
00/09/14 16:47:51 FILE: VEINDEX TEXT 4096 ©9/14/00 16:47

0o 00
00 00
00 00
00 00
00 00
000 00
000 000
00 Q0
00 00
00 00
0000
00
00
00

SECTION

0000000000
0000000000
00
00
00
00
00000000
00000000
00
00
00
00
0000000000
0000000000

O
O

o
o

o

O
O
0
o
o

000

O
O
O
O
0

O
0
O
o

O
O
o

Q
O
o
O
Q

000

000

000

000

O
O

O
o
O
O

0000000000
0000000000

O
O
o
C
c
o
o
o

O
O
0

0
O
o
0
o

0000000000
0000000000

00
000

000
000

000
000

000
00
00
00
00
00

O 000
a o o

000

000

0000

0o
000

0000
00000

00
00
00
00
00
00
00
00

00000
00000

VE - The Visual Editor for the HP71i iiii it innnns

Distribution Notice. ...t icn et et onsesnaenrssnnsnsan

Hardware and Software Requirements...........it annnnn

FeatuUres . . oo ittt ittt s e enesssananssoesnansansnanosssenansannsss

Getting Started.ttt i ittt itet

UsSing VE . sttt ittt antannnnsnonnnaassnsnsnsssnnssnnssnns

VE Command Dictionary. ..ottt innnceansneasanansnesasnn

A - AUTOMATIC wrap mode toggle........ ...i

o
m
o
o

|

- BACK up to previous occurence of next key..........

- COPY marked block. .o it i ittt ettt e annnaeannas

DELETE marked block. ..t ii it e inennonennnnennss

ERASE invisible characters........iininnan

000
000

PAGE

F - FIND a given search pattern..........v,
6 - 60 to next occurence of next key.........i

H - HIGHLIGHT mode toggle.. ... ittt invnnnns

I - INSERT from buffer/external file......... ...t

J - JOIN following lines......c.viiiniiienereennnnronns

L -~ LINE delete....cuiiiiineeiineincenenntnresnonensons

M - MOVE marked block.. ... v ittt ittt en s nnens

N - NEXT occurence of search pattern.............c0...

0 - OPEN empty line above current line.................

P — POSITION to given line number......cii it rinnrnenss

Q - QUERY replace pattern.........it anceennns

R — REPLACE pattern. ...t ittt tettt st ererensnnssnns

S - SELECT block of lines - Clear marks.......ccuuv..n.

T - TAB to next tab stop position............

U - VIEW available memory....o.oiiiiiiiieiniinneneenenns

W - WORD delete, (from cursor to next word)............

Y - YANK to buffer/external file.............o...

MACRO Programming. . .e. e eennrarsanssnssnassasaasenansnansas

Virtual Windows. ..o v it ittt ent ittt r s onnnosanaacassnsnsensans

History and Credits.. .. viieinin ittt iinnrstnnnnesonnnn

Appendix A — MKUEDB. . v v v it it s enesannotnnsssnannnnns

Appendix B — VEFOLD. ... v iiiin ittt eccnnrsnsnnannnaneas

Appendix C - Quick Reference Guide...... ..ot iacennas

TNNTTTTTTTTSITITTTR TT T TT TT TTITTTTTNNNDIISTSSISEEESEEERIREREERS

00/@9/14 16:48:40 FILE: VEMANI TEXT 13056 ©9/14/00 16:48

U E - The Visual Editor for the HP7I

VE is a software package for the HP71 portable computer designed by

members of CHHU-ITaly.

(C) 1986 Stefano Piccardi, Via Antonio Panizzi 13, 20146 MILANO, Italy

(C) 1986 Stefano Tendon, Cantone delle Asse 5, 29100 PIACENZA, Italy

The package comprises the following files:

- VE71 BASIC main program.

- VEDIT BASIC bootstrap program.

- VELEX LEX run-time support file.

- VEDB DATA base file, (run-time screen dependant information).

- VEFOLD BASIC (optional) run-time preprocessor program.

- MKVEDB BASIC (optional) support program, (MaKe VEDB).

- MKVEKEYS BASIC (optional) support program, (MaKe VE KEYS).

- KEYDATA BASIC sample key definitions for use with MKVEKEYS.

Distribution Notice

We [the Authors] hereby donate all material included on the distribution

disc (the above mentioned files and all relative documentation files) to

the CHHU HP71 ROM Project Committee for inclusion in the ROM and/or in

its User’s Manual. However, we ask the CHHU ROM Project Committee not to

distribute this material outside the ROM project. If the Committee were

not interested in the present package, we ask it be returned as is.

CHHU Chapters and CHHU affiliated clubs are hereby given permission to

publish the present document only.

Hardware and Software Requirements

HP71B with ca. 17 Kbytes of RAM for programs and run time variable

allocation + any additional RAM required by user's text file;y HPIL

modules; HPIL video interface and monitor; following LEX files: STRINGLX

(HP), CUSTUTIL (HP), EDLEX (HP) and FKEYLEX (JPC-SIG).

Notes:

The above mentioned RAM requirement is calculated with EDLEX residing in

MAIN RAM. EDLEX can be found in some ROMS made by HP (e.g the FORTH-

ASSEMLER ROM). If you have any of these ROMS, EDLEX need not he loaded

into RAM, and thus you can save 2557 bytes.

FKEYLEX is a pubblic domain LEX file for non-commercial use only by

CHHU, CHHU Chapters and CHHU affiliated clubs. If you do not have

FKEYLEX, you can request a copy of it from the French CHHU Chapter:

Saturn Iterest Group

c/o Pierre David

33 Bd. St. Martin

75003 PARIS

France

or from the coordinator of CHHU's international SWAP programme:

Michael Markov

P.0. Box 17

Lockwood

NY 14859, U.5.A.

Features

VE is a full screen text editor designed to be operatable by any HPIL

video interface compatible with the escape sequences of the HP82163 32-

column video interface device. This means that VE can be used by almost

all video interfaces currently available on the market, for example: the

HP92198, the PACSCREEN, the GRABAU and the MICRONIX.

VE can be used in two modes: as a real full screen editor that takes

advantage of the full screen size available whatever this might be, and

as a screen oriented line editor capable of handling a "virtual" screen

wider than the real screen. In this second mode, for example, it is

possible to edit 80 column lines on a 32 column video interface, with

all the convenience and powerful features of VE still available.

VE is easy to operate. All standard editing keys on the HP71 keyboard

have their usual meaning, so it is possible to start wusing VE

immediately, without having to learn strange key sequences. Commands are

issued by pressing the [fl-prefix key followed by a single alphabetical

key. In this way all comands are identified by a single easy-to-remember

alphabetical character.

VE responds to the following commands: AUTOMATIC, BACK, COPY, DELETE,

ERASE, FIND, 60TO, HIGHLIGHT, INSERT, JOIN, LINE, MOVE, NEXT, OPEN,

POSITION, QUERY, REPLACE, SELECT, TAB, VIEW, WORD and YANK, which are

all described in detail in this document.

VE gives the user extensive control over cursor movements: left, right,

up, down, start/end of file, start/end of current line; next/previous

word on current line; next/previous user specified character on current

line. Furthermore it is possible to POSITION the cursor to an absolute

numbered line; to a line given by a user specified expression relative

to the current line, the start/end of file or the start/end of a marked

block of lines.

VE allows the user +to define tabstops at his convenience. Tabstops

combined with an automatic indent mode are invaluable for writing

program source files in FORTH or ASSEMBLER. There is also an AUTOMATIC

wrap around mode, which is very useful when writing ordinary documents.

VE allows the user to OPEN a new line in a text file, as well as to JOIN

two lines into a single line. It is possible to delete a single LINE or

a single WORD.

VE offers complete cut-and-paste functions. It is possibile to mark or

SELECT a block of +text lines, MOVE it around in the text file, make a

COPY of it, DELETE it, save (YANK) it in an external buffer/file (that

can even reside on a mass memory device), and retrive (INSERT) it

elsewhere or in another file from the external buffer/file.

VE offers complete FIND, REPLACE and QUERY functions, with a complete

set of "metacharacters" (wild cards).

During a VE editing session it is possible to invoke +the BASIC

environment, and thus to perform a calculation or call a progranm,

(provided the program does not trash VE's environment or change the

DISPLAY and PRINTER assignments, or the settings of flags @, 1, 2, 3, 4,

and ~-1), and then return to VE.

VE allows for USER defined key definitions for typing aid, just like in

the BASIC environment. Furthermore, these key definitions can contain VE

commands, with or without parameters and/or user prompts. In this way VE

of fers a MACRO ability, this means that VE is a PROGRAMMABLE text

editor. For example, a macro definition can: copy the work file to mass

memory and end editing session; delete a block of a given number of

lines starting from the current line; build a standard template or

header for letters and documents; clear the whole work file; find a

predifined pattern and merge an external file into the work file.

VE is line-oriented, in the sense that a line is the basic unit of

information. There are not such concepts as "paragraphs" or "sections”

of text. VE is a screen editor, not a word processor, albeit it is

probably the most powerful text handling tool available to HP71 users.

Getting Started

Before you start using VE, there are a few things you should know and

do. As mentioned in the preceding section, VE 1is a full screen text

editor operatable by any HPIL video interface compatible with the escape

sequences of the HPB82163 32 column video interface device. "Compatible"

refers to escape sequences only, not to screen size. This implies that

VE has to be +told the exact screen size, as well as few other

parameters.

Since this information is seldom changed, most parameters are stored as

constant values in a DATA file named VEDB (Visual Editor Data Base). The

VEDB file must reside in HP7! memory when VE is called. The VEDB file

that comes on the package disc contains default values suited for the

HP82163 32 column video interface. You should be able to use the given

VEDB file even on larger (B0*24) screen size video interfaces without

any modification. The VEDB file contains all escape sequences used by VE

to drive the video interface. If your video interface does not respond

to the escape sequences used by the HPB2163 video interface, then you

must modify the VEDB DATA file by running a set up program called MKVEDB

(Make VE Data Base). As the name implies, this programs allows you to

define the contents of the VEDB file. The use of MKUVEDB is explained in

Appendix A. (Furthermore, the VEDB file contains a special string used

to store “invisible" characters: these are explained under the ERASE

command).

To invoke the VE program you must type a command line with the following

syntax:

CALL VE(<#S5.ROWS> ,<#5.COLS> ,<#W.ROWS> ,<#W.COLS> ,<DEVICE> ,<TABS>)

where the parameters have the following meaning:

#5.ROWS real number of rows on screen,

$5.COLS real number of columns on screen,

#W.ROWS virtual number of rows, (i.e. rows in window),

#W.COLS virtual number of columns, (i.e. columns in window),

DEVICE string specifying the display device to be used,

TABS string specifying the position of tab stops.

This command line is not easy to remember, so you will find it
convenient to assign it to a user defined key or to use a little program

like the VEDIT program that comes on the distribution disc, and then

invoke VE with CALL VEDIT or RUN VEDIT. If you examine VEDIT, you will

notice it contains the following program line:

100 CALL VE(32,16,32,16,"%48" ,"4") IN VE7I

which contains default values suited for the HP82163 32-column video

interface. You should be able to use the given VEDIT file even on larger

(B0*24) screen size video interfaces without any modification, although

you will only use a portion (32+18) of the full screen size available.

However if vyou wish to exploit full screen size offered by these

interfaces, you only need to modify +the parameters passed over to VE.

When you modify these parameters you must keep in mind the following:

The parameters #S.ROWS and #S.COLS refer to the exact screen dimensions,

whilst #W.ROWS and #W.COLS refer to the dimension of the “virtual"

screen window you wish to use. The relation #W.ROWS <= #S5.ROWS must

always be true. If #W.COLS <= #5.COLS then #W.ROWS and #W.COLS simply

define a portion, i.e. a window, of the real screen that will be used by

the text editor. However, if #W.COLS > #S.COLS then VE will automatical-

ly switch to it’s second mode of operation, acting as a screen oriented

line editor. 1In all cases the window used for text output to the screen

will be divided into two parts: the work area and the message line. The

message line is always the last line of the window, and the work area is

the whole window less the message line.

The parameter DEVICE is a string indicating which HPIL device on the

loop will be used as a display.

The parameter TABS is a string indicating the current settings of tab

stop positions. There are +two ways to specify this parameter. The TABS

string can contain a numeric expression, and in this case the value of

the expression will give the number columns between one tab stop and the

next one, starting from the first tab stop which is always positioned in

the first available screen column. For example, if TABS is the string

"2+43", then VE will set a tab stop every fifth column.

If the TABS string does not contain a numeric expression, then

successive tab stops after the first one will be set at the columns

given by the ASCII range plus one determined by the first character in

TABS and +the following characters. For example, if TABS 1is set +to

"AHOX". This means that the first tab stop will be set (by default) at

column 13 the second tab stop will be set at column 1+NUM("H")-

NUM("A")=8; the third tab stop will be set at column 1+NUM("0")-

NUM("A")=15 and the fourth tab stop will be set at column 1+NUM("X")-

NUM("A")=24. (Note that the tab settings given in this example are

suited for writing ASSEMBLER source files).

There is yet another setup feature worth to mention in this section,

although it 1is explaind in more detail in Appendix B. VE has the

capability of invoking automatically a preprocessor program called

VEFOLD. This program was designed in order to "fold" all the lines in a

text file that happen to be longer than the current width of the screen

window. It 1is essential that every text file you edit with VE does not

contain lines +that are longer than the current screen window width. If

you use VE for the first time, you will not be concerned by this

problem, (so vyou will not have to load the VEFOLD file into the HP71).

You will never have +to bother about this problem as long as you do not

decrease the screen window width to edit a file which was created with a

larger screen window width. Just remember that the VEFOLD program is

available if you need it.

-TT NIIITI ITeeTey eerrrr r r¥ 1 rrr¥1NSSTSTSTST TS T TSNTTSTTTTSSTN T T TT T TTTTTSNSTSSsSS S S SsSEEEEE=Ess

@0/09/14 16:51:21 FILE: VEMANZ TEXT 14592 @9/14/00 16:51
NSSSSSSSSTNSST S S S T SSS TSNSTTTN TT T IT TTTTTT TTTTTTTTT TTTTTeSSEmTSNSmnmEmE

Provided that vyou have all necessary hardware, you can start using VE

after you have loaded +the following files into MAIN RAM: VE71, VEDIT,

VELEX, VEDB, FKEYLEX, STRINGLX, CUSTUTIL and EDLEX. (Remember that EDLEX

can also be found in a ROM. Check this out, and if it is the case, then

you do not need to load EDLEX).

When VE is called, for example by running the VEDIT program, it will ask

for the name of the text file you wish to edit. (If you wish to abort

the editing session at this point, simply type an illegal file name like

an asterisk followed by [ENDLINE] and you will be back to the BASIC

environment). Type the name, press [ENDLINE] and VE will be ready to let

you edit the named file. If the file does not exist, it will be created.

From this point on, wusing VE is very straigth forward. You may use the

alpha-numeric keyboard to write any text you wish, and the standard HP71

editing keys (BACK, -CHAR, I/R, LC, -LINE) to perform the most common

editing functions.

VE is based on a WYSIWYG - What You See Is What You Get - philosophy,

(although "invisible" characters make it slightly difficult to adhere to

such a philosophy completely, but more about +this under the ERASE

command). This means that vyou can wuse the four cursor keys to move

around anywhere on the screen, and any changes or additions you make at

the cursor position will also be reflected in the text file. The four

cursor keys, however, will not let vyou go beyond the left or right

margin of the screen window, as well as the start or end of file. If the

cursor is at any of these positions and you try to surpass them, VE will

emit an alerting beep. This will give you a precise feedback of where

you are in the file. Try it!

The cursor keys preceded by the g-prefix key have their usual meaning.

That is: I[gl [LEFT arrowl] and [gl [RIGHT arrowl will position the

cursor, respectively, at the begining and at the end of +the current

line. [gl] [UP arrowl and [g] [DOWN arrowl will position the cursor,

respectively, at the start and at the end of the text file vyou are

working with. You can learn more about cursor positioning under the

POSITION command.

The key sequences [fl [left parenthesis] and [f] [right parenthesis] may

be used to position the cursor, respectively, on +the next and on the

previous word of the current line. Note that these two functions have a

"circular" behavior; i.e. if you try to go to the previous (next) word,

but the cursor is already on the first (last) word of the line, then the

cursor will jump around to the word at the other end of the current

line. This 1is very convenient, as it allows you to chose the shortest

path to get to a particular word.

If your text file contains more text than can be displayed with a single

screen shot, then you may page through the text. The [f]1 [ENDLINE] and

[g) [ENDLINE] key sequences will display, respectively, the previous and

the next screen of text.

You can obviously use both upper case as well as lower case characters,

and you can toggle between the two cases by using the standard HP71

editing key sequences: the I[gl-prefix key to toggle the case of the

character typed next, or [fl [L/C] to toggle the current case mode. You

can tell the current state of Lower Case mode by looking at flag

annunciator 4 of the HP71's LCD display. This annunciator will be

visible whenever Lower Case mode is enabled (on).

If you wish to change the current work file without getting out of the

editor, you can "restart” the editor by pressing [gl] [ONI. When you have

finished, press the [ATTN] key to terminate the editing session and

return to the BASIC environment.

V E COMMAND DICTIONARY

The following “Command Dictionary" provides a complete description of

each command implemented in the VE full screen editor. The Command

Dictionary is organized so that you can use it both as an instruction

book and as a reference tool. All commands are listed in alphabetical

order, and all information relevant to a command, including examples and

details, is given under that command’s entry in the dictionary.

For any command you wish to issue to VE, remember the general rule that

all commands are issued by pressing the [fl-prefix key followed by an

alphabetical key, this key heing the first letter in the command’s name.

For example, if you wish to issue the AUTOMATIC command, you just have

to press the [f]l key followed by the [A] key. Some commands may require

you to type some additional information too. For example, if you issue

the FIND command, you will obviuosly need to provide for a search

pattern. The command stack 1is active most of the time you need to type

any additional information; this can be handy if you want to repeat the

same response several times or if you just have to give a slightly

different response. Any additional information you need to type to issue

a given command is described under that command’s dictionary entry,

along with any special rules required to de that.

* K KEEH A - AUTOMATTIC * kKR

The AUTOMATIC command refers to the automatic wrap around mode wich is

initially enabled (on) when vyou start the VE program. The AUTOMATIC

command will alternatively toggle the automatic wrap around mode off and

on. You can tell the current state of the automatic wrap around mode by

looking at flag annunciator @ of the LCD display. This annunciator will

be visible whenever the automatic wrap around mode is disabled (off).

Note that the behaviour of the wrap around mode is affected also by the

state of the insert or replace mode. You may toggle between insert and

replace mode, and viceversa, be pressing the standard HP71 editing key

sequence [f1 [I/R]. Replace mode will be enabled automatically every

time VE starts. You can tell the current state of the insert/replace

mode by looking at flag annunciator 1 of the LCD display: this flag will

be visible whenever insert mode is enabled. The insert/replace mode is

also reflected by the two different types of cursor that you will see on

the screen, although this is not always +true, depending on the

particular video interface at hand. (The PACSREEN, for example, has a

bug that will mess up the +two different cursors: this explains why we

have decided to show the real state of the insert/replace mode with flag

annunciator 1 too).

Wrap around mode and insert/replace mode will cause the following four

different actions depending on the respective states:

1) Wrap around mode disabled and replace mode enabled: replace cursor

with next alphanumeric key, and if not at right margin then advance

cursor else emit a warning chirp.

2) Wrap around mode enabled and replace mode enabled: just like previous

case, but if at right margin then do wrap around.

3) Wrap around mode disabled and insert mode enabled: if there is room

left on the current line, then insert next alphanumeric key under

cursor, else emit a warning chirp.

4) Wrap around mode enabled and insert mode enabled: just like previous

case, but if at right margin then do wrap around in inset mode.

Note that even the backspace command, (whose standard HP71 editing key

sequence is [f] [BACK]), has +two different actions in insert and in

replace mode, although this 1is nothing new to HP7!1 users, as the two

different actions take place even with the HP71’s standard LCD editor.

Another feature to mention 1is that wrap-around mode will preserve the

indentation of the last typed line. The indentation will also be

preserved when vyou end a line with [ENDLINE] and this line is the last

line of the file. This is very useful when writing program source files

or, in general, when writing out tabular information.

* %% ¥ B - B ACK *X KK

The BACK command, (not to be confused with the backspace command

mentioned in the preceding section), refers to a particular cursor

movement that can take place on +the current line. As soon as you have

issued the BACK command by pressing [f]l [Bl, the HP7! will wait for you

to press another key. If this key is an alphanumeric key and the

corresponding character occurs to the left of +the current cursor

position, then the cursor will be positioned at the first occurence of

the specified character that happens to the left of the current

position. If the given character does not occur before the current

cursor position, then no action takes place. If another command is

issued instead of the pressing of the expected character key, then that

command will be executed.

* K KR C - COoOPY * %R KR

The COPY command allows you to copy a block of text from one place to

another within the work file. Before vyou issue the COPY command, you

must mark the block of text you wish to copy by issuing the SELECT

command (see the SELECT command’s dictionary entry for more details). If

you inadvertedly issue the COPY command and no block of text has been

marked, then VE will display the error message "Missing mark(s)". Once

you have marked a block of text, all you have to do is to position the

cursor on the line above which you whish +to copy the marked block of

text and then press [f] [C]. Note that the destination position may not

reside within the marked block of text. In this case the COPY command

will take no action but display the error message "Inside block".

* % KKK D - DELETE *EKRR

The DELETE command allows vyou to delete a block of text. Before you

issue the DELETE command, vyou must mark the block of text you wish to

delete by issuing the SELECT command (see the SELECT command’s

dictionary entry for more details). If you inadvertedly issue the DELETE

command and no block of text has been marked, then VE will display the

error message "Missing mark(s)". Once you have marked a block of text,

all you have to do is to press [f] [D]l. VE will then ask you to confirm

your action with the prompt "Delete? Y/N/Q". If you press [N] (for No)

or [Q] (for Quit), then the DELETE command will be aborted. If you press

(Y] (for Yes), then the deletion will take place, and a message will be

displayed to let you know how many lines are being deleted. Note that

when this prompt appears, no other keys except [Y], [Nl and [Q] are

active. Be careful when using the DELETE command: once you have deleted

a block of text +there is no way to get it back again. This is why the

DELETE command asks you for confirmation, even though you may find this

unecessary or annoying.

XXX E - ERASE * 6K % *

The ERASE command may seem a bit tricky, and it is - so if you are a

first time wuser you may ignore this command altogether. The purpose of

this command is to erase "invisible" characters and trailing blanks from

the work file.

“Invisible" characters are invisible in +the sense that the video

interface at hand is not able to display them on the screen. Usually -

with normal wuse of VE - you will never encounter invisible characters,

although, on some occasions, it might happen you have to deal with these

characters, (for example, when writing particular program source files).

If this 1is the case you will notice that things get "messed up" on the

screen; for example, the cursor won’'t be positioned correctly. This

happens because VE "knows" that a certain number of characters exists in

a given line of +text; if some of these characters happen to be

invisible, the real number of charcters in the text line will not

correspond to the number of (visible) charcters that will be displayed

on the screen, and thus the "real" cursor position VE knows about will

be "wrong” on the screen. (Do not mind if all this seems a lot of

nonsense!l).

If you are knowledgable about what charcaters you are using, then you

may overcome this situation by carefully thinking of which keys you need

to press. But if vyou lose control, then the ERASE command will come to

rescue. In fact when vyou issue the ERASE command, all invisible

characters will disappear, and the correspondence between what you see

and what you get will be restored.

As you might have infered from the preceding lines, what characters are

invisible depend upon the video interface you are wusing. The ERASE

command can be instructed +to recognize different sets of invisible

characters, as all invisible characters are listed in the VEDB file. The

VEDB file +that comes on the distribution disc contains a list of

invisible characters that is suited for +the HP82163 32-column video

interface. These characters are all those in the ASCII ranges: 0-31,

127-159, and 255-255. If this set is not good for you, you can make your

own by running the MKVEDB program (see Appendix A).

You can take advantage of the ERASE command even if vyou are not

concerned by the unaesthetic effects of invisible characters. For

example, you may have the habit of using certain seldom used characters

as markers in your text files. This will allow you, for example, to

position yourself at different parts of the work file by using the FIND

command. Now, if you define the list of "invisible" characters to be the

list of characters you are using as markers, the ERASE command will give

you a quick means of "cleaning-up" the work file from all markers. The

ERASE command is a (programmable) tool for selectively extirpating a set

of characters from the work file, although this set has to be defined

before you use VE.

Another beneficial effect of the ERASE command is that it will remove

unecessary blank spaces at the end of each line of text. In this way vyou

can possibly reduce the amount of memory required to store your text

file.

When the ERASE command has executed, a brief message will tell you how

many characters have been erased from the work file.

e T ST II St T U0 0T ISR NN SOR MY W MD n AR um wmm MES Mo T U SO A SEN e e G SRU Nem S A StV g SR M eG A W G er A G OV S G MW NAN We AUt T WP WO A UW MR W WS Ve s A Gew M etWeRTTSSSSST NSTTTTITTTTT T TTN T T TTNTTTNTNTT T TN IT N TNTTT STTSTTTTTSSTT

Q0/09/14 1B6:54:21 FILE: VEMAN3 TEXT 14080 09/14/00 16:54

%KX F - FIND ¥ H KR

The FIND command will allow you to locate a certain string of characters

(or "pattern”) in the workfile. You can issue the FIND command by

pressing [f]l [F]l, after which VE will wait for vyou to specify the

pattern to be located. You may then type the wanted pattern and press

[ENDLINE]. Note that when vyou type the wanted pattern, then you must

also provide a starting (and optionally an ending) delimiter. For

example, if you want to locate the string "CHHU is great", you should

press [f]l [Fl, +type "*#CHHU is great*" and then press [ENDLINE]. In this

case the asterisk "*" acts as a delimiter, although it could be just any

character you please, even a blank space. It is mandatory to specify the

first delimiter, the last one being optional. The first character of the

typed response will always be assumed to be the delimiter.

When you have typed your pattern and pressed [ENDLINE]l, the cursor will

be positioned on the first occurence of the search pattern that happens

after the current cursor position. If the search pattern does not occur

between the current cursor position and the end of file, then the search

will be repeated starting from the start of file. If the pattern exists,

then the cursor will be positioned on its first occurence in the work

file, (which, in this case, will obviously be before the current cursor

position). If the pattern does not exist in +the whole file, then the

following error message will be displayed: "“Pattern not found".

If you issue the FIND command accidentally, you can nullify its action

by not specifying any search pattern, 1i.e. you only need to press

[ENDLINE] after [f] [F].

One powerful feature of the FIND command is that you are allowed to use

the so-called "metacharacters". Metacharacters are a special kind of

characters that, under certain circumstances, have special meanings. The
n " n ANfour meta-characters applicable to +the FIND command are: *.", "@",

and "$". (Note: these meta-characters are the same as those used in

EDTEXT, the text editor in the FORTH/ASSEMBLER ROM or in the TEXT

EDITOR ROM.). These four characters have the following special meanings:

The period (".") represents any single character.

The commercial "at” ("@") represents any number of any characters. You

can read this metacharacter as "some characters”.

The up-arrow ("*") represents the beginning of a line.

The dollar sign ("$") represents the end of a line.

To switch these characters to their special meanings, you have to place

a backslash ("\") in the search pattern. Unfortunately, the backslash

character is not available on the standard HP71 keyboard, thus, if vyou

whish to use the metacharacters, you will have to assign this character

as a typing aid to a user defined key, for example the [/] key. You can

do this by typing "DEF KEY '/’ ,CHR$(82);" in the BASIC environment.

To return the metacharacters +to their normal meaning, place a second

backslash in the string. If you need the backslash character itself in

the search pattern, you can use two sequential backslashes. The program

will interpret two sequencial backslashes as a single backslash

character and not as a switch.

The following paragraphs show some examples of the wuse of the FIND

command with or without metacharacters. In these examples, all keys you

have to press are enclosed by square brackets, and all strings you have

to type are encolsed by double quotation marks.

[f1 [F] "*CHHU IS GREAT+#" [ENDLINE] will locate the string "CHHU IS

GREAT". Note +that the FIND command 1is case sensitive. This means that

you have to type a different response string if you need to locate the

string "CHHU 1is great", and yet another string if you need to locate

"CHHU is GREAT".

[f1 [F1 "».,06+«" [ENDLINE] will locate the string ".06". Note that in

this case the period is taken literally, and it is not interpreted as a

metacharacter.

[f1 [F1 "«\.,06*" T[ENDLINE] will locate any three character string which

ends with the two letters "0G", for example, "F0OG", "DOG" and the same

string ".06" of the preceding example. In +this case the backslash

character switches the meaning of the period to its special meaning of

"any character"

[f1 [F1 "*=\I®T" T[ENDLINE] will locate any string starting with an "I"

and ending with a "T". For example "IT", "INCANDESCENT" or "IS GREAT".

In this case the "@" character means "some characters".

[f] [F] "*\"The" [ENDLINE] will locate the string "The" only if it is at

the beginning of a line. Note that when using the up-arrow (""") special

character any other up-arrow characters after the first one are ignored;

i.e. eceeding special up-arrow characters are treated as literal up-

arrow characters.

[f1 [F]1 "+«\"$" [ENDLINE] will locate any line that starts and ends

immediately, i.e. any empty line. Note that “empty line" refers here to

any line that contains no characters whatever; thus a line of blank

spaces is not an empty line.

You can find more information about metacharacters under the REPLACE

comand’s dictionary entry.

* X EHH G - 6 0TO EEEES

The GOTO command is similar to the BACK command, with the only

difference that the cursor will be positioned to the right of +the

current cursor position. (See the BACK command’s dictionary entry for

details).

* kK NN H - HIGHLTIGHT * R HK N

The HIGHLIGHT command allows you to take advantage of a video attribute

available on HP and HP-compatible video interfaces, namely the

possibility of displaying highlighted, (i.e. in reverse video),

characters. The HIGHLIGHT command acts as a toggle: it will

alternatively enable and disable highlight mode. To switch highlight

mode on and off, just press [f]l [H]. Any character(s) you type after you

have enabled highlight mode will be displayed in reverse video.

You can tell the current state of the highlight mode by looking at flag

annunciator 2 of the LCD display. This annunciator will be visible

whenever highlight mode is enabled (on).

In general, you can use the HIGHLIGHT command for two purposes. Firstly,

the HIGHLIGHT command can obviously be used simply to emphasize a

particular word or portion of +text on the screen. Secondly, the

HIGHLIGHT command can be wused to introduce in a program source file

characters whose ASCII value have the most significant bit (the 8-th

bit) set. Although this second possibility is a rather technical issue,

it is worthwile to know about it. Indeed, the only action that takes

place when highlight mode is enabled, is the setting of the 8-th bit of

the ASCII value of all characters that are typed. This is because all HP

and HP-compatible video interfaces will display in reverse video all

characters whose 8-th bit is set.

Another fact vyou should remember when using highlight mode, is that the

highlighted space character is not equivalent to the "normal" space

character. This has an influence on the way the WORD [f] [W], position

to previous word [fl [(] and position to next word [f]l [)] commands

operate. The +three commands will distinguish between words only if they

are separated by a +true, i.e. "normal", space character; so they will

not operate as you may expect on a line of highlighted text. This may

not seem coherent, although it is if you +think of highlighted words

separated by highlighted spaces as a single entity, (which is normally

the case). If you need to write highlighted words that actually need to

be distinguished as different words, separate them with "normal" space

characters.

R EEKR I - I NSERT %R

The INSERT command is usually used in combination with the YANK command,

(see the YANK command’s dictionary entry), although it can be used by

itself. The INSERT command will allow you to merge an external file into

the current work file, i.e. make a copy of the external file’s contents

into the current work file. To do this, just position the cursor on the

line above which you whish to insert a copy of +the external file’'s

contents and then press [f] [I]. You will then be requested to type the

name of the external file. The prompt will propose by default the file

name that was used with the last issued INSERT or YANK command. At this

point you have the opportunity of aborting the command simply by not

specifying any file name, i.e. simply press [f] [-LINE] and [ENDLINE]

after [f] [I]. Otherwise, type the file name and end the input with

[ENDLINE].

If the file name you typed will cause any problem, an appropriate error

message will be displayed (for example "Invalid Filespec" or "File Not

Found"), and the prompt will be repeated. Again, if you whish, you can

abort the command, or give another file name.

If the file name is valid, that file’s contents will be copied into the

current work file, above the current line.

EREEN J - J O 1IN *REEH

The JOIN command allows vyou to join to two short lines into one longer

line. Each time you 1issue this command, [f] [J], the programm will

attempt to join the current line with the following line. If this is

possible, any trailing blanks will be removed from the current line, and

then the current line will be concatenated with the following line. If

this is not possible, then a warning message will be displayed ("Line

too long"), and the cursor will be positioned on the following offending

line, in order to allow for following JOIN comands to continue joining,

or to make it easier to split the offending line.

* KK * L - L INE *HERE

The LINE command will delete the current line from the work file. If vyou

wish to delete a particular line, just position the cursor on that line

and then press [f] [LJ.

* xRN M - MOUVUE *K XK

The MOVE command allows vyou to move a block of text from one place to

another within the work file. Before you issue the MOVE command, you

must mark the block of text vyou wish to move by issuing the SELECT

command (see the SELECT command’s dictionary entry for more details). If

you inadvertedly 1issue the MOVE command and no block of text has been

marked, then VE will display the error message "Missing mark(s)". Once

you have marked a block of text, all you have to do is to position the

cursor on the line above which vyou whish to move the marked block of

text and then press [f]l [M]. Note that the destination position may not

reside within the marked block of text. In this case the MOVE command

will take no action but display the error message "Inside block".

KK XK N - NEXT *H KR

The NEXT command will allow you +to locate the next occurence of the

search pattern specified in the last issued FIND, REPLACE or QUERY

command. This command is used to page through a file in order to locate

a particular occurence of a search pattern, which can even contain

metacharacters. The search is performed exactly as with +the FIND

command. See the FIND command’s dictionary entry for more details.

* ¥ H R ¥ 0 - 0P EN *H %K K

The OPEN command will open an empty line above the current line. If vyou

whish to open an empty line above a particular line, just position the

cursor on that line and then press [f1 [0].

*¥*EHR P ~ POSITTIGON ¥ XK KR

The position command allows you to position the cursor on a particular

line in the workfile, or to discover wich is the current line. When you

press [f]l [P1, the prompt “Line #:" will be displayed followed by the

line number of the current line. Note that the line count starts from 0.

If you are happy to learn the current line number, simply press

[ENDLINE], and no other action will take place. On the other hand, if

you wish to change the current line, type an expression giving the line

number of the line to which you want to go to. For example, if you want

to get to the 86th line of the work file, type the response "86-1" and

then press [ENDLINE]. (In this example the "minus one" is necessary

because the line count starts from zero). If the expression evaluates to

a line number which 1is negative or greater than the total number of

lines currently present in the work file, then the cursor will be

positioned, respectively, on the first and on the last line of the file.

When you type the response expression, you can even use the following

symbolic references, (which really are variables used by VE):

Symbol Meaning

Y1 Current line.

A Start of marked block, (position of 1st mark).

Al End of marked block, (position of 2Znd mark).

U Last line of file.

Note that A and Al are @ if the respective mark has not been set. The

following examples will clarify the use of these symbolic references.

Expression Position

"ys2 Middle of file.

"Us3a" One third of the file.

"Ux3/4" Three fourths of the file.

"A+(A1-A)/2" Middle of marked block.

“Yi+20" 20 lines past current line.

"Y1-15" 15 lines before current line.

The POSITION command is particularly handy when you are correcting

assembler source files, as the listing files produced by the

FORTH/ASSEMBLER ROM locate errors by source file line number references.

Tese wey S S WS R A S Mes WS S Gwe S WAA SG A e M ST G Sm S S W G——> -> vEu S - — T—i——— — 0So—ioSSow St mow —oew sem e s ———RTS SSSSSSS SSS S SSS SS S S S SSS S S SSSS SSTSS S nESTTTTTTNTrT T ST TNNESSSNSTSRS SSISESE S

00/89/14 16:57:14 FILE: UVEMAN4 TEXT 13312 ©9/14/00 16:57

* %K K ¥ Q - Q UERY XK XK

XXX R - REPLACE RN KRR

The QUERY and the REPLACE commands are actually the same command. They

both allow vyou to locate a given text pattern and to replace it with

another given text pattern. The difference between the two commands is

that the QUERY command allows you to confirm or deny any single

replacement, and even to interrupt the command at any point, whilst the

REPLACE command performs its action globally and unconditionally. Flag

annunciator 3 will be visible in the LCD display whenever the QUERY

command is active. When you issue any of these commands, with [f] [Q] or

[f] [R], VE will wait for you to specify the search and the replacement

patterns. You must specify the search pattern exactly as you do with the

FIND command (see the FIND command’s dictionary entry for more details).

The only difference is now that even the second delimiter is mandatory.

You may then specify the replacement pattern, and provide a third

optional delimiter. At last, press [ENDLINE] +to start the replacement

process. For example if vyou want to replace the string “chew it" with

"CHHU IT", vyou should type the following: "*chew it*CHHU IT*" and then

press [ENDLINE]. In this case the asterisk "#" acts as a delimiter,

although it could be just any character you please, even a blank space.

It is mandatory to specify the first and the second delimiter, the last

one being optional. The first character of the typed response will

always be assumed to be the delimiter.

The scope of the QUERY and of the REPLACE commands can be controlled.

Normally these commands act on the whole file, but if the first mark has

been set (with the SELECT command), the replacements will take place

only starting from the position of the first mark to the end of the work

file. Further more, if even +the second mark is set, then the

replacements will take place only within the marked block of text. (See

the SELECT command’s dictionary entry for more information on marks and

blocks of text).

When the QUERY is chosen, the program will ask you to confirm every

single replacement. When an occurence of the search pattern is located,

the QUERY command will display the prompt "Y/N/Q ? :<{search pattern>: to

:{replacment pattern>:", meaning that vyou should press [Y] to confirm

this particular replacement, [Nl to leave this occurence of the search

pattern intact, or [Q] to quit the replacement search and make the last

line where the search pattern occured the current line.

When all replacements have been made, the commands' action will end and

a message will tell you how many replacements were actually made.

During the execution of these commands, it can happen that a replacement

will produce a line longer than the current screen window width. If this

happens, a warning message ("Replacement too long") will notify that

this situation arises, and that particular replacement will not be

performed. Instead the programs proceeds with the following

replacement(s), if any.

If you 1issue the QUERY or the REPLACE command accidentally, vyou can

nullify their actions by not specifying any pattern at all, i.e. you

only need to press [ENDLINE] after [f] [Q] or [f] [R1].

The QUERY and the REPLACE command allow vyou to use the same

metacharacters recoginized by the FIND command for the search pattern,

(see the FIND command’s dictionary entry). Furthermore, you may use yet

another metacharacter in the replacement pattern. This new matacharacter

is the ampersand ("&"), which any text that matched the search pattern.

To switch the ampersand to its special meaning, you have to place a

backslash in the replacement pattern, just like the backslash is used to

give special meaning to the other metacharacters that may be used in the

search pattern.

The following paragraphs show some examples of the use of the QUERY and

of the REPALCE commands with or without metacharacters. In these

examples, all keys you have to press are enclosed by square brackets,

and all strings you have to type are encolsed by double quotation marks.

[f1 [R] "*chew it*CHHU IT" [(ENDLINE] will replace the string "chew it"

with the string "CHHU IT". Note in this first example that the third

optional delimiter is not present.

[f] [R] "«HAT*\T&*" [ENDLINE] will replace the string "HAT" with the

string "THAT". In this example the ampersand in the replacement string

is used with its special meaning.

[f1 [R] "#\"Humpty#*Dumpty+*" [ENDLINE] will replace the string "Humpty"

with the string "Dumpty" only if +the search string appears at the

beginning of a line.

[f]1 [R] "D\@+@D\(&)*(&)D" I[ENDLINE] will ‘“square sums"; for example,

"141" will be changed into "(1+1)*(1+1). Note in this example the use of

the metacharacters, and the use of the letter "D" as a the delimiter.

[f1 [RI "#N A\\\.#&\&+" [ENDLINE] will replace a string made up of any

single character followed by a backslash and a period with an ampersand

and the search string itself. For example "A\." will be changed into

"BA\.". This example is tricky: study it carefully, it will give you a

good insight on how the metacharacters work.

[f]1 [R1 "*\"$*+" [ENDLINE] will replace empty lines with nothing, i.e.

this command will delete empty lines. With +the QUERY command this

particular search pattern is assumed to be a special case: as the empty

lines are being replaced with nothing, during the command’s execution

the deleted 1lines will be displayed with ">line deleted<", to give the

user some feedback and context on the screen. This will obviusly not be

reflected in the work file, where the deleted lines will actually

disappear.

[f1 [R1 "#* *+" [ENDLINE] will delete any starting blanks from a line.

This command can be useful to remove indentations.

[f1 [R1 "#\".**" [ENDLINE] will remove any starting character from a

line. If vyou have selected a block of text, this command can be used to

clear the lines in the block, opposed to deleting them, although this

will take a long time, as the replacement takes place a character at a

time.

[f1 [R]1 "#\"@=+" [ENDLINE] is similar to the previous example, but works

faster, as this time the replacement takes place a line at a time. Note

that this command will make two replacements for every non-empty line.

You can however make it work even faster (one replacement per line) if

you specify the optional ‘“one time per line" flag, explained in the

following example.

[f1 [R1 “=\",.,.,%#L" [ENDLINE] will remove ONLY the first four

characters in each line. This command is useful if you need to edit text

files created with an HP75: it will delete the four digit line number

that the HP75 puts at the beginning of every line. Note in this example

the final "L" after the last delimiter. This is an optional flag wich

means "only one time per line". (This flag will be set by any character

following the last (the third) delimiter, not only by an "L"; the "L"

was chosen in this example as a mnemonic abbreviation for "line".).

IZ XX S - SELETCT EZ XX X"

The SELECT command is to be used in combinaition with the FIND, DELETE,

COPY, MOVE, REPLACE, QUERY and YANK commands. The purpose of the SELECT

command is to select a portion of text on which the other commands will

act. The SELECT command acts as a three-state toggle. The first time you

issue the SELECT command the current line will be marked with the first

of the 1two available markers. You will know this has happend when the

message “Mark 1" is displayed. The second time you issue the SELECT

command, the current line will be marked with the second marker. Again,

you will know this has happend when you see the "Mark 2" message. The

third time you issue the SELECT command, the two marks will be cleared.

You will know this from the "Marks cleared" message.

Usually, the commands that operate in conjunction with +the SELECT

command will perform their action on the block of text comprised between

the first and the second mark. Some commands need only one mark, (and

optionally both marks); in +this case +the block of text 1is comprised

between the assigned mark and the end of the work file.

* XK KR T - T A B * XK N

The TAB command will position the cursor to the next tab stop. See the

description of the TABS parameter in the section "Getting started".

*EERER VU - VIEW *EEER

The VIEW command will show you how much memory is still available. This

command is present because VE does not perform any extensive error

checking on memory usage, so the responsability of this is put onto the

user. If you do not have much memory left, you should periodically check

how much is left. If no more than 500 bytes are left, you should stop

your editing session, quitting VE, and get more memory. You can either

get more RAM memory modules or make room by purging any unnecessary

files from RAM, or by claiming free-ported ports.

If, unfortunately, you run out of memory during a VE editing session and

the program crashes, (remember it is your responsability not to get to

this point), vyou should be able +to recover most of vyour own BASIC

environment by +typing the "CONT 900" to the BASIC interpreter. In this

way you will quit VE in a normal way, so that system, loop and timeout

status will be restored.

* %K KW W - W ORD EREEH

The WORD command will delete all characters between the current cursor

position and the beginning of the next word on the current line. Thus if

the cursor 1is positioned on the first character of a given word, that

word will be deleted simply by pressing [f] [W].

#* % % *# Y - Y A N K *E KRR

The YANK command will allow you to copy the whole work file or a block

of text to an external file. Usually you will use this command in

combination with the SELECT and INSERT commands (see these commands’

dictionary entries). If no marks have been set with the SELECT command,

then the YANK command will act on the whole workfile. If only one mark

has been set, then the YANK command will act on the block of text

comprised between that mark and the end of the work file. If both marks

have been set, then the YANK command will act on the block of text

comprised between the first and the second mark.

When you issue the YANK command by pressing [f]l [Y], vyou will be

requested to type the name of the external file. The prompt will propose

by default the file name that was used with the last issued INSERT or

YANK command. At this point you have the opportunity of aborting the

command simply by not specifying any file name, 1i.e. simply press

[f1 [-LINE]l and [ENDLINE] after I[f] [Y]. Otherwise, type the file name

and end the input with [ENDLINE].

If the file name you typed will cause any problem, an appropriate error

message will be displayed (for example "Invalid Filespec"), and the

prompt will be repeated. Again, if you whish, you can abort the command,

or give another file name.

If the file name is valid, the YANK command will copy the selected block

of text to the external file.

When you issue the YANK (or the INSERT) command for the very first time

during an editing session, the default file name proposed will be "BUF".

You can think of this file as a temporary buffer which can exist only

during an editing session, but that will certainly be purged when you

quit the VE program. If you use any other file name, that file will be

created permanently, (i.e. it will survive your quitting the editor).

The "BUF" file is particularly handy when you need to move quickly a

block of text from one file to another. In fact, during any VE editing

session, you can "restart” +the editor by pressing the key sequence

[g] [ON]J. In this case, you can change the current work file without

destroying the contents of the "BUF" file. At the same time you are sure

that when you will end the editing session, (probably after INSERTing

the "BUF" file in a new work file), the "BUF" file will be purged, so

that you will not find any garbage files in RAM.

There is vyet another feature. If you issue the YANK command without

having selected any block of text, (i.e. when you are acting on the

whole work file), you can even specify a HPIL mass-memory device in the

filename. This will allow you to make back-up copies of your work files

on discs and/or tapes without getting out of the program. Note that if

you do this without any mass-memory device connected to the HPIL loop,

or without any medium in the mass-memory device, vyou will get the

"Invalid Filespec" error.

—5od et SS GuS mn A oAe moR G S .tW eG S.(v—e Wt — ——o Suww v w—o S m v s Se oo w— Wy fowe . . —o ——o —-- Iyv o Yo o oo oTTTSTTTTTTTTTT T T T T TTITTTTTNT TTT TT T T TTTT TTITTNNISTNSNSRNRISEREEESE

00/09/14 17:00:00 FILE: VEMANS TEXT 14080 ©09/14/00 16:59
TSTNTTTTNTITR TTTTIIT STTNTTTTTTNTTITST TT NTTT T TTTSTSNSENSTmsms

MACRO Programming

The following section is for advanced users. You may wish to practice a

little using VE before you go on to the following, as you will get the

most out of the following only if you have a good understanding of how

VE works and how to use 1its commands. You should also have a little

knowledge of programming in BASIC, although all instruction will be

described thoroughly.

A unique feature of VE which definitively puts it above most text

editors, even of larger computers, is the possibility of using user

defined keys that may contain even any command to which VE can respond,

with or without wuser parameters. In other words, VE 1is MACRO

programmable text editor.

When you create a user defined key that contains a VE MACRO definition,

you will have to respect a rather complicated format, (which is NOT

described in this document). For this reason the distribution disc

contains an additional support program called MKUVEKEYS (MaKe VE KEY

definitionS), which will ease +the difficulty of defining VE MACROs. As

long as you use MKVEKEYS according to the following instructions, you

will be able to create user defined keys in the format that VE pleases.

Beware! this program is ‘“quick and dirty" and it lacks sophisticated

user protection, so you must know what you are up to when using it.

As a first WARNING: DO NOT RENUMBER MKUVEKEYS! (This 1is not really

necessary, but it will allow you to use the following description as a

reference, even at a later time. The following paragraphs presume that

MKVEKEYS is in the form it was released on the distribution disc, i.e.

the real program starts at line 1000).

When you want to create a VE MACRO, in general, you will have to carry

out the following five step procedure:

(1) EDIT a BASIC program file that will contain the key definition. This

program will contain only DATA statements, and it must not contain lines

with line numbers greater than 999. In fact MKVEKEYS expects as input

DATA string items in lines 1, 999, and it will create as output a single

user definition. The first DATA item must be the name of the key to be

defined, (written as an ordinary HP71 keycode), all the following items

being the definition itself. For every key press you wish to put into

the definition, vyou will have to write a single DATA string item, this

being an ordinary HP71 keycode. When vyou write out a command key to a

key definition, (i.e. any key VE recognizes as a command), the command

itself may require one or two parameters, (an input string or an input

string and a list of key presses). It is possible to specify inputs

simply by keying them 1in as the item following the name of the command

key. It 1is also possible to make VE stop at inputs and wait for a user

supplied response, by keying in the item "STOP" (capital letters), or

accept default values supplied at inputs, by keying in the item

"DEFAULT".

(2) EDIT the MKVEKEYS program file.

(3) DELETE any existing lines between 1 and 8999 from the MKVEKEYS

program file, in order +to be sure no preceding key definition will

interfere with the new one.

(4) MERGE the BASIC program file you created in step 1 into MKUVEKEYS.

(5) RUN MKVEKEYS. (Note: when you run MKVEKEYS you must have the VELEX

lex file in memory). MKVEKEYS will read the key definition and create a

user defined key according to this definition and with respect to the

fromat expected by VE's key interpreter. When you subsequently run VE,

you can turn your user defined keyboard on and off with the normal HP71

key sequence [f]l [USER].

The following paragraphs will give you some examples. In these examples,

all keys vyou have to press are enclosed by square brackets, and all

strings you have to type are encolsed by double quotation marks.

EXAMPLE 1: Create a typing aid that will write "CHHU is great" at the

current cursor position; assign this definition to [f] [1].

"EDIT EX1" [ENDLINEI]
"10 DATA F1" [ENDLINE]
"20 DATA C,H,H,U,” *,i,s,’ ',g,r,e,a,t" [ENDLINE]
"EDIT MKVEKEYS"™ [ENDLINE]
"DELETE 1,999" [ENDLINE]
"MERGE EX1" [ENDLINE]
[RUN]

Now if you edit any file with VE, enable USER mode and press [f]l [1] the

string "CHHU 1is great” will be written to +the screen and to the work

file. This example is exactly equivalent to an ordinary "typing aid" key

definition that vyou have in the ordinary HP71 BASIC environment. The

first data item indicates which key is to be defined, all the following

data items spell out the typing aid a character at a time. The following

examples will show you how to use VE commands in your key definitions.

EXAMPLE 2: Create a MACRO that will write out your address at the

beginning of +the work file; assign this key definition to [f1 [2]1. (In

the example we will use CHHU's address).

"EDIT EX2" [ENDLINE]
"1@ DATA F2" [ENDLINE]
"20 DATA #162,FO,FO,FO,FO,FO" [ENDLINE]
"30 DATA C,H,H,U,#159,#51" [ENDLINE]
"40 DATA P,.,0,.,' *,B,0,X," 7,1,06,7,5,8,#159,#51° [ENDLINE]
"S@ DATA S,A,N,T,A,” " ,A,N,A,#159,%#51" [ENDLINE]
"6@ DATA C,A,” ’9,2,7,1,1," ', U,.,5,.,A,." [ENDLINE]
"EDIT MKVEKEYS" [ENDLINE]
"DELETE 1,999" [ENDLINE]
"MERGE EXZ2" [ENDLINE]
[RUN]I

This MACRO does the following: positions the cursor on the first line of

the work file. The "$1B62" is the equivalent of pressing the

[g]l [UP arrowl key. Makes space for the address by issuing five OPEN

line commands. Writes out the first line. Moves the cursor +to the

beginning of the line: the "#158" is the keycode for [gl [LEFT arrowl.

Moves the down one line: this is done by the "#51" which is the keycode

for [DOWN arrowl. Repeating this scheme, writes out the rest of the

address. Note that in this MACRO the key sequence

[gl [LEFT arrowl [DOWN arrowl] is wused in place of [ENDLINE], as the

MACRO cannot know what the current state of the Insert/Replace mode is.

For the same reason this MACRO has to create space with the five OPEN

line commands.

This example shows how cursor control keys can be programmed into a

MACRO as well as a command (the OPEN command) that takes no parameters.

EXAMPLE 3: Create a MACRO that will momentarily display the line number

of the current line. Assign this key definition to [f] [3]

"EDIT EX3" [ENDLINE]
“10 DATA F3" [ENDLINE]
"20 DATA FP,DEFAULT" [ENDLINE]
"EDIT MKVEKEYS™ [ENDLINE]
"DELETE 1,999" [ENDLINE]
“"MERGE EX3" [ENDLINE]
[RUN]

This MACRO will simply execute the POSITION command, and take the

DEFAULT answer, 1i.e. the current line. During the process the current

line number is momentarily displayed.

EXAMPLE 4: Create a MACRO that deletes a block of lines spanning from

the current 1line to +the first line containing an occurence of a user

specified pattern. Assign this key definition to [f] [4].

"EDIT EX4" [ENDLINE]
"10 DATA F4" [ENDLINE]
“20 DATA FO,FL ,FS,FF,STOP,FS,FD,STOP" [ENDLINEI
"EDIT MKVEKEYS" [ENDLINE]
"DELETE 1,998" [ENDLINE]
“MERGE EX4" [ENDLINEI
[RUN]I

In this example the sequential use of the OPEN line and LINE delete

commands will unconditionally clear all marks. The first SELECT command

will set the first mark at the current line. Then the FIND command will

STOP to wait for user input. After the execution of the FIND command the

second SELECT command will set the second mark at the first line

containing a match to the user specified search pattern. Note that this

position may even before the original current line if the match didn’t

occure between the original current line and the end of file. If no

match at all was found, then this position will simply be the original

current line. {(This is exactly how the FIND command moves the cursor

normally). At last the DELETE command will STOP to let the user confirm

or not the deletion.

EXAMPLE 5: Create a MACRO that will FIND a predifined pattern, for

example, a string made up of five spaces. Assign this key definition to

[f1 [51].

"EDIT EX5" [ENDLINE]

10 DATA F5" [ENDLINE]

"20 DATA FF,’» ' " [ENDLINE]

"EDIT MKVEKEYS" [ENDLINE]

"DELETE 1,898" [ENDLINE]

"MERGE EX4" [ENDLINE]

[RUNI

This MACRO shows how vyou can program a predefined response to an input

request. This MACRO can be useful if you are writing a document in which

each new paragraph has its first line indented by five spaces: it will

let you move the cursor to the beginning of the next paragraph, no

matter where the cursor is currently positioned.

Virtual Windows

As explained in the "Getting Started" section, VE allows you to define a

window of +the real screen that will be used by the editor to display

text. When doing this you are even allowed to define a window that is

wider than the available screen width, up to a 15@ characters width as a

maximum.

NOTE: the program will not check the "Window width" parameter. It is

your responsability not to exceed the 150 characters limit.

If you define the window to be wider than the available screen width, VE

will automatically switch to it's second mode of operation, and it will

work as a screen oriented line editor. (This mode is particulary useful

if you have the HPB2163 32-column video interface.). In this mode only

one line at a time will be displayed on the screen, although all

commands and all editing keys will work exactly as they do in the normal

full screen mode. So there is nothing new you will have to learn to use

virtual windows: you just have to get used to working with one line at a

time. The only other difference you will notice, 1is the different

position of the message line: its position will be calculated by the

program, and it will appear immediately after the (only) line of

displayed text.

History and Credits

VE was initially conceived of and developed for his own needs by Stefano

Piccardi [CHHU 4871 in November 1985 on the HP7S portable computer and

the HPB82163 32-column video interface. (The HP75 version - VE75 - is now

available on the CHHU SWAP DISC #4). The general outline and the first

working version were designed and coded in only three days.

More or less at the same time the September 1985 issue of the CHHU

Chronicle was published, and therein appeared an article by Michael

Markov [CHHU 31: "Whishlist for the CHHU HP71 ROM Project", where one

whish was for "a good (fast) full screen editor" for the HP71. Stefano

Piccardi recognized immediately that this could be VE.

Stefano Piccardi thus involved Stefano Tendon [CHHU 8351, and asked him

to search for and/or eventually develop any LEX files that would be

necessary to implement VE on the HP71. Michael Markov also helped at

this stage (December 1985-February 1986) by providing all wuseful LEX

files he had access to as the coordinator of CHHU's SWAP DISC project.

In May 1986 the porting of the editor from the HP75 to the HP71 was

accomplished by Stefano Tendon. The first prototype version for the HP7I

worked, slowly, using an HPI150 as a terminal. At the same time it was

decided it was necessary to have a lex file. By July 1986 Stefano Tendon

coded a working version of the VELIST statement, and the editor's speed

performance became more acceptable. At this stage of development, VE7!

was adapted to work with a PACSCREEN video interfaced borrowed from

Angelo Maggio [CHHU 84@1.

During the following months many new ideas were investigated and

implemented jointly by ©Stefano Piccardi and Stefano Tendon; VE71

underwent continuous improvements and enhancements, making it into quite

a different program from the original HP75 version. Screen handling was

improved, new commands were added (INSERT, POSITION, QUERY and YANK),

the execution of existing commands was optimized for the HP71, messages

were made clearer or added, and VELEX was expanded with two more

statements: CHIRP and CUR%. The CHIRP statement, although trivial, was

first written by John Baker [CHHU B181.

Flavio Casetta [CHHU 8271, seeing a prototype version of VE71, lamented

the impossibility of using user defined keys. To get +this feature,

Stefano Tendon added the MAPKEY$ function to VELEX and Stefano Piccardi

re-wrote from scratch VE71’s key handler routines, (September 1986).

While doing this, Stefano Piccard added the MACRO ability to wuser

defined key definitions. At the same +time it was realized that key

handling required the FKEY statement, which was developed back in May

1985 by Jean Pierre Bondu, a member of the French user group 5.1.6..

In October 1986 Stefano Piccard analyzed, optimized and doucmented all

code written in BASIC. During the process he discovered that the second

mode of operation of VE, (as a screeen oriented line editor for text

files wider than the available screen width), could be added with little

effort. To do this it was required to modify the CUR$ statement, in

order to make it accept a third optional parameter. This was done

jointly by Stefano Piccardi and Stefano Tendon.

During the same month Stefano Tendon assembled and documented the final

version of VELEX, and wrote the present user's manual.

Version 1.1 of the package was released the first week of November 1986,

a year after the first idea.

oeo>-o ———vto —o NTM MRE mme v wmm mam mm e m fm s e S MW s wem ey M W S v S e e A e vem pmn e SeeS— eet Swv Eww St s o mae eoTS ——— —R RRS RS S R S S SS SSS S SS SSSS S S SS S S T T N S SNI TT T TTTT TTN T T TTTTST T T T T I TT TTNINTSTe

@B/@09/14 17:02:53 FILE: VEMANE TEXT 6400 ©9/14/00 17:02
=========.—=:===:=========:==============

Appendix A - MKVEDB

The MKVEDB support program will allow you to create a new VE DATA BASE

file. The VE DATA BASE file (VEDB) contains two types of information:

the list of "invisible" characters used by the ERASE command, and a list

of hardware-dependent escape sequences. When you run the MKVEDB program,

all default inputs proposed by the program are suited for the HP821E63

video interface and all compatible video interfaces. If you are using a

different kind of video interface, the MKUEDB program will require you

to know +the escape sequences performing the following functions and

applicable to the particular video interface you are using:

- Move cursor right one character.

- Move cursor down one line

- Move cursor left one character.

- Make cursor visible.

- Make cursor invisible.

- Clear screen from current line to bottom of screen.

- Scroll screen down one line.

- Scroll screen up one line.

- Display replace mode cursor.

- Display insert mode cursor.

- Clear or reset video interface device.

- Clear screen page.

In VE version 1.1 all escape sequences, (except the last one), are two

characters long, although MKVEDB will allow vyou to create escape

sequences up to four characters long. Problems will arise with VE if you

create longer escape sequences, (although we do not know of any HPIL

video interface which needs longer escape sequences).

If you use MKVEDB only to change the list of invisible character, keep

in mind that you can include any ASCII character in this list, from

ASCII @ to ASCII 255. (In this case remember NOT to modify the default

escape sequences!). When you answer the input prompt, you must specify

these characters as ASCII ordered subranges.

Appendix B - VEFOLD

VEFOLD is an optional run time support program. If VEFOLD resides in

memory, it will be invoked automatically by VE before any editing

session is opened. If vyou want to use VEFOLD, you only have to load it

into memory before calling VE. Do not call VEFOLD by itself, but let VE

do it automatically. Note +that the VEFOLD program file MUST NOT BE

RENAMED, unless you want VE to ignore it.

VEFOLD is a sub program that expects the following parameters:

VEFOLD (<{WorkFileChannel#> <(FILESZR(WorkFile)-1>,<{WindowWidth>)

VEFOLD was designed in order to overcome the incompatibility that exists

between the active window width parameter and any file that was created

with a wider window width.

VEFOLD will scan the work file and fold any lines that are longer than

the current screen window width. The version of VEFOLD that comes on the

distribution disc will fold lines at spaces and dashes; i.e. long lines

are folded at the rightmost occurence, with respect to the current

screen window width, of a space or a dash. (If you wish VEFOLD to fold

lines even at other characters, along with or in place of spaces and

dashes, you can modify the assignment of the C$ variable in line 20 of

the VEFOLD BASIC program file). If no such occurrence exists then a

“Line Too Long" warning message will be displayed. Members of C$ are

left at the END of the folded portion of the line. If a line needs to be

folded more than once to fit the current screen width, it will be if

possible.

EXAMPLE: if the current screen window width is 7, C$=" " and the work

file contains:

this is the time

for all good men

then the work file will become

this_

is the_

time

for_

all_

good_

men

where underscores represent dangling spaces.

Appendix C - Quick Reference Guide

Key(s) Function

[ATTN] End program.

[gl [ONI Restart editor.

[UP arrow]l Move cursor up one line.

[DOWN arrow] Move cursor down one line.

[LEFT arrowl Move cursor left one character.

[RIGHT arrow]l Move cursor right one character.

[gl] [UP arrowl Move cursor to first page.

[g] [DOWN arrowl Move cursor to last page.

[g]l [LEFT arrowl Move cursor to first column.

[gl [RIGHT arrowl Move cursor to last column.

[f1 [(1 Move cursor to previous word on current line.

[f1 [)1 Move cursor to next word on current line.

[g] [ENDLINE] Move cursor down one page.

[f1 [ENDLINE] Move cursor up one page.

[ENDLINE] Carriage return; start a new line.

[gl [CTRL] CONTROL character following.

[f] [BACK] Destructive back-space.

[f]l [-CHAR] Delete character under cursor.

[(f] [I/R] Toggle insert/replace mode.

[f]1 [LC] Toggle upper/lower case mode.

[f] [-LINE] Delete from cursor to end of current line.

{(f1 [USERI] Toggle USER defined keys on/off.

[fl1 [A] AUTOMATIC wrap mode toggle.

{f]1 [B1 BACK up to previous occurence of next key.

[f1 [C] COPY marked block.

[f1 [D] DELETE marked block.

[f] [E] ERASE invisible characters.

[fl
[f]
(f]
[f]
[f]
[f]
(f]
[f1
[f]
[f]
[f]
[f]
[f]
(1]
[f]
[f]
[(f]

Flag annunciator

P
E
U
H
N
—
-

(F1
(6]
[HI
[I]
[J1
(Ll
(M]
[N]
(0]
(P]
[Q1
[R]
[S]
[T]
[Vl
(Wl
[Yl

FIND a given search pattern.

GO to next occurence of next key.

HIGHLIGHT mode toggle.

INSERT from buffer/external file.

JOIN following lines.

LINE delete.

MOVE marked block.

NEXT occurence of search pattern,

OPEN empty line above current line.

POSITION to given line number.

QUERY replace pattern.

REPLACE pattern.

SELECT block of lines - Clear marks.

TAB to next tab stop position.

VIEW available memory.

WORD delete, (from cursor to next word).

YANK to buffer/external file.

Meaning when visible

Automatic wrap around mode off.

Insert mode on.

Highlight mode on.

Query replace command in action.

Lower case mode on.

SSSTTTNNTSTTSTST TTT SSTTSTT TT T T TN T T T NTT T TTT T T T T TSNT TSISSISSTSRSESEESRS

P0/09/14 17:04:20 FILE: VELEXMAN TEXT 2048 ©9/14/00 17:04

VELEX Keywords

The VELEX lex file 1implements the following keywords: CHIRP, CURS%,

MAPKEY® and VELIST, which are briefly described in the following

paragraphs:

Name: CHIRP

Type: Statement

Purpose: Give a BASIC keyword to the mainframe chirp routine.

Syntax: CHIRP

Name: CUR®

Type: Function

Purpose: Produce a cursor positioning escape sequence string.

Syntax: CURS(<row>,<col>[,{maxcol>])

where <row>, <col> and <maxcol> are in the range 0-255.

Detail: The CUR$ string is equivalent to:

CHR$(27)8"%2"&STRE(<row>)&STRE(<col>)

If the optional <maxcol> parameter is given, the CURS$ string is

equivalent to:

CHR$(Z7)&"%"&STRS(<{row>+<col> DIV <maxcol>)& STR$(<col> MOD <maxcol>)

Name: MAPKEY$

Type: Function

Purpose: Map key to a unique one-byte code, and return code in a one-

byte string.

Syntax: MAPKEY$(<{keycode string’)

Algorithm:

I K$=KEYWAITS

if K% is longer than a byte

get keycode of K%

case (keycode)

null string : return (null string)

unshifted key : return (keycode + 90)

f-shifted key : return (keycode + 112)

g-shifted key : return (keycode)

endcase

else if is_alfa (K$) return (toggle_case (K$))

else return (K$)

Name: VELIST.

Type: Statement.

Purpose: This command is similar to PLIST, but with a different syntax.

Executes faster than PLIST.

Syntax: VELIST #<{channel#’> ,{start record#’>,<end recordi#>

where <{start record$> and <end record#> may be variable expressions.

Resource Allocation

The following tokens are wused by VELEX, as distributed on the

distribution disc:

KEYWORD TOKEN NUMBER IN HEX

CHIRP 5C @6

CURS 5C @7
MAPKEY$ 5C 08
VELIST 5C @9

The VE program also uses the FKEY keyword, (which can be found in

FKEYLEX, from the french user group 5.1.6.), with token 71 @B (HEX).

o TS TEE Tee mmw e e ww S Ay e Sy eooo~ SS eeGRS MR Gk T MU S eSS.S tam G ey AU e e A S W TR A MAe SSW S Su G eA— w—— to—— o —= RRSSSS SS SS S SSS SSSSNSS S SS S T T T T T T T T SS T T T TTT T T T STS T TTTTTSNSTSS

G0/08/14 17:04:52 FILE: VEDIT BASIC 470 ©9/14/00 17:04

10 ! VEDIT: example of execution of VE suitable for the HPB2163 video interface

or compatible

20 ' HPIL devices.

3@ | look for data base

40 ON ERROR GOTO &0

50 CAT VEDB @ OFF ERROR @ GOTO 70

6@ OFF ERROR @ BEEP 1400,.075 @ DISP "VEDB must be in RAM:"

65 DISP "Load it form mass memory or create it using MKVEDB" @ END

70 ON ERROR GOTO 90

80 CAT VEFOLD @ OFF ERROR @ GOTO 100

90 OFF ERROR @ BEEP 1400,.075 @ DISP "WRN: VEFOLD not in RAM"

190 CALL VE(16,32,16,32,"%48" ,"4") IN VE71

11@ ! DON’T forget to put an END after CALLing VE; avoid a nasty HP71 BUG |

120 END

@0/09/14 17:05:09 FILE: VE71 BASIC 9337 ©09/14/00 17:05

1 | VE Copyright (C) Stefano Piccardi & Stefano Tendon, 198635 LAST REVISION: 198

61101

10 SUB VE(RO,CO,R1 ,C1,D%,T$)

15 POKE "2F441","F" @ Di=FLAG(-3,1)

20 DIM C18[21,C2%02],C3%[21,C4%02]1,C5%[21,C6%021,C7%(2),C$[2],E$(4]1,E1$[2]1,CO%([1

E01,Us(B]

25 DIM RO$C2]1,R1%[2],F$(161,L$[1601,5%(1501,516[1501,52%(1501 ,R$L1501,Z%[11,Y$[1

61,6%0161

30 DIM U1$[14]1,U4%04],US%[9]1,0$0441 ,MEL2551 ,NB(97] ,K$[41 ,K1$[11,Q8032],H$041,J%(

1]

35 INTEGER §,50,51,Y,Y0,Y1,A,A1,I,C2,C3,C4,W,R,D,P,K,L,6,H,J,M0,Q,52,T1,U,W,W9,X

40 VU$="VE:1.1" @ IF NOT POS(VER%,VU%$) THEN 'VERERR’

45 VU$="5TR:A" @ IF NOT POS(VER%$,V$) THEN ’'UVERERR’

50 VU$="EDT:A" @ IF NOT POS(VER®,VU$) THEN 'VERERR’

51 U$="CSTU:A" @ IF NOT POS(VER$,U$) THEN ’VERERR’

55 CALL VER(U%) @ ON ERROR GOTO 431

B@ ASSIGN #1 TO VEDB @ SZ=VAL('Q’&T%$)

70 RO=RO-1 @ RI=(R1-2)%(C1<=C0) @ MO=(R1+1)*CEIL(C1/C0) @ C2=C! @ C3=C2-1 @ C4=C

3-10

80 CO%=RPT&(" " ,CO*CEIL(C1/C0Q)) @ READ #1;M$,C1%$,C2%,C3%,C4%,C5%,C% ,R0% ,R1% ,C6%,

C7¢,E1% ,ES

85 A%=">line deleted<"[1,C2]

90 O%$="AEoie=z ¥A¢U" O 0o aiwuia e£ABUD™ "i"

95 H$=""

100 Y$="BUF" @ G$=Y$ @ N$="" @ W=0 @ R=1 @ H=0 @ Q=0 @ CFLAG ©0,1,2,3 @ G0SUB 470

@ GOSUB 3005

105 U1$=PEEK$("2F78D",14) @ U4%=PEEK$("2F946" ,4) @ US$=PEEK®$("2F958",93)

120 DISPLAY IS D% @ PRINTER IS D% @ DELAY ©,0 @ PWIDTH INF @ ENDLINE @ STD

130 PRINT C5%:;E$; ® GOSUB 135 @ GOTO 155

135 PRINT "Visual Editor - "3;V$% @ PRINT " Copyright (C) 1986" @ PRINT

140 PRINT "Stefano Piccardi” @ PRINT "Via A. Panizzi 13" @ PRINT "20146 MILANO,

Italy" @ PRINT

145 PRINT "Stefano Tendon" @ PRINT "Cantone Delle Asse §" @ PRINT "29100 PIACENZ

A, Italy"”

150 RETURN

155 F$=FNI$("File:","" ,16,0) @ PRINT C5%;E1%; @ IF NOT LEN(F®) THEN CAT ALL @ GO

TO 130

195 U=FILESZR(F$) @ IF U=-57 THEN CREATE TEXT F$% @ U=0

200 IF U<@ THEN PRINT C4%; @ GOSUB 915 @ BEEP @ DISP MSG®H(ABS(U)) @ GOTO 905

205 ON ERROR GOTO 420 @ ASSIGN #1 TO F$ @ IF U=@ THEN PRINT #1;"" ELSE U=U-1

210 ON ERROR GOTO 215 @ CALL VEFOLD(#1,U,C2) IN VEFOLD

215 OFF ERROR

250 S$="" @ R$="" @ Y=0 @ Y0=0 @ GOSUB 520 @ GOSUB 1000

255 K$=KEYWAIT® @ K1$=MAPKEY®(K$) @ IF FLAG(-9) THEN G6G0OSUB 280 ELSE GOSUB 285

26@ GOTO 255

265 K=P0OS(0% ,K1%) @ IF K THEN 275

266 IF NUM(K1$)<128 THEN J$=CHR$(128*H+NUM(K1%$)) ® GOSUB 880 ELSE CHIRP

270 RETURN

275 60SUB "C"BSTR®(K)

280 IF NOT POS(H% ,K1$) THEN RETURN

285 IF KEYDOWN(K®) THEN 275 ELSE RETURN

290 N$=KEYDEF$(K$) @ IF NUM(N$)#59 THEN 265 ELSE N&[1,11="" @ Kg=""

295 IF LEN(N$) THEN K1$=CHR®(NUM(N$)) @ N&[1,61]1="" @ GOSUB 265 @ GOTO 295 ELSE R

ETURN

300 DEF FNI$[361(P%$,0%,L,F)

305 60SUB 670 @ PRINT C4%;P%;

310 IF NUM(N$)#220 THEN LINPUT "" ,D$;R$ @ POKE "2F441" ,"F" @ GOTO 325

315 T=POS(N$,CHR$(220),2) @ R$=N$[2,T-1]1 @ N$=NE[T+1]1 8 IF NOT LEN(R$) THEN R%$=D

$

320 PRINT R%;

325 ON ERROR GOTO 335 @ IF NOT L THEN T=VAL(R%)

230 OFF ERROR @ IF (L#Q)*LEN(R%)<=L THEN 348 ELSE 6=37 @ GOSUB 420 @ GOTO 305

335 OFF ERROR @ PRINT FNE®(ERRM$); @ GOTO 305

340 IF F THEN 6OSUB 710

345 GOSUB 1805 @ F=FLAG(4 ,FLAG(-15)) @ FNI$=R$ @ END DEF

350 DEF FNE®(M$) @ PRINT FNMs(M#$); @ BEEP @ WAIT NOT FLAG(-9) @ GOSUB 670 @ FNE$

="" @ END DEF

355 DEF FNM$(M$) @ GOSUB 670 @ PRINT M#$[1,C2-11; @ FNM$="" @ END DEF

360 DEF FNY=YQ<=Y1 AND Y1<=YQ+RI

370 DEF FNK$ @ IF NUM(N$)#220 THEN FNK$=KEYWAIT$ @ GOTO 374

372 FNK$=N$[2,2] @ IF NUM(N®[31)#220 THEN N&[1,21=CHR$(220) ELSE N&[1,31=""

374 END DEF

420 PRINT FNE$(MSG$(ABS(G))); @ RETURN

439 GOSUB 915

431 BEEP ©® DISP ERRM$ @ GOTO 805

440 IF U<@ THEN U=0 ® RESTORE #1,0 @ PRINT #1;""

441 RETURN

470 A=-1 @ Al=-1 @ RETURN

490 READ #1,Y1;51¢ @ IF S1$#L$ THEN REPLACE #1,Y1;L$

435 RETURN

510 PRINT CUR$(Y,0);C0%;CUR$(Y,0); @ RETURN

520 Y1=YQ+Y @ L$=C0% @ READ #1,Y1;L$% @ RETURN

525 PRINT CUR$(Y ,0);

530 PRINT C$; @ VELIST #1,Y1,Y0+R1 @ RETURN

540 T=MAX(Q,SPAN(L$," " ,MAX(1 ,POS(RTRIM$(LS$)," " ,X+1)))-1) @ RETURN

550 S$="" @ R$=FNIS$(Q%$,"",96,1) @ IF NOT SPAN(R$," ") THEN POP @ GOTO 1230

570 Q$=CHR$(NUM(R$)) @ R¥=RTRIM®(R$)&Q% @ P=PO5(R% ,0%,2) @ S$=R$[2,P-1]1 @ R®=RSI

P+11

580 P=POS(R%,Q%) @ L=LEN(R$)>P+1 @ R$=RTRIMS(R&[1 ,P]1,Q%)

590 D=0 @ I=0 @ FOR J=1 TO LEN(S$) @ SI1=NUM(S$[J])

591 IF S51=92 THEN I=NOT I ELSE IF S1=94 AND I AND D=0 THEN D=1 ELSE IF S1=36 AND

D=1 AND I THEN

592 NEXT J @ D=D=2 AND NOT LEN(R%) @ RETURN

600 PRINT FNM$("Working..."); @ RETURN

610 Q%=FNK$ @ IF LEN(Q®$)#1 THEN FKEY Q% @ POP

611 RETURN

615 P=POS("YNQ" ,UPRCS(FNK$)) @ IF NOT P THEN CHIRP @ GOTO 615 ELSE RETURN

620 PRINT Al-A+1;3"line(s)..."; @ RETURN

625 IF FNY THEN Y=Y1-YQ @ GOSUB 520 ELSE GOSUB B35 @ GOSUB 710

626 GOSUB 1230 @ RETURN

630
635
640
670
710
740
745
750
755
800
801
810
820
B30
840
841
8472
843
844
845
850
900
901
905
910
915
925
1000
1005
1006
1010
1100
1200
1205
1210
Y+1

1220
1230
1300
1305
1310
=Y-1
1320
1330
1400
1500
1600
1610
1700
1710
1800
1805
1810
1900
2000
2005
2010
2015
2020
2100

IF FNY THEN Y=Y1-Y® @ RETURN
YO=MAX(®,Y1-(R1 DIV 4)) @ Y=MIN(Y!,R1 DIV 4) @ RETURN
I=A*(A%-1) @ J=U*(Al=-1)+A1*(A1%-1) @ RETURN
PRINT C5%;CURS(MO,0);C$; @ RETURN
GOSUB 520 @ PRINT CG5%;E$; @ VELIST #1,Y0,Y0+R1 @ RETURN
GOSUB 490 @ IF A>=0 AND A1>=@ THEN RETURN
POP @ PRINT FNE$("Missing mark(s)"); @ GOTO 1230
IF Y1<A OR Y1>A1 THEN RETURN
POP @ PRINT FNE$("Inside block"); @ GOTO 1230
IF X=C4 THEN BEEP 3500,.05
IF R THEN X=X+1 @ L$[X,X1=J$% @ PRINT J$; @ GOTO 840
IF LEN(L$)=C2 THEN CHIRP @ RETURN
X=X+1 @ L$[X,01=J%
PRINT C5$;L$[X1;CURS(Y X ,C0);CA%;
IF X#C2 THEN RETURN
IF W THEN CHIRP @ GOTO 16500
BEEP 100,.01 @ IF NUM(LS[X1)#32 THEN GOSUB 4100 @ GOSUB 1500
IF NUM(L$LX+11)=32 THEN GOSUB 2505
W9=R @ IF R THEN GOSUB 1800
GOSUB 2400 @ GOSUB 2200 @ IF W9 THEN GOSUB 1800
BEEP 100,.01 @ RETURN
'C1': GOSUB 910 @ IF FILESZR(G$)>=0 THEN PURGE 6%
CAT F$
T=FLAG(-3,D1) @ POKE "2F441","@" @ GOTO 9998
G0SUB 430 @ PRINT CB$;ES$;
POKE "“2F78D",U1$ @ POKE "2F946" ,U4% @ POKE "2F958" ,US$
CFLAG ©,1,2,3,4 @ RESTORE I0 @ RETURN
'C27: GOSUB 430
Y0=0
Y=0 @ X=0
G05UB 710 @ 60TO 1230
'C3’: GOSUB 490 @ Y@=MAX(Q,U-R1) @ Y=MAX(Q,U-YB) @ X=0 @ GOTO 1010
'C4’: GOSUB 480
IF Y1=U THEN CHIRP @ RETURN

S=Y @ IF S=R1 THEN Y@=Y@+1 @ PRINT C5%$;R0%; @ GOSUB 670 @ GOSUB 51@ ELSE Y=

GOSUB 520 @ IF S=R1 THEN PRINT L%;
PRINT CUR$(Y ,X,C0);C4%; @ RETURN
*C5': G0OSUB 490
IF NOT Yt THEN CHIRP @ RETURN
S=Y @ IF NOT S THEN Y@=Y@-1 @ PRINT C5%$;R1%$; @ GOSUB 670 @ GOSUB 510 ELSE Y

GOSUB 520 @ IF NOT S THEN PRINT L%;
60TO 1230
C6’: GOSUB 4980 @ Y@=MIN(YQ+RO,U) @ GOTO 1006
'C7': GOSUB 490 @ YO=MAX(YO-RO,0) @ GOTO 1006
'C8': IF X THEN X=X-1 @ PRINT C3%; ELSE CHIRP
RETURN
*C9’: IF X#C3 THEN X=X+1 @ PRINT C1%$; ELSE CHIRP
RETURN
'C1@’: R=FLAG(! ,R)

IF R THEN PRINT CG6%; ELSE PRINT C7%;

RETURN

"C11’: GOSUB 54@ @ X=T @ GOTO 1230

*C127: IF NOT X THEN CHIRP @ RETURN

IF X>LEN(L$) THEN 1600

IF R THEN Ls[X,X1=" " @ X=X-1 @ PRINT C3%;" ";C3%; @ RETURN

LBLX ,XI="" @ X=X-1

PRINT C5%;C3%;L8[X+11;" ";CURS(Y X ,C0);C4%; @ RETURN

'C13°: X=0 @ G6OTO 1230

2200
2300
2400
2405

C14°: X=MIN(C3 ,LEN(L®)) @ GOTO 1230

"C157: H=NOT FLAG(2 ,NOT H) @ RETURN

'C167: GOSUB 490 @ T1=MAX(OQ,SPAN(L$," ")-1) @ IF R THEN 2440

GOSUB 470 @ R$=RPTS(" " ,TIDRLTRIMS(LSIX+1]) @ L$=L%[1,X]1 @ PRINT CO%[1,C2-X

1 @ 60SUB 450
2415
2420
2425
2430
2435
2440
X=0
2445
2500
2505
2600
2610
2615
2700
2800
2805
2900
2905

IF Y1#U THEN 2430

IF Y#R1 THEN PRINT R%;
U=U+1 @ X=T1 @ RESTORE #1,U @ PRINT #1;R% @ GOTO 1210
GOSUB 1210 @ GOSUB 2905 @ L$=R% @ GOSUB 490
PRINT L$; @ X=T1 @ GOTO 1230
IF Y1=U THEN X=T1 @ GOSUB 470 @ RESTORE #1,Y1+1 @ PRINT #t;"" @ U=U+1 ELSE

GOTO 1210

'C177: IF X>=LEN(L$) THEN RETURN

LEIX+1 ,X+11="" @ PRINT C5&;Le[X+11;" "; @ GOTO 1230

'C18': GOSUB 470 @ DELETE #1.,Y1
PRINT C5%; @ U=U-1 @ IF U<@ THEN GOSUB 440 ® 60TO 1005
YO=MAX(Q,Y0-(YO>U)) @ Y=MAX(@,Y-(Y1>U)) @ GOSUB 520 @ GOSUB 525 @ GOTO 1230@
"C19': Le=Ls[1,X] @ GOSUB 490 @ PRINT C5%;C0%[1,C2-X1; @ GOTO 1230
"C20°: GOSUB 540 @ IF T<=X THEN T=LEN(LS$)
Le=L$l1 ,XIBGLS[T+1] @ PRINT C5%;LB[X+11;C0%[1 ,C2-LEN(L®)]; @ GOTO 1230
"C217: GOSUB 4830
GOSUB 470 @ PRINT CS5%; @ INSERT #1,Y1;"" @ U=U+1 @ GOSUB 520 @ GOSUB 525 @

X=0 @ 6070 1230

3000
3005
2100
3185
3110
3112
30
3115
3200
3205
3215
3220

€227 : LC

T=FLAG(4 ,FLAG(-15)) @ RETURN

'C23’: GOSUB 490 @ Q%="F:" @ G0OSUB 550

T=SEARCH(S5% ,X+2,Y1,U,1) @ IF T THEN 3115

T=SEARCH(S$,1,0,Y1,1)

IF NOT T THEN BEEP @ PRINT FNM#&("Pattern not found"); @ GOSUB 52@ @ GOTO 12

Y1=IP(T) @ X=IP(FP(T)*1000)-1 @ GOSUB 625 @ RETURN
"C24’: Q%="R:" @ CFLAG 3
GOSUB 490 @ GOSUB 550 @ GOSUB 600 @ S=0 @ Q%="" @ S1$="" @ I=0
GOSUB 3235 @ IF Z$#"\" THEN S1$=S51%&7% @ 6GOTO0 3215
G0SUB 3235 @ IF Z$="\" THEN S1$=51%&7% @ GOTO 3215 ELSE IF Z$="&" THEN 3230

ELSE S1$=51%8&7
3225 60SUB 3235 @ IF Z$="\" THEN 3215 ELSE IF Z$="&" THEN 3230 ELSE S1%=51%87% @

60TO 3225

3230 Q$=Q0$&CHRE(LEN(S1%)) @ GOTO 3225

3235 I=I+1 @ IF I<=LEN(R$) THEN Z%=R$[I,I] @ RETURN ELSE POP @ R$=S51%

3240 GOSUB 640 @ S0=1 @ T=I

3245 T=SEARCH(S$,50,T,J,1) @ IF NOT T THEN 3285

3250 SO=IP(FP(T)«1000) @ S1=50+RMD(T*1000000,1000)-1 @ T=IP(T) ® READ #1 ,T;L$

3255 IF LEN(L#)-(51-50+1)+LEN(R®)+(51-5@+1)*LEN(Q%)<{=C2 THEN 3265

3260 PRINT FNE$("Replacement too long"); @ IF FLAG(3) THEN S1%$=5% @ GOTO 3280 EL

SE 3285

3265 S1%=R$ @ FOR I=LEN(Q$) TO 1 STEP -1

3270 S1$=51$0[1 ,NUM(QS[TI])IBLBISO,511&SISINUMCQSIIII+1] @ NEXT I @ IF D THEN Si1%=

A%

3275 52%=L% @ GOSUB 5105

3276 IF Q THEN L$[S50,511=51% @ REPLACE #1,T;L% @ S=5+1 @ GOSUB 5135

3280 SO=(SO+LEN(S1%)+(52%=L% AND NOT LEN(S1$)))*NOT L @ T=T+L @ GOTO 3245

3285 IF NOT D THEN 32390

3286 D=U @ FOR T=J TO I STEP -1 @ READ #1 ,T;L%

3287 IF L$=A% THEN DELETE #1,T @ U=U-1 @ Y1=MAX(Q,Y1-(T<=Y1))

3288 NEXT T @ IF D#U THEN GOSUB 470

3289 GOSUB 630 @ GOSUB 440

3290 60SUB 710 @ PRINT FNM$(STR$(S)&" replacement(s)"); @ GOTO 1230

3300 'C25°': GOSUB 490 @ PRINT FNM$("Pattern :"85%8":"); @ GOTO 3105

3400 'C26°: GOSUB 490 @ I=MAX(Q ,MIN(VAL(FNI$("Line #:" ,STR$(Y1),0,1)),U))

3435 X=X+(Y1=I) @ Y1=1 @ GOSUB E25 @ RETURN

2500 *C27': PRINT FNM$("Memory: "&STR$(MEM)); @ GOTO 1230

3600 'C28': PRINT FNM$("Mark"); @ IF A<@ THEN PRINT 1; @ A=Y! @ GOTO 1230

3605 IF A1<@ THEN PRINT 25 @ Al=A @ A=MINC(A,Y!) @ AI1=MAX(A1,Y1) @ GOTO 1230

361@ PRINT "s cleared"; @ GOSUB 470 @ GOTO 1230

2700 *C29': GOSUB 740 @ GOSUB 750 @ T=Y!1<A @ PRINT FNM#("Moving"); @ GOSUB 620

3710 FOR I=0 TO A1-A @ READ #1 ,A+I*T;L% @ DELETE #1 ,A+I*T @ INSERT #1,Y1+I*#T-NOT

Ti;L$ @ NEXT I

3735 IF T THEN Y1=Y1+(Al-A+1)

3745 GOSUB 630 @ GOSUB 470 @ GOSUB 710 @ GOTO 1230

3800 'C30’': GOSUB 740 @ GOSUB 750 @ PRINT FNM$("Copying"); @ GOSUB 620

3810 T=(Y1<A)X+1 @ FOR I=0 TO AI-A @ READ #1 ,A+I*T;L$ @ INSERT #1 ,Y1+I;L% @ NEXT

I

3835 T=T-1 @ S=A1-A+1 @ U=U+S @ A=A+5+T @ AI=A145*T @ Y1=Y1+5

3840 GOSUB 630 € GOSUB 710 @ GOTO 1230

3900 'C31': GOSUB 740 @ PRINT FNM$("Delete? Y/N/Q"); @ GOSUB 1230

38910 GOSUB 615 @ GOSUB 670 @ IF P>1 THEN 1230

3915 PRINT "Deleting”; @ GOSUB 6520 @ FOR I=A TO Al @ DELETE #1,A @ NEXT I

3925 X=X*(Y1<A OR Y1>A1)

39320 YO=Y@*(YB<AY+MAX(D ,A-(A1-YB+1))*(A<{=YD AND YOB<=A1)+(YD-(A1-A+1))*(A1<YD)

3935 Yi=Y1#(Y1<A)I+MAX(Q ,A-(AT=UN)*(A<=YT AND Y1<=A1)+(YI1-(AT-A+1))*(AI<YT)

2940 GOSUB 630 @ U=U-(AI-A+1) @ GOSUB 440

3960 GOSUB 470 @ GOSUB 710 @ GOTO 1230

4000 'C32': GOSUB 910 @ POP @ GOTO 100

4100 *C33': X=LEN(L$)-POS(REVS(L%)," " MAX(1,5PAN(REVS(LSE)," " LEN(LE)-X+1)))+1

4105 X=X#(X<=LEN{(L%$)) @ GOTO 1230

4200 'C34’: PRINT CHS%; © GOSUB 480 @ T=0 @ GOSUB 64@ @ PRINT FNM$("Erasing...");

@ X=0

4205 FOR I=I 7O J @ READ #1,I;L% @ S=LEN(LS$) @ P=1

4210 P=MEMBER(L$,M%,P) @ IF P THEN L$[P,Pl1="" @ GOTO 4210

4215 L$=RTRIMS(L®) @ IF SH#LEN(LS) THEN REPLACE #1 ,I;L$% @ T=T+S5~LEN(LS)

4220 NEXT I @ GOSUB 71@ ® PRINT FNE$(STR$(T)&" byte(s) saved"); @ GOTO 1230

4300 *C35’: GOSUB 61@ @ T=POS(REV$(L%$) ,MAPKEY®(Q%) ,LEN(L$)-X+1) @ IF T THEN X=LE

N(L$)-T

4310 GOTO 1230

4400 'C36’: GOSUB 610 @ T=POS(L% ,MAPKEY®(Q%$),X+2) @ IF T THEN X=T-1

4410 GOTO 1230

4500 °C37': W=NOT FLAG(@,NOT W) @ RETURN

4600 'C38': IF Y1=U THEN RETURN ELSE R$=RTRIM$(L$) @ GOSUB 1200

4605 IF LEN(R$)+LEN(LTRIM®$(L$))>=C2 THEN PRINT FNE$("Line too long"); @ GOTO 123

@

4610 L$=R$&" "<RIMS(L$) @ GOSUB 1300 € GOTO 2600

4700 'C39': IF 52 THEN X=RMD((X+52) DIV S52x52,C1) @ X=X*(X>=52) @ GOTO 1230

4705 IF X>=NUM(TSLLEN(T$)1)-NUM(T$) THEN X=0 @ GOTO 1230

4710 FOR I=1 TO LEN(T®) @ T=NUM(TS[IJ)-NUM(T$) @ IF T>X THEN I=INF

4715 NEXT I @ X=RMD(T,Ct) @ GOTO 1230

4800 'C40@’: G0SUB 490

4805 Y$=FNI%("Yank to:",Y$,16,1) @ IF NOT LEN(Y$) THEN 1230

4810 605UB 600 @ G=FILESZR(Y®$) @ IF G>=0 THEN PURGE Y#

4815 ON ERROR GOTO 4825

4820 IF A<@ THEN COPY F$ TO Y¢ @ OFF ERROR @ GOTO 4860

4825 OFF ERROR @ IF G<@ AND G#-57 THEN GOSUB 420 @ GOTO 4805

4845 CREATE TEXT Y$ @ ASSIGN #2 TO Y$ @ GOSUB 640

4850 FOR I=I TO J @ READ #1,I;L% @ PRINT #2;L% @ NEXT I ® ASSIGN #2 TO * @ GOSUB

520

4860 GOSUB 670 ® GOTO 1230

4900 *'C41°: GOSUB 490

4905 Y$=FNI$("Insert from:" ,Y$,16,1) @ IF NOT LEN(Y$) THEN 1230

4920 G=FILESZR(Y$) @ IF G=0 THEN 123@

4330 GOSUB 600 €& IF G<@ THEN GOSUB 420 @ GOTO 4305
4335 ASSIGN #2 TO Y$ ® FOR I=0 TO G-1 @ READ #2;L$ @ INSERT #1,Y1+I;L% @ NEXT I
4950 ASSIGN #2 TO = @ U=U+G @ YI=YI+G @ GOSUB 630 @ GOSUB 710 @ GOTO 1230
5000 *'C42': GOSUB 610 @ P=POS("@ABCDEFGHIJKLMNOPQRSTUVWXYZINI"_" ,Q%)
5010 IF NOT P THEN FKEY Q% @ RETURN ELSE J$=CHR$(128+H+P-1) @ GOTO 800
5100 'C43°: Q$="Q:" @ S5FLAG 5 @ 6GOSUB 3205 @ CFLAG 3 @ RETURN
5105 Q=1 @ IF NOT FLAG(3) THEN RETURN
5110 X=50-1 @ Y1=T @ IF FNY THEN Y=YI1-Y@ ELSE GOSUB 635 @ GOSUB 710
5120 PRINT FNM$("Y/N/Q 7 :"8L%[50,511&": to :"&S1$8":"); @ GOSUB 1230
5130 G0O5UB 615 @ GOSUB 670 @ IF P=3 THEN POP @ GOTO 3285 ELSE Q=P=1 @ RETURN
5135 IF FLAG(3) THEN PRINT CS5%; @ GOSUB 51@ @ PRINT L%;
5140 RETURN
5200 'C44’: T=FLAG(-9,NOT FLAG(-8)) @ RETURN
9000 'VERERR’: DISP "No ";VU#;" LEX file." @ BEEP @ GOTO 905
99398 END SUB
9999 SUB VER(V$) @ VU$="VE:1.1" @ END SUB

si me o worgsot aot SSeeo S eT S S Wmn MY W Tn S Nmm e S ew T WAm TOU Ntw e S wm S TSSS S Ous R e S MU e S SEN Gmm S Sw mmm W SEY Sum M Swe e NS G f SN TR SRS G W S M See gemRRNRNTRSN S STS S SSS SST S S SSS SSTST N ST S SSTTNSTTTT N TSSTNSNSESNSTSmommEsEEmE=

@0/09/14 17:08:50 FILE: MAKES®SS BASIC 2765 ©9/14/00 17:08
o.oi ma eWoTTR S T e W W my =S = Bet om o ey ww wt o Bis mums s mew s mm S S mmw ey e S AR S A mew T N S WS M WM Sam wwn AR S mar St wew e e emw amr e sRRR R SSSR SNTSTT SST TS Ts SSSTTSSS S S SSsTST SsE essS SS o o T s S SsTeS TSSSSDSSNSsgmmss=

MAKE9®95 v.1.1- Make line 8@ & 395 of VE11

2 ! For DOCUMENTATION ONLY

3 1 0% is a mapped (MAPKEY$) list of command keys

4 | H$% is a mapped (MAPKEY$) list of repeating command keys

5 | NOTE: see discussion about repeating keys in file IMPROVE

190 DIM 0%[44+81 ,HB[9+8]

20 0%="90 0%="' @ H$='95 H$=""

100 0%$=0%&CHR%(133) | ON exit VE

102 0%=088CHR®$(162) | g UP cursor to beginning of file

104 0%=0%&CHR%(163) | g DN cursor to end of file

106 0%=0%$&CHR®(141) | DN cursor down

107 HE=HSRCHRSB(141)

108 0%$=0%8CHR®(140) | UP cursor up

109 HE=HSXCHR$(140)

110 0%=0%&CHR$(150) | g ENDLINE forward one page

112

114

115

116

117

118

120

121

122

123

124

126

128

1350

132

133

134

136

138

140

142

144

146

148

150

152

154

156

158

160@

162

164

165

166

168

0%=0$&CHR®(206) !

0$=0$&CHR$(137) !

HE=H$&CHR$(137)

0$=0%&CHR®(138) |

He=H$BCHRS(138)

0$=0%&CHR®(217) !

0%=088CHR$(205) |

I H$=H$&CHR$(205)

0$=08&CHR®(215) !

! He=H®ZCHR$(215)

0%=0%&CHR®(159) !

0%=08$84CHR$(160) !

0$=0%8&CHR®(188) !

0%=0%&CHR$(128) !

0$=0$&CHR®(216) !

I' He=H$JZCHR$(216)

0%=0%&CHR®(191) |

0%=0%$&CHR®(213) |

0%=0%&CHR®(170) !

0%=0%$&CHRS(177) |

0%=0%&CHR$(218) !

0%=0$&CHR®(186) !

0%=0$8CHR®(172) |

0%=0%$8CHR®(202) !

0$=0%&CHR®(178) !

0%=0$8CHR%(200) !

O%=0%&CHR®(184) |

0$=0%8CHR®$(203) !

O$=08&CHR$(199) |

0%$=0%&CHR$(185) !

08=0%$8CHR$(155) |

0%=0%&CHR®(204) !

I HE=H$RCHR®(204)

0$=0%&CHRS(171) |

0%=08&CHR®(201) !

line

170

e

172

174

176

177

0$=08&CHR$(187) !

0$=0%$&CHR®(183) |

0$=0$&CHR®(189) !

0%=0%&CHR$(173) |

I H$=H$ECHRS(173)

f ENDLINE backward one page

LF cursor left

U — cursor right

SPC (I/R) toggle insert/replace mode

) cursor to next word on line

NOT IMPLEMENTED

LF (BACK) back-space

NOT IMPLEMENTEDr
—

e
y
e

i
y

=
y

g LF cursor to beginning of line

g RT cursor to end of line

f H toggle highlight mode

ENDLINE carriage return

f RT (-CHAR) delete character

I NOT IMPLEMENTED

f L delete line

f DN (-LINE) delete to end of line

f W delete word

f O open empty line

f UP (LC) toggle lower-/upper- case

f F find pattern

f R replace pattern

f N find next occurrence of pattern

f P go to line #

f V view free memory

f 5 (unl)set mark(s)

f M move block

f C copy block

f D delete block

g ON (OFF) edit another file

f cursor to previous word on line

I NOT IMPLEMENTED

f E erase invisible characters

f B cursor to previous occurrence of character on

f G cursor to next occurrence of character on lin

f A toggle wrap-around mode

f J join two lines

fT tab

I NOT IMPLEMENTED

178 0%=0%&CHR$(174) I yank to buffer/device

180 0%=0$&CHR$(176) |
|

|

Y

I insert from buffer

182 0%=0%&CHR%(158) RUN (CTRL) enter control characters

184 0%=0%&CHR$(169) Q

186 0%=0%&CHR$(221) ! Q

1000 0%=0%&"'"* @ H$=HBE*"’

1010 CREATE TEXT 0OSTR

1020 ASSIGN #1 TO OSTR

1030 PRINT #1:;0% @ PRINT #1;H%$

1040 ASSIGN #1 TO =

1950 CAT OSTR @ PLIST OSTR

{06@ TRANSFORM OSTR INTO BASIC

1070 CAT OSTR @ PLIST OSTR

conditionally replace pattern

f

f

g
f‘

f (USER) toggle user mode

&

@0/089/14 17:09:47 FILE: XREFCMDS TEXT 4096 ©8/14/00 17:08

The following lists all functions and commands available in VE71,

with references to program entry points (BASIC line number),

VE75 equivalent key sequences, HP71 key sequences and keycodes

(in standard HP71 format, not MAPKEY$ format).

——r-————-T~ —— otot —— o~ —o oo Mty Nt Vs oun Ve Wt Tt S Vs Whe it ooo77t o~ |=t-S--" T— -ttt ot et o N -oW-oyo -—

Line# HP75 key HP71 key Keycode Function
-—-o— (- Vo P —o——— ——~———(SW s oeBeAt(oo T—t—— s o O W o — -o-V—————-———" A" . —AW.—" M o w—c— ot o A ——

800 - - - Any alpha-numeric key.

900 TIME ON $43 End program.

1000 s " g " $162 Move cursor to first page.

1100 5 V g Vv $163 Move cursor to last page.

1200 Vv v #51 Move cursor down one line.

1300 " ’ $50 Move cursor up one line.

1400 cC v g EOL $#150 Move cursor down one page.

1500 c ” f EOL #3834 Move cursor up one page.

1600 £ < 247 Move cursor left.

1700 > > ¥48 Move cursor.

1800 I/R I/R f{spcr Toggle insert/replace mode.

1900 TAB f) f) Move cursor to next word.

2000 BACK BACK $103 Destructive back_space.

2100 s < g < $159 Move cursor to first column.

2200 s g > ¥160 Move cursor to last column.

2300 c I/R f H fH HIGHLIGHT video.

2400 RET EOL 338 Return.

2500 DEL -CHAR $104 Delete character under cursor.

2600 CLR f L fL LINE delete. -

2700 s DEL -LINE 3107 Delete from cursor to EOL.

2800 c TAB f W fW WORD delete (from cursor to next word).

2900 s I/R f 0 fO OPEN empty line above cursor.

3000 LOCK L.C ¥106 Toggle upper/lower case.

3100 FETCH f F fF FIND pattern.

3200 ¢ FETCH f R fR REPLACE pattern.

2300 c > f N fN NEXT occurence of pattern.

3400 n/a f P fP POSITION to line number.

3500 s FETCH f V fu VIEW available memory.

3600 APPT f S fS SELECT block of lines.

3700 EDIT f M fM MOVE marked block.

3800 s EDIT f C fC COPY marked block.

3900 ¢ DEL f D fD DELETE marked block.

4000 c TIME g ON #1585 Restart editor.

4100 s TAB f (f(Move cursor to previous word.

200 s CLR f E fE ERASE invisible marks.

4300 s ¢ < f B fB BACK up to previous occurence of key.

4400 5 ¢ 7 f G fG 60 to next occurence of key.

4500 ¢ CLR f A fA AUTOMATIC wrap mode toggle.

4600 c BACK f J fJ JOIN following lines.

4700 n/a f 7T fT TAB.

4800 n/a fy fy YANK to buffer.

4500 n/a f I fI INSERT from buffer.

5000 n/a CTRL $158 CONTROL character following.

5100 n/a f Q fQ QUERY replace pattern.

Mnemonic alpahabetical characters used by commands:

A AUTOMATIC wrap toggle.

N
<
L
<
X
E
C
C
-
H
N
D
O

V
T
O
Z
I
I
M
N
M
X
X
a
a
=
w
T
G

M
O
O
o

TTTTTTTTTTTTTTTTTTSNSNTTSTTSSSSSSTSSSST sTs SSSSSsSSTINSS S ESSsssTsEmE=

2816 ©09/14/00 17:10

BACK up to key.

COPY block.

DELETE block.

ERASE invisible characters.

FIND pattern.

60 to key.

HIGHLIGHT video toggle.

INSERT from buffer.

JOIN lines.

———————————————— not used.

LINE delete.

MOVE block.

NEXT occurence of pattern.

OPEN line.

POSITION to line number.

QUERY replace pattern.

REPLACE pattern.

SELECT block.

TAB.

———————————————— not used.

VIEW available memory.

WORD delete.

———————————————— not used.

YANK to buffer.

———————————————— not used.

@0/09/14 17:10:39 FILE: XREFVE
TITIITITr—,, o et e oe> et oSWw— o —o oo ——-2+TtttI ittt itTttt22ttt-ttt-ttt

This file contains a cross-reference of VE by line. Much of this information

- but not all - is duplicated in the commentaries of each routine,

programmer’s convenience.

DO check this table before moving things around!

All inter-routine references are considered as entry points and are identified

with an e’ followed by a number.

el 100: 4000

130: 155

135: 130

155: 130

215: 210

255: 260

el 265: 255,290,295

el 275: 265,285

e4 290: 255

295: 295

305: 330,335

725: 310

335: 325

340: 230

e5 420: 330 ,4825,4930

eb 430: 205

e7 431: 5§

efB 440: 2610,3288,3940

e9 470: 100,2405,2440,2600,2905,3610,3745,3960

el® 490: 480,740,1000,1100,1200,1300,1400,1500,2400,2405,2430,2700,2300,3100,

3205 ,3300,3400,4200,4800,4900

et2 510: 1210,1310,5135

eld 520: 250,625,710,1220,1320,2615,2905,3112,4850

eld4d 525: 2615,2905 (lines 525 and 53@ could be joined)

elb

elb

el?

el8

eld

el

ezl

el

ezl

e2d

e25

el2b

Ly

ez8

ez29

e3d

edl

e32

e33

el4

e35

e3b

e37

e38

e39

ed

edl

e4?2

e43

edd

edhs

eb7

edb

ed7

ed8

e4q

e50

e51

eb2

e53

e54

540:

550:

6E00:

610:

615:

620:

625:

630:

B35:

640:

670:

710:

740:

750:

800:

840:

905:

910:

915:

1000:

1005:

1006 :

1010:

1200:

1210:

1220:

1300:

1600:

1800:

1805:

2200:

2400:

2430 :

2440:

2505:

2600:

2905:

2005:

3105:

3115:

3205:

3215:

3225:

2230:

3235:

2245:

3265:

3280:

3285:

3290:

4100:

4210:

4805:

4825:

4860:

4905:

5105:

5135:

1900 ,2800
3100,3205
2205,4810,4330
4300 ,4400 ,5000
3910,5130
3700 ,3800,3915
3115,3435
3288,3745,3840,3940,4850
625,5110
3240,4200,4845
305,350 ,355,1210,1310,381@ ,4860 ,5130
340 ,625,1010,3290,3745 ,3840,3960,4220 ,4850 ,5110
3700 ,3800 ,3900
3700 ,5800
266 ,5010
801
200,431 ,3000
900 ,4000
200,430
250
2610
1400 ,1500
1100
4600
2425 ,2430,2445
1010 ,1330,1900,2100,2200,2435,2505,2615,2700,2805,23805,3112 ,3290,3500,
3600 ,3605,3610,3745,3840,3900,3560,4105,4220,4310,3810,4410 ,4605,4700,
4705,4715,4805,4860,4905,4920,43850 ,5120
4610
841,842 ,2005
844 ,845
245
845
845
2415
2400
843
4610
2430
100
3300
2105
5100
3215,3220,3225
3225 ,3230
3220 ,3225
3215,3220,3225
3280
3255
3260
3245 ,3260,5130
3285
842
4210
4825
4815
4820
4330
3275
3276

eb55 9000: 40,45,50,51

e56 9998: 805

00/@8/14 17:11:27 FILE: VEVUARS TEXT 5632 09/14/00 17:11

This is not a cross-reference of VE by variable. It is instead a list of all

relevant variables of the program. Together with each variable you will find a

classification of the data type it represents, and a description of the purpose

of the variable.

The following symbols will be used in classifying data types:

$: string variable

$c ¢ string constant

$p : string subprogram parameter

¢ : character variable (1 byte)

cc : character constant (1 byte)

i ¢ integer variable

ic ¢ integer constant

r : real variable

rc¢ @ real constant

np : numeric subprogram parameter

Name Type Description

A i 15t mark (A=-l:unset, 0<=A<{=U set)

Al i 2nd mark (Al=-1iunset, 0<{=A1<=U set)

A% $c holds ">line deleted<" for messages and REPLACE#

Co np of columns of display device (ex. C0=32 for HP82163)

C1 np of columns of window (C1<=C0 or CO<LCI<{=142)

C2 ic max window column # (C2=C1)

C3 ic max w. column in screen coordinates (@<{=C3=C2-1)

C4 ic right-margin bell limit (C4=C3-10)

Cs $c escape sequence for clearing to bottom of screen

Cos $c a string of blanks used to (partially) clear a line

C1s $c escape sequence to move cursor right

C2% %c escape sequence to move cursor down

C3% %c escape sequence to move cursor left

C4s Sc escape sequence to turn cursor on

C5% $%$c escape sequence to turn cursor off

Ce% %c escape sequence to select replace cursor

C7¢ %c ascape sequence to select insert cursor

D i delete-line flag (in replacements) + scratch

D1 rc holds the status of flag -3 (enable battery timeout)

D$ $p display device specifier

E® $c escape sequence to clear screen page. NOTE: in MKVEDB the default

value for E$ is "cursor hometclear to bottom of screen". This choice

was dictated by speed considerations when redrawing (especially with

the PACSCREEN). On the other hand a “clear display device" sequence

(ESC E) could be used. This would slow down I/0 operations, but it

would reduce the amount of garbage entering the screen when scrolling.

E1% $c escape sequence to clear display device (see above)

F$ $c name of current edit file

G i scratch + size of buffer file (in records)

6% $c default buffer file name ("BUF")

H i highlight flag

H$ $c list of repeating keys (in MAPKEY$ format)

I i scratch + lower block boundary

J i scratch + upper block boundary

J$ c at any time the last TEXT key handled (highlighted and MAPKEYed)

K i at any time "C"8STR$(K) is the last command key routine executed (K=0

means routine 800 (text key handler)

K® $ at any time K% is the last key pressed (in KEYWAIT$ format)

Ki1$ ¢ at any time Ki$ is the last key pressed (in MAPKEY$ format)

L
L®
M@
M$
N&
0%

0%

RO
R1

R$
RO%
R1%

S0
51
52
S#
S1¢
52¢%

T1

TS

Utls
U4s
Uss
Vs

W9

YO

Y1

Y$

%

a
0

0
~

T
8
H
e
e

e
e

O
T

O
§
=
=
=
b
=
-
8
8

e
e
-

O
o
0

one-replacement-per-line flag

usually the current line (CL), seldom used for line operations

the row # of the message line (in screen coordinates)

a list of invisible characters

(when USER active) the key definition (with parameters), see MKVEKEYS

a list of command keys (in MAPKEY$ format)

scratch (usually for P0OS())

scratch (usually do-replacement flag)

scratch, list of dittoes (in replacements), key-press

I/R flag (R=1 in replace mode)

¥ of rows of display device (ex. RO=16 for HP82163)

of lines of window including message line (R1=R@ & C1<=C@ | RI=2 &

c1>Co)

replacement string + scratch

escape sequence for scrolling down one row

escape sequence for scrolling up one row

scratch

scratch + start of match (in replacements)

scratch + end of match (in replacements)

value of tab-stop width (52=0: absolute tab-stops in T$)

at any time 5% is the last search pattern specified

scratch

scratch

scratch (must be real)

scratch

tab-stop width or list of absolute tab-stops

at any time U points to the last record of the edit file

holds system status previous to running VE

holds system status previous to running VE

holds system status previous to running VE

version id

wrap-around flag (W=0: w-a enabled)

scratch, used to hold R in text key handler

cursor column in screen coordinates (0<=X<{=C3)

cursor row in screen coordinates (@<=Y<{MO)

record ¥ of line corresponding to current T0S (Top Of Screen)

record # of current line (before any command Yi=Y@+Y)

name of current buffer file/device

used for parsing replacement string

00/29/14 17:12:39 FILE: ABBREV TEXT 256 ©9/14/00 17:12

The following abbreviations will be used throughout the documentation:

CL : current line (where the cursor is)

BOL : beginning of line

EOL : end of line

BOF : beginning of file

EOF : end of file

TOS : top of screen

BOS : bottom of screen

Q0/09/14 17:12:43 FILE: PQOQOO TEXT 3840 @9/14/00 17:12

Subprogram VE - version 1.1 - VUisual editor

This program was ported from a similar program for the HP75.

Necessary hardware: HP71, HPIL display device (HP82163, PACSCREEN were tested;

other interfaces - compatible with HP escape sequences - should work just

fine), memory modules.

Necessary software:

at run-time: EDLEX lex file, CUSTUTIL lex (or any lex file containing

KEYWAITS$), STRINGLX lex file, VELEX lex file, FKEYLEX lex file,

VEDB data file, VEFOLD basic file (optional)

at set-up time: MKVEDB basic file, MKUEKEYS basic file.

1 | VE Copyright (C) Stefano Piccardi & Stefano Tendon, 1986

RO,CO: # of rows and # of colums of video interface (ex. RO=16 C0=32 for

HP82163 video interface).

R1,C1: # of lines (including message line) and # of columns of

working window; (2<=R1<=R@ AND C1<=C@ OR R1=2 AND CO<C1<=142). PACSCREEN

users: don't set C1=80 due to h/w bug (use C1=79),.

D$: display device specifier (ex. :DISPLAY).

T$: tab-stop specifier: use the string representation of a number for

relative addressing (tab-stop width) (ex. “8") or use a string of characters

~ where each ASCII code means a column # - for absolute addressing (ex.

"AHOZ" for the FORTH assembler).

1@ SUB VE(RO,CO,R1,C1,D8,T%)

disable ATTN key

15 POKE "2F441" ,"F"

save status of battery timeout flag and disable timeout (otherwise key #99

could be inserted into edit file if VE is running and the HP71 timeouts)

@ Di=FLAG(-3,1)

see VEUARS for variable definition and usage

20 DIM C1$[21,C28[21,C3%021,C4%[21,C5%[21,C69021,C7¢(2]1,C02] ,E$[4] ,E18[21],

Cosl1601,Vsl6]

25 DIM RO$I[2]1,R1%[2]1,F8[16],L$[1601,5%(1501,51¢(1501,52%01501,R$[1501,Z¢(11,

Y$[16]1,6%[161

30 DIM U1I$[14],U4%0471,US%09]1,0%044] ,M$[2551, N$[971 ,K$[4]1 ,KI1$[11,Q%[321],

H$[4],J%011]

35 INTEGER S§,50,S1,Y,Y0,Y1,A,AY1,I C2,C5,C4 ,W,R,D,P,K,L,G,H, J,M0,Q,52,

T1,U,W,W9,X

check if lex files are available (this only works for lex files answering

to the version poll)

VELEX

40 V$="VE:1.1" @ IF NOT POS(VER%$,VU$) THEN 'VERERR®

STRINGLX

45 VU$="STR:A" @ IF NOT POS(VER%$,U$) THEN ’VERERR’

EDLEX

50 V$="EDT:A" @ IF NOT POS(VER$,Us$) THEN 'VERERR’

CUSTUTIL (used only for KEYWAIT$, but could also be used for KEYNUM and

KEYNAM$ [see IMPROVE filel)

51 V$="CSTU:A" @ IF NOT POS(VERS$,U$) THEN 'VERERR’

load V$ with VE version number

55 CALL VER(VUS$)

on error report error, restore system status and end VE (off error on line

205)

® ON ERROR GOTO 431

look for data base

6@ ASSIGN #! TO VEDB

set tab-stop flag/width

@ S2=VAL(’Q’&T$)

transform RO into screen coordinates

70 RO=R0O-1

subtract one (message) line from R! and transform it in screen coord's or

force one editable line if C1>C0, that is if lines must be folded

@ RI=(R1-2)#(C1<=C0)

compute row # (screen coord’s) of message line

@ MO=(R1+1)*CEIL(C1/CQ)

I suggest to let this (unecessary) variable live

@ C2=C1

C2 in screen coord’s

@ C3=C2-1

margin

@ C4=C3-10

buffer to erase to closest screen right side

80 CO%=RPT$(" " ,CO+CEIL(C1/C0))

load escape sequences from data base (this db will allow future extensions

to other interfaces [recoding CUR$()] - as a matter of fact, VE has already

been ported to an HP150 Touchscreen)

@ READ #1;M$,C1%$,02%,C3%,04%,C5%,C% ,RO0%,R1%,C6%,C7% ,E1% ,ES

85 A%=">line deleted<"[1,C21]

see MAKESQ9S file

command keys

90 0%=...

repeating keys

95 H$=...

00/09/14 17:13:45 FILE: PO10O TEXT 3584 @9/14/00 17:13

ENTRY #1: restart editor

default buffer file name (Y% might be changed at run-time)

100 Y$="BUF" ® G$=Y$

init key definition (NUM is performed on N$ even if not USER)

@ Ng=""

init wrap—around flag to true

@ W=0

init I/R flag to replace

@ R=1

init highlight flag to false

@ H=0

?

@ Q=0

init annunciators

@ CFLAG @,1,2.,3

init marks to unset

@ GOSUB 470

init annunciator of upper-/lower- case

@ G0SUB 3005

save DISPLAY IS and PRINTER IS device specifiers

105

120

145

150

155

195

200

205

215

Ul$=PEEKS("2F78D",14)

save DELAY and SCROLL rates

@ U4as=PEEK$("2FS4E6" ,4)

save PWIDTH and ENDLINE

@ US$=PEEK®("2F958",9)

all output to D$ (display for LINPUT, printer for VELIST and PRINT)

DISPLAY IS D$ @ PRINTER IS D$%$

for input and CAT

@ DELAY 0,0

@ PWIDTH INF @ ENDLINE

for STR$

@ STD

turn off cursor + clear screen page

PRINT CH5%;ES;

delete the following lines to remove the run-time copyright notice

@ G0SUB 135 @ GOTO 155

PRINT "Visual Editor - ";VU$

@ PRINT " Copyright (C) 1986" @ PRINT

PRINT "Stefano Piccardi”

@ PRINT "Via A. Panizzi 13"

@ PRINT “20146 MILANO, Italy" @ PRINT

PRINT “Stefano Tendon"

@ PRINT "Cantone Delle Asse 5"

@ PRINT "29100 PIACENZA, Italy"

RETURN

get edit file name without redrawing screen; user can end VE by keying in

'#' ENDLINE and disregarding the error message

Fe=FNI®("File:","",16,0)

turn off cursor + clear display device (not just screen page)

® PRINT C5%;E1%;

if user didn’t supply a name then catalog all files (pressing arrow keys)

then retry input (pressing any other key)

@ IF NOT LEN(F$) THEN CAT ALL @ GOTO 130

init line counter with size of edit file

U=FILESZR(F%)

if file doesn’t exist then create it and init line counter to ONE line (U

points to the last record and zero is a valid record number)

@ IF U=-57 THEN CREATE TEXT F$ @ U=0

if file name was invalid then complain and end VE

IF U<® THEN PRINT C4%; @ GOSUB 915 ® BEEP @ DISP MSG$(ABS(U)) ® GOTO 905

trap errors involving channels or data base (off error on line 210)

ON ERROR G6GOTO 430

edit file is #1

@ ASSIGN #1 TO F$

if new file then insert one empty record (VE always leaves files with at

least one record)

@ IF U=0 THEN PRINT #1;""

else make U point to last file line (since FILESZR returns the NUMBER of

rec’s in the file; this is also the reason why U is often referred to as

'line counter’ while it should really be called ‘pointer to last line’)

ELSE U=U-1

ignore missing sub

ON ERROR GOTO 215

if file VEFOLD is in RAM then execute subroutine to fold lines which

don't fit within working window (S5UB VEFOLD used to be in VE, but

since it is slow and seldom necessary it was taken off; the user then

can simply PURGE it or RENAME it when it isn’t needed)

@ CALL VEFOLD(#1,U,C2) IN VEFOLD

OFF ERROR

**% UE traps errors only locally (inside routines) not globally #*#*#

init search pattern (necessary for [fI1IN])
250 S5%=""

?

@ R=""

init pointer to T0OS5 and screen y-coordinate

@ Y=0 @ YO=0

init CL pointer, fetch CL (1st) line

@ G0SUB 520

display first page

@ GO5UB 1000

@0/@9/14 17:14:43 FILE: PO@255 TEXT 3328 09/14/00 17:14

Main loop - key process

This is were VE spends most of its time (but not of its energies)!

MODIFIED: K$,K1$,N$ (if USER),K

loop forever

get a key

255 K&=KEYWAITS

encode key using a unigque one-byte code

@ K1$=MAPKEY$(K%$)

if USER then process_user

@ IF FLAG(-9) THEN 60SUB 290

else process_code

ELSE GOSUB 265

endloop

260 6O0TO 255

ENTRY #2: process_code: INPUT: Ki1$ (code)

put position of key code within list of command keys into K

265 K=P0OS(0% ,K1%)

if key code doesn’t represent a command key then

@ IF K THEN 275

if key isn’t prefixed ((f1/[gl)

266 IF NUM(K1%$)<128 THEN

then it’s a text key: K1$ is 1-byte long and already case-dependent

(upper/lower); set high bit if highlight mode is active

NOTE: if highlight mode is seldom used, then it may pay off to

recode the [fl[H] command in a way similar to [gllRUN] (highlight

next key only) and simplify this statement into J$=K1% (DO use J$:

it’s a uniquely interface with the text key handler). [gl[RUN] should

then be modified to handle the new highlight mode.

JE=CHRE(128*H+NUM(K1%))

and pass byte to text key handler

@ 6G05UB 800

else complain (unknown command)

ELSE CHIRP

270 RETURN

else

ENTRY #3: execute a (repeating) command key

algorithm: repeat

execute key

until key not repeating or key up

execute code for K-th command key

275 G0SUB "C"&STR®(K)

if it is a repeating command key...

280 IF NOT POS(H$% ,K1$) THEN RETURN

then if key is still douwn

NOTE: see file IMPROVE to learn more about repeating keys

285 IF KEYDOWN(KS)

then execute code for K-th command key again (possibly repeating)

THEN 275

else return (possibly after many repetitions)

ELSE RETURN

endif

ENTRY #4: process_user: INPUT: K$

fetch key definition (possibly none) into N&

290 N$=KEYDEF®(K$)

if key is not defined or definition isn't a typing-aid

@ IF NUM(NS$)#59

then process_code (even if USER)

THEN 265

else

ELSE

trim typing-aid identifier ';’

N$[1,1]=""

clear key buffer

NOTE: this is for robustness when handling repeating keys; we don't want

a spurious KEYDOWN on line 285

@ Kg=""

while definition not empty

285 IF LEN(N$®) THEN

get 1 byte from encoded definition

K1$=CHR$(NUM(NS))

remove code from definition

NOTE: other code relies on this trimming (FNI$, FNK$)

@ N#[1,1]=""

process_code

@ GOSuUB 2865

endwhile

@ GOTO 295

endif

ELSE RETURN

0/29/14 17:15:32 FILE: PQ300 TEXT 5376 ©9/14/00 17:15

Function FNI$ - perform input

Whenever input is requested use this function and nothing else.

ASSERT ON ENTRY: this code relies on the fact that no more than 96 characters

can be entered from the keyboard.

INPUT: P%: prompt; D%$: default return value; L: maximum length of return

string (<=96), if L=0 then request to return a valid numeric

expression (VAL is used for testing); F: redraw flag (F=1 means redraw),

use F=0 whenever screen parameters are invalid.

QUTPUT: a string containing user’s input. Key definitions with parameters are

accounted for. Errors are trapped.

MODIFIED: N$ (if USER)

TRASHED: T,R%,6 (on input error)

300 DEF FNI$[9B61(P%,D%,L,F)

erase message line

305 60SUB 670

turn cursor on and put out prompt

® PRINT C4%;P%;

if no parameter is pending in a key definition (notice that USER off

implies N$="" => NUM(N$)=0)

NOTE: ASCII 220 is used as a delimiter for parameters in key definitions

since MAPKEY$ can’t return it.

310 IF NUM(N$)#220 THEN

do input

LINPUT "" ,D$;R%

disable ATTN key (this is necessary when user turns off the HP71 during

input)

@ POKE "2F441","“F"

else

@ GOTO 325

compute end of parameter in key definition

315 T=POS(N% ,CHR$(220),2)

load return string with parameter

@ R$=N$[2,T-11

trim parameter off key definition

@ N$=NE[T+1]

if parameter = null string then load return string with default return

value

@ IF NOT LEN(R%) THEN R%$=D%

put out return string to fake keyboard input

320 PRINT R$%;

endif

check validity of input:

325 ON ERROR GOTO 335

if requested to return a numeric value then test for numeric

@ IF NOT L THEN T=VAL(R$%)

330 OFF ERROR

else {return string) if string is not too long then return value

@ IF (L#0)*LEN(R®$)<=L THEN 340

else put out ’string too long’ and retry

ELSE G=37 @ GOSUB 420 @ GOTO 305

endif

put out ’'bad argument’ and retry (VAL failed)

335 OFF ERROR @ PRINT FNE®(ERRM#%); @ GOTO 3@5

if redraw-screen flag then redraw screen

340 IF F THEN GOSUB 710

restore I/R cursor

345 GOSUB 1805

restore upper-/lower- case lcd flag

@ F=FLAG(4 ,FLAG(-15))

return value

@ FNI$=R% @ END DEF

Function FNE$ - display error message

ASSERT ON ENTRY: screen is already redraun

ASSERT ON EXIT: message line is clear

INPUT: M%: message; FLAG —-15: inhibit WAIT

QUTPUT: null string; intended usage PRINT FNE$("message");

MODIFIED:

TRASHED :

350 DEF FNE®(M$)

put out message (making sure it fits within the window)

@ PRINT FNM$(MS$);

beep (and waste some time)

@ BEEP

waste 1 second but only if not USER (this comes handy especially in key

definitions involving many [f1[J1%s)

@ WAIT NOT FLAG(-9)

erase message line

@ GOSuUB 670

return dummy value (logically this is a procedure)

@ FNE$="" @ END DEF

Function FNM$ - display message

ASSERT ON ENTRY: screen is already redrawn

ASSERT ON EXIT: message on screen

INPUT: M$: message

OQUTPUT: null string; intended usage PRINT FNM%("message");

MODIFIED:

TRASHED:

355 DEF FNM$(M%)

erase message line

@ GOSUB 670

put out message making sure it fits within the window

@ PRINT Ms[1,C2-11;

return dummy value (logically this is a procedure)

@ FNM$="" @ END DEF

Function FNY - check if CL pointer points inside current page

INPUT: Y1

QUTPUT: 1 if Y! points inside page, otherwise @

36@ DEF FNY=Y@<=Y1 AND Y1<{=YOQ+RI

Function FNK$ - return key pressed.

Whenever waiting for a key use this function and nothing else

ASSERT ON ENTRY: it can handle a list of key presses in a key definition

ASSERT ON EXIT:

INPUT: none

QUTPUT: key

MODIFIED: N% (if USER)

370 DEF FNK$%

if no parameter pending in a key definition (see FNI$)

@ IF NUM(N$)#220 THEN

return keyboard input

FNK$=KEYWAITS$

else

@ GOTO 374

extract key from list of key presses in key definition

372 FNK$=N$[2,2]

if that wasn’t the last item of the list

@ IF NUM(NS$[31)#220 THEN

then trim first item from list

N&[1,21=CHR$(220)

else

ELSE

remove empty list from key definition

N$[1,31=""

endif

endif

374 END DEF

@0/08/14 17:17:02 FILE: PQ400Q TEXT 6400 08/14/00 17:16
TTTTNTTTTTTNTSTTTSTNTSSSSNS ST S SSTSSS S T STTST ST ST S STTSSOSISETSS

Routines - a huge collection of routines to do mostly everything

ENTRY POINTS: (see XREFVE) #5-#28

ENTRY # 5: print error message # 6

420 PRINT FNE$(MSGH(ABS(G))); @ RETURN

ENTRY #6: display last error message and end VE

ASSERT ON ENTRY: display and printer have already been assigned

430 6G0SUB 915

ENTRY #7: display last error message and end VE

ASSERT ON ENTRY: display and printer haven't been assigned yet

431 BEEP @ DISP ERRM$ @ GOTO 805

ENTRY #8: if file has been depleted then append one empty record and adjust

pointer to last line (U)

449 IF U<@® THEN U=0 ® RESTORE #1,0 ® PRINT #1;""

441 RETURN

ENTRY #9: set both marks to ’undefined’

470 A=-1 @ Al=-1 @ RETURN

ENTRY #10: store CL in file iff it isn’t already there (to avoid a lengthy

operation)

490 READ #1,Y1;51% @ IF S1s#L$ THEN REPLACE #1,Y1;L$

495 RETURN

ENTRY #12: erase line Y (usually CL) from screen

510 PRINT CURS(Y ,2);CO%;CURS(Y ,0); @ RETURN

ENTRY #13: given Y ,Y®, update CL pointer (Y1) and fetch CL in L$

520 Y1=YQ+Y

erase previos contents of L%

NOTE: this assignment is probably useless. It comes from the HP75 version

of VE. Anyway, neither does it do any bad, nor does it affect speed sensibly

@ L$=CO%

fetch CL and return

® READ #1,Y1;L% ® RETURN

ENTRY #14: redraw lower portion of screen (lower with respect to CL);

usually called by [fI1[01,[flI[L] and other line operations

525 PRINT CURS$(Y ,0);

530 PRINT C%; © VELIST #1,Y1,Y0+R1 @ RETURN

ENTRY #15: compute position of next word on current line; QUTPUT: T

from the cursor position (X+1) search first space (POS(" ",) and from there

- ignoring trailing spaces (RTRIM) - or from the beginning of the line - if

there are no spaces - search for first non-blank character (SPAN) or stop

at first column if such a character doesn’t exist (MAX)

540 T=MAX(0@ ,SPAN(LS," " ,MAX(1 ,POS(RTRIM$(LSE)," “ ,X+1)))~-1) @ RETURN

ENTRY #16: do input and parse it for search and replace

QUTPUT: S%,R%$,D,L

MODIFIED: N$ (if USER)

TRASHED: Q%$,P,I1,J,51,6 (on input error),T

init search pattern

G50 S$=""

do input

@ R$=FNI$(Q%,"",96,1)

if nothing useful was entered then take control, display cursor and exit

@ IF NOT SPAN(R$," ") THEN POP @ GOTO 1230

put delimiter into Q%

570 Q%=CHR$(NUM(R$))

don't be too sensitive to missing closing delimiters: add yours

@ R$=RTRIME(R%)ZQE

parse search pattern into 5%

@ P=POS(R%,0%,2) @ S#%=R&[2,P-11

trim it from input string

@ R$=R$[P+11

find where replace string ends

58@ P=POS(R%$,Q%)

set one-replacement-per-line flag if user entered anything after the third

delimiter

@ L=LEN(R$)>P+1

parse replace string

@ R$=RTRIMSB(R$[1 ,P]1,Q%)

compute delete-line flag (\" and \% in S% and R%="")

init flag

590 D=0

init ’'special-characters-active’ flag to false

@ I=0

foreach character in search pattern

@ FOR J=1 TO LEN(S%)

@ S1=NUM(S®[J])

if it's a '\' then toggle s-c-a flag

591 IF S1=92 THEN I=NOT I

else if it’s the first and s—-c—-a then D=’\" found’

ELSE IF S1=94 AND I AND D=0 THEN D=t

else if it’s '$’ preceded by "’ and s-c-a then D=’\%$ found’

ELSE IF 51=36 AND D=1 AND I THEN D=2

endfor

592 NEXT J

set D to true iff D=2 AND null replace string

@ D=D=2 AND NOT LEN(R%)

NOTE: this code ignores special s following the first special

because that's exactly what the SEARCH keyword does; it treats exceeding

special '"’s as literal '"'s and so do we.

@ RETURN

ENTRY #17: put 'Working...’ message on message line

@@ PRINT FNM$("Working...")s @ RETURN

ENTRY #18: get a text key and return or don’t return at all

OUTPUT: Q%

MODIFIED: N$ (if USER)

get that key

610 Q%=FNK$

if it’s a prefixed key then take control, put it back in the key buffer

NOTE: in a key definition with parameters any byte can be used and will

be returned

@ IF LEN(Q®)¥1 THEN FKEY Q% @ POP

611 RETURN

ENTRY #19: wait until Y/N/Q is pressed and return P

615 P=POS("YNQ" ,UPRC$(FNK®)) @ IF NOT P THEN CHIRP @ GOTO 615 ELSE RETURN

ENTRY #20: put out message ’'(size of block) lines’

620 PRINT Al-A+1;"line(s)..."; @ RETURN

ENTRY #21: fetch CL and if it’'s outside of current page update pointers and

redraw screen giving some context to the user

INPUT: YI

QUTPUT: L%

MODIFIED: Y, Y0

if CL pointer is within page then update cursor y-coordinate, fetch CL

625 IF FNY THEN Y=Y1-YQ @ GOSUB 520

else adjust Y ,Y@, fetch CL and redraw screen

ELSE GOSUB 635 @ GOSUB 710

display cursor and exit

626 GOSUB 1220 @ RETURN

ENTRY #22: similar to entry #21, but CL is not fetched and screen is not

refreshed

B30 IF FNY THEN Y=Y1-Y0® @ RETURN

ENTRY #23: also part of entry #22

adjust Y ,YQ so that Y! is found at 1/4 of the screen page

B35 YO=MAX(@,Y1-(R1 DIV 4)) @ Y=MIN(Y!1,R1 DIV 4) @ RETURN

ENTRY #24: compute 'lose’ block boundaries

INPUT: A,Al

QUTPUT: I.,J

$ A

1A 9

ASSERT ON EXIT: @<{=I<=J<=U

if 1st mark set then I=Ist mark else I=0

B40 I=A*(A%-1)

if 2nd mark set then J=2nd mark else J=U (last line)

@ J=U*(Al=-1)+A1*(AT%-1)

@ RETURN

ENTRY #25: clear message line AND bottom of screen

670 PRINT C5%;CUR®(MQ,0);C%; ® RETURN

ENTRY #26: fetch CL and redraw screen

710 GOSUB 520 @ PRINT C5%;:;E$; @ VELIST #1,Y0,Y0+R! @ RETURN

ENTRY #27: store CL, check if both marks are set, if not then take control and

error out

740 GOSUB 490 @ IF A>=0 AND Al1>=0 THEN RETURN

745 POP @ PRINT FNE$("Missing mark(s)"); @ GOTO 1230

ENTRY #28: check if CL is inside block, if so take control and error out

750 IF Y1<A OR Y1>A!l THEN RETURN

755 POP @ PRINT FNE$(“Inside block"); @ GOTO 1230

00/09/14 17:18:40 FILE: POB0O TEXT 3072 @8/14/00 17:18

Routine: text key handler

ENTRY POINTS: #29 (2B66,5010)

ASSERT ON ENTRY: case and high bit are already set

ASSERT ON EXIT:

INPUT: J%,R,W

OQUTPUT:

MODIFIED: L$,X,(FILE,Y! ,possibly Y,Y0 (if W & X=C2))

TRASHED: WS,T

This routine handles text keys. Wrap-around and I/R modes

cause different actions:

WI Action

@ @ replace cursor with key, if not at right margin then

advance cursor else complain

@ just like W=0 I=0, but if at right margin do wrap-around in insert mode

1 if room left then insert key under the cursor else complain

1 just like W=0 I=1, but if at right margin do wrap-around (in insert mode)

In addition, this routine handles a right-margin bell,

which is set at a constant distance from the screen right

margin. The bell is unsatisfactory for two reasons: it is

not similar to a MARGIN statement, it can’t be turned off

unless BEEP is turned OFF or line 800 is deleted.

ENTRY #29:

ring right-margin bell if necessary

80@ IF X=C4 THEN BEEP 3500,.075

if replace mode...

801 IF R THEN

then advance cursor logically

X=X+1

place key under PREVIOUS cursor position

@ L$[X , XI1=J%

display key

@ PRINT J%;

else (insert mode)

@ GOTO 840

if no room left then complain and exit

810 IF LEN(L%$)=C2 THEN CHIRP @ RETURN

advance cursor

820 X=X+1

1
@
1

insert new key

@ LB[X,01=0%

turn cursor off, display new key + right portion of line, display cursor

830 PRINT C5%;L$IX]1;CURS(Y X ,C0);C4%;

endif

if at right margin...

840 IF X#C2 THEN RETURN

then if no wrap-around (W=1)...

841 IF W THEN

then complain

CHIRP

back cursor and exit

@ GOTO 1600

else (wrap—-around active)

signal about to split line

842 BEEP 100,.01

if not on a ' ' then

@ IF NUM(LSIX]1)#32 THEN

go to beginning of previous word

GOSUB 4100

and back cursor one column (possibly to a ' ')

@ G0SUB 1600

if ona ' ' then delete it (this test is

necessary for lines without blanks)

843 IF NUM(L$[X+11)=32 THEN GOSUB 2505

save I/R flag status

844 W9=R

and set insert mode

@ IF R THEN 60OSUB 1800

do a [RTN] in insert mode

845 G0OSUB 2400

go to end of new line

@ GOSUB 2200

restore previous I/R status

@ IF WS THEN 60SUB 1800

signal end of wrap-around

850 BEEP 10@,.0!1

and exit

@ RETURN

endif (wrap-around)

endif (at right margin)

00/09/14 17:19:25 FILE: P0OS00 TEXT 1280 ©9/14/00 17:19

Command key [ON] - exit editor

ENTRY POINTS: #31 (900,4000), #32 (200,430)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: FLAGS 0-4,-3

TRASHED: S1%

restore system and loop status

900 'Ci1*: GOSUB 910

purge default buffer file if it exists

@ IF FILESZR(G%)>=0 THEN PURGE G$

901 CAT F%
restore battery timeout status

905 T=FLAG(-3,D1)

enable ATTN key

@ POKE "2F441","0@"

end subprogram

@ GOTO 9998

ENTRY #31:

store current line and display replace cursor + clear screen

910 GOSUB 480 @ PRINT CB%:ES;

ENTRY #32:

restore original DISPLAY IS and PRINTER IS devices

915 POKE "2F78D" ,U1ls

restore original SCROLL and DELAY rates

@ POKE "2F946" ,U4%

restore original PWIDTH and ENDLINE

@ POKE "2F958" ,US5%

925 CFLAG 0,1.,2,3 .4

@ RESTORE I0

@ RETURN
— Moo —Y. ——G-—SS . S by S St N e NSe W {m S Wb Nahe s ABR AT e wrm mr S Sme W . fmo— -eo wa o amn e mow e-TNNSTNTTT TTTNSTSSSS S S S S T S T S SN TSSsS S STTSSSSTooST

00/29/14 17:19:43 FILE: P1000 TEXT 17392 ©9/14/00 17:19

—EEESESEDmEm=

PeDITyrrrr,re,r SO eese wew o A Me Sm fai S TG SR WA St Sy Sen S SR WP M e Mo e e Wt e S e S . vTSRTNSTSRSTSNSNTSSSSS S S S SSTS S SSSSTo oS SST SST T T ST T TTS T SETTsmms

Command key [gl[UP] - display first page

ENTRY POINTS: #33 (250), #34 (2610), #35 (1400,1500), #36 (1100)

ASSERT ON ENTRY:

ASSERT ON EXIT: Y=0 & X=0 (not for #36)

INPUT: see entry point #33

QUTPUT:

MODIFIED: X,Y,Y0,Y! ,L$

TRASHED: S1%$

ENTRY #33: INPUT: none

store current line

1000 *C2': GOSUB 490

ENTRY #34: same as #33

place first line of file on TOS

1005 Y0=0

ENTRY #35: INPUT: YO

cursor home

1006 Y=0 @ X=0

ENTRY #36: INPUT: X,Y,YO

update line pointer, fetch current line, redraw screen

1010 GOSUB 710

display cursor and exit

@ GOTO 1230
—e oe o s oo e—V" SueS Soo g otSoo oove mm—w oS etrs Ay e Te S eW e S ww e Gww Sm Gmw Sve AmNSNTSSSTTS STSSTSSTSSTSSSS SS SS SSSTS TSSST ToNSoossssmesm=

@0/@9/14 17:20:02 FILE: P1100 TEXT 1792 09/14/00 17:20
—vo —e oy ey oy eee A Twm s A wwm S e SeR fow MU W W e Sur Sww Geer s g e S G eeetv ooo ——v - oooy wvms e eo4+t-Tttt-ttt22-ttt

STENSSE=Smanms

egveeewmn e e e

Command key [gl[DN]l - display last page

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: X=0 & ((U=0 & Y0=0 & Y=0) | (1<=U<{=R1 & YO@=0 & Y=U)

(U>RT & Y=R1))

INPUT:

QUTPUT :

MODIFIED: X,Y,YQ,Y!,L$

TRASHED: S1¢

store current line

1180 'C3': GOSUB 490

back one (possibly) full page from EOF and place the resulting line on TO0OS

@ YO=MAX(B ,U-R1)

cursor to bottom line

@ Y=MAX(Q,U-Y0Q) @ X=0

update line pointer, fetch current line, redraw screen, display cursor,exit

@ 6OTO 1010
omh ee amm o wm o mie maw A hew we mmm S e mee TEe M wwe we man e wee oeeeoee fee See memw mwm S e Ay e S SDe mw mew e Swe e mwer mew am oSs e o ee e wa w wme eo ven -TSTSSSS TS SS N S T S S T T T S T SST S S T ST T T N T T T ST T STSTTTTNTTSNNSOSEToSSSESm=ms

@0/@9/14 17:20:16 FILE: P1200 TEXT 2304 ©09/14/00 17:20
eS.Swmt wu mn S S wm ee -2 - St oo S ee Smst e S sy e et Gow fow S e S oo fa -evgw— — e— e —iy wmnow—— -NTTTTSTTT TS TNTSTSSSTSSSSSS ST S S S SS S S SSSSS ST s E TSETT ESSSTsossssSsSs===

Command key [DN] - move cursor down one line

ENTRY POINTS: #37 (4600), #38 (2425,2430,2445), #39 (see XREFVE)

ASSERT ON ENTRY: consistent pointers (Y, YOQ,Y1 ,U)

ASSERT ON EXIT: consistent pointers

INPUT:

OUTPUT:

MODIFIED: Y (iff Y#R! on entry),Y® (iff Y=R1 on entry),Y! ,L$

TRASHED: §,51%

ENTRY #37: INPUT: none

store current line

1200 °'C4': GOSUB 490

beep and exit at EOF

1205 IF Yi=U THEN CHIRP ® RETURN

ENTRY #38: ASSERT ON ENTRY: Y1<U

save y—coordinate of current line

1210 S=Y

if at bottom line then scroll up one line

@ IF S=R1 THEN

push T0OS down one line

@ YO=YO+1

turn cursor off then scroll up

@ PRINT C5%;R0%;

clear whatever entered the message line

@ 605UB 670

clear whatever moved from the message line into the bottom line

@ GOSUB 510

else simply increment the screen y-coordinate

ELSE Y=Y+1

update line pointer, fetch current line

1220 60SUB 520

if a scroll took place then display new bottom line

@ IF S=R1 THEN PRINT L&;

ENTRY #39: ASSERT ON ENTRY: the physical cursor is off

move cursor at its logical screen coordinates and turn it on

1230 PRINT CURS(Y X ,C0);C4%;

and exit

@ RETURN

@0/09/14 17:20:41 FILE: P1300 TEXT 1792 @9/14/00 17:20
seeySe Gmi et S W wm M wm M oM WS S MW Mt tege M e WWSSsM M S W an W w—o veees muw v o o = oe ovts ot o oe vooovvy o=eTTTTNTTTTT TTTTTTTTT ST T T T T T T T T TTTTTTTTT TT T NSTTTNST TNTSISOSSTTSRS=S

Command key [UP] - move cursor up one line

ENTRY POINTS: #40 (4610)

ASSERT ON ENTRY: consistent pointers (Y,Y®,Y1 ,U)

ASSERT ON EXIT: consistent pointers

INPUT:

QUTPUT:

MODIFIED: Y (iff Y#@ on entry),Y® (iif Y=0 on entry), Y1 L%

TRASHED: §,51%

ENTRY #40: INPUT: none

store current line

1300 UP: GOSUB 480

beep and exit at TOF

1305 IF NOT Y! THEN CHIRP @ RETURN

save y-coordinate of current line

1310 S=Y

if at TOS5 then scroll down one line

@ IF NOT S THEN

push TOS up one line

@ YB=YO-1

turn cursor off then scroll down

@ PRINT C5%;R1%;

clear whatever moved from the bottom line into the message line

@ 6G05UB 670

clear whatever entered the top line

@ GOSUB 510

else simply decrement the screen y-coordinate

ELSE Y=Y-1

update line pointer, fetch current line

1320 GOSUB 520

if a scroll took place then display new top line

@ IF NOT S THEN PRINT L%;

display cursor and exit

1330 GOTO 1230

@0/@9/14 17:21:03 FILE: P1400 TEXT 1024 09/14/00 17:21

Command key [gl[ENDLINE] - move forward one page

ENTRY POINTS:

ASSERT ON ENTRY: consisten pointers (Y,YQ,Y1 ,U)

ASSERT ON EXIT: consistent pointers

INPUT:

QUTPUT:

MODIFIED: X,Y,YQ,Y1 ,L%

TRASHED: S1¢

store current line

1400 'CE6°': GOSUB 490

update T0S pointer

@ YO=MIN(YO+RO ,U)

cursor home, update pointers, fetch CL, redraw and exit

@ GOTO 1006

00/09/14 17:21:18 FILE: P1500 TEXT 1024 @8/14/00 17:21
PT—— —eam ao o—Prrr—— e.S e S oo M e i eeTSW———ot~ -vgbTTTT TN T T T STTTSNSSSTS S T TTTSTS S ST TSSTSNT TSTTTTTNTSSTSNSSSsSSISSTTSS==

Command key [fI[ENDLINE] - move backward one page

ENTRY POINTS:

ASSERT ON ENTRY: consistent pointers (Y,Y®,Y!1 ,U)

ASSERT ON EXIT: consistent pointers

INPUT:

QUTPUT:

MODIFIED: X,Y,YQ,Y! ,L$%

TRASHED: S18%

store current line

1500 'C7’': GOSUB 490

update T0S pointer

@ Y@=MIN(YQ@-RO ,U)

cursor home , update pointers, fetch CL, redraw and exit

@ GOTO 1006
eSowr Av-———SSSSw— — wu a— — ATR e Goo eo ey feee mw w Yww ar e wew S W ey ge- NyPFwD Sha W N NSM P e eo—-ov——TTSTTTSST TSSTTS S S TST S SSTSSSSST SSTSSTSSTT TST ST TTSNS

@0/09/14 17:21:30 FILE: P1600 TEXT 768 ©8/14/00 17:21
ITTTNTTSTTTT T N SN N T SSSSSSS SSS STSSSSSS S SSTTSTTTS STTSNSTNTSEmme

Command key [LF] - move cursor left one column

ENTRY POINTS: #41 (841,842 ,2005)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

ENTRY #41:

if not at left margin decrement cursor x-coordinate

1600 *C8’: IF X THEN X=X-1

move physical cursor left

@ PRINT C3%;

else complain

ELSE CHIRP

1610 RETURN

Q0/@3/14 17:21:42 FILE: P1700 TEXT 768 ©9/14/00 17:21

Command key [RT] - move cursor right one column

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

if not at right margin increment cursor x-coordinate

170Q@ *C8’: IF X#C3 THEN X=X+1

move physical cursor right

@ PRINT C1%;

else complain

ELSE CHIRP

171@ RETURN

00/09/714 17:21:53 FILE: P1800@ TEXT 1280 29/14/00 17:21

Command key [f1[SPC] - toggle I/R mode

ENTRY POINTS: #42 (844 ,845), #43 (345)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: R

QUTPUT: R

MODIFIED: R, FLAG 1

TRASHED:

ENTRY #42: INPUT: R

R (initially set to @) is the run-time Replace flag;

flag 1 (initially false) is the lcd Insert flag.

NOTE: if the user manually toggles flag 1| (for instance, during input) I/R

status will be freezed. Manually toggling the flag again will restore

normal operations. I think the safest way to manage the flag would be:

R=NOT R @ IF R THEN CFLAG 1 ELSE SFLAG 1 but this solution is shorter and

not really dangerous (S&P).

toggle those flags...

1800 'C10@°’: R=FLAG(1 ,R)

ENTRY #43: INPUT: none

display an appropriate cursor

1805 IF R THEN PRINT Cb%; ELSE PRINT C7%;

and exit

181@ RETURN

@0/09/14 17:22:12 FILE: P1900 TEXT 768 ©09/14/00 17:22

Command key [f1[)] - move to next word

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: X

QUTPUT: X

MODIFIED: X

TRASHED: T

compute new cursor position in T

1909 °'C11°': GOSUB 540

set new cursor position within current line

@ X=T

display cursor and exit

@ 60TO 1230

@0/09/14 17:22:25 FILE: P2000 TEXT 1536 @9/14/00 17:22
oe-.—-nn T . Sy e mn e W S Shw S Winsmm gtoiman s wom e mam mmn dmty s o oo e wnoSeovSe ovem s me ——— — s utyo ot vibG . o— — -.T NT SSTNTTTTSTRNSTTSNSST S T S S S SS SS S S SS T S S S T S T S S ST STTSSToSSSSsSTS

Command key [BACK] - back cursor

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X,L$%

TRASHED :

if at left margin then complain

2000 *C12’: IF NOT X THEN CHIRP

and exit

@ RETURN

if cursor lies beyond text then move it lefiward

2005 IF X>»LEN(L%) THEN 1600

else if replace mode...

2010 IF R THEN

replace char to the left of the cursor with a °’

LB{X ,X1=" "

back cursor logically

B X=X-1

back it physically and display a

@ print C3%;" ";C3%;

Y 3

and exit

® RETURN

else insert mode...

delete char to the left of the cursor

2015 L$[X X1=""

back cursor logically

@ X=X-1

turn cursor off, display right portion of CL + erase dangling character,

display cursor

NOTE: CUR$();C4%; @ RETURN could be replaced by GOTO 1230. This

saves memory but it is a bit slower.

2020 PRINT C5%;C3%sLeIX+113" ";CURS(Y X ,C0);C4%;

and exit

@ RETURN

00/@9/14 17:22:43 FILE: P2100 TEXT 512 09/14/00 17:22

Command key [gllLF] - cursor to beginning of line

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

cursor at BOL

2100 *C13°: X=0

display cursor and exit

@ GOTO 1230

00/09/14 17:22:56 FILE: P2200 TEXT 768 09/14/00 17:22

Command key [gl[RT] - cursor to end of line

ENTRY POINTS: #44 (845)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

ENTRY #44:

cursor at EOL

2200 'C14°: X=MIN(C3,LEN(L%))

display cursor and exit

@ 60T0 1230

@0/09/14 17:23:05 FILE: P2300 TEXT 768 ©09/14/00 17:23

Command key [f1[H] - toggle highlight mode

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: H

QUTPUT: H

MODIFIED: H, FLAG 2

TRASHED:

H (initially set to @) is the run-time highlight flagj

flag 2 (initially false) is the lcd highlight flag;

NOTE: see note about flag 1 in [fI[SPC]

toggle those flags...

2300 *C15°: H=NOT FLAG(Z,NOT H)

and exit

@ RETURN

P0/08/14 17:23:19 FILE: P2400 TEXT 3072 @8/14/00 17:23

Command key [ENDLINE] - end line

ENTRY POINTS: #45 (845)

ASSERT ON ENTRY: consistent ointers (Y,LYQ,Y!,U)

ASSERT ON EXIT: consistent pointers, X=0 & R

INPUT: R

QUTPUT:

MODIFIED: X,Y,Y0,Y1,U,L$,A Al

TRASHED: T1,R$,51%

ENTRY #45:

store current line

2400 *C16°': B0OSUB 490

compute indentation in TI

@ T1=MAX(Q,SPAN(LS," ")-1)

if insert mode...

@ IF R THEN 2440

then clear marks

2405 GOSUB 470

split current line at cursor and indent right (R%) portion

@ RE=RPT&(" " ,T1)ELTRIMS(LEIX+11)

@ L$=L%[1,X]

erase right portion from screen and do a line-feed

2410 PRINT CO%[1,C2-X1]

and store left portion

@ GOSUB 490

if on last file line...

2415 IF Y1#U THEN 2430

then if not on last page line display right portion

2420 IF Y#R1 THEN PRINT R%;

increment line count

2425 U=U+1

indent cursor

@ X=T1

store right portion

@ RESTORE #1,U

@ PRINT #1 ,R%

move cursor one line down (if false at 2420

then no scroll will take place, otherwise right

portion will be scrolled up) and exit

@ GOTO 1210

else (not on last file line) open new line

move cursor down one line

2430 GOSUB 1210

open a new line above the cursor

@ 6G0SUB 2905

store right portion

@ L$=R$ ® GOSUB 490

display right portion

2435 PRINT L%;

indent cursor

@ X=T1I

display cursor and exit

@ GOTO 1230

else (replace mode)

if on last line then

2440 IF Y1=U THEN

indent cursor

X=T1

clear all marks

@ GOSUB 470

append an empty line

@ RESTORE #1,Y1+1

@ PRINT #t.,""

increment line count

@ U=U+1

else cursor at BOL

ELSE X=0

move cursor down one line and exit

2445 6OTO 1210

endif

Q0/09/14 17:23:53 FILE: P2500 TEXT 768 08/14/00 17:23

Command key [fI[RT] - delete character

ENTRY POINTS: #57 (843)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: X

QUTPUT: L%

MODIFIED: L%

TRASHED:

if no text under the cursor then exit

2500 'C17': IF X>=LEN(L%$) THEN RETURN

ENTRY #57: ASSERT ON ENTRY: X<LEN(LS$)

INPUT: X

delete character from line

2505 L$IX+1 X+1]1=""

turn cursor off, erase character from screen, display cursor and exit

@ PRINT CS5®sLBI[X+11;" "5

@ GOTO 1230

NOTE: GOTO 123@ could be replaced by CUR®(Y,X,CQ);C4%; to gain speed (but

it’s an I/0-bound operation anyway)

@e/09/14 17:24:14 FILE: P2600 TEXT 1536 @9/14/00 17:24
vt s o S st e e me Saw sw Pl e Ny Gak e iee NNy SR S e G Ay e tew Gwm T W) w W se Wewe vmwe dhew e PeO. —eoeeot Sov v naRSTTSSRTTT I STRSTTTSSN SNTTTTTSNSN S TNTTNS SITTTI TTTSS S TST NS SIIS S e SS o T o

Command key [f1[L] - delete current line

ENTRY POINTS: #46 (4B10)

ASSERT ON ENTRY:

ASSERT ON EXIT: Y@ is decremented iff YO»U & Y=0

INPUT: VI

OQUTPUT:

MODIFIED: Y,Y®,Y! (iff deleting last line of file),U,L%,A Al

TRASHED:

ENTRY #46:

clear all marks

2600 'C18°: GOSUB 470

delete line from file

@ DELETE #1,Y1

turn cursor off

2610 PRINT CG5%;

decrement line count

@ U=uU-1

if file is empty then

® IF U<L@ THEN

put an empty line

GOSUB 4490

display first page and exit

@ GOTO 1005

else (file is not empty)

if no lines exist below TOS then decrement TO0S pointer

2615 YO=MAX(Q,YQ-(YD>U))

if EOF was deleted then back cursor one line

@ Y=MAX{(@,Y-(Y1>U))

update line pointer, fetch current line

@ G0OSUB 520

clear from current line to B0S, redraw lower portion of screen

@ GOsUB 525

display cursor and exit

@ GOTO 1230

endif

P0/08/14 17:24:33 FILE: P2700 TEXT 1024 09/14/00 17:24

Command key [f1[DN] - delete to end of line

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: LEN(L$)<{=X | LEN(L$)>X

INPUT:

QUTPUT:

MODIFIED: L%

TRASHED: S§1%

delete exceeding characters

2700 'C19°: L$=L%[1,X]

store modified line

@ GOSUB 480

turn cursor off, erase tail of line

@ PRINT CS5¢;C0%L1,02-X1;

display cursor and exit

@ 60TO 1230

00/038/14 17:24:50 FILE: P2800 TEXT 1024 @9/14/00 17:24

Command key [fl1lW] - delete to beginning of next word

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: X

QUTPUT:

MODIFIED: L%

TRASHED: T

compute new cursor position in T

2800 'C20': GOSUB 540

if a wrap-around took place then force cursor at EOL

@ IF T<=X THEN T=LEN(L%)

delete word from line (characters in [X+1,T1)

2805 L$=L$[1 , XI&LSI[T+11]

refresh (shortened) line tail

@ PRINT C5%;L8[X+11;C0%[1,C2-LEN(LS)]1;

display cursor and exit

@ GOTO 1230

@0/08/14 17:25:05 FILE: P2900Q TEXT 1280 09/14/00 17:25

Command key [f1[0] - open a new line

ENTRY POINTS: #47 (2430)

ASSERT ON ENTRY:

ASSERT ON EXIT: Y,Y02,Y! not changed

INPUT: Y1

QUTPUT:

MODIFIED: L% ,A,A1 X

TRASHED: S1%

store current line

290@ 'C21': GOSUB 490

ENTRY #47:

clear all marks

2905 GOSUB 470

turn cursor off

@ PRINT C5%;

insert new empty line in file

@ INSERT #1.,Yt1;""

increment line counter

@ U=U+1

update line pointer, fetch CL

@ GOSuUB 520

clear from CL to BOS, redraw lower portion of screen

@ 60SUB 525

cursor to BOL, display cursor and exit

@ X=0 @ GOTO 1230

00/@9/14 17:25:21 FILE: P3000 TEXT 768 08/14/00 17:25

Command key [fI[UP] - toggle between lower- and upper- case

ENTRY POINTS: #48 (100)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: FLAG -15

OUTPUT: FLAG -15

MODIFIED: FLAG 4, FLAG -15

TRASHED: T

toggle case

3000 *C22’': LC

ENTRY #48: ASSERT ON EXIT: no toggling is performed

update status of lcd case flag (flag 4)

3005 T=FLAG(4 ,FLAG(-15))

and exit

@ RETURN
RTSSS TSTSTSTTTTT TT TTTTT T TTTTT NTTTTTTT TTTTTTTTTTTTTSTSTSRSmE=T

@0/09/14 17:25:33 FILE: P3100 TEXT 2048 ©@9/14/00 17:25
——— e.——— oeYe Wn e e Suw wwn W g w—- PeeoeT—TSTTTTTNSSSSSSNS S S S SS SSS SSSTSS ST S S S SS SSTSSSTTT T T TTSNSST

Command key [f1[F] - find pattern

ENTRY POINTS: #4989 (3300)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

OUTPUT:

MODIFIED: X,Y,Y0,Y1,L$,5% ,N$ (if USER)

TRASHED: Q% ,7T,R$,P,L,D,I,J,51,6 (on input error),51%

store CL

3100 'C23': GOSUB 490

set prompt parameter for input routine
@ Q$=IIF:'I

do input, parse it and redraw screen

@ GOSUB 550

ENTRY #49: INPUT: X,Y1,5%

ASSERT ON ENTRY: screen is already redrauwn

TRASHED: T

search pattern S%, starting at col. X+2 (immediately right of cursor)

line Y1 (current line), ending at last file line U in file #I

3105 T=SEARCH(S$ X+2.,Y1,U,1)

if not found...

@ IF T THEN 3115

then wrap around EOF and retry at BOF

search pattern S%, starting at column 1 line 0

(BOF), ending at line Y1 (CL) in file #I

3110 T=SEARCH(S%,1,0,Y1,1)

if not found then message out

3112 IF NOT T THEN BEEP @ PRINT FNM%("Pattern not found");

and fetch CL (maybe we moved in a previous scan)

@ 60SuUB 520

display cursor and exit

@ GOTO 1230

endif

endif

{pattern found}

update CL pointer

3115 Y1=IP(T)

and cursor x-coordinate

@ X=IP(FP(T)*1000)-1

given Y1 update Y,Y0, fetch CL and redraw screen only if a page change is

necessary (giving some context to the user)

@ GOSUB 625

exit

@ RETURN

DB6/08/14 17:26:04 FILE: P3200 TEXT 8960 @8/14/00 17:26

Command key [fI[R] - find and replace pattern

ENTRY POINTS: #50 (5100),#51 (3285)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: A Al

QUTPUT &

MODIFIED: FILE, (X,Y,Y0@,Y! iff D & L% matches R%), U (iff D), 5% R%,L$ (iff it

matches R$),L,D,N$ (if USER),(A,A1 (iff D))

TRASHED: Q%,I,J,FLAG 3,5,50,51,51%,52%,7%,7,Q,6 (on input error),D

set prompt parameter for input routine

3200 'C24’': Q$="R:"

clear Query flag

@ CFLAG 3

ENTRY #50: INPUT: FLAG 3

store CL

3205 60SUB 490

do input, parse it and redraw screen

we expect sensible values for:

S%$: search pattern

R$: replace string

D : delete-line flag

L ! one-replacement-per-line flag

@ GOSUB 550

initialize counter of replacements

@ 5=0

the following routine parses the replace string (R$) trying to find

out whether ampersands (&) are special or not. While doing so, it

builds in S1% the actual replace string - deprived of special

ampersands and back-slashes - and it stores the positions of

dittoes in Q% (which is treated as a list). At the end of this

process it will be possible to build the whole replace string by

inserting substrings matched by the search pattern 5% into S1% at positions

recorded by Q%.

The input string is actually parsed with the following (poorly

represented) DFA:

{\?}

PNy TLNLBY HE
_ Smm———— »3225-.

v v " !

“{\}! 3215 3220 <y 1{&}

b~ st {g)y | !

! >3230<°

{\}

initialize list of positions of dittoes

@ Qe=""

and literal part of replace string

@ S1g=""

and character pointer (for advancing in S18$)

@ I=0

DFA spans lines 3215-3235

state &_not_special: advance

3215 GOSUB 3235

if not '\’ then add literal and don’t change state

@ IF Z$#"\" THEN S1%$=51887% @ GOTO 3215

else enter state odd_\

state odd_\: advance

3220 6G0SUB 3235

if '\’ then add literal '\’ and go to &_not_special

@ IF Z%$="\" THEN S1%=51%&7% @ GOTO 3215

else if '&' then go to do_special_&

ELSE IF Z$="8" THEN 3230

else add literal (and enter state &_special)

ELSE S51$=S1%87%

3240

3245

3255

3260

state &_special: advance

G0SUB 3235

if '\’ then go to &_not_special

@ IF Z%="\" THEN 3215

else if '&* then go to do_special_&

ELSE IF Z%="&" THEN 3230

else add literal and don’t change state

ELSE S1$=51$&7% @ GOTO 3225

state do_special_&:

append position of ditto to K$

Qe=0%8CHRE(LEN(S1%$))

and do a transition to &_special on the null string

@ GOTO 3225

subroutine advance: advance input character pointer

I=1+1

if input string not exhausted then return character

(Z%) and control to caller

@ IF I<=LEN(R%) THEN Z%=R$[I,I] ® RETURN

else take control

ELSE POP

and save literal replace string

@ R$=51¢%

determine block boundaries [I,J]

GOSUB 640

initialize current search coordinates (50,T)

@ 50=1 @ T=1I

repeat

search for pattern 8% in block [T,J1]

T=SEARCH(S%,50,T7,J,1)

if found...

@ IF NOT T THEN 3285

determine where matching substring lies [50,51]

SO=IP(FP(T)*1000)

@ S1=50+RMD(T*1000000,1000)-1

and pointer to matching line (search-line pointer)

@ T=IP(T)

fetch matching line

@ READ #1,T;L$

if there isn’t enough room for replacement...

IF LEN(LS)-(S1-S0+1)+LEN(R%)+(51~-S0+1)*LEN(K$)<{=C2 THEN 3265

then complain

PRINT FNE%("Replacement too long");

if doing replace_with_query ([f1[Q1) then...

@ IF FLAG(3) THEN

skip to next line

S1$=5% @ GOTO 3280

else exit

ELSE 3285

endif

else (do replacement)

we simply need to build the actual replace

string into 51%, using the literal part (51%)

and the list of dittoes (K$) from the DFA

section, as well as the matched substring

L$[S0,511].

If D then user requested to delete lines from the file. In that case

the replacement string is substituted with A% and matching lines

will be effectively deleted only later on in the loop starting at

line 3286.

NOTE: this isn’t the best possible algorithm for deleting lines,

3265

3270

3275

3276

3285

3286

since matching lines are first REPLACEed then DELETEd, but it fits

easily in the frame of [fI1[R] and [f1[Q] without requiring too much

code. Moreover, massive line deletion using [fIIR1I/[Q] is a very

unlikely event. (SP)

initialize replace string

S1$=R$

for each element of list of dittoes

@ FOR I=LEN(Q%) TO 1 STEP -1

insert matched substring

S1$=C18[1 NUM(QS[II)I&LS[SO,51 I&STISINUMIQSITII+1]

endfor

@ NEXT I

if deleting lines then temporarily substitute matching line with

a predefined pattern

@ IF D THEN S1$=A%

save CL to verify that some replacement really took place

52%=L%

ask user’'s confirmation (meaningful only with [f1[Q1)

@ GOSUB 5105

if ok then

IF Q@ THEN

do replacement |

L$LS0,511=5C1%

@ REPLACE #1,T;L%

increment counter of replacements

@ S5=5+1

display modified line (meaningful only with [f1[Q1)

@ GOSUB 5135

endif

endif (if there isn’t room)

update current search column pointer and line pointer:

the two assignaments on line 3280 are equivalent to the following

piece of code:

IF L (one replacement per line) THEN

80=0 column pointer

T=T+1 line pointer

ELSE IF LEN(S1%$) (not deleting matching strings) THEN

SO=S0+LEN(S1$) (skip S1% in L$)

ELSE IF S2%=L% (no TRUE replacement took place) THEN

50=50+1 (to avoid infinite loops, since if L% is not changed

then 5@ MUST change [don’'t preserve status quo!l).

Notice that a simple flag after the above REPLACE statement

could not replace the function of 52%. In fact, it would cause an

endless loop if the user specified "replace anything with nothing"

(R:/\@//).

SO=(SO+LEN(S1$)+(S2%=L$ AND NOT LEN(S1%$)))«NOT L

@ T=T+L

endif (if found)

until not found

@ G0TO 3245

if deleting matching lines (\" and \%$ in search pattern AND null replace

string)...

IF NOT D THEN 3290

then delete all lines matching \"A%\$

save line counter for later test

D=U

@ FOR T=J TO I STEP -~}

@ READ %1 ,T;L%

@ IF L%=A% THEN

DELETE #1.,T

decrement line counter

@ U=U-1

and CL pointer, if CL is below/within block [I,J]

@ Y1=MAX(Q ,Y1-(T<{=Y1))

endif

3288 NEXT T

I an alternative, more logical (but memory-consuming) algorithm for the

| above FOR-NEXT loop:

I INIT: T=I

I LOOP: T=SEARCH("\""BAB&"\%" ,0,T,J,1)

I IF T THEN

! DELETE #1,T

| @ U=U-1 @ J=J-1 @ YI1=MAX(0Q,Y1-(T<=U))

! @ GO0TO LOOP

if at least one deletion then clear all marks

@ IF D#U THEN 6OSUB 470

given Y! adjust Y,bYO

2289 60SUB 630

if file was depleted then insert one (empty) line

@ 6OSUB 440

endif

redraw screen

3289 GOSUB 710

display # of replacements

@ PRINT FNM$(STR$(S)&" replacement(s)");

display cursor and exit

@ GOTO 1230

00/08/14 17:28:14 FILE: P3300 TEXT 768 ©09/14/00 17:28

Command key [f1IN] - find next occurrence of search pattern

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrauwn

ASSERT ON EXIT:

INPUT: S%

OUTPUT :

MODIFIED: (X,Y,YQ,Y!1,L$ (if pattern found))

TRASHED: T,51%

store current line

3300 'C25': GOSUB 490

display search pattern

@ PRINT FNM$("Pattern :"&S®&":");

do search then exit

@ GOTO 3105

PR/@8/14 17:28:26 FILE: P3400 TEXT 1636 09/14/00 17:28

Command key [fI[P] - go to absolute line number (position)

ENTRY POINTS:

ASSERT

ASSERT

INPUT:

OUTPUT:

ON ENTRY:

ON EXIT: line # is rounded to an integer in the range [@,U]l, X=0 if Y1

changed

user input: a constant or an expression involving Y! (current line),

Y@ (top of screen), Y (for moving within the current page), U (last

file line), A (first mark), Al (second mark)... any more ideas?

MODIFIED: X,Y,Y®,Y! ,L$,N$ (if USER)

TRASHED: I,51%,T ,R%,6 (on input error)

store current line

3400 'C26°': GOSUB 490

get user's input (FNI%) with CL as default, evaluate expression (VAL),

reduce result within [@,U] and round it to an integer (I=)

@ I=MAX(OQ MIN(VAL(FNIS("Line #:" ,STR$(Y1),0,1)),U))

set X=0 iff a line change was requested

3435 X=X*(Y1=])

set CL pointer to (new) line

@ Yi=I1

given Y! update Y,Y®, fetch CL and redraw screen only if a page change

is necessary (giving some context to the user)

@ GOSUB 625

exit

® RETURN

Q0/@8/14 17:28:47 FILE: P3500 TEXT 768 ©8/14/00 17:28

Command key [f1[V] - view amountof free memory left

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrawn

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED:

TRASHED:

prompt user with MEM

3500 'C27': PRINT FNM$("Memory: “&STRE(MEM));

display cursor and exit

@ GOTO 1230

@0/08/14 17:28:58 FILE: P2600 TEXT 1280 @9/14/00 17:28

Command key [f1[S5] - (un)set mark(s)

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrawn

ASSERT ON EXIT:

INPUT:

QUTPUT: A ,A1

MODIFIED: A (on first press), Al (on second press), (A,Al on third press)

TRASHED:

put "Mark" on message line...

3600 'C28’': PRINT FNM$("Mark");

if first mark is unset...

@ IF A<® THEN

put " 1" on message line

PRINT 1;

set first mark to CL

@ A=Y

display cursor and exit

@ GOTO 1230

else if 2nd mark is unset...

3605 IF A1<@ THEN

put " 2" on message line

PRINT 2;

set 1st mark to min(1st mark ,CL) and 2nd mark to max(lst mark ,CL)

@ Al=A @ A=MINC(A,Y1) @ AI=MAX(Al, Y1)

display cursor and exit

@ GOTO 1230

else...

put "s cleared" on message line

3610 PRINT "s cleared";

clear 1st and Znd mark

@ GOSUB 470

display cursor and exit

@ GOTO 1230

endif

Q0/09/14 17:29:17 FILE: P3700 TEXT 2304 08/14/00 17:29

Command key [f1[M] - move block

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrauwn

ASSERT ON EXIT: A,Al unset

INPUT: A,Al

QUTPUT:

MODIFIED: FILE,Y,YQ,Y! (if Y1<A),A,A1,L$ (if Y1 is within block)

TRASHED: S1%,T,1

store CL, check if both marks are set and error out if not

3700 'C29': GOSUB 740

check if CL is within block and error out if not

@ GOSUB 750

T=1 if block is below CL otherwise T=0 (T is the offset multiplier [see

belowl)

® T=Y1<A

put out message

@ PRINT FNM%("Moving"); @ GOSUB 620

for each line in the block (I is the offset of the line within the block)

3710 FOR I=0 TO Al1-A

fetch line at an offset which is I for lines below CL (insertion point)

and constantly @ for lines above CL (because no lines will be inserted

between BOF and block in this case)

@ READ #1 ,A+I*T;Le

delete that line (this is why the offset can be constantly @: if A

points to a line and that line is deleted and NOT replaced by another

one then A now points to the line following the one which was deleted)

® DELETE #1 ,A+IxT

now insert line above CL at an offset which is constantly -1 if the

line was deleted above CL (since Y! doesn’'t really float) and I-1 if

the line was deleted below CL (since the number of lines between BOF

and CL effectively increses)

@ INSERT #1 ,Y1+I#T-NOT T;L%

endfor

@ NEXT I

if no lines were deleted above CL then increment CL pointer by size of

block

3735 IF T THEN Yi=Y1+(Al-A+1)

given Y1, adjust Y,bYO

3745 GOSUB 630

clear all marks

@ GOSUB 470

redraw screen

@ GOsSuB 710

display cursor and exit

@ 60TO 1230

00/08/14 17:29:53 FILE: P3800 TEXT 1782 ©09/14/00 17:29

Command key [f1IC] - copy block

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrawn

ASSERT ON EXIT: A and Al still reference the same lines as before

INPUT: A,A1

QUTPUT:

MODIFIED: FILE,U,A,A1,Y,YD,bY1

TRASHED: S1%.,7,I,S

store CL, check if both marks are set and error out if not

3800 °'C30': GOSUB 740

check if CL is within block and error out if not

@ GOSUB 750

put out message

® PRINT FNM&("Copying"); @ GOSUB 620

NOTE: see [f1[M] for its similarity

T=2 if block is below CL otherwise T=1 (T is the offset multiplier [see

belowl)

3810 T=(Y1<A)+]

for each line of the block (I is the offset within the block)

@ FOR I=0 TO Al-A

fetch line at offset I if inserting below block or at offset 2+I if

inserting above block

@ READ #1 ,A+I+T;L$

insert line right above CL

@ INSERT #1 ,Y1+I;L%

end for

@ NEXT I

T=1 if block is below CL otherwise T=0

3835 T=T-1

compute size of block in §

@ S=A1-A+1

increment line counter by &

@ U=U+S

if lines were inserted above block then increment marks by S (to preserve

their references)

@ A=A+S*T @ Al=A1+5*T

update CL pointer

@ YI=Y1+S

given Y1, adjust Y,LYO

7840 GOSUB 630

redraw screen

@ G0SUB 710

display cursor and exit

@ 60T0 1230

00/29/14 17:30:20 FILE: P3300 TEXT 3072 09/14/00 17:30

Command key [f1[D] - delete block

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrauwn

ASSERT ON EXIT:

INPUT: A,Al

QUTPUT:

MODIFIED: N$ (if USER), X (if A<=Y1<{=A1),U,A,Al L% (if CL is deleted)

TRASHED: S14,P,I

store CL, check if both marks are set and error out if not

2900 °'C31': GOSUB 740

put out message and cursor

® PRINT FNM$("Delete? Y/N/Q"); @ GOSUB 1230

ask for user’'s confirmation in P

3910 60SUB 615

turn off cursor and clear message line

@ GOS5UB 670

if user didn’'t press "Y" then display cursor and exit

@ IF P>1 THEN 1230

put out message

3915 PRINT "Deleting"; @ GOSUB 6520

for each line in the block

@ FOR I=A TO A1l

delete that line

@ DELETE #1.,A

endfor

® NEXT 1

if CL was deleted then set cursor x-coordinate to zero

3925 X=X*(Y1<A OR Y1>Al)

the following assignament can be understood as follows:

if block is below TOS IF YO<A

don’t move TOS to let lines enter

screen from below YO=Y0

else if block includes TO0S ELSE IF A<=Y0<{=Al

compute size of portion of block

containing BOS T=A1-YO+1

set TOS T lines above 1st mark to

let T lines enter screen from above YO=A-T

if not enough lines are available

above deleted block then set

TOS to BOF YO=MAX(0,Y0)

else if block is completely above TOS ELSE IF A1<YO

decrement Y@ by size of block to let

lines enter screen from above YO=YO-(AI-A+1)

3930 YO=YO*(YOQ<A)I+MAX(D ,A-(A1-YD+1))*(A<=YD AND YO<=A1)+(YB-(A1-A+1))*(A1<YD)

the following assignament can be understood as follows:

if block is below CL IF Y1<A

don’t move CL Yi=Y1

else if block includes CL ELSE IF A<{=Y1<{=Al

if block includes last file line IF Al=U

set CL to last line Yi=A-1

else ELSE

set CL at first line below

deleted block Y1=A

else if block is completely above CL ELSE IF A1<Y1

decrement Y! by size of block YI=Y1-(CAl-A+1)

3935 Yi=Y1#(YI<A)+MAX(Q ,A-(A1=U))*(A<=Y1 AND Y1<=A1)+(Y1-(AI-A+1))*(A1<Y1)

given Y1, adjust Y,YO

3940 6GOSUB 630

decrement line counter by size of block

@ U=U-(A1-A+1)

if file was depleted then insert one empty line

@ G0SUB 440

clear all marks

28960 6GOSUB 470

redraw screen

@ 6GOsSUB 710

display cursor and exit

@ GOTO 1220

@0/09/14 17:31:15 FILE: P4000 TEXT 1024 99/14/00 17:31
-+tttIt121ttt11ttt-+tr2tttittt1

Command key [gl[ON] - edit another file

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: buffer file isn't purged

INPUT:

QUTPUT:

MODIFIED: this is a complete restart; most variables are modified

TRASHED:

store CL, display replace cursor + clear screen, restore 1/0 devices,

scroll & delay rates, pwidth, endline, clear flags

4000 'C32': GOSUB 910

clear return stack

@ POP

reinitialize variables and go to input edit file name

@ GOTO 100

P0/09/14 17:31:22 FILE: P4100 TEXT 1024 @8/14/00 17:31

Command key [f1[(] - move to previous word

ENTRY POINTS: #52 (842)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

ENTRY #52:

reverse CL (REV$%) to search leftwards, starting from the column

immediately left of the cursor (LEN(L®)-X+1) find position of first

non-blank character (SPAN) or default to ! if no such character exists

(MAX(1,...), starting from that position search first ' ' (P0OS), convert

this value into x-coordinates (LEN(L$)-...+1) ad assign it to X

4100 'C33°: X=LEN(L$)-POS(REUS(LS)," " ,MAX(1 ,SPAN(REVS(LS)," " ,LEN(LS$)-X+1)))+I

if X>LEN(CL) then set X to @ (to catch 1st word on line)

4105 X=X*(X<=LEN(LS$))

display cursor and exit

@ 60TO 1230

@0/09/14 17:31:39 FILE: P4200 TEXT 1792 ©09/14/00 17:31

Command key [fI1[E] - erase invisible characters and trailing blanks

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: FILE,X

TRASHED: S1%,7,1,J,5,P

turn cursor off

4200 'C34°: PRINT C5%;

store current line

@ GOSUB 490

initialize counter of bytes saved

@ T=0

get block boundaries [I,J]

@ GOSUB B40

put out message

@ PRINT FNM$("Erasing...");

set cursor to tst column (to a known position, since if invisible

characters were deleted from CL and the cursor weren’t moved then the user

may not understand what’s going on)

@ X=0

for each line in the block

4205 FOR I=I TO J

fatch that line

@ READ #1,I5L%

save line length for later

@ S=LEN(LS$)

set pointer to beginning of line

@ P=1

while an invisible character is a member of the line

4210 P=MEMBER(LS%$,M% ,P)

delete that character and increment counter of bytes saved

@ IF P THEN L$[P,P1="" @ T=T+1

endwhile

® GOTO 4210

now trim trailing spaces

4215 LE=RTRIMS$(LS)

if any characters were removed from the line then store line and

increment counter by the number of trimmed spaces

@ IF SH#LEN(L%) THEN REPLACE #1,I;L% @ T=T+S-LEN(LS$)

endfor

4220 NEXT I

redraw screen

@ GOsuB 710

put out count of bytes saved

@ PRINT FNE$(STR$(T)I)&" byte(s) saved");

display cursor and exit

@ GOTO 1230

00/08/14 17:32:07 FILE: P4300 TEXT 1024 @9/14/00@ 17:32

Command key [f1[B]l - cursor to previous occurrence of character on line

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X {not always),N$ (if USER)

TRASHED: Q%.,T

get text key or abort if it is a command key

4300 'C35*': 6G0SUB 610

find position of key taking case into account (MAPKEY)

NOTE: this means that specifying case in key definitions is impossible

@ T=POS(REVS$(L$) MAPKEY$(Q%) ,LEN(LS)-X+1)

if key found then update cursor position

@ IF T THEN X=LEN(L$)-T

display cursor and exit

4310 60OTO 1230

00/@9/14 17:32:24 FILE: P4400 TEXT 1024 ©09/14/00 17:32

Command key [fI1[G] - cursor to next occurrence of character on line

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X (not always),N$ (if USER)

TRASHED: Q% .,T

4400 'C36°': GOSUB 610

find position of key taking case into account (MAPKEY)

NOTE: this means that specifying case in key definitions is impossible

@ T=POS(L$,MAPKEY$(Q%) ,X+2)

if key found then update cursor position

@ IF T THEN X=T-1

display cursor and exit

4410 GOTO 1230

00/09/14 17:32:37 FILE: P4500 TEXT 768 09/14/00Q 17:32
- oot T . G ot o S S (O A TS S D oSoGSS Wi M WA oSN We S D wh Sam N Lo WS TR SN S WD G W WS tovs S WY 4o v SN SN G G vSR mum @i Gved Gimy wmw v - o ——TTTTTNSTN TTTTTTITT I TT T TTTSRNSTTTSTSNNSSTTSNTSINSNSSTRSSmEmIST

Command key [f1[A] - toggle wrap-around (automatic) mode

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: W

QUTPUT: W

MODIFIED: W, FLAG @

TRASHED:

W (initially set to @) is the run-time wrap-around flag (W=0 means w-a

enabled);

flag @ (initialy false) is the lcd w-a flag;

NOTE: see note about flag 1 in [fI[SPC]

toggle those flags...

4500 *C37’: W=NOT FLAG(® ,NOT W)

and exit

@ RETURN

PB/09/14 17:32:49 FILE: P4600 TEXT 1636 @8/14/00 17:32

Command key [fI1[J] - join two lines

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: Y! unchanged if lines can be joined, otherwise Y! incremented by

1

INPUT:

QUTPUT :

MODIFIED: (Y, YQ,Y1, L% (if Y1#U))

TRASHED: (S14,R%,5 (if Y1#U))

if CL isn’t the last file line...

4600 'C38': IF Y1=U THEN RETURN

then

ELSE

remove trailing blanks from CL and save it in R$ (NOTE: CL is left

UNCHANGED in FILE)

R$=RTRIM&(L%)

move cursor down one line (this also modifies L$)

@ GOSUB 1200

if concatenate(norightblanks(lineabove), blank, noleftblanks(CL))

doesn’t fit within the window

46505 IF LEN(R®)+LEN(LTRIMS(LS$))>=C2 THEN

then put out message

PRINT FNE$("Line too long");

display cursor and exit (NOTE: cursor stays on offending line to

allow incoming [f1[J1’s to continue joining)

@ 60TO 1230

else

store joined lines in L$

4610 L$=R$&" "BLTRIMS(LS®)

store L$, move cursor up one line

@ GOSUB 1300

delete CL (which is a duplicate of the left part of the line

below), redraw lower portion of screen and exit

®@ GOTO 2600

endif

endif

Q0/09/14 17:33:12 FILE: P4700 TEXT 1536 09/14/00 17:33

Command key [f1[T] - go to next tab-stop on line

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: S2.,T$

QUTPUT:

MODIFIED: X

TRASHED: I,T7

if relative tab-stops then put cursor to next tab-stop...

4700@ 'C39°: IF S2 THEN X=RMD((X+52) DIV S2#52,C1)

with wrap-around

@ X=X*(X>=82)

display cursor and exit

@ GOTO 1230

else

if cursor position is grreater than maximum tab stop then wrap-around

4705 IF X>=NUM(TSLLEN(TS)1)-NUM(TS) THEN X=0

display cursor and exit

@ GOTO 1230

else

i=0; repeat

increment i

4710 FOR I=1 TO LEN(TS$)

compute i-th tab-stop in T

@ T=NUM(TSLI1)-NUM(TS)

until tab-stop T is greater than cursor position

@ IF T>X THEN I=INF

4715 NEXT 1

reduce new cursor position within window (to prevent user’'s mistakes)

@ X=RMD(T,C1)

display cursor and exit

@ 60TO 1230

endif

endif

Q0/09/14 17:33:35 FILE: P4800 TEXT 2816 @9/14/00 17:33

Command key [flLY] ~ yank block/file to buffer or file to device

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: A,Al

OQUTPUT:

MODIFIED: N% (if USER), Y& ,FILE Y%

TRASHED: S1%,T,R%,6,%#2,1,J

store current line

4800 'C40’: GOSUB 490

input buffer/device name

4805 Y$=FNI$("Yank to:",Y$,16,1)

if null input then display cursor and exit

@ IF NOT LEN(Y$) THEN 1230

else

put out message

4810 GOSUB 600

store buffer size (or error #) in 6

@ G=FILESZR(YS%$)

if buffer already exists then purge it

@ IF G>=0 THEN PURGE Y$

4815 ON ERROR GOTO 4825

if no marks are set

4820 IF A<@ THEN

then ATTEMPT to copy whole file to buffer/device

COPY F$ TO Y%

and if everything went well then do some house-keeping and exit

@ OFF ERROR

@ GOTO 4860

endif

4825 OFF ERROR

if any errors occurred (but 'file not found')

® IF 6<0 AND G#-57 THEN

put out error message

G05UB 420

and retry

@ GOTO 4805

else (no errors & mark(s) set & not a device)

create buffer

4845 CREATE TEXT Y#

@ ASSIGN #2 T0 Y&

get block boundaries [I,J]

@ GOSUB 640

foreach line in the block

4850 FOR I=I TO J

fetch that line

@ READ #1,I:L8

and append it to the buffer

@ PRINT #2;L$%

endfor

@ NEXT I

® ASSIGN #2 TO «

fetch CL (for-loop changed L%)

NOTE: PROBABLY using 51% would allow deleting this instruction

@ 605UB 520

clear message line

4860 605UB 670

display cursor and exit

@ 60TO 1230

endif

endif

00/09/14 17:34:10 FILE: P4900 TEXT 2048 09/14/00 17:34
- o >To ToT on wow dn S Ss SN PN S Sy M eeG e S eoe (vt b e e oo M oM W e W SR MU M G SW vEm SE e GAm WY W vt Smw G Mg e UM SUY S SEm Ywm GGw AN Dow AN SN GND e S duw fww wn penTNTTNTTTNNTTTTSSN TSTSS SRS NTSTN S N S S S T NTTSSTT ST S T SSm SsTmem=

Command key [f1[I] - insert from buffer

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: A ,A1

QUTPUT:

MODIFIED: N% (if USER),Y$,FILE,U,Y,YD, Y1

TRASHED: S1%,T,R%,6,#2,1

store current line

4900 'C41': GOSUB 490

input buffer name

4905 Y$=FNI$("Insert from:",Y$,16,1)

if null input then display cursor and exit

@ IF NOT LEN(Y$) THEN 1230

else

store buffer size (or error#) in 6

4920 G=FILESZR(YS$)

if buffer empty then display cursor and exit

@ IF G=0 THEN 1230

else

put out message

4930 GOSUB 600

if something’s wrong with the buffer then put out error message

@ IF G<@ THEN GOSUB 420

and retry

@ 6OTO 49065

else

4935 ASSIGN #2 TO Y%

foreach line in the buffer

@ FOR I=0 TO G-1

fetch that line

@ READ #2;L%

insert it right above CL

@ INSERT #1,Y1+I;L%

endfor

@ NEXT I

4950 ASSIGN #2 TO »

increment line counter

@ U=U+G

and CL pointer

@ YI=Y1+46

given Y1, adjust Y,YQ giving some context to the user

@ GOSUB B30

redraw screen

@ GOSUB 710

display cursor and exit

@ GOTO 1230

endif

endif

endif

00/@9/14 17:34:40 FILE: P5000 TEXT 1280 029/14/00 17:34

Command key [gl[RUN] - enter control characters

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: J% (not always)

TRASHED: Q% ,P

get key or abort if it is a command key

5000 °'C42': GOSUB 610

see if it can be a control character and which

NOTE: unfortunately the standard keystrokes for control characters involve

two keys which are not found in the HP71 keyboard (backslash, underscore).

This means that key definitions are necessary to exploit this routine.

@ P=POS("@ABCDEFGHIJKLMNOPQRSTUVWXYZL\NI"_" ,Q%)

if not a control character

5010 IF NOT P THEN

undo that key

FKEY Q%

and exit

@ RETURN

else

ELSE

compute byte corresponding teo control character taking into account

highlight mode

JB=CHRE(128*H+P-1)

pass control to text key handler

@ GOTO 800

endif

Pe/@9/14 17:35:04 FILE: P5100 TEXT 2816 09/14/00 17:35

Command key [fl[Q] - find and replace pattern with query (conditionally)

This is a collection of subroutines to be used in conjunction with [f1[R1].

ENTRY POINTS: #53 (3275), #54 (3276)

[f1[Q] has the same effects as [fI1[R].

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED:

TRASHED:

Main routine:

set prompt parameter for input routine

5100 *C43’: Q&="Q:"

set Query flag

@ SFLAG 3

go do [fI[R] (entry #50)

@ GOSUB 3205

clear Query flag

@ CFLAG 3

exit

@ RETURN

ENTRY #53: ask for user's confirmation

5110

5120

51320

INPUT: S@,T from [fI[R]

QUTPUT: Q=1 if confirming or [f][R] (flag 3 clear), loss of control

if quitting, otherwise Q=0

initialize response to true

5105 Q=1

if doing [fI1[Q]) (flag 3 true)...

@ IF NOT FLAG(3) THEN RETURN

set cursor to column where match is found

X=50-1

and CL pointer to line of match

@ Yi=T

if CL is on screen already

@ IF FNY THEN

simply update cursor y-coordinate

Y=Y1-Y0O

else

ELSE

update both TOS pointer and y-coordinate giving some context to the

user

G0SUB B35

and redraw screen

@ GOSuUB 710

endif

put out message

PRINT FNM$("Y/N/Q ? :"BL%$[SO,511&": to :"BSIS&":");

and cursor

@ 6G0SuUB 1230

wait for a key-press

GOSUB B1S

clear message line

@ GOSUB 670

if 'quit’ was specified

@ IF P=3 THEN

pass control to exit routine of [f1{R] (sorry, I know it’'s

disgusting, but...)

POP

@ GOTO 3285

else

ELSE

if ’'yes’' then Q=1 else Q=0

Q=P=1

return (to [f1[R])

@ RETURN

endif

endif

ENTRY #54: display modified line

ASSERT ON ENTRY: screen is already redrawn

INPUT: FLAG 3,L%

if doing [f1[Q]

5135 IF FLAG(3) THEN

turn cursor off

PRINT CS5%;

erase CL from screen

@ GOSUB 510

display modified line

@ PRINT L%;

endif

return (to [fI[Q1)

5140 RETURN

P0/89/14 17:35:48 FILE: P5200 TEXT 768 @89/14/00 17:35

Command key [f1[@] - toggle user mode

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: FLAG -9

QUTPUT: FLAG -9

MODIFIED: FLAG -9

TRASHED: T

NOTE: this is not a 1 USER command.

toggle that flag and exit

G200 'C44°: T=FLAG(-9,NOT FLAG(-9)) @ RETURN

@0/09/14 17:35:58 FILE: PS000Q TEXT 768 09/14/00 17:35

Routine: version subroutines

ENTRY POINTS: #55 (40,45,50,51), #56 (905)

ASSERT ON ENTRY:

ASSERT ON EXIT: all lines but 9999 are exit points of VE.

INPUT:

QUTPUT:

MODIFIED:

TRASHED:

ENTRY #55: INPUT: U$

complain if lex files which can respond to the version poll aren’t in RAM

9000 'VERERR’: DISP "No ";U$;" LEX file." @ BEEP

do house-keeping and end

@ GOTO 905

ENTRY #56: Abandon every hope Ye who exit...

9998 END SUB

return version of VE

9999 SUB VER(VU$) @ VUs="VUE:1.1" @ END SUB

Q0/@9/14 17:36:16 FILE: VEFOLD BASIC 312 ©9/14/00 17:36

10 SUB VEFOLD(#1,U,C2)

20 DIM L#(1501,C%[9] @ Cs=" -"

30 PRINT "Wait..." @ C1=C2+1 @ I=0

40 'LP': IF I>U THEN END

50 READ #1,I:5L% @ IF LEN(L®)<{=C2 THEN ’NL’

6@ °'NP': IF NOT MEMBER(L®$[1,C2]1,C%) THEN BEEP @ DISP "WRN L";STR$(I);":";MS5G%$(65

) 8@ GOTO *SL”

70 T=C1-MEMBER(REVS®(L®[1,C21),C$) @ INSERT #1 I;L$[1,T]1 @ L$=L$[T+1]1 @ I=I+1 @ U

=U+1

80 IF LEN(L$)>C2 THEN NP’

90 °SL’: REPLACE #1,I;L%

10@ 'NL’: I=I+1 8 GOTO 'LP’

00/09/714 17:36:26 FILE: VEFOLDT TEXT 3072 ©@9/14/00 17:386

Subprogram VEFOLD - version 1.1 - optional run-time subprogram for VE

This subprogram MUST reside in file VEFOLD

Purpose: to fold lines that exceed C2 characters in length.

ASSERT ON ENTRY: channel #1 assigned to a text file, U is not greater than the

last record # (usually it IS the last record #)

ASSERT ON EXIT: no lines in [@,U] are longer than C2 characters

INPUT: #1, U (see above), C2 (see above), C$% (a list of characters at which

lines can be folded)

QUTPUT: U

MODIFIED: U, file #i

1@ SUB VEFOLD(#1,U,C2)

text line + list of characters

20 DIM L&(1501,C$0[9]

the following assignment is only a suggestion: fold at spaces and dashes

NOTE: long lines are folded at the rightmost occurrence of a member of C$

(in [1,C21). If no such occurrence exists then a warning is issued. Members

of C% are left at the END of the folded portion of the line.

ex. if C2=7, C$=" " and #! contains:

this is the time

for all good men

then #1 will become

this_

is the_

time

for_

all_

good_

men

where underscores represent dangling spaces

@ Cg=" -"

assume output device is assigned as a PRINTER (this is perfectly compatible

with VE)

3@ PRINT "Wait..."

C! will come handy

@ Ci1=C2+1

init pointer to current line

@ I=0

line_process:

while I doesn’'t point past the last line

49 'LP’: IF I>U THEN END

50

6@

70

80

90

100

fetch I-th line

READ #1,1;L®

if it needs folding then

@ IF LEN(L$)<=C2 THEN ’'NL’

next_portion:

repeat

"N :

if
'NP

els

there isn’t a character at which to fold

*: IF NOT MEMBER(L®[1,C21,C%) THEN

then complain

BEEP

issue warning

@ DISP "WRN L";STR$(I);":";MS6H(65)

save current portion of line and continue

@ GOTO ’'SsL°

e

put in T the position of the rightmost member of C% (in [1,C21)

T=C1-MEMBER(REVS$(L$[1,C21]1),C%)

insert left portion of string into the file

@ INSERT #1,I;L8$01,T]

trim left portion

® Le=Ls[T+11

point right below inserted portion

@ I=I+1

increment block boundary

® U=U+1

endif

until line doesn’t need folding

IF LEN(L$)>C2 THEN °'NP’

store_portion:

store portion left after folding

'SL': REPLACE #1,I;L%

endif

next_line:

point to next line

endwhile

@ GOTO ’LP!

I= I+1

Q0/89/14 17:37:17 FILE: IMPROVE TEXT 5120 ©9/14/00 17:37

This file describes some improvements which were planned but, for many reasons,

were never implemented.

REPEATING KEYS

Version 1.1 has four repeating keys: [UP],[DNJ],[LF] and [RT1. File MAKESQ95

lists other five keys as possible candidates for repetition ([f1[C1, [fI1[)1,

(FILLFY, [fILRT] and [fI[T1). Text keys are not repeating. This situation is

primarily due to KEYDOWN, which doesn’t accept other than primary keys. Line

285, therefore, can be executed only if K$ is a primary key, otherwise the

program halts on error. If K$ could be replaced by an expression returning

the value of the primary key associated with K% then much of command key

repetition could be saved, at least for those five command keys and for all

text keys. Of course, testing the primary counterpart of any key for

being down isn’t logically correct for prefixed keys, but that's all we have

(even the lcd editor has the same problem). The string expression should be as

simple as possible, because speed is a primary concern for VE, and should map

key numbers [57,112] and [113,168] onto [1,56]. A piece of code like

t=key#(key) mod 56

if t=0 then t=56

if keydown(keyname(t)) then repeat key

would do, but it is surely too slow. Therefore, I suggest something more

involved and less correct, but faster, such as

if keydown(keyname(key#(key) mod 56)) then repeat key

This solution works for all keys but key # 56,[(+1, which isn’t repeating.

A similar scheme could be applied to text keys, as well, thus removing a

serious limitation of VE. To sum up, repeating keys can be implemented as

follows:

1) DIMension and extend (using MAKESQ95) H%, the list of repeating command keys

2) Rewrite line 285 as follows:

285 IF KEYDOWN(KEYNAME(MOD(KEYNUM(K®)),56) THEN 275 ELSE RETURN

3) Add line 267 as follows:

267 IF KEYDOWN(KEYNAMS(MOD(KEYNUM(K%$),56)) THEN GOSUB 800 @ GOTO 2E5

where KEYNAM$ and KEYNUM are keywords found in the CUSTUTIL lex file.

Of course, I wish KEYDOWN were rewritten to be less xenophobic: for instance,

it could accept 'fX' or 'gX' and understand that X’ was really meant (it

couldn’t be anything else anyway). Then step (2) could be left out and step (3)

could be simplified to

267 IF DOWNKEY(K®%) THEN GOSUB 800 @ GOTO 2B7
* ¥ * ® ¥

Two after-thoughts:

(1) command key [fl[J] could be made repeating; the user could ‘'pack’ the whole

file just by keeping [J] depressed.

(2) Variable H% can be eliminated from VE and MAKES0385 in a simple way:

(a) rearrange 0% (in MAKESQ95) so that all repeating keys are grouped together

at the beginning of 0% (ex. 0%(1,41)

(b) rename the labels for command keys in VE to reflect the new order in 0%

(you don’t need to move code)

(c) substitute line 280 with

280 IF K>4 THEN RETURN

where 4 represents the number of repeating keys. Since this modification is a

bit cumbersome I suggest to apply it only ater all repeating command keys have

been chosen and implemented.

MISSING COMMANDS

Certainly many commands were left out from VE, but that’s primarily due to

memory constraints or dubious utility. However, there’s at least one command

which I wish had been implemented, namely the ’execute BASIC and insert output’®

command. I feel that such a command would tremendously enhance VE as a

working tool. The command could be assigned to [fl[X] (execute) and could be

implemented as follows:

(1) DIMension 0%

(2) Add CHRB(NUM(MAPKEYS$(L[fII[X1))) to the list of command keys in MAKES095; run

MAKES®95; EDIT VE; MERGE OSTR

(3) add the following subroutine

store CL

5300 'C45': GOSUB 490

put out message

@ GOSUB 600

ignore missing sub

® ON ERROR GOTO 5310

call user’s program

® CALL USERPRGM(#%1,Y1,C2)

531@ OFF ERROR

compute file increase in T

@ T=FILESZR(F$)-1-U

update CL pointer

@ YIi=Y1+4T

update pointer to last line

@ U=U+T

given Y1, update TOS pointer and y-coordinate

@ GOSUB B30

redraw screen and exit

@ GOTO 710

Obviously, the above code puts all responsibility upon the user's program

USERPRGM which:

(a) MUST NOT mess up with flags 0-4, -3, DISPLAY IS & PRINTER IS device

assignments

(b) MUST send all relevant output to the edit file (#1) using ONLY the

following statement

INSERT #1.,Y! ,output_stringl1,C2]

(c) doesn't have any other constraints apart from (a) and (b).

Possible applications:

(A) the easiest one is to recall the results of a computation into the edit

file. The user could write something like this:

1@ SUB USERPRGM(#1.,Y1,C2)

20 DIM S$[255]

30 LINPUT “"Expression:";S5%

4@ IF S#="" THEN END SUB

50 S$=STR$(VAL(SS))

6@ INSERT #1,Y1,8%[1,C2]

70 GOTO 30

(B) I am sure you can think of many other applications...

Q@/@9/14 17:38:32 FILE: MKUEDB BASIC 1219 ©09/14/00 17:38

1 ! MKVEDB v.1.1 - MaKE VE Data Base

10 F$="VEDB"

20 DIM C1sl4]1,C2¢041,C3%041,C4%041,C5%(4]1,C%[4]1,RO%[(4]1 ,R1$04],C6%[41,C7604] E1s[

4] ,E$(4]

20 DIM S$[(961,M$(2561,0%010]

4@ INTEGER S .,E,T

50 T=FLAG(-1,1) @ PURGE F$ @ T=FLAG(-1,T)

70 CREATE DATA F$ @ ASSIGN #1 TO F%

80 LINPUT "Invisible char’s (ASCII ordered subranges):","0,31 ® 127,159 @ 255,25

5";5¢%

90 GOSUB 310

100 LINPUT "Cursor right (ASCII):" ,"27,67";5% @ CI1$=FNE$(S%)

11@ LINPUT "Cursor down (ASCII):" "27.,66";5% @ C2%=FNE%(5%)

120 LINPUT "Cursor left (ASCII):","27,68";5% @ C3%$=FNE$(S$)

130 LINPUT "Cursor ON (ASCII):" ,"27,62";5% @ C4%=FNE$(S5%)

140 LINPUT "Cursor OFF (ASCII):" "27.60";5% @ CS5%=FNE$(S$)

150 LINPUT "Clear to bottom (ASCII):" ,"27,74";5% @ C$=FNE$(SS$)

16@ LINPUT "Scroll DOWN (ASCII):" ,"27,83";5% @ RO$=FNE$(S$)

170 LINPUT "Scroll UP (ASCII):","27,84";5% @ RI1$=FNE$(S$)

180 LINPUT "Display replace cursor (ASCII):" ,"27.,82";5% @ CE$=FNE$(S%)

190 LINPUT "Display insert cursor (ASCII):" "27,81";5% @ C7$=FNE$(S%)

200 LINPUT "Clear display device (ASCII):" "27,69":;5% @ E1$=FNE$(5%)

220 LINPUT "Clear screen page (ASCII):" , "27,72,27.,74";5% @ E$=FNE$(S$)

230 PRINT #1;M%$,C1%,C2%,C3%,C4% ,C5%,C% ,RO% ,R1% ,C6%,C7%,E1%$ ES

240 ASSIGN #1 TO =+

250 END

260 DEF FNES$(I%)

270 0%="" @ S$=Is&","

280 IF LEN(S$)>1 THEN 0%=0%8CHR$(VAL(S%)) @ SH=S$[POS(S%," ,")+11 @ GOTO 280

290 FNE$=0%

300 END DEF

310 MB="" @ S%=5%3"0"

320 IF LEN(S$)<2 THEN RETURN

230 S=UAL(S%) @ E=VAL(S$IPOS(SS,",")+1]1) @ SH=5$[P0OS(S%,"0")+11

340 FOR I=5 TO E @ M%=M$RCHR®(I) @ NEXT I @ GOTO 320

00/89/14 17:39:00 FILE: MKVEDBT TEXT 2560 ©9/14/00 17:38

Program MKVEDB - version 1.1 - set up data base for VE

QUTPUT: DATA file VEDB which must reside in memory whenever VE is executed

1 | MKVEDB v.1.1 - MaKE VE Data Base

10 F$="VEDB"

same variables as in VE

NOTE: notice variable DIMensioning: it can be a potential problem in a ROM

version of VE when using an interface with LONG escape sequences (>4). Such

is not the case for HP82163-compatible interfaces, but a bit of foresight of

future extensions won’t do any damage. Maybe even 4 isn’'t enough and

variables should be overdimensioned to greater extent.

20 DIM C1%[4],C2%[41,C3%041,C4%[4],C5%[41,Cs(41,

RO%[4]1 ,R1%[4]1,C6%(41,C7%[41,E1%04] ,E$[4]

scratch variables

30 DIM S$[961 ,M$[2561,08[101

4@ INTEGER S .,E,T

50 T=FLAG(-1,1) @ PURGE F$ @ T=FLAG(-1,T)

78 CREATE DATA F$ ® ASSIGN #1 TO F%

default value is for HP82163. More advanced interfaces (i.e. PACSCREEN) can

enter the null string (meaning that all characters are displayable)

80 LINPUT “"Invisible char's (ASCII ordered subranges):",

"0.,31 @ 127,159 @ 255,255";5%

90 GOSuUB 310

10@ LINPUT "Cursor right (ASCII):" ,"27,67";5% @ CI1$=FNE®(S5%)

119 LINPUT "Cursor down (ASCII):","27.,66";5% @ C2%=FNE®(S5%)

120 LINPUT "Cursor left (ASCII):" ,"27,68";S% @ C3$=FNE$(S%$)

130 LINPUT "Cursor ON (ASCII):" , "27,82";5% @ C4%=FNE$(S$)

140 LINPUT "Cursor OFF (ASCII):","27.60";5% @ C5%=FNE$(S%)

150 LINPUT “"Clear to bottom (ASCII):","27,74";5% @ C$=FNE®(5%)

16@ LINPUT "“Scroll DOWN (ASCII):","27,83";5% ® RO%=FNES(5$)

170 LINPUT "Scroll UP (ASCII):","27,84";5% @ RIS=FNE$(S$)

180 LINPUT "Display replace cursor (ASCII):" "27,82";5% @ CE$=FNES(S$)

199 LINPUT "Display insert cursor (ASCII):","27,B1";5% @ C7%=FNE$(5%)

200 LINPUT "Clear display device (ASCII):" ,"27,689":;5% @ E13=FNE$(S%)

220 LINPUT "Clear screen page (ASCII):" ,"27,72,27,74";5% @ E$=FNES$(5%)

230 PRINT #1;M% ,C1%,C2%,C3%,C4%,C5%,C% ,R0%,R1$,06%,C7% ,E1% ,ES

240 ASSIGN #1 TO «

250 END

parse numbers in a list

260 DEF FNE$(I$)

270 0%="" @ S%=I%d","

280 IF LEN(S$)>1 THEN 0%$=0%8CHRS(VAL(S%)) @ S%=S$[P0OS(S%,",")+1]1 @ GOTO 280

290 FNE$=0%

309 END DEF

parse subranges in a list

310 M$="" @ SH=5%&"@"

320 IF LEN(S%)<2 THEN RETURN

330 S=VUAL(S%) @ E=VAL(S$IPOS(SS$,",")+11) @ S$=58[P0OS(5%,"@")+1]

340 FOR I=5 TO E @ M$=M$ZCHR®(I) @ NEXT I @ GOTO 320

e SN R S wrAe.eATATGS S WS WT Sy N et e M GNS S W eW Won Gmw i ————TWoo ——— W YU el W N Wm WY " Suy G w—— an SN MY M W GO wew um W N Swm TR Gwe e mm TG mew SNTTNTNTT T TSTNTTN TT T S TTTTTTTT T N T T TTTTT T T T T T T S T TN ST STNSTSSRS=SSRSRS

@B/09/14 17:39: 43 FILE: MKVEKEYS BASIC 1389 @8/14/00 17:39

1 | MKUEKEYS v.1.1 - MaKe KEY assxgnaments for VE

2 | DON’T RENUMBER - DON'T use CHR$(220) in input definitions

3 ! use STOP to stop at inputs

4 | use DEFAULT to accept default inputs

5 | else enter your own input string

6 ! use STOP to stop at key-presses

7 | else enter your own list (a string) of key-presses

8 ! fQ requires two input parameters (input $, list of key-presses)

9 | BUGBS: fQ STOP (list) won't work in VE

10 | specifying DEFAULT as a key—-press doesn’'t make sense and halts VE on error

11 | f6, fB and #158 need LEN(list)=1 (or STOP)

19 | The key to be defined...

20 DATA f7

29 | and the definition...

30 DATA - ,—,-,—,%48 ,-,%#48 ,#48,- ,#48 ,— ,#48 ,#48 ,- ,#48 ,- ,#48 ,#48 ,- ,fY ,DEFAULT,fI ,DE

FAULT

40 DATA #47 %47 ,- ,#47 447 ,-,f0
50 DATA | ,%#48 ,#48 #48 #48,! ,#48 ,#48, ,448,1 ,#48 ,#48,) ,#48,! ,448 ,#48,1 ,fS,fS ,#51,
fC,#50,f0
6@ DATA | ,#48 ,4#48 #48 $48 - ,-,-,-,#48 - ,-,—-,-,#48) ,4#48 ,#48,!
70 DATA #48 ,%#50,#50,! ,#51 ,#47) #5171 %47, 451 #5171 ,#47 ,«
1000 DIM N®[95] Ke[4] ,KI1$[4]1,I1$0921,0%[64]
1005 O%="#155#158 FF FR FQ FY FI FP FD FG FB °
1010 READ K& @ DISP "Defining [";K$;"1" @ N&=""
1020 ON ERROR GOTO 2000
1030 DISP @ READ K1% @ DISP "[";K1%;"]1 "; @ GOSUB 1035
1031 IF UPRCS(K13)="FQ" THEN GOSUB 1045
1032 GOTO 1030
1035 IF LEN(K1$)>1 THEN N$=NBAMAPKEY$(K1%) ELSE N$=NBIK1$
1040 IF NOT POS(0%,(UPRCS(K1%)&" “)1,41) THEN RETURN
1045 READ I$ @ IF I$="STOP" THEN DISP I%$; @ RETURN
1050 N$=N$RCHR$(220) @ IF I$¥"DEFAULT" THEN N$=N$&I% @ DISP "(";
1055 DISP I%; @ N$=NSRCHR$(220) @ IF I$#"DEFAULT" THEN DISP ")";
106@ RETURN
2000 OFF ERROR @ IF ERRN#32 OR ERRL#103@ THEN BEEP ® DISP ERRM$ @ END
2020 DEF KEY K$,N%; @ DISP "DONE"

00/09/14 17:40:09 FILE MKVEKEYT TEXT 5378 09/14/00 17:40

Program MKVEKEYS - version 1.1 - make one key assignment for VE

Necessary software: VELEX lex file.

INPUT: DATA string items in lines 1,999: 1st item is the name of the key to be

defined; all following items make the definition

QUTPUT: a key definition (typing-aid)

Algorithm: in definitions command keys are stored in MAPKEY$ format (one byte

per key) while text keys are represented literally.

Some command keys need one or two parameters (an input string or a list of

key-presses, a list of key-presses). It is possible to specify inputs simply by

keying them in as the item following the name of the command key. It is also

possible to make VE stop at inputs - by keying in the item ’*STOP’ (capital

letters) - or accept default values supplied at inputs - by keying in the item

'DEFAULT’. In definitions inputs are enclosed between a pair of CHR%(220)’s;

DEFAULT is represented as CHR$(220)&CHR$(220) while STOP is represented as the

null string. Byte 220 was chosen since MAPKEY$ can’t return it.

EXAMPLE:

5p
it

1

W
O
I
D
U
T
S
N

10

er

IR

19
20
29
30

40
50

60
70

'delete the first three empty lines’ can be expressed as:

DATA fQ,/\"$//,YYYQ

and is represented as

CHR$(1B9)&CHR$(220)&"/\"$//"&CHRS (220)&CHRS(220)&"YYYQ"&CHR$(220)

NOTE: incidentally, I chose the worst example: the intrinsic complexity of fQ

in key definitions is apparent (fQ is the only command which requires 2

parameters). The above definition will work correctly only if there ARE at

least three empty lines in the file). Also, due to the method of

representation of key defitions, there is no way to represent fQ,STOP,...

correctly (anyway, I think it really doesn’t make any sense).

ecifying STOP as a list of key-presses will work, but DEFAULT won't (what’s

s meaning anyway). Finally, only fQ should specify more than one key-press.

I MKUEKEYS v.1.1 - MaKe KEY assignaments for VE

| DON’T RENUMBER - DON'T use CHR$(220) in input definitions

I use STOP to stop at inputs

I use DEFAULT to accept default inputs

I else enter your own input string

I use STOP to stop at key-presses

I else enter your own list (a string) of key-presses

I fQ requires two input parameters (input %, list of key-presses)

I BUGS: fQ STOP (list) won’t work in VE

| specifying DEFAULT as a key-press doesn’t make sense and halts VE on

ror

I f6, fB and #158 need LEN(list)=1 (or STOP)

example of key definition

| The key to be defined...

DATA f7

I and the definition...

DATA - ,-,-,-,%48,- %48 ,348 ,- ,#48 ,- ,%#48 ,#48 ,- ,#48 ,- ,#48 ,#48 ,—,

fY ,DEFAULT ,fI ,DEFAULT

DATA #47 ,#47 ,- %447 ,447 ,- ,f0

DATA | ,#48 ,848 ,%48,#48,! ,#48 ,#48 ,1,

$48 ,) %48 %48, ,#48,! ,%48 ,#48,1 ,fS,fS ,#51 ,fC ,#50,f0

DATA | ,#48 ,%#48 ,%48 ,#48 ,- ,-,-,-,#48 - ,-,—-,—,#48,1 ,#48 ,%48, |

DATA #48 ,450 ,#50,! ,#51 ,#47,! #51 ,#47 ! ,#51 ,#51 ,#47 ,»

N$: definition

K$,K1%: key names

I$: command parameter

0%: list of command keys requiring parameters

1000 DIM N3[95] ,K$[41,K1$[4],I$092],08[64]
10@5 O$="#155#158 FF FR FQ FY FI FP FD FG FB °"

1010 READ K% @ DISP "Defining [";K#$;"1"
init definition

@ Ng=""

while there’s a DATA item

20 ON ERROR GOTO 2000

fetch it

30 DISP @ READ K1%

@ DISP "[";K18;"1 ";

and process it

@ GOSUB 1035

if it's [fI[{Q] then fetch 2Z2nd parameter

31 IF UPRC®(K1%)="FQ" THEN GOSUB 1045

endwhile

32 6070 1030

process item:

if it's a command key

NOTE: if you want to treat a command key as a text key then you’ll need to

enter ONE byte representing the key, not its KEY$ representation

1035 IF LEN(K1$)>1 THEN

then encode it and store it

N$=NSEMAPKEYS(K1%)

else {it’s a text key} store it

ELSE N$=N$8K1%

if it is a command key and it needs one parameter

1040 IF NOT POS(O%,(UPRCS(K1®)&" “)1,41) THEN RETURN

fetch next item

1045 READ 1%

if it’s STOP

@ IF I$="STOP" THEN

put out STOP

DISP I%;

else

@ RETURN

store left separator

1050 N$=NBECHR$(220)

if it isn’t DEFAULT (or STOP)

@ IF I$#"DEFAULT" THEN

store parameter

NE=NSRI$

put out a symbol of literal parameter

@ DISP "(";

endif

put out parameter

1055 DISP 1%;

store right separator

@ N&=NSRCHRS$(220)

and close literal input if not DEFAULT

@ IF I$#"DEFAULT" THEN DISP ")";

endif

1060 RETURN

endif

if 'no data' when expecting a parameter definition then abort

2000 OFF ERROR @ IF ERRN#32 OR ERRL#1@030 THEN BEEP @ DISP ERRM% @ END

else define key as a typing-aid

2020 DEF KEY K$,N$; @ DISP "DONE"

P0/09/14 17:41:23 FILE: KEYDATA BASIC 1112 @8/14/00 17:41

| This file contains some examples of key definitions for use with MKVEKEYS

|

| the following macro can be used to delete a block spanning all lines from th

current line

| to the first line containing an occurrence of a user-specified pattern

| N.B. fO,fL unconditionally clears all marks.

1@ DATA fO,fL,fS,fF,S5TOP,fS5,fD,5TOP

18 | this macro deletes a block of 1@ lines beginning at the current line

19 | N.B. in fP Y1 is the current line.

2@ DATA fO,fL,fS,fP,'Y1+49" ,fS5,fD,S5TOP

29 | This macro copies your file to mass memory and ends the editing session.

70 DATA fO,fL,fY,:MASSMEM #43

37 ! This macro exploits the on-error behaviour of fJ to help you “compact” your

text; simply

38 | position the cursor on line | and press a few times the redefined key: the

macro attempts

29 | to join two lines 20 times.

4@ DATA fJ,fJ,fJ,fJ,fJ,fJ,fJ,FfJ,FfJ, fJ, FfJ ,FfJ,FfJ, FJ,fJ,fJ,FJ,FfJ,fT, FfJ

49 | this macro does some clean-up in your file (no empty lines or invisible cha

racters

50 DATA fVU,fR,/\"%//,fE, fV

W
O

I
N

—

59 | an essential macro for [f10S], [f1[R] and [f1[Q]

6@ DATA CHR#(S82)

69 ! [glIRUN] may need the following

7@ DATA CHR$(85)

eeeeeReeeeee——eW—— i o o i T—— —__ 7o Vo e Te Yo Wise Mo (en BOE e fwwh G Tt UM WA W S NS W dew AR N dew mww e mens wwwN RSN STSSTSTTT TTTTNN I T T ITT TTT TS T T N TIITTTNTITNI STI I NNSNSNSNSNSRSESR=EEE

P0/03/14 17:44:13 FILE: VELEXS TEXT 44544 @8/14/00 17:44

LEX "WELEX?

TITLE Visual Editor LEX file.

ID #5C

MSG @

POLL polhnd

ENTRY chirp

CHAR #D

ENTRY cursor

CHAR #F

ENTRY mapkey

CHAR #F

ENTRY wvelist

CHAR #D
*

KEY *CHIRP’

TOKEN 06

KEY 'CURS’

TOKEN @7

KEY "MAPKEYS$'®

TOKEN 08

KEY *VELIST®

TOKEN @9
*

ENDTXT
*

R R AR RRRRRR ERE RN R R RNRN R RNRRNR F R RR RAR RRERERNRR

* EQUATE TABLE
R R AR AR AR R R AR R R R R R RRNRRRMRRARRNRRR RN AR RN R R

ERRRERE R R R KRR R R R RN RE R R RR X R RN R KRR RRN RN RN RN X

* SYSTEM ROUTINES
ERR ARRF R AR RRRN RRKRR RNRARRNRR R RERRRRRR

ERERAARRERRRRRERRRRERRKRR RERER KKK

220030327 WA RNING {444CL{L

Il means UNSUPPORTED ENTRY POINT.

*
Kk

¥
ok

Xk

The listed addresses are good for

* version 1BBBB of the HP71 ROMS.
B N W N W N RN W IRINNERNN RRNNN

?7PRFI+ EQU #17380 Check file protection for security.

?7PRFIL EQU $¥1737E Check file protection for privacy.

ADHEAD EQU $181B7 Add string header to mathstack.

ARANGE EQU #045D1 !l Check if upper case character.

BSERR EQU $0939A BASIC System Error.

CHIRP EQU #OEC5A Do an annoying little beep.

COMCK+ EQU $032AE Check comma and output comma token.

CONVUC EQU $#152AA Convert to upper case.

D=AUMS EQU $1A460 Set DO = address in AUMEMS.

FIBADR EQU #11457 Find FIB entry address for channel#

FILSK+ EQU #06F1ID File skip.

FIXDC EQU #05493 Expression list decompile.

FIXP EQU ¥02ABE Parse numeric expression and stop.

GETARG EQU ¥1113E ! Get arguments from program line.

GETCH# EQU #11427 Get channel number.

GTKYC+ EQU #08D39B Get key code.

IDIVA EQU ¥QECBE A-field integer division.

*
¥

Xk
Xk

3k

MFERR
NCH
NUMCK
NXTSTM
QUTBYT
OUTELA
POPI1S
PRPSND
RNDAHX
RSTD1
SAVD1
SFLAG?
STKCHR
SWPBYT
SYNTXe
aRANGE

CHN#SV
MLFFLG
ouTBS
STMTD!
5-R1-1

eIVARG
eEOFIL
eFACCS
eFTYPE

oFTYPh
oFLAGhH

oPROTb
oDEVCH
oFBEGb

sEOF

sBADRC

f1LC

PRINTt

EQU $29393 Mainframe BASIC system error.

EQU 03356 Check for "#" (original name: #CH).

EQU $2369D0 Parse numeric expression.

EQU #08A48 Scan to next stmt, return to BASIC.

EQU $#02CE8 Output one byte from C(B).

EQU $05303 Output end of statement terminator.

EQU $0BD38 Pop 1 string argument off stack.

EQU $06B17 Prepare to send buffer to display.

EQU $136CB Pop-test-round-convert dec to hex.

EQU $#1C596 1! Restore Dt from F-RO-1.

EQU $1C578 1l Save D1 in F-RO-1.

EQU $1364C Test system flag.

EQU $18504 Add a character to a stack item.

EQU $#17A24 Swap bytes.

EQU #02E2B "Syntax" parse error.

EQU #150FD 1! Check if lower case character.
KN WK W N IRINNTNN NNNN NN NINNNNNIE NRN

* SYSTEM RAM LOCATIONS
6 WWM W NNNIIIINNIINNENN RNKRR

EQU $2F36F Channel number save.

EQU $2F870 Multi-Line Function Flag.

EQU $2F58F Output Buffer Start.

EQU $2F896 Statement scratch area.

EQU $t2F886 Statement scratch area.
W W IR KKNN WNI NNNINNKNIKRNNKR

* ERROR CODES
NWW WNN W INNNINI N WA I NI I I N NIINNNNERN

EQU $0000B "Invalid Arg".

EQU $00036 "End of File".

EQU $¥0003C "Invalid Access"”.

EQU $0003F "Invalid File Type".
KUEEEREERERREEEERREEXEREEXRREEEEHRRAREEERERARNRER

¥ OFFSETS
P W W NN W NN N NNNINNKNIIR NN KN NN R NN R KRN R RN RN

EQU $00010 to file type in file header.

EQU 100014 to FLAG nib in file header.
*

EQU $00009 to protection nib in FIB.

EQU $10000C to device type nib in FIB.

EQU $0000D to file begin address in FIB.
BNR IRNI I NINIINI NI NINNKRNW R NER KX

* STATUS FLAGS
W WRN NWKRNNRRNNNNINH NN N NN E RN

EQU $+00007 End of file.

EQU #00008 Bad record.
WMKIRKNI RNN IININNIRRIKRNKRN

* SYSTEM FLAGS
FH I H NN NN ENNRN NNIR NNNINNKKK RNIRR

EQU 00-15 Lower case mode flag.
XXEEZTEEREESEEEEEEEE SRR EEEE R R RS EE RS RS ARAR ERE R &,

* PRINT CLASS STATEMENT TYPE
RNHNNIRKWNNNININNRNRNKNNNN

EQU $00001 PRINT type.
FRUENNNEFERFRNNFERERIERNE NNNNH RRNXXN RERNKRR NERHE

* END OF EQUATE TABLE.
H KNI K NNNNIKII I I NINI IKRNNN

HREREFREEERREXRREERRRERREFEEEERRNXRKE NN E RN KRRRNRN ER

* POLL HANDLER FOR VER®.
IEETTESRRXRR RS RR R R RS LR SRR SRR R RSR R RS RS R R R R R R R R LR RS

polhnd 7B=0 B VER$ poll?

GOYES hver$% Yes: handle it!
RTNSXM No: return “Not handled".

hver$ C=R3 Recall stack pointer.

D1=C D1 @ mathstack.

A=R2 Recall available memory.

Di1=D1- (veren)-(verst)-2

* Make space for VER$, DI @ new TOS.

CD1EX Recall new TO0S.

74>C A Memory ok?

GOYES hver$! No: don't continue.

D1=C D1 @ new TOS.

R3=C R3 @ new TOS.

verst LCASC * VE:1.1’

veren DAT1=C (veren)-{verst)-2

hver$! RTNSXM Done with VER®% poll! DO NOT HANDLE!
HEFRFEEREEEFEEERKEEERRRHRNNNRNRN RN KRNKKKRN

* END OF POLL HANDLER.
M W R NI N NN NNNN INININIINNNNIRNR

*

WNN NN NN NNKNKNNIINIRN KK I NN IR NKRNIRN KN NN

HERRAERERRREEEREEEREAEERFERXRERERFLRRERRRFRREEEXEER RRSN

* %

* %

¥* %

* *

* %

* *

* %

* *

*%

* ¥

* *

* ¥

* %*

LR

* %

% %

* ¥

* %

* ¥*

* %

* %

¥ %

* %

* ¥

* ¥*

* %

* ¥*

* %

* %*

* %

Name: CHIRP

Category: System command.

File: VELEXS.DOC

Purpose: Give a BASIC keyword to the mainframe chirp

routine.

Syntax: CHIRP

Entry: as for any statement execution.

Exit: Through NXTSTM.

Calls: CHIRP

Uses: A, B, C, D, P, D@.

Stack levels: 3

History:

Date Programmer Modification

?7?/7??/77? J.R. Baker Designed and coded in BEEPLEX.

08/04/86 S. Tendon Adapted for VELEX, changed

tokens from SEQ1 to 5CO6.

FREREEFEERERRSFREFERXRERFREREREERFERRERRERREEREEERERENRN

B WNN IN NI WNI R II I NINN KKNIINNKRNKRR R NN

*

chirpd GOVLNG OUTELA Decompile routine.

*

chirpp RTNCC Parse routine.
*

REL(5) chirpd O0ffset to decompile routine.

REL(5) chirpp Offset to parse routine.

chirp SETHEX Needed by CHIRP routine.

60SBYL CHIRP Call mainframe routine.

GOVULNG NXTSTM Return to BASIC interpreter.
*

HEREREERREREXEEREEEEREREFREERRAEEFXEEETFEERAERREREEEREERAERR

(I EEEZEEEEEEEER SRR RS R ARR R RR EEERERREEE A REEE R R AR R R R SRR R LK R X,

* #*

* *

* %

* ¥*

* ¥

* %

* %

* %

* %

* *

* ¥*

* %

* ¥

* %

* %

* %

* %

* ¥*

* %

* %

* %

* %

* %

* %

* *

* #*

* *

* %*

* %*

* ¥

* %

* %

* *

* %*

* #

* *

* *

* ¥

* ¥

* ¥

* %*

* ¥

* ¥

* %*

* %

* %

* ¥

* %

* %

Name: cursor.

Category: Display utility.

File: VELEXS.DOC

Purpose: Produce a cursor positioning escape sequence

string.

Syntax:

CUR$(<row> ,<col>[,<{maxcol>1)

where <row>, <col> and <maxcol> are in the

range 0-255.

Entry: Function execution entry conditions.

Exit: Through ADHEAD or error exit.

Calls:

RNDAHX , IDIVA, D=AUMS, STKCHR, ADHEAD,

or errors out via MFERR.

Uses:

A, B, C, D, RO, R3, P, SB, XM, S57-511

Stack levels: 4

Detail:

The CUR% string is equivalent to:

CHRB(27)&"%"&STRB({row>)&STRB(<col>)

If the optional <maxcol> parameter is given,

the CUR% string is equivalent to:

CHR$(27)&"%"&

STR$(<row>+<col> DIV <maxcol>)&

STR%(<col> MOD <maxcol>)

History:

Date Programmer Modification
-o-v 7oto --..Woo -—t———-"""—o-TAN T~ - T A o-S——— Vi e St

@9/12/86 S. Tendon Designed and coded.

10/08/86 S. Tendon, Recoded, optimized mainframe

S. Piccardi subroutine calls and catered for

the <maxcol> optional parameter.

IKWWINN I NNNINI I NI NRNNIININ R R EE KN

EXEEFEREEFEEEEEEERXXXXXX ARREXETRXERERERERRREERRKEEF KRR XXX

*

invarg LC(4) eIVARG Invalid argument error.

cursor

cur?

skip

GOVLNG MFERR Mainframe error exit.
*

NIBHEX 88823 Parameter type and count

A=0 W Initialize <{maxcol> in case only

R2=A two parameters.

P=C 15 Read number of parameters.

7P= 2 If only two parameters

GOYES cur? then go and read 2 parameters.

GOSBUL RNDAHX Read <maxcol> into A(A).
FRREERRERREREXRERERRNKEREERENRENRNREN AR

Entry: Number to be rounded and converted on

* top of math stack.

Exit:

A(A) = rounded hex integer.

Carry clear if negative. Carry set if non-neg.

Fatal error if array or complex type, or NaN.

HEXMODE, XM=0, P=0.

¥ Uses: A, B(S5,A), C(A), D(A), P, SB, XM
IETEEZEEXRSEEEEEERSERES SR RS RS ERR AR RREREERE RS X LR KL

*
k

%k
Xk

*

Di=D1+ 1B Pop <maxcol> item off mathstack.

76=0 A If <{maxcol> is zero

GOYES invarg then error out "Invalid Argument”.

RO=A R@ = <maxcol>.
*

* Only two items are left on the stack now.

6G0SBUL RNDAHX Read <col> into ACA).

Di=D1+ 16 Pop <col> item off mathstack.

R3=A R3 = <col>.

GOSBUL RNDAHX Read <row> into A(A).

DI=D1+ 16 Pop <row>» item off mathstack.
*

* Now D! is pointing to the new TOS, where

¥ the output string will be constructed.

CD1EX Prepare R1(A) for ADHEAD.

R1=C

D1=C Restore D1 @ TOS.

AR3EX R3(A) = <row>, A(A) = <col>.

C=R0 C(A) = <maxcol’.

?7C=0 A If <maxcol> is zero

GOYES skip then assume no <maxcol>.

G0SBUL IDIVA A(W) = <col>» DIV <{maxrow>

* B(W) = <col> MOD <{maxrow>.
W W NNNN R F NI RNNINNNI NKWWNNRNNRN KNNN

Entry: HEX or DEC mode according to arguments.

Dividend in A(A), divisor in C(A).

Exit: Quotient in A(W), Remainder in B(W), C(W)

Mode preserved, P=15, Carry clear.

Uses: A, B, C, P.
FH KWW NN N I W NN WW NINNNNNNN K RN KKK KR KRR NN NN

*
*

ok
¥
k

C=R3 C(A) = <row>.

C=C+A A C(A) = <rowr+<col> DIV <maxcol>.

R3=C R3 = <{rowr+<col> DIV <maxcol>.

A=B A A(A) = <col> MOD <maxrow>.
*

* Now R3 = actual <row>, and A(A) = actual <col>.

P= @ Needed by following ADHEAD exit.

GOSBUL D=AUMS D(A) @ AUMEMS.

LC(2) 27 ESCAPE character in C(B)

GOSUB stkchr and to math stack.

LCASC '%° '%' character in C(B)

GOSUB stkchr and to math stack.

C=A A <col» byte in C(B)

GOSUB stkchr and to math stack.

C=R3 <row> byte in C(B)

G0OSUB stkchr and to math stack.

ST=0 @ Do not return from ADHEAD.

adhead GOVLNG ADHEAD Add string header and resume BASIC.
*

stkechr GOULNG STKCHR This saves a few bytes!
*

F N W RNNNNIRNNNRNKN WI INNRNENNNRRKRN

KRNRNNERRRRERAEREEREREEEREREEREREREREREERXREREL NN XN

* %

* %

* %

* ¥*

* %

* %*

* %*

* %

* ¥

* ¥

* %

* %

* *

* %

* ¥

* %

* %

* *

* *

* %

LR

* ¥

* %

* %

* *

* *

* ¥

* %

* #*

* ¥

* %

* ¥

* %

* %

* %

* #*

* *

* %

* *

* ¥

* %

* #*

* ¥

Name: mapkey

Category: Keyboard utilities.

File: VELEXS.DOC

Purpose: Map key to a unique one-byte code, and return

code in a one-byte string.

Syntax: MAPKEY#%(<keycode string>)

Entry: Function execution entry conditions.

Exit: Through ADHEAD.

Calls: SAUD1, POP1S, RSTD1, D=AUMS, STKCHR, ARANGE,

aRANGE , SFLAG?, CONVUC, GTKYC+

Uses: A, B, C, D, P, D1, DO, S5@-511, function scratch.

Stack levels: 7

NOTE: idea came from KEYNUM function disassembly.

Algorithm:

I K$=KEYWAITS

if K$ is longer than a byte

get keycode of K%

case (keycode)

null string : return (null string)

unshifted key : return (keycode + 90)

f-shifted key : return (keycode + 112)

g-shifted key : return (keycode)

endcase

else if is_alfa (K$) return (toggle_case (K%))

else return (K$)

History:

Date Programmer Modification

@9/712/86 5. Tendon Designed and coded.

W W NN NN WKNRN W N NI NRNNN K NNKN N H KN RN KRE R R KRR RN

RKRRRNRHXREFHRRNN RNKRRTRIRRNNNNNNNERN

*

NIBHEX 411 One string argument.

mapkey

onebyt

exit

SETHEX Required by following POP1S

GOSBVUL SAVUDI Save T0OS pointer.

D1=C

GOSBVUL POP1S Check if argument is a string.
WNN N K NNMWWNN RKNINI NI KWNNNN NN RN KRNR

¥ Entry: HEXMODE, D! at string header.

* Exit: P=0, D! at last character of string,

* A(A) = string length, HEXMODE

* Uses: A(W), D1, P.
¥ 3NI KN NNIKI E KNI NNKNIIRKNKRN KR KN

C=0 A If len(K$) # 1
LCHEX 2
7A8=C A
G0YES onebyt

GOSBUL RSTDI then restore T0S pointer

605UB domap . and do map.

GONC exit B.E.T.
*

* else there is only one byte:

A=DAT!1 B Read the only character.

GOSUB isalfa If not alphabetic,

60C exit then leave it unchanged,

G0SUB ckcase else toggle case if necessary.
*

* eanter here with A(B) = character to return.

605BVUL RSTD1 Restore original TOS pointer.

Di=D1+ 2 Skip stack signature.

C=DAT! A Read string length

D=C A .

D1=D1+ 14 Skip rest of header

CD1EX Read current TOS pointer.

C=C+D A Calculate new TOS, i.e. pop string

D1=C . and update pointer.

R1=C Prepare R1 for ADHEAD.

G0SBUL D=AUMS D(A) @ AUMEMS, C(A)=D1

C=A B C(B) = charcter to be returned.

GOSUB stkchr Write character to mathstack.
WM K NN N W W W KNINNNIWKNINNNKRR NN

* Entry: C(B) = char, D(A) = (AUMEMS), D1 @ stack.

¥ Exit: D! at new stack char, carry clear.

* Uses: DI
W WNN NK NN NI NNNNKNIIRNNN RRNRN NN NN R KRN

ST=0 @ Do not return from ADHEAD.

GOTO adhead Add string header and resume.

KRNI ERERRERREERRFRREARREERERERRERRERRRRN RRERREN

* Entry: R1(A) @ start of stack item (hi mem)

* DI @ End of stack item (low mem)

* S0 set if return, else exit via EXPR

* D(A) & AUMEMS

* P=0.
Exit: in this case via EXPR.

MWW NN MW N W RN NN NN NNRNNRNIRKNRNNN NNNNNN

*

FHEFFEEEXEEEREHENEREREFFEEFREEERREEREEEERERTEEEERERNEREERRE

*®
Kk

k
Kk

Kk
Kk Name:

Purpose: check if a charecter is alfabetic.

Entry: P=0@, A(B) = byte to be checked.

Exit:

Calls: ARANGE, aRANGE

Uses:

isalfa.

P=@Q, Carry clear if charater is alfabetic.

C(A)

* Stack levels: 1

R E R R R R R R R R R X R E E R R E R R EEE R R R R R R R EEE R R R E R R EEEEEEZEEEAEEEE X 1

*

isalfa GOSBUL ARANGE

RTNNC

GOVLNG aRANGE
*

W WRN NNRNNIIRN NNNNNINNNNNNRNNKRN N RN

Name: ckcase.

Purpose: Toggle case of a character if LC mode is on.

Entry: HEXMODE, P=0, A(B)=Alfabetic character.

Exit: HEXMODE, C(A)=DO, D(A)=D0, P=0.

Calls: SFLAG?

Uses: A(A), B(B), C(15, 5-8), D(A)

Stack levels: 2
%IW NWIRNNNI E NNNNKNINN ERNR RN N RN

*x
%k

ok
Xk

Kk
k
%

*

ckcase B=A B Store byte in B(B) during flag test

LC(2) fFflLC if LC mode on...

60SBVUL. SFLAG?
B WNI ININNNNNINIIRNNNRIN RNKRN

* Entry: C(B) hex flag number, HEXMODE, P=0.

* Exit: Cary set if flag set, else carry clear,

* D(A) set to DB, HEXMODE, P=0.

* Uses: A(A), C(15, 5-0), DC(A).
3 NWNINIIINNNINIINNINRNKRR

GONC lcoff

A=B B ...then toggle case:

GOSBUL CONVWUC if lower convert to upper, else
P M J d WKWNNNNKK NI NIRNNIWKNNNI E K NN RN

* Entry: A(B) = character, P=0, HEXMODE.

* Exit: P=0, Carry set if no conversion required,

* A(B) = converted letter, not changed if

* carry set.

* Uses: A(B), C(A).
W W N MWW WNNNRN NN KNI RN NNRN NN KKNNRRN ERN NN

GONC caseok

LCHEX 20

A=A+C B if upper, convert to lower.

GONC caseok B.E.T.
*

lcoff A=B B Restore byte from flag test.

caseok C=D A Restore D@ after SFLAG?.

D@=C

RTN
*

W W NN W R NN NN WKWNINNWIIENIR NNNNNNRN N RN

* Name: domap.

* Purpose: map a multi-byte keycode string in one byte.

* Entry: D! @ string on mathstack.

* Exit: A(B) = one byte key code.

¥ Calls: GTKYC+

Uses: A-D, RO-R3, 50-S11.

¥ Stack levels: b
NNNW N NNKW W NINNNNNN NNNNN NN RN RN ENN NN R RN N KR X

*

domap ST=1 10 Null string legal.

GOSBUL GTKYC+ Get key code.
WKWKNNINNNNNNNKKH N R N KRR NN N

* Entry: Evaluated string on stack,

510=1: null string legal.

Exit: Carry clear: B(A)=keycode between | and A8

A(A) = shift value (@, 56, 112).

Carry set: B(A)=0, if null string was

* passed.

* Uses: A-D, RO-R3, S0-511.
W INNNNNN W I NINNWNNTRNNN NN NNRN

60C null$ Exit if null string.

*k
Kk

ok
%k

7A=0 A Switch key...

GOYES nofg

C=0 A

LC(2) 56

7A=C A

GOYES fshift

A=B A g shift: leave unchanged.

RTNCC .

nofg LC(2) 90 no fg shift: add 90.

A=C A .

A=A+B A

RTNCC .

fshift C=C+C A f shift: add 112.

A=C A

A=A+B A

RTNCC

null$ A=0 A

RTNCC
*

F KKWKNINN W NIINNNKNINNE KRNRNKN

K HEREERHARRERERRRFEFREFRREREEERERERERENEEE KRRRNNN REENER

* %*

* #*

* #

* %

* %

* *

* %*

* ¥*

* %

* *

* %

* *

* ¥

* %*

* ¥*

* ¥

¥* %*

* ¥

* *

* *

* ¥*

* ¥

* %

* %

* *

* %

* ¥*

* %

Name: vep

Category: Parse routines.

File: VELEXS.DOC

Purpose: Parse VELIST statement.

Entry: standard parse entry requirement.

Exit: through FIXP, or error exit.

Calls:

#CH (here called NCH), NUMCK, COMCK+, FIXP.

Uses:

Inclusive: A-C, D(15-5), D@, D1, RO, R1, R3, P,

50-53, 57, S8, S11.,

Stack levels: B

History:

Date Programmer Modification
————— .o—— ————-——ot -e . G —- o) e T—N—- utve T} o W eo6eW @ows Fun S A S e So

@7/@8/86 S. Tendon Designed and coded.

IWK KW NNIRNN W NI NN N NNNINNI INNNNNNNNN

EREXFEEEAXEEERRREREERERFRXXRRERRAEEERERER

*

vep

err

syn

* % ¥

* % %

* ¥

GOSBVL NCH No “#"7

60C errex! Error out "Syntax Error".

Di=D1+ 2 Step over "#".

G0SBVUL NUMCK Parse channel number or error.

60SBYL COMCK+ Check and output comma or

GONC syntxe error out if not found.

G0SBUL NUMCK Parse 1st argument or error.

GOSBUL COMCK+ Check and output comma or

GONC syntxe error out if not found

GOVLNG FIXP Parse 2nd argument or error.
*

ex! &T=1 4

txe GOVULNG SYNTXe
*

FRHXKKNNN HEHNNNN NN NNNNXNIRNRE RN RRERR

(A EE SRR EEEEZEEEEEEEESE R AR EREEEEEREEE R RS R X R R R R R XY R EY

*#% Name: ved

* *

* %

* *

* %

* %

* *

* %

* ¥

* %

* ¥

* %

* ¥

* %

* ¥*

* ¥*

* %

* ¥*

* %

* %*

* %

* %*

* ¥

* ¥

* %

* %

* %

* *

* %*

* #

* ¥

* * *

* % ¥

ved

* ¥* ¥

* % %

* %

Category: Decompile routines.

File: VELEXS.DOC

Purpose: Decompile VELIST statement.

Entry:

D1 ® Token stream, past the keyword token.

Do @ output buffer, past keyword and blank.

A = Next token.

C = Next token.

DCA) ® AUMEME.

Exit:

Through FIXDC.

Calls:

QUTBYT, FIXDC.

Uses:

Inclusive: A-C, Dt, D@, RO-R2, 5@, 53, S8, 510, S11.

Stack levels: B

History:

Date Programmer Modification

@7/09/86 5. Tendon Designed and coded.

EFREEREERFREEREREREER AR R RR R AR RAREER SRR RARRN R R AR KRR

ERERREEREERERERER R KRR REE R R AR ERE RN R AR RERERR R R R RRERRK KN

*

LCASC %

60SBVL OQUTBYT

A=DAT!1 B

GOVLNG FIXDC
*

WWNN NNNNWNRN NN I KWK N NNNNIRKNR KNRNR N RN RN

KRNIRNNIRNKNNNNKRNNNKNIRNKRR

*% Name: velist

* *

#* Category: System Command.

* %

** File: VELEXS.DOC
* ¥

** Purpose:

* This command is similar to PLIST, but with a

* % different syntax. Executes faster than PLIST.

* %

*% Syntax:

* % VELIST #<channel#> ,{start record#>,<{end record#’

* % NOTE: <start record#> and <end record#> may be

* % variable expressions.

#* Entry: DO ® past VELIST token.

#* Exit: Through NXSTM or error exit.

*% Calls:

* % GETCH¥, GETARG, POSFIL, BSERR, FRCRDr, RCDSKP+,

* % PRPSND

*% Usesg:

#* Inclusive: A, B, C, D, RO-R3, DO, D1, sEOF, sBADRC

* % STMTD!, QUTBS, S-R1-1 and everything used

* % by expression execute.

#% Stack levels: B

** NOTE:

* ¥ The GETARG routine is an unsupported entry point.

* % Code adapted from IDS vol. I, p. 17-21, 17-24/25,

*% History:

* ¥ Date Programmer Modification

% 07/09/86 §S. Tendon Adapted from indicated source;

* % Changed 60SUB RCDSKP with CD@EX

* % in the list routine (just before

* * the 'veS0' label).
¥* *

ITW NNNNNNNI N NINIINNNINIIRNRNENN

FREREEEEEFEREFFERREERLERERRERREEERFRREXEEEFXAXERERERLRXER KRR

*

REL(5) ved Offset to decompile routine.

REL(5) vep Offset to parse routine.

velist GOSBUL GETCH# Get channel# into CHN#SV, or exit.
RFHRREERRETRIN KRNIIRNINNNREREFERKEE

¥ Entry: DO @ channel#.

* Exit: A(B) channel# in binary, D@ past channel#

* token, CHN#SV = channel#.

* Error exit if channel# >255 or <{=0.

* Uses: All CPU registers, status, scratch RAM

* except STMTRO, STMTR1. (EXPR is called).
EEXRFERREFRERERFRERERERRERRRERRXRERRERXEERRRNEEERRER

GOSBVUL GETARG Get limiting record numbers.

veld

ve2d

ve3d

bserr

vedd

FHKRNNNIRKRNIRN NN N RRN NN K R KRR ENKN

* UNSUPPORTED ENTRY POINT...

* Entry: DO @ tCOMMA or tEOL before arguments.

* Exit: R2(A)=1st arg or @, R3(A)=2nd arg or 0.

* Uses: Everything execpt STMTRQ & STMRt.
RKWWKW IN W N K KRN KNKNKNIKEKRRKRN

P= @ Make sure P = @ for next POSFIL.

C=R2 Recall 1st parameter.

A=R3 Recall 2nd parameter.

?7C<=A A 1st parameter <= 2nd parameter?

GOYES vel® Yes: continue velist.
*

LC(4) eIVARG No: "Invalid Arg"”

G0TO bserr Error Exit.
*

R1=C Save 1st parameter for POSFIL.

D1=(5) CHN#SV Dt @ channel save byte.

A=DAT1 B Recall channel number.

GOSUB POSFIL Find first line to list.

GONC vei3d Found? Yes: go on.

7C40 A No: do you have an error code?

GOYES bserr Yes: exit with error.
*

LC(4) eEOFIL Default error "End of File".

GONC bserr Exit with default error, (BET).
*

D=D-1 § Check Device Code: File in Main?
INIIWKW W I NN W NNNN RN NNNNINNNNRN N KRR

* Device Code:

* @ - Mainframe.

* 1 - IRAM.

* 2 - ROM.

* 8 - HPIL.
3 I II NNNNNINNNI NWNINI NRN N NN R R RN

60C vedd Yes: ok, continue.

D=D-1 § No: File in IRAM?

G60C vedd Yes: ok, continue.

LC(4) eFACCS No: "Invalid Access".

GOVLNG BSERR Error exit.
*

?76T=1 sBADRC Refuse to list bad record(s), and

GOYES veZ20 error exit with "End of File".

W W E KN W NNRNENN K NININNNIRN KN NI E NN E NN

* Situation:

* DI @ start of first line.

* DO @ start of next line.

* RO = Record number of last record in file.

* Rl = First record number.

¥ R2 = First record number.

* R3 = Last record number.

* D(A) @ EOF.

* STMTD! @ FIB
6AWKWI ININNNNKNINNE NNNKRRKRR

Di1=D1+ 4 D1 @ data of 1st record to list.

ADI1EX A(A) @ data of 1st record to list.

AR3EX A(A) = end rect R3(A) @ SOD 1st REC
*

LC(2) (PRINTt)*16+#F

D1=(5) MLFFLG Set up MLFFLG and STMTRO for

DAT1=C B a PRINT class statement.

veb0

veloop

*

D1=(5) STMTD!
C=DAT!1 A C(A) @ FIB entry.

D1=C D1 @ FIB entry.

D1=D1+ (oFBEGb) D1 @ file begin address in FIB.

C=DAT1 A C(A) @ file begin address.

D1=C D1 @ file start.

DI=D1+ 16 D1 @ start of data in file.

D1=D1+ 16

Di=D1+ § .

CD1EX C 8 50D of file.

G0SUB FRCRDr Find end of last record to list.
WWKW AN W WNN RN NIWNIRRTNNNNNNNN RN

¥ If you can find the last record then all records

* up to (including) the last one are ok.
I J M I WNNNIKNINNRRNN EKRNE N RN N

CD1EX C @ EOF, EOD or last record...

D1=C

GOC veb? ...if error occured in FRCRDr.
W W WWW W W NI NINNNINNN KRNIIRNWKWKNR

* Carry set here means that the previous call to

FRCRDr produced an error. In this case C doesn’t

point to the start of the desired record, but to

EOF or EOD, or to start of last record in file

if sBADRC is set. So this pointer will be passed

on to 5-R1-1, i.e. the pointer beyond which

* VELIST will stop.
¥ % K WW HNN KNI RNNINNK I IRR HKRRRN R RN NN

CDREX C @ record past last record to list

* NOTE: Original code was GOSUB RCDSKP. CDQEX gets

* the same result, but executes faster.
WNN NN RN W WNIRNNNNHIIHNRRN NN NN R NN

D@=(5) S~R1-1 Save pointer to EOF...

*x
ok

ok
kK

X

DATO=C A

C=D A .

RSTK=C ...on Return Stack.
*

C=R3 C @ 50D of first record.

D1=(5) OUTBS

DAT1=C A QUTBS 8 SOD in current record.

D1=C D1 @ 50D in current record.

C=RSTK C(A) @ EOF.

D=C A D(A) @ EOF.

GOSUB RCDSK+ Skip current record.

RO=C R@ ® next record.

C=D A C(A) @ EOF.

RSTK=C Save pointer @ EOF on Return Stack.

GOSBVL PRPSND Print line.
FHNN W WMWNN IR I NINNH NN NN NNNNNN NN RE NN NE

* Entry: P = @, HEXMODE, B(A) = # of bytes in

* buffer, OUTBS @ start of buffer, RO @ past EOL

* S-R1-1 @ EOF.

* Exit: P = @, buffer sent to display, C(W) = RO.

* Uses: A, B, C, D, D1, D@, R1, R2
WNNNNNINN NNIKNINININNNNRN RN RN

D1=C D1 @ next record.

D1=D1+ 4 Skip length header of record.

CD1EX C @ SOD of next record.

G6ONC veloop (BET)
*

I EEZEEEEE R EE R ZEEEZEEE SRR RS ES R R E RS SRS RS R RRR R RK SRRR EEKR,

(EEEZEEEEEENESEERS R EEE SRR SRR R EAREZERE R REER R R R R R R R R ER EEE X R X

* *

* ¥

* #*

* %

* ¥

* %

* %

* %

* %

* %

* *

* %*

* %

* %

* ¥

* *

* *

* ¥

* ¥

* *

¥* %

* %

* ¥*

* %

* ¥

* %

* ¥

* *

* %

* %

* %

¥* *

* %*

* *

* %

* %

* ¥

* %

* %

* ¥

* %

* %

* ¥

* %

* %

* %

* #*

* ¥*

* %

* ¥

* %

* %

* ¥

* %*

* ¥

* ¥*

* %*

* %

Name : POSFIL, POSTXT - Position Memory Text File to

Record n.

Category: FILUTIL.

File: VELEXS.DOC

Purpose:

Position memory text file to given record. File is

indicated by channel number (POSFIL), or by file

header (POSTXT).

Entry:

ACB) = Channel number (POSFIL only).

ACA) = File header address (POSTXT only).

R1(A) = Desired line number (first line = 0).

P = 0.

Exit:

HARD ERROR EXIT if Channel# not open:

("File Not Found").

ELSE:

sBADRC = Set if D! is positioned at a bad record.

R1 = Entry condition,

P = Q.

CARRY CLEAR: Desired record found.

D1 @ Abs address of start of line.

DO ® Abs address of start of next line.

RO@ = Record number of last record in file.

B(S) = File protection nib from FIB.

D(A) = Abs address of EOF.

D(S) = Device code of file (POSFIL only).

STMTD1 = FIB address (POSFIL only).

CARRY SET: Desired record not found.

sEOQF = Set if D! is positioned at EOF as

defined by file chain.

C(A) = Error code:

File is not in memory (POSFIL only).

File is private.

File is not TEXT file.

Channel number not found.

Premature EOF ("End of File"),.

= @ if requested line is not in file. DI

is positioned at EOD or EOF. D1, D

and Rl exit conditions are valid.

Calls:

FILSK+, FRCRDr

Uses:

Inclusive: A, B, C, D, R@, D@, D1, sEOF, sBADRC

STMTD! (POSFIL only).

Stack levels: 3

* *

#+* NOTE:
* ¥*

* %

Extracted from IDS vol. I p. 17-31/33.

#%* Algorithm:
* %

* %

* %

* ¥

* ¥

L&

* %

* %

* %

Locate file FIB,

return error if channel# not found.

Verify that file is in memory.

Fetch file header.

Verify that file type is TEXT.

Verify that file is not private.

Compute file start, EOF.

Call FRCRDNr to locate record.

Set up exit conditions.

#* History:
* ¥*

* ¥ Date Programmer Modification
HEeee—————_——

** (09/16/83 F. Hall Designed and coded.

** Q7/07/86 5. Tendon Improved comments.
* %*

HH NN RNNN RN RKNINNNNNNNNKR RNNNRN

W gKN W N NI NI KNI N KW NN IN N KN N NNKNIKRN KRR NNNNN N AE

POSFIL

POSTXT

*

GOSBVUL FIBADR Find FIB address (or error out).
KIIINNI ININNKNIRKNIRREER N

* Entry: A(B) = Channel#.

*» Exit: D1, A, STMTD! = FIB entry address.

* Uses: A, B, C, D1, RO.
W W WWNINIKNININIIIRRNRNN

D1=D1+ oPROTbH D1 @ protection nib in FIB.

A=DAT! S Read protection nib into A(S)...

B=A S ... and into B(S).

60SBUL ?7PRFIL Private file?
WIWNINNI I NIINIINNNNNNNN

* Entry: P = 0, A(S5) = protection nib.

* Exit: P = Q.

* CARRY SET:

* C(3-0) = File protection error code (eFPROT).

* Uses: (C(5), C(3-0).
IWKNN W W NN NIIRINRNNIRN KRR NENN

RTNC Yes: error out "File Protect”.

D1=D1+ (oDEUCb)-(oPROThb) D1 @ device code in FIB.

C=DAT1 S Read device code into C(S)...

D=C 5 ... and into D(S).

* C(S) = 8 HEX if external file.

C=C+C 6§ External file?

G0C POSF4@ Yes: Error out "Invalid Access".

D1=D1+ (oFBEGb)-(oDEVUCb) D! @ file start address.

A=DAT1 A Read file start address into A(A).

D1=A DI @ file header.

D1=D1+ oFTYPh D1 @ file type in header.

C=0 A Make sure C(4) will be @ for test.

C=DAT1 4 Read file type into C(3-0).

C=C-1 A Check file type...

CH0 A ...not TEXT file?

GOYES POSFB@ Error out "Invalid File Type".

D1=D1+ (oFLAGh)-(oFTYPh) D1 @ file protection nib.

GOSBVUL FILSK+ File skip.

WWW N W W KN WKWRNINII IIIRKNRKEKN

D1

*
ok

%k
K

Xk Entry:

Exit:

byte), A(A) = Length in file’'s length field,

@

P =0, A(A) @ File header start.

= @, C(A) @ next file in chain (or to 00

file length field, carry clear.

Uses: ACA), C(A), DI.
396AW R IINNNNNNNNNNNNRNERTNKX

D=C

D1=D1+

CD1EX

A=R1

A
5

D @ EOF.

D1 @ Start of data (SOD) of file.

C @ SOD, D1 @ EOF.

Recall desired record#.

GOSUB FRCRDr Position to desired record.

RTNNC
*

Return if record found.

* Continue here if error occured in FRCRDr.

*

C=0
?75T7=0
RTNYES
LC(2)
RTNSC
*

POSF40 LC(4)
RTNSC
*

POSFE@® LC(4)
RTNSC
*

A Set up C(A) for error code.

sBADRC If problen was EOF or EOD

return.

eEOFIL "End of File".

eFACCS "Invalid Access".

eFTYPE “Invalid File Type".

H W NNNNINIINNNINNIWKW NNKRKKKKRR NRRR

[EXEEXEEEE TR EEEIZEREE X R R IR AR AL R R ERER SRR X E SRR SRR R S ZE R XX R R,

* ¥

* ¥

* ¥

* ¥*

* %

* ¥

* %

* *

¥* %

* ¥

* ¥

* %

* %

* %

* %

* %

* *

* %

* %

* %

* ¥

* ¥

* %

* %

* %

* *

* *

* *

* ¥

* *

Name: FRCRDn, FRCRDr - Find given TEXT record.

Category: FILUTIL

File: VELEXS.DOC

Purpose: Given TEXT file line #n (n>@), or record #n

(n>=0)

Entry:

ACA)

C(A)

DCA)

P

Exit:

RO

R1
B(A)

sBADRC

@
@
l

it
i

locate that record.

Desired line number or record number.

Start of data in file.

EOF according to file chain.

Q.

Current record number or FFFFF if no

records in file; EOD mark is not

counted as a record.

Desired record number (>=0),

Number of bytes of data in line

according to line length header or

FFFFF if incomplete header in corrupt

record.

Set if current record extends beyond EOF

This indicates file is corrupt, can

occure for two reasons: I) Only 1 byte

left in file (line header requires 2

bytes); II) Line header present but

* %

* %

* *

* ¥

* %

* *

* #*

* ¥

* %*

* ¥

* %

* *

* ¥

* ¥

* %

* *

* %

* %

* %

* %

* %

* %

* ¥

* %

* *

* %

* %

* %

* ¥

* %

* %*

¥* *

* %

* ¥

* %

* %*

* ¥

* #*

* *

* ¥

* *

* %

* ¥

* ¥

* %*

record length extends beyond EOF.

P = Q.

CARRY CLEAR: Desired record found.

D1 @ Start of desired record.

D@ @ Start of next record.

CARRY SET: Desired record not found.

D1 @ EOF or EOD mark, or start of last record

in file if sBADRC set.

Calls:

PRSREC

Uses:

Inclusive: A, B(A), C, R@, R!, DO, D!, sEOF.

Stack levels: 2

NOTE :

Extracted from IDS vol. I p. 17-33/35.

Detail:

Algorithm:

Current records# = -1.

Save current record address.

Clear skEOF, sBADRC

1.8 Parse record header,

return "Not Found" if no record.

Increment current record#.

If current record# = desired record#,

return "Found".

If sBADRC is clear

loop to 1.0

Else

return "Not found".

History:

Date Programmer Modification

©8/14/83 S.W. Wrote routine.

@7/07/86 S. Tendon Improved comments.

¥ 3 K I I K W N K IWKNININIIIRHKN E NIRRXR

WK KW N INNIIIKNINIKNIKNKNINIRERKX KRN XN

FRCRDn A=A-1 A Convert line# to recordt.

FRCRDr R1=A Save desired record#.

A=0 W Current record$#$ = -1

A=A-1 A .

R2=A Save current record#.

ST=0 sEOF Clear status.

ST=0 sBADRC

FRCR1® GOSUB PRSREC Parse record header.

RTNC Return if no such record.
PI W W NNKWW PN NN NI NNIINNKNNNEENRNRS

* NOTE: you return with the same exit conditions

* you get from PRSREC when carry is set.

WNN R NINNNRRNNNR KK KNIKNIEKKKN R KN KR

Do=C DO @ start of next line.

A=RO Recall current record#.

A=A+1 A Increment current recordt.

RO=A Save incremented current recordt.

C=R1 Recall desired record#.

7A4=C A Are we at desired record#.

GOYES rtnce Yes: return "Found".

?75T=1 sBADRC Bad record?

RTNYES Yes: return "Not Found".

I I IW W NNNINNNIRNNNNNKRNRNN NN

* NOTE: Here you return with carry and sBADRc set.
% % I WKWKWNIRNNIRNNRNKRNR R R E R E K

CDOEX C(A) @ start of next line.

GONC FRCR1® Loop again (BET).
*

RKWNINNNIINNNNNNI II E NI KNRN N RN EE RN

WMNNN I IRWWKWIN R KRN F K EIRRERKRN KR

* ¥*

** Name: PRSREC - Parse TEXT record header.
* ¥*

#% Category: FILUTIL.
* ¥

** File: VELEXS.DOC
* %

** Purpose:

* % Examine the line length header of a TEXT file

* % record to determine line length for normal record,

* % or presence of End-0f-Data (EOD) mark, or presence

* % of End-0f-File (EOF), or absence of comlete line

* % header (corrupt file).
* %

#* Entry:

* * C(A) @ Start address of record.

* % D(A) @ EOF from file chain,

* % P = Q.
* %

*% Exit:

* % D1 @ Start of record.

** D(A) @ EOF from file chain.

* % P =0.
* %

* % CARRY CLEAR: record exists.

* % B(A) = Number of bytes of data in record.

** C(A) @ Start of next record.

* % sBADRC = Set if line goes beyond EOF

¥ * else unchanged.
* *

* % CARRY SET: Record not present,

* % (@ EOF, EOD or no header).

%% B(A) = @ if ® EOF or EOD.

* * = -1 if no line length header present.

* % sBADRC = Set if no header present, else

unchanged.

* % sEQF = Set if EOF, else unchanged.
#* #*

* ¥

*+ Calls:

* % SWPBYT
* *

** lsges:

#** Inclusive: A, B(A), C, D1, sEOF, sBADRC
* %

** Stack levels: 1
* *

+* NOTE:

* % Extracted from IDS vol. I p. 17-35/36.
* ¥

#% Algorithm:

* * ¥ bytes = 0.

** If current position = EOF

* % Set sEOF.

* % Return "Not Found".

* % If line header is incomplete

* % Set sBADRC.

* % ¥ bytes = -1.

* % Return "Not Found".

* % If line header = EOD mark (FFFF)

* % Return "Not Found".

* % Compute # bytes in line.

* % Compute start of next line.

* % If start of next line > EOF

* % Set sBADRC.

* % Return "Found".
* ¥

** History:
* *

* % Date Programmer Modification
Rk mmmme eee————

** 09/19/83 FH Adapted from code by SW.

** Q7/07/86 S. Tendon Improved comments.
* %

KKKNIWWKWKWI KIIIHHEHEHIEN KR RNR RE

(I EEE T EEE S ZEEEEER RSAR R R R EEE R R ARR EEEEEEE A SRR EERE R EEREREE R KX

*

PRSREC B=0 A $ bytes = 0.

D1=C DI @ start of record.

7C>=D A At EOF?

GOYES PRSRI® Yes: return “Not Found".

Di1=D1+ 4 D1 @ start of data.

CD1EX D1 @ start of record, C(A) @ SOD.

?7C»D A Line header missing?

GOYES PRSRZ20 Yes: return "Bad Record Not Found".

A=DAT1 4 Read line header.

GOSBUL SWPBYT Compute B = # bytes of data.
W W KWWWWH WKNIININNRNIERIRRRN

* Entry: A(3-0) bytes to be reversed.

* Exit: A(3-0) reversed bytes.

* Uses: A(A), C(A)
BTI WIIINIIIIININNKRR NN KRRNN

P= 3

B=A WP .

C=B A Test for EOD, compute # bytes.

* B(3-0) = FFFF hex if EOD.

B=B+1 WP Set carry if EOD.

= @

RTNC Return “Not Found" if EOD.

BCEX A B = #bytes, C = #tbytes + 1,

CSRB Round to even #bytes (LIF stndrd).

C=C+1 A Compute total #nibs in record.

1AJO}STH

2:1STOART30B3}S

13(Y0“(yY)g‘v:eATSNIOU]
1898

J34S4dd
(81199

*JPBTD9819‘93}9[WODUTJBpeEaYy4T319§

403910473°§
*J9peayduUTT239T7dwodUT§JO‘(4444)

003‘403&“8y3}Te‘2U0T3TPUODAJjul=1a

"dT4s0}PJ0ODdJON:135AYYYD

ayavgs

403s Hi

403PuOA®QSPUDIXDPJODBJJUBJIINDJT18§
*Je9T)

*pPJO28d}XBU(YY)D
"pPJODaUUTB}EPJO$23AQ40Jaguwny(y)rg

*00S§}3-40028djuaJIN) §1a

FHY3IT0AYYYD

Jyavas
4038

W
&
=

i

e=d

1313

'=d

TUTRYDST}Wody403@()ad

(PT=214

yjBuay93Ag7z0}dJotdd)3JE}SPJU0DIBYP1Q

:Ad3u3

"PJ0OBYTTJIX3JLBJ2A0dTy§

:eso0duny

200°SX3a3an2114

JILNTI4:AdoBaje]

"d1y§PJ0OO9Y—435004"dNMSADY:SweN

**

**

*%

**

*%

*%

*¥

*%

%**

*¥

**

*%

*%

*¥

*¥

*¥

*%

*¥

**

%

*#

**

*%

*%

*%

*¥

*%

**

*%

*%

**

*%

#

*%

*%

**

*%

**

%

*%

*¥

XRRNNNNRNNNNRRNNNNNNNNNNRNNNNNRNNNRNNNEHRNRR

WWKNINNIKNTNNNNNNNKNNRNNNRRRNNNRNKRNRN

*

TLPUNOYJON,UJN3BYJSNL1Y

".p4002Yypeg,185JYyavgsI=15

"1-=s934Aqf3°§¢|-8=80@2454d
*

»PUNO43ON,UJN}aYyJSNLY

"Be1y4031S4038I=15014544
*

"WpuUno4,uJdniadJONLYDOU}

*.pJ009Yypeq,3e§ J¥avgs |1=1§
",PUNO4,UJN}B188,D2oU}4 §3IA09

LpJooed3dnadodJON¥QO=30d

*PJ0OOBU}XAUJO}JdE}S=)vJ+Y=D

’U=10

"p-0OBJ4OjJEBIS§UX310y

‘Japesay404yo+sqrugv0+0=J

"JepeayJoj7+sajAqy¢v03+0=0

* ¥

* % Date Programmer
Fh mmmmmm—m |e

** 09/14/83 SW
#* 09/19/83 FH*
* %

Modification

Wrote routine.

Adapted for FILSZR.

FH N KW N NN W NININN NI I I I NNNIKNIN EERERNNNN R X R R

[EXTEETEFEEE RS ESEE RS ER R A SRR R R EEEEEEE R SRR RRAR EEE RS ERE ERE SRR,

*

RCDSK+ Di1=D1- 4
RCOSKP CD1EX

5T=0 sEOF
ST=0 sBADRC
605UB PRSREC
RTNC
D1=D1+ 4
RTNCC
*

END

D1 @ Start of record.

C @ Start of record.

Present status.

Parse record.

Retrun if no record to skip.

D1 @ SOD.

Return OK.

	Cover
	Index
	VE - The Visual Editor for the HP71
	Distribution Notice
	Hardware and Software Requirements
	Features
	Getting Started
	Using VE
	VE Command Dictionary
	A - AUTOMATIC wrap mode toggle
	B - BACK up to previous occurence of next key
	C - COPY marked block
	D - DELETE marked block
	E - ERASE invisible characters
	F - FIND a given search pattern
	G - GO to next occurence of next key
	H - HIGHLIGHT mode toggle
	I - INSERT from buffer/external file
	J - JOIN following lines
	L - LINE delete
	M - MOVE marked block
	N - NEXT occurence of search pattern
	O - OPEN empty line above current line
	P - POSITION to given line number
	Q - QUERY replace pattern
	R - REPLACE pattern
	S - SELECT block of lines - Clear marks
	T - TAB to next tab stop position
	U - VIEW available memory
	W - WORD delete, (from cursor to next word)
	Y - YANK to buffer/external file

	MACRO Programming
	Virtual Windows
	History and Credits
	Appendix A - MKUEDB
	Appendix B - VEFOLD
	Appendix C - Quick Reference Guide
	VELEX Keywords
	Resource Allocation
	Command Cross Reference
	Source Code
	VE Cross Reference
	Variables
	Abbreviations
	VEDIT
	VE71
	MAKE9095
	VEFOLD
	MKVEDB
	MKVEKEYS
	KEYDATA

	Commented Source Code
	P0000
	P0100
	P0255
	P0300
	P0400
	P0800
	P0900
	P1000
	P1100
	P1200
	P1300
	P1400
	P1500
	P1600
	P1700
	P1800
	P1900
	P2000
	P2100
	P2200
	P2300
	P2400
	P2500
	P2600
	P2700
	P2800
	P2900
	P3000
	P3100
	P3200
	P3300
	P3400
	P3500
	P3600
	P3700
	P3800
	P3900
	P4000
	P4100
	P4200
	P4300
	P4400
	P4500
	P4600
	P4700
	P4800
	P4900
	P5000
	P5100
	P5200
	P9000
	VEFOLD
	MKVEDBT
	MKVEKEY

	Improvements
	Visual Editor LEX File

