SCIENTIFIC
ANALYSIS
ONTHE
POCKET Y
CALCULATOR J

JON M. SMITH ;; -

The new edition of this highly successful
book gives you all the information you
need—numerical techniques, numerical
approximations, tables, useful graphs,
and flow charts—to perform quick, accu-
rate calculations on your electronic cal-
culator. And it’s still the only book that
shows you how to get the most out of
your calculator for scientific and en-
gineering applications. You'll discover
more uses than you thought possible
when you purchased your pocket cal-
culator!

SCIENTIFIC ANALYSIS ON THE
POCKET CALCULATOR, Second Edi-
tion, is revised and updated to reflect the
many changes both in the models avail-
able and in the potential uses of this
powerful computing instrument. All the
fast, efficient methods you'll learn are
“sized” for pocket calculator analysis
and designed to reduce your workload
(thus reducing your chances of error).

Each part of the book provides a consis-
tent, careful treatment of the methods
and tablulated formulas. . . all presented

in forms that are directly and im-

mediately useable. Smith also shows

you that the pocket calculator offers you
an important new dimension in analysis.

And you'll gain detailed and specific

knowledge about any discipline by/earn-

ing its mathematical models and tools

using your pocket calculator as a

teaching machine.

The book’s five parts—

e Cover the spectrum of scientific
pocket calculators— their limitations
and capabilities

e Present numerical methods, for-
mulas, and keystroke sequences for
evaluating advanced mathematical

functions—nested parenthetical
forms, recurrence formulas, and
many more

e Examine the methods and formulas
for performing advanced types of
analysis on the pocket calculator—
numerical evaluation of definite inte-
grals, methods for numerical differ-
entiation of data sets, and more

e Deal mainly with analysis on the sci-
entific programmable pocket cal-
culator

(Continued on back flap)

777

SCIENTIFIC ANALYSIS
ON THE
POCKET CALCULATOR

SCIENTIFIC ANALYSIS
ON THE
POCKET CALCULATOR

JON M. SMITH
JMSA Systems Research and Analysis

Second Edition

A Wiley-Interscience Publication
JOHN WILEY & SONS
New York / London / Sydney / Toronto

Copyright © 1975, 1977 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine language
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data:
Smith, Jon M 1938-
Scientific analysis on the pocket calculator.

“A Wiley-Interscience publication.”

Includes index.

1. Calculating-machines. 2. Numerical analysis.
I. Title.
QA75.8555 1977 510°.28 77-6662

ISBN 0-471-03071-6
Printed in the United States of America
10 987 65 43 21

To Laurie,
Mike, and Chris

PREFACE

This book is written for all those who own or operate a modern electronic
pocket or desk calculator, and especially engineers, scientists, science
students, mathematicians, statisticians, physicists, chemists, computer ana-
lysts, and science educators.

When the right numerical methods are used, the electronic pocket
calculator becomes a very powerful computing instrument.
“Micronumerical methods” that will help the reader to derive the most
computing capability for every dollar he has spent on his pocket calculator
are discussed here.

Most of the methods work on any pocket calculator. Special methods for
certain types of machines are clearly indicated where necessary. Key stroke
sequences for both algebraic and reverse-polish calculators are shown.
Virtually all pocket calculator keyboards and capabilities were considered
in preparing this book, to ensure that the numerical methods presented are
the most universally applicable for general pocket calculator analysis.

Each part of this book provides a consistent and careful treatment of the
methods and tabulated formulas that can be used with a pocket calculator.
The aim is to supply the reader with a large number of numerical
techniques, numerical approximations, tables, useful graphs, and flow
charts for performing quick and accurate calculations with pocket calcula-
tors.

Emphasis is also given to numerical methods used in certain types of
data processing, such as harmonic and statistical analysis. And they are
presented in forms that are directly useful to engineers, scientists, and
programmers.

The premise of this book is that the pocket calculator provides the
scientific analyst with an important new dimension in analysis. Obviously
the pocket calculator is useful both for numerically evaluating functions
and for processing data. In addition, it enables the analyst to quickly gain
detailed and quantified knowledge about any technical discipline (his own
or another’s) by learning its mathematical models and tools through use
and experimentation on the pocket calculator. In short, the pocket cal-

vii

viii Preface

culator becomes a teaching machine for the scientific analyst. A scientific
analyst no longer need first develop a mathematical model for a complex
process or system being studied and then turn it over to a computer
programmer for its numerical evaluation. Instead, he can numerically
evaluate complex functions (and thus analyze complex problems) in his
home or office.

Finally, throughout the world scientific analysts working on pocket
calculators are inventing their own numerical methods for evaluating
problems in their specific disciplines. In this sense, the pocket calculator is
a research tool which the analyst can use to develop his own numerical
methods for his own purposes.

Throughout the book I give more attention to subjects of interest to the
practitioner than to those of interest to the theorist. Though the treatment
of this material is mathematical, I have not strived for conciseness or rigor
beyond that required for pocket calculator analysis. Numerous examples
of each technique and method are given, and their implementation is
discussed in detail.

This book consists of five parts that are subdivided into 15 chapters,
each dealing with topics in numerical analysis that are useful to the
practical analyst. I have tried to avoid overgeneralization in the treatment
of these topics, since numerical analysis is an art as much as it is a science.
Part I of the book introduces the spectrum of pocket calculators (including
their capabilities and their limitations) available to engineers and scientists.
Particular attention is given to the unique computing features of interest to
the scientific analyst. Part I also presents mathematical preliminaries and
mathematical refresher material and develops certain elementary numeri-
cal methods particularly suited to analysis on the pocket calculator. Topics
from arithemtic to algebra and analysis with complex variables are cov-
ered.

Part II presents numerical methods and formulas for numerically
evaluating advanced mathematical functions. It also deals with the nested
parenthetical form of the most frequently used functions in advanced
engineering mathematics. It is the nesting of a sequence of arithmetic
operations in parenthetical form that is the basis for performing advanced
analysis on the pocket calculator. For example, 14 multiplies, 2 divides, 2
sums, and 108 data entries, totaling 126 key strokes and 5 data storage
records, are needed for a three-digit floating-point evaluation of sin (x)
~x—x3/3!+x%/5!. But only 54 key strokes and no data storage records
(on a scratch pad) are needed to evaluate sin (x)=~x(1 —(x2/6)(1 — x%/20))
to the same accuracy. Though we would evaluate sin (x) in this manner
only on a four-function calculator, this example does illustrate the point

Preface ix

that many complex formulas usually requiring calculator memory to be
numerically evaluated can be written in a “nested” form not requiring
calculator memory and thus can be evaluated conveniently on even the
simplest four-function pocket calculator.

The nested parenthetical form is considered to be a “fast” form for
numerical evaluation. That is, functions written in nested parenthetical
forms require fewer operations to numerically evaluate than do the same
functions in their “simplest algebraic form.” The nested forms are there-
fore evaluated more rapidly and with fewer chances for error than their
unnested counterparts.

Part II also covers the topics of recurrence formulas for numerically
evaluating advanced functions such as Bessel functions, Legendre poly-
nomials, and many more not found on even the most sophisticated
scientific pocket calculators. Recurrence formulas are unique in that they
are infinite memory forms of otherwise finite memory form calculations. The
formulas give the pocket calculator “virtually” an infinite memory for
storing data. Many useful numerical methods for data processing can be
rewritten in recursive form for pocket calculator analysis. Here, again,
even the simplest four-function calculator is shown to be capable of doing
sophisticated analysis without the need for extensive memory. Such con-
cepts as nested parenthetical forms and recursion formulas, when com-
bined with those of Chebyshev economization and rational polynomial
approximation, provide flexibility and accuracy in the numerical evalua-
tion of the most complex functions; even on the simplest four-function
pocket calculator. In fact, the serious analyst can perform precise calcula-
tions unheard of until a few years ago—in the comfort and convenience of
his home or while traveling on the job.

Part I1I examines the methods and formulas for performing advanced
“types” of analysis on the pocket calculator. Included are such topics as
numerical evaluation of definite integrals and methods for numerical
differentiation of data sets, solving differential equations, simulating linear
processes, performing statistical analysis, and performing harmonic analy-
sis.

Part IV deals exclusively with analysis on the advanced programmable
pocket calculator. The chapters illustrate conclusively the leap in comput-
ing capability produced by the pocket calculator. They are based on
personal experience in solving a very large number of problems on the
programmable pocket calculators developed by Hewlett-Packard, Texas
Instruments, Sinclair, and National Semiconductor (NOVUS brand). The
discussion is general, however, recognizing that even more programmable
pocket-style calculators are being developed.

X Preface

Part V covers the concepts and calculations of financial analysis. As the
economics of systems and design become more important, the engineer
and scientist are being asked to evaluate the economics and financial
implications of their work. Part V is intended to acquaint the technical
professional with the field of finance through discussions of the mathemat-
ics of finance as currently preprogrammed into the more versatile scientific
pocket calculators.

This book grew out of eleven years of study on numerical methods for
analysis on the digital computer. These methods were revised over a period
of three years to make them applicable to desk calculator analysis and
eventually to pocket calculator analysis. A number of the methods have
been available to the analyst in scattered literature, such as user’s guides
and manuals for desk-top and pocket calculators, journal articles, and
some textbooks. A large part of the material was developed by me or was
provided by my associates in industry. I am particularly indebted to my
associates at Software Research Corporation and McDonnell Douglas
Corporation. They generously shared with me many of their “tricks of the
trade” and suggested interesting problems for this book. I express my
sincere appreciation to one of the great numerical analysts of our time, Dr.
Richard Hamming, of Bell Laboratories, for his review and improvements
to the manuscript.

My thanks to the people at Hewlett-Packard who reviewed and critiqued
the manuscript, and in particular to the HP-65 chief engineer, Mr. Chung
Tung.

I want to thank Joseph and Sara Goldstein, who taught me the Gold-
stein algorithm -- “one at a time.”

To my wife, Laurie, my special appreciation for putting up with the 4
a.m. writing schedule.

My appreciation also to Mrs. Florence Piaget who typed the manuscript
and helped me prepare it for publication.

Finally, my thanks to the readers of the first edition who recommended
changes, corrections, and additions which have improved this book.

JoN M. SMITH

Washington, D. C.
May 1977

CONTENTS

PART 1 INTRODUCTION TO POCKET CALCULATOR
ANALYSIS
1 The Pocket Calculator
2 Difference Tables, Data Analysis, and Function Evalua-

tion

PART I NUMERICAL EVALUATION OF FUNCTIONS ON
THE POCKET CALCULATOR
3 Elementary Analysis with the Pocket Calculator
4 Numerical Evaluation of Advanced Functions
PART III ADVANCED ANALYSIS ON THE POCKET
CALCULATOR
Fourier Analysis
Numerical Integration

Linear Systems Simulation

o 9 N W

Chebyshev and Rational Polynomial Approximations for
Analytic Substitution

9 Determining the Roots of a Function

10 Statistics and Probability

61

89
122

147
162
188

206
232
250

xi

xii

PART IV THE PROGRAMMABLE POCKET CALCULATOR

11
12
13

PART V FINANCIAL ANALYSIS FOR ENGINEERS AND

An Introduction to Calculator Programming
The Programmable Pocket Calculator

Optimization

SCIENTISTS
14 Concepts in Financial Analysis
15 Estimating Financial Risk
APPENDIXES
1 Some Tricks of the Pocket Calculator Trade
2 Matrix Analysis on the Pocket Calculator
3 Complex Numbers and Functions
4 Formulas for Commonly Encountered Calculations

INDEX

Contents

297
308
325

351
375

389
399
402
406

41

SCIENTIFIC ANALYSIS
ON THE
POCKET CALCULATOR

PART ONE

INTRODUCTION TO
POCKET CALCULATOR
ANALYSIS

CHAPTER 1

THE POCKET CALCULATOR

1-1 INTRODUCTION

This chapter discusses the mathematical differences among the various
pocket calculators and certain mathematical concepts, useful for analysis
on the pocket calculator, that appear throughout this book.

We are not so much concerned with the hardware implementation of
mathematical operands and operations as with the different ways in which
they can be assembled in a computing machine—the hardware architec-
ture. Only the most obvious mathematical aspects of calculator design are
examined, such as the language used, the size and type of memory, the
instruction set, type of input/output, and whether the calculator is pro-
grammable. There are some 432 types of calculators that could be hard-
ware implemented. An entire book could be written on this subject alone.
Here we limit our discussion to the more important mathematical
differences that result from the various hardware implementations in order
to:

1. Understand pocket calculators and the organization of mathematics
within them.

2. Determine, in a cursory way, the combinations of hardware imple-
mentation that result in a significant jump in calculating capability.

The purpose is to narrow the types of calculator to be considered in this
book to three.

Three hypothetical calculators that are typical of the available and
anticipated pocket computing machines are discussed. Care has been taken
throughout not to limit the methods of analysis to any particular hardware
implementation. In fact, if there is bias throughout the writing it is in the
direction of anticipated developments in the pocket calculator field, though
its overall effect on the material is negligible.

4 The Pocket Calculator

The following mathematical aspects are covered in this chapter:

1. Arithmetic calculations.
2. Function evaluation with and without memory.
3. Computational accuracy.

The first is a thorough introduction to what appears to be a mundane
subject, arithmetic on the pocket calculator. In fact, it is found to be quite
the opposite because the different languages used by different calculators
lead to different capabilities for handling complex problems.

Particular attention is given to nested parenthetical forms of complex
scientific functions that permit function evaluation on memoryless and
limited-memory calculators. Nested parenthetical forms are used as a
means of providing implicit memory to the memoryless calculators. They
are also “fast” in the sense that their evaluation involves fewer key strokes
than does the standard algebraic form.

No chapter on mathematical preliminaries in a book on numerical
analysis would be complete without a discussion of computational ac-
curacy. Here we examine:

1. The accuracy limitations of the typical pocket calculator.
2. Ways in which to accurately evaluate functions in general, and on the
pocket calculator in particular.

1-2 MATHEMATICAL DIFFERENCES IN POCKET CALCULATORS

Today’s pocket calculators differ mathematically in many ways. Only the
six more commonly encountered mathematical distinctions are covered
here. In a sense, these are the major distinctions because they are the
fundamental issues addressed in the conceptual design of every pocket
calculator. The important mathematical distinctions that are associated
with the subtleties of detailed design are not discussed because the hard-
ware implementations vary widely. Perhaps the best known difference is
that between the use of fixed-point and floating-point numbers.

The fixed-point numbers are those whose decimal point is fixed by the
electronic circuitry. A difficulty occurs when two large numbers are
multiplied together and the most significant digit exceeds the size of the
numeric display. Then the number is truncated in the most significant
digits. Most fixed-point arithmetic calculators have a symbol that is
illuminated to indicate the overflow conditions.

Floating-point numbers have a decimal point that moves so as to retain

Mathematical Differences in Pocket Calculators 5

the most significant digits in any calculation. When a number is computed
that is larger than the calculator’s field of numbers and the decimal point
location is unknown, most calculators display the most significant digits
and illuminate a symbol indicating that the decimal point location is
unknown.

In these two number systems, it should be noted, the number fields are
dramatically different. In the floating-point number system the numbers
are “bunched” around zero. In the fixed-point number system the numbers
are uniformly distributed over the range of the number field. To see this,
consider the process of incrementing each of these types of numbers on a
pocket calculator.

The smallest possible increment between any two numbers is the least
significant digit in the numeric display. For an eight-digit display with a
decimal point fixed in the third place, the smallest increment that can be
added to any digit is 0.001. Now consider the addition of an increment to a
floating-point number. Since the decimal point “floats” in the floating-
point number system, the decimal point precedes the far-left digit. For an
eight-digit display, the smallest number that can be added to zero in a
floating-point number system is 0.00000001. Now consider incrementing a
floating-point number when the decimal point is after the far-right digit. In
this case, the smallest number that can be added to 99999998 is 1. The
difference in the size of the “smallest number” when incrementing a full
and empty register in floating-point numbers is a factor of 10°%.

Now consider the full range of the positive numbers in both number
systems. The fixed-point numbers range from 0.001 to 99999.999. The
difference between numbers, no matter where a number is over the range
of the calculator, is 0.001. Thus the numbers over the range of fixed-point
numbers are uniformly distributed.

Again consider the range of the positive floating-point numbers, from
99999999 to 0.00000001. Clearly, the range is greater in the floating-point
number system than in the fixed-point number system, but note also that
when the numbers are very small the distance between them is 0.00000001.
When the register is full, the difference between the numbers is 1.
Obviously, over the range of floating-point numbers, the distribution is not
uniform. In fact, there are as many numbers grouped between 0 and 1 as
there are between 1 and the full register size 99999999.

It follows, then, that in fixed-point arithmetic the absolute difference
remains fixed over the entire range of the number system, while in
floating-point numbers the absolute difference varies significantly. It is
worth emphasizing that in floating-point arithmetic the percentage
difference remains fixed, while in the fixed-point arithmetic system the
constant difference remains fixed over the range of numbers. As used here,

6 The Pocket Calculator

percentage difference is the ratio of the difference between two consecutive
numbers divided by the larger of the two. For most engineering analysis,
percentage difference and percentage error are usually the measure of
accuracy of most interest.

The floating-point number system is usually extended by powers of 10,
permitting the positive floating-point numbers to range from 10~ to
99999999 x 10%. In fact, calculators are usually configured to display this
extended number field in scientific notation. Interestingly, this even further
bunches the floating-point numbers in the neighborhood of zero. Because
of this grouping property of the floating-point numbers, the absolute errors
are smaller for calculations with numbers between 0 and 1 than for
numbers betwen 1 and the full range of the calculator.

From a hardware architecture viewpoint, fixed-point numbers are usu-
ally displayed with greater accuracy than floating-point numbers; and
floating-point numbers are usually displayed with a greater dynamic range
than fixed-point numbers. This can be seen by considering a register with
eight display elements where we configure both fixed- and floating-point
numbers. In fixed-point arithmetic, eight mantissa digits can be displayed.
If the decimal point is allowed to be set by the decimal point key [] ,
and a display element is used to show the decimal point, then only 7 digits
remain to display the mantissa. If scientific notation is used to increase the
dynamic range of the display, m+1 display elements are required to
display m digits in the exponent. The extra display element is used to show
the sign of the exponent.

Required

Display

Power of 10 Display Elements
10~ (£)(x%) 2

10**~ (£)(x)(x) 3

1052 (£)(x)(x)---(x) m+1

m digits

If 99 orders of magnitude are to be shown in the display register (the
usual case with scientific pocket calculators) three display elements are
required to display the exponent and its sign, leaving only five digits for
displaying the mantissa. In this sense, then, the effect of increasing the

Instruction and Data Entry Methods 7

display’s dynamic range is to reduce the number of digits for displaying a
mantissa, thus reducing the accuracy with which a number can be dis-
played.

1-3 INSTRUCTION AND DATA ENTRY METHODS

We discuss three types of data entry methods (languages) commonly used
in pocket calculators: polish, reverse-polish, and algebraic. In polish nota-
tion, the operator precedes the operand. For example, to instruct the
calculator to add the numbers 4 and B, in the polish entry method we
would stroke the plus key, then enter the two numbers 4 and B. The
logical operation in the machine would then display the result without the
need for striking an additional key. In reverse-polish, the process is
reversed; that is, the operands are introduced before the operator. In
algebraic notation, the operator is sandwiched between the two operands.
If we compute the sum of 4 and B in algebraic notation, we first input 4,
then stroke the summation key, follow that with an input of B, followed by
stroking the equal key, whereupon C would be displayed in the register. It
might seem that one entry method would result in many fewer key strokes
than another entry method when numerically evaluating a function, but it
turns out that the key strokes associated with instructing the calculator are
fairly small compared with those associated with data entry. Far more
important is the fact that certain entry methods, when combined with
memory, result in the need for fewer data inputs or “scratch-pad” storage.
The most common entry methods used in pocket calculators are the
reverse-polish and algebraic methods, the former usually being used with
machines that have a memory stack and the latter being attractive because
of its “natural” algebraic treatment of numerically evaluating algebraic
functions.

The natural way in which the algebraic method is used to numerically
evaluate algebraic functions can be seen in the following example. Con-
sider the relation

AXB+C=Y
When evaluated on an algebraic notation pocket calculator (such as the
Texas Instruments SR-51), the sequence of key strokes is*

CL A X B+ C=xxxxxxxx xx
*Here the symbols CL, 1, X, +, and = mean, respectively, “to clear the display register,” “to
store what is in the register in a temporary location,” “to multiply,” “to add,” and “to present
the answer—Algebraic language only.”

8 The Pocket Calculator

The same function evaluated on a reverse-polish notation calculator (such

as the Hewlett-Packard-21) would involve the sequence of key strokes
CL A1'B X C+ xxxxxx xx

It is apparent that the former is more natural for simple functions than the
latter. Reverse-polish notation, when used in conjunction with memory
stacks, has the convenient property that it easily implements the numerical
evaluation of functions with parenthetical expressions. This is not the case
with algebraic notation. For example, the sum of products

(AXB)+(CxD)

must be rewritten in the form

(AXB

D +C)D

to be evaluated using algebraic notation without using a scratch pad. The
key strokes and operation to evaluate the sum of products directly are

CL A X B=xxxx xx STORE ON SCRATCH PAD—

CL C X D=yyyy yy+INPUT xxxrx XX=222z 2z
The key strokes to evaluate this sum of products in the rewritten form is
CLAXB+D+CXD=zzzz 2z

The reverse-polish with stacks evaluates the sum of products conveniently
with key strokes

CLATYBXCTD X + 222z zz

To avoid rewriting expressions in somewhat unfamiliar forms, the
algebraic programming language can be designed to recognize a hierarchy
among the operators, that is, when products are computed before sums or
vice versa. The algebraic method with a “product-before-sum” hierarchy
(such as the Texas Instruments SR-51) would evaluate the sum of products
directly with the following key strokes:

CLAXB+CXD=1zzzz zz
It has difficulty, however, with the expressions of the product of sums

(A+B)xX(C+D)

Memories 9

in that the hierarchy is set up to “multiply-before-add” rather than
“add-before-multiply” which the product of sums requires. This problem is
resolved with an additional storage location in which to store the inter-
mediate sum. The key strokes are then,

CLA+B=STOCL C+ D XRCL=1zzzz zz
In reverse-polish with stacks, the key strokes are

CLATB+CtD+ X zzzz zz

Here STO means “store in memory” and RCL means “recall from
memory.”

1-4 MEMORIES

Pocket calculators are available with no memory, memory for a constant
term, a memory stack of three to four registers, and addressable memory.
The pocket calculator with a memory that simply retains a constant is
characterized by the rather inflexible storage of a constant number that
can be recalled or not recalled to the display register, as the operator
desires. The stored constant can be used as a coefficient in multiple
products or as a constant in multiple sums. The constant memory register
does not automatically interact with the display register in most pocket
calculators.

Pocket calculators with memory stacks generally involve three or four
registers that can be manually “pushed up” and automatically “pushed
down” for the purpose of retaining numbers developed in the display
register. When used in conjunction with reverse-polish notation, they
provide the first quantum level of computing capability above that present
in the simple four-function memoryless pocket calculator. Data are usually
entered into a stack with an entry operation. The three stack registers of a
reverse-polish machine can be filled with three different numbers and then,
as the operation on the number in the display register and the bottommost
number in the stack is called for, the result is displayed in the display
register and the stack automatically moves down, bringing the second
number in the stack now to the first number, and the third number to the
second. This process can be continued until the stack is empty. The
algebraic machine with hierarchy uses a stack somewhat differently. When
a key stroke sequence is to be evaluated (on key stroking the equal sign),
the calculator first looks for products to evaluate and put into the memory

10 The Pocket Calculator

stack and then executes sums (in a “multiply-before-add” hierarchy). The
stack manipulations are automatic.

In calculators with addressable memories, the process of storing data in
a register is similar to that of storing data in the memory of a computer.
Two pieces of information are required: the first is an instruction to store
data and the second is a location (address) which designates which
memory register is to be used for the data storage. The addressable
registers do not interact unless programmed to do so.

1-5 INSTRUCTION SET

The basic “four-function” calculator has keys for instructing the calculator
to add, subtract, multiply, and divide. What is amazing is that these small
four-function machines, purchased at relatively low cost, can provide
tremendous computing power. Examples of the use of the four-function
pocket calculator for evaluating some of the most sophisticated engineer-
ing analysis are given later. Another arithmetic operation that can be
performed with the four-function machine is computing powers of a given
variable through repetitive multiply operations. While squaring a number
involves only two multiplies, the number must be double entered. Thus the
simplest additional instruction that can be added to a pocket calculator
that reduces the number of key strokes is the squaring operation or
modifying the multiply instruction to square a number when only one data
entry has been made.

Entirely new capabilities are added when the square root and reciprocal
instructions are added to the calculator instruction set. There is no single-
stroke way on a four-function calculator to numerically invert a number
without using a scratch pad and double data entry.* A similar situation
holds for the square root. Thus we find the next most sophisticated pocket
calculator to be a seven-function calculator, including square, square root,
and reciprocal functions implementable with a single key stroke. Beyond
this, additional instructions are added to aid in special-purpose computing
in a variety of ways. The underlying thought in the addition of functions to
a pocket calculator keyboard is to reduce the number of key strokes
associated with data inputs.

Because we will be continually referring to instructions found on most
scientific calculators, let us define the instruction sets that we use in the
book:

*See Appendix Al-5.

Key Symbol Key Name Key Instruction
Clear Clears information in the cal-
CL .
culator and display and sets
the calculator at zero
EI e IE_-I Digit Enter numbers O through 9 to

]

EE

CHS

>

Decimal point

Enter exponent

Change sign

Add

Subtract

Multiply

Divide

Square

Square root

a limit of an eight-digit man-
tissa and a two-digit exponent

Enters a decimal point

Instructs the calculator that
the subsequent number is to
be entered as an exponent of
10

Instructs the calculator to
change the sign of the
mantissa Or exponent appear-
ing in the display

Instructs the calculator to add

Instructs the calculator to sub-
tract

Instructs the calculator to
multiply

Instructs the calculator to di-
vide

Instructs the calculator to find
the square of the number dis-
played

Instructs the calculator to find
the square root of the number

displayed

11

Key Symbol

Key Name

Key Instruction

1/x

sin

Ccos

tan

arc

log x

Inx

12

Reciprocal

Sine

Cosine

Tangent

Inverse trigonometric

Common logarithm

Natural logarithm

e to the x power

y to the x power

Instructs the calculator to find
the reciprocal of the number
displayed

Instructs the calculator to de-
termine the sine of the dis-
played angle

Instructs the calculator to de-
termine the cosine of the dis-
played angle

Instructs the calculator to de-
termine the tangent of the dis-
played angle

Instructs the calculator to de-
termine the angle of the se-
lected trig function whose
value is the displayed quantity,
when pressed as a prefix to the
sin, cos, or tan key

Instructs the calculator to de-
termine the logarithm to the
base 10 of the displayed
number

Instructs the calculator to de-
termine the logarithm to the
base e of the displayed
number

Instructs the calculator to raise
the value of e to the displayed
power

Instructs the calculator to raise
y, the first entered number, to
the power of x, the second en-
tered number

Key Symbol

Key Name

Key Instruction

xVy

2]

M+

3+

CLx
]

ENTER 1

ENT

The xth root
of y

Sum and store

Factorial

Equals

Clear entry

Pi

Enter

Instructs the calculator to
process y, the first entered
number, to find the xth root.
The value of x is the second
entered number

Instructs the calculator to al-
gebraically add the displayed
number to the number in the
memory, and to store the sum
in the memory

Instructs the calculator to find
the factorial of the number
displayed

(Algebraic entry method only)
Instructs the calculator to
complete the previously en-
tered operation to provide the
desired calculation result

Clears the last keyboard entry.

Enters the value of pi (7) in
the display register

Loads contents of x register
into y register and retains con-
tents of x register in x register

13

Key Symbol Key Name Key Instruction
Store Instructs the calculator to store

STO . .
the displayed number in memory
(location 5, e.g., if the calculator

STO has addressable memory by using
the numeric keys); the HP-27 has

EI nine storage registers addressable
from the keyboard.

RCL Recall Instructs the calculator to retrieve
stored data from memory (loca-
tion 5, e.g., if the calculator has

RCL addressable memory such as the
HP-27)

5]

Storage Store the contents of the display
registers register in the M or K location

TO To answer Instructs the calculator to com-

ANS

*Called CPT (compute) on some calculators.

14

pute and display the next (sec-
ondary) keystroke function

Key Symbol

Key Name

Key Instruction

i

i/yr

Fv

PV

PMT

INT

Total number of
compounding periods

Interest rate
per period

Future value

Present value

Payment

Interest

Computes the number of periods
in a financial analysis when the
payment, present value, and in-
terest are known, when the pay-
ment, future value, and interest
are known, or when the present
and future values and interest are
known

Computes the interest when the
number of periods in the present
value and future value are
known, when the number of
periods and the present value and
payment are known, or when the
number of periods and the future
value and payment are known

Computes the future value when
the number of periods, the inter-
est, and the present value are
known, or computes the future
value when the number of peri-
ods, the interest, and the payment
are known

Computes the present value when
the number of periods, the inter-
est, and the future value are
known, or computes the present
value when the number of peri-
ods, the interest, and the payment
are known

Computes the payment when the
number of periods, the interest,
and the future value are known,
or computes the payment when
the number of periods, the inter-
est, and the present value are
known

Computes the interest in a finan-
cial calculation

15

Key Symbol

Key Name

Key Instruction

%)

A%

%CHG

DSP

DS

ACC

INT

BAL

16

Percent

Delta percent

Display;
Decimal display

Accumulated
interest

Simple interest

Remaining
balance

Converts percentage to its deci-
mal equivalent

Finds the percentage difference
between two numbers

Fixes the decimal place by de-
pressing this key, followed by any
number key O through 9 (on the
Hewlett-Packard calculators).
The display is then rounded to
the number of decimal places
corresponding to the number key
pressed. The display is usually
left-justified and may include
trailing zeros within the setting
specified. When this key is
followed by the decimal-point
key, the number is converted
from decimal notation to
scientific notation. In scientific
notation, a convenient way of
expressing very large or very
small numbers, a number might
have form N X 10?, where N is a
number having a magnitude be-
tween 1 and 10 and n is a positive
or negative integer.

TO
ANS followed by | DS | and E]

will display a number to four
places past the decimal point on
the Rockwell 204.

Computes accumulated interest
between any two time periods of
a loan

Computes simple interest on basis
of both 360 and 365 days

Computes the remaining balance
of a loan at any point in time

The Programmable Pocket Calculator 17

Key Symbol Key Name Key Instruction
LR Linear regression Calculates the best straight line
T through a group of correlated
data pairs
Average Calculates the mean or arithmetic
average of a group of data
Standard Calculates the standard deviation
deviation of a group of data
Begin End Annuity Instructs calculator to calculate
switch (SW) annuity based on payment at the
- end of the conversion period

(End, for ordinary annuity) or at
the beginning of the conversion
period (Begin, for annuity-due;
HP-22 only).

1-6 THE PROGRAMMABLE POCKET CALCULATOR

The most familiar programmables available at present are probably the
HP-25/55/67 series by Hewlett-Packard and the SR-51/52 series by
Texas Instruments. They have memory stacks and registers, use floating-
point arithmetic with scientific notation, and have an extensive three-level
function set. From the standpoint that the programmable pocket calculator
implements logical (Boolean) equations as well as algebraic equations, can
make logical decisions, and will iteratively execute a preprogrammed set of
instructions, it can be correctly called a pocket computer. It is called a
calculator only because it does not satisfy the U.S. Government’s import
/export trade definition of a computer. Because it is generally accepted
that the definition of a computer (or calculator) changes as the state of the
art of computer design changes, it is also acknowledged that in 1955 the
programmable pocket calculator would have been called a computer.

Programmable calculators provide a quantum jump in pocket computing
capability by making libraries of program listings and prerecorded mag-
netic tape programs available to the analyst at relatively low cost. These
libraries can be compiled by the user himself or can be purchased. They
multiply an analyst’s problem-solving tools many times over at a cost of a
few dollars. Considering the labor involved in preparing the library, it is a
sound investment to say the least.

18 The Pocket Calculator

1-7 THE CALCULATORS TO BE DISCUSSED IN THIS BOOK

We have seen that there are three types of entry method, three types of
memory, and three kinds of numbers that can be implemented in any of
the three kinds of pocket calculator with (though not described here) four
types of function set and two types of I/ O—the hard copy and the manual
I1/0. Hence at least 432 types of calculator could be made up from
different combinations of these electronic hardware alternatives. While the
number of reasonable combinations is somewhat smaller, about 50, the
number of possible types of pocket calculator is still too large to be
covered in one book. We therefore analyze only three basic types of
hypothetical pocket calculator. One is a simple four-function machine. The
second is an engineering machine, again a hypothetical one, but with a
function set characteristic of the SR-50/51/51A or HP-21/27/45 series.
The third is the programmable pocket calculator which we assume to have

- 00D000.00 |

CLX = x O
—

7 8 9 cL

4 5 6 | -

1 2 3 +

L J

Figure 1-1 A hypothetical four-function pocket calculator keyboard.

The Calculators to be Discussed in This Book 19

a four-register stack with a nine-register addressable storage and a 100-
word instruction set. This, too, is a hypothetical machine whose properties
are defined in the context of the discussion.

Of the three hypothetical pocket calculators, emphasis is placed on the
second—the engineering-type four-register stack machine with the usual
complement of engineering functions. Also, because the simple four-
function machine is now available at very little cost, attention is given
throughout the book to performing advanced analysis on this machine.
What continues to amaze the writer is the extent to which the four-
function pocket calculator can be applied to engineering analysis once the
equations to be solved are manipulated in forms that require no memory
for their evaluation.

For all these machines, we assume that we are limited at most to a
10-digit register and we use floating-point arithmetic with scientific nota-
tion. .

The keyboard for the hypothetical four-function calculator to be dis-
cussed is sketched in Figure 1-1. The keyboard functions for the scientific
and programmable pocket calculator are shown in Figure 1-2. The basis
for the discussions dealing with this calculator are the HP-25/55/67 series
and TI’s SR-52/56 series, in that they are representative of what will be
typically available in the foreseeable future.

The display details for all calculators discussed here are shown in Figure
1-3. The display features that we will discuss from time to time include the
following:

Decimal point Assumed to be to the right of any number
entered unless positioned in another sequence
with the (-] key.

Minus sign Appears to the left of the 10-digit mantissa for
negative numbers, and appears to the left of
the exponent for negative exponents.

Overflow indication In most pocket calculators, the largest num-
ber that can be entered in the calculator is
+9.999999999 x 10 without an overflow
when a function is pressed. If a calculation
result is larger than this value, the display will
flash or give a numerical indication of over-
flow.

Underflow indication If a number closer to zero than to *1.0X
10~% is entered in the calculator, the display
will flash or indicate an underflow.

Financial keys
for engineering
economics

Reverse—Polish only

-
N
w
»
(3]
(=]
~N
-]

©o
-
"

CJ CJ) (=)
[arc] [sin] [cos] [raw li]
(o] [se] [7F] [nop] [psz]

—
™

[E:

]] CJ L |le)
() GJ CJ B |l
I R I O IR R R G
Lo L [es] (] |[s7]

_

J

Programmable only

Algebraic only

Programmable only

Figure 1-2 A hypothetical scientific pocket calculator keyboard (mixed algebraic and
reverse-polish and programmable functions).

20

Arithmetic Calculations and Languages 21

Sign Mantissa Exponent

A 1 < l

l(—)lx .lxlx xlx X x]x xlxl(—)lx]?l
N : N

Integer decimal point Decimal Sign

Figure 1-3 Typical pocket calculator display format.

While concentrating on the hypothetical machines just mentioned, we
shall comment on machines with slightly different keyboards where ap-
propriate.

1-8 ARITHMETIC CALCULATIONS AND LANGUAGES

It might seem that the arithmetic functions of addition, subtraction,
multiplication, and division are so basic to the pocket calculator that very
little need be said about them. It is because they are so basic that they are
discussed in some detail here. Arithmetic performed in one language is
substantially different from that performed in another language. In one
language certain arithmetic calculations are quite convenient and easy to
remember to the infrequent user. Another language, though less con-
venient to the beginner, is more powerful and flexible (hence more con-
venient) to the frequent user. Finally, and perhaps most important, mixed
arithmetic calculations illuminate the need for memory—whether manual,
(using a scratch pad) or temporary data storage, (using automatic stacked
registers) or permanent data storage, (using addressable memory).

The two most popular languages used in pocket calculators are algebraic
and reverse-polish. The languages were introduced in Section 1-3. Table
1-1 illustrates the key strokes involved in performing additions, multiplica-
tions, and mixed arithmetic calculations such as products-of-sums and
sums-of-products using both the algebraic language and the reverse-polish
language. A number of insights on analysis on the various pocket calcula-
tors can be derived by examining the table. The most obvious is that the
algebraic language programs the calculation of simple series arithmetic
calculations in exactly the manner in which we would write them as an
algebraic expression reduced to its simplest form. It is equally obvious that
even simple series arithmetic calculations can be performed in a number of
different ways when using reverse-polish language (except for the simplest
operations of adding and multiplying two numbers). In a sense, then, for
these simple arithmetic tasks, the algebraic language has one unique
sequence of key strokes for performing the task, while the reverse-polish

Table 1-1 Arithmetic in Algebraic and Reverse-Polish Languages

Key Stroke Sequence

Task Algebraic Reverse-Polish
Sum A& B A+B= ATB+
_ A1B+C+
Sum A&B&C A+B+C= { ANBIC+ +
A'B+C+D+
A'BIC+ +D+
Sum A&B&C&D =
um A+B+C+D ATBIC+D+ +
ATYB1CID+ + +
Multiply A& B AXB= ATB X
. _ A1B X C x
Multiply A&B&C AXBXC= ATB1C X X
ATBXCXD X

ATB1C X X D X
ATBTC XD X X
ATB1TCTD X X X

Multiply A& B&C&D AXBXCXD=

AXB+D+CXD

ATBXCTD X +
=(no memory)

Compute AXB+CXD A1B1CTD XR|XR}+4
(AX B)+(C X D) =(with hierarchy) .
AXBSTOC x DRCL+

= (with memory)

A1B+CtD+ X
Compute ATBTCtD+R|+RTX “

(A+B)X(C+D) AXBSTOC+ D XRCL=

— Nt —— e P

“See page 25 for a definition of R} and Rf.

22

Arithmetic Calculations and Languages 23

does not. When viewed from the algebraic language enthusiast’s
standpoint, this ambiguity in ways to solve simple series arithmetic prob-
lems in reverse-polish is viewed as a possible confusion factor for the
pocket calculator user. The reverse-polish language enthusiast, however,
views the same property as a measure of the flexibility of the reverse-polish
notation. From his viewpoint, the user has greater flexibility in the
algebraic forms in which an arithmetic problem can be presented for
numerical evaluation. Furthermore, he could argue, the first form shown in
each of the series calculations in Table 1-1 is close to the algebraic
language key strokes, differing only in the second and last key strokes.

It is interesting that this distinction should come up at all, since the
mixed arithmetic in the last two examples in Table 1-1 shows the many
different ways in which the sum of products can be evaluated with the
algebraic and reverse-polish languages. Note that the first example of the
use of algebraic language to evaluate the sum of products illustrates the
rewriting of the algebraic form as

(AxB)+(C><D);——(A;B +C)D

We see from the sequence of key strokes that the sum of products can be
evaluated without memory. This form of evaluating the sum of products is
ideal for use on the simple four-function calculators in that it requires no
scratch pad memory and is within the set of operations available on even
the simplest pocket calculator. A similar expression can be developed for
calculating the product of sums without need of memory. Again, the
algebraic form of the equation must be rewritten to be convenient for
calculator evaluation as

(A+B)xC

(A+B)><(C+D)=(D

+A+B)D

The importance of rewriting expressions in forms that are easily
evaluated on the pocket calculator is obvious, however. The example of the
sum of products (the second from the last in Table 1-1) shows that the
most convenient form for implementation on any pocket calculator may
depend on the language that that calculator uses and the sophistication
with which it is implemented. For example, the second sequence of key
strokes to evaluate the sum of products is in the standard algebraic form.
This form works well for sums of products where the algebraic language is
implemented with a hierarchy of operands, that is, the multiplies are
performed before the sums. Also, the third example of the employment of

24 The Pocket Calculator

algebraic language for evaluating the sum of products shows the standard
algebraic forms for evaluating the sum of products on a machine that uses
the algebraic language but has an additional register for memory.

We observe in Table 1-1 also that no memory is required for performing
simple arithmetic calculations in algebraic language until we reach the
product of sums, the last example in the table. Such is not the case for the
reverse-polish language. For example, only two registers are required for
implementing the simple sum A+ B+ C+ D in algebraic language. In
reverse-polish language, only two registers are required to implement the
sum as shown by the first example in the column of possible implementa-
tions of this series of sums. The other three possible implementations
require additional registers in which to store the data 4, B, C, and D.
Clearly in algebraic language additional registers would not permit al-
ternative ways to evaluate the sum, while in reverse-polish every additional
register leads to one additional way. In the example shown in Table 1-1 it
is assumed that there are four registers in which to store the four data 4, B,
C, and D. Obviously, the use of reverse-polish language with stacks of data
registers adds flexibility to a pocket calculator. In a sense, then, polish
notation and stacks go together in a pocket calculator. It is also apparent
that algebraic language eliminates the need for extensive stacks of data
registers, since no additional flexibility is permitted with the addition of
register stacks. Therefore, most calculators that use algebraic language
have smaller memories than pocket calculators using reverse-polish.

Another observation that we can make from Table 1-1 is that machines
with algebraic notation which also have hierarchy and an additional
register of memory (such as the SR-50) embody the highest level of
capability available for pocket calculators using the algebraic language.
Such algebraic machines compete effectively in conducting mixed arith-
metic calculations with the reverse-polish language machine, such as the
HP-21/35/45 series, with somewhat less electronic complexity. However, the
reverse-polish with stacks adds operational flexibility for the user, which
the algebraic machine does not. Moreover, the algebraic machine requires
that the form of the equation be evaluated, particularly if it is highly
complex. The reverse-polish language, on the other hand, provides the
flexibility to evaluate very complex expressions with minimum attention
being paid to the arrangement of terms. This flexibility is in part due to
additional arithmetic registers that the typical reverse-polish machines
generally have.

Because the manipulation of data among the data registers is essential to
understanding both the reverse-polish with stacks machine and the ad-
vanced algebraic machines, we discuss memory manipulations next.

Arithmetic Calculations and Languages 25

Lost
t f T
2 —/_’ z
y —f Y
x —L: X Figure 1-4 Data flow associated with data entry.

When we speak of a reverse-polish machine with stacks, we assume that
a stack consists of four registers for storing numbers. Following Hewlett-
Packard notation, we call these registers X, Y, Z, and T. Register X is at
the bottom of the stack, T is at the top of the stack, and the display always
shows the number in the X register. We designate the number in the
register by the same letter in italic type. Thus X, Y, Z, and T are the
contents of registers X, Y, Z, and T. When a number key is stroked, the
number enters the X register which is displayed. The number is repeated in
the Y register when the “enter” key is stroked.Whatever is in the Y
register is “pushed up” into the Z register. The contents of the Z register
are moved into the T register, and the contents of the T register are lost
(see Figure 1-4). As data are entered into the Y register from the X register,
the data in the other registers are “pushed up” automatically with the only
data lost being the data in the T register. Data in the Y register can be
viewed in the display by rolling the data from the Y register down to the X
register by stroking the “roll-down” key @ The data in the X register
are then worked backwards in the stack to move to the top register (T), the
data in the top register move to the Z register, the data in the Z register
move to the Y register, and, as mentioned before, the data in the Y register
move into the X register where they are displayed. Stroking the “roll-
down” key again causes the data that were formerly in the Z register,
which have been moved to the Y register, to move down to the X register
where they can be seen in the display. All other data are moved to a

t T t T
z z 2 z
y Y y Y
x X x X

Figure 1-5 Data flow associated with roll-down and roll-up

26 The Pocket Calculator

neighboring register in the direction in which the roll is made. It follows
that after four “roll-down” key strokes the stack will be arranged back in
the original order where X is in its original location and is displayed in the
X register, Y is in its original location, Z is in its original location, and T is
in its original location. Stroking the “roll-down” key moves the data in the
registers in the direction from the Y register to the X register. Stroking the
“roll-up” key moves the data in the direction from the X register to
the Y register. The data flow associated with the data entry and “roll-
down” and “roll-up” operations is seen in Figure 1-5.

Another commonly used stack manipulation is the replacement of the
data in the X register with the data in the Y register and vice versa. The
data flow associated with stroking the “X-Y exchange” key(, ™\ | is

sketched in Figure 1-6. X
0
t ——— T A

Figure 1-6 Data flow associated with x,y
x)y
x X N\ 4

The data flow associated with the stack operations, when performing
addition, subtraction, multiplication, and division, is sketched in Figure
1-7. We see the following:

1. For summation, the contents of the Y and X registers are added and
displayed in the X register.

2. For subtraction, the contents of the X register are subtracted from the
contents of the Y register and displayed in the X register;

y+tx|y—x

yxx y/x
f Figure 1-7 Data flow associated with +, —, X

X and +.

Arithmetic Calculations and Languages 27

3. For multiplication, the contents of the X register are multiplied by the
contents of the Y register and displayed in the X register; and

4. For division, the contents of the Y register are divided by the contents
of the X register and displayed in the X register.

For these basic four functions the contents of the T register are always
retained and never lost. This feature of the operational stack is very useful
for certain repeated calculations.

It is worth pointing out here that many of the functions evaluated by a
single key stroke on the typical reverse-polish with stacks pocket calcula-
tors result in the loss of some data in the operational stack. For instance, in
the HP-35/45 series calculators, the contents of the T registers are lost
when evaluating trigonometric functions. They are retained when evaluat-
ing logarithmic and algebraic functions, such as taking the square root,
taking the inverse, taking the logarithms, or exponentiating.

Figures 1-8 and 1-9 illustrate the typical data flow in the stacks when the
product of two sums and the sum of two products are evaluated using
reverse-polish with stacks. Figure 1-8a shows the usual procedure for
evaluating the sum of products, which does not involve the use of the top
register. To illustrate the flexibility of the reverse-polish with stacks and
operations associated with the top register, Figure 1-8b shows the same
calculations using the “roll-up” and “roll-down” features of the stack
manipulations. Figures 1-10 and 1-11 present the typical data flow
associated with keyboard functions and a calculation of the product of two
sums using algebraic with memory. A comparison of Figures 1-8, 1-9, 1-10,
and 1-11 indicates clearly that the greater the memory storage capacity in a
pocket calculator the greater the flexibility in its use.

The question of languages in pocket calculators is akin to that in
minicomputers or large computers, or different nationalities for that matter
—the language you know the best is the language you like the most, unless
you have sufficient multilingual skills to recognize the subtle advantages of
one language over another. What matters least is the type of language or
size of memory associated with any specific pocket calculator; what
matters most is to begin to use some pocket calculator in advanced
analysis. The solid-state revolution has enabled the engineer to perform
fairly sophisticated analysis at his desk, in his home, or on a trip, without
the need for access to a computing facility. Simply stated, those who
capitalize on this aspect of the solid-state revolution and keep current with
the development of pocket computing machines will have a tremendous
advantage over those who do not.

T

z (AX B) (AXB)

Y AA (AxB) C C (AXB)
X
K

AAB(AXB) C C D (CXD) (AXB)+(C x D) Display register
eyAT B X C 1 D X +
Stepl1 2 3 4 5 6 7 8 9

Figure 1-8a Data flow associated with the sum of two products (4 X B)+(C X D) using key strokes
A1B X C1D X + on a reverse-polish machine.

T AA A (CxD)(CxD) A A
y4 AABB 4 A A
Y AABBCC B A (A% B)

X AABBCCD(CXD) B (AXB) (CxD)(AXB)+(Cx D) Display register

Keyd1 BT Ct D X R| N R?
Step1234567 8 9 10 11 12

Figure 1-86 Data flow associated with the sum of two products (4 X B)+(C X D) using key strokes
ATB1C1D XR|XRt+.

T

V4 (A+B) (A+B)

Y A A (A+B) C C (A+B)

X AAB(A+B) C C D (C+D)(A+B)X(C+D)
Key A1 B + C 0 D + X

Stepl1 23 4 5 6 7 8 9

Figure 1-9 Data flow associated with (4 + B)X(C+ D) using key strokes At1B+ C1D+ X
on a reverse-polish machine.

“(.ppe

210j9q A[dnmui,,) AgoIe1sry pue AIOWLW [iIM SUIYORUI JIRIQIS[E UE JO SUONOUN] PIROqASY M PajeIdOsse mo[j wieq OI-1 am3py

apiAlp 10
Aldijnw
s414
X — x
10
A + £

Z pue A 1venqns
Jea|d 10 ppe
usyy uayy
— D
A < A u €
HV31D
z z 4 z
We————w | W w
g daig z daig

(PaAjoAu; sdajs g) sjenb3

| daig

1507 */I
X x X x

A ‘< A £
z z 4 z
W w W w
1507 AI\I
704 ol1s

||eoas pue abeinig

HE=R

7 —eee g,
N -—m w

UOISIAIp pue uonealdi Ny

>
w
+
®”
b

V4 2

W €-————

uodenqns pue UoIIPPY

‘(..ppe 210J2q A[dnnw,,) AYdIRISIY pUB AIOWIW YIIM
sulgoew d1eIqaS[e Ue U0 =TDYX =@ +I OLS=4 + ¥ sajons o) 3uisn (@ + D) X (g + V) Yim pajerdosse mofj eieq [1-] amdyy

4! 11)| 6 8 L 9 S ¥ € z1dag

= gio): | X = a + o) 0olS = g+ VA
(@+o)x(g+v) (g+v)(@+D)(@+D) a o) o (@+v)@+v)g vy X
(@+2) (@+)2) A

o) o) VvV Z

(g+v) (g+v) (g+v) (@+vV)(@+V)(g+V)(@+V)(g+V) W

Trends in Scientific Pocket Calculator 31

1-9 TRENDS IN SCIENTIFIC POCKET CALCULATORS

There are two trends in scientific pocket calculators: one toward general-
purpose programmables and the other toward special-purpose prepro-
grammed machines. The HP-25, HP-67, HP-69, SR-56, and SR-52 are
examples of the former, and the HP-21, HP-27, SR-51, and SR-51a are
examples of the latter.

Whereas the early scientific calculator keyboards (such as the HP-35 and
SR-50) emphasized algebraic, trigonometric, logarithmic, and exponential
function evaluation, the HP-27 and SR-51A now emphasize prepro-
grammed algorithms for conducting certain types of analyses. The SR-
S1A, for example, has preprogrammed algorithms for determining the
statistics of groups, for conducting statistical forecasting and curve fitting,
and for the generation of random numbers for Monte Carlo simulation.
The HP-27, on the other hand, has preprogrammed algorithms for solving
the time-value-of-money problems associated with engineering economics
(see Part V of this book). The HP-27 also has preprogrammed statistical
algorithms for determining the statistics of groups and for statistical
forecasting, as well as the Gaussian distribution function for convenient
risk-level and confidence-interval calculations. The HP-27 does not have a
random number generator.

Examples of the trend toward increased capabilities of the programma-
ble pocket calculators are the HP-65/SR-56 and the HP-67/SR-52. In the
early HP-65 and SR-56 machines, only 100 key strokes could be stored in
program memory and on the order of 10 memory registers were available
for data storage. Both of these calculators used a simple machine language
for programming wherein each key stroke was (a) numbered (addressed)
sequentially and (b) executed sequentially. In the more advanced HP-67
and SR-52 calculators, 224 to 256 key strokes can be stored in program
memory and on the order of 20 to 26 memory registers are available for
data storage. These more advanced programmable pocket calculators have
many useful program-edit capabilities such as forward and back stepping
and both use indirect addressing.*

The general-purpose programmables are carefully designed for easy use
and require a minimum of training. In fact, virtually all can be pro-
grammed in the learn mode, where the calculator learns a sequence of key
strokes used in solving a problem, and then automatically repeats the
sequence of calculations. Thus no matter what the field, from economics to
quantum mechanics, the programmable pocket calculator can be pro-
grammed to solve often-encountered problems.

*See Chapter 12 for a discussion of indirect addressing.

32 The Pocket Calculator

Which calculator is for you? If you are strong in analysis or becoming
increasingly proficient with your nonprogrammable pocket calculator, the
programmable machines will give you a lot of capability for the money
you spend. Otherwise the preprogrammed machines will give you sufficient
computing power without the need to become adept at programming.

1-10 SCIENTIFIC KEYBOARD FUNCTION EVALUATION

In this section we use the four-function calculator to evaluate the scientific
functions normally found on the scientific calculator keyboard. The sine,
cosine, tangent, exponential, logarithmic, arc sine, arc cosine, and arc
tangent functions are presented in nested parenthetical forms in two
different ways. The first is in the nested parenthetical form of the trun-
cated series approximations of these functions. The second is in a curve-fit
polynomial form that permits precision evaluation of these functions over
a broader range than the simple series expansions of the functions. Also
covered here are the algebraic functions of raising a number to its nth
power or evaluating its nth root.

Raising a Number to a Power

Raising a number to a power on a four-function calculator can be done
simply by repeated multiplication. A fairly high power, such as 100,
involves 100 data entries and 100 multiplies, which result in many key
strokes and many possibilities for error. An alternative is to use the
constant key available on many of the four-function calculators. The
constant key is built into these calculators to make it convenient to
multiply or divide a series of numbers by a constant number. In the case of
raising a number to a power, we put the chain-constant switch to the
constant position and then input the number to the X register, depress the
constant key, and then raise the number to the power n by stroking the
equals key n times. This approach virtually eliminates the error associated
with repeated data entry in the primitive n-multiply approach. Even in this
case, however, raising a number to the power of 100 involves 100 depres-
sions of the equals key (an error prone procedure). This can be circum-
vented by breaking down the power into its prime factors and performing
nested parenthetical multiplies to evaluate numbers raised to high powers.
For example, suppose that we wish to raise # to the 100th power with only
a single entry of «. This can be conveniently done on the simple four-func-
tion calculator by noting that the prime factors of 100 are 2, 2, 5, 5.

Scientific Keyboard Function Evaluation 33

(o))

((9.86960440)°))5

Then

((97.40909108)°)’

= (8.769956822 x 10°)’
=5.187848391 x 10%°

On pocket calculators that have the squaring operator, numbers can be
raised to any integer power through the 10th by entering the data only
three times. Since the prime factors of many of our exponents are made up
of 2, 3, 5, and 7, raising numbers to these powers involves only two data
entries.

Computing roots on the four-function calculator requires iterative opera-
tions. Among the various approaches to evaluating roots, the simplest is
Newton’s method. Though this method leaves much to be desired in most
applications, it can be used conveniently for computing the roots of
numbers. We have more to say on this topic later in the book. For now,
note that the formula for computing the roots is

)
X == x| = tn—1
K+ 1 n(k X;)

where x, = kth estimate of "V'N .

This equation requires an initial approximation, which is used to develop
a second, more exact, approximation, which in turn is again used to
develop a third, even more exact, approximation. The process usually
converges quickly when the initial estimate of the nth root is known.
Convergence can be markedly slow, however, when the first estimate is not
fairly close to the root in question. Examples of the convergence properties
of the use of Newton’s method for evaluating the third, fifth, and seventh
roots of « are shown in Table 1-2.

Close examination of Table 1-2 shows that for an initial guess of 1, the
process converges in five iterations to the accuracy of the pocket calcula-

34 The Pocket Calculator

Table 1-2 Examples of the Convergence of Newton’s Method
for nth Roots of 7

Number of

3 5 7
Iterations %3 vV \Z
0 1.0 1.0 1.0
1 1.713864218 1.428318531 1.305941808-
2 1.499089493 1.293620977 1.209849586
3 1.465379670 1.259260005 1.180121812
4 1.464592311 1.257280369 1.177679333
5 1.464591888 1.257274116 1.177664031
6 1.464591888 1.257274116 1.177664030
7 — — 1.177664030
Check by 3.141592656 3.141592658 3.141592655
computing 7
« (actual) 3.141592654 3.141592654 3.141592654
Absolute 0.000000002 0.000000004 0.000000001

€rror

tor. However, a determination of this requires a sixth iteration, and in the
case of the seventh root also a seventh iteration. The table also shows the
check of the root by repeated multiplies and the comparison with the true
value of 7, indicating an accuracy of 1 part in 10® after only six or seven
iterations. In general, this method cannot be expected to converge so
quickly for other functions. It happens to converge quickly for the nth root
function because of the nice properties of that function. Note that New-
ton’s formula for computing the nth root also works for the simple square
root. This can be seen by setting n equal to 2 in the equation. Then
Newton’s formula for computing the square root iteratively (which is also
due to Joseph Raphson, a contemporary of Newton’s—hence this method
is often called the Newton-Raphson technique) gives the equation

(\/ﬁ)k+l=%((\/%)k +(\/N)k)

which can be used for iteratively computing the square root of a number
N.

Scientific Keyboard Function Evaluation 35

Nested Parenthetical Forms

Many functions of interest to engineers can be written in a power series.
This series can be generated by using Taylor’s theorem, Maclaurin’s
theorem, Chebyshev polynomials, and so on. Furthermore, an empirical

data set can be fit with power series. When so written, they take the
“standard” form

f(xX)=apg+ax+ax*+a,x*+--- +a,x"+--- 1-1
otax+a, 3 n

If we were to evaluate this series in the most straightforward manner on
the simple four-function calculator, we would compute each term in the
series and record it on a scratch pad. When all the terms of interest were
evaluated, the sum would be computed on the pocket calculator. The
number of key strokes involved for a 10-digit data entry is shown in Table
1-3. The total number of key strokes for data entry plus instruction are

Total key strokes= >, 12i+10=6n?+ 16n (1-2)

i=1

Table 1-3 Key Strokes Required to Evaluate
Power Series in Standard Form

Operation Key Strokes
Record,” ag 0
Compute and record, a,x 22
Compute and record, a,x? 34
Compute and record, a;x* 46
Compute and record, a,x" 12n+10

9No one would input g, in the calculator and then
recopy it on a scratch pad.

assuming that each data entry involved the full register. Clearly for n>3
the number of key strokes becomes laboriously large and for n>5 the
chances for error become enormous. By rewriting equation 1-1 in the form

ag+ x(a,+ x(ay+ x(ay+ -+ +x(a,_,+x(a,_+a,x)) -) (1-3)
we reduce the number of key strokes, because the formula is organized in

the natural language of the machine and requires no scratch pad storage.
In pocket computer instructions, equation 1-3 would be evaluated working

36 The Pocket Calculator

from the inside out with the following reverse-polish instruction set:

al|l X |x| + |a

X |x| + |a,_o| X |x| +

+ |a,| X [x] + |ay| X |x| + |ao| =

The number of key strokes for this evaluation of equation 1-1 is

Number 1* 2 3 cee n

of terms

Totalkey 0 33 55 .-+ 102n—-1)+2n-1
strokes

And the key strokes for data entry plus instructions total
total key strokes=11(2n—1) (1-4)

We see, then, that in nested parenthetical form we can carry up to 10
terms before the dimensions of the problem get out of hand—that is, up to
six more terms than in the “standard” form. This business with the forms
of equations is worth remembering for series evaluation on any calculator
or computer in that the nested parenthetical forms are generally processed
Jaster than are standard forms when computing time is involved. This is
because the number of arithmetic operations grows as the square of the
number of terms for series written in standard form and only proportional
to the number of terms for series written in nested parenthetical forms.

Note also that it is unnecessary to use a scratch pad when evaluating
series in parenthetical forms, since the operands and operations are in the
appropriate order for evaluation with algebraic, polish, or reverse-polish
entry methods.

Comparing equations 1-2 and 1-3 we see that the nested parenthetical
form substantially reduces the number of key strokes by reducing the
number of data entries required for the calculation. Even more dramatic is
the impact that rewriting the equation in nested parenthetical form has on
the time required to perform the numerical evaluation of the power series
on a pocket calculator. If we assume that, on the average, for every key
stroke and digit record the calculation takes 1 second, we would expect the
nested parenthetical form to involve 22/(6n+32)% (for n>5) of the time

*No one would evaluate a single-term series on the calculator.

Scientific Keyboard Function Evaluation

required for a standard-form power series evaluation. In general, nested
parenthetical forms of power series or polynomials are more quickly
evaluated than the standard forms. The more common scientific keyboard
functions can be evaluated on the four-function calculator using the

following nested formulas:

In(1+ x) = x(l—f(l—%"(l—{‘ (1—553‘-)))) (Ix|< 1)

el s B)
w15 -5 - BB - 58
cos(x)g(l“%i(l_%i(l*2;232(1 435(2)0 2))
l+§—%—(1+% 2)))

3x2(1, 90 o

(1+ (1+945))
. 2 18x2 600

arcsm(x)zx(l+%(l+ 20 (1+ 1008 xz))), |x|<1

2 2 2
arctan(x)=x|1- 53—(1-—3%(1—5%))), x2<1

;)
2oL+ 2 1+i i) Ix|> 1
x 3x 5x2 7x? 9x?

L 1 3
- —— - —_—— l__._ y >1
arctan (x) >y (1 (e)) | x|

38 The Pocket Calculator

These formulas were selected on the basis of the reasonableness of their
intervals of convergence. The four different approximations for the natural
logarithm span the region from x=—1 to +oo. They are all written in
convenient nested parenthetical forms and can be used for immediate
evaluation on the pocket calculator. This table, if copied and reduced, can
be conveniently taped to the back of your pocket calculator for handy
reference.

Another approach to evaluating these scientific functions is to use a
curve-fit polynomial over a broad range of the argument. Such poly-
nomials are tabulated in Table 1-4 for the functions on the keyboard of
the scientific pocket calculator. These polynomials will permit precise
evaluation of the logarithmic, exponential, and trigonometric functions on
the four-function calculator and thus make it capable of performing any
analysis that can be performed on the scientific pocket calculator.

To put functions into forms that are easily computed on the pocket
calculator, use the following procedures:

Procedure 1

(a) Either find or generate a table of values for the function of interest
to the accuracy of interest.

(b) Prepare an interpolating polynomial (see Chapter 2) that passes
through selected points of interest in the table but spans the range
of interest in the argument.

(c) Identify the maximum error of the polynomial approximation on
the interval of interest.

(d) If the accuracy is satisfactory, write the polynomial in nested
parenthetical form, and then use it for approximate evaluation of
the function on the pocket calculator.

If the tables are not available and there is not sufficient time to prepare
them, use Procedure 2.
Procedure 2

(a) Prepare a series approximation of the function centered on the
interval of interest.

(b) Using a Chebyshev polynomial economization scheme (see Chapter
8) reduce the order of the polynomial.

(c) Test the polynomial for accuracy over the argument’s interval of
interest.

Table 1-4 Polynomial Approximations of Many Functions Found on the Keyboard
of the Scientific Pocket Calculators

M

@

©)]

@

®)

Loglo(x)= t(al + Iz(as + tz(as + tz(a7+ 09’2))))+ C(X)
Here

t=(x—1)(x+1)"
and

le(x)| <1077 where 107'/2<x<10%1/2
for

a,=0868591718 a,=0.094376476
a,=0.289335524 a,=0.191337714
a5=0.177522071

Log,o(x) = t(a, + a3t) + €(x)
where t=(x—1)(x+1)~, a,=0.86304, and a;=0.36415.
Then

le(x)| <6x10~* where 107!/2< x < 10%!/2

Ln(1 + x)=x(a; + x(a, + x(a3 + x(as + asx)))) = €(x)

Here
a,= 099949556 a,= —0.13606275
a,=—049190896 as= 0.03215845
a;= 0.28947478

Then

le(x)]<10° where 0<x<1
Ln(l+ x)=x(a;+ x(ay+ x(a;+ x(as+ x(as+ x(ag+ x(a; + agx))))))) + e(x)
Here
a;= 09999964239 as= 0.1676540711
a,= —0.4998741238 a4= —0.0953293897
a;= 03317990258 a;= 0.0360884937
a,= 02407338084 ag= 0.0064535442
and
le(x)| <3x107% where 0<x<1
e *=1+x(a;+ayx)+e(x)
where
a,=-09664 and a,=0.3536

39

Table 1-4 (Continued)

Then
le(x)]<3x1073 where 0<x<In2
©6) e *=1+x(a;+ x(ay+ x(as+ asx)))
where
a,=—0.9998684 a;= —0.1595332

a,= 04982926 a,= 0.0293641
Then

le(x)|<3x1073 where 0<x<In2
(7 Sin(x)=x(1+ x*(ay+ a;x?)+ xe(x)
where
a,=-0.16605 and a,=0.00761
Then

le(x)] <2%x10™* where 0<x<%

(8) Sin(x)=x(1+ xX(a,+ x¥(a,+ x*(ag+ xHag+ a;x?))))) + xe(x)

where
a,= —0.1666666664 ag= 0.0000027526
a,= 0.0083333315 a,p= —0.0000000239
ag= —0.0001984090

Then

le(x)| <2x107° where 0<x <g

(9) Cos(x)=1+ x*(ay+ a;x?)+ e(x)

where
a,= —0.49670
as= 0.03705
Then
le(x)| <9%x10™* where 0<x< g
(10) Cos(x)=1+ x%(a, + xX(a,+ x}ag+ x*(ag+ a,px?))) + €(x)
where

a,= —0.4999999963 a;= 0.0000247609
a,= 0.0416666418 a,,= —0.000002605
ag= —0.0013888397

Table 1-4 (Continued)

Th
en le(x)]<2%x107° where 0<x<g
(11) Tan(x)=x(1+ x¥a,+ a,x?)+ xe(x)
where
a,=0.31755
=0.20330
Then
le(x)] <1073 where O0<x< %
(12) Tan(x)=x(1+ x%(a,+ x*(as+ x}ag+ x*(ag+ x*(a,o+ a;,x?)))))) + xe(x)
where
=0.3333314036 ag=0.0245650893
a,=0.1333923995 a,,=0.0029005250
ag=0.0533740603 a,,=0.0095168091
Then
le(x)]<2%x1078 where 0<x <%
(13) Cotan(x)= —(1 +xHay+ agx)+ (x)
where
a,= —0.332867
a,= —0.024369
Then
le(x)] <3%X107% where 0<x< %
(14) Cotan(x)= —(1 + x%(a,+ x} a4+ x*(ag+ xX(ag + a;px))) + — ()
where
a,=—0.3333333410 ag= —0.0002078504
a,= —0.0222220287 a,,= —0.0000262619
ag= 0.0021177168
Then

le(x)] <4x107'° where 0<x %

41

42 The Pocket Calculator

Table 1-4 (Continued)

(15) Arcsin(x)= % —(1—x)""ag+ x(a, + x(ay+ azx))) + €(x)
where

ap= 15707288 a,= 0.0742610

a,=-02121144 a;=—0.0187293
Then

le(x)]<5%107° where 0<x<l1

(16) Arctan(x)= x(a, + x¥(as + x*(as + x*(a;+ agx?)))) + €(x)

where
a,= 09998660 a,= —0.0851330
a;=—0.3302995 ay= 0.0208351
as= 0.1801410

Then

le(x)]<107% where —1<x<1

(d) If the polynomial is not sufficiently accurate, include more terms in
the original approximating polynomial before Chebyshev
economization, then use the Chebyshev procedure and test the
polynomial again.

(¢) When the polynomial is sufficiently accurate, write it in nested
parenthetical form and use it to evaluate the function on the pocket
calculator.

The numerical methods associated with generating interpolating
polynomials are discussed in Chapter 2. The Chebyshev economization
procedure and approximation with rational polynomials are discussed in
Chapter 8.

An interesting aside is that the logarithmic, exponential, and transcen-
dental functions and their inverses and hyperbolic counterparts are typi-
cally generated in pocket calculators with pre-programmed, recursion
algorithms. These algorithms generate the numerical values of these func-
tions using CORDIC techniques.* A CORDIC technique does not im-
plement series expansion approximating polynomials. They are hardware

*The Cordic trigonometric computing technique—IRE Transactions on Electronic Computer, -
September 1959.

Accuracy in Function Evaluation 43

algorithms that generate the numerical values of the mathematical func-
tions in which we are interested. In a word, function evaluation on the
pocket calculator is done to high precision using computing techniques and
algorithms that are convenient and efficient from a circuit implementation
viewpoint more than an analytical viewpoint.

1-11 ACCURACY IN FUNCTION EVALUATION

Books on numerical analysis or computer calculations usually present the
equations for propagating relative or absolute error through an analysis. In
this book we take a slightly different approach. Our concerns here are
working within the limitations of the pocket calculator’s computing capa-
bility and understanding the calculator’s impact on the generation of error
that gets introduced into the problem. We wish to identify methods and
techniques for getting around these problems.

The floating-point number system affects the calculations on the pocket
calculator through its treatment of overflow and underflow. When a
number exceeds the largest number in the calculator, the calculator is
usually set to its largest number and the calculation is set to overflow the
contents of the calculator. Similarly, when the calculation calls for a
number that is smaller than the smallest number in the calculator, the
number usually is set equal to zero and the calculation is set to underflow
the machine’s capability. Intuitively, replacing an underflow by zero seems
more reasonable than replacing an overflow by the maximum number
available in the calculator. However, one must be careful in such generali-
zations. Computing e??® using the inverse of e 2% is not the same as
evaluating e??® directly. The reason is that e 2% is set equal to zero and
thus the inverse is undefined, while ¢??® is within the number system of the
pocket calculator.

11

-228
Ounderflow

—undefined

e

228 = 1.045061560 < 10%°

What is surprising is that these number system “end effects” can lead to
some practical limitations on the range of variables for which the function
can be evaluated. Table 1-5 shows the effect of overflow and underflow on
the range of the function x°*/(e* —1).

The function is written in two ways in the table: favoring underflow and
favoring overflow. That is, the function in the first column will eventually

The Pocket Calculator

Table 1-5 The Effect of Overflow and Underflow on the
Range of Function Evaluation

x x%e*/e*—1 x3/1—e™*
1 1.581976707 1.581976707

10 1.000045407 % 10° 1.000045407 x 10°
100 1.0x 10'° 1x10'
200 3.200000023 x 10! 3.200000023 X 10'!
202 3.363232171 x 10" 3.363232170 % 10!
203 3.447308829 x 10! 3.447308829 x 10'!
204 Overflow 3.533058573 % 10!!
220 Overflow 5.153631990 % 10!!
225 Overflow 5.766503900 X 10!
226 Overflow 5.895792594 x 10"!
227 Overflow 6.027389914 x 10!
228 Overflow Underflow

overflow the calculator’s field of numbers because of the evaluation of
x%e*, while the function in the second column will eventually underflow
the calculator’s field of numbers because of the evaluation of e~ *. The
table shows that the range of the variable x for which the function can be
evaluated is limited sooner by the overflow effect than the underflow
effect. In fact, the function written in the form that will eventually result in
underflow can explore the range of the argument which is 12% greater than
the same function that will eventually result in overflow. In general, pocket
calculator analysis favors functions written in the form that will eventually

underflow.

Roundoff Error

Roundoff error is similar to the end effects associated with underflow and
overflow. While many understand roundoff, its practical impact on en-
gineering-type calculations is often ignored with occasionally surprising
results. Because some of the modern pocket calculators display mantissas
to 13 places, it is easy to overlook the roundoff effect in a calculation,
thinking that the calculator’s large mantissa will certainly maintain ac-
curacy through a sequence of calculations. The question here, then, is not
how to round off a calculation but, rather, how does the roundoff intro-
duce error in a practical manner in a calculation? Roundoff is an end

Accuracy in Function Evaluation 45

effect. It is similar to underflow and overflow in that the last digit in the
mantissa is arbitrarily changed to another number on the basis of some
rationale. It is different from underflow and overflow effects: end effects
associated with the number system in the calculator impact the range of
the argument that can be examined; roundoff does not. Roundoff can
actually propagate error into the most significant digits of the calculation.
One might ask, “How does the roundoff of a three or four significant digit
number propagate into the most significant digit?”” This is precisely what
we shall discuss here; an example of how roundoff in the third significant
digit propagates to the first significant digit resulting in a 100% error is
used to illustrate the problem.

Table 1-6 shows the calculation of the difference between products of
numbers known accurately to three significant digits.

Table 1-6 Error from the Least Significant Digits to the most Significant Digits

Rounded Calculator
Desired Calculator Calculator Results
Calculation Results Results Rounded
0.234%0.567 0.132 678 0.133 0.132 678
—0.232%x0.566 -0.131 312 —0.131 -0.131 312
0.xxx 1.366 x 103 2x1073 1x1073

Column 1 shows the desired calculation. Column 2 shows the results
achieved on a pocket calculator, and column 3 shows the results achieved
by first rounding each of the numbers generated in the product and then
taking the difference. Column 4 shows first taking the difference between
the unrounded numbers and then performing the rounding operation.
Precisely what we mean here by rounding is the following. When the two
three-digit numbers are multiplied, their product has either five or six
places. Because the original numbers are only known to three places, we
must drop two or three digits from the product. The rounding operation is
adding 1 in the third place if the fourth-place digit is five or greater, or
adding zero to the third digit if the fourth digit is less than five.

Now let us examine Table 1-6 closely. The desired calculation involves
roundoff because the numbers in the products are only known to three
places. The calculator results that are displayed to five or six places are
really only known to three places and thus the number must be rounded.

46 The Pocket Calculator

The result of taking the difference of the unrounded numbers is 1.366 X%
1073 which is only accurate to the first digit. If the second, third, and
fourth digits are retained in additional calculations, they introduce a
multiplication error into the problem that is propagated forward in any
calculations. Clearly, the propagation of this type of error in an extended
calculation can provide meaningless results. This roundoff error is well
known and is not commonly made by most analysts.

It is the errors associated with the third-column calculations that are
occasionally introduced into calculations. They arise from what seem to be
reasonable calculations but are in fact mathematically incorrect and thus
introduce substantial errors. The results in the first row of calculations are
rounded to the third significant digit before the subtraction is performed,
giving 2X 1073, Column 4 shows the subtraction being performed before
the roundoff is performed. It is apparent that the difference in the two
calculations is a factor of 2 (100% difference in the two numbers). The
rationale for the calculation of column 3 is that we really only know the
number to three significant digits, and thus should round each product
before subtracting. The rationale for the calculation in column 4 is that
rounding arbitrarily changes one of the numbers in the calculation, which
introduces an end-effect error. In column 3 there are two end-effect errors
which can combine into a sizable resultant error, while in column 4 only
one end-effect error occurs when the products and subtractions are com-
pleted and the result is rounded. In this sense, then, if a column of n
products are taken followed by n subtractions, where roundoff is per-
formed after the multiplication, there are n opportunities for propagating
the roundoff effect from the third significant digit to the first significant
digit. However, if the roundoff is performed after the subtractions are
made, there is only one opportunity for propagating this roundoff error
forward into the most significant digits. Thus the rule of thumb for
accurate calculations is to round off on the last step. The example chosen
here carries the roundoff error immediately from the last significant digit
to the first significant digit, which usually is not the situation. It is worth
pointing out, however, that calculations to one part in 10,000 involving
differences can move roundoff error as much as three significant digits
forward, thus modifying sensitivity analysis (evaluation of derivatives with
finite differences) results in the third and even second places.

In summary, roundoff becomes a problem in calculations mainly when
two numbers of the same size are subtracted. The roundoff propagates
forward as a result of the cancellation of the leading digit in a subtraction
process. This brings the roundoff errors from the least significant digit into
the most significant digits. Because the display in the calculator’s display

Accuracy in Function Evaluation 47

window shows a mantissa to 13 places, the inexperienced analyst can be
“spoofed” into assuming incorrectly that he has an accurate number.

Unfortunately, there is no systematic approach to analyzing the effect of
roundoff in extensive calculations. All that can be said is that care must be
taken not to write equations in forms leading to differences of equal-size
numbers. Even this is difficult, because the values of the parameters of the
problem that result in the difference of equal-size numbers often are not
apparent, so that significant roundoff error cannot easily be predicted. The
only practical resolution is to strive to write equations in forms that
minimize the use of subtraction.

Relative Error

As already mentioned, the absolute error in the fixed-point number system
is fixed, while the relative error in a floating-point number system is fixed.
That is, the difference between two numbers in the fixed-point number
system is always the same; in the floating-point number system it is not.
The difference between two floating-point numbers, when the numbers are
close to zero, is smaller than the difference between two floating-point
numbers when the numbers are close to the maximum size in the calcula-
tor. The difference between two numbers divided by either of the numbers
is approximately fixed in the floating-point number system, while it varies
in the fixed-point number system. Thus the floating-point number system
tends to emphasize relative rather than absolute error, as do most engineer-
ing and scientific analyses. Hence it is the natural number system for
scientific calculations.

A similar situation occurs in evaluating functions. Scientific pocket
calculator analysis favors functions written in a form that minimizes
relative error rather than absolute error. Although this is well known to the
experienced analyst, and seems quite rational to the practical analyst, we
still find it prevalent to use “absolute error” as an accuracy criterion in
numerical analysis. For example, calculating e ™~ over the range 0 to 3, to 1
part in 10° using a Taylor series expansion, requires on the order of 12
terms in the series. That is, the contribution made by the thirteenth term in
the Taylor series expansion of e *, when x =3, is something less than
10~3. However, if, more reasonably, we require that the relative error be 1
part in 10%, only nine terms are needed in the series. The absolute error
criterion requires 30% more terms than what is usually required for
engineering analysis. In general, when deriving approximation formulas, it
is important to decide what type of error is important to the problem being
solved and use approximation methods that provide the appropriate ac-

48 The Pocket Calculator

curacy. Too often the approximation is laboriously long and too accurate
for the purpose.

In Chapter 4 we evaluate power series forms of advanced mathematical
functions such as Bessel’s functions and Legendre polynomials. Our
emphasis then in these cases, is on both relative error and absolute error.
The formulas based on relative error criteria have fewer terms than those
based on absolute error. In scientific work (where relative error is of
concern) this results in a significant reduction in the work required to
evaluate these functions on the pocket calculator because the number of
key strokes involved in raising the argument to high powers is eliminated.

Rearranging Expressions to Minimize Error in Function Evaluation

The pocket calculator’s sole function is the numerical evaluation of
mathematical functions. Hence it does not have alpha-numeric displays or
the ability to display words, except by coincidence.* Its purpose is to
evaluate functions. We have already examined the effects of underflow
and overflow, roundoff, and the error criterion itself on the accuracy of
numerical evaluation. Now we briefly look at the functions to be evaluated
and how they may be written in forms where loss of accuracy due to the
subtraction of two almost equal-sized numbers does not occur.

There are a number of “tricks” to handling the difference between two
numbers that are close together. However, one general technique exists
that can resolve many problem situations where the difference of two
numbers are of approximately the same size. Consider the function

h(x)=f(x+€)—f(x)

As already discussed, the numerical evaluation of h(x) can propagate

roundoff error forward into the leading significant digits. This function can
be modified as

h(x)={f(x+e)—f()N T————F =
{ N Fero+70
fx+ O~ fA(x)
fx+€)+f(x)
This is a general equation that can, for algebraic and certain transcen-
dental functions, transform the difference of two neighboring numbers into
the ratio of sums of the numbers capable of being evaluated accurately on

fx+e€)+f(x) }

h(x)

* See Appendix A.

Accuracy in Function Evaluation 49

the pocket calculator (or on any calculator or computer). For example, if

flx)=x?

then

(x+e'—x* 4x’
2x2+2xe+ €2 2xX(1 +€/x) B

h(x)= 2xe
For another example, consider the function
f(x)=sin(x+¢€)
Then

h(x)=sin(x+e)—Sin(x)=2C°S(x+ %)sin(%)

which for small e (but not necessarily small x) is

pafeos(on §)) (5 mees(or)

An example suggested by Hamming is

[(x+ e)l/z—(x)l/z] [(x+e)l/2+(x)l/2]

12 V2
(x+e)7=(x) (x+6 7+ (x)"

€
(x+€)*+(x)"?

With regard to other techniques, Hamming makes the interesting obser-
vation that what appear to be a large number of tricks to reformulate a
function to handle its finite difference are really not new to the analyst.
They are exactly the same methods used in calculus to derive the func-
tion’s derivative. We can see this from the definition of the derivative

lim [Ay—}= lim {307/
Ax—0

Ax—0 | Ax Ax

As a final resort to avoiding subtraction of nearly equal-sized numbers,
most functions can be series expanded or approximated with different
types of series for the interval of interest. Then A(x) can be formed and
modified as before to get around the subtraction problem.

50 The Pocket Calculator

An approach that works surprisingly well for certain functions (see
Example 1-4) is to use the mean value theorem of differential calculus,
where

f(b)=f(a)=(b—-a)f'(6), (a<8<b)

As an example of the application of the mean value theorem, let us
compute

h(x)=sin(x+¢€)—sin(x)

where x + ¢ is not necessarily small. Using the mean value theorem, we
then find

h(x)=[(x+¢€)—(x)]cos(#)=ecosb
for

x+e>0>x

The difficulty is in selecting the value of @ that will accurately compute
f'(x); that is, in selecting @ that produces less error than would be produced
by the propagation of the roundoff error into the most significant digits.
The author knows of no method for effectively estimating # to ensure
accuracy greater than is given by taking the difference itself. However, the
midvalue interval is an obvious possibility. In this case, we find

h(x)zecos(x+§)

Clearly this method is of questionable value (for precision evaluation) ex-
cept when 8 can be determined. The equation is useful, however, for com-
puting the extreme values of the difference by using the expressions

ecos(x+e)

ecos(x)

on the interval of the calculation.

A few commonly used difference equations for circumventing large
errors in taking the difference between nearly equal values of popular
transcendental functions are tabulated in Table 1-7.

Simultaneous Equations 51

Table 1-7 Commeonly Used Difference Equations
in Functional Evaluation

Ae*=e*(e?*—1)
Cin(14 A%
Aln(x)—ln(l+ :)
Asin (2mx) =2sin (wAx) cos [Z'rr(x + ATX)]

Acos (2mx) = — 2sin (wAx)sin [27(x+ Az—")]

Atan (2wx) =sin(27Ax)sec(27x)sec(2mx +2mwAx)

1-12 SIMULTANEOUS EQUATIONS*

If you have your pocket calculator handy, set it up so that it will read
angles as radians, enter 0.5 in the display register, and then repeatedly
strike the cos key. You will find the following sequence of numbers
showing up in the display register:

Number of
Iterations Display Register

1 0.877582562

5 0.768195831
10 0.735006309
20 0.739006780
49 0.739085134
50 0.738085133
51 0.739085133

To what is this sequence of numbers converging? Said differently, what
problem is being solved when a function key is stroked repeatedly? The
answer has powerful consequences as well as being interesting and of
practical value. The number 0.739085133 is the solution to the simulta-
neous equations:

y=x
y=cos(x)

*Excerpted by special permission from Chemical Engineering, April 26, 1976. Copyright 1976
McGraw-Hill, Inc., New York.

52 The Pocket Calculator

We have seen, on the 51st key stroke, that this equation converges as:
0.739085133 = cos(0.739085133)
In other words, we have found a condition where
x=cos(x)
Now, when we started the calculation:
x 7~ cos(x)
In our first key stroke, we calculated:
y=~cos(xq)
X150
Based on this, we could make the second approximation as:
yy~cos(x,)
X2=)2
By repeating these iterations » times, we have demonstrated that
Tim (x,)=cos(x,)

To summarize, when a function key on your pocket calculator is stroked
repeatedly and the sequence of display numbers converges, the result is the
solution to the simultaneous equations:

y=x
y=f(x)

This is important from a practical point of view, because many engineer-
ing problems are iteration problems using implicit functions, although
usually not quite so simple as our example. But we can extend the
technique. Suppose you want to solve the tougher set of simultaneous
equations:

y=h(x)
y=f(x)

Simultaneous Equations 53

These equations can be written as an implicit function by solving for x as:

x=h~'(f(x)

Now, all that is required to solve this problem by the repeated key stroke
method is to see that both f and A~ ! are keyboard functions. For example,
if you are seeking the value of x, such that x2=cos(x), you can solve for x

as x=1\/cos(x) , and the key stroke sequence would be:

enter x
press cos

press V

press cos

press V

and so forth, until the process converges. In this case, you will find
x=0.824132312.
Another example would be for:

y =cos(x)
y=tan(x)
In this case, you would rewrite x to be:
x=tan"'(cos(x))

and after 21 iterations, you would find x =0.666239433.
Will it work all the time? No. For example, if we attempt this techinque
with

x=cos™!(x)

we find the process will not converge. Similarly, if we try to solve the
equation

sin(x) =cos(x)
by solving the equation
x=sin"'(cos(x))

we find the solution to be a neutrally stable oscillation.

54 The Pocket Calculator

Finally, the solution of the equation:

e*=x
simply goes unstable. Why? This is an example of a problem that the
novice numerical analyst sets up and cannot solve. It exemplifies the
essentiality of understanding a problem, not merely the equations.

In general, there are convergence difficulties to contend with for many
keyboard functions. Fortunately, however, they are easy to observe for
most practical problems. Either the solution stops due to an overflow or an
undefined argument, or the process does not converge.*

Interestingly, this problem of solving simultaneous equations is but one
case of the more general problem of finding the zeros of a function. Note
that simultaneity of

y(x)=z(x)

can be written as

y(x)=z2(x)=0=0Q(x)

and there are many useful numerical methods for solving this general
problem, X (x)=0. A discussion on finding the zeros of a function can be
found in Chapter 9.

1-13 REFERENCES

One comprehensive, readable volume was selected to use as a reference
throughout this book: Richard Hamming’s Numerical Methods for Scien-
tists and Engineers. This book, published by McGraw-Hill, is in its second
edition (1973). Dr. Hamming has also published a superb textbook entitled
Introduction to Applied Numerical Analysis (McGraw-Hill, New York,
1971). For this chapter refer to Hamming’s Numerical Methods for Scien-
tists and Engineers, Chapters 2 and 3.

Example 1-1 Evaluate In(0.9) using the fifth-order truncated Taylor series
expansion of In(1+ x) in the neighborhood of x=1.

ln(1+x)=x(1—§(1—27"(1—%"(1—15’-‘—)))), Ix|<1

*See Section 3-6.

References 55

Now
1+x=0.9
Jox=-0.1
Then
- 0.1 2x0.1 3x0.1 4x0.1
In(0.9) = o.1(1+2(1+ 3 (1+ ; (1+ S))))

A typical algebraic key stroke sequence for evaluating this polynomial is

4%0.1 +5+1%x3%0.1 +4+1%x2%x0.1+3 +1%x0.1+2+1x0.1CHS=
A typical reverse-polish key stroke sequence is

410.1X5+14+3X%0.1X4+1+2%0.1xX3+1+0.1X2+1+0.1xCHS

Accuracy considerations over a broader range of x are given in Table
1-8.

Table 1-8 Accuracy of the Fifth-Order Taylor Series Expansion of In (1 + x)

Absolute Relative

(1+x) x In(1+ x) x[1=x/2(1—--4)] Error Error (%)
0.9 —0.1 —0.10536052 —0.10536033 —0.00000018 00.000173

0.8 —0.2 —0.22314355 —0.22313067 —0.00001288 00.005774

0.7 —0.3 —0.35667494 —0.35651100 —0.00016394 00.04596194
0.6 —-04 —0.51082562 —0.50978133 —0.00104429 00.20443190
0.5 —-0.5 —0.69314718 —0.68854167 —0.00460551 00.80241261
0.4 —0.6 —0.91629073 —0.89995200 —0.01633873 01.78313839
0.3 —-0.7 —1.20397280 —1.15297233 —0.05100047 04.23601512
0.2 —0.8 —1.60943791 — 145860264 —0.15083525 09.37192077
0.1 -0.9 —2.30258509 —1.83012300 —0.47246209 20.51876799

Example 1-2 Evaluate In(l+ x) using the fifth-order Chebyshev
approximating polynomial

In(1+4x)=x(a;+ x(a,+ x(ay+ x(a,+ asx)))), 0<x<1
over the range 0< x <1 using the coefficients (from page 40)

a,=0.99949556 a,= —0.13606275
a,=—0.49190896 a5=0.03215845

a,=0.28947478

56 The Pocket Calculator

The accuracy of this approximation is shown in Tables 1-9 and 1-10.

Note that even outside the region where the approximating polynomial
was designed to best approximate In(1+ x) it is more accurate than the
“unconditioned” Taylor series expansion of In(1 + x). Evaluation of In(1+
x) using the approximating polynomial requires approximately 60 key
strokes (20 more key strokes than are used in the Taylor series approxima-
tion) whether using the reverse-polish or algebraic languages. The addi-
tional key strokes are associated mainly with entering the coefficients a,,
a,...,as.

Example 1-3 Rewrite the difference

hy=—1 1

x+1 x

Table 1-9 Accuracy of the Fifth-Order Chebyshev Polynomial Approximation
of In(1+x)

Absolute Relative
(1+x) x In(1+x) x[a,+x(ay+---)] Error Error (%)
1.1 +0.1 0.09531018 0.09530666 0.00000352 0.003697
1.2 +0.2 0.18232156 0.18233114 —0.00000959 —0.005257
1.3 +0.3 0.26236426 0.26236872 —0.00000445 —0.001697
1.4 +0.4 0.33647224 0.33646527 0.00000696 0.002070
1.5 +0.5 0.40546511 0.40545592 0.00000919 0.002267
20 +1.0 0.69314718 0.69315708 0.00000990 —0.001428

Tablel.10 Accuracy of the Fifth-Order Chebyshev of In(1+ x) Outside the
Design Range of the Chebyshev Approximation

Absolute Relative
I+x x In(1+ x) x[a,+ x(ay+ - --)] Error Error (%)
09 —0.1 -—0.10536052 —0.10517205 —0.00018847 0.178879
08 —02 -0.22314355 —0.22211926 —0.00102429 0.459028
07 —-03 -0.35667494 —0.35311655 —0.00355840 0.997658
06 —04 -—0.51082562 —0.50084255 —0.00998309 1.954301
05 —05 -0.69314718 —0.66841824 —0.02472894 3.567632
2.1 1.1 0.74193734 0.74210824 —0.00017089 —0.023034
22 1.2 0.78845736 0.78913899 —0.00068162 —0.086450
23 1.3 0.83290912 0.83478743 —0.00187831 —0.225512
24 14 0.87546874 0.87972822 —0.00425948 —0.486537

2.5 1.5 0.91629073 0.92481112 —0.00852039 —0.929878

References 57

in a form that will minimize roundoff error using a series expansion
technique. The objective is to eliminate the differencing of two numbers of
approximately equal size. Expanding the first term, we see that

1 I/x 1 (1,1 1)

x+1 1+1/x x 1_;+;—;+.” ’

|x] > 1

Then

-1 1 —1
h(x)=~x—2-(l+1/x)= x(x+1)

This form of A(x) does not involve computing the difference of two
numbers of nearly equal size. The range of x over which this derivation
applies is |x| > 1.

Example 1-4 Rewrite the difference

1
x+1

h(x)=

% =

in a form that will minimize roundoff error using algebra.
Cross-multiplying, we find

x—(x+1)
x(x+1) - x(x+1)

h(x)=

This result is the same as that developed with the series expansion method
except that it holds for all x, not just |x|>1. This is an important point to
remember. Derivations using series expansion techniques often lead to
results that hold over a greater range of the independent variable than their

58 The Pocket Calculator

derivation strictly allows. With a pocket calculator it is easy to check the
dynamic range over which a derived formula will work.

Example 1-5 Estimate sin(31°) —sin(30°) using the mean value theorem.
By the mean value theorem, we obtain

h(x)=sin(30° + 1°) —sin(30°)~0.017453293 cos(30.5°)
Here 0.017453293 is the value of 1° in radians. Then:

0.017453293 cos(30.5°) =0.015038266

sin(31°) —sin(30°) = 0.015038075

relative error (%) = —0.0012700

absolute error = —0.000000191

Table 1-11 indicates that the mean value theorem can be useful for
engineering evaluations, since the relative error is very small. Care must be

taken, however, in using the mean value theorem. Had we used cos(30°)
instead of c0s(30.5°) we would find

0.017453293 cos(30°) =0.015114995

Table 1-11 Accuracy of Mean Value Theorem Approximation of
sin (0+1°)—sin@

[} Sin Mean Value Absolute Relative
(degrees) (#+1°)—sind Theorem Error Error (%)
0 0.017452406 0.017452628 —0.000000222 —0.0012
10 0.017160818 0.017161036 —0.000000218 —0.0012
20 0.016347806 0.016348014 —0.000000208 —0.0012
30 0.015038075 0.015038266 —0.000000191 —0.0012
40 0.013271419 0.013271588 —0.000000169 —0.0012
50 0.011101518 0.011101659 —0.000000141 —0.0012
60 0.008594304 0.008594412 —0.000000109 -—0.0012
70 0.005825955 0.005824029 —0.000000074 —0.0012
80 0.002880587 0.002880624 —0.000000037 —0.0012

90 —0.000152305 —0.000152307 +0.000000002 —0.0012

References 59
where actually
sin(31°) —sin(30°) =0.015038075
absolute error = —0.000076920

relative error (%)= —0.5115024

Had we used cos(31°) instead of cos(30.5°), we would find

0.017453293 cos(31°) =0.014960392

sin(31°) —sin(30°) =0.015038075

absolute error =0.000077683
relative error (%) =0.5165751

Here we see that the relative error at the boundaries of the # interval has
jumped from ~ g% when 8 is taken at the midvalue of the interval to

~13% when 8 is taken at the end value of the interval.

CHAPTER 2

DIFFERENCE TABLES,
DATA ANALYSIS, AND
FUNCTION EVALUATION

2-1 INTRODUCTION

This chapter deals with interpolation, extrapolation, and smoothing of
tabulated data. Many books on numerical analysis discuss these topics as
related to the use of mathematical tables. Though we are interested in the
use of these methods for precision table lookup, this chapter aims mainly
to develop functions that are simple in form that can be used to replace
complex functions. This technique, called analytic substitution, is com-
monplace in advanced analysis. For example, cost data developed on
computer programs with as many as 500 cost-estimating relationships
(CERs) can be used to generate a table of costs as a single design
parameter is changed. It is often convenient to develop an interpolation
formula based on the table of discrete costs which will compute system
cost as a function of the single design parameter. The simpler formula can
be analytically substituted for the entire complex system of CERs in the
large-scale cost model. This reduces the cost of “cost estimating” and
makes the simplified models convenient to analyze on the pocket calcula-
tor (see Chapter 12). We will also investigate the smoothing of tabulated
data on the basis of estimates of the error propagated in a difference table.
Finally, we will study what is perhaps the most important but seemingly
least developed use of data tables, extrapolation or prediction. Here
projections, predictions, and identification of trends and predicted values
of function are discussed both from the viewpoints of mathematical
limitations and the practical necessity to predict the behavior of dynamic
processes from their data tables.

61

62 Difference Tables, Data Analysis, and Function Evaluation

2-2 DIFFERENCE TABLES OF EQUALLY SPACED DATA

Before the age of pocket calculators, the preparation of extensive
difference tables of data with mechanical calculators was laborious and
noisy at best,and frustrating at worst. In practical analysis they require
carrying numbers to at least as many as five significant digits. A table of
finite differences of n numbers and m differences requires

mQn—m-1)

2

differences to be calculated and recorded in the difference table. For a
table of 50 entries and 5 differences, this involves 235 differences to be
computed. Thus 470 data entries must be made, which took about an hour
on the old mechanical calculators. On the electronic pocket calculator
these calculations are done quickly and quietly, with the time-limiting
element being the analyst’s preparation of the difference table. Tables of
fifth-order differences of 50 numbers can be conveniently prepared in
approximately 15 minutes with any pocket calculator.

The difference tables that we are concerned with here are usually
generated in two ways. Either a function is evaluated for certain values of
its independent variable or data are determined by measurement of an
experiment. In both cases the tables of equally spaced data can usually be
prepared, especially of data determined from experiments, since much of
experimental electronics and data sampling is done digitally and can be
time-referenced to a digital clock. We discuss arbitrarily spaced data later
in this chapter.

Our notation is based exclusively on the definition of the forward
difference:

Ay;i=yi1—yi=y(xo+[i+1]Ax) = y(xo+ iAx), i=0,1,2,....n

Figure 2-1 illustrates the definitions of the differences involved in the
difference table. Occasionally we use the term 4 to represent the spacing of
the data, that is, Ax=h=x,,,— x,. We do not use backward differences
or central differences in this book. Backward and central differences are
only useful for changing the form of equations used in the derivation of
numerical approximation methods. Since our interest here is not in
manipulating equations but in their numerical evaluation, we use only the
forward difference notation. Repeated application of the definition of the
forward difference generates higher-order differences. For example, the

Difference Tables of Equally Spaced Data 63

Yy

y =fx)

Ay

Ay

Ay

| |
Ax Ax Ax x

Figure 2-1 Definition of differences of equally spaced data.

second-order difference is derived as
A’)’i=A)’i+ 1—Ay;
=Viv2 = Yier~ Die1 =)
=Yir2~ itV
The third-order difference is developed as
A’y,. =A7)’1+ 17 Aﬁ’i
=8y 2= By — (B —BY)
=(Vir3=Yird) = Wir2=Yie) = is2=ie) + i1 =)
=Vir3~ Vit Wi~y

The differences can be numerically evaluated using the equations just
developed, or they can be computed directly from the tabulated values of
the dependent variable, as shown in Figure 2-2.

The nth difference operator is given by the formula

n -1
Ar=(z-1) =z"—nz""+-ri’12——)z"’2—'-- (2-1)

64 Difference Tables, Data Analysis, and Function Evaluation
X y Ay Ay Ay AYy
X0 Jo
>A)’o
X1 N Azyo
>Ay, >A%yo @
X2)2 >A)J’1 >A4yo
>A)’z >A3)’1
X3 V3 Ay,
>AY3
X4 Va
X Ay Ay Ay Ay Ay
0 0
1
1 1 14
15 36
2 16 50 24 ()
65 60 0
3 81 110 24
175 84
4 256 194
369
5 625

Figure 2-2 Finite difference tables. (a) Difference table definition. (b)) Numerical example

y=x*

where z is the shifting operator defined by the relation

z[y(x)] =y(x+Ax)

Furthermore, by repeated application of the shifting operator we see that

2"[y(x)]=y(x+nAx)

Equation 2-1 is derived by noting that the forward difference and shifting

Data Interpolation 65

operators are related as follows:

Ay, = Y ryi=w—yi=0-1y,

A%y, = (z— 1)")’ i
Note also that equation 2-1 can be written in the form

Ay =[z"=C(n,1)z""'+C(n,2)z" =+]y,

A'j)i=yi+n_ C(n’ l)yi+n—l+ C(n,2)y,-+,,_2— e
where
n!

Cn,m)= m!(n—m)!

which is the mth binomial coefficient of order n.

2-3 DATA INTERPOLATION

Armed with these definitions, we are now prepared to examine a number
of formulas for analytic substitution or for interpolation. The method that
we use here involves a Lozenge diagram of differences and binomial
coefficients which can be combined into interpolation formulas. The
diagram is shown in Figure 2-3. Certain rules applied along paths across
the diagram proceeding from left to right define interpolation formulas.
This diagram is so general that it encompasses both Newton’s forward and
backward difference formulas, Stirling’s interpolation formula, Bessel’s
interpolation formula, and an interesting and unusual formula due to
Gauss which zigzags across the diagram. The rules to be followed that
generate these and many more interpolation formulas are the following:

1. When moving from left to right across the diagram, sum at each step.

2. When moving from right to left across the diagram, subtract at each
step.

3. If the slope of the step is positive, the term in the interpolation
formula for that step is the product of the difference crossed times the
factor immediately below it.

4. If the slope of the step is negative, the term is the product of the
difference crossed times the factor immediately above it.

5. If the step is horizontal and passes through a difference, the term is
the product of the difference times the average of the factors above and
below it.

66 Difference Tables, Data Analysis, and Function Evaluation

6. If the step is horizontal and passes through a factor, the term is the
product of the factor times the average of the differences above and below
it.

1 Ay(—-4) C(n+42) Ay (=5)_ C(n+5,9)
-3 y(—3)/C(n+3,1)\A;(—4) C(n+4,3) > AY(-5)
1 Ap(=3) 2 C(n+3,2) > A% (—4) 27 C(n+4,4)
-2 y(—z)/C(n+2,1)\A§(-3) /C(n+3,3) AY(-4)
1 Ay(-2) C(n+§.,2)\ Ay (-3) /C(n+3,4)
-1 y(=DZ cr+1,1) DA(-2) 7 C(n+2,3) AY-3)
1 Ay(—=1) 7 C(n+1,2) AR (-2)7 C(n+2,9)

/N\/

0 (0)/C(n,1) \Az(—l) C(n+1,3) ~ 8Y-2)
\Ay(O) /C(n 2) A’y(—l)/C(n+l,4)
o A%(0) /C(n+3) Ay (-1)

1 y(l) Co—1L,DS
1 Ay(l)/(n—l A% (0) /C(n,4)

2 y(2) Cln- 21)\A2(1) /C(n—13) A%(0)
™ 5@ /C(n 22)\A3y(1) =14

3 y(3) C(n-3,1) > AY2) C(n-2,3) > A%(1)
™ 40) . C(n—s,} AY(2) ~ C(n-2,4)

Figure 2-3 The Lozenge diagram.

Following these rules, starting at y(0) and going down and to the right,
we generate the interpolation formula

y(n)=y(0)+ C(n,1)4(0)+ C(n,2)A% (0) + - - -

which becomes

n(n—1)
2

y(n)=y(0)+ nAy(0)+ AY(0)+ - - -

This is Newton’s forward difference interpolation formula. To generate
Newton’s backward difference formula, the procedure is reversed. Starting
at y(0) and moving up and to the right, we generate the formula

y(n)=y(0)+ C(n,)Ay(—1)+ C(n+1,2)Ay(-2)+ - -

Data Interpolation 67
which becomes

y(m) =@+ ndy(- 1)+ D a3y

This is Newton’s backward difference formula.
To develop Stirling’s formula, we start at y(0) and move horizontally to
the right. In this case, we generate the interpolation formula

Ay(0)+Ay(—1
}’(n)=y(0)+C(n,l)[_y_()+_2y(__)]

{ C(n+1,2)+ C(n,2)
+

- }A’y(—1>+-~

Ay(— n?
y(n)=y(0)+n{ Ay(0)+2 ASl } + Ay (= 1)+

Bessel’s formula can be generated by starting midway between y (0) and
y().

()= { y(L_;Y(_‘i} +(n- 1Ay (0)
. n(nz—l) [A’y(—-l)2+A’y(°) }+ .

Clearly, a great number of other formulas can be generated and used for
interpolation of data.

Interpolation is often employed in computing intermediate values of
tabulated functions. While the scientific pocket calculator gives sine,
cosine, tangent, arc sine, arc cosine, and arc tangent (and, for some of the
more advanced scientific machines, hyperbolic sine, hyperbolic cosine, and
hyperbolic tangent), they usually do not have the capability of generating
Bessel’s functions, Legendre polynomials, error functions, and the like.
Those are often more easily evaluated with standard reference tables. In
these cases, it is occasionally necessary to interpolate between two values
in the table.

Before discussing the interpolation process, however, it is worth pointing
out that most well-made tables are often generated with auxiliary functions

68 Difference Tables, Data Analysis, and Function Evaluation

as opposed to the actual functions themselves. For example, the exponen-
tial integral with positive argument is given by

Ei(x)=f e—udu
o U

which takes the series form

2 3
N x X X
Ei(x)=vy+In(x)+ Tntaat3art
can be approximated with the series
=i 2 3
Ei(x)= p 1+ Lt = + > + (x>)

The logarithmic singularity in the first series does not permit easy interpo-
lation near x=0. The function Ei(x)—Inx is better behaved and more
readily interpolated when x is near zero. In fact, x ! [Ei(x)—In(x)—v]
(where vy is Euler’s constant 0.577- - -) is an auxiliary function that results
in a slightly higher interpolation accuracy than when Ei(x) is computed
from interpolated values of the table of Ei(x) directly.

Generally tables are constructed and presented so that reasonable-order
interpolating polynomials (i.e., first-, second-, or third-order) can be used
to compute intermediate values while retaining the precision of the table.

For example, in the Handbook of Mathematical Functions (U.S. Depart-
ment of Commerce, Bureau of Standards, Applied Mathematics Series 55)
most tables are accompanied by a statement of the maximum error in a
linear interpolation between any two numbers in the table, and the number
of function values needed in Laplace’s formula or Atkins’ method to
interpolate to nearly full tabular accuracy.

An example from the Handbook of Mathematical Functions appears in
Table 2-1. The accuracy statement is given in brackets. The numbers in
brackets mean that the maximum error in a linear interpolate is 3 10~¢
and that to interpolate to the full tabular accuracy, five points must be
used in Lagrange’s method or Atkins’ method of interpolation. The linear
interpolation formula is

fo==p)fo+pf,

Data Interpolation 69

Table 2-1 Exponential Integral Auxiliary Function

x xe*E(x) x xe E\(x)
1.5 0.892687854 8.0 0.898237113
7.6 0.893846312 8.1 0.899277888
1.1 0.894979666 8.2 0.900297306
7.8 0.896088737 8.3 0.901296023
79 0.897174302 8.4 0.902274695

&

where f,,f, are consecutive tabular values of the function corresponding to
arguments x,,x, respectively; p is the given fraction of the argument
interval

_ (x = xo)

P =%

and f, is the required interpolate. For example, if we interpolate between

the values of Table 2-1 for x=7.9527, we find that
fo=0.897174302

£,=0.898237113

p=0.527
We then obtain

fos27=(1—0.527)(0.897174302) +0.527(0.898237113)

f0_527 = 0.897734403.

The terms in the brackets indicated that the accuracy for linear interpo-
lation was 3 X 1076, Thus we round this result to 0.89773. The maximum
possible error in this answer is composed of the error committed by the last
rounding, that is, 0.4403 X 10°+3x107%, and thus certainly cannot ex-
ceed 0.8%x 1075,

To get greater precision, we can interpolate this example of the table
using Lagrange’s formula. In this example, the interpolation formula is the

70 Difference Tables, Data Analysis, and Function Evaluation

five-point formula:

Z_1)(p-2 —1)(p*-4
S+ pix)= { (= r=2p }f—z_ { S }f_l
+{ (pz—l):p—Z)p }fo_{ (p+l)(6p —4)p }fl

2.1 2
+{(”—;—f}i—)—’i}fz. Pl <1

Another approach is to use a five-term Newton forward or backward
difference formula, a Bessel’s formula, Stirling’s formula, or any of the
formulas that come out of the Lozenge diagram. The details associated
with such interpolations are conveniently found in Chapter 25 of the
Handbook of Mathematical Functions.

Since there are occasions for using inverse interpolation, we discuss it
briefly here. If we are given a table of values of the dependent variable y,
as a function of values of the independent variable x,,

y.=f(x,) (tabulated function)

then intermediate values of y can be computed by interpolating between
the values y, with an interpolating polynomial g(x) as

y=g(x)=f(x) (continuous function)

Inverse interpolation is a matter of viewpoint. Here we would view the
interpolation from the standpoint of the dependent variable,

x,=f"'(»,) (tabulated function)

Then intermediate values of x can be computed by interpolating between
the values of x, with an interpolating polynomial A(y) as

x=h(y)=f"'(y) (continuous function)

With linear interpolation there is no difference in principle between
direct and inverse interpolation. In cases where the linear formula is not
sufficiently accurate, two methods are available for accuracy improvement.
The first is to interpolate more accurately by using, for example, a
higher-order Lagrange’s formula or an equivalent higher-order polynomial
method. The second is to prepare a new table with a smaller interval in the
neighborhood of interest, and then apply accurate inverse linear interpola-
tion to the subtabulated values.

Data Extrapolation n

It is important to realize that the accuracy of inverse interpolation may
be very different from that of a direct interpolation. This is particularly
true in regions where the function is slowly varying, such as near flat
maximum or minimum. The maximum absolute error resulting from in-
verse interpolation can be estimated with the aid of the formula

ary ! Af\7!
8x=(§) 8y, sz(K;) oy

where 8y is the maximum possible error in the tabulation of y values
and Af and Ax are the first differences generated from the table in the
neighborhood of the region of interest.

Let us now return our attention to the generation of difference tables. In
the generation of interpolating polynomials of reasonable size, the finite
differences in the difference table must be small for high-order differences.
If they are not small the questions is, “What can we do to reduce the size
of . the finite differences?”

There are only three considerations associated with any difference table.
The first is the number of differences to which the table is taken the
second is the spacing between different values of the tabulated function,
and the third is the number of figures tabulated. The effect of halving
(factor of 1) spacing in the independent variable x is to divide the first
differences by 2, the second differences by 4, the third differences by 8,
and so on. Examples of the effect that different spacings of x have on the
function y = x> appear in Table 2-2. In answer to the question above then:
to reduce the nth-order difference by a factor k we must reduce the data
interval (independent variable) by a factor of approximately "Vk .

2-4 DATA EXTRAPOLATION

Extrapolation outside the range of data that makes up a difference table is
a controversial procedure. It is, however, a procedure of great practical
interest. Given the behavior of a dynamic process, sampled at intervals, it
is only natural to ask to what extent the table can be extended beyond the
range of the data used to make up the table to predict the future behavior
of the process being considered. This is a very practical, important, and
real matter. It is the problem of science to be interested in predicting the
behavior of systems based on observations of their past behavior. While
there are a number of stock market “chartsmen” who use finite difference
techniques, it is generally accepted that extrapolation outside the range of
the difference table is as much an art as a science. Because of its practical

72 Difference Tables, Data Analysis, and Function Evaluation

Table 2-2 The Effect of Interval Halving on The Finite
Differences in a Difference Table®

Full interval Ax =2 Half-interval Ax=1
x y=x> Ay Ay AY x y=x> Ay Ay AY
0 0 0 0
8 1
2 8 48 1 1 6
56 48 7 6
4 64 96 2 8 12
152 48 19 6
6 216 144 3 27 18
296 48 37 6
8 512 192 4 64 24
488 61
10 1000 5 125

9Third-order difference is reduced by a factor of 8 when
interval between values of x is halved.

value and practical interest, it will be covered here but with the proviso
that the reader recognize that extrapolation is a questionable procedure.
That is, the same difference table using only slightly different extrapolation
techniques can, and usually does, lead to significantly different predictions.
Because of this lack of robustness of extrapolated data, the procedure has
questionable value.

We illustrate the problem of prediction with the following practical
example. Consider an aircraft executing a fully automatic landing.
Sampled values of the altitude are shown in Table 2-3. What will be the
conditions at touchdown? This particular example is a nontrivial one, in
that the heart of present-day flight-control performance monitors hinges
on the ability to predict the dynamic behavior of high-energy devices, such
as aircraft, when terminal operations are under automatic control. The
obvious first step is to form the difference table, as shown in Table 2-3. We
note that this table can be carried to the third difference without the
lower-order differences becoming constant. The obvious next step to
extrapolation is to assume that the third difference holds constant up to
touchdown, and to predict the behavior shown in Table 2-4. Clearly the
predicted results are fairly grim. We have low confidence in extrapolations
of this type because the difference table did not indicate the influence of
any control law through arriving at constant differences between any of
the finite differences. Had we found, for example, that all of the second
differences held constant and the third differences were zero, we might be

Data Extrapolation 73

Table 2-3 Difference Table of Altitude of an
Aircraft Executing an Automatic Landing

t h(t) Ah A% Ak
0 60

-13
1 47 +3

-10 -2
2 37 +1

-9 0
3 28 +1

-8
4 20

entitled to higher confidence in the extrapolation to touchdown by assum-
ing that the guidance law objective was to hold the third-order differences
to zero. It follows, then, that a procedure for increasing the confidence in
extrapolation from finite difference tables is to find a transformation of the
variable of interest which would expose the guidance law and its effect on
the difference table.

Table 2-4 Extrapolated Touchdown Conditions of Automatically Landed Aircraft

t h(ty AR A’h Ak
0 60
-13
1 47 +3
-10 -2
Range of 2 37 +1 Average= —1
actual data
-9 0
3 28 +1

4 20
-1
5 12 -1
-9 -1
Range of 6 Touchdown g 3 =2
extrapolation sink rate -11
7 ~11fps® (-8
(hard)

“fps =feet per second.

74 Difference Tables, Data Analysis, and Function Evaluation

After a little thought, it might be expected that the guidance law to
automatically land an aircraft would be an exponential law of the form

dh _
i k(h+ hg)

which results in a flared landing path of the form
h=hye " — hg

which is sketched in Figure 2-4. This suggests the formation of the
difference Table 2-5. Note that the second difference is near zero so that
for short-term prediction (next 7 seconds) a reasonable assumption is that
Aln (h) is approximately constant and equal to —0.3062. The differences
between the two approaches are tabulated in Table 2-6. It is apparent that
the logarithmic extrapolation does better short-term prediction than does
the “third-order” extrapolation.

! | ! | ! | ! | ! I
60 Sink rate ~ 12 fps —
40 —
Altitude
(~ feet) =
20 —1.717 fps at]
| touchdown
0 I | I] ! 1
(4] 2 4 6 8 10 (seconds)
0 600 1200 1800 2400 3000 (feet)

Figure 2-4 Typical jet transport landing trajectory (fps=feet per second).

In summary, we might expect to extrapolate with greater confidence
from Table 2-5 than Table 2-4 because of the observed characteristics of
the guidance law. From a strictly mathematical viewpoint, the issue is not
all that clear. The number of actual samples of the second difference is
small and thus the true mathematical confidence in the fact that the
guidance law is in some way holding the second difference to zero is low.
In the end, extrapolation using difference tables involves careful judgment.

Table 2-5

Automatically Landed Aircraft

Logarithmic Extrapolation of Touchdown Conditions of

t

h(t)

In(h(t)) Aln(h(D)

Actual
data
range

Range
of ex-
trapo-
lation

-

\

0

9

10

11

Sink
rate
~ 1.31fpse

60

47

37

28

20

15.2

114

8.7

6.7

5.1

29

4.0943

— 0.2442
3.8501

— 0.2392
3.6109

— 0.2787
3.3322

— 0.3365
2.9957

— 0.27465
2.7405

— 0.27465
2.4464

— 0.27465
2.17175

— 0.27465
1.89710

— 0.27465
1.62245

— 0.27465
1.3478

— 0.27465
1.07315

> Average = — 0.27465

4fps =feet per second.

Table 2-6 Comparison of Extrapolation Methods for Predicting
Touchdown Conditions

First-Order Logarithmic
Actual “Third-Order” Extrapolation Extrapolation
Absolute Absolute
t h h Error h Error
5 16 12 -4 15 -1
6 11 3 -8 11 0
7 -8 -15 9 +2
8 4 7 +3
9 1.6 5 +3.4
10 0 4 +4
11 0 3 +3

¢ fps=feet per second.

75

76 Difference Tables, Data Analysis, and Function Evaluation

2-5 DATA ERROR LOCATION AND CORRECTION

Errors due to observations, calculation, measurement, or recording often
occur in a table of numbers. These errors introduced into the calculation
process are significantly magnified in the generation of ascending
differences in the difference table. This can be seen in Table 2-7. It is
apparent that the errors propagate and are distributed binomially (in any
given difference the errors are weighted by binomial coefficients). It is also
apparent that the error grows rapidly as it propagates into ascending
orders of difference. For example, the error in Table 2-8 might be antici-
pated by noting the form of the third difference. We see the pattern of
signs (+), (=), (+), (=) indicative of error propagation. Also, note that
the pattern of fourth difference is centered on y =17. Furthermore, note

Table 2-7 Error Propagation in Difference

Tables
y Ay A% A% A%
0
0
0 0
0 0
0 0 +e€
0 +€
0 +€ —4e
+e€ —3e
+e€ —2€ + 6¢
—€ + 3¢
0 +e —4e
0 —€
0 0 +e
0 0
0 0
0

Data Error Location and Correction 7

Table 2-8 Unit Error Propagation in the Difference
Table for the Function y = x?

x y Ay Ay Ay AYy
0 0
1
1 1 2
3 0
2 4 2 -1
5 P e
3 9 3" -4
8 -3
4 17<Z 0 +6
T~8—o +3
5 25 TV~ -4
11 ~1 _
6 36 2 T~+1
13 0
7 49 2
15
8 64

that 6€ in Table 2-7 corresponds to 6 in Table 2-8; that is,
6e=6
e=1
Moreover, if the error in the values of y were of the form
y=x*+5

we can expect in the fourth difference column to show an error of 6k.
Thus one-sixth of the fourth difference which is centered on the number in
error is a measure of the error—which can then be subtracted from the
column of y values. We might modify Table 2-8 by replacing 17 with
(17-1)=16, thus obtaining the difference table shown in Table 2-9. In
general, then, data smoothing is done by:

1. Keeping an eye open for the (+), (=), (+), (=), -+ pattern in
high-order differences that indicates error propagation.
2. Identifying the tabulated value on which the pattern is centered.

78 Difference Tables, Data Analysis, and Function Evaluation

Table 2-9 Smoothed Data Table for the Function
2

y=x
x y Ay Ay AY AYy
0 0
1
1 1 2
3 0
2 4 2 0
5 0
3 9 2 0
7 0
4 16 2
9
5 25

3. Equating observed error with its binomial error counterpart.
4. Solving for the error and appropriately modifying the data table.
5. Testing the table for elimination of the (+), (=), (+), (=), ...pattern.

2-6 MISSING ENTRIES

Occasionally a difference table has a few missing entries in the dependent
variable. Missing entries in the difference table can be estimated in several
ways.

The simplest method is to examine the table and decide whether the
points could be reasonably fit with a polynomial. For example, a data
table with four points, one of which is unknown, might be fit with a
second-degree polynomial. It is characteristic of difference tables that
nth-order differences of polynomials of degree n—1 equal zero. For
example, the equation

y=2x*+x+3

has the difference equation shown in Table 2-10, where it is apparent that
the third-order differences equal zero. This characteristic is present in
general in nth-order polynomials; that is, their (n+ 1)st-order (and all
higher) differences equal zero. Using this property, we would expect that
the fourth-order difference would equal zero; that is

AY(y)=0

Missing Entries 79

Table 2-10 Difference Table for y =2x2+ x +3

Subscript
in Missing
Entry Formula x y Ay AY Ay
0 3
3
1 6 4
7 0
0 2 13 4
11 0
1 3 24 4
15 0
2 4 39 4
19 0
3 5 58 4
23 0
4 6 81 4
27
7 108

This can be rewritten in the shifting-operator notation as

(z=1)Yy=(z*—4z2+622—4z+1)y=0
This gives us

Ya—4y3+6y,—4y,+y,=0
V2= %[4()’1 +)’3) - ()’4+)’o)]

Here we use an even-order difference because all even-order difference
equations do the following:

1. Give one middle term, which can be centered in the missing number
in the table.

2. Result in missing entry determination with a minimum of roundoff
error.

3. Are numerically more stable than their odd-order counterparts.

Let us assume, for the sake of the discussion, that the y =39 entry is
missing in Table 2-10. We can substitute directly from the table with the
missing data point to obtain

y,=4[4(24+58) — (81 +13)]

80 Difference Tables, Data Analysis, and Function Evaluation

from which we can solve for the missing data point:
y,=1[4(82)—94]=1(328 —94=234)=2%4 =39

The method just described for filling in missing values in the data table
is particularly suited to analysis on the pocket calculator in that it does not
involve the determination of unknown coefficients in a polynomial (the
usual methods for missing data determination). For tables with large
numbers, the arithmetic could be tedious, but with the pocket calculator it
is a simple matter to perform the sums and products for tables of large
values requiring high precision. Another point worth making regarding
identification of missing entries in data tables is that for tables with large
numbers of values, say on the order of 20 to 100, it is not necessary to look
for twentieth-order differences to develop the formula for computing the
missing data. One need only determine the polynomial that can be rea-
sonably expected to fit locally through two, four, or six data points
symmetrically placed about the missing value to find the missing point.

We have been stressing the determination of interpolating polynomials
by way of finite difference tables because the pocket calculator enables
one to find finite differences quickly and conveniently, thus leading
immediately to interpolation formulas of high order and high accuracy,
which themselves can be evaluated on the pocket calculator conveniently
and to high precision. This, in fact, is the reason for using the pocket
calculator with difference tables: high-order difference tables lead to
high-order approximating polynomials, which, when written in nested
parenthetical form, are easily evaluated on the pocket calculator to high
precision.

The difficulty in using low-order polynomials for manual analysis in the
precalculator era was that they generally were not sufficiently accurate to
permit the precision numerical evaluation necessary for most engineering,
economic, chemical,and other types of precision analysis. On the pocket
calculator we can conduct precision analysis relatively quickly and
efficiently by using high-order polynomials generated simply with
difference tables of high order.

2-7 LAGRANGE’S INTERPOLATION FORMULA

So far we have studied the interpolation of equally spaced data through the
use of difference tables and the Lozenge diagram as a convenient means
for remembering a large number of different interpolation formulas. These
interpolation formulas, however, do not apply to nonequally spaced values

Lagrange’s Interpolation Formula 81

of the independent variable nor when the nth differences of the dependent
variable are not small or zero. In these cases we can then use Lagrange’s
interpolation formula to develop a polynomial that can be used for
analytic substitution. Though there are other interpolation formulas for
unequally spaced data, the advantage to using Lagrange’s interpolation
formula is that the coefficients are particularly easy to remember, and to
determine, with the pocket calculator. The method works for both nonequ-
ally and equally spaced data and regardless of whether the nth differences
are small. Lagrange’s interpolation formula is

_ o mx)x—xy) e (x—xy) N (x = xo)(x—x3)- -+ (x—x,)
d yo(xo—-x,)(xo—xz)---(xo—xp) yl(xl_xo)(xl—xz)"'(xl_xp)

N (x=xo)(x—=x)) - (x—x,_,)
Y,
p(‘xp-xo)(xp_xl). o ('xp—xp—l)

An interesting and important feature of Lagrange’s interpolation for-
mula is that, if the data table has n entries, the formula appears to have n
terms. It turns out, however, that if the table amounts to four or five
samples of, say, a second-order polynomial, the terms will cancel, giving
only the pieces due to the quadratic function. As an example of this,
consider the data table shown in Table 2-11. Using Lagrange’s interpola-
tion formula, we have

(x S (x—=7)(x—=9)(x—11) (x=3)(x—=T)(x—9)(x—11)

8 B oHGH)G-9G-11) (5-3)5-7)(5-9)(5-11)
(x=3)(x—5)(x—9)(x—11) 108 (x=3)(x=5)(x—N(x—11)
(7=3)(7=5)(7-9)(7—11) (9-3)(9—-5)(9-7)(9—11)

(x—=3)(x=5)(x—7)(x9)
(11=3)(11=5)(11=7)(11-9)

4+

+58

+174

The reader can now simplify the equation. It will be found that
y=2x2—-T7x+9

which is a polynomial of degree two, rather than of the fourth degree, as
might be expected from the fourth-order polynomials in the numerators of
all the terms in Lagrange’s interpolation formula. Because of roundoff the
exact cancelation of the coefficients for the higher powers of x will not
occur, but they will be very small, indicating that they should be made

Z€ro.

82

2-8 DIVIDED DIFFERENCE TABLES

Difference Tables, Data Analysis, and Function Evaluation

Table 2-11 Five Evaluations of a Quadratic

Equation
x 3 5 7 9 11
y 6 24 58 108 174

Another approach to the generation of interpolation formulas for tables of
data of unequally spaced values of the independent variable is to prepare a
table of divided differences. Assuming that the values of the independent

variable x are xg, x;,X;, x5 - -

and that the value of the dependent variable

is y = f(x), we can prepare a table of successive divided differences of the

form

f(xpsx1) =

J(x) = f(xo)

X1~ Xo

S(xy5x3) = f(x, Xy)

S(xg, X1, %5) =

X2~ Xp

SCxps X9 %3) = f(X0 X1, X3)

S(xgy X1, X2, X3) =

X3~ Xg

These terms are commonly called divided differences of orders 1,2,3,
and so on. We can now prepare a table of divided differences, as shown in

Table 2-12,

Table 2-12 Divided Difference Table

x(0)
x(1)
x(2)
x(3)

x(4)

S(xg,x1)

f(xo»xl»xz)
f(xy,x3)

S(x15x3,x3)
f(x29x3)

S(x3,%3,x4)
f(x3’x4)

f(an-xIa-xZ’x})
f(xo’xlaxbx:bxd)
S(x1,x3, X3, x4)

Thirteen-Place Precision from Two-Digit Tables 83

In the same way that the (n+ 1)st difference of an nth-order polynomial
was zero, it is found that the nth-order divided difference of an nth-order
polynomial is zero. Newton’s interpolation formula, based on divided
differences, is of the form

Y =f(xg) + (x — xo)f (xg, %) + (x — x0) (x — %))f (xg, X}, X)) + - -+

+(x=x0)(x=x1) -+ (x =X, -)f(Xgp Xy, -, %,) + €(x)

where
/(n)(g) n
e(x)= n| H (x—xk)’
* k=0
0 is between the largest and smallest ofx, xg, x5 ..., X,

2-9 INVERSE INTERPOLATION

We have been concerned with the interpolation to determine values of the
dependent variable, given either equally spaced or unequally spaced values
of the independent variable. Inverse interpolation involves finding values
of the independent variable, given a table of values of the dependent
variable. In particular, the method is useful for finding missing values of
the independent variable in a tabulated set of data. A nice feature of
numerical analyses using finite or divided difference tables is that inverse
interpolation is performed in identically the same way in which interpola-
tion is conducted. That is, the procedure is an interpolation process where
the dependent and independent variables are switched. The values of x are
to be determined and thus are “dependent” on the values of y. Hence the
interpolation problem is one of developing an interpolating polynomial
through the sequence of values of the independent variables in the prob-
lem. The procedure is then identical to regular interpolation.

2-10 THIRTEEN-PLACE PRECISION FROM TWO-DIGIT TABLES

An interesting aspect of the use of difference tables that is consistent with
the high precision of pocket calculators is that specially prepared
difference tables permit precision interpolation to the accuracy of the
calculator’s capability, but with table entries of apparently only two or
three significant digits. In fact, the accuracy is known to an infinite number
of digits but only two significant digits are nonzero. For example, a table
of y=x? can take either the form shown in Table 2-13 or that shown in
Table 2-14.

84 Difference Tables, Data Analysis, and Function Evaluation

Table 2-13 Difference Table for y = x> where Ax=1,
xo= w(Two-Place Accuracy)”

x y Ay Ay AYy
3.14 9.87
727
2.01
4.14 17.14 -0.01
9.28
5.14 26.42 2.00
11.28 0
6.14 37.70 2.00
13.28 0
7.14 50.98 2.00
15.28
8.14 66.26

“Interpolation formulas based on this difference table
can only be accurate to two places after the decimal
point at best, no matter how high the order of the
interpolation formula, because the differences are only
known to two places.

Both difference tables are developed with integer differences in the
dependent variable and precisely known values of the independent vari-
able in Table 2-14 and two-place accuracy in Table 2-13. The difference
between these two tables is that the first permits interpolation to an
accuracy of only two places, while the second interpolation permits an
accuracy to 10 places, even though both are based on entries in the table
that are only known to a few significant figures. It is precisely in this
manner that the scientific pocket calculator, and even the simple four-
function pocket calculator, can be used to boot-strap itself to generate
advanced mathematical functions to an extremely high precision. All that
is required is that certain values of both the dependent and independent
variables of the advanced mathematical function be known precisely—
where only a small number of nonzero digits make up the number. These
values can then be used in a high-order difference table to generate an
interpolation formula that will be very accurate over the range of the data
table.

Thirteen-Place Precision from Two-Digit Tables 85

Table 2-14 Difference Table for y=x? where
Ax=1, xg=3 (oo Place Accuracy)”

x y Ay Ay Ay
3 9
7
4 16 2
9 0
5 25 2
11 0
6 36 2
13 0
7 49 2
15 0
8 64 2
17
9 81

% Interpolation formulas based on this
difference table can be as accurate as the
order of the interpolation formula will allow
because the differences are known precisely.

Example 2-1 Using the definition
A=z—-1

write an expression that will interpolate between data points and
differences in a data table. Since

z=(1+4)
z2"=(1+4)"
then
L=y (e nax) =y ()4 nap () + T A3 () 4 ()

2
Note that this is Newton’s forward difference interpolation formula.

Example 2-2 Use a difference table to check an interpolating polynomial.

We can check Newton’s or any other interpolation formula by substitut-
ing data points from a known polynomial such as y = x? (see Table 2-15)

86 Difference Tables, Data Analysis, and Function Evaluation

into the formula. Then y(x + nAx) becomes
y(0+n)=y(n)=0+n+n(n—1)=n+n*—n=y(n)=n
We see that the interpolation formula gives the original polynomial y(x)

= x? again: a result to be expected, since the interpolation formula is itself
a polynomial.

Table 2-15 Numerical Example for

x y Ay A’J’ Asy

0 0
1
1 1 2
3 0
2 4 2
5
3 9

2-11 REFERENCE

For this chapter consult Richard Hamming’s Numerical Methods for Scien-
tists and Engineers (McGraw-Hill, New York, 1973), Chapters 9 and 10.

PART TWO

NUMERICAL EVALUATION
OF FUNCTIONS
ON THE POCKET CALCULATOR

CHAPTER 3

ELEMENTARY ANALYSIS
WITH THE POCKET CALCULATOR

3-1 INTRODUCTION

A number of analytical topics used in elementary analysis are discussed
here. Among them commonly used progressions including arithmetic,
geometric, harmonic, and concepts of generalized means; the detailed
definitions of absolute and relative error; nested parenthetical forms of
commonly used infinite series including Taylor’s series; certain often-
encountered forms of the binomial series; the reversion of series; and
methods for transforming series that converge slowly into series that
converge more quickly. Also discussed are methods for evaluating the
roots of polynomials including quadratics, cubics, quartics, and quintics;
methods for the numerical evaluation of transcendental functions and for
solving plane and spherical triangles; and methods for numerically evaluat-
ing commonly encountered functions of complex variables. The formulas
and equations used for pocket calculator analysis are written in forms most
convenient for evaluation on the pocket calculator.

3-2 NUMERICAL EVALUATION OF PROGRESSIONS

An arithmetic progression is defined by a sequence of numbers

,=a,+(n—1)d, (n an integer >0)

90 Elementary Analysis with the Pocket Calculator

where a and d are real numbers. For a,=3e and d= —=

n a,

1 8.154845484
2 5.013252830
3 1.871660176
4 —1.269932478
5 —4411525132

A common problem is to compute the sum of the arithmetic progression to
n terms:

S (d)=a+(a+d)+(a+2d)+ - +[a+(n—1)d]

There are two formulas for computing the sum of an arithmetic progres-
sion. The first is

S,(d)=na+4in(n—1)d

which can be rewritten in nested parenthetical form for easy evaluation on
the pocket calculator as

S,,(d)=n(a+;—1(n— l))

Another formula for computing the sum of the arithmetic progression to n
terms is

S,(d)=75(a+1)
Here the last term in the series / is
I=a+(n—1)d
We note that this equation is already in a form that can be easily evaluated
on the pocket calculator.

The geometric progression is defined by a sequence of terms of the form

a,=a;r""', (naninteger >0)

Numerical Evaluation of Progressions 91

where a and r are real numbers. For a,=3e¢ and r=—7

n a,,

1 8.154845484

2 —2.561920267 x 10!
3 +8.048509891 % 10!
4 —2.528513955x 10%
5 +7.943560867 x 10

The sum of the geometric progression to n terms is
S,=a,+ayr+ar*+ar+art+--- +ar"!
It can be computed with the formula

_a(l=r") a—rl

" 1-r 1-r

where [is the last term. If r<1 in size, then as n—o0

. _ 9
nll;ngo (S") T 1=

1—r

since the last term /—0.The sum of the geometric progression to n terms
requires scratch-pad or memory storage. Table 3-1 shows a typical key
stroke sequence needed for its evaluation and the required storage.

Three types of means are encountered in advanced analysis—the arith-
metic mean, the geometric mean, and the harmonic mean. Though they are
all special cases of the generalized mean

n 1/¢
M=(; 2 «)

we are explicit here and write them out. The arithmetic mean of n
quantities is defined by the equation

_ataytay+---+a,

A

n

n

which can be computed conveniently (though not so easily as summing
and dividing by the total number of samples) on the pocket calculator

92

Elementary Analysis with the Pocket Calculator

Table 3-1 Typical Key Stroke Sequences for Evaluating
the Sum of Terms in a Geometric Progression

Algebraic Reverse-Polish

(r + (r (1 .0)

> (1.0))

(n) 1/x (n)

= X y*

CHS RCL CHS .

+ = (1.0) Note: Recall is

(1.0) + automatic in

X " a Reverse-Polish

(a) x for stack memory

S=TO 6) (HP-35.&21) but not

CHS for register

(CTI)’-IS T/J memory (HP-45,55&65)
()—data entry.
[J—output.

using a recursion formula

A

n+1

(nA,

+a,.1)

which can be developed from the equation for 4 as follows:

1
A"—-“n Za,-
[za Ian+l]

ne1= n+l

n+1 4 =2a,.
n n+1 n
__n

L g4

An advantage to using a recursive “averager”

Ay

=A,+

Ay 41

1
1 [nAn+an+l]

is that the analyst can

observe the convergence of the mean as he adds more terms to the
calculation. He can thus often reduce the workload in computing an
average by using only the numbers that are necessary to estimate the mean

to the accuracy he desires.

The recursive form is directly implementable, using the key strokes

shown in Table 3-2.

Numerical Evaluation of Progressions 93

Table 3-2 Typical Key Stroke Sequences for Recursive Arithmetic
Averaging

Algebraic Reverse-Polish
A, At
X , (n) —=
(n) X
+ (an+ l) <
Gny1) + n= @
+ n= E (n+1)
(n+1) +
= An+ 1
An+l

()— data entry.
[OJ— output
O — mental step done by analyst.
*Initial conditions can be 4,=0 when n=0.
The geometric mean of n quantities is defined by the relationship
G=(ala2---an)l/", (¢,>0,i=1,2,...,n)

which is easily calculated using the recursion formula for the geometric
mean of n quantities as given by

1/n+1
Gn+l=(an+lG:) "

and is developed as follows:

n
G:++ll=(Hai)(an+l)
1/ n 1/n
n n n n
Gn:ll/ =(an+l) (Hai) =ar:<-IGn

Gy =a 7 G/ " = (a,G1)" ™!

9% Elementary Analysis with the Pocket Calculator

A typical sequence of key strokes for evaluating this equation appears in
Table 3-3.

Table 3-3 Typical Key Stroke Sequence for Recursive
Evaluation of the Geometric Mean

Algebraic Reverse-Polish
G’l G’l
yr T —
(n (n)
X y*
(an+ 1) (an)
y* n=n+1 X n=n+1
(n+1) 0
1/x (n+1)
= 1/x
Gn+ 1 ’
Gn+ 1

()— data input.
[J— output.
O — mental step by analyst.

The harmonic mean of n quantities is defined by

=—(i+l+--- +al) (a,>0,i=1,2,. .,n)

n

It, too, can be evaluated by using a recursion formula:

_ 1 1 n
H"H_[""'l(anﬂ * Hn)}

The harmonic mean is evaluated using the typical key stroke sequence
given in Table 3-4.
Finally, the generalized mean is related to the geometric, arithmetic, and

The Definition of Absolute and Relative Error 95

Table 3-4 Typical Key Stroke Sequence for Recursive
Evaluation of the Harmonic Mean

Algebraic Reverse-Polish
H, H,
1/x +——on0q 1/x
X (n) l
(n) X
STO (ay01)
(an+ I) l/x
1/x +
+ n=n+1 (n+1)
RCL 1/x
STO 1 X
(n+1) 1/x
X
RCL Hn+l
1/x
Hn+l

()— data input.
[J— output.
O — mental step by analyst.

harmonic means according to the relations
limM(6)=G
t—0
M(1)=A4
M(-1)=H

3-3 THE DEFINITION OF ABSOLUTE AND RELATIVE ERROR

We discussed absolute and relative errors previously in the context of other
matters. In the next chapter a number of errors are quoted; hence it is
important to define precisely what is meant by absolute and relative errors.
When x, is an approximation to the true value of x, we say the following:

1. The absolute error of x, is Ax = x,— x =(calculated — true).

96 Elementary Analysis with the Pocket Calculator

2. The relative error of x, is x =Ax /x, (calculated — true) /true, which is
approximately equal to Ax/ x,,.
3. The percentage error is 100 times the relative error.

If in (2) we use the approximation of the true value of x to estimate
percentage error then in a sense there is a small error in estimating the
relative error.

The absolute error of the sum or difference of several numbers is at most
equal to the sum of the absolute errors of the individual numbers. If it can
be assumed that the errors occur in a random independent fashion, a more
reasonable estimate of the error in computing the sum or difference of
several numbers is root-sum-square error defined as

(EAxiz)l/z

The relative error of the product or quotient of several factors is at most
equal to the sum of the relative errors of the individual factors. Finally, if
y = f(x), the relative error

Y1
y o f(x)

If we have
y=f(xpx5...,x,)

and the absolute error in x; is Ax; for all n, then the absolute error in f is

af af of
AfN—a‘;c—lel'i'a—szxz'F +a—xAx"

n

Simple rules, similar to those for the relative error of a product or the
quotient, can easily be derived for relative errors of powers and roots. It
turns out that the relative error of an nth power is almost exactly n times
the relative error of the base power, while the relative error of an nth root
is 1/ nth of the relative error of the radicand.

Calculations with Approximate Values
Where they are developed from test experiments or from tables of

characteristics of physical systems, data are usually inaccurate to some
degree. In general, calculations made with data based on measurements

The Definition of Absolute and Relative Error 97

involve errors of some magnitude. Another type of error in calculating
with approximate values is due to the use of numerical values of numbers
that are truncated, producing roundoff errors. The maximum errors
associated with these effects can be estimated. When the rounding is done
correctly, the roundoff is at most one-half of the unit in the last place
retained in the number.

When the numbers are rounded, the addition of zeros after the last digit
of the decimal fraction makes a difference. The number 0.98700 is stated
with 100 times greater accuracy than 0.987. In the first case the number
implies that at most its error is 5X 10~°. In the second case, the error can
be as large as 5X 107 The implications of accuracy should be stated
precisely when tabulating results computed on the pocket calculator.

The error due to a calculation that results from an inaccuracy of the
data is known historically as “error of data.” The error introduced into the
calculation by way of approximation associated with the limitations of the
machine or field of numbers being used in the calculation is historically
called “error of calculation.” It is the objective of any calculation to make
the error of calculation significantly less than the error of data. For-
tunately, for most pocket calculators the size of the numbers that can be
contained is so large that the error of engineering calculation is almost
always substantially smaller than the error of engineering data.

When good computing practice is followed, care must be taken when
computing the difference between nearby numbers. Since occasionally the
magnitude of the error of calculation is found to determine the method of
the calculations to be done, we are interested in estimating from the error
of data the maximum error to be expected in the result of the calculation
due to this error in the data. It is for these reasons that we give the rules
for computing the absolute errors of the sums, differences, products, and
quotients of numerical calculations. These formulas can be used to answer
the questions about the size of the error-of-data from which can be
determined whether the error-of-calculation will be on the same order of
magnitude or smaller. Furthermore, if the error-of-calculation is less, it can
be used to guide the analyst in how much the error-of-data will limit the
accuracy of a calculation. This will indicate the accuracy remaining after a
complex or involved calculation.

The results of a calculation are the most inaccurate when the difference
of two nearly equal and only approximately known numbers are involved.
To determine the relative error in these cases, the sum of the absolute
errors, taken without regard to sign, is divided by the difference of the two
numbers involved (a small number that can turn even a small absolute
error into a large relative error).

98 Elementary Analysis with the Pocket Calculator
3-4 INFINITE SERIES

We will have many occasions to use Taylor’s formula for a single variable
as given by the expression

A=)+ h () +)+ o+ (” l)'f" oy

This equation has an error formula that can be written in three typical
forms:

R = %f"(x+0,h), 0<0,<1)

R,,(1)'(1—02)" r(x+0,m), (0<8,<1)

R,= 1)'f (1=1)""'f"(x + th)dt

The truncated version of the series can be expanded in nested parenthe-
tical forms for convenient numerical evaluations when the numerical
values of the derivative either are given or can be quickly computed.

=f(x)
=f(x)+hf'(x)

=f(x)+h(f’+ hg)

fo f(x)+h(f+ 7+ f))

=f(x)+h(f’+ g(m A —fa—)))

))

Infinite Series 9

Taylor series expansions of f(x) on the point a are given by the
expression

f=star+(e-ar@+ E3L e+ E oy,
where the remainder formula is given by
R), (a<s<n
This expression, too, can be written in nested parenthetical form as
f,.=f(a)+(x—a)(f’(a)+ 2 ((a)+ £ (f”’()+
Lm0

E2 (v & a)f"(a)))--')

Binomial Series

The binomial series is encountered many times in combinatorial analysis
as well as in the formulation of difference equations for numerical analysis.
The binomial series can be written in the general form

a

(1+x)"=2(:)x", (—1<x<1)

k=0

where

(k)= (a— k)IK!

Particular series of interest are

a(a—1) 24 a(a—1)(a— 2)
2! 3!

(1+x)'=1+ax+

which can be written in nested parenthetical form for easy pocket calcula-

100 Elementary Analysis with the Pocket Calculator

tor evaluation as

2 3 4

N x(an—_n1+ 1) (1+ x(an—n))_ N)))

Other frequently encountered binomial series are the following:

(a)

(l+x)a=1+ax(l+

x(a—1) (l+ x(a—2) (1+ x(a—3) e

(I+x) '=1-x+x2=x3+xt= x5+ -, (Ix]<1)

S(+x) =1 —x(1-x(1=x(1=x(1=x(--- ,))))) (Ix]<1)

(b)
1/2 x x* x> 5x*, 1x* 21x®

(1+)/=l+5—?+—1—6'——1%+ﬁ—ﬁ2, (IX|<1)

(1+)1/2=1+§(1—§(1—§(1—§—x(1)))) (1x|< 1)
(©)

(l+x)_l/2=l—%(l—%—(l—%(l—%(l---,)))) (x| < 1)
(C))

(1+x)'/3=1+§(1—§(1—§§’i(1—%"(1)))) (Jx|<1)
©

(1+x)*'/3=1—%(1-27"(1—39&(1—5%(1-..,)))) (x| < 1)

Operations with Truncated Forms of Infinite Series

An integral part of advanced analysis on the pocket calculator is the
numerical evaluation of truncated series. Generally, the approach is to
truncate the series at something on the order of four terms and use the
series to evaluate the function over the region that has a good fit with the

Infinite Series 101

function being considered. Once a series is generated, whether with Che-
byshev polynomials, Taylor series, the binomial series, Legendre
polynomials, or some other means, such operations can be performed on
the series as inverting the series, taking the square root of it, squaring it,
multiplying or dividing it, taking the exponential of it, or taking the
logarithm of it. This is conveniently done by manipulating the coefficients
in the series. These operations are tabulated in Table 3-5 for the three

series
si=l4ax+a,x2+ a3 +apt+ - -
S;=14bx+byx?+byx3+byx+ - - -
s5=1+cx+ex?+ e +ext+ -
Among convenient series manipulations is the reversion of series, where

the dependent variable is solved in terms of the independent variable.
Given the series

y=ax+bx?+cx3+dx*+ex’+ fxb+---

we can write x as a function of y as

x~Ay+ By*+ Cy*+ Dy*+ Ey>+ Fy®+ - - -
where

_ Sabc—a’d—5b°

a7

D

_ 6a%bd +3a’ct+ 14b* —21ab% — a’e

a9

E

Fe 7a’be + Ta’cd + 84ab’c — a’f— 28a*bc? — 42b° — 28a%b%d

d”

14 v € ¢ T _z 1 >
(olog 1 ootog 1 1ot) D @i+ 17) D iy~ Ip ('s)up+1=°%s
INW + h + Nh +MB~Q+vU M+NQ—§+MQ hana Ip :l.th“nh
o o K4 io Ip
(*q + 5% ‘
+NUNQ +mb—®v|vﬂ AnQ.T_.vNQ-TNU_Qv'nQ ANQ.T—Q—Qv'NG _Q|_§ Na.\—h.“nu.
v~u+—Qn§
+NQN§+MQ—Q+QQ mQ.T_QNQ-TNﬁ_Q.TnQ GG.T_Q:N.TNQ _Q.T_G Tolg —€¢
w'a(g—u)(g—u)(1-u)¥
+I0'plo(g—u)(1 —u)}
+I(1—u)u fou
+(1 —u)tv'o +¥ou +(@-uw)(1 Invﬂo_.,u +(1—u)p'> Tou4'plo(] —u)i 27 ls=%s
4
Yo £ (=) () uoneradQo

suonerddQ SPUIS S-€ AAqEL

102

Infinite Series 103
Transformation of Series

Occasionally, slow-converging series are encountered in numerical analysis
where the object is to compute the sum of the series to high accuracy.
Usually we would use some form of economization to improve the ac-
curacy of such a series (see Chapter 8). We may, however, also know
another series that can be used to improve the convergence (accuracy) of
the original series. This is convenient when numerically evaluating the sum
of a slowly converging series of the form

where it is known that the series does in fact converge and where we have
another series

which is also convergent and which we know to have the sum ¢ and the
limit of a, /¢, as k approaches infinity to equal A (where A is not equal to
zero); then

This technique is known as Kummer’s transformation. It transforms one
series into another that is more convenient for numerical evaluation. While
not developed originally for this purpose, it turns out to be quite useful in
numerical evaluation of slowly converging series.

Another approach to numerically evaluating a truncated series is to use
the Euler-Maclaurin summation formula. This is another technique for
numerically evaluating series using another series that converges more
quickly. Provided that the difference of derivatives at the end points of the
interval over which the series is being evaluated is small, the Euler-
Maclaurin summation formula is

n—1

s= 3 fo= [fU)dk = 4(fo—f)+ B (SO~)
k=1 0

(E=157)

— 7%6(}‘,,“")_/(()"1)) + 30040

104 Elementary Analysis with the Pocket Calculator

3-5 THE SOLUTION OF POLYNOMIALS

The numerical solution of a polynomial on the pocket calculator involves a
clear understanding of the possible location of the polynomial’s roots in
the complex plane. For this reason, we take a few moments to refresh our
understanding of algebraic equations. It should be remembered that an
nth-order algebraic equation has n roots. If the coefficients in the poly-
nomial are real, the roots of the equation are either all real, some being
equal and some not, or have pairs of roots that are complex conjugates of
each other and other roots that are real with various locations on the real
axis. The occurrence of complex roots in complex conjugate pairs arises
from our assumption that the coefficients in the polynomials are real, not
complex. If the coefficients are complex, of course, the roots can occur
anywhere in the complex plane. In this book we concern ourselves only
with polynomials that have real coefficients, since they are the most
frequently encountered algebraic equations in engineering analysis.

The Solution of Quadratic Equations

If we are given a quadratic equation of the form
az’+bz+c=0
its roots can be numerically evaluated with the formula

N AVALE
a= (2a)+ 2a
zz_(g)__@l
2 2a 2a

where

q=b*—4ac

From time to time we will make use of the following easily verified
properties of the roots:

21+ z,= —%

c
212,= ;
It is apparent from the equations for the two roots that
1. If >0, the two roots will be real and unequal.
2. If ¢=0, the two roots are both real and equal.

The Solution of Polynomials 105

3. If ¢ <0, the roots occur in complex conjugate pairs.

The numerical evaluation on the pocket calculator should involve first
the calculation to determine g and then the use of equations for the roots
for their evaluation once the situation of the roots is determined.

Solution of Cubic Equations

If we are given a cubic equation of the form
B+ azt+a;z+a,=0

the first step in computing its roots is to calculate ¢ and r:

Then:

1. If ¢*+r*>0, the cubic equation has one real root and a pair of
complex conjugate roots.

2. If g>+r*=0, all the roots are real and at least two are equal.

3. If ¢*+r*<0, all roots are real and unequal (the irreducible case).

Once the nature of the roots is known, it is a simple matter to use the
following equations to evaluate the roots on the pocket calculator. First,
compute

Then the roots can be calculated from an understanding of their nature
and the following three equations:

a
zy=(s,+s;)— 3

—(s5;+s,) a V3
—12"?2""_‘2—(51_52)

N
[¥)
I
[\

106 Elementary Analysis with the Pocket Calculator

Note that if g°>+ r?=0, 5, will equal s, and the imaginary component of the
roots will drop out, leaving the two z roots, z, and z,, equal, while z, may
not necessarily be equal, depending on the value of s,.

Once the roots of the cubic equation are evaluated, they satisfy the
following relations:

z,+ 2+ 23=—a,
2,25+ 2123+ 2525=a,
212223= — 4
These relations can be used as a check on the calculation of the roots.
The process of numerically evaluating the roots of the quartic equation
is somewhat involved, even for pocket calculator evaluation. Under some

conditions, however, simple evaluations can be made. For example, con-
sider the quartic equation

4 3 2 =
2*+ayz’+az*+aiz+ay,=0

One approach to evaluating the roots of this quartic equation is to find the
real root of the cubic equation

p> = ayp’+ (a,a3—dag)p— (a} + aga3 — 4aya,) =0

and then determine the four roots, of the quartic equation as solutions to
the two quadratic equations

a a? b 2 172
o+ —23+(?3-+y.,—a2) o+ﬂ+[(ﬂ) —ao] =0

Once the roots of the quartic are evaluated and can be written in the form

4 a P vaytvaiz+ay=(22+piz+q,)(22+pz+ q,)

Successive Approximation Methods 107

the following conditions hold:
Prtpy=as
Pt tgp=a
P12t paq,=a,
992= 4

Finally, if z,, z,, z3, z, are the roots of the quartic equation, the following
conditions hold among the roots:

)t zytz3+z,=—ay
22i2j2k= —a
22,-2,:02

21252324=ay

Again, these conditions can be used to check on the calculation of the
roots.

The evaluation of the roots of a polynomial up to quartics is tedious and
usually inaccurate (at best) on a slide rule, by hand analysis, or even on the
old mechanical calculators (though accurate); it is a relatively fast and
accurate process on the pocket calculator, however.

3-6 SUCCESSIVE APPROXIMATION METHODS

Again, we are concerned with the problem of determining the roots of an
equation, but the equation is of a more general form. We are looking for
the condition

f(x)=0

That is, we are looking for the values of x such that f(x) will equal zero. In
this case f(x) need not be a polynomial in x. If we let x=x,, the
approximation of the root, then when f, is not equal to 0 it is equal to €
(the error). If we now use € to update our estimate of the root,

Ax=c,e,=c,f,

108 Elementary Analysis with the Pocket Calculator

we can write
xn+l=xn+cnf(xn)’ (n=l’2’3.“) (3"1)

When it is found that f'(x) is greater than or equal to zero and the
constants ¢, are negative and bounded, the sequence of x, converges
monotonically to the root x=r. If ¢ is a constant less than zero and f’ is
greater than zero, the process converges but not necessarily monotonically.
A number of approaches have been developed to compute c,. Among these
are the regula falsi method, the method of successive iterations, Newton’s
method, and the Newton-Raphson method. The regula falsi method begins
with the assumption that we are given y = f(x); the objective is to find x=r
such that f(r)=0. We choose a pair of values of x, x, and x, such that
f(x,) and f(x;) have opposite signs. Then equation 3-1 can take the form

(3-2)

X1~ Xo Jixo— fox,
X=X — 1=

fl_fO fl "fo

The third- and higher-order estimates of the root x, are computed using x,
and either x, or x, for which f(x;) or f(x,) is of opposite sign to f(x,).
This method is equivalent to an inverse interpolation. This is apparent
from the form of equation 3-2.
In the method of successive iterations, the approach is to write the
equation in an implicit form and use successive iterations to solve the
equation x = F(x). The iteration scheme is to compute

Xn+1 =f(xn)

The sequence of solutions to this implicit equation will converge to a zero
of x = F(x) if there exists a ¢ such that

N

|f'(x)|<g<1 for a<x<b

and

< Oil_ﬂ_xmgb
l1—¢q

This is an attractive method for use on the pocket calculator because it
does not involve remembering special formulas such as those associated
with the regula falsi or the Newton (Newton-Raphson) methods. The
problem encountered in applying the method of successive iterations on
the implicit form of the equation whose roots are to be determined is that
the implicit equation may not converge as quickly as other methods based
on additional information (such as the derivatives of f(x)) whose function
it is to ensure rapid convergence of the method.

Successive Approximation Methods 109

Newton’s method is to compute recursively estimates of the roots of the
function f(x) using the formula

g f’(x’l)

where x=x, is an approximation to the solution, x+r, of f(x)=0. The
sequence of solutions generated with Newton’s rule will converge quadrati-
cally to x = r. The condition for monotonic convergence is that the product
Sf(xg)f”(x,) is greater than zero, and f'(x) and f”(x) do not change sign in
the interval (x,,r). The conditions for oscillatory convergence are also
straightforward. When the product x(x,)f”(x,) is less than zero and f'(x)
and f”(x) do not change sign in the interval (xgx,), equation 3-3 will
converge, though it will oscillate. These conditions only hold, of course,
when

(3-3)

Xn+1

XoSr< X,

When Newton’s method is applied to the evaluation of nth roots, we find
that given x"= N, if x, is an approximation of x =N 1/7 then a sequence of
improved x, can be generated:

xk+l=%(xk(£./-ﬁ+ n—l))
X/

This method will converge quadratically to x for all n, and is particularly
useful for computing the nth roots iteratively on the four-function pocket
calculator as covered in Chapter 1. It is derived here to show the proce-
dure:

1. We wish to compute x=(N)"/".
2. Form f(x)=(x"—N)=0 from (1).
3. For Newton’s rule, x, , ;= x, — f(x;)/f'(x,), we need f(x,) and f’'(xy).
4. f(x,)=(x{ = N) and f'(x;)=(nx¢ "' =0).

5. Substituting the results of (4) into (3) we find (6).

6. xk"—N) nx, x;/+N

X, =X, —
k+1 k —
(nx: !

=-'l;[x’:}'v_l +(n—])xk]=-'l-1-(xk(x£: +n—l))

Details on finding the zeros of functions, an important subject in numeri-
cal analysis, are given in Chapter 9.

n nxl !

110 Elementary Analysis with the Pocket Calculator

3-7 ELEMENTARY TRANSCENDENTAL FUNCTIONS

In Chapter 1 we presented polynomial approximations for most of the
transcendental functions found on the keyboard of the scientific calculator
so that they could be evaluated on the simple four-function calculator. Not
presented there, however, were approximations in terms of Chebyshev
polynomials. Because the approximation in terms of Chebyshev poly-
nomials is a mini-max approximation (minimizes the maximum error on
the interval —1 to + 1), they are accurate and useful, and for the sake of
completeness they are presented here. The discussion of the reduction of
order of series approximations to function in terms of Chebyshev
polynomials is covered in Chapter 8 and their numerical evaluation is
covered more fully in Chapter 4. For now we concern ourselves with the
numerical evaluation of the elementary transcendental functions using
Chebyshev polynomials.*

Evaluating the natural log of y for y near zero can be difficult, at best. If
y 1s near zero it is convenient to write

In(y)

In(1+x), y =14+x
Then we can write In(1 + x) as

in the form

n(1+x)= S AT (x), (0<x<1)
n=0

where the coefficients 4, are

n A,
0 0.376452813
1 0.343145750
2 —0.029437252
3 0.003367089
4 —0.000433276
5 0.000059471
6 —0.000008503
7 0.000001250
8 —0.000000188
9 0.000000029
10 —0.000000004

11 0.000000001

* Shifted Chebyshev polynomials of the first kind used here: Tn = cos né where
cosf = 2x — 1.

Elementary Transcendental Functions 111

and where
T, =2(2X— NT,_, T,

To=1
T,=2x-1
In a similar way, we can use Chebyshev polynomials to evaluate both

e*ande™*

The coefficients for evaluating e ™* = i A,T,(x) are
i
0.645035270
—0.312841606
0.038704116
—0.003208683
0.000199919
—0.000009975
0.000000415

—0.000000015

NN LA W = O

The coefficients for evaluating e* are

A

n

1.753387654
0.850391654
0.105208694
0.008722105
0.000543437
0.000027115
0.000001128
0.000000040
0.000000001

S

NN L AW N = O

oo

Again the restriction x is that

0<x<1

112 Elementary Analysis with the Pocket Calculator

Now that we have a few example functions to work with, consider the
procedure for using the Chebyshev polynomials to numerically evaluate
these functions:

Step 1 Let the objective be to evaluate e* near x = x,; where x, is not on
the interval 0< x < 1. Rewrite e* so that the exponent is on the
interval [0, 1]. For the sake of this discussion, we use

ex=e(x—xo)+x0=exo[e(x——xo)]=exoey

Then for x on the interval
Xo<x< x+1

y is on the interval
0<y<l1
Step 2 Select x and compute y.
Step 3 Compute T,=2y — 1.

Step 4 Compute T,=2(2y —1)T,— 1.
Compute T,=2(2y - 1)T,—T,.

Compute 7,=2(2y —1)T,_,— T, _,.
n
Step 5 Compute e’ = > 4,,T,, using the appropriate 4,.
0

Step 6 Compute e*=e* %,

Usually x, is chosen to be a convenient number for precise evaluation of
e*o using the prime factors method (presented in Chapter 1). For example,
if x =100, then ¢'® becomes
5
22\’
(™))

which is easily evaluated with a table lookup of e and 13 (at most) data
entry key strokes plus 16 multiply key strokes on the four-function cal-
culator.

Elementary Transcendental Functions

The Chebyshev approximations for sine and cosine are given by the

relation

and

sin(%) =x § A,T,(x?)

n=0

cos(772_x) = 'EOA,, T,(x?)

using the coefficients for A4,,:

Sine Cosine
n A, n A,
0 1.276278962 O 0.472001216
1 —0.285261569 1 —0.499403258
2 0.009118016 2 0.027992080
3 —0.000136587 3 —0.000596695
4 0.000001185 4 0.000006704
5 —0.000000007 5 —0.000000047
Here x must reside in the interval
|x| <1

Formulas for the Solution of Plane and Spherical Triangles

Many elementary analysis problems involve the solution of triangles. These
include plane right triangles, plane triangles, and spherical triangles. Con-
sider the plane right triangle shown in Figure 3-1. Here 4, B, and C are the
vertices of the triangle and a, b and ¢ are their opposite sides. Then

a 1
A = —=
sm ¢ cscA
=b__1
cosA = ¢ secA
—a__1
tand = b cotAd

114 Elementary Analysis with the Pocket Calculator

C b
Figure 3-1 Right triangle.

Now consider Figure 3-2. This plane triangle has angles 4, B, C and
sides opposite a,b,c. The law of sines states that

a __ b _ ¢
sinAd sinB sinC

and the law of cosines is

ct+b2-a?
2bc

CosA =

Also, the following four relationships hold for plane triangles:

a=bcosC+ccosB

a+b _tan}(4+B)
a—b tan}(4-B)

bcsinA
2

area =

area=[s(s— a)(s — b)(s — c)]*
where s=1(a+b+c).

Figure 3-3 shows a spherical triangle with angles 4, B, C and sides
opposite a, b, ¢. The four commonly used formulas in spherical tri-

Elementary Transcendental Functions 115

A b C

Figure 3-2 Plane triangle.

gonometry are

sind _ sinB _ sinC

sina sinb sinc

cosa=cosbcosc+sinbsinccos A

cosbcos(c+8)
cosg= ———m—— where tanf=tanb cos A
cos(0)

cosA = —cos BcosC +sinBsin Ccosa

In solving spherical triangle problems we can use either the scientific
keyboard function evaluation or, on the four-function calculators, the

B

b
Figure 3-3 Spherical triangle.

116 Elementary Analysis with the Pocket Calculator

polynomial or Chebyshev approximation to the transcendental functions
involved. These developments for the right triangles are shown here not so
much because of their unique form for pocket calculating, but because
they are very frequently encountered in almost all forms of engineering
analysis and, again, are provided here for the sake of completeness.

3-8 COMPLEX VARIABLES AND FUNCTIONS*

In the remainder of the book, and in Chapter 4 in particular, the equations
and formulas used for analysis on the pocket calculator hold both for real
and complex variables. In this section, we touch briefly on analysis with
complex variables.

Complex variable analysis on the pocket calculator results in nothing
more than keeping track of the real and imaginary coordinates either in
polar or in Cartesian form. Pocket calculators with conversion from
rectangular to polar make the analysis with complex variables particularly
easy. Since virtually all advanced scientific calculators have this feature,
we assume here that it is present. The formulas given here for analysis with
complex variables and for the evaluation of functions of complex variables
can be quickly and easily developed on the four-function calculator using
the trigonometric functions developed earlier in this chapter or in Chapter 1.

The addition and subtraction of two complex variables are simply
defined by

(x,+iyl)+(x2+iyz)=(xl+x2)+i(y1+y2)
(14 iy) = (et i) =(x; = x,) +i(y, — y,)

Multiplication is more conveniently done in polar coordinates; that is,

(xy+iy) (xy+iy,) = "1’2‘—’iwl+02)

where
S i
X, +iy,=re™

Y = pl0
Xyt iy, =re™

Here r is the positive root sum square of the imaginary and real com-
ponents of the complex number v =(x2+»?)'/? and

. y
f# =inverse tan —
X

*See Appendix 3.

Complex Variables and Functions 117

The division of two complex numbers is given by

X, +1i ry .
DTN _ N -6 (x,+ iy, #0)
Xatily, n

Or, in rectangular form,

xitiyy (it iy)Og—iy) xpxp+y iy — X))
X, + iy, x2+y? x3+y3

where the denominator is developed by multiplying the numerator and
denominator by the complex conjugate of the denominator.

We will frequently encounter certain commonly used functions of com-
plex variables (complex functions). The most often occurring one is the
modulus (absolute value) of a complex number, which is defined by

[+ iy = (2 +y7)
Another commonly encountered complex function is that of the square
of a complex number, which is simply given by
(x+)'=(x=y?) +i(2x9)

Not so easily remembered but occasionally encountered is the square root
of a complex number, which is given by

1/2
(x+(x2+y2)l/2) N iy ()c+x()c2+y2)l/2)

2 2 2

-1/2

\/x+iy ==+

Clearly, the powers and roots of a complex function can be more easily
evaluated in polar coordinates. Thus, in general,
-\ n,in n el
(x+iy) =r"e™ =r"(cosnd +isinnf)
and

(x+ip)/"= r'/"[cos(O+27k +3'”k) + isin(9+2mk +nz'”k)]

These formulas are written for angles in degrees, not radians, and for
angles where n is an integer greater than zero and k takes on any integer
values from zero n—1. The only restriction on these two complex
functions is that the complex variable cannot equal zero.

118 Elementary Analysis with the Pocket Calculator

Exponential and logarithmic functions of complex variables are also
easily developed when the complex variable is written in polar form:

x+iy=re?
Then it is straightforward to develop

e** " =e*(cosy +isiny)
Similarly, the natural log of a complex variable is given by

In(x+iy)=Inr+i@+2mik, (k=0,1,2,---) (3-4)

These relationships can be generalized to any base according to the
relation

a(x+iy)= e(x+iy)lna

In(x +iy)

log,(x+iy)= na

Even more generally, the complex powers, complex roots, and complex
logarithms of a complex variable can be developed, again using polar
coordinates. If we are given

z=x+Iy and w=v+iv

then the complex powers and roots of a complex number are given by

Zw=ewlnz (3_5)
Zl/w=e(lnz)(l/w) (3-6)
Finally,
In(w)
log,(w)= (3-7)
In(z2)

In equations 3-5,3-6, and 3-7 we can use equation 3-4 for taking the
natural log of a complex number.

Complex trigonometric functions are often presented in complex vari-
able theory books more from the standpoint of derivation and develop-
ment than from the standpoint of numerical evaluation. Hence the numeri-
cal evaluation formulas sometimes get buried in the derivation. Here we
present the formulas for complex trigonometric functions in a form that is
easily evaluated on the pocket calculator. No attempt is made to derive

Complex Variables and Functions 119

these formulas, interesting though they are, because again the emphasis
here is on numerical evaluation of the functions.

The most straightforward expressions are the sine, cosine, and tangent
functions of the complex variable

z=x+Iiy
Then

sinz =sinx coshy + i cos x sinhy
cosz =cosx coshy — usinxsinhy

sin2x + isinh2y

tanz= ———
cos2x +cosh2y

Less straightforward are the complex inverse trigonometric functions.
Again, when

z=x+iy

the inverse sine of z is given by the relation
sin~'z=kn+(—1)*sin™" B+ (= 1)"isgn(y) In[a+ (a2~ 1)""*]

In this formula

a=§\/(x+ 1)2+y2 +§V(x—1)z+y2 (3-8)
B=1(x+ 1 +y? —h(x- 1)+ (39)
and the function sgn(y) is given by the relation
sen(y)={ ! i »>0 (3-10)
-1 if y<O0

Finally, k£ in this formula is an integer. A convenient simplification for
pocket calculator analysis is to take into account the fact that the inverse
trigonometric functions are multiple valued and thus the k=0 case (the
easiest to evaluate numerically) can be used to evaluate the inverse sine of
z when care is taken to account for the “quadrant” in which z is being
determined. Then sin~'z simplifies to the form

sin"z=sin“B+isgn(y)ln[a+(a2— 1)1/2]

120 Elementary Analysis with the Pocket Calculator

Similarly the inverse cosine can be numerically evaluated from the
equation

cos !z=cos™!B— isgn(y)ln[a +(a?- 1)1/2] (3-11)

where a and B are given by equations 3-8 and 3-9 and sgn(y) is given by
equation 3-10. Here, as before, k is assumed to be zero. However, were k
not equal to zero the more general form of equation 3-11is given by

cos 'z=2km + {cos",B—usgn(y)ln[a+(02— l)l/z]}

Finally, the inverse tangent in its most general form is given by
1+ 1-
tan“'z=£[(2k+ l)w—tan“(Ty) —tan“(Ty)]

; 1+y)"+x2
+Lin —-(y)2 X
471 (1-p)+x?

which when k =0 simplifies to the form

(l+y)2+x2

1+ - :
tan~!z=—14 tan"(—y)+tan'1(—y) +<In ——
x N R T

With these relationships it is a simple matter to define the complex
hyperbolic and complex inverse hyperbolic functions in terms of the
trigonometric functions and their inverses:

sinhz= —isiniz
coshz =cosiz

sinh2x + isin2y

tanhz = cosh2x +cos2y

Similarly, the inverse hyperbolic functions are defined as
sinh~!z=—isin"'iz
—1,_ o1
cosh™'z=icos™ 'z

tanh~'z= —itan"liz

Reference 121

Other complex trigonometric relationships useful in evaluation of complex
functions are

cscz=(sinz) "'

secz=(cosz) "

sin2x —isinh2y

cotonz = —————
cosh2y —cos2x

csc”z=sin"!(z7")
sec”'z=cos7!(z7")

1

cotan”'z= = —tan"!(z)

m
2
cschz=icsciz

sechz =seciz

sinh2x — isin2y
cothz= —————
cosh2x —cos2y
csch™!z=icsc™ iz
sech~'z=isec™!z

coth™'z=icot liz

3-9 REFERENCE

For this chapter refer to the Handbook of Mathematical Functions, U.S.

Department of Commerce, National Bureau of Standards, Applied
Mathematics Series 55, 1900.

CHAPTER 4

NUMERICAL EVALUATION
OF ADVANCED FUNCTIONS

4-1 INTRODUCTION

Even the simplest pocket calculator can evaluate advanced mathematical
functions to accuracies required in engineering use and certainly carrying
as many significant digits as do the typical tables in mathematical
handbooks. In part, then, this chapter deals with freeing the analyst from
having to carry or have access to extensive tables to numerically evaluate
the advanced mathematical function. Among the advanced functions con-
sidered in this chapter are the exponential integral, the gamma function,
the error function and Fresnal integrals, Legendre polynomials, Bessel
functions of integer and fractional orders, confluent hypergeometric func-
tions, Chebyshev polynomials, hypergeometric functions. Hermite poly-
nomials, and Laguerre polynomials. Again, we stress not so much the
analysis with these functions and their analytical properties as their
numerical evaluation on the pocket calculator.

There are three methods for numerically evaluating advanced mathema-
tical functions:

1. The function is approximated by a polynomial approximation or
curve fit that permits accurate evaluation of the function directly through
analytic substitution.

2. If the function is one of a sequence of generated polynomials, the
low-order polynomials can be determined for the argument of the function
and the higher-order polynomials then numerically evaluated by means of
the recursion formulas.

3. Successive partial sums of the series that describes the advanced
function are computed.

122

Introduction 123

The first method has the greatest body of mathematical literature. It also is
the simplest to apply in numerically evaluating advanced functions in that
it involves the simple procedure of evaluating a polynomial. The third
alternative is the least attractive, since rapidly converging series are often
difficult to develop over all intervals of interest. An example of this is the
Bessel function where a number of series can be written that converge
quickly in certain intervals, but there is no one series that converges
quickly over the entire range of the independent variable in the Bessel
function. In fact, the Bessel function requires the same consideration in
developing polynomial approximations. To get precision, polynomial
approximation with a reasonable number of terms requires more than one
polynomial approximation to span the interval of the independent variable
from minus infinity to plus infinity.

Finally, the second approach (the use of low-order polynomials to
determine the argument of the advanced function and then employing
recursion formulas to numerically evaluate higher-order polynomials) is
used extensively in the generation of accurate mathematical tables and
thus is handy for pocket calculator analysis, though somewhat tedious at
times.

In this chapter, all three approaches are used, each where appropriate
for evaluating the advanced mathematical functions covered here. Care
has been taken to select, from the number of available numerical methods
for evaluating these functions, those methods that can be implemented
with a minimum amount of work on pocket calculators, and particularly
the four-function variety.

Where tradeoffs are difficult the method that leads to the quickest
evaluation has been selected. A specific example would be the Chebyshev
polynomials which are evaluated here using recursion formulas, rather
than sine and cosine functions, which are available on most scientific
calculators. The reason for this and a similar situation in the half-integer
Bessel functions is that the approach presented here can be numerically
calculated on the four-function calculator which does not have the sine
and cosine functions.

Those who have evaluated certain advanced mathematical functions on
large-scale digital computers should recognize that the methods chosen
here are not necessarily the same as those commonly used on large digital
computers. Partly the numerical methods are chosen for the pocket cal-
culator and partly because the methods are to be instructive to students
and working engineers who may have been away from the application of
these functions. For these cases, familiar numerical methods are often
chosen, though they require slightly more work than the numerical
methods used for large computer numerical evaluation. It is important to

124 Numerical Evaluation of Advanced Functions

remember that in pocket calculator analysis a mathematical function is
usually evaluated only a few times, while on a large digital computing
machine it might be evaluated a great many times. For large machines, the
emphasis is on maximizing the accuracy with the minimum number of
steps involved in the subroutine. In pocket calculator analysis, the empha-
sis is more on understanding the method and providing accuracy consis-
tent with the display in the pocket calculator, on a one-time basis. Thus the
requirements for a numerical method for pocket calculator evaluation are
significantly different than those for large computer evaluations.

4-2 EXPONENTIAL, SINE, AND COSINE INTEGRALS

Four commonly encountered integrals are two forms of the exponential
integrals and the sine and cosine integrals. The exponential integrals that
we discuss here are of the form

© —t
El(z)=f Edr, (largz| <m)

t

4

. ®e~! * et
Ez(x)=—f —dt=j Sar, (x>0)
— 00

More generally we are also interested in the exponential integral

0 e—zt
E()=[<
1

dt, (n=0,1,2,...,Re(z)>0)
and in methods for numerically evaluating both

a,,(z)=fl t"edt, (n=0,1,2,...,Re(z)>0)

+1
/3,,(z)=f_l t"e=dt, (n=0,1,2,...)

Though each of these integrals is defined for complex arguments, our
interest here is primarily with their evaluation for real arguments. How-
ever, it is usually assumed that the path of complex integration does not
include the origin, nor does it cross the negative real axis.

The approach to numerically evaluating the exponential integrals is first
to have a means to numerically evaluate them for n=1, and then use

Expenential, Sine, and Cosine Integrals 125

recursion formulas for numerically evaluating the higher-order exponential
integrals. There are two approaches to evaluating the integrals: the use of
either an infinite series or rational polynomial approximations (see Chapter
8). The series expansions for these functions are

] n
Ei(x)=y+lnx+ > o, (x>0)

n=1

® (1 n
E(z)=—-y-Inz— 2 —(——’—ml!z—, (largz| < =)

n=1
(R S (="
En(z)=ml“lnz+¢(")]“ ZO m=ntDm!’ (largz| <)

m#n—1

n .
_ _ z!
a,(z)=nlz="+Ve ‘(2 7'—)

B,.(Z)=n!z“("“){e‘(2 (_1)’%)_8—2(2 _f_"_)}
i=0 i=0

Here
y()=—v

n—1

Y= —v+ X -~

m=1
and
v=0.5772156649 (Euler’s constant)

These functions can be evaluated more conveniently, using rational

polynomial approximations.
For the dependent variable x on the interval zero to 1, the exponential
integral can be evaluated with the polynomial

E\(x)+Inx=ay+x(a,+ x(ay+ x(ay+ x(a,+ asx)))) + e(x)

126 Numerical Evaluation of Advanced Functions

with an accuracy of two parts in 107, using the coefficients
ay= —0.57721566 a;=0.05519968

a,=0.99999193 a,= —0.00976004
a,= —0.24991055 a;=0.00107857

when x is on the interval
I<x<o0

Over the range where x is greater than or equal to 1 the rational
polynomial approximation

2+a,x+a,

x
xe*E\(x)=

——————+e(x
x2+bx+b, «(x)

using the coefficients

a,=2.334733 b,=3.330657
a,=0.250621 b,=1.681534

can evaluate the auxiliary exponential integral to an error of
le(x)]<5%x1073

For even greater precision, the exponential integral can be evaluated over

the interval x greater than or equal to 10, using the same rational

polynomial but with the coefficients

a,=4.03640 b, =5.03637
a,=1.15198 b,=4.19160

Here the error is given by the relation
le(x)| <1077
For x greater than 1, the rational polynomial approximation

a,+ x(ay+ x(a,+ x(a, + x))) re()

xe*E (x)= b4+x(b3+x(b3+x(bl+x))))

Exponential, Sine, and Cosine Integrals 127

using the coefficients

a,=8.5733287401 b,=9.573322454
a,=18.0590169730 b,=25.6329561486
a,=8.6347608925 b;=121.0996530827
a,=0.2677737343 b,=3.9584969228

can be used to evaluate the exponential integral to an accuracy of
le(x)|<2%x1078

Once the exponential integral is numerically evaluated, the following
recursion formula can be used to compute the higher-order exponential
integrals for the same arguments:

E,,+,(z)=-:'-[e_‘—zE,,(z)], (n=1,2,3,...)

za,(z)=e *+na,_,(z2), (n=1,2,3,...)
B,(2)=(=1e*—e*+nB,_(z), (n=1,2,3,...)

The sine and cosine integrals are defined as

Si(z)=f st g,
0 t

Zcos(r)—1
Ci(z)=0+lnz+f RO, (argzl<m)
()}
Furthermore, we make note of the definition

si(z)=S8i(z)— 127-

Then two auxiliary functions can be developed that have the form
f(z2)=Ci(z)sinz —si(z)cosz

g(2)=—Ci(z)cosz—si(z)sinz

128 Numerical Evaluation of Advanced Functions

Then the sine and cosine integrals can be written in terms of the auxiliary
function as

Si(z)= % —f(z)cosz—g(z)sinz

Ci(z)=f(z)sinz—g(z)cosz

where the auxiliary integrals are defined according to the relations

smt
f(z) f t+z
or
°°e—-zt
= dt
£(2) fo o
and
t
8()= [a
or

g(z)=f°<> te”* dt

o 1*+1

subject to the condition for convergence of these integrals
Re(z)>0

The reason for doing this is that rational approximations to the auxiliary
functions are easily developed with high precision.

For four-place precision, the auxiliary function can be determined using
the rational approximation

a,+ x*(a, + x? 2 2
le(x)]<2x1074 le(x)] <1074
for x greater than 1 using the coefficients
a,=7.241163 a,=17.547478
a,=2.463936 a,=1.564072
b,=9.068580 b,=12.723684

b,=7.157433 b,=15.723606

Exponential, Sine, and Cosine Integrals 129

For precision to five parts in 107, the auxiliary functions can be approxi-
mated with the rational approximations

)= ((14+x2(a3+x2(a2+x2(al +x2))))
by+ x?(by+ x(by+ x}(b, + x?)))

o(x)= a,+ x*(ay+ x*(ay+ x*(a, + x?)))
T (b4+x b3+ x*(by+ x¥ (b, + x?)))

for 1< x. The coefficients for f(x) are given by
= 38.027264 b,= 40.021433
=265.187033 b,=322.624911
a;=335.677320 b;=1570.236280
a,= 38.102495 b,=157.105423

and for equation g(x)
a,= 42242855 b= 48.196927
a,=302.757865 b,= 482.485984
a,=352.018498 b,=1114.978885
a,= 21.821899 b,= 449.690326

The infinite series for numerically evaluating these functions are *

__1) z2n+l
Si(z)= 2 @n+ 1)2n+1)!

n=0
S'(Z)—”E Jn+l/2(%)
n=0

and for the cosine integral

—1)'z*
Ci(z)=y+inz+ 2 (2n(;n)'

*We shall see that fractional Bessel functions can be conveniently evaluated on the scientific
pocket calculator.

130 Numerical Evaluation of Advanced Functions

4-3 NUMERICAL EVALUATION OF THE GAMMA FUNCTION AND ITS
RELATED FUNCTIONS

The gamma function is defined by Euler’s integral

o0
r(z)=f t*~le='dr, (Rez>0)
0
or
o0
I‘(z)=klf t*~le=*ds (Rez>0,Rek >0)
0

Euler’s formula for evaluating the gamma function is of the form

| Z
I(z)=li s : 0,—1,-2...
()= Jim, z2(z+1)(z+2) - (z+n) (27)

He also gave an infinite product expression for evaluating the gamma
function:

e 11 [(H;.)e_z/n]

F(Z) n=1 h
where

- i ryr, 1t .1 =
y—”}l_r)rgo 1+2+3+4+ +m lnm] 0.5772156649

This number is known as Euler’s constant. Only a little analysis is involved
to show that the gamma function is analytic and single valued over the
entire complex plane except at the points z=—n (n=0,1,2,...,) where its
poles occur. The residues of these poles can be evaluated and are found to
be

(-1

n!

The reciprocal of the gamma function has zeros at the points z= —n
(n=0,1,2,...,). The recursion formula for computing the gamma function
is given by the expression

T(z+1)=2zI(z2)
which is related to the factorial of z according to the relation

F(z+1)=2z!

Numerical Evaluation of the Gamma Function 131

It follows that the gamma function propagates from gamma at (1+2z) to
gamma at (n+ z) according to the relation

F(n+z2)=(n—1+2)!'=(n—-1+4+2z)(n—-2+2)--- (1+2)z2!

Another nice property of the gamma function, which is easily evaluated
on the pocket calculator, is Gauss’ multiplication formula

(l__" n—1 k
I(nz)=Q2x)\ 2 /am=-12 11 F(z+ —)
k=0 n

This formula contains the duplication and triplication formulas given as a
part of the gamma function characteristics as special cases of this more
general multiplication formula.

The gamma function, being related to the factorial of a number, is
related to the binomial coefficient according to the relationship

(z) z! I(z+1)
w/ wli(z—=w)! T(w+DI'(z—w+1)

It is apparent that the gamma function’s relationship to the factorial
makes it convenient to evaluating the gamma function on scientific pocket
calculators that have the factorial key.

The gamma function can be evaluated in several ways. One is by a series
expansion for expansion of 1/T according to the relationship

1 0
Wz)-:k%l ckzk, (|z|<oo)

where the coefficients to give an accuracy up to 10 places (the nominal
register size we would expect in current and even some future pocket
calculators) are tabulated in Table 4-1. The advantage to using this type of
series expansion technique is that the interval over which the series
converges is the entire real axis. Polynomial approximations can be used
over more restricted intervals. Two such approximations are

F(x+1)=x!
=1+x(a,+x(a,+ x(a;+ x(a,+ asx)))) + €(x)
F'(x+1)=x!
=1+ x(by+ x(by+ x(by+ x (by+ x(bs+ X (bs+ x(by+ byx)))))))

+e(x)

132 Numerical Evaluation of Advanced Functions

Table 4-1 Coefficients in the Expansions 1/T(z)=3%_c,z*

k Ck k Ck
1 1.0000000000 11 0.00012 80502
2 0.5772156649 12 —0.0000201348
3 —0.6558780715 13 —0.0000012504
4 —0.0420026350 14 0.0000011330
5 0.1665386113 15 —0.0000002056
6 —0.0421977345 16 0.0000000061
7 —0.0096219715 17 0.00000 00050
8 0.0072189432 18 —0.0000000011
9 —0.0011651675 19 0.0000000001

10 —0.0002152416

where the coefficients in the polynomials are

a,=—0.5748646 b = —0.577191652
a,=09512363 b,=0.988205891
a;= —0.6998588 b, = —0.897056937
a,=04245549 b,=0.918206857
as=—0.1010678 by= —0.756704078
be=0.482199394
b,= —0.193527818
by=0.035868343

On both of these polynomial approximations the range of the variable x is
greater than or equal to zero but less than or equal to 1. The former has an
accuracy of five parts in 10° and the latter polynomial approximation is
accurate to three parts in 107. Also, because of Stirling’s formula for
approximating x!, the gamma function can be related to Stirling’s
approximation according to the equation

az+b—-1/2

['(az+b)~V27m e~ *(az) (largz| < m,a > 0)

Again, Stirling’s approximation is easy to evaluate on most scientific
pocket calculators.

The Error Function and Fresnel Integrals 133

4-4 THE ERROR FUNCTION AND FRESNEL INTEGRALS

The error function and its complements are defined as

2 Z _p
effz=—— | e "dt
=
and

o0
erfcz=—2tf e Cdi=1—erfz
\/77 z

The error function can be conveniently computed using the series expan-

sion
[o¢]

2 —-2? 2" 2n+1
fr=—" —_
eriz \/;e ’201.3---(2n+1)z

In fact, it is common in computing the error function on large computers
to compute successive partial sums of the series and terminate the evalua-
tion when two consecutive partial sums are equal. The same approach can
be taken on the pocket calculator, although the calculations are tedious.
Here again we can use rational approximations to the error function such
as

erfz=1-[t(a,+t(ay+ast))]Je % +€(2), (0<2)
where

1

1+pz
and the coefficients are
p=0.47047
a,=0.3480242

a,= —0.0958798
a,=0.7478556

This approximation is good to about 2.5 parts in 1073, Accuracy to
1.5X 1073 error can be achieved with a slightly longer series, with the
addition of two terms as

erfz=1- [t(al +t(ay+ t(as+1(as+ ast))))e_zz] +e€(2)

134 Numerical Evaluation of Advanced Functions

where
_ 1
1+pz
and the coefficients are
p=0.3275911
=(.254829592

a,= —0.284496736
a,=1.421413741
a,= — 1453152027

a;=1.061405429

The Fresnel integrals are defined by the relationships

C(z)=£zcos(%i)dt
S(z)=v/:sin(%t2)dt

The Fresnel integrals can be computed using the series expansion

=)=/ ...\
Clz)= 2 @n)@n+1) -

(=1 (=/2""" .,
S(2)= 2 L 2n+1)\(@n+3)”

Fortunately, these series tend to converge quickly and can be evaluated
effectively on the pocket calculator.

Finally, as might be expected, the Fresnel integrals can be computed in
terms of sines and cosines directly, but modulated by the auxiliary func-

Legendre Functions 135

tions f(z) and g(z):

¢(2)= % +f(z)5i“(%2) —g(z')cos(%z)

SG)=3 ”f(z)ws(%i) —g(z)sin(izz-f)

The auxiliary functions are approximated to low accuracy according to

140.9262
= +

F&)= 702, 130082 T €@

where
le(z)]<2x 1073
and
g(2)= ‘ +e(2)

2441422 +3.49222+ 6.67023

where

le(z)|<2x1073

4-5 LEGENDRE FUNCTIONS

Legendre functions are defined in terms of the hypergeometric functions as

1 [z+1]? 1—2
n = _ el — 4y
PE(2) Ti-p) —z—l] F(vor+1;1 w—)

where F is defined by the relationship

F(a,b;c;z)= i (@), 0), (Z—a)

o (0, \n!

I'(c) i T'(a+n)T'(b+n) (i:)

T T(@T() & T(c+n) n!

136 Numerical Evaluation of Advanced Functions

This Legendre function is one of two that satisfy the differential equation

(1-)———22‘;,—w +

2
v(v+1)— lfzz]w=0

The Legendre function of the second kind is defined by the equation

T(v+p+1)

—(w+p+l) 2__1"'/2
T(»+3/2) (z=1)

ny,(z)=eip.1r2—(v+l)7rl/2

vy b THvdp 3 1
xh(1+5+ 5. 25 0 3 E) >y

where F is again the hypergeometric function. These formidable-looking

expressions are easily evaluated on the pocket calculator using the recur-
rence relationships of varying order and degree:

(v—p+ 1)PE(2)=(2v+1)zPA(2) — (v+) P (2)
P () =(22= 1) (v = w)zPH(z) ~ (v + W) P (2))

PEA(2)= P y(2)+ v+ 1)(22= 1) 7 PEY(2)

The Legendre functions of both the first and second kind satisfy these
same recurrence relations. The starting values for these recurrence rela-
tions are Py(x)=1 and P,(x)=x and

0u(2)=41n(£25.), Qo(x)=$in(122

+x)__1
- X
Here n is nonnegative and an integer.

Another approach to evaluating Legendre functions of integral order is
to use Rodrigues’ formula to generate the Legendre polynomials and then
to write them in nested parenthetical form and evaluate them like any
polynomial. Though plausible, this approach is not developed here because
the numerical evaluation of the Legendre polynomials is quickly done
using the recurrence formulas. For the sake of completeness, however, the

0= Em(ZE) -1 g(x)=%m(}

Bessel Functions 137

other approach can be developed using the relationship

dn(z2-1)"
Pa(2)= 2"ln! (dz" :
and
P (x x
0, (=" m(122) ()
where
Wn—l(x)=2 n l()+ (l) n 3(x)+ (fl:;) n 5(X)+
Wn—l(x)——' 2 %Pm—l(x)Pn-m(x)
m=1
and
w_,(x)=0

The derivative of Legendre polynomials of the first kind can be numeri-
cally evaluated using the recurrence relations

n+1

Py (x)=1 [xP (x)= P, 11(x)]

4-6 BESSEL FUNCTIONS

Bessel functions are solutions to the differential equation

Of the three kinds of Bessel functions, the first is:
& (%)
J+ v(z)=(%) 2 k'I‘—4
oo K'T(r+k+1)
The second is written as

Y,(2)

138 Numerical Evaluation of Advanced Functions
and the third as

H(l), H(Z)(Z)

Bessel functions of the first type can also be expressed as hypergeometric
functions and as an integral:

z/2) 2
J(2)= I“((T/-l—)l—)—OF'(v+ 1; — %)

J(2)= (%z)v[7,1/21‘(1; + %)

Here (F, is the generalized hypergeometric function. Bessel’s functions
of the second and third types are written in terms of Bessel function of the
first type to simplify their numerical evaluation according to the re-
lationships

-1

f Wcos(z cosf)sin? 8df
0

_ J (z)cos(vm)—=J_(2)

sin(»m)

Y, (2)

H,"(z)=J,(2) +iY,(2)
HP(2)=J,(2) = iY,(2)

The numerical evaluation of these Bessel functions is somewhat involved if
done analytically. All can be computed, however, using the recurrence
relation

2y
Jv+1= TJV_—J;'—!

where the numerical values for the Bessel functions that go into this
recurrence formula are given by polynomial approximations. Unfor-
tunately, the startup behavior of the Bessel function for x from —3 to +3
is significantly different from the Bessel function evaluated for x greater
than 3. Two levels of polynomial approximation are therefore involved.

The polynomial approximations for the Bessel functions of the first and
second kinds that can be used in combination with recurrence formulas for
v equal to zero and 1 are shown in Tables 4-2 and 4-3.

Bessel Functions 139

Table 4-2 Polynomial Approximation of Jy(x)

®On the interval —3< x< +3

2 4 6

Jo(x)=1—2.2499997(§) +1.2656208 %) —0.3163866(§)

—_

8 10 12

+0.0444479()—0.0039444(§) +o.0002100(§) +e

W[%

Here |e|] <5%x 1078

@®O0n the interval 3< x

Jo(x) =x" 1/70(:0500
where

fo=0.79788456 — 0.00000077(3 / x) — 0.00552740(3 / x)* — 0.00009512(3 / x)’
+0.00137237(3/ x)* - 0.00072805(3 / x)° +0.00014476(3 / x)* + €

Here |¢| <1.6x 1078

and

8= x —0.78539816 — 0.04166397(3 / x) — 0.00003954(3 / x)° +0.00262573(3 / x)*

—0.00054125(3/ x)* —0.00029333(3 / x)° +0.00013558(3 /)" + €

Here |¢| <7Xx 1078

Spherical Bessel functions, often called Bessel functions of fractional
order, satisfy the modified Bessel differential equation

2w" +2zw' +[22=n(n+1)jw=0, (n=0,x1,%2,--+)

Spherical Bessel functions of the first kind are of the form

W@D=VF I o(2)

140 Numerical Evaluation of Advanced Functions

Table 4-3 Polynomial Approximation of J,(x)

®In the interval —3< x< +3
x ™13, (x) =1 —0.56249985(x /3)" +0.21093573(x /3)* — 0.03954289(x /3)°
+0.00443319(x /3)° —0.00031761(x /3)'°+0.00001109(x /3)"* + €
Here |e| < 1.3%x 1078

®In the interval 3 < x

J,(x)=x"?,cosb,
where

f£,=0.79788456 +0.00000156(3/ x) +0.01659667(3 / x)* +0.00017105(3/ x)’

—0.00249511(3/x)* +0.00113653(3 / x)° — 0.00020033(3/x)° + €
Here |e| <4x 1078

and

8, = x —2.35619449 +0.12499612(3 / x) + 0.00005650(3 / x)’ — 0.00637879(3 / x)’

+0.00074348(3/ x)* +0.00079824(3 / x)° — 0.00029166(3/ x)° + €

Here |¢| <9x 1078

and those of the second kind take the form

ya(2)= V% Yn+l/2(z)

The spherical Bessel functions of the third kind are given by

h(2)=j,(2)+iy,(2)= \/ H“+|/2(z)
h2(2)=J,(2) =iy, (2)= \/ HY.,/5(2)

Bessel Functions 141

They can be numerically evaluated using the series

. 2" 22/2 (32/2)
j”(Z)= 1-— + —_— e
1.3.5--- (2n+1) 1'!2n+3) 2!2n+3)(2n+5)
135---(2n—1) 32/2 (32/2)°
,V,.(Z)=“,,—+, 1- + -
z 1'(1-2n) 2Y(1-2n)(3—2n)
where n=0,1,2, - - - .Or they can be written out and numerically evaluated

from the expansion of the spherical Bessel functions, using Rayleigh’s
generating formulas

A simplification for numerically evaluating spherical Bessel functions of
high order is to evaluate them at low order, say zero and 1, and compute
the high-order spherical Bessel functions for the same argument, using the
recurrence relations

2n+1)
In " JIn-1

Ine1= z

This recursion formula applies to all four spherical Bessel functions.
An even simpler approach for calculators with sine and cosine functions
using recurrence formulas is to evaluate j, (z) as

n+1

Jn(2)=f(2)sinz+(=1)"" f_(41)(2)cosz

where f, is generated with

2n+1
@n)fn—j;x—l

fn+l=

using the starting values

z

fo=z""' and fi=z72

142 Numerical Evaluation of Advanced Functions

4-7 THE CONFLUENT HYPERGEOMETRIC FUNCTION

The confluent hypergeometric function, usually written in the form

(a)22* (a)2"
M(a,b, =]+£+ + .0+
(@.5.2) b " (b),2! (b) !
where
(6),=b(b+1)(b+2)(b+3)---(b+n—1)
(a),=a(a+1)(a+2)(a+3)---(a+n—1)
and
(a)o=1=(b)o
is the solution to Kummers’ differential equation
dw aw _
Zdz—2+(b—2)-d'7 aw=0

The confluent hypergeometric function is evaluated on the pocket calcula-
tor directly as written by computing successive partial sums of this series.
Similarly, the hypergeometric functions defined by the relation

F(a,b;c;z)= i (a)"(b)"(;_’!')

n=0 (c)n

must be evaluated directly by computing successive partial sums of the
series. In general, when the terms in the series do not change, enough terms
have been taken for the numerical evaluation to be complete. It is apparent
that the series is not defined if c= —m(m=0,1,2, - --), except when

b=—-n(n=0,1,2,---)

where n must be less than m. It is worth mentioning here that the
hypergeometric function can be used to initialize certain recursion formu-
las for other advanced functions in that the hypergeometric function is
related to many of the orthogonal polynomials.

4-8 CHEBYSHEY, HERMITE, AND LAGUERRE POLYNOMIALS

Chebyshev polynomials can be easily evaluated numerically using the
recurrence equations

Tn+l(x)=2XTn(x)_ T,,_](X), ('— 1<x< 1)

where the starting values for the Chebyshev polynomials are To(x)=1 and
T\(x)=x.

Reference 143

Hermite polynomials and Laguerre polynomials can also be evaluated
using recurrence equations and initial values of the polynomials. For
example, the Hermite polynomial can be numerically evaluated using the
recurrence formula

Hn+l(x) =2XH"(X) _2an— l(x)

where the starting values are computed from the first two Hermite
polynomials Hy=1 and H,=2x. Again, n is a nonnegative integer.

The numerical evaluation of the Laguerre polynomial is found using the
recurrence equation

[2n+1-x)L,(x)—nL,_,(x)]
n+1

Ln+ l(x) =

Here the starting Laguerre polynomials are Ly=1 and L,=1-—x. As
before, n is a nonnegative integer.

It is worth repeating that to numerically evaluate advanced mathemati-
cal functions one of three approaches is usually employed:

1. The function is approximated by a polynomial approximation or
curve fits that permit accurate evaluation of the function directly through
analytic substitution.

2. If the function is one of a sequence of generated polynomials, the
low-order polynomials can be determined for the argument of the function,
and then recursion formulas used to numerically evaluate the higher-order
polynomials.

3. The third alternative is simply to compute successive partial sums of
the series that describes the advanced function.

Of the three, (1) is the most straightforward approach to evaluating the
advanced functions. The least attractive approach is that presented in
(3)—direct evaluation of the series approximation to the function. And,
finally, a reasonable tradeoff between analytic substitution as described in
(1) and direct series evaluation presented in (3) is the use of recurrence
formulas to numerically evaluate high-order functions where the function
is one of a set of sequences of functions developed with a generating
formula.

4-9 REFERENCE

For this chapter consult the Handbook of Mathematical Functions, U.S.
Department of Commerce, National Bureau of Standards, Applied
Mathematics Series 55, 1900.

PART THREE

ADVANCED ANALYSIS
ON THE POCKET CALCULATOR

CHAPTER 5

FOURIER ANALYSIS

5-1 INTRODUCTION

We now turn to the Fourier analysis of discrete and continuous functions.
Unlike in Chapter 4, where we talked about the numerical evaluation of
advanced mathematical functions rather than their interpretation, here we
also try to understand the results that can be obtained from pocket
calculator evaluation of the discrete Fourier transform. Such issues as the
relationships between the discrete spectrum of discrete functions and the
discrete spectrum of continuous functions are discussed. The aliasing
concept is examined to aid those not familiar with it in understanding the
spectrum of sampled-data functions. In a very real sense, the pocket
calculator can be a valuable teaching aid in frequency-domain analysis in
that it permits the quick evaluation of the spectra associated with discrete
functions which (when sampled at sufficiently high frequency) approxi-
mate continuous functions. For this reason, and to permit a quick
evaluation of spectra in practical analysis, the formulas for 12-point
discrete Fourier spectra are given and the procedures for their quick
evaluation on the pocket calculator are presented. Those using a simple
four-function calculator will find the 12-point formula of particular inter-
est, since no evaluation of sines or cosines is required for a determination
of the discrete spectrum of a sequence of sampled values.

Finally, we discuss function reconstruction, using pocket calculators
with scientific keyboards, and procedures for Fourier series evaluation.

5-2 THE FOURIER SERIES OF CONTINUOUS FUNCTIONS

The Fourier series of a continuous periodic function whose period is L is

147

148 Fourier Analysis

given by
a 2mx 47x 67x
F(x)=—2—0+ alcos(z)+a2cos(z)+a3cos(—Z—)+~--
27x 4mx 67x
bsm(I)+b2 n(3)+b sm(3)+ (5-1)
where the coefficients a, and b, are given by
2 (* 2k
ak=zf F(x)cos(”)dx (k=0,1,2,---) (5-2)
0
2 (* 2k
bk=zf F(x)sin(L”")dx, (k=1,2,---) (5-3)
0

This series has an infinite number of terms. There are an infinite number
of coefficients defined by equations 5-2 and 5-3. Physically, the funda-
mental and an infinity of its harmonics can determine an infinite sequence
of coefficients for the sines and cosines in the series expansion of equation
5-1.

There are problems with the convergence of Fourier series, which are
usually associated with special functions not frequently encountered in
engineering analysis. Since the sines and cosines that make up the Fourier
series are orthogonal functions, the coefficients of its components can be
written in polar form. In this case the modulus of the radius vector can be
plotted as a function of frequency, as well as the phase angle of the
resultant. These form the amplitude and phase shift curves used by control
systems analysts to examine the stability of feedback control processes.

Finally, the power spectrum of a function approximated with a Fourier
series can be prepared by plotting the square of the modulus of the Fourier
coefficients in polar form. Since this is equivalent to summing the squares
of the coefficients for the sine and cosine functions at the same frequency,
it is apparent that the phase information is lost when the power spectrum is
presented.

Inspection of the Fourier series reveals that if the function F(x) is
moved vertically along the ordinate, only the value of g, is changed. This
can readily be seen by noting in equation 5-2 that when k=0 the
coefficient becomes the average value of F(x) on the interval zero to L.
Note that if we were to set F (x)= F(x)+ a,/2 in equation 5-1, the Fourier
series of F,(x) would have no average component (DC component). It is

The Fourier Series of Discrete Functions 149

also apparent that if F(x) is translated horizontally along the abscissa, the
distribution of weight among the coefficients in the Fourier series changes.
In particular, for any given frequency component, the distribution among
the sine and cosine terms is different. However, the sum of their squares
remains invariant. From this we see that the power spectrum of a Fourier
series is invariant with respect to translation of the function f(x) along the
abscissa (assuming that f(x) is periodic).

What should be kept in mind about the Fourier series approximation of
a function is that the function being approximated with the Fourier series
is assumed to be periodic. Though it can have discontinuities over the
period, the function must be periodic. For the student, what might seem
counterintuitive at first is that this function defined over a finite interval in
the domain of the real numbers has an infinite number of lines in its
discrete spectrum defined over the infinite domain of the discrete frequen-
cies. The reason for this lies in the nature of the Fourier series. The
fundamental frequency component for the finite length record is set by the
length of the record itself. Then the harmonics that make up the rest of the
series are determined by pairs of sines and cosines that fit with multiple
oscillations over the period of the periodic function, and there are an
infinity of these sines and cosines.

5-3 THE FOURIER SERIES OF DISCRETE FUNCTIONS

Now let us consider a discrete function defined by a set of equally spaced
discrete values of the function Y defined at equally spaced values of the
domain of the independent variable. Following Hamming, we consider
only an even number of points, 2N. In what follows, the 2N sample points
are

L 2L 3L eN-1)L
03N IN'IN" T AN (5-4)

which can be written as

_nL - _
X= 2 (n=0,1,...2N—1) (5-5)

The Fourier series expansion of an arbitrary function F(x) defined on the
set of points x, can be written as

A
F(x)= 70 2 [Akcos(2km x)+ Bksin(ZIzrrx)] + TNcos(-——2}\1/;”)‘)

(5-6)

150 Fourier Analysis

where
2N—1
1 2knx,
= — = cee '7
A, N ,,go F(x,,)cos(I), (k=0,1,...,N) (5-7)

1 K[! [2kmx,
Bk=1—V-ZF(x")sm(T) (k=0,1,...N—1) (5-8)
n=0

An interesting aspect of Fourier series is that the sine and cosine
functions are not only defined and orthogonal over a continuous interval
of the dependent variable but are also orthogonal on any set of equally
spaced discrete points on the same interval. This is important for the
numerical evaluation of the frequency components of the discrete func-
tions in that we are usually only given samples of the function on the set of
equally spaced points. One might expect that the coefficients for the
continuous Fourier series could then be approximated using numerical
integration. Although this, in fact, can be done, equations 5-7 and 5-8 show
that the coefficients for the Fourier spectrum of a discrete function can be
computed exactly without involving numerical integration approximation.

It is apparent from equations 5-7 and 5-8 that this expansion will have
only 2N terms, rather than an infinity of terms, as is characteristic of the
Fourier series approximation of continuous functions. Also, the frequency
spectrum for the discrete Fourier transform will have only half as many
lines as sampled values. Thus, if there are 10 sampled values, the power
spectrum will have only five discrete lines. Clearly, a question that needs to
be answered is, ‘what happened to the rest of the infinity of components of
the spectrum of the continuous function F(x)? Another relevant and
equally important question is, how can the discrete spectrum be con-
structed if we know the continuous spectrum and the number of sampled
values? Conversely, given the discrete spectrum of the discrete function
f(nAx), what can we tell about the discrete spectrum of the continuous
function f(x)?

5-4 THE RELATIONS BETWEEN THE FOURIER SERIES EXPANSION OF

DISCRETE AND CONTINUOUS FUNCTIONS

Only a little analysis will show that the spectral components of a discrete
function are related to the spectral components of its continuous function

The Relations Between the Discrete and Continuous Functions 151

counterpart according to the relationship

00

Ay=a+ EI (3 nm -k + Fonm+ k) (5-9)
o0

By=b + Zl (b2Nm+k—b2Nm—k) (5-10)

The constant term A, is given by

00
Ag=ay+2 > anm (5-11)

m=1

Let us examine equation 5-9. The first six terms of an even function
discrete spectrum (say, for 2N =10 seconds) when written out take the
following form:

Spectrum Discrete Function Spectrum from Continuous Function
Component Spectrum
2a,_0= Ag=ay+2(ag+aytayytant---)
®Xym1H = Ay=a,+(ag+ay)) +(ay+ay)+(ay+ay)+ -
A2 ™ Ay=ay+(ag+ay)+(ag+ay)+(ayg+az)+---
Xym3He ™ Ay=ay+(a;+a;3)+(ay+ay)+(ap+ay)+- -
X ymaHz ™= Ag=a,+(ag+ay,) +(a6+ ay) +(ay+a)+- -
20t m 54, = As=as+(as+a,5)+(a;s+ay) +(ay+azs)+ -

Note: B, =0= b, for even functions.

The factors of 2 at end points of the spectrum are due to the form of
equation 5-6. Each of the discrete system coefficients when written out
includes the effect of an infinite number of terms associated with the
continuous spectrum. This somewhat stunning finding shows that any
sizable power in the high-frequency components of the continuous-
function spectrum will have the effect of those components appearing at

152 Fourier Analysis

low frequencies in the discrete-function spectrum. In the example chosen
where the 2N is equal to 10 seconds, the lowest-frequency component in
the discrete spectrum (besides the zero-frequency component) includes the
amplitude of the 9 and 11 Hz frequency component in the Fourier series
expansion of F(x), as well as the 19th and 21st, the 29th and 31st, 39th and
41st, 49th and 51st, and so on.

Another physical way to think of this is that, had we been sampling an
11 Hz sine wave at 10 samples per second, the discrete function would
have had spectral components at 1 Hz whose amplitude would be the same
as that of the 11 Hz sine wave in the continuous spectrum. In general the
frequencies present in the original continuous function F(x) are summed
together as a result of the sampling operation. In other words, the mere
operation of sampling a continuous function (i.e., a discrete function
defined only at integer multiples of the sampling period) results in the
folding of the frequency spectrum around the information frequency
(sampling frequency w, divided by 2), resulting in the folding of the
high-frequency components of the continuous-function spectrum into the
low-frequency components of the discrete-function spectrum. This effect is
called “aliasing” (i.e., 1 Hz is the alias of 9 Hz when sampled at 10 Hz).
Note that once the sampling process has taken place, its effect on the
continuous-function spectrum cannot be undone. In our example, only
when a,=0 for k>5 will 4,=a,. If a,#0 for k>5, a, cannot be
determined by examining A,! Finally, note that the highest-frequency
component is w, /2.

These formulas provide the means for computing the discrete-function
spectrum directly from the continuous-function spectrum if it is known.
The CRC Standard Mathematical Tables has a sizable table of Fourier
series representations of commonly encountered functions and can be used
to compute the discrete-function spectrum according to equations 5-9,
5-10, and 5-11 using a pocket calculator.

5-5 THE NUMERICAL EVALUATION OF THE FOURIER COEFFICIENTS

The coefficients of the discrete-function Fourier series expansion, pre-
viously given by equations 5-7 and 5-8, are copied here for convenience.

G 2kmx,
Ak=ﬁ 2 F(x,)cos) (k=0,1,...,N) (-7
n=0
2N—1

] . 2k7rx"
Bk=ﬁ2F(x,,)sln(L) (k=0,1,...N=1) (5-8)
n=0

The Numerical Evaluation of the Fourier Coefficients 153

These coefficients may be numerically evaluated, using recursion formulas.
The procedure is as follows:

Step 1 Prepare a table of values U,, using the recursion relations
U,= (2008‘”—]\1,()1/,"_1 —U,_,+FQ2N—-m) for m=2,3,4,....2N—1

(5-12)
where U,=0 and U,=F(Q2N-1)

Step 2 Evaluate the coefficients of the cosine terms in the series, using the
equation

1 k
Ak=N{(cos%)U2N_l-UZN_2+F(O)} (5-13)

Step 3 Compute the coefficients for the sine terms in the series expan-
sion, using the recursion formula

1(. 7k
B, = N(smWT)UZN_l (5-14)

While evaluation according to these formulas takes longer than does the
Cooley-Tukey fast Fourier transform algorithm, for the low-order Fourier
series analysis that can be conveniently done on the pocket calculator this
recursion formula method involves only slightly fewer operations than the
Cooley-Tukey algorithm. Moreover, the use of recursion formulas in the
numerical evaluation of functions is efficiently done on the pocket cal-
culator.

Hamming presents a convenient 12-point formula for Fourier analysis in
his book Numerical Methods for Scientists and Engineers. First, the table of
discrete values of the function F is written in an array (A41):

FO) F() FQ) F@3) F@#) F(() F(6) } Al
F(11) F(10) F(9) F(8) F(7)

From this array we can compute a sequence of S’s and 7’s by adding and
subtracting, respectively, the two lines in the array 41 to form an array
(A2) of S’s and T’s:

Sums— S(0) S(I) SQ2) SB) S@) S(G) S(6) } »
Differences— T(1) TQ2) T@B) TMA T(5

154 Fourier Analysis

Then, rewriting array (A42) as

S@ s s@ s@) 1) TQ) T(s)}A3
S©6) SG5) S@ T(5) T()

we form array (44) of U’s, V’s, P’s, and Q’s by adding and subtracting,
respectively, the second line from the first line in array A3:

Sums— U(0) U(1) UQR) U@B) P(1) PQ) P(3)] 4
Differences— V(0) V(1) V(2) o 0(Q)

The coefficients associated with the six discrete frequencies that make
up the Fourier series representation of the 12-point discrete function can
now be developed. First compute

a = V(O)+K—§—22 ,B,=P—glz+P(3)

©=UO)+UG) fy=P()-P()
a=UM+UR) B=Y2(00)+00)

a=v) =Y (00)-0w)

a=U0)-UG) =P

ag=U(1)-U(2)
a;=V(0)—-V(2)
Then
Ag=§(a,+ a3)
Ay =g(a;+ay) B =%(B,+Bs)

Reference 155

These coefficients are associated with the Fourier series

n—1
A A
F(x)= =5+ > (Ak cos —2"2"‘ + By sin 2’2“) + 5" cos Z’Tzvx
k=1

5-6 SUMMARY

A number of important observations have been made on the Fourier
expansion of discrete functions. Take, for example, the 12-point Fourier
coefficient formulas. The 12 values of the discrete function result in a
discrete spectrum with only six frequency components. In general, 2N
values of a discrete function will result in a spectrum with only N spectral
components. This generally holds true, reflecting the rule of thumb that
data must be sampled at at least twice the highest frequency of interest for
the coefficients of the spectral components to be determined at the
frequency of interest.

The second observation deals with the physical characteristics of
sampled data. Note that once a function is sampled the spectrum of the
sequence of sampled functions has no frequency components greater than
half the sampling frequency. What, then, happens to the high frequency
components of a sampled continuous function? They are folded down into
the low-frequency components of the discrete spectrum. They are summed
with the low-frequency components. In this sense the high-frequency
components are not actually rejected by the sampling process, but they are
folded into the low-frequency components of the discrete function
spectrum, resulting in distortion of the low-frequency components that
made up the original continuous-function frequency spectrum. Thus,
although the sampling operation does not result in high-frequency com-
ponents in the sampled-functions spectrum, the true continuous-function
spectrum can be much distorted by the sampling process in the low
frequencies.

5-7 REFERENCE

For this chapter refer to Richard Hamming’s Numerical Methods for
Scientists and Engineers (McGraw-Hill, New York, 1973), Chapter 1 and
Chapters 31 through 34.

Example 5-1 Compute the coefficients in the Fourier series expansions of
a continuous periodic triangular wave function. Then use these coefficients
to compute the discrete function spectrum by way of equations 5-9 through
5-11.

156 Fourier Analysis

The continuous periodic triangular wave form is shown in Figure 5-1. It
is apparent that

f()=—f(-1)

and

A= 3)=-10

The first equation shows that f(¢) is an odd function and thus only the sine
components are involved in the Fourier series approximation of f(#). The
second equation shows that only the odd harmonics are involved in the
series. Furthermore, when two symmetry conditions exist, it is necessary to
integrate only over one-quarter of the period of the function to determine
the Fourier coefficients (an interesting property for the reader to dem-
onstrate to himself). It follows, that

g T/4 5
b,= = f(t)sinn(—”)tdt, (n,0dd)
T 0 T
Since
4At T
= <1 <=
f(1) 7 O<u .
T/4
_8 aay | (27
b”_Tf (T)tsm{n(T)t} dt
0
_ 84 nm
b,) sm(5) (n,0dd)

Figure 5-1 Continuous periodic triangular waveform.

Reference 157

Thus
%, n=1,59, --
b,=
L n=3n

The first 15 continuous function spectrum components are tabulated
below.

84 -84
b="n be=0 b=
—84
b,=0 b,= T b,=0
—84 84
b,= by=0 b=
3 9q2 8 B 16972
84
b,=0 97 §lm? 14=0
84 —84
bi=—2— b,=0 b=
5 2502 10 5 22542

The discrete spectrum components are developed by using equation 5-10
for the case 2N =10:

B, =b,+ (b, = bg) +(by— byg) + (b3 —byg) + - - -
By=b,+ (b= bg) +(byy— byg) +(byy = bag) + -+~
By=b3+(by3—b7) +(by3 = by7) + (b33 = byy) + - -
By=by+(by—bg) +(brg— big) +(byy—bae) + -+~

From the table of continuous function spectrum components we see that

84f(, 1) (1 84
B,= -2 (l]21) (81)] 09793900('”2)

B,=34[(0+0)-0]=0

84 (_ 1, 1\ _(=Z1\|__ 84
33—772{(9+l69) (9)]— 0.0847859(W2)

> [(0+0)—(0)]=0

158 Fourier Analysis

The following table shows the discrete function spectrum elements and the
continuous function spectrum elements side by side for easy comparison.
The difference is the result of the aliasing phenomenon.

Continuous Function Discrete Function
Spectrum Elements Spectrum Elements
b= 1.0(8—’;’) B, =0.9793900(8—"2‘)

T 7r
b,=0 B,=0
b3=—0.lllllll(§—’:—) B,=—0.08478659(8—’2‘)

™ ™

b,=0 B,=0

Example 5-2 Compute the Fourier coefficients for the Fourier series
approximation of the discrete function

y,=sin(nwT)

where w=1 Hz. This 12-point discrete function is tabulated below.

nT nwT
n (seconds) (degrees) Sin(nwT)= F(n)
0 0 0 0.00
1 0.1 36 0.59
2 0.2 72 0.95
3 0.3 108 0.95
4 0.4 144 0.59
5 0.5 180 0.00
6 0.6 216 -0.59
7 0.7 252 —0.95
8 0.8 288 —-0.95
9 0.9 324 -0.59
10 1.0 360 0.00
11 1.1 396 +0.59

A closer examination of the table reveals that the sine function is
tabulated over the interval to 1.2 seconds, while the function is periodic on
the interval 1 second. Clearly, the coefficients that we generate using the

Reference 159

12-point formulas apply to Fourier series approximations of the tabulated
functions exactly as shown (with a period of 1.2 seconds, not 1 second),
and not the coefficients for the Fourier series approximation of a pure 1
Hz sine wave. The purpose for selecting this unusual problem is that it
illustrates not only the use of the 12-point formula, but also the effect of
one of the practical problems associated with sampling periodic functions.
The reality of sampling functions from experiments is that the functions
are often not exactly periodic or, if they are, the period is not known
precisely and some approximation of the period must be made. This
example might be considered the result of an experiment where an estimate
of the period of the function being sampled is made to be 1.2 seconds,
where in reality the periodic function repeats on the interval 1 second.
Following the 12-point Fourier analysis procedure, the discrete function
12-point Fourier coefficients are generated from the arrays as tabulated in
Table 5-1. The array numbers in the table correspond to the array numbers
in the text and are shown here for the sake of convenience. The numerical
evaluation of the 12-point Fourier series coefficients are summarized in

Table 5-1 Discrete Function 12-point Fourier Series Coefficient Generation Arrays

F0)-»F@6) 0.00 0.59 0.95 0.95 0.59 0.00 —-0.59
(41)
F(12) F(7) 0.59 0.00 —-059 -095 -0.95
Add 0.00 1.18 0.95 0.36 -036 —-095 -0.59
(42)
Subtract 0.00 0.95 1.54 1.54 0.95
SO S S@ SB) S@ SG S6©
(42)
Hy TR TG TA@ TS
S0)—»S@3) 0.00 1.18 0.95 0.36 0.00 0.95 1.54 T(1)-»TQ)
(43)
S(6)—S4) —0.59 —-095 -—0.36 0.95 1.54 T(S) T(4)
Add -0.59 0.23 0.59 0.36 0.95 2.49 1.54
(44
Subtract 0.59 2.13 1.31 —-095 -0.59
wo uva U@ ud pP1H PO PO
(49)

o v v on 2@

160 Fourier Analysis

Table 5-2. The A-coefficients are associated with the cosine components
and the B-coefficients are associated with the sine components. Also, the
table shows a check of the initial conditions. At =0, the discrete function
starts at 0. Therefore, the sum of the cosine amplitude coefficients should
equal 0, as they do.

Though we could discuss the tail effects by examining the individual
elements of the series expansion, it is more convenient to use the power
spectrum or amplitude spectrum as a means of discussing this
phenomenon. The 12-point spectrum calculations are tabulated in Table
5-3. First note that the DC component of the spectrum is given by P,. This
indicates that the average effect of the “tail” of our irregular periodic
coefficient is to bias the otherwise 0-DC coefficient to the level 0.049.
Second, the lowest-frequency component (the fundamental frequency
equal to 1/1.2 equal to 0.83333...) contains the greatest amount of power
of all of the harmonics. Clearly, this is so because it is the closest frequency
to the 1 Hz periodic function that we have sampled. The power in the
next-highest harmonic is approximately one-tenth that of the fundamental.

Table 5-2 12-Point Fourier Series Coefficient Calculations

24,= é (—0.59+0.36 +0.23 + 0.59) = 0.098

1 Note that
A= -(0.59+0.655+0.866 % 2.13) =0.5149
? atr=0,

. Ay= 5 (~0.59-0.36—.18)= —0.188 SAi=0
Cosine 1 7
components A3=¢(=.72)=-0.12 as it should

Ay= %(0.59+0.36— 41)= —0.107
As= %(0.59 +.655—0.866 % 2.13) = —0.0999
246 = %(—0.59—0.36—0.23 +0.59) = —0.098
B, = %(0.475 +1.54+0.866 X 2.489) = 0.695
. B,= 2856 (_0.95-0.59)= —0.2223
Sine 1 6
components B;= g (0.95—1.54)=0.098

B,= 9-_86152 (—0.95+0.59)= —0.05196

Bs= %(0.475 +1.54—-0.866 %2.49) = —0.0436

Reference 161

Table 5-3 12-Point Spectrum Calculations

Power Spectrum Amplitude

w Hz (rounded) Spectrum
0 Po=A2/4 =000 VP, =0.049
0.833 P,=A2+ B2 =0.75 VP _036s
1.666 P,=A2+ B} =008 VP, =0291
2.499 Py=A2+ B2 =002 VP, =0.155
3.333 P,=A2+ B2 =00l VP, =0119
4.166 Ps= A2+ B2 =0.01 VPs =0.109
5.499 Pg=A2/4 =0.00 VPs =0.049

Had we taken the 12 sample points equally distributed over the periodic
sine wave function, we would have found a single harmonic component at
1 Hz and the rest of the components would have been zero or very small,
depending only on truncation error as related to the number of terms
carried in the pocket calculator analysis. Here we see the effect of the
“tail” is to affect the DC level and spread the power in the 1 Hz sine
function over higher-frequency harmonics. The reason for this is that the
high-frequency components are required to take care of the discontinuous
end effects associated with the “tail” in our sampled periodic discrete
function. Specifically, this “tail” is associated with the jump discontinuity
in going from +0.59 at n=11 to 0 at n=12 for the example function that
we have chosen to analyze. Hopefully this example will interest the
students who read this book in further readings in practical Fourier
analysis, on which there is an extensive literature.

CHAPTER 6

NUMERICAL INTEGRATION

6-1 INTRODUCTION

There are basically two types of integral with which we are concerned in
this chapter: the definite integral and the indefinite integral. The definite
integral is given by the formula

b
.Mw=ywrﬂ£ﬂﬂdx (6-1)

and the indefinite integral is defined by
y()=y(@)+ [f(s)di (62)

The definite integral is characterized by computing the area under the
curve of a bounded function; the indefinite integral can be thought of as
computing the antiderivative of the integrand and thus generating the
sequence of values of a function. We study definite integrals from the
standpoint of quadrature—that is, for computing the area under a curve.
We study indefinite integrals from the standpoint of integrating differential
equations. Our first concern here is the definite integral.

6-2 DEFINITE INTEGRATION

Computing the area under an arbitrary curve is usually based on the
concept of analytic substitution. The idea is to use a known function
whose definite integral is easily evaluated to substitute for the arbitrary
function to be integrated. The integration is actually performed on the
substitute function and attributed to the integral of the arbitrary function

162

Definite Integration 163

to the degree to which it approximates the latter. In classical mathematics
the substitute functions to be integrated are usually polynomials. The
polynomial is then analytically integrated and, insofar as the polynomial
approximates the continuous function, the integral is attributed to the
integral of the arbitrary function. When the integrand is a polynomial of
degree n and the approximating function is also a polynomial of degree n,
the formula can be made exact by appropriately selecting the coefficients
in the integration formula.

The process of analytic substitution or of other means of approximating
definite and indefinite integrals is so fascinating that virtually every
numerical analyst finds new ways to rederive many of the classical formu-
las and a few others as well. Though one is tempted to present the most
sophisticated integration methods, the focus here remains on classical
developments, which are straightforward and easy to apply on the pocket
calculator. The reader should be aware, however, of the tremendous
quantity of good mathematics in numerical integration developed in the
last 20 years. This is due to numerical calculations being done on the
digital computer and to the use of numerical analysis in sophisticated
technology problems in varied areas. Structures, communications systems,
control systems, design of aircraft, and the design of chemical plants are
areas where the simulation of systems with widely separated eigenvalues
and the numerical integration of functions that are almost neutrally stable
(at large integration step size), have produced new integration concepts
based on the technology to which they were being applied. Structural
dynamicists have developed special numerical integration formulas for
integrating their “stiff differential equations.” Controls analysts have pro-
duced such formulas based solely on frequency-domain considerations.
And special single-step real-time numerical integration formulas have
been developed by simulation scientists.

These problems can be encountered on the pocket calculator, especially
the programmable pocket calculator. Here, however, we focus on the more
classical formulas, which have fairly general and broad applications to the
more analytically tractable functions. Furthermore, there is a vast body of
literature on these classical methods for further reference, should it be
required.

Trapezoidal Integration

If we approximate the function f(x) on a bounded intervala< X < b by a
line through the end points, we can write the equation for the approximat-

164 Numerical Integration

ing function over the interval as

b)—f(a
y(x)=fia)+ [LO=)](x—a)
(6-3)
_ (b-x)f(a)+(x—a)(b)
y(X) - b—a
Integrating equation 6-3, we find
fby(x)dx=(f(b)—;f@)(b—a) (6-4)

Equation 6-4 computes the area under the straight-line interpolation be-
tween the two end points. This is called trapezoidal integration because
this area is enclosed by a trapezoid formed by lines connecting the end
points, the abscissa, and the vertical lines connecting the end points to the
abscissa. If the interval is large, the trapezoidal approximation can lead to
large numerical integration error. This is resolved by a repeated applica-
tion of the trapezoidal rule on smaller intervals of the dependent variable.
When this is done for equally spaced intervals, Ax, trapezoidal integration
takes the form

fbf(x)dx=Ax(f—(2a—) +f(a+Ax)+fla+20x)+ - +f(Tb)) (6-5)

Trapezoidal integration, though not the simplest one to derive or com-
pute (Euler, modified Euler, or rectangular integration are simpler con-
cepts) and its error formula does not give the least error for the fewest
computations, is straightforward to apply on the pocket calculator and is
easily remembered. As we move to integration formulas involving mid-
values and their derivatives, estimates of a roundoff and truncation error,
and adjustments of phase shift and amplitude, we retreat further from
simple visualizations of the integration process and must increasingly rely
on the rationale for their development to be assured of their applicability
to a problem. Ultimately, analytical integration is compared with the
approximate numerical integration to evaluate the difference between
several methods of integration for a particular problem. Clearly, this is an
overkill for back-of-the-envelope engineering analysis or analysis on the
pocket calculator intended simply to compute the area under the curve of a
given function. If trapezoidal integration is sufficiently accurate, and the
number of intervals needed to obtain the desired accuracy is not prohibi-
tive, it is very useful for pocket calculator analysis.

Error in Trapezoidal Integration 165
6-3 ERROR IN TRAPEZOIDAL INTEGRATION

We do not here aim to explore the derivation of integration or error
formulas—merely to tabulate the commonly used ones and put them in a
form that is immediately useful for the pocket calculator. Nevertheless, it is
instructive to examine the error of a simple integration formula as a means
for understanding the error equations given for the more sophisticated
integration formulas. Following Hamming, then, we examine the trunca-
tion error in the trapezoidal integration algorithm by substituting a Taylor
series expansion into the integration formula. By comparing both sides of
the results, we can then determine the error associated with the analytic
substitution process in the numerical integration. Specifically, if we write
the integrand in its Taylor series expanded form as

f(x)=f(a)+(x—a)f'(a) +

O oy (6:6)

and substitute this into both sides of the trapezoidal integration formula,
we find that, on integration, the left side becomes

b— b—a)’ b—a)’
D+ 2 r @+ L@ @)
The right side becomes
(b-a)’
f@)+(b=a)f (a)+ ——f"(@)+ - +f(@) [+¢ (68)

where Ax =(b— a). After canceling like terms on both sides we can derive
the truncation error formula:

(6-9)

3
L)f,,(U Ut

e=(3r-)~ G)—(——_—)f’”()= (6-10)

If we assume the largest part of the error term to be given by the first term
in its series expansion, we can write

_(b-a)’f"(a)

> (6-11)

166 Numerical Integration

or, more generally,

_(b-a)f"(9)

5, (a<8<b) (6-12)

~

If, however, the function has contributions to the error formula that are
large in the higher-order terms, this error formula does not apply. It is
applicable for many of the practical engineering problems, and thus is
generally quoted as the error associated with trapezoidal integration.

The specific error formula for trapezoidal integration is less important
here than is the method by which it is derived. We used the Taylor series
expansion for the integrand in order to derive a Taylor series truncation
term for “the area.” Another alternative would have been to use a Fourier
series representation of the function to determine the truncation in the
frequency domain. Another approximating polynomial could have been
the Chebyshev polynomial approximation of f(x), which would have given
another type of truncated polynomial approximation error formula. While
the interpretation of the results of each error formula is different, the
magnitude of the error is not. The error is a characteristic of the integra-
tion formula, rather than the approximating polynomial used in the error
formula evaluation.

Figure 6-1 shows that for concave-up type of functions trapezoidal
integration is always slightly more than the curve it is trying to approxi-
mate; for concave-down type of functions it is slightly less. Thus it seems

a b x

Figure 6-1 Truncation error in trapezoidal integration.

Midpoint Integration 167

reasonable to expect, when integrating “wavy” functions, the intervals to
be set up so that, at a minimum, the eyeball approximation of the errors on
one interval may have a chance to cancel the errors on the other interval.
We can extend the error formula for simple trapezoidal integration to the
composite formula by similar reasoning:

(b—a)Ax?
-—Tf”(o), (a<0<b) (6-13)

€

Writing error formulas such as equations 6-12 and 6-13 is, of course,
easier than evaluating them meaningfully. One approach is to find the
second derivative of the function being considered, compute the minimum
error and the maximum error, and divide by 2 to obtain the average error
of the integration over the interval. Another approach is to take the
worst-case error. A great number of other alternatives also exist. The
question is, what is the criterion for numerically evaluating the error?
Unfortunately, there is no easy answer to this question. From an engineer-
ing viewpoint, the error defined by equation 6-9 perhaps has more meaning
than those most often quoted in numerical analysis books. In this sense the
process of deriving the error formula is the more fundamental issue in that
the engineer or scientist can compute his own error formula suited to his
specific problem.

Another aspect of the numerical error formulas associated with integra-
tion formulas is that they are absolute errors, whereas the error of interest
is usually relative error. Again, the author has no easy solution of the
problem of deriving relative error formulas for numerical analysis. The
difficulty is pointed out here to warn the student or first-time numerical
analyst about error formulas in general. Preferably he should derive his
own formula for a particular problem being numerically analyzed. An
estimate of the error in a numerical approximation over an analytical
calculation must be made, but its interpretation is not straightforward and
the result cannot be casually given from questionable error formulas.

6-4 MIDPOINT INTEGRATION

Midpoint integration uses the midvalue of an interval and the derivative of
the integrand evaluated at the midvalue to define the slope at the midpoint
of the interval, again forming a trapezoid whose area under the curve
approximates that of a function to be considered.

The midpoint integration formula as developed by Hamming is easy to
follow and nicely introduces the concept of a general approach to deriving

168 Numerical Integration

polynomial approximations for analytic substitution. We are to derive an
integration formula of the form

[Frax=w () 4w (452) (6-14)

Hamming’s weighting coefficients can be easily derived by noting that we
first require this formula to be exact for f(x)=1. This gives

b—a=w, (6-15)
We also require that this formula be exact for f(x)= x, which leads to

b2 — a? +b
= =wl(“2)+w2 (6-16)

We can determine the two Hamming’s coefficients by solving these equa-
tions simultaneously:

w2=(b2;a2)_ (b—a)2(a+b) =(b2;a2)_(b2—a2)=0

w=b—a (6-17)

We therefore find the midvalue integration formula to be

a+b) (6-18)

[Hx)ax=(o-ay(45

We see that midpoint integration developed in this manner results in
fectangular integration. That is, the area formed by the rectangle sampled
at the midvalue is identically equal to the area under the tangent line at the
midvalue of the interval. At first it might seem paradoxical that the
low-order rectangular integration could be as good as trapezoidal in-
tegration—that formulas based on a single point of f could be as accurate
as a two-point trapezoidal formula. In fact, rectangular integration can be
made as precise as desired if the sample point on a bounded interval can
be varied until the mean value theorem of calculus is satisfied. Once again,
rectangular integration can be made as precise as the true integral pro-
vided that the point at which the function is sampled on the interval can be
determined, so that the rectangle formed by the sampled value and the
lines connecting the end points of the function on the interval and the
abscissa itself have the same area as that under the function bounded on
the interval. This fact is reflected by equation 6-18.

Midpoint Integration 169

Again, to find the truncation error term, we use the Taylor series:

(x—a) . (x—a)
[=f@)+ S @)+ S) (619)
where, upon substituting in both sides of equation 6-18, we find
(b-a)’ (6-a)’
kg = (6-20)
This is usually simplified to
(b—a)’f"(a)
e ————————— (6-21)

20

or, more generally, fora< < b

_(b=a)’f"(9)
0

Comparing equations 6-21 and 6-12, we see that midpoint rectangular
integration is more accurate than endpoint trapezoidal integration even
though the rectangular integration is based on knowing the function at
only one point while the trapezoidal rule of integration requires the
knowledge of the function at two end points.

Extending the midpoint integration formula, we find, as in the
trapezoidal formula, the composite midpoint integration formula to be of
the form

b
ff(x)dx
—Ax f(a+ ﬁ)+f(a+ 3A—x)+f(a+ 5]+ +f(b—A)5) +e
2 2 2 2
where its error formula is given by
b—a)Ax?
w(——z'%)—xf"w), (a<0<b) (6-22)

Note also that extended trapezoidal integration can be modified to
include end points outside the interval [a, b]. The modified trapezoidal rule

170 Numerical Integration
is given by

f(b)

f f(x)dx=Ax '[(——2+f(a+Ax)+f(a+2Ax)+ + -

EX [~ fa—Bx)+ f(a+8x)+f(b—Ax) = f(b+Ax)] (623)
where the error associated with modified trapezoidal integration is given
by

_ 1(b—a)Ax*

—5——/"(0), (a+Ax)<O<(b+Ax) (6:24)

which is usually much more accurate than extended midpoint integration
with only slightly more work.

Other Popular Definite Integration Formulas

Simpson’s rule, perhaps the most commonly used integration formula, is
given by

2Ax Ax
J =S G+ 4+ f) (6-25)
Its associated error formula is given by

5
e=— Agiof""(o), (0< 6<24x)

Simpson’s rule has the nice property that it integrates cubics exactly even
though it samples only three points of the integrand and in addition has
very small error terms when Ax is less than 1 and on the order of one-half.

Simpson’s rule can also be extended (on an even number of intervals)
according to the formula

[= S+ af 424 a4 Yt o +) (626)

Its error formula is given by

€= nAX 1111(0) (_xo < 0 < x0+ ZHAX) (6'27)

Midpoint Integration 171
Perhaps the simplest extended integration formula is the Euler-Maclaurin

formula:

x:"f(x)dx=Ax(§+f.+fz+f3+ .. +f5")—(”2“)(f —f)---

szsz" _ B
_ (~ (fn(2k D_ fe2k l)) + ey (6-28)

It has the error formula

OnB,, ., Ax@k+d
2%

2k+2
W28,),

(2k +2)! (-1<0<1) (6-29)

Here B,, is a Bernoulli number.
The three-eights rule for definite integration is given by

*3 3A
J T dx= 2R (S 4314 3f+) (6-30)
X0
Its associated error formula is
e=— 3@6‘ 3857), xp< B< x; (6:31)

Two types of formulas are used for quadrature when many sample
points of the integrand are known: Bode’s definite integral formulas and
the Newton-Cotes formulas of the open type. Bode’s rules for quadrature
are shown in Table 6-1, and the Newton-Cotes formulas are tabulated in
Table 6-2.

The high-order formulas, such as the Newton-Cotes and Bode’s formu-
las, can have some very undesirable properties for large n. For some
analytic and discrete functions the sequence of the integrals of the in-
terpolating polynomials does not converge toward the integral of the
function. Also, the coefficients in these integration formulas are large and
of alternating sign, which is undesirable from the standpoint of propagat-
ing roundoff error. It is primarily for these reasons that the Newton-Cotes
formulas are rarely used for high values of n. For lower values of n they
can besimplified to some other well-known formula, such as the previously
discussed trapezoidal formula and Simpson’s rule. Although Bode’s rule
gets around the alternating signs associated with the Newton-Cotes formu-
las, it too has convergence problems for certain occasionally encountered
functions. Suffice it to say that the extended trapezoidal integration with

172 Numerical Integration

Table 6-1 Bode’s Definite Intergration Formulas for Integrating Functions Whose
End Points Are Known

Integration Formulas Error Formulas
X4 A T¢V1 0
ff(x)dx=2A_x(7f0+32f,+12f2+32f3+7f4) _ 8Ax/716)
o 45 945
xs 5Ax 275Ax7FV(9)
x)dx = 22X (19f,+ 75f, + 50f, + 50f; + 75f,+ 19 _2haxy)
S FCydx= Sgg 195+ 5, +50f,+ 50f3+ 75, + 1975) et
X6 9A 9, VIII 0
[Ty dr = £ (@1 fy+ 216, + 27f, + 2723+ 27, + 2165+ 41fp) _Axs (6)
o 140 1400
X7 TAx
fxo F(x)dx = S35 (75 1o + 35771, + 1323f, +2989; +2989f, sIs3axY
518400
+1323f,+3577f,+751f;)
Xg 4Ax
dx= 22X (989f + 5888, — 928, + 10496 f, — 4540
STy d = (175 989+ 58887, 9281, fy~4540f, 23688x7%,
~ 467775

+ 10496£; — 928, + 5888, + 989f;)

end effect modification has high accuracy, does not propagate roundoff,
requires only a reasonable amount of work in computing the integral of
any function, and is thus recommended for analysis on the pocket calcula-
tor.

6-5 INDEFINITE NUMERICAL INTEGRATION

Indefinite numerical integration is the numerical method for solving
differential equations. Given the equation

P~ fx) (632)

we would usually solve it by indefinite integration as follows:

y=yo+ [fty)d (6:33)

Indefinite Numerical Integration 173

Table 6-2 Newton-Cotes’ Definite Integration Formulas for Integrating Functions
Whose End Points Are Undefined or Unknown or Are Singular Points

Integration Formulas Error Formulas
3
[T r)dx= 295 (it o) X 7o)
[ede= 255 @f 4 2h) B v (0)
[R0dx= 25+ S+ S+ 111 205 1v(g)
L:?(x)dx_ 6A"(nf, 14f, + 26/, Ay
a0 /"®)
—14f,+ 11f,)
[x:’f(x)dx— m’(‘)(snf, 453, + 562f, 257847
8640 '@

+562f,— 453f,+611f,)

Xg 8Ax
x)dx = 460f, — 954f, + 2196f, — 2459f,
f%f(4= "gas (450 ? ’ * O 3956Ax° 395645 v

+2196f5 — 954f, +460f,) 14175

It is apparent that the solution of the differential equation depends on its

own evaluation of the integral. This is precisely the chief problem in

indefinite integration; that is, indefinite integrals are in an implicit form.
Note that an explicit indefinite integral takes the form

y=yo+ [fr)dr (6-34)
X0
which is a special case of the differential equation

=f(x) (6-35)

174 Numerical Integration

Clearly, this type of numerical integration can be performed analytically,
hence is not of concern here.

The simplest indefinite numerical integration algorithm is Euler’s in-
tegration formula:

dy
Yn1=Vn +AX(;) (6-36)

Here we see that a new estimate (y,,) of y is based on the old estimate
(v,) and its derivative [(dy/dx),]. The derivative is usually calculated
directly from the differential equation once y is estimated. Since the new
estimate y,,, is based on the old estimate y, and the old value y, it is
clearly an “open-loop” process where the new value y, is based on an
extrapolation from previously known data and thus is subject to extrapola-
tion errors. The process of determining new values of y is really a simple
extension of determining the direction field associated with a solution of a
differential equation. In general, the approach is to start at some initial
condition (x,,y,) and calculate the slope, using the differential equation:

Yo=f(foy0)

One then moves an interval Ax in the direction of the slope to a second
point, which we now regard as the new initial point, and repeat the process
iteratively. If small enough steps are taken we can reasonably hope that the
sequence of solution values given by this procedure will lie close to the
solution of the differential equation. In general, all of the elements of
solving differential equations using numerical indefinite integration are
present here. A table of the values of x,y,y’, and Ay must be computed at
each step in the numerical integration process. Also, the problem must be
defined by specifying not only the differential equation and its initial
conditions, but also the interval over which it is desired to solve the
equation. It is then possible to select a convenient integration interval, and
an integration formula that is accurate for that interval. For example,

dy 2

X e r—x

dx

with initial conditions y =0, x =0. When integrated with Euler’s integration
formula

Ya=Yuo1HAxy,_y

requires a specification of the interval Ax. The simplest approach is to
experimentally determine the Ax that will accurately (as judged by the

The Modified Euler Indefinite Integration Method 175

analyst) integrate the differential equation. Consider solutions of this
differential equation with Ax=0.05,0.1,0.2, and 0.3. The results are tabu-
lated in Table 6-3. A comparison of the numerically integrated solutions
with the exact solution shows that the sensitivity of the solutions accuracy
depends strongly on the integration step size. This is true, in general, for all
numerical integrators when the integration step size is even a reasonable
fraction of the “response time” of the differential equation.*

Table 6-3 Solution of dy /dx=e” — x2

Euler Integrated Solution

Exact
Solution
x y Ax=0.05 Ax=0.10 Ax=02 Ax=03
0.0 0.0

0.1 0.09498 0.09694 0.09900 — —
0.2 0.17977 0.18261 0.18557 0.19200 —
0.3 0.25389 0.25672 0.25964 — 0.27300
0.4 0.31667 0.31872 0.32077 0.32506 —
0.5 0.36731 0.36786 0.36833 —
0.6 0.40488 0.40329 0.40152 0.39756 0.39333
0.7 0.42839 0.42407 0.41942 —
0.8 0.43686 0.42923 0.42119 0.40395 —
0.9 0.42929 0.41782 0.40582 — 0.35277
1.0 0.40477 0.38895 0.37264 0.33749 —

A disadvantage of the Euler method is that it introduces systematic
phase shift or lag (extrapolation) errors at each step. The procedure can be
modified (modified Euler integration) to give better results—that is, greater
accuracy for essentially the same method and the same amount of work.

6-6 THE MODIFIED EULER INDEFINITE INTEGRATION METHOD

An alternative to introducing lag into the calculation is to arrange the
sampling so that the integrand is sampled not at the end point of the
interval over which the integration is taking place but at the midpoint. This
is similar to the development of the midpoint trapezoidal formula devel-
oped in Section 6-4. The task is to perform the integral

I (x) dx (6-37)

n—1

*Approximately the time required to move from one equilibrium condition to another.

176 Numerical Integration

using the midpoint formula (see Section 6-4). We wish to predict the next
value of y based on present and past values of the independent variable.
The midvalue prediction leads to

Pna1=Vnu_1+20xp, (6-38)

Using this predicted value, we can now compute the slope at the predicted
solution point, by way of the differential equation,

pp,r+l=f(xn+l’pn+l) (6'39)

and then apply the trapezoidal rule developed previously to update the
estimate of the predicted solution point:

Ax ., ,
yn+l=yn+7x'(pn+l+yn) (6'40)

The correction is called the corrected value of y,,,. It is apparent that we
are using the average of the slopes at the two end points of the interval of
integration as the average slope in the interval.

In summary, this method has three steps:

Step 1 Predict the value of y,, ,, given the formula
Pas1=VYa—1+28xp; (6-41)

Step 2 Compute the derivative at the predicted value, using the differen-
tial equation that describes the system:

pr,r+l=.f(xn+l’pn+l) (6‘42)

Step 3 Make a second estimate of the value of y,,,, using trapezoidal
integration:

A ’ ’
yn+l=yn+7x(yn+yn+l) (6-43)

This process of prediction and correction has led to the naming of this
type of integration as the predict-correct concept of numerical integration.
A number of predict-correct algorithms are tabulated at the end of this
chapter; they can be used for indefinite integration of differential equa-
tions on the pocket calculator.

Starting Values 177

6-7 STARTING VALUES

In our previous analysis we assumed that we had values for the dependent
and independent variables at the starting or initial point. However, the
algorithm requires not only starting values, but also earlier values. The
previous values can be obtained in two ways. They can be computed on
the pocket calculator, or they can be analytically hand calculated. Both
methods will be presented here.

The hand calculation method is based on the use of the Taylor series
expansion of the function:

y(x+Ax)=y(x)+Axy'(x)+ —A—giy"(x)+ e (6-44)

The derivatives to be evaluated in the Taylor series expansion can be
found from the differential equation by repeated differentiation. The
number of terms of course depends on the step size and the accuracy
desired. But, again, these are matters that can all be easily evaluated on the
pocket calculator and the number of terms required can be empirically
determined by continuing to take them until the desired accuracy is
achieved.

The method for machine calculation is based on repeated use of the
corrector formula. Again, if we are given the initial point (x,,y,), we can
estimate the earlier point (x_,,y_,) by way of the “unmodified” Euler
integration, working backwards as follows:

X_;=xo—Ax
Y _1=yo—Axyg (first estimate of y _,) (6-45)

We can use the estimate of the previous value of y combined with the
differential equation to evaluate the derivative at the previous value of y.
The trapezoidal corrector formula can then be repeated to iteratively
correct the previous estimate until it achieves the accuracy desired for the
calculation. The system of equations for the correction process become

Y =f(x_1y) (first estimate of y'_,)
Y_1=Yo— ézﬁ(y{ﬁy’,) (second estimate of y _) (6-46)

yo=flx=1y_y) (second estimate of y_,)

178 Numerical Integration

If, after a few iterations, the previous value of y does not stabilize, the
integration step size can be halved, the previous value of y,_, ,, computed,
and the process repeated to compute y,_,. Another alternative is to use the
value of y,_, /, to estimate the value of y, 5, the process repeated to take
a half step forward to y,,, and then these values used as the starting
values for the predict-correct integration algorithm.

6-8 ERROR ESTIMATES AND MODIFYING THE PREDICT-CORRECT
PROCESS

The predictor formula just discussed is a midpoint integration formula that
has the error equation

A 3
6="3r"(6) (6-47)

The corrector formula given in Section 6-3 has the error formula

A 3
= 5"e) (6-48)

e =
Since these error formulas are of opposite sign, the difference between the
predicted value and the corrected value gives

yp=ycz(yexact_ ep)_ (yexact_ ec) (6'49)

Thus at any given step the difference between the predicted value and the
corrected value is

5

~ 2 axy(p) (6-50)

Furthermore, we see from equation 6-49 that approximately four-fifths
of the difference results from the predictor component and one-fifth from
the corrector component. It is a natural extension of the predict-correct
technique, then, to modify the integration process slightly as we proceed.
When we predict with the equation

Pns1=Vn1+28xy, (6-51)

we might immediately modify the value of this prediction, using the
previous value of the predict-correct difference and the formula

mn+l=pn+l_%(pn_cn) (6'52)

Other Useful Indefinite Numerical Integration Formulas 179

Then we use the differential equation to compute the modified derivative:

m;l+l=f('xn+l’mn+l) (6‘53)
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>