b) —0.4877 «¢) 0.5407 d) 0.9004 e) 1.1897 f) 0.7771

13. a) 0.7880 b) 1.7646 15. a) 1 b) 1

17. a) True Db) False c¢) True d) False

19. y 21. a =27.90cm; b = 24.94 cm

0,2)

AATV
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23. b = 188 cm; a = 39°20’; B = 50°40’ 25. No solution

27. a = 46°; B = 76°; y = 58° 29. Infinitely many solutions 31. No solution

33. 53m; 197m

Exercises 5.1, pages 278-279

1. a) Yes Db) Yes c¢) Yes 41. a) Odd b) Neither

43. a) Even b) Neither 45. a) Even b) Odd

47. D(f) = R, Q(f) = {1) 49. D(f) =R, ®(f) = {(y|0<y <1)

Exercises 5.2, pages 283-285

cotacotf —1

1. cot (a +f) = cot a + cot

— V2 —
5. a) V2 py V6 ) 2-3 d)2+V3 e) —V2- 6

f) V2 - V6

7.3 9.1 11. Identity 13. Identity

15. Identity 17. Identity 19. VI0+2VE

23. a) 2sind4a cosa b) 2cosdacosa ¢) —2sin 2a sin «

25. w V2 b) _ 2 1 d _

Exercises 5.3, pages 290-292

3.a) —128 Db) 18 c) —12 5. a) 0.7882 b) 0.2075 ¢) 0.2121

7.8) V3-2 b) —3V2-V2 © V3-2 d)}V2- VB
9.2) 3V2- V2 b) —3V2-V2 © 3V2+ V2 A) -2-V3

11. a) 0.96126 b) 0.74314 c) 0.26750 13. — SvI0+ 35. Identity
50

37. Not an identity 39. Identity 41. —} 43. n 45. —8

Exercises 5.4, pages 302-304

1. y 3. Y om

2
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5. 7 7. — 7/4

15. « 17. Undefined

25. 0.39 27. —0.98

35. —0.18 37. Yes

575

9. —7/6 11. Undefined 13. 3

19. —3 21. 5% 23. —#

29. 1.30 31. 0.73 33. Undefined

39. Yes 41. a) —0.48 b) 0.07

43. a) Solution set is @ b) Solution set = {x|x < —1.56}

45. a) Solution set = {—1, 1}

49. ¢) 3.16 m

Exercises 5.5, pages 309-310

b) Solution set = {x|—-1 <x < 0}

47. a) Solution set = {x|-1 <x <1} b) Solution set = {x|0 <x < 7}

LS={xlx=2+h-2morx=" 1k 2n) 3.8 = {xlx =F + br)
3

ka

3 6

5. 8 = {xlx = 7 + 2] 7. S={x|x = (2k + 1)7}
4 2

9. S = {x|x = —30° + k-360° or x = 210° + k - 360°}
11. S = {x|x

15. S = {x|x = 60° + k- 360° or x = 180° + k- 360°} 17. § = (z,2]

19. S=10

33. S = (1.85,4.44) 35. S = {0.34,2.80) 37. S = (2)

120° + k + 180°}

21. S = (0.76, 2.39)
25. S = {1.34,2.91, 4.48, 6.05) 27. S = (2) 29. S =

13. S=190

23. S = {1.03, 4.17}

2

3

39. S = z 3 111,425) 41. S = lz 3) 43, 197. 23m22
3n. Tn. llr. 167

45. 8’ 8’ 8° 8

Exercises 5.6, page 315

1. p= 2m, A = 2

In L.
\/

-2

22

3.p=2m,A=2
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5. p=m,A=3

 

13. p = mn, A = 3, phase shift 5 to right

J 3

 

Im
, 6

ay

L
o

NN
C
E
] 3

xX

< 

7.p=2A=3

nf
-3  

11. p = 27, A = 2, phase shift 7

y

VA

 
15. p = 1, A = 4, phase shift 1 to right

y
e
pI
i 

17. y = V/2sin (+ — 2); p = 2m; A = \/2; phase shift 1 to right

y

AL.
4 4 4
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19. y = 2sin (+ — 2); p = 2m; A = 2; phase shift 5 to right

y

IN /.
J:
-2  

Exercises 5.7, pages 317-318

1. 2 3.0 5. —-05 7. 1 9. —058 11. 0.87 13. 2

 

15.a) ¢ [0 1 1.5 3.4 —0.8
 

m(c) 1 0540 0.071 —0.967 0.697
 

 

b) ¢ |0 1 1.5 34  —08
 

cosc 1 0540 0.071 —0.967 0.697   
 

¢) m(c) = cosc; m(2.5) = —0.801; m(— V5) = —0.617

Review Exercises, pages 318-320

9. —2 11. 2 13. 118 15. 3713 17. —%

_4+3V3 a om z 6319. 10 21. 3 23. 1 25. 5 27. 8

29. 31. 2 33. 0.436 35. Undefined 37. 0.935

39. —0.990 41. 3 or 43. 1.030; 4.172 45. 2.498

47. Z, 37 49. No solution 51. ~ 53. 0.84
2° 2 6

55. 2.91 57. False 59. True 61. False 63. False

® Exercises 6.1, pages 332-335

lL.x=1,y=3

3 —2t3. Dependent; solutions are given by x = ¢, y = , where ¢ is any number

5. Inconsistent 7.x=3y=-1 9. Inconsistent 11. x= -2,y = —-1
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13. Dependent; solutions are given by z = ¢, x = TY 3 where ¢ is

any number

15. Dependent; solutions are given by z = ¢, x = 5 3 at y= 4 3 11 , where t is

any number

17. x =2,y=1 19. Inconsistent

21. Dependent; solutions are given by x = ¢, y = Me 5 where t is any number

23. x =2,y=% 25. x =4,y=1,2= -2

27. Dependent; solutions are given by z = ¢, x = EE = a. 1 where ¢ is any

number

29. x = -3,y = —2,2=2

31. A produces 5 items per hour; B produces 15 items per hour

33. Sandwich $1.60, drink $0.30, pie $0.60 35. 400g of A, 1600 g of B

37. 300g of A, 1200 g of B, 900 g of C 39. 6 hours for A, 12 hours for B

41. Area of first is 647, area of second is 167

43. a) x =, y=, 2=2 b)x=-38y=-18>= _3

Exercises 6.2, pages 345-347

1. 11 3.1 5. 0.60

7. x=3y=-1 9. Inconsistent 1. x= —F%, y= —%

13. 9 15. 75 17. x=1,y=-1,z=1

19. Inconsistent 21. 7 23. 1 25. 0, —2, and 50

27. One cup of pudding contains 360 calories; one tablespoon of cream contains 50

calories

29. 14 hours and 24 minutes 31. 1 + 3
x —2 x + 3

3 1 1 2 33 — —— . = -x+2 x_2 iRI
3 1 1

37. +1 x—27 (x — 2)2

Exercises 6.3, pages 355-357

1. y 3. 5. y

0,2) 3,0 22 (4.0)> L ’ ’ x bY X

3+2 13t+3  

  

 

 

  

  

 

 

 

> N\

a (4.0 \
: ~ (4 ) 0, -2) : N\

ON
 

bi No, -4)
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25. Empty set 27. a) Yes b) No 29. a) No b) No

(1,2)

N\ (1,5)

(3,3)
 

   
 

©ON )
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37. Lambs 5 5 5 5 5 6 6 6 7
 

Goats [4 5 6 7 8 4 5 6 4    
 

39. x: units of A; y: units of B; 2x + 3y > 8, 5x +2y >9,2x + y<8,x>0,y >0

y

\ (0,8)

(0, 4.5)
~

(1,2)
  (4,0)

41. x: units of C; y: units of D; 0 <x <3, 3x +y>5,3x + 4y <21,y > 2

y

0,5.250, ih ( )

(3,3)

0.5]\ BON
\ NN

 

   

Exercises 6.4, pages 362-363

lLLx=4y=16x=-1,y=1 3. x=0,y=0x=—-%,y=3

y y

(4, 16)
(0.5, 1.5)

(0,0)
 

(-11)
X 
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b.x=3y=-2,x=-3,y=1 7. No solution

y y

(-3, 1)

 

  

 

9. x =—-%y=19%x=3y=1 11.

 

(3,1)
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21. 23. 5cm by 12 cm

25. Base is 6 cm, altitude is 12 cm

 

Review Exercises, pages 363-364

lL.x=7,y=38 3.x =4,y=—-6

5. x=-2,y=-1,2=3

7. Dependent; solutions are given by z = t, x = —3t — 1.5, y = 4t + 1.25, where ¢ is

any number

9. x=, y=1 11. 23 13. 30

15.

 

19.

 
03. 2 _ 1 25. 2 _ 3 27. 4 of A and 10 of B

x—1 x+2 x+1 x
   

7 Exercises 7.1, pages 271-273

1. a) 1,4,9,16 Db) 2, 4, 8, 16 3.a) —-1,1, -1,1 b)i —1 3—%

5.1, V2, V3, 2 7. 2,9, 8, 628 9. 24
11. 18 13. a, =4n — 1 15. a, = —(—3%)"
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17.

21.

23.

25.

29.

31.

33.

3 I. n 1\k-110. $=)
k=1 2 2

a) 1,4,2,85, 7, 1; a,0=80a,,=70a,=4, ag =7
b) 0,1,1,1,0,0,0; bg =1, b,;, =0, by, = 0

16

a) 3,1,4,1,5,9; ag = 3, > a; = 80; no general formula for a,
k=1

12
b) 0,0,1,0,0,0; bp, = 1, > b; = 4; no general formula for b,

k=1

2, V6, V/6,2,0 97. L 2/3 45 6.5 __n

a) 3,6,12, 24 48 b) a, = 3+ (27)

 

Let P, be the perimeter of an inscribed regular polygon of n sides.

180° P, = 2n sin . Show that P, —» 27 as n — oo.

 

ol 2 3 4 5 6 71 8
 

1 037 069 050 061 055 058 0.56 0.57

0.5 061 055 058 056 057 056 057 0.57

2 0.14 087 042 066 0.52 0.60 0.55 0.58    
In each case, a, is approaching a fixed number 0.57... as n becomes large.

Exercises 7.2, pages 376-378

1.

7.

13.

19.

25.

29.

33.

35.

a) 6 b) 21 3. a) 53 Db) 375 5. a) —344 Db) —408

a) 3 b) 2540 9. a) 16 b) —528 11. a) —5 b) 7

a) 3 b) 2 15. a) —6 b) —% 17. 34950

576 21. 140 23. 780

-3 27. x = —17, ag = —156

a) 191.1m b) 1960 m 31. Yes; d =8

a) b,: 3,7, 11, 15, 19; bz: 9, 49, 121, 225, 361 b) No

a) $32400 b) $225600 cc) Almost 49 years old

Exercises 7.3, pages 382-383

1.

5.

9.

13.

23.

29.

a) Yes b) Yes c) Yes d) No 3. ag = —243, Sy = — 1640

ag = 135, Sy = 2 7. a, = 64, a; = 128

r=13a5 = 15 11. r= —}, a, = —%, 8, = — 3%
n=>5 15. n = 8 17. 62 19. 0.333333 21.

—5+/
0.33333 25. sr 27. No solution in R

4

16 31. 33. Converges to —1#=
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35. Diverges 37. 0.416 39. 0.142857 41. 0.076923 43.
45. 8&1 47. 4 49. 1 51. n= 4 53. 100 cm

Exercises 7.4, pages 388-390

1. P(1) is false, P(2), P(3), P(4) are true 3. P(1), P(2), P(3), P(4) are true

 

 

5. 4 7. 2 23. True 25. True

29. a) n 1 2 3 4 5 6 7 8 b) Yes

f(n) 383 347 313 281 251 223 197 173 c) n =60    
Exercises 7.5, pages 396-397

1. 120 3. 132 5. 15 7. 1 9. 124

11. 56 13. 1 15. 1

21. 16x* + 32x3y + 24x2y% + 8xy3 + y*
23. x12 — 6x10 + 15x% — 20x6 + 15x* — 6x2 + 1

25. x10 — 5x8 + 10x8y2 — 10x%y3 + 5x2y* — yo

32 1627. x* — 8x2 +24 — — + —
x x

35. 90720

29. —792x7y5 31. —280x° 33. —4480x7

Exercises 7.6, pages 405-406

1. $840 3. $5550 5. a) $4317.85 Db) $4416.08 cc) $4439.28 d) $4451.08

7. a) $8253.09 Db) $8537.18 cc) $8604.66 d) $8639.03

9. $1500 now is worth $2146.15 in three years 11. 8.33%

13. a) $468.63 b) $442.48 15. $38992.73

Exercises 7.7, pages 408-409

Sequences converge to the following limits:

1.1 3. 0.3679 5.0 7. 6.2832 9. 0.5 11. 2.3028

Review Exercises, pages 409-410

l.a) 4,35, 18 b)# 38.a)258 11 b)26 5. a) 118 b) 1452

7. —1or3 9.a)3 383 b)No ¢)R

11. a) 0.26 b) 1.63 ¢) 0.2142857 15. No, not true for n = 4

17. a) 15 b) 455 c) 84 19. 6435x6

21. a) 0.34868 Db) 0.36603 «¢) 0.36770 d) 0.36786

23. a) $5877.85 Db) $6028.96 c) $6082.82 25. $514.31 27. 3925 29. 1

S Exercises 8.1, pages 423-424

1. Circle, center (0,0) and radius 3

3. Parabola, vertex (0, 0), focus (2, 0), directrix x + 2 = 0



Answers to Odd-Numbered Exercises 585

 

  

  

5. Circle, center (1, —3), radius 2 7. Circle, center (3, 2), radius 3v2

9. Parabola, vertex (—2, 1), focus (—3,1), directrix x +1 = 0

11. Parabola, vertex (3, 1), focus (3, 5), directrix y = 1Z

13. (x —2)2 + (y—4)2=22,x2 + y2 — 4x —8y +16 =0

15. (x +2)2+y2=22, x2 +y2 +4x=0 17. y2 = 8x 19. x2 = —4y

21. 2 —4y + 4x = 4 23. x2 — 6x —16y — 55 =0

25. y= V3 + 2x — x2, y = —\/3 + 2x — x2; each is a function

y y

AN oS .S

X

-’ ’ ’ \_/

y=V3+2x—x2 y=—V3+2x —x?

27. y=2\/—xory= -2\—x 29. x2 — 200x + 200y = 0, 0 < x < 200

y y

p—X — X

  
Exercises 8.2, page 432

1.

3.

5.

7.

Vertices (3,0) and (—3, 0); foci (1/5, 0) and (— \/5, 0)

 Vertices (0,4) and (0, —4); foci: (0 82) and (0. - 812)

Vertices (1, 3), (1, =5); foci (1,23 — 1), (1, —2V/3 — 1)

Vertices (2.5, 1.5) and (—5.5, 1.5); foci: (1/15 — 1.5,1.5) and (— \/15 — 1.5, 1.5)

9. Vertices (1, 3) and (1, —3); foci (1, V5) and (1, — \/5)

11.

13.

17.

Vertices (1,2) and (—3, 2); foci (V2 — 1,2) and (— V2 — 1,2)

16x2 + 25y%2 = 400 15. 9(x — 3)2 4+ 5y2 = 45

(x —12+4y+12=4 19. 7(x — 3)? + 16(y + 1)2 = 28
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Exercises 8.3, page 440

1.

11.

a) Center (0, 0); vertices (3,0) and (—3, 0); foci (1/13,0) and (— V/13,0)

b) 2x —3y=0,2x+3y=0

a) Center (0, 0); vertices (0,4) and (0, —4); foci (0, 3V2) and (0, —3V/2)

b) 22x —y=0,2V2x + y=0

. a) Center (1, —1); vertices (3, —1) and (—1, —1); foci (1 + 13, —1) and

(1-+v13,—-1) b)3x —-—2y=53x+2y=1

. a) Center (—2, 1); vertices (—2, 3) and (—2, —1); foci (—2,1 + 21/2) and

(-2,1-2V2) b)x—y+3=0x+y+1=0
. a) Center (—1, 2); vertices (1,2) and (—3, 2); foci (—1 + V/5, 2) and

(-1=5,2) b)2y=x+52=—x+3

a) Center (—1, 3); vertices (—1, 3) and (—1, 3); foci (-1 3 % V5) and

3-5
(1.252%) b) 4x —2y+7=0,4x +2y +1 =0

  

 

 

13. 5x2 — 4y? = 20 15. y2 — 12(x — 3)? =4

17. 5(x — 3)2 — 4(y + 1)2 = 20 19. x2 —y2=9

Exercises 8.4, pages 448-449

l.a) y Y b) (orsy ls c) A:(3,4), [2,1]
| Y=y-3ly=Y+3 B:[3, —2], (4,1)

— | eo A

—_— td—_— X

Bl
_ eB

L 11 x

3.a) y Y b) (For oizyre c) A:(3,4), [1,7]

| Y=y+3ly=Y-3 B:[3, —2], (5, —5)
— |
| I eo A

— |
— |
_—_—
Ll
|
|

ee ———x——t---

Cw

SSIES yyy SEDEee

Y=y-2 Y=y+2 Y=y-1
X?24+2Y2=16 Y?2=3X X2+Y%2=4
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11. a) (0, 0)

15. (x)? — (y')? = 8

2

17. 5(x’)2 + (¥')2 = 10

  

 

 

 

 

b) (0,0) 13. a) (- L222) b) (2222
2

587

)
19. (x')2 + 2(y')?=8

 

   

 

 

  

x 7
\

XN \
\

\

Exercises 8.5, page 453

1. y 3. Vy

0,4)\ 2

x =

|

2

3, =5)

7. Particle starts at (4, 0), moves along elliptic path to point (—4, 0) at the end of

a seconds.

y

0,3)

t=m t=0

(—4,0) 4,0)

9. Particle starts at (1,0) moves along line segment to (0, 1) at ¢ = 1, then back to

(1,0) at ¢ = 1; repeats this motion for each of the next 3 seconds.

y

0,1) [=05,15,25,3.5

 

t=0,1,2,3,4
x 

(1,0)
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11. x2 +2 =1

13. 2x + y = 3, —3 < x < 1; line segment between (—3,9) and (1,1)

15, y=22+1,x>0

17. bx — ay = bx, — ay, represents a line through (x, y,) with slope b/a.

Review Exercises, pages 453-454

La)(x+2?2+(y—12=16 Db) x2+y?+4x —2y=11 3. y2=12x

—1)2 — 4)2(x 1) + (y—47° _ 2 2 _ — =5. a) 15 16 1 Db) 4x% + 3y 8x —24y +4=0

_1)2 2
aELAD, b) 5x2 —4y? — 10x — 8 —19=0

9. Center (—1, 2), radius 2

 

 

11. a) Vertex (1, —1) b) Focus (1, —2) c¢) y

\

NS0)

13. a) Center (0,1) b) Foci (0,1 + V/5) and (0,1 — V/5)

15. Semicircle y

0,2)

(-2, 0) (2, 0) 
17. a) Parabola b) Ellipse c¢) Hyperbola d) Circle

19. a) [4,2] Db) (—=2,4) c¢) (—1,5)

21. Circular arc between (0, 2) and (2, 0) y

(0,2)

 

2,0) 
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D Exercises 9.1, page 460

1. a) P:[3,50°], [—3, 230°], [—3, —130°], [3, 410°]

b) Q:[4, —60°], [—4, 120°], [4, 300°], [4, 660°]

c) T:[2, 540°], [2, 180°], [2, —180°], [—2, 0°]

3. P,:[3, 310°], Q,:[4,60°], Ty: [2,180°] 5. Py: 22; Q.: 3 Z|; T,: 4 Lr]

7. a) / b) ’
$ [3, 60°] 7

J 0A

1111 /
0 /

# [4,45]

c) ——— d) |
0 [-2,180°] ¢ [-3, 450°]

I

pmb,

9. a) 3 4] b) 4 7] 0) [27] d) 3 Z|

Exercises 9.2, page 464
1. 3.

LN

* [3 ’ eg
[2, 7]

CD)
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[-1,«] [3,0] ¢
Exercises 9.3, pages 468-469

1. a) [V2, 135°] b) [2, 240°]

 

[1,0]

gt
-

[2m, 27]

c) [5.09,51.85°] d) [2.89, 122.87°]

3. a) [3v2= b) [VI0,5.03] ¢) [3.53 0.48]

5.8) (0,2) b) (22, 202)

7. a) Yes b) No ¢) Yes

11. x2 +2 —2y=0

15. y = 0.25% — 1

c) (2.09, —0.81)

e) No

13. y = (tan$)x or y = 4.13x

17. x2 + 2 4+ 2x =0

19. r = 1, circle 21. § = Tan13 = 1.25; line through the origin with slope 3

23. No, the origin is a point on r = sin § but not on rcscf = 1 25. Yes

Review Exercises, page 470

1. a) [1,0] b) [3,7] c) Be 7] d) [2V2, 3)

025] o[-3] 0[s3] wl]
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1 1 3 30) 2208) (Vo) 0-40 @(-t-T5) eo (35)
5. Graph is a circle of radius 3 7. Graph is a circle of radius 1

9. Graph is a vertical line three units to the right of the origin

11. Graph is a spiral 13. r2 = 4; circle with center at the origin and radius 2

15. y? + 2x — 1 = 0; parabola that opens to the left

Exercises 10.1, pages 476-478

l.a) —i b) —=1 ¢)1 d)i ei: f) —i g)1l h) —i

3.a)12 b)12 c) —12 d) —% e)d f)3
4-32 2+3V2.
2 2
 5. a) 4 b) —1—-5i ¢)

4  3V2,9.a)3—-8 b)2+ V3i cc) —4+4V2i d)9 e) H+ Si f) 37 +7

V13 — 3. V13 + 3.
1, — l

2 2

13. x =-1,y=2 15. x = —5,y=180orx=2,y=6 17. Yes

19. a) No b) No 21. 2 — 51 23. 1.5 — 0.5: 25. —2 + 61

11. a) 2i; —4i b) i; —-3i ¢) d) ;; —4

Exercises 10.2, pages 480-481

1. (3,5) 3. (0,4) 5. (0,0) 7. (2,1) 9. —4i 11. —4 —-3i

 

 

 
 

 

 

13. 15.

-1+3i |

- -V2 +i

— ] ]

]

17. 19.
3+5i

Lr 1 11 | I I |

/ 4 —

/ /
/ /

/ -\ /
£7

-3-5 T+

1-60



592 Answers to Odd-Numbered Exercises

 

 

  

 

21. - -
-z | z

- VzzZ
L111 ] Ll Lyl 1

\ 2z+2Z

= 2

z-Z $
— z

2 L

1 V3. 1 V3. 1 V3.
8) mgt gi Dog -ol 0-5-5 dl

Zz ~~ T™<

/ N\N

/ \

/ \
t —>——
\ / ZZ

\ /
/

z2 NS 
Unitcircle

25. a) x >0andy=0 b)x=0 c¢)x>0andy>0 d)x>0 e)y<o0

Exercises 10.3, pages 487-488

3. a) m(cos0° + isin 0°) b) 5(cos 306.87° + isin 306.87°)

¢) V2(cos 135° + isin 135°) d) 13(cos 337.38° + isin 337.38°)

5. w 22, 22, b) —5 0-2-2;

7. a) 4(cos 315° + isin 315°) Db) 3(cos 120° + isin 120°) ¢) cos + isin &

9. a) cos 45° + isin45° Db) ve + V2,

11. a) 2(cos 120° + isin 120°) b) —1 + V/3i

13. 18(cos 180° + isin 180°) = —18 15. 5cos(=30) + isin(~30°)| = ve — i

17. a) 2[cos(—30°) + isin(—30°)] b) 2V/2[cos(—135°) + isin(—135°)]

V2
19. a) V2feos(—105°) + isin(—105°)] b) ——(cos 105° + isin 105°)

23. a) —4 Db) -8
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Exercises 10.4, pages 492-493

. 3 1. .
1. a) cos 150° + isin 150° = — vi + 5 b) 16[cos(—180°) + isin(—180°)] = —16

1 3
c) cos 240° + isin 240° = — 3 VE,

3. a) 8[cos(—90°) + isin(—90°)] = —8( b) cos 180° + isin 180° = —1

5. a) 16(cos 0° + isin 0°) = 16 b) 16(cos 240° + isin 240°) = —8 — 8/3i

c) V2 (cos 225° + isin 225°) = — i — i

7. a) 256(cos 180° + isin 180°) = —256 b) 8(cos 90° + isin 90°) = 8i

9. —5+i 11.4+8V3i 13.a)1+3i b) —9-—3i

15. sin 30 = 3 sin # cos?) — sin%) = 3 sin § — 4 sin?
cos 30 = cos3§ — 3sin?f cos 0 = 4 cos3§ — 3 cos f

Exercises 10.5, page 498

1 V3. 1 V8,
ly
2 2 2 2

3. 1.12 — 0.24i; 0.57 + 0.99¢; —0.77 — 0.661; —1.05 — 0.47i; 0.12 — 1.14:

V3 1... V3 1. V3 1. . V3 1.
Sgtlt mptlmghTh
7. 2.36 + 0.31i; —0.31 + 2.36i; —2.36 — 0.31i; 0.31 — 2.36:

9. (V3 +i) #H—V3+1i); —i 1.2441 —4 13.4; —1—1

1. 1; —

2 i . . }15. Su 2Cri2a 19. 2 + 3i; —2 — 3

Review Exercises, page 499

1. —2 + 2 8. —7 — 24i 5. —3i

V3—-1 V3+1. :
7. 39 — —39* 9, —2.65 — 69.83: 11. 2 — 21

13. 24 15. —3 + 2V/3i

17. 0.98 — 0.17; —0.34 + 0.94i; —0.64 — 0.77:

19.8 —6 — 5+5b5 — 5!





Abel, Niels Henrik, 127

Absolute value, 61
equations, 63
graphs, 67
inequalities, 65
properties, 63

Algebraic number, 131
Algebraic operating system (AOS),
504-508

Ambiguous case, 260
Amortization, 403
Amplitude, 311
general cosine function, 313
general sine function, 311

Analytic geometry, 412
Angle, 206

coterminal, 221
of depression, 251
directed, 206

Index

of elevation, 251
initial side, 206
measurements, 537

quadrantal, 221
standard position, 221
terminal side, 206
vertex, 206

Angular measure, 206
degrees, minutes, seconds, 207
grads, 207
radians, 208
units of, 206

Applications, exponential functions, 192
radian measure, 213

Approximate numbers, 532
computational rules, 535

Arc length, 213
Area, sector of circle, 216

triangle, 262
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Arithmetic progression, 373
Arithmetic sequence, 373-377
Asymptote, horizontal, 140

oblique, 141
tangent function, 243
vertical, 140

Axioms for real-number system, 524-528

associative, 525
communtative, 525
distributive, 525
identity elements, 525

Binary operations, 524
complex numbers, 472

Binomial expansion formula, 390, 395

coefficients, 392

Calculators, 504-515

algebraic, 504
composition functions, 39
one-variable keys, 37

Reverse Polish Notation (RPN),

509-515
scientific, 37
two-variable function keys, 38

Calculus, looking ahead to, 146, 199, 315,
406

Cantor-Dedekind axiom, 6
Carbon dating, 193
Cardioid, 461
Circle, 69, 413-417

center, 413

radius, 413

unit, 234

Circular functions, 234-246
cosine, 235

graphs, 234
identities, 237
periodic properties, 234, 237
sine, 235

Complex numbers, 9, 472-499

absolute value, 482

argument, 482

conjugate, 473
geometric representation, 478
imaginary part, 472
modulus, 482

polar form, 482

principal argument, 482
real part, 472
roots of, 493
standard form, 473

trigonometric form, 482
Complex plane, imaginary axis, 478

real axis, 478
Composite functions, 31

Compound interest, 195-197
Conic sections, 69, 412-440

circle, 69, 413-417
ellipse, 73, 424-431
graphs, 69-76
hyperbola, 74, 432-440
parabola, 70, 417-423

Coordinate system, cartesian, 7
origin, 7

polar, 456, 465

quadrant, 7
rectangular, 7, 14, 465
transformation equations, 442, 446,

465
Correspondence, 16
Cramer’s rule, 336

Decay process, 192
Degrees, 207
DeMoivre, Abraham, 488

DeMoivre’s theorem, 489
Derivative, 148

Descartes, Rene, 7

Determinant, 336, 339

Difference quotient, 148
Distance formula, 8
Division, algorithm, 120

synthetic, 120
Domain,16, 18

circular functions, 236
cosine function, 242
exponential functions, 171
logarithmic functions, 177
polynomial functions, 110
sine function, 241

tangent function, 243

e, the number, 173
Ellipse, 73, 424-431

applications, 431
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center, 428
foci, 424

major axis, 426
minor axis, 426
standard position, 425
vertex, 426

Equations, absolute value, 63
conditional, 274
identity, 274
linear, 11, 15
trigonometric, 305-310

Euler, Leonhard, 173, 386
Exponential functions, 170-175

applications, 192
Exponents, 156-174

integral, 156
irrational, 170
rational, 162

Factor, 11

Factor theorem, 125

Factoring, 104
Field, complete ordered, 524, 528
Finance, mathematics of, 397

Fractions, algebraic, 105
Function machine, 34-37

Functions, 15

absolute value, 61

circular, 234

composition of, 31
decreasing, 86
difference, 30

domain, 16, 19
equality of, 29
even, 80, 239

exponential, 156, 170
increasing, 86
inverse, 91

inverse cosine, 296

inverse sine, 293

inverse tangent, 297
linear, 46

logarithmic, 156, 176
mapping, 16
notation, 16

odd, 80, 239
one-to-one, 18, 88

periodic, 237, 239

997

polynomial, 109
product, 30
properties, 77
properties from graphs, 84
quadratic, 49
quotient, 30
range, 16, 84

rational, 138

sum, 30

trigonometric, 206, 223

Geometric sequence, 378-383

Geometric series, convergence, 381
Grad, 207
Graphs, absolute value, 67

cosecant function, 245
cosine function, 242, 310-315
cotangent function, 243
general cosine function, 313
general sine function, 310
inverse functions, 96
linear inequalities, 347

logarithmic functions, 177

polar coordinates, 461
polynomial functions, 114-119, 134
secant function, 244
sine function, 240, 310-315
suggestions for drawing, 82
symmetry, 77

tangent function, 242
Growth process, 192

Half-plane, closed, 349
open, 348

Heron's formula, 263
Hyperbola, 74, 432-440

application, 439
asymptotes, 434

center, 433

foci, 432
principal axis, 433
standard position, 433
vertices, 433

Identities, 274

circular functions, 237-239

double-angle, 285
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half-angle, 287
sum and difference, 279
techniques for proving, 277
trigonometric, 237-239, 274-292

Image, 16

Imaginary numbers, 472
Inductive inference, 385
Inequalities, absolute value, 65

linear, 11

quadratic, 56
Infinite series, 369

geometric, 380
Interest, compound, 195, 399
compounded continuously, 400
present value, 402
simple, 398

Inverse functions, 91
graphs, 96
properties, 94

trigonometric, 292-304
Inverse logarithms, 185

Law of cosines, 256
Law of sines, 261
Lindemann, 131

Linear equations, 15
system of, 327

Linear inequalities, 11

system of, 349
Lines, equation of, 43

parallel, 45
perpendicular, 45
secant, 146

slope, 43
slope-intercept equation, 44
standard-form equation, 45
tangent, 146

Logarithmic functions, 176-183
common, 184

graphs, 177
natural, 184
properties, 178

Mapping, 16

Mathematical induction, 384-390

principle of, 387
Mathematics of finance, 397-406

Matrices, 327

cofactor, 340
elementary row operations, 329
minor, 339

reduction to echelon form, 329
Measurements, accuracy, 252

Nested form, 112
synthetic division, 122

Numberline, 6, 13
Numbers, algebraic, 131
approximate, 224, 532
complex, 9, 472

decimal approximation, 224, 532
e 173
exact form, 224

imaginary, 472
integers, 4

irrational, 4
natural, 4
prime, 13

rational, 4
real, 4
transcendental, 131
whole, 4

Ordered pairs, 7, 16
Origin, 7

Parabola, 70, 417-423
applications, 422
axis, 417
directrix, 417
focus, 417
standard position, 419
vertex, 417

Parameter, 449
Parametric equations, 449-453
Partial fractions, 343
Pascal's triangle, 391, 394
Period, definition, 239
cosine function, 243
general cosine function, 313
general sine function, 312
sine function, 241
tangent function, 243

Phase shift, 313
Pi (=), 131
Polar coordinates, 456-470
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graphs, 461
origin, 456
ray, 456

Polynomial functions, 103-153
coefficients, 110
degree, 110
graphs, 114, 134
irrational zeros, 133
nested form, 112
zeros, 127

Prime numbers, 13
table, 544

Pythagorean theorem, 8

Quadrants, 7

Quadratic equations, 49

Quadratic formula, 50, 476
Quadratic functions, 49-61
graph of, 50

Quadratic inequalities, 56

Radian measure, 208

applications of, 213
Radicals, 165

Range, 16, 18, 84

cosine function, 242

exponential function, 171
logarithmic function, 177
sine function, 242

tangent function, 243
Rational functions, 138-146

asymptotes, 140

Rational numbers, 381
Rational-root theorem, 129

Real numbers, 4, 524-528
axioms, 524, 525

negative, 527
order relations, 527

positive, 527
properties of, 524
subsets of, 13

Reference triangle, 223

Relations, 15

domain, 18

inverse sine, 293

range, 18

Remainder theorem, 124

Repeating decimals, 381
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Reverse Polish Notation (RPN), 509-515
Right triangle, 8
trigonometric functions, 248

Rotation of coordinates, 445-448

transformation equations, 446
Rounding off numbers, 534

Scientific notation, 532
Sentence, open, 384
statement, 384

truth value, 384
Sequences, 366-372

arithmetic, 373-377
convergence of, 407
Fibonacci, 368
finite, 366
function, 366

geometric, 378-383
infinite, 366
limit, 407
partial sum, 368

Sets, 2-5
disjoint, 3
elementof, 2

empty, 3

finite, 2

infinite, 2
intersection, 3

null, 3
union, 3

Significant digits, 532

Slope, of curve, 147
of line, 43

of tangent line, 147

Spiral, 464
Square roots, 158, 474

principal, 474
properties of, 474

Subset, 3
Synthetic division, 120
Systems of equations, 322-364
Cramer’s rule, 336
dependent, 323
inconsistent, 323
independent, 323
linear, 322-346
nonlinear, 357-362

Systems of inequalities, 347-356
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Transcendental number, 131

Translation of coordinates,

441-445

transformation equations, 442

Triangle, right, 9

Trigonometric functions, 205-272

calculator evaluation, 232

of special angles, 224
Trigonometric identities, 275-292

Variable, dependent, 17

independent, 17
Velocity of rotation, linear, 214

angular, 214













TRIGONOMETRY FORMULAS

  

Angular Measure

Convert degrees to radian measure: Multiply by 7/180.

Convert radians to degree measure: Multiply by 180/.

Triangles

Law of Cosines:

a’ = b* + ¢* — 2bc cos a

b> = a> + ¢* — 2accos 8

 

 
c= a* + b*> — 2ab cos vy

Law of Sines:

sina _ sinf3 _ sinYy

a b c

Area:

Area = 5 absiny = 5 bcsina = 5 acsin 8

 

Js(s — a)(s — b)(s — ¢), wheres = 3 (@ + b + 0Area

Complex Numbers

DeMoivre’s Formula:

(cos @ + isin)" = cos nf + isinnf, wherei*= —1 and nis any integer.



TRIGONOMETRIC IDENTITIES

 

A. Basic Identities

(I.1) csc @ = 1/sin 6 (I.7) tan 6 = sin 6/cos 6

(I.2) sec = 1/cos 6 (I.8) cot & = cos 6/sin 6

(I.3) cot # = 1/tan 6 (1.9) sin% + cos? = 1

(1.4) sin (—6) = —sin 6 (1.10) 1 + tan’f = sec’

(1.5) cos (—6) = cos 0 (1.11) 1 + cot’d = csc’f

(I.6) tan (—6) = —tan 6

B. Sum and Difference Identities

(I.12) sin(a + B) = sin a cos 8 + cos « sin 3

(I.13) sin(e — B) = sin a cos 3B — cos « sin 8

(I.14) cos(a + B) = cos a cos 3 — sin « sin 3

(I.15) cos(e — B) =cos a cos B + sin « sin 3

(1.16) tan(a + B) =+
1 — tana tan 3

tan « — tan 3
1.17) t —- RHA

( ) tan(a 8) 1 + tan «tan 8

C. Double-Angle Identities

(I.18) sin 260 = 2 sin 0 cos 0

(1.19) cos 20 cos’ — sin’ = 1 — 2sin%0 = 2 cos?) — 1I

2 tan 6
. 2H em EE(1.20) tan 1 — tan®

D. Half-Angle Identities

0 / 1 — cos@
(1.21) sin 5 =F 2 (The sign is determined

by the quadrant of 4.)
0 1 + cos @: —=z \\—/(1.22) cos > >

(1.23) tan & — sin _ 1 -—cosf
2 1 + cos é@ sin 6
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