HP48 SX SmartROM ™

User’s Guide

Copyright 1991, SmartTechnology. All Rights Reserved.

Copyright Smart Technology 1991.
Other Brand and product names are trademarks or
registered trademarks of their respective holders.

This manual was produced with Ventura Publisher®and a
CANON BJ10¢®Bubble Jet Printer.

Printed in Italy

Introduction

Foreword

Thank you for the purchase of the SmartROM. You bought a
quality software that will greatily help in your work, hobby or
study!

If you are new to the 48’s world, we suggest you read
carefully the User’s manual before diving into deep waters of
the SmartROM.

The well-tempered 48

The SmartROM plays the 48 like no other product did before.
Of course it is not perfect, but as you will experiment on your
own, it will become difficult to do something without it. Its
huge set of housekeeping hidden commands lets you solve
problems that you hardly could imagine.

The Sm.aITROM is designqd to maximize programmer For those who need an
productivity by concentrating a lot of powerful commands and in-depth knowledge of
utilities in one package and setting a standard in some areas the SmartROM, a Hidden
like symbolic matrix handling and meta objects manipulation. Commands Reference

. . . Manual (in English) is
If you are an RPL enthusiast, you will appreciate SmartROM available.

at most, reminiscing its venerable predecessors like the
ZenROM and the PPCRom for the HP-41 and the JPCRom for
the HP-71. For the joy of hackers we left a lot of commands in
the dark. Sometimes we turn on the light at the right spot.
Hidden commands have been created for future applications
and represent a 40% of the whole ROM. We expect you dig
deeply in the ROM to find them. If you get tired digging in the
ROM, you may refer to the Hidden Commands Reference. As
you will see later, some utilities on the disk use intensively
SmartROM’s hidden functions. This manual refers to version
1:B of the SmartROM wich fixes known bugs in the previous
version, adds many new hidden functions and extends some
commands as well. We hope also you will appreciate our
efforts of keeping things as simple as possible, sacrificing
sometimes speed to flexibility and expandibility. The concept
of expandibility is a comerstone of the SmartROM and
Tepresents, in our opinion, its first strong point. Second strong
point is the Symbolic Matrix Writer which is the most
complex application available for the SmartROM and one of
the most useful tools available for the calculator.

All the information contained herein, when a different source
is not specified, come from our own experiments on the
calculator and are proprietary. Appendix C, containing Saturn
Assembly Language description, complies with the
description given in the HP-71 IDS Vol. I-11 copyrighted by
Hewlett-Packard.

Introduction

Manual’s Contents

Chapter 1: SmartROM Commands Reference

This is the reference section of the manual covering the entire
set of commands listed in alphabetical order. For each
command a stack diagram is given and remarkable
information as well. Examples are collected at the end of each

paragraph.

Appendix A: Warranty, Service and Support

Refer to this section when you encounter problems using the
SmartROM.

Appendix B: Objects
HP-48 objects structure is explained in detail.
Appendix C: The Saturn Microprocessor

A description of the CPU and its machine language instruction
set is given.

Appendix D: System calls
Most used system entry points are listed in address order.
Appendix E: Error Messages

Contains the complete list of the errors generated by the
SmartROM along with possible causes.

Appendix H: Hidden Commands

Contains the exhaustive list of SmartROM hidden commands
version 1:B, subdivided in logic categories.

Introduction

List of SmartROM RPL commands.

This is the complete list of SmartROM RPL commands
subdivided in logic categories. Some commands appear in
several categories being polymorphic functions.

Name

tack Manipulation AAB
BAA
BAB
BBA
BCAC
BCDA
cam
CAB
CBA
MARK
NIP
RDOWN
RDROP
RDUP
RUP
SHIFT
XLVLS

Argument Checking CHL?
CHSET?
CHST?

List Manipulation FIND
L2M
LOP1
LOPN
LVOP
NULL
REPLACE

String Manipulation —Char

ROWCOL

iii

Introduction

Meta Object Manipulation

Type Management

Symbolic Matrix Handling

iv

REV
RPT
SPAN
SPLIT

COPY
DELETE
LINES—
~LINES
META
METOP
MOVE
MREV
NDUPN
PKMETA
PRG—
~PRG
SRT
SRTD

-B
—Char
EXT—
—EXT
FALSE
MSBIT
PRG—
—PRG
-R
-SYS
—TorF
—Xlib
TRUE

ADD
ADDCON
CMPL
CONFORM?
CONST
DELCOL
DELROW
DETERM
DIMS
EQUAL?
FACTOR
IDNT
MATWRT
MGET
MPUT
MSYMB?
MULT
SQUARE?
SUBT
SYMBMAT -
—SYMBMAT
TRNSP

Program Editing

0
Utility

ROM Revision

FIND
PRG—
~PRG
REPLACE

KEIWAIT

CSTMENU
RPT

ROMV
VER$

Introduction

Introduction

List of applications

This is the list of available applications stored on the diskette.
INSTALL helps you installing the SmartROM by copying
some auxiliary programs for the command PKMETA in the
HOME directory and redefining the variable CST for a quick
access to commands. Original value of CST is pushed on the
stack. For this reason INSTALLshould be used only at
installation time. Applications listed below are stored on the
diskette along with their documentation.

Name

CALENDAR
FFT

LWC

UPC
MATMENU
PRSYMB
PROBJ
PRTHREAD
L—TH
TH-L
SHRINK
UPTRIM
PIE
BARPLOT2
INSTALL
INVRT
~FONT
alfaORDER
POPDIR
CGINDIR
REPLP
CGXLIB
XREF

DISPLAY

ftalics

KEY]
LABEL

Typefaces conventions

Used to represent text as it appear on the display or anything
you must type.

Italics are used to introduce a new term or to emphasize words
or sentences.

Keys are surrounded by square brackets.

This typeface represents a menu label.

Introduction

vii

Introduction

Typographic conventions

The special set of characters implemented in the 48 requires a
special treatment in order to avoid misunderstanding. Greek
characters are represented as their name in superscript mode.
Below there is a table summarizing the conventions used
throughout the manual.

#b
External
<h>
n,d,i,j, kI,
TRUE
FALSE
Complex
'NAME’
‘name’
obj
Symb

str

Char

[-..]

f...J...[..11

{...} or List

{{Symby, ... Symb,,}
{Symbp, ... Symb 1}
obj;...obj, n

strq...stry n

XLIB LID Num

viii

Binary integer #12345h, #01101b, etc.
System Address.

System Binary.

Real numbers.

System boolean (External).

System boolean (External).

Complex number .

A global name.

A local name.

Any object.

Symbolic Expressions, real and complex numbers,
units, gloabal or local names.

RPL program

User RPL Program.
String of characters.
Character object
Array (Vecmr).
Array (Matrix).
List.

Symbolic Matrix.

Any Meta-object.
String Meta-object.

External Library name.

Introduction

Automatic Installation

The installation of the library is, under normal circumstances,
completely transparent to the user, who must only plug the
card in the slot. HP-48 user’s manual describes well this
procedure in chapter 34, Volume 11.

Note that the configuration program of the library always
attaches the libraries in the HOME directory. If you want to
attach manually the library in a specified subdirectory, you
must follow the procedure described in Chapter 34 of the
HP-48 User’s Manual. However if a warm start happens, the
library will be reattached to the HOME directory.

After this stage, you can verify the installation of the
SmartROM by following the procedure described below:

n Type HOME [ENTER], then [Gold] LIBRARY:
now, if you installed the card in Port 1 two new
labels called MATW and SMART should appear in
the menu. May be you need to press [NXT] to
advance menu pages. The order in which labels
appear depends on the number of libraries residing in
memory. If you see these labels, go on to stage 5.

2) ‘ If you are not able to see any new label, may be yoﬁ
have not correctly plugged in the card. Repeat stage 1.

3) If the label does not appear, try to change port and
start over again.

4) If labels do not appear yet, your card requires service.
See in the Appendix A the details about Service and
Warranty.

s) Type in the command line: &INSTALL [EVAL]

After some seconds, a copy of your CST variable
should appear on the stack along with a custom menu.

6 The library is ready for use.

Introduction

Manual Installation

Type HOME ENTER, :&INSTALL EVAL . If the calculator
does not report errors and the value of CST appear on the
stack, the library has been successfully installed, otherwise
check the list below:

ERROR CAUSE & REMEDY

Port Not Available The card is not propetly installed or is bad.
Try to reinstall the card or change slot.

none, but CST was May be you have an INSTALL program

not pushed on stack. overriding SmartROM’s one. Cancel it.

Directory not You have a directory whose name is

allowed conflicting with thc subprogram being
copied in the HOME directory. Remove or
rename the directory.

SmartROM Commands Reference

This section explains in detail each command of the
ROM, giving its stack representation, remarkable
information, examples and names of applications
containing the command. We strongly suggest you edit '
our applications and improve them with your own
customization. If you have any question about SmartROM
commands, contact us at the address given in Appendix A.

All SmartROM commands obey to the rules of HP-48
system commands, preserving stack contents. Symbolic
matrix commands, do not preserve correctly LASTARG
parameters because we used standard math operators
during the calculations. When a calculation goes on, each
operator saves its arguments for a subsequent LASTARG,
effectively overriding previously saved parameters. Thus,
if you try a LASTARG after a symbolic matrix command,
resulting parameters reflect the stack arguments at the
time of the last arithmetic operation. Nevertheless, after
the execution from the keyboard of such a command the
LAST STACK toggle (if enabled) works correctly and the
original stack may be recovered.

All the commands are accessible via SmartROM’s
Custom menu once you invoke the command CSTMENU
or you execute the Backup program INSTALL, as ’
described in the previous chapter.

. All the commands contained in this section belong to
Library 821 (Smart) except MATWRT which belongs to
Library 822 (MATLIB).

Library 821, 822 and 823 have been allocated officially
by Hewlett-Packard for Smart Technology’s Products.

They cannot be used by other commercial software
developers.

If you remove the card from the HP-48SX, SmartROM
commands will appear as XLIB 821 nnn, where nnnis a
number between 0 and 251. Visible commands occupy the
range 0-95. All other commands are hidden and have no
correspondent text. If you want to know what hidden
commands do, download the Hidden Commands
Reference from the BBS and print it by yourself.
Otherwise ask your dealer for a copy.

Hidden Commands contained in libraries other than 821
are not supported and shall not be used. Any future
extension to SmartROM will use Library 822.

1.1

AAB

Category Stack Manipulation
Affected by flag none
Input 2: Obj,
1 Objg
Output 3: Obj,
2: Obi,
1 Obijg
Function Duplicates the object on the second level.
See Also BAA, BAB, BBA, BCAC, BCDA, CAB, CBA, NIP

1.2

ADD

Category Symbolic Matrix Manipulation
Affected by flag -3 (Symbolic result)
input 2 {{SymbA, , SymbA, , ... SymbA, .}

{SymbA,, ; SYmbA, ... SymbA,. }}
1 uswntﬁ“,f1 SymbE| 5... SymbB; u]

{SymbB,, ; SYmbB,, , ... SymbB, I}

Output 1: {{SymbA, ;+SymbB, , SymbA, ,+SymbB, , ... SymbA, +SymbB, }
[SymbA,, ;+SymbB,, , SymbA, ,+SymbB,, , ... SymbA,, +SymbB, I

Function Performs the addition of two symbolic arrays.

Notes A one-dimensional array must be written as one-row or

one-column two-dimensional array. To avoid run-time
errors the flag -3 must be clear, or, alternatively, each
symbolic expression must evaluate to a numeric value.

The routine does not check for symbolic values. The
reason is explained below:

the routine makes use of a hidden command which allows
to pass the operator unevaluated. Moreover the operator is
not restricted only to symbolic objects but can work on all
pairs of objects for which the operation is meaningful.
You could even make a list-array of real arrays and
perform the addition cell by cell between each pair of
arrays. See the example below.

See Also ADDCON, DIMS, EQUAL?, MATWRT, MULT,
MSYMB?, SUBT
Applications MATMENU, PRSYMB
Examples 2: {12 3){'X "X+1"'X-3'})
1: {123} {-X-1""X+1"3-X’ }}
ADD [ENTER]
1: {1040} {12+2*X'0 }}

2 fifi[1 2 3][4561}}
1 {f[-1-2-31[1231}}

ADD [ENTER]
1: {{foooj(s7ejy

ADDCON

Category
Affected by flag
Input

Output

Function
Notes

See Also
Applications

Examples

14

Symbolic Matrix Manipulation
-3 (Symbolic Result)
2: {{ Symb, , Symb, , ... Symb, , }
{ Symb,, , Symb, ... Symby, i
1 Symb
2: {{Symb+Symb, , Symb+Symb, , ... Symb+Symb, }

{Symb+Symb,, , Symb+Symb, , ... Symb+Symb, . }
Adds a constant value to all the elements of a list-matrix.
See notes about flag under ADD.
ADD, FACTOR, MATWRT, MSYMB?
MATMENU, PRSYMB

2: 1 2 3
{OX’)X+1‘ IX-3!}l

1: X1

ADDCON [ENTER]

1: (X "1-X"2-X)
(-1 0 -4}

—B

Category
Affected by flag

Input
Output

Function

Notes

See Also

Example

Type Conversion

-5 to -10 (Binary Wordsize) and -11 to -12 (Binary
Integer Base)

1: h 1: Char 1: <h>
1: #h

Converts a numeric value into a binary integer. Extended
precision numbers are not allowed. Pay attention to the
current wordsize that may truncate the result.

— B allows binary integers as input. This technique is
useful to set the user free of inputting data in the preferred
form.

EXT—, —EXT, —R, —»SYS

30
#20h
<13h>
1.5

4

ShwhO

{ =B} METOP [ENTER]

#1Eh
#20h
#13h
#2h
4

2o

1.5

BAA

Category Stack Manipulation
Affected by flag none

Input 2: Obij,
1 Objg
Output 3: Obijg
2: Obj,
1: Obj,
Function Swaps the objects and duplicates the first level.
See Also AAB, BAB, BBA, BCAC, BCDA, CAB, CBA, NIP

1.6

BAB

Category
Affected by flag
Input

Output

Function

See Also

Stack Manipulation
none

2: Obij,

1 Objg

3: Obijg

2 Obij,

1: Objg

Duplicates the object on the first level and inserts it above
the second level.

AAB, BAA, BBA, BCAC, BCDA, CAB, CBA, NIP

1.7

BBA

Category
Affected by flag
Input

Output

Function

See Also

1.8

Stack Manipulation
none

2 Obj,

1: Objg

3: Objg

2: Objg

1 Obj,

Duplicates the object on the first level and rotates the first
three levels.

AAB, BAA, BAB, BCAC, BCDA, CBA, NIP

BCAC

Category
Affected by flag
Input

Output

Function

See Also

Stack Manipulation
none

3; Obi,

2: Objg

1 Objc

4 Objg

3 Obje

2 Obj,

1 Obje

Rotates the first three levels and duplicates the second
level.

AAB, BAA, BAB, BBA, BCDA, CAB, CBA, NIP

1.9

BCDA

Category
Affected by flag
Input

Output

Function

See Also

1.10

Stack Manipulation

none

W
Q
k=3
]

Oby
on

Objg
Obje
Objg
Obj,

Spes

Rotates first four levels.
AAB, BAA, BAB, BBA, BCAC, CAB, CBA, NIP

C2M

Category
Affected by flag
Input '

Output

Function

Notes

See Also

Examples

Stack Manipulation and Meta-object Manipulation

none

N+ "MARK’
N: Obj,

2 Obj

1: Obj;”
N+2 "MARK’
N+1: Obj,

2 Obj,

1: n

Counts the elements between the mark and the top of the
stack. C2M allows you to convert an unbound
meta-object to a fixed size meta-object. The mark is not
removed from the stack after the count. Unbound
meta-objects are very useful when you don’t know in
advance the number of objects you shall play with.

When the mark is missing, C2M is the same as DEPTH.

"MARK is a private symbol. Hidden functions make use of

- an alternate mark to avoid collision with user defined

programs.

L2M, MARK, META

3 "MARK’
2: 10

1 20

C2M [ENTER]

4 "MARK’
3 10

2 20

1: 2

CAB

Category
Affected by flag
Input

Output

Function

See Also

1.12

Stack Manipulation
none

3 Obj,

2 Objg

1 Obje

3 Obje

2 Obi,

1 Objg

Rotates backwards the first three levels.
AAB, BAA, BAB, BBA, BCAC, BCDA, CBA, NIP

CBA

Category
Affected by flag
Input

Output

Function

See Also

Stack Manipulation
none

3 Obj

2: ':

1 Objc

3 Obje

2 Objg

1: Obj,

Reverses the order of the first three levels.
AAB, BAA, BAB, BBA, BCAC, BCDA, CAB, NIP

1.13

CHL?

Category
Affected by flag
Input

Output

Function

See Also
Applications

Examples

1.14

Argument Checking

none

2: { obj, obj, ... objp)

1 [ttt}

3 { obj; obj, ... obj, } o)
2. {err err, ..em} 2: { obj, obj, ... Ob]p)
1: 1 1: 0

Checks if the elements of a list comply with the types
specified. Each element of the list on the first level can be
a real value (rounded to an integer) or a list of reals.
Argument checking is strictly positionalin CHL?. If you
need non-positional argument checking, use CHSET?.

Type Numbers follow the classification given by the
command TYPE.

When a sublist of reals is specified, a multiple choice is
allowed on that position of the input list.

The command return a boolean flag indicating success
when the flag is 0 and a fault when the flag is 1 plus a list
of mismatching positions.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input.

CHSET?, CHST?

MATMENU

2: {12}
1: {oo2j
CHL? [ENTER]
2: {12}
1: 0

2: {12}
1: {00{01}}
CHL? [ENTER]
3: {12}
2: {3}

1 1

CHSET?

Category
Affected by flag
Input

Output

Function

See Also

Examples

Argument Checking

none

2; { obj; obj, ... obj, }

1 112 1)

3: { obj, obj, ... objg }

2: { obj, obj, ... obj, } 2: {err, err, ...em}
1 0 1: 1

Checks is objects contained in a list are of the type
specified, independently from the position. Each element
of the list of types must be a real number (rounded to an
integer). Type Numbers follow the classification given by
the command TYPE. The command return a boolean flag
indicating success when the flag is 0 and a fault when the
flag is 1 plus a list of mismatching positions.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input.

CHSET? is useful to check if a list contains homogeneus
data with minimal memory requirements.

CHL?, CHST?

2 {12}

1: {02}
CHSET? [ENTER]
2: {12}

1: 0

2: {12}

1 {0}
CHSET? [ENTER]
3 {12}

2: {3}

1: 1

1.15

CHST?

Category
Affected by flag
Input

Output

Function

Sée Also
Applications

Examples

1.16

Argument Checking

none

N+1: obj,

2 obi,

1 ity t,}

N+2: obj,

N+1: obj,
K: obj,
K: objy
3 obj,,
2: {..emk..} 2: obj,,
1 1 1: 0

Checks if the elements of the stack comply with the types
specified in a list. Each element of the control list on the
first level can be a real value (rounded to an integer) or a
list of reals. Argument checking is strictly positional in
CHST?. The first element of the control list specifies the
type or the set of types allowed for the object lying on the
correspondent level of the stack. In effect objects on the
stack are mapped as if they were collected in a list, with
the element on the top that comes last.

Type Numbers follow the classification given by the
command TYPE.

When a sublist of reals is specified, a multiple choice is
allowed on the corresponding level of the stack. The
command return a boolean flag indicating success when
the flag is 0 and a fault when the flag is 1 plus a list of
mismatching positions.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input.

CHL?, CHSET?

MATMENU

4: 1

3 2

2 w

1: {002}
CHST? [ENTER]

oo
o sn=

1
2

“n

{00{01}}
CHST? [ENTER]

1
2

{3}
1

ek

2RO

—Char

Category
Affected by flag
Input

Output
Function

Notes

See Also

1.18

Type Conversion

none

1: n 1: <n> 1: . #n
or

1: Str

1: Character

Converts the input object into a character object.

Character objects are used internally by the system to
minimize memory storage respect to one-character strings.
Often, routines taking strings as parameters allow also
single characters.

—CHAR accepts a character as input. This technique is
useful to set the user free of inputting data in the preferred
form. '

—B, EXT—, —EXT, —R, —»SYS

CMPL

Category
Affected by flag
Input

Output

Function

Notes

See Also

Applications

Examples

Symbolic Matrix Manipulation
none
2: {{Symb, , Symb, , ... Symb, , }

{Symb,, ; Symb,,, ... Symb, , }}
1 {ij}
1: {{Symb, , ... Symb,,, Symb,, ... Symb, '}

{Symb, ... SYmb, . SYmb,; ¢ ... Symby)

{Symbiys 7 ... SY’"’-{MM Sym h;,m ... Symby .}

{Symb, , ...Symb,;, Symb;,..Symb, }}
Returns the complement of a square list-matrix, given

element’s subscripts. Resulting array will be of n-1 order.
The array canmot be of order less than 2.

In order to compute the algebraic complement of an
element, the following procedure could be used.

-3CF Symbolic result enabled.

BAB saves element subscripts

CMPL DETERM computes the determinant of
the minor.

SWAP OBJ— DROP Recalls the subscripts

+-1 SWAP " * ' Adjusts the sign

ADD, ADDCON, CONSTMAT, DETERM, FACTOR,
MATWRT, MULT, SQUARE?

MATMENU

2: {{100} X *1-X "2-X} {-1 0-4}}
1: {11}

CMPL [ENTER]

1: {{"1-X'"2-X’} { 0 -4}}

1.19

CONFORM?

Category
Affected by flag
Input

Output

Function

Notes

See Also
Applications

Examples

1.20

Symbolic Matrix Manipulation
none
2: {{SymbA, ; ... SymbA, } 2: {{SymbA, , ...
{SymbA., ;... SymbA,. 1} (SymbA,, ..
1: {{SymbE ;... SymbB; p) {{SymbB, | ...
{SymbB,, ... SymbB, }} {SymbB,; ...
4: {{SymbA, ; ... SymbA, .}
{SymbA_ , ... SymbA, }}
3: {{SymbB'; ... SymbB, } 3 {{SymbA, ; ...
{SymbB._. ... SymbB__J} {SymbA. ..
2 {monpl ne 2 {{SymbE]; ..
1 1 1

Checks if the dimensions of two input matrices are
suitable for row-by-column multiplication. If not a 0 is
returned along with the input matrices.

We call this condition conformability. When you try a
row-by-column multiplication between incompatible
arrays a special error is issued to inform you of this
particular condition.

No check is made on the input lists with regard to their
contents. If you want to check in advance list contents,
use MSYMB?.

DIMS, MATWRT, MSYMB?, SQUARE?
MATMENU, PRSYMB
2: [{12}1{'X"Y-2}}

1 {{01°-2}{-2'Y'3})
MULT [ENTER]
1: -4 1e2vy 1-Z+6' }

{-2%(Y-2) "X+(Y-2)*Y' 'X*-Z+(Y-2)*3' } }

OISymbe,1

SymbA,]}

SymbA, }}
SymbBy]

SymbB,, ;}}

SymbA,)

SymbA,, }}
SymbB, o)

SymbB,

pall

CONSTMAT

Category
Affected by flag
Input

Output

Function

See Also
Applications

Examples

Symbolic Matrix Manipulation
none

2: Symb

1: {mn}

1: {{Symb, , Symb, , ... Symb, .}

{Symb,,, ; Symb,, , ... Symb,, .1}

Returns a constant symbolic array according to the
dimensions specified in the list.

DIMS, MATWRT, MSYMB?
MATMENU, PRSYMB

2: X-1'

1: {23)
CONSTMAT [ENTER]

1: {{'X-17X-17"X-1"}

{7X-1"X-1""X-1")

1.21

COPY

Category
Affected by flag
input

Output

Function

Notes

See Also

1.22

Meta-object Manipulation
none

obj,

Objgr

objy,

Obiabove

obj,

n

from

to
above

bR R A T T T T

obj,
bl
obj,
Objapove.t
Objirom
bl
E;‘bjn
1: n+abs(f-t+1)
Copies a section of the meta-object delimited by from and

to above the level above, expanding the meta-object and
updating the counter.

Top of stack contains the counter while level 2 contains
the last object of the meta-object (as if it were the last
element of a list). The fist element of the meta-object lies
on level n+1.

Input parameters (from) and (to) can be given in any
order. If you specify for (above) a value greater than n, the
section will be appended to the tail of the meta-object.

Note that you can copy a block within itself.
A bit of theory:

Meta-objects are a metaphysical entity invented by HP
people to identify a set of objects getting handled as a
whole thing. They are not worth to be considered a true
object unless You have the SmartROM. As you will see
later, there can be string meta-objects, real meta-objects
and program meta-objects as well. The most esoteric form
of a meta-object is the unbound meta-object wich has no
counter at all, but only a marker above its head. Internal
routines of SmartROM make heavily use of meta-object
utilities, because of their intrinsic compactness.

DELETE, MOVE

Examples

6 “TOP

5: "these lines”

4: “get copied”

3 “after the bottom”
2 “BOTTOM”

1 5

46 COPY [ENTER]

2

9 “TOP

8 “these lines”

7: “get copied”

6: “after the bottom”
5: ‘BOTTOM"

4 "these lines”

3 “get copied”

2 “after the bottom”
1 8

“HEAD”

“‘SUBHEAD"”

“GO OVER THE TOP”
“ME TOO"

4

51 COPY [ENTER]

3

7 “GO OVER THE TOP”
6: “ME TOO"

5: “HEAD"
4:

3

2

1

A o

“SUBHEAD”

“GO OVER THE TOP”
“ME TOO”

6

“HEAD"

“EXPAND MYSELF #1"
"EXPAND MYSELF #2"
“BOTTOM”

4

33 COPY [ENTER]
“HEAD"

2O

“EXPAND MYSELF #1"

“EXPAND MYSELF #2"
"EXPAND MYSELF #2"
“BOTTOM”

2
7
6:
5: "EXPAND MYSELF #1"
4:
3
2
1 6

1.23

CSTMENU

Category Utility
Affected by flag none
Input
Output
Function Redefines CST contents with the SmartROM custom
menu (two pages) wich subdivides commands in six main
areas called STACK, $&L, META, SYMB, TYPES,
MISC for easier referencing and adds the following three
new features:
#CHR A keytrap for entering a character given its
ASCII code. The trap waits indefinitely
key presses and does not allow
meaningless keystrokes. Character 0
cannot be entered nor characters above
255. If you disabled the beeper, no sound
comes at key press nor the jingle that
welcomes you to the keytrap. The message
“Enter three digits” is displayed in the
status area until you press the third key.
The [ON] key is disabled. When you enter
[2] [5], the keyboard is mapped to respond
only to keys [0] - [5].
VISIT Enhanced Visit Function:
input 3: Absolute position 3: { row col }
2: 0 (replace) or 1 (insert) 2: 0 (replace) or 1 (insert)
1. 'name’ 1: 'name’
3: “string” This new Visit feature lets you place the
2: occurrence cursor at a specified place in the editor, by
12 'name specifying its position in three different

ways. When you specify a search string
and supply a 0 as occurrence, the cursor
will be placed on the last occurrence of the
string. If the string does not appear in the
stream, the cursor will be placed at the end
of the text.

SYSEVAL Syseval typing aid.

blank Intentionally left blank.Reserved for future
use.

blank Intentionally left blank.Reserved for future
use.

lcon The spreadsheet icon labels the Symbolic

MatrixWriter trap. By pressing the
rightmost key, you enter an empty
MatrixWriter.

1.24

[Gold]
ICON

When you have a list-matrix on the first
level of the stack you can edit it by
pressing this keystroke, like you do with
variables with the implicit STO. Once you
enter in the Symbolic MatrixWriter
environment, you will see old labels and
new ones as well. Known labels like
—GO, —STK and WID— still act in the
usual way. EQ W is a new feature that
allows you to pass a cell to the
EquationWriter for editing. The cell cannot
be empty. If you press [ON] while you are
in the EquationWriter, the old value is
restored in the cell and you will be returned
to the MatrixWriterenvironment. By
pressing [ENTERY], you validate any
modification. +ROW, -ROW, +COL,
-COL act in the usual way. ~ROW,
—~ROW, —ROW, |ROW, —-COL,
~COL, 1COL, 1COL rotate blocks of
rows or columns. If you change menu
while in the MatrixWriter, you can restore
the main menu by pressing [Blue]
[ENTER]. Within this environment you
cannot enter values other than Symbolics,
that is Reals, Complex, Units, Algebraics,
Global names. If you try to enter objects
other than these, an error will be issued.

1.25

DELCOL

Category

Affected by flag

Input

Output

Function

Notes

See Also

Examples

1.26

Symbolic Matrix Manipulation
none
2 {{Symb, ; Symb, , ... Symb, , }
{Symb,, , Symb,, ... Symb, , }}
1: j
1 {{Symb, , ... Symb, ;, Symb, ;,, ... Symb,]

{Symb,, , ... Symb,, ., Symb,,._, ... Symb,_ }}
Deletes the specified column from the list.

No restrictions on the shape of the list. If an invalid
subscript is specified, an error is issued. The list-matrix
can contain any object type. If you need to delete at once
column and row, use CMPL.

CMPL, CONSTMAT, DELROW

.;2: {{1 00}{-X" "1-X""2-X’} {-1 0 -4}}
: 1

DELCOL [ENTER]
1: {{ 0 0)
{ ’1.X’ !2-X’}
{0 -4

DELETE

Category Meta-object Manipulation
Affected by flag none

Input obj,

-

Obiy,

obj,
n

SNOR:

from
to

Output obj,
abjm.1

: 0bjyo44

PR

1: n-AnBS(from-toﬂ)

Function Deletes a block of the meta-object, updating the counter.

Notes (from) and (to) can be given in any order. Values out of
range will generate an error message. When you delete all
the objects, on the stack remains only a O (the counter).

See Also DELETE, MOVE

“delete after this line”
“garbage”

“garbage”

“garbage”

“last”

5

4 DELETE [ENTER]

Examples

SNOROOD

“last”

2
3 “delete after this line”
2:
1: 2

1.27

DELROW

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

1.28

Symbolic Matrix Manipulation
none
2 {{Symb, , Symb, , ... Symb, ,]

{Symby, , Symby,, , ... Symby, . }}
i

1 {{Symb,, Symb,, ..Symb, .}

{Symb, ; ; Symb; ;... Symby, .}
{Symb,,, ; Symb;,;,... Symb,,; o}

{Symb,,, Symb,, ..Symb,}}
Deletes the specified row from the list.

No restrictions on the shape of the list. If an invalid
subscript is specified, an error is issued. The list-matrix
can contain any object type. If you need to delete at the
same time a pair of crossing column and row, use CMPL.

CMPL, CONSTMAT, DELCOL
2: {{100}{'-X""1-X""2-X'} { -1 0 -4}}
1: 1

DELROW [ENTER]
1: {{-X "1-X "2-X}
(10 -4

DETERM

Category
Affected by flag
Input

Output
Function

Notes

See Also
Applications

Examples

Symbolic Matrix Manipulation
-3 (Symbolic Result)
1 {{Symb, , Symb, , ... Symb, , }
{Symb,, , Symb, ... Symb,, . }
1: Symbolic
Calculates the determinant of a square symbolic matrix.

The result has not been simplified yet. You can use
EXPAND and COLCT or the sample program EXCO
described in Chapter 31 of the HP-48 User’s Manual. The
algorithm being used is described in the Hidden
Commands Reference.

The algorithm is optimized and makes large use of
pivoting. The precision of a numeric result varies from
case to case. Sometimes is more precise than DET, while
in other case is worse.

SQUARE?
INVRT, MATMENU, PRSYMB

1: X 4 -1°'X2/)
[0 1 X '2¢7Y)
UYIXUX -3 XY)
{0 1 Y 'Y2*%x))

DETERM [ENTER] EXCO [ENTER]

2-1/X*Y " 2-8/X*Y " 3-2/X*Y+X*Y "2+4*X*2-X"3+12*X*Y

2*Y"2+X-Y’

1.29

DIMS

Category Symbolic Matrix Manipulation

Affected by flag none

Input 1: {{Symb, , Symb, , ... Symb, , }
{Symb,, , 'éymbm 2 - Symb, o }}

Output 2: {{Symb, , Symb, , ... Symb, , }

{Symb,, ; Symby , ... Symb,]}
1: {rc}

Function Returns the dimensions of the list-matrix, checking matrix
consistency. If a dimensional error is detected, an error
messagge is issued.

Notes No check is made on object types. If you want to check it,
use MSYMB?,

See Also CONFORM?, MATWRT, MSYMB?, SQUARE?

Applications INVRT, MATMENU, PRSYMB

1.30

EQUAL?

Category
Aftected by flag
Input

Output

Function

Notes

See Also

Applications

Symbolic Matrix Manipulation

none

2 {{SymbA, , ... SymbA, '}
{SymbA,, ; ... SymbA,. }}

1 {{SymbBy ; ... SymbBy]
{SymbB,, , ... SymbB,_ }}

4 {{SymbA, , ... SymbA, }
{SymbAm ... SymbA_ 1}

3 {{SymbB] ; .. Symbgj'_',;"
{SymbB,, , ... SymbB,, J}

2 {mn}

1:

Checks if both list-matrices have the same dimensions. If

1

1:

dimensions mismatch a 0 is returned.

{{SymbA, , ...

{SymbA,_ ; ..
{{SymbE]; ... S

{SymbB, , ...

{{SymbA, , ...

{SymbA_, ...
|{Symbg?_',‘

JoymbE, ;.

The underlying meta-object structure of the result unifies
the boolean convention with the meta-object convention.
The output is especially suitable for IFT or IFTE input

CONFORM?, DIMS, MSYMB?, SQUARE?
MATMENU

SymbA, .}

SymbA, 1}
ymbB, .}

SymbB, .}}

SymbA, }

SymbA,,)}
S)Yr'nnbgr‘;l

SymbB, }}

1.31

EXT—

Category
Affected by flag
input

Output

Function

Notes

See Also

Examples

1.32

Type Conversion
none

1: . obj

1 addr

Returns the memory address where the object is stored.
When the address is less than ph the object is stored in
ROM.

EXT — is particularly useful to decipher External Objects.
External is the raw representation of a system address.
Making it a system binary, makes the thing a new ball
game. Externals are explained in Appendix C. A list of
Extemals is given in Appendix D.

—EXT, SYS—, —»SYS.

1 EXT— [ENTER]

1: <2A2CSh>

#2A2C9 SYSEVAL [ENTER]

1: 1

TRUE [ENTER]

1: External

EXT— [ENTER]

1: <03A81h>

—EXT

Category
Affected by flag

Input

Output
Function

Notes

See Also
Applications

Examples

Type Conversion

-5 to -10 (Binary Wordsize) and -11 to -12 (Binary
Integer Base) only when the input number is a binary
integer.

1 addr

or

1 #addr

1: Obj

Pushes on the stack a ROM address.

If at the address specified begins a machine language
routine, the stack display will show External on the first
level. Unfortunately the HP-48 represents with "External’
meaningless address too, thus pay attention before using
an External. When you supply an address at which an
RPL object is stored, the Stack display will show you the
correspondent text representation. A sequence of threads
will be displayed as a stream of Externals.

Meaningful Externals are collected in the Appendix D.
EXT-, -PRG.
L—TH, SHRINK, TH—L.

1: #30794h

—EXT [ENTER]

1 External

[EVAL]

1: “‘HPHP48-x" x = revision letter (A,B,C,D or E)
1: #2BOF2h

—EXT [ENTER]

1: Long Real

1.33

FACTOR

Category
Affected by flag
Input

Output

Input

Output

Function

Notes

See Also

Applications

1.34

Symbolic Matrix Manipulation
-3 (Symbolic Result)

2. {{Symb, , Symb, , ... Symb, , }
{Symb,, , Symb,, , ... Symb,, . }}
Symb

1: {{Symb*Symb, , Symb*Symb, , ... Symb*Symb, }
{Symb*Symb,, , Symb*Symb,, , ... Symb*Symb,. . }}

2 ﬂSymbA11 SymbA, , ... SymbA, .}
{SymbA,, ; SymbA,, ... SymbA,,)
1 {{SymbE; ,1SymbB1: SymbB, o'

lSymme1 Symme 2 SymbB_ 1}

1 {{SymbA, ;*SymbB, , SymbA, ,*SymbB, , ... SymbA, , *SymbB, |
{SymbA,, ;*SymbB,, ; SymbA_ ,*SymbB, , ... SymbA_ *SymbB,, }}

Multiplies all the elements of the list-matrix by the
Symbolic value Symb or performs in-place multiplication
between pairs of elements.

A one-dimensional array must be written as one-row or
one-column two-dimensional array. In order to avoid

Tun-time errors the flag -3 must be clear, otherwise it will
be necessary a numeric value for each symbol to carry out
the calculation numerically.

The routine does not check for symbolic values. The

. reason is explained below:

The routine makes use of a hidden command which
allows you to pass the operator unevaluated. Moreover the
operator is not restricted only to symbolic object but can
work on all pairs of elements for which that operation is
meaningful.

ADD, DETERM, MULT, SQUARE?, SUBT
MATMENU

FALSE

Category
Affected by flag
Input

Output
Function

Notes

See Also

Type Conversion
none
1: External (FALSE)

Pushes on the stack the system boolean FALSE.

System booleans are machine language routine addresses
which merely return themselves when evaluated. The
command — TorF turns a system boolean into a real
boolean.

EXT—, TRUE, —TorF

1.35

FIND

Category String, List and program editing function.
Affected by flag none

Input 2: stri 2: prg 2: list
1 str2 1 obj, 1 obj,
Output 2: input_object
1: Found: occurences
Function Returns the total number of occurences of an object or
substring within a composite object or string respectively.
See Also REPLACE
Examples 2: {“r24{2}}
1: “
FIND [ENTER]
2: {“r24{2“}}
1: Found: 2
2. . “ABCDABCDEFABC”
1: “ABC”
FIND [ENTER]
2: “ABCDABCDEFABC”
1: Found: 3
1: « = n « n ROLL DROP »»
{ ROLL } OBJ— DROP FIND [ENTER]
2: « = n « n ROLL DROP »»
1: Found: 1

1.36

IDNT

Category
Affected by flag
Input

Output

Function
See Also
Applications

Examples

Symbolic Matrix Manipulation
none
1: n
1 {11 0..0
01..0
©00..1)

Returns the identity list-matrix of order n.

CONSTMAT

MATMENU

1: 3

IDNT [ENTER]

1: {{100}

10}
1}

{0
{001}

1.37

KEYWAIT

Category
Affected by flag
Input

Output

Function

Notes

1.38

Input/Output
none

2: <KEYh>
1: <SHIFTh>

Waits indefinitely for a keypress. The [ON] key is trapped
like any other key.

The Keyboard is numbered, starting from the upper left
corner down to the lower right corner in row major order.
The key associated to A is numbered <1h> and the last is
<2Fh> (49d). KEYWAIT detects shifted keys so that
[ALPHA], [Gold] and [Blue] cannot be trapped
singularly. The shift status is so encoded:

<th> no SHIFT This encoding system requires
<2h> [Gold] fewer processing than that required
<3h> [Blue] to dispatch a key trapped with 0
<4h> [alfa] WAIT. Moreover the [ON] key is
<5Sh> |alta) [Gold] trapped like any other key.

<6h> [alfa] [Blue]

The KEYWAIT internal routine is the most simple
application of what HP calls Parameterized Outer Loop,
also known as ParOuterLoop. This routine is the core of
any interactive built-in application thanks to its flexibility.
The GRAPHics editor uses the same basic routine as
KEYWAIT ! ParOuterLoop is well explained in the
documentation provided by HP as HP-48 RPL compiler
Doc, you can easily get as EQuCALC Goodies disc #4.

JOINR

Category
Affected by flag
Input

Output

Function
Notes

See Also

Applications

Graphics

none

2 Grob,

1 Grob,, p,

1 Grob ym x h

Appends the grob on the first level to the right side of the
grob on the second level.

Grobs must have the same height. The result is placed in a
new grob.

JOINUP, RPT
—~FONT, PROBJ

1.39

JOINUP

Category
Affected by flag
Input

Output

Function

Notes

See Also

1.40

Graphics

none

2 Grob,

1 Grob::,h
1 G'mbw x (h+))

Appends the grob on the first level to the top side of the
grob on the second level.

Grobs must have the same width. The result is placed in a
new grob.

JOINR

L2M

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

List and Stack Manipulation
none

N+1: "MARK'

N:_ obj,

oo

1: {obj, obj, ... obj,}

Collects all the objects between the mark and the TOS.
The mark is always removed from the stack.

If no mark is there on the stack, L2M defaults to DEPTH
—LIST. This command is useful to group together the
output of a command of which we cannot know in
advance the exact number of parameters.

With this command you can set the user free to decide
what parameter to use and what to discard without
annoying him with verbose questions.

"MARK is a private mark. Hidden functions make use of
an alternate mark to avoid collision with user defined
programs.

L2M, MARK, META

3 "MARK

2: “Enter as many numbers
as you want”

1: {V}

« IFERR INPUT
THEN
KILL
END
OoBJ~—-
L2M OBJ—
1-
« MAX »
RPT
“The greatest is "
SWAP +
7 DISP 7 FREEZE

141

LINES —

Category
Affected by flag
Input

Output

Function

Notes

See Also

1.42

String and Meta-object Manipulation

none

1: str
N+1: stry
2 str,
1: n

Splits the string into several lines breaking at linefeeds.

Linefeeds are used by the 48 as newline characters in the
editor. Moreover they are translated to the sequence CR
LF during the transmission to a printer when the
translation parameter in the global variable IOPAR has a
value greater than 0. LINES — removes the linefeeds, but
blows up on the stack the string in several chunks.
However the routine ignores linefeeds falling between
double quotes.

—LINES.

—LINES

Category String and Meta—object Manipulation
Affected by flag none

Input N str, obj,

5 s, obi,

1 n n
Output 1 str
Function Joins objects by means of a linefeed.
Notes 1t is the inverse of LINES—.
See Also LINES—, SPLIT
Applications PROBJ

1.43

LOC

Category
Affected by flag
Input

Output

Function

Notes
See Also

Examples

144

String Manipulation
none

3 str,

2: str,

1: pos

1: pos

Seeks Strg in Str; starting from position pOS. If no match
is found it returns 0, otherwise the absolute location of the
match.

LOC is an extension of POS.
MEMBER, SPAN
3: “abcdabcdabed”

2: “abc”
1: 2
LOC [ENTER]
1: 5

LOP1

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

List Manipulation

none

2: {obj, objj ... obj,}

1 4 cmd, ... cmd,)
1: {obj, obj, ... obj,)

Given an operand string in level 2 and an operator string
in level 1, applies the operator to each element of the
operand-list and puts the result in a new list.

The operator list must return one and only one result ata
time. If the operator returns more than one object as result,
use LOPN. This command has got aspects in common
with the induction postulate:

1) define a procedure working on a single object
2) proof if it works on the first element.
3) apply to all elements.

LOPN, LVOP, METOP

2: {234)

1: {INV —~Q}

LOP1 [ENTER]

1: 112113 "1/4")

VARS [ENTER]

1: | PROG1 PROG2 PROGS3 }

{ DUP BYTES NIP SWAP —TAG } LOP1 [ENTER]

1: { :PROG1:307 :PROG2:8604.5 :PROG3:1233 }

145

LOPN

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

1.46

List Manipulation

none

2: {obj, obj, ... obj,}
1 { Prg; prg; ... Prgy}
1: { fobj, 4 ... obj; }

{ Obip 4 . Obip g}

Given an operand list in level 2 and an operator list in
level 1, applies the operators to each element of the
operand-list, collects the results in a list and puts it in the
result list.

Each operator must take as argument a list. The output of
the first operator is used as input for the second and so on.

LOP1, LVOP, METOP
VARS [ENTER]

1: { PROG1 PROG2 PROG3 }
{BYTES) LOPN [ENTER]
1: {{ #1AE1 307 }

{#11D1 8718

{#113D 214.5})

LVOP

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

List Manipulation

none

3 { obj, obj, ... obj, }

2: {obj, obj, ... objy]

1: { cmd, cmd, ... cmd,}
1. {obj, obiz °bimin(n,p)]

Applies each operator to the pairs of elements taken from
the operand-list in levels 2 and 3.

When the operand-lists have different size, exceeding
objects are ignored. If you need to perform a calculation
based on the current value of the counter, use the
identifier 'idX’ as counter. It will be replaced by the actual
value.

LOP1, LOPN, METOP

3: {123}

2: {1020}

1 {+]

LVOP [ENTER]

1: {1122}

3: ({35)

2: (11)

1: { SWAP /)

LVOP [ENTER]

AT { 0.333333333333 0.2
3: {1 (2,0) 30 5

2: {0* X 307}

1 { SAME | idx } IFT }

LVOP [ENTER]
1: {24)

1.47

MARK

Category
Affected by flag
Input

Output

Function
Notes

See Also

1.48

Meta-object Manipulation and Stack Handling

none

1: "MARK'

Puts the private mark on the stack. A mark delimits an
unbound meta-object.

'MARK is an unresolved global name. Do not store any
object in it.

C2M, L2M

MATWRT

Category
Affected by flag
Input

Output

Function

Notes

See Also

Applications

Symbolic MatrixWriter
-15 through -18 and -45 through -50, -51

1 {{Symb, , Symb, , ... Symb, ,}
{Symb,, , Symb, , ... Symb,, , }}

1: {{Symb, , Symb, , ... Symb,’q }
{Symby, , Symb, , ... Symb,)}

Allows interactive editing of a symbolic list-matrix.
Details about the editor under CSTMENU,

MATWRT is the sole visible command of library 822
(Symbolic MatrixWriter). Hidden commands of Library
822 are not supported and cannot be used for software
development. Future SmartROM extension will use this
Library number.

CSTMENU
CALENDAR

1.49

MEMBER

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

1.50

String Manipulation

none

3 stry
2 str,
1 pos
1: pos

Returns the absolute position of the first character in Str,
comprised in Strp, starting from position pos. If no match
is found, returns 0.

MEMBER is useful to skip text given a particular set of
characters, typically punctuation characters or delimiters.

Frequently used string-constants has been stored in ROM
to save memory:

DIGIT$ =“0123456789"
alfaLOW$ = "ABCDEFGH...XYZ"
alfaUPP$ = “abcdefgh...xyz”

They are accessible in the fifth page of menu $&L in CST.

Try also 821 250 — Xlib [ENTER] [EVAL] and 821
251 —Xlib [ENTER] [EVAL]

MEMBER and SPAN are useful to check input from the
user, for the presence or absence of certain characters.
Typically they are used to implement parser routines in
conjunction with SPLIT, SUB and other String
manipulation functions. Appendix H lists hidden string
functions.

SPAN, SPLIT

3: “123456789A12DEF”
2: “ABCDE"

1: 1

MEMBER [ENTER]

1: 13

META

Category
Affected by flag
Input

Output

Function

Notes

See Also

Applications

Meta-object Manipulation

none

1: n
N+1: 1
3 n-1
2 n
1: n

Creates a real meta-object in increasing order.

META is useful to create index arrays in conjunction with
—ARRY.

METOP, NDUPN, SRT, STRD
CALENDAR

1.51

METOP

Category
Affected by flag
Input

Output

Function

Notes

See Also
Applications

Examples

1.52

Meta-object Manipulation

depends on the operators passed for evaluation

N+1: obj,
3 obi,
2 n

1 list
N+1: obj,
2 obj,
1 n

Applies a sequence of commands evaluating to a single
result to each object of the meta-object. The final result is
a meta-object of the same size as of the original one.

The list in level 1 must contain a sequence of commands
whose result is a single object. This convention, in
practice, does not restrict the usage of METOP. When
you use up an object doing some operation, you can refill
the empty with a boolean or a dummy object.

LOP1, LOPN, LVOP
L—-TH, TH—-L
#45h

AhOROON
-t
N

METOP [ENTER]

<45h>
<25h>
<22h>
<Ch>
<11h>
5

apwhoo

MGET

Category
Affected by flag
Input

Output
Function

Notes

See Also

Applications

Symbolic Matrix Manipulation
none
3: {{Symb, , ... Symb, , ... Symb, .}

{Symby, ¢ ... Symb;, ... Symb,, .}
{Symby,, ; ... Symby, ... Symb,, .}
i

2:
1 k
1 Symb;

Extracts an element from a list-matrix.

No check is made on the type of the objects contained in
the list, nor on the consistency of the structure of the
matrix. This feature lets you extract elements from two
dimensional lists of arbitrary structure. If the pointee is
missing an error is issued.

MPUT
MATMENU, PRSYMB

1.53

MOVE

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

1.54

Meta-object Manipulation
none

N+4: obj,

Objerm

b,

Obigeove

obj,

n

from

to
above

b I O AT U T T B

N+1: obj,
Obj.1
Objygs 4
Obiubovo4
Objirom
obj,
0bjpove

gbj,,

1: n

Shifts the block of objects delimited by from and to above

objectabove.

Top of stack contains the counter while level 2 contains
the last object of the meta-object (as if it were the last
element of a list). The first element of the meta-object lies
on level n+1(after the execution of the command).

Input parameters from and 10 can be given in any order. If
you specify for above a value greater than N, the section
will shift after the tail of the meta-object.Despite of
COPY, MOVE does not allow a value for destination
between from and to

DELETE, COPY

Follow on the next page.

Examples

6 “I stay here”
5 “I get moved”
4 “me t00”

3 “I'li go up”

2 “End”

1 5

3 5 MOVE [ENTER]

2

6 “I stay here”
5 “'ll go up”
4 “I get moved”
3 “me too”

2 “End”

1 5

“I'll stay here”
“l get moved”
“me too”

“I'if go up”
“End”

5

3 6 MOVE [ENTER]

aheraR

2

6 “| stay here”
5: “I'll go up”

4 ‘End”

3 “I get moved”
2 “me too”

1 5

1.55

MPUT

Category
Affected by flag
Input

Output

Function
See Also

Applications

1.56

Symbolic Matrix Manipulation
none
4: {{Symb, , Symb, , ... Symb, }

e

{Symb, ; Symb,, , ... Symby, , }
1

k
Symb

{{Symb, , Symb, , ... Symb, , ... Symb, }
{Symb, , Symb,, ... Symb ... Symb, }
{Symb,, , Symb,, , ... Symb,, ... Symbg, }}

Replaces the value contained at location (i,k) with Symb.
MGET, MSYMB?
MATMENU, PRSYMB

MREV

Category
Affected by flag
input

Output

Function
See Also

Examples

Meta-object Manipulation

none

N+1: obj,
2 obj
1: no
N+1: obj,,
2 obj,
1 n

Reverses the order of the objects in the meta-object.
SRTD

1: [123456]

OBJ— OBJ— DROP MREV —ARRY [ENTER]
1: [654321]

1.57

MSBIT

Category
Affected by flag
Input

Output

Function

Notes

Examples

1.58

Type Conversion

-5 through -10 for binary integers only

1: n 1 <n> 1. #n
1: msbit

Returns the position of the most significant bit in the
mantissa of the input number.

Real numbers are automatically rounded to integers before
the operation.

MSBIT returns a value between 0 and 20. 0 means no bit
set.

The value returned complies with the following definition:
MSBIT=INT(LOG2(n))*1 for n#0.

MSBIT=0 for n=0.
1: h

MSBIT [ENTER]

1: 3

MSYMB?

Category
Affected by flag
input

Output

Function

Notes

See Also

Symbolic Matrix Manipulation

none

1:

or

m*n+2:
m*n+1:

3
2:
1

{{Symb, , Symb, , ..
.léymbm.1 Symb,, 5 ...
{{Symb, , Symb, , ...
.|1§ymb,,,'1 Symb,, 5 ...

Symb,
Symb, »

gyntax: Obj

;S“ymb
Tk
0

. Symb, .}

Symb,, , }}
Symb, . }
Symb,, , }}

Checks the contents of the list-matrix. Any object whose
type is not a Real, Complex, Unit, Symbolic or Global is
tagged with the string “Syntax” and the list-matrix is

decomposed on the stack.

MSYMB? does not check dimensions. To check
dimensions use DIMS,

CONFORM?, DIMS, EQUAL?, SQUARE?

1.59

MULT

Category
Affected by flag
Input

Output

Function

Notes

See Also
Applications

Examples

1.60

Symbolic Matrix Manipulation
-3 (Symbolic Result)

2 {{SymbA, , SymbA, , ... SymbA, .}

{SymbA, , SymbA,_ , ... SymbA_, 1}
1 {{SymbB]; SymbB, ... SymbB, o'

{SymbB, , SymbB, , ... SymbB, ,}}
1: {{Symb, , Symb, , ... Symb, ;}
{Symb,, , Symby, ; ... Symb,,

Performs row by columns multiplication between
symbolic arrays.

List-matrices must have compatible dimensions, that is if
the first array is a (m,n) the second must be (n,p). We
called this special property conformability (see under
CONFORM?). When the aforementioned condition is
violated, an error is issued. If the flag -3 is set, run-time
erros may happen if an identifier cannot be resolved to a
numeric value. In-place multiplication is performed by
FACTOR. The last example below shows you the
difference between row by column and in-place
multiplication.

CONFORM?, FACTOR
MATMENU, PRSYMB
2: {H121'X X-1}}

1: X -1}
MULT [ENTER]
1: {{"-X-2")

{XEX-(-1+X))}

2: {{12){67}) {12467}

1: {t21}{34}} {{21}{34}
MULT [ENTER] FACTOR [ENTER]
1: {{89){3334}) {{22){1828})

NDUPN

Category
Affected by flag
Input

Output

Function
Notes
See Also

Examples

Meta-object Manipulation

none

2: Obj
1: n
N+1: Obj
2 Obj
1: n

Creates a meta-object by duplicating a given object.

If n=0 NDUPN creates a null meta-object.
META

1: { hello }

4 NDUPN [ENTER]
5: { hello }

4: { helio }

3. { hello }

2 { hello }

1: 4

1: { hello }

0 NDUPN

1: 0

1.61

NIP

Category
Atfected by flag
Input

Output
Function

See Also

1.62

Stack Manipulation
none

2 Obj,

1: Objg

1: Objg

Removes from the stack the object on the second level.
AAB, BAA, BAB, BBA, BCAC, BCDA, CAB, CBA

NULL

Category
Affected by flag
Input

Output

Function

Notes

See Also

Type Conversion
none

1: obj

1: obj (null)

Replaces the input object with the null object of the same
type respect to the addition operation.

Only the objects listed below have a correspondent null
object.

Type Null element

0 0
1 (0,0)
2 a»
3 [0...0] or [[0...0}...[0...0]}
g H0,0)..‘(0,0)] or [1(0,0)...(0,0)]...1(0,0)...(0,0)}}
6
7 0
9 0
10 #0h
1 Blank ,, , 1,
12 inherits from the ancestor if defined.
13 0_unit
20 <Oh>

A Tagged object inherits ancestor’s type.

Polymorphism is a property of RPL language (at user
level). It allows you to design object-independent
algorithms. Of course some operations make sense only
with certain entities, but setting the algorithm free from
object slavery, you will save time later, when you need to
recycle the routine.

The NULL command lets you design recursive algorithms
or loop structures independently from the input object
type. Typically such algorithms need some initialization
code in order to start a chain calculation. The + (plus)
Command is the most flexible operator built in the 48.
The NULL command lets you initialize every routine
based on concatenation or addition without knowing in
advance the object type.

RPT

1.63

Examples :tag:{ 12 3) NULL [ENTER]

1 {)

1: (o1 5]
[43-2]

NULL [ENTER]

1: [[000]
[000]]

1.64

PARSE

Category
Affected by flag

Input
Output

Function

Notes

String Manipulation

-5 through -10 (wordsize), -15 and -16(coordinate
system), -17 and -18 (angle mode)

1: str

4: str

3 <last>
2: prg 2 “characters”
1: External (TRUE) 1: External (FALSE)

Pérforms the parsing of the input string. If no syntax error
is detected an object containing the executable code is
returned along with the system boolean TRUE. Otherwise
the original string, the absolute position of the last
character scanned and the text containing the syntax error
are returned along with the system boolean FALSE.

By extending the system parser, it is possible to handle
unsupported object types like system binaries. The
example given below shows a possible technique, you
could enhance at your will.

on-the-fly parser handling system binaries:

« 0 — current initializes replacement counter

« {}’$SUBST STO initializes temporary storage
area

DO PARSE —TorF parses input string

IF NOT THEN if error then

NIP take apart the string
SPLIT OVER DUP

'$SUBST' STO+ and save it.

CAB + SWAP take the rest of the string

“$sub” ‘current’ INCR + give a name to the substring
REPLACE DROP replace all the occurences of

the string with the identifier
+ reconstruct the string for
parsing.
0 prepare to parse again
ELSE 1 exit parsing

END
UNTIL

END loopback if error during parse
1 —-PRG make it a program

IF current THEN if any replacement

$SuUBST

OBJ— DUP 2 + retrieve strings and prepare for
loop

ROLL 1 ROT

FORi

“$sub” i + OBJ— build indentifier
ROT 1 SPLIT parse unrecognized text
ROT DROP NIP “#”

SWAP + EndOfString SPLIT

DROP DUP

IF “* SAME

THEN DROP

ELSE +

END

OoBJ— —SYS

REPLACE DROP convert into a sysbin and
replace all the occurrences.

EXT —
END » '$SUBST’
PURGE EVAL »
'Parse’ STO
Try it on this string
“« (0,0) 3 0 360 60 <1h> <2h> 821 247 —Xlib »”
1: « (0,0) 30360
60 <1h> <2h>
821 247 —Xlib »
EVAL [GRAPH]

PKMETA

Category
Affected by flag
Input

Output

Function

Notes

Meta-object Manipulation

-56 Beep

N+5: obj,

6 obj

5: no

4 begin

3 current

2 lines

1 row

[ENTER] [ON]

N+5: obj,

N+4: obj,
6: obj,,

5. n 5: obj,
4 begin 4 n

3 current 3: begin
2: objcurrent+begin 2: current
1: 1 1: 0

Shows a catalog of a specified number of lines beginning
on a specified display line. The selection of the object is
interactive and mantains the functionalities of the built-in
catalog.

Command parameters are so defined :

obj;

obi,

n

input meta-object.
begin

index of the first object on which beginning the page
minus one (from O to n-lines).

current
current element within the page (from 1 to lines).
lines

height of the page in lines (from 1 to 8-row). row starting
row of the display (from 1 to 7). When using a value less
than 2, FREEZE may be required.

Values exceeding the limits are rejected with an error.

Selecting an object means moving the pointer to the line
containing the object and press [ENTER]. Once you press
[ENTER] the catalog is exited and the selected object is
duplicated as shown in the stack diagram. The selection
may be aborted by pressing [ON]. In this case only the
last pointer position is returned. Arrow keys perform

1.67

1.68

pointer movements in the same way the built-in catalog

allows.

PKMETA is very flexible because each action associated
to a key may be redefined. Each defined key must be
associated to a program stored in user memory. The
following table summarizes the PKMETA auxiliary
programs and data structures and the default keys along
with their actions:

Global Name Keycode

KEYS

ACTIONS

BADKEY

ATTN

DOWNARR

UPARR

ENTER

PGUP

PGDOWN

TOP

BOTTOM

ENHANCE

nja

nja

nja

<2Dh>
<th>

<t1h>
<1h>

<0Bh>
<th>

<19h>
<1h>

<0Bh>
<2h>

<11h>
<2h>

<0Bh >
<3h>

<11h>
<3h>

nja

Action

Mantains the list of defined keys.
Each element of the list is a list
containing two system binaries.
The first number represents the
absolute key number h to Dh, the
second represents the shift plane h
to h. This encoding system matchs
KEYWAIT format.

Mantains the list of the actions
associated to the keys. The list
must always have at least one
element. The first element is a
name of the program that must be
called when an undefined key is
pressed. By default this name is
BADKEY. The second element
corresponds to the first keycode
stored in KEYS and so on.
ACTIONS must always contain a
number of actions equal to
SIZE(KEYS)+1. Otherwise a
special error code will be issued.

The action taken when an
undefined key has been pressed.

The action associated to the
pressing of [ON]. By default it
aborts the selection.

The action associated to the
pressing of [!]. It moves the
pointer downwards, eventually
scrolling up the page by one line.

The action associated to the
pressing of [1]. It moves the
pointer upwards, eventually
scrolling down the page by one line.

The action associated to the
pressing of [ENTER]. By default it
confirms the selection and exits the

catalog.

The action associated to the
pressing of [Gold][1] . It displays
the previous page. -

The action associated to the
pressing of [Gold] [!]. it displays
the next page.

The action associated to the
pressing of [Blue] [1]. Moves the
pointer to the top of catalog.

The action associated to the
pressing of [Blue] [!]. Moves the
pointer to the bottom of the catalog.

The routine that displays the
current line and the pointer.

NOR nja The routine that cancels the pointer
by the current line.

All the programs described above can be modified at your
will. There are S parameters stored in temporary variables
which contain the information you need to take some
action. They represent the current value of the input
parameters passed on the stack. Please note that this
values are stored as system binaries and not as real
numbers.

n counter Keeps stored the total number
of elements of the meta-object
(the counter)
o begin This is the offset to the first
page line (element) which begins
the page.
c current This is the current element
element within the page.
r row This is the row of the display
on which the page is anchored.
h lines This is the total number of
lines per page.

These variables can be accessed by name or by their order
in the temporary variables chain. If you know the entry
points to recall and store temporary identifiers by their
creation order, you can use them freely. The variables
have been created in the order shown in the table above,
that is n is the fifth of the chain and h is the first. To recall
h use entry point #613B6h. However the safest way is to
recall and store them by name.

Remember to change the current values according to
underlying data structure. When PKMETA is running, on
the stack there is only the body of the meta-object without
the counter.

You can add or modify or change name simply modifying
the ACTIONS list and updating, if necessary the KEYS
list. All the customization of the command is with you.

1.69

PRG—

Category

Affected by flag
Input
Output

Function

Notes

1.70

Program Editing, Meta-object Manipulation and Type
Conversion

none

1 prg
N+1: ext,
2 ex,
1 n

Splits a program in its meta-object form.

A program is a collection of objects and pointers like a list
or an algebraic expression. The main difference between
programs and other composite object lies in its direct
execution capability opposite to the indirect execution
capabilities of lists and algebraics. Direct execution means
that once the prolog of the program is executed, it starts
executing objects within the program, while lists and
algebraics merely push themselves on the stack. Once
they are on the stack these objects can be executed via
EVAL. Using PRG— you will be able to modify in
whatever manner you want a compiled program, deleting,
moving, changing the objects it contains. The possibility
to modify compiled programs directly on the stack makes
much faster editing session of large programs, typically
when you need to swap objects or make little changes in
the source. Nevertheless PRG— opens a wide range of
applications dealing with program editing and in fact the
SmartROM uses heavily this kind of commands. We
suggest you try to edit a program via Interactive Stack.

May be you ramain quite surprised after expanding a User
RPL program on the stack. In fact the built-in parser often
adds hidden threads to perform safely dangerous
operations like pushing an identifier on the stack
unevaluated. Pay attention not to delete these hidden
threads ! Moreover, as you will see, programming
structures collect the commands between delimiters in a
program object. To expand this kind of program, you need
to move the object on the first level of the stack and call
PRG — again, then after editing it, you must recontruct
the program with —PRG and move back the program to
the original position.

A nice thing about PRG — is that it can split also built-in
functions and commands as SIN or STO. These
commands appear, as any other internal program, as a
stream of pointers to machine language routines and
objects whose interpretation is impossible without
commands like EXT—. If you want to understand the
difference between so-called functions and commands,
read the Notes under command

See Also EXT—, ~EXT, »PRG

Applications L—-TH, SHRINK, TH-L, UPTRIM
Examples «IFO>

THEN DROP SWAP

END »

PRG— [ENTER]

9: «

8: IF

7. 0

6: >

5: THEN

4: DROP SWAP
3 END

2: »

1: 8

1.7

—PRG

Category Meta-object Manipulation, Program Editing and Type
Conversion

Affected by flag none

Input N+1: exty
1: n
Output 1 prg
Function Builds up a program object from a meta-object.
Notes See under PRG—.
See Also EXT—-, -EXT, PRG—
Applications L—TH, SHRINK, TH—L, UPTRIM

1.72

—R

Category
Affected by flag
Input

Output
Function

Notes

See Also

Type Conversion

-5 through -10 when the input is a binary integer
1: <nh> 1. #n 1. Char
1. n

Converts the input number into a real.

—R accepts also real numbers as input. This feature sets
you free to use — R also when the object type should not
Tequire any conversion.

—B, —Char, EXT—, —EXT, —»SYS

1.73

RDOWN

Category
Affected by flag
Input

Output

Function

Notes

See Also

1.74

Stack Manipulation
none

N+2: obj,

Te2: &)i,

3 obj,

2: n

1: t

N: obj,

NT+1: 'c;i)i,,

N-T: obj,

1 Obiyq
Rolls down n objects t times.

The command is smart enough to choose the best roll
direction (upwards or downwards). Rolling down 100
objects 99 times is a good exercise of aerobyc dance for
your 48, but it is not that kind of exercise we really need
to do. We had better to roll up 100 objects one time !

RUP, XLVLS

RDROP

Category
Affected by flag
Input

Output

Function

Notes
See Also

Examples

Stack Manipulation
none

Us2 v,

Pe2 v,

3 liv

2: f

1: u

U: o v

PA: vy

1 v,

Deletes the segment of the stack delimited by levels p and
u

p and u can be given in any order.
RDUP, SHIFT, XLVLS
~ “first”

“to get rid”

“to get rid”

“second-last”

“last”
3 RDROP [ENTER]

4
3 “first”
2:
1:

2hesg

“second-last”
“last”

1.75

RDUP

Category
Affected by flag
Input

Output

Function

See Also

Examples

1.76

Stack Manipulation
none
P v,
U3 iy,
D+3: v,
4 liv,
3 p
2: u
1: d
v,
v,
g
I'wp
Bt i,
D: livy
1 v,

Copies the segment of the stack delimited by p and u
above level d.

RDROP, SHIFT, XLVLS

“first”

“get copied”
“get copied”
“second-last”
“last”

3 1 RDUP [ENTER]

2heosa

4

7 “first”

6: “get copied”
5: “get copied”
4: “second-last”
3 “get copied”
2 “get copied”
1 “last”

REPLACE

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

String Function, List Manipulation and Program Editing

none

3 stry 3 Prg 3: List

2: str, 2 obj, 2 obj,

1 stry 1 obj, 1 obj,

2: str 2: Prg 2: List

1: Replaced:n 1: Replaced:n 1: Replaced:n

Substitutes all the occurences of the search-key with the
object or string given and returns the total number of
replacements.

The replacements are limited to objects stored in user
memory. Because some internal routines are recursive or
Teentrant, the search level is limited to threads stored in
RAM. This preserves from endless loops. Internal
routines of the SmartROM are able to perform selected
substitutions at arbitrary depth within threads. Refer to the
Hidden Commands Reference for more information on
this topic.

FIND
3 « 4 ROLL SWAP DROP { OVER 4 ROLL } »
2 ROLL
1: ROLLD
REPLACE [ENTER]
2 « 4 ROLLD SWAP DROP { OVER4 ROLLD } »
1: Replaced: 2
3 “ABC ABC ABC”
2: “ABC”
1 “HELLO”
REPLACE [ENTER]
2 “HELLO HELLO HELLO”
1: Replaced: 3

1.77

REV

Category String Manipulation

Affected by flag -5 to -10 (binary integers only)

input 1 str 1 {obj, Objj ... Obj,} 1: #abcde
Output 1 str 1 {obj,, Obj,; ... obj,} 1: #edcba
Function Reverses the order of the characters for strings, the order
of the objects for lists and the order of the digits for binary
integers.
Notes Binary integers are reversed according with their actual

size. User binary integers may be no longer than 16
nibbles (in hex mode). However the 48 can handle binary
integers of arbitrary size. For example, when you apply
BYTES to an object, the binary checksum you get is
always 4 nibbles long, no matter the current wordsize is.
Of course the display shows it according to the wordsize,
but its size remains 4 nibbles.

See Also MREV

Examples 1: “123456789A12DEF”
REV [ENTER]
1: “FED21A987654321"
1: {ABC}
REV [ENTER]
1: {CBA)
Supposing current wordsize of 64 bit.
1: #123456h
REV [ENTER]
1 #6543210000000000h

1.78

ROMV

Category
Atfected by flag
Input

Output

Function

ROM Version

none

Shows information about the SmartROM.

1.79

ROWCOL

Category
Aftected by flag
Input

Output

Function

Notes

Examples

1.80

String Manipulation

none

2: str
1: pos
3: str
2: row
1: col

Computes the coordinate of the absolute position of a
character in terms of rows and columns, by counting the
linefeeds contained in the input string.

The coordinates returned by ROWCOL can be used as
parameters in the input list of command INPUT to place
the cursor at a certain point within the editor. Typically
this method is used to place the cursor on a particular
occurence of a substring, previously found with LOC or
POS.

“HELLO BOYS, THIS IS THE THIRD LINE OF
TEXT” [ENTER]

DUP SIZE ROWCOL [ENTER]

3 “HELLO BOYS, THIS I...”
2: 3

1: 18

RPT

Category

Affected by flag

Input

Output

Function

Notes

See Also

String Function, List Manipulation, Utility, Graphics

none

2: str 2: n

1: n 1: str

or

2: { Obj,... Obj,} 2 n

1: n 1: { Obj,... Obj }

or

2: #b 2: n 2 Grob,, .y, 2:
1 n 1: #b 1: n 1
or

2: prg 2: n 2: Global 2:
1. n 1: prg 1: n 1.
1: str...str 1: { Obj;... Obj,.... Obj,... Obj,}
1: #bbbb..b 1 GIrob (yep x

or

N : Obj

T O

Chains data objects n times or executes n times a given
procedure or identifier.

RPT is one of the most flexible commands of the
SmartROM. Thanks to its fast loop generator, it can link
string and list quicker than any other command seen up to
date. Try with a string of ten characters repeated 1000
times. You want believe to your eyes !

RPT is useful at most when you need to perform iterated
operations without referencing counters. RPT does not
mantain stack integrity, so that you can push or drop
objects from the stack freely. If you have a DEMO
program you want to iterate almost indefinitely, try this:

'DEMO’ 1000000 RPT.

The loop normally cannot be interrupted. If you need to
interrupt it press [ON] [C].

In the examples given below procedures are standard
programs. Nevertheless you can push on the stack
individual commands by doing so:

{ MAX } OBJ— DROP
METOP

n
Grob

wxh

n
Global

1.81

Examples

1.82

2: {123}

1: “ABC”

2 {3 RPT } METOP [ENTER]
3 {123123123}
2: “ABCABCABC”

1: 2

«RAND 10*IP » 10 RPT

10: 3
9: 7
8: 5
7. 2
6: 7
5: 0
4 8
3: 3
2 6
1: 0

« MAX » 10 RPT [ENTER]
1: 8

Suppose you want to move a hundred variables from user
memory to PORT 1 where you have a 128 K RAM:

1: {Name, Name, ... Name}

OBJ— « DUP RCL BAA PURGE 1 —TAG STO »
RPT [ENTER]

RUP

Category
Atfected by flag

Input

Output

Function

Notes

See Also

Stack Manipulation
none

N+2: obj,

T2 obj

>

1. t

N: 0Objy

o ohi,

T : obj,

1 obj

Rolls up n objects t times.

The command is smart enough to choose the best roll
direction (upwards or downwards). Rolling up 100 objects
99 times is silly. It is better roll down 1 time !

RDOWN, XLVLS

1.83

SHIFT

Category Stack Manipulation
Affected by flag none

input
P+3: livg
U3 iy,

D43 v,
4 liv
3 p !
2 u
1: d

Output
P: liv
P iV
- Vg.q

livy
DH: iy
D: v
i: liv,

Function Moves a segment of the stack comprised from level p to
level u above level d.

Notes Stack-oriented commands require one parameter less than
their meta-object-oriented counterparts. On the other hand
meta-objects let you know exactly how many objects you
shall deal with.

See Also RDROP, RDUP, XLVLS

Examples 5: “| stay here”

4 “I get moved”
3 “me too”

2 “'lf go up”

1: “End”

4 3 1 SHIFT [ENTER]

5: “| stay here”
4 “I'll go up”

3: “I get moved”
2 “me too”

1 ﬂEnd”

1.84

SPAN

Category
Affected by flag
Input

Output

Function

Notes

See Also

String Manipulation

none

3: stry
2 str,
1: pos
1: pos

Returns the absolute position of the first character in Stry
not comprised in Stry, starting from position pos. If no
match is found, returns 0.

A typical usage of SPAN is when checking for the
presence of extraneous characters, especially when the
input string comes from the user. Suppose the user must
enter a numeric value without decimal point and
Exponent. To check the string you can do so:

3: “758833" This is the string given by the
user.

2: "0123456789" This is the string containing
allowed characters

11 Beginning position

SPAN [ENTER]

1: 0

Another frequent usage is when you need to skip blanks
between words. In this case the test string must contain
only a blank : * ”. the position returned (if any) is that of
next non-blank character. You could also ignore periods
or any other punctuation by appending them to the test
string.

‘a7 lets you skip blanks, periods,

commas and semicolons.

Frequently used string-constants has been stored in ROM
to save memory:

DIGIT$ =“0123456789"
alfaLOW$ = "ABCDEFGH... XYZ"
alfaUPP$ = “abcdefgh...xyz”

They are accessible in the fifth page of menu $&L in CST,

Try also 821 250 AXlib [ENTER] [EVAL] and 821 251
AXiib [ENTER] [EVAL]

MEMBER

1.85

Examples 3 “123456789A12DEF”

2: “1234567890"
1: 3
SPAN [ENTER]

1: 10

1.86

SPLIT

Category
Affected by flag
Input

Output

Function

Notes

Examples

String Function and List Manipulation

none

2: str 2: { obj, objj ... obj; ... obj, }
1 p 1: p

or

2: p 2: p

1: str 1: { obj, obj, ... obj, ... obj, }
or

2: str 2: { obj, obj, ... obj ... obj, }
1: str 1: obj

3: str, 3 {obj, ... obj,}

2: str, 2 objp

1: stry 1: {objg, ; ... obj,}

Splits the string or the list in three chunks:

3: Beginning chunk level
2: Middle chunk level
I End Chunk

Empty string or lists are valid input objects.

If p is greater than the total size of the object, it is
considered as SIZE(obj). If p is equal to 0 or the
search-key is missing an error is issued.

Please note that the original object can be recontructed
with two consecutive + (addition) operations.

Follow on the next page.

1.87

Examples 2: “123456789A12DEF”

1 5

SPLIT [ENTER]

3 “123¢4”

2: "5”

1: “6789A12DEF”
2: “123456790”
1: "456"

SPLIT [ENTER]

3: “123”

2: "456"

1: “790”

2: {12345)
1 6

SPLIT [ENTER]

3 {1234}

2: 5

1 {}

2: { 1 Ilabcﬂ ’x/yl}
1: “abc”

SPLIT [ENTER]

3: {1}

2: “abc¢”

1: {"xly'}

1.88

SQUARE?

Category
Affected by flag
Input

Output

Function

See Also
Applications

Examples

Symbolic Matrix Manipulation
none
1 {{ Symb, , ... Symb, . }
{ Symb, , ... Symb,,, }
3 {{ Symb, , ... Symb , |
2 {{ns KT o Y00l {{ Symb, , ... Symb, , }

{Symb_ Symb__}}
1 1 1: 0 ! e

Checks if the list-matrix is square. If yes it returns 1 along
with matrix dimensions otherwise 0.

DETERM, EQUAL?, CONFORM?
INVRT, MATMENU, PRSYMB

1. {XYZ)}
{13-2}}

SQUARE? [ENTER]

2: {{XYZ}{13-2}}

1 0

1.89

SRDIFF

Category
Affected by flag
Input

Output

Function

Notes

See Also

Examples

1.90

List Manipulation
none

2: List

1 obj

1: pos

Returns the position of the first object different than Obj.
If all objects are the same as Obj returns 0.

The implementation of a routine performing a test on all
elements of a list is straightforward in internal RPL.

Pass 1 Create a test procedure taking two objects
from the stack and returning a system
boolean (See TRUE and FALSE).

Pass 2 Store it in a variable for easier reference.

Pass 3 Push on the stack the list and the object
being tested

Pass 4 Push on the stack the name of the variable
or directly the test procedure.

Pass 5 #64426 SYSEVAL [ENTER]

SRGE, SRGT, SRLE, SRLT

2: {1111123}
1: 1

SRDIFF [ENTER]
1: 6

SRGE

Category
_Aﬁected by flag
Input

Output

Function

Notes
See Also

Examples

List Manipulation
none

2: {nyn,.. np}
1: n

1 pos

Returns the position of the first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF.
SRDIFF, SRGT, SRLE, SRLT

2: {1111136}
1: 2

SRGE [ENTER]
1 6

1.91

SRGT

Category
Affected by flag
Input

Output

Function

Notes
See Also

Examples

1.92

List Manipulation
none

2: {ny ny . np}
1: n

1: pos

Returns the position of the first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF,
SRDIFF, SRGE, SRLE, SRLT

2: {1111136})
1: 3

SRGT [ENTER]
1: 7

SRLE

Category
Affected by flag
Input

- Output

Function

Notes
See Also

Examples

List Manipulation
none

2 {nny.. npl
1: n

1: pos

Returns the position of the first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF.
SRDIFF, SRGE, SRGT, SRLT

2. {3342536)
1 29

SRLE [ENTER]
1: 4

1.93

SRLT

Category
Atfected by flag
Input

Output

Function

Notes
See Also

Examples

1.94

List Manipulation
none

? L nny..ngl
1: pos

Returns the position of the first real number greater or
equal than n, otherwise returns 0.

See under SRDIFF,
SRDIFF, SRGE, SRGT, SRLE

2: {34102136}
1: 2

SRLT [ENTER]
1: 5

SRT

Category
Atfected by flag
Input

Output

Function

Notes

See Also

Applications

Meta-object Manipulation

none

N+1: obj,

1. n

Nf“ obj,

2 obi,

1 n

Sorts the data in ascending order.

Objects must be compatible with the < operator (less
than). To this category of objects belong:

Global names

Real numbers

Binary integers

Strings

System Binaries

Tagged objects falling in one of the classes listed above

If you want to sort local names you need first to translate
into global names, then use SRT and convert them back to
Locals. To convert a Local name into a Global name back
and forth use the following procedure:

#2464F SYSEVAL Local to Global
#2465F SYSEVAL Global to Local

To apply the translation to all the identifiers you can do
the following:

N+2: Local

3: Local

2: n

1: { #2464Fh SYSEVAL }
METOP [ENTER]

The inverse function needs only #2465Fh instead of
#2464Fh,

Symbolic values are not allowed. The hidden code is able
to sort.any data for that a sort procedure has been defined.
This means that you could sort any object given a sort
criterion. Refer to the Hidden Commands Reference for
further information.

SRTD, MREV
alfaORDER

1.95

Examples

1.96

“JOHN”
“MARY”
“Jl M”
“STAN”
‘FRED”
upau'n
“LUISE”
“HENRY”
8

SRT [ENTER]

“FRED”
“HENRY”
“JiMm”
“JOHN"
“LUISE”
“MARY”
“STAN"
“paul”

8

aNORODONP O

oNhORODIN®O

SRTD

Category
Affected by flag
Input

Output

Function

Notes

See Also

Meta-object Manipulation

none

N+1: obj,

2 obi,

1: n

N+1: obj,

2 obj,

1 n

Sorts data in descending order.

Objects must be compatible with the > operator (greater
than).

To this category of objects belong:

Global names

Real numbers

Binary integers

Strings

System Binaries

Tagged objects falling in one of the classes listed above

Further information under SRT.
SRT

1.97

SUBT

Category
Affected by flag
Input

Output

Function

See Also

Applications

1.98

Symbolic Matrix Manipulatioﬂ
-3 (Symbolic Result)

2 {{SymbA, ; SymbA, , ... SymbA, '}

{SymbA,, ; SymbA,_, ... SymbA__ }}
1: {{SymbE]; SymbB,5... SymbB,

{SymbB,, ; SymbB,, , ... SymbB_ 1}
1 {{SymbA, ,-SymbB, ; SymbA, ,-SymbB, , ... SymbA, -SymbB, .}
{SymbA,, ;-SymbB, , SymbA, ,-SymbB, , ... SymbA_, -SymbB,_ J}

Subtracts the second matrix from the first. Matrices must
have the same dimension.

ADD, ADDCON, DIMS, EQUAL?, MULT, MSYMB?
MATMENU, PRSYMB

SYMBMAT—

Category Symbolic Matrix Manipulation
Affected by flag none

Input 1 {{Symb, , Symb, , ... Symb, , } 1 [[Ngy Ny Nyl
{Symb,y Symb,p .. Symb,, . }} [Nt Nz - Nog 1
Output N+1: Symb, (7% FR '
1: {mn} 1: {m n}
Function Decomposes the list-matrix or the array on the stack.
Notes SYMBMAT- is useful to convert ordinary numeric

arrays into their symbolic counterpart. It handles numeric
vectors as if they were arrays 1 x m.

Note that doing:

EVAL* you get a meta-object
See Also DIMS, MSYMB?, —SYMBMAT, TRNSP
Applications MATMENU, PRSYMB

Examples 1: {{123}
{'X'X-1"-1}}

SYMBMAT— [ENTER]

1

2

3

7X!
1x_1l
-1
{23}

1. [12345]
SYMBMAT— [ENTER]
1

aNOROON

2hORrOD

2
3
4
5
{15}

—-SYMBMAT

Category
Affected by flag
‘ Input

Output

Function
Notes
See Also

Applications

Examples

1.100

Symbolic Matrix Manipulation
none

N+1: Symb,

3 Symb,,

2. Symb,,

1: {rc}

1: {{Symb, , Symb, , ... Symb, . }

{Symb, , Symb, , ... Symb, . }}

Assembles the data on the stack in a symbolic matrix. If
not enough objects are on the stack an error is issued.

The command does not check the type of the objects. This
feature lets you build list-matrices for arbitrary purposes.

CONSTMAT, DIMS, MSYMB?, SYMBMAT —,
TRNSP

MATMENU, PRSYMB

7. 1

6: 2

5: 3

4 X

3: X-1’

2: -1

1: {23}

—-SYMBMAT [ENTER]

1: {{1 2 3}
{'X'X-1"-1}}

—-SYS

Category
Affected by flag

Input
Output
Function

Notes

See Also

Type Conversion

-5 through -10 bynary integer wordsize (binary integers
only)

1: n 1: #n 1 Char
1: <nh>
Converts an input number into a system binary.

—S8YS accepts system binaries as well. This feature sets
you free from checking in advance the type of the input
object.

System binaries are explained in detail in Appendix C.
—-B, —=Char, =EXT, =R

1.101

—TorF

Category
Affected by flag
Input

Output
Function

See Also

1.102

Type Conversion
none
1: TRUE 1: FALSE

1: 1 1: 0
Converts the system boolean value into a numeric boolean.

FALSE, TRUE, EXT—, —EXT

TRNSP

Category
Affected by flag
Input

Output

Function
Notes

See Also
Applications

Examples

Symbolic Matrix Manipulation

none

1: {{Symb, , Symb, , ... Symb, .}
{Symb,, Symb,, » ... Symby, oJ}

1: {{Symb, ; Symb,, ... Symb, .}

{Symb, , Symb,, ... Symb,, .}
Transposes the list-matrix.
The matrix may have any dimension.
SQUARE?
MATMENU, PRSYMB

1: {12}
{X-1}
{’-X'5}}

TRNSP [ENTER]

1 {{1X"-X'}
{2-1 5}

1.103

TRUE

Category
Affected by flag
Input

Output
Function

Notes

See Also

1.7104

Type Conversion
none
1: External (TRUE)

Pushes on the stack the system boolean TRUE.

System booleans are machine language routine addresses
which merely return themselves when evaluated. The
command — TOrF turns a system boolean into a real
boolean.

EXT—, —EXT, TRUE, —»TorF

VERS$

Category
Atfected by flag
Input

Output
Function

Notes

Rom Version
none
1: “SMRT 1:B"

Returns the current version of the SmartROM.

It can be useful for creating programs running on different
versions of the ROM.

1.105

—Xlib

Category
Affected by flag
Input

Output
Function

Notes

See Also

Examples

Type Conversion
none

2: LID

1 Num

1: XLIB LID Num

Pushes on the stack the External Library name specified.

When you put on the stack a XLIB object having a
corresponding text name, the stack display shows it
directly. If you push a so-called hidden command, there is
10 way to get a text name for that object. There are two
ways to know if a XLIB is referenced:

By evaluating it: Very dangerous!

By calling the entry point # 07E99 with SYSEVAL
The last method is the safest.

If an object is referenced by the XLIB name specified,
entry point #07E99 returns it along with the system
boolean TRUE. Otherwise it returns FALSE.

If you try to evaluate an undefined XLIB name , you will
get an error message. On the other hand if it refers to a
routine and the stack does not contain proper arguments,
you have a big chance to loose memory data.

—EXT, EXT—

2 2

1: 81
—Xlib [ENTER]
1: SIN

2: 821

1: 45
—-Xlib [ENTER]

1: MGET

2 821

1: 246

—Xlib [ENTER]

1: XLIB 821 246 Don’t worry !

XLVLS

Category
Affected by flag
Input

Output

Function
See Also

Examples

Stack Manipulation

none

Ps2 obj,

Us2: obj,

3 obj,

2: p

1: u

P abi“

U : Si)jp

1 obj,

Exchanges levels p and u.
RDROP, RDUP, SHIFT
5 “ABCDE”"

4 1

3 2

2: 3

1 “hello”

5 XLVLS [ENTER]

2
3

4

5: 1

4 “ABCDE"
3.

2

1 “hello”

1.107

1.108

Appendix A

Appendix A

Care of the SmartROM

The SmartROM does not require maintenance.

Limited One Year Warranty

The SmartROM is warranted by Smart Technology against
defects in materials and workmanship for one year from the
date of original purchase. Warranty is automatically
transferred to new owner if you sell the product or give it as a
gift and remains in effect for the original one-year period.
During the warranty period, we will repair or, at our option,
replace at no charge a product that proves to be defective,
provided you return the product, shipping prepaid, to Smart
Technology.

The warranty does not apply if the product has been damaged
by accident or misuse or as the result of service or
modification by other than Smart Technology.

No other express warranty is given.

Smart Technology makes no express or implied warranty with
regard to the software furnished. Programs are made available
solely on an ’as is’ basis and the entire risk as to its quality
and performance is with the user. Should documentation and
programs prove to be defective, the user (and not Smart
Technology or any other party) shall bear the entire cost of all
necessary correction and all incidental or consequential
damages. Smart Technology shall not be liable for any
incidental or consequential damages in connection with or
arising out of the furnishing, use or performance of the
documentation and programs.

Service Center

Whether your unit is under warranty or not you can ship it for
repair to our Service Center. If your warranty has expired,
there will be a charge for the repair and for shipping costs.

The Service Center is located in Modena ITALY.

Al

Appendix A

A2

SMART TECHNOLOGY
Via Varese 67
41100 Modena, ITALY
phone 059-440404
fax 059-304490

Nommally Your unit will be repaired within five (5) working
days of receipt. :

Service Repair Charge

There is a standard repair price (STREP) for out-of-warranty
Tepairs.

Out-of-Warranty units returned after repair are warranted for a
limited 90 days period against defects in materials or
workmanship.

Shipping Instructions

If your unit requires service, please follow these shipping
instructions:

® Include a description of the problem detected.

* If under warranty, include documentation
proving the date of purchase or repair.

® Ship the unit in a protective packaging to
prevent additional damages.

Shipping to Smart Technology is at your charge. Shipping
costs to return the unit are paid by Smart Technology and will
be included in the bill. On out-of-warranty repairs, the unit
will be returned C.0.D.

Technical Assistance

Smart Technology is committed to provide strong after-sale
customer support. If you need specific information on this
product or technical help on HP Calculators, you can call the
number given above.

Appendix B

Objects structure

Object classification proposed herein follows the
order estabilished by the system function TYPE. For
each type of object internal code used by dispatching
routines is given too.

Each object is composed of a Prolog, i.e. the header
of the object that determines its behavior during
direct or indirect evaluation and its data body along

with its structure, total dimensions and characteristics.

Dimensions (length in nibbles) are given in the form:
(Prologs) ... (Data,). Each different item represents a
logic unit whose length is specified in nibbles by the
subscript.

Note that the 48 arranges data in memory in reverse
order, so that the prolog is written with the least
significant nibble coming first. All examples are
given as they would appear in memory during a
Memory Scanner session. If you don’t know what the
Memory Scanner is, save important data first and
press [ON] [D] [BKSP].

[+] and [] let you shift back and forth by I nibble.
[*1 and [/] let you skip over 256 nibbles.

[1] and [!] let you skip over 4K nibble at a time.
Never use [EVAL]! For more information on
Memory Scanner, check BBS contents on this topic
or read the HP-48 Handbooks as those of James
Donnelly and Bill Wickes.

Appendix B

B.1

Appendix B

Real number
Type 0
internal Type <lh>
Prolog <02933h>
Structure (Prologs) (Exponent;) (Mantissa,) (Sign ;)
Dimensions 21
Data (Exponent3)
BCD Exponent in ten’s complement (-500 to 500)
(Mantissa)
BCD Mantissa
(Sign;)
Sign: O = positive, 9 = negative
Example 0 is equal to 339200000000000000000
pi is equal to 339200009535629514130
-1 is equal to 332900000000000000019

B.2

-11 is equal to 332901000000000000119
-5 is equal to 332809990000000000059

Complex Number

Appendix B

Type
Internal Type
Prolog

Structure

Dimensions

Data

1
<2h>
<02977h>

(Prologs) (Exponent;) (Mantissa,) (Sign;) (Exponents)
(Mantissa,) (Sign,)

37
The Real part is composed by the first number while the

imaginary part comes next. Number representation is the same
as for reals.

B.3

Appendix B

String

Type

Internal Type
Prolog
Structure
Dimensions

Data

Notes

Example

B.4

2

<3h>

<02A2Ch>

(Prologs) (offsets) characters.
5 + offset

The total number of characters is (offset-5)/2. (offset-5) must
always be an even number.

Characters are stored byte reversed.

“CIAQ” is equal to: C2A20D000034E414F4
“isequalto: C2A2050000

Appendix B

Real array

Type 3

internal Type <4h>

Prolog <02E48h>

Structure (Prologs) (offsets) (Real Prologs) (n-dims) (dim,) ... (dim,))
Ry D e Ry dim,...dim,)

Dimensions 5 + offset.

Data Matrices are stored in row major order incrementing the
rightmost counter faster.

Notes It is possible to create n-dimensional order arrays. However

there are no provisions in the system for handling individual
elements when n is greater than 2. If you put on the stack a
3-dimensional array, you will get only “Array of reals”.

B.5

Appendix B

Complex array

Type 4

Internal Type <4h>

Prolog <02E48h>

Structure (Prolog;) (offsets) (Complex Prolog) (n-dim) (dim,) ... (dim,))
(Cdim, 1 ... 1) ... (Cdim dim, ... dim,)

Dimensions 5 + offset.

Data Matrices are stored in row major order incrementing the

rightmost counter faster.

Notes It is possible to create n-dimensional order matrices. However
there are no provisions in the system for handling individual
elements when n is greater than 2. If you put on the stack a
3-dimensional array, you will get only “Array of complex”.

B.6

Array

Appendix B

Type
Internal Type
Prolog

Structure

Dimensions

Notes

4
<4h>
<02E48h>

(Prologs) (offsets) (Data Prolog) (n-dim) (dim)) ... (dim,)
(Data) ... (Data,)

5 + offset.

You can create non-numeric arrays for storing
type-homogeneous data. Unfortunately there are no provisions
to handle efficiently this kind of objects. Error Messages in
HIDE area are stored in several one-dimensional string arrays.
If you want to store some data preserving it from editing,
non-numeric arrays are a good place because of their
inaccessibility.

B.7

Appendix B

List

Type

internal Type
Prolog
Structure
Dimensions

Data

Notes

Example

B.8

S

<5h>

<02A74h>

(Prologs) Obj; Obj, ... Obj, (Ends)

5 + Length(Obj,) + Length(Obj,) + ... + Length(Obj,) + 5

A list is a composite object whose body is a sequence of
objects or pointers to objects terminated by a special pointer
<0312Bh>.

The list object is similar to program objects and symbolic
expressions. If you want to translate a Symbolic expression
into a List, change its prolog to <02A74h>. When you
evaluate a List or a Symbolic Expression through EVAL,
special code is called to change the prolog of the composite
object into the prolog of a program object.

{} is equal to 47A20B2130
{1*} isequalto 47A209C2A2FD55082130

orto 47A20339200000000000000010C2A205000082130

Appendix B

Global name

Type 6

Internal Type <6h>, <Ah>

Prolog <02E48h>

Structure (Prologs) (Length,) characters.

Dimensions 7 + (Length) * 2

Notes Maximum lenght of an indentifier is 255 characters with no

restrictions on the name. However there are restrictions due to
the parser safety rules, which prevents you from creating
names conflicting with reserved variables used by the system.

Example 'MARK is equal to 84E205072D41425B4

B.9

Appendix B

Local name

Type 7

Internal Type <7h>

Prolog <02E6Dh>

Structure (Prologs) (Length,) characters.

Di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>