
Programming in User RPL

Eduardo M Kalinowski, ekalin@iname.com

Version 2.1

Contents

1 Introduction 2

2 First concepts 3
2.1 Stack manipulation . 4
2.2 Exercises . 6

3 Local variables 8
3.1 Exercises . 9

4 Conditional tests 10
4.1 Trues, Falses, Zeros and Ones . 10
4.2 Flags . 11
4.3 Basic conditionals:IF...THEN...ELSE 12
4.4 CASEstructures . 13
4.5 Exercises . 15

5 Loop structures 18
5.1 Indefinite Loop Structures . 18
5.2 Definite loop structures . 19
5.3 Exercises . 20

6 Error handling 23

7 Getting Input 25
7.1 Enter input the by the Command Line:INPUT 25
7.2 Presenting options:CHOOSE. 26
7.3 Input forms:INFORM. 27
7.4 Getting key presses . 29
7.5 Exercises . 30

8 Displaying output 33
8.1 Displaying message boxes:MSGBOX. 33
8.2 Producing sounds . 33
8.3 Displaying text strings . 33
8.4 UsingFREEZE . 33
8.5 Clearing the display . 33

A Answers to exercises 35
Chapter 2 — First concepts . 35
Chapter 3 — Local variables . 36
Chapter 4 — Conditional tests . 37
Chapter 5 — Loop structures . 39
Chapter 7 — Getting input . 43

1

1 Introduction

If you’ve payed 270 bucks for a calculator, it should do something really nice. Well, it
does. It’s a programmable calculator, which mean you can “teach” it to do something it
does not automatically do. But in the HP48, with its complete and powerful program-
ming language and structure, allows more than simple programs that repeat keystrokes,
like in other calculators. You can create programs with graphics, user interfaces, and
much more.

In this tutorial, you’ll learn how to make simple (and some a bit more complicated)
programs in UserRPL, the programming language of the HP48. Most examples are
related to math, and most programs are totally useless: the calculator does the same the
program does automatically. They just examples, to demonstrate the concepts you’ve
learned.

A note about the exercises: some chapters have exercises. They are meant to be
done, not just skipped. If you don’t practice, how will you learn? There are answers
to all of them, but the solution I give is only one possibility in many cases. There are
many others. If your program worked, then you should consider the exercise as solved,
even if the answer I give is different or even more efficient. But compare my solution
to yours. Sometimes they may be completely different answers. Which one is more
efficient? Which one is faster? Which one is smaller? If you have a different solution
to a problem, send it to me at my e-mail:ekalin@iname.com .

If you have found any error in this tutorial, be it a spelling error, an error in a
program, or anything else, please warn me at the above e-mail. I’d also like to hear
comments and suggestions.

2

2 First concepts

For 270 bucks, you should expect a calculator that does everything you need. Several
functions are already available, but probably you’ll soon need something the HP cannot
do automatically. Say you have to calculate the determinant of a symbolic matrix.
Since the HP has built-in support only for numerical matrices, you’ll have to calculate
it manually. If you need to do that only once, that’s OK, but what to do if you need
several calculations, always doing the same thing, pressing the same keys, only for
different inputs?

That’s why the HP48 is different from other calculators. It isprogrammable. It
means it can learn how to do something. In the example above, you could write a pro-
gram that calculates the determinant of a symbolic matrix when you give its elements.
So, to calculate a determinant, the only thing you would need to do is enter the ele-
ments and run the program. Want to calculate the determinant for different inputs? No
problem, just key them in and run the program again, and you’ll get the new results.

Basically, a programmable calculator can save you time.
On the HP48, programs are delimited by left and right guillemots (that’s the « and

» symbols.) To put enter those delimiters, press left-shift and minus. Inside, there is a
sequence of objects, separated by spaces. Depending on the object type, some action
is taken, according to table 1.

Object Action
Command Run
Number Put into stack

Algebraic Put into stack
String Put into stack
List Put into stack

Program Put into stack
Global name (between’’) Put into stack
Global name (without’’) Put into stack and automatically evaluated
Local name (between’’) Put into stack
Local name (without’’) Put into stack and automatically evaluated

Table 1: Objects in programs and their actions

Let’s see a simple example of a program. Suppose you have a 52-gallon cylindrical
water heater and you wish to determine how much energy is being lost because of poor
insulation. For that you can use the formula

q = hAT

whereq is the heat loss from the heater (in btu per hour),h is the heat transfer coeffi-
cient (in our case 0.47),A is the total surface area of the cylinder (in our example 30)
andT is the temperature difference.

3

The values ofh andA will remain constant in our case, but we want to calculate
the heat loss for various temperature differences. You could key in the values every
time and multiply them, but this task can be simplified with a very simple program.

Let’s create a program that calculates the heat loss for the heater when the temper-
ature difference is given in the stack. Type the following program, and pressENTER
(one more time: to get « » press Left-shift Minus):

« 30 * .47 * »

Let’s examine this program carefully. The first thing after the « opening program
delimiter is the number 30. All numbers are put into the stack, so the stack now contains
the temperature difference (which you entered) and 30, the surface area (put by the
program.) The next object is a command,* . It will be executed, multiplying the two
numbers in the stack. This will put in the stack the result ofA × T . In sequence
there is another number, 0.47, that will be put into the stack. The last object is another
command, again* . In the stack there is now the result of the multiplication ofA × T
by h, orhAT , which is the wanted resultq.

Now let’s try the program and see if it works. If you have not already entered the
program, do it now. You should see the program in level one of the stack. To save
it in the memory, type’HT’ , pressENTER, thenSTO. Now pressVAR. You should
seeHT on the first menu key. Congratulations, you’ve just saved your first User RPL
program.

To try it, enter 15 and press the first softkey, corresponding to the just storedHT
program. You should get 211.5 in the stack. Now, if you wanted to calculate again for
a temperature difference of 18 degrees, just enter 18 and run the program again. You
should get 253.8.

To see how practical it would be if you had to calculate several times, calculate the
heat loss for temperature differences of 10, 12, 14, 16, 18 and 20. The answers are 141,
169.2, 197.4, 225.6, 253.8 and 282.

2.1 Stack manipulation

Among the several commands that can be included in programs, some of the most im-
portant are the ones that manipulate the stack, ie, change the order of the elements,
remove some elements or make copies of some of them. The HP48 provides 13 com-
mands for manipulating the stack. It is not recommended that you know what they do.
It is essentialto know what they do. Was I clear? Youmust know how to use them
and their effect. Here they are:

DUP Makes a copy of the object in level one. Example (in all subsequent examples,
the left side represents the stack before the command, and the right side shows
the stack after the command):

2: 2: a
1: a 1: a

DUP2 Makes copies of the objects in levels one and two. Example:

4

4: 4: a
3: 3: b
2: a 2: a
1: b 1: b

DUPNMakes copies ofn objects, starting at level two.n is given in level one. Exam-
ple:

6: 6: a
5: 5: b
4: a 4: c
3: b 3: a
2: c 2: b
1: 3 2: c

DROPDrops (ie, removes) the object in level one. Example:

2: a 2:
1: b 1: a

DROP2Drops the objects in levels one and two. Example:

3: a 3:
2: b 2:
1: c 1: a

DROPNDropsn objects from the stack, starting at level two.n is given in level one.
Example:

5: a 5:
4: b 4:
3: c 3:
2: d 2:
1: 3 1: a

OVERReturns a copy of the object in level two. Example:

3: 3: a
2: a 2: b
1: b 1: a

PICK Returns a copy of the object in leveln+1. n is given in level one. Example:

4: a 4: a
3: b 3: b
2: c 2: c
1: 3 1: a

SWAPExchanges levels one and two. Example:

2: a 2: b
1: b 1: a

5

ROLL Moves the object in leveln+1 to level 1. As usual,n is in level one. Example:

5: a 5:
4: b 4: b
3: c 3: c
2: d 2: d
1: 4 1: a

ROLLD Moves the object in level two to leveln+1. Example:

5: a 5:
4: b 4: d
3: c 3: a
2: d 2: b
1: 4 1: c

ROT Moves the object in level three to level one. This command is equivalent to
3 ROLL. Example:

3: a 3: b
2: b 2: c
1: c 1: a

DEPTHReturns the number of elements in the stack. Example:

4: 4: a
3: a 3: b
2: b 2: c
1: c 1: 3

Now let’s see another very simple program. It calculates the hypotenuse of a right
triangle, given the two legs in thestack.

« SQ SWAP SQ + √ »

Let’s examine this program closely. First, it squares the number in level one. Then
it swaps levels one and two, and squares the object now at level one, the other side of
the triangle, which was before in level two. The program then adds them, and takes the
square root. Simple, isn’t it?

2.2 Exercises

1. What happens when the following programs are run?

(a) « « « 1 2 + » » EVAL »

(b) « « « 1 2 + » EVAL » »

(c) « « « 1 2 + » EVAL » EVAL »

(d) « « « 1 2 + » » EVAL EVAL »

(e) « « 1 « 2 + » » EVAL »

(f) « « 1 « 2 + » EVAL » EVAL »

6

2. Design a program that, when the radius of a sphere is in level one, calculates its
volume. (V = 4

3πr
3)

3. Write a program to convert from Fahrenheit degrees to Celsius degrees. (◦C =
9◦F

5 + 32)

4. Write a program that does the inverse conversion (that is, from Celsius to Fahren-
heit).

5. Write a program to calculate the parallel resistanceRP of two resistorsR1 and
R2, whose values are in the stack, using the formula1

RP
= 1

R1
+ 1

R2
.

6. Write a program that does the same thing as the above, but now using the formula
RP = R1R2

R1+R2
, derived by isolatingRP in the above formula.

7. Write a program to calculate the determinant

∣∣∣∣ a b
c d

∣∣∣∣, assuminga, b, c andd

are in the stack, in this order.

8. Write a program to calculate the distance of two points(x1, y1) and (x2, y2),
assumingx1, x2, y1 andy2 are in the stack, in this order.

9. Write a program to find one root of a quadratic equation, givena, b andc in the
stack.

10. Modify the above program so that it finds both roots of the equation.

11. Write a program to find the surface area of a rectangular box, using the equation
S = 2(hw + hd+ wd).

7

3 Local variables

Let’s examine again the program given at the end of the last chapter, the one that
calculates the hypotenuse of a right triangle:

« SQ SWAP SQ + √ »

In the above program, each of the two inputs is used only once, so stack manipula-
tion is not complicated. But in some cases the inputs are used many times, so keeping
the stack organized can be quite difficult, and fetching a specific value is something
complicated. So, instead of using lots to commands to get the element you want, why
not store it somewhere, and them simply recall item when need arises? It would be a
lot easier.

To do that, you could use variables. Just enter a name, and use theSTOcommand,
and it will be stored. It can later be recalled withRCL. But this brings some problems:
what if the user already has a variable with the name you want to use? And you must
take care to erase all variables used when the program ends. But what happens if the
program terminates unexpectedly, because of an error, for example? The user’sVAR
menu would be full of unnecessary stuff.

To help solve this problems, the HP48 calculator has a nice feature calledlocal
variables. They work like normal variables, but they don’t appear in theVAR menu,
they are purged automatically when the program ends, they can’t be accessed by the
user and there is no problem in using a name that’s already a user’s variable.

Basically, one could say that local variables can exist only when a program is run-
ning and are accessible only to the program running, and any other programs called by
that program.

Local variables are created with the→ command (the arrow is above the 0 key.)
The use is very simple: anywhere you want, use→ followed by as many names of
variables you want, separated by spaces. The value will be taken from the stack and
stored in the variables.

Let’s clarify the above: suppose you have 1, 2 and 3 in the stack, in this order. If
you use→ a, the local variablea will now contain the value 3. If you use→ a b ,
thena will contain 2 andb will contain 3. Finally, if you use→ a b c , a will contain
1, b, 2 andc , 3.

OK, but how do I use this nice feature in a program? Very simple: add the→
command followed by the variable names and then either an algebraic expression that
will be evaluated substituting any local variables by their values or a program that will
be run, where you can use local variables as any other variable.

Let’s see an example: the above hypotenuse program could be written this way:

« → a b ’ √ (aˆ2+bˆ2)’ »

using algebraic notation or

« → a b « a SQ b SQ + √ » »

using a sub-program.
In this case, the first version (without local variables) is more efficient. But in

more complicated cases, local variables generally much better. At least, they make the

8

programs easier to understand, because you can see what’s being done, and not a lot
of stack manipulation commands such asSWAP 4 PICK OVER ROT ROT DUP.
However, you must know how the stack works, and the basic stack manipulation com-
mands before you go further in this tutorial. Alas, by this time, you should already
know them. If you don’t, go back to the previous chapter and learn what they do.

3.1 Exercises

1. Givena, b, u, c, d andv in the stack, write a program to solve the system{
ax+ by = u
cx+ dy = v

To make things easier:

x =
du− bv
ad− bc

and y =
av − cu
ad− bc

2. Write a program, using local variables, to calculate the determinant of the matrix a b c
d e f
g h i

using:

(a) Algebraic notation (ie,→ a ’4*a’)

(b) RPN notation (ie,→ a « a 4 * »)

3. Write a program to calculate the inverse matrix of the matrix in the previous
exercise.

9

4 Conditional tests

One of the most powerful abilities of the HP is that programs can make decisions,
and execute actions based on these decisions. Of course it can’t, for example, choose
a good wine for you, but it could recommend the type of wine based on the type of
meat. This kind of decision, based on some given factor (type type of meat) is called
conditional, and is what we’ll see in this chapter. But before we start studying HP48
commands, let’s study a bit of Boolean algebra. It’s not going to hurt so much.

4.1 Trues, Falses, Zeros and Ones

We will now study some operations ofbooleandata type. A boolean has only two
possible values:true andfalse. In the HP48, there is not a special boolean object type,
and real numbers are used to represent them. A zero is afalse, and any other value
(generally one) istrue.

There are four basic operations with boolean values: NOT, AND, OR and XOR.
(Actually, XOR is not a basic operation, but a derived operation, as we’ll see later.)

Let’s start with the easiest: NOT. This is the only unary operation (takes only one
argument.) In the HP, it is represented by’NOT A’ , in textbooks by¬A or A (we’ll
use the latter notation in this tutorial.) This function inverts its operand: a true becomes
a false, and vice-versa.

See table 2, which describes the result of NOT for its possible inputs. This kind of
table is called atruth table.

A A
0 1
1 0

Table 2: NOT truth table

The next operation we’ll see is AND. It is represented in the HP48 by’A AND B’
and in textbooks byA∧B,A.B or simplyAB. The AND function is true only if both
inputs are true. Its truth table is shown in table 3.

A B A.B
0 0 0
0 1 0
1 0 0
1 1 1

Table 3: AND truth table

The third function is OR. As you might have guessed, the HP48 represents it as’A
OR B’. The textbook representations areA ∨ B orA + B. This function is true if at
least of the inputs is true. See table 4 for the truth table.

10

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

Table 4: OR truth table

Last, but not less important, there is XOR, which stands for eXclusive OR. It returns
true if the inputs are different. You’ll see it represented on the HP48 as’A XOR B’
and in textbooks asA∨B orA⊕B. Its truth table is in table 5.

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Table 5: XOR truth table

XOR is derived from the other functions. There are several ways to represent it
using only the first three operations. One of them is

A⊕B = ĀB +AB̄

That was all you needed to know about Boolean algebra. But before we really start
programming, let’s see a little more theory.

4.2 Flags

A flag is like a reminder. If you had to remember to, say, pick up dinner on the way
home, you would do something as a reminder to yourself, like tying a string to your
finger. OK, you would never do that, but this is just an example.

Sometimes, a program also needs to remember something. But a program can’t tie
a string to its finger. Alas, a program doesn’t have fingers. But since anatomy is not one
of my favorite subjects, let’s stop here. Back to programming, what could a program
do to remember something?

The answer is: storing some information in some place that can be read back later.
A normal (or local) variable could be used, but there are better things:flags. A flag is
like a variable, but can only contain two values: set and clear. Sounds like the boolean
thing above, doesn’t it?

The HP48 has 128 flags. Of these, 64 are reserved for its own use (not all are
used, however.) You can change their value, but this would mess the way the calculator

11

operates. For example, system flag 40 controls the the clock display. If your program
altered it, it would also change the displaying of the clock.

Because of this, there is another group of flags: theuser flags. These 64 flags aren’t
used by the HP48. You can use them to do whatever you want.

The 64 system flags are represented by negative numbers, and the user flags by
positive numbers. So, -40 means system flag 40, and 55, user flag 55.

OK, but what can I do with flags? Simple: instead of tying a string to your finger to
remember to pick up dinner, set flag 4 (or any other.) Then, later, see whether the flag
is set. If it is, then pick up dinner; otherwise don’t. A program does exactly that, but to
remember other things (after all, calculators don’t eat.)

There are several commands to work with flags. They set flags, clear flags, and
return information about whether a flag is set or clear. They are summarized in table 6.

Command Action
SF Sets the flag specified in level 1
CF Clears the flag specified in level 1
FS? Returns 1 if the flag is set; 0 otherwise
FC? Returns 1 if the flag is cleared; 0 otherwise
FS?C Returns 1 if the flag is set; 0 otherwise, then clears flag
FC?C Returns 1 if the flag is cleared; 0 otherwise, then clears flag
RCLF Puts a list with the values of all flags in the stack
STOF Sets the flags according to the list in the stack

Table 6: Flag-related commands

4.3 Basic conditionals:IF...THEN...ELSE

The above commands let you check whether a flag is set or not. Now we might need
to do some action if it is set, and some other if it is not. Or we might want to do
something in case a generic condition is met, and some different thing if not. That’s
what conditional structures are for. The simples one isIF . It’s form is:

« IF test condition THEN
actions to be taken if condition is true

END
»

First, thetest condition will be evaluated. If the result is true (ie, non-zero),
then the commands betweenTHENandENDwill be executed. Otherwise, they will be
skipped and execution will continue afterEND.

This structure has another clause, that allows execution of certain commands only
if the test condition is false (ie, zero). The new form is:

« IF test condition THEN

12

actions to be taken if condition is true
ELSE

actions to be taken if condition is not true
END

»

OK, in theory that’s easy to understand. But in practice, how can one use that?
Normally, we use comparison commands. They are: == (yes, to check equality you
must use == and not just =), <, >,6=,≤ and≥. All take two arguments from the stack,
and return 1 if the condition is true and 0 if not. Ready forTHEN. You can useAND
and the like to check for multiple conditions.

Let’s see a simple example of a program usingIF structures. The program takes
three numbers from the stack, and returns the smallest of them.

« → a b c @ Store the numbers for easy access
« IF a b < a c < AND THEN

a @ If a is smaller than b and c, it’s the wanted number
ELSE

IF b c < THEN
b @ If b is smaller than c, it’s the number

ELSE
c @ otherwise it’s c

END
END

»
»

(In User RPL,@represents a comment. Everything after it until the end of the line
is ignored.

4.4 CASEstructures

Now let’s write a program that gets a number as input and outputs it as a string. Let’s
restrict it to numbers up to four, so the program does not get excessively long.

« → x
« IF 1 == THEN

"One"
ELSE

IF x 2 == THEN
"Two"

ELSE
IF x 3 == THEN

"Three"
ELSE

IF x 4 == THEN
"Four"

13

ELSE
"Other"

END
END

END
END

»
»

The method above works, but is quite inefficient. Notice that theIF ’s look like
a stairway, descending each time more. There is a structure that makes this kind of
structure much more efficient: theCASEstructure. The above program, rewritten to
useCASEwould be:

« → x
« CASE

x 1 == THEN
"One"

END
x 2 == THEN

"Two"
END
x 3 == THEN

"Three"
END
x 3 == THEN

"Four"
END
"Other"

END
»

»

The general form of the structure is:

CASE
test clause 1 THEN

set of actions 1
END
test clause 2 THEN

set of actions 2
END
...
test clause n THEN

set of actions n
END

14

default set of actions
END

You can have any number of test clauses. When one evaluates to true (non-zero),
the corresponding set of actions is executed, untilEND. The rest of theCASEstructure
is skipped until anotherEND. If one clause evaluates to false (zero), the set of actions
is skipped until the firstEND, and the next clause is evaluated. If none of the clauses
evaluate true, the default action are taken. Note it isn’t necessary to include a default
set of actions.

4.5 Exercises

1. What’s the value of each of the following expressions?

(a) 0 ∧ 1 ∨ 0

(b) 1 ∧ 1 ∨ 0 ∧ ¬0

(c) (1⊕ 1)× 1 + 1

(d) (1⊕ (1× (0× 0⊕ 1)))⊕ (1 + (0× 1))

2. Assuminga = 0, b = 1, c = 1 andd = 0, what is the value of the expressions?

(a) a ∧ (¬b)
(b) a+ b⊕ d
(c) c+ (d+ (a+ (c× (a⊕ d))))

(d) (b⊕ c)× (c+ (a× b)⊕ c)

3. Supposing the variablesa, b, c , d ande contain, respectively, 127, 10, 5, 0 and
1, which do each of the following programs return?

(a) « d NOT »

(b) « d e AND »

(c) « a b > b c < OR »

(d) « a b < NOT »

(e) « d e AND a b == OR »

(f) « d e XOR a b < AND »

(g) « a b + c < d AND e XOR d NOT AND »

(h) « a b + c b / * 3 == a b OR NOT AND »

4. Which value will be returned when this program is run?

« 0 1 0 2.5 3.5 → a b c x y
« IF c x y + r > a NOT b AND OR OR THEN

0
ELSE

15

1
END

»
»

5. Given the program below:

« → a b c
« IF a THEN

Command1
ELSE

IF b THEN
IF c THEN

Command2
ELSE

Command 3
Command 4

END
END

END
Command5

»
»

(a) Which commands will be executed if the stack contains 1, 1 and 0?

(b) Which commands will be executed if the stack contains 0, 1 and 0?

(c) What should the stack contain so that onlyCommand5is executed?

(d) Which commands will be executed if the stack contains 0, 1 and 1?

6. After running this program, what will be the output?

« 32 2 5 → a c h
« a 5 xroot c 3 4 / * → b j

« IF b j > THEN
8 h 6 SQ c / / *

ELSE
a h a / + h -

END
»

»
»

7. Write a program that toggles the value of a flag (ie, if it is set it is cleared, and
vice-versa) specified in level one.

16

8. Write a program that reads a flag number and a true/false from the stack. It it’s
true, it sets the flag, if not is clears the flag.

9. Write a program that reads three numbers form the stack and outputs them in
increasing order.

10. Write a program that, given the month, day and year, in this order, calculates
the day of the week, and outputs its name (“Sunday”, “Monday”, etc.) Use the
formula

dw =
(
b2.6m− 2c+

⌊a
4

⌋
+
⌊s

4

⌋
+ d+ a− 2s

)
mod7

where

• m is the month. January and February as months 11 and 12 of the previous
year. March is month 1, and December is month 10.

• d is the day of the month.

• a are the two last digits of year.

• s are the first two digits of year.

• dw is the day of the week. Sunday is 0, Monday is 1 and so on.

17

5 Loop structures

In the previous chapter, you learned some of User RPL control structures: the condi-
tionals. They allow part of a program to be executed only if a certain condition is met.
Now, we’ll see other types of control structures: theloop structures. They allow part
of a program to be executed more than once.

5.1 Indefinite Loop Structures

The first kind of loop structure you’ll see is theindefinite loop. As the name says,
it repeats an indefinite number of times, while (or until) a condition is met. There
are two forms of indefinite loops in the HP48:WHILE...REPEAT...END loops and
DO...UNTIL...END loops. Basically, they do the same thing: repeat the code while
a certain condition is met, or until a condition is met.

The form of theWHILEstructure is:

WHILE
test condition

REPEAT
code to be repeated

END

When the HP seesWHILE in a program, it evaluatestest condition . If it is
true, then thecode to be repeated is executed, and whenENDis reached, the
program restarts execution atWHILE. If the test condition evaluates false, then
the program resumes after theEND. Since the condition is evaluated before the main
code, the loop may never be executed, if the condition evaluates false the first time.

Let’s see a simple example ofWHILE. The program below calculates the sum of
the even numbers between 100 and 200 (inclusive):

« 0 @ Initial sum
100 @ First number
→ sum n @ Save in variables to make things simpler
« WHILE

n 200 ≤
REPEAT @ Repeat while the number hasn’t reached 200

n ’sum’ STO+ @ Increment sum
’n’ 2 STO+ @ Yes, STO+ accepts its arguments in any order

END
sum @ Output the sum

»
»

The other form of indefinite loop isDO...UNTIL...END . It works likeWHILE,
but instead of repeatingwhile a condition is true, it repeatsuntil a condition is true
(which can also be said as while a condition is false). Its form is:

18

DO
code to be executed

UNTIL
test condition

END

Thecode to be executed will be executed at least once, untiltest con-
dition evaluates true.

A note valid for both forms of loops. If you use something like

WHILE 1 REPEAT ... END

the program will be executed until your batteries drain completely or until it is
stopped by the user. So be careful to always put a condition to stop the loop.

Now let’s see how the above program would look like rewritten withDO. The only
change is that the test condition has been reverted.

« 0 100 → sum n
« DO

’sum’ n STO+
2 ’n’ STO+

UNTIL
n 200 >

END
sum

»
»

5.2 Definite loop structures

Different from the above structures, which will run a unknown number of times, the
definite loop structuresrun a predefined number of times. There are four different
variations of loop structures in the HP48, but the differences are minimal.

The simplest possible isSTART...NEXT . It’s form is:

start stop START
commands to be executed

NEXT

STARTreads to numbers from the stack, the initial number and the final number.
Then, thecommands to be executed are executed. WhenNEXTis reached, the
initial number is incremented by one. If it is smaller than or equal to the final number,
then the commands will be executed again. If it is greater, then execution will continue
afterNEXT.

The second type of definite loop structure is theFOR...NEXT loop. It is exactly
like START, with one difference: you can access the number of that execution and use
it as a normal variable. The syntax is:

19

start stop FOR var
commands to be executed

NEXT

The variable can have any name, and it works like any local variable. You can even
assign a new value to it. Traditionally, the variable is calledi , j or k , but this is just a
convention.

In both kind of loops, you can changeNEXTby increment STEP. The differ-
ence is that the count will be incremented byincrement instead of 1.

Now let’s see our program in using aFORloop:

« 0 @ Initial sum
100 200 @ Goes from 100 to 200
FOR i @ The current number is i

i + @ Increment sum by i
2 STEP @ Increment count by 2, since we want only even numbers

»

5.3 Exercises

1. Running the following program, which results do you get?

« { } 10
DO

DUP 1 - 3 ROLLD SQ + SWAP
UNTIL

DUP 1 ==
END
DROP

»

2. Modify the above program to use aWHILEstructure (change as little as possi-
ble).

3. Write a program to calculate the factorial of a number given in the stack.

4. Suppose Country A has a population of 30,000,000 inhabitants and an annual
growth rate of 3%; and Country B has a population of 200,000,000 inhabitants
and an annual growth rate of 1.5%. Write a program (usingDO) to calculate
the number of years necessary for the population of Country A to get equal of
greater than the population of Country B. Output the number of years and the
population of each country.

5. A radioactive chemical element loses half of its mass every 50 seconds. Given
the initial mass (in grams) in the stack, write a program to determine the time
necessary for the mass to get lass than 0.5 grams. Output the final mass and the
time in hours, minutes and seconds in the form" x h y min zs" .

20

6. Write programs to calculate the following sums:

(a) S =
1
1

+
3
2

+
5
3

+
7
4

+ · · ·+ 99
50

(b) S =
21

50
+

22

40
+

23

48
+ · · ·+ 250

1

(c) S =
37× 38

1
+

36× 37
2

+
35× 36

3
+ · · ·+ 1× 2

37

(d) S =
1
1
− 2

4
+

3
9
− 4

16
+ · · ·+ 10

100

(e) S =
1000

1
− 997

2
+

994
3
− 991

4
+ · · · − 853

50

(f) S =
480
10
− 475

11
+

470
12
− 465

13
− · · ·+ 430

20

7. The following programs calculate sums of fractions. Write the sums as in the
above exercise, and also using sigma notation.

(a) « 0 DUP
14 FOR a

2 a ˆ 15 a - SQ /
-1 a ˆ * +

NEXT
»

(b) « 100
1 99 FOR b

100 b - b ! +
NEXT

»

(c) « 63
1 31 FOR i

63 i 2 * - i ! / +
NEXT

»

(d) « 1
2 20 FOR j

j ! 2 j ˆ 1 - /
-1 j ˆ * -

NEXT
»

8. Write a program to calculateπ using

S =
1
13
− 1

33
+

1
53
− 1

73
+ · · ·

whereπ = 3
√

32S. Use 51 terms.

21

9. Write a program that calculates the value ofπ, with a precision of 0.01. UseDO
and:

π = 4− 4
3

+
4
5
− 4

7
+

4
9

+ · · ·

10. Write a program that, whenx is in the stack, returnsex, with a precision of
10−11. UseWHILE.

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

11. Supposingx is in the stack, write programs to calculate the following sums:

(a) S = 1 + 1
2 + 1

3 + 1
4 + · · ·+ 1

x

(b) S = x− x2

3! + x4

5! −
x6

7! + · · ·+ x40

41!

(c) S = 1
x + 2

x−1 + 3
x−2 + · · ·+ x−1

2 + x
1

12. Write a program that calculates the approximate square root of a numberY in
the stack, using Newton-Raphson’s method:

• the first approximation of
√
Y isX0 = Y

2

• the successive approximations areXn+1 = X2
n+y

2Xn

13. Modify the above program so that it calculates the square root with a precision
of 10−11.

14. Write a program to find a root of an equation using Newton-Raphson’s method:

Xn+1 = Xn −
f(Xn)
f ′(Xn)

Assume the equation is in level three, the variable in level two and an initial
guessX0 is in level one. Calculate 30 approximations.

15. Modify the above program to search for a root with a precision specified by the
user in level one. All other inputs are shifted one level up.

22

6 Error handling

The HP48 User RPL programs are safe. Error handling is done automatically and the
programmer doesn’t have to worry about that. And, if some error condition occurs,
for example, if there aren’t enough arguments for a command, the only thing that will
happen is that an error beep will be heard (unless disabled by the user) and a message
will be displayed. The program will be stopped and the local variables will be removed.
There is no reason to worry about that.

However, sometimes it is necessary to worry about errors that might happen. If
your program, for example, needs a positive number as input, but a negative number
is entered, probably no error will occur in the program, but the result might be wrong
or meaningless. Because of this, there are some structure to handle errors or generate
errors.

The first of these isIFERRR...THEN...ELSE . It’s syntax is:

IFERR
detection clause

THEN
clause if error

ELSE
normal clause

END

First, thedetection clause is evaluated. If an error occurs, thenclause
if error is executed, and then the program continues afterEND. If no error oc-
curred,normal clause is executed instead. You may omit theELSE part, in this
case no action will be taken if there was no error.

Tip: Stopping loops
It isn’t written on the manual, but you can exit loops (START, DOand the
others.) To do that, include the loop in anIFERR structure. Then, when you
want to stop the loop, generate an error. Divide something by zero, or better
yet, useDOERR(to be seen shortly.) The loop will be exited. The example
below will not output all numbers:

« IFERR
1 9 FOR i

i
IF i 5 > THEN

0 DUP /
END

NEXT
THEN
END

»

23

But what if the program must take different actions based on the kind of error
that occurred? Suppose the program should do something if there was an “Undefined
Result” error and another action if there was an “Infinite Result” error. How can this
be done? With the commandsERRN, ERRMandERR0.

The first,ERRN, returns the number (in hexadecimal string format) of the last error.
You can find a table of error values and their messages in Appendix B of the HP48
manual.ERRMreturns a string with the error message. AndERR0clears the last error.

Last but not less important than the others, there is the commandDOERR. As the
name says, it is used to produce an error. It accepts different kinds of arguments: the
number of the error (either as a real number or as an hexadecimal string), a string with
a custom message, or 0. If you give a number (different from 0), that error will be
generated. If you give a string, that string will be shown in the status area. And 0 can
be used to stop a program, with no error message.

Tip: Another way to stop a program
Although0 DOERRcan be used to stop a program while it is running, there
is a smaller and faster way: simply use theKILL command where you want
the program to be stopped.

24

7 Getting Input

The most simple and obvious way of getting input for HP programs is the stack. The
user should put the arguments in the stack, and the results are returned to the stack.
However, sometimes this is not the best way. When there are many arguments, it may
be difficult for the user to remember the order, the type, and so on. So, there are better
ways of getting inputs. And so there are better ways of displaying output, which we’ll
see on the next chapter.

7.1 Enter input the by the Command Line: INPUT

The first command to get input isINPUT (somewhat obvious, isn’t it?) This command
allows you to display a message and the user can edit a string using the command
line. It takes two arguments: in level two, the message to be displayed at the top of the
screen. It may be empty, and it may contain newline characters for multi-line messages.

In level one, there are two possible arguments: you can put a string with the initial
text, which the user will modify (it can obviously be blank), or a list in the form

{ "string" { row column } mode(s) }

The arguments may be in any order, and you don’t have to specify all the arguments
above, just the ones you need.

• "string" is the initial text that will be at the command line.

• row andcolumn specify where the cursor will appear (the default is at the end
of the string) and whether it is in insert or overwrite mode (the default is insert).
Row numbers start at one for the topmost row, and column numbers start at one
for the leftmost character. Row 0 means the bottom row, and column 0 means
the last character. Instead of specifying the row and column, you may substitute
the list for a single real number, the character position counting from the first
character. To make the cursor start in overwrite mode, make the first number
negative.

• mode(s) are zero or more of the following:

– A Greek alpha symbol (alpha left-shift a) will start the editor with the al-
phabetic keyboard on. This is very useful if the user is supposed to enter a
string.

– ALGwill cause the editor to start with algebraic entry mode on.

– V will check the syntax of the entire command line whenENTER is pres-
sed, in the same way that the command line editor normally does, disallow-
ing an edit if there is an RPL syntax error.

INPUT returns what the user entered as a string. Normally, you would useOBJ→
to make it the way you need, for example a real number.

When the user pressesCANCEL the first time duringINPUT, the input line is
cleared. If the user pressesCANCEL again, the rest of the program is canceled.

An example of a program usingINPUT:

25

« "Enter A, B, C"
":A: :B:

INPUT
»

(Insert newlines between the three lines of the input string.)
When executed, the program will show a screen similar to the one of picture 1.

Figure 1:INPUT example

The return string will be something like

":A:1
:B:2
:C:3"

which you can then useOBJ→ on and you’ll get
4:
3: A: 1
2: B: 2
1: C: 3

7.2 Presenting options:CHOOSE

Another command related to input isCHOOSE. You may see an example ofCHOOSE
by pressing right-shift 7. Yes, it’s a box with several options. They are very easy to
create.

To useCHOOSE, you just need three arguments. In level three, a string with the title.
If it’s an empty string, the choose box will have no title and it will be one line bigger.
In level two, a list containing the options. And in level one a number corresponding to
the initial position where the highlight should be.

If the user chooses an item, thenCHOOSEwill return the chosen item in level two
and 1 (true) in level one. If the choose box was canceled, only 0 (false) will be returned.
The chosen item will be returned as it was entered on the list. However, if you substitute
each element of the list with a two-element list, then the first one will be shown, but
the second will be returned.

Let’s see an example ofCHOOSE. The following program will display a choose box
which lets you select your angle mode.

26

« "ANGLE MODE" @ Title
{ { " Degrees" DEG }

{ " Radians" RAD }
{ " Gradians" GRAD } } @ Items

1 @ Initial position
IF CHOOSE THEN EVAL END

»

7.3 Input forms: INFORM

And now, we’ll seethecommand for getting input:INFORM. You may see an example
of INFORMby pressing right-sift 7ENTER. Yes, those menus are created byINFORM.
It is the most complicated command of User RPL, but it is not so difficult.

INFORMtakes five arguments. In level five, the title to be displayed at the top of
the screen. In level four, the specification of the fields. In level three, the format. In
levels two and one, respectively, lists with the values that will be used if the fields are
reset and when they are first shown.

The field specification is a list in the form{field1 field2 ... fieldn} ,
where each field is one of the following:

• "label"

• { "label" "help" }

• { "label" "help" type1 type2 ... typen }

• { }

"label" is a string which will server as the title of the field, and which will be
displayed near the field."help" is the text that will be displayed on the bottom line
when the field is specified (which should be a specification of what the field means.)
The type specifications are zero or more real numbers representing the types of objects
allowed in the field. If unspecified, all types of objects are valid. You can find a
list of object types in Appendix H of the manual, under commandTYPE. If a field
specification is an empty list, the field immediately to the left is expanded to occupy
the unspecified field space.

The format specification is one of the following objects:

• { }

• columns

• { columns }

• { columns width }

Wherecolumns is the number of columns that the form has. The default value is
one. width is the tab width between the left edge of each title and each field. This
allows a vertical alignment of the fields. The default is three.

27

The reset and initial values are either empty lists or list containing exactly one
object for each field. These values will be used when one (or all) the fields are reset, or
the first time the display is shown. If you want a field to be left blank, specifyNOVAL
as its value.

If the user filled in the form, a list with the values will be returned to level two, and
1 (true) to level one. The the form was canceled, 0 (false) will be returned to level one.
A field that was left blank will be returned asNOVAL.

Let’s see an example ofINFORM, because I’m sure you didn’t understand a thing
of the above. But you will understand if you see an example. The program will display
a dialog box like the one in picture 2, and will then calculate the distance of the points
if the user doesn’t cancel the form.

Figure 2:INFORMexample

« "DISTANCE OF TWO POINTS" @ Title
{ { "x1:" "" 0 } @ Title, help, and only real numbers

{ "y1:" "" 0 }
{ "x2:" "" 0 }
{ "y1:" "" 0 } }

{ } @ The default format is good for us
DUP DUP @ No reset or initial values
IF

INFORM @ Calculate only if not canceled
THEN

OBJ→ DROP @ Split the values
ROT - SQ 3 ROLLD - SQ +√ @ Calculate

END
»

Now, let’s change a little our program, so that it displays with two columns, like
the image shown in picture 3.

« "DISTANCE OF TWO POINTS" @ Title
{ { } @ Blank line at top

{ "x1:" "" 0 } @ Title, help, and only real numbers
{ "y1:" "" 0 }
{ "x2:" "" 0 }
{ "y1:" "" 0 } }

28

Figure 3:INFORMwith two columns

2 @ Two columns
{ } DUP @ No reset or initial values
IF
... @ The rest is equal

»

7.4 Getting key presses

To get individual key presses, we use a special form of the commandWAIT. Normally,
this command takes the number of seconds (from the stack) to delay program execu-
tion. However, if you give 0 as input for it, it will wait until a key is pressed, and will
return the code of that key.

Key codes have the formrc.p , wherer is the row number andc is the column
number, counting from the top left key (the first softkey — A).p is a number from one
to six, representing the key modifiers. The values are listed in table 7.

Plane Meaning
1 No modifier
2 Left-shift
3 Right-shift
4 Alpha
5 Alpha and left-shift
6 Alpha and right-shift

Table 7: Values for the plane

This way,MTH is key 21.1,RCL is key 32.3,x2 is key 44.2, and so on.
The following program will wait for a key, and exit ifENTER is pressed:

« 0 WAIT
IF

51.1 ==
THEN

KILL

29

END
... @ Rest of program

»

Another command related to keys isKEY(no comments.) It is used in loops, when
you want a loop to stop when a key is pressed. If no key is pressed while this command
runs, it will return 0, otherwise it will return the code of the key. But the code contains
no plane information, because the modifier keys also return a value (and thus probably
stop the loop). The following program will loop until a key is pressed:

« DO
... @ Your code here

UNTIL
KEY

END
»

7.5 Exercises

1. Using threeINPUTs, write a program to calculate the roots of a quadratic equa-
tion, return the values on the stack. The user should be prompted fora, b and
c.

2. Write a program that usesINFORMto let the user entera, b andc, and calculates
the roots of the quadratic equation. The program then usesINFORMagain to
display the results. The screens should be like the ones in pictures 4 and 5.

Figure 4: Input screen for exercise 2

3. Write a program that creates a screen like the one shown in pictures 6 and 7 (see
the different help) and then solves the system{

ax+ by = u
cx+ dy = v

and returnsx andy to the stack.

30

Figure 5: Output screen for exercise 2

Figure 6: Input form for exercise 3

Figure 7: Input form for exercise 3

Figure 8: Input form for exercise 4

31

4. Write a program that creates a screen like the one in picture 8 and calculates the
inverse matrix. After calculations are done, use a screen like the input one to
give the results.

32

8 Displaying output

In this last chapter, you’ll learn how to display the output of your programs in a nice
way. Since your program has a nice way of getting input (by means of the commands
seen on last chapter), it should also have a nice way of displaying output.

8.1 Displaying message boxes:MSGBOX

The commandMSGBOXis very easy to use, for it takes only a single argument. It
displays the string in a nice message box. The message box has at least two lines, so
if your message is very short there will be a blank line. You may enter line-breaks in
your string. If you don’t, the text will be automatically wrapped.

8.2 Producing sounds

To make the HP produce a sound, use theBEEPcommand. However, If the beep has
been deactivated, the beep will not sound. The command takes two arguments: in level
two, the frequency of the sound, in Hertz. In level one, the duration of the sound. Quite
simple.

8.3 Displaying text strings

The command used to display strings on the screen isDISP. It takes a string as ar-
gument (or any other object, which will be converted to a string) and the line number
(from one to seven) from the stack. The object is displayed at the specified line. You
may include line breaks in the string, this way you may display more than one line each
time. Only the line(s) where the text will be displayed are cleared.

8.4 UsingFREEZE

If you tried DISP (if you haven’t, this is a very good time to do so), you probably
noticed that the text only remains in the display for a very short period. To help this,
there is the commandFREEZE. It takes one parameter: a real number representing the
area to freeze. The specified area(s) are not updated until a key is pressed. The possible
values are listed in table 8.

8.5 Clearing the display

And the last command on this subject isCLLCD. OK, I should have finished with a big
command, with many arguments, etc., butCLLCDis very simple. It takes no arguments
and returns no values. It clears the whole screen (that’s what the name stands for: clear
LCD.) The stack, orPICT isn’t actually cleared, just the display. It is normally used
beforeDISP.

33

Number Area(s) frozen
1 Status area
2 Stack
3 Status area and stack
4 Menu
5 Menu and status area
6 Menu and stack

0 or 7 Whole display

Table 8: Arguments forFREEZE

34

A Answers to exercises

Chapter 2 — First concepts

1. (a) « 1 2 + »

(b) « « 1 2 + » EVAL »

(c) 3

(d) 3

(e) 1 and« 2 + »

(f) 3

2. « 3 ˆ π 4 3 * / →NUM »

3. « 32 - 5 * 9 / »

4. « 9 * 5 / 32 + »

5. « INV SWAP INV + INV »

6. « DUP2 * 3 ROLLD + / »
If you haveLASTARGenabled, there is a shorter version:
« * LASTARG + / »

7. « 4 ROLL * 3 ROLLD * - »

8. « ROT - SQ 3 ROLLD - SQ +√ »

9. « 3 PICK 4 * * NEG OVER SQ +√ SWAP NEG + SWAP 2 * /
»

10. The most obvious solution is« 3 PICK 4 * * NEG OVER SQ +√ SWAP
NEG ROT 2 * DUP 3 ROLLD / 3 ROLLD / DUP2 + 3 ROLLD NEG
+ » But Peter Karp sent two solutions that are shorter. Both work by changing
the well known Bhaskara’s formula into

x =
−b
2a
±

√(
−b
2a

)2

− c

a

The first solution is:« 2 →LIST SWAP / EVAL SWAP -2 / DUP SQ
ROT - √ DUP2 + ROT ROT - »
and the other is:« 3 PICK / SWAP ROT -2 * / DUP SQ ROT - √
DUP 2 + ROT ROT I »

11. The most obvious solution is:« 3 DUPN * SWAP ROT * + SWAP ROT
* + 2 * » . However, Joe Horn has a better solution. It is based on factoring
the equation intoS = 2(d(h+w) +hw). Here is the program: notice the use of
LASTARG: « * LASTARG + ROT * + 2 * »

35

Chapter 3 — Local variables

1. « → a b u c d v
« ’a*d-b*c’ EVAL

’(d*u-b*v)’ EVAL OVER /
’(a*v-c*u)’ EVAL ROT /

»
»

Of course, you can use RPN notation if you prefer:

« → a b u c d v
« a d * b c * -

d u * b v * OVER /
a v * c u * ROT /

»
»

2. (a) « → a b c d e f g h i
’a(e*i-f*h)+b*(f*g-d*i)+c(d*h-e*g)’

»

(b) « → a b c d e f g h i
« a e i * f h * - *

b f g * d i * - * +
c d h * e g * - * +

»
»

3. « → a b c d e f g h i
« e i * f h * - *

b i * c h * - * NEG
b f * c e * - *
d i * f g * - * NEG
a i * c g * - *
a f * c d * - * NEG
d h * e g * - *
a h * b g * - * NEG
a e * b d * - *
9 →LIST
a e i * f h * - *
b f g * d i * - * +
c d h * e g * - * +
/ EVAL

»
»

36

Chapter 4 — Conditional tests

1. (a) 0

(b) 1

(c) 0

(d) 1

2. (a) 0

(b) 0

(c) 1

(d) 0

3. (a) 1

(b) 0

(c) 1

(d) 0

(e) 0

(f) 1

(g) 0

4. 0

5. (a) Command1andCommand5

(b) Command3, Command4andCommand5

(c) 0, 0 and any other value

(d) Command2andCommand 5

6. 2.22222....

7. « IF DUP FS? THEN
CF

ELSE @ Since the flag is set, we don’t need to set it again,
DROP @ just drop its number

END
»

8. « IF THEN @ If the value is true
SF @ Set

ELSE
CF @ Else clear

END
»

37

9. « → l m n
« IF l m > l n > OR THEN

IF m n < THEN
l m ’l’ STO ’m’ STO

ELSE
l n ’l’ STO ’n’ STO

END
END
IF m n > THEN

m n ’m’ STO ’n’ STO
END
l m n

»
»

10. « ROT 2 -
IF DUP 0 < THEN @ January or February?

12 + @ Correct month
SWAP 1 - SWAP @ Correct year

END
3 ROLLD
100 / DUP FP 100 * SWAP IP @ Split year
DUP 4 / IP SWAP 2 * - SWAP DUP 4 / IP
+ + + SWAP 2.6 * .2 - IP + 7 MOD @ Apply formula
→ dw
« CASE

dw 0 == THEN "Sunday" END
dw 1 == THEN "Monday" END
dw 2 == THEN "Tuesday" END
dw 3 == THEN "Wednesday" END
dw 4 == THEN "Thursday" END
dw 5 == THEN "Friday" END
dw 6 == THEN "Saturday" END
"Other day?!"

END
»

»

This program can be improved. First, we can make Saturday the default clause
because there will never be another day. But it can be improved even further,
without CASE. But that remove the purpose of the exercise. Anyway, you can
replace→ dw « ...» with

{ "Sunday"
"Monday"
"Tuesday"
"Wednesday"

38

"Thursday"
"Friday"
"Saturday" }

SWAP 1 + GET

Chapter 5 — Loop structures

1. { 100 81 64 49 36 25 16 9 4 }

2. « { } 10
WHILE

DUP 1 6=
REPEAT

DUP 1 - 3 ROLLD SQ + SWAP
END
DROP

»

3. « 1 @ Number that will be multiplied
2 @ Count
→ n f i
« WHILE

i n ≤
REPEAT

’f’ i STO*
’i’ 1 STO+

END
f @ Output the factorial

»
»

Or usingDO:

« 1 2 → n f i
« DO

’f’ i STO*
’i’ 1 STO+

UNTIL
i n >

END
f

»
»

4. « 0 @ Elapsed years
3E7 2E8 @ Initial populations

39

→ ny pa pb
« DO

’pa’ 1.03 STO*
’pb’ 1.015 STO*
’ny’ 1 STO+ @ Increase populations and number of years

UNTIL
pa pb ≥
pa "Pop. A" →TAG
pb "Pop. B" →TAG
ny "No. years" →TAG

»
»

5. « 0 @ Time elapsed
→ m t
« WHILE

m .5 ≥
REPEAT

’m’ 2 STO/ @ Halve mass
’t’ 50 STO+ @ Increment time

END
@ Cute display for mass
m 1_g →UNIT "Mass" →TAG
t @ Let’s convert no. seconds to hours, minutes & seconds
3600 / IP "h " + @ Hours
t 3600 MOD DUP ’t’ STO @ Seconds - hours
60 / IP "min ă" + + @ Minutes
t 60 MOD "s" + + @ Finally

»
»

6. (a) « 1 @ First item
2 50 FOR i

i 2 * 1 - i / + @ Calculate term and add
NEXT

»

(b) « .04 @ First item
2 50 FOR j

2 j ˆ 51 j - / +
NEXT

»

(c) « 1406 @ First item
36 1 FOR k

k k 1 + * 38 k - / +
-1 STEP

»

40

You could also change it to calculate in reverse order, so that it isn’t neces-
sary to use-1 STEP .

(d) « 1
2 10 FOR i

i i SQ / @ Absolute value
-1 i ˆ * - @ Calculate sign and add

NEXT
»

(e) « 1000
2 50 FOR a

1000 a 1 - 3 * - a /
-1 k ˆ * -

NEXT
»

(f) « 48
1 10 FOR n

480 n 5 * - n 10 + /
-1 n ˆ * +

NEXT
»

7. (a) S =
1

196
− 2

169
+

3
144
− · · · − 14

1

S =
14∑
a=1

(−1)a(−a)
(15− a)2

(b) S =
100
1

+
99
1

+
98
2

+
97
6

+
96
24

+ · · ·+ 1
99!

S =
99∑
b=0

100− b
b!

(c) S = 63 +
61
1!

+
59
2!

+
57
3!

+ · · ·+ 1
30!

S =
31∑
i=0

63− 2i
i!

(d) S =
1!
1
− 2!

3
+

3!
7
− 4!

14
+

5!
31
− · · ·+ 20!

1048575

S =
20∑
j=1

(−1)j(−j!)
2j − 1

8. « 1
3 105 FOR k

k 3 ˆ -1 k 2 / CEIL ˆ * INV -
2 STEP
32 * 3 XROOT

41

»

9. « 4 3 → d
« DO

4 d / -1 d 2 / CEIL ˆ * - 2 ’d’ STO+
UNTIL

DUP π →NUM - ABS .01 <
END

»
»

10. « 1 → x d
« 1 WHILE

DUP x EXP - ABS 1E-11 >
REPEAT

x d ˆ d ! / +
’d’ 1 STO+

END
»

»

11. (a) « 1 2 ROT
FOR n

n INV +
NEXT

»

(b) « DUP → x
« 1 20 FOR i

x i 2 * ˆ i 2 * 1 + ! /
-1 i ˆ * +

NEXT
»

»

(c) « DUP INV SWAP→ x
« 2 x FOR n

n x n 1 - - / +
NEXT

»
»

12. « DUP 2 / SWAP→ y
« 1 20 START

DUP SQ y + SWAP 2 * /
NEXT

»
»

42

13. « DUP DUP√ SWAP 2 / 3 ROLLD→ y r
« DO

DUP SQ y + SWAP 2 * /
UNTIL

DUP r - ABS 1E-11 <
END

»
»

14. « ROT DUP DUP STEQ @ Save copy of equation in EQ
EQ→ - @ Split and subtract, to zero one side
DROP ROT DUP2 DUP PURGE∂ @ Calculate derivate
→ f v d @ Save function, variable and derivate
« 1 30 START

DUP v STO f EVAL d EVAL / - @ Calculate approximation
NEXT

»
»

15. « 4 ROLL DUP DUP STEQ OBJ→ SWAP DROP
EQ→ -
DROP 4 ROLL DUP2 DUP PURGE∂ → e f v d
« DO

DUP v STO
f EVAL DUP d EVAL / ROT SWAP -

UNTIL
SWAP ABS e <

END
»

»

Chapter 7 — Getting input

1. « "Enter A:" "" INPUT OBJ →
"Enter D:" "" INPUT OBJ →
"Enter C:" "" INPUT OBJ →
3 PICK 4 * * NEG OVER SQ +√ SWAP NEG ROT
2 * DUP 3 ROLLD / 3 ROLLD / DUP2 + 3 ROLLD NEG +

»

2. « "QUADRATIC EQUATION"
{ { "A:" "AXˆ2+BX+C=0" 0 1 9 13 }

{ "B:" "AXˆ2+BX+C=0" 0 1 9 13 }
{ "C:" "AXˆ2+BX+C=0" 0 1 9 13 } }

{ } DUP DUP
IF INFORM THEN

OBJ→ DROP 3 PICK 4 * * NEG OVER SQ +√

43

SWAP NEG ROT 2 * DUP 3 ROLLD / 3 ROLLD / DUP2 +
3 ROLLD NEG +
2 →LIST
"SOLUTION"
{ "X’:" "X”:" }
{ } DUP
5 ROLL
IF INFORM THEN DROP END

END
»

3. « "SOLVE SYSTEM"
{ { "A:" "AX+BY=U" 0 1 9 13 }

{ "B:" "AX+BY=U" 0 1 9 13 }
{ "U:" "AX+BY=U" 0 1 9 13 }
{ "C:" "CX+DY=V" 0 1 9 13 }
{ "D:" "CX+DY=V" 0 1 9 13 }
{ "V:" "CX+DY=V" 0 1 9 13 } }

3 { } DUP
IF INFORM THEN

OBJ→ DROP
→ a b u c d v
« ’a*d-b*c’ EVAL

’d*u-b*v’ EVAL OVER /
’a*v-c*u’ EVAL ROT /

»
END

»

4. « "INVERSE MATRIX" DUP
{ { "" "" 0 1 9 13 }

{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 }
{ "" "" 0 1 9 13 } } DUP 3 ROLLD

{ 3 1 } DUP 4 ROLLD
{ 0 0 0 0 0 0 0 0 0 } DUP DUP 6 ROLLD
IF INFORM THEN

OBJ→ DROP
→ a b c d e f g h i
« e i * f h * - *

b i * c h * - * NEG
b f * c e * - *

44

d i * f g * - * NEG
a i * c g * - *
a f * c d * - * NEG
d h * e g * - *
a h * b g * - * NEG
a e * b d * - *
9 →LIST
a e i * f h * - *
b f g * d i * - * +
c d h * e g * - * +
/ EVAL

»
9 →LIST
IF INFORM THEN DROP END

END
»

45

	Cover
	Table of Contents
	Introduction
	First concepts
	Stack manipulation
	Exercises

	Local variables
	Exercises

	Conditional tests
	Trues, Falses, Zeros and Ones
	Flags
	Basic conditionals: texttt {IF...THEN...ELSE}
	texttt {CASE} structures
	Exercises

	Loop structures
	Indefinite Loop Structures
	Definite loop structures
	Exercises

	Error handling
	Getting Input
	Enter input the by the Command Line: texttt {INPUT}
	Presenting options: texttt {CHOOSE}
	Input forms: texttt {INFORM}
	Getting key presses
	Exercises

	Displaying output
	Displaying message boxes: texttt {MSGBOX}
	Producing sounds
	Displaying text strings
	Using texttt {FREEZE}
	Clearing the display

	Answers to exercises

