
PROGRAMMING
THE

HP-41C/CV/CX
A Step-by-Step

Introduction to Using a
Personal Portable Computer

- Second Edition -

Thomas Adams

© Copyright by Author 1989

This book may not be reproduced or transmitted either as
a whole or in part without explicit and written permission
of the author. Information in this book is presented
without any kind of representation or warranty. No
liability is assumed by the author resulting from direct or
indirect use of any material or information in this book.

Information about this book can be
obtained from:

Thomas Adams, Ph.D.
Department of Physiology
Michigan State University
East Lansing, Michigan

48824

Table of Contents

Preface

Foreword

Introduction

 ®sccccscccccsseccccccenccccccocee 900

CRADLE1. SEP OMEoeeeeeeererereeetereeetereeetereressesesestesso se sess ssesessssessessassassessesesseseassssestassssanssessensnsesssenseses

Section 1.1. What tO EXPECL ...cccceireurirrreuririreireeninsinssssssessesssssesessssessssessssessessssssssssssssssssssssssassssssssessasans
Section 1.2. Which MOdEI t0 CHOOSE?uuvevvereerereeerceeieccseaeseseeeseesesssessssssssassesesesssssssesessssssesessssssseses

Chapter 2. Features and FUNCLIONScocooooeiuiieeeiececeeeeeeeeceeecacscasaescesessae sere sesesssssessssssssssssssssssasassssesannes

Section 2.1. Physical Characteristics
Section 2.2. Keyboard Operations

$0 00csscssoRve:!

000 00

SECtion 2.2.1. TOGGLE KEYS ..ccurveurrerrucieiiieirieieeeeetesese se seteses ese sss ses ssssssssssssssssssssssesessssssessassssssssssssssssasans
Section 2.2.2. FUNCHON KEYSucuucuerrieieiciieieteeiesese sete sestesne teres e sere sessesessssesassessssssessssssssassassssassssassssasans

Section 2.3. The USER Mode
Section 2.4. Display Options

000000000 tr000

00 000c0000000s0ccocccse"

Chapter 3. Memory Location and Use 0 000c0r000etseesssssssesssecesnsessseseccesssscccccsssccce

Section 3.1. The STACK REGISTERSoioiriririeirereernineetsisssssassssesssssssesesssesssssssssssssssstsssssssscnssessens

Section 3.1.1. The X, Y, Z and T STACK REGISTERSouoiriieereeererererereeseeesesensrsesesessssssesssesens:

Section 3.1.2. Entering Data into the STACK REGISTERS
Section 3.1.3. Reviewing the Stack
Section 3.1.4. Recalling Stack Data........ccecoeureucunenrueeecrcenreneniarunaessssesesesccnsssesecsencsessssastsesssssssssssssssassasaens
Section 3.1.5. Clearing the STACK REGISTERSiiriceeerreenenteeestsetssessssessessssesssasesssassesesens
Section 3.1.6. Stack Storage Arithmetic and Exchange
Section 3.1.7. The L STACK REGISTER

©000

00

©000

00°000

Section 3.2. The ALPHA REGISTERoooooeieieeeeeeeeeeeeeeesteestsesseeeesesesssssesssessssssssssssssessssssesssssssssssssssssasss

Section 3.3. MAIN MEMORY and Data Storage Registers

Section 3.4. The CATALOGS

©000

0000000000000 00"

Chapter 4. STACK REGISTER Arithmetic 0009000¢

Section 4.1. RPN LOGIC ..cveeereeererrrrrneeinieeenieaeeeeesessesescsesssesissesessssssssnssisssssssesssssssssnsasssssssesssssssssssssssenes
Section 4.2. STACK REGISTER CORDLENLccveueeeeeirerieenreesessssasensssssesscsssssssessessesasssssessessssssessessssessssssssns
Section 4.3. Solving Complex Equations with the STACK REGISTERS
SECON 4.4. ETTOL MESSAGES ...ccovernerunuruemeurarneenirceeeneseseseesstssesesesssssssssststsssssssscsssensessasssssnsssasassssssssssssssssass
Section 4.5. Calculations Using the L STACK REGISTER

®0ccescvccscccccccsencescccccnscccsceccccececcsns

eccce

0008000000

10

13

15

16
17

21
23

Page

Chapter 5. Introducing Programmingcccceeeeeueeerersesesesssssssmsssssessssessassssssssssssssssssssssssssssssssssssasssssssssess 52

Section 5.1. Whatis a Computer Program? cesriesiessass asses assetsReesesenate 53
Section 5.2. Where are Programs StOTEA?ccc.ceeeeeeeerreerusresssesssssessssessasssssssssssessssscsssessesssesssasssssssssssen 53
SECON 5.3. LADEL RULESu.eeveeeeeeeerieereieinenisiscsecsssasesssssssssssssssssassssassassassassassassessessssssssasssssassassassassanes 56
Section 5.4. Program CONSLIUCHIONucceeiucreeeerereersrsssssessssssesssssssssssessssssssensassssssssssssssssissesssssssssassensassssssass 57

Section 5.4.1. Designing @ PTOZIAMccccceerruiirenenernnneensncssnnennnsesessesessssssssesssesessssssssssssnssnsssnssssssssens 57
Section 5.4.2. Keying and Testing a PrOZramcccccvenennreecenennnneenesenseensscsisemsmssssssssenssssssasssssssseasses 61

Chapter 6. Elementary Programming Techniquesccooeeuieerverveeinuenerncnecntnnncienenensnenenisnscscsens 64

SECON 6.1. SUM...eaterssese tee aeeset te sess se see esses as esse sa sass sssacat en eststessssstssssssestasssatansnsnnes 64

Section 6.1.1. Keying the PIOGIAMccccccriereeurieieeceeeeieeessssessssessesetseaeesesesesssssessnsssssscncssssssssenes 66

Section 6.1.2. Testing the PrOGIAMcccvivirereeericcrineereeeseccsesescseanaesncsssssissassssessssssssssss assess 67
Section 6.1.3. Program Analysis and REVIEWccecuieeereerereeesnsenesesssesssssssssesssencaesestsssasssssssssssssasn 68

Section 6.2. SUM2 and SUMScccrcrecressessssessssesesssesesssesessssssssesssssssssssnsssnssssssssssssssenens 70
SECON 6.3. SUMMYeeteeeeeeeeeteerectatesserae sess sese esasaassess sss sssassssasssss sass sesstassssatansssasatasasses 73

Section 6.4. CONItIONAL TESSc.ovueveeeieieceiecreecenciieacecasscsssessssesesesssassesssssssssesassesesssssassessssessssssassesssann 76
Section 6.5. Where Is It and HOW DO I Get TO It?coeueeerererererereereenesessssssssssssssssssssssssssssssssssssessssessnnns 81

Chapter 7. Intermediate Programming TeChRIiQUEScooeeeeereeerererreeererereeeseseessssesessesessssenssssesesnens 84

SECON 7.1. SOLVX citrinesete sesssseses ssssesesesessesesesesssesssssesesassssesasassssessssssssssssnsassssesssassssases 84
SECLION 7.2. SUDTOULINES ..cevveerererreretirerenceeeeeteacseseacee se sesesssssesesssssssssssesensessasasesesensesessasesessasessssnsasesssessssnsens 87
Section 7.3. Mixing Uses of LOCAL LABELSceceeeeneesssesesesssessssesesesesessesesessssssesnssessssaens 89
Section 7.4. FOUL EASY PIECESououiueeeeereeeeeetceteeectstescesses sere sesessssssassssssssesesssesesssssssssssssessasasane 98
Section 7.5. KEEPINEZ TTACKccoveueeeerercrcierierereeetesresearc esse sessesssessssssssssssesasessssensssssssassssesesesesssnsassensasaons 103

CRAPLEr 8. FLAGSoeeeeeeeeeeeteeternasees sss estes css sstessse stone estes sss ens sense sensesensessesenssensasessasnsensans 107

Section 8.1. Setting, Clearing and Testing FLAG StAtUscceeeeveeereererererereeresesessesssssssssssssssssssesssssanns 109
SECtiOn 8.2. FLDEMODeeeeeeeteeeeeiereessssessesesesssssesesssessssssssesssssasasessasatsessassssssssessasessssssnsasssessssnne 111
Section 8.3. Using "Non-User Defined” FLAGScociveirirenenenintninsntesesesesessesssssesesssssesssesesesssessssesssseses 116
Section 8.4. STAT retesesseseseseseserreten tases aasan tes test tenses tetas eset esas essere rb ese nensentseseasateneanenes 118
Section 8.5. FLAGS At WOTK ..ucuieiririeceeteiseeierenerieseseeesseseessessessessessassassansensessassessesssssensessensessssessasennons 121

Chapter 9. INDIRECT ADDRESSINGcooiirtreeireeeneceeeanceeaesetesesessnestesenentessscsssnssessesessssesesssssssnens 124

Section 9.1. Manipulating the Contents of the PRIMARY STORAGE REGISTERS
Using DIRECT ADDRESSING and INDIRECT ADDRESSING.......ccooveeivcinrencnneeccncns 124

Section 9.2. Manipulating the Contents of the EXTENDED DATA STORAGE

REGISTERS Using INDIRECT ADDRESSINGcuoireiieieinennenenieneneeeresesessssesesesssesssns 127

Section 9.3. Tones reeteeeteneteteseasasestesestesatestestes testes eats a tse R treat eae sea tbe t ests ents nsasnsanes 129

SECLIOM 9.4. CALCXK ..eeeeieeeeeeeteeeeeeeeseeeseesessesesessesestessessessssessssssassassensarsessessessessessessessessesessessesessesessensones 131

SECUOM 0.5. FLTEST eeeetetieeeeeeeeeeeeeseesesessesssasassesesssssasessssssssssesssesssessssssassssnsssssssssssasasssssnssssssssssessassssssesnn 131
SECON 0.6. EXAM ..eeeeieeteeceeteeeeeneaeeee sees eeesesessssssasastssstssstssssasesesssssessssssssasassssesssesesesesssssssesessssasassessssnsnes 135

11

Page

Chapter 10. Wrapping It Up 139

Section 10.1. The CHECKS Program 139

Section 10.1.1. General Description of The CHECKS Programceceeeeeeererseenesenesenenns 139

Section 10.1.2. Using the CHECKS Program - 141

Section 10.2. Where TO GO FIOM HELE ieeeeeeeeeeeeerveeeeeseesessnsasssnsessessesssessssssssesssssanes .. 146

SECtiON 10.3. REFEIEICES uuuuveuvieeeeererireeereteeieeseseetestesesescsssssssssnssnssnsesessessssesssssessessessostesssessesessssennas 147

111

Figure

1

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

3.1.
3.2.
3.3.
34.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

List of Figures

The HP-41 Keyboardcceeeeeeeeenccnneneneccenenennncnnes

HP-41 Physical Features
Toggle and Function Operations
Toggle Key Locations
Key Definitions

Designating USER Mode Operations
Display Options: Digits
Display Options: Decimals

Memory Locations
Loading the Stack
Reviewing the STACK REGISTERS
Catalog 3

RPN Logic
STACK REGISTER Operation

A Complex Equation

L STACK REGISTER Operation

Storage of a Single Program
Storage of More Than One Program
Organization of Local Labels
Label Rules

Timed Key Operationscccceeeeeeeeeeeverenscsanccsennenes

@ecceccsserccascccscccscscccscsssssscnee

0000000000000 00000000000000c000ccrsecessoccccsccssccee

000000000000 000000000000000c00cs0sccstsstceccsvcccccnce

secccccssccssccccscne

000cscsssscscsscssceccccsecsccns

000

eececccccvcccccsccsecccssssce

000000000000 00000000000000000000000c0ccccscccace

eeeccccsessccssccsccccsnscns

@esccccscscsccccccccccscccsccssccsone

Suggestions for Designing a Program
Sample Flow Chart Symbols
Sample Program Records
Suggestions for Keying-in a Program

®0e000ccc00ccscecccescscccccscoscncoe

00

00 00

000sc0se

0000000000008000

€00

00

000

0000060 00cassssccccsscss

000000000000000000000000000000000090000000000000000000000000000000cccc0ocvcccsre

£00cccscscccsoccccs

00c0000000c00000c0s0ssocse

00

00ce

©00c00000000000000000000000000e

00

STACK REGISTER Operation: Addition of 3 or More numbers (Version 1)
STACK REGISTER Operation: Addition of 3 or More numbers (Version 2)

eeccccccssscscsscccccscssccccnns

tecececccssscecessecsscccescsnes

©000

Solution of Complex Equation Using the STACK REGISTERS 0000000000 s0sscccesssncccecrccsssssssccsceesrerescteee

00ccacecseccsscconcocose

00 000e00

0000000000000 000

€000

$00

00

00000000 00¢

©000

"Writing" a Magnetic Card

SUM1
SUM2
SUM3
SUM4.
GRADES
BUMP
Program Listing: BUMP
Where Is It? (A Model)

1v

e0scessccccseccccssccccsccccce

ec00ecccccccccsscccecsssessectstsscsccccsee

®00cccccccccccrcrcccctctccccsccsccccsscccccccsc0sercscee

00 000

"Reading" a Magnetic Cardccceeeeruerrerurnrerurcenenes ©0009000000000000000000:

$00:

$00:

©00"

©000

00 000ssssssssssssce.

00

$000

Page

41
42
44
45
47

50

Figure

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9
7.10.
7.11.
7.12.
7.13.
7.14.
7.15.
7.16.
7.17.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

9.1.
9.2.
9.3.

9.4.

9.5.
9.6.
9.7.
9.8.
9.9
9.10.
10.1.
10.2.
10.3.
10.4.
10.5.
10.6.

Title

SOLVX
Program Listing: SOLVX
Operations Which Cannot be Programmed
SUBS ..eirnesnsnsensasensassnsssencssnssssntnsssusssssssssssesssssasasssssentssssssssssenssssssssssnsesssssssissssssssssnrsssassssens
Program Listing: SUBS1 and SUBS2....... .
AREAoeeeeeenensessasissssastssssassssssasasassssssssssnsssssssssssssassassssasasssassssssens
Program Listing: AREAocoeiicnincncncncncncencnene. :
Sample Problem: AREAiiiiininteeeiienennecsscsetssssenessasasssassssssssscsesssssssssssssssssssssssssssessasssnes
PRICEoeeiueinincnnenaecnsasssnsnstcssssnescsensasssssssesssssssssssssssastessssssssssssassssssssssssssssssstsssssssssssssssesacasasasanssnes
COUNT ...ciirrinirincnsaecsnssssssasssensassstsssssesetatsssssssstasssstssssssssssssssasasassssesssssssssssssssessintassssssssssssesesassssnsnse
Sample Problems: COUNTcoeiiiininieieeeceeeesssssssaessassssssssssssssssssssssessssssssesssssssnssssasssasasasssens
ISG and DSE FUNCHOMSccureeeueuirnecncnrereuicasesesssessssssssssssssssssssssnsssssssssenssscssssssssssssssssesssacnsasnsassnss

scece

 ecccce:

PYAR eee00000000000 000cscccccccccccccctccccs

0 00

$0000 00sectreesetsctesccecctertocercesecreceerecectotecesessecscscsoccccsccsccscccccccce

FLDEMOteresatest stss sass sess s essessenateassests seseesstae esas state se nenentanasnsseneen

Flow Diagram: FLDEMOovineessesessssssssssssssssssssssssssssssssssstssssssssssssssnsssssssssessssan
Program Listing: FLDEMO c.countceteassssssssssssasst sssssssassssssssssessasssasnsassnssssssssssssssses
Program Listing: The LOCK PrOZTAMISccccecorururuerunincrncusesescmsassnesesscssessessessasessassssssssesssasssssessssssscs
STAT ttre tratessessassesses sass sas as tse t ete setsess satasassssebsbesssssssesesssensassenesesssenes
Flow Diagram and Program List: STAT
FLAGS at Work
Sample Problems: BILL

00 00

 ©00ccsccscscccocs

00 00

DIRECT ADDRESSING of PRIMARY STORAGE REGISTERSiiiereeeeerererrenrennrennenne.

INDIRECT ADDRESSING of PRIMARY STORAGE REGISTERSireeeeeeeereeeereneee

INDIRECT ADDRESSING of EXTENDED DATA

STORAGE REGISTERS: Data StOTAZEccceueeerrrererrerenieriereressssesesssssesssssssssssssssessssassssesssssssssssssassess

INDIRECT ADDRESSING of EXTENDED DATA

STORAGE REGISTERS: Data Recalluooeeeeiieeiieeeeeeeecteececreseessesssessssesssesssesssesssessssennne.

TONESDN and TONESUPueoieeeereeertreeeeeeeeressesseseessessssesassesassesessssssessssessesssasssenssessessssessssesenes

CALCX 000

EXAM ...oiirereneennnnseecssnsnnassssssssssssssssssasssssasasssessasssssssstesesssstscasassessssassstnsssssssstssststssssssssssessssssasasssseseaes
Sample Problem: EXAM...iciinenieeenneeeeteaeseeaenccssssssssasasasssssssssssssessasssessasssstssssssssenessens
CHECKSeoieeneerrsnsnsessnnnnsnsasasassstssscnsasssssssssasssssssasssssssasssssssssssasassssstetsssesatstntntatssstsssessssssssssssassssssees
Flow Diagram: CHECKSirreeeerceeenecenenteseeeensnssesseesssssassescsntsessesessssesessssssssssssssssassencasns
Program Listing: CHECKSccoioiierrureenennsaessaesesnissstetstsssasssasssssssssssssssssssessssssssssssssssssssassssenens
Sample Problem: CHECKSoririiiiineeteiitettseeeseesassssssssssssssssesesssssssssssssasssssesssssssseseses
CHECKS RECOTAS FOIccieieiieirieecieeeecceetraraeeseteaesessseetetssese sensesssassee sesssassesssssssesensasassencnsen
CHECKS: USET INSITUCLIONS ..ccueeeueeenecereeeretrnenncsseesestssesssstssescesesesetssssssssssnsesesensensssssssesssssssssssseses

Preface

Not everyone successfully rides the waves of today’s computer technology.
For many people it is complicated to the point of being intimidating, and the
beginner often finds it hard even to find readable and reliable manuals. Many are
swept away, overwhelmed by the complexity, jargon and detail. More out of desper-
ation than insight, too many invest thousands of dollars in computers and software
which not only do they not know how to use but also which are inappropriate for
their application.

But there is an alternative. Many models of handheld programmable computers
cost less than $200, are battery-operated, portable, inexpensively expandable and
actually out-perform most tabletop microcomputers for making complex numerical
calculations. They offer unique low-cost opportunities to learn how to use a computer,
how to program one, and allow exploring its many applications in areas of personal and
professional interest. Once a few basic skills are acquired, these computers can provide
many years of valuable and reliable service and can be effective springboards to
learning alternative and more complicated computer technologies.

This book gives step-by-step instructions for operating and programming the least
expensive and most powerful of the handheld computers, those in the Hewlett-Packard
HP-41 series. The book assumes that the reader has little or no prior experience with
computers. It requires no more than basic arithmetic skills in order for the reader to
work the sample problems and to become proficient in writing one’s own computer
programs.

There will be at least two pay offs in progressing through this book methodically
and with care. First, one can learn generally how all computers work. The inexpensive
computers in the HP-41 series input, process and output data generically the same and
with analogous operations as does any other computer. Second, the book provides
opportunities to achieve a permanent and sure cure for math phobias. One will learn
not only how to solve quickly and easily even complex equations of any type but also
discover the satisfaction and pleasure of successfully meeting the challenge of computer
use. Nothing else will help whittle down to manageable size even complex math-
ematical operations like the reader’s skillful use of one of the HP-41 series computers.
They offer unique opportunities for teaching and learning mathematical and
statistical procedures.

My hope in writing this book is that the reader will benefit from becoming
proficient with the HP-41 series computers, learn to use profitably their many features,
and enjoy acquiring these skills as much as my many students and [have over the
past years.

Foreword

"Why bother taking the trouble to learn how a small comp-
uter works, especially one which looks like a calculator

and costs less than a couple of hundred dollars?”

Despite their unpretentious appearance and low cost, the HP-41 computers are
surprisingly powerful for making sophisticated and complex calculations. Not only do
they have many built-in functions, but also they use hundreds of readily available
programs in dozens of technical fields such as medicine, engineering, statistics, math-
ematics and many other areas, including home-management and games. Perhaps most
important, though, you can program these computers yourself to solve problems of
your own personal and professional interest. These programs can be either stored in
the computer indefinitely, or recorded on inexpensive magnetic cards. Although
this book will introduce you to some of these programs for solving common everyday
math problems, its emphasis will be on helping you learn basic skills for writing
programs of your own. It’s a good bet that soon you will be writing complex
programs once you have acquired a few basic skills for writing some of the simpler
ones, and once you see how easy it is to write programs for your application.

k %k % kX Xk Xk %k Xk Xk X

"But, why get a book to learn just one type of computer?”

Considering cost, computational power, ability to be expanded and to inter-
face with printers, plotters, magnetic card readers, cassette data storage devices and
many other accessories, there are no other computers anything like the HP-
41C/CV/CX. They virtually stand alone as a portable, programmable alphanumeric
computer. There is no other machine that even comes close to doing what they can do
for the price and their reputation for outstanding reliability. Nonetheless, the
program design and writing skills you will learn here are readily transferable for use with
other computers even though they may use a different programming language.
Computers, after all, function basically in very similar ways when it comes to the logic
of how they input, process and output information.

¥ %k Xk %k %k k %k k Xk xX

"Well, if these computers are all that good, how come
everybody doesn’t have one?”

Maybe part of the answer is that for all their many attractions and comput-
ational power, many people find the HP-41C/CV/CX computers a challenge to learn
how to use. In many ways they are much less complicated than other more powerful
machines, but admittedly, they are compact. For example, many computations they
make are not identified by just looking at the keyboard. They have to be “called up”
from the computer's memory in a special way, as you will learn how to do to run
ready-made programs, as well as those of your own design. This book is designed to
help you attain proficiency in this and many other related skills. It’s possible that more

people don’t use these computers because they haven’t had a good introduction to
using them.

* %k kk %k k Xk k kx %k *¥

"OK, [I'll buy that, but why should | get a special book
to learn how to use this computer? Why don’t | just
use the instruction book which comes with the
HP41C/CV/CX?”

You certainly could, and many people do just that with a great degree of
success. In addition, there are many other excellent self-instructional books besides the
manuals that come with the computer when you buy it. Many of them are cited here.
Just starting out, though, you may have to go to several different sources of
information to get specific questions answered, and that takes considerable time and
sometimes trial-and-error searching for the “right” source. This book is designed to
bring together enough basic information about the HP-41 series of computers so you
can start using and programming them and then be prepared to use more special-
ized references.

* kk % %k %k X % Xx *% X

"With so many manuals and books available about
computers, what's so special about this one?”

A common problem for people just starting to explore the HP41C/CV/CX is
that many of the best instructional books for this excellent machine are written for a
reader with a higher level of computer sophistication than many beginners have. It’s
frustrating, intimidating and discouraging not to be able to take the next step quickly
and easily in one’s own learning process, particularly in the beginning when one does
not yet have even the basics. This is a special problem in learning to operate such a
complex tool as a computer. What is special about this book is that it is designed to
anticipate the most commonly encountered problems for the beginner. If you already
know, for example, how to program indirect addressing statements, how to inter-
face your machine with digital multimeters for on-line data collection, and how to
write programs of a publishable quality for the HP-41C/CV/CX, this book may not be
for you. If, on the other hand, you are striving to get on the first step of the ladder in
learning how to use your HP-41C/CV/CX, then it most likely will help you establish
basic concepts, develop key entry skills and learn fundamental program writing
strategies, as well as provide you with an information base so you can then go to
appropriate advanced instruction manuals and texts. The main purpose of this manual
1S to get you started, not to teach you everything.

x %k k k k % % %k *k Xx

"Yeah, all right, but so what? What do | get out of it
after I've learned how to use this type of computer?”

You may be the best person to answer that question once you've gained some
computer skills and start to see how they meet your particular computational needs.
What many people find is that once they have even entry level proficiency with the HP-

41C/CV/CX computers, they no longer have to be concerned about solving rapidly
and accurately any equation, no matter how complex. That is a big step for those
who are a little uncomfortable with complex mathematical operations often encountered
in statistics and other analytical procedures. The skills you will learn in becoming
proficient with the HP-41C/CV/CX go a long way in dispelling math phobias, and
might even help you overcome apprehensions for learning about other computers. If
you are at all like most other people, you'll soon find that once a degree of comfort is
attained in using a computer, it becomes fascinating and a constant challenge to
increase your proficiency with it.

*k %k %k %k k k %k k kx Xk

"Well, maybe. Anyway, how do | get started?”

Keep reading.

Introduction

This book will familiarize you in a step-by-step way with the fundamentals of
computer operations and use. It is written for the beginner and focuses specifically on the
use of one type of handheld programmable computer, the HP-41 series manufactured by
Hewlett-Packard Company. There are 3 models in this series, the HP-41C, the HP-
41CV and the HP-41CX. Each is compatible with one another in programming
and in the selection and use of most peripherals, but there are important differences
among them. Unless otherwise specified, all instructions will apply equally well to any of
the HP-41 models.

There are several reasons for selecting the HP-41 series of computers as an
example in this manual. The two most important are that they are excellent computers
themselves and are superb devices with which to learn general computer skills for
using commercially available programs and for writing programs of one’s own.
Even though this book relates exclusively to one type of computer, it contains
information applicable to the use and programming of any other, regardless of its
design and the program language it uses. The examples and exercises are constr-
ucted, however, to aid your becoming proficient in the use and programming of a
specific inexpensive battery operated computer which is small yet powerful enough to
function as a useful portable record keeper and as a valuable device for solving
equations.

Even people who have access to tabletop and mainframe computers find the
HP-41 invaluable as a portable computer which supplements the functions of the more
expensive and cumbersome machines. The value of the HP-41 series of computers is
not that they take the place of other computers, but that they provide unique features
these other instruments do not. Knowing how to use and program one of the HP-41
series of computers importantly supplements a tabletop microcomputer.

There is an important secondary gain to progressing step-by-step to learn how
to use the HP-41. Besides becoming more proficient in using a computer, you will
gain additional confidence in dealing with mathematical procedures. Considering
how inhibiting, uncomfortable and self-limiting inadequate mathematical skills are,
overcoming them is an important step ahead for many people. This book is intended
to help make that step and present basic skills for computer use.

A few suggestions: You will get the most out of this book if you try each step on
your own computer as it is introduced. Key in each exercise and program, to under-
stand the topic being presented. Then modify the examples to make them run more
easily for you and to make them suit better your own specific needs and interests. Half
the fun in learning how to use your computer will be in exercising creativity in
modifying existing programs and in writing those of your own design so they operate
exactly in the way you want. Most of the programs presented here illustrate
programming principles, not necessarily the most efficient program construction.
You will learn as much drawing from your own ability to tailor these examples to
your own needs, as you will in running them just as they are listed to explain a particular
principle.

A last suggestion: Presented Information will be learned more easily, thoroughly
and enjoyably if it is taken in measured amounts. Learning how to use the HP-41
computer, or any others, for that matter, cannot be done in just a few sessions, no
matter how heroically long each is. Try to set aside halt an hour, for example, each
day to cover only a few pages or a single section in the manual, to try its examples,
and to experiment with related programs of your own. You will retain the computer
skills you'll learn much better and longer this way, and you'll enjoy the whole process
considerably more.

Chapter 1

Step One

A review is presented first for what you can and cannot reasonably expect from
the HP-41 computer. The purpose is to give a broad view of the many possible uses of the
HP-41C, HP-41CV and HP-41CX models in order to show what functions and
features they have in common, and to describe how each is unique. All of the features of
the HP-41 series reviewed in this section are either built-in to each model, or can be
obtained by adding-on components. It is unlikely that the general user will ever want
to take advantage of all of the potential applications which will be described, but
there is value, nonetheless, in knowing what the options are for developing a
customized computer system of your own in which the HP-41 series computer 1s a central
element.

Section 1.1. What To Expect

Even the first glance at the HP-41 keyboard (Figure 1) reveals many readily
recognized functions of a basic calculator, and, of course, these computers will work
easily and well in that way for you. But chances are, you bought it to do much more.
An outstanding feature of this computer is that it is virtually unparalleled in its class
for being able to make numerical solutions of even the most involved equations,
using when necessary strings of built-in decision making steps and series of complex
mathematical operations. Whether you are interested in using this machine for basic
arithmetic and mathematical computations, for working through statistical proce-
dures, financial calculations, business computations or for solving equations in engi-
neering, biology, medicine or other professional fields, you couldnt select for the
money a more powerful, flexible and easily expanded instrument.

There are 4 ways for you to use the HP-41 computer to solve equations in what-
ever your area of interest. The simplest and most direct way is for you to enter
programs of your own design into the machine yourself. A major purpose of this
manual 1s to help you learn how to design such programs and use them with ease and
accuracy. Despite what you may have heard about computer programs, you will soon
see that getting started writing your own is quite easy and interesting.

Another way for you to use programs in your HP-41 computer is to obtain those
written by others. These programs will come from several sources, but no doubt you
will find a gold mine of references in Hewlett-Packard’s User’s Library, no matter what
your interests are. For years, HP-41 owners have submitted deftfully organized and
imaginatively constructed programs to be reviewed by Hewlett-Packard personnel for
publication in their User’s Library. A frequently revised catalog lists descriptions of
the ever-growing number of available programs.

A third resource to solve equations is in the use of “application modules’.
These are small, reasonably inexpensive plug-in additions to your machine which
have been constructed to solve the most frequently used equations in engineering,
statistics and mathematics. The fourth way to help you solve problems with your HP-41
is by using "application manuals” in which are listed not only appropriate programs
for commonly used equations in different areas, but also sample solutions and in-
structions for program use. The main point to be made at this stage is that you have
many different reference sources to solve problems using your new machine. Although
it is intriguing to learn how to write programs of your own, you are not limited just to
that.

Figure 1

The HP-41 C/CV/CX Keyboard

=
EE By

rT —- y X x 2 12 eX

=+ 1/X Vx LOG LN
A CB C 0 E

cL % sin! cos! TaN!
x<>y [RE SIN] COS TAN
FF 5 H 1 J

ASN LBL 5TO BST

XEQ STO RCL SST

K TC M

CATALOG ISG]TN CLX/A

ENTER CHS 2X {=
N 0 P

xyP SF CF FS?

— 7 8 3
a R S T

xy? BEEP P=R RP

+L 4 5 6
U Vv W X

x Sy? FIX sSC1 ENG

X 1 2 3
Y Z = 7

x=07 T LAST X VIEW

— B . R/S
: SPACE :

Not only do you have a computer which will allow you to write and use
programs to solve mathematical problems, the HP-41 is designed to retain whatever
programs you enter into it after you have turned it off. The "C” in the model
designation reminds you that your machine has a continuous memory. Most likely
youll be as intrigued as are others to learn that the HP-41C/CV/CX will remember
programs (at least for a while) even though you have disconnected it from its internal
power source by removing its batteries - a handy and time saving feature when
batteries have to be replaced.

As you progress through this book, it will be only a short time before you have
written enough programs of your own, or learned how to use those designed by others,
to exceed the memory available even in the HP-41CX, the model with the greatest
storage capacity. You will be introduced to the technique by which you can use magnetic
cards as an inexpensive and permanent way to store programs and data to free memory
space in your machine. These cards function in miniature like the larger floppy discs
you may have seen used with tabletop computers. You can store programs and data on
small cassettes or encode them into bar codes as a permanent record.

Your HP-41 can do a lot more for you, though, than provide basic computer
functions by running specially constructed programs either of your own or someone
else’s design. Attachments are available for your computer to allow you to use it on-
line” in data collection, not only to “read” information from temperature, pressure and
pther types of sensors, but also for it to send signals to control switches, solenoids,
recorders and other devices. These are rather complex uses of the HP-41 computer and
most likely are beyond not only the immediate needs, but also the interests of most
users. Even though many people will never use them in this way, it’s interesting,
nonetheless, to realize these are potential ways for you to expand your computer. If
nothing else, such recognition adds to the the growing respect you will undoubt-
edly build for your new machine.

Although you may never need to expand your computer’s interactive scope to
include on-line data acquisition and storage devices, using one of the several
printers designed for the HP-41 series will increase its usefulness. Whether it’s a
printer which works with only the computer itself (HP-82143A), one which functions in
an interface loop with other peripherals (HP-82162A), or the HP-ThinkJet printer, or
some other printer, being able to get copies of program lists and program solutions saves
a lot of time and effort. A printer is not necessary, though, in just getting started to
learn your computer.

The HP-41’s alphanumeric ability adds greatly to its ease of use because it will
allow you to use letters, numbers and a wide range of other symbols in any combination
to display requests for data input and to read data output. Messages and data are
directly read and understood thanks to the alphanumeric feature of this machine
which allows it to operate for data entry and retrieval much like larger and more
expensive tabletop microcomputers. You will be free of having to remember number
codes to index what is required next in a calculation, or what has just been cal-
culated, as you have to in using other similar instruments. The more you use the
extremely flexible and attractive alphanumeric capability of the HP-41C/CV/CX and
learn to draw from its extensive library of symbols, the more you will appreciate this
feature.

Although the HP-41 computer has only a small memory (about 2.2K byte)
compared to larger machines, most users soon learn that with judiciously and econom-
ically designed programs, this is more than enough space for even quite complex series
of calculations and displays. Whatever limitations are presented by their small
memory, the HP-41 models compensate greatly by having a minimum of 128 built-in
frequently used functions which are available with no cost in memory space. Many of
these will be reviewed in detail.

For all of the glowing praises that the HP-41 machines rightly deserve, and
for all of their exciting and useful features you can look forward to learning and

using, there are some things you cannot expect your new computer to do. One is that
even though these machines have an alphanumeric ability, they are not designed to
serve as word processors. They outdo themselves in being able to make long series
of intricate and complex numerical calculations, but a portable typewriter they’re not.
Nor can they be expected to perform computations and program execution with the
speed that larger microcomputers can. For many practical applications, most people
find the extra few seconds it may take one of the HP-41 models to make a calculation
really doesn’t make any difference at all. In all fairness, though, speed is not one of
the better features of these otherwise outstanding instruments.

The new owner of an HP-41 series computer needs to be prepared to face
some difficulties in learning how to use this instrument, no matter what model was
purchased. These are compact, efficient, complex, powerful, expertly designed and
constructed devices which demand patience and sometimes forbearance in learning how
to use them. Few people have the technical background to gain immediate proficiency
with this instrument. Unfortunately, many instruction manuals for these computers are
difficult for some people to use because of the high level of mathematical,
computer, engineering or technical skills presumed by their authors.

This book is written with that problem firmly in mind. It assumes the reader has
little if any understanding of how computers work, but probably doesn’t need to gain
any more than a few superficial insights in order to learn how to use one of the HP-
4] series computer to its full advantage in the context of one’s own application. For
every reader who is offended by the step-by-step, sometimes overly simplified sug-
gestions and examples in this book, the bet is there are a dozen others who are de-
lighted to have such detail and depend heavily on it. Those are the ones for whom this
manual is intended.

The general user might have to face some hard work and maybe even frustration in
the first stages of learning how to use the HP-41, but there are very few who will not in
retrospect find the effort to be more than worthwhile. The gratification one finds
in being able to deal easily and competently with complex mathematical operations,
the ingenuity one soon discovers to construct computer programs of one’s own, and
the ever present sense of discovery as one’s proficiency with the instrument grows all
soon overshadow and more than compensate for any initial discomfort in getting the
learning process started.

[t will be a bonus to realize that even when you have mastered the HP-41
enough to write whatever programs you need personally and professionally, most
likely there are many new and unexplored features of the machine yet to be learned.
This instrument provides many of the practical services of a portable programmable
computer, but also it is a constant challenge and opportunity for growth in learning to
use computing machinery.

Familiarity with the following nomenclature will help as you progress through
this book and others, and as you expand your interests and skills to include other
computers:

FOCAL (or FOCOL): Forty One computer (or calculator) language.

RPN: Reverse Polish Notation: Mathematical statements as used in the HP-41.

HHC: Handheld computer

LCD: Liquid crystal display. The 14 elements of LCD in the HP-41
computers allows for the formation of 16,384 different characters.

LED: Light-emitting diode. The technique by which displays were created in
many earlier handheld computers, for example the HP-65 and HP-67 computers,
and in others too.

ROM: Read only memory. The kind of memory which contains the manybuilt-
in functions of the HP-41 computers, as well as that contained in the application
modules which can be connected to them.

RAM: Random access memory: The kind of memory contained in the HP-41
computers MAIN MEMORY and that contained in the MEMORY
MODULES which can be connected to them.

Section 1.2. Which Model to Choose?

If you have not yet bought a HP-41 series computer, you are undoubtedly inter-
ested in knowing which one will best meet your needs. If you already have one of
them, you may be interested in knowing how your model compares to the others. The
first part of this section will describe similarities and differences among the HP-41C,
HP-41CV and HP-41CX models, and show how features of the HP-41CV can be added
A the,HP-41C, as well as describe how features of the HP-41CX can be added to the

-41CV.
The physical similarities among the 3 models of computers in the HP-41 series

are striking and provide few clues to their different built-in functions. Were you to have
each of the HP-41 model computers in front of you, you'd be hard put to see any dif-
ferences among them unless you knew exactly what to look for. They are the same size,
and the keyboards are configured identically (see Figure 1). Without turning each of
them on and performing different keystroke functions, the only way to distinguish
among the 3 models is to note the model number unobtrusively printed at the lower
right front of the machine.

Even though you will soon see the many ways in which each model is different,
it’s important also to know how they are similar and to recognize their common
functions. For example, it’s reassuring to know that all HP-41 models use the same
plug-in peripherals, such as the card reader, different models of printers, the optical
wand and other devices, and that each has the same functions addressable from the
keyboard. Also, each uses the same type of magnetic cards for data and program
storage, and each is programmed identically using the same computer language.

These similarities are very important if you decide to move up to the more soph-
isticated and expensive HP-41CX after getting started with either the HP-41C or HP-
41CV models. Programs developed for one’s first computer and peripherals bought for it
can be used directly in the newer and more complex model without modification of
either the programs or the computer itself. Similarities among the HP-41C series
computers will also be important for users who own different models but want to share
programs and peripherals.

Despite the utility of each model in the HP-41C series being so similar, there are
important ways in which they are different, and discriminating users surely need to
know exactly what features are included in the model they choose. The HP-41C is the
least complicated and least expensive of the 3 models. It comes standard with 63 built-
in storage registers to give from about 200 to 400 program lines which can be used
either to store data or programs. The major difference between the next more complex
model, the HP-41CV, and the HP-41C is the size of its built-in memory. The HP-
41CV comes with 319 data storage registers (about 2,000 program statements) to
provide considerably more data storage space and room to store programs than the HP-
41C.

The HP-41C model is no longer manufactured by Hewlett-Packard. Many of
them were made earlier, though. It was a popular and powerful HHC when it was first
introduced, and there are many of them available from previous owners. If you don’t
see one advertised for sale, try running a small ad of your own indicating your interest in

10

buying one. If you buy the HP-41C model, become proficient with it but find it has
too few storage registers, you can expand its memory by using individual “memory
modules” (HP-82106A). Each contains an additional 64 registers, and each is easily and
conveniently inserted for use into 1 of the 4 accessory ports on the top of the machine.
The HP-41C can have its useable memory expanded by having as many as 4 memory
modules added to the original model. The cost is not only the price of the modules
themselves, but also accessory ports become filled. Using 4 memory modules in the HP-
41C gives all of the data and program storage space of the HP-41CV, but with its ports
filled, one cannot use a printer, a card reader or any other peripheral device, including
application modules.

An alternative for memory expansion of the HP-41C is to use not 4 individual
memory modules but 1 "quad memory” module (HP-82170A) which contains 256
registers. The obvious advantage of choosing the quad memory module is that one
reaches up to the memory capability of the HP-41CV but at the cost of using only 1 of
the accessory ports. Printers, plotters and other devices can now be used by connecting
them to one or more of the other available ports. The option for using memory
modules is valuable for the HP-41C owner who needs more program and data storage
space, but the simplest and least expensive way to get the memory capacity of the HP-
41CV is, of course, to buy that model in the first place. This is not only less expensive
than buying the HP-41C and adding memory modules, it leaves all of the accessory
ports free for peripherals to be plugged-in. It also provides an opportunity to add
components to obtain functions unique to the HP-41CX.

The forward thinking reader may have already considered that if the storage
registers of the HP-41C can be expanded by using memory modules or a quad memory
module, why not buy an HP-41CV, have access to its built-in 319 registers but expand
them by adding either memory modules or a quad memory? What a good way to get a
handheld programmable computer with a large memory capacity with little extra cost!
It doesn’t work that way. Although the memory of the HP-41C can be expanded to
match that of the HP-41CV, the 319 built-in registers of the HP-41CV are all you're
going to get. They cannot be expanded by using memory modules. Some important
features can be added to the HP-41CV by using add-on modules of different types and
inserting them into the computer’s accessory ports, but its main memory is as big as it’s
going to be when you take the machine out its box for the first time.

If the HP-41CV has all of the memory of any of the HP-41 series, what does
one get for the extra expense of buying an HP-41CX, the most sophisticated, expensive
and complex of the models in this series? The HP-41CX has the same memory space of
319 storage registers as does the HP-41CV (or the appropriately expanded HP-41C),
but it has built-in 124 registers of "extended memory”. How "extended memory” differs
from data and program storage memory will be described in detail later. For now,
though, the point to remember is that the main memory space of the HP-41CV and HP-
41CX are the same (319 registers). This is especially important because it is within the
main memory space where programs will be written and stored for immediate access from
the keyboard, and it’s the memory space where both numeric data (numbers) and
alpha data (letters, numbers and non-numerical symbols) will be stored for use within a
program. The HP-41CX offers other advantages, though.

The HP-41CX has quite useful built-in timer, calendar, alarm and stopwatch
functions which are not immediately available in the HP-41CV. In a similar way,
though, that the extra memory of the HP-41CV can be obtained by using plug-in
memory modules in the HP-41C, the timer and stopwatch functions that come with
the HP-41CX can be obtained by plug-in modules for the HP-41CV. Also similarly,
they are added to the basic machine by using the accessory ports to provide some of the
same advantages and disadvantages as when one chooses to expand the HP-41C. For
reasons of expense and diminished availability of accessory ports, it’s convenient to get
important features of the HP-41CX, including its “extended memory” by adding-on
modules to the basic HP-41CV, but it’s not the best choice if one has not yet bought

11

any one of the models in the HP-41 series.
How does one know which model to choose? The HP-41C is an excellent first

computer for the beginner, but its limited memory presents a problem as one’s library of
programs grows. The HP-41CV provides the same directly addessable data and program
storage memory of the HP-41CX but does not come with its extended memory and timer
functions. For most users, the HP-41CV functions quite well in all computational
applications, with its larger built-in memory giving a considerable advantage over the HP-
41C. The HP-41CX’s extended memory and built-in timer functions strengthen sub-
stantially the power of this computer, and is the choice for the experienced user.

If you are concerned about committing too much money to a computer, perhaps
because you are not sure you are going to be interested and successfully challenged in
learning about such things, the HP-41C is the safest of the choices. Compara-
tively little money will be invested, and it can always be sold at a later date if you
discover your interests are elsewhere. If your curiosity is tickled by what you can do
with the HP-41C, but your imagination in programming has outgrown the capacity of its
built-in 63 registers, they can be expanded easily and inexpensively, or you can trade-
up to the HP-41CV or HP-41CX. All-in-all, the venture is relatively free of financial
risk if the many available options are explored.

On the other hand, if you already know that you have applications for a
programmable handheld computer, feel at least minimally comfortable in wanting to
learn programming, and are intrigued with the adventure of it all, the HP-41CX might
very well be the machine for you. As a general rule, there is considerable sense in
buying a computer that allows you comfortable growth room, not only for use, but
also for learning. I imagine there are many more people who wish they had bought a
more powerful computer once they have a year or so experience with whatever was
thelr choice, than there are those who are sorry they bought more than they can
handle.

Whatever one’s choice is in investing in an HP-41 series computer, it shouldn’t
be overlooked that one is buying a powerful computational device which with
experience in learning how to use it, rivals many features of the tabletop computers at a
small fraction of their cost. With selected accessories, one can built an HP-41 series
system which can perform virtually any mathematical procedure, as well as use hundreds
of computer programs designed by others in many, many financial and professional
fields.

Chapter 2

Features and Functions

This section describes the major physical features of the HP-41 computers, intro-
duces how the instrument’s toggle and function keys are used, and shows how to control
the way numbers are displayed. After you understand the basics of these control oper-
ations and have attained some proficiency in using them, you will be ready to put
them to work to perform complex calculations and to write programs. This is a
similar stage to that of the beginning driver who first learns where the accelerator,
brake, light switches and other control devices are and what they do before putting
them into action.

Partly because of its small size and tightly compacted designations of keyboard
functions, it’s hard not to be a little intimidated by any one of the HP-41 models when
you first take it out of the box. Many people admit being initially concerned that they
might damage the machine by innocently pressing the wrong key in an attempt to
perform some half-understood function. Be assured there is no way any of the HP-41
models can be damaged in normal use by activating any key in any order at any time.
You might not perform a desired calculation correctly if you mistakedly use the
wrong keystrokes, but the machine will not be injured.

Short of gross abuse, the only way you might damage your HP-41 computer is by
attaching or removing accessories while it 1s turned on. BE SURE your computer is
turned off before inserting or removing any peripheral devices. Otherwise, spurious
electrical signals generated at contact surfaces may either introduce unwanted messages
and signals into your programs and calculations, or perhaps even damage computer
components. As you know if you've glanced through the back sections of your instr-
uction manual, repair procedures are simple and usually inexpensive, but they require
returning the instrument to the manufacturer and incurring unnecessary costs. Get
into the habit soon of checking to be sure the computer is off when you connect or
disconnect its components.

You'll find it helpful to have your computer in front of you as you read the next
few sections. There are many examples in the following sections of the book to help
you understand major points. The keystrokes to complete these exercises are high-
lighted.

Section 2.1 Physical Characteristics

As shown in Figure 2.1, conspicuous features of the face of a HP-41 series
computer are the rectangular view window at the top of the instrument, the 4 keys
immediately below it, and the 8 rows of keys which take up the largest room on the instr-
ument’s front surface. As you will soon learn, each key acts either as a toggle switch
to turn on and then off some operating feature or serves as a function key to initiate
a specific operation. You've undoubtedly noticed that most of the keys on the bordered
keyboard have a white designation on their face, a gold-colored imprint immediately
above them, and a blue letter or symbol on the slanted bottom of the key. The suspicion
that each key has different uses is quite right, and you will learn how to execute each
of them by the end of this chapter.

As also shown in Figure 2.1, there are 4 large rectangular openings on the
top of the HP-41 computers. These are the accessory ports into which are inserted the
peripheral devices you decide to use. When you first unpack your computer, each

-

13

Figure 2.1.

HP-41 Physical Features

TOP VIEW
accessory pore — —_

code dust

port for cover +3 JL]
battery [i |

/ charger sarlal
number

 £ oe SEES / _
[7 1|—==

1] CC]
CIC

cover of \ | LL | |

\ oar” BZCC]
: C CCC]

ALPHA/SHIFT 170 10 | |
keyboard

code LL]

CC
1 LC] OOo O0

BACK VIEW FRONT VIEW

of these ports will be protected by a snap-on dust cover. It’s a good practice to leave
these protecting covers in place until you are ready to insert a peripheral device or
memory expansion unit. Not only does the cover keep out dust, it also reduces the
chance of mechanical damage to the delicate contacts which are set deeply in the base of
each port.

At the center on the right side of the computer is another dust cover which
protects the electrical contacts for the battery charger (HP-82059B) used with a
rechargeable battery pack (HP-82120A). The computer comes with 4 non-recharge-
able batteries, and unless you decide to invest in a rechargeable battery pack, there is no
need at all to use the recessed contacts on the computer's right side. It’s a good idea,
though, to keep the cover in place except when the battery charger is actually in use.

14

There are 2 more surfaces of the computer to examine. The bottom front edge
of the computer lists on its right side the model number, and the back of the machine
also contains important information. The serial number of the computer is imprinted in
the top right hand corner, and the number code for the accessory ports is shown just
to the left. A reduced view of the instrument’s front side is displayed at the bottom of
the computer's back surface. This reduced view reveals how the keyboard is defined
when the instrument is in the ALPHA-SHIFT mode, one of its 5 possible configur-
ations you will soon learn about. Remembering that this keyboard is noted on the back
of your computer as a ready reference will save having to leaf through the owner’s
manual as you use the instrument.

You may have already discovered for yourself the removable rectangular center
section on the back which contains its batteries. Gently pushing upward on this battery
holder frees it at its lower edge so it can be removed for battery insertion or replace-
ment. Reinserting it requires first aligning the top edge, then gently pressing it
downward. The spring action of the battery contacts re-engage the retaining pegs at
the lower edge and hold the battery case securely in place.

Figure 2.2.

Toggle and Function Operations

A. Toggle Key 8. Function Key

El = E1 E2 E3

ON ON |

OFF | OFF

| [|| | | |

1 2 3 4 1 2 3
Section 2.2. Keyboard Operations

Even before turning the computer on, it’s helpful to know what to expect when
you press any of its many keys. This section describes the 2 ways in which these keys
operate. It will be confusing if you are unfamiliar with their 2 quite different functions
when you start to use the computer. The keys in the bordered section of the keyboard
and those immediately under the rectangular view window at the top of the
computer's face (see Figure 2.1), operates in one of two ways: either as a toggle switch
or as a function key. Figure 2.2 shows what happens in response to the activation of
either toggle or function keys.

15

Section 2.2.1. Toggle Keys

When a toggle key (or switch) is pressed for the first time, as shown in Figure
2.2, an event is initiated, and remains in effect until the toggle switch is pressed
again. The length of time the triggered event remains active depends on the time
interval between the first and second times the toggle is pressed. Whatever eventis
triggered when a toggle switch is activated is not affected by holding your finger on
the switch. In fact, many toggle switches in daily use remain in the position you place
them when they are pressed, whereas others, like those of the HP-41 computers, return
to a neutral position to await your next action. Whatever event is initiated when the
toggle switch is first pressed is terminated when the switch is pressed a second time. The
event is started again, of course, by pressing the toggle switch a third time, and term-
inated a second time with the 4th press. As with the toggle switches on the HP-4l
computers, events occur sequentially with pairs of “on” and “off” activations.

There are many more or less obvious examples of toggle switches in everyday
life. The wall switch which turns on (and off) roomlights operates as a toggle switch,
as does the on-off control of a radio or TV set, a water tap, and a car’s ignition.
Each of these controls operates in a similar fashion: an event is intiated when the switch is
first activated, and the event is terminated when the switch is activated again. The event
remains in action between these two operations.

Figure 2.3 shows the location of the 6 keys on the HP-41 series computer
which behave as toggle switches. All of the 4 keys immediately below the view window
are toggle switches. The one to the far left turns the computer on when it is first
pressed, returns to a neutral position, and then turns it off when it is pressed a second
time. In most operations, either a set of numbers, words or symbols will appear in the
view window when the computer is toggled on, and the window will go blank when
the machine is toggled off. Just to the right of the toggle marked ON, and coupled with
it is a toggle marked USER. Pressing the USER toggle has no effect unless the ON
toggle has been activated first to turn the instrument on. When the computer has
been turned on, the USER toggle places the computer into and takes it out of a “user”
mode, as indicated by the word which appears then disappears in sequential operations
just above the fulcrum of the ON-USER rocker switch.

The third and fourth toggle switches (PRGM and ALPHA) under the view
window at the far right similarly have no effect unless the ON toggle has been activated
first. When the computer has been turned on, these 2 switches place the computer in
a program mode and/or in an alpha mode, respectively, as designated by the abbreviat-
ions (PRGM and ALPHA) which appear above each of them in the view window when
they are activated. Note that when the computer is on and either the PRGM or ALPHA
toggle switches is activated, either of these statuses can be turned off in one of two ways.
One way to turn them off, of course, would be to press the corresponding toggle
switch. Notice that turning off the PRGM toggle when ALPHA is on, turns off both
actions. Another way to turn off both the PRGM and ALPHA toggles is to press the
ON toggle. It might come as a surprise that the USER toggle switch is not turned off
by turning off the computer with the ON-OFF switch, as are the PRGM and ALPHA
switches. The only key that turns off the USER mode is the USER toggle itself. There
are excellent and ingenious reasons why these switches have been configured to
operate in such an interactive way, as you'll discover shortly in using these features of
your computer.

Of the HP-41’s 6 toggle switches, 4 of them (ON, USER, PRGM and ALPHA)
reside just below the view window. The other 2 are within the bordered keyboard. One
is the gold-colored key which turns on and off a SHIFT function. Similar to the
actions of the 4 toggle switches outside the bordered keyboard, the SHIFT toggle turns
on a word (SHIFT) in the view window when the computer is on as a reminder of the

16

Figure 2.3.

Toggle Key Locations

Cl= toggle
keys

| R/3

current status of the machine. The last of the 6 toggle switches is the key in the lower
right corner of the keyboard marked R/S. This key operates only when the computer is
on, but there is no reminder of its status in the view window as there is for the other
toggle switches. You will see how the R/S key is used in programming to
“run/stop” a program, and learn also the other uses it provides. The event the R/S key
initiates when it is pressed is different in many ways from that of the ON, USER,
PRGM, ALPHA and SHIFT keys, but it functions as a toggle switch nonetheless.

Section 2.2.2. Function Keys

Once you have located the 6 toggle keys on your computer, it’s easy to find the
function keys. All of the other keys on the HP-41 computers are function keys. The
way in which they produce an action is different from that initiated by the toggle keys.
As shown in Figure 2.2, an event is triggered by the activation of a function key,
and in contrast to how a toggle switch operates, the event continues independently
and normally without interruption to its end with no further operation of the function
key itself. The event can be produced again by pressing the function key a second
time, but it is not turned on and off as it would be were it controlled with a toggle

17

Figure 2.4.

Key Definitions

 —— r —

STANDARD DEFINITION

=[= ==

[5H [2x] ix] [eos] [on]

[xxv] [A 8] [stn] [cos] [ran]

R& [xea] [sto] [rec] [ss]

[enter 8] [ens =x] [<=]

= =] =] [=]
+ [= 51 [=]
<] [=] [=]
EEC ea
—

ALPHA DEFINITIONS

[=[==] [Terma]
=

(AJB]lc][o][E]
IEIERGRIEEIER

RY [Je J J]

JLo Je JL |

Lo [rls][LT]

(uf w] [x]

Ly[Lz] [=] [7]

LS] peas] [0| |
—

| N

 ££

SHIFT DEFINITIONS
SY]

=T[=]_ [~=]T~~

59 91(= 2]
Eos] 0) [5] [eo
23 (rev) [Cec] To) =]

x=v2| | sF | [cF | [Fs7]

x7] =A For Fr]

X=a7| TT | |LasTx] | view |
 = (FIx | |sc1| [ENG|

Q —

ALPHA/SHIFT DEFINITIONS

MIT Amma |

IT=] [=[Tem]
=

E15] [=]EI=]
SIFEC]
SZ [1] ero] [ire] [B57]
7 [EE]
—l lz]lls]lls]

+] ls]ls][8]

Xl] [2] [3]

Eales lnica

18

switch. The length of time in which the event takes place once a function key is
pressed is an intrinsic property of the event itself and is not determined by sequential
activation of the function key which only initiates it. The function keys on the HP-41
computers return to a neutral position after being activated and are primed to trigger the
same action when pressed again.

There are many examples of the general use of function switches in everyday
life. The trigger of a gun, for example, behaves as a function switch. When it is
activated, a fixed sequence of events is initiated as the cartridge powder is ignited and
the bullet is sent on its way. The event is produced a second time after machinery has
cycled to place a new cartridge in the chamber and the trigger is once again
activated. Similarly, in flushing a toilet, using the brake on a car, or blowing its
horn, an event is initiated when a function switch is pressed and can be produced again
when the function switch is pressed a second, third, etc. time after an interim cycle
for recharging or resetting.

The action produced by most of the HP-41’s function switches is either obvious
from their designation (the function name printed on, above or below each key), or
easily discovered simply by turning the computer on and pressing the key in
question. Pressing the function key marked “4”, for example, places the number 4
in the view window. It does some other important things too, which are described
later. Then pressing the TAN function key places the tangent equivalent of that
number in the view window. Pressing the erase key, the 4th key in the 4th row, the
one marked "#” deletes the contents of the view window and lists zeros there. The
operations performed by the function keys which are not so self-explanatory, such as for
the SST, CHS, BST and other keys will be described in detail later.

Most of the keys on the HP-41 computer activate different operations depending
on the sequence in which other keys are pressed. An easy way to understand how
these different operations are made is to envision that the computer has 4 different
sets of keyboard definitions, as depicted in Figure 2.4.

One of the functions each key brings about is designated in white letters on its
upper surface (the "Standard Definitions” of the keyboard). These actions are triggered
simply by pressing the key when the computer has first been turned on. Another
function each key can activate is designated in gold immediately above the key (the "Shift
Definitions” of the keyboard). The gold-colored function is selected by first pressing
the gold—colored SHIFT key and then pressing the selected key which has now had its
operation redefined. A quick example: pressing the key designated in white as "4”
enters the symbol "4” in the view window. If the SHIFT key is toggled before the key
designated "4” is pressed, the shifted function of that key will be executed, that
1s, a sequence of 4 tones, the BEEP, will be sounded. Each time the SHIFT key is
pressed, followed by a press of the "4” key, the same BEEP tones will be heard.

It’s too early to be concerned about learning what each of the standard and
shifted operations are for all of the keys; these will be learned in the context of many
examples to come. The important points to remember now are the similarities and
differences between operations of the toggle and function keys and how each function
key can be used to produce different actions.

The function designated in blue on the slanted bottom surface of each
function key is selected by placing the computer in an ALPHA mode (the "Alpha
Definitions” of the keyboard). Just to try it, turn the computer ON, then press the
ALPHA key (note the word ALPHA in the view window), then press in sequence the
now redefined function keys to spell a word using the blue symbols to guide your choice
for the correct keys. When the word 1s complete as displayed in the view window,

press the ALPHA toggle switch a couple of times to see the word turn on and off as
you cycle the machine between the keyboard and ALPHA modes. Note the word is re-
tained in the ALPHA memory even after you have turned the computer off and then on
again with the ON toggle. You erase the word by placing the machine in an ALPHA

19

mode, then pressing the erase key ("¢”).
You learned earlier that key functions are redefined when the SHIFT key has

been pressed, and that they are defined in yet a different way when the machine is in an

ALPHA mode. There is still another way to redefine key operations by the sequence

in which keys are activated. First a review. When the computer is first turned on (and

not in a USER mode), each key will perform the function designated in whiteon its
upper face. If the SHIFT key is depressed first, though, the function displayed in gold
above the key will be activated. If the ALPHA key is first pressed, the function dis-

played in blue will occur when appropriate keys are activated.
The new point is that each key has yet another function by first pressing the

ALPHA toggle, then the SHIFT toggle, and then the selected function key (the

”Alpha/Shift” Definitions of the keyboard). Each key will then activate its ALPHA-
SHIFTed function, none of which, unfortunately, is designated in any way on the
face of the keyboard. You can tell the computer is in an ALPHA-SHIFTed mode by
looking at the words ALPHA and SHIFT displayed in the view window, but to know
which operation will be triggered when a key is pressed will depend either on your
memory, the use of the owner's manual, looking at the list of ALPHA and
ALPHA-SHIFTed definitions shown on the back of your computer, or referring to
Figure 2.4.

Although the multiple uses of function keys may be inconvenient and
provide initial confusion, they offer extremely valuable options in programming
and using the instrument. With practice their use will become second nature. There
will be plenty of help in selecting the right key for different operations in reviewing
the many exercises to come.

Figure 2.5.

Timed Key Operations

For a function key when there is a number (N) in the X STACK
REGISTER and when the key is pressed for:

Less than 1 second, then the function is executed for N.

More than 1 second, but less than 2 seconds, then the function
name is displayed before it is executed for N.

More than 2 seconds, then NULL is displayed and the function is
not executed for N which remains unchanged in the X STACK REG-
ISTER.

There is another characteristic of the function keys and their operation which
is important in normal use of the computer. Not only is each function key redefined
‘by a SHIFT or ALPHA key operation, some behave differently depending on the
length of time they are pressed, as summarized by Figure 2.5. Each of the 10
function keys in the upper 2 rows of the keyboard will perform either its function
designated in white or the SHIFTed function of that key when pressed for approx-
imately less than 1 second. Holding the key down for a longer time either first displays
in the view window what function is going to take place, and then does it, or cancels the
initiation of the function if the key is depressed for longer than about 2 seconds. In
normal operation, however, pressing one of the function keys is such a brief event only
the function itself will be executed.

Some other keys also operate with the timed key operations described in Figure
2.5. For example, the SHIFTed function of the arithmetic operation keys + — x +
which activate the conditional tests X=Y?, X=0?, etc. will display NULL if held down
long enough. So will the PI key (SHIFTed function of the zero key), the SHIFTed
functions of the 5” and "6” keys, the LASTX and CLX/A functions and keys to which a
USER function has been assigned (see Section 2.3).

Besides having several different functions, each key in the bordered keyboard can
be configured to provide customized service. This offers a time saving feature in
selecting a particular function which is used quite frequently. The USER toggle
switch and how to use the options it provides are described next in Section 2.3.

Many readers will find that learning how to work with the USER feature of
their HP-41 computer is much easier after they have more experience with the oper-
ations of the machine. If you are one of these people, skip Section 2.3. and plan to
come back to it later. For now, go to Section 2.4. to learn how to control the number
display of your computer.

Section 2.3. The USER Mode

It was explained in Section 2.2.1. that the USER key is physically coupled to
the ON toggle, and together they form a rocker switch. It was also described earlier
that pressing the USER key when the computer is ON places the word “USER” in the
view windcw in small letters immediately above the USER key. This operation is
planned, of course, to provide a reminder that the computer is now in a USER mode
and a signal to expect its function keys to be redefined accordingly. If, however, none
has been redefined, then each key operates in exactly the same way whether the
computer is in a USER mode or not.

The only value for placing the computer in a USER mode is to gain access to a
function key whose operation has been modified to save time in making calculations.
The cost for making such a shortcut available is that one must either remember how
each key has been USER defined or construct a keyboard overlay with the newly
designated functions printed on it. Another alternative to knowing the function of a
USER-defined key is to take advantage of the "timed key operation” features summ-
arized in Figure 2.5.. This make take a little more time and effort, but they are
relatively low costs to obtain the increased utility provided by the USER functions. An
example will help show how to exploit this feature of your computer.

Even a cursory review of the HP-41 computer manual shows there are built-in
programs to calculate simple statistics such as taking the average of a series of
numbers, determining their standard deviation and similar numerical relationships.
These computations could be performed directly from the keyboard, of course, without
using any of the built-in programs. For example, one could easily calculate the
average of a series of numbers using the computer as a 4 function calculator, by
adding the numbers, then dividing by the number of entries. Also, one could solve an
equation to calculate standard deviation in a similar way by making the correct string of
arithmetic operations in pressing keys in an appropriate sequence.

A much easier way to calculate the average and standard deviation of a series of
numbers is to use the built-in programs for MEAN and SDEV. To do this, though, itis
necessary first to set aside selected data storage registers in which the interim results
of calculations can be stored automatically. This is easily done using a SIZE
function. A later part of this book (Section 3.3.) describes how the SIZE function
operates, but for this example, just press XEQ, then ALPHA, spell SIZE, then press
ALPHA again. Key "017" in response to the ALPHA prompt "SIZE 7. After a
moment, the view window regains its original display, indicating the SIZE operation
was performed successfully .

To calculate the average and standard deviation of a series of numbers, first press
SHIFT, then CLX (to clear the statistical registers), key the first number in your
list, then press E+ . The view window will display a 1” indicating you have entered
the first number in the series. Key the second number and press E+ again to see a
"2” in the view window, showing the second number has been entered. Continue
entering the remainder of the numbers in the same way: keying them first, then
pressing Z+ . When all have been entered, press XEQ, ALPHA, spell MEAN, then
press ALPHA again. MEAN is the GLOBAL LABEL of the program using to calculate
an average. The average of your series of numbers is now displayed in the view
window. To calculate the standard deviation of the series, press XEQ, ALPHA, spell
SDEV, then press ALPHA again to see the answer displayed in the view window.

Activating the operations MEAN and SDEYVdirectly from the keyboard as you
have just done is simple enough but becomes laborious if you have many different
series of numbers for which you need to calculate these statistics. It’s time to assign
the MEAN and SDEV operations to USER defined keys, so you can obtain each
function more simply with just the press of a single key, the one whose function you
have redefined.

First, identify 2 keys to which you wish to assign the MEAN and SDEV
operations. You can select any key to be USER defined other than either the 4 toggle
keys immediately below the view window (ON, USER, PRGM, or ALPHA), or the
SHIFT key. You will not lose the regular keyboard, SHIFT, ALPHA or ALPHA-
SHIFT functions of the key(s) you select to be redefined for the USER mode since they
will continue to perform their designated operations when your computer is not in the
USER configuration. For this example, the key marked LOG will be chosen for the
MEAN redefinition in the USER mode, and the one marked LN will have the SDEV
function assigned to it. Figure 2.6. summarizes how to assign a USER function to a
key and then return the key to its original definition afterward, if you so choose.

Figure 2.8.

Designating USER Mode Operations

A. To assign a key a USER function:

1. Press SHIFT, then ASN
2. Key the program GLOBAL LABEL

A.3. Press key to which function is to be assigned
A .4. Use newly assigned key function in USER mode

A.
A.

B. To return a key to its original function:

Press SHIFT, then ASN
Press ALPHA, ALPHA
Press key to which function had been assigned
Key now operates the same in USER and KEYBOARD modesCo

to
o
w

S
L
W
N
—

The computer need not be in a USER mode to assign a USER function to a

key. To assign the MEAN function to the LOG key, press SHIFT, then ASN (this is

the SHIFTed function of the XEQ key), then ALPHA, spell MEAN, and press

ALPHA again. Next, press the key to which you want to assign the displayed function

name. For this example, press the LOG key. Notice that for a short time the phrase

ASN MEAN 14” appears in the view window. The number "14” indicates you have
made an assignment to the 4th key in the first row.

Be sure your computer is not in a USER mode, press and hold down the LOG
key. You will read LOG” in the view window which, as reviewed in Figure 2.5.,
indicates the function of this particular keys when it is held down for longer than a
second or so. Now press the USER toggle, and press the LOG key again. This time
you read "MEAN? in the view window, identifying the USER redefinition of the LOG
key whose function is now available to you any time USER appears in the view window.

To assign the SDEV function to the LN key, press SHIFT, then ASN, next
ALPHA, spell SDEV, and press ALPHA again. Press the LN key to complete the
assignment series, and read in the view window "ASN SDEV 157, indicating you have
assigned the SDEYV function to the Sth key in the first row. Holding down the LN key
when the computer is in the USER mode shows in the view window "SDEV” as the re-
definition of that key. Holding down the LN key when the computer is not in a USER
mode shows the function name LN in the view window.

Calculating the average and standard deviation of a series of numbers is now
even easier than it was before. First press SHIFT CLX to clear the statistical
registers, then enter each number in the series using I+ as you did before. These
entries can be made whether the computer is in its regular keyboard mode or in a USER
mode. After all entries have been made, place the computer in a USER mode Gf it is
not already in that configuration), and press the LOG key to calculate MEAN,
then LN to calculate SDEV for your series. The USER definitions of the LOG and LN
keys will be retained even when the computer is turned off. Follow the steps in Figure
2.6. to return these keys to their original definitions when you no longer need them to be
USER defined.

Section 2.4. Display Options

There are several choices for how numbers are grouped, punctuated and
displayed in the view window. This section describes how to control the computer to
display numbers in exactly the format you wish and how to change the display at any
time, even in the middle of a calculation. Figure 2.7. shows how numbers of
different magnitude are displayed using either a STANDARD, SCIENTIFIC, or
ENGINEERING format.

STANDARD notation for a number probably displays it in its most familiar
form for the largest number of people. SCIENTIFIC and ENGINEERING displays
are of advantage in dealing with very small or very large numbers. [t's worth even the
general user’s time to become at least familiar with them. Both SCIENTIFIC and
ENGINEERING notations display numbers in the decimal form you designate, multi-
plied by the power of 10 shown to the right of the view window. SCIENTIFIC notation
displays these numbers with unit steps in the designated power, whereas ENGIN-
EERING notation shows them in power steps of 3. STANDARD notation presents
most numbers in a familiar display format but will display them in SCIENTIFIC
NOTATION for either very large or very small numbers. Regardless of either the
format or number of decimals chosen to display numbers or to use them in calc-
ulations, the computer uses their full 10 digit expression in all calculations.

The display format and the number of decimals one wants to read when using one
of the HP-41 series computers are designated with the appropriate SHIFT functions of
the keys numbered "17, ”2” or 3”. For an example, first key the number 123.4567
into the X STACK REGISTER by pressing these numbered keys, then pressing
ENTER. To control the computer’s display so that these numbers are viewed in

Figure 2.7.

Display Options: Digits

View Window Display

Standard Scientific Engineering
Notation Notation Notation

ENTER FIX?2 SCI2 ENG2

0.01 0.01 1.00 -02 10.0 -03
0.12 0.12 1.20 -01 120. -03
1.23 1.23 1.23 00 1.23 00
12.34 12.34 1.23 01 12.3 00
123.45 123.45 1.23 02 123. 00
1234.56 1234.56 1.23 03 1.23 03
12345.67 12345.67 1.23 04 12.3 03
123456 .78 123456.78 1.23 05 123. 03
1234567 .89 1234567 .89 1.23 06 1.23 06
12345678 .90 12345678.90 1.23 07 12.3 06
123456789 .0 123456789 .0 1.23 08 123. 06

STANDARD notation with 2 decimals,
the alpha prompt "FIX _” by pressing the key numbered “2”.

first press SHIFT. then FIX, and respond to
The view window now

displays the contents of the X STACK REGISTER which at the moment is 123.4567” in
your selected format of 2 decimals to show 123.46”. The computer has rounded the
numbers to the right of the decimal to conform to the display format you selected, but
will use "123.4567" in any subsequent calculations you make.

To change the display to show a larger number of digits to the right of the
decimal, key SHIFT, FIX, and respond to the prompt "FIX _” by pressing the key
numbered "5", for example. The view window now shows "123.45670”. To display
”123.4567” in SCIENTIFIC notation with 2 decimals, press SHIFT, SCI then "2" (to
see 71.23 02” in the view window), or to view it with 4 decimals, press SHIFT SCI
"4" (to see "1.2346 02"). To display this number in ENGINEERING notation
with 2 decimals, press SHIFT, ENG 72” (to see "123. 00”), and tosee it in a4
decimal display, press SHIFT, ENG 74” (to see 123.46 00). Figure 2.8. sum-
marizes how changing the decimal display for a number affects how it is read in each of
the notation formats. As described later in this book, the number of decimals with
which a number is displayed can be designated within the body of a computer program or
you can determine it from the keyboard.

There are still other options for how a number is displayed.
can see the number 1234567 .89 displayed as either 71234567 .89”, or
”1,234,567.89”, or even as ”1.234.567,89”, if that is more familiar to you.
Information in Chapter 8 will help you make those selections. Because it 1s more
than likely the most familiar way for the general reader to see numbers, displays for all
data entries and solutions to calculations in this book will use the STANDARD notation.

The next chapter describes in more detail what happens to data when toggle
and function keys are pressed, where it is stored, how you can review it, and how
you can use it in mathematical operations.

For example, you

24

Figure 2.8.

Display Options: Decimals

Step 1: Key the number 1234.567890, then press ENTER
Step 2: To see the number displayed in:

with decimal Key SHIFT
Notation: of: then: Display

STANDARD 6 FIX 6 1,234.567890
2 FIX 2 1,234.57
0 FIX 0 1,235.

SCIENTIFIC 6 SCI 6 1.234568 03
(or ENGINEERING) (or ENG 6)

2 SCI 2 1.23 03
(or ENG 2)

0 SCI 0 1. 03
(or ENG 2)

Chapter 3

Memory Location and Use

At this point, you have the basics of how toggle and function keys operate
and know how to use many of the computer’s keys to perform different operations by
controlling their SHIFT, ALPHA, and ALPHA-SHIFT definitions. If you read
Section 2.3. you know also how to take advantage of the USER key definition. This
information is important in understanding the different ways in which data (numbers,
words and symbols) are entered into the computer. Now is a good time to examine how
that information is stored, retrieved, displayed and used in calculations.

This chapter reviews the way in which the HP-41 computers use their memory
locations. There are minor differences in the way to use some of the memory in the HP-
41CX, but for the most part, what is covered in this chapter applies to all HP-41
models. Beginning with the next chapter, you will learn how to use each of these
memory locations for different types of data processing and numerical calculations.

Figure 3.1. summarizes the categories of memory in the HP-41. Not all models
have all of these locations, but some can have them added using plug-in modules. Each
of these variations and options will be explained in detail as this section develops.
The STACK REGISTERS will be discussed first. Remember as you progress through
the following pages, the keystrokes recommended to complete each exercise are high-
lighted.

Section 3.1. The STACK REGISTERS

The STACK REGISTERS are the most frequently used memory locations in
your computer. Their 5 memory sites, denoted X, Y, Z, T and L, are used mainly to
store numerical data, but with special storage instructions you will learn later, they can
contain letters and non-numerical data as well. The next section describes how the X,
Y, Zand T STACK REGISTERS operate individually and how they interact among
themselves for data storage. How the L STACK REGISTER operates is illustrated in
a separate section (Section 3.1.7.) later in this chapter.

Section 3.1.1. The X,Y, Zand T STACK REGISTERS

If you’ve even turned on your new computer, you’ve already seen the contents of
one of the STACK REGISTERS. In normal operation, the contents of the X STACK
REGISTER is brought to the view window as soon as you activate the ON toggle switch
of the machine. Since the HP-41 computer benefits from having a continuous
memory, whatever number was stored in the X STACK REGISTER when the computer
was last used is displayed there again when it is turned on the next time. It is unnecess-
ary to have a zero in the X STACK REGISTER to perform accurately the next
series of calculations, but you can clear the view window if you wish simply by depress-
ing the erase function key (the key marked "e 7).

The X STACK REGISTER is going to handle a lot of the information traffic
flow as you use your computer. It will function not only as a location for numerical
storage itself, but also it will be the register into which you place a number before
storing it anywhere else. Even more, it will be the site for viewing the contents of
other memory locations, not just those of the STACK REGISTERS. The X STACK
REGISTER is linked both by function and by display to the other STACK REG-

26

Figure 3.1.

Memory Locations

STACK MAIN

REGISTERS MEMORY

L 221

pE2

T 223

z 204
Y 3 —

X | 27e

271

ALPHA 272

273 defined

EXTENDED DATA by SIZE
STORAGE REGS. STORAGEREGS.

R12@ ROD

R121 RE 1

R122 RE2

—~ |~
T rar TT res

R318 RSS

ISTERS as is explained in the next section.

Section 3.1.2. Entering Data into STACK REGISTERS

This section first explores the functional relationships among the X, Y, Z, and
T STACK REGISTERS and then describes how their contents can be viewed either in
specific sequence or individually. The simple exercise shown in Figure 3.2 demon-
strates the functional and display relationships among the STACK REGISTERS.

27

Figure 3.2.

Loading The STACK

STEP 1 STEP 2 STEP 3 STEP 4

Key “1” ENTER Key “2° ENTER

T a T a T 8 T a

Z BQ Z %| Z %| Z 1

Y Ba Y 1 Y 1 Y 2

X 1 X 1 X 2 X 2

STEP S STEP B STEP 7 | STEP 8 |

Key “3“ ENTER Key “4” ENTER |

T Q T 1 T 1 T 2

Z 1 Z 2 Z 2 Zz 3

Y 2 Y 3 Y 3 A ¢ 4

X 3 X 3 X a | X 4 |

Lo. —. —. — |

To start this exercise, turn your computer on by depressing the ON toggle. If it
is already on, just continue with the exercise. Ignore whatever number is displayed in
the X STACK REGISTER, and (step | in Figure 3.2.) press the key marked "1".
You have placed the number 1 in the X STACK REGISTER and will see it displayed
in the view window. Press ENTER to copy that number (step 2) into the Y STACK
REGISTER. Notice that it is still in the view window. Also, it is still in the X
STACK REGISTER. Now for step 3, press the key numbered "2". You will see a 2
displayed in the view window. You have replaced the number | which was just
previously in the X STACK REGISTER with the new number. The number 1 remains
unchanged in the Y STACK REGISTER.

When you now press ENTER (step 4 in Figure 3.2.), the number 2 is raised to
the Y STACK REGISTER (it still remains in the X STACK REGISTER and is still
displayed in the view window just the same as the number 1 did at step 2), but
the previous contents of the Y STACK REGISTER (the number 1) has been raised into
the Z STACK REGISTER. If you now (step 5) press the key marked ”3”, the sequence
is repeated in which the number 3 takes its place in the X STACK REGISTER, is
displayed in the view window, and when you again press ENTER (step 6), the stack is
raised once again, this time to place the number | in the T STACK REGISTER, the
number 2 in the Z STACK REGISTER, and the number 3 in the Y STACK
REGISTER. The number 3 is still in the X STACK REGISTER, of course, and
is still displayed in the view window. As a last step (step 7) press the key marked "4,
but don’t press ENTER.

28

The sequence shown in Figure 3.2. filled each of the STACK REGISTERS with
numbers which can now be operated upon with many different mathematical functions
to complete a series of calculations. Were there a “step 8” to press the ENTER key
again, the stack would be raised once more to place the number 4 into the Y STACK
REGISTER. The number 1 would be irretrievably lost in this operation when the
number 2 took its place in the T STACK REGISTER.

The steps in Figure 3.2. show how to ’load” the STACK REGISTERS using a
sequence in which a number first is keyed into the X STACK REGISTER, then
raised into the Y STACK REGISTER using the ENTER key. You can store a number
in any single stack register, though, without having to perform a sequence of key-
strokes similar to those shown in Figure 3.2. In order to demonstrate this, first clear
the STACK REGISTERS by entering 4 zeros (key a zero, then press ENTER 4 times).
Next enter a number into the X STACK REGISTER by pressing the appropriate key (or
keys).

If you wish to store this number in the Z STACK REGISTER, for example,
first press STO which indicates you want to “store” a number, then press the decimal
key to signify you want to store your number in one of the STACK REGISTERS, and
last, respond to the prompt "STO ST __ ” by pressing the "Z” key. As you probably
noticed, you didn’t need to press the ALPHA toggle in order to enter the symbol "Z”.
Pressing the decimal key after STO signaled your computer to accept next either the
letters X, Y, Z, Tor L. At the end of the sequence STO ST Z, your view window
will once again display the contents of the X STACK REGISTER to show the
number you stored in the Z STACK REGISTER. Two examples of using STO ST_
operations are shown in Figure 3.3. A.

There are two ways to verify a number was stored in a STACK REGISTER
correctly after the STO ST __ operation. One is to use a recall function (RCL), and the
other is to use a stack “roll down” function. These operations are introduced next.

Section 3.1.3. Reviewing the Stack

If you performed correctly the sequences described in the previous section, you
know how to load data into the memory locations of the STACK REGISTERS by seq-
uential key strokes. If for no other reason than just a way to check that all the
numbers are placed in correct memory locations, it’s useful to know how to review
the contents of the STACK REGISTERS. There are several ways to examine the
contents of each of the memory locations of the STACK REGISTERS, the most direct
of which is to "roll-down” the stack so that the contents of each register is displayed in
turn in the view window. Figure 3.3.C. conceptualizes how the STACK
REGISTERSare manipulated in this way.

The key marked "R#” (2nd row, 2nd key) controls the ROLL-DOWN
function. Using this key ("R#”), review the contents of the STACK REGISTERS.
As shown in Figure 3.3.C., pressing it once rolls the top of the stack toward you one
position so you can see in the view window the contents of the STACK REGISTER
immediately above the one at which you were just looking. If you first saw the
contents of the X STACK REGISTER, pressing the ROLL-DOWN key once shows
you next the contents of the Y STACK REGISTER. Pressing it again shows the
contents of the Z STACK REGISTER, and pressing it the third time, reveals the
number stored in the T STACK REGISTER. Pressing the ROLL-DOWN key once
again rotates the stack another position to complete its cycle, so that the X STACK REG-
ISTER is again displayed. Continuing to activate the ROLL-DOWN function key
displays in order the X, Y, Z and T STACK REGISTERS in c¢ndless sequence.

29

Figure 3.3.

Reviewing the STACK REGISTERS

A. The STORE STACK function B. The RECALL STACK function

STO ST Z STO ST L RCL ST Z RCL ST L

L Ll NL L Ll NL

T T T T

Z N Z Z N Zz

Y Y Y Y

X N X N | X N X N

Gown "26 _ Y
C. Roll Up —/

and h /

Roll Down [— axis of

Functions —{(1 0 \ X rotation

[-_— =

~ — - |
Pp -\

plane of view window————|

Pressing the ROLL DOWN function key reviews the contents of the STACK
REGISTERS in the order of X, Y, Z, and T. To review the STACK REGISTERSin
a reverse sequence (that 1s, X, T, Z, Y), use a “roll-up” function. There is no single
key to perform this operation, and you will need to use one of the HP-41’s built-in prog-
rams. First, press XEQ, then ALPHA, next R, then SHIFT, then ENTER and
finally ALPHA. Figure 2.4 helps explain how the upward pointing arrow is shown
in the display by using the ALPHA-SHIFT definition of the ENTER key. Don’t be
concerned at this point if you find executing the “roll-up” function a little confusing.
Remember you can see the contents of the STACK REGISTERS in sequence any time
more simply by using single presses of the ROLL-DOWN key. Remember also
that if you lose track of which of the STACK REGISTERS you see in the view
window, simply turning the computer off, then on again displays automatically the
contents of the X STACK REGISTER.

Section 3.1.4. Recalling Stack Data

Using either the ROLL-DOWN key, or the keystrokes to perform the roll-up
function are two ways of displaying in sequence the contents of each of the STACK
REGISTERS. Neither will show, however, the contents of the L STACK REGISTER.
The number stored in any of the STACK REGISTERS, including that in the L
STACK REGISTER, is readily viewed out of sequence by using another one of the
built-in functions of your computer, the recall (RCL) function. Two examples are
shown in Figure 3.3.B.

To try it, first press the RCL key (second from right in the third row). You will

30

see "RCL _ _” in the view window indicating the computer is prompting you for a 2
digit number to designate the memory location whose contents you want to see. To
indicate you want to recall a number from one of the STACK REGISTERS, press
the decimal key. "RCL ST __” is now displayed, prompting you for the single letter
(X,Y, Z, Tor L) to designate the STACK REGISTER whose contents you want to be
brought forward to the X STACK REGISTER to be read in the view window.
If you'd just turned your computer on, it wouldn’t make much sense to press the X

key in response to RCL ST __ since it’s the contents of the X STACK REGISTER which
is displayed in the view window anyway under this circumstance. In response to the
prompt RCL ST __ now in your view window, press the appropriate Y, Z, T or L
key; it is unnecessary to place the computer into an ALPHA mode to obtain the correct
letter. You will then see immediately the number stored in the stack register you
designated.

Recalling the contents of any of the STACK REGISTERS in this way does not
alter the contents of the register itself; it merely copies to the view window the number
stored in the STACK REGISTER you indicated. Similarly, recalling the contents
of any data storage register, as shown later on, does not alter the number stored in it.
Recalling a number from any memory location and placing it into the X STACK
REGISTER for viewing changes, of course, the previous contents of the X STACK
REGISTER itself. The number it originally contained is displaced and permanently
lost by the one which is recalled.

In order to place a new set of numbers in the STACK REGISTERS, it is
unnecessary to perform any special operation to clear them, although you will soon
read about a single operation which will do that if you want. The new set of numbers
will be stored in place automatically as they are entered from the keyboard, just the same
as you did when you completed the data entry exercises in Section 3.1.2. As each
number is first placed in the X STACK REGISTER by pressing the appropriately
marked key, it is then entered successively into the higher (Y, Z and T) STACK
REGISTERS when ENTER is pressed. It might be helpful to enter different sets of
numbers, and then review the contents of the STACK REGISTERS just to be sure this
point is clear. Being comfortable with the procedures for storing data in and seeing
the contents of any of the STACK REGISTERS will help a great deal when you
come to use them either in complex calculations, as described in the next chapter, or
in programming, as outlined later in this book.

Section 3.1.5. Clearing the STACK REGISTERS

There will be times when starting a new calculation, either by using the keyboard
to enter data, or in the execution of a program that you will need to have only zeroes
stored in the STACK REGISTERS. That is, they need to be cleared of previously
stored data. One way to achieve this status is to enter a series of zeroes, much the same
as when you loaded the STACK REGISTERS with other numbers earlier (Figure
3.2.). Another way is to use the built-in function in the HP-41 called CLST (for "clear
STACK REGISTERS”). To see how this operation is used, first place numbers in
each of the STACK REGISTER as vou did earlier, then use the ROLL DOWN
function key to assure yourself you did this correctly. Now perform the recommended
steps in the next paragraph.

The following sequence of keystrokes automatically places a zero in each of the
X, TT, Zand T STACK REGISTERS, but not in the L STACK REGISTER. Since
you are going to use a built-in program in your computer to clear the STACK
REGISTERS, it will be necessary first to address it in its storage location in the
machine’s memory. This is easily done by pressing the XEQ function key which is
located just to the right of the SHIFT key. You will see "XEQ _ _” displayed in the

31

view window. This is a prompt for you to indicate with your next keystroke(s) which
program you’d like to “execute”.

The program you want to use, "CLST”, is an alpha statement. In order to write
this in the view window, you first need to press the ALPHA toggle switch. You are
now ready to spell out "CLST” using the keys marked in blue with these letters, and
then terminate the request to use this program by once again pressing the ALPHA
toggle switch. After a short pause, you will see the contents of the X STACK REG-
ISTER which is now zero, of course, since you have cleared this register along with all
the other STACK REGISTERS when you executed the program CLST. Use the
ROLL DOWN key to review the current contents of the STACK REGISTERS which
will be all zeros.

Just to be thorough about all of this, you can see that the use of CLST did not
clear the L STACK REGISTER by recalling its contents. First press the RCL key,
then the decimal key, then the L key. If you see a zero in the view window, it’s
because there was a zero in the L STACK REGISTER. Try all of this again after you
have stored a number other than zero in the L STACK REGISTER following the
instructions summarized in Figure 3.3.B. The main point to be made is that the
CLST operation clears only the X, Y, Z and T STACK REGISTERS.

By now you are able to place numbers sequentially into the STACK REGISTERS
using ENTER (Figure 3.2.), selectively load a specific STACK REGISTER using the
STO ST _ function (Figure 3.3.A.), review the STACK REGISTERS in order using
the ROLL-DOWN function key (Figure 3.3.C.), and review the contents of any
one of them by responding to the "RCL ST __” prompt (Figure 3.3.B.). You also know
two ways to clear the STACK REGISTERS (enter a series of 4 zeros, or use the CLST
operation). There are a couple of other ways to manipulate the contents of the
STACK REGISTERS which are valuable to know. They are described next.

Section 3.1.6. Stack Storage Arithmetic and
Exchange

You have the power to manipulate the contents of the STACK REGISTERS in
important ways other than storing, recalling and clearing numbers in them. You can
perform mathematical operations in any one of them and rearrange their contents. These
are valuable operations not only for making calculations directly from the keyboard,
but also they are especially powerful in program design.

You can add, subtract, multiply or divide a number in any of the STACK REG-
ISTERS (including L) using a number in the X STACK REGISTER. This next exercise
demonstrates this useful operation. First clear the STACK REGISTERS using the
CLST operation (Section 3.1.5.). Next, place a number in the Z STACK REGISTER
(Figure 3.3.A.). Using the number "24.5" as an example, key it into the X STACK
REGISTER, then press STO, next press the decimal key, and in response to "STO ST _
_”, press Z. Now add, for example, 12.3 to 24.5 using stack arithmetic. First press
the erase key. Next, key 712.3” into the X STACK REGISTER, then press STO, +,
DECIMAL, Z” in order. Recalling (using RCL ST Z) or reviewing (using the
ROLL-DOWN key) the contents of the Z STACK REGISTER shows it now contains
"36.87, the sum of 12.3 and 24.5.

The other arithmetic operations (-, X and /) are performed in an analogous way
for any of the STACK REGISTERS, even to perform an arithmetic operation on the
contents of the X STACK REGISTER itself using the number stored in the X STACK
REGISTER. It may take a few moments, though, for most people to figure out why you
can only double the number you wish to add to the X STACK REGISTER in this way.
(Hint: What happens to the contents of the X STACK REGISTER when a new number
is keyed into it, and what does the operation "ST+ ST _ _” do?)

32

Being able to rearrange the contents of the different STACK REGISTERS is
handy when completing a mathematical sequence either from the keyboard or in a
program. Fortunately, it’s easy to do. Exchanging the contents of the X and Y STACK
REGISTERS is especially straightforward. For a demonstration, first place a number
in the X STACK REGISTER, press ENTER to copy it into the Y STACK REG-
ISTER, now key a different number into the X STACK REGISTER by pressing the
appropriate key(s), but don’t press ENTER. To exchange the contents of these 2 reg-
isters, simple press the XoY function key which is just above the SHIFT key. Sequential
activation of the XoY key switches back and forth the contents of the X and Y STACK
REGISTERS. You will see several applications for this maneuver when you start
writing programs.

Exchanging the contents of other than the X and Y STACK REGISTERS is a
little more involved, but since it is so useful a technique for making calculations and
running programs, it’s worth the trouble to learn it. You'll need to execute a built-in
program, much the same as you did earlier for CLST and RCL ST _ operation.

The contents of the X and Z STACK REGISTERS will be exchanged in this
example. You could exchange the contents of any one of the STACK REGISTERS incl-
uding the L STACK REGISTER with any other one using appropriately similar steps.
To begin with, clear the contents of the STACK REGISTERS. Then, key a
number into the X STACK REGISTER, and store it in the Z STACK REGISTER
using STO ST Z. Next, erase the view window, then key a different number into
the X STACK REGISTER.

To exchange the number now in the X STACK REGISTER with the one in the
Z STACK REGISTER, press XEQ, then place the computer in an ALPHA mode
(press ALPHA). Press the "X” letter key (not the key with the multiplication symbol
X). Add the symbol ”<” to the display in the view window by pressing the SHIFT key,
then the COS key. Add the symbol »” by pressing the SHIFT Key, then the TAN
key. Now press the ALPHA key and respond to the prompt in the view window (Xo
_) by pressing the decimal key and then the Z key. You have now exchanged the
contents of the X and Z STACK REGISTERS. Use the ROLL DOWN function to be
sure it all went as planned. If you were surprised at how the symbols 7’ and ™»” were
written into the statement in the view window, review Figure 2.4. to remind
yourself of ALPHA-SHIFT key definitions.

Section 3.1.7. The LL STACK REGISTER

Careful readers will see that even though the L STACK REGISTER is listed
in Figure 3.1. as a member of the group of STACK REGISTERS, it doesn’t function
either in data storage or in stack roll-down operations as do the X, Y, Z and T
STACK REGISTERS. The L STACK REGISTER has a special function. It is coupled
to the other 4 STACK REGISTERS, but it functions in a different and quite useful way.
[t is used to store the number entered immediately before an arithmetic operation.
The function and use of the L STACK REGISTER are valuable for performing a
special type of calculation as described next.

A short exercise will help describe how valuably different the operation of the L
STACK REGISTER is from that of the X, Y, Z and T STACK REGISTERS. First,
key a number into the X STACK REGISTER, and remember what it is. Then store
this number in the L STACK REGISTER by pressing the STO key, then the decimal
key, and respond to the alpha prompt "STO ST _ 7 by pressing the L key (see Figure
3.3.A.). Your number is once again displayed in the view window and, of course, it
remains in the X STACK REGISTER with a copy of it now in the L STACK REG-
ISTER. Clear the contents of the X, Y, Zand T STACK REGISTERS by CLST.
You will see a zero in the view window (since the X STACK REGISTER was cleared),

33

and if you press the ROLL DOWN key 3 times, you will see that the Y, Z and T
STACK REGISTERS have been cleared also, as expected. The L STACK REGISTER
still contains your original number, as you can easily verify by recalling the contents of
that register (RCL, decimal, L; as shown in Figure 3.3.B.).

Another way to review the contents of the L STACK REGISTER is to bring its
contents to the X STACK REGISTER using the SHIFTed function "LAST X”) of the
decimal key. To try it, erase the current contents of the X STACK REGISTER. Next
press SHIFT and then the decimal key, and you’ll see again the number previously
stored in the L STACK REGISTER. As you will learn from the next chapter,
recalling the contents of the L STACK REGISTER into the X STACK REGISTER
allows you to exchange it with the contents of any of the other STACK REG-
ISTERS, store it directly or indirectly in other memory locations in your computer
or use it in a specific calculation.

If the operation CLST is ineffective in clearing the L STACK REGISTER, how
can it then have a number eliminated from it? One way, of course, would be to store a
zero there using the sequence illustrated in Figure 3.3.A. But quite reasonably,
why bother? Any new number stored in the L STACK REGISTER automatically
displaces its contents, just the same as when a number is stored in the other STACK
REGISTERS and alternative memory locations. Furthermore, the contents of the L
STACK REGISTER do not become involved in a calculation unless you designate
its recall specifically by RCL ST L or LAST X.

Since the L STACK REGISTER functions as a “quiet” memory location,
controlling its contents is not as critical as it is for the other STACK REGISTERS whose
contents are lifted into higher memory locations with ENTER, for example, or combine
with those in lower STACK REGISTERS during arithmetic operations, as you'll see
in the next chapter. A short exercise presented at the end of the next chapter
(Section 4.5.) demonstrates how the unique operational features of the L STACK REG-
ISTER are valuable in keyboard calculations and in the program you will soon learn to
write.

Section 3.2. The ALPHA REGISTER

Similar to the STACK REGISTERS, the ALPHA REGISTER (Figure 3.1.) is a
feature common to all computer models in the HP-41 series. It has only one memory
location and is used to store letters and alpha symbols. It cannot store numbers to be
used as such in calculations, but it can store the symbols for numbers, as in the alpha
statement "ENTER X17. If you see the number 123.45 in the view window when your
computer is in its ALPHA mode, you know that is a numerical statement like a word,
but it is doesn’t designate a quantity, as it would were it displayed in the X STACK REG-
ISTER, for example.

The contents of the ALPHA REGISTER is viewed simply by turning the
computer on and pressing the ALPHA toggle switch. The view window may remain blank
except for the word "ALPHA" in small letters over the ALPHA toggle switch which shows
the computer has been placed in an ALPHA mode. The window is still displaying the
contents of the ALPHA REGISTER, but is showing that it is empty of alpha state-
ments.

You can place symbols in the ALPHA REGISTER, of course, just by pressing
the appropriately labeled keys (symbols are shown in blue on the slanted lower face
of keys when the computer is an ALPHA mode). Pressing ALPHA after these keys
have been used stores the entire string of symbols into the ALPHA REGISTER
where it can be viewed any time the ALPHA key is pressed or if the instruction AVIEW
1s used.

As for the STACK REGISTERS and all other memory locations in the HP-41

34

series, the content of the ALPHA REGISTER is retained when the computer is toggled
off. Just to reassure yourself that this is true, follow through a simple exercise.
Turn the computer ON, place it in an ALPHA mode, enter a sequence of alpha
symbols and then turn the computer off. Turning it ON again shows the contents
of the X STACK REGISTER, as you might expect, but the symbols in the ALPHA
REGISTER also have been preserved which you can easily verify by pressing the
ALPHA key to see the current contents of that register.

The ALPHA REGISTER has a special characteristic for displaying whatever
symbols have been stored in it. Even though the view window has only enough spaces to
display a string of 12 ALPHA characters, the ALPHA REGISTER itself holds twice that
many. The computer “scrolls” to the left the contents of the view window to display
the entire contents of the ALPHA REGISTER when more than 12 characters are in
its storage. To demonstrate this feature, turn the computer ON, press ALPHA, then
press the erase key to clear the ALPHA REGISTER. Next key in alphabetical order
the letters A to X. Note that a tone is sounded when you make the last entry,
signaling that the ALPHA REGISTER is now full. Next press ALPHA. This stores
the 24 character string you just generated in the ALPHA REGISTER. Press ALPHA
again to display with scrolling” the letters A to X. The sequence will be repeated for
every second press of the ALPHA toggle (as you'd predict from the information in Figure
2.2.A.).

Although there is a simple way of clearing the ALPHA REGISTER by
executing a built-in program (CLA), as described in the next paragraph, there is a more
selective way of getting rid of unwanted ALPHA symbols. If you are spelling out a
word or phrase and press the wrong key, you can easily erase just the unwanted symbcl
by pressing the key with the left pointing arrow (the erase key). If you have completed
the ALPHA statement and have pressed ALPHA to enter the entire sequence of symbols
into the ALPHA REGISTER, you can erase the entire entry by placing the computer
again in the ALPHA mode, and then pressing the erase key, as you saw in the previous
exercise. Entering a new ALPHA symbol also erases the existing contents of the
ALPHA REGISTER.

Using one of your computer’s built-in programs quickly and easily clears the
contents of the ALPHA REGISTER either when it is executed by keystrokes or when it
1s executed as a line in a program. To try it, first place a set of alpha statements
in the ALPHA REGISTER. Then turn the computer off, then ON again. This will
place your alpha set into the ALPHA REGISTER, but it will also return the view
window to show the contents of the X STACK REGISTER. To clear the alpha
statement, press XEQ, then ALPHA, then spell out CLA (for “clear alpha”), then
press the ALPHA key a last time. The ALPHA REGISTER is now clear, which you can
check by pressing ALPHA to see a blank view window.

Even though the ALPHA and STACK REGISTERS will be the most frequently
used storage registers, you will soon come to depend on your computer's MAIN
MEMORY, PRIMARY DATA STORAGE REGISTERS. and EXTENDED DATA
STORAGE REGISTERS, and the EXTENDED MEMORY, if you have approp-
riately expanded the functions of your HP-41CV or own a HP-41CX. These are reviewed
next.

Section 3.3. MAIN MEMORY and Data Storage
Registers

For most calculations, even quite complicated ones made with direct keyboard
entries by pressing its keys, you will depend primarily on the use of the STACK REG-
ISTERS. Once you write a program to make calculations, however, you will want to
know how to manipulate your computer’s memory beyond that of the STACK REG-

35

ISTERS. The power of your HP-41 computer lies in its ability to use algorithms
(lists of step-by-step instructions) to solve problems and in its considerable memory for
storing interim and final calculations, as well as alpha statements and symbols. This
section only introduces these memory locations. You will learn more about how to
use them later on in this book when sample programs are being written and used. If
by the end of this section you have a general idea about where data are stored in your
computer, that’s more than good enough for the moment. This would be a good time to
take another look at Figure 3.1. to remind yourself of your computer’s different memory
sites.

All of the individual statements which make up the body of programs will be
stored in the computer's MAIN MEMORY. This memory space will be used also for
PRIMARY STORAGE REGISTERS in which you can place either alpha or numeric
data. A valuable feature of the HP-41 computer is that you have control in allocating
the memory storage space you alone decide is needed for program construction and data
storage. A built-in program called SIZE gives you full control over the available
memory space of the MAIN MEMORY. It will be used when you decide how much
memory you need for data storage, and how much for saving program lines.

There is always a degree of concern when one first begins to write programs as
to the number of program lines, where they have been stored in the MAIN MEMORY
and how many memory locations are left. The basis of the concern is that one might run
out of memory space in writing the program. These are reasonable thoughts, espec-
ally in using a computer which has relatively little memory, but much of the
worry is unjustified. The HP-41 computer has a built-in subroutine (PACKING)
which stores program lines efficiently and economically in terms of space in the MAIN
MEMORY, and a number of messages which will appear automatically in the view
window if you run out of either program writing or data storage space. You will learn
more about PACKING and its several functions later. In the great majority of appl-
ications, there will be plenty of program writing space for any single program,
although there will be limits to the number of such programs which can be stored simul-
taneously.

Both the storage and retrieval of numerical and alpha data are quite straight-
forward for the HP-41 computer, as a simple example will help to illustrate. Turn the
computer ON, and ignore any number displayed in the view window. Whatever
number is there, you know was the contents of the X STACK REGISTER the last time
the computer was used. First, adjust the size of the MAIN MEMORY to have enough
data storage registers for this exercise by executing the SIZE subroutine. You do
this by first pressing the XEQ key, then the ALPHA key, then spell SIZE and press the
ALPHA toggle again. You will now see in the view window "SIZE __ "as a
prompt to indicate next (by keying a sequence of 3 numbers) the size of the data
storage space you require. Press the keys 7011” to indicate you‘d like 10 PRIMARY
STORAGE REGISTERS set aside for data storage. The view window will again
display the previous contents of the X STACK REGISTER at the end of this
sequence. You have now adjusted your MAIN MEMORY to hold 10 PRIMARY STOR-
AGE REGISTERS.

You are now set to store and recall a number using the PRIMARY
STORAGE REGISTERS. To try it, enter a number in the X STACK REGISTER by
pressing the appropriately numbered key(s). Now, press the key designated STO, and
you will see the statement "STO __ __” in the view window, asking you which of the
PRIMARY STORAGE REGISTERS you wish to use. You previously set aside 10 of
them with the SIZE subroutine. Put your test number in PRIMARY STORAGE REG-
ISTER 07 by pressing 07 in response to STO _ _. Once you have pressed the keys 0”
and 7”, the view window again displays the contents of the X STACK REGISTER,
which is, of course, the number you just stored. Erase that number using the erase
key, and then recall the stored number by pressing the RCL” key, and then desig-
nating in response to "RCL __7 the register whose contents you want to see, which

36

is 07 in this example. The number you had stored in PRIMARY STORAGE REG-
ISTER 07 is brought to the X STACK REGISTER and displayed in the view window.
That number still remains stored in PRIMARY STORAGE REGISTER 07, you just
extracted a copy of it by the instruction RCL 07 to see what it was.

As shown in Figure 3.1, there are 100 PRIMARY STORAGE REGISTERS
available for data storage (designated R00 to R99), and you can use any of them if you
have correctly set them aside in the MAIN MEMORY using the SIZE operation, just as
you did for 10 of them in the previous exercise. Suppose you had tried to store your
test number in PRIMARY STORAGE REGISTER 50, for example. If you try it, you
will see that your computer is unable to find that PRIMARY STORAGE REGISTER in
response to your keyed command STO 50, because you did not create a space for it in
the MAIN MEMORY with SIZE, and will give you the message "NONEXISTENT” in
the view window. What is “nonexistent” is the memory location you tried to use. You
could make it exist, of course, by XEQ ALPHA SIZE ALPHA 051.

You can store alpha data in the PRIMARY STORAGE REGISTERS just as
readily as you can numerical data, assuming you have generated the appropriate space
using SIZE. A simple example will help. Turn the computer ON, clear the
ALPHA REGISTER (by XEQ ALPHA CLA ALPHA), then place it in the ALPHA
mode (press the ALPHA toggle), and create a word or phrase you can easily recognize.
Next press ALPHA again to store this string in the ALPHA REGISTER. To store this
ALPHA statement in a PRIMARY STORAGE REGISTER of your choice, press
ALPHA, next press SHIFT, then STO (the key STO has now been redefined to be
ASTO, as shown in Figure 2.4. since the computer is in its ALPHA mode) and
respond to the prompt "ASTO __ _” with a 2 digit number indicating which
PRIMARY STORAGE REGISTER you wish to use. If you were surprised that you had
to use the shifted function of the STO key for alpha data storage, refer either to the
chart on the back of your computer, review Figure 2.4., or look in your instruction
book to see how the keys are defined when the computer is in an ALPHA mode. As a
next step in this exercise, press the erase key to clear the ALPHA display and turn your
computer off.

To recall your alpha statement from the PRIMARY STORAGE REGISTER in
which your stored it, turn the computer ON, place it in an ALPHA mode, press the
SHIFT key, then the RCL key and respond to TARCL __” with the number of the
PRIMARY STORAGE REGISTER you used. If all is well, you should now read the
test ALPHA statement in the view window.

The combined use of the STACK REGISTERS and the PRIMARY STORAGE
REGISTERS with program statements in the MAIN MEMORY provides considerable
power and flexibility for writing even quite complicated, long and involved programs
which use both alpha and numeric data. There is, however, yet another data storage
register for you to use with your programs. As shown in Figure 3.1, it is the EX-
TENDED DATA STORAGE REGISTERS (numbered R100 to R318). Be careful not to
confuse this register with the EXTENDED MEMORY feature built-in the HP-41CX and
which can be added to the HP-41CV. It is unfortunate that each is called
"EXTENDED ...”, because they are quite different in function and use.

When you stored and then recalled a number and later an alpha phrase using
the PRIMARY STORAGE REGISTERS in the 2 previous examples, you used the
statements STO, RCL, ASTO and ARCL. You used these DIRECT ADDRESSING
statements to manipulate your data for storage and recall from the PRIMARY STOR-
AGE REGISTERS, but you would not have been able to address the EXTENDED
DATA STORAGE REGISTERS in this way. The EXTENDED DATA STORAGE
REGISTERS give you valuable memory storage space, but data are placed into and re-
trieved from them using the technique of INDIRECT ADDRESSING. This technique
is sufficiently complex that it is described in a chapter of its own (Chapter 9). You will
see in that chapter how data are stored and recalled using the PRIMARY DATA STOR-
AGE REGISTERS by both DIRECT ADDRESSING and INDIRECT ADDRESSING

37

techniques, but that data are entered and retrieved from the EXTENDED DATA
STORAGE REGISTERS only by INDIRECT ADDRESSING.

Section 3.4. The CATALOGS

Most likely it’s already apparent that there are many different places to store
information of one type or another in the HP-41 computer. It would be easy to lose
track of the contents of these memory locations were it not for the CATALOG organ-
ization and operation of the machine. Like other general catalogs (Sears, L.L. Bean,
library card files, etc.), those in your computer are a compiled list of available items.
The HP-41 CATALOGS list GLOBAL LABELS and function names you can access when
each is properly addressed. You will learn about GLOBAL LABELS in Chapter 3.
For now, though, knowing that a GLOBAL LABEL designates the title of computer
program may be enough to see how a CATALOG review is a valuable function. The
computer's CATALOG system provides a convenient way to review what is stored
where in its many memory locations.

The HP-41C and HP-41CV models have 3 CATALOGs, numbered 1, 2 and 3.
CATALOG 1 lists the GLOBAL LABELS for all the programs written into the
computer's MAIN MEMORY by keyboard entries or transferred there from magnetic
cards, cassettes or other storage devices. CATALOG 1 has its contents reviewed by
using the SHIFTed function of the ENTER key (first press SHIFT, then ENTER),
then answering the prompt "CAT _” by pressing the key marked ”1”. Since you have
not yet stored any programs in the computer, you will see no GLOBAL LABELS listea
in the CATALOG 1 review. Were any stored in the MAIN MEMORY each would be
then displayed in rapid succession, with the contents of the X STACK REGISTER held
in the view window at the end of it all. CATALOGs 2 and 3 are reviewed in a similar
way.

You will see later on that the display of GLOBAL LABELS is quite rapid in a
CATALOG review. If you wish to stop the display series of GLOBAL LABELS in the
CATALOG review, press R/S immediately after pressing the numbered key
designating the CATALOG to be seen. Each press of the key marked SST advances
the CATALOG review sequence one step at a time to show the next listing which is
then held in the view window. Pressing R/S at any time reinstates the rapid display of
the CATALOG. When a GLOBAL LABEL is held in the view window during a
CATALOG 1 review, pressing PRGM provides entry into the program at its first
line. Pressing SST then presents successive lines in the program. If PRGM is pressed
again, you exit the program, cancel the CATALOG review, and the view window
returns to display the current contents of the X STACK REGISTER.

CATALOG 2 lists the GLOBAL LABELS of programs contained in the
application modules plugged into one or more of the accessory ports at the top edge of the
computer. Similar to the review of CATALOG 1, sequential display of CATALOG 2’s
contents is stopped when R/S is pressed and taken step-by-step with successive
pressing of the SST key, or the rapid display is reinstated if R/S is pressed a second
time. How the R/S key operates in a CATALOG review is a good example of its
“run-stop” feature. Unlike the review of CATALOG 1, pressing PRGM when a
GLOBAL LABEL is displayed in a CATALOG 2 review does not provide entry to the
program.

Reviewing CATALOG 3 displays in alphabetical order the STANDARD
FUNCTIONS of the computer. CATALOG 3 contains many built-in function used
either by keyboard operations, or when a program is executed. These functions do not
take space in the MAIN MEMORY, and they are not erased when you clear programs
and other stored information from your computer. They are stored in ROM and
remain in the computer even if it has had its batteries removed and it has remained

38

unused indefinitely. For reference, the STANDARD FUNCTIONS contained in
CATALOG 3 are listed in Figure 3.4.

Figure 3.4.

Catalog 3

. CLD FS?C PROMPT ST/
CLP GRAD PSE STO

. CLRG GTO R" STOP
/ CL HMS R-D TAN
1/X CLST HMS- R-P TONE
10% CLX HMS- RAD VIEW
ABS COPY HR RCL X=0?
ACOS COS INT RDN X07?
ADV D-R ISG RND X<0?
AOFF DEC LASTX RTN X<0?
AON DEG LBL SDEV X>0?
ARCLX DEL LN SCI X=Y?
ASHF DES LN1+X SF XY?
ASIN END LOG 3 + XY?
ASN ENG MEAN s - XY?
ASTO ENTER MOD 3 REG X>Y?
ATAN EX OCT SIN Xo
AVIEW gX-! OFF SIGN XoY
BEEP FACT ON SIZE XEQ
BST FC? P-R SQRT xX?
CAT FCC PACK SST YX
CF FIX Po ST
CHS FRC 9CH ST-
CLA FS? PI STx

The HP-41CX has the same 3 CATALOGs as the other 2 models, and each is
reviewed in the same way (SHIFT, CATALOG, (I, 2 or 3), although the view
window display is slightly different. When CATALOG 1 is reviewed, for example,
first each program’s GLOBAL LABEL is displayed as in the other models, but with
the display of the associated END statement, the number of bytes in that program is
also shown at the far right of the view window. Also differently, at the end of the
review there is shown the number of unused REGISTERS remaining in the MAIN
MEMORY. A review of CATALOG 2 displays function groups of programs in
plugged-in application modules. Reviewing CATALOG 3 presents the same inform-
ation as does the other models (Figure 3.4.).

The HP-41CX has 3 CATALOGs which are not in the HP-41C/CV models. A
review of CATALOG 4 displays a list of files in the computer's EXTENDED
MEMORY. CATALOG 5 contains a list of all the alarms set for the machine, and
CATALOG 6 lists the GLOBAL LABELS and functions designed for the USER mode of
the computer.

The next chapter will put into practice the skills you have learned so far for
data allocation to the STACK REGISTERS. Subsequent chapters on programming
will draw upon your abilities to store and recall alphanumeric data from the
PRIMARY DATA STORAGE REGISTERS. Also, they will demonstrate the utility of
CATALOG review.

39

Chapter 4

Stack Register Arithmetic

The previous chapter introduced the important concept that the computer’s
STACK REGISTERS will contain data entered from the keyboard, as well as that re-
called from many locations in the HP-41’s different storage registers. You will use these
data in the STACK REGISTERS for many types of calculations, even for quite compl-
icated step-by-step chain operations to solve complex equations. This chapter shows you
how to use the STACK REGISTERS in these ways.

In order to use the STACK REGISTERS accurately and efficiently, you
will need to know in some detail how calculations are performed with them using
the built-in logic of your computer. This logic is probably different from the way in
which you now perform arithmetic, but you’ll soon see that the strategy your HP-41
uses to make calculations is easy both to learn and to use. The first section of this
chapter introduces the logic of RPN ("Reverse Polish Notation”), then you will learn
how to use it in performing calculations within the STACK REGISTERS. The
phrase, “Reverse Polish Notation” designates a special sequence for performing arith-
metic operations invented by a Polish mathematician (Lukasiewicz) more than half a
century ago.

Section 4.1. RPN Logic

RPN logic has an undeserved bad reputation. Some people claim a primary
reason for their not becoming proficient with the HP-41 computers is their inability to
use RPN logic. Hard to believe! By the time you have read the next couple of pages
and tried some of their exercises, not only will you see for yourself how straightforward
this system is for calculations, but also you will have learned all you need to about how
RPN functions in order to use your HP-41 series computer expertly. The investment
made in learning the information presented in the next few pages will pay off time
and time again in becoming progressively more proficient with your HP-41 computer.
It’s not hard, but it does require some willingness to think about doing arithmetic in a
slightly different way than most of us were taught in elementary school.

Because it’s important to understand thoroughly how the STACK REGISTERS
are used for mathematical solutions using RPN, there are many examples to try in the
next pages. Even if you can "see through” the solution intuitively, take the time to
key in each step. The point is to develop a sense of what’s happening to the STACK
REGISTERS, not to learn arithmetic.

Figure 4.1. summarizes the similarities and main differences between the way we
have all learned to perform arithmetic ("standard notation”) and the alternative type of
notation ("Reverse Polish Notation”, RPN) used with the HP-41 computers. As outlined
in the example shown at the top in Figure 4.1., a calculation is made using
"standard notation” by stating the first number (N1), then the arithmetic symbol
(+, -, X, or /) for the calculation to be made, then stating the second number (N2),
and finally identifying an “equals” in order to get the answer. Easy enough. We have
all done it this way for so long, it has become habit. If you’d want to step through
adding the 2 numbers 5 and 6, for example, you'd say to yourself, ”5 plus 6 equals 11”
to complete the operation. You would perform a series of 5 analogous steps for the
other arithmetic procedures of subtraction, multiplication and division.

RPN logic arrives at an answer in an arithmetic process in a much shorter and

40

Figure 4.1.

RPN Logic

A. Standard Notation:

Step

1 2 3 4 5

Indicate: N1 function N2 equals answer

examples

addition: 5 + 6 = 11
subtraction: 10 - 12 = -2
multiplication: 8 X 4 = 32
division: 15 / 3 = 5

B. Reverse Polish Notation (RPN):

Step

1 2 3 4

Indicate: N1 N2 function answer

examples

addition: 5 6 + 11
subtraction: 10 12 - =2
multiplication: 8 4 X 32
division: 15 3 / 5

more direct way. Being able to shorten the sequence of statements in an arithmetic
operation is of considerable advantage when these instructions are written into a
computer program, since each step occupies at least one valuable memory location. The
shorter the statement sequence can be made with no loss of accuracy, the better. As
shown in the lower section of Figure 4.1., RPN shortens the process of stating arith-
metic operations by 20%, compared to using “standard notation”. This is much like
having a computer with 20% more memory at no cost other than learning how to do
arithmetic in a slightly different way. That’s a good trade-off for just having to learn a
new way to state the steps in the process.

There is another advantage to using RPN. [It will become apparent as you use
RPN for more and more complicated calculations, that not only is this form of math-
ematical statement shorter, it also eliminates the need to use parentheses and brackets to
separate groups of numbers in a sequence of mathematical operations. These
symbols are not on your HP-41 keyboard simply because you won’t need them.

In contrast to the sequence followed using “standard notation” to perform an
arithmetic calculation, RPN requires identifying the first number (N1), then the

41

Figure 4.2.

STACK REGISTER Operation

STEP 1 STEP 2 STEP 3 STEP 4

CLST Key N1 ENTER Key N2

T | T 0 T dg T 8

Zz a Zz a Zz 8 Z a

Y a Y 8 Y N1 Y N1

X a X N 1 X N1 X N2

STEP SA STEP SB STEP SC STEP SD

+ -— > /

T 8 T @ T @ T BQ

Z a Zz 0 Zz @ Z 2

Y a Y ag Y 8 Y a

X| N1+N2 X| N1=-N2 X N1%kN2 X| N1/N2

second number (N2), and finally simply indicating the arithmetic operation you want
to perform on the 2 numbers. Following this sequence using appropriate keystrokes
for the HP-41, the calculation is automatically performed once the symbol (+, -, X or
/) for the operation is stated. The answer is quickly displayed in the view window
and resides in the X STACK REGISTER. In this process, as shown in the next
section, each number goes into a specific memory location in the STACK REGISTERS
as it is keyed into the computer, and then the contents of those registers are
combined arithmetically in the way you specified. This simple process is the same for
all arithmetic functions and it is the same for all models of computers in the HP-41 series.

That’s all there is to it, really. It’s hard to understand why learning RPN is seen
by some people to be so difficult. What happens step-by-step to the contents of the
STACK REGISTERS during RPN arithmetic operations is described next. It might
be a good idea for you now to review quickly the main points in Section 3.1. Just
glancing over those pages ought to be good enough to remind you of the basics of
STACK REGISTER operations in preparation for the next part of this chapter.

Section 4.2. STACK REGISTER Content

This section reviews how each of the STACK REGISTERS has a number entered
into it during an RPN sequence and how the contents of these registers change for
multiple data entries during each of the 4 basic arithmetic operations of addition,
subtraction, multiplication and division. This information is essential for conceptual-
izing how the STACK REGISTERS change their contents when you make calculat-
ions in conjunction with the entry of data from the keyboard, or when data are

42

recalled from different storage registers to make a calculation. Becoming used to
thinking in terms of STACK REGISTER configuration and content will make
learning to write programs considerably less complicated.

Figure 4.2. shows how each of the STACK REGISTERS changes during the
process of entering data and performing arithmetic operations. Step 1 in this example
places a zero in each of the STACK REGISTERS by executing the CLST subroutine
you learned to use in Section 3.1.5. Step 2 places the first number, Nl, into the X
STACK REGISTER by making an appropriate keyboard entry. This is done, of course,
simply by pressing the key(s) for the number(s) you want. Pressing ENTER in Step 3
copies this number into the Y STACK REGISTER. It also “raises the stack” so that the
content of the Y STACK REGISTER is moved into the Z STACK REGISTER and its
content is lifted into the T STACK REGISTER. These last 2 processes are not as easy to
see in this example because the Y and Z STACK REGISTERS contained zeros at the
beginning of the exercise, and, of course, one zero looks about the same as any other.

It’s easier to verify that the contents of the X STACK REGISTER have been
copied into the Y STACK REGISTER, since you can check the contents of these reg-
isters simply by using the "XoY” function key (as you learned in Section 3.1.6.)
after N2 has been keyed (Step 4; Figure 4.2.), assuming you didn’t make the choice
that N1=N2. As long as you placed 2 different numbers in each of these 2 reg-
isters, you can watch them switch back and forth as you press in sequence the "XoY’
function key. If you had placed the same two sets of numbers in the X and Y STACK
REGISTERS, using the *XoY” function key still exchanges the contents of these reg-
isters, but, of course, the display in the view window would not appear to change.

Step 4 in Figure 4.2. shows that when the second number, N2, is keyed, it
replaces the contents of the X STACK REGISTER, as you saw earlier in the example
described in Figure 3.2. N1 is now in the Y STACK REGISTER, and N2 is in the X
STACK REGISTER, Step 5A shows that when the function key ns pressed, the
contents of the Y and X STACK REGISTERS are added, the stack is dropped, and the
sum (N1+N2) is displayed in the X STACK REGISTER. Steps 5B, SC and SD show how
the other arithmetic operations operate in a very similar manner.

Try these simple exercises several times with different numbers until you are
quite sure of the different steps in the process shown in Figure 4.2. When you succeed
in seeing how the STACK REGISTERS are 7raised” with successive data entries,
and “dropped” with successive arithmetic operations, there will be few surprises for you
in the remainder of this chapter. You will have grasped an important central idea not
only for performing all types of mathematical procedures with your computer, but also
for programming it. This is a major step.

It’s obvious that you’d get the same correct answer in Figure 4.2. whether Nl
was in the Y STACK REGISTER and N2 was in the X STACK REGISTER, or vice
versa, when you pressed the 7+” function key in Step SA, since NI1+N2=N2+NI1. It’s
probably equally obvious that you would not get the same answer in Step 5B in Figure
4.2. if the contents of the X and Y STACK REGISTERS had been reversed when you
pressed the ”-” function key, since N1-N2 is not equal to N2-N1. The digits of the
answer are the same, but the sign is different. It’s important to remember that, ”..
it’s the contents of the Y STACK REGISTER minus the contents of the X STACK
REGISTER” when you subtract numbers in this way. A little practice will soon make
this a routine judgment.

For addition, the ordering of data in the X and Y STACK REGISTERS does
not affect the accuracy of the answer, but it does for subtraction. In a similar way
for multiplication, the contents of the X and Y STACK REGISTERS can be
reversed without error, since NI1«N2 = N2«N1. This not true for division, since
NI1/N2 is not equal to N2/NI1. It’s necessary to remember that, ”... it’s the contents
of the Y STACK REGISTER divided by the contents of the X STACK REGISTER.”

As a point of review, perhaps you recall that you can perform any of the
arithmetic operations using the STACK REGISTERS without entering data as described
in Figure 4.2. Section 3.1.6. described how to use the function key “STO” to add
(ST + ST _), subtract (ST - ST _), multiply (ST X ST __; the symbol ”X” designates
multiplication, not the letter ”X”). or divide (ST / ST _) the contents of any of the
STACK REGISTERS (or PRIMARY STORAGE REGISTERS) using the contents of
the X STACK REGISTER. Remembering the keyboard entries for arithmetic des-
cribed in this chapter and knowing how to use the STO (+, -, X or /) ST __ operations
for STACK REGISTER arithmetic will be handy in writing programs.

Using the STACK REGISTERS for adding, subtracting, multiplying or
dividing more than 2 numbers in any order is not much more difficult than the simple
procedures shown in Figure 4.2. Figure 4.3. shows the steps followed for one of the
ways to add more than 2 numbers. The data entry steps in Figure 4.3. are the same as
corresponding ones shown in Figure 4.2. Once the sum NI+N2 is in the X
STACK REGISTER, though, keying N3 (Step S in Figure 4.3.) raises the stack

Figure 4.3.

STACK REGISTER Operation:
Adding 3 or More Numbers

(Version 1)

STEP 1 STEP 2 STEP 3

Key Ni1 ENTER Key N22

T a T B T v

Zz B Z yg Z v

Y Ud Y N 1 Y N 1

X N1 X N 1 X N2

STEP 4 STEP 5S STEP B

+ Key N3 +

T gv T BD T AB

Z B Z v Z B

Y a Yy| N1+N2 Y %|

X N1+N2 X N3 X N1+N2+N3
44

(similar to step 2) to place the sum N1+N2 into the Y STACK REGISTER and enters N3
into the X STACK REGISTER. Pressing the function key ”+” again (Step 6) "drops the
stack” and combines the contents of the X and Y STACK REGISTERS to show the sum
N1+N2+N3 in the view window as a display of the contents of the X STACK REG-
ISTER. Additional numbers in an unending sequence can be added, of course, by re-
peating steps 5 and 6.

Figure 4.4.

STACK REGISTER Operation:
Adding 3 or More Numbers

(Version 2)

STEP 1 STEP 2 STEP 3 STEP 4 STEP S

Key N1 ENTER Key NZ2 ENTER Key N3

T g T 8 T 8 T ag T 2

2 0 pA a Z a Z N1 Zz N 1

Y a Y N1 Y N1 Y N2 Y N2

X N 1 X N1 X N2 X N2 X N3

STEP B STEP 7 STEP 8 STEP 9 STEP 18

ENTER Key N4 + + +

T N1 T N1 T N1 T N1 T N1

Zz N2 Zz N2 Zz N1 2 N1 Z N1

Y N3 Y N3 Y N2 Y N1 Y N1

X N3 X N4 X N3+N4 X N2+N3+N4a X NteN2eNToNa

A different way of adding more than 2 numbers using the STACK REG-
ISTERS is shown in Figure 4.4. The steps for entering the first 2 numbers are the
same as matching ones in Figure 4.2. Once NI and N2 are in the Y and X
STACK REGISTERS, though, keying ENTER (Step 4) raises the stack and moves
the contents of the Y to the Z STACK REGISTER. Keying N3 (Step 5) replaces the
contents of the X STACK REGISTER. Pressing ENTER once again raises the stack,
and keying N4 (Step 7) replaces N3 in the X STACK REGISTER. If the function key 7+”
is pressed once (Step 8), the "stack drops” and the contents of the X STACK REGISTER
is displayed in the view window as N3+N4. Pressing the key +” again (Step 9), drops
the stack a second time, the contents of the X and Y STACK REGISTERS are additiv-
ely combined, and the sum N2+N3+N4 is brought to the X STACK REGISTER.
Pressing “+” once more drops the stack again to complete the solution. Loading the
stack in this way and then stating two or more arithmetic operators one after the other
from the keyboard (as you did in this example) would provide identical results as
had you executed these steps as lines in a computer program.

45

It is perhaps already clear that the contents of the STACK REGISTERS can be
loaded with any 4 sets of numbers and they can be combined in any order of arithmetic
operations in a chain calculation, each “dropping the stack” to combine the contents of
the X and Y STACK REGISTERS in the stipulated way. As a general description of
this process, numbers in the X and Y STACK REGISTERS are combined in the
manner designated by the arithmetic operators +, -, X and /, and a sequence of
calculations can be made in any order by loading, raising and dropping the
STACK REGISTERS with the appropriate function keys time after time until the
final solution is displayed. All of this takes place, as described so far, from the key-
board in a specific operator-defined sequence of key operations. Be prepared to learn in
Chapter 6 that an identical sequence of calculations can be made automatically from
the computer programs you will write.

Most of the examples presented up to this point have shown that the STACK
REGISTERS above those containing numbers for a calculation retained zeros from their
having been cleared initially using the CLST program. As the stack dropped with
each operation, a zero was entered into each progressively lower register, except for the
X STACK REGISTER which contained the final answer of whatever arithmetic
sequence was concluded. It was shown quite correctly in Figures 4.2. and 4.3. that
the contents of the T STACK REGISTER (a zero) was dropped to the Z STACK
REGISTER, and that of the Z STACK REGISTER dropped to the lower Y STACK
REGISTER. That's OK for when indistinguishable zeros are replaced by other indist-
inguishable "zeros, but what happens when the contents of the T STACK REGISTER
1s some number other than zero?

Figure 4.4. shows the contents of the STACK REGISTERS in which a number
different from zero is placed (at step 6) into the T STACK REGISTER during a calc-
ulation sequence. As in the earlier examples, the contents of the T STACK REG-
ISTER are copied into lower registers as the stack is dropped in a calculation. But this
time, the same number repeats itself in a copy for each of the lower STACK REG-
ISTERS. A potential disadvantage of this characteristic of STACK REGISTER oper-
ation 1s that calculation errors are unavoidable if one doesn’t keep a clear mental note
of the status of the STACK REGISTERS in a calculation sequence. An advantage of
this characteristic is that the contents of the X STACK REGISTER can be added
to, subtracted from, multiplied or divided by a constant that at one time was placed in
the T STACK REGISTER (either by a stack lift or a "STO ST T” procedure (see
Section 3.1.6.) during sequences of “dropping the stack” using an arithmetic oper-
ations.

In any event, keeping close tabs on the contents of the different STACK REG-
ISTERS is certainly a good habit, and it’s one acquired with some practice. Con-
ceptualizing what’s where in the STACK REGISTERS soon becomes automatic. If
you get lost in remembering what is in which STACK REGISTER, there are several
ways to review their contents at any time (see Section 3.1.3.).

Section 4.3. Solving Complex Equations with the
STACK REGISTERS

If you followed the examples in the previous sections, this last part of this
chapter will be quite easy. You might have guessed correctly that if simple arith-
metic is performed in such a straightforward and uncomplicated way using the
STACK REGISTERS (Figures 4.2. to 4.4.), performing even a long sequence of arith-
metic and mathematical steps can’t be all that hard.

46

Although making a paper-and-pencil solution of the equation shown in Figure
4.5. would probably take some time for most people, especially if N3 were a fractional
number, for example. But the HP-41 computer readily comes to the mathematical
rescue if one executes the correct sequence of keystrokes. Figure 4.6. shows one of
the several ways in which such a calculation can be done with reliable accuracy in just
a few seconds with a little practice. When you are writing programs for your
computer in the next couple of chapters, you'll see how such a calculation is done
even more easily and quickly.

It is suggested you follow the sequence of keystrokes shown in Figure 4.6.
enough times for you to be quite comfortable with chain calculations using the
STACK REGISTERS, work the "trial solutions” in Figure 4.5., and then construct a
few similar exercises of your own to test your skills.

Exercises up to now have been designed to give practice in executing functions
from the keyboard and learning how the STACK REGISTERS are used in calculations.
If you have made any number of mistakes in performing these exercises, you may
have seen one or more of the messages described in the following section.

Figure 4.5.

A Complex Equation

N1 \N3 LOG N4 + SIN N5

N2 (NB)?

Trial Solutions

Test 1 Test 2 Test 3

N1 5 0.916 7.2
N2 6 0.301 4.8
N3 3 0.987 -0.876
N4 2 5.16 1.58
NS 3 4.92 1.010
N6 5 0.013 4.3

X= 0.069 206.166 0.076

47

Figure 4.6.

Solution of Complex Equation
Using the STACK REGISTERS

STEP 1 STEP 2 STEP 3 STEP 4

Key N4 LOG Key NS SIN

T 2 T 8 T a T 8

Zz a Zz a 2 8 2 8

Y ga Y 2 vy |LOG N4 y |LOG N44

X N4 x |LOG N4 X NS Xx SIN NS

STEP S STEP B STEP 7 STEP 8

+ Key NB X 2 /

T 8 T 8 T 8 T 8

pA a Z 8 Z 8 Z 8

Y a Y [(Note A) Y [(Note A) Y 82

X [(Note A) X NB X (NB 2 X [(Note B)

STEP S STEP 10 STEP 11 STEP 12

\/X Key Ni1 ENTER Key N22

T 8 T Q T 8 T 8

Z ag Z a Z (Note CC) Z [(Note C)

Y 8 y [(Note C)| v N1 y N1

X [(Note C) X N1 X N1 X N2

STEP 13 STEP 14 STEP 185 STEP 1B

/ Key N3 y X Sk

T Q T 8 T a T Aa

Z a Z |(Note C) Z a Z 8

Y [(Note C) vy N1/N2 Y [(Note C) Y 8

x N1/N2 X N3 x avin2 N= X (answer)
Notes:

A=LOG N4.SINS
LOG N1 + SIN N35

(N6)?

48

LOG NI + SIN N35

(N6)?

Section 4.4. Error Messages

A valuable feature of the HP-41 computer is that its logic system for processing
data constantly "looks over your shoulder” to be sure you have not inadvertently asked
the computer to perform some function which will result in a calculation logic error.
You will see later on in this book that similar solid-state supervision is automatically
provided when you “read” and write” magnetic storage devices, store or load programs
or data, and run programs. Other “error messages” will be explained in the context
of computer use in later sections, but ones you may have already seen are described here.

The error message "DATA ERROR” will be automatically displayed in the
view window if you attempt an invalid mathematical operation. Trying to divide by
zero, either attempting to take the logarithm of a negative number, or using the
MEAN built-in program to get the average of a series of numbers when, in fact, none
has been entered, are all impossible calculations involving data. It’s easy to deter-
mine what you asked the computer to do immediately prior to seeing the "DATA
ERROR” message by reviewing either the contents of the STACK REGISTERS, or
entering a program (as you’ll see) at the point of message display. "DATA ERROR?”, as
for all of the other error messages is easily overcome by erasing, if you wish, this alpha
statement from the view window (use the erase key) and executing the attempted calcula-
tion again, but this time correctly.

The error message "ALPHA DATA” will be displayed in the view window if you
try to attempt a numerical operation on non-numerical data. You may see this error
message more frequently when you are using alpha statements and numerical data in a
programmed calculation.

The error message "MEMORY LOST” will be displayed if you have removed a
memory expanding plug-in module, have removed the batteries from your computer
for a considerable length of time, or if you have had the computer turned off, pressed
the erase key and held it down when you turned the machine on. Don’t do this unless
you want to remove all of the keyed-in programs and data you’ve been using. This
procedure will not erase the built-in memory stored in CATALOG 3.

Your understanding and insight into how the STACK REGISTERS are used in
mathematical procedures, and your knowledge of selecting the keystrokes you need for
different keyboard, USER, ALPHA and ALPHA-SHIFT operations will now be put to
good use in writing programs. There Is another operation to be examined, though
before progressing to program the computer. Section 3.1.7. described some of the
unique features of the L STACK REGISTER. The next section shows how it is
used in calculations.

Section 4.5. Calculations Using the LL STACK
REGISTER

Section 3.1.7. introduced how the L STACK REGISTER 7stood alone” from
the X, Y, Zand T STACK REGISTERS in its retaining a stored number when
the operation CLST was performed. It is this protected feature which gives the L
STACK REGISTER its special value in performing a series of calculations using the
same number, and in recovering from calculation errors. Figure 4.7. illustrates how
the L STACK REGISTER holds whatever number was in the X STACK REG-
ISTER immediately prior to an arithmetic operation. This number can then be
recalled either by keying the sequence RCL, decimal, L (see Figure 3.3.B.), or by
performing the operation LAST X. It is then copied into the X STACK REG-
ISTER, raising the number previously stored there into the Y STACK REGISTER.

49

Figure 4.7.

L STACK REGISTER Operation

A. Equation:

(N1 + N2)/N3

X = _—
N3 + N4

B. Solution:

STEP 1 STEP 2 STEP 3 STEP 4

CLST @ STO ST L Key N1 ENTER

L| N Cast) L gy L Uv L a

T %| T 0 T % T B

Z Ba Zz yg Z a Z g

Y a Y 8 Y B Y N 1

X Bg X a X N 1 X N 1

STEP S STEP B STEP 7 STEP 8B

Key N2 + Key N3 /

L yg L N22 L N22 L N3

T B T B T B T A

Zz a Z yg Z A Z a

Y N1 Y 8 YI N1+N2 Y Q

X N2 X N1+N2 X N3 X (N1+N22)/N3

STEP 9S STEP 18 STEP 1 STEP 12

LAST X Key N4 + /

L N3 L N3 L N4 L| N3+N4

T a T ga T a T Qa

Z a 2 (N1+N2)/N3 Z 1%! Z g

Y (N1+N2)/N3 Y N3 Y (N1+N2)/N3 Y a

X N3 X N4 X N3+N4 X (answer)

In any calculation sequence, performing the function LAST X recalls, as its name
implies, the last contents of the X STACK REGISTER.

Solution of the equation shown in Figure 4.7. follows manipulation of the
STACK REGISTERS similar to that used in the examples presented earlier in this
chapter. A difference is that in the example in Figure 4.7. the function LAST X is
used. In Step 1, CLST results in there being a zero in the X, Y, Z and T STACK REG-
ISTERS, but not in the L STACK REGISTER. This register retains the last number
(N (last)) that was stored there. The L STACK REGISTER is cleared in this example
by storing a zero in it at step 2.

Steps 3 to 6 are familiar from earlier exercises. They first enter 2 numbers into
the X and Y STACK REGISTERS, then add them together, with the sum (N1+N2)
brought to the X STACK REGISTER and displayed in the view window. As soon as
the ”+” key is pressed (Step 6), however, N2 (the "last X value” is copied into the L
STACK REGISTER, and remains there intact as N3 is keyed (Step 7). The contents
of the L STACK REGISTER is displaced by N3 when the next mathematical oper-
ation is performed (step 8) to place the solution of the equation’s numerator into the X
STACK REGISTER.

The contents of the X and Y STACK REGISTERS are altered with the entry of
N3 at Step 9. N3 is entered using the LAST X function, drawing from storage the
contents of the L STACK REGISTER. The STACK REGISTERS change again with
the final process of division (Step 12).

Since the contents of the L STACK REGISTER is changed to contain whatever
number was in the X STACK REGISTER immediately prior to an arithmetic oper-
ation, it 1s a handy repository from which to recall a number to recover from an incorr-
ectly performed function. For example, if you wanted to add NI and N2, had keyed
them into the X and Y STACK REGISTERS (similar to steps 1 to 5 in Figure 4.7.),
but pressed ”-” instead of +” at Step 6, the error is easily recovered, since the "last X”
value (N2 in this example) has been automatically stored in the L STACK REGISTER
as soon as you incorrectly pressed the °-” key. Pressing LAST X recalls N2 into the
X STACK REGISTER, pressing 7+” adds it to the difference (N1-N2), pressing LAST
X again gets N2 once more into the X STACK REGISTER, and now pressing “+
gives the required calculation, the sum NI1+N2.

You are adequately accomplished now in keying data, and know enough about
STACK REGISTER, data storage and recall operations to put these skills to use in
writing computer programs. What you have learned so far has set the stage for you now
to explore the real power of your computer. The next chapter introduces basic concepts
about computer programs, looks at their construction requirements, and offers some
suggestions for program design. Armed with that information, actually writing
programs, beginning in Chapter 6, to perform specific types of calculations will be
easy. With just a little more experience and information, you will be surprised and
pleased not only with the complexity of program construction you can command,
but also how logical, straightforward and interesting it is.

51

Chapter 5

Introducing Programming

Being able to write programs into the HP-41 and retain them there intact indefin-
itely even when the machine is turned off are unique and powerful features of this
computer. This sets them apart from the handheld portable calculators they resemble
and with which, unfortunately, they are often confused by uninformed people. This
chapter introduces basic definitions and concepts for writing computer programs. It
summarizes some of the rules one is obliged to follow in programming the computer.
Also it shows how data are entered and processed, and then how answer outputs are
displayed as a program is executed. Following chapters provide many examples to ill-
ustrate these general principles.

Some of the programs presented are very simple. There are several, for example,
which only add 2 numbers and others which perform other uncomplicated arithmetic
calculations. But one certainly doesn't need a computer to carry out such simple
tasks, so program examples must be presented in this way for other reasons.

There are 4 reasons for the construction and presentation of sample programs.
The major goal is to introduce the structure of computer program logic. Since it
takes practice to attain proficiency with it, the first programs are designed to make
simple calculations so programming features themselves are seen more clearly. The
assumption Is that learning basic program writing techniques would be considerably
harder to do if the mathematical examples themselves were also complex. Other
programs are presented later which are more complex. All of the programs, however,
are organized so that if confusion arises at a particular point, one needs only to go
back to the immediately previous example to review a pertinent skill.

A second reason for presenting programming examples is for the reader to exer-
cise key entry skills. It’s not easy in beginning to use the HP-41 computers to remember
all of the SHIFT, ALPHA and ALPHA-SHIFT functions of the keyboard (see Figure
2.4), and even experienced users get confused once in a while. Practicing keying-
in programs, though, will go a long way in reducing this confusion by providing
familiarization with the keyboard and the many operations it controls. Writing simple
programs first, then others with increasing complexity is an excellent way to obtain
these skills.

The third reason why programs are presented here is that some of them will
be useful for everyday calculations. For example, since most people have a check-
book, a simple program to keep it in balance is judged to be a useful programming
example. Also, many people use their HP-41 series computer for simple statistical
calculations like taking averages and evaluating standard deviations and standard
errors for groups of numbers. You'll see a homemade program to do that also.
You'll see one for getting areas under curves, and others for solving similar common
problems. These examples are presented to help you get started in custom designing
programs for your own use.

The most valuable reason, though, for presenting sample programs is to chal-
lenge your own design instincts. If you find “faults” (but not errors) in the style of
the programs listed here, act on your judgment to change them to make the calculation(s)
more the way you would like. All programs are presented as raw material for you to
do just that. After you've become proficient in editing these examples to meet your
needs, you will be in a much better position to write imaginatively designed programs of
your own.

In the following sections, you will learn what a computer program is, and how
one is designed and tested.

w
n

t
J

Section 5.1. What is a Computer Program?

A computer program is a list of step-by-step instructions designed either to
solve a numerical problem, or reach a required goal. You've constructed a computer
program” of sorts whenever you’ve given directions to someone. Were you asked, "Can
you tell me how to get to the National Bank building?”, youd generate a fixed
sequence of instructions to answer the question, and may state them something like:
"Sure. To get to the National Bank...” (you've identified the title for your
“program”, ”...go to the next traffic light, turn right, go 3 blocks to the stop sign,
then turn left, ...” (you've stated the sequence of instructions to follow), ”...and it’s
the large building on the left in the middle of the next block.” (and you’ve ended the
“program” with a specific statement of the goal). Writing a successful computer
program is not much more difficult than generating these directions. In the same way
that you had to be precise, explicit, accurate and logical in giving your instructions to
the person trying to find the bank building, you'll have to follow similar guidelines
In constructing a computer program for your HP-41 computer.

Probably without thinking much about it, you followed some important self-
imposed rules for providing the requested instructions to find the bank building. For
example, if your directions were to be valuable, you needed to respond to the person’s
question in the same language in which it was asked. If they spoke to you in English,
you answered in English. It is unlikely you responded in some other language, but if
you did, chances are the information could not be ”processed” by whomever you were
talking to. Similarly in giving instructions to your HP-41 computer, you’ll have to use
the RPN logic and language of this machine. Fortunately, it’s easy to learn. as
you’ve already seen from the examples shown in Figure 4.1.

To help the person get to the bank, you could not have reasonably told them:
"Sure, go to the next corner, turn right, go to the next corner, turn right, go to the
next corner, turn right, go to the next corner, turn right...”. In a similar way, if
your programs are to be of value as a string of instructions for making a part-
cular calculation, they cannot contain instructions which cause to the computer to go
in computational circles. You will learn in the next few pages how to outline your
program and draw a logic diagram for it so you can direct your computations to go
precisely where you want them to with ease to yourself and value to the computer which
has to follow these directions.

Whether embodied in a sequence of verbal directions about how to get to a bank
building, or written as steps in a computer program, useful instructions need to follow
some rules, not only in how individual statements are made, but also in how these
instructions are placed in a sequence. For good or for bad, you’ll soon see that what
comes out of your pencil in writing a computer program Is sometimes an uncomf-
ortable indicator of what's going on in your head. If you're confused, your program
will be confused. On the other side, if you’ve thought it all out in a rational way,
writing and using your computer program is quite simple. Learning the structure and
discipline required to generate a successful computer program is an excellent exercise in
establishing logic patterns for thinking about how many problems may be solved, not
just those you present to your computer. Some people are better at this in the
beginning than are others, but everyone improves with practice.

Section 5.2. Where are Programs Stored?

Figure 3.1. and the discussion in Section 3.3. introduced the concept that
programs are stored in your computer in its MAIN MEMORY. Whether these
programs are ones you have written yourself and entered from the keyboard, or
whether they have been loaded into memory from magnetic cards, a cassette, or a set of

53

bar codes, each will occupy specific locations in the MAIN MEMORY. Also, each
will have the same general format, as summarized in Figure 5.1.

Figure 5.1.

Storage of a Single Program

MAIN MEMORY

Program No. 1

Line

BB1 GLOBAL LABEL

yy

ves

va

Body of

— Program

NNN

NNN

NNN

LAST| END or GTO

\\

Every computer program has 3 basic elements. It will have its own unique title
(defined as a GLOBAL LABEL), its set of program solving steps (in the body of the
program), and an END or a GTO statement. Not only are all computer programs
constructed in generically the same way, each is executed in a similar way. Program
initiation begins with the GLOBAL LABEL, the program methodically passes
through each of the step-by-step instructions in its body, and then program flow is
either terminated (with an END instruction), or directed elsewhere (by a GTO instr-
uction).

Figure 5.1. shows how a single program is structured to reside in your
computer’s main memory. Unless it is large enough to occupy all of the storage locations
in the MAIN MEMORY, which is quite unlikely, other programs can co-exist there.
Each can be run independently of the others. As shown in Figure 5.2., if there is

54

Figure 5.2. Figure 5.3.

Storage of More Than One Program Organization of Local Labels

MAIN MEMORY MAIN MEMORY

Program No. 1 Program No. 1

Line Line

881 |GLOBAL LABEL B01 GLOBAL LABEL

ge2 1%]%

aas3 d03| LocaAL LABEL

ged Body of Bo 4

J——T Program =

NNN NNN] LocaL LABEL

NNN NNN

NNN NNN

LAST| END or GTO LAST| END or GTO

Program No. 2 Program No. 2

Line Line

881 |GLOBAL LABEL B01 GLOBAL LABEL

gaz B02 |ocaAL LABEL

@e3 Qa3

oB4 Body of 984] Local LABEL

A—T1 Program ST
NNN NNN

NNN NNN| _ocAL LABEL

NNN NNN

LAST| END or GTO LAST| END or GTO

more than | program in the MAIN MEMORY, each will have the same general
organization, no matter how many of them there are, and no matter how complex any
one of them is. Each has the same 3 elements: a distinguishing GLOBAL LABEL, a
body of instructions, and an END or a GTO statement.

You will use 2 types of labels in writing programs for your HP-41 computer.
One of them is the GLOBAL LABEL. It gives the program a unique title and distin-
guishes it from all other programs, not only from those stored in the computer, but
also from all the others you will eventually have in your library of magnetic cards, cas-
settes and sets of bar-codes. No two different computer programs can have the same
GLOBAL LABEL. Each GLOBAL LABEL serves as a definable entry point for your
program. It tells the computer where to start the sequence of instructions for a spec-
ific calculation.

55

A second type of label, the LOCAL LABEL, also indicates a starting place for
calculations, but operates within the body of the program, not at its very beginning, as
does the GLOBAL LABEL. Figure 5.3. shows 2 programs in the MAIN MEMORY,
each of which has 1 GLOBAL LABEL, but a different number of LOCAL LABELS.
Some programs you will write will have no LOCAL LABELS at all, whereas others will
have many of them. All programs, though, will have 1 (but only 1) GLOBAL LABEL.

Figure 5.4

Label Rules

[. A GLOBAL LABEL:

1. Can be up to any 7 ALPHA characters, except the
single letters AtoJ, oratoe.

2. Can be any 2 digit number.
3. Cannot include commas, periods or colons.

Examples:

Good: Bad:

LBL GRADES LBL GRADES.
LBL TEXT 1 LBL TEXT:2
LBL BOOK 3 LBL BOOK, 3
LBL 01 LBL 1
LBL 82 LBL 123
LBL 00 LBL O

II. ALOCAL LABEL:

1. Can be any ALPHA character(s)
2. Can be any 2 digit number

Examples:

LBL A, LBL AA, LBL AAA, LBL 00, LBL 99

Section 5.3. Label Rules

One of the first sets of rules encountered in writing a computer program are
those defining how GLOBAL LABELS and LOCAL LABELS must be stated. The rules
are not hard, but they are fast. Figure 5.4. summarizes required guidelines for constr-
ucting GLOBAL LABELS and LOCAL LABELS for your HP-41 programs.

It is wise, of course, to generate a GLOBAL LABEL for a program not only
within the simple rules summarized in Figure 5.4., but also one which clearly
indicates the calculation the program is designed to make. For example, the

56

GLOBAL LABEL for a program designed to balance a checkbook could reasonably be
selected to be CHECKS. Using the word “checks” for the GLOBAL LABEL provides
an easy reminder of the kinds of calculations this program will make. Using a GLOBAL
LABEL named HORSE for this program would meet all the rules for writing a
GLOBAL LABEL, and the program would run quite well under such a title, but it is
hardly a good reminder of what the program was designed to do. Remembering
what the program called CHECKS does, though, is quite simple. The GLOBAL
LABEL for the CHECKS program meetsall the requirements stipulated in Figure 5.4.
It is less than 8 alpha characters, it does not consist of the single letters A to Joratoe,
and it contains no punctuation symbols. Also, itis descriptive and easy to remember.

As shown in the examples of legitimate GLOBAL LABELS in Figure 5.4.,
spaces arc allowed between words and symbols, but you need to be careful in using
them. For example, the GLOBAL LABEL "TEXT 1” will work quite well, but if you
forget the space and try to address a program by using the GLOBAL LABEL "TEXT1”,
it won't run. Unless you have a different program in your computer named
"TEXT1”, you will see "NONEXISTENT” displayed in the view window.

Writing LOCAL LABELS meets fewer restrictions than writing GLOBAL
LABELS, as shown in Figure 5.4. They can consist of just a single alpha character, but
can have more than 1 if you'd like. Also, they can be any 2 digit number. As soon as
you start reviewing simple programs in the next few chapters, you'll soon see where
LOCAL LABELSare placed in a program and what they do. If you can remember how
they differ in location, construction and general use in a program, that’s more than
good enough for now.

Section 5.4. Program Construction

It might come as a surprise to discover that relatively few errors arise in writing a
computer program because of the misuse of RPN logic and incorrect manipulation of
the STACK REGISTERS. As already seen (Chapter 4), these procedures are simple
enough. They are seldom the source of errors. What then accounts for all of the time
which sometimes has to be spent in “de-bugging® a program? Most computer
programs don’t run accurately because of the design of their logic flow, not because of
the attempted execution of specific calculations. Designing the sequence of steps in
even uncomplicated programs Is often tricky, and overlooking a single step which is
simple in itself can be very costly. What then is a useful strategy for keeping it all
straight? You learn about one in the next section.

Section 5.4.1. Designing a Program

Figure 5.5. lists steps to follow for designing a computer program. The con-
struction of all program examples presented in this book follows these suggestions.
Even though it is tempting to omit a step or two in building a simple program, it’s a poor
decision. The little extra time invested to get into good program writing habits pays off
big in the long run when you're building complex programs with many instructions,
places for data inputs, branches and loops.

This section reviews the steps to follow in designing a program. The next
section will describe steps for keying your new program into the computer and testing
it. Don’t expect at this stage to be able to execute all of these suggested steps. You'll
learn how to do that when specific programs are presented in the next chapter. For
now, just familiarize yourself with what needs to be done, not how it is done.

57

Figure 5.5

Suggestions for Designing a Program

Identify the program’s goal or calculation.
Write all related equations.
Define all equation symbols with their units.
Draw a logic flow diagram.
Write the program steps in rough draft form.
Key the program steps into the computer.
Test the program for logic flow and accuracy

. Rewrite the program using subroutines.
Add additional features of TONES, alarms, etc.

. Write User Instructions.

. Document program in detail with sample problems.—
=

\
0
0
0
1
A
W
H
W
K
—

—
O

Figure 5.6

Sample Flow Chart Symbols

Symbol Designated Function Note

p
i
e

G
l

<3
]

START START (beginning of program)
or
STOP (end of program)

PROCESS (for example: Add”,
"Calculate X7, etc.)

MANUAL OPERATION (for example:
"ENTER N17”, ’ENTER DATA”, etc.)

DECISION (for example: "X=07",
"FS?067, etc.)

DISPLAY (for example: "X=25.67",
"GRADE = A minus”, etc.

OFF-PAGE CONNECTOR (for example:
"To page 4”,”From Sect. B”, etc.)

58

1 output only

1 input only

| input and
1 output

1 input and
1 output

| input and
1 of 2 outputs

1 input and
1 output

1 input or

1 output only

The first step in writing a successful computer program is to state precisely what
you want that program to do. This is done in 2 stages (Steps 1 and 2 in Figure 5.5.).
The first step is to write a simple sentence or two describing WHAT will be calculated
or accomplished by the program. The second step is to express HOW this will be done
by stating the equation(s) the program will use. All symbols need to be identified, and
each needs to have its appropriate units (if any) listed with it (Step 3 in Figure 5.5.)
The next step is to construct a logic flow diagram. It makes less difference that you
use the symbols defined in Figure 5.6., than it does you draw a programming map
you understand which indicates where you want to start the program, what you want
to have it do at each step, and where you want it to end or branch.

Armed with accurately stated equations and the details of a flow diagram,
writing the program itself is a straightforward step-by-step process. In contrast,
trying to write a program without the equation and flow diagram references is at

Figure 5.7.

Sample Program Records

Title: Page: of

Date: Version: SIZE:

Step Entry Note Step Note

01 50

02 51

03 52

04 53

05 54

08 S

Title: Page: of

Date: Version: SIZE:

Data Stored FLAG If Set If Clear

00

01

02

03

04

05

59

best chancy. It’s where most people get into trouble in program writing. They simply
loose track of what they need to do next and where they need to go as their program
becomes longer and more complicated. Their tangled logic and program trip-ups get
them into deeper and deeper trouble as they try to hack their way out of the confusion.
You can predict how they might describe their unsuccessful attempt to complete a
program without careful prior planning once it has mired down: I can’t write a program
using RPN, that language is too difficult”. That’s not the real reason at all.

It 1s unnecessary when writing the first draft of a program to be concerned either
with how efficiently the program will run, or whether it contains all the many features
you'd like it to have eventually in its final draft form. It is much more important that
you have a working record of each of the steps in the program, and know where you
have stored numbers, alpha statements and interim calculations. There are many
different ways to document this information. With a little experience, you’ll want to
design your own programming record sheets, but to get started, try using the format
similar to the ones shown in Figure 5.7. You'll see how useful these are in the next
couple of chapters.

As another suggestion, have on hand many blank copies of the program record
sheets so that subsequent versions of the program can be listed on new pages, not by
erasing entries from earlier drafts. The advantage is that the earlier drafts provide a
valuable set of notes and a record of how your program evolved.

If you find the next section confusing because it presents too much detail too
soon, don’t bother to struggle through all of it now. Just look at Figure 5.8., read the
last paragraph in this chapter, then go on to Chapter 6. You will be referred to Figure
5.8. several times later. You will be reminded to come back to read Section 5.4.2.
carefully after you've gained some practical experience in writing simple computer
programs.

Figure 5.8

Suggestions for Keying-in
A Program

1 Turn on HP-41 computer and key GTO .. to initiate PACKING function.
2. Determine if there is enough room in the MAIN MEMORY to receive the

new program (Hint: either press PRGM to see REG nn, or note number
displayed at end of a CATALOG 1 review). If there is not enough room:

2.1. XEQ SIZE” nnn to redefine memory space.
2.2. Clear programs from MAIN MEMORY which are no longer needed

HINT: use XEQ "CLP" (GLOBAL LABEL), or
2.3. If HP-41C is being used, add Memory Modules.

3. Press PRGM to place computer in program edit mode and key-in
GLOBAL LABEL.

4. Key-in sequential program steps.
5. Press PRGM to return computer to keyboard mode
6. Key GTO .. to initiate PACKING function.
7. Use CATALOG 1 to check for program’s GLOBAL LABEL
8. Test program for logic and accuracy.

60

Section 5.4.2. Keying and Testing a Program

Once the program written in rough draft form (Step 5 in Figure 5.5.), it’s time
to key it into the computer and give it a try. The suggestions presented in Figure 5.8.
will help avoid errors at this critical next step. Before starting to enter program steps,
it is necessary to verify there is enough room in the MAIN MEMORY of the computer
for the number of program steps. It’s easy to do. First make sure that whatever
programs are already in the computer are stored as efficiently as possible. All the work
will be done for you using one of the built-in programs ("PACK") in your machine. The
easiest way to execute this program is first to press the SHIFT key, next press GTO,
then press the decimal key twice. You'll see the word "PACKING? displayed in the
view window, and then a quick display of the remaining number of registers you have
in the MAIN MEMORY.

If you miss seeing the number of available registers displayed when you
performed the PACKING instruction, there's another way to get it. Press the PRGM
toggle switch to place the computer in a program writing mode, and note the reg-
ister number which is displayed. If there is inadequate MAIN MEMORY space for
your new program, follow the instructions in step 2 of Figure 5.8. to generate
more memory locations.

Once you press the PRGM key, you are then ready (Step 3 in Figure 5.8.) to
key-in first the GLOBAL LABEL for your program, then key-in each of the individual
program steps in order. After the last one has been keyed, press the PRGM toggle,
then execute the PACK program again CGTO..”) so your new program steps are
stored efficiently. You are now ready to see if your program runs as you intend.

There is no need to be concerned in the first check of program construction
whether calculations dre made accurately or not. First see whether the program flows

logically from one point to another as intended in the program’s design. The logic
flow diagram (Step 4 in Figure 5.5.) is indispensable at this point. After any
programs errors have been corrected which inhibit logic flow, it’s time to check if calc-
ulations are being made with numerical accuracy.

More than half the battle is over once it’s been determined that the program runs
correctly through the logical sequences designed in its flow diagram. Checking for
numerical accuracy is quite simple. First, solve a variety of sample problems by
hand using the equations you wrote for the program (Step 2 in Figure 5.5.). You will
need to solve at least one sample problem for each type of calculation you wish to make,
and double check that calculations are made correctly no matter how the flow
diagram branches. If you encounter calculation errors when you run your sample
problems on your program, they are most likely due to your misinterpreting how the
STACK REGISTERS are loaded with numbers, how mathematical procedures rearrange
the contents of these registers, and how they are raised and lowered with successive
calculations. A review of Section 4.2. and 4.3. will undoubtedly help.

When convinced the program follows the logic flow you intended and it
performs the mathematical calculations correctly, it’s time to put the finishing
touches on your creation. Now is the time to review the lines of the program to ident-
ify redundant steps which can be placed in subroutines (definitions, explanations and
examples will come in the next chapter) and to add alerting tones and cleverly constr-
ucted alpha prompts for data input and display of answers. There will also be lots of
examples for this too as you read ahead.

You are now at a point when you are most familiar with how your program Is init-
ialized, how data are entered into it, how it runs, and how answers are displayed
in sequence. Such detail might not come to mind quite so readily later after you have
written other programs and done a lot of other things. Step 10 in Figure 5.5. suggests

61

now is the best time to write step-by-step “user instructions” for your program. These
will not only help you when you come to use your program again, but also they will be
invaluable for others who wish to use your program. They will not have had, of course,
the benefits of familiarization with your program that you have as its author.

The last step is for you to document your new program (Step 11 in Figure 5.5.)
and review in detail what each step does. No doubt you will be able to use your
program without this last piece of documentation, but your memory will soon fade
about the details of how you performed different calculations. It will be very
difficult to decipher specifics of program flow after you have written your program
to include multiple subroutines (Step 8 in Figure 5.5.). Now while your program’s
construction is still fresh in your mind is the easiest and best time to bring together
all of the careful documentation (equations, symbol definitions and flow diagrams)
you've developed for writing your program. You'll find them to be valuable records.

As you “grow into” your computer and write more and more programs for it, it’s
only a matter of time before you are faced with the decision to abandon some of the ones
you already have in your machine in.order. to. make room in the MAIN MEMORY for
new ones. [t's unlikely you’ll want to take the time and trouble to key-in the older
ones that had to be erased when you need them again, and you’ll have to consider how
to expand your computer to interface it with program and data storage devices of one
kind or another.

If you decide it’s time to start saving programs you have written, the least
expensive and simplest device to obtain is the HP-82104 card reader. With the inexpen-
sive magnetic cards it uses, you have virtually unlimited ability not only to store
programs of your own by “writing” them on the cards, but also to “read” magnetic
cards written by others for programs you want to use. The card reader plugs into the
top of the computer, through one of its accessory ports, and is light weight and small
enough to remain connected to it while the machine is in general use. The protective
vinyl case you received with your computer is made to fit even with the card reader in
place. Both encoding a program onto magnetic cards and reading one from them is

Figure 5.9.

“Writing” a Magnetic Card

1. Enter program to be recorded into the HP-41 computer using
keystrokes, an optical wand, pre-recorded cards, a cassette
drive or other device.

. Turn computer OFF and connect (HP-82104) card reader into
port 4.

. Turn computer ON and key GTO. . to initiate the PACKING
function.

. Key GTO.’GLOBAL LABEL”, then press PRGM.

. Insert blank magnetic card into right side of card reader to
*write” side 1. “Write” side 2 in a similar manner.

. Repeat Step 5 until all cards have been processed, then turn
computer OFF.

A
N
n
p

W
w
W

Figure 5.10.

“Reading” a Magnetic Card

P
p

. Be sure the HP-41 computer is OFF, then connect card reader (HP-
82104) to port 4 and turn computer ON.

Key GTO. .to initiate Packing function.
Be sure the computer is in a keyboard(not PRGM) mode.
Insert first magnetic card to be read into right side of the card reader to
read” side 1. “Read” side 2 in a similar manner.

Repeat Step 4 until all cards have been processed. After last card, re-
peat Step 2.

Turn computer OFF before removing card reader.A
N

w
n

H
S
W
w
W

simple, if the proper steps are followed. Suggestions for these procedures are offered in
Figures 5.9. and 5.10.

More complex and sophisticated data and program storage devices, such as
HP’s digital cassette drive (HP-82161), or optical wand (HP-82153) for reading bar
codes are also options, as is a portable 3 1/2 inch disc drive to be used with HP’s Inter-
face loop. These and many other valuable peripherals, such as printers, a video
interface, as well as an ever-growing library of programs will help you obtain the HP-41
computer system you need for your own special interests and applications.

There are many commercial sources for equipment, supplies and instruction
manuals for your computer, the most obvious of which is your regional Hewlett-Packard
distributor. Another one, however, which offers not only accessories for the HP-41
made by Hewlett-Packard, but also those manufactured by other companies is EduCALC
(27953 Cabot Road, Laguna Niguel, CA 92677). Their frequently updated catalog is a
reliable source of what’s new for the HP-41 series computers.

This chapter has focused on what needs to be done in the development of a
computer program. You are now prepared to see how each step is actually accom-
plished. You will write your first program after reading a few pages of introduction in
the next chapter.

63

Chapter 6

Elementary Programming Techniques

Beginning with this chapter, first a series of simple, but then progressively more
complicated programs will be presented to demonstrate basic programming tech-
niques. Each example will introduce one or more new ways in which program flow can
be controlled. These techniques will be used again in other exercises, and you’ll soon
come to see how to construct your own programs to accomplish complex solutions.
Now is the time, though, to begin introducing these techniques in their simplest
forms. The reader is encouraged to key in each exercise into the computer, try the
program to be sure it runs correctly, but then modify it to make it run in some way
that might better suit your needs.

Regardless of how complicated the logic flow is in any program, there will
always be a requirement to enter data from which calculations can be made, and to
format the output of solutions so they can be read and recorded. Data input into
programs developed for the HP-41 may come eventually from external monitoring
sources through digital multimeters, from magnetic cards and from cassettes as your
use of the computer becomes more sophisticated. It is likely, though, that for the
programs you will write at first, data will be entered directly from the keyboard.

In order to do this, you will need some signal from your computer to indicate
not only when it is appropriate to enter data, but also to designate what kind of data
is required. Once calculations are made in the body of the program, some other tech-
nique is necessary to display answers in a readable format. A simple scheme for
controlling data input and output is shown in the program outlined in Figure 6.1.
and discussed in the next section.

Section 6.1. SUM1

Following the suggestions offered in Figure 5.5. for designing a program,
the upper section of Figure 6.1. states explicitly what this first simple program is
expected to do. The appropriate equation is shown immediately below, even though it
1s a very simple one. No units are listed since the calculation deals with numbers
only, not those representing a particular physical measurement. The flow diagram
shows the sequence for data input, calculation and output, and indicates where the
program will be directed once it has made and displayed the results of a calculation in a
single pass through the program. The program code is listed on the right.

Since this is the first program to be presented, all instructions for keying it
into the computer will be given in detail. Programs presented later on will omit some
of this information, assuming it has become familiar. If later on you forget how to enter
one or more of these instructions from the keyboard, you may want to come back and
review one or more of these first exercises.

Before starting to key-in program lines for this exercise, it will be useful to
know how to recover from errors of either pressing a wrong key or entering a wrong
line. It is inevitable these mistakes will be made from time to time. They are only
minor annoyances, though, if one knows how to correct them without endangering the
remainder of the program which has been entered correctly. The erase key (the one
marked "4" helps you correct both errors of key entry and program line listing.

If you have mis-entered only a single symbol, pressing the erase key once elim-
nates just that symbol and moves the prompt one space to the left. If you press it

64

again, it erases the next symbol to the left, and moves the prompt once again to the
left. If you mis-entered an entire program line, pressing the erase key eliminates the
entire line and brings into the view window the program line immediately preceding it.
Pressing the erase key again eliminates the displayed line and takes another backward
step in the program. Key entry errors are easy to make, but fortunately they are easy to
correct.

Figure 6.1.

SUMI

Problem Statement:

This program is designed to add 2 numbers, N1 and N1 using the STACK

REGISTERS.

Equation:

SUM=N1 + N2
Where:

N1 = first number
N2 = second number

Flow Diagram: Program Listing:

(SuUM1) O01 LBL'SUMT®

02 "ENTER NT”

| 03 PROMPT

N1 04 "ENTER N2°

05 PROMPT

06 «+

O07 "Ni1+N2="

\ / 08 ARCL X

N2 09 AVIEW

10 STOP

11 GTO "SUMT”

12 END

ADD

SUM
65

Section 6.1.1. Keying the Program

Now is a good time to go back and familiarize yourself with Figure 5.8., even if
you haven’t read Section 5.4.2. in detail yet. You will be reminded to go back and
look at parts of Figure 5.8. from time-to-time in the next sections and chapters.

The exercise for SUMI shown in Figure 6.1. starts with a computer which is
completely free of data, instructions and entered programs. To attain this status, toggle
the computer OFF, press the erase key and hold it down. Now turn on the
computer ON and release the erase key. When executed correctly, the view window
displays the phrase "MEMORY LOST” to indicate all REGISTER memory locations have
been emptied, as well as entries in the MAIN MEMORY which may have previously
contained programmed instructions. You have cleared all RAM.

Because the computer has just been cleared of all stored information, you can
start at step 3 of the suggestions listed in Figure 5.8. for keying in the SUMI
program. After pressing the PRGM toggle key (and seeing "PRGM” appear in the
view window as well as seeing also a statement of the available MAIN MEMORY
registers), the GLOBAL LABEL is ready to be written in at the top of the program as
its first line. The GLOBAL LABEL "SUMI” is selected for this program since it is the
first of a series of programs to demonstrate how numbers can be added by using an HP-
41 program. It is written as the beginning step in the program by first pressing the
SHIFT key, and then pressing the LBL key (this is the shifted function of the key
marked "STQO”). The statement "01 LBL _ _” appears in the view window.

Since the GLOBAL LABEL of the SUMI program is an alpha statement, next
press the ALPHA toggle, then spell "SUMI1” using the appropriate keys marked in
blue (the ALPHA definition of the key) and finally press ALPHA to complete the
entry of the alpha statement "SUMI1”. You get the ”1” for SUMI by using the SHIFTed
function of the "Z” key while the computer is an ALPHA mode (press SHIFT then the
’1” key). If getting the “1” was a problem, review the definitions in Figure 2.4. and
look at the diagram on the back of your computer. You will need to combine numbers
with alpha statements in many of the exercises to come, so you might as well be sure
how to do it right now.

You should now see "01 LBL SUMI” displayed in the view window. The next
line of the program is the alpha prompt which requests the entry of the first piece of
data (N1). It is written into the program by first pressing the ALPHA key, then
spelling, ENTER N1”, and finally pressing the ALPHA key. The word "ENTER”
must be spelled by using the ALPHA definitions of the keys, not by attempting to use
the rectangular key marked "ENTER #”. The third program line is necessary to hold
the alpha statement "ENTER NI” in the view window until you have actually
entered a number using R/S when the program is run. This next line (program line 03)
1s written by first pressing the XEQ key (you are going to execute a built-in program of
CATALOG 3 called "PROMPT" then pressing the ALPHA key, next spelling
"PROMPT", and finally pressing the ALPHA key. You will see in the view window
"03 PROMPT” if you did all of that right. If you didn’t, use the erase key to get back to
your last correct key or program line entry, and try it again.

The PROMPT function may appear many times in a program. [tis required to
hold a displayed word or phrase until requested data have been entered. When you find
it tiresome to have to key-in each letter of the word PROMPT, consider activating
this function by a single step after assigning it to a USER defined key. Section 2.3.
describes how to do this and Figure 2.6. outlines the steps of the operation.

You are now ready to construct the 4th line of the program, the one which will
request the second data entry. You do it by first pressing the ALPHA key, then
spelling ’ENTER N2”, and finally pressing the ALPHA key. Write the 5th line
of the program the same way you did the 3rd line, then for the 6th line, simply press

66

the +” key. You have completed the instructions to enter data and to perform the
required calculation on them. You are now ready to construct how you want the
answer to be displayed.

In order to write line 07 of the program, first press ALPHA, then spell
"N1+N2«" (hint: you get the ”+” in this statement by first pressing SHIFT then the
’+” key), but don’t press the ALPHA toggle again just yet, even though that was the
next step in writing lines 02 and 04 which appear similar to line 07. For line 07 to be
able to display the numerical solution to the calculation made at step 6, not only does
this number have to recalled from the X STACK REGISTER, but it also has to be
recalled as an ALPHA STATEMENT in order to appear with the phrase "N1+N2a",

It’s simple to do. Next press SHIFT then the RCL key (ARCL is the SHIFTed
function of the RCL key when the computer is in an ALPHA mode), then press the
decimal key (in order to indicate you are going to recall data from a STACK REG-
ISTER), and finally press the "X” key to indicate the letter ”X”. You'll see "08 ARCL
X” in the view window if you did all of that correctly. In order to write the next line of
the program which will allow you to see the display constructed in steps 7 and 8 of the
program when it is run, press SHIFT, then the VIEW key which is the SHIFTed
function of the R/S key. Now press the ALPHA key. You will see "09 AVIEW?”.

Writing step 10 is simple. Just press the R/S key and youll see 10 STOP” in
the view window. The last program line to write requires first pressing the SHIFT key,
then the GTO key, then ALPHA, next spell out the GLOBAL LABEL for this
program (SUM), and finally press ALPHA for the last time. The program is now
complete. Press PRGM to get the computer out of a program writing mode.

Following the suggestions listed in Figure 5.8. for keying in a program into
your computer, you are now ready (Step 6 of Figure 5.8.) to execute the PACKING
instruction. You do this by first pressing the SHIFT key, then GTO, then pressing the
decimal key twice. You should see PACKING” displayed in the view window for a
couple of seconds before the contents of the X STACK REGISTER is once again disp-
layed. It will display zeros, of course, since all registers and memory locations were
cleared at the beginning of this exercise, as indicated when you saw the MEMORY LOST
statement in the view window.

Section 6.1.2. Testing the Program

You can verify that the program SUMI is in your computer by reviewing the
GLOBAL LABELs of programs in the MAIN MEMORY. Press the SHIFT key,
then CATALOG (which is the SHIFTed function of the ENTER key), then the key
numbered 1”. You will see rapidly displayed the GLOBAL LABEL SUMI, then
an indication of the remaining unfilled registers in the MAIN MEMORY, and finally
the contents of the X STACK REGISTER again. Had there been other programs in
the MAIN MEMORY, you would have seen their GLOBAL LABELs displayed in
sequence.

If you had difficulty reading this information because it was displayed so quickly
in the CATALOG 1 review, you have several options, as described in Section 3.4..
One is to stop the display sequence at any point by pressing the R/S key. Pressing it a
second time re-establishes the CATALOG review. Rather than pressing R/S a second
time, pressing the SST ("single step”) function key advances the display a step at a time
under your control after SHIFT CATALOG 1 has been keyed.

It is now time to see if the SUMI program runs correctly. According to step 7
in Figure 5.5., it is recommended you first test the program SUMI for logic flow.
Easy to do. First press the XEQ key, then ALPHA, next spell out the GLOBAL
LABEL of the program ("SUM1”), then press ALPHA. You should see the first of the

67

data entry prompts "ENTER N17. Press any numbered key, it doesn’t matter which
one since we're checking only for correct program flow at this stage, then enter that
number by pressing R/S. After the second data entry prompt ENTER N27 is
displayed, enter a second number and press R/S again. If you see "N1+N2= (sum of
the 2 numbers you entered)”, everything is fine.

Next press the R/S key to check the last step of program flow, that is, to see if
the program goes back to its own GLOBAL LABEL. If you see ENTER NI”, you
know the flow of your program corresponds to that shown in Figure 6.1. You don’t see
the GLOBAL LABEL displayed, of course, since that is the address from which the
program is initiated, not a displayed phrase. For the program outlined in Figure 6.1.,
the alpha prompt "ENTER N1” is the first message seen once the SUM! GLOBAL
LABEL has been addressed.

As a final check, see if the program makes calculations accurately, as
suggested in Figure 5.5. Now that ENTER NI1” is in the view window, enter a
number (using R/S) and remember what it was. Enter another number you can
remember in response to "ENTER N2”, and check if the answer displayed is
correct. If so, you've written your first successful program for the HP-41 computer!
This program will now remain in the computer's MAIN MEMORY indefinitely,
even when the machine has been turned off. Your using the SUMI program again,
or any other stored program, is a simple matter of first turning the computer on, then
performing the keystrokes XEQ ALPHA (name of program's GLOBAL LABEL)
ALPHA.

Section 6.1.3. Program Analysis and Review

Before abandoning the simple program SUMI outlined in Figure 6.1., it will be
useful to examine what happens to the contents of the STACK REGISTERS when this
program runs. It is in the STACK REGISTERS, after all, where calculations are made.
The program is just a mechanism for controlling how data went into it and how they
were manipulated there. The program "SUMI1” didn't do anything fundamentally
different from what you did with individual keyboard entries when you went through
the exercise shown in Figure 4.2. for adding 2 numbers. The program you have just
written made very quickly and automatically the steps you had to do manually in the
earlier exercise. That’s not a small thing, but it is all the program did nonetheless.

In running the SUMI1 program, when you responded to the data prompt "ENTER
N1” by keying a number and then pressing R/S, you placed N1 in the X STACK REG-
ISTER. When you responded to the alpha prompt ENTER N2” and pressed R/S, you
entered N2 into the X STACK REGISTER and "raised the stack” to place N1 in the Y
STACK REGISTER. The program then automatically combined the contents of the X
and Y STACK REGISTERs arithmetically in the way you designated at step 6 in the
program (+7), "dropped the stack” and placed the sum of N1+N2 in the X STACK REG-
ISTER. This is exactly what you did manually in working through the example in Figure
4.2. Your computer program SUM! then combined the contents of the ALPHA REG-
ISTER (which at step 7 was "N1+N2=") with the contents of the X STACK REGISTER
(which was converted to an alpha statement by the instruction listed in program line
08), and displayed the entire alpha string in the view window. You were really seeing
the contents of the ALPHA REGISTER, of course. When you pressed R/S, the

program followed your instruction to seek the GLOBAL LABEL "SUMI” to start the
program over again.

Just the same as when you sought the GLOBAL LABEL "SUM 1” in the very
beginning of testing the program by the keystrokes XEQ ALPHA SUMI ALPHA,
the program was initialized and stopped its execution when it got to the first data

68

prompt. It was the program instruction at line 03 "PROMPT”) which held the program
flow at this step until you entered data and pressed R/S to cause the program to run
again. Something quite similar occurred also at Step S.

There is one last thing to do with the SUM] program while it’s handy and you
are familiar with it. You will benefit greatly in future program development and use
by knowing how to enter programs at points other than their GLOBAL LABEL, and
knowing how to move around in them for editing and correcting errors. You already
know how to get into a program through its GLOBAL LABEL (key "XEQ ALPHA
(spell the GLOBAL LABEL) ALPHA). But, you can display any line in a program you
want to just from the keyboard, as you’ll see next. Also, you can go automatically
to any program LOCAL LABEL directly from the keyboard, which you'll learn how to
do when we get to that section later.

Using SUMI1 for experimentation, go to line 09 (for example) directly from the
keyboard. First turn the computer OFF, then ON again to be sure you're on the key-
board, not in a PRGM mode. Just pressing PRGM accomplishes the same thing, if
you are, in fact, in the PRGM mode. First press SHIFT, then GTO, then press the
decimal key once, and in response to the prompt "GTO. , key 009”. The view
window will go back to display the earlier contents of the X' STACK REGISTER,
whatever that was. How do you know your have successfully located program line
09? Press PRGM to see that your keyboard instructions have indeed taken you to the
desired program line.

While the program line 09 ("09 AVIEW?) is being displayed is a good time to show
how to move around in the program while the computer is in a PRGM mode. Press
the SST key (which is an abbreviation for “single step”) once, and note the program
steps ahead one line to display now “10 STOP”. Press the SST key once again to see
”11 GTO SUMI1”, the last line you wrote for the program. Any bets as to what you'll see
if you press SST again? Press SST to see a line you didn’t key in directly from the
keyboard. You generated “12 END” when you performed the PACKING instruction
with "GTO. .” earlier. The END program line protects your SUM! program fromeither
being inadvertently overwritten, or erased when you enter other programs into the
MAIN MEMORY.

Press SST once again. You see the first line of the program (that is, its GLOBAL
LABEL) because you have reviewed the program SUMI1 as though it were written on a
complete loop of paper. Going from the last step in the program ("12 END”) with SST
took you to the next step in the program which appears on the loop as the first line (the
GLOBAL LABEL) of the program. You would have returned to the first line in this
program after having pressed SST at step 12, even if there had been other programs
(with different GLOBAL LABELS, of course) in the MAIN MEMORY. Each
program could have been reviewed autonomously in the same fashion once you were
reviewing or executing lines in it. Section 6.5. presents a model to help you visual-
ize to processes of locating GLOBAL LABELS and reviewing program lines.

While you are still looking at the program line which contains the statement
of the GLOBAL LABEL ("SUM17), Press SST twice more to advance the view window
to display the third line of the program ("03 PROMPT”). Now for something different.
Press SHIFT, then press the SST key which has now, of course, been converted to
execute its SHIFTed function BST. Its not hard to remember that BST stands for "back
step” since you now see displayed the immediately preceding program line, line 02
("02 ENTER N17). Pressing SHIFT again, then BST to take you one more step back, so
you now see the first line of the program again. You are able to review any program in
the MAIN MEMORY line-by-line with either forward (SST) or backward (BST)
steps by first entering into the program from the keyboard using XEQ and the
appropriate GLOBAL LABEL, then pressing PRGM. You may want to try these
maneuvers later when you have more than | program in the MAIN MEMORY and

69

after you’ve read Section 6.6.
The program SUMI1 has been useful for introducing some of the basic techniques

for data entry, storage in the STACK REGISTERS, and displaying a final answer,
but it’s outlived its usefulness. It will now be erased, and another similar program
will be written, but one with different features. You know from the instructions
presented at the beginning of this exercise how to clear your computer of programs by
generating the MEMORY LOST statement. Clear SUMI from the MAIN MEMORY
using a different technique, though, one which is used just to clear a single program by
addressing its GLOBAL LABEL. First press PRGM to get back to the keyboard if the
computer is in the program writing mode, PRGM. Press XEQ, then ALPHA, spell
CLP” (to indicate you are going to “clear a program”), then press ALPHA. You
should see "CLP _ ” in the view window which is prompting you to designate the program
you want to clear. Since the program you want to clear has an alpha statement ("SUM1”)
as its GLOBAL LABEL, you need to respond to the prompt with this alpha statement.
To do this, press ALPHA, spell "SUMI1”, then press ALPHA. After a short pause,
you will see PACKING, and after a second or so more, once again see the contents of
the X STACK REGISTER. The program SUM! no longer exists.

You can verify your having eliminated successfully the SUMI1 program by re-
viewing the GLOBAL LABELs of programs in the MAIN MEMORY using the CAT-
ALOG 1 review technique. Since SUMI was the only program you have written so far,
and have now eliminated it, youll see no GLOBAL LABELS displayed in this
review. Now, on to writing programs a little more complicated and interesting.

Section 6.2. SUM2 and SUMS3

Figure 6.2. outlines the program SUM2 which is similar to the SUMI program
in that it adds 2 numbers using the STACK REGISTERS. It is different by having
features which control for digit display, and tones to signal data input and display. It
1s also different from SUMI1 in pausing to display an answer, rather than having the
program stop at that point. The purpose of presenting SUM?2 is to show how to add
these features to programs of your own.

The GLOBAL LABEL SUM2 is keyed into the computer in a similar way to
that of the SUMI program. First-turn the computer on, then press SHIFT GTO. and
when the display is stable after briefly showing PACKING, press the PRGM toggle to
set the machine to receive the program lines you are about to write. The keystrokes
SHIFT LBL ALPHA SUM2 ALPHA write the GLOBAL LABEL as line Ol of the
program, and "01 LBL SUM?2” will be displayed. SHIFT FIX 2 defines line 02 which
controls the decimal display in the view window to show numbers with 2 digits to the
right of the decimal. Line 03 is written by SHIFT BEEP.

Lines 04, 05, 07 to 09, 12 to 14 and 16 are written in the same way as were cor-
responding instructions in SUMI1. Lines 06, 10 and 11 are written by XEQ ALPHA
spell TONE, then ALPHA, and then responding to the ALPHA prompt "TONE _~
by pressing the numbered key from 0 to 9 to indicate which tone you want to hear at
each of these points in the program. The instruction at line 15 will cause the dis-
played answer to remain in the view window for only a moment or two before program
flow is directed to the program’s GLOBAL LABEL to start the next calculation. Line 15
1s written by XEQ ALPHA spell PSE then ALPHA. When you get tired of having to
spell TONE, remember you can assign a USER function for this operation, as you
may have done earlier for the PROMPT function.

Although the SUM2 program does nothing computationally different from
SUMI, it is a more interesting program because of its added features. Once you have
the lines for SUM2 keyed into your computer, press PRGM to return to the keyboard

70

Figure 6.2.

SUM?2

Problem Statement:

This program is designed to add 2 numbers using display and signal

features.

Equation:

(Same as for Figure 6.1.(Suml))

Flow Diagram: Program Listing:

SuUM2 01 LBL "SUM2"

02 FIX 2

03 BEEP

04 "N17

Sea N2 05 PROMPT

- 06 TONE 5
07 "N27

08 PROMPT

ADD 09 +

BEEP 10 TONE 9

11 TONE 9

[12 "N1+N2=
13 ARCL X

NT TONE 14 AVIEW
15 PSE

\ 1 16 GTO "SUM2"

17 END

TONE SUM
mode, then press SHIFT GTO.. to secure SUM2 into your machine. Review
CATALOG 1 to be sure the SUM2 GLOBAL LABEL is listed in the MAIN
MEMORY. Next, run the SUM2 program (XEQ ALPHA SUM2 ALPHA) to see
and hear its features, and test it for logic flow and calculation accuracy.

Execution of the SUMI and SUM2 programs manipulated the STACK REG-
ISTERS in an identical way to how you used them with key entries directly at the
keyboard for the exercise in Figure 4.2. You might easily imagine how similar
programs could be written to perform other arithmetic and mathematical operations,
even those involving more than 2 numbers (Figures 4.3. and 4.4.). It is suggested you
take a few minutes to write those programs now using the programming features of the
SUM?2 program. The benefit will be in gained confidence and experience for keying
program lines, even though the programs themselves are simple. These new
programs will be easy to check for logic flow and calculation accuracy, as suggested
in Figure 5.5.

71

Figure 6.3.

SUM3

Problem Statement:

This program is designed to add 4 numbers, N1 to N4, using the
PRIMARY STORAGE REGISTERS, then display their sum.

Equation:

SUM = N1 + N2 + N3 + N4

where:

N1 to N4 = numbers 1to 4

Flow Diagram: Program Listing:

(3SuUM3) 01 LBL "SUM3’
02 FIX 2
03 BEEP

i 04 "N17

05 PROMPT

NT RCL 21 06 STO Of
07 TONE 5

08 "N27"

09 PROMPT

STO 1 ADD 10 STO 02

11 TONE 5

12 "N3?°

13 PROMPT

\ N2 RCL 82 14 STO 03
_ 15 TONE 5

16 "N47?°

17 PROMPT

STO 82 ADD 18 RCL 01

19 +

20 RCL 02

21 +

22 RCL 03
N3 RCL 23 53 .

24 TONE 9

| 25 TONE 9
26 "SUM="

STO 83 ADD 27 ARCL X

28 AVIEW
29 PSE

1 30 GTO "SUM3”
\ / 31 END

N4 SUM

If it is clear how the SUMI1 and SUM2 programs deal with 2 numbers arithmetic-
ally, and if you understand how the STACK REGISTERS are manipulated in a
computational sequence, then it should be staightforward to write a program to
complete automatically a calculation as involved as that shown in Figures 4.5. and
4.6. One design for such a program would be to follow exactly the sequence of
operations listed in Figure 4.6. to raise and lower data in STACK REGISTERS as each
new piece of information is keyed. Another way to perform this calculation would
be to take advantage of the opportunities your computer offers for storing entered
data in the PRIMARY STORAGE REGISTERS before making a calculation, as
you had introduced in Section 3.3. The program SUM3 shown in Figure 6.3. illust-
rates this technique for the simple process of adding 4 numbers.

None of the program logic in SUM3 is new. Steps are keyed into the computer
in the same way as you have in earlier exercises. SUM3, though, handles data in a
different way than seen before. Rather than place sequentially entered data into the
STACK REGISTERS, each data entry is stored in a correspondingly numbered
PRIMARY STORAGE REGISTER. NI was stored in REG 01, N2 in REG 02, etc.
Each data entry could have been stored just as well in any of the 99 PRIMARY
STORAGE REGISTERs, or (using the INDIRECT ADDRESSING technique desc-
ribed in Chapter 9) in any of the EXTENDED DATA STORAGE REGISTERS.

After all data have been entered with N4 now in the X STACK REGISTER at
program line 17, previously entered data are recalled in their numerical order from
storage and added (lines 18 to 23) to the growing sum in the X STACK REGISTER. By
line 24, all data are added, and their sum is brought to display (lines 26 to 28), held
there momentarily (line 29), then program flow is directed to the program’s GLOBAL
LABEL to start data entry, storage and addition of the 4 numbers in the next series.
The BEEP TONESs (line 03) provide an audible reminder that the program is starting
over again. When you've keyed all of the steps for SUM3, press PRGM, then GTO..
to secure this new program in the MAIN MEMORY. Next, try the program for logic
flow and accuracy using a sample problem.

The programs SUMI1 and SUM2 handle well the process of adding only 2
numbers, and SUM3 shows how 4 data entries can be added. It’s obvious how the
SUM3 program could be modified to add more than 4 numbers. Simply increasing the
number of data prompts and program lines to store the new numbers in the series are
basically all that is required. The type of program construction shown in SUM3,
however, obligates the user to know in advance how many numbers there will be in the
series for addition. SUM3, for example, can handle only 4 data entries. The program
SUM4 described in Figure 6.4. shows how an indefinite number of data entries can be
added using the STO+ nn function introduced in Section 3.1.6.

Section 6.3. SUM4

The last program in this sequence (SUM4) is constructed, as shown in Figure
6.4., to add an indefinite number of data entries, rather than add just 2 (SUMI and
SUM2) or 4 (SUMS3) numbers, as have the other examples presented so far. SUM4 also
introduces 2 new programming concepts: the use of the conditional statement "X=0?" and
the use of LOCAL LABELS. The flow diagram for SUM4 omits elements showing where
TONES and other minor non-operational steps are in the program. Future program flow
diagrams will not show these steps either.

The equation for SUM4 is simple enough. It indicates that the sum will be calc-
ulated for numbers in a series with an unspecified length. When you run this
program, you will enter numbers which will be added in a sequence until you designate
with a code number you have finished the data entry series. Zero is used for that code
number in this example.

73

Figure 6.4.

SUM4

Problem Statement:

This program is designed to add a series of numbers of an unspecified
length, then display their sum.

Equation:

SUM =N1+N2... +Nn

where:

N1, N2....Nn = sequentially entered numbers

Flow Diagram: Program Listing:

01 LBL "SUM4’
(sua) 02 FIX 2

03 BEEP

04 CLRG
05 LBL 00

CLRG 06 TONE 5
07 "ENTER N"
08 PROMPT
09 X=07?
10 GTO 01

11 STO+ 00

12 GTO 00

13 LBL O1
14 RCL OO

| STO+22 15 TONE 9
16 TONE 9

17 "SUM="

18 ARCL X

RCL 28 19 AVIEW

20 PSE

21 GTO "Sum4’
~~ 22 END

SUM

The flow diagram in Figure 6.4. shows only one of many ways to construct a
program for the HP-41 to add numbers in an indefinite series. It indicates that once
the program SUM4 is started, the prompt statement for the data entry CENTER N”)
is the first thing to be displayed. Once the user has keyed a number, then pressed R/S,
the program first determines if this entered number 1s zero by using the cond-
itional test "X=0?" at line 09. As shown in the flow diagram, if it is not zero, line 10 is

74

skipped and the number is placed in REG 00 additively using STO + 00 (line 11). If an
entered number is a zero, the instruction at line 10 is executed and (at line 14) the
contents of REG 00 is recalled and displayed as the sum of all the numbers previously
entered. Program execution pauses momentarily, then SUM4 is started over again,
as announced by the BEEP instruction at line 03.

The instruction at step 4 clears all of the computer’s registers when the
program is started. Certainly, taking the program from line 12 back to its GLOBAL
LABEL for the entry of the 2nd, 3rd and subsequent numbers in the sequence to
be added would not be a good idea, because the PRIMARY STORAGE REGISTER 00
would be cleared each time the program completes this loop. Generating a LOCAL
LABEL at step 5 (LBL 00), though, provides an internal address in the program to
complete the loop for the addition of subsequent data entries. Lines 06 to 08 are
familiar from the previous programs you have written.

The conditional statement at line 09 is easily written. Press SHIFT then the
”I” key to get the 7"X=0?" expression, which is the SHIFTed function of that key.
What this statement does in the program deserves some explanation. The expression
"X=0?" is a conditional statement, as are "X>Y?”, "XY?" and "X=Y?” which appear
as other SHIFTed functions on the keyboard. There are other conditional statements
you can use too, but you'll see these later. Conditional statements simply ask a
question, and then direct flow in the program depending on the answer to that question.
It is important to remember that all conditional statements operate in the same way.
They will “DO” the immediate next line of the program if the answer to the state-
ment 1s “TRUE”, but will skip the immediate next line in the program if the answer is
"NOT TRUE”.

At line 09 of the SUM4 program, the conditional statement asks “is the
contents of the X STACK REGISTER equal to zero?” If it is, the program’s flow is
directed (by GTO 01 at step 10) to the LOCAL LABEL 01 (at step 13) which begins
the display of the contents of the PRIMARY STORAGE REGISTER 00. There would
be a zero in the X STACK REGISTER, of course, had you entered one from the key-
board in response to the data prompt at step 7. If you had entered any positive or neg-
ative number in response to "ENTER N”, then the instruction in step 10 of the
program (GTO 01) would be skipped, and the line after it (ST + 00) would be
executed (adding your keyed number to the sum in REG 00). The next program line
(GTO 00) would direct program flow back to the LOCAL LABEL 00 which would sound
the TONE 5, then ask for the next number in the sequence.

There are several important concepts to gain from reviewing the SUM4 program.
It shows a simple case in which a conditional statement is used to direct program
flow according to a characteristic of entered data. It shows also how LOCAL LABELs
are placed in a program to provide entry points for program flow. The organization of
SUM4 is similar to the general program structure shown in Figure 5.3. which illust-
rates where LOCAL LABELS are placed in programs. SUM4 shows what LOCAL
LABELs do in a program. It is hoped that even with such a simple example as SUM4,
many ideas will soon come to mind about how the combined effects of conditional
statements and LOCAL LABELs can be used to advantage in programs of your own
interest.

After you have keyed all of the steps for SUM4 into your computer, check the
program’s integrity by first reviewing it for logic flow, then use the program to add a
sequence of numbers to see if it did it correctly. Remember you terminate the data
entry sequence by entering a zero. If there is a problem either for program flow, or
with its accuracy of calculation, press PRGM and use SST and/or BST to find the
erroneous program statement, erase it, and enter the correct one. If all is well with
your new program, though, use SHIFT GTO.. to add SUM4 to your inventory.
Before you proceed to the next section, try SHIFT CATALOG 1 again to see displayed in
sequence the GLOBAL LABELs of the programs you now have in your computer’s
MAIN MEMORY .

75

Section 6.4. Conditional Tests

The previous section introduced how the conditional test X=0? could be used to
control program flow in SUM4 either to direct the program to LOCAL LABELS for
the entry of additional data, or to make a calculation. It’s probably obvious not
only how the other conditional tests X=Y?, X«=Y? and X>Y? could be used in a similar
way, but also how they would be keyed into a program. As for keying the X=0? cond-
itional statement, the SHIFTed functions of the appropriately labeled keys would be
selected to write these program lines. They would function in a program in exactly the
same way as the X=0? conditional test, that is, if the contents of the X STACK REG-
ISTER is tested to be true in the context of the conditional statement, then the next
line of the program is executed, but skipped if the conditional test is untrue.

There are many other conditional tests which are invaluable in programming, but
these are keyed in different ways than simply using a SHIFTed keyboard function.
Some of these conditional tests compare the contents of the X STACK REGISTER
in different ways, and others are used for testing the status of FLAGS. Conditional
testing for FLAGS is described in Chapter 8. Additional conditional tests using the
STACK REGISTERSare discussed next.

The other conditional tests, and those for which there are no SHIFTed key
function labels on the keyboard are: X>0?, X<Y?, X«?, X«=0?, X+Y? and X+0? and
tests comparing the contents of the X STACK REGISTER to that of other registers.
These function in a program in a similar way to the conditional tests for which there
are SHIFTed keyboard labels, but they are written into a program differently. These
are keyed by using an XEQ function and depends on the definitions of the keyboard
when it is an ALPHA SHIFT mode (see Figure 2.4.). For example, to write the
program line for the conditional test X<0?, first turn the computer ON and press
PRGM. Next press XEQ, then ALPHA, next press the key numbered 6 to get the
letter ”X”. Then press SHIFT, next the COS key (in order to write its ALPHA
SHIFTed function ”¢), then SHIFT, next press zero, then press the key with the
symbol ? and finally ALPHA. If you followed this sequence correctly, you will see
?X<«0?” as a program line.

In running a program in which X«{? is a statement, when program flow comes
to this conditional test, the next line of the program is executed if the numerical content
of the X STACK REGISTER is less than zero. The line immediately following this
conditional test would be skipped if the content of the X STACK REGISTER con-
tained zero or any number larger than zero, and program flow would begin with the
very next line.

The conditional tests X=Y? and X+Y? are used not only to test the numerical
contents of the X and Y STACK REGISTERS, but used also to compare ALPHA
statements and strings stored in these registers. If the ALPHA phrase stored in the X
STACK REGISTER is exactly the same as the one stored in the Y STACK REG-
ISTER, then the immediately next program line after X=Y? would be executed in
program flow, for example. Being able to compare not only numbers but also
ALPHA statements in this way with conditional tests offers valuable alternatives in
program design and execution, as you'll see in the next couple of chapters. Other
conditional tests like X<Y? and X«=Y?, of course, have no significance when attemp-
ting to compare ALPHA statements in the X and Y STACK REGISTERS.

The first sentence in Section 5.1. defined a computer program as a list of
instructions to bring about either the solution of a numerical problem, or to reach a
desired goal. the programs SUMI1, SUM2, SUM3 and SUM4 are examples of algor-
ithms (lists of step-by-step instructions) constructed to solve numerical problems, for
them the simple task of adding 2 or more numbers. The SUM4 program was more
interesting than the others in that it used a conditional test (X=0?) to direct program

76

Problem Statement:

Figure 6.5.

This program is designed to select and display a letter grade for an exam-
ination based on a student’s percent score using the criteria:

Minimum % Grade

50 or less

Flow Diagram:

(GRADES)

 %XSCORE

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

Letter Grade

m
o
O
W
p

Program Listing:

LBL "GRADES"
BEEP
"ENTER %SCORE’

PROMPT

STO 00

51

X>Y?

GTO 00

RCL 00

68

X>Y?

GTO 01

RCL 00

77

X>Y?

GTO 02

RCL OO

88

X>Y"?

GTO 03

TONE 9

"GRADE=A"

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

GTO 04
LBL 00
TONE 9
"GRADE=F"
GTO 04
LBL O1
TONE 9
"GRADE=D"
GTO 04
LBL 02
TONE 9
"GRADE=C"
GTO 04

LBL O3
TONE 9
"GRADE=B"
GTO 04
LBL 04
AVIEW
PSE
GTO "GRADES"
END

flow dependent on the status of entered data. Conditional tests are important In

programs like this which make a numerical calculation, but they are also of use in

programs constructed to reach a required goal, not to solve for something. It is in its

ability to made decisions and do low-level “thinking” and sorting for youthat computers

generally, and your HP-41 specifically, return many fold both your financial and time

investments in it.
Figure 6.5. describes a program designed to reach a goal, not make a

calculation. The GRADES program operates to display a letter grade of A, B, C, D or

F after a student’s percent score on an exam has been entered. This program uses

LOCAL LABELS in a similar way to the SUM4 program, but with an important dif-

ference. In SUM4, a LOCAL LABEL was used to return program flow to a preceding

line to form a loop asking for sequential entries of data. In the GRADES program,
LOCAL LABELs are used to direct program flow around instruction steps to a point
further on in the program. A similar strength for both programs, though, is that they
use LOCAL LABELs in conjunction with conditional tests to give flexibility and gen-
erate many options in how each programis executed.]

Since you've already practiced all of the types of key entries, none of the
program lines in the GRADES program will be difficult to write into your computer,
and the program itself should be simple enough to follow. Once the program’s
GLOBAL LABEL is addressed (by XEQ ALPHA GRADES ALPHA), a tone intro-
duces the alpha prompt for data entry (CENTER %SCORE™. After a number has been
keyed and R/S is pressed, a sequence of comparisons is made between the entered
grade and that minimally required for a particular letter grade. Once a correct matchis
made, an appropriate statementis selected to display the student's deserved grade.

For example, whatever percent score is entered in response to the alpha prompt
at step 3, it is stored in REG 00. Steps 6 and 7 determine if the entered score is
minimally adequate to receive a grade of D, and if it is not, the program branches at
step 8 to LBL 00 where a grade of F is displayed. After a pause (step 42), the program
returns to its own GLOBAL LABEL to start the comparison series for the percent grade
of the next student. If, however, the percent score of the first student is greater than
S50 (so a grade better than F is deserved), program flow continues to step 9 where a
second comparison (steps 10 and 11) determine if the student will receive a grade of D.

If the conditional test at step 11 is determined to be true, the next line of the
program is executed which results in presenting the letter grade "D” as a display in the
view window. Similar comparisons are made through the remainder of the program to
match the display of a grade for the appropriate percent score criterion level.

The GRADES program would be useful for an instructor who always used the
same criteria for grading exams. If the cut-off points for grades were different for the
next exam, though, the GRADES program would have to be rewritten at lines 06, 10,
14, and 18). This could become a laborious process if there were many different
exams to score. The GRADES program would be more useful if grading criteria
were entered in response to data prompts at the beginning of the program. The reader is
encouraged to modify the GRADES program in this way and then later compare this
new program with the EXAM program introduced in Chapter 9.

Conditional tests are valuable for directing program flow depending on a single
condition in a program, as shown in the SUM4 and GRADES programs. Using a
sequence of conditional tests gives considerable additional power for making decisions
in a program. This technique is introduced next. Figure 6.6. describes the BUMP
program which contains features of the SUM4 and GRADES program. It combines
the use of conditional tests which made a decision leading to a goal with others which
lead to a numerical calculation. The program listing and trial solutions for BUMP
are shown in Figure 6.7. The arrangement of conditional tests which provide the
sorting routine in this program can be expanded, of course, to allow Mr. Crunch to select
the closer 2 of more than 3 estimates, or rearranged to allow him to choose the average of

78

Figure 6.6.

BUMP

Problem Statement:

Charley Crunch manages an insurance agency which specializes in auto-
mobile collision coverage. He’s learned that to obtain a reliable indic-
ator of a city-wide charge for a particular type of repair, he needs to
take an average of the closest 2 of 3 estimates (not necessarily the 2 low-
est) he gets from different shops. The BUMP program is designed. to
make this calculation for him after he has entered the 3 estimates.

Flow Diagram:

TESTS 5

2: |E+E3|>| E2-E3 |?

El TO E3
3: |E1-E2|>| E2-E3|7T

ACL El RCL E2 RCL E1

RCL E2 RCL E3 RCL E3

[]

CALC
MEAN

79

Figure 6.7.

Program Listing: BUMP

Program Listing:

01 LBL "BUMP" 32 GTO 00

02 BEEP 33 RCL 05

03 FIX 2 34 RCL 04

04 "ENTERET” 35 X>Y?

05 PROMPT 36 GTO 01

06 STO 01 37 RCL 01

07 TONE 5 38 RCL 02

08 "ENTER E2 39 GTO 02

09 PROMPT 40 LBL OO

10 STO 02 41 RCL 05

11 TONES 42 RCL 06
12 "ENTER EZ” 43 X>Y?

13 PROMPT 44 GTO 01
14 STO 03 45 RCL 01

15 RCL 01 46 RCL 03

16 RCL 02 47 GTO 02

17 - 48 LBL 01

18 ABS 49 RCL 02

19 STO 04 50 RCL 03

20 RCL 02 S51 LBL O02

21 RCL 03 S2 «+
22 - 53 2

23 ABS S54 /
24 STO 05 S5 TONES
25 RCL 01 56 "USE $°

26 RCL 03 S57 ARCL X
27 - 58 AVIEW

28 ABS 39 PSE
29 STO 06 60 PSE
30 RCL 04 61 GTO "BUMP"

31 X>Y? 62 END

Solutions:

Type of Repair

Estimate A B C

1 $110.50 $340.10 $964.80
2 180.78 369.50 1032.10
3 140.39 282.30 985.85

average of
2 closest 125.45 354.80 975.33

80

the 3 highest of however many estimates he wants to get, etc. It would be good
practice to modify the BUMP program in one of these ways, or in some other way you
might find interesting. Once you have keyed the BUMP program into the computer’s
MAIN MEMORY, test it with the sample problems shown at the bottom of Figure 6.7.

Because the logic flow in the BUMP program is more complex than in the others
presented so far, a brief explanation of how Mr. Crunch designed this program is in
order. The basic task of this program is to select the 2 closest of 3 numbers. These
numbers are first requested as keyboard entries (E1 to E3), and then stored in REGs 01,
02 and 03 in the first 14 lines of the program. The next job is to start a series of
comparisons among their differences which will serve as the basis for determining
which 2 will be used for an average.

Instructions at lines 15 and 16 recall the first and second numbers from storage,
and determine (at line 17) the difference between them. Since the critical comp-
arison in this program is which 2 numbers are the closest together, not which one is
larger than the other, only the absolute difference between them (not the sign of their
difference) needs to be considered. The instruction at line 18 calculates the absolute
difference between the first and second entries. The instruction is keyed as XEQ
ALPHA spell ABS ALPHA, and uses one of the built-in functions (ABS) of CATALOG
3 (see Figure 3.4.). This difference is then stored in REG 04. Instructions in
lines 20 to 24 calculate the absolute difference between the second and third data
entries, and stored it in REG 05. A similar calculation is made for the first and third
entries in lines 25 to 29.

Starting at program line 30, each of the differences between data entries is with-
drawn from their locations in the PRIMARY STORAGE REGISTERS and
compared using the conditional statement X>Y?. The flow diagram in Figure 6.6.
shows how the final selection is made for the 2 pairs of numbers which are the closest.
Once this decision is reached, their average is calculated (lines 51 to 54), and an
appropriate display is constructed to inform Mr. Crunch of the best estimate of the city-
wide repair cost he is looking for. Reviewing the BUMP program in detail is a good test
to determine whether you understand data entry, STO and RCL functions, as well as
have insight into how conditional tests direct program flow to LOCAL LABELS. It’s
important to have a sound working knowledge of these operations.

Section 6.5. Where Is It and How Do I Get To It?

You have already seen some of the complexity with which the HP-41 computer

stores data, operates upon it mathematically and makes decisions with it. You've

also seen how it displays answers and decisions at the end of a program. It is confusing

especially at first to know what is going where in the process of data entry and knowing

what is where in the process of data storage at any time during a program’s execution.

The simple model shown in Figure 6.8. might help. Characteristic of models, they do

not show realistically how things operate, but they are valuable in presenting a simple

scheme for thinking about how a system works.

Imagine that each program you write is represented by a wheel which can be

fitted onto a spindle or an axle around which it can rotate. If you have only | program

in your computer, there is (in the model) only 1 wheel on the spindle. If you have

stored 3 programs, there are 3 wheels on the spindle. There can be as many wheels on

the spindle (there can be as many programs in your computer) as you have space on the

spindle (as you have room in the MAIN MEMORY).

81

Each program must have a GLOBAL LABEL (symbolized as "G.L.” in Figure
6.8.) as its first line and have an END statement as its last line. You discovered in the
analysis of the program SUMI1 (Section 6.1.3.) that you could step through the
program line by line either forward (for example, step 10, step 11, step 12, etc.) using
SST or backward (for example, step 12, step 11, step 10, etc.) using BST. This line by
line review of the program is symbolized in the model by rotating the wheel, which
represents a single program, either forward or backward and reading around its rim
cach, of the MAIN MEMORY storage spaces in which individual program lines are
listed.

Figure 6.8.

Where Is It? (A Model)

 < >
Program Search by XEQ (global label)

lime search by:

I= 8ST

END
TF L axis of

short

medium program
program

long

program

You discovered also in the analysis of SUMI, that were you looking at the END
statement in the computer’s view window, then pressed SST, you next saw the program’s
GLOBAL LABEL listed as line Ol. Similarly, if you were looking at the GLOBAL
LABEL in the view window, pressing BST showed you next the END statement at
the program’s last line. For a short program, the END statement would appear at a
lower numbered line that would the END statement for a long program. This feature
is symbolized in Figure 6.8. by having programs of different length drawn as wheels
with different radii. The long program is shown as a wheel with a large diameter; the
short program is shown as a wheel with a small diameter. Regardless of the length of the
program, however, each has a juxtapositioned GLOBAL LABEL and END statement
around the rim of the wheel which represents it.

82

Searching for a program either to review it line by line or to operate it, though,
cannot be achieved by using the SST and BST keys. They are good for reviewing
program lines, but do not function in locating the GLOBAL LABEL of other programs.
The XEQ key, as you have already learned, is the function which initiates locating a
program by addressing its GLOBAL LABEL. You used the program SUMI, for
example, by entering the instructions from the keyboard XEQ "SUMI1”. This oper-
ation is symbolized in the model by having the view window of the computer move along
the axis of the spindle until it locates the requested GLOBAL LABEL.

Once the program is located by the XEQ “GLOBAL LABEL” commands,
pressing PRGM gives you entry into that program, but not at the level of the GLOBAL
LABEL. Seeking the GLOBAL LABEL of the program and displaying it when PRGM
1s pressed is achieved by the operation GTO.”GLOBAL LABEL”. You may have disc-
overed for yourself that once the PACKING operation initiated by GTO. . is complete,
there 1s no program line to be seen when PRGM is pressed. This would be symbolized
in the model by looking at the space between adjacent wheels on the spindle. The point
of presenting the model in Figure 6.8. is to help visualize the differences among the
operations SST, BST, XEQ "GLOBAL LABEL”, GTO.”GLOBAL LABEL” and GTO..

If you understand the principles presented in these first few programs, you are
ready to examine some others in the next section which will introduce more complex
programming techniques. If you are a little uncertain either about some of the key-
strokes shown so far, or about some of the construction details of the programs, look
back over this section again in some detail before going to the next chapter. Having a
good grasp of these fundamentals will make the next sections much easier to understand.

Chapter 7

Intermediate Programming Techniques

None of the programs presented so far has been mathematically challenging,
nor were any of them they meant to be. They got you started, though, in seeing how
programs are structured, and gave you a chance to practice some important key entry
skills. You have enough background in the fundamentals of programming now to be
able to write programs which handle more complicated mathematical tasks. The next
section outlines a program to solve the complex equation introduced earlier (Figure
4.5.). When this program is run, it executes automatically the same step-by-step
changes (Figure 4.6.) in the contents of the STACK REGISTERS performed manually
to solve this equation earlier. You may want to review these operations before reading
further.

Section 7.1. SOLVX

When asked earlier (Section 5.1.) for directions to the National Bank, not
only did you have to think to yourself what you were going to say in your response, but
also you had to decide the order in which you were going to make statements. Even if
you were caught off balance initially by being asked to provide this assistance, once you
had it all straight in your mind, it was easy to be of help in giving accurate dir-
ections. [It is much the same when you are presented with the challenge to solve an
equation, like the one, for example, shown in Figure 7.1. (this is the same equation as
that in Figure 4.5). Despite seeing initially a statement of complex relationships
among 6 variables (N1 to N6), once you'd thought about it for a moment, more than
likely some ideas come to mind about the sequence of steps you could take to reach its
solution.

It is not as important that someone else might come up with a different sequence
of steps, as it is that both of you can solve the equation accurately using as few steps as
necessary. Similarly, a good case can be made for the concept that the design of one
computer program is just about as good as any other, as long as both do the job accur-
ately without wasting memory space and program running time. The fact that you think
about a problem solution differently than some other person is an excellent opportunity
for each of you to express your individual creativity, insight and ingenuity in
designing the appropriate computer program to accomplish it.

One way to approach the solution of the equation shown in Figure 7.1. would
be to think, “First, I'll take the Log of N4, then the Sine of NS, add them together,
square N6, divide it into that sum, then take the square root of that ratio. Next Tl
divide N1 by N2, raise it to the N3 power and multiply that times the results of my
earlier calculation.” If you thought about the solution of X in a way similar to this, you
have taken the most important step in writing your computer program to make this calc-
ulation. You've determined the general route you are going take to reach a final
solution of the problem. Your part in the alliance with your computer is to decide
what steps have to be taken in solving a problem and then communicate them to the
machine in a language it understands. Your computer’s job is to perform each step
accurately, quickly and always in an identical manner.

Writing the program for your HP-41 to solve X in Figure 7.1. is not much more
involved than placing into the RPN language the sequence of steps for the solution
which you thought of in your own language. Making as clear a statement of sequence

84

Figure 7.1.

SOLVX

Problem Statement:

This program is designed to solve the following equation:

Equation:

(N1 J LOG N4 + SIN N5

N2 (NB)?

where:

N1 to N6 = entered data

(soLvx)

Flow Diagram:

ENTER

"le® [>] DIVIDE

|

LOG N4 |ove |Rou N3

|

SIN Ns | [sQRT | LY

y |

ADD ACL NI MULTIPLY]

!

RCL NS | ReL N2 X= NN

and intent as quoted in the previous paragraph is the heart of a good computer program,
no matter what computer and what computer language is used. One way to make that
statement in the language of the HP-41 series computers is shown in the program
steps listed in Figure 7.2. which follow the flow diagram shown in Figure 7.1.

The first 26 steps in the SOLVX program are familiar initialization and data
entry statements. Entering data for the 6 variables in this style, though, is cumber-
some, and youll see in Chapter 9 some simple procedures for doing the same job
with fewer program steps using an INDIRECT ADDRESSING technique. The calc-
ulation of X begins at step 27 when N4 is recalled from its memory storage location
(REG 03), its LOG is calculated, then NS is recalled from REG 04, its SIN is calc-
ulated and they are added together at step 31. N6 is recalled from REG 05, squared

85

and divided into (LOG N4+SIN N5). After the square root of the calculation is taken at

Step 35, N1 and N2 are recalled, and (N1/N2) is calculated, raised to the power of N3,
and the current contents of the X and Y STACK REGISTERS are multiplied together to
complete the calculation.

The rest of the program for the tones, the answer display and the branch back to
the beginning of the program after a pause is similar to that of the earlier programs
SUM1 to SUM4. The program listed in Figure 7.2. manipulates the STACK REG-
ISTERS in the same way as you did when the calculation was made by hand using
direct keyboard operations (Figure 4.6.).

Figure 7.2.

Program Listing: SOLVX

Program Listing:

O01 LBL "SOLVX™ 14 STO 02 27 RCL 03 40 Y*

02 CLRG 15 TONE 5 28 LOG 41 «=

03 BEEP 16 "N47?" 29 RCL 04 42 TONE 9

04 "N17" 17 PROMPT 30 SIN 43 TONE 9

05 PROMPT 18 STO 03 31 + 44 FIX 3

06 STO 00 19 TONE 5 32 RCL 05 45 "X=°

07 TONE 5 20 "N57 33 Xx? 46 ARCL X

08 "N27" 21 PROMPT 34 / 47 AVIEW

09 PROMPT 22 STO 04 35 SQRT 48 PSE

10 STO 01 23 TONE 5 36 RCL 00 49 GTO "SOLVX™

11 TONE 5 24 "N67?" 37 RCL 01 50 END

12 "N37?" 25 PROMPT 38 /

13 PROMPT 26 STO 05 39 RCL 02

After you have tested the SOLVX program for logic flow, test its arithmetic
accuracy by going back and recalculating the sample problems shown in Figure 4.5.
You will realize immediately the advantage of having written a program to solve this
equation when you see how much more rapid this process is than keying in each
step manually, as you did in Chapter 4. You will recognize the value of your HP-41
series computer even more when you consider how long it would take to do this calc-
ulation using only paper and pencil.

Figure 7.3.

Operations Which Cannot Be Programmed

Operation Description Operation Description

CLP Clear program - Erase entry
BST Back step SST Single step
DEL Delete ASN Assign
USER USER toggle SIZE Size operation
PRGM Program mode GTO. Line designator
GTO.. Packing instr. Catalog Catalog review
ON Cont. power ON Initiate power
COPY Copy program

86

You have seen in the sample programs presented so far, the many functions of
your computer which can written directly into an algorithm for automatic execution in
solving an equation. There are many other functions which also can be programmed,
but there are some which cannot be used in this way, but must be executed by manual
keystrokes. These are shown in Figure 7.3.

Section 7.2. Subroutines

A minor restriction of the HP-41 computer is its limited memory compared to
tabletop computers. So, any programming technique which makes efficient use of
available memory is of special value. Using subroutines is one such technique.
This procedure is introduced next.

The problem SUBS lists 3 simple equations to solve for X, Y and Z respectively,
which vary as functions of the variables Ato F. The flow diagram in Figure 7.4.
suggests one way to pattern data input, have required calculations made and display
solutions for each of the equations. The program SUBS! listed in Figure 7.5. is a
straightforward way of completing these processes. It uses no techniques which are
unfamiliar to you. Data for variables A and B are keyed into the computer in response
to the alpha prompts A?” and ’"B?”, respectively, X is calculated using equation 1,
and the solution is displayed. Calculations for Y and Z follow a parallel pattern after cor-
responding data are entered. This program is well constructed from the perspectives of
logic flow and accuracy, but it can be written using fewer program lines if the tech-
nique of constructing subroutines is used as shown in the program SUBS2.

When you keyed the program lines for SUBSI into your computer, you
probably noticed the identity among steps in lines 07 to 13, those in lines 24 to 30, and
those in lines 41 to 47. You may have seen also that lines 16 to 18, 33 to 35 and 50 to
52 are identical too. The second program, SUBS2, shows how program lines which are
identical can be used in subroutines executed by "XEQ” statements inserted at approp-
riate lines in the main body of the program. There are several points to see in under-
standing this technique.

In both SUBS] and SUBS2, the program begins after the GLOBAL LABEL is
addressed and progresses in the same way through the first 2 alpha prompts for data
inputs A and B. Also similarly, line 06 in each program begins the calculation of
equation 1, but in SUBS2, program flow is directed (by XEQ 01) to a subroutine (LBL
01) for the execution of these steps, rather than have them sequenced in the main body
of the program, as occurs in SUBS]. After X is calculated in SUBS2 (lines 27 to 39),
program flow is returned (by RTN) to line 8 which immediately follows the XEQ 01
statement, but is then directed (by XEQ 02 at line 09) to the second subroutine (LBL
02) at line 37.

Once program flow has progressed through the steps listed as lines 37 to 40 in LBL
02, it returns (by an RTN statement at line 41) to the main part of the program at line
10, and program flow continues to request data inputs for the variables D and E.
Follow the remainder of program flow as it is directed to the same 2 subroutines (listed
under LBL 01 and LBL 02) and then returns to the main body of the program in
the calculation series for Y and Z.

The 2 subroutines used in SUBS2 are not only similar to one another, but also
they share characteristics with all other subroutines. Each subroutine: 1. is addressed
by an XEQ statement in the body of the program, 2. returns to the immediately next
step in the program beyond the corresponding XEQ instruction, 3. ends with a RTN
statement to redirect program flow back to the main body of the program, and 4. is
a sequence of identical program instructions used in different places in the program.
These 4 features are common to all subroutines.

87

Figure 7.4.

SUBS

Problem Statement:

This program is designed to calculate X, Y and Z as functions of the var-
iables A, B, C, D, E and F using equations 1, 2 and 3.

Equations:

(A + B)?
X = -2 (1)

PI

(C + D)?
Y = -2 (2)

PI

(E + F)?
Z = -2 (3)

Flow Diagram:

7 CF=
VARCVARNG,

CALC. Cc CA
EQ. 1 EQ. 2 EQ

1

The RTN instruction is essential in a subroutine. For example, the statement
at line 26 in SUBS2 obligates program flow to return to the GLOBAL LABEL. Sub-
routines listed under the LOCAL LABELS LBL 01 and LBL 02 are constructed in higher
numbered program lines than step 26. They are addressed in the main body of the
program only by the statement "XEQ _ _”. After the steps in any subroutine have
been executed, program flow must be redirected to the main body of the program using
an "RTN” statement.

a
k

88

Were RTN not to exist at line 36 in SUBS2, for example, program flow would
continue from step 34 (-) through line 35 and into the steps listed under LBL 02. This
would have no rationale in the construction of the program, and calculations would
not be made correctly. Each subroutine outside of the main body of the program which
has been addressed with an XEQ _ _ statement needs to have, without exception, an
RTN statement at its end to keep calculation sequences ordered properly. After you
have keyed SUBS] and SUBS2 into your computer, be sure to test both their logic flow
and numerical accuracy, as suggested in steps 7.1. and 7.2. in Figure 5.5.

Figure 7.5.

Program Listing:
SUBSI1 and SUBS2

O01 LBL "SUBS1" 28 / 01 LBL "SUBS2” 22 "F7°

02 BEEP 29 2 02 BEEP 23 XEQ 01

03 "A? 30 - 03 "A?" 24 "Z=

04 PROMPT 31 TONE 9 04 PROMPT 25 XEQ 02

05 TONE 5 32 "y= 05 TONE 5 26 GTO "SUBS2"

06 "B?" 33 ARCL X 06 "B?" 27 LBL OT

07 PROMPT 34 AVIEW 07 XEQ Of 28 PROMPT

08 + 35 PSE 08 "X=" 29 +

09 Xx? 36 TONE 5 09 XEQ 02 30 X2

10 PI 37 E” 10 TONE 5 31 PI

11 / 38 PROMPT 11 "C7 32 /

12 2 39 TONE 5 12 PROMPT 33 2
13 - 40 °F?" 13 TONE 5 34 -
14 TONE 9 41 PROMPT 14 'D?° 35 TONE 9

15 "X=" 42 + 15 XEQ Of 36 RTN

16 ARCL X 43 X?2 16 "Y=" 37 LBL 02

17 AVIEW 44 P| 17 XEQ 02 38 ARCL X

18 PSE 45 / 18 TONE 5 39 AVIEW

19 TONE 5 46 2 19 "E? 40 PSE

20 "C7" 47 - 20 PROMPT 41 RTN

21 PROMPT 48 TONE 9 21 TONE 5 42 END

22 TONE 5 49 "Z='
23 D7 50 ARCL X
24 PROMPT 51 AVIEW
25 + 52 PSE
26 X2 53 GTO "SUBST"
27 PI 54 END

Section 7.3. Mixing Uses of LOCAL LABELs

So far you have seen 2 uses of LOCAL LABELS. One was in the program SUM4
(Figure 6.4.) to direct flow within the main body of the program. The sequence of calc-
ulation was diverted to LBL 00 at line 05 in SUM4 by the unconditional branch state-
ment GTO 00 at line 12. A similar type of branch was directed in the GRADES
program(Figure 6.5.) by the statement GTO 01 (line 12) to take program flow to LBL 01
(line 28). This use of LOCAL LABELs is quite different from that in the program
SUBS2 where they are used to identify subroutines. The directing statements to the
LOCAL LABELS in SUM4 are "GTO _ _”, whereas in SUBS2 they are "XEQ _ _”.
Also, the end of statements in each LOCAL LABEL in SUBS2 required a "RTN” state-

89

ment to return program flow. No such statement was required in the statements
listed under LOCAL LABELS in SUM4, and program flow continued through prog-
ressively higher numbered lines in the program.

The program SUBS2 is just a little more than 22% shorter than SUBSI,
because of the use of subroutines. You can imagine how there would be an even
greater shortening of a program were there more equations to be solved which had
identical subcomponents. As the programs you write on your own become more and
more complex, you will undoubtedly encounter many opportunities to use sub-
routines to save lines in the MAIN MEMORY of your computer which can then be used
for data storage or provide more room for other programs.

It would take a very special talent for someone to be able to write a long program
to solve several equations and see as the program’s first draft where all of the subroutines
would fit in and know how they would be numbered. Suggestions for program design
listed in Figure 5.5. indicate there is a more practical way to put such an involved
program together.

Figure 5.5. recommends that after you have stated all of the equations you are
going to use, defined their symbols and constructed a flow diagram, you proceed to
write the first draft with no consideration at all for the use of subroutines or the eff-
iciency of calculations. Just go ahead and complete the statements for each of the
steps in the flow diagram much the same as SUBS] was written, and don’t be concerned
with program length as the program is written in this first draft. This would not be
good advice were you using a mainframe computer or one whose time you had to
share with others. You’d be expected to work out all the details of your program ahead
of time to be sure it would run efficiently and accurately the first time, since access
to the computer and operation time on it are precious.

But what an advantage you have in owning your own HP-41 personal
computer! You have the opportunity to work out the problems in your program,
modify it to suit your own needs and change it in any way you want by actually
running it on the machine as many times as you need. Such a quick turn-around in cor-
recting your mistakes has a powerful effect on how rapidly and fully your learn about
your computer. Also, it is of great value in developing your programs quickly.

Once you know the program runs correctly and accurately, it’s then time to go
back and seek out those program lines which are repetitive and construct appropriate
subroutines to take care of them . You followed this process in the development of the
program SUBS2 from its earlier version SUBS1. Then add the tones, alarms and
special features to your creation. As a last procedure, be sure you have not accidentally
altered your program in the process of adding subroutines to it so it no longer runs the
way you designed it.

The next section in this chapter examines the construction of a program which
uses LOCAL LABELS both as subroutines, as well as to direct the flow of calculations in
the main body of the program. It will show also how subroutines can be built into
other subroutines to save even more program space.

The program entitled, AREA” is described in Figure 7.6., along with its
equation and flow diagram. Both the equation and the program steps to solve it (Figure
7.7.) are more complex than others presented so far. Read the following description
of the program’s design, though, if for no other reason than to learn how to use
your computer to calculate areas of irregular surfaces. There are many applications
for such a program. If you find that understanding the construction of the program
doesn’t come to you right away, perhaps you can see through it easier when you’ve had
more programming experience.

Understanding how the AREA program is constructed will be easier if you first
see a practical demonstration of it. Despite the program’s complexity, it is quite easy
to run. First, key in the program steps listed in Figure 7.7., perform the sequence
GTO.., then use the program in the following test. Draw a square on a piece of
graph paper, and define the X and Y coordinates for each of its corners. Start the

90

Figure 7.86.

Sample Problem: AREA

Problem Statement:

This program is designed to calculate the area of an irregular polygon
defined by an indefinite number of 3 or more X and Y coordinate
pairs. All coordinate points must be equal to or greater than zero.
Coordinates are entered in response to alpha prompts for data prog-
ressing successively either clockwise or counterclockwise around the
polygon’s perimeter. Data entry is terminated by entering a negative
number in response to the alpha prompt *X_7”.

Equation:

(X4 + XY - Yo) + (X, + Kine 1)(Yn - Yine1) - .. + (XL + XY, - Yy)

 A =
2

where:

A = area in (units)* of entered data
X,Y, = first X and Y coordinate pair
X,,Y, = next X and Y coordinate pair

Xiao)» Ynep) = successive X and Y coordinate pairs

X,Y= last X and Y coordinate pairs

Flow Diagram:

AREA

 1

 r
l
l

FI
LS

a!

 ETRETACD

91

program by XEQ AREA”. You will first hear the 4 tones of the BEEP function, then
see the alpha prompt "X1?” displayed in the view window. Enter using R/S the X value
for the first of your coordinate pairs. As stated in the program description in Figure
7.6., you can start at any point of the square. Enter the corresponding Y1 value using
R/S in response to the alpha prompt Y1?”. When *X2?” is displayed, enter the X value
for the next coordinate pair, and then the Y value in response to "Y2?”.

Continue entering data for the other 2 coordinate points. After the fourth
pair have been entered, key any number, change its sign to be negative (using CHS),
then press R/S. The area of the square is calculated, then after a pause, you will be
asked for the first piece of data for the calculation of a second area. You can deter-
mine if the AREA program calculated the area of your test square accurately simply
by counting the number of smaller squares contained within the larger one you
drew. A more comprehensive test would be to draw a variety of irregular polygons
on the graph paper, calculate their areas, then verify the accuracy of each calcula-
tion.

The flow diagram in Figure 7.6. shows the sequence in which data are entered
and how interim and then final calculations are made. The list of program steps in
Figure 7.7. gives more detail about the AREA program. Even though its flow is
convoluted, it’s worth following it through to see how LOCAL LABELS are used both
to direct the sequence of operations in the main body of the program (steps 1 to 68), but
also to see how they are used to identify subroutines (steps 69 to 94).

Figure 7.7.

Program Listing: AREA

01 LBL "AREA" 25 XEQ 04 49 X=07? 73 LBL 02
02 BEEP 26 X<0? 50 GTO 03 74 ARCL 00
03 CLRG 27 GTO 06 51 RCL Of 75 "7"
04 FIX 0 28 STO 05 52 76 PROMPT
05 XEQ 01 29 XEQ 05 S53 RCL 06 77 RTN Data Storage:
06 XEQ 04 30 STO 06 54 RCL 02 78 LBL 03
07 STO 01 31 XEQ 01 55 - 79 TONE 5 REG Data
08 XEQ 05 32 RCL 04 56 « 80 TONE 8
09 STO 02 33 RCL 06 57 RCL 07 81 "NO CALC" 0 gone
10 XEQ 01 34 - 58 + 82 AVIEW 02 !
11 XEQ 04 35 RCL 03 59 2 83 PSE ZY,
12 STO 03 36 RCL 05 60 / 84 GTO ARea” 03 Xj
13 XEQ 05 37 + 61 TONE 9 85 LBL 04 04 Y,
14 STO 04 38 62 TONE 9 86 TONE 5 05 Xin)
15 XEQ O01 39 RCL 07 23 FIX 2 87 °X’ 06 Yh.)
16 RCL 02 40 + 4 "AREA=" 88 XEQ 02
17 RCL 04 41 STO 07 65 ARCL X 89 RTN v7 netgroper)
18 - 42 RCL 05 66 AVIEW 90 LBL 05 Po 017 Ta
19 RCL 01 43 STO 03 67 PSE 91 TONE 5
20 RCL 03 44 RCL 06 68 GTO "AREA" 92 "Y-
21 + 45 STO 04 69 LBL 01 93 XEQ 02
22 + 46 GTO 00 70 1 94 RTN
23 STO 07 47 LBL 06 71 ST+ 00 95 END
24 LBL 00 48 RCL 05 72 RTN

After the program is initialized (by XEQ “AREA”, the BEEP is sounded,
PRIMARY STORAGE REGISTERS and STACK REGISTERS are cleared (step 3).
Next, the decimal point is set (step 4), program flow is directed at step 5 to the first of
the subroutines (LBL 01) by XEQ 01. LBL 01 (step 69) first stores the number 1 add-
itively in REG 00, and program flow returns to step 6 where the next subroutine is
executed. LBL 04 contains steps which sound a tone (TONE 5), places an ”"X” into
the ALPHA REGISTER, then executes a subroutine (XEQ 02) which recalls (ARCL
00) into the ALPHA STACK REGISTER the number which had been previously
stored in REG 00. As program flow passes this point for the first time, the contents of
REG 00 is the number 1 placed there by the steps listed in LBL 01, as is the symbol
»?”. Step 77 lists a RTN which returns the program to the step immediately after the last
XEQ statement, which in this case is line 89 where another RTN command is en-
countered to take the program back to line 07.

The number entered in response to the alpha prompt X17?” is stored in REG 01 at
line 07. A value for Y2 is requested by the alpha prompt "Y2?” which is constructed in
the view window by statements listed in the subroutine LBL 05 and those in LBL 02.
Note that the program lines in LBL 02 did double duty. They provided the way to
display the latter half of both alpha prompts *X1?” and ”Y1?”. You'll see that all
subsequent data input requests are structured in a similar way using LBL 02. Once the
program has been brought back to step 09, the value entered for Y1 is stored in REG 02.

As the program progresses, the number in REG 00 then has 1 added to it (LBL
01), and the appropriately next higher "X2?” and ”Y2?” are displayed in sequence.
After data have been entered for them, they are stored in REG 03 and REG 04,
correspondingly. The first product in the equation shown in Figure 7.6. is calculated
in steps 16 to 22, and stored in REG 07 at step 23. The conditional statement in step
26 (X07tests if the number entered in response to the next and each subsequent entry of
the X coordinate is a negative number. If it is, data entry is terminated, and the
program is directed to LBL 06 where the remainder of the equation is calculated unless
the number stored in REG 05 is a zero.

REG 05 would contain a zero if only 2 pairs of X and Y coordinates had been
entered. Some number greater than zero would be stored in REG 05 if a minimum of 3
coordinate pairs had been entered, which is the minimum number of data required to
calculate an area. If the contents of REG 05 is tested to be zero (step 49), an uncond-
itional branch (at step 50) takes the program flow to LBL 03 which sounds a 2 tone
sequence, displays "NO CALC”, and directs the program to its GLOBAL LABEL from
which a new set of data are requested for the next calculation. "NO CALC” was dis-
played, of course, because an area cannot be calculated when only 2 points are entered
into the AREA program. A minimum number of 3 points is required to define an area.

If as tested at step 49, REG 05 does not contain a zero, at least 3 coordinate pairs
have been entered, the remainder of products and sums are calculated for the equation
shown in Figure 7.6., and the solution is displayed beginning at step 64. The answeris
displayed for a second or two (PSE; step 67), and a new set of data are requested for
the next calculation after program flow has been directed to the GLOBAL LABEL
AREA.

Even though AREA is somewhat involved, the program itself is easy to
operate. Also, the program is reasonably short and runs quickly despite the comp-
lexity of the calculation, thanks to the HP-41’s feature for using LOCAL LABELS.
Not only are LOCAL LABELS used in the main body of the program as addresses for
unconditional branches (like GTO 06 at Step 27, GTO 00 at Step 46, etc.), they also
function to identify subroutines for repetitively used operations (like LBL 04, LBL
0S, etc.). LBL 04 (the subroutine which establishes the letter ”X”), in fact, has its
own internally executed subroutine (XEQ 02 at Step 88) to direct program flow from one
subroutine (LBL 04) to another (LBL 02), each with its own RTN statement.
Stacking subroutines inside of one another provides additional opportunities to

93

Figure 7.8.

Sample Problem: AREA

Problem Statement:

Sam Snip owns a leather shop where he sells handcrafted items.
Every once in a while, customers ask him to sell irregularly shaped
pieces of his stock for their own projects. He knows that each piece of
leather is most accurately priced based on its area, and he wrote the AREA
program to make this calculation. He has placed a piece of leather on
his cutting board and has defined coordinate points for it using the
board’s scales. What is the area of this item?

a 5 (XD (Y)
Point Width Length

(ft.) (ft.)Z o

L
e
n
g
t
h

(
f
e
e
t
)

a

—
—
0
0
0
d

W
L
A
W
I

»
—

—
O
W
W
W
I
I

—
—

O
O

L
N
O
O
D
O
D
U
L
N
O
U
N
O
O
O

W
L

O
r

—
=
D
I
V
W
A
W
W

—

N
U
N
O
O
D
U
L
N
O
O
D
O
D
U
N
O
O
O

0
]

(answer: 6.13 ft-)
Width (feet)

shorten a program and make it run more quickly. All models of the HP-41C series
computers allow for the construction of 6 levels of subroutines in this way.

Except for the instruction at step 75, keying the program AREA into your
computer should present no problem if you have practiced the keystrokes for other
programs presented earlier. Step 75 uses an APPEND function which is keyed using
the ALPHA SHIFT definition of the XEQ key (see Table 2.4.). The APPEND function
allows you to add to an alpha string already stored in the ALPHA REGISTER. It is nec-
essary in this program associated with the efficient use of the subroutines in LBL’s
02, 04 and O05 which constructed the alpha prompts for data entries for X1 to Xn,
and Y1 to Yn. An easy way for you to see what the APPEND function does in program
step 75 is to first write the program with it, run a sample problem or two, then erase
line 75 and rewrite it to contain only the question mark. Running the program in
such an amended fashion will soon demonstrate how the alpha strings “Xn?” and "Yn?” are
formed and displayed.

A sample problem for the AREA program is shown in Figure 7.8. After you
have made this calculation with the program you’ve already keyed into your computer,

94

try editing it so that not only does it calculate the area of a piece of leather for Sam,
but also it will automatically calculate its price. Figure 7.9. lists the steps for the
program entitled, "PRICE” which shows one way this calculation can be built into the
AREA program. The next couple of paragraphs will demonstrate that it is unnecessary
to start all over again to key in the rather long PRICE program. Its features are easily
added to the AREA program you now have in the MAIN MEMORY of the computer.

Figure 7.9.

Program Listing: PRICE

01 LBL "PRICE" 28 STO 05 55 - 82 RTN
02 BEEP 29 XEQ OS 56 « 83 LBL 02
03 CLRG 30 STO 06 57 RCL 07 84 ARCL 00
04 FIX O 31 XEQ O1 58 + 85 "7"
05 XEQ 01 32 RCL 04 59 2 86 PROMPT
06 XEQ 04 33 RCL 06 60 / 87 RTN
07 STO 01 34 - 61 TONE 9 88 LBL 03
08 XEQ 05 35 RCL 03 62 TONE 9 89 TONE 5
09 STO 02 36 RCL 0S 63 FIX 2 90 TONE 8
10 XEQ 01 37 + 64 "AREA=" 81 "NO CALC’
11 XEQ 04 38 «* 65 ARCL X 92 AVIEW
12 STO O03 39 RCL 07 66 AVIEW 93 PSE

13 XEQ 05 40 + 67 PSE 94 GTO "PRICE’
14 STO 04 41 STO 07 68 TONE 5 95 LBL 04
15 XEQ 01 42 RCL 05 69 "COST/SQFT?” 96 TONE 5
16 RCL 02 43 STO 03 70 PROMPT 97 "Xx"
17 RCL 04 44 RCL 06 71 = 98 XEQ 02
18 - 45 STO 04 72 TONE 9 99 RTN
19 RCL 01 46 GTO 00 73 TONE 9 100 LBL 05
20 RCL 03 47 LBL 06 74 "PRICE=S" 101 TONE 5
21 + 48 RCL 0S 75 ARCL X 102 "Y*"
22 « 49 X=07? 76 AVIEW 103 XEQ 02
23 STO 07 50 GTO 03 77 PSE 104 RTN
24 LBL OO 51 RCL 01 78 GTO "PRICE" 105 END
25 XEQ 04 82 + 79 LBL O1
26 X<0? 53 RCL 06 80 1
27 GTO 06 54 RCL 02 81 ST+00

Editing a program either to add new lines, or to remove unwanted ones is
easy. It involves basically the same procedures you followed in reviewing the SUMI
program in Section 6.1.3. Generating the new program PRICE by editing the AREA
program will be used to demonstrate these basic steps. Two general changes need to be
made in the AREA program if it is to calculate the price in addition to the area of a
piece of leather for Sam. First, program lines need to be added which will calculate the
price of the piece and then display an answer, and second, the program’s GLOBAL
LABEL and LOCAL LABELS which direct flow to the GLOBAL LABEL need to be re-
phrased.

95

Since it is necessary to know what price per square foot Sam wants to charge for his
stock, another data request must be added to the program in order to calculate the price
of a piece of leather once its area is known. First, review steps 68 to 70 in Figure 7.9.
to see how this data request appears in the PRICE program, then examine steps 71 to 78

to see how the "COST/SQFT?” information is used to calculate the price of the piece.
Up to step 67, the area of the piece had been calculated and the answer remains
in the X STACK REGISTER. Once the unit price for the leather has been entered
(step 70), the contents of the X and Y STACK REGISTERS are multiplied together
to calculate the price for the entire piece of leather (step 71). This is displayed (step
74), and after a pause the program is directed to its GLOBAL LABEL for the next
calculation (step 78). You will now see how steps 68 to 78 were added to the AREA
program.

One way to get the PRICE program into your computer, of course, would be
to key in all of its steps shown in Figure 7.9. starting at the very beginning of the
program. On the other hand, if you have already entered the AREA program into
your computer, only a few segments of it need to be changed to convert it to the PRICE
program.

Assume that you already have the AREA program in your computer, but now
want to edit it to be the PRICE program. Place your computer in a keyboard mode (by
turning it OFF, then ON, for example), then call the AREA program from memory
by XEQ AREA”. You will hear the BEEP tones and see the alpha data prompt
"X17?" in the view window. Rather than continuing to run the program, you will now
edit sections of it beginning at step 68 where Steps 68 to 78 of the PRICE program
need to be inserted. You first need to find step 68 of the AREA program, and do
this by keying SHIFT GTO.068. When the view window displays "17, pressing the
PRGM toggle changes the display to show step 68 of the AREA program, which is
GTO AREA. This unwanted step is edited out simply by pressing the erase key.
The display window now shows step 67 of the program, PSE.

Step 68 of the PRICE program is entered just by keying XEQ TONE” and then
after a pause, keying 5” to designate which tone will be sounded. Key the remainder
of the steps 69 to 78, remembering that the 7S” symbol is written by using the
ALPHA SHIFTed function of the EEX key (see Figure 2.4.). After you have entered
step 78 of the PRICE program, you are ready to amend the GLOBAL and LOCAL
LABELS of the AREA program. Press the PRGM toggle to get out of the PRGM
mode, then key SHIFT GTO 04. This instruction will take you to the LOCAL LABEL
04 which is step 85 of the AREA program. To see this line of the program, press
PRGM to get back into the program mode. Keying SHIFT BST displays the immed-
lately previous program step which is "GTO AREA” in the AREA program. This un-
wanted step is edited out by pressing the erase key, and the new step is entered by
keying GTO PRICE.

The last change to made in the AREA program is to rewrite its GLOBAL
LABEL. While the computer is still in the PRGM mode, key SHIFT GTO. 001 to
take the program to its GLOBAL LABEL. Eliminate the GLOBAL LABEL AREA by
pressing the erase key, and enter the new GLOBAL LABEL by keying SHIFT LBL
PRICE”. You have now made all the changes required to convert the AREA program
to the PRICE program. To secure your new program, take the computer out of the
PRGM mode and key GTO.. to initiate the PACKING function. The last thing to
do is to check the PRICE program for logic flow and for numerical accuracy of its
calculations.

Try amending the AREA program in a different way just to be sure you under-
stand the important points introduced in the last few pages. Imagine, for example,
that you have been asked to write a computer program for a forest ranger who needs to
determine the surface areas of lakes in different sections of his region. As you look at
a map showing these many land sections and the lakes they contain, you decide your

96

Problem Statement:

Figure 7.10.

COUNT

As a laboratory technician, Bob Beaker often has to prepare serial dil-
utions and samples of various kinds with different levels of precision. He
wrote the program COUNT to help him with this job. The program allows
him to start counting from any number, increment by any amount, end
at or near any number and control the level of precision for these calc-
ulations by defining the program’s digit display.

Equation:

where:

Nc = displayed next count
Np = initial number

I = count increment

Flow Diagram:

COUNT

97

Nec=Np+1

01
02
03
04
0S
06
07
08
09
10
11
12
13
14

15
16
17
18

Program Listing:

LBL "COUNT"
BEEP
"PRECISION?"

PROMPT
STO 00
FIX IND OO
TONE 5
"START?"
PROMPT
STO O1
TONE 5
"STEP?"
PROMPT
STO 02
TONE 5
"END?"
PROMPT
STO 03

19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

LBL 00

RCL 01

RCL 02
+

STO 01

TONE 7
"N=

ARCL X

AVIEW

STOP

RCL 03

X>Y?

GTO 00

TONE 9

"COUNT OVER"

AVIEW

STOP

END

computer program needs to be able to calculate and display: 1. the area of any single

lake, 2. the combined areas of many lakes in a single section, 3. the total area of
all lakes in the entire region.

What additional changes would the AREA program require so that it could also
calculate and display the length of shore line for each lake and for the total number of
lakes? If you knew the average number of fish per cubic yard for the region, how
could your program estimate the fish population for each lake? for all lakes in a section?
for all lakes in the region? The forest ranger is willing to pay $1,000 for a program
which will make these calculations, so it’s worth a little effort and time to write it.

Section 7.4. Four Easy Pieces

A bonus from learning to use a portable computer like the HP-41 is not just
being able to solve complex equations, but to provide a tool for completing everyday
on-the-job tasks. Many of these jobs are simple, yet they take precious human

Figure 7.11.

Sample Problems: COUNT

Sample Problem No. I:

Bob often needs to prepare solutions in a series which have different
initial and final volumes after being supplemented by a constant amount.
He used the COUNT program to provide the data for the example shown
in Table 1. For this batch, he started with a 14.35 cc volume, added
successive volumes of 1.87 cc. and ended with a last sample being at least
25.00 cc. Precision was defined by making calculations with 2 digits to
the right of the decimal.

Sample Problem No. 2:

Bob needed to weigh out a series of samples of dry chemical used in
an analytical procedure. He started with a mass of 1.000 gram, added
0.932 grams at each step, and wanted the last sample to be at least
7.000 grams. He used the COUNT program with a precision of 0.000 to
provide the information in Table 2.

Table 1 Table 2

Sample Vol. Sample Vol.
No. (cc) No. (gm)

1 14.35 1 1.000
2 16.22 2 1.932
3 18.09 3 2.864
4 19.96 4 3.796
5 21.83 5 4.728
6 23.70 6 5.660
7 25.57 7 6.592

8 7.524

98

time to complete unless one takes advantage of the HP-41. This section uses 4
examples of time-savings programs to introduce several new programming tech-
niques.

The simple task of having to make counts and keep track of steps in preparing
chemical solutions or chemical samples is made much easier with the COUNT program
shown in Figure 7.10. This straightforward program allows for a selected level of
precision to be maintained in a controlled counting procedure, and it keeps track of
the last element in the count, as shown in the sample problems in Figure 7.11. A
new programming technique is introduced in the COUNT program, that of INDIRECT
ADDRESSING. This technique is adequately complicated that it is discussed in
detail in a chapter of its own (Chapter 9), but its use in COUNT is simple enough.

The precision with which answers are to be shown in the COUNT program is
determined by how the user decides to display digits to the right of the decimal (see
Figure 2.7.). This information is stored in REG 00 at line 05. The actual setting of
the display digit count is controlled by the INDIRECT ADDRESSING statement in
the next line, FIX IND 00. The instruction reads, “set the display to have as many digits
to the right of the decimal as is the number in PRIMARY STORAGE REGISTER 00”.
For example, were the number 2 stored in REG 00, answers would be displayed as
"N.NN”; were REG 00 to contain a 4, the display would be "N.INNNN”.

The reader is encouraged to rewrite the COUNT program so that only a
designated number of serial dilutions would be controlled, rather than have the
program operate between user-defined counting limits. Also, how could the program
be modified so that Bob Beaker could display decremental intervals in his count?

Figure 7.12.

ISG and DSE Functions

ISG: Increment and skip if greater than

DSE: Decrement and skip if equal to

NININ|INI]N NI NJ] NJ N|N

1121314121181 7[8B]S]|m®e

l J L] J
I | |

Begin End Unit

Count Count Count

There is a technique for automatic counting built into the HP-41 computer which
performs a similar operation as that in the COUNT program. The DSE and ISG
functions operate in reference to a stored 10 digit control number. The code for this
control number is described in Figure 7.12. This number is easy to interpret with a
little practice. For example, were the number 0.01001, then counting would begin at
zero, increase in a step of 1 and end at 10 when the ISG function was activated. Simil-
arly, were the code number 50.10002, the count would begin at 50 and end at 100,
and made in steps of 2. The program AUTOC in Figure 7.13. shows how the ISG
instruction is listed in a program and shows one way in which the control number can be
constructed.

99

Figure 7.13.

AUTOC

Problem Statement:

Bob, the laboratory technician, needs to keep track of the number of
times he completes a repetitive operation which is involved and some-
times distracting. He wrote AUTOC so that once the program is initial-
ized, he needs only to press the R/S toggle each time he’s completed the
task. The HP-41 keeps tally for him and tells him when the sequence
is over.

Flow Diagram: Program Listing:

(AuTOC)

O01 LBL "AUTOC” 17 1

02 BEEP 18 ST+ 01

03 FIX O 19 RCL Of

04 0 20 TONES

05 STO 00 21 'N=°

06 STO 01 22 ARCL X

07 1E-5 23 AVIEW

08 ST+ 00 24 STOP

09 STOP?” 25 ISG 00

10 PROMPT 26 GTO 00

11 1 27 TONE 9

12 - 28 "COUNT OVER’

13 1E3 29 AVIEW

14 / 30 STOP

15 STO+ 00 31 END

16 LBL 00
But, why write a program like COUNT (Figure 7.10.) when the HP-41 computer

already has an automatic counting operation like that shown in Figures 7.12. and
7.13.7 For 1 reason, the COUNT program allows for steps in a count to be made in
fractional units for either decrementing or incrementing a number. For example, Bob
Beaker was able to use the COUNT program to increment dry samples by 0.932
grams in Sample Problem No. 2 (Figure 7.11.). The AUTOC program counts only in
whole numbers.

But the ISG and DSE counting functions allow you to do something important
which the COUNT program will not. Not only will they provide automatic counting,
more important, they can be used to control the number of times a designated

100

function is operated. This is an important distinguishing feature of the ISG and
DSE operations. A simple example for controlling the TONE function is shown in the
program TONEC described in Figure 7.14.

Although the user has control over which TONE will be sounded, a decision
must be made (line 07) about the number entered in response to the alpha request at line
03, because the HP-41 has TONEs numbered only 0 to 9. The control number for the
ISG function is stored in REG 01 by instructions in lines 10 to 21.

Note how the controlled sounding of the designated tone is made by only the few
lines of instructions in LBL 00. Note also how INDIRECT ADDRESSING is used in
deciding which TONE will be sounded at line 23. This instruction reads, "sound
the tone whose number is stored in REG 00.” More about INDIRECT ADDRESSING
in Chapter 9.

Figure 7.14.

TONEC

Problem Statement:

This program uses ISG (and is easily modified to use DSE) to control
repeating a function, for which TONE is used as an example.

Flow Diagram: Program Listing:

O01 LBL "TONEC” 16 1E3

(CTonec) 02 BEEP 17 /

03 "TONE?" 18 ST+ 01

04 PROMPT 19 1 ES

— 05 STO 00 20 1/X

TONE 06 10 21 ST+ 01

N TIMES 07 X<Y? 22 LBL OO

08 GTO "TONEC® 23 TONE IND 00

\ 09 TONE 5 24 ISG 01

10 0 25 GTO 00

DONE 11 STO 01 26 "DONE"

12 "HOW MANY?" 27 AVIEW

13 PROMPT 28 PSE

14 1 29 OFF

OFF 15 - 30 END

Many times on-the-job tasks are awkward because they involve one or more calc-
ulations of simple proportions. The point to be made is that these calculations are
easy enough to do, but they take time and can be confusing unless one does them many
times frequently. But for someone who has not made these computations for a while, it
can take more time than it’s worth to have to work through the problem with paper
and pencil: "OK, we've got a thermal conductivity value of 1.25 watts per cm. per
degree Kelvin, what is that in units of BTU’s per hour per ft. per degree Fahrenheit?
Or would it be better to use units of calories per second per centimeter per degree
Celsius? Damn, I used to be able to do this in college”.

101

Figure 7.15.

The Experiment

David Digit conducts tests which measure the small amplitude and low
frequencies at which a small machine operates. He is using a sensor for
measuring the machine’s movements which generates an analog voltage
which he records. He determined ahead of time that the sensor’s calib-
ration is: Voltage output (mV) = -0.5492 + 0.9167(distance (mm)). The
amplifier on his recorder is set at 0.2 mV/cm. of deflection on his
recording paper. Paper speed is 5 mm/sec. He is interested in calculat-
ing how much and how rapidly the machine moves using data he has
recorded. He cbtained the information in Table 1 using the EXPER
program.

Table 1

Recorded Calculated
Recording Distance Distance Movement

Movement Amplitude of peaks moved frequency
No. (cm) (mm) (mm) (per min)

] 3.4 - 1.34 -
2 6.4 2.5 2.00 120.00
3 0.3 0.9 0.66 333.33
4 7.2 2.1 2.17 142.86
5 2.4 2.0 1.12 150.00

Flow Diagram: Program Listing:

(exrPeR) O01 LBL "EXPER® 30 D=
02 BEEP 31 ARCL X
03 FIX 2 32 MM’

04 AON 33 AVIEW

05 "SOLVE(D/F)?" 34 PSE

06 PROMPT 35 GTO 02
07 AOFF 36 LBL 01

08 ASTO X 37 TONE 5

09 °F 38 "CAL(MM/SEC)?"

10 ASTO Y 39 PROMPT

11 X=Y? 40 STO 01

12 GTO 01 41 LBL O3

13 LBL 00 42 TONE 5

14 TONE 5 43 ‘MM?
15 "SENS(MV/CM)?" 44 PROMPT
16 PROMPT 45 RCL O1
17 STO 00 46 /
18 LBL 02 47 60

| 19 TONE 5 48 /

CALC. CALC. 20 "DEFL(CM)?" 49 1/X
oO F 21 PROMPT 50 TONE 9

22 RCL 00 51 TONE 9

< ~~ ys 23 « 52 F="
D=NN F=NN 24 0.5492 S3 ARCL X

25 «+ 54 “—/MIN
26 0.9167 SS AVIEW

27 / 56 PSE

28 TONE 9 57 GTO O03
29 TONE 9 58 END

The time spent in writing a simple program for the HP-41 to make these calcula-
tions is often well invested, even if only a dozen or so computations are required. The
program, EXPER, described in Figure 7.15. shows one such application for the HP-
41. EXPER shows how a linear equation expressing the calibration of an instr-
ument and information about data recording are built into a program to help with the
calculation of (in this example) distance and frequency of movement of a device under
study. EXPER shows also how program flow is controlled on the basis of comparing
ALPHA statements (lines 04 to 11), and it gives 2 examples of how the APPEND
function is useful (lines 34 and 56). Data in the table at the bottom of Figure 7.15
show the results of sample calculations with EXPER.

Section 7.5. Keeping Track

It is often necessary in constructing a computer program to include features in it
which will keep track of the number of data which have been entered. Branching,
looping and continuing with program flow frequently depend heavily on the data entries
themselves. For example, the options for what the program does next may be decided
on the basis of what kinds and how many data have already been entered.

This is a similar necessity to checking during program operation to be sure that
entered data are within designated and legitimate ranges. Many programs will require
an internal check for a minimum or maximum number of data entries to run correctly
besides testing whether any single datum entry is in an acceptable range. The program
PVAR described in Figure 7.16. demonstrates one of the many ways in which the
computer can police program flow depending on the number of entered data.

Standard deviation (a built-in function of the HP-41 computer called SDEV)
and standard error are commonly used statistics. They require evaluating mathematic-
ally the relationships among a set of data in a single group. Sometimes, though, it
1s useful to calculate a single standard deviation and standard error for several
groups which for reasons unique to a series of tests can be justifiably considered to repr-
esent a single population.

If for no other reason than the different groups may have different numbers of
observations in each of them, calculating a “pooled standard deviation” or "pooled
standard error” is not as simple as just adding up the standard deviations or standard
errors of all the groups and dividing by the number of groups. A legitimate calc-
ulation of these pooled statistics is not the same as only getting the average of the
individual variability in the groups. The program PVAR shows one of the ways in
which standard deviations of different groups of data can be mathematically
combined for a representation of pooled statistic.

The program includes several useful programming features. One of them is
the combined use of arithmetic operations both in the STACK REGISTERS and in
the PRIMARY STORAGE REGISTERS. Another is the use of a single number stored
in a PRIMARY STORAGE REGISTER to serve the functions of display control and
program control.

Once the program is initialized, the number "17 is stored automatically and add-
itively in a PRIMARY STORAGE REGISTER (REG 00; lines 07 and 08). To assure
that REG 00 has a zero in it at the beginning of the program, the function CLRG is
listed at program line 02. CLRG automatically clears (puts a zero in) all PRIM-
ARY STORAGE REGISTERS. The standard deviation for the first numbered group is
then requested as a data entry at lines 09 to 11. Notice how an APPEND function is
used to provide corresponding numbers in the data request for the sequence of data
entry. The number stored in REG 00 serves for the display counter when "N” is

103

Figure 7.16.

PVAR

Program Description:

This program calculates a "pooled standard deviation” and a "pooled stan-
dard error” for 2 or more groups of data for each of which standard dev-
iation and the number of samples are known.

Equations:

[(SD)3(Ny = 11 + [(SD)3(Ny = 11. . .+ [(SD,AN, = 1)]
PSD =

(Ny+ Ny... +N) - 1

PSD
PSE =

N, + No. Lt N,

where:

SD,.SD,, ...SD, = standard deviations of groups
Ny.Ns, ...N, = number in each data group

PSD = pooled standard deviation
PSE = pooled standard error

Flow Diagram:

CALC.
PROD.

CALC.
PSE |

104

Figure 7.17.

Sample Problem: PVAR

A research team obtained the data in Table 1 for a group of patients who
had been given a drug in a controlled test. The decision was made to
calculate a standard deviation and a standard error considering that all ob-
servations were for a single test group. Using the PVAR program:
PVAR = 13.37; PSE = 1.25. ’ : prog

Table 1

Group 1 Group 2 Group 3 Group 4

St. Dev. 14.96 12.81 15.92 11.01
N 23 56 18 17

Program Listing:

01 LBL "PVAR’ 33 RCL 02
02 CLRG 34 1
03 FIX O 35 -
04 BEEP 36 /
05 LBL 00 37 SQRT
06 TONES 38 FIX 2
07 1 39 TONE 9
08 ST+ 00 40 TONE 9
09 "SD 41 "PSD=
10 ARCL 00 42 ARCL X
11 +7 43 AVIEW
12 PROMPT 44 PSE
13 X=0? 45 TONE 9
14 GTO 02 46 TONE 9
15 X? 47 RCL 02
16 TONE 5 48 SQRT
17 'N° 49 /
18 ARCL 00 50 "PSE="
19 "+7" 51 ARCL X

20 PROMPT 52 AVIEW
21 ST+02 53 PSE
22 1 54 GTO "PVAR"
23 - 55 LBL O3

24 56 TONE 5
25 ST+ 01 57 TONE 9
26 GTO 00 58 TONE 9

27 LBL 02 59 TONE 5

28 RCL 00 60 "MORE DATA"
29 3 61 AVIEW

30 X>Y? 62 PSE
31 GTO 03 63 GTO "PVAR’

32 RCL 01 64 END

105

requested for the data group at lines 17 to 20. Notice also how the program instr-
uctions controlled as a loop under the LOCAL LABEL 00 (lines 05 to 26) construct both
the numerator and denominator for equation 1 by taking advantage of PRIMARY
REGISTER arithmetic involving REG’s 01 and 02.

Entering a zero when the data request "SD nn?” is displayed signals to the
computer that all available data have been entered, and the calculations of PSD and PSE
(not to be confused with the HP-41 operation PSE which produces a “pause” in
program flow) are to be made. The conditional test X=0?” at line 13 determines whether
the next stage of numeric operations for the equation’s numerator and denominator
are to be made, or whether the calculation of equations for PSD and PSE are to be
calculated (beginning at line 27).

If the calculation of pooled variance is to have any sense, a minimum of 2 sets
of data must be used for the calculation. This contingency is tested as a first step
under the LOCAL LABEL 00. First, it is determined if the number stored in REG
00 (which has so far served as a counter for display control) is at least 2. If it isn’t, no
meaningful calculation can be made. The user is informed of this by instructions in the
program lines 56 to 63 and is requested to provide more data, then incurs the minor
penalty of being taken back to the beginning of the program and having to start over
with data entry. Since only 1 set of data have been entered anyway, this is a minor,
but necessary delay. If data from 2 or more sets have been entered, PSD and PSE are
calculated and sequentially displayed, and the program begins anew for a subseq-
uent calculation. Data in Figure 7.17 show the results of a sample calculation using the
program PVAR.

You've seen in this chapter that often more program lines are devoted to cont-
rolling sequence in program flow than are involved in actual computations. Even for
simple programs, considerable attention must be paid to designing how data are
entered, where calculations are to be made, and how answers are to be formatted,
announced and displayed. Also, you have seen how program flow is controlled
using conditional tests, unconditional branches and LOCAL LABELS in the main
body of the program, as well as in subroutines. The next chapter introduces yet
another programming technique, and a powerful one, for efficiently controlling
program execution, defining where data are required to be entered, and affecting how
answers to computations are displayed. You will learn next how to use FLAGS.

106

Chapter 8

Flags

The basic idea of how FLAGS function in a computer program is implied by the
word itself: flags are signaling devices. With this basic concept in mind, learning how to
control FLAGS in the HP-41 computer and how to use them in a program will be
much easier. A general example will help.

Imagine you're driving along a road and come upon a stretch where construction is
underway. You slow down as you see a workman standing by the side of the road
holding a signal flag. Just off to one side behind him is a large roadgrader which
every once-in-a-while needs to back into your traffic lane. When the grader is
operating on the shoulder of the road, the workman lowers his flag and traffic
proceeds down the unobstructed roadway. When the grader needs to move onto the
road surface, though, the workman raises his flag, signaling traffic to move into
an alternative lane. Whether the detour needs to be taken or not depends on the current
state of the roadway signaled by the workman using his flag.

The workman’s signal flag is always in 1 of 2 positions. It is either 7set” (when it
1s raised) to direct traffic into a side-route, or it is “clear” (when it is lowered)
indicating the road is open and traffic flows down its proscribed lane. Either flag
status (SET or CLEAR) signals a specific condition important to the motorist. The
“either-or” decision signaled by the flag’s status depends on a specific condition to
be encountered at the next stage of the trip. FLAGS work that way in a computer
program too to direct both information and program traffic flow.

There is another feature of how the workman uses his flag which will help under-
standing the use of FLAGS in a computer program. Imagine you've pulled your car off
the road for a while to watch the many different operations at the road construction
site. You'd see that at one time the workman would use his flag to signal traffic flow
around the operations of the roadgrader. After that phase of the project had been
completed and the roadgrader was shut down, the workman might move to a
different location and use his flag to stop traffic so a truck could cross the road. Later,
he might use it to signal directions for loading a piece of heavy equipment on a trailer.
[t’s the same flag, but it is used to signal different situations at the judgment of the
workman.

In the same way that the workman uses his flag at different times to control
many different operations, any FLAG available to you in the HP-41 can be used in
program writing to signal any condition you choose. Even though some FLAGS are
specified to be used for only one function, there are many others which can be used in
connection with just about anything you want.

A FLAG in a computer program operates exactly as does the flag used at the con-
struction site. Each FLAG in your HP-41 computer is either in a SET, or in a CLEAR
status depending on a specific condition in a program, or on that of the computer itself.
You have direct control over the status of many of these FLAGS, but others will be auto-
matically SET or CLEARed for you depending on what accessories you have plugged
into your computer, which mode the computer is in, its battery charge, and many
other conditions. This is all done for you quietly and unobtrusively by internal
operations of the computer. In most cases, you don’t have to be concerned or even
aware of these changes in FLAG status as you go about the business of using the
machine.

Having control over the status of FLAGS, though, give the HP-41 owner con-
siderable power in writing computer programs which are efficient and which run
quickly. This chapter emphasizes how the FLAGS over which you have direct control

107

are used in programming. Figure 8.1. summarizes how your computer’s FLAGS are
numbered, what function they monitor, and how their status is automatically adjusted
when the machine is first turned on.
choosing which FLAGS you decide to use.

FLAG No.

00 to 10

11 to 20

FIGURE 8.1.

FLAG Functions

FLAG Function

General Purpose
User Defined
Special Purpose
User Defined
AUTO On
Printer Enable
Numeric Input
ALPHA Input
Range Error Ignore
Error Ignore
Audio Enable
USER Mode
Decimal
Digit Group
CATALOG
Peripheral
Digit count
FIX
ENG
GRADS
Radians
Continuous ON
Data entry
Partial Key Sequence
SHIFT SET
ALPHA
Low Battery
Message
SST
PRGM
[/0
PSE
Printer

108

Information in Figure 8.1. will be useful for

Comment

Status maintained

Cleared with ON

Cleared with ON
Same as FL55 with ON
Cleared with ON
Cleared with ON
Cleared with ON
Cleared with ON
SET with ON
Status maintained
Status maintained
Status maintained

Status maintained
Status maintained
Status maintained
Status maintained
Status maintained

Cleared with ON

Cleared with ON

SET if connected

Section 8.1. Setting, Clearing and Testing FLAG
Status

The driver coming to the construction site looked at the status of the
workman’s flag and then decided what to do next depending on whether it was raised or
lowered. A FLAG in a computer program serves a similar function. It is a symbol
whose status is tested, and depending on the results of the test, program flow is
appropriately controlled. Much as the workman SET or CLEARed his signal flag
depending on the position of the roadgrader, program FLAGS are either SET or
CLEARed depending on what is happening to whatever function the numbered FLAG
1s designated to symbolize. For example, which calculation will be made next in a
program may depend either on the status of the program itself, or on the results of a
previous calculation. A FLAG can be used to determine either of these circumstances
and will be used to direct subsequent program flow accordingly.

[t is important to know first how FLAG status is controlled and tested before
examining specific examples of how FLAGS are used. Any FLAG has only one of 2
statuses, it is either SET, or it is CLEAR. You SET any FLAG by using the
SHIFTed function ("SF") of the key marked 7”. To SET a FLAG, first turn the
computer ON (the view window will display the current contents of the X STACK REG-
ISTER), press the SHIFT key, then SF. Answer the ALPHA PROMPT "SF _ _” by
keying a 2 digit number to indicate which FLAG you want to SET.

If you have correctly SET the FLAG, the view window will return to the
display of the current contents of the X STACK REGISTER. If you respond to the
ALPHA PROMPT "SF _ _” with a number which is not a correct designation for one of
your computer's FLAGS (see Figure 8.1.), you will see the error message “NON-
EXISTENT”. Asin the sample programs shown later in this chapter, the SF function
1s not only activated directly from the keyboard, but also it can written into a
program to be used in conjunction with either DIRECT or INDIRECT ADDRESSING
techniques. INDIRECT ADDRESSING is described in the next chapter.

To CLEAR a FLAG is just as easy as to SET one. CLEARing a FLAG requires
using the SHIFTed function ("CF”) of the key numbered "8". First turn the computer
ON, press the SHIFT key, then CF. Answer the ALPHA PROMPT "CF _ _” with a 2
digit number designating which FLAG you wish to CLEAR. If the operation was
performed correctly, the contents of the X STACK REGISTER will be displayed
again, if not, you will see NONEXISTENT” in the view window. Similar to the
SF function, CF can be activated either from the keyboard, or built into a DIRECT or
INDIRECT ADDRESSING program statement.

Since FLAGS function to direct program flow automatically depending either
on the status of your computer, or on a previous computation, it may be critical to
know at any one time whether a specific FLAG in a program is either SET or CLEAR.
The computer gives a direct indication in the VIEW WINDOW of the status of its first 5
FLAGS numbered 00 to 04. The digits 0, 1, 2, 3 or 4 appear in the view window just
above the PRGM toggle switch when FLAGS 00, 01, 02, 03 and 04 have been SET.
Each of these digits disappears when a corresponding FLAG is CLEARed. Different
procedures are required to determine the status of any of the other FLAGS, but it’s
easy, and involves simply using a SHIFTed function of the key numbered 9”.

To determine the status of any FLAG, including FLAGS 00 to 04, turn the
computer ON, press SHIFT, then FS?, and respond to the ALPHA PROMPT "FS?_ ~
with a 2 digit number indicating the FLAG whose status you which to determine.
Keying a 2 digit number for which there is no FLAG (see Figure §8.1.), will result in
"NONEXISTENT’ being displayed in the view window. Otherwise you will see “YES”, if
your designated FLAG is SET, or "NO”, if it is not. In keying FS?nn, you are in fact
asking, "Is FLAG nn set?”.

109

When the workman used his flag at the construction site, the signaling device
itself had no intrinsic meaning. But it was valuable as a symbol for designating what
was happening in the operation he was monitoring at the time. Similarly in a
computer program, a FLAG by itself will not directly trigger a particular function, but
it is valuable as a signaling device to designate the status of whatever operation is chosen
for it to monitor. It will serve to indicate a condition. To a great extent it’s up to
you what condition you want any FLAG to indicate.

A decision is made as to what happens next in the program depending on
whether a certain FLAG is either SET or CLEAR. The status of a FLAG is tested, and
program flow is directed exactly in the same way that you have learned to use for the
conditional test X=0? (see Figure 6.4.). As you may recall from the SUM4 program,
the condition of whether the number stored in the X STACK REGISTER is equal to
zero is tested, and if it is, the next line of the program is executed. If it is not, the
next line of the program is skipped, and the following line is executed. It was in
this way that program flow in SUM4 was directed either to request additional data for
calculation, or for the program to display the result of its calculation. Other conditional
tests operated in a similar way in the other programs presented so far.

The conditional tests for FLAG status (SET or CLEAR) are performed in a
very similar way to those described in Section 6.4., and program flow is directed in
exactly the same way depending on the results of the test. For example, in response
to the conditional test FS?00, if FLAG 00 is set, then the next line of the program is
executed, but it will be skipped if FLAG 00 is not SET. This operation is demonstrated
for you in examples to follow. You will see that the "Do-if-True” rule works in con-
nection with the conditional tests determining whether a FLAG is SET or CLEAR,
just the same way as it does for X=0?7, X<Y?, and the other conditional tests involving
the X STACK REGISTER.

Some of the conditional tests described in Section 6.4., (such as, X=Y? and
X=07) were keyed as program lines simply by using the SHIFTed functions of appropriate
keys shown of the keyboard. Others (such as, X<Y? and X+Y? required entering the
program line using an XEQ ALPHA (symbols for the conditional test) ALPHA
statement. Similarly, FLAG status can be tested in another way than the FS7nn desig-
nation on the keyboard above the key numbered "9”. You can test whether a FLAG is
CLEAR (by FC™’nn), in addition to testing whether it is SET (by FS?’nn). As shown by
examples presented later, whether FS?7nn or FC?’nn is the appropriate conditional test to
make for a program condition is determined by the context of the program itself.
Several examples to come will illustrate this.

Asking the question if a particular FLAG is set directly from the keyboard, or
writing a program line to construct the conditional test FS?nn required only using the
SHIFTed function of the key numbered "9”. Writing a program line for FC?nn is quite
different. To try it, turn the computer ON, press XEQ, then ALPHA, next key "FC?”
and press ALPHA again. Key 2 numbers in response to the ALPHA PROMPT "FC?_
_” to indicate the FLAG number whose status you want to check. You will receive
either the message “YES”, indicating your designated FLAG is CLEAR, or "NO”,
showing it is not. If a particular FLAG is tested to be not CLEAR, then, of course, it
must be SET, and vice versa.

Special attention is required to use FLAGS accurately. As shown in Figure
8.1., the status of some FLAGS is retained even though the computer is turned off,
whereas that for others is altered when you press the ON toggle. Also, some FLAGS
designate specific information and can be used for no other purpose. For example,
FLAG 55 is automatically SET when a printer is connected to your computer, and
is CLEAR when no printer is used. Advantage will be taken of the information
provided by the status of FLAG 55 in a program designed either to display or print
interim and final calculations (a sample program is presented later on), but normally
this FLAG can be used for no function other than to indicate whether a printer is an
available accessory or not.

110

The program presented in the next section demonstrates how FLAGS are used
not only for generally controlling the flow of calculations, but also for determining
when certain data are required to be entered from the keyboard. How program flow will
be directed and which ALPHA PROMPTS will be displayed will depend on the status of
the computer and what calculations have already been made. Using FLAGS makes this
type of conditional testing and control quite straightforward and easy, and provides
an extremely powerful tool for writing programs.

Section 8.2. FLDEMO

The program outlined in Figures 8.2. to 8.4. is designed to demonstrate how
FLAGS are used to control program flow. The program is described first in general
terms, then reviewed for specific numerical calculations. As in many of the earlier
examples, the program FLDEMO is presented to be arithmetically simple so that
programming points can be made more clearly.

FLDEMO (Figure 8.2.) is constructed to calculate either a value for A using
Equation 1, or one for E using Equation 2. Each of these equations involves adding
only 3 numbers (symbolized by the letters B, C and D for equation 1, and B, Fand G

Figure 8.2.

FLDEMO

Problem Statement:

This program is designed to calculate the values A and E in the listed

equations using FLAGs so that constants need to be entered only once in a

calculation series.

Equations:

A=B+C+D (1)

E=B+F+G (2)

Where:

AE = values to be calculated
B,C, F = constants for single calculation
D,G = variables in all calculations

FLAG Designations: Data Storage:

FLAG If SET If CLEAR REG Data

00 B Stored no data 0 2
01 C Stored no data 0 E
02 F Stored no data

111

Figure 8.3.

Flow Diagram: FLDEMO

(FLDEMO)

no

TRY
AGAIN

 SF B80

CLEAR
FLAGS

SF 80g

\

Figure 8.4.

Program Listing: FLDEMO

O01 LBL "FLDEMO” 24 GTO 'FLDEMO" 47 ARCL X 70 TONE 5
02 BEEP 25 TONE 9 48 AVIEW 71 "ENTER B°
03 CF 00 26 "TRY AGAIN’ 49 PSE 72 PROMPT
04 CF O1 27 AVIEW 50 GTO 00 73 SF 00
05 CF 02 28 PSE S51 LBL O03 74 STO 00
06 LBL 00 29 GTO 00 52 FC? 00 75 RTN
07 TONES 30 LBL Of 53 XEQ 04 76 LBL 05
08 AON 31 ASTOY 54 FC? 02 77 TONE 5
09 "SOLVE? 32 RTN 55 XEQ 06 78 "ENTER C’
10 PROMPT 33 LBL 02 56 RCL 00 79 PROMPT
11 ASTO X 34 FC? 00 57 RCL 02 80 SF 01
12 AOFF 35 XEQ 04 58 + 81 STO 01
13 “A” 36 FC? 01 59 TONE 5 82 RTN
14 XEQ O1 37 XEQ 0S 60 "ENTER G’ 83 LBL 06
18 X=Y? 38 RCL 00 61 PROMPT 84 TONES
16 GTO 02 39 RCL 01 62 + 85 "ENTER F~
17 FE 40 + 63 TONE 9 86 PROMPT
18 XEQ O01 41 TONES 64 "E=T 87 SF 02
19 X=Y? 42 ENTER D” 65 ARCL X 88 STO 02
20 GTO 03 43 PROMPT 66 AVIEW 89 RTN
21 "NEW" 44 + 67 PSE 90 END
22 XEQ O1 45 TONE 9 68 GTO 00
23 X=Y? 46 "A=T 69 LBL 04

for equation 2), and both use the same number (variable B) in making a calculation.
The program makes several assumptions about entered data. For example, it assumes
in using Equation 1 that once the program is initialized and numbers for B and C have
been entered, they are the same for all subsequent calculations until the program is
started over again by XEQ "FLDEMQO”. Variable D, however, will change for each cal-
culation whether the program is started over again or not. Also, it is assumed in using
Equation 2 that once the program is initialized and the numbers for C and F have been
entered, they are the same for all subsequent calculations. Variable G, however,
will change for each calculation. New values for all variables are required when the
program is started over again.

Figure 8.2. shows which PRIMARY DATA STORAGE REGISTERS will be used
to store data entered for variables B, C and F. It also shows which FLAGS are used to
signal whether data have been entered for these variables. It is convenient in designing
this program to use similarly numbered FLAGS and REGS for correspondingly
numbered data. For example, When variable B is entered, FLAG 00 will be set, and
the number for B will be stored in REG 00. Correspondingly numbered data
storage locations and FLAGS, of course, are unnecessary. Data can be stored in
many different locations and many different FLAGS can be used with no
requirement for them to be numerically related. It is essential, though, that one
remember what is stored where and what FLAGS are used to signal what program
status. Record forms similar to those shown in Figure 5.7. are valuable for keeping
all this information straight.

113

The flow diagram for FLDEMO is shown in Figure 8.3. Since the choice has
been made (see Figure 8.2.) to SET FLAGS 00, 01 and 02 to designate when data for
variables B, C and F have been entered, it is important these FLAGS are CLEAR at
the beginning of a new calculation. A sequence of statements "CF00, CFO1, CF03”
early in the program assures this initial status. Continuing with the program flow shown
in Figure 8.3., an ALPHA PROMPT is next presented to ask whether the cal-
culation of A (using Equation 1) or E (using Equation 2) is to be made, or whether a new
calculation is required.

If A is selected for solution, Equation 1 will be used which requires data for B, C
and D. The program first determines the status of FLAG 00. If FLAG 00 is clear (as
it would be, of course, for the first calculation), then data are requested for variable
B. When FLAG 00 is SET for a second calculation (indicated by its not being
CLEAR at the conditional test of FC?00), it signals that data have already been
entered for variable B and stored in REG 00. Data for B are then not requested.

In the solution of A, program flow next determines the status of FLAG 01. If
FLAG 01 is clear, indicating no data have yet beenentered for variable C, these data
are requested. If FLAG O01 is not CLEAR (and therefore must be SET with data for
variable C stored in REG 01), then no data for C are requested, and equation | can be
solved once a number for variable D has been entered. No FLAG is used to determine
if variable D has been entered, since one of the assumptions in this program is that
data for variable D need to be renewed for each calculation. After Equation 1 has
been solved, the calculation of A is displayed, and the program controls for the ALPHA
PROMPT "SOLVE?" to be displayed again.

If Equation 2 is chosen for calculation, the selections for data entry for variables
B and F follow a similar pattern as in the evaluation of Equation 1. Also similar to
program design for solving Equation 1, no FLAG is used to determine if variable G has
been entered, since this is obligated to be a new number each time a calculation is
made for Equation 2. After Equation 2 has been solved, the calculation of E is
displayed, and program returns to place the ALPHA PROMPT “SOLVE?” in the view
window.

If a new calculation is required, NEW?” is keyed into the computer in response
to the request "SOLVE?”, and program flow is directed to the program's GLOBAL
LABEL from which first FLAGS 00, 01 and 02 are CLEARed, and then "SOLVE?" is
displayed again. Were some letter, word or symbol other than A”, "E” or "NEW”
keyed into the computer in response to "SOLVE?”, program design would display "TRY
AGAIN”, then display "SOLVE?" once more.

Following the flow diagram in Figure 8.3., predict how data requests would be
sequenced the first time the program FLDEMO is run. When the program is initialized,
SOLVE?” asks which calculation is to be made. If A” is keyed, then "ENTER B?”
would be displayed, and after a number had been keyed in response to this ALPHA
PROMPT and R/S is pressed, "ENTER C” would be displayed. When a number is
keyed and entered with R/S, "ENTER D” is displayed. As soon as a number for D is
entered, A is calculated and the solution displayed, then after a PAUSE, "SOLVE?"
is once again in the view window. If A” is then keyed again and entered with R/S,
only "ENTER D” would be displayed, and when a number has been entered, the
solution for A is displayed, and “SOLVE?” appears again. Thanks to the option of
being able to use FLAGS, the computer determines for itself what information it
has already: on hand for a calculation, and can “decide” whether or not to ask the
operator for data.

As the solution of A is made the second time, data for B and C are not required
to be entered, since they are retained in memory (REGS 00 and 01), and FLAGS 00
and 01 are SET to indicate this status. After A is calculated again, were "E” keyed in
response to "SOLVE?”, "ENTER F” would appear at the first data request, since data
for B have already been entered for the earlier calculation of A. Once data for F (and

114

then G) have been entered and Equation 2 solved for E, subsequent solutions of
Equation 2 would begin with "ENTER G”, because data for variables B and F are now in
storage (REGS 00 and 02), and FLAGS 00 and 02 are correspondingly SET to
indicate this status and to direct program flow accordingly.

Try a numerical example for FLDEMO. To get started, key XEQ "FLDEMO”
and in response to "SOLVE?”, press A then R/S. When "ENTER B” is displayed, key
13.6, press R/S. When "ENTER C” is displayed, key 12.9, press R/S. Key 10.2
and press R/S in response to ENTER D”. A is calculated as 36.7 and after a pause,
"SOLVE?" is displayed again. Press A, then R/S. The computer now asks only for a
new value of D. Key 19.6 and press R/S to see the calculation of A as 46.10.
Selecting A for a third calculation and keying 14.0 in response to ENTER D” gives
a new solution of A as 40.5. All subsequent calculations of A would require only new
values of D.

Keying E in response to “SOLVE?” displays "ENTER FF”. Key 19.1, press
R/S, key 12.0 in response to "ENTER G”, then press R/S to see the first cal-
culation of E as 44.7. When "SOLVE? is displayed again, press E, then R/S and
enter a value for G of 18.4 using R/S and see the second calculation of E as 51.1 in
the view window. Press E, then R/S, next key 4.5, press R/S and read 37.2 as
the next solution of E. All subsequent calculations of E will require only new
values of G. FLAGS did your thinking for you about previous data entries and about
what ALPHA PROMPTS were required for new data.

The reader is encouraged to develop simple programs using FLAGS which would
not only follow the sequence of data entry, but will also make appropriate choices for
appended units in, for example, the calculation of an equation solving for temper-
ature which could be displayed as, "T=NN.NN C” or "T=NN.NN F” in the same
program. For another example, write 2 programs which would calculate A=B+C if B is
less than 50, but will calculate A=B/C if Bis greater than 50, and will calculate A=BxC
if B=50. Write one program which uses conditional tests to compare numerical values
for B, but write the second which uses FLAGS to make the required decisions.

How most of the program lines are keyed for the FLDEMO program (Figure
8.4.) is already familiar from earlier sample programs. Also, it should be clear from
Section 7.3. how LOCAL LABELS 04,05 and 06 are structured as subroutines to
request the input of numerical data. It may not be apparent, however, how program
lines are constructed to receive an ALPHA statement in response to the data request
"SOLVE?”. Different from a request for numerical data, the flow diagram in Figure
8.3. indicates that the ALPHA PROMPT “SOLVE?” asks that the letters A” or "E”, or
the word "NEW? be entered.

In anticipation of the entry of ALPHA, rather than numerical data, the inst-
ruction at line 08 places the computer into its ALPHA mode automatically as this step is
executed in program flow. The statement AON” (keyed as XEQ ALPHA AON
ALPHA), indicating "Alpha On”, performs the same function as were you to press the
‘ALPHA toggle switch, and appropriately redefines each key (see Figure 2.4.).
Whatever ALPHA symbol is entered in response to “SOLVE?” by first pressing corres-
ponding keys (then R/S) is stored as an ALPHA statement in the X STACK REG-
ISTER (by ASTO X at line 11), and first tested against the ALPHA symbol A” (entered
at line 13 and stored as an ALPHA statement in the Y STACK REGISTER by the inst-
ructions in LBL 01) using X=Y? at line 15. This conditional test compares the
contents of the X and Y STACK REGISTERS, whether they contain either numerical
data, or ALPHA statements. After the ALPHA symbols A, E, or NEW are stored in
the Y STACK REGISTER (using ASTO, of course), the computer is taken out of the
ALPHA mode automatically by the instruction "AOFF” at line 34.

If the X and Y STACK REGISTERS contain identical data (alpha or numerical),
the next line of the program is executed (which in this example takes the program to

115

LBL 02 where the calculation of Equation 1 is begun), or if they are not identical,
line 16 is skipped. The symbol "E” is then entered into the Y STACK REGISTER and
tested against whatever ALPHA statement had been previously stored in the X
STACK REGISTER. If ”"E” had not been entered in response to "SOLVE?”, the
program tests to see if "NEW?” had been the response to the first ALPHA PROMPT. If
not, "TRY AGAIN?” is displayed for a second or two before “SOLVE?” is again in the
view window.

Reviewing the program FLDEMO in algebraic terms is one thing, seeing it in
action with the entry of numerical data is something else, and each type of review shows
different features of the program’s design. After you have keyed the program steps
listed in Figure 8.4., try running the program several times with different numbers, note
how data are requested, then key "NEW" in response to SOLVE?” and run the program
again. Using such a simple program as FLDEMO to understand how FLAGS are used
to control the sequence of data requests, calculations and answer displays will be
valuable in understanding how the technique of FLAGS can be of value in designing
your own more complicated programs.

Section 8.3. Using "Non-User Defined" FLAGS

As shown in Figure 8.1., FLAGS 00 to 10 are considered to be "general purpose
user” FLAGS, and are available for discretionary use. Whether you SET or CLEAR
them by keyboard operations or by appropriate instructions in program lines, their
status is retained by the computer’s continuous memory, and you can depend on their
being in the same SET or CLEAR position when you turn your computer ON a second
time. In contrast, FLAGS 11 to 20 are "special purpose user” FLAGS, and although
you can SET or CLEAR them, they are automatically CLEARed each time the
computer is turned ON. Figure 8.1. lists other FLAGS in your computer over whose
status you have only indirect control, but which you can use, nonetheless, to your
advantage in program design. The following sample programs illustrate uses of these
options.

Programs LOCK1, LOCK2, LOCK3 and LOCK4 listed in Figure 8.5. illustrate
the use of one of the "special purpose user” FLAGs (FLAG 11) for different ways to
prohibit others from using your computer. Each program uses FLAG 11 which controls
the automatic execution of a program in the computer's MAIN MEMORY when it is
first turned on. Each of these programs lists "SF 11” as an instruction line, and each
uses the built-in program “OFF” to turn off the computer automatically, but different
flow in each produces quite different results as each program is initialized. LOCKI is
the simplest of these examples.

None of the lines in the short LOCK] program should be difficult to key-in,
if you have been able to enter previous programs. Note that the instruction "OFF? in
line 3 (keyed as XEQ ALPHA OFF ALPHA) is not the same as the instruction AOFF
used at step 34 in the FLDEMO program (see Figure 8.4.). AOFF brought about trig-
gering off the ALPHA toggle to take the computer out of the ALPHA mode, whereas the
instruction OFF turns off the computer itself.

After LOCK has been loaded as a program into your computer, execute the
program (by XEQ "LOCK 1”), and watch the view window. As soon as you have pressed
ALPHA as the last instruction for executing the LOCK! program, the computer
automatically is turned off and the view window goes blank. Press the ON toggle in an
attempt to use your computer again, and note that except for a brief display of the
PRGM annunciator, the view window remains blank, and in fact the computer remains
off. The computer has now been disabled by the LOCKprogram.

116

Figure 8.5.

Program Listing: The LOCK Programs

LOCKE LOCK4:

01 LBL "LOCKT” 01 LBL "LOCK4"
02 SF 11 02 LBL 00
03 OFF 03 "TOUCH CODE
04 GTO "LOCK" 04 AVIEW
05 END 05 123

06 PSE
LOCK2: 07 X=Y?

08 GTO Of
01 LBL "LOCKZ2" 09 TONE 9
02 LBL 00 10 © LOCKED’
03 ° LOCKED’ 11 AVIEW
04 AVIEW 12 CLX
05 PSE 13 PSE
06 SF 11 14 SF 11
07 OFF 15 OFF

08 GTO 00 16 GTO 00
09 END 17 LBL 01

18 TONE 9
19 CLX

LOCKS: 20 "RDY FOR USE’
01 LBL "LOCK3" 21 AVIEW
02 SF 11 22 PSE
03 "YOU BROKE IT" 23 CLD
04 AVIEW 24 END
05 PSE
08 OFF
07 GTO LOCKS’
08 END

You have 3 choices in being able to get a computer that works again. One way
is to buy a new computer. A second way is to send S50 in unmarked bills of any negot-
able currency to the address listed at the front of this book to receive a code breaker
program. The third way is to read the next sentence. Hold down the R/S key while
pressing the ON toggle allows you access again to your keyboard. Either pressing the
R/S key again, or executing the LOCK program again once more secures your
computer.

When the LOCK1 program is operating, having FLAG 11 set is a signal to
activate automatically whatever program is on-line when the ON toggle is pressed. In
the case of the LOCK]! program, operation is only to turn off the computer. The
LOCK?2program operates in a similar fashion to LOCK, but rather than just turning
off the computer, the message “LOCKED” is first displayed in the view window for a
short time. The LOCK4 program displays a more intimidating message, and the

117

program is configured somewhat differently than LOCK2, but its effect is similar.
LOCK4 uses FLAG 11 in a similar way to the other LOCK programs, but

adds several new features. When LOCK4 is executed, the message "TOUCH CODE” is
displayed, and for a short time the keyboard is open to accept either a numeric or an
alpha entry. After a second or two, whatever has been entered into the X STACK
REGISTER is compared (X=Y? in line 7) to the contents of the Y STACK REGISTER.
In the version of the LOCK4 program shown in Figure 8.5., the number 123” is in the
Y STACK REGISTER to serve as the basis for this comparison. If the number 71237
has been entered in response to the alpha prompt "TOUCH CODE”, then program flow
branches to LBL 01, the message "RDY FOR USE” is displayed momentarily, then
with the display of the contents of the X STACK REGISTER, the computer is ready
for normal use.

If either some number other than "123", or if an ALPHA statement had been
entered during the access time following "TOUCH CODE”, the message "LOCKED” is
displayed for a moment, and then the computer is turned off. Each time the
computer's ON toggle is pressed, "TOUCH CODE” will be displayed and the
computer will once again automatically turned off until the correct combination” is
entered. Line 5 can be rewritten to contain any number you wish to use for your
own “combination lock” of the computer. Adding additional lines similar to line 6
(PSE) provides more time to enter the lock-breaking code. It might be interesting to
incorporate AON and AOFF statements in the program so its combination is an entered
word rather than a number.

Section 8.4. STAT

The STAT program is presented to demonstrate how functions built into your
computer (see Figure 3.4. for a listing of CATALOG 3) are tapped by a program, and
how a non-user defined flag (FL 55; see Figure 8.1) is used to control the flow of
solutions to equations. A statement of the problem for STAT and its equations are
shown in Figure 8.6. Figure 8.7. lists the flow diagram, the program list and a sample
problem.

The STAT program not only uses the computer’s built-in statistical registers,
but also depends on its MEAN and SDEV functions listed in CATALOG 3. In order to
use these functions and the STAT program, first provide the storage register space to
accept interim calculations (XEQ “SIZE” 017). The instruction at program line §
(Figure 8.7.) is a necessary first step for clearing the statistical registers. Data are
entered from the keyboard in response to the ALPHA PROMPT at line 8, and
whatever number is entered, it is first tested (at line 10) to see if it is equal to zero. If it
1s not, program flow continues at line 12 to include the number in the statistical
calculations. (Hint: The statement at line 12 is keyed as: XEQ, "SHIFT, Z, SHIFT,
+”. The symbol "L” is obtained using the SHIFTED function of the XoY key; see Figure
2.4.)

Program flow is then directed back to the LOCAL LABEL 00 at line 6 by GTO
00 at line 13, where a request is displayed to enter the next piece of data. This
sequence continues for the entry of each of Karen’s measurements, until all of them
have been entered. She then enters a zero in response to "ENTER DATA”. Since the
conditional test X=0? at line 10 is now answered “yes”, program flow is directed to
LBL O01 where calculations begin using the data which had been previously entered into
the statistical registers. The first of these calculations is to use the function MEAN
listed in CATALOG 3 (see Figure 3.4.). The statement at line 15 is keyed as: XEQ,
MEAN”. The calculation of SDEV (line 19) also uses a function in CATALOG 3,
and is written into the program in an analogous way.

The calculation of the statistic "standard error” cannot depend directly on a

118

Figure 8.6.

STAT

Problem Statement:

Karen Kareful is a production control engineer who needs to determine
from time-to-time how uniformly long are pieces of material cut auto-
matically by the many different machines under her supervision. She
wrote the program STAT to provide this information. It calculates the
average (MEAN), standard deviation (SDEV) and standard error (SE) for
an indefinite number of samples, and also displays the number (N) of
items she has included in her test batch. Sometimes Karen makes
these calculations at her desk where she has an HP-82143 printer, but
often she needs to have these data right at the machines themselves where
the printer is not available.

Equations:

MEAN = ————
N

3 X,? _ Ny:

SDEV = —_—
N-1

SDEV
SE =—

N-1

Where:

N;,N,,... Ny = data entries

N = number of data entries
MEAN = sample average
SDEV = standard deviation of sample
SE = standard error of sample

function in CATALOG 3, but it is casy enough to do since SDEV has just been deter-
mined. Obtaining data to display the number of test picces mcasured (IN) extracts
information from REG 16 which is used by the built-in statistical program.

As indicated in the problem statement in Figure §8.6., sometimes the STAT
program is used in association with a printer, but often one is not available. The
program’s construction allows for this contingency, and depends on one of the non-
user defined FLAGS of the computer to determine how the solution to calculations
will be displayed. Figure 8.1. shows that FLAG 55 is either SET or CLEAR depending
on whether or not a printer has been connected through one of the computer’

119

Figure 8.7.

Flow Diagram and Program List: STAT

Flow Diagram: Program Listing: Sample Problem:

(STAT) 01 LBL "STAT" 26 1 item length (in)
02 FIX 2 27 -
03 BEEP 28 SQRT 1 39.21

— 04 CLRG 29 / 2 38.98
05 CLL 30 "SE=° 3 39.12

NT CALC. 06 LBL 00 31 XEQ 03 4 39.89
SDEV 07 TONE 5 32 FIX 0 5 39.00

 08 "ENTER DATA" 33 CLA
09 PROMPT 34 RCL 16 MEAN = 39.24

NEXT 10 X=0? 35 XEQ 02 SDEV = 0.38
N sore 11 GTO 01 36 "N=" SE =0.19

12 ©. 37 XEQ 03 N=35
13 GTO 00 38 GTO "STAT

yeas

14 LBL O1 39 LBL 02
CALC. 15 MEAN 40 TONE 9

16 XEQ 02 41 TONE 9

17 "MEAN=" 42 RTN

18 XEQ 03 43 LBL 03
CALC. ag 19 SDEV 44 ARCL X
MEAN 20 CLA 45 AVIEW

21 XEQ 02 46 FS? 55

 22 "SDEV=" 47 RTN
23 XEQ 03 48 STOP

Cam) | 24 xEQO2 49 RTN
25 RCL 16 50 END

accessory ports. The conditional statement FS?55 at line 46 of the STAT program
(Figure 8.7.) tests for the presence of the printer. If one is connected, each solution is
printed, and the program automatically and without stopping progresses to the next
calculation in the series. The program stops only at the PROMPT statement (line 9)
when it has been reinitialized by the statement at line 38.

If a printer is not connected at the time of a calculation, the conditional statement
FS?55 is not true (FLAG SS is CLEAR), and the STOP statement at line 48 holds the
solution of the previous calculation in the view window until Karen has time to read and
record it. She then presses the R/S toggle key, and the program starts to run again.
The next calculation is then made,and its solution is displayed continuously until R/S is
once again pressed. At the end of the last calculation, pressing R/S returns the
program to its own GLOBAL LABEL from which a new set of data for a subseq-
uent calculation are requested. After the program STAT is keyed into the MAIN
MEMORY, try the sample problem shown in the insert in Figure 3.7.

This is a good time to go back and read Section 2.3. if you skipped it earlier.
Among other things, it describes how the USER mode of the computer provides
another option for calculating MEAN and SDEV. Using both “general purpose user
flags” (FLAGS 00 to 10), "special purpose user flags” (FLAGS 11 to 20) and FLAGS with
designated functions (FLAGS 21 to S55) provide considerable power and control in
writing programs. Along with INDIRECT ADDRESSING techniques described in the
next chapter, they allow not only for substantial flexibility in program design, but
also considerable efficiency in program flow.

120

Section 8.5. FLAGS at Work

FLAGS in a program work at their best when they take over complicated sorting
and decision making tasks. The more complicated the set of problems, the more
valuable are the functions which FLAGS perform. The sample program entitled,
BILL” described in Figure 8.8. shows how FLAGS might be used to take charge of
routine, but involved decision making.

Similar to the FLDEMO program (Figures 8.2. and 8.4.) advantage is taken
in the BILL program of both FLAGS and PRIMARY STORAGE REGISTERS as HP-41
features. As an alternative to using the instruction CLRG to clear all data storage
registers, a zero is stored (lines 03 to 05) only in those 2 REGISTERS (REGs 00 and
01) used in this program. Early in the program (lines 06 to 08) the initial status of
FLAGS 00, 01, and 02 is guaranteed by selectively clearing them.

There is no built-in function in the HP-41 similar to CLRG which will clear all,
or even more than 1, FLAGS. Were, for example, FLAGS 00 to 10 used in a
program, the initial status of each would have to be set by "CF nn” or "SF nn”
statements as individual program lines. The next chapter, though, gives examples of
how INDIRECT ADDRESSING can be used to complete such a laborious process
quickly, easily and with only a few lines of program instruction. Were FLAGS 11 to
20 used in a program, no specific statements would be required to set them to CLEAR
when the computer is first turned on, as described in Figure 8.1.

Two kinds of data are requested in the first 37 lines of the program BILL. One is
the familiar request for numerical data which will serve as the basis for calculations.
These data are requested by instructions in lines 28 to 35. A new kind of data,
though, are also required. These are the conditions under which calculations will be
made, and are requested in lines 11 to 23. In contrast to the numerical data which
are stored once they are entered into the HP-41 keyboard, data defining conditions are
used to set one or more of the 3 FLAGS used in the program. Testing the status of
each of these FLAGS serves to direct program flow appropriately for a correct cal-
culation of the customer’s costs.

The numerical calculations in BILL are simple. But the decisions to be made
for the calculations are not, as described in the problem statement in Figure 8.8.
FLAGS free the user of the program, though, from any jobs other than just
answering data requests accurately. The job of keeping track of who pays how much
under each of the conditions of repair in the sample problems (Figure 8.9.) is handled
swiftly and competently by the program’s use of FLAGS.

Figure 8.8.

FLAGS at Work

Problem Statement:

Tom Tappet has operated a prosperous automobile dealership and repair
garage for 40 years. Part of his business success is because he provides
special options for his customers in addition to his quality workman-
ship. On car maintenance, for example, he charges for labor, but not for
parts if any repair is made under his 3 year warranty, regardless of the
car’s age. Also, he gives a 10% discount to repeat customers (those who've
come to his shop more than 3 times in the past 2 years), but he charges a
surcharge of 5% if a non-warranted repair is made on a car older than
5 years. If a customer’s bill is greater than $450, Tom pays the 4% state
sales tax. If it werent for the HP-41 computer, such a complicated
billing procedure would be awkward, but using the BILL program, it’s
easy, as shown by the examples in Figure 8.9.

Program Listing:

01 LBL "BILL" 24 5 47 XsY? 70 FS? 00
02 FIX 2 25 X<Y? 48 GTO 07 71 RTN
03 0 26 SF 02 49 RCL 00 72 RCL 00
04 STO 00 27 TONE 5 SO .04 73 .05
05 STO Of 28 "LABOR?" S1 « 74 XEQ 05
06 CF 00 29 PROMPT S52 RCL 00 75 RTN
07 CF 01 30 STO 00 53 + 76 LBL 03
08 CF 02 31 FS? 00 54 STO QO 77 RCL 00
09 BEEP 32 GTO 06 55 LBL 07 78 04

10 AON 33 TONE 5 S56 RCL 00 79 XEQ 05
11 "WARR(Y/N)?" 34 "PARTS?" S7 TONE 9 80 RTN
12 XEQ 04 35 PROMPT S8 BILL=" 81 LBL 04
13 X=Y? 36 ST+00 S9 ARCL X 82 PROMPT
14 SF 00 37 LBL 06 60 AVIEW 83 ASTO X
15 TONE 5 38 FS? 01 61 PSE 84 "Y"
16 "REPEAT(Y/N)?" 39 XEQ O01 62 GTO "BILL 85 ASTOY
17 XEQ 04 40 FS? 01 63 LBL 01 86 RTN
18 X=Y? 41 XEQ 02 64 RCL 00 87 LBL OS
19 SF 01 42 RCL 00 65 .10 88 «

20 AOFF 43 RCL 01 66 CHS 89 ST+ 01
21 TONE 5 44 + 67 XEQ 03 90 RTN
22 "AGE(YR)?" 45 STO 00 68 RTN 91 END
23 PROMPT 46 450 69 LBL 02

FLAG If SET If CLEAR REG Data

00 warranty no warranty 00 Accumulated bill
01 repeat new customer 01 % adjustments

02 age: 5 yrs+ age: <5 yrs

122

Figure 8.9.

Sample Problems: BILL

Problem No. 1:

Frank and Ann Stein bought a new car 3 years ago and have had a con-
tinuing problem with it stalling in traffic in hot weather. They’ve taken it
to several garages, but the problem continues. They finally bring it to
Tom who replaces a fuel injector part which costs $82.50 at a labor charge
of $53.00. The car now runs fine. The bill was: $140.92. (Hint:
warranty” no; “repeat™ no; “age”: 3 yrs; customer pays tax)

Problem No. 2:

Larry Lender, the town librarian, has taken his 1952 DeSoto to Tom’s
garage every 6 months for a check-up ever since he bought it new. It
usually needs just a tune up, but this time a repair is required. The car is
back on the road after replacing $620.10 worth of parts at a labor
charge of $419.12. The bill is: $987.26. (Hint: ”warranty™ no;
“repeat” yes; “age”: 36 yrs; Tom pays tax)

Problem No. 3:

Mr. Lender’s car is still running rough only 4 months after Tom’s last
repair of it. Another series of tests shows that a defective replacement
part costing $65.00 had been used. It requires $32.50 in labor costs to
install a new one. The bill is: $30.42. (Hint: “warranty” yes; “repeat”
yes; no charge for parts, but customer pays tax)

(BILL)

WARFT Sel SF 00 \ LABO

CEPTel SF 31 \PARTS/

COMP.
AGE™ BILL

Flow Diagram:

Chapter 9

Indirect Addressing

The best part has been saved for last. The technique of INDIRECT ADD-
RESSING is powerful and interesting. It gives many advantages both for the efficient
use of program space in the computer and for how rapidly a program can be run. It is,
for example, an economical and useful way to input, store, retrieve and perform an
operation on a sequence of numbers or alpha data. Also, it can be used to perform
arithmetic, branches and flag test operations. This chapter shows how such operations
are achieved using a repetitive string of similar instructions in which INDIRECT ADD-
RESSING statements provide the controlling information.

Some people find INDIRECT ADDRESSING to be complicated and confusing
when first encountered. But they find after a little practice that the technique is not all
that hard to use and it soon becomes indispensable, especially as program construc-
tion grows to be long and complicated.

INDIRECT ADDRESSING would have had a valuable application, for example,
in the SOLVX program shown in Figure 7.2. This program required the entry of 6
independent variables (N1 to N6) which were requested by a series of alpha prompts.
The way this program was structured for Figure 7.2. obligated using 26 program lines
for data entry. You will learn in the next few sections how to input data like this with
many fewer program lines using INDIRECT ADDRESSING. Also, you will see how
programs involving other sequential operations like setting and clearing flags, storing
data in STACK REGISTERS and in PRIMARY STORAGE REGISTERS are
shortened by INDIRECT ADDRESSING. By no means least, you will learn, too, how
to use the EXTENDED DATA STORAGE REGISTERS. You may recall from section
3.3. that data are stored in and retrieved from the EXTENDED DATA STORAGE
REGISTERS only by the procedure of INDIRECT ADDRESSING.

How INDIRECT ADDRESSING works in a program will be easier to see if one
first forms a concept of how an analogous process is used in everyday life. A form of
INDIRECT ADDRESSING takes place, for example, when a letter is sent to someone
with an ”in-care-of” statement on the envelope. If the letter is addressed, "Person B, c/o
Person A”, Person A is the one to whom the letter is sent directly and who is relied
upon to relay it secondarily, or indirectly, to Person B. In a similar fashion,
Person A’s location could serve as a directly addressed site to send letters indirectly to
Persons C, D, E, etc. were envelopes labeled, "Person C (D, E, etc.), c/o Person A”.

In each example, Person A’s address serves as the direct one, and Persons B,
C, D, E, etc. are INDIRECTLY ADDRESSED through it. There is a sequence of 2
instructions in each example. The first is to identify the DIRECT ADDRESS ("Person
A”) and the second is to designate the location for the INDIRECT ADDRESS ("Person
B, C, D”, etc.). A similar convention will be used in writing program lines for
INDIRECT ADDRESSING.

Section 9.1. Manipulating the Contents of the
PRIMARY STORAGE REGISTERS using DIRECT
ADDRESSING and INDIRECT ADDRESSING

The first part of this section provides a short review of the techniques for storing
and recalling data using DIRECT ADDRESSING techniques. You learned from section

124

3.1.2. how to enter data directly in the STACK REGISTERS by STO ST nn, and
learned from Section 3.1.4. how to recall data from those memory locations (using
RCL ST nn). Also, you learned how to store and recall data from the PRIMARY
STORAGE REGISTERS using STO nn and RCL nn instructions, as well as how to
perform arithmetic operations using ST+ nn, ST- nn, ST+*+ nn and ST/ nn. Figure
9.1. summarizes the bases for these operations of DIRECT ADDRESSING of the
PRIMARY STORAGE REGISTERS.

A short exercise: First create 10 PRIMARY STORAGE REGISTERS from the
MAIN MEMORY by keying XEQ “SIZE” 011. To follow the procedure summarized in
Figure 9.1., first key a number, 7528.2” for example, into the X STACK REG-
ISTER. The next step in Figure 9.1. is the instruction STO 03 which copies the
number from the X STACK REGISTER to store it in REG 03. Erasing the contents of
the view window and completing the instruction RCL 03 copies the number stored in
REG 03 back into the X STACK REGISTER. This process has been used several
times in the storage and recall of numbers in the PRIMARY STORAGE REG-
ISTERS in many of the previously presented examples. The number manipulated in this
way remains, of course, both in X STACK REGISTER during the storage operation and
in REG 03 during the data recall operation. Only a copy of it is transferred to
the designated new location. The procedures summarized in Figure 9.1. are
examples of DIRECT ADDRESSING techniques.

Figure 9.1.

DIRECT ADDRESSING of
PRIMARY STORAGE REGISTERS

Storing Data Recalllng Data

PRIMARY PRIMARY
X STACK STORAGE X STACK STORAGE

REGISTER REGISTERS REGISTER REGISTERS

2a 3a

528.2 sS28.2

a1 ’ a1

22 a2

a3 23

S28.2 s528.2

STO B83 24 RCL B23 B24

=4] 8s

a8 a8

TF
—_ A]

=1=] S8

99 99
125

The procedures for INDIRECT ADDRESSING using the PRIMARY

STORAGE REGISTERS are summarized in Figure 9.2. Examples of program lines

which complete them are shown as inserts in the figure. The sequences of data storage

and retrieval are a little more complex than DIRECT ADDRESSING, but they follow

the same general procedures as sending a letter ”in-care-of” someone else. First, a
direct address is identified, then an indirect address is designated. To store a number
in the PRIMARY STORAGE REGISTERS using INDIRECT ADDRESSING, the direct
address needs to be identified first. For the illustration in Figure 9.2., this is done by
storing a number (6 in this example) in any of the PRIMARY STORAGE REG-
ISTERS. REG 0! was chosen for this example, although any other would have worked
just as well.

Figure 9.2.

INDIRECT ADDRESSING of
PRIMARY STORAGE REGISTERS

Storing Data Recalling Data

PRIMARY PRIMARY

X STACK STORAGE X STACK STORAGE

REGISTER REGISTERS REGISTER REGISTERS

step 6 step aa step 8 step ea
1 2 ! 2

= © — sls
step s28.2 **° a2 528.2 al 22

step

a3 3 a3

a4 24

as 8s

Program ry Program —

Lines S28.2 << Lines S28.2

A] —

@2|STo B!1 55 @2|STo a1 — 55

@3| s28.2 @3| Fy,tNP
= ag agBal 570,10

The INDIRECTLY ADDRESSED number (528.2, for the example in Figure
9.2.) is first placed into the X STACK REGISTER (either by keying the approp-
riate numbers, or by constructing a line in a program to do it) and is then sent for
storage by INDIRECT ADDRESSING to the designated PRIMARY STORAGE REG-
ISTER. The location of the INDIRECT ADDRESS (REG 06 in this example) is the
number previously stored in the PRIMARY STORAGE REGISTER serving as the
DIRECT ADDRESS. The 4th program line listed in Figure 9.2. which controls this

126

process indicates, "Take the number which is in the X STACK REGISTER, and store
it in the PRIMARY STORAGE REGISTER whose number is now listed in REG 01.”
For the example, 528.2 is stored in this way in REG 06, since the number 76” is in
REG 01 which is being used as the direct address.

To see the process of INDIRECT ADDRESSING a little more clearly, execute
the program lines shown in Figure 9.2. First turn the computer ON, then key 76”,
then STO 01”. The view window will display 76” at the end of these 2 steps. Next,
key 7528.2”, then key STO SHIFT to see "STO IND _ _”. Then key “01” in response
to this alpha prompt. You will see "528.2" in the view window at the end of the
Sequence. The process will have stored, however, the number 7528.2” indirectly in

It 1s easy to verify that "528.2" has been stored by INDIRECT ADD-
RESSING in REG 06. In fact, there are 2 ways to test that the process has been success-
ful. One way is simply to recall the contents of REG 06 by DIRECT ADD-
RESSING, as summarized in Figure 9.1. To do this, first erase the contents of the X
STACK REGISTER as it is now displayed in the view window, then key "RCL 067.
You will then see, of course, "528.2" in the view window, as the numerical contents of
REG 06 is copied into the X STACK REGISTER.

The second way to verify that 7528.2” was successfully stored by INDIRECT
ADDRESSING is to follow the procedure summarized in Figure 9.2. Erase the X
STACK REGISTER, then recall the contents of REG 06 to the view window using
the process of INDIRECT ADDRESSING . You can do this quite easily by keying
"RCL IND O01” to tell your computer to “recall the contents of the PRIMARY
STORAGE REGISTER whose number is now stored in REG 01”. Since 76” is now
stored in REG 01, and "528.2" is stored in REG 06, you will see 528.2” copied into
the view window.

As shown by the examples in Figures 9.1. and 9.2., numerical data can be placed
into and recalled from storage in any PRIMARY STORAGE REGISTER using either
the procedure of DIRECT ADDRESSING, or that of INDIRECT ADDRESSING. The
basis for making the choice between these two techniques for data storage and recall will
become clear in the several examples presented later in this chapter. These examples
will also show how ALPHA data can be manipulated in a similar way (using ASTO _
_, ARCL _ _, ASTO IND _ _, and ARCL IND _ _ lines in a program), and how arith-
metic operations, flag test and control, the execution of TONES, and a variety of
other procedures are dealt with in a similar fashion. First, though, it will be useful to
see the relationships between the use of INDIRECT ADDRESSING and the control of
data storage and retrieval from the EXTENDED DATA STORAGE REGISTERS.

Section 9.2. Manipulating the Contents of the
EXTENDED DATA STORAGE REGISTERS using

INDIRECT ADDRESSING

This section reviews how data are stored and recalled from the EXTENDED
DATA STORAGE REGISTERS of the HP-41C and HP-41CV computers. Data manip-
ulation in these registers and in the EXTENDED MEMORY of the HP-41CX is quite
different. Owners of this model are directed for details to their owner’s manual.

Up to this point, the EXTENDED DATA STORAGE REGISTERS have
remained empty in executing sample programs. What a waste! These registers provide
218 memory locations in addition to those created as PRIMARY STORAGE REG-
ISTERS. The cost in using the EXTENDED DATA STORAGE REGISTERS is that
you will have to become familiar with INDIRECT ADDRESSING techniques, because
this is the only way to store data into them, or recall data from them. Even though

127

INDIRECT ADDRESSING may seem a little awkward at first, it soon becomes as
simple to use as the technique of DIRECT ADDRESSING with a little practice.
Figure 9.3. illustrates an example of how to store data in the EXTENDED DATA
STORAGE REGISTERS, and Figure 9.4. shows how data are recalled from them.

As shown in Figures 9.3. and 9.4., the procedure for using INDIRECT ADD-
RESSING to store and retrieve data using the EXTENDED DATA STORAGE REG-
ISTERS is identical to that used for the PRIMARY DATA STORAGE REGISTERS
(Figure 9.2.) with one exception. Since the EXTENDED DATA STORAGE REG-
ISTERS are numbered 100 to 318, a three digit number within this range must be stored
in the PRIMARY STORAGE REGISTER which will be used for the direct address. In
the example, the EXTENDED DATA STORAGE REGISTER numbered 103 was
selected for data storage, and for that reason ”103” was stored (by DIRECT ADD-
RESSING) in REG 01.

Were you to try storing a number from the X STACK REGISTER to REG 10,
for example, without having created 10 PRIMARY STORAGE REGISTERS, you
would correctly expect to see the ERROR MESSAGE “NON-EXISTENT”. Similarly,
were you to try storing a number to the EXTENDED DATA STORAGE REGISTER
103, for example, without having created the storage space using the SIZE function,

Figure 9.3.

INDIRECT ADDRESSING of
EXTENDED DATA STORAGE

REGISTERS: Data Storage

PRIMARY EXT. DATA

X STACK STORAGE STORAGE

REGISTER REGISTERS REGISTERS

step 123 tem 28 120

! 2
a1 121

3 ws
tap step a2 182*3 S28.2 .

23 123
S28.2

ga 124

as 12S

Program Tn rr

Lines sS28.2

21 1@3 — —
A] -—

@2|STO @1 =3 =

B3| 528.2

STO IND| EE 318
P= ai

Figure 9.4.

INDIRECT ADDRESSING of
EXTENDED DATA STORAGE

REGISTERS: Data Recall

PRIMARY EXT. DATA

X STACK STORAGE STORAGE

REGISTER REGISTERS REGISTERS

122
step 183 step en

1 2
et a1 121

183

528.2 J 22 182
step =a

3 23 528.2
24 24

gs 185

Program TS DE

Lines

— —
@2|sTo @1 — — =
33] Fok,0

gs 318

you would correctly expect to see “NON-EXISTENT” again. A common requirement for
data storage by DIRECT ADDRESSING or by INDIRECT ADDRESSING techniquesis
that the target data storage location much have been constructed by the SIZE
operation (see Figure 3.1. and Section 3.3.).

The next section presents sample programs in which INDIRECT ADDRESSING
is used to perform not only data storage and recall functions, but for other operations
also.

Section 9.3. Tones

The programs TONESDN and TONESUP listed in Figure 9.5. are designed to
illustrate several applications of INDIRECT ADDRESSING. First, each program is
described line-by-line to reveal the rationale for constructing each step, then some
hints are given for entering the program into the computer, trying it and modifying
it. TONESDN is designed to sound in descending order each of the 10 TONES
(numbered 0 to 9) you control with your computer. TONESUP is designed to sound
these tones in their increasing numerical order. Each program stops once the last tone
has been sounded.

Figure 9.5.

TONESDN and TONESUP

Program Listing: Program Listing:

01 LBL "TONESDN® 01 LBL "TONESUP

02 10 02 10

03 STO 01 03 STO 01

04 9 04 O

05 STO IND 01 05 STO IND G1

06 LBL OO 06 LBL 00

07 TONE IND 10 07 TONE IND 10

08 1 08 1

09 ST- IND O1 09 ST+ IND O1

10 RCL IND O1 10 10

11 -1 11 RCL IND O1

12 X<Y? 12 X<Y?

13 GTO 00 13 GTO CO

14 END 14 END

Lines 2 and 3 of the TONESDN program place (using DIRECT ADDRESSING)
the number ”10” into REG 01 which will serve as a direct address. Lines 4 and 5
place (by INDIRECT ADDRESSING) the number ”9” into REG 10. At line 7, the
first tone is chosen and then sounded (by INDIRECT ADDRESSING) using the
number stored in REG 10. When the program is initially activated, the number stored
in REG 10 is a 79”, having been stored there by INDIRECT ADDRESSING at
program line 5. Lines 8 and 9 decrease the number stored in REG 10 by 1, then at
lines 10 to 12, the number in REG 10 is tested to see if the last tone in the sequence
(TONE 0) has been sounded. If the number in REG 10 is greater than zero, program
flow is directed to the LOCAL LABEL 00, from which the next lower tone is sounded
(line 07) and the number in REG 10 is decremented once again by 1. Program flow
continues to loop through LBL 00 until the conditional test at line 12 is determined not to
be true (that is, the number stored in REG 10 is no longer equal to or greater than zero),
and the program is halted at line 14. Pressing R/S (or performing XEQ
"TONESDN?) starts the TONESDN program again.

There are several features of the TONESDN program which, although perhaps
intuitively obvious, are worth review. The number listed in line 2 could have designated
any PRIMARY STORAGE REGISTER, not just REG 10, as long as the MAIN
MEMORY space had been allocated (using SIZE) for it. Also, it could have been any
designated memory location in the EXTENDED DATA STORAGE REGISTERS.
Further, not all tones needed to be sounded. The first tone in the descending
sequence of tones controlled by this program could have been selected by placing any
number between 1 and 9 in line 4. Using the number "0" would have allowed only
TONE O to be heard. Also, each of the tones 9 to 0 did not have to be sounded.
Only the odd numbered tones would have been heard had the number 72” been placed in
line 8. Were the number 8” located in line 4 and the number 72” in line 8, only even
numbered tones would have been sounded in decreasing numerical order.

It may be apparent that since TONESDN uses the PRIMARY STORAGE
REGISTER 10 as an indirect address for data storage, line 9 could have been listed as "ST-
10”, instead of as "ST- IND 10”. For the same reason, line 10 could have been con-
structed to be "RCL 10” to bring the number in REG 10 to the X STACK REGISTER by
DIRECT ADDRESSING, just as well as copying it there by INDIRECT ADD-
RESSING with the statement "RCL IND 10”. A few hints may help for keying the
TONESDN program into your computer. Line 7 is keyed by XEQ "TONE", then
SHIFT, then keying in response to the alpha prompt, "TONE IND _ ” the number of

130

the PRIMARY STORAGE REGISTER which contains the number designating which
tone to sound.

As shown by the TONESUP program in Figure 9.5., TONESDN needs only
minor editing to reverse the sequence in which tones are sounded. The tone to begin the
sequence is designated by the number "0” at line 4, and incremental unit is defined at
line 8. Since TONESUP requires testing for the highest numbered tone (TONE 9) in
the sequence, not the lowest (TONE 0), as TONESDN operated, the number 79”
needs to provide the reference for the conditional test at line 12 against whatever
number is stored in REG 10. That number is recalled to the X STACK REGISTER
by INDIRECT ADDRESSING with the statement at line 11.

A useful exercise would be to merge the programs TONESDN and TONESUP so
that tones are first sounded in descending, then in ascending order in the same
program. It would also provide good practice if you could write a program which
sounded 3 (or more) cycles of ascending and then descending tones before the program
stopped. Then, explore how the program can constructed to be as short as possible
using INDIRECT ADDRESSING techniques.

Section 9.4. CALCX

The CALCX program listed in Figure 9.6. is designed to illustrate another
useful application of INDIRECT ADDRESSING. It shows how sequentially entered
data can be requested and placed into order-numbered PRIMARY STORAGE REG-
ISTERS using a program loop, and then recalled from them for a specific calculation.

In CALCX, REG 00 serves both as a counting register and as a source for the
display of a sequentially increasing number used as a suffix to the alpha prompt "ENTER
N”. Since the number "17 is placed in REG 00 as soon as the program is started (lines 4
and 5), the first time "ENTER N” (line 7) is displayed, it will appear as "ENTER NI”.
Whatever piece of data is keyed into the X STACK REGISTER in response to this alpha
prompt, when R/S is pressed, the entered number will be stored by INDIRECT
ADDRESSING (line 10) into the PRIMARY STORAGE REGISTER designated in REG
00. Since REG 00 contains the number ”1” when the program is initialized, not only
will the alpha prompt "ENTER N1” be displayed, entered data will be stored in REG 01.

Lines 11 to 13 determine whether all data (NI to NS) have been entered. If
not, program flow is directed to LBL 00 from which the number in REG 00 is increased
by 1, the next sequential data entry is requested, and then stored in a correspond-
ingly numbered PRIMARY STORAGE REGISTER. After NS has been entered and
stored in REG 05, X is calculated and displayed, and the program ends. A new calcul-
ation of X begins with the entry of a new set of data for N1 to NS after R/S is pressed.

Even a superficial comparison of how data were requested and entered in the
SOLVX (Figure 7.2.) and CALCX (Figure 9.6.) programs shows how the technique
of INDIRECT ADDRESSING conserves program lines and allows program flow to
be facilitated. Figure 9.7. lists those functions which can be used in INDIRECT ADD-
RESSING statements.

Section 9.5. FLTEST

INDIRECT ADDRESSING has many more powerful applications than just
entering data sequentially. Any of the operations shown in Figure 9.7. can be used
to activate functions in an ordered fashion, the steps of which need not start at 1 and
need not progress in units of 1. The style of the CALCX program which asked for NI
first, then N2, etc. was selected just for the purposes of that program. Numbered
data requests and the correspondingly numbered data storage locations could have

131

Figure 9.6.

CALCX

Problem Statement:

This program is designed to solve the following equation.

Equation:

Ny + Ny \ Ny
X= —_—) — —

LOG N, N,

Flow Diagram: Program Listing:

(CALCX) 01 LBL "CALCX" 19 RCL O03
02 BEEP 20 +

03 CLRG 21 RCL 04

04 LBL 00 22 LOG

05 1 23 /

CLRG 06 ST+ 00 24 RCL 05

07 FIX 0 25 YX
08 TONE 5 26 RCL 04

09 "ENTER N- 27 RCL 01
10 ARCL 00 28 /

11 PROMPT og -
12 STO IND 00 30 TONE 9
13 4 31 "X="

14 RCL OO 32 ARCL X

15 XsY 33 AVIEW
16 GTO 00 34 STOP

17 FIX 2 35 GTO "CALCX
18 RCL 02 36 END

X=nn

Figure 9.7.

B. Program/Keyboard Control:

Statement

STO
RCL
STO +
STO -
STO «x
STO /
ASTO
GTO
XEQ
DSE
ISG
TONE
REG
X<>

C. Conditional Tests:

Statement

SF

FS?
FC?
FS?C
FCC

133

INDIRECT ADDRESSING
Statements

A. Display:

Statement Function

CATALOG Catalog review
ARCL Recall an ALPHA statement
VIEW View contents of a register
FIX Standard display

SCI Scientific display (10%)
ENG Engineering display (10° in mult. of 3)

Function

Store a number
Recall a number
Store additively
Store with subtraction
Store with multiplication
Store with division
Store an ALPHA statement
Go To (line or LBL)
Execute (GLOBAL or LOCAL LABEL)
"Decrement and skip if equal to”
"Increment and skip if greater than”
Tones
Register accumulation
Exchange contents of X STACK REG
that of another REG

Function

Set FLAG
Clear FLAG
FLAG set conditional test
FLAG clear conditional test
FLAG set test/clear
FLAG clear test/clear

progressed by any increment, as controlled by the number listed at line 05. Also, the
request for numbered data could have started anywhere, as demonstrated in the
program FLTEST shown in Figure 9.8.

The FLTEST program is designed to display the status of FLAGS (whether
each is SET or CLEAR), beginning and ending at any numbered FLAG designated by
the program’s user. Data requests to define the range of FLAGS to test are structured
in lines 04 to 09. Because FLAG designations are whole numbers (see Figure 8.1.), the
digit display is controlled at line 02 to show no numbers to the right of the decimal.

Figure 9.8.

FLTEST

Problem Statement:

This programis designed to test and display the status (SET or CLEAR) of
all FLAGS over a user-defined range.

Flow Diagram: Program Listing:

(FLTEST) O01 LBL "FLTEST" 25 ST+ 00
02 FIX 0 26 RCL 00
03 BEEP 27 RCL Of
04 "START?" 28 1
05 PROMPT 29 +

START 06 STO 00 30 X+Y?
07 TONES 31 GTO 00
08 "END?" 32 9
09 PROMPT 33 STO 00

END 10 STO 01 34 LBL 03
11 LBL 00 35 TONE IND 00
12 FS? IND 00 36 TONE IND 00
13 GTO Of 37 1
14 “FL 38 ST-00
15 ARCL 00 39 5
16 "—CLEAR" 40 RCL 00
17 GTO 02 41 X#Y ?
18 LBL Of 42 GTO 03
19 "FL 43 "FL TEST OVER"
20 ARCL 00 44 AVIEW
21 "SET" 45 PSE
22 LBL 02 46 TONE 9
23 AVIEW 47 OFF

NN+1 24 1 48 END

134

The determination of whether the first flag in the user-designated range is
SET or not is made by the INDIRECT ADDRESSING statement in line 12. If this first
FLAG is SET, the answer to the conditional statement "FS? nn” is true and program
flow continues at line 13 where the program branches unconditionally to LOCAL
LABEL O01 at line 18. The ALPHA statement "FL nn SET” is constructed using
INDIRECT ADDRESSING in lines 19 to 21. If the tested flag is CLEAR, program flow
continues from the conditional test at line 12 to lines 13 through 16 where the ALPHA
statement "FL nn CLEAR?” is constructed. Line 23 displays the appropriately struc-
tured answer to the FLAG test at line 12.

Lines 24 to 30 increase by one the number of the next FLAG to be tested and
determine if the FLAG test sequence has been completed. If it isn’t complete, program
flow is directed by to the LOCAL LABEL 00. If the FLAG test sequence is complete,
a series of TONES is sounded using INDIRECT ADDRESSING (lines 32 to 42, an
ALPHA statement is displayed to indicate this condition (lines 43 and 44) and the
computer is automatically turned off by the instruction at line 47.

Section 9.6. EXAM

The program GRADES introduced early in the book (Figure 6.5) illustrated how
the HP-41 computer is useful for making decisions as well as for just making numerical
calculations. Although the program worked well for that, it was not constructed to be
practical, nor was it efficiently written. It is unlikely, for example, that an
instructor using the GRADES program would write into the program lines 06, 10, 14,
or 18 to designate the cut-off points for different grades. More likely, these criteria
would be different from exam to exam. The GRADES program would be more useful if
it asked the user for this information when the program was initialized. Also, the §
separate statements required in the GRADES program to announce each grade decision
(lines 22 to 38) are inefficiently written.

The program EXAM (Figure 9.9) functions to provide similar information as
that given by the GRADES program, but it exploits many of the advantages of
INDIRECT ADDRESSING to make the determination of an exam grade more useful
and more efficient. For example, each time the program is run, the user customizes it
for how the class curve mandates grade distribution. Also, the lines which control
grade display are more compact.

The first 20 lines of the EXAM PROGRAM are instructions for entering the cut-
off grades for whatever examination the user is working with. Since the highest possible
grade is a 4.0, this number is initially stored in REG 00 by lines 2 and 3. Minimum
percent scores for each grade (0.0 to 4.0) are entered sequentially into REGs 02 to 08
using a counter number stored in REG 01 (by lines 5 and 6) and employing an
INDIRECT ADDRESSING statement at line 13. Multiple operations of the loop con-
structed by lines 08 to 20 step through the displayed requests for grading criteria,
storing each piece of new information in a separate PRIMARY STORAGE REGISTER.

There are other ways to have this information requested and stored in the
execution of this first stage of program operation. The reader is encouraged to rewrite
the EXAM program using the style of the GRADES program and not employing
INDIRECT ADDRESSING techniques. It will soon become clear how much more
laborious and time consuming any process of sequential data entries would be without
using INDIRECT ADDRESSING.

The selection of the correct grade corresponding to a specific percent score

for any student is accomplished by program lines 32 to 43. Analogous to the entering of

sequential data at the beginning of the program, the determination of a student’s grade

is made by an INDIRECT ADDRESSING statement at line 34 and a subsequent con-
ditional test (line 39) either to direct program flow to another pass at finding the correct

135

Theodore Tutor teaches a large enrollment class for which there are many

Figure 9.9.

EXAM

examinations during the term. He wrote the EXAM program to indicate a
student’s grade for an exam based on its percent score (% scores range from
0 to 100). Exams are graded on a 4.0 scale (highest = 4.0; next = 3.5, next
= 3.0, etc.) with no grade of 0.5. The cut-off percent score for each grade
is different for each exam. Also, percent scores are rounded up from 0.5,
for example, a score of 89.5% would be graded as a 90%, but a score of
89.4% would be graded as an 89.0, etc.

Flow Diagram:

(EXAM)

GRADE

CUT-OFF

 J
PERCENT
SCORE

SEARCH

GRADE

GRADE=N.N

data

grade display

counter

min .

min .

min .

. for 2.

min .

min.

min

min . for 1.

for 4.

for 3.

for 3.

for 2.

for 1.

O
N
O

U
!
M
m
M
O
w
m
O
o

% score

earned grade

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

136

Program Listing;

LBL "EXAM"
BEEP
4

STO 00
2
STO 01
FIX 1
LBL 00
TONE 5
"MIN FOR"
ARCL 00
PROMPT
STO IND Of
1
ST+ 01
«5
ST-00
RCL OO
X>Y?
GTO 00
LBL O3
2
STO 01
TONE 5
"SCORE?"
PROMPT
FIX O

28
29
30
31
32
33
34

35
36
37
38
39
40
41
42

44
45
46
47
48
49
50
51
52
S53
54

RND

STO 09
4

STO 10

LBL O1

RCL 09

RCL IND 01

XsY?

GTO 02

1

ST+ 01

«Od

ST- 10

RCL 10

X#Y?

GTO 01

0

STO 10

LBL 02

FIX 1

TONE 9

"GRADE="

ARCL 10

AVIEW

PSE

G70 03

END

grade, or to terminate the grade selection process to announce the grade by the steps
listed under LBL 02. This selection process could be completed as it was in the
GRADES program, but not as efficiently nor executed as quickly as it can be using
INDIRECT ADDRESSING techniques as in the EXAM program.

I hope the reader will notice the challenge in the problem statement of the
EXAM program (Figure 9.9) that this grading scheme does not allow for a grade of
0.5. Were it to, the grade display sequence controlled under LOCAL LABEL 01 could
simply be continued to its natural end by the successive subtraction of a constant
(0.5; line 39). Notice also how simply the problem of not reporting a 0.5 grade is
solved by lines 44 and 45 which interrupt the last steps of the decrementing
sequence begun in LBL 01.

There is another subtle challenge in writing the EXAM program. It was
decided that a student’s percent score on an exam would be rounded upward from .5 in
the decision of assigning a grade. A first guess as how to accomplish this might be to
include the instruction FIX 0 at program line 27 to truncate any data entry requested at
line 25 with a digit to the right of the decimal to a whole number. Such a maneuver
would control the display, of course, but the number would be stored as entered at line
29, fractional component and all. The difficulty is easily solved, though, by using the

Figure 9.10.

Sample Problem: EXAM

Mr. Tutor used the EXAM program to calculate grades for the following 3
exams, each of which was curved differently.

Grading Criteria

Minimum % Score for a Grade of:

EXAM 40 3.5 30 25 20 1.5 1.0

90 85 80 75 70 65 601
2 95 38 85 78 65 53 40
3 85 79 75 70 63 55 49

Grade Assignments

Exam | Exam 2 Exam 3

Name % Sc. Gr. % Sc. Qr. % Sc. Gr.

Tom 92.3 4.0 90.3 3.5 84.5 4.0
Dick 79.6 3.0 63.7 1.5 71.2 2.5
Harry 68.1 1.5 39.6 1.0 76.3 3.0
Lewis 83.4 3.0 78.1 2.5 78.8 3.5
Clark 62.0 1.0 61.8 1.5 64.0 2.0

137

instruction RND at line 28. The RND operation rounds the number to the control level
established by the FIX 0 statement in the preceding line. The application of the RND
function in the EXAM program serves to provide the required rounding up from 0.5
of the calculated course percent score.

Figure 9.10 shows sample problems for using the EXAM program. Were
there only one exam to be graded in this example, perhaps program construction similar
to the GRADES program would work well enough. But there are several exams to
be scored, each of which has different criteria for assigning grades, as shown in the
upper part of Figure 9.10. Using the EXAM program, percent scores and grades for
each student are readily assigned despite the complexity of there being different
academic curves for the course’s exams.

The purpose of the FLTEST and EXAM programs is to show how INDIRECT
ADDRESSING statements are used in association with the functions of conditional
testing (FS? nn), TONES, data storage and recall. Any of the functions listed in Figure
9.7. could be used in a similar way by INDIRECT ADDRESSING. If there is any
question as to the utility of using INDIRECT ADDRESSING, the reader is
encouraged to rewrite any of the programs in this chapter in some other way and then
compare the different versions for efficiency and speed of program execution.

The next chapter presents a simple program for balancing a checkbook. It
contains only a couple of new programming techniques, and is offered more as a
review and as a practical example for using the HP-41 computer.

138

Chapter 10

Wrapping It Up

Section 10.1. The CHECKS Program

Even though many use their HP-41 computers to execute sophisticated
programs and solve complex equations, most of us depend on these marvelous
machines to make calculations just for everyday problems. This chapter presents
an uncomplicated program for helping with one such task, that of balancing a check-
book. There is nothing particularly clever about this program, but even so, itis a
reliable tool for reducing the drudgery of checkbook record keeping. Also, working
through it will provide a good review of many of the programming principles
presented so far.

The CHECKS program is organized to provide several different kinds of infor-
mation about the checkbook’s balance. For example, it calculates a "new balance” for
the account. This is perhaps the most important piece of financial information,
since it shows the amount of money one has for the rest of the pay period. Were
everyone’s checking account always in agreement with the bank’s records, no more
data than "new balance” would be needed. But with mis-entered checks, incorrectly
tabulated records, forgotten entries and poor arithmetic skills in annotating the
check register, additional information may be needed. In order to track down errors
which have crept into our checkbook records we may need to know, for example, how
much money is represented by past and present outstanding checks, the sum of checks
written this month, what one’s total credit is at any time, and how much the account
is out of balance. The CHECKS program provides these data too.

As an introduction to how this section Is organized, Figure 10.1. describes the
CHECKS program, lists the equations for it, and defines the symbols it will use. Figure
10.2. shows the flow diagram for the program. Figure 10.3. is a list of the program’s
steps, and Figure 10.4. presents a sample problem. Figure 10.5. shows a record
keeping form organized to receive data in the order the CHECKS program presents it.
"User Instructions” for the CHECKS program listed in Figure 10.6. will be helpful for
working through the sample program and also for using the program on a month-to-
month basis for balancing one’s own checking account. For the most part, however,
ALPHA prompts in the program are self-explanatory, and the “User Instructions” will
be of most help only for the first couple of times CHECKS is used.

Section 10.1.1. General Description of the CHECKS
Program

The CHECKS program is designed so that information is entered directly
from the check register and the bank’s account statement a step at a time in response to
ALPHA prompts. The program's job is to assemble this information into approp-
riate categories, do the associated arithmetic, and then present summary data in an
ordered way for record keeping. The program does automatically what a person
must do on one’s own with paper and pencil to reconcile personal checking account
records with those of ‘the bank, but it does it more quickly and easily.

There are 4 categories of information required to run the CHECKS program.
One comes from the bank’s records, and the other 3 come from one’s own records.

139

Figure 10.1.

CHECKS

Problem Statement:

This program is designed to balance a checking account.

Equations:

CREDIT = (CDEP) - (PRIOR BAL)
NEW BAL = (CREDIT) - (RCK) - (OCK) - (SERV CHARGE)
LCKS = (RCK) + (OCK) + (SERV CHARGE)
LOCKS = (OCK) + (PAST OCKS)
CAL BAL = (PRIOR BAL) + (EDEP) - (RCK) + (PAST OCKS) - (SERV CHARGE)
BAL ERROR = (CURR BAL) - (CAL BAL)

where:

CURR BAL = current balance (shown on bank statement)
PRIOR BAL = account balance at beginning of period
RCK = returned checks in this period
OCK = outstanding checks in this period
PAST OCKS = outstanding checks in all past periods
SERV CHARGE = service charges in this period
LDEP = sum of deposits in this period
LCKS = sum of checks in this period
NEWBAL = new balance for this period
LOCKS = sum of all outstanding checks
CALBAL = clculated balance for this period
BAL ERROR = balance error; if zero, account balances

The first is the “Current Balance” which is listed on the bank’s statement of the
account. It is the receipt of this statement in the mail along with either a list of returned
checks, or the returned checks themselves which triggers most people into grudgingly
tackling the dreaded job of getting their checking account balanced for the month.
The "Current (or indicated) Balance” on the statement shows what the bank’s records
report to be the status of the account at the time the statement was issued. It is against
this standard that one must reconcile one’s own records. If calculations from one’s
own records eventually yield a Calculated Balance” equal to the bank’s “Current
Balance”, then all is well and the account is in order.

The second kind of information required for the CHECKS program is provided
by indicating either one-at-a-time or as a sum the deposits made since the last time the
account was balanced. This information comes either from an accurately maintained
check register or from deposit slips. The third piece of information, "Prior Balance”, is
what the account balance was at the beginning of this balance period. This information
comes from the check register one maintains, similar to that shown in Figure 10.4.

The last category of information is related to the individual checks one has
written. Some of these checks, the "Returned Checks”, will have been written, cashed
by their recipients and returned to the payee along with the monthly bank statement.
Others, the outstanding checks, will have been written either prior to this balance
period, the "Past Outstanding Checks”, or written during the present period, the ”Out-
standing Checks in This Period”, but neither type will have been returned yet. Along
with these debitures must be included also any "Service Charges” enforced by the bank
itself.

140

Figure 10.2.

Flow Diagram: CHECKS

(CHECKS)

CURR. Gora BALANCE
SAL . PR. BAL. OK

| | i

PRIOR CALC. FvBAL. NEW BAL 4 ERROR

DEPOSITS

—&
no

RCK THIS

PD.

BAL.

NEW BAL. ERROR

J

 (ocxs) (5T9P)
Most of the problem one has in getting the checkbook balanced is because

of keeping all of this information straight, not just in doing the simple arithmetic.
The value of the CHECKS program is that it asks you for specific items of infor-
mation one at a time, keeps them in the approp riate categories, and does the arith-
metic for you too. It also makes these calculations much faster than one can do with
paper and pencil. From most people’s point of view, the faster the checkbook can be
balanced with accuracy and with the least hassle, the better - another bonus for
knowing how to use the HP-41 computer.

Section 10.1.2. Using the CHECKS Program

The sample program shown in Figure 10.4. shows how John and Jane Dough use
the CHECKS program to balance their account this month. They’ve just received their
bank statement (top of Figure 10.4.) and they have their check register at hand
(bottom of Figure 10.4.). As soon as they start the program with XEQ "CHECKS”
and hear the BEEP tones, they are asked for the "Current Balance”. Referring to this

141

month’s checking account statement, the Dough’s enter $328.12, first by keying this
number into the X STACK REGISTER, and then pressing R/S. After hearing a tone
sequence, they are asked for the Prior Balance” of their account. Looking at their
check register they first key $150.37, then press R/S.

The next ALPHA prompt asks them to enter the first deposit they made into their
account since its last balance. As recorded in their check register, the first deposit in this
balance period was $12.16 made on June 13th. Keying this amount then pressing R/S,
they are asked "™MORE?”, implying were there any additional deposits in this period.
They key next the amount of the second deposit they made on June 15th of $29.34,
(then press R/S). Once again they are asked MORE?” and given an opportunity to
enter the amount of the third deposit ($126.95), then in response to “MORE?” again,
they key then enter the amount of their last deposit in this period (§714.00 on July 1).

When asked "MORE?” again, they now key a zero (or just press the decimal key)
and press R/S to indicate in the code of the CHECKS program that they had entered

Figure 10.3.

Program Listing: CHECKS

O01 LBL "CHECKS" 36 PROMPT 71 "PRIOR BAL=" 106 + 141 ISG 07
02 CLRG 37 LBL O7 72 XEQ 18 107 RCL 03 142 GTO 14
03 FIX 2 38 ST+ 04 73 TONE 9 108 - 143 GTO 17
04 ,00301 39 XEQ 03 74 RCL 02 109 RCL 05 144 LBL 15
05 STO 07 40 X=Y? 75 "LDEP=" 110 + 145 "PROGRAM END"
06 BEEP 41 GTO 08 76 XEQ 18 111 STO 06 146 AVIEW
07 "CURR BAL?" 42 GTO O07 77 RCL 01 112 RCL 00 147 STOP
08 PROMPT 43 LBL 08 78 + 113 X=Y? 148 GTO "CHECKS"
09 STO 00 44 XEQ O1 79 TONE 9 114 GTO 13 149 LBL 17
10 XEQ O1 45 "PAST OCKS?" 80 "CREDIT=" 115 GTO 14 150 RCL 06
11 "PRIOR BAL?" 46 PROMPT 81 XEQ 18 116 LBL Of 161 "CALBAL="
12 PROMPT 47 LBL 09 82 RCL 03 117 TONE 8 152 XEQ 18
13 STO 01 48 ST+05 83 RCL 04 118 TONE 9 163 RCL 00
14 XEQ 01 49 XEQ 03 84 + 119 TONE 8 154 RCL 06
15 "DEPOSITS?" 50 X=Y? 85 TONE 9 120 TONE 1 155 -
16 PROMPT 51 GTO 10 86 "LCKS= 121 RTN 156 X=07
17 LBL 02 52 GTO 09 87 XEQ 18 122 LBL 03 157 GTO 15
18 ST+02 53 LBL 10 88 RCL 02 123 TONE 3 158 TONE 9
19 XEQ 03 54 XEQ O1 89 RCL 01 124 "MORE?" 159 "BAL ERROR="
20 X=Y? 55 "SERV CHARGE? 90 + 125 PROMPT 160 XEQ 18
21 GTO 04 56 PROMPT 91 RCL 03 126 . 161 GTO 15
22 GTO 02 57 LBL 11 92 - 127 STO X 162 LBL 18
23 LBL 04 58 ST+03 93 RCL 04 128 X<Y 163 ARCL X
24 XEQ O01 59 XEQ O03 94 - 129 RTN 184 AVIEW

25 "RCK THIS PD?" 60 X=Y? 95 TONE 9 130 LBL 13 165 STOP

26 PROMPT 61 GTO 12 96 "NEW BAL=" 131 "BALANCE OK166 RTN

27 LBL 05 62 GTO 11 97 XEQ 18 132 AVIEW 167 END

28 ST+03 63 LBL 12 98 RCL 04 133 TONE 8
29 XEQ 03 64 TONE 9 99 RCL 05 134 ISG 07
30 X=Y? 65 TONE 9 100 + 135 GTO 13

31 GTO 06 66 RCL 00 101 TONE 9 136 GTO 17
32 GTO 05 67 "CURR BAL=" 102 "TOCKS=" 137 LBL 14

33 LBL 06 68 XEQ 18 103 XEQ 18 138 “**»+ERROR«*«"

34 XEQ 01 69 TONE 9 104 RCL 01 139 AVIEW
35 "OCK THIS PD?" 70 RCL 01 105 RCL 02 140 TONE 8

142

Figure 10.4.

Sample Program: CHECKS

BNB BUDGET NATIONAL BANK

ane(EEE [em
FROM 5/42 0 2/43 | 4 | 9 | 123456789

Va 4 Th]41TOTSRURL4 / SAE A
| 168.69 y.| 882.45 F | 714.02 (3.00 |Cn

‘AMOUNT OF SERVICE CHARGE SHOULD BE

DEDUCTED FROM YOUR CHECXBOOK BALANCE.

I
1 f 2BALANCE

John and Jane Dough 2h AMOUNT7

123 Fourth Street | 6/15 | 1967.54

 AVERAGEAnywhere, USA AVERAGE ;

2312.83 J
L _ EPCC-J0800 REV. 6-768

PLEASE RECONCILE YOUR STATEMENT PROMPTLY — SEE REVERSE SIDE
—

RECORD ALL CHARGES OR CREDITS THAT AFFECT YOUR ACCOUNT

NUMBER DATE DESCRIPTION OF TRANSACTION PAYMCNT/OCOIT v FAN DCPOSIT/CREDIT S nat

(=) T (=) (+)

482 5/28] Tim's Party Store s10(08| I* |°

483 ©/29| Central Grocery 17 1091 #
484 §5/30| Book Store S92
485 p/30| City News 2 32
486 p/31| Electric Power Co. 79 13|#

- F -|F - balance (6/13) - - - == = =| = + === -| = 150 37

487 p/13| ABC Grocery 10 23|# 12 16
488 b/13| State Police 14 78

489 B/14| I. Gotoff (law firm) 54 16|#
490 B/14| National Gasoline Co. 87 56 #
491 PB/15| GOTCHA Realty 478 10| # 29 34
492 Pb/15| City Telephone Co. 19112

493 PB/17 Joe's Grill S| 85|# 126 95
494 6/18) Sam's Tire Repair 13 13|#
495 p/23| Purity Cleaners 2 45

- b/304f (service charge) 5] 00
496 [7/1 Bill's Service Station 2 45|# 714 00
497 [7/3 Travel Agency 50] 00

~ [7/5| (service charge) 4100
498 [7/8 Discount Center 12 09] #
499 [7/104] Hewlett-Packard Co. 60 17

500 [7/14] Downtown Grocery 50 45] #

-+~ -|F - balance (7/14) - - = = ¢ = = -=l--14--I 163 28

REMEMBER TO RECORD AUTOMATIC PAYMENTS / DEPOSITS ON DATE AUTHORIZED.

143

the last amount in this category of information, that is the listing of deposits.

Pressing R/S takes the program to the display an ALPHA prompt to request data for the
next category of information, that of listing their returned checks for this period.

In response to the prompt "RCK THIS PD?” the Doughs examine their check
register to see that the first returned check in this period was for $10.23 written to ABC
Grocery. Entering this amount, they are then asked if there are more returned checks
to enter CMORE?”). They enter $54.16 and continue entering each of the next returned
checks in this period. After the amount of check number 500 has been entered, a
keyed zero followed by a press of the R/S toggle terminates data entry for this category
of expenditures.

Figure 10.5.

CHECKS Records Form

Checking Account Balance

Date: 7/14

Current Balance S 28.12

Prior Balance S 150.37

Total Deposits S 882.45

Credit $_1,032.82

Total Checks this period S 869.54

New Balance S 163.28

Total Outstanding Checks S 164.84

Calculated Balance S 328.12
The CHECKS program then displays "OCK THIS PERIOD?”, asking for data

about checks numbered 488, 492, 495, 497 and 499. The Doughs need to be careful not
to make an error by entering the amounts for the 2 service charges incurred on June 30
and July 5S. The amount of each of the ”outstanding checks in this period” is
entered using R/S and then keying a zero and pressing R/S after the last entry has
been made. Following the instructions in Section B of Figure 10.6., additional data
about “Past Outstanding Checks” and then "Service Charges” are entered in a similar
way.

Once the amount of the last service charge (that charged against the account on
July 5) has been keyed and entered with R/S, the computer presents the first of several
pieces of data display, that of the account’s indicated balance. This is not the result of a

144

Figure 10.6.

User Instructions: CHECKS

A. Preparation: C. Data Output:

1. Arrange all returned checks in numerical 1. "CURR BAL” indicates bank’s record for
order. your current balance.

2. Mark the checkbook register to indicate ret- 2. "PRIOR BAL” indicates account balance at

urned checks. beginning of this period.

3. SIZE HP-41 computer for 010. 3. CDEP” indicates sum of deposits in this

4. Initialize program by XEQ "CHECKS". period. :
4. "CREDIT? indicates account’s credit for this

B. Data Entry: balance period
(Hint: key amount, then press R/S. Entera 5. "LCKS” indicates sum of all checks written

zero in response to "MORE?" after last entry in this period.
has been made in a category) 6. "NEW BAL” indicates new balance for this

1. Respond to "CURR BAL?” by entering Cur- period. Record in check register and on

rent Balance from bank statement. record keeping form.
2. Respond to "PRIOR BAL?” by entering 7. "EOCKS” shows sum of all outstanding

account balance at end of last period. checks for both present and past periods.

3. Respond to DEPOSITS?” by entering each 8. If read "BALANCE OK”, your account

deposit since last balance. agrees with that of the bank. If read

4. Respond to "RCK THIS PD?” by entering "ERROR?, account does notbalance.
each returned check since last balance. 9. "BAL ERROR?” indicates discrepancy

5. Respond to "OCKS THIS PD?” by entering between your records and those of the bank.

each outstanding check since the last [f the numberis positive, the bank shows you
balance. have more money in the account than do your

6. Respond to "PAST OCKS?” by entering each records. If the number is negative,the
outstanding check in previous balance reverse is true. Calculations listed in the

periods. record form (Figure 10.5) will help locate

7. Respond to "SERV CHARGE?” by entering these errors. oo
each service charge since last balance. 10. "PROGRAMEND" signals no more calcul-
(Hint: Use form similar to that in Figure 10.5) ations will be made on the data you have
to record data output) entered. Press R/S to start the program

over.

calculation (this amount was entered at the beginning of the program), but it’s useful to
have it displayed to be recorded on the summary of the checking account balance (see
Figure 10.5.). They then press R/S to have the program flow present the next entry
for the account summary, its “Prior Balance”.

Another press of R/S provides information about the sum of deposits made into
the account in this period. Additional information about the credit of the account,
the sum of checks written, the new balance and the account’s sum of outstanding
checks is brought to the view window with successive presses of the R/S toggle.
Next, the account’s calculated balance is determined and then compared with the bank’s
current balance. Depending on whether or not these 2 amounts are the same
determines, of course, whether the tension-relieving message "BALANCE OK” can be
flashed or whether the stomach-wrenching ERROR” needs to announced. At the end
of this message display, the balance error for the account is shown.

If "BALANCE OK?” is shown, the home account agrees with the bank’s records.
The computer can be turned off and records gratefully put away for another month. If
ERROR?” is seen, pressing R/S after the message "PROGRAM END” is read takes the
program back to its beginning to track down the error(s). Information recorded as
shown in Figure 10.6. is helpful for finding the source(s) of these errors.

145

The CHECKS program is simple and there are several ways in which it can be
customized for personal applications. For example, it would be interesting to have the
program watch for a user-designated minimum balance and provide a warning signal
when it has been exceeded. Also, it would be interesting to modify the program to
take advantage of the HP-41 computer’s "continuous memory” to accept daily entries of
written checks and completed deposits. It would be interesting also to couple it with
other programs to help keep track of savings and investment accounts along with
checking account transactions. If the reader has access to a printer, the program
could be modified to test for FLAG 55 (similar to that described in Figure 8.7.) to
help with data recording.

Section 10.2. Where to Go From Here

CONGRATULATIONS!!!

Having worked through the exercises of the previous chapters and having gained a
general understanding of the principles they tried to illustrate, you can now consider
yourself an expert with the HP-41 computer. Now come opportunities for you to apply
these abilities to problem solving in your personal and professional life, and to expand
your skills beyond the scope of this book. The promise of this book after all was to
get you started using your HP-41 computer, not teach you everything about it.
You’ve now just scratched the surface of using this computer, and where you want to
go from here depends on you.

As you grow into your computer and write more and more programs for it,
you’ll soon be faced with having to abandon some of the ones you already have in your
machine in order to make room in the MAIN MEMORY for new ones. It’s unlikely
youll want to take the time and trouble to key-in the older ones again later, so you
need to consider how to expand your computer to interface it with program and data
storage devices of one kind or another.

If you decide the primary need to expand the memory of your computer is to
store programs, then the least expensive and simplest device to obtain is the HP-82104
card reader. With the inexpensive magnetic cards it uses, you have virtually unlimited
ability not only to store programs of your own, but also to “read” magnetic cards
written by others for programs you want to use. The card reader plugs into the top of
the computer through one of its accessory ports, and is light weight and small enough to
remain connected to it while the machine is in general use. The protective vinyl case
you received with your computer is made to fit even with the card reader in place. Both
encoding a program onto magnetic cards and reading one from them is simple, if the
proper steps are followed. Suggestions for these procedures are offered in Figures
5.9. and 5.10.

More complex and sophisticated data and program storage devices, such as
HP’s digital cassette drive (HP-82161), or optical wand (HP-82153) for reading bar
codes are also options, as is a portable 3 1/2 inch disc drive to be used with HP’s
Interface loop. These and many other valuable peripherals, such as printers, a video
interface, as well as an ever-growing library of programs will help you obtain the
HP-41 computer system you need for your own special interests and applications.

There are many commercial sources for equipment, supplies and instruction
manuals for your computer, the most obvious of which is your regional Hewlett-Packard
distributor. Another one, however, which offers not only accessories for the HP-41 made
by Hewlett-Packard, but also those manufactured by other companies is EduCALC
(27953 Cabot Road, Laguna Niguel, CA 92677). Their frequently updated catalog is a
reliable source of what’s new for the HP-41 series computers.

146

Keeping up-to-date on new accessories and software for your computer is part ot
the fun of owning, operating and growing with this machine. It is suggested that the
sooner you become familiar with programs available through Hewlett-Packard’s User
Library, the better. Information about this service is available from: Solve and Integrate
Corp., P.O. Box 1928, 460 SW Madison Avenue, Suite 5, Corvallis, OR 97339-
1928. Since you have successfully attained a substantial degree of competency in
programming the HP-41 computer by studying the information in this book, you
might be closer than you think to publishing programs of your own design in the HP
User’s Library.

There are many interesting ways to use the HP-41 computer beyond the
suggestions in this book and beyond the instructions of its owner’s manual. For
example, the references listed at the end of this chapter will help you explore coupling
your HP-41 computer directly to a tabletop computer (using devices and programs
similar to LINK) and examine the flexibility of the HP-IL interface loop. They will also
help you become proficient with the HP-41’s "Extended Functions”, learn the intricacies
of "Synthetic Programming” and expand your abilities in many other ways. The
pleasure and profit of learning to use the HP-41 computer has just begun!

It would be a mistake not to take advantage of opportunities to learn how to use
your computer and its accessories provided by talking and working with others who have
an interest in this machine. More and more people with a wide range of business,
professional and personal interests are discovering the power of the HP-41 computer.
Establishing contact and sharing interests and information with them could very well be
one of the most important learning tools available to you.

Section 10.3. References

In testimony to the rapidly expanding interest in portable programmable
computers (of which you have now become a part with your developed skills in using
the HP-41) is the emergence of many self-help and self-instructional books in this area.
These newer books supplement information presented in earlier texts which have
proven themselves valuable for a person to expand math skills by self study.

The most useful and reliable references for the HP-41 computer are (to no
one’s surprise) the many manuals, references and guides published by Hewlett-Packard
Co. which are available through the local HP distributor. There is a growing number
of other references, though, which are pertinent both to the HP-41 computers and
their general use. The following list is by no means comprehensive, but it will
provide an entry-level introduction to what is available:

— . Alger, Philip L., Mathematics for Science and Engineering. Mc-Graw Hill Book Co.
(1969)

2. Dearing, John, Calculator Tips and Routines (Especially for the HP-41C/41CV.
Corvallis Software, Inc., P.O. Box 1412, Corvallis, OR 97339-1412.

3. Garrison, Paul. Programming the TI-59 and the HP-41 Calculators. TAB Books.
Inc., PA. (1982)

4. Jarrett, Keith. HP-41 Extended Functions Made Easy. Synthetix Publ., Manhattan
Beach, CA. (1983)

5. Keefe, Ed. Computer Science on Your HP-41, Grapevine Publ., Inc., P.O. Box
118, Corvallis, OR 97339-0118. (1987)

147

6. Kolb, William M. Curve-fitting for Programmable Calculators. Third Edition.
Syntex, Inc., P.O. Box 1402, Bowie, MD. (1984)

7. McCarty, George. Calculator Calculus. EduCALC Publ., 27953 Cabot Road,
Laguna Niguel, CA 92677. (1980)

8. Mier-Jedrzejowicz, W. Extend Your HP-41. (publ. by author) 40, Heathfield
Road, London W38EJ, United Kingdom. (1985)

9. Phillips, William C. Data Processing on the HP-41C/CV. Volume I: Fundamentals
of Program Design and File Processing. EduCALC Publ., 27953 Cabot Road,
Laguna Niguel, CA 92677. (1983)

10. Simon, William. Mathematical Techniques for Physiology and Medicine. Academic
Press, NY. (1972)

11. Smith, Jon. Scientific Analysis on the Pocket Calculator. (Second Edition), Wiley

and Sons, NY. (1975)

12. Wadman, T. and C. Coffin. An Easy Course in Programming the HP-41.
Grapevine Publ. , Inc., Corvallis, OR. (1983).

148

	Cover
	Table of Contents
	Preface
	Foreword
	Introduction
	Chapter 1. Step One
	Section 1.1. What to Expect
	Section 1.2. Which Model to Choose?

	Chapter 2. Features and Functions
	Section 2.1. Physical Characteristics
	Section 2.2. Keyboard Operations
	Section 2.2.1. Toggle Keys
	Section 2.2.2. Function Keys

	Section 2.3. The USER Mode
	Section 2.4. Display Options

	Chapter 3. Memory Location and Use
	Section 3.1. The Stack Registers
	Section 3.1.1. The X, Y, Z and T Stack Registers
	Section 3.1.2. Entering Data into the Stack Registers
	Section 3.1.3. Reviewing the Stack
	Section 3.1.4. Recalling Stack Data
	Section 3.1.5. Clearing the Stack Registers
	Section 3.1.6. Stack Storage Arithmetic and Exchange
	Section 3.1.7. The L Stack Register

	Section 3.2. The Alpha Register
	Section 3.3. Main Memory and Data Storage Registers
	Section 3.4. The Catalogs

	Chapter 4. Stack Register Arithmetic
	Section 4.1. RPN Logic
	Section 4.2. Stack Register Content
	Section 4.3. Solving Complex Equations with the Stack Registers
	Section 4.4. Error Messages
	Section 4.5. Calculations Using the L Stack Register

	Chapter 5. Introducing Programming
	Section 5.1. What is a Computer Program?
	Section 5.2. Where are Programs Stored?
	Section 5.3. Label Rules
	Section 5.4. Program Construction
	Section 5.4.1. Designing a Program
	Section 5.4.2. Keying and Testing a Program

	Chapter 6. Elementary Programming Techniques
	Section 6.1. SUM1
	Section 6.1.1. Keying the Program
	Section 6.1.2. Testing the Program
	Section 6.1.3. Program Analysis and Review

	Section 6.2. SUM2 and SUMS
	Section 6.3. SUM4
	Section 6.4. Conditional Tests
	Section 6.5. Where Is It and How Do I Get To It?

	Chapter 7. Intermediate Programming Techniques
	Section 7.1. SOLVX
	Section 7.2. Subroutines
	Section 7.3. Mixing Uses of Local Labels
	Section 7.4. Four Easy Pieces
	Section 7.5. Keeping Track

	Chapter 8. Flags
	Section 8.1. Setting, Clearing and Testing Flag Status
	Section 8.2. FLDEMO
	Section 8.3. Using "Non-User Defined” Flags
	Section 8.4. STAT
	Section 8.5. Flags at Work

	Chapter 9. Indirect Addressing
	Section 9.1. Manipulating the Contents of the Primary Storage Registers Using Direct Addressing and Indirect Addressing
	Section 9.2. Manipulating the Contents of the Extended Data Storage Registers Using Indirect Addressing
	Section 9.3. Tones
	Section 9.4. CALCX
	Section 9.5. FLTEST
	Section 9.6. EXAM

	Chapter 10. Wrapping It Up
	Section 10.1. The CHECKS Program
	Section 10.1.1. General Description of The CHECKS Program
	Section 10.1.2. Using the CHECKS Program

	Section 10.2. Where To Go From Here
	Section 10.3. References

