

Programmable
Pe)da

CelldU)le)de)
Henry Mullish and Stephen Kochan

Novus Mathematician PR . Sinclair Scientific Programmable
Hewlett-Packard 25 « Hewlett-Packard 25C - Hewlett-Packard 55
Hewlett-Packard 65 - Hewlett-Packard 67 « Hewlett-Packard 19C

Hewlett-Packard 29C . Hewlett-Packard 33E

Programmable
Pocket Calculators

HENRY MULLISH and STEPHEN KOCHAN

[i]
HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Mullish, Henry.

Programmable pocket calculators.

SUMMARY: Examines in detail programmable pocket

calculators, pointing out their architecture, special features,

and programming techniques for the reader with no

previous knowledge of programming.

1. Programmable calculators. [1. Programmable

calculators. 2. Calculating machines] |. Kochan, Stephen,

joint author. Il. Title.

QA75.M79 001.64'2 80-11088

ISBN 0-8104-5175-1

Copyright © 1980 by HAYDEN BOOK COMPANY, INC. All rights reserved.

No part of this book may be reprinted, or reproduced, or utilized in any

form or by any electronic, mechanical, or other means, now known or

hereafter invented, including photocopying and recording, or in any infor-

mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

81 B2 83 84 85 86 87 88 YEAR

Programmable
Pocket Calculators

PREFACE

A veritable calculator revolution erupted in 1971 when a million

pocketcalculators were sold in the United States alone. Overnight, the slide

rule became obsolete and gave way to these electronic marvels which, in

1971, could do no more than add, subtract, multiply, and divide—albeit

with phenomenal speed and accuracy.

Since then, the prices of pocket calculators have fallen from their

initial $400 to the low price of $10, which some four-function calculators

command today.

On the heels of the pocket calculator revolution now emerges yet

another revolution—the programmable pocket calculator.

The origin of the programmable pocket calculator revolution dates

back to December 1973 when Hewlett-Packard, a leading United States

computer and calculator manufacturer, introduced to the world its stunning

HP-65 ‘‘superstar’’ programmable calculator in pocket size. In addition to

its programmability, the HP-65 provided the user with almost all the

mathematical and scientific functions he could use. There were two reasons

this particular model had such an impact on the calculator world. It made

its mark in technological history by being the first pocket calculator

produced that was programmable. Secondly, it permitted the user to

record the program on a thin strip of metal-oxide coated plastic. Although

the HP-65 opened up a completely new market, it was restricted by its

somewhat prohibitive cost of $800, the price it commanded until the model

was finally superseded in 1976 byits successor, the HP-67.

Apparently in an effort to capture an even greater share of the

market, Hewlett-Packard introduced in December 1974 yet another

programmable pocket calculator, the HP-55. Though not nearly so versatile

as the HP-65, it was programmable and sold for half the price of the HP-65.

Inevitably, other leading manufacturers such as National Semi-

conductor entered the field of programmable pocket calculators and in

January 1975 announced four different models: the 4515, the

“Programmable Mathematician’’; the 4524, the “Programmable Scien-

tist’’; the 1625, the ‘‘Programmable Financier’’; and the 6035, the

“Programmable Statistician.’ Although these four Novus brand models

represented a somewhat lower level of sophistication than the Hewlett-

Packard or Texas Instruments machines of their day, their price range of

around $100 made them extremely attractive for students and professionals

in education, science, and business.

In June 1975, a British calculator manufacturer, Sinclair Radionics,

introduced its 19-key, 24-step scientific programmable calculator, selling

initially for $80.

Once again, in July 1975, Hewlett-Packard astounded the calculator

world with its introduction of the HP-25, a programmable pocket

calculator weighing a mere 6 ounces and selling initially for $195.

In July 1976, Hewlett-Packard announced a successor to its HP-65.

The name given to their new 224-step card-programmable calculator was

the HP-67. This feature-packed calculator was released with a price tag of

$450. Atthis time Hewlett-Packard also announced a novel improvementto

their highly popular HP-25. The model was called the HP-25C and it

distinguished itself by being the first programmable calculator with a

‘‘continuous memory.”’

In December 1977, Hewlett-Packard introduced the HP-19C and the

HP-29C. The HP-19C was the first programmable pocket calculator to

become commercially available with a built-in thermal printer, which

partially accounted for its retail price of $325. Its companion model, the

HP-29C,similar in functions except for the printer, sold for $185.

At this point Hewlett-Packard changed gears slightly and made an

attempt to capture the lower end of the pocket calculator market. In April

1978 they released their Series E calculators. The HP-33E, retailing for

$100, and the HP-38E, retailing for $120, are the two programmable
models of this series.

The purpose of this book is to examine in detail these programmable

pocket calculators and to point out their architecture, special features, and

programming techniques designed to maximize their use. At no time will it

be assumed that the reader has any previous knowledge of programming,

since to do so would put him at the mercy of the calculator manuals that all

too often leave so much to be desired.

Todayit is not unusual to find a wide range of assorted program-

mable and nonprogrammable calculators on sale. Making a sensible

selection is difficult because of the bewildering variety of calculator features

available. But this is only part of the problem—from the consumer’s
point of view. The salesman has his problems, too. He is expected to be
conversant on all the various models, many of which differ from each other

in subtle ways. How is he supposed to know the advantages and disad-

vantages of so many machines, particularly the programmable models,

since he probably has never had the training or experience necessary to
understand the principles of programmables, let alone to answer in-
telligently incisive questions on the subject?

It is an interesting commentary on our times that the state of the art
has progressed so far and so rapidly in so short a period of time that many
department store calculator counters now provide a free telephone con-

nection directly to the manufacturer, of whom technical questions may be

asked.
This book has been written to assist both the consumer and the

salesman. Every program for each calculator is incorporated in a schematic

showing precisely how to enter the program and to put the calculator to

work. In this way the salesman and consumer alike will be at liberty to key

in any program step bystep, watch it calculate and display the final results

without having to get involved with the various programming philosophies,

logic, or the particular calculator architecture.

HENRY MULLISH

STEPHEN KOCHAN

CONTENTS

Chapter One

THE ART OF PROGRAMMING

Some Fundamental Programming Concepts

Flowcharting a Mathematical Problem 35

Debugging and Editing Programs 5

Chapter Two

AN OVERVIEW OF PROGRAMMABLE

POCKET CALCULATORS

The Logic Used in Programmable Pocket Calculators 9

Calculator Displays 11

Programmable Pocket Calculator Features 13

Chapter Three

THE ECONOMY-LEVEL PROGRAMMABLE

POCKET CALCULATORS

The Novus Programmable Calculators 19

The Sinclair Scientific Programmable 29

ChapterFour
THE HEWLETT-PACKARD PROGRAMMABLE

POCKET CALCULATORS

Features Common To All the Hewlett-Packard Models 39

Chapter Five

THE HEWLETT-PACKARD 25 AND 25C

The HP-25 51

The HP-25C 51

Manual Operation of the HP-25 and HP-25C 53

Programming the HP-25 and HP-25C 55

Debugging and Editing Programs on the HP-25 and HP-25C 8!

19

39

51

Chapter Six

THE HP-55 PROGRAMMABLE SCIENTIFIC

POCKET CALCULATOR

Manual Operation of the HP-55 85

The Digital Timer 89

Programming the HP-55 93

Debugging and Editing Programs on the HP-55 106

Chapter Seven

THE PROGRAMMABLE HEWLETT-PACKARD 65

Manual Operation of the HP-65 108

Programming the HP-65 117

Debugging and Editing Programs on the HP-65 149

Chapter Eight

THE HEWLETT-PACKARD 67

Manual Operation of the HP-67 151

Programming the HP-67 160

Debugging and Editing Programs on the HP-67 200

Chapter Nine

THE HEWLETT-PACKARD 19C AND 29C

Programming the HP-19C/29C 203

Debugging and Editing Programs on the HP-19C/29C 229

Chapter Ten

THE HEWLETT-PACKARD 33E

Programming the HP-33E 233

Debugging and Editing Programs on the HP-33E 248

PPC—Formerly the HP-65 Users Club 248

Chapter Eleven

IMPLICATIONS OF THE PROGRAMMABLE

POCKET CALCULATOR IN SCIENCE,

INDUSTRY, AND EDUCATION

INDEX

84

108

151

202

231

250

253

CHAPTER ONE

THE ART OF
PROGRAMMING

Computer programming is not only a well-paid profession demanding

considerable expertise of the individual but is also one of the most satisfying

and challenging of professions. The profession itself is a mere child in terms

of its beginning, but since the 1950s when computers came on the scene,it

has grown by leaps and bounds. Universities around the world now offer a

plethora of courses on the subject, and it is becoming increasingly common

for high schools to offer courses in computer languages such as

FORTRAN, ALGOL, PL/I, BASIC, COBOL, and so on.

Why are computers so much in demand? The reason is that for the

first time in our history we are able to solve problems with the speed of

electricity. These electronic marvels have no inherent intelligence of their

own. It is up to us to write appropriate instructions for them in order to

arrive at the solutions. Such a sequence of instructions is called a program

for the simple reason that the sequence is a planned one, exactly like a

theatrical dramatic presentation follows its program in terms of acts and

scenes.

Does one have to be a genius to be a programmer? Certainly not.

Anybody with a modicum of intelligence and a slight sense of logic can

program, without any previous training whatever. Of course, the greater

one’s sense of logic the easier it will be. It seems that certain people—

particularly those who excel at puzzle solving and game playing—prove to

be excellent programmers. What’s more, such people tend to get ‘“‘turned

on’’ to programming almost with a passion. Programming is, like so many

other things in life, improved by success. Once one has written a program,

no matter how elementary it is, it seems to provide the kind of thrust to

propel one to greater heights. The success feeds on itself. For some people,

programming becomes a kind of addiction—happily one without any

known negative effects, however.

Some Fundamental Programming Concepts

One is often faced with the problem of evaluating a complicated,

perhaps lengthy mathematical expression using any one of the many

available calculators. A sequence of keystrokesis then decided upon, and
1

2 Programmable Pocket Calculators

each individual step is performed until the final solution is reached and

displayed. Now, if there is a need to evaluate the same mathematical

expression, one would have to physically repeat each one of the steps in the

sequence as used to find the first solution. If this whole sequence of

instructions must be repeated hundreds or even thousands of times, this

would become a formidable chore. Ideally one would want some method by

which the calculator could ‘‘remember’’ the sequence ofinstructions used in

evaluating the expression the first time, permitting the user to reinitiate the

sequence of instructions in the calculator’s ‘‘memory’’ for each new set of

data to be operated upon.

The basic feature of the modern programmable calculator provides

precisely this ability: to store and execute a sequence ofinstructions known

as a program in the calculator’s memory and to have those stored in-

structions process as many data sets as are necessary.

An important variation of this sequential operation is the ability to

automatically repeat a group of instructions when a particular part of the

program is reached. This provides what is known as a loop, one of the

fundamental properties of programming. This ability to alter normal

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

j
=
—
0
0
0

LAST
INSTRUCTION

Fig. 1-1

The Art of Programming 3

TAKE CAKE
OF

TAKE CAKE
OUT OF OVEN
OVEN

y
ICE THE

ICE THE CAKE
CAKE

BOX THE
BOX THE CAKE
CAKE

y
STORE CAKE

STORE CAKE IN FREEZER
IN FREEZER

Fig. 1-2 Fig. 1-3

sequential flow of a program is accomplished by what is referred to as an

unconditionaljump, asillustrated in Fig. 1-1.

Another important dimension is added to this sequential operation

(Fig. 1-1) when a jump is made to another point in the program when a

special condition is met. This is known as a conditionaljump and provides

the means for highly sophisticated decisions to be made within a program.

As an analogy to both these different types ofsituations, imagine that

a baker apprentice has a job of taking cakes out of the oven. He must then

ice the cake, place it in a box, and storeit in the freezer. The individual steps

may be represented simply, as shown in Fig. 1-2.

Naturally there are many cakes that are produced by a bakery, and

our apprentice’s job is to repeat the same sequence of operations for each

cake.

This may be represented schematically, as shown in Fig. 1-3. Here we

have the concept of the loop connecting the end of the sequence of

operations with the beginning.

Suppose now that the apprentice ends his day at 5:00 p.m. and has no

wish to work overtime. After storing each cake in the freezer, he might ask

himself whether it is 5:00 p.m. yet. If it is, he puts on his coat and leaves

work. Otherwise he takes out the next cake, completing the sequence once

4 Programmable Pocket Calculators

TAKE CAKE
OUT OF
OVEN

ICE THE
CAKE

BOX THE
CAKE

STORE CAKE
IN FREEZER

NO
YES

PUT ON
COAT

QUIT
WORK Fig. 1-4

again. It will be noticed that in this situation a decision is being made each
time the process is executed; namely,is it quitting time or not? This may be
represented schematically, as shown in Fig. 1-4.

This kind of schematic is usually referred to in programming as a
flowchart and can be an extremely useful method of indicating the flow of
control through a program.

Let us now amend our baker analogy so that we canillustrate further
important principles of programming. Let us assume that in accordance

The Art of Programming 5

with union rules our apprentice finishes his workday after he has processed

200 cakes, regardless of what time of the day it happens to be. If he finishes

at 3:00 p.M., then he leaves at 3:00 p.m., but if he does not finish until 7:00

p.M., then he works until 7:00 p.m. without further remuneration.

This new situation implies that a count of the number of cakes

processed must be kept throughout the working day. At the beginning of

the day, of course, this count is zero. As soon as a cake is stored in the

freezer, he adds one to the count. Since we may assume that he is anxious to

quit work as soon as possible, each time he adds a cake, he checks the count

to see whether it has yet reached 200. If it has, he puts on his coat and quits

work. If the count has not yet reached 200, he stays to process the next cake.

The flowchart in Fig. 1-5 representsthis new situation.

The concept of keeping a counter is of primary importance in

programming. Here, the counteris the only means by which we know when

to exit from the loop. In other words,a critical decision is being made based

upon the value of the counter.

Notice that in Fig. 1-5 where the question, ‘‘Does count equal 200?’

is asked (it is customary to write such questions within diamond-shaped

“‘decision”’ boxes) if the answer is NO we do not go back to the very

beginning, where the counteris set to zero, but ratherto the following step.

Flowcharting a Mathematical Problem

Let us now take a simple problem in which a basic decision has to be

made. We shall examine a series of integer numbers and determine how

many of them are even and how many of them are odd.

By definition, an integer number is even ifit is divisible by two with

no remainder. If there is a remainder, that number is considered to be odd.

In this particular problem there are two counters involved: one to keep

a tally of the even numbers and the other to count the number of odd

integers.

The input data to the flowchart in Fig. 1-6 are the individual numbers

themselves. Each number is examined to determine ifit is odd or even, and

one is added to the appropriate counter. Once all the numbers have been

examined, the contents of the odd counter and that of the even counter are

displayed. This represents the output to the problem.

With few exceptions, the concepts of input and output are common to

all programs.

Debugging and Editing Programs

When examining programs such as those included in this book, one

should not be misled into thinking that they were written this way the first

time. Few programs work the first time. Moreover, even if a program

appears to be working the first time, the chances are that it will not work for

Fig. 1-5

SET
COUNTER
TO ZERO

\
TAKE CAKE
OUT OF
OVEN

 \

ICE THE
CAKE

 \
BOX THE
CAKE

STORE CAKE
IN FREEZER

 ADD 1T0
COUNTER

V

PUT ON
COAT

QUIT
WORK

9-1B14
d01S

INNOJN3A3
Avidsia

1INNOJa0
AvIdsid

ON

é
3NINYX3

OLSHIAWNN
S3A

INNOJN3A31INNOJ@Q0
OlLaavOL1aav

é
Y3IANIVINIY
vJ43HL

I

2Af
Y3IGWNN
3aiAId

Y3IGWNN
NIQv3d

 043z01
INNOINIAF13S

043z01
1NNOJao13S

(1YV1S)

8 Programmable Pocket Calculators

all possible data. Programming can be—and often is—quite a frustrating

process. One needs to be proficient in the use of a particular machine and

have a clear understanding of the steps to solve a given problem (algorithm)

in order to arrive at the desired result.

To our knowledge the programmeris yet to be born who has not had

to suffer the frustration of having diligently and carefully written a program

that did not work the first time it was run. It seems to be a characteristic of

programming that errors are made either in writing the program—thatis,

the program has an error of logic—or in entering the instructions into the

computer. These errors are traditionally known as bugs and the finding and

elimination of these bugs is known as debugging. Once having found the

bug, correcting and modifying the program is generally spoken of as

editing. In fact, the debugging and editing phase may take longer than the

writing phase!

Should it be necessary to modify a program once it has been written—

and this is almost always the case—it might be somewhat of a relief to the

programmer to know thatit is not always necessary to rekey in the program

from the beginning, since much of the original program may be salvaged.

Before being convinced that a program is in perfect working con-

dition, one should check it out using sample data and compare the output

with known results, if this is at all possible. Naturally, if there is a conflict

between these results something is wrong, and the program has to be

suspect. The fault may lie in the incorrect keying in of the program, or there

may be an error of logic.

In the former case, a careful comparison of the keyed in program

against the original handwritten program will bring to light any in-

consistencies. In the latter case, where a logical error is suspected, the

following approaches are suggested:

1. Check the flowchart to insure that blocks are in logical sequence.

2. Compare the correspondence between the logic of the flowchart and

the program itself.

3. Be sure that the instructions behave in the manner planned. This may

mean going through the program on paper step-by-step, keeping track

of the contents of each of the registers used by the program.

4. Make use of any additional debugging aids available on the particular

calculator. This may include a.single step key, which permits the user

to proceed through the program one instruction at a time; a pause key,

which halts the program temporarily to permit intermediate results to

be viewed; or take advantage of any listed features that may be

present.

CHAPTER TWO

AN OVERVIEW OF
PROGRAMMABLE POCKET

CALCULATORS

The Logic Used in Programmable Pocket Calculators

A large number of programmable pocket calculators use what has

now become known as Reverse Polish Notation. This is not some kind of an

ethnic slur but a name to describe a system of logic originally conceived in

1949 by a Polish mathematician named Jan Lucasiewicz. He invented a

parenthesis-free but unambiguous mathematical language that came to be

known as Polish Notation, in which the arithmetic operator preceded the

two operands. For example, the algebraic expression

(a+b)

was written

+ ab

This same principle is still used except that the arithmetic operator, instead

of being pre-fixed, has become post-fixed in modern times. As a result, the

system is now called Reverse Polish Notation. It is often abbreviated to

RPN, and it has become a standard language of computer science. Thus the

above expression would be written in RPN as

ab +

RPN is wedded to a four-register memory stack in all Hewlett-

Packard programmable pocket calculators and to usually fewer than four

registers in other companies’ models. RPN permits the solution of complex

algebraic equations without recourse to either parentheses or an equals key.

In fact, a calculator that uses RPN logic can be readily identified by the

absence of an equals key. Moreover, in RPN calculators all internal partial

answers are displayed automatically as the calculation proceeds. They are

automatically saved and retrieved as needed during the course of the

calculation. The manner in which the stack worksis treated in great detail in

Chaps. 3 and 4, in which the Novus and Hewlett-Packard programmable

models are described.

9

10 Programmable Pocket Calculators

In order to familiarize the reader with RPN, we present below a

succession of algebraic expressions, their representations in Reverse Polish

Notation, and the keystrokes needed to evaluate these expressions. The

symbol * is an abbreviation for the ENTER key found on the various

calculators.

Algebraic Expression Reverse Polish Notation Keystrokes

1. a+b ab + atb+

2. a—b ab— atb—

3. aXb ab X atbX

4. a+b ab+ atb=

5. a+ (bXc) abcX + atbtcX +

6. a—(bXc) abc X — atbtcX—

7. alb +c) abc+ X atbtc+ X

8. al/lb + c) abc+ + atbtc++

9. a + (b/c) abc+ + atbtc++

10. a — (b/c) abc+— atbtc+—

11. {ax b) + (c Xd) abxcdX + atbXctdX+

12. (a+ b) X (c+ d) ab+cd+ X atb+ctd+X

13. a+ [bX (c+d)] abcd+ X + atbtctd+ X +

14. aX [b+ (c/d—e)l abcdre—+X atlbtctdre—+X

Here are some general rules for evaluating algebraic expressions in

Reverse Polish Notation:

1. Algebraic expressions may always be keyed in from left to right,

regardless of parentheses.

2. There is never a need for a parenthesis key.

. There is never a need for an equals key.

4. When in doubt as to whether to press the [1] key, ask yourself the

question, ‘‘Can I perform an operation?” If the answer to this

question is YES, go ahead and perform the operation. If NO, press

the [1] key and key in the next number.

w
a

In September 1975 Texas Instruments announced its SR-52

programmable pocket calculator. Without exception, the Texas In-

struments nonprogrammable calculators do not use RPN, but operate by

what has come to be called algebraic logic. Their more advanced scientific

calculators such as the SR-50, SR-50A, SR-51, SR51-A, and SRS1-1 use a

modified form of algebraic logic called AOS (Algebraic Operating System).

All the Texas Instruments programmable models use modified

algebraic logic, and they overcome the problem of a stack by having multi-

levels of parentheses. Modified algebraic logic means that expressions are

evaluated in accordance with the hierarchical rules of algebra.

The manner in which arithmetic expressions are keyed into the Texas

Instrument programmable models is illustrated in the chart that follows.

An Overview of Programmable Pocket Calculators 1

Algebraic Expression Keystrokes

1. a+b a+b=

2. a—b a—b=

3. aXb aXb=

4. a+b atb=

5. a+ (bXec) a+(bXc)=orsimplya+bXc=

6. a—(bXc) a—(bXc)=orsimplya—bXc=

7. alb+c) aX (b+c)l=

8. a/b +c) a+(b+c)=

9. a + (b/c) a+(b+c)=orsimplya+b+c=

10. a— (b/c) a—(b+tcl=a—b+c=

11. {aX b)+ (cXxd faXb)+{cXxd =orsimplyaXb+cXd=

12. (a+b) X {c+d) {a+b)Xic+d=

13. a+ [bX (c+d)] a+ [bX ({c+d]l=ora+bX({c+d)=

14. aX [b+ (c/d—e)] aX[b+({c+d—e)l =

Here are some points worth noting about AOS calculators:

1. There is a more or less one-to-one correspondence between the

algebraic expression to be evaluated and the sequence of keystrokes

required. This means that it is not necessary to learn any kind of new

notation.

2. The final answeris always obtained by pressing the equals key.

3. In expressions such as in example 8 above,it is essential to treat the

denominator b + c¢ as if it were enclosed within parentheses when

keying it in, so that the numerator a is divided by the entire

denominator b + c.

Manufacturers of calculators using RPN and AOS both claim that

their way is the way you normally think. Few people will argue the fact that

RPN requires some ‘‘getting used to.”” However, once it has been mastered,

calculations can be done swiftly and with a high degree of confidence. There

are some who feel so strongly about RPN that they would refuse to handle a

calculator that did not use this form of logic.

The controversy as to whether RPN or AOS is the better system will

probably never be resolved. Most likely it is a question of personal

preference on the one hand and the particular kind of problems one

customarily has to solve on the other. It seems that certain kinds of

problems are better solved in RPN, while others require fewer keystrokes in

AOS.

Calculator Displays

By far the most common type of display found in pocket calculatorsis

the red colored light-emitting diode (LED). LEDs are not miniaturized hot-

wire lamps but rather exploit a new kind of semiconductor technology. All

12 Programmable Pocket Calculators

light-emitting diodes are composed of two semiconducting compounds,

gallium arsenide phosphide (GaAsP) and gallium phosphide (GaP).

Although it is unusual to see any but red LEDs in calculator displays, the

technology now also offers green, orange, and yellow. The commercial

LED consists of a tiny chip of a light-emitting semiconductor with a plastic

lens, giving it a magnification of between 10 to 20 times.

These tiny LEDs are used to illuminate the vertical and horizontal

bars of the seven-segment display be means of which all the decimal digits,

minus sign, and certain letters of the alphabet may be constructed.

The Seven-Segment Display

The standard method of forming the digits of the display using the

seven-segment scheme is shown in Fig. 2-1. Note that each of the segments

is used in the digit 8. Figure 2-2 shows how the minus sign and the rest of the

digits are formed.

LJ]

Fig. 2-1 4

[| LJ RE

Fig. 2-2 | || | ||

An Overview of Programmable Pocket Calculators 13

One of the interesting innovations first introduced by the Hewlett-

Packard HP-25 is that upon attempting certain invalid operations the word

error is flashed on the display. This too is done by means of the seven-

segment display, as shown in Fig. 2-3.

lt Fig. 2-3

Gas Discharge Displays

Another popular device for illuminating numeric displays is by tubes

containing an inert gas such as neon. For each digit of the display is a

separate tube, each containing a seven-segment matrix. When a digit is to be

displayed the appropriate segments are energized and the surrounding gas

causes the digit to glow with either a green or orange color, depending upon

the gas used.

The Sinclair Scientific Programmable uses a green gas discharge

display that is easy on the eye and whose digits are particularly large.

Liquid-Crystal Displays

The liquid-crystal display (LCD) is popular in nonprogrammable

pocket calculators. It is particularly suitable to calculators because of its

low power requirements. In view of the fact that it reflects only the light in

the surrounding environment, it is not very useful in the dark.

The method by which LCDs operate is rather technical, but suffice it

to say that it also uses the seven-segment structure. LCDs rest on the

phenomenon that certain liquid crystals change their opacity when activated

by an electric current. So far no programmable pocket calculators have

liquid-crystal displays.

Programmable Pocket Calculator Features

Program Memory

One of the primary considerations in selecting a programmable

pocket calculator is the size of the program memory. This will determine, in

many cases, whether a particular program can or cannot be written to solve

a specific problem on the calculator. Thus it emerges that the amount of

memory space availableis a critical factor. Typically the program memory

of the calculator is a sequence of consecutive storage locations capable of

14 Programmable Pocket Calculators

holding instructions. Usually, each instruction on the calculator is stored in

separate consecutive locations in program memory. Here is a conceptual

diagram of a 24-step program that does not occupy all of the calculator’s

program memory area.

Location Number Instruction

1 Instruction 1

Instruction 2

3 Instruction 3

N

24 Last instruction

The numbers written to the left of the locations are known as addresses and

provide a convenient means of referencing any particular instruction in the

calculator’s memory. The instructions are normally executed in sequence,

but more often than not, and especially in more complicated programs,

branching is performed either unconditionally or conditionally to a specific

location in memory.

Another factor to be considered in selecting a programmable pocket

calculator is that the length of a program may depend upon the number and

manner of the branching facilities that a particular calculator offers. There

is no absolute consistency about this even among calculators produced by

the same manufacturer, to say nothing of those models produced by

different manufacturers. There are also several calculators available that

are programmable only to the extent that they are capable of ‘‘learning’’ a

sequence of instructions. These calculators do not provide any branching

facilities. In other words, programs may be executed only in a sequential

manner, and hence such models would perhaps be better described as

sequential programmable calculators. Although these lower level

programmable calculators lack the sophisticated features of their fully

programmable counterparts, they serve a useful function and also have

their place.

An Overview of Programmable Pocket Calculators 15

Indirect Addressing

There is a feature known as indirect addressing, which has been

borrowed from modern electronic computers. This feature is proving

increasingly important in programmable pocket calculators, since it not

only lends itself to sophisticated programming but also permits more

concise programs. Indirect addressing capability is found on the Hewlett-

Packard HP-19C/29C and HP-67.

Subroutines

We have already seen that there are various factors that bear upon the

size of the memory available to the user. Among them we must include the

subject of subroutines, an extremely important feature that allows for both

conservation of memory space and a style of programming known as

structured programming.

Subroutines may be visualized in the following way. Imagine that we

have a long sequence of program instructions. At various points along the

program we want to treat a certain value in a particular manner but each

time in the same manner. The set of instructions that accomplishes this task

could be regarded as a ‘‘package.’’ Transfer would have to be made to the

package, and once the processing was completed control would have to be

sent back to the instruction following the one that branched off to the

package.

Couldn’t this be done by means of unconditional branching? Yes, but

only for the first occasion. The second time transfer to the package is made,

control would have to go back to a different location. This situation is made

very easy by resorting to subroutines, where our package is, in fact, a

subroutine. The ‘‘calls’’ to the subroutine and the ‘‘returns’’ to the ‘‘main”’

program are part of a system that ensures that these transfers are made

correctly. The reader is advised that this concept of subroutines sounds

more complex than it reallyis.

In Fig. 2-4 the subroutine is called from two different places in the

main program. When a subroutine is invoked by a main routine and returns

to that main routine, this is described as one-level subroutining. Should the

subroutine itself invoke a second subroutine (which returns to the first

subroutine) we have an example of a second-level subroutine structure.

Generally speaking, if subroutine A calls subroutine B which in turn calls

subroutine C, subroutine C is spoken of as a third-level subroutine.

In view of the fact that the presence of a subroutine facility on a

particular calculatoris an indication of its programming power, needless to

say, not all programmable calculators are equipped with this feature. In

some calculators the subroutine feature is absent, while in others one or

more levels are permitted.

16 Programmable Pocket Calculators

Merged Codes

As mentioned earlier, on some programmable calculators each

keystrokeis stored in a separate location in program memory. Other models

permit the merging of shift keys with their associated function key so that

they occupy a single location, thereby resulting in a considerable saving of

memory space. Some models permit the merging of register arithmetic

instructions and even branch instructions.

STEPS SUBROUTINE

OF MAIN
PROGRAM ihFIRST

"CALL" TO .
SUBROUTINE :

V " "n

RETURN TO
MAIN PROGRAM

|

| |
| I
! I
! |
! i
| |
! I

I I
| |
| |

||
| |
| |
| |
| |

|!|
SECOND ee]
“CALL” TO
SUBROUTINE C~

—_————————
—

Fig. 2-4

An Overview of Programmable Pocket Calculators 17

Data Registers

Since one of the most common causes oferroris the incorrect writing
down of intermediate results or the subsequent incorrect keying in of these

intermediate results, it became necessary to make provision for minimizing

or eliminating these errors. The most popular strategy employed was to

provide a bank of data registers, each of which could be accessed separately

when required. Displayed values could be stored in these registers by means

of a store instruction and recalled to the display either for viewing or for

computational purposes. On some calculators the store and recall

instructions are merged together with their related register address in the

same instruction, thereby lending itself to a more compact program. In the

case of one of the more sophisticated calculators to be described, there is a

method to “‘protect’’ data stored in these registers.

Depending upon the problem being solved, the question of the

number of data registers available on a particular calculator could also be a

major consideration. On some later models the user has the option to

specify up to a given maximum how many data registers he wants,

depending upon the needs of the particular problem.

Programmable Calculator Modes

One intriguing feature of programmable pocket calculators is their

ability to remember a sequence of keystrokes once it has been keyed in. This

sets the programmable calculators apart from their nonprogrammable

predecessors.

Programmable pocket calculators normally operate in two distinct

modes: (1) program or learn mode and (2) run mode.

When the calculator is operating in program mode, keystrokes are

automatically retained in the program memory. It is in this mode that the

program is entered into the calculator.

In order to execute the prograin—that is, to perform this sequence of

steps with some specific data—it is necessary to switch to RUN mode.

Incidentally, in RUN mode the calculator may be used without a program,

just as if it were a nonprogrammable calculator.

Recording Programs

Under ordinary circumstances, once a program has been keyed into a

calculator and the calculator is switched off, the program is lost. If the

program were needed on a subsequent occasion it would have to be keyed in

afresh. For short programs this perhaps is no particular chore, just mildly

bothersome. However, for longer programs this can prove to be quite a

tedious task and one which invites errors in the rekeying in of the

instructions.

18 Programmable Pocket Calculators

This situation is partially alleviated by the so-called continuous

memory calculators in which a trickle ofelectrical current keeps the keyed

in program ‘‘alive’’ even when the calculator is switched off. This con-

tinuous memory feature is a distinct advantage but is restrictive in the sense

that only the program currently contained in memory can be saved for

subsequent use. As a matter of fact,it is impossible not to have the memory

alive in continuous memory calculators. Perhaps later versions of such

calculators will provide an optional switch, permitting the user to decide

whether or not he or she wishes to take advantage ofthis feature.

A feature that vastly increases the versatility of a programmable

pocket calculator is the magnetic card. This is a strip of metal-oxide coated

plastic that plays the role of the punched card in computer systems. In fact,

the magnetic card is superior to the punched card in that it may be reused

for other programs as often as is necessary. By means of a magnetic card a

program may be recorded directly from the calculator. When that program

is to be run on a future occasion, all that is necessary is for the magnetic

card to be read by the calculator. The complete program is then stored in

the memory of the calculator, and the possibility of errors that may occur

when rekeying in the program is totally obviated. By means of these

magnetic cards, an extensive library of programs may be written and stored

by the user, thereby saving him considerable time and effort when running

the programs on subsequent occasions. In computer jargon, a system of

such ‘‘routines’’ is generally referred to as a software library, in contrast to

the physical parts of the computer, which are known as the hardware of the

system.

Plug-In ROM Modules

One of the more recent innovations in programmable pocket

calculators is the introduction of so-called solid state software in the form

of a plug-in module the size of a postage stamp. Despite their small size,

these modules can contain up to 5,000 additional program steps in the form

of a library of subroutines. Each module is geared to a particular type user,

and one is therefore at liberty to purchase other plug-in modules tailor-

made for a particular discipline. As opposed to magnetic cards, the routines

contained in the modules cannot be altered by the user. In other words, they

are available on a ‘‘read only’’ basis, and, in fact, are referred to as ROMs

(Read Only Memories).

Thus it is clear that when purchasing a programmable pocket

calculator one has to consider a wide range of options. A decision about

which calculator to purchase will have to be based on the expertise of the

individual involved, the price range, particular applications, as well as the

many features described in this chapter. Admittedly, this may not be an

easy choice.

CHAPTER THREE

THE ECONOMY-LEVEL
PROGRAMMABLE POCKET

CALCULATORS

The Novus Programmable Calculators

National Semiconductor’s Novus line of calculators are highly

competitive in price. In January 1975 National Semiconductor introduced

four programmable models differing considerably in operation from

most other programmable calculators. These are the Programmable

Mathematician (Model 4515), the Programmable Statistician (Model

6035), the Programmable Financier (Model 6025), and the Programmable

Scientist (Model 4525). Each of these four calculators permits the keying-

in of a program of up to 100 steps with the option that several separate

programs, whose total does not exceed 100 steps, may be stored

simultaneously in the calculator’s memory. Each of the four Novus

programmable calculators operates in Reverse Polish Notation, has a

stack of three registers, and has a rechargeable battery. A typical full

charge takes about four hours, and the calculator may even be used

while it is charging. In order to save battery life, the display

automatically shuts off if no key has been pressed for approximately 35

seconds. In this case a string of decimal points is displayed to notify the

user of the fade out. However, a display fade out in no way changes the

program or the data that has been keyed in, and further entries or

operations will bring back the display. At any given point in a

calculation after the display has faded, it may be recalled by merely

pressing the change sign key twice.

For reasons of space we have restricted our description of the

Novus line of programmable pocket calculators to the Programmable

Mathematician (Model 4515). All the programming features on the

Novus calculators are identical so that a familiarity with this machine

will benefit a user of any of them.

The Programmable Novus Mathematician

The Programmable Novus Mathematician, labeled Mathematician
PR, comes in an attractive, slim-lined casing with color-coded keys, some of

19

20 Programmable Pocket Calculators

which have a dual role. It contains a host of important mathematical

functions including sine, cosine, tangent and their inverses, y*, ¢*, In, log,

I/x, n, VX, x to y interchange, and a change sign key. It has a memory into

which numbers may be stored using the key labeled [MS], and recalled using

the [MR] key. In the top left-hand corner of the keyboard is a prominent

yellow key labeled [F], which must be pressed before any of the yellow

printed functions can be accessed. These include the arc sine, arc cosine,

and arc tangent, memory plus, memory minus, and memory plus x*. Also

present are keys for radians and degrees, which are also initiated by first

pressing the [F] key. Since this calculator operates in RPN, provision is

made to enter numbers using the white key labeled [ENT].

A picture of the Novus Mathematician PR is shown in Fig. 3-1.

Manual Operation of the Mathematician PR

The ON/OFF switch is located on the top left-hand side of the Novus

Mathematician and is recessed for protection. With the LOAD/

STEP/RUN switch in RUN mode, the calculator may be used as any

nonprogrammable pocket calculator.

Example 1: Evaluate Vn Xx (5.986)

*S 1 2 3 4

K bd ENT? 5.986 F

D 3.1415926 3.1415926 5.986 5.986

Ss 5 6 7

K x? X v©

D 35.832196 112.57016 10.609908

Example 2: Evaluate (sin 22.9°)*'/log 38.7

s 1 2 3 4
K 229 sin 4.1 yX

D 229 .389124 4.1 0208623

Ss 5 6 7
K 38.7 log +

D 38.7 1.587711 01313985

*In this and all schematics that follow, the sequence numbers are indicated by the letter S, the

keyed in values by the letter K, and the displayed values by the letter D.

21The Economy-Level Programmable Pocket Calculators

Oy
[J

=
[J

h
a
n

~tPy[

Im}
)

ng
i

PRLeFl]
0

WETag

Fig. 3-1 Novus Mathematician PR (Courtesy National Semiconductors,Inc.)

22 Programmable Pocket Calculators

Example 3: Evaluate sin 2 (1/2) ¢/3/(-15.68 + In 3.7)

S 1 2 3 4 5

K Ed 2 + F deg

D 3.1415926 2 1.56707963 1.5707963 89.999999

S 6 7 8 9 10

K sin 3 v© eX X

D 1. 3 54772255 1.729309 1.729309

S 11 12 13 14 15

K MS 15.68 CHS ENT? 3.7

D 1.729309 15.68 —15.68 —15.68 3.7

Ss 16 17 18 19 20

K in + MR Xoy +

D 1.308333 —14.371667 1.729309 —14.371667 —.12032765

Example 3 above uses many of the powerful mathematical features

available on the Novus Mathematician PR, and though we have not as yet

covered each of the available functions on the keyboard, we shall use them

in the programming mode. Since thisis the raison d’étre for the calculator,

we shall proceed immediately to illustrate the power of the calculator in its

programming mode.

Programming the Novus Mathematician PR

The Average of Two Numbers. For ourfirst problem we shall set up a

program to find the average of two numbers. The sequence of steps to

accomplish this manually (with the LOAD/STEP/RUN switch in RUN

mode) for the two numbers 3 and 4 follows:

3

ENT?

4
+

2

This is almost identical to the sequence of instructions that constitute the

program to find the average of an infinite number of pairs.

There would be no point in repeating the above sequence of in-

structions time and again because we would merely be calculating the

average of 3 and 4 each time. What we want is to interrupt the sequence to

enable us to key in the next pair of numbers at the appropriate time. The

Novus Mathematician provides the user with a key labeled [halt] to permit

The Economy-Level Programmable Pocket Calculators 23

the program to be interrupted for the entry of new data. Therefore,
whenever data is to be keyed in, replace that step of the program with a

[halt]. The program to compute the average of any pair of numbers is

shown directly.

Program Novus-1: The Average of Two Numbers

Step Number Instruction Comments

1 halt Stop program to permit keying in of first

number

2 ENT? Copy number from x to y register

halt Stop program again to permit keying in of

second number

4 + Add two numbers together

2 Puts 2 into x register, lifting stack

N
Y
=

A
n
h
W
N

=

+ Calculate average

Keying in the Program

. Move the mode switch to the LOAD position.

. Press the [start] key.

. Key in the six instructions of Program Novus-1, as indicated above,

starting with [halt] and ending with [+].

Running the Program

. Move the mode switch to RUN.

. Press the [start] key.

. Key in the first number of the pair to be averaged.

. Press the [start] key.

. Key in the second number of the pair.

Press the [start] key. The average of the two numbers will be

displayed.

. Go to step 2 to process the next pair of numbers.

Suppose we wanted the average of each of the following four pairs

of numbers:

Here

29 37
3.289 4.1

-10.7 16.82
138.3 5.6

is a schematic showing each step of the procedure required to

process each pair.

24 Programmable Pocket Calculators

Schematic Novus-1

S 1 2 3 4 5 6 7

K start 29 start 37 start start 3.289

D 0. 29 29. 37 33. 33. 3.289

S 8 9 10 11 12 13 14

K start 4.1 start start 10.7 CHS start

D 3.289 4.1 3.6945 3.6945 10.7 —10.7 —10.7

S 15 16 17 18 19 20 21

K 16.82 start start 138.3 start 5.6 start

D 16.82 3.06 3.06 138.3 138.3 5.6 71.95

A careful examination of this schematic will show that the first pair

of numbers, 29 and 37, is keyed in in steps 2 and 4. Pressing [start] in

step 5S immediately displays the average of these numbers, namely 33. In

steps 7 and 9 the second pair of numbers is keyed in, and its average is

displayed in step 10. This process is repeated until all of the pairs of

numbers have been averaged.

Finding the nth Root of a Series of Numbers. Although the square

root function is readily available on the Mathematician PR calculator,

provision is not made for finding a root other than the square root. We

notice, however, that there is a [y*] key, and this may be used to

calculate the nth root of a number based on the following mathematical

concept:

n y = yl/n

To find the cube root of 8, for example, we can raise the number 8 to

the power 1/3, advantage being taken of the reciprocal button. Using the

calculator in the manual mode, the sequence of instructions is as follows:

8

ENT?

3

1/x

y

This yields a result of 1.999998, rather than the 2 that we expected.

Sometimes we have to settle for these close approximations when using

calculators.

Here is a program for computing the nth root (where n can be any

positive integer) of any keyed in number.

The Economy-Level Programmable Pocket Calculators 25

Program Novus-2: Computing the nth Root

Step Number Instruction Comments

1 halt Stops program to allow keying in of number

to be “rooted”

2 ENT? Copies number into y register

halt Stops program to allow the desired root to

to be entered

1/x Takes the reciprocal of the x register

5 yx Computes the nth root

Using this program we shall solve the following problems:

V3 ‘68 Van

Remember, before keying in the above program, switch the calculator into

LOAD mode and press [start]. When the program has been keyed in, switch

to RUN mode.

Schematic Novus-2

S 1 2 3 4 5

K start 8 start 3 start

D 0. 8 8. 3 1.999998

S 6 7 8 9 170

K start 68 start 5 start

D 1.999998 68 68. 5 2.325421

S 11 12 13 14 15

K start 272 start 9 start

D 2.325421 272 272. 9 1.864263

Thus from this schematic we find that the cube root of 8 is the same

approximation to 2 that wecalculated in manual mode. The fifth root of 68

is found to be equal to 2.325421 (step 10) and the ninth root of 272 is

1.864263, as shown in step 15.

A Program Using the Memory

The following three equations are probably quite familiar:

1. Area of a circle = qr?

2. Circumference of a circle = 2nr

3. Volume of a sphere = (4/3)nr?

We shall now write a program to compute each of these three values

for a given value of the radius r.

26

Program Novus-3

Step Number

1

0
0

N
N

O
O
O
A
W
N

9

10

11

12

13

14

15

16

17

18

19

20

21

Programmable Pocket Calculators

Instruction

halt

MS

F x3

mw

X

halt

MR

2

X

mw

X

Comments

Stops program to allow value for r to be

keyed in

Stores value of r into memory

r?

Puts 3.1415926 into x register

mr?

Stops program to display area

Recalls value of r from memory into x register

2r

2nr

Stops program to display circumference

Recalls value of r again

nr

4nr?

(4/3) ar?

Assuming that this program has been keyed in correctly, we shall

calculate the area, circumference, and volume for values of r equal to 1 and

4.98. Here is the schematic illustrating the procedure at each step.

Schematic Novus-3

*
O
0
0
x
O

O
0
0
x
O

1

start

0.

6

start

4.18879

-
-

Nn
I a

7

498

4.98

r=498

3 4 5

start start start

3.1415926 6.2831852 4.18879

area circumference volume

8 9 10

start start start

77.912753 31.290262 517.34026

area circumference volume

*In this and all schematics that follow, the letter C stands for comments.

The Economy-Level Programmable Pocket Calculators 27

The Mathematician PR has two additional keys to aid the

programmer. The key marked [del], when pressed in LOAD mode, deletes

the last step entered in a program. In this way, the [del] key can be used to

delete portions of a program that may then be replaced by the correct

keystrokes. For example, suppose a program has been keyed in as follows,

where a division has inadvertently been keyed in rather than a

multiplication:

halt

F x?

m

+ (oops! meant X)

With the calculatorstill switched in the LOAD position, pressing the [del]

key followed by the [x] key will delete the division and substitute in its

place the required multiplication. A succession of deletes will erase

consecutively a sequence of instructions. The key labeled [skip] permits

more than one program to be stored and accessed independently in the

calculator’s 100-step memory. For example, suppose we had the following

two independent programs for calculating the circumference and area,

respectively of a circle:

halt halt

mn F x?

X n

2 x

X

The two programs can be entered simultaneously into the calculator by

inserting a [skip] between the two programs. The skip instruction tells the

calculator where one program ends and another begins. The two programs

can then be keyed in as one large program as follows:

halt

One may then selectively execute either of the two programs by using the

[skip] key when the calculatoris in RUN mode.

28 Programmable Pocket Calculators

For example, to calculate the circumference of a circle whose radiusis

5 inches, we proceed as usual: press [start] to initiate the program, key in 5,

and then press [start] again to compute the circumference. If we then wished

to compute the area of the same circle, pressing [skip] would bypassthe first

program that computes the circumference and would begin execution at the

instruction immediatelyfollowing the skip instruction that was keyed in. In

this case, the calculator executes a [halt], permitting the user to enter his

value for r. Pressing [start] will reinitiate the program, and the calculator

will stop with the correct area displayed. After the second program is

completed, the calculator will be ready to execute the first program again.

The use of the [skip] key should become clear from the following

schematic.

Schematic Novus-4

1. Find the circumference and area of a circle whose radiusis 5 inches.

2. Find the area of a circle whose radius is 3.2 inches.

3. Find the circumference of a circle whose radiusis 15.6 inches.

S 1 2 3 4

K start 5 start skip

D 0. 5 31.415926 31.415926

Cc initiate first circumference "'skip’’ to area

program radius program

S 5 6 7 8

K 5 start skip 3.2

D 5 78.539815 78.539815 3.2

c area “‘skip’’ past

circumference

program to

area program

Ss 9 10 11

K start 15.6 start

D 32.169908 156 98.017689

Cc area circumference

One must be cautious when using the [skip] key. In this schematic

where two programs were resident in memory, separated by a skip,

termination of the second program automatically brings the calculator to

the beginning of the first program. Therefore,if the [skip] key were pressed

after the second program were terminated, it would skip over the first
program and, in effect, would begin executing the second program again.

A diagram of the flow of control using the [skip] key is shown in
Fig. 3-2.

The Economy-Level Programmable Pocket Calculators 29

START START

\ y

CIRCUMFERENCE
PROGRAM

I

SKIP SKIP

v

AREA
PROGRAM

|] LL Fig. 3-2

The Sinclair Scientific Programmable

The Sinclair Scientific Programmable comes in an attractive black

casing. An ac adapter permits the calculator to be plugged directly into a

wall socket, but the Sinclair Programmable can also be powered from a

single 9-volt, disposable battery. The 19 keys of the Sinclair Programmable

enable the user to calculate the trigonometric functions sine, cosine, and arc

tangent of an angle expressed in radians. Other functions that are readily

accessible include a change sign key, x2, 1/x,v/X, log, and antilog (base €). A

memory is also available on the Sinclair Programmable for storing

intermediate results or saving a value for future use. Operations on the

memory include store,recall, and memory-display interchange key.

The absence of the equals key on the Sinclair Scientific Programmable

is an indication that this calculator operates in Reverse Polish Notation.

Numbers are displayed in scientific notation with a five-digit mantissa and a

two-digit exponent, thus enabling the user to deal easily with both very

small and very large numbers.

Manual Operation of the Sinclair Scientific
Programmable

To turn the machine on, the switch located on the upper right-hand

corner of the calculator is moved downward. The digits 0.0000 will appear

automatically in the display.

Example 4: Evaluate2.3 + 3.9

Ss 1 2 3 4 5

K 23 A enter 39 +

D 23 23 2.3000 39 6.2000

30 Programmable Pocket Calculators

The schematic in Example 4 requires some explanation. Asis the case
with Reverse Polish Notation, the addition of 2.3 and 3.9 is actually
calculated as

23 39+

where the addition operation is keyed in after the two operands have been
entered into the calculator. However, in order to tell the calculator where
the first number ends and where the second one begins, it is necessary to
enter the first number into the “‘stack’’ before keying in the second number.
This is done in steps 2 and 3 of the schematic in Example 4. The key marked
[A] is actually a shift key in that ittells the calculator that the function ofthe
next key pressed is the one that is written above that particular key.

For example, a glance at the keyboard will show that ‘‘enter’’ actually
appears above the key marked [0]. Pressing the [A] key informs the
calculator that when the key marked {ofis next pressed, it is the enter
operation thatis to be performed, and not the entry of the digit zero.

Another point worth noting is that the key marked [*/EE/__] serves
three purposes. The first role of this key is to enter a decimal point when
keying in the mantissa of a number. For example, in step 1 of the schematic
in Example 4, the key sequence

[21 ["/EE/_] [3]
correctly inserts the decimal point between the digits 2 and 3 and displays
the number 2.3. The two additional functions of this key will be described
shortly, when we work with numbers expressed in scientific notation.

Example 5: Evaluate 15.82 - 28.7

S 7 2 3 4 5
K 15.82 A enter 28.7 —
D 15.82 16.82 1.5820 1 28.7 —1.2880 1

It will be noticed from this schematic that when the number 15.82 is
ENTERed into the machine (in step 3) that it is converted into scientific

- notation. The display shows

1.5820 1

This should be read as

1.5820 x 10!

which is, of course, equivalent to 15.82.
As a rule, all numbers are automatically converted into scientific

notation by the Sinclair Scientific Programmable. They are displayed in the
form

X.yyyy dd

The Economy-Level Programmable Pocket Calculators 31

where dd represents the exponent of the mantissa (x.yyyy), and can range

from -99 to 99.

Example 6: Evaluate 2.97 Xx 20.9

Ss 17 2 3 4 5

K 297 A enter 209 X

D 297 297 2.9700 209 6.2073 1

This yields a result of 62.073.

Example 7: Evaluate 40.982/0.35

Ss 1 2 3 4 5

K 40.982 A enter .35 +

D 40.982 40.982 4.0982 1 0.35 1.1709 2

Thus we see that the result of the above division is 1.1709 x 10% or 117.09.

Example 8: Evaluate (12.345 + 15.98)/3.5 x 10°

S 1 2 3 4 5

K 12.345 A enter 15.98 +

D 12.345 12.345 1.23451 15.98 2.83251

S 6 7 8 9

K 35 EE 9 +

D 3.5 35 359 8.0928 —9

The result of the above calculation is 8.0928 x 107°.

The schematic in Example 8 illustrates the second role of the

[/EE/__] key. When the [/EE/__] key is pressed thefirst time (as it must

be to key in the number 3.5 in step 6) it has the effect, as mentioned earlier,

of entering a decimal point into the mantissa of the numberin the display.

Pressing the ['/EE/__] key the second time has the effect of activating

the EE function of this button—that is, the calculator is now ready to

accept the entry of an exponent, whichin this case is 9.

As might have been guessed by now, pressing this triple function key

the third time brings the negation feature into play. It changes the sign of

the exponent. Repeatedly pressing this key merely alternates the sign of the

exponent.

Table 3-1 has been compiled to summarize the various uses of this

most unique key.

32 Programmable Pocket Calculators

Table 3-1 The Three-Function [*/EE/_] Key

To Enter Press

13.982 [1] [3] [*/EE/_] [9] [8] [2]

5.67 X 10° (51 [*/EE/_] [6] [7] ["/EE/_] [3]
20.2 X 10* [2] [0] [*/EE/_] [2] ["/EE/_] [1] [5]

20 x 10" [2] [0] [*/EE/_] [*/EE/_] [1] [5]
5.67 X 107° [5] [*/EE/_] [6] [7] [*/EE/_] [3] ["/EE/_]
5x 107° [51 [*/EE/_] ["/EE/_] [3] [*/EE/_]

Example 9: Evaluate (1.3 x 1077) (15 xX 10'?)

S 1 2 3 4 5 6

K 1.3 "JEE/_ 7 */EE/_ A enter

D 13 13 137 13-7 13-7 1.3000 —-7

S 7 8 9 10 11

K 15 ‘JEE/_ ‘[EE/_ 12 X
D 15. 15. 15. 15.12 1.9500 6

Example 10: Evaluate v/12.3 x (1.29)?

S 1 2 3 4 5 6 7

K 12.3 A vx A sto clce 1.29
D 12.3 12.3 3.5071 3.5071 3.5071 0.0000 1.29

S 8 9 10 11 12 13

K A enter x? A rel X

D 1.29 1.2900 1.6641 1.6641 3.6071 5.8362

A detailed explanation of the schematic in Example 10 seems ap-

propriate. Steps 1 through 3 merely compute the square root of 12.3, which

turns out to be 3.5071. Steps 4 and 5 copy the value in the display (3.5071)

into the memory of the calculator, leaving the display unaltered. Pressing

the [C/CE] key in step 6 was necessary due to the particular way in which

the memory operates. Whenever one of the three keys dealing with the

memory on the Sinclair Programmable is activated, the number left in the

display after the memory key has been pressed remains in the display as if it

hasjust been keyed in and not yet entered.

Therefore,the [C/CE] key is pressed in step 6 to clear the display and

permit the keying in of the number 1.29.

Steps 8 through 10 illustrate another unique feature of the Sinclair

Scientific Programmable. It will be noticed upon close examination of the

Sinclair’s keyboard that the three functions 1/x, x?, and -x are printed

alongside the keys marked [+], [X], and [-], respectively. If a numberis

keyed into the calculator and then entered into the machine’s stack (by

using the [a] and [enter] keys), pressing the [+], [X 1], or [-] keys will have

The Economy-Level Programmable Pocket Calculators 33

the effect of calculating 1/x, x2, or -X, respectively. Thus, if we wish to take

the reciprocal of a numberin the display, the key sequence

[a] [enter] [1/x]

will calculate and display the desired result. These three keys will have the

same effect when used directly on a number in the display thatis the result

of a previous calculation. For example, 1/(2 + 3.5) can be calculated by the

following key sequence:

[2] [enter] [3.5] [+] [1/x]

Steps 11 and 12 recall the value 3.5071 from the memory into the

display, ‘pushing’ the previous value in the display (1.6641) into the

calculator’s stack. Step 13 completes the required multiplication, displaying

the final result of 5.8362.

Example 11: Evaluate sin 0.385 radians

S 1 2 3

K .385 A sin

D 0.385 0.385 3.7556 —1

Thus we see from this schematic that the sine of 0.385 radians is

0.37556.
When using either the sine or cosine functions,it is important to note

that the angles must be expressed in radians and mustlie between 0 and /2

(approximately 1.5707).

Example 12: Evaluate (cos 0.293/sin 0.187) + V58.7

Ss 1 2 3 4 5 6

K 187 A sin A sto C/CE

D 0.187 0.187 1.8591 —1 1.8591 —1 1.8591 —1 0.0000

Ss 7 8 9 10 11 12

K 293 A cos A rcl +

D 0.293 0.293 95737 —1 9.5737 —1 1.8591 —1 5.1496

Ss 13 14 15 16 17 18

K A sto C/CE 58.7 A Vx

D 5.1496 5.1496 0.0000 58.7 58.7 7.6615

Ss 19 20 21

K A rel +

D 7.6615 5.1496 1.28111

Thus we find that the result of the above calculation is 12.811. It will

be noticed that the denominator is calculated first and then stored into the

34 Programmable Pocket Calculators

memory of the calculator. This is done so that once the numerator is

calculated, the denominator can be recalled from the memory and the

required division performed immediately.

The reader will once again note the use of the [C/CE] key in steps 6

and 15. These steps were necessary due to the particular operation of the

memory on the Sinclair Programmable.

Example 13: Evaluate (arc tan 23.7)?

S 1 2 3 4

K 23.7 A arctan x2

D 23.7 23.7 1.5286 2.3366

Thus we see that the result is 2.3366, as shown in step 4 of the above

schematic. The arc tangent function can be applied to any number between

the range of 0 and 49.9, with the resulting angle expressed in radians.

It will be noticed that the trigonometric functions tangent, arc-sine,

and arc-cosine are not available on the Sinclair Programmable. However,

these functions can be readily calculated by referring to Table 3-2.

Table 3-2 Trig Functions Not Found on the Sinclair Programmable

Function Formula Keystrokes

tan x V (1/cos? x) —1 Key in x cos X +

1 — Vx

Arc sine x Arctan [invine) 1] Key in x enter X =

1 — Vx + Arctan

Arc cosine x Arctan [Vie) —1] Keyinx enter X +

1 — Vx Arctan

Example 14: Evaluate tan 0.687

S 1 2 3 4 5

K 687 A cos X +

D 0.687 0.687 7.7314 —1 5.9774 —1 1.6729

c cos x cos? x 1/cos? x

S 6 7 8 9

K 1 — A Jx

D 1 6.7290 —1 6.7290 —1 8.2030 —1

c (1/cos? x) —1 tan x =4/{1/cos?x) —1

Thus we see from the above schematic that the tangent of 0.687

radians is 0.82030. Of course, an alternate way to computethe tangent of an

angle is to divide the sine of that angle by its cosine, according to the
identity:

tan x = sin X/cos x

The Economy-Level Programmable Pocket Calculators 35

If the reader usually deals with degrees rather than radians, an angle

expressed in degrees can be converted easily into its radian equivalent by the
following formula:

R = D/57.3

where

D = angle expressed in degrees

R = angle expressed in radians

Example 15: Evaluate sin 30°

S 1 2 3 4 5 6 7

K 30 A enter 57.3 + A sin

D 30. 30. 3.00001 57.3 5.2356 —1 5.2356 —1 5.0000 —1

Thus wefind that the sine of 30° is 0.50000.

Example 16: Evaluate log 28.7 + antilog 1.28

Ss 7 2 3 4 5 6 7

K 287 A log A sto C/CE 1.28

D 28.7 28.7 1.4579 1.4579 1.4579 0.0000 1.28

S 8 9 10 11 12

K A antilog A rel +

D 1.28 1.9054 1 1.9054 1 1.4579 2.05121

Programming the Sinclair Scientific

The Sinclair Scientific Programmable is capable of ‘‘remembering’’

or ““learning”’ up to 24 calculator steps. In other words, it is capable of

accepting data that may be operated upon by a maximum of 24

programming steps. Once a particular problem is solved, different data for

the same program can be keyed in and the sequence reinitiated. In this way,

the useris spared the time-consuming chore of having to key in the same

instructions for each different set of data. Not only would this be time-

consuming, but it also would leave open the possibility that an error might

be made in keying in the sequence of instructions on subsequent occasions.

Naturally, the longer the program, the greater the likelihood of an error

occurring.

To assist the user in writing efficient and useful programs, the

manufacturer provides a packet ofliterally hundreds of programs, ranging

in scope from general arithmetic to geometry, statistics, finance,

electronics, radiation and propagation, electrostatics and electromagnetics,

mechanics, structures, gravity, thermodynamics, and fluid mechanics. Each

of these programs is printed on a 5-by-5 3/4-inch plastic coated card and

36 Programmable Pocket Calculators

contains not only the pertinent equations but also the exact program steps

and the method of executing the program.

If, however, this package of programs does not contain those that the

user needs, he will have to resort to writing his own. What we plan to do in

this section is to teach precisely that—how to write programs of one’s own

design.

When writing a program for the Sinclair Scientific Programmable,

one is, of course, restricted to the functions and operations on the

keyboard. But when combined with a healthy sprinkling of human

ingenuity, the calculator’s power can be extended considerably.

Computation of\/x*. For our first illustration we shall write a

program to cube a number keyed into the display and then take its square

root. Forgetting for the time being how the calculator may be programmed

to solve this problem, let us first address ourselves to the question of how

this problem may be solved manually, that is, in the nonprogrammable

mode.

Suppose it were desired to compute the square root of 4°. The

following schematic would accomplish this task.

Example 17

Ss 1 2 3 4 5 6

K 4 A sto A enter x

D 4. 4, 4.0000 4.0000 4.0000 1.6000 1

Cc stores 4 in computes 42

memory register

S 7 8 9 10 11

K A rcl x A Vx

D 1.6000 1 4.0000 6.40000 1 6.4000 1 8.0000

Cc computes 43 43

If we had a need for computing the square root of the cubes of many

such numbers, it would not be necessary to key in the sequence for each.

Instead—and herein lies the virtue of the programmable calculator— we

can switch the calculator to programming mode and have it ‘‘learn’’ the

required sequence. The program may then be executed as often as is

necessary, thereby minimizing considerably the human effort involved.

To initiate programming mode the [B/E] key must be pressed. The

sequence of instructions may now be keyed in individually, and they will be

retained within the calculator’s program memory for future use. To signal

the end of the program and to exit from programming mode, the [C/CE]

key is pressed. It is pointed out that when instructions are keyed in in

programming mode, the uppercase shift key [] should not be used since the

uppercase functions only are automatically referenced. In other words,

uppercase functions should not be prefixed by the uppercase shift key.

The Economy-Level Programmable Pocket Calculators 37

Program SSP-1: Computation of Vx*

Step Number Instruction Comments

1 sto Stores x into memory register

2 enter

3 x Computes x?

4 rel

5 x Computes x*

6 Vx ComputesVx

Schematic SSP-1

Ss 1 2 3 4 5

K B/E key in steps of C/CE 4 EXEC

Program

D 0. SSP-1 0.0000 4, 8.0000

S 6 7 8 9

K 3 EXEC 1.234 EXEC ...etc.

D 3. 5.1961 1.234 1.3708

As shown in Schematic SSP-1, once the particular value for x is keyed

in (as it is in steps 4, 6, and 8) pressing the [EXEC] key executes the

program, producing the result almost immediately. Thus we find that:

1.4 =8
2.YE = 5.1961
3.4/1.234* = 1.3708

Program SSP-2: Average of Three Numbers

Step Number Instruction Comments

1 enter Prepares for addition

2 var Halts program to permit keying in of second

number

3 + Sums first two values

var Halts program to permit third value to be

keyed in

5 +
6 .

7 3 Enter constant 3

8 ,

9 + Divides sum by 3, giving result

Calculating the Average of Three Numbers. In the previous problem a

single number was keyed in as data before the program was executed. In this

program where we wish to calculate the average of three numbers, we must

38 Programmable Pocket Calculators

make provision for the keying in of a second and third number. Execution

of a program may be interrupted for the keying in of an additional data

item (variable) by inserting the instruction [Var] in the appropriate place.

Once these three values to be averaged are resident within the calculator,

their sum must be divided by the constant ‘3’. In order to include a constant

number in program, it must be preceded and followed by a quote sign, as

indicated above the [*/EE/__] key.

Notice in Program SSP-2 that the [Var] instructionis inserted in steps

2 and 4 to halt execution of the program to allow for the entering of

additional data. Also, each time a constant is included in a program it must

be sandwiched between two quotes.

Schematic SSP-2

Ss 1 2 3 4 5 6

K B/E key in steps C/CE 1 EXEC 2

of in|

D 0. SSP-2 0.0000 1 1.0000 2.

Cc 1st

value

Ss 7 8 9 10 11 12

K EXEC 3 EXEC 1.2 EXEC 3.4

D 3.0000 3. 2.0000 1.2 1.2000 3.4

Cc partial 3rd average of 1, 2, 1st 2nd

sum value and 3 value value

Ss 13 14 15

K EXEC 7.9 EXEC ...etc.

D 4.6000 7.9 4.1666

Cc partial 3rd average of 1.2,

sum value 3.4,and 7.9

In running the program after new data has been entered, execution is

restarted by pressing the [EXEC] key.

It is hoped that this brief explanation of programming mode will

suffice to inspire the reader to try his hand at writing his own programs to

solve the multitude ofrepetitive problems that occurin daily life.

CHAPTER FOUR

THE HEWLETT-PACKARD
PROGRAMMABLE POCKET

CALCULATORS

Features Common To All the Hewlett-Packard Models

Hewlett-Packard, a leading manufacturer of computers, has made a

distinct mark in the market for sophisticated calculators. In Chaps. 4-10 we

shall describe in detail the various Hewlett-Packard programmable pocket

calculators: the HP-65, HP-55, HP-25, HP-25C, HP-19C, HP-29C, HP-

33E, and HP-67. Each model has a rechargeable battery and operates in

Reverse Polish Notation. In conjunction with this mode oflogic, each has a

four-register stack that enables the user to evaluate complex expressions

without having to write down intermediate results. Furthermore, the stack

automatically saves and retrieves these intermediate results when needed.

The Four-Register Stack

The reader might well wonder how the calculatoris able to keep track

of intermediate results and bring them into operation at precisely the right

time. The stack is composed of four registers called x, y, z, and t,

respectively. An understanding of the way in which the stack works is

important for writing efficient programs. The x register is none other then

the display register. Here is a diagram of the four-register stack, which

operates identically on each of the Hewlett-Packard models.

t

z

y

x

When the calculator is switched on, each of the registers contains a

zero.* If now the number 2 is keyed in, it appears in the display, or as it is

*The continuous memory HP-25C, HP-19C, and HP-29C calculators retain the contents ofthe

stack registers from the time the machine waslast switched off.

39

40 Programmable Pocket Calculators

also called, the x register. In order to multiply the number 2 by say 3, the 2

must be entered by means of the key marked [ENTER %]. This has the effect

of copying the 2 into the adjacent y register. Therefore, the stack registers

will now have changed from

to

Keying in the 3 will remove the 2 from the x register, replacing it with the

number 3, as shown in the following diagram.

The effect of following this with the pressing of the [xX] key will

multiply the contents of the y register by the contents of the x register. This

result will automatically go into the x register, to the display, making it

unnecessary to have an equals key. Of course, the result appearing in the x

register will replace its previous contents, and the y register becomes zero

again.

Each time a calculation is followed by the keying in of a new number

the stack “‘lifts.”’ That is to say, what is in the x register is automatically

transferred to the y, what is in the y register goes to the z, the contents of

the z register go to the t (for top) register, and anything in there ‘pops out’’

of the machine and is lost. Conversely, each time a two-number operation is

performed, the stack automatically ‘‘drops’’ down to its adjacent lower

register.

Here is another example illustrating the operation of the stack in

evaluating a slightly more complex expression.

Evaluate (3 + 11.2) x (6.7 -21.2)

1. The number 3 is keyed in.

Hewlett-Packard Programmable Pocket Calculators 41

2. The [ENTER4] button is now pressed.

t

Zz

y
X

3. The number 11.2 is keyed in.

t

Zz

y
X

4. The [+] key is pressed.

t

z

Y

x 14.2

Since the x register (the display) now contains the result (14.2) of a

previous arithmetic operation of addition, keying in the next number, 6.7,

will automatically ‘‘push up’’ the 14.2 currently in the x register into the y

register, replacing the contents of the x register with the number 6.7, as

illustrated below.

5. The number 6.7 is keyed in.

14.2

6.7

X
<

N
r+

6. The [ENTER®] key is now pressed again.

Previously we noted that this operation has the effect of copying the

contents of the x register into the y register. However, the y register already

contains a number, namely 14.2. This number 14.2 is automatically pushed

upto register z in the following fashion.

42 Programmable Pocket Calculators

14.2

6.7

6.7

X
<

N
~~

7. The number 21.2 is next keyed in.

t

z 14.2

y 6.7

x 21.2

8. When the [-] key is pressed, the contents of the x register is subtracted

from the contents of the y register, and the result is placed in the x

register. In this case, 21.2 is subtracted from 6.7, placing -14.50 in the

display. The value in the z register, 14.2, is pushed down into the y

register, and the stack now looksas follows:

14.20

—14.50

9. Finally, pressing the [X] key performs the required multiplication of

the two parenthesized expressions. Internally the contents of the x and

y registers are multiplied together, sending the result of -205.90 to the

X register.

N

y

xX —205.90

The next example, shown on p. 43, is presented to thoroughly

familiarize the reader with the operation of the stack.

To the reader who is being exposed to the concept of the stack for the

first time, it might appear that we have gone to great lengths merely to

calculate an expression that we could have done quite easily with a far less

sophisticated calculator. Be that as it may, it should be pointed out that by

means of the stack it was not necessary to write down a single intermediate

answer, which would have been necessary using ordinary four-function

calculators.

One of the most frequent sources of error is created when either

copying down or reentering intermediate results, to say nothing of the fact

that this additional chore can be quite time consuming.

Hewlett-Packard Programmable Pocket Calculators 43

Evaluate (78.97 x 38.6)/[(57.2 xX 81.6) — (33.7 + 22.1)]

1 2 3

7897 78.97

78.97 78.97 38.6 3048.242

key in 78.97 [ENTER] key in 38.6 [x]

6 7 8

3048.242 3048.242

3048.242 57.2 57.2 3048.242

57.2 57.2 81.6 4667.52

key in 57.2 [ENTER1?] key in 81.6 [x]

9 10 1 12

t 3048.242 3048.242

z 3048.242 4667.52 4667.52 3048.242

y 4667.52 33.7 33.7 4667.52

x 33.7 33.7 221 55.8

key in 33.7 [ENTER?] key in 22.1 [+]

13 14

t

z

y 3048.242

X 4611.72 0.660977249

[—] [+]

The reader will surely agree that a thorough understanding of the

operation of the stack is critical in solving virtually any problem with such a

calculator.

The x Interchange y Key

If during the course of calculation it is required to exchange the

contents ofthe x register with that of the y register, the key marked [x=y] is

used. This is often useful in situations where one wishes to operate on the

value in the y register without destroying the value in the x register, as

illustrated below.

t 4.00 [x 2 y] key t 4.00

z 3.00 is now z 3.00

y 2.00 pressed y 1.00

x 1.00 x 2.00

44 Programmable Pocket Calculators

The Roll Down Key

Each of the Hewlett-Packard models provides a key labeled [Ri],

which has the effect of transferring the contents of the t register to the z

register, the contents of the z registerto the y register, the contents of the y

register to the x register, and the contents of the x register to the t register

simultaneously. This circular roll keeps each of the values intact while

permitting access to any value in the stack. If the [RY] key is pressed four

times, the stack will have been rotated around so that all of the values are in

their original registers in the stack, with no effective change having taken

place. The following diagrams are intended to illustrate the action of the

roll down key:

1 2 3

t 4.00 1.00 2.00

z 3.00 4.00 1.00

y 2.00 3.00 4.00

x 1.00 2.00 3.00

result after result after

pressing [R11] pressing [R41]

a4 5

t 3.00 4.00

z 2.00 3.00

y 1.00 2.00

x 4.00 1.00

result after result after
pressing [R{] pressing [R11]

The Roll Up Key

Unlike the HP-55 and HP-25, the HP-65 and HP-67 also come

equipped with a roll up button ([Rt]), which operates in precisely the

reverse manner as the roll down key. Whenever the [R*] key is pressed the

stack is lifted, and the contents of the t register are moved to the x register.

The Clear x Key

In order to clear the display, the [CLx] key is pressed. It is pointed out

that pressing this key in no way affects any of the memory registers or the

other three stack registers (y, z, and t) so that any values that these registers

contain are left intact.

Entering a Number in Scientific Notation

In normal operation of the calculator, whenever the result of a

calculation becomes either so small or so large that it cannot be represented

Hewlett-Packard Programmable Pocket Calculators 45

in the conventional mannerin the display, it will be automatically displayed
in scientific notation.

It is possible, however, to actually enter a number in scientific

notation, if this is desired. This is done by first keying in the mantissa

portion and entering the exponent by pressing the [EEX] button

immediately before keying in the exponentitself. Incidentally, the exponent

is always a positive or negative integer ranging from -99 to + 99.

If the exponentis negative, the [CHS] key must be pressed to change

the sign of the exponent and is pressed immediately following the [EEX]

key. The following examples will help to clarify this concept:

Number Keystrokes

32x 10° [31 [1 [2] [EEX] [5]
15.68 x 10" [11 [5] [.] [6] [8] [EEX] [1] [3]
—12.2x 10° [1] [2] [.] [2] [CHS] [EEX] [3]
205 X 10 ~° [2] [0] [.] [5] [EEX] [CHS] [9]

—15.3x 107% [1] [5] [.] [3] [CHS] [EEX] [CHS] [1] [2]

Examples

In the examples that follow, two decimal place accuracy is assumed.

Should a greater accuracy be required, the keys [f] [FIX]* followed by a

digit from 0 to 9 will have the effect of fixing the number of decimal places

to whatever digit was pressed. The display is rounded to that specified

number of digits.

In all of the examples in this section, it is assumed that the calculator

is in RUN mode, and a decimal place setting of f FIX 2 is used unless

specified otherwise. These examples may be keyed in on most of the

Hewlett-Packard programmable models precisely as shown. On the older

Hewlett-Packard models, namely the HP-55 and HP-6S5, certain functions

are preceded by different prefix keys.

Example 1: Evaluate (5 X 6.1) + 78?

Ss 1 2 3 4
K 5 ENTER? 6.1 X
D 5. 5.00 6.1 30.50

s 5 6 7 8
K 78 g x? +
D 78. 78. 6084.00 6114.50

*The [FIX] keyis equivalent to the [DSP] key on the HP-67.

46 Programmable Pocket Calculators

The LAST x Key

Whenever a calculation is effected using the x register, its contents

before the calculation are automatically stored in a special register known as

the last x register. The Hewlett-Packard calculators are deliberately

engineered this way to permit the user to access this value for subsequent

calculation if necessary. It can often save superfluous keystrokes in

calculating a particular expression. For example, to compute

1/x + x + x?

for any value of x, one need key in the value once and once only. The

sequence ofsteps is:

RYU lg] [1/4] [f] [LAST] [+] [f] [LASTA] [g] [x[+]

The Hewlett-Packard Addressable Data Registers

The Hewlett-Packard programmable calculators each have a number
of memoryregisters that may be used for the storing of data or intermediate
results. The number of registers differs from one model to another, and on
the HP-38E the user has the option of deciding for himself how many
memory registers he wishes to allocate.

To store a number in the display into any register one merely presses
the key labeled [STO] (for STOre) followed by the appropriate digit key.
Whatevervalueis in the display is automatically copied into the designated
register, replacing any previous contents of that register. The value in the
display remains intact. For example, if the value 28.5 is currently in the
display, the key sequence [STO] [3] will place a copy of this value into
memory register 3, replacing any previous contents ofthis register.

To recall to the display a number previously stored in a memory
register, one presses the recall key [RCL] followed by the apopropriate digit
key. Whatever value is currently residing in the particular memory register
is recalled to the display, automatically lifting the stack. The value in the
memory register remains unaltered as the result of a recall operation.

Register Arithmetic on the Hewlett-Packard
Programmable Models

Up till now all arithmetic operations have been effected by means of
the x and y registers. For manysituationsthis is perfectly convenient, but at
other timesit is necessary to operate arithmetically on the contents of the
data registers. Naturally, one is always free to recall the contents of any
particularregister to the display, carry out whatever arithmetic is necessary,
and store the result back in the register by means ofthe [STO] key. One of
the nice features of the Hewlett-Packard models is thatit enables the user to

Hewlett-Packard Programmable Pocket Calculators a7

avoid having to recall the contents of a register into the display, in the
manner described previously, in order to operate upon them. Instead, one is
at liberty to operate directly on the contents of any one of the memory

registers. For example, to add 7 to the contents of register 2 one simply keys

in the sequence

7[STOI[+] 2

In a similar fashion, the arithmetic operations of subtraction, mul-

tiplication, and division may be effected on any of the memory registers, as

shown in the following examples.

Sequence Comments

58.7 [STO] [-] 0 Subtracts 58.7 from memory register 0

3.67 [STO] [Xx] 1 Multiplies memory register 1 by 3.67

15 [STO] [+] 7 Divides register 7 by 15

It is pointed out that in each case the result of the arithmetic operation

replaces the previous contents of the particular memory register.

Example 2: Evaluate 1.78325/(8.623 + V98.7) to five decimal places of

accuracy.

s 1 2 3 4 5 6
K f FIX 5 1.78325 ENTER? 8.623
D 0.00 0.00 0.00000 1.78325 1.78325 8.623

Ss 7 8 9 10 11 12
K ENTER® 98.7 f Vx + +
D 8.62300 98.7 98.7 9.93479 1855779 0.09609

Example 3: Evaluate log (2.64) - n?/sin (28.7°)

Ss 1 2 3 4 5 6

K 2.64 f log g n 9

D 2.64 264 0.42 0.42 3.14 3.14

S 7 8 9 10 11 12

K x — 28.7 f sin +

D 9.87 —9.45 28.7 28.7 0.48 —19.67

In Example 4 that follows, which is an exercise in calculating numbers

expressed in scientific notation, it will be noticed that if the result of a

calculation goes beyond the calculator’s ability to display the number in

fixed decimal mode, that result is automatically converted to scientific

notation.

48 Programmable Pocket Calculators

Example 4: Evaluate (28.97 x 10" X 2.96 x 107'%)/(- 4.24 X 10'%)

Ss 1 2 3 4 5

K 28.97 EEX 10 ENTER? 2.96

D 28.97 28.97 00 28.9710 2.8970000 11 296

Ss 6 7 8 9 10

K EEX CHS 15 X 4.24

D 2.96 00 2.96 —00 296 —15 8.6751200 —04 4.24

S 11 12 13 14

K CHS EEX 12 +

D —4.24 —4.24 00 —4.2412 —2.0224340-16

Example 5: Evaluate In (1.789%) + tan (3.45 radians)

S 1 2 3 4 5 6 7

K 1.789 ENTER? 5 f yX f In

D 1.789 1.79 5. 5. 18.33 18.33 2.91

Ss 8 9 70 11 12 13

K 3.45 g RAD f tan +

D 3.45 3.45 3.45 3.45 0.32 3.23

There are two points in Example 5 that should be made. The first is

that since the angle 3.45 is expressed in radians, the calculator must be

switched to radian mode by pressing the blue prefix key labeled [g] followed

by [RAD], which is the lower case [EEX] key. This is necessary since as

soon as the calculatoris switched on, it is automatically set to degree mode.

Onceit has been switched to radian mode, however,it remains in this mode

until eitherit is changed by the user orthe calculatoris turned off. (Even the

continuous memory models HP-25C, HP-19C, and HP-29C do not

remember the trigonometric mode setting when the machine is switched

off.)

The second point concerns the accuracy with which the calculation is

done. Despite the fact that the calculator displays numbers to two decimal

places, rounded, it nevertheless operates on the full accuracy of the number

that is contained internally.

Example 6: Illustration of the INT and FRAC functions

S 1 2 3 4 5 6

K 45.67 f INT 122.8 gq FRAC

D 45.67 45.67 45.00 122.8 122.8 0.80

The purpose of the [INT] key is to truncate the integer portion of a

number. The integer portion (the number without its fractional portion)

replaces the original numberin the display.

Hewlett-Packard Programmable Pocket Calculators 49

Conversely, the key labeled [FRAC] separates off the fractional
portion of a displayed number that replaces the original number in the
display. Generally, these two functions are used to greatest advantage in
programming mode.

Example 7: Convert the point (3, 7) from rectangular to polar coor-

dinates.

S 2 3 4 5 6
K 7 ENTER? 3 g —-P XZy

D 7. 7.00 3. 3. 7.62 66.80

Provision for conversion from and to polar and rectangular coor-

dinates is made on most Hewlett-Packard programmable models. To

convert a point expressed in rectangular coordinates of the form (x, y) to its

equivalent point in the polar coordinate system (r, 8), one merely keys in the

y-coordinate, presses the [ENTER?] key to send it to the y register, and keys

in the x-coordinate of the point so that it resides in the x register. Once this

has been accomplished, pressing the [g] prefix key, followed by the [>P]

key, calculates the position of the point in the polar system. The magnitude

r appearsin the x register (the display), while the value of 0 is placed in the y

register and can be accessed either by rolling down the stack once by the

[RV] key or by pressing the [x2 y] key, as wasillustrated in Example 7. Thus

we find that the point (3, 7) is equivalent to (7.62, 66.80°) in the polar

coordinate system.

Example 8: Convert the point (7.62, 66.8°) from polar to rectangular co-

ordinates.

S 1 2 3 4 5 6

K 66.8 ENTER? 7.62 f -R x=zy
D 66.8 66.80 7.62 7.62 3.00 7.00

When converting from polar to rectangular coordinates, the value of

0 must be keyed in first so that it will subsequently be placed in the y

register, followed by the [ENTER?] key. Next the value of r is keyed in.

Pressing [f] [+R] has the effect of converting the polar coordinates keyed in

into their rectangular coordinate equivalents, placing the x value of the

coordinate in the x register and the y value in the y register.

Upon inspection the reader will notice that in Example 8 we have

simply checked the results of Example 7. What may be helpful to the reader

to notice in both these conversionsis thatit is always the second coordinate

that is keyed infirst.

Example 9: Convert 6.78 hours to hours, minutes, and seconds.

S 1 2 3 4 5 6

K f FIX 4 6.78 f —-H.MS

D 0.00 0.00 0.0000 6.78 6.78 6.4648

50 Programmable Pocket Calculators

Time expressed in hours and fractions of an hour can be converted to

hours, minutes, and seconds by means of the key labeled [=H.MS]. The

reason for the [FIX] [4] in steps 2 and 3 is that the result is displayed in the

following format:

H.MMSS

where

H is the integer number of hours

MM is a two-digit number representing minutes

SS is a two-digit number representing seconds

Thus it is clear from the schematic in Example 9 that 6.78 hours is

equivalent to 6 hours, 46 minutes, 48 seconds.

Conversely, we can convert a time period expressed in hours, minutes,

and seconds into decimal hours. To accomplish this the keys [g] [*H] are

used, as shown in the following example.

Example 10: Convert 103 hours, 2 minutes, 58 seconds into decimal

hours.

S 1 2 3

K 103.0258 g —H
D 103.0258 103.0258 103.05

A direct analogy can be drawn between the units hours, minutes, and

seconds, which we have just discussed, and degrees, minutes, and seconds.

Knowing how to convert from degrees, minutes, and seconds to decimal

degrees assumes importance since trigonometric functions on the Hewlett-

Packard models operate on angles expressed in decimal degrees only, rather

than in degrees, minutes, and seconds.

This topic is discussed in greater detail in Chap. 7, where the HP-65 is

described. It is pointed out that on the HP-65, the key equivalent to the

[*H.MS] key of the other H.P. models is the [*D.MS] key.

We have now covered those features that are identical in most respects

on each of the Hewlett-Packard programmable calculators. The remaining

features will now be treated separately for each particular calculator.

CHAPTER FIVE

THE HEWLETT-PACKARD
20 AND 25C

The HP-25

In July 1975, some seven months after the release of the HP-55,

Hewlett-Packard announced its lightweight, programmable HP-25. It has

almost all of the calculating features of the nonprogrammable HP-45, all of

the programming features of the HP-55, plus some novel features of its

own. In addition, it has eight addressable storage registers referred to as

RO-R7, and 72 built-in functions. An interesting feature on the HP-25 is

that it permits engineering notation in which the exponent of a number in

scientific notation may be expressed in selectable multiples of three. This

feature will be discussed in detail shortly.

The HP-25 is only one of several programmable calculators in which

the emphasis has been on compactness, portability, light weight, and

considerable computational power. As a result, a great deal of effort has

gone into its design. One of the techniques used to save weight and space is

to make the keyboard multi-functional—that is, most of the keys have not

just one function but rather two or even three. If the face-on function is

required, that key is pressed and that is it. If the function required is that

appearing immediately above the key in yellow, the yellow key marked [f]

must precede it. If the function required is that appearing on the lower

surface of the key in blue, the blue key marked [g] must precede it. The HP-

25 therefore has three faces, as shown in Fig. 5-1.

The HP-25C

After using the HP-25 over a period of time, one soon comes to the

conclusion that, as efficient a tool as it is, it could be further enhanced if,

somehow or other, a way could be found to keep the memory alive even

after the machine is switched off.

Hewlett-Packard’s engineers obviously gave this idea serious con-

sideration for in July 1976 they announced and released their model HP-

25C, the C standing for ‘‘continuous memory.’’ By means of some very new

technology known as CMOS (complementary metal oxide semiconductor)*

*Ordinarily, calculator chips are made either of PMOS or NMOS circuit elements. PMOS is

the abbreviation for ‘‘positive metal oxide semiconductor,’ while NMOS is ‘‘negative metal

oxide semiconductor.”” CMOSis a combination of both.

51

52 Programmable Pocket Calculators

3 d

I£9
Ce5 [1
ifcz esjics

HEE0n

(FIX SCI ENG \)

=

[0
-0

J5

© PREFIX PRGM REG STK
ENTER ¢

x<y In log -

x=y sin cos tan

Fig. 5-1 Three faces of the HP-25

3. LOWER CASE (G PREFIX REQUIRED)

The Hewlett-Packard 25 and 25C 53

the calculator retains the information stored not only in the 49-step
program memory butalso in each of the eight addressable data registers and
the last x register, even when the calculator is switched off. In addition,it is
retained for a period ofsix weeks or even longer. The two CMOS chips in
the HP-25C use only a trickle of current from the battery (1/80,000 of the
normal operating power) and thus do not drain the battery too much. Even
if it is necessary to change the battery pack, this may be done without fear
of information loss because, with the calculator switched off, a small
capacitor provides sufficient charge for the brief period of time required to
install the fresh battery (5 seconds to 2 minutes).

In all other respects the HP-25C is identical to the HP-25,the earlier

model that perhaps will become known as “‘discontinuous memory.’’ In any

event the continuous memory of the HP-25C is a most desirable innovation.

It reduces considerably the need to repeatedly key in the program with all

the inherent disadvantages such as the miskeying of instructions and battery

drain, caused by the display being on. There is little question that con-

tinuous memory is a trend that is bound to catch on. In fact, rumor has it

that Casio, a leading Japanese calculator manufacturer that so far has

concentrated on low-cost nonprogrammable calculators, has now entered

the field with their PRO-101 key programmable calculator. It is reputed to

have batteries that keep the program alive for up to a year!

The HP-25C was released with a price tag of $200 at a time when the

original HP-25 was reduced to $145. A picture of the HP-25C appears in

Fig. 5-2.

Manual Operation of the HP-25 and HP-25C

In the discussion that follows, all references to the HP-25 apply

equally to the HP-25C.

Example 1: Find the mean and standard deviation of the following five

scores: 1.23, 2.63, 5.18, -2.16, 5.89.

s 7 2 3 4 5 6 7
K 1.23 T+ 263 T+ 5.18 T+ 2.16
D 1.23 1.00 2.63 2.00 5.18 3.00 2.16

s 8 9 10 11 oops! 12 13
K CHS + 5.83 s+ I meant 5.83 f
D 2.16 4.00 5.83 500 |%89.not] ggg 5.835.83

Ss 14 15 16 17 18 19 20
K — 5.89 T+ £ x f :
D 4.00 5.89 5.00 5.00 2.55 2555 3.24

54 Programmable Pocket Calculators

L234 5E 178-25

[5:284 PAUSE

pe Wi3

LT

HEWLETT: PACKARD 25C
Fig. 5-2 HP-25C (Courtesy Hewlett-Packard Company)

If function keys were rated according to the amount of work they

accomplish, the [+] key would surely win hands down. It not only sums

each successive data item when this key is pressed, but also

1.
2.
3.

4.
5.

Places the accumulated sum in R7.

Adds the square of the numberto the contents of storage register R6.

Multiplies the number by the contents of the y register, adding the

product to storage register RS.

Adds the contents of the y register to the contents of R4.

Adds 1 to storage register R3, sending the total number in R3 into the

display, withoutlifting the stack.

This information is given here even thoughit is not really necessary to

know when solving the problem posed in Example 1. Later on, however,

when we use the HP-25 in programming mode, we shall exploit this

knowledge to good advantage.

The Hewlett-Packard 25 and 25C 55

Returning to the problem of finding the mean and standard deviation
of the five scores in Example 1, each of the scores is keyed in separately,
followed by the pressing of the [= +] key. After step 11, it was noticed that
5.83 was inadvertently keyed in in step 10, rather than the intended 5.89 (to

err is human, after all). The situation is not hopeless, however, and can be

rectified immediately. The incorrect inclusion of 5.83 can be subtracted by

the [Z -] key and the correct figure 5.89 added immediately afterwards.

The mean of the five scores is obtained by pressing [f] [X] and the

standard deviation by pressing [f] [s].

Engineering Notation

With technology improving at the current phenomenalrate, engineers

have found that there is a need, for example, to measure time, not only in

milliseconds (thousandths of a second) but also in microseconds (millionths

of a second) and even nanoseconds (billionths of a second) and yes

picoseconds(trillionths of a second). These units of time, when expressed in

scientific notation, follow a specific pattern:

1 millisecond 1 x 107 seconds

1 microsecond = 1 X 107¢ seconds

1 nanosecond = 1 X 107° seconds

1 picosecond = 1 X 107'?seconds

It will be noticed that each exponent is a multiple of three. The HP-25

is unique in that it was the first calculator in the world that provided the

user with the option of displaying all numbers with exponents of 10 that are

multiples of three.

Engineering notation is obtained by pressing [f] [ENG] followed by a

number key from 0 to S. This number key specifies the number of

additional decimal digits that are to be displayed after the first three

mantissa digits that are always present.

The following examples will help clarify this intriguing feature:

ooh [sci] 4 [ENG] 2

12345. 1.234504 12.345 03

00078 7.8000 —04 780.00 —06
108.98 x 10" 1.0898 13 10.898 12
3.29315 x 10~%° 3.2932 —30 3.2932 —30
106 1.0600 01 10.600 00

Programming the HP-25 and HP-25C

Programming the HP-25 is similar in many respects to programming a

multi-million dollar computer. Whereas one has to sometimes resort to so-

56 Programmable Pocket Calculators

called higher level languages in order to solve a particular problem on a

given computer, this is not the case with the HP-25. To write a program—

that is, a sequence of instructions to solve a problem—on the HP-25, one

writes the program using for the most part the keys that one would normally

use to solve the problem manually, as if one were using a nonprogrammable

calculator. The essence of the HP-25 is that each of these keyed entries may

be stored in the machine’s memory for subsequent execution and/or for

unlimited repetitive execution. The HP-25 has 49 memory storage locations

and has no provision forstoring the program on a magnetic card.

The time has now arrived to come to grips with the concept of

programming the HP-25. A little care and patience in reading what follows

will be most rewarding.

First switch on the calculator and putit into PRGM position. (There

is a PRGM/RUNswitch just beneath the display.) The digits 00 appear in

the extreme left-hand side of the display. This refers to a special memory

location, called 00, which holds permanently an instruction that stops the

machine from continuing an automatic sequence. This is often most

desirable, as we shall see later on. However one maytry, one cannot write

any other information into this location. Location 00 is not included in the

49 locations of program memory that are available. These are labeled

appropriately, 01 to 49. We are at liberty to write our program instructions

into these 49 locations, beginning at thefirst location.

With the machine switched to program mode, press the [f] [PRGM]

keysfollowed bythe top left-hand key marked [SST] for single-step. This is

what now appearsin the display:

01 13 00

Pressing this [SST] key again will display:

02 13 00

Repeating this will display:

03 13 00
04 13 00

etc.

49 13 00

The two digits on the left refer to the memory locations 01 to 49. The

number 13 appearing in each of these locations is a code that may be

interpreted as ‘‘first row, third button’ from the top of the calculator.

Whatis the key in that position? A look at the keyboard will immediately

show that it is the one marked [GTO], which stands for ‘go to.”” The

The Hewlett-Packard 25 and 25C 57

number 00 at the extreme right indicates the transfer location of the ‘go
to.”” In other words, every one of the 49 program memory locations is

automatically filled with the instruction GTO 00 as soon as the calculator is

switched on and put into program mode. But, as we stated earlier, a transfer

to location 00 will halt the calculator when it is in RUN (automatic) mode.

This is, of course, deliberate on the part of the designers, the philosophy

being that each program instruction should overwrite the GTO 00. If a

mistake is made in not keying in all the correct instructions, a GTO 00 will

be encountered and the calculator will come to a halt because execution will

have been passed to location 00, which contains a permanent halt

instruction.

To familiarize the reader with the correspondence between individual

keys and the manner in which they are stored internally, Table 5-1 is given.

Some of the positions indicated with question marks have been deliberately

omitted to enable the reader to acquire some practice for himself. The

correct answers are given in the table footnote. Note that the digits 0

through 9 are coded as 00-09. Furthermore, the representation for 8, log,

and 10%, for example, all of which use the same key, is 08. This applies

equally to the non-numeric, multiple function keys. Ambiguity is avoided

by prefixing these keys where necessary with the appropriate shift key.

Table 5-1 Storing Keys on the HP-25/25C

Key Internal Code

1. 3 03

2. ENTER? 31

3. f ?

4, x<0 41

5. ? 05

6. FRAC ?

7. ? 73

8. sin 04

9. x 21

10. 8 ?

11. + ?

12. yX 03
13. 0 00

Answers: 3.14;5.(5];6.01;7.[-];

10.08; 11. 51

Without any further ado, we shall now proceed to write a program,

albeit a rather elementary one. The purpose here is not to be profound, but

rather to present the essential concepts involved. A little patience at this

juncture will be amply rewarded later on.

58 Programmable Pocket Calculators

Finding the Average of Two Numbers

We are often confronted with the problem of having to take the

average, or to find the arithmetic mean, as it is often called. To find the
average of two numbers hardly presents any difficulty to anyone, even

without an ordinary pocket calculator, let alone a programmable model.

What we propose to illustrate now is how to calculate the average manually

and then by a program. Once that has been done we shall show how the

same program may be used to calculate the average of an infinite number of

pairs of values. To begin, we shall find the average of 1 and 8, our first pair

of numbers.

Example 2

Ss 1 2 3 4 5 6
K 1 ENTER? 8 + 2 +

D 1. 1.00 8. 9.00 2. 450

The schematic in Example 2 is certainly easy to follow and probably

requires no further explanation. Now, if we wanted to find the average of

another pair of numbers we would merely repeat each ofthe six steps of the

schematic, and the second result would appear in the display as before.

Suppose, however, we had to find the average of hundreds of pairs of

numbers. Would we have to repeat each of these six steps hundreds of

times? With an ordinary calculator there would be no alternative, but with a

programmable calculator the matter becomes incredibly easy to accomplish.

The programmability of the HP-25 reduces this problem to one of merely

keying in the appropriate numbers and little else. The program should, of

course, display the result and permit the user to key in the next two numbers

to be averaged.

Examine the schematic in Example 2 once again. After the first

number(in this case 1) is keyed in, it is ENTERed. Now the second number,

8, is keyed in (step 3) and at step 6 the display gives the result. What we want

to do is to write a program that will do this calculation for us automatically.

Sincethefirst number manually keyed in is ENTERed,so the first program

instruction will be

[ENTER?]

Since we wish to make the whole operation automatic, we must have

provision for halting the calculator to enable us to key in the second of the

two numbers. This is, in fact, provided by the RUN/STOP key, marked
[R/S], located at the bottom right of the keyboard. The next instruction will
therefore be

[R/S]

The Hewlett-Packard 25 and 25C 59

Atthis point the second number will be keyed in manually. Now both
numbersreside in the calculator, the first in the y register and the second in

the x register. To add them is quite simple; press the button for addition.
The next instruction is therefore

[+]

The sum will now be sitting in the display, the x register, and it has to be

divided by 2 to obtain the average. First we key in the 2.

[2]

In RPN the operator follows the two operands, so now we key in the

operator for division:

[+]

The result will now be in the display, and so long as the next

instruction is a GTO 00, which halts the calculator in RUN mode, we will be

able to view the result and proceed to average the next pair.

You might be surprised to know we have just written our first

program.

Program HP-25-1: Average of Two Numbers

Step Number Instruction Comments

01 ENTER? Transfers first keyed in number from x

register to y register

02 R/S Stops automatic sequencing of calculator to

allow the second number to be keyed in

03 + Adds the two numbers

04 2 Keys in 2 for averaging

05 + Divides by 2 for average

We shall now illustrate the procedure for entering the program into the

HP-25.

Keying in the Program

1. Switch to PRGM mode.

2. Press the [f] [PRGM] keysto clear the program memory.

3. Key in the five instructions as shown and described in Program HP-
25-1.

Notice that with each instruction keyed in in program mode, the

display automatically shows both the location counter and the operation

code of the instruction stored in that location of the calculator’s memory.

Now to run the program.

60

O
X
»

O
x

©
O
x
®

O
X

®
Pm
t

Programmable Pocket Calculators

Running the Program

. Switch to RUN mode.

2. Press the [f] [PRGM] keysto set the program pointer to 00. This will

N
O
N

Wn
m

b
h

W
w

execute the program from the beginning. It is very easy to forget this

step. If it is forgotten, the instruction following the last one you keyed

in (by default it will be a GTO 00) will be executed, and the calculator

will come to an immediate halt. When these keys [f] [PRGM] are

pressed in program mode, it has the sobering if not infuriating effect

of clearing out the current program! So always write a program on a

scrap of paper first for safety’s sake, and be sure the calculator is in

the correct mode.

. Key in the first of the two numbers.

. Press [R/S] to start the program.

. Key in the second number.

. Press [R/S] to restart the program.

. The calculator will quickly come to a halt with the average of the two

numbers in the display.

. Repeat this sequence, 3 through 7, for each set of data. Here is a

schematic using only the four pairs of sample data shown below:

1.0 2.0
12.34 56.78
83.9 -27.6
12.96 17.512

Schematic HP-25-1

1 2 3 4 5 6

switch press key in switch press 1

to PRGM f PRGM steps of to RUN f PRGM 1.

mode Program mode

HP-25-1

7 8 9 10 11 12

R/S 2 R/S 12.34 R/S 56.78

1.00 2. 1.50 12.34 12.34 56.78

13 14 15 16 17 18

R/S 839 R/S 276 CHS R/S

34.56 839 839 276 —276 28.15

19 20 21 22

12.96 R/S 17.512 R/S

12.96 12.96 17.512 15.24

The Hewlett-Packard 25 and 25C 61

The four results are shown in steps 9, 13, 18, and 22. Notice that we

can continue keying more data, but these four pairs will have illustrated the

point sufficiently. It should also be noted that to key in a negative number

into the display (as is the second number of the third pair) it is necessary to

key in the positive number and to change its sign by pressing [CHS], the

change sign key.

The strategy employed in solving our first problem is not the only one

by any means. In fact, programming is a rather unique discipline in thatit

permits a rather great variety of strategies, each of which could be as good

as the next one. This flexibility of operation is particularly pleasing to

programmers who, as a general group, tend to be very individualistic and

have strong preferences for their own particular approach. This might even

account forits tremendous popularity.

As a matter of record, the ENTERinstruction may be omitted from

Program HP-25-1 since, when the R/S instruction is encountered and the

second value keyed in, the stack is automatically lifted. The reason it has

been included is to keep it consistent with the manual method of solving the

problem.

In the next program we shall be using the constant mn, which is

available on the HP-25 at the touch of a button; or more correctly, the

touch of two buttons. It is located on the lower surface of the key with the

decimal point on its face, and it must therefore be prefixed by the [g]

button.

Computing the Circumference of a Circle

The next program we shall attempt is again one requiring very little

knowledge of mathematics. It concerns the computation of the cir-

cumference of a circle, given its radius. From junior high school you will,

no doubt, recall the formula:

C =2nr

where

C = the circumference

n = the constant 3.14 (approx.)

r = theradius

We shall write a program that will permit the keying in of any value of

r. After C is calculated, we shall loop around again to allow for the next

value of r, and so on. Incidentally,it is precisely this feature of looping that

makes programming such a powerful tool. It has been said, not without

some propriety, that a program without a loop is like a summer without

sunshine.

62 Programmable Pocket Calculators

Here is the schematic for the manual version, using a single value of r.

It is set equal to 10.98 in this case.

Example 3

Ss 1 2 3 4 5 6 7
K 1098 ENTER? 2 X g w X
D 10.98 10.98 2. 21.96 21.96 3.14 68.99

Thus we find that for a radius of length 10.98 the circumference is

computed to be 68.99. Again, once the procedure has been developed for

calculating the value of C for a single value of r, it becomes an easy step to

modify this procedure with a loop so that the program will solve an infinite

number of cases. Here is such a program. The loop is effected by the GTO

00 in line 06 (by default), which transfers control to line 00 to allow for the

next value of r to be keyed in.

Program HP-25-2: Circumference of a Circle

Step Number Instruction Comments

01 ENTER?® Copies keyed in value of r to y register

02 2 Puts 2 into the x register

03 X Puts 2r into x register

04 gm Puts 2r into y register and mw into x register

05 X C =2ar

To enter this five-line program into the calculator, we first clear any

previous program by pressing [f] [PRGM] in program mode. The five

instructions are then keyed in as before. If attention is given to the display

while keying in Program HP-25-2, it will be of interest to note that after

keying in step 04, in which the n function is accessed prefixed by [g], the

display reads

04 15 73

This is an indication that the g (code 15) and n (code 73) keys are

merged into a single instruction in the calculator’s memory. It is for this

reason that g and = are shown in a single step in Program HP-25-2. In

general, any operation that requires multiple keys to execute that operation,

are stored internally as a single merged instruction. Table 5-2 illustrates

some of these merged instructions.

The schematic that follows shows the steps involved in calculating the

circumference for four different values of r, but once again the program

will solve for C for as many values of r as are keyed in. The data this time

are 3, 2.5,5.68, and 10.98.

The Hewlett-Packard 25 and 25C

Table 5-2 Merged Instructions on the HP-25

63

Keys Merged Instruction
Function Required Code

1. Vx f JX 14 02
2. 10% g 10% 15 08

3. Fix the display

to 5 decimal places f FIX 5 14 11 05

q, Add the display

to register 3 STO +3 23 51 03

5. Absolute value g ABS 15 03

Schematic HP-25-2

S 1 2 3 4 5

K switch press key in steps switch press

D to PRGM [PRGM of Program to RUN E vl

mode HP-25-2 mode

S 6 7 8 9 10

K 3 R/S 25 R/S 5.68

D 3. 18.35 25 15.71 5.68

Cc Istr 1st C 2ndr 2nd C 3rdr

S 11 12 13

K R/S 10.98 R/S

D 35.69 10.98 68.99

Cc 3rd C 4th r 4th C

Finding the Volume of a Sphere

The volume of a sphere is given by the formula

Once again, before writing the program we shall devise a

V = 4/3)nr?

schematic to

compute the value of V for a single value of r. Let the value of r be 12.34

inches.

Example 4

S 7
K 12.34
D 12.34

Ss 7

K X
D 7516.32

2

ENTER?

12.34

8

3

3.

3 4

3 f

3. 3.

9 10

+ 9g
2505.44 2505.44

5 6

yX 4
1879.08 4.

11 12

mT X

3.14 7871.08

64 Programmable Pocket Calculators

Thus we find from Example 4 that the volume of a sphere whose

radius measures 12.34 inches is equal to 7871.08 cubic inches.

A program can now be written easily, based on the schematic in

Example 4. In fact, the identical keystrokes to those shown in this example
can be used in our program to compute the volume of any number of

spheres. The only difference is that where the schematic shows a specific

value for r being keyed in, this step is omitted from the program. The

reason for this is that the user must have the opportunity to key in his own

value for r during the time of execution of the program. Of course, in order

for him to do this, the program must be in a halted condition. Location 00

conveniently contains such a halt instruction.

Program HP-25-3: Volume of a Sphere

Step Number Instruction Comments

01 ENTER? Copies the value of r keyed in into the

y register

02 3 Places 3 into display

03 f yX Computes r®

04 4 Places 4 into display

05 X ar’

06 3 Places 3 into display

07 + (4/3)r®

08 am Places value of « into display

09 X Displays volume = (4/3)nr?

The reader is reminded that before running the above program, with

the calculator in RUN mode, the keys [f] [PRGM] should be pressed. This

has the effect of resetting the location pointer to location 00 where the

program begins execution.

Schematic HP-25-3

Calculate the volume of the sphere with radius =

(a) 12.34

(b) 3.61

(c) 2.175

S 1 2 3 4 5 6

K switch press key in steps switch press 12.34

D -mn B re] Ewon| - won| [, re] 12.34

mode HP-25-3 mode

Ss 7 8 9 10 11

K R/S 3.61 R/S 2.175 R/S

D 7871.08 3.61 197.07 2175 43.10

The Hewlett-Packard 25 and 25C 65

A Simple Counting Program

The purpose of the simple program that followsis not intended for its

functional value so much as for an opportunity to introduce two important

instructions.

The first of the two statements is the unconditional transfer GTO

which, you will recall, means ‘‘go to.”” The GTO instruction is always

associated with a two-digit number from 00 to 49. When executed, transfer

is sent directly to that location in memory specified by this double digit

number. Once control has been transferred, execution resumes from that

location.

The second instruction has not been discussed before. It permits the

user to insert a pause into the program. The purpose of this PAUSE in-

struction is to enable intermediate results to be displayed for one second

intervals. A succession of PAUSE instructions may be inserted in a

program, and this will have the effect of extending the period in which the

intermediate result is displayed.
Use of these two instructions is made in the program that follows. The

program will cause the display to be repeatedly incremented by one,

beginning with whatever numberis in the display. Each time the numberis

incremented, the program pauses to display that number before continuing

the process. A close scrutiny of the program will confirm that an infinite

loop is set up, one which is halted either by pressing the [R/S] key or by

switching the machine off. If it is halted by use of the [R/S] key, a second

pressing ofthis key will continue execution of the program from where it

left off.

Program HP-25-4: Counting Program

Step Number Instruction Comments

01 f FIXO Displays integers only

02 1 Places 1 in display

03 + Adds 1 to y register

04 f PAUSE Displays x register for one second

05 GTO 02 Loops to location 02

Schematic HP-25-4

S 1 2 3 4 5 6

K switch press key in steps switch press CL x

D -rc [; ol] Eed - ron] I ee] 0.

mode HP-25-4 mode

S 7 8 9 10 ...etc

K R/S
D maT r=—57 r 3 | 4

66 Programmable Pocket Calculators

If the stack is clear and the program is initiated by pressing the [R/S]

key, counting begins from zero. If counting is required from any other

number, that number must be keyed in before executing the program.

Making Decisions on the HP-25

So far we have shown four programs in which each instruction was

executed sequentially, starting with the first instruction in location 01 and

going to the last. Upon reaching the end of each of the first three programs,

the GTO 00 instruction, which by default occupies each unused memory

location, returned us to location 00 where the built-in halt stopped the loop.

This enabled us to view the result in the display and to start the cycle over

again with new data, using the [R/S] key to restart the operation.

The GTO instruction is regarded as an unconditional transfer of

control. It could be a GTO 23, which would send control to location 23 of

the program, or it might be GTO 01, which would transfer control to

location 01, and so on. In each case transfer of control is made with ‘‘no

questions asked.”

On occasion, however, we want to transfer control only when a given

situation has transpired. For example, transfer of control might become

necessary only if the contents of register x became equalto that of register y,

or if the contents of the x register became less than zero, thatis, negative.

Transfer in these cases would be made only if some predetermined

condition or other were met.

On the HP-25 there are eight such conditional transfers. They are:

x<y x< 0

X=y x20

X#Y X#0

X=Yy x=0

The tests comparing the x and y registers are ‘‘upper case’’ and are therefore

prefixed by the [f] key, while those comparing the x register with zero are

“lower case’’ and are prefixed by the [g] button. The manner in which each

of these eight tests works is as follows: If the test proves to be frue,

execution of the program continues sequentially in the ordinary way.

However, if the test turns out to be false, the instruction following the test is

skipped. This may be represented diagrammatically as shown on p. 67.

If the test in location 20 is true, control is transferred normally to the

next instruction (at location 21). If the test is false, location 21 is skipped

and execution is resumed from location 22.

If the reader has difficulty remembering which of the two sequences

apply to a given situation, the following helpful hint is suggested: Think for

a moment how you would reactif told a false statement by someone whom

you trust. Wouldn’t your heart skip a beat?

The Hewlett-Packard 25 and 25C 67

—20 test

false true
 —21

 —2

It is up to the programmerto select the specific test he wants and to

decide what to do logically depending upon the outcome of the test.

On occasions it may be necessary to test whether the fractional part of

a numberis equalto zero. The fractional part of a number may be isolated

and sentto the display by using the [FRAC] function prefixed by [g]. This is

done in the next program, which tests whether a keyed in number is odd or

even.

Determining Whether a Number Is Odd or Even

One ofthe problems to be considered concerns the manner in which

the calculator makes its conclusions known to us. After all, a calculator

cannot talk—not even a programmable calculator—at least, not yet. In the

program that follows, it was decided quite arbitrarily to display the digit 1 if

the number keyed in was odd and the digit 2 if it was even. The logic behind

the program is quite straightforward, as the flowchart in Fig. 5-3 confirms.

Program HP-25-5: Is a Number Odd or Even?

Step Number Instruction Comments

01 f FIXO Displays only integers

02 ENTER?® Copies keyed in value to y register

03 2 Puts 2 into the x register

04 +

05 g FRAC Extracts fractional portion of x register

06 gx=0 Is the fractional portion zero?

07 GTO 10 Yes; then original numberis even;

go to location 10

08 1 No; then original number is odd;

send 1 to display

09 GTO 00 Halts program to permit display of result

and option of keying in another number

10 2 Puts 2 into display, indicating original

number is even. The default GTO 00 in

location 11 halts the program, permitting

the display of result and the option of

re-running the program

68 Programmable Pocket Calculators

According to Program HP-25-5, the keyed in numberis first divided
by 2 and the fractional portion examined to determine whether or not it is
equal to zero.If it is, control is transferred to statement 10 that displays a 2,
indicating that the numberis even. If the fractional portion is not equal to
zero, making the test in location 06 false, statement 07 is skipped and
control is passed instead to location 08, causing a 1 to be displayed, in-
dicating that the original number keyed in was odd. Since the integer result
in either case is a 1 or a 2, the displayisinitially set to FIX 0 by the program,
which eliminates the display of the superfluous trailing .00.

START

KEY IN
NUMBER
TOBE
TESTED

DIVIDE
NUMBER
BY 2

DOES

THE QUOTIENT
CONTAIN

A FRACTIONAL

PORTION
ORIGINAL ? ORIGINAL
NUMBER IS EVEN, NUMBER 1S 00D;

ieDiSPLAY IN DISPLAY

Fig. 5-3 Flowchart HP-25-5; HALT
Is a Number Odd or Even?

Schematic HP-25-5: resting Odd-Even Program
S 7
K switch press key in steps switch press R/S

D -) [oePRG] E2] -a) [(po 1.
mode HP-25-5 mode

S 8 9 10 11 12 13
K 1666 R/S 424 R/S 55 R/S
D 1666. 2. 424. 2. 55. 1.

The Hewlett-Packard 25 and 25C 69

Halving a Number Problem

The program that follows haslittle mathematical merit butis intended
as an exercise in the use of the conditional jump, the PAUSE instruction,

and the x interchange y key. The idea behind the program is to key in any

positive number. The calculator will repeatedly divide this number by 2,

displaying the result each time until it becomesless than 1. At that point, the

calculator halts with the final result in the display. The flowchart is shown

in Fig. 5-4, followed directly by the program.

(START)

KEY IN
NUMBER

Is DIVIDENUMBER
LESS THAN NBER

1?

PAUSE TO
HALT DISPLAY

INTERMEDIATE
RESULT

Fig. 5-4 Flowchart HP-25-6: Halving a Number Problem

Program HP-25-6: Halving a Number Problem

Step Number Instruction Comments

01 ENTER? Copies keyed in number into y register

02 1 Replaces display with 1

03 x2y Interchanges x and y registers, placing 1 iny

register and keyed in number in x register

04 fx<y Is number in display less than 1?

05 GTO 00 Yes; halt program, displaying result

06 2 No; sends 2 to display, lifting stack

07 + Divides number by 2

08 f PAUSE Pauses to display intermediate result

09 GTO 04 Continues processing

70 Programmable Pocket Calculators

For those readers who do not have an HP-25 available, the following

schematic is given to enable them to visualize the manner in which the
display changes with each pass through the loop. Those numbers

surrounded by dashes indicate that the numberis displayed automatically

for a period of about a second.

s 2 3 4 5
K f FIX 4 25 _R/S _
D 0.00 0.00 0.0000 25. | 12.5000]

6 7 8 9 10

O
x
»

Calculating the Factorial of a Number

Since the HP-25 does not have a factorial function in its repertoire, we
shall shortly write a program to calculate this function. The factorial of a
number n is the product of all the positive integers from 1 to n. For
example, factorial 5 (written 5!) is defined in the following way:

S1=5X4x3x2x%x1=12

In mathematics, 0! is defined to be 1.

There are a great many approaches one can adopt in calculating the
factorial of a number. The one we have selected involves the use of storage
register 1 in which the partial product is stored. Program HP-25-7 servesas
an illustration ofregister arithmetic, which we discussed in Chap.4.

Program HP-25-7: Factorial of a Number

Step Number Instruction Comments

01 fFIXO

02 ENTER? Copies keyed in value for n into y register

03 1

04 STO 1 Initializes R1 to 1

05 fxzy Tests to see if counteris greater than or
equal to n

06 GTO 11 If it is, then go to statement 11

07 1 If not, then add 1 to counter

08 +

09 STO X 1 Multiplies counter by R1, storing new
result in R1

10 GTO 05 Go through loop again

11 RCL 1 Recalls final result to display; GTO 00 in
location 12 halts program

The Hewlett-Packard 25 and 25C 71

The program also utilizes the storage capacity of the stack itself in
which the value of n is retained in register y, while the number contained in
register x is repeatedly incremented until it reaches the value of n in register
y. With each pass through the loop this incremented value is multiplied by

and replaces the contents of memory register 1, which contains the partial

product of the factorial and is ultimately broughtto the x register to display

the final result. Since the logic to this program is somewhat more complex

than that of previous programs in this chapter, the flowchart in Fig. 5-5

should prove to be helpful.

START

KEY IN
VALUE
OF n

SETR1
EQUAL
TO 1

SET COUNTER
EQUAL TO 1

IS
COUNTER

GREATER THAN
OR EQUAL
TO n?

YES

DISPLAY RI
AS FINAL oeRESULT

(HALT) MULTIPLYL COUNTER BYR!
AND STORE
RESULT IN RI

L

Fig. 5-5 Flowchart HP-25-7: Factorial of a Number

72 Programmable Pocket Calculators

The computation of factorials is usually required in the field of

probability when one has to calculate combinations and permutations. As

an illustration of a particular problem in combinatorial mathematics,let us

assume that six people are available to fill four positions on a committee.

How many different ways can four people be selected from these six?

This problem is generally stated mathematically as:

n!
C = —/—/—/—
nr r! (n-r)!

where

n

r

the size of the population

numberto be selected

In our particular case we wish to evaluate the above equation where

n==~6

r=4

C. = 6! 6!
0 T3664)! Ant

Schematic HP-25-7

S 1 2 3 4 5

K switch press key in steps switch press

D -| [, PRGM Eran -mn [, vl]

mode HP-25-7 mode

Ss 6 7 8 9

K 6. R/S STO 2

D 6 720. 720. 720.

Cc 6! save partial

result in

register 2

Ss 10 11 12 13

K 4 R/S STO +

D 4. 24. 24. 24.

Cc 4)

S 14 15 16 17

K 2 2 R/S STO

D 24, 2, 2. 2.

Cc divides 6! 21

in register

1 by 4!

Ss 18 19 20 21

K : 2 RCL 2

Db 2 2. 2. 15.

c divides register «Ca = 61/412!

1 by 2!

The Hewlett-Packard 25 and 25C 73

According to this schematic, 6! is calculated by keying in 6 and
pressing the [R/S] key. The result of 720 is then stored in register 2, care
being taken not to use any of the registers employed by the program.
Factorial 4 is then calculated and is divided into the contents of register 2.
The result is subsequently divided by 2! to obtain the final solution. Thus

we see that there are 15 ways to form a committee of four from six possible
candidates.

The Newton-Raphson Iteration Technique

We are about to describe a scheme for computing the square root of a

number. Why resort to any such scheme, one might ask, if the HP-25 has a

preprogrammed square root function? Indeed, this is a valid question, but

the fact of the matter is that this technique is extremely powerful and has

applications in many othersituations.

The technique is named after Sir Isaac Newton and a British

contemporary of his named Raphson. In order to find the square root of a

number by means of the Newton-Raphson scheme, one makes an arbitrary

initial guess at the square root. This initial guess is repeatedly refined by the

scheme until the square root is obtained.

New guess = (1/2) [(original number/old guess) + old guess]

Each time a new guess is calculated from the formula,it is substituted

into the formula as the old guess for the next iteration. This process is

repeated until the new guess approximates the square root to the desired

accuracy.

To take a typical example, let us suppose we want to find the square

root of 123. Let our first guess be 1, even though this is not a particularly

intelligent guess. Despite this fact, it will shortly be seen that we can

approximate the square root of 123 to any degree of accuracy we desire.

New guess = (1/2) [(original number/old guess) + old guess]

New guess = (1/2) [(123/1) + 1] = 62

New guess = (1/2) [(123/62) + 62] = 31.99193549

New guess = (1/2) [(123/31.99193549) + 31.99193549] = 17.91832721

New guess = (1/2) [(123/17.91832721) + 17.91832721] = 12.39140364

New guess = (1/2) [(123/12.39140364) + 12.39140364] = 11.15881995

New guess = (1/2) [(123/11.15881995) + 11.15881995] = 11.09074543

etc.

The question arises: When do we stop this process? We are obviously

very close to the true square root. There are manycriteria by which one may

decide to stop the process. The one which we have chosen in the program

74 Programmable Pocket Calculators

that follows is to stop iterating when the absolute difference between the

square of the new guess and the original numberis less than say, 0.00001, a

number usually referred to as epsilon (€). Mathematically speaking,

processing is stopped when:

(New guess)? - original number| <e€

The strategy of the program is outlined in the flowchart shown in Fig.

5-6.

Program HP-25-8: The Newton-Raphson Technique

Step Number Instruction Comments

01 fFIX9 Sets the display to 9 decimal places

02 STO 2 Stores the original keyed in numberin

register 2

03 1
04 STO 3 Initializes old guess to 1

05 .

06 0

07 0

08 0 Sets e = 0.00001

09 0

10

11 STO 1

12 RCL 2 Recalls original numberto display

13 RCL 3 Recalls old guess to display, pushing original

number into y register

14 + original number/old guess

15 RCL 3 Old guess

16 + (original number/old guess) + old guess

17 2

18 + New guess = (1/2) [loriginal number/old guess)

+ old guess]

19 STO 3 Stores new guess as old guess for next iteration

20 gx’ (new guess)’

21 RCL 2 Original number

22 - (new guess)’ - original number

23 g ABS I{new guess)’ - original number!

24 RCL 1 €

25 fx<y Is |{new guess)’ - original number| > €?

26 GTO 12 Yes; reiterate

27 RCL 3 No; then recall final answer to display

28 R/S And halt to display result

29 GTO 02 Process next number

o
O
0
0
x
n

The Hewlett-Packard 25 and 25C

START

SET OLD GUESS
TO 1,
€ T0 0.00001

KEY IN NUMBER
WHOSE SQUARE
ROOT WE WISH
TO OBTAIN

 NO

CALCULATE

_ 1[ON.N.G. = 3S +0.6)

YES

DISPLAY NEW
GUESS AS THE
SQUARE ROOT

HALT

0.6.

N.G.

0.N.

OLD GUESS
NEW GUESS
ORIGINAL NUMBER

I

Fig. 5-6 Flowchart HP-25-8: The Newton-Raphson Technique

Schematic HP-25-8

1

switch

-= I

mode

7

R/S

1.414215687

v2

2

25

25.

3 4 5

press key in steps switch press

PRGM of Program to RUN f PRGM

HP-25-8 mode

9 10 11

R/S 123 R/S

5.000000000 123. 11.09053651

V25 Vv 123

75

N

76

START

KEY IN n, THE
INTEGER WHOSE
FACTORS WE WISH
TO OBTAIN

SAVE VALUE
OF n FOR
RECALL AT END
OF PROGRAM

SET TRIAL
FACTOR =2

Programmable Pocket Calculators

FACTOR

 LL]

EVENLY
DIVISIBLE
BY TRIAL
FACTOR

Fig. 5-7 Flowchart HP-25-9: Prime Factors

PAUSE TO
DISPLAY
FACTOR

SET NEW

n

"= TRIAL FACTOR

YES

DISPLAY
ORIGINAL
VALUE OF n

HALT

NO

The Hewlett-Packard 25 and 25C 77

Prime Factors

The prime factors of a positive integer are defined to be that sequence
of prime numbers which, when multiplied together, equals the original
number. For example, the prime factors of 10 are 2 and Ssince2 X 5 = 10,
and both 2 and 5 are prime numbers.

Program HP-25-9 permits the user to key in any positive integer
greater than 1. The number keyed in is tested to see whether the number 2 is
one of its factors. If it is, division by two takes place and the process is
repeated again. If, on the other hand, the number is not exactly divisible by
two,a test is made to see whether three (2 plus 1) is a factor. This process is
continued until all the prime factors are found. If any are found, they are
displayed for a period of one second. When either no factors or no further
factors are found, the original number is returned to the display. This is a
particularly good strategy because it permits the user to rerun the program

with the same original number by simply pressing [R/S].

Program HP-25-9: Prime Factors
Step Number Instruction Comments

01 fFIXO0

02 STO 2 Saves value of n for recall at end of program

03 STOO

04 2
Sets trial factor to 2

05 STO 1

06 RCL O Recalls current value of n to display

07 RCL 1 Recalls current value of trial factor to display,

pushing value of n into y register

08 + Divides n by trial factor

09 ENTER? Copies quotient into y register

10 g FRAC

1 gx=0 Is n evenly divisible by trial factor?

12 GTO 16 Yes; go to 16

13

14 STO +1 No; add 1 to trial factor and try division again

15 GTO 06

16 RCL 1
Pauses to display factor

17 f PAUSE

18 Ri Rolls down the stack, placing quotient from
19 RY zZ register into display

20 STOO Stores quotient as new value for n

21
Are we done?

22 fx+y

23 GTO 06 No; then continue processing at step 6

24 RCL 2 Yes; then recall original value of n to display
and stop program

78 Programmable Pocket Calculators

The strategy outlined in Fig. 5-7 (see p. 76) suffers from a serious

deficiency in design. Although the strategy employed in solving this

problem is much simpler to program,it results in a much longer execution

time; depending upon the situation, this may be a fair trade-off.

Nevertheless, one of the majorcriticisms that may be levied at this strategy

is the fact that although any even number greater than 2 cannot be a prime

factor, the program tests for them anyway. Itis left to the reader to devise

his own scheme for improving Program HP-25-9.

Schematic HP-25-9

S 1 2 3 4 5

K switch I press J key in steps switch [press J

D ©ro f PRGM Eon| © won f PRGM

mode HP-25-9 mode

S 6 7 8 9 170

K 100 R/S

D 100 NE CTT rs mF7s

Cc Istprime sndprime 3rdprime 4thprime

factor factor factor factor

S 11 12 13

K a1 R/S ...etc.

D 100. 41. 41.

Cc original 41 is

number prime

Pythagorean Triplets

Probably the most famous theorem learned in geometry is the

Pythagorean theorem. It states that, given any right triangle, the square of

the length of the hypotenuse is equal to the sum of the squares ofthe lengths

of the other two sides (see Fig. 5-8). Stated mathematically,

Fig. 5-8 a

ct=a+b’

Most of us will remember the familiar triplet 3, 4, and 5, which are the

sides of a right triangle since

51=3 + 4

The Hewlett-Packard 25 and 25C 79

The question arises: Given any integer, representing one of the legs of
a right triangle,is it possible to find two integers which, together with the
first, form a Pythagorean triplet? The answer to this question is in the
affirmative. If the given leg is an odd integer, the other leg and the

hypotenuse can be computed by setting that integer to 2n + 1 and solving

for n. Once n has been found, the otherleg is calculated by evaluating the

expression 2n? + 2n, while the hypotenuse is given by this last number with

one added to it. For example,let us say the leg of a triangle is of length §.

2n+1=35

n=2

with n equal to 2,

2n?2 + 2n = 12

while

2n’+2n+1=13

Thus we find that 5, 12, and 13 form a Pythagoreantriplet.

But what if the leg of the triangle is an even integer? Forthis case that

numberis set equal to 4n from which the value of n is calculated. This value

of n is then substituted into the expression 4n? - 1 to give the other leg and

into 4n? + 1 for the hypotenuse.

For example,if one leg is equalto 8, we solve the linear equation:

4n = 8

n=2

The expressions 4n? - 1 and 4n? + 1 are then evaluated for n = 2, and

thus we find that 8, 15, and 17 represent a Pythagorean triplet.

A flowchart illustrating the strategy employed by this program is

shown in Fig. 5-9.

Program HP-25-10: Pythagorean Triplets

Step Number Instruction Comments

01 fFIXO0

02 STO 1 Save value of keyed in leg

03 2

04 + Is this value even?

05 g FRAC (Is it evenly divisible by 27?)

06 gx=0

07 GTO 23 Yes; then go to 23

08 RCL 1 No; solve for n in expression, leg = 2n + 1

09 1

10 - 2n=leg—1

80 Programmable Pocket Calculators

Program HP-25-10 (cont’d)

Step Number Instruction Comments

1 ENTER? Save value of 2n in stack

12 ENTER?

13 2

14 + n= (leg—1)/2

15 g x? n?

16 2

17 X 2n?

18 + 2n% + 2n

19 f PAUSE Pauses to display value of otherleg

20 1

21 + Hypotenuse = 2n? + 2n + 1

22 GTO 00 Transfers control to location 00 to halt

program and display value of hypotenuse

23 RCL 1 Leg is even solve for n in expression,

leg = 4n

24 4

25 + n = leg/4

26 gx? n?

27

28 4n?

29

30 — 4n* —1

31 f PAUSE Pauses to display value of other leg

32 2

33 + Hypotenuse = 4n* + 1 = (4n? —1) +2

Schematic HP-25-10
Ss 1 2 3 4 5

K switch I press key in steps switch I press J

D to PRGM f PRGM of Program to RUN f PRGM

mode HP-25-10 mode

Ss 6 7 8 9 10

K 3 R/S 5 R/S

os [Cx3C]

0

eo [Dl
Cc known other hypotenuse known other

leg leg leg leg

Ss 11 12 13 14

Ke, 8 _RS_
op [Zi-1 os [Cis] [_3_]
Cc hypotenuse known other hypotenuse

leg leg

The Hewlett-Packard 25 and 25C 81

(START)

KEY IN
VALUE OF
KNOWN LEG

NO YES

CALCULATE CALCULATE
LEG —1 LEG

n= n="g

CALCULATE CALCULATE
OTHER OTHER
LEG=2n2 + 2n LEG = 4n2 —1

PAUSE TO PAUSE TO
DISPLAY DISPLAY
RESULT RESULT

CALCULATE CALCULATE
HYPOTENUSE HYPOTENUSE
=2n%+2n+1 = 4n? +1

HALT

Fig. 5-9 Flowchart HP-25-10: Pythagorean Triplets

Debugging and Editing Programs on the

HP-25 and HP-25C

What a Utopian world it would be if after once having written a
program it were not necessary to modify it or to debug it. The HP-25

provides the programmer with some effective debugging tools.

Once a program has been keyed into the memory of the HP-25, the
program should be executed using data whose answers are already known.

If the answers do not correspond, the program is in need of debugging.

82 Programmable Pocket Calculators

The first question that should be asked is: ‘‘Was the program keyed in

correctly?”’ The program may be checked visually by first either keying in

GTO 00 or pressing [f] [PRGM] in RUN mode and then switching to

PRGM mode.
The program may then be examined step-by-step from location 00 by

use of the single step key labeled [SST]. Each time this key is pressed, the

next location number in sequence, together with the code of the instruction

it contains, is displayed. In this manner the entire program may be

examined for accuracy. One may examine the previous memory location by

pressing the back step key labeled [BST].

If, when stepping through the program, an incorrect instruction is

detected it may be corrected by backstepping to the location previous to that

containing the wrong instruction. This will enable the keying in of the

correct instruction, erasing the faulty instruction.

Assume that the following program has been keyed into the HP-25’s

memory. Its purpose is to simply calculate the circumference of a circle

given its radius.

Program HP-25-11: Circumference of a Circle

Step Number Instruction Comments

01 ENTER? Copies value of r keyed in into the y register

02 2

03 X 2r

04 gm

05 X 2nr

In order to check out the program, an obvious selection to make for

the radius is the value 1. Keying in this value and running the program, we

find to our consternation that we get a value of 1.57 in the display, whereas

we expected the value of 2m (6.28). Perhaps we have keyed in the program

incorrectly. Let’s check it.

With the machinestill in RUN mode,

. Press [f] [PRGM].

. Switch to PRGM mode (00 will appear in the display).

. Press [SST] to single-step the program.

. The display readsH
W

—
-

01 31

This corresponds to the ENTER? instruction in step 1.

5. Press [SST] again to display the contents of location 2.

02 02

This checks out.

The Hewlett-Packard 25 and 25C 83

6. Press [SST] again. Display now reads

03 71

The key that corresponds to the code 71 is the [+] key rather than the

multiplication key as intended. Alas, we have found a bug!

7. Press [BST] to get in position for entering correct instruction. Display

now reads

02 02

8. Press the [xX] key. The display now reads

03 61

an indication that the faulty instruction has been replaced by the

correct instruction.

9. Switch to RUN mode and try the test data again. This time the correct

answeris obtained. It seems the program is now debugged.

In general, it is a good practice to check out the whole of the program

even beyond the point where a bug has been detected. For further ideas, the

reader is respectfully referred to the techniques suggested in Chap. 1.

CHAPTER SIX

THE HP-35
PROGRAMMABLE

SCIENTIFIC POCKET
CALCULATOR

In December 1974, a year after Hewlett-Packard released their 100-

step HP-65 programmable calculator,it introduced—almost as an encore—

the 49-step programmable HP-55 at a retail price of $395.

The HP-55 differs functionally in several important respects from the

HP-65, whichit greatly resemblesin external appearance. It does not have

the ability to record a keyed-in program onto a magnetic card, so that once

a program is resident in the HP-55’s memory, switching the machine off

causes the program to be lost. However,if the keystrokes are recorded on

paper, for example, they can then be rekeyed inon a subsequent occasion.

The HP-55 has no fewer than 86 keyboard commands, more than on

most other scientific calculators. Included in its functions is a most useful

factorial key. Unlike the 9 memory registers ofits ‘‘big brother,” the HP-

65, the HP-55 has 20 addressable data storage registers that greatly alleviate

the need to write down intermediate results. With 10 of these registers,

register arithmetic is possible. Another important and unique feature of the

HP-55 is that it has a built-in timer, enabling the user to actually time up to

10 laboratory experiments, or tests.

Statistical and trigonometric and mathematical functions are present,

two conditional branch instructions, an unconditional branch instruction,

and two-way conversions between U.S. and metric units of measurement.

Many of the keys of the HP-55 are multi-purpose. The store key

[STO], for example, has printed above it X (in yellow) and s (in blue). This

key therefore is used for storing data into a register, for calculating the

mean and the standard deviation. If the storing function is required, the key

is pressed followed by a digit 1 through 20. If, however,it is the mean that is

needed, the pressing of the key must be preceded by the yellow shift key

labeled [f]. If it is the standard deviation that is required, the blue shift key

labeled [g] must be pressed first. This system is used for all of the multi-

functional keys on the HP-55.

84

HP-55 Programmable Scientific Pocket Calculator 85

The HP-55 hasa rechargeable battery, which when fully charged gives

about 5 hours of continuous operation. The adapter/recharger that is

supplied free with the calculator can be plugged into an ac wall outlet
using either a 115 or 230 volt supply. The calculator weighs 9 ounces (255

grams) and measures 5.8 by 3.2 inches by 0.7 to 1.3 inches. In metric

measurementthis is 14.7 by 8.1 centimeters by 1.8 to 3.3 centimeters.

A picture of the HP-55 is shown in Fig. 6-1.

Manual Operation of the HP-55

With the top right-hand switch in RUN mode, the HP-55 can be used

manually. In order to familiarize the reader with the wide variety of

functions available, we shall solve some elementary mathematical problems

in which most of the available functions will be used.

==LLT:EET

=

PRGM
ore [JIN o~ ver [JID mov

tan"sin”! cos”

=] (=J (= (=) G3
Ine* log 10” SCi

5) © (0 2 6
Xs LAST X xsy x=y

LD) [o) Eo) b=) GO
H.MS#

DEG instmm ft==m

(J (=)
RAD Ibm=xkg Ibf==N

GRD H=tH.MS D=*R

J [2d
R=P

=H J
Fig. 6-1 HP-55 (Courtesy Hewlett-Packard Company)

86 Programmable Pocket Calculators

Example 1: Evaluate [(1.23 Xx 3.21)/12.3]?

S 1 2 3 4 5 6 7 8

K 1.23 ENTER? 3.21 X 12.3 + g x?

D 1.23 1.23 3.21 3.95 12.3 0.32 0.32 0.10

Example 2: Evaluate V [In (3.45) + e27]/[cos (12.38°) - sin (10.5°)]

S 1 2 3 4 5 6
K 3.45 f In 2.7 g eX
D 3.45 3.45 1.24 2.7 2.7 14.88

s 7 8 9 10 11 12
K + 12.38 f cos 105 f
D 16.12 12.38 12.38 098 105 105

Ss 13 14 15 16 17
K sin - + f Vx

D 0.18 0.79 20.29 20.29 450

Example 3: Evaluate sin(54/6!) as an angle expressed in radians.

s 1 2 3 4 5 6
K 5 ENTER? 4 vx 6 f
D 5. 5.00 4. 625.00 6. 6.

s 7 8 9 10 11 12
K n! + f RAD g sin”

D 720.00 0.87 0.87 0.87 0.87 1.05

In common with the practice of all the Hewlett-Packard calculators,

the HP-55 ‘‘wakes up’’ in degree mode—thatis, all trigonometric functions

treat angles as expressed in degrees.

In Example 3, the problem states that the evaluation is to be carried

out with the resulting angle expressed in radians rather than degrees. It is

necessary for the calculator user to manually change the mode from degrees

to radians. This is done by means of the [RAD] key, which is the upper case

function of the plus key. Since it is printed in yellow, it follows that the [f]

prefix key must be pressed first. This is done in steps 9 and 10, from which

point the calculator remains in radian mode until either the mode is sub-

sequently changed or the calculator is switched off. In order to obtain the

arc sine of the parenthesized expression, the [g] prefix key has to be pressed

before the sin! key (upper case y*). It will be noticed that the -1 part of the

HP-55 Programmable Scientific Pocket Calculator 87

sin” label is printed in blue as an indication that the correct prefix is the blue
[g] key.

Example 4: Evaluate antilog (6.98)/(-58.67 x 107) expressing the result to

five rounded decimal places.

s 1 2 3 4 5
K 6.98 g 10% 58.67 CHS
D 6.98 6.98 9549925.87 58.67 —58.67

Ss 6 7 8 9 10
K EEX 7 + FIX 5
D —58.67 00 —58.67 07 —0.02 —0.02 —0.01628

The antilog of a number x is ten raised to that power x (10%). Since the

problem uses a negative number (-58.67 X 107) the change sign key ([CHS])

is pressed after the mantissa portion is keyed in. To enter the exponent of

this number that is expressed in scientific notation, the [EEX] (enter ex-

ponent) key must be pressed before keying in the exponent (7).

The problem states that the result is to be expressed to five decimal

places. To accomplish this the key marked [FIX] is pressed followed by the

digit 5, which specifies the number of rounded decimal places required. In

general, pressing the [FIX] key followed by a digit key from 0 to 9 has the

effect of automatically rounding any displayed numbers on the HP-55 to

the specified number of decimal digits (in this case 5). This setting remains

in effect until either the machine is switched off or it is subsequently

changed. It will be noticed that whenever the calculatoris switched on, the

display defaultsto a setting of two decimal places rounded. Furthermore, it

is pointed out that regardless of the number of decimal places displayed, the

full accuracy of the number is nevertheless retained internally in the

calculator.

Example 5: Evaluate 1/n°

s 1 2 3 4 5
K f n 5 y* 1/x
D 0.00 3.14 5. 30602 3.2677636-03

Pressing the key labeled [n], preceded by its appropriate [f] prefix key,

has the effect of placing the approximation for nm of 3.14 into the display

(3.141592654 if [FIX] 9 is pressed). In step S the reciprocal is computed and

the answer 3.2677636 xX 107is displayed. Since the answer is too small to be

displayed in the normal FIX 2 setting of the machine, the answer is

automatically converted to scientific notation.

88 Programmable Pocket Calculators

Example 6: Evaluate (15.6789 x 107?) + (13.728 x 107'?)/(63.915 Xx 10°)

and express the result to 3 rounded decimal places.

Ss 1 2 3 4 5

K 15.6789 EEX CHS 12 ENTER?

D 15.6789 15.6789 00 15.6789-00 15.6789-12 1.56678900-11

S 6 7 8 9 10

K 13.728 EEX CHS 12 +

D 13.728 13.728 00 13.728-00 13.728-12 2.9406900-11

Ss 11 12 13 14 15

K 63.915 EEX 3 + f

D 63.915 63.915 00 63.915 03 4.6009387-16 4.6009387-16

S 16 17

K SCI 3

D 4.6009387-16 4601-16

The Data Storage Registers

Besides the last x register, and the x, y, z, and t stack registers, the

HP-55 has 20 data storage registers referred to as RO through R9 and R.0

through R.9. To store the displayed number 3 in register R7 the keys

[STO]7

are pressed. This number may subsequently be recalled by pressing:

[RCL]7

To store the displayed number 4 into register R.9, for example, the

key sequence

[STO][.]19

is pressed. Later on the value stored in register R.9 may be recalled by

pressing:

[RCL] [.]19

Whenever a number is stored in a particular register, it replaces

whatever number was residing there previously and leaves the contents of

the display unchanged. Conversely, whenever a numberis recalled from a

particular register, the register contents are copied into the display, pushing

the stack up.

Registers RO through R9 and the stack may be cleared by pressing

[f] [CLR]

HP-55 Programmable Scientific Pocket Calculator 89

while to clear registers R.0 through R.9 and the stack the sequence

[e] [CL.R]

is pressed.

The Digital Timer

Although most electronic calculators possess a timer within their

circuitry, the HP-55 is the only advanced calculator that has added a tiny

quartz crystal to provide an accurate time base. As a result, this machine

features an amazing precision timer with a range of 100 hours.

The Owner’s Handbook that comes free with the calculator

introduces this timing facility in a most intriguing way. Before spelling out

in detail the list of other features that the calculator offers, the manual

invites the reader to switch the unit on and to set the switch in the upper

right-hand corner to TIMER. The timeris started by pressing the key [R/S].

Once the timer has been activated, the reader is encouraged to learn about

the joys of using the HP-55 and is told to again press [R/S] when the

complete passage is read. If this is done the reader, without being aware of

it, has calculated his reading speed, which is displayed after pressing some

specified arithmetic keys.

Whereas the calculator displays 0.00 when switched on in RUN mode,

in TIMER mode it displays what, at first, seems to be a strange format:

0.00.00 00

This is the format for displaying time measured in hours, minutes, seconds,

and hundredths of a second. Any time between 00 and 100 hours may be

clocked. While the timer is ‘‘ticking’’ the hundredths-of-a-second digits

increment at breathtaking speed.

If during a practical laboratory experiment, for example, it is

necessary to time the period for say three events to reach their conclusion,

the exact times may be recorded on the HP-55 merely by pressing any three

different number keys 0 through 9. This has the effect of storing the elapsed

time in the corresponding data storage registers 0 through 9 without having

to press the [STO] key. The calculator is engineered this way to facilitate the

clocking of the time as precisely as is humanly possible. The HP-55 behaves

very much like a stopwatch in this respect, with the difference being that up

to 10 simultaneously occurring events may be timed.

One does not have to necessarily commence timing from 0.00.00 00.

Should it be necessary to start from some predetermined time, this starting

time should be keyed into the display with the calculator switched to RUN

mode, according to the following format:

HH.MMSShh

90 Programmable Pocket Calculators

Thus, for example, to key in 12 hours, 34 minutes, 56.12 seconds one

keys in:

12.345612

Switching back to TIMER mode this becomes:

12.34.56 12

The timer may then be activated from this starting point in the usual

fashion by pressing the [R/S] key. It is worth noting that once the timer has

been activated, switching to either RUN mode or PRGM mode will not

affect the timer. If the [R/S] key is pressed when the timer is running in

RUN mode, the timer will stop and the time currently in the display will

automatically be converted to the format described above.

It will be noticed that when switching from TIMER to RUN mode the

display will automatically be set to six decimal places. Advantage may be

taken of this HH.MMSShh format in RUN mode for adding or subtracting

two different times, or for that matter, angles expressed in degrees,

minutes, seconds, and hundredths of a second. To add two such values the

[H.MS +1] key is pressed prefixed by [f]. In the examples that follow,it is

assumed that the display has been preset to six decimal places.

Example 7: Add 1 hour, 2 minutes, 3.45 seconds to 43 hours, 39 minutes,

12.53 seconds.

S 1 2 3 4 5 6

K switch 1.020345 ENTER?® 43.391253 f H.MS+

D to RUN 1.020345 1.020345 43.391253 43.391253 44411598

mode

The sum is calculated to be 44 hours, 41 minutes, 15.98 seconds.

Example 8: Subtract 29°13'58” from 56°12’ 52.4"

S 1 2 3 4 5 6

K switch 56.12524 ENTER?® 29.1358 g H.MS—

D [to RUN 56.12524 56.12524 29.1358 29.1358 26.585440

mode

Thus we find that 56°12'52.4" -29°13'58" = 26°58'54.4"

Frequently, time is expressed in hours and fractions of an hour. On

the HP-55 one may readily convert such readings to the equivalent

representation in hours, minutes, and seconds by using the key marked
[>H.MS], prefixed by the blue shift key [g]. Conversely, time expressed in
hours, minutes, and seconds may be converted to its decimal equivalent by
means of the [H<] key, preceded by the gold shift key [f]. Two simple
illustrations of this follow.

HP-55 Programmable Scientific Pocket Calculator 91

Example 9: Convert 5.72 hours to its equivalent representation in hours,

minutes, and seconds.

S 1 2 3

K 5.72 g -HMS

D 5.72 5.72 5.431200

It is clear from the above that 5.72 hours is equivalent to 5 hours, 43

minutes, 12 seconds.

Example 10: Convert 15 hours, 27 minutes to its equivalent decimal

representation.

S 1 2 3

K 15.27 f He
D 15.27 15.27 15.450000

Thus we find that 15 hours, 27 minutesis equivalent to 15.45 hours.

Statistics

The ‘‘key’’ to the range of statistics available at the press of the

button on the HP-55 is the [+] key. It operates on numbers in both the x

register and the y register automatically. The number of entries keyed in —

that is, the last value of n — is stored in register R.0. Some very useful totals

are accumulated in registers R.1 through R.5, according to the following

list:

Register Data Description

R.O n Number of entries

R.1 ZX Summation of x values

R.2 zx? Summation of x? values

R.3 zy Summation of y values

R.4 Ty? Summation of y? values

R.5 Zxy Summation of xy values

From the aboveit is clear that

1. Itis advisable to clear registers R.0 through R.5 before accumulating.

2. Values of x and y may be handled simultaneously. If only x values are

required, clearing the y registerinitially will be sufficient.

To calculate the mean and standard deviation of both the x and y

values, each y value is keyed in and ENTERed. Then the x value is keyed in

and the key [2+] pressed. There is no limit to the number of pairs of data

that can be keyed in. Once all the data has been entered, the mean of the x’s

is found by the key sequence:

[f] [X]

92 Programmable Pocket Calculators

To find the mean of the y’s one mustfirst bring it from the y register where

it is stored to the x register. The [x2 y] key will exchange the contents of

these two registers and will display the mean of the y values.

In a similar fashion, the standard deviation of the x valuesis displayed

by pressing

[g] [s]

and since the standard deviation of the y values is in the y register, the x

interchange y key [x2 y] is pressed to display the result.

Linear Regression

In business those with managerial responsibilities often have the task
of having to estimate future trends such as production volume, costs,
personnel, and so on. One of the statistical tools that is available to assist
one in such predictions is that oflinear regression, sometimes referred to as
trend analysis.

After keying in any two or more data points using the accumulation
key [Z+], the linear regression may be found directly (via the least-squares
method) by pressing the key labeled [L.R.]. Furthermore, other data points
on the curve may be calculated by using the key marked [¥1.

English/Metric Conversion

Most of the world operates on the metric system. The United Statesis
one of the few countries that still functions on the English system of
measurement. By all accounts this situation will not continue indefinitely
because the United States is committed to convert some day to the metric
system. We see evidence of this trend everyday, even in the supermarket
where groceries are packaged and their weights stated in both the English
and the metric measures.

With an eye to this inevitable changeover, the HP-55 comes replete
with several conversions, namely:

Key Number English Metric

3 Btu 2 J

4 Ibm 2 Kg

5 Ibf 2 Newtons

6 °F 2 °c
7 in 2 mm

8 ft 2 m

9 gal 2 |

These conversions are located on the keys [3] through [9]. To convert
from left to right (English to metric) the prefix key [g] is pressed, and to

HP-55 Programmable Scientific Pocket Calculator 93

convert from right to left (metric to English) the prefix key [f] must be used.
Here are some simple conversion examples:

1. Convert 1,250 Btu’s to joules.

1250 [g] [Btu—J] : 1,318,819.82 joules

2. Convert a mass of 509 kilograms to pounds.

509 [f] [Ibm<«kg] : 1,122.15 pounds

3. Convert a force of 123.45 Newtons to pounds.

123.45 [f] [Ibf<N] : 27.75 pounds

4. Convert 36 inches to millimeters.

36 [g] [in—mm] : 914.40 millimeters

5. Convert 98.4°F to its equivalent Celsius temperature (centigrade).

98.4 [g] [°F—>°C]:36.89°C

6. Convert 4,023 metersto feet.

4023 [f] [ft<m] : 13,198.82 feet

7. Convert 26 liters to U.S. gallons.

26 [f] [gal <1] : 6.87 gallons

Programming the HP-55

Using a programmable pocket calculator without exploiting its

programmability is like living in poverty while having a bank account

containing millions of dollars. Even though the HP-55 may be used

effectively in the nonprogrammable mode, an appreciation of its

uniqueness and power cannot be realized until it is used in its programming

mode. Without further ado then we shall go ahead and write our first

program.

The Radius of a Circle Problem

The formula relating the area of a circle to its radius is familiar to

most people from their high school days. Just in case you have forgotten,

the formula is

Area = nr?

where

r = the radius of the circle

n= the constant piss 3.14159265

94 Programmable Pocket Calculators

It is implicit in this relationship that if one knows the area of a circle, one
can calculate the radiussince, by simple algebra,

r =+vVArea/n

The problem we propose to solve now is to calculate r, given the area
of a circle.

To calculate the value of r for a single value of the area, say, 58.97
square units, we would, of course, do this manually in the following
manner.

Example 11: Evaluate r =+/Area/n

s 1 2 3 4 5 6
K 58.97 f n + f Vx
D 58.97 58.97 3.14 18.77 18.77 4.33

The reader might, with good reason, question why the area of 58.97 is
not ENTERed before pressing the [f] [n] keys. The reason forthis is that
each time the [nt] key is pressed the stack is automatically raised, thereby
obviating the need to ENTER the number 58.97.

Referring again to the schematic in Example 11, it is clear that on the
assumption that the value of the area is already in the display, steps 2
through 6 would haveto be repeated in exactly the same order for every new
value of the area. These steps, therefore, will constitute the body of the
program that will be retained inside the calculator for as long as is
necessary.

Program HP-55-1: Computing the Radius of a Circle
Given Its Area

Instruction Comments

fn Enters approximation for pi into display,
lifting the stack

Area/n

f Vx V Area/n

These steps are now keyed into the calculator with the top right-hand
switch in the middle position, PRGM, which stands for programming
mode.

After keying in Program HP-55-1 (see step 3 in Schematic HP-55-1)
the calculator is switched to RUN mode preparatory to running the
program. In orderto execute the program from its beginning,it is necessary
to press [GTO] [0] [0]. Afterthis is donethe first data item may be keyed in.
The program is then executed by pressing the Run/Stop key marked [R/S].
Almost immediately after this key is pressed, the first solution of 4.33 is

HP-55 Programmable Scientific Pocket Calculator 95

automatically calculated by the program and displayed. Subsequent

solutions may be calculated simply by keying in the value of the area and
pressing [R/S].

It will be noticed that it is not necessary to reset the program to its

beginning for these subsequent cases. You might indeed wonder why thisis

so. The answerto this question lies in the clever engineering with which the

HP-55 is constructed.

Schematic HP-55-1

S 1 2 3 4

K switch slide key in steps slide

D Los os) wenn Eey renrmwmun|

switch to PRGM HP-55-1 switch to RUN

S 5 6 7 8 9

K GTO 0 0 58.97 R/S

D 0.00 0.00 0.00 58.97 4.33

NT

c resets program pointer 1st area Ist

to beginning of program value radius

S 10 11 12 13

K 100 R/S 314 R/S ...etc,

D 100. 5.64 314, 10.00

Cc 2nd area 2nd 3rd area 3rd radius

value radius value

Program Memory

As you will recall, the HP-55 has 49 program memory steps, which are

referred to as 01 through 49. Actually, it has another step known as location

00. However, this location is not available to the programmer for storing

instructions. It actually contains a permanent halt instruction. Directly

related to this feature is the fact that when the HP-55 is switched on, each of

the locations 01-49 is automatically filled with a GTO 00 instruction. When

the program instructions are keyed in, they overwrite these GTO 00

instructions. The location following the last keyed in instruction will

therefore be, by default, GTO 00 (as will the remaining locations through

49). This is particularly convenient from a programming point of view since

advantage may be taken of this GTO 00 instruction. It serves the dual

purpose of automatically branching to location 00 to halt execution of the

program and secondly to automatically recycle the program to its beginning

for subsequent execution of the program using different data.

It will be realized by the reader that within Program HP-55-1, which

has just been described, we have actually set up a loop, a feature which is

96 Programmable Pocket Calculators

intrinsic to all computer programming. In this program the loop is effected

by means of the GTO instruction.

Permutations Problem

Students of probability will recall the frequency with which they had

to calculate permutations. For those without any experience in this

interesting subject, suffice it to say that given n objects, the number of ways

these may be arranged r at a time is obtained by the formula

n!

Por = (n-r)!

In order to explain what is implied by this formula, we can take a

simple example. Suppose we have six index cards on each of which is written

one of the first six letters of the alphabet. Now our task is to select from

these six cards, say, any two cards. Here are the various possibilities:

AB AC AD AE AF
BA BC BD BE BF
CA CB CD CE CF
DA DB DC DE DF
EA EB EC ED EF
FA FB FC FD FE

You will notice that whenever dealing with permutations the order is

important so that a selection of AB is different from a selection of BA. If

you count up the above selections, you will find that it comes to exactly 30.

This figure is arrived at mathematically by substituting 6 for the value of n

and 2 for the value of r in the formula:

n!

Poe = (n-r)!

wheren = 6

r=2

6!

wT GD
_6XSXAXEXBEXL
- AXEIX2x1

= 6X5

30

HP-55 Programmable Scientific Pocket Calculator 97

Example 12

S 1 2 3 4 5

K 6 f x! f LAST x

D 6. 6. 720.00 720.00 6.00

Ss 6 7 8 9 10
K 2 — f x! +

D 2. 4.00 4.00 24.00 30.00

Advantage is taken of the LAST x register in which the value of n is

still stored. Using this feature obviates the need to key in the value of n a

second time for the computation of (n-r)!.

As you are probably aware, the steps indicated in the schematic in

Example 12 form the essence of the program by which one can calculate the

number of permutations, for any value of n and r, simply by keying in the

value of n (maximum value of n on the HP-55 is 69) and the value of r of

one’s choosing.

Obviously the programmer must make provision for the keying in of

these two data items at the appropriate time. The value of n may be keyed in

at the beginning of each problem, which was done in a similar fashion with

the various area values of Program HP-55-1. Advantage may be taken of

the [R/S] key which, when used as an instruction in a program, stops its

execution, permitting both for the reading of the display and for the keying

in of any additional data as appropriate. Execution of the program may

then by resumed by pressing the [R/S] key in RUN mode.

Here,then,is a program to compute P,

Program HP-55-2: Permutation
Instruction Comments

f x! Calculates nl!

f LAST x Recalls value of n from LAST x register to

display, automatically lifting the stack

R/S Halts program execution, permitting value

of r to be keyed in

— n—r

f x! {n—r)!

+ Pos =nl/{n—r)

Just in case the reader has observed that there is no instruction

following the division to loop back to the beginning of the program, he is

respectfully reminded that,if the calculator was switched on prior to keying

in this program, by default, a GTO 00 would be the next instruction.

98

When keying in Program HP-55-2, the reader’s attention is drawn to

the display which, when the calculatoris switched to program mode, shows

the program line number and the keycode corresponding to each

instruction. It will be noticed that, in general, each separate keystroke

Programmable Pocket Calculators

occupies its own location in memory.

Here is what the display shows as each program instruction is keyed

in.

Display

Keystroke Line No. Keycode

Switch to PRGM mode 00. 00

f 01. 31

x! 02. 43

f 03. 31

LAST x 04. 34

R/S 05. 84

— 06. 51

f 07. 31

x! 08. 43

+ 09. 81

Schematic HP-55-2

Ss 1 2 3 4 5 6 7

K switch switch to key in steps switch GTO 0 0

D on PRGM of Program to RUN 0.00 0.00 0.00

HP-55 mode HP-55-2 mode Nm
Cc reset program to

beginning

Ss 8 9 10 71 12

K 6 R/S 2 R/S 10

D 6. 6.00 2. 30.00 10.

[o n=6 R/S initiates r=2 R/S resumes program n=10

program execution. Program

execution halts showing P , = 30

Ss 13 14 15

K R/S 3 R/S ...etc,

D 10.00 3. 720.00

Cc r=3 P =720
10 3’

HP-55 Programmable Scientific Pocket Calculator 99

From the table on p. 98 it is clear that a prefix (in this case the f prefix)

occupies a separate location in the HP-55’s memory, as indeed does each of

the remaining instructions.

Confining our attention for the moment to the keycode for the [f]

prefix key, we notice thatits code is 31. Thisis actually a matrix code that
refers specifically to the [f] key. As you will readily observe,the [f] key is

located in the third row down, first key in from the left of the keyboard. In

a similar fashion, the factorial key, which has a keycode of 43, is to be

found at the intersection of the fourth row, third column. Of course, the

same keycode also indicates the enter exponent key [EEX]. Ambiguity is

avoided, however, by the prefix — if one precedes it or not. An ability to

read these keycodes and to relate them to the specific instructions of a

program can be most helpful, particularly in the editing and debugging

stages. In the remaining programsillustrating the use of the HP-55, we shall

list the keystrokes according to the way they are stored in memory.

Pearson’s Correlation Coefficient Problem

When we were discussing the manual operation of the HP-55, we saw

how easy it was to find the mean and standard deviation of one or two sets

of scores by using the [Z+], [X], and [s] keys. You may also recall that the

[+] key affects several different registers that store n, Zx, Zy, Zxy, Zx*, and

Ty. This proves to be of particular value to the statistician who would like

to calculate the correlation coefficient between two sets of scores. This

coefficient may vary in value from -1 to +1 where a correlation of -1

indicates a direct inverse correlation and a correlation of +1 a direct

correlation. A coefficient of zero indicates that, according to the data, no

correlation exists between the two variables. A formula used for the

computation of this coefficient sometimes called Pearson’s Correlation

Coefficientis:

Ly = (nZxy - 2xZy)/V[nZx? - (Ex)[nZy? - (2y)*]

Even though this formula might look somewhat intimidating at first

glance, a close scrutiny of it will reveal the fact that all of the summations

indicated are calculated automatically by the [2+] key.

By wayof recapitulation, the effect of pressing the [E+] keyis:

n is accumulated in register R.0

Tx is accumulated in register R.1

Tx?is accumulated in register R.2

Ty is accumulated in register R.3

Zy? is accumulated in register R.4
Ixy is accumulated in register R.5

100 Programmable Pocket Calculators

In view of the fact that so many accumulations are done

automatically, the amount of work left to be done by the programmer

becomes minimal.

Program HP-55-3: Pearson’s Correlation Coefficient

Location Instruction Comments

01 RCL

02 . Recalls n from R.O to display

03 0

04 RCL
Recalls =xy to display, pushing value of n

o . | from the x register into the y register

07 nTxy

08 RCL

09 . zx

10 1

11 RCL

12 . | Zy

13 3

14 X Ixy

15 — nIxy — IxIy

16 RCL

17 . n

18 0

19 RCL

20 . x?

21

22 X nx?

23 RCL

24 . | x

25 1

26 g

27 x? (zx)?

28 — nZx? — (zx)?

29 RCL

30 . n

31 0

32 RCL

33 . Ty?

34 3

35 X nXy?

HP-55 Programmable Scientific Pocket Calculator 101

Program HP-55-3 (cont’d)

Location Instruction Comments

36 RCL

37 . Ty

38 3

39 g

40 x2 (zy)

41 — ny? — (zy)?

42 X (nzx? — (£x)?] [nZy* — (Zy)*]

43 f

a4 Vx VinEx® —(zx)?] [nzy® — (Zy)?]
45 + ey = (nzxy — ZxZy)/

VinEx? — (zx)?] [nZy® — (zy)?]

This program assumes that each x, and y, is keyed in using the [Z+]

key prior to running the program. The program comes to a halt with the

value of the correlation coefficient in the display.

One of the most commonly talked about correlationsis that of height

and weight since, in general, the taller a personis the more he weighs, and

one would expect a positive and relatively high correlation between these

two variables. On a commercial level, one would expect that the sale of soda

would increase during the hot summer months and decrease in the colder

months. Regardless of the two variables that are under investigation, the

procedure adopted in keying in the corresponding data items will now be

explained.

Suppose we havethe following list of data for which we would like to

determine a correlation coefficient. Even though the number of pairs of

data should never, forstatistical reasons, be less than 30, we shall confine

ourselvesto five pairs merely to illustrate the principles involved.

Data Pair x y

1. 23 31

2. 13 12

3. 22 15

4, 29 33

5. 48 51

Assuming all of the registers are clear, which would be the case if the

machine were just switched on, the first y value, 31, is keyed in and

ENTERed. Now the corresponding x value, 23, is keyed in and the [z+] key

pressed. The same procedure is followed for keying in the remaining four

pairs of data. After each pressing of the [Z+] key—thatis, after each pair

has been keyed in—the current value of n is automatically displayed.

102 Programmable Pocket Calculators

Schematic HP-55-3

Ss 1 2 3 4 5

K switch switch key in steps switch GTO

D on to PRGM of Program to RUN 0.00

HP-55-3 mode HP-55-3 mode

S 6 7 8 9 10

K 0 0 31 ENTER? 23

D 0.00 0.00 31. 31.00 23.

Cc Y, xX,

S 11 12 13 14 15

K z+ 12 ENTER?® 13 z+

D 1.00 12. 12.00 13. 2.00

Cc 1st vy, x, 2nd

data data

pair pair

Ss 16 17 18 19 20

K 15 ENTER?® 22 z+ 33

D 15. 15.00 22. 3.00 33.

Cc Y, X, 3rd Ya,

data

pair

Ss 21 22 23 24 25

K ENTER? 29 z+ 51 ENTER?®

D 33.00 29. 4.00 51. 51.00

Cc X, 4th Ys

data

pair

S 26 27 28

K 48 z+ R/S

D 48. 5.00 94

Cc Xg correlation

coefficient

The calculated correlation of 0.94 is, of course, an extremely high
correlation. If a new set of data is to be correlated, care should be taken to
clear R.0 through R.5 before keying in the new data. The key sequence

[2] [CL.R]
automatically clears storage registers R.0 through R.9 and the stack in one
fell swoop.

HP-55 Programmable Scientific Pocket Calculator 103

The Sum of the Reciprocals Problem

Suppose we wanted to write a program to calculate the sum of the

series

S=1/D)+ (1/2) + 1/3) +... + (1/n)

for any value of n. We notice that in this sequence the successive

denominators consist of the consecutive integers 1 through n. A loop can be

set up where a counter, initially set equal to one, is incremented by one, at

which pointits reciprocalis calculated and accumulated. The loop should

be terminated after the counter has reached the value of n. When it reaches

n its reciprocal must be calculated and added to the accumulated sum.

Since the logic to this program is a little more difficult to follow than

the previous program, we are presenting a flowchart that might make for

easier understanding of the program, as shown in Fig. 6-2.

As is clear from the flowchart in Fig. 6-2, it is necessary to make a

decision based on whetherthe value of the counteris equal to n. The HP-55

provides the user with the ability for making such decisions directly in a

program. This is done by means of one of the two conditional branch

instructions located above the [GTO] key. The f x<y instructions pose the

question: Are the contents of the x register less than or equal to the contents

of the y register? Similarly, the g x = y instruction compares the contents of

the x register and the y register for equality. In either case if the result of the

test is false—that is, the specific condition is not met—then the next

location in memory immediately following the test instruction is

automatically skipped. If, on the other hand, the test condition is met—that

is, the result of the test is true—then execution proceeds in the normal

manner with the next instruction in program memory.

As an example of the ‘“less than or equal to’’ test instruction, let us

consider the following sequence of instructions:

Location Instruction

22 f

23 XxX<y

24 1/x

25 Via

104 Programmable Pocket Calculators

START

KEY IN
VALUE
OF n

SET
COUNTER =1
SU

CALCULATE
SUM =
J

SUM + COUNTER

 YES

~~ DOES
COUNTER =n

 ADD 1
TO COUNTER

DISPLAY
SUM

Fig. 6-2 Flowchart HP-55-4; (HALT)
Sum of the Reciprocals

Let us assume that the x register contains the value 5.0 and the y
register contains the value 1.6. Upon execution of the sequence of in-
structions (shown in the table on p. 103), the conditional test instruction
f x <y is first encountered. Since the test proves false—that is, the contents
of the x register is not less than or equal to that of the y register, the in-

HP-55 Programmable Scientific Pocket Calculator 105

struction in location 24 that takes the reciprocal of the value in the display is

automatically skipped, and execution resumes at location 25, where (1.6)°is

calculated.

For those situations where an unconditional transferis required from

one point in a program to another, the GTO instruction may be used. For

example, the instruction GTO 43 will transfer control to location 43 in

memory. Execution of the program will continue in the normal way with the

instruction contained in location 43. Naturally, only the numbers 00

through 49 may be specified in a GTO instruction. A ‘go to’’ to location 9

must be written as

GTO 09

and similarly for all the locations less than 10.

Having covered all the necessary information required for the

solution ofthis problem, we present the following program to calculate the

sum of the reciprocals of the first n integers.

Program HP-55-4: Sum of the Reciprocals

Location Instruction Comments

01 STO
Stores keyed in value of n into register 1

02 1

03 1

04 STO Initializes counter in register 2 to one

05 2

06 0

07 STO Initializes sum in register 3 to zero

08 3

09 RCL
Recalls counter to display

10 2

11 1/x 1/counter

12 STO

13 + Adds 1/counter to sum in register 3

14 3

15 RCL .
Recalls counter to display

16 2

17 RCL Recalls n to display, pushing value of counter

18 1 from x register into y register

19 g

20 X=y Does the counter equal n?

21 GTO 27 Yes; then go to location 27

106 Programmable Pocket Calculators

Program HP-55-4 (cont’d)

Location Instruction Comments

22 1

STO
z No; add 1 to counter in register 2
24 +

25 2

26 GTO 09 And loop back to location 09

27 RCL Recalls sum to display; GTO 00 instruction

28 3 in location 29 halts program execution

Schematic HP-55-4

S 1 2 3 4 5 6

K switch switch key in steps switch GTO 0

D I on | -rn Eon krin 0.00 0.00

HP-55 mode HP-55-4 mode

S 7 8 9 10 11 12

K 0 5 R/S 2 R/S 100

D 0.00 5. 2.28 2. 1.50 100.

Cc n=56 (1/1) + (1/2) n=2 (1/1) + (1/2) n=100

+ (1/3) + (1/4)

+ (1/5)

S 13 14 15

K R/S FIX 9 ...etc.

D 5.19 5.19 5.187377520

Cc 100

Su
i=1

Debugging and Editing Programs on the HP-55

The programmer is yet to be born who writes anything but a
nontrivial program without making a mistake of one kind or another. One
should not be too sensitive about creating errors, since this seems to be
intrinsic to programming. It does not necessarily mean that a program
containing errors is completely useless. Oftentimes all that is necessary is a
slight modification to the program to make it work properly. As much
patience is required as are programming skills. The HP-55 comes equipped
with several features to help you to both debug and edit your programs
quickly and efficiently. These features are:

HP-55 Programmable Scientific Pocket Calculator 107

1. The ability to display the instruction stored in any particular location
in program memory.

2. The ability to replace any instruction in memory by another one.

3. The ability to single step in a forward or backward direction through a

program using the [SST] or [BST] keys.

Advantage of the single step key may be taken in both program and

run modes. In program mode pressing the [SST] key has the effect of

automatically displaying the next location number in memory along with its

corresponding instruction keycode.

Successive presses of the [SST] key enable the programmer to examine

each instruction step by step.

In RUN mode, the [SST] key may be used to trace through the

execution of a program. A single pressing of this key has the effect of

executing the next location in line in program memory. Thus one can trace

through a program by successively pressing the [SST] key.

CHAPTER SEVEN

THE PROGRAMMABLE
HEWLETT-PACKARD 65

The HP-65 programmable pocket calculator, manufactured by

Hewlett-Packard, represented a major technological breakthrough withits

release in 1973. The miniaturization that made possible such a small,

personal computer was a direct spin-off of Space Age technology.

The development of the HP-65 took no less than two years of

concentrated effort and exploited the resourcefulness of Hewlett-Packard’s

engineers and technicians to the fullest. According to Hewlett-Packard, the

model HP-65 was developed to satisfy the demand for easily used, personal

computing power in portable form. It resembles the standard computer in

two important respects: (1) it can operate on a stored program and (2) it is

able to jump to different parts of the program, depending upon the results

of decisions incorporated in the program.

Besides the standard arithmetic, scientific, and engineering functions,

the HP-65 is fully programmable with a 100-step memory, has nine

addressable registers, and has the ability to read and store programs from

and to small magnetic cards.

This 11-ounce wonder has 51 preprogrammed functions, which are

accessed directly on the keyboard.

A picture of the HP-65 is shown in Fig. 7-1.

Manual Operation of the HP-65

The user must remember that the HP-65, as with all the other

Hewlett-Packard calculators, operates in Reverse Polish Notation (RPN).

Therefore, we should not be surprised by the absence of the equals key and

the presence of the key marked [ENTER?]. In order to conserve space,

some of the keys have a triple function. To operate a blue-colored function

shown on the lower surface of the button, one would first press the blue key

labeled [g]. To access the function indicated in gold above a key, the gold

shift key labeled [f] is first pressed.

For those who would like to review our discussion of Reverse Polish

Notation and the operation of the four-register stack, we would respectively

refer you to Chaps. 2 and 4. Meanwhile, we will evaluate some simple

expressions in manual mode before describing the manner in which

programs are written and recorded.

108

The Programmable Hewlett-Packard 65 109

Fig. 7-1 HP-65 (Courtesy Hewlett-Packard Company)

Example 1: Evaluate [(3.2 X 7)/(28 - 6.3)] + v3.87

Ss 1 2 3 4 5 6
K 3.2 ENTER? 7 X 28 ENTER?

D 32 3.20 7. 2240 28. 28.00

S 7 8 9 10 11 12
K 6.3 — + 3.87 f Vx

D 6.3 21.70 1.03 3.87 3.87 1.97

Ss 13
K +
D 3.00

110 Programmable Pocket Calculators

Example 2: Evaluate [(sin 23.4°/cos 14.97°) + log 123]?

S 1 2 3 4 5 6

K 234 f sin 1497 f cos

D 23.4 23.40 0.40 14.97 1497 0.97

S 7 8 9 10 11 12

K + 123 f log + £!

D 0.41 123. 123.00 2.09 2.50 2.50

S 13

K Vx
D 6.26

When the HP-65 is switched on, it is automatically set to degree

mode. However, if the user finds this fact difficult to remember, he is at

liberty to convert the calculator to degree mode by pressing the buttons

marked [g] [DEG] before commencing. Once the expression within the

brackets is calculated,it is squared by means of the keys labeled [f™'] and

[/X]. The gold key marked [f'] has the effect of calculating the inverse of

those functions printed in gold above many of the keys.

Thus to find the inverse sine, one would press the [f'] followed by the

sin key (the digit 4 key), and similarly for the other functions.

Polar Coordinates

Example 3: Convert the rectangular coordinates (2, 3) into polar

coordinates.

S 1 2 3 4

K 3 ENTER? 2 f
D 3. 3.00 2. 2.00

s 5 6 7
K R—-P g xX=2y

D 3.61 3.61 56.31

There are various points that have to be clarified in Example 3. For

one, the rule for keying in rectangular coordinates is to ENTER the y-

coordinate first, followed by the x-coordinate. Secondly, the gold [R—P]

key effects the conversion from the two coordinates just keyed in to their

polar coordinates. The value ofr is sent to the display while the value of 0
resides in the y register. Once the value of r is noted, the [x = y] key is
pressed, which sends the value of 6 to the display. Thus we find that the
point whose rectangular coordinates are (2, 3) translates into the point
(3.61, 56.31°) in the polar coordinate system.

The Programmable Hewlett-Packard 65 111

Example 4: Convert (4, 50°) into rectangular coordinates.

S 1 2 3 4

K 50 ENTER? 4 £7!
D 50 50.00 4, 4.00

S 5 6 7
K R—P 9 X2y

D 2.57 257 3.06

In the above example where we are converting from polar to rec-
tangular coordinates, the value of 8 is ENTERed first, followed by the value
of r. This time, since we want to go in the reverse direction indicated by the
[R—>P] key (rectangular to polar) the inverse button [f™'] must be pressed
first. This places the x-coordinate in the display and the y-coordinate, which
is in the y register,is accessed by pressing the [x2] key.

From Example 4 it is clear that (4, 50°) is equivalent to (2.57, 3.06)
when expressed in rectangular coordinates.

Angle Conversions

Ordinarily, an angle may be expressed in degrees, minutes, and
seconds, or alternatively, in degrees and decimal fractions of a degree. For
example, 35°30’ is equivalent to 35.5°. One may convert from one form to
the other quite readily on the HP-65, as shown in the following examples.

Example 5: Convert 29.2° to degrees, minutes, and seconds.

Ss 1 2 3 4 5 6
K DSP . 4 29.2 f — D.MS
D 0.00 0.00 0.0000 29.2 29.2000 29.1200

The angle 29.2° is found to be equivalent to 29°12".
The reader will probably have noticed that every time the calculatoris

switched on, the display is automatically set to two decimal places.
Frequently, this is very useful, especially when we are not interested in
superfluous decimal digits. There are occasions, however, where it is
necessary to override this automatic, rounded two-decimal place setting.
When dealing with degrees, minutes, and seconds, it is essential to extend
the accuracy of the display to four decimal places because an angle
expressed in degrees, minutes, and secondsis displayed as follows on the
HP-65:

D.MS
where

D = the unit degrees

M = a two-digit number representing the minutes

S = atwo-digit number representing the seconds

112 Programmable Pocket Calculators

For example:

D.MS Representation Equivalent

12.3456 12°34'56"

5.4800 5°48'0"

13.0012 13°0°12"

0.0010 0°0'10"

The key that affects the way numbers are displayed on the HP-65 is

labeled [DSP]. If this key is pressed, followed by a digit from 0 to 9, it will

have the effect of displaying numbers in scientific notation, with the

mantissa rounded to the designated number of decimal places—not that this

is required in this instance. If the [DSP] keyis pressed and is followed by the

pressing of the [-] key, and then any digit from 0 to 9, the display will be

fixed with the designated number of decimal places. Such a setting will

remain in force until eitherit is changed in the same way described above or

the calculatoris switched off.

Example 6: Convert 23°46'2" to decimal degrees. (Assume that the

display is still fixed at four decimal digits.)

s 1 2 3
K 23.4602 f — D.MS

D 23.4602 23.4602 23.7672

From this schematic,it is clear that 23°46'2" (notice that 2 seconds

must be keyed in as the two-digit number 02) is equivalent to 23.7672°.

To add degrees, minutes, and seconds the [D.MS +] key is used in the

following manner.

Example 7: Evaluate 29°13'48" + 22°48'17" — 18°3”

Ss 1 2 3 4 5 6

K DsP . 4 29.1348 ENTER? 22.4817

D 0.00 0.00 0.0000 29.1348 29.1348 22.4817

S 7 8 9 10 11

K f D.MS+ 18.0003 £! D.MS+

D 22.4817 52.0205 18.0003 18.0003 34.0202

Notice in Example 7 that the display is first set to four decimal places.

The first angle is entered followed by the second angle. These angles are

added by pressing the prefix key [f] followed by the [D.MS +] key, which

gives the result of 52°2'5". From this value, 18°3" is to be subtracted.

Notice how thislast angle is keyed in—18.0003. The inverse prefix key [f']

is pressed, followed by the [D.MS +] key, which carries out the required

subtraction and displaysthe final result of 34°22".

The Programmable Hewlett-Packard 65 113

Since there is a natural correspondence between degrees, minutes, and

seconds in angular measure and hours, minutes, and seconds in time

measure, the [-D.MS] and [D.MS +] keys also can be used with the latter

form of measure.

Example 8: Evaluate sin! [1/(In 12.34 - cos 31°)] as an angle expressed

in degrees, minutes, and seconds.

Ss 1 2 3 4 5 6
K DSP . 4 12.34 f LN
D 0.00 0.00 0.0000 12.34 12.3400 2.5128

s 7 8 9 10 11 12
K 31 f cos — g 1/x

D 31. 31.0000 0.8572 1.6557 1.6557 0.6040

Ss 13 14 15 16
K f! sin f - D.MS
D 0.6040 37.1556 37.1556 37.0920

The HP-65 provides the user with the option of performing

operations on angles expressed in radians or grads, in addition to degrees. It

is pointed out that when the calculator is switched on it ‘‘defaults’’ to

degree mode. Thus any angle either keyed in or sent to the display is ex-

pressed in degrees. If it is desired to work with angles expressed in either

radians or grads, pressing either the [RAD] or [GRD] key will treat all

subsequent angles in the appropriate unit of measure. This will remain in

effect until either the mode is changed manually or the machine is switched

off.

Example 9: Evaluate cos[n2- (0.8)] as an angle expressed in radians,

rounded to two decimal places.

Ss 1 2 3 4 5 6 7 8
K g RAD g mw 2 g yX 8

D 0.00 0.00 0.00 3.14 2 0.20 1.26 8

Ss 9 10 11 12 13 14 15

K ENTER? 4 g yx —- f! cos
D 0.80 4. 4.00 0.41 0.85 0.85 0.56

The calculator is set to radian mode at the outset, after which the

expression in brackets is calculated. The constant n is raised to the power

0.2 by means of the [y*] key, and 0.8 is raised to the power 4 by the same

method. After the subtraction is done, the arc cosine is obtained by
following the [f™'] inverse key with the [cos] key. Thus we arrive at the

answer of 0.56 radians.

114 Programmable Pocket Calculators

Factorial

The factorial of a positive integer n is the product of the consecutive
integers from 1 to n. For example, the factorial of 5, written St, is

I X2X3x4x5=120

The factorial of any positive integer to 69 may be computed directly
on the HP-65 by keying in the specific number and pressing the key marked
[n!], which must be preceded by the shift key [g]. By definition, the
factorial of zero is one, andthis is indeed what the calculator returns. Any
attempt to compute the factorial of a number other than a positive integer,
less than or equal to 69, will cause a flashing zero to appearin the display.

The factorial function finds its greatest use in the area of mathemat-
ics known as statistics, which includes probability, permutations, and
combinations.

Separation of a Decimal Numberto Its Integer and
Fractional Parts

It is sometimes useful to separate a decimal number that appears in
the display into its integer portion and its fractional portion. (In
programming mode this can be of extreme importance.) Both of these
operations are possible on the HP-65, using the key labeled [INT].

If it is the integer portion thatis required, pressing the [f] shift key
followed by the [INT] key replaces the number in the display by the integer
portion of the original number, retaining the sign of that number. In a
similar way, preceding the pressing of the [INT] button by the [f'] shift key
replaces the number in the display by its fractional portion, once again
retaining the sign of the original number.

Example 10: llustration of INT function
Ss 1 2 3 4 5 6
K 123.4567 f INT 42455 =! INT
D 123.4567 123.4567 123. 424.55 424.55 0.55

In Example 10 we have truncated the original number 123.4567,
leaving 123. in the display. With the new number (424.55) keyed in, pressing
the inverse INT function keys replaces this number in the display by the
fractional portion 0.55.

The Absolute Value Function

To compute the absolute value of a numberin the display, one merely
Presses the [ABS] key, preceded by the [g] shift key. This has the effect of
replacing the original number in the display by the absolute value of that
number (the number withoutits negativesign,if it had one).

The Programmable Hewlett-Packard 65 115

Example 11: Illustration of absolute value

Ss 7 2 3 4 5 6 7

K 5 CHS g ABS 229 9 ABS

D 5. —b. —5.00 5.00 229 229 22.90

Octal to Decimal Conversion

Although we customarily express numbers in base 10, numbers can in

fact be expressed in any base. In computer science, it is often necessary to

express numbers in base 8, which is known as the octal number system. The

HP-65 permits the user to convert a decimal integer in the display into its

octal number representation and, conversely, to convert an integer in the

display expressed in octal notation into its base 10 equivalent. As in

previous examples, the appropriate shift key has to be used before the

[*OCT] keyis pressed.

Example 12:

1. Convert 124,, into its base 8 (octal) equivalent.

2. Convert 7732, into its base 10 (decimal) equivalent.

s 1 2 3 4 5 6 7 8 9

K DSP . 0 124 f - OCT 7732 £! - OCT
D 0.00 0.00 0. 124. 124. 174. 7732. 7732. 4058.

The LaST x Key

Immediately following any calculation, the previous contents of the x

register are automatically saved in a register known as the last x register.

The contents of this register is accessed by pressing the key labeled [LST x],

which on the HP-65 is the lower case [0] key. In other words, it must be

accessed by prefixing the [LST x] key with the blue [g] key. This feature

could be valuable when one is confronted by the following situation. If,

during the course of a long calculation, the wrong operation was

performed, the situation may be corrected without having to restart the

entire calculation, as illustrated in the following simplified example. In this

example, the intention was to calculate 103 X 5. To our consternation,

however, we find that we have inadvertently calculated 103 + 5. After all,

none of us is perfect. The situation may be corrected in the following way.

Keystrokes Display Explanation

1. 103 [ENTER?®) 5 [+] 20.60 Oops! | meant [x] not [+].

2. [g] [LST x] 5.00 Retrieves the last x register value

3. [x] 103.00 Reverses the wrong division

4. [g] [LST x] 5.00 Retrieves last number

5. [Ix] 515.00 Correct result sent to display

116 Programmable Pocket Calculators

It is pointed out that the last x feature can be of great utilitarian value

in many different situations. For example,in the sequence

[f] [INT]
[g] [LST x]
[f'] [INT]

a number in the display can be separated into its integer and fractional

portions not only in the minimum number of steps but also without having

to key in the original number again.

The HP-65’s Nine Addressable Memory Registers

By this time, having worked through several elementary arithmetic
type problems, the reader will have become somewhat familiar with the
operation of the four-register stack. The stack, it will be clear, acts as a
special type ofstorage facility, saving and retrieving intermediate results as
needed. Sometimes it is more convenient to save the result of a calculation
in special registers from which they may subsequently be recalled when
needed. The HP-65 has nine such memory registers, referred to as Rl
through R9, each of which is addressable. Once a number has been stored in
any one of these registers, it remains there until it is either replaced or the
machine is switched off. Even when it is recalled to the display, a copy of it
is still retained in the memory register. These registers are typically used to
accumulate sums, to store constants or intermediate results, or to act as
counters.

To store a number from the display into a register, say R4, one presses
the key [STO] followed by the number 4. This has the effect of copying the
value in the display into memory register 4, leaving the display unaltered.
To recall to the display a number previously stored in a memory register,
say R7, one presses the key labeled [RCL], which is followed by the
appropriate register number—in this case 7. This has the effect of
transferring a copy of that memory register into the display, leaving the
valuein the register intact.

An important secondary effect of pressing the [RCL] keyis that when
the recalled numberis transferred to the x register, all previous contents of
the stack are pushed up.

Register Arithmetic on the HP-65

Normal arithmetic operations on the HP-65 involve the x and y stack
registers, the result of the operation being placed in the x register for display
purposes. However, frequently it is desired to perform arithmetic oper-
ations on the contents of one of the nine memory registers. Of course,
this can be done indirectly by recalling the contents of the register to the
display, performing the required operation, and storing the result back into

The Programmable Hewlett-Packard 65 117

the register. However, this rather circuitous route may be circumvented by

taking advantage of a particularly useful feature of the HP-65, by means of

which the four standard arithmetic operations may be performed directly

on any of the nine memory registers.

For example, to add 1 to the contents of register 3, one merely keys in

the sequence

1[STO][+]3

Here are some further examples of direct register arithmetic:

Sequence Comments

3 [STO] [+] 8 Divides contents of memory register 8 by 3

16 [STO] [-] 2 Subtracts 1.6 from memory register 2

66 [STO] [x] 6 Multiplies memory register 5 by 66

In each case the result of the arithmetic operation replaces the

previous contents of the particular memory register.

This concludes our discussion on how to operate the HP-65 in manual

mode. The reason why we have not as yet described all of the keys in the

HP-65 is because many of them are concerned only with operation of the

calculator in program mode. So without further ado, we shall proceed to

the section on programming the HP-65.

Programming the HP-65

When writing a program for the HP-65, one must realize that the only

tools that are available are the functions found on the keyboard and one’s

own ingenuity. There is virtually no limit to the variety and intricacy of

programs that can be written.

The wide selection of function keys on the HP-65, combined with the

branching and testing features that are also available, have the combined

effect of making possible highly sophisticated programs. It is not difficult

to write programs that will cause the calculator to compute for many hours

on end. The major restriction of which the user of an HP-65 must be aware

is that no program may be longer than 100 steps. This is not to suggest that

only trivial programs can be written. On the contrary, programs of

considerable complexity may be written within this limitation.

Computation of x3 Problem

For our first illustration we will write a program that computes a

simple function that is not found on the HP-65’s keyboard. This program

will compute x*, for any keyed in value of x. This is admittedly a rather

simplistic problem, but our major concern at the momentis to learn how to

write a program for the HP-65 rather than to solve some profound

mathematical problem.

118 Programmable Pocket Calculators

How would we solve this problem manually on the HP-65? One way

would be to resortto the following sequence of instructions:

. Key number into display

. [ENTER?]

. [ENTER?]

. [x]

. [x]

The above sequence of instructions is fine for calculating the function

x* for a single value of x. If we had a whole series of numbers whose cubes

we wished to obtain, it would be necessary ordinarily to execute these four

instructions (2 through 5) repeatedly for each value of x. However, these

steps may be incorporated into a program, which will relieve the user of the

chore of having to physically execute these instructions manually for each

value of x.

In essence, here is the body of the program to accomplish our task:

ENTER?

ENTER?

X

X

w
n

o
h
W
N

=

In order to use these instructions as a working program, they must be

‘sandwiched’ between two instructions that identify the sequence as a

function.

The first assigns a name to the function. There are five possible labels

(names) that we may select: A, B, C, D, or E. Let us arbitrarily select A.

The instruction LBL A when inserted before the above sequence serves as a

means of identifying this function program.

A function program must always conclude with an RTN instruction,

which acts as a terminator to the program, halting program execution and

returning control to the keyboard.

Here then is the complete program to compute the value of x* for an

unlimited series of values of x.

Program HP-65-1: Computation of x?

Step Number Instruction Comments

01 LBL A Assign the label A to the function

02 ENTER? Copies value in display into y register

03 ENTER? Value of x is now in x, y, and z registers

04 x Calculates x2

05 x Calculates x3

06 RTN Stops program, returning control to the

keyboard

The Programmable Hewlett-Packard 65 119

Keying the Function into Memory

1. On the top right-hand corner of the unit is a switch labeled W/PRGM-

RUN.Setthis switch to W/PRGM.

2. Press the [f] [PRGM] keys to clear the memory.

3. Press the following keys in the order shown. This enters the program

into the calculator’s memory.

[LBL] [A] [ENTER?*] [ENTER*] [x] [x] [RTN]

No matter how careful we have been in devising a program, there is no

guarantee that it accomplishes its purpose. Experience has shown that one

of the most common characteristics of computer programming is the

seeming inevitability of mistakes occurring in the program. These may be

mistakes of logic, errors of keying in information, or whatever. The safest

procedure is to check out the program thoroughly once it has been keyed in

before relying on results. In order to do this for the above program, the

following is suggested.

Running the Program

1. Switch W/PRGM-RUN to RUN.

2. Key in any value of x and press the label key [A]. The cube of the

number should now appear automatically in the display. Some typical

examples are shown in the following schematic.

Schematic HP-65-1

Ss 7 2 3 4 5

K switch key in steps press switch to 1

D to | -rn I re] Laon ne 1.

W/PRGM HP-65-1

S 6 7 8 9 10

K A 3 A 25 A

D 1.00 3. 27.00 2.5 15.62

S 11 12 13

K 3.98 CHS A

D 3.98 —3.98 —63.04

The astute reader might question why the program was written in the

way shown rather than advantage being taken of the [y*] key. The fact of

the matter is that this second method would certainly work, but only for

positive values of x. The reason for this is that the [y*] key uses logarithms

internally, and one cannot take the logarithm of a negative number. If this

is nevertheless attempted, the display will flash on and off, indicating an

invalid operation.

120 Programmable Pocket Calculators

Thus we have written our first successful program on the HP-65.

Wouldn't it be a good idea to save this program for all time? Here is the way

to record the function on a magneticstrip.

1. Select a blank magnetic card, several of which are supplied with the

calculator. A picture of a magnetic card is shown in Fig. 7-2.

2. Switch the calculator to W/PRGM.

3. Pass magnetic card through the calculator slot provided, as shown in

Fig. 7-3.

4 LLL ZL Le LLLLLLLLL

AL 7Z oh 7777 a, 77 J 4 77777. 7

Fig. 7-2 Magnetic card

MAGNETIC CARD
RECEIVING SLOT

WINDOW
SLOT

Fig. 7-3

The action of inserting the card through the receiving slot initiates a

tiny electric motor in the calculator that drives the card through the

calculator to the other side from where it emerges a second or two later. The

program will now have been automatically written on the blank magnetic
card.

The Programmable Hewlett-Packard 65 121

Since the intention is to preserve this program for posterity, it may be

protected from subsequent erasure by clipping off the upper left-hand

corner of the card. Oncethis corner is clipped, passing the card through the

calculator subsequently in W/PRGM mode will prevent the card from being

overwritten. A special internal device detects the clipped corner, thus

disabling the writing mechanism.

Running a Recorded Program

Once a program is recorded on a magnetic card,it is a good idea to

manually write the name or purpose of the program for future reference.

This may be done in the space provided along the top edge of the card. The

five rectangular boxes on the lower half of the card are intended to record

the role played by each individual function. In our particular case where we

have used just one function labeled A, we might write the following, as

shown in Fig. 7-4.

/ HP-65—1 x3 PROGRAM A

A So) A Zrrr 777. Dorr 7

Fig. 7-4

Let us suppose that at some time later we want to run this same

program again in order to calculate the cubes of another series of values. In

order to do so the following procedure should be followed:

1. Set W/PRGM-RUN switch to RUN.

2. Slide the magnetic card through the receiving slot until it is engaged by

the motor and exits the slot. The program will now have been copied

(read) from the card into the calculator’s memory.

3. Place card in window slot for identification purposes, as shown in Fig.

7-5.

Since the program is now stored in the calculator’s memory, it may be

run as described on page 119 under the heading ‘ ‘Running the Program.”

Area of a Circle Problem

The area of a circle is defined as

Area =mr?

where r = the radius of the circle. To calculate the area of a circle manually

for any specific radius, say 5.29, the following sequence of keystrokes may

be used.

122 Programmable Pocket Calculators

Example 13

S 1 2 3 4 5 6

K 5.29 ENTER? x g n x
D 5.29 5.29 27.98 27.98 3.14 87.91

Fig. 7-5

In order to convert Example 13 into an acceptable program on the

HP-65, we have to once again assign a label name to our function and

terminate the program with an RTN instruction. Here is the complete

program to calculate the area of a circle for as many values of r as are

needed. This time we have arbitrarily selected B as the label name for our

function.

Program HP-65-2: Area of a Circle

Step Number Instruction Comments

01 LBL B Assigns the label name B to the function

02 ENTER?® Copies keyed in value of r into y register

03 X Calculates r2

04 gm Places value for m into display, pushing value

ofr? into y register

05 X Calculates nr?

06 RTN Logical end of program

By way of a reminder, before keying in this program the reader should

clear the calculator’s memory by pressing [f] [PRGM] with the machine in

W/PRGM mode.

The Programmable Hewlett-Packard 65 123

While keying in the program steps, it might be of interest to the user

to notice what transpires in the display each time an instruction is keyed in.

For the benefit of the reader who does not have a calculator, we append

below the correspondence between the keys and the display code.

Key Display

1. LBL 23

2. B 12

3. ENTER? 41

4, X 71

5. 4g 35

6. mw 02

7. X 71

8. RTN 24

It will be noticed that when the [LBL] key is pressed the number 23

appears in the display. This display code of 23 signifies that the key marked

[LBL] is located in the second row down from the top of the calculator,

third key along. Similarly the key B has a corresponding display code of 12,

indicating first row, second key. In a like fashion, all of the keys have a

corresponding numeric display that unambiguously specifiesits location on

the keyboard.

It will be noticed that the numeric display for n is 02. The reason for

thisis that each of the numeric keys (0 through 9) hasas its display code that

corresponding digit (preceded by a zero). The n function has the display

code of 02 because it is one of the two functions associated with the digit 2

key. Ambiguity is avoided because it is preceded by the appropriate prefix

key.

It should be borne in mind that each separate display code listed

above occupies a sequential location in the calculator’s 100 program step

memory. Thus it is clear that the above program occupies 8 of the 100

locations.

Use of these display codes will be made later on when we discuss

means of locating and correcting an error in a program.

Schematic HP-65-2

S 1 2 3 4 5 6

K switch key in steps press switch 3 B

D to | of Program |, el] - RUN 3. 28.27

W/PRGM HP-65-2 mode

S 7 8 9 10 11 12

K 4.63 B 22.69 B 5.29 B

D 4.63 67.35 22.69 1617.41 5.29 27.98

124 Programmable Pocket Calculators

Running the Area ofa Circle Program

After the program has been keyed in, the calculator is switched to

RUN mode. Schematic HP-65-2 on the previous page illustrates the

program in RUN mode using three different values of r.

Volume of a Cylinder Problem

It is time to expand our geometric horizons somewhat to find the

volume ofa cylindergiven its radius and height. According to the formula,

the volume of a cylinder whose radiusis r and whose heightis h is

Volume = nrth

In RUN mode using the values 5.29 and 6.1 for r and h, respectively,

the volume may be calculated according to the following schematic.

Example 14

s 1 2 3 4
K 5.29 ENTER? X q

D 5.29 5.29 27.98 27.98

Ss 5 6 7 8
K m X 6.1 X

D 3.14 87.91 6.1 536.28

In many respects this schematic is quite similar to that shown in

Schematic HP-65-2 (manual mode). In fact, steps 1 through 6 are identical.

Thisis deliberate since our purpose in this program is to illustrate the point

that, unlike the previous program, two input data items are required rather

than one. In manual mode this presents no problem whatever, since the two

data items are keyed in when necessary. However, when translating this

schematic directly into a program we have to make provision somehow for

the keying in of the second data item during program execution. This

difficulty has not arisen previously because thefirst data item was keyed in

before the program was executed. This situation is handled by including the

program step Run/Stop obtained by pressing the black key labeled [R/S] in

the bottom right-hand corner of the keyboard.

Without further ado, here is the program to calculate the volume of a

cylinder, and this time we have arbitrarily selected C as our label.

Program HP-65-3: Volume of a Cylinder

Step Number Instruction Comments

01 LBL Names the function C

02 Cc

03 ENTER? Copies value of r in x register to y register

04 X Calculates r?

The Programmable Hewlett-Packard 65 125

Program HP-65-3 (cont’d)

Step Number Instruction Comments

05 9 Activates the lower case functions

06 T Puts 3.14 in display, pushing r? up into y

register

07 X nr?

08 R/S Halts the calculator to allow the user to key
in the value for h

09 X arth

10 RTN

Running the Volume ofa Cylinder Program

According to Program HP-65-3, the R/S instruction is encountered in

step 8. This has the effect of halting the calculator’s automatic sequential

processing. The user now has the opportunity to key in the second data

item—the value of h. Execution of the program is then reinitiated by

pressing this same key—namely the [R/S] key. It is for this reason that this

key is appropriately called the Run/Stop key.

Schematic P03

Ss 1 5

K switch key in steps onpress| [i to] 293

D to E wr] f PRGM UN mode 293

W/PRGM HP-65-3

Cc 1st value

forr

Ss 6 7 8 9 10

K Cc 13 R/S 5.29 C

D 26.97 1.3 35.06 5.29 87.91

Cc 1st value 1st 2nd value

for h volume forr

S 11 12

K 6.1 R/S

D 6.1 536.28

Cc 2nd value 2nd

for h volume

Counting Problem Using Unconditional Branching

In programming one usually exploits the fact that instructions are

executed in sequence. For many types of problems this proves to be quite

satisfactory, but for a great many other problemsit is imperative that

126 Programmable Pocket Calculators

provision be made for transfer to an instruction other than the next one in

sequence.

Transfer from one point of a program to another may be effected by

means of an unconditional transfer. The instruction that provides this

ability—that is, to transfer unconditionally to another point in a program—

is the GoTO instruction, which is accessed by the key labeled [GTO].

Naturally, if execution is to be transferred to another point of the

program, that point of the program must be supplied with a ‘‘handle,’’ so

to speak, to link up with the go to. This handle, as we described it, takes the

form of a label. Labels may be specified by following the [LBL] key with

any digit 0 through 9.

This information is needed in order to understand the following

program. It does nothing other than repeatedly add one to the display,

halting the calculator with each increment. In other words we are converting

the calculator into a counter. Each time the Run/Stop key is pressed, the

loop is executed once again. The purpose of the R/S instruction is not to

permit the entry of further data but rather to allow for the number in the

display to be observed.

Program HP-65-4: Counting

Step Number Instruction Comments

01 LBL
Names the function A

02 A

03 DSP
Fixes the display at no decimal places, i.e.,

04 * integers only

05 0

06 CL x Clears the display

07 LBL
Defines the beginning of the loop

08 1

09 1 Places increment in display

10 + Adds x and y registers

11 R/S Halts program to display latest count

12 GTO 1 Unconditionally transfers control to

beginning of loop

13 RTN Program terminator

If this program is not understood at first reading, the flowchart

shown in Fig. 7-6 may help the reader to follow the flow of control and the

logic of the program.

Here is a corresponding schematic showing how the display is

incremented with each press of the Run/Stop key.

The Programmable Hewlett-Packard 65 127

(START)

FIX DISPLAY
TO ZERO
DECIMAL
PLACES

INITIALIZE
COUNTER
TO ZERO

ADD
170
COUNTER

 DISPLAY
COUNTER

Fig. 7-6 Flowchart HP-65-4: Counting

Schematic HP-65-4

S 1 4 5

K switch coyin steps press switch A

D to of Program , re to RUN 1.

W/PRGM HP-65-4 mode

Ss 7

K R/S R/S R/S ...etc.

D

Conditional Branching

We have already seen how one can change the sequential manner in

which a program is executed by resorting to the GTO instruction. The GTO

instruction is the way in which unconditional jumpsare performed—thatis,

with ‘‘no questions asked.”

However, the HP-65 does, in fact, provide the means of making a

jump when indeed a question has been asked. The following are the kinds of

questions that can be asked:

128 Programmable Pocket Calculators

1. Is the value contained in register x equal to that contained in register

y?

2. Is the value contained in register x not equal to that contained in

register y?

3. Is the value contained in register x greater than that contained in

register y?

4. Is the value contained in register x less than or equal to that contained

in register y?

Each of these four logical tests operates in a similar way. The test for

equality, for example, is made by including the instruction:

X=y

This is found on the lower case [DSP] key. Since it is lower case, it is of

course prefixed by the [g] key. When this instruction is included in a

program,a test is made comparing the contents of the x register with that of

the y register. If they are equal—that is, the test is true—execution is

transferred to the next instruction in sequence in the ordinary way.

However, if the test proves false—that is, the contents of the x register do

not equal that of the y register—the next {wo memory locations are skipped

and control is sent immediately to the instruction contained in the third

memory location in sequence. Diagrammatically, here is what happens:

———————————pgXx=yY

true[>location 1]

false [location 2]

——[location 3]
If the testis true, execution continues with the instruction in location

1. Otherwise, control is transferred directly to location 3.

Perfect Square Problem

The next program is offered not so much for its mathematical

ingenuity—although it does have some mathematical interest—but rather to

illustrate the branching instruction described above. Despite the fact that

this program contains only a single branching instruction, it is pointed out

that a very sophisticated logical network may be devised by placing a series

of these decision-making instructions at appropriate points in a program.

The perfect square program poses the question: Is the number in the

display a perfect square? In other words,is its square root an integer? The

number 9 is a perfect square since its square rootis 3, an integer. Similarly,

144 is a perfect square since squaring the integer 12 gives 144. The number

57, however,is not a perfect square sinceits square rootis 7.55.

The strategy employed follows from the nature of the problem; that is
to say,the square rootis taken of the numberin the display, and theresultis

The Programmable Hewlett-Packard 65 129

tested to detemine whether or not it is an integer. If it is, a 1 is displayed

indicating that the original number is a perfect square. If, on the other

hand, the numberis not a perfect square, a zero is displayed.

This strategy is demonstrated in the flowchart shown in Fig. 7-7.

START

KEY NUMBER
INTO DISPLAY

CALCULATE
SQUARE ROOT
OF NUMBER

IS
THIS RESULT

AN INTEGER
?

PLACE 0 PLACE 1

IN DISPLAY IN DISPLAY

HALT

Fig. 7-7 Flowchart HP-65-5: Perfect Square

The manner that determines whether or not the square root of the

displayed number is an integer perhaps requires some clarification. When

the square root of the displayed numberis calculated,it is automatically

sent to the x register. Executing the ENTER 1 instruction has the effect of

copying this value into the y register. The display is then replaced by the

integer portion of the number. At this point the square root of the original

numberis contained in the y register and the integer portion of that same

number is in the display. Now we are in a position to ask whether the

contents of the x register is equal to that of the y register. If it is, control

falls through to the next location that contains the constant “1.” This

number is placed in the display. The R/S instruction that follows halts

execution of the program. The 1 in the display indicates that the original

number keyed in was a perfect square.

130 Programmable Pocket Calculators

On the other hand, if the test proves to be false, the two locations

containing ‘‘1’’ and R/S, respectively, are skipped. The instruction that

places a ‘‘0’’ in the display is now executed, and the program terminates by

execution of the RTN instruction.

Program HP-65-5: Perfect Square

Step Number Instruction Comments

01 LBL Names the function D

02 D

03 DSP

04 . Displays only integers

05 0

06 f
07 Vx } Calculates square root of number

08 ENTER? Copies value of square root into vy register

09 f
10 INT } Truncates display

1 gx=y Does the contents of x register equal that of

the y register?

12 1 Yes; then number is a perfect square; place

1 in display

13 R/S Halts program to display result

14 0 No; then number is not a perfect square;

place O in display

15 RTN Halts program to display result

The reason why step 11 contains both the prefix and the test is because

on the HP-65 these two are merged into a single memory location. In fact,

each ofthe four conditional branch tests are merged withtheir [g] prefix key

into a single instruction.*

Schematic HP0os

S 1 4 5

K switch oiin steps press switch 9

D to of Program [oePRG] to RUN 9.

W/PRGM HP-65-5 mode

Cc 1s9a

perfect square?

S 6 7 8 9 10

K D 144 D 57 D

D 1. 144. 1. 57. 0.

Cc yes Is 144 a yes Is 57 a no

perfect square? perfect square?

*The other merged codes in the HP-65 are LST x, NOP, x2y, Ri}, Rt, STO 1 through 8, RCL
1 through 8, but not STO 9 and RCL 9.

The Programmable Hewlett-Packard 65 131

Sum of the Integers from 1 to n

We have already encountered the four relationaltests that provide the

means for branching from one point of a program to another depending

upon whether certain conditions are met or not. Each of these four tests

compares the contents of the x register with that of the y. The HP-65

provides yet another means for branchng under specified conditions. It is

called the DSZ instruction.

The Decrement and Skip on Zero Instruction (DSZ)

The reader will recall that on the HP-65 are nine (R1 through RY)

addressable memory registers. One of these registers—specifically register

8—plays a unique role in conjunction with the DSZ instruction. This

decrement and skip on zero instruction behaves in the following way:

Whatever value is stored in R8 is decremented by one—that is, one is

subtracted from it. If after subtracting one from register 8 its contents are

reduced to zero, then the next two program locations are automatically

skipped. If the resulting value in register 8 is not zero, execution proceeds to

the next step in sequence.

The DSZ instruction is incorporated in the following program, which

sums the integers from 1 to any integer n keyed into the calculator. It sums

them by the so-called brute force method. The sum ofthe integers from 1 to

5isS + 4 + 3 + 2 + 1 = 15, and that from 1 to 100 is 5050. The general

logic of the program is illustrated in the flowchart shown in Fig. 7-8.

Immediately after the value of n is keyed in, a counteris initialized to

that same value n, and a register that will eventually store the sum of the

integers from 1 to n is also initially set to n. A loop commences with 1 being

subtracted from the counter. This counter is then tested to see whetherit is

equal to zero.If it is not, then this value is added to the summation register

and the loop is reinitiated. If it is equal to zero—meaning that the task has

been completed—the value of the sum is displayed and the machine comes

to a halt.

In effect, the sum is computed according to the mathematical

expression

Sum=n+@O-1)+m-2)+...+2+1

Program HP-65-6: Sum of the Integers from 1 to n

Step Number Instruction Comments

01 LBL Names the program E

02 E

03 STO 8 Initializes counter in register 8

04 STO 7 Initializes sum in register 7

132 Programmable Pocket Calculators

Program HP-65-6 (cont'd)

Step Number Instruction Comments

05 DSP

06 . Displays only integers

07 0

08 LBL fo
Defines beginning of loo09 1 ginning P

10 8 Subtracts 1 from register 8 and then tests if
11 DSZ register 8 is zero

12 GTO
13 2 If counter is not zero, then go to label 2

14 RCL 7 Counter is zero then recall sum to display

15 R/S Halts calculator

16 LBL
Identifies transfer point

17 2

18 RCL 8 Recalls counter to display

19 STO

20 + Adds counter to sum in register 7

21 7

22 GTO
Reinitiates loop

23 1

24 RTN End of program

The DSZ instruction that appears in step 11 of the program is really a

dualrole instruction. It not only subtracts 1 from register 8 but also makes a

logical test for zero on register 8.

Schematic HP-65-6
S 1 2 3 4 5

K switch key in steps I press switch 5

D to of Program f PRGM to RUN 5.

W/PRGM HP-65-6 _ mode

S 6 7 8 9 10

K E 50 E 100 E

D 15. 50. 1275. 100. 5050.

The readeris probably aware ofthe fact that there is a simple formula
attributed to Gauss, which computes the sum of the integers from 1 to n
directly:

Sum = n(n + 1)/2

(START)

KEY IN
VALUE OF n

FIX THE
DISPLAY FOR
INTEGERS
ONLY

INITIALIZE
COUNTER
TOn

INITIALIZE
SUM TO n

SUBTRACT
1 FROM
COUNTER
V

 DISPLAY ADD
VALUE OF COUNTER
SUM TO SUM

HALT
(Cw) Fig. 7-8 Flowchart HP-65-6: Sum of the Integers from 1 to n

Ulam’s Conjecture

The problem we are now about to describeis, we think,interesting for

its own sake. It was formulated by Stanislav Ulam, who conjectured thatall

positive integer numbers when treated in a special way converge to 1. What is

that special way? Simply that if the number is odd (or becomes odd)it is

134 Programmable Pocket Calculators

multiplied by 3 and 1 is added. Ifit is even (or becomes even)it is merely
divided by 2. A simple example will be sufficient to illustrate this intriguing
idea.

Let n be equal to 7. Since 7 is odd it is multiplied by 3 and 1 is added,
bringing it to 22. But 22 is even,so it is divided by 2, and so on. Here is the
resulting sequence of numbers:

7 22 11 34 17 52 26 13 40 20 10
516 8 4 2 1

Obviously, 7 reaches 1, but do all positive integers? The fact of the
matter is that no one really knows. It has never been proved
mathematically, but a counter example has yet to be found. With an HP-65
at one’s disposal, it becomes a relatively easy matter to try as many values
of n as one wishes to determineif they do, in fact, converge to 1.

The flowchart shown in Fig. 7-9 diagrams this process.

(START)

KEY IN
VALUE OF n

DIVIDE
n BY 2

 MULTIPLY
nBY3
AND ADD 1

 Fig. 7-9 Flowchart HP-65-7: Ulam’s Conjecture

The program that follows for testing any value of n is heavily stack-
oriented. This approach was taken merely to illustrate the manner in which
the stack may be manipulated. There are two new features in the program,
but we will discuss them after you have had a chance to study the program.

The Programmable Hewlett-Packard 65 135

Program HP-65-7: Ulam’s Conjecture

Step Number

01

02

03

04

05

06

07

08

09

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Instruction

LBL

A

ENTER?

1

gx=y

R/S

ag NOP

g RJ

ENTER?

ENTER?

2

ENTER?

f

INT

gx=y

GTO

A

gR!

g R{

3

X

1

+

GTO

A

RTN

n
a
i
N
r
i
d
e
i

n
d

Comments

Names the function A

Copies keyed in value of n into y register

Tests if n is equal to 1

It is; stop the program

Filler

Rolls down stack, placing value of n in

display

Places copies of n in y and z registers

Calculates n/2

Tests to see if n/2 is an integer—i.e.,

if nis even

If it is, then loop back to beginning of

program with n/2 in display as new

value for n

Otherwise, n is odd so retrieve value of n

residing in z register

Calculates 3n + 1

Loops back to beginning of program with

3n + 1 in display as new value for n

The No OPeration Instruction

With the HP-65 in W/PRGM mode, pressing [f] [PRGM] has the

effect of clearing the entire 100 program memory locations to the merged

code 35 01, which is the g NOP code. No-OPs, as they are called, are useful

asa filler in tests. Even though it might sound like a contradiction, the NOP

instruction which does exactly nothing, nevertheless, often proves to be

extremely useful. Suppose a logical test is made and we wish to halt the

program if the result is true. If it is false, we wish to continue processing

after skipping two locations. To halt the program, we need just the R/S

instruction that occupies only one location in memory. Putting an NOP

136 Programmable Pocket Calculators

instruction in the next location fills out the second of the two instructions,

both of which are skipped ifthe testis false.

The next point concerns the unconditional transfer to the beginning of

the program. Since this particular program is headed LBL A, a GTO A

instruction will send controlto the first location of the program.

As we pointed out above, the program for Ulam’s Conjecture makes

heavy use of the HP-65’s stack ofregisters.

In order to more closely follow precisely what transpires within these

registers, the following stack schematic is offered. It shows the contents of

each stack register after the instruction written below each stack diagram

has been executed. Notice the correspondence beween the program itself

and the stack schematic.

Stack Schematic HP-65-7

1 2

n xX=y? n

ENTER?

if yes,

then halt RY

n n

n n n/2

n n n/2

ENTER? ENTER?® + ENTER?

10 13

Xx=y?

if yes,

then go to step

INT (n/2 2 with new n

INT in display

14 15

go back to

step 2 with

new value for

n in display

The Programmable Hewlett-Packard 65 137

Schematic HP-65-7

S 1 2 3 4 5

K switch key in steps press | switch 7

D to | Eron I iol] - wn 7.

W/PRGM HP-65-7 mode

Cc first case

S [3 7 8

K A 27 A ...etc.

D 1.00 27. 1.00

Cc converges to 1 converges to 1

Setting and Testing Flags

We are all familiar with the railroad track switch, which sets the

correct course for a train that can travel in one of two directions, as shown

in Fig. 7-10. The switch is set ahead of time for one direction or the other. It

cannot be in any other position.

unis

Fig. 7-10

The HP-65 provides yet another method for making decisions. It is

done by means of flags, which work in a way analogous to the track

switching illustration (see Fig. 7-10).

There are two flags that may be set ‘‘on’’ or ‘‘off”’ or, as many people

prefer to regard it, ‘“true’’ or ‘‘false.”” The instructions are Set Flag 1

represented by the [SF1] key and Set Flag 2 with its corresponding [SF2]

138 Programmable Pocket Calculators

key, each of which is prefixed by the [f] key. To set the flags off the [f!] key

is used for both flags. When the calculatoris first switched on, both flags

are in the ‘‘off’’ position.

Since both these flags are either on or off, they may be treated as

values to be tested within a program. The key marked [TF1] is used for

testing the value of Flag 1, while the one marked [TF2] tests the value of

Flag 2. In both cases these keys are prefixed by the [f] shift key. If the flag is

false, two memory locations are immediately skipped. However, if the flag

is true, then execution continues with the next instruction in sequence.

The analogy between these two logical tests and the relational tests

already described is that both skip two memory locations if the test proves

false and continues normally otherwise.

If the [f™'] key (the inverse key) is used as a prefix to either the [TF1]

or [TF2] key, two memory locations are automatically skipped if the flag is

true.

(START)

SET FLAG "ON" FOR SUM
OF INTEGERS FROM 1 TO n,
"OFF" FOR SUM OF
SQUARES FROM 170 n

V

KEY IN VALUE
OF n

NO YES

CALCULATE CALCULATE
SUM OF SUM OF
SQUARES FROM INTEGERS FROM
1TOn 1TOn

L |

Fig. 7-11 Flowchart HP-65-8: (HALT)
Sum of Numbers

Sum of Numbers Problem

To illustrate how a flag may be incorporated into a program, the

following program was devised. It finds the sum of the integers 1 through n

using the formula

Sum = n(n + 1)/2

The Programmable Hewlett-Packard 65 139

if Flag 1 is turned on. Otherwise,it computes the sum of the squares from 1
through n according to the formula

Sum = n(n + 1)(2n + 1)/6

The flowchart in Fig. 7-11 diagramsthis program.

Program HP-65-8: Sum of Numbers

Step Number

01

02

03

04

05

06

07

08

09

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Instruction

LBL

A

f

TF1

GTO

1

ENTER?

ENTER?

ENTER?

1

+

xX2y

=
X

®»
Xx
X

xX
+

R/S

LBL

1

ENTER?

ENTER?

1

+

X

2

RTN

|
Comments

Names the function A

Tests the value of Flag 1. If Flag 1 is on,

then steps 5 and 6 are executed. Otherwise,

controlis transferred to step 7

Transfers to label 1 to compute sum of

integers

nis now in x,y, z, and t registers

n + 1 in x register

Places n + 1 from x register into y

register and n from y register into
x register

2n

2n + 1

(n+ 1} (2n +1)

nin +1) (2n + 1)

Sum of squares = n(n + 1) (2n + 1}/6

Displays result

Transfer point

Copies value of n into y and z registers

n+1

n(n +1)

Sum = n(n + 1)/2

Ends program and displays result

140 Programmable Pocket Calculators

Schematic HP-65-8

Ss 1 2 3 4 5

K switch key in steps press switch DSP

D to | - Program , re) - wn 0.00

W/PRGM HP-65-8 mode

Ss 6 7 8 9 10

K . 0 f SF1 50

D 0.00 0. 0. 0. 50.

Cc turns Flag

1 “on”

S 11 12 13 14 15

K A = SF1 10 A
D 1275. 1275. 1275. 10. 385.

Cc sum of turns Flag sum of the

integers from 1 “off” squares from

1 to 50 1to 10

S 16 17

K 100 A

D 100. 338350.

Cc sum of the

squares from

1 to 100

Steps 5 through 7 in this schematic (DSP.0) were included to eliminate

the superfluous zeros in the display, after the decimal point. This could

have been included in the program, as we have indicated in other programs,

butthis is an option that is left open to the programmer.

Although Program HP-65-8 illustrates a rather trivial example of the

use of a flag, it should be pointed out that in more complex situations flags

may be turned on and off in several places within a program, considerably

increasing the program’s versatility.

Multi-Function Programming

In each of the HP-65 programs illustrated thus far, we confined

ourselves to a single function. This does not necessarily have to be the case,

however. In the program that follows, we shall illustrate four independent

functions, each of which will be resident in the memory simultaneously.

Whenever a particular function is needed, it will be accessed separately.

Compound Interest Problem

Compound interest is computed according to the following formula:

S =P(+)"

The Programmable Hewlett-Packard 65 141

where

S= the accumulated sum

P = the initial principle invested

r= the rate of interest per interest period

n= the number of interest periods

For example, if we were to invest $100 at 6% interest compounded
quarterly for a period of two years, we could calculate the accrued sum by
direct substitution into the formula.

S =100(1 + 0.015)®

where

100 = the principle amount

0.015 = (6/100)/4 = rate of interest per interest period

8 = the number ofinterest periods = 2 X 4

The compound interest formula as stated above solves for S in terms

of P, r, and n. With a little algebraic manipulation, we can solve for P, r,

and n given the other three variables.

P =S/1 +n)"

r =(S/P)'h-]
n =In(S/P)/In(1 + r)

To permit the user to solve for any of these four variables, each formula is

programmed as a single function labeled A, B, C, and D,respectively.

An important question that now arisesis the order in which the input

data is to be keyed in. Obviously,it cannot be entered in a haphazard order,

since it is unlikely that it will yield the correct result. The approach we have

adopted is to key in the known variables in the order in which they appear,

as stated in the formulas in accordance with the following table.

Order of Input

Formula Label Name Variables

s=P{1 +n)" A P r n

P=8/(1+r" B S or n

r= (s/n 4 c Ss P on

n= In (S/P}/In{1 +r) D Ss P r

Once the required formula has been selected, the first input variableis

keyed in and the appropriate label key pressed. The machine comes to a halt

to enable the second variable to be keyed in. Pressing the [R/S] key permits

the program to continue. Again the program comes to a halt so that the last

variable may be keyed in. Within a few seconds of pressing the [R/S] key,

the required solution appearsin the display.

142 Programmable Pocket Calculators

Program HP-65-9: Compound Interest

Step Number

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Instruction Comments

LBL Names the function A

A } Solves for § = P(1 +r)"

ENTER? Copies keyed in value of P into y register

R/S Halts program to permit value of r to be

keyed in

ENTER?

1

+ 1+r

R/S Halts program to permit value of n to be

keyed in

yX +n"

S=P(1 +1)"
RTN Ends function A

LBL n
B } Solves for P = S/{1 +r)

ENTER? Copies keyed in values of S into y register

R/S Halts program to permit value of r to be

keyed in

ENTER?

1

+ T+r

R/S Halts program to permit value of n to be

keyed in

yx 1+"

+ P=s/(1+r)"

RTN End function B

LBL
c } Solves for r = (S/P)*/N —1

ENTER?® Copies keyed in value of S into y register

R/S Halts program to permit value of P to be

keyed in

+ s/P

R/S Halts program to permit value of n to be

keyed in

9

1/x 1/n

9

v* (s/pyr/n

The Programmable Hewlett-Packard 65 143

Program HP-65-9 (cont’d)

Step Number Instruction Comments

35 1

36 — r=(s/p)/n 1
37 RTN Ends function C

38 LBL

39 D Solves for n = In(S/P}/In (1 +r)

40 ENTER? Copies keyed in value of S into y register

41 R/S Halts program to permit value of P to be

keyed in

42 + sS/P

43 f

a4 LN In{S/P)

45 R/S Halts program to permit value of r to be

keyed in

46 ENTER?

47 1

48 + T+r

49 f

50 LN In (1 +r)

51 + n=In(S/P}/In (1 +r)

52 RTN Ends function D

©
O
x
»

O
o
x
O

Schematic HP-65-9

Solve each of the following:

1. P=100;r = 0.015; n = 8; S= ? (See steps 1-10.)

2. S=4,562;r = 0.024; n = 5; P = ? (See steps 11-16.)

3. S =3,000; P = 1,560; n= 12; r = ? (See steps 17-22.)

4. S = 25,000; P = 12,500; r = 0.055; n = ? (See steps 23-28.)

1 2 3 4 5
switch key in steps press switch 100

to | o eed Iol -wo 100.

W/PRGM HP-65-9 mode
P

6 7 8 9 10

A .015 R/S 8 R/S

100.00 0015 1.02 8. 112.65
r n S

144 Programmable Pocket Calculators

Schematic HP-65-9 (cont’d)

S 11 12 13 14 15

K 4562 B .024 R/S 5

D 4562. 4562.00 0.024 1.02

Cc S r n

S 16 17 18 19 20

K R/S 3000 Cc 1560 R/S

D 4051.87 3000. 3000.00 1560. 1.92

Cc P S P

S 21 22 23 24 25

K 12 R/S 25000 D 12500

D 12. 0.06 25000. 25000.00 12500.

Cc n r S P

S 26 27 28

K R/S .055 R/S

D 0.69 0.055 12.95

Cc r n

In view of the complexity of Program HP-65-9, it might be a good

idea to record it on a magnetic card, as explained earlier, so that it may be

run at any future time without having to key in the instructions again. It is

suggested therefore that the magnetic card be documented, as shown in Fig.

7-12, in which the order of the input variables are indicated. Perhaps it

would be a good idea to clip the corner of the card to prevent accidental

erasure.

/ PROGRAM HP-65-9 COMPOUND INTEREST \
Le Ls LL

A S=Pon JP=Sin J r=5PnY n=5pkr Y

Fig. 7-12

When this magnetic card is inserted in the window, each of the

handwritten titles will appear above the appropriate function label key,

conveniently reminding the user not only which label key has to be pressed

for the given function but also the order in which the variables are to be

keyed in.

Subroutines

The concept of subroutines is a very important one in computer

programming and can be used to equal advantage on the HP-65. In order to

provide insight into the power of subroutines, we shall pose a problem and

The Programmable Hewlett-Packard 65 145

solve it first in the ordinary way without resorting to their use. After a short

discussion of the resulting program, we shall then rewrite it using the

subroutine feature. The reader will then be in a position to compare the two

programs and gain some appreciation of subroutines.

The Kilometer Conversion Problem

The day is surely approaching when all measurements in the United

States will be specified in metric units. Until that day arrives, however, we

have to contend with the fact that in Europe all distances, for example, are

expressed in meters and kilometers, etc., whereas in the United States we

customarily express distances in miles, yards,feet, and inches.

Here are the relationships between these units of measurement:

1 km = 0.62137 mi

Imi = 1,760 yd

lyd =3ft

1ft =12in

Suppose now we are confronted with a distance expressed in

kilometers. We would like to write a program that will convertthis distance

into its equivalent in American units. For example,

100 km = 62 mi, 241 yd, 0 ft, 4.32 in

The manner in which the above conversion is performed is to multiply

the specified number of kilometers by the constant 0.62137. This converts

from kilometers to miles and decimal fractions of a mile. The integer

portion of this number represents the integral number of miles. The

fractional portion is then multiplied by the constant 1,760 to convert it to

yards. Again, it is the integral portion of this number that represents the

number of yards, and its fractional portion is then multiplied by the

constant 3 to convertit to feet. For the last time, the integral portion is the

number of feet, and multiplying its fractional portion by 12 converts it to

inches. Here is the sequence of calculations:

1. 100 x 0.62137 = 62.137 [62 miles]
2. 0.137 x 1,760 = 241.12 [241 yards]
3. 0.12 X 3 = 0.36 [0 feet]
4. 0.36 X 12 = 4.32 [4.32 inches]

Program HP-65-10A: Kilometer Conversions

Step Number Instruction Comments

01 LBL Names function A

02 A

03 DSP
04 . Display miles, yards, and feet as integers

without trailing zeros

05 0

146 Programmable Pocket Calculators

Program HP-65-10A (cont’d)
Step Number

06

07

08

09

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Instruction

X
N
W

=
N
O

ENTER?®

INT

R/S

X
O
O
O
N

=

ENTER?

INT

R/S

3

X

ENTER?

f

INT

R/S

DSP

RTN

Comments

Places constant 0.62137 into display

Converts kilometers to miles and fractions
of a mile

Extracts integral number of miles

And stops to display result

Extracts fractional portion of number to be

converted to yards

Places constant 1760 into display

Converts to yards and fractions of a yard

Extracts integral number of yards

And stops to display result

Extracts fractional portion of number to be
converted to feet

Places constant 3 into display

Converts to feet and fractions of a foot

Extracts integral number of feet

And stops to display results

Extracts fractional portion of number to be

converted to inches

Places constant 12 into display

Displays inches to two decimal places

End of program

The Programmable Hewlett-Packard 65 147

Schematic HP-65-10A: Kilometer Conversions

Ss 1 2 3 4 5

K switch key in steps I press switch 100

D to =in| f] -mn 100

W/PRGM HP-65-10A mode

Cc kilometers

Ss 6 7 8 9

K A R/S R/S R/S

D 62. 241. 0. 4.32

Cc miles yards feet inches

A careful perusalof this last program will reveal that the sequence of

instructions
x

ENTER?
f
INT
R/S

appears in precisely this order three separate times. They are in fact

performing the same role during the execution of the program. The HP-65

permits one to include a sequence of instructions such as these six steps as a

separate function called a subroutine, which may be invoked whenever it is

needed. In doing so the program is shortened considerably. Subroutines

lend themselves to greater efficiency, minimize the possibility of error, and

improve the readability of a program.

Herethen is the program rewritten with the inclusion of a subroutine.

Program HP-65-10B: Kilometer Conversions

Step Number Instruction Comments

01 LBL

02 A

03 DSP

04 .

05 0

06 .

07 6

08 2

09 1

10 3

1 7

12 B Invokes subroutine B

148 Programmable Pocket Calculators

Program HP-65-10B (cont'd)
Step Number Instruction Comments

13 1

14 7

15 6

16 0

17 B Invokes subroutine B

18 3

19 B Invokes subroutine B

20 12

21 X

22 DSP

23 .

24 2

25 RTN

26 LBL Beginning of subroutine B

27 B

28 X

29 ENTER?®

30 f

31 INT

32 R/S

33 —

34 RTN End of subroutine B

As will be observed from this program, subroutine B is structured

exactly like a regular function program. In this case it is located at the end

of the program. In step 12, where subroutine B is first invoked, control is

transferred directly to the subroutine. Once the subroutine has been

executed, the RTN instruction returns control to step 13—the location

immediately following that from which B was invoked. In step 17

subroutine B is again invoked as indeed it is in step 19, each time returning

to steps 18 and 20 respectively. Steps 1 through 25 are sometimes spoken of

as the ‘‘main routine.”” On the HP-65, only a main routine can ‘“‘call’’ a

subroutine. In other words, a subroutine cannot in turn invoke another

subroutine.

There are various alternatives to the sequence of instructions for

subroutine B indicated above. Not all of the alternatives, however, are

equally efficient. Selecting a more efficient sequence of instructions (this

generally means fewer instructions) is known as optimization. Oftentimes

The Programmable Hewlett-Packard 65 149

the optimizing of a program is a very subtle art and uses all of the expertise

at the programmer’s command. Subroutine B provides a good illustration

of the concept of optimization. Initially, this routine was written:

LBL
B
x

ENTER
f
INT
R/S
x=y
f!

INT
RTN

In this version of the subroutine, the whole of the number, including

the decimal and fractional portion, was saved in the y register by

ENTERIing it. The INT function replaced this numberin the display with its

integral portion, and the R/S instruction stopped the calculator so that this

value could be noted. In order to operate on the fractional portion of the

number, the contents of the x register were interchanged with that of the y,

and the fractional portion was extracted by use of the inverse INT function.

However, the same role may be accomplished with fewer instructions by

replacing the three consecutive instructions

X=2y
fu

INT

with a solitary minus instruction. The reason why this works is because the

fractional portion may be obtained by a direct subtraction of the integral

portion of the numberin the display from the whole of the numberin the y

register.
Although the above example of optimizationis a rather simple one,in

situations where a subroutine or a loop is executed many times,the savings

in program execution time can be considerable.

Debugging and Editing Programs on the HP-65

It often transpires that once a program has been keyed into the

calculator further consideration of the problem being solved might

necessitate some minor or even major modification to the program.

To make such modifications relatively easy, the HP-65 comes

equipped with four editing features. One can:

150 Programmable Pocket Calculators

1. Display the instruction stored in any particular location in program

memory.

2. Delete an instruction and automatically adjust for it by using the

[DEL] key.

. Insert a new instruction between two instructions.

4. Single step in a forward direction through a program using the [SST]

key.

w

Advantage of the single step key may be taken in both program and

run modes. In programming mode,it enables the programmer to check the

program step by step, thus allowing one to examine each individual

instruction code to ascertain its correctness. It could easily happen that

what one intended to key in does not coincide with what one actually keyed

in.

In RUN mode, execution of the program may be traced step by step,

thereby enabling the programmer to check intermediate results.

We have now covered all of the features of the HP-65, and few will

deny that this portable computer-calculator represented a major

technological triumph. Familiarity with each ofits features is of paramount

importance if the owneris to exploit the calculator to its fullest extent.

It is of interest to note that in midsummer 1975, the HP-65 was taken

aloft by the American Apollo team for use as a backup for the on-board

computers and to calculate two critical mid-course correction maneuvers

just prior to the linkup of the U.S. Apollo and Russian Soyez spacecrafts.

In the event that the on-board computer failed, the crew would have had to

rely entirely upon the HP-65 since, at that stage of the mission the

spacecraft would not have been in communication with any of the ground

stations. The scientists at the National Aeronautics and Space

Administration had written programs of up to 1,000 steps and recorded

them on the magnetic cards (100 per card).

CHAPTER EIGHT

THE HEWLETT-PACKARD
67

In the summer of 1976 Hewlett-Packard announced the HP-67

programmable pocket calculator. This card programmable calculator

surpassed all the company’s previous models both in versatility and in

programming power. Each of the 35 keys controls up to four separate

operations, thereby making for a very compact function-laden instrument.

Besides having magnetic cards on which programs may be permanently

recorded, the HP-67 provides for 224 steps of program memory, 26 data

storage registers, fully merged prefix and function keys, editing features for

both correcting and modifying programs, unconditional and conditional

branching facilities, three levels of subroutines, four flags, and indirect

addressing. This incredible package, which weighs no more than 10 1/2

ounces, was released with a price tag of $450, including the ac

adapter/recharger.

A picture of the HP-67 is shown in Fig. 8-1. Likeits predecessors,it

operates in Reverse Polish Notation via the standard four-register stack.

Manual Operation of the HP-67

When the HP-67 is switched on, it shows 0.00 in the display. It

“wakes up,’’ so to speak, in a rounded, two-decimalplace format.

In line with the general tendency of Hewlett-Packard calculators to

provide for additional functions within the same dimension, a third prefix

key has been added. Not only is there an [f] and [g] prefix key, but for the

first time we have yet another prefix key labeled [h]. One wonders whether

eventually we can expectto see a [z] prefix key!

As usual, pressing a function key causes the calculator to perform that

function directly on the numberin the display. If the function is shown on

the face ofthe key, no prefix keyis required. To select the function printed

in black on the slanted key face, the black prefix key [h] must be pressed

first. If the required function is shown in gold below the function key, the

gold prefix key [f] is pressed first. Similarly, the function printed in blue

below a function key is accessed by first pressing the blue prefix key labeled

[g]. Hereare a few examples of functions that require prefixes:

g x:
f/x
151

152 Programmable Pocket Calculators

X>0

HEWLETT» PACKARD 87
Fig. 8-1 HP-67 (Courtesy Hewlett-Packard Company)

In the latter case where the square root of the number in the display is

calculated, one should not normally use the function shown above the key

labeled [B] in the top row of the keyboard, since it is a so-called default

function, about which we’ll have more to say later on. Meanwhile it is

recommended that you use the VX function located below the digit 9 key.

Lastly, here is a function requiring the black prefix key [h]:

h 1/x

What follows is a sequence of arithmetic expressions to familiarize the

reader with the various arithmetic and prefix keys.

The Hewlett-Packard 67 153

Example 1: Evaluate 2.1 + 3.2

Ss 1 2 3 4

K 21 ENTER? 3.2 +

D 2.1 2.10 3.2 5.30

Example 2: Evaluate (9.87 X 3.23)-6.9

Ss 1 2 3 4 5 6

K 9.87 ENTER? 3.23 X 6.9 —

D 9.87 9.87 3.23 31.88 69 2498

Example 3: Evaluate (2 + 3)/(4- 5)

S 1 2 3 4 5

K 2 ENTER? 3 + 4

D 2. 2.00 3. 5.00 4.

S 6 7 8 9

K ENTER? 5 — +

D 4.00 5. —1.00 —5.00

Example 4: Evaluate -123.45 + (6.78)

S 1 2 3 4 5 6 7

K 123.45 CHS ENTER? 6.78 g x? +

D 123.45 —123.45 —123.45 6.78 6.78 45.97 —77.48

Example 5: Evaluate [V191.2 + In(17.26)]/cos (19.38°)

s 1 2 3 4 5 6

K 191.2 f Vx 17.26 f In

D 191.2 191.2 13.83 17.26 17.26 2.85

Ss 7 8 9 10 11

K + 19.38 f cos +

D 16.68 19.38 19.38 0.94 17.68

The HP-67 operates in degree mode as soon as it is switched on. Since

the angle specified in the above problem is stated in degrees, it is not

necessary to do anything special to the calculator. If it is necessary to

operate on an angle expressed in radians or grads, the appropriate mode

maybe set by pressing either [h] [RAD]for radians, or [h] [GRD] for grads.

Whichever mode is selected will be retained until either the calculator is

switched off or is changed by the user.

Example 6: Evaluate sin™'(.3876) as an angle expressed in radians.

S 1 2 3 4 5

K h RAD .3876 g sin”

D 0.00 0.00 0.3876 0.3876 0.40

154 Programmable Pocket Calculators

Notice that on the HP-67 keyboard the -1, indicating the inverse of

the function, is printed in blue. This means that the blue prefix key should

be used. This applies to all of the trigonometric functions.

Time Conversions

Ordinarily, time is expressed in hours, minutes, and seconds.

Sometimes, however,it is more convenient for computational purposes to

express time in hours and decimal fractions of an hour. For example, 4

hours, 30 minutes may be expressed as 4.5 hours. On the HP-67 one may

convert readily from one form to another, as shown in the following

examples.

Example 7: Convert 29.24 hours to its equivalent measure in hours,

minutes, and seconds.

Ss 1 2 3 4 5

K DSP 4 29.24 g «<H.MS

D 0.00 0.0000 29.24 29.24 29.1424

The reader will no doubt have noticed that each time the calculator is

switched on, the display is automatically set to two decimal places. This is

often very convenient, but for those occasions where it is necessary to

override this automatic, rounded, two-decimal-place setting, one may press

[DSP] (for display) followed by a digit 0 through 9. The display will be fixed

with the designated number of decimal places. Once this is done such a

setting will remain in effect until it is changed in the same manner just

described or the calculatoris switched off.

When calculating with hours, minutes, and seconds it is essential to

extend the setting of the display to four decimal places because hours,

minutes, and seconds are displayed on the HP-67 as

H.MS

where

H = the unit number of hours

M = a two-digit number representing the minutes

S = atwo-digit number representing the seconds

For example:

H.MS Representation Equivalent

12.3456 12 hr, 34 min, 56 sec

5.4800 5 hr, 48 min, O sec

13.0012 13 hr, 0 min, 12sec

0.0010 0 hr, 0 min, 10sec

The Hewlett-Packard 67 155

In Example 7, therefore, 29.24 hours is equivalent to 29 hours, 14

minutes, 24 seconds.

Numbers may be displayed on the HP-67 in three distinct modes: (1)

fixed point notation, (2) scientific notation, and (3) engineering notation.

The normal operating mode of the HP-67 is fixed point. As men-

tioned previously, the automatic rounded two-decimal-place setting may be

changed by pressing [DSP] followed by a digit 0 through 9.

If, during the course of computation in fixed point mode, a displayed

intermediate result becomes either too small or large to be expressed in fixed

point mode, such numbers will automatically be converted to scientific

notation. One can, however, set the HP-67 to scientific notation mode at

the outset by pressing [g] [SCI], in which case all subsequent results will be

displayed in scientific notation. Once again, the decimal accuracy of the

mantissa can be reset to any other desired setting by using the [DSP] key.

As with some other Hewlett-Packard models, engineering notation

also is available. This permits numbers to be expressed with exponents of 10

that are multiples of three. (See Chap. 5 for more information.)

Regardless of the notation adopted or of the decimal setting of the

display, the HP-67 alwaysretainsthe full accuracy ofthe displayed number

internally to 10 significant digits with a two-digit exponent. For those

situations where it is required to eliminate trailing digits from a mantissa—

that is, those digits that are not visible in the display—one may do so by

pressing the [RND] key, prefixed by the gold [f] shift key.

Example 8: Illustration of the DSP and RND functions

S 1 2 3 4 5 6

K 18.7859 DSP 1 DSP 4 DSP

D 18.7859 18.7859 188 18.8 18.7859 18.7859

S 7 8 9 10 11

K 2 f RND DSP 4

D 18.79 18.79 18.79 18.79 18.7900

The purpose of this illustration is to reinforce the concept that even

though a number with four decimal places such as 18.7859 appearsas 18.8

when the calculator has been set to display one decimal place, nevertheless,

the full accuracy of the number is retained within the machine. All that has

happened is that in displaying the number it has been rounded in the

conventional sense to the specified number of decimal places. However

when using the RND function the number 18.79 becomes the actual number

retained within the machine rather than the original 18.7859. It is for this

reason that in the last two steps when [DSP] 4 is keyed in the number

18.7900 is displayed.

156 Programmable Pocket Calculators

For those situations where it is required to extract the integer or

fractional portions of a displayed number, recourseto the [f] [INT] keys for

the integer portion or [g] [FRAC] for the fractional portion may be made.

In both these cases, however, the display is replaced by the extracted

portion.

Example 9: Illustration of the INT and FRAC functions

Ss 1 2 3 4 5 6

K 7.1655 f INT 42455 9 FRAC

D 7.1655 7.1655 7.00 42455 42455 0.55

Percentages

The HP-67 has two different functions to assist one in calculations

involving percentages. One is the common percentage key, permitting one

to calculate the given percentage of a number. This is the key labeled [70],

which is prefixed by the gold [f] shift key. The other function calculates

percentage change, which is appropriately labeled [%ch], and is prefixed by

the blue [g] shift key. Since both these percentage functions are two-number

functions, both the x and the y registers have to be used. In terms of

registers the [%] function calculates x% of y, while the [%ch] function

calculates the percentage increase or decrease from y to x.

The Automatic Memory Stack

The HP-67 has the four-register stack common to all Hewlett-
Packard models. As usual, they are called the x, y, z, and t registers. The
contents of the x and y registers may be exchanged byusing the [x = y] key,
prefixed by the [h] key. Therealso is a roll up key, designated as [h] [Rt],
and a roll down key [h] [RY].

What issignificantly different in the operation ofthe stack on the HP-
67 is that provision is made to automatically review its contents. This is
done by keying in [g] [STK]. It has the effect of displaying one register at a
time: the t, z, y, and finally the x register contents again. Each register is

~ displayed for about one-half of a second. In effect, the [g] [STK] acts
exactly as four successive presses of [h] [Rt]. If for any reason, the
automatic review is to be halted, pressing the [R/S] key or any other key
will do the trick. So long as the key is depressed the contents of the stack
register will remain ‘‘frozen”’ in the display. As soon as the key is released,
the stack resumesits automatic motion.

The Data Storage Registers

The data storage registers on the HP-67 represent a shift from the
customary design found on all the other models described so far. The stack
contains the same four registers (x, y, z, and t) and there also is a last x

The Hewlett-Packard 67 157

register. But there are an additional 26 addressable data storage registers
that are completely independent of the stack. These data storage registers

may be used for storing and recalling data both in manual and

programming mode. They fall into two categories: (1) primary registers and

(2) protected secondary registers.

1. Primary Registers. There are 16 primary registers consisting of 10

registers called RO through R9, 5 more R,, through Rg, and a single, special

register called the I register.

To store the number 1.23 in R3, the following sequence of keys is

used:

1.23 [STO] 3

To subsequently recall it, this sequence is used:

[RCL] 3

Similarly, to store 7.89 in register R;, and to recall it later, the following

sequence ofstepsis used:

1. 7.89 [STO] D
2. [RCL]1D

It should be remembered that whenever a number is recalled, a copy of the

number is sent to the display, leaving the number in the register unaltered.

The role of the I register will become more apparent when we discuss

programming mode. It may nevertheless be used in manual mode in much

the same way as the other 15 primary registers, except that the keys [STI]

(store in I) and RCI (recall I) are used. To store 3.45 in register I, key in the

following:

3.45 [h] [STI]

To recall it subsequently, key in:

[h] [RCI]

2. The Protected Secondary Storage Registers. These 10 registers

represent a distinct advance over the conventional method of register usage.

They are intended to provide special protection from the possibility of

inadvertently storing data into them (and thereby erasing any previous

contents) and also from accessing these registers unintentionally. None of

these registers are directly affected by either the STO or the RCL functions;

it is in this sense that they are protected. In order to store information into a

protected register, it would first have to be stored in a primary register and

then exchanged with its corresponding protected, secondary register, using

the [f] [P = S] keys. The 10 protected registers are RsO through Rs9 (where s

signifies secondary and is associated with the 10 unprotected, primary

registers RO through R9).

158 Programmable Pocket Calculators

To store the number 7.89 in the protected secondary register Rs7, the

following sequenceis keyed in:

7.89 [STO] 7[f] [P = S]

The effect of the [P = S] (primary exchange secondary) keyis to exchange

the contents of all the registers RO through R9 with those of Rs0 through
Rs9, with no other registers (and this includes the I register as well as R,

through Rp) being affected in the exchange process. The utilitarian value of
such an exchange system will become more apparent when we reach the

section on programming the HP-67, but this brief introduction will suffice

for now.

Automatic Register Review

In order to observe the contents of, say, register 4, all you need do to

recall it is to key in:

[RCL] 4

This brings a copy of the contents of primary register 4 to the x register—
that is, the display. This is very convenient for viewing the contents of a
single register. However, on the HP-67 you can review the contents of all
the primary storage registers, with a single operation.

If you press [h] [REG], the contents of each of the primary storage
registers are automatically displayed in succession, beginning with register
RO and continuing through register R9, followed by R, through Rg and
finally register I. But this is not all; the address identifying the register being
displayed appears on the right-hand side of the display immediately prior to
the register aboutto be displayed. The codes used are:

Register Display Code

0
R1 1

R9 9

Ra 20

R B 21

Re 22

Rp 23

Re 24

| 25

The Hewlett-Packard 67 159

If during the review of the registers you wish to stop the automatic

sequencing for any reason, press the [R/S] key or any other key on the

keyboard. If a function keyis pressed, that function will not be executed.

To review the contents of the secondary storage registers, they would

first have to be exchanged with the primary registers by means of the [f]

[P = S] keys and then reviewed by pressing [h] [REG]. Of course, to return

the original contents back to the protected registers the [f] [P = S] keys

would have to be actuated once more.

Clearing Registers

Primary storage registers may be cleared individually by simply

storing zero in them as required. However, for those situations when it is

expeditious to clear all the primary storage registers to zero simultaneously,

one may press [f] [CL REG], which clearsall the primary storage registers at

the same time. None of the stack registers nor the secondary storage

registers are affected by this clearing function.

Once again, to operate on the secondary storage registers, they would

first have to be exchanged into the primary registers by pressing [f] [P = S],

after which they may be cleared together by pressing [f] [CL REG]. To clear

the display, the [CLx] key is pressed.

Storage Register Arithmetic

To operate on a numberstored in one of the primary storage registers

you may merely recall it, perform whatever operation or function you need,

and restore the result. On the HP-67, however, it is possible to operate

arithmetically directly on the primary registers RO through R9, but not on

any of the other registers.

For example, the value in the display may be added to the contents of

register R1 by keying the sequence:

[STOl[+]1

Similarly,

[STO] [-] 2

will subtract the displayed value from the contents of register R2. In like

manner multiplication and division may be effected with the keystroke

sequence

[STOl[X 13

which multiplies the display by the contents of register R3, sending the

result to R3, and finally

[STO] [+14

160 Programmable Pocket Calculators

which divides the contents of primary register R4 by the display, sending the

quotient to R4 and leaving the display unaffected.

The LST x Function

Regardless of the calculation that has just been performed, the

contents of the x register before the calculation was initiated is

automatically stored in a special internal register known as the last x

register. The contents of this last x register may be recalled to the display

either for viewing or for calculation purposes simply by pressing the [LST x]

key, prefixed by the black [h] shift key. The advantage ofthis registerlies in

the fact that if the last value of the x register is required, it may be accessed

without having to key it in again.

Example 10: Evaluate sin (n/5) + cos (n/5)

S 1 2 3 4 5 6 7

K h RAD h w 5 + f

D 0.00 0.00 0.00 3.14 5. 0.63 063

Ss 8 9 10 11 12 13

K sin h LST x f cos +

D 0.59 0.59 0.63 0.63 0.81 1.40

By taking advantage of the last x register, it is not necessary to

calculate m /5 twice or even to store it into one ofthe storage registers.

For those functions that have not been covered we would respectfully

refer the reader to the HP-67 Owner’s Handbook, in which all of the
functions are described. In view of the fact that the HP-67 is so rich in

features used in its programming mode, we proceed immediately with the

section on how to program this personal computer.

Programming the HP-67

To the person who is unaware of the existence of programmable
calculators, the HP-67 will appear as just another advanced scientific

calculator. This, however, is far from the case. The HP-67 represents a

marked advance over each of Hewlett-Packard’s previous sophisticated
models.

The HP-97 Interchangeable Software

Simultaneous with the release of the HP-67, Hewlett-Packard
announced a compatible desk top model called the HP-97. The major
difference between the HP-67 and the HP-97 besides physicalsizeis that the
HP-97 comes equipped with a printer. Although the HP-67 has no printer,
programs may be written on the HP-67 and run on the HP-97 and vice
versa. The printing functions available on the HP-97 are, for the sake of

The Hewlett-Packard 67 161

compatibility, also available on the HP-67. A program written for the HP-

97 using these printer functions may be run on the HP-67 where, rather than

the printer being affected, the relevant information is sent to the display. By

the same token, all of the printing features of the HP-97 are available on the

keyboard of the HP-67 to enable programs to be written on the HP-67 for

subsequent running on the HP-97.

Evaluation of an Algebraic Expression

For our first example we shall evaluate the simple algebraic expression

y=x>-2x+3

for x equals 1.23. All this means is that 1.23 is substituted for x into this

formula and the value of y calculated. The sequence of steps to do this on

the HP-67 in RUN mode would be those shown in the following schematic.

Example 11: Evaluatey = (1.23)*-2(1.23) + 3

S 1 2 3 4 5

K 1.23 g x? h LST x

D 1.23 1.23 1.51 1.51 1.23

S 6 7 8 9 10

K 2 X —_ 3 +

D 2. 2.46 —0.95 3 2.05

If we wanted to evaluate the above expression for many other values

of x,it is quite obvious that we would have to repeat the same sequence of

instructions for each value. Not only would this be time consuming and

monotonous, but would also invite keystroke errors. The great advantage

of having a programmable calculator is that one can easily avoid these

problems. The sequence ofinstructions to be repeated for each value of x

may be incorporated into a program, which may then be initiated for each

desired value ofx.

Hereis the body of the program to evaluate y = x*- 2x + 3 for any

value of x:

>
,

LST x

X
N
o
T
o

3
+

In order to incorporate this sequence of steps into a program, all that

is necessaryis to select a label to put in front of the sequence and to append

an h RTN to the end of it. Assuming we arbitrarily select A as the label

name, here is the complete program.

162 Programmable Pocket Calculators

Program HP-67-1: Evaluation of y = x? -2x + 3

Step Number Instruction Comments

001 f LBL A Identifies the program

002 g x? Squares the value in the display

003 h LST x Recalls the last contents of the x register

into display

004 2 Enters 2 into display, lifting stack

005 x 2x

006 — x? — 2x

007 3

008 + y=x>—2x+3

009 h RTN Signals the end of the program

Schematic HP-67-1

S 1 2 3 4 5 6 7

K switch to press key in steps switch 1.23 A 5

D irc] [, CL oe) Ern -wn 1.23 2.05 0.5

mode HP-67-1 mode

Ss 8 9 10 11 12 13

K A 3.7 A 12.9 CHS A

D 2.25 3.7 9.29 129 —129 195.21

Having established all of the program steps, we are now ready to

illustrate the manner for entering the program into the HP-67.

Keying in the Program

. Switch to W/PRGM mode.

2. Press the [f] [CL PRGM] keysto clear the program area.

3. Key in the 9 instructions, as shown in Program HP-67-1.

—

Notice that as you key in each ofthe instructions the display reveals

some information that will not be very meaningful at this point. It is,

nevertheless, very useful and shall be fully explained shortly.

Running the Program

1. Switch to RUN mode.

2. Key in the value of x to be substituted into the equation

y=x-2x+3
3. Press the ley labeled [A]. The HP-67 will automatically search in its

memory for the sequence of instructions headed by f LBL A. When

this is found, execution of the program is initiated using the keyed in
value in the display as the value of x. When the h RTN instruction is

The Hewlett-Packard 67 163

encountered, program execution is terminated, and the program halts

with the calculated value of y in the display.

4. Repeat steps 2 and 3 for each different value of x.

In Schematic HP-67-1 the corresponding values of y are calculated for

values of x equal to 1.23, 0.5, 3.7, and -12.9.

Obviously, once the program has been keyed in, it may be reinitiated

as often as is desired for any subsequent value of x. Each time merely

pressing the key labeled [A] yields the correct result. This is not only a

valuable time-saving device (since we do not have to key in the instruction

each time) but is an extremely efficient and fast way to evaluate the ex-

pression, even if we have several hundred values of x to process. This leads

us immediately to the idea of recording the program for future use or to

pass on to another HP-67 or HP-97 user.

Recording a Program on the HP-67

J . Select a blank magnetic card, which is shown in Fig. 8-2.

2. Slide the top right switch from RUN to W/PRGM (Write/

PRoGraM).

3. Insert edge 1 of blank magnetic card into the lower slot on the top

right side ofthe calculator, as shown in Fig. 8-3.

4. The card will be automatically engaged by the HP-67’s card reader

mechanism and will pass through to theleft side of the calculator. The

card will now contain the keyed in program.

5. Foridentification purposes, let us write a suitable title on the magnetic

card. For example, perhaps the title ‘‘Evaluation of y = x*- 2x + 3”

may be appropriate. To ensure that the program will not be sub-

sequently overwritten, each HP-67 magnetic card may be protected by

clipping off the corner at the top left of side 1. A diagram of the

protected card is shown in Fig. 8-4.

4 »
=

Fig. 8-2

Program HP-67-1 required nine memory locations only. In more

complicated situations, of course, the programs will be considerably longer.

Any program containing 112 or fewerinstructions can conveniently fit on

oneside of a magnetic card. If, however, the program contains 113 or more

instructions (maximum 224), the second side also will have to be written on.

The useris alerted to this fact by the display that reads Crd, indicating that

164

edge 2 of the card should be inserted.

may be protected by clipping the edge

Programmable Pocket Calculators

Similarly the second side of the card

2 corner.

The reason for writing x —» y is simply to remind the user that, ac-

cording to this program, a value of x must be keyed in in order to yield the

value of y. Its placement on the card will shortly be meaningful.

d
E

0
&

J
a
0
0
8
0
;

 a
g
a
o
o
u
,

a
d
0
0
0

CARD
READER
SLOT

INSERT EDGE
OF MAGNETIC
CARD HERE

~WINDOW
SLoT

Fig. 8-3

The Hewlett-Packard 67 165

CORNER HAS BEEN CLIPPED
TO PROTECT CARD FROM

(So OVERWRITING

4 HP- 67-1 EVALUATION OF

2
™

y=x2—2x+3 Pp

SIDE 2 OF caro
IS UNPROTECTED

Fig. 8-4

Running a Prerecorded Program

The advantage of writing a program on a magnetic card is that, for all

intents and purposesit will remain stored on that card forever. On some

subsequent occasion we may want to run the program again. The question

now arises: How does one load this prerecorded program into the

calculator’s memory? The following procedure is suggested:

1. Switch to RUN mode.

2. Insert edge 1 of the card into the card readerslot on the right-hand

side of the HP-67.

. The card will be sensed by the reading mechanism which, after

engaging the card, ejects it out the left slot.

. If the program written on the card contains more than 112 in-

structions, the HP-67 will automatically prompt the user to insert the

second side of the card by displaying Crd.

. The program written on the card will now have been read into the

memory of the calculator. Insert the card into the HP-67’s window

slot. It will now rest conveniently above the function label keys A

through E, as shown in Fig. 8-5. It should now be apparent why x > y

was written in the leftmost position of the card. When the card is

inserted in the window slot, this heading lines up directly above the

key marked A. This reminds the user that, after he has keyed in his

value of x, pressing the key labeled [A] will calculate and display the

value of y.

. Now that Program HP-67-1 is resident in the memory, it may be used

in the ordinary way simply by keying in any value of x and pressing the

key labeled [A].

Volume of a Right Cylinder

You will no doubt recall that the formula for calculating the volume

of a right cylindergiven its radius and heightis:

Volume = nr’h

166 Programmable Pocket Calculators

where

r = the radius of the base

h = the height of the cylinder

Suppose we know the volume of the cylinder as well asits radius. We

could solve for h, the height of the cylinder, by a simple algebraic trans-

formation:

h = Volume/(nr?)

As we have pointed out before, writing a program that solves for

many cases is not very different from the sequence ofsteps required to solve

for a single case in manual mode.

Fig. 8-5

Example 12: Find the perpendicular height of a right cylinder whose

radius measures 10.3 cm and whose volume is 159.68 cm?.

S 1 2 3 4

K 159.68 h n 10.3

D 159.68 159.68 3.14 10.3

(4 Volume r

S 5 6 7 8

K g x? X +

D 10.3 106.09 333.29 0.48
Cc 2 2r ar h = Volume/(nr2)

The Hewlett-Packard 67 167

It is clear that the previous sequence of steps will be quite satisfactory

for calculating the value of h for a single case. Advantage of a calculator’s

programmability, however, may be taken most effectively when we have

not one but rather a whole series of similar cases where only the input data

changes.

When transforming the sequence in Example 12 into a program, one

must bear in mind that provision must be made for the keying in of two

separate data items (the volume and the radius) rather than the single data

item (the value of x) that was necessary in Program HP-67-1. In that

program, the single input item was keyed in before execution of the

program. A similar approach can be adopted here—at least for the first

data item. But how will we arrange for the second data item to be keyed in?

One answer to this question is to resort to the [R/S] key. The Run/Stop

instruction may be inserted in the program at an appropriate point. When

this instruction is encountered during execution of a program, the machine

is halted, permitting the keying in of the second data item. Execution may

then be resumed by pressing the [R/S] key from the keyboard in RUN

mode.

As you will recall, a program on the HP-67 has a label instruction at

its beginning and a return atits conclusion. Here is one possible program to

solve the problem.

Program HP-67-2: Volume, Radius, and Height of a
Right Cylinder

Step Number Instruction Comments

001 f LBL B Names the program B

002 hn

003 R/S Halts execution of the program, permitting

the value of r to be keyed in

004 g x* r2

005 X mr?

006 + h = Volume /{nr?)

007 h RTN Halts program

This seven line program may now be keyed into the memory of the

calculator and executed for as many values of the volume and the radius as

are necessary.

Schematic HP-67-2

S 1 2 3 4

K switch to press key in steps switch

D W/PRGM f CL PRGM of Program to RUN mode

mode HP-67-2

168 Programmable Pocket Calculators

Schematic HP-67-2 (cont'd)

S 5 6 7 8

K 159.68 B 10.3 R/S

D 159.68 3.14 10.3 0.48

Cc Volume program halts to r Run/Stop key resumes

permit value of program execution.

r to be keyed in Program halts with

value of h in display.

S 9 10 11 12

K 800 B 5.25 R/S etc.

D 800 3.14 5.25 9.24

Cc Volume r h

It may be of interest to the reader who has access to an HP-67 to
watch very carefully what happensin the display as instructions are keyed in
in W/PRGM mode. Returning for a moment to Program HP-67-2, for
example,

(f] [LBL][B]

occupies only one memory location, despite the fact that it required three
keystrokes. This ‘‘merging”’ of instructionsis a significant advance in the
design ofthe calculator for it minimizes the space that the program occupies
in memory. This technology reaches it zenith in the HP-67 where up to a
maximum of three keystrokes are sometimes merged. Of course, some
single instructions occupy a complete location such as CHS, ENTER * , and
the four basic arithmetic operations. Nevertheless, the savings of memory
space made possible by merged instructions increases the capacity of a
programmable calculator to a considerable degree. It is effectively
extending the size of the memory.

Quite apart from this merged instruction feature is another equally
interesting one. It concerns the manner in which the instructions appear in
the display. The contents of the first instruction (f LBL B), for example,
appearas:

001 31 25 12

The number on the left, 001, is the location number. As each location is
filled, so the location number is automatically incremented by one. Next we
have the number 31. This refers to the key located on the third row down,
first column. Whatkey is located there? None other than the [f] prefix key.
Now for the number 25; this refers in a similar fashion to the key located in
the second row down,fifth key in, [LBL], sinceit is prefixed by [f]. The last
number 12 is the matrix code forthefirst row, second key in—the [B] key.
The digits 0 through 9 are always shown as 00 through 09 in program mode.

The Hewlett-Packard 67 169

In order to familiarize the reader with this concept of matrix codes—a

feature that can be used to advantage when checking, debugging, or editing

a program—we present Table 8-1, consisting of instructions with their

corresponding matrix codes. The reader is invited to fill in those places

indicated with a question mark.

Table 8-1 Matrix Codes

Function Keys Required Merged Instruction Code

1. Subtraction — 51

2. Store the display in

memory register 4 STO 4 33 04

3. Add the display to

memory register A STO + A 33 61 11

4. Take the square root

of the value in the

display tf Vx 31 64
5. Change the sign of the

number in the display CHS ?

6. ? ? 34 63

7. Enter the digit 8 in

the display 8 08

8. ? DSP 9 ?

9. ? h RTN 3B 22

10. 10% ? ?
11. ? STO +7 ?

12. ? ? 00

How does one clear a program prior to keying in a new one? One way

is to switch the calculator off and switch it on again. Another wayis to press

the keys

[f] [CL PRGM]

in program mode. Both of these methods have the effect of writing R/S

instructions in each of the memory locations—all 224 of them. In fact,

whenever a program is written each instruction overwrites an R/S in-

struction. You may wonder why this design was decided upon. It seems

reasonable to suppose that by putting R/S instructions in every location the

calculator would come to a halt in the event that ‘‘something in the program

went awry.” Of course, advantage can be taken of the fact that the in-

struction following the last keyed in program instruction is, by default, an

R/S instruction.

Area of a Triangle Problem

Those of us for whom high school mathematics is a distant memory

will probably not remember the formula to calculate the area of a triangle

170 Programmable Pocket Calculators

given the lengths of each ofthe three sides. It is called Heron’s Formula and

is usually written:

Area =Vs(s-a)(s-b)(s-¢)

where

a,b,c

S

the lengths ofthe three sides ofthe triangle

(a + b + ¢)/2 = one-half the perimeter of the triangle

A close scrutiny of this formula will reveal that the value s (half the

sum ofthe three sides of the triangle) is referenced no fewer than four times.

It would be a wise strategy, therefore, to calculate the value of s once and

store it in a memory register. This value may then be subsequently recalled

wheneveritis required.

Since the input data to this problem are the values a, b, and c, pro-

vision must be made for keying in these values. As done in the previous
programs, the first value,a, can be keyed in prior to program execution and
use made of the R/S instruction to halt the calculator to permit the keying
in of the remaining two values. As usual, the program must be suitably
headed and terminated. Without further ado, hereis the program.

Program HP-67-3: Area of a Triangle

Calculate the area ofa triangle given three sides.

Step Number Instruction Comments

001 f LBL A

002 STO 1 Stores the value of ain R1

003 R/S Halts program execution to permit the

value of b to be keyed in

004 STO 2 Stores b in R2

005 R/S Halts program to permit c to be keyed in

006 STO 3 Stores c in R3

007 RCL 1 a

008 + atc

009 RCL 2 b

010 + at+b+c

011 2

012 + s=(a+b+c)2

013 STO 4 Stores value of s in R4

014 RCL 1 Recalls a to display, pushing s into y register

015 — (s —a)

016 RCL 4 Ss

017 X s(s —a)

018 RCL 4 s

The Hewlett-Packard 67

Program HP-67-3 (cont’d)

Step Number

O
0
0

Xx
X
®

oO
O
x

®
O
0
X
x

On
O
0
0

Xx
®

019

020

021

022

023

024

025

026

027

Instruction

RCL 2

X

RCL 4

RCL 3

X

fx

h RTN

Schematic HP-67-3

Find the area of triangle ABC (see Fig. 8-6) where

w
=

o
o
p

=5B=4¢c=3

10.1; b = 9.6;¢c = 13.8

10;b = 15;¢c = 20

Il

1

switch to

W/PRGM

mode

19

15

15.

I
2

press

CL PRG

R/S

4.00

14

R/S

9.60

20

R/S

156.00

key in steps switch

M of Program t

HP-67-3 mode

0 won|

b

(s —b)

s{s —a) (s

s

c

(s—c)

Comments

—b)

sis—a) (s—b) (s —c)

Area = Vs{s—a) {s—b) (s —c)

Fig. 8-6

3

0
W
w
e

13.8

13.8

21

20

20.

4

10

R/S

6.00

area

16

R/S

48.47

area

22

R/S

72.62

area

C

11.

10.1

10.1

17

10

10.

171

12

10.10

18

10.00

172 Programmable Pocket Calculators

Modified Area of a Triangle Problem

If you followed Program HP-67-3, you will probably agree that the

approach adopted was quite straightforward and no particular difficulties

were encountered in keying in the input data. The HP-67 provides for even

greater flexibility by permitting the user the option of structuring his

program into convenient segments.
For example, we can select label A whose function will be nothing

other than to store the value of a into memory register 1. It is a very short

segment indeed, consisting of the following three lines:

f LBL A
STO 1
h RTN

At the same time, label B can be reserved for storing the value of b

into R2, while label C can define a function whose role is simply to store ¢

into R3. These segments may be written as shown:

f LBL B f LBL C
STO 2 STO 3
h RTN h RTN

The rest of the program may now be incorporated into a fourth

function, say D, in which the area of the triangle is calculated using the

previously stored values of a, b, and c.

What we have outlined is a method of breaking up the program into

four functions or routines, each one of which is headed by its own label and

is terminated by a return instruction. These four routines are keyed into the

calculator, and once they are all resident in its memory, any desired values

of a, b, and c¢ may be keyed in (in any order) followed by the pressing of the

appropriate label key. Once these three values have been keyed in and their

corresponding label keys pressed, the area of the triangle may be calculated

by simply pressing the [D] key. Here is the complete program.

Program HP-67-4: Modified Area of a Triangle

Step Number Instruction Comments

001 f LBL A
002 STO 1 Defines function A, which stores the value

of a in register 1

003 h RTN

004 f LBL B
Defines function B, which stores the value

005 §T0 2 of b in register 2
006 h RTN

008 STO 3 Defines function C, which stores the value

of c in register 3

007 f LBL C

009 h RTN

The Hewlett-Packard 67 173

Program HP-67-4 (cont'd)

Step Number

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

Instruction

f LBL

RCL 1

RCL 3

+

RCL 2

+

2

STO 4

RCL 1

RCL 4

RCL 4

RCL 2

RCL 4

RCL 3

Vx
h RTN

D

Comments

Defines function D, which calculates the

area of the triangle given the three sides

a, b, and c stored in registers 1,2 and 3,

respectively

It is pointed out that the order of keying in routines A, B, C, and D is

not important since they are identified by their label names and not by their

particular locations in memory.

Schematic HP-67-4

oO
O
x

®
O
0
0

X
x
®

1

switch to

W/PRGM

mode

[, CL PRG

2

press

o
P
a
N

3 4 5

key in steps switch 5

of Program to RUN 5.

HP-67-4 mode

a

8 9 70

B 3 Cc

4.00 3. 3.00

c

174 Programmable Pocket Calculators

Schematic HP-67-4 (cont'd)

s 11 12 13 14 15

K D 10.1 A 9.6 B

D 6.00 10.1 10.10 9.6 9.60
Cc area a b

Ss 16 17 18 19 20
K 13.8 c D 15 B
D 13.8 13.80 48.47 15. 15.00

Cc c area b

Ss 21 22 23 24 25
K 20 Cc 10 A D
D 20. 20.00 10. 10.00 72.62

Cc c a area

Successive Factorial Program

On the HP-67, one can readily compute the factorial of any positive

integer up to 69 simply by keying in the number and pressing the [h] [N!]

keys. We shall use this factorial function key to illustrate the following

important programming techniques:

1. Implementing a counter within a program.

2. Use of the unconditional branch (GTO) instruction.

3. Use of the pause instruction.

What we propose to do is to calculate within a program the factorial

of the integers 1, 2, 3, . . . , 69, pausing each time for about one second to

display the result. The reader will thus be able to see in a graphic manner the

exponential growth of the factorial function.

The flowchart in Fig. 8-7 illustrates the logic employed in imple-

menting this strategy. This flowchart is unusual in that no provision has

been indicated for terminating the program. This is quite deliberate since, as

will shortly be seen, the factorials of the numbers 1 through 69 will be

calculated successively. The calculator will automatically come to a halt

when an attempt is made to calculate the factorial of 70, which causes

overflow to occur. This method may be criticized as lacking somewhat in

elegance, but in a short while we shall show a way to terminate the program

in a more orthodox manner.

The Pause Instruction [h] [PAUSE]

For those situations where the programmer wishes to keep a visual

check on particular data during the course of execution, he may include a

PAUSE instruction in the program whereverit is needed. When the PAUSE

instruction is encountered during program execution, the program is

(START)

SET
COUNTER
=1

 /
CALCULATE
FACTORIAL
OF NUMBER
IN COUNTER

PAUSE TO
DISPLAY
RESULT

\

ADD 170
COUNTER Fig. 8-7 Flowchart HP-67-5:

| Successive Factorials

temporarily halted for a period of about one second so that the contents of

the x register at that point may be viewed. At the end of the PAUSE,

execution of the program resumes in the normal way. Of course, should it

be desired to have a pause of more than one second, this may be arranged

by inserting a sequence of pause instructions in a program. In a sense the

PAUSEinstruction is analogous to the print instruction usually associated

with large computers, the only difference being that the latter provides a

permanent record of the results.

As we mentioned earlier, the companion desk top calculator to the

HP-67, known as the HP-97, does, in fact, have a printer associated with it.

The [f] [-x-] instruction on the HP-67 is interpreted on the HP-97 as being a

print instruction. On the HP-97 this may be regarded as a ‘print the

contents of the x register (display)’’ instruction. The HP-67 treats this as a

five second PAUSE instruction.

Unconditional Branching

As has been apparentin previous programs,instructions are generally

executed sequentially. For special situations, however, it is desirable to

make a jump to another part of the program somewhere else in memory.

This may be accomplished on the HP-67 by using the ‘‘go to’’ instruction

labeled [GTO]. Jumps can be made only to instructions containing labels,

as shown in the following examples:

176 Programmable Pocket Calculators

—>f LBL A

GTO A

———— GTO C

—»f LBL C

—>f LBL E

——— GTO E
These examples clearly show that jumps may be made in a backwards

as well as a forward direction. In addition to the labels A through E, one is

at liberty to jump to labels a through e. In fact, the choice of labels is even

wider since one also is permitted to jump to labels 0 through 9.

It is pointed out that when setting up a label name a through e, one

must use the key sequence, for example,

(e] [LBL f] [a]

Here are some more examples of valid uses of the GTO instruction:

r—>¢g [LBLf] b
®

——GTO f b

—>f LBL 6

——GTO 6

——GTO 0

—>f LBL 0

The Hewlett-Packard 67 177

—GTO f d

—-g [LBL] d
Each time a GTO instruction is encountered, control is sent

immediately to that label referenced by the ‘‘go to.”’ Execution resumes

from this label in the ordinary way.

Here is a program to compute and display all the factorials 1 through

69.

Program HP-67-5: Successive Factorials

Step Number Instruction Comments

001 f LBL A

002 1 Sets up counterin register O with initial
003 STO 0 value of 1

004 DSP 0 Fixes display for no decimal places

005 f LBL 1 Defines transfer point labeled 1

006 RCL O Recalls counter to display

007 h NI! Calculates factorial of value in display

008 h PAUSE Pauses for one second to display result

009 1
Adds 1 to counter

010 STO + 0

011 GTO 1 Transfers control to location 005

Schematic HP-67-5
S 1 2 3 4

K switch to press key in steps switch to

D W/PRGM f CL PRGM of Program RUN mode

mode HP-67-5

Ss 5 6 7 8

K A ————
I | I | IB 1o TT 1 [a Me. | [2a.|

(o 1! 21 3! 41

Ss 72 73 74

K i

D [2480035696| [1711224598| 9.999999999 99
Cc ~~68! 69! overflow

178 Programmable Pocket Calculators

As will be apparent from this program, two separate labels are in-

volved, label A and label 1. The program is initiated by storing 1 in register

0. Since we are dealing with integer numbers exclusively, we can suppress

the two decimal places that would ordinarily be seen by including the in-

struction DSP 0. After the factorial has been displayed for one second,1 is

added to the contents of register 0 using the STO + 0 instruction, which
you will recall from our discussion of register arithmetic. When the GTO 1

is executed, we set up a loop to statement 005 where subsequent factorials

are computed.

Sum of Consecutive Integers Problem

It is the famous mathematician Gauss who is credited with having

arrived at the formula for adding up the consecutive integers 1 through n in

his head. In the event that you are not familiar with his formula, which is a

paragon of simplicity:

Sum = n(n + 1)/2

For example, the sum of the integers 1 through 10 is 55:

10(10 + 1)/2
= 55

Sum

Since this formula sums the digits from 1 to n, it would have to be amended

somewhat were we to require the sum of the integers from some arbitrary

starting point, say k, through n. The amended formula becomes:

Sum = [n(n + 1)-k(k-1)]/2

The sum of the integers say, from 7 through 10, would be calculated by

substituting the value 7 for k and 10 for n:

Sum = [10(11) - 7(6)]/2
= 34

We can arrive at this same result by adding up the numbers k through

n by the ‘‘brute force’’ method, without resorting to the formula itself. For

the sake of illustration, this brute force method is accomplished by means

of a loop, in which the successive integers are generated and added to

register 2. Naturally, we want this process to stop once all the additions

have been completed. This is accomplished by comparing the stored value

of n in the y register with the most recent integer generated in the x register.

This comparison is effected by using one of the eight conditional test

instructions available on the HP-67.

The Hewlett-Packard 67 179

Conditional Branching

One of the great advantages of the HP-67 is the rich variety of

conditional test instructions that are available. We have already

encountered the ‘‘go to’’ instructions, which transfers control to another

part of the program ‘without any questions being asked.’”” The eight

conditional operations we are about to discuss permit special action to be

taken, depending upon the contents of the x and y registers. They are:

Conditional Test Explanation

1. g x=y Asks if the contents of the x and y registers are equal

2. 9g X#FY Asks if the contents of the x and vy registers are not equal

3. g x<y Asks if the contents of the x register are less than or equal to

that of the y register

4. g x>y Asks if the contents of the x register are greater than that of

the y register

5. f x=0 Asks if the contents of the x register equal zero

6. f x#0 Asks if the contents of the x register are not equal to zero

7. f x<O0 Asks if the contents of the x register are less than zero

8. f x>0 Asks if the contents of the x register are greater than zero

Each of these eight conditional branches behaves in essentially the

same manner. If the answerto the particular question being asked is YES—

that is, the test proves to be true—execution of the program continues

normally with the next instruction in sequence. However, if the answer to

the question is NO—that is, the test proves to be false—then the next in-

struction immediately following the conditional test in program memory is

automatically skipped, as illustrated in the following diagram.

false

180 Programmable Pocket Calculators

When the f x = vy instruction is encountered during program

execution, the question asked is ‘‘Are the contents of the x and y registers

equal?”’ If the contents of the x register are, in fact, equal to the contents of

the y register—thatis, the test proves to be true—then execution continues

in the normal manner with the next instruction in memory where the value

in the display is squared. If, on the other hand, the contents of the x and y

registers are not identical—that is, the test proves to be false—then the next

instruction in memory, the g x? instruction, is automatically skipped.

Execution resumes with the instruction contained in the second location

following the conditional test instruction where the exponential function e*

is calculated.

If the instruction immediately following the conditional test in-

struction happens to be a GTO instruction, we have, in effect, set up a

conditional go to instruction. For example, the sequence of instructions

g x=0

GTO f a

effects a go to to the section of the program identified by a g LBL f a in-

struction, if the contents of the display are equalto zero.

Returning to our problem at hand,its logic may be better understood

after an examination ofits flowchart shown in Fig. 8-8.

Program HP-67-6: Sum of the Integers k through n

Step Number Location Comments

001 g LBL f a Defines beginning of routine

002 STO 1 Stores keyed in value of k into register 1

003 STO 2 Initializes sum in register 2 to k

004 R/S Halts program execution to permit value of

n to be keyed in

005 STO 3 Stores value of n in register 3

006 f LBL 5 Sets up transfer point for beginning of loop

007 1
008 STO +1 } Adds 1 to k in register 1

009 RCL 1 Recalls value of k

010 STO +2 Adds k to sum in register 2

011 RCL 3 Recalls value of n to display, lifting value of

k from the x register to the y register

012 gx #y Asks if the x and y registers are not equal in

content

013 GTO 5 Yes; then branch to beginning of loop

014 RCL 2 No; then recall sum to display

015 h RTN Halts program execution with sum in display

O
x
o

The Hewlett-Packard 67 181

Schematic HP-67-6

1 2

mode

switch to press key in steps switch

W/PRGM f CL PRGM of Program to RUN 7.

3 4 5

~

HP-67-6 mode

START

KEY IN
VALUES OF
k AND n

SET SUM
TO k

 YES

ADD 1
TO k

ADD k
TO SUM

 ISk
NOT EQUAL

TOn
NO

DISPLAY
SUM

(HALT) Fig. 8-8 Flowchart HP-67-6:

Sum of the Integers k through n

182 Programmable Pocket Calculators

Schematic HP-67-6 (cont'd)

Ss 6 7 8 9 10

K f a 10 R/S 1

D 7. 7.00 10. 34.00 1.

c program halts n 10 1

to permit > (i)

keying in of n st

Ss 11 12 13 14

K f a 100 R/S ...etc.

D 1. 1.00 100. 5050.00
[od n 100

(i)

Indirect Addressing

On the HP-67, as you will recall, one can store information from the

display directly into a memory register, say register 9, by means of the

following keystrokes:

[STO] [9]

By the same token, data stored in, say register 6, may be recalled directly to

the display by the key sequence

[RCL] [6]

In each of the cases cited above, the corresponding registers are accessed

directly. However, among the sophisticated features of the HP-67 is one

called indirect addressing, by means of which registers may be accessed

indirectly using the I register.

In order to illustrate this most powerful feature, Table 8-2 is

provided. It assumes that information is stored in each of the 26 available

storage registers RO through R9, Rs0 through Rs9, R,, through Rg, and the I

register. In fact,it is strongly suggested that the reader key these values into

his calculator so that we may talk realistically about the operations to be

performed on these registers. You will remember that to load a value from

the display into the I register the [h] [STI] keys are used. Of course,to load

values into the secondary registers they must first be loaded into their

corresponding primary registers and interchanged with the [f] [P=S] keys.

After these values have been keyed in, they may be checked by
utilizing the automatic register review feature of the HP-67 ([h] [REG])).
Once they are confirmed to have been correctly keyed in, recall the contents
of the indexing register I by using the [h] [RCI] keys. The value 5.00 should
now appearin the display.

The Hewlett-Packard 67

Table 8-2 Register Layout for the HP-67

Register Name Register No. Contents

*RO 0 {21.]

R1 1 [4567 —09 |]

R2 2 [2.]

R3 3 [—68.9273 1

R4 4 (7. 1

RS 5 [16. 1

R6 6 [65.]

R7 7 [O. 1

R8 8 [1.05698326 23]

R9 9 {o.]

1tRs0 10 [13.3789]

Rs1 1 [4]

Rs2 12 [24 1

Rs3 13 [55]

Rs4 14 [2.718281828 |

Rs5 15 [0.]

Rs6 16 [3.141592654 |]

Rs? 17 [3.]

Rs8 18 [0. 1

Rs9 19 [25.]

+R 20 [0.]

Rg 21 [O.]

Re 22 [6.3297 1

Rp 23 [—13.38516 1

Re 24 [921.0365]

gl 25 [5. 1

* Primary Registers: RO - R9
t+ Secondary Registers: RsO - Rs9

+ Additional Primary Registers: Ra - Re

£ Indexing Register

If we now press the keys

[RCL] [(D]

183

the contents of the register number contained in the I register will be

broughtto the display. In other words, the number 5 contained in register I

is used as the address for the register being accessed. As you will observe

from the chart, register 5 contains the value 16. It is this value that is sent to

the display in this indirect manner.

To interchange the value of the I register with that of the display,

press the [h] [x = I] keys. The I register will now contain the value 16.

Pressing the [RCL] [(i)] keys once again will indirectly recall to the display

184 Programmable Pocket Calculators

the contents of the register referenced by the I register—thatis, register 16.

From Table 8-2 it will be observed that register 16 contains the value,

which is now displayed.

We would now like to change the contents of register I to illustrate

further examples of indirect addressing. Now store the number 23 in the I

register. Recall the contents of register 6 in the normal (direct) manner using

the [RCL] [6] keys. The value 55 will then be sent to the display. To store

the value 55 (currently in the display) into the memory register indirectly

referenced by the I register, press the keys

[STO] [()]

This will have the effect of storing the displayed value into the register

number contained in register I. In this case, 55 will be stored into register 23

(register Rp).

Indirect addressing may be further exploited when performing register

arithmetic. Here are some examples, together with explanations of indirect

register arithmetic operations.

Example A:

STO + (i)

The effect of this sequence of keystrokes is to add the current value of

the display to the memory register indirectly referenced by the I register.

That is to say,if the I register contains the number 0, for example, then the

current contents of the display will be added to register RO after keying in

the above sequence.

Example B:

STO + (i)

Keying in this key sequence has the effect of dividing the value in the

display by the contents of the memory register referenced by the I register.

In a similar fashion, subtraction and multiplication operations may be

performed indirectly on any of the 25 memory registers by using the STO -

(i) and STO X (i) instructions, respectively.

We have by no means exhausted the variety of instructions that may

be combined with the powerful indirect addressing feature. These others

will, however, be discussed at the appropriate time.

Finding the Minimum Value in the Registers

For the purpose of the next problem, let us assume that during the
course of calculation of a problem, n intermediate results (where n may be
as large as 24) are stored successively in registers 1 through 24, the value of n

The Hewlett-Packard 67 185

being stored in the I register. You will recall that the primary registers RO

through R9 are designated 0 through 9; the secondary registers Rs0 through

Rs9, 10 through 19; registers R, through Rg, 20 through 24; and the I

register, number 25.

Once registers 1 through 24 have been assigned their values, we wish,

within the program,to find the minimum value.

To help the reader follow the logical flow of the program we shall

soon present, a flowchart is shown in Fig. 8-9. A few explanatory notes

regarding the I register and the notation used is probably in order.

Remember, the I register can act just like any other register for storing and

recalling a value. When used in this manner, its indirect addressing

capability is ignored. However, as we have explained, the contents of the I

register may be used to specify any one of 26 registers. This, of course, is the

basis of indirect addressing. What we have, in effect,is a register specifying

another register. On occasions, we want to refer to register I itself and at

other times to the register being referenced by the I register. In order to

avoid ambiguity, the flowchart that follows is documented with (i) to

indicate the register being referenced by the I register, and I, for the I

register itself. This convention, incidentally, is used also by Hewlett-

Packard in the labeling of their keys.

The DSZ and ISZ Instructions

In addition to the various branching instructions available on the HP-

67 are two special branch instructions, both of which may be exploited to

advantage when writing complex programs, particularly those that are

iterative in nature.

The DSZ instruction, when encountered during program execution,

first decrements the contents of the I register by 1—that is, subtracts 1 from

it. Then it asks the question: Is the resulting value in the I register equal to

zero? If it is, then the next step in sequence is automatically skipped. If the

contents ofthe I registeris not equal to zero, then execution continues in the

normal manner with the next instruction in sequence. It is for this reason

that the instruction is called Decrement and Skip on Zero (DSZ).

The Increment and Skip on Zero is very similar to the DSZ

instruction, except that the I register is first incremented, rather than

decremented, by 1. Once again, the instruction immediately following the

ISZ is automatically skipped if the resulting value of the I register is zero.

This instruction may prove useful when counting up from some negative

starting value to zero.
By the way, one is not confined to decrementing or incrementing the I

register. The HP-67 provides the flexibility whereby one may use the I

register to decrement or increment another register. For example, if the

number 5 is in the I register, one can indirectly perform a decrement and

(START)

INITIALIZE
MINIMUM TO
CONTENTS OF
REGISTER (i)

v
SUBTRACT
1 FROM
I REGISTER

IS
MINIMUM

=CONTENTS OF
REGISTER

(i)?

YES

NO

SET MINIMUM
TO CONTENTS
on REGISTER

i

 DECREMENTI
REGISTER
BY 1

 DOES
I REGISTER
=0?

DISPLAY
MINIMUM

(HALT)

Fig. 8-9 Flowchart HP-67-7: Finding the Minimum of a Set of Values

The Hewlett-Packard 67 187

skip on zero operation on register 5 by incorporating the following keys into

a program:

[g] [DSZ (1)]

Similarly, to include an increment and skip on zero instruction for

register 5 into a program, the key sequence

can be used.

[8] [ISZ (1)]

Program HP-67-7: Finding the Minimum of a Set of
Values

Step Number Instruction

001 f LBL E

002 RCL (i)

003 STO 0

004 h RCI

005 1

006 —

007 h STI

008 f LBL 1

009 RCL (i)

010 RCL O

011 gx<y

012 GTO 2

013 h RI

014 STO O

015 f LBL 2

016 f DSZ

017 GTO 1

018 RCL 0

019 h RTN

Comments

Recalls first value to display

Initializes minimum in register RO to this

value

Recalls value of n to display

n—1

Stores adjusted value of n into | register

Recalls value contained in memory register

referenced by register |

Recalls current minimum to display

Is minimum < contents ofregister (i)?

Yes; then continue with next value

No; rolls down stack to bring contents of

register {i) back into the display (Note:
RCL (i) instruction would serve the same

purpose.)

Updates value of minimum

Decrements the | register by 1;

if the contents of register | now equals 0,

then skip the next instruction

Loop back to label 1 to continue processing

Recalls minimum value to display

According to the schematic that follows, five numbers are loaded into

registers 1, 2, 3, 4, and 5. To find the minimum of five numbers, one would

not ordinarily resort to an expensive machine such as the HP-67. One would

188 Programmable Pocket Calculators

simply look at the numbers and select the minimum by using powers of

observation rather than any intellectual skills. But we want to show how the

method works. So we key in the five numbers directly. What applies to these

five numbers will apply equally to any value of n not greater than 24.

Schematic HP-67-7

Find the minimum of -12.7, 13.89, 9.8, -13.6, 27.

Ss 1 2 3 4 5

K switch press key in steps switch 12.7

D -mn I CL vm] Eon -wn 12.7

mode HP-67-7 mode

Ss 6 7 8 9 10

K CHS STO 1 13.89 STO

D —12.7 —12.7 —12.70 13.89 13.89

Cc 1st 2nd

value value

S 11 12 13 14 15

K 9.8 STO 3 13.6

D 13.89 9.8 9.8 9.80 13.6

Cc 3rd

value

S 16 17 18 19 20

K CHS STO 4 27 STO

D —136 —136 —13.60 27. 27.

Cc 4th 5th

value value

Ss 21 22 23 24 25

K 5 5 h STI E

D 27.00 5. 5. 5.00 —13.60

Cc n=5 minimum

value

Sorting Numbers on the HP-67

If you are in any doubtas to the power of the HP-67,letit be said that
by taking advantage of the many sophisticated features one can duplicate
the processes that until now have been the sole preserve of computers,
whose costs run into the thousands and sometimes millions of dollars. One
of the needs that repeatedly emerges in both business programming and
advanced mathematicsis that of sorting a set of valuesinto either ascending
or descending order. There are a great number of programming methods
that have been devised to sort values, and a good deal ofliterature has been

The Hewlett-Packard 67 189

written on this subject. What we propose to do hereis to sort, in ascending

order, up to 23 values that have been stored in registers R1 through Rn

(where n < 23). The particular method (algorithm) we have selected is

known as the bubble sort. It is so called because with each pass the latest

maximum is pushed down to the bottom ofthe list.

Suppose we have the following five numbers to sort into ascending

order:

Element

Number Value

1 4.3

2 2.6

3 6.5

4 3.8

5 2.4

If we were to start with the last value on the list, we could compare it

with its neighboring fourth element. If this value is greater than the fifth

element, indicating that these two elements are not in order, then we switch

these two values.

Since 3.8 is indeed greater than 2.4, the positions of these two values

in the list are exchanged. We now have:

1 4.3
2 2.6
3 6.5
4 2.4
5 3.8

The fifth element is now compared with the third element in the list,

and since this latter value of 6.5 is greater than the former value 3.8, their

positions in the list also are switched as follows:

1 4.3
2 2.6
3 3.8
4 2.4
5 6.5

Similarly, the fifth element is compared to the second element and

finally with the first element on the list. Since neither of these two valuesis

greater than 6.5, no switches are made and the first pass through the sort is

complete. The effect of this first pass is to have ‘‘bubbled’’ the largest value

in the list down to the fifth and last position.

The second pass of the sort consists of comparing the fourth element

in the list with the third, second, and first elements in the list, making any

necessary switches, as described above. By the end of the second pass, the

190 Programmable Pocket Calculators

START

SET
j=n

 -—

V

SET
k=j—1

YES

NO

SWITCH x
AND Xj

 J

SUBTRACT
1 FROM k

 SUBTRACT

1 FROM j

Fig. 8-10 Flowchart HP-67-8: Exchange Sort

second largest value in the list has been sorted into the fourth position. The

The Hewlett-Packard 67

list of elements now appears as follows:

The third and fourth passes complete the sort, and the final sorted list of

values becomes:

It is worth noting that the simple bubble sort as outlined requires

H
W

—
-

w
n

H
W

—
-

5

3.8
2.6
2.4
4.3
6.5

2.4
2.6
3.8
4.3
6.5

(n - 1) passes to sort an n element list of values.
The method described is, in fact, precisely that used in the program

that follows. To further clarify the way in which the sort is implemented on

the HP-67, a flowchart is shown in Fig. 8-10, which assumes that the value

of n is keyed into the I register.

Program HP-67-8: Sorting Numbers

Step Number

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

Instruction

f LBL B

h RCI

STOO

f LBL 3

RCL O

1

STO E

f LBL 1

RCL 0

h STI

RCL (i)

RCL E

h STI

h Rl}

RCL (i)

Comments

Exchange Sort

n

Setsj=n

k=j—1

j

X.
J

k

Rolls down stack to put value of x. back

into display J

Xk

192
©

O
x
w

O
D
X
®

Programmable Pocket Calculators

Program HP-67-8 (cont'd)

Step Number

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

Schematic HP-67-8

1

switch

to PRGM

mode

4.30

[

Instruction

g xs<y

GTO 2

h xzy

STO (i)

RCL 0

h STI

h Ri

h RY

STO (i)

f LBL 2

2

4

h STI

g DSZ (i)

GTO 1

RCL O

gx=y

h RTN

STO —0

GTO 3

2

press

CL PRGM

26

26

< x.?x) Xf

Yes; don’t switch values

No; switch values; bring X; into display

*; — register k

i

Brings xy back to display

X= register j

Places 24 (number of register E)

in | register

Decrements register E by 1 and tests for

equality with zero

Re # 0, continue looping

Re = 0, finished pass, see if done with sort

ji=2?

Yes; then program execution is terminated

No; subtract 1 from j and continue with

next pass

3 4 5 6

key in steps switch 4.3 STO

of Program to RUN 4.3 4.3

HP-67-8 mode

X,

9 70 11 12

STO 2 6.5 STO

26 2.60 6.5 6.5

The Hewlett-Packard 67 193

Schematic HP-67-8 (cont’d)

S 13 14 15 16 17 18

K 3 38 STO 4 24 STO

D 6.50 38 3.8 3.80 24 24

Cc X, x

S 19 20 21 22 23 24

K 5 5 h STI B RCL

D 2.40 5 5 5.00 2.00 2.00

Cc n sort

S 25 26 27 28 29 30

K 1 RCL 2 RCL 3 RCL

D 2.40 2.40 2.60 2.60 3.80 3.80

Cc smallest

element

S 31 32 33

K 4 RCL 5

D 4.30 4.30 6.50

Cc largest

element

Using Subroutines on the HP-67

For those situations where it is necessary to execute the same sequence

of instructions from several different points in a program, one cannot use

the GTO instruction since this would work for the first time only, not on

succeeding occasions. If that sequence of instructions is included in

subroutine form, it may be accessed as often as is needed and each time it

returns controlto the instructionfollowing that which called it.

A subroutine on the HP-67 is characterized by a header label and a

terminal RTN instruction. But this does not differ at all from any of the

programs that we have already presented in this section. True. The

subroutine is invoked, however, by a special instruction called the GSB (go

to subroutine). When the RTN instruction is executed, control is returned to

the “main” program that called it, in particular, to the instruction

following that which invoked the subroutine. Generally speaking, writing a

program in subroutine form considerably minimizes the length of the

program, and indeed this might be a crucial factor in determining whether a

particular program can fit into the 224 available program locations.

Returning to Program HP-67-8, the exchange sort program, let us

assume that we have recorded it on a magnetic card, as discussed earlier.

The illustration in Fig. 8-11 suggests a reasonable way of identifying the

card.

194 Programmable Pocket Calculators

EXCHANGE SORT (ASCENDING ORDER)
(nin R;; MAX. n= 23)

pSORT
Fig. 8-11

Suppose at some subsequent point in time we have devised a program
(labeled A), which generates some set of values and stores them into
registers R1, . .., R23. Now let us assume that it is necessary for the
program to sort these values into ascending order. We could incorporate
into the program itself the sequence of instructions necessary to sort them.
An alternative and perhaps better solution to the problem is simply to insert
into the required point of the program a

GSB B

instruction (assuming that label B is not defined elsewhere in the program).
Prior to inserting this instruction into the program, it is necessary to first
store the value of n into the I register, as required by the sort routine.

Use may now be made ofthe sort routine stored on the magnetic card
in the following manner:

1. Determine the program location of the last instruction in the program
resident in memory (this will normally be the terminating h RTN
instruction). Assume this is location number XYZ.

2. In RUN mode,pressthe keys

[GTO] ['] [x] [y] [z]
This has the effect of positioning the program pointer to location xyz.

3. Press the keys

[e] MERGE]
This signals the HP-67 to merge the next program passed through the
card readerinto program memory starting with location xyz + 1.

4. Select the sort card and passit through the reader slot of the HP-67.
Since the sort program required fewer than 113 locations of memory,
itis only necessary to read in side 1 ofthe card.

5. Program A may now be executed in the normal way. When the
GSB B instruction is encountered during program execution, control
will be sentto the sort routine. This will sort the values in the registers
into ascending order and then return control to the calling routine
upon execution of the h RTN instruction.

By using this technique of merging programs, the sort routine can be
merged into a resident program wheneverit is required.

The Hewlett-Packard 67 195

The g MERGE instruction can be used to merge more than one

program into memory. Thus a library of routines can be stored on separate

magnetic cards and routines loaded as necessary by using this powerful

MERGEinstruction.

Flags

The next program introduces us to the concept offlags, of which there

are four on the HP-67, referred to as FO, F1, F2, and F3. These flags may be

set to an on or an off position and may subsequently be tested to determine

their status.

In orderto set a flag to the on position, thatis, to true, the instruction

SF (set flag) is used, followed by one of the four digit keys 0, 1, 2, or 3.

To clear a flag, thatis, to makeit false, the CF (clear flag) instruction

is used, once again followed by the appropriate digit key 0 through 3.

Incidentally, whenever the HP-67 is switched on or the [f] [CL PRGM] keys

are pressed, the fourflags are automatically cleared.

Once a flag has been set either true or false, its status may sub-

sequently be tested by making use of the F? instruction, followed by a digit

0 through 3. If the result ofthe testis true, that is, the flag is on, then the

next instruction in sequenceis executed in the normal manner. If, however,

the test proves false, that is, the flag is off or cleared, the instruction im-

mediately following the flag test instruction is automatically skipped. Thus

it becomes obvious that the F? instruction behaves in much the same

manner as the conditional branch instructions previously encountered.

It is worth noting that flags 2 and 3 are special in that they behave

differently from flags 0 and 1. Whenever the status of either of these two

flags is tested by the F? instruction, they are automatically turned off after

the test has been made, regardless of the result of the test. Thus flags 2 and 3

may prove useful in those instances where it is necessary that a flag be

cleared after it has been tested.

Flag F3 is further distinguished from the other three flags, which are

available on the HP-67, in that this flag is automatically set whenever a

numberis keyed into the display. Thisspecial flag is referred to as the data

entry flag and can prove very helpful indeed for those situations where a

decision is to be made based on whether or not a value was previously keyed

into the calculator.

Use ofthis data entry flag feature will be made in Program HP-67-9,

the compoundinterest program that follows immediately.

Compound Interest Problem

The standard formula for computing the compound interest is

S=P(1+ 1)"

196 Programmable Pocket Calculators

where

S = total compound sum

P = principal invested

r = interest rate per compound period
n = number of compound periods

For example, if $1,000 is invested at 8% interest, compounded
quarterly, we can calculate the total compounded amount after two years by
substituting into the formula the values:

1000 for P

0.08/4 = 0.02 forr

2X 4 =8forn

S = 1000(1 + 0.02)¢

= 1000(1.02)®

= $1,171.66

In the above case we solved for the value S given the otherthree values
of P, r, and n. At timesit is useful, if not necessary, to solve for any one of
these four variables given the other three. By algebraic manipulation we can
derive the formulas to express any variable in terms of the other three
variables:

P=S/(1 +r)

r =(S/P)/n_1

n=In(S/P)/In(l +1)

In the program that follows, the three known values are keyed in
according to the following scheme:

Variable AssociatedKey

S A

P B

r C

n D

After the value of each known variableis keyed into the display, its
associated label key A through D is pressed. This may be done in any order.
Pressing the key associated with the unknown variable subsequently sends
its calculated value to the display.

The strategy employed in this program exploits the use of the data
entry flag F3. As each of the functions is invoked, flag F3 is tested. If the
flag is set, indicating a value has been keyed in immediately prior to
invoking the function, the value is stored in a memory register. If, on the
other hand, flag F3 has not been set, this means that no value was keyed in,

The Hewlett-Packard 67 197

implying that this is the variable whose solution is required. The function

then solves for the unknown variable in terms of the other three previously

keyed in values.

Program HP-67-9: Compound Interest

Step Number Instruction Comments

001 f LBL A S

002 h F? 3 Is flag 3 set, i.e., was the value of S keyed

in? (Note: test operation automatically

clearsflag)

003 GTO 1 Yes; go to label 1

004 RCL 2 No; solve for S in terms of P,r, and n;

recalls value of P to display

005 RCL 3 1+r

006 RCL 4 n

007 h y* +n"

008 x s=P(1+n"
009 h RTN

010 f LBL 1 Value of S has been keyed in

011 STO 1 Stores S in R1

012 h RTN

013 f LBL B P

014 h F? 3 Was the value of P keyed in?

015 GTO 2 Yes; go to label 2

016 RCL 1 No; solve for P; recalls value of S to display

017 RCL 3 1+4r

018 RCL 4 n

019 h y* (1+n"

020 + P=s/(1+n"
021 h RTN

022 f LBL 2 Value of P has been keyed in

023 STO 2 Stores P in R2

024 h RTN

025 f LBL C r

026 h F? 3 Was the value of r keyed in?

027 GTO 3 Yes; go to label 3

No: solve for r in terms of S, P,and n

028 RCL 1 S

029 RCL 2 P

030 + S/P

031 RCL 4 n

198 Programmable Pocket Calculators

Program HP-67-9 (cont'd)

Step Number Instruction Comments

032 h 1/x 1/n

033 hy (s/p) 1m
034

035 - r=(s/p)/" 1
036 h RTN

037 f LBL 3

038 1

039 + r+ 1

040 STO 3 Saves (r + 1) in R3

041 h RTN

042 f LBL D n

043 h F? 3 Was value of n keyed in?

044 GTO 4 Yes; go to label 4

No; solve for n in terms of S,P, and r

045 RCL 1 S

046 RCL 2 P

047 + s/p

048 f LN In(S/P)

049 RCL 3 T+r

050 f LN In(1 +r)

051 + n=In(S/P) /In{1 +r)

052 h RTN

053 f LBL 4

054 STO 4 Stores value of n in R4

055 h RTN

COMPOUND INTEREST
SOLVES S=P(1+r)" FOR ANY

 VARIABLE GIVEN THE OTHER THREE p

NO. IMEPRINCIPAL RATE PERIOD

Fig. 8-12

A point worth mentioning aboutthis program is that when the value
of r is pressed, the value of r + 1 is stored into register 3 for ease of
computation.

Should it be desired to record this program on a magnetic card,it is
recommended thatit be marked as shown in Fig. 8-12 and inserted in the
window slot to remind the user of the association between the variables and
the label keys.

The Hewlett-Packard 67 199

Schematic HP-67-9

1. Solve for Sgiven P = 1,000; r = 0.02; n = 8

2. Solve for n given S 5,639.24; P = 4,500; r = 0.01625

Ss 1 2 3 4

K switch [press key in steps switch

D -| fCcL a) -an| -wo

mode HP-67-9 mode

Ss 5 6 7 8

K 1000 B .02 Cc

D 1000. 1000.00 .02 1.02

Cc P r r+1

Ss 9 10 11 12

K 8 D A 5639.24

D 8. 8.00 1171.76 5639.24

Cc n value of S is S

computed

automatically

S 13 14 15 16

K A 4500 B 0.01625

D 5639.24 4500. 4500.00 0.01625

Cc P r

Ss 17 18

K Cc D

D 1.02 14.00

Cc r+ 1 (display value of n

rounded to calculated by

two decimal places) program

Further Uses of the | Register

1. DSP (i). These keystrokes have the effect of setting the display to

the number of rounded decimal places specified by whatever value is

contained in the I register.

Example 13

S 1 2 3 4 5

K 5 h STI DSP (i)

D 5. 5. 5.00 5.00 5.00000

(oy 5 now in

| register

200 Programmable Pocket Calculators

2. GTO (i). If the I register contains a value from 1 to 19, then an

unconditional transfer to the label specified is effected. Usually, of course,

such a number will be an integer. If it is not, transfer is made to the label

specified by the integral portion of the value in the I register. Labels 1

through 9 represent none other than themselves. The values 10 through 14

refer to labels A through E, respectively, while 15 through 19 refer to labels

a through e. For example, if the I register contains the value 17, and the

GTO (i) instruction is encountered during execution of the program, then

an unconditional transfer is made to g LBL f c. If such a label does not
exist, the program is halted with the word Error in the display.

If the value in the I register is a negative number between -1 and -999

and the GTO (i) instruction is executed, transfer of control during

execution is sent back in program memory the number of steps specified by

that negative value in the I register, wrapping around the memory if
necessary.

3. GSB (i). These keystrokes have an effect analogous to the GTO (i)

instruction, which was just described. For example, executing a GSB (i)

instruction with a value of 3 in the I register has the effect of calling the

subroutine identified by an f LBL 3 instruction.

The Smart Card Reader

In our description of the manner in which one can record a program

on a magnetic card, the reader may have been left with the impression thatit

is the program steps only that are stored on the magnetic card. In point of

fact, other information besides the program is recorded automatically onto

the card. This includes the current status of the four flags FO through F3,

the current trigonometric mode, and the current display format. When this

card is read into the calculator on a subsequent occasion, all of these

settings are automatically effected.

In addition to storing a program onto a magnetic card, the contents of

the primary storage registers and register I, as well as the contents of the

secondary storage registers may be recorded for subsequent use onto a

magnetic card by means of the W/DATA instruction.

Debugging and Editing Programs on the HP-67

One would be guilty of excessive wishful thinking if one believed that

a program written to solve a particular problem on the HP-67 will work the

first time it is tried. It might, but the chances are awfully great that it won’t.

And it is not necessarily any reflection on the programmer. It is just in the

nature of programming to make mistakes, some subtle and others not so

subtle. In order to find and correct errors—to ‘‘debug’’ the program as the

professional programmers describe it—the calculator has features that

The Hewlett-Packard 67 201

greatly assist the user in making any necessary modifications. In generalit is

not required to rekey in the program each time a correction is needed.

The HP-67 is equipped with the following editing features:

1. Each instruction in any of the 224 program memory locations may be

displayed. This is done by pressing the [GTO] and [.] keys, followed

by the three digit program memory address in RUN mode and then

switching to W/PRGM mode.

2. A program may be stepped through sequentially in either a forward or

backward manner to examine successive memory locations by using

the [SST] or [h] [BST] keys in W/PRGM mode.

3. An instruction stored in a program location in memory may be

replaced by a new instruction.

4. An instruction may be deleted from program memory by using the [h]

[DEL] keys.

5. Programs may be merged into memory by using the [g] [MERGE]

keys.

A useful debugging techniqueis to incorporate a PAUSE instruction

into the program at critical junctures so that intermediate results can be

examined and verified.

Pressing the [SST] key in RUN mode displays the current instruction

and its location number as long as the key is held down. When the key is

released, that instruction is executed.

Some Final Remarks on the HP-67

As will be quite apparent, a calculator as sophisticated as the HP-67

cannot be adequately treated in a book in which so many other calculators

are included. It is clear that a sizable book could easily be devoted entirely

to this one calculator. For pragmatic reasons, we shall have to conclude our

discussion of the HP-67 and respectfully refer the reader to the 341 page

Owner’s Handbook and Programming Guide, which is supplied free with

the purchase of the calculator.

CHAPTER NINE

THE HEWLETT-PACKARD
19C AND 29C

Probably as a result of the popularity achieved by the continuous

memory feature of the HP-25C, Hewlett-Packard introduced in the latter

part of 1977 two new advanced programmable calculators, both of which

had this continuous memory feature. One of these calculators, the HP-19C,

represents a milestone in the development of programmable pocket

calculators in that, in addition to its continuous memory, it has a built-in

thermal printer that may be used to print out results or to list an entire

program. In addition to the fact that it prints silently on heat-sensitive

paper, the complete unit—calculator and printer combined—slip easily into

a shirt pocket. For those individuals who do not need the printing feature,

Hewlett-Packard released, at the same time as it did the HP-19C, a model

without a printer called the HP-29C. Programming both calculators is

identical except for the printer functions, which are available only on the

HP-19C. For this reason, both models will be treated identically in this

chapter, except that the special features relating to the printing mechanism

on the HP-19C will be treated separately at the end of the chapter.

Pictures of the HP-19C and HP-29C are shown in Fig. 9-1 and Fig. 9-

2 respectively. Both the HP-19C and HP-29C permit a program to be 98

steps long. Each memory location, however, may take 1, 2, 3, or even 4

keystrokes, thereby providing greater memory efficiency. Of the 30 ad-

dressable storage registers that are available for the storage of data, 16 of

them are supported by continuous memory along with the complete 98 steps

- of program memory, the display, and the format of the display.

Both calculators are rich in useful scientific functions including

trigonometric functions, polar-rectangular conversions, decimal and

nondecimal hour conversion, three angular modes, logarithmic functions,

and a variety ofstatistical functions.

To facilitate ease of writing sophisticated programs, both models have

six conditional branch instructions, in addition to an increment/decrement

and skip-on-zero instruction. Addressing may be done by referring to

labels, which may also be indirectly addressed. Three levels of subroutines

are possible on both models, in addition to a variety of useful editing

features.

202

The Hewlett-Packard 19C and 29C 203

Prat
Pax

Fig. 9-1 HP-19C (Courtesy Hewlett-Packard Company)

Programming the HP-19C/29C

A textile manufacturer has a series of orders on hand for a particular

fabric. Each of the lengths of fabric ordered is specified in lengths offeet.

The textile manufacturer, however, has to set up his machinery in units of

yards and tenths of a yard. In view of this fact, the manufacturer must

calculate for each order expressed in feet the equivalent length in yards and

tenths of a yard. For example,if a bolt of cloth measured 124 feet, he would

have to calculate the required number of yards according to the following

schematic:

204 Programmable Pocket Calculators

Fig. 9-2 HP-29C (Courtesy Hewlett-Packard Company)

Example 1

S 1 2 3 4 5 6

K f fix 1 124 ENTER? 3 +

D 0.0 124. 124.0 3. 41.3

c fix the display 124 ft = 41.3 yd

to one decimal

place

Steps 1 and 2 in Example 1 fix the display to one decimal place

accuracy, since we are interested only in yards and tenths of a yard.

Steps 3 through 6 would have to be keyed in each time it is desired to

convert a length of fabric expressed in feet to its equivalent length in yards

and tenths of a yard. On a programmable calculator such as the HP-

19C/29C, a sequence of instructions can be stored in the calculator’s

memory in the form of a program and accessed each time it is required

without having to undergo the tedium of having to key it in each time.

The Hewlett-Packard 19C and 29C 205

Program HP-19C/29C-1: Feet to Yards Conversion

Instruction Comments

ENTER? Copies length expressed in feet from the

3

O
x
»

O
0
0

X
x
®

O
D
x
O

N
o

B
U
N

=
w
n

display or x register into the y register

Calculates length in yd = length in ft/3

Keying in the Program

. Switch the calculator into program mode; thatis, slide the switch to

PRGM.
. Press the [f] [PRGM] keys. This has the effect of clearing the program

memory.
. Key in the instructions of Program HP-19C/29C-1 in exactly the same

sequence as shown.

. Slide the switch to RUN mode.

Running the Program

. Press the [f] [fix][1] keys to set the proper display format.

. Press the keys marked [g] [RTN].

. Key in the value of the length expressed in feet.

. Press the Run/Stop key marked [R/S]. The program will auto-

matically be executed from its beginning, and the length expressed in

yards will appear in the display.

. Repeat steps 2 through 4 for each new value to be converted.

Schematic HP-19C/29C-1
2 3 4

[31 switch] f PRGM key in steps *ide suit]

to PRGM 00 of Program | to RUN

HP-19C/29C-1

clear program

memory

5 6 7 8 9

f FIX 1 gRTN 124 R/S

0.0 124, 413

position program length in feet length in yards

at its beginning

10 11 12

g RTN 197 R/S ...etc.

41.3 197. 65.7

197 ft = 65.7 yd

206 Programmable Pocket Calculators

Thus we see that 124 feet is equivalent to 41.3 yards, and 197 feet is

equivalent to 65.7 yards.

It may seem to the reader that very little if anything at all has been

gained by keying in the program for repeated use. This may indeed be the

case for the illustration we have presented, but it is atypical of the vast

variety of programs that have to be solved in everyday life. This will become

apparent in our next program, which is of a slightly more sophisticated

nature.

The Effective Annual Interest Rate

Banks across the nation regularly advertise for would-be investors

with slogans such as ‘5% savings account compounded quarterly—

effective annual interest rate 5.09%.’ The reason why the effective rate is

higher than the nominal rate is that when an account is compounded,

interest is made on the interest as well.

The effective annual interest rate E may be calculated from the

formula

E=1[1+ (t/t)-1

where

nominal rate of interest, e.g., 5%

t = number of times per year interest is compounded, e.g., quarterly

= 4, semiannually = 2

Thus to calculate the effective annualinterest of a 5% savings account

compounded quarterly, we simply substitute the value 0.05 for 5, and 4 for t

in the above formula.

E = [1 + (0.05/4)]*-1

Example 2: Evaluate [1 + (0.05/4)]*-1

S 1 2 3 4 5 6

K f fix 4 .05 ENTER?® 4 +

D 0.00 0.05 0.0500 4, 0.0125

Cc r t r/t

S 7 8 9 10 11 12

K 1 + 4 fyX 1 —

D 1. 1.0125 4 1.0509 1 0.0509

c 1+ (rf0) t [1+ (r/0]t E=[1+ (rt —1

When a program is run the instructions are ordinarily executed in

sequence, one instruction after the next. On occasions, however, it is

desirable to deviate from this sequential processing by jumping to some

other point in the program. For this purpose, a label may be used to define

The Hewlett-Packard 19C and 29C 207

such a point. On the HP-19C/29C there are ten such labels, which are

referred to as LBL 0 to LBL 9. Whenever a label is required, the keystrokes

[g][LBL], followed by a digit key 0 - 9 is inserted in the appropriate place in

the program. This label instruction merely serves as a marker and has no

other effect on the program.

When a jump to a particular label is required in a program, the go to

instruction (GTO)is used. If a jump is required to label 5, for example, the

unconditional transfer to the label is effected by a GTO 5 instruction. When

the GTO instruction is encountered during execution of the program,

control is sent directly to the location containing the f LBL 5 instruction—

wherever it may be located in the program—and execution resumes in the

normal sequential fashion from that point.

In the program we are about to present, the g LBL 1 instruction is

used as a marker for the beginning of the program so that the program may

be reinitiated by a simple GTO 1 instruction, which is the last instruction in

the program. This obviates the need to press [g] [RTN] each time the

program is re-executed, as was the case in our first simple example.

The Run/Stop key stops execution of the program. This allows the

user to not only view the contents of the display but permits him to key in

any data items that may be needed by the program. Once the data item has

been keyed in and/or the contents of the display observed, the program can

be restarted by pressing this same [R/S] key in RUN mode.

As mentioned earlier, the formula that calculates the effective annual

interest rate requires that the interest rate r be expressed as a decimal

fraction. Therefore, for a 5%interest rate, a value of 0.05 must be used.

Similarly, an interest rate of 6 1/4%requires the value 0.0625 to be used as

the value of r in the formula. In order to lighten the burden of the user, the

program that calculates the effective annual interest rate permits him or her

to key in the interest rate as a percentage. That is, a 5% interest rate would

be keyed into the calculator simply as a 5; similarly, a 6 1/4% interest rate

would be keyed in as 6.25. In order to convert this value of r into a form

suitable for use in the formula, all that is necessary is that the value keyed in

be divided by 100.

For similar reasons, the final effective annual interest rate E as

calculated by the program is multiplied by 100 before the program halts

with this value in the display. Thus, an effective annual interest rate of

5.09%will simply be displayed as 5.09 by the program.

Program HP-19C/29C-2: Effective Annual Interest Rate

Instruction Comments

g LBL 1 Defines label 1

1
0 Divides the interest rate keyed in by 100 for

0 use in the formula

208

Instruc

R/S

STO 1

X
0
0

=

R/S

GTO 1

Programmable Pocket Calculators

Program HP-19C/29C-2 (cont'd)
tion Comments

Halts program execution to permit the value

of t to be keyed in

Saves t in register 1

rit

1+ (r/t)

Recalls the value of t to the x register,
pushing the value 1 + (r/t) into the y register

Calculates [1 + (r/t)]t

Calculates E = [1 + {r/1)]T—1

Multiplies the resulting interest rate by 100

and halts the program to permit the final

value to be read

Transfers control unconditionally to LBL 1

so that the next value of E can be calculated

Schematic HP-19C/29C-2

O
x
o
»

i

O
O

X
x
X
”

O
0
O
X
x
®

O
0
0

Xx
X®

»

1

lide switcl

to PRGM

11

R/S
5.09

16

6.25

6.25

]
2 3 4

F PRGM key in steps slide switc

00 of Program to RUN

HP-19C/29C-2

7 8 9

g RTN 5 R/S

0.00 5. 0.05

resets program r

to its beginning

12 13 14

5 R/S 365

5 0.05 365.

t

17 18 19

R/S 2 R/S

0.06 2. 6.35

E

]
f fix

10

H

15

R/S

5.13

. . etc.

It is necessary to press the [g] [RTN] keys only once to reset the

program to its beginning in RUN mode. This is because immediately after

the program has been keyed in the program pointer points to the last

The Hewlett-Packard 19C and 29C 209

instruction of the program. To commence execution of the program from

that point would be a fruitless exercise. The [g][RTN] keys set the program

pointer to the beginning of program memory, where our program to

calculate the effective annual interest begins. The GTO 1 instruction of the

program serves this very same purpose for the second and subsequent runs

of the program.

The person who has the chore of calculating the effective annual

interest rate for a large number of transactions at various times throughout

a work period may reap the advantages of a continuous memory calculator,

since once keyed in, the program resides in memory continuously even when

the calculator is shut off. It may be switched on at any time thereafter, and

results can be obtained immediately without having to rekey in the

program.

Evaluating a Function between Limits

In many disciplines it is sometimes necessary to evaluate a given

function between certain limits, In the simplest case we might have a

function of x that has to be evaluated for all values of x between a certain

minimum value of x and a certain maximum value of x, in steps of a given

increment.

The program that follows permits a user to key in the minimum value,

followed by the maximum value and then by the increment. The function

being evaluated is:

f(x) = (* + 1)/5

In each of the programs presented so far in this chapter, each and

every instruction in the program was executed in sequence. At times,

however, it becomes necessary to execute a given sequence of instructions,

only if certain conditions are met, and if so, to branch around them. This

concept of conditional branching forms the basis of sophisticated pro-

gramming in thatit allows for an elaborate network of decisions to be made
during execution of the program.

The program that follows introduces us to the means by which

decisions are made on the HP-19C/29C calculators. There are a total of

eight conditional branch instructions. These eight instructions allow the

following questions to be asked during program execution:

Comparisons between the x Register and Zero

1. Are the contents of the x register equal to zero? (g x = 0)

2. Is the x register not equal to zero? (gx # 0)

3. Is the x register greater than zero? (g x>0)

4. Is the x registerless than zero? (g x<0)

210 Programmable Pocket Calculators

Comparisons between the x Register and they Register

5. Are the contents of the x register equal to the contents of the y
register? (fx = y)

6. Is the x register not equal to the y register? (f x = y)

7. Is the x register greater than the y register? (f x>>y)

8. Is the x register less than or equal to the y register? (f x<y)

Whenever a decision has to be made in a program, one of the eight

tests cited above must be selected. Of course, one would select that which is

most convenient for the given situation. Whichever one is selected,

however, the comparison is made, and if the comparison is true then

execution continues in the normal sequential fashion with the instruction
contained in the memory location immediately following the conditional
branch instruction. However, if the condition is not satisfied, then the

calculator automatically skips the instruction contained in the following

memory location, and execution continues in the normal manner with the

second instruction following the conditional branch instruction.

The following diagram illustrates the manner in which each of these

conditional branch instructions operates.

instruction

i
instruction

{
®

®

Vv

instruction

¥
false true L conditional test

 3instruction

¥
instruction

instruction

It is necessary to employ a conditional test in the next program to

determine if the end limit of the interval has been reached and to terminate

the program if it has.

The Hewlett-Packard 19C and 29C 211

As an alternative to the R/S instruction, which stops execution of the

program during RUN mode, the user may opt to use the PAUSE in-

struction. Unlike the [R/S] key, which must be pressed again to resume

execution of the program, the PAUSE instruction, when encountered in the

program, stops execution temporarily—for one second to be exact. During

that time the contents of the display may be viewed and recorded if

necessary. If the user feels that one second is not long enough, several

PAUSE instructions in succession may be included.

The operation of Program HP-19C/29C-3 is rather straightforward.

The start and end points of the interval together with the value of the in-

crement are keyed in by the user at the beginning and are stored by the

program into data storage registers RO through R2 respectively. The starting

point of the interval represents the first value of x to be evaluated by the

function. After this value is displayed, the function is evaluated and its

result also is displayed. The next value of x is then calculated by adding the

increment to the current value of x. If this new value is within the bounds of

the interval—that is, it is not greater than the end point value—then we are

not done processing and the function must be evaluated once again.

However, if the new value of x is greater than the end value, the program

will have run its course, and execution is automatically halted—when the

R/S instruction is encountered.

When keying in a program, the observant user will notice the rather

unique format of the display when the calculator is switched to PRGM

mode. This format reflects both the location of the instruction within the

memory (00 to 98) along with the instruction contained in that location. The

leftmost pair of digits in the display represents the location of the in-

struction, while the remaining digits represent the instruction itself in coded

form. When the [f] [PRGM] keys are depressed, the complete memory is

cleared and the instruction pointeris set to location 00, as is evidenced by

the display. To say that the memory has been ‘‘cleared’’ on the HP-

19C/29C means that an R/S instruction has been stored in all 98 available

program locations. As a matter of fact, if the single step key, marked [SST],

is repeatedly pressed the display will show the same instruction in the right

hand of the display in each successive memory location. On the HP-29C this

instruction is coded as 74, while on the 19C it is coded as 64. In each case

these numbers refer to the same instruction, namely the R/S.

Whenever an instruction is keyed into program memory, a number

appears in the display. This number uniquely locates the key associated with

that instruction by row and by column. For example, on the HP-29C keying

the R/S instruction into a program sends the number 74 to the display. This

number 74 should be read as: seventh row down from the top of the

calculator, fourth column across from the left. Similarly, the [CHS] key,

which is in the third row, second column, is coded as 32. The code for the

212 Programmable Pocket Calculators

log key is 14 43, since the [f] prefix key, which is located in the first row,

fourth column, is needed to access the log function, located in the fourth

row, third column. The instruction STO 7 is coded as 23 07, where the digit

keys 0 - 9 are represented by themselves. Familiarity with these codes often

proves helpful when debugging and editing programs.

In all succeeding programs in this chapter, we shall include the

location for each instruction.

It is time now to return to our program that evaluates a function

between given limits.

Program HP-19C/29C-3: Evaluating a Function between
Limits

Location Instruction Comments

01 gLBL O Defines label 0

02 STO 0 Stores starting value in the display into RO

03 R/S Halts program to allow user to key in the

ending value

04 STO 1 Stores ending value in R1

05 R/S Halts program to allow for the keying in of

the increment

06 STO 2 Stores increment in R2

07 RCL O x

08 g LBL 1 Defines label 1 - the beginning of the main
processing loop

09 f PAUSE Pauses to display current value of x

10 g eX

11 1

12 + Calculates the value of f(x) = (eX + 1)/6

13 5

14 +

15 f PAUSE
16 f PAUSE ! Pauses to display the result

17 RCL 2 } Adds increment to current value of x
18 STO +0 contained in RO

19 RCL 1

20 RCL 0 Compares the current x value to the ending

21 fx<y value and loops back to label 1 if we are not

yet done

22 GTO 1

23 R/S Halts program execution

24 GTO 0 Transfers to label O if the program is to be

run again

The Hewlett-Packard 19C and 29C

Schematic HP-19C/29C-3

s 1 2 3 4
K [si switch f PRGM key in steps slide switc

D to PRGM 00 of Program to RUN

H 3P-19C/29C-.

Ss 6 7 8 9

K 2 GTO 0 1

D 0.00 0.00 0.00

—N

Cc sets up program pointer to

label 0, which is the beginning

of the program

s 11 12 13 14
K R/S 5 R/S 25
D —1.00 05 0.50 0.25
Cc start point end point increment

s 16 17 18 19
K oo _ _ LL
D [—1.00 1 [027 7] [=o 75] ES
c x fx) Tx fl—75)

s 21 22 23 24
K __ _ _ oo _

op [oa] [Zozs] [os] [000]
c (—5 x f(—.25) x

s 26 27 28 29
K

© aoe 1 MT Qz2s | © Aen 1 nga|
b 025 ; | 046 | L050 | L053
c x £(.25) x £(.5)

213

f fix

10

CHS

15

R/S

0.75

For an initial value of -1.00, a final value of 0.5, and an increment of

0.25 we find that the function has been evaluated for all the included points.

These may be summarized as follows:

x f(x)

—1.00 0.27

—0.75 0.29

—0.50 0.32

—0.25 0.36

0.00 0.40

0.25 0.46

0.50 0.53

214 Programmable Pocket Calculators

Notice that in steps 7 and 8 of Schematic HP-19C/29C-3, the

[GTO]I[0] keys are pressed manually in order to set the program pointer to

label 0. Of course, the function we used is only one of an infinite number of

different functions that could have been used. The reader may wish to

substitute his or her own function for evaluation.

The Sum of the Cubes of the Digits

An appreciation of the programmable calculator as a ‘‘number

cruncher’” may be realized when it is put to work to solve the following

problem. Are there any three-digit numbers between m and n such that the

sum of the cubes of the digits in that number is equal to the numberitself?

In other words,is there a number abc such that a® + b* + ¢* = abc?

The following program permits a user to key in the starting number

and the finishing number. All the numbers between (and including) these

two limits are then tested to determine whether the sum of the cubes ofits

digits is equal to the numberitself. To process a problem like this by hand is

tedious, to say the least. On the calculatorit is reduced to a joy.

The approach adopted to determine whether the sum of the cubes of

the three digits is equal to the original number is to repeatedly isolate the

rightmost digit from the number being examined. Suppose, for example, we

are examining the number 321. We wish to calculate the sum

BP +2241

and compare the sum with the number 321. However, in order to do so, it is

necessary to isolate each digit of the number individually. This may be done

by dividing the number by 10, and isolating the integer portion of the result.

321/10 = 32.1

The integer portion of this result is 32. If now we multiply this by

10 (32 x 10 = 320) and subtract the result from the original number 321,

the difference will be the rightmost digit, namely 1.

The integer portion of the 32.1 is now treated in exactly the same way

in orderto isolate its rightmost digit, namely 2:

32/10 = 3.2

The integer portion of 3.2 = 3

3x10 =30
32-30=2

The procedure for extracting the rightmost digit of any integer number may

be summarized by the formula:

Rightmost digit = number - Int (number/10) xX 10

The Hewlett-Packard 19C and 29C 215

This formula can be applied repeatedly to any given number to isolate

its digits. For each successive application of the formula, the new number to

be used is the integer portion of the number divided by 10, which was

calculated in the previous iteration.

number = 321

right digit = 321 - Int (321/10) X 10

= 321-320

=1

number = 32

right digit = 32-1Int (32/10) xX 10

= 32-30

=2

number = 3

right digit = 3-1Int (3/10) X 10

-0

n
n

oO
W
w
w

number

In the program that follows advantage is taken of the INTeger

function, which extracts the integer portion of the number in the display.

This function is accessed by means of the [f] [INT] keys.

The companion function to INT is the FRAC function, which extracts

the fractional portion of the number in the display. This function is

accessed by means of the [g] [FRAC] keys.

Program HP-19C/29C-4: The Sum of the Cubes of the
Digits

Location Instruction Comments

01 g LBL O Defines label 0

02 f fix O Sets the display for zero decimal places

03 STO O Stores starting number in RO

04 R/S Halts program execution to permit the user

to key in the final number to be tested

05 STO 3 Stores terminating value in R3

06 g LBL 1 Defines label 1

07 RCL O
Copies current number to be tested into R1

08 STO 1

09 CL x Initializes the sum of the cubes of the digits,

10 STO 2 which will be maintained in R2 to zero

216 Programmable Pocket Calculators

Program HP-19C/29C-4 (cont'd)

Location

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

Instruction

g LBL 2

RCL 1

RCL 1

1

0

f INT

STO 1

1

0

X

ENTER?

g x?

X

STO + 2

RCL 1

gx#0

GTO 2

RCL O

RCL 2

fx=y

R/S

1

STO + 0 }

RCL 3

RCL 0

f x<y

GTO 1

CL x

we
GTO 0

Comments

Defines label 2

Recalls test number to the display

Pushes the value into the stack for later use

Divides test number by 10

Extracts integer portion of test number

divided by 10

Stores this value back in R1

Extracts rightmost digit of number

originally in R1 according to:

Rightmost digit = number — Int

{number/10) X 10

Copies digit into stack

Calculates digit? = digit X digit?

Adds the cubed digit in the display to the

accumulated sum in R2

If all digits have not yet been extracted

from the test number, go to label 2 to

extract the next digit

Original test number

Accumulated sum

Are they equal? i.e., does the sum of the

cubes of the digits in R2 equal the number
itself in RO?

Yes, then halt the program to permit this
number to be noted

Increment the current test number by 1

Ending number

Current test number

If current test number is < ending number

then we are not done, so loop back to
label 1

Halts the program with a zero in the display

to indicate the program has completed
execution

Loops back to label 0 to permit a new range

of numbers to be tested

The Hewlett-Packard 19C and 29C 217

Schematic HP-19C/29C-4

S 1 2 3 4

K slide switch f PRGM key in steps slide switch

D [to PRGM | 00 of Program] [to RUN "

HP-19C/29C4

S 5 6 7

K GTO 0 350

D 350.

Cc starting value

Ss 8 9 10

K R/S 450 R/S

D 350. 450. 370.

Cc ending value 3? +7°+0°=370

S 11 12 13

K R/S R/S R/S

D 371. 407. 0.

c +7 +1 =37 4 + 0° + 7° =407 done

Thus we see that after keying in a starting value of 350 and a terminal

value of 450, the program determines that only three numbers in this

intervalsatisfy the criteria. These numbers are 370, 371, and 407.

Choosing the Most Profitable Pipe

Suppose that a businessman has a need for a length of metal pipe for a

given project. He is offered two pipes of differing lengths and different

internal and external diameters but both made of the same metal. Both

lengths of pipe turn out to be suitable, and the cost for each pipe is the

same. The businessman has to make a choice of which one to buy. He

decides that, in view of the fact that he can dispose of the pipe once he has

completed his project, he will purchase the pipe with the greater amount of

metal since a junk dealer with whom he does business, buys according to

weight. In order to calculate the thickness of each pipe, we need only

calculate the volume of the cylinder with the larger diameter and subtract

from this value the volume of the cylinder with the smaller diameter. (See

Fig. 9-3.)

Volume of the material Volume oflarger cylinder - Volume of smaller

cylinder

(n D¥)/4- (nd*l)/4

[rl(D? - d?)]/4

218 Programmable Pocket Calculators

Fig. 9-3

This formula calculates the volume of the material in a pipe of length /

and diameters D and d, where D represents the external diameter of the pipe

and d represents the internal diameter.

The values of /, D, and d are keyed in for each of the two pipes in

question and the volume of the material calculated for each. These two

values are then compared:if the first has the greater amount of material,

the number1 is sentto the display, while if the second is the greater, 2 is sent

to the display. In the event that the volume of material in both pipesis the

same, zero is displayed.

For ease of programming the expression

V = [In(D?- d?)]/4

is written as a subroutine. The subroutine is invoked twice, once for the

calculation ofthe first pipe and next for the calculation ofthe second pipe.

A subroutine is identified by use of the f LBL instruction in the same

fashion as used previously. The subroutine may be called or invoked by

incorporating the GSB instruction followed by a digit key 0-9 in the

appropriate place in the program. When the GSB instruction is encountered

during program execution, a branch is made directly to the label specified

by the GSB instruction in exactly the same manner as is made by the GTO

instruction. The distinction here is that the calculator automatically

remembers the location in program memory from where the subroutine was
invoked.

When all ofthe instructions of a subroutine have been executed, the g
RTN instruction is used to return control to the instruction immediately

following the call to the subroutine.

Pipe

Location Instruction

01 g LBL O

02 GSB 1

03 GSB 1

04 fx>y

05 GTO 2

06 fx#y

07 GTO 3

08 Cx

09 R/S

10 GTO 0

1 g LBL 2

12 2

13 R/S

14 GTO 0

15 g LBL 3

16 1

17 R/S

18 GTO 0

19 g LBL 1

20 a x’

21 R/S

22 g x

23 —

24 R/S

25 X

26 gm

27 X

28 4

29 +

30 R/S

31 g RTN

The Hewlett-Packard 19C and 29C 219

Program HP-19C/29C-5: Choosing the Most Profitable

Comments

Calculates V1 = the volume of the material

in pipe 1

Calculates V2 = the volume of the material
in pipe 2

V2 >V1?

Yes

V2 # V1?

Yes

V1 = V2; halts with zero in the display

V1 < V2; display a 2

V1 > V2; display a 1

Defines beginning of subroutine

D3?

Halts program to permit the value of d to be
keyed in

d?

D* —d*

Halts program to permit the value of / to

be keyed in

1D? —d?)

nD? —d*)

V = [r(D*—d*)]/4

Halts program to display results

Returns control to the calling routine

From Schematic HP-19C/29C-5 it is clear that in the first case, the

pipe with diameters 6 and 4 and of length 130 has the greater amount of

220 Programmable Pocket Calculators

material and therefore would be the better buy. In the second illustrative

case (see steps 22-34), the two pipes under consideration are shown to

contain the same amount of material.

Schematic HP-19C/29C-5

S 1 2 3 4

K slide switch f PRGM key in steps slide switch

D [to PRGM 1 00 of Program [to RUN]

HP-19C/29C-5

S 5 6 7 8

K f fix 2 GTO 0

D 0.00 0.00 0.00

Ss 9 10 11 12

K 7 R/S 5 R/S

D 7. 49.00 5. 24.00

Cc D d

Ss 13 14 15 16

K 100 R/S 6 R/S

D 100. 1884.96 6. 36.00

Cc 1 V1 D

S 17 18 19 20

K 4 R/S 130 R/S

D 4, 20.00 130. 2042.04

Cc d / J

Ss 21 22 23 24

K R/S 4 R/S 3

D 2.00 4. 16.00 3.

Cc V2 contains D d

more material

S 25 26 27 28

K R/S 9 R/S 5

D 7.00 9. 49.48 5.

Cc / V1 D

S 29 30 3171 32

K R/S 4 R/S 7

D 25.00 4, 9.00 7

Cc d /

S 33 34

K R/S R/S

D 49.48 0.00

Cc v2 volumes are

identical

The Hewlett-Packard 19C and 29C 221

The Month of Birth Problem

Suppose the students of a class are polled for the month of the year in
which they were born. A tally is then made of the number of students born

in January, the number born in February, and so on. The totals are now

examined to determine if there is any particular month that has a
disproportionate number of births.

This tallying operation may be done quite easily on the HP-19C/29C
by making use of its indirect addressing feature.

The HP-19C/29C has a total of 30 data storage registers. Sixteen of

these registers have continuous memory and may be accessed directly with

instructions such as

STO 4
RCL 8

®

etc.

Registers 0-9 may be accessed in this manner, while the remaining six

registers (registers 10-15) must be accessed by pressing the period or

decimal point key followed by a digit key from 0 through 5. For example,

the instruction [STO] [.] [5] stores the contents of the display into memory

register . 5 (R.5). Similarly, the instruction [RCL] [.] [0] recalls the value

contained in register . 0 (R.0) to the display.

In addition to these 16 registers there are 14 registers that are volatile,

meaning that when the calculator is switched off any data stored in them are

lost. The only way in which data may be stored into or recalled from these

registers is through indirect addressing. The entire layout scheme of the

memory registers in the HP-19C/29C is shown on the next page.

It will be noticed from this layout that the 14 volatile storage registers

may be addressed only indirectly by the numbers 16-29. The 16 nonvolatile

storage registers, however, may be addressed using either direct or indirect

addressing techniques.

In order to address a data register indirectly, the indirect address for

the particular register to be accessed must first be stored in register 0. The
lower case key marked [(i)] can then be used to address the desired register

referenced by RO. For example, to store the value 5 into register 20, which

must be addressed indirectly, the following keystrokes must be used:

[20]
[STO] [0]
[5]
[STO] [(1)]

The key sequence [STO] [(i)] may be read as ‘‘store the contents of the

display into the memory register referenced by register 0.”’

222 Programmable Pocket Calculators

Direct Indirect Indirect

Address Address Address

0 0 16

1 1 17

2 2 18

3 3 19

4 4 20

5 5 21

6 6 22

7 7 23

8 8 24

9 9 25

0 10 26

Aa 11 27

2 12 28

3 13 29

4 14

5 15 * 14 Volatile

Storage

16 Nonvolatile Registers

Storage

Registers

* These registers may be addressed only indirectly.

To recall the contents ofregister 8, the conventional key sequence

[RCL] [8]

could be used to directly recall its contents to the display. Alternatively, the

key sequence

8]
[STO] [0]
[RCL] [()]

will perform the equivalent task using the indirect addressing feature of the

HP-19C/29C. While the advantages of this feature may not yet be ap-

parent, when writing complex programs indirect addressing gives the

programmer extra versatility in that a register number does not have to be

explicitly incorporated into the program but can be calculated by the

program, stored in register 0, and then referenced indirectly.

This indirect addressing feature also is available for use by the GTO

and GSB instructions. The instruction

GTO (i)

will transfer control to the label referenced by RO. This value should, of

course, be a number from 0 to 9. The sequence of instructions

The Hewlett-Packard 19C and 29C 223

3
STOO
GTO (i)

will cause the program to branch to label 3. Similarly, the sequence

2

g FRAC
10
X

STOO
GSB (i)

will take a number, divide it by two, extract the remainder, multiply it by

10, and then store the result in RO. A subroutine will then be invoked

depending upon the contents of RO. If the original number in the display

were an integer, executing the above sequence of instructions would have
the effect of calling subroutine 0 if the number were even (i.e., evenly

divisible by 2), while subroutine 5 would be invoked if the number were

odd. (It is suggested that the reader verify thatthisis the case.)

The effect of storing a negative value from -1 to -99 into RO and

then executing a GTO (i) instruction is to cause the program to branch

backwards the number of locations specified by this value. The sequence of

instructions

Location Instruction

10 9

11 CHS

12 STO O

13 GTO (i)

causes the program to branch from location 13 back 9 steps to location 4

when the GTO (i) instruction is encountered. The GSB (i) instruction also

can be used in a similar fashion to invoke a subroutine located back in

memory the number of steps specified by the contents of RO.

Program HP-19C/29C-6: The Month of Birth Problem

Location Instruction Comments

01 g LBL O

02 f Fix O

03 f Reg Clears all 30 data storage registers

04 g LBL 1

224

Location Instruction

05 STO O

06 9

07 9

08 f x=y

09 GTO 2

10 1

1 STO + (i)

12 STO + .3

13 RCL .3

14 R/S

15 GTO 1

16 g LBL 2

17 1

18 STO O

19 g LBL 3

20 f PAUSE

21 RCL (i)

22 f PAUSE

23

24 STO +0

25

26 2

27 RCL O

28 f x<y

29 GTO 3

30 RCL .3

31 R/S

32 GTO 0

Programmable Pocket Calculators

Program HP-19C/29C-6 (cont’d)

S
—
—

m
t
S
m
a
i
t

"

Comments

Stores the month (1-12) into RO to use

indirect addressing

If 99 was keyed in, branches to label 2 to

display results

Adds 1 to one of R1-R12 depending upon
the particular month which was keyed in

and stored in RO

Adds 1 to counter of number of birthdays

keyed in in R.3 and recalls this value to the

display

Halts for next month to be keyed in
and loops

Display results in R1-R12

Initializes the month number in RO to 1

Displays month

Displays number of birthdays in that month

Increments month counter

If we have not yet displayed the results for

all 12 months, then loop

Orelse recall total to display and halt

Schematic HP-19C/29C-6

7

slide switch

to PRGM

2 3 4

f PRGM key in steps slide switch

00 of Program to RUN

HP-19C/29C-6

O
0
D
X
x
®

O
0
0
X
W

O
O
X
O

O
0
0

X
x
X
»

O
D
X
O

O
0
D
X
®

O
0
0
X
O

O
0
0
X
O

O
0
0
x
O

The Hewlett-Packard 19C and 29C

Schematic HP-19C/29C-6 (cont'd)

5 6 7

GTO 0 7.

7.

July

9 10 11

2 R/S 4

2. 2. 4.

February April

13 14 15

5 R/S 9

5. 4. 9.

May September

17 18 19

12. R/S 12

12. 6. 12.

December December

21 22 23

1 R/S 3

1. 8. 3.

January March

25 26 27

4 R/S 6

4, 10. 6.

April June

29 30 31

7 R/S 7

7 12. 7

July July

33 34 35

8 R/S 1

8. 14, 1.

August January

37 38 39

8 R/S 99

8. 16. 99.

August terminate entry

of data

R/S

12

R/S

16

R/S

20

R/S

24

R/S

28

R/S

11.

32

R/S

13.

36

R/S

15.

40

R/S

225

226 Programmable Pocket Calculators

Schematic HP-19C/29C-6 (cont'd)

S 41 42 43 44

K

D 2. 2. 1. 3.

Cc 2 birthdays in 1 in February

January

S 45 46 47 48

K

D 1. 4, 2 6.

c 1 in March 2 in April

Ss 49 50 51 52

K

D 1. 6. 1. 7.

Cc 1 in May 1in June

S 53 54 55 56

K

D 3. 8. 2. 9.

Cc 3in July 2 in August

S 57 58 59 60

K

D 1. 10. 0. 11.

Cc 1 in September none in October

S 61 62 63 64

K

D 0 12. 2 16.

[o none in November 2 in December total

A g LBL O instruction is used at the beginning of the program to mark

the start of the program. Since we are dealing only with integer numbers,

the calculator is fixed at zero decimal places. All of the 30 data storage

registersare cleared by means of the single instruction f REG. The registers

R1-R12 are used in the program to store the frequencies of the occurrence

of the months 1 through 12 in the corresponding registers. Immediately

following the f REG instruction is another marker g LBL 1, which defines

the start of the main processing loop. Within this loop, the user keysin the

particular month of birth as an integer from 1 to 12 and then presses the
[R/S] key. The program first checks to see if this number is equalto the

number 99. This arbitrarily selected numberis used as a signal that no more
data is to be keyed in. If the number keyed in is not 99, then it is stored into

The Hewlett-Packard 19C and 29C 227

register RO so that one of the registers R1-R12 may be indirectly addressed.

The sequence of instructions

1 STO + (i)

has the effect of adding 1 to the register specified in RO. Thus, if the value 3

were keyed in, indicating the month of birth is March, then after storing this

value in RO the two instructions listed above would increment the contents

of R3by 1.

After the appropriate frequency counter is updated, the program adds

1 to the contents of register R.3. This register is used to maintain a running

count of the number of data items keyed in thus far. This value is recalled to

the display at each pass through the loop. The readeris alerted to the fact

that register R.1, for example, could not have been used to maintain this

count since R.1 is really register 11, which is used to maintain the frequency

count of the number of birthdays in November, the eleventh month.

When the number 99 is keyed in, indicating the end of data, a branch

is made to label 2. At this point we are ready to display the frequency count

for all of the months 1-12. To initiate this process, 1 is stored in register 0.

The PAUSE instruction permits this 1 to be viewed perliminary to the

display of the frequency count for this month, which is recalled indirectly to

the display. Another PAUSE instruction permits this value to be noted.

Register RO is then incremented by 1 and compared with the number

12. If 12 has not yet been reached—thatis, we have not yet displayed all of

our results—control is sent to label 3 where the next month is displayed

followed by its corresponding frequency count.

Once the frequency for all of the twelve months has been displayed,

the total number of data items is recalled to the display and the program

halted.

Additional Features of the HP-19C/29C

The DSZ and ISZ Instructions. When programming certain types of

problems, it is frequently necessary to iterate through a loop a specific

number of times. For ease of programming such problems, the instructions

DSZ and ISZ are provided.

The Decrement and Skip on Zero (DSZ) instruction performs a

twofold task. Whenever a DSZ instruction is encountered during program

execution, the contents of register RO is first decremented by 1. Next a test

is made to determine if the resulting contents of RO is zero. If it is, the next

instruction in sequence is automatically skipped, and execution continues

with the second instruction following the DSZ instruction. If, however, the

contents of RO is not zero then execution continues in the normal sequential

fashion with the instruction immediately following the DSZ instruction. As

an example of the use of the DSZ instruction, suppose it were desired to

execute a given set of instructions exactly 9 times. Enclosing the set of

228 Programmable Pocket Calculators

instructions by the following set of instructions will accomplish the task

efficiently.

9
STOO

——g LBL 1

set of

instructions

to be

repeated

DSz
GTO 1

The value 9 is stored into RO since this is the number of times we wish to

execute the loop. The label 1 is used to identify the beginning of the loop.

The DSZ instruction is placed after the last instruction of the set to be

repeated. When this instruction is encountered, the contents of RO will be

decremented by 1 and a branch made back to the beginning of the loop at

label 1, only if its contents are not zero. This process would be repeated

exactly 9 times until the value in RO is decremented from a 1 to a 0, at which

point the GTO 1 instruction will be skipped.

The Increment and Skip on Zero (ISZ) instruction performs in a
similar manner to the DSZ instruction. As the name of the instruction

implies, the role of the ISZ instruction is to first increment the contents of
register RO by 1 and then skip the following instruction if the resulting
contents of RO are zero. This instruction is useful when it is desired to count
up from a negative value to 0.

The Printing Feature of the HP-19C. As mentioned earlier, one of the
more significant advances in programmable pocket calculators is in-
corporated in the HP-19C, which hasa built-in thermal printer. Not only is
it possible to make it print out a complete program (using the PRT PRGM
instruction) but, in addition, intermediate results may be printed as well as
the contents of the stack registers, the contents of the 30 storage data
registers, and the contents of the statistical data storage registers. These are
used by the statistical functions on the HP-19C.

In each of the programs described in this chapter, where a PAUSE
instruction has been used to permit the viewing of the contents of the
display,it may be replaced by a PR x instruction. This will have the effect of
sending the contents of the display or x register to the printer, thus
providing a hard copy ofthe results.

To print and label the contents of the stack, the PRT STK instruction
is used. The contents of the data storage registers may be printed and
labeled by the PRT REG instruction, while the PRT I instruction prints
and labels the contents ofthe statistical storage registers. In order to space

The Hewlett-Packard 19C and 29C 229

the paper a single line (i.e., to print a blank line) the instruction SPC is used.

Naturally, several SPC instructions may be used in succession to skip

multiple lines on the printer.

Debugging and Editing Programs on the HP-19C/29C

The HP-19C/29C calculators provide the user with many state-of-the-

art tools, which aid greatly in the debugging of programs. For example, a

user might wish to execute his program one step at a time in order to watch

the progress of the program during the course of its execution. In RUN

mode, pressing the Single STep key marked [SST] has the effect of display-

ing both the location and the instruction stored in the location in program

memory for as long as the key is depressed. Releasing the [SST] key causes

that particular instruction to be executed. This [SST] key may be pressed to

monitor the execution of successive instructions of the program.

The pause key may be used in RUN mode to slow down execution of

the program sufficiently to enable the user to view the changing contents of

the display. This slow motion remains in effect for as long as the pause key

is depressed.

One should not be surprised to find that a first attempt at writing a

program does not succeed. Invariably the program has to be amended

before it runs in precisely the manner intended. When an error has been

detected in a program or where a sequence of instructions is found that

needs to be amended or edited, the program need not be keyed in again in its

entirety, but rather advantage may be taken of the editing features that are

provided on the HP-19C/29C.

To insert an instruction or a set of instructions in a given portion of a

program, the calculator must first be positioned at that point. This may be

done in one of several ways. In PRGM mode, the [SST] key can be used to

successively step through the program memory. This key can be used until

the desired location or instruction appears in the display. Similarly, the

Back STep key [BST] can be used to back step through the program to the

desired location.
If the precise location for the modification is known in advance, the

calculator may be positioned directly to that location by pressing the [GTO]

and [.] keys followed by the two-digit location number in RUN mode.

[GTO] [.] [2] [5], for example, will position the calculatorat location 25. In

a similar fashion, to position the calculator at a specified location, the

[GTO] key followed bya digit key 0-9 in RUN mode will achieve the desired

result. Pressing the keys [GTO] [6], for example, has the effect of

positioning the calculator at label 6.

Once the desired location has been reached, the instruction in that

location can be deleted by simply pressing the [g] [Del] keys in PRGM

mode. All of the instructions following the deleted instruction are

automatically moved up a location in program memory.

230 Programmable Pocket Calculators

To insert an instruction before the current instruction in the display,

simply key in the desired instruction or instructions in the normal manner in

PRGM mode. The portion of the program following the inserted section

will have been pushed down automatically.

CHAPTER TEN

THE HEWLETT-PACKARD
33E

In May 1978 Hewlett-Packard announced and released its E-series of

calculators: the HP-31E, HP-32E, and HP-33E. The sleek looking HP-33E

is a scientific pocket programmable calculator that supercedes the HP-25

and has a much larger display, making for considerably easier reading. It

has 49 program locations, each of which may contain up to three

keystrokes. In addition to the 49 line program memory, the HP-33E has

eight addressable data storage registers. The 10-digit display is different

from all previous Hewlett-Packard models in that commas are

automatically inserted at the appropriate places when displaying numbers

greater than 999 in the standard fixed format.

Another first time feature is a self-checking routine by which the user

can be perfectly confident that the calculator is functioning properly. By

pressing the keys

an internal self-checking routineis activated. If all the internal circuitry is in

order, there will be a delay of a few seconds, after which the display will

contain the code

-8,8,8,8,8,8,8,8,8,8,

The HP-33E is a sophisticated calculator containing a wealth of

scientific and statistical functions. A picture of the HP-33E is shown in Fig.

10-1.
The HP-33E with its 49 lines of fully merged program memory has a

variety of specialized functions that make the calculator a veritable

workhorse. To enable the programmer to make quick and easy decisions in

a program, the HP-33E has eight conditional branch instructions, which

seems to be the standard adopted on almost all of the Hewlett-Packard

models.

On the HP-33E greater program efficiency is gained by the use of

subroutines, which may be nested three levels deep.

The HP-33E provides the user with the option of displaying data in

one of three different modes. In addition to the standard fixed place

decimal and scientific notation formats, the HP-33E permits numbers to be

231

232 Programmable Pocket Calculators

Fig. 10-1 HP-33E (Courtesy Hewlett-Packard Company)

displayed in engineering notation. In this mode, all exponents are shown as
a multiple of three. A special MANTissa key allowsthe user to temporarily
override the current display format and view the entire 10 digit accuracy of
the mantissa in the display for as long as the key is held down or for a period
of about one second. Thecalculator “wakes up’’ in fixed four decimal place
format when switched on.

The Hewlett-Packard 33E 233

Programming the HP-33E

F to C Temperature Conversion

In most of the United States, temperatures are still given in the

Fahrenheit scale even though there is much pressure exerted to convert to

the metric system, which expresses temperatures in the Celsius scale,

sometimes called the Centigrade scale. Let us suppose that a college student

has the task of converting a temperature expressed in the Fahrenheit scale

to its equivalent in the Celsius scale. To carry out such a conversion, the

student resorts to the following formula that may be used for converting

any Fahrenheit temperature to its equivalent Celsius temperature:

C= (F-32)/1.8

Example 1: Convert 29.8°Fto °C

Ss 1 2 3 4 5 6
K 29.8 ENTER? 32 - 18 +
D 29.8 29.8000 32. —2.2000 18 —1.2222
c °F 7 F—32 °C

From this schematic itis clear that 29.8°F is equivalent to -1.2222°C.

If our hypothetical student had the onerous task of having to convert

a list of 100 temperatures from Fahrenheit to Celsius, he would have to

repeat the above sequence of keystrokes for each temperature to be

converted. This would mean that over 600 keystrokes would be necessary in

order to convert the 100 temperatures in the list. Much time and effort

could be saved, however, by utilizing the programmability of the HP-33E.

When this calculator is switched into the special PRGM (program) mode,

any keystrokes that are subsequently keyed in are automatically stored into

the calculator’s memory and are remembered by the calculator until either

they are replaced by new ones or the machineis switched off.

Program HP-33E-1: Fahrenheit to Celsius
Temperature Conversion

Instruction Comments

ENTER? Copies the temperature expressed in
Fahrenheit from the x register into the

y register

3 Enters the number

2 32 into the display

— F—32

Enters the number

1.8 into the display

+ Cc =(F—32)/18

234 Programmable Pocket Calculators

In Example 1 on the previous page, each of the keystrokes in the

sequence from step 2 to step 6 would have to be repeated for each tem-

perature to be converted. This sequence therefore becomes the body of

Program HP-33E-1 that converts a temperature keyed into the display from

Fahrenheit to Celsius.

Keying in the Program

1. Switch the calculator into program mode by sliding the PRGM-RUN

switch to PRGM.

2. Clear the memory of any previous programs by pressing the keys [f]

[PRGM].
3. Key in the instructions of Program HP-33E-1 exactly as shown.

4. Slide the switch to RUN to exit from program mode.

Running the Program

1. Press the keys marked [GTO][0][0]. This causes the program pointer

to be positioned at the beginning of the program.

2. Key in the temperature to be converted to Celsius.

3. Press the Run/Stop key marked [R/S]. The program will

automatically be executed from its beginning, and the converted

temperature will automatically appearin the display.

4. Repeatsteps 2 and 3 for each new value to be converted.

Schematic HP-33E-1

S 1 2 3 4

K slide switch f PRGM key in the steps slide switch

D to PRGM 00 of Program to RUN

HP-33E-1

S 5 6 7 8

K GTO 0 0 298

D 0.0000 0.0000 0.0000 298

ee

Cc resets program pointer F

to the beginning

S 9 10 11 12

K R/S 32 R/S 40

D —1.2222 32. 0.0000 40.

Cc Cc F Cc

S 13 14

K CHS R/S ...etc.

D —40. —40.0000

Cc F Cc

The Hewlett-Packard 33E 235

As we have already pointed out, the HP-33E has 49 locations in which

to store the program. These locations are numbered consecutively from 01

through 49. Thereis a location 00 but this location is an automatic halt. The

HP-33E has been designed so that should a program be keyed in that does

not use up all of memory, the instruction following the last acts as a “‘halt.”

Initially, all of the locations from 01 to 49 are automatically filled with a

““go to 00” instruction. This is the case whenever the machine is switched on

or the [f] [PRGM] keys are pressed while the calculator is in PRGM mode.

Therefore, whenever a program is keyed in, it ‘‘overwrites’’ these ‘‘go to”

instructions (abbreviated GTO) for the length of the program itself. All

subsequent locations therefore would still contain these GTO 00

instructions. Advantage is taken ofthis feature in Program HP-33E-1. The

instruction that follows the last instruction of the program is the GTO 00

instruction by default. This has the effect of transferring control to location

00 that has the effect of not only halting the program so that the results may

be viewed in the display, but also positions the program pointer at the

beginning of the program for the next temperature to be converted.

The Odd-Even Task

The next program is admittedly somewhat contrived butis intended to

illustrate how elementary decisions can be made on the HP-33E.

Normally, program instructions are executed in sequence, one after

the other. However, by means of a GTO instruction control can be set

unconditionally to any other part of the program. We have already seen

how the instruction GTO 00 transfers control unconditionally to location

00. In a similar fashion, the instruction GTO 16, for example, sends control

directly to memory location 16, where execution continues with whatever

particular instruction is stored in that location.

There are altogether eight conditional instructions to enable the

programmer to make decisions within a program. Four of them compare

the contents of the display (or x register) to zero while the other four

compare the contents of the x register with the contents of the y register.

This arrangement permits the following questions to be asked within a

program. (Each questionis followed by the required keystrokes.)

Comparison’s between the x Register and Zero

1. Are the contents ofthe x register equal to zero? (g x = 0)

2. Is the x register not equalto zero? (g x # 0)

3. Is the x register greater than zero? (gx > 0)

4. Is the x registerless than zero? (g x<0)

Comparison’s between the x Register and they Register

5. Is the x register equalto the y register? (fx = y)

6. Is the x register not equalto the y register? (fx # y)

236 Programmable Pocket Calculators

7. Is the x register greater than the y register? (fx > y)

8. Is the x registerless than or equal to the y register? (fx < y)

Whenever one of these eight conditional branch instructions is en-

countered during program execution, the following sequence of events

occurs:

1. A comparison is made between the x register and zero or the y register,

depending upon the particular instruction used.

2. If the condition is satisfied—that is, the answer to the question is

YES—execution continues in the normal sequential manner with the

next instruction in sequence.

3. If the condition is not satisfied—thatis, the answerto the question is

NO—the instruction immediately following the conditional branch

instruction is automatically skipped, and execution continued with the

second instruction following the conditional branch instruction.

Each of the 49 memory locations 01-49 is capable of storing an in-

struction. In program mode (i.e., with the switch at PRGM) the location

numbers are included with the code for the instruction itself. For example,

the instruction

03- 71

means that the third location contains the instruction whose key is located
in the seventh row, first column. This is none other than the divide in-
struction. The instruction

01- 23 1

means that in location 01 (the dash is for cosmetic reasons only) the
keystrokes stored are: (1) the key in the second row, third column (STO)
and (2) the digit 1. This is the keycode representation of the STO 1 in-
struction. The instruction

04- 15 33

specifies the contents of location 04. The instruction referred to relates to
the key in thefirst row, fifth column (the prefix key [g]), while the 33 refers
to the key in the third row, third column. Sinceit is prefixed by [g] it is the
FRAC function that is being used.

The instruction vx, for example, which is accessed by pressing the
keys [f] [0] has the keycode

14 0

All the digit keys and any of their associated functions have keycodes that
are the digits themselves.

The [FRAC] function key extracts the fractional portion of the
numberin the display,replacing it with the fractional portion. For example,

The Hewlett-Packard 33E 237

pressing the [g] [FRAC] keys with the number 51.2345 has the effect of

sending the fractional portion, namely .2345 to the display.

Incidentally, the FRAC function has a companion instruction that

can be used to extract the integral portion of a number in the display. It is

accessed by the [g] [INT] keys. Pressing these keys has the effect of trun-

cating the value in the display,replacing this value by the number without

its fractional portion.

Let us now return to the odd-even task. Suppose that you are

presented with a list of positive integer numbers. Your task is to take each

number individually and determine if it is odd or even. If it is odd, the

numberis to be multiplied by 3 and 1 added to the product. If the number is

even, it is simply to be divided by 2.

How can we get a calculator to decide if a numberis even or odd?

Intelligent human beings need only look at the unit’s digit of the number. If

itis 0, 2, 4, 6, or 8 it is even; otherwise,it is odd. On the calculator this odd-

even test can be made by dividing the number by 2. If there is a remainder,

the number is odd. If the remainderis zero, the numberis even. In order to

test for a zero remainder on the HP-33E, the fractional portion of the

quotient is extracted by using the [g] [FRAC] function mentioned earlier.

This value can then be compared for equality with zero by using thegx = 0

conditional branch instruction. If the number in question is even, the

remainder after dividing by 2 will be zero, and the g x = 0 test will prove

true. However,if the number in question is odd, the g x = 0 test will fail

and the instruction immediately following the g x = 0 test will be

automatically skipped.

In the program that follows, the user keys in each numberto be tested

and presses the [R/S] key. The program will determineif the number is odd

or even and automatically display the appropriate result.

Program HP-33E-2: The Odd-Even Task

Location Instruction Comments

01 STO 1 Saves the number in the display in data

register R1

02 2 Divides the number by 2 to determine if it

03 + is even or odd

04 g FRAC Extracts the fractional portion of the value

in the display. If the original number was

even the contents of the display will now be

zero

05 gx=0 Is x equal to 0? or Is the remainder 0?

06 GTO 13 Yes; the number is even — branch to

location 13

07 RCL 1 No; the number is odd. Recall it to the

display

238

O
0
0
X
O

o
O
x

0
O
x
”

O
x

08

09

10

1

12

13

14

49

[

Programmable Pocket Calculators

Program HP-33E-2 (cont'd)

Location Instruction

3

X

1

+

GTO 00

f LAST x

GTO 00

GTO 00

Comments

Multiplies by 3 and adds 1

Branches to location 00 to halt the program

and display the results

The number is even; this instruction recalls

the contents of the display before the last

operation. In this case, the number divided

by 2 wasin the display before the g FRAC

was performed. This is the value we wish
to display

These are automatically included

and do not have to be keyed in by

the programmer

Schematic HP-33E-2

7

switch t

PRGM’]
2 3 4q

f PRGM [key in the steps [nen]
00 of Program to RUN

I HP-33E-2
clear program memory

5 6 7 8 9
f fix 0 GTO 0 0

0.0000 0. 0. 0. 0.

NNmm———

|

————NNm———

 ——————

sets the display for

no decimal places

10

5

5.

15

R/S

512.

resets the program

to its beginning

11 12 13 14

R/S 6 R/S 1024
16. 6. 3. 1,024.

(3Xx5)+1=16 6/2=3

16 17

97 R/S

97. 292.

The Hewlett-Packard 33E 239

Ulam’s Conjecture with Iteration Counter

A Polish-American mathematician named Stanislav Ulam pondered

the problem posed in Program HP-33E-2. If we treat the original number

keyed in as a starting number, we could repeatedly rerun the program with

the result obtained in the previous run by simply pressing the [R/S] key. To

clarify this, let us select the number 5 as our starting number. Running

Program HP-33E-2 with this value gives a result of 16. Pressing the [R/S]

key with this value in the display has the effect of reexecuting the program.

Since 16 is even, the value 8 is displayed. This in turn goes to 4, then to 2

and then to 1. Ulam conjectured that any positive integer when treated in

this manner would eventually reach 1. The fact of the matteris that so far as

is known no one has been able to prove or disprove this conjecture.

The purpose of the following program is to test Ulam’s Conjecture

for any keyed in positive integer. Each intermediate result is displayed for a

period of about one second by making use of the PAUSE instruction. The f

PAUSEinstruction has the effect of momentarily halting execution of the

program so that results may be viewed in the display.

To enhance the program, a countis kept of the number of times the

process is repeated until the number finally reaches 1. If the number keyed

in is 5, for example, the intermediate results of

16,8,4,2,1

would be displayed in succession. As will be seen,it took five steps to reach

the number 1. In the program an iteration counteris kept in register RO and

is incremented by 1 each time the process is repeated. The final value ofthis

counter is displayed at the end of each run.

Program HP-33E-3: Ulam’s Conjecture with Iteration
Count

Location Instruction Comments

01 f FIX O Displays integers only

02 STO 1 Stores starting number in data register R1

03 0 Initializes iteration count to zero

04 STO O

05 1

06 RCL 1 Is the number 1 yet? (i.e., are we done?)

07 fx=y

08 GTO 26 Yes; then branches to location 26

09 2 } No; then test if the number is odd or even
10 + by first dividing it by 2

11 g FRAC Then extract the fractional portion

240 Programmable Pocket Calculators

Program HP-33E-3 (cont'd)
Location Instruction Comments

12 gx=0 Remainder = 0?

13 GTO 20 Yes; numberis even

14 RCL 1 No; number is odd

15 3

16 X

17 1

18 +

19 GTO 21 Branch to location 21 to display the results

20 f LAST x Program branches here if the numberis even

and the f LAST x instruction recalls the

halved number to the display

21 f PAUSE Pauses to display the results

22 STO 1 Stores this as the new number for the next

iteration

23 1 Adds 1 to the iteration counter in RO

24 STO +0

25 GTO 05 Branches to location 5 to perform the next
iteration

26 RCL 0 Program branches here when 1 is reached to

display the number of iterations and to stop

the program

27 GTO 00

Schematic HP-33E-3
Ss 7 2 3 4

K switch to f PRGM key in the steps [switch to |

D PRGM 00 of Program RUN mode

mode HP-33E-3

S 5 6 7 8 9

K GTO 0 0 5 R/S

D 0.0000 0.0000 0.0000 5. 16.
Cc starting 3n +1

number

Ss 10 11 12 13 14
K

D 8. 4. 2. 1. 5.
Cc n/2 n/2 n/2 n/2 number of

iterations

The Hewlett-Packard 33E 241

Schematic HP-33E-3 (cont’d)

Ss 15 16 17 18 19

K 7

D 7. 22. 11. 34. 17.

Cc starting

number

S 20 21 22 23 24

K

D 52. 26. 13. 40. 20.

Cc

S 25 26 27 28 29

K

D 10. 5. 16. 8. 4,

Cc

Ss 30 31 32

K

D 2. 1. 16.

Cc number of

iterations

The Wind Chill Temperature

During the winter season the meteorological office often includes with

its weather forecasts an index known as the wind chill temperature. This is

how cold the air feels when the wind is blowing. As you are probably well

aware, the stronger the wind, the colderit feels. The wind chill temperature

may be calculated by means of the following somewhat forbidding-looking

formula:

WwW =133-(10 VV-V + 10.5) (33 -T)/23.1

where

V = wind velocity in meters per second

T = outside temperature in °C
W = wind chill temperatures in °C

Since many ofusarestill not used to temperaturesin the Celsius scale

and are probably evenless familiar with wind velocities expressed in meters

per second rather than in miles per hour, we can assign to the calculator the

task of doing these conversions for us.

The formula for converting a Fahrenheit temperature to one on the

Celsius scale was utilized in Program HP-33E-1.

Itis

C = (F-32)/1.8

242 Programmable Pocket Calculators

To convert a wind velocity from miles per hour to meters per second
the formula

Vmps = 0.447 X Vmph

is used where Vmps is the velocity in meters per second.

In the program that follows, the user keys in the outside temperature

in degrees Fahrenheit. Upon pressing its [R/S] key, the program stops with

the equivalent temperature on the Celsius scale. At that point the wind

velocity expressed in miles per hour is keyed in and the [R/S] key pressed

again. The program comes to a halt with the wind chill temperature in

degrees Fahrenheit in the display. The temperature is converted to
Fahrenheit within the program by the formula:

F=Cx 18+ 32

Program HP-33E-4: Wind Chill Temperature

Location Instruction Comments

01 3

02 2

03 —

04 1 Converts keyed in temperature from

Fahrenheit to Celsius and stores the result
05 . in register R2

06 8

07 +

08 STO 2

09 R/S Halts program execution so that the wind
speed, expressed in miles per hour, may be

keyed in

10 ENTER?

1 .

12 4

13 4 Vmps = .447 Vmph

14 7

15 X

16 STO 3 Saves Vmps in R3

17 3

18 3

19 ENTER?

20 1

21 0

Location

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

a5

46

47

48

49

The Hewlett-Packard 33E 243

Program HP-33E-4 (cont’d)

RCL 3
Vx
xX

RCL 3

1
0

Ww
Ww

4+
Oo

+
NN

Ww
X
x
X

Instruction Comments

Vmps

Vv Vmps

10 VVmps

Vmps

10 Vmps — Vmps

10 VVmps — Vmps + 10.5

T

33 —t

(10vVVmps — Vmps + 105) (33 —T)

(10/Vmps — Vmps + 10.5) (33 — T)/23.1

W = 33 — (10v Vmps — Vmps + 10.5)
(33—T)/23.1

Converts W to its equivalent in degrees

Fahrenheit. The program automatically

halts after the instruction in location 49,

the highest location in the calculator’s

memory, is executed

It will be noticed that this program utilizes all of the 49 memory

locations available on the HP-33E. If a program is longer than 49 steps,it

could still be accommodated by storing constants such as 1.8, 32, and 0.447

in data storage registers before the program is executed and recalling them

to the display as they are needed. When constants are included as part of a

program, each digit and decimal point takes up a location ofits own, and

this can prove to be extremely consuming of memory space.

244 Programmable Pocket Calculators

Schematic HP-33E-4

S 1 2 3 4

K switch to f PRGM key in the steps switch to

D PRGM mode 00 of Program RUN mode

HP-33E4

S 5 6 7 8

K GTO 0 0 50

D 0.0000 0.0000 0.0000. 50.

Ss 9 10 11 12

K R/S 15 R/S 35.

D 10.0000 15. 38.1911 35.

c 50°F = 10°C Vmph Wind Chill

Temp = 38.2°F

Ss 13 14 15 16

K R/S 20 R/S 5

D 1.6667 20 14.5890 5.

Cc 35°F = 1.67°C Vmph Wind Chill
Temp = 14.6°F

S 17 18 19

K R/S 40 R/S

D —15.0000 40. —39.1528

c 5°F = —15°C Vmph brrrer!

Permutations and Combinations

In problems involving the concept of probability, one often

encounters the notions of permutations and combinations. The

mathematical function associated with these concepts is the factorial

function. The factorial of the number 6, written (6!), for example, is the

product of all the digits from 1 through the number 6,thatis,

6! =6X5Xx4xXx3Ix2x1

= 720

In general,

nl=nXmh-1)XmM-2) X...X2x1

In order to clarify the difference between permutations and

combinations, let us suppose that we want to wager a bet on a horse race in

which eight horses are running. For the sake of convenience, let the

individual horses be named

The Hewlett-Packard 33E 245

A,B,C, D,E,F,G,and H

Let us assume that each horse has an equal probability of winning the race.

Many racetracks offer a particularly large bonus to the bettor who can

accurately forecast horses that will finish first and second. With this kind of

a bet it is not only necessary to pick the two winning horses but also to

specify which one will be first and which one will be second.

Computing the probability of selecting the winning combination is a

problem of permutations. The number of possible winning combinations

may be calculated by the formula

P n!
"TT @m-1)!

where

the number of objects

the number of objectsselected at a given time

n

r

In the horse race cited above, n is equal to 8, which is the number of horses,

and r is equal to 2, which is the number of horses selected:

8!

Gor = 8sP2 =

From the above it is clear that the chances against correctly fore-

casting the first and the second winning horses is 55-to-1.

The problem of predicting which two horses will finish either first or

second is not the same as the problem of predicting precisely which horse

will finish first and which will finish second. The former task is obviously

much easier than the latter. To predict which two horses will be the winners

(either first or second) is a problem of combinations rather than

permutations. Combinations may be calculated from the formula

n!
C = ——
nr (m-n)lr!

where

= the number of objects

= the number of objects selected at a given time=
D

I

8!
iC= 8-2)! = 28

Thus we see that the odds of selecting the two winning horses has been

reduced to 27-to-1.

246 Programmable Pocket Calculators

The program that follows enables the user to key in the value of n
followed by the value of r. The program then calculates in succession the
permutations and combinations for these values, pausing briefly between

the displaying of the results.

A perusal of two formulas will quickly lead the reader to the

conclusion that frequent use is made of the factorial function. However,

since the HP-33E is not equipped with a factorial function key, the factorial
function must be programmed.

In view of the fact that the factorial function is required at various

points when evaluating the formulas, it need be written once and once only

and accessed as often as is necessary provided it is written in the form of a

subroutine.

A transfer to a subroutine is initiated by the instruction GSB nn where

nn is a memory address from 01 to 49 inclusive. This instruction may appear

anywhere within the program, and when it is encountered a branch is made

to the specified location. When the branch is made, a record is

automatically made of the location that initiated the subroutine call. A

subroutine is terminated when the g RTN instruction is encountered. At

that point controlis sent back to the locationfollowing the GSB instruction

that invoked the subroutine.

By utilizing subroutines one is able to shorten the overall length of a

program as well as promote the idea of disciplined structured programming.

Program HP-33E-5: Permutations and Combinations

Location Instruction Comments

01 STO 2 Saves n in R2

02 GSB 20 Invokes subroutine which begins at location

20 of program memory. This subroutine

calculates the factorial of the value n in the

display

03 STO 3 Saves n! in R3

04 R/S User keys in the value of r at this point

05 STO 4 Saves in R4

06 GSB 20 Branches to subroutine which calculates r!

07 STO 5 Saves r! in RS

08 RCL 2 n

09 RCL 4 r

10 — n—r

1 GSB 20 Calculates (n —r)!

12 RCL 3 n!

13 xX2y Since we wish to calculate n!/{n —r)! and

not {(n —r)!/n!, we must first switch the two

operands in the x and y registers before

performing the division operation

Location Instruction

14 +

15 f PAUSE

16 f PAUSE

17 RCL 5

18 +

19 GTO 00

*20 STO 1

21 1

22 STO 0

23 RCL 1

24 f x<y

25 GTO 30

26 STOX 0

27 1

28 STO —1

29 GTO 23

30 RCL O

31 g RTN

The Hewlett-Packard 33E

Program HP-33E-5 (cont’d)

}

Comments

Calculates P= n!/(n—r)

Pauses for approximately 2 seconds so that

the user may view the results

rl

Calculates C= (n/r} =n!/{n —r)ir!

Branches to location 00 to halt program

execution

Stores the number whose factorial we wish

to calculate in R1

Initialize factorial to 1

If the numberis less than or equal to 1,

we have completed the factorial calculation

and a branch is made to location 30

Otherwise, continue the factorial calculator

Decrement the number by 1

Loop

Recalls the calculated factorial value to the

display

Signals the end of the subroutine and

returns control to the instruction

immediately following the GSB instruction

that invoked the subroutine

Schematic HP-33E-5

S 1 2

K slide switch f PRGM

D to PRGM 00

mode

Ss 5 6

K GTO 0

D 0.0000 0.0000

Cc

3 4
key in steps [slide switch]

of Program to RUN mode

HP-33E-5

7 8 9

0 f fix 0

0.0000 0.0000 0.

247

10

* Location 20-31 represents a subroutine that calculates the factorial of any positive integer

in the display.

248 Programmable Pocket Calculators

Schematic HP-33E-5 (cont'd)

S 11 12 13 14 15 16

K R/S 2 R/S 8 R/S

D 40,320. 2. 56. 28. 8. 40,320.

c 8 2 +. n

Ss 17 18 19

K 6 R/S

D 6 20,160 28 .. etc.

Cc P
8 6 8 6

Debugging and Editing Programs on the HP-33E

The HP-33E provides the user with several features that facilitate the

debugging and editing of programs on the calculator.

In order to trace through the execution of a program one step at a

time, the [SST] key is used. The effect of pressing this key while in RUN

modeis to first display the current location together with its contents while

the key is pressed, and then to execute the particular instruction stored in

that location when the key is released. By repeatedly pressing the [SST] key,

the entire program can be executed one instruction at a time, a kind of slow-

motion execution.

In PRGM mode the [SST] key can be used to step forward through

program memory. This is useful when checking a program that has just

been keyed in or to advance to a particular location. The [BST] key can be

used in PRGM modeto back step through program memory one step each

time the key is pressed.

In order to advance the program pointer to a specific location in

memory while in PRGM mode, the [GTO] key can be used. The key

sequence [GTO] [.] [nn] has the effect of positioning the program at
location nn.

It is often necessary to replace a particular instruction in a program

with anotherinstruction. This can be accomplished easily on the HP-33E by

first positioning the program pointer at the location immediately preceding

the instruction to be replaced and then keying in the new instruction. The

method ofdeleting an instruction from a program is to effectively substitute

it by a ‘no operation’ instruction (NOP). The program is positioned

immediately before the instruction to be deleted and then the [g] [NOP]

keys are pressed.

PPC—Formerly the HP-65 Users Club

Writing programs for programmable pocket calculators is an exciting
endeavor and represents a formidable challenge for many of us. It is only

The Hewlett-Packard 33E 249

natural, therefore, that people with similar interests would want to get

together, exchange programs and ideas, and discuss future trends.

This need has apparently been satisfied by Richard J. Nelson of Santa

Ana, California, who started an HP-65 Users Club in June 1974 as a

nonprofit organization entirely independent of Hewlett-Packard.

On January 1, 1978 the club changed its name to PPC, standing for

Personal Programmers Club. Each month members are mailed a PPC

Journal containing calculator programs, diversions, fun and games,

suggestions, and ideas on exploiting the calculators’ potential to personal

advantage.
Since it inception, this club has extended its coverage to include all

Hewlett-Packard programmable calculators in addition to the original HP-

65.
PPC is the world’s first and largest organization devoted to the

dissemination of information related to programmable calculators. It

currently has about 1000 members and interested readers are encouraged to

contact the club and request a copy of their special issue and related

literature. A self-addressed 9 by 12 envelope with two ounces of first class

postage attached should be mailed to:

PPC Journal

2541 W. Camden Place

Santa Ana, CA 92704

Any technical questions related specifically to the use of Hewlett-

Packard calculators may be addressed to their technical staff, who may be

reached bytelephoneat the toll free number (800) 858-1802.

CHAPTER ELEVEN

IMPLICATIONS OF
THE PROGRAMMABLE
POCKET CALCULATOR

IN SCIENCE, INDUSTRY,
AND EDUCATION

It is becoming increasingly clear that the teaching of computer science

is a necessity in colleges throughout the United States and overseas.

Computers are becoming more visible as each day passes, and although

there are still disciplines in which computers have not been used to

advantage, the fact remains that the number of such disciplinesis getting

smaller each year. In science, business, government, the military, banking,

industry, and education, computers are playing an increasingly important

role, lending themselves to greater efficiency, helping to make reliable

decisions based on factual data, and alleviating some of the dull chores that

human beings have traditionally carried out.

As a direct result of the exponential growth of computers, the need

for computer programmers has correspondingly increased. This accounts to

a large extent for the popularity and demand for computer science courses

in college and even in high school. There are many institutions that would

incorporate computer science courses in their programs but are prevented

from doing so because of lack of sufficient funds to buy the necessary

equipment. It is felt that the same applies to many primary schools that see

the handwriting on the wall and realize the potential benefits of computer

programming instruction.

Many schools, if they are fortunate enough, are able to rent a single

terminal, which is connected to a remote site and used on a time-sharing

basis. Of course,this does reduce the expenses involved but hardly satisfies

the needs of hundreds ofstudents, each of whom wants to spend more than

just a few minutes at the terminal. It is quite clear that programming is

curiously attractive to students at all levels, and few will deny that
programming as a discipline offers considerable benefits from a
pedagogical point of view. It helps the student to think logically, to gain

250

Implications of Programmable Pocket Calculators 251

insight into the solution of problems, and trains him to stick to a problem
until it is solved. In this way the computer acts as a kind of a teacher,

reinforcing knowledge as it is gained. The student can try as often as he likes

to solve a particular problem; the computer will never lose its patience, even

if the student loses his. More importantly, computers permit the student to

experiment and thereby increase his general understanding as well as to

spark his creative ability.

The advent of the programmable pocket calculator provides a

solution to the dilemma of the computerless, financially strapped school.

With the inevitable decrease in the prices of programmable pocket

calculators, they will become available to each student of the class, each of

whom will be able to concentrate his complete attention on his personal,

portable, programmable, pocket calculator, bought either by the school on

a mass purchase basis and loaned to students, or possibly purchased by the

student himself as an investment for his entire educational career.

It is more than likely that we shall soon see new, innovative, and

challenging college courses evolve around these programmable pocket

calculators. It would not be surprising to see improved calculus teaching

and better numerical methods courses being taught as a direct result of the

emerging programmable pocket calculators.

Not that the use of programmable pocket calculators is restricted to

the student. On the contrary, applications for them are abundant in the

fields ofstatistics, finance, surveying, navigation, engineering, physics, and

the social sciences. For example, in finance one can write programs to

compute mortgages quickly and efficiently; interest rates, savings,

discounts and discounted cash flows, and so on. In statistics, programs can

be set up to compute linear regression, correlations, probability, and chi-

squares, and so on. These programs may be written, entered into the

calculator, and subsequently evaluated not only for just one set of data but

for an unlimited set of cases. Such is the power of modern computers. Even

five years ago programming was restricted to the multi-million dollar

computers or those of the desk top variety costing several thousand dollars.

With the advent of the programmable pocket calculator, programming is

destined to become even more popular. This can hardly be detrimental

either to our general intellectual development or to our industrial

development.

Addresses, 14

Algebraic logic (AOS), 10

Area

of circle, 121-124

of triangle, 169-171

Area, circumference, and volume

problem, 25-26

Automatic register review (HP-67),

158-159

Average

of three numbers, 25-26

of two numbers, 22-24, 58-61

Branching

conditional, 3

unconditional, 3

Bugs, 8

Choosing the most profitable pipe,

217-220

Circumference ofcircle, 61-63

CMOS,51

Compound interest, 140-144, 195-199

Computation of x?, 36-37, 117-121

Conditional branching (see Branching)

Continuous memory, 51, 202

Counting problem, 65, 125-127

Data registers, 17

Debugging, 5

Digital timer (HP-55), 89-91

Discontinuous memory, 53

Displays

gas discharge, 13

LCD, 13

LED, 12

Seven-segment, 12

Editing, 5

Effective annual interest rate, 206-209

Engineering notation, 55

English/metric conversion, 92

INDEX

Evaluating a function between limits,

209-214

Evaluation of algebraic expression,

161-165

F to C temperature conversion, 233-235

Factorial of a number, 70-73

Feet to yards conversion, 203-206

Finding minimum value in registers,

184-188

Flags, 137, 195

Flowcharting, 4

Gas discharge displays (see Displays)

Halving a number, 69-70

Hardware, 18

Hewlett-Packard 19C and 29C, 202-229

debugging and editing, 229

programming, 203-229

Hewlett-Packard 25 and 25C, 51-83

debugging and editing, 81-83

manual operation, 53-55

programming, 55-81

Hewlett-Packard 33E, 231-248

debugging and editing, 248

programming, 233-248

Hewlett-Packard 55, 84-107

debugging and editing, 106-107

manual operation, 85-93

programming, 93-106

Hewlett-Packard 65, 108-150

debugging and editing, 149-150

manual operation, 108-117

programming, 117-149

Hewlett-Packard 67, 151-201

debugging and editing, 200-201

manual operation, 151-160

programming, 160-200

Indirect addressing, 15, 182-184

254

Keycodes, 67

Kilometer conversion, 145-149

LCD display (see Displays)

LED display (see Displays)

Linear regression, 92

Loop, 2

Magnetic cards, 18

Memory, 13

Merged codes, 16

Metric conversion, 92

Modes

program orlearn, 17

run, 17

Modified area of a triangle problem,

172-174

Month ofbirth problem, 221-227

Multi-function programming, 140

Newton-Raphson iteration technique,

73-75

Novus Mathematician PR, 19-28

manual operation, 20-22

programming, 22-28

Nth root problem, 24-25

Odd or even problem, 67-68

Odd-even task, 235-238

Pearson’s Correlation Coefficient, 99-102

Perfect square, 128-130

Permutations and combinations, 244-248

Permutations problem, 96-99

Polar coordinates, 49

PPC, 248-249

Primary registers (HP-67) (see Registers)

Prime factors, 77-78

Program, 1-2

Pythagoreantriplets, 78-81

Radius ofa circle, 93-95

Read Only Memories (ROM), 18

Recording programs, 17

Rectangular coordinates, 49

Register arithmetic, 46-47

Registers, 17

primary, 157

secondary, 157-158

Register stack, 32, 39-44

Reverse Polish Notation (RPN), 9

ROM modules, 18

Scientific notation, 29, 44-45, 47

Secondary registers (HP-67) (see Registers)

Sequential programmable calculators, 14

Seven-segment display (see Displays)

Sinclair Scientific, 29-38

manual operation, 29-35

programming, 35-38

Smart card reader, 200

Software library, 18

Sorting numbers problem, 188-193

Stack, 32, 39-44

Subroutines, 15, 144-145

Successive factorial problem, 174-178

Sum

of consecutive integers, 178-182

of the cubesofthe digits, 214-217

of the integers from 1 ton, 131-133

of numbers, 138-140

of the reciprocals, 103-106

Ulam’s conjecture, 133-137

with iteration counter, 239-241

Unconditional branching (see Branching)

Volume

of cylinder, 124-125

ofright cylinder, 165-169

of sphere, 63-64

Wind chill temperature, 241-244

5175-1
$10.95

PROGRAMMABLE POCKET CALCULATORS

Henry Mullish and Stephen Kochan

Assuming no previous knowledge of programming on the part
of the reader, this book examines programmable pocket
calculators in detail, pointing out their architecture, special
features, and programming techniques. Featuring primarily
scientific calculators, those examined are: Novus Mathema-

tician PR, Sinclair Scientific Programmable, HP-25, HP-25C,

HP-55, HP-65, HP-67, HP-19C, HP-29C, HP-33E. Every pro-
gram for each calculatoris incorporated in a schematic show-
ing precisely how to enter the program and to put the calcula-

tor to work. In this way, you will be able to key in any program

step by step, and watch it calculate and display the final

results.

Other books of interest. . .

2-80 AND 8080 ASSEMBLY LANGUAGE PROGRAMMING

Kathe Spracklen

An extensive introductory look at assembly language pro-
gramming for the 8080 and Z-80 processors: Programming

techniques are presented along with instructions, and numer-

ous diagrams and examples are provided. #5167-0, paper,

192 pages

PROGRAMMING PROGRAMMABLE CALCULATORS

Harold S. Engelsohn

Here's a text that translates the jargon found in the manuals

accompanying programmable calculators into clear instruc-
tions that someone with no programming experience can

understand. Covers the SR52, SR56, TI57, TI58, TI59, the

Commodore PR100, the APF programmable model, and more.
#5105-0, paper, 224 pages

FORTRAN WITH STYLE: Programming Proverbs

Henry F. Ledgard and Louis J. Chmura

This programming style guide conforms to the new FORTRAN
77. Intended for FORTRAN programmers whe want to write

carefully constructed, readable programs, this book provides
simple rules of style that enable the programmer to focus

creativity on the deeper issues in programming. #5682-6,

paper, 176 pages

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

	Cover
	Preface
	Contents
	Chapter One: The Art of Programming
	Some Fundamental Programming Concepts
	Flowcharting a Mathematical Problem
	Debugging and Editing Programs

	Chapter Two: An Overview of Programmable Pocket Calculators
	The Logic Used in Programmable Pocket Calculators
	Calculator Displays
	Programmable Pocket Calculator Features

	Chapter Three: The Economy-Level Programmable Pocket Calculators
	The Novus Programmable Calculators
	The Sinclair Scientific Programmable

	Chapter Four: The Hewlett-Packard Programmable Pocket Calculators
	Features Common To All the Hewlett-Packard Models

	Chapter Five: The Hewlett-Packard 25 and 25C
	The HP-25
	The HP-25C
	Manual Operation of the HP-25 and HP-25C
	Programming the HP-25 and HP-25C
	Debugging and Editing Programs on the HP-25 and HP-25C

	Chapter Six: The HP-55 Programmable Scientific Pocket Calculator
	Manual Operation of the HP-55
	The Digital Timer
	Programming the HP-55
	Debugging and Editing Programs on the HP-55

	Chapter Seven: The Programmable Hewlett-Packard 65
	Manual Operation of the HP-65
	Programming the HP-65
	Debugging and Editing Programs on the HP-65

	Chapter Eight: The Hewlett-Packard 67
	Manual Operation of the HP-67
	Programming the HP-67
	Debugging and Editing Programs on the HP-67

	Chapter Nine: The Hewlett-Packard 19C and 29C
	Programming the HP-19C/29C
	Debugging and Editing Programs on the HP-19C/29C

	Chapter Ten: The Hewlett-Packard 33E
	Programming the HP-33E
	Debugging and Editing Programs on the HP-33E
	PPC Formerly the HP-65 Users Club

	Chapter Eleven: Implications of the Programmable Pocket Calculator in Science, Industry, and Education
	Index

