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Factoring Identities

ax + bx = (a + b)x a> — b* = (a — b)a + b)

a> + 2ab + b> = (a + b)? a — b= (@- bd* + ab + bY

a> — 2ab + b* = (a — b)? a@ + b= (a+ bd — ab + bd

Quadratic Formula

2

 

If ax + bx + ¢ = 0, wherea # 0,

then

y = —b + Vb: — 4ac

2a

Exponents Logarithms

If b>0and u, r, t are any real If u and v are positive numbers and

numbers, then t is any real number, then

b*. b" = p47" log, (uv) = logyu + log,v

b'/b" = b"*" log, (u/v) = logyu — log,v

bY = pb" log, (u') = tlog,u

Bp = 1 logy] = 0

b"= 1/b" log,b = 1

Metric Units

Linear Measure Area Measure

1 meter = 1m = 39.37 inches 1km? = 1000000 m? = 0.3861 sq. miles
1 kilometer = 1 km = 0.62137 miles 1 m? = 10000 cm? = 10.765 sq. feet

1mm = 0.001 m 1 cm? = 100 mm? = 0.155 sq. inch
lcm = 0.0l m

1 km = 1000 m

Volume Measure Weight Measure

1 liter = 1 ¢ = 1.057 quarts Il gram = 1g = 0.03527 ounces

1¢ = 1000 cm? 1 kilogram = 1kg = 2.2046 pounds
I m¢ = 0.001°¢ 1 mg = 0.001 g

1 k¢ = 1000¢ 1 kg = 1000 g
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Pythagorean Theorem For a right triangle
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Triangle a+ (B+ vy = 180° Perimeter =a + b + ¢
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PREFACE

One of the truly significant technological achievements of the twentieth cen-

tury is the development of high-speed computing devices, including the hand-

held calculator. These machines permit not only rapid and accurate computa-

tions of complicated numerical problems but they have great potential in all

phases of the educational curriculum. In this book we give a complete treat-

ment of the topics traditionally covered in a trigonometry course. Full

advantage is taken of the capabilities of scientific calculators, not merely as

computational tools but also as an aid to motivating and reinforcing basic

concepts.

Some of the prominent features in this book are:

1. Emphasis is on basic definitions and ideas throughout the text. As in most

mathematical textbooks, problem sets are included primarily for the purpose

of providing the student with an opportunity to apply definitions of fun-

damental concepts, thus leading to a better understanding of basic ideas. In

most of the problems involving numerical answers the student is asked to give

results in exact form or in approximate decimal form. In general, the first

precludes the use of calculators while the second almost always requires their

use. Expressing answers in exact form involves application of definitions

and/or basic concepts, while in giving results in decimal form the student be-

comes familiar with numbers as they occur in real-life applications (for exam-

ple, one does not ordinarily encounter numbers such as +2 or w on a

blueprint).

2. The traditional approach to solving triangles has been to formulate solu-

tions (whenever possible) so that logarithms can be used to carry out the final

computations. In this book we are freed from such constraints since calcu-

lators can perform additions and subtractions as easily as multiplications and

divisions. Thus the Law of Cosines has a higher priority than it does in other

trigonometry books.

vii
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3. The numbers used in application problems are more realistic; calculators

can handle such numbers just as easily as the carefully selected simple numbers

chosen for the sole purpose of avoiding even slightly cumbersome computa-

tions. The calculator adds the dimension of approximate numbers often ig-

nored in mathematics books.

4. Appendix A contains a relatively complete introduction to the use of cal-

culators for those students who have had no previous experience with them.

Included in separate sections is a discussion of AOS calculators based on alge-

braic entry and RPN calculators based on Reverse Polish Notation. The basic

calculator keys are carefully described; this is followed by several detailed ex-

amples and practice problems. In most cases, the student can master this mate-

rial on his or her own. In addition to the treatment included in Appendix A,

further instruction on special function keys is given throughout the text pro-

per, as needed and when appropriate.

5. Appendix B includes a relatively detailed treatment of computation with

approximate numbers.

6. Although logarithms may no longer be popular for computational pur-

poses, they are important as functions that occur in applications and in the-

oretical mathematics. Their study is needed in preparation for subsequent

courses (such as calculus). Therefore, included in Chapter 10 is a fairly com-

plete treatment in which basic properties of logarithmic functions are empha-

sized. This chapter is independent of the others and can be included at any

point in the course. As in the earlier chapters, the treatment here is calculator

oriented.

7. Throughout the entire book, presentations of topics follows the pattern:

a) introduction of basic ideas; b) illustration of these by several examples

worked in detail; c) set of problems carefully designed to give practice with the

concepts being discussed and to stimulate related ideas. Also included are

chapter review exercises which utilize any of the concepts studied up to that

point.

8. A concept, a technique, or a fact can best be learned by encountering it

frequently and in a variety of settings. We exploit this by including problems in

exercise sets that repeatedly use ideas introduced in earlier sections. For

instance, one of the most difficult topics in trigonometry for a student to

master is that of identities. Basic identities are introduced in Chapter 4, and in

subsequent chapters several problems have been designed specifically to show

that the application of an appropriate identity greatly simplifies solution of the

given problem. In this way the student sees that a knowledge of identities can

be helpful and there is no need to wait until calculus to justify their im-

portance.

9. The exercise sets include a large number of problems ranging from simple

to challenging. In each section the student will find several easy-to-follow ex-
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amples that illustrate the various types of problems included as exercises. In

some cases, the use of calculators allows us to present problem solving meth-

ods that are not part of a traditional course.

10. Although calculators make tables obsolete for computational purposes,

we recognize that learning to read tables may be an integral part of some trigo-

nometry courses. Therefore, we have included tables of trigonometric func-

tions and common logarithms in Appendix C. These can be incorporated in

solving problems at appropriate places throughout the text.

This book is designed for a one-semester or one-quarter course in trigono-

metry. A prerequisite of high-school geometry and intermediate algebra is

assumed. Although basic concepts are covered in sequential order throughout

the first nine chapters, it is not necessary to study all sections of a given

chapter. Each chapter contains sufficient material, so that a careful selection

can be made to fit the needs of any course.

It is assumed that many students have had some experience with calcula-

tors. Therefore, instruction in use of calculators is included in Appendix A as

optional material. It can be formally introduced when the group of students is

uniformly inexperienced. AOS and RPN systems are treated separately to

allow the individual student to follow only the portion corresponding to the

logic of a given calculator.

A summary of formulas for quick reference is included inside the covers.

Inside the front coveris a listing of formulas from algebra and geometry which

the student has probably seen in previous courses. Identity equations and

formulas from trigonometry are collected inside the back cover.

The authors are grateful to the mathematics staffs at Utah State Univer-

sity and Logan High School for their willingness to teach from experimental

versions of this book and to their students who provided the essential link with

reality. We are particularly indebted to Wanda C. Sayer for her patience and

understanding in typing the various versions of the manuscript. We extend our

appreciation to the following persons who reviewed the manuscript at various

stages: Laura Cameron from the University of New Mexico in Albuquerque,

Robert T. Fair from the Kankakee Community College in Illinois, Steven D.

Kerr from Weber State College in Ogden, Utah, and Michael Windham from

Utah State University in Logan, Utah. The resulting product reflects their

many helpful suggestions. Finally, we wish to express our sincere gratitude to

the entire editorial staff of Addison-Wesley, especially to our editor Patricia

Mallion for her vision and encouragement, and to Rima Zolina for her superb

editing.

Logan, Utah J.E.

November 1979 C.J.E.
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CHAPTER ONE

INTRODUCTORY
CONCEPTS

1.1 INTRODUCTION

As the name indicates, trigonometry pertains to the study of measurements

related to triangles. Approximately 3000 years ago the Egyptians and Babylo-

nians used properties of triangles to establish land boundaries and explore
astronomy. In modern times the ideas related to solution of triangles are still
important in several areas of application. Trigonometric functions are also
important in the study of calculus and in physics, engineering, and most fields
in which mathematics is applied. Two main goals ofthis book are: 1) the study

of problems related to the solution of plane triangles (in which calculators will
be essential); 2) the study of basic concepts of trigonometric functions needed
for further study of mathematics, particularly calculus (in which calculators
are used when appropriate).

1.2 ANGLES AND ANGLE MEASURE

The study of plane trigonometry implies that we begin with a given plane. All
of the geometric figures discussed (lines, rays, angles, triangles, and so on) are

subsets of this plane. In geometry, a ray is defined as a half line together with

its endpoint, and an angle is the union of two rays with a common endpoint.

Also the idea of measure ofan angle is introduced but usually limited to angles
with measures less than or equal to 180°.

It now becomes necessary to extend the notion of angle and angle measure

beyond that studied in geometry. Eventually we shall express the angle
measure as a real number (radian measure), and it will be useful to have a

correspondence between the angles in the plane and the set of real numbers. In

order to do this, it is convenient to think of an angle as being generated by a

ray that is rotated aboutits endpoint from its initial position to a final position.
The ray corresponding to the initial position is called the initial side of the
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angle, while that in the final position is called the terminal side of the angle. The
point about which rotation takes place is called the vertex of the angle. The
definition of an angle is now extended to be the union of two rays together with

the rotation. Measure of an angle is then described in terms of amount of
rotation. This allows us to have angles with measures greater than 180° (indeed
greater than 360°) and also angles with negative measures, by using direction

of rotation. A directed angle will have positive measure if the rotation is

counterclockwise and negative measure if the rotation is clockwise. For

purposes of brevity we shall frequently say ‘‘the angle is positive’ to mean ‘‘the

measure of the angle is positive”; similarly for negative.

In Fig. 1.1(a) angle 4 is shown with initial and terminal sides labeled, as
well as with an arrow indicating direction of rotation. It is common to use the

arrow notation. Figure 1.1(b) illustrates angle B in which the rotation is more

than a complete revolution. Angles A and B are positive, while angle C is
negative.

 

Initial side C

(a) (b) (c)

Figure 1.1

1.3 UNITS OF ANGLE MEASURE

There are two units of angle measure that are widely used: 1) degrees-minutes-

seconds, 2) radians. Scientific calculators frequently include a third unit of

angle measure, that is, the grad.* Since this unit is rarely encountered, it will

not be used in this text.

1. Degrees, Minutes, Seconds

If the initial side of an angle is rotated counterclockwise one complete
revolution, the measure of the corresponding angle is defined to be 360

degrees, denoted by 360°. Thus an angle of 1° is one in which the initial side

* A grad is 1/100 of a right angle; thatis, 400 grads is equivalent to a complete revolution.
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is rotated counterclockwise 1/360 of a revolution. For more refined mea-
surements, the units of minutes and seconds are used, which are defined by:

60 minutes equals one degree, denoted by 60’ = 1°,

60 seconds equals one minute, denoted by 60" = 1’.

 

When a calculator is used, minutes and seconds must be entered as a

decimal part of a degree.
  
 

For example, 30°15 = 30.25° and 42°12'45" = 42.2125°.
Figure 1.2 illustrates degree measure of several angles. For brevity we write

A = 90° to denote that the measure of angle 4 is 90°, and similarly for other

angles.

A =90° B = 45° C =450°

1=270°

 

Figure 1.2

2. Radians

Although the measure of angles in degrees is useful in some fields of
application (such as surveying and navigation), it is more convenient to use

another unit of measure for theoretical work in mathematics as well as applied

areas. This unit is the radian and is defined as follows:

 

An angle (with its vertex at the center ofa circle) subtending an arc whose

length is equal to the radius of the circle, has a measure of one radian.
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An angle of measure 1 radian is shown in Fig. 1.3(a). In this case we write

6 =1 rad.*

In general, the radian measure of any angle is defined as follows:

 

If « is an angle (with vertex at the center of a circle of radius r) that

subtends an arc of length s (where r and s are measured in the same

units), then the radian measure of « is defined as a = s/r radians.t    

  
Figure 1.3

 

Examples

MN If r=4 cm and 5s = 3 cm, then a = 3cm/4cm = %. Since the centimeters
units cancel, the result is a real number and it is not necessary to write

“radians” after 3%. In this text we shall write a = 3% (a = 0.75 in calculator

display form) or a = % rad to mean « is an angle having radian measure %.|

 

When the measure of an angle is given as a real number (with no unit
designation), it will be understood that the unit of measure is the radian.   

For example, § = 15 means that 6 is an angle whose measure is 15 radians.

/2 Express 36°16'23" in decimal form correct to four decimal places.

* In trigonometry angles are frequently indicated by Greek letters: a (alpha), 8 (beta), y¥ (gamma),

6 (theta), ¢ (phi), and so on.

tNote that this definition is independent of the size ofcircle used; thatis, in Fig. 1.3(b) the two

ratios s/r and s'/r’ are equal (this is a fact from geometry).
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Solution. Since 60’ = 1°, then 16’ = 16/60 degrees. Also 3600” = 1°, then
23" = 23/3600 degrees. Therefore

014/791" _ 16 23 \° _ o36°16'23" = (36 + 48 + 5555) = 36.2731°.

The computation involved in getting the final result is easily done by using a
calculator. *

A Express 64.276° in degrees, minutes, and seconds (to the nearest second).

Solution.

64.276° = 64° + (0.276)(60") = 64° + 16.56’
= 64° + 16’ + (0.56)(60") = 64°16'34".

Note. In order to get maximum accuracy we suggest the following steps:

Record 64°, enter 0.276 into the calculator and multiply by 60, chen record the

whole number part of the result (16); then subtract 16 from the display,

multiply the result by 60 and this gives the number of seconds.

 

EXERCISE 1.3

1. Illustrate by a sketch the following angles. A protractor may be useful but if one is

not available, a reasonably approximate drawing will be sufficient.

a) A =135° b) B=720° c) C=-60° d) D = -540°
e) E=210° f) F=10° g) G =-300° h) H = 22°30

2. Determine the measure (in degrees) of the angles shown in Fig. 1.4. Use a
protractor or make a reasonable estimate in each case.

LN
<A

Figure 1.4

*Throughout the entire text it is assumed that a calculator is used to do most of the arithmetic
computations. Appendix A includes calculator instructions for those who need them.
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3. Note that an angle corresponding to one complete revolution has degree measure

of 360° and radian measure of s/r = 2xr/r = 27 rad. From this we see that 180° and
nm rad are equivalent. Illustrate by a sketch the following angles given in radian
measure:

— _ lx I _a) A =2n b) B= 6 c) C > d) D 4

__Ir _ 3m _ 9 _e) E= > f) F= > g G=7 h) H 3

4. Determine the measure (in radians) of the angles shown in Fig. 1.5. Express answers
in terms of w, as suggested in Problem 3. Estimate if necessary.

 

  
 v +

©
) v

 
Figure 1.5

S. Sketch an angle that satisfies the given conditions:

Ld 3 _ _ma) 0<b <3 by <b <3 c) w<l< >

3r Or 117d) F<b<m €) 4 <0<7 f)o >2r

6. Express the given angles as a decimal number of degrees correct to three decimal

places:

a) 156°37' b) 215°18'36"

7. Express the given angles as a decimal number of degrees correct to four decimal

places:

a) 48°39'42" b) —75°12'41"

8. Express the given angles in degrees and minutes correct to the nearest minute:

a) 24.36° b) 149.375°

9. Express the given angles in degrees, minutes, and seconds correct to the nearest
second:

a) 37.583° b) 321.5764°
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1.4 DEGREE-RADIAN RELATIONSHIPS

Problem 3 of Exercise 1.2 suggests a relationship between the degree and
radian units of angle measure. We now give a formal treatment so that the
different units can be used interchangeably. If the initial side of an angle is
rotated counterclockwise one complete revolution, the measure in degrees of
the corresponding angle is 360°. The same angle in radians has measure s/r,
where in this special case s is the circumference of the circle with radius r;
that is, ,

s=2nr and so Le =r =12m.

Thus we have 360° and 27 radians as the measures of the same angle and
we write

360° = 27 rad.

Dividing both sides of this equality by 2 gives

 

180° = 7 rad. (1.1)
   

From Eq. (1.1) we get the following:
 

1° = 25 = 0.017453 rad,

I rad = 180° _57.296° = 57°17'45",
T

(1.2)
 

   
Equations (1.2) can be used to convert the measure of an angle from one unit
to the other. However, the decimal numbers involved are difficult to memorize
and we suggest that the student remember the equality stated in Eq. (1.1) and
use it as a starting point for conversions.

 

Examples

MN Change 30° to an equivalent measure in radians.

Solution. Since 1° = 7/180 rad, 30° must be 30 times =/180 rad; that is,

30° = 30. (7/180) rad = m/6 rad = 0.5236 (to four decimal places). i

/A Express 147°32 in radian measure correct to four decimal places.

Solution. We first convert 147°32’ to a decimal number of degrees, and then
similar to Example 1 we have:

147°32' = (147 + 321° = (147 + 32) : (55 )rad — 2.5749 rad. 1

A Express 2.5 rad in terms of degrees (to three decimal places).

Solution. Since 1 rad = (180/7)°, we have 2.5 rad = 2.5(180° /7) = 143.239°.
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/A\ Convert 137/4 rad to degree measure.

Solution. This is similar to Example 3 and so

te (4)(ss
 

It should be clear from the above examples that we have the following two

rules:

 

1. To convert from degrees to radians, multiply by =/180.
2. To convert from radians to degrees, multiply by 180/.

   

The Number Pi

The number 7 occurs frequently in mathematics. Although the student may
have some familiarity with this number,it is worthwhile recalling some facts

about it. More than 2000 years ago the Greeks were aware of an interesting

property ofcircles. That is, in any two given circles (one with diameter 4; and
circumference ci, and the other with diameter 4, and circumference c;), the

ratios ci /d\ and c:/d. are equal (Fig. 1.6). The common ratio is denoted by =
(the Greek letter pi).

Figure 1.6

Scientific calculators have a key labeled . When this key is pressed,
the display shows 3.141592654. Actually, this is an approximation to the value

of m that is correct to nine decimal places. The number 22/7 is frequently used

as a value of =. It is important that the student realize that this is also an

approximation. In decimal form, 22/7 is given by the repeating decimal
3.142857, which approximates = correctly to two decimal places.

Another approximation to = is 333/106 = 3.1415094339 . . . We see that
this agrees with = (as given in (1.3) below) in the first four decimal digits.

However, in rounded-off form it is correct to three decimal places. (See

Appendix B for a discussion of approximate numbers.)
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Even though approximations to = by fractions or decimals are useful in

practical applications, it is important that the student realize that it is
impossible to represent = exactly as a rational number, that is, a quotient of
two integers; = is an irrational number, thatis, its decimal representation is

nonterminating and nonrepeating. Calculating = correctly to several decimal

places requires a representation ofit in terms of an infinite process (such as an

infinite series), and discussion of this must be delayed until the study of
calculus. The decimal approximation correct to 24 decimal places is

7m = 3.1415 92653 58979 32384 62643. (1.3)

Note. In this text we shall frequently ask for an answer in (a) exact form and

(b) decimal approximation form. When the number pi is involved, the only
way we shall represent it in exact form is by the symbol wn. To avoid
cumbersome statements, we frequently take some liberties with notation. For

example, we write = = 3.1416 and we understand that the ‘‘equal to” symbol
used here actually means ‘“‘approximately equal to,” which is correct to the

number of decimal places used.* As another example, a number whose square
is2 can be represented by v2 and this is an exact form for thatnumber;
v2 cannot be written in finite decimal form, and whenwe write V2=1414

we mean that 1.414 is a decimal approximation to V2, which is correct to

three decimal places.

EXERCISE 1.4

1. Express the given angles in radian measure. Write your answer in two forms: exact
(using 7) and as a decimal correct to three places.

a) 60° b) —135° c) 225° d) 720°

2. Follow instructions of Problem 1 for

a) 120° b) 315° c) 22.5° d) -330°

3. Express the given angles in radian measure correct to three decimal places:

a) 23.53° b) —48.635° c) 237°48' d) 121°40'31" e) 437°23

4. Convert to radian measure correct to two decimal places:

a) 64.431° b) 229°47'30" c¢) —36°23'08" d) 148.012° e) 472.37°

5. The following numbers represent the measure of an angle in radians. Convertto the

corresponding measure in degrees and express the result in exact form.

Tr 2 3 23m Im
a) ¢ b) 3 ©) 3 9 Zs © 13

6. Follow instructions of Problem 5 for

3m _In llr _ 157a) 4 b) > c) 3 d) —17n e) a

* When we say that 3.1416 approximates 7 correctly to four decimal places we mean that the actual
value of = has been rounded off to four decimal places (see Appendix B for a discussion of
approximate numbers).
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10.

1.5

The given numbers represent angles in radian measure. Convert to degrees and
express the results in two forms: decimal number correct to three decimal places
and degrees, minutes, and seconds correct to the nearest second.

a) 1.15 b) 2.48 c) 0.0493 d) —5.76 e) 64
. Follow instructions of Problem 7 for

a) 1.37 b) 0.0034 0) 152 d) —3.45 e) 30
. Use your calculator to express the fraction 355/113 as a decimal; obtain a sufficient
number of decimals to determine how closely it approximates =.

Follow the instructions of Problem 9 for the rational number 208341/66317. It will
be necessary to get more decimal digits than given in the full display of your
calculator. Find a way of getting at least 12 decimal digits using your calculator.

APPLICATIONS INVOLVING RADIAN MEASURE

The use of radians for angular measure is helpful in solving applied problems
in physics, engineering, and other fields as well as in theoretical developments

in mathematics. In this section we consider examples that illustrate applica-

tions of radian measure.

1. Arc Length

In Section 1.2 radian measure of an angle is defined as follows:

 

0=-=5, (1.4)
   

where the angle has its vertex at the center of a circle of radius r and s is the
length of the intercepted arc, as shown in Fig. 1.7. Equation (1.4) can be

written in equivalent form as

 

s=rb (1.5)
   

~——

Figure 1.7
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Examples

AN Find the arc length of a circle with radius 64.87 m that is intercepted by

a central angle 23°37".

Solution. We first express the given angle in radians,

— 23°37 — 37Y (= :6 =23°37" = (23 + 25) ({&5) rad;
substituting into Eq. (1.5) we get

— 37y. (x) =s=64.87(23 +25) (55) = 26.74 m.

The final computations are done by calculator and then rounded to two

decimal places. i

2 The distance from the Earth to the Moon is approximately 384,000 km.
If the angle subtended by the Moon from a point on the Earth is measured as
30'50", then we can approximate the diameter of the Moon by assuming it to
be the arc of a circle, as shown in Fig. 1.8. That is, the diameter of the Moon

is approximately equal to s, where

a (30, 50), Tm m=s = rf = 384 000 (20 +5235) {5 km = 3444 km.

-——-—-—
—-——

-——-——-—
-_——

-——-—

-—-
-—~—

~~ ——
~~—

——
~~————

 

Figure 1.8

 

2. Velocity of Rotation

Suppose we have a circular wheel of radius » = 10 cm rotating aboutits center

0, and P is a point on the circumference (Fig. 1.9). Suppose also that point P

A
P

Figure 1.9
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travels a distance of s = 20 cm each second. We say the linear velocity of P is
20 cm per second and write v = 20 cm/sec. During each second the radial line
OP rotates through an angle 6 =s/r =20 cm/10 cm = 2 rad. We say that
the angular velocity of rotation is 2 radians per second, and denote this by

w = 2 rad/sec (w is the Greek letter omega).

The above example illustrates the problem of a point P moving in a circular
path. We distinguish two types of velocity: linear velocity v tells us how fast P

is moving, while angular velocity w tells us how fast the central angle 6 is
changing (that is, how fast the radial line OP is rotating). Both v and w are
measures of how fast P is moving at any given instant. In general, v and w are

functions of time. In the special case when P is moving at a constant speed, we
call such a motion uniform circular motion. We shall limit our discussion to this

case and leave the general case when v varies with time, for calculus.

We wish to determine the equation that gives the relationship between v
and w. Suppose that point P moves to point Q, covering distance s in time ¢
(see Fig. 1.10). Then v = s/t. During the same time, the radial line OP rotates
through a central angle 6, and so w = 0/t. Since s = rfl, we get

s rf 0

 

   

v==_=""=r."= rw.
t t t

Thus we have

V= rw, (1.6)

where w is in radians per unit of time.

J
ad s

A[ 0 [1 pP
\ ro
\ /
\ /
Se~~’

Figure 1.10

 

Examples

AN The wheel of a turbine rotates at the rate of 648 revolutions per minute

and the distance from the center to a point P on the outer edge is 96.3 cm.

What is the linear velocity of point P?

Solution. Since 1 rev =27 rad, w = 648 rev/min = 648 - 2r rad/min - Sub-
stituting into Eq. (1.6), we get

  y=648.27.963-CM_ _ 648 27-963 m _ 392] _m_
min 100 min min i
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/A The diameter of each wheel of a bicycle is 70 cm. Suppose a person riding
the bicycle travels at a constant speed and is timed at 3 min over a distance of
two city blocks, where the length of a block is 200 m. Find the angular velocity

of a spoke of a wheel.

Solution. Each time the wheel (or a spoke) makes one revolution, the bicycle

moves forward a distance equal to the circumference of the wheel, that is,

707 cm. Therefore when the bicycle travels two blocks (400 m or 40,000 cm),

the number of revolutions of a wheel is 40000/(70x). It takes 3 min to make
this number of revolutions, and so

_ 40000  . 3_ 60.63 LEV.
= ’ min“ 70mr

Expressing w in radians per second, we have

w= 60.63. 21 + 60 = 6.35 Tad, I
sec
 

3. Area of a Sector of a Circle

A sector of a circle is defined as a region bounded by two radial lines and the

intercepted arc of the circle. Figure 1.11 shows two regions bounded by the

same radial lines. In order to distinguish between these two, we always indicate

the central angle of the sector. In Fig. 1.11(a) the sector has central angle «,

while in Fig. 1.11(b) the central angle is 3.

 

(a) (b)

Figure 1.11

From the study of geometry we know that in any given circle the areas of

two sectors are proportional to the corresponding central angles. That is, in the

diagrams shown in Fig. 1.12,

Area of sector AOB _ Area of sector COD
6 a

In particular, if we let sector COD be the entire circle, so that a = 2x, and the

area is wr, we get

Area of sector AOB _ mr> _ r*
0 2 2
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Figure 1.12

That is, area of sector AOB is 0r?/2.

Therefore, the area of the sector of a circle of radius » and central angle 6

in radians 1s
 

Area =0r?/2 (1.7)
   

 

Example. Find the area of the sector of a circle of radius 2.54 cm and central

angle 73°24’.

Solution. Wefirst convert 73°24’ to radians and then substitute into Eq. (1.7):

024’ — 24) m_73°24" = (73 + £3) 1&5 rad.

Therefore,

Area=-1. (734+ 24). 7.2540 4.13 cm? I2 60/ 180
 

EXERCISE 1.5

1. Suppose the radius of a circle is 37.43 cm. Find the length of arc intercepted by the
given central angle. Give answers correct to two decimal places.

a) 36° b) 73°23 c) 3.58

2. The radius of a circle is 75.23 cm. Find the length of arc intercepted by the given
central angle. Give answers correct to two decimal places.

a) 187°15' b) 177/12 c) 18°15'35"

3. If the radius of a circle is 25.32 cm, find the central angle that subtends the given

arc. Give answers in radians correct to two decimal places.

a) s=1247 cm b) s = 60.53 cm c) s=29.45 cm

4. If a central angle of 68°35’ subtends an arc of a circle of length 47.53 cm,find the

radius of the circle. Give your answer in centimeters correct to two decimal places.

5. Suppose point P moves along a circular path with a radiusof 3.57 m and center at

O. Find the total distance traveled by P if the radial line OP sweeps out the given

angle. Give twc-decimal-place answers.

a) 257° b) 1440° c) 97/2 d) 357
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. In Problem 5, the point P travels a distance of 47.55 m. Through what angle does

OP sweep? Give your answer in radians (correct to two decimal places) and in
degrees (correct to two decimal places).

. Find the velocity v of a point on the rim of a wheel of radius 24.37 cm if it is rotating

at the given angular velocity:

a) w= 5.4 rad/sec b) w = 1247 rad/min

¢) w= 63.5 rev/min d) w= 124 deg/sec

. A wheel of diameter 127.48 cm is rotating at a constant rate. Find the angular
velocity if a point on the rim is moving at the given speed. Give answers correct to
two decimal places in rad/sec and in rev/sec.

a) v= 348 cm/sec b) v= 2.75 m/sec

. Find the angular velocity of the minute hand of a clock in each of the following

units:

a) rev/hr b) rev/min c) deg/min d) rad/min

Find the angular velocity of the second hand of a watch in

a) rev/min b) deg/hr c) rad/sec

If the length of the minute hand of a clock from the pivot point to the tip is 6.5 cm,
find the linear velocity ofits tip in each of the following units:

a) cm/hr b) cm/min Cc) cm/sec

If the length of the hour hand of a clock from the pivot point to the tip is 5.2 cm,
find how far its tip will travel in the given time:

a) 2 hr b) 3 hr 40 min ¢) 16 hr 32 min

Find the linear velocity of the tip of a propeller blade that is 2.48 m from the pivot
point and is rotating at 640 rev/min. Express your answer in m/min correct to two

decimal places.

The length of the minute hand of a clock is 8.5 cm and the length of the hour hand
is 6.1 cm. Give answers in meters and find the ratio of the distance in (a) to that in

(b). Give two-decimal-place answers.

a) How far will the tip of the minute hand travel in a year? Assume 365 days in a

year.

b) How far will the tip of the hour hand travel in a year?

Assume that the Earth is spherical with radius 6400 km and that its period of
rotation about an axis passing through the north and south poles is 24 hours. How
fast is a point on the equator moving in km/hr due to rotation?

A trundle wheel is an instrument used to measure distance (Fig. 1.13). It consists of

a wheel pivoted at one end of the handle, so that it can turn freely. The operator
holds the other end of the handle and rolls the wheel (without slipping) along the
path whose distance is to be measured. A meter trundle wheel is one whose

circumference is equal to one meter. Suppose Diane wishes to measure the length

of a Logan city block. She rolls her meter trundle the length of the block and counts

196 clicks (indicating 196 revolutions). She moves at a constant speed and it takes

her 3 minutes and 36 seconds. Give two-decimal-place answers.
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17.

18.

19.

20.

21.

22.

Figure 1.13

a) What is the length of the block in meters?

b) What is her linear velocity?

c) Whatis the angular velocity of the wheel in rev/sec; in rad/sec?

A satellite travels around the Earth and makes one revolution every 4.5 hours.

Assuming that the orbit is a circle of radius 7240 km, find how fast it is traveling

in km/hr. Give answer correct to the nearest whole number.

A circle has a radius 17.3 cm. Find the area (correct to two decimal places) of the

sector of the circle with the given central angle:

a) 24° b) 37°53’ Cc) % d) 3.56

If the radius of a circle is 1.26 m and the area of a sector is 0.8764 m2, find the

central angle (to two decimal places) in

a) radians b) degrees

What is the measure in radians of the smaller angle between the hour and minute
hands of a clock at

a) 1:15 AM. b) 1:45 pM.

A pulley of diameter 31.64 cm is driven by a belt. If 32 meters of belt passesaround

the pulley (without slipping), through what angle does a radial line OP on the
pulley turn? Express the answer (correct to two decimal places) in

a) degree measure b) radian measure

In Problem 21, suppose it takes 24 seconds for the 32 meters of belt to pass around

the pulley; find the angular velocity of the pulley in

a) deg/sec b) rad/sec

Figure 1.14
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Assume that the Earth travels about the Sun in a circular orbit (actually it is a
nearly circular ellipse), and the distance between the Earth and Sun is 149 million
kilometers. A radial line is drawn from the Sun through the Earth.

a) What is the angle (in radians) swept out by that line in a day? (Assume thatit

takes 365.25 days to travel once around the Sun.)

b) What is the angular velocity of the radial line in radians per hour?

c¢) What is the linear velocity of the Earth in kilometers per hour?

A treadle sewing machine is driven by two wheels with a belt passing around them,
as shown in Fig. 1.15. The sewing machine used by Motl, the tailor, has the

following measurements: the diameter of the larger wheel is 31 cm, while that of the
smaller wheel is 7 cm. If Motl treadles his machine at a fixed rate, so that in 45
seconds the larger wheel turns through 63 revolutions, find the angular velocity of

each wheel (assume the belt does not slip). Express each answer in

a) rev/sec b) rad/sec

—_—y

Figure 1.15

Using the information of Problem 24, find the linear velocity of point P on the belt,

in centimeters per second. Also determine, how far point P travels when the sewing

machine is operated at the given rate for 8 seconds.

If the area of a given sector of a circle is 265.78 cm? and the length of the arc is
36.3 cm, find

a) the radius of the circle b) the central angle of the sector

If the area of a circular sector is 24.32 m? and the radius is 6.47 m, find the length
of arc bounding the sector. Give answer in meters correct to two decimal places.
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28. The front wheel of a tricycle is 51.4 cm in diameter and each of the rear wheels has

a diameter of 23.5 cm. If the tricycle travels along a straight path for a distance of
48 m, through how many revolutions will each wheel turn? Also express each

answer in number of radians the wheel will turn.

29. The time is between one and two o'clock and the angle measured clockwise from

the hour hand to the minute hand is 64°15’. What time is it? Give the answer

correct to the nearest minute.

30. a) A certain pickup truck comes factory equipped with standard-size tires. The
diameter of such a tire is 29 in. The speedometeris calibrated with this size tire.

If the truck travels for 1 hr at a constant speed with the speedometer reading
55 mi/hr, how many revolutions will a wheel make?

b) The owner of the truck prefers larger tires and replaces the originals with tires
of 30.75 in. diameter. Now he travels for 1 hr at a constant speed with the
speedometer reading 55 mi/hr (thus each wheel will make the same number of
revolutions as in (a)). How far does he go during that hour? By how many miles

per hour is he violating the 55 mi/hr speed limit?

31. A spherical water tank is located 0.8 km from point P, and the angle it subtends at
P is measured to be 17.5 minutes. (See Fig. 1.16.) Using this information, obtain a

reasonable approximation to the volume of the tank in cubic meters.

Figure 1.16

Hint. The diagram shows a vertical plane through the center of the tank and P.

Assume that P is the center of a circle of radius 0.8 km and that # is a central

angle of measure 17.5’. Calculate the arc length S and use this as an approxima-

tion to the diameter D of the tank. The formula for calculating the volume of a

sphere is v =(/6)D"

REVIEW EXERCISE

1. Express the following angles in decimal number of degrees correct to two decimal

places:

a) 37°42 b) —321°17'40" c) 1.43 rad d) 157/23 rad

2. Give the following angles in radian measure correct to two decimal places:

a) 175° b) 23°16’ c) 327.48° d) 137°16'37"
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. Make a sketch illustrating the given angles (a reasonable approximation is

sufficient):

a) 150° b) —250° c) 2m/3 d) 7r/S e) 3.58 f) 8.4

. The central angle of a circular sector is 64°27". If the radius ofthe circle is 24.6 cm,

find the length of arc of the sector in centimeters correct to one decimal place.

. In Problem 4, find the area of the circular sector in square centimeters correct to

one decimal place.

. The measures of three angles a, 3, and vy are: a = 0.935, 8 = 57/17, v = 3x /10.

Determine which is the largest angle and which is the smallest angle.

. The measures of four angles «, 3, v, and 6 are:

a= 126°27, Bg =126.43°, y =2.21, §=7Tr/10

Order these according to size from the smallest to the largest.

. An arc of a circle of radius 37.63 m has length equal to 12.37 m. Find the measure

of the central angle subtended by this arc in degree measure correct to the nearest

minute.

. Find the area of the circular sector described in Problem 8. Give answer in square
meters correct to two decimal places.

Determine the smaller angle between the hour and minute hands of a clock when

the time is 3:45. Express your answer in degree measure correct to two decimal

places.

. The area of a circular sector is 35.61 cm? and its central angle is 34.63°. Find the
length of arc of the sector in centimeters correct to two decimal places.

A particle travels in a circular path of radius 3.45 cm at a constant speed. It takes
1 min 36 sec to make 84.75 revolutions.

a) Find its angular velocity in radians per second.

b) If it travels at the given rate for 3 min 20 sec, what is the total distance tra-

veled? Give answer in centimeters correct to two decimal places.

If both the radius and central angle of a circular sector are doubled, by what factor
is the area increased?

The diagram illustrates part of a machine in which the larger wheel drives the

smaller wheel by a belt around the two wheels (Fig. 1.17). The diameter of the

Figure 1.17
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larger wheel is 63.4 cm, while that of the smaller wheel is 25.8 cm: the distance

between their centers is 124.3 cm.

a) If the larger wheel rotates at a constant rate of 250 rev/min, find the rate at
which the smaller wheel rotates (in rev/min) correct to the nearest whole
number.

b) If Pis a point on the circumference of the larger wheel, whatis the linear speed

of P in m/min? Give answer to one decimal place.

c) If Q is a point on the circumference of the smaller wheel, find the linear velocity

of Q in m/min correct to one decimal place.

d) If Tis a point on the belt, how far will 7 travel in 1.5 minutes? Give answer in

meters.

. A circular pizza is cut into four pieces by making two straight cuts across through
the center. Two of the pieces are smaller, each having a central angle 10° narrower
than that of each larger piece. Find the ratio of the area of the larger piece to that

of the smaller piece.



 

 

CHAPTER TWO

TRIGONOMETRIC
FUNCTIONS

2.1 TRIGONOMETRIC FUNCTIONS FOR ACUTE ANGLES

In this chapter we introduce six basic trigonometric functions. We define these
in two phases: first for angles whose measures are between 0° and 90° (acute
angles), and then in Section 2.4 we extend these definitions to the general case

of angles of any measure.
At this point the student may profit from a review of functions as studied in

algebra. There the idea of a function was introduced as a correspondence
between elements of two sets (usually sets of numbers); the first set is called the

domain D of the function and the second set the range R of the function. Iff
denotes the function (in which the rule of correspondence is frequently given
by an equation, or by a verbal statement, or a table), then for each element x
of D there is a single corresponding element of R denoted by f(x). Thatis,
every element x of D has a unique mate f(x) in R. The symbol x is called the

independent variable, while f(x) is called the dependent variable, and we usually

write y = f(x).

For example, equation y = x2, along with the domain (the set of real
numbers) describes a function, since for each real number x there is exactly one
value of y (the square of x) paired with it. The range of this function is the set
of nonnegative real numbers.

We now define the six trigonometric functions—the building blocks of

trigonometry. These functions are basic and the student should master them.
In mathematics, when a particular function occurs frequently, it is given a

special name for easy reference (rather than using letters such as f, g, etc.). The

names of the functions that we are about to introduce are: sine and cosine,

tangent and cotangent, secant and cosecant; these are abbreviated as sin, cos,

tan, cot, sec, csc, respectively.

To define these functions, we consider a right triangle with standard
notation, as shown in Fig. 2.1.

21
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A b Cc

Figure 2.1

The two acute angles are denoted by « and 3, and the two sides (or /egs)

opposite these angles are labeled a and b, correspondingly. The side opposite
the right angle (c in the figure) is called the hypotenuse. A special property of

right triangles involving the legs and the hypotenuse is stated in the
Pythagorean theorem:

 

a’ + b* = c.
   

Note that we take liberties with language and notation here as well as

throughout the text. For example, we say ‘‘side when we really mean that

the letter b represents the length of the side opposite angle £.
We now give the following definitions, where “‘opp(a)” and “adj(a)”

represent ‘‘side opposite’’ and ‘‘side adjacent angle a”:

 

sina=PP@_a oo,2d_b ,_PP@A_a
hyp c hyp c adj (a) b

adj (@) _p hyp c hyp ccot a=—"——==>=, seCa=—""—=—-, CSC a = ==
opp (@) a adj (a) b opp (a) a   
 

Similarly for angle 8 we have:

sin g—0pB) _b cos g-240B _a tan opp

B)

_ b
hyp ¢’ hyp  ¢ “adj 8) a

_ adj)a __hyp __hyp
=r B® b Fae Ta Pome bh
The following observations can be made from the above definitions:

1. There are many right triangles which contain a given angle, such as « in
Fig. 2.1, and so it may appear that the above definitions depend upon the

particular right triangle used. However, this is not the case since we recall from

geometry that any two such triangles are similar and the ratios of correspond-

ing sides are always equal. For example, in Fig. 2.2 we have two similar right
triangles, and so a,/c, = a,/c,. Thus sin « is equal to a,/c, or a,/c,.
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¢

a,

  

Figure 2.2

2. It should be clear that the definitions given above describe six functions.
For example, to each acute angle the sine function attributes a unique real

number a/c. The situation is similar for each of the other five relations.

3. There is an obvious reciprocal relationship between pairs of the six
functions. For example, csc a = ¢/a and sin «a = a/c, therefore csc a = 1 /sin a.

Similarly the sec, cos and cot, tan functions are reciprocals of each other:

 

1 ’ S€C a = : ’ cot a = 1CSC a = — .
Sin «o CoS «a tan a

   

   
4. We know from geometry that 8 = 90° — «a. Since cos a and sin 8 are

both equal to b/c, then we have sin 3 = cos «, or sin (90° — a) = cos a. Thus

we have complementary-angle identities:

 

sin(90° — a) = cos a, ¢0s8(90° — a) =sin a, tan(90° — a) = cot «a,

cot(90° — a) =tan a, sec(90° —a)=csc a, csc(90° — a) = sec a.
   

S. The domain of each of the six functions is a set of angles (actually,
measures of angles) defined as

D = {00° < 6 < 90°}.

The range of each function is a subset of the real numbers; for example, the

range of the sine and cosine functions is {y |0 < y < 1}, while the range of the
tangent and cotangent functions is {y|y >0}, and that of the secant and
cosecant functions is {y|y > 1}. These statements should be intuitively clear
from the definitions of the six functions.

We remind the student that the above statements are limited to the special
case we are considering, that of acute angles. In Section 2.4 we shall extend the
above definitions to include angles of any measure.

1. Trigonometric Functions for Special Angles: 30°, 45°, 60°

There are two right triangles in which the sides are related in a simple manner,
and so the trigonometric functions for the angles of these triangles can be
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expressed in exact form. The student is reminded of the following properties

encountered in the study of geometry.

1. If one angle of a right triangle is 45°, then the otheris also 45°, and the

triangle is isosceles. Therefore the lengths of the two sides are equal. If both are
taken to be one unit in length, as shown in Fig. 2.3(a), then by the Pythagorean
theorem the hypotenuse will have length v1? + 12 =V/2. This triangle can

be used to find the trigonometric functions of 45°. For example,

1.vV2 V2. o 1sin 45° =— = =—
v2 V2.vV2 2

Thus sin 45° =V/2/2. Using the calculator to evaluate V/2/2, we get
sin 45° = 0.7071 (to four decimal places). We say that v/2/2 is an exact form
for sin 45°, while 0.7071 is a decimal approximation.

 

B
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A 1 C D

 

Figure 2.3

2. In a right triangle with one angle equal to 30° and the other 60°, the

hypotenuse is twice as long as the shorter side (the side opposite the 30° angle).

This property can be seen from Fig. 2.2(b), where triangle ABD is equilateral
and triangles ACB and DCB are congruent. Thus if we take the length of the

hypotenuse as 2, then the side opposite the 30° angle must be 1. By the

Pythagorean theorem, the length of the other side is V2? — 12 = /3. Using

right triangle 4A BC we can find the trigonometric function values for 30° and

for 60°. For example, sin 30° = 1/2 and sin 60° = \/3/2 in exact form, while
sin 60° = 0.8660 is a decimal approximation correct to four places.

2. Exact Form vs. Decimal Form

In many problems throughout this textbook the student is asked to express

numerical answers in exact form or in decimal form correct to a given number

ofplaces. In general, the exact form is obtained by applying definitions or basic
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results, while the decimal answer is a rounded-off approximation of the exact
form. In most cases, answers obtained by using a calculator are approximate
decimal numbers with accuracy limited by the capacity of the machine.

 

Examples

MN If 6 is an angle for which sin 8 = 13, find tan 6 and sin (90° — 6):

a) in exact form b) in decimal form (to four places)

Solution. Consider a right triangle with 6 as an acute angle. Since sin 0 = !3, we
can use the side opposite 6 as one unit and the hypotenuse as threeunits, as
shown in Fig. 2.4. The length of the third side will be v3? — 12 =1/8 = 2V/2.

 

 

Figure 2.4

 

 

Therefore,

a) tango PPO _ 1 _ V2
adj 0) 2/2 4

sin (90° — g) = 9PP 00° — 0) _ 2V/2
hyp 3

b) tan 6 = 0.3536, sin (90° — 6) = 0.9428
1

/2\ In a right triangle, a = 5.24 cm and ¢ = 16.36 cm (Fig. 2.5). Find:

a) the length of side 4 (to two decimal places),

b) tan a (remember, « is the angle opposite side a).

 

 

Figure 2.5



26 Trigonometric Functions Chapter 2

Solution.

a) From the Pythagorean theorem,

b=v16.362— 5.24 = 15.50 cm.

b) tan a =4 — _9.240.3381.
V16.367 — 5.242 I

A If sin 6 =0.47, find the remaining five trigonometric functions of 6
(correct to two decimal places):

Solution. Since sin § = 0.47/1, we can use a right triangle with hypotenuse 1

and side opposite 0 as 0.47 (Fig. 2.6). Let x represent the length of the adjacent
side; then x = V1? — (0.47)? = 0.8827. Thus,

cos 6 =0.88 tan 0 = 0.53 cot 0 = 1.88

sec =1.13 csc =2.13 i

0.47

 

X

Figure 2.6

/A\ In a right triangle we are given that ¢ = 15.72 and sin 8 = 3/5 (Fig. 2.7).
Find (correct to two decimal places):

a) the length of side a b) tan a

 

 

Figure 2.7

Solution.

a) Since cos 8 =a/15.72, we have a= 15.72 cos 8. Thus we need to

determine cos S.
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Since sin 3 = 3/5, we draw a second triangle as shown in Fig. 2.7, in which 
we first determine x = V/5? — 32 = 4. From this triangle we have cos 8 = 4/5.
Therefore,

a=15.72 cos § = (15.72) (4) = 12.38.
b) From the second triangle we have: tan a = 4/3 = 1.33. i
 

EXERCISE 2.1

1.

10.

11.

Determine the following and give answers in exact form:

a) cos 45° b) tan 45° c) cot 45° d) sec 45° e) csc 45°

. Complete the following table by entering in exact form the function values for the
given angles:

 

sin cos tan cot sec csc
 

30°

60°

 

    
. If cos 6 = 3/5, find in exact form
a) tan 6 b) cot 4 c) csc f

. If tan a = 4/3, find in exact form
a) sin « b) cos a C) sec «

. If sin 6 = 3/4, find the answers correct to two decimal places:
a) cos f b) tan 0

. If sin a = 2/7, determine each of the following in exact form:
a) cos a b) sin (90° — a) ¢) tan « d) sec(90° — a)

. If cos 8 = 8/17, find in exact form:
a) tan 0 b) tan (90° — 6) c) sec(90° — 6) d) csc d

. If sec 8 = 1.5, find in exact form:

a) sin 0 b) tan 6 c) cos(90° — 0)

. If cos 6 = 0.63, find the remaining five trigonometric functions of 6. Give results

correct to two decimal places.

A cat stranded on a telephone pole has found secure footing at a point where the

guy wire meets the pole. If the distance from the foot of the pole to the foot of the

guy wire is 3 m and the wire makes an angle of 60° with the ground, how high above
the ground is the cat?

In a right triangle a = 2.36, b = 5.63. Find (to two places)

a) the length of ¢ b) sin «

c) cot 8
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12. In a right triangle we are given that ¢ = 6.47 and sin a = 5/17. Find correct to two
decimal places:
a) the length of a b) the length of b c) tan 8

13. Find the height of the Washington Monumentif it casts a shadow of 290 m when
the sun is 30° above the horizon. Give the answer to the nearest meter.

14. Lighthouse BC is located on the edge ofa cliff, as shown in Fig. 2.8. From point
A (which is 67 m from the base of the cliff D) angles a and 8 are measured and
found to be 60° and 45°, respectively. Find the height 4 of the lighthouse.

 
A 67m D

Figure 2.8

2.2. USING THE CALCULATOR TO FIND VALUES OF TRIGONOMETRIC

FUNCTIONS*

In the preceding section we saw examples of special angles for which we could

evaluate the trigonometric functions in exact form. In the general situation,
however, this is not possible. It therefore becomes necessary to find other

means than ratios of sides of right triangles to determine the values of the
trigonometric functions. For example, if we want to determine sin 37°, we

could draw a right triangle with a 37° angle, as shown in Fig. 2.9; then
sin 37° = a/c.

However, there is no simple relationship between a, b, and c, as in the case

for 45° or 30° — 60° right triangles. We could measure the lengths a and c, and
evaluate a/c, but such a technique could produce only an approximation,

which would probably be very crude.

In the study of calculus the student is introduced to methods (infinite
series) for evaluating trigonometric functions accurately to any desired number

* See Appendix A for basic calculator instruction.
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37°   
b

Figure 2.9

of decimal places. Earlier textbooks in trigonometry included several pages of
tables listing such values (usually to four or five decimal places), and the
student was expected to master the art of reading these tables. With the
availability of the scientific hand-held calculator, such tables are no longer
necessary. Each calculator has built into it the capacity to quickly evaluate any
trigonometric function accurately to several (usually seven to nine) decimal
places. Since tables are not necessary, there is no longer a need to study
interpolation techniques to evaluate trigonometric functions for angles not
included in tables.

All scientific calculators have keys labeled (sn) | , Can). Also,
there is a key (or keys) that will allow the operator to put the calculator in

degree, radian, or grad mode. The owner’s manual which comes with the

purchase of a calculator describes this feature and should be consulted to make
certain it is understood.

To illustrate the use of the calculator for determining values of trigono-
metric functions we consider some examples.

 

Examples

/N\ Evaluate sin 37°.

Solution. First be certain that your calculator is in degree mode. Then merely
press the following keys: 3, 7, (sin). The display will read 0.60 for many

calculators, and if greater decimal accuracy is desired, the operator can have

the calculator display a larger number of decimal digits (the owner’s manual

has instructions for doing this). Thus we can get, accurate to nine decimal
places, sin 37° = 0.601815023. I

A Evaluate cot 64°.

Solution. The calculator does not have a key labeled . However, as we

observed in Section 2.1, the cotangent function is the reciprocal of the tan-

gent, and so we have cot 64° = 1/tan 64°. Therefore, with the calculator in

degree mode, press the following keys: 6, 4, , . The display will give
cot 64° = 0.487732589. The student should note at this point that 1/tan 64°
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and tan(1/64)° are not equal. That is, the key should be pressed after
the key.

Alternative solution. As was pointed out in Section 2.1, cot 6 = tan(90°— 0),
and so we have cot 64° = tan(90°— 64°) = tan 26°. Thus pressing the keys 2, 6,

gives cot 64° = 0.487732589.

A\ Evaluate cos 24°31'43" correct to five decimal places.

Solution. We first convert 24°31'43” into a decimal number of degrees as
follows:

 o / no 31 43 o24°31'43" = (24 + 35 + 3235)°.

Be sure your calculatoris in degree mode and carry out the following sequence

of steps: evaluate 24 + 31/60 + 43/3600; then press and the answer will
appear in the display. Thatis, cos 24°31'43" = 0.90975. i

/A\ Evaluate sin 1.2 correct to four decimal places.

Solution. Note that sin 1.2 meanssine of 1.2 rad. Place the calculator in radian

mode; then press 1.2, (sn), and the value will appear in the display:

sin 1.2 = 0.9320. i

A Evaluate tan (37/11) correct to eight decimal places.

Solution. Place the calculator in radian mode; calculate 37/11 (use the (J
key on the calculator), then press : tan (37/11) = 1.15406152. i
 

EXERCISE 2.2

In each of the following use a calculator to evaluate the given function and express your

answer correct to four decimal places:

1. sin 28° 2. tan 49° 3. cos 72°

4. cot 78° S. sec 35° 6. csc 17°

7. sin 43°21’ 8. sec 57°16 9. cos 12°37'41"

10. sin 0.4 11. cos 1.25 12. tan 7/3

13. cot 37/8 14. sec 7/4 15. tan 7/4

In each of the following use a calculator to evaluate the given expression. Give answers

correct to two decimal places. (If necessary, see Appendix A for a review.)

in 73°16’ sin16. (2.48) sin 73°16 17. 22ST
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2 tan 35°12’ o1Q’18. T=(tan35°12) 19. 65.48 csc 43°18

20. tan x 21. sec 1.47

Ir 8.54 sin (57/11)
22. cos 7 23. SnGrGr/7)

24. (sin 23°48')% + (cos 23°48’)? 25. sec (31°12'36")

0 ’ n 1 + 1

26. cot (72 1541 ) 27. csc (37/8) sec (37/8)

28. sin (12) 29. sin 37° cos 56° — sin 56° cos 37°

1+V'5\ . (5¢
30. 5) sin (32)

31. How tall is a flagpole that casts a shadow of 23 m when the sun is 37° above the
horizon?

32. The distance from the base to the top of the Leaning Tower of Pisa is 54.6 m and
it makes an angle of 84°45’ with the horizontal. How far does the top overhang the
base?

2.3 ANGLES IN STANDARD POSITION

In Section 2.1 we defined six trigonometric functions which applied to angles
with a measure between 0° and 90°. We are interested in extending those
definitions to angles of any size. In order to do this,it is convenient to use a
coordinate system for labeling points in the plane. We first recall some
properties of rectangular coordinates.

The plane is divided into four regions (called quadrants) by a horizontal line
(x-axis) and a vertical line (y-axis), as shown in Fig. 2.10(a). The point of

intersection of these two lines is called the origin. We associate points on each
of the axes with the set of real numbers in a one-to-one manner, the positive
numbers corresponding to the points on the x-axis located to the right of the

origin (called the positive x-axis) and the negative numbers corresponding to

points to the left of the origin (called the negative x-axis). Similarly for the

y-axis, up is the positive direction and down is negative.

Each point P in the plane can now be identified by a pair of names(a first
name and a second name) that are labeled (x,y), where x denotes the directed

distance of P from the y-axis and y is the directed distance from the x-axis. This

gives a one-to-one correspondence between points of the plane and ordered

pairs of real numbers. For example, the ordered pair (—3, 2) indicates a point

that is three units to the left of the y-axis and two units above the x-axis.

Similarly for the other points plotted in Fig. 2.10(b).
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Figure 2.10

Let P: (x,, y,) and Q: (x,, y,) be any two points in the plane and let d rep-
resent the distance from P to Q (Fig. 2.11). Then it follows from the
Pythagorean theorem that d? = (x, — x,)* + (y, — »,)* Thus,

 
 

d= V(x — x1) + (V2 — yi)

 
 
 

  
2. Angles in Standard Position

In order to define the trigonometric functions for angles of any size,it is

convenient to consider angles in a standard position. We shall say that an angle

is in standard position when the vertex of the angle coincides with the origin of
a rectangular coordinate system and the initial side coincides with the positive
x-axis. Figure 2.12 is an illustration of angles in standard position. Angles «,
B, and vy are positive and J is negative.

Figure 2.11

 



2.3 Angles in Standard Position 33

When the terminal side of an angle in standard position is located in a
given quadrant, we say that the angle is in that quadrant. For example, in

Fig. 2.12, angle « is in quadrant I, 8 is in quadrant III, v is in quadrant II,

Terminal

« B Y

Initial / - T oo X

(a) (b) (¢) (d)

Figure 2.12

 

and 6 is in quadrant IV. If the terminal side of angle 6 coincides with an axis,
then 0 is called a quadrantal angle and is not said to be in any quadrant.

When two angles are placed in standard position (in a given coordi-

nate system) and their terminal sides coincide, we say that the two angles are

coterminal. For example, a =45° and ( = 405° are coterminal

since 405° = 360° + 45°. Similarly, 210° and —150° are coterminal since

210° = 360° + (—150°); angles 6 and 6 + k - 360°, where k is any integer, are
coterminal angles.

 

Examples

AN For the following angles, draw a figure with the given angle shown in

standard position. Use a protractor if it is available; otherwise, an approximate
free-hand sketch is sufficient.

a) 64° b) —155° c) 248° d) 450° e) —180°

Solution. See Fig. 2.13.

64° 248°

—155°

450°
 

AL/ 180°

 
Figure 2.13 i
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oN Sketch the given angles in standard position:

™a) b) — I ¢) 3.05 d) -5 e) 7.5
Solution. Note that 7/2 = 1.57, 7 = 3.14, 37/2 = 4.71, 27 = 6.28,
S5m/2 =7.85. Thus:

¢) 7/2 < 3.05 < m, and so angle 3.05 is in quadrant II;

d) —27r <—-5<—-37/2,s0 angle —SisinI;

€) 2m < 7.5 < 57/2, so angle 7.5 is in I. (See Fig. 2.14.)

x

Figure 2.14 i

A For each of the following determine the quadrant in which the given

angle is located:

a) 137° b) — 650° c) 17x/11 d) 6.28 e) 450°

Solution.

a) Quadrant II, since 90° < 137° < 180°.

b) Quadrant I, since —650° = —360° — 290°,

c) Using a calculator, we get 177/11 = 4.86, which is between 37/2 and

2m. Therefore 177/11 is in quadrant IV.

d) Quadrant IV, since 37/2 < 6.28 < 27.

e) The terminal side coincides with the positive y-axis; therefore 450° is

a quadrantal angle. i
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/A\ Draw the angle of measure — 48° in standard position (see Fig. 2.15);
then draw the smallest positive angle 6 that has the same terminal side as — 48°
and determine its measure.

Solution. 6 = 360° — 48° = 312°,

6

—48° 312°

Figure 2.15

A Follow the instructions of Example 4 for the angle of measure —2.48.

(See Fig. 2.16.)

Solution. 0 =2r — 2.48 = 2(3.14) — 2.48 = 6.28 — 2.48 = 3.80 (to two decimal

places).

0

-2.48

Figure 2.16

/6\ Find two angles coterminal with —4w/3.

Solution.

4m _2r _4mop 10m—3 + 2m = 3 and 3 21 = 3

are coterminal with —4=/3. i

/N\ Determine all angles coterminal with 120°.

Solution. If we add or subtract any multiple of 360° to 120° we get an angle

coterminal with 120°. Therefore, the set of all angles coterminal with 120° is

{120° + k - 360° | k is an integer]. i
 

EXERCISE 2.3

When drawing an angle is required, use a protractor if it is available; otherwise a

reasonable freehand sketch is sufficient.
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. Draw a figure illustrating the given angles in standard position:

a) 40° b) 220° c) —220° d) 725° e) — 460°

. Draw a figure illustrating the given angles in standard position:

a) = b) 3.41 c) —1.80 d) 8.8 e) - 4

. Determine the quadrant in which the given angleslie (that is, the quadrant in which
the terminal side is located):

a) 37° b) 335° c) —125° d) 580° e) —480°

. Determine the quadrant in which the given angles lie:

a)—3F b) 7 ¢) 3.56 d) 8.47 e) —5.40

. Draw a figure of the given angles in standard position. Then draw the smallest
positive angle that has the same terminal side and determine its measure:

a) —100° b) 540° c) —540° d)3 e) —4.32

. For each of the given pairs of angles, determine whether or not the second one is

coterminal with the first one:

a) 60°, 240° b) —45°, 315° c) - a =

o o Ir 3rd) =, —m e) 30°, 750 fT, -I

. Find three angles coterminal with 6 = 90°.

. Find three angles coterminal with 6 =—=/6.

. Determine the set of all angles coterminal with 6 =—2x/3.

10.

11.

Determine the set of all angles coterminal with 6 = 30°.

Find the set of all angles coterminal with an angle whose terminal side passes
through the given point:

a) (1, b) (-3,-3) ¢) 1, V3)

Determine the set of all angles coterminal with the angle in standard position whose

terminal side passes through the given point:

a) (0, 3) b) (0,-5) 0 (50 d) (2.3, 0)

2.4 TRIGONOMETRIC FUNCTIONS OF ANGLES OF ANY SIZE

Let 6 be an angle in standard position and P : (x,y) be any point (other than the

origin) on the terminal side of 6 (Fig. 2.17). Let r be the distance from the

origin to P; that is, r = Vx2+y? (r is always a positive number). Draw a

perpendicular from P to the x-axis and name the point of intersection 4; then

right triangle PAO is called a reference triangle for 0.
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Py Hx ¥y)

P:(x,V)

 

0 Xx,  
Figure 2.17

We define the six trigonometric functions of 6 as follows:
 

  

sin 0 =2, cot =X
r y

—- xX =rcos 0 = sec 0 = 2.1)

tan 6 = 2, csc 0 =-L.
X y
 

Several observations can be made:

1. The above definitions are independent of point P taken on the terminal
side. That is, if P,: (x, y,) is some other point on the terminal side and
ri=v x2 + y,? , then the two right triangles in Fig. 2.17 are similar and hence
the ratios of corresponding sides are equal.

2. If 0 is an acute angle, the definitions given here agree with those given in
Section 2.1.

3. The definitions stated in Eq. (2.1) define six functions; that is, each
function associates each given angle § with a unique real number by the ratio

indicated in Eq. (2.1) (whenever this ratio does not involve division by zero).

4. For quadrantal angles the reference triangle becomes a line segment.
However, the above definitions are in terms of x,y,7, and so we can use them
in that form. For example, for 0° we can take the point (1,0) on the terminal

side; then r = 1 and we have

sin 0°=2=0 _0,
r 1

5. If the terminal side of 6 coincides with the y-axis, then x = 0 and

tan 6 = y/0 and sec § = r/0 are not defined. Similarly if the terminal side of §
coincides with the x-axis, then y = 0, and cot # = x/0 and csc 6 = r/0 are not

defined.

6. From the definitions given in Eq. (2.1) we see that sin § and csc 0 are

reciprocals of each other, cos 6 and sec 6 are also reciprocals, and so are tan 0

and cot 0. That is,

cos 0°=X1_
ro 1
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1 1 10 = R 0 = 0 = .
ese sin 6 sec cos 0 cot tan 0

7. We note that

) (YN? x \2_ y+ x _
(sin 6)? + (cos 0)* = (+) + (££) = - =1,

since y? + x? = r?; thus for any angle § we have

 

(sin 0)? + (cos 0)* = 1.
  
 

 

Examples

AN Suppose 6 is an angle in standard position and point (3, 4) is on the

terminal side of 6. Find the values of the six trigonometric functions of 6.

Solution. The diagram in Fig. 2.18 shows a reference triangle for 6, in which
point P is taken as (—3, 4), and so r = V(— 3)? + 42 = 5. Therefore,

 

 

in 0=4 _ 4 _ 3sin ==, tan § = —, sec ==

_=3 _ =3 3cos 0 ==, cot 0 = a csc 0 ==

Figure 2.18 i

/2\ Evaluate the six trigonometric functions for 315°. Express each answer in
exact form and in decimal form (correct to four places).

Solution. In the diagram of Fig. 2.19 we see that the reference triangle for 315°

is a 45° right triangle. It is therefore convenient to take (1, —1) as point P, and

so r=y/12 + (=)! =V2. Thus,

sin 315° = ——L — V2 (exact form).
V2 2

Using the calculator to evaluate —v/2/2, we get sin 315° = — 0.7071 (to four
decimal places). Similarly,
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wh

 

cos 315° = L_V2 cos 315° = 0.7071,
V2

tan 315° = +=- 1, tan 315° = — 1.0000,

cot 315° = L-—1, cot 315° = — 1.0000,

sec 315° —V2_3, sec 315° = 1.4142,

csc 3150 = V2 v3, csc 315° = — 1.4142, I

A\ Evaluate sin (— 27/3) and tan (— 27/3). Express answers in exact form.

Solution. Sketch 6 = —2m/3. The reference triangle for 6 =—-27/3 is a
30°-60° right triangle, so we can take P as (—1, —V/ 3) (see Fig. 2.20). Thus,

sin (-&) = v3 and tan (-&) _=V3_ V3.

   
Pi(=1.—V3)

Figure 2.20

Note. In this example, as well as in the following ones, the essential steps
leading to the solution are: Using the given information, 1) sketch the angle in

standard position (this includes determining the quadrant in which it is

located); 2) take a convenient point (x, y) on the terminal side and build a

reference triangle (using the Pythagorean theorem as needed, including proper

selection of “ +” or ““ —” signs for x and y); 3) use appropriate definitions
given in Eq. (2.1). i
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/A\ Evaluate the following (see Fig. 2.21):

a) sin 180° b) cos 180° c¢) tan 90° d) sec(—540°)

Lo
© P(-1.0)

 
(a) and (b)

fro 1)

v

 

(c)

P(—1,Lo

(d)

Figure 2.21

Solution.

a) Take point P as (—1, 0), so r = 1. Then sin 180° = y/r=0/1 = 0.

b) Take P as in (a), then cos 180° = x/r=—1/1 = —1.

c) Let Pbe (0,1), so r= 1. Then tan 90° = y/x = 1/0. Since division by

zero 1s not defined, we say that tan 90° is not defined.

d) In the diagram of —540° in standard position, we see that the

terminal side coincides with the negative x-axis. Therefore we can

take point P as (—1, 0) and so r= 1. Thus

—540°y=-L _- 1 _ _sec (—540°) = Tq 1. i

A If angle 6 is in the second quadrant (the terminal side of 4 is in quad-
rant II) and cos § = —0.7, find the other five trigonometric functions of 8 (see
Fig. 2.22). Express each result

a) in exact form b) in decimal form correct to three places
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 v

 

Figure 2.22

Solution. Since 0 is in the second quadrant and cos = —0.7 = —7/10, we get a

reference triangle as shown in Fig. 2.22 by taking x = —7, r=10 (then

y=V10? — (<7)? =V/'51. Using definitions given in Eq. (2.1), we have:

a) sin 0=YOL pan gS cot §—_=1_ _=T/51
10 —7 V/51 51

sec 0 _ 10 csc 0 = 10 v1
-7 51

b) Using the calculator to evaluate the expressions in (a), we get

sin § =0.714 tand = — 1.020 cot 6 =—0.980

sec 0 =—1429 csc = 1.400 I

/6\ If 6 is an angle in the third quadrant and tan 6 = 3/4, find the remaining

five trigonometric functions of 6 (see Fig. 2.23).

Le
J wv

|
3]

|

Figure 2.23

Solution. Since tan 6 = 3/4 = —3/—4 and 6 is in quadrant III, we can take

(— 4, — 3) as the point to determine a reference triangle as shown in the

diagram; thus r=V(— 3)? + (— 4)’ = 25 =5. Therefore

og3 __4 _ —4_4sin 0 = 2 cos 0 = = cot 0 = ==73

sec f= — =, esc f= — 2
4 3 i
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EXERCISE 2.4

1. If 6 is an angle in standard position and point (4, —3) is on the terminal side of 0,

find each ofthe six trigonometric functions for 6. Express each answer in exact form
and in decimal form correct to four places.

2. Point (2,3) is on the terminal side of angle «. Find the six trigonometric functions

for a and give answers in exact form.

In Problems 3 through 11, evaluate the given expressions and give the answers in exact

form:

3. a) sin 60° b) cos 60° ¢) sin 210° d) cos 210°

4. a) tan 30° b) sec 30° ¢) tan 300° d) sec 300°

5. a) cot(—45°) b) csc(—45°) c) cot 405° d) csc 405°

6. a) sin 225° b) cos 330° c) tan 135° d) cot 150°

. m Sm _T 2m7. a) sin 6 b) tan 3 Cc) cos( 3 ) d) cos 3

Sm Ir 17m . 1778. a) cos (-=) b) sec (-&) c) tan 3 d) sin (- oy

9. a) sin 90° b) cos 0° ¢) tan 270° d) sec 180°

: 1
10. a) sin (- z) b) tan = c) cot (~) d) sec (- 4m)

17m ll . St11. a) sec (+5) b) cos (177) Cc) tan (-1=) d) sin ( +21)

ee 9
12. In the accompanying table write a “+” sign or a sign indicating the sign of the

corresponding entry:

sin

124°

— 320°

3.04

—1.16

 

In Problems 13 through 18, give each answer in exact form and in decimal form correct
to three decimal places.

13. If 6 is an angle in the second quadrant and cos 6 = —3/5, find the other five

trigonometric functions of 6.

14. If sin a = —3/4 and the terminal side of « is in the fourth quadrant, find the
remaining five trigonometric functions of a.

15. If cot 3 =3/4 and @ is in the third quadrant, find the other five trignonometric

functions of g.

16. If tan yv = —1.2 and the terminal side of 7 is in the second quadrant, find the

remaining five trigonometric functions of 7.
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17.

18.

19.

20.

21.

22.

23.

24.
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If sin # = —0.25 and tan 6 is negative, find the remaining five functions of 6.

If tan # = —3 and 6 is a second-quadrant angle, find the remaining five functions

of 6.

Find the value of

 

2r 4 Sm
COS 3 sin 3 + tan 4

om om 2rsin 3 tan 3 + S€C 3

in exact form and in decimal form correct to three decimal places.

Verify that sin (a — 8) =sin a cos 8 — cos « sin 3 for each of the following pairs

of values of « and £3:

Zr p_ wm _T g_a) a=, B= b) a = > B=m

3r om 5 _©) a=, B= d) a =r B=3r

Hint. In each case evaluate the left-hand side and the right-hand side of the
equation for the given « and 3, and then verify that the two resulting numbers are
equal.

Verify that (sin 6) + (cos 6)? = 1 for each of the given values of 6:

a) 0 = 60° b) 6 = 150° c)l=m

Verify that sin(26) = 2(sin 8)(cos 6) for the given values of 8:

a) 6 = 90° b) 6 = 30° 00-2

Verify that (sec §)2 — (tan 0)? = 1 for the given values of 6:

a) 6=—3T b) 6 = 225° c) 6 = 495°

For which of the given angles « and 8 is cos(a + 8) = cos a + cos 3?

a) a=m,B3=0 b) a=0,8= 7

c) a =45° 3 =45° d) a =120° 8 = 30°

2.5 EVALUATING TRIGONOMETRIC FUNCTIONS

In Section 2.2 we referred to the fact that in general it is necessary to use

techniques of calculus to evaluate trigonometric functions to a given degree of
accuracy. For example, the sine and cosine functions can be evaluated by using

the infinite series

5 7 x?

sin x = x —4 +357+331 (2.2)
1 — x? LX x0, x8

cos x = SitETRo (2.3)

where x is in radian measure (that is, x is a real number). Recall that n! means

n-factorial; for example, 4! =1-2.3.4 = 24. Scientific calculators have a
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built-in capability to calculate sin, cos, or tan of any angle for which the
function is defined. We first illustrate the use of Eq. (2.2) to calculate sin 10°

correct to four decimal places and then compare the result with the value
obtained by using the (sn) key of the calculator. The first step is to convert
10° to radian measure: 10° = 107/180 = 7/18. Now with the use of the
calculator we evaluate the following expression:

sin 10° =sin = = & _ (7/18)°  («/18)"
18 18 6 120

sin 10° = sin 18 = 0.174532925 — 0.000886096 + 0.000001350 — . .

The terms on the right side of this equation become small rapidly, and in this
case (of four-place accuracy) all but the first two can be neglected. So

sin 10° = 18 —- LiL = 0.1736 (to four decimal places).

Now we place the calculator in degree mode and press 10, Gin] . The

display gives sin 10° = 0.173648178 (correct to nine decimal places). We see

that our calculated result agrees with that of the calculator to four decimal

places. Of course, we shall not use formulas (2.2) and (2.3) to evaluate sine and

cosine of a given angle since the calculator will do this for us automatically.

The purpose of introducing Eqs. (2.2) and (2.3) at this timeis to illustrate what
occurs inside the calculator when it evaluates trigonometric functions.

 

Examples Using the calculator evaluate each of the following and express

the answer correct to five decimal places:

AN cos 234°

Solution. Again in degree mode, press 234, . The display reads
—0.587785253; therefore, cos 234° = — 0.58779 to five places.

/2\ tan (—127°)

Solution. Press 127, change sign , , and conclude from the display
that tan(—127°) = 1.32704. i

A sin 196°16'41"

Solution. In degree mode, the calculator will accept angles given in degrees as
a decimal number. So it is necessary first to change

196°16'41" = (196 + 18 + 41 _)° _ 196.27806°.
60 60-60

Therefore, after using the calculator to perform this calculation, we press the

(sn) key and get sin 196°16'41" = — 0.28030. I

sec(—2.47)
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Solution. Since the calculator does not have a key, we use observation 6
of Section 2.4 to get sec(—2.47) = 1/cos(—2.47). To evaluate this, place the

calculator in radian mode, then press 2.47, (-), , (>. This
gives sec(—2.47) = —1.27741. i

A CSC (Ae3)

Solution. Place the calculator in radian mode, evaluate (1 + V'5)/2. Then

with this number in the display, evaluate

1+V5 ) _ 1

2 sin [(1 +V 5)/2]
CSC (

by pressing (in] | . The result is

csc (LVS) = 1.00112.

/6\ tan 450°

Solution. Place the calculator in degree mode; press 450 and ; the display

will indicate “Error”. If we apply observation 5 given in Section 2.4, we see
that tan 450° is undefined. Some calculators give 9.9 - 10°° as the value of

tan 450°; such a large number should cause us to ask “What is the calculator

telling us?” i
 

EXERCISE 2.5

Using your calculator, evaluate Problems 1 through 21 and give answers correct to five
decimal places:

1. sin 131° 2. cos 235° 3. tan 138°

4. sin (—41°) 5. cot 83° 6. sec 157°

7. csc(—=57°) 8. sin 204°17'31" 9. tan (—31.48°)

10. sec 148.16° 11. sin 0.08° 12. cos 251°23'53"

13. sin 0.64 14. tan (—0.5) 15. csc 3.23

16. cos 7.25 17. cot (7 + 3) 18. cos (37/17)

27 .
19. tan (5) 20. sin 5( + =] 21. csc (2.78 + 5m)

22. Use Eq. (2.2) ofthis section to evaluate sin 5° correct to four decimal places; then
find the value of sin 5° directly by using the (sin) key on your calculator. Compare

the two answers.
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23. Use Eq. (2.3) of this section to determine cos 8° correct to four decimal places; then

find cos 8° using your calculator and compare answers.

24. Use the first three terms of Eq. (2.2) ofthis section to find sin 0.16. Compare your

result with that given directly by the calculator.

25. Use the first four terms of Eq. (2.3) ofthis section to find cos 0.24. Compare your
result with that given directly by the calculator.

2.6 CIRCULAR FUNCTIONS

Suppose 0 is an angle in standard position as shown in Fig. 2.24. In Section 2.4

we formulated the definitions of the six trigonometric functions of 6 by

using any point P (other than the origin) on the terminal side of §. Now sup-
pose we take P to be the point («, v) which is one unit from the origin; thatis,

u? + v* = 1. Since the equation x? + y* = 1 represents a circle with center at the

origin and radius one, we call it the unit circle. Thus, point (u, v) is on the unit

circle.

Applying the definitions given in (2.1) of Section 2.4 to the reference
triangle OBP in Fig. 2.24, we get

sin 0 = =v and cos 0 = £ =u. (2.4)

This tells us that the coordinates of P can be written as P: (cos 6, sin 0).

[

On | x
B jA:(1,0)

 
Figure 2.24

Now suppose 0 is given in radians (that is, 6 is a real number) and let S

represent the length of arc AP of the unit circle, where 4 is the point (1, 0).

Then we write S = s units, where s is a real number. For example, if the length

is measured in centimeters, then S=s cm and r= OP = 1 cm. Using the

definition of radian measure (see Section 1.2), we have

_S _ scm _ S.
r l cm

Thus the two real numbers 6 and s are equal; then the equations in (2.4) give

v=sin 0 = sin s and u = cos 0 = cos s. (2.5)
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- Therefore, the point P in Fig. 2.24 is given by

P:(u, v) or P: (cos d,sin 0) or P: (cos s, sins).

The phrase “length of arc” implies a number s and an associated unit of
distance measurement. We shall take liberties with language and say ‘s is the

length of arc” when we actually mean “s is the real number associated with the
length of arc.” Thus in (2.5) we are talking about the sine and cosine of a real
number s, and not of, say, s centimeters.

Since the arc length is usually given as a nonnegative number and we are

interested in applying the equations in (2.5) also to negative values of s, it
becomes necessary to introduce the idea of directed arc length. Suppose point Q
starts moving along the unit circle from A: (1, 0) to point P, as shown in
Fig. 2.25. If Q moves in the counterclockwise direction, then the length of arc

s through which it moves will be taken as positive; if the motion is in the
clockwise direction, then the corresponding value of s will be negative.

  

- ~~ P —- ~
~~ re ~

Ve / N
/ s (positive) / \

\a.a.0
\ 0 J] A: (1,0) \ 0
\ / \ s (negative)
\ / «
No _-7 NL ~~

P

(a) (b)

Figure 2.25

Definition. For every real number s, we consider point Q moving from point

A : (1, 0) on the unit circle through a directed arc of length s to a point
P: (x, y). We use the coordinates of P as a basis for defining the two circular

functions sine and cosine as follows:

 

sin s =) and cos § = Xx, (2.6)
  
 

where (x, y) are the coordinates of point P.

The remaining four circular functions are defined by using (2.6) in the

following way:

 

i 1 
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Examples

AN Find the value of each of the six circular functions at s = 7/4.

Solution. The circumference of the unit circle is ¢ = 27r=2n(1) = 27. Let

(u, v) be the point P on the unit circle that corresponds to s = 7/4. Since =/4

is equal to 1/8 of 2x, triangle OBP shown in Fig. 2.26 is an isosceles triangle

with u =v. Since (u, v) is on the unit circle, > + v*=1 and so 2u? = 1. Thus

we have u = v=1v/2/2. Therefore, the coordinates of Pare (V2/2, V'2/)2).
From the definitions given in (2.6) and (2.7) we have:

V2 V2

 

 

. mw _ _ Vv“ mo _

Vv

“.

SIN =Vv= 3 cos g = u= >

tan z.- sin(w/4) _ V2)2 “1 cot x _cos(m/4) _ I:

cos(w/4)  V2/2 4 sin(r/4)

sec —=——=V 2; SF =—=V 2.
4 cos(m/4) V2 © 3 sin(m/4) V2

TTT P

/ yt = %
l d
| of u 14:(1,0)
\ /
\ /
N J
~~l_--

Figure 2.26 i

[2 Evaluate the six circular functions for s = — 7/2.

Solution. The point P on the unit circle that corresponds to s=—7/2 is

P: (0, — 1). Using the definitions given in (2.6) and (2.7), we get

sin (- Z)= —1; cos (-%) =o

tan (- z) =— S (undefined); cot (- z) = 2 =0;

sec (-%) = i (undefined); csc (-%)= 2 =—1. i

A Suppose point P is on the unit circle and has coordinates (—v/3/2,

1/2). Find two real numbers s (one positive and one negative) that can be used

as directed arc lengths corresponding to P, as described in the definition of the
circular functions.
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Figure 2.27

Solution. We see from Fig. 2.27 that in right triangle BOP, BP =: (OP);
then angle BOP equals 30° = 7/6. Therefore, 8 = 57/6. The length of arc s,
corresponding to 6 is given by

_ _ Sm) _ Swsi=r-0=(1)E) = 3%

If point Q moves in a clockwise direction from point A to P, then the

corresponding directed arc length is

Thus s = 57/6 and s = — 77/6 are solutions. It should be clear that if point
Q moves along the unit circle from point 4 to P by going around the circle one
or more times (in either direction), then we have other values of s correspond-

ing to P. In fact, all values of s can be given by

§= + k 2m,

where k is any integer (positive, negative or zero). I

 

Note. As can be seen from the equations given in (2.5), the circular functions

defined in (2.6) are precisely the same as the corresponding trigonometric

functions defined in Section 2.4. The important point is that in both cases we
have defined six functions with domains consisting of a set of real numbers. It

is in this setting that the student will encounter trigonometric (or circular)

functions in calculus.
We shall refer to the six functions as either trigonometric functions or

circular functions. One might ask: Why talk about the same thing in two

different contexts? The answer is that in the setting in which trigonometric

functions were introduced, it is convenient to relate the functions to triangles

and apply them to solution of triangles (as will be discussed in Chapter 3),
while the circular functions defined in (2.6) and (2.7) are very helpful in

deriving several important properties of these functions. Weillustrate this now

by deriving some of the basic identities that will be useful in Chapter 4. An

identity is an equation that is satisfied by all values of the variable (or variables)

for which the function involved is defined.
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1. Reciprocal Identities

The following are immediate consequences of the definitions given in (2.6) and
2.7):
 

   

   

sin § = 1 , Cos § = 1 , tan § = 1 ,
csC § sec § cot s

1 1 1 (2.8)
cot s= ; sec § = ’ CSC § =— .

tan s CoS § sin §   
 

2. Periodic Properties

1. Every point P on the unit circle has several values of s (arc lengths)
associated with it. For example,if s is any real number, then the same point P
is associated with arc length s and with s + k - 27, where k is any integer. Using
the definitions stated in (2.6) for arc lengths s and s + 2k, we conclude that

 

sin(s + 2k7) = sin § and cos(s + 2km) = cos s. (2.9)
  
 

2. Now suppose P: (x, y) is a point on the unit circle associated with arc
length s,; then point M on the unit circle associated with arc length s + 7 is

M: (— x, — yp), as illustrated in Fig. 2.28. Using (2.6) for s and for s + 7, we get

 

X = COS §, y =sins and — x =cos(s + 7), —y =sin(s + m).

s+

P: (x,y)
S

0 J A: (1,0)
/

M:(—x, —y) Se 7

Figure 2.28

From these equations we have the identities

 

cos(x + T)=—cos Ss and sin(x + m) = — sins. (2.10)
  
 

Using (2.7) and (2.10) we get

sin(s +m) _ —sins _ sins = tan s.
cos(s + m) — COS § cos §

tan(s + 7) =
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We can get a similar result for the cotangent function, giving us the identities:

 

tan(s + 7) =tan s and cot(s + 7m) = cot s. (2.11)
   

3. Other Basic Identities

1. The point P: (x, y) used in the definition of sin s and cos s in (2.6) is on
the unit circle; that is, x2 + > = 1. Since x = cos 5, y = sin 5s, we have

(sin 5)? + (cos 5)? =1 (2.12)

for every real number s. This identity is used frequently, as we shall see in

Chapters 3 and 4.

2. Suppose s is any real number and the associated arc length corresponds
to P: (x, y) on the unit circle; then point M: (x, —y) on the unit circle
corresponds to the directed arc length —s, as illustrated in Fig. 2.29. Using the
definitions for s and —s stated in (2.6), we get

x=coss, y=sins and x =cos(—s), —y=sin(— ys).

From these we get the following relations for each real number s:

—t~_P: (x,y)
7

/
/ SsCN
\ 0 J! (1,0)

\ —§
\N

~N
~=-"M: (x, —y)

Figure 2.29

 

sin(— 5) = — sins and cos(—s) = cos s. (2.13)
  
 

Using the definitions given in (2.7) and the results from (2.13), we get for
each real numbers:

 

tan(—s) = — tans; cot(—s) = — cots;

sec(—s) = secs; csc(—s) = — cscs. (2.14)
  
 

Definition. A function fis said to be an oddfunction iff(— x) = —f(x) for ev-

ery x in D(f). Iff(—x) = f(x) for each x in D(f), then fis said to be an even

function.
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From the identities given in (2.13) and (2.14) we conclude that:

 

The sine, tangent, cotangent and cosecant are odd functions;

the cosine and secant functions are even functions.   
 

In Exercise 2.6 the student is asked to derive other indentities using the

definitions of circular functions.

EXERCISE 2.6

In Problems 1 through 12, s is a real number corresponding to an arc length and

associated with a point P on the unit circle, as described in this section. In each case,
use the given value of s to

a) draw a diagram showing the point P,

b) give the coordinates of P,

¢) find the values of the six circular functions for the given number s. Provide

answers in exact form.

T T Ir
1 $= 2. S=¢ 3. S==7 4, s= —m

_9r _ _ 3m _om5. S=7 6. s=3w 7. $= 8. $=%

17m 157 Tm 4
9. - . -_ . m_—_—— . = —_—Ss a 10. s= a 11. 3 12. 3

In Problems 13 through 20, follow the instructions of the preceding Problems 1 through
12 except in part (b). Use Eq. (2.5) of this section and a calculator to find the

coordinates of P to three decimal places; in part (c) give answers to two decimal places.

13. s=1 14. s=-25 1S. s=17.3 16. s=164

17. s=V2 18. s=Vr 19. s=—12 20. s=7—38

In Problems 21 through 26, point P is given on the unit circle. Find three real numbers

s (two positive and one negative) representing arc lengths associated with P, as

described in this section.

21. Pi(-y 3) 22. P:(- 1,0) 23. Pi(-2 3)

24. p:(Y 1) 25. P: (1,0) 26. p:(- V2 2)

In Problems 27 through 32, use the definitions of circular functions given in (2.6) and

(2.7) and any ofthe results obtained in the Examples to prove that the given equations

are identities:

27. a) sin(r—s) =sin § b) cos(mr—s) = —cos §

28. a) sin(Z-— 5) = cos s b) cos( Z-—s) = sin s
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. T ™ 129. a) sin Z- +5 ) = cos s b) cos( Z- +5) =—sin §

30. a) sec(s + m) = —secs b) csc(s + m) = —cscs

us _ Tw _
31. a) tan(s + x) =—cot s b) cots + 2 =—tan s

32. a) sins — z) =—COS § b) cos(s > )= sin §

In Problems 33 through 40, determine whether the given equation is an identity:
. Ir Ir —_— a133. a) sin((s + 2) =—COS § b) cos(s + Z) =sin §

Sm _ mh _34. a) tans + x) =tan s b) cots +5 ) =cot s

(dm a Sm _o) =35. a) sin(2 —s ) =sin § b) cos( 5 5) =COoS §

36. a) sin(s + 3m) =—sin s b) cos(s + 3m) =—cos §

37. a) tan(s — 37) =tan s

38. a) sec(s + 4m) =sec s

b) cot(s — 3r) =cot s

b) csc(s + 4r) =csc s

Ir _ Tr _39. a) tan(s — Zz) =—cot s b) cots3 ) =cot §

40. a) sin(s + 237) = —sin § b) cos(s + 237) =—cos s

2.7 PERIODIC PROPERTIES AND GRAPHS OF

TRIGONOMETRIC FUNCTIONS

In Section 2.6 we saw that if g represents any one of the six circular functions,

then g(s + 27) = g(s) for every real number s for which g(s) is defined. This

tells us that each of the trigonometric functions repeats itself infinitely with a

cycle of 27. Any function repeating itself over consecutive intervals of fixed
length is said to be a periodic function. Many scientific investigations involve

phenomena of a cyclic nature which can be described in terms of periodic

functions. It is an interesting and important fact that practically all periodic

functions can be expressed as a linear combination of sine and cosine

functions.* It is this fact that makes trigonometry extremely useful in

applications of mathematics to many real-life problems.

Definition. Iffis any function with the property that there is a positive number
p such that

f(x +p)=/f(x) (2.15)

for all values of x in the domain off, then fis said to be a periodic function. If
p is the smallest positive number for which Eq. (2.15) holds, then p is called the
period of the function.

We shall now draw the graphs of the trigonometric functions and use them

to determine the periods of those functions.

* This is the basis for a broad topic in advanced mathematics called Fourier analysis.
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1. Graph of the Sine Function
We could make a table of x, y values that satisfy the equation y = sin x and
then use the corresponding (x, y) points to draw the graph. However, we can
gain considerable insight into the behavior of the sine function by treating it as
a circular function, as we did in the preceding section. There each real number
s was associated with an arc length and a point Q that moved along the unit
circle from point 4 : (1, 0) to point P covering a directed distance s; then we
defined sin s as the second coordinate of point P.

In drawing a graph in the x, y rectangular system of coordinates, it is
customary to call x the independent variable; that is, we draw a graph of
y = sin x. Thus in our definition of the sine function we shall replace s by x and
think of x as being associated with the arc length (not as the x-coordinate of
P). So as not to get the variables confused, we shall denote the coordinates of
P by (u, y), as illustrated in Fig. 2.30.

14 0,1)
“<P: (uy)

/ 1 | \x
D: (-1,0)/ J

\ B
 

TA: (1,0)
/

\ /
NC 7’

——
E: (0,-1) 

Figure 2.30

Therefore, from (2.6) we have: y = sin x, where x is any real number associated
with the directed arc length of a point moving from 4 to P.

We can proceed to draw the graph of y = sin x by letting point P: (u, p)
move along the unit circle (counterclockwise for x 2 0) starting at 4 and

record the corresponding points 7: (x, y) on the graph shown in Fig. 2.31.

When Pis at A, then x =0, y=0; so Tis at 4, : (0, 0). As P moves from

A to C, the arc length x increases from 0 to 7/2 and the corresponding values

of y increase from 0 to 1; then point 7" moves from 4, : (0, 0) to C, : (7/2, 1).
As P moves from C to D, x increases from 7/2 to = and the corresponding

values of y decrease from 1 to 0; this gives the points of the graph from C, to

D.. As Pmoves from D to E, x increases from 7 to 37/2 and y decreases from
0 to — 1; this gives the points on the graph between D, and E,. As P moves from

Eto A, x increases from 37/2 to 27 and y increases from —1 to 0, giving the

corresponding points 7 between EF, and 4, in Fig. 2.31.
The above gives us one complete cycle of the sine curve. Since we know

that sin(x + 27) = sin x for each real number x, we can continue the graph as

indicated by the broken portion of the curve in Fig. 2.31.
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Figure 2.31

From the graph in Fig. 2.31 we see that p = 27 is the smallest positive
number p such that sin(x + p) = sin x for each real number x. Thus we can

conclude the following from the graph:

a) The sine function is periodic with period 2w.

b) The domain and range of the sine function are given by

D(sin) = {x |x is any real number},

R(sin) = {y[-1 Ly <1}.

2. Graph of the Cosine Function

We can draw a graph of u = cos x by following a procedure similar to that used
to draw the graph of the sine function. In Fig. 2.30 the first coordinate of
P: (u, py) yields the value of cos x for any given real number x; thus, u = cos x.

We omit the details and draw the curve shown in Fig. 2.32 with the solid
portion corresponding to the points (x, ¥) which we get as point P moves
counterclockwise along the unit circle from point 4 in Fig. 2.30.

From the curve in Fig. 2.32 we see that p = 2x is the smallest positive
number p such that cos(x + p) = cos x for every real number x. Therefore, we
conclude that:

a) The cosine function is periodic with period 2.
b) The domain and range of the cosine function are given by

D(cos) = {x | x is any real number},

R(cos) ={u|—1Lu<l}.
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Figure 2.32

3. Graph of the Tangent Function

We shall draw a graph of the tangent function by first making a table of x, y
values that satisfy y = tan x; then we plot these points and draw the curve
shown in Fig. 2.33. In selecting what values of x to use in the table, we recall
that tan(x + 7) = tan x for each real number x for which tan x is defined. Thus,
it is sufficient to make a table where x is between —7/2 and 7/2. Also, in

Section 2.6 it was noted that tan(—x) = —tan x for each x in D(tan); this tells

us that the graph of y = tan x is symmetric about the origin. Therefore,it is
sufficient to make a table 0 <x < w/2. Since tan(w/2) is not defined, we
include values of x near 7/2 = 1.570796. . .
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Graph of y = tan x

Figure 2.33
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x [0 025 050 0.75 1.00 1.25 1.50 1.52 1.55 1.56 1.57
 

y 10 0.26 0.55 093 1.56 3.01 14.1 19.7 48.1 92.6 1256   
 

In Fig. 2.33 the portion of the curve between 0 and A corresponds to the
points in the table. Since the curve is symmetric about the origin (thatis,

tan(—x) = —tan x), the portion of the curve from 0 to B is obtained by

reflecting the points from 0 to 4 about the origin. The remaining branches
(broken portions of the curve) follow from the periodic property given by
tan(x + 7) = tan x. From the graph in Fig. 2.33 we conclude that:

a) The tangent function is periodic with period =.

b) The domain and range of the tangent function are given by

D(tan) = {x | x # 5 + km, k is any integer},

R(tan) = {y | y is any real number}.

We also note from the graph that the curve gets closer and closer to the
vertical broken lines passing through

T 3r Le Ir
= 2 cee —

These lines are called vertical asymptotes to the curve.

X

4. Graph of the Cotangent Function

We can draw a graph ofy = cot x by following a procedure similar to that used
in drawing the graph ofthe tangent function. We omit the details and give the
graph shown in Fig. 2.34. From the graph we conclude the following:
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Graph of y = cot x

Figure 2.34
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a) The cotangent function is periodic with period =.

b) The domain and range of the tangent function are given by

D(cot) = {x | x # km, k is any integer}
R(cot) = {y | y is any real number}.

We also note that the cotangent curve has vertical asymptotes given by

x = kn, where k is any integer.

5. Graph of the Secant Function

From the discussion of circular functions in Section 2.6 we recall that

sec(x + 2m) = sec x for every real number x for which sec x is defined. Thus in
making a table of x, y values that satisfy y = sec x,it is sufficient to include
values of x in the interval —w to x. Also, from Section 2.6 we have that

sec(—x) = sec x for every x in D(sec); thus the graph is symmetric about the

y-axis, and so it is sufficient to include in our table values of x between 0 and 7.
Since the secant function is not defined at 7/2, we include values of x near

w/2=1.57...
 

x 0 0.25 050 0.75 1.00 1.25 150 1.56 1.57 1.58

y 1 1.03 1.14 1.37 1.85 3.17 14.1 92.6 1256 -109

 

   
 

1.60 1.75 200 2.25 2.50 2.75 300 «

-342 -561 -240 -159 -1.25 -1.08 -1.01 -—I

 

  
We now plot the points given in this table and draw the curve for x between

0 and =; then from the symmetry about the y-axis, we draw the curve for x
between 0 and —. This gives us the solid portion of the curve in Fig. 2.35. The
remainder of the curve (broken portion) can now be drawn by using the

identity sec(x + 27) = sec x. From Fig. 2.35 we conclude the following:

y
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Graph of y = sec x

Figure 2.35



2.7 Periodic Properties and Graphs of Trigonometric Functions 59

a) The secant function is periodic with period 2.

b) The domain and range are given by

5+ km, k is any integer},D(sec) = {x | x #

R(sec) ={y|y<—1 or y 21}.

We also note that the vertical lines given by x = (2k + 1)/2, where k is any
integer, are vertical asymptotes of the secant curve.

6. Graph of the Cosecant Function

We can follow a procedure similar to that used to draw the graph of the secant
function; omitting the details, we draw the graph shown in Fig. 2.36 and

conclude that:

a) The cosecant function is periodic with period 2.

b) The domain and range are given by

D(csc) = {x | x #km, k is any integer},

R(csc) ={y|y<—lory21}.

Also, we see that y = csc x has infinitely many vertical asymptotes given by
x = kn, where k is any integer.
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Graph of y = csc x

Figure 2.36

EXERCISE 2.7

1. Draw a graph of sine function by first making a table of x, y values that satisfy the

equation y = sin x; plot these points and then draw the curve. Use the identities

sin(x + 27) = sin x and sin(—x) = —sin x to convince yourself that it is sufficient

to include in the table values of x in 0 < x <x. For values of x use 0, 0.25,

0.50, 0.75, ...
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. Follow instructions similar to those in Problem 1 but for y = cos x.

. In Subsection 4 of this section we suggested a procedure for drawing the graph of

y = cot x but omitted the details. Supply the details by making a table of x, y values;

use the identities cot(x + 7) = cot x and cot(—x) = —cot x. Show that it is

sufficient to include in your table values of x between 0 and 7/2. Check whether the
(x, y) points from your table are on the graph in Fig. 2.34.

. In Subsection 6 of this section the details of drawing the graph of y = csc x
were omitted. Supply them by making a table of x, y values. Use the identities

csc(x + 2m) = csc x and csc(—x) = —csc x in deciding what values of x to include

in your table. Check whether the (x, y) points given in your table are on the graph

in Fig. 2.36.

REVIEW EXERCISE

1. Make a sketch showing the given angles in standard position (a reasonable
approximation is sufficient):

a) 135° b) — 240° c) 7

d) —137° e) — 2.34 f) 1

. Determine the quadrant in which the given angles are located:

a) 235° b) 4.705 c) —2.47

d) — 640° e) 841° f) 30

In Problems 3 through 10, give the answers in exact form.

3. Evaluate the following:

a) sin 90° b) tan 30° ¢) sec 150° d) cos(—240°)

e) tan(—180°) f) csc 450° g) cot(—315°) h) sin 270°

. Evaluate the following:

a) cos 3 b) cot(—) c) sin 22 d) cos (-F)

Ir. 3m _r Tome) tan 6 f) sec > g) sec ( 6 ) h) csc (2 + 6 )

. If 6 is an angle in the third quadrant and tan 6 = 4/3, determine the following:

a) sin 0 b) sec ¢) cos(f + m)

mw usd) tan(6— 7) e) csc(f -— z) f) cos(0 + z}

. Determine 6 from the given information:

a) sing = 2 and mh b) cos f= — and O<f<mw

c)tanf=—-1 and —-27r<f<-—m d) secf=—1 and 0<0<2r

. Determine a from the given information:

a) sin a=—1 and 0° La £360° b) csca=2 and -90< a < 90°

¢)cosa= ——— and 0<a<180° d)tan a=—1 and —90° <a <90°
V2
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8. If a =37/2,8=n/3, and v = 57/6, evaluate the following:

10.

a) sin « b) tan vy ¢) cos (a — 0)

d) sec (8 + 7) e) sec (y — a) f) cos(a +v— RB)

9. If « = 30°, 8 =90°and vy = 210°, evaluate the following:

a) sin (a +7) b) sin «a + sin vy ¢) cos (a —f)

d) cos a — cos f3 e) tan 2y f) 2 tan vy

If cos # = — 0.75 and tan 6 is negative, determine the following:

a) sin 0 b) cot 8 c) sec(0 — z) d) tan(d + 7)

In Problems 11 through 16, evaluate the given expressions and give answers correct to

four decimal places:

11.

12.

13.

14.

1S.

16.

17.

18.

19.

20.

a) sin 43° b) tan 154° c) cos 57°16
d) cot 48° e) sec 327°12’ f) sin (— 231°)

a) cos 1.43 b) sin 3.86 c) tan(5w/12) d) cot(12/5x)

a) sin(53° + 75°) b) sin 53° + sin 75°

a) tan(1.36 + 2.14) b) tan 1.36 + tan 2.14

a) (sin 153°)? + (cos 153°)? b) (sin 1.5)? + (cos 1.5)?

a) 2(sin T=) (cos £) b) (cos 2)" — (sin Zz)

Determine whether the given statements are true or false:

a) mw and — 7 are coterminal angles

b) - and — 5 are coterminal angles

¢) 210° and -3 are coterminal angles

d) An angle in standard position with terminal side passing through point (—1. 2)
is coterminal with 150°.

Draw a graph ofy = 2 sin x by first making a table ofseveral (x. y) pairsthat satisfy

the given equation. Use degree measure for the x-values.

Same as Problem 18 for y = 2 cos x.

If y = —tan x, make a table of (x. y) values that satisfy the equation. starting with

x = —2.0 and then increasing by 0.2 for successive values of x up to x = 2.0. Plot the

corresponding points and draw a graph of y = —tan x.





 

 

CHAPTER THREE

SOLVING
TRIANGLES

As we noted earlier, the word trigonometry implies the study of measurements
related to triangles. Historically, the development of the subject was indeed
motivated by the practical needs of surveying, navigation, and architecture
(among other things), and these involved problems of determining certain

unknown parts of a triangle from known information aboutit.
We first describe a problem that involves triangles for its solution. Suppose

we wish to determine the height of a mountain peak and there is no convenient
way to measure it directly. One approach is to locate two points 4 and B on
the ground, as shown in Fig. 3.1, and measure the distance between them. Also

we can measure the angles a and 8. With this much information we can
determine the height 4 by using trigonometric properties of triangles that will
be developed in this chapter. We postpone further discussion of this example

until such properties are at our disposal (see Problem 30 of this section).

 

Figure 3.1

A triangle has six parts—three angles and three sides. When we say “angle

of a triangle,” we mean the angle formed by the two rays that contain two sides
of the triangle and have the vertex as their common endpoint. To “solve a
triangle’’ means that measurements of some of these parts are given (usually
sufficient to determine a unique triangle) and we determine the remaining parts

63
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from the given information. In this chapter we develop the topic in two steps:
First we study the problem involving right triangles only and then we consider

general triangles.

3.1 RIGHT TRIANGLES

Figure 3.2 illustrates a right triangle in which we label the parts using standard

notation. Note that side a is opposite «, and side b is opposite angle 8. As in
the first two chapters, we shall use a letter (b, for example) interchangeably to

denote a side (line segment) of the triangle or to represent the length of that
side; similarly for ‘angle a*‘ and “measure «a of the angle.”

 

 

Figure 3.2

If, in addition to the right angle, the measures of two of the remaining five
parts are known and at least one of these is a, b or c, then a unique triangle is

determined and we can find the remaining parts. This will involve only the use
of the definitions of trigonometric functions (as given in Section 2.1), the

Pythagorean theorem, and the calculator. We illustrate by considering some

examples. Solution of the first example is discussed in some detail. The others
involve similar considerations, not all of which are recorded. In each case a

calculator is used for numerical computations.

 

Examples

AN In a right triangle, a = 32.4 cm, a = 40°. Find b, c and 8.

Solution. We draw a right triangle and denote the given parts (a and «), as

shown in Fig. 3.3. To determine side b, the first step is to look for an equation

that involves b and the given parts. We could use either tan a = a/b, which

gives b = a/tan a, or cot a = b/a to get b = a cot a. Since the calculator does

not have a key, we shall choose the first equation:

p——a __324 _ 386 cm,
tan « tan 40° cm
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Figure 3.3

To determine the hypotenuse ¢ we could use any of the three equations: sin a =
a/c;csca=c/a;c=va*+b?. In general, it is good practice to use a

relationship that involves only the given parts, if possible. That is, the third
option has a slight disadvantage in case we make an error in solving for b. The
second has the disadvantage of involving cosecant, and our calculator does not
have a C=] key. Therefore we decide upon the first expression:

__a _324 _ 504
C=Sn a snaoe 04cm
 

We know from geometry that the sum of the three angles of a triangle is 180°:
a +B + 90° = 180°. Therefore we have

B= 180° — 90° — a = 90° — 40° = 50°. 1

A Given a = 15°21'23" and ¢ = 3.587 m, find q, b, and 8 (Fig. 3.4).

A b C

Figure 3.4

Solution. Since sin a = a/c, then a = ¢ sin «, and

a= 3.587 -sin 15°21'23" = 0.95 m.

For b we use cos a = b/c, and so b = c¢ cos a:

b= 3.587. cos 15°21'23" = 3.46 m.

To find 8 we use 8 = 90° — a:

B = 89°59'60" — 15°21'23" = 74°38'37".



66 Solving Triangles Chapter 3

A\ Given ¢ =16.25 cm and 3 = 68°24’, find the area of the triangle
(Fig. 3.5).

A b C

Figure 3.5

Solution. The area is equal to ab/2, so we first need to find sides a and b. From
sin 8 =b/c we get b=c sin 8, and from cos 3 =a/c we get a=c cos @3.

Therefore,

c? sin B cos 3

2

_ (16.25)(sin 08°24 cos 68°24) _ 4519 cm. 1

Area = “ (c cos B) (c sin B) =

 

A Given a = 37.4 cm, b= 63.3 cm, find ¢, «, and 8 (Fig. 3.6).

 

 

Figure 3.6

 

Solution. ¢ =Va? + b> =V/(37.4)* + (63.3) = 73.5 cm. For angle a we use

tan « = a/b = 37.4/63.3 = 0.59084.
We are now confronted with the problem of finding « when we know

tan «. This is the inverse of the problem of finding tan a when « is given. The
subject of inverse trigonometric functions will be discussed formally in Chap-

ter 5; here we shall merely point out that scientific calculators can be used to

find an angle corresponding to a given value of a trigonometric function.
Calculator keys for inverse functions are usually labeled as , , ;
or there is an key thatis to be followed by the appropriate (sin) | ,
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key. Weillustrate by completing the above problem where we know that
tan a = 0.59084 and we wish to determine a.

If the calculator has an key, then enter the number 0.59084 into the

display and, with calculator in degree mode, press the , keys in that
order. The display will read 30.5762° (to four decimal places).

If the calculator has a key, then, with 0.59084 in the display and the
calculator in degree mode, press . The display will read 30.5762°. Thus
a = 30.5762° = 30°34'24". To find B, we use 8 = 90° — « and so

B= 59°25'36". i

A a) If sin a = 0.4835, find « in degrees correct to two decimal places.

b) If cos a = 0.6897, find « in radians correct to three decimal places.

Solution.

a) Place the calculator in degree mode, enter the number 0.4835 into the
display and then press or , Gn). The display will show
28.91°. Thus a = 28.91°.

b) Place the calculator in radian mode, enter the number 0.6897 into the

display and then press or (nw) | . The display will show
0.810. That is, « = 0.810 rad. i

/6\ If a=8.31 cm and @=21.63° find the area of the right triangle

(Fig. 3.7).

 

 

Figure 3.7

Solution. The area is equal to ab/2 and since b = a tan 3, we have

Area = + -aq*tan B= + (8.31)? tan 21.63° = 13.69 cm? I

In certain applications it is necessary to measure angles from a horizontal
line of sight. An angle formed by a horizontal ray and the observer’s line of

sight to an object above the horizontal is called the angle of elevation. If the
object is below the horizontal, the angle between the horizontal and the line of
sight is called the angle of depression (Fig. 3.8).



68 Solving Triangles Chapter 3

® Object

   

  

Angle of
elevation .

Horizontal

    
   

Angle of
depression

Horizontal

e Object

Figure 3.8

[NN From a window 25 meters above the ground the angle of elevation to the
top of a nearby building is 24°20" and the angle of depression to the bottom of

the building is 14°40’ (Fig. 3.9). Find the height of the building.

Figure 3.9

Solution. In the diagram we wish to find A= BC + CD. We know that

CD =25m, so h= BC + 25 m. By using triangle ACD, we have

AC = CD cot 14°40" = 25 cot 14°40’.

Therefore, from triangle ABC, we get BC = (25 cot 14°40’ tan 24°20)m.
Thus

h=25+ 25 cot 14°40’ tan 24°20’

—25+2 1a 24°20" _ 68.20 m.
14°40’ 1
 

Accuracy of Measurements

It should be noted that angle 8 in Example 3 was determined to the nearest

second. This was done primarily to illustrate the technique for getting such
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accuracy. In applied work the degree of accuracy of computed values (as well

as measured values) will depend upon several factors, including the ultimate

use of the results. It is pointless to calculate the height of a mountain peak in
meters to four decimal places and use such a number on a map.

In practical applications involving computations of angles and lengths,

one of the first questions is: What degree of accuracy should be used?

Naturally, the answer depends upon the particular problem and upon the
subsequent application of the results. We cannot expect the computed values
to have a greater number of reliable decimal digits than the starting data,
which in applications are usually physical measurements.

In Appendix B we discuss the accuracy of computation in problems
involving approximate numbers. It should be understood that the rules stated
there are to be used in applied problems as a practical guide. In this text (as

well as in most mathematics texts) no effort is made to be completely consistent

with these rules. Most of our problems are mathematical in nature and our
primary goalis to provide the student with examples that will lead to a better
understanding of the basic mathematical concepts discussed. Thus, in most of
the problems involving computations, the student is asked to find a result
correct to a given number of decimal places, or to a given number of significant

digits. Also in many problems we say, for example, that the length of a side of

a triangle is 24.3, and we do not even specify the units. In practical applications

(such as in physics, chemistry, engineering, etc.) the units will be specified and

there should be no problem in following the rules given in Appendix B for
computations with approximate numbers.

EXERCISE 3.1

In the problemsofthis exercise, give answers involving lengths and areas correct to two
decimal places, and angle measures in degrees and minutes correct to the nearest

minute.

Problems 1 through 15 refer to right triangles in which the letters used to denote sides
and angles are as described in this section.

1. «a =35°24"; a=327cm; find b, c, G.

2. a=5 cm, b=33cm; find a, 8.

a=175cm, c¢=337 cm; find b, «, 8.

. B=65.72°, a=32.5m; find b, ¢, « and the area of the triangle.

a=27°17, c=156.5cm; find a, b, 8 and the area of the triangle.

b=2730 m, c¢=4666 m; find a, «a, 0.

.a=24208 m, b=10575 m; find c, a, B.

. B=42°30', b=325cm; finda, c «a.®
N
S

nm
A

Ww
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9. a=288 km, (=31.2845° find b, c, «a.

10. a=241.1cm, b=1253 cm; find, a, 0.

11. a=536 cm, c=12.48 cm; find b, a, 8 and the area of the triangle.

12. b=73.56 cm, c¢= 131.42 cm; find a, a, 8 and the area of the triangle.

13. a =37.43°, ¢=64.56 cm; find a, b, 8 and the area of the triangle.

14. a=0.143 mm, «a =1647° find b, c, 8.

15. a=253 cm, b=148 cm; find c, a, 8.

16. Assuming that the Earth is a sphere with a radius of 6400 km, find the minimum

height of an airplane above the surface, at which the pilot will be able to see an
object on the ground 100 km away. In Fig. 3.10 point B is the center of the Earth,

A is the position of the plane, and object C is on the horizon (AC = 100 km).

 

Figure 3.10

17. A line passes through two points (5, 2) and (8, 15). Find the angle between this line

and the x-axis.

18. From a tower 27 meters tall the angle of depression of a boat on a lake is 56°. How
far is the boat from the base of the tower? Assume that the base of the toweris in
the same horizontal plane as the lake.

19. You wish to fence a triangular piece of land with dimensions a = 236 m and « = 70°
(Fig. 3.11). Find the total amount of fencing you must purchase.

 

a

Figure 3.11

20. Find the area of an equilateral triangle with a side of length 12.56 cm.

21. Find the area of an isosceles triangle with equal sides 2.47 m long and an angle

41°37" opposite one of them.
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22. You wish to mount an antenna and have purchased a tower 12.48 meters tall. The

toweris to be anchored from the top by three guy wires at a distance of 7.36 meters

from the base (Fig. 3.12). How much guy wire do you need?

12.48 m

 

7.36 m

Figure 3.12

23. The sides of a parallelogram are 38.4 cm and 64.8 cm, and an interior angle is

115.65°. Find the area of the parallelogram.

24. A regular polygon is inscribed in a circle of radius 57 cm. Find the area of the

polygon if it has

a) four sides (a square) b) six sides (a hexagon)

c) eight sides (an octagon) d) n sides

25. In Fig. 3.13, line segmentAB is a diameter of the circle with radius 24 cm, C is a

point on the circle, arc AC is 27.3 cm long. Find the length of chord AC. Hint. Let

6 be the central angle shown in the diagram; use definition of radian measure to find

6. Recall facts from geometry about measures of central and inscribed angles in a

circle.

Figure 3.13

26. If the altitude of the sun is 17.48° at 5S P.M. on December 21, how far east of a

retaining wall 5.48 meters tall should one locate plants requiring year-round full

sun?

27. If figure ABCD is a square withlength of side 37.41 meters and angle § = 36°15,

find the lengths of CF and CE (Fig. 3.14).
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28.

29.

30.

31.

32.

33.
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segment ofacircle of radius 4.56 cm is shown as the shaded region between chord

AB and arc AB (Fig. 3.15). If the central angle 6 is 1.15 radians, find the area of
the segment.

 

 

   
Figure 3.14 Figure 3.15

In Fig. 3.16, side a and angles « and (8 are given. Show that x = a sin « sin 3.

A surveyor wishes to determine the height of a mountain top above the horizontal
ground. He observes the angles ofelevation from two points 4 and B on the ground
and in line with the mountain top. He measures the distance from 4 to B. These
measurements are: a = 43°30", 8 = 32°20", AB = 256 m. Find the height of the

mountain top above the horizontal ground level (Fig. 3.17).

 

 

Figure 3.16 Figure 3.17

In Fig. 3.18 line segments AD and are parallel, the length of AD is 8.47 cm

and 6 = 41°36". Find the lengths of BC and CD.

A triangular piece of land is bounded by two farm roads intersecting at right angles

and a highway intersecting one of the roads at an angle of 24.5°, as shown in

Fig. 3.19. You wish to purchase the property and know that the previous owner

required 843 meters of fencing to enclose it. Land sells at $2.50 per square meter in

this region. How much does the property cost?

From point A that is 8.1 meters above the horizontal level of the ground, the angle

of elevation of the top of a tower (point B) is a = 32°30’ and the angle of depression

of its base (point C) is 8 = 16°40" (Fig. 3.20). Find the height of the tower.



34.

3s.

36.

37.
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c

24.5°    

Figure 3.18 Figure 3.19

 

 

Figure 3.20 Figure 3.21

A surveyor starts at point A and measures AB =41.32 m, BC =237.53 m,

6 = 137.44° (Fig. 3.21). Find the distance from 4 to C and angle «.

A sector with central angle 72° is cut out of a circular piece of tin of radius
16.48 cm. The edges of the remaining piece are joined together to form a cone. Find
the volume of the cone (see inside front cover for volume formula).

Suppose 4, B, C are vertices of a right triangleand « is the acute angle at 4, as

shown in Fig. 3.22. Also suppose the length of 4B is 1. Extend side CA to point

D so that the length of AD is also 1.

a) Show that the angle CDB is equal to «/2.

b) Use right triangle BCD to find tan a/2. Specifically, show that it can be

expressed in the form tan «/2 = (sin «)/(1 + cos a). This useful identity will be

seen again in Chapter 4.

In Problem 24 of Exercise 1.4, Motl’s treadle sewing machine was described

(Fig. 3.23). The radii of the twowheels are r = 3.5 cm and r,= 15.5 cm. The
distance between the centers is EF = 56 cm. Find the length of the belt that goes
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D C

 

Figure 3.22 Figure 3.23

around the two wheels. In the diagram, E and F are centers of the wheels, points 4,
B, C, and D are points at which the belt is tangent to the respective wheels, and we

construct line BG through B parallel to EF.

38. A right triangle is inscribed in a circle of radius 5.6 cm. One angle of the triangle
is 64°. Find the lengths of the two sides.

39. The area of a right triangle is 6.73 cm? and one ofits angles is 36°. Find the length

of the hypotenuse.

40. The perimeter of a right triangle is 8.56 m and one ofits angles is 23°30’. Find the

lengths of the two sides.

41. One angle ofa right triangle is 47°30" and its perimeter is 15.48 cm. Determine the
area of the triangle.

3.2 LAW OF COSINES

Techniques used in the preceding section apply to solution of right triangles.

We now consider the general case in which triangles are not necessarily right

triangles. Although it is true that solving a general triangle can be reduced to
problems involving right triangles,it is desirable to have formulas that can be
applied directly.

Suppose 4, B, C are vertices of a triangle, as shown in Fig. 3.24. We shall

use Greek letters a, 3, «v to denote the three angles and a, b, c to represent the

 

 

Figure 3.24
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three sides. As indicated in Fig. 3.24, angle « has vertex at 4 and side a is

opposite «; likewise for B, 8, b and C, 7, c.

Thus a triangle has six parts—three angles and three sides. In general, if
three parts are known (at least one of which is a side), then a fixed triangle is

determined and our problem is to solve for the remaining three parts. We shall

discuss two sets of formulas that will be useful; these are called Law of cosines
and Law of sines.

In this section we develop the Law of cosines; the Law of sines will be

discussed in the next section.
Figure 3.25 showstriangle ABC,where D is the base of the altitude from

vertex A. Let h = AD and x = CD. From right triangle ADC we get

x=0>b cosy and h=b sin 7.

 

 

Figure 3.25

Applying the Pythagorean theorem to right triangle ADB, we have

c2=h+(a—x)*=h*+ a*>— 2ax + x°.

Substituting x = b cos vy and h = b sin vy gives

¢* = (b sin v)? + a*— 2a(b cos v) + (b cos v)?

= a® + b*(sin v)? + (cos ¥)?] — 2 ab cos vy

=a’ + b> — 2ab cos 7,

where in the last step we replaced (sin vv)? + (cos vy)? by 1 (see Eq. (2.12)). Thus

we have

c2 =a’ + b*— 2ab cos v.*

In a similar manner we can develop analogous formulas for a? and 42. The

three equations are listed in (3.1) and these are called the Law of cosines for

triangle ABC:
 

a’>=b* + ¢* — 2bc cos a,

b* = a* + ¢? — 2ac cos (3, 3.1)

c2=a* + b* — 2ab cos v.    
*In the derivation of this formula the acute angle vy of Fig. 3.25 was used. Actually the final result

holds if v is any angle between 0° and 180° (see Problem 15 of Exercise 3.2).
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The technique used to solve a triangle depends upon the given information.

We classify all problems into the following four cases according to the three

given parts:

1. three sides,

2. two sides and the included angle,

3. two sides and an angle opposite one of them,

4. one side and two angles.

The Law ofcosinesis particularly suitable for solving triangles described by
cases 1 and 2, while the Law ofsinesis better suited for case 4. Case 3 presents

a special problem in that it is possible for the given information to describe
either one triangle, two triangles, or no triangle (as illustrated by Examples 3
through 5 ofthis section). For this reason, case 3 is usually referred to as the

ambiguous case. We shall illustrate through examples how to handle this case
by using the Law of cosines. This involves solution of a quadratic equation, but
with the aid of a calculator the computation of answers becomes easy.

 

Examples

AN Given two sides and the included angle. Suppose a = 33.24, b = 47.37, and
v = 38°15’. Find ¢, a and @ (Fig. 3.26).

 

Figure 3.26

Solution. To find ¢ we use the third equation of (3.1):

c? =(33.24)? + (47.37)? — 2(33.24)(47.37)cos 38°15’.

Using a calculator to evaluate the right-hand side and then pressing the
key, we get

c= 29.59.

Hint. To get maximum calculator accuracy, store the full decimal value of cin

the calculator and then use that value in subsequent computations involved in

determining « and £3.
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We now determine « by using the first equation of (3.1) in the form

b+ c*— a?
CoS a = She

This gives

a = 44.0589° = 44°04’.

Similarly, we can use the second equation of (3.1) to determine 3:

_at+c2-b?
cos 3 = 2ac

and we get

B=97°41".

We could have determined 8 by using 8 = 180° — («a + 3) but we prefer to
use this as a check of our computations. That is, we see that

a +B +v=44°04" + 97°41" + 38°15" = 180°,

and so we can be reasonably certain that our computations are correct. i

oN Given three sides. Suppose a = 56.84, b= 83.45, and c= 51.63. Find
angles «, (8, and v.

 

 

 

Solution.

COS a — b? + ¢* —a?_ (83.45) + (51.63)? — (56.84)*

~ 2bc 2(83.45)(51.63)

This gives

a =42.0491° = 42°03,

cos 3 = a> + ct —b*_ (56.84) + (51.63)° — (83.45)*
2ac 2(56.84)(51.63)

Thus

8 = 100.4788° = 100°29’,

cos vy = a’ + b> —c?_ (56.84) + (83.45)> —(51.63)*

2ab 2(56.84)(83.45)

We get
v =37.4721° = 37°28".

As a check, we add the computed values of «, 3, v and get

a +B + vy =42°03" + 100°29" + 37°28" = 180°. I

A Given two sides and an angle opposite one of them. This is the so-called
ambiguous case in which there may be two solutions, one solution, or no
solution, depending upon the given data. In the following three examples we
illustrate each of the three possibilities (see Problem 32 of this section for

further discussion of this case).
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Suppose a = 17.48, b = 25.63, and a = 37°48’. Find ¢, 8, and 7.

Solution. If we substitute the given values of a, b, « into the first expression ot
3.1)

a’ = b> + ¢* — 2bc cos a,

the resulting equation will be quadratic in c:

¢? — (2b cos a)c + (b> — a?) =0.*

Applying the quadratic formula from algebra, we have

 
c= 120 cos a + V( — 2b cos a)? — 4(b* — a|

=b cos a + Va? — b?*[l — (cos a)?].

Since 1 — (cos «)? is identically equal to (sin a)? (see Eq. (2.12)), we get

 

c=bcosa +Va’— (bsin a)’ (3.2)

   

Substituting the given values of a, b, and « into Eq. (3.2) gives

 
¢ = 25.63 cos 37°48’ + (17.48)? — (25.63)%(sin 37°48)".

We can evaluate this result by calculator. To avoid recording any intermediate
computations, we can first evaluate the square-root part and store it by using
the key (and recall it when we wish by using the key).t Thus we get
two answers:

c, =27.91873 and c, = 12.58462.

To be consistent with the given data, we round off to two decimal places:

c, =27.92 and c,= 12.58.

In this example we see that there are two solutions; these are illustrated in

Fig. 3.27. The second triangle can be obtained from the first by rotating side a

*Substituting the values of a, b, and « at this point gives

c? — [2(25.63)cos 37°48]c + (25.632 — 17.48%) = 0.
That is,

¢? — 40.5033 ¢ + 351.3465 = 0.

This is the quadratic equation that determines ¢ but it is not necessary to record the intermediate
numbers appearing as the coefficient of ¢ and the constant term. It is simpler to solve the quadratic
equation for the general case and then substitute the values of a, b, and « into the final result shown
in Eq. (3.2).

+The(st0 Jand(RcL keys may be labeled differently on some calculators (see Appendix A or

owner’s manual).
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Figure 3.27

clockwise about the top vertex, as indicated in the diagram. We now proceed
to find 3, and +, by using

2 2 _ p2 2 2 _ 2a*+c;i—b and cos vy, = a* +b? cj

cos f= 2ac, 2ab

This gives

B, = 63°59 and vy, =78°13".

As a check we add the three angles:

a+ 0, +v, = 37°48" + 63°59" + 78°13" = 180°.

To find 8, and vy, we note that

B,= 180° — 8, = 180° — 63°59" = 116°01’,

y,= 180° — (a + B8,) = 26°11". i

/A\ a=32, b=25, and a = 43°. Find c (Fig. 3.28).

 

 

Figure 3.28

Solution. This problem is similar to that of Example 3 and so we can find c¢ by
substituting into Eq. (3.2):

c= 25 cos 43° + V/(32)? — (25)(sin 43°).
 

This gives
c, = 45.36 and c, = — 8.80.

Since c, is negative, we do not get a triangle corresponding to it. Therefore
there is only one solution with ¢ = 45.36.
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/5\ a=27, b=64, and « = 68°. Find c (Fig. 3.29).

 

Figure 3.29

Solution. Applying Eq. (3.2) gives
 

c= 64 cos 68° +V/(27)? — (64) (sin 68°)2.

When a calculator is used to evaluate this result, it indicates ‘Error’. The

reason forthis is that the number under the square rootis negative (— 2792.21),

and so the roots of the quadratic equation for c¢ are imaginary. Thus there is no
triangle corresponding to the given data. In the diagram we see that side a is
not long enough to reach the third side. i
 

EXERCISE 3.2

In Problems 1 through 14 use the given data to find the remaining three parts of the

triangle. Give answers involving length correct to the same number ofsignificant digits
as the given data, and calculate angles correct to the nearest minute.

1. a=36, b=067, vy =43°. 2. b=24, c=73, a = 130°.

3. a=185, c=42, 3 =183°24", 4. a=41.32, b=57.56, vy = 61°12".

5S. a=1.47,c=2.16, a = 124.75°. 6. a=17, b=45, c =50.

7. a=288, b=175, c= 337. 8. a=315,b=634, c=41.6.

9. a=6.743, b = 4.567, c = 8.125. 10. a=17, b=125, a = 37°.

11. a=24.57, b= 34.63, a = 31°15". 12. ¢=4666, a = 2730, a = 32°.

13. b=135, c=31, 8=068°. 14. a= 1.45, b=3.54, 3 = 53°.

15. In this section the Law of cosines was derived using Fig. 3.25, where angle v was
acute. Suppose vy is obtuse as in Fig. 3.30. Derive the Law of cosines for this case

by showing that
ct=a? + b> —2ab cos v.
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16. If triangle ABC is a right triangle with vy = 90°, show that the third expression of
Eq. (3.1) can be reduced to the Pythagorean theorem.

17. A ship sails due east form point 4 for a distance of 48.6 km: then it changes

direction southward by an angle of 16°40’, as shown in Fig 3.31. After sailing
37.8 km in the new direction, how far is the ship from point 4?

48.6 km

37.8 km

 

Figure 3.30 Figure 3.31

18. Ifa = 32.6, b = 56.3, c = 36.8, find the measure of the smallest angle ofthe triangle

correct to the nearest minute.

19. If a = 39,098, b = 17,160, and ¢ = 42,698, find the measure of the largest angle of
the triangle correct to the nearest minute.

20. If a= 3.76, b = 5.34, and vy = 48°50, find the altitude to side b and then determine

the area of the triangle correct to two decimal places.

21. If b=34.52,c = 76.81, and a = 121°30’, find the altitude to c and then find the area

of the triangle correct to two decimal places.

22. An equilateraltriangle is inscribed in a circle of radius 4.56. Find the perimeter of
the triangle.

23. A square is inscribed in a circle of radius 4.56. Find the area of the square.

24. A dime, a nickel, and a quarter are placed on a table so that they just touch each
other, as shown in Fig. 3.32. The diameters of the dime, nickel, and quarter are 1.75

cm, 2.25 cm, and 2.50 cm, respectively. Find the length of the smaller part of the
circumference of the quarter between the two points where it touches the dime and

the nickel. (In the diagram, D, N, and Q are respective centers.)

3
(&

Figure 3.32
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25.

26.

27.

28.

29.

30.

31.
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In Problem 24, the centers of the coins form a triangle. Find the measure of the
smallest angle to the nearest degree.

Use the Law of cosine equations given in (3.1) as follows: Replace term 4? in the
first equation by that given by the right side of the second equation, and then
simplify to get

acosfB + bcosa=c.

In a similar manner, if we use the first and third, and then the second and third

equations of (3.1), we can get

Cc Cos a+acosy=hb,

bcosy +ccosf =a.

In Example 3 ofthis section, after determining c, we solved for 8, by using the Law
of cosines. As an alternative method for finding 3, use the first equation derived in

Problem 26 in the form

ci — bcos a

a
cos 3, =

and solve for 8,. Similarly find v, by using the second equation given in Problem
26. Check your results with those given in the example.

In Example 4 ofthis section, use the given data and the result for ¢ to find 8 by
applying the equation derived in Problem 26.

A vertical tower BC is located on a hill whose slope is 12° steep (Fig. 3.33). From
point A (43 meters down the hill from base B of the tower) the angle of elevation

of point C at the top of the tower is « = 37°. Find the height of the tower.

A triangular slab of marble has sides of length 120 cm, 156 cm, and 173 cm. If it is
placed vertically, so that the longest edge is on the ground, how high from the

ground will it reach?

Consider a regular pentagon ABCDE with sides of unit length, as shown in

Fig. 3.34. Let r be the length of a diagonal (such as CE).

a) Show that each of two angles «a is equal to 36°, and each of the angles 8 is 72°.

Thus triangles ACE and BCF are similar.

 

  
Figure 3.33 Figure 3.34
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b) Show that CF=1 and BF=r— 1; then, using the corresponding-ratios
property of similar triangles, prove that r satisfies the equation r2 — r — 1 = 0.
Solve this equation and get

1 +V'Sr=—s— .

This is a well-known number called the golden ratio.

c) Apply the Law of cosines to triangle BCF to find cos 72° and show that

CoS 720 = L _ l

2r 1+V5

Thus we have expressed cos 72° in exact form (in fact, in simple terms involving the
golden ratio). As acheck, evaluate cos 72° directly with your calculator and then

evaluate 1/(1 + V5), and see if the two numbers are equal.

 

In Examples 3 through 5 we gave solutions of problems in which the given parts of

a triangle are two sides and an angle opposite one of them. Suppose a, b, and a are
the given parts. What conclusions can be drawn concerning the numberof solutions
in each of the situations listed below? In each case draw a diagram starting with «
and b — for example, b

A
—and show how a fits into the picture. Use Eq. (3.2) to support your conclusions.
Suppose « is an acute angle and

a) a=b sin a b) a < b sin a

c) bsina<acxhb d)a2b

Examine the problem for the case when «a is an obtuse angle and when a = 90°.
Draw diagrams to illustrate your conclusions.

3.3 LAW OF SINES

In triangle ABC of Fig. 3.35 the sides and angles are labeled as in the preceding
section, and point D is the base of altitude 4 from vertex B. From the two right
triangles we have

sin a = — and sin vy = A

  

   

| 8

| h

I

hH
A D b C

Figure 3.35
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Eliminating 4 in these two equations, we get ¢ sin « = a sin vy. This can be

written as

sin a __ sin

a c

In a similar manner (see Problem 24 of this section), we can show that

sin « _ sin and SinG _ siny
a b b c

The three equations given here are called the Law ofsines and are written

as:

 

sin « sin 8 sin vy

a b c
 (3.3)

   
Note. To derive this formula we used a diagram in which angles « and 38 were

both acute. The result still holds if one of the angles is obtuse (see Problem 27

of this section).

In the preceding section we listed four cases to be considered in solving
triangles and indicated that case 4 (in which one side and two angles are given)
can be solved by using the Law of sines. We now illustrate this case.

 

Examples

AN Suppose b = 5.834, a = 64°12", and vy =47°47". Find a, ¢ and
(Fig. 3.36).

Solution. To find B, we use B= 180° — (a +7) and get B= 68°01". To

determine a we use the Law ofsines in the form

q— bsina _ 5.834 sin 64°12"
sin 8 sin 68°01’
 

This gives a = 5.664. Similarly,

_ bsiny _ 5.834 sin 47°47" _
“= sin B sin 68°01 +65 !
 

/2\ Given a = 42°23’, a = 74.51, b= 71.35, find the area of triangle ABC

(Fig. 3.37).

Solution. We use the formula for area of a triangle:

Area = 1 Base x Altitude.
2
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Figure 3.36 Figure 3.37

As shown in the diagram, let 4 be the altitude to side b. Thus Area = 2 bh.

First we find 8 by using the Law of sines:

g=bsina _ 71.35 sin 42°23"
sin 74.51
 

This gives 8 = 40°12’. Since 6 = a + ( (exterior angle of a triangle is the sum

of the opposite interior angles), we have

6 = 42°23" + 40°12" = 82°35".

From right triangle BDC we get

h=a sin 6 = 74.51 sin 82°35" = 73.89.

Therefore

Area = 5 bh = 571.35 . 73.89 = 2635.91. i

 

EXERCISE 3.3

In Problems 1 through 8, use the given data to find the remaining three parts of the

triangle. Give answers involving length correct to the same number of significant digits

as the given data, and calculate angles correct to the nearest minute.

1. a =27°,3="73°a= 16. 2. 3=067° v=26° a=463.

3. a=47° v=112°, c=8l. 4. a =51°8=70° c= 133.

5. a =32°17, B=55°12", a= 325. 6. 3 =061°47", vy = 82°15, b= 63.54.

7. a =73.46°, 8 =25.75°, c = 4.875. 8. a =3548°v=73.54° b=3.754.

9. A surveyor wishes to find the distance from point 4 to a point C on the opposite

side of theriver. He locates a point B on his side of the river and measures the

distance 4B and the two angles a and 3, as shown in Fig. 3.38. The measurements

are AB=1324 m, a =78°, 8 =53° Find the distance AC.
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10.

11.

12.

13.

14.

1S.

16.

17.

 

 

          

 

 

C

A\— (

/
s/o

/ \
/ \

/ \
/ \

/ \ | h

\
—i A— |

/ [04

B A o L

B A L B

Figure 3.38 Figure 3.39

In order to measure the height of clouds at night, two observers are located 126
meters apart at points 4 and B; the spotlight is at point L in line with 4 and B. A
vertical beam of light from L is reflected from the bottom of the clouds at point C
and the angles of elevation are measured from 4 and B. These are a = 74° and

GB = 58°, as shown in Fig. 3.39. How far above the ground is the bottom of the

clouds?

Triangle 4A BC has measurements a = 41.3 cm, a = 43.5°, 8 = 73.4°. Find the length

of the longest side.

From point 4 on top of a building the angle of depression of point C on the ground

is observed to be a = 54°, while from a window at point B (15 meters directly below
A) the angle of depression is 8 = 42°. Find the height of the building (Fig. 3.40).

Find the area of the triangle described by a = 47°31’, 8 = 67°50’, a = 16.36.

Find the area of the triangle where 8 = 36°28’, a = 37.54, b = 41.63.

Use the Law of sines as an alternative method to solve Problem 11 of Exercise 3.2,

in which a = 24.57, b = 34.63, a = 31°15’; find 8, v, and c.

If, in triangle ABC, ¢ = 4666, a = 2730, a = 35.82°, find angle vy.

A surveyor wishes to find the width of a river. He notices a tree T on the opposite

bank, so he takes two points 4 and B along the bank on his side of the river. He
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Figure 3.40 Figure 3.41
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measures the distance x between 4 and B, and the two angles « and 3, as shown in

Fig. 3.41. He finds x = 19.8 meters, a = 33°, 8 = 124°. From these measurements

calculate the width d ofthe river.

A technique for determining the height of an inaccessible point is the following: a
surveyor locates two points 4 and B and measures the distance between them. Then

the angles «, 8, 0 are measured. This is illustrated by Fig. 3.42 in which points 4,

B, C are in the plane of the ground, D is directly above C, angle 6 is the angle of
elevation of point D from B, and « and 8 are angles of triangle ABC. Show that

a— d sin a and j—__dsinatanb
~ sin[180° — (a + B)] sin[180° — (a + B)]

In Problem 18, suppose that we wish to determine the height 2 of a mountain
peak, and points 4 and B are such that d = 463 meters, 8 = 63°10", oa = 46°40’,
§ = 47°20". Find A.

From point C located on a hill 21° steep, the elevation angle of the top 4 of a
nearby building is observed to be a = 25° and the angle of depression of the base

B is 8 = 12°. If the distance between C and the bottom of the hill D is 24 meters,

find the height of the building (Fig. 3.43).

D

   
Figure 3.42 Figure 3.43

Points 4 and B are located on opposites sides of a lake (Fig. 3.44). From point C
on a nearby hill the angles of depression of 4 and B are observed to be a = 12° and

B = 17°, respectively. If the hill is 27° steep, and point D at the base of the hill is

48 meters from C, find the width of the lake.

 

Figure 3.44
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22. On a rectangular set of coordinates the locations of two forest-ranger stations are

given as A: (15, 32), B: (84, 15). A fire is spotted at point C and angles a = 20°,
B = 117° are measured, as shown in Fig. 3.45. Locate the fire by finding the
coordinates of C.

23. Suppose a triangle ABC is inscribed in a circle, as shown in Fig. 3.46. Show that the

ratios appearing in the Law of sines

a bc

sin a sin 8 sin y
 

are equal to the diameter of the circle, that is,

a

sin a
 Diameter =

Hint. Point D is selected so that side DB passes through the center O ofthe circle.
Recall from geometry that angle CDB is equal to angle CAB (angle «). Also, angle

DCB is a right angle and DB is a diameter.

Figure 3.45 Figure 3.46

24. To complete the proof of the Law of sines given in this section,it is necessary to
show that

sin «a sin

a  b

Hint. Adjust the diagram in Fig. 3.35 as shown in Fig. 3.47.

 

25. A surveyor wishes to determine the distance between points 4 and B on opposite
sides of a lake. He does this by taking points C and D (Fig. 3.48) and gets the

following measurements: AC=205 m, CD=263 m, DB=185 m, a= 126°,

and 8 = 104°. Using this information, find (to the nearest meter) the distance across
the lake.

 

 

NA 7]
C D

Figure 3.47 Figure 3.48
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26. A railroad crosses the highway at point C at an angle of 40°, as shown in Fig. 3.49.

An observer at point 4 on the highway (1.5 km from C) notices thatit takes a train

20 seconds to travel from P to Q and that the angles « and 8 are a = 45°, 8 = 75°.
How fast is the train traveling?

27. In the derivation of the Law of sines, Fig. 3.35 was used, in which both angles « and

v are acute. Derive the same law using a diagram in which angle « is obtuse
(Fig. 3.50). Use the fact that sin(180° — a) = sin «a.

     No \
\
>
Be

/C A 180° a b
Figure 3.49 Figure 3.50

3.4 AREA OF A TRIANGLE

In some problems of Sections 3.2 and 3.3 the student was asked to find areas
of triangles. In each case the approach was to find the altitude of the triangle,
then use the formula Area = 2 Base x Altitude. In this section we develop

general formulas for finding areas of triangles.

1. Given Two Angles and a Side

Suppose a, v, and, a are given as shown in Fig. 3.51. Using the Law ofsines,

we obtain

_asinvy

© sin a

The altitude 4 can be determined from the right triangle involving 3:

 

 

h =a sin (3.

Therefore,

Area= sin a sin 3.
2 sina

Using 8 = 180° — (a + v), we get

Area — a’ sin vy sin [180° — (a + 7v)] (3.4)

2 sin «
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Figure 3.51 Figure 3.52

2. Given Two Sides and the Included Angle

Suppose a, b, and y are given. Let h be the altitude to CB, as shown in
Fig. 3.52. From the right triangle containing angle vy, we have A = b sin 7.

Therefore,

 

Area = 2 ab sin vy. (3.95)

   
If v is an obtuse angle, the diagram shown in Fig. 3.52 is different, but the

formula still holds (see Problem 10 of Exercise 3.4).

3. Given Three Sides

In this case we derive the famous Heron’s formula, named after the Greek

philosopher-mathematician Heron (also known as Hero) of Alexandria

(75 B.C).

Suppose a, b, and c¢ are given. We wish to derive a formula for area in

terms of the three sides. We can use Eq. (3.5) given above, provided sin vy can

be expressed in terms of a, b, and ¢. In observation 7 of Section 2.4 we stated

that (sin vy)? + (cos vy)? = 1. This can be used to find (sin ¥)? in terms of

cos 7, as follows:

(sin ¥)2=1— (cos ¥)>= (1 + cos vy) (I — cos 7). (3.6)

We now get cos vy in terms of a, b, and ¢ by using the Law of cosines:

a’ + b> — 2

 

_ 3.7
cosy 2ab (3.7)

By substituting Eqs. (3.6) and (3.7) into Eq. (3.5), we get

Area= abV/(1 - a’a+b— cy JLo (3.8)
2ab 2ab
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This result can be written in compact form by introducing the quantity s

denoting one-half the perimeter of the triangle (called the semiperimeter), that

is,

s= (@+b+o).

Then, as a result of a good exercise in algebra (see Problem 7 of this section),
we get Heron's formula:

 

 

Area = Vs(s — a) (s — b) (s — ¢). (3.9)

  
 

 

Examples

MN Find the area of the triangle that has b = 3.57, ¢ = 4.83, and « = 49°38.

Solution. Using an equivalent form of Eq. (3.5), we obtain

Area = 1 be sin a= + 3.57.4.83 sin 49°38’ = 6.57. I

/2\ If a = 34.75. b = 48.38, and ¢ = 28.46. find the area of the triangle.

Solution. Use Heron's formula stated in Eq. (3.9):

 

Area =Vs(s —a) (s—b) (s—¢),

where s =" (a + b + ¢) = 2(34.75 + 48.38 + 28.46). Put this result in the

memory of the calculator (press or appropriate key). The remaining

calculation can be carried out by using the key to recall s when needed.

Evaluate:
 

Area = V/s(s — 34.75) (s — 48.38) (s — 28.46) = 487.85. i
 

EXERCISE 3.4

In Problems | through 6 find the area of the given triangle. Express each answer correct

to the same number of decimal places as that of corresponding length measurements.

1. a =37°14, B= 65°24", a = 34.6.

2. a =42°15, vy = 96°32, b= 483.

3. a=327, b=1732, y= 57°34",

4. b=173.6, c=2387.6, a = 124°47".

5. a=1735, b=284238, c= 58.5.

6. a=0.433, b=0.632, c= 0.543.



92 Solving Triangles Chapter 3

7. In the development of Heron's formula we introduced the quantity s = 2 (a + b + ¢)

and indicated that, after some algebraic manipulation, Eq. (3.8) can be written in
the form given by Eq. (3.9). To do this, we go through the following steps:

a+b_ 2—(a-b)? _ (c—a+b(c+a—1b)

2ab 2ab 2ab

_(@a+b+c—2a)a+b+c—2b) 2(—a)s—b)

- 2ab ab

l—cos y=1-  

 

Complete the problem by going through similar steps for 1 + cos 7, and then obtain

the formula given inEq. (3.9).

8. Suppose a circle is inscribed in a triangle with sides a, b, ¢ (Fig. 3.53). Show that the
radius of the circle is given by

a / -a)(s—-b)(s—¢
§

Hint. From geometry recall that the bisectors of the three angles of a triangle are

concurrent and their point of intersection is the center of the circle.

 

 

Figure 3.53

9. Given a circle of radius 8.435 and a central angle § = 52°35’, find the area of the

shaded region between the chord and arc, as shown in Fig. 3.54.

10. In this section we derived a formula for the area of a triangle when two sides a, b,

and the included angle vy are given. A triangle with an obtuse angle v is shown in

Fig. 3.55. Prove the area formula Area = '2 ab sin 7.

J
<
$

<
o
b

<
S

 

Figure 3.54 Figure 3.55
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A farm consists of a triangular plot of land bounded on three sides by roads, in
which vy = 47°, a = 254 m, and b = 531 m (Fig. 3.56). Find the area of the farm and

also the amount of fencing required to completely enclose it.

A level lot is in the shape of a quadrilateral with dimensions shown in Fig. 3.57. If
land sells for $3.50 per square meter, find the cost of the lot.

y

48 m

32m

27m

/
/

42m7
Figure 3.56 Figure 3.57

A farm is triangular; the rectangular coordinates of its vertices are A: (247, 123),

B: (72, 411), C: (328, 483), and the unit of measurement is the meter. Find the area

correct to three significant digits.

The area of triangle ABC is 246.3 m2, a = 31.4 m, and b = 17.5 m. Find angle vy to
the nearest minute.

If the area oftriangle ABC is 25.46 m2, « = 46°, and § = 82°, find the lengths of the

three sides. Give answers in meters correct to two decimal places.

The area of triangle ABC is 254.6 cm?. Find the area of the new triangle if

a) Each side of ABC is doubled;

b) Each side of ABC is tripled.

Suppose that a = 53°, ¢ = 35 cm, and the area of triangle ABC is 387 cm?. Find b

and a.

Quadrilateral OABC is inscribed in a quarter circle, as shown in Fig. 3.58, where

C

B

: \

0 A

Figure 3.58
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|AB| = 2and |BC| = 4. Find the area of OABC and express the answer as
a + b/c, where a, b, and c are positive integers. Hint. If you think you are a good

mathematics student, you should try this one. You do not need any more information

(such as the radius ofthe circle), and you should first convince yourself that angle BOC
is not twice angle 4A0B.

3.5 VECTORS: GEOMETRIC APPROACH

In order to introduce the concept of scalar and vector quantities, we first
consider a simple example. Suppose a particle travels from point 4 to point B,
as shown in Fig. 3.59. We ask two questions:

a) How far did the particle travel?

b) Whatis its displacement at B from A?

North

t

|

|B
I xB

| ~~
24 cm 60° ~~ 17 cm

7>
A A

Figure 3.59

The answer to question (a) depends upon the path taken by the particle in
going from A to B. In any case, the answer will be given as a distance (thatis,

a number accompanied by a unit of measure, such as 24 cm).

In question (b) we are actually asking: “How far and in what direction is
B from A?” We say that B is displaced from A by 17 cm in the direction of 60°
east of north. When we talk about displacement, we. ignore the actual path

taken by the particle and focus our attention on the change in position.

This example illustrates two types of quantities that occur frequently in

applications. The distance actually traveled can be described by giving a

number and a unit of measure; such a quantity is called a scalar. Displacement

requires a number (with the unit of measure) and the direction for its
description; such a quantity is called a vector.

In general, any quantity that can be described in terms of magnitude only
(a number with a unit) is called a scalar quantity. Examples of scalar

quantitites are: distance, mass, time, temperature, area, volume, and so on. We

shall also include real numbers as scalars; for example, 3, =, V2, 17, ... will

be called scalars even though there is no unit of measurement involved.
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Quantities that can be described by magnitude and direction are called vector
quantities. Examples of vectors are: displacement, force, velocity, acceleration,

electric field, magnetic field, and so on.

1. Notation

To distinquish a vector quantity from a scalar, it is customaryto write the
symbol for a vector in boldface type or with an arrow; thus or V will denote
a vector. In the example above we can use the symbol AB as a vector to
represent the displacement of B from A.

In most problemsit is convenient to draw a diagram in which a vector is
represented by a directed line segment whose length is equal to the magnitude

of the vector (drawn to scale). The magnitude (or length) of a vector is called

the absolute value of a vector and is denoted by | V|.

2. Algebra of Vectors

We are already familiar with the algebra of scalars since they are essentially
real numbers. The algebra of vectors is different; for example, we do not get the
sum of two vectors by merely adding their magnitudes, and so it will be
necessary to define addition of vectors. However, we first ask the question:
“When are two vectors equal?”

We can get some insight for defining equality and sum of two vectors by

returning to the example given at the beginning of this section, in which a
particle travels from 4 to B (see Fig. 3.59). The displacement of B from 4 is
denoted by AB and described as a vector of magnitude 17 cm in the direction
60° east of north.

Now suppose a second particle travels from C to D, as shown in Fig. 3.60;
its displacement is denoted by CD—a vector described as having magnitude

17 cm in the direction 60° east of north. We see that the descriptions of both

  NorthNorth + EL North

t t
|

8 cm |
| ; |

20 D

|
| 60° 17 cm

A C

Figure 3.60
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AB and CD are exactly the same. Therefore, we shall say that they are equal
and write:

AB = CD.

In general, we say that two vectors are equal (regardless of their location in
the plane) if they have the same magnitudes and the same directions.

To define the sum of two vectors, we let our particle travel from 4 to B and

then from B to E, as shown in Fig. 3.60. The displacement of E from 4 can be
described in terms of the two displacements, B from 4 and E from B; and we
say that the resultant vector AE is the sum of vectors AB and BE, and write:

AB + BE = AE.

In general, we define the sum of two vectors geometrically as follows:

Suppose V and U are two vectors, as shown in Fig. 3.61; move U parallel to
itself until its initial point coincides with the terminal point of V (Fig. 3.61, a).

Vv

 

(a) (b)
Figure 3.61

Then the vector drawn from the initial point of V to the terminal point of U is

the sum of V and U, and is represented by V + U.
Equivalently, we can move U parallel to itself, so that its initial point

coincides with the initial point ¥, and then draw the parallelogram
(Fig. 3.61, b). The sum V + U will be represented by the diagonal, as shown.

This method of adding vectors geometrically is referred to as the paral-

lelogram law. It should be clear that vector addition is commutative, that is

V+U=U+V.

Also, the associative property holds for addition of vectors (see Problem 17 of
this section); thatis,

U+"N+W=U+ V+ W.

In this book we are not interested in a complete discussion of vector
algebra.* However, we do introduce the idea of a vector multiplied by a scalar

through the following examples:

*In a more advanced study of vector analysis, two types of vector multiplication are defined: dot
product and vector product. The collection of vectors, scalars, and algebraic operations with these
constitute a so-called vector space.
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2V denotes a vector of magnitude 2 | ¥| in the same direction as V,

— 2V denotes a vector of magnitude 2| ¥| in the opposite direction of V,
(— 1) V will be denoted by —V,

0. Vis a vector of zero magnitude and no specific direction. It is called the
zero (or null) vector and is written as O.

We define the subtraction of vectors in terms of addition as follows:

U-V=U+(-V).

 

Examples

AN In Fig. 3.62 find the sum of AB and BE.

North North

   

 

17 em

Figure 3.62

Solution. We can describe the sum AB + BE = AE by giving the length ofline
segment AF and the angle §. Thus we need to solve triangle ABE for side AE

and angle «a. Using the Law of cosines, we get

(AE)*=8>+17*—-2.8-17 cos 140°,

AE = 23.69 cm.

To find angle a we use the Law of sines:

8 sin 140°

SIM = "5369

This gives a = 12.54° = 12°32’; and so 6 = 60° — a = 47°28’.
Thus the sum of AB and BE can be described as a vector having magnitude

23.69 cm in the direction of 47°28’ east of north.

/A Suppose vectors U and V are as follows: U has magnitude 3.5 units in

direction 20° east of south, ¥ has magnitude 5.1 units in direction 76° west of

north. Find

a) U+V b) —3U c) 2U —V.
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Solution.

a) We first draw a diagram showing U, V, and U + V(Fig. 3.63). We can
describe U + V in terms of the length of line segment CB and angle 6. Thus
we isolate triangle ABC. Using the Law of cosines, we get

(CB) = (3.5)? + (5.1) = 2-3.5-5.1 cos 56°, CB=4.3.

North

  
Figure 3.63

Using the Law of sines, we get

: _ 5.1 sin 56°
MMY=TT3

This gives vy = 81°. Therefore, # = 81° — 20° = 61°. Thus U + V is a vector
with magnitude 4.3 units in the direction 61° west of south.

b) —3U is a vector with magnitude 3 - 3.5 = 10.5 units and the direction
opposite to U, that is 20° west of north.

c) 2U—-V =2U + (=V). To describe 2U — V we first solve triangle CDE

for CE and angle a (Fig. 3.64):

(CE) = (7.0)? + (5.1)? =2.7.0-5.1 cos 124°, CE = 10.7,
sin a = 5.1 sin 124° , a = 23°.

10.7

Thus 2U — V is a vector with magnitude 10.7 units in the direction of

20° + a = 43° east of south. i

A Using the map given in Fig. 3.66, find the displacement of Reno from

Los Angeles.

Solution. The coordinates of Reno and Los Angeles are R: (—649, —175),

L: (—618, —828). Thus the relative positions of R and L are as shown in

Fig. 3.65. We wish to find vector LR. In the right triangle we have

RC =|-649 —(—618)| =31, LC =|—175—(—828)| = 653.
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North
+

R C

| 6

- L
Figure 3.64 Figure 3.65

Therefore,

|[LR| =V 31% + 6532 = 653.74,

_ 31 _ °tan 0 = 5 b=272 :

Thus, the displacement of Reno from Los Angeles is 654 km in the
direction 2.72° west of north. i
 

EXERCISE 3.5

1. A man walks 2.4 km north and then 1.5 km west. Construct a vector diagram and
describe his displacement from the starting point.

2. A car travels 60 km east and then 83 km northeast. Draw a vector diagram and
describe its displacement from the starting point.

3. Vectors U and V are as follows: U has magnitude 1.5 cm in direction of 60° east of
north, V has magnitude 2.0 cm in direction of 75° east of north. Using a protractor
and ruler determine (by measurements) each of the following vectors:

a) U+ V b) U—2V c) 3U +2V

4. Do Problem 3 by computing the vectors, and then compare with the answers

obtained in Problem 3.

5. Using the map in Fig. 3.66, find the displacement of Phoenix from Logan.

6. Using the map in Fig. 3.66, find the displacement of Las Vegas from Denver.

7. Point B is displaced north of point 4 by 24 m, and point C is displaced from B by
15 m in the northeast direction. Find the displacement of C from A: then describe

the displacement of 4 from C.

8. A boat travels east 47 km and then turns 25° toward the south and travels 65 km.

Find its displacement from the starting point.

9. A golfer takes two putts to get his ball into the hole. The first one rolls the ball

3.4 m in the northeast direction and the second putt sends the ball north 1.2 m into
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the hole. How far and in what direction should he have aimed the first putt to get
the ball into the hole with one stroke?

A girl walks 1 km southeast, then 3 km in the direction 30° west of south, and then

4 km in the direction 50° west of north. Using a protractor and ruler, draw a vector
diagram (to scale) and determine (by measuring) the distance and direction in which

she should walk to return to the starting point.

Points A and B are two points in the plane with rectangular coordinates 4: (2,5),

B: (3,7). If O is the origin and vectors A and B are defined as A = OA, B = OB, find

a) [A] b) |B| c) [4+ B|

Points 4 and B are on the opposite ends of a lake. Starting at 4, a man walks to

B by taking the route shown in Fig. 3.67: 4 to C (56 m in a southeast direction),
C to D (40 m due east), D to B (85 m due north). If he went by boat directly from

A to B, how far and in what direction would he go?

Consider two displacements of magnitudes 8 m and 15 m. Determine directions in

which they should be taken so that you get a resultant displacement of

a) 23 km b) 7m ¢) 17m

Vectors A and B both have magnitude 40 km. If they are oriented as shown in

Fig. 3.68, find the direction and magnitude of 4 + B.

North
4

   
C D

Figure 3.67 Figure 3.68

Using the map in Fig. 3.66, find the coordinates of a point that is 200 km southeast

of Cheyenne.

A plane travels from Seattle to Denver, and then continues in the same direction for

another 400 km. Using the map in Fig. 3.66, find the coordinates ofits position.

Using a geometrical argument, prove that addition of vectors is commutative and

associative; that is, show that

U+V=V+U and U+V)+W=U+V+W).

3.6 VECTOR ALGEBRA: ANALYTIC APPROACH

In the preceding section we introduced the concept of vector addition as a

geometric operation (the parallelogram rule). As may be apparent from the
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problems in Exercise 3.5, the process of adding vectors geometrically is

awkward. In this section we introduce an analytic technique that simplifies

addition of vectors.

In all of the examples of Section 3.5 the description of vectors was given
relative to a compass orientation. We now introduce a rectangular coordinate
system in which the positive x-axis is in the east direction and the positive
y-axis is in the north direction. The direction of any vector ¥V can now be

described by giving the angle § (measured counterclockwise) between it and the

positive x-axis.
Let i and j be unit vectors (of length one) in the positive x- and

y-directions respectively, as shown in Fig. 3.69. Any vector in the plane can be

expressed as a linear combination of these two unit vectors, as shown in the

diagram, where (v,, v,) represents the coordinates of the terminal point of V.

 
Figure 3.69

Thus we have two vectors V=vi and V, =vj such that their sum is V.
That is,

V=V + V,=v i+,

Vectors Vand V, are called the components of V in the x- and y-directions,

respectively. The process of expressing V as the sum of V, and V, is known as
resolution of V into its x- and y-components (or i- and j-directions). The

magnitude of Vis given by |V| = Vv. +2.

Using cos 6 =v,/|V| and sin 6 =v/|V|, we see from the right triangle
shown in Fig. 3.69 that

v.=|V| cos § and v,= |V] sin 0.

Thus, any vector V can be written in the form

 

V=(|V| cos@)i+(|V]| sin¥)}j.
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Addition of Vectors

Suppose vectors U and V are expressed in terms of i, j as

U=u i+uj, V=vi+y,]

Vector addition is associative and commutative (see Problem 17 of Exer-
cise 3.5), and so we have

U+V=@wi+uj)+i+vj)=@+v)i+ Wu, +v)j

Therefore, to add two vectors we merely add their corresponding components.

 

Examples

AN Suppose V is a vector with magnitude 4 and direction 6 = 120°. Resolve
V into its x- and y-components.

Solution.
v.= | V|cos 8 =4 cos 120° = — 2,
v,= | V|sin 6 =4 sin 120° =2V/3.

Thus _
V=-2i+2/3j 1

/2\ Suppose U is a vector of length 5 in the direction of 70° east of north, and
V has length 3 in the direction of 20° west of south (Fig. 3.70). Find the sum
of U and V; then find |U + V|.

 

 

1

U

250° 20° .
— >

Vv

Figure 3.70

Solution. We first express U and V in i, j form:

U= 5cos 20°i + 5sin 20° j= 470i + 1.71],
V =3 cos 250° i + 3 sin 250% =—1.03i— 2.82}.

Therefore,

U+V=367i-1.11}.
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To find |U + V| we write:

|U+ V| =V(3.67)? + (—1.11)> = 3.83. i

A Suppose 4 = 2i + 3j and B= 4i —j. Find the vector 34 — 5B.

Solution.

34 — 5B = 3(2i + 3j) — 5(4i —j) = (6i + 9) + (—20i + §).*

Thus

34 — 5B = — 14i + 14j. i

/A\ If the displacement of Havre from Las Vegas is given by the vector
LH = 541i + 1383, find the coordinates of Havre on the map of Fig. 3.66

(p. 100). The given distances are in kilometers.

Solution. We wish to find the coordinates of H as shown in Fig. 3.71. We can
do this by finding vector

OH=0L + LH.

 

 
L

Figure 3.71

From information given on the map, we have

OL =—-331i—622j

Therefore.

OH = (-331i—622j) + (541i + 1383) =210i + 761 j.

The coordinates of Havre are (210, 761). i

*Note that in replacing 3(2i + 3j) by 6i + 9 we used the distributive property

32i + 3j)=3(20) + 3(3)),
and the associative property

320H)=3-2)i and 33i)=(3-3)j.
These properties hold in general and are basic in the study of vector spaces.
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EXERCISE 3.6

In Problems 1 through 10, vectors U, V, and W are given by

U=i+j, V=2i-5}j, W=-2i+j.

In each case draw a diagram illustrating the problem geometrically and then determine

the given vector in i, j form:

.LU+V 2. U-V 3. 2U + 3W

U+V+W 5.3U0-2V +4W4.

6. Find a vector that gives W when added to U.

7. Find a vector that gives V when subtracted from W.

8. Find

a) |U| b) |V] 9 |U+V|
9. Find |2U -3V| 10. Find |3U + 2V — SW|

In Problems 11 through 14, suppose the x, y-coordinate system corresponds to

compass directions and the direction angle 6'is measured as described in this section. Let
A and B be given as follows: 4 has magnitude 1.5 cm in direction 60° east of north,
B has magnitude 3.2 cm in direction 20° west of north.

11. Draw a diagram illustrating vectors 4 and B, and then give the direction of each in
terms of the corresponding 6 angle.

12. Resolve 4 and B into their x, y-components.

13. Find the sum of 4 and B and describe the resultant in terms of compass direction.

14. Find 24 — B and give the result in terms of its magnitude and compass direction.

In Problems 15 through 19 use information from the map given in Fig. 3.66 (p. 100).

15. Find the displacement of Boise from Portland as a vector in i, j-form.

16. Point P is 200 km from Albuquerque in the direction of 54° east of north. Find the

coordinates of P.

17. Find the displacement vector of El Paso from Missoula in i, j-form. Get an

approximate check on your result by using a ruler and protractor on the map.

18. The displacement of point P from San Diego is given by the vector

DP =321i + 175].

Find the displacement vector of P from Logan.

19. Determine the direction in which a plane should fly to travel directly from Los

Angeles to Salt Lake City (assuming no wind effect).

20. Find the magnitude and direction of a vector whose x-component is 32 units and
y-component is 24 units.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A girl walks 2 km in the southwest direction, then 1.5 km east, and then 3 km in the
direction 30° east of north. Find her displacement from the starting point. Give the

answer in terms of distance and compass direction.

What are the x- and y-components of a vector with magnitude 16 cm and the

direction given by 6 = 210°?

Find a unit vector with the same direction as A = 3i + j.

Find a unit vector perpendicular to vector 4 = 31i + j.

If A=3i—2jand B=2i +], find

a) the angle between 4 and B b) the angle between 4 + B and A — B.

Find a unit vector parallel to the line through points (3, 5) and (2, —1).

Express vector VV =3i + 4j as the sum of two vectors with directions shown by
broken lines in Fig. 3.72.

 

Figure 3.72

Find the coordinates of point P whose displacement from point (3, 1) is of
magnitude 4 in the direction of 136° with the positive x-axis.

A particle moving in the x, y-plane is photographed each second and its x, y-

components for the first five seconds are given by the following table:

 

 

 

  

t (sec) 0 1 2 3 4 5

x (cm) 10 14 21 27 16 31

y (cm) 0 5 8 12 22 30  
 

a) Draw a diagram that illustrates the displacements for successive seconds.

b) Find the displacement from 7 = 0 to 7 = 4 sec.

c) Find the displacement from 1 =1to t = 5 sec.

Suppose that the coordinates of a particle moving in the x, y-plane are given by

x = 3t— 52, y=-—4r + 1,
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where ¢ is in seconds and x, y are in centimeters. Find

a) the displacement of the particle from = 0 to t = 4 sec,

b) the displacement of the particle from ¢t = 2 to ¢ = 4 sec.

31. A plane travels from Seattle to Missoula and then 450 km in the southeast
direction. Using the map in Fig. 3.66 (p. 100) find how far and in what direction the

plane is from Seattle.

32. On a par 4 hole a golfer scores a birdie with the following three strokes:

the first travels 84 m at an angle of 54° east of south;

the second goes 21 m in the direction 10° west of south;

the third is a putt of 2.5 m in the northwest direction.

How far and in what direction should he have hit his drive to get a hole in one?

3.7 APPLICATION OF VECTORS TO VELOCITY PROBLEMS

Relative Velocities

We illustrate the idea of relative velocity by considering the following example.

The compass of an airplane shows that the plane is pointed due north. Ground
information indicates that there is a wind blowing due east. The result is that
the plane will not fly due north but that its direction will be affected by the

wind and its actual course will be shifted toward the northeast. We discuss

details of this situation by introducing three vectors:

Vrepresents the velocity of the plane relativeto the air (this is given by the
airspeed* and compass on the instrument panel and would be the actual

velocity of the plane if there were no wind);

V, represents the velocity of the plane relative to the ground (this is what

an observer on the ground would see as the actual speed and direction of the

plane);

U represents the velocity of the wind (that is, the velocity of the air relative
to the ground).

These vectors are shown in Fig. 3.73, where V, is the resultant (or sum) of

V,and U. Thatis,

V,=V,+U. (3.10)

 

Examples

AN Suppose the instrument panel of a plane indicates an airspeed of 350
km/hr and a direction due north; the wind is 80 km/hr in a due east direction.

*The word speed is used to denote the magnitude of velocity. Thus speed is a scalar quantity

associated with velocity, which is a vector quantity.
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What is the actual velocity of the plane with respect to the ground? How far
has the plane traveled after 50 min in flight?

Solution. (Fig. 3.74): V,=350j and U = 80 i, therefore,

V,=V,+U=350j + 80i.

The actual speed of the plane is

| V,| =V+ km/hr = 359.03 km/hr.

The direction of the plane is given by

tan 6= 329 §=77.12°.

Thus the actual velocity of the plane is 359 km/hr in the direction of

90° — 77.12° = 12.88° east of north.

In this example the plane will always be pointed north (that is, the compass
reading will indicate north) and the airspeed will show 350 km/hr even though

the wind causes the plane to drift.

Recall that

Distance = Rate x Time

and so after 50 min in flight the plane actually travels a distance of

359(50/60) = 299.17 km. i

Suppose in Example 1 the pilot actually wants to travel due north. Find

the direction in which he should point the plane and the actual ground speed.

Solution. Here we want the resultant V, to be in the north direction. Thus

V, will have to be in the northwesterly direction, as shown in Fig. 3.75:

V,= (350 cos 0)i + (350 sin 0),
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V,\
£\

|

Figure 3.75

 

 

Our problem is to find 6 and | Vol Substituting into equation V,=V, + U,

gives

|V,| j= (350 cos 0)i + (350 sin 6) j + 80i
— (350 cos 6 + 80) i + (350 sin 0) j.

If two vectors are equal, then their x- and y-components must be respectively
equal. Thatis,

350 cos 0 +80=0, 350 sin 6=|V,|.

Solving these two equations simultaneously for 6 and | Vel gives

6 = 103.21°, ” = 340.73 km/hr.

Thus the plane should head in the direction of 13.21° west of north and its
ground speed will be 340.73 km/hr. i

 

EXERCISE 3.7

In Problems 1 through 4, the airspeed and direction of a plane and the wind velocity are

given.

a) Find the actual ground speed and direction of the plane.

b) Determine the actual distance covered by the plane after 45 min in flight.

1. Vis 300 km/hr due east; U is 60 km/hr from the west.

2. Vis 350 km/hr due south; U is 50 km/hr from the south.

3. V,is 300 km/hr in direction 40° east of north; U is 80 km/hr in direction of 10°
west of south.

4. Vis 400 km/hr in southeast direction; U is 70 km/hr from the north.
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12.

13.

14.

15.

16.

. If the pilot of an airplane wishes to travel due north with an airspeed of 400 km/hr,

in what direction should he point the plane if there is a wind of 80 km/hr blowing

in the due east direction?

. In Problem 5, how far will the plane actually travel in 1 hr 25 min?

. In Problem 5, how long will it take the plane to travel 540 km?

. A pilot wishes to have his plane travel due east with an airspeed of 350 km/hr.
There is a head wind given by U = —40i — 30. In what direction should he point

the plane and what will be the ground speed?

. In Problem 8, how long will it take the plane to travel 800 km?

10. A ship is traveling due north at a speed of 24 km/hr. A man walks east across the

deck at a speed of 3.5 km/hr. Describe his velocity (speed and direction) relative to

the surface of the ocean.

. According to instrument readings, a destroyer is steaming due east at 40 km/hr.

The ocean current is known to be toward the southwest at the rate of 8 km/hr. In
what direction and at what speed is the ship actually traveling?

A pilot heads his plane so that the compass reading is 40° east of north. A wind is
blowing in the direction 50° east of north. Find the airspeed of the plane and the

speed of the wind if the resulting ground speed is V,= 200i + 223.

A river flows from north to south at the rate of 2 km/hr and is 0.4 km wide. A man
starts from the west bank and rows across the river keeping his boat constantly

pointed east. If he can row (in still water) at the rate of 4.5 km/hr and point 4 is

directly across the river from his starting point, how far down the river from point

A will he land?

Using the information given in Problem 13, find the direction in which the man

should point his boat to reach point 4.

A plane traveling at an airspeed of 400 km/hr is over San Francisco and is headed

in a direction with compass reading 57° east of north. In 55 min it passes over

Reno. Using information from the map in Fig. 3.66 (p. 100) find the velocity of the
wind (assuming it to be the same for the entire trip).

A plane travels from Reno to Salt Lake City. Assuming that the wind velocity for
the entire trip is 32 km/hr from the northwest, at what airspeed and compass

direction should the plane travel to get to Salt Lake City in exactly 2 hr? Use

information from the map in Fig. 3.66 (p. 100).

3.8 APPLICATION OF VECTORS TO FORCE PROBLEMS

Concurrent Forces in Equilibrium

If a body is at rest (or is moving at a constant velocity),it is said to be in
equilibrium. If a body is in equilibrium and a force is applied to it, then the

equilibrium will be disturbed. Thus if forces are applied and the net, or
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resultant, force is nonzero, then the body will not be in equilibrium. This is

equivalent to saying that if a body is to remain in equilibrium, then the
resultant of any forces acting on it must be zero. This implies that the sum of
the x-components of the forces must be zero and the sum of the y-components
must equal zero. We thus have the following basic principle for a body to be in

equilibrium:

 

For a set of forces to be in equilibrium, * it is necessary that the

sum of their components in any two mutually perpendicular

directions in the plane be zero.   
 

If the body is not moving, then it is said to be in static equilibrium. The

problems considered in this section will all be ofthis type.

If all of the forces acting on a body pass through a common point, then
they are said to be concurrent forces. If there are nonconcurrent forces, then it

is necessary to introduce the concept of torque (or moments of forces) in the

above stated basic principle. For example, two tangential forces applied to

opposite points of a wheel are not concurrent.

In this section we deal only with bodies in static equilibrium and concurrent

forces. Thus the basic principle stated above will be sufficient to give us

solutions.

 

Examples

AN A 50-kg weight is suspended by two ropes as shown in Fig. 3.76 (a),

where a = 50° and 8 = 24°. Find the tension in each rope.

 

Figure 3.76

*It is common to speak of forces being in equilibrium meaning that the body to which these forces
are applied is in equilibrium.
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Solution. In solving a problem ofthis type, we first fix our attention on a point
where several of the forces are applied, and then draw a vector diagram
showing all of the forces. In our problem it is natural to isolate point P where

three forces given by vectors A, B, and W are acting.
We wish to determine the tension in the two ropes, that is, we want to find

the magnitudes of 4 and B. If we choose our x, y-system of coordinates with
origin at P as shown in Fig. 3.76 (b), we have

A= (|A| cos 130°)i + (|A]| sin 130°)j,
B= (|B| cos 24°)i + (|B| sin 24°)j,
W= —50j.

Since our system is in equilibrium, we can apply the basic principle stated

above and get

Sum of x-components: |A| cos 130° + |B| cos 24° =0
Sum of y-components: |A4| sin 130° + |B| sin 24° — 50 = 0.

Solving these equations simultaneously for |4| and |B| gives

|A| = 47.52 kg and |B| = 33.43 kg.

Note that in applying the basic principle of equilibrium we essentially
determined two forces 4 and B, such that their resultant (4 + B) just balances

W, thus leaving the system in equilibrium (Fig. 3.77).

  
Figure 3.77 Figure 3.78 i

/2\ A weight of 100 kg is suspended from a wall as shown in Fig. 3.78(a).
Find the tension on the portion of the rope 4 P (8 m long) and the force on the

bar BP (3 m long).

Solution. We isolate P as the point where three forces are acting; we denote
them by F (pull by the rope), G (force on the bar), and W (force of gravity on

the weight), as shown in Fig. 3.78(b).

First we determine angle «; from the triangle in Fig. 3.78(a) we have

tan o = A a = 20.55°,
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Therefore we can write the three vectors as follows:

W=-100j, G=|G|i,

F=(|F| cos 110.55°)i + (| F| sin 110.55°)j.

Applying the basic principle of equilibrium, we get:

Sum of x-components: |G| + |F| cos 110.55° = 0,
Sum of y-components: |F| sin 110.55° — 100 = 0.

Solving these two equations simultaneously, we get

|F| = 106.80 kg,
|G| = 37.49 kg.

Thus the tension in the rope is 106.80 kg and the bar is pushing against P
with a force of 37.49 kg.

A A weight of 25 kg is being held on an inclined plane by a rope PA, as
shown in Fig. 3.79(a). If the angle of inclination to the horizontal is 36°, what
is the tension in the rope? Neglect any force caused by friction.

  (a)

Figure 3.79

Solution. We isolate point P and note that there are three forces acting onit.
We denote these by F (pull by the rope), G (push by the incline against the

weight in the direction perpendicular to the incline), and W (force of gravity on

the weight). These forces are shown in Fig. 3.79(b) and are given by

F= (|F| cos 36°)i + (|F| sin 36°)},
G= (|G| cos 126°) i + (|G| sin 126°),
W= —25j.

Since the system is in equilibrium, we can apply the basic principle and get

Sum of x-components: |F| cos 36° + |G| cos 126° =0,
Sum of y-components: |F| sin 36° + |G] sin 126° — 25 =0.
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We solve these two equations simultaneously for |F|:

IF| = 25 cos 126°

sin 36° cos 126° —sin 126° cos 36°
 = 14.69 kg.

Thus it will require a pull of 14.69 kg on the rope to keep the 25 kg weight
in place.

 

EXERCISE 3.8

1. A 120 kg weight is suspended by two ropes, as shown in Fig. 3.80. Whatis the

tension in each rope?

2. A weight of 80 kg is suspended from a wall, as shown in Fig. 3.81. The bar BP is
perpendicular to the wall. Find the tension in the rope 4 P.

A
N
N

\
o
O

Lysis

64° 20° NN

P

AB Sm 
120 kg 80 kg

Figure 3.80 Figure 3.81

3. An 80-kg weight is suspended from the wall, as shown in Fig. 3.82. The bar BP is
inclined at 80° to the wall. Find the tension in the rope AP.

4. A weight of 100 kg is being held on a ramp by a rope from P to 4, as shown in

Fig. 3.83. If the ramp is inclined 25° to the horizontal, find the tension in the rope.

Neglect any friction forces.

 

A
2

40°

A

7
7 80° Pp p

B 5m

/ 80 kg 25°
 

Figure 3.82 Figure 3.83
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5. A weight of 100 kg is being held on an inclined plane by a rope PA, as shown in
Fig. 3.84. Find the tension in the rope.

6. Two forces, one of 100 kg and the other of 160 kg, act on an object with an angle

of 64° between them. What is the magnitude of a third force that will keep the

object in equilibrium?

7. Two men are holding a weight suspended between them on a rope, as shown in

Fig. 3.85. One exerts a force of 45 kg in the direction of 30° from the horizontal,

while the other exerts a force in the direction of 40° with the horizontal. How heavy
is the weight?

 

 

A

16°

P=

25°

Figure 3.84 Figure 3.85

8. A girl gymnast hangs from a horizontal bar with her arms outstretched so that each
makes an angle of 36° with the bar. If she weighs 55 kg, whatis the tension in each

arm?

9. Two forces, each of 55 kg with an angle of 72° between them, act on an object.

What additional force is required to keep the object in equilibrium?

10. A boat weighing 600 kg is being pulled up a loading ramp inclined 20° to the

horizontal. What force is required? Neglect any friction forces.

11. A weight of 62 kg is suspended by two ropes, as shown in Fig. 3.86. What is the

tension on each rope?

 

62 kg

Figure 3.86

12. A force of 160 kg is required to hold a weight on an inclined plane with an angle

of 24° to the horizontal. How heavy is the weight? Neglect any friction forces.
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13.

14.

15.

16.

17.

18.

19.

20.

A boom AP, 4.5 m long, holds a weight of 86 kg away from a vertical wall. The
weight is anchored to the wall by a rope BP, as shown in Fig. 3.87. Whatis the

tension in the rope?

Suppose that in Problem 13 the rope makes an angle of 12° with the horizontal, as
shown in Fig. 3.88. What is the tension in the rope?

 

 

A 3.3m p

7
86 kg

7

’ 45m

’
A

Z
Figure 3.87 Figure 3.88

A balloon filled with helium is anchored by two ropes, as shown in Fig. 3.89. If the

tension of the rope inclined at 40° is 120 kg, find the buoyancy force of the balloon.

Janetis sitting in the center of a hammock suspended from two trees with ropes that
make an angle of 64° with the vertical. If she weighs 52 kg, what is the tension in

each rope? Neglect the weight of the hammock.

If each rope in Problem 16 can support a pull of at most 100 kg before breaking,

what angle with the vertical can each make for Janet to be safe in the hammock?

An archer pulls back on his bow with a force of 10 kg before releasing the arrow,

as shown in Fig. 3.90. With what force is the string pulling on the bow ends?

40° 32°
 

 

Figure 3.89 Figure 3.90

An inclined plane is 5 m long and one end is 2 m above the other. A weight of

48 kg is held in place by a rope AP tied to a building, as shown in Fig. 3.91. What

is the tension in the rope? Neglect any friction forces.

A boyis being pulled up an icy hill by a rope tied to his sled. If the child and sled
weigh a total of 36 kg, the angle of the hill slope with the horizontal is 15°, and the
rope is inclined at 24° to the hill, what force is required to pull the sled?
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21. A weight of 64 kg hangs vertically supported by a rope tied to the top of the
building. The rope is strong enough to support at most 128 kg. A second rope

(sufficiently strong) is tied to the weight and is pulled always horizontally, so that
the first rope makes an angle of § with the building (as shown in Fig. 3.92). How

large can 6 be before the first rope breaks?

ND

64 kg

 

 

Figure 3.91 Figure 3.92

REVIEW EXERCISE

1. The hypotenuse of a right triangle is 37.42 cm and one angle is 48°12’. Find the

lengths of the two sides. Give answers correct to four significant digits.

. If ABC is an isosceles triangle with |AB| = |AC| = 4.73 and the angle oppo-
site AB is 52°14’, find the length ofthe altitude from A to BC. Thenfind the area

of the triangle. Give answers correct to two decimal places.

. If the hypotenuse ofa righttriangle is 24.3 cm and one ofthe sides is 15.4 cm, find
the length of the other side correct to three significant digits. Determine the angles
correct to the nearest minute.

. In Fig. 3.93, ABCD is a square with length of side 18.76 cm. If |EC| = 8.43 cm,
find the length of AF.

. In Fig. 3.94, a =34°, 8=120°, and |CD| = 15cm. Find the length of AB
correct to two significant digits.

 

    

i

/| 1B Yc

o B
a

4 D A B D
Figure 3.93 Figure 3.94
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In Problems 6 through 14, parts of a triangle are given (using conventional notation as

described in this chapter). First, decide whether the given information is sufficient to

determine a triangle. If it is, find the remaining parts. Give answers correct to the
accuracy you think is consistent with the given information.

6. b=32,c=47, a =18". 7. a=15, b=20, c= 40.

8 a=62.5° 03=23.6°c=347. 9. a=34,b=4.6,c=3.7.

10. B=064°12", b=32.5, c=238. 11. a =30° 8=60° v=90°.

12. a =48° 03=74° v=>58° a=436 13. a=36°B=65° a=364,b=253.

14. 8 =32°14', v = 64°18’, a = 42.53.

15. In Fig. 3.95, the length of CD and angles a and 3 are measured and found to be

|ICD| =137 m, a=44°, f=123°

Find the distance from A to B and from A4 to C.

 

 

 

A

Figure 3.95 Figure 3.96

16. In Fig. 3.96, the center ofthe circle is O, AB is a tangent to the circle at B, and C

is a pointon the circle and on OA. If the radius of the circle is 12 cm and the length

of arc BC is 9 cm, find the area of the shaded region.

17. Each side of a regular pentagon has length 24 cm. The five diagonals of this

pentagon intersect in five points forming another regular pentagon inside the given

one. Find the length of side of this pentagon.

18. Find the areas of each of the pentagons described in Problem 17. Then find the ratio

of the larger area to the smaller area.

19. The three sides of a triangle are a = 3.4, b= 5.6, ¢c = 4.8. Find the area of the

triangle correct to one decimal place.

20. The lengths of two sides of a triangle are 32.6 cm and 43.5 cm, and the angle

between them is 55°40’. Find the area of the triangle correct to three significant

digits.



In

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
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Problems 21 through 24, vectors A, B, and C are given by

A=3i+4j, B=-2i+5]}, C=2i-3j.

Find: a) 24 — 3B b) B + 3C

Determine: a) |A| b) |4B — C| c) |A-B|

Find a) the angle between A and B, b) the angle between A + B and B + C.

Find the unit vectors perpendicular to vector A.

Using information from the map given in Fig. 3.66 (p. 100), find
a) the vector describing the displacement of Reno from El Paso;
b) the direction and distance from Denver to Salt Lake City.

The pilot of an airplane encounters a wind of velocity 60 km/hr in the due east
direction. If his instruments indicate an airspeed of 360 km/hr in the due south
direction, what is his ground speed and in what direction is the plane actually
flying?

If the pilot in Problem 26 wishes to have the plane actually fly in the due south
direction with the airspeed indicator still showing 360 km/hr, in what direction

should he point his plane? How far will he fly in 1 hr 20 min?

A weight of 100 kgis suspended from a wall by a rope AP and held out from the
building by a bar BP, as shown in Fig. 3.97. Find the tension in the rope.

Two forces with magnitudes of 50 kg and 80 kg are acting on an object with an

angle of 64° between them. Find the magnitude of the force required to keep the
object from moving.

An object weighing 80 kg is being held in place on an incline by a rope AP tied to
the object and a building, as shown in Fig. 3.98. Find the tension in the rope.

Neglect friction force.

 

A

7As0°

_ P
B

100 kg 

 

 

Figure 3.97 Figure 3.98





 

 

CHAPTER FOUR

IDENTITIES

Problem-solving in mathematics frequently involves a sequence of steps in
which the problem is restated in a different but equivalent form until ultimately
it is reduced to a form that can be solved by familiar techniques. For example,
in algebra the student learns to solve the equation x> — x — 6 = 0 by replacing
its left-hand side with (x — 3) (x + 2), so that the problem then becomes one of

solving (x — 3) (x + 2) = 0. In this form the problem can be solved by resorting
to a theorem stating that if the product of two numbers is zero, then at least
one of the two numbers must be zero. That is, x —3=0 or x + 2=0; so

x = 3 and x = — 2 are the solutions.
In this example we call the equation x2 — x — 6 = (x — 3)(x + 2) an identi-

ty, because it is satisfied by every real number. That is, if we replace x by any

given real number in the expression on the left-hand side of the equality sign
and in the expression on its right-hand side, the two resulting numbers will be
equal. However, the equation x2 — x — 6 = 0 does not have this property since
it is satisfied by only two real number values of x. We call such an equation a
conditional equation.

An identity is defined as an equation satisfied by all values of the variable
(or variables) for which both the left-hand side and the right-hand side are

defined. For example,

x:—4
x—2

is an identity since it is satisfied by all real numbers except x = 2, a value for

which the left side is not defined. The student has already encountered several
identities in algebra, such as the factoring formulas

=Xx+ 2

x2 —yr=(x+p)(x — yp), xt + 2xy + yr =(x +p)’,

XB+Py=x+py)x*—xy+y),...

121
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Presently we are interested in developing a collection of identities involving
trigonometric functions. We have already used one such identity,

(sin ¥)? + (cos y)* = 1,

in Section 3.4 when we derived Heron’s formula for the area of a triangle. In
the process we replaced (sin 7)? by 1 — (cos v)?; then we replaced 1 — (cos v)?

by (1 + cos v¥)(1 — cos vy). This is the form that allowed us to complete the
derivation.

This chapter will include a large number of identities with which the
student should become familiar. These may be difficult to memorize but
through frequent encounters in solving a large number of problems, the

student will eventually come to know them. In subsequent chapters of this
book, the usefulness of identities will become apparent.

4.1 BASIC IDENTITIES

The following equations are satisfied by each value of § for which both sides of
the given equation are defined. That is, they are identities.

  

  

  

  

 

  

  

  

  

  

     

 

(L.1) csc 0 = 1 (1.2) sec f = —L
sin 0 cos 0

(1.3) cot  =—1 (1.4) sin (— 6) = — sin 6
tan 0

(I.5) cos(— 0) = cost (1.6) tan(— 60) = — tan6

(L.7) tan § — Sin (1.8) cot § = £080
cos 0 sin 0

(1.9) sin’ § + cos? § = 1* (1.10) 1 + tan? 6 = sec? 0

(L.11) 1 + cot? 6 =csc? 6   
*Notation sin?f means (sin 0); that is, we first get sin § and then square the result. Not to be

confused with sin 62, where we first square 6, then get the sine of the result.
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Note. Trigonometric identities (I.1) through (I.11) (as well as subsequent

identities) are listed inside the back cover for easy reference.
Identities I.1 through 1.9, as well as others, have already been introduced in

Section 2.6. Proofs of 1.10 and 1.11 are left to the student (see Problem 1 of
Exercise 4.1).

 

Examples

AN Prove that cos x tan x = sin x is an identity.

Solution. Let LHS and RHS stand for “left-hand side’ and ‘right-hand side”

of the given equation, respectively:

LHS = cos x tan x = cos x SILX (by (L.7))
COS Xx

=sin x (by algebra).

Therefore LHS = RHS. and so the given equation is an identity. i

 /2\ Prove that -L=S€€X _ €0S Xx — 1 5 op identity.
1 + sec x cos x + 1

 

Solution.

1 —sec x 1 —1/cos x

1 + sec x 1 + 1/cos x (by (1.2)

—cosx—1 . cosx+1 _cosx—1 (py algebra)
CoS Xx CoS X cos x + 1

_ RHS. I

A Prove that (sin x + cos x)? = CSC oan identity.
SEC X CSC X

Solution.

LHS = (sin x + cos x)? =sin’x + 2 sin x COS xX + COs’x

= (sin2x + cos2x) + 2 sin x CoS X (by algebra)

=1+ 2 sin x cos x (by (1.9);

 

RHS Sec x csc x +2 _ Sec x €sC x 2 (by algebra)
S€C xX CSC Xx S€C X CSC Xx S€C xX CSC Xx

—1+2—L ._1 (by algebra)
SEC X CSC X

=1+ 2 cos x sin x. (by (1.2) and (I.1)).

Therefore, by the transitive property, LHS = RHS and so the given equation
is an identity.
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Technique for Proving Identities

The student will notice that in the above examples we did not begin our proof
with the given equation and manipulate it until we got an obvious equality.
Here we emphasize an important point of logic. A proof consists of a logical
sequence of statements in which the final statement is the statement to be
proved.

We illustrate our point with an obvious example. Suppose we wish to

prove that 1 = 2. If we are allowed to start with this equality as the first step,
then our “proof” could proceed as follows:

1=2,
multiply both sides by zero:

0-1=0.2;
hence,

0=0.

Since 0 = 0 is an obvious equality, can we conclude that 1 = 2? Clearly NOT!
The only conclusion we can make from the above is that “if 1 = 2, then 0 = 0,”

which is a true statement.
The important point illustrated by this example is that it is not logically

acceptable to begin a proof with the statement you wish to prove, perform
algebraic manipulations on it, obtain an obvious equality, and then conclude
that the starting statement is true. If such a procedure is followed and if it can
be shown that these steps are reversible, then the proof is valid. However, the
steps in reverse are a necessary part of the proof and should be included. What
step or steps in the above faulty proof are not reversible?

Note. As illustrated in Examples 1 through 3 above, we believe that the best
technique in communicating a proof is to work independently with either or
both of the left- and right-hand sides of the given equation to show that each
reduces to the same expression. The final statement of LHS = RHS then

follows from the transitive property of the equals relation.

EXERCISE 4.1

1. Use 1.9 to derive 1.10 and 1.11.

In Problems 2 through 40 prove that the given equation is an identity.

2. sin 0 cot @ =cos 6 3. tan _ ecg
sin 6

4. cot =cscflcosb 5. cosxsecx=1

6. cos x tan x = sin x 7. 1 — cos?x = cos?x tan?x

8. cot x sec x =csc x 9. sin’x = (1 — cos x)(1 + cos x)



4.2

10.

12.

14.

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

36.

38.

40.

4.2 BASIC IDENTITIES (CONTINUED)

COX _ osc x — sin x
sec x

_Sin(=0) _ yan (— 0)
cos 0

sec (csc 8 — sin 0) = csc 6 cos 0

 

1 — sin(—x)

sec § — tan 6

sinf _ 1—coséf
1 +cosé sin 0

l+tand _ 1+ cot 6
sec 0 csc 0

LL2st x
l—sinx 1+sinx

sin § _ l+cosf__2
1 + cos 0 sin 0 sin 0

sec 0 — cos 0 = sin(—0) tan(—0)

1 + tan’x = tan x sec x csC x

cot(—x)cos(—x) = sin x — csC x

=tan x + Sec x
cos Xx

1 — (sin x — cos x)? = 2 sin x cos x

cos x _ l+sinx
1 —sin x COS X

tan?x — sec’x = —1

1 =sec fd + tan 0

sinZx tan2x + sin’x = tan’x

11.

13.

1S.

17.

19.

21.

23.

25.

27.

29.

31.

33.

3s.

37.

39.
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sin x csC x

cot x
=tan x

sec § csc § =tan 0 + cot 0

l—cos _ (cot x — csc x)?
1 + cos x

tan x + cot x =S8¢X
COS X

1
cota csca=————

S€C a — COS «

sec2x + cscix = sec?x cscix

(cos x + l)(sec x — 1) = sec x — cos x

sin‘x — cos*x = sin?x — cos’x

tan 6 + sec _ 1 + sin 6
sin 6 cot 0 cos?
 

cos 6 sin 0
_-— +t—
sin 0 cos #0

=sec 6 csc 0

1—cos x _ sec x — |

l+cosx secx+1

csc(—x)
—= CO0SX
cot(—x) + tan(—x)

sec’x — tan‘x = sec2x(sin’x + 1)

tan‘x + tan?x = sec’x — sec’x

cotx +tanx _

SEC X CSC X

All problems of the preceding section are of the form ‘Prove that the given
equation is an identity.” In this section our problemsare similar except that we
ask “Is the given equation an identity?’ Thus we have the additional burden of
trying to decide whether or not the equation is an identity. If we think it is, then
we must prove it. If not, we must exhibit at least one value of the variable for

which both sides of the equation are defined and for which the two sides are
not equal. Weillustrate the procedure through the following examples.

 

Examples

AN Determine whether or not equation sin‘x + cos*x = 1 is an identity.
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Solution. If we have no advance information or insight as to whether or not an
equation is an identity, then it is probably wise to first try a few values of x to
see whether the equation is satisfied by these values. If we find one value that
does not satisfy it, then the given equation is not an identity. In our problem
we try

x=0: sin‘0 + cos*0 =0*+ 1¢ = 1;

_ TI. 1 4 aT _ 4 4 = 1:X= 5 sin‘ - + cos’ “+0 ;

x=: sin‘m + cos‘r =0*+ (—1)*= 1.

Thus the given equationis satisfied by each of the three values of x, and so by
now we begin to suspect thatit is an identity. However,it is worth noting that
the tested values (0, 7/2, 7) of x are special; and in many cases these will satisfy
a given equation while others will not. It is wise to try (after 0) a number such
as x = 1; with the calculator (in radian mode), it is easy to evaluate and get
(sin 1)* + (cos 1)* = 0.5866. Therefore, sin‘x + cos*x = 1 is not an identity since

it is notsatisfied by x = 1. i

 /2\ Determine whether equation 1 — = l Top X_ is an identity.
- x

Solution. We first try a few values of x and evaluate the LHS and RHS for

these values:

x=0: LHS -11_1

thus the LHS is undefined, and so x = 0 is not in the domain of discussion for
this problem;

 

 

- XT. LHS-= 1 1 __qX= S Tes a2) “T-0

l+cos (w/2) _1+0 ..
RH = = =

S sin? (7/2) 12 L;

x=1 LHS=—1U1_ _ 2175342651,
l —cos |

RHS = L+cos _ 5175342650.
sin?l

Although the LHS and RHS given by the calculator for x = 1 differ slightly,it

is a good guess that x = 1 does satisfy the given equation (the discrepancyis

probably due to round-off error within the calculator).
At this point it is reasonable to suspect that the given equation is an

identity, and so we attempt to prove it:



4.2 Basic Identities (Continued) 127

 

LHS = 1 — 1 + cos x _l+cosx
1—cos x (1—cosx)(1 +cosx) 1— cos (by algebra)

_1l+cosx by (L9
sin2x ( y ( * ).

Therefore, LHS = RHS, and so the given equation is an identity. i

A\ In algebra, symbol “v/* is introduced as the nonnegative square root
of a nonnegative number. For example, v4 =2 (and not V4 = +2). Thus

Va =a is correct only if a > 0, but Va?=| a | is true for every real
number a. Therefore, \/ 1 —sin’x = cos x is not an identity since it is not
satisfied by any value of x for which cos x < 0 (for example, if x = 7, then
V1—=sin’r = 1-0? = V'1=1, while cos 7 = —1). However, equation

V1 —sin’x = | cos x | is an identity. Thus we can replace V1 — sin’x
by |cos x | in any problem; however when we replace 1 — sin’x by cos x,
we must make certain that the discussed x-values are such that cos x 20. |

/A\ Is \/ tan’x — sin’x = sin x tan x an identity?

Solution. We first try a few values of x:

x =0: LHS = vtan?0 — sin?0 = 0,

RHS=sin0tan 0=0.0=0;

_ om. Jan? Tsim? =4/1 LV=q/1-L =x= I LHS = tan’ Z- sin’ (75) Vi-T-7

~_ 1 12 L.
42 V2

x=1: LHS = v/(tan 1)2 — (sin 1)? = 1.310513411,

RHS = (tan 1)(sin 1) = 1.310513411.

 

RHS = sin T . tan

It now appears that the given equation is an identity. Suppose we attempt to
“prove” it by starting with the given equation. If we square both sides, we get

tan’x — sin’x = (sin x tan x).

Using algebra and some of the basic identities, we can write the following
steps:

in? . . . . .
SIN'X_ _ sin2x = sin’x tanx: sinZx secix — sin?x = sin?x tan’x;
CcOS’x

sin?x(sec’x — 1) =sin’x tan?x;  sin’x tan’x = sin’x tan’x.

Can we now conclude that Vtan2x — sin?x = sin x tan x is an identity? The

answer is NO. Actually it is not an identity, as we can show by trying

x =3m/4
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This example illustrates a faulty proof, in which we began by squaring both
sides of the given equation. This step is not reversible.
 

EXERCISE 4.2

Determine whether the given equations are identities. Give good reasons for your

conclusions.

 
sin2x .

1. = S€C X — COS X 2. sin x cot x = cos x
cos X

3.sinxtanx=1-cos x 4. (sin 0 + cos 0)2=1

. . sin 6 + cos 0
5. (sin x — cos x)? = sin%x — cos2x 6. ————=1+tan¥d

cos 0

7. (cos x + sin x) (sec x + csc x) = 1 8. cot x sec x =cos x

9. sin x cos x(sin x sec x + cos x csc x) = 1

10. [cos(— x) + sin(— x)]>=1 — 2 sin x cos x

11. (sin x + cos x)* = sin’x + cos’x 12. sin‘x — cos*x = 2 sin’x — 1

13. V1 — cos? 0 =sin 6

14. sin3x — cos’x = (sin x — cos x)(1 + sin x cos x)

15. (tan 6 + cot 0)? = tan? 6 + cot?d 16. Vcot?x — cos?x = cos x cot x

17. Vsin2x + cos?x = [sin x | + |cos x | 18. sec’x + csc’x = 1

19. (1 + tan 60)? = sec?0 + 2 tan 0 20. V1 + tan?) = sec 6

4.3 SUM AND DIFFERENCE IDENTITIES

In trigonometry we frequently encounter expressions of the type sin(a + 8) and
we first ask: Is sin (a + 8) = sin a + sin 8 for all values of « and 8? The answer

is NO. For instance, if a = 7/2, 8 =x/2, then sin(w/2 + 7/2) =sin7=0,

while sin 7/2 + sinw/2 =1 + 1 = 2, and so the equation is not an identity. The
next question is: Can we find a simple formula that gives sin(« + 8) in terms of
trigonometric functions of a and of (8 individually? The answer to this is
included in the following set of identities called the sum and difference
formulas:
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(1.12) sin(a + 8) = sin a cos 3 + cos «a sin

(1.13) sin(a — #8) = sin «a cos 3 — cos a sin

(1.14) cos(a + 3) = cos a cos 3 — sin « sin 3

(1.15) cos(a — 8) = cos a cos 3 + sin «a sin

 

 

tan « + tant etre
(116) an(a + A) 1 — tan a tan 8
 

 

tan a — tan 3(L17) tan(a =f) =an

8

   
Wefirst prove (1.14) by using the diagrams of Fig. 4.1, where o and 8 are

taken as positive angles and points 4 and B are on the corresponding terminal
sides at a distance of one unit from the origin. From the definitions of
trigonometric functions, the coordinates of 4 and B are:

A: (cos a, sin a), B: (cos(— B), sin(— B)) = (cos 8, — sin B3).

Let d be the distance between points 4 and B and so, by the distance
formula, we have:

d? = (cos a — cos 8)? + (sin a + sin 8).

 

 

Pe A: (cos a, sin «)

~N

7 \ N
/ \ oN

/ \d

! \ 11.0)
\ 0 By] J
\ \ J\ \ /
No /p. (cos 3, —sin B)

SL” 
(a) (b)

Figure 4.1
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After applying some simple algebra and using identity (1.9) twice, we get

d?>=2 — 2(cos a cos 8 — sin «a sin 3). (4.1)

We now look at triangle 4 OB of Fig. 4.1(b) where points 4, O, B are taken

from Fig. 4.1(a). Applying the Law of cosines to triangle 4OB, we get:

d?=1%+ 12 = 2(1)(1)cos (a + B) =2 — 2 cos(a + B). (4.2)

Comparing Eqs. (4.1) and (4.2), we conclude that

cos(a + 3) = cos a cos 8 — sin a sin 3.

This is identity (1.14).

Note. The diagrams of Fig. 4.1 illustrate the case when a and 8 are positive
acute angles. Actually, we could give a similar proof for « and 3 of any size.

We can now use identities (1.14), (1.4), and (1.5) to prove the remaining
identities given above. The following is a proof of (I.15):

cos(a — B) = cos(a + (—B)) = cos a cos(— B) — sin «a sin(— B)

= cos a cos 3 + sin «a sin (3.

Therefore we get identity (1.15):

cos(a — 3) = cos a cos (3 + sin a sin 3.

To prove (1.12) we use identities

sin( Z- — 0) = cos 0 and cos( Z- — 0) =sin 0,

which the student is asked to prove in Problem 1 of Exercise 4.3. Thus,

3 _ ™ _ ™sin(a + 8) = cos|Z- “(a+ B)| _ cos[5 —a)- g]

= cos( 5-— a )cos B+ sin %- — « sin B (by (1.15)

= sin «a cos @ + cos «a sin S.

Therefore, sin(ae + 8) = sin a cos 3 + cos «a sin § is an identity.

We can now prove (1.16) as follows:

tan(a + 6) (by (1.7)
_ sin a cos 8 + cos «a sin 8 (by (1.14) and (1.15)

cos a cos B — sin « sin 8

_ tan «a + tan B

l—tan a tan 8

 

where in the last step we divided the numerator and the denominator by
cos a cos B, and then used (I.7). Therefore,

tan a + tan 8
tan(a + =—————

( 2 1 — tan « tan B

is an identity. We leave proofs of (I.13) and (I.17) as Problem 2 in Exercise 4.3.
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Examples

AN Prove that tan(x — T) =X=5 ap identity.
4 sin x + COS x

Solution.

tan x — tan (7/4)LHS =t rT) ==“ by (1.17
an(x 4 ) 1 + tan x tan (w/4) (by (L17))

_tanx—1 since tan T= 1
1 + tan x ( 4 )

_ (sin X/ COS X) —1 (by (1.7)

1 + (sin x/cos x)

Sn x—COSX (by algebra).
cos x + sin x

Therefore LHS = RHS, and so the given equation is an identity. i

/2\ Evaluate sin 75° and express the answer in exact form.

Solution.

sin 75° = sin(30° + 45°) = sin 30° cos 45° + cos 30° sin 45°

S22Ls ve),
A\ Evaluate cos (w/12) and give the answer in exact form.

Solution.

™ ™ ™ ™ : ™ :Cos 15 = ol TT) = cos —— COS —— + Sin —— sin —
4 6 4 6 4 6

= > 7 * T=(V6+V2).

/A\ Prove that sin x cos y= + [sin(x + y) + sin(x — y)] is an identity.

Solution. If we add the two equations given in (1.12) and (1.13), we get

sin(x + y) + sin(x — y) = 2 sin x cos ).

This is equivalent to the given equation. i
 

EXERCISE 4.3

1. Using definitions of the sine and cosine functions, prove these identities:

mw _ . . a _ _

cos( Z- — 0) =sin 0 and sin( > 0) = cos 0.

2. Prove that the equations given in (1.13) and (I.17) are identities.
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7.

8.

9.

10.

. Establish the following cofunction identities:

m _ inl X- =a) tan(2-— 6 ) = cot § b) sin( Z +0) = cos 0

™ : m _c) cos( Z- ++6) =—sin 6 d) tan(2 +0) = cot 0

3 3 Cae) sin(2 — 6) = —cos 0 f) cos )= sin 0

3 _ 3c = si8) sin(3F + 6) =~ cos 0 h) cos(Z +0) =sin 6

. Prove that the given equations are identities:

a) sin(180° — 0) = sin 0 b) cos(180° — 0) = —cos 6

c) tan(180° — f) = —tan 6 d) sin(180° + 6) = — sin 6

e) cos(180° + 0) = —cos 0 f) tan(180° + 6) =tan 6

. Evaluate the following. Give answers in exact form.

a) cos 75° b) sin 195° c) tan 285°

d) cot 15° e) sec 255° f) csc(— 75°)

. Evaluate the following. Give answers in exact form, then use your calculator to

evaluate the result correct to two decimal places. As a check, evaluate directly by
calculator (make certain it is in radian mode).

a) tan 5 b) sec( — >) c) cos Lr

d) sin ir e) sin le f) csc i

If tan x= 2aand x + y= i find tan y.

If tan a = 3 and tan(a + 8) =—+ find tan g.

If x—y=3 and tan y=3, find tan x.

If tan(x —y) = — = and tan x = 0.4, find tan y.

In Problems 11 through 17 determine whether the given equations are identities.

11.

12.

13.

15.

17.

18.

19.

20.

tan(2+ x ) = SAE

sin(L-— x) = {cos x —V3 sin x)

—_ gan( XL _ x) 14. sec(a + 8) = sec a + sec
COs X + sin x 4

ese 2-— x) =Sec x 16. sin x + sin 2x = sin 3x

cos(+ x) = — sin x

Use cos 75° = cos(30° + 45°) to get cos 75° in exact form. Similarly, express

sin 75° in exact form.

Use the result of Problem 31 in Exercise 3.2 to find sin 72° in exact form.

Use Problems 18, 19, and cos 3° = cos(75° — 72°) to get cos 3° in exact form.
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21.

22.

23.

24.

25.

Double-Angle Formulas 133

Prove that each of the following equations is an identity:

a) cos x Cos y= + [cos(x + y) + cos(x— y)]

b) sin x sin y=-1 [cos(x— py) — cos(x+Y)].

Using the results of Example 4 and Problem 21, express each of the following
products as a sum or a difference.

a) (sin 360)(cos 56) b) (cos 36)(cos 49) ¢) (sin 2y)(sin 4y)

d) (cos 3x)(sin(— 5x)) e) (sin 2y)(sin(— 4y)) f) (sin 3x)(sin 2x)

In each of the following, write the given expression in equivalent form in terms of
sin x and cos x:

. ™ : ™ m™
a) sin(x — =) b) sin(x — z) Cc) cos(x — =)

d) sin(2x) e) cos(2x) f) sin(2x — Zz)

Find the value of each of the following. Express your answer in ¢xact form:

in X r_ in ra) sin 4 cos 5 sin 13 cos 4

b) cos 160° cos 25° + sin 160° sin 25°

c) cos?47° + sin?47°

d) tan 37° — tan 67°

1 + tan 37° tan 67°

If a, B, and v are three angles of a triangle, prove that

a) sin y = sin a cos § + cos a sin 3

b) cos vy = sin a sin 8 — cos a cos 8

4.4 DOUBLE-ANGLE FORMULAS

Useful identities can be derived from the addition formulas given in Section
4.3. The following are called double-angle identities:

(1.18) sin 20 = 2 sin 6 cos 6

(I.19) cos 20 = cos*d — sind = 1 — 2 sin = 2 cos? — 1

(1.20) tan 29 —-2tanf
1 — tan?

B=

 

   
 

   
 

   
These are special cases of (1.12), (1.14), and (1.16) where we take a = 6 and

6 (see Problem 1 of Exercise 4.4).
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The double-angle identities are useful in simplifying certain trigonometric
expressions, and the student should become familiar with them. We consider
several examples in which the double-angle identities are used along with
identities (I.1) through (1.17) listed on pp. 122 and 129.

 

 

Examples

AN Prove that sin 2x = Llanx is an identity.

Solution

LHS = sin 2x = 2 sin x cos x (by (I1.18))

is2h _ 2s gy 110
—2sinx +a. (by (L.2) and (L.7))

= 2 sin x cos x (by algebra).

Therefore, LHS = RHS and the given equation is an identity. i

2A If sin 6 = 3/5 and cos 0 is negative, evaluate the following:

a) sin 20 b) cos 20

Solution. Since sin § > 0 and cos 6 < 0, angle 6 is in the second quadrant, as
shown in Fig. 4.2.

a) To find sin 20 we use (1.18):

sin 20 = 2 sin 0 cos 6 =2(3)(- +) = -2

b) To find cos 260 we use (1.19):

cos 26 = cos’ — sin= (— 4)’ -(2) I. i

Figure 4.2
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A Express sin 3x as a function of sin x.

Solution.

sin 3x = sin(2x + x) =sin(2x) cos x + cos(2x) sin x (by (1.12)

= (2sin x cos x) cos x + (cos2x — sin%x) sin x (by (1.18) and (1.19)

= 3 sin x cos’x — sin’x (by algebra)
= 3 sin x (1 — sin%x) — sin’x (by (1.9)
= 3 sin x — 4 sin’x.

Therefore sin 3x = 3 sin x — 4 sin’x is an identity. i

/A\ Find sin 22°30’ in exact form. Using your calculator, evaluate the result

and give the answer correct to four decimal places.

Solution. We use (1.19) in the form cos 20 = 1 — 2 sin%d, and take 6 = 22°30’
(that is, 20 = 45°):

cos 45° = 1 — 2(sin 22°30')2.

Solving for (sin 22°30")? and using cos 45° = V'2/2, we have

(sin 22°30')= l=v2 _ 2-V2

Therefore,

sin 22°30’ = V2-v2

Using a calculator, we evaluate the right side and get

sin 22°30" = 0.3827.

A Prove that sin 4x = 4 sin x cos x — 8 sin’x cos x is an identity.

Solution.

LHS = sin 4x = 2 sin 2x cos 2x (by (1.18))

= 2(2sin x cosx)(1— 2 sin%x) (by (1.18) and (1.19)

= 4 sin x cos x — 8 sin’x cos x (by algebra).

Therefore, LHS = RHS and so the given equation is an identity. i

[6\ Is (sin 6x + cos 6x)? = 1 an identity?

Solution. We first try a few values of x to see if the equation is satisfied:

if x=0, then LHS = (sin 0 + cos 0)2= (0 + 1)? = 1;

if x= EE then LHS = (sin 37 + cos 37)? =(0— 1)2 = I;

if x = 7-, then LHS = (sin 2T + cos x): =(—-1+02=1.
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It appears that the equation may represent an identity. However, if we try
x=1, we get

LHS = (sin 6 + cos 6)? = 0.46 (to two decimal places).

Therefore, (sin 6 x + cos 6x)? = 1 is not an identity. i

AN Suppose sin 6 = 0.3487 and 0° < § < 90°. Using a calculator, evaluate
each of the following to four decimal places:

a) sin 26 b) cos 20 ¢) tan 26

Solution. Enter 0.3487 into the display. Then with the calculator in either
degree or radian mode, press keys and Gin) (or key) which gives 0 in
the display, multiply the result by 2, and store it with the key. Using the

key as needed, we get:

a) sin 260 = 0.6536 b) cos 20 = 0.7568 c) tan 20 = 0.8637 i

Note. On somecalculators the store and recall keys may be labeled differently

from and :
 

EXERCISE 4.4

1. Give details of the proof that (1.18), (1.19), and (1.20) are special cases of (1.12),
(1.14), and (1.16), respectively.

In Problems 2 through 24, prove that the given equations are identities:

1 2. (sin 6 + cos 0)>=1 + sin 20 3. z = 2 sin 0 cos 0
csc 2

4. sin 20 sec =2 sin 6 5. (cos x + sin x) (cos x — sin x) = cos 2x

6. cos 2x tan 2x = sin 2x 7. sin 2x tan x = 2 sinx

8. (cos x — sin x) sec 2x =——L 9. (1 + tan x) tan ax =2tanx
COS X + sin x 1—tan x

10. tan 6 sin 20 = 1 — cos 260 11. sin 20 sec?d = 2 tan 0

12. cot x — tan x = 2 cot 2x 13. 2 csc 2x =tan x + cot x

2 t20— 114, —=— =sec¥ 15. =cotv—_
1+cos 20 cot 20 2 cot 0

16. cos‘x — sin‘x = cos 2x 17. l1-tanx_ sec 2x — tan 2x
1 +tan x

18. _sn2x tan x 19. (cot x — tan x)tan 2x = 2
1 + cos 2x

2,

20. 2 tan 0 csc 20 = 1 + tan?) 21. iand = 2 csc 20
an
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, ———— —tan?x 23. cos 3x =4 cos’x — 3 cos x
1 + cos 2x

24. cos 4x = cos*x — 6 sin?x cos?x + sin‘x

25. If cos § = — 12/13 and 0 is in the second quadrant, find in exact form:

a) sin 20 b) cos 26 c) tan 26

26. If sin 6 = — 5/13 and cos 6 = 12/13,find in exact form:

a) sin 26 b) cos 26 c) tan 26

27. Suppose cos § = 0.5873 and 0° < 6 < 90°. Using a calculator, evaluate the following
to four decimal places:

a) sin 260 b) cos 26 c) tan 26

28. Suppose sin 6 = 0.4385 and 0 < 6 < 7/2. Using a calculator, evaluate to four
decimal places:

a) sin 20 b) cos 36 c) cot 36

29. Evaluate the following and give answers in exact form:

a) sin 15° cos 15° b) sin?105° — cos2105° c) 1-2 sin?>%

In Problems 30 through 39, determine whether the given equations are identities:

 30. sec 2x = 1 31. sin 4x = 2 sin 2x cos 2x
2 cos x

32. sin 2x + sin 3x = sin Sx 33. sin?2x = 1 — cos?2x

34. 2 cot 2x =cot x — tan x 35. 2 csc2x = sec x csC x

36. sin 3x sin 2x = sin 6x 37. (sin 2x + cos 2x)? = 1

38. (sin 4x + cos 4x)* = 1 39. sec 2x + tan 2x =tan (= + x)

40. Triangle ABC is inscribed in a circle, as shown in Fig. 4.3, where Q is the center of

the circle, « is one angle and a is the opposite side. Prove that the diameter d of the
circle is given by d = a/sin a.
Hint. Note that angle BQC is equal to 2a. (Why?) Now use triangle BQC to get the

result. This problem also appeared as Problem 23 of Exercise 3.3. However, the

solution suggested there is quite different.

C

A B

Figure 4.3
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41. If «a is an acute angle, then the double-angle formulas can be derived by using Fig.
4.4, where triangle ABC is inscribed in a semicircle of unit radius with center Q. Let
a be the angle at 4 and D be the foot of the perpendicular from C. Then

a) show that the labels given to the angles in the diagram are justified and that

angle ACB is a right angle;

b) using the triangles shown in the diagram, derive identities (1.18) and (1.19).

 

 

Figure 4.4

4.5 HALF-ANGLE FORMULAS

If we write identity (1.19) in the form cos 2x = 1 — 2 sin?x and then replace x

by 0/2, we get cos § = 1 — 2 sin? (6/2). Solving for sin (6/2) gives

8 _+/1=cosf EENsin =~ = > when sin > 20,

0 _ y/1—=cosf 0sin —- = V—— when sin 5 < 0.

These two equations are ordinarily written as

 

inf _ 1—cosf(1.21) sinL— +\/ >

   
where the ““+’’sign does not mean that we get two values for sin (6/2), but that
we select the sign that is consistent with the sign ofsin (6/2) (depending upon

the quadrant in which 6/2 is located).
In a similar manner, if we replace the angle § by 6/2 in the form

cos 260 = 2 cos?0 — 1 of identity (1.19), we get

 

 _./1l+cosb
(1.22) cos »- == >

where again we use the sign that agrees with the sign of cos (6/2).
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We can now get an identity for tan (6/2) by using (1.21) and (1.22) along
with the identity tan (6/2) = sin (6/2)/cos (6/2):

0 1 —cos 01.23 tan 2-=+14/———057
(1.23) an y= 1 + cos 6

Identity (I.23) can be expressed in a more desirable form not involving the
“+” sign. Rather than manipulating (1.23) directly, we can proceed as follows.
When 6 is replaced by 6/2, identities (1.18) and (1.19) can be written in the form

0 9—2 sin 0 0 _ 2 0sin 0 = 2 sin 5 Cos 5 and 1 + cos 8 =2 cos >

respectively. Dividing these two equations, we get

 

   

sin & _ 2 sin (0/2) cos (6/2) _ sin 0/2) _ tan 0
1+cos 6 2 cos? (0/2) cos (6/2) 2°
 

Thus,

f _ sin 6
t ee,
a) 1 + cos 6

An alternative form of this equation is (see Problem 16 of Exercise 4.1):

 

 

   
 

6 1 —cosbtan — = —C08Y
a3 sin 6

Therefore we have the following identities for tan (6/2):

6 sin 0 1 — cos 61.24 tan = = =
(1.24) an 3 1 + cos 6 sin 6

Examples

MN Evaluate each of the following and express the answer in exact form:

a) sin 22°30’ b) cos 112.5° ¢) tan J

Solution.
: °30' — sin (43)° = /L=cos45°_ 1, />_\/>.a) sin 22°30" = sin (%)° = —= 2-V2;

b) cos 112.5° = cos (22)° = —y/1tcos5 225° ——1 2-2;

Tr _ Ir _ l—cos(/m/6) 1—(=V3/2) _c) tan [5 = tan 5g =m 12 / =-Q2+V3)
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/2\ If cos 6 =—3/5 and 180° < 6 < 270° (Fig. 4.5), evaluate the following in

exact form:

0 0 0a) sin 5 b) cos 5 c) tan >

Solution. We first note that 90° < 6/2 < 135°, and so sin (6/2) is positive and
cos (0/2) is negative.

) sin 4 =\/I=cosl _\/I-C3/5) _2/3

9 \/ 1 0 _ _\/1+(=3/5_-V5b) cos 3-= — ALLE PLA) ;

6 _ sin 6 _ —4/5 _
t — —_ =

© an = cos § i+ (3/5)
 

w
n

 
Figure 4.5

A Evaluate sin 15° in exact form in two ways:

a) by using (1.13) b) by using (1.21)

Solution.

a) sin 15° = sin(45° — 30°) = sin 45°cos 30° — cos 45° sin 30°

_V6-v2
4 9

therefore,

sin 15° = aoa
 

b) sin 15° =sin (32)° = Arms ~1V/2-v3

therefore,

sin 15° = Vv 2-3.

It appears that we get two different answers for sin 15°. We leave it for the
student to evaluate each with a calculator to see if they both represent the same

number (see Problem 25 of Exercise 4.5). i
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/A\ Suppose sin (0/2) =0.6843 and 0° <8 < 180°. Use a calculator to
evaluate each of the following to four decimal places:

a) sin 0 b) cos 26 Cc) tan 4

Solution. Enter 0.6843 into the display. Then with the calculator in either
degree or radian mode press and (sn) keys (or key); then multiply
by 2 (this gives 0) and store into memory with the key. Using the key
as needed, we get

a) sin 6 = 0.9980 b) cos 20 =—0.9919  ¢) tan 4 = 0.3957. |
 

EXERCISE 4.5

In Problems 1 through 4, give answers in exact form; evaluate these results to four

decimal places and then check by evaluating directly with a calculator:

1. a) sin 67°30 b) cos(—22.5°) ¢) sin 105° d) cos 105°

2. a) tan 165° b) co0s(247.5°) ¢) tan(— 195°) d) cos 285°

or 5m 1x 13x3. a) sin 13 b) cos 3 ¢) sin ——3 d) tan TB

197 Tn 21m Sw
4. a) cos —=—3 b) sin(— 3 ) ¢) sin 3 d) tan(— >)

In Problems 5 Hhroueh 12 express answers in exact form:

5. If cos = ~% and 90° < 0 < 180°, evaluate

in 0 4 4 0a) sin > b) cos > c) tan > d) sec >

6. If tan o=—= and — 2 <0 <0, find

in 0 fb 0 9a) sin > b) cot > Cc) sec > d) csc >

7. If sin 6 = + and 360° < 0 < 450°, find cos2- and tan-.

8. If cos 0 =— and 0° <6 < 180°, evaluate

a) sin :- b) cos 4 ¢) sin 20 d) cos 20

9, If tan a=5 and Tt <a < z determine

a) sin « b) sin 5 c) sin 2a d) tan 2

1 ° °10. If cos 8 =——— and 180° < B < 360°, find
V2

a) cos L b) tan i ¢) tan 20 d) cos 26

in 0 __311. If sin =" find cos 6.

12. If cos Lm1, find cos 6.

V2
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13.

14.

Suppose sin 6 = 0.5486 and 0° < 0 < 90°. Use a calculator to evaluate each of the
following to four decimal places:
8 9 9a) sin > b) cos > ¢) tan >

Suppose cos = = 0.6431 and 0 < 6 < 7. Use a calculator to evaluate each of the

following to four decimal places:
0a) sin 0 b) cos 20 ¢) tan x

In Problems 15 through 21, prove that the given equations are identities:

15.

17.

19.

21.

22.

23.

24.

25.

tan Lose 0 — cot 6 16. (si Lrcos LY =1+5n 6

cos? X sin? X£ = cos x 18. 2 sin? X —_secx—1
2 2 2 sec x

tan X —_secx—1 20. 2 sin? 5 =sin x tan =
sin x sec x

2 cos? X_— _sin x + tan x
2 tan x

Follow Example 3 of this section and evaluate cos 15° by two different methods.
Check to see that the two answers actually represent the same number.

Follow the instructions of Problem 22 for cos 165°.

If cos 0 =— = and 90° < 0 < 180°, find each of the following in exact form:

a) cos 2 b) cos z

In Example 3 of this section we concluded that the two numbers

V6-V2 and +V 2-3
4

are equal. Use your calculator to check this conclusion; then prove that they are
equal without using a calculator.

REVIEW EXERCISE

In Problems 1 through 25, prove that the given equations are identities:

1.

3.

COs x tan x = sin x 2. sec (90° — 0) tan 6 = sec 0

csc 0 sin 20 = 2 cos 0 4. cos(90° — 20) = 2 sin 6 cos 0

3m) _cos 6 —sin 0 : 2 _ itan(6 +7 ) = os 0snd 6. (sin x + cos x)? = 1 + sin 2x

. (1 — sin 2x)(1 + sin 2x) = cos?2x 8. 2 csc x sin? X— Sin
2 1+cos x

. cos(Z- + x) cot(— x) = cos x 10. sin 6 tan O-= 1 — cos 6
2 2
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 in 0 9) =1—sin 6 20 2 8 _ sin¥11. (sin > CoS >) 12. sin > cos =a

13. csc x tan x =sec x 14. cot 3 — tan 3 =2 cot x

15. 2 sin(8 + Z)=v3 sin 0 + cos 6 16. V2 cos( -3) = sin § — cos 6

— _ xX XxX) = §in2 X17. tan 2x csc 2x = sec 2x 18. (1 CoS > )(1 + COS > )= sin? >

19. cos* 3 sin* 3 = Cos Xx 20. cos 2x tan 2x = sin 2x

21. (sec 6 + l)(sec 8 — 1) = tan? 22. (1 + sin 6)(1 — csc 0) = sin 8 — csc 0

23. (1 —tan 6) tan 29 —-2tan 24. cos? X —sin? X = cos x
1 + tan 6 2 2

25. cos 6(1 + sec 0) =2 cos? -

In Problems 26 through 32, determine whether or not the given equations are identities.
Give good reasons for your answers.

26. sin x =2 sin 3 cos 3 27. tan x cot x — sin?x = cosx

28.—= 1 29. (cos 0 — sin 6)? = cos? — sin?

30. sin 20 + (sin § — cos 0)’ =1 31. sin x + sin 2x = sin 3x

32. (cos 3 + Sn 2 )(cos 3 — sin x) = cos x

In Problems 33 through 50, evaluate the given expressions in exact form if angles «a,
B, and v satisfy the following conditions:

sin a= and Flas,

tan B=— and - FT <B<

cos y=2 and 0<y<nw

33. cos a 34. sin 2a 35. sin 3

36. sin(a + f) 37. tan(8 — 7) 38. cos £

39. cos 26 40. tan 2y 41. cos(a + 28)

42. tan(2a — 7) 43. | — cos’a 44. cos? 3- — sin? 2-

45. ni 46. sec’8 — tan’ 47. sin(a — 3)

48. tan(p + Z) 49. sin 2(a + 8) 50. cos(252)





 

 

CHAPTER FIVE

INVERSE TRIGONOMETRIC
FUNCTIONS

5.1 INTRODUCTION

The student has already encountered numerous examples of functions in
algebra courses; in Chapter 2 we introduced other functions when we defined
the trigonometric (or circular) functions. In each case we start with a set of real

numbers, called the domain D of the function, and we have a rule of

correspondence* according to which each number in D is associated with a
unique real number y; this correspondence yields a set of ordered pairs

{(x, »)|x € D and y is the number associated with x

by the given rule of correspondence}.

In many instances it is convenient to denote the rule of correspondence by a

letter such as f, g, A, . . ., and we write y = f(x) to mean that y is the number
associated with x. We shall consider a function f as either the rule of
correspondence or as the resulting set of ordered pairs and write

f=1{(x, y)|x € D, and y corresponds to x by the given rule}. (5.1)

In the set of ordered pairs in (5.1) we call the first member (that is, x) the
independent variable and y the dependent variable of f. The range R of fis the

set of all y values that occur in the (x, y) ordered pairs; thatis,

R=ly|(x, y) is in f}.
In some problems we talk about more functions than one and it is necessary to

distinguish between their domains and ranges; thus D( f) and R( f) will be

used to denote the domain and range of function f, respectively.

*The rule of correspondence is usually given by an equation, for example, y = 4x — 3 or y = x3,
however, in some casesit is given by a table listing the ordered pairs, or by a graph, or by a verbal
statement. Also, in a more general setting, the concept of function allows the correspondence
between elements ofsets that need not be real numbers.

145



146 Inverse Trigonometric Functions

The concept of a relation is more general than that of a function in that the
rule of correspondence allows one or more different numbers y to correspond
to each number x in D. Thus every function is a relation but a relation is not
necessarily a function. If g denotes a relation that is not a function, then we
do not write y = g(x) but we denote g by a set of ordered pairs:

g=1{(x, y)|x € D and y corresponds to x by the given rule}.

In many situations we are interested in a given function f and we wish to
consider the process reverse to the one given by the rule of correspondence
defining f. That is, if y = f(x), then for each y in R( f) we ask, “What values

of x correspond to it?’ This gives us an inverse rule of correspondence which
we denote by f-! and which we call the inverse relation* off. That is,

f7=1{0. x) [ye R(f) and y =f(x)}. (5.2)

Note that in (5.2) we have precisely the same set of ordered pairs as in (5.1)
except that the first and second members of each have been interchanged. Thus
we have:

D(f)=R(f) and R(f~)=D(f).

Iff-1is also a function (that is, for each y in R( f) the corresponding value
of x given by the inverse rule of correspondence is unique), thenf=! is called the
inverse function off and we write

x=f71(y). (3.3)

Since f-1 is a function in its own right and it is customary to use x to represent
the independent variable (particularly when we draw graphs) then we can write
(5.3) as

y = f(x). (5.4)

As a set of ordered pairs, f-! is given by

ST =1x ») [xe D(fT)=R(f) and x =f (y)}.

To illustrate inverse relations and functions we now consider two examples
from algebra. These will lead us to the discussion of inverse trigonometric
functions in the remaining sections of this chapter.

 

Examples

MN An ad for a compact car gives its gas consumption as 16 km perliter.

Assuming thatit is telling the truth, find:

a) The rule of correspondence that gives the distance y (in kilometers) as

*The —! in the symbol f—! is not to be interpreted as a negative exponent;it is merely part of the

notation.
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a function of the number x of liters of gasoline. How far will the car
travel on 24 liters of gasoline?

b) The inverse rule of correspondence that gives x as a function of y. How
many liters of gasoline are required to travel 280 km?

c) Draw the graphs describing the two rules of correspondence.

Solution.

a) The phrase “16 km per liter’ translates into mathematical language as

y = 16x. (3.5)

If we denote this by y = f(x) = 16x, then the given statement implies
that D(f) = {x|x 20}. Also it is clear that R(f)={y|y 20}. When
x = 24 liters, then the corresponding value of y is given by

y=16 x 24 = 384 km.

b) We can determine the inverse rule of correspondence by solving
equation (5.5) for x in terms of y:

x= Le. (5.6)

We see that for each y > 0 the inverse rule of correspondence given by
(5.6) yields a unique value of x, thus it is a function and we can write

x =f) = {gr
When y = 280 km, then the corresponding value of x is given by

x = f-1(280) = ~ x 280 = 17.5 liters.

c) The graph of (5.5) is shown in Fig. 5.1, a. To draw a graph of function
f-! represented by (5.6) we interchange the x and y variables and get

1

 
   

y= 16 X.

vy (km) » (liters)

40 + 5

32 4

24 + 3

16 | 2 +

SH | 1 +—=

L111) x (liters) lL 1 1 | x (km)
1 2 3 4 5 8 1624 32 40

(a) (b)
N 1

Graph of y = f(x) = 16x Graphof y =f Lex) = 16 ¥

Figure 5.1
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In this form x represents the number of kilometers the car travels and y
represents the corresponding number ofliters of gasoline required. The graph
ofy = f~1(x) = (1/16)x is shown in Fig. 5.1, b. It should be clear that the graph
is the reflection of the graph in Fig. 5.1, a about the line y = x. i

/A The equation y = x? describes a function where each real number x is
associated with a nonnegative number y. Draw graphs to assist in the
discussion of the inverse rule of correspondence.

Solution. The graph of y = f(x) = x? is shown in Fig. 5.2, a; the points on the
graph are given by the set of ordered pairs

f=1{(x, y)|x € R and y= x?}.

It is clear from the graph that for each real number x, there is a unique real
number y, associated with x,. Thus, fis a function.

 

 

 

  

  

  

V

Vie———

|

|
|

X 0 Ix *

|

Vsyle———

(a) Graph of y =f(x) = x? (b) Graph off=! = {(x, W|x20,y=vxory=—Vx}

y 1

0 ¥ 0 v

(¢c) Graph offT! = {(x.y) [x2 0, y = Vx} (d) Graph off; '={(x, ») [x2 0, y =—V/x}

Figure 5.2
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Now if we reverse the process and look at any given positive number, such
as y,, then there are two corresponding values of x (namely, x, and x,)
associated with y,. These are given by x, = Vy, and x, = —~Vy, and are shown
in Fig. 5.2, a. Thus when we solve y = x? for x in terms of y, we get x =v y
or x=—\y for y 20, and the inverse relation is given by

f1={0 x)|y20 and x=Vy or x=-Vy}. (5.7)

Thus f-! is a relation that is not a function.
Since we want to draw a graph off~!, we interchange the x and y variables

in (5.7) so that x becomes the independent variable. Thus the set of ordered
pairs given by (5.7) can be written as

f1={(x, »)|x20 and y=Vx or y=—Vxl. (5.8)

The graph of (5.8) is depicted in Fig. 5.2, b; it shows that for each positive
value of x there are two corresponding values of y (illustrated by y, = Vx and
y, = —Vx). It should be clear that this graph is the reflection of the graph in
Fig. 5.2, a about the line y = x. i
 

In many situations whenf~! is not a function, we describe a principal-value
inverse function by using only part of the inverse rule of correspondence. In
this example we discuss (5.8) in two separate parts:

fil={(x, »)|x20 and y=Vx}, (5.9)
fl={x y)|x20 and y=-Vxl. (5.10)

The graphs of the ordered pairs given in (5.9) and in (5.10) are shown in
Figs. 5.2, ¢ and 5.2, d respectively. It should be clear that both f,-! and f,!
represent functions. It is customary to select one of these two functions and call
it the principal-value inverse function off. In this case we take f,~! and say that
the principal-value inverse function is given by F-1, where

F-1={(x, y)|x20 and y=Vx}.

In the following three sections we shall discuss the inverse relations for each
of the six trigonometric functions. In each case we shall see that we have a

situation similar to that encountered in Example 2 where the principal-value
inverse function is defined.

EXERCISE 5.1

In the following, assume that the domain of the given function is the largest subset of
real numbers, for which the right-hand side of the equation is defined (as a real
number).
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For the given functions in Problems 1 through 10 determine
a) domain off b) range off c) [1

and state whether or not f-! is a function. Iff-! is not a function, define a principal-
value inverse function and give the range and domain of this function.

 

1. y=f(x)=3—5x 2. y=fx)=4x +5

3. y=f(x) = 4x’ 4. y=f(x)=1—x2

5. y=flx)= (1 — x)? 6. y =f)=

7 y=22 by=so) 1g
9. y=flx)=4+Vx 10. y = f(x) = |x]

In Problems 11 through 14 find a) f~1(x) and b) f(f~!(x)) for the given functions:

11. y=f(x)=3x—-4 12. y=f(x)=x+5

13. y= f(x) =22X 4. y=f(x) = 1=&

In Problems 15 through 20 find f~!(x); then draw graphs of y = f(x) and y = f(x).

In each case state whether or not f~! describes a function.

15. f(x) = 5x +3 16. f(x) = Eh 17. f(x) = 9x?

18. f(x)=Vx +3 19. f(x) =1+ |x] 20. f(x) =x — x?

5.2 INVERSE SINE AND INVERSE COSINE

1. Inverse Sine Function

We have already encountered the problem of evaluating inverse trigonometric
functions when in the process of solving triangles in Chapter 3 we had the value
of a trigonometric function and we had to determine the corresponding angle.
For instance, in Example 5 of Section 3.1 (p. 67) we were given sin a = 0.4835
and had to determine the corresponding value of «; the and (in) (or

) calculator keys were used to get a = 28.91° = 0.5046 radians. In this
section we discuss the problem in general: when sin x is a given number,
determine the corresponding value of x.

Suppose f(x) = sin x. What can we say about the relation f~!? To answer
this question we recall the graph of y = sin x discussed in Section 2.7 (p. 54)

and reproduce it here in Fig. 5.3.
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Graph of y =sin x

Figure 5.3

From the graph in Fig. 5.3 we conclude that for each real number x there is
a corresponding unique number y; this tells us that f(x) = sin x represents a
function. Now suppose we reverse the process and take any number y, where

—1 £y £1, and see what values of x correspond to it. Looking at the graph
we notice that there are infinitely many such values of x; for example if
y = '%, then the corresponding values of x are:

x Sr Dn 1x _Ir6’ ra 6’ 6° 6’

Thus forf(x) = sin x, the inverse relation f=! is not a function. We shall denote
f-1 by sin! and call sin-! the inverse sine relation which is given by

sin—!={(y, x)|-1<y<1 and y=sin xj. (5.11)

Since we prefer to denote the independent variable by x, we can write the set
of ordered pairs given by (5.11) as

sin—!={(x, y)|-1£x<£1 and x =sin y}. (5.12)

It should be clear that we interchanged the x and y variables in (5.11) to get
(5.12) but in both cases we have precisely the same set of ordered pairs.

We use (5.12) to draw a graph of the inverse sine relation. The graph is a
sine curve oscillating about the y-axis as shown in Fig. 5.4.

2. Principal-Value Inverse Sine Function

We take a portion of the curve shown in Fig. 5.4 so that for each x in
—1 <x £1 there is a unique value of y corresponding to it. This can be done
in any of several ways. For example, we could take the portion between Q and
P, or the part between P and M, and so on. It appears that the choice is
somewhat arbitrary, but once the choice is made we use it consistently. It is
conventional to take the part between Q: (—1, —v/2) and P: (1, w/2) and call
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Graph of sin™! = {(x,)) |—1 =x = 1and x =sin y}

Figure 5.4

it the inverse sine function (sometimes referred to as the principal-value inverse
sine function). We shall denote this function by Sin -! and write

y= Sin-lx

to describe the function given by

 

Sin! ={(x, y)|-1£x£1, x=sin y and 5 <y< 5%)
   

We always use the capital letter S in Sin-! to distinguish the inverse sine

function from the inverse sine relation sin -!. The domain and range of Sin! are
given by

 

D(Sin 1) ={x|-1 xX 1},

R(Sin) = {y|-Z <y< I).    
The graph of y = Sin lx is the heavy portion between P and Q of the curve in
Fig. 5.4.

Note on Notation. The inverse sine relation is sometimes denoted by arcsin. In
this book we shall use sin! and arcsin interchangeably to denote the inverse
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sine relation, while either Sin —! or Arcsin will be used to denote the inverse sine

function.

In summary, we have

a) Inverse sine relation is defined by

 

sin! = arcsin = {(x, y)|-1 <x <1 and x =sin y}.

   

b) Inverse sine function is defined by

 

y = Sin -lx = Arcsin x is equivalent to x = sin y and 5 <y<L Lh

   
Note. When we write Sin —!(}2) we mean the angle y such that sin y = 2 and
—w/2 Ly <w/2; there is only one such value of y and that is y = 7/6. That
is, Sin-I('2) = v/6. When we write sin -!(!2) we mean any angle y such that
sin y="; thus y can be any of the angles =/6, 57/6,..., —7x/6,
—11x/6, ...

3. Inverse Cosine Function

In discussing the inverse cosine relation and principal-value function we can
follow the same procedure as in subsections 1 and 2 above, except we replace
the sine function by the cosine function. We omit the details and merely give
a summary.

In Fig. 5.5 we have a graph of the inverse cosine relation cos! given by

cos! ={(x, y)|-1£x<£1 and x =cos y}.

We take the portion between points P: (1, 0) and Q: (—1, =) of the curve

in Fig. 5.5 to define the inverse cosine function Cos!

 

y = Cos Ix = Arccos x is equivalent to x =cos y and 0<y Sw.
   

The domain and range of the Cos-! function are given by

 

D(Cos) = {x|-12x <1},

R(Cos™) ={y|0<y <i}    
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Figure 5.5

 

Examples

AN Evaluate the following and give answers in exact form in radians and in
degrees:

a) Sin-! YZ b) Cos1 0) Sin Sh

d) Cos 2) e) Sin!2

Solution.

a) Let yp, =Sin!(V/2/2). This is equivalent to sin y, =v/2/2 and
—m/2 Ly, £m/2. There is only one value of y, that satisfies these
conditions: y, = w/4. Therefore, Sin~1(V/2/2) = 7/4 = 45°.

b) Let y,=Cos7!(1/2); then cos y,=% and 0L y, <m and so
y,=m/3. Thus, Cos~!(1/2) = 7/3 = 60°.

c) Let y,= Sin! (—=V/'3/2); then sin y,=—/3/2 and —7/2<y, <7/2,
and so y, = —7/3 = — 60°.

d) Let y,=Cos™'(—V/2/2) or equivalently cos y,=—V/2/2 and
0<y,<m; so y,=3w/4. Then Cos(—/2/2) = 3n/4 = 135°.

e) Since 2/v/3 > 1, then 2//3 is not in the domain of Sin~!; and so
Sin—1(2/v/3) is not defined. i
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/2\ Evaluate the following using a calculator. Give answers in radians correct
to four decimal places:

a) Sin—1(0.346) b) Cos1(0.587) Cc) Sin-!(- 31)

; 5d) Cos!(— 3 e) Sin! —2
( Val ) ) 1 + V2

Solution.

 

Calculators are programmed to give principal values of the inverse
trigonometric relations, that is, inverse-function values.

  
 

In this example we want answers in radians, so we place the calculator in

radian mode.

a) We enter 0.346 into the display, then press and (Gn) keys (or
key on some calculators) and get Sin—1(0.346) = 0.3533.

b) Similar to (a), we get Cos~1(0.587) = 0.9434.

c) Wefirst evaluate — 47/53 and, with the result in the calculator display,
press and Gn) keys (or key). This gives Sin~!(— 47/53) =
—1.0904.

d) Similar to (c), we get Cos~!(—5/v/41) = 2.4669.

e) Evaluate 5/(1 +12) and then press the and Cn) keys (or
) and the calculator will display “Error” (or a similar notation) to

indicate that something is wrong. Of course, the reason is that

5

1+V2

and so it is not in the domain of Sin! i

 > 1

A Same as Example 2 but give answers in degrees to two decimal places.

Solution. Place the calculator in degree mode (most calculators are in degree
mode when they are first turned on) and then proceed as in the solution to
Example 2.

a) Sin—10.346 = 20.24° b) Cos10.587 = 54.06°

¢) Sin!(— 21) = _62.47° d Cosi(~2) — 141.34°) Sin~!(- 53) ) Jai
e) Sin-! is undefined5

1+V2 1

/A\ Evaluate the following expressions and give answers in exact form:

a) sin(Sin-1 1) b) sin(2 Sint 4)
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c) cos(1- Sin4x) d) cos (Sin -1 + + Cos(3) )

e) sin(Cos(sin %)) f) Sin -I(tan z)

Solution.

a) Let 6 = Sin-! (1/4), which is equivalent to

sin #=1/4 and —-n/2<60<7/2.

Therefore, 6 is in the first quadrant, as shown in Fig. 5.6. Thus,

sin(Sin 1 1) =sin 6 = 1»

b) Let 6 be as in (a) and use the identity sin 26 = 2 sin 6 cos 6. Thus

i in-11)=sin20=2.1.V15_Vv15sin(2 Sin 4) =sin 20=2 Tr

c) Take 6 as in (a) and use the identity cos &-=/ cos 6.) (a) y 5 =\/ 5

; _/ LE (/T5/4) NEERUHV15
— 2 2 .cos (+ Sin! Ny = cos &- 1

2

d) Let a = Sin! (2/3) and 8 = Cos! (—5/8); then « and 3 are as shown

in Fig. 5.7. Thus,

cos (sin -1 2 + Cos! (-%)) = cos(a + 8) =cos a cos B — sin « sin 8

(BH) -FND)- 2D
€) sin (Cos ~I(sin n )) = sin(Cos -1 "n = sin =3

  

8

3 V39
4 ,

I =

6 i « p

| V3 Js S|
Figure 5.6 Figure 5.7

*It might be helpful to state a problem such as (a) in words. That is, we want *‘the sine of an angle
whose sine is 1/4.” This is not so different from the popular quiz question “Who is buried in
Grant’s tomb?”
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f) Since tan (v/3)=V3 and V3 is not in the domain of the Sin-!
function, Sin! (tan (7/3) is not defined. i

A Using a calculator, evaluate the expressions given in Example 4. Provide
answers correct to four decimal places.

Solution. We could evaluate each of the results found in Example 4. However,
we can evaluate directly as follows:

a) First evaluate !%, then press the , Gin) and Gin) keys in that
order. This gives sin (Sin -1(%)) = 0.2500.

b) Evaluate %, then press , Gin) keys, then multiply this result by 2
and press (sn). This gives sin(2 Sin—!(%)) = 0.4841.

¢) Similar to (b), cos(%2 Sin-1(%)) = 0.9920.

d) Evaluate 25, press the and (Gn) keys (this gives Sin—1(%3)), then
similarly evaluate Cos —!(—5s), add the results and finally press .
This gives cos(Sin—1(%5) + Cos —1(—5/s)) = —0.9863.

Note. In (a) through (d) it does not make any difference whether the
calculator is in degree or radian mode. We leave it to the student to
explain why this is so.

e) First place the calculator in radian mode (since 7/6 is in radians); then
evaluate 7/6 and with this in the display press (sn) . This gives sin
(w/6) in the display. Now press the and keys in that order
and the display shows Cos -!(sin (7/6)). Finally press (sn) and get

sin Cos ~I(sin z) ) = 0.8660.

f) The student should attempt to evaluate Sin-!(tan (7/3)) with the
calculator to see what the response is.

1 a8 qn-117/6\ Is Sin + Sin 17 == Sin gS

Solution. As a first step we evaluate the left-hand side and the right-hand side
by using a calculator:

Sin—1 3 + Sin! 8 = 64.94238458°.5 17
Sin -!= 64.94238457°,

We can be reasonably safe in concluding that the answer to the question is yes.
To be absolutely certain we could use the following proof.

Let a = Sin! (3/5) and 8 = Sin! (8/17). Since a +B is approximately
65° (from above computations) and Sin! (77/85) is between 0° and 90°, we

need only show that sin(a + 3) = 77/85. We can use identity (1.12) of Section
4.2 and get

1515 8
177 17 o

i
]

w
i

-sin(a + 8) =sin a cos #8 + cos « sin 3 =3-1 +3
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/\ Find all values of x that satisfy the inequality 5 Sin-lx — 4 <0.

Solution. The given inequality is equivalent to Sin-lx <4/5. To solve this
inequality it might be instructive to look at the graph of y = Sin-lx, as shown
in Fig. 5.8. We are interested in those values of x that correspond to points
on the curve for which y <4/5=0.8; these points lie between Q and P

(inclusive). Thus the solution set is {x|—1 <x <x,}, where Sin-lx,= 0.8.
However,if Sin-lx,= 0.8, then x, =sin 0.8 and so with the calculator in
radian mode we find that x, = 0.717 (to three decimal places). Therefore, the
solution set is S={x|-1<Lx<0.717}.

0
1 |

> 1
9
1
3

S
N
—

08 F———4P: (x,,08)

 
Graph of yr = Sin! x

Figure 5.8

 

EXERCISE 5.2

In this exercise there may be some problems in which the given expression is not

defined. If a calculator is used, the display will show “Error.” Explain what part of the

problem causes such a response.

1. a) Draw a graph of y = Sin lx by first making a table of x, y values.

b) Make a table of x, y values that satisfy y = Cos —1x and then draw a graph of
y = Cos lx.

In Problems 2 through 12, evaluate the given expressions and provide answers in
radians (real numbers) and in exact form.

2. Cos-l1 3. Sin-112 4. Cos™(-—%)

5. Sin}(- 1) 6. Cos~!(— v3) 7. Sin-I(-2
V2



8. Sin-1(- 3)
2V3

11. Arcsin(- L)
V2

9. Cos~!(= 1)
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10. Sin-I(- 1)

In Problems 13 through 16, find all values of the given expression. Provide answers in
exact form in radians and in degrees.

13. sin! v2 14. sin~(—4 15. cos7I(—1) 16. cos! YZ

In Problems 17 through 30, evaluate the given expression using a calculator and provide
results in radians and in degrees correct to two decimal places.

17

19.

21.

23.

25.

27.

29.

. Sin-! 0.3768

Sin! (=0.537)

Arccos(—1.375)

Cos -I(V'17 = 5)

-1 TTCos >

Sin ~I(sec 1.42)

Cos (cot 112°24")

18

20

22

24

26

28

30

. Cos~10.5732

. Sin-12.378

. Arcsin 3+VS
8

. Arcsin KEEL

. Cos ~I(sin 48°)

. Sin —I(tan 16°12")

. Sin ~I(cos 2)

In Problems 31 through 44, evaluate the given expression. Provide answers in exact

form.

31

33

35.

37.

39.

41.

43.

. sin (Sin -1 3)

. COS (2 Cos! 0)

tan (Sin -1 2)

Cos (sin on )

cos (sin ~I(cos

sin (2 Cos ~I(sin

™

3

tan ((cos Shel + Sin (==) )

£))

2)

3 N
o

34.

36

38.

40.

42.

44

1 If _ 1. sin Cos ( > ))

1 3 a1 4cos Sin 5 Cos 5 )

. Arcsin(Cos )

sec ( Cos! (-3) )

cos (2 Cos! (-3) + Sin! $)

sin (Cos (=3) + Sin! )

. Sin! (cos Zz)
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In Problems 45 through 50, use the calculator to evaluate the given expressions. Provide
answers correct to two decimal places. In each problem check whether it makes a
difference if the calculator is operating in radian or degree mode.

45. sin(Sin—10.34 + Cos -10.56) 46. tan(Cos~1(~0.37) + Sin -1(-0.53))

47. cos(2 Sin! v3) 48. sin(2 Cos!=

49. cos(2 Sin-10.37 + Cos —10.84) 50. sin(Sin -I(~1.24)

51. Is Sin-! + Sin-! or Sin 1 282

52. Is Sin-! 2 + Sin! —Cos-! > ?

53. Is Sin-!(—x) = —Sin Ix an identity ?

54. Is Cos }(—x) = Cos lx an identity ?

55. Is Cos Ix = 5 — Sin Ix an identity ?

In Problems 56 through 60, determine the values of x that satisfy the given equality
or inequality.

56. 2 Sin-Ix+1=0 57.2 Cos 1x-3=0 58. 3 Sin-'x-4<0

59. 2 Cos Ix +120 60. Sin—Ix—- 120

5.3 INVERSE TANGENT AND INVERSE COTANGENT

In developing the inverse relations and functions associated with the tangent
and cotangent functions, we can follow a discussion similar to that on the
inverse sine in Section 5.2. However, since there are no new ideas involved, we

shall omit the details and merely give a summary of pertinent facts.

1. Inverse Tangent

The inverse tangent relation tan! is defined by

 

tan-! = {(x, y)|x € R and x = tan y}.
   

The graph of tan! is shown in Fig. 5.9.
For the principal-value inverse tangent function we choose the branch of

the curve between y = —w/2 and y = 7/2, as shown in Fig. 5.9. Thus the

definition of the principal-value inverse tangent function is:
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Graph of tan!

Figure 5.9

 

 
y =Tan-lx is equivalent to x = tan y and —Z-<y < 5

 
 

The graph ofy = Tan lx is shown in Fig. 5.9 by the heavy curve. Note that we
again use a capital letter to distinguish between the function Tan-! and the
relation tan-!. Also, Arctan is used interchangeably with Tan-l.

The domain and range of Tan! function are given by

 

D(Tan-!) = {x |x is any real number},

R(Tan-!) = {y|- 5 <y< 5

  
 

2. Inverse Cotangent

The inverse cotangent relation is defined by

 

cot-! = {(x, y)|x € R and x = cot y}.
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The graph ofthis relation is shown in Fig. 5.10. We select the branch between
y =0 and y = 7 to define the inverse cotangent function. The principal-value
inverse cotangent function is defined by

 

y = Cot-lx is equivalent to x =cot y and 0 < y < .
  
 

 
Graph of cot™1

Figure 5.10

The graph ofy = Cot lx is shown in Fig. 5.10 by the heavy curve. The domain
and range of Cot! (or Arccot) function are given by:

 

D(Cot') = {x |x is any real number},

R(Cot1) ={y|0<y <i.

  
 

 

Examples

AN Evaluate each of the following and give answers in exact form in radians
and in degrees.

a) Tan'1 b) Arctan(—V/3) c) Cot! (- =)
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Solution

a) Let 6 =Tan"'l; then tan §=1 and —7/2 < 0 < 7/2. Therefore,
§ = 7/4 and so Tan~'l = 7/4 = 45°.

b) Let a = Arctan (—V/3); then tan a =—/3 and -7/2<a<w/2.
Thus a = —7/3 and Arctan (—V/3) =—m/3 = —60°.

c¢) Let 8 = Cot! (—=1/V/3), then cot 8 =—1/v/3 and 0 <p <x. There-
fore, 8=27/3 and Cot™(-1/V/3)=2r/3=120°. I

/2\ Using a calculator, evaluate each of the following. Give answers in degrees

correct to two decimal places.

a) Tan™!2.57 b) Tan—1(—0.478)

Solution. Place the calculator in degree mode.

a) Enter 2.57, and then press and keys (or ) and get
Tan-12.57 = 68.74°.

b) This is similar to (a): Tan1(—0.478) = —25.55°. i

A\ Evaluate the following using a calculator. Give answers in radians correct
to three decimal places.

a) Cot! 0.5863 b) Cot-(—2.743)

Solution. Place the calculator in radian mode.

a) Let a = Cot10.5863; then cot a = 0.5863 and 0 < a < 7. Since the
calculator does not have a key, we use the identity cot a =
1/tan «. This gives tan a =1/0.58631 and so a = Tan~!(1/0.5063).
Now we evaluate 1/0.5063 and, with the result in the calculator display,
press the and keys (or ). This gives a = 1.041. Thus
Cot10.5863 = 1.041.

b) Let 6 = Cot~1(—2.743); then cot § =—2.743 and 0 <6 < =. Since the
calculator does not have a key, we use the identity cot 6 =
1/tan 6 and get tan 6 =—1/2.743. Now evaluate Tan—!(—1/2.743)
and remember that the result (angle 6) will be between —=/2 and 7/2.
Since the 6 we want is between 0 and =, then 6 = 6, + w=, as shown

in Fig. 5.11. Therefore 6 = = + Tan—!(—1/2.743). This can be evaluated
by the calculator without recording any intermediate steps. Thus

Cot~1(-2.743) = 2.79.

 

~dJd

0

RE T-

Figure 5.11 i
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Note. In Example 3 we used the calculator to evaluate Cot~!x and it was
necessary to express Cot~'x in terms of the Tan! function, since the calculator
does not have a or key. In part (b), the final step was slightly
different from that of (a) because the value of x was negative. It should be clear
from the two cases considered in Example 3 that we have the following
situation in general (see Problems 43,b and 44 of this section):

 

To evaluate Cot~!x by calculator use

Cot~'x = Tan"! + if x is positive,

Cot'x =m + Tan! + if x is negative.   
 

/A\ Find all values of tan—!(—1) in radian measure and in degree measure.

Solution. Let 6 = tan—!(—1); then tan § = —1 and so angle 6 is in the second or

fourth quadrant. That is, §, = 37/4 and 0, = Tn/4=0, + 7. We can get all
other solutions by adding (or subtracting) integral multiples of 7 to (or from)
8,, since = is the period of the tangent function. Therefore tan—!(—1) represents
any angle in the set

1010 = 3F + kr, where k is any integer};

or in degrees {0 |0 = 135° + k - 180°}. i

A Evaluate the following expressions and give answers in exact form:

a) tan(Cot™ + b) sin(Tan(— +) + Tan™'4)

c) cos(2 Tan™(- +) )

Solution.

a) Let 8 = Cot~!(2/5); then cot 6 = 2/5 and 0 <0 < =. We want to find
tan 6, and so tan § = 1/cot § = 5/2. That is, tan(Cot~!(2/5) = 5/2.

b) Let a = Tan"!(—1/3) and 8 = Tan"'(4/3); then a and 8 are the angles

shown in Fig. 5.12. We want sin (a + 8). We use identity (1.12) of

Section 4.2:

sin(a + 8) = sin a cos 8 + cos «a sin

13,3 4__9 _9i0o
VIO 5 10 5 5/10 50

Thus sin(Tan—!(— 1/3) + Tan"1(4/3)) = 9v' 10/50.
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—1   
Figure 5.12

c) Let 8 = Tan"!(—3/4); then 6 is the angle shown in Fig. 5.13. We want
cos 20. By using identity (1.19) of Section 4.3 we get

cos 20 = cos?d — sin? = (+) — (2) = S.

Therefore, cos(2 Tan"!(-3/4)) = 7/25. i

/6\ Using a calculator, evaluate sec(Tan"10.348 -2 Cos™!(-0.735)) correct

to four decimal places.

Solution. We can solve this problem with the calculator in either degree or
radian mode. First evaluate the angle Tan—10.348 — 2 Cos~!(-0.735), and, with
the result in the calculator display, press the and keys; the answer
appears in the display:

sec(Tan10.348 2 Cos(0.735) ) = —3.9742. 1

AN a) Prove that cos(Tan-'vVx2—1)=1/x for x 21 is an identity.

b) Is it an identity if values of x £ —1 are also included?

¢) How can the equation be changed to become an identity for all x in
x<—-1 or x21?

Solution.

a) Let 6 = Tan"'V/x?— 1; then tan § =vx2—1 and —-w/2<0< 7/2.
Since Vx? — 120, angle 6 is in the first quadrant for all x. From

Fig. 5.14 we see that cos (Tan~'vx? — 1) = cos § = 1/x.

4
0

_3 > Vxi-1

> 6

1

Figure 5.13 Figure 5.14
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b) If we take x = —V/2, then cos (Tan! V(=2)?— 1) = cos (Tan"'1) =

cos 7/4 =1/2/2. This is not equal to 1/x for x = —/2. Thus the
equation is not an identity if we include x < —1 in the replacementset.

c) cos(Tanly/(x2—1)=1/|x| for x £—1 or x21 is an identity. |

Determine the set of values of x that satisfy the inequality

Cotlx —2<0.

Solution. The given inequality is equivalent to Cot~'x <2. To solve this
inequality it may be instructive to look at the graph of y = Cot~'x shown in
Fig. 5.15. We want all values of x that will yield points on the curve to the right
of P (such points have y <2). Thus, our solution set consists of all values of
x such that x > x,, where Cot™'x,=2. If Cot™'x,=2, then x, = cot 2 and
with the calculator in radian mode we find that x, = —0.458 (to three decimal
places). Therefore, the solution set is S = {x|x > —0.458}.

  
Graph of y = Cot! x

Figure 5.15 i

 

EXERCISE 5.3

1. a) Make a table of x, y values that satisfy y = Tan—!x. Then use this table to draw

a graph of y = Tanlx.

b) Follow instructions similar to those in (a) for y = Cot~lx.

In Problems 2 through 8, evaluate the given expression. State answers in exact form in

degree and in radian measure.

2. Cot-l(=1) 3, Cor ) 4. Tan-i(- vi

5. Arctan(—V/3 ) 6. Arccot (—v3 )

7. Tan-l(=1) — Cot=}(~ 1) 8. Tani—— ) + Cot~!(~ V3)
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In Problems 9 through 12, find all values of the given expression. Provide answers in
exact form in degree and in radian measure.

9. tan! 1 10. cot—l(—1) 11. cot} (—V/3) 12. tan-1(- v3)
V3

In Problems 13 through 20, evaluate the given expression using a calculator. Provide
answers in radian measure (correct to four decimal places) and in degree measure

(correct to two decimal places).

13. Tan-10.738 14. Arctan (—1.483) 15. Tan!24

16. Cot—11.532 17. Arccot(—2.415) 18. Arctan z

3 419. Arctan (-=) 20. Arccot (- +)

21. Using a calculator,find all values of tan—! 2.418 in radians correct to two decimal
places.

22. Find all values of cot—1(—0.893) in degrees correct to two decimal places.

23. Find all values of cot! devs in degrees correct to two decimal places.

24. Find all values of tan!PR radians correct to two decimal places.

1+V3

In Problems 25 through 32 evaluate the expressions and give answers in exact form:

25. tan(Tan"! = 26. cot(TanI(-2-) )

27. sin(2Cot(=£) ) 28. cos(-Tan™!(-2-) )

29. sin(5- — TanTan(=3 )) 30. tan(2 Tan!3)

31. csc(5-Tan™" oy 32. tan(Cot™! 4 + Tan™! 3)

33. Show that 2 Tan! += Tan! 3

11 _ rapt L_Tap-1L34. Show that Tan > Tan 3 Tan 7

12 13 _m35. Show that Tan 3 + Tan 5 >

A(_3\_ Tan-\( _436. Show that Cot ( z ) = Tan ( : ) +.

In Problems 37 through 42, you may wish to use the calculator as a first step in

answering the question. Note that in Problems 37 and 38 the calculator should be in

radian mode.

37. Is Tan—!l1 + Tan—12 = 7 + Tan"1(-3)?
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38. Is Tan-! (+) + Tan! (+) = Ty
4

39. Is Cot! (+) + Cot! (+) = Cot~!(- Lo
9

40. Is Tan—! 4 — Tan—! 3 = Tan—! 19

41.

13

Is Tan"! o> + Tan! + = Sin-! 1?

42. Is Sin-! 3 — Cos—!> = Tan! (- 33 )?
5 13 56

In Problems 43 through 45, prove that the given equation is an identity when x is
restricted to the values given in each case.

43.

44.

45.

1
x

Cot~lx =m + Tan-'L for x <0

a) Tan-!x + Tan—1=- = Zz for x >0 b) Cot~lx = Tan-'L for x>0

a) Sin! —2X_ _) Tan-lx for —1 <x <1
x2 +1
 

b) Give an example showing that the equation in (a) is not true when x is any real

number.

. Is Cot~lx = Tan!(1/x) an identity?

47. A movie marquee on Main Street is 1.5 meters wide with its bottom edge 4 meters
above the sidewalk, as shown in Fig. 5.16. A person, with eye level 2 meters above

the sidewalk and x meters from point P directly below the edge of the marquee, is
walking along Main Street and observes that the marquee (as measured by angle

6) seems small when viewed from far away (when x is large), but upon getting closer

angle 0 gets larger until it reaches a maximum and then it begins to get smaller again
until it becomes 0° when seen from directly underneath the edge of the marquee.
That is, 6 is a function of x. Show that this function is given by

PR SN—re.S—
x2 +(@4-h)(5.5-h)

\ or

\ \

a 3

 

~
f
—
—
—
h
_
_
_
_
)

Figure 5.16



48.

49.

50.
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Hint. Use the two right triangles involving angles « and 3, and the identity

tan 0 = tan(8 — @) =

ANF

tana
1 + tan 8 tan a

Suppose the person in Problem 47 is Janet whose eye level above the sidewalk is 1.5
meters.

a) Show that her view of the marquee is given by the expression

§ = Tan! 13x
x2 +10

b) Use your calculator and the result in (a) to complete the following table that

gives her view for different values of x in meters. Express angle 6 in degrees to
two decimal places.

 

x|40 25 20 10 8 6 5 4 3.5 32 3.1 30 28 25 20 15 1.1 05
 

   
 

¢) Using the results of (b), make a reasonable estimate of how far from point P she
should stand to get the best view (that is, the largest value of 6). Refine your

estimate by using additional values of x to give an answer correct to two decimal
places.

Suppose the person in Problem 47 is Preston whose eye level above the sidewalk is
2 meters.

a) Show that his view of the marquee is given by the expression

6 — Tan—! _L:5%_
x? +17

b) Compile a table similar to the one in Problem 48.

¢) How far from point P should he stand to get the best view?

Using the results found in Problems 48 and 49, answer each of the following:

a) If Janet is standing at her spot of maximum view, how far behind her should
Preston be to get the same view?

b) When Preston is standing 16 meters from point P, find his view (angle 6) of the

marquee from that point.

¢) When he is standing 16 meters from P, how far in front of him should Janet be

to get the same view he has?

In Problems 51 through 55, find all values of x that satisfy the given equality or

inequality.

51. Tan"lx =1 52. tan(Tan"!x) = x 53. Tan"!(tan x) = x

54. 2 Cotlx +10 55.4 Tanlx-320
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5.4 INVERSE SECANT AND INVERSE COSECANT

The inverse secant and cosecant relations are of comparatively little interest in
the study of trigonometry, but since they do occur in certain applications in
calculus we give the graphs and define the principal values for each.

The graph of the inverse secant relation is depicted in Fig. 5.17 where the
heavy part of the curve represents the principal-value inverse secant function
y = Sec~'x. Similarly, Fig. 5.18 shows the graph of the inverse cosecant relation

with the heavy portion of the curve representing the principal-value inverse
cosecant function y = Csc~'x.

Thus we have the following definitions.
The principal-value inverse secant function is given by:

 

y = Sec~lx is equivalent to x = sec y and
0Ly< 5 or -<ysm.

  
 

The principal-value inverse cosecant function is given by:

 

y = Csc~lx is equivalent to x = csc y and
™rT < <I5 Sy<0 or0<y< >

   
 

The domain of both the Sec! and Csc~! functions

is given by {x|x <—1or x 21}.

  
 

y y

3m
—_—TT mssson =2—_————

3m

m

LLas ten
m| x >

 

1 0

— --3

3
ee ea w— ——L pm EE——————feT —————  

—1
Graph of sec! Graph of csc

Figure 5.17 Figure 5.18
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Note. In Chapter 4 we introduced several identities involving trigonometric
functions that are useful in simplifying certain problems. The student should
understand that the corresponding identities do not hold for the inverse
trigonometric functions. For example, csc x = 1/sin x is an identity but Csc~'x

is not equal to 1/Sin~!x; Tan~!x is not identically equal to Sin~!x/Csc~!x, and

so on. Although we include some identities involving inverse functions in the

exercises, they are not used frequently and we do not recommend memorizing

them.

 

Examples

AN Evaluate in exact form

a) cos (See (- 3) ) b) tan (Sec(3) )

Solution. Let 0 = Sec!(—3-); then sec 6 =—-3/2 and 7/2 <0 <.
2

Thatis, 0 is the angle shown in Fig. 5.19. Therefore,

a) cos (Sec(-3)) = cos 0 =i

b) tan (Sec) = tan 0 =— Js

 : AN
a
  

Figure 5.19 I

A Using a calculator, evaluate Sec™!(—1.873) in degrees correct to two

decimal places.

Solution. Let a = Sec™!(—1.873). Then from the definition of the Sec! func-

tion given in this section, this is equivalent to sec a =-1.873 and
90° < a £180°. Since the calculator does not have a or key, we

use the identity sec « = 1/cos a to get cos a = —1/1.873 and 90° < a < 180°.
We can now use the calculator to find a: place it in degree mode, enter

—1/1.873 into the display, and press the and keys (or (cs) to get
a = Sec'(—1.873) = 122.27°. I
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A Using a calculator, evaluate Csc'(—2.478) in radians correct to four

decimal places.

Solution. This is similar to Example 2 and we include only the essential steps.
Let 6 = Csc!1(—2.478). This is equivalent to csc 6 =-2.478 and

—m/2 £0 <0. Thus we have sin § = —1/2.478 and so 6 = Sin~!(—1/2.478).

Place the calculator in radian mode, enter —1/2.478 and then press the Unv
and (sn) keys (or the key). This gives § = Csc™1(-2.478) = —0.4154. |

Note. From Examples 2 and 3 we can conclude the following:

 

To evaluate Sec~'x by calculator, use

Sec-!x = Cos—!-L,
Xx

To evaluate Csc~'x by calculator use

Csc—lx = Sin—1-L.
x    
 

EXERCISE 5.4

In this exercise there may be some problems where the given expression is not defined.
If a calculator is used, the display will indicate “Error”. Explain what part of the
expression is responsible for such an answer.

1. Evaluate the following and give answers in exact form in degrees:

a) Sec—!2 } b) Sec—!V/2 c) Csel(- =)

d) Sec! (~v 2) e) Cscl(=1)

2. Evaluate the following and give answers in exact form in radians:

a) Sec! = b) Sec (V2) ¢) CscV2  d) Secl(—1) e) Csc(=v2)
3

3. Evaluate the following and give answers in exact form; then in decimal form correct
to four decimal places:

14 14 _ Ccge-l(_ 3 1 1 LLa) sinSec 3 ) b) cos (Cse 3 Csc ( 4 )) c) Sec 3 + Csc 3

d) Sec!14 + Sec! _4 €) sec (Sec! 3— Csc!(—4) )
Vis

4. Evaluate the following. Give answers in exact form.

a) sin (2 Csc-! 5) b) cos (2 Secl(-3)

13 in(L csc-(— LCc) sec (2 Sec 2-1 d) sin Csc ( 5))

e) tan (+ Sec! (- >) )
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S. Use your calculator to evaluate the following as a real number correct to four
decimal places:

a) Sec1(1.478) b) tan(Sec~! 2.578) c) cos(ecL5V2)

d) Csc—1(-3.478) e) sin(2 Sec! 2.576)

6. Evaluate the given expressions in two forms—exact and correct to two decimal

places:

a) sin (Sec2 + Sec=(2/V/3) b) cos(Csc(4/3) — Csc—1(5/4))

0) cos(Sec—1(-7/4) ) d) tan(Sec~! 1.2)

e) sec(Csc(-1.5) ) f) Sec~1(2/V/3) + Sec—}(—2/v/3)

7. Use your calculator to evaluate the following expressions. Give answers in degrees
correct to two decimal places.

a) Sec—l(tan 74.52°) b) Csc—I(sin 47°) c) Sec—1(-3.47)

d) CootV5 e) Csc—l(tan 124°)

8. Find all values of the given expressions. Provide exact answers in radians.

a) sec! 2 b) csc(=v2)

9. Find all values of the given expression. Provide exact answers in degrees.

a) sec1(—2/V/3) b) cscl(—1)

10. Prove that Sec—!x + Csc—lx =Z for x 21 is an identity.

11. Prove that Sec—lx + Csc~lx= z- for x <—1 is an identity.

This and Problem 10 prove that Sec~lx + Csc~lx = I for |x| 21 is an
identity.

12. Prove that Sec!(1) Cos~lx for 0 < |x| £1.

REVIEW EXERCISES

In Problems 1 through 10, evaluate the given expression and state answers in exact form
(first in degree measure and then in radian measure).

1. Sin! 1 2. Cos(-7) 3. Tan-}(=1)

3 —
4. Sin2 5. Cot~!(—V/ 3) 6. Sec”! 2

-1 —1_1\ _qpn-i(_L7. Csc 11 8. Cos (- > ) Sin ( > )

9. Cos—I(—1) — Tan—Y(~1) 10. Sin~l(—=) — Tan-!(=1)
V2

In Problems 11 through 20, evaluate the following expressions in exact form. Angles
a, 3, and + are given by:

I
A Sl
y

a= Sin-l(-2), B= Cos(-2), sin y= —2 Z13’ Y=
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11. 8 —« 12. cos(a + B) 13. sin 2a

14. tan (8/2) 15. cos (v/2) 16. sin(a — 7)

17. tan(a + 7v) 18. 1 — cos?3 19. tan 2y

20. sin(At )

In Problems 21 through 45, evaluate the given expression and state answers in exact

form (wheneverit is reasonable to do so) or as real numbers correct to three decimal

places. When a given expression is undefined, tell why.

21. sin(Sin—! 0.436) 22. cos(Cos~! 1.32)

23. tan(Tan! 3) 24. sin(Sin~! 0.4 + Cos! 0.5)

TT _ Cos! To, Gin25. cos ~~ Cos 0.456 ) 26. tan( 7+ Sin 0.56 )

Nd —1_27. sec(Cos : ) 28. sec(Sec ( 4.73) )

29. cos(--Cot! 4) 30. Sin—!(tan 23°)

31. Cos—l(tan 123°) 32. Tan(tan 3)

33. tan(2 Tan! 1) 34. tan(-Cos™ 0.275)

35. sec(Sec~10.52) 36. tan(Tan"! 3 _ Tan! 1)
4 2

37. tan(Sin-l(1 -V3)) 38. sin(2 Sin! 1)

To -1 1239. cos 4 Cos 0.41) 40. cos(Sin = )

41. sin(cos > ) 42. Tan (sin 3 )

43. Cot~(cos 120°) 44. tan(-Cos™!(-1)

45. sin(Cos~!(sin Z- ) )

In Problems 46 through 55, determine whether the given statementis true or false. Give

good reasons for your answers. Recall that D(f) and R(f) denote domain and range of

f. respectively.

46. sin 1ev3 is not defined 47. % is in D(Sin~!)

48. Tis in R(Sin™) 49. tan 7 is in D(Sec!)

50. ZT <Tan"'(-2) <r 51. 2 is in D(Sin!)

2 . . . —1 o —1 . oT _ . . —1 TT

52. — is in R(Sin—) 53. Sin (sin 3 )= sinSin 3 )

54. Sin~(sinz ) = sin(Sin~! 23 55. Cos~!(sin%- ) =sin(Cos! 2 )



 

 

CHAPTER SIX

TRIGONOMETRIC
EQUATIONS

6.1 CONDITIONAL EQUATIONS

The student already has some experience in solving algebraic equations. For

example, equation x? — x — 12 = 0 is satisfied by x = 4 and x = — 3. That is,

if x is replaced in the equation by 4, we get 42 — 4 — 12 = 0, which is a true

statement. Similarly, for x = — 3, we get (—3)?— (—3)-12=0.

The set of possible replacement values for the variable is called the

replacement set for that equation. In general, unless otherwise specified, the
replacement set will be the largest subset of the set of real numbers, for which
the expressions on the two sides of the given equation are defined (as real
numbers). The solution set for a given equation is a subset of all numbers from
the replacement set, each of which satisfies the equation.

We call an equation an identity if the solution set is the entire replacement
set; otherwise the equation is called a conditional equation. In Chapter 4 we

have encountered a large number of identity equations involving trigonometric

functions. In this chapter we shall consider conditional equations involving
trigonometric functions with the primary goal of developing techniques for

finding the solution sets for such equations.
Many of our problems will begin with an equation which we will not solve

directly in its given form. We shall make use of the identities in Chapter 4 to

replace the given equation by an equivalent one that we can solve.

 

Examples

AN Find all solutions of the equation 2 sin x — 1 = 0. Express answers in
degree measure.

Solution. We have already encountered problems of this type in our discussion

of inverse trigonometric relations in Chapter 5S. The equation 2sin x — 1 = 01s

equivalent to sin x =!2 and the solutions to this equation are given by

175
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sin~! (2). However, this merely involves notation and does not actually tell us
explicitly what numbers belong to the solution set.

Since sin x is positive, x is an angle in the first or second quadrant, as

shown in Fig. 6.1. Two solutions are: x, = 30°, x, = 150°. If we add or subtract
any integer multiple of 360° to either of these, the result will also be a solution,

and in this way we get all solutions. Therefore, the solution set is

Ix |x = 30° + k - 360° or x = 150° + k - 360°, where k is any integer].

 

 

Figure 6.1 i

A Solve the equation sin(3x — 7) = I, where — 2x <x <2.

Note. — 2m < x £ 27m implies that the solutions are to be given in radians

(real numbers).

Solution. The restriction — 27 < x < 27 means that the replacement set for

this problem is {x |— 27 <x < 2m}. Since sin(3x — 7) = 1, then 3x — = must

be one of the following:

mm 9m 3m Im
2° 2 20 0 2° 2°

This set of numbers is given by (4k + 1)/2, where k is any integer. Thus, our
solutions will be given by

Ix — = (Gk + ==

Solving for x, we get

(4k + Im
X= =r

We now select those values of k that will give values of x in the replacement set.

We see that if we take k to be — 3, —2, — 1, 0, 1, 2, we get the corresponding

values of x:
T= l=_3m mo Hr
6° 6°

a
2° 6° 6°

Therefore, the solution set is

3 wm rx ox In lx
2° "6° 6° 2° 6 6 { i

A Find the solution set for 3tanx + 4 =0, where — 7 <x <m.

rr>
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Solution. The given equation is equivalent to tan x = — 4/3. Since tan x is
negative, then x must be in the second or fourth quadrant. The fourth-
quadrant angle in the replacementset is x, = Tan~!(— 4/3); it can be found by

using the calculator. That is, x, = —0.9273. Since tan(r + x) = tan x is an
identity, the second solutionisgivenby x, = + x, = m + (- 0.9273) = 2.2143.
Since solutions are restricted to the interval —m < x <7, the solution set is

{—0.9273, 2.2143}, where the answers are given to four decimal places. i

/A\ Find the solution set for sin(3x — 7/4) —V/3 cos (3x — 7/4) = 0.

Solution. In Chapter 4 we indicated that identities are useful in replacing a
given problem by an equivalent one that may be easier to solve. Here is a
simple example of such a problem.

The given equation can be written as

. ™ _ “~ _ Tmsin (3x-%) =V3 cos (3x I).

If we divide both sides by cos (3x — 7/4) #0, we get

sin(3x — 7/4) ~
cos(3x —w/4) V3.

Now we use the identity sin #/cos 6 = tan 6 and get

tan(3x — 7) =V3.

Since tan (3x — wm/4) is positive, angle 3x — 7/4 is in thefirst or third quadrant,
as shown in Fig. 6.2 (where 0 = 3x — w/4). These angles can be written as

7/3 + kw, where k is an integer. Therefore,

Ix — T=gr
4 3

and so x = (7 + 12k)r/36. These are solutions, provided cos(3x — 7/4) +0.

 

  
Figure 6.2
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The student is urged to show that this indeed is the case. Thus the solution set
is

{x|x = (7 + 12k)w/36, where k is any integer]. I

AN Find all values of x at which 3 sin (2x — 7/12) attains a maximum.

Solution. Since the largest value the sine function can have is 1, the maximum
value of 3 sin(2x — w/12) is 3. Therefore, the problem is equivalent to finding
all values of x for which 3 sin (2x — 7/12) =3, or sin 2x — 7/12) = 1. All

solutions of this equation are given by

_r _ TT2x = 7" 2k,

where k is an integer. Therefore, the solution set is

{x|x = i + km, where k is any integer}. i

/6\ Find the solution set for the equation V2 sin x — 3 =0.

Solution. The given equation is equivalentto sin x = 3/v/2. Since 3/V2 > 1,
there are no values of x such that sin x = 3/y/2. Therefore, the solution set
is the empty set. i
 

EXERCISE 6.1

In each of the following problems express answers in exact form whenever it is

reasonable to do so. Otherwise use a calculator and give answers correct to two decimal
places. Check your answers when there is a possibility that extraneous solutions may

have been introduced.

In Problems 1 through 8 find all solutions of the given equations. Express answers in

degree measure.

1. 2cosx+1=0 2.2 sin x+V3=0 3. V3 tan x—1=0

4. 4sin x—-3=0 5.3secx—7=0 6. 3sinx—5cosx=0

7. V3 sin x=5=0 8. 2 sin 2x—V3=0

In Problems 9 through 20 assume that the replacement set is {x |0 < x < 2} and find

the solution set for the given equations.

9.2 cos x+V3=0 10. 2 sin x — sin?x = cosx

11.2 sin(3x =) 1=0 12. sin2x— 1) + V3 cos2x — 1) =0

13. V3 sec x—2=0 14. 3.57 sin x + 2.16 =0
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15. cot x +V3=0 16. 4 sec x +V7=0
. TT m™ —17. sin(x + 5) ~2.4 cos (x+ 5) =0 18. 3sec x +2=0

19. 5 cot x+V3=1 20. cos(3x — 1.6) + 6.4 sin3x — 1.6) =0

In Problems 21 through 23, find the solution set for the given equations.

21. 4 Sin~lx=3 22.2 Coslx +1=0 23. V5 Tan"'x — 1.6 =0

24. Find all real numbers x at which 4 cos(2x — 7/3) attains a minimum.

25. Find all real numbers x at which 3 sin(x — 7/4) attains a maximum.

6.2 QUADRATIC EQUATIONS INVOLVING

TRIGONOMETRIC FUNCTIONS

In this section we consider problems in which the given equation can be

transformed into an equivalent quadratic equation involving one of the
trigonometric functions.

 

Examples

AN Solve 2 sin’x — sin x = 0, where the replacementset is

{x]0° <x < 360°}.

Solution. We first express the given equation in factored form:

sin x (2sin x —1)=0.

We now use the basic property of numbers: If the product of two numbersis
zero, then at least one of the numbers must be zero. Therefore, the given

equation is equivalent to

sin x =0 or 2sin x—1)=0;

sin x =0 gives x =0°, 180°, 360° as solutions, while 2 sin x — 1 =0, or

sin x = '4, gives x = 30°, 150° as solutions. Thus the solution set is

{0°, 30°, 150°, 180°, 360°}. i

2 Find all solutions in degree measure of the equation

2 sin’x —cos’x —S5sin x —1=0.

Solution. The equation can be written as a quadratic equation with regard to
sin x by replacing cos’x with 1 — sin?x. Therefore,

2 sin’x — (1 —sin’x) — Ssin x — 1 = 0,

or

3sin’x —S5sinx—2=0.



180 Trigonometric Equations

This can be factored as

(3 sin x + 1)(sin x — 2) = 0.

Thus, the given equation is equivalent to

3sinx+1=0 or sin x —2=0.

Therefore,

sin x = — or sin x = 2.

w
|
—

There is no x satisfying sin x = 2. For sin x = — 3, the angle x must be in the

third or fourth quadrant, as shown in Fig. 6.3. We can use the calculator to

find

x, = Sin7l(— 15) = — 19.47°

and

x, = 180° + 19.47° = 199.47°.

Therefore the solution set is

{x|x=—19.47° + k-360° or x=199.47° + k - 360°,
where k is any integer}.

 

Figure 6.3 i

A Find the solution set for 2 cos’x — 6 cos x + 1=0, where 0 <x <2.

Solution. Since the left-hand side of the given equation does not factor in a

simple manner, we use the quadratic formula

6+V36—-4.-2-1 _3+V7
4 2

CoS XxX = 

Therefore, the given equation is equivalent to

3 +V7 3-V7

2 2
COS xX = or COS XxX =

There is no solution for cos x = (3 + V/7)/2 = 2.8229. For

CoS X =3-V7 — 0.1771
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we see that x is in the first or fourth quadrant, as shown in Fig. 6.4. By using
the calculator, we find

x, = Cos-! V1— 1.3927.

The second solution is given by

x, =2m — x, = 2m — 1.3927 = 4.8905.

Therefore, the solution set is {1.3927, 4.8905}, where the answers are given to

four decimal places.

xX
 

Xs

T

Figure 6.4 i

  
/\ Solve sin?x — 2 sin x + 2=0.

Solution. Using the quadratic formula we get

2+v4-8Va-8 iv]3 + .sin x =

Since 1 + V—1 are imaginary numbers, there is no value of x that will satisfy

the given equation, and so the solution set is the empty set. I
 

EXERCISE 6.2

In the problems ofthis set, express answers in exact form wheneverit is reasonable to
do so. Otherwise use a calculator and give answers correct to two decimal places.

In Problems 1 through 8, find all solutions of the given equation and express answers
in degree measure.

1. 3sin’x—sinx—-—2=0 2. sin’x —cos’x =0

3. cos2x+2cosx+1=0 4. tan’x —1=0

5. 1-4sin’x=0 6. 3secix +2secx—1=0

7. cos’x —sin’x +3 cos x—1=0 8. 2sin’x +5sinx—-3=0



182 Trigonometric Equations

In the following problems, assume that the replacement set is {x |0 < x < 2x}. Find
the solution set for the given equation.

9. 2sin’x —S5sinx—-3=0 10. cos’x —sin’x =0

11. 3 cos’x +cos x —2=0 12. 4 —tan’x=0

13. tan’x + 2tan x + 1 =0 14. 2 sec’x —3secx—2=0

15. 3 sec’x — 4 tan’x =0 16. 4 cos’x +3 cos x—1=0

17. 4 sin’x + 3 cos’x —4=0 18. cos2x —3 cos x—2=0

19. sin’x + 2sin x + 1=0 20. 2 sec’x —tan’x —3=0

21. sin’x + 2 sin x + cos’x = 0 22. sin’x = 2 — cos’x

23. sec’x — 2 cos’x — tan’x = 0 24. 2 cos x tan’x + 2=0

25. tan x cot x + 4 sin’x = 4 26. 2sin’x +2sinx—1=0

27. cos’x +3 cos x—2=0 28. 2tan’x —4tanx + 1 =0

29. sec’x + 3secx—1=0 30. 3 csc’x —2cot’x + cot x—4=0

31. sin>x +4 cos’x +2sinx—-2=0 32. 2secx—cosx+5=0

33. sin’x —sinx +2=0 34. 3cos’x+4cosx+2=0

35. 25sin’x —30sin x + 7=0 36. 3.2 cos’x —1.5cos x —0.48=0

37. tan’x — 1.48 tan x — 2.16 =0 38. 2.56 cos’x — 1.32 cos x — 1.21 =0

39. 2cos’x—cos x—15=0 40. 9sin’x —6sinx—1=0

6.3 EQUATIONS OF THE FORM asinx + bcosx =c¢

An equation of the form a sin x + b cos x = ¢ (where a, b, c are given numbers)
can be transformed into an equivalent equation of the type already studied
in Section 6.1. We do this as follows: divide both sides of the equation by
va? + b* and get

4 sin x + b__ cos x= ¢
va? + b? va? + b? Val +b?

As an illustration, consider Fig. 6.5, where the terminal side of angle a passes

through point (a, b) (the diagram shown is for a negative and b positive). Since

a and b are given, angle « is determined. We note that

(6.1)

cosa=-—2 _and sin oa=—2
vVa:+ b? a’ + b?
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and so Eq. (6.1) can be written as

cos a sin x + sin a cos x = —S—— |
va? + b?

The left-hand side of this equation reminds us of the identity for the sine of a
sum of two angles, and indeed it can be replaced by sin(x + «) (see identity 1.12
of Section 4.2). Therefore, the given equation can be written in equivalent form

 

 

 

sin(x + a) = —&
va? + b? (6.2)

which can be used to find the solution set.

|
x

5 —4

Figure 6.5 Figure 6.6

 

Example

AN Find all solutions of the equation 3 sin x — 4 cos x = 2. Express answers
in radian and in degree measure.

Solution. We first divide both sides of the given equation by V3? + (— 4)? =
v25=95 and get

3 sin x-4 _25 Sin x 5 COS X= (6.3)

Plot the point (3, — 4) and let a be the angle, as shown in Fig. 6.6. We see that
cos a = 3/5 and sin a = — 4/5; substituting these into Eq. (6.3) gives

2
sin x COS a + COS Xx Sin a=-z.

This can be written as

sin(x + a) = Z (6.4)

Angle a can be found by using a calculator: a = Sin~!(— 4/5) = — 0.9273.
Hence Eq. (6.4) becomes sin(x — 0.9273) = 2/5. Thus x = sin~'(2/5) + 0.9273.

Let 6 = sin~12/5; then angle 6 is in the first or second quadrant, as shown

in Fig. 6.7. Therefore

6,=Sin"2-=04115 and  §,=m—0.4115=2730L
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This gives us two solutions,

x, = 0.4115 + 0.9273 = 1.3388,
x, = 2.7301 + 0.9273 = 3.6574.

The solution set is

{x|x = 1.3388 + 2rk or x = 3.6574 + 2wk, where k is any integer}.

In degree measure the solution set is

{x|x=76.71° + k - 360° or x =209.55° + k - 360°}.

Note. In the above solution we transformed the given equation into an
equivalent equation sin(x + a) = 2/5, where a was determined by plotting the
point (3, — 4). We could just as well have started by plotting the point, say (4, 3)
that determines angle 3, as shown in Fig. 6.8. That is, sin 8=3/5,

cos 8 =4/5, and so Eq. (6.3) can be written as

sin x sin § — cos x cos f = % or cos x cos § — sin x sin § = — £.

This reminds us of the identity for the cosine of the sum of two angles, and so
the given equation is equivalent to cos(x + 8) = —2/5, where 8 = Sin=1(3/5).

The student should solve the equation and see if the results agree with the
solution set given above.

 
 

 

(4,3)

> 3

B
4

Figure 6.7 Figure 6.8 i

 

EXERCISE 6.3

In Problems 1 through 10 assume that the replacementset is {x |0 < x < 2x}. Find the
solution set for the given equations; provide answers correct to two decimals.

1. 4 sin x + 3 cos x = 1 2.2 sin x—3 cos x=V17T

3. cosx—2sinx=2 4. sinx+2cosx+1=0

S.2sinx—5cos x=38 6. sin’x — 2 sin x cos x =0

7. 3cos x +4 sin x=2 8. sin x + cos x = 1

9. sin x + cos x=V2 10. sin x + V3 cos x= 1
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In Problems 11 through 20 assume that the replacement set is {x |0° <x < 360°}.
Find the solution set for the given equations; provide answers correct to the nearest
minute.

11. sin x —cos x = 1 12. V2 sin x +V3 cos x=2

13. 3cos x +4sin x=1 14. sin x —3 cos x =4

15. 2 cos’x — sin x cos x =0 16. 1.3 sin x — 1.8 cos x = 2.5

17. 2 cos?x — sin x cos x + cos x =0 18. 3sin’x—2sinxcos x + 3sinx=0

19. 3 sin 2x —4 cos 2x =3 20. sin 2x + 2 cos 2x = 1

6.4 EQUATIONS INVOLVING FUNCTIONS OF MULTIPLE ANGLES

In this section we make use of the double-angle identities 1.18 through 1.20
(p. 133) to help us solve certain trigonometric equations.

 

Examples

AN Solve the equation sin 2x — sin x = 0.

Solution. Using 1.18 we can replace sin 2x by 2 sin x cos x and get

2 sin x cos x — sin x = 0.

This can be written as

(sin x)(2 cos x — 1) =0.

Therefore, the given equation is equivalent to

sin x=0 or cos x = 1.

We have solved several problems ofthis type before and so we merely give the
final result. The solution set is

T+ 2km or x=-— T+ 2kn, where k is any integer}.
3 3

In degree measure the solution set is

{x|x=k-180° or x=60°+k-360° or x=-—60°+k- 360°. |

/2\ Find the solution set for the equation cos 4x + 3 sin 2x + 4 = 0, where

the replacement set is {x|0° <x < 360°.

{x|x=km or x=

Solution. We use identity 1.19 to replace cos 4x by 1 — 2 sin?2x, and so the
given equation becomes

1 —2sin?2x + 3 sin 2x + 4 =0.

This can be written as

2sin2x —3sin 2x —-5=0 or (2 sin 2x — 5)(sin 2x + 1) = 0.
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Therefore, the given equation is equivalent to sin 2x = 5/2 or sin 2x = — 1; the

first of these gives no solutions and the second gives

2x = 270° + k - 360° or x =135° + k - 180°.

The solutions that are in the replacement set are x = 135° and x = 315°. Thus
the solution set is {135°, 315°}. |

A Solve the equation 2 sin?2x — 7 sin x cos x + 1=0, where 0 < x < 2.

Solution. We observe that sin x cos x can be replaced by ': sin 2x, according

to identity 1.18, and so the given equation is equivalent to

4 sin?2x — 7 sin 2x + 2 =0.

We can solve for sin 2x by using the quadratic formula

TVA=_ 7+V/17
8 g

sin 2x = 

Since (7 + V17)/8 > 1, there are no values of x that satisfy

T+VIT
8

sin 2x =

For sin 2x = (7 — V 17)/8 we see that since (7 —V17)/8 > 0, angle 2x must

be in the first or second quadrant, as shown in Fig. 6.9. Using a calculator, we

find

2x, = Sin-1 1=V17_ 03678 and  2x,—m — 2x, = 2.7738.
We can get two other solutions that are in the replacement set, from

2x, =2x, + 2m = 6.6510 and 2x, =2x, + 2m = 9.0570.

Thus all the solutions of the given problem are

x, =0.1839, x,=13869, x,=23.3255  x,=4.5285.

 

1 ~<
t
o

 

Figure 6.9 i

/A\ Find all the solutions of equation sin 2x + cos 2x = 0. Express answers as
real numbers.

Solution. The given equation is equivalent to each of the following

sin 2x = —cos 2x, Sn2x __ tan 2x = — 1.
cos 2x
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Therefore, 2x is an angle in the second or fourth quadrant, and the general

solution is given by

2x =Tan(= 1) + kr = — T + km,

where k is any integer. The solution set for the given equation is

{x |x = — T + kx)

Note. Since our solution involved a step in which both sides of an equation
were divided by an expression containing x, it is possible that extraneous

solutions may have been introduced. We urge the student to check whether the
given equation is actually satisfied by

__ 7 krX= gt I

 

EXERCISE 6.4

In Problems | through 16, the replacement set is {x|0 < x <2}. Solve the given
equations. Provide answers in exact form if possible; otherwise round off to two decimal

places. Check for possible extraneous solutions when necessary.

1. 2 sin 2x — cos 2x=0 2. sin 3x +cos3x=0

3. sin 2x = 3 cos x 4. cos 2x +cosx+1=0

5. cos 2x + cos x =0 6. sin 2x = cos (x-

7. cos 2x +4cosx—-5=0 8. cos 4x + 4 =3 sin 2x

9. (1 —tan2x)tan 2x + 2 sin x =0 10. (1 + tan’x)cos’x + 2 sin 2x =0

Il. sin?2x + 4sinxcos x +1 =0 12. 4 sin’x + 3cos 2x —1=0

13. (sin x — cos x)? —0.5=0 14. sin’x — 3 sin 2x = cosx

15. 4 sin 2x cos 2x + tan’x = sec’x 16. 3 sin 2x = 4 cos 2x

In Problems 17 through 30, find the solution sets of the given equations, where the

replacement is {x |0° < x < 360°}. Give answers in exact form if possible; otherwise

round off to two decimal places.

17. cos 2x + 3sinx + 1 =0 18. 4 cos 2x — 3 sin 2x =0

19. 2 sin 2x = cos x 20. cos 4x +3sin2x+4=0

21. sin 2x = cos(x + 90°) 22. cos 2x + cos*x = sinx
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23. 2(sin x + cos x)? + 1=0 24. (sin 2x — cos 2x)’ —1=0

25. sin’x — cos 2x = | 26. V2cosix —1=—0.5

27. (1 — tanx)cos x tan 2x = 4 sin’x 28. sin 4x = sin 2x

29. sin 6x = sin 3x 30. 2 sin x csc 2x —cos x =0

6.5 EQUATIONS INVOLVING TRIGONOMETRIC

AND ALGEBRAIC FUNCTIONS

In the preceding sections of this chapter all the equations considered involved
only trigonometric functions. Similarly in algebra courses, all the equations
studied involve only algebraic expressions (such as x?—2x + 1=0 or
x+V 3x —1=35). In this section we consider equations involving both
algebraic and trigonometric functions. These are somewhat more difficult to
solve but we shall see that the calculator will help considerably.

 

Examples

AN Solve the equation sin x + x = 0.

Solution. In problems of this type we shall rely on graphs to give us some
insight into possible solutions. We first write the given equation as sin x = — x

and draw graphs of y = sin x and y = — x on the same system of coordinates.
Solutions to our problem will be given by the x-coordinates of the points of
intersection of the two curves. We see from the diagram in Fig. 6.10 that there
is only one point of intersection—the origin—and so the solution set for
sin x + x = 0 is {0}.

y=—x

y =sinx

~
~ I 3 |
N
Y

N
x

3

 
Figure 6.10 1
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/2\ Find the solution set for the equation cos x — x = 0.

Solution. We first write the given equation in the form cos x = x, and then
draw the graphs of y = cos x and y = x on the same system of coordinates, as
shown in Fig. 6.11. We see that there is only one point of intersection, so our
problem is to find the x-coordinate of that point; we shall denote it by x.

  
Figure 6.11

There are systematic techniques for finding x, to any desired number of

decimal places, but these require the study of calculus. The present approach
makes use of the calculator and common sense.

Set the calculator in radian mode and then make a reasonable estimate of
the value of x, from the diagram; call it x, and then evaluate cos x, — x,. If
this number is positive, then x, is to the left of x,, that is x, < x, (look at the
graph); if it is negative, x, > x,. Of course, our goal is to find x, such that

cos x, — x, =0. It so happens that there is no finite decimal that has this
property, and so we shall be satisfied with an approximate answer, say, correct
to three decimal places. We compile a table containing our estimated values of
x and the corresponding values of cos x — x, and at each step our estimated x
will be based on the previous values of x and cos x — x.

From the diagram, a reasonable first guess at x, is 0.7.

 

Estimated x 0.7 0.72 0.74 0.735 0.736 0.739 0.7395
 

 (cos x) — x 0.065 0.032 —-0.0015 0.0068 0.0052 0.00014 — 0.0007  
 

We see that 0.7395 is to the right of x, and 0.739 is slightly to the left of

X,, and so x = 0.739 is an approximation of x, that is correct to three decimal
places. Note. An interesting approach to solving this problem is discussed in
Problem 12 of Exercise 6.5. i
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EXERCISE 6.5

In Problems 1 through 10, solve the given equation and give the answers correct to two
decimal places. If a problem has more than one solution, find the nonzero solution

nearest to x = 0 (if there are two such solutions, find the positive one).

Note. In each of the problems, x is necessarily a real number. For example, it does not

make sense to solve sin x = x with x in degrees since sin x is always a real number and

cannot be equal to x-degrees. Therefore be certain that your calculator is in radian

mode when you solve these problems.

1.

10.

11.

12.

sinx +2x=0 2. sin x—2-=0 3.cos x+x=0

. COS Xx = x2 5. cos x= 6. tan x =x

.tan x + 3x=0 8. sin x + x2=0 9. cos x +1=x2

sin x —3x2=0

Find the smallest positive solution of x sin x — 1 = 0. Hint. You may wish to write
this as sin x = 1/x.

In Example 2 of this section we used a guess approach to find the solution of
cos x — x = 0 to three decimal places. Now consider the same problem but try the

following approach.

Set your calculator in radian mode and start with any number in the display (this

is the feature that makes this approach interesting), then press . A new number
appears in the display; press again, and again a new number appears in the

display. Continue doing this (thatis, press the key repeatedly) and watch the
display to see what happens. If you eventually get a number in the display (call it

x,) that is not changing, then the calculatoris telling you that cos x, = x. Thisis
precisely the solution of cos x — x = 0 to the digit capacity of your calculator. Draw
graphs of y = cos x and y = x on the same set of coordinates and see if you can

analyze why this technique works.

The student is urged to try the technique described in Problem 12 on other
problems. The idea is to write your problem in the form f(x) = x and then start
with a guess (say x), evaluate f(x,), then evaluate f of this number (that is

S(f(x,)), and continue this. If your calculator display eventually does not change

(call the numberin the display x), then you have f(x,) = x,, which is the solution
of the given equation. As an example, try this approach to find the solution of
sin x — x? = 0 by considering Vsin x = x. Take 0 < x.< =, since we want sin x > 0
for V/sin x.

6.6 USING IDENTITIES IN SOLVING EQUATIONS

In this section we consider various types of equations; the identities of Chap-

ter 4 are used to transform the given equation into an equivalent equation that
we can solve.
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AN Find the solution set for 2(sin x + cos x)? = 1, where 0 £ x <2.

Solution. Each of the following equations is equivalent to the given equation:

2(sin?x + 2 sin x cos x + cos?x) = 1 (by algebra),

2(1 +2sinxcos x)=1 (by (1.9)),
2(1 + sin 2x) = 1 (by (1.18)),

sin 2x = — 4 (by algebra).

Therefore,

x=—F+k-2m or 2x=— 4 k-2m

where k is any integer. Then

__T __omX= 5 + km or X= 3 + km

We select those values of k that give values of x in the replacement set. In both
cases we use k = 1 or 2. Thus the solution set is

| Yr 23r Iz Lr) I
12° 12°12 12

A Find the solution set for cos x — sin (x/2) = 1, where —180° < x < 180°.

Solution. We use the double-angle identity cos 20 = 1 — 2 sin%0 to replace

cos x = cos[2(x/2)] by 1 — 2 sin’(x/2). Then the given equation is equivalentto

_ in2X_ _ qin 2X —I —2 sin®s sin 5-=1.

Simplifying and factoring, we get

Xx Xx(sin Xe sin =- + 1)=0.

Thatis,

sin 5=0 or sin X--1

From sin (x/2) =0 we get x/2 =0° as the only solution that gives x in the
interval — 180° £ x < 180°. Thus x = 0°. From sin (x/2) = — !2, we see that

angle x/2 is in the third or fourth quadrant, and so the only angle that gives x
in the interval — 180° < x < 180°, is x/2=-30°. That is, x=—60°.

Therefore, the solution set is {0°, — 60°}. i

A Find the solution set for sin 3x — sin x = 0, where the replacementset is

{x|0 Lx <n}.

Solution. In problems involving equations of the type f(x) = 0, we attempt to

express f(x) as a product (that is, to factor f(x)). We begin with identities 1.12

and 1.13:

sin(a + B) = sin a cos 3 + cos a sin (3,

sin(a — 3) = sin a cos 3 — cos a sin 8.

Subtracting these two, we get the identity
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sin(a + 8) — sin(a — 8) = 2 cos a sin 8.
   

To make this fit our problem, let « + 8 = 3x and « — 3 = x. Solving for «

and 8, we get a = 2x and $8 = x. Thus we have the identity

sin 3x — sin x = 2 cos 2x sin x.

That is, we have factored the left-hand side of the given equation and so we

have 2 cos 2x sin x = 0. This is equivalent to cos 2x = 0 or sin x = 0. Solutions
of these equations that are in the replacement set are: x = w/4 or 37/4 for
cos 2x=0, and x=0 or = for sin x =0. Therefore the solution set is

{0, w/4, 37/4, ©}. i

/A\ Find the solution set for the equation
cos’x + sin?x cos x — cos x =0, where 0 <x < 2m.

Solution. The given equation is equivalent to each of the following:

cos x(cos’x + sin2x) — cos x = 0,

cos x — cos x = 0.

In this form we have an equation that is satisfied by all values of x. Therefore
the solution set is equal to the replacement set {x |0 <x < 2x}. Thus the

given equation is an identity. i

A\ Find the solution set for the equation

(1 — tan?x)csc x tan 2x — 4 cos x = 0, where 0 < x < 27.

Solution. Using identity 1.20 of Section 4.4, we can replace tan 2x by
2 tan x/(1 — tan’x) and transform the given equation into

2csc x tan x —4 cos x =0.

In the process, we cancelled 1 — tan?x, and so the resulting equation may not
be equivalent to the given equation; we may have introduced extraneous values
that might be roots of the second equation but not of the first. Therefore,it will
be necessary to check the final answers.

Replacing csc x by 1/sin x and tan x by sin x/cos x, we get
2

Cos Xx
 —4 cos x=0.

This can be written as cos2x = % or cos x = +1/V/2. Therefore, the possible
solutions of the given equation are:

m Trx= I, asd aS In
If we check each one of these in the original equation, we see that none is a
solution. Therefore, the solution set is the empty set. Check to see that the
expression involved in cancellation, 1 — tanZx,is equal to zero for each of these

values of x. i
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EXERCISE 6.6

In Problems 1 through 5, assume that the replacement set is {x |0° < x £ 360°}. Find

the solution sets for the given equations. Provide answers in exact form. Check for
possible extraneous solutions when necessary.

1. 2(sin x — cos x)? =1 2. sin 2x —2 cos x=0 3. sin x — cos 2-=0

4. sin 3x +sinx=0 5.cos3x—cosx=0

In Problems 6 through 16, use the replacement set {x |0 < x < 2x}. Find the solution
sets of the given equations. Express answers in exact form if it is reasonable to do so;
otherwise, give answers to two decimal places.

6. 4(sin x + cos x)? =3 7. cos x tan x + sin 2x =0

8. cos’x + sin’x cos x + 3cosx + 1=0 9. cos x + cos x tan’x —2 sin x =0

10. sin? 2- +2 cos x = 1 11. tan x + cot x =3

12. cos 3x + cos x =0 13. cos x + sin 3-= 1

14. sin x cot x — cos 2x =0 15. 2 sin’x = cos’x

16. sin3x + sin x cos’x —sin x =0

REVIEW EXERCISE

In Problems 1 through 45, find all values of x that satisfy the given equations and

0 <x <2m. Express answers in exact form whenever it is reasonable to do so;
otherwise, give answers correct to three decimal places. Check answers when there is a
possibility that extraneous solutions may have been introduced.

1. 2cos x—1=0 2.2 sin x+V3=0

3.2sin3+1=0 4. 1+V3 tan x=0

S.3sinx—4cosx=0 6. 2tan x —Scotx=0

7. 6sin’x + Ssinx—4=0 8. sin’x + 2 cos’x =2

9. 3sinx—4cosx=35 10. 1 —tan’x =4

11. 2 cos’x—3 cos x=0 12. 2 sin x + cos x +V5=0

13. sin’x —2sinx +3=0 14. sin’x —cos’x + 1=0

15. 3cos2x + cos x —1=0 16. 2 sin x=V3 sin x + 1

17. 2 sin? 3- + cos x— 1=0 18. sin 2x = 2 sin x
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19. cos 2x =2 cos x 20.

21. tan(3 — x) = tan(- x) 22.

23. sin’x — cos’x = 0 24.

25. sin(Sin—lx) = x 26.

27. 3 CosIx +2=0 28.

29. sin(3F + x) +cos x=0 30.

31. V3 sin x—2=0 32.

33. 3cosx—x=0 34.

35. cos x=x—1 36.

37. 2 sin? 3- =1+cos x 38.

39. 3.42 cos?2x — cos x =0 40.

41. sin’x = 2 — cos’x 42.

43. 1 + Sin~lx=0 44.

45. cos x tan x + sin x = 1

sin( 2- + x) =sin x

cos’x —sin 2x =0

sin(Sin—1x) = 1

Sin~I(sin x) = x

2cos2x+1=0

tan(m + x) —sin x=0

tan’x —V/'3 tan x=0

l +sinx=x

sin2x —4 sin x cos x + 1 =0

1.42 sin’x — sin x =0

2sin®x—2cos’x + 1=0

1 + Cos~lx=0

sin x tan x + cos x = 1

In Problems 46 through 50, find all values of x that satisfy the given inequality.

46. Tan—lx > 1 47

48. tan x21 and —wr <x <7 49.

50. 2 Cos~lx 21

2 Sin—lx < 1

1 +cos x<0



 

 

CHAPTER SEVEN

GRAPHS OF
TRIGONOMETRIC

FUNCTIONS

7.1 GRAPHS OF GENERAL SINE AND COSINE FUNCTIONS

In Section 2.7 we discussed graphs of the six basic trigonometric functions.
We saw that the sine and cosine functions have period 2x. Thus, in graph-
ing y = sin x or y = cos x,it is sufficient to draw the graph for the interval
0 <x £27, and the remainder of the graph will be a cyclic repetition of that
portion.

In applications, one frequently encounters the problem of graphing more
general functions, such as

— qi T _ Ty=3 sin(2x — =) or y=-2 cos(mx + z)-

These are particular examples of a general class of functions described by the
equations
 

y = a sin(bx + ¢),

y =a cos(bx + ¢),
(7.1)

   
where a, b, and c are called parameters; that is, they are given real numbers in

any particular case. We make the obvious exceptions that a + 0 and b # 0.

In this section we are interested in exploring the graphs of the functions
described by Eqs. (7.1). We shall do this by considering a sequence of special

cases to determine the role played by each of the parameters in the process of

drawing such graphs.

1. Functions of the Form y = a sin x

We first consider three particular examples and from these we shall make some

general observations concerning the role of parameter a.

195
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Examples

A Draw the graph of y = 3 sin x.

Solution. In order to discuss the graph of y = 3 sin x, we first draw the graph
of y = sin x shown by the broken curve in Fig. 7.1 (see Section 2.7).

It is clear that for a given value of x, the value of y in y = 3 sin x is three
times the corresponding value of y in y = sin x. Thus we get the solid curve
shown in Fig. 7.1.

 

 

 
Graph of y = 3 sin x

Figure 7.1 i

A Draw the graphs of y = % sin x and y = — 2 sin x.

Solution. To draw the graphs of these two equations, we can follow a pattern
similar to that used in the preceding example. They are shown in Figs. 7.2 and
7.3, where again the broken curve represents y = sin x and the solid curve

corresponds to the given equation. Note. For y = — 2 sin x, the values of y are

 
Graph of y = : sin x

Figure 7.2
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Graph of y = —2 sin x

Figure 7.3

obtained from the corresponding values of y = sin x by multiplying them by

— 2. The negative sign has the effect ofreflecting the y = 2 sin x curve about the
X-axis. i
 

In these examples we make the following observations: Each curve is
periodic and has the same period of 2x as y = sin x. Each curve oscillates about
the x-axis in a similar fashion reaching its highest and lowest points at fixed
distances from the x-axis. We describe this feature by introducing the word
amplitude to represent the maximum distance of the curve from the axis about
which it oscillates. We say that the amplitudes of y =sin x, y= sin x,

y= Yin x, and y = —2 sin x are 1, 3, !2, and 2, respectively.
The properties observed in the above examples hold for all equations of

the type y = a sin x. Thatis, the graph ofy = a sin x oscillates about the x-axis
with a period of 2x and an amplitude of |a|. Thus the parameter a determines
the amplitude.

2. Functions of the Form y = sin bx

Again we consider special cases that will give us some insight into the role of
parameter b.

 

Examples

A Graph of y = sin 2x.
We first recall that sin(fd + 27) = sin 0 for every value of 6. If we replace 6

by 2x, we have sin(2x + 27) =sin 2x. Thatis, sin (2(x + 7)) = sin 2x for each

value of x. This means that the curve y = sin 2x will repeatitself every = units

on the x-axis. Therefore, it is sufficient to draw the graph for the interval
0 < x £7 and the remainder of the curve will be a cyclic repetition of this
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portion. We can get a reasonably accurate graph by using the equally spaced
values of x, as given in the accompanying table:
 

 

rT x 3 x sw 3 Ir
x10 + ZT 3 7T 3 FT 3 OC

le v2 vm, va va
2 2 2 2    
 

These are plotted in Fig. 7.4, and the graph of y = sin 2x is drawn.

1
9
1 w 3

 
Graph of y = sin 2x

Figure 7.4

We see that the graph of y = sin 2x is equivalent to the graph of y = sin 6,
where 6 = 2x. That is, the graph of y = sin 2x is a sine curve with period = and
amplitude 1. i

2 Graph of y = sin(— 3x).

We first use identity 1.4 of Section 4.1, which allows us to replace

sin(— 3x) by — sin 3x, and so our equation is equivalent to

y = —sin 3x.

Next we observe that

sin 3x + x) = sin(3x + 27) = sin 3x

for each value of x. This means that the curve y = — sin 3x will repeatitself on
consecutive intervals of 27/3 units on the x-axis. Therefore, it is sufficient to
draw the graph for the interval 0 < x < 27/3. We use the set of points given

in the accompanying table to draw the graph shown in Fig. 7.5:
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y 0 _V2 —1 _V2 0 v2 1 Va 0
2 2 2 2  
 

Thus the graph of y = sin(— 3x) is a sine curve with amplitude 1 and period
2m/3.
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Graph of y = sin (—3x)

Figure 7.5 i

 

From the above two examples we can draw the following conclusions
concerning the general case. The graph ofy = sin bx is a sine curve with period
2r/|b| and amplitude 1. Thus parameter b determines the period of the
function described by y = sin bx.

3. Functions of the Form y = sin(bx + ¢).

We consider two examples from which we shall get some insight concerning the

role of parameter c.

 

Examples

A Graph of y = sin(x + z).

Suppose 0 = x + 7/4; first draw the graph of y = sin 6. This is a standard
sine curve with period 2= and amplitude 1, as shown in Fig. 7.6(a). We can

now use this curve to draw the graph of y = sin(x + =/4) by noting that for

each point (f, y) on the y =sin # curve, we have a corresponding point
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(x, y) = (0 — 7/4, y) on the graph of y = sin(x + =/4). That is,

Cw) T\ T TT)y= sin(x + z) = sin ((6- z) + =) = sin 0.

This is shown in the accompanying table, which gives the value of y for each
of the corresponding values of § and x:
 

 

 

  

us T Ir om 3 Ir
6 0 4 2 4 T 4 2 4 2m

Ls mr La 3r mr Ir Ir
x |-7 0 4 2 4 i 4 2 4

V2 V2 V2 V20 Y= 1 ¥Y2 0 NY 3 _Y¥Y2 9
Y 2 2 2 2 
 

We can now plot the (x, y) points from this table and draw the graph of
y =sin(x + 7/4) as shown in Fig. 7.6(b). The solid portions of the curves
shown in Fig. 7.6 correspond to the points given in the table.

We observe that in this example we can draw the graph ofy = sin(x + 7/4)

by taking the standard sine curve y = sin x and moving it 7/4 units horizon-

tally to the left. This type of horizontal translation of the standard curve is

called a phase shift. We say that the graph ofy = sin(x + 7/4) has a phase shift

of 7/4 units to the left.
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Graph of y = sin 0 Graph of y = sin (x+5)

(a) (b)

Figure 7.6 1

/2\ Graph of y = sin(2x — 7).

We first write the equation in the form y = sin 2(x — 7/2) and then assume

# = x — w/2. From our observations concerning Fig. 7.6(b), we conclude that
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the graph of y = sin 20 is a sine curve of period 27/2 = = and amplitude 1; it
is shown in Fig. 7.7(a). Following a procedure similar to that of the preceding

example, we can draw the graph of y = sin 2(x — =/2) as shown in Fig. 7.7(b).
The solid parts of the curves in Fig. 7.7 correspond to the points given in the

table:

 

 

 

0 0 ul mr 3m rr Sm 3 Tn .
8 4 8 2 8 4 8

2 8 4 8 8 4 8 2

y 0 v2 1 v2 0 _ V2 —1 V2 0
2 2 2 2    

We note that the graph of y = sin(2x — 7) = sin 2(x — 7/2) is a sine curve

with period = and phase shift 7/2 to the right.
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Graph of y = sin 20 Graph of y = sin (2x — m)

(a) (b)

Figure 7.7 i

 

From the preceding two examples we conclude the following: The graph of

y = sin(bx + c) is a sine curve with period 27/ |b |, amplitude 1, and phase shift
|c¢/b|. Thus the parameter ¢ (along with b) determines the magnitude of the
phase shift.

If the sine function were replaced by the cosine function in each of the

above cases, we would arrive at similar conclusions. We are now in a position

to summarize the properties of graphs of the general sine and cosine curves

y =a sin(bx + ¢) and y = a cos(bx + ¢).
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A. The graph of y =a sin(bx + ¢) is a sine curve with period
27/|b|, amplitude |a|, and phase shift |c/b| (that is, the curve
y =a sin bx is moved |c/b| units to the right if ¢/b <0, and to
the left if ¢/b > 0).

B. The graph of y =a cos(bx + ¢) is a cosine curve with period

27/|b|, amplitude |a|, and phase shift |c/b]|.   
 

Example

a) Draw the graph of y = — 4 sin(7w/2 — 2x).

b) Find the domain and range of the function defined by

f(x)=—4 sin5 — 2x).

Solution.

a) We first write the given equation as y = — 4 sin[-2(x — 7/4)] and then

use identity (1.4) of Section 4.1, thatis, sin (— f) = — sin 6; we get

y =4 sin 2(x — =).

This equation is equivalent to the given equation and this is the form we use to
draw the graph. From (A) we see that the graph is a sine curve with period
27/2 = mw, amplitude 4, and phase shift 7/4. Thus, we first draw the graph of
y = 4 sin 2x (the broken curve shown in Fig. 7.8) and translate it =/4 units to
the right to get the curve we want (shown as the solid curve).

As a check we suggest locating a few ‘‘key points” on our graph by finding
pairs of numbers (x, y) that satisfy the given equation. Such points are the

 

 

 

Graph of y = —4 sin (3 — 2)

Figure 7.8
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x-intercepts given by y = 0, that is, sin(w/2 — 2x) = 0, and the highest or lowest
points given by y = + 4, that is, sin(w/2 — 2x) = + 1. These are given in the
following table and we see that they are points on the solid curve of Fig. 7.8:

 

 

Tr I 3m Sm
x 4 2 4 g 4

y 0 4 0 —4 0    
 

Note. Since sin(w/2 — 2x) = cos 2x is an identity, we could have written the

given equation as y = — 4 cos 2x and used this equation to draw the graph.
b) From the graph in Fig. 7.8 we see that

D (f) = {x|x is any real number},

R(f)=1y|-4<y<4} I
 

EXERCISE 7.1

In the following problems, give the period and amplitude of the functions defined by the

given equations. Then draw a graph of one complete cycle of the curve.

I. y=2sin x 2. y=—3sinx 3. y=—4cosx

4. y=2cos x 5. y= sin x 6. y= 3 cos x

7. y =sin 3x 8. y =sin 3- 9. y =—2cos 3x

10. y = 3 sin(— 2x) 11. y = —4sin(— x) 12. y = 3 sin(wx)

13. y=-3 cos( 5- x) 14. y = sin(— 37x) 15. y = — 2 cos(— mx)

16. y = —2 sin 4x 17. y = sin( x + z) 18. y =sin(2x + m)

19. y =cos(3x — 7) 20. y = —cos(m — 2x) 21. y=4sin(3x — 7m)

22. y — — 3sin(r — 2x) 23. p= 2 sin(2x + Z] 24, y== cos(— 3x + 3)

25. y=—3sin(2rx + m) 26. y=sin(Z mx) 27. y=—3cos (2x + 1)

28. y= sin m(3-%) 29. y=-3 cos( 2mx — = 30. y=v2 sin4 + 2)

7.2 GRAPHS OF TANGENT AND COTANGENT FUNCTIONS

In Section 7.1 we discussed in some detail the graphs of the sine and cosine

functions. In this section we treat the tangent and cotangent functions in an

analogous fashion but omit the details and merely give the following summary.
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In Section 2.7 we discussed the graphs of the equations y =tan x and

y = cot x, and we suggest that the student review them at this point. We noted

that the graph of each has a period =.
We now give a summary for the general case and then include two

examples to illustrate how such graphs can be drawn.

 

A. The graph of y = a tan(bx + ¢)is a tangent curve with period 7/ |b].

B. The graph of y = a cot(bx + c) is a cotangent curve with period 7/ |b].

   
Note. There is no amplitude associated with any of these curves. Also, the

phase shift of each is |¢/b|, although it is not common practice to talk about
phase shift for these curves.

 

Examples

AN Draw the graph of y = 3 tan(2x — 7/2).

Solution. From (A) we conclude that the graph of this equation is a tangent

curve with period =/2. We first locate a few key points that will allow us to
draw the essential features of the graph. The tangent function has no maximum
or minimum values; therefore we do not look for highest or lowest points.
However, tan 6 is not defined for certain values of 6; these values determine

vertical lines called asymptotes to the curve.*
Therefore, the key values of x that will help us draw the graph are:

a) x-intercepts: These are the values of x for which tan(2x — =/2) = 0; and

so 2x —7/2=0, =, 2m,..., —w, —2m,... That is, the intercepts are

x=x/4, 3r/4, 57/4, ..., —7/4, “37/4, ...

b) Asymptotes: These are given by the values of x for which tan(2x — 7/2)
is not defined: that is, 2x — 7/2 =7/2, 37/2, ..., —w/2, =3w/2,...; and so

x=n/2,7,...,0,—m/2,...

We include these key values of x along with a few intermediate values in
the following table. Since the curve has a period 7/2, the table includes
intermediate values only in the interval 0 < x < w/2 (the U indicates that the

y-value is undefined):

 

3 SUE SsI
0 16 4 16 8 16

= |

N
o jr Tr =

4 16 8
 

y U 0 U-724 -3 -124 0 124 3 724 U 0 U    
 

* We say that a line is an asymptote to a curve ifits points get closer and closer to the points of
the curve. For example, from Fig. 7.9 we see that the line x = 7/2 is an asymptote to the given
curve. Similarly, x = 37/2, x=57/2, ...,x=0, x=—=/2, ... are all asymptotes to the given
curve.
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Graph of y = 3 tan (2x - 7)

Figure 7.9

We now plot these points and draw the graph shown in Fig. 7.9.
Note. Since tan(2x — w/2) = — cot 2x is an identity, then the given equationis

equivalent to y = — 3 cot 2x and we could have used this equation to draw the

graph. i

/2\ Draw a graph of y=2 cot(%-).

Solution. Following a pattern similar to that of the previous example, we first
locate some key points.

a) x-intercepts: These are the values of x for which cot (x/2) = 0; that is,

x/2=m/2,3%/2,...,—7/2,-37/2,... Thus x=m, 3m, ..., —mw, =37, ...

b) Asymptotes: These are given by values for x for which cot (x/2) is

undefined; that is, x/2=0, 7, 2m,..., —7w, 27, ... Thus x =0, 27, 4m, . . .,

—2r, —4m, . ..

From (B) we find that our curve is a cotangent curve with period

mw + Y% = 2m. Next we make a table of (x, y) values that includes key points and
some intermediate points for 0 < x < 27. Then these are plotted and the curve

is drawn, as shown in Fig. 7.10 (here again, U indicates that the y-value is

undefined):

 

3r Sm Ir Ir
= T = =L LAS 2 3r 47Tom

Xx |=2r -= 0 + 5 3 4 2 4
 

   y U 0 U 483 2 08 0 -083 —2 —483 U 0 U
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Graph of y = 2 cot ( x)

Figure 7.10 i
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EXERCISE 7.2

In the following problems: a) determine the period of the given function; b) make a

table of x, y values of the function using selected key values of x; c) draw a graph of

the given function.

I. y=3tan x 2. y=—3tan2x 3. y=—2cotx

4. y=3 cot X 5. y=2 tan(- %) 6. y=—3 tan(Z- x)

7. y=—4 tan(2x + z) 8. y=—3 cot(2x — z)

9. y=2 tan(mx — = 10. y= cot Z- x—)

11. y=V/3 tan a(x +2) 12. y=3 tan(2x + 1)

7.3 GRAPHS OF SECANT AND COSECANT FUNCTIONS

In this section we consider the graphs of functions of the type described
by y=a sec(bx +c) and y =a csc (bx + ¢). The graphs of y =sec x and

y = csc x were discussed in Section 2.7; we suggest that the student review
them at this point. Repeating the pattern of Section 7.2, we state the following

conclusions:

 

A. The graph of y = a sec(bx + c) is a secant curve with period 27/ |b].

B. The graph of y = a csc(bx + c¢) is a cosecant curve with period 2x/ |b].
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Note. We do not associate amplitude with these curves. Also in each case we
can use |c/b| to describe a horizontal translation of a secant or cosecant
curve, but it is not common practice to talk about phase shift for these curves.

 

Examples

AN a) Draw a graph of y = 2 sec(rx — 7/2).
b) Determine the domain and range of the function described by

Six) =2 sec(rx — 7/2).

Solution.

a) The graph of this equation is a secant curve with period 27/7 = 2.
Therefore, it is sufficient to draw the graph corresponding to the inter-
val 0 <x £2. We first determine some key values of x that will give

the essential features of the graph, that is, the x-values for which
sec (mx —w/2)=+ 1 or is undefined (U). We include these and a few
intermediate values in the following table:
 

 

    

 

 

1 1 3 3S 3 1
x 0 4 2 4 I 4 2 4 2

y u 2v2 2 22 U 22 2 2/2 U

y ! A I

| | ¥ j|
| 1 |
| !

| \ / |

| 2 F | | ver’ |
1 2.2

| 1 (3-2) 3 (3 ) |
2 | 2

} | 1 } | + | + x

—1 0 1 1 2 5 3

| Pol, CoCa), Go |
TN | || / \ | |

| \ | | |
|
|

|

Graph of y = 2 sec (mr - 7)

Figure 7.11
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We plot the points from this table and then draw the graph, as shown in Fig. 7.11.

The solid portion of the curve indicates a complete cycle and the broken vertical lines

are asymptotes for this curve.

b) From the graph in Fig. 7.11 we see that the domain and range offare given by:

D (f) = {x |x is any real number and x is not an integer}.

R(f)=1{yly2-2 or y22}.
Note. Since sec(rx — 7/2) = csc wx is an identity, the given equation could have been

written in equivalent form as y = 2 csc wx. We could have used this equation to draw

the graph. 1
 

EXERCISE 7.3

In each of the following problems: a) determine the period of the function; b) make a
table of x, y values using key values of x, as suggested in the example of this section;
c) draw a graph of the given function:

1. y=3secx 2. y=—2secx 3. y=—3sec2x

4. y=4 csc 3x 5. y = csc(3mx) 6. y =2 sec(2mx)

— w — r7. y=3 osc(2mx + z) 8. y=4 sec(x +3 )

9, y=-2 sec(2x — 7 10. y=2 sec(3x — 7)

7.4 GRAPHS OF TRIGONOMETRIC AND ALGEBRAIC FUNCTIONS

In the preceding three sections we considered graphs of trigonometric func-

tions individually. In this section we discuss the problem of drawing graphs of

equations that involve algebraic functions as well as trigonometric functions.

The technique employed is best illustrated by examples.

 

Examples

AN Draw a graph of y = 2 + sin x.

Solution. We first draw a graph of y = sin x (call it ¢,). This is shown by the

broken curve in Fig. 7.12. Since the y-values for the curve we want are greater

by 2 units than the corresponding y-value on c,, it should be clear that our

curve can be obtained by moving ¢, two units vertically upward. Thus we
obtain the curve shown in Fig. 7.12.
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Graph of y =2 +sin x

Figure 7.12 i

/2\ Adding ordinates. Draw a graph of y = x/3 + sin x.

Solution. A direct approach would be to make a table of corresponding values
of x and y that satisfy the given equation, plot these points, and then draw the
graph. This is essentially what we are going to do, except that we shall draw
two auxiliary curves and use them to draw the graph of the given equation.

Let C, denote the graph of y, = x/3 and C, the graph of y, =sin x, as
shown by the broken curves in Fig. 7.13.
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Graph of y =3 + sin x

Figure 7.13
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It is clear that for each x, the corresponding value of y is the sum of y, and

y, for that value of x. And so we geometrically add the corresponding

ordinates of C, and C, to get the ordinates of the graph for the given equation.

This is illustrated in Fig. 7.13 for x = x; the corresponding value of y = y, is
obtained by adding a and b. We also make an observation concerning the key
points labeled 4, B, C, D, and FE in Fig. 7.13. If we take the values x = —m, 0,

mw, 2m, 3m,then in each case the corresponding value of y, = sin x is zero, so
the value of y is y, = x/3. Thus the curve passes through points on the line
y, = x/3 given by (kw, kn/3), where k is any integer. That is, the graph of
y=x/3 +sin x is a curve winding around the line y = x/3, as shown in
Fig. 7.13. i

A Multiplying ordinates. Draw the graph of y = x cos x.

Solution. In a manner similar to that of Example 2 we first draw the graphs of
y, =x and y,=cos x on the same system of coordinates, as shown by the

broken curves in Fig. 7.14.
We see that for each x, the corresponding value of y is the product of y,

and y, for that value of x. We can locate some key points on the curve by
noting that:

1. Whenever the curve y, = cos x crosses the x-axis, the corresponding value
of y, is zero; therefore y = y,- y, = 0. Thus points given by x = (2k — 1)m/2

(where k is any integer) and y = 0 will be on the desired curve, as shown in

Fig. 7.14.

D: (2m, 2m) /

 

  
Graph of y = x cos x

Figure 7.14
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2. For values of x such as —w, 0, =m, 2w, the corresponding values of

y,=cos x are 1 or — 1, and so the corresponding points on our curve will be
on the line y, = x or y', = —x. These points are indicated by 4, B, C, D in
Fig. 7.14. Thus the graph of the given equation oscillates between the lines
y, =x and y', = —x, as shown in Fig. 7.14.

 

EXERCISE 7.4

In the following problems, draw the graph of the given equation.

1. y=1 +sin x 2. y=2—cos x 3. y=2+2sinx

4. y=2x + sin x S. y=2x + cos x 6. y=x—2cos x

7. y=sin x — 1 8 y=2cosx—-3 9. y=xsin x

10. y = 2x cos x 11. y=—x cos 2x 12. y = x sin(— 2x)

13. y=Vx sin x 14. y =x + sin x 15. y =Vx + sin(— x)

16. y=Vx-cos 2x

7.5 THE USE OF IDENTITIES IN GRAPHING

There have been several instances in this textbook where our approach to
solving problems involved a sequence of steps in which the given problem was
transformed into an equivalent one with a known solution. In this section we
discuss the problems of drawing graphs of equations in which trigonometric
identities are used to transform the given equation to an equivalent one whose
graph may be familiar to us.

 

Examples

AN Draw the graph of y = (sin x + cos x).

Solution. We first write the given equation in the following equivalent forms:

y = sin2x + 2 sin x cos xX + COs’x (by algebra)

=1+ 2 sin x cos x (by (1.9)

= 1 + sin 2x. (by (1.18).

We recognize the final form as an equation of the type discussed in the

preceding section. It is a sine curve (of period 27/2 = 7) that winds about the
line y = 1, as shown in Fig. 7.15. i
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Graph of y = (sin x + cos x)?

Figure 7.15

/2\ Draw the graph of y = 3°°° 2¥. 3sin’x — cos’x

Solution. The given equation can be written in the following equivalent forms:

cos 2x + (sin’x — cos?x)
y=13
_ 3c08 2x — cos 2x

(by algebra),

(by (1.19).

Therefore, the given equation is equivalent to y = 3°= 1 and its graph is the
line y = 1, as shown in Fig. 7.16.

 

1

  0

Graph of ): = 3°08 2x. 3(sin’x - cosy)

Figure 7.16 i

A Draw the graph of y = sin x + V3 cos x.

Solution. In this problem we follow a procedure similar to that used in Section
6.3. That is, we factor from the right-hand side,

VI2+ (V3)2=Va=2

1 V3y=25 sin x + > cos x).

We now replace 1/2 by cos (7/3) and V3/2 by sin (7/3) and get

. wT : m™
y =2(sin x cos 3 +©0s x sin Zz)

and so
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By identity (I.12) we have
— qi usy=2 sin(x + z)

We recognize wus as a type of equation discussed in Section 7.1. Thus the
graph of the given equation is a sine curve with period 27, amplitude 2, and
phase shift 7/3. This is shown in Fig. 7.17.

 

l | | | x
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Graph of y =sin x ++/3 cos x

Figure 7.17 i

/A\ Draw the graph of y = cot ( Cos! Se).
V1 + x?

Solution. Let

§ = Cos—! —X | then cos l= —X
Vite Vite

Since Cos! is the principal-value inverse cosine function, the angle § must

lie within 0 £0 <7; so we draw 6 in the first quadrant (if x > 0) or in the

second quadrant (if x < 0) (see Fig. 7.18). In either case, cot 6 = x, therefore

the given equation is equivalent to y = x. Thus the graph is the straight line

shown in Fig. 7.19.

1 +x?

 

Figure 7.18
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 Graph of y = cot Cos! xX

1+ x2

Figure 7.19 i
 

EXERCISE 7.5

In the following problems: a) determine the domain of the given function; b) draw a
graph; c) state the range of the function.

1. y =(cos x — sin x)? 2. y = cos*x — sin‘x

3. y=2cos x tan x 4. y= sin x cos x

5. y = 2 sin?x cot x 6. y=V3 sin x — cos x

7. y =sin x + cos x 8. y=sin x — V3 cos x

9. y=cos x —sin x 10. y = (1 — tan x) tan 2x

11. y= (1 — 2 sin’) sec 2x 12. y= 308% 3sin’x

13. y=cos 2x —V/3 sin 2x 14. y = cos’x + cosx tanx

15. y = cos(Cos—lx) 16. y = sin(Sin~lx)

17. y= 48in X €Os x 5 —sin 2x 18. y= 2 cos? X

. Xx . Vxi—1
19. y= tanSin~!ee) 20. y = cos (Sin! yx -1)

V1 + x? x

REVIEW EXERCISE

In the following problems, the given equation defines a function. a) Is this function

periodic? If it is, find the period; b) state the domain ofthe function; ¢) draw a graph;
d) use the graph to give the range of the function.



11.

13.

15.

17.

19.

.y=2cos x

.y=1+tan x

.y=1-cos x

.y=3cotx

. y=6sin x cos x

y=—2sin 2x

y=X+COS X

y=Vsinx—1

y =sin 2Ax- ZI)

y = sin(Sin~lx )

10.

12.

14.

16.

18.

20.

Review Exercise 215

. y= 3sin(— x)

. y=4sin 2x

. y =sin(x + %)

. y= |sin x|

y=-—2secx

y = cos’x — sin’x

y=2x-sinx

py =sin x + COS X

y =tan(2x + m)

y = Sin~l(sin x)





 

 

CHAPTER EIGHT

COMPLEX NUMBERS

8.1 INTRODUCTION

The system of real numbersis essential in the development of pure mathematics
as well as applications of mathematics. However, even a simple problem, such
as finding the roots of the equation x? + 1 = 0, has no solution in the set of real

numbers. To remedy this, we complement real numbers by adding the so-called
imaginary numbers. The union of the real numbers and imaginary numbers is
called the set of complex numbers. The system of complex numbers is of great

importance in physics, engineering and abstract mathematics. In this chapter
we shall use trigonometric functions to aid us in dealing with complex
numbers.

In algebra courses the student has studied the basic properties of real

numbers relating to the four binary operations (+, —, x , +) and to the order

relations ( < ) and ( >). When the imaginary numbers are introduced into the

system, it is necessary to investigate the properties of addition, subtraction,

multiplication, and division as they apply to complex numbers. In the system

of complex numbers it is not possible to define an order relation similar to that

of the real numbers; thatis, we do not talk about one imaginary number being

smaller or greater than the other.

In this chapter we discuss some of the elementary properties of complex

numbers and focus most of our attention on operations with imaginary

numbers since everything we have already learned about real numbers will still

be true within the system of complex numbers.

We define imaginary numbers in terms of real numbers as follows:

 

If a and b are real numbers (b # 0) and i is a new symbol defined by

the property i? = — 1, then a + bi is called an imaginary number.    

217
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We call a the real part and b the imaginary part of a + bi. If a = 0, then we say
that bi is a pure imaginary number. We write i = V/— and apply ordinary rules

of algebra in working with complex numbers. Examples of imaginary numbers

are: 3+4i, 5—2i, V3 +i, —17i, =2i, 1/7 —((1 +V5)/2)i.
We can think of the set of complex numbers as all numbers of the form

a + bi, where a and b are any real numbers; a + bi is called standardform ofa

complex number. If b=0, we have real numbers, while if b#0 we have

imaginary numbers. Suppose a, b, ¢, d are real numbers. We state the following

definitions related to two complex numbers a + bi and ¢ + di:

 

Equality: a+ bi=c+diif and only if a=c and b=4d.

Addition: (a+ bi)+(c+di)y=(a+c)+ (b+ adi

Subtraction: (a+ bi)—(c+di)=(a—c) + (b-4d)i.

Multiplication: (a + bi) - (c + di) =(ac — bd) + (ad + bc)i.

Division: (a+ bi)+(c+diy=9c¢+bd , bc—ad;
c+ d? ct +d?

where ¢ and d are not both zero.  
 

The definitions of equality, addition, and subtraction appear to be natural,
while the last two need some explanation. They can be deduced by thinking of

a + bi and c + di as algebraic expressions and applying the familiar rules of
algebra, except that we replace i by —1. For example, the definition of division

comes from the following:

a+bi_(a+bi)(c—di) _ ac+ bci— adi — bdi*
c+di (c+d)(c—d) ct — di?

_ac+bci—adi + bd _ (ac + bd) + (bc — ad)i
+d ct +d

_ac+bd  bc—ad;
+d? +d

Actually this is the pattern we shall use in dividing two complex numbers,
rather than substituting directly into the above definition.

In the above division process the first step involved multiplication of

numerator and denominator by ¢ — di. We call ¢ — di the complex conjugate of

the number ¢ + di. We shall use the following notation:
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If z= x + iy, where x and y are real numbers, then the conjugate of z
is denoted by z; that is z =x — iy.

   

1. Square Root of a Complex Number

The square root of a nonnegative real number b is defined as a number x that
satisfies x? = b. For example, for VV 4 we solve x2 = 4; there are two numbers

(x =2 and x = — 2) that satisfy this equation. We choose 2 as the principal

square root and write V4 =2. In a similar fashion we can talk about the
square root of any negative number. For example, if V—4 =z,
then z2=—4. There are two complex numbers that satisfy this equation:
z=2iand z= —2i. We choose z=2i as the principal value and write
V—4=2i

This leads us to the definition:

 

The square root of a real number is given by:

1) if 20, then Va is a nonnegative number whose square is a;

2) if a <0, say a= —b, where b > 0, then Va=V-b=Vbi.    
As illustrations we have: V9 =3; V—16 =V16 i =4i; V—2 = V21.
In Section 8.5 we shall describe a technique that can be used to evaluate

square roots of complex numbers. In this text we are not interested in defining
principal-value square roots of imaginary numbers; this is a topic of study in
a course on complex variables. However, as one more example we consider the
problem of expressing Vi in standard form as a complex number.

Let z=Vi and so z2=1i. Suppose z =x + iy, where x and y are real

numbers. We want x, y such that

(x + iy)? =i.

This is equivalent to

x2 — py? + 2xyi =i.

From our definition of equality of two complex numbers we have

x2—y?=0 and 2xy = 1.

Solving these two equations simultaneously we find x = 1/vV2, y=1/2 or

x=-1/V2, y=-1/V2. Thus

z=4 1 and z=-—— —L_; Lj
v2 V2 V2 V2
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are possible values of i. We can take the first answer as the principal value
and write

j= 1,1
vi v2 V2

2. Quadratic Formula

In algebra the student learns thatif a, b, c are real numbers and a # 0, then the
quadratic equation ax’ + bx + ¢ = 0 has two roots given by

_—b+Vb—4dac

- 2a

It is possible to show that this result can be extended to allow a, b, ¢ to be any

complex numbers. If b2 — 4ac is an imaginary number, then we encounter the

problem of determining the square root of such a number. We shall see how
this can be done in Section 8.5.

xX

 

Examples

AN Write the following expressions as complex numbers in standard form:
a) (3+ 4i)+ (5-28) b) 2-3) —(—4 +1

c) B3—-4)2 +1) d) (1-30) + (3+ 4)

Solution

a) B+4)+(5-8)=3+5+4-8)i=8—4i

b) 2-3)—(—4+D)=QLQ+4)+(-3-1)i=6-—4i

¢) 3-42 +i)=6+3i—8i—4i*=6—-5{+4=10-5i

d) (1-3) + (3+ 4) =3—2t = 0300-40) 313i + 122
 

 

+ 4i (3 + 4i)(3 — 40) 9 _ 1612
_3-13i—12 _-9-13i_ _9 _13

9+ 16 25 2525 I

IN If fz) =z + 22 — 3, find £(1 + i).

Solution

fA+D)=0+) +21 +)? =-3=1+3i+32++2(1 +2i+i*)—3

=1+3i—-3—-i+2+4i—2-3=-5+ 6.

Note that we used the familiar rules of algebra, treating i as though it were a

variable and replacing i? by —1. i

A If z=2—1, find

a) z b) z.-z Cc) z/z
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Solution

a) z=2+1

b) 2.2=Q2-)Q+i)=4—i2=4+1=5

  

 

0 Z-2+1_(Q2+D2+1) _4+4i+ 2 _4+4i—1 3.4;
z 2—-i @Q-D2+) 4 — 2 4 +1 5 5

/A\ Find the roots of 22% + 2iz — 1 = 0.

Solution. We apply the quadratic formula and get

,o —2ixV(Q2i)’—-4-2-(-1) _ -2i+V-4+38 __ 1; 1
2.2 4 S272

Therefore the roots are: z = +1 — +i and z = —

|
—

[\
®)

A Evaluate (2 + V=3) (2 — V=3).

Solution

2+V-3)2-V=-3)=2+V3)2-V3i
=2—(V3i2=4-32=4+3=1.

/\ Is z=1+V3i a zero of the polynomial P(z) =z? — 2z + 4?

Solution. To say that a number is a zero of the function P(z) is equivalent to

saying that it is a root of the equation P(z) =0. Thus, we are asking “Is
z=1+V3i a root of the equation z2—2z + 4=0?" To answer this, we

evaluate

PA+V3d)=0+V3i)-20+V3i)+4

and see whether the result is equal to zero:

PA+V3i) = 1+V3d=2(1+V3i)+4
1+2V3i+30)—-2-2V/3i+4

1+2V3i—3-2-2/3i+4

(1-3-2+4)+2V3-2/3)i

= 0+0i=0.

Therefore, the answer to the given question is YES.
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EXERCISE 8.1

In the following problems express answers in the form a + bi, where a and b are real

 

  

 

 

numbers.

1. Evaluate the following:
a) i b) i c) i*? d) iV’

e) (—i) f) (=i)? g) (0)? h) (=

2. Evaluate the following:

1 3+ 14 2520 1
a) — b)5 c) 2i*—3i d) oT

3. Evaluate the following:

a) V9-V16 b) V9 V-16 c) V-9v-16

oY 0) Y= n=
V—16 V16 V—16

4. If z=1— i, evaluate the following:

a) z2 b) > ¢) 322 — 27°

d)z.z e) (z)° fyz+z

5. If f(z) = 2 — 3z — 22, determine the following: |

a) f(-2) b) £(1 +1) c) (+1)
v2 V26. Show that

2) (+ ; i) =i b) (=~ 1 i)=i

V2 V2 V2 V2
7. Showat J3

Cave we)2 —- 1. Yo |a (Le Ly i b) ytd

8. Find the complex numbers that might possibly be used for vV—i. That is, find the
complex numbers z such that z2 = — i.

9. Express the following in standard form a + bi:

a) V=4+ (3-5/4) b) (V=48 + 2)-v=27 c) V—8 (2 + V=2)

_ 1 V-=-2
d (1+vV-8)(1-v-8 e f) ——» (Le v=B)(1-VE) 0 ) TVs

10. Determine the roots of the given equations:

a) 22—-3z+4=0 b) 3z2+z—-1=0 c) z2+16=0

11. Determine the roots of the given equations:

a) 2z22-3iz+2=0 b) z2+2iz+3=0

Cc) iz?—-3z+i=0 d) 2iz2+z+i=0
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12. If z = x + iy (where x and y are real numbers), prove that

a) the real part of z is equal to (z + 2)/2

b) the imaginary part of z is equal to (z —z)/2

13. Determine real numbers x and y that satisfy the equation

x=3y—CBx+y)i=—-T7+1.

14. Solve the equation z—3z =1 + i for z. (Let z= x + iy, then find x and y.)

15. Determine all pairs of real numbers x, y such that:

x2 +2x+yi=2+y+ (8 —x)i.

16. a) Is I + i a root of the equation z? — z+ 1 —-i=0?

b) Is 1 —i a root of the equation given in (a)?

17. Is —3i a root of the equation 2z°* — z? + 182 — 9 =0?

18. Is 1 —V/5i a zero of the polynomial z} — z2 + 4z + 6?

19. a) Is 1 —i a root of the equation z* — 322 + 2z — 1 —-i=07?

b) Is 1 + i a root of the equation given in (a)?

20. a) Is 1 + V/3i a root of the equation z* — 322 + 6z — 4 = 0?

b) Is 1 —V/ 3i a root of the equation given in (a)?

8.2 GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS

The set of complex numbers C is given by

C = {x + iy|x and y are real numbers and i> = — 1}.

We can establish a correspondence between C and the set of points in the plane
in a natural way: Each complex number x + iy we associate with a point

(x, y) in the plane and vice versa; we denote this correspondence by

x + iye(x, yp).

In this setting we refer to the plane as the complex plane and label points in

it either by (x, y) or by x + iy. The real numbers correspond to points on the

x-axis (x (x, 0)), while the purely imaginary numbers correspond to points
on the y-axis (yi <> (0, )). Thus, the x-axis is called the real axis, while the

y-axis is referred to as the imaginary axis. Some examples of this correspon-

dence are given in Fig. 8.1.

In some problemsit is useful to associate each complex number with a

geometric vector, as shown in Fig. 8.2(a) where the vector has the origin as its

initial point and x + iy as its terminal point. Other examples ofthis correspon-

dence are illustrated by Fig. 8.2(b).
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Imaginary axis

 

 

4

—-3+3i i
————3it
| 4 +2i

| TTT*
o

hn f l . LL» Realaxis
—4 L 4

2
=2i |

4
| 2-3i

Figure 8.1

 

  

  

+ 2 +4i 1

x +iy | -

| | 442i

~
> L111 | >

——— 3 _—

(a) (b)

Figure 8.2

} (@ + bi) + (c + di)
btdf————————————==3

|b == |
-—

d=————"— c+di 7
/ |

/
7. i
arbi

I ,
a atc

Figure 8.3

Representation of complex numbers by geometric vectors provides us with

a convenient geometric interpretation of the sum of complex numbers. The

sum (a + bi) + (c + di) is associated with the diagonal vector of the paral-

lelogram depicted in Fig. 8.3.
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Examples

AN For each of the given complex numbers show the corresponding point
(x, py) in the complex plane. Also, draw the corresponding geometric vector.

a) 5+ 3i b) — 3 + 3i ¢) m— 2i d) 3i

Solution (See Fig. 8.4)

(3
“343i

 

m— 2

(m, -2)

Figure 8.4 i

 
/2\ Illustrate each of the following by a diagram using geometric vectors:

a)+20) +(1 +3) b)y(A-4)+(=2+0) ¢) B+i)—(1+30)

Solution. These vectors are shown in the diagrams of Fig. 8.5, where in (c) we

use

B+i)—(1+3)=CB+10)+(=1- 230.

 

1-3; 1. —1-3i

1 — 4

(a) (b) (c)

Figure 8.5 1
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EXERCISE 8.2

In Problems 1 through 8 give the ordered pair of real numbers associated with the given
complex number:

1. 3+5i 2. —3 +i 3. 4i 4. V5

5. —V3+2i 6. 1— mi 7. 0 8.
—1

In Problems 9 through 12 give the complex number associated with the given ordered
pair:

 

9. (0, —4) 10. (5, 2) 11. (—4,-3) 12. V2,-V3)

In Problems 13 through 16 illustrate the given complex number by drawing the
associated geometric vector:

 13. —1+3i 14. —4—5i 15. —V2 + mi 16. —

In Problems 17 through 20 illustrate geometrically the given sum or difference:

  

17. 2+ 3) + (5 +1) 18. (1-30) + (4 + 20)

19. 4-0) — 3 +50) 20. (2-30) — (5+ 20)

21. If z = 3 — 4i, on the same set of axes show the points associated with the following

expressions:
a) z b) —z c) z

d) 2+ z z— Zz f =
) = e) 5 ) Vz-2Z

22. If z=—1 + i, give the ordered pairs corresponding to

- 1 22 2 = 1a) z b) (2) c) . d) z2+z+

23. If z=-1/2 + (V3/2 i, draw the geometric vector associated with

a) z b) z? c) —L d) Vz-z

24. If point P(x, y) is associated with the complex number x + iy, then state the

conditions on x and y to describe the following:

a) P is on the positive real axis b) P is on the imaginary axis
c) P is in the first quadrant d) P is to the right of the imaginary axis
e) P is below the real axis

8.3 TRIGONOMETRIC FORM OF COMPLEX NUMBERS

We continue the development of the preceding section where complex numbers
were represented as points in the complex plane or as geometric vectors.

Suppose x + iy corresponds to point P: (x, y) in the complex plane, as shown
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P: (x +iy)

(x, 3)

ly

0 d
0 x

Figure 8.6

in Fig. 8.6. Let r be the distance from the origin O to P and 6 be the directed
angle between the positive real axis and OP. We see that

x=rcosf and y =r sin 6;

therefore

 

Xx + iy =r(cos 0 + i sin 0).

   
We call r(cos 0 + i sin 0) the trigonometric, or the polar form of a complex

number z whose rectangular form is z = x + iy. The real number r is given by

r=vx?+y?,

it is called the absolute value, or the modulus, of z and is frequently denoted by
r= |z|. Since r is the length of the geometric vector associated with z, it is
sometimes referred to as the length of z.

The angle 0 is called the argument of z and is denoted by 0 = arg z. It is
determined by the two equations

sin fl =—2Y and cos l=—2X
Vx? + y? Vx? + yp?

Note that angle 6 is not unique, since we can add or subtract any integral

multiple of 27 (or 360°) to or from the given 6 and use the resulting angle in

place of 6. The smallest nonnegative angle that can be used for 6 is sometimes
called the principal argument of z. Also note that

Zz. z=(x+)(x—iy)=x—i? =x? + y* =r,

and so

 

r=vz-.-z.

   
In the special case where P is the origin (0, 0), we take r = 0 and do not

specify any particular corresponding value of 6.

Representing complex numbers in trigonometric form is particularly useful
in problems involving multiplication or division.
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1. Multiplication of Complex Numbers in Polar Form

Let z, = r/(cos 6, + i sin 8,) and z, = r,(cos 0, + i sin 6,) be complex numbers
in polar form. We now consider the product z, - z,:

z,-z,=r/(cos 8, +isinb)-r,(cos 0, + isin 0,

= r,r,[(cos 8, cos 8, — sin 6,sin 0,) + i(sin 6, cos 8, + cos 8, sin 6,)]

= r,r,[cos(d, + 0,) + i sin(f, + 0,)],

where in the last step we used identities 1.12 and 1.14 of Chapter 4. Therefore,

 

z,-z,=nrrycos(d, + 0,) + i sin(f, + 6,)]. (8.1)

   

Using Eq. (8.1), we can give a geometric interpretation of the product of
two complex numbers: z, - z, is a complex number of length r,r, and argument
6, + 0,. We can state this as follows:

 

|z,z,| = |z,| + |2,] and  arg(z,z,) = arg z, + arg z,. (8.2)
   

Note. The fact that we add arguments when we multiply complex numbers
suggests that a complex number can be expressed in exponential form. Thisis
indeed the case. In advanced mathematics courses one learns that z can be
expressed as z =r - e'%, where e is a special irrational number e = 2.71828. . .
(see Chapter 10, p. 277).

2. Division of Complex Numbers in Polar Form

Let z, and z, be complex numbers expressed in polar form as above (and

z,# 0). Then

 

4 _ LL [cos(8, — 6,) + i sin(8, — 8,)]. (8.3)
2Z,    

The proof of Eq. (8.3) is similar to that of Eq. (8.1) and isleft to the student as
Problem 1 of Exercise 8.3.

From Eq. (8.3) we see that the modulus and argumentof z, /z, are given by:

 

2)

2; 

 

_ EA Z\ _=Tal and arg") = arg z, — arg z,. (8.4)
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Examples

In the following examples let

zy=1+i, z,=V3-i, z,=-2-2/3i, z,=—3+4i.

AN Express in polar form:
a) z, b) z, Cc) z, d) z,

Solution

a) r,=|z,| =V1*+12=V2 and 0, = m/4 = 45° (see Fig. 8.7,a).

Therefore,

z,=V2 (cos T+ isin 2) or z,=V2 (cos 45° + i sin 45°).

b) r,= |z,| =V(V3)? + (—12=V4=2 and 6,=117/6=330° (see

Fig. 8.7(b)). Thus

z, = 2(cos An +1 sin An or z, =2(cos 330° +i sin 330°).

¢) From Fig. 8.7(c) we see that

zy = 4(cos nr +I sin 7) or  z,=4(cos 240° + i sin 240°).

d) From Fig. 8.7(d) we see that

— 3 06,= Cos™(— 2) = 2.2143 = 126.87°.

 

 

 

  

Z; 1 +i

V2 | |

|45 H

1

(a)

2 240°

P

v3 |

|

z,=-2-2V3i

(c) (d)

Figure 8.7
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Therefore,

z, = 5(cos 2.2143 + i sin 2.2143)

or

z,= 5(cos 126.87° + i sin 126.87°). i

/2\ Find these expressions in polar and rectangular form:
a) z,-z, b) z,-z, C) 2,-2,2,

Solution. In each case we use Eq. (8.1).

a) z,-z, = (V'2)(2)[cos(45° + 330°) + i sin(45° + 330°)]

= 2V/2[cos 375° +i sin 375°]
=2V2 (cos 15° +i sin 15°) (polar form)

=273+0.73i (rectangular form).

b) z,-z, = (4)(5)[cos(240° + 126.87°) + i sin(240° + 126.87°)]
— 20(cos 366.87° + i sin 366.87°)
= 20(cos 6.87° +i sin 6.87°) (polar form)

= 19.86 + 2.39 i (rectangular form).

0 22:02, = (VDcosT+ LE + 4) 1 sin (74 Lx, 41)6 3 6 73
_ 417 417= 8v/2(cos 22 +i sin 3)

= 8V2(cos or +I sin Lr (polar form)

=—293-1093i (rectangular form). i

A\ Evaluate these expressions in polar and rectangular form:

a) 2 b) 22
Z, Z4

Solution. In each case we use Eq. (8.3).

a - = v2 [cos(45° — 330°) + i sin(45° — 330°)]
2

V2 [cos(— 285°) + i sin(— 285°)] (polar form)

I: [cos 285° — i sin 285°]

=0.18 + 0.68i (rectangular form).

4 4 4mb) 2 = 4cos (4 ~22143) + isin (4 —22143))|

— Hcos(1.9745) + i sin(1.9745)] (polar form)
=—0.31+0.74i (rectangular form). I
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/N\ Express 3(cos 60° —i sin 60°) in polar form.

Solution. The polar form of a complex number is r(cos 6 + i sin 6), where
r 20. The given number is not in polar form because of the minus sign.
However, since cos(— 60°) = cos 60° and sin(— 60°) = — sin 60°, we can write

3(cos 60° — i sin 60°) = 3[cos(— 60°) + i sin(— 60°)].

We can also write this as 3(cos 300° + i sin 300°). i

A Express —4(cos 120° + i sin 120°) in polar form.

Solution. The given number is not in polar form because the factor — 4 is not
an acceptable value for r (r 2 0). We can use identities

cos(180° + 6) = —cos 6 and sin(180° + 6) = — sin 6,

and so for 6 = 120° we get

—cos 120° = cos 300° and —sin 120° = sin 300°.

Thus

—4(cos 120° + i sin 120°) = 4(cos 300° + i sin 300°). i

/6\ Express 3(sin 60° — i cos 60°) in polar form.

Solution. Using

c0s(270° + 6) = sin 6 and sin(270° + 0) = — cos 40,

we get for 0 = 60°:

sin 60° = cos(270° + 60°) = cos 330°

and

— cos 60° = sin(270° + 60°) = sin 330°.

Thus

3(sin 60° —i cos 60°) = 3(cos 330° +i sin 330°),

and this is in polar form. i
 

EXERCISE 8.3

In problems ofthis exercise give answers in exact form whenever possible; otherwise use

a calculator and state the results in decimals (two places for degree measure, four places

for radian measure).
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1. If z, and z, are complex numbers expressed in polar form, prove that

Zi = Difcos(f, — 6.) + isin(6, —6,)].
z, or,

2. Express the given numbers in polar form:

a) —3 b) 1—i c) —i d) 1+V3i

3. Express in polar form

a) w b) 3-4i c) iP —i* d) 12-5i

4. Express in polar form

a) —3—3i b) 5i2— 2i — 3 0-1 d) —!
i— i?
 

S. Express in rectangular form

a) 3(cos 45° + i sin 45°)  b) S(cos 180° + i sin 180°)  «¢) cos 41 +i sin z

6. Express in rectangular form:

a) cos(— 1%) +1 sin(— 7) b) cos 450° + i sin 450°

c) 3(cos 137° + i sin 137°)

7. Determine why the given number is not in polar form. Then express it in polar
form:

a) 4(cos 45° — i sin 45°) b) — 3(cos 300° + i sin 300°)

_ 2X omCc) —cos 5 +1 sin 5

8. Express inpolar form:

a) 3(- cos z +i sin 2 b) — 5(cos 40° — i sin 40°)

¢) —cos 120° — i sin 120°

In Problems 9 through 12 express answers in:

a) polar form b) rectangular form

9. (cos 15° + i sin 15°). (cos 30° + i sin 30°)

10. 4(cos 47° — i sin 47°) - (cos 43° — i sin 43°)

Hint. Write each factor in polar form first and then use Eq. (8.1).

11 8(cos 150° + i sin 150°) 12. C08 50° + i sin 50°

" 4(cos 30° + i sin 30°) " cos 80° — i sin 80°
 

In Problems 13 through 15, let

z, = 3(cos 210° —i sin 210°) and z, = 6(sin 60° + i cos 60°);

evaluate the given expressions by using Eq. (8.1) or Eq. (8.3):

13. zz 14. z, + z, 15. L
1 2 2

In Problems 16 through 20, let z, = v3 +i and z,=—2 + 2i; write the given

numbers in polar form:
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16. a) z, b) z, 17. a) z, b) z,

18. a) zz, b) z, - z, 19. a) z, +z, b) z, + z,

20. a) by L
z z

1 2

21. If z = r(cos 6 + i sin 6) represents a complex number in polar form, show that

a) z= r*(cos 20 + i sin 26) b) z3 = r’(cos 30 + i sin 30)

22. If z = r(cos # + i sin f) represents a complex number in polar form and r # 0, show
that

a) 1- we [cos(—0) + i sin(—0)] b) t= [cos(—26) + i sin(—26)]

23. Use Problem 21 to evaluate: 24. Use Problem 22 to evaluate:

a) (V2-V2i) ob) (1+V3i) 2) —_— by —L
+1 Vio)

8.4 DE MOIVRE’S THEOREM

Suppose z = r(cos 6 + i sin #) represents a complex number in polar form. If we

apply Eq. (8.1) to the special case where z, = z, = z, we get

z-z=r-r[cos(d + 0) + i sin (6 + 0)],

that is
z2 = r*(cos 20 + i sin 20).

If we again apply Eq. (8.1) to z, =z and z, =z?we get

z3 = r¥(cos 360 + i sin 30).

This suggests that for each positive integer n,

 

z" = r*(cos nfl + i sin nf). (8.5)

   
This is known as DeMoivre’s theorem named after the French mathematician

Abraham DeMoivre (1667-1754). The student is asked to give a formal proof
in Problem 16 of Exercise 8.4.

If we take r = 1 in Eq.(8.5), then for each positive integer n we have the

special case:

 

(cos 0 + i sin 0)" = cos nfl + i sin nf.

  
 

Equation (8.5) is stated for the case when n is a positive integer. For

exponents that are not positive integers, we follow a pattern similar to that

encountered in algebra. We first define z¥ when k is zero, then when k is a

negative integer. In Section 8.5 we consider the case when k is a rational

number.
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We state the following definitions.

Zero exponent: if z + 0, then z°= 1.

Negative-integer exponent: if nis any positive integerandz #0, thenz"=1/z"

We now investigate z=" when n is a positive integer. Let
z = r(cos 0 + isin 0);

then
- 1 1n_

1

_ __ Eq. (8.5
z Zz" r"(cos nf + isin nf) (by Eq. (8.5)

 

1  cos0+isin0
r* cos nf + isin nf

= r—[cos(—nb) + i sin(—-nf)] (by Eq. (8.3)).

(since 1 =cos 0 + i sin 0)

Thus we have

z "= r—"[cos(—nf) + i sin(—nf)].

This is precisely Eq. (8.5) for negative integers.

Equation (8.5) also holds for n = 0, since z° = 1, and

r’[cos(0-60) +i sin(0-60)]=1-(cos 0 +i sin 0) = 1.

Therefore, we can generalize Eq. (8.5) and say:

 

If z=r (cos 0 + isin 0) and n is any integer,

then z"= r" (cos nf + i sin nf). (8.6)

  
 

 

Examples

AN Express the following as a complex number in polar form and rect-

angular form:

a) (1+ i) b) (1 + V/3i) c) (3 — 4i)*
Solution

a) Wefirst express 1 + i in polar form and then use the result given in Eq.
(8.6):

(1+10)f= |V2(cos 45° +i sin 459)

= (V2 )*[cos(6 45°) +i sin(6 - 45°)] (by (8.6))*

= 8(cos 270° + i sin 270°) (polar form)

=8[0 + i(—1)]=—-8i (rectangular form).

*To appreciate this step (DeMoivre’s theorem), we suggest that the student evaluates (1 + i)* by

multiplying six factors, each (1 + i), or by using the binomial theorem.
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b) (-1+V3i)® = [2(cos x. i sin 23k

= 2]cos(8 - x) +i sin(8 2)

= 256 |cos Am +0 sin 167
3

= 256 |cos(4r + ir) +i sin(4 + i)

= 256 [cos ir +1 sin 4] (polar form)

1V3_ 256) ++ i(-% )

=—128 —128V/3i (rectangular form).

0) (3— 4i) = | (cos 0 +i sin 0)" _ ré(cos 46 + i sin 40),

where r = 5 and 6 = Sin~!(—4/5) (see Fig. 8.8). Using a calculator, we evaluate

49 = 4 Sin-\(— +) — 212.52.
Therefore

(3 — 4i)* = 625[cos(—212.52°) + i sin(—212.52°)] (polar form)

= —527 + 336i (rectangular form).

 

 
Figure 8.8 I

/A Evaluate the following and express answers in polar form and rect-

angular form:

a) [2(cos 22°30" + i sin 22° 30']* b) (cos 45° — i sin 45°)°

Solution

a) Using Eq. (8.6) we get

[2(cos 22°30" + i sin 22°30']*= 2*[cos 4(22°30’) + i sin 4(20°30’)]

= 16(cos 90° + i sin 90°) (polar form)

=16 i (rectangular form).
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b) We first express cos 45° — i sin 45° in polar form as

cos 45° —i sin 45° = cos(— 45°) + i sin(— 45°).

Then by using Eq. (8.6) we get

(cos 45° — i sin 45°)° = [cos(— 45°) + i sin(—45°))°

= cos 5(—45°) +i sin 5(—45°)

= cos(— 225°) + i sin(— 225°) (polar form)

V2 V3
2 2

== 5 + 51 (rectangular form). i

A Express sin 46 and cos 46 as identities in terms of sin 6 and cos 6.

Solution. Substituting n =4 and z= cos 6 + i sin 6 into Eq. (8.6) gives

(cos 6 +i sin 0)* = cos 40 + i sin 40.

Applying the binomial expansion

(a + b)* =a* + 4a’b + 6a’b* + dab’ + b*

to the left-hand side of this equation, we get

cos*d + (4 cos®d sin 60)i + 6(cos?d sin%0)i> + (4 cos 0 sin’0)i® + (sin*d)i*

= cos 40 + i sin 40.

Now replace i? by — 1, i* by — i, and i* by 1, and collect real and imaginary
terms:

[cos— 6 cos?f sin?0 + sin*d] + [4 cos?d sin 6 — 4 cos 0 sinf]i

= cos 40 + i sin 46.

Using the definition of equality of two complex numbers (given in Section 8.1),

we get

 

sin 40 = 4 cos0 sin § — 4 cos 6 sin,

cos 40 = cos‘! — 6 cos? sin’f + sin*d. i

  
 

These are identities.

By using the technique illustrated in Example 3, we can solve the general

problem of determining identities in which sin nf and cos nf are expressed in

terms of sin 6 and cos 6.

 

EXERCISE 8.4

In this exercise give answers in exact form whenever it is reasonable; otherwise give

results in decimal form (two places for degree measure, four places for radian measure).

Express answers in polar form and rectangular form.
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1. Evaluate:

a) (cos 30° + i sin 30°)? b) {2[cos(— 45°) + isin(— 45°)]}*

¢) (cos 40° + i sin 40°)-3

2. Evaluate:

a) (cos 47° + i sin 47°) b) [3(cosZ +i sin)‘
¢) [cos(— 20°) + isin(— 20°)]-6

3. Evaluate:

a) [2(cos 150° — i sin 150°)? b) 16
[2(cos 45° — i sin 45°)]*
 

4. Evaluate:
a) [— 3(cos 20° + i sin 20°)]* b) 81

{—3[cos(w/12) + i sin(w/12)]}*
 

5. Evaluate:

a) (— 1 +i) b) (V3 — i)’ 0) (1+1i)-3
6. Evaluate:

2) (V2+V2i) by—d ©) (2+ if
(1-v3i)

7. Evaluate: Ny
D1i (1+ V3i)° by 2+

(V3+i)

8. Evaluate:

a) (1-9)73-(1 +i) b) (2 —3i)?-(4 + 3i)*

In Problems 9 through 12, let z=1—-i and w=—V3 +i. Evaluate the given
expressions:

9. z¢—z 10. 23. w* 11. z¢ — ww!

12. z+ 2+ 22+ z+ 1 Hint. Theidentity (z—1)(z* + 2+ 22+ z+ 1) =z" — | may

be useful.

13. If f(z) = z* — 223 + 2, find:

a) f(i) b) f(-1+1)

14. In Eq. (8.6) take n = 2, r = 1, and get identities (1.18) and (1.19) of Chapter 4.

15. Express sin 30 and cos 30 as identities in terms of sin 6 and cos 6.

16. Prove that for each positive integer n:

zn=[r(cos 8 +i sin 0)]*= r" (cos nf +i sin nf).

Hint. Use mathematical induction. That is, let FE(n) represent the equation

z"=r¥cos nf + i sin nf), where n can be replaced by any positive integer. This gives

us an infinite number of statements E(1), E(2), E(3), . . . and our claim is that each one
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is true. For example,

when n = 1, E(1) represents z = r (cos 0 + i sin 6);

when n = 2, E(2) represents z2 = r? (cos 260 + i sin 26);

when n = 3, E(3) represents z* =r? (cos 30 + i sin 30);

Obviously it is impossible to verify the truth of each of these statements individually

(there are too many of them). The principle of mathematical induction comes to our

rescue; it states:

 

If E(1) is true and the truth of E(k) implies the truth of E(k + 1), where

k is any given (but unspecified) positive integer, then E(n) is true for each

positive integer n.    
Therefore, you must show that E(1) is true (this should be obvious) and that from

zk = rk (cos kB + i sin k6) it follows that

zk+1=pk+1cos(k + 1)0 + i sin(k + 1)8].

8.5 RATIONAL-NUMBER EXPONENTS AND ROOTS

OF COMPLEX NUMBERS

1. Rational-Number Exponents

In Section 8.4 we arrived at Eq. (8.6), which is valid for any integer n. We now

consider the problem of defining z”/#, where m/n is any rational number.* In a

manner similar to that used in algebra for real numbers, we define z™/7 as a

complex number w that satisfies the equation wn = zm. In general, this involves

a problem of multiple values of w. We shall consider the special case of z!/#(the
general case can be reduced to this, since z/n = (zm)!/"). Complex number z"/7is

also written as Vz» for n> 2 and as z™ for n = 2.

2. Roots of Complex Numbers

If n is a positive integer, then the nth root of a complex number z is denoted
by V/ zor by z!/». Let z/* = w; then using the definition given above, we get
w" = z. Suppose z and w are expressed in the polar form as

z=r(cos 0 +i sin 0), w= R(cos a +i sin «).

Then wn" = z becomes

[R(cos a +i sin a)]"=r (cos 0 + i sin 0).

* Here we are assuming that m and n are integers (n > 1) and m/n is in lowest terms. The reason
for the last requirementis to avoid situations illustrated by

(—D2=vVZT=i, while (-1)24=VCIyr=VI=1l.
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Using Eq. (8.2), we get

Rr (cos na +i sin na) =r (cos 0 +i sin 6).

From the definition of equality of two complex numbers, it follows that

Rr cos(na) =r cos 6 and R"sin(na) = r sin 6.

Solving these two equations for R and «a gives

R=r/"=vr and o=frk- Im,

where k is any integer (see Problem 21 of Exercise 8.5). Therefore, all nth roots
of z are given by

w, == rincos(L + Arh ) + i sin(£- + 2m| (8.7)

If we let k take on various mtegral values, we see that wy, w,, w,,..., w,_,
are distinct complex numbers:

 

Wy = rin] cos 2 +i sin 4,

Ww, = rio]cos(£- + or) +1 sin (

(8.8)

W, = rin]cos(&- + An — Dm ) +i sin(-2-. L 2m Ls )|   
 

If we evaluate w, by replacing k with n in (8.7), we get

w, = ri cos(L- +210) +i sin (+ + 2mn ||

= rin]cos(L- + 27 ) +1 sin(-2- + 27 )

= rio] cos £ +1 sin 4 = W,.

In a similar manner we can show that each k 2 n or k < 0 will give a w,
that is included in (8.8).

Therefore, z will have n distinct values given by (8.8). These are

called the nth roots of z. The principal nth root is given by

— pl/n 0 I Ql 0Wo ="r (cos oo Tisin — ),

where 6 is the smallest positive angle used in expressing z in polar form.

Geometrically, all nth roots of z are located on the circle with center at the

origin and radius Vr; they are equally spaced along the circle with the
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angle between any two consecutive roots being 2x/n (as given in (8.8)). These

are shown in Fig. 8.9.

 

 

 
Figure 8.9

 

Examples

/N\ Find the fourth roots of —1.

Solution. We wish to find the roots of the equation z* = — 1. First express — 1
in polar form:

—1l=cos mw +1 sin =.

Substituting into the formulas given in (8.8) we get:

Ww, = COS

Ww, = COS

Ww, = COS

Ww, = COS

Tid
— +1 S1n4

Ir + i sin4

Sm +i sin4

Ir +i sin
4

x_V2V2

4 2 2

w__ V2V2
4 2 2’

se__ V2V2
4 2 2

w_V2V2
4 2 2

A Find the roots of z¢ — 2z2 + 2 =0.

Solution. The given equation is quadratic with regard to z2. Solving for z? by
using the quadratic formula, we get:

2 -.—(=2)+V(E=2-41)Q2)
2(D)

2EVA 1s
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Therefore, z2 =1 + i or z2 = 1 — i, and the roots of the given equation will be

square roots of 1 + i and of 1 — i. We first express 1 + iand 1 — i in polar form:

1 +i=12(cos 45° + i sin 45°),
1 —i=v2(cos 315° + i sin 315°).

Using (8.8) with n = 2, we get the following solutions:
z2=1 +i gives:

Wo = (V2) [cos be +i sin hs = v/2 (cos 22.5° + i sin 22.5°)

= 1.10 + 0.46;

w, = (V2)cos( be +A +i sin oR + ul)

= v2 (cos 202.5° + i sin 202.5%) = —1.10 — 0.46i.

z2=1—1i gives:

ro 1/2 315° |: «in 315°wy = (V2) [cos 315° + sin 31°]

= v/2 [cos 157.5° +i sin 157.5°] = —1.10 + 0.46i;

r_ 1/2 315° 360° can (315° 360°wi = (V2) [cos (443- +203 +i sin [5- + 360%]

= v2 (cos 337.5° +i sin 337.5°) = 1.10 — 0.464.

  

Therefore, the solution set for the given equation is

{1.10 + 0.46i, — 1.10 + 0.46i, 1.10 —0.46i, —1.10 — 0.46},

where the numbers are given to two decimal places. The numbers in the

solution set are shown in Fig. 8.10, where the radius of the circle is v2.

 

 

 
Figure 8.10 i
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A Evaluate (1 — i)*3.

Solution. Since (1 — i)*? = [(1 — i)*]'/3, we first determine (1 — #)* in polar form

and then apply (8.8) to find the three cube roots of the result:

(1-9)= [V2(cos 315° +i sin 315°)

= (V'2)'[cos(4 - 315°) + i sin(4 - 315°)]

= 4(cos 1260° + i sin 1260°)

= 4(cos 180° + i sin 180°).

The cube roots of this number are:

w, = 4'"(cosA +i sin—130°) — Vv/4 (cos 60° + i sin 60°)

= 0.79 + 1.37i;

w, = 4]cos (180° +A) +1 sinA+HA)

= V/4[cos 180° + i sin 180°] = —1.59;

Ww, = 4]cos(180° + -2:360°wh ) +1 sin(130 + 2-360°wu )

= v/4[cos 300° + i sin 300°] = 0.79 — 1.37i.

Therefore, w,, w,, w, are the three complex values of (1 — i)*/>. i

/A\ Find the square roots of —3 — 4i.

Solution. We want to evaluate (—3 — 4i)!/2. We first express —3 — 4i in polar
form:

—3 —4i=5(cos 0 +i sin 0),

where 0 is the angle shown in Fig. 8.11. Therefore,

(—3 —4i)!2=[5(cos 0 +i sin 0)]'/2

 
Figure 8.11
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Using the results given by (8.8), where n = 2, we get

w, = 5"? (cos 9 + isin £3,
2 2

w, = 5"? |cos(4 +2) wi sin (4+%)]

= 57 |cos(4 +) +i sin ((+m)

1/2 0 oo. 0 /2 0 .
=J | cos — — i sin 4 =_5 (cos 5 +i sin 2) = —W,.

We can write w, in better form by using the half-angle identities. Since
7m <0 <3r/2, then 7/2 < 0/2 < 3n/4 and so angle 6/2 is in the second quad-
rant. Therefore, cos (0/2) is negative and sin (6/2) is positive. Since
cos 0 =-3/5 (see Fig. 8.11), then

cos4/008 _VER
5

deb Le1-3/5) _ 2

V's
sin J = +

Thus we have

0 a 0) _ 1 2i .w,=V5 (cos 5- +i sin T)=V3(-gr re)le

w,=—w,=1-2i

Therefore the square roots of —3 — 4i are —1 + 2i and 1 — 2i. i
 

EXERCISE 8.5

In the problems of this exercise, express answers in polar form. Then give answers in
rectangular form as exact numbers (when possible) or to two decimal places.

1. Find the cube roots of 1. 2. Determine the fourth roots of i.

. Find the fifth roots of 1 — V3 i.

. Determine the roots of the equation z* + 1 —i = 0.

. Find the sixth roots of —1 and show the results in a diagram.

. Determine the sixth roots of 64(cos 126° + i sin 126°).

. Find the fourth roots of 16 (V3 + i).

. Determine the values of (V3 —i)

. Determine the values of (==)3,
V2

In Problems 10 through 13 solve the given quadratic equations:

10. 22—(2+3))z—1+3i=0 11. 22—32+3-i=0

o
o

0
3
S

n
n

A
Ww

W

12. 22+ 2/21 +i)z2—1-2i=0 13. 22+2z+1—-i=0
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14. Find the roots of the equation z* + 1 = 0.

15. Find the roots of the equation z3 + z2 + iz + i = 0.

16. Find the roots of the equation z° + 2z3 — 22-2 =0.

17. Find the square roots of 3 — 4i. 18. Find the square roots of 3 + 4i.

19. Find the square roots of —5 + 12i. 20. Find the roots of z2 —iz—1+i=0.

21. In the derivation of Eq. (8.7) we encountered the problem of solving the following
two equations simultaneously for R and « in terms of » and 6:

R™ cos(na) =r cos 0,

R" sin(na) =r sin 6.

Carry out the solution and show that R= r!/"and a = (8 + k - 2w)/n. Hint. First
eliminate « by squaring each of the given equations and then adding the resulting
equations. Use identity (1.9) (p. 122). After you get R, substitute the result in either

of the given equations and then solve for a.

REVIEW EXERCISE

In Problems 1 through 12 evaluate the given expression and present the result in the

form a + bi, where a and b are real numbers. Give answers in exact form wheneverit is

reasonable to do so; otherwise give a and b correct to two decimal places.

 

1. (1+ i) 2. (3 2i) 3. (1+ 2i)

4. (V3 +0) 5. (1 +i)2 6. 625(3 + 4i)~*

7. (1+) (V3-i)* g (3+ 4) o (1+2i)(3 + 4i)
4 + 3) (1 —i)*

V3 1s 3 Ns 1 V3 ©10. (5-77) 1. (1 +i) —(1—i) 12. (z+ ; i)

In Problems 12 through 15, the function fis defined on the set of complex numbers and

is given by f(z) =3 — 4i + z?, where z is any complex number. Evaluate the given

expressions and provide exact answers in form a + bi, where a and b are real numbers:

13. £(=3) 14. (2 — 2i) 15. f(1- V3)

In Problems 16 through 20, give answers in form a + bi, where a and b are real numbers:

16. Solve the quadratic equation z2 + (2 —i)z —i = 0.

17. Find the cube roots of (V3 - i)/2.

18. Find the fourth roots of 3 _ 4;
5 5

19. Solve the equation z* + (1 + i)z2 + i = 0.

20. Solve the equation z2 — 2iz — 2 = 0.



 

 

CHAPTER NINE

POLAR
COORDINATES

9.1 INTRODUCTION

Many problems involve equations containing two variables. We have found it
helpful to have geometric representations of such relationships, since these can
frequently provide insights that are not readily apparent from the equation
itself. In some problems the situation is reversed, in that we have a problem
described geometrically and it becomes useful to consider it in an algebraic
setting, which usually involves an equation containing two variables. The form

of the equation we get will depend to a large degree upon the reference (or
coordinate) system we decide to use. So far, all of our geometric representa-
tions have been in a rectangular (or cartesian) system of coordinates. This has

served us well for most problems. However, there are situations where a given
geometrical problem translates into a cumbersome equation if rectangular
coordinates are used as the reference system. In this chapter we introduce a
system of coordinates known as polar coordinates thatis particularly useful in

many situations.

As indicated at the beginning of this book, our geometric objects are

restricted to a given plane (in future courses the student will encounter

problems requiring three-dimensional geometry). A rectangular system of

coordinates begins with two perpendicular lines. It is customary to take these

lines as horizontal and vertical and call them the x-axis and the y-axis,

respectively. On each axis we have a one-to-one correspondence between

points and real numbers.* This provides us with a system that has a one-to-one

correspondence between pairs of real numbers (x, y) and points P in the plane.

* That is, we assume that each point of a given line can be associated with a unique real number,

and vice versa; this same correspondence associates each real number with a unique point on the

line.

245
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The system ofpolar coordinates begins with a ray (half-line) called the polar
axis, its initial point is called the polar origin (point O), as shown in Fig. 9.1.

% Polaraxis R

Polarorigin

Figure 9.1

Let point P be any point (other than O) in the plane (Fig. 9.2). Let the ray

OP be the terminal side of the directed angle 6 obtained by rotating the polar
axis about point O through the angle of measure 6 (which can be of any size
and positive or negative). We call OP the 6-ray.

If the distance from O to P is denoted by r, where r is a positive number,

then the polar coordinates of P will be an ordered pair of r and 6 values
denoted by [r, 0].*

In many problems it is convenient to allow the first member of the ordered
pair [r, 0] to be a negative number. This can be done by considering the ordered
pair [—r, 0 + w], where r is a positive number. Then [—r, § + 7] represents

point Q that is at a directed distance of —r along the (6 + m)-ray; this means

a distance of r in the opposite direction, which puts Q on the f-ray. Thatis,
point Q is the same as point P. Therefore, both [r, §] and [— r, § + 7] are names

of the same point P in polar coordinates, as shown in Fig. 9.2.

It is clear that the #-ray and the (0 + 2«)-ray are the same; so [r, 8] and

[r, 8 + 27] represent the same point. In fact, point P shown in Fig. 9.2 can be
represented by any of the ordered pairs:

[r, 8 + 2kw] or [—r, 0 + (2k + 1)xw], where k is any integer.

The above discussion indicates how to name any point P in the plane in

terms of polar coordinates. The special case where P is the polar origin is
denoted by [0, 0], where angle 6 can have any value.

Note that in polar coordinates we do not enjoy the luxury we have in

rectangular coordinates where there is a one-to-one correspondence between

6-ray

   
P: [r, 6) or [—r, 6 + 7]

(6 + m)-ray

Figure 9.2

* We use the bracket notation [r, ] to distinguish the name of a point in polar coordinates from
its corresponding name (x, y) in rectangular coordinates.
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points in the plane and ordered pairs of real numbers. In polar coordinates
each point P can be represented by infinitely many ordered pairs; however, a
given ordered pair is associated with exactly one point. Although the lack of a
one-to-one correspondence is an undesirable feature of polar coordinates, it
does not create a serious problem.

We remind the student that in algebra the definition of equality of ordered

pairs is given by:

 

(a, b)=(c,d) ifandonlyif a=c and b=d.

   
We retain this definition of ordered pairs [r, 0] and we do not say that |r, 0]

equals [— r, 0 + w] even though they both represent the same point.

 

Examples

AN For each of the following, draw a diagram to illustrate the given ray:

a) 30°-ray b) 480°-ray ¢) — 150°-ray d) oT ray

Solution. (See Fig. 9.3.)

30°-ray KR 480°-ray

0 0

(a) (b)

0 0

& _150°-ray of ST ray
4

(d)(©)
Figure 9.3 1

2 In each of the following give two other names for the given ray:

a) 45°-ray b) w-ray c) 2.5-ray d) — 2.5-ray

Solution.
a) 405°-ray; — 315°-ray b) 3w-ray; — 3w-ray

c) (2.5 + 2w)-ray = 8.78-ray; (2.5 — 2m)-ray = — 3.78-ray.

d) (= 2.5 + 27)-ray = 3.78-ray; (—2.5 + 4x)-ray = 10.07-ray. i
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A Point P shown in Fig. 9.4 is on the 30°-ray at a distance 2 from the polar
origin. Give four different names for P in polar coordinates.

Solution. Any of the following pairs can be used as the name of point P:

2, 30°]; [2, 30° + 360°] = [2, 390°];
[2, 30° — 360°] = [2, — 330°]; [= 2, 30° + 180°] = [—2, 210°].

30°-ray

@ oo > vv >

Figure 9.4 i

/A\ Suppose point P is at a distance of 3 from the polar origin on the 77/6-
ray. Let Q be the point obtained by reflecting P about the line ¢ perpendicular
to the polar axis and passing through the polar origin (Fig. 9.5). Give four
different names for Q in polar coordinates.

IT ray lm

| Q

6 6 TY
Figure 9.5

Solution. From the diagram we see that point Q is on the 117/6-ray and 3
units from O. Therefore, Q can be represented by any of the following ordered

pairs:

117. Tq. my. 13m
(3, <b [3, - <b [— 3, =I; 3, —< I

A\ Draw sketches to illustrate the points corresponding to the given ordered

pairs in polar coordinates:

a) [2, 40°] b) [-3,580°] ©) [3, 3X] d) [= 4, — 37]

Solution. (See Fig. 9.6.)
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40°-ray

[-3, 580°]

[2, 40°]

0

0

580°-ray

(b)

—37-ray [-4, 37]
< -— *>——o—o >

(d)
Figure9.6 i

 

EXERCISE 9.1

1. In the following cases, a point is described relative to the polar axis with polar
origin O. Draw a diagram showing the given point and name four different ordered
pairs [r, 0] that describe the point in polar coordinates:

a) P is 3 units from O on the 50°-ray
b) Q is 4 units from O on the —60°-ray
¢) Tis 2 units from O on the 540°-ray

2. Suppose that points P, Q, and T of Problem 1 are reflected about the polar origin
O to get new points P, Q, and T, respectively. For each of these points give an

ordered pair [r, 0] that can be used to represent the point in polar coordinates.

3. Suppose that points P, Q, and T of Problem 1 are reflected about the polar axis to
get new points P,, Q,, T,, respectively. For each ofthese points give an ordered pair
[r, 6] corresponding to the point in polar coordinates.

4. In each of the following, a point is described relative to the polar axis with polar
origin O. Draw a diagram showing the given point and then write four different
ordered pairs of real numbers[r, 6] that can be used to name the point in polar

coordinates:
a) P is 2 units from O on the 27/3-ray
b) Q is 3 units from O on the — 117/12-ray
c) T is 4 units from O on the 177/6-ray
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5. Suppose that points P, Q, and T of Problem 4 are reflected about the polar origin
to get points P,, Q,, and T, respectively. For each of these points give an ordered
pair [r, 0] of real numbers to name the points in polar coordinates.

6. Suppose that points P, Q, and T, of Problem 5 arereflected aboutthe line through

O perpendicularto the polaraxisto get points P,, Q,, and T,, respectively. For each

of these points give an ordered pair [r, 6] of real numbers that can be used to

represent the point in polar coordinates. How are P,, Q,, T, geometrically related
to P, Q, T of Problem 4?

7. Draw a diagram thatillustrates the points corresponding to the given ordered pairs:
a) [3, 60°] b) [—4, 45°] c) [—2, 180°] d) [-3, —450°]

8. Draw a diagram showing the points that correspond to the given ordered pairs:

a) [4, cd b) [-3, 27] c) [2, 17x] d) [-2, —2.36]

9. The points given in Problem 7 are reflected about the polar origin. Give ordered

pairs [r, 0] of real numbers representing the new points in polar coordinates.

10. The points given in Problem 8 are reflected about the polar axis. Give ordered pairs
[r, 0] of real numbers that can be used to represent the new points.

9.2 GRAPHS IN POLAR COORDINATES

In algebra and in earlier parts of this book we encountered a variety of
problems in which the equation was given in the form y = f(x) and then a
graph (curve) corresponding to the given equation was drawn, using a system

of rectangular coordinates. In this section we consider a similar problem:
Given r =f(0), draw the curve corresponding to this equation in polar
coordinates.

 

Examples

AN Sketch the curve whose equation in polar coordinates is » = 2 sin 6.

Solution. We first determine several ordered pairs [7, #] that satisfy the given

equation. These are shown in the following table:

 

 

oT ud Ld ud 2m Ir Sm
6 0 6 4 3 2 3 4 6 T

r 0 1 V2 VE 2 V3 V2 1 0    
 

Note that it is not necessary to continue with larger values of 6 since
sin(f + m) = — sin 0 is an identity, and so

[r,0 + 7] =[2 sin(@ + 7), 0 + 7] =[—2 sin 0,0 + =].
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Therefore,

[r,0 + 7]=[-2sin6, 0 + 7] and [r, 0] = [2 sin 0, 0]

represent the same point.
In a similar manner we can show that negative values of produce no

points that are not already included in the points given by 0 <6 <r.
We now plot the points given in the table and then draw the curve shown

in Fig. 9.7. Thus r = 2 sin 6 appears to be an equation ofa circle, and indeed
it is. i

/2\ Sketch the curve whose equation in polar coordinates is r = 1 + cos 4.

Solution. As in Example 1, we first make a table giving ordered pairs [7, 0] that

satisfy the given equation (the r-values are given in decimal form to two
places):
 

0 0° 45° 90° 135° 180° 225° 270° 315° 360°
 

r 2 1.71 1 0.29 0 0.29 1 1.71 2    
Since cos(f + 27) = cos 0 is an identity, it is clear that we would get no new

points by considering values of 6 that lie outside the interval 0° <6 < 360°.
We plot these points and draw the curve, as shown in Fig. 9.8. The curve is
called a cardioid for obvious reasons.

- | I,
0

Figure 9.7 Figure 9.8 i

A Sketch the curve whose equation in polar coordinates is r = 3.

Solution. As in the preceding two examples, we first make a table of ordered
pairs [r, 8]. The variable 6 does not appear explicitly in the given equation;if
this causes any problems, we can write the equation in equivalent form as
r=3+ 0.6. We see that no matter what value of § we use, r will always be

equal to 3. Thus the corresponding points are on a circle of radius 3 with center

at the polar origin, as shown in Fig. 9.9. i

/A\ Sketch the curve whose equation in polar coordinates is » = sin 3 6.
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Solution. We first note that sin 3(f + 7) = —sin 3 6 is an identity. Thus the

point given by

[r, 0 + 7] = [sin 3(0 + 7), 0 + 7] =[—3 sin 0,0 + 7]

is the same as the point given by [r, 8] = [3 sin 0, 0]. Therefore,it is sufficient

to use values of 0 in the interval 0 <6 < wr, as shown in the following table:

 

 

9 x © x x Sw x Ir 2x 3m Sr lx
12 6 4 3 12 2 12 3 4 6 12

r 1071 1 071 0 —-071 —1 —071 0 071 1 071 0    
Plotting the points given in this table and connecting them in an obvious

manner gives the three-leaf rose shown in Fig. 9.10. i

A Sketch the curve whose equation in polar coordinates is given by
r=—60, where 620.

Solution. Note that the given equation implies that radian measure is to be
used for 6. We first make a table of ordered pairs [r, 0] that satisfy the equation:
 

 

 

Ld Tr 3 om 3m Im0 0 7 . 7 - : > 2 27

r 0 —-0.79 —1.57 —-236 —-3.14 —-393 —471 —-550 -6.28   
Plotting these points and drawing a curve through them gives a spiral, as

shown in Fig. 9.11. The curve begins at the polar origin and (as 6 increases)
winds around in the counterclockwise direction, as illustrated in Fig. 9.11. |

Figure 9.9

Hg)
Figure 9.10

 
Figure 9.11
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EXERCISE 9.2

Sketch the curves corresponding to the equations given in polar coordinates:

I. r=cos 0 2. r=3 cos 0

.r=2 4. r=—2 sin 6

S.r=1+sin #6 6. r=1—sin 6

7. r=1-cos 0 8. r= 3 + sind + cos?

9. r=sin 240 10. r =cos 30

11. r= cos? — sin? 12. P=4

13. r=cos 6 tan 0 14. r = sin’0

15. r—sin(6 + x) 16. r= cos(f + )

17. r=1+2 cos 0 18. r=2—sin 0

19. r= 6, where 62>0 20. r= where 6>1

9.3 RELATIONSHIP BETWEEN POLAR AND RECTANGULAR

COORDINATES

Suppose the polar axis coincides with the positive x-axis, as shown in Fig. 9.12,
and suppose P is any point in the plane. The name of point P is (x, y) relative
to the x, y-axes, and [r, 0] relative to the polar axis. The following equations
give the relationship between rectangular and polar coordinates:

 

 

 

=r cos 0,

y =r sin #0, 6.1)

r2=x?+ y2,

tan 6 = 2. 2)
x   

The equations given in (9.1) are transformation equations from polar to
rectangular coordinates. For each pair [r, 8] there is precisely one pair (x, y)

corresponding to it.

The equations given in (9.2) are known as the transformation equationsfrom
rectangular to polar coordinates. Note that for a given pair (x, y) we can get

multiple pairs [r, 0] representing the same point. Since r can be taken as
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C(x)P: [r0]

~

| x

Figure 9.12

Vx? + y?oras —Vx?+ y% and 0 = tan! (y/x) is multiple-valued, we must be

careful to match appropriate values of r and 6. This is illustrated by the

following examples.

 

Examples

AN Find all ordered pairs [r, 0] associated with the points given in rect-
angular coordinates:

a) (3, 4) b) (-2,-1)

Solution.

a) We use Eq. (9.2) as follows. First find r, 6, where r > 0:

r=V3+4=5 and 0 = tan 3

6 is in the first quadrant (Fig. 9.13). This gives the set of ordered pairs:

A ={[5, 53.13° + k- 360°] | k is any integer}.

Now find r, 6, where r < 0:

r=—V3+4=_5 and 0 = tan 3

6 is in the third quadrant. This gives the set of ordered pairs:

B={[-5, 233.13° + k- 360°] | k is any integer}.

Therefore, the name of the point associated with (3, 4) is given in polar

coordinates by any one of the ordered pairs in the union of sets 4 and B; that

is A U B.

b) In a manner similar to (a) we can write the following.

For r > 0:

r=V(=22+(=12=v35 and tan 6-=L- 1,

where 6 is in the third quadrant (Fig. 9.14). Thatis,

r=v5 and 0=3.61 +k. 2m.
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0) 3 (-2,-1 
Figure 9.13 Figure 9.14

For r <0,

r=—vV5 and tan 6 = +.

where 0 is in the first quadrant. That is, r= —V/5 and 6 = 0.46 + k - 2.
Therefore, point (— 2, — 1) is represented in polar coordinates by any of the

ordered pairs in the set:

{[V'S, 3.61 + k - 2] | k any integer} U {[-V/5, 0.46 + k - 2x] | k any integer}. ||

/2\ The given ordered pairs name points in polar coordinates. Find the
names of the same points in rectangular coordinates:

a) [4, 60°] b) [— 3, 180°] c) [4, —3m/4] d) [—2, 2.48]

Solution. We use the formulas of Eq. (9.1), which are valid even when r is

negative.

a) x=4 cos 60°=4.%=2; y=4 sin 60°=4.13/2=2/3.
Therefore, the point in rectangular coordinates is given by (2, 2V/'3).

b) x=—3 cos 180°=—-3(—-1)=3; y=—3 sin 180°=-3.0=0.
Therefore, the given point is (3, 0) in rectangular, coordinates.

c) x=4 cos (—3r/4)=—2V2;, y=4sin(-3r/4)=-2V2.
Thus, the given point is denoted by (—2V 2, —2V/ 2) in rectangular
coordinates.

d) x=—2 cos 248=1.58; y=—2 sin 2.48 =— 1.23.
Therefore, [— 2, 2.48] is represented by (1.58, — 1.23) in rectangular
coordinates. I

A Find an equation in polar coordinates that describes the same set of
points (same curve) as x? + y?> — 2x = 0 in rectangular coordinates.

Solution. Substituting x = r cos 6 and y = r sin 6 into the given equation, we

get

(r cos 0)? + (r sin 0) — 2(r cos 0) = 0.
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This is equivalent to r> —2r cos § =0; and so r=0 or r=2 cos 6. Since
r= 0 gives only the polar origin as a point and from r=2 cos 6 we get the
point [0, w/2], which is also the polar origin, we can neglect r = 0 in our
solution. That is, r=2 cos 6 will describe the same set of points as

x+y? —-2x=0.

/A\ Find an equation in rectangular coordinates that describes the same set

of points as r = 2 sin 6 + cos 0 in polar coordinates.

Solution. Since a direct substitution for » and 6 from Eq. (9.2) would involve

Vx? + y? it is simpler to first multiply both sides of the given equation by r:

r’=2r sin 6 + r cos 0.

Now, replacing r? by x* + y2, r sin 6 by y, and r cos 0 by x, we get

x2 + y?=12y + x.

Note. In this example we should check the possibility that we may have
introduced some extraneous points by multiplying both sides of the given
equation by r. This can occur only if we had multiplied by the value r = 0.

Since r = 0 represents the origin, the only possible extraneous point is the
origin. Thus we must check whether the origin is also a point on the curve
represented by the polar equation. We see that 2 sin 6 + cos 6 =0 for
§ = Tan—!(—'2) = —0.46; that is, [0, —0.46] satisfies the given equation, and so

the origin is on the given curve. i

A Draw a graph of the equation 6 = 2 in polar coordinates. Then find an
equivalent equation in rectangular coordinates.

Solution. The graph of § = 2 is a line through the origin, as shown in Fig. 9.15.
Since tan § = y/x, the corresponding equation in rectangular coordinates is
y/x = tan 2 or y = x(tan 2). In decimal form this is y = —2.19 x. i

 

Figure 9.15

 

EXERCISE 9.3

In each case, when the answer is expressed in decimal form, give the result

correct to two decimal places.
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1. In the following, points are given in rectangular coordinates. Find the names of the
points in polar coordinates:
a) (—1,1) b) (= 1, —V3) c) (mw, 4) d) (—1.57,2.43)

2. For each of the points in Problem 1, find the set of all possible ordered pairs

[r, 0] that can be used as polar coordinates for the given points.

3. Express the following points in polar coordinates with » 20 and 0 <6 <2:

1+V52) (3,3) b) (I. -3) 0 (vr. =)

4. Express the following points in polar coordinates using the least positive angle and

r<o:

a) (4, —3) b) (V3, V3) c) (2.52, — 2m)

5. Express the following points in rectangular coordinates:

a) 2, 7 b) [= 3, -& c) [2.24, — 0.37]

6. Express the following points in rectangular coordinates:

a) [0, 30°] b) [4, — 630°] c) [—2,47°37']

7. Determine whether the given pair satisfies the equation > sin 6 = 1:

al, 2] BEL-T1 oWV2T 400 ell FT)

8. The position of point P is given in rectangular coordinates. Determine whether P

lies on the curve whose equation in polar coordinates is r = 1 + cos 6:

9. Let [r,, 0,] be polar coordinates of point P and [r,, #,] be polar coordinates of point

Q. If d represents the distance between P and Q, show that d is given by

d=Vr:+r:—2rr,cos (0, —0,).

  

 

10. Use the result of Problem 9 to find the distance between each of the given pairs of
points:

a) [3, 0], [r. 7] b) (1. ZT. [-2. &
c) [—3.4, 32°], [1.6, 1.47] d) [-24, 3.2], [3.7, — 0.64]

In Problems 11 through 14, find an equation in rectangular coordinates that describes

the same set of points (same curve) as the given equation in polar coordinates:

11. r cos 6 =3 12. 30=4

13. r(1 —sin 0) =2 14. r=2 cos(f + m)

In Problems 15 through 18, find an equation in polar coordinates that describes the

same set of points (same curve) as the given equation in rectangular coordinates. Then

sketch the curve using either of the equations.

15. x? + p2=1 16. 2xy =3
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17. 3x —y=0 18. x? + py? + x = Vx? +)?

19. Are all points of the curve whose equation is r = sin 6 also on the curve with

equation r csc f# = 1? Substantiate your answer.

20. Express r = sin 26 as an equation in rectangular coordinates.

REVIEW EXERCISE

In any problem where both rectangular and polar coordinates are used,it is
assumed that the positive x-axis coincides with the polar axis.

1. The name of a point is given in rectangular coordinates; give a name of the point
in polar coordinates:

a) (1, 0) b) (=3,0) c) (4,4) d) (-2,2)

© (-V3, -1)  NV2-V2)  g(04 h) (0,-3)
2. As in Problem 1, find a name of the given point in polar coordinates. Find r and

6 (in radians) to two decimal places:

a) (3, 4) b) (=5.1) c) (3,-5) d) (-2,-1)

3. The name of a pointis given in polar coordinates. Draw a diagram illustrating the

point and then write its name in rectangular coordinates:

a) [4 I b) (2, | 0 [4 ]
_1. 2 _3 _3d [= 1 7] e) [=3, =]

4. Follow the instructions of Problem 3. Give answers to two decimal places:

a) [l, 7] b) [-4, 3.47] ¢) [2.3. 1.35]

d) [-2. Lr e) [3, —4.32]

In Problems 5 through 12, an equation is given in polar coordinates. Draw a graph of

the corresponding curve:

S. r=sin 0 6. r’=16 7. r= 2 sin(—0)

8. r=cos 0-1 9. r=3 sec 0 10. r = cos 20

11. 2r=6, where 6>0 12. r =sin(6 + z)

13. Find an equation in polar coordinates that describes the same curve as x? + y? = 4.

Draw a graph of the curve.

14. Find an equation in polar coordinates that describes the same curve as

x2 + y? + y=Vx? + y%. Draw a graph of the curve.

15. Draw a graph of r(1 + cos 6) = 1. Then find an equation in rectangular coordinates

that describes the same curve.

16. Draw a graph of r sin 6 = 3. Then find an equation in rectangular coordinates that

describes the same curve.



 

 

CHAPTER TEN

LOGARITHMS

In the past, one of the important uses of logarithms has been as an aid in
computational problems, particularly in those that involve only multiplication,
division, raising to powers, or extracting roots of numbers. With the introduc-

tion of hand-held calculators, the use of logarithms for computational
purposes has been practically abandoned. However, logarithmic functions
occur in many applications as well as in theoretical mathematics, and so they
still present an important topic for study. In this chapter our discussion will be

primarily directed toward the study of basic properties of logarithms rather
than their use for computation.

We introduce logarithmic functions as inverses of exponential functions.
Therefore, it may be helpful to first review the properties of exponents that the
student has already encountered in algebra.

10.1 EXPONENTS

The exponential functions that are of interest can be described by

f(x) =b,

where b is a given positive number and b # 1, while x is any real number.* Each
such b yields an exponential function; b is called the base of b~.

The following rules of exponents are basic in working with exponents: if u

and v are any real numbers and a and b are positive numbers, then:

  

(E.1) bu. bY = bu+ bu/by = bu» (E.2)
      

* If b is a negative number, it is possible to define 5* but in general this involves a discussion of
complex numbers. This is reserved for later courses in complex variables. Also, we make the
restriction that b # 1 because for b = 1, the function f(x) = 1* is equal to 1 for all x; that is,it is
a constant function and we prefer not to call it an exponential function.

259
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(E.3) (b¥)= b* (ab)* = a*- b (E.4)
   

 

 

(E.5) (a/b)= av/b»    
Note that (E.4) and (E.5) are formulas for raising products and quotients

to powers. We do not have analogous simple results for raising sums and
differences to powers, that is, (a + b)" is not identically equal to a” + b";
similarly for (a — b)". These operations involve the binomial expansion for-

mula.

In addition to the above rules we need the following definitions:

Zero exponent:

b°=1 for any b > 0; (10.1)

Negative exponent:

b= = for b> 0and any real number u, (10.2)

Radical notation. Radicals are frequently used to denote expressions involving

a rational-number exponent. If m and n are integers (with n > 1) and b> 0,

then b7/n is written in radical form as vb”. That is,

bin = \/bm (10.3)

Note. When n = 2, we make a special case and write2 =v b™ (not Vv bm).

If formulas (E.4) and (E.S5) are written in radical form for the special case

of u=1/n, we get

  

      

 

(E.6) vab =vVa Vb \ [4=JV (E.7)

Examples

AN Evaluate the following and express answers in exact form:

a) 43.42 b) 43 + 4° c) 22+2-3
d) 64° e) (16%4): f) 25-2)”

Solution

a) 43. 42=432=4° = 1024

3. 3-5_ 4-2 _ 1b) 4 +4°=45=4- == 16

C) 28+ 2-5= 23-(-9 = 23+5_ 28 _ 256

d) 6432 =(8?)3%2=283= 512
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e) (163/42 = 1653/92) = 1632 = (42)32 = 43 = 64

f) (25-312 = 2531/2 = 2532 = (52)32= 53 = 125 I

/2\ In Example 1, all of the problems were selected so that the answers can
be expressed in simple rational-number form. In this example we consider
problems where this is not possible, so we get approximate decimal answers

using the calculator.

Find the decimal approximation (rounded off to four places) of the following:

a) 72=V1 b) 73/4 c) 3V17°

_ V3 _ V2

d 3 JES n (52)
Solution

a) To evaluate V/7, we can use the key; pressing 7 a1 , we get
the answer directly in the display: 7 = 2.6458. We could also use the

key to evaluate 7'/2

b) To evaluate 73/4 we use the key and press the following sequence
of keys:
For algebraic calculators:

7 CJ 3 J 4 OO =)

For RPN calculators:

7 3 4 (=)

The display shows 73/4 = 4.3035.

¢) Using the definition given by (10.3), we can write V1T* as 1743

Following a sequence of key strokes similar to those of (b), we get
VIT* = 43.7118.

d) We evaluate 3-V2 by pressing the following sequence of keys:
Algebraic calculators:

3 0) 2 »®) C1) =)

RPN calculators:

3 2

The display shows: 3-V2= 0.2115.

e) To find ((1 + V'5)/2) we first evaluate (1 +v/5)/2 and then,
with the result in the display, stroke a sequence of keys similar to that

in (d). This gives ((1+V/'5)/2)"3=2.3013.
f) This case is similar to (¢). However, the calculator indicates *“Error”for

the final result. The difficulty is that (1 —V/3)/2 is a negative number.
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On most calculators the key can be used to evaluate exponentials
only when the base is positive. This is consistent with our requirement

that b> 0 in f(x) = b*. Thus (a -V3)/2)"2 is undefined within the

context of our discussion of exponential functions. i

A a) Rationalize the denominator in 4/(V'5— 1) and then use a calculator

to check the result.

b) Similarly, rationalize the numerator of (V17 + 1)/8.

Solution

a) Our goal is to express 4/(V5 — 1) as a fraction without a radical in the

denominator. Thiscan be done by multiplying the numerator and

denominator by Vv 5 + I, as follows:

 

4 AVS+D) _AVS+D _AVS+Dmg
Vi—1 (V5=-D({/5+1) 5-1 4

As a check, we use a calculator to evaluate 4/(V'5— 1) and V5 + 1:

oC 3.236067979, V'5 + 1 = 3.236067977 (to nine decimal places).
5-1

The disagreementin the final decimal digit is due to the round-off error in the
calculator.

py VIZ +1_(VT7T+H/17-1) _ 17-1 __ 16
  

8 8(V17 — 1) 8V17 —1) 8(V/17-1)
__2
VIT1

As a check,

VIT +1_ 0640388203, ——2  ~ 0.640388203. 1
8 V17 — 1

/A\ When a principal of P dollars is invested at compound interest, the

amount 4 accumulated at the end of n years is given by the formula

A=P(1 +L)",

where 7 is the interest rate and m is the number of times per year the interest
is compounded.

If $1250 is invested at a bank that pays 7.75% interest compounded twice
a year, what is the value of the investment at the end of 8 years?

Solution - .

A = 1250 (1 + SR) dollars = 1250 (1 +A dollars.

Using a calculator to evaluate this, we get 4 = $2296.61. i



10.1 Exponents 263

A\ Evaluate the product y = (0.00000048763) - (5347000000) and give the

answer rounded off to four significant digits.

Solution Since the number of digits in each of the given numbers is greater
than the digit capacity of the calculator, we first express the numbers in
scientific notation (see Appendix B). Thus, we have

py =(4.8763 x 10-7). (5.347 x 10°) = (4.8763) - (5.347) x 10?

= 2607 (to four significant digits). i

/6\ Suppose fis a function given by f(x) = (1 + x)!/x, where x >—1 and

x #0. Evaluate f(x) for several values of x near zero; then make a reasonable

guess about what value is approached by (1 + x)!/* as x approaches zero.

Solution We use a calculator to complete the following table off(x) values for

the given values of x:

 

 

x J(x) x Sfx)

1 2 -0.8 7.47674
0.5 2.25 -0.5 4
0.2 2.48832 —-0.2 3.05176
0.1 2.59374 —0.1 2.86797
0.01 2.70481 — 0.01 2.73200
0.001 2.71692 — 0.001 2.71964
0.0001 2.71815 — 0.0001 2.71842      
 

From the values of f(x) in the above table we conclude that (1 + x)!/~is ap-

proaching a limit that lies between 2.71815 and 2.71842 (as x approaches 0).

 

The number e

In Example 6, we observed that as x approaches zero, (1 + x)!/* seems to
approach 2.718... as a limit. This is actually the case (as the student will see

in calculus) and the limiting value is a transcendental number denoted by e:

e=2.718281828. ..

The number e is an important number that occurs frequently in applied as well

as theoretical problems in mathematics.*

. . -1)2

/N Simplify DL)

 

* The letter e is used in honor of the Swiss mathematician Leonhard Euler (1707-1783), one ofthe

greatest mathematicians of all time.



264 Logarithms

Solution

+x? _ d+1/x)?* _ [(x+ D/x]P_ (x + D?*/x?
 
 

 

(1+x)2  (1+x) (1 + x)? (1 + x)?

_(x+ 1) 1 IC)A

x? (1 +x)? x¥(1+x)? x7% I
 

EXERCISE 10.1

In Problems 1 through 25, evaluate the given expression and give answers in simplified

exact form:

 

 

 

1. 34.3 2. 65.673 3. 4-12.45

4. 52/3. 5-8/3 5. (349-312 6. 8.(16-3/4)

7. (25)3/4(5)-5/2 8. 365/4 6-3/2 9. (92/3) = (37/3)

427) 345-2) 2-4.8-3\210.2 IL 55 12. (4=)

13. 21-122 (31/2. 7-32) 14, (22) 15. 2@)

3 _ _ —

16. V27 17. (V2 + V3) tn, (LoV2 yo (Leds
256 2 2

19. V/57 + 122 20. (V3 - V8)’ 21. (152)(52

3 4

22. V10072 + 12247 23. V/10972 — 585? 24. Cl
6

25, 75/2 _ 633/2

V7

In Problems 26 through 43 use a calculator to evaluate the given expression and round

off answers to two decimal places. If your calculator indicates “Error”for any problem,

explain the response. For problems involving the number e, use e = 2.718281828

(correct to nine decimal places).

 

26. 53/4 27. 7.3-3/4 28. 42/3 _ 35/4

29. V5-V3 30, +V3 31. (Ls)
vV5-V3 2
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A 3

2. VTA 1 33, 43+ 34. 5 _ ) ve
V3i+V2 2-V5

1/4
35. ( 2 — ) / 36. (0.0000004385) - (6534200000)

1+V5

-4
37. (3.74 x 10-9) (5.43 x 107) 3g, (2:47 x 107%) (3.42 x 10%)

4.36 x 10-3

39. ¢? 40. ¢-'/2 41. Ve

42. eV? 43. Ve—1

44. Rationalize the denominator; then use a calculator to check your answers:

a) 8 b) —27 0) V3
V5+1 V10 — 1 V2-1

45. Rationalize the numerator; then use a calculator to check your answers:
_ ~, ~

2) v3! b) (1 43 0 1 V7

In Problems 46 through 56, simplify the given expression; provide answers without

negative exponents. Assume that x and y represent positive numbers.

2, ,-3
46. x? . x? 47. ri 48. 3¥%.32-x2

7"

— _ 3 2)2 -3/4 _49. (XX 2)! 50, &° + x7) 51. (2 foxy

x4 x4 x

55, Xx=x! 56, X'+1
x +1 x2—x"1-2

In Problems 57 through 65, evaluate the indicated expression and round off results to
two decimal places:

57. If f(x) = 2*, evaluate

a) f(=2/3) b) f(5/3) c) f(=2/3)-f(5/3)

58. If g(x) = 5-2, evaluate:

a) ¢(3) b) g(—%) 9 &(y) +8(- 7)



266 Logarithms

59. If f(x) = 3¢x* +29), evaluate:
2

a) f (+) 0 (LE) 0 f(-+)

60. If g(x) = 2* + 2-* evaluate:

a) g(1) b) &(-3) 0) g(1-V3)
61. If g(x) = 3*/3%, find:

a) g(l) b) g(+)
62. If f(x) = 4°. 1-2, find:

V2 b) £1 —3.478a) f(V2) (5) 0) f( )

63. Ifglx)=—=1 find:
x+ xt +x + 1

a) g(2) b) g(V'3) c) g(-1)

64. If f(x) = x32 + x32 find:

a) f(4) b) f(-2)

65. If f(x) = 2.48(1.08)x, find:
a) f(3) b) f(-0.25)

In Problems 66 through 70, determine whether the given statementis true or false:

66. V 9+4/5=2+V5 7. YoV2_1\203
2

68. Va’ + b> = a + b for all real numbers a and b

 69. _1 V2 +1
V2-1

70. (e* + e*)* — (e*— e~¥*)2=4, where x is any real number.

10.2 GRAPHS OF EXPONENTIAL FUNCTIONS

In this section we are interested in exploring properties of exponential

functions by drawing graphs of y = b*, where b is a given positive number and

b+ 1. As an illustration, consider the following examples, where different
values of b are used.

 

Examples

AN Draw a graph of y = 3+.

Solution. We first compile the following table, then plot the corresponding

points and draw a graph, as shown in Fig. 10.1. The values ofy are determined

by calculator to two decimal places:
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x -3 -2 — 1 -05 0 0.5 1 1.5 2 3
 

y 0.04 0.11 0.33 0.58 1 1.73 3 5.20 9 27   
 

We see that the graph of y = 3* is an increasing curve (that is, y increases
as x increases) and the values of y run through all positive numbers. Thus we
say that f(x) = 3* is an increasing function with domain D( f) and range R( f)
given by

D(f) = {x |x is any real number},

R(f)=1{y|y > 0} i

2 Draw a graph of y= (3)= 3-x,

Solution Following the pattern of Example 1, we first make a table of x, y
values, plot these points, and draw the curve, as shown in Fig. 10.2. It is

instructive to compare the x, y values of this table with those in the table of
Example I:

 

x |-3 -2 -15 -1 -05 0 0.5 1 2 3
 

y 27 9 5.20 3 1.73 1 0.58 033 0.11 0.04   
 

From the curve shown in Fig. 10.2 we can conclude the following:
g(x) = (1/3)is a decreasing function (that is, y decreases as x increases) with

domain and range given by

D(g) = {x |x is any real number},

R(g) = {y|y > 0}.
Note. The curve in this example is a reflection of the curve in Example 1 about
the y-axis.

 

xX  
C= 2X _Graph of y = 3 Graph of y = (3)*= 3X

Figure 10.1 Figure 10.2 i
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A\ Draw a graph of y = ex.
The number e = 2.71828182 . . . was introduced in Example 6 of Section 10.1.

Solution We first make a table of x, y values, plot the corresponding points,

and then draw a curve through these points, as shown in Fig. 10.3. Some

calculators have an key, so the y value can be determined directly by
pressing the key after x is entered in the display. For calculators that do
not have the key, we suggest that 2.718281828 (round off to calculator

capacity) be stored with the key and recalled with the key when
needed. In Section 10.4 we shall see how we can evaluate ex for a given x
without storing e.

 

 

— 
Graph of y = eX

Figure 10.3

In the following table we give the y values to two decimal places:

 

x|-3 -25 -2 -15 —-1 -05 0 05 1 15 2 25 3
 

y 10.05 0.08 0.14 0.22 0.37 0.61 1 1.65 2.72 448 7.39 12.18 20.09    
 

From the curve in Fig. 10.3 we conclude that F(x) = ex is an increasing
function with domain and range given by

D(F)={x|x is any real number},

R(F)=1y|y> 0}. I

The above examples lead us to the following general conclusions concern-
ing the functions given by G(x) = b*:
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1. The domain and range of G are given by:

D(G) = {x |x is any real number},

R(G) =1{y|y > 0}.

2. If 0<b< 1, then G is a decreasing function, while if 56> 1, G is an

increasing function.

EXERCISE 10.2

In Problems 1 through 15 make a table of several x, y values that satisfy the given

equation (provide y to two decimal places), plot the corresponding (x, y) points, and

then draw the curve.

1.

4.

7.

10.

13.

 

y=2 2. y=("%)* 3. y=(1.53)~

y=(1.53)-=x S.y=e~* 6. y=2e*

— x 1+V5 *—(e—1y g.y—(e=L 9. y= )y=(-1) y ( 5 ) y ( >

y=+e 1. y=1+e 12. y= — 3x

y=—3x 14. y= 3-x/2 15. y= Yo(eX — ee)

Note. —3* means — (3%) and not (—3)*. Similarly, —3~* means — (3%).

16. If f(x) = 1 — 5—x, evaluate the following to two decimal places:

17.

18.

19.

a) f(0) b) f(1) c) f(%2) d) f(=2) e) f(-0.24)

If g(x) = 1/(1 + e%), evaluate the following to two decimal places:

a) g(0) b) g(1) c) (2) d) g(-3) e) g(— 0.64)

The predicted population P of a certain city is given by the formula:

P =450000- 1.08/12,

where n is the number of years after 1980. Find the predicted population for each
of the years (round off answers to the nearest thousand):

a) 1985 b) 1990 c) 1995 d) 2000

A function that occurs frequently in the study of probability and statistics is given

by
1 —x¥/2fx) =— ev,

V2

where x is any real number. Compute the corresponding values of f(x) to

two decimal places for x equal to 0, 0.2, 04, 06, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, 2.0. Plot a graph of y = f(x). Note that f(— x) = f(x) and use this to

draw the graph for negative values of x.
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20. Follow the instructions of Problem 19 to plot a graph of

1 —(x+ 1)2)2
glx)y=—-—2¢€ ,No

T

where x is any real number. Use values of x beginning with —1.0 up to x = 3.0 with

increments of 0.2.

10.3 LOGARITHMS: DEFINITION AND BASIC PROPERTIES

1. Example of a Logarithmic Function

At the beginning ofthis chapter we indicated that logarithmic functions would
be defined as inverses of exponential functions. This can be illustrated by
considering f(x) = 3*. A graph of y = f(x) is shown in Fig. 10.1 reproduced in

Fig. 10.4.
Geometrically, we can see that for each real number x, there is a unique

positive number y, corresponding to it (point (x, y,) on the curve). We

describe this by saying that the function f maps each real number into a

positive real number, for example: —1- 1, 0-1, 1 53, 1.555.196, 2-59,

and so on.

If we reverse the above mapping process,it is clear (from the graph) that for
each positive real number y there is exactly one corresponding real number x.
In other words, f(x) = 3 has an inverse function that maps the positive real

numbers into the real numbers; for example, 3» —1,1-50,3-51,5.196 > 1.5,

9 — 2, and so on. It is customary to denote this function by log, and call it the

6.4

5.196

 

 

 
Graph of y = f(x) = 3%

Figure 10.4
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logarithmicfunction with base 3. That is, y = 3*and x = log, y describe the same
set of points (x, y) and so we have:

x = log, y is equivalent to y = 3.

In other words, if we solve y = 3* for x in terms of y, the result is expressed by

x = log, y.
The above correspondences could be written as

log,s = —1; log,1 = 0; log,3 = 1; log,5.196 = 1.5; log,9 = 2.

If we wish to evaluate,say, log,6.4, we see from the graph that the answeris the

number x, that lies between 1.5 and 2.0. We could make a crude estimate of x,
from the graph but we shall see later that a calculator can be used to find x,
correct to several decimal places.

2. Graph ofy = log, x

The graph of y = 3" or x = log,y is shown in Fig. 10.1. However, since log, is

a function in its own right and since it is customary to use x as the independent

variable, we would like to draw a graph ofy = log,x. Sincethisis equivalent to
x = 3’, it should be clear that if we interchange the x and y values in the table

preceding Fig. 10.1, we shall have points satisfying y = log,x. Thus we get the
following table:

 

x 004 011 033 058 1 173 3 520 9 27

y| =3 2-1 -05 o0o 05 1 15 2 3
 

   
 

Plotting the corresponding points and drawing the curve, we get the graph
shown in Fig. 10.5. This is equivalent to reflecting the curve in Fig. 10.1 about
the line y = x.

9 |

 
Graph of y = logy

Figure 10.5
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3. Definition of Logarithmic Functions in General

In the above example we introduced the log, function. This leads us to the

following definition of logarithmic functions in general:
If b is any given positive number and b + 1, then we define the log, function

as the inverse of the exponential function with base b. That is,

 

log,x = y is equivalent to x = b’, (L.1)

  
 

where the domain of log, is {x |x > 0} and the range is {y|y is any real num-
ber}. The expression log, x is read as “the logarithm of x to the base 5.”

4. Properties of Logarithmic Functions

Suppose we wish to evaluate log,1 and logb. Let log,1 = a, then from (L.1) this

is equivalent to b*= 1. Since b° = I, then a must be zero. That is log,]1 = 0.

Similarly,let log,b = c, then b= b, and we see that c = 1.

These two special cases of log, x for any base b are worth noting:

 

log,1 =0 and log, b=1. (L.2)

  
 

Three important properties of logarithms are given by the following formulas.
If u and v are any positive numbers and ¢ is any real number, then

 

 

 

log,(uv) = log, u + log, v, (L.3)

log, (£) = log, u — log, v, (L.4)

log,(1) = t(log, u). (L.5)   
To prove the result given by (L.3), let log, u = 4 and log, v = k. Using the

definition given in (L.1), we have u = b" and v= b* Since formula (L.3)

involves u - v, we multiply these two equations to get

u-v=>b".bk=>bh+k

But using (L.1) again we see that uv = b"+* is equivalent to log,(uv) = h + k.
Replacing h by log, u and k by log, v, we get Eq. (L.3).

Proofs of (L.4) and (L.5) are similar. The three properties given here are

essentially restatements of the corresponding properties of exponents (E.1),

(E.2), and (E.3) stated in Section 10.1.

Note. Equations (L.3), (L.4), and (L.5) involve logarithms of products,

quotients, and powers. We do not give formulas for sums and differences; the

reason is that there are no simple results for log,(u + v) and log,(u — v).
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Examples

AN Evaluate the following and give answers in exact form:

V27
a) log,8 b) log, 4 c) log, ——2 £2 ) gs 33

d) log,(16/4) e) log,,1000 f) log,,0.0001

Solution

a) Let log,8 =r. Then by (L.1), 2"= 8 = 2°. Thus r = 3 and so log,8 = 3.

b) Let log,,4 =s. Then by (L.1), (*2)*=4 = 22That is, 27'=2? and so

s = —2. Thus log,4 = -2.

V2T _ V9.3 _ 33 _,
33 33 33

log, V2 _ log,1 = 0.
3V3

 ¢) Since , then using (L.2) we get

d) Let log,,(16V4)=m. Then by (L.1), (1/4)"=16V'4. This is equiv-
alent to 4"=4? . 413=475som =—7/3. That is, log,,(16V4)==7/3.

e) Let log,,1000 = p. Then by (L.1), 10° = 1000 = 10°. Thus, p = 3 and so

log,,1000 = 3.

f) Let log,(0.0001) =g. Then by (L.l1), 10°=0.0001 =10"* and so
q = —4. Thus log,(0.0001) = —4. i

A Given that log3 = 0.6826 and log,6 = 1.1133, evaluate the following and

provide answers to four decimal places:

a) log,2 b) log.(log,8) c) (log12) + (log,3)

Solution

a) log,2 = log(6/3) = log,6 — log,3 = 1.1133 — 0.6826 = 0.4307 (by (L.4)).
b) We first evaluate log,8; from (L.1) it should be clear that log,8 = 3.

Therefore, log(log,8) = log,3 = 0.6826.

c) Wefirst evaluate log,12:

log12 = log(22 - 3) = log2? + log,3 = 2 log,2 + log,3 (by (L.3), (L.5)).

Using log,2 = 0.4307 (from part (a)) and log,3 = 0.6826, we get

log12 = 2(0.4307) + 0.6826 = 1.5440.

Thus, (log,12) + (log3) = (1.5440) + (0.6826) = 2.2619. i

A Write 3log,2 + 3 log8 — 5 log32 as log, of a number.
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Solution

3log.2 + 3 log8 — 5 log,32 = log,2® + log8%? —log,32'2 (by (L.5))

= log£87) (by (L.3), (L.4))

= log, Lal (by (E.3))

= log,(2%) (by (E.1), (E.2))

= log,32. I

/A\ If p and q are positive numbers, write each of the following in terms of
log,p and log,g: —

3/4

a) log,(p - 4°) b) log, (22¥4 )
Pq

 

4
Solution

a) log,(p - ¢°) =log,p + log,g> (by (L.3))
=log,p + 3 log,g (by (L.5)).

3/4 3/4,1)2 5/12p'Van pg? pb) log,7 ) =logy(rma. ) = log, (5) (by (E.5)) 

3

= log, p*/'? — log, ¢*/* (by (L.4))

= 2 log, p — 3 log, q (by (L.5)) i

/5\ Solve for x:

a) log,(2x + 1) — log,(4x) = 1 b) log,(2x — I) — log,(4x) = 1

c) log,x + log,(x + 48) =2

Solution

a) Applying the formula in (L.4) to the given equation we get

log,[(2x + 1)/4x] = 1. According to the definition stated in (L.1), this can

be written as (2x + 1)/4x = 3. Thus, 2x + 1 = 12x and so x = 1/10. We

wish to see if x = 1/10 actually satisfies the given equation. Substituting
x = 1/10 into the left-hand side gives

— 2 4 _ 6 2LHS = log,({5 +1 ) — log(15) = log, “ log,

_ 6 . 2=log(= +%) (by (L4)
= log,3.

Since log,3 = 1 (as can be seen from (L.2)), then x = 1/10 is a solution of

the given equation.

b) Following a pattern similar to that in (a), we get x = — 1/10. Substitut-
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ing — 1/10 for x in the left-hand side of the given equation, we get

LHS — log fy) ~ log5) log(~ § )- og, ).
Since —6/5 and —2/5 are not in the domain of the log, function (that
is, log,(— 6/5) and log,(—2/5) are not defined), we see that x = —1/101is
not a solution of the given equation. Thus, there is no real number x
that satisfies the given equation.

c) Using Eq. (L.3), we can write the given equation as log,[x(x + 48)]
= 2. By (L.1), this is equivalent to x(x + 48) = 10? = 100. Thus we have

the quadratic equation x? + 48x — 100 = 0 to solve. This can be done
by factoring: (x + 50) (x — 2) =0. Thus x = —50 and x = 2 are solu-

tions of the quadratic equation. Substituing x = — 50 into the left-hand
side of the given equation, we get LHS = log,,(—50) + log,,(—50 + 2).

This is undefined and so x = —50 is not a solution. Substituting x = 2

into the given equation, we see that it is a solution. Thus, the given
equation has one solution: x = 2. i
 

EXERCISE 10.3

In Problems 1 through 15, evaluate the given expressions and give the answers in exact
form. If the given expression is not defined, tell why.

 

 

1. log,32 2. log, 5 3. log, 122

497
4. log,5 S. log,,100 6. log ov 1000

0.0001 Ve
7. log,, — 8. log, 9. log,.2

** 0.0001 Ve 02
10. log,(log,5) 11. log,(log,1) 12. log,(log,3)

13. log,(log;+ ) 14. log,(log, vio ) 15. log,(4V2)

In Problems 16 through 24, p and g are positive numbers. Write the given expressions

in terms of log,p and log,q:

 16. log,(p*q°) 17. log,(p*/? + ¢%) 18. log, Vpq
pPvVy

pq" P+q P—q19. log, 2-4 20. log, 29 21. log, —2=9p>
SpTe Trg © pag —pn P70

2

22. log,(bV 23. log, 24 24. log, ©g,(bVpa & 8 5

In Problems 25 through 40, use the following to evaluate the given expression and

provide answers to four decimal places:

log,2 = 0.43068, log3 = 0.68261, log 7 = 1.20906,

log,11 = 2.18266, log,22 = 2.81359.
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25. logs6 26. log63 27. log475

28. log,2 29. log,66 30. log/44

31. log,V/54 32. log,(log,9) 33. log, V21

34. log,99 35. log,10.5 36. log, vis

37. log,(logs25) 38. (log,9)(log42) 39. (log,33) + (log,81)

40. log,70 — log4

In Problems 41 through 45, write each ofthe given expressions as log, of a number(for
the given b):

41. log,5 + log;20 42. 2 log,5 — log4

43. Y2log4 + % log,27 — '% log,64 44. 3log,3 — 21log,9 + 2 log,5

45. Ys log,5 — Y21og,20 + Y log81

In Problems 46 through 55 solve for the indicated letter. When necessary, be certain to

check whether your solution satisfies the given equation:

46. If log,x = 4, then x = 47. If log,16 =2, then b=.

48. If log(1/25) = y, then y = 49. If log(3x —1)=1,thenx=

50. If log(4x) —logs(2x — 1) =2, then x =—

S1. If log,(2x) + logy(5x) = log,10, then x =

52. If log, 5 =—3, then b=

53. If log25 + log,27 = 2x + 1, then x =

 

 

 

 

 

 54. a) If log,x> —log,(x + 6) =0, then x =

b) If 2 log,x — log,(x + 6) = 0, then x = 

55. If log ox + log,,(x + 3) = 1, then x = 

In Problems 56 through 64, determine whether the given statement is true, false, or

meaningless. A statement is meaningless if any part of it is undefined. Substantiate your

answers.

 

56. log,9 — log2 = log(4.5) 57. log(3 ) + log,2 = log,3

58. log, (3? + 4%) = 2 log,3 + 2 log,4 59. log, V3 = log,(1 — V3) — log ;2

60. log 100 — log 0.01 = 4 61. log, 3 =2
og,

 62. log; = = log; (Vs — 1)- log,2
+

63. log(log,"s) = — 1 64. log (1 + log4) =1
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10.4 USING A CALCULATOR TO EVALUATE LOGARITHMS

In the preceding section we encountered several instances where we were able
to evaluate logarithms by converting to exponential form. For example, to

evaluate log, 27 we let log,V/27 =y, which is equivalent to 3’=V27
=3%2 Thus y=3/2 and we have log, V27 =3/2. However, a similar

procedure to evaluate log,6.4 =z leads to 3°= 6.4. Since 6.4 cannot be
expressed as a simple power of 3, we are unable to complete the solution as we
did in the first example. In this section we discuss techniques for solving such
problems by using a calculator.

1. Common and Natural Logarithms

For computational purposes the frequently used base of logarithms is b = 10.

Since it is cumbersome to write the subscript 10 in log, each time, we shall
write “log” and it is understood that the base is 10. It is an interesting fact that
the transcendental number e = 2.718281828 . . . occurs naturally as a base of

logarithms for theoretical (as well as computational) purposes in the study of

calculus (see Example 6 of Section 10.1). Since the notation logis awkward, we

replace it by In. Thus we have the following notation:

 

log,x is written as log x,

log,x is written as In x.

   
Logarithms with base 10 are called common logarithms, while those with

base e are called natural logarithms.

2. Logarithms with Calculators

Most scientific calculators have both and (Cn) keys. We shall consider
several examples to illustrate the use of these keys. Some calculators have the
(mJ) key but not the key; we shall see that this is sufficient for our
purposes.

The and (Cn) keys represent functions of one variable. If a number x
is entered into the display ofthe calculator and then the (in key is pressed,
the result In x will appear immediately in the display (it is not necessary to

press the (=) key on algebraic calculators).

 

Examples

AN Evaluate the following correct to four decimal places:

a) In 2b) log 0.0037 © In Lays d) In vi
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Solution

a) Pressing the keys 2 and (Cn) gives In 2 = 0.6931.

b) If the calculator has a key, then entering 0.0037 into the display
and pressing gives log 0.0037 = —2.4318. If there is no key,
we can use the(m key as follows: Let log 0.0037 = y; this is
equivalent to 10” = 0.0037. Now take In of both sides of this equation:
In 10” =1n 0.0037, which is equivalent to y In 10 = In 0.0037. Thus
y =1n 0.0037/In 10, and this can be evaluated by using the (in and
(=) keys.

c¢) To evaluate In[(1 + V/5)/2], we first compute (1 + V'5)/2 and, with

the result in the calculator display, press the (J) key. This gives

In| (1 +V3)/2] _ 0.4812.

d) To evaluate In| (2 —V17 ) /3) we follow a procedure similar to

that in (c¢). In this case the calculator indicates ‘Error’ and the reason

is that (2 —V/17)/3 is a negative number and so is not in the domain

of the In function. That is, In| (2 — v7) /3| is undefined. i

 

3. Change of Base

In using a calculator to evaluate log,u, where b is a positive number different
from e or 10 (and b # 1), it is necessary to convert to logarithms with base e or

base 10. We do so as follows.

Let log,u = t, which is equivalent to b= u. Taking In of both sides of this
equation gives In b' = In u, which is equivalent to In b = In u. Thus we get

t =n u/In b. Therefore, we have the following formula that expresses log,u in

terms of In u and In b:

 

In ulo === 10.4
Syl Inb ( )

   
Similarly, if we used log in place of In in the above discussion, we would get

 

 (10.5)

   
We continue with more examples.
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/2\ Evaluate the following and give answers rounded off to four decimal
places:

a) log7.5 b L+V'5 -g7. ) log,0.0348 c) log, —5F= d)logy(3 V10)

Solution In each of these problems, either Eq. (10.4) or Eq. (10.5) can be used.

We choose Eq. (10.4) since some calculators have a (in) key but not a
key.

In 7.5S= = 1.8340a) log,7.5 m3 8 

b) log.0.0348 =oH— 2.0865

In[(1 + V'5)/2] _ 49473
In 7

In(3 - V10)

In 8

5
C) log, =

d) log, (3 — V0) =

When we attempt to evaluate In(3 —V10), we get an indication of

“Error.” The reason is that 3 — 10 is a negative number and it is notin the
domain of the In function. Thus log(3 —V/10) is not defined. i

 

4. Inverse Logarithms

In the above examples all of the problems were of the following type: Given a
positive number u, find log u or In u. We are now interested in the reverse
problem: Given the value of log u or In u, determine u. For example, given

log u = 0.4735, we wish to find u. The notation that has been traditionally used

is u = Antilog 0.4735. However, since this really involves the inverse of the log
function, we shall denote it by u = Inv log 0.4735. Thisis read ‘‘u is the inverse
log of 0.4735.” The notation adopted here is also consistent with that used on

many calculators with an key. As another example of notation,

if In v= 1.2654, then we write v= Inv In 1.2654. We say “vis the inverse In of

1.2654.”
So far, in the two examples being considered here we merely introduced a

certain notation. Now we proceed to actually determine u and v. Since the log

function is defined as the inverse of the 10" function, then the inverse of the log

function must be this exponential function. Therefore,

u = Inv log 0.4735 = 100473,

(This is precisely what the definition in (L.1) of Section 10.3 tells us.) Now u

can be determined by using a calculator as follows:
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If the calculator has an key, then, with 0.4735 in the display, pressing
the and keys gives u = 2.9751 (to four decimal places).

If the calculator has a key, then evaluate u = 1004735 directly by
pressing after 0.4735 has been entered into the display.*

Similarly, the 1n function and the ex functionf are inverses of each other,
so the solution of In v= 1.2654 is v= Inv In 1.2654 = e'26%. Thus v can be
found by pressing the and (J keys or by using the key after 1.2654
has been entered. Therefore, v = 3.5445 (to four decimal places).

The above discussion illustrates the following:

 

and keys are inverses of each other;
and (Cn) keys are inverses of each other.

  
 

Thus,

10t¢ x = x for all x > 0 and log(10*) = x for x € R,

ein x= x for all x > 0 and In(e®) = x for x € R.

 

Therefore,
to find 10enter u and press or and . |(10.6)
to find ev, enter u and press or and Cn) (10.7)

  
 

 

A Solve the following for v correct to four decimal places:
a) v=Inv log 0.243 b) In v=1.345 c¢) log v=—-1.4382

d) "= 0.456 e) 10°=1.4837 f) In2v+1)—1In 3=1.48

Solution

a) Following the instructions stated in (10.6), we get v = 1.7498.

b) In v= 1.345 is equivalent to v= Inv In 1.345 or v = e!¥%.

Following procedure (10.7), we get v = 3.8382.

c) log v= —1.4382 is equivalent to v= Inv log(— 1.4382) or v= 10-1432

Using (10.6), we get v = 0.0365.

d) e'= 0.456 is equivalent to v = In 0.456. Enter 0.456 and press the (Cin)
key; this gives v = —0.7853.

* If your calculator has neither the(('s Jnor the (10 Jkeys but has(CnJand(Ce* Jkeys, proceed as

follows: Express the original problem, log u = 0.4735, in equivalent In form by using the change-
of-base formula given by Eq. (10.4). That is, In ¥ =1n 10 log u (with b = 10). Therefore,

In u=1In 10-log u = 2.30259 log u = 2.30259 - 0.4735 = 1.0903.

Thus, u = €!9903 which can be evaluated by using the key.

* When we say “the e* function” we mean the function f determined by f(x) = e”*.
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e) 10" = 1.4837 is equivalent to v = log 1.4837. This can be evaluated by
using the key to get v= 0.1713.
If the calculator does not have a (les) key, then take In of both
sides of the given equation to get vin 10=1n 1.4837. Therefore,
v=1In 1.4837/In 10, which can be evaluated by using the (in and
(=) keys.

f) The given equation is equivalent to In[(2v + 1)/3]= 1.48. Thus
(2v + 1)/3 =e!'*® and so v= (3e'*4 — 1)/2. We can now use (10.7) to find
e'“ and then continue with the remaining arithmetic operations. This
gives v= 6.0894. I

A Evaluate the following expressions:
a) en’ b) 10-loe 3 c) log(10-%%) d) In(e-%47)

Solution

a) Since the e* and the In functions are inverses of each other, In takes 5
into some number and then e* function reverses this process and gives
5 as the result. Thus el" >= 5.

An alternative way of saying essentially the same thing is to let
y = en 3, Taking In of both sides of this equation and using (L.5) and
(L.2) of Section 10.3, we get

In y=In(e"3)=In 5-In e=1In 5.

Thus In y=1n 5 and so y = 5.

b) To evaluate 10-'o¢ 5 we first note that 10-'¢ 5 = 10'¢™), Thus,as in (a),

we get

Pgs) _ 5-1_ 110PeC™) = 5-1 = =

and so 1078 °=1/5,
c) The 10" function takes —4.5 into a number, and then the log function

reverses this process giving —4.5 as the result. Thus, log(10-4°) = —4.5.

d) This is similar to (c), and so In(e-%47) = —0.47. i

A Solve 2In(2v—1) + 2Inv=1 for v.

Solution Dividing both sides of the given equation by 2 and using property

(L.3) we get In[v(2v — 1)] = 2. This is equivalent to v(2v — 1) = e'/2 Thus we

have to solve the quadratic equation 2v2 — v—V/ e = 0. Applying the quad-
ratic formula, we get

1+V1+8/e
4

Thus v, = 1.917, v,=—0.6917. When we substitute these into the original
equation, we see that v, is not a solution. Therefore, there is only one solution:

v= 1.1917. i

y=
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EXERCISE 10.4

If your calculator should indicate “Error” while solving any problem in this set,
determine the reason for such a response.

In Problems 1 through 26, evaluate the given expression and give answers rounded off
to four decimal places:

 

l.In 5 2. In 0.47 3. log 1.87

4. log 0.0435 5. In(1.56+ 2.73?) 6. log(2.43V/5.75)

7. In(2 — v/5.43) 8. jog(LY2) 9. log(2=¢)

v1.24
10. In 11. log.6 12. log 3.47043 >

= V713. log.(V3 — 1) 14. og,(2=Y7) 15. log, (V3.4 +556 )

16. log,(2.47) 17. log, Y137+3
v2.41

 iw al(L2)-(52)] wal)(A)
20. In(V2 + 1) + In(/2 = 1)

 

21. eln 1.43 22. 10log 2.54 23. log(10-042)

24. In(e3?) 25. en 2 26. e=3In2

In problems 27 through 64 determine the value of v correct to four decimal places:

27. v=1Inv log 0.478 28. v= Inv log(—0.587) 29. In v=1.532

30. v= Inv In(—1.378) 31. log v=—0.372 32. v=1Inv log(l — V3)

33. Inv=1-V3 34. 10°=0.573 35. 10'=-0.473

36. ¢'= 0.875 37. e="=1.238 38. e'=-0471

39. 10-*= 1.378 40. > = 0.431 a1. r= V7

42. e+ = 0.475 43. v= 10-04 44. v=103

45. v=e¢!'¥ 46. v =e07! 47. v=1013

48. er +1=3e¥- 1 49. ¢2-1= 1.362 50. 10-@+9= 1.57

51. 10-@+D=_3473 52. log(3v + 4) = log 2 + log(v* + 1)

53. In(2v— 5) — In 7 = 2.43 54. In(v— 5) + In 2.43 = 1.56
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55. In v+e24=345 56. In(e*~!) =e 16 57. log(10*+3)=>5

58. In(e!-3) =4 59. 1 + log(10%2-"*)=0 60. 2Inv +e 2=¢!2

61. In2v+ 1) +Inv=1 62. log(3v—1) + log v=1

63. Inv+1)+In(v-3)=1 64. 2 In3v)=1-2 In(1 —v)

In Problems 65 through 72, determine whether the given statement is true, false, or

meaningless (a statement is meaningless if any part ofit is undefined). Substantiate your
answers.

65. 108 8 =§ 66. e~In3 = 14 67. eln-3=14

68. log[Inv log(—4)] = —4 69. Inv In(In 3) =3

70. e(n6-n2)—3 71. en2:n3-6 72. In(e? + €*) = 5

10.5 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

Solving an equation in which the unknown appears in the exponent, usually
involves the use of logarithms. We encountered some examples of such
problems in the preceding section, where the base of the exponential was either
10 or e. We are now interested in the more general problem where the
exponential base is any positive number. In the following examples several

such problems are illustrated. Also included are examples in which the
unknown appears as part of a logarithmic expression.

 

Examples

AN Solve the following for x and give the answer rounded off to four decimal

places:

a) 3*=5 b) 1.47% =2.53 c) 5=3.4%""

Solution

a) Taking In of both sides of the equation gives In 3*=1In 5. This is

equivalent to x(In 3) =1In 5,andso x =In 5/In 3. To evaluate with an

algebraic calculator press 5 ,(n]) (J, 3 ,(»], (=; this
gives x = 1.4650.

With an RPN calculator, press 5 , (J), 3 | (Gn), (= and the
result appears in the display. Substituting x = 1.4650 into the given
equation as a check, we see that this is the desired solution.

Note. We could have taken the log of both sides of the given equation

as the first step. The resulting solution is x = log 5/log 3 = 1.4650.

Also, note that log 5/log 3 is not the same as log(5/3).
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b) This is similar to (a). The solution is

xX = _In2.53 or xX = lo 2.53 ]

—21n 1.47 —2log 1.47

Using a calculator to evaluate this expression, we get x = — 1.2047. As
a check, we can now substitute this value of x into the given equation
to see that this is the desired solution.

c) Taking In of both sides of the given equation, we get

In 55" =In(3 4+").

We now proceed by using properties of the In function and some
algebra:

—x(In 5)=1In 3+ (2x + 1) (In 4), (by (L.3), (L.5))
x(—In 5—2 In 4=1In 3+1n 4, (by algebra)

_ _In3+1In 4X= 15-3ma" (by algebra)

Evaluating by calculator gives x = —0.5671. Checking this value of x in
the given equation we see that it is the desired solution. Note that the
final expression for x could have been simplified before the evaluation
as follows:

In3+In4 __In3-4_ In 12
In 5+21In 4 In(5 - 4%) In 80 i
 x=-

2A Find the roots of the equation e-* — x = 0 correct to two decimal places.

Solution In this example, x appears in a linear term as well as in the exponent.
Such equations are more difficult to solve than those considered in Example 1.
If we write the problem as e—*= x and take In of both sides, as we did in
Example 1, the resulting equation is —x = In x. This does not help in solving

for x. Therefore, we use a different approach and solve by a process of
estimation.

We can get information about the number of roots and their approximate
values by drawing graphs. Suppose we draw the graphs ofy = e-*and y = x on

the same set of coordinates. Our problem then is to find the x-values of the
points of intersection of the two curves depicted in Fig. 10.6. The diagram
shows that there is only one root; call it x,. From the graph, a reasonable
estimate of x, is 0.6. Evaluating e—* for x = 0.6 gives e-%¢= 0.55, and so it is
clear from the graph that x, is to the left of 0.6. We now try x = 0.5, and so

e~%5=0.61. Thus, from the graph we see that x, is to the right of 0.5. Trying
0.57 gives e-%5" = 0.57. This tells us that x = 0.57 is the desired solution (to two

decimal places).
For another interesting way of solving this problem see Problem 31 of

Exercise 10.5.
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Figure 10.6 i

A Solve the system of equations and give answers correct to three decimal
places:

8.5" =1,
4*.37=16.

Solution The problem is to find a pair of numbers x, y that will satisfy both
given equations. Taking In of both sides of each of the equations and using
properties (L.3) and (L.5) of the In function we obtain

x(In8) + y(In 5) =1In7

X(In4) — y(In 3) = In 16.

We now have a system of two linear equations that can be solved by usual
techniques. For example, we can eliminate y by multiplying the first equation
by In 3 and the second by In 5 and then adding the resulting equations. This
gives

x(In8 In3+In4InS5)=In7 In3 +1n 16 In 5.

Solving for x and evaluating the result by calculator, we get

x=An7In3+In161InS _ 46 (to three decimal places).
In8In3+1n41n5
 

To determine y, substitute x = 1.4616 (use an extra decimal place) into any of

the above equations, say, in x In 8 + y In 5 = In 7, and then solve for y. This

gives

_In7-14616In8 _ _(g79
Y In 5

As a check,it is easy to substitute these values of x and y into the two given

equations and see that we have the desired solution. i
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/A\ Find the roots of the equation log x + log(3x — 1) = log 4.

Solution Using (L.3) of Section 10.3, we can write the given equation as
log[x(3x — 1)] = log 4. Thus x(3x — 1)=4, and so we have to solve the
quadratic equation 3x? — x — 4 = 0. This can be done by factoring the left side:
(3x — 4) (x + 1) = 0. Thus we have two possible solutions: x, = 4/3, x, =—1.

Since we are looking for solutions to the given equation, we check by
substituting each of ‘hese into that equation. As a check on x, = 4/3, we have

LHS = log Se log|33 ] = log She log 3

= (log 4 — log 3) + log 3 =1log 4.

Thus x = 4/3 is a solution.
When we substitute x = —1 into the given equation, we get, for the left-

hand side, log(—1) + log(—4). Since neither log(— 1) nor log(—4) is defined, we

conclude that x = —1 is not a solution. Therefore, the given equation has only
one solution: x = 4/3. i

A Find the roots of In(2x + 1) = 1.56 + In(x — 4). Give answers correct to
three decimal places.

Solution We write the given equation as In(2x + 1) — In(x — 4) = 1.56; apply-
ing (L.4) of Section 10.3 we have

In 2x+1 _ 156 or

2x

+1_ is6
x—4 x—4

Using algebra we solve for x as follows:

2 l=elS(x—d), desley, x= der]
This can be evaluated by a calculator to get x = 7.262. As a check, we
substitute x = 7.262 into the given equation and see that it is a solution. i

 

EXERCISE 10.5

In Problems 1 through 25, find the roots of the given equation. Give answers
in exact form whenever it is reasonable to do so; otherwise, correct to two

decimal places. Check answers when there is a possibility of having extraneous
solutions.

1. 5*=28 2.77"=4 3. 107*=15.46

4. e¥1-247 5. 3.56-*= 0.435 6. 1.08" = 2.563



11.

13.

15.

17.

19.

21.

24.
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. 248. 1.08'6x = 327 8. 250. 1.137% = 124

250( 1 + 3)'- 321 10. 4531 + i) 485

55 =17""1 12. 7%+1= 12%

8% = 2.43.5 14. 64+3=15.3*

log x + log(5x — 6) = log 8 16. 2In2x—1)—In9=1In4

2In(x —2)=Inx 18. 2 log(2x — 3) = log x + log 12

In(3x — 5) — In(x + 1) = 1 20. log(3x) = log(6 — x) — 2

log 3*= 5x + 1 2.1ex2_025 23. e*—2x=0
Var

el-x—ex=0 25. 10!1-*—-20x=0

In Problems 26 through 30, solve the given system of equations. Give answers in exact

form ifit is reasonable to do so; otherwise, to three decimal places.

26.

28.

31.

32.

10*. 10” = 1000 27. 3*.37¥=27

10%. 10-% = 100 55.577 = 625

>=L 29. 3.5 =8 30. 751. 5%- |

x, -y_ 1 xX, 4°) — 2x | -y_3*.9 37 2%. 4 7 37.4 1

In Example 2 of this section we found the root of e-*— x = 0 by an estimation

process. Try the following with your calculator. Enter any number into the display
of your calculator, then press the keys in the given sequence:

a) If your calculator has an key, press , and so

on. That is, press the change-sign key and the key repeatedly. After each
look at the display. Continue until you see something interesting and then

give an intuitive explanation of what is happening by using graphs similar to

the one in Example 2.

b) If your calculator does not have an key, then carry out the instructions of

(a), except replace the Ce Jkey by (nv) and (in keys (this is equivalent to
, as we saw in (10.7)).

Following instructions similar to those in Problem 31, solve the equations:

a) 27*—x=0 b) e*—4x=0

Hint. Write the equation in the form f(x) = x. Then take any real number (call

it x,) and successively evaluate f(x), f(f(x,), f(f(f(x,)), etc.
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REVIEW EXERCISE

Give answers to the problems in exact form whenever it is reasonable to do so.

Otherwise express results in decimal form rounded off to three decimal places. In
problems involving undefined quantities, explain why the answer is undefined.

In Problems 1 through 15, evaluate the given expressions:

1. log 8 2. log V43 3. In 23

4. log(V'2 + V3) 5. In(36°) 6. log(In 48)

7. In(log 48) 8. in(L246) 9. log,8

10. log,(V/'5 + V12) 11. log.(log 24) 12. log,(¢®)

13. log(In 0.6) 14. log(1 — V2) 15. log,(27V'3)

In Problems 16 through 24, functions f and g are defined by f(x) =e*+ e—* and
g(x) = 3 In(2x — 1). Evaluate the given expressions.

16. 1(0) 17. g(0) 18. (V2)

19. r(-3) 20. g(4) 21. £(2)-2(2)

22. (3) + g(5) 23. F(V2) + g(V2) 24. (fF(V3)

In Problems 25 through 36, solve the given equations:

25. In ex =3 26. log ex=3 27. 1—In(2x + 1) =3

28. log(ln x) = 1 29. In(log x) = 1 30. e2-1=4

31. ex =10!-x 32. log 104-3 =1 33. 3x-1=4

34. 5% = 3(7%) 35. 2¢x+ 1=0 36. 3ex—1=0

37. Plot a graph of y =e.

38. Plot a graph of y = —4*,

39. Plot a graph of y = 1 — 3x

40. If y =x .2-* and x 2 0, make a table of x, y values that satisfy the equation; use

values of x beginning with x = 0 at 0.2 units apart until you reach 3.0. Plot these

points and make a reasonable estimate of the value of x at which y attains a

maximum. Refine your estimate by more computations and then find the maximum

value of y.
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APPENDIX A

INTRODUCTION TO
THE CALCULATOR

There are two types of scientific calculators suitable for studying a
trigonometry course. One type involves algebraic entry while the other is based
on the Reverse Polish Notation (RPN). The entry system depends upon the
electronic circuitry installed in the calculator during its manufacture. The basic
difference between using the algebraic entry and RPN is the order of pressing
the four arithmetic-function keys. Calculators with algebraic entry place the
binary operation between the two numbers, such as 2 3 (=), while in the
RPN machines, the arithmetic operation follows both numbers after they are
entered into the calculator; for instance, 2 3 is the sequence that
evaluates the sum of 2 and 3.

One basic feature common to both entry systemsis the use of real numbers

in decimal form. Calculators operate with rational approximations of all real
numbers correct to the capacity of the particular machine. Calculators cannot
handle imaginary numbers directly. When an attempt is made to find v—4,
the calculator will display Error in some way. In this case the error indication

tells us that /—4 is not a real number. Another instance when the calculator
indicates error occurs during an attempt to divide by zero. A good way to find
the type of error indication a calculator displays is to press the keys 0 and

. Whenever the error symbol is displayed, the user should be alerted to

the fact that the calculator is being asked to perform an unacceptable

operation.

Each entry system has its advantages and disadvantages. The student is

urged to evaluate each system and choose the calculator thatfits his interests
and needs best. Appendix A is devoted to helping the student become
proficient in using the calculator. We discuss separately algebraic calculators
(Section A.1) and RPN calculators (Section A.2).

A.1 ALGEBRAIC CALCULATORS

Algebraic calculators can easily be identified by the presence of an (=) key

on the keyboard. Some calculators with algebraic entry are preprogrammed to

289
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follow the conventional hierarchy of arithmetic operations, while others
perform operations sequentially as entered into the calculator. To determine
whether a calculator uses hierarchy of arithmetic, calculate 2 + 3.5 by
pressing 2 (+ 3 5(=). If the display shows 17, the calculator is
accepting the entire sequence of instructions and then performing the multi-
plication before the addition. In this case we say that addition is a pending
operation. It is performed only after the entire sequence is entered and the
machine can then respond according the to conventional priority of multi-
plication and division over addition and subtraction. On the other hand,if the

display shows 25, the machine is performing the operations in the order in
which they are entered. That is, it is performing the calculation
2+3)-5.

Texas Instruments is a major manufacturer of calculators with algebraic
entry. Some of their less sophisticated models do not follow arithmetical
hierarchy; however, most of their scientific calculators use the so-called

algebraic operating system (AOS) and are preprogrammed to follow the
hierarchy of arithmetic in calculations. In the instructions given here we assume
that all algebraic calculators have AOS.Ifthis is not the case, the order of entry
can be adjusted as necessary. For example, 2 + 3.5 can be calculated by

pressing 3 502 (=).

1. Using the Keys =) =) =) CO OD G3

In order to use the calculator efficiently, it is helpful to know something about
the operation of the machine. The series of examples given below is designed
to help the reader make some important observations involving the order in
which pending operations are carried out in an AOS calculator.

 

Examples

AN Calculate 5 — 7 + 4.

Solution. Press the calculator keys corresponding to the numbers and opera-

tions, as written from left to right, carefully watching the display to see when

a given command is executed:

Press 5 (=) 7(+J 4 (=D. i

A Calculate 5-7 + 4. 3.

Solution

Press S(—) 7(+J)4(x)J)3 (=).

Observe how all pending operations are executed when the (=] key is

pressed. i
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A\ Calculate Sold

Solution

Press (LJ 5(—J)7(+J)4 (0) 0 3(=).

Note that the numerator is evaluated after the right-parenthesis key (OJ is

pressed. As an alternative solution, press 5 (=) 7 4 (=) 0 3 (=).
Thus, when the left-parenthesis key (J is not entered, one can use the (=)

key to compute the numerator before dividing by 3. I

/A\ Calculate 5-7 + 4. 32,

Solution

Press 5(=J)7(+J)4(CJ 30) (=).

Note that pressing (>) squares only the contents of the display. Pressing
(=) executes all pending operations. |

A Calculate 5 — 7 + (4 - 3)2

Solution

Press SCJ) 7) (CL J4(Cx)30] 2] (=).

The problem requires that 4 - 3 be multiplied before squaring. Parentheses keys
are used here to accomplish this. i

/6\ Calculate 5 + (—7 + 4 - 3).

Solution

Press SC) (CO 7CG) (1) 40J30) (=).

The parentheses serve to compute the divisor before the division is
carried out. Special note should be taken of the use of the change-sign key

. This key changes the sign of the number in the display. The calculator

will not accept the sequence 5+) (J (=J 7... Such a sequence treats
the C=] 7 command as subtraction rather than a negative number, but the
algebraic calculator cannot accept two operation commands in sequence (such

as (=) and (=).
 

2. Clearing the Calculator

If the last key pressed is (=, all pending operations have been executed and

the calculator is ready for a new problem without pressing the clear key. Some
calculators have a clear-entry key that clears only the number in the display,

while a separate key is used to clear all pending operations. Other calculators

have a key labeled (one) that serves three purposes. It is used to turn the
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calculator on; then, during computations,if it is pressed once, the number in
the display only will be cleared while,if it is pressed twice in succession, all
pending operations are also cleared.

The clear-entry feature is especially useful since one of the most frequent
mistakes is to key in an incorrect number after the calculator already has
several pending operations. We illustrate this in the following example where
a 7 rather than an 8 was entered and this mistake is corrected by using the

clear-entry key.

 

Va Evaluate 2 + 3.5—-24 + 6 + 8.

Solution

Press 2 (+) 3 (>) 5(=J24 (=D 6 (+) 7 (ne 8 (=). I

EXERCISE A.1

Calculations in Problems 1 through 15 involve integers only. This is intended to allow

the student to mentally follow the arithmetic and observe when the pending operations

are performed by the calculator. Some important features of the calculator are
illustrated in these problems; therefore, the student is encouraged to consider each

calculation carefully.

1. 5+3.7 2.(5+3).7 3. 5+3)-7

4. 5+ 3)(=7) 5.2+12+3-7 6.2+12+(3=-7)

7. 5-4-5 3.5 7 §g (15-4)-5 9 (1/23
2 2+3.5-7 4

10. (1/2) — (3/4) 11. 2.32 + 4.52 12. (2-3)2+ (4-5)?

3.42 2
13. 2-3 +4.5)7 M.(=—)-> 15. 3-4) + (2-5?

Use your calculator to solve Problems 16 through 30. Answers correct to three decimal

places are provided for a quick check.

Answers

16. (1.87)(34.61) + 3.872 68.593

17. (45.9 — 29.76)+ 52.86 313.360

18. 45.9 — 29.76% + 52.86 — 786.898

19.+ 45.294
18.7
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Answers

28420. 563 +284+ 578.187

52.9.0.3876
2. 573 0.963

22. 1224+ 52-2.5.12.0.9848 50.824

23. (122 + 52 — 2.5. 12)(0.9848) 48.255

24. (—37.48 + 59.32)? — 31.97 445.016

25. (37.48 — 59.32)? — 31.97 445.016

26.th+ 3.78 .5.43 43.721

15.39 — 4.72) - 527. (1539-472).
23 + 3.78 - 5.43 2.337

21.8 + 4.32228.+ 50,S13 5.39 229.593

2.3729. £ +3 0.542

2/7) + (3/8)30.+ 2.135
(1/6) + (1/7)

3. Using the Keys .

Scientific calculators have several keys in addition to the basic keys described
in the preceding section. Here we shall consider the use of five more keys and
defer discussion of others until the appropriate places in the text. The (1/x] and

keys give the reciprocal and the square root, respectively, of the number

in the display. The key operates by entering a positive number y, followed

by , then the number x, followed by (= . For example, to evaluate 7°,
keys are pressed in the following order: 7 3 (=) and the result 343
appears in the display. Similarly, to find v/7, we evaluate 7'/ by pressing the
following keys: 7 3 (=), which gives V7 =19129 (to four
decimal places).

A lengthy computation frequently involves the evaluation of intermediate
numbers that must be recorded and used later to complete the calculation.
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Scientific calculators allow the user to store a number with the key* and
recall it when needed with the key, thus avoiding the necessity of
recording intermediate steps. This feature will be illustrated in examples given
in this section.

 

Examples

AN Calculate v3.92 + 7.32

Solution

Press (J 3.9 (>) 73 C0 OO =).

The display shows 8.2764727. Alternative solution:

Press 3.9 (2) 7302) (=)

This method uses the (=) key to calculate the radicand before taking the
square root. i

2A Calculate 123 — 4°.

Solution

Press 12 (J)34J5(C=).

The display shows 704. i

A Calculate V24.3 + V/32.7

Solution The problem can be rewritten as (24.3'/3) . (32.7'/%); then press

24.3 (x) 3 (x) 327 (x J5 (x) (=).

The displays shows 5.8180615. Note that when the key is pressed in this
sequence, at that point the calculator evaluates (24.3)!/3; in this computation
it is not necessary to press the (= key before the key. I

/A\ Calculate v/1.32 + 2.8% — 2(1.3)(2.8)(0.3215)

Solution Press

130 (28) 0 20CJ1.3(xJ28 (70.3215 (=) 2).

The display shows 2.6813206. i

/\ Calculate ——L
v5.61 + 24.93

 

*Some calculators have multiple storage capacity and require a number address to follow the
key. The owner’s manual that accompanies such a calculator gives details.



A.l Algebraic Calculators 295

Solution

Press (_(] 5.61 24.93 (0) :

The display shows 0.18095287. i

VN Calculate ——L + V4.2?+3.97.
5.2% + 3.8¢

Solution Press

5203003804 (3) OK) Go) 4.2 (3) (3) 3.97 (3)
ED GD =)

The display shows 4.6515201. Storage is used to store the first part while the
second part is being calculated. i

AN Calculate (5.873) + 3(5.873)2 — 9(5.873) + 4.

Solution Press

5.873 (so) (»J3 (+) 3 (x) (2) (=39 x] (rey) (+J4 (=).

The display shows 257.19166. Use of the key eliminates the need to key in
the four-digit number 5.873 three separate times.

Note. The key will function only when the base is positive. The calculator
will indicate an Error if the base is negative.

Use the calculator to evaluate the following:

a) V5.3-9.7 b) Vv —12.97 ¢) (3.1) d) (3.1)

Solution

a) Press (1 J)5.3(=J)97 (C1) . The display will indicate an Error.
This is predictable since 5.3 — 9.7 = —4.3 and the square root of a
negative number is not a real number.

b) Rewrite vV—12.97 as (—12.97)!/3 and press

12.97 (»J3 (=);
the result indicates an Error. This is because the calculator will not

accept a negative base y when the ("J key is used. However V—12.97

is a real number equal to —v/12.97. We therefore calculatev/12.97 by
pressing 12.97 (x) 3 (1/x) (=) . The display shows 2.3495. Therefore
we have V—12.97 = —2.3495.

c) When evaluating (—3.1)% the calculator will indicate an Error if we

press 3.1 4 (=), but we know that (—3.1)* = (3.1)%, and this
can be calculated by using the (J key. Press 3.1 (J 4 (=). The
display shows 92.3521. Thus (—3.1)* = 92.3521.
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d) Since (—3.1)° = —(3.1)*, we first evaluate (3.1)° by pressing 3.1 5

(=) . The display shows 286.2915, so we conclude that (—3.1)° =
—286.2915.
 

EXERCISE A.1 (Continued)

Use a calculator to solve the following problems. Answers rounded off to three decimal

places are given as a check.

 

   

 

 

 

Answers

1.+ 9.970

2. (5.8)(7.3) 9.041

3. —31.93 4.761

4. V(9.1)(3.6) — (7.28)(5.97) Imaginary number

5.V927+ 10.072

6. 9.4). 17.595

7. V12.96 2.349

8. vV/—243.78 —6.247

9. v/32.786 2.010

10. v17.39 2.042

IL + f+ +t 1.283

12. + 2 + = 2.250

BL Ly] 1.784
v2 V3 V4

4. 2+ 1 5.485
vVi2 V3

15.+ 29.494

16. (—4.3) + (=5.9)} — 186.889

17. (—4.1) + (=5.9)* 1142.815

18. 11.9% + 13.22 — 2(11.9)(13.2)(0.4937) 12.679

19. V[11.92 + 13.22 — 2(11.9)(13.2)](0.4937) 0.913

2.

V4

_\/2 1.608
 

The problems given in Exercises A.2 (pp. 309-310) provide opportunity for

additional practice in using AOS calculators. The student is urged to do most

of them.
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A.2 RPN CALCULATORS

Calculators using Reverse Polish Notation (RPN) can easily be identified by
the presence of the key (and the absence of the (=) key). A major
manufacturer of RPN calculators is Hewlett-Packard (HP). In the following
discussion we shall describe the operation of RPN calculators consistent with

HP scientific calculators. The student should be able to adapt the treatment
found here to other brands quite easily by referring to the owner’s manual.

1. Registers and Use of Stack

The only external means of communication between the calculator and its user
is through the keyboard and the numbers appearing in the display. At any time
there is only one numberin the display; however, the calculator accepts several
numbers and stores them for recall on keyboard command. The places used to
store the numbersare called registers and may be thought of as physical places
inside the machine where a number is kept until needed. HP machines have

four such registers. The content of one register is displayed by the machine.
This is called the X register. Registers not visible to the user are called Y, Z,
and 7. These four registers form the stack or automatic memory of the
machine. In order to use RPN calculators efficiently, it is essential to
understand the operation of the stack.

If we represent the stack as a mailbox-like set of compartments
TzT17) whereX,Y, Zand T are the addresses for the boxes, then we
can visualize what is happening inside the calculator. When a sequence of digit
keys is pressed, the corresponding number appears in the X register. Pressing
the key shifts the number into the Y register, and the machine is ready to
accept a second number. For example,pressing 2 gives ; when
we follow this with we get . If we now press 3, the 2 in the
X register is replaced by 3 and the 2 in the Y register remains. Pressing
shifts the contents as shown: X- Y-Z-T-lost, retaining the number entered in

the X register as well as in the Y register. The series of key strokes

2) 3 (evr) 1 5 (ent) 4

provides us with this arrangement of numbers in the stack: T15132).
Observe that the 15 in the Y register was accomplished without pressing

key between 1 and 5. This feature best describes the purpose of the

key; that is, to separate the numbers entered into the machine. Pressing the

key after 4 will give T15T 3), losing the 2 (and the calculatoris
now ready to accept a new number in the X register). It may appear that having
only a four-stack capacity is a serious limitation; but this is not the case, since

we can perform most of our computations without any additional registers, as

will be demonstrated in the following examples. In fact, some RPN calculators
have only three register stacks and they perform adequately in most problems.
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For arithmetric operations only the numbers in the X and Y registers are
used directly. If x is in X and y is in Y, then pressing any one of the keys
=) or (=) gives the corresponding result y + x, y— x, y x x or
y + x in the display.

For example, to evaluate 2 + 3 press 2 3toget 3121J;
then pressing the key gives(GT_TJ. To evaluate 15 — 4, press
1 5 (1) 4 (=; the result will show 11 in the display. Similar steps
are followed in the operations of multiplication and division.

 

Examples

In the following examples the grids indicate the content of each register after

the key shown in the left column has been pressed. A blank register does not
necessarily mean an empty register (contains 0), but rather that we are not
concerned with its content in our computation.

Note. Two solutions are given for some of the following problems. It is
important for the reader to understand that there are several methods for
solving a given problem. After some practice with the calculator the user will
discover efficient keying patterns.

AN Calculate 7 + 6 - 4.

Solution 1 Solution 2 We evaluate 6 - 4 + 7

Press 7 (ent) 6 (ent) 4 (x) (+) by pressing 6 (v1) 4 (x) 7 (+)

K Y Z| T Z T

7

4

 

Note. In Solution 2, the key was not pressed before the 7. The machine
knows it is receiving a new number after any operation and, in this example,
it is not tempted to write 247. Solution 1 is a less natural way to perform the
computation, but it illustrates how helpful it is to know the contents of the

registers. i
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A Calculate 5-3 — 4.

Solution

X

5

5

3

15

4

11 1

 

A Calculate 7 + 3(4 + 6).

 

 

 

 

 

 

 

 

 

 

 

Solution 1 Solution 2 Evaluate (4 + 6)-3+7.

Key X|Y| X|T K Y| X T

7 7 4

71 7

3 3 7 6

30131] 7
4 4 3 7 3

ENT 4 4 3

6 4 3 7

10 |3 7

7
       W

w S

 

Note. In Solution 1, all of the numbers are entered into the stack and then the

operations are performed in the appropriate order. In Solution 2, operations

are performed sequentially according to the conventional principle of begin-

ning within the parentheses. This is a more efficient method in terms of number
of steps. i
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/A\ Calculate (15-4) -3 + 2.

Solution I (Key 15 means we press Solution 2
the digit keys 1 and 5 in that order.) 2+3(15-4)

 

 

 

 

 

 

 

 

 

 

 

 

K Key x Y| Z| T

15 2 2
ENT ENT 2 2

4 3 3 2

=D 31 3] 2

3 15 15] 3 2

Co) 15015) 3 2

2 4 115] 3 2

= 1) 3212

2 2

2

2
+

x
H

Z

W
w

W
w

N
o       ==1 S| 22]2

Note. Solution 2 is given to illustrate the contents of the registers when the T
register is used. Once a number (2, in this case) is entered into the T register,
it remains there and shifts into the Z and then the Y register as the content of
the Y register is being used in an operation. This property of the stack is useful

in performing some computations (see Example 2 on p. 302).

The contents of the Y, Z, and registers can be displayed by using the roll

key . For example, continuation of Solution 2 by pressing the key

four times would give the results shown below:

 

Ri 2 2 2 35

Ri 2 2 [35] 2

Ry 2 [35] 2 2

Ri 35 2 2 2

 

 

     

|

J8
El
e|

|
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/\ If f(x) = 5x* — 4x + 1, evaluate £(3).

Solution
To evaluate f(3) =5-32—4.3 + 1, we proceed in the following way:

 
 

  

  

  

  

         

Key x v| z]| 1 4 [alas|]
3 3 4 4 45

ENT 3] 3 3 3 4 45

9 12 45

5 5109 CD 33

|Cas||] lL] 133
34 1       

2. The (cts) and Keys

The key changes the sign of the contents of the X register only and must
be used to enter a negative number into the machine. The key does not
shift the content of the X register to Y; hence, it is necessary to use the
key to separate numbers after the (cus) key is pressed and before a new
number is entered. The (>=) key interchanges the contents of the X and Y
registers and leaves the contents of Z and 7 undisturbed. This keyis frequently
used when performing lengthy calculations involving subtraction and/or

division.

 

  

  

  

  

  

  

  

  

  

Examples

AN Calculate —3 + 4.5.

Solution 1 Solution 2 Treat it as a subtraction.

Key X Y Z| T Key X Y| Z| T

3 3 3 3

(ens) —3 313

~3|-3 4 4 3

4 4 -3 4 4 3

ENT 4 4

|

=3 5 5 4 3

5 5 4 -3 20 3

CI 2-3 3120

17 C= 17               
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Note. Solution 2 is given to illustrate the use of the key. It should be clear
that a more efficient sequence of keys is possible by first evaluating 4 - 5 and
then subtracting 3 from the result. i

oN If f(x) = 4x* + 5x2, find f(- 3).

Solution We wish to evaluate 4(— 3)* + 5(— 3)

 

 
 

 
 

 
 

 
 

 
 

 
 

 
               

Key x v z]| 1 4 [4[81]-3]-3]
3 3 324 |-3|-3|-3

Cows) —3 —30324| -3|-3

ent) 3 —3 ENT) 3 |—-3(324|-3

~3|-3|-3 9 [324] —-3|-3

—3|-3|-3|-3 5 5 19 |324|-3
9 |—-3|-3|-3 45 |324| -3|-3

—27|-3|-3|-3 369 —3| —-3|-3

|C0[81[-3[-3]-3 
Thus, f(— 3) = 369. I

 

3. Overflowing the Stack

Occasionally it happens that a given sequence of keying instructions results in
overflowing the stack and an alternative method must be devised to perform
the calculations. Obviously with the numbers used in these examples, one

would simply do some of the calculations mentally; however, if the numbers
involved happen to be, say, four-digit numbers,it is helpful to be able to do all

of the arithmetic with the calculator.
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E 2xample Calculate 37 3E 12)

Solution At this point the numerator is lost.

However, we can continue to evaluate

the denominator, reenter the numer- 

 

 

 

 

 
 

  

  

  

        

Key X| Y Z| T ator, and then use the key as fol-
25 25 lows: ee

ENT 25 25 2 2 4 3 2

2 2 25 6 3 2
ENT 2 2 25 18 2

3 31225 20

ENT 3 3 2 25 25 25 20

4 4 3 2 25 xy 20 25

ET) |4432] C=) [1.25        
A more judicious choice of keying the denominator would avoid the

overflow problem encountered in the above example. Also, storage registers
are available that would alleviate the problem. We shall discuss the use of
storage keys later.

 

4. Clearing the Calculator

Calculators have various keys for clearing parts of the machine. One key that
clears the display only (that is, the X register) is generally labeled and is
especially useful in correcting an error when a wrong number is entered into
the display. Some of the more sophisticated calculators have special keys for

clearing only the storage registers, or the prefix, or the program in program-

mable calculators. The owner’s manual explains how these keys operate in a
particular calculator. In fact, the reader is urged to consult the owner’s manual

whenever there is a question concerning the operation of any key.

If one wishes to clear the entire machine, turning the calculator off and then
on will do it, except for the sophisticated calculators with a continuous
memory. It is not always necessary to clear the stack (or even the display)

before beginning a new computation, since only the numbers entered for a

given calculation are used and the content of the other registers is irrelevant.
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EXERCISE A.2

The problems in this exercise can be solved by using the keys =)

=D) (>v]); however the more experienced student may prefer other keys, such
as and (2).

1. For each indicated calculation two keying methods are given. In each key sequence,

fill in a grid giving the content of the X, Y, Z, and T registers after each command
has been executed by the calculator. Determine which method evaluates the given
calculation correctly.

  

  

   

            

a) 8-4-5 b) (7+4)-8 )]| (9-6)=@4-7)| d) 10-57 + 3)

Key Key Key Key Key Key Key Key

8 8 7 7 9 9 10 7

4 4 4 4 6 6 5 3

5 5 8 8 4 4 7 5

| = C=)

71 7 3 110

=) =

C=)

=)     
2. Determine what numerical expression is being evaluated by each given sequence of

keystrokes.
      

      

               

a) [Key b) [Key ¢) [Key dq) [Key| ¢) [Key f) |Key

2 5 5 5 4 1

4 4 4 4 6 4

CJ 4

1 2 3 3 3 C=)

J =) CJ) C=) 1

3 2 2 6

3 = 5

=) CC)

7

CD   
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3. Give a sequence of keys that will correctly evaluate each of the given expressions.
In each case make a grid showing the content ofall stack registers after each key has

been pressed:

a)2+3+4-6

dy 4+6

2+3

b)2—4+5.7

€) 32-6) + 45-2)

c)4+2+6+3

In the following problems, evaluate the given expression using a calculator. Make a

grid whenever necessary to get a sequence of keys giving the correct answer. Your

computations can be checked with the answers given to four decimal places.

. (1.4 + 3.6)(2.1)

. (3.8 —4.3)(6.3)

.29+1.6+3

1.96 + 2.3
"42-31

10.

11.

12.

13.

14.

1S.

16.

17.

18.

19.

20.

5.7

5.46.9 — 1.2) + 4
7+4.3

1tt

+ 4,2
7

3

w
e

wn
|
—1

4

3
4

524+7.5—-

2-4*—-5.4-3

2:-4+1

(51) 25
5(—1.32)% + 4(—1.32)?

3.48 — (1.23)(4.75)
 

8.41 — 2.54(3.57 — 6.75)
If f(x) = 1.47x — 5.36, find (3.4)

If f(x) LateLae find f(—5.7)

If f(x) = 7.3x> — 4.1x + 3.5, find (3.78)

If f(x) =odar , find f(—4.3).

5. The Keys (J)

There is no one correct way to perform a given calculation although some

methods of key entry may be more efficient than others. In the preceding

Answers

10.5000

— 3.1500

3.4333

3.8727

13.7695

3.0779

0.5929

1.8357

57

1

2.7877

5.9799

—0.1433

— 0.3620

— 1.6775

92.3073

5.9716
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section we considered an example in which we evaluated f(x) = 5x2 — 4x + 1

at x = 3. A more efficient sequence of keys would include the use of the (*])
key. Pressing the (> key squares the content of the X register, while the

content of the other registers remains unchanged. This is illustrated in the
following grid where we evaluate f (3) if f(x) = 5x? — 4x + 1.

 

 

 

 

 

 

 

 

 

 

 

 

       

Key X Y Zz T Remarks

5 5

5

3 3 5

Ce) 9 5 32 is evaluated

45 5.32in X

4 4 45

4 45

3 3 4 45
12 45 3.4in X

=) 33 5.33—-4.3inkX

1 1 33

34 5.33—-4.3+1inX  
The and 1/x) keys operate in a manner similar to that of (2;

pressing takes the square root of the number in the X register and

displays the result, while (1/xJ takes the reciprocal of the number appearing in
the X register and displays it. Each of these keys leaves the content of the Y,
Z, and registers unchanged.

All scientific calculators have at least one memory storage and some have

several. When the key is pressed, the content of the X register is placed in
a memory storage separate from any of the stack registers. Pressing the recall

key will return that number to the X register whenever it is needed and

also retain the number in the memory.

If a calculator has more than one memory storage,it is necessary to tell the

machine the address of the particular memory to be used. For instance,if the

calculator has eight memories numbered 0 through 7, the storage command

consists of followed by one of the numbers 0 through 7. Similarly for
recall, press followed by the number 0 through 7 corresponding to the

address where the numberis stored.
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Examples

/\ If f(x)me , find f( ! VS ) correct to four decimal places. 

Solution We wish to evaluate

7 : £y'3 Josa 

Wefirst evaluate (v/'5 + 1) + 2 and store the result for future use. The grid
shows decimal values correct to two places.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key X Y Zz T Remarks

5 5

2.23

1 1 2.23

3.23

2 2 3.23

CJ 1.61 V5+1D+2in X

1.61 (V5 + 1) + 2 stored in R,
1 and still in X

Ga 2.61 Square of (V/'5+ 1)+2

7 7 2.61

18.32 Numerator in X

1.61 18.32 (V/5 + 1) +2 recalled and
1 numerator moved to Y

3 3 1.61 18.32

4.85 18.32

4 4 4.85 18.32

=) 0.85 18.32 Denominator in X and
numerator in Y

C=] [21.4567 Answer       
 

1 1
/2\ Evaluate — — —.

v2 V3
Solution Here we use the key since this is simpler than using the (+)
key to evaluate 1-+V2 and 1+V 3. The grid shows numbers to four

decimal places.
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Key X Y Z T Remarks

2 2

1.4142 V2 in X

0.7071 1/V/2 in X

3 3 10.7071

1.7321 0.7071 V3 in X

1/x 0.5774 0.7071 1/3 in X and 1/y/2 inY

=) 0.1298 Answer (to four places)

A Evaluate 3.52
V1.632 + 3.75%

Solution We begin by evaluating the denominator and then use the key.

 

 

 

 

 

 

 

 

 

       

Key X Y Z T Remarks

1.63 1.63

C2] 12.6569 1.632 in X

3.75 3.75 12.6569

C2) 114.0625 2.6569 3.75%in X; 1.63*in Y

16.7194

4.0889 Denominator in X

0.2446 Reciprocal of denominator

3.52 3.52 10.2446

0.8609 Answer(to four places)  
 

Another convenience for evaluating polynomial functions of degree greater

than two and exponential functions in general is the key. This key raises

the numberin the Y register to the power given in the X register. The use ofthis

key is restricted to y > 0, while x can be any real number (see Chapter 10 for

a detailed discussion of exponential functions).

We continue with an example where the (J key is used.

 

/A\ Evaluate f(x) = 4x’ + 5x? — Tat x= 3 —/2.
Solution The problem is to evaluate 4(3 —/2)* + 5(3 — V2)? — 7. We first

evaluate 3 —/2, store the result, and recall it when needed.
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Key X Y Zz T Remarks

3 3
ENT 3

2 2

1.41... 3

= 1.58... 3—-V2in X

(sto) 4 1.58... 3—-v2in X and
stored in R,

3 3 1.58...

3.98... B3-Vv2?!in X

4 4 3.98...

15.95. ..

Re) 4 1.58... 15.95... 3 —V/2 recalled to X

GD 2.51... 15.95... 3-vV2?in X

5 5 2.51... 15.95...

12.57... 15.95... 53-v2)? in X

28.52... 43-2) + 5(3 — V2)?

7 7 28.52. ..

=) 21.5248 Answer(to four places)       
 

EXERCISE A.2 (Continued)

Evaluate the following expressions to three decimal places. Check your answers; in case

of disagreement, complete a grid to determine whether your answer or the author’s (or

neither) is correct.

1.

2.

3.

If f(x) =3x2—2x + 1, find (2.13).

Evaluate f(x) = 1.6x? — 2.4x + 4.1 at x = 2.46.

Find the value of g(x) = 5x? + 4 at x = —1.57.

1 1 1.1 1. Evaluate —- + = + + 5 + c
2

Iff(x) = 1AR , find: a) f(2) b) f(— 1.48)

I+ A

. Evaluate the following expressions by using the key on your calculator:

27) 7 1 2 27\(_=_a) (24.67)(64 + 21) i. b) 1 (24.67)7(64 + I) (5s)
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10.

11.

13.

15.

16.

17.

18.

20.

— Ir, _ TTIfu=221,v= 10° t 126.43({5 ), order these three numbers from smallest

to largest.

. Evaluate:

2(35.61)(180) 2(35.61)(34.63)2) (34.63) (55WA b)A

. Evaluate:

1+V7 1+V7 1+V7Y
Ys » (+57) o (+37)
The following numbers may be used as rational approximations of =. Calculate

each number and use the key on your calculator to determine the decimal-
place accuracy:

22 333 355 208341
2) 5 ®) 106 ©) 113 9 6317

Evaluate: 12. Evaluate:

a) (V 5.38 ) b) V/5.38° a) V24.3 + 36.8 b) V24.3 +1368

Evaluate: 14. If f(x) = 3x* — 8x? + 12, find f(1.43)

V3-1 _
8) regg— b) 2-V3

V3i+1 ) v

 If f(x) = pe , find

a) f(3) b) f(2.3) c) f(-1.8) d) f(1)

Ifgx)=x’+x*+x3+x*+x + 1, find:

a) g(3) b) g(2.3) c) g(—1.8) d) g(1)

Compare these results with the answers in Problem 15. What conclusions can you

draw about the functions f and g?

Evaluate a) v24.7 — 36.8 b) v24.7 — 36.8

Evaluate ( ty 19. Evaluate Vv (1 — V3) —1

If f(x) =3x*—4x3 + x — 5, find:

2) f(3) b) f(-1.2) 0) fim) a f(Lg
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APPENDIX B

APPROXIMATE
NUMBERS

In most applications of mathematics to real-life problems, we encounter two
types of numbers: exact and approximate. Examples of exact numbers are
1/2, 4/13, =. However, when these numbers are expressed in decimal form
we have

1 _os- 4 _ . —-> = 0.5; 3= 0.307692307 . .; T= 3.141592 . ..

The decimal representation of 1/2 is finite, while for 4/13 and for = it is
infinite. There is no problem in replacing 1/2 by 0.5, but when the decimal
representation of 4/13 or of « is required, it becomes necessary to round off
and use only an approximate decimal value. This is one source of approximate
numbers.

Another source of approximate numbers comes from applications involv-
ing measurements, and in almost all cases the results are expressed as
approximate numbers (limited to the degree of accuracy of the measuring
instruments). Approximate numbers are then used in formulas to compute
other quantities, and so the final numbers are, of necessity, also approximate.
In the following discussion our primary goal is to establish rules that can be
used in problems involving computations with approximate numbers. In order

to do this, we first discuss significant digits, scientific notation, and rounding
off numbers.

Notation. In the main body of the text we used the symbol ““ =’ to mean both

the exact and the approximate equality, and its meaning was clear from the
context. In this Appendix we wish to emphasize approximate equality and so

we use the symbol *“ =" to denote approximately equal to.

B.1 SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION

For a better understanding of approximate numbers it may be helpful to
consider some examplesfirst. Suppose that four different objects are measured

311
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and their lengths are determined as:

a=24.3 cm, b=0.00407 m, c=832.0 cm, d=34 700 cm.

This means that a is an approximate number representing a length that is
actually somewhere between 24.25 and 24.35 cm. Similarly, the exact value of

b is somewhere between 0.004065 and 0.004075 m, while that of c¢ is between

831.95 and 832.05 cm.

In the case of d it is not clear what accuracy is implied. For example, d
might have been measured as 347 meters, in which case the exact value is
somewhere between 346.5 and 347.5 m (that is, d is actually between 34 650

and 34 750 cm). It is possible that 4 was measured to the nearest tenth of a

meter (nearest 10 cm), in which case we would write d = 347.0 m. This implies

that d is somewhere between 346.95 and 347.05 m (thatis, d is between 34695

and 34705 cm). Similarly, if d has been measured accurately to the nearest

centimeter, then d= 34700 means that 34 699.5 < d < 34 700.5 cm.

Thus the above examples lead to the following question: When a number is
represented in decimal form, which of the digits are significant?

For a=24.3 cm, all three digits 2, 4, 3 are meaningful in expressing
accuracy of the measurement; thus we say that a has three significant digits.

For b=0.00407 m, the zero before the decimal and the two zeros after the

decimal merely serve the purpose of telling us where the decimal is located,
while the remaining digits 4, 0, 7 give information about the accuracy of
measurement. If b were expressed in centimeters, then b = 0.407 cm, and we

would not even encounter the two zeros immediately after the decimal point.
Thus, b has three significant digits.

In the case of ¢=832.0 cm, the zero after the decimal tells us that the

measurement was made to the nearest tenth of a centimeter, and we do not

need to be told where the decimal is located. Therefore, all four digits
8, 3, 2, 0 are significant.

In the case of d= 34700 cm, the two zeros are certainly necessary to locate

the decimal point, but it is not clear whether they give us any information
about the accuracy of measurement or not. Thus we would say that 3, 4, 7 are
significant digits and an additional statement is required concerning the

significance of the two zeros. A convenient way to give this information is to
use scientific notation. Thus if d is accurate to the nearest meter (nearest 100

cm), then we write d = 3.47 x 10* cm and this indicates that only the 3, 4, 7 are

significant digits. If 4d is accurate to the nearest 10 cm, then we write

d=3.470 x 10* cm and 3, 4, 7, 0 are significant digits. In a similar way,

d=3.4700 x 10* cm implies that 4d is measured to the nearest centimeter, and

so all of the digits 3, 4, 7, 0, 0 are significant.

The above discussion leads us to the following general statement concerning

significant digits:
When a number is written in decimal form,its significant digits begin with

the first nonzero digit on the left and end with the last digit on the right that

definitely gives information about the accuracy of the number.
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Thatis, all nonzero digits are significant, while zeros that merely serve the
purpose of locating the decimal point are not, but all other zeros are. In cases
when it is not clear whether a zero merely indicates the place of the decimal
point (as in d above), scientific notation is useful. To represent a number in
scientific notation we write it as a product of a number between 1 and 10 and
a power of 10; all digits of the factor between 1 and 10 are significant.

 

Examples

MN Determine which digits are significant in the following numbers:

a) 37.543 b) 136.1030 ¢) 240.00

d) 0.0048 e) 0.00480 f) 70400

Solution

a) All five digits are significant.

b) All seven digits are significant (including the zero at the end).

c) The three zeros are significant, and so the number has five significant

digits.

d) Only the 4 and 8 are significant digits.

e) The 4, 8, and the final 0 are significant digits.

f) The digits 7, 0, 4 are significant but we cannot say without further
information whether the last two zeros are significant. i

/2\ Write each of the numbers given in Example 1 in scientific notation.

Solution

a) 37.543 =3.7543 x 10

b) 136.1030 = 1.361030 x 10?

c) 240.00 = 2.4000 x 10?

d) 0.0048 =4.8 x 10-3

e) 0.00480 = 4.80 x 10-3

f) 70400 = 7.04 x 10* would indicate that only 7, 0, 4 are significant

digits.
70 400 = 7.040 x 10* would imply that 7, 0, 4, 0 are significant digits.

70 400 = 7.0400 x 10* would tell us that all five digits are significant. |

A\ The following numbers are expressed in scientific notation. Write them
in ordinary decimal form:

a) 2.78 x 10¢ b) 3.47 x 10-* c) 3.40 x 10° d) 4.800 x 10-!

Solution

a) 27 800 b) 0.000347 c) 3400 d) 0.4800 i
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B.2 ROUNDING OFF NUMBERS

When a number is given in decimal form it is frequently necessary to express

it as an approximate number with fewer significant digits. We describe this as
the process of rounding offa number and illustrate with the following examples.
 

/A\ Round off the following numbers to three significant digits:
a) 3476 b) 24.74 c) 73.80 d) 0.473501

e) 2435 f) 69.95 g) h) =/2

Solution

a) The number 3480 = 3.48 x 10° has three significant digits and it is an
approximation to a number between 3475 and 3485. Since the given
number 3476 is in this range, we say that 3476 rounded off to three

significant digits is 3.48 x 10°.

Similarly for b), c), d) we get:

b) 24.7 c) 73.8 d) 0.474

e) Here we encounter a borderline case in which it is not clear whether we

should round off to 2430 or 2440. Both appear to be equally good and

so we shall adopt the rule that we round up and use 2440 = 2.44 x 10°

as the answer.*

f) This is similar to (e), and so 70.0 is the approximation of 69.95 with

three significant digits.

g) Since m = 3.14159. . ., we round off to 3.14.

h) 7/2 =1.57079 . .. rounded off to three significant digits is 1.57. i
 

B.3 COMPUTATIONS WITH APPROXIMATE NUMBERS

When approximate numbers are used in computations it is natural to ask:

“How many significant digits should we retain in the final result?’ To give an

answerit is helpful to consider some examples. We first take the problem of
multiplying or dividing two approximate numbers and then we study addition

and subtraction of such numbers.¥

1. Multiplication and Division of Approximate Numbers

Suppose the length and width of a rectangular object are measured with a ruler

marked in millimeters and are found to be / = 16.4 cm, w = 8.6 cm. We wish to

*Some textbooks give a slightly different rule in which the number is sometimes rounded up and

other timesit is rounded down.

The general problem of accuracy in computations involving other operations (such as square

root, logarithm, etc.) is a topic for numerical-analysis courses.
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find the area of the rectangle. Since Area =1/ x w, we get

Area = (16.4 x 8.6) cm? = 141.04 cm?.

This is a computed value based upon the measurements of / and w expressed
as approximate numbers. How many of the five digits in 141.04 are really
meaningful and not misleading in terms of stating the actual area ofthe object?

Based upon the given information about / and w, all we can say is that

16.35 <1 < 16.45 cm and 8.55 < w< 8.65 cm.

This implies that

16.35 x 8.55 < 4 < 16.45 x 8.65 cm.

That is, all we can really say about the actual areais:

139.7925 < A < 142.2925 cm. (B.1)

This is the best claim we can make about the area on the basis of the given
measurements.

Our computed value of 4 = 141.04 cm? is certainly in the range given
by expression (B.1), but stating that 4 = 141.04 cm? implies that we know

141.035 < A < 141.045 cm?. This says considerably more than what we actually
do know.

Suppose we round off the computed value to three significant digits:
A =141 cm? This implies that 140.5 < 4 < 141.5 cm?, and clearly this still

claims more than the inequality given in (B.1). Therefore, we try rounding
off to two significant digits: A = 140 cm? = 1.4 x 102 cm?. This means that
135 < A < 145 cm? and making such a statement is consistent with the

inequality given by (B.1).

In conclusion, rounding off the computed value of the area to two

significant digits results in the best statement we can make that is consistent
with what the given measurements tell us about the actual area. Since / was

measured to three significant digits and w to two significant digits, this suggests
that we should round off the product to the smaller number of significant digits
of the measured values.

The problem of dividing two approximate numbers is similar. Suppose

a=34.6 and b=8.4 are approximate numbers and we wish to determine

¢ =a + b. Using a calculator to evaluate c, we get

¢=3kb = 4.1190 .. 

How many digits should we retain in the answer? Since 34.55 < a < 34.65 and

8.35 < b < 8.45, we obtain

34.55 a 34.65
8.45 <b < "835
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Thus, all we know about c is that

4.0888 < ¢ < 4.1497 (to four decimal places) (B.2)

If we round off ¢ to three significant digits (c =4.12), then we are saying
that 4.115 < ¢ < 4.125, and this is not consistent with what we know about c as

given by (B.2). If we round off to two significant digits (c = 4.1), then we imply

that 4.05 < c¢ < 4.15, which is in agreement with statement (B.2). Since
a = 34.6 has three significant digits and b = 8.4 has two significant digits, this
example suggests that the quotient of two approximate numbers should be
rounded off to the smaller number of significant digits of the two measured
values.

The above examples suggest the following

 

Rule for multiplying and dividing approximate numbers

In the multiplication and division ofapproximate numbers the result should

be rounded off to the least number of significant digits in the data used.   
For example, suppose x =47.36, y = 17.5, z= 5.2 and we wish to evaluate

u = (xy) + z. Since the numbers ofsignificant digits in x, y, z are four, three,
two, respectively, we should retain two significant digits for ». Thus

u=(47.36 x 17.5) + 5.2 =159.3846 . .

and so we have u=160 = 1.6 x 10% If this value is to be used in subsequent
computations, then we should use one more significant digit (x = 159) for that

purpose, but we must remember that in the final round off, u is accurate to
only two significant digits.

2. Addition and Subtraction of Approximate Numbers

When adding or subtracting approximate numbers the situation is a little
different from that of multiplying or dividing. For example, suppose a bank
reports that a certain fund has $248,000 in it, where this is accurate to the

nearest thousand dollars. Now suppose that $72.35 is added to this fund. It
would be misleading to say that the fund now has $248,072.35 in it. We would
say that the fund still has $248,000 in it to the nearest thousand dollars (based
on the given information). That is, we would write 248,000 + 72.35 = 248,000.

It is clear from this example that when we add two approximate numbers,
we are not interested in the number of significant digits each has, but we are

primarily interested in the level ofprecision of each number. We say that the

level of precision of 248,000 is the nearest thousand while that of 72.35 is the

nearest hundredth; thus the level of precision of 72.35 is greater than that of
248,000.
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As another example, suppose x, y, and z are approximate numbers given by

x = 24.65, y =0.036, z = 132.4. The levels of precision of x, y, z are hundredths,
thousandths, tenths, respectively. Common sense would suggest that the sum

Xx +y+z=24.65+ 0.036 + 132.4 = 157.086

should be rounded off to the nearest tenth, since z is no more accurate than the

nearest tenth and we cannot expect x + y + z to be more accurate. Thus,

x+y+z=157.1.

The above examples lead us to the following common-sense rule.

 

Rule for adding and subtracting approximate numbers

In the addition and subtraction of approximate numbers the result

should be rounded off to the least level of precision in the data used.   
 

3. Linear and Angle Measurements

In solving triangles the angle and length measurements are usually given as

approximate numbers. Therefore, it is desirable to have a guide that can be
used to determine the angle measurements with an accuracy corresponding to
that of the length measurements. For angles that are not too close to 0° or 90°,

the following table provides a satisfactory rule:

 

 

 

Lengths accurate to Corresponding angles accurate to

Two significant digits Nearest degree
Three significant digits Nearest 10’
Four significant digits Nearest minute
Five significant digits Nearest tenth of a minute  
 

 

Examples

In the following examples, suppose x, y, z, u, v, t are approximate numbers

given by:

x=348, y=0.0360, z=3251, u=35.004,

v=_84,000 (only 8 and 4 are significant),

t =24,800 (the tens O is significant).

AN Write the above numbers in scientific notation.

Solution

x =3.48 x 10°, y=3.60 x 10-2, z=3.251 x 103,

u=5.004 x 10°, v=28.4 x 10%, r=2.480 x 10%. i
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2 Give the number ofsignificant digits in each of the above numbers.

Solution

x has three; y has three; z has four; u has four; v has two; ¢ has four. |

A State the level of precision of the given numbers.

Solution The level of precision of x is hundredths, ofy is ten thousandths, of
z is units, of u is thousandths, of v is thousands, and of ¢ is tens. i

/A\ Using the rule for multiplication and division of approximate numbers,
evaluate the following:

a) x-z b) 2 C) u-t

Solution

a) x-z=(3.48)(3251) = 11313.48. Since x has three and z has four signifi-
cant digits, the result should be rounded off to three significant digits.
Thus

x-z=11300= 1.13 x 10%.

b) y-v_ . (0.0360)(84000)

Xx 3.48

The smallest number of significant digits of x, y, and vis two, and so the

answer should be rounded off to two significant digits. That is,

= 868.9655 . . . 

YV -870=28.7 x 102
X

¢) Both u and ¢ have four significant digits and so u - ¢ should be rounded

off to four significant digits:

u - t = (5.004)(24800) = 1.241 x 10°. 1

/\Using the rule for addition and subtraction of approximate numbers,

evaluate the following:

a) x+y b) z+1¢ C) u—x

d) v+t e) xX +z—u

Solution

a) x + y=3.48 + 0.0360 = 3.516.
Since the level of precision of x is hundredths and that of y is ten
thousandths, we round off the sum to hundredths:

x + y=3.52.



B.3 Computations with Approximate Numbers 319

b) z + t=3251 + 24,800 = 28,051.
The level of precision of z is units and that of is tens, and so we round
off the sum to tens:

z + t=28050 = 2.805 x 10%.

¢) u—x=5.004 — 3.48 = 1.524.

The result should be rounded off to the nearest hundredth and so we

have

u—x=1.52.

d) v + r=284,000 + 24,800 = 108,800.

Since v is correct to the nearest thousand and ¢ is accurate to the nearest

tens, we round off the sum to the nearest thousand:

v + t=109,000 = 1.09 x 10°.

e) x +z—u=2348 + 3251 — 5.004 = 3249.476.

Since the least precise of x, z, u is z (to the nearest unit), we round off

the result to the nearest unit:

 

xX +z —u=3249. i

/6\ Using the rules for computation with approximate numbers, evaluate the
following: ,

vy —_

a) z— xu b) 5

Solution

a) We first evaluate xu:

xu =(3.48)(5.004) = 17.41392 = 1741.

Therefore,

z —xu=3251 —- 17.41 = 3233.59 = 3234.

Note that in the final computation we used an extra digit for xu.

b) We first evaluate v — t:

v — t= 84,000 — 24,800 = 59,200 = 59,000 = 5.9 x 10%.

Thus,

v—t 59200 _ 17011.494 ...=17,000 = 1.7 x 10%,
x 3.48

Note that in the final computation we used v — ¢t = 59,200 (an extra significant

digit), but we rounded off the final result to two significant digits. i
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A The radius of a circle is measured as r= 6.41 cm. Find the area of the

circle.

Solution We use the formula Area =r? Since r is measured to three
significant digits, the result should be rounded off to three significant digits.
We use 7 as given by the calculator and find that

Area =m(6.41)> = 129.082... cm? = 129 cm?. i
 

EXERCISES

In Problems 1 through 7, suppose x, y, z, u, v, t are approximate numbers given by

x=64.75, vy =4830, z=0.0045, u=0.0370, v=3005.2,

t=3100 (the tens O is significant and the units 0 is not).

1. Write each of the above numbers in scientific notation.

2. Determine the number of significant digits in each of the above numbers.

3. State the level of precision of each of the above numbers.

4. Round off the above numbers to two significant digits.

Using the rules for computing with approximate numbers, evaluate the expressions
given in Problems 5 through 7.

5. a) xu b) vz c)t+y d) (wy) +z

6 a) x +) b) u—z c)y—t d)y—-x-—v

7. a) xz—u b) == C) y+ut

8. The radius ofa circle (measured accurately to the nearest millimeter) is found to be

r=2.476 m. Find the circumference and area of the circle.

9. The radius of a sphere is measured as 7 = 3.47 cm. Find the surface area and volume
of the sphere.

10. The lengths of the edges of a rectangular box are measured to the nearest millimeter
and found to be

a=23.4 cm, b=12.8 cm, c=8.4 cm.

Determine the volume and the total surface area of the box.

11. The speed of light is approximately 3 x 10° km/sec. A light-year is defined as the

distance travelled by light in one year. Assuming 365 days in a year, find the
number of kilometers in a light-year. Express your answer in scientific notation.

12. The hypotenuse and an angle of a right triangle are measured and found to be

32.4 cm and 23°40’, respectively. Calculate the area and the perimeter of the

triangle.



 

APPENDIX C

TABLES
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t

 

t degrees sint cost tant cott sect csct

0000 0°00" .0000 1.0000 .0000 — 1.000 —_ 90°00 1.5708
.0029 10 0029 1.0000 .0029 343.8 1.000 343.8 50 1.5679
.0058 20 .0058 1.0000 .0058 171.9 1.000 171.9 40 1.5650
0087 30 .0087 1.0000 .0087 114.6 1.000 114.6 30 1.5621
0116 40 0116 9999 .0116 85.94 1.000 85.95 20 1.5592
0145 50 0145 9999 .0145 68.75 1.000 68.76 10 1.5563

0175 1°00 0175 9998 0175 57.29 1.000 57.30 89°00" 1.5533
0204 10 0204 9998 .0204 49.10 1.000 49.11 50 1.5504
0233 20 0233 9997 .0233 42.96 1.000 42.98 40 1.5475
0262 30 0262 9997 .0262 38.19 1.000 38.20 30 1.5446
0291 40 0291 9996 .0291 34.37 1.000 34.38 20 1.5417
0320 50 0320 9995 .0320 31.24 1.001 31.26 10 1.5388

0349 2°00" .0349 9994 .0349 28.64 1.001 28.65 88°00" 1.5359
0378 10 0378 9993 .0378 26.43 1.001 26.45 50 1.5330
0407 20 0407 9992 .0407 24.54 1.001 24.56 40 1.5301
0436 30 0436 9990 .0437 22.90 1.001 22.93 30 1.5272
0465 40 0465 9989 .0466 21.47 1.001 21.49 20 1.5243
.0495 50 0494 9988 .0495 20.21 1.001 20.23 10 1.5213

0524 3°00 .0523 9986 .0524 19.08 1.001 19.11 87°00 1.5184
.0553 10 0552 9985 .0553 18.07 1.002 18.10 50 1.5155
.0582 20 0581 9983 .0582 17.17 1.002 17.20 40 1.5126
0611 30 0610 .9981 0612 16.35 1.002 16.38 30 1.5097
0640 40 0640 9980 .0641 15.60 1.002 15.64 20 1.5068
0669 50 0669 9978 .0670 14.92 1.002 14.96 10 1.5039

0698 4°00 .0698 .9976 .0699 14.30 1.002 1434 86°00 1.5010
0727 10 0727 9974 0729 13.73 1.003 13.76 50 1.4981
0756 20 0756 9971 0758 13.20 1.003 13.23 40 1.4952
0785 30 0785 9969 .0787 12.71 1.003 12.75 30 1.4923
0814 40 0814 9967 .0816 12.25 1.003 12.29 20 1.4893
0844 50 0843 .9964 .0846 11.83 1.004 11.87 10 1.4864

0873 5°00 .0872 .9962 .0875 11.43 1.004 11.47 85°00" 1.4835
.0902 10 .0901 9959 .0904 11.06 1.004 11.10 50 1.4806
0931 20 0929 9957 .0934 10.71 1.004 10.76 40 1.4777
0960 30 0958 .9954 .0963 10.39 1.005 10.43 30 1.4748
.0989 40 0987 .9951 0992 10.08 1.005 10.13 20 1.4719
.1018 50 1016 9948 .1022 9.788 1.005 9.839 10 1.4690

1047 6°00 .1045 9945 .1051 9.514 1.006 9.567 84°00" 1.4661
.1076 10 .1074 9942 .1080 9.255 1.006 9.309 50 1.4632
1105 20 A103 9939 .1110 9.010 1.006 9.065 40 1.4603
1134 30 A132 9936 .1139 8.777 1.006 8.834 30 1.4573
1164 40 1161 9932 .1169 8.556 1.007 8.614 20 1.4544
1193 50 A190 9929 .1198 8.345 1.007 8.405 10 1.4515

A222 7°000 1219 9925 .1228 8.144 1.008 8.206 83°00 1.4486
  cost sin ¢ cott tant csct sect degrees t           
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t

t degrees sint cost tant cott sect csct

1222 7°00 .1219 9925 .1228 8.144 1.008 8.206 83°00 1.4486
1251 10 .1248 9922 .1257 7953 1.008 8.016 50 1.4457
.1280 20 1276 9918 .1287 7.770 1.008 7.834 40 1.4428
1309 30 1305 9914 1317 7.596 1.009 7.661 30 1.4399
1338 40 .1334 9911 1346 7.429 1.009 7.496 20 1.4370
1367 50 .1363 9907 .1376 7.269 1.009 7.337 10 1.4341

.1396 800 .1392 9903 .1405 7.115 1.010 7.185 82°00" 1.4312

.1425 10 .1421 9899 .1435 6.968 1.010 7.040 50 1.4283
1454 20 .1449 9894 .1465 6.827 1.011 6.900 40 1.4254
1484 30 .1478 9890 .1495 6.691 1.011 6.765 30 1.4224
1513 40 .1507 9886 .1524 6.561 1.012 6.636 20 1.4195
1542 50 .1536 .9881 1554 6.435 1.012 6.512 10 1.4166

1571 9°00" .1564 9877 .1584 6.314 1.012 6.392 81°00" 1.4137
.1600 10 1593 9872 .1614 6.197 1.013 6.277 50 1.4108
1629 20 1622 9868 .1644 6.084 1.013 6.166 40 1.4079
1658 30 .1650 9863 .1673 5.976 1.014 6.059 30 1.4050
1687 40 .1679 9858 .1703 5.871 1.014 5955 20 1.4021
1716 50 .1708 9853 .1733 5.769 1.015 5.855 10 1.3992

1745 10°00 1736 9848 .1763 5.671 1.015 5.759 80°00 1.3963
1774 10 1765 9843 .1793 5.576 1.016 5.665 50 1.3934
.1804 20 1794 9838 .1823 5.485 1.016 5.575 40 1.3904
.1833 30 .1822 9833 .1853 5396 1.017 5.487 30 1.3875
.1862 40 .1851 9827 .1883 5.309 1.018 5.403 20 1.3846
.1891 50 .1880 .9822 .1914 5.226 1.018 5.320 10 1.3817

1920 11°00 1908 9816 .1944 5.145 1.019 5.241 79°00’ 1.3788
.1949 10 .1937 9811 1974 5.066 1.019 5.164 50 1.3759
1978 20 1965 9805 .2004 4.989 1.020 5.089 40 1.3730
.2007 30 1994 9799 2035 4915 1.020 5.016 30 1.3701
2036 40 2022 9793 .2065 4.843 1.021 4.945 20 1.3672
2065 50 .2051 9787 2095 4.773 1.022 4.876 10 1.3643

2094 12°00' 2079 9781 2126 4.705 1.022 4810 78°00' 1.3614
2123 10 2108 9775 2156 4.638 1.023 4.745 50 1.3584
2153 20 2136 9769 2186 4.574 1.024 4.682 40 1.3555
2182 30 2164 9763 2217 4.511 1.024 4.620 30 1.3526
2211 40 2193 9757 2247 4.449 1.025 4.560 20 1.3497
.2240 50 2221 9750 2278 4.390 1.026 4.502 10 1.3468

2269 13°00 2250 9744 2309 4.331 1.026 4.445 77°00" 1.3439
.2298 10 2278 9737 .2339 4.275 1.027 4.390 50 1.3410
2327 20 2306 9730 .2370 4.219 1.028 4.336 40 1.3381
2356 30 2334 9724 .2401 4.165 1.028 4.284 30 1.3352
2385 40 2363 9717 2432 4.113 1.029 4.232 20 1.3323
2414 50 .2391 9710 .2462 4.061 1.030 4.182 10 1.3294

2443 14°00° 2419 9703 .2493 4.011 1.031 4.134 76°00" 1.3265

t

cost sin t cott tant csct sect degrees t            



 

 

           

Values of trigonometric functions (continued) 323

t
t degrees sint cost tant cott sect csct

2443 14°00' 2419 9703 .2493 4011 1.031 4.134 76°00" 1.3265
2473 10 2447 9696 2524 3962 1.031 4.086 50 1.3235
.2502 20 2476 9689 2555 3914 1.032 4.039 40 1.3206
2531 30 2504 9681 2586 3.867 1.033 3.994 30 1.3177
.2560 40 2532 9674 2617 3.821 1.034 3.950 20 1.3148
2589 50 2560 9667 2648 3.776 1.034 3.906 10 1.3119

2618 15°00 .2588 9659 2679 3.732 1.035 3.864 75°00 1.3090
2647 10 2616 9652 2711 3.689 1.036 3.822 50 1.3061
2676 20 2644 9644 2742 3.647 1.037 3.782 40 1.3032
2705 30 2672 9636 2773 3.606 1.038 3.742 30 1.3003
2734 40 2700 9628 .2805 3.566 1.039 3.703 20 1.2974
2763 50 2728 9621 2836 3.526 1.039 3.665 10 1.2945

2793 16°00 2756 9613 2867 3.487 1.040 3.628 74°00" 1.2915
2822 10 2784 9605 .2899 3.450 1.041 3.592 50 1.2886
2851 20 2812 9596 .2931 3.412 1.042 3.556 40 1.2857
.2880 30 2840 9588 2962 3.376 1.043 3.521 30 1.2828
2909 40 2868 9580 .2994 3.340 1.044 3.487 20 1.2799
2938 50 2896 9572 .3026 3.305 1.045 3.453 10 1.2770

2967 17°00° 2924 9563 .3057 3.271 1.046 3.420 73°00 1.2741
2996 10 2952 9555 .3089 3.237 1.047 3.388 50 1.2712

3025 20 2979 9546 3121 3.204 1.048 3.356 40 1.2683
.3054 30 .3007 9537 3153 3.172 1.049 3.326 30 1.2654
.3083 40 3035 9528 3185 3.140 1.049 3.295 20 1.2625
3113 50 .3062 9520 .3217 3.108 1.050 3.265 10 1.2595

3142 18°00 .3090 9511 3249 3.078 1.051 3.236 72°00" 1.2566
3171 10 3118 9502 .3281 3.047 1.052 3.207 50 1.2537
.3200 20 3145 9492 3314 3.018 1.053 3.179 40 1.2508
3229 30 3173 9483 3346 2.989 1.054 3.152 30 1.2479

3258 40 .3201 9474 3378 2960 1.056 3.124 20 1.2450
3287 50 3228 9465 .3411 2932 1.057 3.098 10 1.2421

3316 19°00° 3256 9455 3443 2904 1.058 3.072 71°00" 1.2392
3345 10 3283 9446 3476 2.877 1.059 3.046 50 1.2363
3374 20 3311 9436 .3508 2.850 1.060 3.021 40 1.2334
.3403 30 3338 9426 3541 2.824 1.061 2.996 30 1.2305
3432 40 3365 9417 3574 2.798 1.062 2971 20 1.2275

3462 50 .3393 9407 3607 2.773 1.063 2.947 10 1.2246

3491 20°00" .3420 9397 3640 2.747 1.064 2.924 70°00 1.2217
3520 10 .3448 9387 .3673 2.723 1.065 2.901 50 1.2188
.3549 20 3475 9377 .3706 2.699 1.066 2.878 40 1.2159

3578 30 3502 9367 3739 2.675 1.068 2.855 30 1.2130
.3607 40 3529 9356 .3772 2.651 1.069 2.833 20 1.2101
3636 50 3557 9346 .3805 2.628 1.070 2.812 10 1.2072

3665 21°00 .3584 9336 .3839 2.605 1.071 2.790 69°00" 1.2043

t
cost sin t cott tant csct sect degrees t   
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t
t degrees sint cost tant cott sect csct

3665 21°00° 3584 9336 .3839 2.605 1.071 2.790 69°00" 1.2043
.3694 10 .3611 9325 3872 2.583 1.072 2.769 50 1.2014
3723 20 .3638 9315 .3906 2.560 1.074 2.749 40 1.1985
3752 30 .3665 9304 .3939 2.539 1.075 2.729 30 1.1956
3782 40 3692 9293 .3973 2.517 1.076 2.709 20 1.1926
3811 50 3719 9283 .4006 2.496 1.077 2.689 10 1.1897

3840 22°00' 3746 9272 .4040 2475 1.079 2.669 68°00" 1.1868
.3869 10 .3773 9261 4074 2.455 1.080 2.650 50 1.1839
.3898 20 3800 9250 4108 2.434 1.081 2.632 40 1.1810
3927 30 .3827 9239 4142 2414 1.082 2.613 30 1.1781
3956 40 .3854 9228 4176 2.394 1.084 2.595 20 1.1752
.3985 50 .3881 9216 4210 2.375 1.085 2.577 10 1.1723

4014 23°00 .3907 .9205 4245 2.356 1.086 2.559 67°00" 1.1694
4043 10 3934 9194 4279 2.337 1.088 2.542 50 1.1665
4072 20 .3961 9182 4314 2318 1.089 2.525 40 1.1636
4102 30 3987 9171 4348 2.300 1.090 2.508 30 1.1606
4131 40 4014 9159 4383 2.282 1.092 2.491 20 1.1577
4160 50 .4041 9147 4417 2.264 1.093 2475 10 1.1548

4189 24°00' 4067 9135 4452 2.246 1.095 2.459 66°00" 1.1519
4218 10 4094 9124 4487 2229 1.096 2.443 50 1.1490
4247 20 4120 9112 4522 2.211 1.097 2.427 40 1.1461
4276 30 4147 9100 4557 2.194 1.099 2411 30 1.1432
4305 40 4173 9088 4592 2.177 1.100 2.396 20 1.1403
4334 50 .4200 .9075 4628 2.161 1.102 2.381 10 1.1374

4363 25°00' 4226 .9063 4663 2.145 1.103 2.366 65°00 1.1345
4392 10 4253 .9051 4699 2.128 1.105 2.352 50 1.1316
4422 20 4279 9038 4734 2.112 1.106 2.337 40 1.1286
4451 30 4305 9026 .4770 2.097 1.108 2.323 30 1.1257
4480 40 4331 9013 4806 2.081 1.109 2.309 20 1.1228
4509 50 4358 9001 4841 2.066 1.111 2.295 10 1.1199

4538 26°00" 4384 .8988 .4877 2.050 1.113 2.281 64°00" 1.1170
4567 10 4410 .8975 4913 2.035 1.114 2.268 50 1.1141
4596 20 4436 .8962 4950 2.020 1.116 2.254 40 1.1112
4625 30 4462 .8949 4986 2.006 1.117 2.241 30 1.1083
4654 40 4488 .8936 .5022 1.991 1.119 2.228 20 1.1054
4683 50 4514 8923 .5059 1.977 1.121 2.215 10 1.1025

4712 27°00' 4540 .8910 .5095 1.963 1.122 2.203 63°00" 1.0996
4741 10 .4566 .8897 5132 1.949 1.124 2.190 50 1.0966
4771 20 4592 8884 .5169 1.935 1.126 2.178 40 1.0937
4800 30 4617 8870 .5206 1.921 1.127 2.166 30 1.0908
4829 40 4643 .8857 5243 1.907 1.129 2.154 20 1.0879
4858 50 .4669 .8843 .5280 1.894 1.131 2.142 10 1.0850

4887 28°00" 4695 .8829 5317 1.881 1.133 2.130 62°00" 1.0821

t
cost sin t cott tant csct sect degrees t
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t
t degrees sint cost tant cot t sect csct

4887 28°00 4695 .8829 .5317 1.881 1.133 2.130 62°00" 1.0821
4916 10 4720 8816 .5354 1.868 1.134 2.118 50 1.0792
4945 20 4746 .8802 .5392 1.855 1.136 2.107 40 1.0763
4974 30 4772 .8788 .5430 1.842 1.138 2.096 30 1.0734
.5003 40 4797 8774 5467 1.829 1.140 2.085 20 1.0705
5032 50 4823 .8760 .5505 1.816 1.142 2.074 10 1.0676

5061 29°00" 4848 .8746 .5543 1.804 1.143 2.063 61°00" 1.0647
.5091 10 4874 8732 .5581 1.792 1.145 2.052 50 1.0617
5120 20 4899 8718 .5619 1.780 1.147 2.041 40 1.0588
5149 30 4924 8704 .5658 1.767 1.149 2.031 30 1.0559
5178 40 4950 8689 .5696 1.756 1.151 2.020 20 1.0530
5207 50 4975 .8675 .5735 1.744 1.153 2.010 10 1.0501

5236 30°00' S000 .8660 .5774 1.732 1.155 2.000 60°00" 1.0472
.5265 10 .5025 .8646 .5812 1.720 1.157 1.990 50 1.0443
.5294 20 .5050 .8631 .5851 1.709 1.159 1.980 40 1.0414
5323 30 5075 .8616 .5890 1.698 1.161 1.970 30 1.0385
.5352 40 5100 .8601 5930 1.686 1.163 1.961 20 1.0356
.5381 50 .5125 .8587 .5969 1.675 1.165 1.951 10 1.0327

S411 31°00 5150 8572 .6009 1.664 1.167 1.942 59°00 1.0297
.5440 10 5175 .8557 .6048 1.653 1.169 1.932 50 1.0268
.5469 20 .5200 .8542 .6088 1.643 1.171 1.923 40 1.0239
.5498 30 5225 .8526 .6128 1.632 1.173 1.914 30 1.0210
5527 40 .5250 .8511 6168 1.621 1.175 1.905 20 1.0181
.5556 50 .5275 .8496 .6208 1.611 1.177 1.896 10 1.0152

5585 32°00' .5299 .8480 .6249 1.600 1.179 1.887 58°00 1.0123
5614 10 .5324 8465 .6289 1.590 1.181 1.878 50 1.0094
.5643 20 .5348 .8450 .6330 1.580 1.184 1.870 40 1.0065
.5672 30 5373 .8434 .6371 1.570 1.186 1.861 30 1.0036
.5701 40 5398 .8418 .6412 1.560 1.188 1.853 20 1.0007
.5730 50 .5422 .8403 .6453 1.550 1.190 1.844 10 9977

5760 33°00' .5446 .8387 .6494 1.540 1.192 1.836 57°00 .9948
5789 10 .5471 .8371 6536 1.530 1.195 1.828 50 9919
5818 20 .5495 .8355 .6577 1.520 1.197 1.820 40 9890
.5847 30 .5519 .8339 .6619 1.511 1.199 1.812 30 9861
5876 40 .5544 8323 .6661 1.501 1.202 1.804 20 9832
.5905 50 .5568 .8307 .6703 1.492 1.204 1.796 10 9803

5934 34°00 .5592 .8290 .6745 1.483 1.206 1.788 56°00 9774
.5963 10 .5616 .8274 .6787 1473 1.209 1.781 50 9745
.5992 20 .5640 .8258 .6830 1.464 1.211 1.773 40 9716
6021 30 .5664 .8241 6873 1.455 1.213 1.766 30 9687
.6050 40 .5688 .8225 .6916 1.446 1.216 1.758 20 9657
.6080 50 .5712 .8208 .6959 1.437 1.218 1.751 10 9628

6109 35°00 .5736 .8192 .7002 1.428 1.221 1.743 55°00' .9599

t
cost sin t cott tant csct sect degrees t  
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t

t degrees sint cost tant cott sect csct

6109 35°00 5736 .8192 .7002 1.428 1.221 1.743 55°00 .9599
6138 10 .5760 8175 7046 1.419 1.223 1.736 50 .9570
6167 20 .5783 8158 .7089 1.411 1.226 1.729 40 9541
6196 30 .5807 8141 7133 1.402 1.228 1.722 30 9512
6225 40 .5831 8124 7177 1.393 1.231 1.715 20 .9483
6254 50 .5854 8107 7221 1.385 1.233 1.708 10 9454

6283 36° 00" .5878 .8090 7265 1.376 1.236 1.701 54°00 .9425
6312 10 .5901 .8073 1310 1.368 1.239 1.695 50 .9396
6341 20 .5925 .8056 .7355 1.360 1.241 1.688 40 9367
6370 30 .5948 .8039 .7400 1.351 1.244 1.681 30 9338
.6400 40 .5972 .8021 7445 1.343 1.247 1.675 20 .9308
.6429 50 .5995 .8004 .7490 1.335 1.249 1.668 10 .9279

6458 37°00 .6018 7986 .7536 1.327 1.252 1.662 53°00" .9250
6487 10 .6041 7969 7581 1.319 1.255 1.655 50 .9221
6516 20 .6065 7951 7627 1.311 1.258 1.649 40 9192
6545 30 .6088 7934 7673 1.303 1.260 1.643 30 9163
6574 40 6111 7916 7720 1.295 1.263 1.636 20 9134
6603 50 .6134 .7898 1766 1.288 1.266 1.630 10 9105

6632 38°00 .6157 7880 .7813 1.280 1.269 1.624 52°00" 9076
6661 10 .6180 .7862 .7860 1.272 1.272 1.618 50 .9047
6690 20 6202 .7844 .7907 1.265 1.275 1.612 40 .0918
6720 30 6225 7826 .7954 1.257 1.278 1.606 30 .8988
6749 40 .6248 7808 .8002 1.250 1.281 1.601 20 .8959
6778 50 6271 790 8050 1.242 1.284 1.595 10 .8930

6807 39°00' .6293 .7771 .8098 1.235 1.287 1.589 51°00" .8901
6836 10 .6316 .7753 8146 1.228 1.290 1.583 50 .8872
6865 20 .6338 1735 8195 1.220 1.293 1.578 40 .8843
6894 30 .6361 J716 .8243 1.213 1.296 1.572 30 .8814
6923 40 .6383 7698 8292 1.206 1.299 1.567 20 .8785
6952 50 6406 .7679 .8342 1.199 1.302 1.561 10 .8756

6981 40°00 .6428 .7660 .8391 1.192 1.305 1.556 50°00 .8727
7010 10 .6450 .7642 .8441 1.185 1.309 1.550 50 .8698
.7039 20 6472 .7623 .8491 1.178 1.312 1.545 40 .8668
.7069 30 .6494 7604 .8541 1.171 1.315 1.540 30 .8639
7098 40 6517 7585 8591 1.164 1.318 1.535 20 .8610
7127 50 6539 .7566 .8642 1.157 1.322 1.529 10 .8581

7156 41°00" .6561 7547 .8693 1.150 1.325 1.524 49°00" .8552
7185 10 6583 .7528 .8744 1.144 1.328 1.519 50 .8523
1214 20 6604 7509 .8796 1.137 1.332 1.514 40 .8494
7243 30 6626 .7490 .8847 1.130 1.335 1.509 30 .8465
1272 40 .6648 7470 .8899 1.124 1.339 1.504 20 .8436
7301 50 .6670 .7451 .8952 1.117 1.342 1.499 10 .8407

7330 42°00" .6691 7431 .9004 1.111 1.346 1.494 48°00 .8378

t
cost sint cott tant csct sect degrees t
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7330 42°00 .6691 .7431 9004 1.111 1.346 1.494 48°00' .8378
1359 10 6713 .7412 9057 1.104 1.349 1.490 50 .8348
.7389 20 6734 .7392 9110 1.098 1.353 1.485 40 8319
7418 30 6756 .7373 9163 1.091 1.356 1.480 30 .8290
7447 40 6777 7353 9217 1.085 1.360 1.476 20 .8261
71476 50 6799 .7333 9271 1.079 1.364 1.471 10 .8232

7505 43°00° .6820 .7314 9325 1.072 1.367 1.466 47°00 .8203
7534 10 6841 .7294 9380 1.066 1.371 1.462 50 .8174
7563 20 6862 .7274 9435 1.060 1.375 1.457 40 8145
7592 30 6884 .7254 9490 1.054 1.379 1453 30 8116
7621 40 6905 .7234 9545 1.048 1.382 1.448 20 .8087
7650 50 .6926 .7214 .9601 1.042 1386 1.444 10 .8058

J679 44°00' 6947 7193 9657 1.036 1.390 1.440 46°00' .8029
7709 10 6967 7173 9713 1.030 1.394 1.435 50° .7999
7738 20 6988 .7153 9770 1.024 1.398 1.431] 40 .7970
7767 30 .7009 .7133 9827 1.018 1.402 1427 30 .7941
71796 40 .7030 .7112 9884 1.012 1.406 1423 20 .7912
.7825 50 .7050 .7092 9942 1.006 1.410 1.418 10 .7883

7854 45°00' .7071 .7071 1.0000 1.0000| 1.414 1.414 45°00' .7854

t
cost sin t cott tant csct sect degrees t  
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0 [.0000 .0043 .0086 .0128 .0170 .0212 |.0253 |.0294 .0334 .0374
1.0414 .0453 .0492 .0531 .0569 .0607 .0645 .0682 .0719 .0755

1.2 1.0792 .0828 .0864 .0899 .0934 .0969 .1004 |.1038 .1072 .1106
3 (.1139 .1173 .1206 .1239 .1271 .1303 .1335 |.1367 .1399 .1430
4 |.1461 .1492 .1523 .1553 .1584 .1614 .1644 .1673 .1703 .1732

1.5 1.1761 .1790 .1818 .1847 .1875 .1903 .1931 |.1959 .1987 .2014
1.6 .2041 .2068 .2095 .2122 .2148 .2175 .2201 |.2227 .2253 .2279
1.7 .2304 .2330 .2355 .2380 .2405 .2430 .2455 |.2480 .2504 .2529
1.8 |.2553 .2577 .2601 .2625 .2648 .2672 .2695 .2718 .2742 .2765
1.9 .2788 .2810 .2833 .2856 .2878 .2900 .2923 |.2945 .2967 .2989

2.0 |.3010 |.3032 .3054 .3075| .3096 .3118 |.3139 |.3160 .3181 .3201
2.1 |.3222 3243 3263 .3284 .3304 .3324 .3345 .3365 .3385 .3404
2.2 |.3424 3444 3464 .3483 .3502 .3522 .3541 |.3560 .3579 .3598
2.3 1.3617 .3636 .3655 .3674 .3692 .3711 .3729 |.3747 .3766 .3784
2.4 .3802 |.3820 .3838 .3856 .3874 .3892 |.3909 |.3927 .3945 .3962

2.5 1.3979 .3997 4014 4031 .4048 .4065 .4082 .4099 4116 .4133
2.6 .4150 4166 4183 .4200 .4216 .4232 .4249 4265 4281 .4298
2.7 4314 4330 4346 .4362 .4378 .4393 .4409 .4425 4440 4456
2.8 4472 4487 4502 4518 .4533 .4548 4564 4579 .4594 .4609
29 .4624 4639 4654 4669 .4683 4698 4713 4728 4742 4757

3.0 4771 .4786 .4800 .4814 .4829 .4843 4857 .4871 .4886 .4900
3.1 4914 4928 4942 4955 .4969 .4983 .4997 |.5011 .5024 .5038
3.2 .5051 .5065 .5079 .5092 .5105 .5119 .5132 |.5145 .5159 .5172
3.3 5185 5198 .5211 .5224 .5237 .5250 .5263 |.5276 .5289 .5302
3.4 5315 .5328 .5340 .5353 .5366 .5378 .5391 |.5403 .5416 .5428

3.5 .5441 5453 .5465 .5478 .5490 .5502 .5514 |.5527 .5539 .5551
3.6 .5563 .5575 .5587 .5599 .5611 .5623 .5635 |.5647 .5658 .5670
3.7 .5682 .5694 .5705 .5717 .5729 .5740 .5752 |.5763 .5775 .5786
3.8 |.5798 .5809 .5821 .5832 .5843 .5855 .5866 |.5877 .5888 .5899
39 .5911 5922 .5933 .5944 .5955 .5966 .5977 |.5988 .5999 .6010

4.0 |.6021 .6031 .6042 .6053 .6064 .6075 .6085 |.6096 .6107 .6117
41 |.6128 .6138 .6149 .6160 .6170 .6180 .6191 |.6201 .6212 .6222
4.2 |.6232 .6243 .6253 .6263 .6274 .6284 .6294 .6304 .6314 .6325
4.3 .6335 .6345 .6355 .6365 .6375 .6385 .6395 .6405 .6415 .6425
4.4 .6435 .6444 6454 .6464 .6474 .6484 .6493 .6503 .6513 .6522

4.5 .6532 .6542 .6551 .6561 .6571 .6580 .6590 .6599 .6609 .6618
4.6 .6628 .6637 .6646 .6656 .6665 .6675 .6684 .6693 .6702 .6712
4.7 .6721 .6730 .6739 .6749 .6758 .6767 .6776 |.6785 .6794 .6803
48 .6812 .6821 .6830 .6839 .6848 .6857 .6866 .6875 .6884 .6893
49 |.6902 .6911 .6920 .6928 .6937 .6946 .6955 |.6964 .6972 .6981

5.0 |.6990 .6998 .7007 .7016 .7024 .7033 |.7042 |.7050 .7059 .7067
5.1 |.7076 .7084 .7093 .7101 .7110 .7118 |.7126 |.7135 .7143 .7152
52 |.7160 .7168 .7177 .7185 .7193 .7202 .7210 |.7218 .7226 .7235
5.3 |.7243 7251 7259 .7267 .7275 .7284 .7292 |.7300 .7308 .7316
5.4 .7324 7332 .7340 .7348 .7356 .7364 .7372 |.7380 .7388 .7396             
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  94949542
9590
9638
9685
9731

9777
9823
9868
9912
9956  

7412
.7490
7566
7642
1716

7789
.7860
7931

8069

8136
.8202
.8267
.8331
.8395

.8457
8519
.8579
.8639
.8698

.8756

.8814

.8871

.8927

.8982

9036
9090
9143
9196
9248

9299
9350

9450
9499

9547
9595
9643
9689
9736

9782
9827
9872
9917
9961   

7427
7505
7582
7657
1731

.7803
7875
7945
.8014
.8082

.8149
8215
.8280
.8344
.8407

.8470

.8531

.8591
8651
.8710

.8768

.8825

.8882

.8938

.8993

9047
9101
9154
9206
9258

9309
9360
9410
9460
9509

9557
9605
9652
9699
9745

9791
9836
9881
9926
9969  

7435
7513
7589
.7664
7738

7810
.7882
7952
.8021
.8089

8156
8222
8287
.8351
8414

.8476

.8537

.8597

.8657
8716

8774
.8831
.8887
.8943
.8998

9053
9106
9159
9212
9263

9315
9365
9415
9465
9513

9562
9609
9657
9703
9750

9795
9841
9886
9930
9974   

9063

9170
9222
9274

9325
9375
9425
9474
9523

9571
9619
9666
9713
9759

9805
9850
9894
9939
9983  

7459
7536
7612
7686
7760

7832
.7903
1973
.8041
.8109

8176
.8241
.8306
.8370
.8432

.8494

.8555

.8615
8675
.8733

 

.7466
7543
7619
7694
1767

7839
7910
.7980
.8048
8116

8182
.8248
8312
.8376
.8439

.8500

.8561

.8621

.8681

.8739

.8797

.8854

.8910

.8965
9020

9074
9128
9180
9232
9284

9335
9385
9435
9484
9533

9581
9628
9675
9722
9768

9814
9859
9903
9948
9991

1474
7551
7627
7701
1774

7846
7917
7987
.8055
8122

8189
.8254
8319
.8382
8445

.8506

.8567

.8627

.8686

.8745

.8802

.8859

.8915
8971
9025

9079
9133
9186
9238
9289

9340
9390
9440
9489
9538

9586
9633
9680
9727
9773

9818
9863
9908
9952
9996  
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Chapter 1

Exercise 1.3 (page 5)

1 a) Nyt = 135° b) Os

C= 60°
c) d) 7); = 540°

E=210° >»
€) f) TTT=10

2) h) —% H=122°30'

3. a) A= 2m b) BGs

Cc) x d) T

Ls AP]

331
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AL a
oY

7 3mE=_1T F=_27

H=

2

8) § h)

orn   
0

I
I
I

_— \

0) 0 d) o

 

\

e) “a f)

\
0

7. a) 48.6617° b) —75.2114°
9. a) 37°34'59" b) 321°34'35"

Exercise 1.4 (page 9)

1.

3.

S.

7.

a) 5 1.047 b) 3 ~235% © a 3.927  d) 4m; 12.566
a) 0411 b) —0.849 ¢) 4.150 d) 2.124 e) 7.634
a) 30° b) 120° ¢) 270° d) 92° e) 70°
a) 65.890% 65°53'25"  b) 142.094° 142°05'37"
c) 2.825% 2°49'29"  d) —330.024°; — 330°01'25"
e) 3666.930° 3666°55'48"

. 3.141592920 (to nine decimal places); approximates = correctly to six decimal

places.

Exercise 1.5 (page 14)

1.
3
S.
7. a) 131.60 cm/sec b) 30389.39 cm/min

9.
11.

13.

a) 23.52 cm b) 47.94 cm ¢) 134.00 cm

. a) 0.49 b) 2.39 c) 1.16
a) 16.01 m b) 89.72 m ¢) 50.47 m d) 392.54 m

c) 9723.20 cm/min d) 52.74 cm/sec

a) | rev/hr b) 1/60 rev/min c) 6 deg/min d) 0.1047 rad/min
a) 40.8407 cm/hr b) 0.6807 cm/min c) 0.0113 cm/sec
9972.67 m/min 15. 1675.52 km/hr 17. 10109 km/hr



Answers to Odd-Numbered Exercises 333

19. a) 1.10 rad b) 63.26° 21. a) 11589.54° b) 202.28

23. a) 0.0172 rad/day b) 0.000717 rad/hr c) 106798 km/hr

25. 136.35 cm/sec; 1090.76 cm 27. 7.52 m

29. 17 minutes after one o’clock 31. About 35 m?

Review Exercises (page 18)

1. a) 37.70° b) —321.29° c) 81.93° d) 117.39°

3a) NO” b) 0)

-250°

 

nm

5

d) ¢) Em f)

5. 3404 cm? 7. 0<B<a<y 9. 23274 m? 11. 6.56 cm 13. 8 15. 19/17

8.4

Chapter 2

Exercise 2.1 (page 27)

La 2 1 ol dv2 ev2

4 3 3S3. a) 3 b) 2 Cc) 4 5. a) 0.66 b) 1.13

15 3 17 17
Tay Py 9 Is
9. sin §=0.78; tan 6=1.23; cot 6 =0.81; sec 8 =1.59; csc 6 =1.29

11. a) 6.10 b) 0.39 c) 0.42 13. 167m

Exercise 2.2 (page 30)

1. 0.4695 3. 0.3090 5. 1.2208 7. 0.6865

9. 0.9758 11. 0.3153 13. 0.4142 15. 1.0000

17. 1.99 19. 95.48 21. 9.94 23. 8.67

25. 1.17 27. 1.31 29. —-0.33 31. 17.33 m

Exercise 2.3 (page 35)

 

40° °
1. a) b) o 



334 Answers to Odd-Numbered Exercises

d) —460°
725°

3.a9)1 b)IV Ill dH ell

5.2) 260° b) 180° c) 180°  d) = e) 1.96

7. Any angle of the form 90° + k - 360°, where k is an integer

_2r
3

9.4

Exercise 2.4 (page 42)

+ k-2x|k is any integer} 11. a) {45° + k - 360° | k is an integer}

b) {225° + k- 360° | k is an integer}

c) {120° + k - 360° | k is an integer}

1. sin 6 =—3 =—0.6000; tan 6 =—3 = 0.7500; sec 0 => = 1.2500;

cos 6 = 2 = 0.8000; cot b=—3=—13333 csc 0 =—3 = 16667

V3 1 1 V3
3.2) = b) 5 ©) -> d — 2

5. a) —1 b) — V2 0) 1 d) v2

1 __1 1 _17. a) 3 b) 7 ©) > d) >

9. a) 1 b) 1 ¢) Undefined d -1

1 111. a) 2 b) —1 c) —— d -L
V3 2

13. sin 0 = 4 = 0.800; tan b=—3=- 1.333; cot b=—3=-0750

sec 6=—3=— 1667; csc 0 == 1.250

15. sin B=—3=-080; cos B=—-3=-0.600 tan B=4=1333

sec B=—3=- 1667; csc B=—2=-1250

17. cos 6 = V15 _ 96s: tan 0 = ——L_=_0.258; cot §=—V15=—3.873;
4 V15

sec 0=—3_—1.033; csc 6=—4=—4000
V15

19. 2+V3 _ 66 
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Exercise 2.5 (page 45)

1. 0.75471 3. — 0.90040 5. 0.12278 7. —1.19236

9, —0.61232 11. 0.00140 13. 0.59720 15. —11.32603

17. — 7.01525 19. — 0.13449 21. — 2.82674 23. 0.9903

25. 0.971 337 975 (four terms); 0.971 337 975 (directly)

Exercise 2.6 (page 52)

 

 

 

Problem Point P sins coss tans cots secs cscs

1 7/2 ©, 1) 1 0 undef. 0 undef. 1

v2 V2 v2 V2
3. =A (eg) cp LL V2 2

v2 V2 v2 V2sos (hp) ob V2
7 3/2 (0,-1) —-1 0 undef. 0 undef. —1

v2 V2 v2 V2om (5p) 5b 1 V2 Ve
11 m3 (4 Y3) v3 oa vi LL 2 2

2° 2 2 2 V3 V3

13 1 (0.540, 0.841) 084 054 156 064 185 1.19

15 7.3 (0.526, 0.850) 085 053 162 062 190 1.18

17 V2 (0.156, 0.988) 099 0.16 633 0.16 6.41 1.01

19 -12 (0.844, 0.537) 0.54 084 0.64 1.57 1.18 1.86

21. Zsk-2m 23. 3 +k. 2m 25. k- 2x

In problems 27-31,if P: (a, b) is the point on the unit circle associated with arc length

s, then:

27. (—a, b) is associated with r — s 29. (—b, a) is associated with z +S
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31. (-b, a) is associated with s + 5

33. (a) Yes (b) Yes 35. (a) No (b) No

37. (a) Yes (b) Yes 39. (a) Yes (b) No

Review Exercises (page 60)

  

Sw
135° a

1. a) dys b) To c) o

177
d) > e) or f) 6

A —-137° A —-2.34

3. a) I by) - o--2 d-L eo 1 )1 hy —1
V3 V3 2 ) ’

4 5 3 4 5 4Sa-% b-5 o5 d3 oF 0H

7. a) 270°  b) 30°  ¢) 135° d) —45°

0. a) ~2 b) 0 9 + RE e) V3 n+

11. a) 0.6820 b) — 0.4877 c) 0.5407 d) 0.9004 ee) 1.1897 f) 0.7771

13. a) 0.7880 b) 1.7646 15. a) 1 b) 1

17. a) True b) False ¢) True d) False

Chapter 3

Exercise 3.1 (page 69)

1. b=4.60 cm; c=15.64 cm; (= 54°36

3. b=288.00 cm; a =31°17; B=58°43

5.a=2590cm; b=50.21 cm; B=62°43"; Area = 650.25 cm?

7. ¢c=26417.00m; a =66°24"; B=23°36

9. b=175.00 km, c¢=337.00 km; oa = 58°43

11. b=11.27 cm; a =25°26"; B =64°34"; Area = 30.20 cm?

13. a=39.24 cm; b=51.27 cm; B =52°34"; Area = 1005.83 cm?
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15. c=2.93 cm; a = 59°40; 8 = 30°20’ 17. 77°00

19. 573.04 m 21. 3.03 m? 23. 2243.11 cm? 25. 25.85cm

27. |CE| =13.61; |CF|=9.98m 31. |BC|=19.22cm; |CD| = 14.37 cm

33. 25.34 m 35. 1799.83 cm® 37. 174.27 cm 39. 5.32 cm 41. 10.25 cm?

Exercise 3.2 (page 80)

1. c=48, a=31°07, B=105°53 3. b=90, a =69°06", yv=27°30

5. No solution 7. a =58°43', B=31°17, v=90°

9. a = 56°05, B=34°12", vy =89°43

11. Two solutions: ¢, = 46.37, 8, =46°59, v,=101°46'

c,=12.84, B,=133°01', v,=15°44

13. a=32, a=56°48, y=55°12 17. 85.5 km 19. 90°00’

21. Altitude 29.43; Area = 1130.18 23. 41.59 25. 52° 29. 22.75 m

Exercise 3.3 (page 85)

1. y=80° b=34, c=35 3. =21°, a=64, b=31

5. y=92°31', b=50.0, c=60.8 7. y=80°47", a=4734, b=2.146

9. 140.1 m 11. 57.5 cm 13. 151.87

15. Same answers as to Problem 11 of Exercise 3.2.

17. 229m 19. 388 m 21. 31m 25. 428 m

Exercise 3.4 (page 91)

1. 8771.7 3. 1010.1 5. 2110.7 9. 4.394

11. Area =49320 m2; Perimeter = 1188 m 13. 43 200 m?

15. a=685m, b=943m, ¢c=751 m 17. b=27.69 cm, a=28.73 cm

Exercise 3.5 (page 99)

1. 2.8 km in the direction of 32.01° west of north

3. a) 3.5 cm; 70° east of north b) 2.6 cm; 83° west of south

c) 8.4 cm; 67° east of north

5. 943 km in the direction of 4.93° west of south

. 36.20 m in the direction of 17°02’ east of north

9. 4.33 m in the direction of 33°42’ east of north

11. a) 5.39 b) 7.62 c) 13

13. a) Same direction b) Opposite direction c) Perpendicular to each other

15. (732, -217)

2
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Exercise 3.6 (page 105)

1. 3i—4j 3. —4i + 5j 5-9 +17 7. —4i + 6j 9. 17.46

11. 4 for A is 30°; 6 for Bis 110°

13. A + B=0.205i + 3.757), magnitude 3.76 cm; direction 3.12° east of north

15. 487i — 282j 17. 550i — 1741j; 1826 km in the direction of 17.53° east of south

19. 39°54’ east of north 21. 1.98 km in the direction of 53°15’ east of north

 23.3+1 j 25. a) 60°15  b) 60°15’
V10 V10

27. Sum of 2.50i + 1.83j and 0.50i + 2.17} 29. b) 6i+22j c) 17i +25]
31. 1052 km in the direction of 62°22’ east of south

Exercise 3.7 (page 109)

1. a) 360 km/hr due east b) 270 km

3. a) 234 km/hr, 49°50’ east of north b) 176 km

5. Compass reading 11°32" west of north; ground speed 392 km/hr

7. 1 hour and 23 minutes 9. 2 hours and 35 minutes

11. 35 km/hr in the direction of 80°39’ east of south 13. 0.18 km

15. 48 km/hr in the direction of 4°36’ west of south

Exercise 3.8 (page 114)

1. 113kg; S3kg 3. 91 kg 5. 44 kg 7. 55 kg
9. 89 kg 11. 81 kg; 52kg 13. 93 kg 15. 135 kg

17. Less than 74°56’ 19. 22 kg 21. Less than 60°

Review Exercises (page 117)

1. 27.90 cm; 24.94 cm 3. 18.8 cm; 39°20’; 50°40’ 5. 14cm 7. No triangle

9. a =46°50"; (8 =280°40"; ~y =>52°30" 11. No triangle 13. No triangle

15. |AB| =53 m; |AC|=197 m 17. 9.17 cm 19. 8.1

21. a) 12i—-7j b) 4i—4j 23. a) 58.67° b) 6.34°

25. a) —1074i + 953j
b) Salt Lake City is 605 km from Denver in the direction of 77°36 west of north

27. 9°36’ west of south; 473 km 29. 111.39 kg

Chapter 4

Exercise 4.2 (page 128)

1. Yes 3. No 5. No 7. No 9. Yes

11. No 13. No 15. No 17. No 19. Yes
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Exercise 4.3 (page 131)

5. 2 Y6-V2 by V2-V6 o —(2+V3)
4 4

d)2+V3 e) —(V6+V2) f) V2 -V6

7. + 9. 1/2 11. Identity 13. Identity

15. Identity 17. Identity 19. 2/5

23. a) v2 (sin x —cos x) b) —cos x c) v2 (sin x + cos x)

d) 2 sin x cos x e€) cos’x —sin’x f) sin x cos x — X2cost +5 sin2x

Exercise 4.4 (page 136)

120 119 _ 120
5-39-15 Pig © ~119

27. a) 0.9507 b) —0.3102 c¢) —3.0652

1 V3 V3 :
29. a) vy b) > c) > 31. Identity

33. Identity 35. Identity 37. Not an identity 39. Identity

Exercise 4.5 (page 141)

 

 

La) + V2+V2 b) 1 V2+v2 9 + V2+V3 d - 1 V2-v3

3. a) + V2-V3 b) — 4 V2-V2 9-1 2+vV2 dd) 2-V3

313 2V13 3 V135. b) 2 2 d) v2
) 13 13 © 3 ) =
6__1 : 4 _H_7. cos =-= > 2+V3; tan = 2-V3

9. a) — SV26 by VY os g) _V26+1
26 2/26 13 5

11. — oe 13. a) 0.2683  b) 0.9581  c) 0.2988

23 _V6+V2  _V2+V3
’ 4 ’ 2

Review Exercises (page 142)

27. Identity 29. Not an identity 31. Not an identity

33-4 35. 1/V10 37. —56/33 39. 119/169 41. — 116/845
5

43. 9/25 45. — 5/12 47. — 4/5 49. — 3696/4225
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Chapter §

Exercise 5.1 (page 149)

Let R be the set of real numbers.

l.L.a)R DbR ©oflx)= b—=—X. f-lis a function

3.a) R b) {y|y 20} Cc) y= + 2Vx; Sf! is not a function

5. a) R b) {y|y 20} ¢) flix) =1 +Vx; f~1is not a function

7. a) {x|x#0} b) {ylyx-1 ©¢) fw =—2—; is a function

9. a) {x|x20} b) {y|ly24} ©) flx)=(x—4), x24; fis a function

IL 8) fH) =2L2 b) (fH) =x Ba) fw=—2 b) f/m) =x

15. fx) =2X=2;; f~1 is a function 17. y= +4 Vx; not a function

19. y= +(x —> and x21; not a function

Exercise 5.2 (page 158)

rr _r _ Tr3. 4 S. 6 7. Not defined 9.» 11. 4

13. {6]6= 2+ 2kr or 0 = 3% + 2k;

(616 = 45° + k - 360° or 6 = 135° + k - 360°}
15. 6|0 = 7 + 2kx}; {0]6 = 180° + k - 360°}

17. 0.39; 22.14° 19. — 0.57; —3248° 21. Not defined

23. 2.64; 151.27° 25. Not defined 27. Not defined

29. 2.00; 114.34° 31. 3/4 33. —-1 35. Not defined

37. YL 39. v3 41. « 43. v3 45. 0.97 47. Not defined

49. 0.24 51. Yes 53. Yes 55. Yes 57. 0.0707 59. No solution

Exercise 5.3 (page 166)

o, TW —_ 60° _ TT _ o. _3. 60°; 3 S. 60°; 3 7. 180° -—«

9.1016 =30° + k- 180°); {8|0=Z +k.)

11. {0]0=150° + k- 180°};  {0]0 = Xk x}

13. 0.6358; 36.43° 15. 0.8361; 1°

17. 2.7490; 157.51° 19. — 0.1887: — 10.81°
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21. {60|60 = 1.1787 + kx} (numbers should be rounded off to two decimal places)

 

23. 10]6 = 69.86° + k - 180°} 25. 4/3 27. x

29. L 3. , /2V13 37. Yes 39. No 41. Yes
V13-3

49. b)

x.m 40 25 20 10 8 6 5 4
 

6° 2.14 3.40 4.22 7.98 9.59 11.82 13.19 14.62  
 

 

35 3.2 3.1 3.0 2.8 2.5 2.0 1.5 1.0 0.5

 

15.26 15.56 15.64 15.71 15.80 15.80 15.26 13.67 10.62 5.91

—
—
T
T
T
T
]

 
 

¢) The maximum value of 6 is 15.80° and is given by x between 2.5 and 2.8. Try
more values of x in this interval: x =2.66 m, 6 = 15.82640°; x = 2.65 m,

0 = 15.82660°; x = 2.64 m, § = 15.82658°. We conclude that x = 2.65 m (to two

decimal places) gives the maximum value of 6: § ___ = 15.82660°.

51. 1.5574 53.{x|- T<x< z} 55. {x|x 20.9316}

Exercise 5.4 (page 172)

1. a) 60° b) 45° c) — 60° d) 135° e) —90°

V7 b) W7-12
4 203 a) ; 0.6614 ; —0.2031

c) Not defined since 1/3 is not in the domain of function Csc-!

¢) 12(V15 + V3)

7
d) 90° or + ; 11.4881

5. a) 0.8277 b) 2.3761

c) Not defined since (1 —/5)/3 is not in the domain of function Sec-!
d) —0.2916 e) 0.7155

7. a) 73.92°
b) Not defined since sin 47° is not in the domain of function Csc-!
c) 106.75°
d) Not defined since (2 + V/5)/8 is not in the domain of function Csc-!
e) —42.42°

9.2) {6]60=150° + k-360° or 0=210°+k- 360°
b) {0]6 = 270° + k - 360°}
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Review Exercises (page 173)

1. 90°, =/2 3. —45°, —x/4  5.150°, 57/6 7. 90°, =/2

9, 225°, 5r/4 Il w 13. — 24/25 15. — 5/v/26

17. — 16/63 19. 120/119 21. 0.436 23. 3

25. 0.890 27. Undefined 29. VIT+4 _ 0.993 31. Undefined
2/17

33. Undefined 35. Undefined 37. —- 1.075 39. 0.422

41. 0 43. 2.034 45. V'3)2 47. False

49. False 51. True 53. False 55. False

Chapter 6

Exercise 6.1 (page 178)

Let S represent the solution set for the given equation.

1. S={x|x=120° + k- 360° or x=240° + k- 360°}

3. S={x|x=30° + k. 180°}

S. S={x|x=064.62° + k-360° or x=-64.62° + k- 360°}

 

_ _[x Ix7. S=0, empty set 9. s={3, Zz)

11 s-{3r 137 297 37 53«n Sa

’ 36° 36 36 36 36 36

_[x l= _[5* lx _13. s={z, L } 15. 5-7, 1 } 17. §=1{0.13, 3.27)

19. S={1.72, 4.86} 21. S = {0.68} 23. S = {0.87}

25, {x1x=3 +k. 2x}

Exercise 6.2 (page 181)

Let S represent the solution set for the given equation.

1. S=A4 U B, where
A ={x|x=221.81° + k - 360° or x =318.19° + k - 360°}
B={x|x=90° + k - 360°}

3. S={x|x=180° + k - 360°}

S. S={x|x=30° + k. 180° or x = 150° + k - 180°}

7. S={x|x=060° + k - 360° or x=300°+ k- 360°

{I= lx _9. s={ x LL } 11. §=10.84, 5.44, =}
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_ [3x Ir) -{z 2r 4x =)
13. § {= 5.8=\3% 33

_Jm 3m _ [31. s={%. 2 19 s={¥}

_{tz, Lz) {z= 5 1m)2. s={1 23. s={z, Ir 51 Tn

_[x 2x 4x xl _25. s={T 2 41> 27. §=1{0.97, 5.31)

29. S = {1.88, 4.40} 31. S=1{3.72, 5.70}

33. S=0, empty set 35. S=1{0.32, 1.08, 2.06, 2.82}

37. S={1.17, 2.41, 4.32, 5.55) 39. S=0, empty set

Exercise 6.3 (page 184)

Let S represent the solution set for the given equation.

1. S={2.30, 5.84} 3. S={4.71, 5.64} 5. S=0, empty set

7. S=1{2.09, 6.05} 9. S = {0.79} 11. S = {90°, 180°}

13. S={131°36', 334°40') 15. S = {63°26', 90°, 243°26', 270°}

17. S={90°, 216°52, 270°} 19. S = {45°, 98°08’, 225°, 278°08'}

Exercise 6.4 (page 187)

Let S represent the solution set for the given equation.

1. §={0.23, 1.80, 3.37, 4.94) 3, s={%, x)

5. s={%. -, al 7. §=10, 2) 9. S=10, =, 2}

1. s={fr, Ir) B.s={Z, 2, SrA
4° 4 12° 12° 12° 12

 15. s={% St 13x 17x 257 297 3x 4x |
24° 24° 24° 24° 24 24° 24° 24

17. § = {210°, 330°} 19. §={14.48°, 90°, 165.52°, 270°}

21. §={0°, 120°, 180°, 240°, 360°} 23. S=0, empty set

25. S=1{54.74°, 125.26°, 234.74°, 305.26°} 27. S=1{0°, 180°, 360°}

29. § = {0°, 20°, 60°, 100°, 120°, 140°, 180°, 220°, 240°, 260°, 300°, 340°, 360°}

Exercise 6.5 (page 190)

1.0 3. -0.74 S. 1.17 7. 1.76 9. 1.18 11. 1.11
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Exercise 6.6 (page 193)

Let S represent the solution set for the given equation.

1. S={15°, 75°, 195°, 255°) 3. S=1{60°, 180°, 300°}

5. S = {0°, 90°, 180°, 270°, 360°} 7. §=10, 27/3, =, 4/3, 2x}

9. S={r/4, 5t/4} 11. S =1{0.36, 1.21, 3.51, 4.35}

13. S=1{0, ©/3, 57/3, 2x} 15. S =1{0.62, 2.53, 3.76, 5.67}

Review Exercises (page 193)

1. /3; 5n/3 3. No solution 5. 0.927; 4.069

7. ®/6; 57/6 9. 2.498 11. 7/2; 3/2

13. No solution 15. 1.122; 2.446; 3.837, 5.162

17. All values of x in the interval 0 <x £27

19. 1.946; 4.338 21. No solution 23. 7/4; 37/4; 57/4; Tr/4

25. All values of x in the internal 0 <x <1

27. 0.786 29. All values of x in the interval 0 <x <2«

31. No solution 33. 1.170 35. 1.283

37. ©/2; 3m/2 39. r/2; 3w/2; 1.274; 5.009

41. No solutions 43. — 0.841 45. w/6; 57/6

47. —1 <x £0.479 49. x = (2k — 1)w, where k is an integer

Chapter 7

Exercise 7.1 (page 203)

Let P represent the period and 4 the amplitude of the given function.

1. P=2r, A=2 3.P=2r,A=4 5. P=2r,A=1/2

7. P=27/3, A=1 9. P=2r/3, A=2 11. P=2r, A=4

13. P=4,4=3 15. P=2,4=2 17. P=2r, A=1

19. P=2n/3, A=1 21. P=2r/3, A=4 23. P=m,A=2

25. P=1,4=3 27. P=1,4=3 29. P=1,4=3
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Exercise 7.2 (page 206)

In each ofthe following a) P represents the period; b) a suggested interval is given (for

which one branch of the curve might be drawn) along with some key values of x that

can be used; the table should include other in-between values of x.

l.a) P=nr b) —TXT values of x: —1.56, -2, 0, To 1.56

3.a) P= b) 0 ox <n values of x: 0.1, Tey SE PY

5.a) P=2r b) —7 < x <=; values of x: -3.1, -5 0, SE 3.1

- I. x 3m7.2) P= 3 b) 0 <x < 7 values of x: 0.1, 4 zg 1-56

9.a) P=1 b) 0 < x < 1; values of x: 0.05, 0.25, 0.50, 0.75, 0.95

11. a) P=1 b) 0 < x < 1; values of x: 0.05, 0.25, 0.50, 0.75, 0.95

Exercise 7.3 (page 207)

In each of the following a) P represents the period; b) a suggested intervalis given (for

which one branch of the curve might be drawn) along with some key values of x that

can be used; the table should include other in-between values of x.

l. a) P=m

Ir. _ a Ir 5xb) -F<x< = values of x: —1.56, 0 7 1.56, 1.60, ==22 235

3. a) P=m

In. _ I nr xSwb) — J <x <5 values of x: —0.78, + 0 5 078, 0.80,3 zg 1-17

5.a) P=2/3

1. _ 1 _1 _ 1 _b) — ; <x <3 values of x: —0.33, © 12 0.01, 0.01,

1 1 117 6 4 0-33

7. a) rol

1. _ 3 1 _1 _ 1b) —+=<x< — values of x: —0.49, STTR 0.01, 0.01, x

1 3+ 5 0:49

9.a) P=

; _ mmx xb) — Z- <x < I values of x: 1.56, "4 8 0.01, 0.01, xT

x 34 5 1-56

Exercise 7.4 (page 211)

In each of the following, a procedure is suggested for drawing the graph of the given

equation. Draw the graphs of the two equations on the same set of coordinates and then

use the method of adding or multiplying the ordinates, as indicated.

1. y=1and y=sin x; add 3. y=x/2 and y=2sinx; add

5. y=2x and y=cos x; add 7. y=sinx and y=—1; add
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9. y=x and y = sin x; multiply 11. y=—x and y =cos x; multiply

13. y= Vx and y =sin x; multiply 15. y= Vx and y =sin(— x); add

Exercise 7.5 (page 214)

Let R, D(f), and R(f) denote the set of real numbers, the domain, and the range ot

f, respectively.

1.

11.

13.

1S.

17.

a) D(f)=R
b) Equation is equivalent to y = 1 — sin 2x

©) R(f)=1{y[02y <2}

. a) D(f)={x|x eR and x# (2k + 1). = where k is any integer}PX

b) Equation is equivalent to y = 2 sin x, where x is restricted to values in D(f).
That is, draw a graph of y = sin x without the points corresponding to
x= 2k + x/2.

co) R(N)=1{y|-2<y<2}

. a) D(f)={x|x €R and x # kw, where k is any integer}
b) Equation is equivalent to y = sin 2x, where x is restricted to values in D(f).

Draw a graph of y = sin 2x without the points corresponding to
x=0, +m, +27, +3m,...

©) R(f)=1y|-12y<0or 0<y<1]

- a) D(f)=R
b) Equation is equivalent to y =v/2 sin (x + m/4)

©) R(N)=l|-V2 Ly V2
. a) D(f)=R
b) Equation is equivalent to y=vV2 cos(x + z)

©) RU) =y|V2 Ly £ V2
a) D(f)={x|xeR and x#(2k + 1). T where k is any integer}.

b) Equation is equivalent to y = 1, where x is restricted to values in D(f). Graph

of the given equation is the same as the graph of y = 1 except there are “holes”
at points [(2k + 1)7/4, 1]

c) R(f)=1{l}

a) D(f)=R
b) Equation is equivalent to y=2 cos(2x + Z)

©) R(f)=ly[-22y £2

a) D(f)={x|-1 <x £1}
b) Equation is equivalent to y = x, where x is restricted to —1 < x < 1.

That is, the graph is a line segment.

 R(f)={|-12y 21}

a) D(f)=R 19. a) D(f)=R
b) Equation is equivalent to y = 1 b) Equation is equivalent to y = x

c) R(f)=1{1} ¢) R(f)=R
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Review Exercises (page 214)

Let D and R denote the domain and range of the given function, respectively, and R

the set of real numbers.

1. a) Yes; p=2r b) D=R d) R={y|-2 <y £2

3. a) Yes; p=m b) D={x|x€ R and x# (2k — 1)x/2, k is an integer} d) R=R

5. a) Yes; p=2r b) D=R d R=1{y|0 <y £2

7. a) Yes; p=m b) D={x|x e R and x # km, k is an integer} d) R=R

9. a) Yes; p=7 b) D=R d) R=1{y|-3 Ly £3

11. a) Yes; p=n b) D=R d) R={y|-2 Ly £2}

13. a) No b) D=R d) R=R

15. a) Yes; p=27r b) D={x|x= (4k + 1)x/2, k an integer}
c) Graph consists ofisolated points [(4k + 1)7/2, 0], k an integer d) R = {0}

17. a) Yes; p= b) D=R d R={y|-1<y <1

19. a) No b) D={x|-1 £ x £ 1}
c) Graph is the line segment joining points (—1, —1) and (1, 1)

d R={y|-12y 21}

Chapter 8

Exercise 8.1 (page 222)

1.

3.

S.

9.

11.

13.

17.

a) =i b-1 ol di ei fH-i gl hi
a) 12 b)12i  o —12 dy —%i e %i f)%

a)4  b)—1-5i 0 A=W2:32,

a) 3—8 b)2+V3i ¢) —4+4/2i

1.3. 4 V2.
d) 9 9tiol DraT
A La vVI3-3 . _V13+3 1.

a) 2i; > 1 b) i; =3i ©)—i —i d) i >

x=—1,y=2 15. x=-5,y=13 or x=2,y=6

Yes 19. a) No b) No

Exercise 8.2 (page 226)

1.
LJ

(3,5 3.0,4 5 (-V32 70,0 9 —4 11. -4-3i

—1+3i 2+m
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Q+3D)+ (5+)

 

17.
   

Q-=3)-G+2) | 
B: (-3.4) 4 C:(3,4)

r——T1T—"

21. a) 3—4i
b) —3+4i |
c)3+4i ! 1

d) 3
e) —4i

f) 5  

     
Exercise 8.3 (page 231)

3. a) w(cos 0° + i sin 0°) b) 5(cos 306.87° + i sin 306.87°)

©) V2 (cos 135° + isin 135°) d) 13(cos 337.38° + sin 337.38°)

3vV2 V2. 35. a) v2 + v2 i b)-5 o9-L-Y2

7. a) 4(cos 315° + isin 315°) b) 3(cos 120° + i sin 120°)

c) cos  +isin z

v2 V2
9. a) cos 45° + i sin 45° b) +t

11. a) 2(cos 120° + isin 120°)  b) —1 +V/ 3

13. 18(cos 180° + i sin 180°) = —18

  i
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15. —lcos(— 30°) + i sin(—30°)] = v3 + Li

17. a) 2[cos(—30°) + i sin(—30°)] b) 2V/2 [cos(— 135°) + i sin(— 135°)]

19. a) v2 [cos(— 105°) + i sin(—105°)] b) v2 (cos 105° + i sin 105°)

23. a) —4i b) -8

Exercise 8.4 (page 236)

1. a) cos 150° + i sin 150° = — ER + 5

b) 16[cos(— 180°) + i sin(— 180°)] = — 16

c) cos 240° + i sin 240° --L. 3,

3. a) 8[cos(—90°) + i sin(—90°)] = —8i b) cos 180° + isin 180° =—1

5. a) 16(cos 0° + i sin 0°) = 16 b) 16(cos 240° + i sin 240°) = —8 — 8/3 i

V2 0 + Anco 11,
c) — (cos 225% i sin 225 )=—g7!

7. a) 256(cos 180° + i sin 180°) = —256 b) 8(cos 90° + isin 90°) = 8i

9. —5+1i 11. 4 + 83 13.2) 1+3i b)—9-3i

15. sin 30 = 3 sin 6 cos?0 — sin30 = 3 sin 6 — 4 sin30

cos 36 = cos30 — 3 sin? cos 8 = 4 cos3@ — 3 cos 0

Exercise 8.5 (page 243)

1,V3 ,. _1_V3,I. I, —=—+—]/—i;, —=—-—

  

2 "2 2 2
3. 1.12—0.24i; 0.57 + 0.99; —0.77 —0.66i; —1.05—0.47i; 0.12 — 1.14i

v3i 1. . V3 1. v3 1, vi 1.5 V2 1 . v2 Le _ VOba a VOL
3 + 3 sb 2 + 3 i 2 3 1; ; > 3 1

7. 2.36 + 0.31; —0.31 + 2.3648; —2.36— 0.31; 0.31 —2.36i

9. (V3 +i) B(=V3+i) —i 12+ 1—i 13. i; —1—i
2 2

15. —1; v2 —1+1); Y2 (1-i) 17. =2 +i; 2—i 19. 2+ 3i; —-2-3i

Review Exercises (page 244)

1 —2+2i 3. _7-24i 5, Ly V3i-1_ V3+l,
2 32 32

9. —2.65-69.83i 11.2—2i 13. 24 15. —3+2V3i

17. 0.98 — 0.174; —0.34 + 0.94i; —0.64 — 0.77i

V2 VI, VI VE,19. ii —i: :
Ab 2 2 2 2
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Chapter 9

Exercise 9.1 (page 249) fh

1. a) P: [3, 50°]; [-3,230°]; [-3,-130°]); [3, 410°] 50°

—60°
b) O: [4, —60°]; [-—4, 120°]; [4, 300°]; [4, 660°] 0

540°
c) T: [2, 540°]; [2, 180°]; [2, —180°]); [-2, 0°]

3. P,: [3, 310° Q,: [4, 60°]; T,: [2, 180°]

. ml. on. x |. . 1xspi [2%] 0c [35 7[a 121

 

7. a) [3, 60°] b)
60°

0 [-4, 45°]

[-3, —450°]

180°

©) ——Eo, d)
0 (_ ° (0)[-2, 180°] : 450°

9. a) 3. 4 b) [4 x] ) 2 x] d) [3 z]

Exercise 9.2 (page 253)

1. r=cos 0 3. r=2

0 [1,0]

5. r=1+sin 6 7. r=1—cos 8
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9, r=sin 20 11. r = cos? — sin%0 = cos 26

[1.5] [1%]

—_ 0)
[1,7] On

[1.5] [1 7]
’2

13. r=cos 6 tan 6

Point L , 4 is not on curve

 

17. r=1+2 cos 0 19. r=6,020

2ray

EC) Amml
NN (3,0]

 

Exercise 9.3 (page 256)

1. a) [v2 135°] b) [2, 240°] c) [5.09, 51.85°] d) [2.89, 122.87°]

3. a) [32 A b) vio. 5.03] 0) [3.53, 0.48]

V2 325.2) (0,2) b) (F= =) c) (2.09, — 0.81)

7. a) Yes b) No ¢) Yes d) No e) No

11. x=3 13. x2=2v+ 4



352 Answers to Odd-Numbered Exercises

1 17. 3x -y=0, 6 = Tan13=1.25~ Il1S. x2 + y’=1,

(-1,0) (1,0)

[1,7] [1,0]

 

19. No; the origin is on r = sin 6 but there is no value of 6 and r = 0 that will satisfy the
equation r csc 0 = 1.

Review Exercises (page 258)

1. Each of the following represents only one of an infinite number of possible answers:

a) [1,0] b)[3 x] © [4/2 7/4] d) [2V2, 37/4)
e) [2,7r/6] 0) [2,-w/4] g) [47/2] h) [33/2]

3.89) (2 V3) B31) (40
d) (- 1 a 1 ) e) ( 3 3 )

V2 V2 v2 V2

S. The graph is a circle of radius 1/2 7. The graph is a circle of radius 1

9. The graph is a vertical line three units to the right of the polar origin

11. The graph is a spiral 13. 7? = 4; this is a circle with center at 0 and radius 2

15. y? + 2x — 1 = 0; this represents a parabola

 

Chapter 10

Exercise 10.1 (page 264)

1. 729 3. 16 5. 1/729 7. 1/5 9.1/3

11. 25/3 13. 7/3 15. 256 17. 18 19. 13

21. —-1 23. 928 25. 140 27. 3.07 29. —0.02

31. Undefined 33. 2.89 35. 0.89 37. 2.03 39. 7.39

1 4 4
41. 1.65 43. 1.20 a) b) AJA

20/3-1) 3-5 1+V17

47.1 49. x* 51. x 53. 1 55, x= 57. a) 0.63 b) 3.17 c) 2
X

59. a) 1.84 b) 2.73 ¢) 0.25 61. a) 27 b) 6.84
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63. a) 1 b) 0.73 ¢) Undefined 65. a) 3.12 b) 2.43

67. True 69. True

Exercise 10.2 (page 269)

I —To,0n 3. __—1o,n
_—

—————
—
—

——

————
—
—————_———

————————————

s, \ ©, 1) 7.
~~ — Tn

  
   / ©, -1)

17. a) 0.50 b) 0.27 c) 0.12 d) 0.95 e) 0.65
¥

19.

 

 

i) ~1 0 1 2

Exercise 10.3 (page 275)

3S 5 21.5 3.3 }

7. —8/3 9. —-1 11. Undefined
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13. Undefined 15. = 17. 2 log,p — 2 log,q

19. 2 log,p + + log,q 21. 0 23. log,p + log,q—1

25. 1.1133 27. 2.6826 29. 3.8136

31. 1.8155 33. 0.4729 35. 1.4610

37. 0.4307 39. 1.1656 41. log,100

43. log.9 45. log,(3/2) 47. 4

49. 2 51. 1 53. 2

55. 2 57. True 59. Meaningless

61. False 63. Meaningless

Exercise 10.4 (page 282)

1. 1.6094 3. 0.2718 5. 2.2912 7. Undefined

9. Undefined 11. 1.6309 13. — 0.1603 15. 0.8932

17. 0.4752 19. 0 21. 1.43 23. — 0.42

25. 0.5 27. 3.0061 29. 4.6274 31. 0.4246

33. 0.4809 35. No solution 37. — 0.2135 39. — 0.1392

41. 0.3446 43. 0.3388 45. 4.1787 47. 22.9087

49. 0.6545 51. No solution 53. 42.2561 55. 28.7685

57. 2 59. 3 61. 0.9423 63. 3.5920

65. True 67. Meaningless 69. True 71. False

Exercise 10.5 (page 286)

1. 1.29 3.074 5.066 7. 0.22 9. 0.06 11. 2.32
13. 1.89 15. 2 17. 4 19. 27.40 21. —022 23. 0.35
25. 0.27 27. x=3,y=0 29. x =2.28, y = —0.26
31. 0.56714329 (to eight decimal places)

Review Exercises (page 288)

1. 0.903 3. 3.135 5. 10.751 7. 0.520
9. 1.292 11. 0.166 13. Undefined 15. “

17. Undefined 19. 12.265 21. 24.799 23. 6.167
25. 3 27. — 0.432 29. 522.735 31. 0.434
33. 2.262 35. No solution



37.
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0.1) 39.

 

Appendix A

Exercise A.2 (continued) (page 309)

1.

6.

8.

10.

11.

13.

15.

16.

17.

18.

19.

20.

10.351 2. 7.879 3.111.688 4.1450 5.2) 1.600 b) 1.245

a) 27.750  b) 342.301 7. u=2210, v=2.199, t=2207; thus v<t<u

a) 6.561  b) 6.561 9.a) 1.215 b) 1.477  ¢) 1.795

The number agrees with 7 through
a) two decimal places b) four decimal places
¢) six decimal places d) at least eight decimal places

a) 12.479 b) 12.479 12. a) 7.817 b) 10.996

a) 0.268 b) 0.268 14. 8.186

a) 364 b) 113.105 c) — 11.790; use (— 1.8)¢ = 1.86
d) Calculator indicates Error. Why?

a) 364 b) 113.105 c) — 11.790 d) 6

a) — 1.096 b) Calculator indicates Error. Why?

— 0.236, since Avs is negative; use (A=) = ~( Y5-1 )

The calculator indicates Error. Why?

a) 133 b) 6.933. Use 3(—1.2)*—-4(—-12)+(-1.2)-5
=3(1.2)* + 4(1.2)’ — 1.2 -5.

c) 166.344 d) 0.236

Appendix B

Exercise B (page 320)

1. x =6.475 x 10; y=4.83 x 10%; z=45x 1073;

u=3.70 x 10-2; v= 3.0052 x 103%; t=3.10 x 10°

. x, hundredths; y, tens; z, ten thousandths; u, ten thousandths; v, tenths; ¢, tens

. a) 2.40 b) 14 c) 0.642 d) 4.0 x 10°

. a) 0.25 b) 0.589 c) 494 x 10° 9. 37.8 cm? 175 cm? 11. 9x 10!2 km
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Absolute value, of a complex number, 227

of a vector, 95

Algebraic calculator, 289

Amplitude, 197

Angle(s), 1

central, 13

coterminal, 33

of depression, 67

directed, 2

of elevation, 67

quadrantal, 33

in standard position, 31, 33

Angular velocity, 12

Approximate decimal, 311

computation, 314-317

Arc, directed, 47

length, 10, 47

Arccos, 153

Arceot, 162

Arcsin, 152

Arctan, 161

Area, of a circular sector, 13

of a triangle, 89-91

Argument of a complex number, 227

Asymptote, 57, 59

Axis, real, 223

imaginary, 223

Calculator(s), 28, 289

algebraic, 289

clearing, 303

keys, 290, 293, 301, 305

INDEX

Reverse Polish Notation, 289, 297

stack, 297, 302

Cardioid, 251

Circular functions, 46

Cofunction properties, 23

Complex numbers, absolute value of, 227

argument of, 227

conjugate, 218

division of, 228

geometric representation, 223

modulus of, 227

multiplication of, 228

polar form, 227

rectangular form, 227

square root of, 219

trigonometric form, 226

Complex plane, 223

Components of a vector, 102

Coordinates, equality of, 247

polar, 245-258

rectangular, 253

Correspondence, one-to-one, 246

rule of, 145

Cosecant function, definition, 22, 37, 47

graph, 59, 206, 207

inverse, 170

Cosine function, definition, 22, 37, 47

graph, 55, 201, 202

inverse, 153

Cosines, Law of, 74-80

Cotangent function, definition, 22, 37, 47

graph, 57, 203, 204

inverse, 161

357



358 Index

Coterminal angles, 33

Decimal approximations, 311

Decimal form, 24

Degree, 2

DeMoivre’s theorem, 233

Depression, angle of, 67

Double-angle identities, 133

Elevation, angle of, 67

Equation(s), conditional, 121, 175

exponential, 283

identity, 175, 212

involving algebraic functions, 18§

involving multiple angles, 185

logarithmic, 283

quadratic, 179

roots of, 221

trigonometric, 175-194

Euler, 263

Exact form, 24

Exponent(s), base, 259

negative integer, 234, 260

positive integer, 233

rational, 238

rules of, 259

zero, 234, 260

Exponential functions, definition, 259

graphs, 266

Function(s), circular, 46

decreasing, 267

definition of, 21

domain of, 21, 145

even, 51

exponential, 259, 266

increasing, 267

inverse, 146, 270

inverse trigonometric, 150-172

principal value, 149

logarithmic, 270

odd, 51

periodic, 197

range of, 21, 145

trigonometric, 21, 43

Force, concurrent, 110

equilibrium, 111

Grad, 2

Graph(s), by composition of ordinates,

209-210

of exponential functions, 266

of inverse trigonometric functions,

152, 154, 161, 162, 170

of logarithmic functions, 271

of trigonometric functions, 53-59,

195-207

by using identities, 211

Half-angle identities, 138

Heron’s formula, 91

Identities, 121

basic, 51, 122, 125

complementary, 23

double-angle, 133

half-angle, 138

reciprocal, 23, 38, 50

sum and difference, 128

Imaginary numbers, 217

Inverse relation, 146

Inverse trigonometric functions, 150-172

Law of cosines, 74

Law of sines, 83

Logarithmic function, 270

base of, 272

change of base, 278

calculator evaluation, 277

common, 277

inverse, 279

natural, 277

properties, 259, 272

Measurement, accuracy of, 68, 311-317

Motion, uniform circular, 12

Natural logarithms, 277

Number(s), approximate, 9, 311-321

complex, 217-244

e, 263

exact form, 24

irrational, 9

imaginary, 217

pi, 8, 311

rounding off, 314

real, 217



Ordered pair, 246

Ordinates, adding, 209

multiplying, 210

Parameter, 195

Pending operations, 290

Periodic functions, 197

Phase shift, 200

Pi, 8, 311

Polar coordinates, 245

Proof, technique of, 124

Pythagorean theorem, 22

Quadrant, 31

Quadrantal angles, 33

Quadratic formula, 220

Radian measure, 3

Radicals, 260

Ray, 1

Real numbers, 217

Relation, inverse, 146

inverse trigonometric, 150-170

Reverse Polish Notation, 289

Roots, of complex numbers, 238

principal, 239

Rose, three-leaf, 252

Scalar, 94

Scientific notation, 313

Secant function, definition, 22, 37, 47

graph, 58, 206, 207

inverse, 170

Series, infinite, 43

Significant digits, 311, 312

Sine function, definition, 22, 37, 47

graph, 54, 195-202

inverse, 150

Index 359

principal value, 151

Sines, Law of, 83-85

Speed, 107

Solution set, 175

Spiral, 252

Tangent, definition, 22, 37, 47

graph, 56, 203, 204

inverse, 160

Transformation equations, polar to

rectangular, 253

rectangular to polar, 253

Triangle, ambiguous case, 77

area of, 89

hypotenuse, 22

reference, 36

right, 21, 64

side of, 22

solution of, 63

Trigonometric functions, 21, 37

graphs, 53-59, 195-207

Trigonometry, 1, 63

Variable, dependent, 21, 145

independent, 21, 145

Vectors, absolute value, 95

algebra of, 95

analytic approach, 101

component, 102

direction, 95

geometric approach, 94, 223

magnitude, 95

resolution, 102

Velocity, 11

angular, 12

linear, 12

relative, 107







TRIGONOMETRY FORMULAS

  

Angular Measure

Convert degrees to radian measure: Multiply by 7/180.

Convert radians to degree measure: Multiply by 180/.

Triangles

Law of Cosines:

a? b? + ¢% — 2bc cos aI

b> = a* + ¢* — 2ac cos B

 

c= a* + b* — 2ab cos vy
 

Law of Sines:

sina _ sin _ sinvy

a b c

Area:

Area = sabsiny = 5 bcsina = 5 acsin 3

 

Js(s — a)(s — b)s — ¢), wheres = (a + b + ©)Area

Complex Numbers

DeMoivre’s Formula:

(cos 6 + isin)" = cosnf + isinnf, wherei’= —1and nisany integer.



TRIGONOMETRIC IDENTITIES

 
 

A. Basic Identities

(I.1) csc 6 = 1/sin 6 (I.7) tan 8 = sin 6/cos 6

(I.2) sec = 1/cos 0 (I.8) cot # = cos 6/sin 0

(1.3) cot § = 1/tan 6 (1.9) sin%0 + cos?¥ = 1

(1.4) sin (=) = —sin 6 (1.10) 1 + tan’) = sec’d

(I.5) cos (—6) = cos 6 (1.11) 1 + cot? = csc?f

(I.6) tan (—6) = —tan 0

B. Sum and Difference Identities

(I.12) sin(a + B) = sin a cos 3 + cos « sin 3

(I.13) sin(e — B) = sin « cos 8 — cos « sin 3

(I.14) cos(ax + B) = cos a cos 3 — sin « sin 3

(I.15) cos(¢ — 8) = cos a cos B + sin « sin

(1.16) tan(e + §) =

ana

+

tan

1 — tan a tan 8

tan « — tan 3
[.17) tan(a — a

( ) (a 8) 1 + tan « tan 8

C. Double-Angle Identities

(I.18) sin 260 = 2 sin 6 cos 0

(1.19) cos 20 cos’ — sin’ = 1 — 2 sin’ = 2 cos®d — 1

2 tan 6

1 — tan®
(1.20) tan 26

D. Half-Angle Identities

0 /'1 — cos 6
(I.21) sin 5 TF V5

|

(The sign is determined
by the quadrant of £.)

0 /1 + cos 0
(1.22) cos —- = + VV—

 0 sin 6 1 — cos 6
1.23) tan — = = .

( ) tan 2 1 + cos 6 sin 6
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