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The new edition of this highly successful
book gives you all the information you
need—numerical techniques, numerical
approximations, tables, useful graphs,

and flow charts—to perform quick, accu-
rate calculations on your electronic cal-
culator. And it's still the only book that
shows you how to get the most out of
your calculator for scientific and en-
gineering applications. You'll discover
more uses than you thought possible
when you purchased your pocket cal-

culator!

SCIENTIFIC ANALYSIS ON THE
POCKET CALCULATOR, Second Edi-
tion, is revised and updated to reflect the
many changes both in the models avail-
able and in the potential uses of this

powerful computing instrument. All the
fast, efficient methods you’ll learn are
“sized” for pocket calculator analysis
and designed to reduce your workload
(thus reducing your chances of error).

Each part of the book provides a consis-
tent, careful treatment of the methods

and tablulated formulas.. . all presented
in forms that are directly and im-

mediately useable. Smith also shows
you that the pocket calculator offers you
an important new dimension in analysis.
And you'll gain detailed and specific
knowledge about any discipline by/earn-
ing its mathematical models and tools
using your pocket calculator as a

teaching machine.

The book’s five parts—

e Cover the spectrum of scientific
pocket calculators— their limitations
and capabilities

e Present numerical methods, for-
mulas, and keystroke sequences for
evaluating advanced mathematical

functions—nested parenthetical
forms, recurrence formulas, and
many more

e Examine the methods and formulas
for performing advanced types of
analysis on the pocket calculator—
numerical evaluation of definite inte-
grals, methods for numerical differ-
entiation of data sets, and more

e Deal mainly with analysis on the sci-
entific programmable pocket cal-

culator

(Continued on back flap)
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PREFACE

This book is written for all those who own or operate a modern electronic

pocket or desk calculator, and especially engineers, scientists, science

students, mathematicians, statisticians, physicists, chemists, computer ana-

lysts, and science educators.

When the right numerical methods are used, the electronic pocket
calculator becomes a very powerful computing instrument.
“Micronumerical methods” that will help the reader to derive the most
computing capability for every dollar he has spent on his pocket calculator
are discussed here.

Most of the methods work on any pocket calculator. Special methods for

certain types of machines are clearly indicated where necessary. Key stroke

sequences for both algebraic and reverse-polish calculators are shown.

Virtually all pocket calculator keyboards and capabilities were considered

in preparing this book, to ensurethat the numerical methods presented are

the most universally applicable for general pocket calculator analysis.

Each part of this book provides a consistent and careful treatment of the

methods and tabulated formulas that can be used with a pocket calculator.

The aim is to supply the reader with a large number of numerical
techniques, numerical approximations, tables, useful graphs, and flow
charts for performing quick and accurate calculations with pocket calcula-
tors.

Emphasis is also given to numerical methods used in certain types of
data processing, such as harmonic and statistical analysis. And they are
presented in forms that are directly useful to engineers, scientists, and

programmers.
The premise of this book is that the pocket calculator provides the

scientific analyst with an important new dimension in analysis. Obviously

the pocket calculator is useful both for numerically evaluating functions

and for processing data. In addition, it enables the analyst to quickly gain

detailed and quantified knowledge about any technical discipline (his own

or another’s) by learning its mathematical models and tools through use

and experimentation on the pocket calculator. In short, the pocket cal-
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culator becomes a teaching machine for the scientific analyst. A scientific

analyst no longer need first develop a mathematical model for a complex
process or system being studied and then turn it over to a computer
programmer for its numerical evaluation. Instead, he can numerically

evaluate complex functions (and thus analyze complex problems) in his
home or office.

Finally, throughout the world scientific analysts working on pocket

calculators are inventing their own numerical methods for evaluating

problems in their specific disciplines. In this sense, the pocket calculator is

a research tool which the analyst can use to develop his own numerical
methods for his own purposes.
Throughout the book I give more attention to subjects of interest to the

practitioner than to those of interest to the theorist. Though the treatment

of this material is mathematical, I have not strived for conciseness or rigor

beyond that required for pocket calculator analysis. Numerous examples

of each technique and method are given, and their implementation is
discussed in detail.

This book consists of five parts that are subdivided into 15 chapters,
each dealing with topics in numerical analysis that are useful to the
practical analyst. I have tried to avoid overgeneralization in the treatment

of these topics, since numerical analysis is an art as much as it is a science.

Part I of the book introduces the spectrum of pocket calculators (including
their capabilities and their limitations) available to engineers and scientists.

Particular attention is given to the unique computing features of interest to
the scientific analyst. Part I also presents mathematical preliminaries and
mathematical refresher material and develops certain elementary numeri-

cal methods particularly suited to analysis on the pocket calculator. Topics

from arithemtic to algebra and analysis with complex variables are cov-
ered.

Part II presents numerical methods and formulas for numerically

evaluating advanced mathematical functions. It also deals with the nested

parenthetical form of the most frequently used functions in advanced
engineering mathematics. It is the nesting of a sequence of arithmetic

operations in parenthetical form that is the basis for performing advanced
analysis on the pocket calculator. For example, 14 multiplies, 2 divides, 2

sums, and 108 data entries, totaling 126 key strokes and 5 data storage

records, are needed for a three-digit floating-point evaluation of sin (x)

~x—x3/3'+x°/5!. But only 54 key strokes and no data storage records
(on a scratch pad) are needed to evaluate sin (x)~x(1 —(x2/6)(1 — x2/20))
to the same accuracy. Though we would evaluate sin (x) in this manner

only on a four-function calculator, this example does illustrate the point
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that many complex formulas usually requiring calculator memory to be
numerically evaluated can be written in a “nested” form not requiring
calculator memory and thus can be evaluated conveniently on even the
simplest four-function pocket calculator.
The nested parenthetical form is considered to be a “fast” form for

numerical evaluation. That is, functions written in nested parenthetical
forms require fewer operations to numerically evaluate than do the same

functions in their “simplest algebraic form.” The nested forms are there-
fore evaluated more rapidly and with fewer chances for error than their
unnested counterparts.

Part II also covers the topics of recurrence formulas for numerically
evaluating advanced functions such as Bessel functions, Legendre poly-
nomials, and many more not found on even the most sophisticated
scientific pocket calculators. Recurrence formulas are unique in that they
are infinite memory forms of otherwise finite memory form calculations. The
formulas give the pocket calculator “virtually” an infinite memory for
storing data. Many useful numerical methods for data processing can be
rewritten in recursive form for pocket calculator analysis. Here, again,
even the simplest four-function calculator is shown to be capable of doing
sophisticated analysis without the need for extensive memory. Such con-
cepts as nested parenthetical forms and recursion formulas, when com-
bined with those of Chebyshev economization and rational polynomial
approximation, provide flexibility and accuracy in the numerical evalua-

tion of the most complex functions; even on the simplest four-function

pocket calculator. In fact, the serious analyst can perform precise calcula-
tions unheard of until a few years ago—in the comfort and convenience of
his home or while traveling on the job.

Part 111 examines the methods and formulas for performing advanced

“types” of analysis on the pocket calculator. Included are such topics as
numerical evaluation of definite integrals and methods for numerical
differentiation of data sets, solving differential equations, simulating linear
processes, performing statistical analysis, and performing harmonic analy-
sis.

Part IV deals exclusively with analysis on the advanced programmable
pocket calculator. The chapters illustrate conclusively the leap in comput-
ing capability produced by the pocket calculator. They are based on

personal experience in solving a very large number of problems on the
programmable pocket calculators developed by Hewlett-Packard, Texas

Instruments, Sinclair, and National Semiconductor (NOVUS brand). The

discussion is general, however, recognizing that even more programmable

pocket-style calculators are being developed.
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Part V covers the concepts and calculations of financial analysis. As the

economics of systems and design become more important, the engineer
and scientist are being asked to evaluate the economics and financial
implications of their work. Part V is intended to acquaint the technical
professional with the field of finance through discussions of the mathemat-
ics of finance as currently preprogrammed into the more versatile scientific
pocket calculators.

This book grew out of eleven years of study on numerical methods for
analysis on the digital computer. These methods were revised over a period
of three years to make them applicable to desk calculator analysis and
eventually to pocket calculator analysis. A number of the methods have
been available to the analyst in scattered literature, such as user’s guides
and manuals for desk-top and pocket calculators, journal articles, and
some textbooks. A large part of the material was developed by me or was
provided by my associates in industry. I am particularly indebted to my
associates at Software Research Corporation and McDonnell Douglas
Corporation. They generously shared with me many of their “tricks of the
trade” and suggested interesting problems for this book. I express my
sincere appreciation to one of the great numerical analysts of our time, Dr.

Richard Hamming, of Bell Laboratories, for his review and improvements
to the manuscript.
My thanks to the people at Hewlett-Packard who reviewed and critiqued

the manuscript, and in particular to the HP-65 chief engineer, Mr. Chung
Tung.

I want to thank Joseph and Sara Goldstein, who taught me the Gold-
stein algorithm -- “one at a time.”
To my wife, Laurie, my special appreciation for putting up with the 4

a.m. writing schedule.
My appreciation also to Mrs. Florence Piaget who typed the manuscript

and helped me prepare it for publication.

Finally, my thanks to the readers of the first edition who recommended
changes, corrections, and additions which have improved this book.

JoN M. SMITH

Washington, D. C.

May 1977
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CHAPTER 1

THE POCKET CALCULATOR

1-1 INTRODUCTION

This chapter discusses the mathematical differences among the various

pocket calculators and certain mathematical concepts, useful for analysis
on the pocket calculator, that appear throughout this book.

We are not so much concerned with the hardware implementation of
mathematical operands and operations as with the different ways in which
they can be assembled in a computing machine—the hardware architec-

ture. Only the most obvious mathematical aspects of calculator design are

examined, such as the language used, the size and type of memory, the

instruction set, type of input/output, and whether the calculator is pro-

grammable. There are some 432 types of calculators that could be hard-

ware implemented. An entire book could be written on this subject alone.
Here we limit our discussion to the more important mathematical
differences that result from the various hardware implementations in order
to:

1. Understand pocket calculators and the organization of mathematics

within them.

2. Determine, in a cursory way, the combinations of hardware imple-
mentation that result in a significant jump in calculating capability.

The purpose is to narrow the types of calculator to be considered in this
book to three.

Three hypothetical calculators that are typical of the available and

anticipated pocket computing machines are discussed. Care has been taken
throughout not to limit the methods of analysis to any particular hardware
implementation. In fact, if there is bias throughout the writing it is in the

direction of anticipated developments in the pocket calculator field, though

its overall effect on the material is negligible.
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The following mathematical aspects are covered in this chapter:

1. Arithmetic calculations.
2. Function evaluation with and without memory.
3. Computational accuracy.

The first is a thorough introduction to what appears to be a mundane
subject, arithmetic on the pocket calculator. In fact, it is found to be quite
the opposite because the different languages used by different calculators
lead to different capabilities for handling complex problems.

Particular attention is given to nested parenthetical forms of complex
scientific functions that permit function evaluation on memoryless and
limited-memory calculators. Nested parenthetical forms are used as a
means of providing implicit memory to the memoryless calculators. They
are also “fast” in the sense that their evaluation involves fewer key strokes
than does the standard algebraic form.
No chapter on mathematical preliminaries in a book on numerical

analysis would be complete without a discussion of computational ac-

curacy. Here we examine:

1. The accuracy limitations of the typical pocket calculator.
2. Ways in which to accurately evaluate functions in general, and on the

pocket calculator in particular.

1-2 MATHEMATICAL DIFFERENCES IN POCKET CALCULATORS

Today’s pocket calculators differ mathematically in many ways. Only the
six more commonly encountered mathematical distinctions are covered

here. In a sense, these are the major distinctions because they are the

fundamental issues addressed in the conceptual design of every pocket
calculator. The important mathematical distinctions that are associated

with the subtleties of detailed design are not discussed because the hard-
ware implementations vary widely. Perhaps the best known difference is
that between the use of fixed-point and floating-point numbers.
The fixed-point numbers are those whose decimal point is fixed by the

electronic circuitry. A difficulty occurs when two large numbers are

multiplied together and the most significant digit exceeds the size of the
numeric display. Then the number is truncated in the most significant
digits. Most fixed-point arithmetic calculators have a symbol that is
illuminated to indicate the overflow conditions.

Floating-point numbers have a decimal point that moves so as to retain
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the most significant digits in any calculation. When a number is computed
that is larger than the calculator’s field of numbers and the decimal point
location is unknown, most calculators display the most significant digits
and illuminate a symbol indicating that the decimal point location is
unknown.

In these two number systems, it should be noted, the number fields are

dramatically different. In the floating-point number system the numbers
are “bunched” around zero. In the fixed-point number system the numbers
are uniformly distributed over the range of the number field. To see this,

consider the process of incrementing each of these types of numbers on a
pocket calculator.
The smallest possible increment between any two numbers is the least

significant digit in the numeric display. For an eight-digit display with a
decimal point fixed in the third place, the smallest increment that can be

added to any digit is 0.001. Now consider the addition of an increment to a

floating-point number. Since the decimal point “floats” in the floating-

point number system, the decimal point precedes the far-left digit. For an
eight-digit display, the smallest number that can be added to zero in a
floating-point number system is 0.00000001. Now consider incrementing a
floating-point number when the decimal pointis after the far-right digit. In
this case, the smallest number that can be added to 99999998 is 1. The

difference in the size of the “smallest number” when incrementing a full

and empty register in floating-point numbersis a factor of 10°.

Now consider the full range of the positive numbers in both number

systems. The fixed-point numbers range from 0.001 to 99999.999. The
difference between numbers, no matter where a number is over the range

of the calculator, is 0.001. Thus the numbers over the range of fixed-point
numbers are uniformly distributed.
Again consider the range of the positive floating-point numbers, from

99999999 to 0.00000001. Clearly, the range is greater in the floating-point
number system than in the fixed-point number system, but note also that
when the numbers are very small the distance between them is 0.00000001.
When the register is full, the difference between the numbers is 1.
Obviously, over the range of floating-point numbers, the distribution is not

uniform. In fact, there are as many numbers grouped between 0 and 1 as

there are between 1 and the full register size 99999999.

It follows, then, that in fixed-point arithmetic the absolute difference

remains fixed over the entire range of the number system, while in

floating-point numbers the absolute difference varies significantly. It is
worth emphasizing that in floating-point arithmetic the percentage
difference remains fixed, while in the fixed-point arithmetic system the

constant difference remains fixed over the range of numbers. As used here,
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percentage difference is the ratio of the difference between two consecutive

numbers divided by the larger of the two. For most engineering analysis,
percentage difference and percentage error are usually the measure of
accuracy of most interest.

The floating-point number system is usually extended by powers of 10,

permitting the positive floating-point numbers to range from 10™% to

99999999 X 10*. In fact, calculators are usually configured to display this
extended number field in scientific notation. Interestingly, this even further

bunches the floating-point numbers in the neighborhood of zero. Because
of this grouping property of the floating-point numbers, the absolute errors

are smaller for calculations with numbers between 0 and 1 than for

numbers betwen 1 and the full range of the calculator.
From a hardware architecture viewpoint, fixed-point numbers are usu-

ally displayed with greater accuracy than floating-point numbers; and

floating-point numbers are usually displayed with a greater dynamic range
than fixed-point numbers. This can be seen by considering a register with

eight display elements where we configure both fixed- and floating-point
numbers. In fixed-point arithmetic, eight mantissa digits can be displayed.
If the decimal point is allowed to be set by the decimal point key [] ,
and a display elementis used to show the decimal point, then only 7 digits

remain to display the mantissa. If scientific notation is used to increase the

dynamic range of the display, m+1 display elements are required to

display m digits in the exponent. The extra display element is used to show

the sign of the exponent.

 

Required

Display
Power of 10 Display Elements

10+~ (£)(x) 2

10 (£)(x)(x) 3

1052 (£)(x)(x) - (x) m+1

m digits

If 99 orders of magnitude are to be shown in the display register (the

usual case with scientific pocket calculators) three display elements are

required to display the exponent and its sign, leaving only five digits for
displaying the mantissa. In this sense, then, the effect of increasing the
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display’s dynamic range is to reduce the number of digits for displaying a
mantissa, thus reducing the accuracy with which a number can be dis-
played.

1-3 INSTRUCTION AND DATA ENTRY METHODS

We discuss three types of data entry methods (languages) commonly used
in pocket calculators: polish, reverse-polish, and algebraic. In polish nota-

tion, the operator precedes the operand. For example, to instruct the

calculator to add the numbers 4 and B, in the polish entry method we
would stroke the plus key, then enter the two numbers A and B. The
logical operation in the machine would then display the result without the
need for striking an additional key. In reverse-polish, the process is

reversed; that is, the operands are introduced before the operator. In

algebraic notation, the operator is sandwiched between the two operands.

If we compute the sum of 4 and B in algebraic notation, we first input 4,
then stroke the summation key, follow that with an input of B, followed by
stroking the equal key, whereupon C would be displayed in the register. It

might seem that one entry method would result in many fewer key strokes

than another entry method when numerically evaluating a function, but it

turns out that the key strokes associated with instructing the calculator are
fairly small compared with those associated with data entry. Far more

important is the fact that certain entry methods, when combined with

memory, result in the need for fewer data inputs or “scratch-pad” storage.
The most common entry methods used in pocket calculators are the
reverse-polish and algebraic methods, the former usually being used with

machines that have a memory stack and the latter being attractive because

of its “natural” algebraic treatment of numerically evaluating algebraic

functions.

The natural way in which the algebraic method is used to numerically

evaluate algebraic functions can be seen in the following example. Con-
sider the relation

AXB+C=Y

When evaluated on an algebraic notation pocket calculator (such as the
Texas Instruments SR-51), the sequence of key strokes is*

CLAXB+ C=xxxxxxxx xx

*Here the symbols CL, 1, X, +, and = mean, respectively, “to clear the display register,” “to
store what is in the register in a temporary location,” “to multiply,” “to add,” and “to present

the answer—Algebraic language only.”
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The same function evaluated on a reverse-polish notation calculator (such

as the Hewlett-Packard-21) would involve the sequence of key strokes

CL ATB X C+ xxxxxx xx

It is apparent that the former is more natural for simple functions than the

latter. Reverse-polish notation, when used in conjunction with memory

stacks, has the convenient property thatit easily implements the numerical

evaluation of functions with parenthetical expressions. This is not the case
with algebraic notation. For example, the sum of products

(AXB)+(CXxD)

must be rewritten in the form

 (AxB<2, c)p
to be evaluated using algebraic notation without using a scratch pad. The
key strokes and operation to evaluate the sum of products directly are

CL A X B=xxxx xx STORE ON SCRATCH PAD

CL C X D=yyyy yy +INPUT xxxx xx=12zzzz zz

The key strokes to evaluate this sum of products in the rewritten form is

CLAXB+D+CXD=2zzzz zz

The reverse-polish with stacks evaluates the sum of products conveniently

with key strokes

CLATBXCYD X +2zzzz zz

To avoid rewriting expressions in somewhat unfamiliar forms, the

algebraic programming language can be designed to recognize a hierarchy
among the operators, that is, when products are computed before sums or

vice versa. The algebraic method with a “product-before-sum” hierarchy
(such as the Texas Instruments SR-51) would evaluate the sum of products

directly with the following key strokes:

CLAXB+CXD=7zzzz zz

It has difficulty, however, with the expressions of the product of sums

(A+ B)X(C+D)
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in that the hierarchy is set up to “multiply-before-add” rather than

“add-before-multiply” which the product of sums requires. This problem is
resolved with an additional storage location in which to store the inter-
mediate sum. The key strokes are then,

CLA+B=STOCL C+ D XRCL=2zzzz zz

In reverse-polish with stacks, the key strokes are

CLATB+C1D+ X zzzz zz

Here STO means “store in memory” and RCL means “recall from
memory.”

14 MEMORIES

Pocket calculators are available with no memory, memory for a constant

term, a memory stack of three to four registers, and addressable memory.
The pocket calculator with a memory that simply retains a constant is
characterized by the rather inflexible storage of a constant number that
can be recalled or not recalled to the display register, as the operator
desires. The stored constant can be used as a coefficient in multiple
products or as a constant in multiple sums. The constant memory register
does not automatically interact with the display register in most pocket
calculators.

Pocket calculators with memory stacks generally involve three or four
registers that can be manually “pushed up” and automatically “pushed
down” for the purpose of retaining numbers developed in the display

register. When used in conjunction with reverse-polish notation, they
provide the first quantum level of computing capability above that present
in the simple four-function memoryless pocket calculator. Data are usually
entered into a stack with an entry operation. The three stack registers of a
reverse-polish machine can be filled with three different numbers and then,
as the operation on the number in the display register and the bottommost
number in the stack is called for, the result is displayed in the display
register and the stack automatically moves down, bringing the second

number in the stack now to the first number, and the third number to the

second. This process can be continued until the stack is empty. The
algebraic machine with hierarchy uses a stack somewhat differently. When
a key stroke sequence is to be evaluated (on key stroking the equal sign),
the calculator first looks for products to evaluate and put into the memory
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stack and then executes sums (in a “multiply-before-add” hierarchy). The
stack manipulations are automatic.

In calculators with addressable memories, the process of storing data in
a register is similar to that of storing data in the memory of a computer.

Two pieces of information are required: the first is an instruction to store

data and the second is a location (address) which designates which
memory register is to be used for the data storage. The addressable

registers do not interact unless programmed to do so.

1-5 INSTRUCTION SET

The basic “four-function” calculator has keys for instructing the calculator
to add, subtract, multiply, and divide. What is amazing is that these small

four-function machines, purchased at relatively low cost, can provide
tremendous computing power. Examples of the use of the four-function

pocket calculator for evaluating some of the most sophisticated engineer-

ing analysis are given later. Another arithmetic operation that can be
performed with the four-function machine is computing powers of a given

variable through repetitive multiply operations. While squaring a number
involves only two multiplies, the number must be double entered. Thus the
simplest additional instruction that can be added to a pocket calculator
that reduces the number of key strokes is the squaring operation or

modifying the multiply instruction to square a number when only one data
entry has been made.

Entirely new capabilities are added when the square root and reciprocal
instructions are added to the calculator instruction set. There is no single-

stroke way on a four-function calculator to numerically invert a number
without using a scratch pad and double data entry.* A similar situation

holds for the square root. Thus we find the next most sophisticated pocket
calculator to be a seven-function calculator, including square, square root,

and reciprocal functions implementable with a single key stroke. Beyond

this, additional instructions are added to aid in special-purpose computing
in a variety of ways. The underlying thought in the addition of functions to

a pocket calculator keyboard is to reduce the number of key strokes
associated with data inputs.

Because we will be continually referring to instructions found on most
scientific calculators, let us define the instruction sets that we use in the

book:

*See Appendix Al-5.



 

 

   

Key Symbol Key Name Key Instruction

Clear Clears information in the cal-
CL :

culator and display and sets

the calculator at zero

EHII e E] Digit Enter numbers O through 9 to

]
EE

    

 

CHS
   

 

 

 

  
 

 

 

 

    
 

5

   

Decimal point

Enter exponent

Change sign

Add

Subtract

Multiply

Divide

Square

Square root

a limit of an eight-digit man-

tissa and a two-digit exponent

Enters a decimal point

Instructs the calculator that

the subsequent number is to

be entered as an exponent of

10

Instructs the calculator to
change the sign of the

mantissa Oor exponent appear-

ing in the display

Instructs the calculator to add

Instructs the calculator to sub-

tract

Instructs the calculator to

multiply

Instructs the calculator to di-

vide

Instructs the calculator to find
the square of the number dis-

played

Instructs the calculator to find

the square root of the number

displayed

11



Key Symbol Key Name Key Instruction
 

 

1/x
   

 

sin
  

 

Ccos   

 

tan
 

 

arc   

 

log x
   

 

Inx
   

 

   

 

   

12

Reciprocal

Sine

Cosine

Tangent

Inverse trigonometric

Common logarithm

Natural logarithm

e to the x power

y to the x power

Instructs the calculator to find

the reciprocal of the number
displayed

Instructs the calculator to de-

termine the sine of the dis-

played angle

Instructs the calculator to de-

termine the cosine of the dis-

played angle

Instructs the calculator to de-

termine the tangent of the dis-

played angle

Instructs the calculator to de-

termine the angle of the se-

lected trig function whose
value is the displayed quantity,

when pressed as a prefix to the

sin, cos, or tan key

Instructs the calculator to de-

termine the logarithm to the

base 10 of the displayed

number

Instructs the calculator to de-

termine the logarithm to the

base e of the displayed

number

Instructs the calculator to raise

the value of e to the displayed

power

Instructs the calculator to raise

y, the first entered number, to

the power of x, the second en-

tered number



Key Symbol Key Name Key Instruction
 

 

xVy
   

2]
M+

 

  
 

=+
  

 

 
x!
  
 

   

 

CL x

]

ENTER 1

   

 

   

 

ENT

   

The xth root

of y

Sum and store

Factorial

Equals

Clear entry

Pi

Enter

Instructs the calculator to

process y, the first entered

number, to find the xth root.

The value of x is the second

entered number

Instructs the calculator to al-

gebraically add the displayed
number to the number in the

memory, and to store the sum

in the memory

Instructs the calculator to find

the factorial of the number

displayed

(Algebraic entry method only)

Instructs the calculator to

complete the previously en-

tered operation to provide the
desired calculation result

Clears the last keyboard entry.

Enters the value of pi (7) in
the display register

Loads contents of x register

into y register and retains con-

tents of x register in x register
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Key Symbol Key Name Key Instruction

Store Instructs the calculator to store
STO X .

the displayed number in memory
(location 5, e.g., if the calculator

STO has addressable memory by using
the numeric keys); the HP-27 has

EI nine storage registers addressable
from the keyboard.

RCL Recall Instructs the calculator to retrieve

stored data from memory (loca-
tion 5, e.g., if the calculator has

RCL addressable memory such as the
HP-27)

5]

Storage Store the contents of the display
registers register in the M or K location

TO To answer Instructs the calculator to com-
ANS   

*Called CPT (compute) on some calculators.

14

pute and display the next (sec-
ondary) keystroke function



Key Symbol Key Name Key Instruction
 

]

 

i/yr   

 

FV
   

 

PV
   

 

PMT
   

 

INT   

Total number of
compounding periods

Interest rate

per period

Future value

Present value

Payment

Interest

Computes the number of periods
in a financial analysis when the
payment, present value, and in-

terest are known, when the pay-
ment, future value, and interest

are known, or when the present
and future values and interest are
known

Computes the interest when the
number of periods in the present
value and future value are
known, when the number of

periods and the present value and
payment are known, or when the

number of periods and the future
value and payment are known

Computes the future value when
the number of periods, the inter-
est, and the present value are
known, or computes the future

value when the number of peri-
ods, the interest, and the payment

are known

Computes the present value when
the number of periods, the inter-
estt and the future value are

known, or computes the present
value when the number of peri-
ods,the interest, and the payment
are known

Computes the payment when the
number of periods, the interest,
and the future value are known,

or computes the payment when

the number of periods, the inter-
est, and the present value are
known

Computes the interest in a finan-
cial calculation

15



Key Symbol Key Name Key Instruction
 

%)
A%

 

  
 

%CHG
  

 

DSP
  

 

DS   

 

ACC
  

 

INT
  
  BAL   

16

Percent

Delta percent

Display;

Decimal display

Accumulated
interest

Simple interest

Remaining

balance

Converts percentage to its deci-
mal equivalent

Finds the percentage difference
between two numbers

Fixes the decimal place by de-
pressing this key, followed by any
number key O through 9 (on the
Hewlett-Packard calculators).
The display is then rounded to
the number of decimal places
corresponding to the number key
pressed. The display is usually
left-justified and may include
trailing zeros within the setting
specified. When this key is

followed by the decimal-point
key, the number is converted
from decimal notation to
scientific notation. In scientific
notation, a convenient way of

expressing very large or very

small numbers, a number might
have form N X 10%, where N is a

number having a magnitude be-
tween 1 and 10 and n is a positive
or negative integer.
 

 

 
TOANS followed by |DS |and EI

    
 

will display a number to four
places past the decimal point on
the Rockwell 204.

Computes accumulated interest
between any two time periods of
a loan

Computes simple interest on basis
of both 360 and 365 days

Computes the remaining balance

of a loan at any point in time
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Key Symbol Key Name Key Instruction

LR Linear regression Calculates the best straight line

T through a group of correlated
data pairs

Average Calculates the mean or arithmetic

average of a group of data

E| Standard Calculates the standard deviation
deviation of a group of data

Begin End Annuity Instructs calculator to calculate
switch (SW) annuity based on payment at the

- end of the conversion period   
(End, for ordinary annuity) or at
the beginning of the conversion
period (Begin, for annuity-due;
HP-22 only).

1-6 THE PROGRAMMABLE POCKET CALCULATOR

The most familiar programmables available at present are probably the
HP-25/55/67 series by Hewlett-Packard and the SR-51/52 series by
Texas Instruments. They have memory stacks and registers, use floating-
point arithmetic with scientific notation, and have an extensive three-level
function set. From the standpoint that the programmable pocket calculator
implements logical (Boolean) equations as well as algebraic equations, can
make logical decisions, and will iteratively execute a preprogrammed set of
instructions, it can be correctly called a pocket computer. It is called a
calculator only because it does not satisfy the U.S. Government’s import
/export trade definition of a computer. Because it is generally accepted

that the definition of a computer (or calculator) changes as the state of the
art of computer design changes, it is also acknowledged that in 1955 the
programmable pocket calculator would have been called a computer.
Programmable calculators provide a quantum jump in pocket computing

capability by making libraries of program listings and prerecorded mag-
netic tape programs available to the analyst at relatively low cost. These
libraries can be compiled by the user himself or can be purchased. They
multiply an analyst’s problem-solving tools many times over at a cost of a
few dollars. Considering the labor involved in preparing the library, it is a
sound investment to say the least.
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1-7 THE CALCULATORS TO BE DISCUSSED IN THIS BOOK

We have seen that there are three types of entry method, three types of
memory, and three kinds of numbers that can be implemented in any of
the three kinds of pocket calculator with (though not described here) four
types of function set and two types of I/ O—the hard copy and the manual

I/0. Hence at least 432 types of calculator could be made up from

different combinations of these electronic hardware alternatives. While the

number of reasonable combinations is somewhat smaller, about 50, the

number of possible types of pocket calculator is still too large to be
covered in one book. We therefore analyze only three basic types of

hypothetical pocket calculator. One is a simple four-function machine. The
second is an engineering machine, again a hypothetical one, but with a
function set characteristic of the SR-50/51/51A or HP-21/27/45 series.
The third is the programmable pocket calculator which we assume to have

- 000D00.00
 

 

   

       

    

    

    

    

               

  

CLX 2 X (]

7 8 9 cL

4 5 6 -

1 2 | 3| +

0 . =           L J
Figure 1-1 A hypothetical four-function pocket calculator keyboard.
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a four-register stack with a nine-register addressable storage and a 100-
word instruction set. This, too, is a hypothetical machine whose properties
are defined in the context of the discussion.
Of the three hypothetical pocket calculators, emphasis is placed on the

second—the engineering-type four-register stack machine with the usual
complement of engineering functions. Also, because the simple four-
function machine is now available at very little cost, attention is given
throughout the book to performing advanced analysis on this machine.
What continues to amaze the writer is the extent to which the four-
function pocket calculator can be applied to engineering analysis once the

equations to be solved are manipulated in forms that require no memory
for their evaluation.
For all these machines, we assume that we are limited at most to a

10-digit register and we use floating-point arithmetic with scientific nota-
tion..
The keyboard for the hypothetical four-function calculator to be dis-

cussed is sketched in Figure 1-1. The keyboard functions for the scientific
and programmable pocket calculator are shown in Figure 1-2. The basis
for the discussions dealing with this calculator are the HP-25/55/67 series
and TI’s SR-52/56 series, in that they are representative of what will be

typically available in the foreseeable future.
The display details for all calculators discussed here are shown in Figure

1-3. The display features that we will discuss from time to time include the
following:

Decimal point Assumed to be to the right of any number
entered unless positioned in another sequence
with the [] key.

Minus sign Appears to the left of the 10-digit mantissa for
negative numbers, and appears to the left of

the exponent for negative exponents.

Overflow indication In most pocket calculators, the largest num-
ber that can be entered in the calculator is
+ 9.999999999 X 10 without an overflow
when a function is pressed. If a calculation

result is larger than this value, the display will
flash or give a numerical indication of over-
flow.

Underflow indication If a number closer to zero than to *1.0X

10~% is entered in the calculator, the display
will flash or indicate an underflow.
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Figure 1-2 A hypothetical scientific pocket calculator keyboard (mixed algebraic and
reverse-polish and programmable functions).

20



Arithmetic Calculations and Languages 21

 

 

 

 

   
 

 

Sign Mantissa Exponent

A : _— ——

k—)xl. xlx X x]x]x xlxlx(—)lx]q

/N : "
Integer decimal point Decimal Sign

Figure 1-3 Typical pocket calculator display format.

While concentrating on the hypothetical machines just mentioned, we
shall comment on machines with slightly different keyboards where ap-
propriate.

1-8 ARITHMETIC CALCULATIONS AND LANGUAGES

It might seem that the arithmetic functions of addition, subtraction,

multiplication, and division are so basic to the pocket calculator that very
little need be said about them. It is because they are so basic that they are
discussed in some detail here. Arithmetic performed in one language is

substantially different from that performed in another language. In one

language certain arithmetic calculations are quite convenient and easy to

remember to the infrequent user. Another language, though less con-
venient to the beginner, is more powerful and flexible (hence more con-
venient) to the frequent user. Finally, and perhaps most important, mixed
arithmetic calculations illuminate the need for memory—whether manual,

(using a scratch pad) or temporary data storage, (using automatic stacked
registers) or permanent data storage, (using addressable memory).

The two most popular languages used in pocket calculators are algebraic
and reverse-polish. The languages were introduced in Section 1-3. Table
1-1 illustrates the key strokes involved in performing additions, multiplica-

tions, and mixed arithmetic calculations such as products-of-sums and

sums-of-products using both the algebraic language and the reverse-polish

language. A number of insights on analysis on the various pocket calcula-
tors can be derived by examining the table. The most obvious is that the

algebraic language programs the calculation of simple series arithmetic

calculations in exactly the manner in which we would write them as an

algebraic expression reduced to its simplest form. It is equally obvious that

even simple series arithmetic calculations can be performed in a number of

different ways when using reverse-polish language (except for the simplest

operations of adding and multiplying two numbers). In a sense, then, for

these simple arithmetic tasks, the algebraic language has one unique

sequence of key strokes for performing the task, while the reverse-polish



Table 1-1 Arithmetic in Algebraic and Reverse-Polish Languages
 

Key Stroke Sequence
 

 

Task Algebraic Reverse-Polish

Sum A&B A+ B= A1'B+

_ AT'B+C+
Sum A&B&C A+B+C= { ATBIC+ +

AT'B+C+ D+
AT'B1C++ D+Sum A&B&C&D =um A+B+C+D ATBIC+D+ +

ATYB1CYD+ + +

Multiply A&B AXB= ATB X

. ATB X C X
M 1 =ultiply A&B&C AXBXC ATB1C X X

ATB X C XD X
ATB1C X XD X

Multiply A&B&C&D AXBXCXD= ATB1C X D X X

ATBTCTD X X X

AXB+D+CXD ATB X C1D X +

= (no memory)

Compute AXB'*'.CX.D ATB1CTD XR| XR1+¢
(A% B)+(C X D) =(with hierarchy) i

Compute

(A+B)X(C+ D)

AXBSTOC X DRCL+

= (with memory)

AXBSTOC+ D XRCL=

—
—
e

N
e

ATB+ C1D+ X
AT'BTCtD+R|+RTX °

 

“See page 25 for a definition of R} and R1.
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does not. When viewed from the algebraic language enthusiast’s
standpoint, this ambiguity in ways to solve simple series arithmetic prob-
lems in reverse-polish is viewed as a possible confusion factor for the
pocket calculator user. The reverse-polish language enthusiast, however,
views the same property as a measure of the flexibility of the reverse-polish

notation. From his viewpoint, the user has greater flexibility in the
algebraic forms in which an arithmetic problem can be presented for

numerical evaluation. Furthermore, he could argue, the first form shown in

each of the series calculations in Table 1-1 is close to the algebraic
language key strokes, differing only in the second and last key strokes.

It is interesting that this distinction should come up at all, since the

mixed arithmetic in the last two examples in Table 1-1 shows the many
different ways in which the sum of products can be evaluated with the

algebraic and reverse-polish languages. Note that the first example of the
use of algebraic language to evaluate the sum of products illustrates the
rewriting of the algebraic form as

AXB

D
 (AXB)+(C><D)E( +C)D

We see from the sequence of key strokes that the sum of products can be
evaluated without memory. This form of evaluating the sum of products is

ideal for use on the simple four-function calculators in that it requires no

scratch pad memory and is within the set of operations available on even
the simplest pocket calculator. A similar expression can be developed for

calculating the product of sums without need of memory. Again, the
algebraic form of the equation must be rewritten to be convenient for
calculator evaluation as

(A+B)xC
(A+B)><(C+D)=( D +A+B)D

The importance of rewriting expressions in forms that are easily

evaluated on the pocket calculator is obvious, however. The example of the

sum of products (the second from the last in Table 1-1) shows that the
most convenient form for implementation on any pocket calculator may

depend on the language that that calculator uses and the sophistication
with which it is implemented. For example, the second sequence of key

strokes to evaluate the sum of products is in the standard algebraic form.

This form works well for sums of products where the algebraic language is

implemented with a hierarchy of operands, that is, the multiplies are

performed before the sums. Also, the third example of the employment of
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algebraic language for evaluating the sum of products shows the standard

algebraic forms for evaluating the sum of products on a machine that uses

the algebraic language but has an additional register for memory.

We observe in Table 1-1 also that no memory is required for performing

simple arithmetic calculations in algebraic language until we reach the

product of sums, the last example in the table. Such is not the case for the
reverse-polish language. For example, only two registers are required for

implementing the simple sum A+ B+ C+ D in algebraic language. In
reverse-polish language, only two registers are required to implement the

sum as shown by the first example in the column of possible implementa-
tions of this series of sums. The other three possible implementations
require additional registers in which to store the data 4, B, C, and D.

Clearly in algebraic language additional registers would not permit al-

ternative ways to evaluate the sum, while in reverse-polish every additional
register leads to one additional way. In the example shown in Table 1-1 it

1s assumed that there are four registers in which to store the four data 4, B,

C, and D. Obviously, the use of reverse-polish language with stacks of data

registers adds flexibility to a pocket calculator. In a sense, then, polish

notation and stacks go together in a pocket calculator. It is also apparent

that algebraic language eliminates the need for extensive stacks of data

registers, since no additional flexibility is permitted with the addition of

register stacks. Therefore, most calculators that use algebraic language

have smaller memories than pocket calculators using reverse-polish.

Another observation that we can make from Table 1-1 is that machines

with algebraic notation which also have hierarchy and an additional
register of memory (such as the SR-50) embody the highest level of

capability available for pocket calculators using the algebraic language.

Such algebraic machines compete effectively in conducting mixed arith-
metic calculations with the reverse-polish language machine, such as the

HP-21/35/45 series, with somewhatless electronic complexity. However, the

reverse-polish with stacks adds operational flexibility for the user, which

the algebraic machine does not. Moreover, the algebraic machine requires

that the form of the equation be evaluated, particularly if it is highly

complex. The reverse-polish language, on the other hand, provides the

flexibility to evaluate very complex expressions with minimum attention

being paid to the arrangement of terms. This flexibility is in part due to

additional arithmetic registers that the typical reverse-polish machines
generally have.

Because the manipulation of data among the data registers is essential to

understanding both the reverse-polish with stacks machine and the ad-

vanced algebraic machines, we discuss memory manipulations next.
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Lost

t —f T

2f Z

yfY

x—L X Figure 14 Data flow associated with data entry.

When we speak of a reverse-polish machine with stacks, we assume that
a stack consists of four registers for storing numbers. Following Hewlett-

Packard notation, we call these registers X, Y, Z, and T. Register X is at

the bottom of the stack, T is at the top of the stack, and the display always

shows the number in the X register. We designate the number in the
register by the same letter in italic type. Thus X, Y, Z, and T are the

contents of registers X, Y, Z, and T. When a number key is stroked, the

number enters the X register which is displayed. The numberis repeated in
the Y register when the “enter” key is stroked.Whateveris in the Y

register is “pushed up” into the Z register. The contents of the Z register
are moved into the T register, and the contents of the T register are lost

(see Figure 1-4). As data are entered into the Y register from the X register,

the data in the other registers are “pushed up” automatically with the only
data lost being the data in the T register. Data in the Y register can be

viewed in the display by rolling the data from the Y register down to the X

register by stroking the “roll-down” key . The data in the X register

are then worked backwards in the stack to move to the top register (T), the
data in the top register move to the Z register, the data in the Z register

move to the Y register, and, as mentioned before, the data in the Y register

move into the X register where they are displayed. Stroking the “roll-

down” key again causes the data that were formerly in the Z register,
which have been moved to the Y register, to move down to the X register

where they can be seen in the display. All other data are moved to a

t T t T

2 2 2 Z

y Y y Y

x X x X

Figure 1-5 Data flow associated with roll-down and roll-up
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neighboring register in the direction in which the roll is made. It follows
that after four “roll-down” key strokes the stack will be arranged back in
the original order where X is in its original location and is displayed in the

X register, Y is in its original location, Z is in its original location, and T is

in its original location. Stroking the “roll-down” key moves the data in the
registers in the direction from the Y register to the X register. Stroking the

“roll-up” key moves the data in the direction from the X register to

the Y register. The data flow associated with the data entry and “roll-
down” and “roll-up” operations is seen in Figure 1-5.

Another commonly used stack manipulation is the replacement of the

data in the X register with the data in the Y register and vice versa. The
data flow associated with stroking the “X-Y exchange” key| \ is

 

  
 

sketched in Figure 1-6. o

7
t ————— T \/

Figure 1-6 Data flow associated with x,y

x )y
x X 7

The data flow associated with the stack operations, when performing

addition, subtraction, multiplication, and division, is sketched in Figure

1-7. We see the following:

 

   

1. For summation, the contents of the Y and X registers are added and

displayed in the X register.
2. For subtraction, the contents of the X register are subtracted from the

contents of the Y register and displayed in the X register;

 

 

t > Tz
\—’Z

K—_’Y

y
y+x|y—x
 

   Figure 1-7 Data flow associated with +, —, X

X and +.

 

_/_>yxx y/x
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3. For multiplication, the contents of the X register are multiplied by the
contents of the Y register and displayed in the X register; and

4. For division, the contents of the Y register are divided by the contents

of the X register and displayed in the X register.

For these basic four functions the contents of the T register are always
retained and never lost. This feature of the operational stack is very useful
for certain repeated calculations.

It is worth pointing out here that many of the functions evaluated by a

single key stroke on the typical reverse-polish with stacks pocket calcula-
tors result in the loss of some data in the operational stack. For instance, in

the HP-35/45 series calculators, the contents of the T registers are lost
when evaluating trigonometric functions. They are retained when evaluat-

ing logarithmic and algebraic functions, such as taking the square root,

taking the inverse, taking the logarithms, or exponentiating.
Figures 1-8 and 1-9 illustrate the typical data flow in the stacks when the

product of two sums and the sum of two products are evaluated using
reverse-polish with stacks. Figure 1-8a shows the usual procedure for

evaluating the sum of products, which does not involve the use of the top
register. To illustrate the flexibility of the reverse-polish with stacks and

operations associated with the top register, Figure 1-8b shows the same

calculations using the “roll-up” and “roll-down” features of the stack

manipulations. Figures 1-10 and 1-11 present the typical data flow

associated with keyboard functions and a calculation of the product of two
sums using algebraic with memory. A comparison of Figures 1-8, 1-9, 1-10,
and 1-11 indicates clearly that the greater the memory storage capacity in a
pocket calculator the greater the flexibility in its use.
The question of languages in pocket calculators is akin to that in

minicomputers or large computers, or different nationalities for that matter
—the language you know the best is the language you like the most, unless

you have sufficient multilingual skills to recognize the subtle advantages of
one language over another. What matters least is the type of language or
size of memory associated with any specific pocket calculator; what
matters most is to begin to use some pocket calculator in advanced
analysis. The solid-state revolution has enabled the engineer to perform
fairly sophisticated analysis at his desk, in his home, or on a trip, without

the need for access to a computing facility. Simply stated, those who
capitalize on this aspect of the solid-state revolution and keep current with
the development of pocket computing machines will have a tremendous
advantage over those who do not.
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Z (A% B) (4% B)
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AAB(AXB) C C D (CX D) (AXB)+(C x D) Display register

eyAT B X C 1 D X +

Step1 2 3 4 5 6 7 8 9

 

Figure 1-8a Data flow associated with the sum of two products (4 X B)+(C X D) using key strokes

A1B X C1D X + on a reverse-polish machine.

 

 

 

T A A A (CXD)(CxXxD) A A
Z AABB A A A
Y AABBCC B A (AXB)

X AABBCCD(CXD) B (AX B) (CXD) (AXB)+(C X D) Display register

KeyA1 BT C1 D X R} X R1

Stepl1 234567 8 9 10 11 12

 

Figure 1-86 Data flow associated with the sum of two products (4 X B)+(C X D) using key strokes

ATB1CTD XR|XR1+.

 

 

 

T
Z (A+B) (A+B)
Y A A (A+B) C C (A+B)

X AAB(A+B) C C D (C+D)(A+B)X(C+D)

KeyA1t B + C T D + X

Stepl1 23 4 5 6 7 8 9

 

Figure 1-9 Data flow associated with (4 + B)X(C + D) using key strokes A1B+ C1D+ X

on a reverse-polish machine.
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1-9 TRENDS IN SCIENTIFIC POCKET CALCULATORS

There are two trends in scientific pocket calculators: one toward general-
purpose programmables and the other toward special-purpose prepro-
grammed machines. The HP-25, HP-67, HP-69, SR-56, and SR-52 are

examples of the former, and the HP-21, HP-27, SR-51, and SR-51a are

examples of the latter.
Whereas the early scientific calculator keyboards (such as the HP-35 and

SR-50) emphasized algebraic, trigonometric, logarithmic, and exponential
function evaluation, the HP-27 and SR-51A now emphasize prepro-
grammed algorithms for conducting certain types of analyses. The SR-
51A, for example, has preprogrammed algorithms for determining the
statistics of groups, for conducting statistical forecasting and curve fitting,
and for the generation of random numbers for Monte Carlo simulation.
The HP-27, on the other hand, has preprogrammed algorithms for solving
the time-value-of-money problems associated with engineering economics
(see Part V of this book). The HP-27 also has preprogrammed statistical
algorithms for determining the statistics of groups and for statistical
forecasting, as well as the Gaussian distribution function for convenient
risk-level and confidence-interval calculations. The HP-27 does not have a
random number generator.

Examples of the trend toward increased capabilities of the programma-
ble pocket calculators are the HP-65/SR-56 and the HP-67/SR-52. In the
early HP-65 and SR-56 machines, only 100 key strokes could be stored in
program memory and on the order of 10 memory registers were available
for data storage. Both of these calculators used a simple machine language
for programming wherein each key stroke was (a) numbered (addressed)
sequentially and (b) executed sequentially. In the more advanced HP-67
and SR-52 calculators, 224 to 256 key strokes can be stored in program
memory and on the order of 20 to 26 memory registers are available for
data storage. These more advanced programmable pocket calculators have
many useful program-edit capabilities such as forward and back stepping
and both use indirect addressing.*
The general-purpose programmables are carefully designed for easy use

and require a minimum of training. In fact, virtually all can be pro-

grammed in the learn mode, where the calculator learns a sequence of key

strokes used in solving a problem, and then automatically repeats the
sequence of calculations. Thus no matter what the field, from economics to
quantum mechanics, the programmable pocket calculator can be pro-

grammed to solve often-encountered problems.

*See Chapter 12 for a discussion of indirect addressing.
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Which calculator is for you? If you are strong in analysis or becoming
increasingly proficient with your nonprogrammable pocket calculator, the
programmable machines will give you a lot of capability for the money
you spend. Otherwise the preprogrammed machines will give you sufficient
computing power without the need to become adept at programming.

1-10 SCIENTIFIC KEYBOARD FUNCTION EVALUATION

In this section we use the four-function calculator to evaluate the scientific
functions normally found on the scientific calculator keyboard. The sine,
cosine, tangent, exponential, logarithmic, arc sine, arc cosine, and arc

tangent functions are presented in nested parenthetical forms in two

different ways. The first is in the nested parenthetical form of the trun-
cated series approximations of these functions. The second is in a curve-fit
polynomial form that permits precision evaluation of these functions over

a broader range than the simple series expansions of the functions. Also
covered here are the algebraic functions of raising a number to its nth
power or evaluating its nth root.

Raising a Number to a Power

Raising a number to a power on a four-function calculator can be done
simply by repeated multiplication. A fairly high power, such as 100,
involves 100 data entries and 100 multiplies, which result in many key
strokes and many possibilities for error. An alternative is to use the

constant key available on many of the four-function calculators. The
constant key is built into these calculators to make it convenient to
multiply or divide a series of numbers by a constant number. In the case of

raising a number to a power, we put the chain-constant switch to the

constant position and then input the number to the X register, depress the
constant key, and then raise the number to the power n by stroking the
equals key n times. This approach virtually eliminates the error associated

with repeated data entry in the primitive n-multiply approach. Even in this

case, however, raising a number to the power of 100 involves 100 depres-
sions of the equals key (an error prone procedure). This can be circum-

vented by breaking down the power into its prime factors and performing

nested parenthetical multiplies to evaluate numbers raised to high powers.
For example, suppose that we wish to raise 7 to the 100th power with only
a single entry of #. This can be conveniently done on the simple four-func-

tion calculator by noting that the prime factors of 100 are 2, 2, 5, 5.
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()
(((9-86960440)°))5

Then

((97.40909108)°)”

= (8769956822 x 10°)°

=15.187848391 x 10%°

On pocket calculators that have the squaring operator, numbers can be
raised to any integer power through the 10th by entering the data only

three times. Since the prime factors of many of our exponents are made up

of 2, 3, 5, and 7, raising numbers to these powers involves only two data

entries.

Computing roots on the four-function calculator requires iterative opera-

tions. Among the various approaches to evaluating roots, the simplest is

Newton’s method. Though this method leaves much to be desired in most
applications, it can be used conveniently for computing the roots of

numbers. We have more to say on this topic later in the book. For now,

note that the formula for computing the roots is

1 N
x"+’=;(xk(x—,:’+n_l))

where x, = kth estimate of "V'N .
This equation requires an initial approximation, which is used to develop

a second, more exact, approximation, which in turn is again used to

develop a third, even more exact, approximation. The process usually
converges quickly when the initial estimate of the nth root is known.
Convergence can be markedly slow, however, when the first estimate is not

fairly close to the root in question. Examples of the convergence properties
of the use of Newton’s method for evaluating the third, fifth, and seventh

roots of = are shown in Table 1-2.
Close examination of Table 1-2 shows that for an initial guess of 1, the

process converges in five iterations to the accuracy of the pocket calcula-
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Table 1-2 Examples of the Convergence of Newton’s Method

for nth Roots of =
 

 

Number of 3 5 ;
Iterations Vo Vo Vo

0 1.0 1.0 1.0
1 1.713864218 1.428318531 1.305941808
2 1.499089493 1.293620977 1.209849586
3 1.465379670 1.259260005 1.180121812
4 1.464592311 1.257280369 1.177679333
5 1.464591888 1.257274116 1.177664031
6 1.464591888 1.257274116 1.177664030
7 — — 1.177664030

Check by 3.141592656 3.141592658 3.141592655
computing 7

7 (actual) 3.141592654 3.141592654 3.141592654

Absolute 0.000000002 0.000000004 0.000000001
error
 

tor. However, a determination of this requires a sixth iteration, and in the

case of the seventh root also a seventh iteration. The table also shows the

check of the root by repeated multiplies and the comparison with the true

value of 7, indicating an accuracy of 1 part in 10® after only six or seven

iterations. In general, this method cannot be expected to converge so

quickly for other functions. It happens to converge quickly for the nth root

function because of the nice properties of that function. Note that New-

ton’s formula for computing the nth root also works for the simple square
root. This can be seen by setting n equal to 2 in the equation. Then

Newton’s formula for computing the square root iteratively (which is also

due to Joseph Raphson, a contemporary of Newton’s—hence this method
is often called the Newton-Raphson technique) gives the equation

 (W)k+,=-‘—( N2\ (VW) +(W)")
which can be used for iteratively computing the square root of a number
N.
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Nested Parenthetical Forms

Many functions of interest to engineers can be written in a power series.

This series can be generated by using Taylor’s theorem, Maclaurin’s

theorem, Chebyshev polynomials, and so on. Furthermore, an empirical

data set can be fit with power series. When so written, they take the
“standard” form

f(x)=ay+ax+ax*+ax>+ +a,x"+--- (1-1)

If we were to evaluate this series in the most straightforward manner on

the simple four-function calculator, we would compute each term in the
series and record it on a scratch pad. When all the terms of interest were
evaluated, the sum would be computed on the pocket calculator. The
number of key strokes involved for a 10-digit data entry is shown in Table
1-3. The total number of key strokes for data entry plus instruction are

Total key strokes= >, 12i+10=6n>+16n (1-2)
i=1

Table 1-3 Key Strokes Required to Evaluate

Power Series in Standard Form
 

 

Operation Key Strokes

Record,? q 0

Compute and record, a;x 22
Compute and record, a,x? 34
Compute andrecord, a;x° 46

Compute and record, a,x" 12n+10
 

9No one would input g in the calculator and then
recopy it on a scratch pad.

assuming that each data entry involved the full register. Clearly for n>3

the number of key strokes becomes laboriously large and for n>35 the

chances for error become enormous. By rewriting equation 1-1 in the form

ag+x(a,+ x(ay+ x(as+ - -+ +x(a,_,+x(a,_,+a,x)) -~ ))) (1-3)

we reduce the number of key strokes, because the formula is organized in

the natural language of the machine and requires no scratch pad storage.

In pocket computer instructions, equation 1-3 would be evaluated working
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from the inside out with the following reverse-polish instruction set:

    
  

al| X |x| + |a X |x| + |a,—2| X |x| +
           

  

 
 
   

    
+ |a,| X |x| + |a;| X x| + |9 =

         

The number of key strokes for this evaluation of equation 1-1 1s

Number 1* 2 3 S n
of terms

Totalkey O 33 55 e 102n—1)+2n—1

strokes

And the key strokes for data entry plus instructions total

total key strokes=11(2n—1) (1-4)

We see, then, that in nested parenthetical form we can carry up to 10

terms before the dimensions of the problem get out of hand—that is, up to
six more terms than in the “standard” form. This business with the forms

of equations is worth remembering for series evaluation on any calculator

or computer in that the nested parenthetical forms are generally processed
faster than are standard forms when computing time is involved. This is

because the number of arithmetic operations grows as the square of the

number of terms for series written in standard form and only proportional
to the number of terms for series written in nested parenthetical forms.

Note also that it is unnecessary to use a scratch pad when evaluating
series in parenthetical forms, since the operands and operations are in the
appropriate order for evaluation with algebraic, polish, or reverse-polish

entry methods.

Comparing equations 1-2 and 1-3 we see that the nested parenthetical

form substantially reduces the number of key strokes by reducing the

number of data entries required for the calculation. Even more dramatic is
the impact that rewriting the equation in nested parenthetical form has on

the time required to perform the numerical evaluation of the power series
on a pocket calculator. If we assume that, on the average, for every key

stroke and digit record the calculation takes 1 second, we would expect the

nested parenthetical form to involve 22/(6n+32)% (for n>5) of the time

*No one would evaluate a single-term series on the calculator.
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required for a standard-form power series evaluation. In general, nested
parenthetical forms of power series or polynomials are more quickly

evaluated than the standard forms. The more common scientific keyboard

functions can be evaluated on the four-function calculator using the

following nested formulas:

1n(1+x)zx(1—§(1——33i(1—%(1— %")))) (x| < 1)

 

)) y=x=1), (x=1<1)2

x+1 2 1 3 5 7

‘"(x_l)g;(”;?(”fi(”fi(”fi))))’ x>
 

 . _ _x_ __6_)(2 120x 2)

S‘“(")="(l 6(1 120(1 5040( 362880x )))

- x? 2x2 24x? 720 2

°°S(X)=(l"7(l 24 (1 720(1 40320~
  

_ x2 6x 255
‘a“(")=x(l+ 3 (H15(1+ 630~)))

1 _x( 3x2(, 90 2)cotan(x)_x 3(l+ 45 (l+945 )
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These formulas were selected on the basis of the reasonableness of their

intervals of convergence. The four different approximations for the natural
logarithm span the region from x= —1 to +oo. They are all written in

convenient nested parenthetical forms and can be used for immediate
evaluation on the pocket calculator. This table, if copied and reduced, can

be conveniently taped to the back of your pocket calculator for handy

reference.
Another approach to evaluating these scientific functions is to use a

curve-fit polynomial over a broad range of the argument. Such poly-
nomials are tabulated in Table 1-4 for the functions on the keyboard of

the scientific pocket calculator. These polynomials will permit precise
evaluation of the logarithmic, exponential, and trigonometric functions on

the four-function calculator and thus make it capable of performing any
analysis that can be performed on the scientific pocket calculator.

To put functions into forms that are easily computed on the pocket

calculator, use the following procedures:

Procedure 1

(a) Either find or generate a table of values for the function of interest

to the accuracy of interest.

(b) Prepare an interpolating polynomial (see Chapter 2) that passes

through selected points of interest in the table but spans the range

of interest in the argument.

(c) Identify the maximum error of the polynomial approximation on

the interval of interest.

(d) If the accuracy is satisfactory, write the polynomial in nested

parenthetical form, and then use it for approximate evaluation of

the function on the pocket calculator.

If the tables are not available and there is not sufficient time to prepare
them, use Procedure 2.

Procedure 2

(a) Prepare a series approximation of the function centered on the

interval of interest.

(b) Using a Chebyshev polynomial economization scheme (see Chapter
8) reduce the order of the polynomial.

(c) Test the polynomial for accuracy over the argument’s interval of

interest.



Table 1-4 Polynomial Approximations of Many Functions Found on the Keyboard
of the Scientific Pocket Calculators

 

)

@

€)

(4)

()

Log,o(x)=t(a, + tz(a3 + tz(as + t¥(a;+ ayt?)))) +€(x)

Here

t=(x—=1D(x+17"
and

le(x)] <1077 where 107'/2< x<10*!/2
for

a,=0.868591718 a,=0.094376476

4,=0289335524  a,=0.191337714
as=0.177522071

Loglo(X) = t(al + a3t2) + €(X)

where t=(x—1)(x+1)"!, a,=0.86304, and a,=0.36415.
Then

le(x)] < 6x10~* where 10~1/2< x<10*!/2

Ln(1+ x)=x(a,+ x(ay+ x(a;+ x(a,+ asx)))) = €(x)

Here

a,= 0.99949556 a,= —0.13606275

a,=—049190896 as= 0.03215845

a;= 0.28947478

Then

le(x)| < 107° where 0<x<1

Ln(l+ x)=x(a;+ x(a;+ x(a3 + x(as+ x(as+ x(ag+ x(a; + agx))))))) + e(x)

Here

a,= 09999964239 as= 0.1676540711

a,= —0.4998741238 a,= —0.0953293897

a;= 0.3317990258 a,= 0.0360884937

a,= 02407338084 ag= 0.0064535442

and

le(x)]<3%x107® where 0<x<1

e*=1+x(a;+ax)+e(x)

where

a,=-—0.9664 and a,=0.3536
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Table 1-4 (Continued)
 

Then

le(x)]<3x107% where 0<x<In2

6) e*=1+x(a,+ x(ay+ x(az;+ aysx)))

where

a,=—0.9998684 a;= —0.1595332

a,= 04982926 a,= 0.0293641

Then

le(x)|<3%107° where 0< x<In2

(7 Sin(x)= x(1+ x¥(a, + a,x?)) + xe(x)

where

a,=—0.16605 and a,=0.00761

Then

le(x)|<2x10™* where 0<x< —g—

@) Sin(x)=x(1+ xz(az + x2(a4 + x2(a6 + x2(a8 + a,oxz))))) + xe(x)

where

a,= —0.1666666664 ag= 0.0000027526

a,= 0.0083333315 a,,= —0.0000000239

ag= —0.0001984090

Then

le(x)| <2x107° where 0<x< %

(9) Cos(x)=1+x%(a,+ asx?)+e(x)

where

a,=—0.49670

a,= 0.03705

Then

le(x)] <9%10™* where 0<x< g

(10) Cos(x)=14+x*(ay+ x*(as+ x*(ag+ x*(ag+ a;px?))) + €(x)
where

ay=—0.4999999963 a,= 0.0000247609

a,= 0.0416666418 a,y= —0.000002605

ag= —0.0013888397
 



Table 1-4 (Continued)

 

Then
le(x)|<2x107° where 0<x<g

(11) Tan(x)=x(1+ x*(a,+ a,x?))+ xe(x)
where

a,=0.31755

a,=0.20330

Then

(12)

(13)

(14)

le(x)| <1072 where 0<x <%

Tan(x)= x(1+ x%(ay + x*(a,+ x*(ag+ x*(ag+ x¥a0+ a1x2))))) + xe(x)

where

a,=0.3333314036 ag=0.0245650893

a,=0.1333923995  a,,=0.0029005250

ag=0.0533740603  a,,=0.0095168091

Then

le(x)|<2Xx10~8 where 0<x<~
4

1 2 ) e(x)
Cotan(x)= ;(1 + x“(a,+ azx“))+—

where

a,= —0.332867

a,= —0.024369

Then

le(x)] <3X%X107° where 0<x< %

1 2 2 2 2 2 e(x)Cotan(x)= ;(1 + x%(a,+ x“(as+ x“(ag+ x“(ag+ a,px°))))) + —~

where

a,= —0.3333333410 ag= —0.0002078504

a,= —0.0222220287 a,,= —0.0000262619

ag= 0.0021177168

Then

le(x)| <4x 1071 where O<x<%
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Table 1-4 (Continued)
 

(15) Arcsin(x)= 32’— — (1= x)"%(ag+ x(a,+ x(a, + a;x))) + €(x)

where

ay= 15707288 a,= 0.0742610
a,=—02121144 a;=—0.0187293

Then

le(x)|<5%107° where 0<x<1

(16) Arctan(x)= x(a, + x*(a; + x*(as+ x*(a; + agx?)))) + e(x)
where

a,= 09998660 a,= —0.0851330

a;=—0.3302995 a,= 0.0208351

as= 0.1801410

Then

le(x)] <107 where —1<x<1
 

(d) If the polynomial is not sufficiently accurate, include more terms in

the original approximating polynomial before Chebyshev
economization, then use the Chebyshev procedure and test the

polynomial again.

(¢) When the polynomial is sufficiently accurate, write it in nested

parenthetical form and use it to evaluate the function on the pocket
calculator.

The numerical methods associated with generating interpolating

polynomials are discussed in Chapter 2. The Chebyshev economization

procedure and approximation with rational polynomials are discussed in
Chapter 8.
An interesting aside is that the logarithmic, exponential, and transcen-

dental functions and their inverses and hyperbolic counterparts are typi-

cally generated in pocket calculators with pre-programmed, recursion

algorithms. These algorithms generate the numerical values of these func-
tions using CORDIC techniques.* A CORDIC technique does not im-

plement series expansion approximating polynomials. They are hardware

*The Cordic trigonometric computing technique—IRE Transactions on Electronic Computer,-
September 1959.
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algorithms that generate the numerical values of the mathematical func-
tions in which we are interested. In a word, function evaluation on the
pocket calculator is done to high precision using computing techniques and
algorithms that are convenient and efficient from a circuit implementation

viewpoint more than an analytical viewpoint.

1-11 ACCURACY IN FUNCTION EVALUATION

Books on numerical analysis or computer calculations usually present the

equations for propagating relative or absolute error through an analysis. In

this book we take a slightly different approach. Our concerns here are

working within the limitations of the pocket calculator’s computing capa-

bility and understanding the calculator’s impact on the generation of error

that gets introduced into the problem. We wish to identify methods and

techniques for getting around these problems.
The floating-point number system affects the calculations on the pocket

calculator through its treatment of overflow and underflow. When a

number exceeds the largest number in the calculator, the calculator is

usually set to its largest number and the calculation is set to overflow the

contents of the calculator. Similarly, when the calculation calls for a
number that is smaller than the smallest number in the calculator, the

number usually is set equal to zero and the calculation is set to underflow

the machine’s capability. Intuitively, replacing an underflow by zero seems

more reasonable than replacing an overflow by the maximum number

available in the calculator. However, one must be careful in such generali-
zations. Computing e*?® using the inverse of e~2?® is not the same as
evaluating e??® directly. The reason is that e =228 is set equal to zero and
thus the inverse is undefined, while ¢??® is within the number system of the

pocket calculator.

_1228 = 0 —undefined
underflow

 

e

228 - 1.045061560 % 10%°

What is surprising is that these number system “end effects” can lead to

some practical limitations on the range of variables for which the function
can be evaluated. Table 1-5 shows the effect of overflow and underflow on
the range of the function x’*/(e* — 1).
The function is written in two ways in the table: favoring underflow and

favoring overflow. Thatis, the function in the first column will eventually
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Table 1-5 The Effect of Overflow and Underflow on the

Range of Function Evaluation
 

 

x x%e*/e*—1 x3/1—e™*

1 1.581976707 1.581976707

10 1.000045407 x 10° 1.000045407 x 10°

100 1.0x 10'° 1x10'°
200 3.200000023 x 10! 3.200000023 x 10!!

202 3.363232171 x 10" 3.363232170x 10!

203 3.447308829 x 10!! 3.447308829 % 10'!

204 Overflow 3.533058573 x 10!

220 Overflow 5.153631990x 10"
225 Overflow 5.766503900 x 10!!

226 Overflow 5.895792594 x 10'!
227 Overflow 6.027389914 x 10!
228 Overflow Underflow
 

overflow the calculator’s field of numbers because of the evaluation of

x%e*, while the function in the second column will eventually underflow
the calculator’s field of numbers because of the evaluation of e~*. The
table shows that the range of the variable x for which the function can be

evaluated is limited sooner by the overflow effect than the underflow

effect. In fact, the function written in the form that will eventually result in

underflow can explore the range of the argument which is 12% greater than
the same function that will eventually result in overflow. In general, pocket

calculator analysis favors functions written in the form that will eventually
underflow.

Roundoff Error

Roundoff error is similar to the end effects associated with underflow and

overflow. While many understand roundoff, its practical impact on en-

gineering-type calculations is often ignored with occasionally surprising

results. Because some of the modern pocket calculators display mantissas

to 13 places, it is easy to overlook the roundoff effect in a calculation,
thinking that the calculator’s large mantissa will certainly maintain ac-
curacy through a sequence of calculations. The question here, then, is not

how to round off a calculation but, rather, how does the roundoff intro-

duce error in a practical manner in a calculation? Roundoff is an end
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effect. It is similar to underflow and overflow in that the last digit in the
mantissa is arbitrarily changed to another number on the basis of some
rationale. It is different from underflow and overflow effects: end effects

associated with the number system in the calculator impact the range of

the argument that can be examined; roundoff does not. Roundoff can
actually propagate error into the most significant digits of the calculation.
One might ask, “How does the roundoff of a three or four significant digit

number propagate into the most significant digit?” This is precisely what

we shall discuss here; an example of how roundoff in the third significant

digit propagates to the first significant digit resulting in a 100% error is

used to illustrate the problem.

Table 1-6 shows the calculation of the difference between products of
numbers known accurately to three significant digits.

Table 1-6  Error from the Least Significant Digits to the most Significant Digits
 

 

 

Rounded Calculator

Desired Calculator Calculator Results

Calculation Results Results Rounded

0.234 %< 0.567 0.132 678 0.133 0.132 678

—0.232x%0.566 -0.131 312 -0.131 —-0.131 312

0.xxx 1.366 X 103 2x1073 1x10°3

 

Column 1 shows the desired calculation. Column 2 shows the results
achieved on a pocket calculator, and column 3 shows the results achieved

by first rounding each of the numbers generated in the product and then
taking the difference. Column 4 shows first taking the difference between
the unrounded numbers and then performing the rounding operation.
Precisely what we mean here by rounding is the following. When the two
three-digit numbers are multiplied, their product has either five or six

places. Because the original numbers are only known to three places, we

must drop two or three digits from the product. The rounding operation is

adding 1 in the third place if the fourth-place digit is five or greater, or

adding zero to the third digit if the fourth digit is less than five.

Now let us examine Table 1-6 closely. The desired calculation involves

roundoff because the numbers in the products are only known to three

places. The calculator results that are displayed to five or six places are

really only known to three places and thus the number must be rounded.
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The result of taking the difference of the unrounded numbers is 1.366 X
103 which is only accurate to the first digit. If the second, third, and

fourth digits are retained in additional calculations, they introduce a

multiplication error into the problem that is propagated forward in any

calculations. Clearly, the propagation of this type of error in an extended
calculation can provide meaningless results. This roundoff error is well
known and is not commonly made by most analysts.

It is the errors associated with the third-column calculations that are
occasionally introduced into calculations. They arise from what seem to be
reasonable calculations but are in fact mathematically incorrect and thus
introduce substantial errors. The results in the first row of calculations are

rounded to the third significant digit before the subtraction is performed,

giving 2X 1073, Column 4 shows the subtraction being performed before
the roundoff is performed. It is apparent that the difference in the two
calculations is a factor of 2 (100% difference in the two numbers). The

rationale for the calculation of column 3 is that we really only know the

number to three significant digits, and thus should round each product

before subtracting. The rationale for the calculation in column 4 is that

rounding arbitrarily changes one of the numbers in the calculation, which
introduces an end-effect error. In column 3 there are two end-effect errors

which can combine into a sizable resultant error, while in column 4 only
one end-effect error occurs when the products and subtractions are com-
pleted and the result is rounded. In this sense, then, if a column of n

products are taken followed by n subtractions, where roundoff is per-
formed after the multiplication, there are n opportunities for propagating

the roundoff effect from the third significant digit to the first significant

digit. However, if the roundoff is performed after the subtractions are

made, there is only one opportunity for propagating this roundoff error

forward into the most significant digits. Thus the rule of thumb for

accurate calculations is to round off on the last step. The example chosen

here carries the roundoff error immediately from the last significant digit

to the first significant digit, which usually is not the situation. It is worth

pointing out, however, that calculations to one part in 10,000 involving

differences can move roundoff error as much as three significant digits

forward, thus modifying sensitivity analysis (evaluation of derivatives with

finite differences) results in the third and even second places.

In summary, roundoff becomes a problem in calculations mainly when

two numbers of the same size are subtracted. The roundoff propagates

forward as a result of the cancellation of the leading digit in a subtraction

process. This brings the roundoff errors from the least significant digit into
the most significant digits. Because the display in the calculator’s display
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window shows a mantissa to 13 places, the inexperienced analyst can be
“spoofed” into assuming incorrectly that he has an accurate number.

Unfortunately, there is no systematic approach to analyzing the effect of
roundoff in extensive calculations. All that can be said is that care must be

taken not to write equations in forms leading to differences of equal-size
numbers. Even this is difficult, because the values of the parameters of the

problem that result in the difference of equal-size numbers often are not
apparent, so that significant roundoff error cannot easily be predicted. The

only practical resolution is to strive to write equations in forms that
minimize the use of subtraction.

Relative Error

As already mentioned, the absolute error in the fixed-point number system
is fixed, while the relative error in a floating-point number system is fixed.

That is, the difference between two numbers in the fixed-point number
system is always the same; in the floating-point number system it is not.

The difference between two floating-point numbers, when the numbers are
close to zero, is smaller than the difference between two floating-point

numbers when the numbers are close to the maximum size in the calcula-

tor. The difference between two numbers divided by either of the numbers

is approximately fixed in the floating-point number system, while it varies
in the fixed-point number system. Thus the floating-point number system
tends to emphasize relative rather than absolute error, as do most engineer-
ing and scientific analyses. Hence it is the natural number system for

scientific calculations.
A similar situation occurs in evaluating functions. Scientific pocket

calculator analysis favors functions written in a form that minimizes
relative error rather than absolute error. Although this is well known to the
experienced analyst, and seems quite rational to the practical analyst, we
still find it prevalent to use “absolute error” as an accuracy criterion in

numerical analysis. For example, calculating e ™* over the range 0 to 3, to 1
part in 10® using a Taylor series expansion, requires on the order of 12

terms in the series. That is, the contribution made by the thirteenth term in

the Taylor series expansion of e*, when x=3, is something less than

10~ 3. However, if, more reasonably, we require that the relative error be 1

part in 10%, only nine terms are needed in the series. The absolute error
criterion requires 30% more terms than what is usually required for
engineering analysis. In general, when deriving approximation formulas, it
is important to decide what type of error is important to the problem being

solved and use approximation methods that provide the appropriate ac-
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curacy. Too often the approximation is laboriously long and too accurate

for the purpose.

In Chapter 4 we evaluate power series forms of advanced mathematical
functions such as Bessel’s functions and Legendre polynomials. Our

emphasis then in these cases, is on both relative error and absolute error.

The formulas based on relative error criteria have fewer terms than those

based on absolute error. In scientific work (where relative error is of

concern) this results in a significant reduction in the work required to

evaluate these functions on the pocket calculator because the number of
key strokes involved in raising the argument to high powers is eliminated.

Rearranging Expressions to Minimize Error in Function Evaluation

The pocket calculator’s sole function is the numerical evaluation of

mathematical functions. Hence it does not have alpha-numeric displays or

the ability to display words, except by coincidence.* Its purpose is to
evaluate functions. We have already examined the effects of underflow

and overflow, roundoff, and the error criterion itself on the accuracy of

numerical evaluation. Now we briefly look at the functions to be evaluated
and how they may be written in forms where loss of accuracy due to the
subtraction of two almost equal-sized numbers does not occur.

There are a number of “tricks” to handling the difference between two
numbers that are close together. However, one general technique exists

that can resolve many problem situations where the difference of two

numbers are of approximately the same size. Consider the function

h(x)=f(x+€)—f(x)
As already discussed, the numerical evaluation of h(x) can propagate

roundoff error forward into the leading significant digits. This function can

be modified as

h(x)={f(x+e)—f()\ T————F7{ NFro+r
_SfAx+e)—fi(x)

fx+e)+f(x)

This 1s a general equation that can, for algebraic and certain transcen-

dental functions, transform the difference of two neighboring numbers into

the ratio of sums of the numbers capable of being evaluated accurately on

J(x+e)+f(x) }

h(x)

* See Appendix A.
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the pocket calculator (or on any calculator or computer). For example,if

f(x)=x?
then

(x+6)'—x* 4%
2x2+2xe+ € =2x2(1+e/x) -
 h(x)= 2xe

For another example, consider the function

f(x)=sin(x+¢€)
Then

h(x)=sin(x+e)—sin(x)=2cos(x+ —;—)sin(%)

which for small € (but not necessarily small x) is

p=2(omfss§)) 5](o §)
An example suggested by Hamming is

[(x+ e)l/z——(x)]/z][(x+£)l/2+(x)l/2]a2 ()22

(x+e)™ =(x) (x+6)7+ (x)"
 

- (x+€)"2+(x)"?

With regard to other techniques, Hamming makes the interesting obser-

vation that what appear to be a large number of tricks to reformulate a

function to handle its finite difference are really not new to the analyst.

They are exactly the same methods used in calculus to derive the func-

tion’s derivative. We can see this from the definition of the derivative

im {22 = 1m {f(X+Ax)—f(X) }
Ax—0 Ax Ax

As a final resort to avoiding subtraction of nearly equal-sized numbers,

most functions can be series expanded or approximated with different

types of series for the interval of interest. Then h(x) can be formed and

modified as before to get around the subtraction problem.
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An approach that works surprisingly well for certain functions (see

Example 1-4) is to use the mean value theorem of differential calculus,
where

f(b)=f(a)=(b—a)f'(#), (a<O<D)

As an example of the application of the mean value theorem, let us

compute

h(x)=sin(x+ €)—sin(x)

where x + € 1s not necessarily small. Using the mean value theorem, we

then find

h(x)=[(x+¢€)—(x)]cos(8)=¢€cosb
for

x+e>0>x

The difficulty is in selecting the value of # that will accurately compute

ftx); that is, in selecting @ that produces less error than would be produced

by the propagation of the roundoff error into the most significant digits.

The author knows of no method for effectively estimating # to ensure

accuracy greater than is given by taking the difference itself. However, the

midvalue interval is an obvious possibility. In this case, we find

h(x)zecos(x+ %)

Clearly this method is of questionable value (for precision evaluation) ex-

cept when @ can be determined. The equation is useful, however, for com-

puting the extreme values of the difference by using the expressions

ecos(x+e)

ecos(x)

on the interval of the calculation.

A few commonly used difference equations for circumventing large

errors in taking the difference between nearly equal values of popular

transcendental functions are tabulated in Table 1-7.
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Table 1-7 Commonly Used Difference Equations

in Functional Evaluation
 

Ae*=e*(e?*—1)

Aln(x)=1n(1+%)

Asin(27x)=2sin(7Ax)cos [ 21r(x + -A—z-{ )]

Acos (2mx) = — 2sin (wAx)sin [277(x+ 5‘21)]

Atan(27x)=sin(27Ax)sec(2mx)sec(2mx +27wAx)
 

1-12  SIMULTANEOUS EQUATIONS*

If you have your pocket calculator handy, set it up so that it will read
angles as radians, enter 0.5 in the display register, and then repeatedly
strike the cos key. You will find the following sequence of numbers
showing up in the display register:

 

Number of

Iterations Display Register

1 0.877582562
5 0.768195831
10 0.735006309
20 0.739006780
49 0.739085134
50 0.738085133
51 0.739085133

To what is this sequence of numbers converging? Said differently, what
problem is being solved when a function key is stroked repeatedly? The
answer has powerful consequences as well as being interesting and of
practical value. The number 0.739085133 is the solution to the simulta-
neous equations:

y=x

y =cos(x)

*Excerpted by special permission from Chemical Engineering, April 26, 1976. Copyright 1976
McGraw-Hill, Inc., New York.
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We have seen, on the 51st key stroke, that this equation converges as:

0.739085133 = cos(0.739085133)

In other words, we have found a condition where

x =cos(x)

Now, when we started the calculation:

x 7 cos(x)

In our first key stroke, we calculated:

y~cos(x)

X1 =0

Based on this, we could make the second approximation as:

Yy=cos(x,;)

X2=)V2

By repeating these iterations » times, we have demonstrated that

lim (x,) =cos(x,_,)

To summarize, when a function key on your pocket calculator is stroked
repeatedly and the sequence of display numbers converges, the result is the
solution to the simultaneous equations:

y=x

y=£(x)

This is important from a practical point of view, because many engineer-
ing problems are iteration problems using implicit functions, although
usually not quite so simple as our example. But we can extend the
technique. Suppose you want to solve the tougher set of simultaneous

equations:

y=h(x)

y=f(x)
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These equations can be written as an implicit function by solving for x as:

x=h"'(f(x))

Now, all that is required to solve this problem by the repeated key stroke
method is to see that both f and 2~ ! are keyboard functions. For example,
if you are seeking the value of x, such that x2=cos(x), you can solve for x

as x =\/cos(x) , and the key stroke sequence would be:

enter x
press cos

press V

press cos

press V

and so forth, until the process converges. In this case, you will find
x=0.824132312.

Another example would be for:

y=cos(x)

y =tan(x)

In this case, you would rewrite x to be:

x =tan " '(cos(x))

and after 21 iterations, you would find x =0.666239433.

Will it work all the time? No. For example, if we attempt this techinque

with

x=cos!(x)

we find the process will not converge. Similarly, if we try to solve the
equation

sin(x) = cos(x)

by solving the equation

x =sin"'(cos(x))

we find the solution to be a neutrally stable oscillation.
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Finally, the solution of the equation:

e*=x

simply goes unstable. Why? This is an example of a problem that the
novice numerical analyst sets up and cannot solve. It exemplifies the
essentiality of understanding a problem, not merely the equations.

In general, there are convergence difficulties to contend with for many
keyboard functions. Fortunately, however, they are easy to observe for
most practical problems. Either the solution stops due to an overflow or an
undefined argument, or the process does not converge.*

Interestingly, this problem of solving simultaneous equations is but one
case of the more general problem of finding the zeros of a function. Note
that simultaneity of

y(x)=2z(x)

can be written as

y(x)=z(x)=0=Q(x)

and there are many useful numerical methods for solving this general
problem, X (x)=0. A discussion on finding the zeros of a function can be
found in Chapter 9.

1-13 REFERENCES

One comprehensive, readable volume was selected to use as a reference

throughout this book: Richard Hamming’s Numerical Methods for Scien-
tists and Engineers. This book, published by McGraw-Hill,is in its second

edition (1973). Dr. Hamming has also published a superb textbook entitled
Introduction to Applied Numerical Analysis (McGraw-Hill, New York,

1971). For this chapter refer to Hamming’s Numerical Methods for Scien-

tists and Engineers, Chapters 2 and 3.

Example 1-1 Evaluate In(0.9) using the fifth-order truncated Taylor series

expansion of In(1 + x) in the neighborhood of x=1.

ln(1+x)=x(1— 32‘-(1—2%(1—%45(1—4%)))), x| <1

*See Section 3-6.



References 55

Now

1+ x=09

J.ax=-0.1

Then

~ _ 0.1 2x0.1 3x0.1 4x0.1In(0.9) = o.1(1+2(1+——-3(1+__4(1+__5 ))))

A typical algebraic key stroke sequence for evaluating this polynomial is

4%0.1 +54+1%x3%x0.1+4+1%X2X0.1+3 +1X0.1+2+1Xx0.1CHS=

A typical reverse-polish key stroke sequence is

410.1 X5+14+3X%X0.1X4+1+2X0.1X3+1+0.1X2+1+0.1 XCHS

Accuracy considerations over a broader range of x are given in Table

1-8.

Table 1-8 Accuracy of the Fifth-Order Taylor Series Expansion of In (1+ x)
 

 

Absolute Relative
(1+x) x In(1+ x) x[1=x/2(1—--+)] Error Error (%)

0.9 —-0.1 —0.10536052 —0.10536033 —0.00000018  00.000173

0.8 —0.2 —0.22314355 —0.22313067 —0.00001288 00.005774
0.7 —-03 —0.35667494 —0.35651100 —0.00016394  00.04596194
0.6 —-04 —0.51082562 —0.50978133 —0.00104429  00.20443190
0.5 -0.5 —0.69314718 —0.68854167 —0.00460551  00.80241261
0.4 -0.6 —0.91629073 —0.89995200 —0.01633873  01.78313839
0.3 -0.7 —1.20397280 —1.15297233 —0.05100047 04.23601512
0.2 -0.8 —1.60943791 —1.45860264 —0.15083525  09.37192077
0.1 -09 —2.30258509 —1.83012300 —0.47246209 20.51876799
 

Example 1-2 Evaluate In(l1+ x) using the fifth-order Chebyshev

approximating polynomial

In(1+ x)=x(a;+ x(a,+ x(ay;+ x(a,+asx)))), 0<x<I

over the range 0< x <1 using the coefficients (from page 40)

a,=0.99949556 a,= —0.13606275
a,= —0.49190896  as=0.03215845
a,=0.28947478
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The accuracy of this approximation is shown in Tables 1-9 and 1-10.

Note that even outside the region where the approximating polynomial
was designed to best approximate In(l1+ x) it is more accurate than the

“unconditioned” Taylor series expansion of In(1 + x). Evaluation of In(1 +

x) using the approximating polynomial requires approximately 60 key

strokes (20 more key strokes than are used in the Taylor series approxima-
tion) whether using the reverse-polish or algebraic languages. The addi-

tional key strokes are associated mainly with entering the coefficients a,,

a,...,ds.

Example 1-3 Rewrite the difference

h(x)= l 1
x+1 x
 

Table 1-9 Accuracy of the Fifth-Order Chebyshev Polynomial Approximation

of In(1+x)
 

 

Absolute Relative

(1+x) x In(1+x) x[a,+x(ay+---)] Error Error (%)

1.1 +0.1 0.09531018 0.09530666 0.00000352 0.003697
1.2 +0.2 0.18232156 0.18233114 —0.00000959  —0.005257
1.3 +0.3 0.26236426 0.26236872 —0.00000445  —0.001697
1.4 +0.4 0.33647224 0.33646527 0.00000696 0.002070
1.5 +0.5 0.40546511 0.40545592 0.00000919 0.002267
20 +1.0 0.69314718 0.69315708 0.00000990 —0.001428
 

Tablel.10 Accuracy of the Fifth-Order Chebyshev of In(1 + x) Outside the

Design Range of the Chebyshev Approximation

 

 

Absolute Relative
1+x x In(1+ x) x[a;+ x(ay+ - --)] Error Error (%)

09 —0.1 -0.10536052 —0.10517205 —0.00018847 0.178879
08 —0.2 -—0.22314355 —0.22211926 —0.00102429 0.459028
0.7 -03 -—0.35667494 —0.35311655 —0.00355840  0.997658
06 —04 -—0.51082562 —0.50084255 —0.00998309 1.954301
05 —05 -0.69314718 —0.66841824 —0.02472894 3.567632
2.1 1.1 0.74193734 0.74210824 —0.00017089 —0.023034
2.2 1.2 0.78845736 0.78913899 —0.00068162 —0.086450
2.3 1.3 0.83290912 0.83478743 —0.00187831 —0.225512
2.4 1.4 0.87546874 0.87972822 —0.00425948 —0.486537
25 1.5 0.91629073 0.92481112 —0.00852039 —0.929878
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in a form that will minimize roundoff error using a series expansion
technique. The objective is to eliminate the differencing of two numbers of
approximately equal size. Expanding the first term, we see that

1 1/x l( 1,1 1 )
 
 |x| > 1

Then

h(x)=§%(fi;)=fi
This form of h(x) does not involve computing the difference of two

numbers of nearly equal size. The range of x over which this derivation

applies is |x| > 1.

Example 1-4 Rewrite the difference

1 1

M=T
in a form that will minimize roundoff error using algebra.

Cross-multiplying, we find

x—(x+1)

h(x)= x(x+1) T ox(x+1)
 

This result is the same as that developed with the series expansion method
except that it holds for all x, not just |x| > 1. This is an important point to
remember. Derivations using series expansion techniques often lead to

results that hold over a greater range of the independent variable than their
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derivation strictly allows. With a pocket calculatorit is easy to check the
dynamic range over which a derived formula will work.

Example 1-5 Estimate sin(31°)—sin(30°) using the mean value theorem.

By the mean value theorem, we obtain

h(x)=sin(30° + 1°) —sin(30°)~0.017453293 cos(30.5°)

Here 0.017453293 is the value of 1° in radians. Then:

0.017453293 cos(30.5°) =0.015038266

sin(31°) —sin(30°) =0.015038075

relative error (%) = —0.0012700

absolute error = —0.000000191

Table 1-11 indicates that the mean value theorem can be useful for
engineering evaluations, since the relative error is very small. Care must be
taken, however, in using the mean value theorem. Had we used cos(30°)

instead of cos(30.5°) we would find

0.017453293 cos(30°) =0.015114995

Table 1-11 Accuracy of Mean Value Theorem Approximation of

sin (0+1°)—sin0
 

 

0 Sin Mean Value Absolute Relative
(degrees) (f+1°)—sinf Theorem Error Error (%)

0 0.017452406 0.017452628 —0.000000222 —0.0012
10 0.017160818 0.017161036 —0.000000218 —0.0012
20 0.016347806 0.016348014 —0.000000208 —0.0012
30 0.015038075 0.015038266 —0.000000191 —0.0012
40 0.013271419 0.013271588 —0.000000169 —0.0012
50 0.011101518 0.011101659 —0.000000141 —0.0012
60 0.008594304 0.008594412 —0.000000109 —0.0012
70 0.005825955 0.005824029 —0.000000074 —0.0012
80 0.002880587 0.002880624 —0.000000037 —0.0012
90 —0.000152305 —0.000152307 +0.000000002 —0.0012
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where actually

sin(31°) —sin(30°) =0.015038075

absolute error = —0.000076920

relative error (%)= —0.5115024

Had we used cos(31°) instead of cos(30.5°), we would find

0.017453293 cos(31°) =0.014960392
sin(31°) —sin(30°) =0.015038075

absolute error =0.000077683

relative error (%) =0.5165751

Here we see that the relative error at the boundaries of the # interval has

jumped from ~g% when @ is taken at the midvalue of the interval to

~1% when 8 is taken at the end value of the interval.





CHAPTER 2

DIFFERENCE TABLES,
DATA ANALYSIS, AND
FUNCTION EVALUATION

2-1 INTRODUCTION

This chapter deals with interpolation, extrapolation, and smoothing of
tabulated data. Many books on numerical analysis discuss these topics as
related to the use of mathematical tables. Though we are interested in the
use of these methods for precision table lookup, this chapter aims mainly
to develop functions that are simple in form that can be used to replace
complex functions. This technique, called analytic substitution, is com-
monplace in advanced analysis. For example, cost data developed on
computer programs with as many as 500 cost-estimating relationships
(CERs) can be used to generate a table of costs as a single design
parameter is changed. It is often convenient to develop an interpolation
formula based on the table of discrete costs which will compute system
cost as a function of the single design parameter. The simpler formula can
be analytically substituted for the entire complex system of CERs in the
large-scale cost model. This reduces the cost of “cost estimating” and
makes the simplified models convenient to analyze on the pocket calcula-
tor (see Chapter 12). We will also investigate the smoothing of tabulated

data on the basis of estimates of the error propagated in a difference table.
Finally, we will study what is perhaps the most important but seemingly
least developed use of data tables, extrapolation or prediction. Here

projections, predictions, and identification of trends and predicted values

of function are discussed both from the viewpoints of mathematical
limitations and the practical necessity to predict the behavior of dynamic
processes from their data tables.

61
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2-2 DIFFERENCE TABLES OF EQUALLY SPACED DATA

Before the age of pocket calculators, the preparation of extensive
difference tables of data with mechanical calculators was laborious and

noisy at best,and frustrating at worst. In practical analysis they require

carrying numbers to at least as many as five significant digits. A table of

finite differences of n numbers and m differences requires

mQn—m-1)

2

differences to be calculated and recorded in the difference table. For a
table of 50 entries and 5 differences, this involves 235 differences to be

computed. Thus 470 data entries must be made, which took about an hour
on the old mechanical calculators. On the electronic pocket calculator

these calculations are done quickly and quietly, with the time-limiting

element being the analyst’s preparation of the difference table. Tables of

fifth-order differences of 50 numbers can be conveniently prepared in
approximately 15 minutes with any pocket calculator.

The difference tables that we are concerned with here are usually
generated in two ways. Either a function is evaluated for certain values of
its independent variable or data are determined by measurement of an
experiment. In both cases the tables of equally spaced data can usually be

prepared, especially of data determined from experiments, since much of

experimental electronics and data sampling is done digitally and can be

time-referenced to a digital clock. We discuss arbitrarily spaced data later
in this chapter.

Our notation is based exclusively on the definition of the forward

difference:

Ay;i=yi1—yi=y(xo+[i+1]Ax)—y(x,+ iAx), i=0,1,2,....n

Figure 2-1 illustrates the definitions of the differences involved in the

difference table. Occasionally we use the term A to represent the spacing of
the data, that is, Ax=h=x,,,— x,. We do not use backward differences
or central differences in this book. Backward and central differences are

only useful for changing the form of equations used in the derivation of

numerical approximation methods. Since our interest here is not in

manipulating equations but in their numerical evaluation, we use only the

forward difference notation. Repeated application of the definition of the

forward difference generates higher-order differences. For example, the
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YA

y = ftx)

 

Ay

 

Ay
 

Ay
      | x .

Ax Ax Ax x

Figure 2-1 Definition of differences of equally spaced data.

 

second-order difference is derived as

Afi),- =48y, —by;

=Yir2~Yie1~ Vie1=2)

=Yis2~Wit

The third-order difference is developed as

A} i=A5/i+l_A?yi

=8y2=Ay—(B—By)

=Vis3Vit~ Viv2=Vi)~ Wis2=Vi) +iz —)

=YVis3~ Wir2ti1~y

The differences can be numerically evaluated using the equations just
developed, or they can be computed directly from the tabulated values of
the dependent variable, as shown in Figure 2-2.
The nth difference operator is given by the formula

_"_(”__1_)_2':—2_ ... (2-1)Ar=(z—1)'=z"—nz"""+ 5
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Figure 2-2 Finite difference tables. (a) Difference table definition. () Numerical example
y=x4

where z is the shifting operator defined by the relation

z[y(x)] =y(x+Ax)

Furthermore, by repeated application of the shifting operator we see that

2"y (x)]=y(x+ nAx)
Equation 2-1 is derived by noting that the forward difference and shifting
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operators are related as follows:

Ay, = yig—yvi=z,—yi=(E-1)y,

Ay, = (z=1),

Note also that equation 2-1 can be written in the form

Ay, =[z"— C(n,1)z""'+ C(n,2)z"2= - - ]y,

A’yi=yi+n_ C(n9 l)yi+n—l+ C(n’z)yi+”_2_ T

where

n!

Cn,m)= m!(n—m)!

which is the mth binomial coefficient of order n.

2-3 DATA INTERPOLATION

Armed with these definitions, we are now prepared to examine a number
of formulas for analytic substitution or for interpolation. The method that
we use here involves a Lozenge diagram of differences and binomial

coefficients which can be combined into interpolation formulas. The
diagram is shown in Figure 2-3. Certain rules applied along paths across
the diagram proceeding from left to right define interpolation formulas.

This diagram is so general that it encompasses both Newton’s forward and
backward difference formulas, Stirling’s interpolation formula, Bessel’s
interpolation formula, and an interesting and unusual formula due to
Gauss which zigzags across the diagram. The rules to be followed that
generate these and many more interpolation formulas are the following:

1. When moving from left to right across the diagram, sum at each step.
2. When moving from right to left across the diagram, subtract at each

step.

3. If the slope of the step is positive, the term in the interpolation

formula for that step is the product of the difference crossed times the
factor immediately below it.

4. If the slope of the step is negative, the term is the product of the
difference crossed times the factor immediately above it.

5. If the step is horizontal and passes through a difference, the term is

the product of the difference times the average of the factors above and
below it.
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6. If the step is horizontal and passes through a factor, the term is the
product of the factor times the average of the differences above and below
it.

 

C(n+4,2) Ay (-5) C(n+5,4)I Ay(—4)
_3 y(—3)/C(n+3,1)\A;(—4) C(n+4,3) a4(=5)

LN Ap(=3) Cn+3,2)" 8y (=4) 2C(n+4,4)
L2 y=7e) Nax=3) on+3,3) a4(-4)

/1 Ay(-2) C(n+i,2)\A3y(—3)/C(n+3,4)

1 y(=1DZ Cn+1,1) DA(=2) C(n+2,3)  AY-3)
1 Ay(=1) C(n+1,2) Aay(-2)7 C(n+2,9)

0 y© C(n1) \Ag(—l) C(n+1,3) AY-2)
1 Ay (0) \C(n,2) Ay(-1) /C(n+l,4)

1 y()7 C(r=1,1) A%0) C(n+3) AY(1)
1 Ay(l)-(n—l} A%(0) /C(n,4)

2 y(2)C(n-2\A2(1)/C(n-—l3) A% (0)

1 Ay(2) /C(n22)\A3y(1)C(n—1,4)
3 y(3) C(n—3,l)\A2(2) /C(n23)\ AY(1)

N A0~ coCln=3.~ 43) ~C(n—2,4)

Figure 2-3 The Lozenge diagram.
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Following these rules, starting at y(0) and going down and to the right,
we generate the interpolation formula

y(n)=y(0)+ C(n,1)Ay(0)+ C(n,2)A%(0)+ - - -

which becomes

 

n(n—1)

2
y(n)=y(0)+ nAy(0)+ A% (0)+ - - -

This i1s Newton’s forward difference interpolation formula. To generate

Newton’s backward difference formula, the procedure is reversed. Starting
at y(0) and moving up and to the right, we generate the formula

y(n)=y(0)+ C(n,1)Ay(— 1)+ C(n+1,2)A%(-2)+ - - -
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which becomes

y(n)=y(0)+nAy(—-1)+ Myy(_z).q. e

This is Newton’s backward difference formula.
To develop Stirling’s formula, we start at y(0) and move horizontally to

the right. In this case, we generate the interpolation formula

Ay(0)+Ay(—1
y(n)=y(0)+C(n,1)[L(—)-+2—y(—-—)}

fClarthectd)y..

Y=y@nfORI4(-

Bessel’s formula can be generated by starting midway between y(0) and

y(D).

 

oytLOPW)(DLg

)= {227(-hy)
n(n=1) 8(=1)+85(0)A { ; }+

Clearly, a great number of other formulas can be generated and used for

interpolation of data.

Interpolation is often employed in computing intermediate values of
tabulated functions. While the scientific pocket calculator gives sine,

cosine, tangent, arc sine, arc cosine, and arc tangent (and, for some of the

more advanced scientific machines, hyperbolic sine, hyperbolic cosine, and
hyperbolic tangent), they usually do not have the capability of generating

Bessel’s functions, Legendre polynomials, error functions, and the like.

Those are often more easily evaluated with standard reference tables. In

these cases, it i1s occasionally necessary to interpolate between two values

in the table.

Before discussing the interpolation process, however,it is worth pointing
out that most well-made tables are often generated with auxiliary functions
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as opposed to the actual functions themselves. For example, the exponen-

tial integral with positive argument is given by

Ei(x)=f_x°°—e—u

which takes the series form

3
X

Ei(x)= y+ln(x)+—1——i-'-+fi+ 331 

can be approximated with the series

! ! !
FEi(x)= 1+1—-+%—+—)3C—+ (x—>00)

The logarithmic singularity in the first series does not permit easy interpo-
lation near x=0. The function Ei(x)—Inx is better behaved and more
readily interpolated when x is near zero. In fact, x ! [Ei(x)—In(x)— ]

(where y is Euler’s constant 0.577- - -) is an auxiliary function that results
in a slightly higher interpolation accuracy than when Ei(x) is computed
from interpolated values of the table of Ei(x) directly.

Generally tables are constructed and presented so that reasonable-order

interpolating polynomials (i.e., first-, second-, or third-order) can be used
to compute intermediate values while retaining the precision of the table.

For example, in the Handbook of Mathematical Functions (U.S. Depart-
ment of Commerce, Bureau of Standards, Applied Mathematics Series 55)

most tables are accompanied by a statement of the maximum error in a

linear interpolation between any two numbers in the table, and the number

of function values needed in Laplace’s formula or Atkins’ method to
interpolate to nearly full tabular accuracy.

An example from the Handbook of Mathematical Functions appears in

Table 2-1. The accuracy statement is given in brackets. The numbers in
brackets mean that the maximum error in a linear interpolate is 3 x 10~°

and that to interpolate to the full tabular accuracy, five points must be

used in Lagrange’s method or Atkins’ method of interpolation. The linear

interpolation formula is

fp'_‘(l —p)fo+pfy
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Table 2-1 Exponential Integral Auxiliary Function
 

 

x xeE(x) x xe*E(x)

1.5 0.892687854 8.0 0.898237113
7.6 0.893846312 8.1 0.899277888
7.7 0.894979666 8.2 0.900297306
7.8 0.896088737 8.3 0.901296023
7.9 0.897174302 8.4 0.902274695

o
where f,f, are consecutive tabular values of the function corresponding to

arguments x,,x, respectively; p is the given fraction of the argument
interval

 

_ (x = xo)

- (%= xo)

and f, is the required interpolate. For example,if we interpolate between
the values of Table 2-1 for x=7.9527, we find that

fo=0.897174302

£,=0.898237113

p=0.527

We then obtain

Jo.s27=(1—0.527)(0.897174302) + 0.527(0.898237113)

Jo.s27=0.897734403.

The terms in the brackets indicated that the accuracy for linear interpo-

lation was 3X 107°. Thus we round this result to 0.89773. The maximum

possible error in this answer is composed of the error committed by the last

rounding, that is, 0.4403X 107°+3 X 107and thus certainly cannot ex-

ceed 0.8 X 1077,
To get greater precision, we can interpolate this example of the table

using Lagrange’s formula. In this example, the interpolation formula is the
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five-point formula:

2—1)(p-2 —1)(p*-4f(x0+pr)={(P ;gp )p}f_z_{(p )(6p )p}f_.

2_+{(p2—l):p—2)p}fo_{(p+1)(6p 4)17}fl

2_1)(p+2
+{££_____)2€4p—+)£}f2, |P|<1

Another approach is to use a five-term Newton forward or backward
difference formula, a Bessel’s formula, Stirling’s formula, or any of the

formulas that come out of the Lozenge diagram. The details associated

with such interpolations are conveniently found in Chapter 25 of the

Handbook of Mathematical Functions.

Since there are occasions for using inverse interpolation, we discuss it

briefly here. If we are given a table of values of the dependent variable y,

as a function of values of the independent variable x,,,

yo=f(x,) (tabulated function)

then intermediate values of y can be computed by interpolating between

the values y, with an interpolating polynomial g(x) as

y=g(x)=f(x) (continuous function)

Inverse interpolation is a matter of viewpoint. Here we would view the
interpolation from the standpoint of the dependent variable,

=f"'(»,) (tabulated function)

Then intermediate values of x can be computed by interpolating between

the values of x, with an interpolating polynomial 4(y) as

x=h(y)=f"1(y) (continuous function)

With linear interpolation there is no difference in principle between

direct and inverse interpolation. In cases where the linear formula is not

sufficiently accurate, two methods are available for accuracy improvement.

The first is to interpolate more accurately by using, for example, a

higher-order Lagrange’s formula or an equivalent higher-order polynomial

method. The second is to prepare a new table with a smaller interval in the

neighborhood of interest, and then apply accurate inverse linear interpola-

tion to the subtabulated values.
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It is important to realize that the accuracy of inverse interpolation may
be very different from that of a direct interpolation. This is particularly
true in regions where the function is slowly varying, such as near flat
maximum or minimum. The maximum absolute error resulting from in-
verse interpolation can be estimated with the aid of the formula

ar\ " Afy !
8x=(§) 8y, SX%(‘A—i) 5y

where §y is the maximum possible error in the tabulation of y values
and Af and Ax are the first differences generated from the table in the
neighborhood of the region of interest.

Let us now return our attention to the generation of difference tables. In
the generation of interpolating polynomials of reasonable size, the finite
differences in the difference table must be small for high-order differences.
If they are not small the questions is, “What can we do to reduce the size
of. the finite differences?”

There are only three considerations associated with any difference table.
The first is the number of differences to which the table is taken the
second is the spacing between different values of the tabulated function,
and the third is the number of figures tabulated. The effect of halving
(factor of 1) spacing in the independent variable x is to divide the first
differences by 2, the second differences by 4, the third differences by 8,
and so on. Examples of the effect that different spacings of x have on the
function y = x> appear in Table 2-2. In answer to the question above then:
to reduce the nth-order difference by a factor k we must reduce the data
interval (independent variable) by a factor of approximately "Vk .

2-4 DATA EXTRAPOLATION

Extrapolation outside the range of data that makes up a difference table is
a controversial procedure. It is, however, a procedure of great practical
interest. Given the behavior of a dynamic process, sampled at intervals, it

is only natural to ask to what extent the table can be extended beyond the
range of the data used to make up the table to predict the future behavior
of the process being considered. This is a very practical, important, and
real matter. It is the problem of science to be interested in predicting the

behavior of systems based on observations of their past behavior. While
there are a number of stock market “chartsmen” who use finite difference
techniques, it is generally accepted that extrapolation outside the range of
the difference table is as much an art as a science. Because of its practical
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Table 2-2 The Effect of Interval Halving on The Finite
Differences in a Difference Table?

 

 
 

 

Full interval Ax =2 Half-interval Ax=1

x y=x3 Ay Ay Ay x y=x> Ay Ay AY

0 0 0 0

8 1

2 8 48 1 1 6

56 48 7 6

4 64 96 2 8 12

152 48 19 6

6 216 144 3 27 18

296 48 37 6

8 512 192 4 64 24

488 61

10 1000 5 125
 

“Third-order difference is reduced by a factor of 8 when
interval between values of x is halved.

value and practical interest, it will be covered here but with the proviso
that the reader recognize that extrapolation is a questionable procedure.
That is, the same difference table using only slightly different extrapolation

techniques can, and usually does, lead to significantly different predictions.

Because of this lack of robustness of extrapolated data, the procedure has

questionable value.
We illustrate the problem of prediction with the following practical

example. Consider an aircraft executing a fully automatic landing.

Sampled values of the altitude are shown in Table 2-3. What will be the
conditions at touchdown? This particular example is a nontrivial one, in

that the heart of present-day flight-control performance monitors hinges
on the ability to predict the dynamic behavior of high-energy devices, such
as aircraft, when terminal operations are under automatic control. The

obvious first step is to form the difference table, as shown in Table 2-3. We

note that this table can be carried to the third difference without the

lower-order differences becoming constant. The obvious next step to
extrapolation is to assume that the third difference holds constant up to

touchdown, and to predict the behavior shown in Table 2-4. Clearly the

predicted results are fairly grim. We have low confidence in extrapolations

of this type because the difference table did not indicate the influence of

any control law through arriving at constant differences between any of

the finite differences. Had we found, for example, that all of the second

differences held constant and the third differences were zero, we might be
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Table 2-3 Difference Table of Altitude of an
Aircraft Executing an Automatic Landing
 

 

t h(?) Ah A% Ah

0 60

—-13

1 47 +3

—-10 -2

2 37 +1

-9 0

3 28 +1

-8

4 20
 

73

entitled to higher confidence in the extrapolation to touchdown by assum-
ing that the guidance law objective was to hold the third-order differences
to zero. It follows, then, that a procedure for increasing the confidence in

extrapolation from finite difference tables is to find a transformation of the
variable of interest which would expose the guidance law and its effect on
the difference table.

Table 2-4 Extrapolated Touchdown Conditions of Automatically Landed Aircraft
 

 

t h() Ah  Ah Ak

0 60

-13
1 47 +3

-10 -2
Range of 2 37 +1 Average= — 1
actual data

-9 0
3 28 +1

Range of
extrapolation

 

  

 

4 20

-8 -1

5 12 -1

-9 -1

6 Touchdown g 3 -2
sink rate —11

7 ~11 fps? (-8

(hard)
 

?fps =feet per second.
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After a little thought, it might be expected that the guidance law to
automatically land an aircraft would be an exponential law of the form

dh
i k(h+ hg)

which results in a flared landing path of the form

h=hye% —hy

which is sketched in Figure 2-4. This suggests the formation of the
difference Table 2-5. Note that the second difference is near zero so that
for short-term prediction (next 7 seconds) a reasonable assumption is that

Aln (h) is approximately constant and equal to —0.3062. The differences

between the two approaches are tabulated in Table 2-6. It is apparent that
the logarithmic extrapolation does better short-term prediction than does
the “third-order” extrapolation.

 

   

 

   

! | ! | ! | ! | ! |

60 Sink rate ~ 12 fps —

40 —

Altitude

(~ feet) -

20 - —1.717 fps at ]
s touchdown

0 ] | | | ! ]
0 2 4 6 8 10 (seconds)

0 600 1200 1800 2400 3000 (feet)

Figure 2-4 Typical jet transport landing trajectory (fps =feet per second).

In summary, we might expect to extrapolate with greater confidence

from Table 2-5 than Table 2-4 because of the observed characteristics of

the guidance law. From a strictly mathematical viewpoint, the issue is not

all that clear. The number of actual samples of the second difference is

small and thus the true mathematical confidence in the fact that the

guidance law is in some way holding the second difference to zero is low.

In the end, extrapolation using difference tables involves careful judgment.



Table 2-5 Logarithmic Extrapolation of Touchdown Conditions of
Automatically Landed Aircraft
 

t h(?) In(h(r))  Aln(h(2))
 

 

r 0 60 4.0943

— 0.2442

1 47 3.8501

Actual — 0.2392
data ] 2 37 3.6109 Average = — 0.27465

range — 0.2787

3 28 3.3322

— 0.3365

4 20 2.9957

- — 0.27465

-5 15.2 2.7405

— 0.27465

6 114 2.4464

— 0.27465

7 8.7 2.17175

Range — 0.27465

ofex- | 8 6.7 1.89710
trapo- — 0.27465
lation 9 gink 5.1 1.62245

rate — 0.27465

10 } ~13lfpss 3.8  1.3478
L — 0.27465

11 29 1.07315
 

2fps =feet per second.

Table 2-6 Comparison of Extrapolation Methods for Predicting

Touchdown Conditions
 

First-Order Logarithmic

   

 

Actual “Third-Order” Extrapolation Extrapolation

Absolute Absolute

t h h Error h Error

5 16 12 -4 15 -1
6 11 3 -8 11 0
7 -8 —-15 9 +2
8 4 7 +3
9 1.6 5 +3.4
10 0 4 +4

11 0 3 +3
 

fps =feet per second. 25



76 Difference Tables, Data Analysis, and Function Evaluation

2-5 DATA ERROR LOCATION AND CORRECTION

Errors due to observations, calculation, measurement, or recording often

occur in a table of numbers. These errors introduced into the calculation

process are significantly magnified in the generation of ascending

differences in the difference table. This can be seen in Table 2-7. It is

apparent that the errors propagate and are distributed binomially (in any
given difference the errors are weighted by binomial coefficients). It is also
apparent that the error grows rapidly as it propagates into ascending

orders of difference. For example, the error in Table 2-8 might be antici-
pated by noting the form of the third difference. We see the pattern of

signs (+), (=), (+), (—) indicative of error propagation. Also, note that
the pattern of fourth difference is centered on y =17. Furthermore, note

Table 2-7 Error Propagation in Difference

 

 

Tables

y Ay A%y Ay AYy

0

0

0 0

0 0

0 0 +e€

0 +e€

0 +€ —4e

+€ —3e

+e€ —2¢ + 6¢

—€ + 3¢

0 +¢ —4e

0 —€

0 0 +e€

0 0

0 0

0
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Table 2-8 Unit Error Propagation in the Difference

Table for the Function y = x?
 

 

x y Ay A%y Ay AY

0 0
1

1 1 2
3 0

2 4 2 1
5 1"

3 9 3= -4
8 -3

4 17<_ 0 +6
T8 +3

5 25 TSI~ -4
11 ~1 _

6 36 2 T~+1
13 0

7 49 2
15

8 64
 

that 6¢ in Table 2-7 corresponds to 6 in Table 2-8; that is,

6e=6

e=1

Moreover, if the error in the values of y were of the form

y=x2+5

we can expect in the fourth difference column to show an error of 6k.
Thus one-sixth of the fourth difference which is centered on the number in

error is a measure of the error—which can then be subtracted from the

column of y values. We might modify Table 2-8 by replacing 17 with

(17-1)=16, thus obtaining the difference table shown in Table 2-9. In

general, then, data smoothing is done by:

1. Keeping an eye open for the (+), (=), (+), (=), -+ pattern in

high-order differences that indicates error propagation.
2. Identifying the tabulated value on which the pattern is centered.
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Table 2-9 Smoothed Data Table for the Function

 

 

y=x*

X y Ay A% A’y AYy

0 0

1

1 1 2

3 0

2 4 2 0

5 0

3 9 2 0

7 0

4 16 2

9

5 25
 

3. Equating observed error with its binomial error counterpart.
4. Solving for the error and appropriately modifying the data table.
5. Testing the table for elimination of the (+), (=), (+), (—), ...pattern.

2-6 MISSING ENTRIES

Occasionally a difference table has a few missing entries in the dependent
variable. Missing entries in the difference table can be estimated in several
ways.
The simplest method is to examine the table and decide whether the

points could be reasonably fit with a polynomial. For example, a data

table with four points, one of which is unknown, might be fit with a

second-degree polynomial. It is characteristic of difference tables that

nth-order differences of polynomials of degree n—1 equal zero. For

example, the equation

y=2x*+x+3

has the difference equation shown in Table 2-10, where it is apparent that

the third-order differences equal zero. This characteristic is present in
general in nth-order polynomials; that is, their (n+ 1)st-order (and all

higher) differences equal zero. Using this property, we would expect that
the fourth-order difference would equal zero; thatis

AY(y)=0
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Table 2-10 Difference Table fory =2x2+ x +3
 

 

Subscript
in Missing

Entry Formula  x y Ay Ay Ay

0 3
3

1 6 4

7 0
0 2 13 4

11 0
1 3 24 4

15 0
2 4 39 4

19 0
3 5 58 4

23 0
4 6 81 4

27
7 108
 

This can be rewritten in the shifting-operator notation as

(z— l)4y =(z*-4z23+6z2—4z+1)y=0
This gives us

Ya—4y;+6y,—4y,+y,=0

V2= %[4()’1 +)’3) - ()’4'*')’0)]

Here we use an even-order difference because all even-order difference

equations do the following:

1. Give one middle term, which can be centered in the missing number

in the table.

2. Result in missing entry determination with a minimum of roundoff

error.
3. Are numerically more stable than their odd-order counterparts.

Let us assume, for the sake of the discussion, that the y =39 entry is

missing in Table 2-10. We can substitute directly from the table with the

missing data point to obtain

y,=+[4(24+58)— (81 +13)]
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from which we can solve for the missing data point:

y,=1[4(82)—94] = 1 (328 —94=234) = 3¢ =39

The method just described for filling in missing values in the data table
is particularly suited to analysis on the pocket calculator in that it does not
involve the determination of unknown coefficients in a polynomial (the
usual methods for missing data determination). For tables with large
numbers, the arithmetic could be tedious, but with the pocket calculator it

is a simple matter to perform the sums and products for tables of large

values requiring high precision. Another point worth making regarding
identification of missing entries in data tables is that for tables with large
numbers of values, say on the order of 20 to 100, it is not necessary to look

for twentieth-order differences to develop the formula for computing the
missing data. One need only determine the polynomial that can be rea-
sonably expected to fit locally through two, four, or six data points
symmetrically placed about the missing value to find the missing point.
We have been stressing the determination of interpolating polynomials

by way of finite difference tables because the pocket calculator enables
one to find finite differences quickly and conveniently, thus leading
immediately to interpolation formulas of high order and high accuracy,
which themselves can be evaluated on the pocket calculator conveniently

and to high precision. This, in fact, is the reason for using the pocket

calculator with difference tables: high-order difference tables lead to

high-order approximating polynomials, which, when written in nested
parenthetical form, are easily evaluated on the pocket calculator to high
precision.

The difficulty in using low-order polynomials for manual analysis in the
precalculator era was that they generally were not sufficiently accurate to
permit the precision numerical evaluation necessary for most engineering,

economic, chemical,and other types of precision analysis. On the pocket

calculator we can conduct precision analysis relatively quickly and

efficiently by using high-order polynomials generated simply with
difference tables of high order.

2-7 LAGRANGE’S INTERPOLATION FORMULA

So far we have studied the interpolation of equally spaced data through the

use of difference tables and the Lozenge diagram as a convenient means

for remembering a large number of different interpolation formulas. These

interpolation formulas, however, do not apply to nonequally spaced values
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of the independent variable nor when the nth differences of the dependent
variable are not small or zero. In these cases we can then use Lagrange’s
interpolation formula to develop a polynomial that can be used for

analytic substitution. Though there are other interpolation formulas for

unequally spaced data, the advantage to using Lagrange’s interpolation

formula is that the coefficients are particularly easy to remember, and to
determine, with the pocket calculator. The method works for both nonequ-
ally and equally spaced data and regardless of whether the nth differences

are small. Lagrange’s interpolation formula is

(x=x)(x=x5) -+ (x—x,) (x = xo)(x=x5)- -+ (x—x,)

(o= D)(Xo—X2) - (o=) > (%1 = xo)(X1 =)~ - - (x,— x,)
 Y=JXo

(x—x)(x—x)- - (x_xp—-l)

2P o = %)(%, —x1) - (5, — %, 1)
 

+ ..

An interesting and important feature of Lagrange’s interpolation for-
mula is that, if the data table has n entries, the formula appears to have n
terms. It turns out, however, that if the table amounts to four or five

samples of, say, a second-order polynomial, the terms will cancel, giving
only the pieces due to the quadratic function. As an example of this,
consider the data table shown in Table 2-11. Using Lagrange’s interpola-
tion formula, we have

(=)=Dx=9(x—11) (x=3)(x=T)(x=9)(x—11)
T B=9)(B-1B-9(3-11) (5-3)5-71(5-9)(5-11)

(x=3)(x=5)(x—-9)(x—11) 108 (x=3)(x=5)(x—7)(x—11)

T=3)T=3)T=9)T=11) « (9=-3)0=5)0-7(O—-11)

(x=3)(x=5)(x—=7)(x9)

(11-3)(11-5)(11-7)(11-9)

 

 +58 

 +174

The reader can now simplify the equation. It will be found that

y=2x2—7x+9

which is a polynomial of degree two, rather than of the fourth degree, as

might be expected from the fourth-order polynomials in the numerators of
all the terms in Lagrange’s interpolation formula. Because of roundoff the
exact cancelation of the coefficients for the higher powers of x will not
occur, but they will be very small, indicating that they should be made

zZero.



82 Difference Tables, Data Analysis, and Function Evaluation

Table 2-11 Five Evaluations of a Quadratic

 

Equation

x 3 5 7 9 11
y 6 24 58 108 174
 

2-8 DIVIDED DIFFERENCE TABLES

Another approach to the generation of interpolation formulas for tables of
data of unequally spaced values of the independent variable is to prepare a
table of divided differences. Assuming that the values of the independent
variable x are x(,x,,x,,x;- -+ and that the value of the dependent variable

is y =f(x), we can prepare a table of successive divided differences of the
form

 

S(xox1,%5) =W

f(xo’xl9x2,x3)
— f(xpxz,x;:);

:iixo,xl,xz)

These terms are commonly called divided differences of orders 1,2,3,

and so on. We can now prepare a table of divided differences, as shown in

Table 2-12,

Table 2-12 Divided Difference Table

 

x(0)
f(xosxl)

x(l) f(xo’xl’x2)

f(x1,x2) Sf(xg, %1, %3, X3)

x(2) S(x1,x2,x3) S(xg, %1, X2, X3, X4)

f(x2’x3) f(x,,xz,x3,x4)

x(3) S(x2,x3,x4)

f(X3,X4)

x(4)
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In the same way that the (n+ 1)st difference of an nth-order polynomial
was zero, it is found that the nth-order divided difference of an nth-order

polynomial is zero. Newton’s interpolation formula, based on divided
differences, is of the form

Y=f(x0) + (x — x)f(%0, %) + (x — x0)(x — X)f(X0 X1, X3) + - - -

+(x—x)(x —xp)- - - (x =2, _ )f(xgo %15 ...,X,) + €(x)

 

where

™) re)=—= Il (x=x),
' k=0

6 is between the largest and smallest ofx, xg, x,,...,xX,

2-9 INVERSE INTERPOLATION

We have been concerned with the interpolation to determine values of the
dependent variable, given either equally spaced or unequally spaced values
of the independent variable. Inverse interpolation involves finding values
of the independent variable, given a table of values of the dependent
variable. In particular, the method is useful for finding missing values of
the independent variable in a tabulated set of data. A nice feature of
numerical analyses using finite or divided difference tables is that inverse
interpolation is performed in identically the same way in which interpola-
tion is conducted. That is, the procedure is an interpolation process where

the dependent and independent variables are switched. The values of x are
to be determined and thus are “dependent” on the values of y. Hence the
interpolation problem is one of developing an interpolating polynomial
through the sequence of values of the independent variables in the prob-
lem. The procedure is then identical to regular interpolation.

2-10 THIRTEEN-PLACE PRECISION FROM TWO-DIGIT TABLES

An interesting aspect of the use of difference tables that is consistent with
the high precision of pocket calculators is that specially prepared

difference tables permit precision interpolation to the accuracy of the

calculator’s capability, but with table entries of apparently only two or

three significant digits. In fact, the accuracy is known to an infinite number

of digits but only two significant digits are nonzero. For example, a table

of y=x2 can take either the form shown in Table 2-13 or that shown in

Table 2-14.
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Table 2-13 Difference Table for y = x2 where Ax=1,
xo= w(Two-Place Accuracy)’
 

 

x y Ay Ay Ay

3.14 9.87
7.27

2.01

4.14 17.14 ~0.01
9.28

5.14 26.42 2.00
11.28 0

6.14 37.70 2.00

13.28 0
7.14 50.98 2.00

15.28

8.14 66.26
 

4 Interpolation formulas based on this difference table

can only be accurate to two places after the decimal
point at best, no matter how high the order of the
interpolation formula, because the differences are only

known to two places.

Both difference tables are developed with integer differences in the
dependent variable and precisely known values of the independent vari-
able in Table 2-14 and two-place accuracy in Table 2-13. The difference

between these two tables is that the first permits interpolation to an

accuracy of only two places, while the second interpolation permits an

accuracy to 10 places, even though both are based on entries in the table

that are only known to a few significant figures. It is precisely in this
manner that the scientific pocket calculator, and even the simple four-

function pocket calculator, can be used to boot-strap itself to generate
advanced mathematical functions to an extremely high precision. All that

is required is that certain values of both the dependent and independent
variables of the advanced mathematical function be known precisely—
where only a small number of nonzero digits make up the number. These

values can then be used in a high-order difference table to generate an

interpolation formula that will be very accurate over the range of the data
table.
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Table 2-14 Difference Table for y=x? where
Ax=1, xg=3 (o0 Place Accuracy)”
 

 

x y Ay Ay AYy

3
7

4 16 2
9 0

5 25 2
11 0

6 36 2
13 0

7 49 2
15 0

8 64 2
17

9 81
 

% Interpolation formulas based on this
difference table can be as accurate as the
order of the interpolation formula will allow
because the differences are known precisely.

Example 2-1 Using the definition

A=z-1

write an expression that will interpolate between data points and
differences in a data table. Since

z=(1+4)

z"=(1 +A)"
then

Ly=p(x+ndx) =y()4 nay)+"DAy()4y()
Note that this is Newton’s forward difference interpolation formula.

Example 2-2 Use a difference table to check an interpolating polynomial.

We can check Newton’s or any other interpolation formula by substitut-

ing data points from a known polynomial such as y = x? (see Table 2-15)
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into the formula. Then y(x + nAx) becomes

y(0+n)=y(n)=0+n+n(n—1)=n+n’>—n=y(n)=n?

We see that the interpolation formula gives the original polynomial y(x)

= x2 again: a result to be expected, since the interpolation formulais itself
a polynomial.

Table 2-15 Numerical Example for

 

 

y=x?

x y Ay Ay AYy

0 0

1

1 1 2

3 0

2 4 2

5

3 9
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CHAPTER 3

ELEMENTARY ANALYSIS
WITH THE POCKET CALCULATOR

3-1 INTRODUCTION

A number of analytical topics used in elementary analysis are discussed

here. Among them commonly used progressions including arithmetic,

geometric, harmonic, and concepts of generalized means; the detailed
definitions of absolute and relative error; nested parenthetical forms of
commonly used infinite series including Taylor’s series; certain often-

encountered forms of the binomial series; the reversion of series; and

methods for transforming series that converge slowly into series that
converge more quickly. Also discussed are methods for evaluating the

roots of polynomials including quadratics, cubics, quartics, and quintics;
methods for the numerical evaluation of transcendental functions and for

solving plane and spherical triangles; and methods for numerically evaluat-

ing commonly encountered functions of complex variables. The formulas
and equations used for pocket calculator analysis are written in forms most
convenient for evaluation on the pocket calculator.

3-2 NUMERICAL EVALUATION OF PROGRESSIONS

An arithmetic progression is defined by a sequence of numbers

a,=a,+(n—1)d, (n an integer >0)
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where a and d are real numbers. For a,=3e and d= —=

n a,
 

8.154845484

5.013252830

1.871660176

—1.269932478

—4.411525132W
V
&

W
N

-

A common problem is to compute the sum of the arithmetic progression to
n terms:

S(d)=a+(a+d)+(a+2d)+ - - +[a+(n—1)d]

There are two formulas for computing the sum of an arithmetic progres-

sion. The first is

S,(d)=na+4in(n—1)d

which can be rewritten in nested parenthetical form for easy evaluation on
the pocket calculator as

S,,(d)=n(a+ g(n— l))

Another formula for computing the sum of the arithmetic progression to n
termsis

S,(d)="75(a+1)

Here the last term in the series / is

I=a+(n—1)d

We note that this equation is already in a form that can be easily evaluated
on the pocket calculator.

The geometric progression is defined by a sequence of terms of the form

n—1a,=a,;r"”’, (n an integer >0)
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where a and r are real numbers. For a,=3e and r=—7

 

n a"

1 8.154845484

2 —2.561920267 x 10!

3 +8.048509891 x 10

4  —2.528513955x 107

5  +7.943560867 x 10°

The sum of the geometric progression to n terms is

S =a,+ar+arr+ar+art+--- +ar"!

It can be computed with the formula

_a(1=r") ay—rl
 

" 1—-r ~ 1-r

where / is the last term. If r <1 in size, then as n—o0

 . _ a9
nl-l—glo (S")— ]1— r

since the last term /—0.The sum of the geometric progression to n terms
requires scratch-pad or memory storage. Table 3-1 shows a typical key
stroke sequence needed forits evaluation and the required storage.

Three types of means are encountered in advanced analysis—the arith-

metic mean, the geometric mean, and the harmonic mean. Though they are
all special cases of the generalized mean

1 n 1/t

wo-(25
we are explicit here and write them out. The arithmetic mean of n
quantities is defined by the equation

_agtaytayt - +a,
A

n
 

n

which can be computed conveniently (though not so easily as summing

and dividing by the total number of samples) on the pocket calculator
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Table 3-1 Typical Key Stroke Sequences for Evaluating

the Sum of Terms in a Geometric Progression
 

 

 
 

Algebraic Reverse-Polish

(r) + (r (1.0)
y* (1.0) 1 +

(n) 1/x (n) / -
= X y*

CHS RCL CHS
+ = (1.0) Note: Recall is

(1.0) + automatic in

X " a, Reverse-Polish
(a)) X for stack memory

= (r) (HP-35&21) but not
STO .

(r) HS o reglsw;lp 45,55&65CHS 1 memory ( , )

( )—data entry.

[(J—output.

using a recursion formula

An+1
 1

= n+l(nAn+an+l)

which can be developed from the equation for 4 as follows:

 n+1
( n )An+l= n

__n

"4

 

 

 1
= n+l[nAn+an+l]
 

An advantage to using a recursive “averager” is that the analyst can

observe the convergence of the mean as he adds more terms to the
calculation. He can thus often reduce the workload in computing an
average by using only the numbers that are necessary to estimate the mean
to the accuracy he desires.

The recursive form is directly implementable, using the key strokes
shown in Table 3-2.
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Table 3-2 Typical Key Stroke Sequences for Recursive Arithmetic

 

 

 

 

 

  

Averaging

Algebraic Reverse-Polish

A, A,*
X < - (n) =
(n) X
+ (an+ l)

(an+ l) + n=n+1

+ G,, +1 (n+1)
(n + l) ‘ + A

— r An+ 1

An+ |    

 

 

  
 

 

( )— data entry.
[J— output

O— mental step done by analyst.

*Initial conditions can be 4, =0 when n=0.

The geometric mean of n quantities is defined by the relationship

G=(aa, - an)l/n’ (¢;>0,i=1,2,...,n)

which is easily calculated using the recursion formula for the geometric
mean of n quantities as given by

n\1/n+1

Gn+l=(an+lGn )

and is developed as follows:

G =(fiai)(an+l)

n 1/n
n 1

Gnn:ll/ = (an+l) /"( Hai) = al/n G

Gpor=a\¥G/=(a,Gm)"/"""
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A typical sequence of key strokes for evaluating this equation appears in
Table 3-3.

Table 3-3 Typical Key Stroke Sequence for Recursive
Evaluation of the Geometric Mean

 

 

  

 

 
   

Algebraic Reverse-Polish

G, G,

y* — 1 ———
(n) (n)
X y*

(@p+1) (a,)
y* n=n+1 X n=n+1

(n+1) 1

1/x (n+1)
= 1/x

Gn+ 1 Y

Gn+ 1
   
 

( )— data input.

[J— output.

O — mental step by analyst.

The harmonic mean of n quantities is defined by

1 1(1 1 1
==+=++— <0 i
H ”(al a2+ +an), (¢,>0,i=1,2,. .,n)

It, too, can be evaluated by using a recursion formula:

_ 1 1 n

Hn+l—[n+1(an+l * Hn)}

The harmonic mean is evaluated using the typical key stroke sequence

given in Table 3-4.

Finally, the generalized mean is related to the geometric, arithmetic, and
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Table 3-4 Typical Key Stroke Sequence for Recursive

Evaluation of the Harmonic Mean

 

 

 

 

   
  

Algebraic Reverse-Polish

H, H,
1/x +=—————— 1/x
X (n) l

(n) X

STO (aye)
(an+ l) l/x

1/x +

+ n=n+1 (n+1)

RCL 1/x
STO 1 X
(n+1) 1/x
X

RCL Hn+| |

1/x

Hu+l
   
 

( )— data input.
[J— output.

O — mental step by analyst.

harmonic means according to the relations

IimM(¢)=G
t—0

M(1)=4

M(-1)=H

3-3 THE DEFINITION OF ABSOLUTE AND RELATIVE ERROR

We discussed absolute and relative errors previously in the context of other
matters. In the next chapter a number of errors are quoted; hence it is

important to define precisely what is meant by absolute and relative errors.

When x, is an approximation to the true value of x, we say the following:

1. The absolute error of x, is Ax = x,— x =(calculated — true).
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2. Therelative error of x, is 6x =Ax/x, (calculated — true)/ true, which is

approximately equal to Ax/ x,,
3. The percentage error is 100 times the relative error.

If in (2) we use the approximation of the true value of x to estimate
percentage error then in a sense there is a small error in estimating the

relative error.

The absolute error of the sum or difference of several numbers is at most

equal to the sum of the absolute errors of the individual numbers. If it can

be assumed that the errors occur in a random independent fashion, a more

reasonable estimate of the error in computing the sum or difference of
several numbers is root-sum-square error defined as

(ZAx,.z)l/z

The relative error of the product or quotient of several factors is at most
equal to the sum of the relative errors of the individual factors. Finally, if

y = f(x), the relative error

_Ay ()

y o f(x)
 

If we have

y=f(xp,%z...,x,)

and the absolute error in x; is Ax; for all n, then the absolute error in f is

of of of
AfN—a—;l—Ax,+a—x2Ax2+ . +a—xAXn

n

Simple rules, similar to those for the relative error of a product or the

quotient, can easily be derived for relative errors of powers and roots. It

turns out that the relative error of an nth power is almost exactly n times

the relative error of the base power, while the relative error of an nth root
is 1/nth of the relative error of the radicand.

Calculations with Approximate Values

Where they are developed from test experiments or from tables of
characteristics of physical systems, data are usually inaccurate to some

degree. In general, calculations made with data based on measurements
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involve errors of some magnitude. Another type of error in calculating

with approximate values is due to the use of numerical values of numbers
that are truncated, producing roundoff errors. The maximum errors
associated with these effects can be estimated. When the rounding is done
correctly, the roundoff is at most one-half of the unit in the last place
retained in the number.
When the numbers are rounded, the addition of zeros after the last digit

of the decimal fraction makes a difference. The number 0.98700 is stated
with 100 times greater accuracy than 0.987. In the first case the number
implies that at most its error is 5X 1076, In the second case, the error can

be as large as 5Xx10™% The implications of accuracy should be stated
precisely when tabulating results computed on the pocket calculator.
The error due to a calculation that results from an inaccuracy of the

data is known historically as “error of data.” The error introduced into the
calculation by way of approximation associated with the limitations of the
machine or field of numbers being used in the calculation is historically
called “error of calculation.” It is the objective of any calculation to make
the error of calculation significantly less than the error of data. For-
tunately, for most pocket calculators the size of the numbers that can be
contained is so large that the error of engineering calculation is almost
always substantially smaller than the error of engineering data.
When good computing practice is followed, care must be taken when

computing the difference between nearby numbers. Since occasionally the

magnitude of the error of calculation is found to determine the method of

the calculations to be done, we are interested in estimating from the error
of data the maximum error to be expected in the result of the calculation
due to this error in the data. It is for these reasons that we give the rules
for computing the absolute errors of the sums, differences, products, and

quotients of numerical calculations. These formulas can be used to answer

the questions about the size of the error-of-data from which can be
determined whether the error-of-calculation will be on the same order of

magnitude or smaller. Furthermore,if the error-of-calculation is less, it can

be used to guide the analyst in how much the error-of-data will limit the
accuracy of a calculation. This will indicate the accuracy remaining after a

complex or involved calculation.

The results of a calculation are the most inaccurate when the difference

of two nearly equal and only approximately known numbers are involved.
To determine the relative error in these cases, the sum of the absolute

errors, taken without regard to sign, is divided by the difference of the two
numbers involved (a small number that can turn even a small absolute

error into a large relative error).
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3-4 INFINITE SERIES

We will have many occasions to use Taylor’s formula for a single variable

as given by the expression

f(x+h)=f(x)+hf’(x)+%2f”(x)+---(h1)'f" '+ Rn

This equation has an error formula that can be written in three typical
forms:

- %f"(x+0,h), 0<8,<1)

R=01),(1—2)"Se+0h),  (0<8,<1)

 R,= 1)'f(l—t)" 'fr(x + th)dt

The truncated version of the series can be expanded in nested parenthe-
tical forms for convenient numerical evaluations when the numerical

values of the derivative either are given or can be quickly computed.

=f(x)
=() + hf(x)

=fx)+h(-+ —§~)

”  

 

)
f(x)+h(f+(f”+(7 f)))

fo=f(x)+h(f vk(

Ja f(x)+h(f+(f”+ (f”’+ (f””+ x

) 
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Taylor series expansions of f(x) on the point a are given by the
expression

 

 

 

   

(x—) , LJ(0)=f@)+ (x=a)f(@) +=5—f @)+ SN @)+ R,

where the remainder formula is given by

(x—a)’
R,= f1(§), (a<§<x)

This expression, too, can be written in nested parenthetical form as

f,.=f(a)+(x—a)(f’(a)+9((ay+ E22(f”’()+

222@+e))) ))

Binomial Series

The binomial series is encountered many times in combinatorial analysis
as well as in the formulation of difference equations for numerical analysis.
The binomial series can be written in the general form

a

(l+x)a=2(2)x", (—1<x<1)
k=0

where

a|_ al

(k)_(a—k)!k!

Particular series of interest are

 

a(a—1) , a(a—l)(a2)
x2(1+x)'=1+ax+ o 3

which can be written in nested parenthetical form for easy pocket calcula-
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tor evaluation as

2 3 4

. x(an—_n1+ 1) (l . x(an— n) ) 3 )))

Other frequently encountered binomial series are the following;:

(a)

(1+x)"=1+ax(1+x—(—a_—l)(l+M(l+x—(a—_—32+---

(I1+x) '=l-x+x2=x3+ x4 = x5+ -, (Ix|<1)

(1 +x)_l=l—x(l—x(l—x(l—x(l—x(- . ,))))) (|x|<1)

(b)

1/2_ x? x> 5x* 17X 21x®
(+x) =1454eTg v 356 10> (¥I<D

(1+x)l/2=l+§(l—§(l—%(l—ES-X(I )))) (Ix|<1)

(©

(1+x)"/2=1—%(1—%"(1—263‘-(1—185(1--.,)))) (Jx|<1)

(d)

(1+x)‘/3=1+§(1—§(1—%’i(l—%"(l )))) (Ix]< 1)

(e)

(1+x)“/3=1—%(1—%(1—%"(1—%"(1---,)))) (1x|<1)

Operations with Truncated Forms of Infinite Series

An integral part of advanced analysis on the pocket calculator is the
numerical evaluation of truncated series. Generally, the approach is to
truncate the series at something on the order of four terms and use the
series to evaluate the function over the region that has a good fit with the
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function being considered. Once a series is generated, whether with Che-
byshev polynomials, Taylor series, the binomial series, Legendre
polynomials, or some other means, such operations can be performed on
the series as inverting the series, taking the square root of it, squaring it,
multiplying or dividing it, taking the exponential of it, or taking the
logarithm of it. This is conveniently done by manipulating the coefficients

in the series. These operations are tabulated in Table 3-5 for the three
series

si=l+ax+a,x*+ax>+apt+ -

sy=l+ex+cxt+o+ex+ -

Among convenient series manipulations is the reversion of series, where

the dependent variable is solved in terms of the independent variable.
Given the series

y=ax+bx*+cx}+dx*+ex’+fx5+---

we can write x as a function of y as

x~Ay+ By*+ Cy*+ Dy*+ Ey°+ Fp®+ - -
where

_ Sabc— a*d—5b3
a7

D

E= 6a%bd+ 3a*?+ 14b* —2lab* — a’e
9a

 

Fe Ta’be + Ta’cd+ 84ab’c — a*f—28a’hc? — 42b° — 28a%b%d

all
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Transformation of Series

Occasionally, slow-converging series are encountered in numerical analysis
where the object is to compute the sum of the series to high accuracy.
Usually we would use some form of economization to improve the ac-
curacy of such a series (see Chapter 8). We may, however, also know
another series that can be used to improve the convergence (accuracy) of
the original series. This is convenient when numerically evaluating the sum
of a slowly converging series of the form

o0

S=2“k
k=0

where it is known that the series does in fact converge and where we have
another series

which is also convergent and which we know to have the sum ¢ and the
limit of a,/c, as k approaches infinity to equal A (where A is not equal to
zero); then

This technique is known as Kummer’s transformation. It transforms one
series into another that is more convenient for numerical evaluation. While
not developed originally for this purpose, it turns out to be quite useful in
numerical evaluation of slowly converging series.
Another approach to numerically evaluating a truncated series is to use

the Euler-Maclaurin summation formula. This is another technique for
numerically evaluating series using another series that converges more

quickly. Provided that the difference of derivatives at the end points of the
interval over which the series is being evaluated is small, the Euler-
Maclaurin summation formula is

n—1

s= 3 fo="f(kydk — 3 (fo—£,) + 5(£O£0)
k=1 0

(E"-18")- 1D_756(fn(l I f((,"”) + 30740
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3-5 THE SOLUTION OF POLYNOMIALS

The numerical solution of a polynomial on the pocket calculator involves a
clear understanding of the possible location of the polynomial’s rcots in
the complex plane. For this reason, we take a few moments to refresh our
understanding of algebraic equations. It should be remembered that an
nth-order algebraic equation has n roots. If the coefficients in the poly-

nomial are real, the roots of the equation are either all real, some being

equal and some not, or have pairs of roots that are complex conjugates of

each other and other roots that are real with various locations on the real
axis. The occurrence of complex roots in complex conjugate pairs arises
from our assumption that the coefficients in the polynomials are real, not
complex. If the coefficients are complex, of course, the roots can occur

anywhere in the complex plane. In this book we concern ourselves only

with polynomials that have real coefficients, since they are the most

frequently encountered algebraic equations in engineering analysis.

The Solution of Quadratic Equations

If we are given a quadratic equation of the form

az’+bz+c=0

its roots can be numerically evaluated with the formula

Vg
z,=- ( L) +2

2a 2a

e(_b_) _Va
2 2a 2a

where

q=b>—4ac

From time to time we will make use of the following easily verified
properties of the roots:

Q
S

ZZ_£12 a

It is apparent from the equations for the two roots that

1. If ¢>0, the two roots will be real and unequal.
2. If g=0, the two roots are both real and equal.
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3. If ¢<0, the roots occur in complex conjugate pairs.

The numerical evaluation on the pocket calculator should involve first
the calculation to determine g and then the use of equations for the roots
for their evaluation once the situation of the roots is determined.

Solution of Cubic Equations

If we are given a cubic equation of the form

22+ a2’ +a;z+a,=0

the first step in computing its roots is to calculate ¢ and r:

a, a%

=373
_aa,—3a, a;

TT6 27
Then:

1. If ¢*+r2>0, the cubic equation has one real root and a pair of
complex conjugate roots.

2. If ¢*+ r?*=0, all the roots are real and at least two are equal.
3. If g+ r2<0, all roots are real and unequal (the irreducible case).

Once the nature of the roots is known, it is a simple matter to use the
following equations to evaluate the roots on the pocket calculator. First,
compute

5= [r+(q3+ rz)‘/z]'/z

5y= [r—(q3+ r2)1/2]l/2

Then the roots can be calculated from an understanding of their nature
and the following three equations:

a,
Z|=(sl+sz)_ 3

—(s;+5,) a V3
=73t (575) 

BZ=—T3T(517%)
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Note that if ¢g*+ r2=0, 5, will equal s, and the imaginary component of the
roots will drop out, leaving the two z roots, z, and z,, equal, while z, may
not necessarily be equal, depending on the value of s,.
Once the roots of the cubic equation are evaluated, they satisfy the

following relations:

zy+z,+23=—a,

2,2+ 2,23+ 2y23=q,

212223= — Qg

These relations can be used as a check on the calculation of the roots.

The process of numerically evaluating the roots of the quartic equation
is somewhat involved, even for pocket calculator evaluation. Under some

conditions, however, simple evaluations can be made. For example, con-

sider the quartic equation

4 3 2 =2+ ayz’+az*+aiz+ay=0

One approach to evaluating the roots of this quartic equation is to find the
real root of the cubic equation

> = ayp*+(a,ay— dag)u— (a} + agal — 4aya,) =0

and then determine the four roots, of the quartic equation as solutions to
the two quadratic equations

. 2 1/2 . b2 1/2

v+ -73—(—41+p,1—a2) v+71—[(7') —ao] =0

a a? /2
o2+ —3+(z3-+p,—a2) o+ 2L 4

 

Once the roots of the quartic are evaluated and can be written in the form

A+ a2+ a2’ +aiz+ay=(22+pz+q,)(22 +pz+ q))
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the following conditions hold:

Pitpy=a;

Pttg=a

P92tP29, =4a

9:19,= 49

Finally,if z,, z,, z3, z, are the roots of the quartic equation, the following

conditions hold among the roots:

1 vzt z3tzu=—ay

Ez,.zjzk= —a,

22,-2,:02

Again, these conditions can be used to check on the calculation of the
roots.
The evaluation of the roots of a polynomial up to quartics is tedious and

usually inaccurate (at best) on a slide rule, by hand analysis, or even on the
old mechanical calculators (though accurate); it is a relatively fast and
accurate process on the pocket calculator, however.

3-6 SUCCESSIVE APPROXIMATION METHODS

Again, we are concerned with the problem of determining the roots of an

equation, but the equation is of a more general form. We are looking for
the condition

f(x)=0

That is, we are looking for the values of x such that f(x) will equal zero. In
this case f(x) need not be a polynomial in x. If we let x=x,, the
approximation of the root, then when f, is not equal to 0 it is equal to €
(the error). If we now use € to update our estimate of the root,

Ax=c,€e,=c,f,
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we can write

X,1= X, + C,f(x,), (n=1,2,3--+) (3-1)

When it is found that f'(x) is greater than or equal to zero and the
constants ¢, are negative and bounded, the sequence of x, converges

monotonically to the root x=r. If ¢ is a constant less than zero and f’ is

greater than zero, the process converges but not necessarily monotonically.

A number of approaches have been developed to compute ¢,. Among these
are the regula falsi method, the method of successive iterations, Newton’s

method, and the Newton-Raphson method. The regula falsi method begins
with the assumption that we are given y =f(x); the objective is to find x=r

such that f(r)=0. We choose a pair of values of x, x; and x,; such that

f(x,) and f(x,) have opposite signs. Then equation 3-1 can take the form

e x _(xl—xo)f=flx0—f0xl

? : fi—fo : fi=t

The third- and higher-order estimates of the root x, are computed using x,

and either x, or x, for which f(x;) or f(x,) is of opposite sign to f(x,).

This method is equivalent to an inverse interpolation. This is apparent
from the form of equation 3-2.

In the method of successive iterations, the approach is to write the

equation in an implicit form and use successive iterations to solve the

equation x = F(x). The iteration scheme is to compute

Xn+1 =f(xn)

The sequence of solutions to this implicit equation will converge to a zero
of x = F(x) if there exists a g such that

 (3-2)

| f(x)]<g<1 for a<x<b
and

< Xpt |f(x0)—x0| <b

1-¢q

This is an attractive method for use on the pocket calculator because it

does not involve remembering special formulas such as those associated
with the regula falsi or the Newton (Newton-Raphson) methods. The

problem encountered in applying the method of successive iterations on

the implicit form of the equation whose roots are to be determined is that
the implicit equation may not converge as quickly as other methods based

on additional information (such as the derivatives of f(x)) whose function

it is to ensure rapid convergence of the method.
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Newton’s method is to compute recursively estimates of the roots of the
function f(x) using the formula

A
")

where x=x, 1s an approximation to the solution, x+r, of f(x)=0. The

sequence of solutions generated with Newton’s rule will converge quadrati-
cally to x = r. The condition for monotonic convergence is that the product
f(x0)f”(x) 1s greater than zero, and f'(x) and f”(x) do not change sign in

the interval (x4,r). The conditions for oscillatory convergence are also

straightforward. When the product x(x,)f”(x,) is less than zero and f'(x)

and f”(x) do not change sign in the interval (x,,x,), equation 3-3 will

converge, though it will oscillate. These conditions only hold, of course,

when

 = (3-3)xn+l

XgS <X,

When Newton’s method is applied to the evaluation of nth roots, we find

that given x"= N, if x, is an approximation of x =N I/7 then a sequence of

improved x, can be generated:

xk+l=;11— (xk(—]%i“"n—]))

Xy

This method will converge quadratically to x for all n, and is particularly

useful for computing the nth roots iteratively on the four-function pocket

calculator as covered in Chapter 1. It is derived here to show the proce-
dure:

1. We wish to compute x=(N)'/".
2. Form f(x)=(x"— N)=0 from (1).

3. For Newton’s rule, x, , = x, —f(x,)/f'(x,), we need f(x,) and f'(x,).

4. f(x)=(x{ = N) and f'(x;)=(nx; "' = 0).
5. Substituting the results of (4) into (3) we find (6).

6. xk"—N) nx, xg+N
=  

xk+1=xk—( o
k

=l[ N_] +(n—1)xk]=l(xk(£ +n—l))
n X{: n xk"

Details on finding the zeros of functions, an important subject in numeri-
cal analysis, are given in Chapter 9.

n nx;
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3-7 ELEMENTARY TRANSCENDENTAL FUNCTIONS

In Chapter 1 we presented polynomial approximations for most of the
transcendental functions found on the keyboard of the scientific calculator
so that they could be evaluated on the simple four-function calculator. Not
presented there, however, were approximations in terms of Chebyshev
polynomials. Because the approximation in terms of Chebyshev poly-
nomials is a mini-max approximation (minimizes the maximum error on
the interval —1 to + 1), they are accurate and useful, and for the sake of
completeness they are presented here. The discussion of the reduction of
order of series approximations to function in terms of Chebyshev
polynomials is covered in Chapter 8 and their numerical evaluation is
covered more fully in Chapter 4. For now we concern ourselves with the
numerical evaluation of the elementary transcendental functions using
Chebyshev polynomials.*

Evaluating the natural log of y for y near zero can be difficult, at best. If
y is near zero it is convenient to write

In(y)

In(1+x), y =1+x
Then we can write In(1 + x) as

in the form

n(l+x)= 3 AT.(x), (0<x<1I)
n=0

where the coefficients 4, are

 

n A,

0 0.376452813

1 0.343145750

2 —0.029437252

3 0.003367089

4 —0.000433276

5 0.000059471

6 —0.000008503

7 0.000001250

8  —0.000000188

9 0.000000029

10  —0.000000004

11 0.000000001

* Shifted Chebyshev polynomials of the first kind used here: Tn = cos nf where
Ccosf = 2x — 1.
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and where

Tn =2(2X— l)Tn—l - Tn-—2

To= l

In a similar way, we can use Chebyshev polynomials to evaluate both

e*ande™*

The coefficients for evaluating e ™* = § A,T,(x) are

s
0.645035270

—0.312841606

0.038704116

—0.003208683

0.000199919

—0.000009975

0.000000415

—0.000000015N
N
A
W

N
-
O

The coefficients for evaluating e* are

n A,

0 1.753387654

1 0.850391654

2 0.105208694

3 0.008722105

4  0.000543437

5 0.000027115

6 0.000001128

7  0.000000040

8  0.000000001

Again the restriction x is that

0<x<l1
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Now that we have a few example functions to work with, consider the
procedure for using the Chebyshev polynomials to numerically evaluate
these functions:

Step 1 Let the objective be to evaluate e near x = xy; where x,, is not on
the interval 0 < x < 1. Rewrite e* so that the exponent is on the
interval [0, 1]. For the sake of this discussion, we use

ex=e(x—xo)+x0=exo[e(x—xo)]=ex0ey

Then for x on the interval

Xg<Sx< xp+1

y is on the interval

0<y<li

Step 2 Select x and compute y.

Step 3 Compute T,=2y — 1.

Step 4 Compute T,=2(2y —1)T,— 1.
Compute T;,=2(12y - 1)T,—-T,.

Compute T7,=22y - 1)T,_,—T,_,.

n

Step 5 Compute e’ = >A, T,, using the appropriate 4,.
0

Step 6 Compute e* = e*%”.

Usually x, is chosen to be a convenient number for precise evaluation of
e™ using the prime factors method (presented in Chapter 1). For example,

if x =100, then e¢'® becomes

5
22\’(™)

which is easily evaluated with a table lookup of e and 13 (at most) data

entry key strokes plus 16 multiply key strokes on the four-function cal-
culator.
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The Chebyshev approximations for sine and cosine are given by the
relation

sin( Ez)i) =X ,,2014" T,(x?)

and

cos(% ) = 'SOA,, T,(x?)

using the coefficients for A4,,:

 

 

 

Sine Cosine

n A, n A,

0 1.276278962 0 0.472001216

1 —0.285261569 1 —0.499403258

2 0.009118016 2 0.027992080

3 —0.000136587 3 —0.000596695

4 0.000001185 4 0.000006704

5 —0.000000007 5 —0.000000047

Here x must reside in the interval

|x] <1

Formulas for the Solution of Plane and Spherical Triangles

Many elementary analysis problems involve the solution of triangles. These
include plane right triangles, plane triangles, and spherical triangles. Con-
sider the plane right triangle shown in Figure 3-1. Here 4, B, and C are the
vertices of the triangle and a, b and c are their opposite sides. Then

 

 

 

) a 1
A = — =

st ¢ cscA

b 1
A = — =

cos ¢ secA

1A=4 -
tan b cotA
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C b A

Figure 3-1 Right triangle.

Now consider Figure 3-2. This plane triangle has angles A, B, C and
sides opposite a,b,c. The law of sines states that

a _ b _ ¢
sinA sinB sinC
 

and the law of cosines is

c2+b2-a?
CosA = 2be

Also, the following four relationships hold for plane triangles:

a=bcosC+ccosB

a+b _tani(4+B)
a—b  tan}(4- B)
 

2
area=

area=[s(s—a)(s—b)(s— C)]%

where s=1(a+ b+ ¢).
Figure 3-3 shows a spherical triangle with angles A, B, C and sides

opposite a, b, c. The four commonly used formulas in spherical tri-
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 A

Figure 3-2 Plane triangle.

gonometry are

sind _ sinB _ sinC
sina sinb sinc¢

cosa=cosbcosc+sinbsinccosA

cosbcos(c+6)
cosa= where tanf =tanb cosA

cos(8)

cosA= —cosBcosC+sinBsin Ccosa

In solving spherical triangle problems we can use either the scientific

keyboard function evaluation or, on the four-function calculators, the

B

b

Figure 3-3 Sphericaltriangle.
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polynomial or Chebyshev approximation to the transcendental functions
involved. These developments for the right triangles are shown here not so

much because of their unique form for pocket calculating, but because
they are very frequently encountered in almost all forms of engineering
analysis and, again, are provided here for the sake of completeness.

3-8 COMPLEX VARIABLES AND FUNCTIONS*

In the remainder of the book, and in Chapter 4 in particular, the equations

and formulas used for analysis on the pocket calculator hold both for real
and complex variables. In this section, we touch briefly on analysis with

complex variables.
Complex variable analysis on the pocket calculator results in nothing

more than keeping track of the real and imaginary coordinates either in
polar or in Cartesian form. Pocket calculators with conversion from

rectangular to polar make the analysis with complex variables particularly

easy. Since virtually all advanced scientific calculators have this feature,

we assume here that it is present. The formulas given here for analysis with
complex variables and for the evaluation of functions of complex variables
can be quickly and easily developed on the four-function calculator using
the trigonometric functions developed earlierin this chapter or in Chapter1.
The addition and subtraction of two complex variables are simply

defined by

(x;+iy)+ (x4 iyy)=(x,+x) +i(y,+y,)

O+ iyy) = (gt i) =(x;—x,) +i(y,—y,)

Multiplication is more conveniently done in polar coordinates; that is,

(x;+ )(xy+iy,)=rre’@+o)

where
N i0

Y = 0Xyt 1y,=rye?

Here r is the positive root sum square of the imaginary and real com-

ponents of the complex number v=(x2+y?)!/2 and

} y
# =inverse tan —

X

*See Appendix 3.
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The division of two complex numbers is given by

x,+i ry .
DTD00 (x4 iy, #0)
xX,tiy, n

Or, in rectangular form,

\+yy (xi+)=ipy) XX+1y+i(X%0,— X, 9,)

X+ 1y, x3+y3 x3+y3
 

where the denominator is developed by multiplying the numerator and
denominator by the complex conjugate of the denominator.
We will frequently encounter certain commonly used functions of com-

plex variables (complex functions). The most often occurring one is the
modulus (absolute value) of a complex number, which is defined by

x+ iy= (2 +y?)"”?

Another commonly encountered complex function is that of the square
of a complex number, which is simply given by

(x+iy)'=(x=y?) +i(2)
Not so easily remembered but occasionally encountered is the square root
of a complex number, which is given by

1/2 -1/2
(x+(x2+y2)l/2) . iy ( x+x(x2+y2)l/2) 

\/x+zy ==+ > —2- 2

Clearly, the powers and roots of a complex function can be more easily
evaluated in polar coordinates. Thus, in general,

(x+ iy)"= rie™ = r"(cosnf + isinnf)

(x+ iy)l/"= r'/"[ cos( 0+27k+:”k ) + isin( 9+2mk+3”k )]

and

These formulas are written for angles in degrees, not radians, and for

angles where n is an integer greater than zero and k takes on any integer
values from zero n—1. The only restriction on these two complex

functions is that the complex variable cannot equal zero.
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Exponential and logarithmic functions of complex variables are also
easily developed when the complex variable is written in polar form:

x+iy=re®

Then it is straightforward to develop

eX¥=e¢*(cosy +isiny)

Similarly, the natural log of a complex variable is given by

In(x +iy)=Inr+ i *+ 2mik, (k=0,1,2,--+) (3-4)

These relationships can be generalized to any base according to the
relation

a*V) = p(x+i)ina

In(x + iy)
log,(x+iy)= 05

Even more generally, the complex powers, complex roots, and complex

logarithms of a complex variable can be developed, again using polar
coordinates. If we are given

z=x+1iy and w=ov+iv

then the complex powers and roots of a complex number are given by

 

zw=ewlnz (3_5)

Zl/w=e(lnz)(l/w) (3_6)

Finally,

In(w)
log,(w) = (3-7)

In(z2)

In equations 3-5,3-6, and 3-7 we can use equation 3-4 for taking the

natural log of a complex number.

Complex trigonometric functions are often presented in complex vari-

able theory books more from the standpoint of derivation and develop-

ment than from the standpoint of numerical evaluation. Hence the numeri-
cal evaluation formulas sometimes get buried in the derivation. Here we
present the formulas for complex trigonometric functions in a form that is
easily evaluated on the pocket calculator. No attempt is made to derive
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these formulas, interesting though they are, because again the emphasis
here is on numerical evaluation of the functions.

The most straightforward expressions are the sine, cosine, and tangent
functions of the complex variable

z=x+Iiy

Then

sinz =sinx coshy + i cosx sinhy

cosz=cosx coshy — usinxsinhy

sin2x + isinh 2y
tanz=————"-—

cos2x +cosh2y

Less straightforward are the complex inverse trigonometric functions.
Again, when

z=x+iy

the inverse sine of z is given by the relation

sin~'z=kw+(— l)ksin"B+(— l)kisgn(y)ln[a+(a2— l)l/z]

In this formula

a=Y(x+1)24+p? +1x—1)2+y? (3-8)

B=\(x+1)+y* —h\(x=1)'+)? (3-9)

and the function sgn(y) is given by the relation

sgn(y)={ : ?: yzg (3-10)ity
Finally, k in this formula is an integer. A convenient simplification for
pocket calculator analysis is to take into account the fact that the inverse
trigonometric functions are multiple valued and thus the k=0 case (the
easiest to evaluate numerically) can be used to evaluate the inverse sine of

z when care is taken to account for the “quadrant” in which z is being
determined. Then sin~!z simplifies to the form

sin~!'z=sin"!B+ isgn(y)ln[a+(a2— 1)1/2]
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Similarly the inverse cosine can be numerically evaluated from the
equation

cos!z=cos™!B— isgn(y)ln[a+(a2— 1)1/2] (3-11)

where a and B are given by equations 3-8 and 3-9 and sgn(y) is given by

equation 3-10. Here, as before, k is assumed to be zero. However, were k

not equal to zero the more general form of equation 3-11is given by

coslz=2km + {COS_',B—usgn(y)ln[a.p(aZ_ 1)1/2]}

Finally, the inverse tangent in its most general form is given by

1+ 1—
tan_'z=%[(2k+ l)w—tan"'(Ty)—tan-l(Ty)J

i (1+y)2+x2

4 (1-p) '+ 52

which when k=0 simplifies to the form

2
1+ 1- ; 14+ + x2

tan"lz=—1 tan"(—y)+tan"(—l) +1n (____{LL
x X 4 2, 2(1-y) +x

With these relationships it is a simple matter to define the complex

hyperbolic and complex inverse hyperbolic functions in terms of the
trigonometric functions and their inverses:

sinhz = —isiniz

coshz=cosiz

sinh2x +isin2y

tanhz = cosh2x+cos2y

Similarly, the inverse hyperbolic functions are defined as

sinh~'z=—isin7 iz

cosh™!z=icos™ !z

tanh~!'z=—itan"'iz
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Other complex trigonometric relationships useful in evaluation of complex
functions are

cscz=(sinz)

secz=(cosz) "'

sin2x —isinh2y
cotonz=————

cosh2y —cos2x

csc”'z=sin"!(z71)

sec”'z=cos"!(z7")

1cotan”!z= —tan"!(z)m
2

cschz=icsciz

sechz =seciz

ths = sinh2x — isin2y

cothz= cosh2x —cos2y

csch™'z=icsc iz

sech™!z=isec™ !z

coth™!z=icot7 iz

39 REFERENCE

For this chapter refer to the Handbook of Mathematical Functions, U.S.
Department of Commerce, National Bureau of Standards, Applied
Mathematics Series 55, 1900.



CHAPTER 4

NUMERICAL EVALUATION
OF ADVANCED FUNCTIONS

4-1 INTRODUCTION

Even the simplest pocket calculator can evaluate advanced mathematical
functions to accuracies required in engineering use and certainly carrying

as many significant digits as do the typical tables in mathematical

handbooks. In part, then, this chapter deals with freeing the analyst from
having to carry or have access to extensive tables to numerically evaluate
the advanced mathematical function. Among the advanced functions con-
sidered in this chapter are the exponential integral, the gamma function,
the error function and Fresnal integrals, Legendre polynomials, Bessel
functions of integer and fractional orders, confluent hypergeometric func-

tions, Chebyshev polynomials, hypergeometric functions. Hermite poly-
nomials, and Laguerre polynomials. Again, we stress not so much the
analysis with these functions and their analytical properties as their
numerical evaluation on the pocket calculator.

There are three methods for numerically evaluating advanced mathema-

tical functions:

1. The function is approximated by a polynomial approximation or
curve fit that permits accurate evaluation of the function directly through

analytic substitution.

2. If the function is one of a sequence of generated polynomials, the

low-order polynomials can be determined for the argument of the function
and the higher-order polynomials then numerically evaluated by means of
the recursion formulas.

3. Successive partial sums of the series that describes the advanced
function are computed.

122
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The first method has the greatest body of mathematicalliterature. It also is
the simplest to apply in numerically evaluating advanced functions in that
it involves the simple procedure of evaluating a polynomial. The third
alternative is the least attractive, since rapidly converging series are often
difficult to develop over all intervals of interest. An example of this is the
Bessel function where a number of series can be written that converge

quickly in certain intervals, but there is no one series that converges

quickly over the entire range of the independent variable in the Bessel
function. In fact, the Bessel function requires the same consideration in

developing polynomial approximations. To get precision, polynomial
approximation with a reasonable number of terms requires more than one

polynomial approximation to span the interval of the independent variable

from minus infinity to plus infinity.

Finally, the second approach (the use of low-order polynomials to
determine the argument of the advanced function and then employing

recursion formulas to numerically evaluate higher-order polynomials) is
used extensively in the generation of accurate mathematical tables and
thus is handy for pocket calculator analysis, though somewhat tedious at
times.

In this chapter, all three approaches are used, each where appropriate
for evaluating the advanced mathematical functions covered here. Care

has been taken to select, from the number of available numerical methods

for evaluating these functions, those methods that can be implemented

with a minimum amount of work on pocket calculators, and particularly
the four-function variety.

Where tradeoffs are difficult the method that leads to the quickest
evaluation has been selected. A specific example would be the Chebyshev

polynomials which are evaluated here using recursion formulas, rather
than sine and cosine functions, which are available on most scientific

calculators. The reason for this and a similar situation in the half-integer
Bessel functions is that the approach presented here can be numerically

calculated on the four-function calculator which does not have the sine

and cosine functions.

Those who have evaluated certain advanced mathematical functions on

large-scale digital computers should recognize that the methods chosen

here are not necessarily the same as those commonly used on large digital

computers. Partly the numerical methods are chosen for the pocket cal-

culator and partly because the methods are to be instructive to students

and working engineers who may have been away from the application of

these functions. For these cases, familiar numerical methods are often

chosen, though they require slightly more work than the numerical

methods used for large computer numerical evaluation. It is important to
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remember that in pocket calculator analysis a mathematical function is
usually evaluated only a few times, while on a large digital computing
machine it might be evaluated a great many times. For large machines, the

emphasis is on maximizing the accuracy with the minimum number of
steps involved in the subroutine. In pocket calculator analysis, the empha-
sis is more on understanding the method and providing accuracy consis-
tent with the display in the pocket calculator, on a one-time basis. Thus the
requirements for a numerical method for pocket calculator evaluation are

significantly different than those for large computer evaluations.

4-2 EXPONENTIAL, SINE, AND COSINE INTEGRALS

Four commonly encountered integrals are two forms of the exponential

integrals and the sine and cosine integrals. The exponential integrals that
we discuss here are of the form

o —t

El(z)=f Sdr, (Jargz| <m)

ooe-x X el

Ei(x)=—f le=[ Tdt, (x>0)

- X — 00

More generally we are also interested in the exponential integral

°°e—zt

E()=[
1

and in methods for numerically evaluating both

 dt, (n=0,1,2,...,Re(z) >0)

a,,(z)=fl t"e~*dt,  (n=0,1,2,...,Re(z)>0)

+1
,B,,(z)=f_l t"e "dt, (n=0,1,2,...)

Though each of these integrals is defined for complex arguments, our
interest here is primarily with their evaluation for real arguments. How-

ever, it is usually assumed that the path of complex integration does not

include the origin, nor does it cross the negative real axis.

The approach to numerically evaluating the exponential integrals is first

to have a means to numerically evaluate them for n=1, and then use
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recursion formulas for numerically evaluating the higher-order exponential
integrals. There are two approaches to evaluating the integrals: the use of
either an infinite series or rational polynomial approximations (see Chapter

8). The series expansions for these functions are

Ei(x)=y+Inx+ D %}T (x>0)
n=1

Q (—1)z"E,(z)=—y—1nz—ZT, (largz| < =)
n=1

(=9 ™ (=Y
En(z)—‘(—n—jl)—![ Inz+y(n)] ngo (m—nt D!’

m#n—1

n .

- - z!
a,(z)=nlz""*De ’(2 T')

,Bn(z)=n!z“("“){ez(2 (- l)if_—;)—e'z(z %)}
i=0 i=0

Here

y()=—v

n—1

Y(n)=—vy+ —;;
m=1

and

v=0.5772156649 (Euler’s constant)

(largz| <)

These functions can be evaluated more conveniently, using rational

polynomial approximations.

For the dependent variable x on the interval zero to 1, the exponential

integral can be evaluated with the polynomial

E\(x)+Inx=ay+ x(a,+ x(a,+ x(a;+ x(a, + asx)))) + €(x)
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with an accuracy of two parts in 107, using the coefficients

ap,= —0.57721566 a;=0.05519968

a,=0.99999193 a,= —0.00976004

a,= —0.24991055 as=0.00107857

when x is on the interval

1<x<o0

Over the range where x is greater than or equal to 1 the rational
polynomial approximation

2 +a,x+a,X
xe*E,(x)= ————+e(x

x’+b,x+b, (%)

using the coefficients

a,=2334733 b, =3.330657
a,=0250621 b,=1.681534

can evaluate the auxiliary exponential integral to an error of

le(x)]<5% 1073

For even greater precision, the exponential integral can be evaluated over
the interval x greater than or equal to 10, using the same rational

polynomial but with the coefficients

a,=4.03640 b, =5.03637
a,=1.15198  b,=4.19160

Here the error is given by the relation

le(x)] <1077

For x greater than 1, the rational polynomial approximation

xe*E(x)= 
a,+x(ay+ x(a,+ x(a; + x)))

by+ x(by+ x(by+ x(b, + x))) *te(x)
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using the coefficients

a,=8.5733287401 b,=9.573322454

a,=18.0590169730  b,=25.6329561486

a,=28.6347608925 b,=21.0996530827

a,=0.2677737343 b,=3.9584969228

can be used to evaluate the exponential integral to an accuracy of

le(x)|<2x 1078

Once the exponential integral is numerically evaluated, the following

recursion formula can be used to compute the higher-order exponential
integrals for the same arguments:

E,, (2)= ;ll-[e’z—zEn(z)], (n=1,2,3,...)

za,(z)=e *+na,_,(2), (n=1,2,3,...)

B,(z)=(-D'e:—e*+nB,_(z), (n=123,...)

The sine and cosine integrals are defined as

Si(z)= L51;3 dt

Zcos(t)—1
Ci(z)=0+lnz+f __(t)—dt’ (|argz| <)

0

Furthermore, we make note of the definition

si(z)=Si(z)— 12’-

Then two auxiliary functions can be developed that have the form

f(z)=Ci(z)sinz —si(z)cosz

g(z)=—Ci(z)cosz —si(z)sinz
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Then the sine and cosine integrals can be written in terms of the auxiliary
function as

Si(z)= % —f(z)cosz—g(z)sinz

Ci(z)=f(z)sinz—g(z)cosz

where the auxiliary integrals are defined according to the relations

 

 

 

 

smt

f(z)f t+z

or

°°e—zt

z)= dt£(2) fo S
and

cost ,

g(z)f t+z

or

* te="
= dtg(2) fo L

subject to the condition for convergence of these integrals

Re(z)>0

The reason for doing this is that rational approximations to the auxiliary
functions are easily developed with high precision.

For four-place precision, the auxiliary function can be determined using

the rational approximation

1 a,+ x*(a, + x?)

flx)= (b2+x2(b]+x2)
)+€(X) g(x)= (

ay+ x*(a, + x?)

by + x*(b, + x?)
)+e(x)

le(x)]<2x1074 le(x)|<10~*

for x greater than 1 using the coefficients

a,=7.241163 a,=7.547478

a,=2.463936 a,=1.564072

b,=9.068580 b,=12.723684

b,=7.157433 b,=15.723606
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For precision to five parts in 107, the auxiliary functions can be approxi-
mated with the rational approximations

 

ay+ x¥(ay+ x}(ay+ x¥(a, + x?))) )
f(x)= (b4+xY(by+ x2(b, + x¥(b, + x2)))

 

l a4+x2(a3+x2(a2+x2(al+x2)))
g(x)—=

by+x(b3+x2(b2+x2(b +x2)))

for 1< x. The coefficients for f(x) are given by

= 38.027264 b,= 40.021433

=265.187033  b,=322.624911

a,=335.677320  b,=570.236280

a,= 38.102495 b,=157.105423

and for equation g(x)

a,= 42242855 b,= 48.196927

a,=302.757865 b,= 482.485984

a,=352.018498  b,=1114.978885

a,= 21821899 b,= 449.690326

The infinite series for numerically evaluating these functions are *

_ 1)22n+l

Siz)=ZOQn+ )(2n+1)!

Si(z)=w§0Ji+.,z(§)

and for the cosine integral

_ ZZn

Ci(z)=y+inz + 2 (2n(1;n)'

*We shall see that fractional Bessel functions can be conveniently evaluated on the scientific

pocket calculator.
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4-3 NUMERICAL EVALUATION OF THE GAMMA FUNCTION AND ITS

RELATED FUNCTIONS

The gamma function is defined by Euler’s integral

o0

r(z)=f t*~le='dr,  (Rez>0)
0

or

r(z)=k2f°°tz-'e—k'dt, (Rez > 0,Rek > 0)
0

Euler’s formula for evaluating the gamma function is of the form

I'(z)= lim nln’ . (2#£0,—1,-2...)
>0 z(z+1)(z+2) -+ (z+n)
 

He also gave an infinite product expression for evaluating the gamma

function:

 e I [(Hz)e—m]
I'(2) n= n

—_ 3 _l_ l l P -l_— = ooy=Jim [1+ 2+ 20 ley ] lnm] 0.5772156649

This number is known as Euler’s constant. Only a little analysis is involved

to show that the gamma function is analytic and single valued over the
entire complex plane except at the points z=—n (n=0,1,2,...,) where its
poles occur. The residues of these poles can be evaluated and are found to
be

(-1
n!
 

The reciprocal of the gamma function has zeros at the points z= —n

(n=0,1,2,...,). The recursion formula for computing the gamma function

is given by the expression

I'(z+1)=zI(2)

which is related to the factorial of z according to the relation

I(z+1)=2z!
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It follows that the gamma function propagates from gamma at (1+z) to
gamma at (n+ z) according to the relation

F(n+z)=(n=1+2)!=(n—-1+2z)(n—-2+2)--- (1+2)z!

Another nice property of the gamma function, which is easily evaluated

on the pocket calculator, is Gauss’ multiplication formula

(1:_" _12"= 1 k
[(nz)=Qn)\ 2 /n™=~1/2 11 F(z+—)

k=0 n

This formula contains the duplication and triplication formulas given as a

part of the gamma function characteristics as special cases of this more
general multiplication formula.

The gamma function, being related to the factorial of a number, is

related to the binomial coefficient according to the relationship

 

w

2 2! _ I'(z+1)

( )" wi(z—w)! T(w+DI(z—w+1)

It is apparent that the gamma function’s relationship to the factorial

makes it convenient to evaluating the gamma function on scientific pocket
calculators that have the factorial key.
The gamma function can be evaluated in several ways. One is by a series

expansion for expansion of 1/T" according to the relationship

 

1 o0

f=2ot (<)
where the coefficients to give an accuracy up to 10 places (the nominal

register size we would expect in current and even some future pocket
calculators) are tabulated in Table 4-1. The advantage to using this type of
series expansion technique is that the interval over which the series
converges is the entire real axis. Polynomial approximations can be used
over more restricted intervals. Two such approximations are

I'(x+1)=x!

=1+ x(a,+ x(a,+ x(a;+ x(a,+ asx)))) + €(x)

F'(x+1)=x!

=1 +x(bl +x(b2+x(b3+ x(by+ x(bs+ x(bg+ x(b,+ bsx)))))))

+e(x)
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Table 4-1 Coefficients in the Expansions 1/T'(z)=3¢_ ¢,z*

 

 

k Ck k Ck

1 1.00000 00000 11 0.00012 80502
2 0.57721 56649 12 —0.0000201348
3 —0.6558780715 13 —0.00000 12504
4 —0.0420026350 14 0.0000011330
5 0.1665386113 15 —0.0000002056
6 —0.0421977345 16 0.0000000061
7 —0.0096219715 17 0.0000000050
8 0.0072189432 18 —0.0000000011
9 —0.0011651675 19 0.0000000001

10 —0.0002152416

 

where the coefficients in the polynomials are

a,=—0.5748646 b, = —0.577191652
a,=09512363  b,=0.988205891
a,= —0.6998588 b, = —0.897056937
a,=0.4245549  b,=0.918206857
a;=—0.1010678  by= —0.756704078

be=0.482199394
b,= —0.193527818
by =0.035868343

On both of these polynomial approximations the range of the variable x is

greater than or equal to zero but less than or equal to 1. The former has an

accuracy of five parts in 10° and the latter polynomial approximation is

accurate to three parts in 10’. Also, because of Stirling’s formula for

approximating x!, the gamma function can be related to Stirling’s

approximation according to the equation

z+b—1/2)a

I'(az+b)~V27 e *(az (largz| < m,a > 0)

Again, Stirling’s approximation is easy to evaluate on most scientific

pocket calculators.
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4-4 THE ERROR FUNCTION AND FRESNEL INTEGRALS

The error function and its complements are defined as

2 Z _n
erfz=— e "dtv=d

and
o0

erfcz=——2:f eCdi=1—erfz
\/',7 z

The error function can be conveniently computed using the series expan-
sion

o0

22: 2" 2n+1f [ z e

eriz \/W ¢ =0 1.3"'(272 } l)zn=

In fact, it is common in computing the error function on large computers
to compute successive partial sums of the series and terminate the evalua-
tion when two consecutive partial sums are equal. The same approach can
be taken on the pocket calculator, although the calculations are tedious.
Here again we can use rational approximations to the error function such

as

erfz=1-[t(a,+1(a,+ast))]e" +e(z), (0<z)

where

 
1+pz

and the coefficients are

p=0.47047

a,=0.3480242

a,= —0.0958798

a,=0.7478556

This approximation is good to about 2.5 parts in 107°. Accuracy to

1.5% 1073 error can be achieved with a slightly longer series, with the

addition of two terms as

erffz=1-— [t(al +t(a,+ t(as+t(a,+ ast))))e_zz] +€(2)
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where

_ 1

1+pz

and the coefficients are

p=0.3275911

=(.254829592

= —(.284496736

a;=1.421413741

= —1.453152027

a;=1.061405429

The Fresnel integrals are defined by the relationships

C(z)=£zcos(%fl)dt

S(z)='/(;zsin(17~2€-2-)dt

The Fresnel integrals can be computed using the series expansion

(-1)'(=/2)" ,.,
C(z)= 2 @n)i@n+1)

(=)"(z/2""" .,
S(z)= 2L 2n+1)1(4n+3)"

Fortunately, these series tend to converge quickly and can be evaluated

effectively on the pocket calculator.
Finally, as might be expected, the Fresnel integrals can be computed in

terms of sines and cosines directly, but modulated by the auxiliary func-
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tions f(z) and g(z):

C(2)= % "‘f(Z)Sin(z;—z) —g(z)cos(—"-;—z)

S(2)=1-f(z)cos(f—;f) - g(z)sin(”Tzz)

The auxiliary functions are approximated to low accuracy according to

1+0.9262

 

-4

&)=792, 4 3.0082 T
where

le(z)|<2x1073

and

2(z)= ' +e(2)
2+4.1422+3.49222+6.670z3

where

le(z)] <2%x1073

4-5 LEGENDRE FUNCTIONS

Legendre functions are defined in terms of the hypergeometric functions as

 
r/2

. z+1 (_ 1 l—z)
P! (z)= F(l > T ] vov+1;1—p;5

where F is defined by the relationship

F(a,b;c;z)= i (a)"(b)n(%t!"’)io (O
 

F(c) 2 T'(a+n)'(b+n) (fl_"r_)

T T(@)T(b)& T(c+n)
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This Legendre function is one of two that satisfy the differential equation

(1- )——229’}+  

 

2
v(v+1)— 1“ 5 ]w=0

The Legendre function of the second kind is defined by the equation

. F'(v+p+1) /2
u =)~(w+ 1 1/2 —G+p+D(,2_ Y

OF(z)=e " T(r+3/2) (z=1)

p ol+v+p 3.1
xF(1+2+5, 3 ,v+2,22) (Iz|>1)

where F is again the hypergeometric function. These formidable-looking

expressions are easily evaluated on the pocket calculator using the recur-
rence relationships of varying order and degree:

(r=u+P(2)=Q2v+1)zPF(2) = (v +p)P} 1(2)

PEH U (2)=(22= H{(r=w)zPH(2) ~ (v + W)P(2))

PE(2)= P\(2)+v+ 1)(22 = 1)P1(2)

The Legendre functions of both the first and second kind satisfy these
same recurrence relations. The starting values for these recurrence rela-

tions are Py(x)=1 and P,(x)=x and

0o(2)= 4in( 221, 0o(x)= tin( 11£),  

  0(a)=3m(E) -1, Q0=Fmn(

Here n is nonnegative and an integer.

Another approach to evaluating Legendre functions of integral order is

to use Rodrigues’ formula to generate the Legendre polynomials and then

to write them in nested parenthetical form and evaluate them like any
polynomial. Though plausible, this approach is not developed here because

the numerical evaluation of the Legendre polynomials is quickly done

using the recurrence formulas. For the sake of completeness, however, the
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other approach can be developed using the relationship

 

      

   

1 d"(zz—l)n
Pn(z)— 270! dz"

and

Pn(x) 1+ x

Qn 2 ln( 1 — x )_ Wn—l(x)

where

2 1 2n—5 2n—9Woai(X)= Zm Pa (550 Pas(0) 4 5Pas(3)4

Wt(X)= D Py (X)Py(%)
m=1

and

W_,(x)=0

The derivative of Legendre polynomials of the first kind can be numeri-

cally evaluated using the recurrence relations

n+1
P()— [XP(x)= P, (0)]

4-6 BESSEL FUNCTIONS

Bessel functions are solutions to the differential equation

2d’w dw )=z = +zdz +(22=»))w=0

Of the three kinds of Bessel functions, the first is:

k

Jap(s)=(%)yi k'I((:*—'—k)*'l)k=0

The second is written as

Y,(2)
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and the third as

H(l), H(Z)(Z)

Bessel functions of the first type can also be expressed as hypergeometric
functions and as an integral:

(z/2) .3
Jv(Z)= fiy—-f-—l_)oFl(V-i- l; — T)

J(2)= (%z)y[ wl/zr(v+ %)

Here (F, is the generalized hypergeometric function. Bessel’s functions
of the second and third types are written in terms of Bessel function of the
first type to simplify their numerical evaluation according to the re-
lationships

-1

fflcos(z cosf)sin*” 848
0

 

_ J(z)cos(vm)—J_ (z2)

sin()Y,(2) 

H,"(z)=J,(2) +iY,(2)

H?(z)=J,(2) —iY,(2)

The numerical evaluation of these Bessel functions is somewhat involved if

done analytically. All can be computed, however, using the recurrence

relation

where the numerical values for the Bessel functions that go into this

recurrence formula are given by polynomial approximations. Unfor-

tunately, the startup behavior of the Bessel function for x from —3 to +3

is significantly different from the Bessel function evaluated for x greater

than 3. Two levels of polynomial approximation are therefore involved.

The polynomial approximations for the Bessel functions of the first and
second kinds that can be used in combination with recurrence formulas for

v equal to zero and 1 are shown in Tables 4-2 and 4-3.
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Table 4-2 Polynomial Approximation of J(x)

 

®O0n the interval —3<x< +3

2 4 6

Jo(x)=1-2.2499997( 3 ) +1.2656208( 3 ) —0.3163866(5 )

—
~

8 10 12

+o.0444479(33‘-) —o.oo39444(§) +0.0002100(§) +e

Here |e| <5%x 1078

@On the interval 3 < x

Jo(X) =x" l/zfocosgo

where

fo=0.79788456 — 0.00000077(3/x) — 0.00552740(3/x)* — 0.00009512(3/ x)’

+0.00137237(3/x)* — 0.00072805(3/ x)° + 0.00014476(3/ x)° + €

Here || <1.6x 1078

and

8,= x —0.78539816 — 0.04166397(3/x) — 0.00003954(3/x) +0.00262573(3/ x)°

—0.00054125(3/x)* — 0.00029333(3/ x)° +0.00013558(3/x)° + €

Here |¢| <7x107®
 

Spherical Bessel functions, often called Bessel functions of fractional
order, satisfy the modified Bessel differential equation

22w” +2zw' +[z22 = n(n+1)]w=0, (n=0,x1,%2,--)

Spherical Bessel functions of the first kind are of the form

Jn(2)= V 2—7; Jn+l/2(z)
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Table 4-3 Polynomial Approximation of J,(x)

 

®/n the interval —3<x< + 3

x~1J,(x) =1 —0.56249985(x/3)* +0.21093573(x/3)* — 0.03954289(x/3)°

+0.00443319(x/3)° —0.00031761(x/3)'°+0.00001109(x /3)"* + €

Here || <1.3x 1078

@®/n the interval 3 < x

JI(X) =Xl/2fl 00801

where

£,=0.79788456 + 0.00000156(3/x) + 0.01659667(3/ x)* +0.00017105(3/ x)’

—0.00249511(3/x)* +0.00113653(3/x)’ — 0.00020033(3/ x)° + €

Here |e| <4x 10~

and

0, = x —2.35619449 +0.12499612(3/ x) +0.00005650(3/x)" — 0.00637879(3/ x)’

+0.00074348(3/ x)" +0.00079824(3/ x)* — 0.00029166(3/ x)° + ¢

Here |¢| <9x 1078
 

and those of the second kind take the form

(D=VA Yoi1l2)

The spherical Bessel functions of the third kind are given by

hp(xl)(z) =j,(z)+ y,(z)= V 2_772‘ an’l 1/2(2)

WP(2)=j(2) = iv,(2) =\3= HZ,()
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They can be numerically evaluated using the series

 

 

. 2" /2 (3/2)°jn()=et 1- + — s
1.3.5---(2n+1) 1'2n+3) 2!2n+3)(2n+5)

1.3.5---(2n—1) 32/2 (32/2)°
yn(2)=—“‘—“‘;‘+—,— 1- + -

z 1'(1-2n) 2Y(1-2n)(3—2n)

where n=0, 1,2, - - - .Or they can be written out and numerically evaluated

from the expansion of the spherical Bessel functions, using Rayleigh’s

generating formulas

 

A simplification for numerically evaluating spherical Bessel functions of

high order is to evaluate them at low order, say zero and 1, and compute

the high-order spherical Bessel functions for the same argument, using the
recurrence relations

2n+1)
Jn "Jn—-1
 

./n+l z

This recursion formula applies to all four spherical Bessel functions.

An even simpler approach for calculators with sine and cosine functions
using recurrence formulas is to evaluate j,(z) as

n+1

Jn(2)=f(2)sinz +(=1)"" f_ue1)(2)cosz

where f, is generated with

2n+1
( ! )fn—j;z—l
 

fn+l=

using the starting values
z

fo=z"' and f=z7?
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4-7 THE CONFLUENT HYPERGEOMETRIC FUNCTION

The confluent hypergeometric function, usually written in the form

  (a),2° (a).2"M(a,b,z)=1+% + e+
(@0,2) 3+ )y (B)!

where

(b),=b(b+1)(b+2)(b+3)---(b+n—1)

(a),=a(a+1)(a+2)(a+3) --(a+n—1)

and

(a)g=1=(b),

is the solution to Kummers’ differential equation

d*w dw _
27 +(b-2) R aw=0

The confluent hypergeometric function is evaluated on the pocket calcula-

tor directly as written by computing successive partial sums of this series.
Similarly, the hypergeometric functions defined by the relation

F(a,b;C;Z)=i M(;_:)n=0 (c)n

must be evaluated directly by computing successive partial sums of the

series. In general, when the terms in the series do not change, enough terms

have been taken for the numerical evaluation to be complete. It is apparent
that the series is not defined if c= —m(m=0,1,2,---), except when

b=-n(n=0,1,2,---)

where n must be less than m. It is worth mentioning here that the

hypergeometric function can be used to initialize certain recursion formu-
las for other advanced functions in that the hypergeometric function is

related to many of the orthogonal polynomials.

4-8 CHEBYSHEV, HERMITE, AND LAGUERRE POLYNOMIALS

Chebyshev polynomials can be easily evaluated numerically using the

recurrence equations

Tas1(x)=2xT,(x) = T,_(x),(-1<x< 1)

where the starting values for the Chebyshev polynomials are T(x)=1 and
T,(x)=x.
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Hermite polynomials and Laguerre polynomials can also be evaluated
using recurrence equations and initial values of the polynomials. For
example, the Hermite polynomial can be numerically evaluated using the
recurrence formula

Hn+1(x) =2XHn(x) _2an—— l(x)

where the starting values are computed from the first two Hermite

polynomials Hy=1 and H,=2x. Again, n is a nonnegative integer.
The numerical evaluation of the Laguerre polynomial is found using the

recurrence equation

[(2n+1-x)L,(x)—nL,_,(x)]
n+1
 

Ln+,l(x)=

Here the starting Laguerre polynomials are Ly=1 and L,=1—x. As

before, n is a nonnegative integer.

It is worth repeating that to numerically evaluate advanced mathemati-
cal functions one of three approaches is usually employed:

1. The function is approximated by a polynomial approximation or
curve fits that permit accurate evaluation of the function directly through
analytic substitution.

2. If the function is one of a sequence of generated polynomials, the

low-order polynomials can be determined for the argument of the function,

and then recursion formulas used to numerically evaluate the higher-order

polynomials.

3. The third alternative is simply to compute successive partial sums of

the series that describes the advanced function.

Of the three, (1) is the most straightforward approach to evaluating the
advanced functions. The least attractive approach is that presented in
(3)—direct evaluation of the series approximation to the function. And,
finally, a reasonable tradeoff between analytic substitution as described in

(1) and direct series evaluation presented in (3) is the use of recurrence

formulas to numerically evaluate high-order functions where the function

is one of a set of sequences of functions developed with a generating

formula.
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PART THREE

ADVANCED ANALYSIS
ON THE POCKET CALCULATOR





CHAPTER 5

FOURIER ANALYSIS

5-1 INTRODUCTION

We now turn to the Fourier analysis of discrete and continuous functions.
Unlike in Chapter 4, where we talked about the numerical evaluation of
advanced mathematical functions rather than their interpretation, here we
also try to understand the results that can be obtained from pocket
calculator evaluation of the discrete Fourier transform. Such issues as the

relationships between the discrete spectrum of discrete functions and the

discrete spectrum of continuous functions are discussed. The aliasing
concept is examined to aid those not familiar with it in understanding the

spectrum of sampled-data functions. In a very real sense, the pocket

calculator can be a valuable teaching aid in frequency-domain analysis in
that it permits the quick evaluation of the spectra associated with discrete

functions which (when sampled at sufficiently high frequency) approxi-

mate continuous functions. For this reason, and to permit a quick

evaluation of spectra in practical analysis, the formulas for 12-point

discrete Fourier spectra are given and the procedures for their quick
evaluation on the pocket calculator are presented. Those using a simple

four-function calculator will find the 12-point formula of particular inter-
est, since no evaluation of sines or cosines is required for a determination

of the discrete spectrum of a sequence of sampled values.

Finally, we discuss function reconstruction, using pocket calculators

with scientific keyboards, and procedures for Fourier series evaluation.

5-2 THE FOURIER SERIES OF CONTINUOUS FUNCTIONS

The Fourier series of a continuous periodic function whose period is L is

147
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given by

a 27X 47x 67x
F(x)= -29 + a,cos(—{——)+a2cos(%)+a3cos(—z—)+ e

2mx 4ax 6mx
bsm(7)+bn(7)+bsm(3 )+ (5-1)

where the coefficients q, and b, are given by

_-fF(x)co )dx (k=0,1,2,---) (5-2)

2 (* 2k-2 f F(x)sin( ”)dx, (k=1,2,---) (5-3)
L o L

This series has an infinite number of terms. There are an infinite number

of coefficients defined by equations 5-2 and 5-3. Physically, the funda-
mental and an infinity of its harmonics can determine an infinite sequence

of coefficients for the sines and cosines in the series expansion of equation

5-1.
There are problems with the convergence of Fourier series, which are

usually associated with special functions not frequently encountered in

engineering analysis. Since the sines and cosines that make up the Fourier

series are orthogonal functions, the coefficients of its components can be

written in polar form. In this case the modulus of the radius vector can be
plotted as a function of frequency, as well as the phase angle of the

resultant. These form the amplitude and phase shift curves used by control

systems analysts to examine the stability of feedback control processes.

Finally, the power spectrum of a function approximated with a Fourier

series can be prepared by plotting the square of the modulus of the Fourier
coefficients in polar form. Since this is equivalent to summing the squares

of the coefficients for the sine and cosine functions at the same frequency,

it is apparent that the phase information is lost when the power spectrum is

presented.

Inspection of the Fourier series reveals that if the function F(x) is

moved vertically along the ordinate, only the value of g, is changed. This

can readily be seen by noting in equation 5-2 that when k=0 the

coefficient becomes the average value of F(x) on the interval zero to L.

Note that if we were to set F;(x)= F(x)+ a,/2 in equation 5-1, the Fourier

series of F(x) would have no average component (DC component). It is
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also apparent that if F(x) is translated horizontally along the abscissa, the
distribution of weight among the coefficients in the Fourier series changes.
In particular, for any given frequency component, the distribution among

the sine and cosine terms is different. However, the sum of their squares

remains invariant. From this we see that the power spectrum of a Fourier

series is invariant with respect to translation of the function f(x) along the

abscissa (assuming that f(x) is periodic).

What should be kept in mind about the Fourier series approximation of

a function is that the function being approximated with the Fourier series

is assumed to be periodic. Though it can have discontinuities over the
period, the function must be periodic. For the student, what might seem
counterintuitive at first is that this function defined over a finite interval in

the domain of the real numbers has an infinite number of lines in its

discrete spectrum defined over the infinite domain of the discrete frequen-
cies. The reason for this lies in the nature of the Fourier series. The

fundamental frequency componentfor the finite length record is set by the

length of the record itself. Then the harmonics that make up the rest of the

series are determined by pairs of sines and cosines that fit with multiple
oscillations over the period of the periodic function, and there are an
infinity of these sines and cosines.

5-3 THE FOURIER SERIES OF DISCRETE FUNCTIONS

Now let us consider a discrete function defined by a set of equally spaced

discrete values of the function Y defined at equally spaced values of the

domain of the independent variable. Following Hamming, we consider
only an even number of points, 2N. In what follows, the 2N sample points

are

L 2L 3L (QN-DL
OaNNNAN (>-4)

which can be written as

_nLXn= 5ar (n=0,1,...2N—1) (5-5)

The Fourier series expansion of an arbitrary function F(x) defined on the

set of points x, can be written as

N—1
A

F(x)= 70 + 2 [Akcos( 2k£rx ) + Bksin( 2kzrx)

k=1

  Ay 2Nmx
+ 5 cos( I )

 

(5-6)
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where

| & 2kwx,
A= > F(x,,)cos( — ) (k=0,1,...,N) (5-7)

n=0

 

1 °&S . 2kmx,
Bo=~ > F(x,,)sm( 7 ) (k=0,1,...N—1)  (5-8)

n=0

 

An interesting aspect of Fourier series is that the sine and cosine
functions are not only defined and orthogonal over a continuous interval
of the dependent variable but are also orthogonal on any set of equally
spaced discrete points on the same interval. This is important for the

numerical evaluation of the frequency components of the discrete func-

tions in that we are usually only given samples of the function on the set of

equally spaced points. One might expect that the coefficients for the

continuous Fourier series could then be approximated using numerical
integration. Although this, in fact, can be done, equations 5-7 and 5-8 show

that the coefficients for the Fourier spectrum of a discrete function can be

computed exactly without involving numerical integration approximation.

It is apparent from equations 5-7 and 5-8 that this expansion will have
only 2N terms, rather than an infinity of terms, as is characteristic of the

Fourier series approximation of continuous functions. Also, the frequency
spectrum for the discrete Fourier transform will have only half as many
lines as sampled values. Thus, if there are 10 sampled values, the power

spectrum will have only five discrete lines. Clearly, a question that needs to

be answered is, ‘what happened to the rest of the infinity of components of

the spectrum of the continuous function F(x)? Another relevant and

equally important question is, how can the discrete spectrum be con-

structed if we know the continuous spectrum and the number of sampled

values? Conversely, given the discrete spectrum of the discrete function

f(nAx), what can we tell about the discrete spectrum of the continuous

function f(x)?

5-4 THE RELATIONS BETWEEN THE FOURIER SERIES EXPANSION OF

DISCRETE AND CONTINUOUS FUNCTIONS

Only a little analysis will show that the spectral components of a discrete
function are related to the spectral components of its continuous function
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counterpart according to the relationship

o0

Ay=a, + 21 (22Nm -k + GoNm+ k) (5-9)
m=

o0

B, =b, + Zl (bZNm+k_b2Nm-—k) (5-10)
m=

The constant term A4, is given by

o0

m=1

Let us examine equation 5-9. The first six terms of an even function

discrete spectrum (say, for 2N=10 seconds) when written out take the
following form:

 

 

Spectrum Discrete Function Spectrum from Continuous Function

Component Spectrum

2a,_o= Ag=ag+2(a,g+a,ytay+an+---)

Xfym 1 Hz = Ay=a,+(ag+ay)+(ag+ay)+(ay+ay)+---

®fym2Hz ™= Ay=ay+(ag+ap)+(ag+ay)+(agtas)+---

®ym3Hz ™= Ay=a3+(a;+ap)+(ay;+ay)+(ay+ag)+- -

OymgHz ™= Ag=as+(ag+ay) +(as+ay)+(ay+ay)+- -

20ys,= As=as+(as+ay;) +(a;s+ay)+(ay+as)+ -

Note: B, =0= b, for even functions.
 

The factors of 2 at end points of the spectrum are due to the form of

equation 5-6. Each of the discrete system coefficients when written out
includes the effect of an infinite number of terms associated with the

continuous spectrum. This somewhat stunning finding shows that any

sizable power in the high-frequency components of the continuous-

function spectrum will have the effect of those components appearing at
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low frequencies in the discrete-function spectrum. In the example chosen

where the 2N is equal to 10 seconds, the lowest-frequency component in
the discrete spectrum (besides the zero-frequency component) includes the

amplitude of the 9 and 11 Hz frequency component in the Fourier series

expansion of F(x), as well as the 19th and 21st, the 29th and 31st, 39th and

41st, 49th and 51st, and so on.

Another physical way to think of this is that, had we been sampling an

11 Hz sine wave at 10 samples per second, the discrete function would

have had spectral components at 1 Hz whose amplitude would be the same

as that of the 11 Hz sine wave in the continuous spectrum. In general the
frequencies present in the original continuous function F(x) are summed
together as a result of the sampling operation. In other words, the mere

operation of sampling a continuous function (i.e., a discrete function

defined only at integer multiples of the sampling period) results in the
folding of the frequency spectrum around the information frequency

(sampling frequency w, divided by 2), resulting in the folding of the

high-frequency components of the continuous-function spectrum into the

low-frequency components of the discrete-function spectrum. This effect is

called “aliasing” (i.e., 1 Hz is the alias of 9 Hz when sampled at 10 Hz).
Note that once the sampling process has taken place, its effect on the
continuous-function spectrum cannot be undone. In our example, only

when a,=0 for k>5 will 4,=aq,. If a,#0 for k>5, a, cannot be
determined by examining A,! Finally, note that the highest-frequency

component is w, /2.
These formulas provide the means for computing the discrete-function

spectrum directly from the continuous-function spectrum if it is known.

The CRC Standard Mathematical Tables has a sizable table of Fourier
series representations of commonly encountered functions and can be used
to compute the discrete-function spectrum according to equations 5-9,

5-10, and 5-11 using a pocket calculator.

5-5 THE NUMERICAL EVALUATION OF THE FOURIER COEFFICIENTS

The coefficients of the discrete-function Fourier series expansion, pre-
viously given by equations 5-7 and 5-8, are copied here for convenience.

1 2&G! 2kmx,
A= > F(x,,)cos( ) (k=0,1,...N) (5-7)

n=0

 

 2GE [ 2kmx,
Bk=—fi 2 F(xn)sm( 7 ), (k=0,1,...,N—1) (5-8)

n=0
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These coefficients may be numerically evaluated, using recursion formulas.

The procedure is as follows:

Step 1 Prepare a table of values U,, using the recursion relations

Um=(2cosfi)UN Uni~ Uy# FQN=m)  for m=23,4,.. 2N~]1

(5-12)

where Uy=0 and U;=F(Q2N—1)

Step 2 Evaluate the coefficients of the cosine terms in the series, using the

equation

A=~ {(cosw—;) Uy~ Upy_p+ F(O)} (5-13)

Step 3 Compute the coefficients for the sine terms in the series expan-

sion, using the recursion formula

. wk
Bk= N(Sln%)UZN_l (5-14)

While evaluation according to these formulas takes longer than does the
Cooley-Tukey fast Fourier transform algorithm, for the low-order Fourier

series analysis that can be conveniently done on the pocket calculator this
recursion formula method involves only slightly fewer operations than the
Cooley-Tukey algorithm. Moreover, the use of recursion formulas in the

numerical evaluation of functions is efficiently done on the pocket cal-

culator.

Hamming presents a convenient 12-point formula for Fourier analysis in

his book Numerical Methods for Scientists and Engineers. First, the table of

discrete values of the function F is written in an array (A1):

FO) F(1) F@2) F@3) F@) F() F(s)} Al
F(11)  F(10) F(9) F(8) F(7)

From this array we can compute a sequence of S’s and 7’s by adding and

subtracting, respectively, the two lines in the array 41 to form an array

(A2) of S’s and T’s:

Sums—>  S(0) S(1) S@2) S3) S@) S5 S(6)}A2

Differences— T(1) T(2) T@B) T@) T
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Then, rewriting array (A42) as

SO s s@) s@E) T TQ) T<3>}A3
S(6) S() @) T(5) T(4)

we form array (A44) of U’s, V’s, P’s, and Q’s by adding and subtracting,
respectively, the second line from the first line in array A3:

Sums—  U(0) U(l) UQR) UEB) P() P(Q) P(s)}A4
Differences— V(0) V(1) V(2) o) Q@)

The coefficients associated with the six discrete frequencies that make

up the Fourier series representation of the 12-point discrete function can

now be developed. First compute

o= V(0)+K§i) ,B,=f¥+P(3)

=UO+UG)  By=P()-P()
m=UM+UQ)  Bi=2(0(1)+0@)
w=2v) =Y(00)-00)
as=UO)-UG) =2PQ)
ag=U(1)—U(2)

a;=V(0)—V(2)

Then

A

A, =¢(a;+ay) Bl=%(Bl+BS)

A

Ay=ga, B;=3pB,
1 @3 1

Ay=5 0‘2_7 B,=¢B,4

A5=%(al—a4) Bs=%(,31_35)

Ag=¢(as— ag)
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These coefficients are associated with the Fourier series

  + —cos
2akx ) A, 27Nx

2 L

n—1
A

F(x)= 70+ 2 (Akcos% + B, sin
k=1

5-6 SUMMARY

A number of important observations have been made on the Fourier
expansion of discrete functions. Take, for example, the 12-point Fourier

coefficient formulas. The 12 values of the discrete function result in a
discrete spectrum with only six frequency components. In general, 2N
values of a discrete function will result in a spectrum with only N spectral

components. This generally holds true, reflecting the rule of thumb that
data must be sampled at at least twice the highest frequency of interest for

the coefficients of the spectral components to be determined at the
frequency of interest.

The second observation deals with the physical characteristics of

sampled data. Note that once a function is sampled the spectrum of the
sequence of sampled functions has no frequency components greater than

half the sampling frequency. What, then, happens to the high frequency
components of a sampled continuous function? They are folded down into
the low-frequency components of the discrete spectrum. They are summed

with the low-frequency components. In this sense the high-frequency

components are not actually rejected by the sampling process, but they are

folded into the low-frequency components of the discrete function

spectrum, resulting in distortion of the low-frequency components that

made up the original continuous-function frequency spectrum. Thus,
although the sampling operation does not result in high-frequency com-
ponents in the sampled-functions spectrum, the true continuous-function

spectrum can be much distorted by the sampling process in the low
frequencies.

5-7 REFERENCE

For this chapter refer to Richard Hamming’s Numerical Methods for
Scientists and Engineers (McGraw-Hill, New York, 1973), Chapter 1 and
Chapters 31 through 34.

Example 5-1 Compute the coefficients in the Fourier series expansions of

a continuous periodic triangular wave function. Then use these coefficients
to compute the discrete function spectrum by way of equations 5-9 through

5-11.
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The continuous periodic triangular wave form is shown in Figure 5-1. It

is apparent that

f)y=~-f(-1)
and

fr=3)= -1

The first equation shows that f(¢) is an odd function and thus only the sine

components are involved in the Fourier series approximation of f(¢). The

second equation shows that only the odd harmonics are involved in the
series. Furthermore, when two symmetry conditions exist, it is necessary to

integrate only over one-quarter of the period of the function to determine
the Fourier coefficients (an interesting property for the reader to dem-
onstrate to himself). It follows, that

g (/" 2b,,=—f f(t)sinn(—z)tdt, (n,0dd)
T 0 T

Since

f(t)=4—;_“, O<t<IT

T/4
_8 a4y | (27b,= Tf ( 7 )tsm{n( T)t} dt

0

  

 

 —<——T
Figure 5-1 Continuous periodic triangular waveform.
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Thus

S n=159,
b, =

4. =301,

The first 15 continuous function spectrum components are tabulated
below.

 

 

  

 

  

84 —84
bi="12 b6=0 b= 131,

—84
b,=0 b,= o1 b, =0

—84 84
ba= be=0 b
3 9qr2 8 13 16972

84
b,=0 by= o3 b,=0

84 —84
S 2542 10 15 9254

The discrete spectrum components are developed by using equation 5-10

for the case 2N = 10:

B, =b,+ (b, — bg) +(by— b1g) + (b3 —byg) + - -

By=b,y+(by;— bg) +(byy— b1g) + (b3 — byg) + - -

By=by+(by3—b;) +(byy— by7) +(b33—byy) + - -

B,=b,+ (b4~ bg) +(byy— byg) + (b3 — bye) + - - -

From the table of continuous function spectrum components we see that

_84[(_ 1y (1 84B,= 2 [(l 121) (81)] 09793900(7r2)

> [(0+0)—0]=0

84 L, 1) (=1\]__ 84By= 2[(9+169) ( 9)] 0.0847859(W2)

2 [(0+0)—(0)]=0
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The following table shows the discrete function spectrum elements and the
continuous function spectrum elements side by side for easy comparison.
The difference is the result of the aliasing phenomenon.

Continuous Function

Spectrum Elements

Discrete Function

Spectrum Elements
 

,”2
b1=1.0(§’1)

b,=0
m=—annn% 00 AN

N=

B, =o.97939oo(§’21)
™

B,=0
By=— 0.08478659( 8=NN

Example 5-2 Compute the Fourier coefficients for the Fourier series
approximation of the discrete function

y,=sin(nwT)

where w=1 Hz. This 12-point discrete function is tabulated betow.

 

nT nwT

n (seconds) (degrees) Sin(nwT)= F(n)

0 0 0 0.00

1 0.1 36 0.59

2 0.2 72 0.95

3 0.3 108 0.95

4 0.4 144 0.59

5 0.5 180 0.00

6 0.6 216 -0.59

7 0.7 252 —-0.95

8 0.8 288 —0.95

9 0.9 324 -0.59

10 1.0 360 0.00

11 1.1 396 +0.59

A closer examination of the table reveals that the sine function is

tabulated over the interval to 1.2 seconds, while the function is periodic on

the interval 1 second. Clearly, the coefficients that we generate using the
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12-point formulas apply to Fourier series approximations of the tabulated
functions exactly as shown (with a period of 1.2 seconds, not 1 second),

and not the coefficients for the Fourier series approximation of a pure 1
Hz sine wave. The purpose for selecting this unusual problem is that it
illustrates not only the use of the 12-point formula, but also the effect of
one of the practical problems associated with sampling periodic functions.

The reality of sampling functions from experiments is that the functions

are often not exactly periodic or, if they are, the period is not known

precisely and some approximation of the period must be made. This

example might be considered the result of an experiment where an estimate
of the period of the function being sampled is made to be 1.2 seconds,
where in reality the periodic function repeats on the interval 1 second.
Following the 12-point Fourier analysis procedure, the discrete function
12-point Fourier coefficients are generated from the arrays as tabulated in

Table 5-1. The array numbers in the table correspond to the array numbers
in the text and are shown here for the sake of convenience. The numerical

evaluation of the 12-point Fourier series coefficients are summarized in

Table 5-1 Discrete Function 12-point Fourier Series Coefficient Generation Arrays
 

 

 

 

 

 

F0)—»F@6) 0.00 0.59 0.95 0.95 0.59 0.00 -0.59

(41)
F(12)e— F(7) 0.59 0.00 —-0.59 -095 -0095

Add 0.00 1.18 0.95 0.36 -036 —-095 -0.59

(A2)
Subtract 0.00 0.95 1.54 1.54 0.95

SO S1) S@ SG S@ SO S
(A2)

1) TQR) T@) T@W TO)

S0)-»S3) 0.00 1.18 0.95 0.36 0.00 0.95 1.54 T(1)-» T(3)

(A43)
S(6)—S@) —059 —-095 -—-0.36 0.95 1.54 T(5)—T4)

Add —-0.59 0.23 0.59 0.36 0.95 2.49 1.54

(44)
Subtract 0:59 2.13 1.31 —-095 -0.59

(v uvad) Uuv@d U3 pIH PR PO
(44)

vo) v Ve oM 022
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Table 5-2. The A-coefficients are associated with the cosine components
and the B-coefficients are associated with the sine components. Also, the

table shows a check of the initial conditions. At t=0, the discrete function

starts at 0. Therefore, the sum of the cosine amplitude coefficients should

equal 0, as they do.

Though we could discuss the tail effects by examining the individual

elements of the series expansion, it is more convenient to use the power

spectrum or amplitude spectrum as a means of discussing this

phenomenon. The 12-point spectrum calculations are tabulated in Table

5-3. First note that the DC component of the spectrum is given by P,. This

indicates that the average effect of the “tail” of our irregular periodic

coefficient is to bias the otherwise 0-DC coefficient to the level 0.049.

Second, the lowest-frequency component (the fundamental frequency

equal to 1/1.2 equal to 0.83333...) contains the greatest amount of power

of all of the harmonics. Clearly, this is so because it is the closest frequency

to the 1 Hz periodic function that we have sampled. The power in the

next-highest harmonic is approximately one-tenth that of the fundamental.

Table 5-2 12-Point Fourier Series Coefficient Calculations
 

24y= %(—0.59+O.36+0.23 +0.59) =0.098
1 Note that

A= £ (0.59+0.655+0.866 X 2.13) =0.5149
| att=0,

, Ay=L(~0.59-0.36—.18)= —0.188 SAi=0
Cosine ? . ’

components Ay= € (=.72)=-0.12 as it should

A= %(0.59+0.36~ 41)= —0.107

As=3(0.59+.655—0.866 X 2.13) = —0.0999

245= ¢ (~059-036-0.23+0.59) = —0.098

By = 5 (0.475+1.54+0.866 X2.489) = 0.695

. B,=28% (_0.95-0.59)= —0.2223
Sine 1 6

components B,= § (0.95—-1.54) =0.098

By=28%(~095+059) = —0.0519

Bs= %(0.475 +1.54— 0.866 X 2.49) = — 0.0436
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Table 5-3 12-Point Spectrum Calculations
 

 

Power Spectrum Amplitude

w Hz (rounded) Spectrum

0 Po=A42/4 =0.00 VP, =0.049

0.833 P,=A4?+B2=0.75 VP 0865

1.666 P,=A2+ B2 =0.08 VP, =0291

2.499 Py=A2+ B2 =0.02 VP, =0.155

3.333 Py=A2+ B2 =00l VP, =0.119

4.166 Ps=AZ+ B2 =001 VPs —0.109

5.499 Pg=A2/4 =000 VP¢ =0.049
 

Had we taken the 12 sample points equally distributed over the periodic

sine wave function, we would have found a single harmonic component at

1 Hz and the rest of the components would have been zero or very small,
depending only on truncation error as related to the number of terms

carried in the pocket calculator analysis. Here we see the effect of the

“tail” is to affect the DC level and spread the power in the 1 Hz sine
function over higher-frequency harmonics. The reason for this is that the

high-frequency components are required to take care of the discontinuous

end effects associated with the “tail” in our sampled periodic discrete
function. Specifically, this “tail” is associated with the jump discontinuity
in going from +0.59 at n=11 to 0 at n=12 for the example function that
we have chosen to analyze. Hopefully this example will interest the

students who read this book in further readings in practical Fourier
analysis, on which there is an extensive literature.



CHAPTER 6

NUMERICAL INTEGRATION

6-1 INTRODUCTION

There are basically two types of integral with which we are concerned in
this chapter: the definite integral and the indefinite integral. The definite
integral is given by the formula

b

y(b)=y(a)+ [ f(x)dx (6-1)

and the indefinite integral is defined by

y(x)=y(a)+ [ f(r)ar (6-2)

The definite integral is characterized by computing the area under the

curve of a bounded function; the indefinite integral can be thought of as

computing the antiderivative of the integrand and thus generating the
sequence of values of a function. We study definite integrals from the

standpoint of quadrature—that is, for computing the area under a curve.

We study indefinite integrals from the standpoint of integrating differential

equations. Our first concern here is the definite integral.

6-2 DEFINITE INTEGRATION

Computing the area under an arbitrary curve is usually based on the

concept of analytic substitution. The idea is to use a known function
whose definite integral is easily evaluated to substitute for the arbitrary

function to be integrated. The integration is actually performed on the
substitute function and attributed to the integral of the arbitrary function

162
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to the degree to which it approximates the latter. In classical mathematics
the substitute functions to be integrated are usually polynomials. The
polynomial is then analytically integrated and, insofar as the polynomial

approximates the continuous function, the integral is attributed to the
integral of the arbitrary function. When the integrand is a polynomial of
degree n and the approximating function is also a polynomial of degree n,

the formula can be made exact by appropriately selecting the coefficients

in the integration formula.

The process of analytic substitution or of other means of approximating

definite and indefinite integrals is so fascinating that virtually every
numerical analyst finds new ways to rederive many of the classical formu-
las and a few others as well. Though one is tempted to present the most
sophisticated integration methods, the focus here remains on classical
developments, which are straightforward and easy to apply on the pocket

calculator. The reader should be aware, however, of the tremendous

quantity of good mathematics in numerical integration developed in the

last 20 years. This is due to numerical calculations being done on the
digital computer and to the use of numerical analysis in sophisticated
technology problems in varied areas. Structures, communications systems,
control systems, design of aircraft, and the design of chemical plants are
areas where the simulation of systems with widely separated eigenvalues
and the numerical integration of functions that are almost neutrally stable

(at large integration step size), have produced new integration concepts
based on the technology to which they were being applied. Structural
dynamicists have developed special numerical integration formulas for
integrating their “stiff differential equations.” Controls analysts have pro-

duced such formulas based solely on frequency-domain considerations.

And special single-step real-time numerical integration formulas have

been developed by simulation scientists.
These problems can be encountered on the pocket calculator, especially

the programmable pocket calculator. Here, however, we focus on the more

classical formulas, which have fairly general and broad applications to the
more analytically tractable functions. Furthermore, there is a vast body of

literature on these classical methods for further reference, should it be

required.

Trapezoidal Integration

If we approximate the function f(x) on a bounded interval a< X < b by a
line through the end points, we can write the equation for the approximat-
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ing function over the interval as

 

 

b —

r=sia)+| L5202e
(6-3)

_ (b—x)f(a)+(x—a)f(b)
y(x)= -

Integrating equation 6-3, we find

[rean=(E2552)60 (64)
Equation 6-4 computes the area under the straight-line interpolation be-
tween the two end points. This is called trapezoidal integration because
this area is enclosed by a trapezoid formed by lines connecting the end
points, the abscissa, and the vertical lines connecting the end points to the
abscissa. If the interval is large, the trapezoidal approximation can lead to
large numerical integration error. This is resolved by a repeated applica-

tion of the trapezoidal rule on smaller intervals of the dependent variable.
Whenthis is done for equally spaced intervals, Ax, trapezoidal integration
takes the form

fbf(x)dx=Ax(£—(2(2 +f(a+Ax)+f(a+28x)+ - - +f(Tb)) (6-5)

Trapezoidal integration, though not the simplest one to derive or com-
pute (Euler, modified Euler, or rectangular integration are simpler con-

cepts) and its error formula does not give the least error for the fewest

computations, is straightforward to apply on the pocket calculator and is

easily remembered. As we move to integration formulas involving mid-

values and their derivatives, estimates of a roundoff and truncation error,

and adjustments of phase shift and amplitude, we retreat further from
simple visualizations of the integration process and must increasingly rely

on the rationale for their development to be assured of their applicability
to a problem. Ultimately, analytical integration is compared with the

approximate numerical integration to evaluate the difference between

several methods of integration for a particular problem. Clearly, this is an
overkill for back-of-the-envelope engineering analysis or analysis on the
pocket calculator intended simply to compute the area under the curve of a
given function. If trapezoidal integration is sufficiently accurate, and the
number of intervals needed to obtain the desired accuracy is not prohibi-

tive, it is very useful for pocket calculator analysis.
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6-3 ERROR IN TRAPEZOIDAL INTEGRATION

We do not here aim to explore the derivation of integration or error

formulas—merely to tabulate the commonly used ones and put them in a

form that is immediately useful for the pocket calculator. Nevertheless,it is
instructive to examine the error of a simple integration formula as a means

for understanding the error equations given for the more sophisticated
integration formulas. Following Hamming, then, we examine the trunca-

tion error in the trapezoidal integration algorithm by substituting a Taylor

series expansion into the integration formula. By comparing both sides of

the results, we can then determine the error associated with the analytic

substitution process in the numerical integration. Specifically, if we write

the integrand in its Taylor series expanded form as

1) =fa)+ (x - ay(a)+S)f”()+ (6:6)

and substitute this into both sides of the trapezoidal integration formula,

we find that, on integration, the left side becomes

 
(ba) (b—a)’ (b—a)3 )

3! af(a)+ f'(a (6-7)      

The right side becomes

 f"(a)+ - +f(a)|+€ (6-8)
, (b—a)’

fla)+(b=a)f(a)+ —

where Ax =(b— a). After canceling like terms on both sides we can derive

the truncation error formula:

(b—a)’ _(b-a)
Lf(a)+ - 5 a  (6-9)  

e=(3r-3)E-Y"(@- e)f”’()- - (6-10)

If we assume the largest part of the error term to be given by the first term

in its series expansion, we can write

_(b—a)’f"(a)5 (6-11)
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or, more generally,

_(b=a)'f(8)
12 ’

~ (a<8<b) (6-12)

If, however, the function has contributions to the error formula that are

large in the higher-order terms, this error formula does not apply. It is

applicable for many of the practical engineering problems, and thus is

generally quoted as the error associated with trapezoidal integration.

The specific error formula for trapezoidal integration is less important
here than is the method by which it is derived. We used the Taylor series

expansion for the integrand in order to derive a Taylor series truncation
term for “the area.” Another alternative would have been to use a Fourier

series representation of the function to determine the truncation in the
frequency domain. Another approximating polynomial could have been

the Chebyshev polynomial approximation of f(x), which would have given
another type of truncated polynomial approximation error formula. While
the interpretation of the results of each error formula is different, the

magnitude of the error is not. The error is a characteristic of the integra-

tion formula, rather than the approximating polynomial used in the error

formula evaluation.

Figure 6-1 shows that for concave-up type of functions trapezoidal

integration is always slightly more than the curve it is trying to approxi-
mate; for concave-down type of functionsit is slightly less. Thus it seems

 

 

  
a b X

Figure 6-1 Truncation error in trapezoidal integration.



Midpoint Integration 167

reasonable to expect, when integrating “wavy” functions, the intervals to
be set up so that, at a minimum, the eyeball approximation of the errors on
one interval may have a chance to cancel the errors on the other interval.

We can extend the error formula for simple trapezoidal integration to the

composite formula by similar reasoning:

(b—a)Ax?
——Tf”(o), (a<0<b) (6-13)e

Writing error formulas such as equations 6-12 and 6-13 is, of course,

easier than evaluating them meaningfully. One approach is to find the
second derivative of the function being considered, compute the minimum

error and the maximum error, and divide by 2 to obtain the average error

of the integration over the interval. Another approach is to take the

worst-case error. A great number of other alternatives also exist. The
question is, what is the criterion for numerically evaluating the error?

Unfortunately, there is no easy answer to this question. From an engineer-

ing viewpoint, the error defined by equation 6-9 perhaps has more meaning

than those most often quoted in numerical analysis books. In this sense the

process of deriving the error formula is the more fundamental issue in that

the engineer or scientist can compute his own error formula suited to his
specific problem.
Another aspect of the numerical error formulas associated with integra-

tion formulas is that they are absolute errors, whereas the error of interest

is usually relative error. Again, the author has no easy solution of the

problem of deriving relative error formulas for numerical analysis. The
difficulty is pointed out here to warn the student or first-time numerical

analyst about error formulas in general. Preferably he should derive his
own formula for a particular problem being numerically analyzed. An

estimate of the error in a numerical approximation over an analytical
calculation must be made, butits interpretation is not straightforward and

the result cannot be casually given from questionable error formulas.

6-4 MIDPOINT INTEGRATION

Midpoint integration uses the midvalue of an interval and the derivative of

the integrand evaluated at the midvalue to define the slope at the midpoint

of the interval, again forming a trapezoid whose area under the curve

approximates that of a function to be considered.

The midpoint integration formula as developed by Hamming is easy to

follow and nicely introduces the concept of a general approach to deriving
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polynomial approximations for analytic substitution. We are to derive an

integration formula of the form

 [Fyax=w(L)4 wor(452) (6-14)

Hamming’s weighting coefficients can be easily derived by noting that we

first require this formula to be exact for f(x)=1. This gives

b—a=w, (6-15)

We also require that this formula be exact for f(x)= x, which leads to

b2 — qa? +b= =w,(aT)+w2 (6-16) 

We can determine the two Hamming’s coefficients by solving these equa-

tions simultaneously:

w2=(b2;a2)_ (b—a)2(a+b) =(b2;a2)_(b2;a2)=0

w,=b—a (6-17)

 

We therefore find the midvalue integration formula to be

 a+b) (6-18)[o=(o= af( 45

We see that midpoint integration developed in this manner results in
rectangular integration. That is, the area formed by the rectangle sampled
at the midvalue is identically equal to the area under the tangent line at the

midvalue of the interval. At first it might seem paradoxical that the

low-order rectangular integration could be as good as trapezoidal in-

tegration—that formulas based on a single point of f could be as accurate

as a two-point trapezoidal formula. In fact, rectangular integration can be

made as precise as desired if the sample point on a bounded interval can

be varied until the mean value theorem of calculus is satisfied. Once again,

rectangular integration can be made as precise as the true integral pro-

vided that the point at which the function is sampled on the interval can be
determined, so that the rectangle formed by the sampled value and the

lines connecting the end points of the function on the interval and the
abscissa itself have the same area as that under the function bounded on

the interval. This fact is reflected by equation 6-18.
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Again, to find the truncation error term, we use the Taylor series:

0e5e o  f(x)=f(a)+

where, upon substituting in both sides of equation 6-18, we find

(b—a)’ (b—a)
  €+ (6-20)

This 1s usually simplified to

(b= a)’f"(a)% (6-21)

or, more generally, fora<f<b

_(b=a)’f"(8)
FTT20

Comparing equations 6-21 and 6-12, we see that midpoint rectangular

integration is more accurate than endpoint trapezoidal integration even

though the rectangular integration is based on knowing the function at
only one point while the trapezoidal rule of integration requires the

knowledge of the function at two end points.
Extending the midpoint integration formula, we find, as in the

trapezoidal formula, the composite midpoint integration formula to be of

the form

  

b
[ f(x)dx

=Ax f(a+ A—x)+f(a+3A—x)+f(a+ 5A—")+ e +f(b——Afi) +€
2 2 2 2

where its error formula is given by

b— a)Ax?
eLToy (a<8<b) (6-22)

24

Note also that extended trapezoidal integration can be modified to

include end points outside the interval [a, b]. The modified trapezoidal rule
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is given by

fbf(x)dx=Ax I(Ta)+f(a+Ax)+f(a+2Ax)
+ ... +f£2[2

+ SE [ f(a—Bx)+f(a+Ax)+f(b—Ax) =f(b+8x)] (6:23)

where the error associated with modified trapezoidal integration is given

by

B 11(b— a)Ax*
o /(0),  (a+Ax)<O<(b+Ax)  (6-24)€

which is usually much more accurate than extended midpoint integration
with only slightly more work.

Other Popular Definite Integration Formulas

Simpson’s rule, perhaps the most commonly used integration formula, is

given by

2Ax Ax

Jax=SEo+4+1) (6-25)

Its associated error formula is given by

5
e=— Ag—’(‘)7(8),  (0<0<2Ax)

Simpson’s rule has the nice property that it integrates cubics exactly even

though it samples only three points of the integrand and in addition has

very small error terms when Ax is less than 1 and on the order of one-half.
Simpson’s rule can also be extended (on an even number of intervals)

according to the formula

X2n A

J )dx= SE(fo+4+2+4+2k +h,)  (626)
X0

Its error formula is given by

5
€= ng—gf"”(fl), (xo<O< xy+2nlx) (6-27)
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Perhaps the simplest extended integration formula is the Euler-Maclaurin
formula:

Xp A

LJUW&=A%%+fi+h+A+~-+%)(Bzx)U~fo)= -

B,Ax* B _
_(T (7PfD)+ ey (6-28)

It has the error formula

(2k+3)_ { 6nB,, ,,Ax }
%=y iau(2k+2)! max |f(x**?]}, (-1<0<1) (6-29)

Xo< X< X,

Here B,, is a Bernoulli number.
The three-eights rule for definite integration is given by

X3 3A[ HCdx= 225 (fo+ 36+ 3%+£5) (6-30)
X0

Its associated error formula is

e=— 3AxF70),  xo<8<x (6-31)

Two types of formulas are used for quadrature when many sample

points of the integrand are known: Bode’s definite integral formulas and
the Newton-Cotes formulas of the open type. Bode’s rules for quadrature

are shown in Table 6-1, and the Newton-Cotes formulas are tabulated in

Table 6-2.
The high-order formulas, such as the Newton-Cotes and Bode’s formu-

las, can have some very undesirable properties for large n. For some

analytic and discrete functions the sequence of the integrals of the in-
terpolating polynomials does not converge toward the integral of the

function. Also, the coefficients in these integration formulas are large and

of alternating sign, which is undesirable from the standpoint of propagat-

ing roundoff error. It is primarily for these reasons that the Newton-Cotes

formulas are rarely used for high values of n. For lower values of n they
can be simplified to some other well-known formula, such as the previously

discussed trapezoidal formula and Simpson’s rule. Although Bode’s rule
gets around the alternating signs associated with the Newton-Cotes formu-

las, it too has convergence problems for certain occasionally encountered

functions. Suffice it to say that the extended trapezoidal integration with
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Table 6-1 Bode’s Definite Intergration Formulas for Integrating Functions Whose

End Points Are Known
 

 

Integration Formulas Error Formulas

xq AxTFVY(O

. Y(x)dx= 25 (1fo+ 320, + 12f, + 32, + 7f) _ 8Ax77(6)
Xo 45 945

xs SAx 275Ax7fV1(6)dx = 22X (19f,+75f, + 50f, + 50, + 751, + 19 _£haxjJo () dx= g5 (1934 755, 50+ 50f;-+ 75£, 19/5) ki

g 9A 9, VIII 0

[Tydx = L(@fy+ 216+ 27, + 2723+ 27/, + 2165+ 417) _8xy(0)- 140 1400

fTf(x)dx = %;{6(751fo+ 35T7f, + 1323f, + 2989f, + 2989f, 8183 Ax%f M

’ ~ 518400
+1323f,+3577f,+751f,)

Xg 4Axdx = =X (989f, + 5888f, — 928f, + 10496 — 4540S, FOxydx {7175 (9890 5888, 928/, f~ 4540/, Y68 AXFE

© 467775+ 10496— 928, + 58881, + 989;)
 

end effect modification has high accuracy, does not propagate roundoff,

requires only a reasonable amount of work in computing the integral of
any function, and is thus recommended for analysis on the pocket calcula-
tor.

6-5 INDEFINITE NUMERICAL INTEGRATION

Indefinite numerical integration is the numerical method for solving

differential equations. Given the equation

& =1xw) (632)
we would usually solve it by indefinite integration as follows:

y=yo+ [f(r.y)de (6:33)
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Table 6-2 Newton-Cotes’ Definite Integration Formulas for Integrating Functions

Whose End Points Are Undefined or Unknown or Are Singular Points
 

 

Integration Formulas Error Formulas

3

[T0dx= 22t1) Ag

[9ax=X@h-+26) B0(o)

SFxyx=X(Wfy+fy+fy+ 11fy) 95“=)

[0ax=S(117, - 145, + 265,
X0 41Ax7fVl(a)

140— 14f,+ 11fy)

[ax= TEX (6111, — 453, + 5621, 5257 Ax7
“tei0 /@

+562f,— 453fs +611f,)

X3 8Ax
x)dx = 52X (460f, — 954f, + 2196, — 2459f,

Lo f( ) 945 ( 1 2 3 3956Axfvn

+2196f5 — 954, + 460f;) 14175
 

It is apparent that the solution of the differential equation depends on its
own evaluation of the integral. This is precisely the chief problem in
indefinite integration; that is, indefinite integrals are in an implicit form.

Note that an explicit indefinite integral takes the form

y=yo+ [ f(r)d (6-34)
X0

which is a special case of the differential equation

dy
7 =f(%) (6-35)
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Clearly, this type of numerical integration can be performed analytically,

hence is not of concern here.

The simplest indefinite numerical integration algorithm is Euler’s in-

tegration formula:

dy
yn+l=yn+Ax(Zx—) (6-36)

Here we see that a new estimate (y,,,) of y is based on the old estimate

(v,) and its derivative [(dy/dx),]. The derivative is usually calculated

directly from the differential equation once y is estimated. Since the new

estimate y,,, is based on the old estimate y, and the old value y, it is
clearly an “open-loop” process where the new value¢ y, is based on an
extrapolation from previously known data and thus is subject to extrapola-
tion errors. The process of determining new values of y is really a simple
extension of determining the direction field associated with a solution of a
differential equation. In general, the approach is to start at some initial
condition (x,,y,) and calculate the slope, using the differential equation:

)’(l)zf(fod’o)

One then moves an interval Ax in the direction of the slope to a second

point, which we now regard as the new initial point, and repeat the process

iteratively. If small enough steps are taken we can reasonably hope that the

sequence of solution values given by this procedure will lie close to the

solution of the differential equation. In general, all of the elements of

solving differential equations using numerical indefinite integration are
present here. A table of the values of x,y,y’, and Ay must be computed at

each step in the numerical integration process. Also, the problem must be

defined by specifying not only the differential equation and its initial
conditions, but also the interval over which it is desired to solve the

equation. It is then possible to select a convenient integration interval, and

an integration formula that is accurate for that interval. For example,

with initial conditions y =0, x =0. When integrated with Euler’s integration

formula

Yn=Yn_1+Axy,_,

requires a specification of the interval Ax. The simplest approach is to

experimentally determine the Ax that will accurately (as judged by the
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analyst) integrate the differential equation. Consider solutions of this
differential equation with Ax=0.05,0.1,0.2, and 0.3. The results are tabu-

lated in Table 6-3. A comparison of the numerically integrated solutions

with the exact solution shows that the sensitivity of the solutions accuracy

depends strongly on the integration step size. This is true, in general, for all

numerical integrators when the integration step size is even a reasonable
fraction of the “response time” of the differential equation.*

Table 6-3 Solution of dy/dx=e¢"” — x?
 

Euler Integrated Solution

 

 

Exact

Solution

X y Ax=0.05 Ax=0.10 Ax=0.2 Ax=0.3

0.0 0.0

0.1 0.09498 0.09694 0.09900 — —
0.2 0.17977 0.18261 0.18557 0.19200 —
0.3 0.25389 0.25672 0.25964 — 0.27300
0.4 0.31667 0.31872 0.32077 0.32506 —
0.5 0.36731 0.36786 0.36833 —
0.6 0.40488 0.40329 0.40152 0.39756 0.39333
0.7 0.42839 0.42407 0.41942 — —
0.8 0.43686 0.42923 0.42119 0.40395 —
0.9 0.42929 0.41782 0.40582 — 0.35277
1.0 0.40477 0.38895 0.37264 0.33749 —
 

A disadvantage of the Euler method is that it introduces systematic

phase shift or lag (extrapolation) errors at each step. The procedure can be
modified (modified Euler integration) to give better results—thatis, greater
accuracy for essentially the same method and the same amount of work.

6-6 THE MODIFIED EULER INDEFINITE INTEGRATION METHOD

An alternative to introducing lag into the calculation is to arrange the

sampling so that the integrand is sampled not at the end point of the

interval over which the integration is taking place but at the midpoint. This

is similar to the development of the midpoint trapezoidal formula devel-

oped in Section 6-4. The task is to perform the integral

fx"(x) dx (6-37)
n—1

*Approximately the time required to move from one equilibrium condition to another.
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using the midpoint formula (see Section 6-4). We wish to predict the next

value of y based on present and past values of the independent variable.

The midvalue prediction leads to

Pns1=Yn_1128xy, (6-38)

Using this predicted value, we can now compute the slope at the predicted

solution point, by way of the differential equation,

pr,1+l=f(xn+l’pn+l) (6'39)

and then apply the trapezoidal rule developed previously to update the
estimate of the predicted solution point:

Ax ,
yn+l=yn+7x(pn+l+yn) (6'40)

The correction is called the corrected value of y,, . It is apparent that we
are using the average of the slopes at the two end points of the interval of
integration as the average slope in the interval.

In summary, this method has three steps:

Step 1 Predict the value of y, ,, given the formula

Pns1=Yu1+28xy, (6-41)

Step 2 Compute the derivative at the predicted value, using the differen-

tial equation that describes the system:

pr,z+l=f(xn+l’pn+l) (6-42)

Step 3 Make a second estimate of the value of y,,,, using trapezoidal
integration:

A ’ ’

yn+l=yn+7x(yn+yn+l) (6-43)

This process of prediction and correction has led to the naming of this
type of integration as the predict-correct concept of numerical integration.

A number of predict-correct algorithms are tabulated at the end of this
chapter; they can be used for indefinite integration of differential equa-

tions on the pocket calculator.
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6-7 STARTING VALUES

In our previous analysis we assumed that we had values for the dependent

and independent variables at the starting or initial point. However, the
algorithm requires not only starting values, but also earlier values. The

previous values can be obtained in two ways. They can be computed on

the pocket calculator, or they can be analytically hand calculated. Both

methods will be presented here.

The hand calculation method is based on the use of the Taylor series
expansion of the function:

y(x+Ax)=y(x)+Axy’(x)+ Aszy”(x)+ “e (6-44)

The derivatives to be evaluated in the Taylor series expansion can be

found from the differential equation by repeated differentiation. The

number of terms of course depends on the step size and the accuracy

desired. But, again, these are matters that can all be easily evaluated on the

pocket calculator and the number of terms required can be empirically

determined by continuing to take them until the desired accuracy is

achieved.

The method for machine calculation is based on repeated use of the
corrector formula. Again, if we are given the initial point (x,,y,), we can

estimate the earlier point (x_,,y_,) by way of the “unmodified” Euler

integration, working backwards as follows:

X_=xo—Ax

y_1=yo—Axy;  (first estimate of y _,) (6-45)

We can use the estimate of the previous value of y combined with the

differential equation to evaluate the derivative at the previous value of y.

The trapezoidal corrector formula can then be repeated to iteratively

correct the previous estimate until it achieves the accuracy desired for the

calculation. The system of equations for the correction process become

Yi =f(x_py_) (first estimate of y”_,)

Y_1=Yo— 'Az—x(yé“*'y’_ 1) (second estimate of y _,) (6-46)

y_ =f(x=1y_)) (second estimate of y_,)
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If, after a few iterations, the previous value of y does not stabilize, the

integration step size can be halved, the previous value of y,_, ,, computed,
and the process repeated to compute y, _,. Another alternative is to use the

value of y, _,, to estimate the value of y,,., the process repeated to take
a half step forward to y,,, and then these values used as the starting
values for the predict-correct integration algorithm.

6-8 ERROR ESTIMATES AND MODIFYING THE PREDICT-CORRECT

PROCESS

The predictor formula just discussed is a midpoint integration formula that
has the error equation

3

&= 2y1() (6-47)

The corrector formula given in Section 6-3 has the error formula

A 3

=—S5»"0) (6-48)

Since these error formulas are of opposite sign, the difference between the

predicted value and the corrected value gives

yp =yc%(yexact - 6p) - (yexact - ec) (6'49)

Thus at any given step the difference between the predicted value and the
corrected value is

— 2axy™M(9) (6-50)

Furthermore, we see from equation 6-49 that approximately four-fifths

of the difference results from the predictor component and one-fifth from

the corrector component. It is a natural extension of the predict-correct

technique, then, to modify the integration process slightly as we proceed.

When we predict with the equation

pn+l=yn—l+2Axyn (6'51)

we might immediately modify the value of this prediction, using the

previous value of the predict-correct difference and the formula

mn+l=pn+l_%(pn_cn) (6'52)
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Then we use the differential equation to compute the modified derivative:

m;t+l=f(xn+l’mn+l) (6-53)

which is then corrected by way of

A , ,
cn+l=yn+—%(mn+l+yn) (6'54)

leading to the final value of y, , ;:

Vna1=Cas1 T 3(Prs1— Cost) (6-55)

Clearly, this procedure of predicting, modifying, correcting, and modify-

ing again is about the extent to which we can go in solving differential
equations on the pocket calculator. More advanced methods become too
cumbersome.

6-9 OTHER USEFUL INDEFINITE NUMERICAL INTEGRATION

FORMULAS

A number of commonly used predict-correct algorithms are convenient for
pocket calculator solution of ordinary differential equations. The proce-
dure, of course, is always the same. A data table for numerically evaluating

the solution of the differential equation is prepared and then the integra-
tion formulas are used directly as written. Writing them in alternate forms

does not buy much in the way of reduced number of key strokes or of data

entries in the actual integration process.
The two most popular point slope formulas are the Euler predictor or

midvalue predictor formulas:

Vne1=VatBxy;, (e~Ax?)

yn+l=yn—l+2Axyr/l’ (€~Ax3)

They are usually used in conjunction with the trapezoidal corrector for-

mula:

Ax ,
yn+l=yn+—2_(yn+l+yn)’ (€~AX3)

Another popular and extensively used predict-correct method is the
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Adams method. Adams’ predictor and corrector formulas are given by

A ’ ’ ’ ’
yn+l=yn+ Z_I(SSyn_59yn—l+37yn—2_9yn—3)a (€~Ax5)

Ax g , : ,
Yn+1=Vnt fi(gynfl'*'19)’"“‘5)’,1—1"')’"—2)’ (e~Ax5)

These four-point formulas obviously require a substantial number of

operations on the pocket calculator if done manually. In fact, each step
involves at least 22 key strokes not including the derivative evaluation
(which is problem dependent). The author has integrated a number of
differential equations using Adams’ formulas, but they have all been
first-order differential equations (though of a complex nonlinear nature);

their evaluation (though time consuming) can be done conveniently be-

cause of the fairly large step size that can be taken for equivalent accuracy

with the point slope formulas. The numerical stability of these methods
and the roundoff error associated with the alternating sign of the
coefficients lead to difficulties, however; hence the lower-order integrators

are recommended for manual numerical integration on the pocket calcula-
tor. The programmable calculator, on the other hand, can conveniently use

the higher-order integration formulas and take advantage of their higher-

order accuracy. The higher-order functions are therefore discussed here.

Runge-Kutta Methods

The Runge-Kutta methods are based on implicitly developing increasingly
higher orders of Taylor series expansions of a function through combina-

tions of the derivatives of a function numerically evaluated on certain

intervals of the independent variable. The Runge-Kutta methods are yet

another variant using the Taylor series expansion method and thus are

limited in the sense that,if the integrand is not Taylor series expandable or

1s to be evaluated across a discontinuity, the location of the discontinuity

must be determined and the solution is computed up to the discontinuity

and then restarted at the discontinuity. The advantage of the Runge-Kutta

methods is that they require no starting values.

The second-order Runge-Kutta method is given by

Ins1=Vnt %(kl +k2)’ (€~Ax3) (6-56)
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where,

k,=Axf(x,,y,)

k,=Axf(x,+Ax,y,+k,)

The Runge-Kutta methods use Euler integration at each step. Thus, to

evaluate equation 6-56, it is necessary to compute both k, and k,. To

compute k,, the predicted value of y (y,+k,) must be evaluated. It is
apparent that this is equivalent to Euler’s method. Thus the procedure
consists of first using Euler’s method to compute the first estimate of y, , |,
which is then used along with x,+Ax to compute the value of the
derivative at x(n+Ax) to get k,. Then equation 6-56 is formed, using k,

and k,.

Another form of Runge-Kutta’s second-order equation is

Yns1=Yn ks (e~Ax3)

kl =Axf(xn’yn)’ (6-57)

_ Ax ky
kz—Axf(xn+ > Yat 2)

In this form of the Runge-Kutta equation, k, is employed to make a half

step from x, to x, + 4%, where y, is evaluated as y, + % Then the derivative

at this midvalue, defined by x,+ 4* is computed and used to estimate the

midvalue rate from which k, is calculated. Then equation 6-57 is numeri-
cally evaluated using only k,. Again, first Euler integration must be used to
make the first half step, and the first full step is taken by means of the

midvalue estimates of the rate on the interval.

Another Runge-Kutta method is also given in two forms. One is

kl k3 4

yn+l=yn+?+§k2+7’ (€~AX)

ki =Axf(x,.,)

_ ax okkz—Axf(x+ > Vot 2)

ky=Axf(x,+Ax,y, +2k,— k)

This is the most popular and convenient form of third-order Runge-Kutta
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integration, and is used by Hewlett-Packard in its Math Pac 1-36A
solution to the first-order differential equation for its programmable
pocket calculator.

Another form of third-order Runge-Kutta is

ki 3
yn+l=yn+_(il+zk3’ (€~Ax4)

kl =Axf(xn’yn)

k
k2=Axf(xn+ % Yt ?l)

2Ax +&)
k3=Axf(xn+ 3 Yn 3

Though these equations look formidable, their solution involves only
three steps of Euler integration at the most. Again, the advantage is that
they require no starting values.
The two most popular forms of the Runge-Kutta fourth-order numerical

integration are the following:

k, k, ky k
y,,+|=yn+—6l—+—§%+—§§+—6i’ (e~Ax®)

k,=Axf(x,,y,)

_ Ax ky
kz—Axf(x,,+ > Y+ > )

_ Ax Mk3—Axf(x,,+ 5 Jat 5 )

k,=Axf(x,+Ax,y,+k;)
and

k, 3k, 3k, k

Be=nt gtygg (X))
k,=Axf(x,,y,)

Ax k
k2=Axf(x,,+ 3 Yo+ ?])
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k
k—-Axf(x +2ATX,,+k2——3l—)

In all of the methods presented in this section the differential equation is
assumed to be of the first order and generally written in the form
y’'=f(x,y,). Since an nth-order differential equation can be written in terms
of n first-order differential equations, these methods are applicable to
systems of equations or to higher-order equations.

A number of specific methods are available for higher-order differential
equations, and in those cases special predict-correct algorithms can be
developed. Although, for general-purpose computing, they are not very

useful for numerical evaluation of the solution of the differential equation,

they simplify the number of calculations on the pocket calculator. For
example, Milne’s predictor-corrector algorithms for first-order differential
equations take the forms

4Ax
Yns1=Yn-3t 5=(=yu 1+ 2n-2)P }{ +1 1 (e~AxY)

¢ y,,+l=y,._1+7(y,,_1+4y,.+y,.+;)

3Ax ’ ’
P }{yn+l=yn-—5+(llyn_l4yn l+26yn2 14yn—3+11yn—-4)

2A
C Yn+1=Vn 3+ 45x(7yn+1+23yn+12yn 1+32yn2+7yn 3)

(e~Ax7)

The equivalent accuracy Milne predictor-corrector formulas, for second-,

and third-order differential equations, are written as follows:

P }{yn+l=yn2+3(yn ynl)+Ax2(y y,:’_l ’ (€~Ax5)

C yn+l=yn (yn+l+yn)_12(yn+ly’/lr)

P Yn+1=Vn-2+3(yn ~—Vn- l)+_(y”’”:l 1

(e~Ax")
C yn+l=yn+—(y:t+l+y;x) 10(yn+lr’l’)

7’

120(y n+1 +yr,n”)
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For systems of differential equations of the form

y'=f(x,y,z), z/=g(x,y,z)

second-order Runge-Kutta can be written as

— 4+ ki Kk,
Yn+1=Vn ?*';2— ()

Z, 1=z, + 5‘ +52

ki =8xf(.92,)

Ly =Bxg(XY2,)

ky=Axf(x,+Ax,y,+k,z,+1,)

L=Axg(x,+Ax,y, +k,z,+1))

Fourth-order Runge-Kutta for this system of equations takes the form

ki +2k,+ 2k+k,
Yne1 =Ypte

L+2L+25+1
Z(n+1)=zn+'___£_g

6

ky=Axf(xyY2,)

ly=8xg(X,yYp2,)

k, Axf(x,,+ Ax L+ Tloy h
2 2 2
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ky=Axf(x,+Ax,y,+ ks, z,+ 13)

Li=Axf(x,+Ax,y,+ ks, z,+ [5)

Another special form of second-order differential equation is

y'=fx.y.y")

Milne’s predictor-corrector method for these types of second-order equa-

tions is as follows:

4Ax
V1=Yno3t ——3 (2n—2 )’r’,’—1+2)’:) s

(ex~Ax°)
’ ’ x ” n n

yn+l=yn—l+ T(yn—l+4yn +yn+l

The single-step self-starting Runge-Kutta method takes the form

y,,+1=yn+Axy;+é’-‘-(k +ky+ ky)
(e~Ax®)

Vi = (k +2k,+2k;+ k)

ky=Axf(X,.Y0570

Ax Ax Axk, k
k = _— ! - 4 —_
2 Axf(xn+ 2 ’yn 2yn 8 'J'n 2)

_ Ax Axy; AklJk
k3—Axf(xn+ > ,yn+—2—+3 2)

kyAxf(x +Ax,yn+Axyn+—-—,yn+k)

For second-order differential equations,

y"=f(x,y)

Milne’s method takes the forms

yn+lyn+yn 2yn3+——(5y +2y +5yr;’—~2

(e~Ax9)

yn+l=2y yn2+12(yn+l+10yr:,+
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The Runge-Kutta method appears as

k,+2k,
yn+l=yn+Ax yr’1+(—6_—)

k, 2k, k
y,’,+,=y,',+—61—+—3-2—+?, (e~Ax*)

kl =Axf(xnyn)

Ax Ax ,, Ax
k;,_—Axf(xn+T,yn+ Ty"+ 2 kl)

k3=Axf(xn +Ax,y,+Axy,+ ézikz)

In the second-order forms, the Runge-Kutta algorithms involve the
numerical evaluation of rates by Euler integration of the second-order

differential equation. For the programmable pocket calculator with limited
memory, these alternate forms of numerically evaluating indefinite in-

tegrals are particularly useful because they dispense with computing the

two first-order differential equations that would be required to make up
the second-order equation in the more general first-order indefinite in-
tegration formulas.

6-10 T-INTEGRATION

T-Integration (tunable integration) is a new flexible integration concept

that permits the integration formula to be tuned to the system of equations
it is solving. In its simplest form it is written:

yn=yn—l+AT['Yyn+(l—.Y)}.)n—l]

This equation is based on adjusting the phasing of the integration so as

to satisfy the mean value theorem (as opposed to numerical integration

algorithms based on analytical substitution techniques). The parameter y

controls the amount of transport lead (or lag) imposed on the integrand of

the integral. For example, y = — } means that the integrand has been time

delayed one sample period, while y= + 3 implies that the integrand is time

advanced one sample period. Since in the numerical integration of

differential equations the solution point is not known before it is com-
puted, and thus cannot be made part of the integral, it is estimated using

an extrapolation formula. It is apparent from the equation for this integra-

tor that the weight of the two coefficients in the integrand is performing

the interpolation/extrapolation operation. Therefore, an approximate
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equivalent form of the T-integration equation is

yn=yn—l +>\T[(Y+ l)).)n—l— Y)}n-—Z]

In its application, T-integration is usually used in the following manner:

1. The differential equation and the interval over which its solution is to
be computed are defined together with its initial condition.

2. The integration step size is set equal to one-tenth of the interval size or
one-tenth of the shortest period in the oscillations of the solution expected
for the differential equation, whichever is smaller. If the solution of the
differential equation is expected to be exponential, or smooth, or of
monotonic nature, the step size is set at one-tenth the interval over which
the solution is to be evaluated.

3. If the integration is an open-loop process, that is, the integrand is not
a function of the integral, then y is set equal to 1 and the differential

equation is numerically integrated. If, however, the integrand is a function
of the integral, y is set equal to 3. When closed-loop integration is
performed, the sequence of solutions can be plotted and the points con-

nected with straight lines.
4. The solution can then be compared with check cases that may be run

at smaller integration step sizes or with empirically prepared check cases. It
is generally found that the solutions generated from the use of the
T-integrator “lead” the check case by approximately one integrating in-

terval or slightly less.

Note, however, that the dynamics of the solution prepared with the T-
integrator match the dynamics of any check case. That is, although the
T-integrator, which is a low-order integrator, permits accurate simulation
of the dynamics of a discrete process, it does so at the sacrifice of a slight

phase error. Nevertheless, in many engineering applications it is sufficient
for determining, for example, peak overshoot, natural frequency, damping,

resonant frequencies, and conditions of dynamic instability, which are the

purpose of the analysis. In general, it must be remembered that all of the
integration formulas presented here are usually not for generating of
numbers to six places, but rather for solving problems and understanding
the dynamics of processes for the purposes of design, test, and evaluation,

or all of them.
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1974, pages 61-70.



CHAPTER 7

LINEAR SYSTEMS
SIMULATION

7-1 INTRODUCTION

The analysis of linear constant coefficient systems is important because

they are frequently encountered in the design of continuous processes. The
dynamic characteristics of a linear systems response to known types of

forcing functions are usually studied when setting the parameters for a
system design. In this chapter we discuss the synthesis of recursion formu-
las by which the response of a linear dynamic process to sampled values of

its forcing function can be conveniently computed. We tailor numerical
integration and other discrete approximation methods for computing the

dynamics of continuous processes to pocket calculator analysis. On a

pocket calculator it is much easier to iterate a recursion formula to

compute the dynamics of a process than it is to actually conduct the

numerical integration of the process. Under some circumstances (when

there are no hard nonlinearities, such as limits, hysteresis, and dead zones),

it is quite easy to develop the recursion formulas from the integration

formulas, thus eliminating many steps in the computing of the solution to

high-order differential equations. In fact, the number of key strokes can be

reduced 80% with recursion formulas (difference equations) as compared

to that needed in direct numerical integration of a differential equation.

7-2 DERIVATION OF DIFFERENCE EQUATIONS BY NUMERICAL

INTEGRATION SUBSTITUTION

Examples of many numerical integration formulas have already been
discussed, such as Euler’s integration formula, rectangular integration,

188
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trapezoidal integration, 7-integration, and a number of predict-correct

formulas. We used the differential equation to numerically evaluate the
derivatives at the initial condition and then from the starting values in the

integration formulas we predicted the sclution to the differential equation

in the neighborhood of the initial conditions.
Another use of a numerical integration formula is to form a difference

equation. Consider the first-order constant coefficient differential equation

X+ x=Q (7-1)
where

x=x(t)

0=0(1)

T=a constant

Now consider the Euler integration formula

xn=xn_l+ Txn_] (7'2)

We can solve for the rate in the integration formula, using the differential

equation, as follows:

. 1,
xn—l=;,—(Qn—l_xn—l) (7-3)

This can be substituted back into the numerical integration formula

T
xn=xn—l+-;(Qn—l_xn—l) (7-4)

which, when simplified, gives the difference equation

xn=(l—z)xn—l+IQn—l (7-5)
T T

This recursion formula computes, for example, the 100th step in the

solution of the differential equation on the basis of data generation on the

99th step. The indices in the recursion formula keep track of the iteration

that is being computed when solving the differential equation. They also

indicate the approximate time at which the solution value will compare

with x(7), that is, t=nT if the solution begins at T=0. We shall see later

that = nT, but it is sufficiently close to approximately label the time in the

sequence of solution values of the difference equation.
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The use of recursion formulas in solving differential equations has two
advantages. They reduce the number of key strokes needed to evaluate the
solution of the differential equation on the pocket calculator. And in linear

constant coefficient processes they permit the use of implicit integration
formulas. It is these formulas in which the rates of a state variable are a
function of the state itself. The trapezoidal integration formula is an

example:

xn+l=xn+%(xn+l+xn) (7'6)

Trapezoidal integration computes the n+ 1 value of x based on the n+1
value of x. However, evaluating x in the differential equation requires
x,.- This results in an implicit equation, whose solution is a function of
itself. When implicit integration formulas are used to derive difference
equations, the implicit equation can be solved algebraically. For example,

consider the implicit Euler integration (rectangular integration), which

takes the form

x,=x,_;+Tx, (7-7)

By way of our first-order differential equation, we obtain

5,=1(0,- x) (7-8)

which, when substituted back into the implicit rectangular integration

formula, gives the difference equation

xn=xn—l+%(Qn_xn) (7'9)

Note that this equation is still in implicit form; that is, x, is a function of

itself. However, it can be solved algebraically as follows:

T T
xn+7xn=xn—l+?Qn

o 1 T/t
: n-(H—T/;)xn-fi(m)Qn (7-10)

Let us now compare the implicit and explicit Euler difference equations
from the standpoints of numerical stability, numerical error, the manner in
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which the differential equation seeks its final value, and their implementa-
tion on the pocket calculator.
The stability of these first-order difference equations is completely

determined by the magnitude of the first coefficient in the difference
equation. Thatis, if the term

1 T
1/7 I+

Implicit integration Explicit integration

exceeds * 1, the difference equation becomes unstable. For example, if
a=2 in the difference equation y, = ay,_,, the difference equation takes on

the solution values shown in Table 7-1. Note, however, that at a=0.9 the

difference equation is stable, as shown in Table 7-2. The stability criterion

in first-order difference equations generally is that the magnitude of a be
less than or equal to 1. Now, notice the first-order difference equation that
is generated with the explicit Euler integration.

Our aim here is to determine the conditions under which the integration
step size and the system’s time constant allows a stable difference equa-

tion, rather than leading to numerical instability. We, therefore, first
determine the conditions under which the magnitude of a is less than or
equal to 1. That is

n-Li<i
T

Solving the inequality for T/, we see that the region of stability for the

Table 7-1 Unstable Response of the

Difference Equation y, =ay,_, where a=2

n Yn

1 1
2 2
3 4
4 8
5 1 6
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Table 7-2 Stable Response of the Difference

Equation y,=aY,_, where a=0.9

n Vn

1 1
2 0.9
3 0.81
4 0.729
5 0.6561

difference equation derived with explicit Euler integration is

0<L <2
T

On examining the difference equation derived with rectangular integra-
tion (implicit Euler integration), we see that the condition under which

1
—F| <
|1+T/'r| :

1S

0<

2
N

Clearly, the difference equation developed with rectangular integration is

much more stable than that generated by Euler explicit integration. This is

a specific example of the more general result that implicit integration of
constant coefficient linear differential equations leads to intrinsically more
stable difference equations than do those developed with explicit integra-
tion formulas. We therefore concentrate on the use of implicit integration
formulas in developing difference equations for simulating continuous

processes.
Now, let us look at the accuracy of these simulating difference equations.

Table 7-3 shows the sequence of solution values for the explicit and
implicit difference equation’s response to a unit step. The greatest precision

is clearly achieved with the implicit formula. These difference equations
were tested for an integration step size divided by the time constant equal
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Table 7-3 Comparison of Implicit and Explicit Integration-Derived

Difference Equations when 7/7=1.5
 

  

 

Normalized Exact Implicit Explicit
Time x(nT) x(nT) Error x(nT) Error

T =0 0 0 0 0 0

% =1.5 0.776 0.600 —0.176 1.50 +0.90

% =3.0 0.950 0.840 —0.110 0.75 —-0.20

—TZ =45 0.990 0.936 —0.054 1.125 +0.135

 

to 3, which challenges the stability of the Euler-derived difference equa-
tion. Both equations appear to be stable. However, the implicit difference
equation is obviously more accurate than is the explicit equation. This is
another special case of a general property of difference equations derived

with implicit integration to simulate linear constant coefficient systems.
The implicitly derived difference equations are generally more accurate
than those derived explicitly.

Finally, let us examine the steady state that all these difference equa-
tions achieve. To do so, we must examine the nonhomogeneous equation
(since in a homogeneous equation all the end conditions of the steady
states approach zero, thus making comparison impossible). For the con-
tinuous and discrete equations, the step response has the forms shown

below:

—t/r T T
y=Q(l-e t/)’ yn=(l_7)yn—l+?Qn—l

Exact Explicit

y,,=(1—;rlT—/T)yn_1+(l—;T—éT%)Qn

Implicit

In the steady state
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Thus we can write the final value as follows:

im y()=Q »,=0,=0,., =0,
Exact Explicit Implicit

In summary: both the explicitly and implicitly derived difference equa-
tions achieve the same final value for the unit step forcing functions which
is the final value for the true continuous process. But an implicitly derived
recursion formula is more stable and more accurate than its explicitly
derived counterpart.
Now let us compare the numerical integration of the differential equa-

tion with that achieved by using the recursion formula. The sequence of
key strokes required to perform the numerical integration of this first-order
differential equation

™x+x=0Q

using Euler’s integration formula is shown in Table 7-4. Table 7-5 shows

the key strokes involved in the use of the difference equation.

Table 7-4 Typical Key Stroke Sequences for Numerically
Integrating 7x + x=Q
 

Reverse-Polish Algebraic
 

(@n-1) (Qn-1)
RCL1 «x(0) prestored -

- RCL <«x(0) prestored

RCL?2 <«prestored X

1

. (%)
RCL3 Tprestored X

X (T)
RCL1 +
+ RCL

STO1
STO

 

( )—data entry.

—output.
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Table 7-5 Typical Key Stroke Sequence for Difference

Equation Evaluation of 7x+x=0Q
 

 

Reverse-Polish Algebraic

(Qn - l) ( Qn - l)

RCL1 <—( I) prestored X
T

T. (%)
RCL2 «x(0) prestored +

RCL3 «(1- %) prestored RCL «x(0) prestored

X

X T
+ (%)

-
STO2

STO

 

( )—data entry.

—output.

And Table 7-6 summarizes the key strokes involved in the precalculation
and iteration through the first step, the first 10 steps, and then 20 steps.

We see that even for these simple integrators in this simple differential
equation the reduction in key strokes using the recursion formulas (8.4%
and 4.2%) is important enough to warrant the use of recursion formulas. A

greater number of key strokes is saved when recursion formulas are used to
simulate high-order linear systems.

These recursion formulas are particularly useful in evaluating a system’s
response to an arbitrary forcing function. Provided that the integration

step size is small compared with the largest period of interest in the

oscillations of the forcing function, the recursion formulas can efficiently

evaluate the system’s response to an arbitrary forcing function on the

pocket calculator and in particular on the programmable calculator, where
the implicit difference equations take up much less memory than do the

numerical integration formulas and direct numerical integration.
A possible difficulty associated with the implicit integration formula for

evaluating the response of a system to an arbitrary forcing function is its

assumption that the forcing function is known at time n7, in order to
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Table 7-6 Number of Key Strokes (Worst-Case)? Required to Simulate the Con-

tinuous Process y + ky =f
 

Numerical Euler-Derived

Integration Recursion Formula
 

Reverse-Polish  Algebraic Reverse-Polish Algebraic
 

Number of

precalculation

key strokes 39 13 39 13

Number of

key strokes

for the first

iteration 22 47 20 45

Subtotal 61) (60) (59) (58)

Number of

key strokes
for the tenth

iteration 220 470 200 450

Subtotal (281) (530) (259) (508)

Total number of

key strokes

for the twentieth

iteration 501 1000 459 958

 

“Assumes 13-digit data entries.

compute the response of the system at time n. If the forcing function is of

the form

f=f(y,1)
the evaluation of f, requires

fn =f(yn’ tn)

but since the difference equation is still to compute y,, it is not yet in our

table of solution values; instead we have only a tabulated value for y,_,.
In this case we can use an extrapolation formula to estimate y, by way of

the two past values, or we can use y,_, merely as an approximation of y,.

This can be done when the forcing function’s components are (from a

Fourier analysis viewpoint) of lower frequency than is the natural

frequency of the system described by the differential equation. To achieve

this, we calculate a few values of the difference equation, assuming in

evaluating the forcing function that.y,~y,_, and generating the first few
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terms of the forcing function f, and use a difference table to evaluate
whether f is changing rapidly. If the change is rapid, we simply use an
interpolation formula to make a first estimate of y, based on y,_, and
Y.—o- The author rarely finds it necessary to use the extrapolation scheme

in the practical evaluation of the solution to differential equations.

This technique of deriving difference equations to simulate continuous
dynamic processes is extremely useful for simulating the dynamics of
nonlinear processes. One problem is that most implicit difference equations
cannot be solved for nonlinear differential equations. That is, the implicit
equation is a nonlinear equation, and usually only iterative techniques can

be used to solve it. However, the explicit difference equation is easily
derived and easily put in a form that can be quickly evaluated on the
pocket calculator, as opposed to numerically integrating the nonlinear

equation.

7-3 STABLE DIFFERENCE EQUATIONS

Recursion formulas for simulating continuous dynamic processes can also

be derived by assuming a difference equation of the same order as the
differential equation to be simulated. Then match the roots of the

difference equation with the roots of the differential equation and include
an “adjustment factor” so as to match the final value of the difference
equation with the final value of the differential equation. All that remains,

then, is to add another “adjustment factor” to match the phasing of the

difference equation to the phasing of the solution to the differential

equation. For example, consider again the simple first-order constant
coefficient continuous process

™X+x=0Q

Assume that this equation has a solution of the homogeneous equation

x=e" (7-11)

On substitution, we can derive the indicial equation as

(rs+1)e”*=0 (7-12)

which has the characteristic root

s=— = (7-13)
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Clearly, then, the solution to the homogeneous differential equation takes

the form

x=ce/" (7-14)

The solution to the nonhomogeneous equation can be derived with the
convolution integral where the solution of the homogeneous equation is

convolved with the forcing function:

x=‘0™ak (7-15)
0

The complete solution to the differential equation then takes the form

x=e“'/*{f0'Q(k)ek/*dk+c,} (7-16)

Similar procedures can be followed for higher-order differential equa-
tions, using either time-domain analysis, Laplace transform theory, or even

Z-transform theory.

Let us assume that we are going to simulate this continuous process with

a difference equation whose roots and final value match those of the
continuous process. We assume a difference equation:

x,=ax,_,;+bQ, (7-17)

A solution to the homogeneous difference equation is of the form

x,=ce "7/ (7-18)

Upon substitution, it leads to the indicial equation for the difference

equation:

ce”"T/"(1—ae™/M)=0 (7-19)

Thus for the roots of the difference equation to match the roots of the

differential equation, we require that

a=e T/ (7-20)

This determines the coefficient in the difference equation that accomp-

lishes the pole matching between the difference and differential equations.
It is clear that the solution to the homogeneous difference equation is

(7-21)— ,—T/7
xn—e xn-—l
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This procedure has now guaranteed that the dynamics of the difference
equation will match the dynamics of the differential equation because their
roots are equivalent and they will generate equivalent solution values as
seen by the exponential decay of both. What remains is to compute the
final value of the difference equation and match it with that of the
differential equation. The procedure here is more straightforward in that
the nonhomogeneous difference equation takes the form

xn=e—T/Txn—l+an—l (7'22)

where the steady state of the root-matched difference equation is achieved
when

Qn = Qn— 1

xn = xn -1

Then

x=—0> (7-23)n= l_e..T/,. Qn—l

By including the final value adjustment factor

b=1—e~ T/ (7-24)

we can make the difference equation achieve the same final value as the
differential equation. Thus the simulating difference equation takes the
form

x,=eT,+(1-e"7M)Q,_, (7-25)

Notice that the homogeneous solution of this difference equation matches
the homogeneous solution of the differential equation exactly. Also, it
generates a sequence of solutions that are exact for the step response
(@(1)= U(¢)) and will generate solutions that are a good approximation of
the differential equation’s response to an arbitrary forcing function. Also
notice that this difference equation is incapable of going unstable, regard-

less of the integration step size (because the term e ~7/" is always less than
1 no matter how big T gets provided that = >0).

From the tabulated values it may appear that there is significant error in
the solutions generated with the dynamics-matched difference equation
and that generated with the continuous differential equation. However,

equation 7-25 makes it clear that the difference equation solutions are
lagging the continuous solutions. The dynamics are usually identical to the
differential equation except for this effect of phase shift. Of course, we
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could reduce the step size to bring the two curves closer, but this is not an
efficient or correct approach to reducing this kind of error. Or we can
compensate for this phasing error (transport delay) by determining with
interpolation at what time the sequence of solutions generated by the
difference equation matches the differential equation and then including
that transport time in the tabulation of the sequence of solutions generated

in the difference equation. Suppose that we know that for the fourth entry
in a table of solution values the true continuous solution lies somewhere
between t=3T and 4T. Using inverse interpolation, we can determine the
time at which the discrete solution matches the continuous solution and
then arbitrarily select that time as the reference time from which we count

nT intervals.
It is important to remember that the solution values generated with

difference equations and even with numerical integration formulas are
operating at a problem time which is different from the sequence of times
nT. That is, problem time in a discrete approximation of a continuous time
process is different from the sequence of values n7T. Hence the indices in

the recursion formulas represent the number of iterations, not time nT.

The analyst must determine the actual timing of the sequence of solution

values in order to compare them with a true continuous-time check case. It

is the author’s experience that many engineers and programmers, on large
digital computers as well as on pocket calculators, overlook this problem of
timing and try to compare continuous and discrete computing processes at

times nT instead of recognizing that numerical integration is an approxi-
mating process. There is a timing problem also in the synthesis of simulat-

ing difference equations by dynamics matching. In fact, discrete systems
are different in their operation on the flow of information in feedback
loops, whether in numerical integrators or in difference equations. Thus
the phasing of the two sequences of values between continuous and
discrete dynamic processes must be taken into account by the analyst. The

problem really arises only with large integration step sizes, but it is

precisely then that efficiency is at a premium and, especially on the pocket

calculator, workload is substantially reduced from that for an integration
step size only half as long.
Once again we find the pocket calculator may be the analytical tool for

teaching the difference between discrete and continuous systems dynamics
and the simulation of one with the other.

A few of the commonly encountered linear processes and their simulat-

ing difference equations using dynamics matching methods are tabulated

in Table 7-7.
It is imperative that when the simulating difference equations are used

the table of solution values be referenced to the number of iterations
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Table 7-7 Difference Equations for Commonly Encountered Linear Constant
Coefficient Systems
 

 

 

 

G(s) Difference Equation for Simulation

Z = 1 = p— T/ — =T/
X s+ 1 Yn=¢€ yn—l+(l e )xn

Yy _ 15 zy=e"Tz, 1 +(1-e"T/")x,

x  1s+1 In=X,—2,

B=e-2T

Y = i A=2eTcos{w,T(1 3‘2)1/2} 0<¢<l1_——— =/e n _— ;

X 24 28w,s+ w? { n

y,,=Ay,,_1—By,,_2+(1—-A +B)x,,

s(s+2¢w,) z,=Az,_,— Bz,,+(1-4+B)x,; 0<{<1

In=Xp— 2,

For A and B see above

Yy
X2498w5°42{w,s+w;,

 

through the difference equations, not to time n7. The comparison of

discrete solution values with a continuous check case involves timing
considerations, and it is the analyst’s responsibility to determine the proper

comparison in a manner similar to that mentioned above.

The difference equations just developed by dynamics matching methods

have some very important general properties. These difference equations
are intrinsically stable if the process under consideration is stable. Thatis,

there is no sample period T to cause these equations to become unstable if
the continuous process that they are simulating is stable. This is because

the roots of the differential equation are matched with the roots of the
difference equation; hence if the continuous process is stable, the discrete

process is stable independent of sample period. Showing that the magni-
tude of the roots of the discrete system are less than or equal to 1 will

prove this; the very way in which they are formulated shows this to be so.
For example, in the first-order case that we just developed, when the roots
of the discrete system are matched to the roots of the continuous system,

the discrete system root is given by

e—T/'r

which will be always less than or equal to 1 for all 7 >0 and for 7>0. The
only condition on using the difference equation is that the forcing function
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be sampled at a rate equal to twice the highest frequencies of interest in the

forcing function. More detail is given in Chapter 5 where sampling rate is

discussed.
Also, the final value of the discrete difference equation will always

match that of the continuous difference equation, independent of sampling
period and without the final value adjustment factor. That this is so can be
established by the fact that in the steady state the present and past values

of the response of the system are the same. When substituted into the
difference equation, the final value of the response can be computed in
terms of the input forcing function, which is found to match the final value
of the continuous dynamic process being simulated.

There is a limitation in the use of these simulating difference equations.
Clearly, a second-order continuous system can have three different

dynamic characteristics: when the two roots of the system are real and

equal; when they are real and unequal; and when both are complex. The

dynamics of the second-order continuous system with complex roots is
damped oscillatory in nature, and the response of the system with real

roots is nonoscillatory, being damped only. Each case requires different
types of difference equations. It is important, then, to know where the
roots are in the complex plane to determine which difference equation is to

be used. This is particularly true if the coefficients in the differential
equation are changing with time and are not fixed, as in the case of linear

constant coefficient systems. When the coefficients are time varying, these

difference equations can be used for piecewise linear constant coefficient
approximation, with the results matching closely the numerically in-
tegrated solution of the time-varying differential equation. However,if the

time-varying roots jump on and off the real axis, switching from one
difference equation to another is necessary. That is, one difference equa-

tion simulates the dynamics of the process when the roots are real but not
equal; another difference equation simulates the dynamics when the roots

are real and equal; and yet another difference equation serves when the
roots are complex. The choice of the appropriate set of difference equa-

tions is fairly straightforward, but note that the implicit difference equation
generated in Section 7-2 does not require this changing of difference

equations and thus might be more applicable from the standpoint of
quickly simulating continuous processes on the pocket calculator.

7-4 VARIANCE PROPAGATION

Computing the propagation of noise through discrete linear constant

coefficient processes is very easy when the noise is “almost white” and
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stationary. The approach is to rewrite the difference equation into a finite
memory form where the response is only a function of present and past
values of the forcing function. This can be easily developed in the follow-

ing manner. Given
m P

Xn= 2 aixn—i+ 2 ijn—j (7-26)
i=1 j=1

We wish to find
q

Xpn = 2 can—k (7'27)
k=1

The usual approachis to rewrite x,=f(x,_,,Q) in the sequence

Xy =f(X,_1, Q)

X, =flf(x,-5 Q)]

X, =fLf{ f(x0-30)}]

Induction is then used to form the rest of the series. For example,

x,=e”T,+(1-e"T/MQ, (7-28)

x,=e"[e"%,1+(1=e"T)Q,L]+ (1-e"T/,| (7-29)

X =e—2r/‘rxn-—2+(l - e-T/T)[Qn-l-*- e_.T/TQn—-2] (7'30)n

We can expect the next substitution to give

Xp = e —3T/Txn-3 + (1 —e T/T)[Qn- 1 +e T/TQn—Z + e—2T/an_3] (7-31)

As the sequence of substitutions is continued, we have in the limit

X, =(1=e"7")(Q,_1+e™T/"Q,,+e™*"Q,s+---) (1-32)

If this series is truncated, we call it the finite memory form of the original

recursion formula (infinite memory form) for x,,.

Now, to approximately compute the response of a continuous process to

a random variable input, the mean squared value of the output is calcu-
lated as a function of the mean square value of the input in the following
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manner. Assume

Xy = ZaiQn—i (7-33)

Then

x,f% 2 2 aiann—iQn—-j (7-34)
i

Xy =ot=3al0? =(Sa})o, (7-35)

provided that Q(7) is stationary and “almost white.” In our example we

can write

xn=(1—e—T/T)(Qn—l+e_T/TQn—2+.‘.) (7'36)

xi=(1-e" T/T)z(07+ e—zr/anz_z_*_ ) (7-37)

m=(l=eQL +eTTQT, +)  (138)

of=(1—e_T/’)z(l+e‘2T/’+e'4T/’+---)oé (7-39)

1— -T/r 2
02_( ¢ ) (7-40)
x (1 _e—ZT/f) O’Q

In general, then, the variance transfer function from input to output for

almost-white and stationary noise inputs is given by

o
— =24 (7-41)
Oo

It is clear from these equations that if the process being simulated is
unstable, the propagation of roundoff and truncation erroris also unstable.

If the process being simulated is stable, however, the roundoff and trunca-

tion error will eventually reach the equilibrium condition set by the

variance transfer function. All that remains is to compute the variance of

the roundoff or truncation error, which can be done by other means

covered extensively in others books on numerical analysis. Suffice it to say

that if part of the task is to analyze the continuous system’s response to

noise, these variance propagation transfer functions can be used to

approximately predict the continuous system’s response to noise input.
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CHAPTER 8

CHEBYSHEV AND RATIONAL
POLYNOMIAL APPROXIMATIONS
FOR ANALYTIC SUBSTITUTION

8-1 INTRODUCTION

In this chapter we are concerned not so much with the numerical evalua-
tion of functions or analyzing data as with deriving polynomials that can
be used for analytic substitution. Existing handbooks often give the series
expansion of many advanced functions that, though useful for analytical

work, converge too slowly to serve in numerical analysis with the pocket

calculator. These series can be modified to converge more quickly using
Chebyshev polynomials or rational polynomial approximations. Poly-
nomial approximations for truncated series expansions of functions for
pocket calculator analysis have the advantage that they can be written in

nested parenthetical form and efficiently evaluated on the pocket calcula-
tor with high precision. The objective here, then, is to improve the

convergence of series approximations of given functions.

The Chebyshev polynomials can be used in a unique process. commonly

called economization, to transform a truncated powerseries expansion of a

function into a more quickly converging polynomial. They can, therefore,
transform tables of infinite series of questionable value for numerical

analysis into fast converging series (of which the error is well known) by

the Chebyshev approximation theorem. Again, these polynomials can be

written in nested parenthetical form for pocket calculator evaluation. In
short, Chebyshev polynomials make tables of infinite series representation

of advanced mathematical functions (of which there are a great many)

eminently practical for pocket calculator evaluation. Because economiza-
tion is so easy to perform and makes large tables of infinite series

206
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immediately available, this chapter is dedicated to instructing the analyst
on the marvelous properties of Chebyshev polynomials and their applica-
tion to conditioning series for improved convergence.

Chebyshev polynomials have five important mathematical properties:

1. They are orthogonal polynomials, with a suitable weighting function,
whether defined on a continuous interval or a discrete set of points.

2. They are equal-ripple functions; that is, they alternate between
maxima and minima of the same size.

3. The zeros of successive Chebyshev polynomials interlace each other.
4. All Chebyshev polynomials satisfy a three-term recurrence relation.
5. They are easy to compute and to convert to and from a power series

form.

These properties together generate an approximating polynomial which
minimizes the maximum error in its application. This is quite different
from, for example, least squares approximation where the sum of the
squares of the errors is minimized. In least squares approximations the
average square error is minimized; the maximum error itself can be quite
large. In the Chebyshev approximation, the average error can be large but
the maximum error is minimized. Chebyshev approximations of a function
are sometimes said to be mini-max approximations of the function.

8-2 CHEBYSHEV POLYNOMIALS DEFINED

The Chebyshev polynomials are simply defined by the relations

To(x)=1 (8-1)

T,(x)=cos(nf) (8-2)

cosf=x* (8-3)

Equation 8-2 shows that the Chebyshev polynomials are orthogonal (with a
suitable weighting factor), since cosine is an orthogonal function and cos
(n@) is a polynomial of degree n in cosé.

Noting the trigonometric identity

cos(n+1)8+ cos(n—1)8=2cosfcosnd (8-4)

we can write immediately that

T,.,+T,_,=2xT,* (8-5)

ST, =2xT,—T,_, (8-6)

*In section 3-7, page 110, we used a “Shifted Chebyshev Polynomial” by letting cosf=2x —1

then the recursion formulas become T, ., +T,_;=2(2x-1)T,.".T,, ;=2 x—-1)T,—T,_,.



208 Chebyshev and Rational Polynomial Approximations

Using this recurrence relation for the Chebyshev polynomials we can easily
generate the successive polynomials as follows: Since

T,=1

and

T, =x

in equation 8-6 we find

Then starting with

T,=x

and

and again using the recurrence formula 8-6, we find

T,=2xT,— T,=4x>—-3x

Continuing in a similar manner we can form the table of Chebyshev

polynomials:

T,=1

T,=x

T,=2x*—1

T,=4x>—3x

T,=8x*—8x?+1

Ts=16x>—20x>+5x

Te=32x°—48x*+18x%*—1

T,=64x"—112x°+56x3—7x

Ty=128x%—256x%+160x*—32x%+1

Note that we can also form a table for powers of x in terms of
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Chebyshev polynomials by simply solving for the powers of x from this
table:

 

 

 

=T,

x=T,

2 T+ T,

2

3 37+ T,

4

s 3To+4T,+ T,
xX'=—

8

e 10T, +5T5+ T

16

¢ 10T+ 15T, +6T,+ T
x =

32

e 35T, +21T5,+7T5+ T,

64

e 35Ty +56T,+28T,+8T4+ Tj

128

What is important about the Chebyshev polynomials is that Chebyshev
proved that of all polynomials of degree » having a leading coefficient of 1,

these polynomials (when divided by 2"~ ') have the least extreme value in
the interval

—1<x<+1

No other polynomials of degree n, whose leading coefficient is 1, have a
smaller extreme value than

T,(x)
2n—l

1
- 2n—l

  max

  

in the interval —1<x < +1 since max(|7,(x)|=|cosné|)=1. This is an
extremely important finding because it says that if we approximate a
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function in the interval |x|<1 with Chebyshev polynomials that are
truncated at n terms, the maximum error in the approximation is

 
2n—l

The objective, then, is to find an expansion for function f(x) in terms of

Chebyshev polynomials:

fx)= 3 a,T,(x) (8-7)
n=0

The error properties associated with the Chebyshev polynomials are so

significant that we take a few moments to show heuristically that there are
no other polynomials with these properties.

First note that the leading coefficient in the Chebyshev polynomials

generated with the recurrence formulas for an nth-order polynomial is
2"~!. Thus

7,(x)
zn—l

is a polynomial with leading coefficient 1. Also, since 7,(x) is a cosine
function (x =cos#), in the interval

0<b<~

there are n+ 1 maxima alternating from + 1 to — 1. Clearly our normalized
Chebyshev polynomial also has n+ 1 extreme values on the interval.
To prove that there is no other nth-order polynomial with leading

coefficient 1 which has smaller extreme values in the interval, we assume

that there is such a polynomial and prove that it must be a Chebyshev
polynomial.

Assume that there is a polynomial c(x) of degree n with leading

coefficient 1 which has a smaller extreme value in the interval than the

extremes of our normalized Chebyshev polynomial. Then

T,(x)
2n—l
 —c(x)=J(x)

is a polynomial that has n+ 1 maxima alternating in sign n times in the
interval |x| < 1; thus J(x) has n roots. But the polynomial formed by the
difference between the normalized Chebyshev polynomial and the poly-
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nomial c(x) is of degree (n—1). Thus a polynomial of degree (n—1) can
have n zeros only if the polynomialis zero. If

 

 

T
J(x)=0= 2,:'(_xl) —c(x)

then

Tc(x)= 2':.(-)?

Because of the power of the Chebyshev polynomial approximation, its
orthogonality properties are worth examining to make sure that the Che-
byshev polynomials are orthogonal and that a formula can be developed
for deriving the coefficients in the series expansion of equation 8-7. We can
determine the orthogonality properties or characteristics for the Chebyshev
polynomials from what we know of the orthogonality of the cosine
functions: that is,

™ 0 (m+#n)

f cos(mf)cos(nf)dd ={ n/2 (m=n+0)

0 T (m=n=0)

Then, substituting

T, (x)=cos(nf)

cosf=x

to obtain the orthogonality properties of the Chebyshev polynomials, we

find

'TenE )0)
mdx: 7/2  (m=n#0) (8-8)

-1 T (m=n=0)

We see, then, that the Chebyshev polynomials form an orthogonal set on

the interval

—-1<x< +1

with the weighting function

w(x)= 1/2
(1-x?)
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The Chebyshev polynomials can also be shown to be orthogonal over a
discrete set of x,. These orthogonality conditions can then be used to
evaluate the coefficients g, in equation 8-7:

+1

an=—2—j Mii)idx, (n>1) (8-9)
T i (l_x2)

LT )
ag=— ———dx, n=0 8-100 W[] (l—xz)l/z ( ) ( )

Similarly, if the function f(x) is only defined on

xp=cos%(p+%)

then the coefficients in the expansion

f(x) = 20 a,T,(x)
are given by

W=y Z5T,05)

for the discrete (which is easier to use) or the continuous method for

preparing a Chebyshev approximation of a function f(x).

There is another approach to approximating f(x) with Chebyshev

polynomials that is due primarily to Lanczos. It is powerful and simple to

use, having the nice property that it will usually improve the convergence

of any truncated series expansion of a function f(x). We do the following:

1. Write a truncated series or polynomial approximation of f(x) in

nested form.

2. Rewrite the polynomial in terms of Chebyshev polynomials.

3. Truncate the Chebyshev approximation by an additional one or two

terms.

4. Rewrite the Chebyshev polynomials in terms of polynomials in x.

5. Rewrite this polynomial in nested parenthetical form for convenient

numerical evaluation on the pocket calculator.
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For example, if we write a truncated power series representation of a

function in the form

f(x)= ga,.x" (8-11)

by rewriting equation 8-11 in the nested parenthetical form

f(x)=ag+x(a;+x(ay+--- +x(a,_,+a,x)--))

we can convert this to a series of Chebyshev polynomials by starting at the
inner parentheses and rewriting it in the form

a,_+a,x=a,_Ty+a,T, (8-12)

Assuming that at the nth parenthetical nest

a0T0+ a1T1+ ¢ +anTn (8‘13)

we can multiply this by x and add to it the next coefficient in the power
series a,,_,_, to get the (n+ 1)st nest. Then, by using the relationships

xTy=T,

T ,+T
xT, = _"11__2.__5_1 (8-14)

the power series in the nth parentheses is transformed in the (n+ 1)st
powerseries in Chebyshev polynomials as

ann an—lTn—l al+a3 X a,

(8-15)

  

The process for generating the coefficients at any given stage in the
development of the Chebyshev polynomial expansion of F(x) can be
visualized as shown in Figure 8-1. Here the coefficients at a given stage are
used to generate the coefficients in the next stage according to the
diagram.

In this approach, the coefficient associated with the Mth term of the
original series
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an—s Ap_2 an—1 ap

Coefficients at ® ® ®
nth nested
parentheses

            1 1 1 1 1 1
Coefficients at 2 7 7 2 7 7
(n + 1)st nested
parentheses Ap_2 a,_3+a,_,y A,ta,, o, o,

  
2 2 2 2 2

Figure 8-1 Process for generating coefficients for the Chebyshev expansion off(x).

becomes, in the Chebyshev polynomial expansion,

am

2m—l
 T,.(x)

Thus if we truncated the Chebyshev polynomial expansion of f(x) begin-
ning with the mth term, the error would be on the order of [a,/(2™ "))
instead of a,, as in the original polynomial approximation (see Table 8-1).

N
Table 8-1 Expansions offy(x)= D, a,x” in Chebyshev Polynomials

 

 

n=0

Expansion in Powers of x Chebyshev Expansion

fo=ao aoTy
fi=aptax agTo+a,T,

a a
f2=a0+alx+a2x2 (ao+ _%)T0+alTl+(-23)T2

a 3a a a,
fi=ag+ a;x+ a,x*+ a;x> (a0+ 72)T0+ (al+ TS)T,+(—23)T2+(T)T3

a 3a 3a
fa=ag+ a;x + a,x*+ a3x3 + ax* (a0+ 72 + _8—4)T°+ (al + —4—3)T1+ Hay+ay)T,+

as a,

()T

2 8 4 8

a,+a Sa a a
+a5x5 ( 22 4)T2+%(a3+—4-£)T3+(?4)T4+(%)T5

5 3 4 a, 3a, 3a; Sas
f5=ao+alx+azx +a3x +a4x ao+—+— To+ a,+——+— T1+
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In this sense, then, we say that the Chebyshev expansion converges more
quickly than does the original expansion.

Another way of looking at it is as follows. If the original polynomial
approximation of the function was accurate to some error, the Chebyshev
polynomial approximation will usually be almost as accurate to the same
error with fewer terms. Additional terms can therefore be dropped from

the reexpressed polynomial. This is the process called economization.

The procedure followed in equations 8-12 through 8-15 shows the

approach to generating Chebyshev polynomial approximations of f(x) in

general for n terms. However, polynomials of a degree higher than 5 are

generally cumbersome for pocket calculator analysis. The table of powers

of x in terms of the Chebyshev polynomials, presented earlier in the

chapter and partly repeated here for convenience, is useful for direct
substitution of powers of x for its Chebyshev polynomial equivalent.

=T,

x=T,

e T,+ T,

2

e 3T,+ T,

4

4 3T,+4T,+ T,
X'z—

8

5= 107, +5T,+ T

16

In this way a power series such as

f(x)=ay+ax+a,x*+ - +a,x™

can be converted into an expansion in Chebyshev polynomials:

For this process to be workable the series must be written in a form

where the evaluation of f(x) takes place for x on the interval (—1<x< +

1). Once the expansion is written in terms of Chebyshev polynomials, they
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can be replaced by polynomials in x from our earlier table, repeated here

for convenience:

T,=1

T,=x

=2x2—1

T,=4x>—3x

T,=8x*—8x*+1

T,= 16x° —20x3+5x

They can then be algebraically simplified and written in nested parentheti-
cal form for quick evaluation on the pocket calculator.
Hamming works the easy-to-follow example

x? X3
y=ln(1+x)zx—7+7* (8-16)

to illustrate the method of economization. By direct substitution for

powers of x we can rewrite this power series expansion in terms of the
Chebyshev polynomials as

 

T,+T 3T,+To575 )
ik -%- (8-17)yz—7+(l+l—2-)T,—7t

T, 15T, T, T,
=T33 T aTh

Dropping the last term in the power series (equation 8-16) results in

dropping 0.25 from the numerical evaluation of y (when x =1); a roughly

equivalent error is produced in the power series (equation 8-17) when

dropping the last two terms. This can be seen by noting that at most the

error will be

e=1—}=—0.1666- - -

*Hamming carries five terms—more than we need to illustrate the principle for pocket
calculator polynomials of convenient size.
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We know this because the magnitude of the value of the Chebyshev
polynomialsis less than or equal to 1 for all x on the interval. Thus we can

write

T, 15T, T,
=1 = — — — — — -y=In(1+x) 2t 2 (8-18)

with somewhat better accuracy than is given by equation 8-16. This, then,
is the process of economization. Using the definitions of the Chebyshev
polynomials we can rewrite equation 8-18 in the form

- ~_ 1, I5x 2<% 1 _ _y=In(l+x)= 2t T 3 =x(1.25-0.5x)

The numerical comparison of the economized second-order and the non-
economized second-order polynomials is given below. The economized
quadratic equation has smaller average error (0.0795) than the non-econo-
mized quadratic equation (—0.0654); it also has the smallest maximum
error (0.1 at x = 0.5) on the interval

 

0<xx<l

Exact Economized Noneconomized

x y=In(l+x) y = x(1.25 — 0.5x) y=x — 0.5x2

y Error y Error
 

0.1 0.09531018 0.12000000 —0.0246 0.0950 0.0003

0.3 0.26236426  0.33000000 —0.0676 0.2550 0.0074

0.6 0.47000363 0.57000000 —0.0999 0.4200 0.0500

0.9 0.64185389 0.72000000 —0.0781 0.4950 0.1469

1.0 0.693147181 0.75000000 —0.0569 0.5000 0.1931

 

Let us recap Chebyshev polynomials in the context of pocket calculator
analysis. We saw in Chapter 1 that the evaluation of polynomials greater

than third or fourth-order involved a sizable number of key strokes on the
pocket calculator. We found that by writing these polynomials in nested

parenthetical form we could go to fifth and sixth-order polynomials with

the same number of key strokes as required for the third-order polynomial
evaluation. This gave us additional accuracy with the same number of key

strokes. Now we have found that the economization process due to

Chebyshev polynomials can occasionally provide high-order polynomial

accuracy with low-order polynomials, even further reducing the number of
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key strokes for, say, equivalent fifth-order polynomial evaluation accuracy.
That is, retaining fifth-order polynomial accuracy with Chebyshev
polynomials can provide equivalent accuracy of seventh- or eighth-order
noneconomized polynomial expansions. Then when it is written in nested
parenthetical form, the Chebyshev polynomial provides this accuracy with
many fewer key strokes than would normally be required for up to eighth-
or ninth-order polynomial expansions. Thus the nested parenthetical
evaluation of Chebyshev polynomial approximations reduces the workload
on the pocket calculator from that associated with a ninth-order poly-
nomial approximation of f(x) to that of a second- or third-order poly-

nomial approximation of f(x). This results in an order-of-magnitude
reduction in key strokes.

In general, the approach to evaluating advanced mathematical functions

is (1) to write the function in a truncated polynomial form, (2) rewrite that
expression so that the interval on which f(x) is to be evaluated is between
—1<x< +1, (3) economize the series using Chebyshev polynomials, (4)
rewrite the Chebyshev approximation to the function in nested parentheti-
cal form, and (5) use it for numerical evaluation on the pocket calculator.

Numerical Evaluation of Chebyshev Polynomials

It is useful to know that the recurrence formula (restated here) for
generating the Chebyshev polynomial

T, (x)=2xT,_, (x)— T,_(x)

can be used to numerically evaluate Chebyshev polynomials.
The starting values for the recurrence formula can be computed with:

Thus the Chebyshev polynomial expansion of a function, once written,

need not necessarily be given in powers of x but can be numerically
evaluated directly. For example, the equation

Ty 15 T, T,
y—ln(l+x)=——-4—+ET,——Z—+—l-2— (8-17)

is the Chebyshev approximation to In (1 + x), which was developed earlier.

Using the recursion formula and the fact that Ty,=1 and T,=x, we can
now numerically evaluate equation 8-17 by first evaluating the numerical
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values for the five Chebyshev polynomials; for example, when x =0.3,

T,=1

T,=0.3

T,=(2)(0.3)T, — Ty=2%03X0.3—1=—0.82

T,=(2)(0.3)T,— T, = —2x0.3X0.82— 0.3 = —0.792

These can be substituted in the power series expansion to numerically
evaluate the series:

15 1 1 _+ 5 X03= 7(~0.82)+ (=0.792)=0.2640y=ln(l.3);—%

y=In(1.3)=0.26236426

This procedure allows convenient numerical evaluation of high-order
Chebyshev polynomials (e.g., 20). Although writing the nested parentheti-

cal form of the Chebyshev polynomial expansion of a function is possible,
it is cumbersome and can trip up the user if he forgets which parentheses

he is at in the numerical evaluation process. A better alternative is to
compute first the numerical values of the Chebyshev polynomials and then
substitute them into the polynomial expansion equation, since this does not
directly involve the evaluation of high-order polynomials.

8-3 APPROXIMATION FOR ANALYTIC SUBSTITUTION WITH

RATIONAL POLYNOMIALS

We have seen so far that the expansion of a function in terms of

Chebyshev polynomials can be used to series expand a function that
minimizes the maximum error in the approximation on the interval —1< x

< + 1. As noted in Chapter 3, the economized Chebyshev approximations

were not extensively employed in precision evaluation of functions. The

reason is that they are not necessarily the best approximation for pocket
calculators—from the standpoint of the time required to evaluate the
function and the storage needed to store the coefficients. A better

approach is to use the ratio of two polynomials as a means for approximat-

ing functions. Again, this is so because nested polynomials are con-

veniently numerically evaluated on any digital computer including the

pocket calculator.

Consider the case where we wish to represent a function as the quotient
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of two polynomials:

a,+a,x+a,x*+--- +ax"
b " =Ry(x), (N=n+m)
1+bx+byx“+---+b,x"

f(x)= 

The rational polynomial approximations used here are those whose nu-
merator is equal to or greater by 1 than the degree of the denominator. The

constant term in the denominator can be taken to be 1 without loss of

generality. Since our concern here is the interval —1 < x < + 1, we can use

the Maclaurin series expansion for f(x) as a means of determining the

coefficients in the rational polynomial approximation. The number of

terms that we would use in the Maclaurin series is equal to the sum of the

order in the numerator and denominator, because this is the number of

coefficients that must be determined. If we write

f(x)=(fo+c;x+cx?+ -+ +c,s™)

for the Maclaurin series expansion of f(x), the difference between the

Maclaurin series and the rational polynomial approximation can be form-
ed as follows:

aytax+---+a,x"
— = 24 ... Ny _f(x)=Ry(x)=(co+ c;x+cyx*+ -++cyx™) T+bxt - +bx" 

(cotcyx+cx®+ - +eyx™)(1+byx+--- +b,x™)

—(ag+ax+---+a,x™)
 

— R —

f(3)= Ry (x) l+bx+---+b,x™

Now, if (8-19)

f(x)=Ry(x) at x=0
then

Similarly, for the first N derivatives of f(x) and R,(x) to be equal at

x =0 the coefficients of the powers of x in the numerator must all be zero.

This gives the system of equations shown below:



Approximation for Substitution with Rational Polynomials 221

bCpmt by 1Cy_gyt +c,—a,=0m*n—m

bmcn—m+l+bn—lcn—m+2+ Tt +cn+l =O

b,¢ —m+2+bm—lcn~m+3+ Tt +Cn+2=0m-n

b, c
m-n—m +bm—lcn—m+l+'.. +c =0n

When combined with equation 8-19, this can be solved for all coefficients

of the rational polynomial.
The process just described is that of forming the Padé approximation.

We illustrate Padé approximations with a simple example.

Example. Consider approximating arctan(x) with a rational polynomial
where N=9. We use a fifth-degree polynomial in the numerator. The
Maclaurin series expansion through x® for arctan(x) is

3 5 7.9
arctan(x)=x — % + x? — x7% My(x)

Following the procedure outlined above, we form the equation

(=33 + 1= Ix"+ 3x°)(1+ byx+ -+ +byx?)

—(a0+ e +a5x5)

 f(x)— Ry(x) =
1+ b,x+byx2+ -+ +byx*

from which we can evaluate the coefficients for the rational polynomial:

ay=0 by =3b,
5.5

a =1 b2=7+§b4

ay=—3+b, by=—3+3b,
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Solving for the a’s and b’s, we find

a,=0

a,=1

a,=0

a,=3

a,=0

as= g

2=

b;=0

b,=3t

Thus the rational polynomial for approximating arctan (x) is given by

x+3x3+ $x® _ x(1 +§7$x2(1+€%6§x2))

1+ 2x2+ #x* 14+ 2x%(1+ #5x?)
 arctan(x) =

The table below compares the rational polynomial approximation (Padé

approximation) and the Maclaurin series expansion for arctan (x).

 

x  Arctan (x) Ry(x) Error My(x) Error

0.2 0.19740 0.19740 0.00000 0.19740 0.00000
0.6 0.54042 0.54042 0.00000 0.54067 —0.00025
1.0 0.78540 0.78558 —0.00018 0.83492 —0.04952

Errors in Padé approximations can be estimated by computing the next

nonzero term in the numerator of the rational polynomial. The procedure,

though somewhat tedious, gives an error formula in terms of the next term



Approximation for Substitution with Rational Polynomials 223

with a nonzero coefficient. Furthermore, the error formula can be

evaluated over the interval in which the function is being evaluated. The
alternative is to work out a simple error curve as shown in our examples
here; this can be conveniently done on the pocket calculator.
The rational polynomial approximation is significantly more accurate

than the Maclaurin approximation. When x=1, the Maclaurin series

ceases to converge while the Padé approximation is still fairly accurate.

In the pocket calculator evaluation of the rational polynomial approxi-
mation we write the numerator and denominator in nested parenthetical
form, numerically evaluate each separate polynomial, and then perform

the division numerically.
Similarly we could have started with the Chebyshev series for arctan (x)

on the interval +1 to —1, formed a rational polynomial in Chebyshev
polynomials, and then proceeded to evaluate the coefficients in the
approximation. The procedure differs from that above in that the product
of the two Chebyshev polynomials results in squares and products of the
polynomials themselves. In turns out, however, that the product of two
Chebyshev polynomials can be given by

T,(X) T, (x) = 3(T, 1(%) + T, _ (%))

Here we have again a useful form for evaluating the coefficients in the
numerator of the rational Chebyshev polynomial approximation formula.
Once the approximation in Chebyshev polynomials is determined,it can be
reduced to approximations in the independent variable on the interval +1
to —1.

As a simple example, consider the Chebyshev polynomial expansion of
e* given by (see Example 8-2 on page 228)

e*=1.2661T,+ 1.1303T, +0.2715T,+0.0444 T, =f(x)

Using the principles of rational polynomial approximation, we find the

approximation R, in the form

ay+a,T,+a,T,

3T 14hT,

Next we form the function f(x)— R,. Setting the powers of x in the

numerator equal to zero, we then find

o (1:2661+ 113037, +0.0447,)(1 +b,T) ~ (a+ @, T, + 4, T)
1+b,T,
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of which the numerator becomes

1.2661 + 1.1306 T, + 0.2715T,+ 0.0444 T, + 1.2661b, T, + 1.1303b, T}

+0.27156,T,T,+0.0444b, T\ T — ay— a, T, — a,T,

Remembering that

T,(X) T, (x) =4[ T,p(x) + T, _()]

we can write (equating f(x) to R, and equating their first three derivatives,

respectively):

1.1303
2

0.2715

2

 a,=1.2661+ b,

 a,=1.303+( +l.2661)b1

  

a2=0.2715+( 1.1303 0.0444)1)l
> T3

0.27150=0.0444+ == b,

Thus

b,=—0.3266

a,=1.0815

a,=0.6724

a,=0.07966

with the result that

1.0815+0.6724 T, + 0.07966 T,
1—-0.32667,

X
 Q i

Then substituting

T, =x

we find

ox = 1.0018 + 0.6724x +0.1593x?

1-0.3266x
 



Approximation for Substitution with Rational Polynomials 225

A comparison of the two types of approximations is shown in Figure
8-2. It is apparent that the approximation found by

R,+C +
ex=( 3 3)+(€R 6C) 

2 2

(where C; is the Chebyshev approximation of f(x) developed in Example
8-2 on page 228) has the error curve shown as a dashed line in the figure
and is somewhat more accurate than either approximation alone.

6 x 1073 

   
  

  

 

  

  

   

(1)

Chebyshev

approximation

4 x 1073 |- error —

2x1073 | -]

// (3)
0 Chebyshev + rational —

Chebyshev polynomial

error

—2x 1073

Rational

Chebyshev ]
polynomial

approximation |

error

—4 x 1073

           ] | ] ] 1 ]

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-6 x 1073 

Figure 8-2 Approximations of e*. (1) Chebyshev alone, (2) rational Chebyshev polynomials,
and (3) a combination of both.

Example 8-1. Prepare the rational polynomial approximation sin(x)

= R4(x) in the neighborhood of x =0. Then

2 3aptax+ax“+a;x
R{(x)=
s(x) 14 b,x + byx?
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and
3 5

sin(x)x — % + %6 =yt cpx+cxt+ cxP+ cpxt+ csx’

From R and sin(x) we see that

co=0 ay=a, by=1

c,=1 a,=a;, b=b

c,=0 a,=a, b,=b,

c3=—¢ ay=a; by;=0

cy=0 a,=0  b,=0

cs=1p  as=0  bs=0

We know (see text) that the six equations for determining the six

coefficients ay, a,, a,, a;, b;, and b, are

co— ay=0

coby+c;—a=0

coby+ by +cy,—a,=0

coby+ by +b+ c3—a;=0

cobst+ c ;b3 + by, +b+ c,=0

cobs+ ¢b+ cb3+c3b,+ by +c5=0

On substituting directly from the preceding table of a’s, b’s, and ¢’s, we

find
ay,=0

a=1

a,=b,

ay=—3+b,

b, .
0= — G- b,=0
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Substituting for b, in a, and b, in a,, we find

a,=0

a, =1

a,=0

ay=(h—3)=(d—th)=—1%

b,=0

Thus

in(x) = 1hx°
sin(x) & —————-

1+ H5x2

We can tabulate values of this approximation and compare them with
the Maclaurin series approximation of sin(x) and the actual value of
sin(x). This is done in Table 8-2.

 

 

Table 8-2

x sin(x) R4 Error Mg Error

0.25 0.24740396 0.24740395 1x10~% 0.24740397 -1x10~8
0.50 0.47942554 0.47942387 1.67x107¢ 0.47942708 -1.54x10"¢
0.75 0.68163876 0.68161094 27.82%107% 0.68166504 —26.28 X 10‘9
1.00 0.84147098 0.84126984 201.14% 10~% 0.84166667 —195.68x10~¢
1.25 0.74898462 0.94806763 916.99% 10~ 0.94991048 —925.86% 106
1.50 0.99749499 0.99438202 3112.96x10~° 1.00078125 —3286.26%10~¢
7/2 1.00000000 0.99577290 4227.10x10°% 1.00452486 —4524.86x10°¢
2.00 0.90929743 0.88888888 2.040854x10~2 0.93333333 —2.403591%10~2

 

In the interval between 0 and 1 the Maclaurin expansion is more accurate
(as we might expect), while the rational polynomial tends to be somewhat
more accurate outside the (0, 1) interval.

This example makes the important point that rational polynomial ex-

pansions, though involving polynomials of lower powers than do the
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polynomial from which they were derived, are not necessarily equally

accurate over all intervals. The procedure of generating rational poly-

nomial approximations of functions is, however, also illustrated in the

example.

Example 8-2. Economize the Maclaurin series expansion of e”*:

2 3 4 5 6
x_ X X X X X L.e l+x+2+6+24+120+720+

Since

1=T,

x=T,

x*= %(To"’ Tz)

x> 3T\ + 1))

x*=3(3T,+4T,+ T,)

x> =%(10T,+5T;+ Ts)

x8=5(10Ty+ 15T, + 6T, + Ty)

we can rewrite e* as

eX=To+ T+ i(Ty+T,)+ 53T+ T3)+ %(3T, +4T,+ T,)

+ w0(10T,+ 5T+ - )+b(10T, + IST,+ - - - )+ - - -

e*=12661T,+ 1.1303T, +0.2715T,+0.0444 T+ - - -

e*=1.2661+1.1303x+0.2715(2x*— 1) +0.0444(4x>—3x) + - - -

e*=0.9946+0.9971x +0.5430x%2+0.1776x> + - - -

Note that the terms involving T,, T,, T, and T, were carried from
substitutions of polynomials for up to six terms in the Maclaurin series.

Thus we also continue the effect of the sixth term on the first and

succeeding terms—the effect that makes the economization work.
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Comparison of the Chebyshev and Maclaurin approximations is shown
in Table 8-3.

 

 

Table 8-3

Error Error

X e* Maclaurin Chebyshev M C

1.0 2.7183 2.6667 2.7123 0.0516 0.0060
0.8 2.2255 2.2053 2.2307 0.0202 —0.0052
0.6 1.8221 1.8160 1.8267 0.0061 —0.0057
04 1.4918 1.4907 1.4917 0.0011 0.0001
0.2 1.2214 1.2213 1.2172 0.0001 0.0042
0.0 1.0000 1.0000 0.9946 0.0000 0.0054

 

Notice that the Chebyshev error is a maximum at x =0 and the Maclaurin
error is a minimum. This is because of the osculating nature of Maclaurin

approximation at the origin as compared with the mini-max nature of the

Chebyshev approximation on the interval (0, 1). This is illustrated in Figure

8-3.

 

Error M

0.04

0.03

0.02

0.01

Error C

0.00   —0.01 | | | 1 |
0.2 0.4 06 0.8 1.0
 

Figure 8-3 Error in Chebyshev economization of a Maclaurin series expansion of e*.
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Example 8-3. Approximate sin(x) with Chebyshev polynomials by the
method of economization.

In this simple example, we use the Maclaurin approximation of sin(x),

again because it is an approximation centered on the interval —1<x< +
1. We see that

3 5: X X
sin(x)=x—— + ——

(x) 6 120
Then

sinx=T,—%3T,+ T3)+ w5(10T,+ 5T+ T)

3 ~ 169 1
sinx =13 T, — 35 T3+ 1wI

The higher powers of x from the Maclaurin series would make further
contributions to the T, T,, and T, coefficients. The contributions are
small, however, especially for the early T terms. The x> term, in particu-

 

  
 

| | | I

2 x 10-2 - Error M B

1x 1073 — —

Error C

0 —

—1 X 1073 ] | 1 | 1

0.2 0.4 0.6 0.8 1.0 x

Figure 8-4 A comparison between the error that results from a Maclaurin approximation
and an economized Chebyshev approximation of sin(x).
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lar, changes the T, coefficient by less than 1% and the x” term alters it by
less than 0.01%.
Economizing the Chebyshev approximation (dropping the T term), we

find

sin(x)={8 T, — sT,

On substituting

T,=x

T,=4x>-3x

we find

sin(x)=0.9974x —0.1562x>

sin(x) =x(0.9974 —0.1562x2)

The errors for the Maclaurin approximation of sin(x) and the
economized Chebyshev approximation are compared in Figure 8-4.

8-4 REFERENCES

For this chapter consult Richard Hamming’s Numerical Methods for Scien-
tists and Engineers (McGraw-Hill, New York, 1973), Chapters 28, 29, and
30. For further reading on some of the examples given in this chapter read
Curtis F. Gerald’s Applied Numerical Analysis (Addison-Wesley, Reading,
Mass., 1970). The author has used Gerald’s textbook in courses on numeri-
cal analysis and has found it to be detailed and easy to read.



CHAPTER 9

DETERMINING THE ROOTS
OF A FUNCTION

9-1 INTRODUCTION

In this chapter we examine in more detail the problem of finding the roots
of a function, which we encountered briefly in Chapter 3. First we discuss
the real zeros of continuous functions and then touch on the problem of
complex zeros. The need to find roots of a continuous function arises

frequently in engineering, usually when solving implicit equations, deter-
mining maxima and minima, or finding solutions of simultaneous equa-

tions. The methods particularly suited to pocket calculator analysis are

considered here. They differ from the standard methods for evaluating
roots on large-scale digital computers in that the analyst must understand
the function whose roots he is trying to find so as to select the proper

approach to the problem.

Three methods for finding the real roots of a function are discussed.

Perhaps the most straightforward approach is that of bisecting the interval

over which the root is expected to be identified. The bisection method is

slowly converging, but is virtually foolproof in its application (i.e., it is

almost impossible to misuse the method).

Another approach is a modified form of the “false-position” method

developed by Hamming. It is a fast-converging method, but involves

slightly more functional evaluations than does the bisection method.

Furthermore, for certain functions the false-position method can converge

more slowly than does the bisection method, but these functions are not

frequently encountered in practical engineering analysis.

Finally, there is Newton’s method and its application to finding powers

or nth roots of a number N (used in Chapter 2). Though it can be used

232
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effectively for other numerical evaluations, Newton’s method does involve
evaluating a derivation and can be a slow-converging process. Once it
begins to close in on a root, however, it does so essentially doubling the

number of decimal places to which we know the value of the root at each

step. In this sense, it is a fast-converging method, once it gets close to the

root.

In evaluating the complex roots of a function, we restrict ourselves to a
method whose search pattern determines the roots only crudely. Their

accurate evaluation is possible, but the necessary procedures and tracking

methods are too complex for pocket calculator analysis. The approxima-
tion is usually sufficiently accurate for engineering analysis however.

The chapter closes with a discussion of the zeros of nth-order po-

lynomials (we covered only first-, second-, third-, and fourth-order
polynomials in Chapter 2). The search for the zeros of a polynomial is

treated as a special case in this chapter because much is known about the
roots of polynomials. Specifically, we know the following:

1. Polynomials of nth order have exactly n roots; thus we know precisely
when all roots have been found.

2. When a zero is found, we can divide it out of the original polynomial

to obtain a lower-degree polynomial for an easier evaluation of the

remaining roots.

3. Most polynomials can be scaled to facilitate root evaluation.

4. The polynomial can occasionally be factored into its real linear and
real quadratic factors—an important simplification in evaluating the roots
of polynomials.

9-2 THE REAL ROOTS OF CONTINUOUS FUNCTIONS

To find the real roots of continuous functions mathematically, we must
find a number x that, on substitution into a function f(x), results in exactly

zero. On a pocket calculator it is enough to find neighboring values of x
that, when substituted into f(x), provide nearly zero results of opposite

signs. In this case we can approximate the zero of the function by using the

midvalue of the interval.
In evaluating the zeros of mixed algebraic and transcendental functions

the number of zeros is commonly found to be infinite. We must therefore

identify the region in which the zero that we are interested in occurs. This
can usually be done quickly by sketching the two functions or analytically

determining by trial and error the neighborhood of our zero, from which
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we then begin the search for the root. For example, the function

l —-l(i—+3)sinx (9-1)
sinx 2
 f(x)=

has an infinite number of roots, as seen in Figure 9-1. The determination

of which root to evaluate must be left to the analyst.

 

-4 |-

N
3

e
N
N
y

3 w 3 H

—6 
Figure 9-1 A function that has an infinite number of roots.

The simplest method of finding the real zeros of f(x) is bisection. First,

we identify an interval

X, Sx< X,

such that the product

(f(x))(f(xz)) <0 (9-2)

That is, on one boundary of the interval f(x) is positive and on the other

boundary it is negative. Clearly, for the root to exist between the end
values, this condition must hold true. This is seen in Figure 9-2. Once the

interval is identified, another interval that satisfies the same property

(equation 9-2) and is smaller is developed by way of the bisection method.

That is, we evaluate the function at the midpoint of the interval and testit
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fix)

X

" /v ’Xx, +> (x1 xz)

Figure 9-2 Searching for zeros using the bisection method.

 
to verify that the function is zero. If it is not (the usual case), the midpoint
can be used as one end of a new interval, which will be smaller than the

previous one. In particular, if the functions evaluated at both the midpoint
and the original left end point of the initial interval are of the same sign,
the zero lies to the right of the midpoint and the new interval is the
previous right boundary and the midpoint. If, however, the function
evaluated at the midpoint is of opposite sign to that evaluated at the left
end point, the zero is to the left of the midpoint and the new interval is the
midpoint and the previous left end point. All of this can be summarized as
follows:

(A(252)o 

 

 

X, +x
0 l > 2 is a zero of f(x)

. . X +x, '
= >0 the zero is on the new interval ( > ,xz) (9-3)

) . X+ X,
<0 the zero is on the new interval (x,, —:2——)

Each iteration halves the length of the interval. Ideally, the initial
interval should be identified so as to limit the required number of itera-
tions. For example, an interval that is an integer will be reduced one-eighth
by three iterations, one-sixteenth by four iterations, and one-thirty-second

by five iterations. Interval reduction of one part in a thousand can be
achieved with 10 iterations. The general formula is that the interval size
can be reduced by a factor of 1/2", where n is the number of iterations.
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The bisection method raises the issue of how to end the iterative
evaluation of the root. There are five common techniques. The first and

most attractive approach is to specify the number of evaluations and then

decide whether the bisection method is converging slowly enough to
warrant finding another method. The second method is to test the absolute

accuracy in x, that is, to determine whether the modulus of the differences

between solutions of the midvalue is less than or equal to a small number.

Another approach differs in relative accuracy; we test to see if a modulus

of the difference in the successive values of x, divided by x,_, is less than
or equal to ¢. Still other tests are intended to determine (1) whether f(x,) is

less than or equal to some acceptable value and (2) whether the difference
between successive values of f(x) is less than or equal to some acceptable
value.

These methods have all been used on digital computers to stop the
iterative solutions of f(x)=0. In evaluating roots on the pocket calculator,

however, tabulated values of x, and f(x,) can be quickly computed, so that

the convergence process becomes apparent to the analyst. In fact, the

analyst generally stops iterating when the law of diminishing returns takes

over and he sees little improvement in his evaluation of the roots for each
iteration of the method.

About the only restriction on the bisection method is that in finding the

zeros of functions with poles the bisection method locates the pole in a

manner similar to that used to locate the zero (i.e., for functions where the

approach to the pole from the right is positive and that from the left is

negative).This problem will probably not be encountered, since the pocket

calculator analyst will have at least sketched the function whose root he is

trying to evaluate, thus knowing the characteristics of the function near the
root.

9-3 FALSE-POSITION METHOD

The false-position method, sometimes called regula falsi, is based on the

concept that, (a) when decreasing the interval in which the root is expected

to be found and, (b) when the value of the function at one end of the
interval is large compared with that at the other end, then the zero can be

expected to be closer to the end where the function is small than to the end

where the function is large. Interpolating between the values of the

function at the end points of the interval, we can thus solve for the point at

which this straight line passes through zero, using the equation

y(x) =f(x1)+f(X,) —f(xl) (x=x) (9-4)
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The line described by equation 9-4 has the zero at

y= x,f(xz)—xzf(xl)

f(x2) = f(xy)

Having found the new estimate of the location of the roots, we evaluate
the function at this point and use it to replace the previous end point
whose function value has the same sign as f(x). At the same time we divide

the function value of the other end point by 2.
Figure 9-3 shows the selection of the new estimate of the root, and

Figure 9-4 illustrates the process by which the interval is halved and the

approximating line is shaped to permit rapid convergence of the estimation
of the zero.

(9-5)

X2  
x, f

Old interval New interval

boundary boundary
 

Figure 9-3 Searching for roots using the modified false position method.

9-4 NEWTON’S METHOD

In Newton’s method the root is estimated and the tangent line of the

function is computed at that point. Then the tangent line is projected until

it intercepts the X axis to determine a second estimate of the root. Again,

the derivative is evaluated and a tangent line formed to proceed to the

third estimate of x. This process is sketched in Figure 9-5. The procedure is

straightforward, but does involve the evaluation of derivatives. The tangent
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Figure 94 Interval halving to ensure rapid convergence of the false position method.

line generated in this manneris given by

y(x)=f(x,) +£(x,)(x — x,) (9-6)

which, when y(x)=0, gives the recursion formula for iterative estimates of

the root:

A
xn+l xn f,(x )

n

 (9-7)

fx))

 

=
Y

xn
Xn +1 \

Figure 9-§ Searching for zeros using Newton’s method.
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Figure 9-6 Problems that can be encountered using Newton’s method.
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Sketches of the well-known cases where Newton’s method encounters

difficulties appear in Figure 9-6, which emphasizes the analyst’s need to
sketch the function that he is trying to evaluate. Unless the local structure

of the function is well understood, Newton’s method should be avoided.

The advantage to Newton’s method is that, unlike the bisection method or
the modified false-position method, once it begins to converge on the root,

it tends to do so very quickly. In fact, at each step it almost doubles the
number of accurate decimal places in the estimate of the root. Thus with

cn accuracy to 3 places at one step we can expect 6 places at the next step

and 12 places thereafter. When it works, Newton’s method is excellent.

9-5 COMPLEX ZEROS

To find complex zeros of analytic functions, we use the conventional

complex variable notation—the independent variable is z= x + iy and the

dependent variable is w=f(z)=f(x+iy), which is equal to u(x,y)+

iv(x,y). The condition

flx+iy)=0 (9-8)

is then equivalent to the two conditions

u(x,y)=0 (9-9)

v(x,y)=0 (9-10)

Since the equation u(x,y)=0 defines curves in the complex plane and the

equation v(x,y)=0 defines another set of curves, it is only at the intersec-
tion of these two sets of curves that w(z)=0. In this sense, the problem of

finding the complex roots of w=f(z) is equivalent to finding the intersec-

tion of the two curves u=0=v. Obviously, this is the problem of the

simultaneous solution of two equations. Provided that the zero is not on

the real axis and that z=x+iy is a zero, the conjugate z,=x—iv is
also a zero.

The bisection method can be extended from the problem of finding real

zeros to that of finding complex zeros. Again, we first find the interval in

which we can expect to find a zero and then refine the estimate of the zero
by reducing the interval in which the zero is expected. In the bisection

method, we first searched the region of the real axis where we expected
roots to occur, not by evaluating the function numerically, but by deter-

mining the interval during which f(x) changes sign. Then we narrowed that

interval until we found the location of the root (as close as we wished). In a
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similar manner we break up the complex plane into regions where we can

test, not the value of the complex function, but only its sign at suitably
chosen points in the region and where we can determine the “quadrant-
number” in which w=f(z) falls. In general, if w=f(z) is not zero (other-

wise we would tabulate a zero at the grid point where it does equal zero),

the quadrant numbers are defined as shown in Figure 9-7 and as they
would be located in the complex plane in Figure 9-8. It is apparent that
where the four quadrants meet we have a zero of w=f(z). Once the grid is

prepared and the quadrant numbers are written on the grid, the curves
u =0 and v=0 can usually be quickly sketched by keeping in mind that the

curves u(x,y)=0 divide quadrants 1 and 2 and quadrants 3 and 4, whereas

v(x,y)=0 divide quadrants 1 and 4 and 2 and 3. Although this method is

not very sophisticated, it is a convenient way of approximating roots in the

complex plane on the pocket calculator. We therefore leave the more

accurate evaluation of the complex roots to methods presented in other

books. It is worth pointing out, however, that when a complex root is

identified in this manner the region in the neighborhood of the root can be
further subdivided to form a refined grid for more accurate root de-

termination.
An example of the use of this method is finding the complex zeros of the

function

w=az+b

The zeros of this complex function are easy to derive; the example is
chosen for its pedantic value in illustrating the process of sketching the

u=0=v curves to find the region in which the complex zero will occur
(which can then be used to make the next more refined search for the

Q=0ifuorv=20

= . uis +Q = 1 when sign of {vis+

= 2 when sign of %S —
Q when sig {vis+

Q = 3 when sign of {“fs"
vis —

Q = 4 whensign of {M§S+
vis —

Y  Figure 9-7 Quadrant number definitions.
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Figure 9-8 Quadrant numbers in the complex
plane. 

 

complex zero of w, etc.). First it is instructive to analytically find the zero

of w. Substituting (x + iy) for z we find

w=(ax+b)+i(ay)=u(x,y)+v(x,y)

Now

u=0=ax+b>b

. b
xX=—=

a

defines the ¥ =0 curve in the complex plane. Similarly

v=0=iay

or

iy=0

defines the v =0 curve in the complex plane. The intersection of these two

curves is the zero of the function w=0. This occurs at

b

iy=0

Now let us examine the use of the modified bisection method to sketch the

u=0= o curves for this function.
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Table 9-1 shows the details of generating the quadrant numbers for 25
test locations in the complex plane. These locations are the gridpoints in a
five-by-five test space:

x=-=2,—-1,0, +1, +2

y=—10,+1, +2, +3

The calculation of ¥ and v and the analytical determination of the

quadrant number using *tan(u/v) are straightforward on the scientific
pocket calculator, particularly those with rectangular-to-polar conversion.

The procedure for computing the quadrant numbers is shown in Table 9-2.

Table 9-1 Quadrant Numbers for the Function w=az+b=(ax+ b)+(iby)=u(x,

y)+b(x,y) Whena=1 and b=1

 

 

 

Quadrant

Number

Quadrant Number by by Inspection of
Calculation Signs of u and v

Quadrant

x y u v +tan~!(v/u) Number  (sign u,sign v)

-2 -1 -1 -1 —135° 3 (-,—)-3
-1 -1 0 -1 -90° 0 0, —)-0
0 -1 1 -1 —45° 4 (+,—)—4

+1 -1 2 -1 -27° 4 (+,—)—4
+2 -1 3 -1 —18° 4 (+,—)—4

-2 0 -1 0 180° 0 (—-,0)-0
-1 0 0 0 Undefined 0 (0,0)—0

0 0 1 0 0° 0 (+,0)-0
+1 0 2 0 0° 0 (+,0)-0
+2 0 3 0 0° 0 (+,0)-0

-2 +1 -1 +1 135° 2 (—,+)-2
-1 +1 0 +1 90° 0 0, +)-0
0 +1 1 +1 45° 1 (+, +)-1

+1 +1 2 +1 27° 1 (+,+)-1
+2 +1 3 +1 18° 1 (+,+)-1

 



Table 9-2 Procedure for Computing Quadrant Numbers
 

 

   
 

Evaluate u

Evaluate v

Reverse-Polish with

Rectangular-to-Polar

Algebraic Reverse-Polish Conversion

(v) (v) (v)
- Enter Enter

(u) (u) (u)
= - f
f f! R—

arc tan [\y

t x
an fl U

 
 

   Select Sign

of Angle

  

   Identify Quadrant

Number

Q=H(8)

 

  

J
 

( )—data input.

D—output.

(O —mental step done

by operator.
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Here H(#)is given by

0=1 if0°<0<90°

0=2  if90°<H<180°

0=3 if{ 180° < 6 <270°
~90°> 0> — 180°

0=4 if{270°<49<360°
0°>6 > —90°

0=0  if §=0,90,180,270,0r 0

Though computing the quadrant number requires only a few key strokes

on the scientific calculator, and is a systematic analytical procedure,

quadrant numbers are more quickly determined by inspecting the signs of

u and v. Quadrant number determination by calculation is shown here

more for the sake of completeness than utility.

Figure 9-9 shows the array of quadrant numbers located at their respec-

tive test points. Note that the line separating the quadrants 1 and 4, and 2

and 3, is the v =0 line, while the line separating the quadrants 1 and 2, and

v

  

2 0 1 1 1

2 0 1 1 1

2 0 1 1 1

—0 0 0 0 0—x

3 0 4 4 4

Figure 9-9 Quadrant numbers and root location for complex function w= az + b where a=1
and b=1.
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   -1

Figure 9-10 The lines ¥ =0 and v=0 sketched from the matrix of quadrant numbers shown
in Figure 9-9 for the complex function w=az+b (a=1, b=1).

3 and 4, is the u=0 line. These lines are sketched in Figure 9-10. While

w=az+b is a simple function whose zero is easy to determine, the
procedure is identical for complex functions of more complicated forms.

Hamming has worked a transcendental equation that illustrates this
method very well. Figure 9-11 shows the array of quadrant numbers for the

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

- - - - - H H H w w w w w w w

L | L L L il—0—0—0—0—0—0—0—0—0—0—>
Figure 9-11 Quadrant number array associated with w=e? — z2,
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function

w=e?—z2

in the neighborhood of x =iy =0. By inspection of the quadrant number
field it is possible to sketch the u =0= v curves, as seen in Figure 9-12.

v=0

x

  
Figure 9-12 The curves u=0= v sketched from the matrix of quadrant numbers shown in
Figure 9-11 for the complex function w=e* — 22,

9-6. AN IMPROVED SEARCH METHOD

This unsophisticated approach to identifying the complex roots of a
function has one major fault. The evaluation of the quadrants for each grid
point requires a number of calculations to determine points that do not lie
near the zeros of the complex function and thus give relatively little
information about the location of the zeros. An alternative is to track the
u=0 curve and to identify, by marking the spot where this curve crosses
the v=0 curve, the region where the root will exist. The approach is to
search a u=0 curve in a counterclockwise direction in the area we are
examining. The ¥ =0 curve will be indicated by a change from quadrant 1
to 2 (or 2 to 1) or from 3 to 4 (or 4 to 3). When we find the curve, we track
it until we meet the v=0 curve. The v=0 curve will be indicated by the
appearance of a new quadrant other than the two that we were using to
track the u=0 curve.

The procedure is straightforward and requires little practice to learn to
conveniently track the =0 curve. In fact, the analyst learning to develop
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this method should take known u and v functions and practice tracking
them until facility is developed in tracking unknown u=0 curves.

9-7 PROBLEMS IN DETERMINING THE ZEROS OF POLYNOMIALS

In Chapter 2 we discussed methods for computing the roots of algebraic
equations of up to the fourth order. The methods presented in this chapter
permit the evaluation of the roots of higher-order polynomials. Poly-

nomials are treated as special functions in determinining the zeros of
functions because much is known about their zeros. The fundamental
theorem of algebra guarantees that an nth-order polynomial will have

exactly n roots. Once a zero is found, it can be “divided” out of the

polynomial, thus reducing the order of the polynomial to a simpler form:

PG,
(Z—Zl) n—l( )

Also, all polynomials with real coefficients (those studied here) can be

made up of linear and quadratic factors. If a polynomialis of odd order, at

least one factor is linear and one root (at least) is real. Thus we must find

the real root and divide it out of the polynomial. When the polynomial has
been reduced to an even-order polynomial whose roots are either pairs of

complex conjugate roots, pairs of real and equal roots, or pairs of real but
unequal roots, we “scale” the polynomial so that the roots lie in a region

that can be conveniently tested for the presence of additional real roots
(they occur in pairs). When all real roots are identified, we merely need to

find the complex roots for the remaining quadratic factors of the even-
order polynomials.

Even when numerical methods are available for determining the roots of

polynomials, we still encounter significant difficulty in the computing

aspect of this task. To solve linear differential equations with constant

coefficients, commonly the indicial equation is developed and solved for

the characteristic roots of the system. These roots are then used in the

assumed solution function to determine the solution of the differential

equation. If the characteristic roots of a second-order differential equation

are both real and equal, the solution should take the form

y= e_kx(cl + ¢,x)

If, however, any numerical error enters into the pocket calculator

evaluation of the roots, two real and slightly unequal roots of the form
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result

root,= —k+e

root,= —k—e

then the solution of the equation becomes

y= Cle—(k+e)x+ Cze—(k—c)x

which is unlike the dynamics of a process with two real and equal roots. In

this example, the purpose was to evaluate the characteristic roots of the

differential equation, and even the smallest error affects the dynamics of
the resultant solution to the differential equation. In another case we may
be interested in the values of x and y that satisfy a system of simultaneous

equations where small errors in the zeros result only in small errors in the

evaluation of the simultaneous solution to the simultaneous equations.

All this serves to illustrate the following important point: the problem of

finding the zeros of a function means different things to different people. It

is necessary to define precisely what is required of the analyst when trying

to evaluate the roots of an equation (to find the zeros of a function).

Hamming further brings out this important point by noting that

theorems in mathematics do not necessarily apply to computing. In

mathematics the notion of zeros of a function is a simple one, but not so in

computing. Hence the answers to the question, “What is wanted of the

zeros of a polynomial P(x)?” are usually as follows:

1. Those values of x; that make |P(x;)| small should be as accurate as
required.

2. At the values x; the polynomial P(x;) should be as small as required.
3. The polynomial may be constructed as accurately as required from

the zeros.

4. The zeros satisfy the auxiliary conditions for roots of polynomials (see

Chapter 2).

What is required for one problem may not be required for another.

Generally, it is thought that (1) is the answer, but actually (3) or (4) is

really what is usually sought in applied analysis (as shown here in the

differential equation example).

9-8 REFERENCE

For this chapter refer to Richard Hamming’s Numerical Methods for

Scientists and Engineers (McGraw-Hill, New York, 1973), Chapters 4, 5,

and 6.



CHAPTER 10

STATISTICS AND
PROBABILITY

10-1 INTRODUCTION

The determination of the statistics of finite data populations is the topic of

this chapter. For very large data populations probability is emphasized.

Since the formulas used in statistical analysis are uncomplicated and for
the most part directly implemented on the pocket calculator, we focus on
statistical analysis more than on analysis on the pocket calculator. The

objective is to provide the pocket calculator owner with a classical basis of
scientific statistical analysis. However, “tricks” of the pocket calculator

trade will be mentioned whenever applicable. Also, when there are a

number of alternative ways to compute a statistic, emphasis is placed on
the formulas that are most easily evaluated on the pocket calculator.

First we discuss the numerical evaluation of the statistics that
characterize data populations. Emphasis is on measures of central

tendency, measures of dispersion, data distributions, shapes of data distri-

butions, and the elements of probability. Then we proceed to the concepts

of sampling and testing.

Throughout the chapter the focus is on the statistical analysis of groups

of data and their functional interpretation in engineering and scientific

250



Frequency Distributions 251

analysis. As in Chapter 6, we emphasize the following;:

1. Understanding statistical analysis on the pocket calculator.
2. Providing useful formulas and tables of data for statistical analysis.

10-2 FREQUENCY DISTRIBUTIONS

A number of definitions and concepts are prerequisite to a discussion of
the formulas for computing the statistics of data populations. The defini-
tions presented here are working definitions and are not presented in
abstract mathematical notation. We wish to impart a working knowledge
of statistical analysis on the pocket calculator, rather than a theoretical
knowledge of the field of statistics and probability.

A basic data population is simply a collection of statistics called the raw
data. Raw data are data that lack organization. Arrays and frequency
distribution are ways of organizing the data, so that the statistics of a
collection of data can be determined.

Arrays are arrangements of raw data in ascending or descending order;
that is, the data are tabulated starting with the largest number and
proceeding to the smallest, and vice versa. We say that the range of an
array is the difference between the largest and smallest numbers in the
array.
When large sets of data are stratified into categories and the number of

elements in the data set belong to each category or class, we form a data
distribution. This is done by generating a table of data by category or
class, together with the class frequencies, that is, the number of elements of

the set of all data belonging to each class. Such a tabular array is called a
frequency distribution or frequency table. An example appears in Table

10-1. Here the classes or categories are the intervals of height. Data

arranged in a frequency distribution are often also called grouped data.
The term “class mark” refers to the midpoint of a class interval.

In general, frequency distributions are developed by first determining
the range of the raw data, dividing the range into a convenient number of

class samples of the same size, and then determining the number of

observations that fall into each class interval (this, by definition, is called

the class frequency). Once the frequency distribution is known, histograms

can be developed to visualize the frequency distribution. Histograms are

simply a plot of the frequency against the range of raw data. An example
of a histogram for the frequency distribution in Table 10-1 is shown in

Figure 10-1.
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Table 10-1 Heights of 100 Male Students in a

 

 

University

Cumulative

Height Number of Number

(in.) Students of Students

60-63 4 4
63-66 18 22
6669 41 63
69-72 28 91
72-75 9 100

 

The relative frequency of a class is its frequency divided by the total

frequency of all classes. It is multiplied by 100 to obtain a percentage.
Plots of relative frequency over the range of the data are called a percen-
tage distribution or relative frequency distribution.

The cumulative frequency distribution is simply defined as the total

frequency of all data less the upper class or category boundary of a given
class interval. The third column of Table 10-1 shows the cumulative
frequency distribution of the height of the 100 students. A cumulative
frequency distribution can be plotted over the range of data as shown in
Figure 10-2.

Relative cumulative frequency distributions are defined like the
frequency distributions, and so is their percentage.

50 -

 40

  

20 |~   
 10  

   
60 65 70 75

Height (k) (~in.)

Figure 10-1 Frequency distribution (number of students in height interval Ah).
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75 -

50 —

25 - 4 ] | | -
7760 65 70 75 >

Height (h) (~in.)

Figure 10-2 Cumulative frequency distribution (cumulative number of students with heights

less than or equal tc A).

Were the data to increase without bound, the histogram’s frequency

distribution and cumulative frequency distribution would be expected to
be developed with increasingly finer quantitization until smooth curves are

obtained. The analysis of probability using continuous functions is the
field of probability analysis. Here we concentrate on the statistics
associated with finite sized data sets. We examine probability as well, but
our emphasis is on the statistical analysis of small sized data sets that can
be reasonably analyzed on the pocket calculator.

10-3 MEASURES OF CENTRAL TENDENCY

The mean, median, mode, and other measures of central tendency are the

statistics of data distributions. Numbers that inform us about the centroid

of the distributions are called measures of central tendency. There are
many such measures, all called averages. The most common of them have

already been discussed, but we mention them again in the context of this
chapter. They are the arithmetic mean, the geometric mean, and the

harmonic mean. Two other measures of central tendency that are impor-

tant in statistics are the median and the mode. The arithmetic mean is

defined by the relationship

N
X.2% sxX= S S (10-1)
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The arithmetic mean can be quickly evaluated, as mentioned in Chapter 3,
either recursively or by simply summing all of the samples and dividing by
the total number of samples summed. For calculators with the

function (shown as on many calculators) the inclination is to
perform the arithmetic mean with the key stroke sequence

Algebraic Key Stroke Sequence

][ M+ || [m+ Joxa][+

(X,,) M+ Mox ||+ |(N)] =

for a total of (2N +6) function key strokes and (5N +5) data entry key

strokes (assuming 5 digits for every data entry), totaling (7N +8) key
strokes. With the straight arithmetic sum, however, the key stroke sequence

1s

   

         

  

  

        
  

 

  
   

 

(XD + (X + [(X)| + |- | + |[(X)] + [(N)] =n
              

   
 

and involves only (6N +6) key strokes, thus saving 15 to 20% in key

strokes. The benefits of the 3 or M + functions are only accrued when the
sum

N

Zf(x)= -§,f(xi)’ (f(Xi):’éXi)

1s computed. Then the intermediate calculation for evaluating the f(X,) can

be conducted without disturbing their accumulation.
If certain numbers occur more than once, in particular with frequencies

fi:f2s -+ of,, then the arithmetic mean is defined by

ZfX /X

syN

When the weighting factors are associated with certain numbers to

emphasize or change their importance in the distribution, the weighted

(10-2)
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arithmetic mean is defined as

> wx

>Sw

This is called the weighted arithmetic mean.

The median of an array of numbers (i.e., numbers arranged in order of

increasing or decreasing size) is defined to be the middle value of the array.

If the array has an odd number of elements, there is a single middle value.
If the array has an even number of elements, there are two middle values,
in which case the median is defined as the average of the two middle
values.
From a histogram viewpoint, the median is that value of the data range

which exactly divides the histogram into two equal parts. The mode of a
distribution is that value which occurs most frequently.

In general, distributions can have more than one mode, but only one
mean and one median.

For unimodal distributions that are only slightly asymmetrical (skewed)
the mean, median, and mode are approximately related by the relation

X= (10-3)

mean — mode = 3(mean — median) (10-4)

The distinction between the mean, median, and mode is shown in Figure

10-3.

    
Mean Mode

Median

Figure 10-3 Mean, median, and mode of a typical symmetric distribution.
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Another frequent measure of central tendency is the harmonic mean
defined by the relation

 H=—1 - N (10-5)
—]%21/)( /X

From time to time the mean of the logarithm of a set of numbers x is to
be computed; then the geometric mean of the numbers is given by

G=(X,Xy - Xy)"" (10-6)

The recursion formulas for computing the geometric and harmonic
mean are presented in Chapter 3. Computing the harmonic mean using the
2 (or M +) function on the scientific pocket calculator is an excellent

example of how this function saves key strokes. The key stroke sequence is

Algebraic Key Stroke Sequence

(Xl)l/xE(xz) 1/x IZ

(XN) 1/x Z] M—>x-(N) 1/x|| =

as opposed to

(Xl) x| x=>m (xz) x| [+ =x =] x>m]x,)

(XN) Ux|[+ M=x|[=1= (N) 1/x|[=

The number of key strokes with the M+ operator is (6N+11) and

(8N +16) without. As much as 33% fewer key strokes are required when

 

  

    

           

  

     

  

      
 
          

  

   

   

              
  

  

 

   
 

  
the M + function is available on the keyboard.
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In reverse-polish the sequence of key strokes is

Reverse-Polish Key Stroke Sequence

     

      
x| 1/x (xz) x|+ x|+

x| 1/x [+l =] 1/x

for a total of (7N +7) key strokes.

As mentioned in Chapter 3, the relation between the harmonic, arith-

metic, and geometric means is

         

    

          
  

H<G<X (10-7)

when all of the numbers used for calculating these means are identical.

Another mean, used extensively in this chapter, is the root mean square.

It is a set of numbers defined by the relation

¥? 1/2

RMS=(T) (10-8)

The evaluation of the root mean square on many scientific calculators is

simplified somewhat by the use of the M + x? function where the contents
of the display register (X) are squared and added to whatever is in the

memory register.

10-4 MEASURES OF DISPERSION

Dispersion is defined to be the distribution or spread of the data about the

average value. It is also frequently called the variation of the data. The

number of measures of dispersion or variation of data about the mean is

almost as large as the numbers of great statisticians. Here, we are con-

cerned with those that can be used in practical analysis, such as the range,

mean deviation, and standard deviation of the data.
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The range of the data was defined earlier. The mean deviation or average
deviation of a set of numbers is defined by the relations

N

X,—X =PRI S(R ]
mean deviation=MD = = = |X—X| =avg(|X - X|)N N

(10-9)

 
 

The standard deviation is denoted by s and is defined by the relations

s=(§n(:’_—li)z)'(Z(XX) \/'Z
_XT

Occasionally the standard deviation is written in the “biased-estimate”

form:

 

(10-10)

S(x-X)
> (10-11)

  

for N >30.
Finally the variance of a set of data is defined as the square of the

standard deviation. A better form for computing the standard deviation

from the pocket calculator viewpoint is

 

 

 

2X2 ZX 212 2

— __) =["’2‘_)7]]/2
N N

) e s’ o
N ‘( N )

The standard deviation has a number of useful properties for computa-
tional analysis. Thus for normal distributions (we discuss them later in this

chapter) 68.27% of all the cases are included between the mean *s, that is,

68.27% of all cases reside within one standard deviation of the mean.

Similarly, 95.45% of all the cases lie within 2s of the mean and 99.73% of

all the cases lie within 3s of the mean.
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If two distributions have total frequencies N,, N,, their variations s7 and
s3 can be combined according to the relation

lef+ stg

~ N,+N,
2 (10-13)

when both distributions have the same mean (not an infrequent case). The

generalization of this formula to n distributions is straightforward when it
is noted that the variance of n distributions with the same mean is simply
the weighted arithmetic mean of the individual variances, where the

weighting factor is the frequency of each distribution.
As with absolute and relative error, we can quote absolute and relative

dispersions. A measure of relative dispersion is given by

) ) ) absolute dispersion
relative dispersion= ——————————— (10-14)

average

If we use the measure of absolute dispersion to be the standard deviation
and the average to be the mean, we can define the coefficient of variation to

be

S
X

V= (10-15)

Clearly, the coefficient of variation is useless for zero-centered symmetric
distributions.

10-5 MEASURES OF DISTRIBUTION SHAPE

Before going into measures of skewness and kurtosis, we must define the
moments of a distribution. The rth moment of a distribution consisting of
n values is given by

N

X’ ,22X sx
X'=—x N
 (10-16)

The first moment where r=1 is the arithmetic mean. For a nonzero mean

we can further define the rth moment about the mean as

N r

jgl(Xj_X) Z(X_)?)r ——
m,= N = N =(X—-X) (10-17) 
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Similarly, the rth moment about any origin A is defined by

AW sx-ay Sa
= N N N

-,

= (X—4) (10-18)  

The moments for group data can be defined in a similar manner as

Jj=1

N

25X Se
 X== (10-19)

SAX-X)
m= (10-20)

2f(x-a)
my= (10-21)

Again note that these formulas are in forms immediately useful for
evaluation on the pocket calculator without the need to rewrite them.
The degree to which a distribution is asymmetric is specified by the

skewness of the distribution. Thatis, if the distribution has a longer tail to
the right of the distribution centroid, the distribution is said to be skewed
to the right and to have a positive skewness. Conversely, if the distribution
has a longer tail to the left of its centroid, the distribution is said to be
skewed to the left and to have a negative skewness. The mean tends to lie

on the same side of the mode as the longer tail for skewed distributions. A
measure of symmetry due to Pearson is therefore given by the difference

between the mean and the mode. This difference is then divided by the

standard deviation (to make the measure dimensionless) to form a measure

of the skewness. Thus Pearson’s measure of skewness is

mean—mode  _ X—mode

standard deviation s (10-22)
 skewness =

Kurtosis is a measure of the degree to which the distribution is peaked.

A common measure of kurtosis is

m m

a,= s—j = ;—‘; (10-23)
2
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Thatis, the fourth momentis divided by the fourth power of the standard
deviation. For Gaussian distributions, the measure of kurtosis is 3. Kurto-

sis 1s then sometimes defined by the relationship

a,— 3 =Xkurtosis

The moment of kurtosis is also referred to as the coefficient of excess.

10-6 PROBABILITY

Now that we have developed the basic definitions in statistics, we can
examine the elements of probability, which we later relate to statistics
through concepts in sampling. We will then be ready to discuss informa-

tion theory, decision theory, the elements of nonparametric statistics, and

concepts of correlation. For our work here we define probability as
follows. If an event can happen in A ways out of n equally likely ways, the

probability of occurrence of this event is given by

h
p=Pr{E}=; (10-24)

we also say that this is the probability of success of the event; similarly
g=1—p is equal to the probability of failure of the event. Clearly, p+ 4

must equal 1.

If E, and E, are dependent events, that is, the probability that E, occurs
given that E, has occurred is nonzero, we say that the probability E, will
occur given E| is the conditional probability of E, given E, and is written

Pr{E,|E,) = Er—{—%a%@i (10-25)

Now, the multiplication law or the law of compound probabilities (i.e., the

probability that both E, and E, occur simultaneously) is given by

Pr{E\E,}=Pr{ E,}Pr{ E,|E,} (10-26)

and the addition law of probability (i.e., the probability that either E, or E,

occurs) is given by

Pr{E, + E,}=Pr{E,} +Pr{ E,} —Pr{ E|E,} (10-27)
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If the events are mutually exclusive, then

Pr{E,+ E,}=Pr{E,} +Pr{E,} (10-28)

since Pr(E,E,)=0. If the events are statistically independent, then

Pr{E\E,} =Pr{ E,}Pr{E,) (10-29)

since Pr(E,|E,)=Pr(E,).
Clearly, for events that occur discretely, such as rolling dice and flipping

coins, we can form a discrete probability distribution by tabulating the

event and the probability that it will occur. An example appears in Table

10-2.

Table 10-2 Sum of Points on a Single

Throw of Two Dice
 

 

Sum of

Points

= Pr(X) Cum Pr(X)

2 1/36 1/36

3 2/36 3/36

4 3/36 6/36

5 4/36 10/36

6 5/36 15/36

7 6/36 21/36

8 5/36 26/36

9 4/36 30/36

10 3/36 33/36

11 2/36 35/36

12 1/36 1
 

Also, discrete probability distributions can be plotted like histograms.

Cumulative probability distributions can be developed in the same way as
our cumulative relative frequency distributions. Then, as the number of

probable events approaches infinity, the probability distribution functions
become increasingly dense until we can form continuous probability distri-

bution as the limit to which the discrete probability distribution
approaches as the quantitization in the process goes to zero.
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A concept commonly used in probability is that of expectation. Expecta-
tion is defined as follows. If X denotes a discrete random variable that can
take on values X, X,,...,X, with associated probabilities p,,p,,....p;,
where p, +p,+ - -+ +p, =1, the expectation of X is defined as

E(X)= iij,: 2pX (10-30)
j=1

The extension of equation 10-30 to continuous distribution is obvious. In
this case, we would define E(x)= p(mu), the mean of the population; m
(the mean of the sample) is an estimate of the true E(x).

It should be clear from this discussion a very large random sample of
size N from a population would result in a sample mean that is very near
the population mean, whereas a sample mean based on a small sample
would not be likely to be very near the population mean.

10-7 PROBABILITY DISTRIBUTIONS

Of the many distributions used in probability and statistical analysis three

are frequently encountered in engineering and scientific work: the
binomial, the Gaussian, and the Poisson.

The binomial distribution is defined by

_ N! _
p(X)=5Cyp*q" X=mPXqN X (10-31)

where p is the probability of success, that is, the probability that an event
will happen in any single trial; g is the probability that it will fail to

happen in any single trial, usually called the probability of failure and

equal to 1—p; and p(X) is the probability that the event will happen

exactly X times in N trials. Here X is defined only on the integers, that is,

X=0,1,2,...,N. By definition this is a discrete probability distribution. Its

name reflects the fact that as X takes on integer values from 1 through N,

the corresponding probabilities are given by the terms in the binomial
expansion

N _ —

(p+q) =q"+5Cipg" '+, Cop*gV 2+ +pV  (10-32)
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The statistics associated with the binomial distribution are developed in
many books and will not be repeated here. Four are usually used in

practical analysis, the mean, defined by

p= Np (10-33)

the variance defined by

o’=Npq (10-34)

the coefficient of skewness defined by

ay=——F (10-35)
3T 1/2

(Npq)"/

and the measure of kurtosis (or coefficient of excess) given by

1-6pq
a,=3+ Npq (10-36)

As an example of the application of the binomial distribution and its
statistics, let us consider 100 flips of an unbiased coin. The probability is
one-half that the coin will be heads and one-half that it will be tails. The
mean thus is

p=Np

p=100%x4=50

The standard deviation is given by the square root of the variance:

o=V Npgq

o=V100xix} =V25 =5
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Skewness is zero, since p = ¢, and the measure of kurtosis equals

1 —6pg

Npq

(1-3)
3+—25

a,=3+ 

Ay =

a,=3—3

a3

We see that the expected number of heads in 100 flips of a coin is 50.
The standard deviation for 100 trials i1s 5. We would not expect the

distribution of heads and tails to be skewed (if the coin is unbiased), but

would expect it to be approximately Gaussian (the kurtosis of a Gaussian

distribution equals 3).

The Gaussian distribution is defined by the equation

1 _(x—m)
5 e 20? (10-37)

oV2mw

 
Y= 

where

p = the mean

o =the standard deviation

The Gaussian distribution has the following characteristics:

1. The area bounded by the distribution and the X axis is identically
equal to 1.

2. The area bounded by the distribution and the X axis in the interval

between x =a and x=b where a < b is identically equal to the probability
that X lies between a and b. The Gaussian distribution is shown in Figure

10-4.

The parameters of the Gaussian distribution are the mean and variance,

defined by

mean=

variance = ¢
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Figure 104 Gaussian distribution.

The skewness of the Gaussian distribution by inspection is zero. The

measure of kurtosis for the Gaussian distribution is given by

a,=3

As mentioned before, the binomial and normal distributions are related.

If for a binomial random variable X, N, and P are not zero nor near zero

and N is large, the binomial distribution can be approximated with the

Gaussian distribution, since (X — Np)/V Npg is approximately normal

with 0 mean and unit (1) variance. It turns out that the Gaussian distribu-

tion is the limiting form of the binomial distribution as N approaches

infinity. In practical work the Gaussian distribution is a reasonable

approximation of the binomial distribution if both Np and Ng are greater
than 5.

Another probability distribution encountered in practical probability

work is the Poisson distribution, defined by

}\X -A

P(X)="55 (10-38) 

Here A is a constant of the distribution.

The statistics of the Poisson distribution are all given in terms of the
single parameter A. The mean is given by

p=A (10-39)



Probability Distributions 267

The variance is given by

ol=\ (10-40)

which is identically equal to the mean (an interesting curiosity of the
Poisson distribution, which we discuss later). The coefficient of skewness

of the Poisson distribution is

1
ay=—— (10-41)
RV

and the measure of kurtosis is

a,=3+14 (10-42)

A number of things become apparent by examining the Poisson distribu-
tion. First, it is discrete and its basic properties are not a function of the
number of trials being considered. Second, the larger the mean (M), the less
the skewness and the more the distribution tends toward the Gaussian
distribution; accordingly the coefficient of excess approaches 3. From our
observations of skewness and kurtosis we might expect that the Gaussian
distribution is the limit to which the Poisson distribution approaches as A
approaches infinity; this, in fact, turns out to be the case.

As might be expected, the binomial and Poisson distributions are re-

lated, both being discrete and both approaching the Gaussian distribution
as a limit for large-numbers samples (in the case of the binomial distribu-
tion) or a large value of the mean (in the case of the Poisson distribution).
Note that in the binomial distribution if N is large and the probability p of
occurrence of an event is close to zero, g=(1—p) is close to 1 and we say
that the event is a rare event. In these situations the binomial distribution
can be closely approximated by the Poisson distribution by letting A = Np.
Comparison of the mean, variance, skewness, and coefficient of excess

when A= Np, p=0, and g=1 shows that the binomial distribution proper-
ties (e.g., mean, variance) are approximately equal to those of the Poisson
distribution. Extension of the Poisson distribution to its association with
the Gaussian distribution follows through its association with the binomial
distribution. After a little algebra, it can be shown that the Poisson
distribution can be approximated by the Gaussian distribution, since

(X-2)
VA

is approximately normally distributed with zero mean and unit (1) variance.
It is common in statistical analysis to use these distribution functions to
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model the distribution of populations being studied. The approach is to

determine the mean and standard deviation of the sample of the popula-
tion to estimate the mean and standard deviation of the population. The
modeling process is then tested for goodness of fit, using a number of

approaches. One that we discuss later in this chapter is the chi-square test.
Clearly, modeling a sample of a population with the binomial or Poisson
distribution solely amounts to determining the mean value (X) of the

sample distribution. For modeling the binomial distribution we compute

_X
P=N

Then

g=1-p
A crude test is to determine if

Ngp~s?

where s is the standard deviation of the sampled population. If the

calculation shows that

p~0

then the Poisson distribution may better fit the data.

10-8 SAMPLING

The study of sampling deals with the determination of statistics (estimates

of distribution parameters) associated with a sample drawn from a popula-
tion and the population parameters themselves. We are concerned with

sampling insofar as it is related to estimation, testing, and statistical

inference. First we wish to define a sample, in particular a random sample.

Generally it is not sufficient to sample a population in a systematic way.

Since the objective is to develop the statistics of the sample and infer

something about the parameters of the distribution, the sample that is

representative of the population must be chosen. There are 2 number of

methods for sampling a population, including stratified and random sampl-

ing. One universally accepted way of sampling a population so that the

characteristics of the population are represented in the sample is random

sampling. Random sampling is a process in which each member of the
population has an equal chance of being included in the sample. Typically
a number is assigned to each member of the population, and the numbers
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are then scrambled, so that each sample of the population has the same
chance of being selected as any other sample.

There are two concepts of sampling: with and without replacement. The

concepts are straightforward. Sampling with replacement allows each

member of the population to be chosen more than once, while sampling
without replacement does not. The analysis is useful because a finite

sample with replacement can theoretically be considered infinite. Sampling

without replacement will result in a statistic that takes into account the size
of the sample compared with the total size of the population.

For any given sample of size N a value of a given statistic can be
computed for that group and, if another sample of the same size is

selected, in general a different value of the statistic is computed. This

process can continue (with or without replacement) until all statistic values

in a population are different. Clearly, if a population is of finite size and is

sampled with replacement, an infinite number of values can be determined
for each statistic. By organizing these values of the statistic, we obtain a
distribution of the statistic itself, which is called its sample distribution.

Clearly, then, there are sampling distributions of the mean, sampling

distributions of the standard deviation, sampling distributions of the

variance, sampling distributions of the measure of kurtosis, and sampling

distributions of the coefficient of skewness. Of all these possible statistics

we focus on those that help us in testing, estimating, and statistical

inference only.

Suppose that we have a population of finite size, say N,. Also suppose

that a sample of size N is drawn without replacement. Then if we denote

the mean of the sample distribution of the mean by

Rx

and the standard deviation of the sample distribution of the mean as

Ox

and, further, if we define the population mean and standard deviation by p

and o, respectively, we can write

by =p

f_ O (NP—N)

X VN Np—l

If the population is infinite or if it is finite but sampled with replacement,

2 (10-43)
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the population mean and standard deviations are related to the sample

mean and standard deviations according to

by =W
(10-44)

__o

VN
 

Ox

For N greater than 30, the sample distribution of the mean is approxi-
mately Gaussian with mean

KGaussian = My

and standard deviation

OGaussian — OX

It is noted that the distribution of the mean of a population sample is
independent of the distribution population.

Suppose now that we draw a sample from each of two populations. The

number of samples drawn from the first population is N, and that from the

second population is N,. Now let us compute a statistic s,. We find that
each statistic has a sampling distribution, whose mean and standard
deviation we denote by p, and o,. A similar situation holds true for the
second population; that is, it has a mean and standard deviation given by
p,, and o,. If we now consider all possible combinations of these samples
from the two populations, we can obtain a distribution of differences, that

is, S, —S,, which is called the sampling distribution of the differences of
the statistics. The mean and standard deviation of this distribution are

defined by equation 10-45:

l"’l‘sl"Sz:I'LSl_lu'Sz

)1/2 (10-45)(2 42
o5, 5,= (05, + a3,

If S, and S, are the sample means from two populations, the sampling

distribution of the differences of the means is given for infinite populations
with mean and standard deviation p,,6, and p,,0,:

“YI_Y2=MA_,]—“Y2=M]——"L2

1/2
( ) L )1/2_ o} . 03 (10-46)

X\ % \N, N,
Ox,-X,
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These results hold for finite populations if sampling is with replacement.

The standard deviation of a population can also be computed from a
sample of the population. It, too, has a distribution with mean and

standard deviations

 

(10-47)
 

For populations that are normally distributed this reduces to (u,=0? and

pe=30%:

 

u=0

. (10-48)
0s=

V2N

109 STATISTICAL ESTIMATION

We have just seen how statistical information can be computed from the
data of the sampled population. One of the key problems in statistical
inference is that of estimation of the population parameters (mean,

variance, kurtosis, etc.) from the corresponding sample statistics. Before

proceeding to the concept of confidence interval estimates for population

parameters, the key issue in this section, we must clear up the issue of

biased versus unbiased estimation. In computing a mean value one merely
sums the numbers of the sampled values and divides by the total number.
In computing the standard deviation, however,it is important to recognize

that it takes at least two points to compute a variance; hence the mean of
the variance of a distribution must be divided by N—1, not N. In this

sense, then, we have an unbiased estimator. As N becomes large, the effect

of biased estimation is clearly not significant. For small sample sizes,

however, it does matter.

We now estimate the confidence interval of population parameters. The
idea here is to sample the population, then compute a mean and standard

deviation for it, and try to infer what this tells us about the mean and

standard deviation of the population. If we define p, and o, as the mean
and standard deviation of the sampling distribution of a statistic S, then

we can expect the sampling distribution of S to be approximately Gaussian
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(assume that N >30) and the actual sampled statistic S lying somewhere in
the interval u, — g, to p,+ o, or p,— 20, to u,+ 20, or u,— 30, to u,+ 30—
about 68.3%, 95.5%, and 99.7% of the time, respectively.

In other words, we can be confident of finding p_ in the interval S —o, to

S+ o, about 68.3% of the time; or in the interval S—20, to S+ 20, about
95.5% of the time; or in the interval between S —3o0, to S+ 30, about 99.7%
of the time. We can say that we are 68.3% confident that the mean lies
somewhere in the interval S+ o,, that we have 95.5% confidence that the

mean lies somewhere in the interval S+2¢; and that we have 99.7%
confidence that the mean p, lies somewhere in the interval S+ 30,. The
relationship between confidence levels and o levels is tabulated in Table
10-3.

Table 10-3 Confidence Levels

Associated with o Levels

 

Confidence Level o Level

 

(%) Z;

50 0.6745
68.27 1.0000
80 1.28
90 1.645
95 1.96
95.45 2.00
96 2.05
98 2.33
99 2.58
99.73 3.00
 

The formula for computing the confidence interval associated with the
mean is given by

X+ Z,.05

If the sampling is from an infinite population or from a finite population

but with replacement, the confidence limits in the estimate of the mean are

specified by

 X=+z \/"_ (10-49)
N
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if sampling is without replacement from a population of finite size N,:

B . Np——N 1/2

X+ (10-50)  
N,—1

The equations for confidence intervals for differences and sums of two
statistics S, and S, are given by

1/2
($;=8)*z055,=(5— Sz)izc(o§|+ ng) ' (10-51)

(Si+ S+ 2,05, ,5,= (S, + S+z,(a2+02)" (10-52)

provided that the distribution of S, and S, is approximately Gaussian.
By way of example, note that the confidence limits for the difference of

two populations means in a case where the populations are infinite or are

finite but with replacement are given by

of 9
1/2

(Sl_X2)tzc°)71—i"z=(X1_X2)i-zc(fil+N+2) (10-53)

The confidence interval for standard deviations of a normally distributed

population is given by

S+z0,=8+— (10-54)
V2N
 

Occasionally we need to reference probable error; we define it here but

retain the concept for reference. The 50% confidence limits of the popula-
tion parameters corresponding to a statistic S are given by S+0.67450,.

This quantity is known as the probable error of the estimate and may be

worth memorizing.

10-10 SAMPLING IN THE SMALL

Earlier in the book we made use of the fact that there are simplifications in
the formulas for computing a statistic when N > 30. Here we are concerned
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with cases when N is substantially less than 30, and the emphasis is on the
determination of the statistics associated with small samples and on the

distribution of those statistics. Specifically, we consider here the Student’s
t-distribution and the chi-square distribution.

The Student’s ¢-distribution is defined by

 =XTEyNT =X (10-55)
§ s/VN—-1

If we consider samples of size N selected from a Gaussian distribution with
mean p and if we compute ¢ given the sample mean and sample standard
deviation s, the sampling distribution for ¢ can be obtained. This distribu-
tion is given by

 Y= Yo = Yo 10-56- 5 N/2 2\C*+D/2 (10-56)
(1+22/(N-1)) (1+7)

Here Y, is a constant depending on N and is such that the area under the
t-distribution is 1. The constant » =(N — 1) is called the number of degrees
of freedom. This distribution is called “Student’s” ¢-distribution. Note that
for large values of v or N(N >30) the curves closely approximate the
Gaussian distribution:

1 _p2Y= e /2 _
e (10-57) 

We can define the 95 and 99% confidence intervals by either computing
the confidence intervals on the pocket calculator or using a table of
t-distributions. Specifically, if — #,g75, + 5975 are the values of ¢ for which
2.5% of the area lies in each tail of the ¢-distribution, then a 95%

confidence level for ¢ is

X-

— o975 < _;."E VN =1 <ty915 (10-58)

Clearly, then, u is expected to lie in the interval

X- to.975( ) <u<X+ ’0.975( _—'Ns—l) (10-59)
s

VN-—-1

with 95% confidence.
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In general, we can represent the confidence limits for population means

by

X+ —2 (10-60)

10-11 CHI-SQUARE

We now proceed to the chi-square random variable, which is defined by

—\2 —_

X, —X) +(X= X))+ +(Xy-XX2=£S2i=( = X) (% Z (Xv=%) (10-61)
o o

 

The chi-square distribution is defined by

Y=Yy(x2)VeWDyX2 (10-62)

Here »= N —1 is the number of degrees of freedom and Y, is a constant
depending on » such that the total area under the curve is 1. The
chi-square distribution corresponding to various values of » are shown in
Figure 10-5. As was done with the normal and ¢-distributions, we can

 0.6 I | I 1

  

 

0 5 10 15 20 25

X2

Figure 10-5 Chi-square distribution for various degrees of freedom.
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define 95 and 99% or other confidence limits and intervals for chi-square

by using a table of the chi-square distribution. In this manner we can

estimate, within specified confidence limits, the population standard devia-

tion o in terms of the sample standard deviation s. If x3g5 and xgg9 have
the values of x? for which 2.5% of the area lies in each tail of the

distribution, the 95% confidence interval is

Ns?
Xg,ozs < _‘;2_ < X§.975 (10-63)

We can see that o is estimated to be in the interval

o

VX§.975 VX%.ozs

with 95% confidence.

10-12 CHI-SQUARE TESTING

The chi-square test is probably the most accepted test for determining

whether there is significance between the observed and the expected in
sampling a population. There are better tests. Once familiar with the

chi-square test—the only one discussed in this book—the student and
infrequent statistical analyst may wish to go on and examine the other tests

as well.

It is only reasonable to expect that the results of a sampling of the

population will not agree exactly with expected values. In fact, it is

possible to partition a sample into a set of possible events E,, E,, Ej;,

E,...,E,, and then tabulate the observed frequency with which these

events occur and the expected frequency from expectation analysis. For

example, the distribution function for a particular experiment might be

expected to be a Poisson distribution. After some hand analysis the

expected value of the parameter A in the distribution function is identified

and the distribution itself is drawn. Then the interval of the random

variable can be partitioned into subintervals and the probability that the
random variable will occur in these intervals is computed on the basis of

the expected distribution. These expected frequencies can then be tabu-

lated for each event, as shown in Table 10-4. After completing the table by

filling in the probabilities or frequencies of the observed events we are

ready to perform the chi-square test. Specifically, we are ready to deter-

mine whether the observed frequencies differ significantly from the ex-

pected frequencies.
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Table 10-4 One-Way Classification Table
 

Event E, E, E, s E,
Observed
Frequency 0, 0, 04 . Ok

Expected

Frequency e e e; . e
 

A definition of the difference between the observed and expected
frequencies is given by the statistic x:

2 2 2
2 (0,—€) (0,— ) + (o —e)

€k

 = + + ...

X € €,

k| (0,— )’
= Zu (10-65)

j=1 6

Here the total frequency is N:

N=2Xo0,=2¢ (10-66)

An alternate form of equation 10-65 commonly found in the literature is

0?
x2=2—e’— —N (10-67)

J

Note that when the observed and expected frequencies agree, x2=0.

Obviously, the greater the difference between the two, the greater x2. The

sample distribution of x? can be closely approximated by the x? distribu-

tion

Y="Yox"2X/? (10-68)

when the expected frequencies get larger than 7. In fact, as the expected

frequencies increase, the distribution more and more closely approaches

the x? distribution. Here the number of degrees of freedom is given by

v=k—1 (10-69)

when the expected frequencies can be computed without having to deter-

mine the x? distribution parameters from the sample statistics themselves,

and the number of degrees of freedom 7 is given by

v=k—1-m (10-70)

if m population parameters are determined from the sample statistics.
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The table of observed and expected frequencies can be extended to a
table of k columns and 4 rows in which the observed frequencies occupy A
rows and k columns. These are commonly called contingency tables.

Corresponding to each observed frequency there is an expected or theoreti-

cal frequency. The x? is then computed for the entire matrix, using the

formula

=3 (9-¢) (10-71)
r €

where the sum is taken over all the elements of the matrix made up by the

contingency table. The sum of all observed frequencies is noted by N and

is equal to the sum of all expected frequencies. As with the one-way
classification table (Table 10-5) the distribution of the statistic for the 7 X k

table is given very closely by the x2? distribution provided that the

frequencies are not too small.

The number of degrees of freedom of this x? distribution for k> 1 and

h>1 is given by

p=(h—1)(k—1) (10-72)

if the expected frequencies are not computed from the population sample.

If they are, the degrees of freedom are given by

p=(h—1)(k—1)—m (10-73)

when m population parameters are determined from the sample statistics.

Usually expected frequencies are computed on the basis of a hypothesis

we are trying to test. If the computed values of x? are greater than some

critical significance levels, we can conclude that the observed frequencies

differ significantly from the expected frequencies. In this case we would

reject the hypothesis being tested at the test level of significance. For

example, if the value of x* were to exceed the xaos, we would say the
hypothesis is rejected at a 95% level, that is, there is a 5% chance that the

rejection of the test could be wrong. Conversely, there then is a 95%

chance that we are correct in rejecting the hypothesis.

In a similar manner, we would expect that, when x? is approximately

zero, the observed frequencies are in too close agreement with the expected

frequencies. Obviously, the approach here is to also reject those cases that

we consider to be in too close agreement, that is, when X2 1s less than the

expected value of x? 95% of the time, such as x2.
The procedure we have just described assumes that we are going to

compare results from frequencies determined with continuous distributions
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but applied to the discrete data associated with the finite samples. Yates
has developed a correction factor to account for this difference. The
corrected value of x? is given by

 

2 2’ 2
2 (lo;—€,|—0.5) (|o,— €| —0.5) (|ox — &|—0.5)

Xcorrected = + +...+
€ € €x

(10-74)

This correction is made only when n=1. For large samples, the corrected

x? approaches the uncorrected x2. The reason for the correction is that the
uncorrected x? can lead to significant errors near the critical values, thatis,
the low probability values of the x? distribution. For small samples where
the expected frequency is on the order of 7, it is better to use the corrected
value of x2. In fact, some authors suggest the use of testing with both the
corrected and uncorrected values of x?; if both lead to the same conclu-
sion, the conclusion then is said to be unambiguously redefined.

There are a number of simple formulas for pocket calculator determina-
tion of x? that use only the observed frequencies. For the x? testing table
shown in Table 10-5, x? can be computed as follows:

 

2
x2= N(ab,—ayb)) _ NA? (10-75)

(a;+b))(ay+by)(ay+ay)(by+by)  NiNyNyNg

where A=(a,b,— a,b,). With Yates’ correction

N(jAl-N/2),  _N-N/Y) 1076)
Xcorrected = N‘NzNA NB

Table 10-5 A 22 Table of Observed

 

 

Frequencies

Event

Event
Group I II Total

A a, a, N,

B b, b, Ng
Total N, N, N
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Similarly, for a 2X 3 table, x2 is given by

ai a4 a3
N, N, N,

N

Ng

2. N bt b b3
X NA —N (10-77

N, N, N, (10-77)

    

10-13 STATISTICAL FORECASTING TECHNIQUES*

It would appear that much forecasting is based on judgment. Judgmental
forecasting is difficult at best. Individuals who have a stake in the outcome
of a forecast may be subjective. One approach to guarding against subjec-
tivity is to cross-check “judgment” forecasts using statistical forecasting
techniques whose mathematical nature retains an element of objectivity.
Curve-fitting techniques are based on mathematical criteria that rise above

the details of the forecast to be made or the consequences of the outcome

of the forecast. Least-squares forecasting is an example.
Least squares is a technique of fitting a given type of curve through a set

of point pairs (coordinates) in such a way that the standard deviation of

the data ensemble from the curve is a minimum. A forecast or extrapola-
tion is an estimate of the value of the ordinate given a value of the abscissa
that is beyond the range of the data.
Once a statistical curve fit to a data set is done, the curve can be used to

forecast future outcomes and compare them with the more subjective
manual forecasts. If enough difference exists, of course, the people in-
volved will need to resolve the difference. In a sense, statistical curve

fitting is a check and balance on manually prepared forecasts. When a little

common sense is exercised in preparing the statistical forecast, the two
approaches tend to track each other fairly well.

Linear Regression

Linear regression is a name given to fitting a straight line through a set of
data relating two variables. Examples of pairs of variables appear in Table
10-6. The straight line establishes a trend between the two variables, and
thus is often called a trend line. Usually one of the variables is time, and a

trend line refers to the trend of another variable over a period of time. The

intervals between the time periods are usually fixed, but this need not be

the case. In fact, to fit a curve to a set of data points requires no restriction

on the intervals between the variables.

*This section is drawn from material in Chapter 9 of Financial Analysis and Business Decisions
on the Pocket Calculator, Jon M. Smith, Wiley, New York, 1976, by courtesy of the publisher.
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Table 10-6 Pairs of Related Variables

(a) 2 Million Dollars per Year (b) Wholesale Price Index,
 

 

 

Business Seasonally Adjusted (1967 = 100)

Year Profit Month Index

1970 $-90,000 1974
1971 10,000 January 145
1972 14,000 February 147
1973 96,000 March 150
1974 196,000 April 152
1975 312,000 May 153

June 154

July 156

August 163

September 166
October 168

November 171
December 172

1975
January 171

February 170

March 169

April 169

May 171
June 171

July 173
 

A number of scientific pocket calculators have linear regression calcula-
tion capability built into them, and they work in a quite simple and very
useful way. The objective is to fit a line (the equation for a line is
y=A+ Bx) through a set of data pairs (y and x). The problem is to
determine 4 and B from the set of ys and xs input into the calculator.
When the user inputs

¥y and x,

y, and Xx,

y; and X,

yn xn

the calculator’s job is to automatically compute 4 and B so that the line

y=A+ Bx
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Figure 10-6 Profit per year of a growing $2 million business; plus sign indicates actual data
point pairs.

best* passes through the point pairs (y;,x;). The calculator calculates A

with the equation

4= SySxi—-3xSxy

nSx*—(Tx)?

and B with the equation

nEXy —2x2y
B=-——2<72

nZx?—(Ex)’

*Best in the sense of minimizing the sum of the square of the variance of each y; from
y=A+ Bx at x; over the range of i from zero to n.
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The point is this—the calculator automatically does a lot of work that you
would otherwise have to do manually. To calculate 4 and B by hand for
only 10 pairs of three-digit ys and xs would involve

K=6N+14

where N =number of point pairs times number of displayed digits and
K=number of key strokes. For this case K=196. Additionally, you must
keep track of where you are in the algebra of the problem.
On reflection, it is hardly surprising that statistical forecasting is not

often used, even by engineers—it is too complex to do manually, even
using a four-function pocket calculator. Calculators having the linear
regression preprogrammed function make it convenient to run a statistical
curve fit, with the data input being the only required key strokes.
Now consider the data in Table 10-6. If we plot these data as shown in

Figure 10-6, a straight line appears that can probably be fit through the
data points, and thus can be used to predict profits.
On the HP-27 (a typical scientific pocket calculator) the key strokes for

finding the straight-line profit=A + B X (number of years since 1970) are
as follows:

 

(black key)
  
 

Reset   
 

-90,000 1 0|Z+
 
 

10,000 1 1|3+
 
 

14000 1 2|3+
 
 

96.000 1 3|3+
 
 

196,000 1 4|3+
 
 

312,000 1 5|2+   
 

(black key)
  
 

L.R.   
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To estimate the profits in 1978 you need only key in 8 (years from 1970)

and stroke the key to find that they are $506,095.24.

Straight-line forecasting is useful for short-range considerations. What
about long-range forecasts of exponential growth or decline? In these cases
it would be better to try to fit the exponential curve

mxy=be

to the data, not y=A+ Bx. Taking the logarithm of the exponential
equation yields

In(y)=In(b) + (mx)In(e)

Since In(e)=1, we see that

In(y)=In(b)+ mx

If we let In(b)=A4 and B=m, we can rewrite this equation in the form

In(y)=A4+ Bx

which is the same form as the straight-line equation. Thus if we input the
variables In(y) and x instead of y and x, we can calculate a straight-line
curve fit through In(y). Then in the last step, calculate the antilog of In(y)

to get

y=be

In fact, the HP-27/25/22 and SR-51/52/56 are designed to do this. The
circuitries for calculating In(y) and e* are built into the calculators. The

HP-27 key strokes for fitting an exponential curve to a typical investment

earnings are as follows ( indicates black key; 7// indicates gold

key):

  

      



Statistical Forecasting Techniques 285

 

   
 

   
  

12,0007// o|s+

14,0000/7

In

In

15500077/ 1n 2| = +/ |

In

In

—
In

  

  

1|2+
  

  

  
  

312+16,000%

17,0000/7

18,000 ///

  

  

4+
  

  

512+        

 

   
 

L.R.
   

Then to find the forecasted earnings 8 years into the investment, simply
stroke

The estimated earnings are found to be $23,148.48.
A linear estimate of the earnings would be $21,623.81, which is typical of

the “undershoot” of linear estimates of exponential growth.

 

     

The Art of Statistical Forecasting

Our discussion of straight-line and exponential curve fitting demonstrates
that the curve is determined by the number of, and the particular, point
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pairs input into the calculator. Thus the following decisions must be made:

® How many point pairs should be used?

® Which point pairs should be used?

The science of data editing would fill a series of books. Fortunately an
engineer’s intuition can go a long way in indicating what data to edit. Care
must be taken that the rationale for editing data is strong enough to ensure
that the counterintuitive behavior of the process that generated the data is
not eliminated.
A few common-sense guidelines can be used to select the data for a

forecast:

® The range of the historical data should be at least as long as the range
of the forecast. For a one-year forecast, the historical data should run to
at least a year in the past.

® Obvious “accidents” that give wide, unreasonable variations in the data
set should be edited before forecasting.

® Consciously look for “bobbles” in the data that resemble accidents but
may have hidden counterintuitive causes. Stock-market chartsmen do
this a lot. Often, before jumps in the price of a stock, the number of
sales of that stock statistically fluctuate a bit, indicating foreknowledge
by profit takers that the stock will move up for some reason. When you
think you have found one of these “statistical indicators,” do not decide

on a course of action until you have researched the cause of the bobble
and understand what is going on. Paradoxically, statistics, the mathe-
matics of random processes, is an excellent tool for discovering nonran-
dom or causally related behavior of systems and processes.

® Fit the data with both linear and exponential curves and pick the one
that (to the eye) looks best. If the calculator gives the correlation
coefficient, pick the curve with the highest correlation coefficient. Many

TI and HP calculators have these features.

Thanks to the solid-state revolution and pocket calculator manufacturers,
engineers and scientists now have useful forecasting techniques only a key

stroke away. This advance alone is easily worth the price of a calculator.

Example 10-1 If 20% of the transistors produced by a process are defec-
tive, using the binomial distribution determine the probability that out of
four transistors chosen at random, one, none, and at most two will be

defective. Since the probability of a defective transistor is

P=.2
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and of a nondefective transistor it is

q=1—p=.38

then

probability (1 defective transistor out of 4)

=.Ci(2)'(8)’= 2)'(.8)* = 4096

probability (0 defective transistors) = 4C0(.2)0(.8)4= 4096

probability (2 defective transistors) = 4C2(.2)2(.8)2 =.1536

Thus

probability (at most 2 defective transistors)

= probability (0 defective transistors)

+ probability (1 defective transistor)

+ probability (2 defective transistors)

=.4096 +.4096 + 1536 =.9728

Example 10-2 The mean weight of 500 engineers is 170 1b, and the
standard deviation is 15 1b. Assuming the weights to be normally distrib-
uted, find how many engineers weigh between 139 and 174 Ib. Weights
recorded as being between 139 and 174 1b can actually have any value
from 138.5 to 174.5 lb, assuming that they are recorded to the nearest
pound.

138.5 Ib in standard units= 1—3§—%5_1l - =2.10

174.5 1b in standard units = %5:& —0.30

Then the number of engineers between 139 and 174 1b is (Figure 10-7)

(area between z = —2.10 and z =0.30) = (area between z= —2.10 and z

=() + (area between a=0 and z=0.30) =0.4821 +0.1179 = 0.6000

The number of engineers weighing between 139 and 174 1b is 500(0.6000)

= 300.
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—2.10 0.30 ?

Figure 10-7 Percent of engineers weighing between 139 and 174 1b.

Example 10-3 Find the probability of obtaining between 3 and 6 heads

inclusive in 10 tosses of a coin by using the binomial distribution and the

normal approximation of the binomial distribution.

 
 

Probability
X for probability between 3 and 6

| heads inclusive0.3
"

0.2

0.1 |-

. 1 l ] | 1 .

3 4 5 6 7 8 9 10

Figure 10-8 Discrete binomial distribution.

The binomial distribution gives (Figure 10-8)

probability (3 heads) = ,,C5(3)’(3)= 1%

probability (4 heads) = ,,C,(3)"(3)° = 4%

probability (5 heads) = ,,C5(3)°(4)’ = £

probability (6 heads) = ,0C6(£)6(%)4= 19

Thus

probability (of getting between 3 and 6 heads inclusive)

=15/128+105/512+63/256 + 105/512=99/128 =0.7734
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The probability distribution for the number of heads in 10 tosses of the
coin is shown graphically in Figure 10-9. The required probability is the
sum of the areas of the cross-hatched rectangles and can be approximated

by the area under the corresponding normal curve shown dashed.

 

  

       

0.2 | / \%\

/// % \‘\

4 5 6 7

Number of heads

Figure 10-9 Data treated as continuous normal distribution.

Using the normal distribution, 3 to 6 heads can be considered as 2.5 to

6.5 heads. The mean and variance for the binomial distribution are given

by
p=Np=10(3)=5

 

 

and

o=V Npg =V(10)(3)(3) =158

2.5 in standard units = 22—> = — .58
1.58

and

6.5 in standard units= 6.5—5 =0.95
1.58

The probability of getting between 3 and 6 heads inclusive in the area
between z= — 1.58 and z=0.95 under the normal distribution curve is

(area between z = —1.58 and z =0) + (area between z =0 and z=0.95)

=0.4429 +0.3289=0.7718

which compares very well with the true value 0.7734 obtained using the
binomial distribution.
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Example 10-4* Measurements of the diameters of a random sample of 200
bearings made by a certain machine showed a mean diameter of 0.824 in.
and a standard deviation of 0.042 in. Find (a) 95% and (b) 99% confidence
limits for the mean diameter of all the bearings that will be made by this
machine.

The 95% confidence limits are given by

 

which is approximately

 

In this example, X =0.824 in. and §=0.042 in. Thus

0.824+ 1.96( Ei—z)
V200

0.824 +0.0058 in. = (0.8182, 0.8240)

with a 95% confidence interval.
The 99% confidence limits are given by

 

T+ 2.585

VN

which is numerically equal to

0.824+ 2.58(%)
V200

Thus

0.824+0.0077 in.=(0.8163,0.8317)

with a 99% confidence interval. Note that we have assumed the reported

standard deviation to be the unbiased standard deviation 5. If the standard

deviation had been s, we would have used §= s\/N/(N - 1)

=V 200/199s , which can be taken as s for all practical purposes.

*From Murray R. Spiegel, The Theory and Problems of Statistics, The Schaum’s Outline
Series, Published by McGraw-Hill, Inc., New York. Reproduced by permission.
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Example 10-5° Asmall sample of 10 measurements of the length of a bolt
give a mean of X=4.38 in. and a standard deviation of s=0.06 in. Find
the 95% and 99% confidence limits for the actual length.

Table 10-7 Percentile Values (¢,) for the Single-Sided

t-Distribution with v Degrees of Freedom
 

v 10.995 lo.99 lo.975 0.95 10.90

1 63.66 31.82 12.71 6.31 3.08

2 9.92 6.96 4.30 2.92 1.89

3 5.84 4.54 3.18 2.35 1.64

4 4.60 3.75 2.78 2.13 1.53

5 4.03 3.36 2.57 2.02 1.48

6 3.71 3.14 2.45 1.94 1.44

7 3.50 3.00 2.36 1.90 1.42

8 3.36 2.90 2.31 1.86 1.40

9 3.25 2.82 2.26 1.83 1.38

10 3.17 2.76 2.23 1.81 1.37

11 3.11 2.72 2.20 1.80 1.36

12 3.06 2.68 2.18 1.78 1.36

13 3.01 2.65 2.16 1.77 1.35

14 2.98 2.62 2.14 1.76 1.34
 

The 95% confidence limits are given by

s
X=x ’0.975(—) 

VN-1

Since

r=9

we can find

tog75=2.26

from Table 10-7 or directly using the definition of the ¢ distribution.
Using X =4.39 and s=0.06, we can be 95% confident that the actual mean
will be included in the interval

0.06
438+ 2.26(

V10—1
) =4.38=0.0452 in.

*From Murray R. Spiegel, The Theory and Problems of Statistics, The Schaum’s Outline

Series, Published by McGraw-Hill, Inc., New York. Reproduced by permission.
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The 99% confidence limits are given by

X+t (——S——)
0.995 \/N—l 

Where »=9 and 7495 =3.25. Then with 99% confidence we can expect the
actual mean to be included in the interval

0.06
4.3813.25(

V10—1
) =4.38+0.0650 in.

Now we work this problem, assuming that large sampling methods are
valid, and compare the results of the two methods. Using large sampling

methods, we obtain the 95% confidence limits

—438+ 1.96( 006 ) —4.38+0.037 in.
V10

1.960

VN
X+ 

where we have used the sample standard deviation 0.06 as an estimate of o.
This is to be compared with 438 +0.0452 using small sample statistics.

Similarly, the 99% confidence limits are

2580 _ 438+ 2.58(20;9-) —4.38+0.049 in,
VN V10

as compared with 4.83 +0.0650.

In each case the confidence intervals obtained by using the small or

exact sampling methods are greater than those obtained by using large

sampling methods. The reason is that less precision is available with small

samples than with large samples.

 X+

Example 10-6 * Test scores of 16 students from one city showed a mean of

107 with a standard deviation of 10, while the same test scores of 14

students from another city showed a mean of 112 with a standard devia-

tion of 8. Is there a statistically significant difference between the mean

scores of the two groups at a 0.01 and a 0.05 level of significance?

*From Murray R. Spiegel, The Theory and Problems of Statistics, The Schaum’s Outline
Series, Published by McGraw-Hill, Inc., New York. Reproduced by permission.
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If p, and p, denote population mean scores of students from the two
cities, we will see if we can reject the hypothesis

Hoy:py=p,

Thatis, there is no statistically significant difference between the groups.
The reader can easily show for himself that in the case of comparing two

sample sets

= )71_)?2

oV1/N,+1/N,

where

N2+ N,s2 16(10)* + 14(8)’ oa
N,+N,-2 16+14-2 7

Then

e112107 _

9.44V1/16+1/14

On the basis of a two-tailed test at a 0.01 level of significance, we would
reject H, if ¢+ were outside the range — ;495 tO #y99s. For (N,+ N,—2)
degrees of freedom=(16+14—2)=28, this range is —2.76 to 2.76. It
follows that we cannot reject H, at a 0.01 level of significance.

We would reject H, on the basis of a two-tailed test at a 0.05 level of
significance if ¢ were outside the range — ¢,4,5 to #;4,5. For 28 degrees of
freedom this range is —2.05 to 2.05. Again we cannot reject H, at a 0.05
level of significance.
We conclude, therefore, that there is no significant difference between

the scores of the two groups.

1.45

Example 10-7* The standard deviation of the heights of 16 male students

chosen at random in a school of 1000 male students is 2.40 in. Find 95%

and 99% confidence limits of the standard deviation for all male students

at the school.

*From Murray R. Spiegel, The Theory and Problems of Statistics, The Schaum’s Outline
Series, Published by McGraw-Hill, Inc., New York. Reproduced by permission.
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The 95% confidence limits are given by sVN /xo975s and sVN /Xq02s-
For

v=16—1=15 degrees of freedom

Xos7s=21.5
or

X075 =9.24

and

X(%,ozs =6.26

or

X0.025 = 2.50

Then the 95% confidence limits are 2.40V16 /5.24 and 2.40V16 /2.50,
that is, 1.83 and 3.84 in. Thus we can be 95% confident that the population

standard deviation lies between 1.83 and 3.84 in.
The 99% confidence limits are given by

SVN /Xos95 and sVN /Xo00s:
For

v=16—1=15 degrees of freedom

X§.995 =328

or

Xo.995 =13

and

Xé.oos =4.60

or

Xo.005 = 2.14

Then the 99% confidence limits are 2.40V16 /5.73 and 2.40V16 /2.14,
that is, 1.68 and 4.49 in.

Thus we can be 99% confident that the population standard deviation
lies between 1.68 and 4.49 in.

The number of degrees of freedom of a statistic are denoted by 7, which

is defined to be the number of independent observation samples minus the
number of population parameters that must be estimated from the sample

observations.
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CHAPTER 11

AN INTRODUCTION TO
CALCULATOR PROGRAMMING

11-1 INTRODUCTION

In Chapter 12 we discuss programmable pocket calculators available
today. Before getting into the details of design and program execution let
us review the general concepts of programming computing machines,

whether they be calculators or computers. The details of programming
specific calculators are easier to understand if more general concepts are
known.

11-2 THE ELEMENTS OF A PROGRAMMABLE CALCULATOR

For our purposes all programmable calculators can be thought of as con -
sisting of four parts or elements: a program unit, a data memory unit, an

arithmetic unit, and an input/output unit. A block diagram of the pro-
grammable pocket calculator is shown in Figure 11-1. This diagram is simpli-
fied to show only the elementary connections between the four elements.
The input/output unit for most calculators is simply the keyboard and

the display register. The program unit is the chip that converts keyboard

input into preprogrammed computational functions that are conducted in
the arithmetic unit. The program unit also will direct inputs from the
keyboard to the data memory unit and store them there for later recall
either as a part of the preprogrammed functions to be performed in the
arithmetic unit or simply to be displayed as part of the output.
The electronic chip that implements the program unit is the real brains

of the pocket calculator. It contains the electronics for computing the
preprogrammed functions associated with keys on the keyboard and, in the

297
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Data memory

unit

   

   

 Input/output Program Arithmetic

unit unit unit
  

         
Figure 11-1 Programmable pocket calculator block diagram.

case of the programmable pocket calculator, for storing the program
developed by the operator. From the standpoint of the user, a program is a
series of calculator key strokes pressed to manually solve a problem. In the
programmable pocket calculator this sequence of key strokes is stored in
the program memory in the program unit and sequentially executed so as to
automatically perform the sequence of key strokes that would otherwise
have to be done manually. The calculator remembers these key strokes as
they are keyed in and then executes them in the same order as pro-
grammed, at the press of a single key initiating the execution of the
automatic program.

11-3 PROGRAM MEMORY

A key element of the program unit in all programmable pocket calculators
is the program memory. It simply remembers a sequence of manual key
strokes. The sequence of key strokes that make up a program is stored in a
part of the program unit that is called program memory. The early pro-
grammable pocket calculators contained program memories on the order
of 50 to 100 steps. Now the machines have on the order of 220 to 256 steps,
and the larger machines have up to 1000 and more steps. Program memory
can be thought of as a list of instructions each one of which has a step
number or address. See Figure 11-2. Once the program memory has been
programmed, each address has associated with it a key stroke code
identifying the preprogrammed function that the calculator is to perform
in the arithmetic unit using data in the memory unit and outputting data to

the input/output unit. Virtually all calculators execute a program in the
same simple manner. Starting at the address 001, the sequence of key
strokes is executed exactly in the order in which they are stored in
memory. It is apparent that to program a calculator one of the functions
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Address and

step number Key code

001 Instruction

002 Instruction
  

/—\_/—\_  

  

      
222 Instruction

223 Instruction

224 Instruction  

Figure 11-2. Program memory.

(keys) that is required is the instruction to the calculator to begin stepping
through the program memory starting at location 001 and proceeding
sequentially through the entire set of program memory locations as the
calculator is programmed. This key returns the address pointer to the top of
the program memory (address 001), and is often called the return key
(RTN) or reset key (RSET). Another function (key) that is obviously
required is an instruction that will begin the execution of a preprogrammed
set of key strokes. This key is usually called the run key (RUN). With the
modern pocket calculatorsit is not necessary to start a key stroke sequence
at address 001, and it can actually begin at address 100, for example. In
this case, it is necessary to be able to label the program memory so that the
calculator knows that it should stop searching for a sequence of key
strokes and begin to execute them. This leads to the need for a label key
(LBL) which identifies for the calculator the beginning of a sequence of
addresses containing preprogrammed functions to be executed in the
sequence following the label. This concept is made clear in Figure 11-3.
Here we see the search is conducted starting with address 001 until label A

 

 

 

 

 

 

 

  

    

Instruction : Search

Instruction |

Label A *

Instruction

Instruction Execute

098 ]

099 Instruction

101 Return (

102 Instruction ; Search    
Figure 11-3 Execution begins immediately after the label instruction, and search for a new
label begins immediately after the return instruction.
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Figure 11-4 Multiple search and execute sequences.

is encountered and then the calculator stops searching and executes all of
the instructions in exactly the sequence of the addresses from address 3 to

address 101 where a return key code is encountered. The calculator then

continues searching for the next label as shown in Figure 11-4. We see then
that an execute mode is bounded by a key code which labels the initiation
of the execution of a sequence of key strokes and a key code that

terminates execution and directs the calculator to return to the search

mode.
With most pocket calculators, a label can be inserted in a sequence of

key strokes to be executed and the program merely “falls through” the
label and the sequence continues until a return is encountered. For
example, if address 100 is labeled A and seven steps later address 107 is
labeled B, and address 110 is labeled return, the program will begin to
execute the key strokes stored in program memory starting at address 101
and will continue the execution of the program according to the key codes

found in addresses 101 through 106. It will “fall through™ the labeling

function found in address 107 and will continue processing the key codes
found in addresses 108 and 109. In a sense the key code found in address

107, labeled B, is transparent to the execution of the program from
addresses 101 through 109. The reason is that this enables placement of
labels anywhere within an executable sequence of key codes that can be
used to locate elements of the program to be repeatedly executed before

the return key code is encountered. This is the process of looping. To
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First pass Second pass ¢ ¢ ¢ 100th pass

001 Label A '

002 c=101 :
\ L
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040 Label B *

041 c=C-1
  

099 Skip when C =0

100 Goto B
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I

I

     Y
  

  

      -
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° o o

 200 Stop +
  

Figure 11-5 The looping process.

execute a loop, one additional keyboard function is required and that is the
GO-TO command. The GO-TO command will stop the execution of the
program and instruct the calculator to go to the label identified as part of
the GO-TO key code. For example, if the GO-TO command is go to B, the
execution of the program will cease and the calculator will search for label
B. When label B is found, the calculator will execute the code until it again

encounters the GO-TO command. This process will continue until the
GO-TO command is skipped. Thus the final command that will implement
the rudimentary execution of all computing programs is the SKIP com-
mand. With the label, return, GO-TO, and SKIP instructions, it is possible

to learn to automatically execute a manual sequence of key strokes and

even iteratively to loop through a sequence of calculations until a condition
is satisfied where a SKIP of a GO-TO instruction returns the program to
its normal continuation where it proceeds until a return instruction is

encountered and execution of the program terminates. The process of

looping is illustrated in Figure 11-5.

11-4 KEY CODES

Key codes are the displays shown in the display register and identify the
instruction contained in each step of the program memory. Each key code
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Figure 11-6 Key code formats.
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of the modern programmable pocket calculators has two digits. The first is
the keyboard row in which the instruction (key) is to be found, and the
second indicates the column in which the key is to be found. The
intersection of the row and the column identifies the specific key, or
instruction, that resides in program memory. Also shown in the display
register will be the program memory step. This is separated from the key
code. The memory step is usually shown on the left and the key code on
the right. It is common to merge two keys into a pair of combined key
codes. When labeling a memory location, two key strokes are required; for
example, both the label key and the A key must be pressed to give a
location the label A. Thus the key code for label A will be a pair of key
codes as shown in Figure 11-6. The keyboard locations for key code 21 11
are shown in Figure 11-7. Where a key has a single function; for example
to take the square root, only one two-digit key code is displayed indicating
that key.

11-5 CREATING A PROGRAM

Creating a program is a straightforward process. First all the program
memories are cleared by striking the appropriate clearing key on the
calculator keyboard. Then the calculator is switched to the program mode.
Thefirst step is to give the program a label so that the calculator will know
when to begin executing a sequence of instructions. Then the sequence of
operations to be performed on the data in the display register is executed.
The calculator will store in program memory, in sequential order, the key
strokes exactly as manually input (programmed). The end of a program is
signified with most calculators in one of two ways: either a return (RTN)
instruction or a RUN-STOP instruction is used. It will be found that the
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Figure 11-8 Creating a program to calculate the area of a circle.
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most useful instruction to end a program is the return instruction, although

RUN-STOP can be used.
To run a program, all that is required is to switch from the program or

learn mode to the run mode, key into the display register whatever data are
required, and press the key that labels the beginning of the program. For
example if the first step in the program were labeled A, one would strike
the A key. The calculator will automatically execute the sequence of key
strokes stored in program memory and will automatically stop with the
results displayed in the display register when the return or RUN-STOP
instruction is encountered.
An example of creating a program to calculate the area of a circle is

shown in Figure 11-8.

11-6 FLOW CHARTING

Flow charting is a technique for diagramming the manner in which a
program solves a problem. With the large number of possible instructions
available on a programmable pocket calculator, it is easy to lose track of
how the problem is being solved when preparing the program for a long
sequence of calculations. A flow chart is a visualization developed before
the actual programming begins and is intended to aid both in understand-
ing and designing the program. The flow chart breaks the problem into
small segments or groups of instructions, each of which in itself is easy to
manage and when combined solve a fairly complicated problem. In short,
the flow chart is a road map through the programmed sequence of
instructions for problem solving. In its simplest form the flow chart shows
the start and stop of the program with the processing that is conducted in
between. See Figure 11-9. The next level of flow chart details shows the
internal loops associated with a calculation. An example of the pricing of a

freight shipment is shown in Figure 11-10. Once such a flow chart is
prepared, it is a straightforward matter to develop the calculator program

to implement the math flow.
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11-7 BRANCHING

There are two types of branching commonly encountered in programmable
calculators: conditional and unconditional. A GO-TO instruction can be
used to conduct an unconditional branch. Such a branch always ceases
execution of a program and begins searching sequentially downward
through the program memory for the label associated with the GO-TO
instruction. For example, if the instruction is to go to B, the calculator

halts execution of the program and searches through the program for label
B. When label B is encountered the execution of the program is resumed.
In this sense the program branches away from the sequential execution of
the program steps and begins executing again when it encounters the label
instruction. A conditional branch is quite different and will execute a
branch using a GO-TO instruction but is dependent upon the output of the
test. There are two types of conditional tests usually implemented in most
pocket calculators. The first will branch based on whether the contents of
the X or Y register are greater than the other, less than the other, or equal

to the other. Another type of test compares the contents of the X register
only with zero, that is, the X register will be equal to zero or not equal to
zero. Depending on the results of these tests, the calculator is prepro-

grammed either to skip or not to skip the next instruction. If it skips the
next instruction, a conditional test when not met will pass over a GO-TO
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Figure 11-13 The looping process.

instruction, resulting in the continued execution of the preprogrammed
sequence. See Figure 11-11. On the other hand, if the conditional test is
met, the calculator is preprogrammed to read the next instruction which
could be the location of an unconditional GO-TO instruction. This results
in the unconditional jump to the next label associated with the GO-TO
instruction. See Figure 11-12.

Figure 11-13 shows the process of looping backward in a program to
repetitively compute a sequence of instructions until a test is satisfied.
While the flow chart shows the loop going backward to execute instruc-
tions, in fact the conditional test and GO-TO instructions require that the
calculator continue through the sequence of instructions until it refinds

label A which means executing all the instructions in sequence through the
end of the program until label A is again found. If the number of
instructions between label A and the GO-TO instruction are very few, then
the calculator must search through virtually all of the program memory
until it again finds the appropriate label. The latest calculators overcome

this time-consuming problem by the use of an indirect addressing register

where the calculator can be instructed to jump immediately from one

address location to another without the necessity of searching through the
remaining program memory locations. This is a powerful technique that
can reduce substantially the time required to execute a given program.



CHAPTER 12

THE PROGRAMMABLE
POCKET CALCULATOR

12-1 INTRODUCTION

As mentioned in the preface, the premise of this book is that the pocket
calculator provides the analyst with a new dimension capability. The
programmable pocket calculator, in the author’s opinion, is yet another
advance in pocket computing capability for the scientific analyst.
From the analyst’s viewpoint, one of the more significant uses of the

pocket calculator may be as a teaching machine. The usual approach to

learning a new discipline or a new technology involves four steps:

1. Studying the discipline in the textbook fashion.
2. Identifying or developing the mathematical tools that have been

useful for solving the discipline’s problems.

3. Working the “textbook” problems to learn the details and subtleties of
the discipline through quantifying the problems with numbers, tables,
graphs, and drawings.

4. At least two to three years of application of the mathematical models

by working in the discipline itself.

The last step in this process takes one from the textbook-type knowledge to

actual knowledge of the discipline itself. Here, the mathematical models

are usually more complex, requiring many subtle considerations. For

example, Fourier analysis as studied in the textbooks is often confined to
Fourier series and Fourier integral representations of continuous functions

defined on the entire domain of the reals. In practical harmonics analysis,

the functions are usually finite in length and the data are usually

sampled, requiring “window carpentry” filtering of the data prior to

conducting the harmonic analysis. These “practical problems,” while dis-
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cussed in textbooks, are rarely given the consideration that they require in
actual data handling problems.

With the advent of the programmable pocket calculator, the analyst now

has libraries available for many disciplines other than his own. These
libraries have been developed by persons highly experienced in their
disciplines. By merely securing the standard library for a specific disci-
pline, the analyst who has a programmable pocket calculator can, in a

matter of weeks, become familiar with the programs and mathematical
tools used in the discipline. Having acquired experience with practical

programs, he can then focus his attention on the problems in his discipline

and how to use the programs to solve them. In a sense the learning process

is reversed. The analyst begins with the ability to numerically evaluate

problems with which he is only vaguely familiar. These are practical
problems, however, and involve mathematical models that have passed the
test of time in practical analysis. Under the guidance of a person ex-
perienced in this new discipline, the learning process is fast.
The programmable pocket calculator is a good teaching machine also in

that it is portable and the learning can be conducted in the comfort of

one’s own home. In the past, the numerical evaluation of most pracuical

engineering problems was usually done on either a digital computer or a
programmable desk-top calculator at work (provided that the analyst could
justify his request for a budget to run the computers). Now the analyst can

study even the more complex aspects of any given problem or discipline at
home, where most of us do our homework anyway. Furthermore, the
analyst learns more quickly now because he spends most of his time
thinking and deriving, with a minimum of effort (stroking the key strokes)
on numerical evaluation.

The next most important capability that the pocket calculator brings to

the scientific analyst is the iterative computation of numbers and the
preparation of extensive tables and graphs (involving many point pairs) for

a more extensive set of problems than could be handled on the nonpro-
grammable pocket calculator. For the many consultants and small en-
gineering organizations that do not have a computer facility, the pro-

grammable pocket calculator can bring to each member of the staff

tremendous computing power.

Scientists and engineers usually do not compute, but develop the formu-

las that are used to compute the numbers and thus provide the insight to

solve problems. The pocket calculator allows the analyst to begin with a

top-level mathematical model of his process and refine it very quickly by

testing the model numerically. Here he develops a system of equations that

he thinks will describe a process or solve a problem and uses the pocket
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calculator to numerically evaluate the equations so that the results can be

compared with what is observed about the system. The analyst judges the

degree to which the model can satisfactorily predict the behavior of the

process. Any major discrepancies lead to revisions and improvement in the
model. Thus, while Newton’s laws and Lagrange’s equations generate the

equations of motion of a process that, when solved, will predict its
behavior, the numerical comparison between the actual observed behavior
and the predicted behavior may indicate that certain elements are left out
of the models. In the Newtonian formulation of mechanics this would lead
to more comprehensive free body diagrams to better understand the
system and thus to derive better mathematical models. In the Lagrangian
formulation of mechanics it would lead to the development of a more

refined Lagrangian which would have more energy terms to account for
the additional elements in the system.

Wesee, then, that the pocket calculator does not improve the “method”

for generating the equations of motion but helps to improve the mathema-
tical model to which the methods are applied. This development of

mathematical models using numerical testing is a convenient and fast

operation with the programmable pocket calculator. There is no waiting
for a batch-processed computer run to be made to get the data for

improving the model. There are no “charge numbers” or budget required

to permit the analyst to use the computer. On the programmable pocket

calculator the cost of the run is in the “noise” of the electric bill. Finally,

when an acceptable mathematical model is developed, the analyst can

transfer the model to a magnetic tape strip and store the model for future

use—a convenient means for conserving the energy spent preparing the

mathematical model. Furthermore, the key data used in the analysis of a

problem can also be stored on the magnetic tape for future reference.

Thus the programmable pocket calculator also provides an effective

means of documenting an analysis. The analyst can collect a magnetic tape

library at relatively small expense, requiring minimal storage space at

relatively low cost.
Finally, the programmable pocket calculator provides the engineer with

portable low-cost computing power for use in the field, in his car, at his

customer’s location, or in the convenience of his home.

12-2 HARDWARE CONSIDERATIONS

The programmable pocket calculator has the following parts:

1. The arithmetic unit, that is, the combination of registers that perform

the arithmetic.
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2. The memory, which stores numbers and instructions as programmed
from the keyboard or from stored programs on magnetic tape.

3. The firmware associated with the calculator, that is, its “hard wired”

programs and instruction set that are already built into the calculator.

Calculators perform numerical calculations only, as opposed to compu-

ters, which are alpha-numeric data processors. Today’s programmable
calculator, and any that might be expected in the near future, will only be
limited in the fact that they perform numerical calculations and not
alpha-numeric operations. Apart from this, the pocket calculators are
similar to digital computers. Specifically data can be stored in memory,
recalled to the arithmetic registers or arithmetic unit, and processed and
restored in memory following the sequence of preprogrammed operations.
An essential and interesting difference between the typical calculator and
its digital computer counterpart is that many calculators operate in dec-
imal rather than binary arithmetic. The reason is that decimal arithmetic

involves less electronics for the special-purpose calculators than would
conversion from decimal to binary and back again, as on general-purpose
digital computing machines. Memories therefore are often set up in integer
multiples of 10, as is the number of registers in the computing machine.
For example, certain pocket calculators have one constant storage register
and four arithmetic registers, in which the register arithmetic is performed.

Ten additional storage registers are available in an advanced model of the
basic calculator. The HP-65, has 100 programmable steps that can be put
into memory.

The memory in most programmable calculators can be expected to be a
set of registers in conjunction with the operating stack for performing
register arithmetic and for scratch-pad storage during the execution of a
program. From the standpoint of memory for storing numbers, there are
only the registers in the stack plus the scratch-pad registers for number
storage and manipulation. For example, if there are 9 scratch-pad registers
and 4 stack registers, there are 13 total storage locations for storing

numbers generated by a program. There is, however, memory for storing
keyboard instructions. For example, in the HP-65, 100 instructions can be
stored in the calculator for sequential operations. That is, a program of 100
key strokes on the keyboard of the machine can be stored and executed
automatically. Though numbers can be programmed into the calculator,
using the 100 storable key strokes is relatively inefficient. Instead, the
numbers can be input into the scratch-pad memory directly as opposed to
inputting a 13-digit number into memory with 13 key strokes. This is
perhaps the only important distinction between programmable pocket
calculators and the standard digital computer. The programmable pocket
calculator can be expected to store about 100 to 100,000 key strokes, not
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13-digit numbers. Thus when we say that a digital computer has 32k 16-bit
words or that a desk-top calculator has 4k 12-bit words, for the pocket

calculator we say that it can store 100 or more key strokes. This might seem
somewhat limiting, but actually most pocket calculator problems involve
fewer than 500 key strokes. With a 200-stroke memory capability we can

evaluate rather advanced mathematical functions and program fairly
sophisticated iterative procedures for solving difficult problems.
The speed with which the pocket calculator processes the 100 instruc-

tions varies from calculator to calculator. From 10 to 1000 instructions per
second can be expected from present-day pocket calculator electronic

circuitry.

12-3 FIRMWARE

The firmware consists of the instruction set built into the pocket calculator

and “called” from its keyboard. The basic instruction set usually contains
all of the functions on the keyboard of the scientific calculator and a set of

special functions associated with the programming aspect of the pro-
grammable pocket calculator. These include the following:

1. The GO-TO instruction. This instructs the calculator to perform the
instruction at the nth step in the stored program. Thus GO-TO 50 would
tell the computer to perform the instruction at the fiftieth step in the

program.
2. The JUMP instruction. This instructs the calculator to jump the next

two steps. It is expected that this instruction will be a natural part of all

programmable calculators, and the two steps that are skipped are usually

GO-TO type instructions. Thus the JUMP instruction with the GO-TO

instruction permits the calculations to be looped iteratively in the com-
puter program.

3. The DECREMENT AND JUMP ON ZERO instruction. This in-

struction, which can reasonably be expected in programmable calculators,
examines the contents of one of the scratch-pad storage registers. If the

register is not zero, it decrements the register by 1 and continues. When the

register is zero, it will perform the JUMP operation.

4. The LOGICAL or TEST FLAG instruction. The flag can be set equal

to 1 or zero, thus controlling the data flow in a calculator program, based

on whether the flag is 1 or zero. Usually, the test flags or Booleans can be

set manually on the keyboard or, since it is a keyboard instruction, with

the program.

5. The STOP instruction. This is an instruction to stop the program.
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6. The TEMPORARY STOP or RUN/STOP instruction. The calculator
is told temporarily to stop, usually for the purpose of data input or data
output.

Other keyboard instructions that can be expected to be found on the

typical programmable pocket calculators are the DELETE function, the
NO-OP function, and the SINGLE-STEP function. The SINGLE-STEP
function permits the program to be processed or reviewed a single step at a

time. This is for the purpose of debugging the program and examining or

modifying the program by stepping up to the location in the instruction

sequence that is to be modified or changed and the DELETE function

instruction used to delete the previously programmed instruction, leaving it

available for reprogramming. Finally, the NO-OP function can be used to
fill memory with an instruction not to perform an operation. In this way,

the remaining steps of a program can be safeguarded against accidental

programming of the instruction sequence with undesirable program steps.
The firmware in a programmable pocket calculator can also include a

keyboard for performing user-defined functions—functions that are pro-

grammed in a normal manner by a sequence of key strokes telling the

calculator how to execute the function. Of the firmware just discussed,

only the latter uses part of the programmable memory; the former func-

tions are part of the keyboard sequence and thus are designed into the
electronics of the calculator.

12-4 SOFTWARE

The software in programmable calculators is usually a magnetic tape strip,
a magnetic card strip, or a tape cassette that is used to both read in and

read out data and instructions from or to the memory of the calculator. It
can be expected that manufacturers will provide preprogrammed software
for performing analysis for many disciplines. In fact, it is precisely this
software that permits a single pocket calculator to be programmed to

perform special-purpose calculations in many disciplines. In a discussion

with the Chief Engineer on the HP-65 Program, Chung Tung, the author
was informed that it was precisely this motivation that led Hewlett-
Packard to develop the HP-65, the first of the programmable pocket
calculators.

The software associated with any pocket calculator would usually be

developed so that problems involving more than 100 instruction sets and

requiring more than the scratch-pad storage provided by the stacks plus

scratch-pad memory can be programmed on a series of mag tapes or mag
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card strips. In attempting to see how far this process could be carried, the
author programmed an 11-card sequence on the HP-65 for executing the

lateral and vertical channels of an automatic landing system simulation
which involves the numerical integration of a 14th-order continuous
dynamic process, including saturation limits and other hard-stop non-
linearities. While somewhat impractical to use, it does point out the
flexibility of this method when general-purpose computing machines are
not available—when the calculation is required in the field or when
research is being conducted away from the computer center.

A similar procedure can be used for storing data in excess of the 100 key
strokes plus the limited scratch-pad storage available in the pocket cal-
culator.

12-5 PROGRAMMABLE POCKET CALCULATOR TECHNIQUES

The basic procedure for solving a problem on the programmable pocket
calculator is as follows:

1. Definition of the problem. The generic types of problem that are

conveniently solved on the pocket calculator are data processing (which

includes interpolation, extrapolation, and filtering), the numerical evalua-

tion of functions, the solution to systems of equations (whether algebraic

or differential), the simulation of continuous processes, the frequency-

domain analysis of data, and the statistical analysis of data. All these
topics are covered in this book.

2. Preparation of a math flow of the sequence of key strokes required. For

this the equations for solving the problem must be determined and the

sequence of key strokes to numerically evaluate the equation must be

worked out in a form that can be solved explicitly, implicitly, or by a

combination of both. The preparation of the math flow will, by definition,

identify the control operations for automatic execution of the key strokes.

3. Programming of the calculator by keying in the key stroke sequence,

including control operations. Once the program is stored in memory, it is

useful to load it onto a mag-tape strip so as not to inadvertently destroy

the program. It is reasonable to expect that programmable calculators will

have an ERASE BEFORE WRITE tape load function. Thus reprogram-

ming or redefining the program or modifying the program can be restored

on the same mag-tape strip or cassette by simply reloading the program on

the mag-tape strip.

4. Verification and checking of the program by tests with all numerical

values set equal to zeros, 1, or a single sequence of numbers that permit

testing the program and its loops.
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5. Running the sequence automatically with the actual problem data.

As an example, consider the problem of analyzing a low-pass filter.
Figure 12-1 shows the three steps in the mathematical modeling process.
First, the physical block diagram model of the process is drawn, including
all of the hardware elements, the system inputs, and the system outputs. In
this particular case we have a high-gain amplifier with impedance networks
on the forward and feedback loops, which result in the passage of the
low-frequency components of the input signal to the output while attenuat-
ing the high-frequency components. The mathematical block diagram of
this filter in Laplace transform notation is the second step in the modeling
process shown in the figure. The frequency response ofthis filter can easily
be determined by replacing S with jw and computing the transfer function
of the filter algebraically. For the more difficult problem of determining
the time-domain response of the filter to arbitrary forcing functions,it is

necessary to prepare the differential equation that models this physical
program. This is the third step in the modeling process shown at the
bottom of Figure 12-1. The next step is to prepare a math flow for the
low-pass filter mathematical model.
The math flow visualizes the way in which the problem is intended to be

solved on the programmable pocket calculator. As shown in Figure 12-2.

the first task is to initialize the problem with the state variables and
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parameters in the problem, together with the coefficients involved in the
numerical integration process for solving the differential equations of

motion of the low-pass filter and the control variable that is used to
determine the computing path within the math flow. In this case the initial

state vectors are the initial values of the filter input and output, the

parameters are the resistance and capacitance of the filter, the parameter

associated with the numerical integration process is the integration step
size, and the control variable is the number of steps that we will take

through the system of differential equations to compute the filter’s re-
sponse at a time nT.

After traversing the initialization path, the calculator is programmed to

compute the rate of change of motion of the filter output. On computing

the rate, the next step in the math flow is to compute the new value of the

filter output, which is then followed by a test to determine if the calcula-
tions are to be stopped. In this example we ask if 100 passes through the

system of equations have been taken. When the answer is yes, results are
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displayed in the display register. If the answer is no, another pass through
the system of equations of motion is made (after renaming the variables
and computing the forcing function for the next step, of course). In this

example we simplify the situation by examining only the step response of

the filter. The calculation of the forcing function in the closed-loop
feedback process then is not necessary. This has no effect on the general
nature of this discussion, since computing the forcing function is a
straightforward process when it is necessary.

Table 12-1 illustrates the third step in the problem-solving procedure—
preparing a key stroke sequence that can be programmed on the pocket
calculator. In this example, the HP-65 calculator was used and some

attention must be given to the details of its implementation on the HP-65
to understand this step of the procedure for solving problems on the
programmable calculators. Though this key stroke sequence was pro-
grammed on the HP-65,it is typical of the key stroke sequences one would

expect to encounter on most programmable pocket calculators.

The first 15 steps shown in Table 12-1 are the steps taken along the
initialization path. The sequence begins by labeling the initialization path
A to distinguish it from the normal feedback path which begins at step 16
and is labeled 1 (it identifies the point at which the feedback path loop
closure occurs). The steps 2 through 15 involve automatically stopping to

input a number on the keyboard and then manually starting the program
again to store the keyboard number in memory. For example, step 2 stops
the automatic program sequence so that the variable Y, can be input on

the keyboard and then stored in location 1 (step 3) when the RUN-STOP
key is again stroked (step 2). When operating, the computer will automati-
cally progress to the first RUN-STOP (which is step 2), will stop, the
variable Y, is manually input through the keyboard into the display
register, and when the RUN-STOP key is stroked, the variable Y, will be

stored in memory register 1 (step 3). The computer will then automatically
proceed to step 4 where it will stop to await keyboard input of X, and the
associated RUN-STOP key stroke to allow the program to proceed to step
5 which is to store the contents of the display register in memory register 2.

This procedure of initializing the program continues until step 15 where
the loop closure pointis identified by labeling that particular step as step 1.
The next 12 steps compute the filter output rate according to the

differential equation shown in Figure 12-2. Updating the filter output is
done in the next five steps of the program. Then a test is made to see if 100

passes through the equations of motion have been completed. This is the
step beginning with the key stroke DSZ, which means “decrement and skip
on zero.” The function of the DSZ is to test register 8 for zero. If register 8
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Table 12-1 Preparation of a Key Stroke Sequence
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R/S Stop then input and store C;
STO-5
R/S Stop then input and store T
STO-6
R/S Stop then input and store n
STO-8

Identify loop closure points LBL-1 Label this step “1”

Compute rate RCL-2 Recall x
RCL-3 Recall R;
RCL-4 Recall R,
+ R;/ R,

X (R;/ Rp)x

 

is zero, the next step in the program will be skipped. In this example if
register 8 is zero, the calculator will jump over the GO-TO instruction and

go immediately to the RUN-STOP instruction where the program will stop
and the latest value of Y will be displayed in the display register. If,

however, the contents of register 8 are not zero, then the program will not

skip the GO-TO instruction—it will go to the step labeled 1 and simul-
taneously the contents of register 8 will be decremented by 1. In Hewlett-

Packard’s implementation of the DSZ function, register 8 is used for the

contents of the number of steps to be made in an iterative procedure. For
other pocket calculators, it can be expected that other implementations of
this DSZ function can be made. They all have one thing in common,

however: the decrementing of some register and skipping the next step if

the register’s contents are zero. If it is not zero, the next step will not be
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Table 12-1 (Continued)
 

 

 

Math Flow
Key

Math Flow Stroke Function

Compute rate RCL-1 Recall y

CHS -y

+ (R;/Rp)x—y
RCL-3 Recall R;
RCL-5 Recall G;
X R,C;

- (Ri/Rp)x—y .

R;C -

Compute state RCL-6 Recall T
X Ay=Ty

RCL-1 x=y+Ay
+

STO-1  y,=yn+

Test for problem DSZ Test register 8 for zero. If zero,
being solved skip next step and proceed

Go through

equations of

motion again if not solved GTO-1 If R-8 not zero then go to step “1”” and decrement
R-8 by one and go to 1

Display results R/S Display y

 

skipped; however, the contents of the test register will be decremented by
1.
The careful reader will remember that the author recommends terminat-

ing an iterative procedure based on a test of the number of iterations if at
all possible. Again, the reason is that for many iterative procedures an
estimate of the number of steps to solve the problem can usually be made.

This solution often gives insight into the convergence properties of the

problem, which is helpful in establishing confidence in any result. For
these problems where estimates of steps that should give the solution are
known, the DSZ function is a “natural” test procedure and thus is

particularly important in pocket calculator analysis.

Table 12-2 shows three static check cases used to check this program.
Simple static tests of a program can often be made with numbers that are
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Table 12-2 Preparation of a Check Case
 

 

 

Check Case 1 Check Case 2 Check Case 3

Let Y0=O Y0= Y0=1

X0=1 Xo= X0=0

R=1 R,= R,=

T=1 T=1 T=2

n=1 n= n=1
Then Y=1 Y=0 -1

AY=1 AY=0 AY=-1

Y’l=l Y’l= Yn=%

Display Y, =1 Display Y, =1 Display Y,=1
       
 

quite unlike the physical characteristics of the process being studied. In

this particular set of check cases, only zeros and 1 were used in the first

two cases and zero through 3 for the third. It is important to develop
dynamic check cases by either using an alternate means to solve the
problem or a predetermined analysis of a simplified version of the prob-

lem. This is not shown as our straightforward example. The material
covered in Chapter 7 is an example of the numerical methods that can be
used to generate an independent check case on the dynamics of the

solution of problems involving this type of differential equation. The idea
would be to compare the results of a solution generated with a recursion
formula with those of the solution generated here by using Euler numerical

integration.
Table 12-3 illustrates the fifth step in the problem-solving procedure

where the computer makes 100 passes through the equations to compute
the filter’s response at 1 second, with the filter design parameters being

varied. The reader may be interested to know that the material for this

example was developed and programmed and the sequence of solutions

was run in approximately 17 minutes. The static check cases were run in 20

seconds, and the three 100-step solutions were run in approximately 3

minutes.

Furtherillustrations of the power of the programmable pocket calculator
to solve problems are given in Chapter 13, where optimization problems
with the penalty function method for handling equality constraints are

programmed and example solutions are run to exemplify the calculator’s

use for this type of analysis.
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Table 12-3 Running of the Automatic Sequence to Study the Unit Step Response
of the Filter
 

Examples of 100-Step Solution Cases at 7=0.01
 

Time R=1MQ R,=2 MQ R,=2 MQ

C=1u C=1u Ci= 1 uf

1 second y=0.63396766 y=0.39422956 y=1.26793532

 

It is worth pointing out that as the calculator s programmed, the key
strokes are displayed according to their row-column location on the
keyboard. For example, if the key that is at the intersection of the third
column of keys and the second row of keys is depressed, a “32” is
displayed in the register window. In this way, the programmer can monitor
the programming of the process to ensure that the desired program is being
stored in memory. This is also used in conjunction with the single-step key
to review a program that is already in memory and, when necessary, to

single-step up to the point where a change is to be made.

Relational tests that are not used in this example, but which can be

expected in programmable pocket calculators, include those of whether a

register is greater than, equal to, or less than the contents of another
register. In the Hewlett-Packard 65 implementation, the relational tests are

conducted in conjunction with the ninth memory register. As mentioned
before, with the DSZ function it can be expected that other implementa-
tions will be available in other programmable pocket calculators.

Finally, a point well worth making is that in the preparation of any

computer program on any programmable calculator (where there is more

than enough memory for the problem), it is advisable to include additional
RUN-STOP operations in long programs to display intermediate results
while writing and checking the problem. When the program is finally

checked out, the unwanted stops can be deleted. The deletion procedure is

simply to single-step to the RUN-STOP and then use the DEL instruction

to eliminate the RUN-STOP instructions used for checkout purposes.

12-6 METHODS OF ANALYSIS ON THE PROGRAMMABLE POCKET

CALCULATOR

There are three basic types of numerical methods for solving problems on
the programmable pocket calculator. In the explicit method the equations
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to be numerically evaluated are simply programmed on the calculator, thus

eliminating the need for manually working out the sequence of key strokes
to solve the problem. A manual optimization problem is a good example.

Assume that the top-level cost model for some satellite programs takes the

 

   

form*

C=n 30+(——M_1 )30 +4 30+(M‘1 )30
1.5 1.5

procurement research,
development,

refurbishment launch costs

M—1 T 22T
+ o|— + + —_—

30 ( 1.5 )3 ] M ground2 Z:lppon M

tests, and
engineering

+ 0.4  

 

which involves 69 key strokes for their numerical evaluation and the use of
four scratch-pad storage locations. The program is tabulated in Table 12-4.

It is clear from the cost model that the mean mission duration of the
satellite plays a dominant role in the cost equation. If the mean mission

duration is small, the number of launches (7/M) is large, and the cost

associated with each launch results in high total program cost. If the mean

mission duration is large, the cost associated with the design and devel-

opment of the satellite is large, which also leads to a high total program

cost. Clearly, somewhere in between is a minimum total program cost. To
determine it, we use a sequence of solution values for the cost equation, as

shown in Table 12-4. It is apparent that a satellite mean mission duration
of ~1.25 years minimizes the total program cost.
The preparation of Table 12-4 on the programmable pocket calculator

involved 61 key strokes to program the calculator and 100 key strokes for

data entry and manual program iteration. The entire procedure took 14

minutes, including checkout. When the table was manually prepared

without using the programming feature of the calculator, the table took

approximately 45 minutes to prepare. While the time saving shown here is

typical of pocket calculator analysis, what is not shown (but what is

equally important) is that had the total program cost model given unex-

pected or unexplained results that would have required its modification,

only 3 minutes would have been required to incorporate the cost model

modifications and to prepare a new Table 12-4. With the programmable

*n=number of satellites; M =satellite mean mission duration; T=total program lifetime;
and C=total program cost~millions of dollars.
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Table 12-4 Total Program Cost for the XYZ Satellite Program
 

Program Mean Mission  Total Pro-

 

Number of Duration Duration gram Cost

Satellites (years) (years) (millions)

2 5 0.25 650
2 5 0.50 453
2 5 0.75 401
2 5 1.00 385
2 5 1.25 383
2 5 1.50 389
2 5 1.75 399
2 5 2.00 411
2 5 2.25 425
2 5 2.50 440
2 5 2.75 456
2 5 3.00 473
2 5 3.25 490
2 5 3.50 508
2 5 3.75 525
2 5 4.00 544
2 5 4.25 562
2 5 4.50 580
2 5 4.75 599
2 5 5.00 618

 

calculator, the modification would have been reprogrammed only for that
part of the program where it was required. The entire program need not
necessarily be rewritten. Then only an additional 100 key strokes would
have been needed to prepare another version of Table 12-4.
The second method of problem solving is the implicit method. An

implicit equation is prepared and solved as discussed in Chapter 9 on
determining zeros of a function. The procedure there would be to program
the iterative procedure so that the solution to the implicit equation satisfies
an error criteria established by the analyst.
The final procedure is neither implicit nor explicit. It is simply a

brute-force search for the solution to an equation or system of equations

by systematically testing regions where the solution is expected to exist and

retaining only the value (or values) in the region that best satisfies the
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equation to be solved. Of the three methods, the latter is the most
systematic, involving the least number of calculations and taking maxi-

mum advantage of the programmability feature of the pocket calculator.

The only test that needs to be done is to determine whether the equation,

when a solution is computed at a test point, is better satisfied with the test

solution currently being used than with any previous test solutions. If it is,
the new test pointis stored in memory and the old one erased (or retained

if it is desirable to monitor the convergence of the process). If it is not, the

systematic search algorithm proceeds to the next test point, retaining the
best previous test point. Of the iterative implicit and systematic search

methods, the latter is the least efficient but involves the fewest program-

ming steps, while the former method is more sophisticated, requiring

logical tests and search algorithms, such as Newton’s method.
From the analyst’s viewpoint, the explicit mode of computer solution,

where the analyst is involved in selecting the conditions to substitute into
the computer program (manual iteration), is at best a gross procedure but

requires only a few quick iterations, since the manual interaction will lead
to a closing in on the gross solution fairly rapidly. The implicit method

results in solutions that are difficult to develop with man-machine interac-

tion because the precision with which the solution is to be determined is
beyond the level at which the manual interaction can easily guess a better

solution than a preprogrammed solution search algorithm (see Chapter 13).
Finally, the third method, while systematic and simple to program,

results in the least efficient and least accurate solution to the problem. The

accuracy can be refined through refined grids of possible solution values.

The technique can be used for finding zeros of complex functions, such as

those described in Chapter 9 on finding zeros of a function. It is a very

practical and useful method when only a rough answer is required for a

problem that takes a lot of key strokes to evaluate. Also, it is mentioned

here as an example of the simplest form of problem solving available on

the pocket calculator at a low programming overhead penalty.



CHAPTER 13

OPTIMIZATION

13-1 INTRODUCTION

No discussion of the programmable pocket calculator is complete without
consideration of its optimization capabilities. The optimization problem
has gained significance in engineering in the last few decades because it
identifies the limit that practical design could approach if resources were
unlimited. Practical engineering design usually is suboptimum design; the

optimum is of vital importance nevertheless, since it identifies the ultimate
design limit and optimum system capability.

Here we do not cover what is perhaps the key issue in any optimization

work—the determination of what is to be optimized. Specifying precisely
the payoff function in any systems analysis is a practical matter. It is
perhaps the most difficult aspect of all systems analysis in that the

computational analysis, once the payoff function has been identified, is

almost a trivial matter in comparison to selecting the payoff function itself.
In fact, commonly a number of payoff functions are identified and a
system is optimized from a number of different viewpoints. The result is a
group of optimized systems, which are studied to identify the most practi-
cal system.

Whatever the way in which optimization is applied in systems analysis, it

is the analyst who must quantify the optimum system, from the

standpoints of both its characteristics and its payoff. We therefore proceed

to reexamine the fundamentals of optimization—for only the three simpl-

est optimization problems: the parameter optimization without constraints,
the parameter optimization with equality constraints, and the parameter

optimization with inequality constraints. Though the simplest of the op-

timization problems, they are among the most frequently encountered.

325
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Also, they involve smaller programs than do the more sophisticated op-
timization problems and thus can often be handled on the pocket calcula-
tor. For these reasons, then, we reexamine the fundamental concepts of

optimization to illustrate the optimization process by means of math flow
and specific problems that can be programmed on the pocket calculator.

The approach used here is to first develop the mathematical concepts of
these simple optimization problems and then discuss their numerical
evaluation. The intention is to reacquaint the reader with the concepts of
constraints, Lagrange multipliers, and the optimization terminology.

13-2 MAXIMA AND MINIMA

In most systems analysis the optimization problem amounts to maximizing
the payoff function. This function is usually of the form “benefit divided
by cost.” As a system is developed and increasingly more money is spent
on it, the benefits usually follow the law of diminishing returns. This is
seen in Figure 13-1. It is also true that the benefits are usually accrued on a
discrete basis as fixed amounts of money are spent on the system, rather
than being continually accrued. It is apparent from Figure 13-1 that the
benefit-to-cost ratio takes the shape shown in Figure 13-2. It is to the
analyst’s advantage, therefore, to maximize the cost-benefit curve or the

payoff function in terms of the benefit-cost ratio.

From a more mathematical viewpoint, optimization involves either
maximizing or minimizing a function f(x;). Specifically the objective is to

identify those values of x; that cause f(x;) to be a minimum or a maximum.

Strictly speaking, we need only consider either the minimization or the

System

benefit

  
System cost

Figure 13-1 System benefit as a function of system cost.
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Figure 13-2 Cost benefit as a function of system cost.

maximization problem, but not both. The reason for this is that the values
of x; which maximize f(x;) also minimize —f(x;). The maximum of f(x)
occurs at the same place as does the minimum of —f(x). We therefore
discuss the optimization problem from the viewpoint of either extremum,
but never both.

Perhaps the most familiar case in optimization is when the extremum of
a single dependent variable is a function of a single independent variable.
For a function of one variable, this means finding the point at which the
derivative is zero and evaluating the function at that point. The value of
the independent variable where the derivative is zero is only a necessary

condition that the function be at an extremum; it is not sufficient. For

example, a function can have a derivative equal to zero at a stationary

point and not at a maximum or minimum. Thus it is necessary to check the
second derivative to determine whether it too is at zero (a point of
inflection). If it is not, the second derivative can be used to determine
whether the extremum is a maximum or minimum depending on whether
the second derivative is negative or positive. Thus the condition for the
extremum of a single variable is

d o=5/(1)=0 (13-1)

d2

If ;t—if(t) >0, it is a minimum. (13-2)

2

If %(£)<0, it is a maximum. (13-3)
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And if (d%/dt®)f(£)=0,it is a point of inflection.
For a two-variable function what is required is

<f(x.y)=0 (13-4)

%f(x,y)=0 (13-5)

Single variable optimization on the programmable pocket calculator was
discussed in Chapter 12. It is worth mentioning again, however, that f(x)

can be conveniently programmed on the calculator and a search (manual
or automatic) for the x that minimizes f(x) can be quickly done. For

complicated f(x), the numerical value of the minimum f(x) may be found

more quickly on the calculator in this manner than by the analytical steps

just outlined.

Optimization of functions of more than one variable forces us to change
notation at this point. In what follows, we use the notation of Bryson and

Ho*:

x=| x, |=parameter vector (13-6)

We concern ourselves with the parameter optimization problems that

involve finding the values of the m parameter x,,x,,...,x,, minimizing a

payoff function that is a function of these parameters. We write the payoff

function in the Lagrangian notation

L(x,%X5...,X,)=L(x) (13-7)

The use of the programmable pocket calculator in solving optimization
problems is presently limited to two or three dimensions, but it is quite

useful for higher-dimension problems in computing “parts” of the problem

as subroutines. In any case the pocket calculator permits optimization

analysis of some complexity.

*See reference.
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13-3 PARAMETER OPTIMIZATION WITHOUT CONSTRAINTS

If there are no constraints on x and if the function L(x) has first and

second partial derivatives, the necessary conditions for a minimum are

oL . AL
ax 07 %y, (138

and

92L
—=>0 13-9
dx? ( )

Here we mean that the matrix whose components are 9L/ dx;0x; must
have eigenvalues that are zero or positive. All x that satisfy 0L/9dx =0 are
called stationary points. When

2

9L -9 (13-10)
dx?

at the stationary points x,, L(x,) is at a local minimum. If 32L/dx*=0 at
x = x,, it is not possible to establish whether the point is a minimum. Such
a point is called a singular point.

13-4 PARAMETER OPTIMIZATION WITH EQUALITY CONSTRAINTS

A more general optimization problem is to find the values of the “control

parameters” u,...,u,, that minimize a payoff function

L(xp,..sX,5Uy,..05U,) (13-11)

where the n parameters x,,...,x, are determined by

filxy, x5 uy,..0,u,)=0 (13-12)

f(xpseeosxs uypyeu,)=0 (13-13)
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Now, let

X1

x=| - = parameter vector (13-14)

X,

U

u=| - =control vector (13-15)

hy

-

fi
f=| = constraint vector (13-16)

Jn 
Then the optimization problem is to find the vector « that minimizes

L(x,u) (13-17)

where the vector x is related to u according to the constraint equation

f(x,u)=0 (13-18)

For a given optimization problem, the choice of which parameters to use
as control parameters 1s not unique. The choice must be such that u
determines x through the constraint equation.

A stationary point is one where dL =0 for arbitrary du, while holding

df=0 (letting dx change as it will). Then we have

dL=Ldx+ L, du (13-19)

and

df=f.dx+ F,du=0 (13-20)

Equation 13-20 may be solved for dx:

dx=—f"'fdu (13-21)
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By substitution, then, we have

dL=(L,— Lf',)du (13-22)

At the stationary point we see that for dL =0 for any du

L,—LS, Yf,=0 (13-23)
These equations together with the constraint equations determine the u

and x at stationary points.

Another technique is to adjoin the constraints to the payoff function by
a set of n “undetermined Lagrangian multipliers,” A,,...,A,, as

H(x,u,A\)=L(x,u)+ _i ANSfi(x,u)=L(x,u) +ATf(x,u) (13-24)

If we choose u (and thereby x through the constraint equations) so that
L= H, and if we choose A according to

AN = _oL E -
dx \ox

then

OH _
ax0

and

dL=dH= %%du (13-25)

Thus dH/du is the gradient of L with respect to u while holding f(x,u)=0.

At a stationary point, dL vanishes for arbitrary du; which can happen only
if

OH _dL v _ 1326
au_8u+}\ 8u_0 (13-26)

Hence a stationary value of L(x,u) must satisfy the equations

f(x,u)=0 (13-27)

%_1; —0 (13-28)

%’Z— =0 (13-29)
where

H=L(x,u)+ATf(x,u) (13-30)
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13-5 THE GRADIENT METHOD

When L(x,u) and f(x,u) are complex, numerical methods must be used to
determine the values of u that minimize H. Perhaps the most commonly
used numerical method is that of steepest descent for finding minima.

Gradient methods are iterative algorithms for estimating u, so as to
satisfy the stationary conditions dH/du =0 (see Figure 13-3).

u2 ‘}

H,
Contours of
H (uqu,)

     
Starting
values of

(uy, uy)

 L

Uy

Figure 13-3 Gradient method. (Au),= —k(dH,/du), (Au),= — k(dH,/du). Note: search
can overshoot when — k(9H/0u)>0.

One procedure for using the gradient method is:

1. Estimate the values for u.

2. Compute x from f(x,u)=0.

3. Compute Afrom AT= — (3L/3x)(3f/dx)"".
4. Compute dH/du=(9L/u)+AT(3f/ u).
5. Revise the estimates of u by amounts Au= — K(0H/du)" (K is a

positive scalar constant).

6. Iterate, using the revised estimates of u, until (9H/du)(dH/du)is
very small.
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The gradient method for finding a minimum is a hill-descending technique.
Starting with an initial guess of u, a sequence of changes Au is made. At
each step Au is in the direction of the gradient 0H/du whose magnitude

gives the steepest slope at that point on the hill. The choice of K involves
Jjudgment to ensure that the linearized prediction will be accurate and the
process will be efficient (i.e., will not require many iterations). K will

usually be varied in the sequence of iteration when it is thought that the
minimum is near.

13-6 COURANT’S PENALTY FUNCTION METHOD

Another numerical method for optimizing with either equality constraints
or inequality constraints is the Courant penalty function method. Suppose
that we wish to minimize L(u) subject to

f(u)=0 (13-31)

For the penalty function method, we minimize

L=L(u)+K| f(u)| (13-32)

subject to no constraints! Here K is large. If L attains a minimum at y,,it

is reasonable to expect that

f(up)=0 (13-33)

and

oL52 (ug)~0 (13-34)

Computationally, the penalty function method is easy to use and under-

stand and has been used with great success in certain parameter optimiza-
tion problems. The Courant penalty function method does not always
work, however, because large values of K tend to make a long, narrow and

deep depression in the field of L(u) with the stationary point at the bottom

of the depression. The problem with this is that the gradient is more likely

to be evaluated on the sides of the depression than the end of the

depression. This will result in estimates of the stationary point that jump

back and forth across the narrow depression instead of running down the

length of the depression. For example, minimizing

L=(y,—2)+)? (13-35)
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subject to y, =0 has y, =y, =0. The penalty function method minimizes

-vix)/ TixNTIFK 1+K

Contours of constant L are ellipses withcenters at y,=(2/1+ K), y,=0.

Figure 13-4 shows contours of constant L.

Inequality constraints can be conveniently handled by the penalty

function method as well. The approach is straightforward and illustrated

by the following example: Minimize L(y) subject to the constraint f(y)

4K= 2

L=(y,-2) +yi+Kyi=yi+ +T (13-36)

  

}’2}

L= (y,— 27 +y,2 + Ky,?2

K = 35,

P
N

 

- o

  

 
Figure 13-4 L contours created by large penalty function coefficients.
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< 0. This problem is solved using the penalty function method by minimiz-
ing

L=L(y)+KPf(?) (13-37)
where P is defined as

P=[ L (f>0) (13-38)
0, (f<0)

Examples of pocket calculator optimization with the penalty function
and gradient methods for programmable pocket calculators follow.

Example 13-1 Find the stationary value of

(
f(x,u)=x+mu—c=0

L= +

N
[
—

i
n
k
w

]
S

~
—

subject to the linear constraint

(x is a scalar parameter and a, b, m, and ¢ are constants).

The curves of constant L are ellipses, with L increasing with the size of
the ellipse. The line x+ mu—c=0 is a fixed straight line. The minimum

value of L satisfying the constraint is obtained when the ellipse is tangent
to the straight line (Figure 13-5). Now

1 x2 u?=2+ X -H 2(a2 b2)+>\(x+mu c)

Thus the necessary conditions for a stationary value are

oH
dx

OH _
du

These three equations for the three unknowns, x, u, A, have the solutions

x+mu—c=0, =-x—2+)\=0, X +am=0
a b?

= a’

a’+ m??

_ b¥mc

a*+ m?b?

c
A= —
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®

x+mu—c=0

(x, u) for minimum L

- .=
L = constant

 
Figure 13-5 Example of minimization subject to constraint.

and the minimum value of L is given by

C2
L. =—2C
™ 2(at+ mb?)

Note that

_dJ _dJ

dc  of

Example 13-2 The gradient optimization method (steepest descent) Con-

sider the problem of minimizing the function

2

L=(y,=2) +y}

This problem, as mentioned in the last section of this chapter, is trivial

from a practical viewpoint but instructive from a pocket calculator op-
timization viewpoint. By inspection we see that L is a minimum at y, =2

and y,=0. The gradient method is to seek the condition

L
—5;=O=VL

We iteratively solve the implicit equation

Yur1=Ya—kVL(y,)

until VL=~0. Then y,,,=y,=value of y that minimizes L. For this
problem

Ay, =2ky(y,—2)

Ay,=2k,y,
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Then

1 =)’1,,+A)’|,,n+1

Y2,.,=Y2, T4r,,n+1

The key stroke sequence for implementing the gradient optimization

method on the HP-65 programmable pocket calculator (which is typical of
the program for any pocket calculator) is shown in Table 13-1. This

sequence of key strokes was programmed in less than 1 minute.

Now let us examine types of numerical analyses that can be made with

the pocket calculator. First consider the effect of k, on the first 10 steps of
the process of finding the y, and y, that minimize L. In Table 13-2
y1=1=y, at the start (Ly=2). It is apparent that for the case of y,=1=y,,
k,=0.5 leads to the best 10-step estimate of the optimum solution. The
data for each step can be easily developed once the calculator is pro-

Table 13-1 Typical Key Stroke Sequence for Gradient Optimization
 

 

Key Strokes Comment

LBL-A
R/S Input y,
STO-1 Store y, in register 1 (R-1)

R/S Input y,
STO-2 Input data Store y, in R-2
R/S Input K,
STO-3 K;—R-3
R/S Input N—the number ofiterations
STO-8 N-R-8
LBL-1 Labelthis step “1”
RCL-1 Recall y,
2

- ”»1—2)
STO-5 (¥y1—2)-R-5
f -1

a Compute L (1 —2)
RCL-2 V2
f -1

a 3
+ ¥i+(y—2=L
STO-6 L—-R-6

 



Table 13-1 (Continued)

 

 

 

 

Key Strokes Comment

RCL-5 (»,—2)
RCL-3
X Compute ky(y,—2)

2 —adL

x =g ke 2kr(y,~2)
CHS ~2ky(y, -2 =0y,
RCL-1 ’1
+ Compute new y, y+4y,

STO-1 y;+Ay,»R-1

RCL-2 Y2
RCL-3 k,
X Compute kyy,

2 —9dL
X Ay2= dy2 k2 2kyy,
CHS —2k,y,=Ay,
RCL-2 V)
+ Compute new y, y,+Ay,

STO-2 y,+Ay,—R-2
DSZ Numberof steps=N?
GTO-1 If no, goto 1
RCL-6 If yes, recall L

R/S Display Display L
RCL-1 L,y,y; Recall y,

R/S Display y,
RCL-2 Recall y,
R/S Display y,
RTN Return to the top of the program
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Table13-2 Tenth-Step Results for Various k,

 

k2 LIO
 

Y1y Y2,

0.01 1.39027066 1.18292719 0.81707281

0.10 0.03602880 1.89262582 0.10737418

0.25 0.00000763 1.99902344 0.00097656

0.50 0.00000000 2.00000000 0.00000000

0.75 0.00000763 1.99902344 0.00097656

1.0 2.00000000 1.00000000 1.00000000

20 7.748409780 x 108 —5.9047 x 104 5.9049 x 10*
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grammed. Thus for y,=1=y, and k,=0.5 the sequence of solutions is as
shown in Table 13-3. It appears that when k,=0.5 the first step accidently
puts the estimates of y, and y, right on the stationary points. This is seen

by noting that y, and y, are exactly —1 for k,=7 and y,=1=y,.
Now let us examine the effect of k, on the 10-step estimate of the

stationary points when y,=3=y, (Table 13-4). Again k,=0.50 results in
the best 10-step estimate of the stationary points. The reason for this
phenomenon might be thought to be that the initial conditions are an
integer multiple of the step size 0.5 and the gradient is permitting the
solution to fall precisely on the stationary points by accident. However, a
test of this hypothesis is but a few key strokes away, in that we can try the

initial conditions y, == and y,=2# with keyboard entry. Then for k,=0.5

Table 13-3 Iterative Gradient Optimization

 

 

with k,=0.5

Number of

Iterations L Y1 Y,

0 2 1 1

1 0 2 0

2 0 2 0

 

Table 13-4 Tenth-Step Results for Various %, and y,=y,=3
 

 

ky (L)o (Do (y2o

0.10 0.18014399 2.10737418 0.32212255

0.20 0.00101560 2.00604662 0.01813985

0.40 0.00000000 2.00000010 0.00000031

0.50 0.00000000 2.00000000 0.00000000

0.75 0.00003815 2.00097656 0.00292969

1.00 10.00000000 3.00000000 3.00000000
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we find

(L),o=0.00000000

(¥1)10=2.00000000

(¥3)10=0.00000000

where the sequence of estimates is as shown in Table 13-5. At this pointit
should be clear that k,=0.5 is a unique value that causes the system of
optimization equations to exhibit the peculiar property that the singular
points are exactly determined on the first step of the iterative solution. This

is precisely the case and it serves to illustrate the following key points:

1. Almost every system of equations has unique numerical properties.
The analyst must keep ever alert for their discovery. Often it is possible to

capitalize on them. The pocket calculator is an ideal means for this kind of

research and exploration.
2. An understanding of the unique properties leads the analyst to a

better understanding of the equations he is using. (It is left to the reader to
determine why this simple system of equations has the property that the

stationary points are exactly determined numerically when k,=0.5, no

matter what the values of y, and y,.)

In what follows we do not use the unique value of k, that exactly
determines the singular points. To further illustrate the gradient method,

let us use k=0.2 and now consider the questions: How do we know we
have reached the minimum L in a 10-iteration optimization? How can the
analyst quickly gain confidence that the stationary point is not a local
minimum of which there is a “deeper” minimum nearby? Mathematically

there is no guarantee that the gradient method will find THE global minimum

Table 13-5 Iterative Gradient Optimization with
k,=0.5 and Irrational Initial Conditions
 

 

Number of
Iterations L Y1 Vs

0 40.74165139 T 27
1 0 2 0
2 0 2 0
3 0 2 0
4 0 2 0
5 0 2 0
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of his function. Some practical things can be done, however, that give

confidence in the end result of an optimization analysis, tying all of these
questions together and giving some plausible answers. Among them are the
following:

1. Stopping the process for a fixed number of steps. This is the simplest
criterion for terminating the iterative stationary point search process.

2. Selecting a new set of initial conditions and searching for the
stationary point using the same number of steps.

3. Continuing (1) and (2) until convergence from all quadrants around

the stationary point (initial one found) has been established.

4. Using the stationary point as the initial conditions and demonstrating
stability of solution at the stationary point.

This procedure is quick, and will usually uncover the areas of concern if
the results are different from initial conditions. Also, because more

“samples” are available from the stationary point selection process, we

tend to have more statistical confidence that we have indeed found the

stationary point.
Returning to our optimization problem, we find the stationary point to

be somewhat different when approached from different directions. Table

13-6 illustrates this. It is apparent that L is a minimum in the near
neighborhood of

y1=2

y,=0

Table 13-6 Ten-Step Gradient Optimization Results when Stationary

Point Is Approached from Different Directions
 

 

Vi, Y2, Ly o (2o

5 4 0.002539 2.01813985 0.02418647

5 5 0.00345304 2.01813985 0.03023309

4 5 0.00294524 2.01209324 0.03023309

-4 4 0.00528112 1.96372029 0.02418647

-5 5 0.00751544 1.95767368 0.03023309

-5 4 0.00660140 1.95767368 0.02418647

-5 -4 0.00660140 1.95767368 —0.02418647

-5 -5 0.00751544 1.95767368 —0.03023309

-4 -5 0.00619516 1.96372029 —0.03023309

4 -4 0.0060203120 2.01209324 —0.02418647

5 -5 0.00345304 2.01813985 —0.03023309

0.00294524 2.01209324 —0.03023309
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The 100-step iteration bears this out, resulting in

L~0

y,=1.98790677

y,=0.00000000

Example 13-3 The penalty function method Let us consider the problem
of minimizing the function

2
L=(y,-2)+»;

subject to the constraint

»1=0

This problem, as mentioned before, is trivial from a practical viewpoint but
is instructive in regard to pocket calculator optimization. Using the

Courant penalty function method, we form the auxiliary function

— 2
L=()’1_2) +Y§+k1)’f

Our objective is to minimize this new function, using the programmable
pocket calculator. For this example we employ the gradient method of
optimization to merge the learning of both methods. Here

oL
— — =4+2|(1+2k -2Qé_=5 W, [( 1))’1 ]

dy oLL9
8 ¥, Y2

Then

WL _ _
ay,

b= oL
—k,—=-2k,y,=A28y2 2V2=8),

and

y,+A4y,

Programming the pocket calculator typically involves the sequence of
key strokes shown in Table 13-7.



Table 13-7 Gradient Optimization with Equality Constraint
 

 

Key Stroke

Sequence Comment

LBL-A Set program step counter and

pointer to begin at the first
place in memory

R/S Stop for data input
STO-1 Store y, in register 1 (R-1)

R/S
STO-2 Store y, in R-2
R/S Input
STO-3 s Store k, in R-3

ata
R/S
STO-4 Store k, in R-4

R/S
STO-8 Store N in R-8
LBL-1 Labelthis step “1”
RCL-3 Recall R-3 (k,)

1
+ Add oneto k,
RCL-1 Recall y,
f -1

vV Square y,
X yiIx(1+ky)

RCL-1 Recall
4 cL (_30mpute cealtn

X L 4y,

- (1-k)yi—4y,
RCL-2 Recall y,
f——l

Ve 2 2 2
+ (1+kyi—4y,+y3
4

+ (1+k)yi—4y,+y3+4=L
R/S Display (L)
STO-6 Store L in R-6
RCL-3 Recall k,

2

X 2k,
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Table 13-7 (Continued)
 

 

 

Key Stroke

Sequence Comment

+ (1+2k))

RCL-1 Compute Y1

X - 1+2k; Ay, = a;)lL k, 7i( V)

- (1+2ky)y, -2
RCL-4 k,

; kol(1+2ky)y,—2]

X 2[(1+2ky)y, — 2]k,
CHS —=2[(1+2k))y,—2]k,=AY,
R/S Display AY,

RCL-1 Y1
+ Compute Nty =y
R/S new y, Display y,
STO-1 Store y,; in R-1
RCL-2 Recall y,
RCL-4 Recall k,
X Compute kyy,

2 —oL
X - ay, k2
CHS —2k,y,=Ay,
R/S Display Ay,
IiCL-2 Compute Recall yz_

y2t+ly,=y,

R/S new2 Display (y,+Ay)
STO-2 Store y, in R-2
DSZ Return to top of

GTO-1 program for iteration

RCL-6
Display L

R/S
RCL-1

Display y,

R/S
RCL-2

Display y,
R/S
RTN
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Let us take the example from Section 13-6 (k,=35). Ourfirst task is to

find a value of k, that will ensure stability in the gradient search process.
We see from Table 13-8 that k,=0.01 can provide stable iterations at
k,=35 and is reasonably large to permit quick convergence.

Table 13-8 Gradient Optimization Results for Various k,
 

 

k, k, (D)o o (y2ho

Stable 0.0001 35 29.51091749 0.87049244 0.99800180

0.001 35  6.55662021 0.23828719 0.98017904

0.01 35 4.61180996 0.028335500 0.81707281

Unstable 0.05 35  4.649658075x 10'5 6.932487456 107  0.34867844
0.10 35 5.032858806 % 10?! 1.560738178 x 10'! 0.10737418

 

Using k,=0.01, k, =35, and y,=1=y,, we find after 100 steps that

(L) ,00=3.93420285

(¥1)100="0.02816901

and after 200 steps that

(L)00=3.91621180

(1)200=0.02816907

(¥5)200=0.01758795

An approach that involves 200 steps but gives more confidence that the

stationary point is in the neighborhood of the estimate made with the

program is to make five 40-step searches for the stationary point and, as

before, begin the searches from different quadrants as well as the
“average” solution point. The value of k, is then selected so that in 40
steps the search will cover the region of the expected solution. In our case,
we expect a solution in the neighborhood of (0,0), so that 40 steps of 0.05

will cover the region from —1 to + 1. Then the task is to find a reasonably
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high value of k, that will permit stable iterations. We see from Table 13-9
that a k,=7.5 results in stable searches for the singular point. Then four
40-step searches provide the results given in Table 13-10. This approach

results in more confidence that the stationary point for

L()’v)’z)

subject to the constraint y, =0 is located at

»,=0 (by the constraint)

y,=0 (by analysis)

Table 13-9 Gradient Optimization Results for Various &,
 

 

Number of

Iterations &, k, (L)o (Yo (Yo

10 1 0.05 2.35474379 0.67608251 0.34867844

Stable 10 2.5 0.05 3.20535903 0.33340324 0.34867844

10 5.0 0.05 3.62116902 0.18181818 0.34867844

10 7.5 0.05 3.80010179 0.13029079 0.34867844

Unstable 3 10 10.0 0.05 57.99696974 2.44195747 0.34867844

10 12.5 0.05 54447.09556 101.5703041 0.34867844

 

Table 13-10 Gradient Optimization using Penalty Function Method
for Satisfying Equality Constraint—Average Result Technique
 

Initial Values

 

 

Y1 Y2 (L_)«) (Yo (¥2)40

1 1 3.63308223 0.12500000 0.01478088

-1 1 3.63308222 0.12500000 0.01478088

-1 -1 3.63308222 0.12500000 —0.01478088

+1 -1 3.63308223 0.12500000 —0.01478088

Average of all estimates of y, and y, 0.12500000 0.00000000
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or

»,=0.125

y,=0

(both by the analysis above)

We can make a test of the expected answer to complete the 200-step

process as follows:

»,=0.125

y,=0.0

Then

(L)40=13.63281250

(1)40="0.12500000

()40=90.00000000

It is apparent that the stationary point of L(y,,y,) is in the neigh-

borhood of

»,=0.125, y,=0.0

Stationary point for L Stationary point for L

y,=0.0, y,=0.0

Of the two approaches to penalty function searches on the pocket

calculator, the latter is recommended because more information on the

local topology of L is used to generate the estimate of the values of y, and
y, at the point where L (and thereby L) is a minimum.

13-7 REFERENCE

For this chapter consult A. E. Bryson and Y. C. Ho’s excellent book,

Applied Optimal Control (Blaisdell Publishing Company, Waltham, Mass.,

1969), Chapter 1. The examples used in this chapter were first presented by
Bryson and Ho at their outstanding seminar on Applied Optimal Control.
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CHAPTER 14

CONCEPTS IN
FINANCIAL ANALYSIS

14-1 INTRODUCTION

Certain modern scientific pocket calculators, such as the HP-27, include

preprogrammed financial functions. These functions were originally de-
signed into the businessman’s pocket calculators and were widely accepted
not only for business calculations but also for personal financial analysis.
As the economics of business become a significant factor in engineering
and design, it is important that engineers better understand the mathemat-
ics and concepts of financial analysis. Thus we find the trend toward
inclusion of financial functions in scientific calculators. This chapter will
dispel the mystery that often surrounds money matters by presenting
financial analysis in a mathematical context that is convenient for en-
gineers and scientists.

14-2 THE TIME VALUE OF MONEY

The value of money changes with time. One thousand dollars today will be
worth less tomorrow than it is today in the sense that it will buy fewer

goods and services. This is because the prices in most dynamic economic
systems inflate with time. While inflation is much discussed and often
considered bad, in fact it is thought to be a necessary element in an
economic system that seeks to be highly productive and to keep many
employed. The heuristic argument that supports this proposition goes
something like this: With some inflation, a fixed amount of money is worth
more today than it will be tomorrow. Since today’s money will buy more
goods and services than tomorrow’s money, there is an incentive to
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promptly exchange today’s money for its equivalent in goods and services.
This keeps money flowing in the economy, brings a demand for new and
high-value products, which in turn calls for improved technological
advances in production of such items, and so on. On the other hand,if the

price of goods and services were to deflate (reduce) with time, there would
be no incentive to promptly exchange money for money’s worth. The result
would be to hold on to money as its buying power would increase with
time. One might conjecture that the money flow in this type of economic
system would gradually grind to a halt. Whatever the economic rationale,
the fact is that the money value (price) of materials, products, energy,
services, and other technical necessities changes with time.
Money has intrinsic value in and ofitself. It can be sold or invested for a

fee (interest). The amount of invested money will grow. In this sense, we
say that an amount of money has a present value and, if invested, the

money will have a value some time in the future, its future value. Here
again we see that the value of money changes with time. In this case the
intrinsic value of the money itself changes.
To determine the cost effectiveness of a system or product, inflation and

the cost of capital must be considered. Thusit is necessary to account for
the time value of money.

Virtually all of the mathematics of finance of practical significance to
engineers and scientists involve a straightforward five-parameter problem.
The five parameters are:

 

Parameter Definition

PV The present value of an amount of money.

FV The future value of an amount of money.

n A number of equal-time intervals
between the present time and a future
time (n for number of periods).

i The percent increase in the value
of money over a given time interval
(i for interest).

PMT An amount paid at regular time

intervals (PMT for payment).

Most financial calculations, then, can be reduced to the form

f(PV,FV,PMT,i,n)=0
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and thus the methods for performing financial calculations include all of
the implicit and explicit methods for finding the zeros of a function
discussed in Chapter 9.

It is worth noting that some financial analysts do not consciously realize
that many money calculations can be reduced to five parameters. Thisis
because the language of different types of business tends to mask the fact
that there are only five financial parameters involved in money calcula-
tions associated with

Inflation

Savings
Mortgages

Leases

Rentals

Loans

Depreciation
Insurance

Annuities

Sinking funds
Investments

Even more interesting is the fact that given any three parameters where

at least one is either i or n*, the remaining variables can be determined.
It should not be surprising, then, that there are five financial keys on

calculators with preprogrammed financial functions. Coincidentally they
are the five keys that unlock the door to understanding the seemingly
complex world of financial analysis and make it simple for trained analysts
to quickly learn money calculations.
The financial functions most frequently designed into modern calcula-

tors are listed in Table 14-1. Here you see that when five parameters are
taken three at a time (and where at least one is i or n) they reduce to only
12 different financial calculations. It is fascinating that, after all the dust
has settled, most financial analysis is reduced to:

12 basically different calculations, involving
5 parameters of which only
3 must be known to solve a problem.

Keeping these mathematical principles in mind, we now examine the
world of financial analysis. The approach is to study each of the five

*n is explicitly the independent variable, time; i implicitly involves the independent variable,
time.
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Table 14-1 The Twelve Financial Functions and Five Financial

Variables Most Frequently Used in Pocket Calculator Analysis
 

 

 

Output Financial Functions Used

Input Parameters Parameters in Pocket Calculators®

. . FV
1 n PV FV i i= ‘/PV -1

2 n PV PMT i i=L—(+e

: . PMT N
3 n FV PMT i =%V[(1+)"—1]

log EY.FV

4 i PV FV n —-——P—V—-
log(1+1)

1+iPV/PMT
5 i PMT PV n =

log(1+i)

iFV
log[ 1+oPMT ]

6 i PMT FV n =—
log(1+1)

7 FV pv  pv=—1V_
(1+14)

1+0+i)""
8 n i PMT PV PV=PMT——F

9 n i PV FV FV=PV(1+i)"

, (1+)"—1
10 n i PMT FV FV=PMT——F

11 n i FV PMT PMT=FV——-——
(1+)"-1

12 n i PV PMT PMT=PV—-—
1+(1+i) "
 

*solved iteratively with the pocket calculator electronics. Source: Jon
M. Smith, Financial Analysis and Business Decisions on the Pocket

Calculator, Wiley, New York, 1976.

Definitions as follows:

i =interest rate per compounding period

n=number of compounding periods
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PV =present value of money
FV =future value of money

PMT=amount of equal periodic payments when payments are made at the
end of the compounding period. When equal periodic payments are
made at the beginning of each compounding period as with an
annuity due, the inputs to calculators that solve only ordinary
annuity problems can be easily modified to account for the effect
of the advanced payment schedule. The modifications are as

 

follows:

Ordinary

Annuity Annuity-Due Annuity-Due

Parameter Adjustment Parameter

n Multiply PMT by (1+) PMT' =PMT(1 +)
i Subtract PMT from PV PV'=PV-PMT
PMT Divide PV by (1+1) PV'=PV(1+i)
PV Multiply PMT by (1+) PMT' =PMT(1 +i)
FV Multiply PMT by (1+) PMT=PMT(1 +i)

The factor is conveniently accounted for on the HP-22 calculator with a
switch to correctly calculate the annuity parameter depending on whether
the annuity is an ordinary type annuity (mortgates, consumer loans, etc.) or
a “payment in advance” type annuity (rents, leases, insurance payments,
etc.).

financial parameters, how they are calculated, and how they are used.
Examples from the world of business and finance illustrate the use of
financial concepts and calculations. The emphasis is on (a) the concepts

used in financial alternatives and (b) presentation of sufficient detail so
that the concepts are useful in practical financial analysis for the engineer
and scientist.

14-3 CALCULATING INTEREST, INTEREST RATES,

AND RATES OF RETURN

Interest is the price paid for the use of money and can be expressed in
terms of an amount of money or as a rate of payment. Interest is also a

measure of the time value of money. Interest rate is an agreed-upon

percentage of the amount borrowed for an agreed-upon period of time.
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Generally the interest rate is related directly to the risks a lender takes and
to competition in the money marketplace. Interest varies as the economy
and the demand for and supply of money vary. Through its control of the
prime interest rate, the Federal Reserve Bank in large measure regulates

explicitly the interest rates for loans to big business and implicitly those

made to small business.

We here discuss two types of interest: simple and compound. In simple
interest the agreed-to percentage is based only on the amount borrowed or

loaned; in compound interest the agreed-to percentage is based both on

the amount borrowed or loaned and on the interest that accrues. Thusit is

apparent that interest depends on the following:

1. The amount borrowed or loaned.
2. The agreed-upon interest rate.
3. The time for which the money is used.

The time is usually expressed in days, months, or years. Compound interest
typically is compounded on daily, monthly, or yearly periods. Some
financial institutions offer continuous compounding. In what follows, the

interest rate or percentage agreed to is the charge per year unless otherwise

stated.

14-4 SIMPLE INTEREST

Simple interest is the amount paid on money borrowed (principal) where

the principal remains unchanged for the period of time the money is in use.
There are three types of simple interest: ordinary simple interest, com-

mercial interest (or banker’s interest), and accurate interest. Ordinary
simple interest, based on a 30-day month and a 360-day year, is frequently

used for real estate loans, installment loans, and periodic repayment

personal loans. Commercial interest is based on a 360-day year and an

exactly specified number of days. When no statement is made by a lender in

a loan agreement, the latter type of interest is generally used. Commercial
interest, as might be expected, results in the greatest return for the lender.

Accurate interest is based on a 365-day year and an exact number of days.

This type of interest is being more frequently used in commercial transac-
tions. A number of business and finance books and manuals refer to

accurate interest as “exact interest.” Both terms are used here.

The basis for a loan determines the way in which time is calculated for

computing simple interest. The time calculation depends on whether a

30-day month or an exact number of days is used. In the former, it is
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necessary to determine only the number of months over which the loan is
made and to multiply by 30 days. If there are days to either side of an even
month, they are accounted for by simple addition. Remember that 30-
day-month calculations are used only for ordinary simple interest.
The exact-time basis is used for commercial or banker’s interest and

requires determination of the exact number of days during the life of a
loan. The count usually includes the last day and excludes the first day. If
the month of February is included in the time period, an extra day must be
added when accounting for leap year. Counting the number of days
between two dates is a tedious process. It must be carefully done, of
course, to realize the correct return. Tables have been developed (e.g.,
Table 14-2) for finding the exact number of days between two dates.
Hewlett-Packard’s HP-80 pocket calculator has a built-in calendar that

Table 14-2 Table for Calculating Exact Number of Days Between Two Dates

Number of Each Day of the Year

Day of Day of

Month Jan. Feb“ Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Month

 

 

 

1 1 32 60 91 121 152 182 213 244 274 305 335 1
2 2 33 61 92 122 153 183 214 245 275 306 336 2

3 3 34 62 93 123 154 184 215 246 276 307 337 3
4 4 35 63 94 124 155 185 216 247 277 308 338 4
5 5 36 64 95 125 156 186 217 248 278 309 339 5
6 6 37 65 96 126 157 187 218 249 279 310 340 6
7 1 38 66 97 127 158 188 219 250 280 311 341 7
8 8 39 67 98 128 159 189 220 251 281 312 342 8
9 9 40 68 99 129 160 190 221 252 282 313 343 9
10 10 41 69 100 130 161 191 222 253 283 314 344 10
11 11 42 70 101 131 162 192 223 254 284 315 345 11
12 12 43 71 102 132 163 193 224 255 285 316 346 12
13 13 4 72 103 133 164 194 225 256 286 317 347 13
14 14 45 73 104 134 165 195 226 257 287 318 348 14
15 15 46 74 105 135 166 196 227 258 288 319 349 15
16 16 47 75 106 136 167 197 228 259 289 320 350 16
17 17 48 76 107 137 168 198 229 260 290 321 351 17
18 18 49 77 108 138 169 199 230 261 291 322 352 18
19 19 50 78 109 139 170 200 231 262 292 323 353 19
20 20 51 79 110 140 171 201 232 263 293 324 354 20
21 21 52 80 111 141 172 202 233 264 294 325 355 21
22 22 53 81 112 142 173 203 234 265 295 326 356 22
23 23 54 82 113 143 174 204 235 266 296 327 357 23
24 24 55 83 114 144 175 205 236 267 297 328 358 24
25 25 56 84 115 145 176 206 237 268 298 329 359 25
26 26 57 8 116 146 177 207 238 269 299 330 360 26
27 27 58 8 117 147 178 208 239 270 300 331 361 27
28 28 59 87 118 148 179 209 240 271 301 332 362 28
29 29 88 119 149 180 210 241 272 302 333 363 29
30 30 89 120 150 181 211 242 273 303 334 364 30
31 31 90 151 212 243 304 365 31
 

?For leap years add 1 after February 28.
Source. Flora M. Locke, Business Mathematics, Wiley, New York, 1972. Reprinted by permission.
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permits the number of days between two dates to be calculated. This
calculator has another convenient calendar feature that computes and
displays a payoff date when the starting date and the exact number of days
of a loan are input.
On calculators not having the calendar feature, the sum and store key

can be used and the months counted off, remembering how many days
there are in each month. When the number of days does not begin or end
exactly on an even month, the additional days are computed separately
(excluding the first day and including the last).

14-5 CALCULATING INTEREST

The formula for computing simple interest is

interest = principal X interest rate X time

or
INT=PVXiXn

where PV is the present value of the principal or amount loaned (or
borrowed), INT is interest, i is the interest rate per period, and n is the
number of days the money is on loan. Since it is common practice to
specify the interest rate in terms of an annual rate, if the agreed-to
compounding period is one month, the annual rate must be divided by 12.
If the compounding period is in days, the annual rate must be divided by
either 360 (ordinary and banker’s interest) or 365 (accurate interest).
To illustrate the difference between banker’s, accurate, and ordinary

interest, consider the case of $10,000 loaned at 9% from June 1 to

November 1. Banker’s interest would be calculated as

153
INT = 10,000 X< 0.09 X 360 382.50

The calculation to determine accurate interest would be

INT = 10,000 X 0.09 X % =1377.26

Ordinary interest would be calculated according to the formula*

INT = 10,000 X 0.09 X % =1375.00

*Five 30-day months.
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14-6 COMPOUND INTEREST

Compound interest is computed on the basis of a principal that changes at
the compounding intervals. The principal at each compounding period is
the sum of interest earned over the preceding compounding period and the
previous principal. Compound interest may be computed annually, semi-
annually, quarterly, monthly, daily, or continuously. We consider it to be
compounded annually unless otherwise stated.

Interest is said to be converted when it becomes part of the principal;
that is, when the interest is computed for a compounding period, it is
computed on the basis of simple interest and converted to principal. The
number of conversion periods or compounding periods is the number of
times the interest is converted during a year. The present value of the
original principal grows to its future value at the end of the loan period.
The difference between the original principal or present value of the loan
and its future value is the compound interest. The longhand computation
of compound interest is an iterative calculation of simple interest. To see
this, assume that $100 is to be compounded (converted) annually for 4
years at 10%. The compound interest is computed as follows:

$100.00 Present value (equals original principal)
10.00 Interest for first year

$110.00 Principal at end offirst year

11.00 Interest for second year

$121.00 Principal at end of second year

12.10 Interest for third year

$133.10 Principal at end of third year

13.31 Interest for fourth year

814641 Principal at end of fourth year

The compound interestis equal to $146.41 minus $100.00, that is, $46.41.

This process would be quite tedious if the compounding periods were in
days or even months and the calculations were done manually. On a
pocket calculator the process is simple. Calculators with financial functions
require only four key strokes to compute the interest, whether simple or
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compound, using the financial function keys and the built-in electronic
circuitry. Heretofore interest calculations were made with the aid of
interest tables. Whether preprogrammed financial functions are used or the
financial functions are evaluated mathematically, a pocket calculator
eliminates the need for all tables, since it can make the calculations quickly

and as accurately as any prepared tables.

14-7 EFFECTIVE INTEREST RATES

In business and finance, interest rates per period are quoted in a number
of ways depending on the period of time involved (e.g., 12% per year; 1%
per month; 0.03% per day). All these different interest rates can be reduced
to an effective annual interest rate. The effective rate generally accepted by

most businessmen is the annual interest rate that will produce in a single
conversion the same interest as an agreed-to rate. For example, $100

loaned at 10% interest and converted annually, returns $10 on the $100. If,

however, the $100 loan is converted semiannually, the interest is converted

twice during the year and the $100 will earn $10.25, for an effective annual
rate of 10.25%. Another way of thinking of this is that 10% compounded
semiannually yields 10.25% on an annual basis.

14-8 INTEREST RATE AND YIELD CALCULATIONS

Interest rate 1s the ratio of the interest earned to the principal for a given

corresponding period. Interest rate is a near-term measure of how fast the

value of money is changing with time. As such,it is a useful measure of the
difference between investment alternatives.

Yield is one of the most commonly used financial measures. Although it

1s a key parameter in economic decisions, it is not useful as the sole
parameter because it gives no indication of risk. Obviously one should not

determine financial yield without also determining a level of financial risk.
Pocket calculators with preprogrammed financial functions calculate yield
with only a few key strokes, and thus are very useful for investment com-
parison analysis.

Since yield is often used synonymously with interest rate, it is logical to

ask, “Are yield and interest rate the same?”” The answeris both yes and no.
Yes in the sense that the same mathematical formula is used to calculate
the two. No in the sense that interest rate specifically applies to money,



Calculating Present and Future Values 361

whereas yield can apply both to money and to money’s worth. Yield is
usually applied to the growth rate per year of money, corporate worth,
personal worth, and so on. Yield is simply a measure of the rate of change
of processes that grow or decline in a compound way.

The interest rate per period can be calculated (a) for the simple growth
of a present value to a future value, (b) for the growth in the value of a
series of money payments where the payments are made at the end of the
compounding period, and (c¢) for the growth in the value of a series of
money payments where the payments are made at the beginning of the
compounding period.

If the payments are all the same amount, we call the payment program
an annuity. If the payments are made at the beginning of the compounding

period, we call the payment program an annuity due. If the payments are
made at the end of the compounding period, we say the payment program
1S an ordinary annuity.

Examples from the world of commercial finance or ordinary annuities
include the following:

® Mortgages.

® Personal loans.

® Sinking funds (corporate bonds).

Examples of annuities due are:

® Rents.

® Leases.

® Personal savings.

® Life and property insurance premiums.

Note that the same formulas apply to calculations in different fields. Here
the fields are real estate, banking, and insurance.

Most pocket calculators implement only the ordinary annuity formulas.
They can be easily adapted to calculate annuity-due problems, however,
since this type differs only in the treatment of the first and last payments.

14-9 CALCULATING PRESENT AND FUTURE VALUES

Financial comparison of investment alternatives involves the calculation of
present and future values of money. Consider the following alternatives:
$100,000 invested for five years which generates (a) a $27,000 annual cash

flow totaling $135,000 or (b) $150,000 in a single payment at the end of the
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five-year period. It might seem that the second alternative earns $15,000
more than the first and thus would be the better investment. This is not the
case. The proper way to compare these alternatives is on a rate of return
basis. To see this, imagine that you take out five separate 10.92% savings
accounts and deposit $100,000 into them as follows:

Account1 $24,341.87

Account 2 21,945.43

Account 3 19,784.91

Account 4 17,837.10

Account 5 16,090.69

Total of all accounts $100,000.00

The present value of account 1 will grow to a future value of $27,000 at the
end of the first year; account 2 will grow to a future value of $27,000 at the
end of the second year; the remaining accounts will grow to future values

of $27,000 at the end of the third, fourth, and fifth years, respectively. In

this sense, the first alternative of five future value cash flows of $27,000

each has an equivalent return of 10.92% on the present value of the money
deposited in each account.*
The second alternative (receiving $150,000 at the end of the fifth year) is

merely equivalent to depositing the entire $100,000 in an 8.45% savings

account. Clearly the alternative that is equivalent to the 10.92% annual rate
of return is a better investment.

This example illustrates that investment decisions involving time pay-
ments or timed receipt of revenues must be compared on the basis of an
equivalent annual rate of return (often called internal rate of return). It
also illustrates that a firm grasp of the relationships between present and
future values is essential for understanding investment alternatives. This is

particularly true when one is evaluating an investment in terms of its

equivalents. Summarizing then: when investments are analyzed (and

present value is known), rate of return is used as the means of comparison.

Rate of return is not the only way to compare investments, to be sure.

This is particularly important, however, when comparing long-term invest-
ments. The most commonly used approach to comparing investment
alternatives is to compute the net present value (NPV) of each. Net present

value is usually computed as follows:

*The cash flow just discussed is not the equivalent of putting $100,000 in a 10.92% rate of
return investment and withdrawing $27,000 each year for five years. Verifying this is an

important exercise for the reader.
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Step 1 Discount the future values of all cash revenues (outputs) generated
by an investment to their values in the first investment year.
Usually an investment is analyzed in its first year, and thus is
called the present value of the revenues. The annual discount rate
is the desired rate of return to be achieved.

Step 2 Discount the future values of all cash investments (inputs) re-
quired by the investment program to the first year of the program.
Usually the first year is the present year and is called the present
value of the costs. The annual discount rate is the rate of return
you can get by lending the cash investments until they are due by
the investment program. Usually investment programs require
only an “up front” cash payment and then they generate cash
returns. In this case the future value of cash investments is a single
number that is not discounted.

Step 3 Sum the present values of cash revenues and subtract the present
values of all cash investments (costs) to determine the net present
value of all cash flows in the investment. If the present value of
the discounted revenues exceeds the present value of the dis-
counted costs (investments), the net present value (NPV) of the
investment is positive and the investment rate of return exceeds
the desired rate of return. If the NPV is negative, the investment
rate of return falls short of the desired rate.

Government funding decisions for major programs are an interesting
and informative example of the use of NPV. The present values of national
programs are determined on the basis of social discount rates (measures of
social value) established by the Office of Management and Budget (OMB).
For example, the Defense Department project rate is nominally 10%;
Health, Education, and Welfare project discounts are typically 4 to 5%;
and certain projects associated with the National Aeronautics and Space
Administration are discounted at 10%. To compare one national program
with another economists can compute the cost of a program in present-
value dollars and escalate the cost with the inflation schedules provided by

OMB. The future value costs are then discounted at their social discount
rate and summed to determine the net present value of the program. In

this way the social worth of national programs from different agencies can

be compared on a net present value basis and a decision made as to which
generates the greatest social return.

It is important to consider the total cost of a program in terms of

escalated dollars, not just in discounted dollars, because the sum of the

escalated dollars for the total life cycle of a program is the amount of



364 Concepts in Financial Analysis

money (actual cash dollars) that must be given to the program over its
lifetime. Costs in “then-year” dollars are essential for consideration as part
of the decision on new-start programs. A third factor that is increasing in
importance is the peak annual funding level associated with a program.
Here the objective is to escalate the costs computed in present-value

dollars to future-value dollars and to determine (a) which element of the
cash flow is the peak and (b) its amount. Currently most business and
government programs attempt to satisfy both a peak annual funding limit

and a total program cost limit.

14-10 PRESENT AND FUTURE VALUES DEFINED

Present value and future value are names given to a number of different
terms used in financial analysis. Depending on the financial discipline,
present value can mean:

® The principal—in an interest calculation.

® The beginning bank account balance—in a small business, rate-of-re-
turn calculation.

® The original amount—in certain draft and note calculations.

® The selling price—in a real estate mortgage.

@® The initial balance—in an annuity calculation.

Similarly, future value can mean:

® The principal plus interest—in a loan calculation.

® The final balance—in a business rate-of-return calculation.

® The face value of a note—when computing discounts.

® The worth of a compound amount.

® The worth of a lump-sum investment.

® The worth of a sinking fund.

Thus present value and future value can have many different meanings for
a financial analyst. From the calculator’s viewpoint, however, they have
very definite meanings specified by the equations solved in the calculator.

Fortunately the same equations are used in the same way by the different

financial disciplines. These equations make clear that no matter what
specific meaning is given to present value and future value, the general
definitions are:
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Present value=the sum of money, or its equivalent, at the present time
or at a time that is the beginning of a time-value-of-
money calculation.

Future value =the value of money, or its equivalent, at some time in the
future. The future value of money is usually associated
with the value of money at the end of a time-value-of-
money calculation.

14-11 PRESENT VALUE IN SIMPLE INTEREST CALCULATIONS

If we rewrite the simple interest formula in terms of the present value, the
interest can be given as

INT= % XiXPV (ordinary simple interest)

where INT =simple interest
n=number of periods
i =interest rate per period

PV =present value
Then the present value can be solved for in the following manner:

_ INT %360

ni
PV

The future value in interest calculations is related to present value
according to the formula

FV=PV+INT

14-12 PRESENT AND FUTURE VALUE CALCULATIONS IN COMPOUND

INTEREST CALCULATIONS

The simplest relationship that can be developed for compound calculations
1s

FV=PV(l+i)"
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It is worthwhile to derive this formula because it shows the basis for the

growth factor

(1+4)"

which is encountered frequently in financial formulas.
First, note that over one compounding period the simple interest on a

present value (principal) is given by

INT, =PV, Xi

The future value for the first compounding period is

FV,=PV,+INT,

FV,=PV,(1+)

This future value is then set equal to the present value for the next step.
Said mathematically:

PV,=FV,

It follows then that for the second compounding period the equation

FV,=PV,(1+i)

computes the future value of the principal and compounded interest. But

since

PV,=PV,(1+)

it follows that

FV,=PV,(1+i)’

We can expect then that

FV,=PV,(1+i)’

FV,=PV,(1+i)"
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14-13 ANNUITIES

Strictly speaking, annuities are cash flows made on a yearly basis. In usual
financial parlance, an annuity is a series of cash flows made at equal
intervals that may be less than, equal to, or greater than a year. The
interval length is called the period of the annuity or the annuity period. An
example of an annuity would be a contract to provide retirement income
such as that established in trust funds or retirement programs. There are
two classes of annuities:

® An annuity “certain,” which is characterized by the continuance of
payments for a specified number of periods. Calculations are based on
the assumption that each payment is certain and will be made when
due.

® A “contingent” annuity, in which each payment depends on the con-
tinuance of some prespecified condition, such as the life of the annuity
recipient.

The annuity certain can be considered from two viewpoints: (1) the
perpetuity annuity, in which a regular series of payments is made unend-
ingly, and (2) the ordinary annuity that terminates at a predefined number
of annuity periods.

Contingent annuities are used in insurance and pension plans and are
based on a risk-sharing principle. They will not be discussed here.

14-14 ORDINARY ANNUITY PRESENT AND FUTURE VALUE CALCULA-

TIONS

Annuities are programs under which regular payments are made, usually
into a fund to “sink” a debt, such as a bond debt, or to retire a loan (direct

reduction of an amortized loan). Sinking funds have a future value that is
built on the basis of payments made at regular intervals. The formula for
the future value of a regular equal-payment annuity is

(1+i)"—1
FV=PMT————

where i is the interest rate per compounding period, n is the number of

periods, and PMT is the payment amount or annuity amount. This
formula is implemented in the financial calculators and is simple to
implement on even the basic calculators that do not have the exponentia-
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Table 14-3 Typical Key Stroke Sequences for Calculating the
Future Value of an Ordinary Annuity
 

 

 

Basic Four-Function Algebraic Reverse-Polish
Algebraic Financial Financial
Calculator Calculator Calculator

& (i) ()
+ ET i

(D i (n)
= (n) n
X ET (PMT)
= n PMT

= (PMT) Fv

(n—1) times®

 

   

 

: ET
- PMT
- TA

(1) FV

@)
X

(PMT)

FV
   

   

 

?In decimal form.
bAssumes chain multiply.
KEY

( ) data entry. 

  
data output.

 
Source. Jon M. Smith, Financial Analysis and Business Decisions

on the Pocket Calculator, Wiley, New York, 1976. Copyright 1976

John Wiley & Sons, Inc. Reprinted by permission.

tion key. The key stroke sequences for calculating the future value of an
annuity such as discussed here are seen in Table 14-3.

The direct reduction loan annuity formula involves the present value of

the annuity principal required to make a series of amortized payments
(PMT) where the annuity principal is operating at an annual interest rate

(i) and the payments are made over n periods. The formula for the present
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Table 14-4 Typical Key Stroke Sequences for Calculating the
present Value of an Ordinary Annuity
 

 

 

   

 

   

 

Basic Four-Function Algebraic Reverse-Polish
Algebraic Financial Financial
Calculator Calculator Calculator

&° (i) ()
+ ET i

(1 i (n)
X (n) n

= ET (PMT)
= n PMT

(n—1) times® (PMT) PV

ET
= PMT

1/x¢ TA

CHS PV

+

(D

()
X

(PMT)

PV
   
 

“In decimal flow.
bAssumes chain multiply.
+

€= } 1/x on some calculators

KEY
( ) data entry.
 

data output.
   
Source. Jon M. Smith, Financial Analysis and Business Decisions

on the Pocket Calculator, Wiley, New York, 1976. Copyright 1976

John Wiley & Sons, Inc. Reprinted by permission.
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value required for such an annuity is

1+ (1+)"

l
PV=PMT

  

Key stroke sequences for calculating annuity payments are shown in Table
14-4.

14-15 ANNUITIES DUE

Annuities due are usually associated with savings, rents, leases, and so on.

The first payment is made on the first day of the loan period. By contrast,

in ordinary annuities the first payment is made at the end of the first
period. The formula for the present value of an annuity due is

 

1+(1+4i)"
PV=PMT - (1+1)

The future value calculation is

(1+)"—1
FV=PMT— (1+79)

These formulas are used for calculating, for example, the monthly deposit
(to be made at the beginning of each period) that is required to amass a
given sum when the number of periods and the interest rate per period are
known. This is to be compared with an ordinary annuity calculation which
determines the periodic payment to be made into a sinking fund (FV

known) or to retire an amortized loan (PV known) and when the number

of periods and the interest rate per period are known and the payment is
made at the end of the period.

14-16 CALCULATING PAYMENTS, NUMBER OF PAY PERIODS, AND

NUMBER OF COMPOUNDING PERIODS

The preceding sections covered three of the five important parameters in

financial analysis. This covers the last two—payments and number of pay

periods. The equations for computing the number of time periods and

payments are identical to the equations previously discussed but here the
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payments and number of periods are computed in terms of other parame-
ters. For example, when considering simple interest the equation for
computing the number of periods is

L INT
PV Xi
 

For compound interest calculations the number of conversion periods is
given by

log £Y.
= PV

log(1+ i)

For ordinary annuities and annuities due, respectively, the number of pay
periods is given by

( iXPV _ 1)"
PMT

log(1+i) log(1+ i)

  

 

 

In a similar way, the number of payments associated with ordinary
annuities and annuities due can be computed according to the relation-
ships

 

PMT< —iXPV___ _ixFV
= — = - ordinary annuit
1+ (1+1) (1+i) -1 ( Y )

T= i XPV _ iXFV
[1+(1+0)7"])(+0) [+—1](1+9)
 (annuity due)

Like other financial functions, these can be solved on pocket calculators
with preprogrammed financial functions with as few as four function-solv-
ing key strokes. Interestingly, only a few more key strokes are required to
solve the equations on the four-function calculator.
The calculation of the number of conversion periods usually produces a

number that is not an integer. For example, when computing the number
of conversion periods to accumulate $10,000 in a sinking fund that earns
interest at a rate of 10% per year with annual payments into the fund of
$1000, the pocket calculator solves the equation

0.1 10,000
lOglo(—IO—OO— + 1)

log,o(1+0.1)
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and gives the result

n=17217

Obviously the equation computes fractional parts of a sinking fund conver-

sion period. No resolution of this particular problem is possible using
either a table or a calculator. How then does one interpret or use 7.27 years
in a program of annual conversion? One views the calculation as a means
of getting in the neighborhood of a whole number of conversion periods.
Here a 10% per year, $1000 per year sinking fund will generate $9487.17
over a seven-year period, or it will produce $11,435.89 over an eight-year
period. Thus solving for the number of conversion periods based on the

$10,000 goal identifies the interval that is bounded by two whole numbers
that are viable conversion periods. Iterating the payments, interest rate, or

both, will permit the finding of a near-integer value of the number of
periods if desired.

14-17 SOLVING FINANCIAL PROBLEMS

The need for financial analysis usually arises when:

1. Alternative approaches to solving a problem are to be compared
financially (comparison of design alternatives would be an example).

2. A system of cash flows is set up to generate a profit and it is
necessary to find an acceptable combination of interest rates, payments,

pay periods and initial investments to make the system work (analogous to
determining the workable or feasible parameters in a design).

Of course a combination of these situations can also require financial
analysis. The question is, “How does the material presented in the preced-

ing sections apply to these problems?” If the alternative for solving a
problem [see (1) above] is to be selected on the basis of least cost, the
present value of the cost of the alternatives is calculated and the alternative
with the least present-value cost is selected. The discount rate that is often
used is the growth rate in the Consumer Price Index for the cost of the
elements in each alternative. Another discount rate that can be used is the

prime interest rate allowed by the Federal Reserve Board. If the yield of

investment in a business is known, a businessman can and often does use

a forecasted business yield as a discount factor. Whatever the discount
rate, the principle is the same: solve the problem at least cost. Comparisons
are made on a net-present-value basis as discussed previously.
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If the problem is one of finding a set of financial parameters [see (2)
above] that will result in a feasible and profitable cash flow, then an
iterative search for the appropriate terms may be required. This usually
involves guessing combinations of three of the financial parameters and
calculating the other two until an acceptable compromise is found among
all parameters of importance. A very simple example would be:

Suppose you are seeking a way to buy a light plane for a business
venture. The seller asks $22,500. You know you can afford $2000 semi-
annual payments but would like to hold the payments to $1500 or less.
You also are willing to pay a 13% annual percentage rate as an inducement

for a bank to lend the money. What kind of deal is feasible?

First Iteration

Let i=6.5, PV=22,500, and PMT =1500. Find nearest integer n. Answer:

n=>59. The banker says 29.5 years is unrealistic.

Second Iteration

Let i=6.5, PV=22,500, and PMT =2000. Find nearest integer n. Answer:

n=21. The banker says 10.5 years is reasonable. He will accommodate a
10-year loan.

Third Iteration

Let i=6.5, PV=22,500, and n=20. Find the semiannual payments.

Answer: $2042.02. However, this is $42.02 per payment more than your

maximum.

Fourth Iteration

Calculate the future value of the last payment if you pay $2000 each time
and make a final balloon payment of $2000 plus a lump sum to pay off the

the $22,500 equivalent of the $2042.02, 6.5% and 20-payment program. Let
i=6.5, n=20, and PMT =2000. Calculate the PV. Answer: PV =3$22,037.01

[PV =f£,(i,n,PMT)]. The desired PV is $22,500. The shortage is $462.99 in
present value, which has a future value at the end of 20 months calculated
as follows: Let i=6.5, PV=462.99, and n=20. Calculate FV. Answer:
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FV=$1631.41 [FV =f,(i,n,PV)]. Thus the final payment would be $2000 +
1631.41=83631.41.

The banker accepts this proposal: a series of 19 payments of $2000.00
and a twentieth payment of $3631.41 in return for $22,500 to buy an
airplane. The calculations involved the following series of determinations:

 

Iteration Number Determination

1 n=f,(i,PMT,PV)

2 n=f,(i,PMT,PV)

3 PMT=f,(i,n, PV)

4 PV =f,(i,n,PMT)

FV =f,(i,n,PV)

We used four types of calculation to iteratively find an acceptable set of
financial parameters. In all cases these were individual calculations dis-
cussed in previous sections and available at a key stroke on the pocket
calculators with preprogrammed financial functions.
Most iterative financial analyses are not so simple and do not converge

to an acceptable solution so quickly. Even on such a simple problem one
may perform a dozen or more “side calculations” to test alternative ways
to pay off such a debt. The example does illustrate the point that even a
simple deal involves a series of calculations where, given three parameters,
one calculates another parameter of interest as a means of iteratively
solving a financial problem.

14-18 REFERENCE

For a comprehensive presentation of the subjects discussed in this chapter,
see Financial Analysis and Business Decisions on the Pocket Calculator, Jon

M. Smith, Wiley, New York, 1976, from which the material in this chapter

was drawn by courtesy of the publisher.



CHAPTER 15

ESTIMATING
FINANCIAL RISK

15-1 INTRODUCTION

Recent research conducted by systems analysts indicates that human
beings tend to throw away from 50 to 80% of the information available to
them by failing to use correct statistical analysis techniques.* This is an
interesting finding, since it shows that any analyst who is comfortable with
statistics will have a competitive edge over one who is not. The significance
of this statement in estimating financial risk is easy to overlook and is
worthy of special consideration and comment. To illustrate the point,
although quite differently and much more simply than discussed in the
footnoted references, consider the problem of financial risk analysis. The
gist of statistical financial risk analysis hinges on statistically estimating
revenues and costs, because profit=revenues — costs. If you were told that
the most likely annual revenues generated by a new product were $500,000
and the most likely costs were $300,000, should you expect the venture to
return a profit? The answer is NO! Surprised? What you were not told is
that the revenues and costs are statistically distributed as shown in Figure
15-1 which reveals that although the most likely profit is estimated to be
+ $200,000, the expected profit is —$30,000.f The message is clear: it is

*L. D. Phillips and W. Edwards, “Conservatism in a Simple Probability Inference Task,”
Journal of Experimental Psychology, 72 (1966), 346-354.

W. Edwards, “Conservatism in Human Information Processing,” B. Kleinmuntz (Ed.),
Formal Representation of Human Judgment, Wiley, New York, 1968, pp. 17-52.

Ralph F. Miles, Jr., Systems Concepts, Wiley, New York, 1973, pp. 90-94.

TRemember that the most likely value of a revenue or cost distribution is the amount at
which the distribution reachesits peak. The amountthat divides the area under the frequency
distribution curve into two equal parts is the expected value of the revenues or costs.

375



376 Estimating Financial Risk

Most likely

$200,000
Gain

Most likely values  

F
r
e
q
u
e
n
c
y

di
st
ri
bu
ti
on

o
f

r
e
v
e
n
u
e
s

| >
$500,000 Revenues
  

Expected

values

  *\\

\

$300,000 Costs
 

F
r
e
q
u
e
n
c
y

d
i
s
t
r
i
b
u
t
i
o
n

o
f

c
o
s
t
s

  
$30,000

Loss expected

Figure 15-1 Frequency distribution of revenues and costs. Source: Jon M. Smith, Financial
Analysis and Business Decisions on the Pocket Calculator, Wiley, New York, 1976. Copyright
1976 John Wiley & Sons, Inc. Reprinted by permission.

important to be able to describe cash flow on a statistical basis so as to
visualize as well as numerically evaluate financial risk.

15-2 RISK ANALYSIS

In Chapter 14 we concerned ourselves with cash flows as a single number.
On the basis of these discrete numbers, decisions were discussed about

committing money on the expectation that there would be a reasonable
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return on investment some time in the future. The key word here is future.
The financial analyst is constantly faced with forecasting the future out-
come of today’s decisions. It is the uncertainty associated with forecasting
future events that results in financial risk. In short, the degree of uncer-
tainty in forecasted results should also be taken into account when
conducting financial analyses. As pointed out in Chapter 10, confidence
levels can be specified for estimates of a population based on the statistics
computed for a sample. Such confidence levels must be considered as part
of the decision-making process. The further ahead one forecasts, the less
the confidence that can be placed in the forecast.
The approach to evaluating financial risk is surprisingly straightforward.

First let us examine the business decision process normally encountered
for a five-year investment. Such investments are often considered when
making capital expenditures and in conducting research and development
projects associated with a new product line. The first step is to estimate the
cash flow associated with the first five years of operation. This projection
includes forecasts of revenues from all sources (such as sales and savings)
and of all costs, expenses, and expenditures.

Suppose now that two ways have been identified to finance a new
project and that two cash flows have also been identified. Comparison of
the alternatives is to be performed on a net present value basis. Specifically
the net (or accumulated) present value of all the cash flows is computed as

N CF, CF, CF,
NPV= Y ——=CF,+—+ +

n=0 (1+1) I+i (14i)

The cash flow values are discounted (the inverse of interest compounding)
from future values to present values and the total present value of the
alternative is computed. In this equation CF,, is the value of the cash flow
in the nth year; i is the discount rate that is usually the desired rate of
return; NPV is the net present value: and N is the total number of years

considered in the analysis. The total number of years is called the /ife cycle
or investment horizon of the project when all three phases of the project
(i.e., development, procurement, and operations) are considered.

Consider an example of a typical discounted cash flow analysis
associated with the development of a new product. Table 15-1 illustrates
the value of the expected annual sales, the expected annual costs, the
resultant cash flow, and the net present value. Note that the net present

value is a single number. Suppose that a different approach were taken to
the start-up having the cash flows and net present value of Table 15-2. It is
apparent that on the basis of this type of analysis, the second alternative is
the best. Suppose, however, that we had taken into account the probability
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Table 15-1 Alternative 1—New Business Start-up Cash Flow Analysis (Using
“Up-Front” Loading of Costs)
 

 

 

Time Revenue Cost Profit Discounted? Profits
(years) (then-year $) (then-year §) (then-year $) (present-value $)

1 0 160,000 — 160,000 —160,000.00
2 20,000 100,000 — 80,000 —69,565.22
3 100,000 70,000 + 30,000 +22,684.31
4 200,000 50,000 + 150,000 +98,627.43
5 260,000 50,000 + 210,000 +120,068.18

150,000 11,814.70

Apparent Net present

value value
 

?15% desired rate of return used for discounting.

Table 15-2 Alternative 2—New Business Start-up Cash Flow Analysis (Using

Deferred Loading of Costs)
 

Time Revenues Cost Profit Discounted? Profits
(years) (then-year §) (then-year $) (then-year §) (present-value §)
 

 

1 0 30,000 —30,000 —30,000.00
2 20,000 50,000 —30,000 —26,086.96
3 100,000 70,000 + 30,000 +22,684.31
4 200,000 100,000 + 100,000 +65,751.62
5 210,000 160,000 + 50,000 +28,587.66

120,000 60,936.63°

Apparent Net present

value value
 

%15% desired rate of return used for discounting.
®Note that alternative 2 has a lower apparent value but a higher net present
value than alternative 1.

distributions associated with these alternatives (Figure 15-2). The decision

i1s no longer clear. Although alternative 2 has the largest expected net
present value, it also has a reasonable probability of resulting in a negative
net present value, that is, failure of the system to generate the desired 15%
yield. On the other hand, alternative 1 shows virtually no chance of failing,

but it has a substantially lower expected net present value. On the basis of
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Figure 15-2 Distributions of the net present value of new business start-up alternatives.

Source: Jon M. Smith, Financial Analysis and Business Decisions on the Pocket Calculator,

Wiley, New York, 1976. Copyright 1976 John Wiley & Sons, Inc. Reprinted by permission.

the data given, which alternative would you select? More important, per-
haps, the investment analysis presented in the format of Figure 15-2 gives
much more insight into (a) the nature of the estimate, (») the confidence
estimate, (c¢) a visualization of the risk, and (d) a quantification of the risk.

15-3 SETTING UP THE BUSINESS MATH MODEL

To set up the math model of a business it is necessary to select one or a
number of parameters that describe the business and to compute the
relationship between the parameters and the revenues and costs associated
with the business. For example,

profit =revenues — costs

P=>R->C

A “single value” analysis is based on the most likely (peaks of the cost
distributions) estimate of the revenues and costs. Figure 15-3 illustrates an
example of the single value measures of

e A single source of revenue.

o Five sources of cost.

e The resulting profit.
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Figure 15-3 Typical incorrect most likely profit analysis. Source: Jon M. Smith, Financial

Analysis and Business Decisions on the Pocket Calculator, Wiley, New York, 1976. Copyright
1976 John Wiley & Sons, Inc. Reprinted by permission.

Figure 15-4 shows the profit distribution that results when the distribution
of revenues and costs is correctly accounted for.
An important observation about many financial analyses is that reve-

nues are usually overestimated and costs are usually underestimated (again
see Figure 15-3). From the standpoint of cost and revenue distribution, this

means that the tail on the revenue distribution is generally longer “to the
left” and the tails of the cost distribution are generally longer “to the
right.”

In this example the most likely value of the profit distribution is not the
same as the sum of the expected values (average) of the cash flows. This is
a very important point. In statistical analysis, that which is the most likely
value is not the expected value. Said another way, that which occurs most
frequently is not that which can be expected. Subtracting the expected value
of the costs from the expected value of the revenues gives the expected

value of the profit. However, the most likely value of the profit, which is
defined to be the value of the profit that has the greatest chance of
occurring (the value at which the profit frequency distribution achievesits
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Example based on Figure 15-3
0.483 Million is the most likely profit
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Figure 154 Correct profit analysis. Step I: Using Monte Carlo techniques or correct
analytical procedure, combine all six distributions of revenues and costs to determine the

distribution of profits. Step 2: Use the profit distribution to determine (a) the most likely

profit, (b) the expected profit, (¢) the probability of meeting your “yield goal” (venture risk),

and (d) the probability of incurring a loss (financial legal risk). Source: Jon M. Smith,
Financial Analysis and Business Decisions on the Pocket Calculator, Wiley, New York, 1976.
Copyright 1976 John Wiley & Sons, Inc. Reprinted by permission.

maximum value), cannot generally be computed by simple addition. Con-
sidering that profits are small differences between large numbers, estimat-
ing profits on the basis of most likely values can lead to serious trouble.
Summing the expected values of revenues and costs, on the other hand,
yields the correct expected profit. Generally expected profits are lower
than most likely profits!
Thus in risk analysis it is important to consider the shape of the

distribution of (a) the cash flows involved and (b) the measures of
performance of the system such as NPV, ROI, and profit.
We specify risk by the probability that the measure of performance will

exceed acceptable bounds. This requires that all the revenues and costs be
described by a distribution, not just an estimate of the most likely value or

the expected value of each of the revenues and costs. And here lies the
difficulty—it is usually no simple matter to formulate these distributions.

Perhaps a way to generate them is simply to guess, recognizing that
revenues are skewed to the left and costs are skewed to the right. The
consequences of not addressing this problem can be severe, to say the
least, if the NPV can have a reasonable probability of slipping into a
negative value or if the probable profit margin is small. Said another way,
difficulty in specifying the distribution for the revenues and costs is
probably due to the analyst’s uncertainty about the actual costs.
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Figure 15-5 Profit forecasts showing the growth of uncertainty with the range of the
forecast. Source: Joel S. Greenberg, “Risk Analysis,” Journal of Aeronautics andAstronautics,

November 1974. Reprinted by permission of the publisher.

Let us now consider the revenues, costs, and annual cash flows com-

puted in Table 15-1. From the distributions we might expect that the cash
flows would be drawn as in Figure 15-5, which better represents the
distributions of what can be expected from the alternative. A number of
techniques can be used to generate these distributions. In the most com-
mon, the Monte Carlo method, the distributions of the revenues and costs

are roughly estimated and the profits are computed on the basis of random
selection of the distributed revenues and costs. When enough random
samples have been taken to permit the distribution of profit to be sketched,
the Monte Carlo simulation is stopped. Again the problem lies in establish-
ing the frequency distributions of the revenues and costs.
A number of empirical techniques for establishing the frequency distri-

butions have been developed. One that the author finds useful was re-

ported by Greenberg.* This method is sketched in Figure 15-6. First

estimates are of the ranges of uncertainty of the revenues and costs. Each

range is then divided into a number of equal intervals. Greenberg suggests
the use of five intervals. Then a relative ranking of the relative likelihood of

the variables falling into each of the intervals is developed on the basis of
judgment or intuition. This sets the general shape of the frequency distri-

bution and, based on the relative values and knowing that the sum of the

five probabilities must be 1, it is possible to solve for the quantitative

*Joel S. Greenberg, “Risk Analysis,” Journal ofAeronautics and Astronautics, November 1974.
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Figure 15-6 A methodology for establishing uncertainty profiles. (a) Specify range of
uncertainty. (b) Establish qualitative ranking. (¢) Establish relative likelihoods. (d) By

substituting from (c), solve for P values (P, + P,+ P;+ P4+ Ps=1). (e) Establish quantitative

values. Source: Joel S. Greenberg, “Risk Analysis,” Journal of Aeronautics and Astronautics,

November 1974. Reprinted by permission of the publisher.
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values and prepare a sketch of the distribution. Then a beta distribution*

B Fla+B+2) B

= Tarnrgen” 47

can be curve fit to the distribution.
This procedure involves much subjective judgment about the revenues

and costs. This is not necessarily undesirable, however, since informed

estimates of probability distributions include many subjective factors that
relate to the taking of risks.
The cumulative probability distribution can be computed for the NPV

associated with a given distribution simply by accumulating the probabili-
ties for each of the five intervals. This is called a risk profile for the NPV,

and it plots the probability of exceeding the indicated NPV as a function
of the NPV for the business system. The distribution is usually centered
near .5. The significance of this is that the expected NPV distribution
becomes more symmetrical and approaches a Gaussian distribution as the
numbers of revenues and costs become large.
Another technique for combining the revenues and costs is to assume

they are distributed according to a “sketched” beta-type distribution,
whereupon approximations for expected value and the standard deviation
of the combined distributions can be calculated as in Figure 15-7. Using
these relationships and assuming that the central limit theorem applies,it is
possible to compute an estimate of the expected value and the standard
deviation of the NPV for a project.

Preparing a similar analysis for a number of alternative ways to conduct
a given venture will generate a set of means and variances for the decision
alternatives. Then a plot of the mean and variance of the NPV can be

*A method the author uses for setting a and B without the need for a Greenberg-type
procedure is based on years of observation that, for most cost and revenue curves, a=

[N mode/(1— N mode)])'/2,8=1/a,N mode= percentage of range of the normalized random
variable x, where the mode resides. For the distribution in Figure 15-6.

=X__X_
2000— 1000 1000

N mode~0.3

=(93\1/2_a (0.7) 0.22

DB= 57z =455

'(6.77)

= T(1.22)T(5.77) x(1=t
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Figure 15-7 Calculating rough estimates of combined revenue and cost distributions. To be

used with caution. (a) Sketch the revenue and cost distribution. (b) Sketch the parameters of

profit distribution. (c) Calculate the parameters p, and o,. Source: Jon M. Smith, Financial

Analysis and Business Decisions on the Pocket Calculator, Wiley, New York, 1976. Copyright

1976 John Wiley & Sons, Inc. Reprinted by permission.

made for all the alternatives being considered. An example of such a
risk/return plot appears in Figure 15-8. Once done, we can often identify a
boundary of best alternatives—the boundary of the greatest return for the
least risk. All that remains is to establish an acceptable level of risk and to
select the alternative that is closest to the boundary of best alternatives.
More sophisticated decision making is possible on the basis of wtility

functions that express the utility associated with an NPV. This is one
transformation removed from the details of the cash flow, but it reflects

the judgment about the significance of the NPV to operations.
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Figure 15-8 Risk/return plot for visualizing alternative ways to conduct a given venture.

The best alternatives boundary is different for different types of ventures and is characteristi-

cally of the form onpy=kV pnpy (Poisson-type distribution). Source: Jon M. Smith,
Financial Analysis and Business Decisions on the Pocket Calculator, Wiley, New York 1976.

Copyright 1976 John Wiley & Sons, Inc. Reprinted by permission.

15-4 SPECIFYING CASH FLOW AND LEVEL OF INDEBTEDNESS TO

ENSURE THAT GREATER VISIBILITY IS GIVEN TO RISK

The final step in the analysis of business systems from a risk viewpoint is
to make plots of the cash flow and level of indebtedness, not as a single
curve but as a set of curves having confidence level as a parameter. This
provides the visibility necessary to establish funding requirements for a
start-up operation or development of a new product. The information can
also be used as a tracking chart against which to judge the performance of
the system. An example of the cash flows with confidence levels as
parameters is given in Figure 15-9. Specifying cash flows in terms of the
confidence level helps to identify the level of indebtedness in such a way
that the risk is clearly visible.

15-5 FINANCIAL ANALYSIS SUMMARY

Financial analysis has two aspects that are conveniently solved on a
modern scientific pocket calculator. The first is the calculation of the time
value of money and the second is the statistical risk-analysis calculations.
Most scientific calculators have both deterministic and statistical functions
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chance that funding level will be exceeded (i.e., survivability of the venture). Source: Joel S.

Greenberg, “Risk Analysis,” Journal of Aeronautics and Astronautics, November 1974. Re-

printed by permission of the publisher.

already available for these types of calculation and thus they are ideal for
conducting financial analysis. With the addition of the five financial keys
and associated financial functions, the field of financial analysis is even
more convenient. So what?

If you believe that economics is important in today’s business environ-

ment, then you will understand that economics in engineering is even more

important. The engineering margins are smaller than business margins and

can be more sensitive. The consequences of complete redesign of a product
can be far more dramatic than those of an overhauled advertising program
or business reorganization. Without engineering feasibility some businesses
collapse. It is important, then, for the engineer to learn engineering
economics, and this means learning the language of financial analysis
(which is a euphemism for money making). Simply stated, the engineer or
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scientist depends for his pay upon the profitability of the products he
works on. No profit=no job.
When an engineer or scientist becomes familiar enough with financial

analysis that he can speak the language of finance and financial risk and
present the financial implications of his work in such terms, he demon-

strates his ability to work in two worlds, an invaluable asset to both
employee and employer. The scientific pocket calculator now makes the
world of mathematical analysis in general and financial analysis in particu-
lar only a few key strokes away for the engineers and scientists who will
take the time to use the calculator as a teaching machine.

15-6 REFERENCE

For a detailed discussion of business statistics, risk analysis, and setting up
a business math model, see Chapters 9 and 10 of Financial Analysis and
Business Decisions on the Pocket Calculator, Jon M. Smith, Wiley, New

York, 1976, from which the material in this chapter was drawn by courtesy
of the publisher.



APPENDIX 1

SOME TRICKS
OF THE POCKET
CALCULATOR TRADE

In the course of writing this book, a number of interesting “special
methods™ were offered by many colleagues. Unfortunately, the list is far

longer than might be conveniently included in a single chapter. This
appendix presents some of these methods, selected on the basis of their

usefulness in pocket calculator analysis or because they are novel and

interesting.

Al-1 7 AND e ON THE FOUR-FUNCTION CALCULATOR

An easy-to-remember sequence of numbers, which will generate = with an

error of only 4x 1077, is

113355

We see that this set of numbers is made up of double entries of the first

three odd digits of the positive numbers. Then

fr=3i=7r+c
11

where

€e<4x1077
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The key stroke sequence for generating 7 on the four-function calculator
1s

(355)

(113)

—

 

3.1415929
  
 

A similar ratio generating an approximation of the number e that was
published by Texas Instruments Incorporated in their applications guide is

193= =2.7183098

This ratio is not easily remembered, except perhaps by noticing that each
digit is an odd number and that the digits appear in the sequence

Sequence 1 3 4 2 5
S——

of occurence M—/

with the first three in the numerator and the last two in the denominator.

The result of the ratio is accurate only to the fourth digit (i.e., 2.718), which

is one digit fewer than must be remembered in the ratio (i.e., 1,9, 3, 7, and

1). One might as well memorize e to five places:

e=2.71828(1828-- )

The author devised a simpler, more accurate, and more easily remem-

bered sequence of zeros and odd numbers (as used in the # sequence):

001133557799

The procedure is as follows:

1. Cancel the 77 and 11 pairs (symmetric operation).
2. Put a decimal place after the first zero and a parentheses before the
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last 9 (symmetric operation) to obtain

(0.033559)9

This product is e/9 to six digits when rounded at the sixth digit. Thus

e=(0.033 559)9x9|
rounded

In evaluating e in this manner, the key stroke sequence is

(0.033559)
X

%)

2.718279 —2.71828 when rounded

 

   

The relative error in this evaluation of e is less than 7X 10™°%.
To discover such sequences, the calculator becomes a research tool.

When trying to find interesting ways to generate approximations to often-

used numbers, one can begin by repeated calculator operations on a
number and look for an interesting pattern. For example, four divisions of
7 by 6 on an eight-digit calculator will result in the number

0.002424
which is, curiously enough,

6X4X1074+6x4x10"°
Thus

7=6(6X4Xx107*+6x4x1076)=3.141504

for a relative error of

0.0000886
mX 100=0.00282%

Note that only the two even numbers, 4 and 6, are used in this evaluation

of 7. This particular approximation was worked out at the time of this

writing as an illustration of the interesting properties of number approxi-

mations that can be found with the aid of a simple eight-digit calculator.
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A1-2 TRUNCATING A NUMBER ON A CALCULATOR THAT DOES NOT

HAVE EXPONENTIAL NOTATION

Truncating a number is the process of reducing a number made up of an
integer and fractional parts to an integer. For example, when the numbers

1.21743

24741715

5764.88177

are truncated, they result in the numbers

1.0

247.0

5764.0

Notice that there is no rounding. An interesting approach to truncating

any number in the registers of a pocket calculator that does not have
scientific notation is the following:

1. Divide the number by 1000- - -, where the number of zeros fills the
rest of the display register.

2. Multiply the result of step (1) by the divisor in step (1)—1000- - - .

The result is the truncated number being sought. The key stroke sequence
is

(number in display register)

(100000- - - )
X
(10000 - -)

truncated number in

display register

Al1-3 LUKASIEWIC’'S ALGORITHM FOR EVALUATING ANY FUNCTION

ON A MACHINE WITH REVERSE-POLISH NOTATION PLUS AN

OPERATIONAL STACK

Step 1 Write function in serial form.

Step 2 Key in first number.
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Step 3 Compute all functions of the single number and enter them in the
stack (keyboard operations such as In(x), 10%, and sin(x).

Step 4 Compute all 2-number functions and enter them in the stack
(keyboard operations such as +, —, X, +, x”, and xy,).

Step 5 Key in next number, then repeat steps 3 through 5 until the
function is evaluated.

This algorithm is flow-charted as shown in Figure A-1. Clearly, this
algorithm requires an infinite number of registers in the stack to evaluate
any function. The lower limit is two registers and a reasonable size is three
for most commonly encountered scientific functions. Hewlett-Packard’s
HP-35, HP-45, and HP-65 calculators (the most popular reverse-polish plus
stacks machines) all have four registers in their operational stack.

v @
Key in next number

 

 

   
Py
 -

[   

    

 

   

 

  

 

Can you
perform any

one—number (mona -

dic) operation

   

  

 

Yes

 

  
Do it

   

Can you
perform any

two—number (dia-
dic) operation

     

Do it
   

   Enter f
   

 

Read numerical

evaluation of

function in display
register   

Figure Al-1 An algorithm for function evaluation on the reverse-polish plus stacks

machines.
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Example. Consider the expression

(4+B)[In(C+D)"*+E]

This complex expression can be evaluated according to the algorithm with
the following key strokes on the HP-35 (circled number correlates evalua-

tion to the algorithm flow chart operation):

Key Stroke Sequence

(A)

7

(B)
+

T

(C)

 

(D)
+

v

In

(E)
+

X O
E
O
O
P
E
O
®
O
O
V
O
®
O

 

Result in

  Display Register
 

Al1-4 QUICK POLYNOMIAL APPROXIMATIONS FOR ANALYTIC

SUBSTITUTION

A simple, not too accurate, but fast, procedure for developing polynomials
that can be used to approximate functions is the following:

1. Identify a number of rational number conditions, x,, x,,...,x;, under

which the function takes on rational number values, ¢, c,,..., ¢,.
2. Prepare a polynomial with coefficients a,, a,,...,a,) which is evaluated

using simultaneous equations.
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Example. Approximate sinf with a second-order polynomial on the in-
terval 0< 8 <90°.

6
Degrees Sind

0
30
90 —

_
—
N
O

We use a quadratic equation sinf~a, + a,0 + a,0? to approximate sinf

on the interval 0-90°. The coefficients are determined using the simul-
taneous equations

0=a,+a,(0)+ a3(0)2

} = a, + a,(30) + a4(30)°

1= a, + a,(90) + a5(90)’
By inspection we see that

a,=0

This system of equations reduces to

} = a,(30) + a5(30)°

1 = a,(90) + a,(90)°

— 3 =—a,(90) —3a,(30)

1= a,(90) + a5(90)°

Summing we find:

(1-3)=—1=4a,[(90)* - 3(30)’]

-3 -1 -1
23 8Ix10P—27x10° 54x 10 108X 10

* %37 70800
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We can now use a; to compute a, by way of one of the simultaneous

equations:

 

 

900

a=l(l+ 900 )=5400+900= 6300 _ 63
2 30\2 10800 324000 324000 3240

The approximating polynomial then is

for 0< 8 <90°, where

630 92
sinf=—— —

3240
 
10800

+ € (@ in degrees)

100(e/sinf) < 11.14%

The characteristics of this approximation are seen given in Table Al-1.

 

 

Table Al1-1

Maclaurin

Relative Expansion

9 630 92 Error (0_ 0_3)
(degrees)  sinf (3_226 10800 Percent 6

. est sinf0 0 0 ;l_r)r(l)(w)——n.m

5 0.08715574 0.09490741 —8.89 0.08715570

10 0.17364818 0.18518519 —6.64 0.17364683

15 0.25881905 0.27083333 —4.64 0.25880881

20 0.34202015 0.35185185 —2.87 0.34197708

25 0.42261826 0.42824074 —1.33 0.42248706

30 0.5 0.5 0.00 0.49967418

35 0.57357644 0.56712963 +1.24 0.57287387

40 0.64278761 0.62962963 +2.05 0.64142155

45 0.70710678 0.68750000 +2.77 0.70465265

55 0.76604444 0.74074074 +3.30 0.81250684

60 0.86602540 0.83333337 +3.77 0.85580078

65 0.90630779 0.87268519 +3.71 0.89111986

70 0.93969262 0.90740741 +3.44 0.91779950

75 0.96592583 0.93750000 +2.94 0.93517512

80 0.98480775 0.96396296 +2.22 0.94258217

85 0.99619470 0.98379630 +1.24 0.93935606

90 1.0 1.0 0.0 0.92483223
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The table showing a relative error as large as 11.41% should be enough to
point up the inaccuracy associated with this method. It is worth mention-
ing, however, because the method can be useful for quick curve getting
through experimental data or measurements that are known only to a few
percent.

A1-5 A METHOD FOR COMPUTING RECIPROCALS ON THE FOUR-

FUNCTION CALCULATOR

A straightforward, but often overlooked (even by manufacturers in their
applications manuals) technique for evaluating the reciprocal of a number
is to enter the number into the display and constant registers (usually done
automatically for the constant register), divide the number by itself to

enter 1 in the display register, and then divide again to find the reciprocal.
The key stroke sequence is shown in Table A1-2.

 

Table A1-2

Automatic

Constant Manual Constant

Register Entry Switch Activation
 

  > (A) - —( Constant key—ON)
-+

1/A in display register

 

A1-6 ALPHA-NUMERICS ON THE POCKET CALCULATOR

Calculators are, by definition, capable solely of numerical manipulations:

and displays. An interesting aspect of our arabic-based alphabet and

number system is that they have many common symbol shapes. Because of

this there are words that can be spelled out using numbers. For example, in

most calculator displays

HOS5S =soss

Even more interesting is the fact that some letters are made up of

upside-down numbers. A typical example is

3 upside down=E
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The numbers displayed in the calculator display window that correspond

to letters are shown in Table Al-3.

 

 

Table A1-3

Numeric Corresponding Corresponding
Display Right-side up Upsidedown

Window Letters Letters

I~
Il 0 0

i Iorl Iorl

l:l
—I
Z E

|
' y

Ui
l
-

W\ %
)

 

>+

ol
Q

&
&

Total 7
 

Note that there are three vowels among the upside-down letters but only
two among the right-side-up letters. Also, there is one more consonant
among the upside-down letters than among the right-side up letters. The

author conjectures that it is for this reason that the upside-down set is

more popular with pocket calculator innovators.

Examples of the better known pocket calculator “scrabble” words are
the following (all to be viewed upside down):

Greeting 07734

Object 38079

Proper name 318808

Adjective 35007

Expletive 57738.57734 x 10%°



APPENDIX 2

MATRIX ANALYSIS
ON THE POCKET CALCULATOR

Matrix manipulations on the pocket calculator are fairly straightforward
compared with matrix calculations for general-purpose computing. The
matrices that the pocket calculator, and even the programmable pocket
calculator, can operate on are small, hence can be easily manipulated
manually if problems of ill-conditioned matrices are encountered. Here we
concern ourselves with basic matrix operations for 2 X2 and 3 X3 matrices.
The most fundamental matrix operations are those of addition, subtrac-

tion, and multiplication of two matrices. Consider the two matrices

The sum of these two matrices is then given by

A+B=

and the difference by

399
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and the product by

ab,+ab; ab,+a,b,

ab,+ab;  asb,+asb,
AB=

The inverse of the 2 X2 matrix A is given by

A-l=| @1 *

a; 0y

where

a,=a,/det

a,=a;/det

a;=a,/det

a,=a,/det

The determinate can be numerically evaluated as

In a similar fashion, the 3 X3 matrix operations can be defined for the

sum, difference, and product. However, the inverse of a 3 X3 matrix is

defined somewhat differently. Consider now the matrix A defined by

a, b, ¢y

A= a b, ¢

a; by ¢

which has the inverse

a, a0y
_]_

A a, a5 Og

a; Qg 0O
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where the alphas can be numerically evaluated with the equations

a; = (byc3— bsc,)/det

a, = (a3c, — ayc;)/det

ay=(a,b;— azb,)/det

aq=(bsc, = byc;)/det

as=(a,c;—azc,)/det

ag=(asb, — a,b;)/det

a;=(b,c;— byc,)/det

ag=(a,c,— a,c,)/det

ag=(a;b;—ab,)/det

Here the determinate can be numerically evaluated with the equation

det=a,b,c;+ a,bsc,+ a3b,c,— asb,c,— a,bc5—a,b;c,

Clearly the matrix inversion will work only if the determinate is nonzero.
Another important matrix manipulation that is frequently encountered

and can be easily evaluated on the pocket calculator is the determination

of the characteristic equation for the matrix 4. That is,

A-N=-N+dA+dA+d,=0

Here d, through d, can be given by the equation

di=a,+b,+c,

dy=asc,+ ayb,+ byc,—ab,—a,c,— bye,y

dy=det=a,byc;+ a,byc, + a3b,c,— azb,c,

—a,b,c;—a,b,c,

Using these equations, the matrix manipulations associated with many
vector-matrix operations can be determined for second- and third-order
matrices. Beyond the second- and third-order matrix analysis, the evalua-
tion on the pocket calculator, though possible, becomes somewhat tedious.



APPENDIX 3

COMPLEX NUMBERS
AND FUNCTIONS

While it is not the purpose of this book to teach complex variable theory,
it will be discussed to review the concepts in complex numbers and
functions that are pertinent to the evaluation of advanced mathematical
functions. Complex numbers written in Cartesian form are as follows:

z=x+iy

Complex numbers in Cartesian form can be written in polar form:

z=re®=r(cosf+isinf)

It is apparent that the modulus of the complex number is

o=(2 +y2)=
Similarly, the argument of a complex number is given by

arg(z) = tan"(i—)) =0

It is common to refer to the real and imaginary parts of a complex
number:

Re(z)= R(z) = x =rcosf =real part

Im(z)=I(z) =y =rsinf =imaginary part

The complex conjugate of a complex variable is given by

I=x—-ly=2z,

402
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It is clear from the definition of the modulus of a complex number that

|2c|=1z]

Similarly the equation for the argument of a complex number allows

arg(z,) = —arg(z)

It is worth remembering that the complex conjugate is used in clearing the
complex form of the denominator of a complex number.
The multiplication and division of two complex numbers

z;=x,+iy;, and z,=x,+iy,

are given by

2122=x1x2_)’1Y2+i("l)’2+xz)’1)

and

 

zy 4%y, XXy 4yo+ i(X= X, ¥3)
2, 2

2z Xy +y;

It is apparent that

|2125| =121l 2]

Similarly we see that

arg(z,z,) =argz,+argz,

Z _ |z)|

- |22|  2

Zw2t-
Powers of complex numbers can be written in polar form:

n_infz"=r"e

which is equivalent to

z"=r"cosnf+ir"sinnf, (n=0,%1,%2,...)
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In particular,

2 =x2—y2+i(2xy)

22=x3-3x2+i(3xy —y?)

24=x*—6xyr+y*+i(4x¥y —4dxy?)

23=x3=10xy2+Sxy*+i(5xYy — 10xY 3 +°)

In general, we can write

z"= x"—( " )x”"zyz+( " )x"‘“y“—
2 4

2 3

Furthermore, if the nth power of z is written in the form

n— ;z"=u,+1ip,

then

n+1__ .

27T S UyT 0,
where

un+ 1 = xun _yvn

vn+,=xvn+yu,,

For negative powers of a complex number,

 

 

1 _ 2 _ xX—1iy

and more generally

1 _ zcn . -1\

A
The roots of a complex number are easily interpreted in polar form:

z'/2= r'/zei”/2=r'/zcos(g)+ ir'/zsin(g)
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If data are greater than — # but smaller than or equal to + «, this equation
computes the principal root. The other root has the opposite sign, of
course. The principal root is always given by

2V2=[4(r+ x)]l/zii[%(r—x)]l/2=ui iv

where 2uv =y and the ambiguous sign is taken to be the same as the sign
of y.

In general, then, the nth root of the complex number z is given in polar

form by

zl/n — rl/nei0/n

Again, this equation computes the principal root if 8 is greater than —,

but smaller than or equal to + «. The other roots are computed from the
expression

pl/ngi®+2ak)/n  (p=123.n—1)



APPENDIX 4

FORMULAS FOR
COMMONLY ENCOUNTERED CALCULATIONS*

A4-1 TRIGONOMETRY

Trigonometric Functions of an Angle

 

 

sine (sin)a = %

cosine (cos)a = %

y Il I
tangent (tan)a = >

x X X
cotangent (cot)a ==

Y 1 v

secant (sec)a = f Y

cosecant (csc)a = ;r}_

Note: x is positive when measured along OX and negative along OX’; y is
positive when measured parallel to OY and negative parallel to OY"'.

*Ralph G. Hudson, Engineers’ Manual, 2nd ed., Wiley, New York, 1939. Copyright 1939

Ralph G. Hudson. Reprinted by permission of John Wiley & Sons., Inc.
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Trigonometric Relations

    

   

sina = ; cosa= ; tana = 1 _ sina
csca seca cota cosa

1 1
csca=———; seca= N cota= = cpsa

sin « cosa tana sina

sinfa+cosfa=1; sec’a—tan’a=1; csc2a—cotta=1

Multiple-Angle Formulas

sin2a =2sinacosa

cos2a=2cos’a—1=1-2sin?a=cos’a —sin’a

sin3a=3sina—4sin’a

cos3a=4cos’a—3cosa

sinda =4sinacosa—8sin*a cosa

cosda=38cos*a—8cos’a+1

sinna =2sin(n—1)acosa—sin(n—2)a

cosna=2cos(n—1)acosa—cos(n—2)a

Half-Angle Formulas

 

sin & = l—cosa cos Lo = 1+cosa
2 2 ’ 2 2

1 1 —cosa sin 1 —cosa
tan &= : = =

sina 1+ cosa 1+cosa

Powers of Sine and Cosine

L2 ] . 2, 1sina = 5(1—cos2a); cos”a=5(1+cos2a)

sin®a = ;(3sina —sin3a); cos’a=;(cos3a+3cosa)

sina=1(cosda—4cos2a+3); cos*a=g(cosda+4cos2a+3)
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Sum or Difference Formulas

sin(a * B)=sinacosB *+cosasinf

cos(a* B)=cosacos B Fsinasinf

tana +tanf
+ =

tan(a = 8) l+*tanatanf

Sums, Differences, and Products Formulas

sina *sin3 =2sin(a* B)cosz(aFB)

cosa+cosff  =2cosi(a+B)cosi(a—pf)

cosa—cosf  =—2siny(a+fB)sini(a—pB)

sin(a *
tana *tanf = #cof[;

sina—sin’f  =sin(a+ B)sin(a— )

cos’a—cos’f = —sin(a+ B)sin(a—fB)

cosa—sin’f  =cos(a+ f)cos(a—f)

sinasin8 =2 cos(a— fB)— ;3 cos(a+f)

cosa cosB =3 cos(a— )+ 3 cos(a+f)

sina cosB = sin(a+ B)+;sin(a—fB)

Equivalences

sina=V1—cos’a = —28% 1 _ Vsecla—1 _ 1
V1i+tan?a  V1+cota seca csca

cosa tana sin2a 1
=cosatana = = = =\/3(1—cos2a)

cota seca 2cosa

=2sin X cos
2 2
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2.,
cosa=V1-sina = 1 — cota 1 Vsecla—1

V 1+tan?a V1+cotta S€€& CsCa

) sina  cota sin2a=sinacota= = == =\/%(1+cos2a)
tana csca 2sina

=co2 ¥ _ein2 & —1-_9¢in2 & = 20coSs > sin > 1 —2sin > 2cos > 1

 

: 2in —tana = sina _ \/1 cosa _ 1t —Vsea—1R

V 1—sin?a cosa cota VescZa—1

 

   

a
. : 2tan —

_sina _ seca _  sin2a _ 1—cos2a _ 2
cosa csca 1+cos2a sin2a 1—tan2 &

2

Inverse Functions

Sin~!q is defined as the angle whose sine is a. Sin~'a has an infinite
number of values. If a is the value of sin~!a which lies between —90° and

+90° ( ——-275 and + % radians) and if » is any integer,

sin"'a=(—1)"a+n-180°=(—1)"a+nn [ similarly for csc”la]

Cos~'a is defined as the angle whose cosine is a. Cos™'a has an infinite
number of values. If a is the value of cos™'a which lies between 0° and
180° (0 and = radians) and if » is any integer,

cos"la=+a+n360°=*a+2n7 [similarly for sec“a]

Tan~!a is defined as the angle whose tangent is a. Tan"'a has an
infinite number of values. If « is the value of tan™!a which lies between 0°
and 180° (0 and = radians) and if n is any integer,

tan'a=a+n-180°=a+ nw [ similarly for cot™'a]
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Inverse Function Formulas

 

. CIN/T 3 _ 1 V1-a?
sin"'la=cos"'V1—qg? =tan~! =cot~!

1_a2 a

_ 11
=sec ! =csc -

1_a2 a

_ TN Sum—— _ 1—q? _ a
cos 'a=sin"'"V1-a? =tan~! =cot™!

1—a?

11 -1 1
=sec = =cs¢c ——

a 1 — a?

-1 =1 a -1 1 11 -1 2
tan” 'a=sin — =c0§~ ————  =cot~  — =seC l1+a

V1+a? V1+a? a

1 V1+a?
=cs¢c | H———

a

- 1 _ | _ 11
cot la=tan"!—; sec la=cos™!'—; csc la=sin"!—

a a a

sin"!axsin~'b=sin"'(aV1-b> £bV 1-a%)

cos'axcos 'b=cos!(abF V 1-a*> V1-b%)

-1 axb
tan l'a+tan~'b=tan =

1¥ab

1sin"'a+cos™'a=90°; tan"'a+cot~'a=90°; sec'a+csc”'a=90°

if sin~la, tan~!a, csc " la lie between —90° and +90° and cos ™ 'a, cot™! q,
sec " la lie between 0° and 180°.

Trigonometric Equations

By means of the relations expressed previously, reduce the given equation
to an equation containing only a single function of a single angle. Solve the
resulting equation by algebraic methods for the remaining function, and
from this find the values of the angle using your pocket calculator.
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Solution of Commonly Encountered Equations

If sina=sinB, then a=(—1)"B+ n-180° (n=any integer)

If cosa=cosf, then a= = +2n-180°

If tana=tanp, then a= 3+ n-180°

If cosa=sinfB, thena= + 3+90° +2n-180°

If tana=cotfB, then a = — +90° + n-180°

If acosa+ bsina=c, and a,b,c are any numbers, and c?< a*+ b?, then

1 C

V a?+ b?
a=tan"§ +cos™

Properties of Triangles

Notation: a, 3,y =angles; a,b,c=sides; A =area; h, =altitude on b; s= %(a

+ b+ ¢); r=radius of inscribed circle; R =radius of circumscribed circle.

a+ S+ y=180° =« radians

a+h tan%(a+B)*

a=b tani(a—p)
 

 

a*=b%+c?—2bccosa,*  a=bcosy+ ccosB*

 2 —
cosa—-b—fi——‘l—,* sma——\/s(s——a)(s—b)(s—c) *

(s—b)(s—c) s & = s(s-—a)

V )

o _ (s=b)(s—c¢) _

2 s(s—a) s—a

 

*
 



412 Formulas for Commonly Encountered Calculations

 

h,=csina* =asiny* = %\/s(s—a)(s— b)(s—c) *

 

 

 

__a 4_abc
R 2sina 44

a’sin Bsiny
=l *=l 1 ok= —_ — — =A=1bh*=1labsiny S Vs(s—a)(s—b)(s—c) =rs

*Two more formulas may be obtained by replacing a by b, b by ¢, c by a, a by 8, B by v, v
by a.

Properties of Right Triangles

Given any two sides, or one side and any acute angle, «, find the

remaining parts.

o
S , tana= —, B=90°—a

S
Rsina =

a=\(c+b)(c—b) =csina=btana

= _ = = a < ab=V(c+a)(c—a) =ccosa ana

o
| , cosa=

 

 

sinad  CcoSa

a’  _ b’tana _ cZsin2a
ab=2tana_ 2 - 4

AN Il
N
-

Properties of Oblique Triangles

1. Given any two angles a and 8 and any side c.

_csina | b= csinf

siny siny
 y=180°— (a+ B);

2. Given any two sides @ and ¢ and an angle opposite one of these,say a,

asinfl

sina
 siny=%, B=180°—(a+7y), b=
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Note. y may have two values, y,<90° and y,=180°—1vy,>90°. If
a+y,>180°, use only v;.

 

 

3. Given any two sides b and ¢ and their included angle a. Use any one
of the following sets of formulas:

 ()(B+7)=90°—1a;  tanl(B—7v)= Z;z tan 1(8+7)

=3(B+V)+3(B—7); v=3(B+Yv)—3(B—¥); a= l;f;nfi"‘

(2)a= Vb2 + 2 —2bccosa ; sinfi=fi%‘l‘l; y=180°— (a+B)

3)tany = —<SiBA . —180° — + v): _ csina
(3)tany b—ccosa A (aty); ? siny

4. Given the three sides a, b, and c. Use either of the following sets of

formulas:

(1)3‘—(a+b
+c) \/(S—a)(s

—b)(s_c)
 

 tan%a=s—_—5, tan,8——;)—, tanz-y—s_c

2, .2_ 2 2, 2 12
Qeosa=TEEZL | cosp=CEIZL 4= 180°— (a+)

A4-2 MENSURATION CALCULATIONS

Notation: a,b,c,d,s denote lengths, 4 denotes area, V' denotes volume.

Right Triangle /\

1"
b

A=1ab / i

c=Va*+b?, a=Vc*-b?, b=Vc%—a?
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2
A=1bh %//E: I?K»

ep—

Oblique Triangle

Equilateral Triangle

A= %ah = %az\/i

 

 

   [ b
Rectangle

 e
—
—

A=ab; d=\/c12+b2 | |

Parallelogram (opposite sides parallel)

N i NA=ah=absina \é

d,=Va*+b?—2abcosa

dy=Va’>+b*+2abcosa

[ b
1 ¥

Trapezoid (one pair of opposite sides parallel)

A=1h(a+b) | L
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Isosceles Trapezoid (nonparallel sides equal) %\|<—b—%|

A=1h(a+b)="1csina(a+b) [

=csina(a—ccosa)=csina(b+ccosa) < . N

Trapezium (no sides parallel)

A = 1(ah, + bh,)=sum of areas of2 triangles

Regular Polygon of n Sides (all sides equal, all angles equal)

  

 

 

B="=2180°= =2, radians

a= 360° _= 2—'”radlans
n

a r R A

2rV3 =RV3 %a\/—i %a 3 %az\/g =3rV3

=3iR*V3

2r=RV2 sa zaV2 a? =4r2=2R?

2V3 =R saV3 a 2a*V3 =2r2V3

=3R?>V3

2r(V2 —1) 1a(V2 +1) 1aV4+2V2 24(V2 +1) =8rA(V2 -1)

=RV2-V2 =2R?*V2

a a a a o ha_ a = nr2 @2rtan > > cot > > csC > 4 cot > nr-tan >

2
=2Rsin% =n—2——sina
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Circle (C = circumference, a = central angle in radians)

 

 
 

   

C=aD=27R

c=Ra=1Da=Dcos"£=Dtan“‘L
2 R 2d

D

[=2VR?*-4? =2Rsin%=2dtan%=2dtan%

d=3V4R*—[1?2 =1\/p2-? =Rcos%=%lcot%=%lcot%

h=R-d

=£=2_C_= _l£= —1___1_= '_l._{.o ) 2cos R 2tan >d 2sin D

Agpye=7R?=1gD?=1RC=1DC

Asector= %RC = %Rza = %Dza

. . C
Asegment= Asector- Atriangle= %R 2 (Ol - Slna) = %R (C — Rsin 'R")

2R ¢
=R%sin"' == — \\/4R?— 2 =R2cos_'%—a'\/R2—d2

= R2cos™' 22—(R— )V2RR =12

Ellipse

A =mab

Perimeter (s)

 =n(a+b)   
2 4 6

ifa=b _L(a—b) L(a—b)
1+“(a+b)+64 a+b) Ts6\arn)+ 6

+b 1 5 |a _ a

=T 4 [3(1'}‘)' 1—>\] A_[2(a+b)]
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Parabola i

fe——1

2 2, 72

Length of arc (s)= 1V 164>+ 1> + éz 1n("w1_+._116_di)

2 4

=)T
Heightof segment (d,) = %(’2 —12)

  

Width of segment (/,)=1/ T‘

Cycloid (r = radius of generating circle)

A=3mr?
Length of arc (s)=8r

Catenary. Length of arc (s)=1/

 

[ 42(2dY . I
3 approximately, if 4 is small
3

!

:I/—d

Area by Approximation. Let yq,y,,y,,...,y, be the measured lengths of a
series of equidistant parallel chords, and let 4 be their distance apart; then

Yoh V2 )a Yn-1Yn

in comparison with /.
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the area enclosed by any boundary is given approximately by one of the
following rules.

A= h[ Vot)tyst +y,_ 1] (Trapezoidal Rule)

A, =3h[(Po+y)41 +ys+ s Hy,)2yt+y,y)]

(Simpson’s Rule, where n is even)

The larger the value of n, the greater is the accuracy of approximation.
In general, for the same number of chords, A, gives the most accurate, 4,,

the least accurate approximation.

Cube

 

V=a3 d=aV3 \

Total surface = 64>

   e

Rectangular Parallelopiped

V=abc; d=\a*+ b*+ ¢? —3
Y

Total surface= 2(ab+ bc + ca) | . Igb’|

 

  
 

Prism or Cylinder

V= (area of base) X (altitude)

Lateral area = (perimeter of right section) X (lateral edge)
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Pyramid or Cone

V= 3(area of base) X (altitude)

Lateral area of regular figure = 1(perimeter of base) X (slant height)

 

 

 

Frustum of Pyramid or Cone

V=3(4,+4,+V4,x4, )h

where A, and A4, are areas of bases, and 4 is altitude.

Lateral area of regular figure=%(sum of perimeters of bases) X (slant
height)

 

<
—
—
3
—
>
>

  
Prismatoid (bases are in parallel planes, lateral faces are triangles or

trapezoids)

V=21(4,+A4,+44,)h

where 4,,A4, are areas of bases, 4,, is area of mid-section, and 4 is altitude.
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Sphere

A phere =4nR?*=qaD?

A, =27Rh=aDh

Vsphere = %WR3= %’fl’l)3

Vspherical sector = %WR 2h = %WD 2h

Vspherical segment of one base

=Lah,(3r2+h?)=17h3R - h))

Vspherical segment of two bases

= Lok (3r2+3r2+ 1%

 

 

 

   

Solid Angle (¥), at any point (P) subtended by any surface (S), is equal
to the portion (A4) of the surface of a sphere of unit radius which is cut out
by a conical surface with vertex at P and the perimeter of S for base.

The unit solid angle (¢) is called a steradian.
The total solid angle about a point=4= steradians.
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Ellipsoid

V= %wabc
 

 

Paraboloidal segment

vV 1 2
segment of one base — 27" h

— 1 2 2
Vsegment of two bases — EWd (r 1 +r2 ) “‘

V=2xRr? \

Surface (S)=4n’Rr

Torus

 

 

Solid (V) or Surface (S) of Revolution, generated by revolving any plane
area (A) or arc (s) about an axis in its plane, and not crossing the area or
arc.

V=27RA; S=27Rs

where R =distance of center of gravity (G) of area or arc from axis.

A
x
i
s

x

A4-2 ANALYTIC GEOMETRY CALCULATIONS

Rectangular Coordinates

Let two perpendicular lines, X’'X (x-axis) and Y'Y (y-axis) meet in a point
O (origin). The position of any point P(x,y) is fixed by the distances x
(abscissa) and y (ordinate) from Y'Y and X'X, respectively, to P.
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Note: x is + to the right and — to the left of Y'Y, y is + above and —
below X'X.

 

Y

P

|

l r

yl 0

LAY
X 0 X

Y' 
Polar Coordinates

Let O (origin or pole) be a point in the plane and OX (initial line) be any
line through O. The position of any point P (r,#)is fixed by the distance r
(radius vector) from O to the point and the angle 6 (vectorial angle)
measured from OX to OP.

Note: r is + measured along terminal side of 8, r is — measured along
terminal side of # produced; # is + measured counterclockwise, 8 is —

measured clockwise.

Relations Connecting Rectangular and Polar Coordinates

x=rcos#, y=rsinf

r=\/x2+y2 , 0=tan_11, Sin0=—y——,
x ‘/xz_*_yz

cosa=—x—, tanf = 2

x2+y2 X

Points and Slopes

Let P,(x,y,) and P,(x,,y,) be any two points, and let a be the angle from

OX to P,P,, measured counterclockwise.

 

P1P2=d=\/(x2_x1)2+(J’2_)’1)2
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Y

\ B

P

a,

- 0 \2x
 

 
Midpoint of P,P, is

  (x1+x2 )’1+)’2)
2 2

Point that divides P, P, in the ratio m,:m, is

 
mx,+m,x, m;y,+m,y,

m+m, ° m+m,

Slope of P,P, is

Y2a—0
tana=m= -

Xy ™ Xy

 

Angle between two lines of slopes m, and m, is

1 m;,—m,
B=tan™' ———

1+mm,

Two lines of slopes m, and m, are perpendicular if m,=—1/m,.

Locus and Equation

The collection of all points that satisfy a given condition is called the locus
of that condition; the condition expressed by means of the variable
coordinates of any point on the locus is called the equation of the locus.
The locus may be represented by equations of three kinds: (1) rectangu-

lar equation involves the rectangular coordinates (x,y); (2) polar equation

involves the polar coordinates (r,8); (3) parametric equations express x
and y or r and @ in terms of a third independent variable called a
parameter.
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The following equations are given in the system in which they are most
simply expressed; sometimes several forms of the equation in one or more

systems are given.

Straight Line

Ax+ By+ C=0[ — A + B=slope]

y=mx+b (m=slope,b=intercept on OY)

y—y,=m(x—x,)  (m=slope, P,(x,,y,)is a known point online)

Ax,+ By,+ C . . i
d= ——7— (d=distance from a point P, (x,,y,) to the line

+VA%+ B? Ax+ By + C=0)

Y Py (x5, y3)

d

\<<(xx= tan"'m

\X

 

 
Circle

Locus of a point at a constant distance (radius) from a fixed point C

(center).

) (x—h)*+(y—k)’=a? C (h,k),radius=a

r*+ b*—2brcos(§—B)=a*> C(b,B),radius=a

? x*+y?=2ax C (a,0),radius=a

r=2acosf C(a,0),radius=a
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x*+y?=2ay C(0,a), radius=a

 

  

3
() r=2asinf C(a,%), radius=a

Y

r (3) Y
( Ct k) ’ /‘a/\

- Daaeh0 X o\ ¢0 X 0 X1
2 (4)

x?+y?=a® C(0,0), radius=a

@) r=a C(0,0), radius=a

x=acos¢,y=asing C(0,0), radius=a,¢p=angle from

OX to radius

Conic

Locus of a point whose distance from a fixed point (focus) is in a constant
ratio, e (called eccentricity), to its distance from a fixed straight line
(directrix).

x*+y?=e*(d+x)* (d=distance from focus to directrix)

ode
l1—ecosl’

p~
 

di
re
ct
ri
x

/
N

 

focus X
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The conic is called a parabola when e=1, an ellipse when e<1, a
hyperbola when e > 1.

Parabola

Conic where e=1.

 

 

 

(1) (y—k)>=a(x—h) Vertex (h,k), axis| OX

yr=ax Vertex (0,0), axis along OX

2

@) (x—h)’=a(y—k) Vertex (h,k), axis||OY

x“=ay Vertex (0,0), axis along OY

Distance from vertex to focus= VF= }a. Latus rectum=LR =a.

Ellipse

Conic where e<1.
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x—h)? y—k2
( ) +( ) =1 Center (h, k), axes|OX,0Y  

 

  

a? b?

x? )’2
;—2— + ? =] Center (0,0), axes along OX,0Y

a>b (D |b>a 2)

Major axis 2a 2b

Minor axis 2b 2a

Distance from center to either focus V a?— b? b%—a?

2 2
Latus rectum 20" 2a”

a b

N a>— b2 b2— a2
Eccentricity, e p 5

Sum of distances of any point from the foci,
PF’'+ PF 2a 2b

Hyperbola

Conic where e > 1.

 

~

1
‘
\
\
-

 =
—a s

«Z
|

"
\
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x—h)’ — k)’
( ) — (y=k) =1 C (h,k), transverse axis||OX

X2 yz .
A| C(0,0), transverse axis along OX
a’> b2

2 2y—k x—h
( ) — ( ) =1 C (h,k), transverse axis||OY

(2) a2 b2

y: X
=% =1 C (0,0), transverse along OY

Transverse axis=2a; conjugate axis =2b. Distance from center to either

focus= Va2 + b>
 

2
Latus rectum = zg—

2, 12
Eccentricity, e=M—

Difference of distances of any point from the foci=2a

Asymptotes are two lines through the center to which the branches of

the hyperbola approach indefinitely near; their slopes are i-;lb— in (1) or

t%mm.

Rectangular (equilateral) hyperbola, b=a. The asymptotes are per-
pendicular.

2
(x=h)(y—k)y== % Center (h,k), asymptotes||OX,0Y

3) 2
Xy ==+ % Center (0,0), asymptotes along OX,0Y

Where the + sign gives the smooth curve in (3) and the — sign gives the

dotted curve.
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Witch

Y

]
o X

o_8a
x2+44?

Cissoid

Y

2
0 X

3
2 _X

Y 2a—x

Strophoid
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Sine Wave

 

>
|
a v Q

I'
s’

/

>

   

 
y=asin(bx +c)

y=acos(bx+c')=asin(bx+c), wherec=c"+ %

y=msinbx+ncosbx=asin(bx+c), wherea=Vm?+n?,c=tan™!

3
>

The curve consists of a succession of waves, where

a =amplitude = maximum height of wave

27/b=wavelength =distance from any point on wave to the correspond-
ing point on the next wave

x= —c/b (called the phase) marks a point on OX from which the positive
half of the wave starts

Tangent and Cotangent Curves

()y=atanbx

(Q)y=acotbx

 

-    -
—
—
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Secant and Cosecant Curves

(1)y=asecbx

Q)y=acschx

Exponential or Logarithmic Curves

(HD)y=ab* or x=logb%

Qy=ab™* or x=—logb%

B)x=ab’ or y= logbg

@x=ab™ or y= —logb—;£

The equations y =ae*™ and x =ae*"
are special cases of above.

Oscillatory Wave of Decreasing Amplitude

 

 

 

 

 

 

y=e“*sinbx
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A
a

Y

m X
2b
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\
,I \‘
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.

\\ \

Nk (3)

 

The curve oscillates between y =¢~%* and y = — e ™%,
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Catenary

Curve made by a chain or cord of uniform weight suspended freely
between two points at the same level.

a x/a —Xx/ay=3(e*"+e7x/)

Y

Q8

 
Cycloid

Curve described by a point on a circle that rolls along a fixed straightline.

{ x=a(¢—sing)

y=a(l—cos¢)

Y

9
 

Epicycloid

Curve described by a point on a circle that rolls along the outside of a
fixed circle.

 x=(a+b)cos¢—bcos(a-;;b¢)

 y=(a+b)sin¢-—bsin(a-;b¢)
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"

Epicycloid with radii of fixed and rolling circles equal.

 
Cardioid

r=a(l+cosf) (figure)

r=a(l+sinf) (figure rotated through +90°)

r=a(l—cosf) (figure rotated through +180°)

r=a(l—sinf) (figure rotated through —90°)

Y

 
Hypocycloid

Curve described by a point on a circle that rolls along the inside of a fixed

circle.

 x=(a—b)cos¢+bcos(a;b¢)

a—

y=(a—b)singp— bsin( 5 b<;b) 
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Y

Q >

 
Hypocycloid of Four Cusps

Radius of fixed circle equals four times the radius of the rolling circle.

w
|
N

N w
i
N

x3+y3i=a

x=acos’p, y=asin’¢p

Involute of the Circle

Curve described by the end of a string that is kept taut while being
unwound from a circle.

X=acos¢+aosing

y=asin¢—a¢pcoso

N Q
A o
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Lemniscate

Locus of a point that moves so that the product of its distances from two

fixed points (foci) is constant, or PF’' X PF=qa?.

r*=2a’cos26  (figure)

r’=2a%sin20  (figure rotated through 45°)

 

 

N-leaved Rose

()r=asinnd
(2)r=acosnf

There are n leaves if n is odd, 2n leaves if n is even.

 

 

Spirals

Archimedean Hyperbolic Logarithmic
a

r=af r=§ r=e%
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Archimedean 
 

 

Hyperbolic Logarithmic 
Coordinates for Solids

Let three mutually perpendicular planes, XOY,YOZ,ZOX (coordinate
planes) meet in a point O (origin).

Rectangular system. The position of a point P (x,y,z) in space is fixed by

its three distances x, y, and z from the three coordinate planes.

Cylindrical system. The position of any point P(r,,z) is fixed by z, its
distance from the XOY plane, and by (r,8), the polar coordinates of the
projection of P in the XOY plane.
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Points, Lines, and Planes

Distance (d) between two points P,(x,,y,,z,) and Py(x,,7,,2,),

 

c¢r=\/()c2—)c,)2+(yz—y1)2+(¢22~zl)2

Direction cosines of a line (cosines of the angles a, 3,y that the line or
any parallel line makes with the coordinate axes) are related by

cos’a + cos?8 + cos>y =1

If cosa:cosB:cosy=a:b:c, then

cosq=—9% cos,8=——b—,
V a*+ b%+ 2 Va*+ b%+ c?

c
cosy= —————n—

V a?+ b2+ ¢?

Direction cosines of the line joining P,(x,,y,,2,) and Py(x,,5,,2,),

COSA:COSPB:COSY=X,— X Yy~V1123~ 2,

Angle () between two lines, whose direction angles are a,,8,,y, and

sB2, Y2,

cosf =cosa, cosa,+ cos 3, cos 5, + cosy, cosy,

Equation of a plane is of the first degree in x, y, and z,

Ax+By+Cz+ D=0

where A4,B,C are proportional to the direction cosines of a normal or
perpendicular to the plane.

Angle between two planes is the angle between their normals. Equations

of a straight line are two equations of the first degree,

Ax+B,y+C,z+ D=0, A,x+B,y+ Cyz+ D,=0

Equations of a straight line through the point P,(x,,y,,z,) with direction
cosines proportional to a, b, and c,

X=Xy y=) _ Z7Z%
a b c
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Cylindrical Surfaces

The locus in space of an equation containing only two of the coordinates
x,y,z 1s a cylindrical surface with its elements perpendicular to the plane

of the two coordinates. Considered as a plane geometry equation, the
equation represents the curve of intersection of the cylinder with the plane
of the two coordinates.

 

           

 

z z

a 0 X 5 a b

Y Y
(1) (2) (3)

Circular cylinders Parabolic cylinder

1 x+_y—a 2{)6+y2=2ax 3 = ax

(){=a @) r=2acosf 3y*

Surfaces of Revolution

Equation of the surface of revolution obtained by revolving the plane
curve y =f(x) or z=f(x) about OX,

=[/(0)]
Sphere (revolve circle x2+y%=a? about OX)

x2+yz+zz=a2

2 2

Spheroid (revolve ellipse %+ % =1 about OX)
a

x2 y2+22

— T 2b
 =1 (prolate if a > b, oblate if b > a)

a
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Cone (revolve line y = mx about OX)

Y2+ 22 = m2x?

Paraboloid (revolve parabola y2= ax about OX)

y2+z%2=ax

Space Curves

A curve in space may be represented by two equations connecting the
coordinates x,y,z of any point on the curve, or by three equations
expressing the coordinates x,y,z in terms of a fourth variable or parame-
ter.

Helix. Curve generated by a point moving on a cylinder so that the
distance traversed parallel to the axis of the cylinder is proportional to the
angle of rotation about the axis.

x=acosb, y=asinf, z=k0

where a =radius of cylinder, 27k = pitch.

 

 





INDEX

Absolute difference, 5

error, 95

Adams’ formulas, corrector and predictor,

180

Addition law, 261

Advanced functions, 122

Algebraic data entry methods, 7

language, 7, 21

Aliasing, 152, 158

Alpha-numerics, 397
Analytic geometry calculations, 421

substitution, 163, 219

Annuities, 367

Annuity, due, 361, 371

ordinary, 361, 367

Approximate values, 96

Approximation methods, successive, 107

Arithmetic mean, 91, 253, 255

Automatic landing, 72

Bessel functions, 137

interpolation formula, 65, 67

spherical, 139

Biased estimate, 258

Binomial distribution, 263

series, 99

Bisection method, 234

Bode’s definite integral formulas, 171

Boolean equations, 17

Branching, 306

Business math model, 379

Calculator, definition, 17

elements, 297

programming, 297

Central tendency, measure of, 253

Centroid, 253

Chebyshev polynomials, 142, 206, 207

numerical evaluation of, 218

Chi-square, 275
testing, 276

Class mark, 251

Coefficient, of excess, 261

of variation, 259
Complex functions, 116, 402

numbers, 402

variables, 116

zeros, 240

Compound interest, 359, 365

probabilities, 261

Computing reciprocals, 397

Conditional branching, 306

Confluent hypergeometric function, 142

Conversion periods, 359

Cordic techniques, 42

Cosine integrals, 124

Courant’s penalty function method, 333

Creating program, 303

Cubi equations, solutions of, 105

Curve-fit polynomial, 38

Curve-fitting technique, 280

Data analysis, 61

editing, 286

entry methods, 7

error location and correction, 76

extrapolation, 71

interpolation, 65

tables, missing entries, 78

Decrement and jump on zero, 312
Definite integral formulas, integration, 162

formulas, 170

Delete function, 313

Difference, absolute, 5

equation derivation, 188
forward, 62

441
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percentage, 6

tables, 61, 83

divided, 82

of equally spaced data, 62

Discrete functions, Fourier series, 149, 150

Dispersion, measures of, 257

relative, 279

Distribution, binomial, 263

Gaussian, 263, 265

mode, 255

Poisson, 263, 266

shape, measures of, 259

Divided difference tables, 82

Effective interest rate, 360

Elements of programmable calculator, 297

Equally spaced data, 62

Erase-before-write function, 314

Error, absolute, 95

of calculation, 97

correction, 76

of data, 97

estimate, 178

in function evaluation, 48, 133

location, 76

relative, 47, 95

roundoff, 44

trapezoidal integration, 165

Estimation, statistical, 271

Euler constant, 130

indefinite integration method, 175

integral, 130

integration formulas, 174, 189

predictor formula, 179
Euler-Maclaurin summation formula, 103

Expected value, 380
Exponential integrals, 124

False-position method, 236
Financial analysis, 351

risk, 375

summary, 386

Firmware, 312

Fixed-point numbers, 4

Floating-point numbers, 4, 43, 57

Flow charting, 304

Forecast, 280

long-range, 284
Forecasting, least-squares, 280

statistical techniques, 280, 285

Index

straightline, 284

Forward difference, 62

Four-function calculator, 10

Fourier analysis, 147

coefficients, 152

Fourier series, of continuous functions, 147,

150
of discrete functions, 149, 150

Frequency distributions, 251, 382

folding, 152
Fresnel integrals, 133

Function, Bessel, 137

spherical, 139

confluent hypergeometric, 142
generalized hypergeometric, 138

Legendre, 135

roots of, 232

Function evaluation, 61

accuracy in, 43

discrete, Fourier coefficients, 152

series expansion, 150

error in, 48, 133

gamma, 130

minimizing error in, 48

nested parenthetical forms, 35

Future value, 352

calculations, 361

in compound interest calculations, 365

defined, 364

in ordinary annuity calculations, 367

Gamma function evaluation, 130

Gaussian distribution, 263, 265

Gauss interpolation formula, 65

Gauss multiplication formula, 131

Generalized mean, 91

Geometric mean, 91, 253

Go-to instruction, 312

Gradient method, 332

Greenberg, Joel S., 382

Hamming midpoint integration formula, 167
Hamming 12-point formula for Fourier ana-

lysis, 153

Hardware, 310

Harmonic mean, 91, 253, 256

Hermite polynomials, 142

Hierarchy, operands, 23

operators, 8

Histograms, 251



Index

Hypergeometric function, 138

Implicit memory, 4

Indefinite integral formula, 162

numerical integration, 172

formulas, 179

modified Euler, 175

Indirect addressing register, 307
Infinite series, 98

truncated forms, 100

Inflation, 351

Instruction methods, 7

set, 10

Integral, definite, 162

exponential, sine, and cosine, 124

Fresnel, 135

indefinite, 162

Integration, Adams’ predictor-corrector

formulas, 180

Bode’s definite integral formulas, 171

Euler formula, 174, 189

modified, 175

predictor, 179
Euler-Maclaurin formula, 171

indefinite, 172, 176

midpoint, 167

Milne predictor-corrector formulas, 183

Newton-Cote’s definite, 173

open, 171

predict-correct, 176
modifying, 178

Simpson’s rule, 170

Runge-Kutta, 180

T-, 186

trapezoidal, 163, 190

error in, 165

Interest calculations, 355, 358

compound, 359

conversion, 359

rates, 355, 360

effective, 377

simple, 356

Interpolation, data, 65

formulas, Bessel, 65, 67

Gauss, 65

Lagrange, 69, 80

linear, 68

Newton, 83

backward difference, 67

Stirling, 65, 67
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inverse, 70, 83

Inverse interpolation, 70, 83

Investment horizon, 377

Jump instruction, 312

Key codes, 301

symbols, 11

Kummer’s transformation, 103

Kurtosis formula, 260

Lagrange interpolation formula, 69, 80

Laguerre polynomials, 142
Lanczos method, 212

Languages, algebraic, 7, 21
business, 353

polish, 7

reverse-polish, 7, 21

Law, of addition, 261

of compound probabilities, 261
of multiplication, 261

Least-squares forecasting, 280

Legendre functions, 135

Linear interpolation formulas, 68

regression, 280

systems simulation, 188

Logical flag instruction, 312

Long-range forecast, 284

Looping, 300

Lozenge diagram, 66

Lukasiewic’s algorithm, 392

Math flow, 315

model, business, 379

Matrix analysis, 399

Maxima and minima, 326

Mean, arithmetic, 91, 253

weighted, 255

deviation, 258

generalized, 91

geometric, 91, 253

harmonic, 91, 256

value theorem, 50

Measures of central tendency, 253

of dispersion, 257

of distribution, 259

of skewness, 260

Median, 253

Memories, 9

Memory, program, 298
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stack, 7, 9
Mensuration calculations, 413

Midpoint integration, 167
Milne’s predict-correct formulas, 185

Missing entries in data tables, 78

Mode, 253

of distribution, 255

Modified Euler indefinite integration meth-

od, 175

Most likely value, 379

Multiplication law, 261

Nested parenthetical forms, 4, 35, 98

Net present value, 362, 377

Newton backward difference formula, 65,

67
Newton-Cotes definite integration formulas,

173

Newton forward difference formula, 65

Newton interpolation formula based on

divided differences, 83

Newton method of determining roots, 33,

237

Newton-Raphson technique, 34

No-op function, 313

Number of pay periods, 370

Optimization, 325

Courant’s penalty function method, 333

gradient method, 332

parameter, with and without constraints,

329

Ordinary annuity, 361, 367

Overflow, 4, 43

Padé approximation, 221

Parameter optimization, 329
Payments, 370

Perason’s skewness formula, 260

Percentage difference, 6

Plane triangles, solution of, 113

Pocket calculator, 3

four-function, 10

programmable, 308
Point pairs, 280

Poisson distribution, 263, 266

Polish data-entry method, 7

Polynomial, approximations, 39, 206, 394

rational, 206

Chebyshev, 142, 206, 207

Index

numerical evaluation of, 218

Hermite, 142

Laguerre, 142

solution, 104

Predict-correct process, 176

modifying, 178

Present value, 352

calculations, 361

cash flow, 377

compound interest, 365
ordinary annuity, 367

simple interest, 365
defined, 364
net, 362, 377

Probability, 250, 261

distribution, 263

binomial, 263

Gaussian, 263, 265

Poisson, 263, 266

Profit distribution, 380

Programmable pocket calculator, 17, 297,

308
Program memory, 298

Programming, 297

Progressions, 89

Quadratic equations, solutions of, 104

Quadrature, 171

Quartic equations, solutions of, 106

Rates of return, 355, 362

Rational polynomial approximations, 206
Rayleigh’s generating formulas, 141

Reciprocals, computing, 397

Recurrence formula, for generating Cheby-

shev polynomials, 218

Regula falsi method, 236

Relative dispersion, 259

error, 47, 95
Reverse-polish data entry method, 7

language, 7, 21

Risk analysis, 376, 386

Root, of function, 232

Root evaluation, bisection method, 234

complex zeros, 240

false-position method, 236
mean square, 257
Newton’s method, 33, 237

Roundoff error, 44

Runge-Kutta methods, 180



Index

Run/stop instruction, 313

Sampling, 268

in small, 273

Series transformation, 103

Simple interest, 356

Simpson’s rule, 170

Simultaneous equations, 51
Sine integrals, 124

Single-step function, 313

Skewness, 260
Social discount rates, 363

Software, 313

Solutions, of cubic equations, 105

of plane triangles, 103
of polynomials, 104

of quadratic equations, 104

of quartic equations, 106
of spherical triangles, 103

Spherical Bessel functions, 139

Spherical triangles, solution of, 113

Stable difference equations, 197

Standard deviation, 258

Starting values, 177

Statistical estimation, 271

forecasting techniques, 280, 285

Statistics, 250

Stirling’s interpolation formula, 65, 67

Stop instruction, 313
Straightline forecasting, 284

Student’s ¢-distribution, 274

Successive approximation methods, 107

Tail effects, 160

Taylor’s single-variable formulas, 98

Temporary stop instruction, 313

Test-flag instruction, 312

445

Time value of money, 351

T-integration, 186

13-place precision, 83
Transcendental functions, 110

Transformation of series, 103

Trapezoidal integration, 163
error in, 165

formula, 190

corrector, 179
Trend line, 280

Triangles, solutions of plane and spherical,
113

Tricks, 389

Trigonometric equations, 410
functions, 406

relations, 407

Truncated infinite series, 100

Truncating, number, 392

Tung, Chung, 313

Unconditional branching, 306

Underflow, 43

Variance of data set, 258

propagation, 202

transfer function, 204

Variation, coefficient of,

259

Weighted arithmetic mean, 255

Yates’ correction factor, 279

Yield calculations, 360

Zeros, complex, 240

of functions, 69
of polynomials, 248
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e Discuss the concepts and calcula-
tions in financial analysis—to ac-
quaint technical professionals with

the field of finance through the math-
ematics of finance as currently pre-
programmed into the more versatile
scientific pocket calculators

This book will show you how your pocket
calculator can become a “Teaching
Machine” ... help you apply new
technologies. . . and be used for your
own research and discovery in the field

of numerical analysis.
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CAL MODELING AND DIGITAL SIMU-
LATION FOR ENGINEERS AND SCI-
ENTISTS (Wiley-Interscience, 1977)
and FINANCIAL ANALYSIS AND BUS-
INESS DECISIONS ON THE POCKET
CALCULATOR  (Wiley-Interscience,
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cles in biomedical engineering, aeros-
pace engineering, controls engineering,
mathematics, and economics. He has
given seminars and lectures throughout
the United States.
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Also of related interest—

Jon M. Smith

Here’s practical guidance for adapting the amazing potential of the pocket calculator
to your business problems. With a minimum of practice, you'll be able to put your
calculator to work to deal with literally every quantitative aspect of business, from
forecasting and cost studies to ROI calculations and tax shelter analysis. The book
is written for a variety of readers from the practicing businessman to the private
individual who is interested in improved financial analysis by using the pocket
calculator.

1976 317 pp.

Jon M. Smith

This book shows how to simulate complex continuous processes on a digital
computer and attain excellent results at a lower cost. It covers numerical methods
and computing algorithms for simulating linear systems, using methods developed
in the late '60s, and nonlinear systems, using methods developed in the early to mid
'70s. Some of these methods are published for the first time.

The underlying theme presented is that numerical methods based on both the time
domain and frequency domain are better than numerical methods developed from
either viewpoint alone. The emphasis is on the application of numerical methods
that are directly useful to engineers, scientists, and programmers involved in digita!
simulation.

1977 332 pp.

Hermann Schmid

This collection, catalog, and review of binary-coded-decimal computation principles
and circuits shows in detail how BCD is used in digital systems, calculators, and
computers. It also gives you: descriptions of arithmetic and transcendental func-
tions; discussions of algorithms and hardware implementations; an examination of
multiplication and division circuits; and examples of computer programs to simulate
algorithms and circuits used for various transcendental functions. Ideal for selecting
the correct technique for a given circuit or system application and for building BCD
into products.

1974 266 pp.
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