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ax + bx = (a + b)x a — b* = (a - b)a + b
a* + 2ab + b* = (a + b)? a@ - b = (- b+ ab + D)
a* — 2ab + b* = (a — b)? a@ + b= (a + b)a® — ab + b

Quadratic Formula
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T
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Exponents Logarithms
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b . b = bt log, (uv) = log,u + log,v
b'/b" = b log,(u/v) = logyu — log,v
b = b log,(u") = tlogyu
=1 log,1 = 0
b~ " = 1/p" log,b =1
Metric Units
Linear Measure Area Measure
1 meter = 1 m = 39.37 inches 1km? = 1000000 m? = 0.3861 sq. miles
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Imm = 0.00l m 1 cm? = 100 mm? = 0.155 sq. inch
lcm = 0.0l m
1 km = 1000 m
Volume Measure Weight Measure
1 liter = 1 ¢ = 1.057 quarts 1 gram = 1 g = 0.03527 ounces
1 ¢ = 1000 cm® 1 kilogram = 1kg = 2.2046 pounds
I m¢ = 0.001°¢ 1 mg = 0.001 g

1 k¢ = 1000 ¢ 1 kg = 1000 g
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Pythagorean Theorem For a right triangle
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Circle by
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PREFACE

One of the truly significant technological achievements of the twentieth cen-
tury is the development of high-speed computing devices, including the hand-
held calculator. These machines permit not only rapid and accurate computa-
tions of complicated numerical problems but they have great potential in all
phases of the educational curriculum. In this book we give a complete treat-
ment of the topics traditionally covered in a trigonometry course. Full
advantage is taken of the capabilities of scientific calculators, not merely as
computational tools but also as an aid to motivating and reinforcing basic
concepts.
Some of the prominent features in this book are:

1. Emphasis is on basic definitions and ideas throughout the text. As in most
mathematical textbooks, problem sets are included primarily for the purpose
of providing the student with an opportunity to apply definitions of fun-
damental concepts, thus leading to a better understanding of basic ideas. In
most of the problems involving numerical answers the student is asked to give
results in exact form or in approximate decimal form. In general, the first
precludes the use of calculators while the second almost always requires their
use. Expressing answers in exact form involves application of definitions
and/or basic concepts, while in giving results in decimal form the student be-
comes familiar with numbers as they occur in real-life applications (for exam-
ple, one does not ordinarily encounter numbers such as /2 or 7 on a
blueprint).

2. The traditional approach to solving triangles has been to formulate solu-
tions (whenever possible) so that logarithms can be used to carry out the final
computations. In this book we are freed from such constraints since calcu-
lators can perform additions and subtractions as easily as multiplications and
divisions. Thus the Law of Cosines has a higher priority than it does in other
trigonometry books.

vii



viii Preface

3. The numbers used in application problems are more realistic; calculators
can handle such numbers just as easily as the carefully selected simple numbers
chosen for the sole purpose of avoiding even slightly cumbersome computa-
tions. The calculator adds the dimension of approximate numbers often ig-
nored in mathematics books.

4. Appendix A contains a relatively complete introduction to the use of cal-
culators for those students who have had no previous experience with them.
Included in separate sections is a discussion of AOS calculators based on alge-
braic entry and RPN calculators based on Reverse Polish Notation. The basic
calculator keys are carefully described; this is followed by several detailed ex-
amples and practice problems. In most cases, the student can master this mate-
rial on his or her own. In addition to the treatment included in Appendix A,
further instruction on special function keys is given throughout the text pro-
per, as needed and when appropriate.

5. Appendix B includes a relatively detailed treatment of computation with
approximate numbers.

6. Although logarithms may no longer be popular for computational pur-
poses, they are important as functions that occur in applications and in the-
oretical mathematics. Their study is needed in preparation for subsequent
courses (such as calculus). Therefore, included in Chapter 10 is a fairly com-
plete treatment in which basic properties of logarithmic functions are empha-
sized. This chapter is independent of the others and can be included at any
point in the course. As in the earlier chapters, the treatment here is calculator
oriented.

7. Throughout the entire book, presentations of topics follows the pattern:
a) introduction of basic ideas; b) illustration of these by several examples
worked in detail; c) set of problems carefully designed to give practice with the
concepts being discussed and to stimulate related ideas. Also included are
chapter review exercises which utilize any of the concepts studied up to that
point.

8. A concept, a technique, or a fact can best be learned by encountering it
frequently and in a variety of settings. We exploit this by including problems in
exercise sets that repeatedly use ideas introduced in earlier sections. For
instance, one of the most difficult topics in trigonometry for a student to
master is that of identities. Basi¢ identities are introduced in Chapter 4, and in
subsequent chapters several problems have been designed specifically to show
that the application of an appropriate identity greatly simplifies solution of the
given problem. In this way the student sees that a knowledge of identities can
be helpful and there is no need to wait until calculus to justify their im-
portance.

9. The exercise sets include a large number of problems ranging from simple
to challenging. In each section the student will find several easy-to-follow ex-
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amples that illustrate the various types of problems included as exercises. In
some cases, the use of calculators allows us to present problem solving meth-
ods that are not part of a traditional course.

10. Although calculators make tables obsolete for computational purposes,
we recognize that learning to read tables may be an integral part of some trigo-
nometry courses. Therefore, we have included tables of trigonometric func-
tions and common logarithms in Appendix C. These can be incorporated in
solving problems at appropriate places throughout the text.

This book is designed for a one-semester or one-quarter course in trigono-
metry. A prerequisite of high-school geometry and intermediate algebra is
assumed. Although basic concepts are covered in sequential order throughout
the first nine chapters, it is not necessary to study all sections of a given
chapter. Each chapter contains sufficient material, so that a careful selection
can be made to fit the needs of any course.

It is assumed that many students have had some experience with calcula-
tors. Therefore, instruction in use of calculators is included in Appendix A as
optional material. It can be formally introduced when the group of students is
uniformly inexperienced. AOS and RPN systems are treated separately to
allow the individual student to follow only the portion corresponding to the
logic of a given calculator.

A summary of formulas for quick reference is included inside the covers.
Inside the front cover is a listing of formulas from algebra and geometry which
the student has probably seen in previous courses. Identity equations and
formulas from trigonometry are collected inside the back cover.

The authors are grateful to the mathematics staffs at Utah State Univer-
sity and Logan High School for their willingness to teach from experimental
versions of this book and to their students who provided the essential link with
reality. We are particularly indebted to Wanda C. Sayer for her patience and
understanding in typing the various versions of the manuscript. We extend our
appreciation to the following persons who reviewed the manuscript at various
stages: Laura Cameron from the University of New Mexico in Albuquerque,
Robert T. Fair from the Kankakee Community College in Illinois, Steven D.
Kerr from Weber State College in Ogden, Utah, and Michael Windham from
Utah State University in Logan, Utah. The resulting product reflects their
many helpful suggestions. Finally, we wish to express our sincere gratitude to
the entire editorial staff of Addison-Wesley, especially to our editor Patricia
Mallion for her vision and encouragement, and to Rima Zolina for her superb
editing.

Logan, Utah J.E.
November 1979 C.J.E.
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CHAPTER ONE

INTRODUCTORY
CONCEPTS

1.1 INTRODUCTION

As the name indicates, trigonometry pertains to the study of measurements
related to triangles. Approximately 3000 years ago the Egyptians and Babylo-
nians used properties of triangles to establish land boundaries and explore
astronomy. In modern times the ideas related to solution of triangles are still
important in several areas of application. Trigonometric functions are also
important in the study of calculus and in physics, engineering, and most fields
in which mathematics is applied. Two main goals of this book are: 1) the study
of problems related to the solution of plane triangles (in which calculators will
be essential); 2) the study of basic concepts of trigonometric functions needed
for further study of mathematics, particularly calculus (in which calculators
are used when appropriate).

1.2 ANGLES AND ANGLE MEASURE

The study of plane trigonometry implies that we begin with a given plane. All
of the geometric figures discussed (lines, rays, angles, triangles, and so on) are
subsets of this plane. In geometry, a ray is defined as a half line together with
its endpoint, and an angle is the union of two rays with a common endpoint.
Also the idea of measure of an angle is introduced but usually limited to angles
with measures less than or equal to 180°.

It now becomes necessary to extend the notion of angle and angle measure
beyond that studied in geometry. Eventually we shall express the angle
measure as a real number (radian measure), and it will be useful to have a
correspondence between the angles in the plane and the set of real numbers. In
order to do this, it is convenient to think of an angle as being generated by a
ray that is rotated about its endpoint from its initial position to a final position.
The ray corresponding to the initial position is called the initial side of the
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angle, while that in the final position is called the terminal side of the angle. The
point about which rotation takes place is called the vertex of the angle. The
definition of an angle is now extended to be the union of two rays together with
the rotation. Measure of an angle is then described in terms of amount of
rotation. This allows us to have angles with measures greater than 180° (indeed
greater than 360°) and also angles with negative measures, by using direction
of rotation. A directed angle will have positive measure if the rotation is
counterclockwise and negative measure if the rotation is clockwise. For
purposes of brevity we shall frequently say ‘‘the angle is positive’ to mean “‘the
measure of the angle is positive”; similarly for negative.

In Fig. 1.1(a) angle 4 is shown with initial and terminal sides labeled, as
well as with an arrow indicating direction of rotation. It is common to use the
arrow notation. Figure 1.1(b) illustrates angle B in which the rotation is more
than a complete revolution. Angles A and B are positive, while angle C is
negative.

Initial side C

(a) (b) (c)
Figure 1.1

1.3 UNITS OF ANGLE MEASURE

There are two units of angle measure that are widely used: 1) degrees-minutes-
seconds, 2) radians. Scientific calculators frequently include a third unit of
angle measure, that is, the grad.* Since this unit is rarely encountered, it will
not be used in this text.

1. Degrees, Minutes, Seconds

If the initial side of an angle is rotated counterclockwise one complete
revolution, the measure of the corresponding angle is defined to be 360
degrees, denoted by 360°. Thus an angle of 1° is one in which the initial side

* A grad is 1/100 of a right angle; that is, 400 grads is equivalent to a complete revolution.
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is rotated counterclockwise 1/360 of a revolution. For more refined mea-
surements, the units of minutes and seconds are used, which are defined by:

60 minutes equals one degree, denoted by 60" = 1°,
60 seconds equals one minute, denoted by 60" = 1'.

When a calculator is used, minutes and seconds must be entered as a
decimal part of a degree.

For example, 30°15" = 30.25° and 42°12'45" = 42.2125°,

Figure 1.2 illustrates degree measure of several angles. For brevity we write
A =90° to denote that the measure of angle 4 is 90°, and similarly for other
angles.

A =90° B = 45° C = 450°

o

oo 1=270°

Figure 1.2

2. Radians

Although the measure of angles in degrees is useful in some fields of
application (such as surveying and navigation), it is more convenient to use
another unit of measure for theoretical work in mathematics as well as applied
areas. This unit is the radian and is defined as follows:

An angle (with its vertex at the center of a circle) subtending an arc whose
length is equal to the radius of the circle, has a measure of one radian.
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An angle of measure 1 radian is shown in Fig. 1.3(a). In this case we write
6 =1 rad.*
In general, the radian measure of any angle is defined as follows:

If « is an angle (with vertex at the center of a circle of radius ) that
subtends an arc of length s (where r and s are measured in the same
units), then the radian measure of « is defined as a = s/r radians.t

Figure 1.3

Examples

& If r=4 cm and s =3 cm, then a = 3cm/4cm = %. Since the centimeters
units cancel, the result is a real number and it is not necessary to write
“radians” after %. In this text we shall write « = % (a = 0.75 in calculator
display form) or « = % rad to mean « is an angle having radian measure %. |

When the measure of an angle is given as a real number (with no unit
designation), it will be understood that the unit of measure is the radian.

For example, § = 15 means that 6 is an angle whose measure is 15 radians.

Q Express 36°16'23" in decimal form correct to four decimal places.

* In trigonometry angles are frequently indicated by Greek letters: a (alpha), 8 (beta), ¥ (gamma),
6 (theta), ¢ (phi), and so on.

tNote that this definition is independent of the size of circle used; that is, in Fig. 1.3(b) the two
ratios s/r and s'/r’ are equal (this is a fact from geometry).
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Solution. Since 60" = 1°, then 16’ = 16/60 degrees. Also 3600” = 1°, then
23" =23/3600 degrees. Therefore

o ’ " o_ 1_6 23 °_ o
36°16'23" = (36 + 40 + 3%35)° = 36.2731°.

The computation involved in getting the final result is easily done by using a
calculator.*

& Express 64.276° in degrees, minutes, and seconds (to the nearest second).

Solution.

64.276° = 64° + (0.276)(60") = 64° + 16.56’
= 64° + 16’ + (0.56)(60") = 64°16'34".

Note. In order to get maximum accuracy we suggest the following steps:
Record 64°, enter 0.276 into the calculator and multiply by 60, chen record the
whole number part of the result (16); then subtract 16 from the display,
multiply the result by 60 and this gives the number of seconds.

EXERCISE 1.3

1. Illustrate by a sketch the following angles. A protractor may be useful but if one is
not available, a reasonably approximate drawing will be sufficient.

a) A =135° b) B =1720° c) C=-60° d) D = -540°
e) E=210° f)y F=10° g) G =-300° h) H =22°30

2. Determine the measure (in degrees) of the angles shown in Fig. 1.4. Use a
protractor or make a reasonable estimate in each case.

paN
NS

F
*Throughout the entire text it is assumed that a calculator is used to do most of the arithmetic
computations. Appendix A includes calculator instructions for those who need them.

Figure 1.4
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. Note that an angle corresponding to one complete revolution has degree measure
of 360° and radian measure of s/r = 2xrr/r = 27 rad. From this we see that 180° and
w rad are equivalent. Illustrate by a sketch the following angles given in radian
measure:

_ _lr - - T
a) A =2mw b) B= 3 c) C > d) D 4
__Ir __3r 9 - T
e) E 3 f) F= 7 g G 4 h) H 3

. Determine the measure (in radians) of the angles shown in Fig. 1.5. Express answers
in terms of m, as suggested in Problem 3. Estimate if necessary.

N
PSS

Figure 1.5

. Sketch an angle that satisfies the given conditions:
3Ir

o PLS _ _T
a)0<0<2 b)7r<6?<2 c) —w<l< 3

3r 9 g lnx
d) 4<0<7r €) 4<e9< 7 f) o> 2w

. Express the given angles as a decimal number of degrees correct to three decimal
places:

a) 156°37’ b) 215°18'36"

. Express the given angles as a decimal number of degrees correct to four decimal
places:

a) 48°39'42" b) —75°12'41"

. Express the given angles in degrees and minutes correct to the nearest minute:

a) 24.36° b) 149.375°

. Express the given angles in degrees, minutes, and seconds correct to the nearest
second:

a) 37.583° b) 321.5764°
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1.4 DEGREE-RADIAN RELATIONSHIPS

Problem 3 of Exercise 1.2 suggests a relationship between the degree and
radian units of angle measure. We now give a formal treatment so that the
different units can be used interchangeably. If the initial side of an angle is
rotated counterclockwise one complete revolution, the measure in degrees of
the corresponding angle is 360°. The same angle in radians has measure s/r,
where in this special case s is the circumference of the circle with radius 7 ;
that is,

)
s=2xr and so —Sr—z ‘ir’=27r.

Thus we have 360° and 27 radians as the measures of the same angle and

we write
360° = 27 rad.

Dividing both sides of this equality by 2 gives

180° = 7 rad. (L.1)

From Eq. (1.1) we get the following:

1° = IT) =0.017453 rad,
(1.2)

I rad =180° _ 57.29¢° — 57°17'45".

T

Equations (1.2) can be used to convert the measure of an angle from one unit
to the other. However, the decimal numbers involved are difficult to memorize
and we suggest that the student remember the equality stated in Eq. (1.1) and
use it as a starting point for conversions.

Examples
A Change 30° to an equivalent measure in radians.

Solution. Since 1° =7 /180 rad, 30° must be 30 times 7 /180 rad; that is,
30° =30 - (7/180) rad = 7 /6 rad = 0.5236 (to four decimal places). |

A Express 147°32" in radian measure correct to four decimal places.

Solution. We first convert 147°32’ to a decimal number of degrees, and then
similar to Example 1 we have:

147°32' = (147 + %)° = (147 + %%) . (%)rad = 2.5749 rad. I

& Express 2.5 rad in terms of degrees (to three decimal places).
Solution. Since 1 rad = (180/7)°, we have 2.5 rad = 2.5(180°/7) = 143.239°.
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A Convert 137 /4 rad to degree measure.

Solution. This is similar to Example 3 and so

b L) () - s

It should be clear from the above examples that we have the following two
rules:

1. To convert from degrees to radians, multiply by = /180.
2. To convert from radians to degrees, multiply by 180/x.

The Number Pi

The number 7 occurs frequently in mathematics. Although the student may
have some familiarity with this number, it is worthwhile recalling some facts
about it. More than 2000 years ago the Greeks were aware of an interesting
property of circles. That is, in any two given circles (one with diameter d, and
circumference ¢, and the other with diameter d> and circumference c;), the
ratios ¢i/d: and c./d: are equal (Fig. 1.6). The common ratio is denoted by =
(the Greek letter pi).

Figure 1.6

Scientific calculators have a key labeled . When this key is pressed,
the display shows 3.141592654. Actually, this is an approximation to the value
of 7 that is correct to nine decimal places. The number 22/7 is frequently used
as a value of w. It is important that the student realize that this is also an
approximation. In decimal form, 22/7 is given by the repeating decimal
3.142857, which approximates = correctly to two decimal places.

Another approximation to = is 333/106 = 3.1415094339 . . . We see that
this agrees with 7 (as given in (1.3) below) in the first four decimal digits.
However, in rounded-off form it is correct to three decimal places. (See
Appendix B for a discussion of approximate numbers.)
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Even though approximations to 7 by fractions or decimals are useful in
practical applications, it is important that the student realize that it is
impossible to represent m exactly as a rational number, that is, a quotient of
two integers; w is an irrational number, that is, its decimal representation is
nonterminating and nonrepeating. Calculating = correctly to several decimal
places requires a representation of it in terms of an infinite process (such as an
infinite series), and discussion of this must be delayed until the study of
calculus. The decimal approximation correct to 24 decimal places is

m = 3.1415 92653 58979 32384 62643. (1.3)

Note. In this text we shall frequently ask for an answer in (a) exact form and
(b) decimal approximation form. When the number pi is involved, the only
way we shall represent it in exact form is by the symbol . To avoid
cumbersome statements, we frequently take some liberties with notation. For
example, we write 7 = 3.1416 and we understand that the ““‘equal to”” symbol
used here actually means “‘approximately equal to,” which is correct to the
number of decimal places used.* As another example, a number whose square
is 2 can be represented by V2 and this is an exact form for that number;
V' 2 cannot be written in finite decimal form, and when we write V2=1414
we mean that 1.414 is a decimal approximation to V2, which is correct to
three decimal places.

EXERCISE 1.4

1. Express the given angles in radian measure. Write your answer in two forms: exact
(using 7) and as a decimal correct to three places.
a) 60° b) —135° c) 225° d) 720°
2. Follow instructions of Problem 1 for
a) 120° b) 315° c) 22.5° d) -330°
3. Express the given angles in radian measure correct to three decimal places:
a) 23.53° b) —48.635° c) 237°48' d) 121°40'31" e) 437°23
4. Convert to radian measure correct to two decimal places:
a) 64.431° b) 229°47'30" «¢) —36°23'08" d) 148.012° e) 472.37°

5. The following numbers represent the measure of an angle in radians. Convert to the
corresponding measure in degrees and express the result in exact form.

o 2r 3r 23m In

2 ® 3 3 AT ® 13
6. Follow instructions of Problem 5 for

3 _Ir Llr _ 157

a) 4 b) > c) I8 d) —17x €) 7]

* When we say that 3.1416 approximates 7 correctly to four decimal places we mean that the actual
value of = has been rounded off to four decimal places (see Appendix B for a discussion of
approximate numbers).
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7. The given numbers represent angles in radian measure. Convert to degrees and
express the results in two forms: decimal number correct to three decimal places
and degrees, minutes, and seconds correct to the nearest second.

a) 1.15 b) 2.48 c) 0.0493 d) -5.76 e) 64
8. Follow instructions of Problem 7 for
a) 1.37 b) 0.0034 0 155 d) —3.45 e) 30

9. Use your calculator to express the fraction 355/113 as a decimal; obtain a sufficient
number of decimals to determine how closely it approximates .

10. Follow the instructions of Problem 9 for the rational number 208341/66317. It will
be necessary to get more decimal digits than given in the full display of your
calculator. Find a way of getting at least 12 decimal digits using your calculator.

1.5 APPLICATIONS INVOLVING RADIAN MEASURE

The use of radians for angular measure is helpful in solving applied problems
in physics, engineering, and other fields as well as in theoretical developments
in mathematics. In this section we consider examples that illustrate applica-
tions of radian measure.

1. Arc Length

In Section 1.2 radian measure of an angle is defined as follows:

0==, (1.4)

where the angle has its vertex at the center of a circle of radius r and s is the
length of the intercepted arc, as shown in Fig. 1.7. Equation (1.4) can be
written in equivalent form as

s=rb (1.5)
///—
/
! i
\ "]
N 4

Figure 1.7
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Examples

A Find the arc length of a circle with radius 64.87 m that is intercepted by
a central angle 23°37’.

Solution. We first express the given angle in radians,

—23°37 — 37y (. :
6=23°37" = (23 + 25) - ({&5) rad;
substituting into Eq. (1.5) we get
- 37V (=) =
s=64.87(23 + L) - ({5g) = 26.74 m.
The final computations are done by calculator and then rounded to two
decimal places. ]

A The distance from the Earth to the Moon is approximately 384,000 km.
If the angle subtended by the Moon from a point on the Earth is measured as
30’50, then we can approximate the diameter of the Moon by assuming it to
be the arc of a circle, as shown in Fig. 1.8. That is, the diameter of the Moon
is approximately equal to s, where

g 30, 50 _
s_r0_384000.(m+m).T%km_3444km.

. —
e
-
—_
-
—-—
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-
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-
-

Figure 1.8

2. Velocity of Rotation

Suppose we have a circular wheel of radius » = 10 cm rotating about its center
0, and P is a point on the circumference (Fig. 1.9). Suppose also that point P

‘\

P

Figure 1.9



12 Introductory Concepts Chapter 1

travels a distance of s = 20 cm each second. We say the linear velocity of P is
20 cm per second and write v = 20 cm/sec. During each second the radial line
OP rotates through an angle 6 =s/r =20 cm/10 cm = 2 rad. We say that
the angular velocity of rotation is 2 radians per second, and denote this by
w = 2 rad/sec (w is the Greek letter omega).

The above example illustrates the problem of a point P moving in a circular
path. We distinguish two types of velocity: linear velocity v tells us how fast P
is moving, while angular velocity w tells us how fast the central angle 6 is
changing (that is, how fast the radial line OP is rotating). Both v and w are
measures of how fast P is moving at any given instant. In general, v and w are
functions of time. In the special case when P is moving at a constant speed, we
call such a motion uniform circular motion. We shall limit our discussion to this
case and leave the general case when v varies with time, for calculus.

We wish to determine the equation that gives the relationship between v
and w. Suppose that point P moves to point Q, covering distance s in time ¢
(see Fig. 1.10). Then v = s/t. During the same time, the radial line OP rotates
through a central angle 6, and so w = 0/t. Since s = rd, we get

y=S_rf_, 0 _,.,
t t t

Thus we have

V=row, (1.6)

where w is in radians per unit of time.

S——

Figure 1.10

Examples

& The wheel of a turbine rotates at the rate of 648 revolutions per minute
and the distance from the center to a point P on the outer edge is 96.3 cm.
What is the linear velocity of point P ?

Solution. Since | rev =27 rad, w = 648 rev/min = 648 - 2= rad/min - Sub-
stituting into Eq. (1.6), we get

y=648 .27 .96.3-SM_ _ 648-27-963 m _ —392] _m_,
min 100 min min |
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A The diameter of each wheel of a bicycle is 70 cm. Suppose a person riding
the bicycle travels at a constant speed and is timed at 3 min over a distance of
two city blocks, where the length of a block is 200 m. Find the angular velocity
of a spoke of a wheel.

Solution. Each time the wheel (or a spoke) makes one revolution, the bicycle
moves forward a distance equal to the circumference of the wheel, that is,
707 cm. Therefore when the bicycle travels two blocks (400 m or 40,000 cm),
the number of revolutions of a wheel is 40000/(70x). It takes 3 min to make
this number of revolutions, and so

40000 . 3_ 6063 LEV .

“="70r min
Expressing w in radians per second, we have
w=60.63 . 2 + 60 = 6.351ad, I
sec

3. Area of a Sector of a Circle

A sector of a circle is defined as a region bounded by two radial lines and the
intercepted arc of the circle. Figure 1.11 shows two regions bounded by the
same radial lines. In order to distinguish between these two, we always indicate
the central angle of the sector. In Fig. 1.11(a) the sector has central angle «,
while in Fig. 1.11(b) the central angle is 3.

(a) (b)

Figure 1.11

From the study of geometry we know that in any given circle the areas of
two sectors are proportional to the corresponding central angles. That is, in the
diagrams shown in Fig. 1.12,

Area of sector AOB _ _Area of sector COD
0 a
In particular, if we let sector COD be the entire circle, so that « = 27, and the
area is wr?, we get

Area of sector AOB _ wr* _ 1’
0 2w 2
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[

| 0 | /

\\ / \ //
Figure 1.12

That is, area of sector AOB is 6r?/2.
Therefore, the area of the sector of a circle of radius r and central angle 6
in radians is

Area =0r?/2 (1.7

Example. Find the area of the sector of a circle of radius 2.54 cm and central
angle 73°24’.

Solution. We first convert 73°24’ to radians and then substitute into Eq. (1.7):

o’ 24
73°24' = (73 +6—0) - g rad.

Therefore,

-1 24y, m_, 2 2
Area= - (73 + 25) - {Z5-2.54' = 4.13 em?. I

EXERCISE 1.5

1. Suppose the radius of a circle is 37.43 cm. Find the length of arc intercepted by the
given central angle. Give answers correct to two decimal places.

a) 36° b) 73°23 c) 3.58

2. The radius of a circle is 75.23 cm. Find the length of arc intercepted by the given
central angle. Give answers correct to two decimal places.
a) 187°15 b) 17x/12 c) 18°15'35"

3. If the radius of a circle is 25.32 cm, find the central angle that subtends the given
arc. Give answers in radians correct to two decimal places.
a) s=1247 cm b) s = 60.53 cm c) s =29.45cm

4. If a central angle of 68°35’ subtends an arc of a circle of length 47.53 cm, find the
radius of the circle. Give your answer in centimeters correct to two decimal places.

5. Suppose point P moves along a circular path with a radius of 3.57 m and center at
O. Find the total distance traveled by P if the radial line OP sweeps out the given
angle. Give twc-decimal-place answers.

a) 257° b) 1440° c) /2 d) 357
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. In Problem 5, the point P travels a distance of 47.55 m. Through what angle does

OP sweep? Give your answer in radians (correct to two decimal places) and in
degrees (correct to two decimal places).

. Find the velocity v of a point on the rim of a wheel of radius 24.37 cm if it is rotating

at the given angular velocity:
a) w=5.4rad/sec b) w = 1247 rad/min

€) w=63.5 rev/min d) w= 124 deg/sec

. A wheel of diameter 127.48 cm is rotating at a constant rate. Find the angular

velocity if a point on the rim is moving at the given speed. Give answers correct to
two decimal places in rad/sec and in rev/sec.

a) v= 348 cm/sec b) v=2.75 m/sec

. Find the angular velocity of the minute hand of a clock in each of the following
units:
a) rev/hr b) rev/min c) deg/min d) rad/min

Find the angular velocity of the second hand of a watch in
a) rev/min b) deg/hr c) rad/sec

If the length of the minute hand of a clock from the pivot point to the tip is 6.5 cm,
find the linear velocity of its tip in each of the following units:

a) cm/hr b) cm/min c) cm/sec

If the length of the hour hand of a clock from the pivot point to the tip is 5.2 cm,
find how far its tip will travel in the given time:

a) 2 hr b) 3 hr 40 min ¢) 16 hr 32 min

Find the linear velocity of the tip of a propeller blade that is 2.48 m from the pivot
point and is rotating at 640 rev/min. Express your answer in m/min correct to two
decimal places.

The length of the minute hand of a clock is 8.5 cm and the length of the hour hand
is 6.1 cm. Give answers in meters and find the ratio of the distance in (a) to that in
(b). Give two-decimal-place answers.

a) How far will the tip of the minute hand travel in a year? Assume 365 days in a
year.

b) How far will the tip of the hour hand travel in a year?

Assume that the Earth is spherical with radius 6400 km and that its period of
rotation about an axis passing through the north and south poles is 24 hours. How
fast is a point on the equator moving in km/hr due to rotation?

A trundle wheel is an instrument used to measure distance (Fig. 1.13). It consists of
a wheel pivoted at one end of the handle, so that it can turn freely. The operator
holds the other end of the handle and rolls the wheel (without slipping) along the
path whose distance is to be measured. A meter trundle wheel is one whose
circumference is equal to one meter. Suppose Diane wishes to measure the length
of a Logan city block. She rolls her meter trundle the length of the block and counts
196 clicks (indicating 196 revolutions). She moves at a constant speed and it takes
her 3 minutes and 36 seconds. Give two-decimal-place answers.
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17.

18.

19.

20.

21.

22.

Figure 1.13

a) What is the length of the block in meters?

b) What is her linear velocity?

c) What is the angular velocity of the wheel in rev/sec; in rad/sec?

A satellite travels around the Earth and makes one revolution every 4.5 hours.

Assuming that the orbit is a circle of radius 7240 km, find how fast it is traveling
in km/hr. Give answer correct to the nearest whole number.

A circle has a radius 17.3 cm. Find the area (correct to two decimal places) of the
sector of the circle with the given central angle:

a) 24° b) 37°53' c) —75— d) 3.56

If the radius of a circle is 1.26 m and the area of a sector is 0.8764 m?, find the
central angle (to two decimal places) in

a) radians b) degrees

What is the measure in radians of the smaller angle between the hour and minute
hands of a clock at

a) 1:15 AM. b) 1:45pP.M.

A pulley of diameter 31.64 cm is driven by a belt. If 32 meters of belt passes around

the pulley (without slipping), through what angle does a radial line OP on the
pulley turn? Express the answer (correct to two decimal places) in

a) degree measure b) radian measure

In Problem 21, suppose it takes 24 seconds for the 32 meters of belt to pass around
the pulley; find the angular velocity of the pulley in

a) deg/sec b) rad/sec

Figure 1.14
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Assume that the Earth travels about the Sun in a circular orbit (actually it is a
nearly circular ellipse), and the distance between the Earth and Sun is 149 million
kilometers. A radial line is drawn from the Sun through the Earth.

a) What is the angle (in radians) swept out by that line in a day? (Assume that it
takes 365.25 days to travel once around the Sun.)

b) What is the angular velocity of the radial line in radians per hour?

c) What is the linear velocity of the Earth in kilometers per hour?

A treadle sewing machine is driven by two wheels with a belt passing around them,
as shown in Fig. 1.15. The sewing machine used by Motl, the tailor, has the
following measurements: the diameter of the larger wheel is 31 cm, while that of the
smaller wheel is 7 cm. If Motl treadles his machine at a fixed rate, so that in 45

seconds the larger wheel turns through 63 revolutions, find the angular velocity of
each wheel (assume the belt does not slip). Express each answer in

a) rev/sec b) rad/sec

[R—

Figure 1.15

Using the information of Problem 24, find the linear velocity of point P on the belt,
in centimeters per second. Also determine, how far point P travels when the sewing
machine is operated at the given rate for 8 seconds.

If the area of a given sector of a circle is 265.78 cm? and the length of the arc is
36.3 cm, find
a) the radius of the circle b) the central angle of the sector

If the area of a circular sector is 24.32 m? and the radius is 6.47 m, find the length
of arc bounding the sector. Give answer in meters correct to two decimal places.
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28. The front wheel of a tricycle is 51.4 cm in diameter and each of the rear wheels has
a diameter of 23.5 cm. If the tricycle travels along a straight path for a distance of
48 m, through how many revolutions will each wheel turn? Also express each
answer in number of radians the wheel will turn.

29. The time is between one and two o’clock and the angle measured clockwise from
the hour hand to the minute hand is 64°15’. What time is it? Give the answer
correct to the nearest minute.

30. a) A certain pickup truck comes factory equipped with standard-size tires. The
diameter of such a tire is 29 in. The speedometer is calibrated with this size tire.
If the truck travels for 1 hr at a constant speed with the speedometer reading
55 mi/hr, how many revolutions will a wheel make?

b) The owner of the truck prefers larger tires and replaces the originals with tires
of 30.75 in. diameter. Now he travels for | hr at a constant speed with the
speedometer reading 55 mi/hr (thus each wheel will make the same number of
revolutions as in (a)). How far does he go during that hour? By how many miles
per hour is he violating the 55 mi/hr speed limit?

31. A spherical water tank is located 0.8 km from point P, and the angle it subtends at
P is measured to be 17.5 minutes. (See Fig. 1.16.) Using this information, obtain a
reasonable approximation to the volume of the tank in cubic meters.

Figure 1.16

Hint. The diagram shows a vertical plane through the center of the tank and P.
Assume that P is the center of a circle of radius 0.8 km and that 6 is a central
angle of measure 17.5". Calculate the arc length S and use this as an approxima-
tion to the diameter D of the tank. The formula for calculating the volume of a
sphere is V=(7r/6)D".

REVIEW EXERCISE

1. Express the following angles in decimal number of degrees correct to two decimal
places:
a) 37°42' b) —321°17'40" c) 1.43 rad d) 157 /23 rad

2. Give the following angles in radian measure correct to two decimal places:
a) 175° b) 23°16’ c) 327.48° d) 137°16'37"
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. Make a sketch illustrating the given angles (a reasonable approximation is

sufficient):
a) 150° b) —250° c) 2n/3 d) 7x/S e) 3.58 f) 8.4

. The central angle of a circular sector is 64°27'. If the radius of the circle is 24.6 cm,

find the length of arc of the sector in centimeters correct to one decimal place.

. In Problem 4, find the area of the circular sector in square centimeters correct to

one decimal place.

. The measures of three angles «, 8, and v are: a = 0.935, 8 =57 /17, v = 3« /10.

Determine which is the largest angle and which is the smallest angle.

. The measures of four angles «, 3, v, and 6 are:

a = 126°27, B8 =126.43°, v =2.21, 0="7r/10

Order these according to size from the smallest to the largest.

. An arc of a circle of radius 37.63 m has length equal to 12.37 m. Find the measure

of the central angle subtended by this arc in degree measure correct to the nearest
minute.

. Find the area of the circular sector described in Problem 8. Give answer in square

meters correct to two decimal places.

Determine the smaller angle between the hour and minute hands of a clock when
the time is 3:45. Express your answer in degree measure correct to two decimal
places.

. The area of a circular sector is 35.61 cm? and its central angle is 34.63°. Find the

length of arc of the sector in centimeters correct to two decimal places.

A particle travels in a circular path of radius 3.45 cm at a constant speed. It takes

1 min 36 sec to make 84.75 revolutions.

a) Find its angular velocity in radians per second.

b) If it travels at the given rate for 3 min 20 sec, what is the total distance tra-
veled? Give answer in centimeters correct to two decimal places.

If both the radius and central angle of a circular sector are doubled, by what factor
is the area increased?

The diagram illustrates part of a machine in which the larger wheel drives the
smaller wheel by a belt around the two wheels (Fig. 1.17). The diameter of the

Figure 1.17
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larger wheel is 63.4 cm, while that of the smaller wheel is 25.8 cm: the distance

between their centers is 124.3 cm.

a) If the larger wheel rotates at a constant rate of 250 rev/min, find the rate at
which the smaller wheel rotates (in rev/min) correct to the nearest whole
number.

b) If Pis a point on the circumference of the larger wheel, what is the linear speed
of P in m/min? Give answer to one decimal place.

c) If Qis a point on the circumference of the smaller wheel, find the linear velocity
of Q in m/min correct to one decimal place.

d) If T is a point on the belt, how far will T travel in 1.5 minutes? Give answer in
meters.

. A circular pizza is cut into four pieces by making two straight cuts across through

the center. Two of the pieces are smaller, each having a central angle 10° narrower
than that of each larger piece. Find the ratio of the area of the larger piece to that
of the smaller piece.



CHAPTER TWO

TRIGONOMETRIC
FUNCTIONS

2.1 TRIGONOMETRIC FUNCTIONS FOR ACUTE ANGLES

In this chapter we introduce six basic trigonometric functions. We define these
in two phases: first for angles whose measures are between 0° and 90° (acute
angles), and then in Section 2.4 we extend these definitions to the general case
of angles of any measure.

At this point the student may profit from a review of functions as studied in
algebra. There the idea of a function was introduced as a correspondence
between elements of two sets (usually sets of numbers); the first set is called the
domain D of the function and the second set the range R of the function. If f
denotes the function (in which the rule of correspondence is frequently given
by an equation, or by a verbal statement, or a table), then for each element x
of D there is a single corresponding element of R denoted by f(x). That is,
every element x of D has a unique mate f(x) in R. The symbol x is called the
independent variable, while f (x) is called the dependent variable, and we usually
write y = f(x).

For example, equation y = x2, along with the domain (the set of real
numbers) describes a function, since for each real number x there is exactly one
value of y (the square of x) paired with it. The range of this function is the set
of nonnegative real numbers.

We now define the six trigonometric functions—the building blocks of
trigonometry. These functions are basic and the student should master them.

In mathematics, when a particular function occurs frequently, it is given a
special name for easy reference (rather than using letters such as f; g, etc.). The
names of the functions that we are about to introduce are: sine and cosine,
tangent and cotangent, secant and cosecant; these are abbreviated as sin, cos,
tan, cot, sec, csc, respectively.

To define these functions, we consider a right triangle with standard
notation, as shown in Fig. 2.1.

21
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A b c
Figure 2.1

The two acute angles are denoted by « and 8, and the two sides (or legs)
opposite these angles are labeled a and b, correspondingly. The side opposite
the right angle (¢ in the figure) is called the hypotenuse. A special property of
right triangles involving the legs and the hypotenuse is stated in the
Pythagorean theorem:

a*+ b*=c

Note that we take liberties with language and notation here as well as
throughout the text. For example, we say “‘side b when we really mean that
the letter b represents the length of the side opposite angle 3.

We now give the following definitions, where “‘opp(a)” and ‘“‘adj(a)”
represent ‘‘side opposite’” and “side adjacent angle a”:

: _ _opp (0‘)__0_ _adj (@) _b _opp(@)_a

sin a = hyp = Cos a = hyp = tana_adj(a)_b’
adj (@) _ » hyp c hyp c

cot g =—"—"===, seCa=—7"7—=—F, CSC a= ==
opp () a adj (@) b opp (a) a

Similarly for angle 8 we have:

SinﬁzM:i cos 6:M=l, tan 3 M b

hyp ¢’ hyp ¢ Tadj (8 a
_adi® _a __hyp ¢ __hyp ¢
= ® b P e T P b

The following observations can be made from the above definitions:

1. There are many right triangles which contain a given angle, such as « in
Fig. 2.1, and so it may appear that the above definitions depend upon the
particular right triangle used. However, this is not the case since we recall from
geometry that any two such triangles are similar and the ratios of correspond-
ing sides are always equal. For example, in Fig. 2.2 we have two similar right
triangles, and so a,/c, = a,/c,. Thus sin « is equal to a,/c, or a,/c,.
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)

a4

Figure 2.2

2. It should be clear that the definitions given above describe six functions.
For example, to each acute angle the sine function attributes a unique real
number a/c. The situation is similar for each of the other five relations.

3. There is an obvious reciprocal relationship between pairs of the six
functions. For example, csc a = ¢/a and sin a = a/c, therefore csc a = 1/sin a.
Similarly the sec, cos and cot, tan functions are reciprocals of each other:

1 S€C a = 1, cot a = 1

CSC a0 = — s .
sin « CoSs « tan «

4. We know from geometry that 3 = 90° — «. Since cos « and sin 8 are
both equal to b/c, then we have sin 3 = cos «, or sin (90° — a) = cos a. Thus
we have complementary-angle identities:

sin(90° — @) = cos «, c0s(90° —a)=sin «, tan(90° — a) =cot a,
cot(90° — a) =tan a, sec(90° —a)=csc @, cs5¢(90° — a) =sec a.

5. The domain of each of the six functions is a set of angles (actually,
measures of angles) defined as

D =1{0]0° < 6 < 90°}.

The range of each function is a subset of the real numbers; for example, the
range of the sine and cosine functions is {y|0 < y < 1}, while the range of the
tangent and cotangent functions is {y|y >0}, and that of the secant and
cosecant functions is {y|y > 1}. These statements should be intuitively clear
from the definitions of the six functions.

We remind the student that the above statements are limited to the special
case we are considering, that of acute angles. In Section 2.4 we shall extend the
above definitions to include angles of any measure.

1. Trigonometric Functions for Special Angles: 30°, 45°, 60°

There are two right triangles in which the sides are related in a simple manner,
and so the trigonometric functions for the angles of these triangles can be
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expressed in exact form. The student is reminded of the following properties
encountered in the study of geometry.

1. If one angle of a right triangle is 45°, then the other is also 45°, and the
triangle is isosceles. Therefore the lengths of the two sides are equal. If both are
taken to be one unit in length, as shown in Fig. 2.3(a), then by the Pythagorean
theorem the hypotenuse will have length \/12 + 12 =V/2. This triangle can
be used to find the trigonometric functions of 45°. For example,

. o 1 1.vV2 V2
sin 45°=—= ———=—~
V2 V2.v2 2
Thus sin 45° =V/2/2. Using the calculator to evaluate V'2/2, we get

sin 45° = 0.7071 (to four decimal places). We say that \/2/2 is an exact form
for sin 45°, while 0.7071 is a decimal approximation.

B
N\
\
o \\
30 \
\
\
2 \
AN
V3 \
\
\
\
\
60° o 602N

A 1 C D

Figure 2.3

2. In a right triangle with one angle equal to 30° and the other 60°, the
hypotenuse is twice as long as the shorter side (the side opposite the 30° angle).
This property can be seen from Fig. 2.2(b), where triangle ABD is equilateral
and triangles ACB and DCB are congruent. Thus if we take the length of the
hypotenuse as 2, then the side opposite the 30° angle must be 1. By the
Pythagorean theorem, the length of the other side is V22 — 12 = /3. Using
right triangle A BC we can find the trigonometric function values for 30° and
for 60°. For example, sin 30° = 1/2 and sin 60° =/3/2 in exact form, while
sin 60° = 0.8660 is a decimal approximation correct to four places.

2. Exact Form vs. Decimal Form

In many problems throughout this textbook the student is asked to express
numerical answers in exact form or in decimal form correct to a given number
of places. In general, the exact form is obtained by applying definitions or basic
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results, while the decimal answer is a rounded-off approximation of the exact
form. In most cases, answers obtained by using a calculator are approximate
decimal numbers with accuracy limited by the capacity of the machine.

Examples
& If 6 is an angle for which sin 6 = !5, find tan 6 and sin (90° — 6):
a) in exact form b) in decimal form (to four places)

Solution. Consider a right triangle with 6 as an acute angle. Since sin § = !5, we
can use the side opposite § as one unit and the hypotenuse as three units, as
shown in Fig. 2.4. The length of the third side will be V32— 12 =/8 = 2V/2.

Figure 2.4

Therefore,
a) tanf = opp(ﬂ) = —1_;:_\/2
adj (0) 2v2 4
. 0°—0=0pp(900_0)=2\/2
sin (9 ) hyp 3
b) tan 6 = 0.3536, sin (90° — 6) = 0.9428 |

A In a right triangle, a = 5.24 cm and ¢ = 16.36 cm (Fig. 2.5). Find:
a) the length of side b (to two decimal places),

b) tan « (remember, « is the angle opposite side a).

a=5.24

Figure 2.5
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Solution.

a) From the Pythagorean theorem,

b=+16.36? — 5.242 = 15.50 cm.

b) tan o =4 = 5.24 - 0.3381.

V16.362 — 5.242 |

A If sin 6§ =0.47, find the remaining five trigonometric functions of 6
(correct to two decimal places):

Solution. Since sin § = 0.47/1, we can use a right triangle with hypotenuse 1
and side opposite § as 0.47 (Fig. 2.6). Let x represent the length of the adjacent

side; then x = V12— (0.47)? = 0.8827. Thus,

cos 6 =0.88 tan 6 = 0.53 cot 6 = 1.88
secf=1.13  cscf =213 i

0.47

X

Figure 2.6

A In a right triangle we are given that ¢ = 15.72 and sin 8 = 3/5 (Fig. 2.7).
Find (correct to two decimal places):

a) the length of side a b) tan «

Figure 2.7

Solution.

a) Since cos 8 =a/15.72, we have a=15.72 cos 3. Thus we need to
determine cos 3.
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Since sin 8 = 3/5, we draw a second triangle as shown in Fig. 2.7, in which

we first determine x = V/52 — 32 = 4. From this triangle we have cos 8 = 4/5.
Therefore,

a=1572 cos f=(1572)(4) = 12.58.
b) From the second triangle we have: tan a = 4/3 = 1.33. |

EXERCISE 2.1

1.

10.

11.

Determine the following and give answers in exact form:
a) cos 45° b) tan 45° c) cot 45° d) sec 45° e) csc 45°

. Complete the following table by entering in exact form the function values for the

given angles:

sin Ccos tan cot s€cC CSC

30°
60°

. If cos 6 = 3/5, find in exact form

a) tan 0 b) cot 6 c) csc f

. If tan « = 4/3, find in exact form

a) sin « b) cos « C) sec «

. If sin 8 = 3/4, find the answers correct to two decimal places:

a) cos 6 b) tan 6

. If sin @ = 2/7, determine each of the following in exact form:

a) cos a b) sin (90° — «) c) tan « d) sec(90° — «)

. If cos 6 = 8/17, find in exact form:

a) tan 0 b) tan (90° — ) c) sec(90° — ) d) csc @

. If sec # = 1.5, find in exact form:

a) sin 6 b) tan 6 c) cos(90° — 6)

. If cos 6 = 0.63, find the remaining five trigonometric functions of 8. Give results

correct to two decimal places.

A cat stranded on a telephone pole has found secure footing at a point where the
guy wire meets the pole. If the distance from the foot of the pole to the foot of the
guy wire is 3 m and the wire makes an angle of 60° with the ground, how high above
the ground is the cat?

In a right triangle a = 2.36, b = 5.63. Find (to two places)
a) the length of ¢ b) sin «
c) cot 8
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12. In a right triangle we are given that ¢ = 6.47 and sin « = 5/17. Find correct to two
decimal places:
a) the length of a b) the length of b c) tan 3

13. Find the height of the Washington Monument if it casts a shadow of 290 m when
the sun is 30° above the horizon. Give the answer to the nearest meter.

14. Lighthouse BC is located on the edge of a cliff, as shown in Fig. 2.8. From point
A (which is 67 m from the base of the cliff D) angles a and 8 are measured and
found to be 60° and 45°, respectively. Find the height 4 of the lighthouse.

B
h
c
o
B
A 67 m D
Figure 2.8

2.2. USING THE CALCULATOR TO FIND VALUES OF TRIGONOMETRIC
FUNCTIONS*

In the preceding section we saw examples of special angles for which we could
evaluate the trigonometric functions in exact form. In the general situation,
however, this is not possible. It therefore becomes necessary to find other
means than ratios of sides of right triangles to determine the values of the
trigonometric functions. For example, if we want to determine sin 37°, we
could draw a right triangle with a 37° angle, as shown in Fig. 2.9; then
sin 37° =a/c.

However, there is no simple relationship between a, b, and ¢, as in the case
for 45° or 30° — 60° right triangles. We could measure the lengths a and ¢, and
evaluate a/c, but such a technique could produce only an approximation,
which would probably be very crude.

In the study of calculus the student is introduced to methods (infinite
series) for evaluating trigonometric functions accurately to any desired number

* See Appendix A for basic calculator instruction.
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37°

b
Figure 2.9

of decimal places. Earlier textbooks in trigonometry included several pages of
tables listing such values (usually to four or five decimal places), and the
student was expected to master the art of reading these tables. With the
availability of the scientific hand-held calculator, such tables are no longer
necessary. Each calculator has built into it the capacity to quickly evaluate any
trigonometric function accurately to several (usually seven to nine) decimal
places. Since tables are not necessary, there is no longer a need to study
interpolation techniques to evaluate trigonometric functions for angles not

included in tables.

All scientific calculators have keys labeled (Csn) | , Cen) . Also,
there is a key (or keys) that will allow the operator to put the calculator in
degree, radian, or grad mode. The owner’s manual which comes with the
purchase of a calculator describes this feature and should be consulted to make
certain it is understood.

To illustrate the use of the calculator for determining values of trigono-
metric functions we consider some examples.

Examples

A Evaluate sin 37°.

Solution. First be certain that your calculator is in degree mode. Then merely
press the following keys: 3, 7, (Gin) . The display will read 0.60 for many
calculators, and if greater decimal accuracy is desired, the operator can have
the calculator display a larger number of decimal digits (the owner’s manual
has instructions for doing this). Thus we can get, accurate to nine decimal
places, sin 37° = 0.601815023. |

A Evaluate cot 64°.

Solution. The calculator does not have a key labeled . However, as we
observed in Section 2.1, the cotangent function is the reciprocal of the tan-
gent, and so we have cot 64° = 1/tan 64°. Therefore, with the calculator in
degree mode, press the following keys: 6, 4, , . The display will give
cot 64° = 0.487732589. The student should note at this point that 1/tan 64°
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and tan(1/64)° are not equal. That is, the key should be pressed after
the key.

Alternative solution. As was pointed out in Section 2.1, cot § = tan(90°— 6),
and so we have cot 64° = tan(90°— 64°) = tan 26°. Thus pressing the keys 2, 6,
(Can)  gives cot 64° = 0.487732589.

A Evaluate cos 24°31'43” correct to five decimal places.

Solution. We first convert 24°31'43” into a decimal number of degrees as
follows:

0142 31, 43 Yo
24°31'43 _(24+60+——3600).

Be sure your calculator is in degree mode and carry out the following sequence
of steps: evaluate 24 + 31/60 + 43/3600; then press and the answer will
appear in the display. That is, cos 24°31'43" = 0.90975. |

A Evaluate sin 1.2 correct to four decimal places.

Solution. Note that sin 1.2 means sine of 1.2 rad. Place the calculator in radian
mode; then press 1.2, (n ), and the value will appear in the display:

sin 1.2 = 0.9320. |
& Evaluate tan (37/11) correct to eight decimal places.

Solution. Place the calculator in radian mode; calculate 3w /11 (use the ()
key on the calculator), then press :tan (3w/11) = 1.15406152. |

EXERCISE 2.2

In each of the following use a calculator to evaluate the given function and express your
answer correct to four decimal places:

1. sin 28° 2. tan 49° 3. cos 72°

4. cot 78° 5. sec 35° 6. csc 17°

7. sin 43°21' 8. sec 57°16' 9. cos 12°37'41"
10. sin 0.4 11. cos 1.25 12. tan w/3
13. cot 37 /8 14. sec 7 /4 15. tan 7 /4

In each of the following use a calculator to evaluate the given expression. Give answers
correct to two decimal places. (If necessary, see Appendix A for a review.)

: 014! 3.56 sin 24°17’
16. (2.48) sin 73°16 17. sin 47021
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2 tan 35°12' o1/
18. I~ (tan 35°12')° 19. 65.48 csc 43°18
20.  tan % 21, sec 147

In 8.54 sin (5x/11)
22, cos 7 23. sin G7/7)
24.  (sin 23°48')? + (cos 23°48')? 25. sec (31°12'36")
- L, 1

26. cot (72 1541 ) 27. csc (37I'/8) sec (37{/8)
8. sin (_I_stﬁ) 29. sin 37° cos 56° —sin 56° cos 37°

1+V'5\ . /5¢
30. (——-3 ) sin (1—2>
31. How tall is a flagpole that casts a shadow of 23 m when the sun is 37° above the

horizon?

32. The distance from the base to the top of the Leaning Tower of Pisa is 54.6 m and
it makes an angle of 84°45’ with the horizontal. How far does the top overhang the
base?

2.3 ANGLES IN STANDARD POSITION

In Section 2.1 we defined six trigonometric functions which applied to angles
with a measure between 0° and 90°. We are interested in extending those
definitions to angles of any size. In order to do this, it is convenient to use a
coordinate system for labeling points in the plane. We first recall some
properties of rectangular coordinates.

The plane is divided into four regions (called quadrants) by a horizontal line
(x-axis) and a vertical line (y-axis), as shown in Fig. 2.10(a). The point of
intersection of these two lines is called the origin. We associate points on each
of the axes with the set of real numbers in a one-to-one manner, the positive
numbers corresponding to the points on the x-axis located to the right of the
origin (called the positive x-axis) and the negative numbers corresponding to
points to the left of the origin (called the negative x-axis). Similarly for the
y-axis, up is the positive direction and down is negative.

Each point P in the plane can now be identified by a pair of names (a first
name and a second name) that are labeled (x,y), where x denotes the directed
distance of P from the y-axis and y is the directed distance from the x-axis. This
gives a one-to-one correspondence between points of the plane and ordered
pairs of real numbers. For example, the ordered pair (-3, 2) indicates a point
that is three units to the left of the y-axis and two units above the x-axis.
Similarly for the other points plotted in Fig. 2.10(b).
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Y y
4 4
(-3.2) i
Quadrant II Quadrant |
?— ————— -
| ———— 2D
> L1 1] I R
(-40)] }
I B |
) |
Quadrant II1 Quadrant IV I -2 |
| 4 (3,-3)
3-4 1
(a) (b)
Figure 2.10

1. The Distance Formula

Let P: (x,, y,) and Q: (x,, y,) be any two points in the plane and let d rep-
resent the distance from P to Q (Fig.2.11). Then it follows from the
Pythagorean theorem that d? = (x, — x,)* + (y, — ,)%. Thus,

d= \/(XZ - )ﬂ)z + (yz - yn)z.

Pixy, v

Figure 2.11

2. Angles in Standard Position

In order to define the trigonometric functions for angles of any size, it is
convenient to consider angles in a standard position. We shall say that an angle
is in standard position when the vertex of the angle coincides with the origin of
a rectangular coordinate system and the initial side coincides with the positive
x-axis. Figure 2.12 is an illustration of angles in standard position. Angles «,
B, and +y are positive and 6 is negative.
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When the terminal side of an angle in standard position is located in a
given quadrant, we say that the angle is in that quadrant. For example, in
Fig. 2.12, angle « is in quadrant I, 8 is in quadrant III, v is in quadrant II,

P VL G
A A

(a) (b) (¢) (d)
Figure 2.12

and 6 is in quadrant IV. If the terminal side of angle 6 coincides with an axis,
then 6 is called a quadrantal angle and is not said to be in any quadrant.

When two angles are placed in standard position (in a given coordi-
nate system) and their terminal sides coincide, we say that the two angles are
coterminal. For example, a =45° and (B = 405° are coterminal
since 405° = 360° + 45°. Similarly, 210° and —150° are coterminal since
210° = 360° + (—150°); angles 8 and 6 + k - 360°, where k is any integer, are
coterminal angles.

Examples

& For the following angles, draw a figure with the given angle shown in
standard position. Use a protractor if it is available; otherwise, an approximate
free-hand sketch is sufficient.

a) 64° b) —155° c) 248° d) 450° e) —180°
Solution. See Fig. 2.13.

l/(“’ ‘ /’Lmo
| /(’/155; n

/L\450° X ) ‘
\l'/ - LN VAT

Figure 2.13 l
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é Sketch the given angles in standard position:
a I b) -3 ¢) 3.0 d) -5 e) 7.5

Solution. Note that 7/2=1.57, # = 3.14, 37/2 =4.71, 27 = 6.28,
57/2 =17.85. Thus:

¢) 7/2 < 3.05 <, and so angle 3.05 is in quadrant II;
d) —27r < —-5<—-3n/2,s0 angle —5isinI;
€) 2r < 7.5 < 57/2, so angle 7.5 is in . (See Fig. 2.14.)

|

I
\

w

(=)

wn
y

Figure 2.14 |

A For each of the following determine the quadrant in which the given
angle is located:

a) 137° b) —650° c) 17x/11 d) 6.28 e) 450°

Solution.
a) Quadrant II, since 90° < 137° < 180°.
b) Quadrant I, since —650° = —360° — 290°.

c) Using a calculator, we get 177 /11 = 4.86, which is between 37 /2 and
2w. Therefore 177 /11 is in quadrant IV.
d) Quadrant IV, since 37/2 < 6.28 < 2.

e) The terminal side coincides with the positive y-axis; therefore 450° is
a quadrantal angle. |
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A Draw the angle of measure —48° in standard position (see Fig. 2.15);
then draw the smallest positive angle 6 that has the same terminal side as —48°
and determine its measure.

Solution. § = 360° — 48° = 312°.

]
~48° 312°

Figure 2.15

& Follow the instructions of Example 4 for the angle of measure —2.48.
(See Fig. 2.16.)

Solution. § = 2w —2.48 = 2(3.14) — 2.48 = 6.28 — 2.48 = 3.80 (to two decimal

places).
0
—2.48

Figure 2.16

& Find two angles coterminal with —4w /3.

Solution.
4 2 _4r o5, 10m
-3+ 21 = 3 and 3 21 = 3
are coterminal with —4x /3. |

& Determine all angles coterminal with 120°.

Solution. 1f we add or subtract any multiple of 360° to 120° we get an angle
coterminal with 120°. Therefore, the set of all angles coterminal with 120° is
{120° + k - 360° | k is an integer}. |

EXERCISE 2.3

When drawing an angle is required, use a protractor if it is available; otherwise a
reasonable freehand sketch is sufficient.
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11.

12.
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. Draw a figure illustrating the given angles in standard position:

a) 40° b) 220° c) —220° d) 725° e) — 460°
. Draw a figure illustrating the given angles in standard position:
a) ¢ b) 3.41 ¢) —1.80 d) 8.8 e) —1T71’£

. Determine the quadrant in which the given angles lie (that is, the quadrant in which

the terminal side is located):

a) 37° b) 335° c) —125° d) 580° e) —480°
. Determine the quadrant in which the given angles lie:
a)—%’r b) %’f ¢) 3.56 d) 8.47 €) —5.40

. Draw a figure of the given angles in standard position. Then draw the smallest

positive angle that has the same terminal side and determine its measure:

a) —100° b) 540° c) —540° d —377" e) —4.32

. For each of the given pairs of angles, determine whether or not the second one is

coterminal with the first one:

a) 60°, 240° b) —45°, 315° c)_%,

dr, —= e) 30°, 750° fdm _

SIE sl

. Find three angles coterminal with 6 = 90°.
. Find three angles coterminal with § = —= /6.
. Determine the set of all angles coterminal with 6 =—2x/3.

10.

Determine the set of all angles coterminal with § = 30°.

Find the set of all angles coterminal with an angle whose terminal side passes
through the given point:

a) (1, 1) b) (-3,-3) °) (-1, V3)

Determine the set of all angles coterminal with the angle in standard position whose
terminal side passes through the given point:

a) (0, 3) b) (0,-5) c) (50 d) (<2.3,0)

2.4 TRIGONOMETRIC FUNCTIONS OF ANGLES OF ANY SIZE

Let 6 be an angle in standard position and P : (x,y) be any point (other than the
origin) on the terminal side of 8 (Fig. 2.17). Let r be the distance from the
origin to P; that is, r =V x2+y? (r is always a positive number). Draw a
perpendicular from P to the x-axis and name the point of intersection A4; then
right triangle PAO is called a reference triangle for 6.
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P:(x,y)

0 X (0] X,

Figure 2.17

We define the six trigonometric functions of 6 as follows:

sin =2, cot =X
r Yy
_ X -

cos 0 = Py sec 0 L @.1)
tan = 2 csc =L,
X Yy

Several observations can be made:

1. The above definitions are independent of point P taken on the terminal
side. That is, if P, :(x,, y,) is some other point on the terminal side and
ri=v x> + y,* , then the two right triangles in Fig. 2.17 are similar and hence
the ratios of corresponding sides are equal.

2. If 6 is an acute angle, the definitions given here agree with those given in
Section 2.1.

3. The definitions stated in Eq. (2.1) define six functions; that is, each
function associates each given angle § with a unique real number by the ratio
indicated in Eq. (2.1) (whenever this ratio does not involve division by zero).

4. For quadrantal angles the reference triangle becomes a line segment.
However, the above definitions are in terms of x,y,7, and so we can use them
in that form. For example, for 0° we can take the point (1,0) on the terminal
side; then r = 1 and we have

e Y _ 0
sin 0 —T—T—O, =7
5. If the terminal side of 6 coincides with the y-axis, then x =0 and
tan 8 = y/0 and sec § = /0 are not defined. Similarly if the terminal side of 6
coincides with the x-axis, then y = 0, and cot 6 = x/0 and csc § = r/0 are not

defined.

6. From the definitions given in Eq. (2.1) we see that sin § and csc 6 are
reciprocals of each other, cos # and sec § are also reciprocals, and so are tan 6
and cot 0. That is,

cos 0°="T 1.
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cscﬁ:,le, sec 0 =

sin cos tan 0

7. We note that
2 2
(sin )% + (cos 0)2=(Lr>2+ (L>2= Y X o,

r r?

since y? + x? = r?, thus for any angle § we have

(sin 0)% + (cos 0)* = 1.

Examples

A Suppose 6 is an angle in standard position and point (-3, 4) is on the
terminal side of 6. Find the values of the six trigonometric functions of 6.

Solution. The diagram in Fig. 2.18 shows a reference triangle for 6, in which
point P is taken as (-3, 4), and so r = V(- 3)? + 42 = 5. Therefore,

in =4 -4 -3
sin 045, tanﬂ—_3, sec 0—_3
==3 - =3 -3
0050—5, cot § = s csc0_4
P (-—3.4)
PN
4
1 N,
_3 "
Figure 2.18 |

A Evaluate the six trigonometric functions for 315°. Express each answer in
exact form and in decimal form (correct to four places).

Solution. In the diagram of Fig. 2.19 we see that the reference triangle for 315°
is a 45° right triangle. It is therefore convenient to take (1, —1) as point P, and
so r=\/12+ (=1)? =v/2. Thus,

1 __V2

sin 315° = —-——=—>= (exact form).

V2 2

Using the calculator to evaluate —\/_2_/2, we get sin 315° = —0.7071 (to four
decimal places). Similarly,
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NI

Figure 2.19
cos 315° = L:‘/;, cos 315° = 0.7071,
V2
tan 315° = —T1=_1, tan 315° = — 1.0000,
cot 315° = Ll=— 1, cot 315° = — 1.0000,
sec 315° =@=\/§, sec 315° = 1.4142,
csc 315° = ‘/_ -V2,  csc 315°=—1.4142. |

A Evaluate sin (— 27 /3) and tan (— 27 /3). Express answers in exact form.

Solution. Sketch 6 = —2w/3. The reference triangle for 6 = —27/3 is a
30°-60° right triangle, so we can take P as (—1, —V/ 3) (see Fig. 2.20). Thus,

sm( 2;’) —@ and tan( 2;)_1—‘13_\/3.

—1 R

r J_¥
|
|
|

-V3

5

P:(—1.—=V3)

Figure 2.20

Note. In this example, as well as in the following ones, the essential steps
leading to the solution are: Using the given information, 1) sketch the angle in
standard position (this includes determining the quadrant in which it is
located); 2) take a convenient point (x, y) on the terminal side and build a
reference triangle (using the Pythagorean theorem as needed, including proper
selection of ““ + ” or ““ — " signs for x and y); 3) use appropriate definitions
given in Eq. (2.1). |
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A Evaluate the following (see Fig. 2.21):
a) sin 180° b) cos 180° ¢) tan 90° d) sec(—540°)

N

T PA-1,0) i

(a) and (b)
b

b P:(0, 1)

Pi(=1,0) A~ 540

I
Y

(d)
Figure 2.21

Solution.
a) Take point P as (-1, 0), so r= 1. Then sin 180° = y/r=0/1 = 0.
b) Take P as in (a), then cos 180° = x/r=—1/1 = —1.
c) Let P be (0,1), so r= 1. Then tan 90° = y/x = 1/0. Since division by
zero is not defined, we say that tan 90° is not defined.

d) In the diagram of —540° in standard position, we see that the
terminal side coincides with the negative x-axis. Therefore we can
take point P as (— 1, 0) and so r = 1. Thus

sec (—54O°)=XL=_—11=—1. |

A If angle 6 is in the second quadrant (the terminal side of 4 is in quad-

rant II) and cos 6 = —0.7, find the other five trigonometric functions of 8 (see
Fig. 2.22). Express each result

a) in exact form b) in decimal form correct to three places
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P:(-7.V51)

I

| 10
\/51:

|

|

1

N

—7

Figure 2.22

Solution. Since 6 is in the second quadrant and cos§ = —0.7 = —7/10, we get a
reference triangle as shown in Fig. 2.22 by taking x = =7, r=10 (then
y=V10*— (=7)* =V 51. Using definitions given in Eq. (2.1), we have:

a) sin HZJlOﬁ tan 0=J/5771 cot §——=1_ _=1V51

V51 51
sec 0 = % csc 0 = 1—05—1@
b) Using the calculator to evaluate the expressions in (a), we get
sin 6 =0.714 tand = — 1.020 cot 6 =—0.980
sec §=—1.429  cscf = 1.400 i

& If 6 is an angle in the third quadrant and tan 6 = 3/4, find the remaining
five trigonometric functions of ¢ (see Fig. 2.23).

P S
o +
|

=31
] 5
Figure 2.23

Solution. Since tan 6 = 3/4 = —-3/—4 and 0 is in quadrant III, we can take
(—4, —3) as the point to determine a_reference triangle as shown in the

diagram; thus r = V(= 3)? + (—4)? =V 25 = 5. Therefore

g3 __4 _ —4_4
sin 6 = 5 cos = , cot 0 = =3=73

FN

5
- _ 3 __5
sec 0 = g csc0_——3—. |
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EXERCISE 2.4

1. If 6 is an angle in standard position and point (4, —3) is on the terminal side of 6,
find each of the six trigonometric functions for . Express each answer in exact form
and in decimal form correct to four places.

2. Point (2,3) is on the terminal side of angle «. Find the six trigonometric functions
for @ and give answers in exact form.

In Problems 3 through 11, evaluate the given expressions and give the answers in exact
form:

3. a) sin 60° b) cos 60° c) sin 210° d) cos210°
4. a) tan 30° b) sec 30° ¢) tan 300° d) sec 300°
5. a) cot(—45°) b) csc(—45°) c) cot 405° d) csc 405°
6. a) sin 225° b) cos 330° c) tan 135° d) cot 150°
. b g 57I' _l 2_7['
7. a) sin 3 b) tan 6 c) cos( 3 ) d) cos 3
5w T 177 p 177
8. a) cos (_T> b) sec (_T) c) tan =3 d) sin <— —6>
9. a) sin 90° b) cos0° ¢) tan 270° d) sec 180°
H us
10. a) sin (— 7) b) tan =« c) cot (—r) d) sec (— 47r)
177 1w . Sw
11. a) sec (_T) b) cos (177) c) tan (——6—> d) sin (1r +—6)

TSR L]

12. In the accompanying table write a ““+” sign or a
corresponding entry:

[YSERL]

sign indicating the sign of the

sin Cos tan cot S€C CSC

124°
—320°

3.04

—1.16

In Problems 13 through 18, give each answer in exact form and in decimal form correct
to three decimal places.

13. If 6 is an angle in the second quadrant and cos 6 = —3/5, find the other five
trigonometric functions of 6.

14. If sin @ = —3/4 and the terminal side of « is in the fourth quadrant, find the
remaining five trigonometric functions of «.

15. If cot 8 =3/4 and B is in the third quadrant, find the other five trignonometric
functions of 3.

16. If tan v = —1.2 and the terminal side of v is in the second quadrant, find the
remaining five trigonometric functions of +.
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17. If sin # = —0.25 and tan 6 is negative, find the remaining five functions of 6.

18. If tan # = —3 and 6 is a second-quadrant angle, find the remaining five functions
of 0.

19. Find the value of

2r o 4w 5
cos 3 sin 3 + tan 4
in ™~ _tan 2r
sin 3 tan 3 + sec 3

in exact form and in decimal form correct to three decimal places.

20. Verify that sin (« — 8) =sin a cos 3 — cos « sin 3 for each of the following pairs
of values of « and @:

_2r o . —
3)0—3, 6_6 b) a = 7 B=m
_ 3 - T _5m -
c)a_z, 8= > d)oz—4, B =3

Hint. In each case evaluate the left-hand side and the right-hand side of the
equation for the given « and 3, and then verify that the two resulting numbers are
equal.

21. Verify that (sin 8)? + (cos 6)> = 1 for each of the given values of 6:

a) 0 = 60° b) 6 = 150° c)b=m
22. Verify that sin(20) = 2(sin 6)(cos ) for the given values of 6:

a) 6 = 90° b) 6 = 30° c)0=7-T"
23. Verify that (sec 6)2 — (tan 6)? = 1 for the given values of 6:

a)0=—:%r b) 6 = 225° c) 6 = 495°
24. For which of the given angles « and 8 is cos(a + 8) = cos a + cos 3?

a)a=m,B8=0 b)a:O,ﬁ:%

c) a=45°3=45° d) a =120°, 8 =130°

2.5 EVALUATING TRIGONOMETRIC FUNCTIONS

In Section 2.2 we referred to the fact that in general it is necessary to use
techniques of calculus to evaluate trigonometric functions to a given degree of
accuracy. For example, the sine and cosine functions can be evaluated by using
the infinite series

sin x=x—§+%§—%+§..., 2.2)
2 4 6 8
cos x=l—%+%—%+%..., (2.3)

where x is in radian measure (that is, x is a real number). Recall that n! means
n-factorial; for example, 4! =1.2.3.4 =24, Scientific calculators have a
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built-in capability to calculate sin, cos, or tan of any angle for which the
function is defined. We first illustrate the use of Eq. (2.2) to calculate sin 10°
correct to four decimal places and then compare the result with the value
obtained by using the (5] key of the calculator. The first step is to convert
10° to radian measure: 10° = 10w /180 = 7 /18. Now with the use of the
calculator we evaluate the following expression:

LR

sin 10° =sin & — & _ (7/18)"  (w/18)° _
18 18 6 120

sin 10° = sin l7r_8 = 0.174532925 — 0.000886096 + 0.000001350 — . . .
The terms on the right side of this equation become small rapidly, and in this
case (of four-place accuracy) all but the first two can be neglected. So

sin 10° = %— (r 6]8)3 =0.1736 (to four decimal places).

Now we place the calculator in degree mode and press 10, (Gn) . The
display gives sin 10° = 0.173648178 (correct to nine decimal places). We see
that our calculated result agrees with that of the calculator to four decimal
places. Of course, we shall not use formulas (2.2) and (2.3) to evaluate sine and
cosine of a given angle since the calculator will do this for us automatically.
The purpose of introducing Eqgs. (2.2) and (2.3) at this time is to illustrate what
occurs inside the calculator when it evaluates trigonometric functions.

Examples Using the calculator evaluate each of the following and express
the answer correct to five decimal places:

A cos 234°

Solution. Again in degree mode, press 234, . The display reads
—0.587785253; therefore, cos 234° = — 0.58779 to five places.

é tan (—127°)

Solution. Press 127, change sign , (=), and conclude from the display
that tan(—127°) = 1.32704. ]

A sin 196°16'41"

Solution. In degree mode, the calculator will accept angles given in degrees as
a decimal number. So it is necessary first to change

196°16'41" = (196 + 48 + 415 )" — 196.27806°.

Therefore, after using the calculator to perform this calculation, we press the
(sn]) key and get sin 196°16'41” = — 0.28030. ]

A sec(—2.47)



Exercise 2.5 45

Solution. Since the calculator does not have a key, we use observation 6
of Section 2.4 to get sec(—2.47) = 1/cos(—2.47). To evaluate this, place the
calculator in radian mode, then press 2.47, (/=) , , (=) . This
gives sec(—2.47) = —1.27741. |

BN oo (125

Solution. Place the calculator in radian mode, evaluate (1 + \/_5)/2. Then
with this number in the display, evaluate

1+V5 ) _ 1
2 sin [(1 +V/5)/2]

by pressing (in) | . The result is

csc (%) = 1.00112.

CSC (

@ tan 450°

Solution. Place the calculator in degree mode; press 450 and ; the display
will indicate “Error”. If we apply observation 5 given in Section 2.4, we see
that tan 450° is undefined. Some calculators give 9.9 - 10°° as the value of
tan 450°; such a large number should cause us to ask ‘“What is the calculator
telling us?” |

EXERCISE 2.5

Using your calculator, evaluate Problems | through 21 and give answers correct to five
decimal places:

1. sin131° 2. cos 235° 3. tan 138°

4. sin (—41°) 5. cot 83° 6. sec 157°

7. csc(—=57°) 8. sin 204°17'31" 9. tan (—31.48°)
10. sec 148.16° 11. sin 0.08° 12. cos 251°23'53"
13. sin 0.64 14. tan(—0.5) 15. csc 3.23

16. cos 7.25 17. cot (m + 3) 18. cos (3w /17)

_ 27 ' T
19. tan ( a7 ) 20. sm[S(r *9 )] 21. csc (2.78 + 5m)

22. Use Eq. (2.2) of this section to evaluate sin 5° correct to four decimal places; then
find the value of sin 5° directly by using the (sin ) key on your calculator. Compare
the two answers.
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23. Use Eq. (2.3) of this section to determine cos 8° correct to four decimal places; then
find cos 8° using your calculator and compare answers.

24. Use the first three terms of Eq. (2.2) of this section to find sin 0.16. Compare your
result with that given directly by the calculator.

25. Use the first four terms of Eq. (2.3) of this section to find cos 0.24. Compare your
result with that given directly by the calculator.

2.6 CIRCULAR FUNCTIONS

Suppose § is an angle in standard position as shown in Fig. 2.24. In Section 2.4
we formulated the definitions of the six trigonometric functions of 6 by
using any point P (other than the origin) on the terminal side of §. Now sup-
pose we take P to be the point (¥, v) which is one unit from the origin; that is,
u? + v2 = 1. Since the equation x? + y? = | represents a circle with center at the
origin and radius one, we call it the unit circle. Thus, point (u, v) is on the unit
circle.

Applying the definitions given in (2.1) of Section 2.4 to the reference
triangle OBP in Fig. 2.24, we get

sin 6 :Tv =v and cos 0= —'1‘— =u 2.9
This tells us that the coordinates of P can be written as P: (cos 6, sin ).
4
//// E\_\]\ P: (u, 1)
/ | )
| S
i 0 R
! 7 B /A (1.0)
\ /
\ /
\\\~_///

Figure 2.24

Now suppose 6 is given in radians (that is, 6 is a real number) and let S
represent the length of arc AP of the unit circle, where A is the point (1, 0).
Then we write S = s units, where s is a real number. For example, if the length
is measured in centimeters, then S=s cm and r= OP =1 cm. Using the
definition of radian measure (see Section 1.2), we have

g S _ scm _

s.

r lcm
Thus the two real numbers 6 and s are equal; then the equations in (2.4) give
v=sin 6 = sin s and u=cos  =cos s. 2.5)
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Therefore, the point P in Fig. 2.24 is given by
P:(u v or P:(cos f,sin ) or P:(cos s, sin ).

The phrase “length of arc” implies a number s and an associated unit of
distance measurement. We shall take liberties with language and say “‘s is the
length of arc”” when we actually mean “‘s is the real number associated with the
length of arc.” Thus in (2.5) we are talking about the sine and cosine of a real
number s, and not of, say, s centimeters.

Since the arc length is usually given as a nonnegative number and we are
interested in applying the equations in (2.5) also to negative values of s, it
becomes necessary to introduce the idea of directed arc length. Suppose point Q
starts moving along the unit circle from A4: (1, 0) to point P, as shown in
Fig. 2.25. If Q moves in the counterclockwise direction, then the length of arc
s through which it moves will be taken as positive; if the motion is in the
clockwise direction, then the corresponding value of s will be negative.

P

- =~ - ~
/// s (positive) // \\
[ { VA 10y
\ 0 J A:(1.0) Vo
\\ // \\ s (negative)
~ s N _
P

\T'/ ~4—

(a) (b)
Figure 2.25

Definition. For every real number s, we consider point Q moving from point
A : (1, 0) on the unit circle through a directed arc of length s to a point
P: (x, y). We use the coordinates of P as a basis for defining the two circular
functions sine and cosine as follows:

sin s =y and cos § = X, (2.6)

where (x, y) are the coordinates of point P.
The remaining four circular functions are defined by using (2.6) in the
following way:

i 1
tan s =3NS oot 5 =5985  gec 1 csC s = 2.7
cos s
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Examples
& Find the value of each of the six circular functions at s = 7 /4.

Solution. The circumference of the unit circle is ¢ = 2xr=2n(1) = 27. Let

(u, v) be the point P on the unit circle that corresponds to s = 7 /4. Since 7 /4

is equal to 1/8 of 2w, triangle OBP shown in Fig. 2.26 is an isosceles triangle

with u = v. Since (u, v) is on the unit circle, > + v*=1 and so 2u?> = 1. Thus

we have u = v=1/2/2. Therefore, the coordinates of Pare (V'2/2, V'2/2).
From the definitions given in (2.6) and (2.7) we have:

\/—é s \/E

n*—y= "= R
sm4 v > cos 4—u— >
an T Sn@/4) _ V22 o oxcos(r/4)_
4 cos(r/4)  V2)2 ’ 4 sin(r/4)
- 1 x 1
seC —=———=V2; T ==——r=
8 Cos(x /) V2 T Sin(x /) V2
—t
/// SOUP
/ p AN
| [ul
T 0| u 1 A:(1,0)
\ /
\ /
\\ //
\\__//
Figure 2.26 |

A Evaluate the six circular functions for s = — 7 /2.

Solution. The point P on the unit circle that corresponds to s=—7/2 is
P: (0, —1). Using the definitions given in (2.6) and (2.7), we get

sin(— —75——)= -1 cos(—%)zo;
tan (——%) =— % (undefined);  cot (—%) = _%— =0;
sec (—%) = % (undefined); csc (——E—): —Ll =—1. i

& Suppose point P is on the unit circle and has coordinates (—V/3 /2,
1/2). Find two real numbers s (one positive and one negative) that can be used
as directed arc lengths corresponding to P, as described in the definition of the

circular functions.
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A:(1.0)

Figure 2.27

Solution. We see from Fig. 2.27 that in right triangle BOP, BP = ' (OP);
then angle BOP equals 30° = 7 /6. Therefore, § = 5« /6. The length of arc s,
corresponding to 6 is given by
_ _ St _ 5«
5 _r-a_(l)(—6—) =L
If point Q moves in a clockwise direction from point 4 to P, then the
corresponding directed arc length is

Thus s = 57/6 and s = — 77 /6 are solutions. It should be clear that if point
Q moves along the unit circle from point 4 to P by going around the circle one
or more times (in either direction), then we have other values of s correspond-
ing to P. In fact, all values of s can be given by

s=%’f+k.27r,

where k is any integer (positive, negative or zero). |

Note. As can be seen from the equations given in (2.5), the circular functions
defined in (2.6) are precisely the same as the corresponding trigonometric
functions defined in Section 2.4. The important point is that in both cases we
have defined six functions with domains consisting of a set of real numbers. It
is in this setting that the student will encounter trigonometric (or circular)
functions in calculus.

We shall refer to the six functions as either trigonometric functions or
circular functions. One might ask: Why talk about the same thing in two
different contexts? The answer is that in the setting in which trigonometric
functions were introduced, it is convenient to relate the functions to triangles
and apply them to solution of triangles (as will be discussed in Chapter 3),
while the circular functions defined in (2.6) and (2.7) are very helpful in
deriving several important properties of these functions. We illustrate this now
by deriving some of the basic identities that will be useful in Chapter 4. An
identity is an equation that is satisfied by all values of the variable (or variables)
for which the function involved is defined.
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1. Reciprocal Identities

The following are immediate consequences of the definitions given in (2.6) and
2.7):

sin s = 1 , Ccos § = 1 ) an § = 1
csc s sec § t s
1 1 1 (2.8)
cot s = s sec s = s CSC § =—
a cos § sin §

2. Periodic Properties

1. Every point P on the unit circle has several values of s (arc lengths)
associated with it. For example, if s is any real number, then the same point P
is associated with arc length s and with s + k - 2w, where k is any integer. Using
the definitions stated in (2.6) for arc lengths s and s + 2kw, we conclude that

sin(s + 2k7) =sin s and cos(s + 2km) = cos s. (2.9)

2. Now suppose P: (x, y) is a point on the unit circle associated with arc
length s, then point M on the unit circle associated with arc length s + 7 is
M: (— x, — y), as illustrated in Fig. 2.28. Using (2.6) for s and for s + 7, we get

X = COS S, y =sins and —x =cos(s + ), —y =sin(s + ).

S+
P (x,»)
N
\ 0 ] A: (1,0
/
/

M:(—x, —y) N

~=

Figure 2.28

From these equations we have the identities

cos(x + m)=—cos s and sin(x + 7) = —sins. (2.10)

Using (2.7) and (2.10) we get

sin(s+m) _ —sins _ sins

=tan s.
cos(s + m) —COSS  COS §

tan(s + 7) =



2.6 Circular Functions 51

We can get a similar result for the cotangent function, giving us the identities:

tan(s + m) =tan s and cot(s + m) = cot s. (2.11)

3. Other Basic Identities

1. The point P: (x, y) used in the definition of sin s and cos s in (2.6) is on
the unit circle; that is, x2 + y? = 1. Since x = cos s, y = sin s, we have

(sin 5)? + (cos 5)? =1 (2.12)

for every real number s. This identity is used frequently, as we shall see in
Chapters 3 and 4.

2. Suppose s is any real number and the associated arc length corresponds
to P: (x, y) on the unit circle; then point M: (x, —y) on the unit circle
corresponds to the directed arc length —s, as illustrated in Fig. 2.29. Using the
definitions for s and —s stated in (2.6), we get

x=coss, y=sins and x=cos(—s), —y=sin(—ys).

From these we get the following relations for each real number s:

—t~g P (x, J/)

s
/
/ N
, \
| [4] .
! /,44(1,0)
\ —
AN
~

—""M:(x, —y)

Figure 2.29

sin(— s) = —sins and cos(—s) = coss. (2.13)

Using the definitions given in (2.7) and the results from (2.13), we get for
each real number s:

tan(—s) = — tans; cot(—s) = —cots;
sec(—s) = sec s, csc(—s) = —cscs. (2.14)

Definition. A function f is said to be an odd function if f (— x) = — f(x) for ev-
ery x in D(f). If f(—x) = f(x) for each x in D(f), then f'is said to be an even

function.
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From the identities given in (2.13) and (2.14) we conclude that:

The sine, tangent, cotangent and cosecant are odd functions;
the cosine and secant functions are even functions.

In Exercise 2.6 the student is asked to derive other indentities using the
definitions of circular functions.

EXERCISE 2.6

In Problems 1 through 12, s is a real number corresponding to an arc length and
associated with a point P on the unit circle, as described in this section. In each case,
use the given value of s to

a) draw a diagram showing the point P,
b) give the coordinates of P,

c¢) find the values of the six circular functions for the given number s. Provide
answers in exact form.

- - -3 - _
1. s= 3 2. 5= 6 3 5= 4 4. s T
9 _ 3 5
5. s.——4 6. s=3m 7. s_—2 8. s——6
_1ir _ 157 _Ir _4r
9. 5= 4 10. s= ) 11. s 3 12. s= 3

In Problems 13 through 20, follow the instructions of the preceding Problems | through
12 except in part (b). Use Eq. (2.5) of this section and a calculator to find the
coordinates of P to three decimal places; in part (c) give answers to two decimal places.

13. s=1 14, s=-25 15. s=73 16. s=164

17. s=V2 18. s=Vr 19. s=—12 20. s=7—8

In Problems 21 through 26, point P is given on the unit circle. Find three real numbers
s (two positive and one negative) representing arc lengths associated with P, as
described in this section.

21. P:(—_—;—, ‘/73) 22. P:(~1,0) 23. P;(-‘% —_\/72)
24. P:(‘/73, —%) 25. P (1,0) 26. P:(—‘lzz, ‘/72)

In Problems 27 through 32, use the definitions of circular functions given in (2.6) and
(2.7) and any of the results obtained in the Examples to prove that the given equations
are identities:

27. a) sin(mr—s) =sin s b) cos(m—s)=—cos s

28. a) sin(%—s) =cos s b) cos(%—s) =sin s
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. ™ m _ .
29. a) sm(—2—+s):coss b) cos<7+s)A—sms
30. a) sec(s + m) = —secs b) csc(s + m) = —csc s
T T\ _
31. a) tan(s+ 7) =-—cot s b) cot(s + —2—> =—tan s
. T T\ _
32. a) sm(s— 7) =—cCoSs § b) cos(s— —2—> =sin §

In Problems 33 through 40, determine whether the given equation is an identity:

. 3 In\ _ o
33. a) sm(s + 7) =—COS § b) cos(s + 7) =sin §
St _ Sm _
34. a) tan(s + 7) =tan § b) cot(s +3 ) =cot §
. (5T o St .\
35. a) sm(7 — s) =sin § b) cos( > s) =COS §
36. a) sin(s + 37)=—sin s b) cos(s + 3w)=—cos s

37. a) tan(s — 3w) =tan s

38. a) sec(s + 4w) =sec s

b) cot(s — 3r)=cot s

b) csc(s + 47) =csc s

53

Ir\ I\ _
39. a) tan(s — 7) =—cot s b) cot(s ) ) =cot s
40. a) sin(s + 237) = —sin s b) cos(s + 23w) = —cos s

2.7 PERIODIC PROPERTIES AND GRAPHS OF
TRIGONOMETRIC FUNCTIONS

In Section 2.6 we saw that if g represents any one of the six circular functions,
then g(s + 2w) = g(s) for every real number s for which g(s) is defined. This
tells us that each of the trigonometric functions repeats itself infinitely with a
cycle of 2w. Any function repeating itself over consecutive intervals of fixed
length is said to be a periodic function. Many scientific investigations involve
phenomena of a cyclic nature which can be described in terms of periodic
functions. It is an interesting and important fact that practically all periodic
functions can be expressed as a linear combination of sine and cosine
functions.* It is this fact that makes trigonometry extremely useful in
applications of mathematics to many real-life problems.

Definition. If fis any function with the property that there is a positive number
p such that

fx+p)=f(x) (2.15)

for all values of x in the domain of f, then fis said to be a periodic function. 1f
p is the smallest positive number for which Eq. (2.15) holds, then p is called the
period of the function.

We shall now draw the graphs of the trigonometric functions and use them
to determine the periods of those functions.

* This is the basis for a broad topic in advanced mathematics called Fourier analysis.
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1. Graph of the Sine Function

We could make a table of x, y values that satisfy the equation y = sin x and
then use the corresponding (x, y) points to draw the graph. However, we can
gain considerable insight into the behavior of the sine function by treating it as
a circular function, as we did in the preceding section. There each real number
s was associated with an arc length and a point Q that moved along the unit
circle from point 4 : (1, 0) to point P covering a directed distance s; then we
defined sin s as the second coordinate of point P.

In drawing a graph in the x, y rectangular system of coordinates, it is
customary to call x the independent variable; that is, we draw a graph of
y = sin x. Thus in our definition of the sine function we shall replace s by x and
think of x as being associated with the arc length (not as the x-coordinate of
P). So as not to get the variables confused, we shall denote the coordinates of
P by (u, p), as illustrated in Fig. 2.30.

C: (0, 1)
////_“\\ P: (u,y)
/ VARY:
D:(-1,0)] J
1\ ol B T4:(1,0)
\ /
\ /
N e
~ -
%T; (0, -1)
Figure 2.30

Therefore, from (2.6) we have: y = sin x, where x is any real number associated
with the directed arc length of a point moving from 4 to P.

We can proceed to draw the graph of y = sin x by letting point P : (, y)
move along the unit circle (counterclockwise for x 2> 0) starting at 4 and
record the corresponding points 7 : (x, y) on the graph shown in Fig. 2.31.

When Pis at A, thenx=0, y=0;so Tis at 4, : (0, 0). As P moves from
A to C, the arc length x increases from 0 to 7/2 and the corresponding values
of y increase from 0 to 1; then point 7 moves from 4, : (0, 0) to C, : (7/2, 1).
As P moves from C to D, x increases from 7 /2 to = and the corresponding
values of y decrease from 1 to 0; this gives the points of the graph from C,; to
D.. As Pmoves from Dto E, x increases from = to 37 /2 and y decreases from
0 to — 1; this gives the points on the graph between D, and E,. As P moves from
Eto A, x increases from 37 /2 to 2x and y increases from —1 to 0, giving the
corresponding points T between E, and 4, in Fig. 2.31.

The above gives us one complete cycle of the sine curve. Since we know
that sin(x + 27) = sin x for each real number x, we can continue the graph as
indicated by the broken portion of the curve in Fig. 2.31.
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T (57
i ¢ (3) AS(T)
/7 \
l/ \\
/ \
/ \
/4. (0, 0) D,: (m,0) ! \
| O i (n.0 JIAZ.(J{, 0) \3(3”’0)
T m 3n Sw \
) ! 3 2 2 \
- I \
/ \
/ \
/ \
// \
/ L ; \
- . m
I:]:<7,——l)

Graph of y =sin x
Figure 2.31

From the graph in Fig. 2.31 we see that p = 2x is the smallest positive
number p such that sin(x + p) = sin x for each real number x. Thus we can
conclude the following from the graph:

a) The sine function is periodic with period 2.
b) The domain and range of the sine function are given by

D(sin) = {x|x is any real number},
R(sin) = {y[-1 <y < 1.

2. Graph of the Cosine Function

We can draw a graph of u = cos x by following a procedure similar to that used
to draw the graph of the sine function. In Fig. 2.30 the first coordinate of
P : (u, y) yields the value of cos x for any given real number x; thus, u = cos x.
We omit the details and draw the curve shown in Fig. 2.32 with the solid
portion corresponding to the points (x, #) which we get as point P moves
counterclockwise along the unit circle from point 4 in Fig. 2.30.

From the curve in Fig. 2.32 we see that p = 2r is the smallest positive
number p such that cos(x + p) = cos x for every real number x. Therefore, we
conclude that:

a) The cosine function is periodic with period 2x.
b) The domain and range of the cosine function are given by

D(cos) = {x | x is any real number},
R(cos)={u|—1LZu<ll}.
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Graph of u = cos x

Figure 2.32

3. Graph of the Tangent Function

We shall draw a graph of the tangent function by first making a table of x, y
values that satisfy y = tan x; then we plot these points and draw the curve
shown in Fig. 2.33. In selecting what values of x to use in the table, we recall
that tan(x + 7) = tan x for each real number x for which tan x is defined. Thus,
it is sufficient to make a table where x is between —w/2 and = /2. Also, in
Section 2.6 it was noted that tan(—x) = —tan x for each x in D(tan); this tells
us that the graph of y = tan x is symmetric about the origin. Therefore, it is
sufficient to make a table 0 <x < w/2. Since tan(w/2) is not defined, we
include values of x near = /2 = 1.570796. . .

I I A n
I 1l I !
I 11 I 1
' /1 I /1

I /I I | /l I

| a : au

l L ] Z ]

3T7Ti /,/ T gi 0 g{ ///71 ¥‘: X
2 o - 2
/ |

Iy I Iy |

1 | I II

] Il 5 ] d

Graph of y = tan x
Figure 2.33
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‘—x 0 025 050 0.75 1.00 1.25 1.50 1.52 1.55 1.56 1.57

‘y 0 026 0.55 093 1.56 3.01 14.1 19.7 48.1 92.6 1256

In Fig. 2.33 the portion of the curve between 0 and 4 corresponds to the
points in the table. Since the curve is symmetric about the origin (that is,
tan(—x) = —tan x), the portion of the curve from 0 to B is obtained by
reflecting the points from 0 to 4 about the origin. The remaining branches
(broken portions of the curve) follow from the periodic property given by
tan(x + 7) = tan x. From the graph in Fig. 2.33 we conclude that:

a) The tangent function is periodic with period .
b) The domain and range of the tangent function are given by

D(tan) = {x | x # Z + km, k is any integer},
2

R(tan) = {y | y is any real number}.

We also note from the graph that the curve gets closer and closer to the
vertical broken lines passing through

T 3w T Ir

xZT’ —2—, B ) _'2—’ ——2_’
These lines are called vertical asymptotes to the curve.

4. Graph of the Cotangent Function

We can draw a graph of y = cot x by following a procedure similar to that used
in drawing the graph of the tangent function. We omit the details and give the
graph shown in Fig. 2.34. From the graph we conclude the following:

(ST
/|
o
[SSTE]
3

Graph of y = cot x
Figure 2.34
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a) The cotangent function is periodic with period .
b) The domain and range of the tangent function are given by

D(cot) = {x | x # km, k is any integer}
R(cot) = {y | y is any real number}.

We also note that the cotangent curve has vertical asymptotes given by
x = kx, where k is any integer.

5. Graph of the Secant Function

From the discussion of circular functions in Section 2.6 we recall that
sec(x + 2mw) = sec x for every real number x for which sec x is defined. Thus in
making a table of x, y values that satisfy y = sec x, it is sufficient to include
values of x in the interval —= to r. Also, from Section 2.6 we have that
sec(—x) = sec x for every x in D(sec); thus the graph is symmetric about the
y-axis, and so it is sufficient to include in our table values of x between 0 and =.
Since the secant function is not defined at = /2, we include values of x near
w/2=157...

X 0 025 050 075 1.00 125 1.50 1.56 1.57 1.58
y 1 1.03 1.14 137 1.85 3.17 141 92.6 1256 -109

1.60 1.75 2.00 2.25 2.50 2.75 300 =«
-342 -561 -240 -1.59 -1.25 -1.08 -1.01 -1

We now plot the points given in this table and draw the curve for x between
0 and =; then from the symmetry about the y-axis, we draw the curve for x
between 0 and —=. This gives us the solid portion of the curve in Fig. 2.35. The
remainder of the curve (broken portion) can now be drawn by using the
identity sec(x + 2w) = sec x. From Fig. 2.35 we conclude the following:
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Graph of y = sec x
Figure 2.35
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a) The secant function is periodic with period 2.
b) The domain and range are given by

D(sec) = {x | x # £2' + km, k is any integer},
R(sec) ={y|y<—1 or y21}.

We also note that the vertical lines given by x = (2k + 1)7/2, where k is any
integer, are vertical asymptotes of the secant curve.

6. Graph of the Cosecant Function

We can follow a procedure similar to that used to draw the graph of the secant
function; omitting the details, we draw the graph shown in Fig. 2.36 and
conclude that:

a) The cosecant function is periodic with period 2.
b) The domain and range are given by

D(csc) = {x | x #km, k is any integer},
R(csc) ={y|ly<—lory21}.

Also, we see that y = csc x has infinitely many vertical asymptotes given by
x = km, where k is any integer.
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Graph of y = csc x
Figure 2.36

EXERCISE 2.7

1. Draw a graph of sine function by first making a table of x, y values that satisfy the
equation y = sin x; plot these points and then draw the curve. Use the identities
sin(x + 27) = sin x and sin(—x) = —sin x to convince yourself that it is sufficient
to include in the table values of x in 0 < x <. For values of x use 0, 0.25,
0.50, 0.75,...
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. Follow instructions similar to those in Problem 1 but for y = cos x.

. In Subsection 4 of this section we suggested a procedure for drawing the graph of

y = cot x but omitted the details. Supply the details by making a table of x, y values;
use the identities cot(x + m) =cot x and cot(—x)=—cot x. Show that it is
sufficient to include in your table values of x between 0 and 7 /2. Check whether the
(x, y) points from your table are on the graph in Fig. 2.34.

. In Subsection 6 of this section the details of drawing the graph of y =csc x

were omitted. Supply them by making a table of x, y values. Use the identities
csc(x + 2w) = csc x and csc(—x) = —csc x in deciding what values of x to include
in your table. Check whether the (x, y) points given in your table are on the graph
in Fig. 2.36.

REVIEW EXERCISE

1.

Make a sketch showing the given angles in standard position (a reasonable
approximation is sufficient):

a) 135° b) — 240° o) %
d) —137° e) —2.34 f) 12—”
. Determine the quadrant in which the given angles are located:
a) 235° b) 4.705 c) —2.47
d) — 640° e) 841° f) 30

In Problems 3 through 10, give the answers in exact form.

3.

Evaluate the following:

a) sin 90° b) tan 30° c) sec 150° d) cos(—240°)
e) tan(—180°) f) csc 450° g) cot(—315°) h) sin 270°
. Evaluate the following:
a) cos 3w b) cot(—m) c) sin % d) cos (—%’r)
I 3r _r T om
e) tan 6 f) sec > g) sec(7r 6) h) csc(3+ 6)
. If 6 is an angle in the third quadrant and tan = 4/3, determine the following:
a) sin 0 b) sec § c) cos(fd + )
™ ™
d) tan(f— ) e) csc(& - T) f) cos(ﬁ + 7)

. Determine 6 from the given information:

al)sin0=—‘/72 and 1r<0<377" b)cos():—% and O<f<w
c)tanf=—-1 and —-2r<f<-—7m d) secf=—1 and 0<6<2r

. Determine a from the given information:
a) sin a=—1 and 0° L& £360° b) csca=2 and -90 < a < 90°
c) cosa:——l_ and 0ZLa<180° d) tan a=-1 and —90° L& £90°

V2
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8. If a =37/2, 8=/3, and v = 57 /6, evaluate the following:

10.

a) sin « b) tan ¥y c) cos(a —f)

d) sec(B +7) e) sec(y — a) f) cos(a +v —RB)

If @ = 30°, 8 =90° and vy = 210°, evaluate the following:

a) sin (a + 7) b) sin a + sin y ¢) cos(a—f)

d) cos o —cos e) tan 2y f) 2 tan vy

If cos # = —0.75 and tan @ is negative, determine the following:

a) sin 6 b) cot 8 C) sec<0 - %) d) tan(@ + )

In Problems 11 through 16, evaluate the given expressions and give answers correct to
four decimal places:

11.

12.
13.
14.
15.
16.
17.

18.

19.
20.

a) sin 43° b) tan 154° c) cos 57°16'

d) cot 48° e) sec 327°12 f) sin (—231°)

a) cos 1.43 b) sin 3.86 ¢) tan(57/12) d) cot(12/57)
a) sin(53° + 75°) b) sin 53° + sin 75°

a) tan(1.36 + 2.14) b) tan 1.36 + tan 2.14

a) (sin 153°)? + (cos 153°)? b) (sin 1.5)? + (cos 1.5)?

a) 2(sin r—z)(cos 1"—2) b) (cos ~7§—>2—<sin %)2

Determine whether the given statements are true or false:
a) = and — 7 are coterminal angles

b) —37" and —% are coterminal angles

c) 210° and —%’r are coterminal angles

d) An angle in standard position with terminal side passing through point (—1. 2)
is coterminal with 150°.

Draw a graph of y = 2 sin x by first making a table of several (x. y) pairs that satisfy
the given equation. Use degree measure for the x-values.

Same as Problem 18 for y = 2 cos x.

If y = —tan x, make a table of (x. y) values that satisfy the equation. starting with
x = —2.0 and then increasing by 0.2 for successive values of x up to x = 2.0. Plot the
corresponding points and draw a graph of y = —tan x.






CHAPTER THREE

SOLVING
TRIANGLES

As we noted earlier, the word trigonometry implies the study of measurements
related to triangles. Historically, the development of the subject was indeed
motivated by the practical needs of surveying, navigation, and architecture
(among other things), and these involved problems of determining certain
unknown parts of a triangle from known information about it.

We first describe a problem that involves triangles for its solution. Suppose
we wish to determine the height of a mountain peak and there is no convenient
way to measure it directly. One approach is to locate two points 4 and B on
the ground, as shown in Fig. 3.1, and measure the distance between them. Also
we can measure the angles o and 8. With this much information we can
determine the height A by using trigonometric properties of triangles that will
be developed in this chapter. We postpone further discussion of this example
until such properties are at our disposal (see Problem 30 of this section).

Figure 3.1

A triangle has six parts—three angles and three sides. When we say “‘angle
of a triangle,”” we mean the angle formed by the two rays that contain two sides
of the triangle and have the vertex as their common endpoint. To “‘solve a
triangle” means that measurements of some of these parts are given (usually
sufficient to determine a unique triangle) and we determine the remaining parts

63
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from the given information. In this chapter we develop the topic in two steps:
First we study the problem involving right triangles only and then we consider
general triangles.

3.1 RIGHT TRIANGLES

Figure 3.2 illustrates a right triangle in which we label the parts using standard
notation. Note that side a is opposite «, and side b is opposite angle 3. As in
the first two chapters, we shall use a letter (b, for example) interchangeably to
denote a side (line segment) of the triangle or to represent the length of that
side; similarly for ‘“‘angle a*‘ and “measure « of the angle.”

Figure 3.2

If, in addition to the right angle, the measures of two of the remaining five
parts are known and at least one of these is a, b or ¢, then a unique triangle is
determined and we can find the remaining parts. This will involve only the use
of the definitions of trigonometric functions (as given in Section 2.1), the
Pythagorean theorem, and the calculator. We illustrate by considering some
examples. Solution of the first example is discussed in some detail. The others
involve similar considerations, not all of which are recorded. In each case a
calculator is used for numerical computations.

Examples
A In a right triangle, a = 32.4 cm, « = 40°. Find b, ¢ and 6.

Solution. We draw a right triangle and denote the given parts (¢ and «), as
shown in Fig. 3.3. To determine side b, the first step is to look for an equation
that involves b and the given parts. We could use either tan « = a/b, which
gives b =a/tan «, or cot « = b/a to get b = a cot «. Since the calculator does
not have a key, we shall choose the first equation:

a __ 324 _
“tan « tan 40° 38.6 cm.
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Figure 3.3

To determine the hypotenuse ¢ we could use any of the three equations: sin a =
afc;csca=c/a;c=va*+b*. In general, it is good practice to use a
relationship that involves only the given parts, if possible. That is, the third
option has a slight disadvantage in case we make an error in solving for 5. The
second has the disadvantage of involving cosecant, and our calculator does not
have a (=) key. Therefore we decide upon the first expression:

__a __ 324 _
=S a sindoe 04 em

We know from geometry that the sum of the three angles of a triangle is 180°:
a + B + 90° = 180°. Therefore we have

B =180° — 90° — a = 90° — 40° = 50°. |
é Given a = 15°21'23" and ¢ = 3.587 m, find a, b, and 8 (Fig. 3.4).

A b C
Figure 3.4

Solution. Since sin a = a/c, then a = ¢ sin «, and
a=3.587 -sin 15°21'23" = 0.95 m.
For b we use cos a = b/c, and so b = ¢ cos a:
b=3.587 . cos 15°21'23" = 3.46 m.
To find B we use B8 =90° — a:
B =89°59'60" — 15°21'23" = 74°38'37".
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& Given ¢ =16.25 cm and 8 = 68°24’, find the area of the triangle
(Fig. 3.5).

A b C
Figure 3.5

Solution. The area is equal to ab/2, so we first need to find sides a and b. From
sin 8 =b/c we get b=c sin (8, and from cos 8=a/c we get a=c cos 8.
Therefore,

¢2sin B cos B
2

__(16.25)* (sin 682"24’ c0s 68°24) _ 45 19 emt. :

Area = % (¢ cos B) (c sin B) =

A Given a = 37.4 cm, b = 63.3 cm, find ¢, «, and 8 (Fig. 3.6).

A b
Figure 3.6

Solution. ¢ =Va? + b* =V(37.4) + (63.3)? = 73.5 cm. For angle a we use
tan a =a/b = 37.4/63.3 = 0.59084.

We are now confronted with the problem of finding « when we know
tan «. This is the inverse of the problem of finding tan o when « is given. The
subject of inverse trigonometric functions will be discussed formally in Chap-
ter 5; here we shall merely point out that scientific calculators can be used to
find an angle corresponding to a given value of a trigonometric function.
Calculator keys for inverse functions are usually labeled as , , ;
or there is an key that is to be followed by the appropriate Csn]) , ,
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() key. We illustrate by completing the above problem where we know that
tan « = 0.59084 and we wish to determine a.

If the calculator has an key, then enter the number 0.59084 into the
display and, with calculator in degree mode, press the , keys in that
order. The display will read 30.5762° (to four decimal places).

If the calculator has a key, then, with 0.59084 in the display and the
calculator in degree mode, press () . The display will read 30.5762°. Thus
a = 30.5762° = 30°34'24". To find B, we use 8 = 90° — « and so

B = 59°25'36". |

A a) If sin a = 0.4835, find « in degrees correct to two decimal places.
b) If cos a = 0.6897, find « in radians correct to three decimal places.
Solution.

a) Place the calculator in degree mode, enter the number 0.4835 into the
display and then press or , Gin) . The display will show
28.91°. Thus a = 28.91°.

b) Place the calculator in radian mode, enter the number 0.6897 into the
display and then press or (v | . The display will show
0.810. That is, « = 0.810 rad. |

A If a=8.31 cm and B =21.63°, find the area of the right triangle
(Fig. 3.7).

Figure 3.7

Solution. The area is equal to ab/2 and since b = a tan 8, we have

Area=-1.a tan § =1 (8.31) tan 21.63° = 13.69 cm?. I

In certain applications it is necessary to measure angles from a horizontal
line of sight. An angle formed by a horizontal ray and the observer’s line of
sight to an object above the horizontal is called the angle of elevation. If the
object is below the horizontal, the angle between the horizontal and the line of
sight is called the angle of depression (Fig. 3.8).
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® Object
Angle of
elevation .
R Horizontal
Horizontal " Angle of
depression
e Object
Figure 3.8

é From a window 25 meters above the ground the angle of elevation to the
top of a nearby building is 24°20" and the angle of depression to the bottom of
the building is 14°40" (Fig. 3.9). Find the height of the building.

B
_-1T
- |
-7 l
- |
~
/// |
gy | h
A ~fes0 gc !
=L 1440’ I
25 m \\\
\\\\ I
D
Figure 3.9

Solution. In the diagram we wish to find h=BC + CD. We know that
CD =25m, so h=BC + 25 m. By using triangle ACD, we have

AC = CD cot 14°40' = 25 cot 14°40'.
Therefore, from triangle 4BC, we get BC = (25 cot 14°40’ tan 24°20")m.
Thus
h =25+ 25 cot 14°40’ tan 24°20’

— 25 + 25.1an 24°20° _ 68 20 m.
tan 14°40 |

Accuracy of Measurements

It should be noted that angle 8 in Example 3 was determined to the nearest
second. This was done primarily to illustrate the technique for getting such
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accuracy. In applied work the degree of accuracy of computed values (as well
as measured values) will depend upon several factors, including the ultimate
use of the results. It is pointless to calculate the height of a mountain peak in
meters to four decimal places and use such a number on a map.

In practical applications involving computations of angles and lengths,
one of the first questions is: What degree of accuracy should be used?
Naturally, the answer depends upon the particular problem and upon the
subsequent application of the results. We cannot expect the computed values
to have a greater number of reliable decimal digits than the starting data,
which in applications are usually physical measurements.

In Appendix B we discuss the accuracy of computation in problems
involving approximate numbers. It should be understood that the rules stated
there are to be used in applied problems as a practical guide. In this text (as
well as in most mathematics texts) no effort is made to be completely consistent
with these rules. Most of our problems are mathematical in nature and our
primary goal is to provide the student with examples that will lead to a better
understanding of the basic mathematical concepts discussed. Thus, in most of
the problems involving computations, the student is asked to find a result
correct to a given number of decimal places, or to a given number of significant
digits. Also in many problems we say, for example, that the length of a side of
a triangle is 24.3, and we do not even specify the units. In practical applications
(such as in physics, chemistry, engineering, etc.) the units will be specified and
there should be no problem in following the rules given in Appendix B for
computations with approximate numbers.

EXERCISE 3.1

In the problems of this exercise, give answers involving lengths and areas correct to two
decimal places, and angle measures in degrees and minutes correct to the nearest
minute.

Problems 1 through 15 refer to right triangles in which the letters used to denote sides
and angles are as described in this section.

1. « =35°24"; a=327cm; find b, ¢, B.

2.a=5cm, b=33cm; findc, a, G.

a=175cm, c¢=337 cm; find b, «, B.

. 3=6572°, a=32.5m; find b, ¢,  and the area of the triangle.
. a=27°17, c¢=56.5cm; find a, b, 8 and the area of the triangle.
b=2730m, c¢=4666 m; find a, a, G.

. a=24208 m, b=10575 m; find ¢, a, 6.

. 8=42°30, b=3.25cm; findag, c a.

[ JE T~ N R N
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9. g =288 km, [ =31.2845° (find b, c, a.

10. a=241.1cm, b=1253cm; findc, a, 6.

1. a=5.36 cm, c=12.48 cm; find b, «, 8 and the area of the triangle.
12. b=73.56 cm, c¢=131.42 cm; find a, «, B and the area of the triangle.
13. @ =37.43°, ¢=64.56cm; find a, b, B and the area of the triangle.

14. a=0.143 mm, o =16.47° find b, c, 6.

15. a=253cm, b=148cm; find ¢, o, 0.

16. Assuming that the Earth is a sphere with a radius of 6400 km, find the minimum
height of an airplane above the surface, at which the pilot will be able to see an
object on the ground 100 km away. In Fig. 3.10 point B is the center of the Earth,
A is the position of the plane, and object C is on the horizon (4C = 100 km).

Figure 3.10

17. A line passes through two points (5, 2) and (8, 15). Find the angle between this line
and the x-axis.

18. From a tower 27 meters tall the angle of depression of a boat on a lake is 56°. How
far is the boat from the base of the tower? Assume that the base of the tower is in
the same horizontal plane as the lake.

19. You wish to fence a triangular piece of land with dimensions a = 236 m and « = 70°
(Fig. 3.11). Find the total amount of fencing you must purchase.

*
Figure 3.11
20. Find the area of an equilateral triangle with a side of length 12.56 cm.

21. Find the area of an isosceles triangle with equal sides 2.47 m long and an angle
41°37' opposite one of them.
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You wish to mount an antenna and have purchased a tower 12.48 meters tall. The
tower is to be anchored from the top by three guy wires at a distance of 7.36 meters
from the base (Fig. 3.12). How much guy wire do you need?

1248 m

a)

7.36 m
Figure 3.12

The sides of a parallelogram are 38.4 cm and 64.8 cm, and an interior angle is
115.65°. Find the area of the parallelogram.

A regular polygon is inscribed in a circle of radius 57 cm. Find the area of the
polygon if it has

a) four sides (a square) b) six sides (a hexagon)
c) eight sides (an octagon) d) n sides

In Fig. 3.13, line segmerlt_\ﬁ is a diameter of the circle with radius 24 cm, Cis a
point on the circle, arc AC is 27.3 cm long. Find the length of chord AC. Hint. Let
6 be the central angle shown in the diagram; use definition of radian measure to find
6. Recall facts from geometry about measures of central and inscribed angles in a
circle.

Figure 3.13

If the altitude of the sun is 17.48° at 5 P.M. on December 21, how far east of a
retaining wall 5.48 meters tall should one locate plants requiring year-round full
sun?

If figure ABCD is a square with length of side 37.41 meters and angle § = 36°15',
find the lengths of CF and CE (Fig. 3.14).
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A segment of a circle of radius 4.56 cm is shown as the shaded region between chord
AB and arc AB (Fig. 3.15). If the central angle 4 is 1.15 radians, find the area of
the segment.

Figure 3.14 Figure 3.15

In Fig. 3.16, side a and angles « and 3 are given. Show that x = a sin « sin (.

A surveyor wishes to determine the height of a mountain top above the horizontal
ground. He observes the angles of elevation from two points 4 and B on the ground
and in line with the mountain top. He measures the distance from 4 to B. These
measurements are: a = 43°30", 8 = 32°20°, 4B =256 m. Find the height of the
mountain top above the horizontal ground level (Fig. 3.17).

|

|

|

|

|

|
v

Figure 3.16 Figure 3.17

In Fig. 3.18 line segments 4D and _lf‘_are parallel, the length of AD is 8.47 cm
and 0 =41°36". Find the lengths of BC and CD.

A triangular piece of land is bounded by two farm roads intersecting at right angles
and a highway intersecting one of the roads at an angle of 24.5°, as shown in
Fig. 3.19. You wish to purchase the property and know that the previous owner
required 843 meters of fencing to enclose it. Land sells at $2.50 per square meter in
this region. How much does the property cost?

From point A that is 8.1 meters above the horizontal level of the ground, the angle
of elevation of the top of a tower (point B) is a = 32°30’ and the angle of depression
of its base (point C) is 8 = 16°40" (Fig. 3.20). Find the height of the tower.
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24.5°

o
O \¢

N
N
\

Figure 3.18 Figure 3.19

Figure 3.20 Figure 3.21

A surveyor starts at point 4 and measures AB=41.32 m, BC =37.53 m,
6 = 137.44° (Fig. 3.21). Find the distance from 4 to C and angle «.

A sector with central angle 72° is cut out of a circular piece of tin of radius
16.48 cm. The edges of the remaining piece are joined together to form a cone. Find
the volume of the cone (see inside front cover for volume formula).

Suppose 4, B, C are vertices of a right triangle and « is the acute angle at 4, as
shown in Fig. 3.22. Also suppose the length of 4B is 1. Extend side CA to point
D so that the length of AD is also 1.

a) Show that the angle CDB is equal to a/2.

b) Use right triangle BCD to find tan «/2. Specifically, show that it can be
expressed in the form tan /2 = (sin «)/(1 + cos «). This useful identity will be
seen again in Chapter 4.

In Problem 24 of Exercise 1.4, Motl’s treadle sewing machine was described
(Fig. 3.23). The radii of the tw_o__wheels are r =3.5 cm and r,=15.5 cm. The
distance between the centers is EF = 56 cm. Find the length of the belt that goes



74 Solving Triangles Chapter 3

38.

39.

40.

41.

AB

D C

Figure 3.22 Figure 3.23

around the two wheels. In the diagram, E and F are centers of the wheels, points 4,
B, C, and D are points at which the belt is tangent to the respective wheels, and we
construct line BG through B parallel to EF.

A right triangle is inscribed in a circle of radius 5.6 cm. One angle of the triangle
is 64°. Find the lengths of the two sides.

The area of a right triangle is 6.73 cm? and one of its angles is 36°. Find the length
of the hypotenuse.

The perimeter of a right triangle is 8.56 m and one of its angles is 23°30’. Find the
lengths of the two sides.

One angle of a right triangle is 47°30" and its perimeter is 15.48 cm. Determine the
area of the triangle.

3.2 LAW OF COSINES

Techniques used in the preceding section apply to solution of right triangles.
We now consider the general case in which triangles are not necessarily right
triangles. Although it is true that solving a general triangle can be reduced to
problems involving right triangles, it is desirable to have formulas that can be
applied directly.

Suppose 4, B, C are vertices of a triangle, as shown in Fig. 3.24. We shall

use Greek letters a, 3, v to denote the three angles and a, b, ¢ to represent the

Figure 3.24
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three sides. As indicated in Fig. 3.24, angle « has vertex at 4 and side a is
opposite «; likewise for B, 8, b and C, v, c.

Thus a triangle has six parts—three angles and three sides. In general, if
three parts are known (at least one of which is a side), then a fixed triangle is
determined and our problem is to solve for the remaining three parts. We shall
discuss two sets of formulas that will be useful; these are called Law of cosines
and Law of sines.

In this section we develop the Law of cosines; the Law of sines will be
discussed in the next section.

Figure 3.25 shows triangle ABC, where D is the base of the altitude from
vertex A. Let h = AD and x = CD. From right triangle ADC we get

x=bcos vy and h=b sin v.

Figure 3.25

Applying the Pythagorean theorem to right triangle A DB, we have
c2=h>+(a—x)*=h*+ a’> - 2ax + x°.
Substituting x = b cos v and h = b sin y gives
¢? = (b sin ¥)? + a®>— 2a(b cos v) + (b cos v)?

= a® + b*[(sin ¥)? + (cos ¥)*] — 2 ab cos v
=a? + b* — 2ab cos v,
where in the last step we replaced (sin v)? + (cos )2 by 1 (see Eq. (2.12)). Thus
we have
c2=a?+ b?> - 2ab cos v.*¥
In a similar manner we can develop analogous formulas for a* and b2 The

three equations are listed in (3.1) and these are called the Law of cosines for
triangle ABC:

a*=>b*+ ¢* — 2bc cos a,
b* =a? + ¢* — 2ac cos B, 3.1
c2=a*+ b?> — 2ab cos v.

*In the derivation of this formula the acute angle v of Fig. 3.25 was used. Actually the final result
holds if v is any angle between 0° and 180° (see Problem 15 of Exercise 3.2).



76 Solving Triangles Chapter 3

The technique used to solve a triangle depends upon the given information.
We classify all problems into the following four cases according to the three
given parts:

1. three sides,

2. two sides and the included angle,

3. two sides and an angle opposite one of them,
4. one side and two angles.

The Law of cosines is particularly suitable for solving triangles described by
cases | and 2, while the Law of sines is better suited for case 4. Case 3 presents
a special problem in that it is possible for the given information to describe
either one triangle, two triangles, or no triangle (as illustrated by Examples 3
through 5 of this section). For this reason, case 3 is usually referred to as the
ambiguous case. We shall illustrate through examples how to handle this case
by using the Law of cosines. This involves solution of a quadratic equation, but
with the aid of a calculator the computation of answers becomes easy.

Examples

A Given two sides and the included angle. Suppose a = 33.24, b = 47.37, and
v = 38°15'. Find ¢, « and B (Fig. 3.26).

Figure 3.26

Solution. To find ¢ we use the third equation of (3.1):
c? =(33.24)% + (47.37)% — 2(33.24)(47.37)cos 38°15’.

Using a calculator to evaluate the right-hand side and then pressing the
key, we get
c=29.59.

Hint. To get maximum calculator accuracy, store the full decimal value of ¢ in
the calculator and then use that value in subsequent computations involved in
determining « and (.
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We now determine « by using the first equation of (3.1) in the form

_b+ct—a*
cos a = == —=%
This gives

a = 44.0589° = 44°04’.

Similarly, we can use the second equation of (3.1) to determine £:

2 2 h2
cos =4+ -0 +2§c b
and we get
8 =97°41".
We could have determined 3 by using 8 = 180° — (« + 8) but we prefer to
use this as a check of our computations. That is, we see that

a + B +y=44°04" + 97°41" + 38°15" = 180°,
and so we can be reasonably certain that our computations are correct. |

A Given three sides. Suppose a = 56.84, b =83.45, and c¢=51.63. Find
angles «, (3, and 7.

Solution.
cos a bt ct—a_ (83.45)? + (51.63)2 — (56.84)?
T 2be 2(83.45)(51.63) ’
This gives
a =42.0491° = 42°03,
cos B = a’+ ct—b*_ (56.84)* + (51.63)* — (83.45)*
2ac 2(56.84)(51.63)
Thus
B8 = 100.4788° = 100°29’,
cos y = a’ + b* — c*_ (56.84)> + (83.45)> — (51.63)*
2ab 2(56.84)(83.45)
We get

v = 37.4721° = 37°28".
As a check, we add the computed values of «, 3, v and get
o+ B +v=42°03" + 100°29" + 37°28" = 180°. I

& Given two sides and an angle opposite one of them. This is the so-called
ambiguous case in which there may be two solutions, one solution, or no
solution, depending upon the given data. In the following three examples we
illustrate each of the three possibilities (see Problem 32 of this section for
further discussion of this case).



78 Solving Triangles Chapter 3

Suppose a = 17.48, b =25.63, and o = 37°48'. Find ¢, 83, and ~.

Solution. If we substitute the given values of a, b, « into the first expression ot
3.1

a*=b?> + ¢* — 2bc cos «a,
the resulting equation will be quadratic in c:
¢t —(2b cos a)c + (b*—a*)=0.*

Applying the quadratic formula from algebra, we have

c= %[2[» cos a + V( — 2b cos a)? — 4(b? — az)]

= b cos a +Va? — b?[1 — (cos a)?].

Since 1 — (cos «)? is identically equal to (sin «)? (see Eq. (2.12)), we get

c=bcosa +Va*— (bsin a)’ 3.2)

Substituting the given values of a, b, and « into Eq. (3.2) gives

¢ = 25.63 cos 37°48' + \(17.48)7 — (25.63)(sin 37°48")".

We can evaluate this result by calculator. To avoid recording any intermediate
computations, we can first evaluate the square-root part and store it by using
the key (and recall it when we wish by using the key).t Thus we get
two answers:

c, =2791873 and c, = 12.58462.
To be consistent with the given data, we round off to two decimal places:

¢, =2792 and c,=12.58.

In this example we see that there are two solutions; these are illustrated in
Fig. 3.27. The second triangle can be obtained from the first by rotating side a

*Substituting the values of a, b, and « at this point gives
2 — [2(25.63)cos 37°48']c + (25.63* — 17.48%) = 0.
That is,
¢? —40.5033¢ + 351.3465 = 0.
This is the quadratic equation that determines ¢ but it is not necessary to record the intermediate
numbers appearing as the coefficient of ¢ and the constant term. It is simpler to solve the quadratic

equation for the general case and then substitute the values of a, b, and « into the final result shown
in Eq. (3.2).

+The(sto)and(ReL Jkeys may be labeled differently on some calculators (see Appendix A or
owner’s manual).
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Figure 3.27

clockwise about the top vertex, as indicated in the diagram. We now proceed
to find 8, and v, by using

2 2 2 2
a’+ ¢, —b? a+b>—c¢
— 17"  and cos v,= .

cos B = 2ac, 2ab

This gives
B, = 63°59 and v, = 78°13".
As a check we add the three angles:
a+ B, +y,=37°48" + 63°59' + 78°13' = 180°.

To find 8, and v, we note that

B,=180° — B, = 180° — 63°59" = 116°01’,

v, = 180° — (a + B8,) = 26°11". ]
A\ a—32, b= 25, and a = 43°. Find c (Fig. 3.28).

Figure 3.28

Solution. This problem is similar to that of Example 3 and so we can find c by
substituting into Eq. (3.2):

c=25cos 43° +1/(32)2 — (25)3(sin 43°)2,

This gives
c, =45.36 and ¢, = —8.80.

Since c, is negative, we do not get a triangle corresponding to it. Therefore
there is only one solution with ¢ = 45.36.
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/5\ a=27, b=64, and a = 68°. Find c (Fig. 3.29).

Figure 3.29

Solution. Applying Eq. (3.2) gives

¢ =64 cos 68° +V/(27)? — (64)*(sin 68°)2.

When a calculator is used to evaluate this result, it indicates “Error”’. The
reason for this is that the number under the square root is negative (— 2792.21),
and so the roots of the quadratic equation for ¢ are imaginary. Thus there is no
triangle corresponding to the given data. In the diagram we see that side a is
not long enough to reach the third side. ]

EXERCISE 3.2

In Problems 1 through 14 use the given data to find the remaining three parts of the
triangle. Give answers involving length correct to the same number of significant digits
as the given data, and calculate angles correct to the nearest minute.

1. a=36, b=67, v =43°. 2. b=24,c=173, a = 130°.

3. a=85 ¢c=42, 3 =283°24". 4. a=41.32, b=57.56, vy = 61°12".
5. a=147,¢c=2.16, a = 124.75°. 6. a=17, b=45, c=50.

7. a=1288, b=175, c=337. 8. a=315,b=634, c=4l.6.

9. a=6.743, b = 4.567, c = 8.125. 10. a=17, b=25, a=37°.

11. a=24.57, b=34.63, a = 31°15'. 12. ¢ = 4666, a = 2730, a = 32°.
13. b=35, c =31, B8 =068°. 14. a=1.45,b=3.54, 3 =53°.

15. In this section the Law of cosines was derived using Fig. 3.25, where angle v was
acute. Suppose v is obtuse as in Fig. 3.30. Derive the Law of cosines for this case
by showing that

ct=a? + b*— 2ab cos v.
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16. If triangle ABC is a right triangle with v = 90°, show that the third expression of
Eq. (3.1) can be reduced to the Pythagorean theorem.

17. A ship sails due east form point 4 for a distance of 48.6 km: then it changes
direction southward by an angle of 16°40, as shown in Fig 3.31. After sailing
37.8 km in the new direction, how far is the ship from point 4?

486km
1 w‘
37.8 km
B
Figure 3.30 Figure 3.31

18. Ifa =32.6,b = 56.3, ¢ = 36.8, find the measure of the smallest angle of the triangle
correct to the nearest minute.

19. If a = 39,098, b = 17,160, and ¢ = 42,698, find the measure of the largest angle of
the triangle correct to the nearest minute.

20. If a=3.76, b = 5.34, and v = 48°50’, find the altitude to side b and then determine
the area of the triangle correct to two decimal places.

21. If b=34.52,c = 76.81, and a = 121°30’, find the altitude to c and then find the area
of the triangle correct to two decimal places.

22. An equilateral triangle is inscribed in a circle of radius 4.56. Find the perimeter of
the triangle.

23. A square is inscribed in a circle of radius 4.56. Find the area of the square.

24. A dime, a nickel, and a quarter are placed on a table so that they just touch each
other, as shown in Fig. 3.32. The diameters of the dime, nickel, and quarter are 1.75
cm, 2.25 cm, and 2.50 cm, respectively. Find the length of the smaller part of the
circumference of the quarter between the two points where it touches the dime and
the nickel. (In the diagram, D, N, and Q are respective centers.)

e
(&

Figure 3.32
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In Problem 24, the centers of the coins form a triangle. Find the measure of the
smallest angle to the nearest degree.

Use the Law of cosine equations given in (3.1) as follows: Replace term b? in the
first equation by that given by the right side of the second equation, and then
simplify to get

acosf +bcosa=c.

In a similar manner, if we use the first and third, and then the second and third
equations of (3.1), we can get

ccosa+acosy=h,
bcosy +ccosfB=a.

In Example 3 of this section, after determining c, we solved for 8, by using the Law
of cosines. As an alternative method for finding 3, use the first equation derived in
Problem 26 in the form
¢ —bcos a

a

cos B, =

and solve for 3,. Similarly find v, by using the second equation given in Problem
26. Check your results with those given in the example.

In Example 4 of this section, use the given data and the result for ¢ to find 8 by
applying the equation derived in Problem 26.

A vertical tower BC is located on a hill whose slope is 12° steep (Fig. 3.33). From
point 4 (43 meters down the hill from base B of the tower) the angle of elevation
of point C at the top of the tower is « = 37°. Find the height of the tower.

A triangular slab of marble has sides of length 120 cm, 156 cm, and 173 cm. If it is
placed vertically, so that the longest edge is on the ground, how high from the
ground will it reach?

Consider a regular pentagon ABCDE with sides of unit length, as shown in
Fig. 3.34. Let r be the length of a diagonal (such as CE).

a) Show that each of two angles « is equal to 36°, and each of the angles 3 is 72°.
Thus triangles ACE and BCF are similar.

Figure 3.33 Figure 3.34
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b) Show that CF=1 and BF=r—1; then, using the corresponding-ratios
property of similar triangles, prove that r satisfies the equation 2 — r — 1 = 0.
Solve this equation and get

1 +\/§
r=—s—-:

This is a well-known number called the golden ratio.
c) Apply the Law of cosines to triangle BCF to find cos 72° and show that

cos 72°=L= 1

2r <
1+V5
Thus we have expressed cos 72° in exact form (in fact, in simple terms involving the
golden ratio). As a check, evaluate cos 72° directly with your calculator and then
evaluate 1/(1 + V'5), and see if the two numbers are equal.

In Examples 3 through 5 we gave solutions of problems in which the given parts of
a triangle are two sides and an angle opposite one of them. Suppose a, b, and « are
the given parts. What conclusions can be drawn concerning the number of solutions
in each of the situations listed below? In each case draw a diagram starting with «

and b — for example, b
A(i

—and show how a fits into the picture. Use Eq. (3.2) to support your conclusions.
Suppose « is an acute angle and

a) a=bsin a b) a < b sin a
c) bsina<ax<b d)a2b

Examine the problem for the case when « is an obtuse angle and when a = 90°.
Draw diagrams to illustrate your conclusions.

3.3 LAW OF SINES

In triangle 4 BC of Fig. 3.35 the sides and angles are labeled as in the preceding
section, and point D is the base of altitude 4 from vertex B. From the two right
triangles we have

sin a = =~ and sin vy = %.

| B
|
|

h

|
b
A D b C
Figure 3.35
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Eliminating 4 in these two equations, we get ¢ sin « = a sin y. This can be
written as

sin o _ sin

a c
In a similar manner (see Problem 24 of this section), we can show that

sin « _ sin and SR B _ siny
a b b c

The three equations given here are called the Law of sines and are written
as:

sin @ sin 8 sin y
a b c

(3.3)

Note. To derive this formula we used a diagram in which angles « and 3 were
both acute. The result still holds if one of the angles is obtuse (see Problem 27
of this section).

In the preceding section we listed four cases to be considered in solving
triangles and indicated that case 4 (in which one side and two angles are given)
can be solved by using the Law of sines. We now illustrate this case.

Examples
A Suppose b =5.834, o =64°12", and vy =47°47". Find a, ¢ and B
(Fig. 3.36).

Solution. To find B, we use (= 180°— (o« ++v) and get 8= 68°01". To
determine a we use the Law of sines in the form

q— bsina _ 5834 sin 64°12"
sin 3 sin 68°01’

This gives a = 5.664. Similarly,
c— bsiny _ 5.834 sin 47°47" _ 4.659. |

sin 8 sin 68°01’

A Given a = 42°23', a =74.51, b= 71.35, find the area of triangle ABC
(Fig. 3.37).

Solution. We use the formula for area of a triangle:

Area = % Base x Altitude.
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Figure 3.36 Figure 3.37

As shown in the diagram, let /4 be the altitude to side . Thus Area = 2 bh.
First we find 8 by using the Law of sines:

_bsina _ 71.35 sin 42°23'
6= = .
a 74.51

sin
This gives 3 = 40°12'. Since § = @ + 3 (exterior angle of a triangle is the sum
of the opposite interior angles), we have
6 =42°23" + 40°12" = 82°35',
From right triangle BDC we get
h=a sin § =74.51 sin 82°35 = 73.89.

Therefore

Area = - bh = L 71.35 . 73.89 = 2635.91. |

L
2 2

EXERCISE 3.3

In Problems 1 through 8, use the given data to find the remaining three parts of the
triangle. Give answers involving length correct to the same number of significant digits
as the given data, and calculate angles correct to the nearest minute.

1. a=27° 3=73° a=16. 2. B=67° v =26° a=463.

3. a=47° v =112° ¢ =8l. 4. a =51°, 3=70° c=133.

5. a =32°17", B=55°12", a=32.5. 6. 3 =61°47", v =82°15", b=63.54.
7. a =73.46°, 3 =25.75° c=4.875. 8. a=35.48° v=173.54°, b=3.754.
9. A surveyor wishes to find the distance from point 4 to a point C on the opposite

side of the river. He locates a point B on his side of the river and measures the
distance 4B and the two angles « and 8, as shown in Fig. 3.38. The measurements
are AB=1324 m, a =78°, B =53° Find the distance AC.
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Figure 3.38 Figure 3.39

In order to measure the height of clouds at night, two observers are located 126
meters apart at points A and B; the spotlight is at point L in line with 4 and B. A
vertical beam of light from L is reflected from the bottom of the clouds at point C
and the angles of elevation are measured from A4 and B. These are a = 74° and

B = 58°, as shown in Fig. 3.39. How far above the ground is the bottom of the
clouds?

Triangle A BC has measurements a = 41.3 cm, a = 43.5°, 8 = 73.4°. Find the length
of the longest side.

From point 4 on top of a building the angle of depression of point C on the ground
is observed to be a = 54°, while from a window at point B (15 meters directly below
A) the angle of depression is 3 = 42°. Find the height of the building (Fig. 3.40).

Find the area of the triangle described by a = 47°31’, 8 = 67°50', a = 16.36.
Find the area of the triangle where 3 = 36°28', a = 37.54, b = 41.63.

Use the Law of sines as an alternative method to solve Problem 11 of Exercise 3.2,
in which a = 24.57, b = 34.63, a = 31°15’; find 8, v, and c.

If, in triangle ABC, ¢ = 4666, a = 2730, a = 35.82°, find angle 7.

A surveyor wishes to find the width of a river. He notices a tree T on the opposite
bank, so he takes two points 4 and B along the bank on his side of the river. He

A ———————
o
AN T
\ —
Bl —N————- AN
T\ NN
8 |
N \ | \\ \\
“ \ dl N0 N
AR | \ o
N
AN | \ B <
\ O N TN
N\ B AN A

c
Figure 3.40 Figure 3.41
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measures the distance x between 4 and B, and the two angles « and (3, as shown in
Fig. 3.41. He finds x = 19.8 meters, a = 33°, 8 = 124°. From these measurements
calculate the width d of the river.

A technique for determining the height of an inaccessible point is the following: a
surveyor locates two points A and B and measures the distance between them. Then
the angles «, 3, 6 are measured. This is illustrated by Fig. 3.42 in which points A4,
B, C are in the plane of the ground, D is directly above C, angle 6 is the angle of
elevation of point D from B, and « and 3 are angles of triangle ABC. Show that

a= d sin a and h—__dsinatan 6

~ Sin[180° — (a + B)] sin[180° — (a + 8)]

In Problem 18, suppose that we wish to determine the height 2 of a mountain
peak, and points 4 and B are such that d = 463 meters, 8 = 63°10", a =46°40,
6 = 47°20'. Find h.

From point C located on a hill 21° steep, the elevation angle of the top 4 of a
nearby building is observed to be o = 25° and the angle of depression of the base
B is B = 12°. If the distance between C and the bottom of the hill D is 24 meters,
find the height of the building (Fig. 3.43).

D
A
//A
///
////
P h
T
N
2T =
D B
Figure 3.42 Figure 3.43

Points A and B are located on opposites sides of a lake (Fig. 3.44). From point C
on a nearby hill the angles of depression of 4 and B are observed to be « = 12° and
B = 17°, respectively. If the hill is 27° steep, and point D at the base of the hill is
48 meters from C, find the width of the lake.

Figure 3.44
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On a rectangular set of coordinates the locations of two forest-ranger stations are
given as A: (15, 32), B: (84, 15). A fire is spotted at point C and angles o = 20°,
B =117° are measured, as shown in Fig. 3.45. Locate the fire by finding the
coordinates of C.

Suppose a triangle 4BC is inscribed in a circle, as shown in Fig. 3.46. Show that the
ratios appearing in the Law of sines

a b ¢
sin @ sin B sin 7y

are equal to the diameter of the circle, that is,
a
sin

Diameter =

Hint. Point D is selected so that side DB passes through the center O of the circle.
Recall from geometry that angle CDB is equal to angle CAB (angle ). Also, angle
DCB is a right angle and DB is a diameter.

y C
1 C
T T s D
A o //
B / A a
5 B
» X
Figure 3.45 Figure 3.46

24. To complete the proof of the Law of sines given in this section, it is necessary to

25.

show that
sin a _ sin 8
a b
Hint. Adjust the diagram in Fig. 3.35 as shown in Fig. 3.47.

A surveyor wishes to determine the distance between points 4 and B on opposite
sides of a lake. He does this by taking points C and D (Fig. 3.48) and gets the
following measurements: AC =205 m, CD =263 m, DB = 185 m, a=126°
and B = 104°. Using this information, find (to the nearest meter) the distance across
the lake.

(N Z]
C D

Figure 3.47 Figure 3.48
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26. A railroad crosses the highway at point C at an angle of 40°, as shown in Fig. 3.49.
An observer at point 4 on the highway (1.5 km from C) notices that it takes a train
20 seconds to travel from P to Q and that the angles « and 8 are o = 45°, 8 = 75°.
How fast is the train traveling?

27. In the derivation of the Law of sines, Fig. 3.35 was used, in which both angles « and
v are acute. Derive the same law using a diagram in which angle o is obtuse
(Fig. 3.50). Use the fact that sin(180° — «) = sin «.

N\ \
AN
N
>y
/C 4 180° b

Figure 3.49 Figure 3.50

3.4 AREA OF A TRIANGLE

In some problems of Sections 3.2 and 3.3 the student was asked to find areas
of triangles. In each case the approach was to find the altitude of the triangle,
then use the formula Area = %2 Base x Altitude. In this section we develop
general formulas for finding areas of triangles.

1. Given Two Angles and a Side

Suppose a, v, and, a are given as shown in Fig. 3.51. Using the Law of sines,
we obtain

_asiny

T osin a

The altitude /4 can be determined from the right triangle involving §:

h=a sin 8.
Therefore,
Area = L (I—M a sin (.
2  sina

Using 8 = 180° — (a + 7v), we get

a? sin v sin [180° — (a + )]

3.4
2 sin a (34

Area =
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Figure 3.51 Figure 3.52

2. Given Two Sides and the Included Angle

Suppose a, b, and y are given. Let 4 be the altitude to CB, as shown in
Fig. 3.52. From the right triangle containing angle vy, we have h = b sin 7.
Therefore,

L ab sin Y. (3.5)

Area = >

If v is an obtuse angle, the diagram shown in Fig. 3.52 is different, but the
formula still holds (see Problem 10 of Exercise 3.4).

3. Given Three Sides

In this case we derive the famous Heron’s formula, named after the Greek
philosopher-mathematician Heron (also known as Hero) of Alexandria
(75 B.C).

Suppose a, b, and ¢ are given. We wish to derive a formula for area in
terms of the three sides. We can use Eq. (3.5) given above, provided sin v can
be expressed in terms of a, b, and ¢. In observation 7 of Section 2.4 we stated
that (sin y)? + (cos y)*= 1. This can be used to find (sin v)? in terms of
cos v, as follows:

(sin y)2=1—(cos v)>= (1 + cos v) (1 — cos 7). (3.6)

We now get cos <y in terms of a, b, and ¢ by using the Law of cosines:

a’+ b*—¢?

= 3.7
cos vy >ab 3.7
By substituting Egs. (3.6) and (3.7) into Eq. (3.5), we get
_ 1 _at+ b= a’+ b*— ¢?
Area = - ab\/(l Sy 1+ 50 =E). (3.8)
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This result can be written in compact form by introducing the quantity s
denoting one-half the perimeter of the triangle (called the semiperimeter), that
is,

s:%(a+b+c).

Then, as a result of a good exercise in algebra (see Problem 7 of this section),
we get Heron's formula:

Area = \/v(s —a) (s —b) (s —rc). (3.9)

Examples
A Find the area of the triangle that has b = 3.57, ¢ = 4.83, and « = 49°38’
Solution. Using an equivalent form of Eq. (3.5), we obtain

Area = - be sin « = -+ 3.57-4.83 - sin 49°38' = 6.57. i

A If a =34.75. b =48.38, and ¢ = 28.46, find the area of the triangle.

Solution. Use Heron's formula stated in Eq. (3.9):

Area =Vs(s —a) (s—b) (s—o0),

where s="% (a+ b + ¢)="'2(34.75 + 48.38 + 28.46). Put this result in the
memory of the calculator (press or appropriate key). The remaining
calculation can be carried out by using the key to recall s when needed.
Evaluate:

Area = Vs(s — 34.75) (s — 48.38) (s — 28.46) = 487.85. |

EXERCISE 3.4

In Problems 1 through 6 find the area of the given triangle. Express each answer correct
to the same number of decimal places as that of corresponding length measurements.

1. a=37°14, B =65°24', a=34.6.

2. a=42°15, v =96°32', b =483.

3. a=327, b=173.2, v =57°34".
4. b=13.6, c=287.6, a = 124°47',
5. a=735, b =843, ¢ =58.5.

6. a=0.433, b=0.632, ¢ =0.543.
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7. In the development of Heron’s formula we introduced the quantity s = Y2 (a + b + ¢)
and indicated that, after some algebraic manipulation, Eq. (3.8) can be written in
the form given by Eq. (3.9). To do this, we go through the following steps:

2+ b?—¢? ct—(@—5b? _ (c—a+b)c+a—b)
_ -1 %+ = =
| =cos v 2ab 2ab 2ab
_ (@a+b+c—2a)a+b+ c—2b): 2 —a)s—b)
2ab ab

Complete the problem by going through similar steps for 1 + cos v, and then obtain
the formula given in Eq. (3.9).

8. Suppose a circle is inscribed in a triangle with sides a, b, ¢ (Fig. 3.53). Show that the
radius of the circle is given by

r:\/(s—a)(ss—b)(s—c)‘

Hint. From geometry recall that the bisectors of the three angles of a triangle are
concurrent and their point of intersection is the center of the circle.

Figure 3.53

9. Given a circle of radius 8.435 and a central angle § = 52°35’, find the area of the
shaded region between the chord and arc, as shown in Fig. 3.54.

10. In this section we derived a formula for the area of a triangle when two sides a, b,
and the included angle v are given. A triangle with an obtuse angle < is shown in
Fig. 3.55. Prove the area formula Area = %: ab sin v.

,.
<
<SS

Figure 3.54 Figure 3.55
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A farm consists of a triangular plot of land bounded on three sides by roads, in
which v = 47°, a = 254 m, and b = 531 m (Fig. 3.56). Find the area of the farm and
also the amount of fencing required to completely enclose it.

A level lot is in the shape of a quadrilateral with dimensions shown in Fig. 3.57. If
land sells for $3.50 per square meter, find the cost of the lot.

48 m

32m
27 m

1162

// /r 42m

Figure 3.56 Figure 3.57

A farm is triangular; the rectangular coordinates of its vertices are 4: (247, 123),
B: (72, 411), C: (328, 483), and the unit of measurement is the meter. Find the area
correct to three significant digits.

The area of triangle ABC is 246.3 m?, a = 31.4 m, and b = 17.5 m. Find angle v to
the nearest minute.

If the area of triangle 4 BC is 25.46 m?, a = 46°, and 3 = 82°, find the lengths of the
three sides. Give answers in meters correct to two decimal places.

The area of triangle ABC is 254.6 cm?. Find the area of the new triangle if
a) Each side of ABC is doubled;
b) Each side of ABC is tripled.

Suppose that a = 53°, ¢ = 35 cm, and the area of triangle 4 BC is 387 cm?. Find b
and a.

Quadrilateral OABC is inscribed in a quarter circle, as shown in Fig. 3.58, where

Cc

Figure 3.58
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|4B| = 2and |BC| = 4. Find the area of OABC and express the answer as
a + bV ¢, where a, b, and ¢ are positive integers. Hint. If you think you are a good
mathematics student, you should try this one. You do not need any more information
(such as the radius of the circle), and you should first convince yourself that angle BOC
is not twice angle AOB.

3.5 VECTORS: GEOMETRIC APPROACH

In order to introduce the concept of scalar and vector quantities, we first
consider a simple example. Suppose a particle travels from point 4 to point B,
as shown in Fig. 3.59. We ask two questions:

a) How far did the particle travel?
b) What is its displacement at B from A?

North

4

|

|

|

B
| B
| -
24 cm 160° 17 cm
7

>

A A
Figure 3.59

The answer to question (a) depends upon the path taken by the particle in
going from A4 to B. In any case, the answer will be given as a distance (that is,
a number accompanied by a unit of measure, such as 24 cm).

In question (b) we are actually asking: “How far and in what direction is
B from A?” We say that B is displaced from 4 by 17 cm in the direction of 60°
east of north. When we talk about displacement, we.ignore the actual path
taken by the particle and focus our attention on the change in position.

This example illustrates two types of quantities that occur frequently in
applications. The distance actually traveled can be described by giving a
number and a unit of measure; such a quantity is called a scalar. Displacement
requires a number (with the unit of measure) and the direction for its
description; such a quantity is called a vector.

In general, any quantity that can be described in terms of magnitude only
(a number with a unit) is called a scalar quantity. Examples of scalar
quantitites are: distance, mass, time, temperature, area, volume, and so on. We
shall also include real numbers as scalars; for example, 3, , V2,17, ... will
be called scalars even though there is no unit of measurement involved.
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Quantities that can be described by magnitude and direction are called vector
quantities. Examples of vectors are: displacement, force, velocity, acceleration,
electric field, magnetic field, and so on.

1. Notation

To distinquish a vector quantity from a scalar, it is customary to write the
symbol for a vector in boldface type or with an arrow; thus ¥ or V" will denote
a vector. In the example above we can use the symbol 4B as a vector to
represent the displacement of B from 4.

In most problems it is convenient to draw a diagram in which a vector is
represented by a directed line segment whose length is equal to the magnitude
of the vector (drawn to scale). The magnitude (or length) of a vector is called
the absolute value of a vector and is denoted by |V|.

2. Algebra of Vectors

We are already familiar with the algebra of scalars since they are essentially
real numbers. The algebra of vectors is different; for example, we do not get the
sum of two vectors by merely adding their magnitudes, and so it will be
necessary to define addition of vectors. However, we first ask the question:
“When are two vectors equal?”’

We can get some insight for defining equality and sum of two vectors by
returning to the example given at the beginning of this section, in which a
particle travels from A4 to B (see Fig. 3.59). The displacement of B from 4 is
denoted by AB and described as a vector of magnitude 17 cm in the direction
60° east of north.

Now suppose a second particle travels from C to D, as shown in Fig. 3.60;
its displacement is denoted by CD —a vector described as having magnitude
17 cm in the direction 60° east of north. We see that the descriptions of both

North
North 4 £ North

t t

| |

| 8 cm |

| R |

I 20 [ D
I I

I I

l | 60° 17 cm
A C

Figure 3.60
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AB and CD are exactly the same. Therefore, we shall say that they are equal
and write:
AB = CD.

In general, we say that two vectors are equal (regardless of their location in
the plane) if they have the same magnitudes and the same directions.

To define the sum of two vectors, we let our particle travel from A4 to B and
then from B to E, as shown in Fig. 3.60. The displacement of E from A4 can be
described in terms of the two displacements, B from 4 and E from B; and we
say that the resultant vector AE is the sum of vectors AB and BE, and write:

AB + BE = AE.

In general, we define the sum of two vectors geometrically as follows:
Suppose ¥ and U are two vectors, as shown in Fig. 3.61; move U parallel to
itself until its initial point coincides with the terminal point of V (Fig. 3.61, a).

vV

(a) (b)
Figure 3.61

Then the vector drawn from the initial point of ¥ to the terminal point of U is
the sum of ¥V and U, and is represented by V + U.

Equivalently, we can move U parallel to itself, so that its initial point
coincides with the initial point ¥, and then draw the parallelogram
(Fig. 3.61, b). The sum V + U will be represented by the diagonal, as shown.

This method of adding vectors geometrically is referred to as the paral-
lelogram law. 1t should be clear that vector addition is commutative, that is

V+U=U+V.

Also, the associative property holds for addition of vectors (see Problem 17 of
this section); that is,

U+ WVN+W=U+V+ W).

In this book we are not interested in a complete discussion of vector
algebra.* However, we do introduce the idea of a vector multiplied by a scalar
through the following examples:

*In a more advanced study of vector analysis, two types of vector multiplication are defined: dot
product and vector product. The collection of vectors, scalars, and algebraic operations with these
constitute a so-called vector space.
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2V denotes a vector of magnitude 2| V| in the same direction as V,

— 2V denotes a vector of magnitude 2| V| in the opposite direction of V,

(— )V will be denoted by —V,

0. Vis a vector of zero magnitude and no specific direction. It is called the
zero (or null) vector and is written as O.

We define the subtraction of vectors in terms of addition as follows:

U—V=U+(-W).

Examples
A In Fig. 3.62 find the sum of AB and BE.

North North

17 ¢cm

Figure 3.62

Solution. We can describe the sum AB + BE = AE by giving the length of line
segment AE and the angle . Thus we need to solve triangle ABE for side AE

and angle «. Using the Law of cosines, we get

(AE)? =82+ 17*—-2-8-17 cos 140°,
AF =23.69 cm.

To find angle « we use the Law of sines:

8 sin 140°

S &= 75369

This gives a = 12.54° = 12°32'; and so 0§ = 60° — o = 47°28'.
Thus the sum of AB and BE can be described as a vector having magnitude
23.69 cm in the direction of 47°28’ east of north.

A Suppose vectors U and V are as follows: U has magnitude 3.5 units in
direction 20° east of south, ¥ has magnitude 5.1 units in direction 76° west of
north. Find

a) U+ V b) —3U c) 2U — V.
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Solution.

a) We first draw a diagram showing U, V, and U + V (Fig. 3.63). We can
describe U + V in terms of the length of line segment CB and angle 6. Thus
we isolate triangle ABC. Using the Law of cosines, we get

(CB)*=(3.5)* + (5.1)*=2-3.5.5.1 cos 56°, CB=4.3.

North

Figure 3.63
Using the Law of sines, we get
; _ 5.1 sin 56°
MY =TS

This gives v = 81°. Therefore, § = 81° — 20° = 61°. Thus U + V is a vector
with magnitude 4.3 units in the direction 61° west of south.

b) —3U is a vector with magnitude 3 - 3.5 = 10.5 units and the direction
opposite to U, that is 20° west of north.

c) 2U -V =2U + (—V). To describe 2U — V we first solve triangle CDE
for CE and angle « (Fig. 3.64):

(CE)' = (7.0)* + (5.1)>=2-.7.0.5.1 cos 124°, CE = 10.7,
sin o = 5.1 sin 124° , a = 23°.
10.7

Thus 2U — V is a vector with magnitude 10.7 units in the direction of
20° + a = 43° east of south. |

A Using the map given in Fig. 3.66, find the displacement of Reno from
Los Angeles.

Solution. The coordinates of Reno and Los Angeles are R: (—649, —175),
L: (—618, —828). Thus the relative positions of R and L are as shown in
Fig. 3.65. We wish to find vector LR. In the right triangle we have

RC=|-649 —(—618)| =31, LC = |—175—(—828)| = 653.
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North
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Figure 3.64 Figure 3.65
Therefore,
|[LR| =V 31? + 6532 = 653.74,
_ 31 _ °
tan 0_653‘ 0 =2.72°
Thus, the displacement of Reno from Los Angeles is 654 km in the
direction 2.72° west of north. i

EXERCISE 3.5

1. A man walks 2.4 km north and then 1.5 km west. Construct a vector diagram and
describe his displacement from the starting point.

2. A car travels 60 km east and then 83 km northeast. Draw a vector diagram and
describe its displacement from the starting point.

3. Vectors U and V are as follows: U has magnitude 1.5 cm in direction of 60° east of
north, ¥ has magnitude 2.0 cm in direction of 75° east of north. Using a protractor
and ruler determine (by measurements) each of the following vectors:

ay U+V b) U-2V c)3U+2¥

4. Do Problem 3 by computing the vectors, and then compare with the answers
obtained in Problem 3.

5. Using the map in Fig. 3.66, find the displacement of Phoenix from Logan.
6. Using the map in Fig. 3.66, find the displacement of Las Vegas from Denver.

7. Point B is displaced north of point 4 by 24 m, and point C is displaced from B by
15 m in the northeast direction. Find the displacement of C from A: then describe
the displacement of 4 from C.

8. A boat travels east 47 km and then turns 25° toward the south and travels 65 km.
Find its displacement from the starting point.

9. A golfer takes two putts to get his ball into the hole. The first one rolls the ball
3.4 m in the northeast direction and the second putt sends the ball north 1.2 m into
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the hole. How far and in what direction should he have aimed the first putt to get
the ball into the hole with one stroke?

A girl walks 1 km southeast, then 3 km in the direction 30° west of south, and then
4 km in the direction 50° west of north. Using a protractor and ruler, draw a vector
diagram (to scale) and determine (by measuring) the distance and direction in which
she should walk to return to the starting point.

Points 4 and B are two points in the plane with rectangular coordinates 4: (2,5),
B: (3,7). If O is the origin and vectors A and B are defined as 4 = OA, B = OB, find
a) 4] b) |B| ) |4+B|

Points 4 and B are on the opposite ends of a lake. Starting at 4, a man walks to
B by taking the route shown in Fig. 3.67: 4 to C (56 m in a southeast direction),
C to D (40 m due east), D to B (85 m due north). If he went by boat directly from
A to B, how far and in what direction would he go?

Consider two displacements of magnitudes 8 m and 15 m. Determine directions in
which they should be taken so that you get a resultant displacement of
a) 23 km b) 7m c) 17m

Vectors A and B both have magnitude 40 km. If they are oriented as shown in
Fig. 3.68, find the direction and magnitude of 4 + B.

North
4

q D |
Figure 3.67 Figure 3.68

Using the map in Fig. 3.66, find the coordinates of a point that is 200 km southeast
of Cheyenne.

A plane travels from Seattle to Denver, and then continues in the same direction for
another 400 km. Using the map in Fig. 3.66, find the coordinates of its position.

Using a geometrical argument, prove that addition of vectors is commutative and
associative; that is, show that

U+V=V+U and WU+ V)+W=U+V+W).

3.6 VECTOR ALGEBRA: ANALYTIC APPROACH

In the preceding section we introduced the concept of vector addition as a
geometric operation (the parallelogram rule). As may be apparent from the
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problems in Exercise 3.5, the process of adding vectors geometrically is
awkward. In this section we introduce an analytic technique that simplifies
addition of vectors.

In all of the examples of Section 3.5 the description of vectors was given
relative to a compass orientation. We now introduce a rectangular coordinate
system in which the positive x-axis is in the east direction and the positive
y-axis is in the north direction. The direction of any vector V can now be
described by giving the angle § (measured counterclockwise) between it and the
positive x-axis.

Let i and j be unit vectors (of length one) in the positive x- and
y-directions respectively, as shown in Fig. 3.69. Any vector in the plane can be
expressed as a linear combination of these two unit vectors, as shown in the
diagram, where (v,, v,) represents the coordinates of the terminal point of V.

Figure 3.69

Thus we have two vectors ¥ =v i and V,=v j such that their sum is V.
That is,

V=V, + Vy:vxi+vyj.

Vectors V, and V), are called the components of V in the x- and y-directions,
respectively. The process of expressing V as the sum of ¥, and V) is known as
resolution of V into its x- and y-components (or i- and j-directions). The
magnitude of Vis given by | V| = Vvl + 2.

Using cos 6 =v, /| V| and sin 6 =v /| V|, we see from the right triangle

shown in Fig. 3.69 that
v,= | V]| cos 6 and v,= | V]| sin 6.

Thus, any vector ¥ can be written in the form

V=(|V| cos )i+ (|V] sin¥b)j.
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Addition of Vectors
Suppose vectors U and V are expressed in terms of i, j as
U=ui+vuj, V=vi+v,]

Vector addition is associative and commutative (see Problem 17 of Exer-
cise 3.5), and so we have

U+V=@i+uj)+ @ i+vj)=@ +v)i+u,+v)j

Therefore, to add two vectors we merely add their corresponding components.

Examples

A Suppose V is a vector with magnitude 4 and direction § = 120°. Resolve
V into its x- and y-components.

Solution.
v,= | V|cos § =4 cos 120° =—2,
v,= | V|sin 6 =4sin 120° =2V/3.

Thus _
V=-2i+2/3j. i

A Suppose Uis a vector of length 5 in the direction of 70° east of north, and
V has length 3 in the direction of 20° west of south (Fig. 3.70). Find the sum
of Uand V; then find |U + V|.

250°/ 20° e
" ;

14

Figure 3.70

Solution. We first express U and V in i, j form:

U= 5c0s20°i +S5sin 20° j= 4.70i + 1.71}j,
V=3 cos 250° i + 3 sin 250°% = —1.03i— 2.82}.

Therefore,
U+ V=367i—1.11j.
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To find |U + V| we write:
|U+ V| =V(3.67)% + (—1.11)2 = 3.83. |
A Suppose A = 2i + 3j and B= 4i —j. Find the vector 34 — 5B.

Solution.
34 — 5B = 3(2i + 3j) — 5(4i — j) = (6i + YY) + (= 20i + 5j).*
Thus
34 — 5B = — 14i + 14j. |

A If the displacement of Havre from Las Vegas is given by the vector
LH =541 + 1383, find the coordinates of Havre on the map of Fig. 3.66

(p. 100). The given distances are in kilometers.

Solution. We wish to find the coordinates of H as shown in Fig. 3.71. We can
do this by finding vector

OH=0L + LH.

L
Figure 3.71

From information given on the map, we have

OL =—-331i—622j
Therefore.

OH = (-331i—622j) + (541 i + 1383 ) =210i + 761 j.
The coordinates of Havre are (210, 761). ]

*Note that in replacing 3(2i + 3j) by 6i + 9 j we used the distributive property
32i+3j)=32d + 33)),
and the associative property
32i)=(3-2)i and 33i)=(3-3)j.
These properties hold in general and are basic in the study of vector spaces.
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EXERCISE 3.6
In Problems 1 through 10, vectors U, V, and W are given by
U=i+}, V=2i-5j, W=-2i+j.
In each case draw a diagram illustrating the problem geometrically and then determine
the given vector in i, j form:
.LU+V 2. U-V 3. 2U + 3W
U+ V+ W 5.3U-2V +4W

4

6. Find a vector that gives W when added to U.

7. Find a vector that gives V when subtracted from W.
8

. Find
a) |U| b) | V] o |[U+V|
9. Find |2U - 3V| 10. Find |3U + 2V - SW|

In Problems 11 through 14, suppose the x, y-coordinate system corresponds to
compass directions and the direction angle 6-is measured as described in this section. Let
A and B be given as follows: 4 has magnitude 1.5 cm in direction 60° east of north,
B has magnitude 3.2 cm in direction 20° west of north.

11. Draw a diagram illustrating vectors 4 and B, and then give the direction of each in
terms of the corresponding # angle.

12. Resolve 4 and B into their x, y-components.

13. Find the sum of A and B and describe the resultant in terms of compass direction.
14. Find 24 — B and give the result in terms of its magnitude and compass direction.
In Problems 15 through 19 use information from the map given in Fig. 3.66 (p. 100).
15. Find the displacement of Boise from Portland as a vector in i, j-form.

16. Point P is 200 km from Albuquerque in the direction of 54° east of north. Find the
coordinates of P.

17. Find the displacement vector of El Paso from Missoula in i, j-form. Get an
approximate check on your result by using a ruler and protractor on the map.

18. The displacement of point P from San Diego is given by the vector
DP =321i+ 175j.
Find the displacement vector of P from Logan.

19. Determine the direction in which a plane should fly to travel directly from Los
Angeles to Salt Lake City (assuming no wind effect).

20. Find the magnitude and direction of a vector whose x-component is 32 units and
y-component is 24 units.
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21.

22.

23.
24,
25.

26.
27.

28.

29.

30.

A girl walks 2 km in the southwest direction, then 1.5 km east, and then 3 km in the
direction 30° east of north. Find her displacement from the starting point. Give the
answer in terms of distance and compass direction.

What are the x- and y-components of a vector with magnitude 16 cm and the
direction given by 6 = 210°?

Find a unit vector with the same direction as A = 317 +j.

Find a unit vector perpendicular to vector A =31 + j.

If A=3i—2jand B=2i+}j, find

a) the angle between 4 and B b) the angle between 4 + B and A — B.
Find a unit vector parallel to the line through points (3, 5) and (2, —1).

Express vector ¥ =3i + 4j as the sum of two vectors with directions shown by
broken lines in Fig. 3.72.

Figure 3.72

Find the coordinates of point P whose displacement from point (3, 1) is of
magnitude 4 in the direction of 136° with the positive x-axis.

A particle moving in the x, y-plane is photographed each second and its x, y-
components for the first five seconds are given by the following table:

t (sec) 0 1 2 3 4 5
x (cm) 10 14 21 27 16 31
y (cm) 0 5 8 12 22 30

a) Draw a diagram that illustrates the displacements for successive seconds.
b) Find the displacement from 7 =0 to 7 = 4 sec.
c) Find the displacement from 1 =1 to ¢ = 5 sec.

Suppose that the coordinates of a particle moving in the x, y-plane are given by

x =3t- 58, y=—4 + B3,
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where ¢ is in seconds and x, y are in centimeters. Find
a) the displacement of the particle from 1 = 0 to ¢ = 4 sec,
b) the displacement of the particle from ¢ = 2 to ¢ = 4 sec.

31. A plane travels from Seattle to Missoula and then 450 km in the southeast
direction. Using the map in Fig. 3.66 (p. 100) find how far and in what direction the
plane is from Seattle.

32. On a par 4 hole a golfer scores a birdie with the following three strokes:

the first travels 84 m at an angle of 54° east of south;
the second goes 21 m in the direction 10° west of south;
the third is a putt of 2.5 m in the northwest direction.

How far and in what direction should he have hit his drive to get a hole in one?
3.7 APPLICATION OF VECTORS TO VELOCITY PROBLEMS

Relative Velocities

We illustrate the idea of relative velocity by considering the following example.
The compass of an airplane shows that the plane is pointed due north. Ground
information indicates that there is a wind blowing due east. The result is that
the plane will not fly due north but that its direction will be affected by the
wind and its actual course will be shifted toward the northeast. We discuss
details of this situation by introducing three vectors:

V, represents the velocity of the plane relative to the air (this is given by the
airspeed* and compass on the instrument panel and would be the actual
velocity of the plane if there were no wind);

V, represents the velocity of the plane relative to the ground (this is what
an observer on the ground would see as the actual speed and direction of the
plane);

U represents the velocity of the wind (that is, the velocity of the air relative
to the ground).

These vectors are shown in Fig. 3.73, where V, is the resultant (or sum) of
V,and U. That is,

Vo=V, +U. (3.10)

Examples
A Suppose the instrument panel of a plane indicates an airspeed of 350
km/hr and a direction due north; the wind is 80 km/hr in a due east direction.

*The word speed is used to denote the magnitude of velocity. Thus speed is a scalar quantity
associated with velocity, which is a vector quantity.



108 Solving Triangles Chapter 3

¥
*
|
North !
——— | I
| |
| y l
| a |
Va | !
v, |
g ' Vg |
I o |
> » X
| U
U |
Figure 3.73 Figure 3.74

What is the actual velocity of the plane with respect to the ground? How far
has the plane traveled after 50 min in flight?

Solution. (Fig. 3.74): V,=350j and U =80 i, therefore,
Vg: V,+U=1350j + 801i.
The actual speed of the plane is
|V,| =V 3507 + 80* km/hr = 359.03 km/hr.
The direction of the plane is given by
tan 9= 330 9=77.12°.
Thus the actual velocity of the plane is 359 km /hr in the direction of
90° — 77.12° = 12.88° east of north.

In this example the plane will always be pointed north (that is, the compass
reading will indicate north) and the airspeed will show 350 km /hr even though
the wind causes the plane to drift.

Recall that

Distance = Rate x Time

and so after 50 min in flight the plane actually travels a distance of
359(50/60) = 299.17 km. |

Suppose in Example 1 the pilot actually wants to travel due north. Find
the direction in which he should point the plane and the actual ground speed.

Solution. Here we want the resultant Vg to be in the north direction. Thus
V, will have to be in the northwesterly direction, as shown in Fig. 3.75:

V,= (350 cos 8)i + (350 sin 6)j,
V.= ]Vg|j, U= 80i.
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Our problem is to find 8 and | Vg|. Substituting into equation V, =V, + U,
gives

|V, j = (350 cos )i + (350 sin 6) + 80
— (350 cos 6 + 80)i + (350 sin 6) .

If two vectors are equal, then their x- and y-components must be respectively
equal. That is,

350 cos 6 +80=0, 350 sin 6= |V,|.
Solving these two equations simultaneously for 6 and |V, | gives
6 =103.21°, |V,| =340.73 km/hr.

Thus the plane should head in the direction of 13.21° west of north and its
ground speed will be 340.73 km/hr. i

EXERCISE 3.7

In Problems 1 through 4, the airspeed and direction of a plane and the wind velocity are
given.

a) Find the actual ground speed and direction of the plane.

b) Determine the actual distance covered by the plane after 45 min in flight.

1. ¥V, is 300 km/hr due east; U is 60 km/hr from the west.
2. ¥, is 350 km/hr due south; U is 50 km/hr from the south.

3. V,is 300 km/hr in direction 40° east of north; U is 80 km/hr in direction of 10°
west of south.

4. V,is 400 km/hr in southeast direction; U is 70 km/hr from the north.
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12.

13.

14.

15.

16.

. If the pilot of an airplane wishes to travel due north with an airspeed of 400 km /hr,

in what direction should he point the plane if there is a wind of 80 km/hr blowing
in the due east direction?

. In Problem 5, how far will the plane actually travel in 1 hr 25 min?
. In Problem 5, how long will it take the plane to travel 540 km?

. A pilot wishes to have his plane travel due east with an airspeed of 350 km/hr.

There is a head wind given by U = —40i — 30. In what direction should he point
the plane and what will be the ground speed?

. In Problem 8, how long will it take the plane to travel 800 km?
10.

A ship is traveling due north at a speed of 24 km/hr. A man walks east across the
deck at a speed of 3.5 km/hr. Describe his velocity (speed and direction) relative to
the surface of the ocean.

. According to instrument readings, a destroyer is steaming due east at 40 km/hr.

The ocean current is known to be toward the southwest at the rate of 8 km/hr. In
what direction and at what speed is the ship actually traveling?

A pilot heads his plane so that the compass reading is 40° east of north. A wind is
blowing in the direction 50° east of north. Find the airspeed of the plane and the
speed of the wind if the resulting ground speed is ¥, =200 + 223 .

A river flows from north to south at the rate of 2 km/hr and is 0.4 km wide. A man
starts from the west bank and rows across the river keeping his boat constantly
pointed east. If he can row (in still water) at the rate of 4.5 km/hr and point 4 is
directly across the river from his starting point, how far down the river from point
A will he land?

Using the information given in Problem 13, find the direction in which the man
should point his boat to reach point 4.

A plane traveling at an airspeed of 400 km /hr is over San Francisco and is headed
in a direction with compass reading 57° east of north. In 55 min it passes over
Reno. Using information from the map in Fig. 3.66 (p. 100) find the velocity of the
wind (assuming it to be the same for the entire trip).

A plane travels from Reno to Salt Lake City. Assuming that the wind velocity for
the entire trip is 32 km/hr from the northwest, at what airspeed and compass
direction should the plane travel to get to Salt Lake City in exactly 2 hr? Use
information from the map in Fig. 3.66 (p. 100).

3.8 APPLICATION OF VECTORS TO FORCE PROBLEMS

Concurrent Forces in Equilibrium

If a body is at rest (or is moving at a constant velocity), it is said to be in
equilibrium. If a body is in equilibrium and a force is applied to it, then the
equilibrium will be disturbed. Thus if forces are applied and the net, or
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resultant, force is nonzero, then the body will not be in equilibrium. This is
equivalent to saying that if a body is to remain in equilibrium, then the
resultant of any forces acting on it must be zero. This implies that the sum of
the x-components of the forces must be zero and the sum of the y-components
must equal zero. We thus have the following basic principle for a body to be in
equilibrium:

For a set of forces to be in equilibrium,* it is necessary that the
sum of their components in any two mutually perpendicular
directions in the plane be zero.

If the body is not moving, then it is said to be in static equilibrium. The
problems considered in this section will all be of this type.

If all of the forces acting on a body pass through a common point, then
they are said to be concurrent forces. If there are nonconcurrent forces, then it
is necessary to introduce the concept of torque (or moments of forces) in the
above stated basic principle. For example, two tangential forces applied to
opposite points of a wheel are not concurrent.

In this section we deal only with bodies in static equilibrium and concurrent
forces. Thus the basic principle stated above will be sufficient to give us
solutions.

Examples

A A 50-kg weight is suspended by two ropes as shown in Fig. 3.76 (a),
where a = 50° and 8 = 24°. Find the tension in each rope.

50 kg
(a) (b)
Figure 3.76

*It is common to speak of forces being in equilibrium meaning that the body to which these forces
are applied is in equilibrium.
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Solution. In solving a problem of this type, we first fix our attention on a point
where several of the forces are applied, and then draw a vector diagram
showing all of the forces. In our problem it is natural to isolate point P where
three forces given by vectors 4, B, and W are acting.

We wish to determine the tension in the two ropes, that is, we want to find
the magnitudes of 4 and B. If we choose our x, y-system of coordinates with
origin at P as shown in Fig. 3.76 (b), we have

A= (|A]| cos 130°)i+ (|A4]| sin 130°)},

B= (|B| cos 24°)i + (|B| sin 24°)},

W= —50j.
Since our system is in equilibrium, we can apply the basic principle stated
above and get

Sum of x-components: |A4| cos 130° + |B| cos 24° =0
Sum of y-components: |A4| sin 130° + |B| sin 24° — 50 =0.

Solving these equations simultaneously for |4 | and |B| gives
|A| =47.52 kg  and |B| = 33.43 kg.

Note that in applying the basic principle of equilibrium we essentially
determined two forces 4 and B, such that their resultant (4 + B) just balances
W, thus leaving the system in equilibrium (Fig. 3.77).

;
A+B 4 |
//1P\\ af
N\
AN F |
NP S S
P )
7 w
100 kg |
W (a) (b)
Figure 3.77 Figure 3.78 i

A A weight of 100 kg is suspended from a wall as shown in Fig. 3.78(a).
Find the tension on the portion of the rope 4 P (8 m long) and the force on the
bar BP (3 m long).

Solution. We isolate P as the point where three forces are acting; we denote
them by F (pull by the rope), G (force on the bar), and W (force of gravity on
the weight), as shown in Fig. 3.78(b).

First we determine angle «; from the triangle in Fig. 3.78(a) we have

tan a = _g_ a = 20.55°.
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Therefore we can write the three vectors as follows:
W =-100j, G=|G|i,

F=(|F| cos 110.55°)i + (| F| sin 110.55°) .
Applying the basic principle of equilibrium, we get:

Sum of x-components: |G| + |F| cos 110.55° =0,
Sum of y-components: |F| sin 110.55° — 100 = 0.

Solving these two equations simultaneously, we get

|F| = 106.80 kg,
|G| =37.49 kg.

Thus the tension in the rope is 106.80 kg and the bar is pushing against P
with a force of 37.49 kg.

& A weight of 25 kg is being held on an inclined plane by a rope PA, as
shown in Fig. 3.79(a). If the angle of inclination to the horizontal is 36°, what
is the tension in the rope? Neglect any force caused by friction.

(a)

Figure 3.79

Solution. We isolate point P and note that there are three forces acting on it.
We denote these by F (pull by the rope), G (push by the incline against the
weight in the direction perpendicular to the incline), and W (force of gravity on
the weight). These forces are shown in Fig. 3.79(b) and are given by

F= (|F| cos 36°)i + (|F| sin 36°)},
G= (|G| cos 126°)i + (|G| sin 126°)j,
W= —25j.
Since the system is in equilibrium, we can apply the basic principle and get

Sum of x-components: |F| cos 36° + |G| cos 126° =0,
Sum of y-components: |F| sin 36° + |G| sin 126° —25=0.
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We solve these two equations simultaneously for |F|:

25 cos 126°
|F| =

sin 36° cos 126° —sin 126° cos 36° 14.69 ke,

Thus it will require a pull of 14.69 kg on the rope to keep the 25 kg weight
in place.

EXERCISE 3.8
1. A 120 kg weight is suspended by two ropes, as shown in Fig. 3.80. What is the
tension in each rope?

2. A weight of 80 kg is suspended from a wall, as shown in Fig. 3.81. The bar BP is
perpendicular to the wall. Find the tension in the rope AP.

7 A
40°
Z 0
64° 20° 7
AB Sm P
120 kg 80 kg
Figure 3.80 Figure 3.81

3. An 80-kg weight is suspended from the wall, as shown in Fig. 3.82. The bar BP is
inclined at 80° to the wall. Find the tension in the rope AP.

4. A weight of 100 kg is being held on a ramp by a rope from P to A4, as shown in
Fig. 3.83. If the ramp is inclined 25° to the horizontal, find the tension in the rope.
Neglect any friction forces.

A a
40°
A
80° P )’
B Sm
80 kg 25°

Figure 3.82 Figure 3.83
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A weight of 100 kg is being held on an inclined plane by a rope PA, as shown in
Fig. 3.84. Find the tension in the rope.

Two forces, one of 100 kg and the other of 160 kg, act on an object with an angle
of 64° between them. What is the magnitude of a third force that will keep the
object in equilibrium?

Two men are holding a weight suspended between them on a rope, as shown in
Fig. 3.85. One exerts a force of 45 kg in the direction of 30° from the horizontal,
while the other exerts a force in the direction of 40° with the horizontal. How heavy
is the weight?

Figure 3.84 Figure 3.85

. A girl gymnast hangs from a horizontal bar with her arms outstretched so that each

makes an angle of 36° with the bar. If she weighs 55 kg, what is the tension in each
arm?

Two forces, each of 55 kg with an angle of 72° between them, act on an object.
What additional force is required to keep the object in equilibrium?

A boat weighing 600 kg is being pulled up a loading ramp inclined 20° to the
horizontal. What force is required? Neglect any friction forces.

A weight of 62 kg is suspended by two ropes, as shown in Fig. 3.86. What is the
tension on each rope?

N

62 kg
Figure 3.86

A force of 160 kg is required to hold a weight on an inclined plane with an angle
of 24° to the horizontal. How heavy is the weight? Neglect any friction forces.
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13.

14.

15.

16.

17.

18.

19.

20.

A boom AP, 4.5 m long, holds a weight of 86 kg away from a vertical wall. The
weight is anchored to the wall by a rope BP, as shown in Fig. 3.87. What is the
tension in the rope?

Suppose that in Problem 13 the rope makes an angle of 12° with the horizontal, as
shown in Fig. 3.88. What is the tension in the rope?

AB 33 m
7 P
86 kg
45m
A
Figure 3.87 Figure 3.88

A balloon filled with helium is anchored by two ropes, as shown in Fig. 3.89. If the
tension of the rope inclined at 40° is 120 kg, find the buoyancy force of the balloon.

Janet is sitting in the center of a hammock suspended from two trees with ropes that
make an angle of 64° with the vertical. If she weighs 52 kg, what is the tension in
each rope? Neglect the weight of the hammock.

If each rope in Problem 16 can support a pull of at most 100 kg before breaking,
what angle with the vertical can each make for Janet to be safe in the hammock?

An archer pulls back on his bow with a force of 10 kg before releasing the arrow,
as shown in Fig. 3.90. With what force is the string pulling on the bow ends?

40° 32°

Figure 3.89 Figure 3.90

An inclined plane is 5 m long and one end is 2 m above the other. A weight of
48 kg is held in place by a rope A4 P tied to a building, as shown in Fig. 3.91. What
is the tension in the rope? Neglect any friction forces.

A boy is being pulled up an icy hill by a rope tied to his sled. If the child and sled
weigh a total of 36 kg, the angle of the hill slope with the horizontal is 15°, and the
rope is inclined at 24° to the hill, what force is required to pull the sled?
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21. A weight of 64 kg hangs vertically supported by a rope tied to the top of the

building. The rope is strong enough to support at most 128 kg. A second rope
(sufficiently strong) is tied to the weight and is pulled always horizontally, so that
the first rope makes an angle of 8 with the building (as shown in Fig. 3.92). How
large can 6 be before the first rope breaks?

A
N
36° \
0
P
5 m 2m 64 kg
fu N\ NN
Figure 3.91 Figure 3.92

REVIEW EXERCISE

1.

The hypotenuse of a right triangle is 37.42 cm and one angle is 48°12". Find the
lengths of the two sides. Give answers correct to four significant digits.

. If ABC is an isosceles triangle with |4B| = |4C| =4.73 and the angle oppo-

site AB is 52°14’, find the length of the altitude from 4 to BC. Then find the area
of the triangle. Give answers correct to two decimal places.

. If the hypotenuse of a right triangle is 24.3 cm and one of the sides is 15.4 cm, find

the length of the other side correct to three significant digits. Determine the angles
correct to the nearest minute.

. In Fig. 3.93, ABCD is a square with length of side 18.76 cm. If |EC| = 8.43 cm,

find the length of AF.

. In Fig.3.94, a =34°, =120°, and |CD| =15cm. Find the length of 4B

correct to two significant digits.

v
/ 1
B
Ao
i B8
A D A B D

Figure 3.93 Figure 3.94
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In Problems 6 through 14, parts of a triangle are given (using conventional notation as
described in this chapter). First, decide whether the given information is sufficient to
determine a triangle. If it is, find the remaining parts. Give answers correct to the
accuracy you think is consistent with the given information.

6. b=32,c=47, a=18°. 7. a=15,b=20, c=40.
8. a=0625°8=23.6° c=347. 9. a=34,b=4.6,c=317.
10. 3=64°12', b=32.5 ¢=238. 11. a=30° 6 =060° v =90°.

12. a=48° 6=74° v=758° a=436 13. a=36° 03=65° a=1364b=253.

14. 3 =32°14", v = 64°18’, a = 42.53.

15. In Fig. 3.95, the length of CD and angles « and 8 are measured and found to be
|CD| =137 m, a=44°, [=123°

Find the distance from A4 to B and from 4 to C.

[S-]

A
Figure 3.95 Figure 3.96

16. In Fig. 3.96, the center of the circle is O, AB is a tangent to the circle at B, and C
is a point on the circle and on OA. If the radius of the circle is 12 cm and the length
of arc BC is 9 cm, find the area of the shaded region.

17. Each side of a regular pentagon has length 24 cm. The five diagonals of this
pentagon intersect in five points forming another regular pentagon inside the given
one. Find the length of side of this pentagon.

18. Find the areas of each of the pentagons described in Problem 17. Then find the ratio
of the larger area to the smaller area.

19. The three sides of a triangle are a = 3.4, b= 5.6, c = 4.8. Find the area of the
triangle correct to one decimal place.

20. The lengths of two sides of a triangle are 32.6 cm and 43.5 cm, and the angle
between them is 55°40’. Find the area of the triangle correct to three significant
digits.
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23.
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Problems 21 through 24, vectors A, B, and C are given by

A=3i+4j, B=-2i+5}, C=2i-3j.

Find: a) 24 - 3B b) B + 3C

Determine: a) |4 | b) [4B - C| c) |4-B|

Find a) the angle between 4 and B, b) the angle between A + B and B + C.

Find the unit vectors perpendicular to vector A.

Using information from the map given in Fig. 3.66 (p. 100), find
a) the vector describing the displacement of Reno from El Paso;
b) the direction and distance from Denver to Salt Lake City.

The pilot of an airplane encounters a wind of velocity 60 km/hr in the due east
direction. If his instruments indicate an airspeed of 360 km/hr in the due south
direction, what is his ground speed and in what direction is the plane actually
flying?

If the pilot in Problem 26 wishes to have the plane actually fly in the due south
direction with the airspeed indicator still showing 360 km/hr, in what direction
should he point his plane? How far will he fly in 1 hr 20 min?

A weight of 100 kg is suspended from a wall by a rope AP and held out from the
building by a bar BP, as shown in Fig. 3.97. Find the tension in the rope.

Two forces with magnitudes of 50 kg and 80 kg are acting on an object with an
angle of 64° between them. Find the magnitude of the force required to keep the
object from moving.

An object weighing 80 kg is being held in place on an incline by a rope AP tied to
the object and a building, as shown in Fig. 3.98. Find the tension in the rope.
Neglect friction force.

A
50°
A
%
10°
s P
B
100 ke 20° Z

Figure 3.97 Figure 3.98






CHAPTER FOUR

IDENTITIES

Problem-solving in mathematics frequently involves a sequence of steps in
which the problem is restated in a different but equivalent form until ultimately
it is reduced to a form that can be solved by familiar techniques. For example,
in algebra the student learns to solve the equation x> — x — 6 = 0 by replacing
its left-hand side with (x — 3) (x + 2), so that the problem then becomes one of
solving (x — 3) (x + 2) = 0. In this form the problem can be solved by resorting
to a theorem stating that if the product of two numbers is zero, then at least
one of the two numbers must be zero. That is, x —3=0 or x + 2=0; so
x =3 and x = — 2 are the solutions.

In this example we call the equation x* — x — 6 = (x — 3)(x + 2) an identi-
ty, because it is satisfied by every real number. That is, if we replace x by any
given real number in the expression on the left-hand side of the equality sign
and in the expression on its right-hand side, the two resulting numbers will be
equal. However, the equation x2 — x — 6 = 0 does not have this property since
it is satisfied by only two real number values of x. We call such an equation a
conditional equation.

An identity is defined as an equation satisfied by all values of the variable
(or variables) for which both the left-hand side and the right-hand side are
defined. For example,

x2—4
x—2

is an identity since it is satisfied by all real numbers except x = 2, a value for
which the left side is not defined. The student has already encountered several
identities in algebra, such as the factoring formulas

=x+2

X=pyP=(x+))x—y), xXT+2xy+y =(x+y),
X3+pyi=x+p)xP—xy+y),...

121
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Presently we are interested in developing a collection of identities involving
trigonometric functions. We have already used one such identity,

(sin y)? + (cos v)? =1,

in Section 3.4 when we derived Heron’s formula for the area of a triangle. In
the process we replaced (sin )2 by 1 — (cos )% then we replaced 1 — (cos v)?
by (1 + cos ¥)(1 — cos y). This is the form that allowed us to complete the
derivation.

This chapter will include a large number of identities with which the
student should become familiar. These may be difficult to memorize but
through frequent encounters in solving a large number of problems, the
student will eventually come to know them. In subsequent chapters of this
book, the usefulness of identities will become apparent.

4.1 BASIC IDENTITIES

The following equations are satisfied by each value of § for which both sides of
the given equation are defined. That is, they are identities.

(L1) csc 0 = 1 (1.2) sec f = —1
sin 6 cos 0
(1.3) cot § =—1 (1.4) sin (— 6) = —sin 8
tan 0
(L.S5) cos(— ) = cost (1.6) tan(—0) = —tan 6
(L7) tan  =Sin 0 (1.8) cot  =<0s 8
cos 0 sin ¢
(L.9) sin2 6 + cos?2 0 = 1* (I.10) 1 + tan? 6 = sec? 0
(L.11) 1 + cot? 8 =csc? @

*Notation sin?0 means (sin 6)?; that is, we first get sin § and then square the result. Not to be
confused with sin 62, where we first square 6, then get the sine of the result.
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Note. Trigonometric identities (I.1) through (I.11) (as well as subsequent
identities) are listed inside the back cover for easy reference.

Identities I.1 through 1.9, as well as others, have already been introduced in
Section 2.6. Proofs of 1.10 and I.11 are left to the student (see Problem 1 of
Exercise 4.1).

Examples
A Prove that cos x tan x = sin x is an identity.

Solution. Let LHS and RHS stand for “left-hand side’” and “‘right-hand side”
of the given equation, respectively:

LHS = cos x tan x = cos x SILX  (by (L.7))
cos x

=sin x  (by algebra).
Therefore LHS = RHS. and so the given equation is an identity. |

A Prove that L =8€€ X _ €08 x — | ¢ ap identity.
1 + sec x cos x + 1

Solution.

LHS = _l—secx _ 1—1/cosx (by (1.2))

1 + sec x 1+ 1/cos x

_cosx—1 . cosx+1 _cosx—1 (by algebra)
cos x cos x cos x + 1
= RHS. |

A Prove that (sin x + cos x)2 = S€EXCSCX +2 g ap jdentity.
SEC X CSC X

Solution.

LHS = (sin x + cos x)? =sin’x + 2 sin x cos x + cos’x
= (sin%x + cos?x) + 2 sin x cos x (by algebra)

=1+ 2 sin x cos x (by (1.9));

RHS_Secxecscx+2 _ SeCxCsCx 2 (by algebra)
SeC X CSC x SEC X CSC X  SEC X CSC X
=1+2 1 .1 (by algebra)

S€C X CSC X
=1+ 2 cos x sin x. (by (I.2) and (I.1)).

Therefore, by the transitive property, LHS = RHS and so the given equation
is an identity. ]
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Technique for Proving Identities

The student will notice that in the above examples we did not begin our proof
with the given equation and manipulate it until we got an obvious equality.
Here we emphasize an important point of logic. A proof consists of a logical
sequence of statements in which the final statement is the statement to be
proved.

We illustrate our point with an obvious example. Suppose we wish to
prove that 1 = 2. If we are allowed to start with this equality as the first step,
then our “proof” could proceed as follows:

1=2,
multiply both sides by zero:
0-1=0-2
hence,
0=0.

Since 0 = 0 is an obvious equality, can we conclude that 1 = 2? Clearly NOT!
The only conclusion we can make from the above is that ““if 1 = 2, then 0 = 0,”
which is a true statement.

The important point illustrated by this example is that it is not logically
acceptable to begin a proof with the statement you wish to prove, perform
algebraic manipulations on it, obtain an obvious equality, and then conclude
that the starting statement is true. If such a procedure is followed and if it can
be shown that these steps are reversible, then the proof is valid. However, the
steps in reverse are a necessary part of the proof and should be included. What
step or steps in the above faulty proof are not reversible?

Note. As illustrated in Examples 1 through 3 above, we believe that the best
technique in communicating a proof is to work independently with either or
both of the left- and right-hand sides of the given equation to show that each
reduces to the same expression. The final statement of LHS = RHS then
follows from the transitive property of the equals relation.

EXERCISE 4.1
1. Use 1.9 to derive 1.10 and I.11.

In Problems 2 through 40 prove that the given equation is an identity.

2. sin 0 cot 6 = cos 3, tanb _ .. q
sin 6
4. cotf =csclcosf 5. cosxsecx=1
6. cos x tan x = sin x 7. 1 —cos’x = cos’x tan’x

8. cot x sec x =csc x 9. sin%x = (1 — cos x)(1 + cos x)
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11 sin x CsC x

10. SOLX _ csc x —sin x . =tan x
sec x cot x
12 Sin0 _ap (&) 13. sec 6 csc 6 =tan 0 + cot §
cos 0
14. sec (csc 6 — sin 6) = csc 0 cos 0 15. 1=COS X _ (cot x —csc x)?
1 +cos x
16, —sinf __1—cosf 17. tan x + cot x =S5¢ X
1 +cosé sin 6 cos X
18'1+tan0=1+cot0 19.CotaCSC(x=——1—-——
sec 0 csc 0 seC a — Cos «a
20. 1_ + 1, =2 sec? x 21. secix + csc’x = secx cscix
l—sin x 1+sinx
22 _sinf  l+cosf__ 2 23. (cos x + 1)(sec x — 1) = sec x — cos x
1 +cos @ sin 4 sin 6
24. sec 0 — cos 6 = sin(—0) tan(—0) 25. sin‘x — cos*x = sin*x — cos’x
26. 1 + tan’x = tan x S€c x CsC X 27 tan b +sec_ 1+ sin b
sin 6 cot 0 cos?f
28. cot(—x)cos(—x) = sin x — cSC x 29. C,OS—B + sinf _ sec 0 csc 6
sin 0 cos 0
30. 1-sin(x) _ tan x + sec x 31, 1—cosx secx-—1
cos X l+cosx secx+1
32. 1 —(sin x — cos x)* = 2 sin x cos x 33. cso(—x) = oS x
cot(—x) + tan(—x)
34, _Cosx _ l+sinx 35. sectx — tan‘x = sec2x(sin%x + 1)
1 —sin x COS X
36. tan?x — sec’x = —1 37. tan‘x + tan’x = sec’x — sec’x
38. — 1 _sech+tanb 39, cotx+tanx _
sec § —tan 6 Sec X CSC X

40. sin2x tanx + sin’x = tan’x

4.2 BASIC IDENTITIES (CONTINUED)

All problems of the preceding section are of the form *“Prove that the given
equation is an identity.” In this section our problems are similar except that we
ask “Is the given equation an identity?” Thus we have the additional burden of
trying to decide whether or not the equation is an identity. If we think it is, then
we must prove it. If not, we must exhibit at least one value of the variable for
which both sides of the equation are defined and for which the two sides are
not equal. We illustrate the procedure through the following examples.

Examples

A Determine whether or not equation sin‘x + cos‘x = 1 is an identity.
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Solution. If we have no advance information or insight as to whether or not an
equation is an identity, then it is probably wise to first try a few values of x to
see whether the equation is satisfied by these values. If we find one value that
does not satisfy it, then the given equation is not an identity. In our problem
we try

x=0: sin0 +cos'0 =0+1¢ =1
_ . ind T 4T _ 14 4 =1:
X > s1n2+cos2 14+ 0 ;
x=m sin‘r + cos'mr =0%+ (—1) =1

Thus the given equation is satisfied by each of the three values of x, and so by
now we begin to suspect that it is an identity. However, it is worth noting that
the tested values (0, 7/2, 7) of x are special; and in many cases these will satisfy
a given equation while others will not. It is wise to try (after 0) a number such
as x = 1; with the calculator (in radian mode), it is easy to evaluate and get
(sin 1)* + (cos 1)* = 0.5866. Therefore, sin‘x + cos*x = 1 is not an identity since
it is not satisfied by x = 1. i

& Determine whether equation 1 (:os - = 1 :11(1:?; X_ is an identity.

Solution. We first try a few values of x and evaluate the LHS and RHS for
these values:

x=0. LHS= 1 -1 _ 1
l-cos0 1-1 O

thus the LHS is undefined, and so x = 0 is not in the domain of discussion for
this problem;

- T. LHS-= 1 -1 __
=2 S l—cos(w/2) 1-0
_l+cos(m/2) 1+0 ..
RHS = sin2(7/2) 12 =L
x=1: LHS=—1 _ 2175342651,
1 —cos |

RHS = L+.c0s 1 _ 5 175342650,
sin’1

Although the LHS and RHS given by the calculator for x = 1 differ slightly, it
is a good guess that x = 1 does satisfy the given equation (the discrepancy is
probably due to round-off error within the calculator).

At this point it is reasonable to suspect that the given equation is an
identity, and so we attempt to prove it:
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LHS = 1 1 +cos x _1l+cosx

1 —cos x =(1 —cos x)(1 +cos x) 1—cos’x (by algebra)

—l+cosx
= (by (1.9)).

Therefore, LHS = RHS, and so the given equation is an identity. i
A In algebra, symbol v ™ is introduced as the nonnegative square root
of a nonnegative number. For example, V4 =2 (and not /4 = +2). Thus
Va*=a is correct only if @ > 0, but Va?= | a | is true for every real
number a. Therefore, \/ 1 —sin2x = cos x is not an identity since it is not
satisfied by any value of x for which cos x < 0 (for example, if x = =, then
VI—sin’r = /1-07 = V1 =1, while cos = =—1). However, equation
V1 —sin?x = | cos x | is an identity. Thus we can replace V1 — sin’x
by |cos x | in any problem; however when we replace /1 — sin%x by cos x,
we must make certain that the discussed x-values are such that cos x > 0. |

A Is v/ tan?x — sin’x = sin x tan x an identity?
Solution. We first try a few values of x:

x=0: LHS = Vtan?0 —sin?0 = 0,
RHS=sin0tan 0=0.0=0;
_T. - TE _am a1 (Vo1 L= L
X =7 LHS_\/tan 7S’ g \/1 (\/5) \/l > 75
1

RHS=sin Z .tan T = L.1]=
4 4 V2

[}

S

x=1: LHS = V/(tan 1)> — (sin 1)? = 1.310513411,
RHS = (tan 1)(sin 1) = 1.310513411.

It now appears that the given equation is an identity. Suppose we attempt to
“prove” it by starting with the given equation. If we square both sides, we get

tan2x — sin’x = (sin x tan x)2.

Using algebra and some of the basic identities, we can write the following
steps:

in2 . . . . .
SI'X _ sin2x = sin2x tanx; sin?x sec2x — sinZx = sin?x tan2x;
cos’x

sin’x(sec’x — 1) =sin’x tan’x; sin’x tan’x = sin’x tan’x.

Can we now conclude that Vtan’x — sin’x = sin x tan x is an identity? The
answer is NO. Actually it is not an identity, as we can show by trying
x=3r/4
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LHS = \/tan2 3 _ sin? ¥=\/7 —é—=\/%,
)=-

RHS = (tan SL3 )( 3m \/. \/_

This example illustrates a faulty proof, in which we began by squaring both
sides of the given equation. This step is not reversible.

EXERCISE 4.2

Determine whether the given equations are identities. Give good reasons for your
conclusions.

sinx

1. =Sec X — COS X 2. sin x cot x = cos x
cos x
3.sinxtanx=1—cos x 4. (sin 0 + cos )2 =1
. . sin 6 + cos 0
5. (sin x — cos x)? = sin’x — cos2x 6. ————=1+tand
cos 0
7. (cos x + sin x) (sec x + csc x) =1 8. cot x sec x =cos x

9. sin x cos x(sin x sec x + cos x csc x) = 1

10. [cos(—x) + sin(—x)]*=1 — 2 sin x cos x

11. (sin x + cos x)* = sin’x + cos’x 12. sin‘x — cos*x = 2 sin’x — 1
13. V1 — cos? 6 = sin 6§

14. sin’x — cos’x = (sin x — cos x)(1 + sin x cos x)
15. (tan 6 + cot 6)* = tan? 8 + cot?d 16. Vcot2x — cos2x = cos x cot x
17. Vsin*x + cos’x = |sin x | + |cos x | 18. sec’x + csc’x =1

19. (1 + tan 0)> =sec’d + 2 tan 6 20. V1 + tan?) = sec 0

4.3 SUM AND DIFFERENCE IDENTITIES

In trigonometry we frequently encounter expressions of the type sin(a + 3) and
we first ask: Is sin (a + 8) = sin a + sin § for all values of « and 3? The answer
is NO. For instance, if a =« /2, 8 = /2, then sin(w/2 + 7 /2) = sin 7 =0,
while sin7/2 + sinw/2 =1 + 1 = 2, and so the equation is not an identity. The
next question is: Can we find a simple formula that gives sin(a + 3) in terms of
trigonometric functions of « and of 8 individually? The answer to this is
included in the following set of identities called the sum and difference
SJormulas:
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(1.12) sin(a + B) = sin « cos B + cos «a sin 3
(1.13) sin(a — B) = sin a cos 3 — cos a sin 3
(1.14) cos(a + ) = cos a cos B — sin « sin 8
(1.15) cos(a — B) = cos a cos 3 + sin « sin 3

tan « + tan B

(1.16) @ ) = anatanp

tan a —tan 8

(1.17) tan(a — ) = 1 + tan « tan 3

We first prove (I.14) by using the diagrams of Fig. 4.1, where « and 8 are
taken as positive angles and points 4 and B are on the corresponding terminal
sides at a distance of one unit from the origin. From the definitions of
trigonometric functions, the coordinates of 4 and B are:

A: (cos «a, sin a), B: (cos(— ), sin(— B)) = (cos B, — sin B).
Let d be the distance between points 4 and B and so, by the distance
formula, we have:

d? = (cos a — cos ()? + (sin a + sin B)2.

1 —fA: (cosa, sin o)
s \\\
/ RN

\ \ /
\ /B (cos B, —sin B)

(a) (b)
Figure 4.1
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After applying some simple algebra and using identity (1.9) twice, we get
d*=2 — 2(cos a cos 3 — sin « sin B). 4.1
We now look at triangle 4 OB of Fig. 4.1(b) where points 4, O, B are taken
from Fig. 4.1(a). Applying the Law of cosines to triangle A OB, we get:
d*=12+ 12-2(1)(1)cos (a + B) =2 — 2 cos(a + B). 4.2)
Comparing Egs. (4.1) and (4.2), we conclude that

cos(a + B) = cos a cos B — sin « sin 8.
This is identity (I.14).
Note. The diagrams of Fig. 4.1 illustrate the case when « and 3 are positive
acute angles. Actually, we could give a similar proof for a and § of any size.

We can now use identities (I.14), (I.4), and (I.5) to prove the remaining
identities given above. The following is a proof of (I.15):

cos(a — B) = cos(a + (—B)) = cos a cos(— B) — sin « sin(— )
= CoS a cos 8 + sin « sin .
Therefore we get identity (1.15):

cos(a — B) = cos a cos B + sin « sin (.
To prove (I.12) we use identities

sin(% - 0) =cos 0 and cos(% - 0) = sin 0,

which the student is asked to prove in Problem 1 of Exercise 4.3. Thus,
sin(a + B) = cos[% —(a + 6)] = cos [( % - a) - ﬁ]

=cos(%—a)cos B+ sin(%—a)sin B (by (I.15)

= sin a cos 8 + cos a sin (.

Therefore, sin(a + 8) = sin « cos 8 + cos « sin § is an identity.
We can now prove (I.16) as follows:

tan(a + B) =_CS;‘S‘_((C‘::_2 (by (1.7))

_sin a cos 8 + cos a sin 8 (by (I.14) and (1.15))
cos a cos 3 — sin « sin

_ tan a +tan
l—tanatan 8

where in the last step we divided the numerator and the denominator by
cos a cos (3, and then used (I.7). Therefore,

tan « + tan 8
tan(a + f) =——— =" L
(@+8) 1 —tan a tan G

is an identity. We leave proofs of (I.13) and (I.17) as Problem 2 in Exercise 4.3.
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Examples

A Prove that tan(x — ) = SILX —COS X {5 5 jdentity.
4 sin x + cos x

Solution.
tan x — tan (7 /4)
LHS =t S by (I.17
an(x 4 ) 1 + tan x tan (7 /4) (by (L17))
_tanx—1 since tan X-=1
1 +tan x (st 4 )

_inx/cosx) =1 (py (1.7))
1 + (sin x/cos x)

_sin x —cos x
CcOs X + sin x

Therefore LHS = RHS, and so the given equation is an identity.

(by algebra).

A Evaluate sin 75° and express the answer in exact form.

Solution.
sin 75° = sin(30° + 45°) = sin 30° cos 45° + cos 30° sin 45°

NENE RN )

& Evaluate cos (7/12) and give the answer in exact form.

Solution.

= T _ T )= I T 4+ sin X sin &
cos ﬁ—cos(4 6) COS 7= COS -+ SN - sin ¢

V23 V2L L(/G4 )

A Prove that sin x cos y= % [sin(x + y) + sin(x — y)] is an identity.

Solution. 1f we add the two equations given in (I.12) and (I.13), we get
sin(x + y) + sin(x — y) = 2 sin x cos y.

This is equivalent to the given equation.

EXERCISE 4.3
1. Using definitions of the sine and cosine functions, prove these identities:
7r _ . . l _ _
cos(T— 0) =sin 6 and sm( > 0) = cos 0.
2. Prove that the equations given in (I.13) and (I.17) are identities.
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3. Establish the following cofunction identities:

T _ (T _
a) tan(T—ﬁ)—cot0 b) sxn(2 +0)_cosl9
s = _gi r =_
c) cos(T )— sin 6 d) tan( 2 +0) =—cot 0
Ir 3 G
€) sm(7 ):—cos 0 f) cos(7—0) =—sin 0
3 _ 3r —
g) sm(— )_—cos 0 h) cos(2 +0)—sm 0
4. Prove that the given equations are identities:
a) sin(180° — @) = sin 6 b) cos(180° — ) = —cos 6
c) tan(180° — 6) = —tan @ d) sin(180° + 6) = —sin @
e) cos(180° + 6) = —cos @ f) tan(180° + ) =tan 6
5. Evaluate the following. Give answers in exact form.
a) cos 75° b) sin 195° c) tan 285°
d) cot 15° e) sec 255° f) csc(—75°)

6. Evaluate the following. Give answers in exact form, then use your calculator to
evaluate the result correct to two decimal places. As a check, evaluate directly by
calculator (make certain it is in radian mode).

Tr 5t L
a) tan 2 b) sec( 2) c) cos W
d) sin 23m e) sin L3r f) csc 25m

1 12
7. If tan xz% and x+y=1‘;—-, find tan y.

8. If tan @ = 3 and tan(a + B) =—£, find tan B.

3
9. If x—y=3'4—7r and tan y =3, find tan x.
10. If tan(x — y) = — 2 and tan x =04, find tan y.

4

In Problems 11 through 17 determine whether the given equations are identities.

11. tan(1r—+x)= 1+tan x

4 1 —tan x
12. sm(?—x) %(cos x—\/—3 sin x)
13 _Ms_h‘_":tan(l—x> 14. sec(a + B) = sec a + sec B
* cos X + sin x 4
15. csc(T— x) =sec x 16. sin x + sin 2x = sin 3x
17. cos(577r+x>= —sin x

18. Use cos 75° = cos(30° + 45°) to get cos 75° in exact form. Similarly, express
sin 75° in exact form.

19. Use the result of Problem 31 in Exercise 3.2 to find sin 72° in exact form.

20. Use Problems 18, 19, and cos 3° = cos(75° — 72°) to get cos 3° in exact form.
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21.

22.

23.

24,

25.
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Prove that each of the following equations is an identity:
a) Cos x COs y= -%— [cos(x + y) + cos(x— )]

b) sin x sin y= % [cos(x— y) — cos(x+y)].

Using the results of Example 4 and Problem 21, express each of the following
products as a sum or a difference.

a) (sin 36)(cos 56) b) (cos 36)(cos 46) ¢) (sin 2y)(sin 4y)

d) (cos 3x)(sin(— 5x)) e) (sin 2y)(sin(— 4y)) f) (sin 3x)(sin 2x)

In each of the following, write the given expression in equivalent form in terms of
sin x and cos x:

: us : ™ us

a) sm(x - -Z-) b) sm(x — 7) c) cos(x - —4—)

d) sin(2x) €) cos(2x) f) sin(2x - ”?)

Find the value of each of the following. Express your answer in ¢xact form:
in T cos ® + sin X cos X

a) sin 4 cos 13 + sin W cos 4

b) cos 160° cos 25° + sin 160° sin 25°
c) cos?47° + sin%47°

d) tan 37° —tan 67°
1 + tan 37° tan 67°

If a, B, and « are three angles of a triangle, prove that
a) sin vy = sin a cos B + cos a sin 8
b) cos v =sin « sin 8 — cos a cos 8

DOUBLE-ANGLE FORMULAS

Useful identities can be derived from the addition formulas given in Section
4.3. The following are called double-angle identities:

(1.18) sin 20 = 2 sin 0 cos 6
(L.19) cos 20 = cos? —sin? = 1 —2 sin% = 2 cos? — 1
(1.20) tan 2 —-2tanf

1 — tan?

B =

These are special cases of (1.12), (I.14), and (I.16) where we take a = 6 and
0 (see Problem 1 of Exercise 4.4).
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The double-angle identities are useful in simplifying certain trigonometric
expressions, and the student should become familiar with them. We consider
several examples in which the double-angle identities are used along with
identities (I.1) through (I.17) listed on pp. 122 and 129.

Examples
& Prove that sin 2x = —12:1——% is an identity.
Solution
LHS =sin 2x = 2 sin x cos x (by (1.18))
s - L - 2E G 110
- i:si“xx + colszx (by (1.2) and (L.7))
=2 sin x cos x (by algebra).
Therefore, LHS = RHS and the given equation is an identity. i

A If sin § = 3/5 and cos 0 is negative, evaluate the following:
a) sin 20 b) cos 26

Solution. Since sin § > 0 and cos 6 < 0, angle 4 is in the second quadrant, as
shown in Fig. 4.2.

a) To find sin 26 we use (1.18):

b) To find cos 20 we use (1.19):

cos 20=cos20—sin20=(—%—)2—(%)2=2—7§. [
! 5
3
L N,
-4

Figure 4.2
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& Express sin 3x as a function of sin x.
Solution.
sin 3x = sin(2x + x) =sin(2x) cos x + cos(2x) sin x (by (I1.12))

= (2sin x cos x) cos x + (cos’x — sin’x) sin x (by (1.18) and (1.19))
= 3 sin x cos’x — sin®x (by algebra)

= 3 sin x (1 — sin’x) — sin’x (by (1.9))

= 3 sin x — 4 sin’x.

Therefore sin 3x = 3 sin x — 4 sin’x is an identity. |

A Find sin 22°30’ in exact form. Using your calculator, evaluate the result
and give the answer correct to four decimal places.

Solution. We use (I.19) in the form cos 20 = 1 — 2 sin%), and take § = 22°30’
(that is, 26 = 45°):

cos 45° = 1 — 2(sin 22°30")2.
Solving for (sin 22°30')? and using cos 45° = \/5/2, we have

(sin 22°30)? = 1“2‘/5/2 _ 2‘4‘/5.

Therefore,

sin 22°30' = 22;‘/2 .

Using a calculator, we evaluate the right side and get
sin 22°30" = 0.3827.

& Prove that sin 4x = 4 sin x cos x — 8 sin’x cos x is an identity.

Solution.
LHS = sin 4x = 2 sin 2x cos 2x (by (1.18))
= 2(2sin x cosx)(1— 2 sin%x) (by (1.18) and (1.19))
=4 sin x cos x — 8 sin’x cos x (by algebra).
Therefore, LHS = RHS and so the given equation is an identity. |

& Is (sin 6x + cos 6x)? =1 an identity?

Solution. We first try a few values of x to see if the equation is satisfied:
if x=0, then LHS=(sin 0 + cos 0)2=(0 + 1)?=1;
if x= %, then LHS = (sin 37 + cos 3m)2=(0—1)*=1;

if x= %, then LHS:(sin 377r+cos %>2=(—1+O)2= 1.
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It appears that the equation may represent an identity. However, if we try
x =1, we get

LHS = (sin 6 + cos 6)> = 0.46 (to two decimal places).
Therefore, (sin 6 x + cos 6x)> = 1 is not an identity. |
A Suppose sin 6 = 0.3487 and 0° < 6 < 90°. Using a calculator, evaluate
each of the following to four decimal places:
a) sin 20 b) cos 26 c) tan 20
Solution. Enter 0.3487 into the display. Then with the calculator in either
degree or radian mode, press keys and GJ (or key) which gives 6 in

the display, multiply the result by 2, and store it with the key. Using the
key as needed, we get:

a) sin 20 = 0.6536 b) cos 20 = 0.7568 c) tan 260 = 0.8637 i

Note. On some calculators the store and recall keys may be labeled differently
from and .

EXERCISE 4.4

1. Give details of the proof that (I.18), (I.19), and (I.20) are special cases of (I.12),
(1.14), and (I.16), respectively.

In Problems 2 through 24, prove that the given equations are identities:

1

2. (sin 6 + cos 6)> =1 + sin 26 3. =2 sin 6 cos §
csc 20
4. sin 20 sec § =2 sin 6 5. (cos x + sin x) (cos x — sin x) = cos 2x
6. cos 2x tan 2x = sin 2x 7. sin 2x tan x = 2 sin’x
8. (cos x —sin x) sec 2x=——L 9. (1 + tan x) tan 2x = 2tanX_
cos x + sin x 1—tanx
10. tan 0 sin 260 = 1 — cos 20 11. sin 26 sec’d = 2 tan 6
12. cot x —tan x =2 cot 2x 13. 2 csc 2x =tan x + cot x
2 2 cot?0—1
, —=— =sec? 3 —cotv—1
14 1+cos 26 1S. cot 20 2 cotd
16. cos‘x — sin‘x = cos 2x 17. l-tanx_ sec 2x — tan 2x
1 + tan x
18. _sin2x tan x 19. (cot x — tan x)tan 2x = 2
1 + cos 2x
2,
20. 2tan 6 csc 20 = 1 + tan® 21 Lrant 5 o2
tan 0
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. ———— = =tan’x 23. cos 3x =4 cos’x — 3 cos x
1 + cos 2x

24. cos 4x = cos*x — 6 sin?x cos?x + sin‘x

25. If cos 6 = —12/13 and 6 is in the second quadrant, find in exact form:
a) sin 20 b) cos 20 c) tan 26

26. If sin § = —5/13 and cos 6 = 12/13, find in exact form:
a) sin 20 b) cos 26 c) tan 26

27. Suppose cos § = 0.5873 and 0° < 8 < 90°. Using a calculator, evaluate the following
to four decimal places:

a) sin 20 b) cos 20 c) tan 26

28. Suppose sin 6 =0.4385 and 0 <0 < w/2. Using a calculator, evaluate to four
decimal places:

a) sin 26 b) cos 36 c) cot 30
29. Evaluate the following and give answers in exact form:

a) sin 15° cos 15° b) sin?105° — cos?105° c)1-2 sin’f—g
In Problems 30 through 39, determine whether the given equations are identities:
30. sec 2x = 1 31. sin 4x = 2 sin 2x cos 2x

2 cos x

32. sin 2x + sin 3x = sin 5x 33. sin?2x = 1 — cos®2x
34. 2 cot 2x =cot x — tan x 35. 2 csc2x =sec x csc x
36. sin 3x sin 2x = sin 6x 37. (sin 2x + cos 2x)* =1
38. (sin 4x + cos 4x)* =1 39. sec 2x + tan 2x =tan (% + x)

40. Triangle ABC is inscribed in a circle, as shown in Fig. 4.3, where Q is the center of
the circle, « is one angle and a is the opposite side. Prove that the diameter 4 of the
circle is given by d = a/sin a.

Hint. Note that angle BQC is equal to 2a. (Why?) Now use triangle BQC to get the
result. This problem also appeared as Problem 23 of Exercise 3.3. However, the
solution suggested there is quite different.

Figure 4.3
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41. If « is an acute angle, then the double-angle formulas can be derived by using Fig.
4.4, where triangle ABC is inscribed in a semicircle of unit radius with center Q. Let
a be the angle at 4 and D be the foot of the perpendicular from C. Then

a) show that the labels given to the angles in the diagram are justified and that
angle ACB is a right angle;

b) using the triangles shown in the diagram, derive identities (I.18) and (I.19).

4.5 HALF-ANGLE FORMULAS

If we write identity (I.19) in the form cos 2x = 1 — 2 sin?x and then replace x
by 6/2, we get cos § =1 — 2 sin? (0/2). Solving for sin (0/2) gives

.60 _/l—cosf 0

sin - = VT when sin 5 20,
0 _ 4 /l—coséf -0

sin - = \/—2 when sin 5 < 0.

These two equations are ordinarily written as

ind — IT—cosf
(L.21) smT—i\/ >

where the “+’’sign does not mean that we get two values for sin (6/2), but that
we select the sign that is consistent with the sign of sin (8/2) (depending upon
the quadrant in which 6/2 is located).

In a similar manner, if we replace the angle § by 6/2 in the form
cos 26 = 2 cos?0 — 1 of identity (1.19), we get

0 _ \/1+cosb
(1.22) cosT— + > ,

where again we use the sign that agrees with the sign of cos (6/2).
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We can now get an identity for tan (6/2) by using (I.21) and (I.22) along
with the identity tan (6/2) = sin (6/2)/cos (8/2):

0 1 —cos #
1.23 tan 5-=+1\/ = —= %
(1.23) amy=2 1 +cosf

Identity (I.23) can be expressed in a more desirable form not involving the
“+” sign. Rather than manipulating (I.23) directly, we can proceed as follows.
When 6 is replaced by 6/2, identities (I1.18) and (I.19) can be written in the form

sin0=2sinicosi and 1+cos6?=2cosZi

2 2 2’
respectively. Dividing these two equations, we get

sin § 2 sin (6/2) cos (8/2) _sin (0/2):tan 9
1 + cos 0 2 cos? (0/2) cos (6/2) 2

Thus,

tan 4 —_sin b

2 l1+cos 6

An alternative form of this equation is (see Problem 16 of Exercise 4.1):

6 1—cosb

tan 2 =1—COS ¥

M T Sine
Therefore we have the following identities for tan (6/2):

0 sin 6 1 —cos¥

1.24 tan 5= = .
(1.24) an 3 1 +cos @ sin 6
Examples

A Evaluate each of the following and express the answer in exact form:

a) sin 22°30’ b) cos 112.5° ¢) tan %

Solution.

) sin 22°30' =sin (%) = /1=00s 8% 1y /5 v,
b) cos 112.5° = cos (%)oz _Vlatgo—SZZS":__é 2-V2;

T _ Ir__ _l—cos(im/6) _ 1-(=V3/2) _
c) tan 1"E—tan 2?"6 TNyl a— v / _—(2+\E).I
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& If cos 6§ =—3/5 and 180° < 8 < 270° (Fig. 4.5), evaluate the following in
exact form:
.6 0 0
a) sin > b) cos > ¢) tan >
Solution. We first note that 90° < 8/2 < 135°, and so sin (6/2) is positive and

cos (0/2) is negative.

) sin §=\/1=00s 8 _\/1-C3/9) 22\23

i \/1 0 __A\/1+(=3/5_=V5
b)cos—2—=_ _Jf;L__ +(2 /5) _ :

6 _ _sinf _ —4/5 _ 5
2 1l+cosf 1+(=3/5)

c) tan

Figure 4.5

& Evaluate sin 15° in exact form in two ways:

a) by using (I.13) b) by using (1.21)
Solution.
a) sin 15° = sin(45° — 30°) = sin 45°cos 30° — cos 45° sin 30°
_V6-V2 .
4 ’
therefore,

sin 15° = Iﬁ;ﬂ

b) sin 15° =sin (32)° :\/1“+S30° %\/2-{5;
therefore,
sin 15° = %\/ 2-V3.

It appears that we get two different answers for sin 15°. We leave it for the
student to evaluate each with a calculator to see if they both represent the same
number (see Problem 25 of Exercise 4.5). |
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A Suppose sin (6/2) =0.6843 and 0° < 6 < 180°. Use a calculator to
evaluate each of the following to four decimal places:
6

a) sin 0 b) cos 26 ¢) tan T

Solution. Enter 0.6843 into the display. Then with the calculator in either
degree or radian mode press and (] keys (or key); then multiply
by 2 (this gives ) and store into memory with the key. Using the key
as needed, we get

a) sin 6 = 0.9980 b) cos20=—09919  c) tan %= 0.3957. |

EXERCISE 4.5

In Problems 1 through 4, give answers in exact form; evaluate these results to four
decimal places and then check by evaluating directly with a calculator:

1. a) sin 67°30 b) cos(—22.5°) ¢) sin 105° d) cos 105°
2. a) tan 165° b) cos(247.5°) ¢) tan(— 195°) d) cos 285°
in ~ o in Lm 13m

3. a) sin 13 b) cos 3 ¢) sin 8 d) tan B
197 . o 2lr _5r
4. a) cos 8 b) sm( 3 ) ¢) sin 8 d) tan( 12)

In Problems 5 through 12 express answers in exact form:

5. If cos 0= -3 and 90° < 6 < 180°, evaluate

13
0 I3 I I
a) sin 2 b) cos > c) tan ) d) sec 2
6. If tan 0=—% and - 2 <0 <0, find
in -2 9 9 9
a) sin > b) cot 2 c) sec 2 d) csc >
7. If sin 0 = % and 360° < 6 < 450°, find cos% and tan—g—.
8. If cos 0= —% and 0° < 6 < 180°, evaluate
a) sin % b) cos —g- ¢) sin 26 d) cos 260
9, Iftan a =5 and 7 <a < %, determine
a) sin « b) sin % ¢) sin 2a d) tan %
10. If cos B = —— and 180° < 8 < 360°, find
V2
a) cos -;L b) tan % ¢) tan 28 d) cos 23
inb __3
11. If sin =T find cos 6.
12. If cos —g—:—lr, find cos 6.

v
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13.

14.

Suppose sin 6 = 0.5486 and 0° < 6 < 90°. Use a calculator to evaluate each of the

following to four decimal places:

o 6 6 6
a) sin > b) cos > c) tan 2
Suppose cos % = 0.6431 and 0 < 0 < 7. Use a calculator to evaluate each of the

following to four decimal places:
a) sin 0 b) cos 26 ¢) tan %

In Problems 15 through 21, prove that the given equations are identities:

0 _ 0 At .
15. tan7—05c0—00t0 16. (s 2+cosz)—1+smt9
17. cos? £ —sin? X =cos x 18. 2 sin? X —_secx—1
2 2 2 sec x
19. tan X —_Secx—1 20. 2 sin? £ =sin x tan X
2 sin x sec x 2 2
21. 2 cos? X —_sin x +tan x
2 tan x
22. Follow Example 3 of this section and evaluate cos 15° by two different methods.
Check to see that the two answers actually represent the same number.
23. Follow the instructions of Problem 22 for cos 165°.
24, If cos 0 = — % and 90° < 0 < 180°, find each of the following in exact form:
Y b
a) cos > b) cos )
25. In Example 3 of this section we concluded that the two numbers
\/_6__\/_2 and 1\/5 _ \/—3
4 2
are equal. Use your calculator to check this conclusion; then prove that they are
equal without using a calculator.
REVIEW EXERCISE

In Problems 1 through 25, prove that the given equations are identities:

1.

3.

cos x tan x = sin x 2. sec(90° — ) tan 0 = sec 6
csc 0 sin 20 = 2 cos 6 4. cos(90° — 20) = 2 sin 6 cos 6

tan(p + 37 ) —cos O —sin 0

= - 6. (sin x + cos x)2 =1 + sin 2x
cos 6 + sin 6

. (1 = sin 2x)(1 + sin 2x) = cos®2x 8.2 csc x sin? X — _Sinx
2 l+cosx
s _ . 0 _
R cos<7+ x) cot(— x) =cos x 10. sin 6 tan 5= 1 —cos 6
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in 0 _ OV —1_sin 6 2 0 : 0 _ sin?f
11. (sm > cos 2) 12. sin > cos 7= "2
13. csc x tan x = sec x 14. cot —’2‘——tan —§—=2 cot x

15. 2 sin(0+ %):\/3 sin 0 + cos 0 16. V2 cos( —%;—r)= sin 6 — cos 0

— _ X X )= gip2 X
17. tan 2x csc 2x = sec 2x 18. (1 cos > )(1 + COS > ) = sin? >
19. cos* %— sin* %=cos x 20. cos 2x tan 2x =sin 2x
21. (sec 0 + l)(sec § — 1) = tan?d 22, (1 + sin 6)(1 —csc 0) =sin § — csc 0
23. (1 —tan 6) tan 29 =2 tan 0 24. cos? X —sin? £ =cos x
1 +tan 0 2 2

25. cos O(1 + sec 0) =2 cos? %

In Problems 26 through 32, determine whether or not the given equations are identities.
Give good reasons for your answers.

26. sin x =2 sin % cos % 27. tan x cot x — sin%x = cosx
sec?f — tan? = 1 29. (cos 0 — sin )2 = cos?d — sin?

30. sin 26 + (sin 6 —cos #)> =1 31. sin x + sin 2x =sin 3x

3. (cos % + 810 %)(cos % — sin %) =cos x

In Problems 33 through 50, evaluate the given expressions in exact form if angles «,
B, and v satisfy the following conditions:

sin a=% and %§a§1r,
tanﬁ’=—15—2 and —%<ﬁ<%,
cos 7=% and 0y <nmw
33. cos « 34. sin 2« 3S. sin —72—
36. sin(a + B) 37. tan(8 — 7v) 38. cos %
39. cos 28 40. tan 2y 41. cos(a + 26)
42. tan2a — 7) 43. 1 — cos’a 44, cos’lzf— - sinz—;—
4. Z—g‘s—‘; 46. sec’f — tan’ 47. sin(a - 3£
48. tan(§ + I-) 49. sin 2(a + B) 50. cos(ﬁ%—p—)






CHAPTER FIVE

INVERSE TRIGONOMETRIC
FUNCTIONS

5.1 INTRODUCTION

The student has already encountered numerous examples of functions in
algebra courses; in Chapter 2 we introduced other functions when we defined
the trigonometric (or circular) functions. In each case we start with a set of real
numbers, called the domain D of the function, and we have a rule of
correspondence* according to which each number in D is associated with a
unique real number y; this correspondence yields a set of ordered pairs

{(x, »)|x € D and y is the number associated with x
by the given rule of correspondencej.

In many instances it is convenient to denote the rule of correspondence by a
letter such as f, g, A, . . ., and we write y = f(x) to mean that y is the number
associated with x. We shall consider a function f as either the rule of
correspondence or as the resulting set of ordered pairs and write

f=1{(x, y)|x € D, and y corresponds to x by the given rule}. (5.1)

In the set of ordered pairs in (5.1) we call the first member (that is, x) the
independent variable and y the dependent variable of f. The range R of fis the
set of all y values that occur in the (x, y) ordered pairs; that is,

R={y|(x, y) is in f}.

In some problems we talk about more functions than one and it is necessary to
distinguish between their domains and ranges; thus D( f) and R( f) will be
used to denote the domain and range of function f, respectively.

*The rule of correspondence is usually given by an equation, for example, y = 4x — 3 or y = x3,
however, in some cases it is given by a table listing the ordered pairs, or by a graph, or by a verbal
statement. Also, in a more general setting, the concept of function allows the correspondence
between elements of sets that need not be real numbers.

145
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The concept of a relation is more general than that of a function in that the
rule of correspondence allows one or more different numbers y to correspond
to each number x in D. Thus every function is a relation but a relation is not
necessarily a function. If g denotes a relation that is not a function, then we
do not write y = g(x) but we denote g by a set of ordered pairs:

g=1{(x, y)|x € D and y corresponds to x by the given rule}.

In many situations we are interested in a given function f and we wish to
consider the process reverse to the one given by the rule of correspondence
defining f. That is, if y = f(x), then for each y in R( f) we ask, “What values
of x correspond to it?”’ This gives us an inverse rule of correspondence which
we denote by f~! and which we call the inverse relation* of f. That is,

S7={0. x|y € R(f) and y=f(x)}. (5.2)

Note that in (5.2) we have precisely the same set of ordered pairs as in (5.1)
except that the first and second members of each have been interchanged. Thus
we have:

D(f~)=R(f) and R(S™)=D(f).

If f~1is also a function (that is, for each y in R( f) the corresponding value
of x given by the inverse rule of correspondence is unigue), then f~! is called the
inverse function of f and we write

x=f1(y). (5.3)
Since f-!is a function in its own right and it is customary to use x to represent
the independent variable (particularly when we draw graphs) then we can write
(5.3) as

Y =f7(x). (5.4)

As a set of ordered pairs, f-! is given by

ST =1 p)|xe D(fT)=R(f) and x =1 (p)}.

To illustrate inverse relations and functions we now consider two examples
from algebra. These will lead us to the discussion of inverse trigonometric
functions in the remaining sections of this chapter.

Examples

A An ad for a compact car gives its gas consumption as 16 km per liter.
Assuming that it is telling the truth, find:

a) The rule of correspondence that gives the distance y (in kilometers) as

*The —! in the symbol f—! is not to be interpreted as a negative exponent, it is merely part of the
notation.
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a function of the number x of liters of gasoline. How far will the car
travel on 24 liters of gasoline?

b) The inverse rule of correspondence that gives x as a function of y. How
many liters of gasoline are required to travel 280 km?

c) Draw the graphs describing the two rules of correspondence.
Solution.
a) The phrase ““16 km per liter’’ translates into mathematical language as
y=16x. (5.5)

If we denote this by y = f(x) = 16x, then the given statement implies
that D(f)={x|x 20}. Also it is clear that R(f) = {y|y 2 0}. When
x = 24 liters, then the corresponding value of y is given by

y =16 x 24 = 384 km.

b) We can determine the inverse rule of correspondence by solving
equation (5.5) for x in terms of y:

x= %y. (5.6)

We see that for each y > 0 the inverse rule of correspondence given by
(5.6) yields a unique value of x; thus it is a function and we can write

x=fNy= 1—16)’-
When y = 280 km, then the corresponding value of x is given by
x = f-1280) = {¢ x 280 = 17.5 liters.

c) The graph of (5.5) is shown in Fig. 5.1, a. To draw a graph of function
f-! represented by (5.6) we interchange the x and y variables and get

1
y - E X.
v (km) » (liters)
40 - ST
32 4r
24 |- 3
16 | 2r
s H 1 P>
| R S | x (liters) 111 x (km)
12345 8 16 24 32 40
(a) (b)
_ 1
Graph of y = f(x) = 16x Graph of y =/ l(»\') =16~

Figure 5.1
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In this form x represents the number of kilometers the car travels and y
represents the corresponding number of liters of gasoline required. The graph
of y = f~1(x) = (1/16)x is shown in Fig. 5.1, b. It should be clear that the graph
is the reflection of the graph in Fig. 5.1, a about the line y = x. i

A The equation y = x? describes a function where each real number x is
associated with a nonnegative number y. Draw graphs to assist in the
discussion of the inverse rule of correspondence.

Solution. The graph of y = f(x) = x? is shown in Fig. 5.2, a; the points on the
graph are given by the set of ordered pairs

f={(x, y)|x € R and y=x?.

It is clear from the graph that for each real number x, there is a unique real
number y, associated with x,. Thus, fis a function.

y
Vile———
|
|
|
|
X 0 Ix *
|
|
|
Vo le———
(a) Graph of y =f(x) = x2 (b) Graphof f=1 = {(x,»)|x2 0, ¥=Vxor y=—/x}
Yy )
5 X 5 ¥

(¢) Graph of /77! = {(x,)) [x2 0,y =VX} (d) Graphoff5 '={(x,») |x 20, y =—/X}

Figure 5.2
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Now if we reverse the process and look at any given positive number, such
as y,, then there are two corresponding values of x (namely, x, and x,)
associated with y,. These are given by x, = v/, and x, = —V/y, and are shown
in Fig. 5.2, a. Thus when we solve y = x? for x in terms of y, we get x = \/;
or x=—Vy for y 20, and the inverse relation is given by

f1={, x)|y20 and x=Vy or x=—-V}. 5.7

Thus f-! is a relation that is not a function.

Since we want to draw a graph of /-1, we interchange the x and y variables
in (5.7) so that x becomes the independent variable. Thus the set of ordered
pairs given by (5.7) can be written as

f1={(x, »)[x20 and y=Vx or y=—Vx}. (5.8)

The graph of (5.8) is depicted in Fig. 5.2, b; it shows that for each positive
value of x there are two corresponding values of y (illustrated by y, = V' x and
y, =—Vx). It should be clear that this graph is the reflection of the graph in
Fig. 5.2, a about the line y = x. |

In many situations when f~1 is not a function, we describe a principal-value
inverse function by using only part of the inverse rule of correspondence. In
this example we discuss (5.8) in two separate parts:

fl={(x. »)|x20 and y=VXxi, (5.9)
=1 y)|x20 and y=—Vxl. (5.10)

The graphs of the ordered pairs given in (5.9) and in (5.10) are shown in
Figs. 5.2, ¢ and 5.2, d respectively. It should be clear that both f,~! and f,~!
represent functions. It is customary to select one of these two functions and call
it the principal-value inverse function of f. In this case we take f,~! and say that
the principal-value inverse function is given by F-1, where

F1={(x, y)|x20 and y=Vx}.

In the following three sections we shall discuss the inverse relations for each
of the six trigonometric functions. In each case we shall see that we have a
situation similar to that encountered in Example 2 where the principal-value
inverse function is defined.

EXERCISE 5.1

In the following, assume that the domain of the given function is the largest subset of
real numbers, for which the right-hand side of the equation is defined (as a real
number).
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For the given functions in Problems 1 through 10 determine
a) domain of f b) range of f c) f-1

and state whether or not f~! is a function. If f~! is not a function, define a principal-
value inverse function and give the range and domain of this function.

1. y=f(x)=3-5x 2. y=f(x)=4x+5
3. y=flx)=4x’ 4. y=f(x)=1-x?
5. y=fx)=1-xp 6.y=f(x)=2x1_1
T y=flx) =2=% 8.y =) =%
9. y=flx)=4+Vx 10. y = f(x) = |x]|

In Problems 11 through 14 find a) f~!(x) and b) f(f-!(x)) for the given functions:

1. y=f(x)=3x—4 12. y=f(x)=x+5

13.y=f()=22x M y—fn=1=%

In Problems 15 through 20 find f-!(x); then draw graphs of y = f(x) and y = f~(x).
In each case state whether or not f~! describes a function.

15. f(x)=5x + 3 16. f(x) =3 = 17. f(x) = 9x?

18. f(x)=Vx+3 19. f(x) =1+ |x]| 20. f(x)=x—x?
5.2 INVERSE SINE AND INVERSE COSINE

1. Inverse Sine Function

We have already encountered the problem of evaluating inverse trigonometric
functions when in the process of solving triangles in Chapter 3 we had the value
of a trigonometric function and we had to determine the corresponding angle.
For instance, in Example 5 of Section 3.1 (p. 67) we were given sin a = 0.4835
and had to determine the corresponding value of «; the and ) (or
) calculator keys were used to get o = 28.91° = 0.5046 radians. In this
section we discuss the problem in general: when sin x is a given number,
determine the corresponding value of x.

Suppose f(x) = sin x. What can we say about the relation f~1? To answer
this question we recall the graph of y = sin x discussed in Section 2.7 (p. 54)
and reproduce it here in Fig. 5.3.
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D p—-—
w
3

Graph of y =sin x

Figure 5.3

From the graph in Fig. 5.3 we conclude that for each real number x there is
a corresponding unique number y, this tells us that f(x) = sin x represents a
function. Now suppose we reverse the process and take any number y, where
—1 <y <1, and see what values of x correspond to it. Looking at the graph
we notice that there are infinitely many such values of x,; for example if
y = Y, then the corresponding values of x are:

xS 3w 1= _Ir

6, 6, 6,7"." 6,
Thus for f (x) = sin x, the inverse relation f~! is not a function. We shall denote
f~1 by sin-! and call sin-! the inverse sine relation which is given by

sin-!={(y, x)|-1Ly<1 and y=sin xj. (5.11)

Since we prefer to denote the independent variable by x, we can write the set
of ordered pairs given by (5.11) as

sin—!={(x, y)|-1£x<1 and x =sin y}. (5.12)

It should be clear that we interchanged the x and y variables in (5.11) to get
(5.12) but in both cases we have precisely the same set of ordered pairs.

We use (5.12) to draw a graph of the inverse sine relation. The graph is a
sine curve oscillating about the y-axis as shown in Fig. 5.4.

2. Principal-Value Inverse Sine Function

We take a portion of the curve shown in Fig. 5.4 so that for each x in
—1 < x £1 there is a unique value of y corresponding to it. This can be done
in any of several ways. For example, we could take the portion between Q and
P, or the part between P and M, and so on. It appears that the choice is
somewhat arbitrary, but once the choice is made we use it consistently. It is
conventional to take the part between Q: (-1, —7/2) and P: (1, =/2) and call
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L
=T
M:(—I,B%r)
m
P:(l,%)
! ! ‘
1 1
0: (4, —§)
—m
~—_
Graph of sin™! = {(x,)) |=1 £x = 1and x =sin y}
Figure 5.4

it the inverse sine function (sometimes referred to as the principal-value inverse
sine function). We shall denote this function by Sin-! and write

y = Sin-lx

to describe the function given by

Sin~1={(x, V|-1£x£1, x=sin y and ——"2r—§y§l}.

We always use the capital letter S in Sin—! to distinguish the inverse sine
function from the inverse sine relation sin -!. The domain and range of Sin-! are
given by

D(Sin-1) ={x|—1 <xZ£ 1},
RGin)={y|- 5 <y< T}

The graph of y = Sin-!x is the heavy portion between P and Q of the curve in
Fig. 5.4.

Note on Notation. The inverse sine relation is sometimes denoted by arcsin. In
this book we shall use sin-! and arcsin interchangeably to denote the inverse
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sine relation, while either Sin -! or Arcsin will be used to denote the inverse sine
function.
In summary, we have

a) Inverse sine relation is defined by

sin—! = arcsin = {(x, y)|-1<x <1 and x=sin y}.

b) Inverse sine function is defined by

y = Sin-lx = Arcsin x is equivalent to x = sin y and —% <y< %

Note. When we write Sin-I(}2) we mean the angle y such that sin y = % and
—w/2<Ly<w/2; thereis only one such value of y and that is y = 7 /6. That
is, Sin-(%2) = v /6. When we write sin-!(}2) we mean any angle y such that
sin y=1Y; thus y can be any of the angles /6, 5x/6,..., —7x/6,
—11x/6, . ..

3. Inverse Cosine Function

In discussing the inverse cosine relation and principal-value function we can
follow the same procedure as in subsections 1 and 2 above, except we replace
the sine function by the cosine function. We omit the details and merely give
a summary.

In Fig. 5.5 we have a graph of the inverse cosine relation cos-! given by

cos—={(x, »)|-1<x<1 and x=cos y}.

We take the portion between points P: (1, 0) and Q: (-1, =) of the curve
in Fig. 5.5 to define the inverse cosine function Cos !

y = Cos-lx = Arccos x is equivalent to x =cos y and 0 <y <.

The domain and range of the Cos-! function are given by

D(Cos) = {x|-1 Sx <1},
R(Cos) = {y|0 <y <.
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Q:(—1,m)

| ) (SIE] ,‘J[
SIE]
=

Graph of cos™!
Figure 5.5

Examples

& Evaluate the following and give answers in exact form in radians and in
degrees:

a) Sin-! \/—5 b) Cos--L ¢) Sin-!( — V3
2 2 2
d) Cos—l(— ‘/2—§> e) Sin—'%
Solution.

a) Let y1=Sin*1(\/§/2). This is equivalent to sin yl=\/§/2 and
—m/2 < y, <x/2. There is only one value of y, that satisfies these
conditions: y, = /4. Therefore, Sin—1(V/2/2) = 7 /4 = 45°.

b) Let y,=Cos7!(1/2); then cos y,=% and 0Ly, <m, and so
v, = /3. Thus, Cos™!(1/2) = v /3 = 60°.

¢) Let y,=Sin!(~V3/2); then sin y,=—/3/2 and —7/2 <y, <7/2,
and so y, = —w/3 = — 60°.

d) Let y,=Cos™' (—V2/2) or equivalently cos y,=—/2/2 and
0<y,<mso y,=3r/4 Then Cos'(—/2/2)=3r/4=135°,

e) Since 2/\/3 > 1, then 2/\/3 is not in the domain of Sin~!; and so
Sin-1(2/v/3) is not defined. |
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A Evaluate the following using a calculator. Give answers in radians correct
to four decimal places:

a) Sin—1(0.346) b) Cos~(0.587) ) Sin—l(—g)
. 5
d) Cos'(— 2 e) Sin! —2
( V4l ) 1+V2
Solution.

Calculators are programmed to give principal values of the inverse
trigonometric relations, that is, inverse-function values.

In this example we want answers in radians, so we place the calculator in
radian mode.

a) We enter 0.346 into the display, then press and (Gin) keys (or
key on some calculators) and get Sin—1(0.346) = 0.3533.

b) Similar to (a), we get Cos1(0.587) = 0.9434.

c) We first evaluate — 47/53 and, with the result in the calculator display,
press and (o) keys (or key). This gives Sin~!(—47/53) =
—1.0904.

d) Similar to (c), we get Cos(—5/V/41) = 2.4669.

e) Evaluate 5/(1 +V/2) and then press the and GnJ keys (or
) and the calculator will display ““Error” (or a similar notation) to
indicate that something is wrong. Of course, the reason is that

5
1+V2

and so it is not in the domain of Sin-!. |

>1

& Same as Example 2 but give answers in degrees to two decimal places.

Solution. Place the calculator in degree mode (most calculators are in degree
mode when they are first turned on) and then proceed as in the solution to
Example 2.

a) Sin-10.346 = 20.24° b) Cos10.587 = 54.06°
¢) Sin-!(—41) = _62.47° d) Cos-! __5—>=141.34°
) sin“l(~53) ) Cos™!(- 7

€) Sin-'—2 s undefined
1+V2 |
A Evaluate the following expressions and give answers in exact form:

a) sin(Sin-1 ) b) sin(2 Sin-! 1)
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c) cos(% Sin —1%—) d) cos(Sin -1 %— + Cos -'(_?5) )
€) sin<Cos—'(sin %—) ) f) Sin —l(tan %)
Solution.

a) Let 8 = Sin-! (1/4), which is equivalent to
sin =1/4 and —-w/2L60<w/2.
Therefore, 6 is in the first quadrant, as shown in Fig. 5.6. Thus,
sin(Sin 1 1) =sin = 1-»
b) Let 6 be as in (a) and use the identity sin 26 = 2 sin 8 cos 6. Thus

sin(2 Sin-1 1) = sin 20:2.1}_. V%:\’é_?

c) Take 0 as in (a) and use the identity cos % =V _1+2°_0$0;

L owng 1) 0_\/1+(\/1_5/4)_L\/4+\/ﬁ
COS(TSIHIT)—COST— — =3 —

d) Let o = Sin-! (2/3) and 8 = Cos-! (—5/8); then « and 8 are as shown

in Fig. 5.7. Thus,
2

cos (Sin—1 3+ Cos-! (——3—)) =cos(a + f) =cos @ cos B — sin « sin

V5 39 5vV'5 + 2v/39
(- -3 - - 252
e) sin (Cos -1(sin%-)) = sin(Cos -1 %—) = sin—7r3— = \/73
- 8
39
p : 1 ; 2
0 I_! a h
I vis NG -5
Figure 5.6 Figure 5.7

*It might be helpful to state a problem such as (a) in words. That is, we want “the sine of an angle
whose sine is 1/4.” This is not so different from the popular quiz question “Who is buried in

Grant’s tomb?”
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f) Since tan (r/3)=V'3 and V3 is not in the domain of the Sin-!
function, Sin-! (tan (1r/3)) is not defined. |

A Using a calculator, evaluate the expressions given in Example 4. Provide
answers correct to four decimal places.

Solution. We could evaluate each of the results found in Example 4. However,
we can evaluate directly as follows:
a) First evaluate ', then press the , GinJ and Gin) keys in that
order. This gives sin (Sin —‘(%)) = 0.2500.
b) Evaluate %, then press , Gin) keys, then multiply this result by 2
and press (5n) . This gives sin(2 Sin—!(%)) = 0.4841.
¢) Similar to (b), cos(%2 Sin-1(%)) = 0.9920.
d) Evaluate %, press the and (o) keys (this gives Sin-1(%3)), then
similarly evaluate Cos~!(—%s), add the results and finally press )
This gives cos(Sin—1(%) + Cos—1(—5%/s)) = —0.9863.

Note. In (a) through (d) it does not make any difference whether the
calculator is in degree or radian mode. We leave it to the student to
explain why this is so.

e) First place the calculator in radian mode (since 7 /6 is in radians); then
evaluate w/6 and with this in the display press (s] . This gives sin
(r/6) in the display. Now press the and keys in that order
and the display shows Cos-!(sin (7/6)). Finally press (sn]) and get

sin( Cos(sin %) ) = 0.8660.
f) The student should attempt to evaluate Sin-!(tan (w/3)) with the

calculator to see what the response is.

in-1 3 + Sin-! -8 — Sin-1 27
& Is Sin 5+Sm 17_Sm 85?

Solution. As a first step we evaluate the left-hand side and the right-hand side
by using a calculator:

Sin— 3 + Sin-1 8 — 64.94238458°.

5 17
Sin -1 % = 64.94238457°.

We can be reasonably safe in concluding that the answer to the question is yes.
To be absolutely certain we could use the following proof.

Let a = Sin-! (3/5) and B = Sin-! (8/17). Since « + 8 is approximately
65° (from above computations) and Sin—! (77/85) is between 0° and 90°, we
need only show that sin(a + 8) = 77/85. We can use identity (I.12) of Section
4.2 and get

3

sin(a+ﬁ)=sinacosB+cosasin[3=%-%+%-%=——. |

W
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& Find all values of x that satisfy the inequality 5 Sin-Ix — 4 <0.

Solution. The given inequality is equivalent to Sin-Ix <4/5. To solve this
inequality it might be instructive to look at the graph of y = Sin-lx, as shown
in Fig. 5.8. We are interested in those values of x that correspond to points
on the curve for which y <4/5=0.8; these points lic between Q and P
(inclusive). Thus the solution set is {x|—1 <x <x,}, where Sin—'x,=0.8.
However, if Sin-lx, = 0.8, then x, =sin 0.8 and so with the calculator in
radian mode we find that x, = 0.717 (to three decimal places). Therefore, the
solution set is S={x|-1<x<0.717}.

SIE]

| (1’2—’)

08 F———4 1 (x(,0.8)

|

1 | 1 X
-1 Xo 1

Graph of y =Sin ! x
Figure 5.8

EXERCISE 5.2

In this exercise there may be some problems in which the given expression is not
defined. If a calculator is used, the display will show “Error.” Explain what part of the
problem causes such a response.

1. a) Draw a graph of y = Sin—lx by first making a table of x, y values.
b) Make a table of x, y values that satisfy y = Cos —x and then draw a graph of
y = Coslx.

In Problems 2 through 12, evaluate the given expressions and provide answers in
radians (real numbers) and in exact form.

2. Cos-1 3. Sin—lg 4. Cos—l(—72§->
5. Sin~l(- ) 6. Cos~(— %5-) 7. sin-i(-2)

V2
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8. Sin—n(__3__) 9. Cos!(= 1) 10. Sin—!(— 1)
2V'3
. 1
11. Arcsm(— —) 12. Arccos L
V2 2

In Problems 13 through 16, find all values of the given expression. Provide answers in
exact form in radians and in degrees.

V2 (1 _ LV3
13. sin 1—2— 14. sin 1(—7) 15. cos~I(— 1) 16. cos 5

In Problems 17 through 30, evaluate the given expression using a calculator and provide
results in radians and in degrees correct to two decimal places.

17. Sin-1 0.3768 18. Cos—! 0.5732

19. Sin-! (-0.537) 20. Sin-! 2.378

21. Arccos(—1.375) 22, Arcsin lisﬁ
23. Cos (V17 — 5) 24. Arcsin ——“472'3
25. Cos-! % 26. Cos ~I(sin 48°)
27. Sin-I(sec 1.42) 28. Sin—I(tan 16°12")
29. Cos-l(cot 112°24') 30. Sin—(cos %)

In Problems 31 through 44, evaluate the given expression. Provide answers in exact
form.

| ; (L
31. sin (Sin ) 2. sm(Cos (-4 ))
-1 1 3 a4
33. cos (2 Cos 0) 34. cos(Sm 5 Cos 5 )
35. tan (Sm ) 36. Arcsin(Cos )
a3 3 a(_3 -1(_3
37. t n(Cos vy + Sin (— 7 )) 38. sec(Cos ( 3 ))
39. s <2 Cos—1 sm 1)) 40. cos (2 Cos—!(-3) + Sin-! %)
- 3 4 a2
41. Cos (sm 2 ) 42, sm(Cos (=3) + Sin 5 )

43. cos (Sin —1(cos %) ) 44. Sin ! (cos %)
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In Problems 45 through 50, use the calculator to evaluate the given expressions. Provide
answers correct to two decimal places. In each problem check whether it makes a
difference if the calculator is operating in radian or degree mode.

45. sin(Sin —10.34 + Cos —10.56) 46. tan(Cos -1(-0.37) + Sin —1(—0.53))
47. cos(2 Sin-! @) 48. sin(2 Cos! —1—‘—23—)

49. cos(2 Sin—10.37 + Cos —10.84) 50. sin(Sin —1(—1.24))

S1. Is Sin~' 3+ Sin 1 % — sin 128

52. Is Sin~! 2+ sin~! % —Cos~1 32 2

53. Is Sin—!(—x) = —Sin-lx an identity ?
54. Is Cos—!(—x) = Cos~lx an identity ?
55. Is Cos—lx = % — Sin-!x an identity ?

In Problems 56 through 60, determine the values of x that satisfy the given equality
or inequality.

56. 2 Sin-lx +1=0 57.2 Cos1x—-3=0 58. 3 Sin-Ix—-4<0

59. 2 Cos—lx+1£0 60. Sin—1x — 120

5.3 INVERSE TANGENT AND INVERSE COTANGENT

In developing the inverse relations and functions associated with the tangent
and cotangent functions, we can follow a discussion similar to that on the
inverse sine in Section 5.2. However, since there are no new ideas involved, we
shall omit the details and merely give a summary of pertinent facts.

1. Inverse Tangent

The inverse tangent relation tan-! is defined by

tan—! = {(x, y)|x € R and x = tan y}.

The graph of tan-! is shown in Fig. 5.9.

For the principal-value inverse tangent function we choose the branch of
the curve between y =—n/2 and y = /2, as shown in Fig. 5.9. Thus the
definition of the principal-value inverse tangent function is:
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Graph of tan™!

Figure 5.9

y =Tan-lx is equivalent to x = tan y and —% <y< —75—

The graph of y = Tan -lx is shown in Fig. 5.9 by the heavy curve. Note that we
again use a capital letter to distinguish between the function Tan-! and the
relation tan-1. Also, Arctan is used interchangeably with Tan-1.

The domain and range of Tan-! function are given by

D(Tan-!) = {x|x is any real number},

R(Tan-) ={y|- 5 <y < T.

2. Inverse Cotangent

The inverse cotangent relation is defined by

cot—! = {(x, y)|x € R and x = cot y}.
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The graph of this relation is shown in Fig. 5.10. We select the branch between
y =0 and y = 7 to define the inverse cotangent function. The principal-value
inverse cotangent function is defined by

y = Cot-lx is equivalent to x =cot yand 0 < y < .

Graph of cot™1
Figure 5.10

The graph of y = Cot-lx is shown in Fig. 5.10 by the heavy curve. The domain
and range of Cot-! (or Arccot) function are given by:

D(Cot 1) = {x|x is any real number},

R(Cot—) = {y|0 < y < 7.

Examples
& Evaluate each of the following and give answers in exact form in radians
and in degrees.

a) Tan'1 b) Arctan(—V/3) c) Cot—'(— %)
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Solution
a) Let 0 =Tan™'l; then tan § =1 and —w/2 < 8 < /2. Therefore,
§ = 7/4 and so Tan"'l = w/4 = 45°.
b) Let a = Arctan (—V/3); then tan « =—/3 and -w/2<a<7/2.
Thus a = —n/3 and Arctan (—/3) =—=/3 = —60°.
c) Let 8= Cot! (—1/\/—3), then cot 8 =—1/\/§ and 0 < B8 < w. There-
fore, 8=2m/3 and Cot™'(~1/V/3)=2r/3=120°. |

A Using a calculator, evaluate each of the following. Give answers in degrees
correct to two decimal places.

a) Tan"!2.57 b) Tan—1(-0.478)

Solution. Place the calculator in degree mode.

a) Enter 2.57, and then press and keys (or ) and get
Tan~!2.57 = 68.74°.

b) This is similar to (a): Tan—!(—0.478) = —25.55°. |

& Evaluate the following using a calculator. Give answers in radians correct
to three decimal places.

a) Cot™'0.5863 b) Cot1(—2.743)

Solution. Place the calculator in radian mode.

a) Let a = Cot~!0.5863; then cot a = 0.5863 and 0 < a < 7. Since the
calculator does not have a key, we use the identity cot a =
1/tan «. This gives tan a = 1/0.58631 and so a = Tan~!(1/0.5063).
Now we evaluate 1/0.5063 and, with the result in the calculator display,
press the and keys (or ). This gives o = 1.041. Thus
Cot—10.5863 = 1.041.

b) Let § = Cot!(—2.743); then cot # =—2.743 and 0 <6 < w. Since the
calculator does not have a key, we use the identity cot 6 =
1/tan @ and get tan 6 = —1/2.743. Now evaluate Tan!(—1/2.743)
and remember that the result (angle 6,) will be between —m /2 and = /2.
Since the § we want is between 0 and =, then 6 =6, + w, as shown
in Fig. 5.11. Therefore § = = + Tan!(—1/2.743). This can be evaluated
by the calculator without recording any intermediate steps. Thus
Cot1(-2.743) = 2.79.

0

T

~dJ

Figure 5.11 |
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Note. In Example 3 we used the calculator to evaluate Cot~!x and it was
necessary to express Cot~'x in terms of the Tan~! function, since the calculator
does not have a or key. In part (b), the final step was slightly
different from that of (a) because the value of x was negative. It should be clear
from the two cases considered in Example 3 that we have the following
situation in general (see Problems 43,b and 44 of this section):

To evaluate Cot~'x by calculator use

Cot“x:Tan‘I% if x is positive,

Cot™'x = 7 + Tan"! % if x is negative.

A Find all values of tan—!(—1) in radian measure and in degree measure.

Solution. Let § = tan~'(—1); then tan § = —1 and so angle 6 is in the second or
fourth quadrant. That is, 6, = 3r/4 and 0, =Tr/4 =0, + 7. We can get all
other solutions by adding (or subtracting) integral multiples of 7 to (or from)
8., since = is the period of the tangent function. Therefore tan~'(—1) represents
any angle in the set

{0|0=%r+ kw, where k is any integer};

or in degrees {0 |0 = 135° + k - 180°}. |

A Evaluate the following expressions and give answers in exact form:
a) tan(Cot“ %) b) sin(Tan“(——é—) + Tan“%)
c) cos<2 Tan‘l(—%))

Solution.

a) Let 6 = Cot~!(2/5); then cot 6 =2/5 and 0 <6 < m. We want to find
tan 6, and so tan § = 1/cot 6 = 5/2. That is, tan(Cot~!(2/5) = 5/2.

b) Let a = Tan"!(—1/3) and 8 = Tan"'(4/3); then « and B are the angles
shown in Fig. 5.12. We want sin (a + 8). We use identity (1.12) of
Section 4.2:

sin(a + B) =sin a cos 8 + cos « sin 8

___1 3,3 4__9 _9i0

VIO 5 V0 5 S5/10 50
Thus sin(Tan-!(— 1/3) + Tan-!(4/3)) = 9%/10/50.
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-1

Figure 5.12

c) Let 8 = Tan"'(—3/4); then 6 is the angle shown in Fig. 5.13. We want
cos 26. By using identity (I.19) of Section 4.3 we get

cos 260 = cos?f — sin%l = (%)2 — (—%—)2 = 775

Therefore, cos(2 Tan"!(-3/4)) = 7/25. |

A Using a calculator, evaluate scc(Tan—‘0.348 -2 Cos—l(—0.735)) correct
to four decimal places.

Solution. We can solve this problem with the calculator in either degree or
radian mode. First evaluate the angle Tan10.348 — 2 Cos~!1(—0.735), and, with
the result in the calculator display, press the and keys; the answer
appears in the display:

sec(Tan10.348 — 2 Cos™/(—0.735) ) = —3.9742. i
& a) Prove that cos(Tan-'Vx?>—1)=1/x for x 21 is an identity.

b) Is it an identity if values of x < —1 are also included?

¢) How can the equation be changed to become an identity for all x in
x<—-1 or x21?
Solution.

a) Let 6 = Tan"'Vx>—1; then tan §=vx*—1 and —-w/2<0<w/2.
Since Vx*— 120, angle 0 is in the first quadrant for all x. From
Fig. 5.14 we see that cos (Tan"'V'x2 — 1) = cos § = 1/x.

0
-3 > szwl
5 0
1

I

Figure 5.13 Figure 5.14
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b) If we take x = —V/2, then cos (Tan™' V/(=2)’— 1) = cos (Tan"'1) =
cos /4 =1/2/2. This is not equal to 1/x for x = —/2. Thus the
equation is not an identity if we include x < —1 in the replacement set.

¢) cos(TanV/(x> = 1) =1/|x| for x £—1 or x2>1 is an identity. |
Determine the set of values of x that satisfy the inequality
Cot-lx —2£0.

Solution. The given inequality is equivalent to Cot~'x <2. To solve this
inequality it may be instructive to look at the graph of y = Cot~'x shown in
Fig. 5.15. We want all values of x that will yield points on the curve to the right
of P (such points have y <2). Thus, our solution set consists of all values of
x such that x > x,, where Cot~'x,=2. If Cot'x, =2, then x,= cot 2 and
with the calculator in radian mode we find that x, = —0.458 (to three decimal
places). Therefore, the solution set is S = {x|x > —0.458}.

Graph of ) = Cot~ ! x

Figure 5.15 |

EXERCISE 5.3

1. a) Make a table of x, y values that satisfy y = Tan—!x. Then use this table to draw
a graph of y = Tan—lx.

b) Follow instructions similar to those in (a) for y = Cot~lx.

In Problems 2 through 8, evaluate the given expression. State answers in exact form in
degree and in radian measure.

vency | aen(dr)  wnetd)
5. Arctan(—\/ 3 ) 6. Arccot (—\/ 3 )
7. Tan-Y(=1) — Cot~Y(= 1) 8. Tan“(% > + Cot~!(- \/3)
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In Problems 9 through 12, find all values of the given expression. Provide answers in
exact form in degree and in radian measure.

9. tan-! L 10. cot-l(—1) 11. cot™!(- \/3) 12. tan“(— @ )
V3
In Problems 13 through 20, evaluate the given expression using a calculator. Provide

answers in radian measure (correct to four decimal places) and in degree measure
(correct to two decimal places).

13. Tan-10.738 14. Arctan (~1.483) 15. Tan—12_;‘/ﬁ
16. Cot—}1.532 17. Arccot(—2.415) 18. Arctan %
3 4
19. Arctan (—5—‘”) 20. Arccot (-— _’nr)
21. Using a calculator, find all values of tan—! 2.418 in radians correct to two decimal
places.

22. Find all values of cot—1(—0.893) in degrees correct to two decimal places.

23. Find all values of cot-! 4—1%-\.& in degrees correct to two decimal places.

24. Find all values of tan-! Min radians correct to two decimal places.
1+V3

In Problems 25 through 32 evaluate the expressions and give answers in exact form:

25. tan(Tan“1 %) 26. cot(Tan‘l(—%) )

27. sin(ZCot“'(—%) ) 28. cos(—;‘—Tan'l(-—%) )

29. sin(% - Tan‘1<——§—) ) 30. tan(2 Tan™!3)

31 csc(%Tan—1 %) 3. tan(Cot—1 % + Tan™! %)

33. Show that 2 Tan™! —;- = Tan! %
34. Show that Tan-! % —Tan-! L —Tan11.

12 13 _
35. Show that Tan 3 + Tan ) >

36. Show that Cot—‘(——i—) = Tan—'( —%) + .

In Problems 37 through 42, you may wish to use the calculator as a first step in
answering the question. Note that in Problems 37 and 38 the calculator should be in
radian mode.

37. Is Tan—!l + Tan—12 = = + Tan~1(-3)?
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38.

39.

40.

41.

42.

Is Tan"! (%) + Tan-! (%) = 14-?

-1(L —1( LY _ cot-1(_ L1
Is Cot (3)+Cot (4)—Cot (—9)?
Is Tan-! 4 — Tan-! 3 = Tan"! %‘?

413 14 —Sin-1 12
Is Tan 7 + Tan 3 Sin—' 1?

in-! 3 _ Cos—1> — Tan-1(—33)9
Is Sin 5 Cos 3 Tan ( 56>'

In Problems 43 through 45, prove that the given equation is an identity when x is
restricted to the values given in each case.

43.
4.

45.

a) Tan-lx + Tan—lxL = % for x>0 b) Cot~lx= Tan“% for x>0
Cot-lx=m + Tan“‘% for x<0

a) Sin-'—2X _ _) Tan—lx for —1<x<1
x?+ 1

b) Give an example showing that the equation in (a) is not true when x is any real
number.

. Is Cot~lx = Tan~!(1/x) an identity?
47.

A movie marquee on Main Street is 1.5 meters wide with its bottom edge 4 meters
above the sidewalk, as shown in Fig. 5.16. A person, with eye level 2 meters above
the sidewalk and x meters from point P directly below the edge of the marquee, is
walking along Main Street and observes that the marquee (as measured by angle
) seems small when viewed from far away (when x is large), but upon getting closer
angle 6 gets larger until it reaches a maximum and then it begins to get smaller again
until it becomes 0° when seen from directly underneath the edge of the marquee.
That is, 0 is a function of x. Show that this function is given by

6 Tan-1 — 1.5x
x*+ (4—-h)5.5-h)

\
\
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Figure 5.16
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49.

50.

Exercise 5.3 169

Hint. Use the two right triangles involving angles « and 8, and the identity
tan 0 = tan(8 — ) = 1205 —tan o
1 +tan B tan «

Suppose the person in Problem 47 is Janet whose eye level above the sidewalk is 1.5
meters.

a) Show that her view of the marquee is given by the expression

6 = Tan-! 13X
x2+ 10

b) Use your calculator and the result in (a) to complete the following table that
gives her view for different values of x in meters. Express angle 6 in degrees to
two decimal places.

x|40 25 20 10 8 6 5 4 3.5 3.2 3.1 30 28 25 20 15 1.1 0.5

c) Using the results of (b), make a reasonable estimate of how far from point P she
should stand to get the best view (that is, the largest value of ). Refine your
estimate by using additional values of x to give an answer correct to two decimal
places.

Suppose the person in Problem 47 is Preston whose eye level above the sidewalk is
2 meters.
a) Show that his view of the marquee is given by the expression
6 = Tan—! _L:3x
x2+17
b) Compile a table similar to the one in Problem 48.
¢) How far from point P should he stand to get the best view?

Using the results found in Problems 48 and 49, answer each of the following:

a) If Janet is standing at her spot of maximum view, how far behind her should
Preston be to get the same view?

b) When Preston is standing 16 meters from point P, find his view (angle ) of the
marquee from that point.

¢) When he is standing 16 meters from P, how far in front of him should Janet be
to get the same view he has?

In Problems 51 through 55, find all values of x that satisfy the given equality or
inequality.

51.

Tan"lx =1 52. tan(Tan"'x) = x 53. Tan~!(tan x) = x

54. 2 Cotlx + 1 £0 55.4 Tan'x-320
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5.4 INVERSE SECANT AND INVERSE COSECANT

The inverse secant and cosecant relations are of comparatively little interest in
the study of trigonometry, but since they do occur in certain applications in
calculus we give the graphs and define the principal values for each.

The graph of the inverse secant relation is depicted in Fig. 5.17 where the
heavy part of the curve represents the principal-value inverse secant function
y = Sec~'x. Similarly, Fig. 5.18 shows the graph of the inverse cosecant relation
with the heavy portion of the curve representing the principal-value inverse
cosecant function y = Cscx.

Thus we have the following definitions.

The principal-value inverse secant function is given by:

y = Sec~x is equivalent to x = sec y and
0<y< —’FT or%<y§7r.

The principal-value inverse cosecant function is given by:

y = Csclx is equivalent to x = csc y and

T <L o
2:y<00r0<y§ 7

The domain of both the Sec~! and Csc~! functions
is given by {x|x <—1or x 2 1}.

y y
3n
——————— -y ———— = 2T———— —
3w
L7 -
s
______ s —
L X
_______ - = !
- -1
— 7
3w
______ IS — |w____

Graph of sec ™! Graph of csc ™!

Figure 5.17 Figure 5.18



54 Inverse Secant and Inverse Cosecant 171

Note. In Chapter 4 we introduced several identities involving trigonometric
functions that are useful in simplifying certain problems. The student should
understand that the corresponding identities do not hold for the inverse
trigonometric functions. For example, csc x = 1/sin x is an identity but Csc~lx
is not equal to 1/Sin~!x; Tan~!x is not identically equal to Sin~!x/Csc~!x, and
so on. Although we include some identities involving inverse functions in the
exercises, they are not used frequently and we do not reccommend memorizing
them.

Examples
A Evaluate in exact form

a) cos (SCC”I (— %) ) b) tan <Sec‘1(——g-) >
Solution. Let 6 =Sec~'(—3-); then sec 6 =—3/2 and /2 <0 <.

2
That is, 6 is the angle shown in Fig. 5.19. Therefore,

a) cos (Sec"(—%—)) = cos 0 = ——%—;

b) tan (Sec“(——%—)) = tan 0 =—

Js

Ny

A

Figure 5.19 I

é Using a calculator, evaluate Sec™'(—1.873) in degrees correct to two
decimal places.

Solution. Let a = Sec~'(—1.873). Then from the definition of the Sec—! func-
tion given in this section, this is equivalent to sec a=—1.873 and
90° < a £180°. Since the calculator does not have a or key, we
use the identity sec « = 1/cos a to get cos a = —1/1.873 and 90° < a < 180°.
We can now use the calculator to find «: place it in degree mode, enter
—1/1.873 into the display, and press the and keys (or (=) to get
a = Sec1(—1.873) = 122.27°. |
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A Using a calculator, evaluate Csc~!(—2.478) in radians correct to four
decimal places.

Solution. This is similar to Example 2 and we include only the essential steps.
Let 6 = Csc1(—2.478). This is equivalent to csc 6 =-2.478 and
—m/2 £6 < 0. Thus we have sin § = —1/2.478 and so 6 = Sin~!(—1/2.478).
Place the calculator in radian mode, enter —1/2.478 and then press the
and (Gin) keys (or the key). This gives § = Csc™'(—2.478) = —0.4154. |

Note. From Examples 2 and 3 we can conclude the following:

To evaluate Sec!x by calculator, use
Sec—lx = Cos—I-L.
X
To evaluate Csc~'x by calculator use

Csc!x = Sin—'-L.

EXERCISE 5.4

In this exercise there may be some problems where the given expression is not defined.
If a calculator is used, the display will indicate “Error”. Explain what part of the
expression is responsible for such an answer.

1. Evaluate the following and give answers in exact form in degrees:

a) Sec—!2 b) Sec! V2 c) Csc—l(— \/2_—>
3

d) Sec-! (~\/§) e) Cscl(-1)
2. Evaluate the following and give answers in exact form in radians:

a) Sec! —\/2_— b) Sec(—V'2) ¢) CscV/2  d) Sec!(=1) e) Csc{(—v2)
3

3. Evaluate the following and give answers in exact form; then in decimal form correct
to four decimal places:

: a4 14 gl 5 -1 11
a) sm(Sec 3) b) cos(Csc 3 Csc( 4>) c) Sec—13 + Csc 3

d) Sec—!4 + Sec™! 4 €) sec (Sec—l 3- Csc—'(—4))
4H
4. Evaluate the following. Give answers in exact form.
a) sin (2 Csc! 5) b) cos (2 Sec‘l(—S))
13 in(L csc!(— L
c) scc<2 Sec 5) d) sm(2 Csc ( 5))

€) tan (% Sec! (— —;-) )
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5. Use your calculator to evaluate the following as a real number correct to four
decimal places:

a) Sec1(1.478) b) tan(Sec—! 2.578) <) cos(Sec—ll—_;—/—S—)
d) Csc—1(-3.478) e) sin(2 Sec—! 2.576)
6. Evaluate the given expressions in two forms—exact and correct to two decimal
places:
a) sin(Sec 2 + Sec(2/v/'3) ) b) cos(Csc—'(4/3) — Csc-1(5/4))
c) cos(Sec—‘(—7/4)> d) tan(Sec~! 1.2)
¢) sec(Csc(-1.5)) f) Sec—'(2/v/3) + Sec~1(—2/V/3)

7. Use your calculator to evaluate the following expressions. Give answers in degrees
correct to two decimal places.

a) Sec~l(tan 74.52°) b) Csc~l(sin 47°) ¢) Sec—1(—3.47)
d) Csc—l-z—*'g\/—5 e) Csc~!(tan 124°)

8. Find all values of the given expressions. Provide exact answers in radians.
a) sec! 2 b) csci(=V2)

9. Find all values of the given expression. Provide exact answers in degrees.
a) sec~1(-2/V/3) b) cscl(—1)

10. Prove that Sec—!x + Csc—lx =% for x 21 is an identity.

11. Prove that Sec—lx + Csc~lx= % for x £—1 is an identity.

This and Problem 10 prove that Seclx + Csclx = % for |x| 21 is an
identity.

12. Prove that Sec*‘(—i—): Cos~lx for 0< |x| £1.

REVIEW EXERCISES

In Problems 1 through 10, evaluate the given expression and state answers in exact form
(first in degree measure and then in radian measure).

1. Sin-! 1 2. Cos-l(—%) 3. Tan-l(~1)
. 3 -
4. Sm“(— fT) 5. Cot(-V/3) 6. Sec! 2
-1 —(_ LY _gn-l(- L
7. Csc11 8. Cos <— > ) Sin ( > )
9. Cos-Y(1) — Tan-Y(=1) 10. Sin—'<1—) — Tan~Y(-1)
V2

In Problems 11 through 20, evaluate the following expressions in exact form. Angles
a, 3, and <y are given by:

|

3r
<2%
Y S 5

I

a= Sin'l(—%), B= Cos”l(——g—), sin v =—

U
>2

1

w
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1. B —« 12. cos(a + B) 13. sin 2«
14. tan (8/2) 15. cos (v/2) 16. sin(a —7v)
17. tan(a + 7v) 18. 1 — cos?B 19. tan 2y

L+ Y
20. sm( —— >
In Problems 21 through 45, evaluate the given expression and state answers in exact

form (whenever it is reasonable to do so) or as real numbers correct to three decimal
places. When a given expression is undefined, tell why.

21. sin(Sin—! 0.436) 22. cos(Cos™! 1.32)
23. tan(Tan-! 3) 24. sin(Sin~! 0.4 + Cos™1 0.5)
o -1 s in—!
25. cos( - — Cos 0.456) 26. tan( T+ Sin 0.56)
A —1_
27. sec(Cos z ) 28. sec(Sec( 4.73))
29, cos(%Cot“ 4) 30. Sin~!(tan 23°)
31. Cos~I(tan 123°) 32. Tan"(tan 3—475)
33. tan(2 Tan—! 1) 34. tan(%Cos—1 0.275)
-1 13 _ -11
35. sec(Sec— 0.52) 36. tan(Tan 7 Tan > )
37. tan(Sin-(1 - V'3) ) 38. sin(2 Sin~! 1)
T _ Cos-! in1 2
39. cos( 4 Cos 0.41) 40. cos(Sm = )
i L ~I(sin 2%
41. sm(cos > ) 42. Tan (sm 3 )
43. Cot-l(cos 120°) 44. tan(%Cos*l(—l))

45. sin(Cos*l(sin% ) )

In Problems 46 through 55, determine whether the given statement is true or false. Give
good reasons for your answers. Recall that D( /) and R( f) denote domain and range of
/. respectively.

46. sin 1+2i is not defined 47. T is in D(Sin)
48. 2 is in R(Sin~) 49. tan %’f is in D(Sec!)
50. T < Tani(-2) < 51. % is in D(Sin—!)
l . . . _l . _‘1 . l _ . . _ll
52. £ is in R(Sin™) 53. Sin (sm z )_sm(Sm . )

54. Sin—l(sin% ) = sin(Sin“l % ) 55. Cos“(sin—’é— ) =sin(Cos—' % )



CHAPTER SIX

TRIGONOMETRIC
EQUATIONS

6.1 CONDITIONAL EQUATIONS

The student already has some experience in solving algebraic equations. For
example, equation x2 — x — 12 = 0 is satisfied by x =4 and x = — 3. That is,
if x is replaced in the equation by 4, we get 42— 4 — 12 = 0, which is a true
statement. Similarly, for x = — 3, we get (—3)?— (- 3)—-12=0.

The set of possible replacement values for the variable is called the
replacement set for that equation. In general, unless otherwise specified, the
replacement set will be the largest subset of the set of real numbers, for which
the expressions on the two sides of the given equation are defined (as real
numbers). The solution set for a given equation is a subset of all numbers from
the replacement set, each of which satisfies the equation.

We call an equation an identity if the solution set is the entire replacement
set; otherwise the equation is called a conditional equation. In Chapter 4 we
have encountered a large number of identity equations involving trigonometric
functions. In this chapter we shall consider conditional equations involving
trigonometric functions with the primary goal of developing techniques for
finding the solution sets for such equations.

Many of our problems will begin with an equation which we will not solve
directly in its given form. We shall make use of the identities in Chapter 4 to
replace the given equation by an equivalent one that we can solve.

Examples

A Find all solutions of the equation 2 sin x — 1 = 0. Express answers in
degree measure.

Solution. We have already encountered problems of this type in our discussion
of inverse trigonometric relations in Chapter 5. The equation 2sin x — 1 = 0is
equivalent to sin x =% and the solutions to this equation are given by

175
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sin~! (*2). However, this merely involves notation and does not actually tell us
explicitly what numbers belong to the solution set.

Since sin x is positive, x is an angle in the first or second quadrant, as
shown in Fig. 6.1. Two solutions are: x, = 30°, x, = 150°. If we add or subtract
any integer multiple of 360° to either of these, the result will also be a solution,
and in this way we get all solutions. Therefore, the solution set is

{x|x =30° + k - 360° or x = 150° + k - 360°, where k is any integer|.

Figure 6.1 I

& Solve the equation sin(3x — w) = 1, where — 27 < x < 2.
Note. — 2w < x <27 implies that the solutions are to be given in radians
(real numbers).

Solution. The restriction — 2w < x £ 27 means that the replacement set for
this problem is {x|— 27 < x < 27x}. Since sin(3x — w) = I, then 3x — = must
be one of the following:

T o Or 3 _Ix

2 2 2 2 2
This set of numbers is given by (4k + 1)« /2, where k is any integer. Thus, our
solutions will be given by

3x—7r=(4k2ﬂ.

Solving for x, we get

_ (4k + 3
X = 6 .

We now select those values of k that will give values of x in the replacement set.
We see that if we take kK to be — 3, —2, — 1. 0, I, 2, we get the corresponding
values of x:

Ir. lm
6" 6

B N S R S R U E 4
20 T6 6 206 6 { i

& Find the solution set for 3tanx + 4 =0, where — 7 <x <.
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Solution. The given equation is equivalent to tan x = — 4/3. Since tan x is
negative, then x must be in the second or fourth quadrant. The fourth-
quadrant angle in the replacement set is x, = Tan!(— 4/3); it can be found by
using the calculator. That is, x, = —0.9273. Since tan(x + x) = tan x is an
identity, the second solutionisgivenby x, =7 + x, = 7 + (- 0.9273) = 2.2143.
Since solutions are restricted to the interval —w < x <, the solution set is
{—0.9273, 2.2143}, where the answers are given to four decimal places. |

A Find the solution set for sin(3x — 7 /4) — V'3 cos (3x — 7 /4) = 0.

Solution. In Chapter 4 we indicated that identities are useful in replacing a
given problem by an equivalent one that may be easier to solve. Here is a
simple example of such a problem.

The given equation can be written as

. m _ "~ _l
sin (3x—7>_\/3 cos (3x — ).

If we divide both sides by cos (3x — 7 /4) # 0, we get

sinGx—7/4)
cos(3x —m/4) V3.

Now we use the identity sin 6/cos § = tan ¢ and get
tan(3x - %) =V3.

Since tan (3x — 7 /4) is positive, angle 3x — 7 /4 is in the first or third quadrant,
as shown in Fig. 6.2 (where 0 = 3x — 7 /4). These angles can be written as
m/3 + kw, where k is an integer. Therefore,

3x_l= L'f‘kﬂ',

4 3
and so x = (7 + 12k)w/36. These are solutions, provided cos(3x — 7 /4) 0.

Figure 6.2
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The student is urged to show that this indeed is the case. Thus the solution set
is

{x|x=(7+ 12k)x /36, where k is any integer}. |

& Find all values of x at which 3 sin (2x — w/12) attains a maximum.

Solution. Since the largest value the sine function can have is 1, the maximum
value of 3 sin(2x — 7 /12) is 3. Therefore, the problem is equivalent to finding
all values of x for which 3 sin (2x —7/12) =3, or sin 2x —w/12) = 1. All
solutions of this equation are given by

2x - - T 4 2mk,

12 2
where k is an integer. Therefore, the solution set is
{x|x= ;—72 + kw, where k is any integer}. |

A Find the solution set for the equation V2 sin x — 3 = 0.

Solution. The given equation is equivalent to sin x = 3 v 2. Since 3 N 2> 1,
there are no values of x such that sin x = 3/v/2. Therefore, the solution set
is the empty set. |

EXERCISE 6.1

In each of the following problems express answers in exact form whenever it is
reasonable to do so. Otherwise use a calculator and give answers correct to two decimal
places. Check your answers when there is a possibility that extraneous solutions may
have been introduced.

In Problems 1 through 8 find all solutions of the given equations. Express answers in
degree measure.

1. 2cosx+1=0 2.2 sin x+V3=0 3.V3tan x—1=0
4. 4sinx—-3=0 5.3secx—7=0 6. 3sinx—5S5cosx=0
7.V3 sin x—5=0 8.2 sin 2x—V3=0

In Problems 9 through 20 assume that the replacement set is {x |0 < x < 2=} and find
the solution set for the given equations.

9.2 cos x+v3=0 10. 2 sin x — sin®x = cosx
1.2 sin(3x — %)_ 1=0 12. sin(2x — 1) + V'3 cos@x — 1) =0

13. V3 sec x—2=0 14. 3.57 sin x + 2.16 =0
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15. cot x +V3=0 16. 4 sec x+V7=0
: s T _ —
17. sm(x+T>:2,4 cos<x+?)_0 18. 3secx+2=0
19. 5 cot x+V3=1 20. cos(3x — 1.6) + 6.4 sin(3x — 1.6)=0

In Problems 21 through 23, find the solution set for the given equations.

21. 4 Sin~!x=3 22.2 Cos7lx +1=0 23. V5 Tan~'x - 1.6 =0
24. Find all real numbers x at which 4 cos(2x — /3) attains a minimum.

25. Find all real numbers x at which 3 sin(x — 7 /4) attains a maximum.

6.2 QUADRATIC EQUATIONS INVOLVING
TRIGONOMETRIC FUNCTIONS

In this section we consider problems in which the given equation can be
transformed into an equivalent quadratic equation involving one of the
trigonometric functions.

Examples
A Solve 2 sin?x — sin x = 0, where the replacement set is
{x]0° < x <360°}.
Solution. We first express the given equation in factored form:
sin x (2 sin x—1)=0.

We now use the basic property of numbers: If the product of two numbers is
zero, then at least one of the numbers must be zero. Therefore, the given
equation is equivalent to

sin x=0 or (2sinx—-1)=0;

sin x =0 gives x =0°, 180°, 360° as solutions, while 2 sin x — 1 =0, or
sin x = %4, gives x = 30°, 150° as solutions. Thus the solution set is

{0°, 30°, 150°, 180°, 360°}. |
A Find all solutions in degree measure of the equation
2 sin>x —cos’x —5sin x — 1 =0.
Solution. The equation can be written as a quadratic equation with regard to
sin x by replacing cos?x with 1 — sin2x. Therefore,
2 sin’x — (1 —sin?x) — 5sin x — 1 =0,

or
3sin2x —S5sin x —2=0.
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This can be factored as
(3 sin x + 1)(sin x — 2) =0.
Thus, the given equation is equivalent to
3sinx+1=0 or sin x —2=0.

Therefore,

sin x = — or sin x = 2.

w|—

There is no x satisfying sin x = 2. For sin x = — !5, the angle x must be in the
third or fourth quadrant, as shown in Fig. 6.3. We can use the calculator to
find

x, = Sin~!(— 15) = — 19.47°
and
x,=180° + 19.47° = 199.47°.
Therefore the solution set is

{x|x=-19.47° + k-360° or x=199.47° + k - 360°,
where k is any integer}.

Figure 6.3 I

& Find the solution set for 2 cos’x — 6 cos x+1=0, where 0 < x <27.

Solution. Since the left-hand side of the given equation does not factor in a
simple manner, we use the quadratic formula

6+V36-4.2-1 _3+V7
4 2

COoS X =

Therefore, the given equation is equivalent to

3 +V7 3-V7
=5 .

or Cos x =
2

COos X =

There is no solution for cos x = (3 +V/7)/2 = 2.8229. For

cos x=i:§\/_7=0,1771
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we see that x is in the first or fourth quadrant, as shown in Fig. 6.4. By using
the calculator, we find

x, = Cos! —3%7— — 1.3927.
The second solution is given by

X, =21 —x, = 2m — 1.3927 = 4.8905.

Therefore, the solution set is {1.3927, 4.8905}, where the answers are given to
four decimal places.

X1

=
[S)

1§

Figure 6.4 |

A Solve sin?x — 2 sin x + 2 =0.

Solution. Using the quadratic formula we get

2+v4-8 V4_8:[+\/___1
> +

sin x =

Since 1 +V—1 are imaginary numbers, there is no value of x that will satisfy
the given equation, and so the solution set is the empty set. |

EXERCISE 6.2

In the problems of this set, express answers in exact form whenever it is reasonable to
do so. Otherwise use a calculator and give answers correct to two decimal places.

In Problems 1 through 8, find all solutions of the given equation and express answers
in degree measure.

1. 3sin2x—sinx—-2=0 2. sin’x —cos’x =0
3. cos2x+2cosx+1=0 4, tan’x —1=0
5.1—-4sin’x=0 6. 3secix+2secx—1=0

7. cos’x —sin’x + 3 cos x—1=0 8. 2sin’x+5sinx—-3=0
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In the following problems, assume that the replacement set is {x |0 < x < 2x}. Find
the solution set for the given equation.

9. 2sin2x —5sinx—-3=0 10. cos’x — sin’x =0

11. 3cos’x +cos x—2=0 12. 4 —tan’x =0

13. tan’x + 2tan x + 1 =0 14. 2 sec’x —3secx—2=0

15. 3 sec’x — 4 tan’x =0 16. 4 cos’x + 3cos x—1=0

17. 4 sin’x + 3 cos’x —4=0 18. cos?’x —3 cos x—2=0

19. sin’x +2sinx+ 1=0 20. 2 sec’x —tan’x —3=0

21. sin’x + 2 sin x + cos’x =0 22. sin’x = 2 — cos’x

23. sec’x — 2 cos’x — tan’x =0 24. 2 cos x tan’x +2=0

25. tan x cot x + 4 sin’x =4 26. 2sin>x +2sinx—1=0

27. cos’x +3cos x—2=0 28. 2tan’x —4tanx + 1 =0

29. sec’x + 3secx—1=0 30. 3 csc’x —2cot’x +cot x—4=0
31. sin’x + 4 cos2x + 2sin x—2=0 32. 2secx—cosx+5=0

33. sin?’x —sinx +2=0 34. 3cos’x +4cosx+2=0

35. 25sin’x—30sinx +7=0 36. 3.2 cos’x —1.5cos x —0.48=0
37. tan’x — 1.48 tan x — 2.16 =0 38. 2.56 cos’x — 1.32 cos x — 1.21 =0
39. 2cos’x —cos x —15=0 40. 9sin’x —6sinx—1=0

6.3 EQUATIONS OF THE FORM asinx + bcosx =c¢

An equation of the form a sin x + b cos x = ¢ (where a, b, ¢ are given numbers)
can be transformed into an equivalent equation of the type already studied
in Section 6.1. We do this as follows: divide both sides of the equation by
va? + b* and get

4 __ sin x + b__ cos x= <

va? + b? va* + b? \/a2+b2-

As an illustration, consider Fig. 6.5, where the terminal side of angle a passes
through point (g, b) (the diagram shown is for a negative and b positive). Since
a and b are given, angle a is determined. We note that

a and sin o = b

Va? + b? Va: + b

(6.1)

Cos a =
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and so Eq. (6.1) can be written as

Ccos a sin x + sin @ cos x = < .
va? + b?
The left-hand side of this equation reminds us of the identity for the sine of a

sum of two angles, and indeed it can be replaced by sin(x + «) (see identity 1.12
of Section 4.2). Therefore, the given equation can be written in equivalent form

sin(x + a) = ¢,
va?+ b? (6.2)
which can be used to find the solution set.
(a, b
3
5 o
(l: +b2
b
A -4
N
a
Figure 6.5 Figure 6.6
Example

A Find all solutions of the equation 3 sin x — 4 cos x = 2. Express answers
in radian and in degree measure.

Solution. We first divide both sides of the given equation by V32 + (—4)> =
V25 =5 and get
3 4 _ 2
5 sin x — - cos x =% (6.3)
Plot the point (3, — 4) and let « be the angle, as shown in Fig. 6.6. We see that
cos a = 3/5 and sin a = —4/5; substituting these into Eq. (6.3) gives
sin x cos a + cos x sin a=%.
This can be written as
sin(x + a) = % (6.4)
Angle a can be found by using a calculator: a = Sin~'(— 4/5) = — 0.9273.
Hence Eq. (6.4) becomes sin(x — 0.9273) = 2/5. Thus x = sin~!(2/5) + 0.9273.
Let 8 = sin—'2/5; then angle 6 is in the first or second quadrant, as shown
in Fig. 6.7. Therefore

0, = Sin‘l% = 04115 and 0,=m—0.4115 =2.7301.
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This gives us two solutions,

x,=0.4115 + 0.9273 = 1.3388,
x,=2.7301 + 0.9273 = 3.6574.

The solution set is
{x|x=1.3388 + 27k or x = 3.6574 + 2wk, where k is any integer}.
In degree measure the solution set is
{x|x=76.71° + k - 360° or  x=209.55° + k- 360°}.

Note. In the above solution we transformed the given equation into an
equivalent equation sin(x + a) = 2/5, where a was determined by plotting the
point (3, — 4). We could just as well have started by plotting the point, say (4, 3)
that determines angle 3, as shown in Fig. 6.8. That is, sin §=3/5,
cos B =4/5, and so Eq. (6.3) can be written as

sinxsinﬁ—cosxcosﬁ=% or cosxcosﬁ—sinxsinﬁz—%.
This reminds us of the identity for the cosine of the sum of two angles, and so
the given equation is equivalent to cos(x + 8) = —2/5, where 8 = Sin~!(3/5).
The student should solve the equation and see if the results agree with the
solution set given above.

4,3)
> 3
B8
4
Figure 6.7 Figure 6.8 |

EXERCISE 6.3

In Problems 1 through 10 assume that the replacement set is {x |0 < x < 2x}. Find the
solution set for the given equations; provide answers correct to two decimals.

1. 4sinx+3cosx=1 2.2 sin x—3 cos x=V1
3. cos x—2sinx=2 4. sinx+2cosx+1=0
5. 2sinx—5cosx=38 6. sin?x — 2 sin x cos x =0
7.3cosx+4sinx=2 8. sinx +cosx=1

9. sin x +cos x=V2 10. sin x + V3 cos x = 1
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In Problems 11 through 20 assume that the replacement set is {x|0° < x < 360°}.
Find the solution set for the given equations; provide answers correct to the nearest
minute.

11. sin x —cos x = 1 12. V2 sin x+V3 cos x=2

13. 3 cos x + 4 sin x=1 14. sin x — 3 cos x =4

15. 2 cos’x —sin x cos x =0 16. 1.3 sin x — 1.8 cos x = 2.5

17. 2 cos?’x —sin x cos x + cos x =0 18. 3sin’x —2sin x cos x + 3sinx=0
19. 3sin 2x —4 cos 2x =3 20. sin 2x + 2 cos 2x =1

6.4 EQUATIONS INVOLVING FUNCTIONS OF MULTIPLE ANGLES

In this section we make use of the double-angle 1dentities 1.18 through 1.20
(p. 133) to help us solve certain trigonometric equations.

Examples
& Solve the equation sin 2x — sin x = 0.
Solution. Using 1.18 we can replace sin 2x by 2 sin x cos x and get

2 sin x cos x —sin x = 0.
This can be written as

(sin x)(2 cos x — 1) =0.
Therefore, the given equation is equivalent to
sin x=0 or cos x = .

We have solved several problems of this type before and so we merely give the
final result. The solution set is

—7-5— +2km or x=— %
In degree measure the solution set is
{x|x=k-180° or x=060°+k-360° or x=-—60°+k-360°. |

A Find the solution set for the equation cos 4x + 3 sin 2x + 4 = 0, where
the replacement set is {x|0° < x <360°}.

{x|x=kmw or x= + 2kw, where k is any integer}.

Solution. We use identity 1.19 to replace cos 4x by 1 — 2 sin?2x, and so the
given equation becomes

1 —2sin22x + 3sin 2x +4=0.
This can be written as
2sin2x —3s8in2x - 5=0 or (2 sin 2x — 5)(sin 2x + 1) = 0.
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Therefore, the given equation is equivalent to sin 2x = 5/2 or sin 2x = — 1; the
first of these gives no solutions and the second gives

2x =270° + k - 360° or x=135° + k- 180°.

The solutions that are in the replacement set are x = 135° and x = 315°. Thus
the solution set is {135°, 315°}. |

& Solve the equation 2 sin?2x — 7 sin x cos x + 1 =0, where 0 £ x < 2.

Solution. We observe that sin x cos x can be replaced by "2 sin 2x, according
to identity 1.18, and so the given equation is equivalent to

4 sin?2x — 7 sin 2x + 2=0.

We can solve for sin 2x by using the quadratic formula

74VA =32 _ 1+V17
8 I

sin 2x =

Since (7 + V'17)/8 > 1, there are no values of x that satisfy

7+V11
8

sin 2x =

For sin 2x = (7 — V17)/8 we see that since (7 —V'17)/8 > 0, angle 2x must
be in the first or second quadrant, as shown in Fig. 6.9. Using a calculator, we
find

2x, = Sin—'7_8—ﬁ7= 03678 and  2x,=m — 2x, = 2.7738.
We can get two other solutions that are in the replacement set, from
2x,=2x, + 27 = 6.6510 and 2x,=2x, + 2w = 9.0570.
Thus all the solutions of the given problem are

x,=0.1839, x,=13869, x,=3.3255, x,=4.5285.

)
-~
()

Figure 6.9 |

A Find all the solutions of equation sin 2x + cos 2x = 0. Express answers as
real numbers.

Solution. The given equation is equivalent to each of the following

sin 2x = —cos 2x, Sin2x _ tan 2x = — 1.

cos 2x
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Therefore, 2x is an angle in the second or fourth quadrant, and the general
solution is given by

2x =Tan(— 1) + kr = — % + km,

where k is any integer. The solution set for the given equation is

{x |x= — % + kz—"}
Note. Since our solution involved a step in which both sides of an equation
were divided by an expression containing x, it is possible that extraneous
solutions may have been introduced. We urge the student to check whether the
given equation is actually satisfied by

k

—_ T KT
r=ow |

EXERCISE 6.4

In Problems 1 through 16, the replacement set is {x |0 < x <2x}. Solve the given
equations. Provide answers in exact form if possible; otherwise round off to two decimal
places. Check for possible extraneous solutions when necessary.

1. 2 sin 2x —cos 2x =0 2. sin 3x + cos 3x =0

3. sin 2x = 3 cos x 4. cos2x +cosx+ 1=0

5. cos 2x + cos x =0 6. sin 2x=cos(x—%)

7. cos2x +4cosx—5=0 8. cos 4x + 4 =3 sin 2x

9. (1 —tan’x)tan 2x + 2 sin x =0 10. (1 + tan?x)cos?x + 2 sin 2x =0
1. sin?2x + 4sin xcos x + 1 =0 12. 4 sin’x + 3cos 2x—1=0

13. (sin x —cos x)?—0.5=0 14. sin’x — 3 sin 2x = cos’x

15. 4 sin 2x cos 2x + tan’x = sec’x 16. 3 sin 2x =4 cos 2x

In Problems 17 through 30, find the solution sets of the given equations, where the
replacement is {x|0° < x <360°}. Give answers in exact form if possible; otherwise
round off to two decimal places.

17. cos 2x + 3sinx+1=0 18. 4 cos 2x — 3 sin 2x =0

19. 2 sin 2x = cos x 20. cos 4x + 3sin2x+4=0

21. sin 2x = cos(x + 90°) 22. cos 2x + cos’x = sin’x
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23. 2(sin x + cos x)* + 1 =0 24. (sin 2x —cos 2x)2—1=0
25. sin2x —cos 2x = 1 26. V2cos’x — 1 =—0.5

27. (1 — tan®x)cos x tan 2x = 4 sin’x 28. sin 4x = sin 2x

29. sin 6x = sin 3x 30. 2 sin x csc 2x —cos x =0

6.5 EQUATIONS INVOLVING TRIGONOMETRIC
AND ALGEBRAIC FUNCTIONS

In the preceding sections of this chapter all the equations considered involved
only trigonometric functions. Similarly in algebra courses, all the equations
studied involve only algebraic expressions (such as x?—2x+1=0 or
x+v3x—1=5). In this section we consider equations involving both
algebraic and trigonometric functions. These are somewhat more difficult to
solve but we shall see that the calculator will help considerably.

Examples

A Solve the equation sin x + x = 0.

Solution. In problems of this type we shall rely on graphs to give us some
insight into possible solutions. We first write the given equation as sin x = — x
and draw graphs of y = sin x and y = — x on the same system of coordinates.
Solutions to our problem will be given by the x-coordinates of the points of
intersection of the two curves. We see from the diagram in Fig. 6.10 that there
is only one point of intersection—the origin—and so the solution set for
sin x + x = 0 is {0}.

y=-x

y =sinx

~
|
3
|
ISTEN o
[STEY
3

Figure 6.10 I
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A Find the solution set for the equation cos x — x = 0.

Solution. We first write the given equation in the form cos x = x, and then
draw the graphs of y = cos x and y = x on the same system of coordinates, as
shown in Fig. 6.11. We see that there is only one point of intersection, so our
problem is to find the x-coordinate of that point; we shall denote it by x,.

y=cosx

1 X
/ Xp 1 %\

Figure 6.11

There are systematic techniques for finding x, to any desired number of
decimal places, but these require the study of calculus. The present approach
makes use of the calculator and common sense.

Set the calculator in radian mode and then make a reasonable estimate of
the value of x, from the diagram; call it x, and then evaluate cos x, — x,. If
this number is positive, then x, is to the left of x,, that is x, < x, (look at the
graph); if it is negative, x, > x,. Of course, our goal is to find x, such that
cos x, — x,=0. It so happens that there is no finite decimal that has this
property, and so we shall be satisfied with an approximate answer, say, correct
to three decimal places. We compile a table containing our estimated values of
x and the corresponding values of cos x — x, and at each step our estimated x
will be based on the previous values of x and cos x — x.

From the diagram, a reasonable first guess at x, is 0.7.

Estimated x | 0.7 0.72 0.74 0.735  0.736 0.739 0.7395

(cos x) — x 0.065 0.032 -0.0015 0.0068 0.0052 0.00014 —0.0007

We see that 0.7395 is to the right of x, and 0.739 is slightly to the left of
x,, and so x = 0.739 is an approximation of x, that is correct to three decimal
places. Note. An interesting approach to solving this problem is discussed in
Problem 12 of Exercise 6.5. |
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EXERCISE 6.5

In Problems 1 through 10, solve the given equation and give the answers correct to two
decimal places. If a problem has more than one solution, find the nonzero solution
nearest to x = 0 (if there are two such solutions, find the positive one).

Note. In each of the problems, x is necessarily a real number. For example, it does not
make sense to solve sin x = x with x in degrees since sin x is always a real number and
cannot be equal to x-degrees. Therefore be certain that your calculator is in radian
mode when you solve these problems.

1.

10.
11.

12.

sin x +2x=0 2. sin x—%=0 3.cos x+x=0
. COS X = x? 5.cosx=% 6. tan x =x
.tan x + 3x=0 8.sin x +x2=0 9. cos x + 1 =x?
sin x —3x2=0

Find the smallest positive solution of x sin x — 1 = 0. Hint. You may wish to write
this as sin x = 1/x.

In Example 2 of this section we used a guess approach to find the solution of
cos x — x = 0 to three decimal places. Now consider the same problem but try the
following approach.

Set your calculator in radian mode and start with any number in the display (this
is the feature that makes this approach interesting), then press . A new number
appears in the display; press again, and again a new number appears in the
display. Continue doing this (that is, press the key repeatedly) and watch the
display to see what happens. If you eventually get a number in the display (call it
x,) that is not changing, then the calculator is telling you that cos x, = x,. This is
precisely the solution of cos x — x = 0 to the digit capacity of your calculator. Draw
graphs of y = cos x and y = x on the same set of coordinates and see if you can
analyze why this technique works.

The student is urged to try the technique described in Problem 12 on other
problems. The idea is to write your problem in the form f(x) = x and then start
with a guess (say x)), evaluate f(x,), then evaluate f of this number (that is
S(f(x))), and continue this. If your calculator display eventually does not change
(call the number in the display x,), then you have f(x,) = x,, which is the solution
of the given equation. As an example, try this approach to find the solution of
sin x — x? = 0 by considering Vsin x = x. Take 0 < x. < w, since we want sin x > 0

for Vsin x.

6.6 USING IDENTITIES IN SOLVING EQUATIONS

In this section we consider various types of equations; the identities of Chap-
ter 4 are used to transform the given equation into an equivalent equation that
we can solve.
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A Find the solution set for 2(sin x + cos x)>= 1, where 0 < x < 2.
Solution. Each of the following equations is equivalent to the given equation:

2(sin?x + 2 sin x cos x + cos?x) = 1 (by algebra),
2(1 + 2 sin x cos x) = 1 (by (1.9)),
2(1 + sin 2x) =1 (by (1.18)),
sin 2x = — % (by algebra).
Therefore,
2x=—%+k-27r or 2x=—%+k-27r
where k is any integer. Then

__ T —_om
X = 12+k7r or X = 12+k7r.

We select those values of k that give values of x in the replacement set. In both
cases we use k = 1 or 2. Thus the solution set is

{117r 23r 7_7rl97r} I
21212 12

& Find the solution set for cos x — sin (x/2) = 1, where —180° < x < 180°.

Solution. We use the double-angle identity cos 20 = 1 — 2 sin%l to replace
cos x = cos[2(x/2)] by 1 — 2 sin%(x/2). Then the given equation is equivalent to
— in2X _sin X =
1 —2 sin > —sin =5 1.

Simplifying and factoring, we get
X X _
(sm 7)(2 sin 5~ + 1)=0.
That is,

in X — in X - _L1
sin 5 =0 or sin 5 >

From sin (x/2) =0 we get x/2 =0° as the only solution that gives x in the
interval — 180° £ x £ 180°. Thus x = 0°. From sin (x/2) = — !, we see that
angle x/2 is in the third or fourth quadrant, and so the only angle that gives x
in the interval —180° £ x < 180° is x/2=-—30°. That is, x=—60°.
Therefore, the solution set is {0°, — 60°}. |

A Find the solution set for sin 3x — sin x = 0, where the replacement set is
{x|0<x <o}

Solution. In problems involving equations of the type f(x) = 0, we attempt to
express f(x) as a product (that is, to factor f(x)). We begin with identities 1.12
and 1.13:

sin(a + 8) = sin « cos § + cos « sin 8,
sin(ae — B) = sin « cos 8 — cos «a sin S.

Subtracting these two, we get the identity
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sin(a + ) — sin(a — ) = 2 cos « sin 8.

To make this fit our problem, let « + 8 = 3x and « — 8 = x. Solving for «
and 8, we get « = 2x and 8 = x. Thus we have the identity

sin 3x — sin x = 2 cos 2x sin x.

That is, we have factored the left-hand side of the given equation and so we
have 2 cos 2x sin x = 0. This is equivalent to cos 2x = 0 or sin x = 0. Solutions
of these equations that are in the replacement set are: x = 7 /4 or 3w /4 for
cos 2x=0, and x=0 or 7 for sin x =0. Therefore the solution set is
{0, w/4, 3w /4, «}. |

A Find the solution set for the equation
cos’x + sin?x cos x —cos x =0, where 0 < x < 2w,

Solution. The given equation is equivalent to each of the following:

cos x(cos?x + sin’x) — cos x =0,
cos x —cos x =0.

In this form we have an equation that is satisfied by all values of x. Therefore
the solution set is equal to the replacement set {x|0 < x < 2x}. Thus the
given equation is an identity. |

A Find the solution set for the equation
(1 —tan%x)csc x tan 2x — 4 cos x =0, where 0 < x < 27.

Solution. Using identity 1.20 of Section 4.4, we can replace tan 2x by
2 tan x/(1 — tan?x) and transform the given equation into

2csc xtan x —4 cos x =0.

In the process, we cancelled 1 — tan’x, and so the resulting equation may not
be equivalent to the given equation; we may have introduced extraneous values
that might be roots of the second equation but not of the first. Therefore, it will
be necessary to check the final answers.
Replacing csc x by 1/sin x and tan x by sin x/cos x, we get
2
cos X

—4 cos x=0.

This can be written as cos?x = ' or cos x = +1/V/ 2. Therefore, the possible
solutions of the given equation are:

™ Ir 5w T
X=T, x=—4—, x_—‘z-, X=T.

If we check each one of these in the original equation, we see that none is a

solution. Therefore, the solution set is the empty set. Check to see that the

expression involved in cancellation, 1 — tan2x, is equal to zero for each of these

values of x. |
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EXERCISE 6.6

In Problems 1 through 5, assume that the replacement set is {x |0° < x < 360°}. Find
the solution sets for the given equations. Provide answers in exact form. Check for
possible extraneous solutions when necessary.

1. 2(sin x — cos x)* =1 2.sin 2x —2 cos x=0 3. sinx—cos%:O

4, sin 3x +sinx=0 5.cos3x —cos x=0

In Problems 6 through 16, use the replacement set {x |0 < x < 2x}. Find the solution
sets of the given equations. Express answers in exact form if it is reasonable to do so;
otherwise, give answers to two decimal places.

6. 4(sin x + cos x)2 =3 7. cos x tan x + sin 2x =0

8. cos’x + sin?>x cos x +3cosx + 1 =0 9. cos x + cos x tan’x — 2 sin x =0
10. sin2%+2 cos x=1 11. tan x + cot x = 3

12. cos 3x +cos x=0 13. cos x+sin125—=l

14. sin x cot x —cos 2x =0 15. 2 sin’x = cosx

16. sin’*x + sin x cos’x —sin x =0

REVIEW EXERCISE

In Problems 1 through 45, find all values of x that satisfy the given equations and
0 <x £2w. Express answers in exact form whenever it is reasonable to do so;
otherwise, give answers correct to three decimal places. Check answers when there is a
possibility that extraneous solutions may have been introduced.

1. 2cosx—1=0 2.2 sin x+V3=0
3.25in%+1=0 4. 1+V3 tan x=0

5. 3sinx—4cosx=0 6. 2tan x—Scotx=0

7. 6sin’x + S5sinx—4=0 8. sin’x + 2 cos?x =2

9. 3sinx—4cosx=95 10. 1 —tan’x =4

11. 2 cos2x—3 cos x=0 12. 2 sin x +cos x +V5=0
13. sin’x —2sin x +3=0 14. sin’x —cos’x + 1 =0

15. 3 cos’x +cos x — 1 =0 16. 2 sin x=V3 sin x + 1

l7.25in’%+cosx—l=0 18. sin 2x = 2 sin x



194 Trigonometric Equations

19. cos 2x =2 cos x 20. sin(%+x)=sin x

21. tan(%’r - x) = tan(— x) 22. cos’x —sin 2x =0

23. sin?x — cos’x =0 24. sin(Sin—x) = 1

25. sin(Sin—lx) = x 26. Sin~I(sin x) = x

27. 3 Coslx+2=0 28. 2cos2x+1=0

29, sin(37"r+x) +cos x=0 30. tan(w + x) —sin x=0
31. V3 sin x—2=0 32. tan2x—V/3 tan x=0
33. 3cosx—x=0 34. 1 +sin x=x

35. cosx=x—-1 36. sin?2x —4 sin xcos x + 1 =0
37. 2 sin? % =1+cos x 38. 1.42 sin2x —sin x =0
39. 3.42 cos2x —cos x =0 40. 2 sin’x — 2 cosx + 1 =0
41. sin’x = 2 — cos’x 42. 1+ Cos7lx=0

43. 1+ Sin~x=0 44. sin x tan x + cos x = |

45. cos x tan x + sin x = 1

In Problems 46 through 50, find all values of x that satisfy the given inequality.

46. Tan—lx > 1 47. 2 Sin—1x <1
48. tan x 21 and —w<x <7 49. 1 +cos x£0

50. 2 CosIx 21



CHAPTER SEVEN

GRAPHS OF
TRIGONOMETRIC
FUNCTIONS

7.1 GRAPHS OF GENERAL SINE AND COSINE FUNCTIONS

In Section 2.7 we discussed graphs of the six basic trigonometric functions.
We saw that the sine and cosine functions have period 27. Thus, in graph-
ing y = sin x or y = cos x, it is sufficient to draw the graph for the interval
0 £ x £2m, and the remainder of the graph will be a cyclic repetition of that
portion.

In applications, one frequently encounters the problem of graphing more
general functions, such as

y=3 sin(Zx— %) or y=-2 cos<7rx + %)

These are particular examples of a general class of functions described by the
equations

y = a sin(bx + ¢),

y=a cos(bx + ¢), (7.1

where a, b, and c are called parameters; that is, they are given real numbers in
any particular case. We make the obvious exceptions that @ = 0 and b # 0.

In this section we are interested in exploring the graphs of the functions
described by Egs. (7.1). We shall do this by considering a sequence of special
cases to determine the role played by each of the parameters in the process of
drawing such graphs.

1. Functions of the Form y = a sin x

We first consider three particular examples and from these we shall make some
general observations concerning the role of parameter a.

195
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Examples

A Draw the graph of y = 3 sin x.

Solution. In order to discuss the graph of y = 3 sin x, we first draw the graph
of y = sin x shown by the broken curve in Fig. 7.1 (see Section 2.7).

It is clear that for a given value of x, the value of y in y = 3 sin x is three
times the corresponding value of y in y = sin x. Thus we get the solid curve
shown in Fig. 7.1.

y

3

2

T -~
\\ | 7z | X
- \\;%’/-/1_ %

-

3

Graph of y = 3 sin x
Figure 7.1 I

A Draw the graphs of y = %2 sin x and y = — 2 sin x.

Solution. To draw the graphs of these two equations, we can follow a pattern
similar to that used in the preceding example. They are shown in Figs. 7.2 and
7.3, where again the broken curve represents y =sin x and the solid curve

corresponds to the given equation. Note. For y = — 2 sin x, the values of y are
y
N I ) ! W .
- ™ 2
N\ 7/ ) "
\\ //_1 - \\ //

Graphof y = % sin x
Figure 7.2
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Graph of y = =2 sin x

Figure 7.3

obtained from the corresponding values of y = sin x by multiplying them by
— 2. The negative sign has the effect of reflecting the y = 2 sin x curve about the
x-axis. i

In these examples we make the following observations: Each curve is
periodic and has the same period of 27 as y = sin x. Each curve oscillates about
the x-axis in a similar fashion reaching its highest and lowest points at fixed
distances from the x-axis. We describe this feature by introducing the word
amplitude to represent the maximum distance of the curve from the axis about
which it oscillates. We say that the amplitudes of y =sin x, y =3 sin x,
y =Y sin x, and y = —2 sin x are 1, 3, %, and 2, respectively.

The properties observed in the above examples hold for all equations of
the type y = a sin x. That is, the graph of y = a sin x oscillates about the x-axis
with a period of 27 and an amplitude of |a|. Thus the parameter a determines
the amplitude.

2. Functions of the Form y = sin bx

Again we consider special cases that will give us some insight into the role of
parameter b.

Examples

& Graph of y = sin 2x.

We first recall that sin(6 + 27) = sin 6 for every value of 6. If we replace 6
by 2x, we have sin(2x + 27) =sin 2x. That is, sin (2(x + m)) = sin 2x for each
value of x. This means that the curve y = sin 2x will repeat itself every = units
on the x-axis. Therefore, it is sufficient to draw the graph for the interval
0 < x £ 7 and the remainder of the curve will be a cyclic repetition of this
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portion. We can get a reasonably accurate graph by using the equally spaced
values of x, as given in the accompanying table:

™ L 3 r 5 3 In
* 0 3 4 8 2 8 4 8 T
V2 V2 V2 V2
V2 Yo o X2 g Y2 o
y 0 2 ! 2 2 2

These are plotted in Fig. 7.4, and the graph of y = sin 2x is drawn.
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Graph of y =sin 2x
Figure 7.4

We see that the graph of y = sin 2x is equivalent to the graph of y = sin 6,
where § = 2x. That is, the graph of y = sin 2x is a sine curve with period = and
amplitude 1. i

A Graph of y = sin(— 3x).
We first use identity 1.4 of Section 4.1, which allows us to replace
sin(— 3x) by — sin 3x, and so our equation is equivalent to
y = —sin 3x.
Next we observe that

sin 3(x + 2%) = sin(3x + 27) = sin 3x

for each value of x. This means that the curve y = — sin 3x will repeat itself on
consecutive intervals of 2w /3 units on the x-axis. Therefore, it is sufficient to
draw the graph for the interval 0 < x <27 /3. We use the set of points given
in the accompanying table to draw the graph shown in Fig. 7.5:
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x 0 ud . T T 5m r Iz 2
12 6 4 3 12 2 12 3

yolo o2 o Y2, V2o V2
2 2 2 2

Thus the graph of y = sin(— 3x) is a sine curve with amplitude 1 and period
2w /3.
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Graph of y = sin (—3x)
Figure 7.5 |

From the above two examples we can draw the following conclusions
concerning the general case. The graph of y = sin bx is a sine curve with period
27/|b| and amplitude 1. Thus parameter b determines the period of the
function described by y = sin bx.

3. Functions of the Form y = sin(bx + ¢).

We consider two examples from which we shall get some insight concerning the
role of parameter c.

Examples

A Graph of y=sin(x + %)

Suppose 0 = x + w/4; first draw the graph of y = sin 6. This is a standard
sine curve with period 2w and amplitude 1, as shown in Fig. 7.6(a). We can
now use this curve to draw the graph of y = sin(x + m/4) by noting that for
each point (f, y) on the y =sin 6 curve, we have a corresponding point
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(x, y)=(60 — w/4, y) on the graph of y = sin(x + 7 /4). That is,

y:sin(x + %) = sin ((0— %) + l"i—) =sin 0.

This is shown in the accompanying table, which gives the value of y for each
of the corresponding values of 6 and x:

T~ T 3 sm m  Im
o1 v 7T 7T T 7T 7 7 ¥
LS T & 3 St 3w In
x|\-7 O 7T 3 4 4 4 2 4
e 2 v o, L2 v,
2 2 2 2

We can now plot the (x, y) points from this table and draw the graph of
y =sin(x + w/4) as shown in Fig. 7.6(b). The solid portions of the curves
shown in Fig. 7.6 correspond to the points given in the table.

We observe that in this example we can draw the graph of y = sin(x + 7 /4)
by taking the standard sine curve y = sin x and moving it = /4 units horizon-
tally to the left. This type of horizontal translation of the standard curve is

called a phase shift. We say that the graph of y = sin(x + 7 /4) has a phase shift
of m/4 units to the left.

/
1 ] [
A m om\ 31 for _Ssmy 3w Imlow 3a\ St f7a
\2/ 2 2 4\“4/'444 3 ry
\ / \ /
e’ 11 o L

) S SRS

Graph of y =sin 6 Graph of y = sin (x + %)
(a) (b)

Figure 7.6 I

& Graph of y = sin(2x — ).
We first write the equation in the form y = sin 2(x — 7 /2) and then assume
6 = x — /2. From our observations concerning Fig. 7.6(b), we conclude that
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the graph of y = sin 20 is a sine curve of period 27 /2 = = and amplitude 1; it
is shown in Fig. 7.7(a). Following a procedure similar to that of the preceding
example, we can draw the graph of y = sin 2(x — 7 /2) as shown in Fig. 7.7(b).
The solid parts of the curves in Fig. 7.7 correspond to the points given in the
table:

L L 3 L Sm 3 I
b 0 g i 8 ) g 4 g
s |z = o om . w sm Ur ok
2 8 4 8 8 4 8 2
y 0 Q 1 ﬁ 0 _V2 -1 —Q 0
2 2 2 2

We note that the graph of y = sin(2x — 7) = sin 2(x — 7/2) is a sine curve
with period 7 and phase shift /2 to the right.

Y 14
m 3n
(51) (¥ 1)
1+ ]r_
/ /
Vo | L4 5 1 | [ A
™ T m m\ 3 [= m Jr 3m w\ St [3n
I\ 4y i 2 4 \ 72 /2 1 4 2
\ \ /
\ / \
\ / \ /
ﬂ\o/rl— 3 1k N s
_T 3r 0
( I ) <4. 1) <%r‘_1> <4, 1)
Graph of y =sin 26 Graph of y =sin (2x — m)
(a) (b)
Figure 7.7 i

From the preceding two examples we conclude the following: The graph of
y =sin(bx + ¢) is a sine curve with period 27/ | b|, amplitude 1, and phase shift
|c¢/b|. Thus the parameter ¢ (along with b) determines the magnitude of the
phase shift.

If the sine function were replaced by the cosine function in each of the
above cases, we would arrive at similar conclusions. We are now in a position
to summarize the properties of graphs of the general sine and cosine curves
y = a sin(bx + ¢) and y = a cos(bx + ¢).
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A. The graph of y =a sin(bx + ¢) is a sine curve with period
27 /|b|, amplitude |a|, and phase shift |c/b| (that is, the curve
y =a sin bx is moved |c/b| units to the right if ¢/b <0, and to
the left if ¢/b > 0).

B. The graph of y =a cos(bx + ¢) is a cosine curve with period
2w/ |b|, amplitude |a|, and phase shift |c/b|.

Example

a) Draw the graph of y = — 4 sin(7 /2 — 2x).
b) Find the domain and range of the function defined by
f(x)=—4 sin(%—— 2x).
Solution.

a) We first write the given equation as y = — 4 sin[-2(x — 7 /4)] and then
use identity (1.4) of Section 4.1, that is, sin (— 0) = — sin 6; we get

y=4 sin Z(x— %—)

This equation is equivalent to the given equation and this is the form we use to
draw the graph. From (A) we see that the graph is a sine curve with period
2w /2 = m, amplitude 4, and phase shift = /4. Thus, we first draw the graph of
»y =4 sin 2x (the broken curve shown in Fig. 7.8) and translate it 7 /4 units to
the right to get the curve we want (shown as the solid curve).

As a check we suggest locating a few ‘“‘key points’ on our graph by finding
pairs of numbers (x, y) that satisfy the given equation. Such points are the

Graph of y = —4 sin (% - 2x)

Figure 7.8
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x-intercepts given by y = 0, that is, sin(7 /2 — 2x) = 0, and the highest or lowest
points given by y = + 4, that is, sin(7/2 — 2x) = + 1. These are given in the
following table and we see that they are points on the solid curve of Fig. 7.8:

L L 3r 5w
o 4 2 4 i 4
y 0 4 0 —4 0

Note. Since sin(w/2 — 2x) = cos 2x is an identity, we could have written the
given equation as y = — 4 cos 2x and used this equation to draw the graph.
b) From the graph in Fig. 7.8 we see that

D (f) = {x|x is any real number},
R(f)={y|-4<y<4}. |

EXERCISE 7.1

In the following problems, give the period and amplitude of the functions defined by the
given equations. Then draw a graph of one complete cycle of the curve.

l. y=2sinx 2. y=—3sinx 3. y=—4cosx

4, y=2cos x 5.y=%sinx 6.y=%cosx

7. y =sin 3x 8.y=sin% 9. y=—2cos 3x

10. y = 3 sin(— 2x) 11. y = —4sin(— x) 12. y = 3 sin(wx)

13. y=-3 cos(% x) 14. y = sin(— 37x) 15. y = — 2 cos(— mx)

16. y = —2sin 4x 17. y =sinx + ) 18. y = sin(2x + 7)

19. y =cos(3x — ) 20. y = —cos(m — 2x) 21l. y=4sin(3x — )

22, y=—3sin(m — 2x) 23.y=2 sin(2x+ %) 24. y:% cos(— 3x + 37‘”)
25. y = —3sin(2rx + ) 26.y=—5-sin(%—7rx> 27. y=—3cos m(2x + 1)

28.y=%sin 1r<3—%> 29.y=-3 cos(27rx—%) 30. y=V2 sin(§+ %)

7.2 GRAPHS OF TANGENT AND COTANGENT FUNCTIONS

In Section 7.1 we discussed in some detail the graphs of the sine and cosine
functions. In this section we treat the tangent and cotangent functions in an
analogous fashion but omit the details and merely give the following summary.
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In Section 2.7 we discussed the graphs of the equations y =tan x and
y = cot x, and we suggest that the student review them at this point. We noted
that the graph of each has a period .

We now give a summary for the general case and then include two
examples to illustrate how such graphs can be drawn.

A. The graph of y = a tan(bx + ¢) is a tangent curve with period 7/ |b].

B. The graph of y = a cot(bx + c) is a cotangent curve with period 7/ |b].

Note. There is no amplitude associated with any of these curves. Also. the
phase shift of each is |¢/b|, although it is not common practice to talk about
phase shift for these curves.

Examples
& Draw the graph of y = 3 tan(2x — 7 /2).

Solution. From (A) we conclude that the graph of this equation is a tangent
curve with period « /2. We first locate a few key points that will allow us to
draw the essential features of the graph. The tangent function has no maximum
or minimum values; therefore we do not look for highest or lowest points.
However, tan 0 is not defined for certain values of 6; these values determine
vertical lines called asymptotes to the curve.*

Therefore, the key values of x that will help us draw the graph are:

a) x-intercepts: These are the values of x for which tan(2x — = /2) = 0; and
so 2x—7/2=0, m, 27,..., —w, —2m,. .. That is, the intercepts are
x=n/4,3n/4, 57/4, ..., —w/4 =3n/4, ...

b) Asymptotes: These are given by the values of x for which tan(2x — 7 /2)
is not defined: that is, 2x — v /2 =7/2, 3x/2, ..., —w/2, =37 /2, ... ; and so
x=7n/2, 7, ...,0,—7/2, ...

We include these key values of x along with a few intermediate values in
the following table. Since the curve has a period 7 /2, the table includes
intermediate values only in the interval 0 < x < w/2 (the U indicates that the
y-value is undefined):

x o x x 3 = Sm 3w In
4 16 8 16 4 16 8

[

y 11U 0 U-724 -3 -124 0 124 3 724 U 0 U

* We say that a line is an asymptote to a curve if its points get closer and closer to the points of
the curve. For example, from Fig. 7.9 we see that the line x = 7/2 is an asymptote to the given
curve. Similarly, x =37/2, x=57/2, ..., x=0, x=—=/2, ... are all asymptotes to the given
curve.
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Figure 7.9

We now plot these points and draw the graph shown in Fig. 7.9.

Note. Since tan(2x — 7/2) = — cot 2x is an identity, then the given equation is
equivalent to y = — 3 cot 2x and we could have used this equation to draw the
graph. |

@ Draw a graph of y=2 cot(%).
Solution. Following a pattern similar to that of the previous example, we first
locate some key points.

a) x-intercepts: These are the values of x for which cot (x/2) = 0; that is,

x2=x/2,3%/2,...,—7/2,-3x/2,... Thus x=m, 3m, ..., —m, —3m, ...

b) Asymptotes: These are given by values for x for which cot (x/2) is
undefined; that is, x/2=0, =, 27,..., —m, 2w, ... Thus x =0, 27, 4=, .. .,
—2mw, —4m, ...

From (B) we find that our curve is a cotangent curve with period
m + Y2 = 2m. Next we make a table of (x, y) values that includes key points and
some intermediate points for 0 < x < 2x. Then these are plotted and the curve
is drawn, as shown in Fig. 7.10 (here again, U indicates that the y-value is
undefined):

Cor T ox St In
x21r7r04247r42421r37r47r

y | U 0 U 48 2 08 0 -083 -2 -483 U 0 U
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y
: |
| ! |
| | |
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:721r - 0 T i21r 3r i 4n
| | |
| I |
| | |
[ I I
Graph of y = 2 cot (% x)
Figure 7.10 |

EXERCISE 7.2

In the following problems: a) determine the period of the given function; b) make a
table of x, y values of the function using selected key values of x; c¢) draw a graph of
the given function.

L y=3tanx 2. y=—3tan2x 3. y=—2cotx

4. y=3cot X 5.y=2tan(—%) 6.y=—3tan(%x)
y=—4 tan(2x + %) 8. y=—3 cot(2x—%)

9. y=2 tan(mx — %) 10. y=% cot(% x—)

1. y=v3 tan 7r(x+%> 12. y=3 tan(2x + 1)

7.3 GRAPHS OF SECANT AND COSECANT FUNCTIONS

In this section we consider the graphs of functions of the type described
by y=a sec(bx + ¢) and y=a csc(bx + c). The graphs of y =sec x and
y = csc x were discussed in Section 2.7; we suggest that the student review
them at this point. Repeating the pattern of Section 7.2, we state the following
conclusions:

A. The graph of y = a sec(bx + ¢) is a secant curve with period 27/ |b|.

B. The graph of y = a csc(bx + ¢) is a cosecant curve with period 2w/ |b|.
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Note. We do not associate amplitude with these curves. Also in each case we
can use |c/b| to describe a horizontal translation of a secant or cosecant
curve, but it is not common practice to talk about phase shift for these curves.

Examples

& a) Draw a graph of y = 2 sec(wx — 7 /2).
b) Determine the domain and range of the function described by

fix) =2 sec(rx — w/2).
Solution.

a) The graph of this equation is a secant curve with period 27 /7 = 2.
Therefore, it is sufficient to draw the graph corresponding to the inter-
val 0 <x <2. We first determine some key values of x that will give
the essential features of the graph, that is, the x-values for which
sec (mx —w/2)=+ 1 or is undefined (U). We include these and a few
intermediate values in the following table:

1 1 3 S 3 7

x 0 4 2 4 ! 4 2 4 2

y Uu 2v2 2 22 U 22 -2 -2/2 U
y ' i N
| B
| B I A !
I | I\ /1
I | by /]
I 2t I I e’ I

| L) 3.2

| 1 <2’ ) | 3 I (2 ) I
| 2 | 2 [ I

% | 1 I 1 1 1 f X
—1 0 1 1 2 3 3
L ? ! 3 I ’ I
| (-2:-2) , (G- |
el I ! |
| /! \“ | | |
|/ \ I | |
| / \[ ! | |
[ | | |
H \ I I |

Graph of y = 2 sec <1rx - %)

Figure 7.11
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We plot the points from this table and then draw the graph, as shown in Fig. 7.11.
The solid portion of the curve indicates a complete cycle and the broken vertical lines
are asymptotes for this curve.
b) From the graph in Fig. 7.11 we see that the domain and range of f are given by:
D (f) = {x|x is any real number and x is not an integer}.
R(f)={yly$-2 or y22}
Note. Since sec(rx — w/2) = csc wx is an identity, the given equation could have been
written in equivalent form as y = 2 csc wx. We could have used this equation to draw
the graph. i

EXERCISE 7.3

In each of the following problems: a) determine the period of the function; b) make a
table of x, y values using key values of x, as suggested in the example of this section;
c) draw a graph of the given function:

1. y=3secx 2. y=—2secx 3. y=—3sec2x

4. y=4csc 3x 5. y =csc(37x) 6. y =2 sec(2wx)
- i - r

7.y=3 csc(27rx + 5 ) 8. y=4 sec(wx ) )

9. y=-2 sec(2x— %) 10. y =2 sec(3x — )

7.4 GRAPHS OF TRIGONOMETRIC AND ALGEBRAIC FUNCTIONS

In the preceding three sections we considered graphs of trigonometric func-
tions individually. In this section we discuss the problem of drawing graphs of
equations that involve algebraic functions as well as trigonometric functions.
The technique employed is best illustrated by examples.

Examples
A Draw a graph of y =2 + sin x.

Solution. We first draw a graph of y = sin x (call it ¢,). This is shown by the
broken curve in Fig. 7.12. Since the y-values for the curve we want are greater
by 2 units than the corresponding y-value on ¢, it should be clear that our
curve can be obtained by moving ¢, two units vertically upward. Thus we
obtain the curve shown in Fig. 7.12.
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Graph of y =2 +sin x
Figure 7.12 l

A Adding ordinates. Draw a graph of y = x/3 + sin x.

Solution. A direct approach would be to make a table of corresponding values
of x and y that satisfy the given equation, plot these points, and then draw the
graph. This is essentially what we are going to do, except that we shall draw
two auxiliary curves and use them to draw the graph of the given equation.

Let C, denote the graph of y, = x/3 and C, the graph of y, =sin x, as
shown by the broken curves in Fig. 7.13.

y

Graph of y =§ +sin x
Figure 7.13
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It is clear that for each x, the corresponding value of y is the sum of y, and
y, for that value of x. And so we geometrically add the corresponding
ordinates of C, and C, to get the ordinates of the graph for the given equation.
This is illustrated in Fig. 7.13 for x = x,; the corresponding value of y = y, is
obtained by adding a and b. We also make an observation concerning the key
points labeled 4, B, C, D, and F in Fig. 7.13. If we take the values x = — 7, 0,
w, 2w, 3m,then in each case the corresponding value of y, = sin x is zero, so
the value of y is y, = x/3. Thus the curve passes through points on the line
y, = x/3 given by (kw, kw/3), where k is any integer. That is, the graph of
y=x/3 +sin x is a curve winding around the line y =x/3, as shown in
Fig. 7.13. |

& Multiplying ordinates. Draw the graph of y = x cos x.

Solution. In a manner similar to that of Example 2 we first draw the graphs of
y,=x and y,=cos x on the same system of coordinates, as shown by the
broken curves in Fig. 7.14.

We see that for each x, the corresponding value of y is the product of y,
and y, for that value of x. We can locate some key points on the curve by
noting that:

1. Whenever the curve y, = cos x crosses the x-axis, the corresponding value
of y, is zero; therefore y = y,- y, = 0. Thus points given by x = (2k — )z/2
(where k is any integer) and y = 0 will be on the desired curve, as shown in
Fig. 7.14.

D: (2w, 27) 7

Graph of y = x cos x

Figure 7.14
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2. For values of x such as —w, 0, =, 2w, the corresponding values of
y,=cos x are 1 or — 1, and so the corresponding points on our curve will be
on the line y, = x or y', = —x. These points are indicated by 4, B, C, D in
Fig. 7.14. Thus the graph of the given equation oscillates between the lines
¥y, =x and y', = —x, as shown in Fig. 7.14.

EXERCISE 7.4

In the following problems, draw the graph of the given equation.

l.y=1+sinx 2.y=2—cos x 3.y=%+25inx
4. y=2x +sinx 5. y=2x+cos x 6. y=x—2cos x
7. y=sin x — 1 8 y=2cosx—-3 9. y=xsinx

10. y =2x cos x 11. y=—x cos 2x 12. y = x sin(— 2x)
13. y=\/; sin x l4.y=\/}+sin x 15. y =Vx + sin(- x)

16. y =V x - cos 2x

7.5 THE USE OF IDENTITIES IN GRAPHING

There have been several instances in this textbook where our approach to
solving problems involved a sequence of steps in which the given problem was
transformed into an equivalent one with a known solution. In this section we
discuss the problems of drawing graphs of equations in which trigonometric
identities are used to transform the given equation to an equivalent one whose
graph may be familiar to us.

Examples
A Draw the graph of y = (sin x + cos x)2.
Solution. We first write the given equation in the following equivalent forms:

y =sin’x + 2 sin x cos x + cos?x (by algebra)
=1+ 2sin x cos x (by (1.9))
=1 + sin 2x. (by (1.18)).

We recognize the final form as an equation of the type discussed in the
preceding section. It is a sine curve (of period 27 /2 = =) that winds about the
line y = 1, as shown in Fig. 7.15. |
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2

NS o
INH

Graph of y = (sin x + cos x)2

Figure 7.15

& Draw the graph of y = 3608 2x 3sin2x - c052x'

Solution. The given equation can be written in the following equivalent forms:
y= 3c08 2x + (sin®x — cos?x) (by algebra),

(by (1.19)).

3c0s 2x — cos 2x

Therefore, the given equation is equivalent to y = 3°=1 and its graph is the
line y = 1, as shown in Fig. 7.16.

)
T

1

0

Graph Of_l' = 3cos 2x. 3(sin3x - cosz.\-)

Figure 7.16 l

A Draw the graph of y =sin x + V3 cos x.

Solution. In this problem we follow a procedure similar to that used in Section
6.3. That is, we factor from the right-hand side,

V1IE+ (V3)2=V4a=2

and so
y= 2(—21— sin x + \/73 cos x).
We now replace 1/2 by cos (7/3) and V3 /2 by sin (7/3) and get

: ™ 4 ™
y=2(sin x cos 3 +©0s x sin T)
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By identity (I.12) we have
™

y=2 sin(x + T)
We recognize uus as a type of equation discussed in Section 7.1. Thus the
graph of the given equation is a sine curve with period 2=, amplitude 2, and
phase shift = /3. This is shown in Fig. 7.17.

5w } w4
(-%-) (%)
Graph of y =sin x ++v/3 cos x
Figure 7.17 I

A Draw the graph of y = cot(Cos—l x_)

V1 + x?
Solution. Let
§=Cos! X __| then cosf= —X .
V1 + x? V1+x?

Since Cos™! is the principal-value inverse cosine function, the angle # must
lie within 0 £0 < 7; so we draw @ in the first quadrant (if x > 0) or in the
second quadrant (if x < 0) (see Fig. 7.18). In either case, cot # = x, therefore
the given equation is equivalent to y = x. Thus the graph is the straight line
shown in Fig. 7.19.

[¥]

5 1 +x

Figure 7.18
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2k

Graph of y = cot Cos™! X >
1+x?2

Figure 7.19 i

EXERCISE 7.5

In the following problems: a) determine the domain of the given function; b) draw a
graph; c) state the range of the function.

1. y =(cos x — sin x)? 2. y = cos*x — sin‘x

3. y=2cosxtan x 4. y=sin x cos x

5. y=2sin%x cot x 6.y=\/§ sin x — cos x
7. y=sin x + cos x 8. y=sin x—V3 cos x
9. y=cos x —sin x 10. y = (1 —tan x) tan 2x
11. y = (1 — 2 sin’x) sec 2x 12. y= SCOSZX- 3sm2x
13. y =cos 2x —V/ 3 sin 2x 14. y = cos’x + cos2x tan’x
15. y = cos(Cos™lx) 16. y = sin(Sin~'x)
17.y=4sinxcosx.2—sin2x 18.y:20082%
19. y= tan(Sin“l _x_) 20. y = cos <Sin—l ﬁ)

V1 +x? X

REVIEW EXERCISE

In the following problems, the given equation defines a function. a) Is this function
periodic? If it is, find the period; b) state the domain of the function; ¢) draw a graph;
d) use the graph to give the range of the function.



11.

13.

15.

17.

19.

. y=2cos x

.y=1+tan x

. y=1—cos x

.y=3cotx

. y=6sin x cos x
y=—2sin2x
y=X+COS X
y=Vsinx—1
y =sin 2<x—%
y:sin(Sin—lx)

)

10.

12.

14.

16.

18.

Review Exercise 215

. y=3sin(—x)
. y=4sin 2x
.y=sin(x+ %)
. y= |sin x|
y=—2secx
y = cos’x — sin’x

y=2x-sinx
y=sin x + cos x

y =tan(2x + )

. y = Sin~I(sin x)






CHAPTER EIGHT

COMPLEX NUMBERS

8.1 INTRODUCTION

The system of real numbers is essential in the development of pure mathematics
as well as applications of mathematics. However, even a simple problem, such
as finding the roots of the equation x> + 1 = 0, has no solution in the set of real
numbers. To remedy this, we complement real numbers by adding the so-called
imaginary numbers. The union of the real numbers and imaginary numbers is
called the set of complex numbers. The system of complex numbers is of great
importance in physics, engineering and abstract mathematics. In this chapter
we shall use trigonometric functions to aid us in dealing with complex
numbers.

In algebra courses the student has studied the basic properties of real
numbers relating to the four binary operations (+, —, x , +) and to the order
relations ( < ) and ( > ). When the imaginary numbers are introduced into the
system, it is necessary to investigate the properties of addition, subtraction,
multiplication, and division as they apply to complex numbers. In the system
of complex numbers it is not possible to define an order relation similar to that
of the real numbers; that is, we do not talk about one imaginary number being
smaller or greater than the other.

In this chapter we discuss some of the elementary properties of complex
numbers and focus most of our attention on operations with imaginary
numbers since everything we have already learned about real numbers will still
be true within the system of complex numbers.

We define imaginary numbers in terms of real numbers as follows:

If a and b are real numbers (b # 0) and i/ is a new symbol defined by
the property i’ = — 1, then a + bi is called an imaginary number.

217
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We call a the real part and b the imaginary part of a + bi. If a = 0, then we say
that bi is a pure imaginary number. We write i = /— 1 and apply ordinary rules
of algebra in working with complex numbers. Examples of imaginary numbers
are: 3+ 4i, 52, V3+1i, —17, =2, 1/m—((1+V5)/2)i

We can think of the set of complex numbers as all numbers of the form
a + bi, where a and b are any real numbers; a + bi is called standard form of a
complex number. If b=0, we have real numbers, while if b#0 we have
imaginary numbers. Suppose a, b, ¢, d are real numbers. We state the following
definitions related to two complex numbers a + bi and ¢ + di:

Equality: a+bi=c+diifandonly if a=c and b=4d.
Addition: (a+bi)+(c+di)=(a+c)+(b+di.
Subtraction: (@a+bi)—(c+di)=(a—c)+ (b—d)i.
Multiplication: (a + bi) - (c + di) =(ac — bd) + (ad + bo)i.
Division: (a+bi)+(c+di)y=09¢c+bd | bc—ad i,
c+d? c+d
where ¢ and d are not both zero.

The definitions of equality, addition, and subtraction appear to be natural,
while the last two need some explanation. They can be deduced by thinking of
a + bi and ¢ + di as algebraic expressions and applying the familiar rules of
algebra, except that we replace i2 by —1. For example, the definition of division
comes from the following:

a+bi_(a+bi)(c—d) _ ac+ bci— adi — bdi*
c+di (c+di)(c—di ¢t — d?

_ac+ bci—adi + bd _ (ac + bd) + (bc — ad)i
+ & cc+d

_ac+bd | bc—ad;
ct+ d cA+d

Actually this is the pattern we shall use in dividing two complex numbers,
rather than substituting directly into the above definition.

In the above division process the first step involved multiplication of
numerator and denominator by ¢ — di. We call ¢ — di the complex conjugate of
the number ¢ + di. We shall use the following notation:
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If z=x + iy, where x and y are real numbers, then the conjugate of z
is denoted by z; that is z=x — iy.

1. Square Root of a Complex Number

The square root of a nonnegative real number b is defined as a number x that
satisfies x2 = b. For example, for \/ 4 we solve x? = 4; there are two numbers
(x =2 and x = —2) that satisfy this equation. We choose 2 as the principal
square root and write V4 =2. In a similar fashion we can talk about the
square root of any negative number. For example, if vV—4 =z,

then z2=—4. There are two complex numbers that satisfy this equation:
z=2iand z=—2i. We choose z=2i as the principal value and write
V—4=2i

This leads us to the definition:

The square root of a real number is given by:
1) if @ 20, then V a is a nonnegative number whose square is a;
2) if a <0, say a=—b, where b> 0, then Va=V—b=Vbi.

As illustrations we have: V9 =3; V=16 =V16 i =4i; V—2 = V2.

In Section 8.5 we shall describe a technique that can be used to evaluate
square roots of complex numbers. In this text we are not interested in defining
principal-value square roots of imaginary numbers; this is a topic of study in
a course on complex variables. However, as one more example we consider the
problem of expressing Vi in standard form as a complex number.

Let z=V/i and so z2=i. Suppose z=x + iy, where x and y are real
numbers. We want x, y such that

(x +iy)?=i.
This is equivalent to
x2—y? + 2xyi = i.
From our definition of equality of two complex numbers we have
x2—y*=0 and 2xy = 1.

Solving these two equations simultaneously we find x =1 /v 2, y=1 vV 2or
x=—-1/V2, y=-1/V2. Thus

B

2= 41 and z—-—-L_

V2 oo V2 V2 V2
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are possible values of V7. We can take the first answer as the principal value
and write

Vi = 0 W S
V2 V2
2. Quadratic Formula

In algebra the student learns that if a, b, ¢ are real numbers and a # 0, then the
quadratic equation ax? + bx + ¢ = 0 has two roots given by

x_—bi\/bz—4ac
_T.

It is possible to show that this result can be extended to allow a, b, ¢ to be any
complex numbers. If b2 — 4ac is an imaginary number, then we encounter the
problem of determining the square root of such a number. We shall see how
this can be done in Section 8.5.

Examples

A Write the following expressions as complex numbers in standard form:

a) 3+4i)+(5-238) b) (2—-3))—(—4+1i)
) B3-4HR2+1) d) (1-3)=+ 3+ 4)
Solution

a) B+4i)+(5-8)=(B+5 +@—8)i=8—_4i
b) 2-3)—(—4+i)=Q+4) +(=3-1)i=6—4i
) 342 +i)=6+3i—8i—42=6—5i+4=10—5i

1—3i (1-3)3—4) _ 3—13i+ 127

ODA=30 =G+ =3Tg=GTmG_a ~ 9-16
_3-13i—-12 _-9-13i__9 13
9+ 16 25 25725 I

A If f(z) =2% + 222 — 3, find f (1 + ).

Solution

fA+D)=0+)P+20+)*=3=1+3i+32+P+2(1+2i+i)-3
=1+3i—3—-i+2+4i—2-3=-5+6i

Note that we used the familiar rules of algebra, treating i as though it were a

variable and replacing i* by —1. ]

A If z=2 -, find
a) z b) z-z ) z/z
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Solution
a)z=2+1i

b)) 2.2=Q-)Q+i)=4—-1P=4+1=5

c)_§_=2+i _C+D2+0) _4+4i+02 _4+4i—-1 =—3-+ii
z 2—i (2-D2+)) 4—j? 4+1 55 ]
A Find the roots of 2z2 + 2iz— 1= 0.
Solution. We apply the quadratic formula and get
o —2tVQi)-4-2-(-1) _ -2i+v-4+8 1., 1
2.2 4 S22
Therefore the roots are: z = %- -%-i and z=— -%—— %i. i
& Evaluate (2 + V-3)(2 — V-3).
Solution
Q+V=3)2-V=3)=02+V3H2-V3i
=22 (V3ip=4-32=4+3=7. |

& Is z=1+V3i a zero of the polynomial P(z) = z2 — 2z + 47

Solution. To say that a number is a zero of the function P(z) is equivalent to
saying that it is a root of the equation P(z) =0. Thus, we are asking “Is
z=1+V3i a root of the equation z2— 2z + 4=0?" To answer this, we
evaluate

Pl+V3D=(1+Vv3i)3>-21+VvV3i+4

and see whether the result is equal to zero:

PA+V3i) = 1+V3i)-21+V3i)+4

Q+2V3i+320)-2-2/3i+4
1+2V3i-3-2-2/3i+4

(1-=3-2+4)+QV3-2/3)i
0+0i=0.

Il

Il

Therefore, the answer to the given question is YES. |
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EXERCISE 8.1

In the following problems express answers in the form a + bi, where a and b are real
numbers.

1. Evaluate the following:

a) i b) i c) i d) i’

e (-9 ) (i g) (- h) (=Y
2. Evaluate the following:

1 3+ . . 1

a) - b) — c) 2i* — 320 d) o
3. Evaluate the following:

a) V9-V16 b) V9 V=16 ©) V—9v-16

4 VO V9 o V=9 f V=9

V—-16 V16 V-16

4. If z =1 — i, evaluate the following:

a) z? b) 21—2 c) 3z2 -2z

dz .z e) (z) f)z+z
5. If f(z) = 2 — 3z — z?, determine the following: . |

a) f(~2) b) £ (1 +1) ) f(\/_ - )
6. Show that 2 2

a)(_1_+l_i>2=j b)<1_—1_i>2=_i

V2 V2 V2 V2
7. Show\/tllat /3
3 1 .)3_. (1 3 .)3__1
a) (—2 +71 =1 b) Syt i) =

8. Find the complex numbers that might possibly be used for v— i. That is, find the
complex numbers z such that z2 = —i.

9. Express the following in standard form a + bi:

a) V=4 + (3-5/-4) b) (V=48 +2)-v=27 o) V=8 (2+V=2)

- 1 V-2
d) (1 -8 )(l—-v-38 € f) ————
) (V=) -vE) 0 ey
10. Determine the roots of the given equations:
a) 22-3z+4=0 b) 3z22+z—-1=0 c)z2+16=0

11. Determine the roots of the given equations:

a) 222 -3iz+2=0 b) z2+2iz+3=0
c)iz2—3z+i=0 d) 2iz2+z+i=0
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12. If z = x + iy (where x and y are real numbers), prove that
a) the real part of z is equal to (z + Z)/2
b) the imaginary part of z is equal to (z —z)/2

13. Determine real numbers x and y that satisfy the equation
x=3y—0CBx+yi=-T+1i
14. Solve the equation z — 3z =1+ i for z. (Let z= x + iy, then find x and y.)

15. Determine all pairs of real numbers x, y such that:
x2+2x+pi=2+y+(8—x)i

16. a) Is 1 + i a root of the equation z2 —z+ 1 —i=0?
b) Is 1 —i a root of the equation given in (a)?

17. Is —3i a root of the equation 2z° — z? + 182 —9=0?
18. Is 1 —V/5i a zero of the polynomial z* — z? + 4z + 6?

19. a) Is | —i a root of the equation z3 — 3z + 2z — 1 —i=07?
b) Is 1 + i a root of the equation given in (a)?

20. a) Is 1 +V/ 3i a root of the equation z* — 32% + 6z — 4 = 0?
b) Is 1 —V/ 3i a root of the equation given in (a)?

8.2 GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS
The set of complex numbers C is given by
C = {x + iy|x and y are real numbers and i = — 1}.

We can establish a correspondence between C and the set of points in the plane
in a natural way: Each complex number x + iy we associate with a point
(x, y) in the plane and vice versa; we denote this correspondence by
x + iye(x, p).

In this setting we refer to the plane as the complex plane and label points in
it either by (x, y) or by x + iy. The real numbers correspond to points on the
x-axis (x & (x, 0)), while the purely imaginary numbers correspond to points
on the y-axis (yi < (0, y)). Thus, the x-axis is called the real axis, while the
y-axis is referred to as the imaginary axis. Some examples of this correspon-
dence are given in Fig. 8.1.

In some problems it is useful to associate each complex number with a
geometric vector, as shown in Fig. 8.2(a) where the vector has the origin as its
initial point and x + iy as its terminal point. Other examples of this correspon-
dence are illustrated by Fig. 8.2(b).
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Imaginary axis
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—3+3i i
———3it
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-2 | |
|
- —— —¢
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Figure 8.1
' —2+4i ?
x +iy |
: _____ 4+2i
| |
> [ - { >
" 3—i
(a) (b)
Figure 8.2
4
(a +bi) + (c +di)
b+d i Rt
di=————- c+di // :
/
7, _}
|a+_bl____ |
| 1 >
a atc "
Figure 8.3

Representation of complex numbers by geometric vectors provides us with
a convenient geometric interpretation of the sum of complex numbers. The
sum (a + bi) + (¢ + di) is associated with the diagonal vector of the paral-

lelogram depicted in Fig. 8.3.
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Examples

A For each of the given complex numbers show the corresponding point

(x, y) in the complex plane. Also, draw the corresponding geometric vector.
a) 5+ 3i b)—%+3i c) ™ —2i d) 3i

Solution (See Fig. 8.4)

5
(-33) .
5 . s
—5t3i _(3(:_3)_ _____ 5+ 3i
!
m—2i
(m, -2)
Figure 8.4 |

A Illustrate each of the following by a diagram using geometric vectors:
a) +2)+(1+3) b)y(I1—-4)+(=2+i9) ¢c)B+i—(1+30)
Solution. These vectors are shown in the diagrams of Fig. 8.5, where in (c) we
use
B+D)-(1+3)=@+)+(—1-230).

1 +3i

~1 -3k “1-3 [
1 — 4

(a) (b) (©)
Figure 8.5 I
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EXERCISE 8.2

In Problems 1 through 8 give the ordered pair of real numbers associated with the given
complex number:

1. 3+5i 2. 3+ 3. 4i 4. V5

5. —V3+2 6. 1—mi 7.0 ) _l_l_
—1

In Problems 9 through 12 give the complex number associated with the given ordered
pair:

9. (0, —4) 10. (5, 2) 11. (—4,-3) 12. (V2,-V3)

In Problems 13 through 16 illustrate the given complex number by drawing the
associated geometric vector:

13 —1+3i 14 —4-5i 15, —V2+mi 16. 1__17
In Problems 17 through 20 illustrate geometrically the given sum or difference:
17. 2 +3i) +(5+10) 18. (1 — 3i) + (4 + 2i)
19. (4 —i)— (3 + 5i) 20. (2 —3i) = (5 + 2i)
21. If z = 3 — 4i, on the same set of axes show the points associated with the following
expressions:
a) z b) —z c) z
d) 2tz z2— 2z f =
) =5 €) —=— ) Vz-zZ
22. If z=—1 + i, give the ordered pairs corresponding to
2 )2 1 2 1
a) z b)(z) c) p d) z22+z+

23. If z=-1/2 + (\/3/2 )i, draw the geometric vector associated with

a) z b) 22 ) L d)y Vz-z
(z)
24. If point P(x, y) is associated with the complex number x + iy, then state the
conditions on x and y to describe the following:

a) P is on the positive real axis b) P is on the imaginary axis
c) P is in the first quadrant d) P is to the right of the imaginary axis
e) P is below the real axis

8.3 TRIGONOMETRIC FORM OF COMPLEX NUMBERS

We continue the development of the preceding section where complex numbers
were represented as points in the complex plane or as geometric vectors.
Suppose x + iy corresponds to point P: (x, y) in the complex plane, as shown
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P:(x +iy)
(x, »)
I
Iy
I
0 d
0| X
Figure 8.6

in Fig. 8.6. Let r be the distance from the origin O to P and 6 be the directed
angle between the positive real axis and OP. We see that

x =rcosf and y =rsin 6,

therefore

x + iy =r(cos 6 + i sin 6).

We call r(cos 0 + i sin 6) the trigonometric, or the polar form of a complex
number z whose rectangular form is z = x + iy. The real number r is given by

r=vx?+y?;

it is called the absolute value, or the modulus, of z and is frequently denoted by
r=|z|. Since r is the length of the geometric vector associated with z, it is
sometimes referred to as the length of z.

The angle 0 is called the argument of z and is denoted by 6 = arg z. It is
determined by the two equations

sin  =—2 and cos =—2=X
Vx?+ y? Vx2+ y?

Note that angle 6 is not unique, since we can add or subtract any integral
multiple of 27 (or 360°) to or from the given 6 and use the resulting angle in
place of 6. The smallest nonnegative angle that can be used for 6 is sometimes
called the principal argument of z. Also note that
z-Z2=x+P)x—p)=x2—i?=x2+py*=1r

and so

r=Vz-z.

In the special case where P is the origin (0, 0), we take r = 0 and do not
specify any particular corresponding value of 6.

Representing complex numbers in trigonometric form is particularly useful
in problems involving multiplication or division.
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1. Multiplication of Complex Numbers in Polar Form

Let z, = r(cos 0, + i sin 0,) and z, = r,(cos 0, + i sin 6,) be complex numbers
in polar form. We now consider the product z, - z,:

z,-z,=r(cos 8, +isinb,)-r,(cos 0, + 1 sin 6,)
= r,r,[(cos 8, cos 8, — sin 8, sin 8,) + i(sin 6, cos 6, + cos 0 sin 6,)]
= r,r,[cos(0, + 8,) + i sin(d, + 6,)],

where in the last step we used identities 1.12 and 1.14 of Chapter 4. Therefore,

z,-z,=rrcos(l, + 0,) + i sin(f, + 8,)]. 8.1)

Using Eq. (8.1), we can give a geometric interpretation of the product of
two complex numbers: z, - z, is a complex number of length 7,7, and argument
6, + 0,. We can state this as follows:

|z,2,| = |z,| - |2,] and  arg(z,z,) = arg z, + arg z,. 8.2)

Note. The fact that we add arguments when we multiply complex numbers
suggests that a complex number can be expressed in exponential form. This is
indeed the case. In advanced mathematics courses one learns that z can be
expressed as z = r- €', where e is a special irrational number e = 2.71828. . .
(see Chapter 10, p. 277).

2. Division of Complex Numbers in Polar Form

Let z, and z, be complex numbers expressed in polar form as above (and
z,#0). Then

I L [cos(8, — 0,) + i sin(6, — 6,)]. (8.3)
Z; r,

The proof of Eq. (8.3) is similar to that of Eq. (8.1) and is left to the student as
Problem 1 of Exercise 8.3.
From Eq. (8.3) we see that the modulus and argument of z,/z, are given by:

2,

23

— |zl l and arg(%) = arg Z1 —_ arg 22. (8'4)

|z, 2
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Examples

In the following examples let

zy=1+i, z,=V3-i, z,=-2-2/3i,
& Express in polar form:

a) z, b) z, <) z,
Solution

z,=—3+4i

d) z,

a) r,=|z,| =V12+ 12=V2 and 6, = v/4 = 45° (see Fig. 8.7,a).

Therefore,

z,=V?2 (cos 1"—-+isinl)

4 4

or z,=V2 (cos 45° + i sin 45°).

b) r,= |z, =V(V3)* + (- 1))=V4=2 and 6,=117/6=330° (see

Fig. 8.7(b)). Thus

z,= 2(cos %—7—' + I sin l%’r) or
¢) From Fig. 8.7(c) we see that
zZ,= 4(cos 4—; +i sin ‘%’) or

d) From Fig. 8.7(d) we see that

z, =2(cos 330° + i sin 330°).

z,=4(cos 240° + i sin 240°).

6, = Cos™(~3)=22143 = 126.87°.

zp=1+i
330° 4 V3
|
5 TP
|1 3 :*1
|
45° A I, =V3 i
1
(a) (b)
s 240° Z4:73+4f
N
T |
| I\
—2\/'3—| 4|
WA | 126.87°
L
z3=-2-2V3i -3
© (d)

Figure 8.7
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Therefore,
z, =5(cos 2.2143 + i sin 2.2143)

or
z,= 5(cos 126.87° + i sin 126.87°). |

& Find these expressions in polar and rectangular form:
a) z,-z, b) z,-z, C) z,-2,-24

Solution. In each case we use Eq. (8.1).
a) z,-z, =(V2)(2)[cos(45° + 330°) + i sin(45° + 330°)]
=2V 2[cos 375° + i sin 375°]
=2V2 (cos 15° +i sin 15°)  (polar form)
=273+0.73i (rectangular form).

b) z,-z, = (4)(5)[cos(240° + 126.87°) + i sin(240° + 126.87°)]
= 20(cos 366.87° + i sin 366.87°)
= 20(cos 6.87° + i sin 6.87°) (polar form)
=19.86 + 2.39 i (rectangular form).

) z,-2, -z, = (V2)(2)(4) [cos( lé” 4;) + i sin (l"i- + lé—" + 477")]
= 8\/_(cos M+z sin 4—11)

12
=8V 2(cos 1175" + i sin %’—r—) (polar form)
=-293-1093i (rectangular form). |
A Evaluate these expressions in polar and rectangular form:
a) 21 b) 22
Z, 24
Solution. In each case we use Eq. (8.3).
a) % = [cos(45° — 330°) + i sin(45° — 330°)]
2

[cos(—285°) + i sin(— 285°)] (polar form)

I

4§ﬂ§ﬂ§

[cos 285° — i sin 285°]

=0.18 + 0.68i (rectangular form).

b) 2 = 4fcos (B —22143) +i sin (- 22143)]

- %[cos(l.9745) +1i sin(1.9745)]  (polar form)
=—0.31+0.74i (rectangular form). |
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A Express 3(cos 60° — i sin 60°) in polar form.

Solution. The polar form of a complex number is r(cos 6 + i sin ), where
r 20. The given number is not in polar form because of the minus sign.

However, since cos(— 60°) = cos 60° and sin(— 60°) = — sin 60°, we can write
3(cos 60° —i sin 60°) = 3[cos(— 60°) + i sin(— 60°)].
We can also write this as 3(cos 300° + i sin 300°). |

A Express —4(cos 120° + i sin 120°) in polar form.

Solution. The given number is not in polar form because the factor — 4 is not
an acceptable value for r (r 2 0). We can use identities

cos(180° + 8) = —cos 0 and sin(180° + #) = —sin 0,
and so for 6 = 120° we get
—cos 120° = cos 300° and —sin 120° = sin 300°.
Thus
—4(cos 120° + i sin 120°) = 4(cos 300° + i sin 300°). |

& Express 3(sin 60° — i cos 60°) in polar form.
Solution. Using
c0s(270° + 0) = sin 0 and sin(270° + ) = — cos 0,
we get for 0 = 60°:
sin 60° = cos(270° + 60°) = cos 330°

and
—cos 60° = sin(270° + 60°) = sin 330°.
Thus
3(sin 60° —i cos 60°) = 3(cos 330° + i sin 330°),
and this is in polar form. |

EXERCISE 8.3

In problems of this exercise give answers in exact form whenever possible; otherwise use
a calculator and state the results in decimals (two places for degree measure, four places
for radian measure).
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1. If z, and z, are complex numbers expressed 1n polar form, prove that

2= Difcos(8, —0,) + i sin(6, —8,)].
zZ rZ

2. Express the given numbers in polar form:

a) -3 b) 1—i ) —i d) 1+V3i
3. Express in polar form

a)w b) 3—4i c) i°—1i d) 12-5i
4. Express in polar form

a) —3-3i b)sP-2i-3 o L d) i—li2

5. Express in rectangular form
a) 3(cos 45° + i sin 45°) b) 5(cos 180° + i sin 180°) c) cos 43—” +1i sin ‘—*31"-

6. Express in rectangular form:

i . T o s s
a) cos(—?) + 1 sm(—?) b) cos 450° + i sin 450°
¢) 3(cos 137° + i sin 137°)

7. Determine why the given number is not in polar form. Then express it in polar

form:
a) 4(cos 45° — i sin 45°) b) — 3(cos 300° + i sin 300°)
5T jsin 2%
c) —cos 5 + i sin 6
8. Express in polar form:
a) 3(cos T +isin %) b) — S(cos 40° — i sin 40°)

¢) —cos 120° — i sin 120°
In Problems 9 through 12 express answers in:
a) polar form b) rectangular form
9. (cos 15° + i sin 15°) . (cos 30° + i sin 30°)
10. 4(cos 47° — i sin 47°) - (cos 43° — i sin 43°)
Hint. Write each factor in polar form first and then use Eq. (8.1).

1 8(cos 150° + i sin 150°) 12, Sos 50° + i sin 50°
" 4(cos 30° + i sin 30°) " cos 80° — i sin 80°
In Problems 13 through 15, let
z, = 3(cos 210° — i sin 210°) and z, = 6(sin 60° + i cos 60°);
evaluate the given expressions by using Eq. (8.1) or Eq. (8.3):

13. z .z

1 2

1
14. Z,+ 2z 15. 72—'
In Problems 16 through 20, let z, = V3 +i and z,=—2+ 2i; write the given
numbers in polar form:
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16. a) z, b) z, 17. a) z, b) z
18. a) z, - z, b) z, -z, 19. a) z, +z, b) z, + z,
20. a) L b)

z z

1 2

21. If z = r(cos 6 + i sin 6) represents a complex number in polar form, show that

a) z2 = r¥(cos 260 + i sin 20) b) z} = r’(cos 360 + i sin 36)
22. If z = r(cos 0 + i sin 6) represents a complex number in polar form and r # 0, show
that
a) %: -} [cos(—f) + i sin(—)] b) %:% [cos(—26) + i sin(—26)]
23. Use Problem 21 to evaluate: 24. Use Problem 22 to evaluate:
a) (V2-V2i) b (1+V3i) 2 ! by L

1+ <\/§ _ i)z
8.4 DE MOIVRE’S THEOREM

Suppose z = r(cos 6 + i sin 0) represents a complex number in polar form. If we
apply Eq. (8.1) to the special case where z, = z, = z, we get
z-z=r-r[cos(d + 0) + i sin (6 + 0)],

that is

z2 = r*(cos 20 + i sin 260).

If we again apply Eq. (8.1)toz, =z and z,=z?% we get

z> = r3(cos 30 + i sin 36).

This suggests that for each positive integer n,

z"=r*(cos nf + i sin nf). (8.5)

This is known as DeMoivre’s theorem named after the French mathematician
Abraham DeMoivre (1667-1754). The student is asked to give a formal proof
in Problem 16 of Exercise 8.4.

If we take r =1 in Eq.(8.5), then for each positive integer n we have the
special case:

(cos 0 + i sin )" = cos nf + i sin nf.

Equation (8.5) is stated for the case when n is a positive integer. For
exponents that are not positive integers, we follow a pattern similar to that
encountered in algebra. We first define z¥ when k is zero, then when k is a
negative integer. In Section 8.5 we consider the case when k is a rational
number.
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We state the following definitions.
Zero exponent: if z # 0, then z° = 1.
Negative-integer exponent: if nis any positive integer andz#0, thenz"=1/z"

We now investigate z— when # is a positive integer. Let
z = r(cos 6 + isin @),
then
z —-n

1 1 _
E Eq. (8.5

2" r(cos nf + i sin nf) (by Eq. (3.5))
1

cos 0 +isin0
r cosnf + isinnf

= r-"[cos(—nf) + i sin(—nf)]  (by Eq. (8.3)).

(since 1 =cos 0+ i sin 0)

Thus we have
z "= r~"[cos(—nf) + i sin(—nb)].

This is precisely Eq. (8.5) for negative integers.
Equation (8.5) also holds for n = 0, since z° = 1, and

r°[cos(0 - 6) + i sin(0-0)]=1-(cos 0+ i sin 0) = 1.

Therefore, we can generalize Eq. (8.5) and say:

If z=r(cos 6 + i sin 0) and n is any integer,
then z"= r*(cos nf + i sin nf). (8.6)

Examples

& Express the following as a complex number in polar form and rect-
angular form:

a) (1 +14)° b) (=1 +V/3i) c) 3-—4)*
Solution
a) We first express 1 + i in polar form and then use the result given in Eq.
(8.6):

(1 + i) = [\/E(cos 45° + i sin 45°)]6

= (\/5 )6[cos(6 -45°) + i sin(6 - 45°)] (by (8.6))*
= 8(cos 270° + i sin 270°) (polar form)
= 8[0 + i(—1)] =—-8i (rectangular form).

*To appreciate this step (DeMoivre’s theorem), we suggest that the student evaluates (1 + i)° by
multiplying six factors, each (1 + i), or by using the binomial theorem.
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3 3

= 23[cos<8 . ZT”) + sin(8 . 277")]

_ 16w 16w
= 256 cos =3 + i sin—=2% 3]

=256 _cos(47r + 437") +i sm(47r + 4;" )]

=256 —cos 4—375 + 1 sin 4?7"] (polar form)

_ 256:— 1l Q>]

b) (-1 +V/3i)* =[ (cos 2t . i sin 2—7’)]

A
=—128—128/3i  (rectangular form).
c) 3-4i)= [r (cos 0 +i sin l9)]4 = r*(cos 40 + i sin 46),
where r = 5 and 0 = Sin—!(—4/5) (see Fig. 8.8). Using a calculator, we evaluate

49 = 4 Sin-\(— %) — _212.52°.

Therefore
(3 — 4i)* = 625[cos(—212.52°) + i sin(—212.52°)] (polar form)
=—527 + 336i (rectangular form).

Figure 8.8 I

A Evaluate the following and express answers in polar form and rect-
angular form:

a) [2(cos 22°30’ + i sin 22° 30']* b) (cos 45° — i sin 45°)°
Solution

a) Using Eq. (8.6) we get
[2(cos 22°30" + i sin 22°30']*= 2*[cos 4(22°30') + i sin 4(20°30’)]

= 16(cos 90° + i sin 90°) (polar form)
=16 i (rectangular form).
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b) We first express cos 45° — i sin 45° in polar form as
cos 45° — i sin 45° = cos(— 45°) + i sin(— 45°).
Then by using Eq. (8.6) we get
(cos 45° —i sin 45°)° = [cos(— 45°) + i sin(—45°))°
= cos 5(—45°) + i sin 5(—45°)
= cos(— 225°) + i sin(—225°) (polar form)
=- \%g + \/—2%1' (rectangular form). |
A Express sin 46 and cos 44 as identities in terms of sin § and cos 6.
Solution. Substituting n =4 and z =cos 0 + i sin 6 into Eq. (8.6) gives
(cos 0 + i sin 0)* =cos 40 + i sin 46.
Applying the binomial expansion
(a + b)* =a* + 4a’b + 6a*b? + 4ab’ + b*
to the left-hand side of this equation, we get

cosd + (4 cos’f sin 0)i + 6(cos?d sin6)i? + (4 cos 0 sin*0)i® + (sin*d)i*
=cos 40 + i sin 44.

Now replace i by — 1, i* by —1i, and i* by 1, and collect real and imaginary
terms:
[cos*d — 6 cos?0 sin’f + sin“f] + [4 cosd sin 6 — 4 cos 6 sin’d]i
=cos 40 + i sin 44.

Using the definition of equality of two complex numbers (given in Section 8.1),
we get

sin 40 =4 cos*@ sin 8 — 4 cos 6 sin®,
cos 40 = cos*d — 6 cos?f sin?f + sin*f. i

These are identities.

By using the technique illustrated in Example 3, we can solve the general
problem of determining identities in which sin nf and cos nf are expressed in
terms of sin 6 and cos 6.

EXERCISE 8.4

In this exercise give answers in exact form whenever it is reasonable; otherwise give
results in decimal form (two places for degree measure, four places for radian measure).
Express answers in polar form and rectangular form.
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1. Evaluate:
a) (cos 30° + i sin 30°)° b) {2[cos(— 45°) + isin(— 45°)]}*
c) (cos 40° + i sin 40°)-3
2. Evaluate:
a) (cos 47° + i sin 47°)¢ b) [3<cos% +i sin%—)]i‘
¢) [cos(—20°) + isin(— 20°)]-6
3. Evaluate:
a) [2(cos 150° — i sin 150°)]° b) 16
[2(cos 45° — i sin 45°)]*
4. Evaluate:
a) [— 3(cos 20° + i sin 20°)]* b) 81
{—3[cos(w/12) + i sin(w/12)]}*
5. Evaluate:
a) (= 1+ i) b) (V3 - i) ¢) (1+0)3
6. Evaluate:

a) (\/5+\/—2-i>4 b)-(——l\—/—-_——-)— c) 2+
1-v3i)

7. Evaluate: .
a) (-1 +i)“-<1 +\/_3i)6 b)w
(\/3 + 1 )3
8. Evaluate:
a) (1-i)72-(1+1i§) b) (2 —3i)2- (4 + 30)*
In Problems 9 through 12, let z=1—i and w=—V3 +i. Evaluate the given
expressions:
9. 24—z 10. z3 - wt 11. z4 —w!
12. z*+ 2>+ 2z +z+ 1 Hint. Theidentity (z—1)(z*+ 2>+ 22+ z+ 1)=2"— 1 may

13.

14.

15.

16.

be useful.

If f(z) = z* — 22° + 2, find:
a) f() b) f(=1+1i)

In Eq. (8.6) take n =2, r = 1, and get identities (I.18) and (I.19) of Chapter 4.

Express sin 36 and cos 36 as identities in terms of sin 6 and cos 6.

Prove that for each positive integer n:

zn=[r(cos 6 + i sin 6)]"= r"(cos nf + i sin nf).

Hint. Use mathematical induction. That is, let E(n) represent the equation
z"=ry(cos nf + i sin nf), where n can be replaced by any positive integer. This gives
us an infinite number of statements E(1), £(2), E(3), . . . and our claim is that each one
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is true. For example,

when n=1, E(1) represents z = r (cos 8 + i sin 0);
when n =2, E(2) represents z2 = r? (cos 26 + i sin 26);
when n =3, E(3) represents z*> = r* (cos 36 + i sin 36);

Obviously it is impossible to verify the truth of each of these statements individually
(there are too many of them). The principle of mathematical induction comes to our
rescue; it states:

If E(1) is true and the truth of E(k) implies the truth of E(k + 1), where
k is any given (but unspecified) positive integer, then E(n) is true for each
positive integer n.

Therefore, you must show that E(1) is true (this should be obvious) and that from
zk = rk(cos k0 + i sin kf) it follows that

zk+ 1= rk+1cos(k + 1)0 + i sin(k + 1)d].

8.5 RATIONAL-NUMBER EXPONENTS AND ROOTS
OF COMPLEX NUMBERS

1. Rational-Number Exponents

In Section 8.4 we arrived at Eq. (8.6), which is valid for any integer n. We now
consider the problem of defining z/», where m/n is any rational number.* In a
manner similar to that used in algebra for real numbers, we define z/7 as a
complex number w that satisfies the equation w» = zm. In general, this involves
a problem of multiple values of w. We shall consider the special case of z!/7(the
general case can be reduced to this, since z/» = (z7)!/n). Complex number z"/7is

also written as v/ z» for n > 2 and as V z" for n = 2.

2. Roots of Complex Numbers

If n is a positive integer, then the nth root of a complex number z is denoted
by v/ zor by z'/n. Let z'/" = w; then using the definition given above, we get
w" = z. Suppose z and w are expressed in the polar form as

z=r(cos 0 + i sin 0), w= R(cos a + i sin «).
Then w” = z becomes

[R(cos a + i sin a)]*=r(cos 0 + i sin 0).

* Here we are assuming that m and n are integers (n > 1) and m/n is in lowest terms. The reason
for the last requirement is to avoid situations illustrated by

(=D)12=v"T=i, while (-)4=yCr=vV1=1.
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Using Eq. (8.2), we get
Rr (cos no + i sin na) =r(cos 0 + i sin 6).
From the definition of equality of two complex numbers, it follows that
R" cos(na) = r cos 0 and R"sin(na) = r sin 6.

Solving these two equations for R and a gives
—rl/"—\/—r and a-_—M,
n

where k is any integer (see Problem 21 of Exercise 8.5). Therefore, all nth roots
of z are given by

W, = r'/"[cos(n 27"" ) +i sm( p 2"'" )] 8.7

If we let k take on various mtegral values, we see that W, Wi, Wy vy W,y
are distinct complex numbers:

w, = ri/n| cos L + i sin i,
0 n

n
W = rl/n[cos< b . 277") + i sin (% + 27”)],
W — rl/ﬂ[cos(% + 4n—7r) +1i sin (% + 4’1—7")],

(8.8)

W, = r‘/"[cos(% + 2n ; Dz ) +i sin(—Z— s 2n=Dr )]

n

If we evaluate w, by replacing k£ with n in (8.7), we get
n 0 27n 2rn
w,=rl/ [cos(T +-—n—>+z sm(n - )]
=rl/n [cos(% + 27 ) +1 sin(% + 27 )]
= r‘/"[cos % + i sin —g—] = W,

In a similar manner we can show that each k 2 n or k < 0 will give a w,
that is included in (8.8).

Therefore, v/ z will have n distinct values given by (8.8). These are
called the nth roots of z. The principal nth root is given by

_ yl/n 0 i sin -2

W, =r (cos - Hisin )

where 0 is the smallest positive angle used in expressing z in polar form.
Geometrically, all nth roots of z are located on the circle with center at the

origin and radius Vv r; they are equally spaced along the circle with the



240 Complex Numbers

angle between any two consecutive roots being 27 /n (as given in (8.8)). These
are shown in Fig. 8.9.

Figure 8.9

Examples
A Find the fourth roots of —1.

Solution. We wish to find the roots of the equation z* = — 1. First express — 1
in polar form:

—l=cos 7w+ sin .
Substituting into the formulas given in (8.8) we get:

+ 0

“‘S\

™ LIPS us
W, =C0OS — + 1 SIn =
0 g 4

5 M

w, = COs -3;11+i sin 3T=_

=iy

W, = CoS 5T""+i sin ST”z—

oS S

Ir | : «in IT
w,=cos L& +j sin L= XY=
3 =Cos 7 4

SN
[\S]
|
SN

A Find the roots of z* — 222 + 2=0.
Solution. The given equation is quadratic with regard to z2. Solving for z2 by
using the quadratic formula, we get:
oD VEDADD _ 2V=A _
2(1) 2 -
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Therefore, z2 =1 + i or z2 =1 — i, and the roots of the given equation will be
square roots of 1 + i and of 1 — i. We first express 1 + i and 1 — i in polar form:

1 +i=12(cos 45° + i sin 45°),
1 —i=v2(cos 315° + i sin 315°).

Using (8.8) with n =2, we get the following solutions:
z2=1 +1i gives:

W, = (\/5)1/2 [cos 4_§°_ + 1 sin 430 ] = V/2(cos 22.5° + i sin 22.5°)
= 1.10 + 0.46;

w, = (ﬁ)‘“[cos( 43—0 + ——3200 )+ i sin (———430 + _3300 )]
= V/2 (cos 202.5° + i sin 202.5°) = —1.10 — 0.46i.

z2=1—1i gives:
Wy = (\/i)l/z[cosz'é—50 +1 sin%]
= V2 [cos 157.5° + i sin 157.5°] = —1.10 + 0.46i;
, 1/2 315° |, 360° - o (315° . 360°
w] = (\/5) [cos (——2—-— +—2——-) + 10 sin (——2—- +_-2-—>]
=V/2 (cos 337.5° + i sin 337.5°) = 1.10 — 0.46i.

Therefore, the solution set for the given equation is

{1.10 + 0.46i, — 1.10 + 0.46i, 1.10 —0.46i, —1.10 — 0.46i},

where the numbers are given to two decimal places. The numbers in the
solution set are shown in Fig. 8.10, where the radius of the circle is V2.

Figure 8.10 |
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& Evaluate (1 — i)*/3.

Solution. Since (1 — i)*3 = [(1 — i)*]"/3, we first determine (1 — i)* in polar form
and then apply (8.8) to find the three cube roots of the result:

(1= i) = [\/E(cos 315° + i sin 315°)]“
= (V2)'[cos(4 - 315°) + i sin(4 - 315°)]
= 4(cos 1260° + i sin 1260°)
= 4(cos 180° + i sin 180°).
The cube roots of this number are:
w, = 41/3(cos —l—g—@ +i sin—l—ggf) = V4 (cos 60° + i sin 60°)
=0.79 + 1.37;;

173 180° , _360° ;o (180° 360°
w =4 [cos( 3 + 3 )+1sm( 3 + 3 ):l
= V/4[cos 180° + i sin 180°] = —1.59;
W, = 41/3|:cos< 1§0° +2 3600) +1i sin(—lgoo + 2:360° 3360° )]
= V/4[cos 300° + i sin 300°] =0.79 — 1.37i.

Therefore, w,, w,, w, are the three complex values of (1 — i)*>. |

A Find the square roots of —3 — 4i.

Solution. We want to evaluate (—3 — 4i)'/2. We first express —3 — 4i in polar
form:

—3 —4i=5(cos 6 + i sin 0),
where 6 is the angle shown in Fig. 8.11. Therefore,

(=3 — 4i)/2 = [5(cos 0 + i sin §)]'/2

] 1/'\‘9

Figure 8.11
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Using the results given by (8.8), where n = 2, we get

w, =5"? (cos %+i sin %),
w, = 512 [coS(% + 27"') + i sin (% + 221>]
=5 [cos(—g—- + 7r) + 1 sin (%+ r)]

=57 [— cos % —i sin —g-] =5 (cos%n sin -g-> =—w,

We can write w, in better form by using the half-angle identities. Since
7w <0 <3r/2, then7/2 < 6/2 < 3w /4 and so angle /2 is in the second quad-
rant. Therefore, cos (6/2) is negative and sin (§/2) is positive. Since
cos 6 =-3/5 (see Fig. 8.11), then

0 _ l+cos 0 _ _/1+(=3/5 _ _ 1
cos 5= -\ ——— > Nl

5

0 l—cos 6§ 1-(=3/5 _ _2
sm2_+\/—2 = + > \/§

Thus we have

w0=\/§ (cos%+i sin %)=ﬂ<_#+%):_1+2,"

wo=—w,=1-2i
Therefore the square roots of —3 — 4/ are —1 + 2i and 1 — 2i. |

EXERCISE 8.5

In the problems of this exercise, express answers in polar form. Then give answers in
rectangular form as exact numbers (when possible) or to two decimal places.

1. Find the cube roots of 1. 2. Determine the fourth roots of i.

3. Find the fifth roots of 1—v/3 i.

4. Determine the roots of the equation z* + 1 —i = 0.

5. Find the sixth roots of —1 and show the results in a diagram.

6. Determine the sixth roots of 64(cos 126° + i sin 126°).

7. Find the fourth roots of 16 (\/3 + i).

8. Determine the values of (\/—3 —i)"*

9. Determine the values of (1_—_1')—2/ 3

V2

In Problems 10 through 13 solve the given quadratic equations:
10. 2—-(2+3i)z—1+3i=0 11. z22-32+3-i=0

12. 222+ 2V 21 +i)z—1-2i=0 13. 2242+ 1—-i=0
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14. Find the roots of the equation z* + 1 = 0.

15. Find the roots of the equation z* + z2 + iz + i = 0.

16. Find the roots of the equation z° + 22> — z2 -2 =0.

17. Find the square roots of 3 — 4i. 18. Find the square roots of 3 + 4i.

19. Find the square roots of —5 + 12i. 20. Find the roots of 22 —iz—1+i=0.

21. In the derivation of Eq. (8.7) we encountered the problem of solving the following
two equations simultaneously for R and « in terms of » and 6:

R" cos(na) =r cos 0,
R" sin(na) = r sin 6.

Carry out the solution and show that R = r!'/"and a = (0 + k - 2w)/n. Hint. First
eliminate « by squaring each of the given equations and then adding the resulting
equations. Use identity (1.9) (p. 122). After you get R, substitute the result in either
of the given equations and then solve for «.

REVIEW EXERCISE

In Problems 1 through 12 evaluate the given expression and present the result in the
form a + bi, where a and b are real numbers. Give answers in exact form whenever it is
reasonable to do so; otherwise give a and b correct to two decimal places.

1 (1+i) 2. (3 —2i) 3. (1 + 2i)
4. (V3 +i) 5. (1 +i)? 6. 625(3 + 4i)~*
7-U+iNV3—ff4 g, B+ 4 9. (1+20) (3 +4iy
(4 + 3i) (1 =)
V3 1 .\¢ 3 s 1 V3 o\
10. 07_—74> 1. (1+i)P—(1—1i) IL<7+ 2:)

In Problems 12 through 15, the function fis defined on the set of complex numbers and
is given by f(z) =3 —4i + z2, where z is any complex number. Evaluate the given
expressions and provide exact answers in form a + bi, where a and b are real numbers:

13. f(=3) 14. £ (2 - 2i) 15. £ (1-V3i)

In Problems 16 through 20, give answers in form a + bi, where a and b are real numbers:
16. Solve the quadratic equation z2 + (2 — i)z — i =0.

17. Find the cube roots of (\/3 —i )/2.

18. Find the fourth roots of %— ii.

5
19. Solve the equation z* + (1 + i)z + i = 0.

20. Solve the equation z? — 2iz — 2 = 0.



CHAPTER NINE

POLAR
COORDINATES

9.1 INTRODUCTION

Many problems involve equations containing two variables. We have found it
helpful to have geometric representations of such relationships, since these can
frequently provide insights that are not readily apparent from the equation
itself. In some problems the situation is reversed, in that we have a problem
described geometrically and it becomes useful to consider it in an algebraic
setting, which usually involves an equation containing two variables. The form
of the equation we get will depend to a large degree upon the reference (or
coordinate) system we decide to use. So far, all of our geometric representa-
tions have been in a rectangular (or cartesian) system of coordinates. This has
served us well for most problems. However, there are situations where a given
geometrical problem translates into a cumbersome equation if rectangular
coordinates are used as the reference system. In this chapter we introduce a
system of coordinates known as polar coordinates that is particularly useful in
many situations.

As indicated at the beginning of this book, our geometric objects are
restricted to a given plane (in future courses the student will encounter
problems requiring three-dimensional geometry). A rectangular system of
coordinates begins with two perpendicular lines. It is customary to take these
lines as horizontal and vertical and call them the x-axis and the y-axis,
respectively. On each axis we have a one-to-one correspondence between
points and real numbers.* This provides us with a system that has a one-to-one
correspondence between pairs of real numbers (x, y) and points P in the plane.

* That is, we assume that each point of a given line can be associated with a unique real number,
and vice versa; this same correspondence associates each real number with a unique point on the
line.

245
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The system of polar coordinates begins with a ray (half-line) called the polar
axis; its initial point is called the polar origin (point O), as shown in Fig. 9.1.

o Polar axis

P >

Polar origin

Figure 9.1

Let point P be any point (other than O) in the plane (Fig. 9.2). Let the ray
OP be the terminal side of the directed angle 6 obtained by rotating the polar
axis about point O through the angle of measure 6 (which can be of any size
and positive or negative). We call OP the 0-ray.

If the distance from O to P is denoted by r, where r is a positive number,
then the polar coordinates of P will be an ordered pair of r and 6 values
denoted by [r, 0].*

In many problems it is convenient to allow the first member of the ordered
pair [r, 0] to be a negative number. This can be done by considering the ordered
pair [—r, 0 + 7], where r is a positive number. Then [—r, 6 + 7] represents
point Q that is at a directed distance of —r along the (f + w)-ray; this means
a distance of r in the opposite direction, which puts Q on the f-ray. That is,
point Q is the same as point P. Therefore, both [r, 8] and [— 7, § + 7] are names
of the same point P in polar coordinates, as shown in Fig. 9.2.

It is clear that the f-ray and the (§ + 27)-ray are the same; so [r, ] and
[r, 8 + 2] represent the same point. In fact, point P shown in Fig. 9.2 can be
represented by any of the ordered pairs:

[r, 0 + 2kw] or [—r, 8 + (2k + 1)«], where k is any integer.

The above discussion indicates how to name any point P in the plane in
terms of polar coordinates. The special case where P is the polar origin is
denoted by [0, 0], where angle 6 can have any value.

Note that in polar coordinates we do not enjoy the luxury we have in
rectangular coordinates where there is a one-to-one correspondence between

6-ray

P:[r, 0) or [—r, 6 + 7]

(6 + m)-ray
Figure 9.2

* We use the bracket notation [r, 8] to distinguish the name of a point in polar coordinates from
its corresponding name (x, y) in rectangular coordinates.



9.1 Introduction 247

points in the plane and ordered pairs of real numbers. In polar coordinates
each point P can be represented by infinitely many ordered pairs; however, a
given ordered pair is associated with exactly one point. Although the lack of a
one-to-one correspondence is an undesirable feature of polar coordinates, it
does not create a serious problem.

We remind the student that in algebra the definition of equality of ordered
pairs is given by:

(a, b)=(c,d) ifandonlyif a=c and b=d.

We retain this definition of ordered pairs [r, 8] and we do not say that [r, 0]
equals [—r, 0 + w] even though they both represent the same point.

Examples

& For each of the following, draw a diagram to illustrate the given ray:
a) 30°-ray b) 480°-ray c) — 150°-ray d) %T”-ray

Solution. (See Fig. 9.3.)

30°-ray 480°-ray
o - o
(a) (b)
0 N 0 .
—150°-ray ST"—ray
(c) (d)
Figure 9.3 |

A In each of the following give two other names for the given ray:

a) 45°-ray b) w-ray ¢) 2.5-ray d) —2.5-ray
Solution.
a) 405°-ray; — 315°-ray b) 3w-ray; — 3w-ray

¢) (2.5 + 2m)-ray = 8.78-ray; (2.5 — 2w)-ray = — 3.78-ray.
d) (= 2.5 + 2m)-ray = 3.78-ray; (—2.5 + 4r)-ray = 10.07-ray. |
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& Point P shown in Fig. 9.4 is on the 30°-ray at a distance 2 from the polar
origin. Give four different names for P in polar coordinates.

Solution. Any of the following pairs can be used as the name of point P:

2, 30°);  [2, 30° + 360°] = [2, 390°];
2, 30° — 360°] = [2, — 330°]; [~ 2, 30° + 180°] = [— 2, 210°].

30°-ray

Figure 9.4 [

A Suppose point P is at a distance of 3 from the polar origin on the 7= /6-
ray. Let Q be the point obtained by reflecting P about the line ¢ perpendicular
to the polar axis and passing through the polar origin (Fig. 9.5). Give four
different names for Q in polar coordinates.

7 _ray

QS
—_————————

)

p

y

Figure 9.5

Solution. From the diagram we see that point Q is on the 117 /6-ray and 3
units from O. Therefore, Q can be represented by any of the following ordered
pairs:

1lm,. . Smry. 13
[3a Tﬂ']’ [3’ - %]7 [_ 3’ —]’ [3’ _Tﬂ-] I

A Draw sketches to illustrate the points corresponding to the given ordered

pairs in polar coordinates:
a) [2, 40°] b) [-3, 580°] o) 3, 3 d) [-4, —3x]

Solution. (See Fig. 9.6.)
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40°-ray
[-3,580°]
[2,40°]
0
0
580°-ray
(a) (b)

—3m-ray [—4, -37]

° > < s »
(d)
Figure 9.6 |

EXERCISE 9.1

1. In the following cases, a point is described relative to the polar axis with polar
origin O. Draw a diagram showing the given point and name four different ordered
pairs [r, 8] that describe the point in polar coordinates:

a) P is 3 units from O on the 50°-ray
b) Q is 4 units from O on the —60°-ray
¢) T is 2 units from O on the 540°-ray

2. Suppose that points P, Q, and T of Problem 1 are reflected about the polar origin
O to get new points P, Q, and T, respectively. For each of these points give an
ordered pair [r, 8] that can be used to represent the point in polar coordinates.

3. Suppose that points P, Q, and T of Problem 1 are reflected about the polar axis to
get new points P,, Q,, T,, respectively. For each of these points give an ordered pair
[r, 0] corresponding to the point in polar coordinates.

4. In each of the following, a point is described relative to the polar axis with polar
origin O. Draw a diagram showing the given point and then write four different
ordered pairs of real numbers [r, 6] that can be used to name the point in polar
coordinates:

a) P is 2 units from O on the 27 /3-ray
b) Q is 3 units from O on the —11x/12-ray
c) T is 4 units from O on the 177 /6-ray
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5. Suppose that points P, Q, and T of Problem 4 are reflected about the polar origin
to get points P, Q,, and T, respectively. For each of these points give an ordered
pair [r, 8] of real numbers to name the points in polar coordinates.

6. Suppose that points P, Q,, and T, of Problem 5 are reflected about the line through
O perpendicular to the polar axis to get points P,, Q,, and T,, respectively. For each
of these points give an ordered pair [r, 6] of real numbers that can be used to
represent the point in polar coordinates. How are P,, Q,, T, geometrically related
to P, Q, T of Problem 4?

7. Draw a diagram that illustrates the points corresponding to the given ordered pairs:

a) [3, 60°] b) [-4, 45°] c) [-2, 180°] d) [-3, —450°]
8. Draw a diagram showing the points that correspond to the given ordered pairs:
a) [4, 4] b) [-3, 37] o) [2, 177] d) [-2, ~2.36]

9. The points given in Problem 7 are reflected about the polar origin. Give ordered
pairs [r, 8] of real numbers representing the new points in polar coordinates.

10. The points given in Problem 8 are reflected about the polar axis. Give ordered pairs
[r, 6] of real numbers that can be used to represent the new points.

9.2 GRAPHS IN POLAR COORDINATES

In algebra and in earlier parts of this book we encountered a variety of
problems in which the equation was given in the form y = f(x) and then a
graph (curve) corresponding to the given equation was drawn, using a system
of rectangular coordinates. In this section we consider a similar problem:
Given r=f(f), draw the curve corresponding to this equation in polar
coordinates.

Examples
& Sketch the curve whose equation in polar coordinates is r = 2 sin 6.

Solution. We first determine several ordered pairs [r, 0] that satisfy the given
equation. These are shown in the following table:

I Ll o udl 2w 3 st
o 0 6 4 3 2 3 4 6 T
r 0 | V2 o V3 2 vV3i o V2 1 0

Note that it is not necessary to continue with larger values of 6 since
sin(f + ) = —sin 6 is an identity, and so

[r,0 + 7] =[2 sin(d + ), 0 + 7] = [ 2 sin 6, 0 + ].
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Therefore,
[r,0 +7]=[-2sinb, 6 + 7] and [r, 8] =[2 sin 6, 6]

represent the same point.

In a similar manner we can show that negative values of 8 produce no
points that are not already included in the points given by 0 <6 <.

We now plot the points given in the table and then draw the curve shown
in Fig. 9.7. Thus r = 2 sin 6 appears to be an equation of a circle, and indeed
it is. i
é Sketch the curve whose equation in polar coordinates is r = 1 + cos 6.

Solution. As in Example 1, we first make a table giving ordered pairs [r, 8] that
satisfy the given equation (the r-values are given in decimal form to two
places):

0 0° 45° 90° 135¢ 180°  225°  270°  315°  360°

r 2 1.71 1 0.29 0 0.29 1 1.71 2

Since cos(f + 2m) = cos 6 is an identity, it is clear that we would get no new
points by considering values of 6 that lie outside the interval 0° <6 < 360°.
We plot these points and draw the curve, as shown in Fig. 9.8. The curve is
called a cardioid for obvious reasons.

v

| |

v

0
Figure 9.7 Figure 9.8 i

&. Sketch the curve whose equation in polar coordinates is r = 3.

Solution. As in the preceding two examples, we first make a table of ordered
pairs [r, 8]. The variable 6 does not appear explicitly in the given equation; if
this causes any problems, we can write the equation in equivalent form as
r=3+0-60. We see that no matter what value of § we use, r will always be
equal to 3. Thus the corresponding points are on a circle of radius 3 with center
at the polar origin, as shown in Fig. 9.9. i

A Sketch the curve whose equation in polar coordinates is 7 =sin 3 6.
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Solution. We first note that sin 3(f + 7) = —sin 3 0 is an identity. Thus the
point given by

[r, 0 + ] =[sin 3(6 + 7), 0 + w] =[—3 sin 0, 0 + 7]

is the same as the point given by [r, 8] = [3 sin 6, 8]. Therefore, it is sufficient
to use values of 6 in the interval 0 £6 <, as shown in the following table:

9 x & ®x x St 2w Iz 2r 3w Sr llr
12 6 4 3 12 2 12 3 4 6 12
r 1071 1 071 0 -071 -1 —071 0 071 1 071 0

Plotting the points given in this table and connecting them in an obvious
manner gives the three-leaf rose shown in Fig. 9.10. i

A Sketch the curve whose equation in polar coordinates is given by
r=—0, where 620.

Solution. Note that the given equation implies that radian measure is to be
used for 6. We first make a table of ordered pairs [r, 8] that satisfy the equation:

s ™ 3r by 3 I
o ° T T T T T 3 R
r 0 —-079 —157 —-236 —-3.14 —-393 —471 —-550 -—6.28

Plotting these points and drawing a curve through them gives a spiral, as
shown in Fig. 9.11. The curve begins at the polar origin and (as 6 increases)
winds around in the counterclockwise direction, as illustrated in Fig. 9.11. |

o]
—_—

Figure 9.9

3]

Figure 9.10

|
—_
[SIE]

Figure 9.11
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EXERCISE 9.2

Polar and Rectangular Coordinates

Sketch the curves corresponding to the equations given in polar coordinates:

1.

3.

1.

15.
17.

19.

r=cos 0

r=2

. r=1+sin 60
.r=1—cos 6

. r=sin 240

r = cos?f — sin%f

. r=cos 6 tan 6

r:sin(ﬂ + %)

r=1+2cos 6

r=0, where 620

2.

4.

6.

8.

10.

12.

14.

16.

18.

20.

r=23 cos #
r=—2sin 6
r=1-—sin 0

r= 3+ sin% + cos?

r=cos 30
rr=4

r = sin%)
r=cos(fd + )

r=2-—sin 0

rz%, where 6 > 1

9.3 RELATIONSHIP BETWEEN POLAR AND RECTANGULAR
COORDINATES

253

Suppose the polar axis coincides with the positive x-axis, as shown in Fig. 9.12,
and suppose P is any point in the plane. The name of point P is (x, y) relative
to the x, y-axes, and [r, 0] relative to the polar axis. The following equations
give the relationship between rectangular and polar coordinates:

x=r cos 0,

y=rsin 6, 6.0

rr=x*+y?

tan 6 = 2. 9.2)
X

The equations given in (9.1) are transformation equations from polar to

rectangular coordinates. For each pair [r, 0] there is precisely one pair (x, y)
corresponding to it.

The equations given in (9.2) are known as the transformation equations from

rectangular to polar coordinates. Note that for a given pair (x, y) we can get
multiple pairs [r, 0] representing the same point. Since r can be taken as
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L (x,))
P 1 6)

0 X

Figure 9.12

x?+ y*oras—Vx?+y? and 0 = tan! (y/x) is multiple-valued, we must be
careful to match appropriate values of r and 6. This is illustrated by the
following examples.

Examples

A Find all ordered pairs [r, 8] associated with the points given in rect-
angular coordinates:
a) 3,4 b) (-2,-1)

Solution.
a) We use Eq. (9.2) as follows. First find r, 8, where r > 0:

r=V3+4=5 and than%;
6 is in the first quadrant (Fig. 9.13). This gives the set of ordered pairs:
A =1{[5, 53.13° + k- 360°] | k is any integer].
Now find r, 6, where r < 0:
r=—V3+4=_5 and 0=tan%;
0 is in the third quadrant. This gives the set of ordered pairs:
B ={[-5, 233.13° + k- 360°] | k is any integer}.

Therefore, the name of the point associated with (3, 4) is given in polar
coordinates by any one of the ordered pairs in the union of sets 4 and B; that
is AU B.

b) In a manner similar to (a) we can write the following.
For r> 0:

r=V(=2?+(=1=V5 and tan 0=_—:21 =%,
where 6 is in the third quadrant (Fig. 9.14). That is,
r=V'5 and 0=361+k-2m.
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Figure 9.13 Figure 9.14

For r <0,

r=—V5 and tan 0= —é—,

where 6 is in the first quadrant. That is, 7= —V/'5 and 6 = 0.46 + k - 2.
Therefore, point (— 2, — 1) is represented in polar coordinates by any of the
ordered pairs in the set:

{V5, 3.61 + k- 2] | k any integer} U {[-V/5, 046 + k - 2] | k any integer}. |

A The given ordered pairs name points in polar coordinates. Find the
names of the same points in rectangular coordinates:
a) [4, 60°] b) [- 3, 180°] c) [4, —3w/4] d) [-2, 2.48]

Solution. We use the formulas of Eq. (9.1), which are valid even when r is
negative.
a) x=4 cos 60°=4.%=2; y=4sin 60°=4.\/3/2=2/3.
Therefore, the point in rectangular coordinates is given by (2, 2V/3).
b) x=—3 cos 180°=—-3(—1)=3; y=—3 sin 180°=-3.0=0.
Therefore, the given point is (3, 0) in rectangular, coordinates.
c) x=4 cos (—3w/4)=—2V2; y=4sin(-3r/d)==2V2.
Thus, the given point is denoted by (— 2V 2, — 2V 2) in rectangular
coordinates.
d) x=—2 cos 248=1.58; y=-—2 sin 248 =—1.23.
Therefore, [— 2, 2.48] is represented by (1.58, — 1.23) in rectangular
coordinates. |

A Find an equation in polar coordinates that describes the same set of
points (same curve) as x? + y? — 2x = 0 in rectangular coordinates.

Solution. Substituting x = r cos 6 and y = r sin 6 into the given equation, we
get

(r cos 6)? + (r sin 6)? — 2(r cos 6) =0.
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This is equivalent to 7> — 2r cos § =0; and so r=0 or r=2 cos 6. Since
r =0 gives only the polar origin as a point and from =2 cos 6 we get the
point [0, 7/2], which is also the polar origin, we can neglect r =0 in our
solution. That is, r=2 cos § will describe the same set of points as
x2+y*—2x=0.

A Find an equation in rectangular coordinates that describes the same set
of points as r =2 sin 6 + cos 6 in polar coordinates.

Solution. Since a direct substitution for r and 6 from Eq. (9.2) would involve
Vx? + y2, it is simpler to first multiply both sides of the given equation by r:

r*=2r sin 0 + r cos 0.
Now, replacing r* by x2 + y2, r sin 6 by y, and r cos 0 by x, we get
x2+ yr=2y + x.

Note. In this example we should check the possibility that we may have
introduced some extraneous points by multiplying both sides of the given
equation by r. This can occur only if we had multiplied by the value r = 0.
Since r =0 represents the origin, the only possible extraneous point is the
origin. Thus we must check whether the origin is also a point on the curve
represented by the polar equation. We see that 2 sin 6 + cos § =0 for
0 = Tan—'(—%2) = —0.46; that is, [0, —0.46] satisfies the given equation, and so
the origin is on the given curve. i

& Draw a graph of the equation § = 2 in polar coordinates. Then find an
equivalent equation in rectangular coordinates.

Solution. The graph of § = 2 is a line through the origin, as shown in Fig. 9.15.
Since tan 6 = y/x, the corresponding equation in rectangular coordinates is
y/x = tan 2 or y = x(tan 2). In decimal form this is y = —2.19 x. |

Figure 9.15

EXERCISE 9.3

In each case, when the answer is expressed in decimal form, give the result
correct to two decimal places.
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1. In the following, points are given in rectangular coordinates. Find the names of the
points in polar coordinates:

a) (—1,1) b) (-1, —\/_3) c) (m, 4) d) (- 1.57,2.43)

2. For each of the points in Problem 1, find the set of all possible ordered pairs
[r, 6] that can be used as polar coordinates for the given points.

3. Express the following points in polar coordinates with » >0 and 0 <6 < 2w

1+ \/g
a) (-3,3) b) (1. —3) o (r. )
4. Express the following points in polar coordinates using the least positive angle and
r<o0: _
a) (4,—3) b) (=V3,V3) c) (2.52, —2)
5. Express the following points in rectangular coordinates:
a) 2, 2 b) [-3, — %TW ¢) [2.24, —0.37)
6. Express the following points in rectangular coordinates:
a) [0, 30°] b) [4, —630°] c) [—2,47°37"]
7. Determine whether the given pair satisfies the equation ? sin 6 = I:
ol Tl BEL-%] 9WM2E 400 ol )

8. The position of point P is given in rectangular coordinates. Determine whether P
lies on the curve whose equation in polar coordinates is » = 1 + cos 6:

a) (0, 0) b) (0, 1) ¢) (2,0) @ (* +¥2’ 1+2\/§ )

9. Let [r,, 8,] be polar coordinates of point P and [r,, §,] be polar coordinates of point
Q. If d represents the distance between P and Q, show that d is given by

d=Vr+r=2rrycos (0, —0,).

10. Use the result of Problem 9 to find the distance between each of the given pairs of

points:
a) [3, 0], [r, 7] b) (1 T -2 37”]
¢) [~ 34, 32°], [1.6, 1.47] d) [-2.4,3.2], [3.7. - 0.64]

In Problems 11 through 14, find an equation in rectangular coordinates that describes
the same set of points (same curve) as the given equation in polar coordinates:

1. r cos =3 12. 30 =4

13. (1 —sin 0) =2 14. r =2 cos(f + m)

In Problems 15 through 18, find an equation in polar coordinates that describes the
same set of points (same curve) as the given equation in rectangular coordinates. Then

sketch the curve using either of the equations.

15, x> +y?=1 16. 2xy =3
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17. 3x —y=0 18. x* + y? + x =Vx? + )?
19. Are all points of the curve whose equation is r =sin § also on the curve with

equation r csc # = 1? Substantiate your answer.

20. Express r = sin 26 as an equation in rectangular coordinates.

REVIEW EXERCISE
In any problem where both rectangular and polar coordinates are used, it is
assumed that the positive x-axis coincides with the polar axis.
1. The name of a point is given in rectangular coordinates; give a name of the point
in polar coordinates:
a) (1, 0) b) (-3,0) c) 4,4 d (-2,2)
o (V3 -1)  HV2-V2 g (04 h) (0,-3)
2. As in Problem 1, find a name of the given point in polar coordinates. Find r and

6 (in radians) to two decimal places:
a) (3, 4) b) (-5, 1) c) (3,-9) d) (-=2,—-1)

3. The name of a point is given in polar coordinates. Draw a diagram illustrating the
point and then write its name in rectangular coordinates:

a) [4 5] b) (-2, 7] 0 [4. 7]
. o 3 3
d [~ 1.5 &) [-3. -3
4. Follow the instructions of Problem 3. Give answers to two decimal places:
a) [I, 57” b) [ 4, 3.47] o) [2.3, 1.35]
d) -2, ‘g—”] e) [3, —4.32]

In Problems 5 through 12, an equation is given in polar coordinates. Draw a graph of
the corresponding curve:

5. r=sin 6 6. =16 7. r=2 sin(—0)
8. r=cos 0 -1 9. r=3sec b 10. r =cos 26
11. 2r =6, where 6>0 lZ.r:sin<0+%)

13. Find an equation in polar coordinates that describes the same curve as x? + y*> = 4.
Draw a graph of the curve.

14. Find an equation in polar coordinates that describes the same curve as
X2+ p*+y=Vx2+ y2. Draw a graph of the curve.

15. Draw a graph of (1 + cos 6) = 1. Then find an equation in rectangular coordinates
that describes the same curve.

16. Draw a graph of r sin 6 = 3. Then find an equation in rectangular coordinates that
describes the same curve.



CHAPTER TEN

LOGARITHMS

In the past, one of the important uses of logarithms has been as an aid in
computational problems, particularly in those that involve only multiplication,
division, raising to powers, or extracting roots of numbers. With the introduc-
tion of hand-held calculators, the use of logarithms for computational
purposes has been practically abandoned. However, logarithmic functions
occur in many applications as well as in theoretical mathematics, and so they
still present an important topic for study. In this chapter our discussion will be
primarily directed toward the study of basic properties of logarithms rather
than their use for computation.

We introduce logarithmic functions as inverses of exponential functions.
Therefore, it may be helpful to first review the properties of exponents that the
student has already encountered in algebra.

10.1 EXPONENTS
The exponential functions that are of interest can be described by

S (%) = b,

where b is a given positive number and b 1, while x is any real number.* Each
such b yields an exponential function; b is called the base of b~

The following rules of exponents are basic in working with exponents: if u
and v are any real numbers and a and b are positive numbers, then:

(E.1) bu. by =bu+s bu/b* = bu- (E.2)

* If b is a negative number, it is possible to define b* but in general this involves a discussion of
complex numbers. This is reserved for later courses in complex variables. Also, we make the
restriction that b # 1 because for b = 1, the function f(x) = 1* is equal to 1 for all x; that is, it is
a constant function and we prefer not to call it an exponential function.

259
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(E.3) (bt = bw (ab)* = a* - b (E.4)

(E.5) (a/b)* = av/b»

Note that (E.4) and (E.5) are formulas for raising products and quotients
to powers. We do not have analogous simple results for raising sums and
differences to powers, that is, (a + b) is not identically equal to a"+ b";
similarly for (a — b)". These operations involve the binomial expansion for-
mula.

In addition to the above rules we need the following definitions:

Zero exponent:

b*=1 for any b > 0, (10.1)

Negative exponent:
b= # for b > 0 and any real number u; (10.2)
Radical notation. Radicals are frequently used to denote expressions involving

a rational-number exponent. If m and n are integers (with n > 1) and 5 > 0,
then b/ is written in radical form as v/b” . That is,

bmin = \Jbm. (10.3)

Note. When n =2, we make a special case and write b"/2=vb™ (not Vb ).

If formulas (E.4) and (E.5) are written in radical form for the special case
of u=1/n, we get

(E.6) Vab =Va Vb ,”/%=\n/—a /\77, (E.7)
Examples
& Evaluate the following and express answers in exact form:

a) 4°.42 b) 43+ 4° c) 235 +2-3

d) 6432 e) (163/4)? f) (25-3)-12
Solution

a) 4.4 =4+2=4°"=1024

3. 3-5_4-2 1 1
b) 4+ 4 =4-=4- =16

) 2+25=2" tﬁ)—23+5 24 =256
d) 6432 = (8%)¥2 = 8 =512
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e) (16342 = 160/92) = 1632 = (42)32 = 43 = 64
£) (253172 = 256912 = 2532 = (52)32 = 5% = 125 |

@ In Example 1, all of the problems were selected so that the answers can
be expressed in simple rational-number form. In this example we consider
problems where this is not possible, so we get approximate decimal answers
using the calculator.

Find the decimal approximation (rounded off to four places) of the following:

a) 72 =7 b) 74 ¢) V17
3 V3 _ V2
00 o(153)" 015
Solution

a) To evaluate \/ 7, we can use the key: pressing 7 a1 1 , we get
the answer directly in the display: /7 = 2.6458. We could also use the
key to evaluate 7'/2,

b) To evaluate 73/4 we use the key and press the following sequence
of keys:
For algebraic calculators:

7 3 &0 4 OO =)
For RPN calculators:
7 3 4 (=3

The display shows 73/4 = 4.3035.

¢) Using the definition given by (10.3), we can write V17* as 1743
Following a sequence of key strokes similar to those of (b), we get

V17° = 43.7118.

d) We evaluate 3-V2 by pressing the following sequence of keys:
Algebraic calculators:

30 2 3 o =)

RPN calculators:
3 2 (cws)

The display shows: 3-V2=0.2115.

e) To find ((1 + \/3)/2)f3 we first evaluate (1+1/5)/2 and then,
with the result in the display, stroke a sequence of keys similar to that
in (d). This gives ((1+v/5)/2)"3=2.3013.

f) This ca<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>