
HP48 SX SmartROM ™

User’s Guide

Copyright 1991, SmartTechnology. All Rights Reserved.

Copyright Smart Technology 1991.
Other Brandand product names are trademarks or

registered trademarks of their respective holders.

This manual was produced with Ventura Publisher®and a
CANON BJ10¢®Bubble Jet Printer.

Printed in Italy

Introduction

Foreword

Thank you for the purchase of the SmartROM. You bought a
quality software that will greatily help in your work, hobby or

study!

If you are new to the 48’s world, we suggest you read
carefully the User’s manual before diving into deep waters of
the SmartROM.

The well-tempered 48

The SmartROM playsthe 48 like no other product did before.
Of course it is not perfect, but as you will experiment on your
own,it will become difficult to do something without it. Its

huge set of housekeeping hidden commands lets you solve

problems that you hardly could imagine.

The SmartROM is designqd to maximize programmer For those who need an

productivity by concentrating a lot of powerful commands and in-depth knowledge of
utilities in one package and setting a standard in some areas the SmartROM,a Hidden
like symbolic matrix handling and meta objects manipulation. Commands Reference

. . . Manual (in English) is
If you are an RPL enthusiast, you will appreciate SmartROM available.

at most, reminiscing its venerable predecessors like the
ZenROM and the PPCRom for the HP-41 and the JPCRom for

the HP-71. For the joy of hackers we left a lot of commands in

the dark. Sometimes we turn on the light at the right spot.

Hidden commands have been created for future applications
and represent a 40% of the whole ROM. We expect you dig
deeply in the ROM to find them. If you get tired digging in the
ROM, you may refer to the Hidden Commands Reference. As

you will see later, some utilities on the disk use intensively

SmartROM’s hidden functions. This manual refers to version

1:B of the SmartROM wich fixes known bugs in the previous
version, adds many new hidden functions and extends some

commands as well. We hope also you will appreciate our
efforts of keeping things as simple as possible, sacrificing
sometimes speed to flexibility and expandibility. The concept
of expandibility is a cornerstone of the SmartROM and
Tepresents, in our opinion,its first strong point. Second strong
point is the Symbolic Matrix Writer which is the most |
complex application available for the SmartROM and one of
the most useful tools available for the calculator.

All the information contained herein, when a different source

is not specified, come from our own experiments on the

calculator and are proprietary. Appendix C, containing Saturn
Assembly Language description, complies with the

description given in the HP-71 IDS Vol. I-11 copyrighted by
Hewlett-Packard.

Introduction

i

Manual’s Contents

Chapter 1: SmartROM Commands Reference

This is the reference section of the manual covering the entire
set of commands listed in alphabetical order. For each
command a stack diagram is given and remarkable
information as well. Examples are collected at the end of each

paragraph.

Appendix A: Warranty, Service and Support

Refer to this section when you encounter problems using the
SmartROM.

Appendix B: Objects

HP-48 objects structure is explained in detail.

Appendix C: The Saturn Microprocessor

A description of the CPU and its machine language instruction
set is given.

Appendix D: System calls

‘Most used system entry points are listed in address order. '

Appendix E: Error Messages

Contains the complete list of the errors generated by the
SmartROM along with possible causes.

Appendix H: Hidden Commands

Contains the exhaustive list of SmartROM hidden commands
version 1:B,subdivided in logic categories.

tack Manipulation

‘Argument Checking

List Manipulation

String Manipulation

List of SmartROM RPL commands.

This is the complete list of SmartROM RPL commands
subdivided in logic categories. Some commands appear in
several categories being polymorphic functions.

Name

AAB
BAA
BAB
BBA

—Char
FIND
LINES—
—LINES
LOC
MEMBER
NULL
PARSE
REPLACE
ROWCOL

Introduction

1

Introduction

Meta Object Manipulation

Type Management

Symbolic Matrix Handling

v

REV
RPT
SPAN
SPLIT

COPY
DELETE
LINES—
~LINES
META
METOP
MOVE
MREV
NDUPN
PKMETA
PRG—
~PRG
SRT
SRTD

—-B

—Char

EXT—

—EXT
FALSE
MSBIT

PRG—

—-PRG

—-R

-SYS

—TorF

—Xlib
TRUE

ADD
ADDCON
CMPL
CONFORM?
CONST
DELCOL
DELROW
DETERM
DIMS
EQUAL?
FACTOR
IDNT
MATWRT
MGET
MPUT
MSYMB?
MULT
SQUARE?
SUBT
SYMBMAT—
—SYMBMAT
TRNSP

Program Editing

o

Utility

ROM Revision

FIND
PRG—
~PRG
REPLACE

KEIWAIT

CSTMENU
RPT

ROMV
VER$

Introduction

Introduction

List of applications

This is the list of available applications stored on the diskette.
INSTALL helps you installing the SmartROM by copying
some auxiliary programs for the command PKMETA in the
HOME directory and redefining the variable CST for a quick
access to commands. Original value of CST is pushed on the
stack. For this reason INSTALLshould be used only at
installation time. Applications listed below are stored on the
diskette along with their documentation.

Name

CALENDAR
FFT
LWC
UPC
MATMENU
PRSYMB
PROBJ
PRTHREAD
L—TH
TH—L
SHRINK
UPTRIM
PIE
BARPLOT2
INSTALL
INVRT
—~FONT
alfaORDER
POPDIR
CGINDIR
REPLP
CGXLIB
XREF

DISPLAY

ftalics

KEY]

LABEL

Typefaces conventions

Used to represent textas it appear on the display or anything
you must type.

Italics are used to introduce a new term or to emphasize words

OrT sentences.

Keys are surrounded by square brackets.

This typeface represents a menu label.

Introduction

Vil

Introduction

Typographic conventions

The special set of characters implemented in the 48 requires a
special treatment in order to avoid misunderstanding. Greek
characters are represented as their name in superscript mode.
Below there is a table summarizing the conventions used
throughout the manual.

#b

External

<h>

n, d,i,j, k|,

TRUE

FALSE

Complex

‘NAME’

‘name’

obj

Symb

str

Char

[...]

i...J-..[..-]]

{...} or List

{{Symb,y ... Symb,,]
{Symbp, ... Symbp,,l}

objy...obj, n

stry...str, n

XLIB LID Num

viii

Binary integer #12345h, #01101b,etc.

System Address.

System Binary.

Real numbers.

System boolean (External).

System boolean (External).

Complex number.

A global name.

A local name.

Any object.

Symbolic Expressions, real and complex numbers,

units, gloabal or local names.

RPL program

User RPL Program.

String of characters.

Character object

Array (Vectorj.

Array (Matrix).

List.

Symbolic Matrix.

Any Meta-object.

String Meta-object.

External Library name.

Introduction

Automatic Installation

The installation of the library is, under normal circumstances,
completely transparent to the user, who must only plug the
card in the slot. HP-48 user’s manual describes well this
procedure in chapter 34, Volume IL

Note that the configuration program ofthe library always
attaches the libraries in the HOME directory. If you wantto
attach manually the library in a specified subdirectory, you
must follow the procedure described in Chapter 34 ofthe
HP-48 User’s Manual. However if a warm start happens, the

library will be reattached to the HOME directory.

After this stage, you can verify the installation of the
SmartROM by following the procedure described below:

1) Type HOME [ENTERY], then [Gold] LIBRARY:
now,if you installed the card in Port 1 two new
labels called MATW and SMART should appear in
the menu. May be you need to press [NXT] to
advance menu pages. The order in which labels
appear depends on the number oflibraries residing in
memory. If you see these labels, go on to stage 5.

2) ~ If you are not able to see any new label, may be you
have not correctly plugged in the card. Repeat stage 1.

3) I the label does notappear,try to change port and

start over again.

4 If labelsdo not appear yet, your card requires service.

See mn the Appendix A-the details about Service and
- Warranty.

5) Type in the command line: &INSTALL [EVAL]

After some seconds,a copy of your CST variable
should appear on the stack along with a custom menu.

6) The library is ready for use.

Introduction

Manual Installation

Type HOME ENTER, :&INSTALL EVAL . If the cailculator
does not report errors and the value of CST appear on the
stack, the library has been successfully installed, otherwise
check the list below:

ERROR CAUSE & REMEDY

Port Not Available The card is not properly installed or is bad.
Try to reinstall the card or change slot.

none, but CST was May be you have an INSTALL program
-not pushed on stack. overriding SmartROM’s one. Cancelit.

Directory not ' You have a directory whose nameis
allowed conflicting with thc subprogram being

copied in the HOME directory. Remove or
rename the directory.

SmartROM Commands Reference

This section explains in detail each command of the

ROM, giving its stack representation, remarkable
information, examples and names of applications
containing the command. We strongly suggest you edit

our applications and improve them with your own
customization. If you have any question about SmartROM
commands, contact us at the address given in Appendix A.

- All SmartROM commands obey to the rules of HP-48

system commands, preserving stack contents. Symbolic
matrix commands, do not preserve correctly LASTARG
parameters because we used standard math operators
during the calculations. When a calculation goes on, each
operator savesits arguments for a subsequent LASTARG,
effectively overriding previously saved parameters. Thus,
if you try a LASTARG after a symbolic matrix command,
resulting parameters reflect the stack argumentsat the
time ofthe last arithmetic operation. Nevertheless, after
the execution from the keyboard of such a command the
LAST STACK toggle (if enabled) works correctly and the

original stack may be recovered.

All the commands are accessible via SmartROM’s
Custom menu once you invoke the command CSTMENU
or you execute the Backup program INSTALL, as
described in the previous chapter.

. All the commands contained m this section belong to

Library 821 (Smart) except MATWRT which belongs to
Library 822 (MATLIB).

Library 821, 822 and 823 have been allocated officially
by Hewlett-Packard for Smart Technology’s Products.

They cannot be used by other commercial software

developers.

If you remove the card from the HP-485X, SmartROM
‘commands will appear as XLIB 821 nnn, where nnn is a
number between 0 and 251. Visible commands occupy the
range 0-95. All other commands are hidden and have no
correspondenttext. If you want to know what hidden
commands do, downloadthe Hidden Commands
Reference from theBBS and print it by yourself.
Otherwise ask your dealer for a copy.

Hidden Commands contained in libraries other than 821

are not supported and shall not be used. Any future

extension to SmartROM will use Library 822.

1.1

AAB

Category Stack Manipulation

Affected by flag none

Input 2: Obj,
1. Objg

Output 3: Obj,
2: Obj,
1. Objg

Function Duplicates the object on the second level.

See Aiso BAA, BAB, BBA, BCAC, BCDA, CAB, CBA, NIP

1.2

ADD

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

Symbolic Matrix Manipulation

-3 (Symbolic result)

2: {{SymbA, , SYymbA,, ... SymbA,,}

(SymbA,, ;SymbA,__, .. SymbA,,.}}
1; {Symtfgn SymbE,5 ... SymbB, 1]

(SymbB,,,SymbB,,, ... SymbB,,]

1. {{SymbA, ;+SymbB, ; SymbA, ,+SymbB, , ... SymbA, +SymbB,|

(SymbA,,,+SymbB,, SymbA,,,+SymbB,,, ... SymbA,,+SymbB,I}

Performs the addition of two symbolic arrays.

A one-dimensional array must be written as one-row or
one-column two-dimensional array. To avoid run-time
errors the flag -3 must be clear,or, alternatively, each
symbolic expression must evaluate to a numeric value.

The routine does not check for symbolic values. The
reason is explained below:

the routine makes use of a hidden command which allows

~ to pass the operator unevaluated. Moreover the operator is

notrestricted only to symbolic objects but can work on all
pairs of objects for which the operation is meaningful.
You could even make a list-array ofreal arrays and
perform the addition cell by cell between each palrof

- arrays. See the example below.

ADDCON, DIMS, EQUAL?, MATWRT, MULT,
MSYMB?, SUBT

MATMENU, PRSYMB

2. {{1283}){'X X+1"'X-3'}}
1: ({-12-3} [-X-1"X+1"'3-X" |}

ADD [ENTER]

1: ({040]){-1'2+2*X' 0 })

2 {12 31[456]})
11 {[-1-2-3][123]})

ADD [ENTER]

1: {{[{000][5791}}

1.3

ADDCON

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

1.4

Symbolic Matrix Manipulation

-3 (Symbolic Result)

2: {{ Symb, ; Symb,, ... Symb,, }

{ Symb,,,Symb,, ... Symb,,,}}

1: Symb

2: {{Symb+Symb, ; Symb+Symb,, ... Symb+Symb, }

{Symb+Symb,,, Symb+Symb,,, ... Symb+Symb,._}}

Adds a constant valueto all the elements ofa list-matrix.

See notes about flag under ADD.

ADD, FACTOR, MATWRT, MSYMB?

MATMENU, PRSYMB

2. {1 2 3
{’X’ |x+1’ !X-3,l,

1 X1

ADDCON [ENTER]

1: (X *1-X"2-X)
(-1 0 -4}

—B

Category

Affected by flag

input

Output

Function

Notes

See Also

Example

Type Conversion

-5 to -10 (Binary Wordsize) and -11 to -12 (Binary

Integer Base)

1: h 1: Char 1: <h>

1: #h

Converts a numeric value into a binary integer. Extended
precision numbers are not allowed. Pay attention to the
current wordsize that may truncate the result.

—B allows binary integers as input. This technique is
usefulto set the user free of inputting data in the preferred
form.

EXT—, —EXT, —R, —»SYS

5: 30

4: #20h

3 <13h>
2: 1.5
1: 4

{ =B} METOP [ENTER]

5: #1Eh
4: #20h

3: #13h
2. #2h

1: 4

1.5

BAA

Category Stack Manipulation

Affected by flag none

Input 2 Obij,
1. Objg

Output 3: Objg
2. Obj,
1. Obj,

Function Swaps the objects and duplicates the first level.

See Also AAB, BAB, BBA, BCAC, BCDA, CAB, CBA, NIP

1.6

BAB

Category

Affected by flag

Input

Output

Function

See Also

Stack Manipulation

none

2 Obj,
1. Objg

3: Obijg
2. Obj,
1. Objg

Duplicates the object on the first level and inserts it above
the second level.

AAB, BAA, BBA, BCAC, BCDA, CAB, CBA, NIP

1.7

BBA

Category Stack Manipulation

Affected by flag none

lnput 2: . Ob]A

1. Objg

Output 3. Obijg
2. Objg
1: Obij,

Function Duplicates the object on the first level and rotates the first
three levels. |

See Also AAB, BAA, BAB, BCAC, BCDA, CBA, NIP

1.8

BCAC

Category

Affected by fiag

Input

Output

Function

See Also

Stack Manipulation

none

3. Obj,
2. Objg
1. Obj.

4. Objg
3. Objc
2: Obj,
1. Objc

Rotates the first three levels and duplicates the second
level.

AAB, BAA, BAB, BBA, BCDA, CAB, CBA, NIP

1.9

BCDA

Category

Affected by flag

Input

Output

Function

See Also

Stack Manipulation

none

4. Obj,
3. Objg
2. Objc
1. Objp

4. Objg
3. Obje
2. Objg
1. Obj,

Rotates first four levels.

AAB, BAA, BAB, BBA, BCAC, CAB, CBA, NIP

C2M

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

Stack Manipulation and Meta-object Manipulation

none

N+ "MARK’
N: Obj,

2 Obj,,
1. Obj,,

N+2: "MARK’
N+1: Obj,

2 Obj,
1: n

Counts the elements between the mark and the top of the

stack. C2M allows you to convert an unbound
meta-object to a fixed size meta-object. The mark is not
removed from the stack after the count. Unbound
meta-objects are very useful when you don’t know in

advance the number of objects you shall play with.

When the mark is missing, C2M is the same as DEPTH.

'MARK is a private symbol. Hidden functions make use of
- an alternate mark to avoid collision with user defined

programs.

L.2M, MARK, META

3: "MARK’

2: 10
1: 20

C2M [ENTER]

4. "MARK’

3: 10
2 20

1: 2

CAB

Category

Atfected by flag

Input

Output

Function

See Also

Stack Manipulation

none

3. Obj,
2: Objg
1. Obje

3. Obijc
2: Obj,
1 Obijg

Rotates backwards the first three levels.

AAB, BAA, BAB, BBA, BCAC, BCDA, CBA, NIP

CBA

Category

Affected by flag

Input

Output

Function

See Also

Stack Manipulation

none

3. Obj, -
2. Objg
1. Objc

3: Objc
2. Objg
1 Obj,

Reverses the order of the first three levels.

AAB, BAA, BAB, BBA, BCAC, BCDA, CAB, NIP

1.13

CHL?

Category

Affected by flag

Input

Output

Function

See Also

Applications

Examples

Argument Checking

none

2: { obj, obj, ... obj, }
1. itot

3: { obj; Obj, ... Obj,) o
2: {er,err, ..erm} 2. { obj, obj, ... obj, }
1 1 1: 0

Checks if the elements of a list comply with the types
specified. Each element of the list on the first level can be
areal value (rounded to an integer) or a list of reals.

Argument checking is strictly positionalin CHL?. If you
need non-positional argument checking, use CHSET?.

Type Numbers follow the classification given by the
command TYPE.

When a sublist of reals is specified, a multiple choice is
allowed on that position of the input list.

The command return a boolean flag indicating success
when the flag is 0 and a fault when the flag is 1 plus a list
of mismatching positions.

The underlying meta-object structure of the result umifies
the boolean convention with the meta-object convention.

The output is especially suitable for IFT or IFTE input.

CHSET?, CHST?

MATMENU

2. {12"]

1 {002}

CHL? [ENTER]

2. {12}

1: 0

2. {129}
1: {00{01}}

CHL? [ENTER]

3: {12}

2. {3}
1: 1

CHSET?

Category

Affected by flag

Input

Output

Function

See Also

Examples

Argument Checking

none

2: { obj, obj, ... obj}
1: ittty

3: { obj, obj, ... obj, }
2. { obj, obj, ... Objp } 2. {ermr, err,..erm.}
1: 0 1: 1

Checks is objects contained in a list are of the type
specified, independently from the position. Each element
ofthe list of types must be a real number (rounded to an
integer). Type Numbers follow the classification given by
the command YPE. The command return a boolean flag
indicating success when the flag is 0 and a fault when the
flag is 1 plus a list of mismatching positions.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input.

CHSET? is useful to check if a list contains homogeneus
data with minimal memory requirements.

CHL?, CHST?

2. {12%])

1: {02]

CHSET? [ENTER]

2. {12}

1: 0

2. {12}
1: {0}

CHSET? [ENTER]

3: {12%)
2: {3}
1: 1

1.15

CHST?

Category

Affected by flag

Input

Output

Function

See Also

Applications

Examples

1.16

Argument Checking

none

N+1: obj,

2 obj,
1: ..t}

N+2: obj,
N+1: obj,

K: obj,
K: obj,

3. obj,,
2: {..ermk..} 2. obj,,
1. 1 1:

Checks if the elements of the stack comply with the types
specified in a list. Each element of the controllist on the
first level can be a real value (rounded to an integer) or a

list of reals. Argument checking is strictly positional in
CHST?. The first element of the control list specifies the
type or the set of types allowed for the object lying on the
correspondent level of the stack. In effect objects on the
stack are mapped as if they were collected in a list, with
the element on the top that comes last.

Type Numbers follow the classification given by the
command TYPE.

When a sublist ofrealsis specified, a multiple choice is
allowed on the corresponding level of the stack. The

command return a boolean flag indicating success when
the flag is 0 and a fault when the flag is 1 plus a list of
mismatching positions.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input.

CHL?, CHSET?

MATMENU

4: 1

3: 2
2: 549

1: {002}

CHST? [ENTER]

o
p
h
o
e

N
-

0

4: 1

3 2
2. “
1: {00{01}}

CHST? [ENTER]

5. 1
4. 2

3 “

2. {3}
1: 1

1.17

—Char

Category

Affected by flag

Input

Output

Function

Notes'

See Also

Type Conversion

none

1. n 1: <n> 1: | #n

or

1: Str

1: Character

Converts the input object into a character object.

Character objects are used internally by the system to
minimize memory storage respect to one-character strings.
Often, routines taking strings as parameters allow also
single characters.

—CHAR accepts a character as input. This technique is
useful to set the user free of inputting data in the preferred
form. |

—B, EXT—, —EXT, —R, —SYS

CMPL

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

Symbolic Matrix Manipulation

none

2. {{Symb, , Symb,, ... Symb,. }

{Symb,,; Symb,, ... Symb,,, }}

1: {ij}

1. {{Symb,, ...Symb,., Symb,,,...Symb,}

.{.éymbj,t1 ... Symb,,;, Symb;4 ;.4 ... Syman}
{Symby,4 ... Symby,, ;y Symby,, iyq ... Symb,)

{Symb,, ..Symb., Symb.;..Symb,}}

Returns the complement of a square list-matrix, given

element’s subscripts. Resulting array will be of n-1 order.
The array cannot be of orderless than 2.

In order to compute the algebraic complement of an
element, the following procedure could be used.

-3 CF Symbolic result enabled.

BAB saves element subscripts

CMPL DETERM computes the determinant of
the minor.

SWAP OBJ— DROP Recalls the subscripts

+-1 SWAP " * | Adjusts the sign

ADD, ADDCON, CONSTMAT, DETERM, FACTOR,
MATWRT, MULT, SQUARE?

MATMENU

2: ({100} {-X' "1-X’"2-X’} {-1 0 -4}}
1. {11}

CMPL [ENTER]

1 {{"1-X"'2-X"} { 0 -4}}

1.19

CONFORM?

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

1.20

Symbolic Matrix Manipulation

none

2. {{SymbA, , ... SymbA,| 2. {{SymbA, , ... SymbA,]}

(SymbA_ ... SymbA,_J} (SymbA,,,... SymbA_,J}
1: {{SymbB, ,... SymbB, ;} {{SymbB, , ... SymbB,}

{SymbB,, ... SymbB,}} {SymbB,,... Symbe.q}}

4. {{SymbA, , ... SymbA, .}

{SymbA_ ; ... SymbA_1}
3: {{Symbg, , ... SymbBLp} 3: {{SymbaA, , ... SymbA, .}

{SymbB_ ... SymbB_ _}} (SymbA,,,... SymbA_, }}
2: {mnn pn]1 P 2: {{SymbB, ... Symme'}‘

(SymbB_ SymbB, .}}
1: 1 1: 0 P! pd

Checks if the dimensions of two input matrices are
suitable for row-by-column multiplication. If nota O is
returned along with the input matrices.

We call this condition conformability. When you try a
row-by-column multiplication between incompatible
arrays a special erroris issued to inform you of this

particular condition.

No check is made on the inputlists with regard to their
contents. If you want to check in advance list contents,

use MSYMB?,

DIMS, MATWRT, MSYMB?, SQUARE?

MATMENU, PRSYMB

2: ({12} {'X’Y-2"}}
1. {{01°-Z}{-2'Y 3})

MULT [ENTER]

{4 1e2ty .Z+6')
{-24(Y-2) "XH(Y-2)*Y X*-Z+(Y-2)*3' }}

CONSTMAT

Category

Affected by flag

Input

Output

Function

See Also

Applications

Examples

Symbolic Matrix Manipulation

none

2: Symb
1: {mn]}

1. {{Symb, , Symb,, ... Symb,}

{Symb,,,, Symb, ... Symb,,1}

Returns a constant symbolic array according to the
dimensions specified in the list.

DIMS, MATWRT, MSYMB?

MATMENU, PRSYMB

2: 'X-1’
1: {23}

CONSTMAT [ENTER]

1 {'X-1""X-1""X-1"}
[7X-1""%X-1"'X-1" }}

1.21

COPY

Category

Affected by flag

Input

Output

Function

Notes

See Also

1.22

Meta-object Manipulation

none

obj,

obj,...

obj,,

Objabove

obj,
n

from

to

aboveS
R
y
2
o
z
l

obj,

Objrom

obj,,

ObiaboveJ

lfrom

obj;,
Objapove

Bbjn
1. n+abs(f-t+1)

Copies a section of the meta-object delimited by from and
to above the level above, expanding the meta-object and
updating the counter.

Top of stack contains the counter while level 2 contains
the last object of the meta-object (as if it were the last

- element of a list). The fist element of the meta-object lies

on level n+1.

Input parameters (from) and (to) can be given in any
order. If you specify for (above) a value greater than n, the
section will be appended to the tail of the meta-object.

Note that you can copy a block within itself.

A bit of theory:

Meta-objects are a metaphysical entity invented by HP
people to identify a set of objects getting handled as a
whole thing. They are not worth to be considered a true
object unless You have the SmartROM. As you will see
later, there can be string meta-objects, real meta-objects
and program meta-objects as well. The most esoteric form
of a meta-object is the unbound meta-object wich has no
counter at all, but only a marker above its head. Internal

routines of SmartROM make heavily use of meta-object
utilities, because of their intrinsic compactness.

DELETE, MOVE

Examples

~
N
W
H
R
O
D
N

W

6 “TOP
5: "these lines”
4: “get copied”
3: “after the bottomn”
2 “BOTTOM”
1 5

4 6 COPY [ENTER]2

9 “TOP
8 “these lines”
7: “get copied”
6: “after the bottom”
5: “BOTTOM"
4 "these lines"

3 “get copied”
2 “after the bottom”

1 8

5 “HEAD”
4 “SUBHEAD”
3: “GO OVER THE TOP”
2. “ME TOO"
1 4

51 COPY [ENTER]

“GO OVER THE TOP”
“ME TOO’
“HEAD”

“SUBHEAD”
“GO OVER THE TOP”
“ME TOO”
6

5 “HEAD”
4: “EXPAND MYSELF #1"
3. "EXPAND MYSELF #2°
2: “BOTTOM’
1 4

33 COPY [ENTER]

“HEAD’
“EXPAND MYSELF #1"

“EXPAND MYSELF #2"
"EXPAND MYSELF #2"
“BOTTOM”

2

7
6.
5. "EXPAND MYSELF #1"

4.

3
2
1 6

1.23

CSTMENU

Category Utility

Affected by flag none

Input

Output

Function Redefines CST contents with the SmartROM custom
menu (two pages) wich subdivides commands in six main
areas called STACK, $&L, META, SYMB, TYPES,
MISC for easier referencing and adds the following three
new features:

#CHR A keytrap for entering a character given its
ASCII code. The trap waits indefinitely
key presses and does not allow

meaningless keystrokes. Character 0
cannot be entered nor characters above

255. If you disabled the beeper, no sound

comes at key press nor the jingle that
welcomes you to the keytrap. The message
“Enter three digits” is displayed in the
status area until you press the third key.

The [ON] key is disabled. When you enter
[2] [5], the keyboard is mapped to respond
only to keys [0] - [5]. |

VISIT Enhanced Visit Function:

Input 3: Absolute position 3: { row col }
2: 0 (replace) or 1 (insert) 2. O (replace) or 1 (insert)
1. 'name’ 1. 'name’

3: “string” This new Visit feature lets you place the
2. occurrence cursor at a specified place in the editor, by

1. ‘name specifying its position in three different
ways. When you specify a search string
and supply a 0 as occurrence, the cursor

will be placed on the last occurrence of the
string. If the string does not appear in the
stream, the cursor will be placed at the end

of the text.

SYSEVAL Syseval typing aid.

blank Intentionally left blank.Reserved for future
use.

blank Intentionally left blank.Reserved for future
use.

icon The spreadsheet icon labels the Symbolic

1.24

MatrixWriter trap. By pressing the
rightmost key, you enter an empty

MatrixWriter.

[Gold]
ICON

When you have a list-matrix on the first
level of the stack you can edit it by
pressing this keystroke, like you do with
variables with the implicit STO. Once you
enter in the Symbolic MatrixWriter
environment, you will see old labels and
new ones as well. Known labels like
—GO, —STK and WID— still act in the
usual way. EQ W is a new feature that
allows you to pass a cell to the
EquationWriter for editing. The cell cannot
be empty. If you press [ON] while you are
in the EquationWriter, the old value is
restored in the cell and you will be returned
to the MatrixWriterenvironment. By
pressing [ENTERY], you validate any
modification. +ROW, -ROW, +COL,,
-COL act in the usual way. ~ROW,
—~ROW, —ROW, !{ROW, —COL,

~COL, 1COL, {COL rotate biocks of
rows or columns. If you change menu
while in the MatrixWriter, you can restore

the main menu by pressing [Blue]
[ENTER]. Within this environment you
cannot enter values other than Symbolics,

that is Reals, Complex, Units, Algebraics,

Global names. If you try to enter objects
other than these, an error will be issued.

1.25

DELCOL

Category

Aftected by flag

Input

Output

Funcfion

Notes

See Also

Examples

1.26

Symbolic Matrix Manipulation

none

2. ({Symb,; Symb,... Symb,,]
{Symb,,, Symb,,, ... Symb. }}

1: j

1. {{Symb, , ... Symb,;, Symb, ;,, ... Symb,]

{Symb,, ... Symb,., Symb,.., ... Symb_ }}

Deletes the specified column from the list.

No restrictions on the shape of the list. If an invalid
subscript is specified, an error is issued. The list-matrix
can contain any object type. If you need to delete at once
column and row, use CMPL.

CMPL, CONSTMAT, DELROW

2: {1 00}{-X "1-X"'2-X'} {-1 O -4}}
1: 1

DELCOL [ENTER]

1. {{ 0 0]
{"1-X" '2-X'}
{ 0 -4}

DELETE

Category Meta-object Manipulation

Affected by flag none

Input obj,

" Objo

o obj,

4 obj,
3: n
2: from
1. to

Output obj

Ob]from1

: 0bjio4 4

B o,
1 n-ABS(from-to+1)

Function Deletes a block of the meta-object, updating the counter.

Notes - (from) and (to) can be given in any order. Values out of

range will generate an error message. When you delete all
the objects, on the stack remains only a 0 (the counter).

See Also DELETE, MOVE

Examples 6: “delete afterthis line”
5: “garbage”
4. “garbage”
3: “garbage”
2. “last”

1: 5

2 4 DELETE [ENTER]

K} “delete afterthis line”
2: “last”
1 2

1.27

DELROW

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.28

Symbolic Matrix Manipulation

none

2. {{Symb, , Symb,, ... Symb,, }

'{Symbm'1 Symb,,, ... Symb,. }}
i

1: {{Symb,, Symb,, .. Symb,.}

{Symb,,, Symb,,, ... Symb,; .}

{Symb,,,, Symb,,, ... Symb;,; .}

(Symb,, Symb,, ...Symb,}}

Deletes the specified row from the list.

No restrictions on the shape ofthe list. If an invalid
subscript is specified, an erroris issued. The list-matrix

can contain any object type. If you need to delete at the
same time a pair of crossing column and row, use CMPL.

CMPL, CONSTMAT, DELCOL

2. {{100}{’-X""1-X""2-X’} { -1 0 -4}}
1: 1

DELROW [ENTER]

1: {{’-X"'1-X'"2-X"}

{ -1 0 -4}

DETERM

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

Symbolic Matrix Manipulation

-3 (Symbolic Result)

1: {{Symb,; Symb,, ... Symb,]

(Symb,,, Symb,,, ... Symb,,, }}

1. Symbolic

Calculates the determinant of a square symbolic matrix.

The result has not been simplified yet. You can use
EXPAND and COLCT or the sample program EXCO
described in Chapter 31 of the HP-48 User’s Manual. The
algorithm being used is described in the Hidden
Commands Reference.

The algorithm is optimized and makes large use of
pivoting. The precision of a numeric result varies from
case to case. Sometimes is more precise than DET, while
in other case is worse.

SQUARE?

INVRT, MATMENU, PRSYMB

1; X 4 -1°X-2/Y)
[0 1 X '2*°Y)
(YIXX -8 XY)
{ 0 1 Y 'Y-2*X))

DETERM [ENTER] EXCO [ENTER]

2-1/X*Y*2-8/X*Y"3-2/X*Y+X*Y"2+4*X"2-X"3+12*X*Y
-2*Y"2+X-Y

1.29

DIMS

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

1.30

Symbolic Matrix Manipulation

none

1: {{Symb, , Symb,, ... Symb, . }

{Symb,, Symb, ... Symb_.. }}

2. {{Symb, , Symb,, ... Symb,}

{Symbm,1 Symb,,, ... Symb,,, }}
1. {rc)

Returns the dimensions of the list-matrix, checking matrix
consistency. If a dimensional error is detected, an error
messagge is issued.

No check is made on object types. If you want to check it,
use MSYMB?.

CONFORM?, MATWRT, MSYMB?, SQUARE?

INVRT, MATMENU, PRSYMB

EQUAL?

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Symbolic Matrix Manipulation

none

2: {{SymbA, , ... SymbA, '}

(SymbA,,, ... SymbA__ }}
1; ((SymbB] ;... SymbB, 1]

{SymbB,,, ... SymbB,}}

4; {{SymbA, , ... SymbA,]

[SymbA_ ... SymbA_ _}}
3: {{SymbB,.': SymbB,',',"

{SymbB,;... SymbB,,}}
2: {mn}

1:
1

1:

{{SymbA, ,...

{SymbAm:{...
{{SymbB, , ...

(SymbB,, ...

{{SymbA,, ...

[SymbA,_, ...
{{SymbB; ; ..

olSymme

Checks if both list-matrices have the same dimensions. If

dimensions mismatch a 0 is returned.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input

CONFORM?, DIMS, MSYMB?, SQUARE?

MATMENU

SymbaA, 'n}

SymbA_,}}
SymbB, .}

SymbB,,.}

SymbA,}

SymbA_,J}
SymbB, .}

SymbB,,}}

1.31

EXT—

Category

Affected by flag

input

Output

Function

Notes

See Also

Examples

1.32

Type Conversion

none

1. obj

1: addr

Returns the memory address where the object is stored.
When the address is less than ph the objectis stored in
ROM.

EXT— is particularly useful to decipher External Objects.
Extemal is the raw representation of a system address.
Making it a system binary, makes the thing a new ball
game. Externals are explained in Appendix C. A list of
Extemals is given in Appendix D.

—~EXT, SYS—, —SYS.

1 EXT— [ENTER]

1; <2A2C9h>

#2A2C9 SYSEVAL [ENTER]

1: 1

TRUE [ENTER]

1: External

EXT— [ENTER]

1: <03A81h>

—EXT

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

Type Conversion

-5 to -10 (Binary Wordsize) and -11 to -12 (Binary
Integer Base) only when the input numberis a binary
integer.

1. addr

or

1 #addr

1. Obj

Pushes on the stack a ROM address.

If at the address specified begins a machine language
routine, the stack display will show External on the first
level. Unfortunately the HP-48 represents with 'External’
meaningless address too, thus pay attention before using
an External. When you supply an address at which an
RPL object is stored, the Stack display will show you the
correspondent text representation. A sequence of threads
will be displayed as a stream of Extemals.

Meaningful Externals are collected in the Appendix D.

EXT—-, =PRG.

L—TH, SHRINK, TH—L.

1: #30794h

—EXT [ENTER]

1 External

[EVAL]

1. “HPHP48-x" x = revision letter (A,B,C,D or E)

1: #2BOF2h

—EXT [ENTER]

1: Long Real

1.33

FACTOR

Category

Affected by flag

Input

Output

input

Output

Function

Notes

See Also

Applications

1.34

Symbolic Matrix Manipulation

-3 (Symbolic Result)

2: {{Symb, , Symb,, ... Symb,/ }

{Symb,,, Symb,,, ... Symb,,. }}
Symb

1 {{Symb*Symb, ; Symb*Symb,, ... Symb*Symb,, }

{Symb*Symb,,, Symb*Symb,, ... Symb*Symb,., }}

2: ({(SymbA, , SymbA,, ... SymbA,}

(SymbA,,,SymbA,_ ,... SymbA,, }}
1: ({SymbB]| SymbB[... SymbB,

{SymbBm1SymbB,,, ... SymbB,,J}

1. {{SymbA, ;*SymbB, ; SymbA,,*SymbB,, ... SymbA,*SymbB, '}

{SymbA,,*SymbB,, SymbA_,*SymbB,, ... SymbA_*SymbB,1}

Multiplies all the elements of the list-matrix by the
Symbolic value Symb or performs in-place multiplication
between pairs of elements.

A one-dimensional array must be written as one-row or
one-column two-dimensional array. In order to avoid
run-time errors the flag -3 must be clear, otherwise it will

be necessary a numeric value for each symbol to carry out
the calculation numerically. :

Theroutine does not check for symbolic values. The
reason is explained below:

The routine makes use of a hidden command which
allows you to pass the operator unevaluated. Moreover the
operatoris not restricted only to symbolic object but can
work on all pairs of elements for which that operation is
meaningful.

ADD, DETERM, MULT, SQUARE?, SUBT

MATMENU

FALSE

Category

Affected by flag

Input

Output

Function

Notes

See Also

Type Conversion

none

1: External (FALSE)

Pushes on the stack the system boolean FALSE.

System booleans are machine language routine addresses
which merely return themselves when evaluated. The
command —TOrF turns a system boolean into a real
boolean.

EXT—, TRUE, —»TorF

1.35

FIND

Category

Affected by flag

Input

Output

Function

See Also

Examples

1.36

String, List and program editing function.

none

2: stri 2: prg 2. list
1. str2 1 obj, 1 obj,

2 input_object
1 Found: occurences

Returns the total number of occurences of an object or
substring within a composite object or string respectively.

REPLACE

2: {“”24{2“”}}

1 : “y

FIND [ENTER]

22 {"24{2"})
1 Found: 2

2. . “ABCDABCDEFABC”

1. “ABC"

FIND [ENTER]

2: “ABCDABCDEFABC”

1: Found: 3

1: « = n « n ROLL DROP»»

{ ROLL } OBJ— DROP FIND [ENTER]

2: « — n « N ROLL DROP »»

1: Found: 1

IDNT

Category

Affected by flag

Input

Output

Function

See Also

Applications

Examples

Symbolic Matrix Manipulation

none

1. n

1: {{1 0...0}
{0 1..0}

00..1)

~ Returns the identity list-matrix of order n.

CONSTMAT

MATMENU

1: 3

IDNT [ENTER])

1: {{100])
{010])
{001}}

1.37

KEYWAIT

Category

Aftected by flag

Input

Output

Function

Notes

1.38

Input/Output

none

2 <KEYh>
1 <SHIFTh>

Waits indefinitely for a keypress. The [ON] key is trapped
like any other key.

The Keyboard is numbered, starting from the upper left
corner down to the lower right corner in row major order.
The key associated to A is numbered <1h> and the last is
<2Fh> (49d). KEYWAIT detects shifted keys so that

[ALPHA], [Gold] and [Blue] cannot be trapped
singularly. The shift status is so encoded:

<1th> no SHIFT This encoding system requires
<2h> [Gold] fewer processing than that required
<3h> [Blue] to dispatch a key trapped with 0
<4h> ELEY WAIT. Moreover the [ON] key is
<5h> [alta) [Gold] trapped like any other key.
<6h> [alta] [Blue]

The KEYWAIT internal routine is the most simple

application of what HP calls Parameterized Outer Loop,
also known as ParOuterLoop. This routine is the core of
any interactive built-in application thanks to its flexibility.
The GRAPHics editor uses the same basic routine as
KEYWAIT ! ParOuterlLoop is well explained in the
documentation provided by HP as HP-48 RPL compiler
Doc, you can easily get as EQuCALC Goodies disc #4.

JOINR

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Graphics

none

2: Grob,,.
1: Grob,,,

1 Grob,ymx h

Appends the grob on the first level to the right side of the
grob on the second level.

Grobs must have the same height. The result is placedin a
new grob.

JOINUP, RPT

—~FONT, PROBJ

1.39

JOINUP

Category

Affected by flag

Input

Output

Function

Notes

See Also

1.40

Graphics

none

2. Grob
1. Grob: : ,h

1: Grob,, , (h+))

Appends the grob on the first levelto the top side of the
grob on the second level.

Grobs must have the same width. The result is placed in a
new grob.

JOINR

L2M

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

List and Stack Manipulation

none

N+1: "MARK'’
N:' obj,

T
1 {obj, obj, ... obj,}

Collects all the objects between the mark and the TOS.
The mark is always removed from the stack.

If no mark is there on the stack, L2M defauits to DEPTH
—LIST. This command is useful to group together the
output of a command of which we cannot know in

advance the exact number ofparameters.

With this command you can set the user free to decide
what parameter to use and what to discard without
annoying him with verbose questions.

'MARK is a private mark. Hidden functions make use of
an alternate mark to avoid collision with user defined

programs.

L2M, MARK, META

3: 'MARK
2. “Enter as many numbers

- as you want”
-1 {V}

« IFERR INPUT
THEN
KILL

END
OBJ—
L2M OBJ-
1-

« MAX »

RPT
“The greatest is ”
SWAP +

7 DISP 7 FREEZE

1.41

LINES—

Category

Atfected by flag

Input

Output

Function

Notes

See Also

1.42

String and Meta-object Manipulation

none

1: str

N+1: str,

2. str,
1: n

Splits the string into several lines breaking at linefeeds.

Linefeeds are used by the 48 as newline characters in the
editor. Moreover they are translated to the sequence CR
LF during the transmission to a printer when the
translation parameter in the global variable |IOPAR has a
value greater than 0. LINES— removes the linefeeds, but
blows up on the stack the string in several chunks.
However the routine ignores linefeeds falling between
double quotes.

—LINES.

—LINES

Category String and Meta-object Manipulation

Aftected by flag none

Input N : str, obj,

5 s, obi,
1 n n

Output 1; str

Function Joins objects by means of a linefeed.

Notes It is the inverse of LINES—,

See Also LINES—, SPLIT

Applications PROBJ

1.43

LOC

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.44

String Manipulation

none

3. str,
2. str,
1: pos

1. pos

Seeks Strin Str; starting from position POS. If no match
is found it returns 0, otherwise the absolute location of the

match.

LOC is an extension of POS.

MEMBER, SPAN

3: “abcdabcdabed”

2. “abc”
1 2

LOC [ENTER]

1: 5 |

LOP1

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

List Manipulation
none

2: {obj, obj; ... obj,}< {cmd, cmd, ... cmd,)

1. {obj, obj, ... obj,}

Given an operand string in level 2 and an operatorstring
in level 1, applies the operator to each element of the
operand-list and puts the result in a new list.

The operator list must return one and only one result at a

time. If the operator returns more than one object as result,

use LOPN. This command has got aspects in common
with the induction postulate:

1) define a procedure working on a single object
2) proof if it works on the first element.
3) apply to all elements.

LOPN, LVOP, METOP

2 {234}
1; {INV —-Q}

LOP1 [ENTER]

1; {'1/2°'1/3'’1/4’ }

VARS [ENTER]

1: { PROG1 PROG2 PROGS }

{ DUP BYTES NIP SWAP —TAG } LOP1 [ENTER]

1. { :PROG1:307 :PROG2:8604.5 :PROG3:1233 }

1.45

LOPN

Category

Affected by flag

input

Output

Function

Notes

See Also

Examples

1.46

List Manipulation

none

2: {obj, obj, ... obj,,}
1: { prg, prg, ... prgy}

1: { {obj, ; ... obj; o}

{obj, ... Obi,o}

Given an operand list in level 2 and an operator list in
level 1, applies the operators to each element of the
operand-list, collects the results in a list and puts it in the

result list.

Each operator must take as argumenta list. The output of
the first operatoris used as input for the second and so on.

LOP1, LVOP, METOP

VARS [ENTER]

1: { PROG1 PROG2 PROGS3 }

{ BYTES) LOPN [ENTER]

1; ({ #1AE1 307)
(#11D1 8718
(#113D 214.5})

LVOP

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

List Manipulation

none

3 { obi, by ... Obj,)
2: {obj, objj, ... obj,}
1: { cmd, emd, ... cmd,}

1: {obj, obj,... objmm(n'p)]

Applies each operator to the pairs of elements taken from
the operand-list in levels 2 and 3.

When the operand-lists have different size, exceeding
objects are ignored. If you need to perform a calculation
based on the current value of the counter, use the

identifier 'idx’ as counter. It will be replaced by the actual
value.

LOP1, LOPN, METOP

3: {123}
2: {1020}
1 {+)

LVOP [ENTERY]

1: {1122}

3: {35}
2: {11}

1: { SWAP / }

LVOP [ENTERY]

1: | { 0.333333333333 0.2 }

3: {1*(2,0) 30 5}

2: {0* X 307
1: { SAME { idx } IFT }

LVOP [ENTER]

1. {24)

1.47

MARK

Category

Aftected by flag

input

Output

Function

Notes

See Also

1.48

Meta-object Manipulation and Stack Handling

none

1: "MARK'

Puts the private mark on the stack. A mark delimits an
unbound meta-object.

'MARK is an unresolved global name. Do notstore any
object in it.

C2M, L2M

MATWRT

Category

Affected by fiag

Input

Output

Function

Notes

See Also

Applications

Symbolic MatrixWriter

-15 through -18 and -45 through -50, -51

1: {{Symb, , Symb,, ... Symb, }

{Symb,, Symb,_, ... Symb,, }

1. {{Symb, , Symb,, ... Symb, }

'{'éymbp'1 Symb,, ... Symb,. J}

Allows interactive editing of a symbolic list-matrix.
Details aboutthe editor under CSTMENU,

MATWRT isthe sole visible command oflibrary 822
(Symbolic MatrixWriter). Hidden commands of Library
822 are not supported and cannot be used for software
development. Future SmartROM extension will use this
Library number.

CSTMENU

CALENDAR

1.49

MEMBER

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.50

String Manipulation

none

3. str,
2. str,
1: pos

1: pos

Returns the absolute position of the first character in Stry
comprised in Sftrp, starting from position pos. If no match
is found, returns 0.

MEMBER is useful to skip text given a particular set of
characters,typically punctuation characters or delimiters.

Frequently used string-constants has been stored in ROM
to save memory:

DIGIT$ =“0123456789"
alfaLOW$ = "ABCDEFGH...XYZ”
alfaUPP$ = “abcdefgh...xyz”

They are accessible in the fifth page of menu $&L in CST.

Try also 821 250 —Xlib [ENTER] [EVAL] and 821
251 —Xlib [ENTER] [EVAL]

MEMBER and SPAN are useful to check input from the
user, for the presence or absence of certain characters.
Typically they are used to implement parser routines in
conjunction with SPLIT, SUB and other String |

manipulation functions. Appendix H lists hidden string
functions.

SPAN, SPLIT

3: “123456789A12DEF”

2. “ABCDE"

1: 11

MEMBER [ENTER]

1: 13

META

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Meta-object Manipulation

none

1. n

N+1: 1

3 n-1
2: n
1: n

Creates a real meta-object in increasing order.

META is useful to create index arrays in conjunction with

—ARRY.,

METOP, NDUPN, SRT, STRD

CALENDAR

1.51

METOP

Category

Affected by flag

input

Output

Function

Notes

See Also

Applications

Examples

1.52

Meta-object Manipulation

depends on the operators passed for evaluation

N+1: obj,

3. obj,
2. n

1: list

N+1: obj,

2: obj,
n1:

Applies a sequence of commands evaluating to a single

result to each object of the meta-object. The final result is
a meta-object of the same size as of the oniginal one.

The list in level 1 must contain a sequence of commands
whose result is a single object. This convention, in

practice, does notrestrict the usage of METOP. When
you use up an object doing some operation, you can refill
the empty with a boolean or a dummy object.

LOP1, LOPN, LVOP

L-TH, TH—L

7: #45h
6: 37

5: <22h>
4: 12

3: #11h
2. 5

1. { =SYS}

METOP [ENTER]

6: <45h>
5: <25h>
4: <22h>

3: - <Ch>
2: <11h>
1: S

MGET

Category

Affected by flag

input

Output

Function

Notes

See Also

Applications

Symbolic Matrix Manipulation

none

3: {{Symb, , ... Symb, , ... Symb,}

{Symb,,, ... Symb;,... Symb,.}

{Symb,,, ... Symby,... Symb-}
[2:

1. k

1: Symb,

Extracts an element from a list-matrix.

No check is made on the type of the objects contained in
the list, nor on the consistency of the structure of the

matrix. This feature lets you extract elements from two

dimensional lists of arbitrary structure. If the pointee is

missing an error is issued.

MPUT

MATMENU, PRSYMB

1.53

MOVE

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.54

Meta-object Manipulation

none

N+4: obj,

obj,-

obj,,

Objapove

obj,
n

from
to

aboveS
a
p
e
e
G
:
o
o

N+1: obj,

Objtrom.1

Objio4

ObjaboveJ

Oblfrom

objy,

0b]above

abjn
1 n

Shifts the block of objects delimited by from and to above

objectabove.

Top of stack contains the counter while level 2 contains
the last object of the meta-object (as if it were the last
element of a list). The first element of the meta-object lies
on level n+1(after the execution of the command).

Input parameters from and t0 can be given in any order. If
you specify for above a value greater than N, the section
will shift after the tail of the meta-object.Despite of
COPY, MOVE does not allow a value for destination
between from and to

DELETE, COPY

Follow on the next page.

Examples “| stay here”
“l get moved”
“me to0”
“I'll go up”
“End”
5

3 5 MOVE [ENTER]

S
O
,

OD

2

6 “| stay here”
5 “ll go up”
4. “I get moved”
3. “me t00”
2 “End”
1 5

“I'll stay here”
“l get moved”
“me to0”
“I'lt go up”
“End”
5

3 6 MOVE [ENTER]

2
N
N

“| stay here”

“l get moved”
“me too”

2

6
5:
4 “End”
3:
2
1 5

1.55

MPUT

Category

Affected by flag

Input

Output

Function

See Also

Applications

1.56

Symbolic Matrix Manipulation

none

4: {{Symb, ;, Symb,, ... Symb, . }

2
w

.lSymbm'1 Symb,,, ... Symb,,. }}
i
k
Symb

{{Symb, , Symb,, ... Symb,, ... Symb,}

{Symb,; Symb,, ... Symb ... Symb,}

{Symb,,, Symb,,, ... Symb,,, ... Symb_}}

Replaces the value contained at location (i,k) with Symb.

MGET, MSYMB?

MATMENU, PRSYMB

MREV

Category

Affected by flag

Input

Output

Function

See Also

Examples

Meta-object Manipulation

none

N+1: obj,

2 obj,
1: n

N+1: obj,,

2. obj,
1: n

Reverses the order of the objects in the meta-object.

SRTD

1; [123456]

OBJ— OBJ— DROP MREV —ARRY [ENTER]

1: [654321]

157

MSBIT

Category

Affected by flag

Input

Output

Function

Notes

Examples

- 1.58

Type Conversion

-5 through -10 for binary integers only

1. n 1. <n> 1 #n

1: msbit

Returns the position of the most significant bit in the
mantissa of the input number.

Real numbers are automatically rounded to integers before
the operation.

MSBIT returns a value between 0 and 20. 0 means no bit

set.

The value returned complies with the following definition:

MSBIT=INT(LOG2(n))+1 for n#0.

MSBIT=0 for n=0.

1. h

MSBIT [ENTER]

1. 3

MSYMB?

Category

Affected by flag

Input

Output

Function

Notes

See Also

Symbolic Matrix Manipulation

none

1: {{Symb, , Symb,, ... Symb,.}

ISymby,, Symby,; .. Symby, }

2. {{Symb, , Symb,, ... Symb, _}

) i{éymbm', Symb,, ... Symb,,. }

or

m*n+2;
m*n+1:

3
2.
1:

Symb,,
Symbt2

gyntax: Obj

.S"ymb

(13"
0

Checks the contents of the list-matrix. Any object whose
type is not a Real, Complex, Unit, Symbolic or Globalis
tagged with the string “Syntax” and the list-matrix is
decomposed on the stack.

MSYMB? does not check dimensions. To check

dimensions use DIMS.

CONFORM?, DIMS, EQUAL?, SQUARE?

1.59

MULT

Category

Affected by flag

Iinput

Output

Function

Notes

See Also

Applications

Examples

1.60

Symbolic Matrix Manipulation

-3 (Symbolic Result)

2: {ISymbA, , SymbA,, ... SymbA, .}

(SymbA_, SymbA,_, ... SymbA_ }}
1: ({SymbB; , SymbB,5... SymbB,]

{SymbB,; SymbB,, ... SymbB,,}}

1 {{Symb, , Symb,, ... Symb, /}

{Symb,,; Symb,... Symb,,}}

Performs row by columns multiplication between
symbolic arrays.

List-matrices must have compatible dimensions, thatis if
the first array is a (m,n) the second must be (n,p). We
called this special property conformability (see under
CONFORM?). When the aforementioned condition is
violated, an error is issued. If the flag -3 is set, run-time

erros may happen if an identifier cannot be resolved to a
numeric value. In-place multiplication is performed by
FACTOR. The last example below shows you the
difference between row by column and in-place
multiplication.

CONFORM?, FACTOR

MATMENU, PRSYMB

2: ({12}'X "X-1"}]
1: ({'-X -1}

MULT [ENTER]

1: {{’-X-2")
{ 'X*-X-(-1+X)" }}

2: {{12}{67}) {{12}{67}}
1: {{21}{34}} {{21}{34}]

MULT [ENTER] FACTOR [ENTER]

1; {{891){3334}) {22){1828))

NDUPN

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

Meta-object Manipulation

none

2
1:

N+1:

2
1:

Creates a meta-object by duplicating a given object.

Obj
n

Obj

Obj
n

If n=0 NDUPN creates a null meta-object.

META

1: { hello }

4 NDUPN [ENTER]

W
O

1:

{ hello }
{ hello }
{ hello }
{ hello }
4

[hello)

0 NDUPN

1: 0

1.61

NIP

Category

Affected by flag

Input

Output

Function

See Also

1.62

Stack Manipulation

none

2: Obj,
1 Objg

1 Objg

Removes from the stack the object on the second level.

AAB, BAA, BAB, BBA, BCAC, BCDA, CAB, CBA

NULL

Category

Affected by flag

Input

Output

Function

Notes

See Also

Type Conversion

none

1 obj

1: obj (null)

Replaces the input object with the null object of the same
type respect to the addition operation.

Only the objects listed below have a correspondent null
object.

Type Null element

0 0

1 (0,0)
2 “n

3 [0...0] or [[0...0]...[0...0]}
g K0,0)...(0.0)] or {1(0,0)...(0,0)}...[(0,0)...(0,0)]]

6
7 0
9 0
10 #0h
" Blank ,,,
12 inherits from the ancestorif defined.
13 O_unit

- 20 <0Oh>

A Tagged object inherits ancestor’s type.

Polymorphism is a property of RPL language (at user
level). It allows you to design object-independent
algorithms. Of course some operations make sense only
with certain entities, but setting the algorithm free from
object slavery, you will save time later, when you need to
recycle the routine.

The NULL command lets you design recursive algorithms
or loop structures independently from the input object
type. Typically such algorithms need some initialization

- code in order to start a chain calculation. The + (plus)
Command is the most flexible operator built in the 48.
The NULL command lets you initialize every routine
based on concatenation or addition without knowing in
advance the object type.

RPT

1.63

Examples

1.64

:tag:{ 12 3] NULL [ENTER]

1: {}

1; [01 5]
[43-2]

NULL [ENTER]

1; [[000]
[000]]

PARSE

Category

Affected by flag

Input

Output

Function

Notes

String Manipulation

-5 through -10 (wordsize), -15 and -16(coordinate

system), -17 and -18 (angle mode) :

1: str

4. str
3 <last>

2: prg 2: “characters”
1 External (TRUE) 1. External (FALSE)

Pérforms the parsing of the input string. If no syntax error
is detected an object containing the executable code is
returned along with the system boolean TRUE. Otherwise
the original string, the absolute position of the last
character scanned and the text containing the syntax error
are returned along with the system boolean FALSE.

By extending the system parser,it is possible to handle
unsupported object types like system binaries. The
example given below shows a possible technique, you
could enhance at your will.

on-the-fly parser handling system binaries:

« 0 — current initializes replacement counter

« {}’$SUBSTSTO initializes temporary storage
area

DO PARSE —TorF parses input string

IF NOT THEN if error then

NIP take apart the string

SPLIT OVER DUP

'$SUBST’ STO+ and saveit.

CAB + SWAP take the rest of the string

“$sub” 'current’ INCR + give a nameto the substring

REPLACE DROP replace all the occurences of
. the string with the identifier

+ reconstruct the string for

parsing.

0 prepare to parse again

ELSE 1 exit parsing

END

UNTIL

1.65

1.66

END loopback if error during parse

1 -PRG make it a program

IF current THEN if any replacement

$SUBST '
OBJ—-DUP 2+ retrieve strings and prepare for

loop

ROLL 1 ROT

FORIi

“$sub” i + OBJ- build indentifier

ROT 1 SPLIT parse unrecognized text

ROT DROP NIP “#”

SWAP + EndOfString SPLIT

DROP DUP

IF “” SAME

THEN DROP

ELSE +

END

OBJ— —S8YS

REPLACE DROP convert into a sysbin and
replace all the occurrences.

EXT -
END » '$SUBST’

PURGE EVAL »

'Parse’ STO

Try it on this string

“« (0,0) 3 0 360 60 <1h> <2h> 821 247 —Xlib »”"

1: « (0,0) 30360
60 <1h> <2h>

821 247 —Xlib »

EVAL [GRAPH]

PKMETA

Category

Affected by flag

Input

Output

Function

Notes

Meta-object Manipulation

-56 Beep

N+5: obj,

6 obj
5: n o
4: begin
3. current
2: lines
1. row

[ENTER] [ON]

N+5: obj,
N+4: obj,

6: obj,,
5. n 5: objy,
4: begin 4. n
3: current 3: begin
2. objcurrent+begin 2. current
1 1 1. 0

Shows a catalog of a specified number of lines beginning
on a specified display line. The selection of the object is
interactive and mantains the functionalities of the built-in
catalog.

Command parameters are so defined :

obj,

ob,
n

input meta-object.

begin

index of the first object on which beginning the page
minus one (from 0 to n-lines).

current

current element within the page (from 1 to lines).

lines

height of the page in lines (from 1 to 8-row). row starting
row of the display (from 1 to 7). When using a value less

than 2, FREEZE may be required.

Values exceeding the limits are rejected with an error.

Selecting an object means moving the pointer to the line
containing the object and press [ENTER]. Once you press
[ENTER]the catalog is exited and the selected object is
duplicated as shown in the stack diagram. The selection
may be aborted by pressing [ON]. In this case only the
last pointer position is returned. Arrow keys perform

1.67

1.68

pointer movements in the same way the built-in catalog
allows.

PKMETA is very flexible because each action associated
to a key may be redefined. Each defined key must be
associated to a program stored in user memory. The
following table summarizes the PKMETA auxiliary
programs and data structures and the default keys along

with their actions:

Global Name Keycode

KEYS

ACTIONS

BADKEY

ATTN

DOWNARR

UPARR

ENTER

PGUP

PGDOWN

TOP

BOTTOM

ENHANCE

n/a

n/a

n/a

<2Dh>
<th>

<11h>
<1h>

<0Bh>
<th>

<18h>
<1th>

<0Bh>
<2h>

<11h>
<2h>

<0Bh >
<3h>

<11h>
<3h>

n/a

Action

Mantains the list of defined keys.
Each element of the list is a list
containing two system binaries.
The first number represents the
absolute key number h to Dh, the
second represents the shift plane h
to h. This encoding system matchs
KEYWAIT format.

Mantains the list of the actions
associated to the keys. The list
must always have at least one
element. The first element is a
name of the program that must be
called when an undefined key is
pressed. By default this name is
BADKEY. The second element
corresponds to the first keycode
stored in KEYS and so on.
ACTIONS must always contain a
number of actions equal to
SIZE(KEYS)+1. Otherwise a
special error code will be issued.

The action taken when an
undefined key has been pressed.

The action associated to the
pressing of [ON]. By default it
aborts the selection.

The action associated to the
pressing of [{]. It moves the
pointer downwards, eventually
scrolling up the page by one line.

The action associated to the
pressing of [1]. It moves the
pointer upwards, eventually
scrolling down the page by one line.

The action associated to the
pressing of [ENTER]. By default it
confirms the selection and exits the
catalog.

The action associated to the
pressing of [Gold][] . It displays
the previous page. -

The action associated to the
pressing of [Gold] [!]. it displays
the next page.

The action associated to the
pressing of [Blue] [1]. Moves the
pointer to the top of catalog.

The action associated to the
pressing of [Blue] [!]. Moves the
pointer to the bottom of the catalog.

The routine that displays the
current line and the pointer.

NOR n/a The routine that cancels the pointer
by the currentline.

All the programs described above can be modified at your
will. There are 5 parameters stored in temporary variables

which contain the information you need to take some
action. They represent the current value of the input

parameters passed on the stack. Please note that this
values are stored as system binaries and notas real

numbers.

n counter Keeps stored the total number

of elements of the meta-object
(the counter)

0 begin This is the offset to the first
page line (element) which begins

the page.

c current This is the current element

element within the page.

r row This is the row ofthe display
on which the page is anchored.

h lines This is the total number of
lines per page.

These variables can be accessed by name or by their order
in the temporary variables chain. If you know the entry

points to recall and store temporary identifiers by their
creation order, you can use them freely. The variables
have been created in the order shown in the table above,

that is n is the fifth of the chain and h is the first. To recall

h use entry point #613B6h. Howeverthe safest wayis to
recall and store them by name.

Remember to change the current values according to

underlying data structure. When PKMETA is running, on
the stack there is only the body of the meta-object without

the counter.

You can add or modify or change name simply modifying
the ACTIONS list and updating, if necessary the KEYS
list. All the customization of the command is with you.

1.69

PRG—

Category

Affected by flag

Input

Output

Function

Notes

1.70

Program Editing, Meta-object Manipulation and Type
Conversion

none

1: prg

N+1: ext,

5 e,
1. n

Splits a program in its meta-object form.

A program is a collection of objects and pointers like a list
or an algebraic expression. The main difference between

programs and other composite object lies in its direct
execution capability opposite to the indirect execution
capabilities oflists and algebraics. Direct execution means
that once the prolog of the program is executed, it starts
executing objects within the program, while lists and
algebraics merely push themselves on the stack. Once
they are on the stack these objects can be executed via
EVAL. Using PRG— you will be able to modify in
whatever manner you want a compiled program, deleting,
moving, changing the objects it contains. The possibility

to modify compiled programs directly on the stack makes
much faster editing session of large programs,typically
when you need to swap objects or make little changes in

the source. Nevertheless PRG— opens a wide range of
applications dealing with program editing and in fact the
SmartROM uses heavily this kind of commands. We
suggest you try to edit a program via Interactive Stack.

May be you ramain quite surprised after expanding a User
RPL program on the stack. In fact the built-in parser often
adds hidden threads to perform safely dangerous
operations like pushing an identifier on the stack
unevaluated. Pay attention not to delete these hidden
threads ! Moreover, as you will see, programming

structures collect the commands between delimiters in a

program object. To expand this kind of program, you need
to move the object on the first level of the stack and call
PRG— again,then after editing it, you must recontruct

the program with —PRG and move back the program to
the original position.

A nice thing about PRG— is thatit can split also built-in
functions and commands as SIN or STO. These
commands appear,as any other internal program, as a

stream ofpointers to machine language routines and
objects whose interpretation is impossible without
commands like EXT—. If you want to understand the
difference between so-called functions and commands,
read the Notes under command

See Also

Applications

Examples

EXT—, —EXT, —=PRG

L—TH, SHRINK, TH-L, UPTRIM

«|FO>
THEN DROP SWAP
END »

PRG— [ENTER]

9: «
8: IF
7. 0
6: >

5: THEN
4. DROP SWAP
3: END

2. »
1: 8

1.71

—-PRG

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

1.72

Meta-object Manipulation, Program Editing and Type
Conversion

none

N+1: ext,

2 ext,
1 n

1: prg

Builds up a program object from a meta-object.

See under PRG—.

EXT—, —EXT, PRG—

L—TH, SHRINK, TH—L, UPTRIM

—R

Category

Affected by flag

Input

Output

Function

Notes

See Also

Type Conversion

-5 through -10 when the inputis a binary integer

1: <nh> 1 #n 1: Char

1: n

Converts the input number into a real.

—R accepts also real numbers as input. This feature sets

you free to use —R also when the object type should not
require any conversion.

—B, —Char, EXT—, —-EXT, —»SYS

1.73

RDOWN

Category

Affected by flag

Input

Output

Function

Notes

See Also

1.74

Stack Manipulation

none

N+2: obj,

T+2: gbi,

3: obj,
2 n
1. t

N: obj,

N-T+1: Sbjn
N-T: obj,

1 obj,

Rolls down n objects t times.

The command is smart enough to choose the best roll
direction (upwards or downwards). Rolling down 100
objects 99 times is a good exercise of aerobyc dance for
your 48, but it is not that kind of exercise we really need
to do. We had better to roll up 100 objects one time !

RUP, XLVLS

RDROP

Category Stack Manipulation

Affected by flag none

Input
U+2: liv,,

Pe2 v,

3: v,
2 p
1; u

Output .
Uu: v
P1: livyy

1: liv,

Function Deletes the segment ofthe stack delimited by levels p and

U.

Notes p and u can be given in any order.

See Also RDUP, SHIFT, XLVLS

Examples 5: ~ “first”
4: “to getrid”
3: “to get rid”
2: “second-last”

1. “last”

4 3 RDROP [ENTER]

3: “first”
2: “second-last”

1: “last”

1.75

RDUP

Category

Affected by flag

input

Output

Function

See Also

Examples

1.76

Stack Manipulation

none

P43 v,

6;3: lwu

D+3: vy

4 liv,
3: p
2 u
1: d

i,
liv,

livy,
Iivp

Bet: i,
D: livg

1 liv,

Copies the segment of the stack delimited by p and u
above level d. |

RDROP, SHIFT, XLVLS

“first”

“get copied”
“get copied”
“second-last”
“last”

3 1 RDUP [ENTER]

S
h
o
h
O

4

7 “first”
6: “get copied”
5: “get copied”
4: “second-last”
3 “get copied”
2 “get copied”
1 “last”

REPLACE

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

String Function, List Manipulation and Program Editing

none

3. str, 3. Prg 3. List
2. str, 2. obj, 2. obj,
1. str, 1. obj, 1. obj,

2. str 2. Prg 2. List
1: Replaced:n 1. Replaced:n 1. Replaced:n

Substitutes all the occurences of the search-key with the
object or string given and returns the total number of
replacements.

The replacements are limited to objects stored in user
memory. Because some internal routines are recursive or
reentrant, the search level is limited to threads stored in
RAM. This preserves from endless loops. Internal
routines of the SmartROM are able to perform selected
substitutions at arbitrary depth within threads. Refer to the
Hidden Commands Reference for more information on
this topic.

FIND

3: « 4 ROLL SWAP DROP { OVER 4 ROLL } »
2: ROLL
1: ROLLD

REPLACE [ENTER]

2: « 4 ROLLD SWAP DROP { OVER 4 ROLLD } »

1. Replaced: 2 |

3: “ABC ABC ABC”
2: “ABC”

-1 “HELLO”

REPLACE [ENTER]

2: “HELLO HELLO HELLO”
1. Replaced: 3

1.77

REV

Category

Affected by flag

input

Output

Function

Notes

See Also

Examples

1.78

String Manipulation

-5 to -10 (binary integers only)

1. str 1: {obj, obj, ... obj,} 1: #abcde

1. str 1. {obj, obj,,_; ... obj,} 1: #edcba

Reverses the order of the characters for strings, the order
of the objects for lists and the order ofthe digits for binary
integers.

Binary integers are reversed according with their actual
size. User binary integers may be no longer than 16
nibbles (in hex mode). However the 48 can handle binary
integers of arbitrary size. For example, when you apply
BYTES to an object, the binary checksum you get is
always 4 nibbles long, no matter the current wordsize is.
Of course the display shows it according to the wordsize,
but its size remains 4 nibbles.

MREV

1. “123456789A12DEF"

REV [ENTER]

1: “FED21A987654321"

1: {ABC}

REV [ENTER]

1 {CBA}

Supposing current wordsize of 64 bit.

1: #123456h

REV [ENTER]

1: #6543210000000000h

ROMV

Category

Atfected by flag

Input

Output

Function

ROM Version

none

Shows information about the SmartROM.

1.79

ROWCOL

Category

Aftected by flag

Input

Output

Function

Notes

Examples

1.80

String Manipulation

none

2: str
1: pos

3: str
2: row
1: col

Computes the coordinate of the absolute position of a
character in terms of rows and columns, by counting the
linefeeds contained in the inputstring.

The coordinates returned by ROWCOL can be used as
parameters in the input list of command INPUT to place
the cursor at a certain point within the editor. Typically
this method is used to place the cursor on a particular

occurence of a substring, previously found with LOC or
POS.

“HELLO BOYS, THIS IS THE THIRD LINE OF
TEXT' [ENTER]

DUP SIZE ROWCOL [ENTER]

3: “HELLO BOYS, THIS I...”
2: 3

1: 18

RPT

Category

Affected by flag

Input

Output

Function

Notes

See Also

String Function, List Manipulation, Utility, Graphics

none

2: str 2: n
1 n 1 str

or

2: { Obj,... Obj,} 2: n
1: n 1: { Obj;... Obj,}

or

2 #b 2. n 2: Grob,, ,, 2: n
1: n 1. #b 1 n 1 Grob,, , i

or

2 prg 2. n 2: Global 2: n
1: n 1. prg 1: n 1. Global

1. str...str 1 { Obj,... Obj,,... Obj,... Obj,}

1: #bbbb..b 1 Grob () x h

or

N : Obj

3 Obj

Chains data objects n times or executes n times a given
procedure or identifier.

RPT is one of the most flexible commands of the
SmartROM. Thanks to its fast loop generator,it can link
string and list quicker than any other command seen up to
date. Try with a string of ten characters repeated 1000
times. You want believe to your eyes !

RPT is useful at most when you need to perform iterated
operations without referencing counters. RPT does not
mantain stack integrity, so that you can push or drop
objects from the stack freely. If you have a DEMO
program you want to iterate almost indefinitely, try this:

'DEMO’ 1000000 RPT.

The loop normally cannot be interrupted. If you need to
interrupt it press [ON] [C].

In the examples given below procedures are standard
programs. Nevertheless you can push on the stack

- individual commands by doing so:

{ MAX } OBJ— DROP

METOP

1.81

Examples

1.82

2. {123}
1: “ABC”

2 { 3 RPT } METOP [ENTER]

3. {123123123}
2. “ABCABCABC”
1: 2

« RAND 10 *IP » 10 RPT

10: 3
9. 7

8: 5
7 2
6: 7

5: 0
4. 8
3: 3

2: 6
1 0

« MAX » 10 RPT [ENTER]

1: 8

Suppose you want to move a hundred variables from user
memory to PORT 1 where you have a 128 K RAM:

1: {Name, Name, ... Name,q)

OBJ— « DUP RCL BAAPURGE 1 —=TAG STO »

RPT [ENTER]

RUP

Category

Affected by flag

Input

Output

Function

Notes

See Also

Stack Manipulation

none

N+2: obj,

T+2: Bi)j,

3 obj,
2: n
1. t

N: obj,,

T+1: Sbjn
T: obj,

1 obj

Rolls up n objects t times.

The command is smart enough to choose the best roll
direction (upwards or downwards). Rolling up 100 objects
99 times is silly. It is better roll down 1 time !

RDOWN, XLVLS

1.83

SHIFT

Category

Affected by flag

input

Output

Function

Notes

See Also

Examples

1.84

Stack Manipulation

none

P43 v,

U+3: Iwu

D3 liv,

4 v,
3: p
2: u
1 d

P vy,
P v,

v,
liv,

D+1: v,
: livy

i liv,

Moves a segment of the stack comprised fromlevel p to
level u above level d.

Stack-oriented commands require one parameter less than
their meta-object-oriented counterparts. On the other hand
meta-objects let you know exactly how many objects you

shall deal with.

RDROP, RDUP, XLVLS

“I stay here”
“I get moved”
“me too”
“U'l go up”
llEnd”

3 1 SHIFT [ENTER]

S
O

4

S “| stay here”
4: “I'll go up”
3: “I get moved”
2 “me t00”"
1 “End”

SPAN

Category

Affected by flag

Input

Output

Function

Notes

See Also

String Manipulation

none

3. str,
2. str,
1: pos

1: pos

Returns the absolute position ofthe first character in Str,
not comprised in Strp, starting from position pos. If no
match is found, returns 0.

A typical usage of SPAN is when checking for the
presence of extraneous characters, especially when the
input string comes from the user. Suppose the user must
enter a numeric value without decimal point and
Exponent. To check the string you can do so:

3. “758833" Thisis the string given by the
user.

2. "0123456789" This is the string containing
allowed characters

1. 1 Beginning position

SPAN [ENTER]

1 0

Another frequent usage is when you need to skip blanks

between words. In this case the test string must contain
only a blank : * ”. the position returned (if any) is that of

next non-blank character. You could also ignore periods
or any other punctuation by appending them to the test

string.

‘o lets you skip blanks, periods,
commas and semicolons.

Frequently used string-constants has been stored in ROM
to save memory:

DIGIT$ =“0123456789"
alfaLOW$ = "ABCDEFGH...XYZ”
alfaUPP$ = “abcdefgh...xyz”

They are accessible in the fifth page of menu $&L in CST,

Try also 821 250 AXlib [ENTER] [EVAL]and 821 251
AXlib [ENTER] [EVAL]

MEMBER

1.85

Examples 3: “123456789A12DEF”
2. “1234567890"
1: 3

SPAN [ENTER]

1: 10

1.86

SPLIT

Category

Affected by flag

Input

Output

Function

Notes

Examples

String Function and List Manipulation

none

2. str 2. { obj, obj, ... objp ... obj, }
1: p 1: p

or

2: p 2: p
1. str 1: { obj, obj, ... obj, ... obj, }

or

2. st 2: { obj, obj, ... obj... obj, }
1. str 1: obj

3. str, 3. {obj, ... obj4}
2. str, 2 objp
1. stry 1 {objg,... Objp}

Splits the string or the list in three chunks:

3: Beginning chunklevel
2: Middle chunk level

1: End Chunk

Empty string orlists are valid input objects.

If p is greater than the total size of the object, it is
considered as SIZE(obj). If p is equal to O or the
search-key is missing an erroris issued.

Please note that the original object can be recontructed
with two consecutive + (addition) operations.

Follow on the next page.

1.87

Examples

1.88

2: “123456789A12DEF”
1: 5

SPUT [ENTER]

3: “1234”
2. 5"
1: “6789A12DEF”

2. “123456790”
1: "456"

SPLIT [ENTER]

3: “123”
2. "456"

1: “790"

2 {12345}
1: 6

SPLIT [ENTER]

3: {1234}
2: 5

1: {}

2: l 1 “abC” ’x/y!l

1: “abc”

SPLIT [ENTER]

3: {1}

2: “abc”

N

SQUARE?

Category

Affected by flag

input

Output

Function

See Also

Applications

Examples

Symbolic Matrix Manipulation

none

1 {{ Symb, , ... Symb, . }

{ Symb,, ... Symb_1}

3: {{ Symb, , ... Symb, , |

{Symb,,; ... Symb,. }} |

| { Symb,; ... Symb,, }}
1. 1 1: 0

Checks if the list-matrix is square. If yes it returns 1 along
with matrix dimensions otherwise 0.

DETERM, EQUAL?, CONFORM?

INVRT, MATMENU, PRSYMB

1: {XYZ)
{13-2}}

SQUARE? [ENTER]

2: HXYZ}{13-2}}
1. 0

1.89

SRDIFF

Category

Affected by flag

Input

Output

Function

Notes

'See Also

Examples

1.90

List Manipulation

none

2: List
1 obj

1: pos

Returns the position ofthe first object different than Obj.
If all objects are the same as Obj returns 0.

The implementation of a routine performing a test on all
elements ofa list is straightforward in internal RPL.

Pass 1 Create a test procedure taking two objects
from the stack and returning a system
boolean (See TRUE and FALSE).

Pass 2 Store it in a variable for easier reference.

Pass 3 Push on the stack the list and the object
being tested

Pass 4 Push on the stack the name of the variable
or directly the test procedure.

Pass § #64426 SYSEVAL [ENTER]

SRGE, SRGT, SRLE, SRLT

2. {1111123}
1: 1

SRDIFF [ENTER]

1. 6

SRGE

Category

Aflected by flag

Input

Output

Function

Notes

See Also

Examples

List Manipulation

none

2: {nyny... N}
1: n

1: pos

Returns the position of the first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF.

SRDIFF, SRGT, SRLE, SRLT

2: {1111136)}
1: 2

SRGE [ENTER]

1: 6

1.91

SRGT

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.92

List Manipulation

none

2: {ny ny ..o ny}
1: n

1. pos

Returns the position of the first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF.

SRDIFF, SRGE, SRLE, SRLT

2: {1111136]}

1: 3

SRGT [ENTER]

1: 7

SRLE

Category

Affected by flag

Input

- Output

Function

Notes

See Also '

Examples

List Manipulation

none

2. {nyn,... np}
1 n

1. pos

Returns the position of the first real number greater or

equal than n, otherwise returns 0.

See under SRDIFF.

SRDIFF, SRGE, SRGT, SRLT

2 {3342536}
1: 2.9

SRLE [ENTER]

1: 4

1.93

SRLT

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.94

List Manipulation

none

2. {nyny..ny}
1: n

1: pos

Returns the position ofthe first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF.

SRDIFF, SRGE, SRGT, SRLE

2: {34102136}
1: 2

SRLT [ENTER]

1: 5

SRT

Category

Atfected by fiag

Input

Output

Function

Notes

See Also

Applications

Meta-object Manipulation

none

N+1: obj,

2: obj,
1. n

N+1: obj,

2: obj,
1: n

Sorts the data in ascending order.

Objects must be compatible with the < operator (less
than). To this category of objects belong:

Global names
Real numbers
Binary integers
Strings

System Binaries
Tagged objects falling in one of the classes listed above

If you want to sort local names you need first to translate
into global names, then use SRT and convert them back to
Locals. To convert a Local name into a Global name back
and forth use the following procedure:

#2464F SYSEVAL Local to Global
#2465F SYSEVAL Global to Local

To apply the translation to all the identifiers you can do
the following:

N+2: Local

3: Local
2. n
1: { #2464Fh SYSEVAL)

METOP [ENTER] |

The inverse function needs only #2465Fh instead of
#2464Fh,

Symbolic values are not allowed. The hidden code is able

to sort.any data for that a sort procedure has been defined.
This means that you could sort any object given a sort
criterion. Refer to the Hidden Commands Reference for
further information.

' SRTD, MREV

alfaORDER

1.95

Examples

1.96

S
N
O
R
E
N
O
N
®
D
O “JOHN"

“MARY”
“J I M”

uSTAN»

“FRED”
upauln

“LUISE”
“HENRY”
8

SRT [ENTER]

S
N
O
A
R
A
O
O
N
D
O “FRED”

“HENRY”
“JIM”

“JOHN"
“LUISE”
“MARY”
“STAN”
upauln

8

SRTD

Category

Affected by flag

input

Output

Function

Notes

See Also

Meta-object Manipulation

none

N+1: obj,

2 obj,
1: n

N+1: obj,

2 obj,
1 n

Sorts data in descending order.

Objects must be compatible with the > operator (greater
than).

To this category of objects belong:

Global names
Real numbers
Binary itegers
Strings

System Binaries
Tagged objects falling in one ofthe classes listed above

Further information under SRT.

SRT

1.97

SUBT

Category

Affected by flag

Input

Output

Function

See Also

Applications

1.98

Symbolic Matrix Manipulation

-3 (Symbolic Result)

2: {{SymbA, ; SymbA,, ... SymbA, '}

{SymbA,_,SymbA,_ ... SymbA_, _}}
1: ((SymbB] ; SymbB,5.... SymbB,1}

{SymbB,,; SymbB,, ... SymbB_1}

1. {{SymbA, ;-SymbB,; SymbA, ,-SymbB,, ... SymbA, -SymbB,]

{SymbA,,-SymbB,,; SymbA,,-SymbB,, ... SymbA_-SymbB,1}

Subtracts the second matrix from the first. Matrices must

have the same dimension.

ADD, ADDCON, DIMS, EQUAL?, MULT, MSYMB?

MATMENU, PRSYMB

SYMBMAT—

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

Symbolic Matrix Manipulation

none

1: {{Symb, , Symb,, ... Symb, . } 1: [[NgqNyo.o Nyl

(Symb,, Symb,, ... Symb,. }} [Ny NzoNyl

N+1: Symb, N+1: Ny,

1: {m nj 1: {mn}

Decomposes the list-matrix or the array on the stack.

SYMBMAT— is useful to convert ordinary numeric
arrays into their symbolic counterpart. It handles numeric
vectors as if they were arrays 1 x m.

Note that doing:

EVAL* you get a meta-object

DIMS, MSYMB?, —SYMBMAT, TRNSP

MATMENU, PRSYMB

1: ({123]
X X171)}

SYMBMAT— [ENTER]
1
2
3
’X’

IX-1l

-1
{23}

[12345]

SYMBMAT— [ENTER]

R
N

b
S
P
N
h
N
O
R
O
®

~
—
h
N

=

1.99

—-SYMBMAT

Category

Aftected by flag

’Input

Output

Function

Notes

See Also

Applications

Examples

1.100

Symbolic Matrix Manipulation

none

N+1: Symb,

3: Symb,,
2. Symb,,
1: {r c}

1 {{Symb, , Symb,, ... Symb,.}

{Symb,, Symb,, ... Symb, 1

Assembles the data on the stack in a symbolic matrix. If
not enough objects are on the stack an error is issued.

The command does not check the type of the objects. This
feature lets you build list-matrices for arbitrary purposes.

CONSTMAT, DIMS, MSYMB?, SYMBMAT—,
TRNSP

MATMENU, PRSYMB

7: 1

6: 2

5: 3

4. 'X'
3: 'X-1
2: -1

1. {23}

—-SYMBMAT [ENTER]

1: H1 2 3}

'X'X-1-1}}

—SYS

Category

Affected by flag

Input

Output

Function

Notes

See Also

Type Conversion

-5 through -10 bynary integer wordsize (binary integers
only)

1. n 1 #n 1: Char

1 <nh>

Converts an input number into a system binary.

—SYS accepts system binaries as well. This feature sets
you free from checking in advance the type of the input
object.

System binaries are explained in detail in Appendix C.

—B, —Char, —EXT, —R

1.101

—TorF

Category

Affected by flag

Input

Output

Function

See Also

1.102

Type Conversion

none

1: TRUE 1: - FALSE

1: 1 1 0

Converts the system boolean value into a numeric boolean.

FALSE, TRUE, EXT—, —EXT

TRNSP

Category

Affected by flag

Input

Output

Function

Notes

See Also

Applications

Examples

Symbolic Matrix Manipulation

none

1: {{Symb, 1 Symbt2 ... Symb, .}

(Symb,,, Symb,,, ... Symb,,.}}

1 {{Symb, , Symb,, ... Symb,|

{Symb, gymb2o -Symb,}

Transposes the list-matrix.

The matrix may have any dimension.

SQUARE?

MATMENU, PRSYMB

1: {12}

{X-1}
{"-X"5}}

TRNSP [ENTER]

1: {{1X’-X'}
{2-1 5}

1.103

TRUE

Category

Affected by flag

Input

Output

Function

Notes

See Also

Type Conversion

none

1 External (TRUE)

Pushes on the stack the system boolean TRUE,

System booleans are machine language routine addresses
which merely return themselves when evaluated. The
command —TOrF turns a system boolean into a real
boolean.

EXT—, —EXT, TRUE, —»TorF

VER$

Category

Affected by flag

Input

Output

Function

Notes

Rom Version

none

1: “‘SMRT 1:B"

Returns the current version of the SmartROM.

It can be useful for creating programs running on different

versions of the ROM.

1.105

—XIlib

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

Type Conversion

none

2: LID
1: Num

1: XLIB LID Num

Pushes on the stack the External Library name specified.

When you put on the stack a XLIB object having a
corresponding text name, the stack display showsit
directly. If you push a so-called hidden command, there is
no way to get a text name for that object. There are two
ways to know if a XLIB is referenced:

By evaluating it: Very dangerous!

By calling the entry point # 07E99 with SYSEVAL
The last method is the safest.

If an objectis referenced by the XLIB name specified,
entry point #07E99 returns it along with the system
boolean TRUE. Otherwise it returns FALSE.

If you try to evaluate an undefined XL1B name , you will
get an error message. On the other hand ifit refers to a
routine and the stack does not contain proper arguments,
you have a big chance to loose memory data.

—EXT, EXT—

2: 2

1: 81

—Xlib [ENTER]

1: SIN

2. 821

1: 45

—Xlib [ENTER]

1: MGET

2. 821

1: 246

—Xlib [ENTER]

1: XLIB 821 246 Don'tworry |

XLVLS

Category

Affected by flag

Input

Output

Function

See Also

Examples

Stack Manipulation

none

P2 obj,
U+2 Ob]u

3 obj,
2. P
1. u

B by,
U:: E;.bjp

.1":: Sbh

Exchanges levels p and u.

RDROP, RDUP, SHIFT

5 “ABCDE”
4: 1

3 2

2: 3
1 “hello”

5 XLVLS [ENTER]4

5. 1
4 “ABCDE"
3: 2
2 3
1 “hello”

1.107

1.108

Appendix A

Appendix A

Care of the SmartROM

The SmartROM does not require maintenance.

Limited One Year Warranty

The SmartROM is warranted by Smart Technology against
defects in materials and workmanship for one year from the

date of original purchase. Warranty is automatically
transferred to new owner if you sell the product or give it as a

gift and remains in effect for the original one-year period.
During the warranty period, we will repair or, at our option,

replace at no charge a productthat proves to be defective,
provided you return the product, shipping prepaid, to Smart

Technology.

The warranty does not apply if the product has been damaged

by accident or misuse or as the result of service or
modification by other than Smart Technology.

No other express warranty is given.

Smart Technology makes no express or implied warranty with

regard to the software furnished. Programs are made available
solely on an ’as is’ basis and the entire risk as to its quality
and performance is with the user. Should documentation and
programs prove to be defective, the user (and not Smart

Technology or any other party) shall bear the entire cost ofall
necessary correction and all incidental or consequential
damages. Smart Technology shall not be hable for any

incidental or consequential damages in connection with or
arising out of the furnishing, use or performance of the
documentation and programs.

Service Center

Whether your unit is under warranty or not you can ship it for
repair to our Service Center. If your warranty has expired,

there will be a charge for the repair and for shipping costs.

The Service Center is located in Modena ITALY.

A.l

Appendix A

A.2

SMART TECHNOLOGY
Via Varese 67

41100 Modena, ITALY

phone 059-440404

fax 059-304490

Nommally Your unit will be repaired within five (5) working

days of receipt. |

Service Repair Charge

There is a standard repair price (STREP) for out-of-warranty
repairs.

Out-of-Warranty units returned after repair are warranted for a
limited 90 days period against defects in materials or
workmanship.

Shipping Instructions

If your unit requires service, please follow these shipping
instructions:

® Include a description of the problem detected.

® If under warranty, include documentation
proving the date of purchase or repair.

® Ship the unit m a protective packaging to
prevent additional damages.

Shipping to Smart Technology is at your charge. Shipping
costs to return the unit are paid by Smart Technology and will
be included in the bill. On out-of-warranty repairs, the unit
will be returned C.O.D.

Technical Assistance

Smart Technology is committed to provide strong after-sale
customer support. If you need specific information on this
product or technical help on HP Calculators, you can call the

number given above.

Appendix B

Appendix B

Objects structure

Objectclassification proposed herein follows the
order estabilished by the system function TYPE. For
each type of object internal code used by dispatching
routines is given too.

Each object is composed of a Prolog,i.e. the header
of the object that determinesits behavior during
direct or indirect evaluation and its data body along
with its structure, total dimensions and characteristics.

Dimensions (length in nibbles) are given in the form:

(Prologs) ... (Data,). Each different item represents a

logic unit whose length is specified in nibbles by the
subscript.

Note that the 48 arranges data in memory in reverse
order, so that the prolog is written with the least
significant nibble coming first. All examples are
given as they would appear in memory during a
Memory Scanner session. If you don’t know what the
Memory Scanner is, save important datafirst and

press [ON] [D] [BKSP].
[+] and [-] let you shift back and forth by 1 nibble.
[*] and [/] let you skip over 256 nibbles.
[1] and [!] let you skip over 4K nibbleat a time.
Never use [EVALY]! For more information on
Memory Scanner, check BBS contents on this topic

or read the HP-48 Handbooks as those of James
Donnelly and Bill Wickes.

B.1

Appendix B

Real number

Type 0

Internal Type <1h>

Prolog <02933h>

Structure (Prologs) (Exponent;) (Mantissa,) (Sign ;)

Dimensions 21

Data (Exponent3)

BCD Exponent in ten’s complement (-500 to 500)

(Mantissa,)

BCD Mantissa

(Sign)

Sign: 0 = positive, 9 = negative

Example 0 is equal to 339200000000000000000
pi is equal to 339200009535629514130
-1 is equal to 332900000000000000019

B.2

-11 is equal to 332901000000000000119
-5 is equal to 332909990000000000059

Complex Number

Appendix B

Type 1

Internal Type <2h>

Prolog <02977h>

Structure (Prologs) (Exponent;) (Mantissa ;) (Sign;) (Exponent;)
(Mantissa,,) (Sign;)

Dimensions 37

Data The Real part is composed by the first number while the
imaginary part comes next. Number representation is the same

as for reals.

B.3

Appendix B

String

Type

Internal Type

Prolog

Structure

Dimensions

Data

Notes

Example

B.4

2

<3h>

<02A2Ch>

(Prologs) (offsets) characters.

5 + offset

The total number of characters is (offset-5)/2. (offset-5) must

always be an even number.

Characters are stored byte reversed.

“CIAO” is equalto: C2A20D000034E414F4
“isequalto: C2A2050000

Appendix B

Real array

Type

internal Type

Prolog

Structure

Dimensions

Data

Notes

3

<4h>

<02E48h>

(Prologs) (offsets) (Real Prologs) (n-dlmS) (dim)) ... (dim,)

Ry- Ryipyy dim,...dim,)

5 + offset.

Matrices are stored in row major order incrementing the
rightmost counter faster.

It is possible to create n-dimensional order arrays. However
there are no provisions in the system for handling individual

elements when n is greater than 2. If you put on the stack a

3-dimensional array, you will get only “Array of reals”,

B.5

Appendix B

Complex array

Type 4

Internal Type <4h>

Prolog <02E48h>

Structure (Prologs) (offsets) (Complex Prolog) (n-dim) (dim,) ... (dim,))
(Cdim1 ... 1) ... (Cdim | dim, ... dim,)

Dimensions 5 + offset.

Data Matrices are stored in row major order incrementing the

rightmost counter faster.

Notes It 1s possible to create n-dimensional order matrices. However

there are no provisions in the system for handling individual

elements when n is greater than 2. If you put on the stack a

3-dimensional array, you will get only “Array of complex”.

B.6

Array

Appendix B

Type

Internal Type

Prolog

Structure

Dimensions

Notes

4

<4h>

<02E48h>

(Prologs) (offsets) (Data Prolog) (n-dim) (dim,) ... (dim,)

(Data,) ... (Data,)

5 + offset.

You can create non-numeric arrays for storing
type-homogeneous data. Unfortunately there are no provisions
to handle efficiently this kind of objects. Error Messages in

HIDE area are stored in several one-dimensional string arrays.

If you want to store some data preserving it from editing,

non-numeric arrays are a good place because of their

inaccessibility.

B.7

Appendix B

List

Type

Internal Type

Prolog

Structure

Dimensions

Data

Notes

Example

B.8

5

<5h>

<02A74h>

(Prologs) Obj; Obj, ... Obj,, (Ends)

5 + Length(Obj,) + Length(Obj,) + ... + Length(Obj,)) + 5

A list is a composite object whose body 1is a sequence of

objects or pointers to objects terminated by a special pointer
<0312Bh>.

The list object is similar to program objects and symbolic
expressions. If you wantto translate a Symbolic expression
into a List, change its prolog to <02A74h>. When you
evaluate a List or a Symbolic Expression through EVAL,
special code is called to change the prolog of the composite
object into the prolog of a program object.

{} is equal to 47A20B2130
{1"} isequalto 47A209C2A2FD55082130

or to 47A20339200000000000000010C2A2050000B2130

Global name

Appendix B

Type

Internal Type

Prolog

Structure

Dimensions

Notes

Example

6

<6h>, <Ah>

<02E48h>

(Prologs) (Length,) characters.

7 + (Length) * 2

Maximum lenght of an indentifier is 255 characters with no
restrictions on the name. However there are restrictions due to
the parser safety rules, which prevents you from creating
names conflicting withreserved variables used by the system.

'MARK is equal to 84E205072D41425B4

B.9

Appendix B

Local name

Type 7

Internal Type <7h>

Prolog <02E6Dh>

Structure (Prologs) (Length,) characters.

Dimensions 7 + (Length) * 2

Notes See on the previous page.

Example matA is equal to D6E2040D6164714

B.10

Appendix B

Program

Type 8

Internal Type <8h>

Prolog <02D9Dh>

Structure (Prologs) Obj, Obj, ... Obj,, (Ends)

Dimensions 5 + Length(Obj,) + Length(Obj,) + ... + Length(Obj,)) + 5

Notes A program is a composite object whose body is a sequence of
objects or pointers to objects terminated by a special pointer
8Bh. Main difference with List and Symbolic lies in its direct
execution capability.

Example

Internal program performing Rot Dup2 without stack
checking:

D9D2059230CA130B2130

B.11

Appendix B

Algebraic

Type 9

internal Type <9h>, <Ah>

Prolog <02AB8h>

Structure (Prologs) Obj; Obj,... Obj, (Ends)

Dimensions 5 + Length(Obj,) + Length(Obj,) + ... + Length(Obj,) + 5

Notes Symbolic objects are similar to program objects and symbolic
expressions. If you wantto translate a Symbolic expression
into a List, change its prolog to A74h. When you evaluate a
List or a Symbolic Expression through EVAL, special code is
called to change the prolog of the composite object into the
prolog of a program object.

B.12

Binary integer

Appendix B

Type

Internal Type

Prolog

Structure

Dimensions

Data

Notes

10

<Bh>

<02A4Eh>

(Prologs) (offsets) nibbles

5 + offset

Raw nibbles.

Binary integers may exceed 64 bit width. However intemnal
arithmetic routines are tailored for handling 64 bit max
integers. Other internal routines (like Append or Size) work
well independently of integer length. A curious aspect of a
Library structure is that the execution, decompile and text
tables are stuffed in huge binary integers objects. User defined
binary integers generally have a standard length of 16 nibbles
independently of the actual wordsize.

Example

This is the shortest form of

#1234 wich transiates to : E4A20900004321

B.13

Appendix B

Graphic object

Type 11

Internal Type <Ch>

Prolog <02B1Eh>

Structure (Prologs) (Offsets) (Rowss) (Columnss) nibbles

Dimensions 5 + offset.

Data Graphics objects are stored in row major order using a bit for

each pixel on a byte-aligned scheme. Thus, each row of pixel

must have an even number of nibbles eventually padding with
garbage bits the last byte. The least significant bit of each

nibble represents the leftmost pixel of 4 pixel block.

Example

Take the character A in the font ROMS8x 14: |

E1B820B2000E00008000000000183C66C6CEF6C6CE6C0O
00000

1 00
2 00
3 Lok 01
4 LLXEKE 83
5 LLEE kR Cé
6 JKE Lk 6C
7 KKK | 6C
8 % %k e K k% ok EF

9 AT L 6C
A JKE Lk 6C
B JKE Lk 6C
C . 00
D... 00
E . 00

Tagged object

Appendix B

Type

Internal Type

Prolog

Structure

Dimensions

Notes

Example

12

<Dh>

<02AFC>

(Prologs) (Length,) characters Obj

7 + (Length) * 2 + Length(Obj)

Tagged objects does not inherit the behavior of the ancestor
type unless you make a recursive call to the routine being

executed after deleting the tag.

PIGREEK: 3.14159265359 is represented by :
CFA2070059474255454B4339200009535629514130

B.15

Appendix B

Unit

Type

Internal Type

Prolog

Structure

Dimensions

Example

B.16

13

<Eh>

<02ADAI>

(Prologs) (value) (string) ... (string) (opers) ... (oper5) (Ends)

5 + 21 + Length(string)+ ...+ Length(string) + 5 * num(oper)
+5

1.5129_m"2 is equalto:

ADA20339200000000000921510C2A20700006ED2A227
801 68B01B2130

Appendix B

Xlib name

Type 14

Internal Type <0Fh>

Prolog <02E92h>

Structure (Prologs) (LID3) (Numj)

Dimensions 11

Data External Library Names are uniquely identified by a Library
Identification Number and a library-local command number.
System User commands are double-face. They have a fixed
address pointer which allows faster execution and
memory-saving storage. However if you put a command on

the stack and store it in a global name in order to send it to a
PC, special code in the STO command changes the address

pointer of the command into the respective External Library
Name to avoid transferring rom-based code.

B.17

Appendix B

Directory

Type

Internal Type

Prolog

Structure

Dimensions

Data

B.18

15

<2Fh>

<02A96h>

(Prologs) (Attach 3) (offsetl) (00000) Namen Obj,, (offset

n+1) Namen-1 Obj_-1 (offsetn) ... Namel Obj, (offset2)

8 + offsetl + 5

Objectare stored in reverse order. (offset;) points to the field
(offset,) at the bottom ofthe directory where lies the first
object. A sequence of backward offsets lets you jump like a
frog till the last object at the top of the directory. The last
offset field (00000) marks the end of the chain. The Attach
field retains the Library identification number of one Library.
In the Home directory this field counts the number of library
actually attached to the HOME dir.

Library

Appendix B

Type

Internal Type

Prolog

Structure

Dimensions

Data

16

<8Fh>

<02B40h>

(Prologs) (offsetS) (Length 2) Characters (LID3) (Offset
TexTTbl 5) (Offset MsgTbl 5) (Offset LinkTbl 5) (Offset

Conf 5) Nibbles (Cksum 4)

5 + offset

(Length 2) Characters Library Title.

(LID;) Library IDentification number.

(Offsct TextTblg) Offsct to a binary intcger containing
command names text. The table begins with

16 ficld of 5 nibbles (80 nibbles total) cach
onc¢ of them pointing to the first command
of a given length. The first ficld points to the
first command (in alphabctical order) of

length 1.

(Offsct MsgTbly) Offset to the table of messages. The table is

(Offsct LinkTbl,)

(Offset Config,)

Nibbles

- (Cksum 4)

contained in a string-array.

Offsct to a binary intcger containing all the
cxecutable code of commands.

Offset to the configuration program of the
library.

Library contents.

Checksum.

B.19

Appendix B

Backup

Type

Internal Type

Prolog

Structure

Dimensions

Notes

B.20

17

<9Fh>

<02B62h>

(Prologs) (offset 5) (Length 2) characters nibbles

5 + offset

Backup objects normally exist only in memory ports.

Appendix B

System function

Type

Internal Type

Prolog

Structure

Dimensions

Data

18

<8h>

<02E92h>

(Prologs) (LID3) (Numjs)

11

A rom-based program is recognized as function when a
special code precedesits execution address. Formerly it is a
normal program object but it receives special handling by the
parser and decompile routines when you enter formulas in

algebraic style. The process of recognizing algebraic functions

is a bit tricky and this is not the best place where place an
exhaustive explanation. There are several bits specifying
analytic properties like differentiability and others specifing if
the program is a command or a function and where to place
the decompiled text (before, between or after). The study of

USAG program can be very helpful if you are interested.

Examplé

SIN (system function) is identified by XLIB 2 81. Its special
header is CCO and precedes the LID program in ROM. If you
scan memory a little before location B4ACh, you will see the
following sequence : -

CC0200150D9D20....

CCO0 means integrable, invertible, differentiable, function.

Thanks to this encoding system, adding external function is

very, very hard.

B.21

Appendix B

System Command

Type

Internal Type

Prolog

Structure

Dimensions

Data

Example

B.22

19

<8h>

<02E92h>

(Prologs) (LID3) (Num;)

11

A rom-based program is recognized as built-in command
when a special code precedesits execution address. Most
commands have a single nibble header (added to the six
specifying the Library ID and number) whose value is 8. It
seems that the most significant bit of this nibble play a

key-role in the game. If this bit is 0, the program is some kind
of function. The study of USAG program can be very helpful

if you are interested.

STO (system command) is identified by XLIB 2 341.

Appendix B

System binary

Type 20

Internal Type <1Fh>

Prolog <0291 1h>

Structure (Prologs) (Nibbles)

Dimensions 10

Data System binaries are the most used numeric entities throughout
the Operating System. Providing a faster throughput than real

numbers and smaller storage requirements, they are the
optimum choice for the system programmer.

Example FFFFFh is equal to 11920FFFFF

12345h is equal to 1192054321

B.23

Appendix B

Long real

Type 21

Internal Type <3Fh>

Prolog <02955h>

Structure (Prologs) (Exponent 5) (Mantissa,s) (Sign,)

Dimensions 26

Data (Exponents)

Exponent BCD in ten’s complement (from -50000 to 50000)

(Mantissa 15)

BCD Mantissa

(Sign))

Sign: 0 = positive, 9 = negative

Example Extended precision Pl is equal to

B.24

55920000009798535629514130

Long complex

Appendix B

Type 22

Internal Type <4Fh>

Prolog <0299Dh>

Structure (Prologs) (Exponents) (Mantissa,s) (Sign;) (Exponent s)
(Mantissa,5) (Sign,)

Dimensions 47

Data Real part comes first, next the imaginary part. The number
encoding system is the same as for Extended Reals.

B.25

Appendix B

Linked array

Type

internal Type

Prolog

Structure

Dimensions

Data

B.26

23

<SFh>

<02A0Ah>

(Prologs) (Offsets) (Data Prologs) (n-dim) (dim) ... (dim,))

(pointer;) ... (POINtET43rr |fim n)

5 + Offset.

This is one of the most esoteric data structures built in the 48.

In the 256K of the operating system, there is no evidence of its
existence. It seems that this structure is suitable for sparse
arrays because a missing elementis represented by a 00000

pointer. If you have more amazing news about it, we will be

glad to hear from you.

Character

Appendix B

Type 24

internal Type <6Fh>

Prolog <029BFh>

Structure (Prologs) (Byte,)

Dimensions 7

Data Contains a single-byte (a character) byte reversed.

Example Letter A is represented by : FB92014

B.27

Appendix B

Code

Type

lnternal Type

Prolog

Structure

Dimensions

Data

Notes

Example

B.28

25

<7Fh>

<02DCCh>

(Prologs) (Offsets) Nibbles

5 + Offset

The code starts at the first nibble of the body. Execution is
transferred to this location by the prolog of the object.

See the Appendix C for an explanation of the Saturn

Assembly Language.

The routine DONOTHING:

A=DATO A

DO=D0+ 5

PC=(A)

Read the address of next object Updates Thread pointer. Skip
to next execution address.

~ written in memory:

CCD20F0000142164808C

Appendix B

Library data

Type 26

Internal Type <AFh>

Prolog <02B88h>

Structure (Prologs) (offsets) (LID3) (numj) Obj; Obj, ... Obj, (Ends)

Dimensions 5 + Offset

Data Libraries may use this kind of object when they wantto
preserve data from editing till the next library call. Data
appear on the stack merely as ’Library Data’.

B.29

Appendix B

Address

Type

Internal Type

Prolog

Structure

Dimensions

Data

B.30

27

Oh

<hhhhh>

(Prologs)

5

Any object not mentioned before falls in this category.

Whetherit is possible (and safe) to add new object types to the

HP-48 RPL is not clear. Theoretically it should be. Under
normal circumstancies, this category represents atomic
threads. An atomic thread is an address where machine

language code begins. Built in machine language routines
(callable as RPL routines) have the following form:

Addr Addr+5

Prolog Nibbles....

Prolog is a S nibble offset to the location where Saturn codes

begin. By convention it should be Addr+35, but some routines
violate this convention to implement hyper-compact Dup’n
Go routines.

he Saturn microprocessor

Appendix C

Appendix C

The Saturn microprocessor

The microprocessor being used in the HP-48 family
of calculators is the evolution of the HP-71 handheld

computer and HP-28 pocket calculator. It is a low
power consumption CPU, optimized for BCD
calculation. Memory Addressing limitis,

theoretically, 1 M nibbles, that is 512 Kbytes. With

the help of bank switching software techniques the
IMb nibble barrier can be broken . Tripod Data

Systems memory cards reach 512K bytes on a single
card, by exploiting these software tricks.

The Saturn Assembly Language Instruction Set

explained on the following pages follows HP’s

original Saturn Assembler Internal Design

Specification as it is documented in the HP-71
Hardware Internal Design Specification. Mnemonics

added after the release of the HP-71 documentation

are the same accepted by HP’s unsupported Saturn
Compiler available at EQuCALC (Goodies disc n°4).

Microprocessor’s registers

The CPU is organized in several registers with
different characteristics and power.

C.1

Appendix C

Scratch

Registers

Arthmetic
Registers

- Control

registers

C.2

The Saturn microprocessc

There are five temporary registers (Scratch Registers) of 64 bit
length called RO, R1, R2, R3 and R4. These registers serve as
storage area during operations. It is possible to read and write

on specific fields ranging from 1 nibble up to the whole
register.

Four arithmetic registers (A, B, C and D) of 64 bit lentgh.
These are the working registers. Each one of theseregisters
can be accessed through the following fields:

Field Name Lengthin Length Meaning
nibbles in bits

W 16 64 WORD

A 5 20 ADDRESS

B 2 8 BYTE

M 12 48 MANTISSA

S 1 4 SIGN

X 3 12 EXPONENT

XS 1 4 EXPONENT SIGN

P 1 4 POINTER

WP P+1 (P+1)*4 WORD THROUGH
: Pointer

Register C is the most powerful of the four and allows the

most flexible exchange of data with others. RegisterD is the
least powerful because it can communicate only with C.

ST Status Register. It si a 16 bit register, where the four

most significant bits (from bit 12 to 15) are normally
accessed only by the operating system. '

PC Program Counter, 20 bit register controlling the
execution flow. It is accessible indirectly.

RSTK Return Stack. It is a (LIFO) stack with 8 levels of 20

bit where subroutine return addresses are

automatically pushed. It can be accessed also through
register C.

The Saturn microprocessor

Legenda

P

D1

ouT

SB

SR

MP

XM

Appendix C

Pointer,4 bit register specifying a nibble within
arithmetic or scratch registers. Register P determines
also the length of field WP.

Address register. 20 bit register for addressing data in
memory.

Address register. 20 bit register for addressing data in
memory.

Input Register. 16 bit read-only register used by the

system to control the keyboard.

Ouptut Register. 12 bit write-only register used by
the system to enable the keyboard and the beeper.

Sticky Bit. 1 bit field of Hardware Status Register
whose value is determined by right shift operations

of arithmetic registers.

Service Request Bit. 1 bit field of Hardware Status
Register whose value is determined by external
events.

Module Pulled Bit. 1 bit field of Hardware Status
Register whose value 1s determined by the pulling or
pushing of hardware modules.

External Module Missing Bit. 1 bit field of Hardware
Status Register whose value is determined by
software.

Saturn Assembly Language Mnemonics

The conventions explained herein are used in the following
pages to represent parameters and values which may vary in a

certain range.

Symbol Meaning

a

fs

hh...h

Hex digit which represents a number in the range 0-7
used in the instruction opcode.

Hex digit which represents a number in the range 8-F
used in the instruction opcode.

Decimal digit whose value ranges from 1 to 16. The
assembler diminishes it automatically by one.

Field selection (B, X, XS and so on).

Up to 16 hex digits.

Field Selection Table

Often in the instruction table fields are referred to as fs. In

order to isolate a specific field, you need to know exactly the

C.3

Appendix C The Saturn microprocessor

value of a specific digit in the opcode. The following table
summarizes the convention.

Field Opcode value Length

(@) (b) (d)

P 0" 8 1

WP 1 9 (P)+1

XS 2 A 1

X 3 B 3

S 4 C 1

M 5 D 12

B 6 E 2

W 7 F 16

Opcodes vs Mnemonics

This 1s the complete reference to all Saturn opcodes.

Hex Mnemonic Field

00 RTNSXM
01 RTN

02 RTNSC

03 RTNCC
04 SETHEX

05 SETDEC

06 RSTK=C
07 C=RSTK

08 CLRST
09 C=ST

0A ST=C

OB CSTEX

0C P=P+1

0D P=P-1
OEF0 A=A&B A

OEF1 B=B&C A

OEF2 C=C&A A
OEF3 D=D&C A

OEF4 B=B&A A

OEF5 C=C&B A

OEF6 A=A&C A

OEF7 C=C&D A

OEF8 A=A'B A

OEF9 B=B!C A

OEFA C=C'A A
OEFB D=D!C A

QEFC B=B!A A

OEFD C=C!B A

OEFE A=A!C A

OEFF C=C!D A

C.4

The Saturn microprocessor

OEa0l

OEal

OEaz2

OEa3

OEa4

OEab

OEaéb6

OEa7

OEa8

OEa9

OEaA

OEaB

OEaC

OEaD

OEaE

OEaF

OF

100

101

102

103

104

108

109

10A

10B

10C

110

111

112

113

114

118

119

11A

11B

11C

120

121

122

123

124

128

129

12A

12B

12C

130

131

132

133

134

135

136

137

138

139

A=A&B

B=B&C

C=C&A

D=D&C

B=B&A

C=C&B

A=A&C

C=C&D

A=A'B

B=B!C

C=C!A

D=D!C

B=B'!A

C=C!B

A=A!C

C=C!D

RTI

RO=A

R1=A

R2=A

i

R4=A

RO=C

R1=C

R2=C

R3=C

R4=C

A=RO

A=R1

A=R2

A=R3

A=R4

C=RO

C=R1

C=R2

C=R3

C=R4

AROEX

AR1EX

ARZEX

AR3EX

AR4EX

CROEX

CR1EX

CRZ2EX

CR3EX

CR4EX

DO=A

D1=A

ADOEX

AD1EX

DO=C

D1=C

CDOEX

CD1lEX

DO=AS

D1=AS

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

Appendix C

C.5

Appendix C

C.6

13A

13B

13C

13D

13E

13F

140

141

142

143

144

145

146

147

148

149

14A

14B

14C

14D

14E

14F

150a

151a

152a

153a

154a

155a

156a

157a

158x

159x

15A%

15Bx%

15Cx

15Dx

15Ex

15Fx%

16x

17x
18x

19nn

1Annnn

1Bnnnn

1Cx

1Dnn

lEnnnn

1Fnnnn

2n

3nh..

400

420

400

500

500

6300

64000

n

n

.h

D
w
w
w
w
w
o
w
w
y
r
y
p
y
p
w
y
y

Dy
t
h

H
h

t
h

H
h

H
h

H
h

H
h

n
n

u
n
u
n

0
0

D
S
U
Q
Q
.
Q
.
Q
Q
-
Q
J
Q
Q
J
{
:

hhhhh

hhhhh

hhhhh

-hhhhh
hhhhh

The Saturn microprocessor'.

The Saturn microprocessor

6000

7000

800

801

802

803

804

805

806

807

8080

80810

g8082nhh. ..

8083

8084x

8085x

8086x00

8087x00

8088x

8089x%

808Ax%00

808Bx00

808C

808D

808E

808F

809

80A

80B

80Cn

80Dn

80E

80Fn

810

811

812

813

814

815

816

817

g818a0d

818ald

gl18az2d

818a3d

818F0d

818F1d

818F2d

818F3d

g818a8d

g818a9d

818aAd

818aBd

818F8d

818F9d

818FAd

81 8FBd

GOTO

GOSUB

QouUT=CS

ouT=C

A=IN

C=IN

UNCFNG

CONFIG

C=ID

SHUTDN

INTON

RSI

LAHEX

BUSCB

ABIT=0

ABIT=1

?ABITO

?ABIT1

CBIT=0

CBIT=1

?CBIT=0

?CBIT=1

PC=(A)

BUSCD

PC= (C)
INTOFF

C+P+1

RESET

BUSCC

C=P

p=C

SREQ?

CPEX

ASLC

BSLC

CSLC

DSLC

ASRC

BSRC

CSRC

DSRC

A=A+d

B=B+d

C=C+d

D=D+d

A=A+d

B=B+d

C=C+d

D=D+d

A=A-

U
Q
w

%
U
u
Q
w

Q
o
w
y
o
Q
w

Q
A

Q
A
Q
Q

o o
M
o
M
M
M

X
X
X
N

>
o

P
th n

Appendix C

C.7

Appendix C

C.8

819a0

819al

819a2

819a3

819F0

. 819F1

819F2

819F3

81Aa00

81Aall

81Aa02

81Aa03

81Aa04

81Aa08

81Aa09

81Aa0A

81Aa0B

81Aa0C

81AFO0O0

81AFQ1

81AFQ02

81AFO03

81AF04

81AF08

81AFQ09

81AFOA

81AFOB

81AFOC

81Aal0

8lAall

8lAaal2

81Aal3

8lAald

81Aal8

81Aal9

8lAalA

81lAalB

81AalC

81AF10

81AF11

81AF12

81AF13

81AF14

81AF18

81AF19

81AF1A

81AF1B

81AF1C

81Aaz20

81lAaz2l

8lAaz22

81Aa23

8lAaz24

8lAaz28

81lAaz29

81lAa2A

81lAaz2B

ASRB

BSRB

CSRB

DSRB

ASRB

BSRB

CSRB

DSRB

RO=A

R1=A

R2=A

R3=A

R4=A

RO=C

R1=C

R2=C

R3=C

R4=C

RO=A

R1=A

R2=A

R3=A

R4=A

RO=C

R1=C

R2=C

R3=C

R4=C

A=RO

A=R1

A=R2

A=R3

A=R4

C=RO

C=R1

C=R2

C=R3

C=R4

A=RO0

A=R1

A=R2

A=R3

A=R4

C=R0O

C=R1

C=R2

C=R3

C=R4

AROEX

AR1EX

ARZEX

AR3EX

AR4EX

CROEX

CR1EX

CR2EX

CR3EX

o
P

H
h

H
h

H
h

H
h

H
h

H
h

H
h

H
h

H
h

O
0

un
un

u
n
u
n

n
n

u

The Saturn microprocessor..

The Saturn microprocessor

81lAaz2C

81AF20

81AF21

81AF22

81AF23

81AF24

81AFZ28

81AF29

81AFZ2A

81AF2B

81AF2C

81B2

81B3

81B4

81B5

81B6

81B7

81C

81D

81E

81lF

821

822

824

828

82F

831vyy

832Yyy

834yy

838yy

84n

85n

g86enyy

87nyy

88nyy

89nyy

8A0yyY

8Alyy

8A2YVY

8A3yyY

8A4VYYy

8ASyy

8AGYY

8ATYY

8ABYY

8A9YY

8AAYY
8AByYY

8ACYY

8ADyYy
8AEYY

8AFYyY

8BOyy

8Blyy

8B2yy

8B3yy

8B4vyy

CR4EX

AROEX

AR1EX

AR2EX

AR3EX

AR4EX

CROEX

CR1EX

CRZ2EX

CR3EX

CR4EX

PC=A

PC=C

A=PC

C=PC

APCEX

CPCEX

ASRE

BSRB

CSRB

DSRB

XM=0

SB=0

SR=0

MP=0

CLRHST

?XM=0

?SB=0

?SR=0

?MP=0

ST=0

ST=1

?ST=0

?ST=1

?P#
?P=

?A=B

?B=C

?C=A

?D=C

?A#B

?B#C

?CH#A

?D#C
?A=0

?B=0

?C=0

?D=0

?AH#0

?B#0

?C#0
?D#0

?A>B

?B>C

?C>A

?D>C

?A
y

o
y

oy
Y
y

Q
O
B
o
o
o
y
Y

P
p
Y

P
S
S

3
3
3

Appendix C

C.9

Appendix C

C.10

8B5yy

8B6yy

8B7vyy

8B8yy

8B9yyYy

8BAyy

8BByy

8BCyy
8BDyy

8BEyyY

8BFyy

8C0000

8Daaaaa

8E000O0O

8Faaaaa

9alyy

Salyy

Yazyy

Salyy

Sadyy

9abyy

9a6yy

Sa7yy

9a8yy

9a9%yy

9aAyy

9aByy

9aCyy
9aDyy

9aEyy

SaFyy

9b0yy

Oblyy

9b2yy

- 9b3yy

9b4ayy

Sbb5yy

9boyy

Ob7yy

Ob8yy

9b9yy

9bAyy

9bByy

9bCyy
9bDyy

9bEyy

SbFyy

Aal

Aal

Aaz2

- Aa3

Aad

Aas

Aab

Aa7

Aas

Aag

?BLC

?C<A

?D<C

?A>=B

?B>=C

?C>=A

?D>=C

?A<=B

?B<=C

?C<=A

?D<=C

GOLONG

GOVLNG

GOSUBL

GOSBVL

?A=B

?B=C

?C=A

?D=C

?AH#B

?B#C

?CH#HA

?D#C

?A=0

?B=0

?C=0

?D=0

?A#0

?B#0

?C#0

?D#0

?A>B

?B>C

?C>A

?D>C

?A<B

?BLC

?C<A

?D<LC

?A>=B

?B>=C

?C>=A

?D>=C

?A<{=B

?BL=C

?C<=A

?D<=C

A=A+B

B=B+C

C=C+A

D=D+C

A=A+A

B=B+B

C=C+C

D=D+D

B=B+A

C=C+B

>
y

oY
P
P
P
P

P
Y

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

The Saturn microprocessoy

The Saturn microprocessor

AaA

AaB

AaC

AaD

I
w
>

U
Q
O
w
y
u
o
u
o
w
w

m
o
n
o
n
o
n

]
n
o
n

I
Q
O
W
X
P
r
O
A
r
P
r
O
w
o
o
o
o
u
n

O
D
’
O
t
fi
U
O
t
fl
fi
’

5
»
O

0O

O
w
W

o
o

o
n
n
w

I
o+

o+
P
P

J
O
o
w
W
w
»
Q
X
0
w
y

D
A
W
»
U
O
W

7
..

o
O
Q
w
0
y
Y
y
Q
W

o 0

CSL

DSL

BSR

CSR

DSR

n
o
t "
t

P
R

W
H
O
U
O
W
R
»
U
O
W

C
N
W
»
U
O
w

D
I w +

+
QO

w

C=C+A

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

Appendix C

C.11

The Saturn microprocessorAppendix C

=D+CD

A

B

C3

A+A

B+B

C4

C5

C=C+C

D+DD

B

Cé

C7

=B+A
C+B

A=A+C

C8
c:Co

CA

C=C+D

A-1CC

CD

CE C=C-1

D-1CF

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

'ABEX
BCEX

CAEX

DCEXDF

A=A-B

B=B-C

EO

El

C=C-AE2

D-C

A+l

B+1

C+1

D+1

B=B-A

C=C-B

E3

A

B

E4

ES

C

D

E6

E7

E8

E9

A-C

C=C-D

A=B-A

B=C-B

EA

EB

EC

ED

EE

EF

FO

A-C

D=C-D

ASL

BSLFl

CSLF2

DSLF3

ASRF4

BSRF5

CSR

DSR

F6

F7

F8

F9

FA

FB

C.12

T'he Saturn microprocessor

FC

FD

FE

FF

A=-A-1
B=-B-1
C=-C-1
D=-D-1 >

y

Appendix C

C.13

Appendix C The Saturn microprocessor

C.14

System Calls Appendix D

Appendix D

System Calls

The Appendix lists the addresses of system entry
points,

There is no warranty that a system call will work
under any circumstance, thuswe shall be not liable
for incidental damages or loose of data consequential

to the use of this documentation.

This material has been created using Smart
Technology proprietary development system. In

some cases may be there are some differences of

interpretation respect to BBS listings.

Address Name 02DCC Code

| 02E48 Global

02911 SysBin " 02E6D Local

02933 Real 02E92 Xlib
02955 Lreal 03019 =SKPNXT

02977 Complx 0312B End

0299D LCmplx 0314C Depth
029BF Char 03188 Dup
029E8 Array 031AC Dup?2
02A0A Larray 031D9 DupN
02A2C String 03223 Swap
02A4E ~ Binint 03244 Drop
02A74 L{st 03258 Drop2
02A96 Dir 0326E DropN
02AB8 Algbr 03295 Rot

02ADA Unit 032C2 Over

02AFC Tagged 032E2 Pick
'02B1E Grob 03325 Roll
02B40 Lib 0339E Rolld
02B62 B‘ackup 03562 Count_Array_Elem
02B88 Libdat 035A9 Arry —{<>[<>]}
02D9D Prog |

D.1

Appendix D

03A81

03ACO

03AF2

03B46

03B75

03B97

03C64

03CA6

03CC7

03CE4

03D19

03D4E

03D83

03DBC

03DEO

O3DEF

03EQE

03E2D

O3E4E

O3E6F

O3E8E

O3EB1

O3EC2

O3EF7

03F8B

O3F95

O3F9F

O3FAS

O03FB3

03FBD

03FC7

O03FD1

03FDB

O3FES5

O3FEF

O3FF9

04003

0400D

04017

04021

0402B

04035

0403F

04049

04053

0405D

04067

D.2

TRUE

FALSE

T/IF_NOT

Drop_li_(2)=F

lf(2)=T_Drop/Nip

Same

Obj—<Typ>_or_<0>

TIf_h=0

T_if_h#0

T_If_h2<h1

T_If_h2=h1

T_If_h2#h1

T_If_h2>h1

h=h2+h1

h=h2-h1

h=h+1

h=h-1

h=h+2

h=h-2

h=h*2

h=h/2

h=h2_AND_h1

h=h2*h1

h2/h1—<r>_<q>
<Real>

<Cmplix>

<List>

<Global>
<Rpl>

<AKP’

<Dir>

<Local>

<Sysbin>

<Unit>

<0>

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

<9>

<A>

<C>

04071

0407B

04085

0408F

04099

040A3

040AD

040B7

040C1

040CB

040D5

040DF

040E9

040F3

040FD

04107

04111

0411B

04125

0412F

04139

04143

0414D

04157

04161

0416B

04175

0417F

04189

04193

0419D

04D64

04DD7

05023

05089

050ED

05143

05153

0516C

05176

05193

0521F

05258

052EE

052FA

05331

05459

System Calls

<D>

<E>

<F>

<10>

<11>

<i{2>

<13>

<14>

<15>

<16>

<{7>

<18>

<19>

<1A>

<i1B>

<i1C>

<1D>

<1E>

<1F>

<20>

<21>

<22>

<23>

<24>

<25>

<26>

<27>

<28>

<29>

<2A>

<2B>

<Errn>—Msg$

<llinn>—<nn><|l>

=DOERRA

First_Obj

$—Char
=RS&CNT

Cdr

Cdr$
<FFFFF>
$_Append_$
Append_list

$_Add_Char
$_Append_Char
Append_list

—Comp

—List

System Calls

0546D

054AF

0556F

055B7

055DF

055E9

05636

0567B

056B6

05733

05821

05944

05A03

05A75

05BES

05C27

05D2C

05EC7

05F42

05F61

06529

06537

06641

06657

0679B

067D2

O6E8E

06E97

06F8E

06FD1

0712A

0714D

071A2

071E5

071EE

07221

07334

073C3

073CE

073DB

073F7

07497

074D0

074E4

07D27

0811C

<n>—Alg

Comp—

Check_$=""

T_lf_Empty_List

{}
Len($)
List_Size

Get_Elem_&_Addr

<><>$Sub

<><>L.sub

Niblen_&_Cksm

#—»<h>‘

<h>—Char

'NAME'—“NAME”

R—c

C—r

Tag—

Garbage_Collect

Mem

=PSR1R0

=PUSHRO

=POP<>A

Newob

=SAVPTR

=RSTPTR

Cont_RPL

Push_Nxt_Addr

Eval_Thread_only

Eval_Next_Rtn

if_T_Then_Skip

Skip

Loop

End_Loop

If_F_Sk2_ExitLp

Counter

Next

Start_0—(1)-1

Start_1—(1)-1

Start_1—(1)

Start_(1)—(2)-1

Destroy_Locals

Sto_Locals

Sto_Pairs_L.ocal

Sto_Local

Get_<MsgTbl>_T/F

08D92
OBBED
OF33A
OF34E
OF5FC
OF615
OF6A2
OFCFA
OFD22
OFD36
10F86
11679
11CF3
11D00
11F80
128B0
1314D
1400E
14039
14065
14088
140AB
140F1
1410F
14137
1415A
1420A
142A6
142BA
142E2
142FB
15007
1501B
1502F
15048
1578D
1592D
15B31
166E3
166EF
166FB
16707
167BF
18513
1854F
18779

Appendix D

Home

TRUE_TRUE

—Unit

Unit—

Abs_U

U—-u

Unit+

Int_U

Floor_U

Ceil_U

Doerr_Syntax

Dsp_Grob

—3_Grob

—2_Grob

—1_Grob

Put_Grob

Show_Stack

Clearerr

Get_<Errn>

Errm$

—Str

Disp

Chr$

Num

Str—

Beep

$>9%
$<$
$>=$
$<=%
Freeze

Doerr_n

Doerr_#

Doerr_<>

Doerr_$

—Num

LstTok=0_&_CkD>0

Obj—String

Fix

Sci

Eng

Std

T_If_Flag_51_off

Sto_Global

Purge_Gilobal

Vars

D.3

Appendix D

1884D

18873

18887

18898

188D2

18A1E

18A5B

18A68

18A80

18A8D

18AAS5

18AB2

18B6D

18B7A

18B92

18B9F

18C34

18C4A

18C74

18C92

18CA2

18CB2

18CC2

18CCE

18CD7

18CEA

18D07

18DBF

18EBA

18ECE

18EDF

18EF0

18F01

18F12

18F9D

18FB2

1945C

194F7

1950B

195629

1957B-

1959B

195BB

19508

195FB

1961B

1963B

D.4

Last_Tok=0

$and_$
$_or_$
$xor_$
Not_$
No_Args
Check_3

Check_Depth_>=_3

Check_2

Check_Depth_>=_2

Check_1

Check_Depth_>=_1

Check_5

Check_Depth_>=_5

Check_4

Check_Depth_>=_4

Check_N

Check_Depth_>=_N

=SVLTOK

Doerr_Undef_Name

Doerr_Bad_Arg_V

Doerr_Bad_Arg_T

Doerr_Too_Few

=DOERRC

R—ABS<>

R—<h>

=PSACNT

<h>—-R

Eval_comp

Select_1

Select_2

Select_3

Select_4

Select_5

Case_Type

Check_1_Type

<Prlg>_Cklist

R2_R1—h2_h1

<h2><h1>—-R2_R1

{<>[<>)}~{RIR]}
ASR

RL

RLB

RR

RRB

SL

SLB

19658

1967B

1969B

196BB

1974F

198FE

19928

19948

19972

19992

1A105

1A125

1A140

1A15B

1A16F

1A194

1A1AF

1A1D9

1A1FC

1A265

1A2BC

1A2DA

1A339

1A36D

1A388

1A3A3

1A3BE

1A3FE

1A4A3

1A4CD

1A4F0

1A513

1AS52E

1A547

1A584

1A5A4

1A5C4

1ASE4

1A604

1A631

1A71F

1A738

1A7B5

1A858

1A873

1A8D8

1A995

System Call.

SR

SRB

R—B

B—R

—UNIT

STOALRM

RCLALRM

FNDALRM

DELALRM

TSTR

CRDIR

PATH

HOME

UPDIR

Updir

VARS

TVARS

BYTES

Obj_Bytes&Cksm

Name_Bytes&Cksm

NEWOB

T_lf_Rom_Obj

DOERR

ERRO

ERRN

ERRM

EVAL

IFTE

Ifte

IFT

Ift

s_|ft

SYSEVAL

Syseval

DISP

FREEZE

BEEP

—NUM

LASTARG

Lastarg

WAIT

Wait

Time_Wait

CLLCD

KEY

NEG

System Calls

1AATF
1AABD
1AADF
1AB67
1AC93
1ACA7
1ACBB
1AD09
1ADEE
1AF05
1B02D
18124
1B278
1B4AC
1B505
1B55E
1B5B7
1B606
1B655
1B6A4
1B72F
1B79C
1B7EB
18830
1B8A2
18905
1B94F
1B9C6
1BA3D
1BASC
1BAC2
1BB02
1BB41
1BB6D
1BBA3
1BBD9
1BCOF
1BC45
1BC71
1BCE3
1BD55
1BDD1
1BE4D
1BE9C

" 1BFDE
1C274
1C2D5

ABS

pi

MAXR
+

Ins_list

$+R
R+$

/

R"r

INV

SIN

COS

TAN

SINH

COSH

TANH

ASIN

ACOS

ATAN

ASINH

ACOSH

ATANH

EXP

LN

LOG

ALOG

LNP1

EXPM

FACT
P
FP
FLOOR
CEIL
XPON

MAX

MIN

RND

TRNC

MOD

MANT

DET

SF

CF

1C313

1C32C

1C360

1C379

1C399

1C3B4

1C3CF

1C3EA

1C403

1C41E

1C437

1C452

1C46B

1C486

1C4A1

1C4BA

1C520

1C539

1C559

1C574

1C5C5

1C5FE

1C619

1C637

1C64E

1C67F

1C783

1C79E

1C7CA

1C819

1C85C

1C8BB

1C8CF

1C8EA

1C95A

1C973

1C9B8

1CA26

1CA3A

1CA4E

1CAB2

1CAB85

1CAB4

1CAD7

1CAFO

1CBOB

1CB26

Appendix D

FS?

?{s

FC?

?fc

DEG

RAD

GRAD

FIX

Fix

SCI .

Sci

ENG

Eng

STD

FS?C

Fs?c

FC?C

Fc?c

BIN

DEC

STWS

RCWS

RCLF

Sysflag—#

Usrflag—#

STOF

—LIST

R—C

RE

IM

SUB

$_Sub

List_Sub

REPL

LIST-

List—

SIZE

$size

List_SizeR

Array_Dims

Grob_Size

Pict_Size

POS

Pos_$

Pos_List

—-STR
STR—

D.5

AppendixD

1CB46
1CB66
1CB86
1CB90
1CDB1
1CDD4
1CE28
1CEE3
1CF2E
1CF78B
1CFDO
1D009
1D02C
1D040
1D092
1DOAB
1DODF
1D186
1D2DC
1D392
1D407
1D484
1D4DE
1D524
1D565
1D5DF
1D65C
1D6B6
1D701
1D747
1D7C6
1D825
1D86B
1D898
1D8C7
1D926
1D96C
1D9BC
1DB5B
1DC00
1DD06
1DE66
1DEC2
1E07E
1EQ9E
1EOBE

D.6

NUM

CHR

TYPE

Type

Type_of_Array

Type_of_RPL

VTYPE

EQ-

Eq-

OBJ—

Alg—

—ARRY

n—Arry

{} —Arry
ARRY—

Arry—

RDM

CON

IDN

TRN

PUT

Glob_put

Array_put

List_put

Loc_put

PUTI

Glob_puti

Arry_puti

List_puti

Loc_puti

GET

Name_get

Array_get

List_get

GETI

Name_geti

Arry_geti

List_geti

Chk_for_Get_Args

Put_Ob;j '
V—

—V2

—-V3

PMIN

PMAX

AXES

1E126

1E25F

1E27A

1E29A

1E2F0

1E31A

1E344

1E36E

1E3EC

1E416

1E436

1E456

1E4E4

1E572

1E58D

1E5AD

1E606

1E761

1E783

1E7DD

1E809

1E863

1E88F

1E8DS

1E8F6

1E946

1E972

1EA30

1EA44

1EAEC

1EA76

1EAQD

1EB51

1EB65

1EB8D

1EB97

1EBBE

1EC40

1ECSD

1ECDF

1ECFC

1ED7E

1EDSB

1EE1D

1EEA4

1F1D4

1F201

System Calls

RES

ERASE

PX—-C

C—PX

PVIEW

PIXON

PIXOFF

PIX?

BOX

BLANK

PICT

GOR

GXOR

LCD~—

—LCD

—-GROB

TEXT

SAME

AND

R_and_R

OR

R_or_R

NOT

Not

XOR

R_xor_R

Any==Any

Tag==any

R==C

C==r

#

Any#Any

Tag#Any

R#c

C#r

R<r

R<=r
>=

R>=r

CR

integral

Integral

System Calls

1F500
1F542
1F55D
1F9C4
1F9E9
1FA07
1FB87
1FBA2
1FBBD
1FBDS
1FBF3
1FCOE
1FC29
1FC44
1FC64
1FC7F
1FCYA
1FCB5
1FCDO
1FCEB
1FDOB
1FD2B
1FD46
1FD61
1FD8B
1FDA6
1FDC1
1FDDC
1FDF7
1FE12
1FE2D
1FE48
1FE63
\FE7E
1FEQ9
1FEB4
1FECF
1FEEA
1FF05
1FF20
1FF7A
1FF9A
1FFBA
1FFDA
1FFFA
2001A
2003A

QUOTE

Quote(f)

APPLY

-Q

—Qpi

—Fraction

DUP

DUP2

SWAP

DROP

DROP2

ROT

OVER

DEPTH

DROPN

DUPN

PICK

ROLL

ROLLD

CLEAR

STOsigma

CLsigma

RCLsigma

sigma+

sigma-

Nsigma

CORR

CcCoV

sigmaX

sigmaY

sigmax"2

sigmaY“2

sigmaX*Y

MAXsigma

MEAN

MINsigma
SDEV

TOT

VAR

LR

PREDV

PREDY

PREDX

XCOL

YCOL

UTPC

UTPN

2005A

2007A

2009A

200C4

200F3

2010E

20133

20167

2018C

201B1

201D6

201FB

20220

2025E

202CE

2034D

203CC

20448

20538

2060C

20753

208F4

209AA

20A15

20A49

20B40

20B81

20B9A

20CAD

20CCD

20065

20EFE

20F35

20F8A

20FAA

20FD9

20FF2

210FC

2115D

21196

211E1

211FC

2123A

2137F

213D1

2142D

21448

Appendix D

UTPF

UTPT

COLsigma

SCLsigma

sigmaLINE

BINS

BARPLOT

HISTPLOT

SCTRPLT

LINFIT

LOGFIT

EXPFIT

PWRFIT

BESTFIT

SINV

SNEG

SCONJ

STO+

STO-

STO/

STO*

INCR

DECR

COLCT

EXPAN

RCL

Rcl_name

Rcl_bypth

Rcl_Pict

STO

DEFINE

PURGE

Purge_| }

Purge_PICT

MEM

ORDER

Order

CLVAR

TMENU

MENU

RCLMENU

PVARS

PGDIR

MERGE

FREE

LIBS

ATTACH

D.7

Appendix D

21461

2147C

21495

214A9

214F4

215BF

21660

21761

- 217C7

217F1
21C6F
21CE5
21E75
21E95
21EB5
21ED5
21EFO
21F24
21F62
21F96
21FB6
21FD1
21FEC
2200C
2202C
2204C
2206C
22087
220A2
220C2
220DD

- 224CA
224F4
22514

22548
22586
225BE
22633
22EC3
22EFA
22F22
22F4F
22FB5
22FD5
22FEB
23033
2305D

D.8

Attach

DETACH

Detach

Check_valid_LID

Sto_Port

Sto_Backup/Lib

Nip_TRUE

Rcl_port

Eval_Tag

Purge_Tagged

<>Attach

<LID>_Detach

XMIT

SRECV

OPENIO

CLOSEIO

SEND

KGET

RECN

RECV

FINISH

SERVER

CKSM

BAUD

PARITY

TRANSIO

KERRM

BUFLEN

STIME

SBRK

PKT

INPUT

ASN

STOKEYS

DELKEYS

RCLKEYS

-TAG

DTAG

IF

- THEN

Then

s_THEN

ELSE

END_IF
—

WHILE

REPEAT

230C3

230ED

23103

23144

23167

23180

231A0

231E1

23213

2322C

2324C

23380

233A8

233C1

233DF

23472

234C1

235FE

2361E

23639
23654

23679

23694

23689

2372E

2373F

23754

23768

2378D

237A8

23824
23879

238A4

23989

239CF

25D3A

26A2D

29FDA

2A2B4

2A2C9.
2A2DE

2A2F3

2A308

2A31D

2A332

2A347

2A35C

System Calls

DO
UNTIL
START

~ r_r_Start

r_s_Start

s_r_Start

FOR

r_r_For

s_s_For

s_r_For

NEXT

STEP

s_Step

_Step

IFERR

HALT

>>_|ocal

<<

>>

’

END_WHILE

END_DO

'stop -

'noname

{start}

If

CASE

THEN

PROMPT

{'loinprogress}

Parse_String

{}
5_Drop_Nip_True

#1111 1

T_If_Function

=POP1R+

O
N
O

A
O
N

=
O

System Calls

2A371

2A386

2A39B

2A3B0

2A3C5

2A3DA

2A3EF

2A404

2A419

2A42E

2A443

2A458

2A472

2A487

2A49C

2A4B1

2A4C6

2A4EQ

2A4FA

2A514

2A52E

2A548

2A562

- 2A57C

2A596

2A5B0

2A5C1

- 2A76B

2A799

2A7CF

2A900

2A920

2A830

2A974

2A981

2A9BC

2A9FE

2AAAF

2ABDC

2AF60

2AF73

2AF86

2D9F5

2E5AB

2EGEB

2E876

2E8D1

pi

pi_Long

maxreal

-maxr

minr

-minr

0_Long

1_Long

2_long

3_Long

4_Long

5_Long

.1_Long

.5_Long

10_Long

LongReal—R

Real —LongReal

Not_R

TIf>0

F_If_0

Abs

R—-R

Mant

R=R2+R1

~ R=R2-R1
R=R2*R1

R=R2/R1

R=1/R

Mod

Int

Cell

Floor

Server

Name_Send

{ }_Send

Finish

Pkt

2EC84

2ECCA

2ED10

2ED4C

2EDAG

2EDE1

2EDF5

2EE18

2EE6F

2EE97

315C6

34D2B

34D30

3558E

35DEB

35F8F

35FEE

36039

36278

369CB

36A2A

37B44

37BCB

3922F

3A1FC

3A4CE

3A7F3

415C9

41679

41B28

41F65

42F44

43395

433CC

4B60C

4FOAC

4F179

4F37C

4F3D1

4F3EF

4F458

4F471

4F48A

4F4A3

4F4BC

4F665

Appendix D

Baud

Parity

Transio

Cksm

Kerrm

Buflen

Stime

Sbrk

Xmit

Srecv

Closeio

{’}

<>_Arry_Read

Neg_Arry

[]—I[rept]
[1—[impt]
[R]—I[C]
Arry-Arry

Abs_{]

Det

Newob_IfNeeded

For_1—Size([])

Sleep

Upd_Menu

$_<h>_<8-h>_Disp

[ENTER]

Rcimenu

n_Tmenu

Asn

KeyWait—<#k><f>

Editor

$_$_Input

$_{ }_Input

Erase

Px—c

C—px

Sto_Pict

#h2#h1 —<h2><h1>

C—Pixon

L—Pixon

C —Pixoff

L— Pixoff

C—Pix?

L—Pix?

Px_Box

D.9

Appendix D

4F688
4FBA1
4F8D1
4F999
4F9F3
4FA2F
4FATA
4FAF7
4FB74
4FBC4
4FBF6
4FC28
4FC3C
503C5
50438
5046A
5048D
51532
5198F
519A3
519B7
51B70
51BDO
51BF8
51C16
51CD4
51CES
51CFC
51D4C
51D60
51D88
51E19
51E64
51ECS
51EFA
52062
52342
52360
52374
52D26
53784
5380E
53D04
53D15
53D26
53D4E
53D5E

D.10

C_Box

Blank

Grob+grob

Gr_L_Repl

Gr_C_Repl

Pict_Repl

Repl_list

repl$
Gr_L_sub

Gr_C_sub

Pict_sub

Inverse

Pict_invr

Text

—Lcd

Clicd

—Grob

Px—2<>

Drop+_0

C—rept

C—impt

C—-C

C=C2+R1

C=R2+C1

C=C2+C1

C=R2-C1

C=C2-R1

C=C2-C1

C=C2*R1

C=R2*C1

C=C2*C1

C=R2/C1

C=C2/R1

C=C2/C1

C=1/C

Abs_C

C=R2"C1

C=C2"R1

C=C2"C1
{H M o n

T_lf_<Flag>_Set

T/IF—1/0

b=b2_AND_b1

b=b2_OR_b1

b=b2_XOR_b1

b=NOT_b

Sl

53D6E

53081

53D91

53DA4

53DE1

S3EOC

53E3B

S3E6B5

S53EAQ

S3EBO

S53EC3

S3ED3

53F05

5429F

542BD

542D1

S42EA

S542FE

5431C

54330

54349

5435D

543F9

544D9

S44EC

54500

5452C

5453F

54552

54565

54D12

54D35

S4EAQ

S54EBS

S54EEB

54F04

5518E

551C0

551D9

5520B

55927

S5F5D

59F91

SA60F

- 5E370

60EE7

60FOE

System Calls

Sib

Sr

Srb

Rr

Rrb

Rl

Rlb

Asr

b=b2+b1

b=b2-b1

b=-b

b=b2*b1

b=b2/b1

b=R2/b1

b=b2/R1

b=R2*b1

b=b2*R1

b=R2-b1

b=b2-R1

b=R2+b1

b=b2+R1

b—R

R—b

b2==b1

b2#b1

b2>b1

b2>=b1

b2<=b1

b2<b1

Ifte(x)

Maxr

Pi

Symb—rept

Symb—impt

f—-f

Abs(f)

Int(f)

Floor(f)

Ceil(f)

Mant(f)

R=r

Symb+Symb

Alg_Len

'piflag)
Dup<n>

ABC—BAC

ABC—BA

System Calls

60F21

60F33

60F4B

60F54

60F66

60F72

60F7E

60F9B

60FAC

60FBB

60FD8

61002

6103C

6106B

6112A

611FE

6121C

6123A

6125E

61282

612A9

61380

613B6

613E7

61891

618D3

6191F

61948

61970

61993

619AD

619BC

61A02

61A2C

61A3B

61AD8

61FA9

62009

62154

62169

6223B

62266

6226F

62278

622A7

622B6

622C5

ABC—BC

ABC—CBA

3_Dropn

7_Dropn

6_Dropn

5_Drop

4_Drop

Nip

ABC—CAB

ABCD—-BCDA

5Roll

6_Roll

8Roll

7_Roll

ABC—C

3_Pick

4Pick

5Pick

6_Pick

7_Pick

8_Pick

AB—BAB

Rcl_Last_Loc

Rcl_2-Last_Loc

It#0_Dup_Skip

if_(1)=(2)_Th_El

if_T_D2_Do_Nx_Ex

If_T_Drp_Rtn

It_T_Drop2_Exit

If_T_Do_nxt_Rtn

If_F_Then_Nx_Rtn

if_T_Then

=SetT

If_T_Nx_Ex_el_Rt

if_T_Rtn

If_T_Then_Else

T_It_Rom_Ob;

=|FcT/F

Dup_T_Ilf_String

T_If_Dup_Real

T_If_Real_Array

<h>_T_lf=<0>

=|[FA=0T

=GET<>A

T_If_<h>=1

TI<>#1

T_If_<>-1=<0>

622D4
622EF
624BA
624C6
62535
6256A
6257A
6258A
6259A
625AA
625BA
625CA
625DA
625EA
625FA
6260A
6261A
6262A
62636
62747
62898
62986
629BC
62B88
62B9C
62C7D
62CA5
62CE1
62D31
62D59
62E3A
62E7B
62FB1
630B5
6312D
631B9

631E1

63209

6321D

63231

63353

63411

63498

634B6

634F7

6351F

Appendix D

T_If_<h>#0

SwapAdd$
Min(<h2>,<h1>)

Max(<h2>,<h1>)

Push_<0>
<>+3

<>+4

<>+5

<>+06

<>+7

<>+8

<>+9

<>+10

<>+12

<>-3

<>-4

<>-5

<>-6

=<>+C

AB—BAA

<h2>_<h1>_T_If_<

R_If_T_Nxt_el_Sk

If_T&T_Then

Comp—_Drop

Get_Elem

ABC —BCACA

ABC —-BCAC

R—(<h>_<h>)

AB—AAB

“_Swap

<0>_Swap

R—<h>_Swap

AB—BBA

ABC—ABCAC

10_Rolld

<2>-—list

Dup_Comp—

Dup_Chk_If_$=""

Dup_T_|f_Empty_L

Dup_Comp_Size
If_<h>=1_Skip

Dup_Loop_counter

For_1—Comp_Size

Last_Rcl&Destroy

TRUE_FALSE

Push_<0>_FALSE

D.11

Appendix D

6364B
6365F
636A0
6372C
637A4
6383A
63A6F
63AB0
63AC4
63805
63B2D
63BAA
63CFE
63D12
63D3A
63D4E
63E48
63E9D
644A3
645B1
6475C
64775
647A2

64B12
64B1C
64826
64B30
64B3A
64B44
64B4E
64B58
64862
64B6C
64B76

- 64B80

64B8A

64B94

64B9E

64BAS8

64BB2

64BBC"
64BC6

64BD0

64BDA

64BE4

64BEE

64BF8

D.12

T_If_(2)=<0>

(2)&T_If_(1)<(2)

Comp—T_If_Size=1

<h2>_<h2+h1>

<h1>_<h2>-<h1>
<>_Doerr_noOwner
Dup_T_If_=_{}

Swap_<1>

Push_<1>_<1>

If_T_Doerr_Bad

Check_Real

Dup_Not_R

If_Same_Nx_el_Sk

if_h2<h1_Th_Else

If_(2)#(1)_Th_El

If_<>_>2_Then

Iif=<0>_Do_El_Skp

It_<_Then_Else

Pos_List_<>

Pos($)

Char—$
Dtag

Dtag_level_2

<2C>

<2D>

<2E>

- <2F>

<30>

<31>

<32>

- <33>

<34>

<35>

<36>

<37>

<38>

<30>

<3A>

<3B>

<3C>

- <3D>

<3E>

<3F>

<40>

<41>

- <42>

<43>

64C02
64COC
64C16
64C20
64C2A
64C34
64C3E
64C48
64C52
64C5C
64C66
64C70
64C7A
64C84
64C8E
64C98
64CA2
64CAC
64CB6
64CCO
64CCA
64CD4
64CDE
64CES
64CF2
64CFC

64D06

64D10

64D1A

64D24

64D2E

64D38

64D42

64D4C

64D56
64060

64D6A

64D74

64D7E

64088

64092

64D9C

64DA6

64DB0

64DBA

64DC4

64DCE

<44>

<45>

<46>

<4A>

<4F>

<50>

<51>

<52>

<53>

<54>

<55>

<56>

<57>

<5B>

<60>

<61>

<62>

<B64>

<65>

<6F>

<70>

<71>

<72>

<73>

<74>

<75>

<7A>

<80>

<82>

<83>

<8F>

<91>

<92>

<QA>

<9E>

<9F>

<AD>

<A1>

<A2>

<A5>

<Ab>

<A7>

<AO>

<AA>

<AE>

<B1>

<BB>

System Calls

64DE2
64DEC
64DF6
64E00
84E0A
64E14
64E1E
64E28
64E32
64E3C
64E46
64E50
64E5A
64E64
64E6E
64E78
64E82
64E8C
64E96
64EAQ
B4EAA
64EB4
64EBE
B4ECS
64ED2
64EDC
64EE6

 B4EFO
64EFA
64F04
64FOE
64F18
64F22
64F2C
64F36
64F40
64F4A
64F54
B4F5E

 B4Fe68
64F72
64F7C
64F86
64F90
64F9A
B64FA4
64FAE

<CC>

<D0>

<E1>

<EA>

<EE>

<FO0O>

<FD>

<FF>

<100>

<102>

<106>

<107>
<110>

<111>

<123>

<124>

<131>

<132>

<133>

<134>

<135>

<136>

<137>

<138>

<139>

<13A>

<13B>

<13D>

<13E>

<151>

<200>

<205>

<311>

<411>

- <412>

<444>

<451>
<452>

<510>

<511>

<550>

<610>

<650>

<700>

<861>

<862>

<865>

64FB8

64FC2

64FCC

64FD6

64FEQ

64FEA

64FF4

64FFE

65008

65012

6501C
65026
65030
6503A
65044
6504E
65058
65062
6506C
65076
65080
6508A
65094
6509E
650A8
650BD
650D2
650E7
650FC
65111
65126
65138
65150
6515C
6516A
65176
65182
6518E
6519A
651A6
65182
651BE
651CA
651D6
651E2
651FA
65206

<86E>

<A03>

<A11>

<A12>

<A1A>

<A21>

<A22>

<A2A>

<A61>

<AB62>

<AG65>

<ABE>
<AA1>

<AA2>

<AAA>

<C06>

<C07>

<C08>

<COA>

<C0B>

- <DFF>

<EQ0>

<70000>
<FFFFF>
e

S

-5

10

180

200

360

Appendix D

D.13

Appendix D

65212

65238

65244

65254

65260

65278

65284

65290

6529C

652A8

652B4

652C0

652CC

652D8

652E4

652F0

652FC

65308

65314

65320

6532C

6533E

6534C

65358

65364

65370

6537C

65388

65394

653A0

653AC

65388

653C4

653CE

653D8

653E2

653EC

653F6

65400

6540A

65414

6541E

65425

6542C

65433

6543A

65441

D.14

14_blank$
CR$
“der”

“UNKNOWN?”

“,n
3

14 (”

(l) ”

HAY

s4de?

“/”

“+”

“.”

“="

“root”

“delta”

“‘GROB”
“C$"

| “Ofl

“qn

“on

ugn

ug"

ugm

“g"

wn

ugn

ugn

<726A5>

<72704>

<72DCF>

<72F1E>

<736F9>

<7232C>

<7260A>

<72281>

<72FE6>

char_0O

char_31

char_34

char_35

char_42

char_43

65448

6544F

65456

6545D

65464

6546B

65472

65479

65480

65487

6548E

65495

6549C

654A3

654AA

654B1

654B8

654BF

654C6

654CD

654D4

65408

654E2

654E9

654F0

654F7

654FE

65505

6550C

65513

6551A

65521

65528

6552F

65536

6553D

65544

6554B

65552

65559

65560

65567

6556E

65575

6557C

65583

6558A

char_44

char_45

char_46

char_47

char_48

char_49

char_50

char_51

char_52

char_53

char_54

char_55

char_56

char_57

char_58

char_59

char_60

char_61

char_62

char_65

char_66

char_67

char_68

char_69

char_70

char_71

char_72

char_73

char_74

char_75

char_76

char_77

char_78

char_79

char_80

char_81

char_82

char_83

char_84

char_85

char_86

char_87

char_88

char_89

char_90

char_97

char_98

System Calls

65591

35598
6559F
655A6
355AD
655B4
655BB
355C2
655C9
655D0
655D7
655DE
655E5
655EC
655F3
655FA
65601
65608
6560F
65616
6561D
65624
6562B
65632
65639
65640
65647
6564E

65655
6565C
65663
6566A
65671
65678
6567F

65686
6568D
65694
65698
656A2
656A9
65680
656B7
656BE
656E5
'656F5
65703

char_99

char_100

char_101

char_102

char_103

char_104

char_105

char_106

char_107

char_108

char_109

char_110

char_111

char_112

char_113

char_114

char_115

char_116

char_117

char_118

char_119

char_120

‘char_121

char_122

char_141
char_171

char_187

char_128

char_136

char_132

char_40

char_10

char_135

char_41

char_133

char_32

char_95

char_91

char_93

char_123

char_125

char_137

char_138

char_139

“XYZ'
“gg>>"

"y

65711

6571F

6572D

65738

65749

65757

65769

6577B

65796

- 657A6

70000

704EA

70551

70556

70579

705B0

706C5

706D5

Appendix D

ap

“y"

“ECHO”

“EXIT”

Undef$

“RAD”

“GRAD”

RAMST

KEYBUF

MENUGR

STKGRO

SAV-D1

SAV-DO

SYSFLG

USRFLG

D.15

Appendix D System Calls

D.16

Error Messages

Appendix E

Appendix E

Conformability

Type Mismatch

Invalid Sub-L.ist

Subscript Out Of
Range

KEYS/ACTIONS
mismatch

Missing Var

Error Messages

The following error messages are unique to the
SmartROM.:

Error number Error Message

33501 Conformability

33502 Type Mismatch

33503 Invalid Sub-List

33504 Argument Out Of Range

33505 KEYS/ACTIONS mismatch

33506 Missing Var

Issued when two matrices are not compatible for

row-by-column multiplication. Given a matrix
A(m,n), the second must have the form B(n,p).

Issued when a meta-object contains objects of

different types. This restriction is checked by some
commands when type homogeneity is required. A

typical example is SRT,

Issued when a list-matrix contains rows of different
size.

Issued when a subscript in a list-matrix overflows or
underflowsits valid range.

Issued when the length ofthe lists KEYS and
ACTIONS are not compatible. Length(ACTIONS) -
:= Length(KEYS)+1 :

Issued when the list KEYS or the list ACTIONS are
missing. Issued by the application —FONT when
the global name FONT is missing or cannot be found
in the search path or does not contain a valid data
structure for the operation being performed.

E.1

Appendix E | Error Messages

E.2

Hidden Commands

Appendix H

String Utilities

Binary string
Utilities

- System
' Binary Utilities

Hidden Commands

Original name

center$
find$
ifpos

lines —

—lines

itrim$
lwc$

mcentr$
member$
—msg$
norm$
null

replace$
revs
rowcol

rpt
ntrim$
span$
split$
splith
trim$
upc$

addp
expbuf
null

popp
revb
rpt

log2
ord

This appendix contains the complete list of
SmartROM hidden commands arranged in logic
categories for easier referencing. Each command
along with its entry and exit conditions is discussed
in detail in the SmartROM Hidden Commands
Reference.

XLIB number

244
156
186
142
98
225
224
245
214
220
222
125
119
218
115
114
226
215
248
105
221
223

Appendix H

H.1

Appendix H

List
Manipulation
Utilities

General

purpose

Utilities

Program
editing utilities

Stack

Manipulation
Utilities

H.2

revsys
todd

bind

checkl

chl?

cki2r

delcol

delrow
diff
findobj
getcol
idx?

inter

I2m

Iget
lop1
lopn
Iput
lvop

nget

npos

nput
null

putobj
- red
replace
rpt

splitl

splito
union .

#k
ckr
ckrol
getaddr
keywait
ncount
rptcmd

findobj
#k—$
nget
npos
nput
putobj
replace
search

splitl

c2m

hdrop
hdup
hshift

mark

mds

mus

Hidden Commands

Hidden Commands

Meta-object
“Manipulation
Utilities

Symbolic
Math Utilities

. Type
‘Conversion
Utilities

Graphics
Utilities

rd

rdown

ru
rup
xlev

xivis

ckobj

copy
delete
ma2
metax
move
mrev

‘mtop
mtopn
ndupn
pkmeta
sortany

add

addcon

apply
best
cmpl
conform?

const

delcol
deirow

det2

det3
determ

dims
dot

equal?
factor
findrow

getcol
idn

mat—

—mat
msymb?
mult
reduc
square?
srccol

subt

trn

weight

—ext
—prolog
xlib—

box
fill

gaddr

181

101
100
106

204
216
217 -

236
228
162

Appendix H

H.3

Appendix H

Object
Manipulation
Utilities

H.4

gaddup

gop
line
linetypes
patterns
polygon
ppardef
rect
rpt
scan
scanp
viill

apply
chl?
chset?
chst?
dot
findobj
nget
npos
nput
null
putobj
replace
rpt
tifc

151

247

Hidden Commands

Table of Contents

Foreword 1

Manual’'sContents« . o i i v it bt e et ee il

List of SmartROMRPLcommands. iii

Listof applications vi

Typefaces conventionse e ee vii

Typographicconventions viii

Automatic InstallationLix

Manual Installation oo, X

SmartROM Commands Reference 1

AAB ..ee ee 2

ADDCONee4

mnd-5

BAA...6

BAB ..ee e e e e e e e e e e e 7

BBA ...ee8

BCACeee9

BCDAeee 10

C2M .e e e e e e e e e e e ee 11

CABeeee 12

CBA . ..e e e e e e e e e e e 13

CHL? e e e e e e e e e e e e e e 14

1

CHST? o ottt e e e e e et ee 16

SCRAT o vee18

CMPL . . . ottt e e et e ee19

CONFORM? . . . oote20

CONSTMAT . . o oottt e e e e ee 21

COPY . oottt e e e e ee22

CSTMENU . .o ottt e e e et e e ee 24

5)516oN26

197518o27

19)5)5270)28

9)33i5121V29

DIMS . .ottt e e ee30

EQUAL? . . ot vttt et e e e ee31

2532

SEXT ottt ee33

FACTOR . . oot e e ettt e e ee 34

FALSE . ..ottt e et e ee35

FIND . vt ittt e e e e e ee36

15)137

KEYWAIT . ..ottte38

1101-39

10)1:1T40

L2M &ot41

LINES™ . ottt et it e e ee42

SLINES o v ottt e e ee43

0o44

LOPL . oottt ettt e e e ee45

LVOPee e e e e 47

MARKe48

MATWRTeee 49

MEMBERe50

METAee ee 51

METOPit i i ee 52

MGETeeee 53

MOVEeee 54

MPUT . ..eee e e e 56

MREVe57

MSBITiete 38

MSYMB?...................... 59

MULT ...e60

NDUPNiee 61

NIP.ee e e e 62

NULLee e e e 63

PARSEe65

PKMETAe67

PRG—ee70

—=PRGee72

=Ree73

RDOWNee74

RDROPe75

RDUPe76

REPLACEo, 77

REV ...e78

ROMV ..ee79

m

081

RUP ..eee ee 83

SHIFTeee 84

SPAN ..ee e e ee 85

SPLITee e e e e e e e 87

SQUARE?ee 89

SRDIFFe e e e ee 90

SRGEee e ee 91

SRGTe e e e e e e e e e e e e e 92

SRLEee93

SRLT . ..eee e e e 94

SRTeee 95

SRTDee e e e e e e e 97

SUBTeee ee 98

SYMBMAT= . .o ovoeeeeeenn ..P 99

—SSYMBMATot... 100

=SYSee101

—TortFee102

TRNSP . ..e103

TRUEee e ee104

VERSe105

=XHb ..e106

XLVLS ..eee107

Appendix A 0. .. Al

Careofthe SmatROM eeA.l

LimitedOne YearWarranty v ooA.l

Service Center i e e e e e e e e e e e e e e e A.l

ServiceRepairCharge A2

Shipping Instructions A2

Technical Assistance A2

AppendixB, B.1

ObjectsStTucture v et e e e e e e e e e B.1

Realnumber B.2

Comp]ex'Numbere eeB.3

SINGee e e e e e e e e e B.4

RealarmayeB.5

Complexarray,B.6

ATTaY . . . o oe e e e e e e e e e e e e e e e B.7

ListeeeeeB.8

Globalmame, B.9

Localmame, B.10

ProgrameeB.11

AlgebraicLB.12

Binaryinteger B.13

Graphicobject B.14

Taggedobject B.15

Unitee e e e e e B.16

XlibnameeB.17

Directoryeee B.18

LibraryeB.19

BackupB.20

Systemfunction B.21

SystemCommand B.22

Systembinary B.23

VI

Longcomplex00t B.25

Linkedarrayo B.26

Character it i i ittt it e it e e e a B.27

Code @ ee e e e e e B.28

Librarydataittt B.29

Address i e e e e e e e B.30

AppendixC C.1

The Saturn MiCTOPTOCESSOT & v v v v v v e e v e e e e e e e C.1

MIiCroprocessor’s Tegisters i v i et i e e e e e e e C.1

AppendixD, . D.1

SystemCalls e e e e e e e e e e e e e e eeD.1

AppendixE e e e E.1

ErrorMessageseeE.1

AppendixH H.1

HiddenCommands H.1

