0@/99/14 16:47:51 FILE: VEINDEX TEXT 4096 09/14/00 16:47

00 00 0000000000 0000000000 0o
00 00 0000000000 0000000000 000
00 00 00 00 0000
00 00 00 000 00000
00 00 00 000 00
000 0o 00 000 00
00G 000 00000000 0000000000 000 00
00 00 00000000 0000000000 000 00
00 00 00 000 00
00 00 00 00 00
0000 00 00 00
00 00 00 00
00 0000000000 00 00000000
00 0000000000 00 00000000
0 0 000 00000 0000 0 000
0 0 0 0 O 0 0 0 0 0
0 0 O 0 0 0 0 0
0 0 000 0000 0000 000
0 0 0 0 00 0
0 0O 0 0 0 0 0 0 0
000 000 00000 O 0 000
0 0 000 0 0 0 0 000 0
00 00 O 0 0 0 O 0 0 0 O
D00 O O 00 0 O 0 0 0 0
000 00000 000 O 0 00000 O
0 0 0 0 0 00 O 0 0 0 0
0 o 0 0 0 0 0 0 0 0 0
0 0 0 0 O 0 000 0 0 00000
I NDEKX
SECTION PAGE

VE - The Visual Editor for the HP71..... ... it ennrans
Distribution Notice......iiii it niniennnnennaannsnnssnsns
Hardware and Software Requirements.......... ..t nunnnnnnn
FeatUres . it ittt i ettt et st e e enasa s anensnasunsnasnasannns
Getting Started.ot it i i i e
Using VE .. ou st intnn e ietunenasneroennasannnnsasssesnnsnnnnas
VE Command Dictionary. ...t inernernnrasrcsanssasaans

A - AUTOMATIC wrap mode toggle.......ciiiiniiiiinnnnn
BACK up to previous occurence of next key..........
COPY marked bloCk. . v.u it i nnernreannnseansan
DELETE marked block... .. iin i i eincnnennennss
ERASE invisible characters........ i

s}
1

|

moaoo
|

F - FIND a given search pattern.........coiiviinanan.s
6 - 60 to next occurence of next key.......ciivininenns
H - HIGHLIGHT mode toggle.....iviiviiinniniinennnnnnnns
I - INSERT from buffer/external file...... ...
J - JOIN following limes.......ciiiinerineinernensernnnns
L = LINE delete. .. erereneitnonevereintnnasnsnensnns
M - MOVE marked block. ...t ittt iienrnnnns
N - NEXT occurence of search pattern...................
Q0 - OPEN empty line above current line.................
P — POSITION to given line number......cciieiirnnrnannn
Q - QUERY replace pattern.........iiiiiriirinrnnennnns
R - REPLACE pattern...... i iniennn. e e
§ - SELECT block of lines - Clear marks.......ccuviu.n..
T - TAB to next tab stop position.................. e
U - VIEW available memory......cciiiiiiiinnnnnernonnans
W - WORD delete, (from cursor to next word)............
Y - YANK to buffer/external file.......... ...,
MACRO Programming. v e s inrsranesnsssonaesasensananenansas
Virtual Windows . . v ot e i tnn e tvnarnerastnenessnsnasans
History and Credifts. ... inian i in s enonrsonenansoenss
Appendix A — MKUEDB. ... vt ii ittt s en s cns s nannanns
Appendix B = VEFOLD. .. v vt vn i in it annnacasansnnnoanananens

Appendix C - Quick Reference Guide......vivvieviirnevrncennn

T T T T T T T I T T T S T T T T T T T T I I T T T T T I I I I T TSN T IS NS SN EENENREIRSNSES

Q0/09/14 16:48:40 FILE: YEMANI TEXT 13056 09/14/00 16:48
UV E - The Visual Editor for the HP71

VE is a software package for the HP71 portable computer designed by
members of CHHU-ITaly.

(C) 1986 Stefano Piccardi, Via Antonio Panizzi 13, 20146 MILANO, Italy
(C) 1986 Stefano Tendon, Cantone delle Asse 5, 29100 PIACENZA, Italy

The package comprises the following files:

- VE71 BASIC main program.

- VEDIT BASIC bootstrap program.

- VELEX LEX run-time support file.

- VEDB DATA base file, (run-time screen dependant information).
- VEFOLD BASIC (optional) run—-time preprocessor program.

- MKVEDB BASIC (optional) support program, (MaKe VEDB).

- MKVEKEYS BASIC (optional) support program, (MaKe VE KEYS).

- KEYDATA BASIC sample key definitions for use with MKUEKEYS.

Distribution Notice

We [the Authorsl hereby donate all material included on the distribution
disc (the above mentioned files and all relative documentation files) to
the CHHU HP71 ROM Project Committee for inclusion in the ROM and/or in
its User's Manual. However, we ask the CHHU ROM Project Committee not to
distribute this material outside the ROM project. If the Committee were
not interested in the present package, we ask it be returned as is.

CHHU Chapters and CHHU affiliated clubs are hereby given permission to
publish the present document only.

Hardware and Software Requirements

HP71B with ca. 17 Kbytes of RAM for programs and run time variable
allocation + any additional RAM required by user’s text file; HPIL
modules; HPIL video interface and monitor; following LEX files: STRINGLX
(HP), CUSTUTIL (HP), EDLEX (HP) and FKEYLEX (JPC-S5IG).

Notes:

The above mentioned RAM requirement is calculated with EDLEX residing in
MAIN RAM. EDLEX can be found in some ROMS made by HP (e.g the FORTH-
ASSEMLER ROM). If you have any of these ROMS, EDLEX need not be loaded
into RAM, and thus you can save 2557 bytes.

FKEYLEX is & pubblic domain LEX file for non-commercial use only by
CHHU, CHHU Chapters and CHHU affiliated clubs. If you do not have
FKEYLEX, you can request a copy of it from the French CHHU Chapter:

Saturn Iterest Group
c/o Pierre David

33 Bd. St. Martin

75003 PARIS

France

or from the coordinator of CHHU's international SWAP programme:

Michael Markov
P.0. Box 17
Lockwood

NY 14858, U.S5.A.

Features

VE is a full screen text editor designed to be operatable by any HPIL
video interface compatible with the escape sequences of the HP821683 32-
column video interface device. This means that VE can be used by almost
all video interfaces currently available on the market, for example: the
HP82198, the PACSCREEN, the GRABAU and the MICRONIX.

UE can be used in two modes: as a real full screen editor that takes
advantage of the full screen size available whatever this might be, and
as a screen oriented line editor capable of handling a "virtual" screen
wider than the real screen. In this second mode, for example, it is
possible to edit 80 column lines on a 32 column video interface, with
all the convenience and powerful features of VE still available.

VE is easy to operate. All standard editing keys on the HP71 keyboard
have their usual meaning, so it 1is possible +to start using VE
immediately, without having to learn strange key sequences. Commands are
issued by pressing the [fl-prefix key followed by a single alphabetical
key. In this way all comands are identified by a single easy-to-remember
alphabetical character.

VE responds to the following commands: AUTOMATIC, BACK, COPY, DELETE,
ERASE, FIND, 60TO, HIGHLIGHT, INSERT, JOIN, LINE, MOVE, NEXT, OPEN,
POSITION, QUERY, REPLACE, SELECT, TAB, VIEW, WORD and YANK, which are
all described in detail in this document.

VE gives the user extensive control over cursor movements: left, right,
up, down, start/end of file, start/end of current line; next/previous
word on current line; next/previous user specified character on current
line. Furthermore it is possible to POSITION the cursor to an absolute
numbered line; to a 1line given by a user specified expression relative
to the current line, the start/end of file or the start/end of a marked
block of lines.

VE allows the user to define tabstops at his convenience. Tabstops
combined with an automatic indent mode are invaluable for writing
program source files in FORTH or ASSEMBLER. There is also an AUTOMATIC
wrap around mode, which is very useful when writing ordinary documents.

VE allows the user to OPEN a new line in a text file, as well as to JOIN
two lines into a single line. It is possible to delete a single LINE or
a single WORD.

VE offers complete cut-and-paste functions. It is possibile to mark or
SELECT a block of text lines, MOVE it around in the text file, make a
COPY of it, DELETE it, save (YANK) it in an external buffer/file (that
can even reside on a mass memory device), and retrive (INSERT) it
elsewhere or in another file from the external buffer/file.

VE offers complete FIND, REPLACE and QUERY functions, with a complete
set of "metacharacters" (wild cards).

During a VE editing session it 1is possible to invoke the BASIC

environment, and thus to perform a calculation or call a program,
(provided the program does not trash VE's environment or change the
DISPLAY and PRINTER assignments, or the settings of flags @, 1, 2, 3, 4,
and -1), and then return to VE.

VE allows for USER defined key definitions for typing aid, just like in
the BASIC environment. Furthermore, these key definitions can contain VE
commands , with or without parameters and/or user prompts. In this way VE
offers a MACRO ability, +this means that VE is a PROGRAMMABLE text
editor. For example, a macro definition can: copy the work file to mass
memory and end editing session; delete a block of a given number of
lines starting from the current line; build a standard template or
header for letters and documents; clear the whole work file; find a
predifined pattern and merge an external file into the work file.

VE is line-oriented, in the sense that a 1line is the basic unit of
information. There are not such concepts as "paragraphs" or "sections"”
of text. VE is a screen editor, not a word processor, albeit it is
probably the most powerful text handling tool available to HP7! users.

Getting Started

Before you start using VE, there are a few things you should know and
do. As mentioned in the preceding section, VE is a full screen text
editor operatable by any HPIL video interface compatible with the escape
sequences of the HPB82163 32 column video interface device. "Compatible"
refers to escape sequences only, not to screen size. This implies that
VE has to be told the exact screen size, as well as few other
parameters.

Since this information is seldom changed, most parameters are stored as
constant values in a DATA file named VEDB (Visual Editor Data Base). The
VEDB file must reside in HP7! memory when VE is called. The VEDB file
that comes on the package disc contains default values suited for the
HP82163 32 column video interface. You should be able to use the given
VEDB file even on larger (B@#*24) screen size video interfaces without
any modification. The VEDB file contains all escape sequences used by VE
to drive the video interface. If your video interface does not respond
to the escape sequences used by the HP821B3 video interface, then you
must modify the VEDB DATA file by running a set up program called MKVEDB
(Make VE Data Base). As the name implies, this programs allows you to
define the contents of the VEDB file. The use of MKVEDB is explained in
Appendix A. (Furthermore, the VEDB file contains a special string used
to store “invisible" characters: +these are explained under the ERASE
command).

To invoke the VE program you must type a command line with the following
syntax:

CALL VE(<#S5.ROWS> ,<#5.COLS> ,<#W.ROWS> ,<#W.COLS> ,<{DEVICE> ,<TABS>)

where the parameters have the following meaning:

#S5.ROWS real number of rows on screen,

#S.COLS real number of columns on screen,

#W.ROWS virtual number of rows, (i.e. rows in window),
#W.COLS virtual number of columns, (i.e. columns in window),
DEVICE string specifying the display device to be used,

TABS string specifying the position of tab stops.

This command line is not easy to remember, so you will find it
convenient to assign it to a user defined key or to use a little program
like the VEDIT program that comes on the distribution disc, and then
invoke VE with CALL VEDIT or RUN VEDIT. If you examine VEDIT, you will
notice it contains the following program line:

100 CALL VE(32,16,32,16,"%48" ,"4") IN VE7I

which contains default values suited for the HP82163 32-column video
interface. You should be able to use the given VEDIT file even on larger
(B@*24) screen size video interfaces without any modification, although
you will only use a portion (32%16) of the full screen size available.
However if you wish to exploit full screen size offered by these
interfaces, you only need to modify the parameters passed over to VE.
When you modify these parameters you must keep in mind the following:

The parameters #5.ROWS and #5.COLS refer to the exact screen dimensions,
whilst #W.ROWS and #W.COLS refer to the dimension of the ‘“virtual"
screen window you wish to use. The relation #W.ROWS <= $#5.ROWS must
always be true. If #W.COLS <= #5.COLS then #W.ROWS and #W.COLS simply
define a porticon, i.e. a window, of the real screen that will be used by
the text editor. However, if #W.COLS > #S5.COLS then VE will automatical-
ly switch to it's second mode of operation, acting as a screen oriented
line editor. In all cases the window used for text output to the screen
will be divided into two parts: the work area and the message line. The
message line is always the last line of the window, and the work area is
the whole window less the message line.

The parameter DEVICE is a string indicating which HPIL device on the
loop will be used as a display.

The parameter TABS is a string indicating the current settings of tab
stop positions. There are two ways to specify this parameter. The TABS
string can contain a numeric expression, and in this case the value of
the expression will give the number columns between one tab stop and the
next one, starting from the first tab stop which is always positioned in
the first available screen column. For example, if TABS is the string
"2+3", then VE will set a tab stop every fifth column.

If the TABS string does not contain a numeric expression, then
successive tab stops after the first one will be set at the columns
given by +the ASCII range plus one determined by the first character in
TABS and the following characters. For example, if TABS 1is set to
"AHOX". This means that +the first tab stop will be set (by default) at
column 13 +the second tab stop will be set at column 1+NUM("H")-
NUM("A")=8;5 the third tab stop will be set at column 1+NUM("0")-
NUM("A")=15 and the fourth tab stop will be set at column 1+NUM("X")-
NUM("A")=24. (Note that the +tab settings given in +this example are
suited for writing ASSEMBLER source files).

There is yet another setup feature worth to mention in this section,
although it is explaind in more detail in Appendix B. VE has the
capability of invoking automatically a preprocessor program called
VEFOLD. This program was designed in order to "fold" all the lines in a
text file that happen to be longer than the current width of the screen
window. It is essential that every text file you edit with VE does not
contain lines that are longer than the current screen window width. If
you use VE for the first time, you will not be concerned by this
problem, (so vyou will not have to load the VEFOLD file into the HP71).
You will never have to bother about this problem as long as you do not

decrease the screen window width to edit a file which was created with a
larger screen window width. Just remember that the VEFOLD program is
available if you need it.

@0/09/14 16:51:21 FILE: VEMANZ TEXT 145982 09/14/00 16:51

Using VE

Provided that vyou have all necessary hardware, you can start using VE
after you have loaded +the following files into MAIN RAM: VE71, VEDIT,
VELEX, VEDB, FKEYLEX, STRINGLX, CUSTUTIL and EDLEX. (Remember that EDLEX
can also be found in a ROM. Check this out, and if it is the case, then
you do not need to load EDLEX).

When VE is called, for example by running the VEDIT program, it will ask
for the name of the text file you wish to edit. (If you wish to abort
the editing session at this point, simply type an illegal file name like
an asterisk followed by [ENDLINE] and you will be back to the BASIC
environment). Type the name, press [ENDLINE] and VE will be ready to let
you edit the named file. If the file does not exist, it will be created.

From this point on, wusing VE is very straigth forward. You may use the
alpha-numeric keyboard to write any text you wish, and the standard HP71
editing keys (BACK, -CHAR, 1I/R, LC, -LINE) to perform the most common
editing functions.

VE is based on a WYSIWYG - What You See Is What You Get - philosophy,
(although "invisible" characters make it slightly difficult to adhere to
such a philosophy completely, but more about +this under the ERASE
command). This means that vyou can wuse the four cursor keys to move
around anywhere on the screen, and any changes or additions you make at
the cursor position will also be reflected in the text file. The four
cursor keys, however, will not let vyou go beyond the left or right
margin of the screen window, as well as the start or end of file. If the
cursor is at any of these positions and you try to surpass them, VE will
emit an alerting beep. This will give you a precise feedback of where
you are in the file. Try it!

The cursor keys preceded by the g-prefix key have their usual meaning.
That is: [gl [LEFT arrowl and I[gl [RIGHT arrowl will position the
cursor, respectively, at the begining and at the end of the current
line. [gl [UP arrowl and [g] [DOWN arrowl will position the cursor,
respectively, at the start and at the end of the +text file you are
working with. You can learn more about cursor positioning under the
POSITION command.

The key sequences [f]l [left parenthesis] and [f]l [right parenthesis] may
be used to position the cursor, respectively, on the next and on the
previous word of the current line. Note that these two functions have a
"circular" behavior; i.e. if you try to go to the previous (next) word,
but the cursor is already on the first (last) word of the line, then the
cursor will jump around to the word at the other end of the current
line. This is very convenient, as it allows you to chose the shortest
path to get to a particular word.

If your text file contains more text than can be displayed with a single
screen shot, then you may page through the text. The [f1 [ENDLINE] and
[gl [ENDLINE] key sequences will display, respectively, the previous and
the next screen of text.

You can obviously use both upper case as well as lower case characters,
and you can toggle between the two cases by using the standard HP71
editing key sequences: the I[gl-prefix key to toggle +the case of the

character typed next, or [f1 [L/C]1 to toggle the current case mode. You
can tell the current state of Lower Case mode by looking at flag
annunciator 4 of the HP71's LCD display. This annunciator will be
visible whenever Lower Case mode is enabled (on).

If you wish to change the current work file without getting out of the
editor, you can "restart" the editor by pressing [gl [ON]l. When you have
finished, press the [ATTN] key to terminate the editing session and
return to the BASIC environment.

VE COMMAND DICTIONARY

The following “Command Dictionary" provides a complete description of
each command implemented in the VE full screen editor. The Command
Dictionary is organized so that you can use it both as an instruction
book and as a reference tool. All commands are listed in alphabetical
order, and all information relevant to a command, including examples and
details, is given under that command’s entry in the dictionary.

For any command you wish to issue to VE, remember the general rule that
all commands are issued by pressing the [fl-prefix key followed by an
alphabetical key, this key being the first letter in the command’s name.
For example, if you wish to issue the AUTOMATIC command, you just have
to press the [fl key followed by the [A]l key. Some commands may require
you to type some additional information too. For example, if you issue
the FIND command, you will obviuosly need to provide for a search
pattern. The command stack 1is active most of the time you need to type
any additional information; this can be handy if you want to repeat the
same response several times or if you just have to give a slightly
different response. Any additional information you need to type to issue
a given command is described under that command’s dictionary entry,
along with any special rules reguired to do that.

EEEER A - AUTOMATIC FREEE

The AUTOMATIC command refers to the automatic wrap around mode wich is
initially enabled <(on) when vyou start the VE program. The AUTOMATIC
command will alternatively toggle the automatic wrap around mode off and
on. You «can tell the current state of the automatic wrap around mode by
looking at flag annunciator @ of the LCD display. This annunciator will
be visible whenever the automatic wrap around mode is disabled (off).

Note that the behaviour of the wrap around mode is affected also by the
state of the insert or replace mode. You may toggle between insert and
replace mode, and viceversa, be pressing the standard HP71 editing key
sequence [f1 [I/R]. Replace mode will be enabled automatically every
time VE starts. You can tell the current state of the insert/replace
mode by looking at flag annunciator 1 of the LCD display: this flag will
be visible whenever insert mode is enabled. The insert/replace mode is
also reflected by the two different types of cursor that you will see on
the screen, although this is not always +true, depending on the
particular video 1interface at hand. (The PACSREEN, for example, has a
bug that will mess up the two different cursors: this explains why we
have decided to show the real state of the insert/replace mode with flag
annunciator 1 tco).

Wrap around mode and insert/replace mode will cause the following four
different actions depending on the respective states:

1) Wrap around mode disabled and replace mode enabled: replace cursor

with next alphanumeric key, and if not at right margin then advance
cursor else emit a warning chirp.

2) Wrap around mode enabled and replace mode enabled: just like previous
case, but if at right margin then do wrap around.

3) Wrap around mode disabled and insert mode enabled: if there is room
left on the current line, then insert next alphanumeric key under
cursor, else emit a warning chirp.

4) Wrap around mode enabled and insert mode enabled: just like previous
case, but if at right margin then do wrap around in inset mode.

Note that even the backspace command, (whose standard HP71 editing key
sequence is [f] [BACK]l), has +two different actions in insert and in
replace mode, although this 1is nothing new to HP71 users, as the two
different actions take place even with the HP71’s standard LCD editor.

Another feature to mention is that wrap-around mode will preserve the
indentation of the last typed linme. The indentation will also be
preserved when vyou end a line with [ENDLINE] and this line is the last
line of +the file. This is very useful when writing program source files
or, in general, when writing out tabular information.

I XX B - B ACK HEERE

The BACK command, (not to be confused with +the backspace command
mentioned in the preceding section), refers to a particular cursor
movement that can take place on the current line. As soon as you have
issued the BACK command by pressing [f]l [Bl, the HP7! will wait for you
to press another key. If this key is an alphanumeric key and the
corresponding character occurs to the left of the current cursor
position, then +the cursor will be positioned at the first occurence of
the specified character that happens to the 1left of the current
position. If the given character does not occur before the current
cursor position, then no action takes place. If another command is
issued instead of the pressing of the expected character key, then that
command will be executed.

*EKREN C - COPY HRRR R

The COPY command allows vyou to copy a block of text from one place to
another within the work file. Before vyou issue the COPY command, you
must mark the block of text you wish to copy by issuing the SELECT
command (see the SELECT command’s dictionary entry for more details). If
you inadvertedly issue the COPY command and no block of text has been
marked, then VE will display the error message "Missing mark(s)". Once
you have marked a block of text, all you have to do is to position the
cursor on the line above which you whish to copy the marked block of
text and then press [f] [C]. Note that the destination position may not
reside within the marked block of text. In this case the COPY command
will take no action but display the error message "Inside block".

IXT XX D - DELETE IZ XXX

The DELETE command allows you to delete a block of text. Before you
issue the DELETE command, vyou must mark the block of text you wish to
delete by issuing the SELECT command (see +the SELECT command’s
dictionary entry for more details). If you inadvertedly issue the DELETE
command and no block of text has been marked, then VE will display the

error message "Missing mark(s)". Once you have marked a block of text,
all you have to do is to press [f] [D]l. VE will then ask you to confirm
your action with the prompt "Delete? Y/N/Q". If you press [N] (for No)
or [Q] (for Quit), then the DELETE command will be aborted. If you press
[Y] (for Yes), then the deletion will take place, and a message will be
displayed to let you know how many lines are being deleted. Note that
when this prompt appears, no other keys except [Y], [Nl and [Q] are
active. Be careful when using the DELETE command: once you have deleted
a block of text there is no way to get it back again. This is why the
DELETE command asks you for confirmation, even though you may find this
unecessary or annoying.

(XX XES E - ERASE * KK K%

The ERASE command may seem a bit tricky, and it is - so if you are a
first time user you may ignore this command altogether. The purpose of
this command is to erase "invisible" characters and trailing blanks from
the work file.

“Invisible" characters are invisible in the sense that the video
interface at hand is not able to display them on the screen. Usually -
with normal use of VE - you will never encounter invisible characters,
although, on some occasions, it might happen you have to deal with these
characters, (for example, when writing particular program source files).
If this 1is the case you will notice that things get "messed up" on the
screen; for example, the cursor won't be positioned correctly. This
happens because VE "knows" that a certain number of characters exists in
a given line of text; if some of these characters happen to be
invisible, the real number of charcters in the text line will not
correspond to the number of (visible) charcters that will be displayed
on the screen, and thus the "real" cursor position VE knows about will
be "wrong” on the screen. (Do not mind if all +this seems a lot of
nonsense!).

If you are knowledgable about what charcaters you are using, then you
may overcome this situation by carefully thinking of which keys you need
to press. But if vyou lose control, then the ERASE command will come to
rescue. In fact when you issue +the ERASE command, all invisible
characters will disappear, and the correspondence between what you see
and what you get will be restored.

As you might have infered from the preceding lines, what characters are
invisible depend upon the video interface you are wusing. The ERASE
command can be instructed to recognize different sets of invisible
characters, as all invisible characters are listed in the VEDB file. The
VEDB file +that comes on the distribution disc contains a list of
invisible characters that is suited for the HP82163 32-column video
interface. These characters are all those in the ASCII ranges: 0-31,
127-159, and 255-255. If this set is not good for you, you can make your
own by running the MKVEDB program (see Appendix A).

You can take advantage of the ERASE command even if you are not
concerned by the unaesthetic effects of invisible characters. For
example, you may have the habit of using certain seldom used characters
as markers in your text files. This will allow you, for example, to
position yourself at different parts of the work file by using the FIND
command. Now, if you define the list of "invisible" characters to be the
list of characters you are using as markers, the ERASE command will give
you a quick means of "cleaning-up" the work file from all markers. The
ERASE command is a (programmable) tool for selectively extirpating a set

of characters from the work file, although this set has to be defined
before you use VE.

Another beneficial effect of the ERASE command is that it will remove
unecessary blank spaces at the end of each line of text. In this way you
can possibly reduce the amount of memory required +to store your text
file.

When the ERASE command has executed, a brief message will tell you how
many characters have been erased from the work file.

R S S S S S S S S S T T I T T T T T S T S T S N T T T S T T T I T N T N T N S T S T N S T S S N S S S I S T

00/09/14 16:54:21 FILE: VEMAN3 TEXT 14080 09/14/00 16:54
XXX XY F - FIND I T

The FIND command will allow you to locate a certain string of characters
(or "pattern”) in the workfile. You can issue the FIND command by
pressing [f1 [F1, after which VE will wait for vyou to specify the
pattern to be located. You may then type the wanted pattern and press
[ENDLINE]. Note that when vyou type the wanted pattern, then you must
also provide a starting (and optionally an ending) delimiter. For
example, if you want +to locate the string "CHHU is great", you should
press [f] [F]l, type "*#CHHU is great*" and then press [ENDLINEl. In this
case the asterisk "#" acts as a delimiter, although it could be just any
character you please, even a blank space. It is mandatory to specify the
first delimiter, the last one being optional. The first character of the
typed response will always be assumed to be the delimiter.

When you have typed your pattern and pressed [ENDLINE], the cursor will
be positioned on the first occurence of the search pattern that happens
after the current cursor position. If the search pattern does not occur
between the current cursor position and the end of file, then the search
will be repeated starting from the start of file. If the pattern exists,
then the cursor will be positioned on its first occurence in the work
file, (which, in this case, will obviously he before the current cursor
position). If the pattern does not exist in the whole file, then the
following error message will be displayed: "Pattern not found”.

If you issue the FIND command accidentally, you can nullify its action
by not specifying any search pattern, i.e. you only need to press
[ENDLINE] after [f] [F1].

One powerful feature of the FIND command is that you are allowed to use
the so-called "metacharacters". Metacharacters are a special kind of
characters that, under certain circumstances, have special meanings. The
four meta-characters applicable to the FIND command are: ".", "@",
and “$". (Note: these meta-characters are the same as those used in
EDTEXT, the text editor in the FORTH/ASSEMBLER ROM or in the TEXT

EDITOR ROM.). These four characters have the following special meanings:

naAan

The period (".") represents any single character.

The commercial "at" ("@") represents any number of any characters. You
can read this metacharacter as "some characters”.

The up-arrow (""") represents the beginning of a line.
The dollar sign ("$") represents the end of a line.

To switch these characters to their special meanings, you have to place
a backslash ("\") in the search pattern. Unfortunately, the backslash
character is not available on the standard HP71 keyboard, thus, if you
whish to use the metacharacters, you will have to assign this character
as a typing aid to a user defined key, for example the [/] key. You can
do this by typing "DEF KEY */’ ,CHR®%(82);" in the BASIC environment.

To return the metacharacters to their normal meaning, place a second
backslash in the string. If you need the backslash character itself in
the search pattern, you can use two sequential backslashes. The program
will interpret two sequencial backslashes as a single backslash

character and not as a switch.

The following paragraphs show some examples of the wuse of +the FIND
command with or without metacharacters. In these examples, all keys you
have to press are enclosed by square brackets, and all strings you have
to type are encolsed by double gquotation marks.

[f1 [F1 "*CHHU IS GREAT*" [ENDLINE] will locate the string "CHHU IS
GREAT". Note that the FIND command 1is case sensitive. This means that
you have to type a different response string if you need to locate the
string "CHHU 1is great", and yet another string if you need to locate
"CHHU is GREAT".

[f1 [F1 "=.06%" [ENDLINE] will locate the string ".06". Note that in
this case the period is taken literally, and it is not interpreted as a
metacharacter.

[f1 [F1 "#«\,06*" [ENDLINE] will locate any three character string which
ends with the two letters "0G", for example, "F0OG", "DOG" and the same
string ".06" of the preceding example. In this case the backslash
character switches the meaning of the period to its special meaning of
"any character"”

[f1 [F1 "+\I@T" [ENDLINE] will locate any string starting with an "I"
and ending with a "T". For example "IT", "INCANDESCENT" or "IS GREAT".
In this case the "@" character means "some characters"”.

[f] [F] "#\"The" [ENDLINE] will locate the string "The" only if it is at
the beginning of a line. Note that when using the up-arrow (""") special
character any other up-arrow characters after the first one are ignored;
i.e. eceeding special up-arrow characters are treated as literal up-
arrow characters.

[f1 [F1 "#\"$%" [ENDLINE] will locate any 1line that starts and ends
immediately, i.e. any empty line. Note that "empty line" refers here to
any line that contains no characters whatever; thus a line of blank
spaces is not an empty line.

You can find more information about metacharacters under the REPLACE
comand’s dictionary entry.

* X RH 6 - G 0TO HEERR

The GOTO command 1is similar to the BACK command, with the only
difference that the cursor will be positioned to the right of the
current cursor position. (See the BACK command’s dictionary entry for
details).

EREEKE H - HIGHLIGHT *ERER

The HIGHLIGHT command allows you to take advantage of a video attribute
available on HP and HP-compatible video interfaces, namely the
possibility of displaying highlighted, (i.e. 1in reverse video),
characters. The HIGHLIGHT command acts as a toggle: it will
alternatively enable and disable highlight mode. To switch highlight
mode on and off, just press [f]l [H]. Any character(s) you type after you
have enabled highlight mode will be displayed in reverse video.

You can tell the current state of the highlight mode by looking at flag
annunciator 2 of the LCD display. This annunciator will be visible

whenever highlight mode is enabled (on).

In general, you can use the HIGHLIGHT command for two purposes. Firstly,
the HIGHLIGHT command can obviously be used simply to emphasize a
particular word or portion of text on the screen. Secondly, the
HIGHLIGHT command can be used to introduce in a program source file
characters whose ASCII value have the most significant bit (the 8-th
bit) set. Although this second possibility is a rather technical issue,
it is worthwile to know about it. Indeed, the only action that takes
place when highlight mode is enabled, is the setting of the 8-th bit of
the ASCII value of all characters that are typed. This is because all HP
and HP-compatible video interfaces will display in reverse video all
characters whose 8-th bit is set.

Another fact vyou should remember when using highlight mode, is that the
highlighted space character is not equivalent +to the "normal" space
character. This has an influence on the way the WORD [f] [W], position
to previous word [f1l [(] and position +to next word [f]1 [)] commands
operate. The three commands will distinguish between words only if they
are separated by a true, i.e. “normal", space character; so they will
not operate as you may expect on a line of highlighted text. This may
not seem coherent, although it is if you +think of highlighted words
separated by highlighted spaces as a single entity, (which is normally
the case). If you need to write highlighted words that actually need to
be distinguished as different words, separate them with "normal" space
characters.

EX 22 I - INSERT R KR

The INSERT command is usually used in combination with the YANK command,
(see the VYANK command’s dictionary entry), although it can be used by
itself. The INSERT command will allow you to merge an external file into
the current work file, i.e. make a copy of the external file’s contents
into the current work file. To do this, just position the cursor on the
line above which you whish to insert a copy of +the external file’'s
contents and then press [f] [I]. You will then be requested to type the
name of +the external file. The prompt will propose by default the file
name that was used with the last issued INSERT or YANK command. At this
point you have the opportunity of aborting the command simply by not
specifying any file name, i.e. simply press [f] [-LINE]l and [ENDLINE]
after [f] [I]. Otherwise, type the file name and end the input with
[ENDLINE].

If the file name you typed will cause any problem, an appropriate error
message will be displayed (for example "Invalid Filespec" or "File Not
Found"), and the prompt will be repeated. Again, if you whish, you can
abort the command, or give another file name.

If the file name is valid, that file’s contents will be copied into the
current work file, above the current line.

EREER J - JOIN EREER

The JOIN command allows vyou to join to two short lines into one longer
line. Each time you issue this command, [f] [J], the programm will
attempt to join the current line with the following line. If this is
possible, any trailing blanks will be removed from the current line, and
then the current line will be concatenated with the following line. If
this is not possible, then a warning message will be displayed ("Line
too long"), and the cursor will be positioned on the following offending

line, in order to allow for following JOIN comands to continue joining,
or to make it easier to split the offending line.

* X RKE L - L INE *HERE

The LINE command will delete the current line from the work file. If you
wish to delete a particular line, just position the cursor on that line
and then press [f] [L1J.

* XK KK M - MOUVUE *H* KK

The MOVE command allows vyou to move a block of text from one place to
another within the work file., Before you issue the MOVE command, you
must mark the block of text you wish +to move by issuing the SELECT
command (see the SELECT command’s dictionary entry for more details). If
you inadvertedly issue the MOVE command and no block of text has been
marked, then VE will display the error message "Missing mark(s)". Once
you have marked a block of text, all you have to do is to position the
cursor on the line above which you whish to move the marked block of
text and then press [f]l [M]. Note that the destination position may not
reside within the marked block of +text. In this case the MOVE command
will take no action but display the error message "Inside block".

LT XXX N - NEXT EXKHE

The NEXT command will allow you to locate the next occurence of the
search pattern specified in +the last issued FIND, REPLACE or QUERY
command. This command is used to page through a file in order to locate
a particular occurence of a search pattern, which can even contain
metacharacters. The search is performed exactly as with +the FIND
command. See the FIND command’s dictionary entry for more details.

*HERH 0 - 0P EN FREER

The OPEN command will open an empty line above the current line. If you
whish to open an empty line above a particular line, just position the
cursor on that line and then press [f] [0].

XXX P ~ POSITTION 2 XXX

The position command allows you to position the cursor on a particular
line in the workfile, or to discover wich is the current line. When you
press [f]1 [P1, the prompt “Line #:" will be displayed followed by the
line number of the current line. Note that the line count starts from @.
If you are happy to learn the current line number, simply press
[ENDLINE], and no other action will take place. On the other hand, if
you wish to change the current line, type an expression giving the line
number of the line to which you want to go to. For example, if you want
to get to the 86th line of the work file, type the response “86-1" and
then press [ENDLINE]. (In this example the "minus one" is necessary
because the line count starts from zero). If the expression evaluates to
a line number which 1is negative or greater +than the total number of
lines currently present in the work file, then the cursor will be
positioned, respectively, on the first and on the last line of the file.

When you +type the response expression, vyou can even use the following
symbolic references, (which really are variables used by VE):

Symbol Meaning

Yi Current line.

A Start of marked block, (position of 1st mark).
Al End of marked block, (position of 2nd mark).
U Last line of file.

Note that A and Al are @ if the respective mark has not been set. The
following examples will clarify the use of these symbolic references.

Expression Position

"ys2t Middle of file.

"us3" One third of the file.
"Ux3/4" Three fourths of the file.
"A+(A1-A)/2" Middle of marked block.
"Y1420" 20 lines past current line.
"Y1-15" 15 lines before current line.

The POSITION command is particularly handy when you are correcting
assembler source files, as the listing files produced by the
FORTH/ASSEMBLER ROM locate errors by source file line number references.

e e i g ey - - - L

00/09/14 168:57:14 FILE: VEMAN4 TEXT 13312 ©9/14/00 16:57
* KK K% Q - QUERY *HEKH
HAEEE R - REPLATCE RN KR

The QUERY and the REPLACE commands are actually the same command. They
both allow you to locate a given text pattern and to replace it with
another given text pattern. The difference between the two commands is
that the QUERY command allows you to confirm or deny any single
replacement, and even to interrupt the command at any point, whilst the
REPLACE command performs its action globally and unconditionally. Flag
annunciator 3 will be visible in the LCD display whenever the QUERY
command is active. When you issue any of these commands, with [f]l [Q] or
[f]1 [R], VE will wait for you to specify the search and the replacement
patterns. You must specify the search pattern exactly as you do with the
FIND command (see the FIND command’s dictionary entry for more details).
The only difference is now that even the second delimiter is mandatory.
You may then specify the replacement pattern, and provide a third
optional delimiter. At last, press [ENDLINE] to start the replacement
process. For example if vyou want to replace the string “"chew it" with
"CHHU IT", vyou should type the following: "#chew it*CHHU IT#*" and then
press [ENDLINE]l. In this case the asterisk "#" acts as a delimiter,
although it could be just any character you please, even a blank space.
It is mandatory to specify the first and the second delimiter, the last
one being optional. The first character of the typed response will
always be assumed to be the delimiter.

The scope of the QUERY and of the REPLACE commands can he controlled.
Normally these commands act on the whole file, but if the first mark has
been set (with the SELECT command), the replacements will take place
only starting from the position of the first mark to the end of the work
file. Further more, if even the second mark is set, then the
replacements will take place only within the marked block of text. (See
the SELECT command’'s dictionary entry for more information on marks and
blocks of text).

When the QUERY is chosen, the program will ask you +to confirm every
single replacement. When an occurence of the search pattern is located,
the QUERY command will display the prompt "Y/N/Q 7?7 :<{search pattern>: to
:<{replacment pattern>:", meaning that vyou should press [Y] to confirm
this particular replacement, [N]1 to leave this occurence of the search
pattern intact, or [Q] to quit the replacement search and make the last

line where the search pattern occured the current line.

When all replacements have been made, the commands' action will end and
a message will tell you how many replacements were actually made.

During the execution of these commands, it can happen that a replacement
will produce a line longer than the current screen window width. If this
happens, a warning message ("Replacement too long") will notify that
this situation arises, and that particular replacement will not be
performed. Instead the programs proceeds with the following
replacement(s), if any.

If you issue the QUERY or the REPLACE command accidentally, you can
nullify their actions by not specifying any pattern at all, i.e. you
only need to press [ENDLINE] after [f] [Q] or [f] [R1].

The QUERY and the REPLACE command allow vyou to use the same
metacharacters recoginized by the FIND command for the search pattern,
(see the FIND command’s dictionary entry). Furthermore, you may use yet
another metacharacter in the replacement pattern. This new matacharacter
is the ampersand ("&"), which any text that matched the search pattern.
To switch the ampersand 1to its special meaning, vyou have to place a
backslash in the replacement pattern, just like the backslash is used to
give special meaning to the other metacharacters that may be used in the
search pattern.

The following paragraphs show some examples of the use of the QUERY and
of the REPALCE commands with or without metacharacters. In these
examples, all keys you have to press are enclosed by square brackets,
and all strings you have to type are encolsed by double quotation marks.

[f]1 [R] "#chew it*CHHU IT" [ENDLINE] will replace the string "chew it"
with the string "CHHU IT". Note in this first example that the third
optional delimiter is not present.

[f1 [R] "«HAT*\T&*" [ENDLINE] will replace the string "HAT" with the
string "THAT". 1In this example the ampersand in the replacement string
is used with its special meaning.

(f1 [R] "#\"Humpty*Dumpty*" [ENDLINE] will replace the string "Humpty"
with the string "Dumpty" only if 1{he search string appears at the
beginning of a line.

[f1 [R] "D\@+@D\(&)*(&)D" L[ENDLINE] will “square sums"'; for example,
“141" will be changed into "(1+1)*(1+1). Note in this example the use of
the metacharacters, and the use of the letter "D" as a the delimiter.

[f1 [RI "#\N.\\\.#8\&+*" [ENDLINE] will replace a string made up of any
single character followed by a backslash and a period with an ampersand
and the search string itself. For example "A\." will be changed into
"&A\.". This example is tricky: study it carefully, it will give you a
good insight on how the metacharacters work.

[f1 [R] "*\"$#*+" [ENDLINE] will replace empty lines with nothing, i.e.
this command will delete empty lines. With +the QUERY command this
particular search pattern is assumed to be a special case: as the empty
lines are being replaced with nothing, during the command’s execution
the deleted lines will be displayed with ">line deleted<{", to give the
user some feedback and context on the screen. This will obviusly not be
raflected in the work file, where the deleted lines will actually
disappear.

[f1 [R1 "#\~ *%" [ENDLINE] will delete any starting blanks from a line.
This command can be useful to remove indentations.

[f1 [R1 "#\".*+" [ENDLINE] will remove any starting character from a
line. If you have selected a block of text, this command can be used to
clear the 1lines in the block, opposed to deleting them, although this
will take a long time, as the replacement takes place a character at a
time.

[f1 [R]1 "#\"@x+" [ENDLINE] is similar to the previous example, but works
faster, as this time the replacement takes place a line at a time. Note
that this command will make two replacements for every non-empty line.
You can however make it work even faster (one replacement per line) if
you specify the optional ‘"one time per line" flag, explained in the

following example.

[f1 [R1 “"#\"_ .. .%x" [ENDLINE] will remove ONLY +the first four
characters in each line. This command is useful if you need to edit text
files created with an HP75: it will delete the four digit line number
that the HP75 puts at the beginning of every line. Note in this example
the final "L" after the last delimiter. This is an optional flag wich
means "only one time per line". (This flag will be set by any character
following the last (the third) delimiter, not only by an "L"; the "L"
was chosen in this example as a mnemonic abbreviation for "line“.).

* KKK g - SELECT E R

The SELECT command is to be used in combinaition with the FIND, DELETE,
COPY, MOVE, REPLACE, QUERY and YANK commands. The purpose of the SELECT
command is to select a portion of text on which the other commands will
act. The SELECT command acts as a three-state toggle. The first time you
issue the SELECT command the current line will be marked with the first
of the +two available markers. You will know this has happend when the
message “"Mark 1" is displayed. The second time vyou issue the SELECT
command, the current line will be marked with the second marker. Again,
you will know this has happend when you see the "Mark 2" message. The
third time vyou issue the SELECT command, the two marks will be cleared.

You will know this from the "Marks cleared" message.

Usually, the commands that operate in conjunction with the SELECT
command will perform their action on the block of text comprised between
the first and the second mark. Some commands need only one mark, (and
optionally both marks); in this case the block of text 1is comprised
between the assigned mark and the end of the work file.

[ZX XX T - T AB * XK KN

The TAB command will position the cursor to the next tab stop. See the
description of the TABS parameter in the section "Getting started".

2 XX V) - VIEW *REEE

The VIEW command will show you how much memory is still available. This
command is present because VE does not perform any extensive error
checking on memory usage, so the responsability of this is put onto the
user. If you do not have much memory left, you should periodically check
how much is left. If no more than 500 bytes are left, you should stop
your editing session, quitting VE, and get more memory. You can either
get more RAM memory modules or make room by purging any unnecessary
files from RAM, or by claiming free-ported ports.

If, unfortunately, you run out of memory during a VE editing session and
the program crashes, (remember it is your responsability not to get to
this point), vyou should be able to recover most of your own BASIC
environment by typing the "CONT 900" to the BASIC interpreter. In this
way you will quit VE in a normal way, so that system, loop and timeout
status will be restored.

*H KRR W - W ORD FEERKE

The WORD command will delete all characters between the current cursor
position and the beginning of the next word on the current line. Thus if
the cursor is positioned on the first character of a given word, that
word will be deleted simply by pressing [f]1 [W].

*h R KR Y - Y ANK X T Y]

The YANK command will allow you to copy the whole work file or a block
of text to an external file. Usually you will use this command in
combination with the SELECT and INSERT commands (see these commands’
dictionary entries). If no marks have been set with the SELECT command,
then the YANK command will act on the whole workfile. If only one mark
has been set, then the YANK command will act on +the block of text
comprised between that mark and the end of the work file. If both marks
have been set, then the YANK command will act on +the block of text
comprised between the first and the second mark.

When you issue the YANK command by pressing [f]l [Y], you will be
requested to type the name of the external file. The prompt will propose
by default the file name that was used with the last issued INSERT or
YANK command. At this point you have the opportunity of aborting the
command simply by not specifying any file name, i.e. simply press
[f1 [-LINE] and [ENDLINE] after [f] [Y]. Otherwise, type the file name
and end the input with [ENDLINE].

If the file name you typed will cause any problem, an appropriate error
message will be displayed (for example "Invalid Filespec"), and the
prompt will be repeated. Again, if you whish, you can abort the command,
or give another file name.

If the file name is valid, the YANK command will copy the selected block
of text to the external file.

When you issue the YANK (or the INSERT) command for the very first time
during an editing session, the default file name proposed will be "BUF".
You can think of +this file as a temporary buffer which can exist only
during an editing session, but that will certainly be purged when you
quit the VE program. If you use any other file name, that file will be
created permanently, (i.e. it will survive vyour quitting the editor).
The "BUF" file is particularly handy when you need to move quickly a
block of text from one file to another. In fact, during any VE editing
session, you can "restart" the editor by pressing the key sequence
[g] [ON]. In this case, you can change the current work file without
destroying the contents of the "BUF" file. At the same time you are sure
that when vyou will end the editing session, (probably after INSERTing
the "BUF" file in a new work file), the "BUF" file will be purged, so
that you will not find any garbage files in RAM.

There is vyet another feature. If you issue the YANK command without
having selected any block of text, (i.e. when you are acting on the
whole work file), you can even specify a HPIL mass-memory device in the
filename. This will allow you to make back-up copies of your work files
on discs and/or tapes without getting out of the program. Note that if
you do this without any mass-memory device connected to the HPIL loop,
or without any medium in the mass-memory device, vyou will get the
"Invalid Filespec" error.

T T S T T T T T T T T T T T T N T T T T T T T T T T I T T T T I T T I T T S N S NSNS SRR RIS SRSEEE

00/09/14 17:00:00 FILE: VEMANS TEXT 14080 ©09/14/0@ 16:59

MACRO Programming

The following section is for advanced users. You may wish to practice a
little using VE before you go on to the following, as you will get the
most out of the following only if you have a good understanding of how
VE works and how to use its commands. You should also have a little
knowledge of programming in BASIC, although all instruction will be
described thoroughly.

A unique feature of VE which definitively puts it above most text
editors, even of larger computers, is the possibility of using user
defined keys that may contain even any command to which VE can respond,
with or without user parameters. In other words, VE 1is MACRO
programmable text editor.

When you create a user defined key that contains a VE MACRO definition,
you will have to respect a rather complicated format, (which is NOT
described in this document). For this reason the distribution disc
contains an additional support program called MKUEKEYS (MaKe VE KEY
definitionS), which will ease the difficulty of defining VE MACROs. As
long as vyou use MKUVEKEYS according to the following instructions, you
will be able to create user defined keys in the format that VE pleases.
Beware! this program is ‘“quick and dirty" and it lacks sophisticated
user protection, so you must know what you are up to when using it.

As a first WARNING: DO NOT RENUMBER MKVEKEYS! (This 1is not really
necessary, but it will allow you to use the following description as a
reference, even at a later time. The following paragraphs presume that
MKUVEKEYS is in the form it was released on the distribution disc, i.e.
the real program starts at line 1000).

When you want to create a VE MACRO, in general, you will have to carry
out the following five step procedure:

(1) EDIT a BASIC program file that will contain the key definition. This
program will contain only DATA statements, and it must not contain lines
with line numbers greater than 999. In fact MKVEKEYS expects as input
DATA siring items in lines 1, 899, and it will create as output a single
user definition. The first DATA item must be the name of the key to be
defined, (written as an ordinary HP71 keycode), all the following items
being the definition itself. For every key press you wish to put into
the definition, you will have to write a single DATA string item, this
being an ordinary HP7!1 keycode. When vyou write out a command key to a
key definition, (i.e. any key VE recognizes as a command), the command
itself may require one or two parameters, (an input string or an input
string and a list of key presses). It is possible to specify inputs
simply by keying them in as the item following the name of the command
key. It 1is also possible to make VE stop at inputs and wait for a user
supplied response, by keying in the item "STOP" (capital letters), or
accept default values supplied at inputs, by keying in the item
"DEFAULT".

(2) EDIT the MKVEKEYS program file.

(3) DELETE any existing lines between 1 and 999 from the MKVEKEYS
program file, in order to be sure noc preceding key definition will

interfere with the new one.
(4) MERGE the BASIC program file you created in step 1! into MKVEKEYS.

(5) RUN MKVEKEYS. (Note: when you run MKUVEKEYS you must have the VELEX
lex file in memory). MKVEKEYS will read the key definition and create a
user defined key according to this definition and with respect to the
fromat expected by VE's key interpreter. When you subsequently run VE,
you can turn your user defined keyboard on and off with the normal HP71
key sequence [f] [USER].

The following paragraphs will give you some examples. In these examples,
all keys you have to press are enclosed by sgquare brackets, and all
strings you have to type are encolsed by double quotation marks.

EXAMPLE 1: Create a typing aid that will write "CHHU is great" at the
current cursor position; assign this definition to [f] [11].

"EDIT EX1" [ENDLINE]

“10 DATA F1" [ENDLINE]

"20 DATA C,H,H,U,” *,i,s,” ',g,r,e,a,t"” [ENDLINE]
"EDIT MKVEKEYS" [ENDLINE]

“"DELETE 1,899" [ENDLINE]

"MERGE EX1" [ENDLINE]

[RUN1]

Now if you edit any file with VE, enable USER mode and press [f1 [1] the
string "CHHU 1is great" will be written to the screen and to the work
file. This example is exactly equivalent to an ordinary "typing aid" key
definition that you have in the ordinary HP7! BASIC environment. The
first data item indicates which key is to be defined, all the following
data items spell out the typing aid a character at a time. The following
examples will show you how to use VE commands in your key definitions.

EXAMPLE 2: Create a MACRO that will write out your address at the
beginning of the work file; assign this key definition to [f1 [2]. (In
the example we will use CHHU’s address).

"EDIT EX2" [ENDLINE]
"1Q DATA F2" [ENDLINE]

“20 DATA #162 FO,FO,FO,FO,F0" [ENDLINE]

"3@ DATA C,H,H,U,#159 #51" [ENDLINE]

“40 DATA P,.,0,.," *,B,0,X," *,1,0,7,5,8 %159 #51° [ENDLINE]
"5@ DATA S,AN,T,A,” ',A,N,A,#159 #51" [ENDLINE]

“60 DATA C,A,’ '9,2,7,1,1," ',U,..,S,.,A,." [ENDLINE]

"EDIT MKVEKEYS" [ENDLINE]

“DELETE 1,999" [ENDLINE]

"MERGE EX2" [ENDLINE]

[RUN]

This MACRO does the following: positions the cursor on the first line of
the work file. The "#162" is the equivalent of pressing the
[gl [UP arrowl key. Makes space for the address by issuing five OPEN
line commands. Writes out the first 1line. Moves the «cursor to the
beginning of the line: the "#159" is the keycode for [gl [LEFT arrowl.
Moves the down one line: this is done by the "#51" which is the keycode
for [DOWN arrowl. Repeating this scheme, writes out the rest of the
address. Note that in this MACRO the key sequence
[gl [LEFT arrowl [DOWN arrowl is wused in place of [ENDLINEI, as the
MACRO cannot know what the current state of the Insert/Replace mode is.

For the same reason this MACRD has to create space with the five OPEN
line commands.

This example shows how cursor control keys can be programmed into a
MACRO as well as a command (the OPEN command) that takes no parameters.

EXAMPLE 3: Create a MACRO that will momentarily display the line number
of the current line. Assign this key definition to [f1 [31

“"EDIT EX3" [ENDLINE]

“1@ DATA F3" [ENDLINEI

"20 DATA FP,DEFAULT" [ENDLINEI
"EDIT MKVEKEYS" [ENDLINE]
"DELETE 1,999" [ENDLINE]
“MERGE EX3" [ENDLINEI

[RUN]

This MACRO will simply execute the POSITION command, and take the
DEFAULT answer, i.e. the current line. During the process the current
line number is momentarily displayed.

EXAMPLE 4: Create a MACRO that deletes a block of lines spanning from
the current line to +the first line containing an occurence of a user
specified pattern. Assign this key definition to [f] [41].

"EDIT EX4" [ENDLINE]

“10 DATA F4" [ENDLINE]

"20 DATA FO,FL,FS,FF,STOP,FS,FD,STOP" [ENDLINEI
"EDIT MKVEKEYS" [ENDLINE]

“"DELETE 1,999" [ENDLINE]

“MERGE EX4" [ENDLINE]

[RUN1]

In this example the sequential use of the OPEN line and LINE delete
commands will wunconditionally clear all marks. The first SELECT command
will set the first mark at the current line. Then the FIND command will
STOP to wait for user input. After the execution of the FIND command the
second SELECT command will set the second mark at the first line
containing a match to the user specified search pattern. Note that this
position may even before the original current line if the match didn’t
occure between the original current line and the end of file. If no
match at all was found, then this position will simply be the original
current line. (This is exactly how the FIND command moves the cursor
normally). At last the DELETE command will STOP to let the user confirm
or not the deletion.

EXAMPLE 5: Create a MACRO that will FIND a predifined pattern, for
example, a string made up of five spaces. Assign this key definition to
[f1 [51.

"EDIT EX5" [ENDLINE]

"10 DATA F5" [ENDLINE]

"20 DATA FF, "+ #*" [ENDLINE]
"EDIT MKUVEKEYS" [ENDLINEI
“DELETE 1,898" [ENDLINE]

"MERGE EX4" [ENDLINE]

[RUN1

This MACRO shows how vyou can program a predefined response to an input
request. This MACRO can be useful if you are writing a document in which

each new paragraph has its first line indented by five spaces: it will
let you move the cursor to the beginning of the next paragraph, no
matter where the cursor is currently positioned.

Virtual Windows

As explained in the "Getting Started" section, VE allows you to define a
window of the real screen that will be used by the editor to display
text. When doing this vyou are even allowed to define a window that is
wider than the available screen width, up to a 150 characters width as a
maximum.

NOTE: the program will not check the "Window width" parameter. It is
your responsability not to exceed the 150 characters limit.

If you define the window to be wider than the available screen width, VE
will automatically switch to it's second mode of operation, and it will
work as a screen oriented line editor. (This mode is particulary useful
if you have the HPB82163 32-column video interface.). In this mode only
one line at a time will be displayed on the screen, although all
commands and all editing keys will work exactly as they do in the normal
full screen mode. So there is nothing new you will have to learn to use
virtual windows: you just have to get used to working with one line at a
time. The only other difference you will notice, is the different
position of the message line: its position will be calculated by the
program, and it will appear immediately after the (only) line of
displayed text.

History and Credits

VE was initially conceived of and developed for his own needs by Stefano
Piccardi [CHHU 4871 in November 1985 on the HP7S portable computer and
the HPB2163 32-column video interface. (The HP75 version - VE75 - is now
available on the CHHU SWAP DISC #4). The general outline and the first
working version were designed and coded in only three days.

More or less at the same time the September 1985 issue of the CHHU
Chronicle was published, and therein appeared an article by Michael
Markov [CHHU 31: "Whishlist for +the CHHU HP7!1 ROM Project", where one

whish was for "a good (fast) full screen editor" for the HP71. Stefano
Piccardi recognized immediately that this could be VE.

Stefano Piccardi thus involved Stefano Tendon [CHHU 8351, and asked him
to search for and/or eventually develop any LEX files that would be
necessary to implement VE on the HP71. Michael Markov also helped at
this stage (December 1985-February 1986) by providing all wuseful LEX
files he had access to as the coordinator of CHHU’s SWAP DISC project.

In May 1986 the porting of +the editor from the HP75 to the HP7! was
accomplished by Stefano Tendon. The first prototype version for the HP7I
worked, slowly, using an HP150 as a terminal. At the same time it was
decided it was necessary to have a lex file. By July 1986 Stefano Tendon
coded a working version of the VELIST statement, and the editor's speed
performance became more acceptable. At this stage of development, VE7!
was adapted +to work with a PACSCREEN video interfaced borrowed from
Angelo Maggio [CHHU 8401.

During the following months many new ideas were investigated and
implemented jointly by ©Stefano Piccardi and Stefano Tendons; VE71
underwent continuous improvements and enhancements, making it into quite

a different program from the original HP75 version. Screen handling was
improved, new commands were added (INSERT, POSITION, QUERY and YANK),
the execution of existing commands was optimized for the HP71, messages
were made clearer or added, and VELEX was expanded with t{wo more
statements: CHIRP and CUR$. The CHIRP statement, although trivial, was
first written by John Baker [CHHU 6181.

Flavio Casetta [CHHU 8271, seeing a prototype version of VE71, lamented
the impossibility of using user defined keys. To get +this feature,
Stefano Tendon added the MAPKEY$ function to VELEX and Stefano Piccardi
re-wrote from scratch VE71’s key handler routines, (September 198B).
While doing this, Stefano Piccard added the MACRO ability to wuser
defined key definitions. At the same +time it was realized that key
handling required the FKEY statement, which was developed back in May
1985 by Jean Pierre Bondu, a member of the French user group S5.1.6..

In October 1986 Stefano Piccard analyzed, optimized and doucmented all
code written in BASIC. During the process he discovered that the second
mode of operation of VE, (as a screeen oriented line editor for text
files wider than the available screen width), could be added with little
effort. To do this it was required to modify the CUR$ statement, in
order to make it accept a third optional parameter. This was done
jointly by Stefano Piccardi and Stefano Tendon.

During the same month Stefano Tendon assembled and documented the final
version of VELEX, and wrote the present user’s manual.

Version 1.1 of the package was released the first week of November 19886,
a year after the first idea.

e i e e T P P T

@0/@9/14 17:02:53 FILE: VEMANG TEXT 6400 29/14/00 17:02

Appendix A - MKVEDB

The MKVEDB support program will allow you to create a new VE DATA BASE
file. The VE DATA BASE file (VEDB) contains two types of information:
the list of "invisible" characters used by the ERASE command, and a list
of hardware-dependent escape sequences. When you run the MKVEDB program,
all default inputs proposed by the program are suited for the HP821B63
video interface and all compatible video interfaces. If you are using a
different kind of video interface, the MKVEDB program will require you
to know the escape sequences performing the following functions and
applicable to the particular video interface you are using:

- Move cursor right one character.

- Move cursor down one line .

- Move cursor left one character.

- Make cursor visible.

- Make cursor invisible.

- Clear screen from current line to bottom of screen.
- Scroll screen down one line.

- Scroll screen up one line.

- Display replace mode cursor.

- Display insert mode cursor.

- Clear or reset video interface device.
- Clear screen page.

In VE version 1.1 all escape sequences, (except the last one), are two
characters long, although MKUVEDB will allow you to create escape
sequences up to four characters long. Problems will arise with VE if you
create longer escape sequences, (f(although we do not know of any HPIL
video interface which needs longer escape sequences).

If you use MKVEDB only to change the list of invisible character, keep
in mind that you can include any ASCII character in this list, from
ASCII @ to ASCII 255. (In this case remember NOT to modify the default
escape sequences!). When you answer the input prompt, you must specify
these characters as ASCII ordered subranges.

Appendix B - VEFOLD

VEFOLD is an optional run time support program. If VEFOLD resides in
memory, it will be invoked automatically by VE before any editing
session is opened. If vyou want to use VEFOLD, you only have to load it
into memory before calling VE. Do not call VEFOLD by itself, but let VE
do it automatically. Note +that the VEFOLD program file MUST NOT BE
RENAMED, unless you want VE to ignore it.

VEFOLD is a sub program that expects the following parameters:

VEFOLD (<{WorkFileChannel#> {FILESZR(WorkFile)-1> ,<{WindowWidth>)

VEFOLD was designed in order to overcome the incompatibility that exists
between the active window width parameter and any file that was created

with a wider window width.

VEFOLD will scan the work file and fold any lines that are longer than
the current screen window width. The version of VEFOLD that comes on the

distribution disc will fold lines at spaces and dashes; i.e. long lines
are folded at the rightmost occurence, with respect to the current
screen window width, of a space or a dash. (If you wish VEFOLD to fold
lines even at other characters, along with or in place of spaces and
dashes, you can modify the assignment of the C$ variable in line 20 of
the VEFOLD BASIC program file). If no such occurrence exists +then a
“Line Too Long" warning message will be displayed. Members of C$ are
left at the END of the folded portion of the line. If a line needs to be
folded more than once to fit +the current screen width, it will be if
possible.

EXAMPLE: if the current screen window width is 7, C$=" " and the work
file contains:

this is the time
for all good men

then the work file will become

this_
is the_
time
for_
all_
good_
men

where underscores represent dangling spaces.

Appendix C - Quick Reference Guide

Key(s) Function

[ATTN] End program.

[gl [ON1I Restart editor.

[UP arrowl Move cursor up one line.

[DOWN arrow] Move cursor down one line.

[LEFT arrowl Move cursor left one character.

[RIGHT arrowl Move cursor right one character.

[g] [UP arrowl Move cursor to first page.

[g] [DOWN arrowl Move cursor to last page.

[gl [LEFT arrowl Move cursor to first column.

[gl [RIGHT arrowl Move cursor to last column.

[f1 [(1] Move cursor to previous word on current line.
[f1 [)1 Move cursor to next word on current line.
[g] [ENDLINE] Move cursor down one page.

[f1 [ENDLINE] Move cursor up one page.

[ENDLINE] Carriage return; start a new line.

[g]l [CTRL] CONTROL character following.

[f] [BACK] Destructive back-space.

[f] [-CHAR] Delete character under cursor.

[f] [I/R] Toggle insert/replace mode.

[f] [LC] Toggle upper/lower case mode.

[f1 [-LINE] Delete from cursor to end of current line.
[f1 [USER1 Toggle USER defined keys on/off.

[f1 [A] AUTOMATIC wrap mode toggle.

[f1 [B1l BACK up to previous occurence of next key.
[f]l [C1] COPY marked block.

[f1 [D1 DELETE marked block.

[f1 [E] ERASE invisible characters.

[f1
[fl
[f]
[f]
[f]
[fl
[fl
[f]
[f]
[fl
[f]
[f]
[f]
[f1
[f]
[f1]
[fl

Flag annunciator

PWN—S

[F1
(61
[H]
[I1]
[J1
[L1
[M]
[N1
(01
[Pl
[Ql
[R1]
[S]
[Tl
vl
[W]
[yl

FIND a given search pattern.

GO0 to next occurence of next key.
HIGHLIGHT mode toggle.

INSERT from buffer/external file.
JOIN following lines.

LINE delete.

MOVE marked block.

NEXT occurence of search pattern.
OPEN empty line above current line.
POSITION to given line number.

QUERY replace pattern.

REPLACE pattern.

SELECT block of lines - Clear marks.
TAB to next tab stop position.

VIEW available memory.

WORD delete, (from cursor to next word).
YANK to buffer/external file.

Meaning when visible

Automatic wrap around mode off.
Insert mode on.

Highlight mode on.

Query replace command in action.
Lower case mode on.

e i i e S L R R

P@/09/14 17:04:20 FILE: VELEXMAN TEXT 2048 09/14/00 17:04

VELEX Keywords

The VELEX lex file 1implements the following keywords: CHIRP, CUR%,
MAPKEY® and VELIST, which are briefly described in the following
paragraphs:

Name: CHIRP

Type: Statement

Purpose: Give a BASIC keyword to the mainframe chirp routine.
Syntax: CHIRP

Name: CUR$

Type: Function

Purpose: Produce a cursor positioning escape sequence string.

Syntax: CURS(<row>,<{col>[,{maxcol>1])

where <row>, <col> and <{maxcol> are in the range 0-255.

Detail: The CUR$ string is equivalent to:
CHR$(27)8"%"&STR$(<row>)&STR$(<col>)

If the optional <maxcol> parameter is given, the CUR%$ string is
equivalent to:

CHR$(27)8"%"&STR$(<{row>+<{col> DIV <maxcol>)& STR$(<{col> MOD <maxcol>)

Name: MAPKEY$
Type: Function
Purpose: Map key to a unique one-byte code, and return code in a one-
byte string.
Syntax: MAPKEY$(<{keycode string>)
Algorithm:
I K$=KEYWAITS$
if K% is longer than a byte
get keycode of K$
case (keycode)

null string : return (null string)

unshifted key : return (keycode + 90)

f-shifted key : return (keycode + 112)

g-shifted key : return (keycode)
endcase

else if is_alfa (K$) return (toggle_case (K$))
else return (K$)

Name: VELIST.

Type: Statement.

Purpose: This command is similar to PLIST, but with a different syntax.
Executes faster than PLIST.

Syntax: VELIST #<{channel#> ,{start record#’>,{end record#>

where <{start record#> and <end record#> may be variable expressions.

Resource Allocation

The following tokens are wused by VELEX, as distributed on the
distribution disc:

KEYWORD TOKEN NUMBER IN HEX

CHIRP 5C 06

CURS 5C @7
MAPKEYS$ 5C 08
VELIST 5C @9

The VE program also uses the FKEY keyword, (which can be found in
FKEYLEX, from the french user group 5.1.G.), with token 71 @B (HEX).

@0/09/14 17:04:52 FILE: VEDIT BASIC 470 ©9/14/00 17:04

10 ! VEDIT: example of execution of VE suitable for the HPB82163 video interface
or compatible

20 ! HPIL devices.

3@ ! look for data base

40 ON ERROR 60TO 60

50 CAT VEDB @ OFF ERROR @ GOTQO 70

6@ OFF ERROR @ BEEP 1400,.075 @ DISP "VEDB must be in RAM:"

65 DISP "Load it form mass memory or create it using MKVEDB" @ END

7@ ON ERROR GOTO 90

8@ CAT VEFOLD @ OFF ERROR @ GOTO 100

90 OFF ERROR @ BEEP 1400,.075 @ DISP "WRN: VEFOLD not in RAM"

100 CALL VE(16,32,16,32,"%48" ,"4") IN VE7!

11@ ! DON’T forget to put an END after CALLing VE; avoid a nasty HP71 BUG !
120 END

e s i P T P

@06/09/14 17:05:03 FILE: VET1 BASIC 9337 ©9/14/00 17:05

1 | VE Copyright (C) S5tefano Piccardi & Stefano Tendon, 1986; LAST REVISION: 198

61101

10 SUB VE(RO,CO,R1,C1,D%,T$)

15 POKE "2F441","F" @ D1=FLAG(-3,1)

20 DIM C18[21,C2%021,C3%021,C4%021,C5%L21,C6%021,C7%(2]1,C$[21,E$[4]1,E1$[21,CO%([1

6@1,Vs(61]

25 DIM RO$L2]1,RI%L21,F$[161,L$[160],5%01501,516[1501,52%0(1501 ,R$[1501,Z%[11,Y$[1
61,6%[161

30 DIM U1$[141,U4%04] ,US$[9],090441 ,M$L2551 ,N$(97] , K841 ,K1$[11,Q%0327,H$041],J%(
11

35 INTEGER §,S@,51,Y,Y®,Y1,A,A1,I,C2,C03,04,W,R,D,P,K,L,6,H,J ,M0,0Q,52,T1,U,W,W9,X
40 U$="VE:1.1" @ IF NOT POS(VER$,U$) THEN ’VERERR’

45 V$="STR:A" @ IF NOT POS(VER$,V$) THEN *VERERR’

50 Us="EDT:A" @ IF NOT POS(VER%,VU%) THEN ’'VERERR’

51 Vs="CSTU:A" @ IF NOT POS(VER$,U$) THEN ’VERERR’

55 CALL VER(VU%) @ ON ERROR GOTO 431

6@ ASSIGN #1 TO VEDB @ S2=VAL('Q’&T%)

70 RO=RO-1 @ R1=(R1-2)%(C1<=C0) @ MO=(R1+1)*CEIL(C1/C0Q) @ C2=C1 @ C3=C2-1 @ C4=C
2-10

80 CO%=RPT$(" " ,CO*CEIL(C1/C0@)) @ READ #1;M%,C14$,C28,C3%,C4%,C5%,C% ,R0$,R1%,CE%,
C7$,E1% ,ES

85 A$=">line deleted<"[1,C2]

90 Os="AEoie=z ¥A¢U" OH"0 aiuuia eEABUU™ "i"

95 Hg=""

100 Y$="BUF" @ G%=Y$% @ N$="" @ W=0 @ R=1 @ H=0 @ Q=0 @ CFLAG ©,1,2,3 @ GOSUB 470
@ GOSUB 3005

105 U1$=PEEK$("2F78D" ,14) @ U4%=PEEK$("2F946" ,4) @ US$=PEEK®("2F958",9)

120 DISPLAY IS D% @ PRINTER IS D$ @ DELAY 0,0 @ PWIDTH INF @ ENDLINE @ STD

130 PRINT C5%;E$; @ GOSUB 135 @ 6OTO 155

135 PRINT "Visual Editor - ";Vé @ PRINT " Copyright (C) 18986" @ PRINT

140 PRINT "Stefano Piccardi" @ PRINT "Via A. Panizzi 13" @ PRINT "20146 MILANO,
Italy" @ PRINT

145 PRINT "Stefano Tendon" @ PRINT "Cantone Delle Asse 5" @ PRINT "2910@0 PIACENZ
A, Italy"

150 RETURN

155 F$=FNI®("File:","",16,0) @ PRINT CS5%;E1%; @ IF NOT LEN(F$) THEN CAT ALL @ GO
TO 130

195 U=FILESZR(F$) @ IF U=-57 THEN CREATE TEXT F$ @ U=0

200 IF U<@ THEN PRINT C4%; ® GOS5UB 915 @ BEEP ® DISP MSG®(ABS(U)) @ G0TO 905

205 ON ERROR 60T0O 430 @ ASSIGN #1 TO F$ @ IF U=@ THEN PRINT #1;"" ELSE U=U-1

210 ON ERROR GOTO 215 @ CALL VEFOLD(#1,U,C2) IN VEFOLD

215 OFF ERROR

250 Sg="" @ R$="" @ Y=0 @ Y0=0 @ GOSUB 520 @ GOSUB 1000

255 K$=KEYWAIT® @ K1$=MAPKEY$(K®$) @ IF FLAG(-9) THEN GOSUB 290 ELSE GOSUB 2E5

26@ GOTO 255

265 K=P0S(0% ,K1$) @ IF K THEN 275

266 IF NUM(K1$)<128 THEN J$=CHR®(128*H+NUM(K1$)) ® GOSUB 80@ ELSE CHIRP

27@ RETURN

275 GOSUB "C"&STR$(K)

280 IF NOT POS(H$,K1$) THEN RETURN

285 IF KEYDOWN(K®$) THEN 275 ELSE RETURN

290 N$=KEYDEF$(K$) ® IF NUM(N$)#59 THEN 265 ELSE N$[1,11="" @ K&$=""

295 IF LEN(N$) THEN K1$=CHR®(NUM(N$)) @ N&[1,1]1="" @ GOSUB 265 @ GOTO 295 ELSE R

ETURN

300 DEF FNIS[S61(P%,0%,L.,F)

305 60SUB 670 @ PRINT C4%;P%;

31@ IF NUM(N$)#220 THEN LINPUT "" ,D$;R$ @ POKE "2F441","F" @ GOTO 325

315 T=POS(N$,CHR$(220),2) ® R®=N$[2 ,T-1]1 ® N$=N&[T+11 @ IF NOT LEN(R$) THEN R$=D
$

22@ PRINT R%;

325 ON ERROR 60TO 335 @ IF NOT L THEN T=VAL(R$)

330 OFF ERROR @ IF (L#@)*LEN(R®)<=L THEN 348 ELSE 6=37 @ GOSUB 420 @ GOTO 3@5

335 OFF ERROR @ PRINT FNE$(ERRM$); @ GOTO 305

340 IF F THEN G60OSUB 710

345 GOSUB 1805 @ F=FLAG(4 ,FLAG(-15)) @ FNI$=R$ @ END DEF

350 DEF FNE$(M$) @ PRINT FNM®(M$); @ BEEP @ WAIT NOT FLAG(-9) @ GOSUB 670 @ FNES$

="" @ END DEF

355 DEF FNM#&(M$) @ GOSUB 670 @ PRINT M&[1,C2-11; @ FNM$="" @ END DEF

36@ DEF FNY=Y0Q<=Y1 AND YI<=YQ+RI

370 DEF FNK$ @ IF NUM(N$)#220 THEN FNK$=KEYWAIT$ @ GOTO 374

372 FNK$=N$[2,2]1 @ IF NUM(NSL[31)#220 THEN N®[1,21=CHR$(220) ELSE N$[1,31=""
374 END DEF

420 PRINT FNE$(MSG$(ABS(G))); @ RETURN

430 GOSUB 915

431 BEEP @ DISP ERRM$ @ GOTO 905

440 IF U<@ THEN U=0 ® RESTORE #1,0 @ PRINT #t;""

441 RETURN

470 A=-1 @ Al=-1 @ RETURN

490Q READ #1,Y1;S1% @ IF S1$#L$ THEN REPLACE #1,Y1;L%$

485 RETURN

510 PRINT CURS$(Y,0);C0%;CUR$(Y ,0); @ RETURN

520 Y1=Y@+Y @ L$=C0% @ READ #1,Y1;L% @ RETURN

525 PRINT CUR$(Y,0);

530 PRINT C$; @ VELIST #1,Y1,Y0+R! @ RETURN

540 T=MAX(Q,SPAN(L$," " ,MAX(! ,POS(RTRIM$(LS)," " ,X+1)))-1) @ RETURN

550 S%$="" @ R$=FNIS(Q%,"",96,1) @ IF NOT SPAN(R$," ") THEN POP @ GOTO 1230

570 Q$=CHR$(NUM(R$)) @ RE=RTRIM$(R$)3Q% @ P=P0OS(R%$,Q0%,2) @ S$=R$[2,P-1]1 @ R$=Rs(

P+11

580 P=POS(R%,Q0%) @ L=LEN(R$)>P+1 @ R$=RTRIMS(R$[!,P1,Q%)

590 D=0 @ I=0 @ FOR J=1 TO LEN(S%) @ S1=NUM(S$[J])

591 IF S1=92 THEN I=NOT I ELSE IF S1=94 AND I AND D=0 THEN D=1 ELSE IF S1=36 AND
D=1 AND I THEN

592 NEXT J @ D=D=2 AND NOT LEN(R$) @ RETURN

600 PRINT FNM$("Working..."); @ RETURN

610 Q$=FNK$ @ IF LEN(Q$)#1 THEN FKEY Q% @ POP

611 RETURN

615 P=POS("YNQ" ,UPRC$(FNK$)) @ IF NOT P THEN CHIRP ® GOTO 615 ELSE RETURN

620 PRINT Al-A+13"line(s)..."; @ RETURN

625 IF FNY THEN Y=Y1-Y@ @ GOSUB 520 ELSE GOSUB 635 @ GOSUB 710

626

60SUB 1230 @ RETURN

630
635
640
670
710
740
745
750
755
800
801
810
820
830
840
841
842
843
844
845
850
900
901
905
910
915
925
1000
1005
1006
1010
1100
1200
1205
1210
Y+1
1220
1230
1300
1305
1310
=Y-1
1320
1330
1400
1500
1600
1610
1700
1710
1800
1805
1810
1900
2000
2005
2010
2015
2020
2100

Ci1':
CAT F$
T=FLAG(-3,D1) @ POKE "2F441" ,"0" @ GOTO 9998

G05UB 490 @ PRINT CB%;ES;

POKE "2F78D",U1% @ POKE “"2F94B" ,U4% @ POKE "2F958" ,US%
CFLAG ©,1,2,3,4 @ RESTORE I0 @ RETURN

IF LEN(L$)=C2
X=X+1 @ L$[X,01=J$
PRINT C5%;L$[X1;CURS(Y ,X,C0);CA%;
IF X#C2 THEN RETURN
IF W THEN CHIRP @ GOTO 1600

BEEP 100,.01 @ IF NUM(L$[X1)#32 THEN GOSUB 4100 @ GOSUB 1600
IF NUM(LSLX+11)=32
W9=R @ IF R THEN GOSUB 1800

GOSUB 2400 @ GOSUB 2200 @ IF W9 THEN GOSUB 1800
BEEP 100,.01 @ RETURN
GOSUB 910 @ IF FILESZR(G$)>=0 THEN PURGE G%

'C27:
Y0=0
Y=0 @
GosuB

605UB 430

X=0
710 @ 6070 1230

IF FNY THEN Y=Y1-Y® @ RETURN

Y@=MAX(@,Y1-(R1 DIV 4)) @ Y=MIN(Y!,R1 DIV 4) @ RETURN
I=A*(A%-1) @ J=Ux*(Al=-1)+A1*(A1#-1) @ RETURN

PRINT C5%;CUR$(M0@,0);C$; @ RETURN

GOSUB 520 @ PRINT Ch®;E$; @ VELIST #1,Y®,Y@+R1 @ RETURN
GOSUB 490 @ IF A>=0 AND A1>=0 THEN RETURN

POP @ PRINT FNE$("Missing mark(s)"); @ GOTO 1230

IF Y1<A OR Y1>A1 THEN RETURN

POP @ PRINT FNE$("Inside block"); @ GOTO 1230

IF X=C4 THEN BEEP 3500,.0S5

IF R THEN X=X+1 @ L$[X,X1=J% @ PRINT J%$; @ GOTO 840
THEN CHIRP @ RETURN

THEN GOSUB 2585

'C37: GOSUB 490 @ YO=MAX(Q,U-R1) @ Y=MAX(0Q,U-YB) @ X=0 @ GOTO 1010

C4

GOSUB 490

IF Y1=U THEN CHIRP @ RETURN
IF 5=R1 THEN Y@=Y@0+1 @ PRINT C5%$;R0%; @ GOSUB 670 @ GOSUB 51@ ELSE Y=

S=Y @

GOSUB

c5:

520 @ IF S=R1 THEN PRINT L$%;
PRINT CURS(Y ,X,C0);C4%; @ RETURN

G0SUB 430

IF NOT Y1 THEN CHIRP @ RETURN
S=Y @ IF NOT S THEN Y@=Y@-1 @ PRINT C5%;R1%; @ GOSUB 670 @ GOSUB 510 ELSE Y

GOSUB 520 @ IF NOT S THEN PRINT L&;

G60TO 1

230

*C6': GOSUB 490 @ Y@=MIN(YQ+R@,U) @ GOTO 1006
*C7': GOSUB 490 @ Y@=MAX(Y0-RG,0) @ GOTO 1006
IF X THEN X=X-1 @ PRINT C3%; ELSE CHIRP

'c8’:
RETURN
€9
RETURN
'C10°

IF X#C3 THEN X=X+1 @ PRINT C1%; ELSE CHIRP

R=FLAG(1 ,R)

IF R THEN PRINT C6%; ELSE PRINT C7%;

RETURN
‘C11:
C12:

IF X>LEN(L%$) THEN 1600

IFRT
LslX ,X

PRINT CS5%;C3%;L8[X+115"

'C13°:

G0SUB 540 @ X=T @ GOTO 1230
IF NOT X THEN CHIRP @ RETURN

HEN L&I[X ,X1=" " @ X=X-1 @ PRINT C3%:;" ";C3%; @ RETURN

I="" @ X=X-1

X=0 @ 60TO 1230

"3CURS(Y X ,C0);C4%; @ RETURN

2200 "C14°: X=MINC(C3 ,LEN(L%)) @ GOTO 1230

2300 'C15': H=NOT FLAG(2,NOT H) @ RETURN

2400 *C16’: GOSUB 490 @ T1=MAX(OQ,SPAN(L$," ")-1) @ IF R THEN 2440

2405 GOSUB 470 @ R$=RPT$(" " ,T1)<RIM&(LSIX+11) @ L$=L$[1,X] @ PRINT CO%[1,C2-X
1 @ 60SUB 430

2415 IF Y1#U THEN 2430

2420 IF Y#R1 THEN PRINT R%;

2425 U=U+1 @ X=T1 ® RESTORE #1,U @ PRINT #1;R% @ GOTO 1210

2430 GOSUB 1210 @ GOSUB 2905 @ L$=R$ @ GOSUB 490

2435 PRINT L$; @ X=T1 @ GOTO 1230

2440 IF Y1=U THEN X=T1 @ GOSUB 470 @ RESTORE #1,Y1+1 ® PRINT #t;"" @ U=U+1 ELSE
X=0

2445 GOTO 1210

2500 *C17': IF X>=LEN(L%$) THEN RETURN

2505 L$IX+1 ,X+11="" @ PRINT C5&;L$[X+11;" "; @ GOTO 1230

2600 'C18°: GOSUB 470 @ DELETE #1,Y1

2610 PRINT C5%; @ U=U-1 @ IF U<@ THEN GOSUB 440 @ GOTO 1005

2615 YO=MAX(0,Y0-(YD>U)) @ Y=MAX(@,Y-(Y1>U)) @ GOSUB 520 @ GOSUB 525 @ GOTO 1230
2700 'C19’: L$=L%[1,X] @ GOSUB 490 @ PRINT C5%;C0%[1,C2-X1; @ GOTO 1230

2800 'C20°: GOSUB 548 @ IF T<=X THEN T=LEN(LS%)

2805 L$=L$[1 XIZLS[T+11 @ PRINT CS5%;L8[X+11;C0%01 ,C2-LEN(L$)]; @ GOTO 1230

2900 °*C21’: GOSUB 490

2905 GOSUB 470 @ PRINT C5%; @ INSERT #1,Y1;"" @ U=U+1 @ GOSUB 520 @ GOSUB 525 @
X=0 @ 60T0 1230

3000 'C22’: LC

3005 T=FLAG(4 ,FLAG(-15)) @ RETURN

2100 °*C23’: GOSUB 490 @ QO%="F:" @ GOSUB 559

3105 T=SEARCH(S5% ,X+2,Yt,U,1) @ IF T THEN 311§

3110 T=SEARCH(S%$,1,0,Y1,1)

3112 IF NOT T THEN BEEP @ PRINT FNM$("Pattern not found"); @ GOSUB 52@ @ GOTO 12
30

3115 Y1=IP(T) @ X=IP(FP(T)*1000)-1 @ GOSUB 625 @ RETURN

3200 'C24°: Q%="R:" @ CFLAG 3

3205 GOSUB 490 @ GOSUB 550 @ GOSUB 600 @ S=0 @ Q%="" @ Sis="" @ I=0

3215 G0SUB 3235 @ IF Zs#"\" THEN S1$=S51%&7Z% @ 60T0 3215

7220 G0OSUB 3235 @ IF Z$="\" THEN S1$=51$&7Z% @ GOTO 3215 ELSE IF Z$="&" THEN 3230
ELSE S1$=51%8&2Z

3225 60SUB 3235 @ IF Z$="\" THEN 3215 ELSE IF Z%$="8&" THEN 3230 ELSE S51%=S1%&7% @
60TO 3225

3230 Q$=Q$&CHRE(LEN(S1$)) @ 60TO 3225

3235 I=I+1 @ IF I<{=LEN(R%$) THEN Z$=R$[I,I1 ® RETURN ELSE POP @ R$=51%

3240 GOSUB 640 @ S@=1 @ T=I

3245 T=SEARCH(S$,50,T,J,1) @ IF NOT T THEN 3285

3250 SO=IP(FP(T)*1000) @ S1=S50+RMD(T*1000000,1000)-1 @ T=IP(T) @ READ #1 ,T;L%$
3255 IF LEN(L#®)-(S51-50+1)+LEN(R$)+(51-50+1)*LEN(Q%$)<{=C2 THEN 3265

3260 PRINT FNE$("Replacement too long"); @ IF FLAG(3) THEN S1%=5% @ GOTO 328@ EL
SE 3285

3265 S1$=R$ @ FOR I=LEN(Q%) TO 1 STEP -1

3270 S1$=516[1 NUM(QS$I[TI1)IBLSISO,51 I&SISINUM(QSLIII)+1] @ NEXT I @ IF D THEN S1%=

A%

3275 52%=L% @ GOSUB 5105

3276 IF Q THEN L$0(50,511=51% @ REPLACE #1,T;L% @ S=5+1 @ GOSUB 5135

3280 SO=(SO+LEN(S1%)+(52%=L$% AND NOT LEN(S1$)))*NOT L @ T=T+L @ GOTO 3245

3285 IF NOT D THEN 3230

3286 D=U @ FOR T=J TO I STEP -1 @ READ #1 ,T;L$%

3287 IF L$=A%$ THEN DELETE #1,T @ U=U-1 @ Y1=MAX(0Q,Y1-(T<=Y1))

3288 NEXT T @ IF D#U THEN GOSUB 470

3289 G0SUB 630 @ GOSUB 440

3290 GOSUB 710 @ PRINT FNM$(STR$(5)&" replacement(s)"); @ GOTO 1230

3300 'C25': GOSUB 490 @ PRINT FNM$("Pattern :"&S$&":"); @ GOTO 3105

3400 'C26°: GOSUB 490 @ I=MAX(Q ,MIN(VAL(FNIS("Line #:" ,STR$(Y1),0,1)),U))

3435 X=X*(Y1=I) @ Yi=I ® GOSUB 625 @ RETURN

2500 °C27': PRINT FNM$("Memory: "&STRB(MEM)); @ GOTO 1230

3600 'C28": PRINT FNM$("Mark"); @ IF A<@ THEN PRINT 1; @ A=Y! @ GOTO 1230

3605 IF A1<@ THEN PRINT 2; @ Al=A @ A=MIN(A,Y1) @ AI=MAX(Al,Y1) @ GOTO 1230
361@ PRINT "s cleared"; @ GOSUB 470 @ GOTO 1230

3700 °C29’: GOSUB 740 @ GOSUB 750 @ T=Y!1<A @ PRINT FNM#%("Moving"); @ GOSUB 620
3710 FOR I=0 TO A1-A @ READ #1 A+I*T;L% @ DELETE #1 ,A+I*T @ INSERT #!,Y!I+I*T-NOT
Ti;L$ @ NEXT I

3735 IF T THEN YI=YI+(Al-A+1)

3745 GOSUB 630 @ GOSUB 470 @ GOSUB 710 @ GOTO 1230

3800 °C30’: GOSUB 740 @ GOSUB 750 @ PRINT FNM®("Copying"); @ GOSUB 620

3810 T=(Y1<A)+1 @ FOR I=0 TO Al-A @ READ #1 ,A+I*T;L$ @ INSERT #1,Y1+I;L% @ NEXT
I

3835 T=T-1 @ S=A1—-A+1 @ U=U+S @ A=A+5+T @ Al=A1+5*T @ YI=Y1+5

3840 GOSUB 630 @ GOSUB 710 @ GOTO 1230

3900 'C31°: GOSUB 740 @ PRINT FNM$("Delete? Y/N/Q"); @ GOSUB 1230

3910 6O0SUB 615 @ GOSUB 670 @ IF P>1 THEN 123@

3915 PRINT "Deleting”; @ GOSUB 620 @ FOR I=A TO Al @ DELETE #1,A @ NEXT I

3925 X=X#(Y1<A OR Y1>A1)

3930 YO=YO*(YB<AI+MAX(D ,A-(A1-YO+1))*(A<=YD AND YB<=A1)+(YD-(A1-A+1))*(AILYD)
3935 Yi=Y1#(Y1<A)+MAX(B ,A-(AT=U)*(A<=YT AND Y1<=A1)+(YTI-(AT=-A+1))*(ATYT)

3940 GOSUB 630 @ U=U-(A1-A+1) @ GOSUB 440

3960 GOSUB 470 @ GOSUB 710 @ GOTO 1230

4000 °'C32': GOSUB 910 @ POP @ GOTO 100

4100 'C33': X=LEN(L$)-POS(REVS(L%)," " ,MAX(1 ,SPANC(REVS(LS)," " ,LEN(LS)~-X+1)))+1
4105 X=X*(X<=LEN(L$)) @ GOTO 1230

4200 'C34°': PRINT C5%; ® GOSUB 480 @ T=0 @ GOSUB 64@ @ PRINT FNM$("Erasing...");
@ X=0

4205 FOR I=I 7O J @ READ #1,I;L% @ S=LEN(L%) @ P=i

4210 P=MEMBER(L$,M$,P) @ IF P THEN L$[P,P]="" @ GOTO 4210

4215 L$=RTRIM$(L®s) @ IF SHLEN(LS$) THEN REPLACE #1 ,I;L% @ T=T+S—-LEN(LS$)

4220 NEXT I @ GOSUB 71@ @ PRINT FNE®(STR$(T)&" byte(s) saved"); @ GOTO 1230
4300 °*C35': GOSUB 61@ @ T=POS(REV$(L%$) ,MAPKEY®(Q%) ,LEN(L$)~-X+1) @ IF T THEN X=LE
N(L$)-T

4310 GOTO 1230

4400 *C36°: GOSUB 6510 @ T=POS(L% ,MAPKEY$(Q%$),X+2) @ IF T THEN X=T-1

4410 GOTO 1230

4500 °*C37': W=NOT FLAG(@ ,NOT W) @ RETURN

4600 'C38': IF Y1=U THEN RETURN ELSE R$=RTRIM$(L%) @ GOSUB 1200

4605 IF LEN(R$)+LEN(LTRIM$(L®))>=C2 THEN PRINT FNE$("Line too long"); @ GOTO 123
o

4610 L$=R$&" "<RIMS$(L$) @ GOSUB 1300 @ GOTO 2600

4700 'C39°’: IF 52 THEN X=RMD((X+52) DIV 52%52,C1) @ X=X*(X>=S2) @ 60TO 1230
4705 IF X>=NUM(TSLLEN(T$)]1)-NUM(T$) THEN X=0 @ GOTO 1230

4710 FOR I=1 TO LEN(T®) @ T=NUM(TS[II)-NUM(T$) @ IF T>X THEN I=INF

4715 NEXT I @ X=RMD(T,C1) @ GOTO 1230

4800 'C4@’: GOSUB 4890

4805 Y$=FNI®("Yank to:",Y$,16,1) @ IF NOT LEN(Y$) THEN 1230

4810 G0OSUB 600 @ G=FILESZR(Y$) @ IF G6>=0 THEN PURGE Y&

4815 ON ERROR GOTO 4825

4820 IF A<@ THEN COPY F$ TO Y$ @ OFF ERROR @ GOTO 4860

4825 OFF ERROR @ IF G<@ AND G#-57 THEN GOSUB 420 @ GOTO 4805

4845 CREATE TEXT Y$ @ ASSIGN #2 TO Y$ @ GOSUB 640

4850 FOR I=I TO J @ READ #1,I;L$ @ PRINT #2;L% @ NEXT I ® ASSIGN #2 TO *» @ GOSUB
520

4860 GOSUB 670 @ GOTO 1230

48900 'C41°: GOSUB 490

4905 Y$=FNI$("Insert from:" Y$,16,1) @ IF NOT LEN(Y$) THEN 1230

4920 G=FILESZR(Y$) @ IF 6G=0 THEN 1230

4330
4935
4950
5000
5010
5100
5105
5110
5120
5130
5135
5140
5200
5000
9398
9993

GOSUB 600 & IF G<@ THEN GOSUB 420 @ GOTO 4305

ASSIGN #2 TO Y$ @ FOR I=0 TO 6-1 ® READ #2;L% @ INSERT #1,Y1+I;L$% @ NEXT I
ASSIGN #2 TO * @ U=U+G @ YI=Y1+G6 @ GOSUB 630 @ GOSUB 710 @ GOTO 1230
'C427: GOSUB 610 @ P=P0OS("@ABCDEFGHIJKLMNOPQRSTUVWXYZIN1"_",Q%)

IF NOT P THEN FKEY Q% @ RETURN ELSE J$=CHR$(128+H+P-1) @ GOTO 800

'C437: Q$="Q:" @ SFLAG 3 @ GOSUB 3205 @ CFLAG 3 @ RETURN

Q=1 @ IF NOT FLAG(3) THEN RETURN

X=50-1 @ Y1=T @ IF FNY THEN Y=Y1-Y@ ELSE GOSUB 635 @ GOSUB 710

PRINT FNM$("Y/N/Q 7 :"BL$[50,5118": to :"BS1%$&":"); @ GOSUB 1230

G05UB 615 @ 6GOSUB 670 @ IF P=3 THEN POP @ GOTO 3285 ELSE Q=P=1 @ RETURN
IF FLAG(3) THEN PRINT C5%; @ GOSUB 51@ @ PRINT L$%;

RETURN

'C44°: T=FLAG(-9 ,NOT FLAG(-9)) @ RETURN

'WERERR’: DISP "No ";V#;" LEX file." @ BEEP @ GOTO 905

END SUB

SUB VER(V$) @ VUs="VE:1.1" @ END SUB

00/08/14 17:08:50 FILE: MAKES®9S5 BASIC 2765 ©9/14/00 17:08
1 | MAKES095 v.1.1- Make line 890 & 95 of VE
2 | For DOCUMENTATION ONLY
3 ! 0% is a mapped (MAPKEY$) list of command keys
4 | H$ is a mapped (MAPKEY$) list of repeating command keys
I NOTE: see discussion about repeating keys in file IMPROVE
10 DIM 0%[44+81,HB[9+8]
20 0%="90 0%="' @ H$='95 H$=""

100 0%=0%&CHR$(133) | ON exit VE

102 0%$=0%&CHR$(162) | g UP cursor to beginning of file
104 0%=0%&CHR$(163) | g DN cursor to end of file

106 0%=0%&CHR®{(141) | DN cursor down

107 H$=HSZCHRSB(141)

108 0%$=0%&CHR$(140) | UP cursor up

109 H$=H$RXCHR$(140)

110 0%=0%&CHR%(15@) ! g ENDLINE forward one page
112 0%$=0$&CHR%(206) | f ENDLINE backward one page
114 0$=0%&CHR$(137) | LF cursor left

115 H$=H$&CHR$(137)

116 0%=0%&CHR$(138) | RT cursor right
117 HB=H$&CHR$(138)
118 0%=0%&CHR$(217) | f SPC (I/R) +toggle insert/replace mode
120 0%=0$8CHR$(205) | f) cursor to next word on line
121 | H$=H3RCHR$(205) ! NOT IMPLEMENTED
122 0%=0%8CHR$(215) | f LF (BACK) back-space

1

123 | H$=H®&CHR$(215) | NOT IMPLEMENTED

124 0%=0%&CHR%(159) | g LF cursor to beginning of line

126 0%$=0%&CHR$(16@) ! g RT cursor to end of line

128 0%=0%&CHR®(188) | f H toggle highlight mode

130 0%$=0%&CHR$(128) ! ENDLINE carriage return

132 0%=0%8CHR$(216) | f RT (-CHAR) delete character

133 | H$=H$RCHR$(216) ! NOT IMPLEMENTED

134 0%=0%&CHR$(191) | f L delete line

136 08=0%&CHR%(219) | f DN (-LINE) delete to end of line

138 0%=0%&CHR®(170) | f W delete word

140 0%$=0%&CHR$(177) | f O open empty line

142 0%=0%&CHR$(218) | f UP (LC) toggle lower-/upper- case

144 0%$=0%&CHR$(186) ! f F find pattern

146 0$=0$&CHR$(172) | f R replace pattern

148 0%=0%&CHR$(202) ! f N find next occurrence of pattern
150 0%=0%$&CHR$(178) | f P go to line #

152 0%$=0%&CHR$(200) | f V view free memory

154 0%=0$&CHR$(184) | f § (un)set mark(s)

156 0%=0%&CHR$(203) | f M move block

158 0%=0$8CHR$(1938) | f C copy block

160 0$=0%&CHR$(185) | f D delete block

162 0%=0%&CHR$(155) | g ON (OFF) edit another file

164 0%=0%8CHR$(204) ! f (cursor to previous word on line
165 | H%=H$&CHR$(204) ! NOT IMPLEMENTED

166 0%=0%8CHR$(171) | f E erase invisible characters

168 0%=0%&CHR$(201) ! f B cursor to previous occurrence of character on

line

170 0$=0%$8CHR%$(187) | f G cursor to next occurrence of character on lin
e

172 0$=0$&CHR$(183) | f A toggle wrap-around mode

174 0$=0%&CHR®(189) | f J join two lines

176 0%$=0%8CHR$(173) | £ T tab

177 | H$=H$ECHR$(173) | NOT IMPLEMENTED

178 0$=0%$&CHR$(174) |
180 0$=0$&CHR$(176) |
182 0%=0$&CHR$(158) |
184 0%=0$RCHR$(169) !
186 0$=0$&CHR$(221) |

1000
1010
1020
1030
1040
1050
1060
1070

fy
fI
g RUN (CTRL)
fQ
f 0

0%$=0%&""" @ H$=HBE*"’
CREATE TEXT OSTR

ASSIGN #1 TO OSTR

PRINT #1;0% @ PRINT #1;HS$
ASSIGN #1 TO =

CAT OSTR @ PLIST OSTR
TRANSFORM OSTR INTO BASIC
CAT OSTR @ PLIST OSTR

yank to buffer/device

insert from buffer

enter control characters
conditionally replace pattern
toggle user mode

@0/089/14 17:08:47 FILE: XREFCMDS TEXT 4096 ©9/14/00 17:08

The following lists all functions and commands available in VE71,
with references to program entry points (BASIC line number),

VE75 equivalent key sequences, HP71 key sequences and keycodes
(in standard HP71 format, not MAPKEY$ format).

Line$ HP75 key HP71 key Keycode Function

800 - - - Any alpha-numeric key.

900 TIME ON #43 End program.

1000 s " g " $162 Move cursor to first page.
1100 5 Vv g Vv $¥163 Move cursor to last page.
1200 v v 51 Move cursor down one line.
1300 ” g #50 Move cursor up one line.

1400 c Vv g EOL ¥150 Move cursor down one page.
1500 c " f EOL 394 Move cursor up one page.

1600 < < $47 Move cursor left.

1700 > > #48 Move cursor.

1800 I/R I/R fd{spc>r Toggle insert/replace mode.
1900 TAB f) f) Move cursor to next word.
2000 BACK BACK $103 Destructive back_space.

2100 5 < g « #1549 Move cursor to first column.
2200 s 7 a > #160 Move cursor to last column.
2300 c I/R f H fH HIGHLIGHT video.

2400 RET EOL 38 Return.

2500 DEL -CHAR #104 Delete character under cursor.
2600 CLR fL fl LINE delete. -

2700 s DEL ~-LINE $107 Delete from cursor to EOL.
2800 c TAB f W fW WORD delete (from cursor to next word).
2900 s I/R f 0 fo OPEN empty line above cursor.
3000 LOCK L.C #1086 Toggle upper/lower case.

3100 FETCH f F fF FIND pattern.
3200 ¢ FETCH f R fR REPLACE pattern.

3500 c > f N fN NEXT occurence of pattern.
3400 n/a f P fP POSITION to line number.

3500 s FETCH f VU fu VIEW available memory.

3600 APPT f s fs SELECT block of lines.

3700 EDIT f M M MOVE marked block.
3800 s EDIT f C fC COPY marked block.

3900 ¢ DEL f D fD DELETE marked block.

4000 c TIME g ON #1585 Restart editor.

4100 s TAB f f(Move cursor to previous word.
4200 s CLR f E fE ERASE invisible marks.

4300 5 € « f B fB BACK up to previous occurence of key.
4400 s c 7 f G fG 60 to next occurence of key.
4500 ¢ CLR f A fA AUTOMATIC wrap mode toggle.
4600 ¢ BACK fJ fJ JOIN following lines.

4700 n/a fT fT TAB.

4800 n/a £y fy YANK to buffer.

4900 n/a f I fI INSERT from buffer.
5000 n/a CTRL #158 CONTROL character following.
5100 n/a f Q fQ QUERY replace pattern.

Mnemonic alpahabetical characters used by commands:

A AUTOMATIC wrap toggle.

BACK up to key.

COPY block.

DELETE block.

ERASE invisible characters.
FIND pattern.

60 to key.

HIGHLIGHT video toggle.
INSERT from buffer.

JOIN lines.
———————————————— not used.
LINE delete.

MOVE block.

NEXT occurence of pattern.
OPEN line.

POSITION to line number.
QUERY replace pattern.
REPLACE pattern.

SELECT block.

TAB.

———————————————— not used.
VIEW available memory.
WORD delete.

N < XECCH-NDVO TOZIMNXeaa-TIT G MO0

________________ not used.
YANK to buffer.
________________ not used.
00/09/14 17:10:39 FILE: XREFVE TEXT 2816 08/14/00 17:10

This file contains a cross-reference of VE by line. Much of this information

- but not all - is duplicated in the commentaries of each routine, for the
programmer’s convenience.

DO check this table before moving things around!

All inter-routine references are considered as entry points and are identified

with an ’e' followed by a number.
el 100: 4000

130: 155

135: 130

155: 130

215: 210

255: 260

el 265: 255,290,285
e3 275: 265,285
ed 290: 255
295: 295
305: 330,335
325: 310
335: 325
34Q: 230
e5 420: 330,4825,4930
eb 430: 205
e? 431: 5§
e8 44@: 2610,3288,3940
e 470: 100,2405,2440,2600,2905,3610,3745,3960
el® 490: 480,740,1000,1100,1200,1300,1400,1500,2400,2405,2430,2700,2500,3100,
3205,3300,3400,4200,4800,4900
el2 51@: 1210,1310,5135
eld 520: 250,625,710,1220,1320,2615,2905,3112,4850
el4 ©525: 2615,2905 (lines 525 and 530 could be joined)

el5s
elb
el?
el8
elg
el
ezl
el22
ez23
e2d
e25
e2b
e’
ez8
ez29

e30
edl
e32
e33
ed4
e35
e3b
e3?
e38
e39

e4@
e4l
ed?2
e43
ed4d
ed5

e57
e4b
ed?
e48
e4q

e50

e51

e53
e54

540:
55@:
600:
610:
615:
620:
625:
630:
B35:
654@:
670:
710:
740:
750:
800:
840:
905:
310:
915:
1000:
1005:
1006:
1010:
1200:
1210:

1220:

1300:
1600:
1800:
1805:
2200:
2400:
2430:
2440:
2505:
2600:
2905:
2005:
3105:
3115:
3205:
3215:
3225:
3230:
3235:
2245:
3265:
3280:
3285:
3290:
4100:
4210:
4805:
4825:
4860:
4905:
5105:
5135:

1900 ,2800

3100,3205

3205 ,4810,4930

4300 ,4400 ,5000
3910,5130

3700 ,3800,3315

3115,3435

3288 ,3745,3840,3940,4950
625,5110

3240 ,4200,4845

305,350 ,355,1210,1310,3310,4860,5130
340 ,625,1010,3290,3745 ,3840 ,3960 ,4220 ,4950,5110
3700 ,3800 ,3900

3700 ,3800

266 ,5010

801

200,431 ,9000

900 ,4000

200,430

250

2610

1400 ,1500

1100

4500

2425 ,2430 ,2445

1010 ,1330,1900,2100,2200 ,2435 ,2505 ,2615 ,2700 ,2805 ,2905 ,3112 ,3230 ,3500,
3600 ,3605,3610,3745 ,3840 ,3900 ,3960,4105,4220 ,4310,3910 ,4410 ,4605 ,4700,
4705 ,4715 ,4805 ,4860,4905 ,4320 ,4950 ,5120
4610

841,842 ,2005

844,845

345

845

845

2415

2400

843

4510

2430

100

3300

3105

5100

3215,3220,3225

3225 ,3230

3220 ,3225
3215,3220,3225

3280

3255

3260

3245 ,3260,5130

3285

842

4210

4825

4815

4820

4330

3275

3276

e55 9000: 40,45 ,50,51
e56 9998: 905

00/@9/14 17:11:27 FILE: VEVARS TEXT 5632 09/14/00 17:11

This is not a cross-reference of VE by variable. It is instead a list of all

relevant variahles of the program. Together with each variable you will find a

classification of the data type it represents, and a description of the purpose

of the variable.

The following symbols will be used in classifying data types:

$: string variable

$c : string constant

$p : string subprogram parameter

¢ : character variable (1 byte)

cc : character constant (1 byte)

i ¢ integer variable

ic ¢ integer constant

r : real variable

rc : real constant

np : numeric subprogram parameter

Name Type Description

A i 15t mark (A=-1:unset, 0<=A<{=U set)

Al i 2nd mark (Al=-1:unset, 0<{=A1<=U set)

A% $c holds ">line deleted<" for messages and REPLACE%

Co np t of columns of display device (ex. C0=32 for HP821B63)

C1t np # of columns of window (C1<=C0@ or COLC1<=142)

Ccz2 ic max window column # (C2=C1)

C3 ic max wWw. column in screen coordinates (0<=C3=C2-1)

Ca ic right-margin bell limit (C4=C3-10)

(0F:] $c escape sequence for clearing to bottom of screen

Cos %c a string of blanks used to (partially) clear a line

Cigs $c escape sequence to move cursor right

C2% ¢ escape sequence to move cursor down

C3¢ Sc escape sequence to move cursor left

C4% %S¢ escape sequence to turn cursor on

C5% $c escape sequence to turn cursor off

Ce6% ¢ escape sequence to select replace cursor

C7% $c ascape sequence to select insert cursor

D i delete-line flag (in replacements) + scratch

D1 rc holds the status of flag -3 (enable battery timeout)

Ds$ $p display device specifier

E® $c escape sequence to clear screen page. NOTE: in MKVEDB the default
value for E$ is "cursor hometclear to bottom of screen". This choice
was dictated by speed considerations when redrawing (especially with
the PACSCREEN). On the other hand a “clear display device" sequence
(ESC E) could be used. This would slow down I/0 operations, but it
would reduce the amount of garbage entering the screen when scrolling.

E1$ 3¢ escape sequence to clear display device (see above)

F$ $c name of current edit file

G i scratch + size of buffer file (in records)

6% $c default buffer file name ("BUF")

H i highlight flag

H$ $c list of repeating keys (in MAPKEY$ format)

I i scratch + lower block boundary

J i scratch + upper block boundary

J$ c at any time the last TEXT key handled (highlighted and MAPKEYed)

K i at any time "C"8STR$(K) is the last command key routine executed (K=0
means routine 800 (text key handler)

K$ % at any time K% is the last key pressed (in KEYWAIT$ format)

Kis ¢ at any time Ki1% is the last key pressed (in MAPKEY$ format)

L

L#
M@
M$
N&
0%

0%

RO
R1

R$
RO%
R1$

S0
S1
52
S¢
S1s
52¢%

T1
T$

Utls
Uss
Uss
Vs

W9

YO
Y1
Y$
%

a0

BT B EB e B8
o]

hs

O B - b 8w W
0O anon

one-replacement-per-line flag

usually the current line (CL), seldom used for line operations
the row # of the message line (in screen coordinates)

a list of invisible characters

(when USER active) the key definition (with parameters), see MKVEKEYS
a list of command keys (in MAPKEY$ format)

scratch (usually for POS())

scratch (usually do-replacement flag)

scratch, list of dittoes (in replacements), key-press

I/R flag (R=1 in replace mode)

¥ of rows of display device (ex. R@=16 for HP82163)

$ of lines of window including message line (R1=R® & C1<{=C0@ | R1=2 &
C1>Co)

replacement string + scratch

escape sequence for scrolling down one row

escape sequence for scrolling up one row

scratch

scratch + start of match (in replacements)

scratch + end of match (in replacements)

value of tab-stop width (52=0: absolute tab-stops in T%$)

at any time S% is the last search pattern specified

scratch

scratch

scratch (must be real)

scratch

tab-stop width or list of absolute tab-stops

at any time U points to the last record of the edit file
holds system status previous to running VE

holds system status previous to running VE

holds system status previous to running VE

version id

wrap-around flag (W=0: w-a enabled)

scratch, used to hold R in text key handler

cursor column in screen coordinates (0<{=X<{=C3)

cursor row in screen coordinates (@<=Y<{MO)

record ¥ of line corresponding to current T0S (Top Of Screen)
record # of current line (before any command Y1=Y@+Y)

name of current buffer file/device

used for parsing replacement string

00/09/14 17:12:39 FILE: ABBREV TEXT 256 ©9/14/00 17:12

The following abbreviations will be used throughout the documentation:
CL : current line (where the cursor is)

BOL : beginning of line

EOL : end of line

BOF : beginning of file

EOF : end of file

TOS : top of screen

BOS : bottom of screen

00/09/14 17:12:43 FILE: PQGOO TEXT 3840 @9/14/00 17:12
Subprogram VE - version 1.1 - Visual editor

This program was ported from a similar program for the HP75,
Necessary hardware: HP71, HPIL display device (HP82183, PACSCREEN were tested;
other interfaces - compatible with HP escape sequences - should work just
fine), memory modules.
Necessary software:
at run-time: EDLEX lex file, CUSTUTIL lex (or any lex file containing
KEYWAIT$), STRINGLX lex file, VELEX lex file, FKEYLEX lex file,
VEDB data file, VEFOLD basic file (optional)
at set—-up time: MKUVEDB basic file, MKUEKEYS basic file.

1 | VE Copyright (C) Stefano Piccardi & Stefano Tendon, 1986
RO,CO: # of rows and # of colums of video interface (ex. R@=16 C0=32 for
HP82163 video interface).
R1,C1: # of lines (including message line) and # of columns of
working window; (2<=R1<=R@ AND C1<{=C@ OR R1=Z AND C0<C1<=142). PACSCREEN
users: don't set C1=80 due to h/w bug (use C1=79).
D$: display device specifier (ex. :DISPLAY).
T$: tab-stop specifier: use the string representation of a number for
relative addressing (tab-stop width) (ex. “8") or use a string of characters
~ where each ASCII code means a column # - for absolute addressing (ex.
"AHOZ" for the FORTH assembler).

1@ SUB VE(R®,CO,R1,C1,D8,T$)
disable ATTN key

15 POKE "2F441" ,"F"
save status of battery timeout flag and disable timeout (otherwise key #99
could be inserted into edit file if VE is running and the HP71 timeouts)
@ Di=FLAG(-3,1)
see VEVARS for variable definition and usage

20 DIM C18[21,C2%[21,C3%[21,C4%[2] ,C5%[21,C6%[21,C74[21,C$(2],E$[4] ,E18[21,
Co%[1601,UsL61]

25 DIM RO$[2],R1%[21,F$(16],L$[1601,5%01501,51$[1501,52%0(1501,R$[1501,Z%[11,
Y$[161,6%[161

30 DIM U1I$[14] U4%04],U5$09]1,06044] ,M$[2551, N$[971 ,K$[4]1 ,KI1s[11,Q%[321],
H$[41,J%011]

75 INTEGER 5,5@,S1,Y,Y®,Y!,A,A1,I,C2,C3,C4,W,R,D,P,K,L,G,H, J,M0,Q,52,
T1,U,W,W9.,X
check if lex files are available (this only works for lex files answering
to the version poll)

VELEX

40 VU$="VE:1.1" @ IF NOT POS(VER$,V$) THEN 'VERERR’
STRINGLX

45 Y$="STR:A" @ IF NOT POS(VER®,U$) THEN 'VERERR’
EDLEX

50 V$="EDT:A" @ IF NOT POS(VER$,U$) THEN 'VERERR’

CUSTUTIL (used only for KEYWAIT$, but could also be used for KEYNUM and
KEYNAM$® [see IMPROVE filel)
51 V$="CSTU:A" @ IF NOT POS(VER%,VU$) THEN 'VERERR'
load U$ with VE version number
55 CALL VER(US$)
on error report error, restore system status and end VE (off error on line
205)
® ON ERROR 6GOTO 431
look for data base
6@ ASSIGN #! TO VEDB
set tab-stop flag/width
@ S2=VAL(0Q’&T%$)
transform RO into screen coordinates
70 RO=RO-1
subtract one (message) line from R1 and transform it in screen coord's or
force one editable line if C1>C0@, that is if lines must be folded
8 RI=(R1-2)*(C1<=C0)
compute row # (screen coord’s) of message line
® MO@=(R1+1)*CEIL(C1/C0)
I suggest to let this (unecessary) variable live

@ C2=C1

C2 in screen coord’s
® C3=C2-1

margin

@ C4=C3-10

buffer to erase to closest screen right side
80 CO%=RPT®(" " ,CO*CEIL(C1/C0))
load escape sequences from data base (this db will allow future extensions
to other interfaces [recoding CUR®%()] - as a matter of fact, VE has already
been ported to an HP15@ Touchscreen)
@ READ #1;M%,C1%,02%,C3%,C4%,C5%,C%,R08,R1$,C6%,C7%,E1% ,ES
85 A$=">line deleted<"[1,C2]
see MAKESQSS file
command keys

90 0%=...
repeating keys
95 H$=...
Q0/09/14 17:13:45 FILE: PO10O TEXT 3584 @9/14/00 17:13

ENTRY #1: restart editor

default buffer file name (Y$ might be changed at run-time)
100 Y$="BUF" @ G$=Y%

init key definition (NUM is performed on N% even if not USER)

@ Ng=""

init wrap-around flag to true

@ W=0

init I/R flag to replace

@ R=1

init highlight flag to false

@ H=0

?

@ Q=0

init annunciators

® CFLAG ©,1,2,3

init marks to unset

@ GOSUB 470

init annunciator of upper-/lower- case

@ GOSUB 3005

save DISPLAY IS and PRINTER IS device specifiers

105

120

145

150

155

185

200

205

215

Ul$=PEEKS$("2F78D" ,14)

save DELAY and SCROLL rates

@ U4$=PEEK$("2F346",4)

save PWIDTH and ENDLINE

@ US$=PEEK$("2F958",9)

all output to D% (display for LINPUT, printer for VELIST and PRINT)

DISPLAY IS D% @ PRINTER IS D$

for input and CAT

@ DELAY 0,0

@ PWIDTH INF @® ENDLINE

for STR%

@ STD

turn off cursor + clear screen page

PRINT C5%;E%$;

delete the following lines to remove the run-time copyright notice

@ GOSUB 135 ® GOTO 155

PRINT "Visual Editor - ";U$

@ PRINT " Copyright (C) 1986" @ PRINT

PRINT "Stefano Piccardi"

@ PRINT "Via A. Panizzi 13"

@ PRINT "2@146 MILANO, Italy" @ PRINT

PRINT “Stefano Tendon"

@ PRINT "Cantone Delle Asse 5"

@ PRINT "29100 PIACENZA, Italy"

RETURN

get edit file name without redrawing screen; user can end VE by keying in

"#' ENDLINE and disregarding the error message

Fe=FNI$("File:" ,"" ,16,0)

turn off cursor + clear display device (not just screen page)

@ PRINT C5%;E1%;

if user didn't supply a name then catalog all files (pressing arrow keys)

then retry input (pressing any other key)

@ IF NOT LEN(F$) THEN CAT ALL @ GOTO 130

init line counter with size of edit file

U=FILESZR(F%)

if file doesn’t exist then create it and init line counter to ONE line (U

points to the last record and zero is a valid record number)

@ IF U=-57 THEN CREATE TEXT F$ @ U=0

if file name was invalid then complain and end VE

IF U<® THEN PRINT C4%; @ GOSUB 915 @ BEEP @ DISP MSG$(ABS(U)) @ GOTO 905

trap errors involving channels or data base (off error on line 210)

ON ERROR GOTO 430

edit file is #1

@ ASSIGN #1 TO F%

if new file then insert one empty record (VE always leaves files with at

least one record)

@ IF U=0 THEN PRINT #1;""

else make U point to last file line (since FILESZR returns the NUMBER of

rec’s in the file; this is also the reason why U is often referred to as

‘line counter’ while it should really be called 'pointer to last line’)

ELSE U=U-1

ignore missing sub

ON ERROR GOTO 215
if file VEFOLD is in RAM then execute subroutine to fold lines which
don’t fit within working window (SUB VEFOLD used to be in VE, but
since it is slow and seldom necessary it was taken off; the user then
can simply PURGE it or RENAME it when it isn’t needed)
@ CALL VEFOLD(#1,U,C2) IN VEFOLD

OFF ERROR

**% UE traps errors only locally (inside routines) not globally #*#*#*

init search pattern (necessary for [f1INI1)

250 Sg=""
?
@ R$= n
init pointer to T0OS and screen y-coordinate
@ Y=0 @ YO=0

init CL pointer, fetch CL (1st) line
@ GOSUB 520
display first page

@ GO0SUB 1000
00/09/14 17:14:43 FILE: P0Q255 TEXT 3328 09/714/00 17:14

Main loop - key process
This is were VE spends most of its time (but not of its energies)!
MODIFIED: K$,K1%,N$ (if USER),K

loop forever
get a key
255 K$=KEYWAITS
encode key using a unique one-byte code
® K1$=MAPKEY$(KS$)
if USER then process_user
® IF FLAG(-9) THEN 60SUB 290
else process_code
ELSE 60SUB 265
endloop
260 60T0 255
ENTRY #2: process_code: INPUT: K1$ (code)
put position of key code within list of command keys into K
265 K=P0OS(0% ,K1%$)
if key code doesn’t represent a command key then
@ IF K THEN 275
if key isn’t prefixed ([f1/[gl)
266 IF NUM(K1$)<128 THEN
then it’s a text key: K1% is 1-byte long and already case-dependent
(upper/lower); set high bit if highlight mode is active
NOTE: if highlight mode is seldom used, then it may pay off to
recode the [f1[H] command in a way similar to [gl[RUN] (highlight
next key only) and simplify this statement into J$=K1$ (DO use J%:
it’s a uniquely interface with the text key handler). [glJ[RUN] should
then be modified to handle the new highlight mode.
JE=CHRE(128*H+NUM(K1%))
and pass byte to text key handler
@ GOSUB 800
else complain (unknown command)
ELSE CHIRP
270 RETURN
else
ENTRY #3: execute a (repeating) command key
algorithm: repeat
execute key
until key not repeating or key up
execute code for K-th command key
275 G0SUB "C"BSTR®(K)
if it is a repeating command key...
280 IF NOT POS(H%,K1%) THEN RETURN
then if key is still down
NOTE: see file IMPROVE to learn more about repeating keys

285 IF KEYDOWN(K$)
then execute code for K-th command key again (possibly repeating)
THEN 275
else return (possibly after many repetitions)
ELSE RETURN
endif
ENTRY #4: process_user: INPUT: K$
fetch key definition (possibly none) into N&
290 N$=KEYDEF$®(KS$)
if key is not defined or definition isn't a typing-aid
@ IF NUM(N$)#59
then process_code (even if USER)
THEN 265
else
ELSE
trim typing-aid identifier ';’
N&L[1,13=""
clear key buffer
NOTE: this is for robustness when handling repeating keys; we don't want
a spurious KEYDOWN on line 285
@ Kg=""
while definition not empty
295 IF LEN(N$) THEN
get 1 byte from encoded definition
K1%=CHR$(NUM(NS))
remove code from definition
NOTE: other code relies on this trimming (FNI$, FNK$)

@ N$[1,1]1=""
process_code
@ GOSUB 2B5
endwhile
@ G0TO 285
endif
ELSE RETURN
@0/09/14 17:15:32 FILE: PQ300 TEXT 5376 09/14/008 17:15

Function FNI$ - perform input

Whenever input is requested use this function and nothing else.

ASSERT ON ENTRY: this code relies on the fact that no more than 896 characters

can be entered from the keyboard.

INPUT: P$: prompt; D%$: default return value; L: maximum length of return
string (<=96), if L=0 then request to return a valid numeric
expression (VAL is used for testing); F: redraw flag (F=1 means redraw),
use F=0 whenever screen parameters are invalid.

QUTPUT: a string containing user’s input. Key definitions with parameters are

accounted for. Errors are trapped.

MODIFIED: N% (if USER)

TRASHED: T,R$,6 (on input error)

300 DEF FNI$[S61(Ps,Ds,L,F)
erase message line
305 60SUB 670
turn cursor on and put out prompt
® PRINT C4%;:P%;
if no parameter is pending in a key definition (notice that USER off
implies N$="" => NUM(N$)=0)
NOTE: ASCII 220 is used as a delimiter for parameters in key definitions
since MAPKEY$ can’t return it.

310

315

320

325

330

335

340

345

IF NUM(N$)#220 THEN
do input
LINPUT "" ,D$;R$
disable ATTN key (this is necessary when user turns off the HP7! during
input)
@ POKE "2F441" ,"F"
else
@ GOTO 325
compute end of parameter in key definition
T=POS(N% ,CHR$(220),2)
load return string with parameter
@ R$=N$[2,T-11
trim parameter off key definition
@ NE=N$[T+11
if parameter = null string then load return string with default return
value
@ IF NOT LEN(R%$) THEN R$=D%
put out return string to fake keyboard input
PRINT R%;
endif
check validity of input:
ON ERROR GOTO 335
if requested to return a numeric value then test for numeric
@ IF NOT L THEN T=VAL(R%)
OFF ERROR
else {return string} if string is not too long then return value
@ IF (L#0@)*LEN(R$)<=L THEN 340
else put out ’'string too long’ and retry
ELSE 6=37 @ GOSUB 420 @ GOTO 305
endif
put out ’'bad argument’' and retry (VAL failed)
OFF ERROR @ PRINT FNE®(ERRM$); @ GOTO 3@5
if redraw-screen flag then redraw screen
IF F THEN GOSUB 710
restore I/R cursor
605UB 1805
restore upper-/lower- case lcd flag
® F=FLAG(4 ,FLAG(-15))
return value
® FNI$=R% @ END DEF

Function FNE$ - display error message

ASSERT ON ENTRY: screen is already redraun

ASSERT ON EXIT: message line is clear

INPUT: M$: message; FLAG —15: inhibit WAIT

QUTPUT: null string; intended usage PRINT FNE$("message");
MODIFIED:

TRASHED:

350

DEF FNES(M®)

put out message (making sure it fits within the window)
® PRINT FNM$(M$);

beep (and waste some time)

@ BEEP

waste 1 second but only if not USER (this comes handy especially in key
definitions involving many [fl[J1’s)

@ WAIT NOT FLAG(-3)

erase message line

@ GOSUB 670

return dummy value (logically this is a procedure)

@ FNE$="" @ END DEF

Function FNM% - display message

ASSERT ON ENTRY: screen is already redrawn

ASSERT ON EXIT: message on screen

INPUT: M$: message

QUTPUT: null string; intended usage PRINT FNM$("message");
MODIFIED:

TRASHED:

355 DEF FNM$(M$)
erase message line
@ GOSUB 670
put out message making sure it fits within the window
@ PRINT M$[1,C2-11;
return dummy value (logically this is a procedure)
@ FNM$="" @ END DEF

Function FNY - check if CL pointer points inside current page
INPUT: Y1
QUTPUT: 1 if Y! points inside page, otherwise @

36@ DEF FNY=Y@<=Y1 AND Y1<=Y@+RI

Function FNK$ - return key pressed.

Whenever waiting for a key use this function and nothing else

ASSERT ON ENTRY: it can handle a list of key presses in a key definition
ASSERT ON EXIT:

INPUT: none

QUTPUT: key

MODIFIED: N#% (if USER)

370 DEF FNK$
if no parameter pending in a key definition (see FNI$)
@ IF NUM(N$)#220 THEN
return keyboard input
FNK$=KEYWAITS
else
@ GOT0 374
extract key from list of key presses in key definition
372 FNK$=N$[2 ,21]
if that wasn't the last item of the list
@ IF NUM(N$[31)#220 THEN
then trim first item from list
N$[1,21=CHR$(220)
else
ELSE
remove empty list from key definition
N&[1,31=""
endif
endif
374 END DEF

Q0/09/14 17:17:02 FILE: PQ400 TEXT 6400 09/14/00 17:16

Routines - a huge collection of routines to do mostly everything
ENTRY POINTS: (see XREFVE) #5-#28

ENTRY # 5: print error message ¥ 6

420 PRINT FNE$(MSGH(ABS(G))); @ RETURN
ENTRY #6: display last error message and end VE
ASSERT ON ENTRY: display and printer have already been assigned
430 60SUB 915
ENTRY #7: display last error message and end VE
ASSERT ON ENTRY: display and printer haven't been assigned yet
431 BEEP ® DISP ERRM$ @ GOTO 805
ENTRY #8: if file has been depleted then append one empty record and adjust
pointer to last line (U)
449 IF U<@ THEN U=0 © RESTORE #1,0 @ PRINT #1;""
441 RETURN
ENTRY #9: set both marks to ’'undefined®
470 A=-1 @ Al=-1 @ RETURN
ENTRY #10: store CL in file iff it isn’t already there (to avoid a lengthy
operation)
490 READ #1,Y1;51% @ IF S1$#Ls THEN REPLACE #1,Y1;L$
495 RETURN
ENTRY #12: erase line Y (usually CL) from screen
510 PRINT CURS(Y ,2);CO%;CURSB(Y,0); @ RETURN
ENTRY #13: given Y ,Y0, update CL pointer (Y1) and fetch CL in L%
520 Y1=YQ+Y
erase previos contents of L%
NOTE: this assignment is probably useless. It comes from the HP75 version
of VE. Anyway, neither does it do any bad, nor does it affect speed sensibly
@ L$=C0%
fetch CL and return
® READ #1,Y1;L% @ RETURN
ENTRY #14: redraw lower portion of screen (lower with respect to CL);
usually called by [f1[01,[flIL] and other line operations
525 PRINT CURS(Y,0);
530 PRINT C$; @ VELIST #1,Y1,Y2+R1 @ RETURN
ENTRY #15: compute position of next word on current line; QUTPUT: T
from the cursor position (X+1) search first space (POS(" ",) and from there
- ignoring trailing spaces (RTRIM) - or from the beginning of the line - if
there are no spaces - search for first non-blank character (SPAN) or stop
at first column if such a character doesn’t exist (MAX)
540 T=MAX(©,SPAN(LS$," " ,MAX(1 ,POS(RTRIM&(L$)," " ,X+1)))-1) @ RETURN
ENTRY #16: do input and parse it for search and replace
QUTPUT: S%$,R$,D,L
MODIFIED: N% (if USER)
TRASHED: Q%$,P,I1,J,51,6 (on input error),T
init search pattern
550 Sg=""
do input
@ Re=FNI®(Q%,"",96,1)
if nothing useful was entered then take control, display cursor and exit
@ IF NOT SPAN(R$," ") THEN POP @ GOTO 1230
put delimiter into Q%
570 Q%=CHR$(NUM(RS$))
don't be too sensitive to missing closing delimiters: add yours
@ R$=RTRIM$(R®)BQS
parse search pattern into 5%
@ P=POS(R%,Q0%,2) @ S$=R®[2,P-11
trim it from input string
@ R%=R$[P+11
find where replace string ends
58@ P=P0OS(R%,Q%)
set one-replacement-per-line flag if user entered anything after the third
delimiter
@ L=LEN(R$)>P+1

parse replace string
@ R$=RTRIMS(R$[1 ,P1,Q%)
compute delete-line flag (\" and \% in S% and R%="")

init flag

590 D=0
init ’'special-characters-active’ flag to false
@ I=0

foreach character in search pattern
® FOR J=1 TO LEN(SS$)
@ S1=NUM(S®[J])
if it's a '\' then toggle s-c-a flag
591 IF S1=92 THEN I=NOT I
else if it’s the first '"’ and s-c-a then D='\" found’
ELSE IF S1=94 AND I AND D=0 THEN D=t
else if it’s '$’ preceded by "’ and s-c—a then D='\% found’
ELSE IF S51=36 AND D=1 AND I THEN D=2
endfor
592 NEXT J
set D to true iff D=2 AND null replace string
@ D=D=2 AND NOT LEN(RS$)
NOTE: this code ignores special '"’'s following the first special
because that's exactly what the SEARCH keyword does; it itreats exceeding
special ""’s as literal '"'s and so do we.
@ RETURN
ENTRY #17: put 'Working...’ message on message line
600 PRINT FNM$("Working..."); @ RETURN
ENTRY #18: get a text key and return or don’t return at all
QUTPUT: Q%
MODIFIED: N$ (if USER)
get that key
610 Q%=FNK$
if it's a prefixed key then take control, put it back in the key buffer
NOTE: in a key definition with parameters any byte can be used and will
be returned
® IF LEN(Q$)#1 THEN FKEY Q% @ POP
611 RETURN
ENTRY #19: wait until Y/N/Q is pressed and return P
615 P=POS("YNQ" ,UPRCH(FNK®)) @ IF NOT P THEN CHIRP @ GOTO 615 ELSE RETURN
ENTRY #20: put out message '(size of block) lines’
620 PRINT Al-A+1;"line(s)..."; @ RETURN
ENTRY #21: fetch CL and if it's outside of current page update pointers and
redraw screen giving some context to the user
INPUT: YI
QUTPUT: L%
MODIFIED: Y,Y0
if CL pointer is within page then update cursor y-coordinate, fetch CL
625 IF FNY THEN Y=Y1-Y0 @ GOSUB 520
else adjust Y,Y®, fetch CL and redraw screen
ELSE GOSUB 635 @ GOSUB 710
display cursor and exit
626 60SUB 1230 @ RETURN
ENTRY #22: similar to entry #21, but CL is not fetched and screen is not
refreshed
B3@ IF FNY THEN Y=Y1-Y® @ RETURN
ENTRY #23: also part of entry #22
adjust Y,YQ so that Y! is found at 1/4 of the screen page
635 YO=MAX(®@,Y1-(R1 DIV 4)) @ Y=MIN(Y1 ,6R1 DIV 4) @ RETURN
ENTRY #24: compute 'lose’ block boundaries
INPUT: A,Al
QUTPUT: I,J

LA)

ASSERT ON EXIT: @<=I<=J<{=U
if 1st mark set then I=1st mark else I=0
640 I=Ax(AHt-1)
if 2nd mark set then J=2nd mark else J=U (last line)
@ J=U*{(Al=-1)+A1*(ATH%-1)
® RETURN
ENTRY #25: clear message line AND bottom of screen
670 PRINT C5%;CURS(MQ,0);C%; @ RETURN
ENTRY #26: fetch CL and redraw screen
710 GOSUB 520 @ PRINT C5%;E®; ® VELIST #1,Y0,Y0+R!1 @ RETURN
ENTRY #27: store CL, check if both marks are set, if not then take control and
error out
740 GOSUB 490 @ IF A>=0 AND Al1>=@ THEN RETURN
745 POP @ PRINT FNE®("Missing mark(s)"); @ GOTO 1230
ENTRY #28: check if CL is inside block, if so take control and error out
75@ IF Y1<A OR Yt1>A! THEN RETURN
755 POP @ PRINT FNE$("Inside block"); @ GOTO 1230

00/09/14 17:18:40 FILE: PO800O TEXT 2072 09/14/00 17:18

Routine: text key handler

ENTRY POINTS: #29 (266,5010)

ASSERT ON ENTRY: case and high bit are already set
ASSERT ON EXIT:

INPUT: J$,R,W

OUTPUT:

MODIFIED: L& ,X ,(FILE,Y! ,possibly Y,Y® (if W & X=C2))
TRASHED: WS,T

This routine handles text keys. Wrap-around and I/R modes
cause different actions:
W I Action
@ @ replace cursor with key, if not at right margin then
advance cursor else complain
@ just like W=0 I=0, but if at right margin do wrap-around in insert mode
1 if room left then insert key under the cursor else complain
1 just like W=0 I=1, but if at right margin do wrap-around (in insert mode)
In addition, this routine handles a right-margin bell,
which is set at a constant distance from the screen right
margin. The bell is unsatisfactory for two reasons: it is
not similar to a MARGIN statement, it can’t be turned off
unless BEEP is turned OFF or line 800 is deleted.
ENTRY #29:
ring right-margin bell if necessary
80@ IF X=C4 THEN BEEP 3500,.875
if replace mode...
8@1 IF R THEN
then advance cursor logically
X=X+1
place key under PREVIOUS cursor position
@ LS[X,X]1=J%
display key
@ PRINT J%;
else (insert mode)
@ GOTO 840
if no room left then complain and exit
810 IF LEN(L%)=C2 THEN CHIRP @ RETURN
advance cursor
820 X=X+1

1
e
1

insert new key
@ L$I[X,01=J%
turn cursor off, display new key + right portion of line, display cursor
830 PRINT C5%;L$[X1;CURS(Y X ,C0);C4%;
endif
if at right margin...
840 IF X#C2Z THEN RETURN
then if no wrap-around (W=1)...
841 IF W THEN
then complain
CHIRP
back cursor and exit
@ GOTO 1600
else (wrap-around active)
signal about to split line
842 BEEP 100,.01
if not on a ' ' then
@ IF NUM(L$SIX1)#32 THEN
go to beginning of previous word
GOSUB 4100
and back cursor one column (possibly toa ' ")
@ G0SUB 1600
if on a ' ' then delete it (this test is
necessary for lines without blanks)

843 IF NUM(L$[X+11)=32 THEN GOSUB 2505
save I/R flag status
844 W3=R

and set insert mode
@ IF R THEN G0OSUB 1800
do a [RTN] in insert mode
845 G0SUB 2400
go to end of new line
@ GOSUB 2200
restore previous I/R status
@ IF W9 THEN GOSUB 1800
signal end of wrap-around
850 BEEP 10@,.0!1
and exit
@ RETURN
endif (wrap-around)
endif (at right margin)

@0/09/14 17:19:25 FILE: P@S00 TEXT 1280 09/14/00 17:19

Command key [ON] - exit editor

ENTRY POINTS: #321 (900,4000), #32 (200,430)
ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: FLAGS 0-4,-3

TRASHED: S1%

restore system and loop status
900 'C1*: GOSUB 910
purge default buffer file if it exists
@ IF FILESZR(G$)>=0 THEN PURGE G%
901 CAT F$
restore battery timeout status

8905 T=FLAG(-3,D1)

enable ATTN key

@ POKE "2F441","0Q"

end subprogram

@ GOTO 9998
ENTRY #31:

store current line and display replace cursor + clear screen
910 GOSUB 490 @ PRINT CE$:;ES;
ENTRY #32:

restore original DISPLAY IS5 and PRINTER IS devices
915 POKE "2F78D",U18%

restore original SCROLL and DELAY rates

@ POKE "2F94B" ,U4%

restore original PWIDTH and ENDLINE

@ POKE "2F958" ,US%
925 CFLAG ©0,1,2,3.,4

@ RESTORE I0

@ RETURN

00/09/14 17:19:43 FILE: P1000 TEXT 1782 @9/14/00 17:19

E3 3 it A i e A A Y -ttt i1t

Command key [glIUP] - display first page

ENTRY POINTS: #33 (250), #34 (2610), #35 (1400,1500), #36 (1100)
ASSERT ON ENTRY:

ASSERT ON EXIT: Y=0 & X=0 (not for #3B6)

INPUT: see entry point #33

QUTPUT:

MODIFIED: X,Y,Y0,Y!,L$

TRASHED: S1%

ENTRY #33: INPUT: none
store current line
1000 *C2': GOSUB 490
ENTRY #34: same as #33
place first line of file on TOS
1005 YO=0
ENTRY #35: INPUT: YO
cursor home
1006 Y=0 @ X=0
ENTRY #36: INPUT: X,Y,Y0
update line pointer, fetch current line, redraw screen
1010 GOSUB 710
display cursor and exit

@ GOTO 1230
@0/03/14 17:20:02 FILE: P1100 TEXT 1792 @9/14/00 17:20

Command key [gl[DN1l - display last page
ENTRY POINTS:
ASSERT ON ENTRY:

ASSERT ON EXIT: X=0 & ((U=0 & Y0=0 & Y=0) | (1<{=U<=RIl & Y0=0 & Y=U) |
(U>R1 & Y=R1))

INPUT:

QUTPUT:

MODIFIED: X,Y,Y0,Y1 L%

TRASHED: S1%

store current line

1100 'C3": GOSUB 490
back one (possibly) full page from EOF and place the resulting line on TOS
@ Y@=MAX(B ,U-R1)
cursor to bottom line
@ Y=MAX(0Q,U-YQ) @ X=0
update line pointer, fetch current line, redraw screen, display cursor,exit
@ G0TO 1010

ST TS S T N ST S S S T S T T T T T T T T T T T S T T T N S R S T S T T T NS T SN S ST S S ST s S E RS

@@/098/14 17:20:16 FILE: P1200 TEXT 2304 ©09/14/00 17:20

TN ST TS S S T T T I I S T T T S T N T S T N S S S S S T T T S S T T S S E S S S S E S E S S E S =S

Command key [DN] - move cursor down one line

ENTRY POINTS: #37 (4600), #38 (2425,2430,2445), #39 (see XREFVE)
ASSERT ON ENTRY: consistent pointers (Y,YO,Y1,U)

ASSERT ON EXIT: consistent pointers

INPUT:

QUTPUT:

MODIFIED: Y (iff Y#R! on entry),Y0® (iff Y=R1 on entry),Y!,L$
TRASHED: S§,51%

ENTRY #37: INPUT: none
store current line
1200 °C4': GOSUB 490
beep and exit at EOF
1205 IF Y1=U THEN CHIRP @ RETURN
ENTRY #38: ASSERT ON ENTRY: Y1<U
save y—coordinate of current line
1210 S=Y
if at bottom line then scroll up one line
@ IF S=R! THEN
push TOS down one line
@ YO=YO+1
turn cursor off then scroll up
® PRINT C5%;R0%;
clear whatever entered the message line
@ G0SUB B70
clear whatever moved from the message line into the bottom line
@ GOSUB 510
else simply increment the screen y-coordinate
ELSE Y=Y+1
update line pointer, fetch current line
1220 GOSUB 520
if a scroll took place then display new bottom line
@ IF S=R1 THEN PRINT L%;
ENTRY #39: ASSERT ON ENTRY: the physical cursor is off
move cursor at its logical screen coordinates and turn it on
1230 PRINT CURS(Y ,X,C0);C4%;

and exit
@ RETURN
Q0/09/14 17:20:41 FILE: P1300 TEXT 1792 ©9/14/00 17:20

Command key [UP] - move cursor up one line

ENTRY POINTS: #40 (4610)

ASSERT ON ENTRY: consistent pointers (Y,Y0,Y1,U)

ASSERT ON EXIT: consistent pointers

INPUT:

QUTPUT:

MODIFIED: Y (iff Y#0 on entry),Y® (iif Y=0 on entry),Y1 ,L$

TRASHED: S,51%

ENTRY #40: INPUT: none
store current line
1300 UP: GOSUB 480
beep and exit at TOF
1305 IF NOT Y! THEN CHIRP @ RETURN
save y-coordinate of current line
1310 S=Y
if at TOS then scroll down one line
@ IF NOT S THEN
push TOS up one line
@ YO=YO-1
turn cursor off then scroll down
@ PRINT C5%;R1%$;
clear whatever moved from the bottom line into the message line

@ 6G0SUB 670

clear whatever entered the top line

® G0SUB 510
else simply decrement the screen y-coordinate
ELSE Y=Y-1

update line pointer, fetch current line
1320 GOSUB 520
if a scroll took place then display new top line
@ IF NOT S THEN PRINT L$%$;
display cursor and exit
1330 GOTO 1230

00/09/14 17:21:03 FILE: P1400 TEXT 1024 ©9/14/00 17:21

Command key [gl[ENDLINE] - move forward one page
ENTRY POINTS:

ASSERT ON ENTRY: consisten pointers (Y,YO,Y1,U)
ASSERT ON EXIT: consistent pointers

INPUT:

OUTPUT:

MODIFIED: X,Y,Y0,Y1 ,L$

TRASHED: S1%

store current line
1400 'C6°: GOSUB 490
update TO0S pointer
@ YO=MIN(YO+RO,U)
cursor home, update pointers, fetch CL, redraw and exit

@ GOTO 1006
00/99/14 17:21:18 FILE: P1500 TEXT 1024 09/14/00 17:21

Command key [fILENDLINE] - move backward one page
ENTRY POINTS:

ASSERT ON ENTRY: consistent pointers (Y,YQ,Y1,U)
ASSERT ON EXIT: consistent pointers

INPUT:

QUTPUT:

MODIFIED: X,Y,Y0,Y!,L$

TRASHED: S1%

store current line

150@ °'C7': GOSUB 490
update T0OS pointer
® YO=MIN(YO-RO,U)
cursor home , update pointers, fetch CL, redraw and exit

@ GOTO 1006
00/09/14 17:21:30 FILE: P1600O TEXT 768 ©8/14/00 17:21

Command key [LF1 - move cursor left one column
ENTRY POINTS: #41 (841,842 ,2005)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

ENTRY #41:
if not at left margin decrement cursor x-coordinate
1600 *C8°: IF X THEN X=X-1
move physical cursor left

@ PRINT C3%;
else complain
ELSE CHIRP
1619 RETURN
Q0/09/14 17:21:42 FILE: P1700 TEXT 768 ©09/14/00 17:21

Command key [RT] - move cursor right one column
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

if not at right margin increment cursor x-coordinate
1700 °C9’: IF X#C3 THEN X=X+1
move physical cursor right

® PRINT C1g%;
else complain
ELSE CHIRP
171@ RETURN
@0/09/14 17:21:53 FILE: P1800 TEXT 1280 ©09/14/00 17:21

Command key [f1[SPC]1 - toggle I/R mode
ENTRY POINTS: #42 (844 ,845), #43 (345)
ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: R

QUTPUT: R

MODIFIED: R, FLAG 1

TRASHED:

ENTRY #42: INPUT: R

R (initially set to @) is the run-time Replace flag;
flag 1 (initially false) is the lcd Insert flag.
NOTE: if the user manually toggles flag | (for instance, during input) I/R
status will be freezed. Manually toggling the flag again will restore
normal operations. I think the safest way to manage the flag would be:
R=NOT R @ IF R THEN CFLAG 1 ELSE SFLAG 1 but this solution is shorter and
not really dangerous (SP).
toggle those flags...

1800 'C10°: R=FLAG(1 ,R)

ENTRY #43: INPUT: none
display an appropriate cursor

1805 IF R THEN PRINT CB%; ELSE PRINT C7%;

and exit
1810 RETURN
@0/@9/14 17:22:12 FILE: P1900 TEXT 768 ©9/14/00 17:22

Command key [f1[)] - move to next word
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: X

QUTPUT: X

MODIFIED: X

TRASHED: T

compute new cursor position in T
1909 'C11': GOSUB 540
set new cursor position within current line

8 X=T
display cursor and exit
@ G0TO 1230
00/09/14 17:22:25 FILE: P2000 TEXT 1536 @9/14/00 17:22

ST S T S T T T S S R N T T T T N R T N T T N T T T T T T T T N T I T S S T S NS TN S S S ST

Command key [BACK] - back cursor
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X ,L$

TRASHED:

if at left margin then complain
2000 *C12°': IF NOT X THEN CHIRP
and exit
® RETURN
if cursor lies beyond text then move it leftward
2005 IF X>LEN(L%) THEN 1600
else if replace mode...
2010 IF R THEN
replace char to the left of the cursor with a
L$IX , XI=" "
back cursor logically
@ X=X-1
back it physically and display a
@ print C3%;" ";C3%;

s '

Y b

and exit
@ RETURN
else insert mode...
delete char to the left of the cursor
2015 L$[X X1=""
back cursor logically
@ X=X-1
turn cursor off, display right portion of CL + erase dangling character,
display cursor
NOTE: CURS$();C4%; @ RETURN could be replaced by GOTO 123@. This
saves memory but it is a bit slower.

2020 PRINT C5%;C3%sL$IX+13;" "3;CURS(Y X ,C0);C48%;
and exit
@ RETURN
Q0/@9/14 17:22:43 FILE: P2100 TEXT 512 09/14/00 17:22

Command key [glILF] - cursor to beginning of line
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

cursor at BOL
2100 *C13’: X=0
display cursor and exit

® GOTO 1230
00/09/14 17:22:56 FILE: P2200 TEXT 768 09/14/00 17:22
Command key [glIRT] - cursor to end of line
ENTRY POINTS: #44 (845)
ASSERT ON ENTRY:
ASSERT ON EXIT:
INPUT:
QUTPUT:
MODIFIED: X
TRASHED:
ENTRY #44:
cursor at EOL
2200 'C14°: X=MIN(C3 ,LEN(L%))
display cursor and exit
@ 60TO 1230
Q0/09/14 17:23:05 FILE: P2300 TEXT 768 ©09/14/00 17:23

Command key [fI[H] - toggle highlight mode
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: H

QUTPUT: H

MODIFIED: H, FLAG 2

TRASHED:

H (initially set to @) is the run-time highlight flag;
flag 2 (initially false) is the lcd highlight flag;
NOTE: see note about flag 1 in [f1[SPC]
toggle those flags...

2300 *C15°: H=NQOT FLAG(2 ,NOT H)

and exit
@ RETURN
@0/09/14 17:23:19 FILE: P2400 TEXT 3072 ©8/14/00 17:23

Command key [ENDLINE] - end line

ENTRY POINTS: #45 (845)

ASSERT ON ENTRY: consistent ointers (Y, KY@,Y1,U)
ASSERT ON EXIT: consistent pointers, X=0 & R
INPUT: R

QUTPUT:

MODIFIED: X,Y,Y0,Y1 ,U,L$ A, A1

TRASHED: T1,R$,51%

ENTRY #45:
store current line
2400 *C16°: GOSUB 4890
compute indentation in TI
® Tt1=MAX(O,SPAN(L$," ")-1)
if insert mode...
@ IF R THEN 2440
then clear marks
2405 G0SUB 470
split current line at cursor and indent right (R%) portion
8 RE=RPTH(" " ,TELTRIMS(LSEIX+11)
® L$=L$[1,X]
erase right portion from screen and do a line-feed
2410 PRINT CO$[1,C2-X1]
and store left portion
® GOSUB 490
if on last file line...
2415 IF Y1#U THEN 2430
then if not on last page line display right portion

2420 IF Y#R1 THEN PRINT R%;
increment line count
2425 U=U+1
indent cursor
@ X=T1

store right portion
@ RESTORE #1 ,U
@ PRINT #1 ,R$%
move cursor one line down (if false at 2420
then no scroll will take place, otherwise right
portion will be scrolled up) and exit
@ GOTO 1210
else (not on last file line) open new line
move cursor down one line
2430 GOSUB 1210
open a new line above the cursor
@ 60SUB 2905
store right portion
@ L$=R% @ GOSUB 490

display right portion
2435 PRINT L%;
indent cursor
@ X=T1
display cursor and exit
@ GOTO 1230
else (replace mode)
if on last line then
2440 IF Y1=U THEN
indent cursor
X=T1
clear all marks
@ GOSUB 470
append an empty line
@ RESTORE #1,Y1+1
@ PRINT #1,""
increment line count
@ U=U+1
else cursor at BOL
ELSE X=0
move cursor down one line and exit
2445 GOTO 1210
endif
@0/29/14 17:23:53 FILE: P2500 TEXT 768 09/14/00 17:23

B I e =

Command key [fI[RT] - delete character
ENTRY POINTS: #57 (843)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: X

OUTPUT: L%

MODIFIED: Ls

TRASHED:

if no text under the cursor then exit
2500 *C17': IF X>=LEN(L$%) THEN RETURN
ENTRY #57: ASSERT ON ENTRY: X<LEN(L$)
INPUT: X
delete character from line
2505 LS[X+1 X+1]1=""
turn cursor off, erase character from screen, display cursor and exit
@ PRINT CS®sLBIX+115" ";
@ GOTO 1230
NOTE: GOTO 123@ could be replaced by CURS(Y ,X,C0);C4%; to gain speed (but
it’s an I/0-bound operation anyway)

e 2 s -t T Pttt i 2 i 2 i A 2 i - -+ 3+ 3 1 2+ 3+ 3+ T+ F T -5

P0/09/14 17:24:14 FILE: P2600 TEXT 1536 @9/14/00 17:24

Command key [f1IL] - delete current line

ENTRY POINTS: #46 (4B510)

ASSERT ON ENTRY:

ASSERT ON EXIT: YO is decremented iff YO:U & Y=0

INPUT: Y1

QUTPUT:

MODIFIED: Y,Y0,Y! (iff deleting last line of file),U,L%,A,Al
TRASHED:

ENTRY #46:
clear all marks
2600 'C18°: GOSUB 470
delete line from file
® DELETE #1,Y1
turn cursor off
2610 PRINT C5%;
decrement line count
8 U=u-1
if file is empty then
® IF UL@ THEN
put an empty line
G0SUB 440
display first page and exit
@ GOTO 1005
else (file is not empty)
if no lines exist below TOS5 then decrement TOS pointer
2615 Y@=MAX(Q ,YO-(YO>U))
if EOF was deleted then back cursor one line
® Y=MAX(@,Y-C(YI>U))
update line pointer, fetch current line
@ GOSUB 520
clear from current line to B0OS, redraw lower portion of screen
@ GOSUB 525
display cursor and exit

@ GOTO 1230
endif
00/@8/14 17:24:33 FILE: P2700 TEXT 1024 09/14/00 17:24

Command key [fI1[DN] - delete to end of line
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: LEN(L$)<=X | LEN(L$)>X

INPUT:
OUTPUT:
MODIFIED: LS
TRASHED: S1%

delete exceeding characters
2700 'C19°: L$=L%[1,X]
store modified line
® GOSUB 490
turn cursor off, erase tail of line
@ PRINT CS$;C0%L1,C2-X1;
display cursor and exit

@ G0TO 1230
00/08/14 17:24:50 FILE: P2800 TEXT 1024 @9/14/00 17:24

Command key [f1lW] - delete to beginning of next word
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: X

QUTPUT :

MODIFIED: L%

TRASHED: T

compute new cursor position in T
2800 'C20': GOSUB 540
if a wrap-around took place then force cursor at EOL
@ IF T<=X THEN T=LEN(LS%)
delete word from line (characters in [X+1,T1)
2805 L$=L$0[1 XIGLSIT+I]
refresh (shortened) line tail
@ PRINT CS5%;L$[X+11;C08[1,C2-LEN(LS)1;
display cursor and exit

® GOTO 1230
0@/09/14 17:25:05 FILE: P2300 TEXT 1280 ©9/14/00 17:25

Command key [f1[0] - open a new line
ENTRY POINTS: #47 (2430)

ASSERT ON ENTRY:

ASSERT ON EXIT: Y,Y0,Y! not changed

INPUT: Y1

QUTPUT:

MODIFIED: L% ,A,Al X
TRASHED: S1%

store current line
2900 'C21°: GOSUB 490
ENTRY #47:
clear all marks
2905 GOSUB 470
turn cursor off
@ PRINT C5%;
insert new empty line in file
@ INSERT #1,Y135;""
increment line counter
@ U=U+1
update line pointer, fetch CL
@ 6G0SUB 520
clear from CL to B0OS, redraw lower portion of screen
@ 60SUB 525
cursor to BOL, display cursor and exit
@ X=0 @ GOTO 1230

@0/09/14 17:25:21 FILE: P3000 TEXT 768 08/14/00 17:25

Command key [fI[UP]1 - toggle between lower—- and upper-— case
ENTRY POINTS: #48 (100)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: FLAG -15

OQUTPUT: FLAG -15

MODIFIED: FLAG 4, FLAG -15

TRASHED: T

toggle case

3000 'C22’: LC

ENTRY #48: ASSERT ON EXIT: no toggling is performed
update status of lcd case flag (flag 4)

3005 T=FLAG(4 ,FLAG(-15))
and exit

@ RETURN

B i i e T

00/09/14 17:25:33 FILE: P3100 TEXT 2048 ©9/14/00 17:25

T S T T T S T T S S S S N T T T T T I I T T T T S N S T T S T S T S S T T T S SRS S S SIS ST

Command key [f1[F] - find pattern

ENTRY POINTS: #48 (3300)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

OUTPUT:

MODIFIED: X,Y,YQ,Y1,L$,5% N$ (if USER)

TRASHED: Q0% ,T,R$,P,L,D,I,J,51,6 (on input error),51%

store CL
3100 'C23': GOSUB 490
set prompt parameter for input routine

@ Q%="F:"
do input, parse it and redraw screen
@ GOSUB 550

ENTRY #49: INPUT: X,Y1,S5%
ASSERT ON ENTRY: screen is already redrauwn
TRASHED: T
search pattern S$, starting at col. X+2 (immediately right of cursor)
line Y1 (current line), ending at last file line U in file #1
3105 T=SEARCH(S%® ,X+2,Y1,U,1)
if not found...
@ IF T THEN 3115
then wrap around EOF and retry at BOF
search pattern 8%, starting at column | line ©
(BOF), ending at line Y1 (CL) in file #1
3110 T=SEARCH(S%,1,8,Y1,1)
if not found then message out
3112 IF NOT T THEN BEEP @ PRINT FNM%("Pattern not found");
and fetch CL (maybe we moved in a previous scan)
® 60SuUB 520
display cursor and exit
@ GOTO 1230
endif
endif
{pattern found?}
update CL pointer
3115 Y1=IP(T)
and cursor x-coordinate
@ X=IP(FP(T)*1000)-1
given Y1 update Y,Y0, fetch CL and redraw screen only if a page change is
necessary (giving some context to the user)

@ GOSUB 625
exit
® RETURN
00/09/14 17:26:04 FILE: P3200 TEXT 8960 ©9/14/00 17:26

Command key [f1[R]1 - find and replace pattern
ENTRY POINTS: #50 (5100),#51 (3285)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: A,A1

QUTPUT:

MODIFIED: FILE, (X,Y,YQ,Y! iff D & L% matches R$), U (iff D), 5% ,R%,L$ (iff it

matches R$),L,D,N$ (if USER),(A,A1 (iff D))

TRASHED: Q%,I,J,FLAG 3,5,50,51,51%,52%,2%,7,Q,6 (on input error),D

3200

set prompt parameter for input routine
'C24': Q%="R:"

clear Query flag

® CFLAG 3

ENTRY #5@0: INPUT: FLAG 3

3205

3215

32

2

store CL
605UB 490
do input, parse it and redraw screen
we expect sensible values for:
S%$: search pattern
R$: replace string
D : delete-line flag
L : one-replacement-per-line flag
@ GOSUB 550
initialize counter of replacements
8 S=0
the following routine parses the replace string (R%) irying to find
out whether ampersands (&) are special or not. While doing so, it
builds in S51% the actual replace string - deprived of special
ampersands and back-slashes - and it stores the positions of
dittoes in Q% (which is treated as a list). At the end of this
process it will be possible to build the whole replace string by
inserting substrings matched by the search pattern S% into S1% at positions
recorded by Q%.
The input string is actually parsed with the following (poorly
represented) DFA:

{\}

PANY TINLBY My

_ Lm———— »3225-.

Ftv v " !
"{\}! 3215 3220 1{r 1{&}

b~ 1 b {&)Y | !

! »>3230<°
{\>

initialize list of positions of dittoes
@ Qg=""
and literal part of replace siring
@ S1g=""
and character pointer (for advancing in S1%)
@ I=0

DFA spans lines 3215-3235
state &_not_special: advance
60SUB 3235
if not '\’ then add literal and don’t change state
@ IF Z$#"\" THEN S1$=S18&Z% @ GOTO 3215
else enter state odd_\
state odd_\: advance
608UB 3235
if *'\' then add literal '\' and go to & _not_special
@ IF Z%="\" THEN S1%$=51%&7% @ GOTO 3215
else if '&' then go to do_special_&
ELSE IF Z%$="8" THEN 3230
else add literal (and enter state &_special)
ELSE S51%=S1$87%

3240

3250

3255

3260

state &_special: advance

GOSUB 3235

if "\’ then go to &_not_special

@ IF Zg="\"

THEN 3215

else if '&' then go to do_special_g&
ELSE IF Z%="&" THEN 3230
else add literal and don’t change state
ELSE S1$=S18$87% @ GOTO 3225
state do_special_&:
append position of ditto to K$
Q$=Q%BCHRS(LEN(S1%$))
and do a transition to & _special on the null string

@ GOTO 3225

subroutine advance: advance input character pointer

I=I+1
if input str

ing not exhausted then return character

(Z%) and control to caller
@ IF I<=LEN(R%) THEN Z%=R$%[I,I]1 @ RETURN
else take control

ELSE POP
and save
@ R$=51%

literal replace string

determine block boundaries [I,J]

GOSUB 640

initialize current search coordinates (S0,T)

® S0=1 @ T=I
repeat

search for pattern 5% in block [T,J1
T=SEARCH(S5%,5@,T7,J,1)

if found.

@ IF NOT T THEN 3285

determine where matching substring lies [50,511

SO=IP(FP(T)*1000)

@ S1=SQ+RMD(T*1000000,1000)-1

and pointer to matching line (search-line pointer)

@ T=IP(T)

fetch matching line

@ READ #1,T;L%

if there isn’t enough room for replacement...

IF LEN(L$)-(S1-S0+1)+LEN(R$)+(51-S0+1)*LEN(K®$)<{=C2 THEN 3265
then complain
PRINT FNE%("Replacement too long");

if

doing replace_with_query ([f1[Q1) then...

@ IF FLAG(3) THEN

skip to next line
S1$=5% @ GOTO 3280

else exit
ELSE 3285
endif

else (

do replacement)

we simply need to build the actual replace
string into 51%, using the literal part (51%)
and the list of dittoes (K%) from the DFA
section, as well as the matched substring
L$[S0,511].

If Dt

hen user requested to delete lines from the file. In that case

the replacement string is substituted with A% and matching lines
will be effectively deleted only later on in the loop starting at
line 3286.

NOTE:

this isn’t the best possible algorithm for deleting lines,

3265

3270

3275

3285

3286

since matching lines are first REPLACEed then DELETEd, but it fits
easily in the frame of [f1[R] and [f1[Q] without requiring too much
code. Moreover, massive line deletion using [f1[R1/[Q] is a very
unlikely event. (SP)
initialize replace string
S1%=R%
for each element of list of dittoes
@ FOR I=LEN(Q%$) TO 1 STEP -1
insert matched substring
S18=S16[1 NUM(QSLII)IRLSLSO,S1 I&STISINUM(QSITIIN+1]
endfor
@ NEXT I
if deleting lines then temporarily substitute matching line with
a predefined pattern
@ IF D THEN S1$=A%
save CL to verify that some replacement really took place
S2%=L%
ask user’'s confirmation (meaningful only with [fI1[Q1)
@ GOSUB 5105
if ok then
IF Q THEN
do replacement !
L${50,511=51%
@ REPLACE #1 ,T;L$
increment counter of replacements
@ S=5+1
display modified line (meaningful only with [f1[Q1)
@ GOSUB 5135
endif
endif (if there isn’'t room)
update current search column pointer and line pointer:
the two assignaments on line 3280 are equivalent to the following
piece of code:
IF L (one replacement per line) THEN
S@=0 column pointer
T=T+1 line pointer
ELSE IF LEN(S1%) (not deleting matching strings) THEN
S@=SO+LEN(S18$) (skip S1% in L$)
ELSE IF 52%=L% (no TRUE replacement took place) THEN
50=50+1 (to avoid infinite loops, since if L$ is not changed
then 50 MUST change [don’t preserve status quo!l).
Notice that a simple flag after the above REPLACE statement
could not replace the function of S52%. In fact, it would cause an
endless loop if the user specified "replace anything with nothing"”
(R:/\@//).
SO=(SO+LEN(S1$)+(S2%=L$ AND NOT LEN(S1$)))*NOT L
@ T=T+L
endif (if found)
until not found
@ GOTO 3245
if deleting matching lines (\" and \% in search pattern AND null replace
string)...
IF NOT D THEN 3290
then delete all lines matching \"A%\$
save line counter for later test
D=U
@ FOR T=J TO I STEP -1
@ READ #1,TiL%
@ IF L$=A% THEN
DELETE #1,T

decrement line counter
@ U=U-1
and CL pointer, if CL is below/within block [I,J1
@ Y1=MAX(Q,Y1-(T<{=Y1))
endif
3288 NEXT T
I an alternative, more logical (but memory-consuming) algorithm for the
| above FOR-NEXT loop:
I INIT: T=I
I LOOP: T=SEARCH("\""BASE"\%" ,0,T,J,1)
! IF T THEN
! DELETE #1,T7
| @ U=U-1 @ J=J-1 @ Y1=MAX(0Q,Y1-(T<=U))
! @ GOTO LOOP
if at least one deletion then clear all marks
@ IF D#U THEN GOSUB 470
given Y1 adjust Y,Y0
3289 605UB 630
if file was depleted then insert one (empty) line
@ GOSUB 440
endif
redraw screen
3289 G0OSUB 710
display # of replacements
@ PRINT FNM$(STR$(S)&" replacement(s)");
display cursor and exit
® GOTO 1230

00/09/14 17:28:14 FILE: P3300 TEXT 768 ©08/14/00 17:28
Command key [fIIN]l - find next occurrence of search pattern

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrauwn
ASSERT ON EXIT:

INPUT: S%

QUTPUT :

MODIFIED: (X,Y,Y®,Y!,L$ (if pattern found))
TRASHED: T7,S51%

store current line
3300 'C25°: GOSUB 480
display search pattern
® PRINT FNM$("Pattern :"&S$&":");
do search then exit
@ GOTO 31@5

@B/09/14 17:28: “S FILE P3400 TEXT 1636 09/14/00 17:28

Command key [f1[P] - go to absolute line number (position)

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: line # is rounded to an integer in the range [@,Ul, X=0 if Y!

changed

INPUT: user input: a constant or an expression involving Y! (current line),
Y@ (top of screen), Y (for moving within the current page), U (last
file line), A (first mark), Al (second mark)... any more ideas?

QUTPUT:

MODIFIED: X,Y,Y0,Y! ,L$ N% (if USER)

TRASHED: I,51%,T,R%$,6 (on input error)

store current line
3400 *C26°’: GOSUB 490
get user's input (FNI$) with CL as default, evaluate expression (VAL),
reduce result within [@,U] and round it to an integer (I=)
@ I=MAX(Q ,MIN(VAL(FNI$("Line #:" ,STR®(Y1),0,1)),Uu))
set X=0 iff a line change was requested
3435 X=X+#(Y1=1)
set CL pointer to (new) line
8 Yi=I
given Y1 update Y,YQ, fetch CL and redraw screen only if a page change
is necessary (giving some context to the user)

@ GOSUB B25
exit
® RETURN
Q0/09/14 17:28:47 FILE: P3500 TEXT 768 ©8/14/00 17:28

Command key [f1[V] - view amountof free memory left
ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrauwn

ASSERT ON EXIT:

INPUT:

OUTPUT:

MODIFIED:

TRASHED :

prompt user with MEM
3500 'C27’: PRINT FNM$("Memory: “&STR®(MEM));
display cursor and exit

@ GOTO 1230
@0/08/14 17:28:58 FILE: P3600 TEXT 1280 09/14/00 17:28

Command key [f1[S5]1 - (un)set mark(s)

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrauwn

ASSERT ON EXIT:

INPUT:

QUTPUT: A,Al

MODIFIED: A (on first press), Al (on second press), (A,Al on third press)
TRASHED:

put "Mark" on message line...
3600 'C28': PRINT FNM$("Mark");

if first mark is unset...

@ IF A<O® THEN

put " 1" on message line
PRINT 1;

set first mark to CL

® A=Y1

display cursor and exit
@ GOTO 1230
else if 2nd mark is unset...
2605 IF A1<@ THEN
put " 2" on message line
PRINT 2;

set 1st mark to min(lst mark,CL) and 2nd mark toc max(lst mark ,CL)
@ Al=A B A=MIN(A,Y1) @ AI=MAX(A1,Y1)
display cursor and exit
@ 6070 1230
else...
put "s cleared" on message line

3610 PRINT "s cleared";
clear 1st and Znd mark
® GOSUB 470
display cursor and exit
@ GOTO 1230
endif
00/09/14 17:29:17 FILE: P3700 TEXT 2304 29/14/00 17:29

Command key [f1[M] - move block

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redraun

ASSERT ON EXIT: A,Al unset

INPUT: A,A1

QUTPUT:

MODIFIED: FILE,Y,Y®,Y! (if Y1<A),A,A},L$ (if Y1 is within block)
TRASHED: S1%,T,I

2700

3710

3735

3745

store CL, check if both marks are set and error out if not

'C29': GOSUB 740

check if CL is within block and error out if not

@ GOSUB 750

T=1 if block is below CL otherwise T=0 (T is the offset multiplier [see

belowl)

® T=Y1<A

put out message

@ PRINT FNM#$("Moving"); @ GOSUB 620

for each line in the block (I is the offset of the line within the block)

FOR I=0 TO Al-A
fetch line at an offset which is I for lines below CL (insertion point)
and constantly @ for lines above CL (because no lines will be inserted
between BOF and block in this case)
@ READ #1 ,A+I*T;L$
delete that line (this is why the offset can be constantly 0: if A
points to a line and that line is deleted and NOT replaced by another
one then A now points to the line following the one which was deleted)
® DELETE #1 ,A+I*T
now insert line above CL at an offset which is constantly -1 if the
line was deleted above CL (since Y! doesn't really float) and I-1 if
the line was deleted below CL (since the number of lines between BOF
and CL effectively increses)
@ INSERT #1,Y1+I#T-NOT T;L$

endfor

@ NEXT I

if no lines were deleted above CL then increment CL pointer by size of

block

IF T THEN YIi=Y1+(Al-A+1)

given Y1, adjust Y,Y0

G0SUB 630

clear all marks

@ G0SUB 470

redraw screen

@ GOsSuB 710

display cursor and exit

@ GOTO 1230
@0/08/14 17:28:53 FILE: P3800 TEXT 1792 ©9/14/00 17:29

Command key [fIIC] - copy block

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrawn

ASSERT ON EXIT: A and Al still reference the same lines as before
INPUT: A,A1

QUTPUT:

MODIFIED: FILE,U,A,A1.,Y,YOD,6Y1

TRASHED: S1%,7,I,S

store CL, check if both marks are set and error out if not
3800 °*C30°': GOSUB 740
check if CL is within block and error out if not
@ GOSUB 750
put out message
® PRINT FNM®("Copying"); @ GOSUB 620
NOTE: see [f1[M] for its similarity
T=2 if block is below CL otherwise T=1 (T is the offset multiplier [see
belowl)
3810 T=(Y1<A)+1
for each line of the block (I is the offset within the block)
@ FOR I=0 TO Al-A
fetch line at offset I if inserting below block or at offset 2+I if
inserting above block
@ READ #1 ,A+I*T;L%
insert line right above CL
@ INSERT #1,Y1+I;L%
end for
@ NEXT I
T=1 if block is below CL otherwise T=0
3835 T=T-1
compute size of block in §
@ S=A1-A+1
increment line counter by S
® U=U+S
if lines were inserted above block then increment marks by S (to preserve
their references)
@ A=A+S*T @ Al=A1+5*T
update CL pointer
@ YI=Y1+4S
given Y1, adjust Y,YO
7840 605UB 630
redraw screen

@ GosSuUB 710
display cursor and exit
@ G0TO 1230
Q0/29/14 17:30:20 FILE: P3300 TEXT 3072 @9/14/00 17:30

Command key [f1[D] - delete block

ENTRY POINTS:

ASSERT ON ENTRY: screen is already redrawn
ASSERT ON EXIT:

INPUT: A,Al

QUTPUT:
MODIFIED: N$ (if USER), X (if A<=Y1<{=A1),U,A,Al,L$ (if CL is deleted)
TRASHED: S1%,P,I

store CL, check if both marks are set and error out if not
2900 °*C31': GOSUB 740

put out message and cursor

@ PRINT FNM3("Delete? Y/N/Q"); @ GOSUB 1230

ask for user's confirmation in P
3910 605UB 615

turn off cursor and clear message line

@ GOSUB B70

if user didn’t press "Y" then display cursor and exit

@ IF P>1 THEN 1230

put out messapge
3915 PRINT "Deleting"; ® GOSUB 620

for each line in the block

@ FOR I=A TO A1l

delete that line
@ DELETE #1,A

endfor

® NEXT I

if CL was deleted then set cursor x-coordinate to zero
3925 X=X*{Y1<A OR Y1>Al1)

the following assignament can be understood as follows:

if block is below TOS IF YB<A
don’t move TOS to let lines enter
screen from below Yo=Y0
else if block includes TOS ELSE IF A<=Y0<{=Al
compute size of portion of block
containing BOS T=A1-YO+!
set TOS T lines above 1st mark to
let T lines enter screen from above YO=A-T

if not enough lines are available
above deleted block then set
T0S to BOF YO=MAX(Q,Y0)
else if block is completely above T0S ELSE IF A1<YO
decrement Y@ by size of block to let
lines enter screen from above YO=Y@~-(AI-A+1)
3930 YO=YO*(YOQ<A)I+MAX(D ,A-(A1-YD+1))*(A<=YD AND YO<=A1)+(YB-{A1-A+1))*(A1<YD)
the following assignament can be understood as follows:

if block is below CL IF Y1<A
don’t move CL Yi=Y1
else if block includes CL ELSE IF A<{=Y1<{=Al
if block includes last file line IF Al=U
set CL to last line Y1i=A-1
else ELSE
set CL at first line below
deleted block Yi=A
else if block is completely above CL ELSE IF At1<Y1
decrement Y! by size of block Yi=Y1-(Al-A+1)

3935 Yi=Y1#(YI<A)+MAX(OD ,A-(A1=U))*(A<=Y] AND Y1 <{=A1)+(Y1-CAI1-A+1))*(A1Y1)
given Y1, adjust Y,YO
3940 6G0OSUB 630
decrement line counter by size of block
@ U=U-(A1-A+1)
if file was depleted then insert one empty line
@ 605UB 440
clear all marks
3960 GOSUB 470

redraw screen
@ GOSUB 710
display cursor and exit
@ G0TO 1220
00/08/14 17:31:15 FILE: P4000 TEXT 1024 @9/14/00 17:31

TN T N I T T T T T S T T N S T S T I N N S T T R T R T I I T T T T S S ST NS S SRS XTSRS

Command key [glION] - edit another file

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: buffer file isn't purged

INPUT:

QUTPUT:

MODIFIED: this is a complete restart; most variables are modified
TRASHED:

store CL, display replace cursor + clear screen, restore 1/0 devices,
scroll & delay rates, pwidth, endline, clear flags

4000 'C32': GOSUB 910
clear return stack

@ POP
reinitialize variables and go to input edit file name
@ GOTO 100
Q0/99/14 17:31:22 FILE: P4100 TEXT 1024 ©08/14/00 17:31

Command key [f1{(] - move to previous word
ENTRY POINTS: #52 (842)

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X

TRASHED:

ENTRY #52:
reverse CL (REV#%) to search leftwards, starting from the column
immediately left of the cursor (LEN(L$)-X+1) find position of first
non-blank character (SPAN) or default to t if no such character exists

(MAX(1,...), starting from that position search first ' ' (P0S), convert
this value into x-coordinates (LEN(L$)-...+1) ad assign it to X
4100 *C33': X=LEN(L$)-POS(REVUS(LS)," " MAX(1 ,SPAN(REVE(LS)," " ,LEN(LS)-X+1)))+I1

if XJLEN(CL) then set X to @ (to catch 1st word on line)
4105 X=X*(X<=LEN(L$))
display cursor and exit

@ 6070 1230
@@/09/14 17:31:39 FILE: P4200 TEXT 1792 ©8/14/00 17:31

Command key [f1[E]l - erase invisible characters and trailing blanks
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: FILE,X

TRASHED: S1%,7,1,J,5,P

turn cursor off
4200 'C34°': PRINT C5%;
store current line

@ GOSUB 490

initialize counter of bytes saved
@ T=0

get block boundaries [I,]]

@ GOSUB 640

put out message
@ PRINT FNM$("Erasing...");
set cursor to tst column (to a known position, since if invisible
characters were deleted from CL and the cursor weren’'t moved then the user
may not understand what's going on)
@ X=0
for each line in the block
4205 FOR I=I 10 J
fetch that line
@ READ #1,I5L%
save line length for later
@ S=LEN(L%$)
set pointer to beginning of line
@ P=1
while an invisible character is a member of the line
4210 P=MEMBER(L%$,M$,P)
delete that character and increment counter of bytes saved
@ IF P THEN L$I[P,PI="" @ T=T+I
endwhile
® GOTO 4210
now trim trailing spaces
4215 L$=RTRIMS$(LS)
if any characters were removed from the line then store line and
increment counter by the number of trimmed spaces
@ IF SH#LEN(L%$) THEN REPLACE #1,I;L% @ T=T+S-LEN(LS$)
endfor
4220 NEXT I
redraw screen
@ GOsuB 710
put out count of bytes saved
® PRINT FNE$(STR3(T)&" byte(s) saved");
display cursor and exit

@ GOTO 1230
©0/09/14 17:32:07 FILE: P4300 TEXT 1024 @9/14/00 17:32

Command key [f1[B] - cursor to previous occurrence of character on line
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X {not always) ,N$ (if USER)

TRASHED: Q%,T

get text key or abort if it is a command key

4300 'C35°': 6G0SUB 610
find position of key taking case into account (MAPKEY)
NOTE: this means that specifying case in key definitions is impossible
@ T=POS(REVS(L$) MAPKEY$(Q%) ,LEN(LS)-X+1)

if key found then update cursor position
@ IF T THEN X=LEN(L%)-T
display cursor and exit

4310 GOTO 1230

00/@9/14 17:32:24 FILE: P4400 TEXT 1024 ©09/14/00 17:32

Command key [f1[G] - cursor io next occurrence of character on line
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: X (not always),N$ (if USER)

TRASHED: Q% ,T

4400 'C36°': GOSUB 610
find position of key taking case into account (MAPKEY)
NOTE: this means that specifying case in key definitions is impossible
@ T=POS(L$,MAPKEY$(Q%) ,X+2)
if key found then update cursor position
@ IF T THEN X=T-1
display cursor and exit
4410 GOTO 1230

00/09/14 17:32:37 FILE: P4500 TEXT 768 @9/14/00 17:32

Command key [f1[A] - toggle wrap-around (automatic) mode
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: W

QUTPUT: W

MODIFIED: W, FLAG ©

TRASHED:

W (initially set to @) is the run-time wrap-around flag (W=8 means w-a
enabled);
flag @ (initialy false) is the lcd w-a flag;
NOTE: see note about flag 1 in [f1[{SPC]
toggle those flags...
4500Q 'C37°’: W=NOT FLAG(Q,NOT W)

and exit
@ RETURN
P0/09/14 17:32:49 FILE: P46020Q TEXT 1536 ©9/14/00 17:32

Command key [f1[J] - join two lines

ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT: Y! unchanged if lines can be joined, otherwise Y! incremented by
1

INPUT:

QUTPUT :

MODIFIED: (Y,YQ,Y!,L$ (if Y1#U))

TRASHED: (S14$,R$,S5 (if Y1#U))

if CL isn’t the last file line...
4600 C38': IF Y1=U THEN RETURN
then
ELSE
remove trailing blanks from CL and save it in R$% (NOTE: CL is left
UNCHANGED in FILE)
RE=RTRIM&(L$)
move cursor down one line (this also modifies L%)
® G0SUB 1200
if concatenate(norightblanks(lineabove), blank, noleftblanks(CL))
doesn’t fit within the window
4605 IF LEN(R®)+LEN(LTRIM$(L%))>=C2 THEN
then put out message
PRINT FNE$("Line too long");
display cursor and exit (NOTE: cursor stays on offending line to
allow incoming [f1[J1’s to continue joining)

@ 60TO 12320
else
store joined lines in L$
4610 L$=R$&" "BLTRIMS(LS)
store L$, move cursor up one line
@ G0S5UB 1300

delete CL (which is a duplicate of the left part of the line
below), redraw lower portion of screen and exit

@ GOTO 2600
endif
endif
00/09/14 17:33:12 FILE: P4700 TEXT 1536 @8/714/00 17:33

Command key [f1[T] - go to next tab-stop on line
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: S2.,T%

QUTPUT:

MODIFIED: X

TRASHED: I,T

if relative tab-stops then put cursor to next tab-stop...
4700 'C29': IF S2 THEN X=RMD((X+52) DIV 52+52,C1)
with wrap-around
@ X=X*(X>=52)
display cursor and exit
@ GOTO 12320
else
if cursor position is grreater than maximum tab stop then wrap-around
4705 IF X>=NUM(TSLLEN(TS)1)-NUM(T$) THEN X=0
display cursor and exit
@ 6GOTO 1230
else
i=0; repeat
increment i
4710 FOR I=1 TO LEN(TS)
compute i-th tab-stop in T
8 T=NUM(T$LI1)-NUM(TS)
until tab-stop T is greater than cursor position
8 IF T>X THEN I=INF
4715 NEXT I

reduce new cursor position within window (to prevent user’s mistakes)

@ X=RMD(T,C1)
display cursor and exit

@ GOTO 1230
endif
endif
00/09/14 17:33:35 FILE: P4800 TEXT 2816 ©9/14/00 17:33

Command key [f1lY] - yank block/file to buffer or file to device
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: A,A1

QUTPUT:

MODIFIED: N# (if USER), Y% ,FILE Y$%

TRASHED: S1%,T ,R%,6,%#2,1,J

store current line
4800 °'C40°: GOSUB 490
input buffer/device name
4805 Y$=FNI$("Yank to:",Y$,16,1)
if null input then display cursor and exit
@ IF NOT LEN(Y$) THEN 1230
else
put out message
4810 GOSUB 600
store buffer size (or error #) in G
@ G=FILESZR(Y%)
if buffer already exists then purge it
@ IF G>=0 THEN PURGE Y%
4815 ON ERROR GOTO 4825
if no marks are set
4820 IF A<@ THEN
then ATTEMPT to copy whole file to buffer/device
COPY F$ TO Y%

and if everything went well then do some house-keeping and exit

@ OFF ERROR
@ GO0TO 4860
endif
4825 OFF ERROR
if any errors occurred (but 'file not found®)
® IF 6<0 AND G#-57 THEN
put out error message
505UB 420
and retry
® GOTO 4805
else (no errors & mark(s) set & not a device)
create buffer
4845 CREATE TEXT Y%
@ ASSIGN #2 TO Y&
get block boundaries [I,J]
@ 605UB B40
foreach line in the block
4850 FOR I=I TO J
fetch that line
@ READ #1,I:L8%
and append it to the buffer
@ PRINT #2;L%

endfor

@ NEXT I

® ASSIGN #2 TO *

fetch CL (for-loop changed L%)

NOTE: PROBABLY using S1% would allow deleting this instruction
@ 60SUB 520

clear message line

4860 G05UB 670
display cursor and exit
@ 60TO 1230
endif
endif
P0/09/14 17:34:10 FILE: P4900 TEXT 2048 09/14/00 17:34

Command key [f1[I] - insert from buffer
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: A,A1

QUTPUT:

MODIFIED: N$ (if USER),Y$,FILE , U,Y,YO® K Y1
TRASHED: S1%,T,R%,6,#2,1

store current line
4900 'C41': GOSUB 4380
input buffer name
4905 Y$=FNI$("Insert from:",Y$,16,1)
if null input then display cursor and exit
@ IF NOT LEN(Y$) THEN 1230
else
store buffer size (or error#) in G
4920 G=FILESZR(Y%$)
if buffer empty then display cursor and exit
@ IF G=0 THEN 1230
else
put out message
4930 G0SUB 600
if something’s wrong with the buffer then put out error message
@ IF G<@ THEN GOSUB 420
and retry
@ GOTO 4905
else
4935 ASSIGN #2 TO Y%
foreach line in the buffer
@ FOR I=0 T0 G-I
fetch that line
@ READ #2;L$
insert it right above CL
@ INSERT #1,Y1+I;L%
endfor
@ NEXT I
4950 ASSIGN #2 TO =
increment line counter
@ U=U+G
and CL pointer
@ YI=Y1+46
given Y1, adjust Y,Y® giving some context to the user
@ GOSUB 630

redraw screen

@ GOSUB 710
display cursor and exit
® GOTO 1230
endif
endif
endif
00/09/14 17:34:40 FILE: PS@@Q TEXT 1280 29/14/00 17:34

Command key [gl[RUN] - enter control characters
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED: J% (not always)

TRASHED: Q%,P

get key or abort if it is a command key
5000 'C42°: GOSUB 610
see if it can be a control character and which
NOTE: unfortunately the standard keystrokes for control characters involve
two keys which are not found in the HP71 keyboard (backslash, underscore).
This means that key definitions are necessary to exploit this routine.
@ P=POS("@ABCDEFGHIJKLMNOPQRSTUVWXYZI\NI"_" Q%)
if not a control character
5010 IF NOT P THEN
undo that key
FKEY Q%
and exit
@ RETURN
else
ELSE
compute byte corresponding to control character taking into account
highlight mode
JE=CHRE(128*H+P-1)
pass control to text key handler

@ GOTO 800
endif
20/@9/14 17:35:04 FILE: P5100 TEXT 2816 29/14/00 17:35

Command key [f1[Q] - find and replace pattern with query (conditionally)
This is a collection of subroutines to be used in conjunction with [f1[R].
ENTRY POINTS: #53 (3275), #54 (3276)

[fI1[Q] has the same effects as [f1[RI].

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT:

QUTPUT:

MODIFIED:

TRASHED:

Main routine:

set prompt parameter for input routine
5100 *C43°: Q&="Q:"

set Query flag

@ SFLAG 3
go do [fI[R1 (entry #50)
@ GOSUB 3205
clear Query flag
@ CFLAG 3
exit
® RETURN
ENTRY #53: ask for user's confirmation
INPUT: S@,T from [fIL[R]
QUTPUT: Q=1 if confirming or [f1[R] (flag 2 clear), loss of control
if quitting, otherwise Q=0
initialize response to true
5105 Q=1
if doing [f1LQ] (flag 3 true)...
@ IF NOT FLAG(3) THEN RETURN
set cursor to column where match is found
5110 X=50-1
and CL pointer to line of match
@ Yi=T
if CL is on screen already
@ IF FNY THEN
simply update cursor y-coordinate
Y=Y1-Y@
else
ELSE
update both TOS pointer and y-coordinate giving some context to the
user
GOSUB B35
and redraw screen
@ GOSuUB 710
endif
put out message
5120 PRINT FNM$("Y/N/Q ? :"RL$[SO,S11&": to :"BSISR":");
and cursor
@ 60SUB 1230
wait for a key-press
5130 G0SUB B15
clear message line
@ 60SUB 670
if 'quit’ was specified
® IF P=3 THEN
pass control to exit routine of [fI[R] (sorry, I know it’s
disgusting, but...)
POP
® 60TO 3285
else
ELSE
if ’yes’ then Q=1 else Q=0
Q=P=1
return (to [f1LR])
@ RETURN
endif
endif
ENTRY #54: display modified line
ASSERT ON ENTRY: screen is already redrawn
INPUT: FLAG 3,L%
if doing [f1[Q]
5135 IF FLAG(3) THEN
turn cursor off
PRINT C5%;

erase CL from screen
@ GOSUB 510
display modified line
® PRINT L%;
endif
return (to [fI1[Q1)
5140 RETURN

P0/28/14 17:35:48 FILE: P5200 TEXT 768 ©08/14/00 17:35

e 2t i A A 2 i it i 2222 P i P i Pt P Pt -t - P 3+ - 5 5T

Command key [f1[0] - toggle user mode
ENTRY POINTS:

ASSERT ON ENTRY:

ASSERT ON EXIT:

INPUT: FLAG -9

QUTPUT: FLAG -9

MODIFIED: FLAG -9

TRASHED: T

NOTE: this is not a 1 USER command.
toggle that flag and exit
5200 'C44°: T=FLAG(-9,NOT FLAG(-9)) @ RETURN

@2/09/14 17:35:59 FILE: P3S000 TEXT 768 09/14/00 17:35

Routine: version subroutines

ENTRY POINTS: #55 (40,45,50,51), #56 (905)

ASSERT ON ENTRY:

ASSERT ON EXIT: all lines but 9999 are exit points of VE.
INPUT:

QUTPUT:

MODIFIED:

TRASHED:

ENTRY #55: INPUT: VU
complain if lex files which can respond to the version poll aren’t in RAM
9000 *VERERR’: DISP "No ";U$;" LEX file." ® BEEP
do house-keeping and end
@ GOTO 905
ENTRY #56: Abandon every hope Ye who exit...
9998 END SUB
return version of VE
9999 SUB VER(VU$) @ VU$="VE:1.1" @ END SUB

@@/09/14 17:36:16 FILE: VEFOLD BASIC 312 @9/14/00 17:36

1@ SUB VEFOLD(#1,U,C2)

2@ DIM L$[1501,C%[8] @ C%=" -"

3@ PRINT "Wait..." @ C1=C2+1 @ I=0

40 'LP': IF I>U THEN END

50 READ #1,I5L% @ IF LEN(L$)<=C2 THEN °’NL’

6@ 'NP’: IF NOT MEMBER(L®[1,C21,C%) THEN BEEP @ DISP "WRN L";STR$(I);":";M56%(65
) @ GOTO *SL’

70 T=C1-MEMBER(REVS(L$[1,C21),C%) @ INSERT #1 ,I;L$[1,T]1 @ L$=L$[T+1]1 @ I=I+1 @ U
=U+1

80 IF LEN(L%$)>C2 THEN NP’

90 'SL’: REPLACE #1,I;L$

1@ 'NL’: I=I+1 8 GOTO 'LP’

00/09/14 17:36:26 FILE: VEFOLDT TEXT 3072 09/14/00 17:36
Subprogram VEFOLD - version 1.1 - optional run-time subprogram for VE

This subprogram MUST reside in file VEFOLD

Purpose: to fold lines that exceed C2 characters in length.

ASSERT ON ENTRY: channel #1 assigned to a text file, U is not greater than the
last record # (usually it IS the last record #)

ASSERT ON EXIT: no lines in [0Q,U] are longer than C2 characters

INPUT: #1, U (see above), C2 (see above), C% (a list of characters at which

lines can be folded)

QUTPUT: U

MODIFIED: U, file #I1

1@ SUB VEFOLD(#1 ,U,C2)
text line + list of characters
20 DIM Ls%[1501,C$[9]
the following assignment is only a suggestion: fold at spaces and dashes
NOTE: long lines are folded at the rightmost occurrence of a member of C$%
(in [1,C21). If no such occurrence exists then a warning is issued. Members
of C$ are left at the END of the folded portion of the line.
ex. if C2=7, C$=" " and #! contains:
this is the time
for all good men
then #1 will become
this_
is the_
time
for_
all_
good_
men
where underscores represent dangling spaces
@ Cg=" -"
assume output device is assigned as a PRINTER (this is perfectly compatible
with VE)
3@ PRINT "Wait..."
C! will come handy
@ C1=C2+1
init pointer to current line
@ I=0
line_process:
while I doesn't point past the last line
49 'LP’: IF I>U THEN END

50

60

70

80

90

100

fetch I-th line

READ #1,1;:L%
if it needs folding then
@ IF LEN(L$)<=C2Z THEN ’NL’
next_portion:
repeat
if there isn’t a character at which to fold
'NP’: IF NOT MEMBER(L®[1,C21,C%) THEN
then complain
BEEP
issue warning
@ DISP "WRN L";STR$(I);":";MS6H(E5)
save current portion of line and continue
@ GOTO °SL°
else
put in T the position of the rightmost member of C% (in [1,C21)
T=C1-MEMBER(REV$(L%$[1,C21),C$)
insert left portion of string into the file
@ INSERT #1,I;L$l1,T1
trim left portion
® Le=LE[T+11
point right below inserted portion
@ I=I+1
increment block boundary
@ U=U+1
endif
until line doesn’t need folding
IF LEN(L®$)>C2 THEN ’NP’
store_portion:
store portion left after folding
'SL': REPLACE #1,I;L%
endif
next_line:
point to next line
NL’: I=I+1
endwhile

@ 60TO 'LP’

Q0/89/14 17:37:17 FILE: IMPROVE TEXT 5120 ©09/14/00 17:37
This file describes some improvements which were planned but, for many reasons,
were never implemented.

REPEATING KEYS
Version 1.1 has four repeating keys: [UP],[DN],[LF] and [RT1l. File MAKESQ95
lists other five keys as possible candidates for repetition ([f1[(1, [f1[)1,
[fFILLFI, [fIIRT] and [f1lT1). Text keys are not repeating. This situation is
primarily due to KEYDOWN, which doesn’t accept other than primary keys. Line
285, therefore, can be executed only if K$ is a primary key, otherwise the
program halts on error. If K$ could be replaced by an expression returning
the value of the primary key associated with K$ then much of command key
repetition could be saved, at least for those five command keys and for all
text keys. Of course, testing the primary counterpart of any key for
being down isn’t logically correct for prefixed keys, but that's all we have
(even the lcd editor has the same problem). The string expression should be as
simple as possible, because speed is a primary concern for VE, and should map
key numbers [57,112] and [113,168] onto [1,56]. A piece of code like
t=key#(key) mod 56
if t=0 then t=56
if keydown(keyname(t)) then repeat key
would do, but it is surely too slow. Therefore, I suggest something more
involved and less correct, but faster, such as
if keydown(keyname(key#(key) mod 56)) then repeat key
This solution works for all keys but key # 56,[+1, which isn’t repeating.
A similar scheme could be applied to text keys, as well, thus removing a
serious limitation of VE. To sum up, repeating keys can be implemented as
follows:
1) DIMension and extend (using MAKESQS5) H%, the list of repeating command keys
2) Rewrite line 285 as follows:
285 IF KEYDOWN(KEYNAM$(MOD(KEYNUM(K$)),56) THEN 275 ELSE RETURN
3) Add line 267 as follows:
267 IF KEYDOWN(KEYNAM$(MOD(KEYNUM(K$),56)) THEN GOSUB 800 @ GOTO 2B5
where KEYNAM$ and KEYNUM are keywords found in the CUSTUTIL lex file.
Of course, I wish KEYDOWN were rewritten to be less xenophobic: for instance,
it could accept 'fX' or 'gX' and understand that ’'X’' was really meant (it
couldn’t be anything else anyway). Then step (2) could be left out and step (3)
could be simplified to
267 IF DOWNKEY(K$) THEN GOSUB 800 @ GOTO 267
LR KX]
Two after-thoughts:
(1) command key [fl[J] could be made repeating; the user could ’pack’ the whole
file just by keeping [J] depressed.
(2) Variable H% can be eliminated from VE and MAKES®95 in a simple way:
(a) rearrange 0% (in MAKESQ9S5) so that all repeating keys are grouped together
at the beginning of 0% (ex. 0%[1,41)
(b) rename the labels for command keys in VE to reflect the new order in 0%
(you don’t need to move code)
(c) substitute line 280 with
280 IF K>4 THEN RETURN
where 4 represents the number of repeating keys. Since this modification is a
bit cumbersome I suggest to apply it only ater all repeating command keys have
been chosen and implemented.

MISSING COMMANDS

Certainly many commands were left out from VE, but that’s primarily due to
memory constraints or dubious utility. However, there's at least one command
which I wish had been implemented, namely the ’execute BASIC and insert output’

command. I feel that such a command would tremendously enhance VE as a
working tool. The command could be assigned to [fl[X1 (execute) and could be
implemented as follows:
(1) DIMension 0%
(2) Add CHRB(NUM(MAPKEYS$(L[fI[X1))) to the list of command keys in MAKES095; run
MAKES095; EDIT VE; MERGE OSTR
(3) add the following subroutine

store CL
5300 °'C45': GOSUB 490

put out message

@ GOSUB 600

ignore missing sub

® ON ERROR GOTO 5310

call user’s program
@ CALL USERPRGM(#1,Y1,C2)

5312 OFF ERROR

compute file increase in T

@ T=FILESZR(F%)-1-U

update CL pointer

@ Yi=Y1+4T

update pointer to last line

@ U=U+T

given Y1, update TOS pointer and y-coordinate

@ G05UB 630

redraw screen and exit

@ GOTO 710
Obviously, the above code puts all responsibility upon the user's program
USERPRGM which:
(a) MUST NOT mess up with flags 0-4, -3, DISPLAY IS & PRINTER IS device
assignments
(b) MUST send all relevant output to the edit file (#1) using ONLY the
following statement

INSERT #1,Y! ,output_stringl1,C2]
(c) doesn't have any other constraints apart from (a) and (h),
Possible applications:
(A) the easiest one is to recall the results of a computation into the edit
file. The user could write something like this:
1@ SUB USERPRGM(#1.,Y1,C2)
20 DIM S$[255]
30 LINPUT "Expression:";S%
4@ IF S$="" THEN END SUB
50 S$=STR$(VAL(SS$))
6@ INSERT #1,Y1,8%¢[1,C2]
70 GOTO 30

(B) I am sure you can think of many other applications...

@@/09/14 17:38:32 FILE: MKVEDB BASIC 1219 ©9/14/00 17:38

1 ! MKVEDB v.!.1 - MaKE VE Data Base

10 F$="VEDB"

20 DIM C1$[471,C26041,C3%041,C4%04],C5%04],C$[4]1,ROB[4]1,R1$[4],C6%041,C7%$04] ,E18L
41,E$[41]

30 DIM S$[961,M$[2561,0%0101

49 INTEGER S.,E,T

50 T=FLAG(-1,1) @ PURGE F$ @ T=FLAG(-1,T)

70 CREATE DATA F$ @ ASSIGN #1 TO F%$

80 LINPUT "Invisible char’s (ASCII ordered subranges):","0,31 @ 127,159 @ 255,25
5";S%

90 GOSUB 310

100 LINPUT “"Cursor right (ASCII):","27,67";5% @ C1%=FNE$(S$)

110 LINPUT "Cursor down (ASCII):","27.,66";5% @ C2%=FNE%(5%)

120 LINPUT "Cursor left (ASCII):","27,68";5% @ C3$=FNE®(S$)

130 LINPUT "Cursor ON (ASCII):","27.,62";5% @ C4%$=FNE$(S$)

140 LINPUT "Cursor OFF (ASCII):","27,60";5% @ CS®=FNE$(S%)

150 LINPUT "Clear to bottom (ASCII):","27,74";5% @ CH%=FNE$(S%$)

16@ LINPUT "Scroll DOWN (ASCII):" ,"27,83";5% @ RO®=FNE$(S$)

17@ LINPUT "Scroll UP (ASCII):","27,84";5% @ RI$=FNE%(S%)

180 LINPUT "Display replace cursor (ASCII):" ,"27,82";5% @ CE$=FNE$(S$)
196 LINPUT "Display insert cursor (ASCII):","27.,81";5% @ C7%=FNE®(S%)
200 LINPUT "Clear display device (ASCII):" ,"27,69";5% @ E1$=FNE$(S$)
220 LINPUT "Clear screen page (ASCII):" ,"27,72,27,74";5% @ E$=FNE$(S$)
230 PRINT #1;M$,C1%,02%,C3%,C4% ,C5%,C% ,R0% ,R1% ,C6%,C7% ,E1%$,E%$

240 ASSIGN #1 TO =

250 END

260 DEF FNES$(I%)

270 0%="" @ S$=I%&","

280 IF LEN(S$)>1 THEN 0%$=0%&8CHR$(VAL(S%)) @ S%=S5%[P0S(S%," ,")+11 @ GOTO 280
290 FNE$=0%

300 END DEF

310 M$="" @ S$=5%3"@"

220 IF LEN(S%$)<2 THEN RETURN

230 S=UAL(S%) @ E=VAL(SS[POS(S$,",")+11) @ S5%=54[P0OS(S%,"@")+1]

340 FOR I=S TO E ® M$=M$RCHR$(I) @ NEXT I @ GOTO 320

00/09/14 17:39:00 FILE: MKVUEDBT TEXT 2560 ©29/14/00 17:38
Program MKVEDB - version 1.1 - set up data base for VE

QUTPUT: DATA file VEDB which must reside in memory whenever VE is executed

1 | MKVEDB v.1.1 - MaKE VE Data Base

10 F$="VEDB"
same variables as in VE
NOTE: notice variable DIMensioning: it can be a potential problem in a ROM
version of VE when using an interface with LONG escape sequences (>4). Such
is not the case for HP8Z2163-compatible interfaces, but a bit of foresight of
future extensions won’t do any damage. Maybe even 4 isn’t enough and
variables should be overdimensioned to greater extent.

20 DIM C1%[41,C2%[41,C2%[41,C4%[41,C5%[41,C%041,
RO%[41,R1$[4],C6%(41,C7%[41,E1%041] ,E$[4]
scratch variables

30 DIM S$[961,M%[2561,0%[101

4@ INTEGER S,E,T

50 T=FLAG(-1,1) @ PURGE F$ @ T=FLAG(-1,T)

7@ CREATE DATA F$ ® ASSIGN #1 TO F$

default value is for HP82163. More advanced interfaces (i.e. PACSCREEN) can
enter the null string (meaning that all characters are displayable)
80 LINPUT "Invisible char's (ASCII ordered subranges):",
“"9,31 @ 127,159 @ 255,255";5%
99 GOSUB 310
180 LINPUT "Cursor right (ASCII):","27,67";5% @ Cl1$=FNE$(S5%)
112 LINPUT “Curser down (ASCII):","27.,66":;5% @ C2%=FNE$(S5%)
120 LINPUT "Cursor left (ASCII):" ,"27,68";5% @ C3%=FNE%$(S5%)
130 LINPUT “Cursor ON (ASCII):" , "27,62";5% @ CA4%=FNE%$(S%$)
140 LINPUT "Cursor OFF (ASCII):" ,"27.60";S% @ CS5$=FNES$(S%)
150 LINPUT “"Clear to bottom (ASCII):","27,74";5% @ C$=FNE$(S%)
16@ LINPUT “Scroll DOWN (ASCII):" ,"27,83";5% @ RO®=FNES$(S5%)
170 LINPUT "“Scroll UP (ASCII):" ,"27,84";5% @ RI1S=FNE$(S$)
180 LINPUT "Display replace cursor (ASCII):" , "27,82":;5% @ CE$=FNES(S%)
190 LINPUT "Display insert cursor (ASCII):","27,B1";5% @ C7$=FNE®(5%)
200 LINPUT "Clear display device (ASCII):" ,"27,69";5% @ E1$=FNE®(S$)
220 LINPUT "Clear screen page (ASCII):","27,72,27,74";5% @ E$=FNE$(5%$)
230 PRINT #1;M%,C1%$,C2%,C3%,C4%,C5%,C% ,R0%,R1%,C6%,C73 ,E1$,ES$
240 ASSIGN #1 TO *
250 END
parse numbers in a list
260 DEF FNES$(I%)
270 0%="" @ S$=I%8","
28@ IF LEN(S$)>1 THEN 0%$=0%$&CHRB(VAL(S$)) @ SH=S%[P0OS(S%,",")+1]1 @ GOTO 280
290 FNE$=0%
209 END DEF
parse subranges in a list
310 M$="" @ S%=5%8"@"
720 IF LEN(S%$)<2 THEN RETURN
330 S=UAL(S%) @ E=VAL(S$IPOS(SS,",")+11) @ S$=S8[P0OS(S5%,"8")+1]
340 FOR I=S5 TO E @ M3=M$BCHR$(I) @ NEXT I @ GOTO 320

N T T N T T T T T T T T N T T N T I T T T T T T T T T T T T N T T T T T T T T T T T T T T T T S T S NS ST ST SN SIS SIS SRS EEEES

@0/09/14 17:39:43 FILE: MKVEKEYS BASIC 1389 @9/14/00 17:39

1 | MKUEKEYS v.1.1 - MaKe KEY assignaments for VE

2 | DON'T RENUMBER - DON'T use CHR$(220) in input definitions

2 | use STOP to stop at inputs

4 ' use DEFAULT to accept default inputs

5 1 else enter your own input string

6 ! use STOP to stop at key-presses

7 | else enter your own list (a string) of key-presses

8 ! fQ requires two input parameters (input $, list of key-presses)

9 | BUGBS: fQ STOP (list) won’t work in VE

10 ! specifying DEFAULT as a key-press doesn’'t make sense and halts VE on error

11 | f6, fB and #158 need LEN(list)=1 (or STOP)
19 | The key to be defined...

20 DATA f7

29 | and the definition...

30 DATA - ,-,—,—,#48,- ,#48 ,#48 ,- ,#48 ,- ,448 ,#48 ,- ,#48,- ,#48 ,448 ,- ,fY ,DEFAULT ,fI ,DE
FAULT

40 DATA #47 %47 ,- #47 #47 -0

50 DATA | ,#48,4#48 #48 #48,! #48 #48,! %48, #48 %48, ! #48,! #48 %48, S, S #51,
£C ,#50, f0

5O DATA |, 448 %48 #48 #48 -, -,-,- #48,-,-,-,- %48, 448 448!

70 DATA #48 450,450 ,! ,#51 %471 #51 %471 #51 #51 #47 +

1000 DIM N$[95] ,K$[4],K1$041,18092]1,08064]

1005 0$="#155#158 FF FR FQ FY FI FP FD FG FB °

1010 READ K$ @ DISP "Defining [";K$;"1" @ N$=""

1020 ON ERROR GOTO 2000

1030 DISP @ READ K1% @ DISP "[";Ki1%;"] "; @ GOSUB 1035

1031 IF UPRC$(K1$)="FQ" THEN GOSUB 1045

1032 GOTO 1030

1035 IF LEN(K1$)>1 THEN N$=N$&MAPKEY$(K1%) ELSE N$=N$8K1$

1040 IF NOT POS(0$,(UPRCS(KI1$)&" “)[1,41) THEN RETURN

1045 READ I$ @ IF I$="STOP" THEN DISP I$; @ RETURN

1050 N$=N$&CHR$(220) @ IF I$#"DEFAULT" THEN N$=N$&I$ @ DISP “(";

1055 DISP I$; @ N$=N$RCHR$(220) @ IF IS#"DEFAULT® THEN DISP “)";

1060 RETURN

2000 OFF ERROR @ IF ERRN#32 OR ERRL#103@ THEN BEEP @ DISP ERRM$ @ END
2020 DEF KEY K$,N$; @ DISP "DONE"

P20/09/14 17:40:09 FILE: MKVEKEYT TEXT 5376 09/14/00 17:40
Program MKVEKEYS - version 1.1 - make one key assignment for VE

Necessary software: VELEX lex file.

INPUT: DATA string items in lines 1,999: 1st item is the name of the key to be
defined; all following items make the definition

QUTPUT: a key definition (typing-aid)

Algorithm: in definitions command keys are stored in MAPKEY$ format (one byte
per key) while text keys are represented literally.

Some command keys need one or two parameters (an input string or a list of
key-presses, a list of key-presses). It is possible to specify inputs simply by
keying them in as the item following the name of the command key. It is also
possible to make VE stop at inputs - by keying in the item *STOP’ (capital
letters) - or accept default values supplied at inputs - by keying in the item
'DEFAULT’. In definitions inputs are enclosed between a pair of CHR$(220)’s;
DEFAULT is represented as CHR$(220)&CHR$(220) while STOP is represented as the
null string. Byte 220 was chosen since MAPKEY$ can’t return it.

EXAMPLE:

'delete the first three empty lines’ can be expressed as:
DATA fQ,/\"$//,YYYQ
and is represented as
CHRB(169)8CHR$(220)8"/\"$//"&CHRS(220)ECHR$(220)&"YYYQ"&CHR%(220)
NOTE: incidentally, I chose the worst example: the intrinsic complexity of fQ
in key definitions is apparent (fQ is the only command which requires 2
parameters). The above definition will work correctly only if there ARE at
least three empty lines in the file). Also, due to the method of
representation of key defitions, there is no way to represent fQ,STOP,...
correctly (anyway, I think it really doesn’t make any sense).
specifying STOP as a list of key-presses will work, but DEFAULT won't (what’s
its meaning anyway). Finally, only fQ should specify more than one key-press.
I MKUVEKEYS v.1.1 - MaKe KEY assignaments for VE
| DON’T RENUMBER - DON'T use CHR$(220) in input definitions
I use STOP to stop at inputs
I use DEFAULT to accept default inputs
| else enter your own input string
I use STOP to stop at key-presses
I else enter your own list (a string) of key-presses
I fQ requires two input <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>