SUBSTANTIAL PROGRAMS

FOR THE

$$
\begin{gathered}
\text { HP-11C AND 15C } \\
\text { (And HP-12C, HP-41) }
\end{gathered}
$$

SPECIAL NOTE TO THE HP-15C USER

While the ten basic programs described in this manual are primarily for the HP-11C they will also work for the HP-15C, assuming the appropriate instructions are keyed. The pertinent steps to be changed (for 15C use) are indicated in the program listings by an asterisk, and the proper keys shown in parentheses. With regard to these programs there are four main differences between the 11 C and 15 C which cause these changes:

1. Location of the summation registers.

11C: registers 0 through 5;
15C: registers 2 through 7.
2. Number and location of conditional tests.

11C: 8, located on the keyboard directly;
15C: 2 directly on the keyboard ($\mathrm{g} X \leq Y, \mathrm{~g} X=0$), and 10 indirectly available by g TEST n.
3. Syntax of ISG (DSE is similar).

11C: f ISG uses register I as the index register;
15C: f ISG n assumes the user specified register \underline{n} as the index register.
4. Location of II key.

11C: instruction is $\mathrm{f} \Pi$ (code $=42,16$);
15C: instruction is $\mathrm{g} \Pi$ (code $=43,26$).

SUBSTANTIAL PROGRAMS FOR THE HP-11C
 (AND HP-12C, HP-15C, and HP-41)

Thomas W. Beers
Professor of Forestry
Purdue University

(C) Copyright, 1987, Thomas W. Beers, Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907. All rights reserved. This book or portions thereof may be reproduced only with the written permission of the author.

Page

Introduction 1
Annotated Directory of Programs 3
Programs:

1. SLR (Simple Linear Regression) 10
2. LVC (Log Volume Calculations) 18
3. PLS (Parabolic Least Squares) 26
4. ABCD (Correction for Magnetic Declination) 33
5. SIMSTRAT (Simple and Stratified Sampling) 47
6. FICALC-11/15 (Financial Calculations) 55
FICALC (HP-41 Version of FICALC-11/15) 113
7. AREA-11/15 (Area of a Closed Traverse) 117
AREA41 (HP-41 Version of AREA-11/15) 126
AREA-S (Shortened Version of AREA41) 134
8. MUGO-11 (Basic Calculator of 4 Means) 138
MUGO41 (HP-41 Version of MUGO-11) 147
9. AMORT78-11 (Amortization Schedules; Normal or "78s") 159
10. FINC78-11 (Amortization Schedules; Rule of 78s Only) 170
AMORT-12 (Amortization Schedules, HP-12C Version) 180
AMORT (Amortization Schedules, HP-41 Version) 188
AM7811 (HP-41 Version of AMORT78-11) 201
The Concept of Time and Money 90
An Elaboration of a Compound Interest problem. 106
Amortization Schedules -- brief background 153
Analogous HP-41 Program Descriptions 210
Publication Availability and Ordering Information 213

INTRODUCTION

The collection of major programs described in this book relates primarily to the Hewlett-Packard HP-11C, a hand held, programmable calculator. Although the supply of available "canned" programs for the HP-11C is sparse (compared to the HP-41*, for example) this calculator, and its companion the HP-15C, remain favored choices of the scientific clientele who are tuned to the efficiency afforded by the RPN (reverse Polish notation) system of problem solving.

Having survived the trauma of the HP-34C being replaced by the HP-11C the author recognizes that to spend significant time assembling programs dedicated to a specific model of calculator practically assures that the introduction of a refined model is imminent. Nevertheless, I have put together several years of part-time efforts in the present work. This bold move (in light of the eventual obsolescence of the HP-11C) is felt justified since the background of each program is thoroughly described, providing the user with the formulas and perhaps the solution format for writing programs appropriate for the HP-11C replacement.

The reader will note that there are ten programs for the HP-11C (all of which were consciously made compatible to the HP-15C), one program for the HP12C, and that starting with program 11F006, companion programs utilizing the HP-41 appear**.

[^0]This "companion" practice emerged in the chronology of programs when it was realized that the same (or very similar) program-use description could be employed for programs written for the different models. For the HP-41 programs, printed listings and program barcode are provided.

Several "narrative" sections are included in this book to make it more of an educational tool than simply a collection of programs. Appendix A part of program FICALC-11/15 discusses the "Concept of Time and Money". This section is copied, with permission, from Hewlett-Packard literature in order to keep an excellent tutorial from "getting lost" as new products and manuals are introduced. It was written in an HP-12C framework*, but most sample problems can be solved using the FICALC-11/15 or AMORT78-11 programs and the HP-11C (or appropriate HP-41 program). Also included (with the FICALC-11/15 program as Appendix B) is "An Elaboration of a Compound Interest Problem...", which shows in some detail the nature of compound interest and several ways of using the calculator to solve common problems.

Another narrative section, briefly describing amortization schedules and the rule of 78 s is included just prior to the AMORT78-11 program.

In the next section brief descriptions are given in order by program number. The only significance of the number is that it indicates the order in which the programs were written. Since this chronological order was followed, the subjects covered (statistical, forestry and surveying related, and financial) occur randomly. A group of "amortization" type programs and separate introduction are included at the end of the collection. In all programs written for the HP-41, printed results can be obtained when a printer (HP-82143A or HP-82162A) is connected.

[^1]
ANNOTATED DIRECTORY OF PROGRAMS

Program			Purpose and Special Notes
Number	Name	Page	
11F001*	SLR	10	This SIMPLE LINEAR REGRESSION program
			provides for calculator initialization to accept
			and process two-variable data, providing: the
			slope and Y-intercept, their standard errors and
			t tests; the slope forced through the origin and
			its standard error; the correlation coefficient,
			and; point and interval estimates for arbitrary
			predicted mean Y and individual Y.
11 F002	LVC	18	The program, LOG V OLUME CALCULATIONS,
			calculates either board-foot volumes (by four
			different log rules) or cubic-foot volume (by
			Huber, Smalian or Newton formulas) for logs of specified length and diameter.

[^2]Program

Program			Purpose and Special Notes
Number	Name	Page	
11 F003	PLS	26	The program, PARABOLIC LEAST SQUARES, calculates the gross and corrected (for the mean) sums of squares and products as well as the regression coefficients for the model: $Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}$. The traditional parabolic fit is achieved if X_{2} is defined as the square of X_{1}. Optionally, X_{1} and X_{2} can be considered independent, leading to the usual multiple linear regression fit.
11F004	ABCD	33	The program, AZIMUTH OR BEARING CORRECTION FOR DECLINATION, achieves the conversion of angles measured from the true north meridian to angles measured from magnetic north and vice versa. Angles can be expressed as bearings (e.g., S 25 E) or in azimuth units from north (e.g., 125 degrees) and c an be in either the degrees, minutes, and seconds or the degree, decimal degree format.

Program

Number	Name	Page	Purpose and Special Notes
11F005	SIMSTRAT	47	This SIMPLE AND STRATIFIED RANDOM SAMPLING
			program is used to summarize data from either
			simple or stratified sample, obtaining within
			stratum and overall estimates of the means and
			standard errors. Optionally, arbitrary
			confidence interval estimates can be obtained.
			Either the finite or the infinite population
			case can be processed.
11 F006	FICALC-11/15	55	The FINANCIAL CALCULATIONS ON THE HP-11C
			OR HP-15C program is an attempt to simulate the
			HP-12C in the solution of the basic financial
			formula relating n (n umber of periods), I
			(periodic interest rate), PV (present value),
			PMT (periodic payment), and FV (future value).
			When four of the variables are provided, the
			unknown can (in most cases) be obtained by
			simple one-key depression. Conversion between
			annual percentage rate (APR) and effective
			annual rate (EAR) is also provided.

Program
Number Name Page

11 F007 AREA-11/15 117

Purpose and Special Notes
The program, FINANCIAL CALCULATIONS, was written for the HP-4l calculator to serve as a close companion to FICALC-11/15, making it feasible (with minor changes) to use the same set of instructions and examples. A refinement was added to provide for a "12-multiplier" or "12-divisor" key similar to the HP-12C.

The program, AREA CALCULATIONS ON THE HP11C OR HP-15C, was written to calculate the area of a closed traverse, given input in the form of straight-side distances and directions either as azimuths or as bearings and quadrants. Area is calculated in square units corresponding to the distance units and optionally in acres or hectares. The linear error of closure is calculated and displayed if desired. The program can also be used as a bearing-to-azimuth converter. Note that there is no provision to "balance" the traverse; if this is necessary it must be done separately.

Number	Name	Page	Purpose and Special Notes
41F039	AREA41	126	The program, AREA CALCULATIONS ON THE HP-
			41, serves as a companion to AREA-11/15
			Additions to the program include the provision
			to calculate the precision of the survey, audio
			signals to indicate needed user input, and the
			availability of printed output.
41F040	AREA-S	134	The program, AREA-SHORTENED VERSION,
			provides the same output as AREA41 but chooses
			the most likely input options from thos
			available in that program, thus reducing the code from 262 to 172 steps.
$11 F 008$	MUGO-11	138	MEANS, WITH UNGROUPED AND GROUPED $\underline{\text { OPTIONS }}$
			ON THE HP-11C was written to calculate, for a
			set of univariate data, the arithmetic,
			quadratic, geometric, and harmonic means, and
			the standard deviation, coefficient of
			variation, and standard error. Data can be
			ungrouped, or grouped using either true
			frequencies or weights other than frequencies.
41 F042	MUG041	147	The program, MUGO ON THE HP-41, was
			written as a companion to MUGO-11. Printed output can be obtained.

Program

Number	Name	Page	Purpose and Special Notes
11F009	AMORT78-11	159	The program, AMORTIZATION SCHEDULES AND
			SIMILAR FINANCIAL CALCULATIONS USING THE "RULE
			OF $\underline{78}$ " WITH THE HP-11C, provides the usual
			entries in a traditional amortization schedule:
			payment number, interest paid, reduction in
			principal, and outstanding balance. With
			slightly different input, a similar schedule can
			be obtained assuming the rule of 78 s procedure
			is used for interest allocation.
11 F010	FINC78-11	170	FINANCIAL CALCULATIONS ASSUMING THE RULE
			OF $\underline{78} \mathrm{~S}$ WITH THE HP-11C serves as a companion to
			AMORT78-11. For the user solely interested in
			the rule of 78 s procedure, interest allocation,
			reduction in principal remaining balance and
			appropriated summations are obtained much faster
			than in AMORT78-11. Additionally, the "rebate"
			due after a particular payment is provided.
12 F 001	AMORT-12	180	This program, AMORTIZATION SCHEDULES WITH
			THE HP-12C, provides the same amortization
			schedule entries as AMORT78-11, but because of
			the AMORT function on the 12 C results are
			obtained much faster. An addendum to the
			program is suggested to calculate an effective
			periodic interest rate when the payment and
			compounding frequencies are not the same.

Program		
$\frac{\text { Number }}{41 \text { F043 }}$	$\frac{\text { Name }}{\text { AMORT }}$	$\frac{\text { Page }}{188}$
41F044	AM7841	201

Calculator: HP-11C
Program Name: Simple Linear Regression
Author: Thomas W. Beers

Purpose: To initialize the calculator to accept two-variable data, process data which are input by the $\Sigma+$ operation, and provide the statistics listed below:
a, the Y-intercept, its standard error, s_{a}, and t_{a} to test the hypothesis: $\alpha=0$
b, the slope, its standard error, s_{b}, and t_{b} to test the hypothesis: $\beta=0$
b^{\prime}, the slope forced through the origin, and its standard error, $\mathbf{s}_{\mathrm{b}}{ }^{\text {i }}$
r, the correlation coefficient
for specified X_{0} and Student's t, \hat{Y}_{0}, the predicted Y for X_{0} is provided as well as confidence interval estimates assuming mean Y and assuming individual Y.

Note: the usual calculation of a and b, \hat{Y} and r, and \bar{X}, \bar{Y}, by depression of the L.R., \hat{y}, r and \bar{X} keys is still possible, and does not interfere with the program.
A. Storage assignments

Register	$\frac{15 C}{\text { I }}$Use $0-5$ (2-7) statistical: $n, \Sigma X, \Sigma X^{2}, \Sigma Y, \Sigma Y^{2}, \Sigma X Y$ 6 (0) $\Sigma X^{2}=\Sigma\left(X_{i}-\bar{X}\right)^{2}=\Sigma X^{2}-n \bar{X}^{2}$, corrected sum of squares for X

A. Storage assignments (continued)

Register 15C
Use
7
(1) $\Sigma y^{2}=\Sigma\left(Y_{i}-\bar{Y}\right)^{2}=\Sigma Y^{2}-n \bar{Y}^{2}$, corrected sum of squares for Y $\Sigma: x y=\Sigma\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=\Sigma X Y-n \bar{X} \bar{Y}$, corrected sum of products
${ }^{S_{Y X}}$, the standard error of estimate
X_{0}, the current X for which \hat{Y} and confidence intervals are being calculated and the intermediate answer, C, used in confidence interval calculations
B. Labels

Name
[1]*
[A]
[B]
[C]
[D] predicted Y and confidence interval calculation and display
[E] main processor; calculates and stores $\bar{X}, \bar{Y}, \Sigma x^{2}, \sum y^{2}, \sum x y$, and $s_{Y X}$; must preceed [D] and optional parts of [A] and [B]
[0]

2 calculates and displays b^{\prime} (slope forced through the origin) and $s_{b}{ }^{\prime}$
confidence interval calculation in label D
*brackets indicate meaningful external accessibility
C. Flags-- none used
D. Program procedure and example
I. In PRGM mode, load program
II. In RUN mode, proceed as given below; assume the following data, in USER mode and FIX 2:

$\frac{Y}{7}$	\underline{X}
7	5
5	3
9	8

	Instructions				Example		
Step	Input	Key	$\underline{\text { Output }}$	Input	Key	$\underline{\text { Output }}$	
1. Initialize	-	GSB	0.00		-	GSB 1	

a. Optional: sums, gross and corrected sums of squares and products can now be recalled from registers 0 through 8.

	15c	
-	RCL 0 (2)	3.00 (
-	RCL 1 (3)	$16.00(\Sigma x)$
-	RCL 2 (4)	98.00($\left.\Gamma . \mathrm{X}^{2}\right)$
-	RCL 3 (5)	21.00 (EY)
-	RCL 4 (6)	$155.00\left(\Sigma Y^{2}\right)$
-	RCL 5 (7)	$122.00(E X Y)$
-	RCL 6 (0)	$12.67\left(\Sigma x^{2}\right)$
-	RCL 7 (1)	$8.00\left(\Sigma y^{2}\right)$
-	RCL 8	10.00(Exy)

4. a statistics	-	A	a	-	A	2.79
	-	R/S	s_{a}	-	R/S	. 52
			t_{a}			5.35

5. b statistics	-	$\begin{gathered} B \\ R / S \end{gathered}$	b	-	$\begin{gathered} B \\ R / S \end{gathered}$	0.79
			s_{b}	-		0.09
			t_{b}			8.66
6. r statistics	-	C	r	-	C	0.99
		$g x^{2}$	r^{2}	-	$\mathrm{gX}{ }^{2}$	0.99

D. Program procedure and example (continued)

| | Instructions Example | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Step Input | Key Output \quad Input | Key Output | |

7. predicted Y and confidence intervals (assume $t=2$ and $X_{0}=4$, then $X_{0}=6$)
a.
t
x_{0}
STO I
D

2.00
5.95
$\begin{array}{ll}\left.\begin{array}{l}\text { c.i. low } \\ \text { c.i. high }\end{array}\right\} \text { for mean } Y & 5.50 \\ & 6.39\end{array}$
b. (optional) - R/S
$\left.\begin{array}{ll}\text { c.i. low } \\ \text { c.i. high }\end{array}\right\}$
for $\overline{i n d}$. $Y^{R / S}$
5.16
6.74
c. next X_{0}

D
\hat{Y}_{0}
6 D
7.53
c.i. low
7.13
c.i. high 7.92
d. (optional) - R/S
c.i. low

- R/S
6.77
c.i. high 8.29

8. b' statistics	-	GSB 0	b^{\prime}	-	GSB 0	1.24
	-	R/S	$s_{b^{\prime}}$	-	R/S	0.13

III. Comments

1. Note that the order of program execution suggests that depression of E immediately follow the last data input, but thereafter the order of pressing A, B, C, D, and GSB 0 is immaterial, and each can be repeated.
2. After the data have been input (and before or after E) the keyboard functions \bar{x}, s, \hat{y}, r, and L.R. can be used to obtain their appropriate output.
3. Correction for erroneous input data (key stroke blunders!) can be made by use of the Σ - key as described in the manual.

E. Program statements and code

Step	Statement	Cod	de		Step	Statement	Code		Step	Statement	Code	
01	[f LBL 1] ${ }^{\text {] }}$	422	21	1	31	-	30		61	f PSE	4231	
02	f CLEAR REG		423	34	32*	RCL 0 (2)	45	0	62	\div		10
03	g CLX		433	35	33	2		2	63	R/S		31
04	R/S			31	34	-		30	64	[f LBL C]	422	2113
05	[f LBL E]	422	211	15	35	\div		10	65	$f \hat{y}, r$		4248
06	$\mathrm{g} \overline{\mathrm{X}}$		43	0	36	$\sqrt{\text { X }}$		11	66	$X \gtrless Y$		34
07	STO 8		44	8	37	STO 9	44	9	67	R/S		31
08	$X \geqslant Y$			34	38	R/S		31	68	[f LBL D]	422	2114
09	STO X 8	442	20	8	39	[f LBL A]	4221	11	69	STO . 0		44.0
10	$\mathrm{gX}{ }^{2}$		431	11	40	f L.R.	42	49	70	f \hat{y}, r		4248
11*	STO 7 (1)		44	7	41	R/S		31	71	f PSE		4231
12	$x \geqslant Y$			34	42*	RCL 2 (4)	45	2	72	$\mathrm{g} \bar{X}$		430
13	$g X^{2}$		431	11	43*	RCL 0 (2)	45	0	73	R \downarrow		33
14*	STO 6 (0)		44	6	44*	RCL 6 (0)	45	6	74	$X \gtrless Y$		34
15*	RCL 0 (2)		45	0	45	X		20	75	$g \mathrm{R} \uparrow$		4333
16	CHS			16	46	\div		10	76	RCL . 0		45.0
17*	STO X 6 (0)	442	20	6	47	\sqrt{X}		11	77	-		30
18*	STO $\times 7$ (1)	442	20	7	48	RCL 9	45	9	78	$g X^{2}$		4311
19	STO $\times 8$	442	20	8	49	X		20	79*	RCL 6 (0)		456
20*	RCL 2 (4)		45	2	50	f PSE	42	31	80	\div		10
21*	STO + 6 (0)	44	40	6	51	\div		10	81*	RCL 0 (2)		450
22*	RCL 4 (6)		45	4	52	R/S		31	82	1/X		15
23*	STO + 7 (1)	44	40	7	53	[f LBL B]	4221	12	83	+		40
24*	RCL 5 (7)		45	5	54	f L.R.	42	49	84	RCL . 0		45.0
25	STO + 8	444	40	8	55	$X \geqslant Y$		34	85	$X \gtrless Y$		34
26*	RCL 7 (1)		45	7	56	R/S		31	86	ST0 . 0		44.0
27	RCL 8		45	8	57	RCL 9	45	9	87	(f LBL 2)	422	212
28	$\mathrm{gX}{ }^{2}$		431	11	58*	RCL 6 (0)	45	6	88	\sqrt{X}		11
29*	RCL 6 (0)		45	6	59	\sqrt{X}		11	89	$\mathrm{R} \downarrow$		33
30	\div			10	60	\doteqdot		10	90	$X<Y$		34

[^3]
E. Program statement and code (continued)

Step	Statement	Code	Step	Statement	Code
91	$g \mathrm{R} \uparrow$	4333	121	1	1
92	RCL I	4525	122	-	30
93	X	20	123	\div	10
94	RCL 9	459	124*	RCL 2 (4)	452
95	X	20	125	\div	10
96	-	30	126	\sqrt{x}	11
97	f PSE	4231			
98	g LST X	4336			
99	2	2			
100	X	20			
101	+	40			
102	R/S	31			
103	$X \geqslant Y$	34			
104	$\mathrm{f} \hat{y}, r$	4248			
105	g LST X	4336			
106	1	1	g MEM leads to		
107	RCL . 0	45.0	P-00 r-. 0		
108	+	40			
109	GTO 2	$22 \quad 2$			
110	[f LBL 0]	42210			
111*	RCL 5 (7)	$45 \quad 5$	Program memory completely full,		
112*	RCL 2 (4)	452	since R.0 is needed for computations		
113	\div	10			
114	R/S	31			
115*	RCL 5 (7)	455			
116	X	20			
117	CHS	16			
118*	RCL 4 (6)	454			
119	+	40			
120*	RCL 0 (2)	450			

*Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15C user to alter.
F. Formulas used
I. In LBL E

1. means, \bar{X} and \bar{Y}, calculated by $g \bar{X}$ function.
2. corrected sums of squares and products (lower case letters):

$$
\begin{aligned}
& \Sigma x^{2}=\Sigma X^{2}-n \bar{X}^{2} \\
& \Sigma y^{2}=\Sigma Y^{2}-n \bar{Y}^{2} \\
& \Sigma x y=\Sigma X Y-n \bar{X} \bar{Y}
\end{aligned}
$$

3. $s_{Y X}$, standard error of estimate:

$$
s_{Y X}=\sqrt{\frac{\sum y^{2}-\left(\sum x y\right)^{2} / \Sigma x^{2}}{n-2}}
$$

II. In LBL A

1. a, the Y-intercept, calculated by f L.R.function.
2. s_{a}, the standard error of a :

$$
s_{a}=s_{Y X} \sqrt{\frac{\sum X^{2}}{n \Sigma x^{2}}}
$$

3. t_{a}, the calculated test statistic:

$$
t_{a}=\frac{a}{s_{a}} \text {, to test } H_{0}: \alpha=0 \text {, (d.f. }=n-2 \text {) }
$$

III. In LBL B

1. b, the slope, calculated by the f L.R. function.
2. s_{b}, the standard error of b :

$$
s_{b}=s_{Y X} \sqrt{\frac{1}{\Sigma x^{2}}}=\frac{s_{Y X}}{\sqrt{\sum x^{2}}}
$$

3. t_{b}, the calculated test statistic:

$$
t_{b}=\frac{b}{s_{b}}, \text { to test } H_{0}: \beta=0,\left(d . f_{0}=n-2\right)
$$

F. Formulas used (continued)
IV. In LBL 0

1. b^{\prime}, the slope forced through the origin:

$$
b^{\prime}=\frac{\Sigma X Y}{\Sigma X^{2}}
$$

2. $s_{b^{\prime}}=s_{Y X}^{\prime} \sqrt{\frac{1}{\Sigma X^{2}}}=\frac{s_{Y X}^{\prime}}{\sqrt{\Sigma X^{2}}}$

$$
\text { where } s_{Y X}^{\prime}=\sqrt{\frac{\sum Y^{2}-b^{\prime} \Sigma X Y}{n-1}}
$$

3. Though not done in the program, one can test $H_{0}: B^{\prime}=1$, (i.e., $Y=X$) by calculating $t=\frac{b^{\prime}-1}{s_{b^{\prime}}}, \quad\left(d . f_{0}=n-1\right)$.
V. In LBL C
4. r, the correlation coefficient, calculated by the $f \hat{y}, r$ function.
5. r^{2}, the coefficient of determination can be calculated by $g x^{2}$.
6. t_{r}, the calculated test statistic, was not calculated in the program; however it must equal t_{b}, therefore Label B then R / S can be used.
VI. In LBL D
7. \hat{Y}_{0}, predicted Y for a specific value of X (i.e., X_{0}), calculated by $f \hat{y}, r$ function.
8. confidence intervals about the predicted mean Y given X_{0} :

$$
\hat{Y}_{0} \pm t s_{Y X} \sqrt{C}
$$

where

$$
c=\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum x^{2}}
$$

and $t=$ the user supplied value of Student's t assuming the proper degrees of freedom ($n-2$) and desired confidence (1-probability) level
3. confidence intervals about an individual predicted Y given X_{0} :

$$
\hat{\gamma}_{0} \pm t s_{Y X} \sqrt{1+C}
$$

Calculator: HP-11C
Program Name: Log Volume Calculations
Author: Thomas W. Beers

Purpose: To calculate the board-foot volume of logs by Doyle, Scribner, International $1 / 4^{\prime \prime}$ and International $1 / 8^{\prime \prime} \log$ rules and to calculate cubic-foot volume using Huber, Smalian, and Newton formulas.

Board-foot calculations assume the scaling diameter and log length are input as $d_{u} \uparrow L$, whereas the cubic-foot calculations assume the following input
for Huber: $D_{m} \uparrow \mathrm{~L}$
for Smalian: $D_{b} \uparrow D_{u} \uparrow L$
for Newton: $D_{b} \uparrow D_{m} \uparrow D_{u} \uparrow L$
where: D_{b}, D_{m}, and D_{u} are \log diameters in inches at the base, midpoint and upper end, $L=\log$ length in feet, and $d_{u}=$ diameter inside bark at the small end of the log
A. Storage assignments

Register
$0 \quad$ Log length, L
1 L/16, used in board-foot calculations

2

3 d_{u}, scaling diameter for bd. ft. calculations temporary storage of Int. 1/8" volume
B. Labels

Name

[E]*
[A]

Use
initialization for board-foot calculations, clears flag 0
and sets number of decimals to zero.
Doyle volume; calculation and display
B. Labels (continued)

Name
[B]
[C]
[D]
[1]
[2]
[3]

0,6,7,8

9

Use
Scribner volume; calculation and display
International 1/4" volume calculation and display; Int. 1/8" volume obtained by R/S depression
all board-foot volumes calculated and displayed in the above order; R/S between displays

Huber's formula cubic-foot volume; identified by 1 decimal place

Smalian's formula cubic-foot volume; identified by 2 decimal places

Newton's formula cubic-foot volume; identified by 3 decimal places.
used in label C to calculate Int. 1/4" and Int. 1/8" volumes
subroutine called by labels A, B, C, and D to store L, $\mathrm{L} / 16$, and d_{u}
*brackets indicate meaningful external accessibility
C. Flags

Number

0

1

Use
in labels D and 9 to control the execution of label 9
in label C, flag is set to control the subroutine execution of label 7 the first time through the loop
D. Program procedure and example
I. In program mode, key in the program
II. In RUN and USER mode, proceed as given below. The example will use the data for $\log l$ given in the following table.

1. $\frac{\text { Step }}{\text { Initialize-1/ }} \quad \frac{\text { Input }}{} \quad \frac{\text { Key }}{\mathrm{E}} \quad \frac{\text { Output }}{0} \quad$ Input $\quad \frac{\text { Key }}{-} \quad \frac{\text { Output }}{0}$
2. Bd.ft.calc. ${ }^{\text {/ }}$
$\begin{array}{lllll}d_{u} \uparrow L & A & \text { Doyle } & 14 \uparrow 16 & A \\ 100 .\end{array}$
b.
c.
d. - R/S Int. 1/8" - R/S 150.

$d_{u} \uparrow L$	B	Scribner	$14 \uparrow 16$	B
123.				

$\begin{array}{llllll}d_{u} \uparrow L & C & \text { Int. } 1 / 4^{\prime \prime} & 14 \uparrow 16 & C & 136 .\end{array}$
e. $\begin{array}{cccccc}d_{u} \uparrow L & D & \text { Doyle } & 14 \uparrow 16 & D & 100 . \\ - & R / S & \text { Scribner } & - & R / S & 123 . \\ - & R / S & \text { Int. } 1 / 4^{\prime \prime} & - & R / S & 136 . \\ & - & R / S & \text { Int. } 1 / 8^{\prime \prime} & - & R / S \\ 150 .\end{array}$

1/This initialization step is necessary only at the start of the first set of board-foot calculations or after any cu. ft. calculations.
D. Program procedure and example (continued)

2/ The order or choice of steps 2 a through 2 e is immaterial except that 2c must precede 2d.

4. Go to step 1 if board-foot volumes are needed for the next log, or continue with step 3 for more cubic-foot volumes.
E. Program statements and code

Step	Statement	Code		Step	Statement		Code		Step	Statement		Code
1	[f LBL A] 4/	4221	11	31	RCL 0		45	0	61	-		48
2	GSB 9	32	9	32	4			4	62	7		7
3	RCL 2	45	2	33	\div			10	63	1		1
4	4		4	34	g INT		43	44	64	X		20
5	-		30	35	STO 4		44	4	65	-		30
6	g X^{2}	43	11	36	g LST X		43	36	66	g F? 1	43	61
7	RCL 1	45	1	37	f FRAC		42	44	67	g RTN		4332
8	X		20	38	GSB 7		32	7	68	STO + 3	44	403
9	g RTN	43	32	39	g CF 1	43	5	1	69	RCL 4		$45 \quad 4$
10	[f LBL B]	4221	12	40	X			20	70*	$\mathrm{g} \mathrm{X}>0$ (g TEST		4320
11	GSB 9	32	9	41	STO 3		44	3	71	GTO 6		226
12	RCL 2	45	2	42	RCL 4		45	4	72	(f LBL 0)	42	210
13	$\mathrm{g} \mathrm{X}^{2}$	43	11	43	g $X=0$		43	40	73	RCL 3		$45 \quad 3$
14	-		48	44	GTO 0		22	0	74	-		48
15	7		7	45	(f LBL 6)	42	21	6	75	9		9
16	9		9	46	1			1	76	0		0
17	X		20	47	ST0-4	44	30	4	77	5		5
18	RCL 2	45	2	48	(f LBL 7)	42	21	7	78	X		20
19	2		2	49	RCL 4		45	4	79	R/S		31
20	X		20	50	2			2	80	RCL 3		$45 \quad 3$
21	-		30	51	\div			10	81	R/S		31
22	4		4	52	RCL 2		45	2	82	GTO D		2214
23	-		30	53	+			40	83	(f LBL 9)	422	219
24	RCL 1	45	1	54	STO 1		44	1	84	g F ? 0		60
25	X		20	55	$\mathrm{g} \mathrm{X}^{2}$		43	11	85	g RTN		4332
26	g RTN	43	32	56	-			48	86	STO 0		440
27	[f LBL C]	4221	13	57	2			2	87	1		1
28	GSB 9	32	9	58	2			2	88	6		6
29	g SF 1	434	1	59	X			20	89	\div		10
30	(f LBL 8)	4221	8	60	RCL 1		45	1	90	STO 1		441

4/Brackets imply meaningful external accessibility, parentheses indicate internal use.

E. Program statements and code (continued)

[^4]F. Formulas used
I. Board foot volumes

In the following formulas,

$$
\begin{aligned}
v= & \text { bd. ft. volume of the log, } \\
d_{u}= & \text { diameter inside bark at the small end, } \\
& \text { i.e., scaling diameter in inches, }
\end{aligned}
$$

and $L=$ Log length in feet
a. Doyle scale (in label A)

$$
v=\left(d_{u}-4\right)^{2}\left(\frac{L}{16}\right)
$$

b. Scribner scale (in label B)

$$
v=\left(.79 d_{u}{ }^{2}-2 d_{u}-4\right)\left(\frac{L}{16}\right)
$$

c. International $1 / 4$ inch scale (in label C)

$$
V=.905 \text { (Int. } 1 / 8^{\prime \prime} \text { volume) }
$$

d. International $1 / 8$ inch scale (in label C)

The Int. 1/8" volume was calculated using the algorithm described in Forest Mensuration, 3rd. edition by Husch, Miller and Beers. 1982. John Wiley \& Sons, N.Y.
II. Cubic foot volumes

In the following formulas

$$
\begin{aligned}
& V=c u . \text { ft. volume } \\
& D_{b}=\text { diameter in inches at } \log \text { base } \\
& D_{m}=\text { diameter in inches at log mid-point }
\end{aligned}
$$

F. Formulas used (continued)

$$
\begin{aligned}
D_{u} & =\text { diameter in inches at upper end of } \log \\
L & =\log \text { length in feet }
\end{aligned}
$$

a. Huber formula (in label 1)

$$
V=\left(\frac{\pi D_{m}^{2}}{576}\right)(L)
$$

b. Smalian formula (in label 2)

$$
v=\left(\frac{\pi}{576}\right)\left(\frac{L}{2}\right)\left(D_{b}{ }^{2}+D_{u}{ }^{2}\right)
$$

c. Newton formula (in label 3)

$$
V=\left(\frac{\pi}{576}\right)\left(\frac{L}{6}\right)\left(D_{b}^{2}+4 D_{m}^{2}+D_{u}^{2}\right)
$$

Calculator: HP-11C
Program Name: Parabolic Least Squares
Author: Thomas W. Beers
Date: January, 1983

Purpose: To calculate gross and corrected sums of squares and products and the regression coefficients for the least squares fit to model: $\hat{Y}=b_{0}+b_{1} x_{1}+b_{2} X_{2}$, with the following optional definition of the $X^{\prime} s$:

1. X_{1} and X_{2} are non-functionally related independent variables
2. $X_{2}=X_{1}{ }^{2}$
A. Storage assignments

Register 15C Use

0 (2) n
1 (3) ΣX_{1} then \bar{X}_{1} then b_{1}
2 (4) $\Sigma X_{1}{ }^{2}$ then $\Sigma x_{1}{ }^{2}$
3 (5) ΣY then Y then b_{0}
4 (6) ΣY^{2} then Σy^{2}
5 (7) $\sum X_{1} Y$ then $\sum x_{1} y$
6 (0) ΣX_{2} then \bar{X}_{2} then b_{2}
7 (1) $\Sigma X_{2}{ }^{2}$ then $\Sigma x_{2}{ }^{2}$
$8 \quad \sum X_{1} X_{2}$ then $\sum X_{1} X_{2}$
$9 \quad \Sigma X_{2} Y$ then $\Sigma x_{2} y$
. $0 \quad X_{2}$ then Determinant, $D=\sum x_{1}{ }^{2} \sum x_{2}{ }^{2}-\left(\sum x_{1} x_{2}\right)^{2}$
I control number for automatic display (LBL D)
B. Labels

Name
Use
[E]* program start; initializes calculator for new data
[A]* cumulative calculation of sums, and gross sums of squares and products; A is pressed after each data set is keyed
B. Labels (continued)

Name
[C]*
[D]*

4
5

Use
after A, calculation of corrected sums of squares and products and the regression coefficients
routine to automatically display contents of rgisters 0 through 10 (.0)
incrementing part of label D
misc. calculating routine used in label C
*brackets indicate meaningful external accessibility
C. Flags -- none used
D. Program procedure and example
I. In PRGM mode, load program.
II. In RUN mode, select option 1 or 2 and proceed.

1. Option 1 (X_{1} and X_{2} "unrelated") assumes:

USER mode
input format is: Y,ENTER, X_{1}, ENTER, $X_{2}\left(Y \uparrow X_{1} \uparrow X_{2}\right)$
sample data: $\begin{array}{lllr}\frac{Y}{Y} & \frac{X_{1}}{} & \frac{X_{2}}{} \\ & 2 & 3 & 5 \\ 5 & 6 & 12 \\ & 9 & 8 & 15\end{array}$
Instructions Example
Step Input Key Output Input Key Output
a. Initialize. E zero E 0.000000000
b. Data input $\begin{array}{lllll}Y_{1} \uparrow X_{11} \uparrow X_{21} & A & X_{21}^{2} & 2 \uparrow 3 \uparrow 5 & A\end{array} 25.00$
$Y_{2} \uparrow X_{12} \uparrow X_{22} \quad A \quad X_{22}^{2} \quad 5 \uparrow 6 \uparrow 12 \quad A \quad 144.00$
$\begin{array}{llllll}Y_{3} \uparrow X_{13} \uparrow X_{23} & A & X_{23}^{2} & 9 \uparrow 8 \uparrow 15 & A & 225.00\end{array}$
(repeat for all data triplets)
c. (optional) To display sums, gross sums of squares and products use any of the following:
(1) manual display: RCL $0 \rightarrow n=3.00 \frac{15 C}{\sum \mathrm{X}_{2}=32.00}$ RCL $1 \rightarrow \Sigma X_{1}=17.00 \quad \sum x_{2}^{2}=394.00$
RCL $2 \rightarrow \Sigma X_{1}^{2}=109.00 \quad n=3.00$
RCL $3 \rightarrow \Sigma \mathrm{Y}=16.00 \quad \Sigma \mathrm{X}_{1}=17.00$
D. Program procedure and example (continued)

\[

\]

(2) automatic display: press D and the display will be:

$$
\begin{aligned}
& \text { register number } \\
& \text { (pause) } \\
& \text { register contents }
\end{aligned}
$$

(3) semi-automatic display (having the display stop after each register rather than pause) can be achieved as follows:
(a) replace program step 119 (h PSE) with an R/S statement (R/S)
(b) press D
(c) press R / S after each register display

Instructions Example
$\begin{array}{lllllll}\text { d. Calculate. } \quad \text { Input } & \frac{\text { Key }}{C} & \frac{\text { Output }}{b_{0}} & & \text { Input } & & \frac{\text { Key }}{C} \\ & & \frac{\text { Output }}{-3.40} \\ & R \downarrow & b_{1} & & R \downarrow & 3.80 \\ & R \downarrow & b_{2} & & R \downarrow & -1.20\end{array}$
e. (optional) To display the regression coefficients and corrected sums of squares and products proceed as in c above; for example using automatic display:
press D and read: 0 (pause) $3.00=n \quad \frac{15 C}{-1.20=b_{2}}$

1. (pause) $3.80=b_{1} \quad 52.67=\sum x_{2}^{2}$
2. (pause) $12.67=\sum x_{1}^{2} \quad 3.00=n$
3. (pause) $-3.40=b_{0} \quad 3.80=b_{1}$
4. (pause) $24.67=\Sigma y^{2} \quad 12.67=\Sigma \mathrm{x}_{1}^{2}$
5. (pause) $17.33=\Sigma x_{1} y-3.40=b_{0}$
6. (pause) $-1.20=b_{2} \quad 24.67=\Sigma y^{2}$
7. (pause) $52.67=\sum x_{2}^{2} \quad 17.33=\sum x_{1} y$
8. (pause) $25.67=\sum x_{1} x_{2}$
9. (pause) $34.33=\sum x_{2} y$
10. (pause) $8.33=$ Determinant, D
D. Program procedure and example (continued)
11. Option $2\left(X_{2}=X_{1}^{2}\right)$ assumes:

USER mode
input format is: $Y, E N T E R, X_{1}$, ENTER,ENTER, $X\left(Y \uparrow \quad X_{1} \uparrow \uparrow\right.$ times key)
$\begin{array}{lll}\text { sample data: } & \underline{Y} & \frac{X_{1}}{} \\ & 2 & 3 \\ 5 & 6 \\ & 9 & 8\end{array}$

Instructions Example
Step Input Key Output Input Key Output
a. Initialize
b. Data input $\begin{array}{lllll}Y_{1} \uparrow X_{11} \uparrow \uparrow & X, A & X_{21}^{2} & 2 \uparrow 3 \uparrow \uparrow \quad X, A & 81.00\end{array}$
$Y_{2} \uparrow X_{12} \uparrow \uparrow \quad X, A \quad X_{22}^{2} \quad 5 \uparrow 6 \uparrow \uparrow \quad X, A \quad 1296.00$
$Y_{3} \uparrow X_{13} \uparrow \uparrow \quad X, A \quad X_{23}^{2} \quad 9 \uparrow 8 \uparrow \uparrow \quad X, A \quad 4096.00$
c. (optional) To display sums, gross sums of squares and products use any of the three options cited in 1c.

e. (optional) To display regression coefficients and corrected sums of squares and products proceed as in lc. press D and read: 0 (pause) $3.00=n \quad \frac{15 \mathrm{C}}{0.20=\mathrm{b}_{2}}$

1. (pause) $-0.80=b_{1} \quad 1512.67=\Sigma x_{2}^{2}$
2. (pause) $12.67=\Sigma x_{1}^{2} \quad 3.00=n$
3. (pause) $2.60=b_{0} \quad-0.80=b_{1}$
4. (pause) $24.67=\Sigma y^{2} \quad 12.67=\Sigma x_{1}^{2}$
5. (pause) $17.33=\sum x_{1} y \quad 2.60=b_{0}$
6. (pause) $0.20=b_{2} \quad 24.67=\Sigma y^{2}$
7. (pause) $1512.67=\Sigma x_{2}^{2} \quad 17.33=\Sigma x_{1} y$

8。 (pause) $137.33=\sum x_{1} x_{2}$
9. (pause) $192.67=\sum x_{2} y$
10. (pause) $300.00=$ Determinant

E. Program statements and code

[/Brackets imply meaningful external accessibility, parentheses indicate internal use.

E. Program statements and code (continued)

*Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15 C user to alter.
F. Formulas used:
I. Corrected sums of squares and products (designated by lower case letters)were calculated by:

$$
\begin{aligned}
& \Sigma x^{2}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{n}, \text { similarly for } \Sigma y^{2} \\
& \Sigma x y=\Sigma X Y-\frac{(\Sigma X)(\Sigma Y)}{n}, \text { similarly for } \Sigma x_{1} X_{2}
\end{aligned}
$$

II. The least squares normal equations were assumed in "deviations from the mean" form, that is:

$$
\begin{aligned}
& b_{1} \sum x_{1}^{2}+b_{2} \sum x_{1} x_{2}=\sum x_{1} y \\
& b_{1} \sum x_{1} x_{2}+b_{2} \sum x_{2}^{2}=\sum x_{2} y
\end{aligned}
$$

The regression coefficients, b_{1} and b_{2}, were found using Cramer's Rule making use of a ratio of two determinants, thus:

$$
\begin{aligned}
& \mathrm{b}_{1}=\frac{\sum \mathrm{x}_{1} y \sum \mathrm{x}_{2}{ }^{2}-\sum \mathrm{x}_{2} y \sum x_{1} x_{2}}{\left[\sum \mathrm{x}_{1}^{2} \mathrm{x}_{2}{ }^{2}-\left(\sum \mathrm{x}_{1} \mathrm{x}_{2}\right)^{2}\right]=\mathrm{D}} \\
& \mathrm{~b}_{2}=\frac{\sum \mathrm{x}_{1}{ }^{2} \sum \mathrm{x}_{2} y-\sum \mathrm{x}_{1} \mathrm{x}_{2} \sum \mathrm{x}_{1} y}{D}
\end{aligned}
$$

then the Y-intercept, b_{0}, was found by:

$$
b_{0}=\bar{Y}-b_{1} \bar{X}_{1}-b_{2} \bar{X}_{2}
$$

Calculator: HP-11C
Program Name: ABCD--Azimuth or Bearing Correction for Declination
Author: Thomas W. Beers
Date: 1983

Purpose: To achieve the conversion of angles measured from the true north meridian to angles measured from magnetic north and vice versa. Angles can be expressed as bearings (e.g., S 25 E) or in azimuth units from north (e.g., 125 azimuth degrees) and can be in the degrees, minutes, seconds (dms) format (dd.mmss) or the decimal degrees (decimal) format (dd.dddddd).
A. Storage assignments

Register
0

2

3

1 the quadrant in which a bearing lies: $1=N E, 2=S E$, 3 = SW, $4=N W$

Use
angle of declination: + meaning East and - meaning West OW,
used variously to store the angle to be converted, an intermediate answer, or the final converted answer
the constant, -1 , used in various formula solutions
B. Labels

Because of the complex logic of the problem, a number of label "names" are used more than once. To make the name unique in the following list, the program step where the label occurs is also given when such duplication exists.

Name
[D]* program start; generates and stores the -1 constant and stores the keyed-in declination angle ($+=E$, - = W) after first converting the angle to decimal format if necessary
[A]
[B]
converts a keyed-in azimuth from magnetic to true (if flag 0 is clear) or from true to magnetic (if flag 0 is set)
separates and stores the quadrant number (Q) and the bearing (dd.mmss or dd.dd...), assuming the input angle format was Qdd.mmss (F1 clear) or Qdd.dd... (F1 set)
B. Labels (continued)

Name	Use
[9]	stores 1 for quadrant number (NE) and stores keyed-in bearing; leads to answer
[6]	stores 2 for quadrant number (SE) and stores keyed-in bearing; leads to answer
[5]	stores 3 for quadrant number (SW) and stores keyed-in bearing; leads to answer
[8]	stores 4 for quadrant number (NW) and stores keyed-in bearing; leads to answer
	NOTE: if labels $9,6,5$, or 8 are used, the bearing input format does not require Q as is needed if label B is used, therefore the format is either dd.mmss or dd.dd..., as appropriate; the output (the answer), however, is in the "Q and angle" format.
[E]	clears flags 0 and 1 and as an indicator, changes the decima fix to 2
	*brackets indicate meaningful external accessibility
$\left.\begin{array}{l} 2(\text { step } 27) \\ 3(\text { step } 30) \end{array}\right\}$	used in label A to achieve the desired true to magnetic or magnetic to true conversion for azimuths
4(step 32)	generates a minus sign to indicate that the output is an azimuth, and converts answer to dd.mmss format if necessary (F1 clear)
O(step 77)	subroutine used to convert angles to decimal format and to change the display "fix" appropriately (FIX 4 = dd.mmss format) (FIX $6=$ dd.dd... format)
2(step 86)	primary routine in the conversion of bearings from magnetic to true and vice versa and to direct control to appropriate output label: $\begin{aligned} & \text { 3(step 127) if "answer" < } \\ & 4(\text { step 154) if "answer" }>90 \\ & 1(\text { step 105) if } 0 \leq \text { "answer" } \leq 90 \end{aligned}$
1(step 105)	assembles the output bearing into the format Qdd.mmss or Qdd.dddddd as appropriate
$\begin{aligned} & 0(\text { step 117) } \\ & 7(\text { step } 122) \end{aligned}$	called in label 2(step 86) to adjust the exponent in the conversion formula
3(step 127)	calculates bearing and quadrant number if bearing "answer"

B. Labels (continued)

Name	Use
$\begin{aligned} & 5 \text { (step } 146 \text {) } \\ & 6(\text { step } 150) \end{aligned}$	used by label 3(step 127) to complete the calculations
4(step 154)	calculates bearing and quadrant number if bearing "answer" > 90

C. Flags
Number

0 \quad| set or cleared externally to indicate the desired direction |
| :--- |
| of conversion: |

D. Program procedure and examples.
I. In program mode, key in the program.
II. Proceed according to the following steps.
1.a. Ensure that USER mode is activated, and set or clear flags 0 or 1 as needed; the direction of conversion and input-output format is achieved as follows:

Flag 1

	Clear		Set
	Clear	mag. to true, dms format	mag. to true, decimal format
	Set	true to mag., dms format	true to mag., decimal format

b. Pressing E will clear both flags and indicate such by a FIX 2 display.
D. Program procedure and examples (continued)
2.a. Key the declination, using the convention of positive number for East and negative for West declination; use the prevailing input format.
b. Press D and observe the keyed-in value (if Fl is clear) and then the equivalent angle in decimal format.
3. If the angle to be converted is a bearing proceed as in either option a, or b; if an azimuth go to step 4 .
a. Key the bearing in as a number composed of the quadrant followed by the bearing itself; for example, if in dms format
for $N 45^{\circ} 30^{\prime} 15^{\prime \prime} \mathrm{E}$, key 145.3015 for S $4^{\circ} 10^{\prime} 00 \prime W$, key 304.1

Then, press B and observe the input (if F1 is clear) then the answer in the same Q and angle format: 243.3030 means S $43^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{E}$

b. Alternatively, key the bearing directly, then indicate the quadrant by pressing GSB followed by one of the numbers $9,6,5$, or 8 , indicating quadrants $1,2,3$, and 4 , respectively. (visualize these keys as \quad| $8=\mathrm{NW}$ | $9=\mathrm{NE}$ |
| :--- | :--- |
| $5=\mathrm{SW}$ | $6=\mathrm{SE}$ | on the keyboard).

Then observe the input as it was keyed (if Fl is clear), then the answer in the Q and angle format described in 3a.
4. If the angle is an azimuth, key the number and press A, observe the keyed number (if Fl is clear) then the answer as an azimuth with a minus sign preceding it; the only purpose for the minus is to indicate the answer is an azimuth.
5. If declination remains the same, repeat steps 3 or 4 for the next angle, otherwise go to step 2.
6. To change the direction of conversion or the input-output format alter the flags as described in step 1.
III. Examples (assume USER mode)
A. Declination $=2^{\circ} 30^{\prime} \mathrm{E}$; convert the following magnetic bearing to true bearings (CF 0), using Qdd.mmss input format (CF 1 and use key B):

$$
\begin{aligned}
& S 58^{\circ} 40^{\prime} E=? \quad\left(A N S .=S 56^{\circ} 10^{\prime} E\right) \\
& N 1^{\circ} 35^{\prime} 30^{\prime \prime} W=? \quad\left(\text { ANS. }=N 0^{\circ} 54^{\prime} 30^{\prime \prime} E\right)
\end{aligned}
$$

D. Program procedure and examples (continued)

Step	Input	Keys		Output	Comment
1.	-	E		X. XX	clear F0 and F1
2.	2.3	D	then	$\begin{aligned} & 2.3000 \\ & 2.500000 \end{aligned}$	input check D in dec. format
3 a .	258.4	B	then	$\begin{aligned} & 258.4000 \\ & 256.1000 \end{aligned}$	input check answer = $S 56^{\circ} 10^{\prime} \mathrm{E}$
	401.353	B	then	$\begin{aligned} & 401.3530 \\ & 100.5430 \end{aligned}$	input check answer = N $0^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{E}$

B. Declination $=2^{\circ} 30^{\prime} \mathrm{E}$; convert the following true bearings to magnetic bearings (SF 0) using the dms format (CF 1) and the GSB 9, 6, 5, 8 procedure to indicate quadrant number:

$\begin{aligned} & S 56^{\circ} 10^{\prime} E=? \quad\left(S 58^{\circ} 40^{\prime} E\right) \\ & N 0^{\circ} 54^{\prime} 30^{\prime \prime} E=? \\ & \left(N 1^{\circ} 35^{\prime} 30^{\prime \prime} W\right) \end{aligned}$					
Step	Input	Key		Output	Comment
1.	-	$\begin{aligned} & \text { g SF } \\ & \text { g CF } \end{aligned}$		-	$\begin{aligned} & \text { set flag } 0 \\ & \text { clear flag } \end{aligned}$
2.	2.3	D	then	$\begin{aligned} & 2.3000 \\ & 2.500000 \end{aligned}$	input check D in dec. format
3 b .	56.1	GSB	6 then	$\begin{array}{r} 56.1000 \\ 258.4000 \end{array}$	$\begin{aligned} & \text { input check } \\ & \text { answer }= \\ & S 58^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$
	. 543	GSB	9 then	$\begin{array}{r} 0.5430 \\ 401.3530 \end{array}$	input check answer = N $7^{\circ} 35^{\prime} 30^{\prime \prime}$

C. Declination $=8.25^{\circ} \mathrm{W}$; noting that the decimal format is assumed (SF 1), convert the following magnetic bearings to true bearings (CF 0). Use B key and Qdd.dddddd input format for the first angle and the GSB 9, 6, 5, 8 approach for the second one. Furthermore convert the answer to dms format.

$$
\begin{aligned}
& S 1.5^{\circ} E=? \quad\left(S 9.75^{\circ} E=S 9^{\circ} 45^{\prime} E\right) \\
& N 2.123^{\circ} E=? \quad\left(N 6.127^{\circ} \mathrm{W}=N 6^{\circ} 7^{\prime} 37.2^{\prime \prime} \mathrm{W}\right)
\end{aligned}
$$

Step	Input		Keys	Output	Comment
1.	-	g	CF 0	-	clear flag 0
			SF 1	-	set flag 1

D. Program procedure and examples (continued)

D. Declination $=18^{\circ} 50^{\prime} 30^{\prime \prime} \mathrm{W}$; convert the following magnetic azimuths to true azimuths (CF 0), assuming dms format (CF 1). Furthermore, convert the answers to decimal format.

$$
\begin{aligned}
& 12^{\circ} 30^{\prime}=? \quad\left(353^{\circ} 39^{\prime} 30^{\prime \prime}=353.6583^{\circ}\right) \\
& 285^{\circ} 25^{\prime} 15^{\prime \prime}=? \quad\left(266^{\circ} 34^{\prime} 45^{\prime \prime}=266.5792^{\circ}\right)
\end{aligned}
$$

Step	Input		Keys	Output	Comment
1.	-	E	X.XX	clear F0 and F1	
2.	18.503	CHS, D	-18.5030	input check	
			then	-18.841667	D in dec. format

E. A survey composed of magnetic bearings made in 1812 when the declination was $10^{\circ} 30^{\prime} \mathrm{W}$ is to be re-run in 1983 when the declination is determined to be $11^{\circ} 4^{\prime}{ }^{\prime} 15^{\prime \prime} \mathrm{W}$. Given below are the first two bearings; calculate the true bearings (CF 0), then the 1983 magnetic bearings (SF 0), assuming dms format (CF 1).

1912
magnetic bearing
N $8^{\circ} 15^{\prime} 30^{\prime \prime} \mathrm{E}$ S $85^{\circ} 26^{\prime} 15^{\prime \prime} \mathrm{E}$

1983
true bearing
? (N $2^{\circ} 14^{\prime} 30^{\prime \prime}$ W)
? ($\mathrm{N} 84^{\circ} 3^{\prime} 45^{\prime \prime} \mathrm{E}$)

magnetic bearing

? ($\mathrm{N} 9^{\circ} 30^{\prime} 45^{\prime \prime} \mathrm{E}$)
? (S $\left.84^{\circ} 11^{\prime} \mathrm{E}\right)$
D. Program procedure and examples (continued)

Step	Input	Keys	Output	Comment
1.	-	E	X. XX	clear F0 and F1
2.	10.3	CHS, D	$\begin{aligned} & -10.3000 \\ & -10.500000 \end{aligned}$	input check D in dec. format
3 b .	8.153	GSB 9 then	$\begin{array}{r} 8.1530 \\ 402.1430= \end{array}$	input check $\mathrm{N} 2^{\circ} 14^{\prime} 30^{\prime \prime} \mathrm{W}$
	85.2615	GSB 6 then	$\begin{array}{r} 85.2615 \\ 184.0345= \end{array}$	input check $N 84^{\circ} 3 \prime 45^{\prime \prime} E$
1.	-	g SF 0	-	SF 0 for true to magnetic conversion
2.	11.4515	CHS, D then	$\begin{aligned} & -11.4515 \\ & -11.754167 \end{aligned}$	input check D in dec. format
3 b .	2.143	$\text { GSB } 8$ then	$\begin{array}{r} 2.1430 \\ 109.3045= \end{array}$	input check $\text { N } 9^{\circ} 30^{\prime} 45^{\prime \prime} \mathrm{E}$
	84.0345	GSB 9 then	$\begin{array}{r} 84.0345 \\ 284.1100= \end{array}$	input check S $84^{\circ} 11^{\prime} \mathrm{E}$

E. Program statements and code

Step	Statement $1 / \frac{\text { Code }}{}$				Step	Statement		Code		Step	Statement	Code		
01					31	+			40	61	STO 2		44	2
02	1			1	32	(f LBL 4)	42	21	4	62	2			2
03	CHS			16	33	CHS			16	63	STO 1		44	1
04	STO 3		44	3	34	g F? 1	43	6	1	64	GTO 2		22	2
05	R \downarrow			33	35	g RTN		43	32	65	[f LBL 5]	42	21	5
06	GSB 0		32	0	36	f FIX 4	42	7	4	66	GSB 0		32	0
07	STO 0		44	0	37	$f \rightarrow$ HMS		42	2	67	STO 2		44	2
08	g RTN		43	32	38	g RTN		43	32	68	3			3
09	[f LBL A]	422	21	11	39	[f LBL B]	42	21	12	69	STO 1		44	1
10	GSB 0		32	0	40	GSB 0		32	0	70	GTO 2		22	2
11	STO 2		44	2	41	EEX			26	71	[f LBL 8]	42	21	8
12	RCL 0		45	0	42	2			2	72	GSB 0		32	0
13	STO +2	444	40	2	43	\div			10	73	STO 2		44	2
14	g F? 0	43	6	0	44	g INT		43	44	74	4			4
15	STO - 2	4430	30	2	45	STO 1		44	1	75	STO 1		44	1
16	g F? 0	43	6	0	46	g LST X		43	36	76	GTO 2		22	2
17	STO - 2	443	30	2	47	f FRAC		42	44	77	(f LBL 0)	42	21	0
18	3			3	48	EEX			26	78	f FIX 6	42	7	6
19	6			6	49	2			2	79	g F? 1	43	6	1
20	0			0	50	X			20	80	g RTN		43	32
21	RCL 2		45	2	51	STO 2		44	2	81	f FIX 4	42	7	4
22 *	f X \quad Y (g TEST	T 74	42	20	52	GTO 2		22	2	82	f PSE		42	31
23	GTO 2		22	2	53	[f LBL 9]	42	21	9	83	$\mathrm{g} \rightarrow \mathrm{H}$		43	2
24 *	$\mathrm{g} \mathrm{X}<0$ (g TEST	2) 4	43	10	54	GSB 0		32	0	84	f FIX 6	42	7	6
25	GTO 3		22	3	55	STO 2		44	2	85	g RTN		43	32
26	GTO 4		22	4	56	1			1	86	(f LBL 2)	42	21	2
27	(f LBL 2)	422	21	2	57	STO 1		44	1	87	RCL 2		45	2
28	-			30	58	GTO 2		22	2	88	RCL 0		45	0
29	GTO 4		22	4	59	[f LBL 6]	42	21	6	89	RCL 3		45	3
30	(f LBL 3)	422	21	3	60	GSB 0		32	0	90	g F? 0	43	6	0

$\underline{1}^{1}$ Brackets imply meaningful external accessibility, parentheses indicate internal use.

E. Program statements and code (continued)

Step	Statement		Code		Step	Statement		Code		Step	Statement		Cod	
91	GSB 0		32	0	121	g RTN		43		151	2			2
92	RCL 1		45	1	122	(f LBL 7) 42	422	21	7	152	STO 1		44	1
93	Y^{x}			14	123	1			1	153	GTO 1		22	1
94	X			20	124	STO - 1 4	443	30	1	154	(f LBL 4)		21	4
95	-			30	125	R \downarrow			33	155	2			2
96	STO 2		44	2	126	g RTN		43	32	156	X			20
97	g F? 0	43	6	0	127	(f LBL 3) 42	422	21	3	157	RCL 2		45	2
98	GSB 7		32	7	128	g ABS		431	16	158	-			30
99 *	$\mathrm{g} \mathrm{X}<0$ (g TEST	2)	43	10	129	STO 2		44	2	159	STO 2		44	2
100	GTO 3		22	3	130	RCL 1		45	1	160	RCL 1		45	1
101	9			9	131	2			2	161	RCL 3		45	3
102	0			0	132*	f $\mathrm{X}=\mathrm{Y}(\mathrm{g} \mathrm{TEST} 5)$	5) 4	42	40	162	RCL 1		45	1
103 *	f $X \leq Y(g X \leq Y)$		42	10	133	GTO 5		22	5	163	Y^{x}			14
104	GTO 4		22	4	134	R \downarrow			33	164	-			30
105	(f LBL 1)	422	21	1	135	3			3	165	STO 1		44	1
106	RCL 1		45	1	136	RCL 1		45	1	166	GTO 1		22	1
107	EEX			26	137*	f $\mathrm{X}=\mathrm{Y}$ (g TEST 5	5) 4	42	40	167	[f LBL E]	42	21	15
108	2			2	138	GTO 6		22	6	168	g CF 0	43	5	0
109	X			20	139	RCL 3		45	3	169	g CF 1	43		1
110	RCL 2		45	2	140	$X \geqslant Y$			34	170	f FIX 2	42	7	2
111	+			40	141	Y^{X}			14					
112	g F? 1	43	6	1	142	X			20					
113	g RTN		43	32	143	-			30					
114	f FIX 4	42	7	4	144	STO 1		44	1					
115	$f \rightarrow$ HMS		42	2	145	GTO 1		22	1	g MEM leads to				
116	g RTN		43	32	146	(f LBL 5) 4	422	21	5					
117	(f LBL 0)	42	21	0	147	3			3	P-05 r-3				
118	1			1	148	STO 1		44	1					
119	STO +1	44	40	1	149	GTO 1		22	1					
120	R \downarrow			33	150	(f LBL 6) 42	422	21	6					

[^5]F. Background and formulas used.
I. Background.

In the author's experience (admittedly limited), instructions for the conversion of magnetic to true or true to magnetic bearings frequently degenerate to "use logic" and/or "draw yourself a picture". If one does not make such conversions very often, logic becomes fuzzy and what picture to draw is not confidently apparent. In this approach it is imperative that one recall exactly what "magnetic bearing", "true bearing", and "declination" mean-- the following statements, extracted from Beers and Miller (1973), may help:
"The direction of a line is generally indicated by the angle between the line and some line of reference. The line of reference is generally a true meridian or a magnetic meridian.

The axis on which the earth rotates is an imaginary line cutting the earth's surface at two points: the north geographic pole and the south geograpic pole. The true meridian at any place is the great circle drawn on the earth's surface passing through both poles and the place.

If a magnetized steel bar such as a compass needle is allowed to rotate on a pivot, the bar will take very nearly the same direction at any given place. The direction of the line so indicated is the magnetic memidian at the place. The magnetic meridian has the general direction of the true meridian, but varies from the true meridian by different angles at different locations.

Except in a few places, the magnetic meridian through a point on the earth's surface does not coincide with the true meridian at the point. In other words, the compass needle does not point toward the geographic poles of the earth.

The magnetic declination, D, is the angle between the true meridian and the magnetic meridian, and is considered east if magnetic north is east of true north, and west if magnetic north is west of true north. When it is desired to attach a sign to declination, east declination is considered positive, and west negative."

By combining the above concepts and using azimuth (from North) one can define the true and magnetic directions of a line as the angle measured clockwise from true or magnetic North, respectively, to the line in question. Furthermore, magnetic declination is the angle between true and magnetic north as shown in the sketch below, where the magnetic compass points are shown in lower case letters:

Declination $=20^{\circ} \mathrm{E}(=+20)$
Direction of line:
magnetic azimuth $=29^{\circ}$
true azimuth $=49^{\circ}$
F. Background and formulas used (continued).

When one needs to convert magnetic to true or true to magnetic directions (using azimuths) the following procedure can be deduced from the above picture:
true $=$ magnetic + declination
and magnetic $=$ true - declination
where "declination" is + if East and - if West.
However, when one expresses the direction of a line as a bearing (i.e., the angle is measured clockwise or counterclockwise from North or South, as needed, to maintain the angle less than 90°) the conversion process becomes more difficult to visualize. The nearest to a definitive procedure that I have found proceeds as follows (Society of American Foresters, 1955) :
"A rule of thumb for the conversion of magnetic to true bearings is suggested. To obtain true bearings, if the declination is east, add declination to compass reading in the NE and SW quadrants and subtract declination from compass reading in the $S E$ and $N W$ quadrants.

If the declination is west, subtract declination from compass reading in the $N E$ and $S W$ quadrants and add declination to compass reading in the $S E$ and $N W$ quadrants. To obtain magnetic bearings from true bearings reverse the above procedure."

Implicit in this "rule of thumb" is the fact that declination is always a positive number (whether E or W) and one must first specify the quadrant before conversion can take place. When to add and when to subtract the declination can be indicated by memorization of, or reference to, the following "crutch":

Magnetic to True

West Declination

East Declination

True to Magnetic
reverse the signs above
F. Background and formulas used (continued).

Since this type of solution does not lend itself to efficient programming procedures, an algorithm was developed to achieve bearing conversions assuming the declination (D) is specified as + for East and - for West, and the quadrant number (Q) is specified ($N E=1, S E=2$, $S W=3, N W=4$) for the bearing to be converted from magnetic (M) to true (T) or vice versa:

Q+1
magnetic to true: $\quad T=M+(-1)(D)$
Q
true to magnetic: $\quad M=T+(-1)(D)$
or, alternatively, Q
$T=M-(-1)(D)$
Q+1
$M=T-(-1)(D)$

Just a little thought regarding the algorithm (3) and (4) or (5) and (6) will reveal that the "answer" (i.e., the after-conversion bearing may change quadrants and the answer may be greater than 90° or less than 0°, both of which can lead to unsatisfactory bearing representations. Therefore, additional relationships are needed to indicate the final after adjustment quadrant $\left(Q_{a}\right)$ and bearing (B_{a}).

Let's assume that the "answer" from equations (3) and (4) or (5) and (6) is designated by β and the input quadrant as $\left(Q_{b}\right)$; then three cases need addressed:

1. $0 \leq \beta \leq 90$ leads to $B_{a}=\beta$

$$
\begin{equation*}
\text { and } Q_{a}=Q_{b} \tag{7}
\end{equation*}
$$

i.e., the bearing has not changed quadrants as a result of the conversion.
2. $\beta>90$ (i.e., the bearing has "crossed" the East-West line) leads to

$$
\begin{align*}
B_{a} & =180-\beta \tag{9}\\
\text { and } \quad Q_{a} & =Q_{b}+(-1)^{Q_{b}+1} \tag{10}\\
\text { or } \quad Q_{a} & =Q_{b}-(-1)^{Q_{b}} \tag{11}
\end{align*}
$$

F. Background and formulas used (continued).
3. $\beta<0$ (i.e., the bearing has crossed the North-South line)
leads to

$$
\begin{align*}
& \quad B_{a}=|B| \tag{12}\\
& \text { and } \quad \text { if } Q_{b}=1, Q_{a}=4, \tag{13}\\
& \tag{14}\\
& \text { if } Q_{b}=4, Q_{a}=1 \tag{15}\\
& \\
& \text { or } Q_{a}=Q_{b}-3(-1) Q_{b} \\
& \\
& \text { otherwise }
\end{align*}
$$

$$
\begin{equation*}
Q_{a}=Q_{b}+(-1)^{Q_{b}} \tag{16}
\end{equation*}
$$

The reader who has not yet tired of this discussion, and who has retained a perspective on the whole conversion process might wonder: converting bearings seems too complicated, so why not convert azimuths (by the simple equations (1) and (2)) then change the azimuths to bearings? The fact is that this approach is feasible and may or may not be the desired programming approach-- the ultimate decision depends on the scope of the program and the configuration of the calculator (or computer) to be used. The necessary algorithm(s) for this approach are described below, assuming one inputs quadrant number and bearing and desires the same format in the output (the converted bearing):

1. Change the input bearing (B) to an azimuth (A) by: if $0=\quad$ formulas is

$1(\mathrm{NE})$	$A=B$
$2(\mathrm{SE})$	$A=180-B$
$3(\mathrm{SW})$	$A=180+B$
$4(\mathrm{NW})$	$A=360-B$

2. Convert from true to magnetic or vice versa using equations
(1) or (2).
3. Change the converted azimuth (A) back to a bearing (B) by:
if azimuth (A) is bearing (B) is and \quad is
$A<0$
$0<A \leq 90$
$90<A \leq 180$
$180<A \leq 270$
$270<A \leq 360$
$A>360$

$$
\begin{align*}
& B=|A| \tag{21}\\
& B=A \\
& B=180-A \\
& B=A-180 \\
& B=360-A \\
& B=A-360
\end{align*}
$$

$$
4(\mathrm{NW})
$$

$$
B=180-A \quad 2
$$

$$
B=A-180 \quad 3(S W)
$$

$$
B=360-A \quad 4 \text { (NW) }
$$

$$
1 \text { (NE) }
$$

F. Background and formulas used (continued).
II. Formulas used, and logic flow:

1. In label A-- assuming azimuth input and output:
a. equations (1) and (2) were used to convert magnetic to true (FO clear) or true to magnetic (F0 set):

> output $=$ input + D, if F0 clear output $=$ input - D, if F0 set
b. then:

$$
\begin{array}{cl}
\text { if output > } 360 ; & \text { answer }=360-\text { output } \\
\text { if output < } 0 ; & \text { answer }=360+\text { output } \\
\text { otherwise } ; & \text { answer }=\text { output }
\end{array}
$$

2. In label B-- assuming quadrant and bearing input and output:
a. the "packed" input was first separated and stored as quadrant number and bearing.
b. equations (5) and (6) were then used to convert from magnetic to true (F0 clear) or true to magnetic (F0 set) bearings.
c. then:

$$
\begin{gathered}
\text { if output }<0, \text { equation (12), equation (15) and a modi- } \\
\text { fication of equation (16) were used to calculate } \\
\text { converted bearings and quadrants; } \\
\text { if output }>90 \text {, equations (9) and (11) were used; } \\
\text { otherwise, equations (7) and (8) apply. }
\end{gathered}
$$

d. the final converted bearings and quadrants were then assembled and packed into the Q and angle format for display.
3. In externally accessible labels 9, 6, 5, and 8, the key depressed after GSB determines the input quadrant, enabling the bearing to be keyed as a bearing, not in packed format. Since the unpacking is not necessary, logic proceeds as in label B (above) with the unpacking step omitted.
G. Literature cited.

Beers, T.W. and C.I. Miller. 1973. Manual of Forest Mensuration. T\&C Enterprises, P.O. Box 2196 West Lafayette, IN 47906.

Society of American Foresters. 1955. Forestry Handbook. Ronald Press, New York, NY.

Calculator: HP-11C
Program Name: SIMSTRAT -- Simple and Stratified Random Sampling
Author: Thomas W. Beers
Date: January 1984

Purpose: To summarize data from either a simple or stratified sample, obtaining within stratum and overall estimates of the mean, standard error, and optionally, arbitrary confidence intervals.
A. Storage assignments

Register 15C
I

0-5 (2-7) Statistical: $n, \Sigma X$, etc.
6 (0) N_{h}, population size, stratum h
7

8

9
. 0
.1
. 2
(1) \bar{X}_{h}, sample mean, stratum h then $\bar{X}_{s t}$, overall sample mean for stratified sample.
$\Sigma N_{h} \bar{X}_{h}$
ΣN_{h}
s_{h}
${ }^{s} \bar{X}_{h}$ then ${ }^{s} \bar{X}_{s t}$, overall standard error; both corrected
for finite population if appropriate.
$\sum N_{h}^{2} s^{2} \bar{X}_{h}$ used in overall standard error calculation.
B. Labels

Name
[A]*
Use
Student's t used for confidence interval calculations (user input, but default value $=2.00$)
program start and initialization, clears all registers and display to zero
B. Labels (continued)
[2] calculates and displays limits of confidence interval

Name
Use
[B]

0
[1]

3

4
[5] sums
internal use when population is finite for the stratified sample is stored in I
loop to summarize basic data
after each stratum is summarized, calculates and displays stratum mean and standard error and accumulates necessary
calculates and displays overall mean and standard error estimate using stored Student's t or 2.00 if no other number
calculates and displays $s_{\bar{x}}$ for each stratum and performs calculations for overall $\stackrel{s}{\bar{X}}_{\bar{X}}$ for the stratified sample calculates and displays $\bar{X}_{\bar{X}}(\%)$ for individual strata *brackets indicate meaningful external accessability.
C. Flags

Number
Use
0
if clear, a finite population correction is applied; if set, a finite population correction is not applied
D. Program procedure and example
I. In PRGM mode, load program
II. In RUN mode, proceed as given below; assume the following stratified sample chosen from a finite population of size 100.

Stratum

	1	2	3	Total
Data:	3,0,2	12,8,15,13	18,22	
N_{h}	30	50	20	100
\bar{X}_{h}	1.7	12.0	20.0	$10.5=\bar{X}_{s t}$
$s^{\text {h }}$	1.53	2.94	2.83	
$\overline{\mathrm{x}}_{\mathrm{h}}$	0.84	1.41	1.90	$0.84=s \bar{x}_{s t}$

D. Program procedure and example (continued)

1. Stratified Sampling assuming a finite population correction -proceed as follows: (assume FIX 2 initially)

Excomple

a. | Input | Key | Output | Input | Key | Output |
| :--- | :--- | :--- | :--- | :--- | :--- |

b. - A 0.00

X_{11}	R / S	1.00
X_{21}	R / S	2.00
(Repeat for all data		
in stratum 1)		

-	A	0.00
3	R / S	1.00
0	R / S	2.00
2	R / S	3.00

c. $\quad N_{1}$

B $\quad \bar{X}_{1} \quad$ (pause)
30
B
1.7 (pause)
0.84
d. (optional) calculate the confidence interval estimate for mean of the stratum, by GSB 2; if a value of t other than 2.00 is used (say 4.303) following step is needed:
t
STO I
t
4.303
STO I
4.30

We'll here assume the default value of t, therefore simply press GSB 2:

Input	Key	Output	Example		
			Input	Key	Output
-	GSB 2	lower (pause) upper limit	-	GSB 2	$\begin{array}{r} -0.007 \text { (pause) } \\ 3.340 \end{array}$

e. After steps b and c (and optionally, d) depress R/S (Not A!) and repeat data entry part of b and repeat step c for all strata:

Using the sample data:

	Input	Key	Output
stratum 2 data	-	R/S	0.000
	(12	R/S	1.000
	\{ 8	R/S	2.000
	15	R/S	3.000
	13	R/S	4.000
	50	B	12.0 ($\overline{\mathrm{X}}_{2}$)
			$1.41\left(\mathrm{~s}_{\bar{X}_{2}}\right)$

D. Program procedure and example (continued)

		Input	Key	Output
f.	Stratum 3 data	-	R/S	0.00
		$\{18$	R/S	1.00
		$\{22$	R/S	2.00
		20	B	20.0 (\bar{X}_{3})
				$1.90\left(\mathrm{~s}_{\mathrm{X}_{3}}\right)$

g. Press GSB 1 to obtain overall estimates of mean and standard error, R/S to obtain std. error as a \%, then GSB 2 for confidence interval estimates for the stratified sample:

Example

Input	Key	Output	Input	Key	Output
-	GSB 1	$\bar{X}_{\text {st }}$ (pause)	-	GSB 1	10.5 (pause)
		${ }^{s} \bar{x}_{s t}$			0.84
-	R/S	${ }^{s} \bar{X}_{\text {st }}(\%)$	-	R/S	8.0 (\%)
-	GSB 2	upper (pause)	-	GSB 2	8.820*
		lower limit			12.180*

*These are . 95 confidence limits, since the default value of $t(=2.00)$ is used. For .99 confidence limits, store 2.6 in register I prior to pressing GSB 2.
2. Stratified sampling assuming no finite population correction is applied-set flag 0 and proceed as in step 1.
3. Simple random sampling-- proceed as in step 1 or 2 as appropriate, and assume only one stratum. But, note the following:
a. GSB 1 is no longer appropriate, but $\mathrm{s}_{\bar{X}}(\%)$ can be calculated and displayed by GSB 5.
b. If no f.p.c. is to be used (i.e., Flag 0 set) keying in population size, N, (step 1 c) is meaningless, therefore simply press B after all the X values have been processed.
D. Program procedure and example (continued)
c. GSB 2 can be used to calculate confidence intervals.

Using stratum 2 as an	X 2)	Examp	
With Flag 0 clear:	Input	Key	Output
	-	A	0.00
	12	R/S	1.00
	8	R/S	2.00
	15	R/S	3.00
	13	R/S	4.00
	50	B	$\begin{aligned} & 12.0=\bar{x} \\ & 1.41=s \bar{x} \end{aligned}$
	-	GSB 5	$11.8=s_{\bar{\chi}}(\%)$
	3.182	STO I	3.2
	-	GSB 2	$7.507 \text { = lower }$

or with Flag 0 set:

	A	0.00
12	R / S	1.00
8	R / S	2.00
15	R / S	3.00
13	R / S	4.00
-	B	$12.0=\bar{X}$
		$1.47=\mathrm{s}_{\bar{X}}$
-	GSB 5	$12.3=\mathrm{s}_{\bar{X}}(\%)$
3.182	STO I	3.2
-	GSB 2	$7.316=1$ ower
		$16.684=$ upper

E. Program statements and code

Step	Statement		Code		Step	Statement		Code		Step	Statement		Code
01	[f LBL A]]/		21	11	31	\div			10	61	RCL . 2		45.2
02	f CLEAR REG		42	34	32	(f LBL 4)	42	21	4	62	RCL 9		459
03	2			2	33	x			20	63	$\mathrm{g} \mathrm{X}{ }^{2}$		4311
04	STO I		44	25	34	\sqrt{X}			11	64	\div		10
05	g CLX		43	35	35	f FIX 2	42	7	2	65	\sqrt{X}		11
06	(f LBL 3)	42	21	3	36	STO . 1		44	. 1	66	f FIX 2	42	72
07	R/S			31	37	$\mathrm{g} \mathrm{X}{ }^{2}$		43	11	67	STO . 1		44.1
08	¿+			49	38*	RCL 6 (0)		45	6	68	R/S		31
09	GTO 3		22	3	39	$\mathrm{g} \mathrm{X}{ }^{2}$		43	11	69	[f LBL 5]	42	215
10	[f LBL B]	42	21	12	40	X			20	70	RCL . 1		45.1
11*	STO 6 (0)		44	6	41	RCL . 2		45	. 2	71*	RCL 7 (1)		45.7
12	STO + 9	44	40	9	42	+			40	72	\div		10
13	f FIX 1	42	7	1	43	STO . 2		44	. 2	73	EEX		26
14	$\mathrm{g} \bar{X}$		43	0	44	f CLEAR Σ		42	32	74	2		2
15	f PSE		42	31	45	RCL . 1		45	. 1	75	X		20
16*	STO 7 (1)		44	7	46	R/S			31	76	f FIX 1	42	71
17*	RCL 6 (0)		45	6	47	g CLX		43	35	77	R/S		31
18	X			20	48	GTO 3		22	3	78	[f LBL 2]	42	212
19	STO +8	44	40	8	49	(f LBL 0)	42	21	0	79*	RCL 7 (1)		457
20	g s		43	48	50	1			1	80	RCL I		4525
21	STO . 0		44	. 0	51	GTO 4		22	4	81	RCL . 1		45.1
22	$\mathrm{g} \mathrm{X}{ }^{2}$		43	11	52	[f LBL 1]	42	21	1	82	X		20
23*	RCL 0 (2)		45	0	53	2			2	83	-		30
24	\div			10	54	STO I		44	25	84	f FIX 3	42	73
25	g F? 0	43	6	0	55	RCL 8		45	8	85	f PSE		4231
26	GTO 0		22	0	56	RCL 9		45	9	86	g LST X		4336
27*	RCL 6 (0)		45	6	57	\div			10	87*	RCL 7 (1)		457
28*	RCL 0 (2)		45	0	58	f FIX 1	42	7	1	88	+		40
29	-			30	59*	STO 7 (1)		44	7	89	R/S		31
30*	RCL 6 (0)		45	6	60	f PSE		42	31	90	g CLX		4335
										91	GTO 3		223

1/Brackets and parentheses are not programmable; they
Note: g MEM leads to

$$
P-00 r-.5
$$

are used to indicate externally meaningful or internal use labels, respectively.
*Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15C user to alter.

F. Formulas

I. Simple random sampling
a. \quad mean $=\bar{X}=\frac{\sum X}{n}$
b. standard error

$$
s_{\bar{x}}=\sqrt{\frac{s^{2}}{n}}
$$

or

$$
s_{\bar{X}}=\sqrt{\frac{s^{2}}{n}\left(\frac{N-n}{N}\right)} \quad \text { if finite population is assumed }
$$

c. confidence interval
$\bar{X} \pm t s \bar{X}$, value of t determines degree of "confidence"
d. $s_{\bar{X}}(\%)=\frac{s_{\bar{X}}}{\bar{X}}(100)$
II. Stratified sampling
a. a., b., c.,d. same as above for within-stratum estimates
d. overall mean, $\quad \bar{X}_{s t}=\frac{\sum N_{h} \bar{X}_{h}}{N}$

$$
\begin{aligned}
\text { where } N_{h} & =\text { population size for stratum } h \\
\bar{X}_{h} & =\text { sample mean for stratum } h \\
\text { and } \quad N & =\text { total population size }=\Sigma N_{h}
\end{aligned}
$$

e. overall standard error, $\mathrm{s}_{\bar{X}_{s t}}=\sqrt{\frac{1}{N^{2}}\left(\Sigma N_{h}^{2} s_{\bar{X}}{ }_{h}\right)}$ where

$$
\begin{aligned}
s^{2}= & \text { squared standard error for stratum } h, \\
\bar{X}_{h} & \text { corrected, if appropriate, for finite } \\
& \text { population }
\end{aligned}
$$

F. Formulas used: (continued)
f. confidence intervals commonly used

```
        t = 2 for . 05 probability level
        and t = 2.6 for . 01 probability level.
```

g. $\quad s_{\bar{x}_{s t}}(\%)=\frac{s_{\bar{X}_{s t}}}{\bar{X}_{s t}}(100)$

```
Calculator: HP-11C (and HP-15C with minor changes)
Program Name: FICALC-11/15 FInancial CALCulations on the HP-11C or HP-15C
```

Author: Thomas W. Beers

Date: April 1985

Purpose: To solve for certain unknown values among the usual components of simple or compound interest problems. Specifically, with the following definitions:

```
    n = number of periods over which compounding takes place
    I = periodic interest rate expressed as a percent
    i = periodic interest rate expressed as a decimal
    PV = present value
    PMT = periodic payments made for the n periods
    FV = future value
    NAR = the stated or "nominal" annual rate of interest
        expressed as a percent
    APR = annual percentage rate; the same as NAR
    EAR = effective annual rate in percent; the amount that $100
        would earn in one year with annual compounding (i.e.,
        simple interest),
```

The program can provide the solutions listed below.
1. Assuming a simple interest framework-- any one of I ,
PV, or $F V$ can be obtained when the other two of these
components are supplied as input; n is here assumed to
be 1 , usually 1 year.
2. Assuming a compound interest framework with payments
equal to zero-- any one of $n, I, P V$, or $F V$ can be ob-
tained when the other three components are supplied as
input.
3. Assuming, additionally, that periodic payments are
made, i.e., PMT $\neq 0--$ any one of n, PV, FMT, or FV can
be obtained when I and the other three components are
supplied as input.
4. "Effective" compound rates of interest (EAR) on an an-
nual basis can be obtained if n (here defined to be
the number of compounding periods per year) and the
NAR
nominal periodic rate (-----) are properly located
in the calculator.
A. Storage Assignments

Register	Use
1	the intermediate calculation B (see section G)
0	the intermediate calculation C (see section G)
1	n
2	i (note, this is interest rate as a decimal)
3	PV
4	PMT
5	FV
6	the intermediate calculation A (see section G)

B. Labels

Name
[A]*
[B]
[C]
[D]

9

Use
stores n keyed in, or calculates n
stores i when keyed in as I, or calculates I
stores PV keyed in, or calculates PV
stores PMT keyed in, or calculates PMT
stores FV keyed in, or calculates FV
initializes the registers (all cleared to zero except R1 which is set to 1), clears flag 0 , and maintains the current status of flag 1 (payments made at BEG or END of period)
sets flag 1 (selecting $B E G$ mode) then proceeds to label 0
clears flag 1 (selecting the END mode) then proceeds to label 0
solves for and displays n
solves for i and displays I
solves for and displays PV $\}$ if flag 0 is set
solves for and displays FMT
solves for and displays FV
displays Π (3.14), indicating the end of the input phase, and optionally provides the calculation and display of EAR
sets flag 0, enabling the use of labels 3 to 7 , and calculates and stores A, B, and C. (see section F)
*brackets indicate meaningful external (i.e., in RUN mode) accessibility.
C. Flags

Numb	Use
0	clear indicates the input phase, i.e., a number just keyed will be stored appropriately in R1, $\mathrm{F} 2, \mathrm{R} 3, \mathrm{R} 4$, or F 5
	set implies the calculation phase, and when keys A through E are pressed, program control passes to labels 3 through 7, respectively, to solve for the appropriate component
	note: the status of flag 0 is program controlled and it is unnecessary to alter its state from the keyboard.
1	set (achieved by pressing GSE 1) implies that the BEG mode for payments is assumed; this condition is indicated visually by the presence of the GRAD annunciator in the display
	clear (achieved by pressing GSB 2) implies that the END mode for payments is assumed; here the GRAD annunciator is not displayed.

D. Program Procedure in General

1. INITIALIZE

Ferformed to clear all registers to zero (except R1 is made $=$ 1), and prepare the calculator for the input of new data. This step is not always necessary, since minor changes in the problem can be made, such as changing only the interest rate, leaving the other data in tact. If, however, the input data are to be substantially changed, it is wise to perform one of the following, as appropriate:
a. GSB 0 this initializes the calculator and maintains the current status of the BEG/END mode.
b. GSB 1 this initializes as in a. but additionally sets flag 1 causing GRAD to appear in the display, indicating the $B E G$ (of period) payment mode is active.
c. GSB 2 this initializes as in a. but additionally clears flag 1 causing the GRAD annunciator to disappear from the display, indicating the END (of period) payment mode is active.

2. INPUT DATA

a. In USER mode, key the data given in the problem. Then, after each, press the appropriate label key indicated below; the data are stored by the program as shown:

A	B	C	D	E
n	I (\%)	PV	FMT	FV
R1	R2	R3	R 4	R 5
(stored as, a decimal)				

NOTE, the following constraints apply to the imput data:
(1) $n=$ number of compounding intervals; if payments are involved in the problem, the number of payments must be the same as the number of compounding intervals.
(2) I $=\%$ interest (periodic) is keyed as a percent although it is stored as a decimal (i),
(3) the usual + and - cash flow conventions are followed for PV, PMT, and FV (see specific examples)
(4) if $\mathrm{FMT}=0$, this implies a "single payment" problem, and any 3 of $n, I, P V$ and $F V$ must be input to find the fourth. Implication: interest (I) can be the solved-for unknown, just as $n, F V$, or $F V$ can be.
(5) if PMT $\neq 0$, this implies an "annuity problem" with or without an initial payment ($P V \neq 0$ or $F V=0$), and the interest rate must be one of the input variables plus any 3 of n, PV, PMT, and $F V$ to find the unknown.
Implication: interest (I) cannot be a solved-for unknown; an attempt to do so will lead to "ERROR 3"

3. SOLUTION

After sufficient data have been properly input:
a. Press R / S, and observe 3. 14, which indicates that the key for the desired unknown component can now be pressed.
b. Press the "unknown" key and read the answer.

NOTE, "ERROR $3 "$ means you tried to solve for I when $F M T \neq 0$; not possible with this program.
c. (optional) To find EAR (effective annual rate) for compounding other than annual:
(1) GSB 0, or GSB 1, or GSB 2
(2) Key $n=$ compounding frequency per year
(monthly $=12$, quarterly $=4$;
daily $=365$), and press A
(3) key nominal periodic rate (i.e., key annual rate,

ENTER, key n, \div, and press B
(4) press R/S and read 3. 14
(5) press F / S and read the desired EAR as a percent shown to 3 decimal places.

4. NEW PROELEM

If only minor changes are to be made in the input data, simply key the new data, press the appropriate label key and proceed with the SOLUTION steps.

If major changes are necessary, return to the INITIALIZE steps.
E. Examples

The following arbitrary examples are meant to introduce the user to the variety of problems which can be solved by FICALC-11/15. A certain understanding of "interest problems" is assumed. Cash flow diagrams are shown where appropriate and the user not familiar with this method of phrasing the problem is encouraged to study the diagrams to get a feel for their use. Such observation will make obvious that amounts received, such as borrowed money or accumulated savings are considered positive (upward line), amounts paid out, such as deposits into a savings account, into an IFA, or payments on a loan are negative (downward line); that the completed diagram must have at least one + and one - line; and that payments must be specified as to the beginning or end of the compounding period. It is also helpful to remember that each problem should be viewed from the standpoint of the lender/investor, but not both viewpoints in the same problem.

This program is meant primarily to solve compound interest problems, therefore those dealing with simple interest will be described last and in less detail. Consult the following directory (Table 1) to determine the exact nature of the examples.

Table 1. Nature of Problems Described in Examples Which Follow.

a. 61	IRA	
b.	62	IRA
c. 62	IRA	
d. 62	IRA	
e. 62	savings account	
f.	63	savings account
g.	63	savings account
h. 64	savings account	

2.

a. 64 automobile
b. 65 automobile
c. 65 automobile
d. 65 automobile
e. 66 automobile
f. 66 automobile
g. 67 home improvement
h. 68 home improvement
i. 68 credit card
j. 69 credit card
k. 70 automobile

3. Home Purchase

a. 70 regular mortgage
b. 71
regular mortgage
c. 71 regular mortgage
d. 71 regular mortgage
e. 72 contract sale
f. 72 contract sale

```
given n, I, FMT; find FV; annual com- pounding
change \(n\); find \(F V\)
fix \(F V=1,000,000 ;\) find \(n\)
change I; find \(n\)
given n, I, PV, FMT; find FV; monthly compounding
find EAR for previous problem change compounding to daily; find EAR given \(n\), I, PV, PMT; find FV; weekly compounding
given \(n, I, F V, F V=0 ;\) find \(P M T ;\) monthly compounding
change I; find PMT
find exact \(F V\) after last payment
given I, \(P V, P M T, F V=0 ; ~ f i n d ~ n a n d\) amount of interest
given I with "simple interest"; better deal?
find the corresponding compound interest, I
given \(n, I, P M T, F V=0 ;\) find \(P V ;\) monthly compounding
find loan balance after given number of months
given \(n, I, P V, P M T=0 ;\) find \(F V\);
monthly compounding
find EAR in previous problem
practice problems
```

```
given n, I, FV, FV = 0; find FMT;
    monthly compounding
change n; find FMT
change n back, change I; find PMT
find exact FV after last payment
given ח, I, PV, FV = 0; find FMT and
    "balloon payment"
find amount of interest paid in pre-
    vious problem
```


Table 1. (continued)

Example Number

$$
\begin{aligned}
& \text { Type of } \\
& \text { Problem } \\
& \hline
\end{aligned}
$$

Specific Nature

Page
 4. Effective Annual Fates

a. 73	EAR, discrete compounding	given NAR, c (compounding frequency);
		find EAR

5. Cash Flow Analysis

a. 77 net present value (NFV)
b. 78 modified internal rate of return (MIRR)

```
given n, I, series of cash flows (CF);
find NPV
given n, two interest rates, and a
    series of cash flows; find MIRR
```

6. Simple Interest

a. 82	annual period	given $n=1, P V, I ;$ find $F V$
b. 82	annual period	given $n=1, P V, F V ;$ find I
c. 82	annual period	given $n=1, I, F V ;$ find $P V$
d. 82	multi-year	given $n, P V, I ;$ find FV
e. 82	partial year	given no. of days, PV, I; find FV

1. IRAs and Savings Accounts
a. An IRA is to be established, depositing $\$ 2000$ in an account on Jan. 1 for each of the next 5 years. Assuming 10 percent interest, compounded annually, what is the accumulated value (FV) at the end of the 5 years? NOTE, the payments are made at the beginning of each period.

SOLUTION

Input	Key (s)	Display	Comment
-	GSB, 1	0.00	"GRAD" indicates BEG mode
5	A	5.00	\# periods $=0$
10	B	0.10	I input, i displayed
2000	CHS, D	-2000.00	periodic payment
-	R/S	3.14	input complete
-	E	13,431.22	$F V=$ future value

b. What would the accumulation be if such payments were made for 35 years?

SOLUTION (previous data still in place)

35	A	35.00	provide new n
-	R/S	3.14	
-	E	$596,253.61$	EIG BUCKS!

c. How long would it take to accumulate one million dollars?

SOLUTION (previous data still in place)

1000000	E	$1,000,000.00$	FV
-	R / S	5.14	
-	A	40.27	$n=40.27$ years

d. If I managed to improve on the interest rate, say to 12 percent, how many years would it take?

SOLUTION (previous data still in place)

12	B	0.12	$i=0.12$
-	R/S	3.14	
-	A	35.29	5 years sooner!

e. A credit union savings account present balance (start of month) is $\$ 4000$. If I arrange for monthly deposits from my paycheck of $\$ 100$ starting at the end of this month, how much would be accumulated after 7 years, if the nominal annual rate is 7.875%, compounded monthly?

SOLUTION

```
\begin{tabular}{|c|c|c|c|}
\hline Input & Key (s) & Display & Comment \\
\hline - 1/ & GSB, 2 & 0.00 & END mode selected \\
\hline 84 or \(7 \uparrow 12 \mathrm{x}\) & A & 84.00 & \(n=84\) \\
\hline \(7.875 \uparrow 12 \div\) & B & 0.01 & actual \(\mathrm{i}=0.0065625\) \\
\hline 4000 & CHS, C & -4000.00 & PV \\
\hline 100 & CHS, D & -100.00 & monthly PMT \\
\hline - & F/S & 3.14 & \\
\hline - & E & 18,088.03 & FV \\
\hline
\end{tabular}
NOTE: Because of the way the problem is phrased, the last monthly payment will accumulate no interest, but this must be tolerated, due to the usual constraint that the number of payments and the number of compounding periods must be equal. If this were not the case, the program and the formulas cited in Section \(G\) do not apply.
f. In the previous problem the stated nominal annual rate was 7.875, compounded monthly. What is the effective annual rate (EAR)?
```

SOLUTION

-	GSB, 0	0.00	BEG/END mode immaterial
12	A	12.00	$n=$ compounding frequency
			per year
$7.875 \uparrow 12 \div$	B	0.01	$i=0.0065625=$ monthly
			nominal rate
-	R/S	3.14	
-	R/S	8.166	EAR

9. Would the effective annual rate change much if compounding took place daily?

SOLUTION

365	A	365.000		$n=365$
$7.875 \uparrow 365 \div$	B	2.158	-04	$i=0.0002158=$
				daily nominal rate
-	R/S	3.142		
-	F/S	8.192		= EAR; not much change

The symbol \uparrow is used in this paper as short notation for the ENTER key.
h. Shortly after President Kennedy's assassination, an acquaintance of mine started collecting "Kennedy" dollar bills. He did this up until 1976 when the mood changed to collecting "Drummer-boy" quarters. In 1984, the collection box contained 73 dollar bills and 104 dollars in quarters (an average of one quarter per week. for eight years). Ignoring any collecting value appreciation, what would the accumulation have been if the $\$ 73$ had been deposited in a savings account in 1976 and one quarter per week added for eight years? Assume 9% nominal annual rate and weekly compounding.
$P V=73$

$$
I=9 / 52 \%
$$

SOLUTION

Input	Key (s)	Display	Comment
-	GSB, 2	0.00	END mode
416	A	416.00	$n=416$
9个52 -	B	1.73-0.3	actual $\mathrm{i}=0.001731$
73	CHS, C	-73.00	$P V=73$
. 25	CHS, D	-0.25	PMT $=.25$
-	R/S	3.14	
-	E	302.00	$F V=302.00$

Since only $\$ 177$ is in the bax, my friend lost 125 by not putting the money in the account.
2. Automobile Furchase, Home Improvement Loans, Credit Cards.
a. A new car is advertised as being available for $\$ 4999.00$ (after trade in and cash down payment). You can borrow this amount at 8.8% nominal annual rate and make payments over 48 months. Calculate the monthly payment. Note, you are paying off the loan gradually and at the end of the 48 months the amount you owe should be zero, i.e., $F V=0$.

SOLUTION

Input	Key (s)	Display	Comment
-	GSB, 2	-0.00	END mode
-	A	48.00	$n=48$
48	B	0.01	actual $i=0.007333 . .$.
$8.8 \uparrow 12 \div$	C	4999.00	PV
4999	R/S	3.14	
-	D	-123.93	monthly PMT

b. Say that another dealer is offering an 8.5% interest rate, how much do the payments change?

SOLUTION (previous data still in place)

$8.5 \uparrow 12 \div$	B	0.01	
-	R/S	3.14	
-	D	-123.22	Not much change
			(.71 per month)

c. Assuming you go with the 8.5% loan, and make 48 payments of exactly 123.22 , how much do you still owe? (FV = ?)

SOLUTION

$P V=4620$

SOLUTION

Input	Key (5)	Display	Comment
-	GSB, 2	0.00	END mode
$13.49 \uparrow 12 \div$	B	0.01	actual $\mathrm{i}=0.0112417$
4620	C	4620.00	PV
106.28	CHS, D	-106.28	FMT
-	R/S	3.14	
-	A	60.00	$n=60$ months

Since 60 x (06.28 $=\$ 6376.80$ and you would borrow $\$ 4620.00$, the amount of interest paid is the difference: $\$ 1756.80$.
e. Yet another dealer offers the same deal at 8% "simple interest"; is this a better deal?

SOLUTION
Using simple interest, finance charges are calculated in this type of "deal", as $4620.00 \times .08 \times 5$ years $=\$ 1848.00$. Therefore you would pay less interest under the previous plan $\{13.49 \%$ AFR, with monthly compounding).

```
f. If the 8% simple interest dealer says you can pay the principal
    ($4620.00) plus the interest ($1848.00), total = $6468.00, in
    easy monthly payments of 6468/60 = $107.80, you should think!,
    and realize this is no longer a simple interest deal. Simple
    interest would mean that you make no payments until the end of
    the five years, therefore having use of the $4620 for the full
    time of the loan. The next question that begs an answer is, if
    the deal is accepted, making the monthly payments of $107.80,
    what is the actual corresponding compound interest rate (monthly
    compounding) being paid?
```

 The cash flow diagram is
 \(P V=4620\)

Unfortunately, as pointed out in the constraints cited in Section D, the program cannot directly solve for 1 (since PMT $\neq 0$). However we can "zero-in" on the AFR by trial and error as follows:

Comparing the FMT of $\$ 107.80$ here with the PMT corresponding to APR $=13.49 \%$ in example d. ($\$ 106.28$), let's try APR $=14 \%$:

Input	Key (s)	Display	Comment
-	GBS, 2	0.00	END mode
60	A	60.00	$n=60$
$14 \uparrow 12 \div$	B	0.01	
4620	C	4620.00	PV
107.80	CHS, D	-107.80	PMT
-	R/S	3.14	
-	E	25.92	FV, too high

Since the goal is to find the APR that reduces $F V$ to zero, try $A P R=14.2$

$14.2 \uparrow 12 \div$	B	0.01
-	R/S	3.14
-	E	-15.51

FV, too low

APf must be between 14.0 and 14.2 , try 14.1

$14.1 \uparrow 12 \div$	B	0.01
-	R/S	3.14
-	E	5.27

FV, too high

Try APR $=14.12$

$14.12 \uparrow 12 \div$	E	0.01
-	R/S	3.14
-	E	1.13

Close enough! (or continue, if preferred)
g. You want to add a new room to your house and can spring for $\$ 200$ in monthly payments. If the local bank offers money at 15% compounded monthly, how much can you borrow if you want to pay off the note in 5 years?

SOLUTION

Input
- -
60
$15 \uparrow 12 \%$
200
-
-

Key (5)
GSB, 2
A
B
CHS, D
R/S
C

Display
-0.00
60.00
0.01
-200.00
3.14
8406.92

Comment
END mode
$n=60$
actual $\mathrm{i}=0.0125$
PMT
$F V=$ amount you can borrow
h. Say you hit the lottery just after the 34 th payment and can pay the loan off. How much is needed? That is, what is the FV at the end of the 34 th month; assume you actually borrowed $\$ 8400$.
$P V=8400$

SOLUTION (previous data still in place)

i. Your credit card bill carries the statement that you are charged 1.5% interest on the unpaid monthly balance. This is equivalent to the "18\% annual rate" (since $18 / 12=1.5$), which they are required to state also. If you have $\$ 100$ balance at the beginning of Jan., how much do you owe at the end of Dec. that year?
$P V=100$

$F V=$?

SOLUTION

-70-
k. Need more practice? Verify the entries in the table below, solving either for FMT or FV (amount financed). Note that since these represent loans to be paid off, $F V=0 ;$ furthermore, the interest rate, I, cannot be solved for directly by the program since PMT $\neq 0$.

AMOUNT FINANCED	MONTHLY PAYMENTS GO MONTH S-10	
3,000	74.37	61.98
4,000	29.16	82.64
5,000	123.95	103.30
6,000	148.74	123.96
7,000	173.53	144.62
8,000	198.32	165.29
9,000	223.11	185.95
10,000	247.90	206.61

3. Home Mortgages and Contract Sales
a. You plan to purchase a house worth $\$ 145,000$ and can muster $\$ 20,000$ as a down payment, thus needing to borrow $\$ 125,000$. Assuming a $30-y e a r$ mortgage (i.e., "amortized over 30 years"), monthly compounding, and annual interest rate of 13.5%, what are the monthly payments?
$P V=125,000$

$\mathrm{FMT}=$?
$n=360$ months

SOLUTIONS

Input	Key (5)	Display	Comment
-	GSE, 2	0.00	END mode
360	A	360.00	n
13.5112\%	E	0.01	actual i $=0.01125$
125000	C	125,000.00	PV
			(note FV $=0$ was achieved by GSB,2)
-	R/S	3.14	
-	D	-1431.77	PMT

b. How much would the payments change if a 40 -year mortgage is available?

SOLUTION (previous data still in place)

$40 \uparrow 12 x$	A	480.00	revised n
-	R / S	3.14	not much change in
-	D	-1412.83	

c. Reverting to the 30 -year mortgage, what would the payments be if
$\quad I=12 \%$?

SOLUTION (previous data still in place)

360	A	360.00	actual $i^{n}=0.0108333$
$1312 \div$	B	0.01	3.14
-	R / S	-1382.75	PMT

So it looks like reducing the nominal annual interest rate from 13.5% to 13% saves more per month (1431.77-1382.75 = $\$ 49.02$) than extending the loan by ten years (1431.77-1412.83 = \$18.94)!
d. If our monthly payments were exactly 1382.75 as calculate in c. would the future value come out to exactly zero or would there be a final settlement? If so how much?

SOLUTION (previous data still in place)
1382.75
CHS, D
R/S
-1382.75
exact PMT
3.14
2.62
FV
Therefore, after the 36oth payment we would still owe $\$ 2.62$, which would probably be added to that payment.
e. Say, on the same $\$ 145,000$ house we can get a contract arrangement at 10.5% amortized over 25 years, can muster $\$ 80,000$ down (leaving $\$ 65,000$ to be paid on the contract) but we must pay the remaining balance after 5 years. What is the monthly payment? and What is the "balloon" payment due at the end of the 5 years?

SOLUTION

Input	Key(s)	Display	Comment
-	65B, 2	0.00	END mode
$25 \uparrow 12 \mathrm{x}$	A	300.00	ก
$10.5 \uparrow 12 \div$	B	0.01	actual i $=0.00875$
65000	C	65,000.00	PV
-	R/S	3.14	
-	D	-613.72	PMT per month
613.72	CHS, D	-613.72	this step needed only to round PMT to exactly 613.72
60	A	60.00	n for the 5 yr. period
-	R/S	3.14	
-	E	-61,471.25	$F V=$ balloon payment needed immediately after the both payment is made

f. Assuming you terminate the contract after five years by paying the balance due ($\$ 61,471.25$), how much have you paid in interest over the five years?

The program will not directly answer this question but applying logic and knowledge as to where the various components are stored:

SOLUTION (previous data still in place)

-	-	$-61,471.25$	balance due is still
in display			
-	RCL 3	$65,000.00$	FV = amount of loan
-	+	3528.75	reduction in principal
-	RCL 4	-613.72	monthly payment

SOLUTION (previous data still in place, continued)

Input	Key (s)	Display	Comments
-	RCL 1	60.00	$n=$ no. of payments
-	X	$-36,823.20$	amount of interest
			plus reduction in principal
-	+	-33,294.45	amount of interest paid over the 5 years.

The last operation (pressing + key) performed the addition of - $\$ 36,823.20$ and the reduction in principal ($\$ 3528.75$) which was still in the stack, where it was needed, the Y register.
4. Effective Annual Rates

When confronted with nominal annual rates of interest (NAF) and the frequency of compounding (C) it is occasionally of interest (no pun intended!) to determine the effective anrual rate (EAFi), which has been pointed out earlier to be the same as the amount that $\$ 100$ would earn for one year assuming simple interest.

One could use the program and essentially solve the cash flow diagram for FV:

Then, $E A R=F V-100$. However, because of certain intermediate calculations routinely made in the program, a simple procedure, cited in the next example (and also used in earlier examples), is recommended.
a. Complete the table below, finding the effective annual rates (answers are shown in the table).

Nominal	Type of Compounding and the Resulting	Effective
Annual Rate (NAR)	Compounding Frequency (C)	Annual Rate (EAF)
\%		\%
7.875	semi-annual (2)	Ans. $=8.030$
7.875	quarterly (4)	Ans. $=8.111$
7.875	monthly (12)	Ans. $=8.166$
8.250	monthly (12)	Ans. $=8.569$
8.250	weekly (52)	Ans. $=8.593$
9.000	daily (365)	Ans. $=9.416$
9.000	"continuous"	$\begin{aligned} & \text { Ans. }=9.417 \\ & \text { (see example b.) } \end{aligned}$

SOLUTION

Input	Key (s)	Display	Comment
-	GSB, 0	0.00	BEG/END mode immaterial
2	A	2.00	$n=c=2$
$7.875 \uparrow 2 \div$	B	0.04	actual $\mathrm{i}=0.039375$
-	R/S	3.14	
-	R/S	8.030	$E A R=8.030 \%$
4	A	4.000	$n=C=4$
$7.875 \uparrow 4 \div$	B	0.020	actual $\mathrm{i}=0.0196875$
-	R/S	3.142	
-	R/S	8.111	$E A R=8.111 \%$
12	A	12.00	$n=C=12$
$7.875 \uparrow 12 \div$	B	0.007	actual $\mathrm{i}=.0065625$
-	F/S	3.142	
-	Fi/S	8.166	$E A R=8.166 \%$
-	-	8.166	note, n is still 12
8. $25 \uparrow 12 \div$	B	0.007	actual $\mathrm{i}=0.006875$
-	R/S	3.142	
-	R/S	8.569	$E A F=8.569 \%$
52	A	52.000	$n=c=52$
8. $25 \uparrow 52 \div$	B	0.002	actual $\mathrm{i}=0.001586538$
-	R/S	3.142	
-	R/5	8.593	$E A R=8.593 \%$
365	A	365.000	$n=c=365$
9 个365 \%	B	2.466-04	actual $\mathrm{i}=0.000246575$
-	R/S	3.142	
-	R/S	9.416	$\begin{gathered} E A R=9.416 \% \\ \text { (actually } 9.4162 \% \text {) } \end{gathered}$

(1) It is worth noting that all these answers could be obtained also by using the formula

$$
E A R=100\left[\left(1+\frac{-N A R}{100 C}\right)^{C}-1\right]
$$

For example, 9% NAR under daily compounding (in the above table) converts to

$$
\begin{aligned}
E A R & =100\left[\left(1+\frac{9}{86500}\right)^{365}-1\right] \\
& =9.4162 \%
\end{aligned}
$$

(2) Yet another alternative procedure is suggested in the HF-12C Owner's Handbook (p. 179); that is, let the program solve for $F V$, after letting $n=C$,

$$
I=\frac{\text { NAF }}{[--} \text {, and } P M T=-\frac{\text { NAF }}{C}
$$

SOLUTION (using the previous example)

Input	Key (5)	Display	Comment
-	GSE, 2	0.00	END mode
365	A	365.00	$n=C=365$
9个365 \div	CHS, D	-0.02	PMT $=$ NAFi/C
-	CHS, ${ }^{\text {C }}$	$2.47-04$	$i=0.000246575$
-	R/S	3.14	
-	E	9.42	$F V=E A R=9.4162 \%$

b. The theoretical maximum for effective annual rate computations occurs under "continuous" compounding. the FICALC-11/15 program will not calculate this EAR (call it $E_{\text {AR }}$). However, the computational formula is simple:

NAR/ 100

$$
\operatorname{EAR}_{c}=100[e \quad-1] \text {, therefore }
$$

SOLUTION (for the last line in the above table)
key stroke sequence: $100, \uparrow, 9, \uparrow, 100, \div, f e^{x}, 1,-, x$
result $=E A R_{c}=9.4174284 \%$
caution: fex was necessary since the calculator is still in USER mode (presumably).

A slightly shorter (and more abstruse!) key stroke sequence, making use of the $\%$ and $\Delta \%$ functions would be:

$$
1, \uparrow, 9, g \%, f e_{x}, g \Delta \%
$$

```
result = 9.417%, as before,
```

c. Occasionally there is reference to a compounding procedure which will lead to even higher rates than the theoretical maximum cited in b. It is the " $365 / 360$ basis of compounding". Effective annual rate is defined in this method as

$$
E A R=100\left[\left(1+\frac{N A R}{36000}-365-1\right]\right.
$$

thus, if NAR $=9 \%$

$$
\begin{aligned}
\operatorname{EAR} & =100\left[\left(+\frac{9}{36000} 3365-1\right]\right. \\
& =9.553 \%
\end{aligned}
$$

```
d. Sometimes there is a need to determine the nominal annual rate
    (NAR) if the effective annual rate (EAR) is given. For example,
    if the EAR is 8.569, what is the NAR assuming monthly
    compounding? (line 4 in the table given in example a.)
    A fairly direct procedure for solving this problem is to use a
    procedure similar to that used in a. (2), also suggested in the:
    HP-12C Owners Handbook (p. 190). That is, use the program to
    solve for the periodic l after letting FV = 100 + EAF, FV = 100,
    and n = C; then, NAF = (C)(I) = (n)(I).
```

SOLUTION (data from line 4 in Table in example a.)

Input	Key (5)	Display	Comment
-	6SE,0	0.00	BEG END immaterial
12	A	12.00	$n=C=12$
100	CHS, C, CHS	100.00	$F V=-100$, then sign changed to simplify next step.
8.569	+, E	108.57	$F V=108.57$
-	R/S	3.14	
-	B	0.69	$I=N A R / C=0.6874835$
12	X	8.25	NAR $=8.25 \%$

e. If the assumption of continuous compounding prevails and one is given the effective annual rate (EARc), to find the NAR the inverse of the procedure used in example b. can be employed, the formula being, therefore

$$
\left.N A R=100\left[\ln \frac{E A R_{c}}{100}+1\right)\right]
$$

Find the NAR corresponding to EARc of 9.417% under the continuous compounding assumption.

SOLUTION

keystroke sequence: $9.417, \uparrow, 100, \div, 1,+, g L N, 100, x$

$$
\text { result }=\text { NAR }=9.00 \%
$$

5. Cash Flow Analysis

Two common ways of making this type of analysis are called NFV (net present value) and IRR (internal rate of return). If one is faced with many such analyses he should find his way to the nearest HP-12C, HP-41C equipped with the Financial Module, or other such computer. For an occasional solution, however, the FICALC-11/15 program can be used repeatedly to discount future cash flows to the present, then add the present values so obtained to determine the NFV.

As an example, consider the problem below, extracted directly from the HP-12C Owners Handbook (p. 68).
a. An investor has an opportunity to buy a duplex for $\$ 80,000$ and would like a return of at least 13% [compounded annually]. He expects to keep the duplex 5 years and then sell it for $\$ 130,000$; and he anticipates the cash flows shown in the diagram below. Calculate NPV to determine whether the investment would result in a return or a loss.

SOLUTION

Using FICALC-11/15 the solution is obtained by considering each of the CFs through CF_{5} to be future values (FV) and finding the corresponding present value (PV), taking into account the 13% annual compounding and the pertinent number of years for each. Then the $P V$ are added to the initial investment (CFo) to determine profit (positive NPV) or 1055 (negative NPV).

CAUTION

The FICALC-11/15 program assumes the $P V$ and $F V$ to be opposite in signs, therefore one must either mechanically reverse the input or the visually reverse the output sign in order to achieve a meaningful NPV. It seems more logical to reverse the input $F V$ sign and record the output $F V$ as in the display.

This is the approach taken in the following table; the entries in the last column were obtained as shown below the table.

Input	Key(s)	Display	Comment
-	658 0	0.00	EEG/END mode immaterial
13	B	0.13	$i=0.13$
500	E	500.00	CF_{1}, although a payment, is input as a positive FV; also note $n=1$ is automatically achieved
-	R/S	3.14	
-	C	-442.48	PV of payment
2	A	2.00	$n=2$
4500	CHS, E	-4500.00	CF_{2} input as a negative FV
-	R/S	3.14	
-	C	3524.16	PV of income
3	A	3.00	$n=3$
5500	CHS, E	-5500.00	CF_{3} input as a negative FV
-	R/S	3.14	
-	C	3811.78	FV of income
4	A	4.00	$n=4$
4500	CHS, E	-4500.00	CF4 input as a negative FV
-	R/S	3. 14	
-	C	2759.93	FV of income
5	A	5.00	$n=5$
130000	CHS, E	$-130,000.00$	CFs_{s} input as a negative FV
-	R/S	3.14	
-	C	70,558.79	FV of income
Conclusion: since the sum of the PV_{5} in the above table is positive ($\$ 212.18$) the investment can be considered a success, i.e., realizing the 13% rate specified by the investor.			
Question: Exactly what interest rate was realized? or, in other			
words, what rate would make the NPV $=0$? This is what is called the internal rate of return (IRR), and is beyond the scope of the FICALC11/15 program! To find IRR (using a calculator) one should seek out			
an HF-12C (or other earlier financial calculator) or a properly configured HP-41C or other computer. Yet another alternative is described in the next section.			
b. Modified Internal Rate of Return (MIRR)			
tain advantages over the traditional internal rate of return,and which can be solved by the FICALC-11/15 program is the so-called modified IRR. The steps are as follows:			

(1) Calculate the future values of all the positive cash flows using a specified "reinvestment" or "risk" interest rate; call the sum of these NFV_{p}.
(2) Calculate the present values of all the negative cash flows using a specified "safe" interest rate; call the sum of these NFV_{n}.
(3) Knowing n, and letting $F V=N F V_{n}$ and $F V=N F V_{p}$, use the program to solve for I, the "modified internal rate of return".
(4) Alternatively [to (3)], find MIRR from the formula

$$
\text { MIRR }=100\left[\left(-\frac{N F V_{p}}{-N F V_{n}}\right)^{1 / n}-1\right] .
$$

Using the same data given in the previous section dealing with the NPV cash flow analysis, except specifying $I=10 \%$ for positive cash flows and $1=6 \%$ for negative ones:

SOLUTION

With the program, complete the table below.

	Input		Frogram Output		
Years	I	CF_{1}	NFV	NFV	
0	-	$-80,000$	-80,000	-	
1	6	-500	-471.70	-	
3	10	4,500	-	5,989.50	
2	10	5,500	-	6,655.00	
1	10	4,500	-	4,950.00	
0	-	130,000	-	130,000.00	
Total	$N P V_{n}=-80,471.70$			147,594.50 $=$ NFVP	

The steps required to do this are as follows, noting that the signs of the input cash flows are reversed to achieve the desired sign on the output:
-80-

Input	Key (s)	Display	Comment
-	GSE,0	0.00	EEG/END mode immaterial
6	B	0.06	$i=0.06$, note $n=1$ is achieved by the GSB initialization
500	E	500.00	FV
-	F/S	3.14	
-	C	-471.70	PV
3	A	3.00	$n=3$
10	B	0.10	$i=0.10$
4500	CHS, C	-4500.00	PV
-	R/S	3.14	
-	E	5989.50	FV
2	A	2.00	$n=2$
5500	CHS, C	-5500.00	FV
-	R/S	3.14	
-	E	6655.00	FV
1	A	1.00	$n=1$
4500	CHS, C	-4500.00	PV
-	R/S	3.14	
-	E	4950.00	FV
-	GSE,0	0.00	
5	A	5.00	$n=5$
80471.7	CHS, C	$-80,471.70$	$N F V_{n}=\mathrm{FV}$
147594.5	E	147,594.50	$N P V_{P}=F V$
-	R/S	3.14	
-	B	12.90	MIFF $=12.90 \%$
Alternatively, the MIRR of 12.90 could be calculated from the table totals using the formula given earlier,			
	$\text { MIFR } \left.=100\left[\frac{(-147594.5}{-(-80471.7)}\right)^{1 / 5}-1\right]=12.90 \%$		
by employing the keystroke sequence:			
100	147594.5	, 80471.7, \div,	$y^{x}, 1,-, x$

6. Simple Interest.

Assuming simple interest, the principal (i.e., the original amount of money) earns interest for the entire life of the transaction. For example, if you borrow $\$ 1000$ at 8% simple interest for two years:

Amount of interest $=$ principal x annual interest rate x no. years $=(\$ 1000)(.08)(2)=\$ 160$.

A cash flow diagram would look like this:

The FICALC-11/15 program will not directly solve such problems. It can be used, however, in the same manner as for compound interest, if $n=$ 1. Because of this need, the initialization of the program by GSB 0 , GSE 1 , or GSB 2 automatically sets $n=1$, thus a simple interest scenario is always established, and inputting 1 for n is not needed.

When n is not equal to 1 , as in the last two examples below, the program is used to calculate the $F V$ (principal + interest) assuming one year; the amount of interest is then calculated and added to the principal to determine the actual FV.

The following examples should require no further description. The answers are obtained using the procedures indicated.

	Time		```Amount Borrowed (+) Invested (-) (PV)```	Annual Interest Rate (I)	Total Amount Owed (-) or Accumulated (+) (FV)
a.	1 year		4200.00	12.5	? (Ans. $=-4725.00$)
b.	1 year		-4500.00	? (Ans. $=10.13)$	4956.00
c.	1 year	?	$($ Ans. $=-5561.99)$	7.875	6000.00
d.	3 years		-7000.00	10.5	? (Ans. $=9205.00$)
e.	60 days		8000.00	11.5	? (Ans. $=8151.23$)

SOLUTION

Input	Key (s)	Display	Comment
a. 21	68日 0	0.00	BEG/END mode immaterial
12.5	B	0.13	actual i $=0.125$
4200	C	4200.00	PV = principal borrowed
-	R/E	3.14	
-	E	-4725.00	$F V=$ amount due
b. 2/ 4500	CHS, C	-4500.00	
4956	E	4956.00	$F V=$ total accumulation
-	R/S	3.14	
-	B	10.13	actual $1=10.1333 \%$
c. 2/7.875	B	0.08	actual $i=0.07875$
6000	E	6000.00	$F V=$ accumulation
-	R/S	3.14	
-	C	-5561.99	PV = amount invested
d. 10.5	B	0.11	actual i $=0.105$
7000	CHS, ${ }^{\text {c }}$	-7000.00	PV = amount invested
-	R/S	3.14	
-	E	7735.00	FV = accumulation in one year
-	+	735.00	Annual interest amount; note that -7000.00 was in the Y register, facilitating the calculation
3	x	2205.00	3 -year interest amount
7000	+	9205.00	total accumulation
e. 11.5	B	0.12	actual $\mathrm{i}=0.115$
8000	C	8000.00	PV = principal borrowed
-	R/S	3.14	
-	E	-8920.00	$F V=$ annual amount due
-	+	-920.00	annual interest amount
$60, \uparrow, 365$		0.16	proportion of year money was borrowed
-	x	-151.23	interest due
-	CHS, ${ }^{+}$	8151.23	principal + 60-day
			interest due

2/The perceptive and calculator-literate reader will note that examples a, b, and c can be solved easily using fundamental keyboard functions, that isi
a. 4200, $\uparrow, 12.5, ~ g \%,+1 e a d s$ to 4725.00 , as does 4200, 个, 1.125, X;
b. $4500, \uparrow, 4956, g \Delta \%$ leads to 10.13 , as does $4956, \uparrow, 4500,-, g L S T x, \div$, $100, x$; and
C. 6000, $\uparrow, 1.07875, \div 1 \mathrm{eads}$ to 5561.99.

F. Program statements and code

3/ Brackets and parentheses are not programmable; they are used to indicate externally meaningful or internal use labels, respectively.

F. Program statements and code (continued)

[^6]G. Formulas and background.

For convenience, the symbols defined in the "Furpose" section are repeated here:

```
    n = number of periods over which compounding takes place
    I = periodic interest rate expressed as a percent
    i = periodic interest rate expressed as a decimal
    PV = present value
FMT = periodic payment made in each of the n periods
    FV = future value
NAR = nominal annual rate of interest, as a percent
APR = annual percentage rate; same as NAR
EAR = effective annual rate, as a percent
```

Other symbols are defined below, where appropriate.

1. Compound interest in general
a. basic formula when no payments are involved:

$$
F V=P V(1+i) .
$$

b. basic formula when payments are made at the end of each period (sometimes called "ordinary annuity" problem):
n
(1+i) -1
FV $=$ PMT[----------- $]$
i
c. basic formula when payments are made at the beginning of each period (sometimes called an "annuity due" or "terminating" annuity problem):

> n
(1+i) -1
$F V=$ PMT[------------1 $\quad(1+i)$
i
d. The general formula.

A significant computational breakthrough was made when Martin (1977) cited a formula, later modified by Dewey (See PPC ROM, 1981) which combines the above 3 formulas, enabling much more compact solution:

```
\(n\)
\((F V)(1+i)^{n}+(P M T)(1+i X)[(1+i)-1\)
```

where X = 0 if payments are made at END of period
X = 1 if payments are made at EEG of period
and the algebraic signs used in the conventional cash flow
diagram are employed.
As a simplification, the formula can be re-written as
(PV +C)A +PV +FV=0
n
where }A=(1+i)\quad-
B=(1+iX)/i}}\quad\mathrm{ Label }
and }C=(PMT)(B).

```
    Now, the five components of the general formula can be solved for: these
    are the expressions evaluated in the program (Label indicated):
                        \(C-F V\)
            \(n=\ln [-\cdots----1 / \ln (1+j) \quad\) Label 3
                        \(\mathrm{C}+\mathrm{PV}\)
                        FV \(\quad 1 / n\)
                    \(i=\left[\begin{array}{c}{[---]} \\ P V\end{array} \quad 1 \quad\right.\) if FMT \(=0\) Label 4
    if PMT \(\neq 0\), the solution is an iterative one, too complex
        for the current program.
            \(F V=\frac{-[F V+(A)(C)]}{A+1} \quad\) Label 5
                \(-[F V+(P V)(A+1)]\)
            FMT \(=\ldots-\ldots-1\) -
                            Label 6
            (A) (B)
            \(F V=-[P V+A(F V+C)] \quad\) Label 7
2. Effective annual rate calculations.
a. Discrete case.

The formula discussed in the examples section which relates EAR with NAR is
\[
E A R=100\left[\left(1+\frac{\text { NAF }}{100 \mathrm{C}}{ }^{\mathrm{C}}-1\right]\right.
\]
where \(C=f r e q u e n c y ~ o f ~ c o m p o u n d i n g ~ p e r ~ y e a r . ~\)

This can be written more succintly as
```

 i=(1+i:)
 where i meffective annual rate as a decimal
j: = periodic nominal rate as a decimal
= i/C
and n = number of periods per year = C
Because of this simplification, the formula is seen to be equal to the
factor A, routinely calculated in the program.
Therefore, EAR=100 A Label G
b. Continuous case
The analagous two formulas under the assumption of continuous
compounding are

```
\[
E_{c}=100\left[e^{\text {NAR/100 }}-1\right] \text {, as percents }
\]
and
\[
i_{e}=e^{i}-1, \quad \text { as decimals }
\]
c. Although the formulas presented in a. and b. were those used in the program, more general formulas have been published (PPC, 1981) and deserve documentation here:
(1) To convert nominal rates to effective rates
```

 CF/PF
 i = (1+i/CF) -1 (for discrete compounding)
 i/PF
 and i = -1 (for continuous compounding)
e
where:
i = nominal annual interest rate as a decimal
i meffective interest rate (decimal) per payment period
e
CF = compounding frequency per year
PF = payment frequency per year

```

EXAMPLE:

Consider an IRA program with a \(\$ 6500\) initial deposit on Jan. \(1,10.5 \%\) nominal annual rate, monthly compounding, and semi-annual payments of \(\$ 1000\) made on June 30 and Dec. 31 each year. What is the accumulation after 25 years?

In order to use the program FICALC-11/15, on the following cash flow diagram, the effective interest rate per half-year (I)
e
must be calculated and used, since payments are made every half-year. Employing the discrete case of the above formula:
\(12 / 2\)
\(i=(1+.105 / 12)-1=.053661924\)
E
leading to \(I=100 \mathrm{i}=5.3661924 \%\),
e e
SOLUTION:

\begin{tabular}{|c|c|c|c|}
\hline Input & Key (s) & Display & Comment \\
\hline - & GSE, 2 & 0.00 & END mode \\
\hline 50 & A & 50.00 & \(n=50\) \\
\hline 5.3661924 & B & 0.05 & \(i=.053661924\) \\
\hline & & & e \\
\hline 6500 & CHS, C & -6500.00 & \(P V=6500\) \\
\hline 1000 & CHS, D & \(-1000.00\) & \(\mathrm{PMT}=1000\) \\
\hline - & R/S & 3.14 & \\
\hline - & E & 324,406.14 & \(F V=\) Total accumulation \\
\hline
\end{tabular}

Reference to the detailed example in Appendix \(B\) will show that the total accumulation here is between that obtained with annual \(\$ 2000\) payments \((\$ 318,247.45)\) and \(\$ 166.67\) monthly payments ( \(\$ 329,627.33)\), under the 5 ame interest rate and compounding frequency.
(2) To convert effective rates to nominal rates:

PF/CF
\[
\begin{aligned}
& i=C F[(i+i) \quad-1] \quad \text { (discrete case) } \\
& \text { e }
\end{aligned}
\]
and
PF
\(i=\ln [(1+i)]\) (continuous case)
3. Cash flow analysis
a. Net present value (NPV)

j
\((1+i)\)
\[
\text { where CF, }=\text { cash flow at period } j
\]
b. Modified internal rate of return (MIRR)

NFV
P \(1 / n\)
MIRR \(=100[(-----) \quad-1]\)
\(-N P V\)
N
```

where NFV = net future value of the positive cash flows
P
and NPV = net present value of the negative cash flows
N

```
4. Simple interest
\(A I=(P)(i)(N)\)
where \(A I=\) amount of interest (dollars)
\(P=p r i n c i p a l\) (borrowed or invested)
\(i=a n n u a l\) interest rate as a decimal
\(N=\) number of years; may be less than one, such as 90 days implies \(N=90 / 365\)
H. References

Clutter, J.L., J.C. Fortson, L.V. Fienaar, G.H. Brister, and R.L. Bailey. 1983. 1983. Timber Management: A Quantitative Approach. John Wiley and Sons. New York, N.Y.

Hewlett-Fackard. 1978. Your HF Financial Calculator: An Introduction to Financial Concepts and Problem Solving. Hewlett-Packard Co., Corvallis, OR.
1981. HP-38E/38C Owner's Handbook and Programming Guide. HewlettPackard Co., Corvallis, OR.
1983. HP-12C Owner's Handbook and Problem-Solving Guide. HewlettFackard Co., Corvallis, OR.

Leuschner, W.A. 1984. Introduction to Forest Resource Management. John Wiley and Sons. New York, NY.

Martin, R.E. 1977. Printing Financial Calculator Sets New Standards For Accuracy and Capability. Hewlett-Packard Journal, Oct. 1977. HewlettFackard Co., Corvallis, OR.

PPC. 1981. PPC ROM User's Manual. Personal Programming Center. Fountain Valley, CA.

Appendix A: The Concept of Time and Money 4/
The following pages represent a fairly complete introduction to basic concepts of time and money. Most of the problems described can be solved from the HP-11C or HP-15C keyboard and/or use of the FICALC-11/15 program if one notes that:
1. Clearing the financial registers, CLFIN, is achieved on a FICALC-11/15 programmed HP-11C or HF-15C by GSB 0, GSB 1, or GSB 2, as appropriate.
2. The "BEG/END switch" mode is achieved by the choice of GSB 1 (= BEG) or GSB 2 (= END).
3. Using FICALC-11/15, you must indicate the end of the input phase by pressing R/S, then the appropriate label key for the desired unknown. In the following examples the financial calculator assumed has been "hard wired" to know when sufficient data have been supplied, therefore no signal (such as pressing R/S) to terminate input is needed.
4. Lower case i is used to indicate the interest rate as a percent, whereas in FICALC-11/15, capital I implies interest as a percent, and lower case i implies interest as a decimal.
5. The material which follows dealing with amortization schedules and discounted cash flow analyses is included for completeness; these topics are not directly handled by the FICALC-11/15 program.

4/Copied with permission of Hewlett-Fackard Co. from "Your HF Financial Calculator", Feb. 1978 version. (see References, Section H).
Section 2
Essentially, there are three things you can do with money: spend it, invest it, or sit on it. A savings account in a bank is considered an investment and we \({ }^{\bullet}\) all know what spending entails, but putting your money under a cushion...? Whether you spend or invest money, you want to receive something worthwhile in return.
This section looks at the nature of cash flows, or how time and money relate to one another when you borrow or invest. Your HP financial calculator has the common time-and-money formulas built-in and ready at your fingertips, so you are free to concentrate on the concepts themselves.

\section*{Percent: The Universal Yardstick}
Percentage is the universal yardstick-the common standard of measurement-in the financial world. If your money increases or decreases, the gain or loss is measured in percent as well as in dollars. Taxes, interest rates, discounts, inflation, appreciation, depreciation, even the last raise you got, or the typewriter you bought last week for \(40 \%\) off-all are expressed in terms of percent.
Percent, denoted by the symbol \(\%\), simply, means "for each hundred."
Percentage is a dynamic relationship, a comparison or ratio of two numbers that often signifies that a change has taken place. "Thirdquarter earnings are down \(27 \%\) from last year" may be cause for concern, while "a \(12 \%\) raise effective today" may be cause for celebration.
Likewise, when you start with a given amount of money and receive money in return, the difference-whether it's a gain or loss-is viewed in relation to the original amount and expressed as a percentage. If you start out with one share of stock worth \(\$ 100\) and sell it for \(\$ 125\), you have earned \(25 / 100\) or a \(25 \%\) return.
When you superimpose that gain or loss against time, it's called the

Concepts of Time and Money 19

Your calculator automatically displays a minus sign to show percentage decreases．
What percent of your portfolio does each corporation represent at this time？

Percent is also used to calculate interest．Interest is a charge for the use of money．In a sense，you＂rent＂the money or someone＂rents＂it from you．
Interest is based on three things：
1．The amount of money borrowed or saved．
2．The length of time．
3．The interest rate（a percentage），

18 Concepts of Time and Money
one year．So if you earned that \(\$ 25\) in one year，that＇s a \(25 \%\) annual rate of return．

\section*{Percent and Your Financial Calculator}

Hewlett－Packard financial calculators provide you with three separate
functions for calculating percentage problems：\(⿴, \Delta \Delta x\) ，and \(\psi_{T}\) ．
With the \(⿴ 囗\) key，you can key in a number and a percent and find that percent of the number．With the \(\Delta *\) key，you can find the per－ cent change（increase or decrease）between an old value and a new value．And with the \(\%\) TT key，you can find what percent one number is of another number or of the sum of several numbers．You are finding proportions when you use \(\%\) ．

When calculating percentage problems，you don＇t have to convert per－ cents to their decimal equivalents： \(10 \%\) need not be changed to .10 ． It can be keyed in the way you see it and say it， 10 \％

Look at the following example，illustrating the use of percentage keys and concepts．

Example：Suppose you own 150 shares
 shares of Idylwild Aircraft，and 200 shares of Burrell Industries．

If you sell \(30 \%\) of your stock in Coakley Laboratories，how many shares would sou have left？ Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations． Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations． Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \% & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
\(\begin{array}{ll}\text { Notice you didn＇t have to reenter } 150 \text { before subtracting；your calculator } \\ \text { automatically retains the base number in percentage calculations．}\end{array}\) Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations． Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations．

Assume your Burrell Industries stock is now selling at \(\$ 7.50\) per share， down from \(\$ 10.75\) per share last year at this time．What is the percent decrease in cost per share over the last year？Notice that the keystroke decrease in cost per share over the last year？Notice that the keystroke
sequence is＂old value－enter－new value．＂
of return． Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations． Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations． Keystrokes
\(\begin{array}{lll}\text { Display } \\ 150 \text { EलाहR：} 30 \text { \％} & 45.00 & \begin{array}{l}\text { 30 of } 150 \text { is } 45 \text {（\＃shares } \\ \text { to be sold）．}\end{array} \\ \text { Shares left．}\end{array}\)
Notice you didn＇t have to reenter 150 before subtracting；your calculator
automatically retains the base number in percentage calculations．
Concepts of Time and Money 21
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{On your calculator:} \\
\hline Keystrokes & Display & \\
\hline 1000 ENTER & 1,000.00 & Principal. \\
\hline \(8 \%\) & 80.00 & Interest amount (one year). \\
\hline 3 Emierd \(12 \square\) & 0.25 & Portion of year (1/3). \\
\hline 区 & 20.00 & Interest for \(1 / 4^{\text {th }}\) of a year. \\
\hline \multicolumn{3}{|l|}{Borrowing \$1,000 for 3 years:} \\
\hline Keystrokes & Display & \\
\hline 1000 ENTERD & 1,000.00 & Principal. \\
\hline 8 \% & 80.00 & Interest amount (one year). \\
\hline \(3 \times\) & 240.00 & Interest in 3 years. \\
\hline
\end{tabular}
Remember, percentages are like hundredths. Taking \(8 \%\) of \(\$ 1,000\) is the same as multiplying \(\$ / 100(.08)\) times \(\$ 1,000\). Your calculator simplifies calculations by taking \(8 \%\) of \(\$ 1,000\) automatically, as shown in the previous section.
Compound Interest
Although the concept of simple interest underlies most financial transactions, its use in the business world usually differs somewhat from the problem presented in the previous paragraph. For example, suppose you invested \(\$ 1,000\) for 2 years at \(8 \%\). How much interest would your investment earn? Using simple interest, the answer would be \(\$ 160\); you receive \(\$ 80\) at the end of the first year, and \(\$ 80\) at the end of the second year.
What would happen if at the end of the first year, the \(\$ 80\) of interest earned was invested for the second year along with the initial \(\$ 1.000\) ? At the end of the second year the \(\$ 1,000\) and \(\$ 80\) together would earm \(\$ 86.40, \$ 6.40\) more than the initial \(\$ 1,000\) earned the first year. Each time the interest is paid, it is added to the balance. In effect, the interest is earning interest. Continuing this procedure, year after year. both the amount invested and the interest earned continue to grow. This method of reinvesting earned interest, referred to as compounding the interest, is much more common in business transactions than earning interest on the principal alone (simple interest). Compound interest is usually stated as an annual rate, although it may be compounded (calculated) continuously, daily, monthly, quarterly, or semi-annually.

\section*{20 Concepts of Time and Money}

This makes sense because the longer you rent something, the more you pay for it. If you rent a car for a week, it will cost more than if you rent it one day.

You can charge for money by the day, the week, the month, etc., but usually money is loaned or borrowed at a yearly rate. This annual interest rate is expressed as a percent. If a certain ihvestment pays \(9 \%\) yearly, that means \(\$ 9\) per year for every \(\$ 100\) invested.

But there are other considerations, too, when you pay or receive interest-namely, what type of interest and how often it is paid.

With simple interest,
With simple interest, the principal-i.e., the original amount of money -earns interest for the entire life of the transaction. For example, suppose you borrow \(\$ 1,000\) at an \(8 \%\) interest rate ( \(\$ 8\) for each \(\$ 100\) ) for one year. The formula for calculating simple interest is:

\section*{Interest \(_{\text {(simple) }}=\) Principal \(\times\) Interest rate \(\times\) Time}

\section*{The interest amount would be \(\$ 80(\$ 1,000 \times 8 \% \times 1\) year \()\).}

Borrowing the same amount of money for only 3 months would cost one-fourth as much, or \(\$ 20\left(\$ 1,000 \times 8 \% \times 1 / 4^{\text {th }}\right.\) of a year). And borrowing \(\$ 1,000\) for 3 years would cost 3 times as much, or \(\$ 240\) ( \(\$ 1,000 \times 8 \% \times 3\) years).

\section*{Simple Interest}
"Rent" on \$1,000 at \(8 \%\) simple interest:


\section*{\(-94\)}

22 Concepts of Time and Money
So if you have \(\$ 1.000\) at present, you can calculate how much money you will receive in the future, before you invest. This is called its future value \({ }^{1}\). Or perhaps you want \(\$ 1,000\) in the future-to take a trip to Acapulco next year-and want to know how much you have to invest to reach that goal. Since you have established the desired future value,
you are solving for the money right now or its present value.

What if you invested \(\$ 1,000\) at \(8 \%\) compounded annually for 3 years? Let's use the calculator to compute the future value, or the amount of money you will have at the end of 3 years.

\section*{Display}

Clear finanical entries. Key in the initial investment and change the sign since you invest it. Press Dor
 \(8 \%\) annual interest rate. You want to find the value of
 Press \(n\) for the number of

Simply press FV to find the future value of your investment.
1. The formula for computing the future value of money with compound interest is: \(F V=P V \times(1+i)^{n}\)
2. The formula tor computing the present value of money with compound interest is: \(\mathrm{PV}=\frac{F V}{(1+\mathrm{i})^{\mathrm{n}}}\)

Concepts of Time and Money 23
The display shows that when you invest \(\$ 1,000\) at \(8 \%\) compounded annually for 3 years, you will receive \(\$ 1,259.71\) at the end of those 3 years.

Is there a way to earn more money with that \(\$ 1,000\) at the same \(8 \%\) interest rate? Yes, by compounding or adding the interest to the principal more than once a year. Suppose you put that money ino an you have at the end of a year?

The \(\$ 1,000\) remains the same in our calculations, so you don't need to key the present value in again. But the number of compounding periods have changed from one per year to four per year.

The number of compounding periods \(n\), has changed from 3 in 3 years to 4 in 1先

Since the interest rate must
always correspond with the
 must divide the \(8 \%\) annual
 of compounding periods in a \(\stackrel{+}{\square}\)






B
And after 3 years?



\section*{\(\underset{y}{N}\)
\(\underset{\sim}{0}\)
N}

24 Concepts of Time and Money Now instead of \(\$ 240.00\) (no compounding) or \(\$ 259.71\) (compounding annually), you earned \(\$ 268.24\) in ind the more mose in return.
3 years "rent" on \$1,000 at 8\% compounded...

Clearing financial entries: Each time you begin a new problem press
CLFW (or CLEAR FIN , depending on the model of your calculator) to erase previous financial values. When you press CLFWD, all values for n, i], PV, PMT, and EV are replaced with 0.00 (zero). If you want to change some, but not all, of the values in a financial problem it is not

 particular financial values, as we did in the last subsection
You can view particular financial values held in the calculator at any time, by pressing the RCL (recall) key and then the desired financial key ( \(\square, \mathrm{D}, \mathrm{PV}\), PNT , or FV ). The designated financial value will then
be displayed.
Compound Interest and the Cash Flow Diagram The concept of compound interest is not difficult. The computations involved, however, can become exceedingly complex. Problems encountered often involve numerous payments and receipts before the transaction is concluded. Your financial calculator is designed to solve many of the most complicated calculations, but it requires a precise format for describing the problem. Such a format can be represented pictorially in the form of a cash flow diagram. The diagram is nothing more than a description of the timing and direction in which cash changes hands
using terms that correspond to your calculator's financial using terms that correspond to your calculator's financial keyboard. As
long as you can picture your problem with a cash flow diagram and label it, your calculator can find the answers Concepts of Time and Money 25 rate of interest actually earned in one year is called the effective rate
(i.e., \(8.328 \%\) compounding daily). (i.e., \(8.328 \%\) compounding daily).
Many savings institutions quote bo
Many savings institutions quote both the nominal rate and the effec-
tive rate. And your calculator can quickly convert one to the other. (Refer to the applications manuals for interest rate conversions.) As the chart shows, the effective rate may differ considerably from the nominal rate, so it pays (literally!) to know what it is.
Concepts of Time and Money 27
 the initial deposit, the subsequent payments, and any interest paid. This balance could be withdrawn (received), if necessary, and would
 flow diagram. * Some financial problems involve a portion of a payment period as well as a series of whole payment periods. This occurs whenever a transaction begins on a date that does not corre-
spond to the beginning of the usual payment period. Although there is no standard conven-

 od and one with the remaining whole number of payment periods. The payments made dur-

 accordingly. \(L Z\) Kouow pue awily sidaouos
exactly with our cash flow diagram: \(\pi, \square, \square \mathrm{P}, \mathrm{PNT}\), and FV . The number of compounding periods* in a financial problem is represented by : \(n\) would be 6 in our example. Interest rate per compounding spond with the compounding interval. Don't mix monthly interest with quarterly periods or daily interest with semiannual compounding periods.) The different cash flows are represented by PV, PMT, and FV. [D] (present value) represents the cash flow at the start of the time line. In our example PV would be the \(\$ 1,000\) initial deposit. FV stands for future value and represents the cash flow at the end of the time line; the



.

28 Concepts of Time and Money
represents a series of cash exchanges of the same direction and amount, i.e.. annuities. In our example \(\$ 50\) payments are deposited at the end of each month.

Payments can either start at the beginning of each period (BEGIN), or start at the end of each period (END). There are always the same number of payments as periods.

\section*{}

Whenever payments (PMT) are involved, it is necessary to specify which of the alternatives is applicable by setting the payment switch BEGIN IIIUDD, found above the financial keys, to the proper position. BEGIN is for payments in advance and END is for payments in arrears. Or BEGIN is for annuities due and END is for ordinary annuities. The payment switch setting does make a difference in your calculated results. That's because interest accumulates on different amounts depending on whether payments are made at the beginning or the end of a compounding period. In our example, the payments occur at the end of each period, so the payment switch must be placed in the END position before starting calculations.

\footnotetext{
The Sign Convention: Cash received (arrow pointing up) is represented by a positive value ( + ), and cash paid out (arrow
pointing down) is represented by a negative value ( - ).

In our example, the \(\$ 1,000\) initial transaction (PV), and the periodic \(\$ 50\) payments would both be negative values. The amount received at the end of the time span would be positive.

The sign convention allows you to solve financial problems with 4 or 5 variables. (For instance, we shall soon solve for FV, given values for \(n, i\), PV, and PMT.*) In fact, you can easily solve for any of the financial
* Some earlier handheld calculators could handle only two of the three kinds of cashflows at a time. The sign did not need to be specified because the cash flows were necessarily of
opposite sign (e.g., PV positive. PMT negative; or PV negative. FV positive). Since your opposite sign (e.g., PV positive. PMT negative; or PV negative, FV positive). Since your
calculator can handle three kinds of cash exchanges (PV, PMT, and FV) at a time, their direction is no longer obvious. Thus, the sign needs to be specified using the described sign
convention.
} Concepts of Time and Money 29
values above as long as you specify the values of at least three other financial keys (and include \(n\) or \(i\) as one of them).
Now let's do the problem represented by the cash flow diagram and calculate the FV. Before beginning the calculation, one additional piece of information is necessary; the interest rate paid each compounding period. For this example let the interest rate be \(.75 \%\) per period (or \(9 \%\) nominal interest). Remember, all cash that is paid out has a negative value. Since the \(\$ 50\) payments are made at the end of each period, set the pay ment switch begin _IIIIIENd to END.
Display
Clear previous financial
values.
Negative for cash paid out.
The calculator now has all of the necessary information to solve for FV, which is the last key pressed.

The calculated value is positive indicating we receive this amount
Keystrokes
CLFW

Concepts of Time and Money 31
Let＇s try another problem．Suppose you are concerned about providing for your daughter＇s college education 14 years from today．You expect that the cost will be about \(\$ 6,000\) a year or about \(\$ 500\) a month．If you



A cash flow diagram of the problem would look like the following：

The periodic interest rate must correspond to the time span between payments（compounding periods），so you must divide the yearly rate （6\％）by 12 in order to produce a monthly rate i．As you can see from the diagram，the payments of \(\$ 500\) a month（PMT）start with the beginning of the time span；so you should set the payment switch BEGIN END to BEGIN．Since we are beginning a new problem， by pressing［CLFW． Clears previous financial values．
values．
Calculate and enter
interest rate per period． interest rate per penod．
Calculate and enter the
量
Amount received each ：



4 EMाEx 12 区
固
30 Concepts of Time and Money
As you can see，the keys on HP financial calculators and the signs of the values entered correspond precisely to the problem as represented by the cash flow diagram．

Suppose you wanted to increase your initial investment（PV）sufficiently to create an ending balance（FV）of \(\$ 2,000\) with the same interest rate， number of periods，and payments．What present value would be necessary？
There is no need to start the entire problem over again．The \(n\) ，\(i\) ，and PMT are unchanged and therefore do not have to be reentered．The only value that needs to be entered is the new desired FV．Enter the FV and solve for PV ．

\section*{Keystrokes}
Displáy
\begin{tabular}{l}
\(\circ\) \\
\hline 0 \\
\hline
\end{tabular}

Looking over our example we find that with only a few easy keystrokes we have solved problems that would have re－ quired a great deal of time had we at－ tempted to answer them by evaluating the complex mathematical formulas involved．The financial calculator＇s power allows you to consider numerous investment alternatives while concern－ ing yourself only with the underlying concepts and the practicality of the values used．

32 Concepts of Time and Money
The next question we might ask is how do we accumulate such a sum by the time she enters college. We have several possibilities. Your daughter has a \(\$ \$, 000\) paid up insurance policy that pays \(5.35 \%\) (nominal) a year compounded semiannually. How much would it be worth by the time she enters college?
 There are no payments so the payment switch BEGGN END has no
effect. In this problem our compounding periods occur semiannually so the yearly rate must be divided in half to obtain ©. The value of \(n\) is 14 years times 2 periods per year. This is another new problem, so be sure to clear previous financial entries.

\section*{Display-}
Total number of periods.
Periodic interest rate.
Deposited (a negative
value).
Value of policy.
The insurance policy will supply about half of the needed amount. An additional amount must be set aside to make up the \(\$ 10,925.76\) deficit ( \(21,396.61-10 ; 470.85\) ). Beginning next month, if we made monthly payments into a special college account, how large would the payments

Concepts of Time and Money 33 have to be to accumulate the necessary future value of \(\$ 10,925.76\) in the
14 years remaining? Assume the account would pay \(6 \%\) a year, compounded monthly.


Rather than multiplying 14 times 12 to get the proper number of compounding periods for \(\pi\) and dividing 6 by 12 for 1 , we can use a shorcut provided on the financial keys for making quick conversions from years and yearly rates to months and monthly rates.
\[
\begin{aligned}
& \text { Remember: must always be the total number of com- } \\
& \text { pounding periods in the time span. } \\
& \text { im mustalways be the interest rate per compounding period. }
\end{aligned}
\]

Set the payment switch begin [ill Eno to END. (Check your keyboard for correct prefix keys.)

\section*{Display \\ 168.00} Automatically carries out
the multiplication by 12 and
stores the answer in \(\square\).
Divides by 12 and stores in Divides by 12 and stores in
ii.
.
.

Future value desired. Necessary deposit each

产
Note that we used the key to automatically compute and store the
value of \(m\), and the
value of in .
Concepts of Time and Money 35
 has its own special vocabulary. When considering compound interest


 diagram:

 of the banking and real estate industries or a lease with a buy back (re-
 other industries as well as countries for describing this cash transaction. But regardless of the language, the essential problem is the same. In providing a means of describing business financial problems without using terminology specific to a particular segment, the cash flow diagram becomes, in a sense, a universal language.
The cash flow diagrams for four basic compound interest problems are presented in the following table along with some of the more common terminology.
Some of the terms you see listed in the table may be common to your industry and some may not. There also may be diagrams represented that correspond to familiar transactions, but which do not bear familiar names. The important point to remember is that for financial calcula-敬


34 Concepts of Time and Money
If we made the payment only \(\$ 35\) a month, how long ( \(n\) ) would it be before we reached the desired amount?

\section*{\(\begin{array}{lc}\text { Keystrokes } & \text { Display } \\ 35 \text { CHS } \text { CPMT }^{2} & -35.00 \\ n & 188.54\end{array}\) \\ Number of periods.}
In order to find the number of years, divide by 12 .
Years.
If, on the other hand, the monthly payment were increased to \$45, with the 14 -year term, the excess could be used as a contingency fund. For instance, with a \(\$ 45\) a month payment, what interest rate could the bank pay, while still enabling us to meet our goal?

\section*{\(\begin{array}{lc}\text { Keystrokes } & \text { Display } \\ 15.71\end{array}\) \\ \(12 \div\)}

\section*{Display
168.00
-45.00
0.42
5.01}
Note that it was necessary to reenter the length of the original term. Our previous computation of \(n\) (15.71) was stored in the calculator and would have otherwise been used for the term of this calculation.
In the preceding sample problems, we have seen how cash flow diagrams can be useful in representing a wide range of compound interest problems. and how the diagrams can be translated directly into solutions on an HP financial calculator. The diagrams are helpful tools that describe complex business and financial problems in a manner suitable for calculation. In addition, the cash flow diagram can be applied in other ways to become a valuable aid.'

Concepts of Time and Money 37
The interest is paid first, then the remainder of the payment is used to reduce the debt. The time frame over which you make payments is called the schedule of payments. The breakdown of payments into interest portions and principal portions is called an amortization schedule.

Suppose you find your dream house. If you take out a \(\$ 50,000\) mortgage
 schedule would look like this:


\(\frac{8.75 \%}{12} \times 50,000=\$ 364.58\)
and is added to the balance:
\(\$ 50,000+\$ 364.58=\$ 50,364.58\)
Then your first payment is deducted to obtain your new balance:
The next month and every month thereafter, the same procedure is followed, i.e., interest is calculated first and added to the balance before your payment is subtracted.

36 Concepts of Time and Money
\(\quad\) Generalized Net Cash Flow Diagrams and Terminology
(Note that diagrams involving payments may be represented with pay-
ments at the beginning or end of the period.)


\section*{Amortization}

If a loan or interest-bearing debt is paid off by (usually) equal payments, then it is said to be amortized. The word amortization comes from the French "a mort" meaning "at the point of death." Likewise, you are "killing" a loan by paying it off.

Most simple mortgages and installment loans are called direct reduction loans. The debt is discharged by equal periodic payments although varying portions of each payment are applied toward principal and interest.


Example: Generate an amortization schedule for the first 2 months of a 30 -year mortgage for \(\$ 50,000\) at \(83 / 4 \%\) annual interest with monthly payments of \(\$ 393.35\). Then find the balance on the loan after 1 year.

Set the payment switch begin [illilend to END.
\[
\begin{aligned}
& \text { Clear old financial values. } \\
& \text { Loan amount. } \\
& \text { Periodic payment. } \\
& \text { Periodic interest rate. }
\end{aligned}
\]

The AMORTT function returns two values; the interest portion and the principal portion of the periodic payment. Since the display can only show one answer at a time, the second value is held in the automatic memory. It can be viewed by pressing the exchange key \(x: y\).
Keystrokes

Display
\(1^{\text {st }}\) month of schedule.
Interest portion of
payment.
Principal portion of
payment.
Remaining balance.
Number of periods calcu-
lated (one month).
Notice that the AMORTI function changes both the \(\square \square\) and \(\Phi v\) values: \(P\) brings back the new balance, \(n\) provides the total number of periods amortized.

\section*{38 Concepts of Time and Money}

The amortization of your mortgage would look like this:

\(\$ 393.35\) Periodic Payment Amount

Periodic Payment Number
As you reduce the size of the loan, the interest decreases. Gradually a higher percentage of each payment goes toward the debt itself or outstanding principal. By the time you reach your last payment, very little is deducted for interest.

With your HP financial calculator, you can easily compute the accumulated interest and remaining balance of your loan at any point in time. All you need to do is key in the principal \([D\), periodic interest rate \(i\), and periodic payment \({ }^{\text {PMT }}\). Then key in the number of periods to be amortized and press AMORT.

Your calculator will display the total interest portion of the payments. Simultaneously, your calculator generates the total principal portion of the payments (press \(x ; y\) ) and the remaining balance of the loan (press RCL (PV).

When working amortization problems, remember to abide by the sign convention (cash received is positive, cash paid out is negative) and be sure to set the payment switch to the proper position.

When using the AMORTT function, all calculated values are automatically rounded to match the display setting. The normal display shows numbers as dollars and cents. If your problem requires other rounding, refer to section 3 to set the display to the number of digits you wish carried.
\begin{tabular}{lll} 
& \multicolumn{2}{c}{ Concepts of Time and Money 41} \\
Keystrokes & Display & \\
50000 & \(50,000.00\) & \(\begin{array}{l}\text { Reenter initial principal. }\end{array}\) \\
20 & 240.00 & \(\begin{array}{l}\text { \# monthly payments in } \\
20\end{array}\) \\
20 years.
\end{tabular} same in our last calculation.

How much interest and how much of the principal will be paid after 1 year with this 20 -year mortgage? (Since we are starting the amortization schedule from the beginning we must set \(n\), the number of periods, to zero. We did this in our first amortization example by pressing Display

Set n to zero. ( n was 240 from the last calcula for 1 year.
Principal portion of payPrincipal portion of pay-
ments for 1 year. Remaining balance.

\section*{How many payment periods have we calculated?}

Display
12.00


©
\(-4,336.87\)
-965.45
49,034.55 Remaining balance.

Keystrokes
(RCL \({ }^{\text {a }}\)

made from month 3 through month 12.

Principal portion of payments made from month 3

Balance after 12 months or 1
Balance after 12 months or 1
year. year.

What would the monthly payments be if we decide to pay off the mortgage in 20 years? The cash flow diagram would look like this:
40 Concepts of Time and Mọey
To generate the next period of the schedule simply press \(1 \times 0 \mathrm{MOR}\) again:


Now we want to find the balance on the loan after one year. We have already calculated the first 2 periods, so press 10 NomT to compute the amount of interest and the amount of principal paid in the next 10 peri-
ods, leaving a balance on the loan after 1 year in \(p\).

\(-301.64\)
\(49,640.61\)
12.00

Xiy
RCD \(D_{0}\)
RCD可
\(x: y\) What would the monthly payments be if we decide to pay off the
Interest portion of payments morgage in 20 years? The can flow diagran would lok like
Concepts of Time and Money 43 This method of analysis is called solving for net present value* because you are comparing the sum of the present values of all the future cash flows \(\left(\mathrm{CF}_{\mathrm{j}}\right)\) to the initial investment \(\left(\mathrm{CF}_{0}\right)\). For the interest rate (i), use the rate of return that you want from the investment. At the start, the net present value (NPV) is negative because you've put
 returns flow in, NPV will increase. Eventually-hopefully - NPV will turn positive. When NPV \(=0\), you have reached the break-even point in the investment
It's a simple, clear-cut analysis: assuming a desired minimum yield, if NPV is negative, the investment DOES NOT meet your profit objec-
 objectives.
For example, you are thinking of buying an apartment building for \(\$ 100,000\). Based on the anticipated cash flows below, will this investment return \(10 \%\) a year?
Year
1
Except for PV and FV, the cash flow diagrams on page 36 contain even (equal) cash flows. Discounted cash flow analysis is a way of evaluating investments with uneven cash flows. Your calculator can help you evaluate future cash demands and returns to see which scheme or investment best meets your profit objectives. Two forms of discounted cash flow
 of return (IRR) approach.
Net Present Value (NPV) of return (IRR) approach.
Net Present Value (NPV) Suppose you invest a large amount of money into a scheme that generates
a cash flow \(\mathrm{CF}_{1}\left(\right.\) cash flow ) the first year, \(\mathrm{CF}_{2}\) the second year, and so
on. up to \(\mathrm{CF}_{\mathrm{n}}\) in the \(\mathrm{n}^{\text {th }}\) year when the cash flow ends. A diagram of the
cash flows might look like this:
Initial
Investment \(\left(\mathrm{CF}_{0}\right)\) Suppose you invest a large amount of money into a scheme that generates
a cash flow \(\mathrm{CF}_{1}\left(\right.\) cash flow ) the first year, \(\mathrm{CF}_{2}\) the second year, and so
on. up to \(\mathrm{CF}_{\mathrm{n}}\) in the \(\mathrm{n}^{\text {th }}\) year when the cash flow ends. A diagram of the
cash flows might look like this:
Initial
Investment \(\left(\mathrm{CF}_{0}\right)\) Suppose you invest a large amount of money into a scheme that generates
a cash flow \(\mathrm{CF}_{1}\left(\right.\) cash flow ) the first year, \(\mathrm{CF}_{2}\) the second year, and so
on. up to \(\mathrm{CF}_{\mathrm{n}}\) in the \(\mathrm{n}^{\text {th }}\) year when the cash flow ends. A diagram of the
cash flows might look like this:
Initial
Investment \(\left(\mathrm{CF}_{0}\right)\) Suppose you invest a large amount of money into a scheme that generates
a cash flow \(\mathrm{CF}_{1}\left(\right.\) cash flow ) the first year, \(\mathrm{CF}_{2}\) the second year, and so
on. up to \(\mathrm{CF}_{\mathrm{n}}\) in the \(\mathrm{n}^{\text {th }}\) year when the cash flow ends. A diagram of the
cash flows might look like this:
Initial
Investment \(\left(\mathrm{CF}_{0}\right)\)
 Suppose you invest a large amount of money into a scheme that generates
a cash flow \(\mathrm{CF}_{1}\left(\right.\) cash flow ) the first year, \(\mathrm{CF}_{2}\) the second year, and so
on. up to \(\mathrm{CF}_{\mathrm{n}}\) in the \(\mathrm{n}^{\text {th }}\) year when the cash flow ends. A diagram of the
cash flows might look like this:
Initial
Investment \(\left(\mathrm{CF}_{0}\right)\) Notice that the original investment \(\left(\mathrm{CF}_{0}\right)\) is negative because it repre-
sents a cash outlay. Also note that the cash flows may not necessarily be
positive. Maybe, in a new business, you have a loss the first year. Or per-
haps after you've been in business a while, a recession causes you to have
a bad year.
You also have to consider the time value of money, not just the dollar Notice that the original investment \(\left(\mathrm{CF}_{0}\right)\) is negative because it repre-
sents a cash outlay. Also note that the cash flows may not necessarily be
positive. Maybe, in a new business, you have a loss the first year. Or per-
haps after you've been in business a while, a recession causes you to have
a bad year.
You also have to consider the time value of money, not just the dollar Notice that the original investment \(\left(\mathrm{CF}_{0}\right)\) is negative because it repre-
sents a cash outlay. Also note that the cash flows may not necessarily be
positive. Maybe, in a new business, you have a loss the first year. Or per-
haps after you've been in business a while, a recession causes you to have
a bad year.
You also have to consider the time value of money, not just the dollar Notice that the original investment \(\left(\mathrm{CF}_{0}\right)\) is negative because it repre-
sents a cash outlay. Also note that the cash flows may not necessarily be
positive. Maybe, in a new business, you have a loss the first year. Or per-
haps after you've been in business a while, a recession causes you to have
a bad year.
You also have to consider the time value of money, not just the dollar Notice that the original investment \(\left(\mathrm{CF}_{0}\right)\) is negative because it rep
sents a cash outlay. Also note that the cash flows may not necessarily
positive. Maybe, in a new business, you have a loss the first year. Or p
haps after you've been in business a while, a recession causes you to ha
a bad year.
You also have to consider the time value of money, not just the dolla
You also have to consider the time value of money, not just the dollar value. (Would you rather have someone give you \(\$ 10,000\) today or 5 years from today?) The cash flows ( \(\mathrm{CF}_{1}, \mathrm{CF}_{2}\), etc.) are mini-future values that you are going to receive. But realistically these future cash flows have to be translated back (discounted) to present value on the basis of a given rate of interest, for you to accurately assess the
investment.

\section*{42 Concepts of Time and Money \\ Discounted Cash Flow Analysis} - -

\section*{44 Concepts of Time and Money}

Using the formula for NPV, we find that after the \(4^{\text {th }}\) year the net present value is positive \((\$ 2,111.88)\) so the investment does return \(10 \%\) or greater per year.

Suppose you sell the building in the second year for \(\$ 110,000\). Would that be more profitable? No, the net present value is negative \((-\$ 2,727.27)\) so you won't even meet your desired \(10 \%\) rate of return.

\section*{Internal Rate of Return (IRR)}

Sometimes if you know your initial investment and can predict the periodic cash flows, you want to find the rate of return that you will earn. Internal rate of return (IRR) is the interest rate that equates the present value of all cash flows with an initial cash flow. IRR is also called the yield or discounted rate of return.

The formula (page 43) for finding NPV also applies for finding IRR, only we let NPV \(=0\) and solve for \(i\). The easiest way to find IRR is to choose a best-guess interest rate (i) and find the net present value. When NPV is 0 , your "guesstimate" is the actual IRR. If NPV is negative, your estimated percentage is higher than the actual IRR-try a lower interest rate. If NPV is positive, the actual IRR is even better or higher than the rate you've chosen.


If you try \(12 \%\), the NPV after the sixth year is \(\$ 6,867.05\) so the actual IRR is higher than \(12 \%\).

Next, try \(13 \%\). This time the NPV is negative \((-\$ 2,265.95)\) so the IRR
must be less than \(13 \%\).


Appendix B: An Elaboration of a Compound Interest Problem and Solution Using the HP-11C/15C

A more complete understanding of the compound interest process can be obtained by considering an example such as that provided by a typical IRA investment problem:
1. Payments at the Beginning of Periods

Assume we start an IRA today with a \(\$ 2000\) payment and plan to continue depositing \(\$ 2000\) each year from now on. At \(\mathbf{1 0 \%}\) annual compounding, how much will be the accumulation (FV) of principal and interest at the end of five years?

The appropriate cash flow diagram is


Notice that the way the problen is posed, the payments occur at the beginning of each period and we want the future value at the end of the five years, to make the number of years coincide with the number of payments -- a normal constraint in such problems.

Another way of considering the problem is to seek the future value just before the sixth payment is made, which of course, is the same as "at the end of five years".
a. Solution using the stack

Since the basic formula relating present value ( PV ), future value ( \(F V\) ), interest expressed as a decimal (i), and the number of compounding periods (n) is
n
\(F V=P V(1+i)\),
the solution to the problem is to find the sum of the FVs when each \(\$ 2000\) is considered a PV for \(1,2,3,4\), and 5 years.

The stack on all modern HP calculators provides an easy calculation mechanism:
(1) load the stack with the constant multiplier, (1+i), in the example 1.10;
(2) key the amount to be "futured", in the example \(\$ 2000\);
(3) press the times key once for each year, and record the results (the FVs).

Thus, the keystroke sequence:
(1) \(1.10, \uparrow, \uparrow, \uparrow\)
(2) 2000
(3) \(x\), read \(2200.00=2000\) e \(10 \%\) for 1 year
\(x\), read \(2420.00=2000\) 10\% for 2 years
\(x\), read \(2662.00=2000\) 10\% for 3 years
\(x\), read \(2928.20=2000\) e \(10 \%\) for 4 years
\(x\), read \(3221.02=2000\) 10\% for 5 years
(4) The sum of the above \(5 \mathrm{FV}_{\mathrm{s}}\) is \(\$ 13,431.22\), the solution to the posed problem.
b. Solution by formula.

The appropriate formula, algebraically derived from the above procedure, is
\[
F V=\operatorname{PMT}\left[\frac{(1+i)^{n}-1}{i}(1+i) .\right.
\]

Upon substitution of the data given in the problen this becomes
\[
F V=2000\left[\frac{(1.10)^{5}-1}{.10}(1.10)\right.
\]
and using the following keystrokes leads to the answer 13,431.22, as before:
\[
2000, \uparrow, 1.1, \uparrow, 5, \gamma x, 1,-, .1, \div, 1.1, x, x
\]
c. Solution using the program FICALC-11/15
\begin{tabular}{|c|c|c|c|c|}
\hline Input & Key (s) & Display & & Comment \\
\hline - & 6SB, 1 & 0.00 & bEG & mode (observe GRAD) \\
\hline 5 & A & 5.00 & & \(n=5\) \\
\hline 10 & B & 0.10 & & \(\mathrm{i}=0.10\) \\
\hline 2000 & CHS, D & -2000.00 & & PMT \(=2000\) \\
\hline - & R/S & 3.14 & & \\
\hline - & E & 13,431.22 & & FV, as before \\
\hline
\end{tabular}
2. Payments at the End of Periods

The above problem exemplifies an investment scenario sometimes called an "annuity due" variation for the calculation of the future value of a terminating annual annuity. The other common variation (called an "ordinary annuity") occurs if payments are made at the end of each period, as the following problen suggests.

Suppose we change IRA vendors and transfer \(\$ 6500\) already accumulated, into an IRA account with the new vendor and plan to deposit \(\$ 2000\) annually for the next 25 years. At \(10.5 \%\) annual compounding how much will accumulate after 25 years?

The appropriate cash flow diagram is
\(F V=?\) because of this the 25th payment will accrue no interest.
a. Solution using the stack

It should be obvious that this procedure is impractical for such long periods, however we still might want to see how the initial \(\$ 6500\) (or each \(\$ 2000\) payment, for that matter) would grow year-by-year. Using the \(\$ 6500\) :
1.105, \(\uparrow, \uparrow, \uparrow\) to fill the stack with (1+i)

6500
(3) \(X\), read 7182.50 after 1 year
\(x\), read 7936.66 after 2 years


Of course, for the complete solution we would have to add the future value of each of the 2000 payments. This can be done far more efficiently by either of the following methods.
b. Solution by formula

The appropriate formula for the sum of the future values of the payments made at the end of each period is
\[
F V_{1}=\operatorname{PMT}\left[\frac{(1+i)^{n}-1}{i} \frac{5 /}{}\right.
\]
but to this must be added the \(F V\) of the initial deposit (PV), found by
\[
F V_{2}=P V(1+i)
\]

Substitution and the appropriate solution leads tos
Total accumulation \(=F V_{1}+F V_{2}\)
\[
\begin{aligned}
& =2000\left[\frac{1.105^{25}-1}{.105}+6500(1.105)^{25}\right. \\
& =212,104.38+78,880.62 \\
& =290,985.00
\end{aligned}
\]
c. Solution using the program FICALC-11/15
\begin{tabular}{|c|c|c|c|}
\hline Input & Key (s) & Display & Comment \\
\hline - & GSB, 2 & 0.00 & END mode \\
\hline 25 & A & 25.00 & \(n=25\) \\
\hline 10.5 & B & 0.11 & \(i=0.105\) \\
\hline 6500 & CHS, C & -6500.00 & \(P V=6500\) \\
\hline 2000 & CHS, D & -2000.00 & PMT \(=2000\) \\
\hline - & R/S & 3.14 & \\
\hline - & E & 290,985.00 & Total accumulation, as before \\
\hline
\end{tabular}

5/Observe that this differs from the BEG mode of payment formula only by the absence of the \((1+i)\) multiplier.
3. Additional Use of the Program

Advantages of the programed solution should be very obvious to this point, however the ease with which repeated, but slightly different solutions can be made, really emphasizes this point. For example, if the time period changes, say to \(n=30\), simply do this:
\begin{tabular}{cccc}
30 & \(A\) & 30.00 & \(n=30\) \\
- & R/S & 3.14 & \\
- & E & \(491,714.61\) & Total accumulation \\
& & &
\end{tabular}

If the frequency of either payments or compounding is not annual, the formula procedure can become confusing and very prone to error, whereas the program approach is perhaps easier to implement.
a. Consider an IRA plan starting with the same \(\$ 6500\) initial investment and \(10.5 \%\) nominal annual rate but with monthly compounding and annual payments of \(\$ 2000\). This situation apparently violates one of the assumed requirements for the use of the program -- that the total number of payments must be the same as the total number of compounding periods. However if we can calculate the effective annual rate (EAR) corresponding to the \(10.5 \%\) nominal annual rate the problem satisfies the cited constraint. Using the program (from scratch) to calculate the EAR:
\begin{tabular}{|c|c|c|c|}
\hline Input & Key (5) & Display & Comment \\
\hline - & GSB, 0 & 0.00 & BEG/END mode immaterial \\
\hline 12 & A & 12.00 & \[
\begin{gathered}
n=C=12, \text { compounding } \\
\text { frequency }
\end{gathered}
\] \\
\hline \(10.5 \uparrow 12 \div\) & B & 0.01 & actual \(i=0.00875\) \\
\hline - & R/S & 3.14 & \\
\hline - & R/S & 11.020 & actual \(E A R=11.020345\) \\
\hline
\end{tabular}

Now, the advantage of monthly compounding (at the \(10.5 \%\) nominal rate), equivalent to \(11.020345 \%\) annual compounding, can be shown using the program. NOTE, the appropriate cash flow diagram is
\begin{tabular}{|c|c|c|c|}
\hline Input & Key (5) & Display & Comment \\
\hline - & 6SB,2 & 0.00 & END mode \\
\hline 25 & A & 25.00 & \(n=25\) \\
\hline 11.020345 & B & 0.11 & actual \(i=0.11020345\) \\
\hline 6500 & CHS, C & -6500.00 & \(P V=6500\) \\
\hline 2000 & CHS, D & -2000.00 & PMT \(=2000\) \\
\hline - & R/S & 3.14 & \\
\hline - & E & 318,247.45 & Total accumulation \\
\hline
\end{tabular}

Note that monthly compounding resulted in considerably more money (318,247.45-290,985.00 \(=\$ 27,262.45\) ) than annual compounding, illustrating the powerful effect of compounding at shorter intervals.
b. Another point needs to be considered, which can be assessed easily by the program. Consider basically the same IRA plang \(\$ 6500\) initial investment, \(10.5 \%\) nominal annual rate, monthly compounding, but monthly payments of \(2000 / 12=\$ 166.67\), perhaps made by monthly payroll withholding. Now, what is the total accumulation after 25 years?

SOLUTION:

\begin{tabular}{|c|c|c|c|}
\hline Input & Key (s) & Display & Comment \\
\hline - & GSB, 2 & 0.00 & END mode \\
\hline \(25 \uparrow 12 x\) & A & 300.00 & \(n=300\) \\
\hline \(10.5 \uparrow 12 \div\) & B & 0.01 & \(i=0.00875\) \\
\hline 6500 & CHS, C & -6500.00 & \(P V=6500\) \\
\hline 166.67 & CHS, D & -166.67 & PMT \(=166.67\) \\
\hline - & R/S & 3.14 & \\
\hline - & E & 329,627.33 & Total accumulation \(=F V\) after 300 months \\
\hline
\end{tabular}

Thus, the effect of depositing the money in monthly installments rather than waiting until the end of each year is considerable (329,627.33\(318,247.45=\$ 11,379.88)\).
c.

The thoughtful reader who has followed this example through all the details might ask, why not make the annual payments at the beginning of each year (if he can afford it) rather than monthly partial payments or end-of-year full payments? If possible, this is the best way, as the following solution shows. Note that this now becomes a beginning-ofperiod payment situation rather the end-of-period done previously.

SOLUTION:



In summary, the results of the four fairly typical alternatives are:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Initial } \\
\text { investment }
\end{gathered}
\]} & \multirow[t]{3}{*}{Compounding frequency at 10.5\% NAR} & \multicolumn{4}{|c|}{Payments} & \multirow[b]{3}{*}{Total accumulation} \\
\hline & & & & & & \\
\hline & & frequency & amount & number & BEG/END & \\
\hline \$ & & & \$ & & & \$ \\
\hline 6500 & annual & annual & 2000 & 25 & END & 290,985.00 \\
\hline 6500 & monthly & annual & 2000 & 25 & END & 318,247.45 \\
\hline 6500 & monthly & monthly & 166.67 & 300 & END & 329,627.33 \\
\hline 6500 & monthly & annual & 2000 & 25 & BEG & 343,543.16 \\
\hline
\end{tabular}
```

Appendix C: FiCALC, A version of FICALC-11/15
Appropriate for the HF-41C, CV, or CX

```

The program found on the following pages, as a listing and in barcode form, can be used with an HF-41C, HF-41CV, or HF-41CX.

It was written so that the user could follow the instructions found in the main section of this paper, appropriate for the \(H F-11 C\) or \(H F-15 C\), with the reminder that the \(X E Q\) key on the \(H P-41\) is equivalent to the GSE key on the HF11C or HF-15C.

In addition to the obvious improvements regarding the identification of input data and answers, two other refinements were incorporated into the FICALC program:
1. A "12 multiplier" is provided in LBL a; by keying the number of years and pressing the "label a" key (shift \(\sum+\) ) the number of months is calculated and becomes \(N\), stored appropriately.
2. A "12 divisor" is provided in LBL b; by keying the annual interest rate (\%) and pressing the "label b" key (shift \(1 / X\) ) the monthly interest is calculated and becomes i, stored appropriately.

Thus, these two refinements reflace the keystroke sequences otherwise needed:
```

 number of years, \uparrow, 12, X, A
    ```
and
annual interest percent, \(\uparrow, 12, \div, B\).
```

Frogram Listing for FICALC, an HF-41 Analogy of the frogram FICALC-11/15.

```
\begin{tabular}{|c|c|c|c|}
\hline 81＋LBL＂FICALC＂ & 51 ＂＋\％ & \(1917 \times\) 析？ & 151 RCL 日 \\
\hline 日2 SF 27 & 52 AYIEH & 102 GTO 10 & \(152+\) \\
\hline 03 CTO 日可 & 5.3 STOP & 10.3 RCL 8.5 & 153 ＊ \\
\hline 84＊L8L 11 & 54 GTO 89 & 104 RCL 8.3 & 154 ＋ \\
\hline 05 SF 01 & \(55+\) LBL C & 185． & 155 CHS \\
\hline Q6t LBL 90 & 56 FS ？ 日成 & 106 HBS & 1565708.5 \\
\hline Q7 ADY & 57 GTO 95 & 107 RCL 01 & 157 CF 80 \\
\hline 88 FIX 2 & 58 STO 03 & \(1081 / \%\) & 158 CTOE \\
\hline 09 CLRG & \(59 . \mathrm{PV}=-\) & \(189 Y 4\) & 159＊LBL 89 \\
\hline 10 CF 90 & 60 ARCL 8 & 1101 & 160 SF 90 \\
\hline 111 & 61 AYIEH & 111 － & 161 RCL 82 \\
\hline \(12 \mathrm{ST0} 01\) & 62 STOP & 112 STO 92 & \(162 \mathrm{X}=0\) ？ \\
\hline 17 CL & 67 CTO 99 & 1131 E 2 & 163 GT0 88 \\
\hline 14 ＂И． 98 ENI MOIE＂ & 64＊LBL II & 114＊ & 1641 \\
\hline 15 FS ？ 81 & 65 FS ？ 8 日 & 115089 & \(165+\) \\
\hline 16 GRAII & 66 GTO Й & \(116 \mathrm{C} T 0 \mathrm{O}\) & 166．RCL 1 \\
\hline 17 FS ？ 81 & 6751064 & 1174LEL 65 & 167 Y4\％ \\
\hline 18 －9．99 BEG MODE＂ & 68 ＂PMT＝＊ & 118 RCL 0.5 & 1681 \\
\hline 19 OUIEH & 69 ARCL X & 119 RCL 86 & 169－ \\
\hline 20 GDY & 70 RYIEH & 12 RCL & 178506 \\
\hline 21 STOF & 71 STOP & 121 ＊ & 1710 \\
\hline \(22+18182\) & 72 CTO 99 & \(122+\) & 172 RCL 12 \\
\hline 23 CF 日1 & 73＋LBL E & 123 CHS & \(1731 / \mathrm{K}\) \\
\hline 24 DEG & 74 FS ？ 09 & 124 RCL 66 & 174 FS？ 01 \\
\hline \(25.6 T 090\) & 7515087 & 1251 & 1751 \\
\hline 264 LBL a & 76 STO 05 & \(126+\) & \(176+\) \\
\hline 2712 & 77 －FY＝ & 127 \％ & 17751067 \\
\hline 28 ＊ & 78 ARCL \(X\) & 12857063 & 178 RCL 84 \\
\hline 29＊LBL A & 79 AYIEH & 129 CF 98 & 179 ＊ \\
\hline 30 FS ？ 90 & 80 STOP & 130 CTO C & 180 ST0 80 \\
\hline 31 CTO 83 & 81 GTO 89 & 131＋LBL 96 & 181＊LBL 88 \\
\hline 32 STO 91 & \(82+18 \mathrm{LC}\) 93 & 132 RCL 95 & 182 ＂3．14 ：READY＊ \\
\hline \(33-\mathrm{N}=\)＂ & 83 RCL 90 & 133 RCL 93 & 183 ADY \\
\hline 34 ARCL X & 84 RCL 日 5 & 134 RCL 66 & 184 PROMPT \\
\hline 35 AYIEN & 85 － & 1351 & 185 RCL 96 \\
\hline 36 STOP & 86 RCL 日可 & \(136+\) & 1861 E 2 \\
\hline 37 CTO प9 & 87 RCL 8.3 & 137 ＊ & 187 ＊ \\
\hline 384 LBL b & \(88+\) & \(138+\) & 188 CF 8 明 \\
\hline 3912 & 89 ／ & 139 CHS & 189 FIX 3 \\
\hline 49 \％ & 9 LC & 149 RCL 86 & 190 －EAR＝＊ \\
\hline \(41+L B L B\) & 91 RCL 日2 & 141 RCL 87 & 191 ARCL \\
\hline 421 E2 & 921 & 142 ＊ & 192 ＋\(\%\) \\
\hline 43 \％ & \(93+\) & 143／ & 193 AUIEH \\
\hline 44 FS ？ 09 & 94 LH & 144 STO 04 & 194 STOP \\
\hline 4.59608 & 95 ； & 145 CF 90 & 195 GT0 88 \\
\hline 46 STO 22 & 9651001 & 146 GTO D & 196＊LBL 10 \\
\hline 471 E2 & 97 CF 0 A & 147＊LBL 67 & 197 ERRROR 3 ＂ \\
\hline 48＊ & 98 CTO A & 148 RCL 63 & 198 AUIEN \\
\hline 49－I＝＂ & \(99 *\) LBL 04 & 149 RCL 66 & 199 END \\
\hline 50 ARCL X & 198 RCL 14 & 150 RCL 83 & \\
\hline
\end{tabular}

HP-41 Program Barcode: FICALC
Program Fegisters Required: 51
ROH 1: LINES 1-3

KOH 2: LINES 3-12

ROW 3: LINES 13-14

KOM 4: LINES \(14-18\)

ROH 5: LINES 18-23

ROH 6: LINES 23-30

ROW 7: LINES 31-37

ROW 8: LINES 38-44

ROW 9: LINES 45-50

ROW 10: LINES 51-57

ROW 11: LINES 57-63

ROW 12: LINES 64-68

ROW 13: LINES \(67-76\)

ROW 14: LINES 77-83

ROW 15: LINES 84-96

```

FICALC (continued)
ROH 16: LINES 97-105

```

```

ROW 17: LINES 106 - 115

```

```

HOH 18: LINES 116 - 126

```

```

ROH 19: LINES 127 - 136

```

```

ROW 20: LINES 137 - 146

```

```

ROW 21: LINES 147-158

```

```

ROW 22: LINES 158-167

```

```

FOW 23: LINES 168-179

```

```

ROW 24: LINES 180-182

```

```

ROW 25: LINES 182-189

```

```

ROW 26: LINES 190-193

```

```

ROW 27: LINES 194 - 197

```

```

FOW 28: LINES 198-199

```


Calculator: HP-11C (and HP-15C with minor changes)
HP-41C (see Appendix A and B)
Program Name: AREA-11/15 (AREA calculations on the HP-11C or HP-15C)
Author: Thomas W. Beers
Date: June 1985

Purpose: To calculate the area of a closed traverse, given input in the form of straight-side distances and directions either as azimuths or as bearings and quadrants. Area is calculated in square units corresponding to the distance units and optionally in acres or hectares. The linear error of closure is calculated and displayed if desired. The program can also be used as a bearing-to-azimuth converter. Note that there is no provision to "balance" the traverse; if this is necessary it must be done separately.
A. Storage Assignments
\begin{tabular}{|c|c|c|}
\hline Register & 15C & Use \\
\hline 0-5 & (2-7) & under the control of the summation key \\
\hline 0 & (2) & number of sides \\
\hline 1 & (3) & sum of latitudes \\
\hline 3 & (5) & sum of departures \\
\hline 6 & (0) & bearing, then azimuth, in degree and decimal form \\
\hline 7 & (1) & double meridian distance of the previous side ( \(\mathrm{DMD}_{\mathfrak{i}-1}\) ) \\
\hline 8 & & departure of the previous side ( \(\mathrm{DEP}_{\mathrm{i}-1}\) ) \\
\hline 9 & & cumulative area \(=\) half the sum of \(\mathrm{DMD}_{1}\) \\
\hline . 0 & & quadrant number: \(1=N E, 2=S E, 3=S W, 4=N W\) \\
\hline . 1 & & the constant 43,560 or 10,000 \\
\hline Labels & & \\
\hline Name & & Use \\
\hline [A]* & & converts keyed-in Azimuth angle from D.MS (degrees, minutes, seconds) format to D.dd (degrees, decimal degrees) format, pauses, then transfers to label 1 \\
\hline
\end{tabular}
B. Labels (continued)

Name
[B] stores keyed-in quadrant number and converts keyed-in Bearing in D.MS format to an azimuth angle in D.dd format
[C] Calculates (actually just recalls and displays) area in the square of input units, and optionally in acres or hectares, and 1 inear error of closure
[D]
uses the keyed-in Distance and stored azimuth angle to calculate latitudes, departures, DMDs, and cumulative area
[E] clears the registers for a new data set and stores and displays the appropriate metric or U.S. units divisor," depending on the status of flag 0

1
stores azimuth angle in D.dd format then displays it in D.MS format
[9]
[6]
[5]
[8]
generates the quadrant number implied by the key's position ( \(9=\mathrm{NE}: 1 ; 6=\mathrm{SE}: 2 ; 5=\mathrm{SW}: 3 ; 8=\mathrm{NW}: 4\) ) and using the keyed-in bearing passes control to label B
*brackets indicate meaningful external (i.e.. in RUN mode) accessibility.
C. Flags

Number
Use
0

> clear assumes the input distance units are in feet, therefore output area is in sq. ft. and acres
> set assumes the input distance units are in meters, therefore output area is in sq. meters and hectares
D. Program Procedure
1. In program mode, key in the program.
2. In run mode, activate USER mode and clear flag 0 (distances in feet) or set flag 0 (distances in meters or chains).
3. Press E to initialize the calculator; observe either 43,560 . or 10,000 . depending upon the status of flag 0 .

1/If distance input units are chains, choose this option, then area in acres = \(1000 \times\) "no. of hectares".
D. Program Procedure (continued)
4. Provide the angle of the first side of the traverse, using any one of the options cited: \({ }^{2 /}\)
a. key the azimuth angle as DD.MMSS, press \(A\), observe the angle as DD.dddd then as DD.MMSS to verify the input, go to step 5;
b. key the bearing, press ENTER, key the quadrant number ( \(N E=1, S E=2\), \(\mathrm{SW}=3\), \(\mathrm{NW}=4\) ), press B , observe the angle as an azimuth in DD.MMSS format, go to step 5;
c. key the bearing, press GSB followed by either \(2,6,5\), or 8 (thus implying quadrants \(1,2,3\), or 4 , respectively), observe the angle as an azimuth in D.MS format, go to step 5.
5. Key the distance, press either D or R/S; \({ }^{3 /}\) observe \(1 .\), indicating the first side has been processed.
6. Repeat steps 4 and 5 for all sides of the traverse.
7. Press C to display the area in sq. input units, press R/S to display the area in acres or hectares (or acres/1000 if chains are the input units), press R/S to display the linear error of closure. (step 7 can be repeated.)

Special note: The area answers may be displayed with negative signs, which simply means that the direction of the traverse was clockwise, rather than counterclockwise.
\(2 /\) If a mistake is detected just after the current bearing or angle has been processed, it can be corrected by repeating any of the three options using the correct angle or bearing. Mistakes detected after the distance is processed (step 5) mean "start over".
3/In the HP-4l version of the program, R/S must be pressed, since label \(D\) has another use.

\section*{E. Examples}

\section*{EXAMPLE 1}

Given the following closed traverse with distance expressed in feet, calculate the area in sq. ft., in acres, and the linear error of closure.
\begin{tabular}{|c|c|c|c|}
\hline Side & \begin{tabular}{c} 
Bearing \\
as \\
DD.MMSS \\
\hline
\end{tabular} & Quadrant & Distance \\
\hline 1 & S 51.0656 W & 3 & 199.123 \\
\hline 2 & S 13.2944 E & 2 & 128.550 \\
\hline 3 & N 63.2606 E & 1 & 111.803 \\
\hline 4 & N 7.0730 E & 1 & 201.556 \\
\hline
\end{tabular}

\section*{SOLUTION:}

Note that each of the three angle input options are used below to demonstrate the interchangeability of the procedures. USER mode is presumed.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & \(\ldots\) & Display & Comment \\
\hline 2. & - & g CF 0 & - & clear flag 0 \\
\hline 3. & - & E & 43,560. & implies distances in
feet \\
\hline 4 b . & 51.0656 ヶ3 & B & 231.0656 & azimuth displayed as DD.MMSS \\
\hline 5. & 199.123 & D (or R/S) & 1. & one side done \\
\hline \[
\begin{aligned}
& 4 \mathrm{c} . \\
& 5 .
\end{aligned}
\] & \[
\begin{aligned}
& 13.2944 \\
& 128.55
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSB } 6 \\
& \mathrm{D}(\mathrm{or} \mathrm{R} / \mathrm{S})
\end{aligned}
\] & \[
\begin{gathered}
166.3016 \\
2 .
\end{gathered}
\] & azimuth displayed two sides done \\
\hline 4 c . & \[
63.2606
\] & \[
\text { GSB } 9
\] & 63.2606 & azimuth displayed \\
\hline 5. & \[
111.803
\] & D (or R/S) & 3. & three sides done \\
\hline 4 a . & 7.073 & A & 7.1250 (pause) & azimuth as DD.dddd \\
\hline 5. & 201.556 & D (or R/S) & + 4. & four sides done \\
\hline 7. & - & C & 20,937.438 & area in sq. ft. \\
\hline & - & R/S & 0.481 & area in acres \\
\hline & - & R/S & 0.001 & error of closure in feet \\
\hline
\end{tabular}

\section*{EXAMPLE 2}

Assuming the same traverse data as in EX. 1, except that distances are expressed in meters, calculate the area in sq. meters, in hectares, and the linear error of closure.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & \(\mathrm{Key}(\mathrm{s})\) & Display & Comment \\
\hline 2. & - & g SF 0 & - & set flag 0 \\
\hline 3. & - & E & 10,000. & implies distances in meters \\
\hline \multirow[t]{4}{*}{4 b . and 5 . (repeated)} & \[
\begin{aligned}
& 51.0656 \\
& 199.123
\end{aligned}
\] & \[
\begin{gathered}
\text { GSB } 5 \\
R / S
\end{gathered}
\] & \[
\begin{gathered}
231.0656 \\
1 .
\end{gathered}
\] & az imuth \\
\hline & \[
\begin{aligned}
& 13.2944 \\
& 128.55
\end{aligned}
\] & \[
\begin{gathered}
\text { GSB } 6 \\
R / S
\end{gathered}
\] & \[
\begin{gathered}
166.3016 \\
2 .
\end{gathered}
\] & az imuth \\
\hline & \[
\begin{aligned}
& 63.2606 \\
& 111.803
\end{aligned}
\] & \[
\begin{gathered}
\text { GSB } 9 \\
\text { R/S }
\end{gathered}
\] & \[
\begin{gathered}
63.2606 \\
3 .
\end{gathered}
\] & az imuth \\
\hline & \[
\begin{gathered}
7.073 \\
201.556
\end{gathered}
\] & \[
\begin{gathered}
\text { GSB } 9 \\
R / S
\end{gathered}
\] & \[
\begin{gathered}
7.0730 \\
4 .
\end{gathered}
\] & az imuth \\
\hline 7. & - & \[
\begin{gathered}
C \\
R / S \\
R / S
\end{gathered}
\] & \[
\begin{gathered}
20937.438 \\
2.094 \\
0.001
\end{gathered}
\] & area in sq. meters area in hectares error of closure in meters \\
\hline
\end{tabular}

\section*{EXAMPLE 3}

Assuming the same data except that distances are in chains, calculate the area in sq. chains, in acres, and the linear error of closure.

SOLUTION:
The procedure is identical in all respects to EX. 2 down to step 7. which is
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & \(\mathrm{Key}(\mathrm{s})\) & Display & Comment \\
\hline 7. & - & C & 20937.438 & area in sq. chains \\
\hline & - & R/S & 2.094 & area in acres/1000 \\
\hline & 1000 & X & 2093.744 & area in acres \\
\hline & - & R/S & 0.001 & error of closure in chains \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Step & Statement & \multicolumn{2}{|r|}{Code} & Step & Statement & \multicolumn{2}{|l|}{Code} & Step & Statement & \multicolumn{2}{|r|}{Code} \\
\hline 01 & [f LBL E] \({ }^{\text {/ }}\) & & 2115 & 31 & 1 & & 1 & 61 & X & & 20 \\
\hline 02 & f CLEAR REG & & 4234 & 32 & 8 & & 8 & 62 & 2 & & 2 \\
\hline 03 & 4 & & 4 & 33 & 0 & & 0 & 63 & \(\div\) & & 10 \\
\hline 04 & 3 & & 3 & 34 & \(x\) & & 20 & 64 & STO + 9 & 44 & 409 \\
\hline 05 & 5 & & 5 & 35 & \(x \geqslant y\) & & 34 & 65 * & RCL 0 (2) & & 450 \\
\hline 06 & 6 & & 6 & 36 & g LSTX & 433 & 36 & 66 & f FIX 0 & 42 & 70 \\
\hline 07 & 0 & & 0 & 37 & RCL . 0 & 45. & . 0 & 67 & R/S & & 31 \\
\hline 08 & STO . 1 & & 44.1 & 38 & x & & 20 & 68 & [f LBL C] & & 2113 \\
\hline 09 & EEX & & 26 & 39 & \(\cos\) & & 24 & 69 & f FIX 3 & 42 & 73 \\
\hline 10 & 4 & & 4 & 40 & X & & 20 & 70 & RCL 9 & & 459 \\
\hline 11 & g F? 0 & 43 & 60 & 41 & - & & 30 & 71 & R/S & & 31 \\
\hline 12 & STO .1 & & 44.1 & 42 & (f LBL 1) & 4221 & 1 & 72 & RCL . 1 & & 45.1 \\
\hline 13 & RCL . 1 & & 45.1 & 43 * & STO 6 (0) & 44 & 6 & 73 & \(\div\) & & 10 \\
\hline 14 & f FIX 0 & 42 & 70 & 44 & \(f \rightarrow\) H.MS & 42 & 2 & 74 & R/S & & 31 \\
\hline 15 & \(g\) RTN & & 4332 & 45 & R/S & & 31 & 75* & RCL 3 (5) & & 453 \\
\hline 16 & [f LBL A] & 42 & 2111 & 46 & [f LBL D] & 42211 & 14 & 76 * & RCL 1 (3) & & 451 \\
\hline 17 & f FIX 4 & 42 & \(7 \quad 4\) & 47 * & RCL 6 (0) & 45 & 6 & 77 & \(g \rightarrow P\) & & 4326 \\
\hline 18 & \(\mathrm{g} \rightarrow \mathrm{H}\) & & \(43 \quad 2\) & 48 & \(X \geqslant Y\) & & 34 & 78 & R/S & & 31 \\
\hline 19 & \(f\) PSE & & 4231 & 49 & \(f \rightarrow R\) & 422 & 26 & 79 & [f LBL 5] & 42 & 215 \\
\hline 20 & GTO 1 & & 221 & 50 & \(\Sigma+\) & & 49 & 80 & 3 & & 3 \\
\hline 21 & [ f LBL B] & & 2112 & 51 & R \(\downarrow\) & & 33 & 81 & GTO B & & 2212 \\
\hline 22 & f FIX 4 & 42 & \(7 \quad 4\) & 52 & g LSTX & 433 & 36 & 82 & [f LBL 6] & 42 & 216 \\
\hline 23 & STO . 0 & & 44.0 & 53 & \(x \geqslant Y\) & & 34 & 83 & 2 & & 2 \\
\hline 24 &  & & 34 & 54 & RCL 8 & 45 & 8 & 84 & GTO B & & 2212 \\
\hline 25 & \(g \rightarrow H\) & & \(43 \quad 2\) & 55 & \(X \geqslant Y\) & & 34 & 85 & [f LBL 8] & 42 & 218 \\
\hline 26* & STO 6 (0) & & 446 & 56 & STO 8 & 44 & 8 & 86 & 4 & & 4 \\
\hline 27 & \(X \geqslant Y\) & & 34 & 57 & + & & 40 & 87 & GTO B & & 2212 \\
\hline 28 & 2 & & 2 & 58* & RCL 7 (1) & 45 & 7 & 88 & [f LBL 9] & 42 & 219 \\
\hline 29 & \(\div\) & & 10 & 59 & + & & 40 & 89 & 1 & & 1 \\
\hline 30 & g INT & & 4344 & 60* & STO 7 (1) & 44 & 7 & 90 & GTO B & & 2212 \\
\hline
\end{tabular}

Note: \(g\) MEM leads to P-01r \(\quad\) - . 5
4/Brackets and parentheses are not on the keyboard; they are used to indicate externally meaningful or internal use labels, respectively.
* Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15C user to alter.
G. Formulas and Unique Features
l. Formulas
a. Traverse area (A) was calculated using the double meridian distance (DMD) method which can be found in most elementary surveying textbooks. The DMD procedure makes use of latitudes (LAT) and departures (DEP) calculated from the traverse data. The pertinent formulas are:
\[
A=\frac{1}{2} \sum_{i=1}^{n}\left(D M D_{i}\right)\left(L A T_{i}\right)
\]
in which
\[
\begin{aligned}
& D M D_{i}=D M D_{i-1}+D E P_{i-1}+D E P_{i}, \\
& L A T_{i}=\left(D_{i}\right)\left(\cos Z_{i}\right),
\end{aligned}
\]
where
\[
\operatorname{DEP}_{f}=\left(D_{i}\right)\left(\sin Z_{i}\right) ;
\]
\(D_{i}=\) distance of the \(i^{\text {th }}\) side,
and \(\quad Z_{i}=\begin{aligned} & \text { bearing of the } i^{\text {th }} \text { side expressed as an azimuth } \\ & \text { clockwise from north. }\end{aligned}\)
b. Area in acres or hectares was calculated simply by dividing the area (A) by 43,560 , or 10,000 respectively.
c. The linear area of closure (C), the distance by which the traverse fails to close, is defined by the formula
\[
C=\sqrt{(\text { sum of } D E P)^{2}+(\text { sum of } L A T)^{2}}
\]
2. Unique Features

The calculation of area of a closed traverse on a programmable calculator has been a popular one since the HP-25 came on the market in the early l970's. As a result, many efficient computational short-cuts have been employed. Some of these were used in this program; they warrant the attention of the serious programmer and therefore are discussed below.

\section*{a. Use of azimuth rather than bearing angle}

Those of us who learned the DMD method before computers came along recall calculating latitudes and departures from the formulas LAT = (distance)(cos bearing), DEP = (distance)(sin bearing), then
placing the results in a table, according to the convention LAT \(=+\) for north bearing, - for south and DEP = + for east bearing, - for west, and proceeding with the DMD calculation algorithm. This process can be automated by converting the bearings to azimuths ( \(Z\) ) and using the formulas LAT \(=(D)(\cos Z)\) and \(D E P=(D)(\sin Z)\), which assures that the proper sign is employed for the LATs and DEPs. This fortuitous happening does not seem immediately logical since azimuth angles are measured clockwise from the north axis, while angles in the trigonometric sense are turned counterclockwise from the "east axis"; but it works!

\section*{b. Conversion of bearings to azimuths}

The procedure for the conversion of bearings (which of course represent the angle from north or south measured toward east or west) to azimuths is commonly done by visualizing the N-S, E-W axes and applying some mental arithmetic. Obviously unsuited for programming! A number of formulations have been proposed, such as:

To convert a bearing in degrees \((B)\) to an azimuth in degrees (Z):
\begin{tabular}{cc}
\hline If Quadrant, \(Q_{0}=\) & then \\
\hline 1 (NE) & \(Z=B\) \\
\(2(S E)\) & \(Z=180-B\) \\
\(3(S W)\) & \(Z=180+B\) \\
\(4(N W)\) & \(Z=360-B\) \\
\hline
\end{tabular}

But such relations are still somewhat awkward to use, therefore either of the following are to be preferred:
\[
\begin{aligned}
Z & =(180)\left(\text { integer portion of } \frac{0}{2}\right)+(-1)^{0+1}(B) \\
\text { or } \quad Z & =(180)\left(\text { integer portion of } \frac{0}{2}\right)-(B) \cos (1800)
\end{aligned}
\]

The latter formula was used in the AREA-1l/l5 program.

\section*{c. Angle format conversion}

The relations described above (in section b.) require that bearings and azimuths are expressed in degree format (D.dd). It is convenient, however, to input and refer to bearings in degrees, minutes and seconds (D.MS) format. Conversion from one format to
the other is accomplished on most HP calculators by either of the following functions: -
\[
\begin{aligned}
& \rightarrow \text { H ("to hours")--to convert D.MS to D.dd } \\
& \text { or } \rightarrow \text { H.MS ("to hours, minutes, seconds")--to convert D.dd to } \\
& \text { D.MS }
\end{aligned}
\]

\section*{d. Calculation of LATs and DEPs}

If the distance ( \(D\) ) and azimuth ( \(Z\) ) are located in the \(X\) and \(Y\) registers respectively, the formulas for LATs and DEPs (LAT = \(D \cos Z\) and \(D E P=D \sin Z\) ) can be solved in one program step using the function \(\rightarrow\) ("to rectangular coordinates"), leaving the latitude in the \(X\) register and the departure in \(Y\). This efficient process works because in the usual polar and rectangular coordinate representation, \(X=r \cos \theta\) and \(Y=r \sin \theta\), and in our application \(r=D\), and \(\theta=Z\).

\section*{e. Simultaneous summation of LATs and DEPs}

In order to calculate the error of closure, the sum of latitudes and the sum of departures must be obtained. This is easily accomplished in one program step on most HP calculators by the \(\Sigma+\) ("sum plus") function. So, if LAT, is in \(X\) and DEP, is in \(Y\), executing \(\Sigma+\) on the HP-llC adds these to register 1 and register 3 , respectively (on the HP-11C).

\section*{f. Calculation of error of closure}

The error of closure ( \(C\) ) defined by the formula
\[
c=\sqrt{(\Sigma L A T)^{2}+(\Sigma D E P)^{2}}
\]
can be found in one program step using the function ->P ("to polar coordinates"). The rationale behind this calculation is that \(C\) is actually the hypotenuse of the right triangle whose sides are \(X=\) \(r \cos \theta\) and \(Y=r \sin \theta\), and since the magnitude, \(r\), in polar coordinates is calculated from the \(X\) and \(Y\) rectangular coordinates by
\[
r=\sqrt{x^{2}+y^{2}}
\]
the ->P function solves the Pythagorean Theorem for the hypotenuse! This meets our needs since we can position \(\Sigma\) LAT in the \(X\) register and \(\Sigma\) DEP in the \(Y\) register, use the \(->P\) function, and the result in the \(X\) register will be \(r=C\).

\footnotetext{
5/ On the HP-41, the corresponding functions are HR (from D.MS to D.dd) and HMS (from D.dd to D.MS).
}

Appendix A: AREA4l (program number 4lF039), Appropriate for the HP-4lC, CV , or CX .

The program found on the following pages, as a listing and in barcode form, was written so that the user could in general follow the instructions found in the main section of this paper. However, because of the prompting avallable on the HP-41 and other design differences from the HP-1l, the following should be noted before the user tries AREA41 initially:
1. Initialization is first achieved by XEQ AREA4l; re-initialization for a new data set by shift \(E\).
2. The three bearing options, providing cryptic prompts, are available on
 bearing Combined with quadrant key, respectively. The prompts for options \(A\) and \(B\) must be followed by proper input then R/S depression, while the prompt for option \(C\) is followed by the bearing input and keys \(D, E, I\), or \(J\) as needed to indicate quadrants \(4,1,3\), or 2 respectively.
3. The distance prompt is automatically obtained, and after proper input, R/S must be pressed (not D!).
4. When all sides have been processed and the prompt for the next direction is in the display, the area (and other output) is obtained by pressing R/S or by shift \(C\) (which can be repeated). Press R/S between answers, unless a printer is attached, in which case the output is continuous.
5. Storage register assignments in the HP-4l program are slightly different from the HP-ll since the summation register configuration is not the same. The AREA4l program designates R00 through R05 as the statistical registers (step 06), but because " \(n\) " is positioned differently from the HP-1l, the following are the pertinent register assignments in AREA41:

Register
00
02
05
06
07
08
09
10
11
12
13
14

Use
\(\sum \mathrm{X}\) (= sum of latitudes)
¿Y (= sum of departures) n ( \(=\) number of sides)
bearing or azimuth, in D.dd format
DMD \({ }^{\text {i-1 }}\)
cumulative area
quadrant number keyed in
43,560 or 10,000
azimuth in D.MS format quadrant number generated in
labels D, E, I, or J
sum of distances

CAUTION: after AREA41 has been executed, the user should note that the statistical register assignment remains ROO through R05; if the "normal" assignment of Rll-R16 is desired, ¿REG 11 must be executed.
6. An additional calculation was made in AREA4l: the precision of the survey, defined by the formula

PREC. \(=1: X\)
where \(X=\frac{\text { sum of the distances }}{\text { error of closure }}\).
7. The audio part of the bearing and distance prompts employs tones which were assembled using synthetic programming. Unfortunately, the program listing does not identify the tones precisely, but for those who care about such detalls, "TONE 0 " is actually TONE 100 and "TONE 7" is actually TONE 87. An advantage of loading the program from the barcode is that these synthetic tones will be compiled in the program.
8. Printed output can be obtained if an appropriate printer is attached to the HP-4l when AREA4l is used. The samples shown at the end of the program listing are from the HP 82143A printer and demonstrate options \(A, B\), and \(C\) for bearing entries and the U.S.-Metric option.

\section*{Program Listing for AREA41，an HP－41 Analogy of the Program AREA－11／15}
\begin{tabular}{|c|c|c|c|}
\hline 日itLEL＂AREH4！＂ & 51 ＂PRESS A．B． 0 O G & 101 K》 & 151 GO \\
\hline प2－LBLE & 52 PROTFT & \(102 H 5\) & 152 FSO 6 \\
\hline 日． 3 CRG & \(53+18 \mathrm{~L}\)－ & 103506 & 153608 \\
\hline 04 SF 27 & 54 FIV &  & 1540010 \\
\hline 日5 CF 29 & 55 dF 22 & \(1 \operatorname{lng}^{2}\) & 1554ES I \\
\hline 66 2REG 明 & 56950 & 146； & 1564 \\
\hline 071 & 5 T ］ 6 & 107 Int & 157 ＂1／ \\
\hline 46 5T＋ 05 & 「6 CA & 188180 & 158 PE0 12 \\
\hline 日9 43560 & 59 MRCL 05 & 109 \％ & 159 ＂ 16 \\
\hline 10 FS ？ 90 & 66＂F hathuth？ & \(110 \mathrm{k} \%\) & 16067013 \\
\hline \(11 \mid E 4\) & 61 TONE & If LASTX & 1614ELE \\
\hline 125011 & 62 PROTPT & 12 FLL 16 & 1621 \\
\hline 13 FIVG & 63 FCTC 22 & 113： & 163 ＂1． \\
\hline 14 ＂11．5．： & 64670 & 114 Dg & \(164 \times 8.2\) \\
\hline 15 FS 98 & 6551012 & 115＊ & 165 ＋E＂ \\
\hline 16 ＂METRIC： & 66 CL & 116－ & 1661013 \\
\hline 17 ARCL 11 & 67 XE0 16 & 117＋18 91 & 1676 LEL \\
\hline 13 puich & 68 HUIE & 1185706 & 1683 \\
\hline 19 PSE & 6981 l & 1194EL & 169 ＂\(=\) \\
\hline 20 ATH & 76 RCL 12 & 120 FIK & 170 YE0 12 \\
\hline 21 FS ？ 55 & 7 FI 4 & 12［LA & \(17{ }^{\text {＂}}\) W＂ \\
\hline 22 －F 21 & T CH & 122 TOHE 7 & 17261013 \\
\hline 23 ＂ERG．OPTIOHS：＊ & 73 ＂\(=\) & 123 ARCL \({ }^{\text {a }}\) & \(173+\mathrm{EL}\) \\
\hline 24 AVIEL & 74 ARCL 8 & 124－－ISTAHEE？ & 1742 \\
\hline 25 SIH & 75 ＂\({ }^{\text {a }}\) EEG： & 125 PROFPT & 175＂\({ }^{\text {c }}\) \\
\hline 26 SIH & 76 PUIEL & 126 FIV 3 & 1769E0 12 \\
\hline 27 ＂KEY H，B，DP C＂ & 77 PSE & 127 ＂ITST： & \(177+\mathrm{E}^{\prime \prime}\) \\
\hline 28 AUIEH & 7867081 & 128 ARCL & 1780LBL 13 \\
\hline 29 SIH & 79＊LEL E & 129 AUIEM & 179 RUIEM \\
\hline 30 SIH & 36 FIU 0 & 130 MDP & 180 CTO 11 \\
\hline 31 FS ？ 55 & 81 CF 22 & 131 ST＋ 14 & 181＋LBL 12 \\
\hline 32 SF 21 & 82 SF 66 & 132 RCL 66 & 18251012 \\
\hline 33＊LEL & 83 OF 6 & 133 KY & 183 X \({ }^{\text {K }}\) \\
\hline 34 LEL 16 & 84 CA & \(1.34 \mathrm{~F}-\mathrm{R}\) & 18457013 \\
\hline 35 FIV 0 & 85 PRCL 05 & \(135 \%\) & 185＊LBL 16 \\
\hline 36 CF 95 & \(86{ }^{\circ}+\mathrm{BRG}\) ．10．H0．？\({ }^{\text {a }}\) & 136 Rmb & 186 FIM 0 \\
\hline 37 CF 86 & 87 TOAE 0 & 137 LASTX & 187 INT \\
\hline 30 CF 22 & 8 COHE T & 138 XCY & 188 ARCL 8 \\
\hline 39 CLA & 89 PROHFT & 139 RCL 明 & 189 LASTX \\
\hline 46 ARCL 95 & 90 FCOC 22 & 140 \％M\％ & 190 FRC \\
\hline 41 ＂ \(\mathrm{ERG}^{\text {a }}\) ， \(\mathrm{E} . \mathrm{KEH}\)＂ & 91 CTO & 141500 & 191182 \\
\hline 42 TOHE 7 & 92 FI 4 & \(142+\) & 192 ＊ \\
\hline 43 TOHE 7 & 43 CLA & 143 PCL 87 & 193 IHT \\
\hline 44 PROMFT & 94 ARC Y & \(144+\) & 194 ＂- ＊ \\
\hline 4.5 FCTC 22 & \(95+\)＊\({ }^{\text {a }}\) & 1459610 & 19516 \\
\hline 46 CTO & 96 FIY \({ }^{\text {a }}\) & 146 \({ }^{1}\) & 19674 \\
\hline 47 ＂THIHK＊ & 97 PRCL 8 & 1472 & 197 ＂19＂ \\
\hline 48 AVIEH & 98 RUIEW & 148； & 198 RIL \\
\hline 49 SIN & \(99+L \mathrm{LL} 11\) & \(1495 \mathrm{~T}+6\) & 199 AECL X \\
\hline 50 SIN & 10057016 & \(150 \mathrm{FS9}\) 9 0 & 299 LASTX \\
\hline
\end{tabular}

\section*{Program Listing for AREA41 (continued) and Sample Printed Output Obtained in MAN Printer Mode}

```

HP-41 Frogram Earcode: AREA41
Program Registers Required: 88
ROW 1: LINES 1-3

```

```

ROH 2: LINES 4-9

```

ROW 3: LINES 9-14

ROW 4: LINES 14-16

ROW 5: LINES 16-23

ROH 6: LINES \(23-25\)

ROU 7: LINES 26-27

ROW 8: LINES 27-35

ROW 9: LINES 35-41

ROH 10: LINES 41-42

ROW 11: LINES 43-47

KOW 12: LINES 47-51

ROW 13: LINES 51-55

FOW 14: LINES 55-60

ROW 15: LINES 60-64


\section*{AREA41 (continued)}

ROH 16: LINES 64-73

ROW 17: LINES 73-77

ROW 18: LINES 78-84

ROW 19: LINES 85-86

ROH 20: LINES 86-91

ROW 21: LINES 91-95

ROH 22: LINES 96-106

ROW 23: LINES 107-117

ROW 24: LINES 118-124

ROW 25: LINES 124-127

ROH 26: LINES 127 - 131

ROH 27: LINES 132-144

ROH 28: LINES 145-152

ROH 29: LINES 153-158

ROH 30: LINES 158-163

```

AREA41 (continued)
ROH 31: LINES 164-169

```

```

ROH 32: LINES 169 - 173

```

```

ROH 33: LINES 174-179

```

```

ROH 34: LINES 180-188

```

```

KOH 35: LINES 189 - 196

```

```

ROW 36: LINES 197-204

```

```

ROH 37: LINES 205 - 211

```

```

ROH 38: LINES 212-216

```

```

ROW 39: LINES 217 - 220

```

```

KOH 40: LINES 220-224

```

```

ROW 41: LINES 225 - 231

```

```

ROW 42: LINES 231-233

```

```

ROW 43: LINES 233 - 240

```

```

ROH 44: LINES 240-243

```

```

ROW 45: LINES 243-248

```


AREA41 (continued)
ROW 46: LINES 249-253

ROW 47: LINES 253-260

ROW 48: LINES 261-262


Appendix B: AREA-S (program number 41F040), A Short Version of AREA41.
While the AREA4l program is flexible and demonstrates how various options can be incorporated into one program, it was felt that a shorter version incorporating the most likely options might be equally desirable. Thus, AREA-S is included on the following pages in listing and barcode form. It assumes distances are measured in feet and bearings in D.MS format are input using option C -- key the bearing, and press D, E, I, or J as appropriate for NW, NE, SW, and SE quadrants, respectively.

\section*{Program Listing and Sample Printed Output for AREA－S，a Short Version of AREA41}
\begin{tabular}{|c|c|c|c|}
\hline W1＋LEL＂AREA－S＂ & 51 ＂DIST：＊ & 101＋LBL 12 &  \\
\hline 02 ADH & 52 ARCL X & 102 ST0 12 & 152 R－F \\
\hline Q3 CRE & 53 PVIEH & 103 Y Y Y & 153 ＂EOC＝ \\
\hline 049527 & 54 ADY & 10457013 & 154 ARCL \\
\hline 05 CF 29 & \(55 \mathrm{ST}+14\) & 185 FIX 0 & 155 ＂FT．＊ \\
\hline 日6 EREG 60 & 56 RCL 96 & 166 INT & 156 AYIEM \\
\hline Q 1 & 57 XVYY & \(1 \mathrm{~A} 7 \mathrm{ARCL} X\) & 157 REA 15 \\
\hline \(08 \mathrm{ST}+65\) & \(58 \mathrm{P}-\mathrm{R}\) & 108 LAST\％ & 158 RCL 14 \\
\hline 69＋LBL & \(59 \mathrm{E}+\) & 149 FRC & 159 X ¢ \(\mathrm{Y}^{\prime}\) \\
\hline \(10+L B L 10\) & 6 RIIH & 1101 E 2 & 169 \％ \\
\hline 11 FIX & 61 LASTX & 111＊ & 161 INT \\
\hline 12 IF 22 & 62 XPY & 112 INT & 162 FIX \({ }^{6}\) \\
\hline 13 CLA & 63 RCL 日8 & 113 ＊－＊ & 163 －PREC，＝1：＂ \\
\hline 14 ARCL 8.5 & 64 XPYY & 11410 & 164 ARCL X \\
\hline \(15+\) ERG．0．KEY＂ & 6557098 & 115 x Y？ & 16.5 AUIEN \\
\hline 16 TOHE 7 & \(66+\) & 116 ＂r回 & 166 RTN \\
\hline 17 TONE 7 & 67 RCL 67 & 117 RIN & 1674LEL 15 \\
\hline 18 PROMPT & \(68+\) & 118 ARCL X & 168 FS？ 21 \\
\hline 19 F¢OC 22 & 6951087 & 119 LASTX & 169 PSE \\
\hline 20.970 & 7 ＊ & 12 FFR & 170 FC？ 21 \\
\hline 21 ＂THIHK＂ & 712 & \(1211 \mathrm{E}_{2}\) & 171 STOP \\
\hline 22 AUIEN & 72 \％ & 122 ＊ & 172 ENI \\
\hline 23 SIH & \(73 \mathrm{ST}+89\) & 123 INT & \\
\hline 24 SIH & 74 GT0 100 & 124 ＂F－＂ & \\
\hline 2567016 & 754 LEL II & 12516 & \\
\hline 264LEL 11 & 764 & 126 X 7 T ？ & \\
\hline 2757010 & 77 ＂N＂ & 127 ＂\({ }^{\text {a }}\) & \\
\hline 28 KMY & 78 XE0 12 & 128 RDN & \\
\hline 29 HF & 79 ＂ト \({ }^{\text {H }}\) & 129 ARCL 8 & \\
\hline 30 KY & 8067013 & 130 RCL 13 & \\
\hline 312 & 81＊LBL E & 131 RCL 12 & \\
\hline 32\％ & 821 & 132 RTN & S 51－86－56 H \\
\hline 33 INT & 83 ＂N＂ & 1334LBL 0 & DIST：199．123 \\
\hline 34180 & 84 YEQ 12 & 134 FIX 2 & \\
\hline 35＊ & 85 ＂F E＂ & 135 －AREA＝ & S 13－29－44E \\
\hline 36 只》 & 86 GTO 13 & 136 ARCL 89 & IIST：128．550 \\
\hline 37 LASTX & 87 LEL I & 137 ＂F FT． \(12^{*}\) & \\
\hline 38 RCL 10 & 883 & 138 QUIEN & N 63－26－96 E \\
\hline 39＊ & 89.54 & 139 XEQ 15 & DIST： 111.863 \\
\hline 49 COS & 9 YEQ 12 & 146 RCL 69 & \\
\hline 41＊ & 91 ＂＋W＂ & 14143568 & N 7－87－39E \\
\hline 42－ & 9251013 & 142\％ & IIST： 291.556 \\
\hline 4357096 & 93＋LEL－ & 143 FIX 3 & \\
\hline 44 FIX \({ }^{\text {a }}\) & 942 & \(144{ }^{\prime \prime}=\) & AREA \(=20937.44 \mathrm{FT} .12\) \\
\hline 4.5 CLA & 95 －5 & 145 ARCL X & ＝日． 481 ACRES \\
\hline 46 TONE 7 & 96 瞇 12 & \(146{ }^{\circ}+\) ACRES \({ }^{\circ}\) & \\
\hline 47 ARCL 65 & 97 ＂\({ }^{\text {E＂}}\) & 147 AYIEN & \(\mathrm{EOC}=0.001 \mathrm{FT}\). \\
\hline 48 ＂DISTAMCE？ & 98. LEL 13 & 148 ADY & PREC．\(=1: 569937\) \\
\hline 49 PROMFT & 99 AYIEH & 149 MEQ 15 & \\
\hline 56 FIX 3 & 1旳 GTO 11 & 150 RCL 92 & \\
\hline
\end{tabular}
```

HF-41 Program Barcode: AREA-5
Program Registers Required: 52
ROH 1: LINES 1-4

```

```

ROW 2: LINES 4 - 11

```

```

ROW 3: LINES 12-15

```

```

ROW 4: LINES 15 - 19

```

```

ROW 5: LINES 20-25

```

```

ROW 6: LINES 25-35

```

```

RO4 7: LINES 36 - 46

```

```

ROW 8: LINES 47 - 48

```

```

ROH 9: LINES 48-52

```

ROH 10: LINES 52-63

ROW 11: LINES 64-74

ROW 12: LINES 75-79

ROM 13: LINES \(80-85\)

ROW 14: LINES 85-90

ROW 15: LINES 91-96

```

AREA-S (continued)

```
ROH 16: LINES 96-103
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROH 17: LINES 104-112

ROW 18: LINES 113-119

ㅈㅇㅐ 19: LINES 120-127

ROH 20: LINES 127-135

ROH 21: LINES 135-137

ROH 22: LINES 137-141

ROW 23: LINES 142-146

ROH 24: LINES 146-153


ROW 28: LINES 168-172
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Calculator: HP-11C
HP-41C (see Appendix A)
Program Name: MUGO-11 (Means, with Ungrouped and Grouped Options on the \(H P-11 \mathrm{C})\)

Author: Thomas W. Beers
Date: February 1986

Purpose: To calculate, for a set of univariate data, the arithmetic, quadratic, geometric, and harmonic means, and the standard deviation, coefficient of variation, and standard error. Data can be ungrouped, or grouped using either true frequencies or weights other than frequencies.
A. Storage assignments

Register 15C Use
(2) number of observations, \(n\), or sum of frequencies \(\left(\Sigma f_{j}\right)\), or sum of weights ( \(\Sigma w_{j}\) )
(3) \(\sum X_{i}, \sum f_{j} X_{i}\) or \(\sum w_{j} X_{i}\)
(4) \(\sum X_{j}^{2}, \sum f_{j} X_{j}^{2}\), or \(\sum w_{j} X_{i}^{2}\)
(5) \(\Sigma \log X_{i}, \Sigma f_{j} \log X_{i}\), or \(\sum w_{j} \log X_{i}\)
(6) forced to be \(\left(\Sigma \log X_{i}\right)^{2}\) to prevent an "ERROR" stop, or \(f_{j}\) or \(w_{j}\)
(7) not used, or \(X_{i}\)
(0) \(\Sigma 1 / X_{i}, \Sigma f_{j} / X_{i}\), or \(\sum w_{j} / X_{i}\)
(1) arithmetic mean ( \(\bar{X}\) or \(\bar{X}_{\text {wtd }}\).)
standard deviation (s or \(\mathrm{s}_{\text {wtd. }}\) )
number of classes, \(c\), in the case of grouped data
B. Labels

Name
[0]*
[1]
[A]
[C]
[D]

2

3

4

Use
program start if data are ungrouped; all storage registers are cleared, flag 1 is cleared and the \(X\) register is set to zero as a signal
program start if data are grouped (either frequencies or weights); all storage registers are cleared, flag 1 is cleared, and \(I\) is returned to the \(X\) register as a signal
calculates and displays the arithmetic mean, standard deviation, coefficient of variation, and the standard error
calculates and displays the quadratic mean calculates and displays the geometric mean calculates and displays the harmonic mean calculates and displays all four means separated by pauses data summary loop for the ungrouped case data summary loop for the grouped case; also tests for negative "frequencies" which indicates the weighted case, thus setting flag 1
if flag 1 is set, a correction is made to the standard deviation so that the effective denominator under the radical is \((c-1) \sum w_{i}\) rather than \(\left(\Sigma f_{j}\right)\left(\Sigma f_{j}-1\right)\) which is appropriate for the frequency case
*brackets indicate meaningful "RUN mode" accessability.
C. Flags

Number
Use
1
Cleared in labels 0 and 1 but then set in label 3 if keyed-in "frequencies" are negative, thus indicating that they are actually weights.
D. Program procedure and example
I. In PRGM mode, load the program.
II. In RUN mode, proceed as given below by way of example. The three
cases described are ungrouped, grouped assuming frequencies, and grouped assuming weights. Assume FIX 3, and in USER mode.
1. Calculate the four means and standard deviation(s), coefficient of variation (CV), and standard error ( \(\mathrm{s}_{\mathrm{x}}\) ) for the following data set:
\(62,58,62,73,84,68\)

Step Input Keys Output Comment
a.

GSB 0
0.000
ungrouped signal
b.
\begin{tabular}{lll}
62 & \(\mathrm{R} / \mathrm{S}\) & 1.000 \\
58 & \(\mathrm{R} / \mathrm{S}\) & 2.000 \\
62 & \(\mathrm{R} / \mathrm{S}\) & 3.000 \\
73 & \(\mathrm{R} / \mathrm{S}\) & 4.000 \\
84 & \(\mathrm{R} / \mathrm{S}\) & 5.000 \\
68 & \(\mathrm{R} / \mathrm{S}\) & 6.000
\end{tabular}
first observation
2nd observation 3rd observation 4th observation 5 th observation 6th observation
c. - A - R/S
67.833
9.517
14.029 3.885
d.

B
68.387
67.306
Q.M.
\(\bar{X}=A . M\).
s
SV as a percent
\(s_{\bar{x}}\)

C
66.809
G.M.
H.M.
e.

E
67.833 (pause)
A.M.
68.387 (pause) Q.M.
67.306 (pause)
G.M.
66.809
H.M.

Note that the user can select among steps \(c, d\), and \(e\), and the order of execution is immaterial.
f. for a new set of ungrouped data go to step a.
2. Calculate the same statistics (as in example 1) for the following data:
\begin{tabular}{rrr}
\(X_{i}\) & & \(f_{i}\) \\
\hline 58 & & 4 \\
62 & & 2 \\
68 & & 10 \\
73 & & 6 \\
84 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Keys & Output & Comment \\
\hline a. & - & GSB 1 & 3.142 & grouped signal \\
\hline \multirow[t]{5}{*}{b.} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 58 \uparrow 4 \\
& 62 \uparrow 2 \\
& 68 \uparrow 10 \\
& 73 \uparrow 6 \\
& 84 \uparrow 8
\end{aligned}
\]} & R/S & 1.000 & first class \\
\hline & & R/S & 2.000 & 2nd class \\
\hline & & R/S & 3.000 & 3 rd class \\
\hline & & R/S & 4.000 & 4 th class \\
\hline & & R/S & 5.000 & 5 th class \\
\hline \multirow[t]{4}{*}{c.} & - & A & 71.533 & \(\bar{x}\) (weighted) \\
\hline & - & R/S & 8.897 & \(s\) (weighted) \\
\hline & - & R/S & 12.437 & CV as a percent \\
\hline & - & R/S & 1.624 & \(\mathrm{s}_{\mathrm{x}}\) (weighted) \\
\hline \multirow[t]{4}{*}{d.} & & \multirow[t]{4}{*}{E} & 71.533 (pause) & A.M. (weighted) \\
\hline & & & 72.066 (pause) & Q.M. (weighted) \\
\hline & & & 71.000 (pause) & G.M. (weighted) \\
\hline & & & 70.470 & H.M. (weighted) \\
\hline
\end{tabular}
e. for a new set of grouped data go to step a.
3. Calculate the same statistics (as in example 1) for the following data:
\begin{tabular}{lr}
\(X_{i}\) & \(w_{i}\) \\
\hline 58 & .4 \\
62 & .2 \\
68 & 1.0 \\
73 & .6 \\
84 & .8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Keys & Output & Comment \\
\hline a. & - & GSB 1 & 3.142 & grouped signal \\
\hline \multirow[t]{5}{*}{b.} & 58 ¢. 4 CHS & R/S & 1.000 & negative weight \\
\hline & 62 ヶ. 2 & R/S & 2.000 & indicates weighted \\
\hline & 681 & R/S & 3.000 & data -- this need \\
\hline & \(73 \uparrow .6\) & R/S & 4.000 & be done only for \\
\hline & \(84 \uparrow .8\) & R/S & 5.000 & one of the keyed-in weights. \\
\hline \multirow[t]{4}{*}{c.} & - & A & 71.533 & \(\overline{\mathrm{X}}\) (weighted) \\
\hline & - & R/S & 7.575 & \(s\) (weighted) \\
\hline & - & R/S & 10.590 & CV as a percent \\
\hline & - & R/S & 4.374 & \(\mathrm{s}_{8}\) (weighted) \\
\hline
\end{tabular}
d. pressing A through E will give the same values as in example 2, since the weights were developed by scaling the frequencies by a factor of ten.
E. Program statements and code.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Step & Statement & & Code & Step & Statement & & Code & & Step & Statement & & Code \\
\hline 01 & [ f LBL 0] \({ }^{\text {] / }}\) & & 210 & 31 * & RCL 4 (6) & & 45 & 4 & 61 & EEX & & 26 \\
\hline 02 & \(f\) CLEAR REG & & 4234 & 32 & X & & & 20 & 62 & 2 & & 2 \\
\hline 03 & g CLX & & 4335 & 33 * & STO + 2 (4) & 44 & 40 & 2 & 63 & X & & 20 \\
\hline 04 & g CF 1 & 43 & 51 & 34 * & RCL 5 (7) & & 45 & 5 & 64 & R/S & & 31 \\
\hline 05 & [f LBL 2] & 42 & 212 & 35 & g LOG & & 43 & & 65 & RCL 8 & & 458 \\
\hline 06 & R/S & & 31 & 36 * & RCL 4 (6) & & 45 & 4 & 66* & RCL 0 (2) & & 450 \\
\hline 07 & 1/X & & 15 & 37 & X & & & 20 & 67 & \(\sqrt{x}\) & & 11 \\
\hline 08* & STO + 6 (0) & 44 & 406 & 38* & STO + 3 (5) & 44 & 40 & 3 & 68 & \(\div\) & & 10 \\
\hline 09 & g LST X & & 4336 & 39* & RCL 4 (6) & & 45 & 4 & 69 & g RTN & & 4332 \\
\hline 10 & \(g\) LOG & & 4313 & 40* & RCL 5 (7) & & 45 & 5 & 70 & [f LBL B] & 42 & 2112 \\
\hline 11 & g LST X & & 4336 & 41 & \(\div\) & & & 10 & 71* & RCL 2 (4) & & \(45 \quad 2\) \\
\hline 12 & ᄃ+ & & 49 & 42* & STO + 6 (0) & 44 & 40 & 6 & 72* & RCL 0 (2) & & 450 \\
\hline 13 & GTO 2 & & \(22 \quad 2\) & 43* & f ISG (f ISG & 1) & 42 & 6 & 73 & \(\div\) & & 10 \\
\hline 14 & [f LBL 1] & 42 & 211 & 44 & & & & 48 & 74 & \(\sqrt{x}\) & & 11 \\
\hline 15 & g CF 1 & 43 & 51 & 45 & RCL I & & 45 & & 75 & \(g\) RTN & & 4332 \\
\hline 16 & f CLEAR REG & & 4234 & 46 & GTO 3 & & 22 & 3 & 76 & [f LBL C] & 42 & 2113 \\
\hline 17* & \(f \Pi \quad(\mathrm{~g} \Pi)\) & & 4216 & 47 & [f LBL A] & 42 & 21 & 11 & 77 & \(g \bar{x}\) & & 430 \\
\hline 18 & (f LBL 3) & 42 & 213 & 48* & RCL 3 (5) & & 45 & 3 & 78 & \(x>y\) & & 34 \\
\hline 19 & R/S & & 31 & 49 & \(\mathrm{g} \mathrm{X}{ }^{2}\) & & 43 & & 79 & \(10^{x}\) & & 13 \\
\hline 20* & \(\mathrm{g} \mathrm{X}<0\) ( g TES & T 2) & 4310 & 50* & STO 4 (6) & & 44 & 4 & 80 & \(g\) RTN & & 4332 \\
\hline 21 & g SF 1 & 43 & 41 & 51 & \(g \bar{X}\) & & 43 & 0 & 81 & [f LBL D] & 42 & 2114 \\
\hline 22 & g ABS & & 4316 & 52* & STO 7 (1) & & 44 & 7 & 82* & RCL 0 (2) & & 450 \\
\hline 23* & STO 4 (6) & & \(44 \quad 4\) & 53 & R/S & & & 31 & 83* & RCL 6 (0) & & 456 \\
\hline 24* & STO + 0 (2) & 44 & 400 & 54 & g s & & & & 84 & \(\div\) & & 10 \\
\hline 25 & X<Y & & 34 & 55 & g F? 1 & 43 & 6 & 1 & 85 & g RTN & & 4332 \\
\hline 26* & STO 5 (7) & & 445 & 56 & GSB 4 & & 32 & 4 & 86 & [f LBL E] & 42 & 2115 \\
\hline 27 & X & & 20 & 57 & STO 8 & & 44 & 8 & 87 & \(\mathrm{g} \overline{\mathrm{x}}\) & & 430 \\
\hline 28* & STO + 1 (3) & 44 & 401 & 58 & R/S & & & 31 & 88 & \(f\) PSE & & 4231 \\
\hline 29* & RCL 5 (7) & & \(45 \quad 5\) & 59* & RCL 7 (1) & & 45 & 7 & 89 & GSB B & & 3212 \\
\hline 30 & g \(\mathrm{X}^{2}\) & & 4311 & 60 & \(\div\) & & & 10 & 90 & f PSE & & 4231 \\
\hline
\end{tabular}

\footnotetext{
1/Brackets and parentheses are not programmable; they are used to indicate externally meaningful or internal use labels, respectively.
}
E. Program statements and code. (continued)
\begin{tabular}{|c|c|c|}
\hline Step & Statement & Code \\
\hline 91 & GSB C & 3213 \\
\hline 92 & \(f\) PSE & 4231 \\
\hline 93 & GTO D & 2214 \\
\hline 94 & (f LBL 4) & 42214 \\
\hline 95* & RCL 0 (2) & 450 \\
\hline 96 & 1 & 1 \\
\hline 97 & - & 30 \\
\hline 98 & RCL I & 4525 \\
\hline 99 & 1 & 1 \\
\hline 100 & - & 30 \\
\hline 101 & \(\div\) & 10 \\
\hline 102 & \(\sqrt{x}\) & 11 \\
\hline 103 & X & 20 \\
\hline 104 & g RTN & 4332 \\
\hline
\end{tabular}

NOTE: g MEM leads to P-01 r-. 3
*Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15 C user to alter.

\section*{F. Formulas}
1. Ungrouped case

Given \(n\) observations, and summations over the range indicated by n
\(\Sigma\)
\(i=1\),
arithmetic mean \(=\bar{X}=A . M .=\frac{\Sigma X_{i}}{n}\)
quadratic mean \(=\) Q.M. \(=\sqrt{\frac{\sum X_{i}^{2}}{n}}\)
geometric mean \(=\) G.M. \(=\operatorname{antilog}\left(\frac{\Sigma \log X_{i}}{n}\right)\)
harmonic mean \(=\) H.M. \(=\frac{n}{\sum \frac{1}{\bar{X}_{i}}}\)
standard deviation \(=s=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}}\)
\[
=\sqrt{\frac{n \Sigma X_{i}^{2}-\left(\Sigma X_{i}\right)^{2}}{n(n-1)}}
\]
coefficient of variation \(=C V=\frac{S}{\bar{x}}(100)\)
standard error \(=S_{x}=-\frac{s}{\sqrt{n}}\)
2. Grouped case using frequencies.

Given c groups (or classes) of observations, each having a frequency indicated by \(f_{i}\), the summations are over the c classes, i.e., \(\sum_{i=1}^{\mathbb{C}}\) therefore the sum of the frequencies, \(\Sigma f_{i}=n\), the total number of observations.
\[
\begin{aligned}
& \bar{X}_{w t d}=A . M .=\frac{\sum f_{i} X_{i}}{\sum f_{i}}=\frac{\sum f_{i} X_{i}}{n} \\
& \text { Q.M.wtd. }=\sqrt{\frac{\sum f_{i} X_{i}^{2}}{n}} \\
& \text { G.M.wtd. }=\text { antilog }\left(\frac{\sum f_{i} \log X_{i}}{n}\right) \\
& \text { H.M.wtd. }=\frac{n}{\sum_{\frac{f}{i}}^{X_{i}}} \\
& s_{\text {wtd. }}=\sqrt{\frac{\sum f_{i}\left(X_{i}-\bar{X}\right)^{2}}{n-1}} \\
& =\sqrt{\frac{\left(\Sigma f_{i}\right)\left(\Sigma f_{i} x_{i}^{2}\right)-\left(\Sigma f_{i} x_{i}\right)^{2}}{n(n-1)}} \\
& C V=\frac{s}{\bar{x}}(100) \\
& s_{x}=\frac{s}{\sqrt{n}}
\end{aligned}
\]
3. Grouped case using weights.

Given c groups of observations, each having a weight indicated by \(w_{i}\), the summations are again over the c classes, \(\sum_{i=1}^{c}\), but the sum of the weights is not the total number of observations. We now have c observations, and \(\sum w_{i} \neq c\). This not so subtle change, however, affects primarily the standard deviation calculation. The casual user is cautioned that only the weighted arithmetic mean, s, CV, and \(s_{\bar{x}}\) are used to any extent. The other weighted means as defined below have questionable utility and indeed are difficult to justify. Their formulas are given for completeness only.
\[
\begin{aligned}
& \text { A.M.wtd. }=\frac{\sum w_{i} X_{i}}{\sum w_{i}} \\
& \text { Q.M.wtd. }=\sqrt{\frac{\sum w_{i} X_{i}^{2}}{\sum w_{i}}} \\
& \text { G.M.wtd. }=\operatorname{antilog(\frac {\sum w_{i}\operatorname {log}_{i}X_{i}}{\sum w_{i}})} \\
& \text { H.M.wtd. }=\frac{\sum w_{i}}{\sum \frac{w_{i}}{X_{i}}} \\
& s_{w t d .}=\sqrt{\frac{\sum w_{i}\left(X_{i}-\bar{X}\right)^{2}}{c-1}} \\
& s_{w t d .}=\sqrt{\frac{\left(\sum w_{i}\right)\left(\sum w_{i} X_{i}^{2}\right)-\left(\sum w_{i} X_{i}\right)^{2}}{\left(\sum w_{i}\right)(c-1)}} \\
& C V=\frac{s}{\bar{X}}(100) \\
& s_{X}=\frac{s}{\sqrt{\sum w_{i}}}
\end{aligned}
\]

Appendix A: MUG041 (program number 41F042), Appropriate for the HP-41C, CV, or CX.

The program found on the following pages, as a listing and in barcode form, can be used with any model of the HP-41. It was written so that the user could in general follow the instructions found in the HP-11C section of this documentation, assuming he knows that the XEQ key on the HP-41 is equivalent to the GSB key on the HP-11C.

Briefly, the steps in using MUGO41 are as follows, assuming the program has been loaded into the calculator:
1. Program start and initialization is achieved by XEQ MUGO41 (which can be assigned to a key, say shift LN, i.e., -15).
2. Select ungrouped or grouped option.
a. The ungrouped option is initially assumed, as evident in the first prompt: KEY X(1), R/S, meaning of course, "key in the first value of \(X\) and press \(R / S^{\prime \prime}\). The prompt for \(X(2)\) will follow, after keying X1 and pressing R/S.
b. Grouped option -- using frequencies (F) or other weights (W).
(1) At the initial prompt described above, pressing XEQ 01 will lead to the prompt:
(C1) \(X \uparrow F, R / S\), meaning "for class 1 key in the value of \(X\), press ENTER, key in the frequency for the class, and press R/S." The prompt for the next class \(X\) and frequency will follow after \(R / S\) has been pressed.
(2) If in response to the ( Cl ), X X F , R/S prompt the user keys in a negative value for "F", this and all subsequent "frequencies" will be assumed to be positive weights; the prompt for the second class then will be (C2), XiW, R/S.
3. After all data have been keyed in, the means and other statistics are obtained using the same labels and keys as in the HP-11C program, for example

Key Pressed

\section*{A}

R/S
R/S R/S

B
C
D
E

Output
AM \(=X X . X X X\)
SDEV \(=X X . X X X\)
\(C V=X X . X X X\) \%
SXBAR = XX. XXX
\(Q M=X X . X X X\)
\(G M=X X . X X X\)
\(H M=X X . X X X\)
All four means, separated by pauses.
4. For a new set of data:
ungrouped: XEQ 00 (or XEQ MUGO41)
grouped: XEQ 01 followed by input of \(X\) values and either positive frequencies or an initial negative "frequency" (i.e., weights), as appropriate.
5. Storage register assignments in the HP-41 program ar slightly different from the HP-11C since the summation register configuration is not the same. The MUGO41 program designates R00 through R05 as the statistical registers (step 03), but because " \(n\) " is positioned differently from the HP-11C, the following are the pertinent register assignments in MUGO41:

Register
00

01

02
03

04
05

09

Use
\(\sum X_{i}, \sum f_{j} X_{j}\), or \(\sum w_{j} X_{i}\)
\(\Sigma X_{j}^{2}, \Sigma f_{j} X_{i}^{2}\), or \(\sum w_{j} X_{i}^{2}\)
\(\Sigma \log X_{i}, \Sigma f_{j} \log X_{j}\), or \(\sum w_{j} \log X_{i}\)
forced to be \(\left(\Sigma \log X_{i}\right)^{2}\) to prevent an "ERROR" stop, or \(\mathrm{f}_{\mathrm{j}}\) or \(\mathrm{w}_{\mathrm{i}}\)
not used, or \(X_{i}\)
number of observations, \(n\), or sum of frequencies
( \(\left.\Sigma f_{j}\right)\), or sum of weights \(\left(\Sigma w_{j}\right)\)
\(\Sigma 1 / x, \Sigma f_{j} / X_{j}\), or \(\Sigma w_{j} / X_{i}\)
arithmetic mean ( \(\bar{X}\) or \(\bar{X}_{\text {wtd. }}\) )
standard deviation (s or \(\mathrm{s}_{\text {wtd. }}\) )
number of classes, \(c\), in the case of grouped data

CAUTION: After MUGO41 has been executed, the user should note that the statistical register assignment remains R00 through R05; if the "normal" assignment of R11-R16 is desired, \(\sum\) REG 11 must be executed.
6. Careful attention to the display will show that parentheses have been used rather than the < and > symbols available on the standard HP-41 keyboard. The user who loads the program from the keyboard therefore can substitute these "brackets" for parentheses. Alternatively, the program can be loaded using the barcode provided, wherein parentheses are made part of the program.
7. Printed output can be obtained if an appropriate printer is attached to the HP-41 when MUGO41 is used. The samples shown at the end of the program listing are from the HP 82143A printer and make use of the same examples cited in the HP-11C part of this documentation.

Program Listing for MUG041，an HP－41 Analogy of the Program MUGO－11
\begin{tabular}{|c|c|c|}
\hline 01＋LEL＊HUG041＂ & \(51 \mathrm{~K} \times\) ？
52 SF O1 & 101 ST0 93 102 MEAN \\
\hline 02 CF 29 & 53 ABS & 103 STO 07 \\
\hline 03 EREG 0 O & 54 ST0 03 & 104 －AM \(=\)－ \\
\hline 04＊LEL 60 & \(55 \mathrm{ST}+85\) & 165 ARCL 07 \\
\hline 65 CLE & 56 XCY & 106 RYIEH \\
\hline 068 & \(57 \mathrm{STO} \mathrm{O}_{4}\) & 107 STOP \\
\hline 97 STO 96 & 58 ＊ & 108 SDEY \\
\hline 08 CF 01 & \(59 \mathrm{ST}+08\) & 109 FS？ 01 \\
\hline 094LBL 02 & 66 RCL 84 & 110 XEQ 94 \\
\hline 16 FIX \({ }^{\text {a }}\) & \(61 \times 12\) & 111 ST0 88 \\
\hline 11 RCL 05 & 62 RCL 03 & 112 ＝SDEY＝ \\
\hline 121 & 63 ＊ & 113 ARCL 88 \\
\hline 13 ＋ & 64 ST＋ 61 & 114 AYIEW \\
\hline 14 ＂KEY X \({ }^{\text {c }}\) & 65 RCL 64 & 115 STOP \\
\hline 15 ARCL \(X\) & 66 LOG & 116 RCL 97 \\
\hline 16 ＂ト），R／S＊ & 67 RCL 03 & 117 \％ \\
\hline 17 PROMPT & 68 ＊ & 1181 E2 \\
\hline \(181 / 8\) & \(69 \mathrm{ST}+02\) & 119 ＊ \\
\hline \(19 \mathrm{ST}+86\) & 76 RCL 63 & \(120^{\circ} \mathrm{CV}={ }^{\text {－}}\) \\
\hline 20 LASTX & 71 RCL 94 & 121 ARCL X \\
\hline 21 LOG & 72 \％ & \(122{ }^{\circ}+\) \\
\hline 22 LASTX & \(73 \mathrm{ST}+86\) & 123 AVIEH \\
\hline \(238+\) & 74 ISG 99 & 124 STOP \\
\hline 24 ＂\({ }^{\text {（＂}}\) & 75 & 125 RCL 88 \\
\hline 25 ARCL 85 & \(76{ }^{\text {－}}\)（C \({ }^{\text {c }}\) & 126 RCL 65 \\
\hline \(26^{\circ}+\) ）\({ }^{-}\) & 77 ARCL 99 & 127 SQRT \\
\hline 27 FIX 3 & 78 －\()^{\text {：}}\)－ & 128 ／ \\
\hline 28 ARCL L & 79 FIX 3 & 129 －SXBAR＝ \\
\hline 29 MYIEH & 88 AYIEH & 139 ARCL \(X\) \\
\hline 30 GTO 02 & \(81^{-x}\)－ & 131 AYIEH \\
\hline \(31+L B L\) 01 & 82 ARCL 04 & 132 STOP \\
\hline 32 CF 91 & 83 AYIEW & 133＋LBL B \\
\hline 33 CLE & 84 FS？ 01 & 134 RCL 01 \\
\hline 34 & 85 ＂\({ }^{\text {＂}}\) & 135 RCL 85 \\
\hline \(35 \mathrm{ST0} 96\) & 86 FC ？ 01 & 136 \％ \\
\hline 36 ST0 09 & 87 －F＂ & 137 Sort \\
\hline 37＋LBL 93 & 88 ＂\(=\)－ &  \\
\hline 38 FIX 0 & 89 FC ？ 01 & 139 ARCL X \\
\hline 39 RCL 99 & 98 FIX 日 & 148 AYIEH \\
\hline 401 & 91 ARCL 03 & 141 RTN \\
\hline \(41+\) & 92 RYIEN & \(142+\) LBL C \\
\hline \(42^{*}\)（ \(\mathrm{C}^{\prime}\) & 93 ADY & 143 MEAN \\
\hline 43 ARCL \(X\) & 94 GT0 03 & \(144{ }^{\text {K }}\)（ \()\) Y \\
\hline 44 ＂r） \(\mathrm{Xf}^{4}\) & 954 LEL A & \(14510 \uparrow \times\) \\
\hline 45 FS ？ 01 & 96 ADY & \(146{ }^{\text {\％}} \mathrm{CM}=\)－ \\
\hline 46 ＂H＂ & 97 KEG 05 & 147 ARCL X \\
\hline 47 FC ？ 01 & 98 FIX 3 & 148 AYIEH \\
\hline 48 ＂ \(\mathrm{FF}^{\text {\％}}\) & 99 RCL 62 & 149 RTN \\
\hline \(49^{*}\) ト， \(\mathrm{R} / \mathrm{S}^{\prime \prime}\) & \(100 \times 12\) & \(150+\) LBL D \\
\hline 50 PROHPT & & \\
\hline
\end{tabular}

Program Listing for MUGO41（continued）and Sample Printed Output Obtained in MAN Printer Mode
```

151 RCL }0
152 RCL 06
153;
154 "H%=
155 ARCL Y
156 GHIEH
157 RTH
158*LBL E
159 MEON
16日 "FM= *
161 ARCL X
162 AIM
163 AYIEH
164 FSE
165 YEE B
166 PSE
167 XEO [
168 PSE
169 XEG II
170 PSE
171+LBL 暗
172 5F 12
173 "\#\#\#\#\#\#"
174 AYIEN
175 CF 12
176 RTH
177*LEL 044
178 RCL 05
1791
184-
181 RCL G9
1821
183-
184;
185 SORT
186 *
187 EHD

```
\begin{tabular}{|c|}
\hline \(\mathrm{Y}(1)=62.466\) \\
\hline \(X(2)=58.860\) \\
\hline \(y(3)=62.46{ }^{\text {a }}\) \\
\hline \(x(5)=73.006\) \\
\hline \(13)=84.8000\) \\
\hline \(X(6)=68.800\) \\
\hline ＊＊＊＊＊＊＊ \\
\hline Hili＝\(=67.833\) \\
\hline SIEP＝9．517 \\
\hline \(C \psi=14.829 \%\) \\
\hline SKBPR＝ 3.885 \\
\hline Q \({ }^{\prime \prime}=68.387\) \\
\hline \(\underline{C H}=67.366\) \\
\hline H月 \(=66.869\) \\
\hline A \({ }^{6}=67.833\) \\
\hline  \\
\hline  \\
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline （c） & （C1） \\
\hline \(\mathrm{y}=58.680\) & \(8=58.606\) \\
\hline \(F=4\) & \(\omega=0.46 \overline{6}\) \\
\hline （6） & （C2） \\
\hline \(\mathrm{X}=62.060\) & \(\mathrm{P}=62.096\) \\
\hline \(F=2\) & \(\omega=6.296\) \\
\hline （C） & （ढ） \\
\hline \(\mathrm{y}=68.040\) & \(\mathrm{f}=68.6 \mathrm{beg}\) \\
\hline \(\mathrm{F}=10\) & \(4=1.800\) \\
\hline （C4） & （C4） \\
\hline  & \(x=73.060\) \\
\hline \(F=6\) & \(\omega=0.606\) \\
\hline （5） & （C5） \\
\hline \％\(=84.606\) & \(y=84.060\) \\
\hline \(F=8\) & \(H=8.868\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
＊＊がれだが
月月 \(=71.533\)
SIE \(=7.575\)
\(C \psi=10.596 \%\)
\(5 X B A R=4.374\)
AM \(=71.535 \quad\) AM \(=71.533\)
\(0 M=72.066 \quad\) 日月 \(=72.666\)

H\％ 70.47
HM＝70．476

```

HP-41 Program Barcodie= MUGU4| (continumed)
FOW 19: LINES 103 - 108

```

```

FOW 20: LINES 109 - 112

```

```

ROW 21: LINES 112 - 118

```

```

KOW 22: LINES 118-122

```

```

FOW 23: LINES 122 - 129

```

```

HOW 24: LINES 129--132

```

```

ROW 25: LINES 133 - ise

```

```

ROW 26: LINES 139 - 14G

```

```

ROW \& ': LINES 146-152

```

```

FUW 23: LINES 153 - 150

```

```

FOW 29: LINES :58-163

```

```

ROW 30: LINES IE4 - 159
|{||{|||
ROW 32: LINES 175 - 192

```

```

ROW 3J: LINES 183 - 187

```


\section*{Some Programs Dealing with Amortization Schedules}

Thomas W. Beers*

The programs presented and described in this package provide the means by which various entries of a common home mortgage amortization schedule can be obtained. The usual scenario assumed is that the monthly payments are to be made at the end of each month over the life of the loan and interest is charged based on the outstanding balance just after the previous payment. Part of the payment, then, pays this interest and the remainder (reduction in principal) reduces the outstanding balance for the next interest calculation. Thus, the proportion of each month's payment attributed to interest starts out high and S-L-O-W-L-Y drops. Conversely the part of each payment applied to reduce the principal starts out L-O-W and increases gradually.

Also included in some of the programs is the capability of calculating entries in a schedule which is developed by a financial scheme known as "the rule of 78s". In this approach the borrower makes monthly payments as above, but the interest component of each payment starts out very high (compared to

\footnotetext{
*Professor of Forestry, Dept. of Forestry and Natural Resources, Purdue University. West Lafayette, IN. 47907.
}
the normal amortization schedule) and drops off precipitously in the late stages of the loan life. The net effect of this way of opportioning the finance charge is to discourage the borrower from making an early payoff of the loan, since the principal is reduced so slowly during the first part of the loan. On the positive side, apportioning the interest this way may be beneficial to the borrower when claiming income tax deductions.

The programs found herein are
1. AMORT78-11. AMORTization schedules and similar financial calculations using the rule of \(\underline{78}\) s with the HP-11C. (Program number 11F009).
2. FINC78-11. FINancial Calculations assuming the rule of 78 s with the HP-11C. (Program number 11F010).
3. AMORT-12. AMORTization schedules with the HP-12C. (Program number 12F001).
4. AMORT. Normal AMORTization schedules with the HP-41. (Program number 41F043).
5. AM7841. AMortization schedules and similar financial calculations using the rule of 78 s with the HP-41. (Program number 41F044).

Several tables found on the following pages will be referred to repeatedly in examples used in the programs. Table 1 is a portion of a normal amortization schedule generated using an HP-71 computer equipped with a finance module and connected to an HP Thinkjet Printer. The loan is a 25-year home mortgage with initial principal (PV) of \(\$ 35,000\), an annual percentage rate (APR) of \(11 \%\) (monthly rate \(=11 / 12=.916666667 \%\) ), leading to a constant monthly payment of \(\$ 343.04\). This payment value can be found easily by a number of options:

Table 1. Portion of a Normal Amortization Schedule for a Home Mortage Loan. Loan amount is \(\$ 35,000\), term is 25 years with 11 percent annual interest applied monthly, leading to equal monthly payments of \$343.04.
Loan balance is 35000
Payment amount is -343.04
made at the End of each period
Periodic interest rate \% is 0.91666666667
\begin{tabular}{|c|c|c|c|}
\hline Period \# & Amt. of Int. & Change in Balance & Ending Balance \\
\hline 0 & -0.00 & 0.00 & 35000.00 \\
\hline 1 & -320.83 & -22.21 & 34977.79 \\
\hline 2 & -320.63 & -22.41 & 34955.38 \\
\hline 3 & -320.42 & -22.62 & 34932.76 \\
\hline 4 & -320.22 & -22.82 & 34909.94 \\
\hline 5 & -320.01 & -23.03 & 34886.91 \\
\hline 6 & -319.80 & -23.24 & 34863.67 \\
\hline 7 & -319.58 & -23.46 & 34840.21 \\
\hline 8 & -319.37 & -23.67 & 34816.54 \\
\hline 9 & -319.15 & -23.89 & 34792.65 \\
\hline 10 & -318.93 & -24.11 & 34768.54 \\
\hline 11 & -318.71 & -24.33 & 34744.21 \\
\hline 12 & -318.49 & -24.55 & 34719.66 \\
\hline 13 & -318.26 & -24.78 & 34694.88 \\
\hline 14 & -318.04 & -25.00 & 34669.88 \\
\hline 15 & -317.81 & -25.23 & 34644.65 \\
\hline 16 & -317.58 & -25.46 & 34619.19 \\
\hline 17 & -317.34 & -25.70 & 34593.49 \\
\hline 18 & -317.11 & -25.93 & 34567.56 \\
\hline 19 & -316.87 & -26.17 & 34541.39 \\
\hline 20 & -316.63 & -26.41 & 34514.98 \\
\hline 21 & -316.39 & -26.65 & 34488.33 \\
\hline 22 & -316.14 & -26.90 & 34461.43 \\
\hline 23 & -315.90 & -27.14 & 34434.29 \\
\hline 24 & -315.65 & -27.39 & 34406.90 \\
\hline 25 & -315.40 & -27.64 & 34379.26 \\
\hline 26 & -315.14 & -27.90 & 34351.36 \\
\hline 27 & -314.89 & -28.15 & 34323.21 \\
\hline 28 & -314.63 & -28.41 & 34294.80 \\
\hline 29 & -314.37 & -28.67 & 34266.13 \\
\hline 30 & -314.11 & -28.93 & 34237.20 \\
\hline 31 & -313.84 & -29.20 & 34208.00 \\
\hline 32 & -313.57 & -29.47 & 34178.53 \\
\hline 33 & -313.30 & -29.74 & 34148.79 \\
\hline 34 & -313.03 & -30.01 & 34118.78 \\
\hline 35 & -312.76 & -30.28 & 34088.50 \\
\hline 36 & -312.48 & -30.56 & 34057.94 \\
\hline 298 & -9.26 & -333.78 & 676.07 \\
\hline 299 & -6.20 & -336.84 & 339.23 \\
\hline 300 & -3.11 & -339.93 & -. 70 \\
\hline
\end{tabular}
(1) from the keyboard of an HP-12C;
(2) using either of the programs FICALC-11/15 (HP-11C or HP-15C) or FICALC (HP-41);
(3) using the TVM program in an HP-41 equipped with the Advantage module;
(4) using the FI program and an HP-41 equipped with a PPC ROM module.

Table 2 exemplifies a 12 -month loan where the interest allocation procedure is by the rule of 78 s and month-by-month values are shown. Table 3 also demonstrates the application of the rule of 78 s, but a 3 -year loan is assumed and totals are obtained for each year. It is interesting to note that the annual percentage rate of interest corresponding to the cited monthly payments does not appear in either Tables 2 or 3 , but can be shown to be \(35.07 \%\) in Table 2 and \(22.60 \%\) in Table 3 . Fortunately for the unsuspecting borrower the use of the rule of 78 s is seldom seen in home loans or other long-term loans and is gradually being phased out by most lending institutions. Tables 2 and 3 were extracted from an article titled "The Rule of 78s" by E.T. Clare which appeared in Real Estate Today, July/August, 1984.

Table 2. Monthly summary of a Twelve-Month Loan with Total Finance Charge Allocated Using the Rule of 78 s . Loan amount is \(\$ 5000\), total finance charge is \(\$ 1000\), thus the \(\$ 6000\) is paid back in 12 equal monthly payments of \(\$ 500\).

\section*{Exhibit I Interest Allocation Per Payment Period}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Loan amount: \$5,000}} & \multicolumn{4}{|c|}{\(S O D=\frac{n(n+1)}{2}=\frac{12(12+1)}{2}\)} \\
\hline & & & & \multicolumn{4}{|l|}{Loan term: 12 months 2} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Loan monthly payments: \(\$ 500\) \\
Finance charge (interest): \(\$ 1,000\)
\end{tabular}}} & \multicolumn{4}{|c|}{SOD \(=6\) (13)} \\
\hline & & & & & SOD \(=78\) & (fraction den & minator) \\
\hline Payment Period & Applicable Fraction & & Total Interest & & Interest Allocation & Principal Reduction & Remaining Balance \\
\hline 1 & 12/78 & \(\times\) & \$1,000 & = & \$153.85 & \$346.15 & \$4,653.85 \\
\hline 2 & 11/78 & \(\times\) & 1,000 & = & 141.03 & 358.97 & 4,294.87 \\
\hline 3 & 10/78 & \(\times\) & 1,000 & \(=\) & 128.21 & 371.79 & 3,923.08 \\
\hline 4 & 9/78 & \(\times\) & 1,000 & = & 115.38 & 384.62 & 3,538.46 \\
\hline 5 & 8/78 & \(\times\) & 1,000 & = & 102.56 & 39744 & 3,141.03 \\
\hline 6 & 7/78 & \(\times\) & 1,000 & = & 89.74 & 410.26 & 2,730.77 \\
\hline 7 & 6/78 & \(\times\) & 1,000 & = & 76.92 & 423.08 & 2,307.77 \\
\hline 8 & 5/78 & \(\times\) & 1,000 & = & 64.10 & 435.90 & 1,871.80 \\
\hline 9 & 4/78 & \(\times\) & 1,000 & = & 51.28 & 448.72 & 1,423.08 \\
\hline 10 & 3/78 & \(\times\) & 1,000 & \(=\) & 38.46 & 461.54 & 961.54 \\
\hline 11 & 2/78 & \(\times\) & 1,000 & = & 25.64 & 474.36 & 487.17 \\
\hline 12 & 1/78 & \(\times\) & 1,000 & \(=\) & 12.83 & 487.17 & 0 \\
\hline & & & & & \$1,000.00 & \$5,000,00 & \\
\hline
\end{tabular}

Table 3. Monthly Detail and Annual Summary of A Three-Year Loan with Interest Allocation Using the Rule of 78 s . Loan amount is \(\$ 20,000\), total finance charge is \(\$ 7720\), thus the \(\$ 27,720\) is paid back in 36 equal monthly payments of \(\$ 770\).


Calculator: HP-11C
Program Name: AMORT78-11 (AMORTization schedules and similar financial calculations using the "rule of 78s" with the HP-11C)

Author: Thomas W. Beers
Date: March 1986

Purpose: To provide the usual entries in an amortization schedule (payment number, interest paid, reduction in principal, and outstanding balance) assuming the input values are
\(k=\) the number of periods over which the amount of interest and the reduction in principal are to be summed (can be 1 for the complete schedule, month by month or year by year)

I = periodic interest rate as a percent
PV = initial value of the loan, the amount borrowed
PMT = periodic payment (input as a negative)

The program provides the option of calculating similar entries for a schedule which assumes the rule of 78 s interest allocation procedure, in which case the required input values are PV, PMT, and \(k\) as defined above, and \(n=\) the total number of periods (usually months) in the loan and

INT = the total finance charge for the loan, i.e., the sum of all the periodic interest payments (input as a negative)
A. Storage assignments
\begin{tabular}{|c|c|}
\hline Register & Use \\
\hline 0 & \(k=\) no. of periods per group \\
\hline 1 & EINT = the sum of the interest paid through the current payment (within the group) \\
\hline 2 & EPRIN = the sum of the reduction in principal paid through the current payment (within the group) \\
\hline
\end{tabular}
A. Storage assignments (continued)

\section*{Register}

3

4

5

6

7

8

I
B. Labels

\section*{Name}
program start; all storage registers are cleared, FIX 2 is set, and the \(X\) register is cleared as a signal
the access to the part of the program under the calculation procedure of the rule of 78 s ; sets flag 0 , then calculates the sum of digits from 1 to \(n\); input assumption is n ENTER k
stores the input value, I, or INT
stores the input value, PV
stores the input value, PMT, and after input of \(k\), clears flag 0 and proceeds to label 3
the calculation loop for an amortization schedule; current allocation for interest is calculated then control passes to label 6
establishes the within group index (in register I) then clears R1 and R2
stores the new value for \(k\) if just input
calculation loop for the rule of 78s; calculates EINT, \(\Sigma\) PRIN, and PV, making use of label 6 as a subroutine
B. Labels (continued)

Name
Use
5

6
displays the number of periods amortized or processed,
EINT, \(\sum\) PRIN, and PV; control is transferred (upon R/S
depression) to label 2 if no number is keyed (i.e., \(k\)
remains the same) or to label 3 if a new \(k\) (group size) is
keyed
completes the calculation loop for an amortization
schedule, calculating the current allocation for reduction
in principal, \(\Sigma I N T\) and \(\sum P R I N\), and incrementing the number
of periods currently amortized or processed
*brackets indicate meaningful "RUN mode" accessability.
C. Flags

Number
0

Use
cleared in label \(D\) if \(R / S\) is pressed after a value for \(k\) is keyed, indicating the selected option is the common amortization schedule;
set in label \(A\) if \(A\) is pressed after a value for \(n\) and \(k\) have been keyed at the "label D" stop, indicating the selected option is a table summarizing the rule of 78 s results
D. Program procedure and example
I. In PRGM mode, load the program (first refer to comment 5 found after the examples).
II. In RUN mode. proceed as given below by way of example.
1. Example 11-1. Duplicate the amortization schedule (for the first three months) shown in Table 1 . That is, for a home mortgage loan of \(\$ 35,000\) (PV) where annual percentage rate \(=11 \%\) (periodic rate, I, therefore is \(11 / 12 \%\) ), the monthly payment, PMT, is \(\$ 343.04\), and the number of periods to be grouped, \(k\), is 1 . USER mode is assumed.

D. Program procedure and example (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Key & Output & Comment \\
\hline c. solution & 1 & R/S & \[
\begin{gathered}
\text { 1. (pause) } \\
-320.83(\text { pause }) \\
-22.21(\text { pause }) \\
34,977.79
\end{gathered}
\] & ```
    k=1, month 1
    interest
principal reduction
after-payment balance
``` \\
\hline & - & R/S & \[
\begin{array}{r}
\text { 2.(pause) } \\
-320.63(") \\
-22.41(") \\
34,955.38
\end{array}
\] & month 2 interest prin. red. bal ance \\
\hline & - & R/S & \[
\begin{array}{r}
\text { 3.(pause) } \\
-320.42(") \\
-22.62(") \\
34,932.76
\end{array}
\] & month 3 interest prin. red. balance \\
\hline
\end{tabular}
etc., for all months, if more are desired.
Note: if the pause is too fast, current interest, principal reduction, and balance can be recalled from R1, R2, and R3 respectively. 1/
d. for a new value of \(k\) (group size) key this value then press \(R / S\); for an entirely new problem, press E (step a.).
2. Example 11-2. Given the same basic loan data as in the previous example except that the first payment is due on Dec. 15, 1985 and all subsequent payments are due the 15 th of the month. For tax reports we need the sums of interest paid and principal reduction paid by calendar years for 1985 (\(k=1\) payment), \(1986(k=12), 1987(k=12)\), and \(1988(k=11)\). We also want to know the loan balance remaining after the 36 payments have been made, i.e., the "balloon" or pay-off amount.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & & Input & Key & Output & Comment \\
\hline a. initializ & & - & E & 0.00 & clear signal \\
\hline b. input & 11 & \[
\begin{aligned}
& \text { ENTER } 12 \div \\
& 35000 \\
& 343.04
\end{aligned}
\] & \[
\begin{gathered}
\text { B } \\
C \\
C H S, ~ D
\end{gathered}
\] & \[
\begin{gathered}
0.92 \\
35,000.00 \\
-343.04
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}=.91666 \ldots 7 \\
\mathrm{PV}=35,000 \\
\mathrm{PMT}=-343.04
\end{gathered}
\] \\
\hline c. solution & & 1 & R/S & \[
\begin{array}{r}
\text { 1. (pause) } \\
-320.83(") \\
-22.21(") \\
34,977.79
\end{array}
\] & \begin{tabular}{l}
month 1 \\
interest \\
prin. red. \\
bal ance
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
I/ If this is done, however, the group size (1 in this case) must be re-keyed prior to pressing R/S to continue.
}
D. Program procedure and example (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Key & Output & Comment \\
\hline & 12 & R/S & \[
\begin{gathered}
\text { 13.(pause) } \\
-3,833.57(") \\
-282.91(") \\
34,694.88
\end{gathered}
\] & \begin{tabular}{l}
months 2-13 \\
12-month interest 12-month prin. red. balance
\end{tabular} \\
\hline & - & R/S & \[
\begin{gathered}
\text { 25.(pause) } \\
-3,800.86(" \text { ") } \\
-315.62(") \\
34,379.26
\end{gathered}
\] & \begin{tabular}{l}
months 14-25 \\
12-month interest 12 -month prin. red. balance
\end{tabular} \\
\hline & 11 & R/S & \[
\begin{gathered}
36 .(\text { pause) } \\
-3,452.12(\text { "') } \\
-321.32(") \\
34,057.94
\end{gathered}
\] & \begin{tabular}{l}
months 26-36 \\
11-month interest 11-month prin. red. balance
\end{tabular} \\
\hline
\end{tabular}

The sums can be verified by adding up the pertinent values from Table 1. Note that the balance after the 36 th payment (the balloon) also checks.

CAUTION: because of the iterative nature of the program, some 18 seconds are required to determine the 12 -month sums, so don't panic; think how long it would take you to make the calculations "by hand"! More speed is possible if the corresponding HP-12C or HP-41 programs are used.
3. Example 11-3. Duplicate the interest and principal reductions for the first three months of Table 2, which assumes use of the rule of 78 s . Also find the pay-off value (remaining balance) immediately after the 9 th payment. Note that
```

PV = \$5000, amount borrowed
n = 12, term of the loan in months
PMT = \$500, monthly payment
INT = \$1000, total finance charge = n(PMT) - PV

```
and \(k=1\), number of periods to be grouped
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Key & Output & Comment \\
\hline a. initialize & - & E & 0.00 & clear signal \\
\hline \multirow[t]{3}{*}{b. input} & 1000 & CHS , B & -1,000.00 & INT \(=-1000\) \\
\hline & 5000 & C & 5,000.00 & \(\mathrm{PV}=5000\) \\
\hline & 500 & CHS, D & -500.00 & \(\mathrm{PMT}=-500.00\) \\
\hline
\end{tabular}
D. Program procedure and example (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & & Input & Key & Output & Conment \\
\hline \multirow[t]{4}{*}{c. solution} & 12 & ENTER 1 & A & \[
\begin{gathered}
\text { 1. (pause) } \\
-153.85(" \text { ") } \\
-346.15(") \\
4,653.85
\end{gathered}
\] & ```
month 1 (}n=12
 interest
 prin. red.
 balance
``` \\
\hline & & - & R/S & \[
\begin{gathered}
\text { 2. (pause) } \\
-141.03(") \\
-358.97(") \\
4,294.88
\end{gathered}
\] & month 2 interest prin.red. balance \\
\hline & & - & R/S & \[
\begin{gathered}
\text { 3. (pause) } \\
-128.21(") \\
-371.79(") \\
3,923.09
\end{gathered}
\] & month 3 interest prin. red. balance \\
\hline & & 6 & R/S & \[
\begin{gathered}
\text { 9. (pause) } \\
-499.98(") \\
-2,500.02(") \\
1,423.07
\end{gathered}
\] & months 4-9 interest sum prin. red. sum bal ance \\
\hline
\end{tabular}
4. Example 11-4. Duplicate the 12 -month totals for interest and principal paid and remaining balances for each of the three terminal years shown in Table 3. Note that the rule of 78 s prevails and
\[
\text { PV }=\$ 20,000 \text {, amount borrowed }
\]
\(n=36\), term of the loan in months
PMT \(=\$ 770\), monthly payment
INT \(=\$ 7720\), total finance charge
and \(\quad k=12\), number of periods to be grouped

Step
Input Key Output \(\quad \underline{\text { Comment }}\)
a. initialize
-
E
0.00
clear signal
b. input
\(\begin{array}{cc}7720 & \text { CH } \\ 20000 & \text { CH } \\ 770 & \end{array}\)
CHS,\(~ B\)
CHS,
C
-7,720.00
INT \(=-7720\)
. input

A
A 12.(pause) months 1-12
\[
\begin{array}{cc}
-4,242.52(") & \text { interest sum } \\
-4,997.48(") & \text { prin. red. sum } \\
15,002.52 & \text { balance }
\end{array}
\]

R/S 24.(pause) months 13-24
-2,573.34(") interest sum
-6,666.66(") prin. red. sum
8,335.86 balance
D. Program procedure and example (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Key & Output & Comment \\
\hline & \multirow[t]{4}{*}{-} & \multirow[t]{4}{*}{R/S} & 36. (pause) & months 25-36 \\
\hline & & & -904.14(") & interest sum \\
\hline & & & -8,335.86(') & prin. red. sum \\
\hline & & & 0.00 & balance \\
\hline
\end{tabular}

\section*{III. Comments}
1. If the output answers appear too fast for recording, they can be recalled from the assigned registers:?/
```

R1 = current grouped interest
R2 = current grouped principal reduction
R3 = current balance

```

Alternatively, the \(R / S\) key can be pressed during any display, thus "freezing" the answer; pressing R/S again will re-start the program at the point it was interrupted.
2. As should be evident from the examples, input and output data make use of the conventional signs from the viewpoint of the borrower, that is, money received (the loan amount and the current balance) is positive, whereas money paid (amount of interest, payments, and principal reduction) is negative.
3. CAUTION: The program does not check to assure that the proper input signs are observed, therefore care should be taken to conform to the sign convention; otherwise, erroneous results ensue.
4. As evidenced by the examples dealing with amortization schedules, only the straight-forward cases can be easily treated with the programmable calculator. In cases, for example, where the compounding frequency (CF) and payment frequency (PF) do not match, the development of an amortization schedule can become abstruse and in general a suitable computer program should be sought.

It is always advisable to ask the lending agency to specify in detail how the interest charges are obtained and how and when the reduction in principal takes place.

In situations where interest charges are compounded (like in a savings framework) assuming one frequency (CF) while payments are made at another frequency (PF), an effective periodic (period corresponding to the payment period) interest rate in percent ( \(\mathrm{I}_{\mathrm{e}}\) ) can be calculated from
\[
\mathrm{I}_{\mathrm{e}}=100\left[\left(1+\frac{i}{\mathrm{CF}}\right) \mathrm{CF} / \mathrm{PF}_{-1}\right]
\]

2/ If this is done, however, the group size must be re-keyed prior to pressing R/S to continue.
D. Program procedure and example (continued)
where \(i=A P R / 100=\) annual percentage rate expressed as a decimal. and CF, PF are 365 for daily, 12 for monthly, 2 for semi-annually, etc.

The use of this relation is more applicable to determine periodic payments or to determine future values of regular servings rather than to develop amortization schedules.

Thus, as an HP-11C program it is more appropriate to consider it a corollary to the progrram FICALC-11/15, or to keep permanently stored in an HP-12C. For the HP-11C the sequence of steps to solve the equation for \(\mathrm{I}_{\mathrm{e}}\) [assuming input of APR, ENTER, PF, ENTER, CF] would be
\begin{tabular}{|c|c|}
\hline LBL 0 & 1 \\
\hline STO 4 & + \\
\hline \(x>y\) & \(x>y\) \\
\hline \(\dot{¢}\) & \(\gamma^{X}\) \\
\hline \(X>Y\) & 1 \\
\hline EEX & - \\
\hline 2 & EEX \\
\hline \(\div\) & 2 \\
\hline RCL 4 & X \\
\hline \(\div\) & R/S or RTN \\
\hline
\end{tabular}
5. When keying the AMORT78-11 program initially, the user interested only in developing normal amortization schedules, i.e., not by the rule of 78 s , can shorten the program considerably by deleting those statements marked with a preceding asterisk, numbers \(15,24,25,31\), 41, 42, 45, and 64 through 89 (see next section). Remember, deleting statements from the end of the program toward the beginning preserves the original statement numbers and minimizes deletion blunders.

\section*{E. Program statements and code.}


3/Brackets imply meaningful "RUN mode" accessibility.
*Indicates those statements which are needed only by the rule of 78 s application of the program; they can be deleted for normal amorization schedule development.

4/ The 15 C user should key f DSE I for statements 43 and 87 .

\section*{F. Formulas}
1. Regarding conventional mortgage calculations:

The algorithm used to determine the part of each periodic payment (PMT) attributed to interest (INT \({ }_{j}\) ) and reduction in principal \(\left(\right.\) PRIN \(\left._{j}\right)\) starts with the initial loan amount ( \(\mathrm{PV}_{\mathrm{O}}\) ) and proceeds as follows:
\[
\begin{aligned}
& \mathrm{INT}_{1}=\mathrm{i}\left(P V_{0}\right), i=\text { periodic interest rate expressed as a decimal } \\
& \operatorname{PRIN}_{1}=\mathrm{PMT}-\mathrm{INT}_{1} \\
& \mathrm{PV}_{1}=\mathrm{PV}_{0}-\text { PRIN }_{1}=\begin{array}{c}
\text { balance immediately after the first period } \\
\text { payment. }
\end{array}
\end{aligned}
\]

Then:
\[
\begin{aligned}
& I N T_{2}=i\left(P V_{1}\right) \\
& \text { PRIN }_{2}=P M T-I N_{2} \\
& P V_{2}=P V_{1}-\text { PRIN }_{2}
\end{aligned}
\]
etc., thus
for the \(j\) th payment: \(I N T_{j}=i\left(P V_{j-1}\right)\)
\[
\operatorname{PRIN}_{j}=\operatorname{PMT}-\mathrm{INT}_{j},
\]
and just after the \(j\) th payment \(P V_{j}=P V_{j-1}-P R I N_{j}\).
2. Regarding loans processed using the rule of 78 s :

The algorithm used to determine the part of each periodic (usually monthly) payment (PMT) attributed to interest (INTj) differs from the conventional loan in that the total finance charge (INT) is first determined by
\[
I N T=n(P M T)-P V_{0}
\]
where \(n=\) total number of periods (months)
and \(\quad P V_{0}=\) initial loan amount.
F. Formulas (continued)

Then:
\[
\mathrm{INT}_{1}=\frac{\mathrm{n}}{\mathrm{SOD}}(\mathrm{INT}),
\]
where
\[
\begin{aligned}
\text { SOD } & =\text { sum of digits }=1+2+3+\ldots+n \\
& =\frac{n(n+1)}{2} ;
\end{aligned}
\]
\[
\mathrm{INT}_{2}=\frac{\mathrm{n}-1}{\mathrm{SOD}}(\mathrm{INT}),
\]
etc., up to \(\mathrm{INT}_{\mathrm{n}}\).
The amount of each payment attributed to reduction in principal \(\left(\right.\) PRIN \(\left._{j}\right)\), and the remaining balance ( \(\mathrm{PV}_{j}\) ) are calculated the same as descrybed in F.1 for conventional loans:
\[
\operatorname{PRIN}_{1}=\operatorname{PMT}-\mathrm{INT}_{1}
\]
and \(P V_{1}=P V_{0}-\operatorname{PRIN}_{1}\)
etc., thus
for the \(j\) th payment: \(\quad I N T_{j}=\frac{n-j+1}{S O D}(\) INT \()\)
\[
\operatorname{PRIN}_{j}=\operatorname{PMT}-I N T_{j}
\]
and, just after the jth payment \(P V_{j}=P V_{j-1}-P R I N_{j}\).
3. CAUTION. For simplicity and readability in both cases covered by 1. and 2., the negative signs appropriate for input and output were deleted in the variables INT \(_{j}\), PRIN \({ }_{j}\), PMT, and INT. Alternatively, one could place "absolute vaiue" signs about each of these variables in the equations cited.

Calculator: HP-11C
Program Name: FINC78-11 (FINancial Calculations assuming the rule of \(\mathbf{7 8 \mathrm { s }}\) with the HP-11C)

Author: Thomas W. Beers
Date: April 1986

Purpose: This program serves as a companion to the rule-of-78's part of the previous program (AMORT78-11), providing direct solution for

INT \(_{j}=\) the interest part of the \(j\) th payment
\(\operatorname{PRIN}_{j}=\) the reduction in principal part of the \(j\) th payment
and \(\quad P V_{j}=\) the remaining balance after the jth payment.
The results are obtained much faster than in AMORT78-11 since sequential calculations are not necessary. Additionally, values can be obtained by direct calculation for
\(\Sigma I N T_{j}=\) sum of the interest paid through the \(j\) th payment \(\sum\) PRIN \(_{j}=\underset{\text { payment }}{\text { sum }}\) of reduction in principal through the \(j\) th
and a new value,
REB \(_{j}=\) the "rebate" (a misleading term) or the amount of unpaid interest (better phraseology) immediately after the jth payment has been made.
A. Storage assignments

Register
0

1

2
\(j=\) the number of the current payment

EINT \(_{j}=\) sum of the interest paid through the jth payment, stored as a negative value
\(\sum\) PRIN \(_{j}=\) sum of the principal reduction through the jth payment, stored as a negative value
A. Storage assignments (continued)

Register Use
\begin{tabular}{|c|c|}
\hline 3 & PV = the initial amount of the loan \\
\hline 4 & INT = total finance charge for the loan, stored as a negative \\
\hline 5 & PMT = periodic payment, stored as a negative \\
\hline 7,8 & not used \\
\hline 9 & \(\mathrm{n}=\) total number of payments in the loan \\
\hline . 0 & \(n-j\) \\
\hline . 1 & \(P V_{j}=\) remaining balance after the jth payment \\
\hline . 2 & PRIN \(_{j}=\) the reduction in principal part of the jth payment, stored as a negative. \\
\hline I & INT \(j_{j}=\) interest part of the \(j\) th payment, stored as a negative. \\
\hline
\end{tabular}
B. Labels

Name
[E]* program start; all storage registers are cleared, FIX 2 is set, and the \(X\) register is cleared as a signal
[B] stores the input value, INT (= total finance charge) as a negative number
[C] stores the input value, PV (= loan amount) as a positive number
[D] stores the input value, PMT (= periodic payment) as a negative number
achieves the calculation, storage and display of the interest and principal reduction part of the jth payment ( \(I N T_{j}\) and \(P R I N_{j}\) ) and proceeds to label 9 for the display of the balance after the \(j\) th payment \(\left(\mathrm{PV}_{\mathrm{j}}\right)\); the input assumption is \(n\) ENTER \(j\)
B. Labels (continued)

Name Use
[8]
recalls and displays the sums of the interest paid and prinipal reductions through the jth payment ( \(\Sigma I_{j} \mathrm{~T}_{j}\) and \(\Sigma \operatorname{PRIN} \mathrm{j}_{\mathrm{j}}\) ) and the remaining balance ( \(\mathrm{PV}_{\mathrm{j}}\) ); optionaliy, by R/S depression, the amount of the unpaid interest after the jth payment ( \(\mathrm{REB}_{j}\) ) is calculated and displayed. As for label 7, the input assumed is \(n\) ENTER \(j\)

9 calculates and stores \(\sum I N T_{j} ; \sum P R I N_{j}\), and \(\mathrm{PV}_{\mathrm{j}}\), then returns control to label 8 (flag 1 set) or calculates and displays \(P V_{j}\) if not called as a subroutine (flag 1 clear)
* brackets indicate meaningful "RUN mode" accessability.
C. Flags

Number
Use

1
cleared in label 7 so that execution will stop in label 9 to display \(\mathrm{PV}_{\mathrm{j}}\)
set in label 8 so label 9 will be executed as a subroutine
D. Program procedure and example.
I. In PRGM mode, load the program.
II. IN RUN mode, proceed as given below by way of example.
1. Example 11-5. Referring to the rule of 78 s schedule and loan summarized in Table 3, verify the interest, principal reduction and balance for the 8th payment (GSB 7 is appropriate), then obtain the sums of interest, principal reduction, and balances through the 12th, 24 th and 36 th payments (GSB 8 is appropriate).

Note that
PV \(=\$ 20,000\), amount borrowed
\(\mathrm{n}=36\), term of loan in months
PMT \(=\$ 770\), monthly payment
INT \(=\$ 7720\), tctal finance charge
and \(j=8,12,24\), or 36, payment number pertinent to the problem
D. Program procedure and example (continued).
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Key & Output & Comment \\
\hline a. initialize & - & E & 0.00 & clear signal \\
\hline \multirow[t]{3}{*}{b. input} & 7720 & CHS, B & -7,720.00 & INT \(=-7720\) \\
\hline & 20000 & C & 20,000.00 & \(P V=20,000\) \\
\hline & 770 & CHS, D & -770.00 & \(\mathrm{PMT}=-770\) \\
\hline
\end{tabular}
c. solution 36 ENTER 8 GSB 7 8.(pause) for \(n=36\) and \(j=8\)
\[
\begin{array}{rr}
-336.16(") & \text { INT }_{8} \\
-433.84(") & \text { PRIN }_{8} \\
16,853.81 & \text { PV }_{8}
\end{array}
\]
c. solution 36 ENTER 12 GSB 8 12.(pause) through payment 12
\[
\begin{array}{ll}
-4,242.52(") & \text { } \text { INT }^{2} 12 \\
-4,997.48(") & \text { EPRIN } 12
\end{array}
\]
\[
15,002.52 \quad \mathrm{PV}_{12}^{12}
\]
c. solution 36 ENTER 24 GSB 8 24.(pause) through payment 24
\[
\begin{array}{cc}
-6,815.86(") & \sum^{\sum I N T} 24 \\
-11,664.14(") & { }^{\sum P R I N} 24 \\
8,335.86 & \mathrm{PV}_{24}\left(\mathrm{off}^{24} .01\right. \text { due } \\
& \text { to rounding })
\end{array}
\]

Note in Table 3: \(4242.52+2573.34=6815.86\)
and \(\quad 4997.48+6666.66=11,664.14\)

\section*{c. solution 36 ENTER 36 GSB 8 36.(pause) through payment 36 -7,720.00 EINT \(_{36}=\) INT \(\begin{array}{cc}-20,000.00 & \operatorname{EPRIN}_{36}=-P V \\ 0.00 & P V_{36}\end{array}\)}
2. Example 11-6. Using the same loan as in the previous example, find the sums of interest, principal reduction, and the balance after the 33rd payment, and find the "rebate"-- the amount of interest (displayed as a positive number) left to be paid immediately after the 33rd payment.
\begin{tabular}{lccccc} 
Step & Input & & Key & & Output \\
a. initialize & - & \(E\) & 0.00 & \begin{tabular}{c} 
Comment \\
clear signal
\end{tabular} \\
b. input & 7720 & CHS, B & \(-7,720.00\) & INT \(=-7720\) \\
& 20000 & C & \(20,000.00\) & \(P V=20,000\) \\
& 770 & CHS, D & -770.00 & PMT \(=-770\)
\end{tabular}
D. Program procedure and example (continued).
c. solution 36 ENTER 33 GSB 8 33.(pause) through payment 33
-7,650.45
-17,759.55
2,240.45
R/S
\(\sum_{\Sigma \text { INT }_{3}}\)
EPRIN \({ }^{2}\)
\(\mathrm{PV}_{33}\)
\(\mathrm{REB}_{33}=\) rebate after 33rd payment

Note in Table 3:
\[
\begin{aligned}
\mathrm{REB}_{33} & =\mathrm{INT}_{34}+\mathrm{INT}_{35}+\mathrm{INT}_{36} \\
& =34.77+23.18+11.59 \\
& =69.54 \text { (checks, except for rounding) } \\
\text { or } \mathrm{REB}_{33} & =\mathrm{INT}-\sum_{j=1}^{33} \mathrm{INT}_{j} \\
& =\text { INT }-\sum_{\mathrm{INT}}^{33} \\
& =7720.00-7650.45 \\
& =69.55
\end{aligned}
\]
III. Comments
1. If the output answers appear too fast for recording, they can be recalled from the assigned registers: 1/

When using GSB 7 (input \(=n\) ENTER j)
RI = amount of interest in payment \(j\)
R. 2 = amount of reduction in principal in payment \(j\)
R. 1 = loan balance just after payment \(j\),
or, when using GSB 8 (input \(=n\) ENTER \(j\) )
R1 = sum of the interest through payment \(j\)
R2 = sum of the principal reduction through payment \(j\)
R.1 = loan balance just after payment \(j\)

R1-R4 \(=\) rebate after the jth payment.
Alternatively, the R/S key can be pressed during any display, thus "freezing" the answer; pressing R/S again will re-start the program at the point it was interrupted.

I/ If this is done, however, both \(n\) and \(j\) must be re-keyed prior to pressing R/S to continue.
D. Program procedure and example (continued).
2. The program makes use of conventional signs for the values input and displayed, from the viewpoint of the borrower; money received or credited (the loan amount, current balance, and rebate) is positive, whereas money paid (amount of interest, payments, and principal reduction) is negative.

This program, however, differs from AMORT78-11 in that here the input INT, PV, and PMT are checked for the proper sign and if wrong, forced to be correct.
3. Because of the similarity of this program (FINC78-11) with the previous one (AMORT78-11) it would seem desirable that both should be combined into one. Unfortunately, the HP-11C lacks sufficient storage to do this. Instead, the user is referred to the HP-41 program AM7841 for this convenience.
E. Program statements and code.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Step & Statement & & Code & & Step & Statement & Code & Step & Statement & & Code \\
\hline 01 & [ f LBL E] \({ }^{\text {/ }}\) & & & & 31 & STO. 0 & 44.0 & 61 & RCL 9 & & 459 \\
\hline 02 & f FIX 2 & & 7 & 2 & 32 & 1 & 1 & 62 & + & & 40 \\
\hline 03 & f CLEAR REG & & 42 & & 33 & + & 40 & 63 & \(\div\) & & 10 \\
\hline 04 & g CLX & & & 5 & 34 & RCL 9 & \(45 \quad 9\) & 64 & CHS & & 16 \\
\hline 05 & R/X & & & 31 & 35 & \(\mathrm{g} \mathrm{X}{ }^{2}\) & 4311 & 65 & 1 & & 1 \\
\hline 06 & [ \(f\) LBL B] & & 21 & & 36 & RCL 9 & 459 & 66 & + & & 40 \\
\hline 07* & \(\mathrm{g} \mathrm{X}>0\) ( g TeST 1 & 1) 4 & 43 & & 37 & + & 40 & 67 & \(x\) & & 20 \\
\hline 08 & CHS & & & 16 & 38 & \(\div\) & 10 & 68 & STO 1 & & 441 \\
\hline 09 & STO 4 & & & 4 & 39 & 2 & 2 & 69 & CHS & & 16 \\
\hline 10 & R/S & & & 31 & 40 & X & 20 & 70 & RCL 0 & & 450 \\
\hline 11 & [ \(f\) LBL C] & & 21 & & 41 & RCL 4 & 454 & 71 & RCL 5 & & 455 \\
\hline 12* & \(\mathrm{g} \mathrm{X}<0\) ( g TEST 2 & 2) & & & 42 & X & 20 & 72 & \(X\) & & 20 \\
\hline 13 & CHS & & & 16 & 43 & STO I & 4425 & 73 & + & & 40 \\
\hline 14 & STO 3 & & & & 44 & \(f\) PSE & 4231 & 74 & STO 2 & & 442 \\
\hline 15 & R/S & & & 31 & 45 & \(f\) PSE & 4231 & 75 & RCL 3 & & 453 \\
\hline 16 & [ f LBL D] & & 21 & & 46 & CHS & 16 & 76 & + & & 40 \\
\hline 17* & \(\mathrm{g} \mathrm{X}>0\) ( g TEST 1 ) & 1) 4 & 43 & & 47 & RCL 5 & \(45 \quad 5\) & 77 & STO . 1 & & 44.1 \\
\hline 18 & CHS & & & 16 & 48 & + & 40 & 78 & g F? 1 & 43 & 61 \\
\hline 19 & STO 5 & & & & 49 & STO . 2 & 44.2 & 79 & \(g\) RTN & & 4332 \\
\hline 20 & R/S & & & 31 & 50 & f PSE & 4231 & 80 & R/S & & 31 \\
\hline 21 & [f LBL 7] & & 21 & & 51 & \(f\) PSE & 4231 & 81 & [ f LBL 8] & 42 & 218 \\
\hline 22 & g CF 1 & & 5 & & 52 & (f LBL 9) & 42219 & 82 & g SF 1 & 43 & 41 \\
\hline 23 & f FIX 0 & & 7 & 0 & 53 & RCL 4 & \(45 \quad 4\) & 83 & STO 0 & & 440 \\
\hline 24 & f PSE & & 42 & & 54 & RCL . 0 & 45.0 & 84 & \(x \leqslant y\) & & 34 \\
\hline 25 & f FIX 2 & 42 & 7 & 2 & 55 & 1 & 1 & 85 & STO 9 & & 449 \\
\hline 26 & STO 0 & & & 0 & 56 & + & 40 & 86 & \(x>y\) & & 34 \\
\hline 27 & \(x \leq y\) & & & 34 & 57 & RCL . 0 & 45.0 & 87 & - & & 30 \\
\hline 28 & STO 9 & & & 9 & 58 & X & 20 & 88 & STO . 0 & & 44.0 \\
\hline 29 & \(x>y\) & & & 34 & 59 & RCL 9 & 459 & 89 & GSB 9 & & 329 \\
\hline 30 & - & & & 30 & 60 & g X 2 & 4311 & 90 & f FIX 0 & 42 & 70 \\
\hline
\end{tabular}

2/ Brackets and parentheses are not programmable; they are used to indicate externally meaningful or internal use labels, respectively.
E. Program statements and code (continued).
\begin{tabular}{|c|c|c|}
\hline Step & Statement & Code \\
\hline 91 & RCL 0 & 450 \\
\hline 92 & f PSE & 4231 \\
\hline 93 & \(f\) PSE & 4231 \\
\hline 94 & f FIX 2 & 4272 \\
\hline 95 & RCL 1 & 451 \\
\hline 96 & f PSE & 4231 \\
\hline 97 & \(f\) PSE & 4231 \\
\hline 98 & RCL 2 & 452 \\
\hline 99 & f PSE & 4231 \\
\hline 100 & f PSE & 4231 \\
\hline 101 & RCL . 1 & 45.1 \\
\hline 102 & R/S & 31 \\
\hline 103 & RCL 4 & \(45 \quad 4\) \\
\hline 104 & RCL 1 & 451 \\
\hline 105 & - & 30 \\
\hline 106 & CHS & 16 \\
\hline
\end{tabular}

Note: g MEM leads to P-06 r-. 2
*Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15 C user to alter.

\section*{F. Formulas}

Because of the nature of the interest allocation scheme using the rule of 78s, the formulas used are directly solved in FINC78-11 rather than the iterative solution used and described in AMORT78-11. The results obtained in label 7 and label 8 are described separately.

Label 7
Assuming a final input of \(n\) and \(j\),
where
\[
\mathrm{n}=\text { total number of payments in the loan }
\]
and \(j=\) the number of the current payment,
the part of the jth payment, PMT, allocated to interest, INT \(_{j}\), and to reduction in principal, \(\operatorname{PRIN}_{j}\),
as well as the after-payment remaining balance, \(\mathrm{PV}_{\mathrm{j}}\), are obtained by \(\underline{1 /}\)
\[
\begin{aligned}
\text { INT }_{j} & =\frac{2(n-j+1)}{n(n+1)}(I N T), \\
\operatorname{PRIN}_{j} & =\operatorname{PMT}-I N T_{j},
\end{aligned}
\]
and
\[
P V_{j}=P V-\Sigma P R I N_{j},
\]
where
\[
\begin{aligned}
\Sigma \text { PRIN }_{j} & =j(P M T)-\Sigma I N T_{j}, \\
\Sigma I N T_{j} & =I N T-R E B_{j},
\end{aligned}
\]
and
\[
\text { REB }_{j}=\frac{(n-j)(n-j+1)}{n(n+1)}(\text { INT }) .
\]

Reminder:
\[
\begin{aligned}
\text { PV } & =\text { the original amount of the loan } \\
\text { PMT } & =\text { the constant periodic payment } \\
\text { INT } & =\text { the total finance charge }
\end{aligned}
\]

1/The formulas are derived from formulas found in "HP-12C Solutions Handbook" Hewlett-Packard. March, 1984.

\section*{F. Formulas (continued)}

Label 8
Assuming the same input as for label 7, \(n\) and \(j\), the sum of the interest paid, EINT \(_{j}\), and sum of principal paid through payment \(j\), \(\sum^{\text {PRIN }}{ }_{j}\), and the remaining balance, \(P V_{j}\), are calculated as shown above using label 9 as a subroutine. The amount of the unpaid interest, or rebate, \(\mathrm{REB}_{j}\), is calculated upon \(R / S\) depression using the formula
\[
\mathrm{REB}_{j}=I N T-\Sigma I N T_{j}
\]

CAUTION. For simplicity and readability in the formulas given the negative signs appropriate for input and output were deleted in the variables INT \(_{j}\), PRIN \(_{j}\), PMT, and INT. Alternatively one could place "absolute value" signs about each of these variables in the equations cited.

Calculator: HP-12C
Program Name: AMORT-12 (AMORTization schedules with the HP-12C)
Author: Thomas W. Beers
Date: April, 1986

Purpose: To provide the usual entries in an amortization schedule (payment number, interest paid, reduction in principal, and outstanding balance) assuming the input values are
\(k=\) the number of periods over which the amount of interest and the reduction in principal are to be summed (can be 1 for the complete schedule, month by month or year by year)

I = periodic interest rate as a percent
PV = initial value of the loan, the amount borrowed
and PMT = periodic payment (input as a negative)
A. Storage assignments

Register Use

0
1
n

PV
i
PMT
\(k=\) number of periods to be grouped payment (within the group) the current payment (within the group) amortized (by the AMORT function) payment has been made

I = the periodic interest rate as a percent
PMT = the periodic payment (as a negative)

EINT = the sum of the interest paid through the current

EPRIN = the sum of the reduction in principal paid through
represents the total number of payments which have been
initially used to store the original amount of the loan, part of the input; after the program is run, the register contains the loan balance, \(P V_{n}\), immediately after the \(n\)th
B. Labels -- there are no labels used in HP-12C programming.
C. Flags -- no flags are available in the HP-12C.
D. Program procedure and program
I. Put calculator in PRGM mode (press f P/R), then
a. f CLEAR PRGM to clear other programs
b. key in the following program:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Step & Statement & Code & Step & Statement & Code \\
\hline 01 & STO 0 & 440 & 13 & g PSE & 4331 \\
\hline 02 & RCL 0 & 450 & 14 & RCL 2 & 452 \\
\hline 03 & f AMORT & 4211 & 15 & g PSE & 4331 \\
\hline 04 & STO 1 & 441 & 16 & g PSE & 4331 \\
\hline 05 & \(x>y\) & 34 & 17 & RCL PV & 4513 \\
\hline 06 & STO 2 & 442 & 18 & ENTER & 36 \\
\hline 07 & f 0 & 420 & 19 & R/S & 31 \\
\hline 08 & RCL \(n\) & 4511 & 20 & - & 30 \\
\hline 09 & g PSE & 4331 & 21 & g \(X=0\) & 4335 \\
\hline 10 & f 2 & 422 & 22 & g GTO 02 & 433302 \\
\hline 11 & RCL 1 & 451 & 23 & g LSTX & 4336 \\
\hline 12 & g PSE & 4331 & 24 & g GTO 01 & 433301 \\
\hline
\end{tabular}
II. Put calculator in RUN mode (press f \(P / R\) ), then
a. f CLEAR FIN (or \(f\) CLEAR REG) to clear the financial (or all) the storage registers
b. load the financial registers with the pertinent loan data:
key periodic interest rate, I, press i
" loan value, PV, press PV
" periodic payment, press CHS then PMT
D. Program procedure and program (continued)
c. 1 /ensure that the program pointer is at step 00 by any of the following:
(1) turn calculator off, then on (press \(O N\) twice)
(2) go into and out of PRGM mode (press keys \(f P / R\) twice)
(3) press g GTO . 00
d. key in \(k\), the number of periods for which totals are to be grouped, press R/S and observe the results:
n. (the number of periods amortized)
(pause)
EINT (the sum of interest paid in the group of payments, displayed as a negative)
(pause)
(pause)
\(\Sigma\) PRIN (the sum of the principal reduction paid in the group of payments, displayed as a negative)
\(\mathrm{PV}_{\mathrm{n}}\) (the remaining loan balance after the nth payment)
e. for the next group of periods of the same size, simply press \(R / S\) and see the results indicated in d.; for a different group size, key the new "k", then press R/S.

If the results are displayed too rapidly, they can be recalled by \(2 /\)
\begin{tabular}{lrl} 
RCL & \(n\) & to see \(n\) \\
RCL & 1 & to see INT \\
RCL & 2 & to see PRIN \\
RCL & PV & to see \(P V_{n}\)
\end{tabular}

Alternatively, the results, when displayed, can be "frozen" by pressing R/S; pressing R/S again will continue the program where it was interrupted.
\(\frac{1 / T h i s ~ s t e p ~ i s ~ n o t ~ a l w a y s ~ n e c e s s a r y ~ b u t ~ i t ~ i s ~ a ~ g o o d ~ i d e a ~ t o ~ r o u t i n e l y ~ d o ~ i t . ~}{2}\). If this is done, however, the group size must be re-keyed prior to pressing R/S to continue.
D. Program procedure and program (continued)
III. Examples (assuming the program has been properly keyed in, and the calculator is in RUN mode).
1. Example 12-1. (same as Example 11-1).

Duplicate the amortization schedule (for the first three months) shown in Table 1. The pertinent loan data being \(\$ 35,000\) to be amortized over 25 years at 11 percent annual percentage rate, leading to monthly payments of \(\$ 343.04\). Therefore, as input data:
\[
\begin{aligned}
I & =11 / 12 \%, \text { the periodic (i.e., monthly) rate } \\
P V & =35,000 \\
\text { PMT } & =-343.04 \\
\text { and } \quad k & =1 \text { ("group" size }=1 \text { month) }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Input & Key & Output & Comment \\
\hline a. clear & or & \begin{tabular}{l}
f CLEAR FIN \\
f CLEAR REG
\end{tabular} & \[
\stackrel{?}{0.00}
\] & display is not cleared display is cleared \\
\hline b. input & \[
\begin{gathered}
11 \\
35000 \\
343.04
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{g} \mathrm{i} \\
\mathrm{PV} \\
\text { CHS, PMT }
\end{gathered}
\] & \[
\begin{gathered}
0.92 \\
35,000.00 \\
-343.04
\end{gathered}
\] & \[
\begin{gathered}
I=.91666 \ldots 7 \\
P V=35,000 \\
P M T=-343.04
\end{gathered}
\] \\
\hline c. orient pointer & - & ON, ON & -343.04 & not always needed \\
\hline d. solution & 1 & R/S & \[
\begin{array}{r}
\text { 1. (pause) } \\
-320.83(" \text { ") } \\
-22.21(") \\
34,977.79
\end{array}
\] & ```
    k=1, month 1
    interest
principal reduction
    balance
``` \\
\hline e. next month & - & R/S & \[
\begin{array}{r}
\text { 2. (pause) } \\
-320.63(") \\
-22.41(") \\
34,955.38
\end{array}
\] & month 2 interest prin. red. balance \\
\hline e. next month & - & R/S & \[
\begin{aligned}
& \text { 3. (pause) } \\
& -320.42(") \\
& -22.62(") \\
& 34,932.76
\end{aligned}
\] & \begin{tabular}{l}
month 3 \\
interest \\
prin.red. \\
balance
\end{tabular} \\
\hline \multicolumn{5}{|l|}{e. etc., for additional months simply press \(R / S\); if say the next 12 payments are to be grouped one would key 12 , then press \(R / S\) (see next example).} \\
\hline
\end{tabular}
D. Program procedure and program (continued)
2. Example 12-2. (same as Example 11-2.)

Given the same basic loan data as in the previous example except that only one payment is to be made in the first year of the loan (1985). For tax reports we need the sums of interest paid and principal reduction paid by calendar years for 1985 (\(k=1\) payment), 1986 (\(k=12\)), 1987 (\(k-12\)), and 1988 (\(k=11\)). We also want to know the loan balance remaining after the 36 payments have been made, i.e., the "balloon" or pay-off amount.
\begin{tabular}{|c|c|c|c|}
\hline Step Input & Key & Output & Comment \\
\hline a. clear & f CLEAR FIN & ? & display not clear \\
\hline b. input \(\begin{array}{cr}11 \\ & 35000 \\ & 343.04\end{array}\) & \[
\begin{gathered}
\mathrm{gi} \text { i } \\
\text { PV } \\
\text { CHS, PMT }
\end{gathered}
\] & \[
\begin{gathered}
0.92 \\
35,000.00 \\
-343.04
\end{gathered}
\] & \[
\begin{gathered}
I=.91666 \ldots 7 \\
P V=35,000 \\
P M T=-343.04
\end{gathered}
\] \\
\hline c. orient pointer & ON, ON & -343.04 & optional step \\
\hline d. solution (Dec. 1985) & R/S & \[
\begin{gathered}
\text { 1. (pause) } \\
-320.83(") \\
-22.21(") \\
34,977.79
\end{gathered}
\] & ```
month 1 interest principal reduction balance
``` \\
\hline e. next 12 months 12 (1986) & R/S & \[
\begin{gathered}
\text { 13. (pause) } \\
-3,833.57(") \\
-282.91(") \\
34,694.88
\end{gathered}
\] & \begin{tabular}{l}
months 2-13 \\
12-month interest \\
12-month prin.red. balance
\end{tabular} \\
\hline e. next 12 months - & R/S & \[
\begin{gathered}
\text { 25.(pause) } \\
-3,800.86(\text { "') } \\
-315.62(\text { " }) \\
34,379.26
\end{gathered}
\] & \begin{tabular}{l}
months 14-25 \\
12-month interest \\
12 -month prin.red. \\
balance
\end{tabular} \\
\hline \begin{tabular}{l}
e. next 11 months 11 \\
(Jan.-Nov., 1988)
\end{tabular} & R/S & \[
\begin{gathered}
36 . \text { (pause) } \\
-3,452.12(" \text { ") } \\
-321.32(") \\
34,057.94
\end{gathered}
\] & \begin{tabular}{l}
months 26-36 \\
11-month interest \\
11-month prin.red. \\
balance
\end{tabular} \\
\hline
\end{tabular}

The sums can be verified by adding up the pertinent values from Table 1. Note that the balance after the 36 th payment (the balloon) also checks.
IV. Comments
1. As noted in the instructions (II.e.), if the results display too quickly they can be recalled from the indicated registers or R/S can be used to interrupt the output.
D. Program procedure and program (continued)
2. The input and output data make use of conventional signs from the viewpoint of the borrower, that is, money received (the loan amount and the current balance) is positive, whereas money paid (amount of interest, payments, and principal reduction) is negative.
3. CAUTION: The program does not check to assure that the proper input signs are observed, therefore care should be taken to conform to the sign convention; otherwise, erroneous results ensue.
4. Although the concept has limited application to loans, the facility with which the HP-12C handles savings type problems suggests that a short program reside permanently in the calculator which could calculate an effective percent periodic interest rate ( \(\mathrm{I}_{\mathrm{e}}\) ) in situations where the compounding frequency (CF) and the payment frequency (PF) do not coincide. (See Comment 4 in AMORT78-11).

The formula \({ }^{3 /}\) to be solved is
\[
I_{e}=100\left[\left(1+\frac{i}{C F}\right)^{C F / P F}-1\right]
\]
where \(i=\frac{A P R}{100}=\) annual percentage rate expressed as a decimal.

Example 12-3. Consider an IRA investment program with the following characteristics:
\[
\begin{aligned}
& \text { PV }=-\$ 6500.00 \text {, the initial investment } \\
& \text { PMT }=-\$ 2000.00 \text {, annual payments made at the end of each } \\
& \text { year. } \\
& \text { APR }=10.5 \% \text {, the annual percentage rate } \\
& \text { What is the effective periodic (annual in this case) interest } \\
& \text { rate if compounding takes place monthly ( } C F=12 \text { ) even though } \\
& \text { payments are made annually ( } \mathrm{PF}=1 \text { )? } \\
& \text { What is the total accumulation at the end of } 25 \text { years? }
\end{aligned}
\]

3/ The formula shown is adapted from that given in "PPC ROM Users Manual"
PPC, Box 9599, Fountain Valley CA. 1981 .
D. Program procedure and program (continued)

To solve such a problem using the HP-12C where the AMORT-12 program is already in memory (taking up 24 lines of program) one would proceed as described below.
a. In RUN mode, move the program pointer to line 24 by: g GTO 24
b. Go into PRGM mode by \(f P / R\) and observe \(24-43,3301\)
c. Key in the following program:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Step & Statement & Code & & Step & Statement & Code \\
\hline 25 & STO 0 & 44 & 0 & 35 & \(+\) & 40 \\
\hline 26 & \(x>y\) & & 34 & 36 & \(x>y\) & 34 \\
\hline 27 & \(\div\) & & 10 & 37 & \(Y^{X}\) & 21 \\
\hline 28 &  & & 34 & 38 & 1 & 1 \\
\hline 29 & EEX & & 26 & 39 & - & 30 \\
\hline 30 & 2 & & 2 & 40 & EEX & 26 \\
\hline 31 & \(\div\) & & 10 & 41 & 2 & 2 \\
\hline 32 & RCL 0 & 45 & 0 & 42 & \(X\) & 20 \\
\hline 33 & \(\div\) & & 10 & 43 & g GTO 00 & 433300 \\
\hline 34 & 1 & & 1 & & & \\
\hline
\end{tabular}
d. Go into RUN mode by f \(P / R\).
e. Ensure that END (of period) mode is active by \(g\) END.
f. Proceed as follows, using the given data.

Step
(1) locate pointer

Input Key Output
g GTO 25
D. Program procedure and program (continued).


Note, the exact effective rate is \(11.020345 \%\), as can be seen by pressing \(f 9\) (then return to 2 places by \(f 2\) ).
\begin{tabular}{|c|c|c|c|c|}
\hline (3) clear & - & f CLEAR FIN & 11.02 & clear financial registers \\
\hline \multirow[t]{4}{*}{(4) input} & - & i & 11.02 & loads the exact \(\mathrm{I}_{\mathrm{e}}\) into the i register \\
\hline & 25 & n & 25.00 & \(\mathrm{n}=25\) years \\
\hline & 6500 & CHS, PV & -6500.00 & PV=6500 \\
\hline & 2000 & CHS, PMT & -2000.00 & PMT \(=2000\) \\
\hline (5) solution & - & FV & 318,247.45 & \begin{tabular}{l}
\[
F V=\text { total }
\] \\
accumulation just after the 25th payment \(h\) been made
\end{tabular} \\
\hline \multicolumn{5}{|l|}{Note, this result checks with the result found by another procedure in Appendex B, part 3a. of the FICALC-11/15 program.} \\
\hline
\end{tabular}

\section*{E. Formulas}

The program makes use of the AMORT function, therefore no formulas need be solved. When executed from the keyboard, AMORT sums the interest and reduction in principal for the number of payments (periods) indicated in the \(X\) register (the display), using the amount of the loan in the PV register, and the periodic payment in the PMT register. The result returned to the \(X\) register is the sum of interest paid (EINT); the sum of the principal reduction (EPRIN) is in the \(Y\) register and can be displayed by pressing \(X>Y\). The remaining balance after \(n\) payments, \(P V_{n}\), is found in the PV register (RCL PV to display it), and the total number of payments amortized is in the \(n\) register ( \(R C L n\) to display it).

Calculator: HP-41
Program Name: AMORT (normal AMORTization schedules with the HP-41)
Author: Thomas W. Beers
Date: June 1986

Purpose: To provide the usual entries in an amortization schedule (payment number, interest paid, reduction in principal, and outstanding balance) assuming the input values are
\(k=\) the number of periods over which the amount of interest and the reduction in principal are to be summed (can be 1 for the complete schedule, month by month or year by year)

I = periodic interest rate as a percent
\(P V=\) initial value of the loan, the amount borrowed
PMT = periodic payment (input as a negative)
A printed schedule can be obtained when a printer (HP-82143A or HP\(82162 A\) ) is connected, and the user has the option (by setting flag 02) of having a continuous printout if the size of the group (k) is uniform.
A. Storage assignments
Register Use
\(00 \quad k=\) no. of periods per group
\(01 \quad\) EINT = the sum of the interest paid through the current payment (within the group)

02

I = periodic interest rate (a percent)
05
PMT = the periodic payment
A. Storage assignments (continued)

Register

06 the current number of periods amortized; 1, 2, ..., n
07-08 not used
\(09 \quad N=\) the final period to be amortized and printed (only used in the "auto" option, i.e., flag 02 set)

10-12 not used
13 an index for each group, starting each time with \(k\); then \(k-1\), \(k-2, \ldots, 0\)
B. Labels

Global

AMORT

Local
B

C stores the input value for the loan amount (PV), displays and prints it, then prompts for the payment amount. PV is checked to ensure a positive value.

D stores the input value for the payment amount (PMT), displays and prints it, then prompts for the number of periods to be grouped ( \(k\) ); PMT is checked to ensure a negative value
program re-start if most of the input parameters have not changed; prints heading for the amortization schedule, then prompts for the periodic interest rate
provides a convenient divide-by-12 operation to easily convert an annual interest rate to a monthly one; control passes automatically, then, to label B for the PV input prompt

01 the calculation loop for the amortization schedule; current allocation for interest is calculated then control passes to label 06

03
stores the input value for interest rate (I), displays and prints it, then prompts for the loan amount
program start, clears all registers and flag 02, provides flag 02 reminder, then prompts for next step (label E)

C

E
b

都
stores the new value for \(k\), if just input, clears registers 01 and 02 , and proceeds to label 01
B. Labels (continued)

Local
05

06

11
12
13
used to print the initial, and if flag 02 is set, the final asterisk-line
C. Flags

Type and
Number
User:
02
Use
displays and prints the number of payments grouped (can be 1) then proceeds to labels 11, 12, and 13 for the grouped results
completes the calculation loop for the amortization schedule, accumulating the amounts for interest and reduction in principal, EINT and \(\Sigma P R I N\), and incrementing the number of periods currently amortized
displays and prints the grouped amount of interest ( \(\Sigma\) INT)
displays and prints the grouped reduction in principal ( \(\sum\) PRIN)
displays and prints the remaining balance (BAL)
tests for "end of schedule" condition and/or automatic printout mode, directs control accordingly or prompts for a new group size (k)
sets flag 04 and stores the terminal non-uniform group size to be used as " \(k\) " for the final group summary; called as a subroutine in label 97
prompts for and stores the final \(N\) if flag 02 is set, indicating the "auto-display and print mode"; called as a subroutine in label E
tests for end-of-schedule condition, and either recycles to label 03 or passes control to label 99
used to print dashed-line in schedule heading; called as a subroutine in labels \(D\) and \(E\)
set externally by the user to skip the prompt for the input of group size, \(k\), after the first such prompt. This achieves a continuous display or printing of results and is appropriate when k remains constant
C. Flags (continued)

Type and
Number
Use
User:
03 set in label 05 to indicate group size is 1 and to select the proper heading (PAYMENT: if set; PMTS:, if clear)

04
12

22

29
set in label 95 to indicate the final-group condition
print double wide flag; set in labels 98 and 99 to achieve double-wide printing
numeric data input flag; tested throughout to detect a keyed-in number
digit grouping flag; cleared (in presence of FIX 0) to suppress decimal point

System:
55
printer existence flag; used throughout to test for the presence of a printer in the system and therefore print results and skip the pauses necessary for displayed results
D. Size and key assignments

SIZE: \(\geq 014\)
Suggested key assignments:
```

"AMORT" on shift, \Sigma+ (i.e., -11)
"B", "C", "D", "E", and "b" all done internally

```
E. Program procedure and examples
I. Load the program "AMORT" into the calculator.
II. In RUN mode, proceed as given below by way of example. USER mode is assumed, and "AMORT" is assigned to shift, \(\Sigma+\).
1. Example 41-1 (same as Example 11-1).

Duplicate the amortization schedule (for the first three months) shown in Table 1. That is, for a home mortgage loan of \(\$ 35,000\) (PV) where annual percentage rate \(=11 \%\) (periodic rate, \(I\), therefore is \(11 / 12 \%\) ), the monthly payment, PMT, is \(\$ 343.04\), and the number of periods to be grouped, \(k\), is 1 .
E. Program procedure and examples (continued)

Therefore the input data are:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{```
    I = 11/12%, the periodic (i.e.,
    PV = 35,000
PMT = -343.04
    k = 1 ("group" size = 1 month)
```} \\
\hline Step & Prompt & Input & Key (s) & Comment or Output \\
\hline a. prelim. & - & - & USER & activates USER mode \\
\hline b. initialize & - & - & shift, \(\Sigma+\) & starts program \\
\hline c. auto, or not & THEN PRESS E & & \[
\overline{\mathrm{E}}
\] & AUTO: SF 02, AM. SCHEDULE \\
\hline d. data input & \[
\begin{aligned}
& I(\%)=0.00 ? \\
& \text { PV }=0.00 ? \\
& \text { PMT }=0.00 ?
\end{aligned}
\] & \[
\begin{gathered}
11 \\
35000 \\
343.04
\end{gathered}
\] & \[
\begin{aligned}
& \text { shift, B } \\
& C(\text { or } R / S) \\
& D(\text { or } R / S)
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{I}=0.92 \% \\
\mathrm{PV}=35000.00 \\
\mathrm{PMT}=-343.04
\end{gathered}
\] \\
\hline e. results & KEY K, R/S & 1 & R/S & \begin{tabular}{l}
PAYMENT: 1 \\
INT \(=-320.83\) \\
PRIN \(=-22.21\) \\
\(B A L=34977.79\)
\end{tabular} \\
\hline & R/S OR K, R/S & - & R/S & \[
\begin{aligned}
& \text { PAYMENT: } 2 \\
& \text { INT }=-320.63 \\
& \text { PRIN }=-22.41 \\
& \text { BAL }=34955.38
\end{aligned}
\] \\
\hline & R/S OR K, R/S & - & R/S & \[
\begin{aligned}
& \text { PAYMENT: } 3 \\
& \text { INT }=-320.42 \\
& \text { PRIN }=-22.62 \\
& \text { BAL }=34932.76
\end{aligned}
\] \\
\hline & R/S OR K, R/S & & & problem finished \\
\hline
\end{tabular}

Note 1. If flag 02 had been set before pressing E in step c., and a "FINAL N" of 3 had been provided at the subsequent prompt, the pressing of R/S each time in step e. would not be necessary. This feature is perhaps most useful when a printer is attached.

Note 2. If the display of results is too fast, the EINT (or INT), ¿PRIN (or PRIN), and BAL can be recalled from R 01, R 02, and \(R\) 03, respectively (\(\mathrm{RCL} \Sigma+\), RCL \(1 / X\), or \(R C L \sqrt{X}\)). If this is done at the "R/S OR K, R/S" prompt, the schedule can be continued by following the prompt directions.

E．Program procedure and examples（continued）

Note 3．The following printed output shows the results obtained with the printer in NORM mode to detail the keys pressed， then in MAN mode to demonstrate the＂cleaner＂output．

XEQ＂MMORT＂
qUTO：SF 02，THEN PRESS E

FINRL N？

AM．SCHEDULE
－－－－－－
\(I(\%)=0.00 ?\)
11．60 XE0 ：
\(\mathrm{I}=0.92 \%\)
\(\mathrm{PV}=0 . \overline{\mathrm{b}} \overline{\mathrm{B}}\) ？
35080.60 RUH
\(\mathrm{PV}=35900.00\)
PHT \(=0.60\) ？
343． 94 RUV
PHT \(=-343.04\)
－－－－－

KEY K．R／S
1．88 ROIF
PRYMENT： 1
INT \(=-320.83\)
PRIN \(=-22.21\)
\(B A L=34977.79\)
PAYMENT： 2
IHT \(=-326.63\)
PRIN \(=-22.41\)
\(B \mathrm{BL}=34955.38\)

PRYMENT： 3
INT \(=-329.42\)
PRIN \(=-22.62\)
\(B P L=34932.76\)

AM．SCHEDILE
－－－－－－
\(\mathrm{I}=0.92 \%\)
\(\mathrm{PY}=35000.0 \mathrm{Ba}\)
PMT \(=-343.04\)

PRYMENT： 1
INT \(=-320.83\)
PRIN \(=-22.21\)
\(B \mathrm{AL}=34977.79\)

PQYMENT： 2
INT \(=-320.63\)
PRIN \(=-22.41\)
\(\mathrm{BAL}=34955.38\)
PAYMENT： 3
INT \(=-320.42\)
PRIN \(=-22.62\)
\(\mathrm{BAL}=34932.76\)

\section*{E. Program procedure and examples (continued)}
2. Example 41-2 (same as Example 11-2).

Given the same basic loan data as in the previous example except that the first payment is due on Dec. 15, 1985 and all subsequent payments are due the 15 th of the month. For tax reports we need the sums of interest paid and principal reduction paid by calendar years for 1985 (\(k=1\) payment), 1986 (\(k=12\)), 1987 (\(k=12\)), and \(1988(k=11)\). We also want to know the loan balance remaining after the 36 payments have been made, i.e., the "balloon" or pay-off amount.

Flag 02 is assumed clear.

Step Prompt Input Key(s) Comment or Output
a. prelim. - \(\quad\) USER activates USER mode
b. initialize - - E
\[
\begin{aligned}
& \text { since the basic } \\
& \text { input data are the } \\
& \text { same as previous } \\
& \text { example, E is } \\
& \text { pressed for } \\
& \text { re-start }
\end{aligned}
\]
c. since E was used to re-start the program, the "AUTO: SF 02" prompt is skipped.
d. data input \(I(\%)=0.92\) ? \(\quad R / S \quad I=0.92 \%\)
\(P V=34932.76\) ? \(35000 \quad C(o r R / S) \quad P V=35000.00\)
\(P M T=-343.04 ? \quad\) ? \(\quad\) R \(/ S \quad P M T=-343.04\)
e. results

KEY K, R/S
R/S
PAYMENT: 1
INT \(=-320.83\)
PRIN= -22.21
\(B A L=34977.79\)
R/S OR K, R/S 12 R/S PMTS. 2--13
INT \(=-3833.57\)
PRIN= -282.91
\(B A L=34694.88\)
R/S OR K, R/S - R/S PMTS. 14--25
INT \(=-3800.86\)
PRIN \(=-315.62\)
\(B A L=34379.26\)
R/S OR K, R/S 11 R/S PMTS. 26--36
INT \(=-3452.12\)
PRIN= -321.32
\(B A L=34057.94\)
R/S OR K, R/S problem finished

E．Program procedure and examples（continued）
Note 4．The following printed output shows the results obtained with the printer in NORM mode to detail the keys pressed， then in MAN mode to demonstrate＂cleaner＂output．

\section*{XEE＂PMORT＂}

AUTD：SF 22 ，THEN PRESS E
XEDE
＊れがれ＊＊
am．SCHEDULE
－－－ー－ー
\(I(\%)=0,80 ?\)
11．0日 YEQ b
\(\mathrm{I}=9.92 \%\)
\(P \Psi=0.09\) ？
35090.0 REH
\(P Y=35909\). 日明

343.04 Rill

PMT \(=-343.64\)
－－－－－
KEY K，R／S
1.00 RUN

PGYMENT： 1
INT \(=-324.83\)
PRIN \(=-22.21\)
\(B A L=34977.79\)
R／S OR K，R／S
12.00 RUH

PMTS．2－－13
EINT \(=-3833.57\)
EPRIN \(=-282.91\)
\(B \mathrm{BL}=34694.88\)
R／S OR K，R／S
RUN
PMTS．14－－25
EINT \(=-3890.86\)
EPRIN \(=-315.62\)
\(\mathrm{BAL}=34379.26\)
R／S OR K，R／S
11.06 RUH

PMTS． \(26-36\)
\(\Sigma I N T=-3452.12\)
EPRIN \(=-321.32\)
BRL \(=34857.94\)
R／S OR K，R／S

AM．SCHEDILE
－－ーーーー
\(\mathrm{I}=0.92 \%\)
PY＝350日0．0日
PMT \(=-343.64\)
－－－－－
PAYMENT： 1
INT \(=-320.83\)
PRIN \(=-22.21\)
BAL \(=34977.79\)
PMTS．2－－13
EINT \(=-3833.57\)
EPRIN \(=-282.91\)
BAL \(=34694.88\)
PMTS．14－－25
EINT \(=-3890.86\)
EPRIN \(=-315.62\)
\(\mathrm{BAL}=34379.26\)
PMTS．26－36
\(\varepsilon I N T=-3452.12\)
EPRIN \(=-321.32\)
\(\mathrm{BAL}=34957.94\)
E. Program procedure and examples (continued)
III. Comments
1. If the output answers appear too fast for recording, they can be recalled from the assigned registers:

R 01 = current grouped interest
R 02 = current grouped principal reduction
R 03 = current balance

Alternatively, the R/S key can be pressed during any display, thus "freezing" the answer; pressing R/S again will re-start the program at the point it was interrupted.
2. As should be evident from the examples, input and output data make use of the conventional signs from the viewpoint of the borrower, that is, money received (the loan amount and the current balance) is positive, whereas money paid (amount of interest, payments, and principal reduction) is negative.
3. Contrary to the corresponding HP-11C and HP-12C programs, the AMORT program does check the input for proper sign, and if necessary changes the sign, thus ensuring sensible results.
F. Background and formulas used
(Same as the used in the corresponding HP-11C program, AMORT78-11)
G. Program listing and barcode for AMORT.

```

HP-4I Program Harcode= HIORT (comtimmed)
ROW 19: LINES 73 - 80

```

```

ROW 25: LINES 11E - 118

```

```

ROW 2E: LINES 119-123

```

```

ROW 27: LINES 124-127

```

```

ROW 23: LINES 128 - 131

```

```

ROW 29: LINES 132 - 137

```

```

ROW 30: LINES 137-139

```

```

FOW 31: LINES 139 - 145

```

```

ROW 32: LINES 14E - 150

```

```

ROW 33: LINES 151 -- 15e

```

```

ROW 34: LINES 158-162

```

```

ROW 35: LINES 162 -- 162

```

```

ROW 3E: LINES 1E2 - 160

```


Program No. 41F044
Calculator: HP-41
Program Name: AM7841 (AMortization schedules and similar financial calculations using the rule of 78 s with the HP-41)

Author: Thomas W. Beers
Date: June, 1986

Purpose: To provide the usual entries in an amortization schedule (payment number, interest paid, reduction in principal, and outstanding balance) assuming the input values are
\(k=\) the number of periods over which the amount of interest and the reduction in principal are to be summed (can be 1 for the complete schedule, month by month or year by year)

I = periodic interest rate as a percent
\(P V=\) initial value of the loan, the amount borrowed
PMT = periodic payment (input as a negative)

The program provides the option of calculating similar entries for a schedule which assumes the rule of 78 s interest allocation procedure, in which case the required input values are PV, PMT, and \(k\) as defined above, and
\(n=\) the total number of periods (usually months) in the loan and

INT = the total finance charge for the loan, i.e., the sum of all the periodic interest payments (input as a negative)

A printed schedule can be obtained when a printer (HP-82143A or HP-82162A) is connected, and a continuous printout is optionally available (by setting flag 02) if the size of the group (k) is uniform.

SPECIAL NOTE TO THE USER:
Since AM7841 is so similar to AMORT78-11, the directions of use and examples provided there can be followed. Also, the bulk of the register
assignments and the various labels are very similar to that used in the AMORT program for the HP-41. For these reasons a detailed writeup was not considered necessary.

Program listings, printed results of the examples used in AMORT78-11, and program barcode are found on the following pages.
A. Printed results of examples using data from AMORT78-11
1. Example 11-1, first in NORM printer mode to show keystrokes, then in MAN printer mode for cleaner looking results.

XEE "AM7841"
RUTO: SF 02,PRESS E OR E
CF \(\mathrm{O}_{2}\)
XEGE

Ah. SCHEDULE
(\%) \(=\) - 0 ?
11.60 YEO B
\(I=0.92 \%\)
\(\mathrm{PV}=0.09\) ?
35809.80 YEQ :
\(\mathrm{FV}=35890.84\)
\(\mathrm{PHT}=0.06\) ?
343. 94 XEO I

PHT \(=-343.04\)
--ー---

KEY K, R/S
1.00 RU:

PAYMENT: 1
INT \(=-320.83\)
PRIN \(=-22.21\)
\(B A L=34977.79\)
R/S OR K; R/S

AM. SCHEDULE
- - - - -
\(\mathrm{I}=0.92 \%\)
\(P Y=35980.06\)
\(\mathrm{PMT}=-343.64\)

PAYMENT: 1
INT \(=-320.83\)
\(\operatorname{PRIN}=-22.21\)
\(B A L=34977.79\)

PAYMENT: 2
INT \(=-320.63\)
PRIN= -22.41
\(B \mathrm{HL}=34955.38\)

PQYMENT: 3
INT \(=-320.42\)
PRIN \(=-22.62\)
\(\mathrm{BAL}=34932.76\)

PAYMENT: 2
INT \(=-320.63\)
PRIN \(=-22.41\)
\(\mathrm{BAL}=34955.38\)
\(R / S\) OR R: R/S
RUP
PRYMENT: 3
INT \(=-320.42\)
PRIN \(=-22.62\)
\(B A L=34932.76\)
\(R / S\) ORK, R/S

2．Example 11－2，11－3，and 11－4 in MAN printer mode．

AM．SCHEDULE
－ーーーーー
\(\mathrm{I}=6.92 \%\)
PY \(=35904\). 明
PMT \(=-343.14\)
－－－－－－
PAYMENT： 1
INT \(=-320.83\)
PRIN \(=-22.21\)
\(B E L=34977.79\)

PHTS．2－－13
ZINT \(=-3833.57\)
EPRIN \(=-282.91\)
BAL \(=34694.88\)

PHTS．14－－25
EINT \(=-3804.86\)
EPRIN \(=-315.62\)
PRL \(=34379.26\)
PMTS．26－－36
\＆INT \(=-3452.12\)
EPRIN \(=-321.32\)
BRL＝ 34057.94

RULE OF 785
\(I N T=-1000.00\)
\(P Y=5006.04\)
\(P M T=-500.00\)
－－ー－ー－
PHAMENT： 1
INT \(=-153.85\)
PRIN \(=-346.15\)
\(B A L=4653.85\)
PAYMENT： 2
INT \(=-141.03\)
PRIN \(=-358.97\)
\(B A L=4294.88\)
PAYMENT： 3
INT \(=-125.21\)
PRIH \(=-371.79\)
\(B A L=3923.09\)
PMTS，4－－9
\(\Sigma I H T=-499.98\)
EPRIH＝-2500.82
\(B A L=1423.67\)

RULE OF 785
－ーーーーー
INT \(=-7728.00\)
\(\mathrm{PV}=20890.84\)
\(\mathrm{PMT}=-779.90\)
－ーーーーー
PHTS．1－－12
ZINT \(=-4242.52\)
SPRIN \(=-4997.48\)
\(B A L=15062.52\)
PITS．13－24
EINT \(=-2573.34\)
EPRIN \(=-6666.66\)
\(B A L=8335.86\)

PHTS．25－－36
EINT \(=-984.14\)
£PRIN \(=-8335.86\)
\(B A L=0.00\)

3．Example 11－4 using the automatic printout option（flag 02 set）； results shown in both NORM and MAN printer modes．

XEE＂RM7841＂
AUTO：SF R2，FRESS E OR E
SF 82
XEQ：
FINGL W？
\[
36.80 \text { RU! }
\]
＊れふれまれ
RULE OF 785
\(\operatorname{INT}(\$)=0.86\) ？
7729.00 XE日

INT \(=-7720.010\)
\(P \psi=6.46 ?\)
2月909．09 \％\％
\(\mathrm{PV}=29000.90\)
PMT \(=0.0\) 明？
779.06 XEE I

PMT \(=-770.86\)
－－－－－－
KEY M＋K：R／S
36．日G ENTER
12.0 R RUH
PMTS．1－－12
\(\mathrm{Z} \mathrm{IWT}=-\mathbf{4 2 4 2 . 5 2}\)
EPRIH＝－4997．48
BAL \(=15802.52\)
PMTS．13－－24
EINT \(=-2573.34\)
EPRIH \(=-6666.66\)
\(\mathrm{BAL}=8335.86\)
PMTS．25－－36
EINT＝-964.14
EPRIN＝－8335．86
BAL \(=0.09\)
＊＊＊＊＊＊
RULE OF 78 s
－ーーーーー
INT \(=-7720.06\)
\(\mathrm{P} \mathrm{\psi}=24806\). 明
\(\mathrm{PH}=-770.6 \mathrm{~B}\)
－－－－－－

PMTS．1－－12
ZIHT＝-4242.52
EFRIN \(=-4997.48\)
BAL \(=15002.52\)
PMTS．13－－24
EINT \(=-2573.34\)
EPRIN \(=-6666.66\)
BAL \(=8335.86\)
PMTS．25－－36
EINT \(=-964.14\)
EPRIN \(=-8335.86\)
\(B A L=0.00\)

B. Program listing and barcode for AM7841.

B. Program listing and barcode for AM7841 (continued).
\begin{tabular}{|c|c|}
\hline 151 -INT= & 26151042 \\
\hline 152 ARCL 81 & 202 LBL \({ }^{4} 4\) \\
\hline 153 AYIEH & 293 RCL 97 \\
\hline 154 FS? 55 & \(204 \mathrm{X}=0\) ? \\
\hline 155 GTO 12 & 205 GTO 05 \\
\hline 156 PSE & 296 RCL 88 \\
\hline 157 PSE & \(207 \%\) \\
\hline 1584LEL 12 & 208 RCL 94 \\
\hline 159 -2PRIN= & 209 \# \\
\hline 166 FS ? 83 & 216 XEQ 06 \\
\hline 161 -PRIN= & 211 ST- 97 \\
\hline 162 ARCL 02 & 212 DSE 13 \\
\hline 163 RYIEH & 213 GT0 44 \\
\hline 164 FS? 55 & 214 GT0 95 \\
\hline 165 GT0 13 & \(215+\) LBL 20 \\
\hline 166 PSE & 216 RCL 明 \\
\hline 167 PSE & 217 X) \({ }^{\text {? }}\) \\
\hline 1680 LBL 13 & 218 CHS \\
\hline 169 - 8 AL \(=\) - & 21957064 \\
\hline 176 ARCL 63 & 228 "INT= * \\
\hline 171 AVIEN & 221 RTH \\
\hline 172 AIV & 222*LBL 96 \\
\hline 173 FS? 55 & 223 -FINAL N? \({ }^{\text {a }}\) \\
\hline 174 GTO 14 & 224 TONE 9 \\
\hline 175 PSE & 225 PROMPT \\
\hline 176 PSE & 226 ST0 09 \\
\hline 1774 LBL 14 & 227 RTH \\
\hline 178 CF 22 & 228*LBL 97 \\
\hline 179 RCL & 229 RCL 66 \\
\hline 186 FS? 02 & 230 RCL 89 \\
\hline 181 GT0 97 & \(231 \mathrm{~K}=\mathrm{Y}\) ? \\
\hline 182 -R/S OR K, R/S' & 232 GT0 99 \\
\hline 183 TONE 6 & 233 GT0 03 \\
\hline 184 TONE 0 & 234*LEL 98 \\
\hline 185 PROMPT & 235 SF 12 \\
\hline 186 CTO 03 & 236 "------ \\
\hline 1874 LBL A & 237 AYIEN \\
\hline 188 ST0 90 & 238 CF 12 \\
\hline 18951013 & 239 RTN \\
\hline 190 X 1 ¢Y & 240*LBL 99 \\
\hline 19157067 & 241 SF 12 \\
\hline 1921 & 242 "******* \\
\hline \(193+\) & 243 RVIEN \\
\hline 194 RCL 67 & 244 CF 12 \\
\hline 195* & 245 END \\
\hline 1962 & \\
\hline 197 \% & \\
\hline \(198 \mathrm{ST0} 68\) & \\
\hline 1996 & \\
\hline 200 ST0 61 & \\
\hline
\end{tabular}


```

ROW 19: LTNES 67 - 71

```

```

OON 20: LINES 72 -- 79

```

```

ROW 21: LINES 79-33

```

```

ROW 22: LINES 33-86

```

```

ROW 23: LINES 86 - 83

```

FOW 24: LINES 88 -- 90

ROW 25: LINES 31 - 97

ROW 25: LINES 98 - IDE

ROW 27: LINES \(107-15\)

FOW 28: LINES 11E - 122

ROW 29: LINES 122-129

ROW 30: LINES 130 - 137

FOW 31: LTNES 137-139

ROW 32: LINES 139-142

ROU 33: LINES \(142-148\)

FOW 34: LINES 148-15!

ROW 35: LINES 151 - 155

ROW 3E: LINES 155-159

\section*{ANALOGOUS HP-41 PROGRAM DESCRIPTIONS}

Prior to the existence of the HP-11C, programs were written for the HP41 which address the subject matter covered by the first five 11C programs presented in this manual. HP-41 users who have a need for such programs may find the following descriptions useful. Copies of the programs as separates \(1 /\) can be ordered as described on page 213.
A. HP-41 Analogies to the HP-11C program SLR:
1. LR (Linear Regression), Program No. 41F018.

Provides simple linear regression calculations which simulate the L.R., \(\hat{y}\), and \(r\) keys found on the HP-34C, HP-11C and HP15C. Specifically, one may readily calculate the following, for \(X\) and \(Y\) data summarized by the \(\Sigma+\) key:
a, the \(Y\)-intercept
\(b\), the slope of the least-squares fitted line
b', the slope assuming the line is forced
through the origin
\(r\), the simple correlation coefficient
\(r^{2}\), the coefficient of determination
\(t_{r}\), the calculated \(t\) to test the hypothesis
of zero correlation
\(\hat{Y}\), a predicted value of \(Y\) for any keyed-in \(X\)
Additional statistics such as confidence interval estimates and standard errors can be calculated using the program SLR (Program No. 41F019), but for brevity (96 program steps, 176 bytes, one magnetic card) only the listed items are included in "LR".

\footnotetext{
1/Programs LR, SLR, MSLR, LOGVOL, and SSRS are also included (without barcode) in the 1983 publication, "A Chronology of HP-41C Programs for Use and Example", by T.W. Beers.
}
2. \(\quad\) SLR (Simple Linear Regression), Program No. 41F019.

Extends the simple linear regression calculations achieved by "LR" (Program No. 41F018) to provide, for ungrouped \(X\) and \(Y\) data summarized by the + key:
(1) \(a, b, b^{\prime}, r, r^{2}, t_{r}\), and \(\hat{Y}\) (see LR program);
(2) standard errors: \(s_{y x}, s_{a}, s_{b}, s_{b^{\prime}}\);
(3) confidence interval estimates assuming mean \(Y\) and assuming individual \(Y\) for given \(X_{0}\);
and (4) Student's to test the following hypotheses:
\[
H_{0}: \rho=0, H_{0}: \alpha=0, H_{0}: \beta=0, H_{0}: \beta^{\prime}=1 .
\]

Care was taken to make the program "printer compatible" and an automatic print-out mode (flag 00 set) is provided.
3. MSLR (Master Simple Linear Regression), Program No. 41 F020.

MSLR is a steering program to be used in conjunction with SLR (Program No. 41F019) to accommodate ungrouped, grouped, or weighted data and to extend the prompting, correction, and/or deletion capabilities of that program. With the insertion of appropriate subroutines it is anticipated that MSLR can also be used to transform the input data and achieve linear approximations to certain non-linear models.

Detailed examples of ungrouped and grouped cases are provided with printer output.

The deletion of data sets, purposefully or to correct for a keyboard error, is provided for and described in detail.
B. HP-41 Analogy to the HP-11C program LVC:

LOGVOL (LOG VOLumes), Program No. 41 F008.
Written to calculate log volumes by Doyle, Scribner, Int. 1/4inch, Int. \(1 / 8\)-inch rules and cubic content by Huber, Smalian, and Newton formulas -- United States or Metric units.

Metric or U.S. units input and output are readily handled as is output conversion from one to the other.
C. HP-41 Analogy to the HP-11C program PLS:

PRABLA (obvious contraction of PARABOLA), Program No. 41 F034.
Written to calculate the gross and corrected sums of squares (SS) and sums products (SP), regression coefficients, and other related statistics for the least squares fit to the "parabolic" model:
\(Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}\), with the following optional definition of the \(X_{s}\) :
A. \(x_{2}=x_{1}^{2}\)
B. \(\quad X_{1}\) and \(X_{2}\) as non-functionally related variables
C. \(\quad x_{2}=x_{1}^{2}\), and the values of \(x_{1}\) are equally spaced between arbitrary lower and upper limits.

The program, by means of flags, can process data that are ungrouped, grouped (F1 set), or weighted (F1 + F2 set).
D. HP-41 Analogy to the HP-11C program ABCD:

COMPAS (obvious abbreviation for COMPASS), Program No. \(41 F 038\).
Written to achieve the conversion of angles measured from the true north meridian to angles measured from magnetic north and vice versa. Angles can be expressed as bearings (such as S 25 E) or in azimuth units from north (such as 125 azimuth degrees) and can be in degrees, minutes, seconds format (e.g., dd.mmss) or the decimal degrees format (e.g., dd. dddddd).

The program also has facility to convert from one format tothe other (such as from decimal to dms) and to convert bearings to azimuth angles and vice versa.
E. HP-41 Analogy to the HP-11C program SIMSTRAT:

SSRS (Simple and Stratified Random Sampling), Program No. 41 F017.
Written to summarize data from either a simple or stratified sample, obtaining within stratum and overall estimates of the mean and standard error and, optionally, user-specified confidence intervals and other sample statistics. Provision is made to use or not (flag 00 set) a finite population correction.

\section*{PUBLICATION AVAILABILITY INFORMATION}

Copies of the following publications are available and can be ordered from the author as indicated below.
1. A Chronology of HP-41C Programs for Use and Example. 299 pages, including 29 statistical and forestry related programs (without barcode). Price: \(\$ 33.00\) plus \(\$ 3.00\) postage.
2. OS-41, An Operating System for the HP-41 and Peripherials. 472 pages, including over 70 programs (with barcode) especially useful to move programs, and either numeric or alphabetic data back and forth among main memory, extended memory, magnetic card, tape and disc storages, printers, and barcode. Price: \(\$ 42.00\) plus \(\$ 3.00\) postage.
3. Separates of the following HP-41 "analogous" programs:

LR (Linear Regression) 7 pages, plus barcode.
SLR (Simple Linear Regression) 16 pages, plus barcode.
MSLR (Master Simple Linear Regression) 18 pages, plus barcode.
LOGVOL (LOG VŌLumes) \({ }^{-1} 16\) pagēs, plus barcode.
PRABLA (\(\overline{\text { Parabola }} 17\) pages, plus barcode.
COMPAS (Compass) 24 pages, plus barcode.
SSRS (Simple and Stratified Random Sampling) 13 pages, plus barcode.

Price per separate (including program listings and barcode): \(\$ 5.00\) each, plus \(\$ 3.00\) postage and handling for up to 10 separates.
4. Additional copies of the present manual, Substantial Programs for the HP-11C and HP-15C. Price \(\$ 17.00\) plus \(\$ 3.00\) postage.

Copies of the above may be ordered from
Thomas W. Beers 1808 Summit Drive West Lafayette, IN 47906

Please make checks or money order payable to Thomas W. Beers.
Indiana residents add \(5 \%\) sales tax.
Overseas orders should double the postage charge.

ORDERS ORIGINATING OUTSIDE THE UNITED STATES MUST BE PREPAID IN U.S. DOLLARS AND BE DRAWN ON A UNITED STATES BANK.

\section*{COLOR KEY}

\section*{Blue -- Start of HP-11C program descriptions \\ Gold -- HP-12C program \\ Green -- HP-41C programs}

\section*{MAIN PROGRAMS}

FiCALC

AFEA

MVO
1. Simple Linear Regression (SLR) 10 14
2. Log Volume Calculations (LVC) 18 22
3. Parabolic Least Squares (PLS) 26 30
4. Declination Correction (ABCD) 33 40
5. Simple and Stratified Sampling(SIMSTRAT) 47 52
6. Financial Calculations (FICALC) 55 83
7. Area of a Closed Traverse (AREA) 117 122
8. Means--Grouped, Ungrouped Data (NGG) 138 142
9. Amortization Schedules (AMORT) 159 167
10. Mortgages by Rule of 78s (FINC78) 170 176```

[^0]: *"HP-41" is used throughout, however the programs so indicated herein will run on the 41C, 41CV or 41CX models.
 **Analogous HP-41 programs also have been prepared for the first five 11C programs (SLR, LVC, PLS, ABCD, and SIMSTRAT), however they are not included in this publication. See page 210 for their description and availability.

[^1]: *Actually the material was written for the predecessor of the HP-12C, the HP-38C.

[^2]: *The original significance of this numbering scheme was: "11" indicates the calculator model; "F" implies forestry related (in the broad sense); "001" is the program's sequence in the category.

[^3]: 1/Brackets imply meaningful external accessibility, parentheses indicate internal use.

[^4]: *Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15C user to alter.

[^5]: * Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15C user to alter.

[^6]: *Indicates statements that must be changed for the HP-15C. Suggested or required change is shown in parentheses. Although the "code" for these statements will also change this is left for the 15 C user to alter.

