
 

   

W&W SOFTWARE PRODUCTS

OWNER'S MANUAL

JC kiloBYTE FAM BOX
for the HP-41 Family

of Handheld Computers

OOO
English Edition by

Stephan B. Abramson, Ph. D.
-- November 1986 —-





1735B NE Seavy Avenue, Corvallis, Oregon 97330 USA

 

 

CodeSmith (503) 752-0634 Thursday lst January 1987

Dear Customer,

T am delighted to finally send you your 32K RAM Box Owners manual. Please
note that this manual is the sole work of Stephan Abramson who not only
translated it from the german original but also produced all the typesetting
and artwork, in painstaking detail, on a high resolution dot matrix printer;
the cover on an HP plotter. This was done in his free time which, as is the
case with any busy professional, especially during these times of great
change, is sparse indeed. I trust you will forgive us the delay in getting
this manual to you.

W&W Information:

W&W Software Products is a West German Company run by Wilfried Koetz. The
company manufactures the CCD ROM, 32k RAM Box, 32K EPROM Box and other HP-
handheld related electronic products. They also distribute the PAC Screen and
Grabau HP-IL graphics video interfaces and other products throughout Europe,
and internationally.

I, Jeremy Smith, set up the US branch of the company in December 1985.
Effectivly I was the manufacturers representative for W&W in the USA. In June
1986 I became employed by CMT and, to avoid conflict of interest, among other
things, released my interest in W&W to S.0.S Company run by David White.

S.0.S Company do have some W&W products, which are available directly from
them or their main distributor EduCalc (All addresses given below). However,
S.0.S Company intends to discontinue representing W&W and, therefore, all
future enquiries should be directed to W&W in West Germany. Since they are
continuing to develop exciting new products, and have quite an extensive

product range it is recommended that you write to them for one of their
product catalogs. Still the most comprehensive source of HP-handheld products
in this country, including W&W products, is EduCalc whose catalog is well
worth the phone call.

Best Wishes and a Happy New Year

i

   joreiiy JuaTl

Jeremy Smith

 

Wilfried Koetz David White Jim Carter 0ld address:
W&W Software Products GmbH S.0.S Company EduCalc Jeremy Smith
Im Aehlemaar 20 1850 E 17th Street 27953 Cabot Road 2056 maple Ave
Postfach 800 133 Suite #102 Laguna Niguel Costa Mesa
D-5060 Bergisch Gladbach 2 Santa Ana California 92677 CA 92627 USA
West Germany California 92701 (714) 582-2637 (714) 626-1935
Phone: 02202/85068 (714) 558-1806 (800) 633-2252





e
e

D
D
D

N
O

BO
RO
DD

NY
ND

BO
BO

BD
N
O
U
R
W
N

W
o
W

a
L
L
L
L

[
R
N

=
0

00
~3
O
U
T
A

LO
D
D

En
E
R
B
E

a
EN
E
N
N
N
a N
o
o
e
w

4.18

on

©
=

Table of Contents

Installation » « + « « « vv + 0 .
General Remarks . . . . + « « + + PP

Page Headers . . . . +. + + + »
XROM Numbers .
EPROM Programing Service .

The Organization of ROM . . .
I/O Buffers . . . . . +. .

GENERAL CONTROL FUNCTIONS . .
BUFLNG? (Buffer Length?) . . Lo.
KEYAS? (Number of Key Assignment Registers?)

PG? {Page Contents?) . + « « + « + .

FNC? (Function Description?) . . . . . .
XQXR (Transform XEQ to XROM) . . . . . .
CRDIR {Create Directory Entry) PE
SETPRV (Set Private) . . + + « vv v4 ou

"HOUSEKEEPING" ROUTINES . « + « « « + + « .

CLPG (Clear Pge) “eee . .
INITPG (Initialize Page) J
FRBYT? (Number of Free Bytes in Page?) . .
COPYPG (Copy Page) + + « « ov 0 0 v0 en
WRTPG (Write Page) + + + + « «vv 0 0 0 4
READPG (Read PAZE) + + + + + he eau
PGSM (Page SUm) + « + + + 0 0 4 0.
ENDPG (End Page) + « « « vv 0 0 00.

FUNCTIONS FOR FILE MANAGEMENT . . . .

LDPGM (Load Program) . . . . . . . oo
CLLSTFL (Clear Last File) . . . . . . . .
CRFLDTA (Create Data File) . . . . .
LDREG {Load Registers) . . + . « + + + «
LDREGX (Load Registers by X) . . . . .
LDREGXY (Load Registers by X and Y) . . . .
GTREG (Get Registers) . . . . .. “oe
GTREGX (Get Registers by X) . . .
GTREGXY (Get Registers by X and D FE
CLRFL (Clear File) . . . . . “oe “a
CLRFLEEY (Clear Key File) . . . “a
LDEEY (Load Key Assignments) . . . PN
GTEEY (Get Key Assignments) .
CRFLBUF {Create Buffer File) . .
LDBUF (Load Buffer) . . . « « « « « «
GTBUF (Get Buffer) . . . . . . .
PICT (Protect a File) . . . . . .
UNPTCT (Unprotect a File) . .

ERROR MESSAGES AND THEIR MEANINGS

DESCRIPTION OF THE WARRANTY . . . . . .

Copyright 1986, WW Software Products

00
~3

OO
oa
x





Zz. INTRODUCTION

The first section of this chapter explains the procedure for installing
the RAM BOX and the options available for addressing sections of its memory;
Section 2 presents the fundamentals of its operation. The remaining sec-
tions give an overview of the protocol used hy the HP-41’s operating system

to address read-only memory (ROM) and to organize I/O (input/output) buffers.

1.1 Installation

An Important Note of Caution—Be sure that your HP-41 is turned off be—

fore you insert or remove the RAM BOX; otherwise you may cause a static dis-
charge which could damage the computer or the peripheral.

Before first installing the RAM BOX, remove the Extended Functions mod-
ule and all application ROMs, from your HP-41. You need not remove a TIME
module or such RAM extensions as the QUADRAM or Extended Memory modules.

Your RAM BOX has a storage capacity of 32 kBytes (32768 Bytes). Of this

total 4 kBytes (4096 Bytes) are occupied by the operating system provided by
W&W Software. This system includes 32 new functions (written in microcode)

designed to facilitate your use and control of the RAM BOX.

After you insert your RAM BOX for the first time, turn the computer on,
enter PROGRAM mode and key in the following routine:

O013LBL "LP" 06 FS?C 25 11 PROMPT
02 8.015 07 GTO 02 123LBL 02
033LBL 01 08 ISG X 13 "COMPLETED"
04 SF 25 08 GTO 01 14 PROMPT
05 LDPGM 10 "NOT LOADED" 15 BND

Note that LDPGM (line 05) is a function included in

the operating system of the RAM BOX.

Now, to load any program from the main read/write memory (RAM) of your HP-41

into the RAM BOX, simply key one of its global (i. e., ALPHA) labels into

ALPHA and execute "LP". If the loading of the program is proceeding nor-
mally, the HP-41 will successively display these messages:

PACKING
LOADING

COMPILING
COMPLETED

By executing CAT 2, you can verify that the program you have loaded is
contained within the read/write memory (RAM) of the RAM BOX. Once you have

stored all the programs you wish in the RAM BOX, you may clear the programs

from the main memory of your HP-41 without affecting the status of the pro-

grams loaded in the RAM BOX. Moreover, these programs may still be accessed

as easily as if they were still in the main memory RAM of the computer: they
may be executed using the familiar keystroke sequence



2 RAM BOX Owner’s Manual

XEQ ALPHA "(global label)" ALPHA

Anytime you wish to restore one of these programs to the HP-41’s main memory
RAM, simply use the HP-41’s resident COPY function.

Your RAM BOX contains a lithium battery with a minimm life expectancy
of 5 years. This battery maintains the integrity of programs and data loaded
in your RAM BOX, whether or not the peripheral is plugged into the HP-41. Of
course, while the RAM BOX is inserted in your HP-41, its circuits are com-
mon with those of the computer. Data in the RAM BOX are thus maintained in-
definitely in this configuration, as long as the batteries in the HP-41 re-
main live. However, we recommend keeping backup files an disks, cassettes,
or magnetic cards, of all programs and dats you routinely store in the RAM
BOX, to guard against the inadvertent loss of important information.

The memory of the RAM BOX is partitioned into eight "blocks" called
"pages", each of which contains 4 kBytes (4096 bytes). Operation of and ac-
cess to these pages is controlled by the settings of 3 banks of dual in-line
polarity (DIP) switches located on the underside of the RAM BOX (see below).

 

   
 

 

NE Port
+ Plug

Switch
Banks       

RAM BOX (Bottom View)
These banks, each of which contains eight switches, are designated A; B

and C, as shown in the Figure above. They are oriented so that the ON posi-
tion is at the left side of each switch. Bank A sets the binary codes used
to position two 4 kByte pages optionally to any 4 kByte region within the 64
kByte addressable range. Switches Al - A4 define the address of the first
page and switches A5 - A8 set the address for the second page according to
the coding scheme illustrated in the Table on the following page.

To illustrate the use of these switches, we shall address one optional RAM
page to block 7 and the second to block 15 (Ea) To accomplish this we set
the switches in bank A as follows:

Switch Al A2 A3 Ad A5 A6 A7 A8
Position off on on on on on on off

Block Address 7 Ba (15a)



INTRODUCTION 3

Address¥ Switch Number Addreas¥ Switch Number
Al AZ A3 A4 A5 A6 A7 A8

 

0 off off off off 0 off off off off
1 off off off on 1 off off off on
2 off off on off 2 off off on off
3 off off on on 3 off off on on
4 off on off off 4 off on off off
5 off on off on 5 off on off on
6 off on on off 6 off on on off
7 off on on on 7 off on on on
8 on off off off 8 on off off off
9 on off off on 9 on off off on

10 (A) on off on off 10 (A) on off on off
11 (B) on off on on 11 (B) on off on on
12 (C) on on off off 12 (C) on on off off

13 (D) on on off on 13 (D) on on off on
14 (R) on on on off 14 (D) on on on off
15 (F) on on on on 15 (E) on an on on

 

 

*For address numbers > 9, the hexadecimal notation is given

in parentheses to the right of the decimal representation.

The switches in bank B determine the write-protection status of indivi-
dual peges. When the switch for a given page is ON (write-enabled), the page

is treated as RAM, and programs and data may be stored or cleared on it. If

the switch for a page is OFF (write-disabled), however, that pagelooks like

ROM to the HP-41: its contents cannot be inadvertently cleared or overwrit-
ten by other information.

Bank C is used to place individual pages "on-" or "off-line" (switch
them into and out of the HP-41’s active circuitry). Note that switches Bl
and C1, and B2 and C2 correspond to the RAM "pages” whose addresses are de-

termined using switches Al ~ A4 and A5 - A8, respectively.

To illustrate the use of these switch banks as a complete memory con-

trol system, let us position the two optional pages in blocks 8 and 9 with

write-protection, switch peges A and Bn off and use pages Cn, Du, En and Fa
without write-protection. To establish this operational status we set:

Bank\Switch 1 2 3 4 5 6 7 8

 

A on off off off on off off on
B on on off off off off off off
Cc on on off off on on on on

 

1.2 General Remarks

If the first two pages of your RAM BOX are set to addresses 8 and 9 (i.

e., the settings with which they are usually shipped from the factory), you

will have seven 4 kByte blocks available for loading programs. These seven
blocks will have the addresses 94 - 154 (9n - Fn), since block 8 is occupied



4 RAM BOX Owner’s Mamml

by the factory-installed operating system. In this configuration, your RAM

BOX may be used to simulate seven 4 kByte application modules, such as the
STAT or MATH PACs. In contrast to commercially available ROMs, however, the
contents of your RAM BOX may be changed by you at any time.

1.2.1 Page Headers

We recommend using descriptive headers to initialize the 4 kByte pages
in your RAM BCX. Headers which categorize the contents of individual blocks
by subject will facilitate the location of a given program using CAT 2. The
headers you use to categorize your ROM images may consist of any convenient
alphammeric string of < 11 characters. It is usual to standardize page
headers to the extent of always using a hyphen (ASCII code 45) as the first
character; this helps to distinguish the headers from the included func-
tions during a CAT 2 listing. Some sample headers are:

~-MICHAELROM This is a general header

-MATRX Wawl \ These are examples of headers for groups of
-VARNCE WW1 / related functions; note the use of contrac-

tions, spaces and revision mumbers.

1.2.2 XROM Numbers

The HP-41 uses a two-digit number from 1 to 31 which we shall call the
ROM ID number (i. e., a binary number from 00001 to 11111) to distinguish a-
mong the several application ROMs; thus the same system of mmbers is used
to identify individual pages of the RAM BOX. Within each ROM or RAM page, a
second number (the function ID) from 0 to 63, (i. e., from 00 0000s to 11
1111p) identifies the individual programs and/or functions (for simplicity,
in the discussion which follows, we shall use the term function to refer to
both functions and programs contained within ROMs) it includes. Thus the
HP-41 can distinguish up to 64 different functions and programs (the first
of which, numbered 00, is usually the ROM header) in a ROM or RAM page.

This scheme enables the HP-41 to generate an identification number for
any ROM (or RAM page) function which combines the ROM and function identifi-
cation codes and which thus completely defines the function in an operation-
al sense. If, while you print a program listing, view a routine in PROGRAM

mode or run a program, the HP-41 encounters a ROM function, the operating
system searches CATalog 2 for a function with the specified identification
number. If the system detects the requested ROM, the function is executed

or its name is displayed or output. If the ROM is absent, however, the HP-
41 displays or outputs in lieu of the function’s name, a number derived from
its identification code (note that if the function was to be executed, the

calculator displays the error message "NONEXISTENT" and control over the
computer’s operation is returned to the keyboard). These numbers are dis-
played in the format "XROM aa,bb"; "XROM" is an acronym for external Read-
Only Memory and aa and bb are two-digit decmial numbers. Because of this
display format, the identification codes for ROM functions are called XROM
numbers.



Since the

INTRODUCTION

HP-41 uses the ROM ID to determine which ROM to search for
the required function, the computer will not function properly with multiple
ROMs in the system having thé same ROM ID.

ID numbers for the address blocks in your RAM BOX wich differ from those of
the application ROMs used in your HP-41 system.

appropriate ROM IDs for your RAM BOX,

used in application ROMs and peripherals which are currently available com—
mercially.

XROM Number Application ROM or EPROM

 

01
02
03
04
05

06
[2
08
09

10

11
12
13
14
15

16
17
18
19

20

21
22
23
24
25

26
27
28
29
30

31

 

MATH I
STATISTICS I DAVID ASSEMBLER
SURVEYING
FINANCIAL
STANDARD PAC ZENROM

CIRCUITS ADVANCED FCNS.
STRUCT’L. ANAL.{1)
STRESS
HOME MNGEMENT. CCD ROM (1)
CO-OP MODULE (1)
AUTO START/DUPL’N. GAMES I
CO-OP MODULE (2)

REAL ESTATE CCD ROM (2)
MACHINE PPC ROM 2C
‘THERMAL
NAVIGATION RAM BOX
PETROLEUM (1) MC EPROM

PETROLEWM (2)
PLOTTER (1) NFCROM 1C
PLOTTER (2)
CLINICAL LAB. SECURITIES
STRUCTL. ANAL. (2) PPC EPROM 5A
PPC ROM (2)

CUSTOM 8K ASSEMBLER 3
HPIL DEVEL. (1) ADVANTAGE (1)
EXTENDED 1/0 (1)
HPIL DEVEL. (2) ADVANTAGE (2)
EXTENDED FUNCTIONS

TIME
OPTICAL WAND EXTENDED IL

You should therefore select ROM

To assist you in selecting
we present a Table of ROM ID numbers

PANAME (1)

PANAME (1)

PPC ROM (1)

AVATATION

DATA LOGGER (1)

HP-IL CONTROL AND MASS STORAGE FUNCTIONS

CUSTOM 4k & 8k DATA LOGGER (2)



6 RAM BOX Owner’s Manual

Before loading programs into your RAM BOX, you will need first to per-
form these operations:

1. Initialize one of the RAM pages (numbered 9 - 154) using the
function INITPG (see the description in Chapter 3).

2. Use the function LDPGM to load your programs.

If you wish to alter a program which you have loaded into your RAM BOX
you must first copy the program back into the main memory RAM of your HP-41
using the resident HP-41 function COPY (see your HP-41 Owner’s Manual for
further details if you are unfamiliar with the operation of this function).
Once you have restored the program to main memory, you can edit it as you
please, and then reload the revised version into the RAM BOX.

An Important Note of Caution—Since the operating system of the RAM
BOX permits you to clear only the last program on a page, we recommend that
you always reserve one page for the purpose of recopying programs. Note
that in order to clear the first program on a given page, you must first
clear all of the other programs on that pege; it is thus prudent to load
first on any given page the programs you are least likely to wish to alter.

We recommend further that programs you load into the RAM BOX be termi-
nated with a RIN rather than an END. When you do this, individual routines
on a RAM page are combined into a few very large programs which become easi-
er to recall into main memory RAM and thus easier to revise than a number of
short individual programs. Therefore when you wish to load a new program
into the RAM BOX, first use COPY to retrieve the last program of the RAM
page into main memory. Next, replace the END with a RIN to incorporate in-
to the larger program the routine to be added. (Caution: be sure that the
programs you are merging contain no conflicting local labels). Finally, the
old last program may be cleared from the RAM BOX, and replaced by loading
the new, expanded program. By exploiting all of main memory RAM for this
process, you can fill an entire 4 kByte RAM page with two large programs as-
sembled from a number of smaller routines, so that any of the partial pro-
grams may easily edited as a subroutine of the large last program.

1.2.3 EPROM Programming Service

If you have developed a series of programs that you have tested in your
RAM BOX and would like to mmke available to a larger clientele, we can manu-
facture your custom 4 kByte blocks of program material in the form of plug-
in EPROM modules using the same cases as commercially available application
ROMs such as HP's MATH PAC. You will then be able to offer your software for
sale in module form.

A more economical alternative employs the W&W EPROM Box, which, like
your RAM BOX, is contained in an HP card reader case. The EPROM Box can be
equipped with standard commercially available EPROM chips and has a data
storage capacity of 4 - 32 kByte, in contrast to the 8 - 16 kByte capacity
of a single plug-in modular EPROM.

For EPROM programming services, and to develop custom User- and micro-
code (MCODE) software, you will always find the help you need at W&W Software.



INTRODUCTION 7

1.3 The Organization of Read-Only Memory (ROM) in the HP-41

The HP-41 can address and thus control up to 64 kBytes of ROM, which is
partitioned into 16 blocks of 4 kBytes each. Like the sections of memory in
the RAM BOX, these blocks are called "pages" and are identified by hexadeci-
mally-numbered addresses 0 - F. Specific blocks of functions in the HP-41's
operating system and certain peripherals and ROMs occupy pages 0 - 7. The
remaining addresses are used to commmicate with application ROMs inserted
in the input/output (I/O) ports of the HP-41. The addressing scheme for ROM
pages is given in the Table on page 8; for page numbers above 9, addresses
are given in both decimal and (in parentheses) hexadecimal notation.

ROM Page Function

     

Reserved for the operating system (system ROM 0)
1 Reserved for the operating system (system ROM 1)
2 Reserved for the operating system (system ROM 2)
3 Reserved for the expanded operating system of the HP-41 cx

(system ROM 3); not used by the HP-41C or HP-41CV
4 Reserved for the diagnostic ROM used by HP repair facilities
5 Reserved for the TIME module in the HP-41C and HP-41C. This

page is used by ROMs 5a and 5b of the expanded operating sys-
tem of the HP-41CX; the section currently needed is automat-
ically switched into the active circuitry ("page switching").

6 Reserved for the ROM of the HP82143A printer and for the print-
er functions in the HP-IL ROM when they are enabled

7 Reserved for the HP-IL module; note, however, that the "DIS-
ABLE" switch on the module casing readdresses the ROM to page

, .and removes the printer functions from the active circuit.
8 Lower 4 kB section of port
9 Upper 4 kB section of port

10 (A) Lower 4 kB section of port
11 (B) Upper 4 kB section of port
12 (C) Lower 4 kB section of port
13 (D) Upper 4 kB section of port
14 (R) Lower 4 kB section of port
15 (F) Upper 4 kB section of port 0

0
UO

ND
BD
h
t

 

The Figure below illustrates the correspondance between the I/0 ports and
the page addresses of ROM blocks.

Upper Port 1: Pg 8d. 8h

|

Upper Port 2: Pg 10d.
 

Lower Port 1: Pg 9d, 9h

|

Lower Port 2: P,

 Lower Port 3: Pg 13d, Dh

 



8 RAM BOX Owner’s Mamml

1.4 1/0 Buffers

Certain HP-41 application ROMs create and reserve for themselves a spe-
cial area of main memory RAM called the I/O buffer region. The TIME module,
for example, stores time alarms in this part of RAM. Situations occur when
it is useful to be able to store I/O buffer contents in a secure section of
memory and recall them as needed. Examples of this type of situation are:

a: The user wishes to temporarily remove a ROM from his HP-41 without
losing the contents of the buffer it has created. For instance,
the user is midway through a complex matrix manipulation and must
unplug his CCD or Advantage ROM, but wishes to maintain the buffer
containing the working matrix and element pointer so he may resume
the problem upon reinserting the ROM.

b: The user requires a large number of TIME alarms but wants to have
only a portion of these resident in the HP-41’s main memory at any

one time in order to minimize the buffer size required.

ec: The user is programming his RAM BOX in microcode (MCODE) and: wish-
es to copy the contents of the I/O buffers to a another part of
memory to prevent accidental loss from, e. &., a system crash.

This section of the manual presents a description of the organization

of 1/0 buffers to help the user understand and use RAM BOX functions that
create and manipulate data files for storing the contents of I/0 buffers.

The term input/output (I/O) usually refers to information transfer be-
tween a computer’s central processing unit (CPU) and peripherals (includ-

ing, e. g., the keyboard and monitor as well as printers, etc.). For the

purpose of this discussion, however, we shall use the term in a more limited
sense to denote dialog with RAM which bypasses the operating system. More
specifically, we shall note that each application ROM (such as the TIME and

CCD modules) which establishes an I/0 buffer, interacts directly with its

unique, specially reserved region of memory and manages this buffer indepen-

dently of the operating system and all other coexisting I/O buffers.

To the operating system, an I/O buffer is an inaccessible area of RAM.
The reason for this is the structure of the first register (i. e., the one

with the lowest absolute address), which we shall call the base register. To
the operating system, the most important data in the base register is con-
tained in nybbles 10 - 13 (i. e., bytes 5 and 6) nybbles. We can visual-
ize the base register as containing data in the form

111booooooooa,

in which each letter denotes one nybble. The two nybbles comprising the ii

field each contain a copy of the recognition character unique to that buffer
(i. e., the buffer ID). This recognition character is a hexadecimal number
from 1 to E (note that the hexadecimal digit F is used to mark key assign-
ment registers); a Table of the ID numbers of buffers created by currently
available ROMs and peripherals is given on the next page. The two nybbles

in the 11 field contain a number specifying the buffer size (number of reg-

isters).



INTRODUCTION 9

When the HP-41 is turned on, the operating system surveys the I/O buf-
fer region. As it locates the base register of each buffer, it clears the
ID number from nybble 13 (the leftmost nybble of byte 6) and adds the number

of registers given in the 11 field to the absolute address specified by the

current program pointer. The operating system then jumps to the pointer po-

sition it has just computed and tests to see if the register at that address

is the base register for another buffer. When the survey of I/O buffers has

been completed, the operating system polls the ROMs that are capable of es-
tablishing I/O buffers. When a ROM recognizes a buffer it has created, it
rewrites the appropriate buffer identity number in nybble 13 of the base

register. When this second poll of buffers is finished, the operating system
executes a "PACK I/O" routine: the buffers with 0 in nybble 13 of the base
register (i. e., buffers belonging to ROMs which are no longer plugged into
an I/O port) are cleared, and any free register space thus created is elimi-
nated from the buffer region and moved above the .END. to program memory.

Buffer RM or Size Function
™ Peripheral (Regs)

 

0 None 0 Cleared at turn-on
1 David ASSEM x Addresses of labels and program pointer
2 David ASSEM x Unresolved labels
5 CCD ROM 2 Word size, random number seed and ac-

tive matrix
Advantage ROM 2 Same as for CCD ROM

6 Extended IL ROM Printer status
7 Sokisha ROM 1 User flags and status information

Extended IL ROM ? Temporary storage buffer for the multi-
column program listing routine MCPRP

A TIME ROM * Time alarms
B Plotter ROM “10 Bar code and plotting parameters

Monitor x 1/0 buffer for HP-IL commands
Cc HP-IL Develop~

ment ROM x 1/0 buffer for HP-IL commands
D oMT-300 “8 Status information
E Advantage ROM ? Temporary data storage for the func-

tions INTEG and SOLVE
DATAFILE and 1 Status information for the currently

ES-41 ROMs active file
F HP-41 S.Operating

System % Eey assignments

 

Notes:

* Indicates that the buffer is of variable size.
“N Indicates that the buffer is of variable size but is at least N

registers long

"Temporary" buffers are cleared by the managing ROM upon termination of the

relevant operation or function; most other I/0 buffers remain intact
until the first "turn-on" of the HP-41 after the managing ROM is re-
moved.





2. GENERAL CONTROL FUNCTIONS

2.1 BUFLNG?
(Buffer Length?)

This function determines the number of registers occupied by the I/0 buffer

whose buffer identity number is specified in x. BUFLMG? is a vital function

for the creation of files in the RAM BOX or in Extended Memory for storing

the contents of I/0 buffers. See the explanation of the function CRFLBUF
(Section 4.14) for an example.

 

EFFECT OF BUFLNG? ON THE CONTENTS OF THE STACK REGISTERS

 

i:

: INPUT OUTPUT
'i
i t t
i z z y |
\ vy y Buffer ID !
' Buffer ID: 0 < x < 16 x Buffer Length }
! L L L :
: A ALPHA A )' :: :
 

A Note an Notation: A box like the one above accompanies each of the func—
ions described in this manual. The entries in the box serve two purposes:
they specify the necessary format for data input required by the function
and the data it outputs (both given in italics), as well as giving the loca-
tions of data in the stack registers before and after the function is exe-
cuted.

2.2 KEYAS?
{Number of Key Assignment Registers?)

KEYAS? computes the number of registers in mein memory RAM which are occu-
pied by key assignment registers. One example of a practical application of
the function may be found in Section 4.11, in which the function CRFLEEY is

discussed. No input is required; the result is written to the x-register.

 'i
| EFFECT OF KEYAS? ON THE CONTENTS OF THE STACK REGISTERS
,
'

 

K
d

Nn

Number of Registers

B
o
x
e

>
»

P
R
Y
N

 

11



12 RAM BOX Owner’s Manual

2.3 PG?
(Page Contents?)

PG? is a programmable function which enables you to determine the contents
of a specific 4 kByte block of RAM; the number of the page desired is speci-
fied in x. The function produces output as follows: the ROM header for the
specified page is written to ALPHA, and a number of the form xx.nn is writ-
ten to x, for which xx is the ROM ID part of the XROM number). nn is the
total number of functions and/or programs contained on the page; note that
the header is counted as a function.

 

EFFECT OF PG? ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTPUT

 

t z
z y
y Page Number

Page Number x (ROM ID). (Number of Functions)
L L
A

<q
N
o

L
ALPHA ROM Header

 

As an example of the use of PG?, we execute the keystroke sequence
8

FG?, .
to poll the page containing the RAM BOX’s oprating system, which has the ROM
ID number 14 and contains 34 functions, yielding these data:

 ':
: EFFECT OF PG? ON THE CONTENTS OF THE STACK REGISTERS||; ™NPUT OUTPUT

  

t
z

y
8
L
A



GENERAL CONTROL FUNCTIONS 13

2.4 FNC?
{Description of a Function?)

FNC? provides a programmable means of obtaining descriptive information for
any function on a given page of RAM of ROM. The required input is a control

number of the form xx.nn, for which xx is the ROM ID and npn is the number of

the function in the ROM. The data obtained using FNC? include

A) The funtion’s XROM number converted to a two-byte value in

decimal notation (in x),

B) The same byte value described above, but displayed in y in

hexadecimal notation as an ASCII character string,

C} The XROM number in g, with the function number incremented
by 1 and finally

D) An ASCII character string in ALPHA, containing
1) The XROM number is positions 1 - 5, followed by
2) Two spaces, then
3) The function name, in positions 8 - 18 followed by

4) Another two spaces, and finally
5) In positions 21 - 24, the address of the first byte

of the function.
FCN? behaves as a true HP-41 conditional; when it is executed as an instruc-

tion in a running program, the step following FNC? is executed if the speci-
fied function exists, and skipped if the function is nonexistent.

 

EFFECT OF FNC? ON THE CONTENTS OF THE STACK REGISTERS

 

INPUT OUTPUT

t t y
z z xx.(nn + 1) [XROM Number + 1]
vy y "BB.BB” (Fcn. Hex Byte Value)

xx.nn {XROM Number) x bbb.bbb (Fcn. Dec Byte Value)

L L L

A ALPHA "XX.NN NAMExooooox Addr"

 

As an example of the use of FON? we present the program "PRFAT" below; it
outputs to a ThinkJet printer a list of the function name, XROM number, hex

and decimal byte value and address for each function on the page specified.
We have selected as the example page 8 of the RAM BOX, on which the resident
operating system is located.



RAM BOX Owner’s Mamml

Program Listing for "PRFAT"

 

¥12:52AM 12/15%
¥ @I%LBL "PRFAT"S ¥ 16 PRA% hd
¥ 02 "RRKOSY"& ¥ 17 “XROM# Function"§
r 2 ghash ¥ 18 ACA% F

¥ 13" Adr. Byte"
¥ 05 FIX 8% 4 20 ACA% vie's r
%¥ 06 SF 25% ¥ 21 “(H) Byte(D)3%="% &¥ 87 ADATEG ¥ 22 PRA% hd% 88 CF 25% ¥ 23 SF 28% ¥

09 ACAR ¥ 24 FIX 3% bd¥ 10 "%8k1S % ¥ 25 INTG 4
¥ 11 ACA% ¥ 2B%LBL 05% ¥% 12 "PAGE ?"% ¥ 27 FNC?% be
% 13 PROMPTS % 28 GTO 00% ¥¥ 14 PG7% % 29 670 01% be
% 15 "BREKOSHYS"S % 30%WLBL 00% % 45 END%

Printout of the Function List for RAM BOX Page 8, Using "PRFAT"

12/15/1986 —RAMBOX 1B

Function Adr. Byte(H) Byte(D)

-RAMBOX 1B 8058 A7.80 167.128
BUFLNG? 894C A7.81 167.129
CLLSTFL 848E A7.82 187.130
CLPG 8082 A7.83 167.131
CLRFL B8ADA A7.84 167.132
COPYPG 81i1 A7.85 167.133
CRDIR 8192 A7.86 187.134

. CRFLBUF 8970 A7.87 167.135

. CRFLDTA 8965 A7.88 167.136

.@9 CRFLKEY 8971 A7.89 167.137

.10  ENDPG 872C A7.8A 167.138
«11 FNC? 888A A7.8B 167.139
.12 FRBYT? 8225 A7.8C 167.140
«13 GIBUF 8AF1 A7.80 167.141
+14 GTKEY 8837 A7.8E 167.142
.15 GTREG 8B42 A7.8F 167.143
.16  GTREGX 8858 A7.9¢ 167.144
+17 GTREGXY 8BE1 A7.91 167.145
-18 INITPG 8@SF A7.92 167.146
.19 KEYAS? 8959 A7.93 167.147
.20 LOBUF 8AEB A7.94 187.148
.21  LDKEY BA4F A7.95 167.148
.22 LDPGM 8270 A7.96 167.150
.23 LDREG 8A94 A7.387 167.1581
+24 LDREGX 8AA8 A7.38 167.152
.25 LDREGXY 8AB1 A7.99 167.153
.26 PG? 8809 A7.9A 167.154
27 PGSUM 8EBF A7.98 167.155
28 PICT 8628 A7.9C 167.156
9 READPG 8EC2 A7.90 167.157
@ SETPRY 862. AT7.9E 167.158
1 UNPTCT 8631 A7.SF 167.158
2 WRTPG 812 7.A0 167.160

%Q>XR 8756 A7.A1 167.161
"PRFAT 80eB A7.A2 167.162

 



GENERAL CONTROL FUNCTIONS 15

2.5 IIR
(Transform XBQ’ to XROM)

XQOXR transforms all XBQ instructions in the specified program to XR(M in-
structions, as long as a global label corresponding to each instruction can
be found either in the RAM BOX or in a ROM currently inserted in the HP-41.
Note that the ALPHA label(s) specified in these instructions, as well as the

program processed by the function, may reside either in main memory RAM or
on any page of the RAM BOX (see section 4.1, LDPGM, for additional useful

formation). If the program being processed resides in the RAM BOX, execut-
ing XQ>XR does not reduce the amount of memory occupied by the program, as
the bytes eliminated by the transformation are simply replaced by nulls.
Execution speed, however, will still be considerably increased relative to

that observed for the untransformed program.

 

EFFECT OF XQ>XR ON THE CONTENTS OF THE STACK REGISTERS

 

''
'

;
INPUT OUTPUT i

''
i t z t i

| z 2z z '
: y vy y |
| x x x |
i L L L :
| Program Neme¥ ALPHA Program Name |
' '‘ |
 

Note that the "Program Name" can be ANY GLOBAL LABEL within the program.

2.6 CRDIR
(Create a Directory Entry)

The amount of memory that the HP-41 can access on an HP-IL mass storage de-

vice is normaly limited by the addressing range of the HP-41’s HP-IL module

to 130 kBytes. CRDIR, however, enables access to the entire memory space of

a Hewlett-Packard model 9114 disk drive. If you wish to create a file of

any type on a disk which will exceed the normally permissible limit of 130
kBytes, simply specify the required file size in X and execute CRDIR.

 

EFFECT OF CRDIR ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTPUT

 

<
N
o
tt

z
y

Number of Registers

t
z

y
x

L L L
A ALPHA A

Number of Registers

 



16

This function confers PRIVATE status upon a program resident either in the
RAM BOX or main memory without the need for an indirect process involving an

RAM BOX Owmer’s Manual

2.7 SETPRV
Set Private Status for a Program)(Set Priv:

external storage medium. The function has three modes of execution;
is operative in a given case depends on the location and history of the pro-
gram to be processed, as explained below.

1.

Note that if ALPHA is cleared when SETPRV is executed the function will op-
erate on the program, either in main memory or in the RAM BOX, to which the

If the program is in main memory when SETPRV is executed,

it may be transferred to the RAM BOX using LDPGM and then

retrieved once more to main memory using the HP-41 function
COPY; the program its PRIVATE status through the entire se-

quence of operations.

If the program is in the RAM BOX when SETPRV is executed,
the program acquires PRIVATE status but MAY NOT be trans-
ferred to main memory using COPY.

PRIVATE status is conferred upon the program first in main
memory, and then once again after the program is loaded

into the RAM BOX: as in case 2 above, the program MAY NOT

again be recopied into main memory RAM.

program pointer is currently set.

 

EFFECT OF SETPRV ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTPUT

t z t
z z z
y vy y
x x x
L L L

Program Name# ALPHA Program Name

 

tNote that the "Program Neme™ can be ANY GLOBAL LABEL within the program.

 



3. T"THOUSEKEEPING™ ROUTINES

3.1 CPG
(Clear a Page)

This is a control function that enables you to clear the entire contents of

a specified 4 kByte block of memory in the RAM BOX; i. e., the block upon

which CLPG operates is filled with null bytes. NOTE that the function does

not display a warning prompt before operation; if it is executed with a val-
id page number specified in x the contents of that page are gone forever.

 

:
EFFECT OF CLPG ON THE CONTENTS OF THE STACK REGISTERS i

'i
'

 

'|
'

:
! INPUT OUTRUT
'| |
! t t t '
i z z z }
i y y y i
| Page Number x Page Number :
i L L L i

i A ALPHA A |
' ': i
 

3.2 INITFG

(Initialize a Page)

INITPG is analogous to the FORMAT function in the disk operating systems of
many microcomputers: it first clears the 4 kByte block of RAM whose address
is given in x, then provides it with a ROM ID number, a name (i. e., a ROM
ROM header) and a directory spece. This prepares the block to receive pro-
grams and data. NOTE that INITPG does not display a warning prompt before

operation; if it is executed with a valid page number in x, the previous
contents of that page are gone forever. Once a block is opened with with

this function, its contents may be manipulated until ENDEG is executed.

 

EFFECT OF INITPG ON THE CONTENTS OF THE STACK REGISTERS

 

' ': i
| '| i
i |
i INPUT OUTPUT |
' 'i |
: t t t |
! z z z i
| ROM ID Number y ROM ID Number |
i Page Number x Page Number |
i L L L '

| -ROM Header ALPHA -ROM Header |
' ': :
 

INITPG will accept as a valid ROM header only the leftmost eleven characters
of the current ALPHA string, up to the first comma. If ALPHA is cleared

when INITPGT is executed the string "-" will be entered as the ROM header.

17



18 RAM BOX Owner’s Mammal

3.3 FRBYT?

(Number of Free Bytes on a Page?)

This function provides the mumber of bytes still available for storage with-

in the specified 4 kByte block or RAM.

 

EFFECT OF FRBYT? ON THE CONTENTS OF THE STACK REGISTERS

 

'
)

' INPUT OUTPUT \
'

'
i
| t t z '

| z z y i

| y y Page Number !

i Page Number x Number of Bytes |

: L L L :

| A ALPHA A '

| '
 

Example of an Application

You should perform this sample routine in order to become familiar and com-

fortable with INITPG and FRBYT? [bear in mind that if you work through the

example literally, the contents of page 104 (= An) will be lost]. Firstly,

remove all application ROMs from your HP-41; then execute the instruction

sequence

ALPHA "-RAM 1A" ALPHA

9 ENTER 10
XBQ ALPHA "INITPG" ALPHA

Now execute CAT 2; following the sequential display of the functions of the

operating system of the RAM BOX, you will see the catalog entry for the RAM

page you have just initialized:

"_RAM 1A".

Now execute the sequence

10

XEQ ALPHA "FRBYT?" ALPHA

and see the result in x:

4056.00.

Thus there are 4056 Bytes (670 registers) available on page 104 for storing

programs or data.



"HOUSEKEEPING" ROUTINES 19

3.4 COPYPG
(Copy a Page)

OOPYPG duplicates the contents of one 4 kByte block of RAM BOX memory onto

another page of the RAM BOX.

 

EFFECT OF COPYPG ON THE CONTENTS OF THE STACK REGISTERS

 

 

' '
i i
‘ '
i i

| i
| INPUT OUTPUT |

|
: |
| t t t |
' z z z |

' Number of Source Page y Number of Source Page i

\ Number of Destination Page x Number of Destination Page |

| L L L |

} A ALPHA A i
! |

3.5 WRTPG

(Write a Page)

This function writes the contents of any 4 kByte block of the RAM BOX to a

peripheral mass storage device. The number of the page to be copied and the

name to be given to the new file on the medium (disk or tape) are required

as inputs. The newly-created file will be categorized as file type 7 (which

displays as "?" in a file directory listing) and occupy 640 registers on the

storage medium. Note that WRTPG is compatible with the function SAVEROM in-

cluded in the operating system of the ERAMCO MLDL (machine language develop—

ment laboratory).

 

EFFECT OF WRTPG ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTRUT  

Page

t

z
vy
x
L

File Name ALPHA File Name

N

T
r

 



20 RAM BOX Owner’s Mammal

3.6 READPG
(Read a Page)

This function copies to the specified page of the RAM BOX a 4 kByte file
which had been previously written to a mass storage medium using WRTPG. The
required inputs are the name of the file on the external medium and the num-
ber of the RAM page on which it is to be written. Note that READPG is cam-
patible with the function GETROM included in the operating system of the
ERAMCO MIDL (machine language development laboratory).

 

EFFECT OF READTPG ON THE CONTENTS OF THE STACK REGISTERS

 

t
z
y
x
L

File Name ALPHA File Name

'
i
''
)i
|
i
'
i
'
i
'i
‘'
'
i
''
'i
‘i

 

3.7 PGSM
(Page Sum)

PGSUM computes a checksum for the specified page x and writes this sum to
the memory location XFFFh on that page. The result of the operation is also
written to ALPHA and displayed in sequential messages with the first message
having the format

"PG:NN RR-RR",

in which NN is the page number and RR-RR the RCM revision number. When the
computation is terminated, the HP-41 will display either

"RR-RR INTACT"
or

"RR-RR BROKEN".

(Recall that a checksum is determined by adding the byte values of all the

data and/or program instructions contained in the block, and taking the mod-
ulus, using 256 as a base.)

PGSM therefore serves three purposes:

1. It provides a straightfortward means of determining the revi-
sion number of any ROM, as its operation is not limited to
RAM BOX pages.

2. It enables the computation of the checksum for a block of
RAM and the entry of that checksum in the proper memory lo-
cation on that page.



"HOUSEKEEPING" ROUTINES

Perhaps most importantly, PGSUM compares its newly computed

checksum with the sum already entered for that page and then

displays a message indicating the status of the page. Spe-

cifically, if the prior and newly-computed checksums agree,

the message "RR-RR INTACT" is displayed, whereas the display

"RR-RR BROKEN" denotes a differing checksum. This feature

of PGSM enables you to determine whether data in a module

or on a page of RAM has been altered. In any event, the

newly computed checksum is written to the page, which you

can verify by re-executing PGSUM.

 

EFFECT OF PGSUM ON THE CONTENTS OF THE STACK REGISTERS

INPUT QUTPUT

 

ENDPG terminates the entry of data or programs to a block of RAM,

checksum for the block and enters the current ALPHA string as the ROM header

(including the revision number) for that page. NOTE THAT YOU SHOULD ONLY

EXECUTE ENDPAGE WHEN YOU ARE SURE THAT YOU HAVE FINISHED WORKING WITH THE

CONTENTS OF THE PAGE IN QUESTION. Once you have closed a page with this

t

z

y
Page Number

L
A ALPHA Page No./Rev. No./Status

C
R
E
A
N

Y

Page Number

L

 

3.8 ENDPG
(End a Page)

21

computes a

function, further access to its contents is impossible. Any attempt to ac-

cess this page with a data storage function results in the error message

"PAGE CLOSED."

 

i
v'
1i
'i
'
V
'
i
'
'

 

EFFECT OF ENDPG ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTPUT

t t t

z z z
y y y

Page Number x Page Number
L L L

ROM Header + Revision No. ALPHA ROM Header + Revision No.

 

Note that the function recognizes only the four leftmost characters

current ALPHA up to the first comma.
cuted, the string "--—-" is entered as the ROM revision number.

in the
If ALPHA is cleared when ENDPG is exe-





a . FUNCTIONS FOR

FILE MANAGEMENT

4.1 LDPGM
(Load a Progam)

LDPGM copies to the specified RAM page in the RAM the User—code program for

which a LBL is given in ALPHA. If ALPHA is clear when LDPGM is executed,

then the program copied is the one at which the program pointer is currently

positioned. With this feature of the function, the user can load the main

memory with several programs to be copied to the RAM BOX, then clear ALPHA

and use CATalog 1 to position the HP-41 successively at the individual pro-

grams and copy the whole series into the RAM BOX without having to specify a

global label for each execution.

 

EFFECT OF LDPGM ON THE CONTENTS OF THE STACK REGISTERS

 

t 2 t i

z z |

y y y |
Page Number x Page Number |

L L L |

Program Name¥ ALPHA Program Name i
'!

 

INote that the "Program Name" can be ANY GLOBAL LABEL within the program.

4.2 CLLSTFL
(Clear the Last File)

CLLSTFL clears the last file on the specified page, whether it is a program,

or a data, buffer or key assignment file (These are described in subsequent

sections of Chapter 4. In addition, the user may find it helpful to refer

to the Owner’s Manual for the CCD ROM and Extended Functions Made Essy, by

Keith Jarett, for more detailed explanations of file types in peripheral

memory devices.). If the file to be cleared was previously protected with

PICT (Section 4.17), this protection must be removed by the function

UNPICT (Section 4.18) before the file can be cleared.

 

EFFECT OF CLLSTFL ON THE CONTENTS OF THE STACK REGISTERS

 

ad t t '
z z z '

y y y :
Page Number x Page Number '

L L L i

A ALPHA A |
':

 

23



24 RAM BOX Ovmer’s Mammal

4.3 CRFLDTA
(Create a Data File)

This function opens a data file having the size specified on y on the page
given in x. This file may be written to and read from, using functions de-
scribed in Sections 4.4 - 4.10, in a manner similar to the way data files in

the Extended Functions and Extended Memory Modules are used. Note that if
you attempt to call a data file using the keystroke sequence

XEQ ALPHA "FILE NAME" ALPHA,

nothing will happen.

 

EFFECT OF CRFLDTA ON THE CONTENTS OF THE STACK REGISTERS

 

'

i
i INPUT OUTPUT
'

: t t t
: z z z
| File Size¥ y File Size
' Page Number# x Page Number
' L L L
: File Name ALPHA File Name
:
 

*The file size is given as the number of registers it will occupy, and must

be a number < 671.
#The number of the page on which the file is to be created.

4.4 LIREG

(Load Data Registers)

This function copies into the specified data file the contents of all the
data registers in main memory. If number of registers to be transferred ex-
ceeds the number of free registers in the file, no data is transferred and

the error message "END OF FILE"is generated.

 

EFFECT OF LIREG ON THE CONTENTS OF THE STACK REGISTERS  
'|
:

:
INPUT OUTPUT \

|

t t t i

: z z z |
i y vy y :
i x x x |

| L L L i

} File Name ALPHA File Name |
' 'i :
 



FUNCTIONS FOR FILE MANAGEMENT 25

4.5 LDRBGX
(Load Data Registers as Directed by x)

This function works in a manner similar to that of LDREG except that it cop-

ies the contents of a defined block of main memory registers. The control
number in x is used to determine the length and location of the block to

be copied.

 

EFFECT OF LDREGX ON THE CONTENTS OF THE STACK REGISTERS

  

v|
‘

:
| INPUT OUTPUT

1
i t t t '

| z z z |
i vy Ty y |
! bbb. eee¥ x bbb. eee \
i L L L \

! File Name ALPHA File Name i
' 'i :
 

*bbb is the number of the first register to be copied, while
eee is the number of the last register to be copied.

Note that here and below, the "register mmber" refers always to the rela-
tive address of the data register(s) in question.

4.6 LDREGXY
(Load Data Registers as Directed by x and y)

LDREGXY permits more control over the process of copying data to the RAM BOX
than does LDREGX (see above), in that LDRRGXY provides for an additional in-
put parameter to specify the beginning position in the object data file in
the RAM BOX to which the data block will be copied.

 

EFFECT OF LDREGXY ON THE CONTENTS OF THE STACK REGISTERS

1
i
:
1
'i
1i

 

 

bbb is the number of the first register to be copied, while
eee is the mmber of the last register to be copied and
nnn is the number of the register in the object data file in

the RAM BOX into which the first register of the block will bé copied.



26 RAM BOX Owner’s Manual

4.7 GIRBG
(Get Data Registers)

GITREG is the inverse of LDREG (see Section 4.4 above); it copies the entire
contents of the specified data file in the RAM BOX to data registers in main
memory, beginning with R00.

 

EFFECT OF GTREG ON THE CONTENTS OF THE STACK REGISTERS

  

 

:

:
: INPUT QuTRPUT
|
i t t t !

| z z z |
| y y y i
' x x x |
i L L L '
! File Name ALPHA File Name i
' '

4.8 GIREGX
(Get Data Registers as Directed by x)

GIREGX is the inverse of LDREGX; it copies the contents of adata file to
the block of data registers in main memory whose location in given by the

control number in x.

 

EFFECT OF GTREGX ON THE CONTENTS OF THE STACK REGISTERS

 

'

i
|
i INPUT OUTFUT

:
i t t t :
: z 2 z '
‘ y y vy :
i bbb. eect x bbb. ece |
i L L L i
| File Name ALPHA File Name }
' }
 

*bbb is the number of the first register in the destination block while
eee is the mmber of the last register of the block.



FUNCTIONS FOR FILE MANAGEMENT 27

4.9 GTREGXY

(Get Data Registers as Directed by x and 7)

By analogy with LDRBGXY, GTREGXY permits the copying of a defined block of

data from the data file in the RAM BOX, whose name is given in ALPHA, to a

destination tbe block whose location is defined by the control number in x.

 

EFFECT OF GTRECXY ON THE CONTENTS OF THE STACK REGISTERS
'|
t'
'
‘
'

 

\|
|
i

INPUT OUTPUT |
:|

| t |

| z z z |

\ nnn¥ ¥ nnn '

' bbb. eee x bbb. eee i

' L L L |
i File Name ALPHA File Name |
' |
: i
 

tbbb is the number of the first register in the destination block, while

eee is the mumber of the last register of the block and

nnn is the mmber of the first register in the data file in

the RAM BOX from which data will be copied.

4.10 CLRFL
(Clear a File)

This function clears the entire contents of the RAM BOX data file named in

ALPHA.

 

EFFECT OF CLRFL ON THE CONTENTS OF THE STACK REGISTERS

 

' '
| }
' '
i :

;
:

i INPUT OUTPUT |

' '
i |

| t t !

i z z z !

i y vy y |

| x x x }

i L L L \

' File Name ALPHA File Name |
' ’
i !
 



28 RAM BOX Ovmer’s Mammal

4.11 CRFLEEY
(Create a Key Assignment File)

CRFLEEY opens a file in the RAM BOX to store a complete set of key assign-
ments. Before you can create such a file, however, you must first use KEY?

to determine how many registers are occupied by the current set of key as-

signments, since the file size is required as input by CRFLKEY to set up the
file. Note that if you attempt to call a key assignment file using the key-

stroke sequence

XEQ ALPHA "FILE NAME" ALPHA,

nothing will happen. The file type designation is KEY.

 

EFFECT OF CRFLKEY ON THE CONTENTS OF THE STACK REGISTERS

 

.:
|

INPUT OUTPUT :
'{

| t t t |
' z 2 z |
! File Size¥ ¥ File Size '
: Page Number# x Page Number i
! L L L :

! File Name ALPHA File Name !
' |: |
 

The file size is given aa the number of registers it will occupy, and must
be a mumber < 43.
#The number of the page on which the file is to be created.



FUNCTIONS FOR FILE MANAGEMENT 29

4.12 LDKEY
(Load a Key Assignment File)

This function tranfers to the specified KEY file in the RAM BOX the complete

set of key assignments currently active in main memory. Note that

assignments to keys of global labels from user programs are stored as part

of the label and not within the key assignment registers; thus key assign-

ments of this type are ignored by LDKEY and its reciprocal function GTKEY.

 

EFFECT OF LDKEY ON THE CONTENTS OF THE STACK REGISTERS

 

:
:

INPUT ouUTPUT ;
'i

' t t t i
' Zz Zz z i

} y y y :
' x x x |
' L L L i
! File Name ALPHA File Name |
' '| ‘
 

Example of an Application

This example creates a KEY file on page 10q with the name "KEY1" and stores
the current set of key assignments in the newly-created file.

 

KEYSTROKES FUNCTION PERFORMED

XBQ ALPHA "KEYAS?" ALPHA Writes to x the number of registers that
will be required for the KEY file

10 The number of the page on which the file
is to be created is keyed in; this also
moves to y the result of the previous
computation

ALPHA "KEY1" ALPHA Places in ALPHA the name of the KEY file
XEQ ALPHA "CRFLEEY" ALPHA Creates the file

XER ALPHA "LDKEY" ALPHA Transfer of the key assignments to the
new file

 



30 RAM BOX Owner’s Mammal

4.13 GTEEY

(Get a Key Assignment File)

GTEEY clears the currently active key assignment set from main memory and
replaces it with the assignments stored in the KEY file specified in ALPHA.

 

EFFECT OF GTEEY ON THE CONTENTS OF THE STACK REGISTERS

 

 

.

!
: INPUT UTFUT
‘i
| t t t i
' z z z |
| y vy vy i
' x x x }
i L L L i

| File Name ALPHA File Neme i
' || i

4.14 CRFLIUF
(Create an I/O Buffer File)

This function opens a file in the RAM BOX to store the contents of an I/0

buffer. Note that if you attempt to call a buffer file using the keystrokes

XBQ ALPHA "FILE NAME" ALPHA,

nothing will happen. The file type designation is BUFFER.

 

EFFECT OF CRFLBUF ON THE CONTENTS OF THE STACK REGISTERS

 

| |
' '| '
i i
! INPUT ouTRUT :
' 'i i
' t t t |

i z z z i
i File Size¥ y File Size i
1 Page Number# x Page Number i

' L L L |
i File Name ALPHA File Name i
' 'i |
 

The file size is given as the number of registers it will occupy, and must
be a number < 255.
#The number of the page on which the file is to be created.



FUNCTIONS FOR FILE MANAGEMENT 31

4.15 LDBUF

(Load a Buffer File)

This function tranfers to the specified KEY file in the RAM BOX the contents

of the I/O buffer whose identification number is given in x.

 

EFFECT OF LDBUF ON THR CONTENTS OF THE STACK REGISTERS

INPUT OQUTAUT

 

t t t
z z z
y y y

Buffer ID x Buffer ID
L L L

File Name ALPHA File Name

 

4.16 GIBUF
{Get a Buffer File)

This function copies to the appropriate I/0 buffer the contents of the spe-

cified RAM BOX BUFFER file. If an I/O buffer with the same identification

mmber currently exists, its prior contents are cleared and replaced by the

data from the BUFFER file. If no buffer with the appropriate identification

code currently exists in main memory, GTBUF creates one in which to deposit

the newly copieddata.

 

EFFECT OF GTBUF ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTRUT

  

File NameB
o
w
a
n
n

File Name

i
'
'
1
i
‘i
i
‘i
1
'
,
' 



32 RAM BOX Owner’s Mamml

4.17 PICT

(Protect a File)

PICT confers on the named file a special status which prevents you from in-

advertently writing to, overwriting or clearing the file.

 

EFFECT OF PICT ON THE CONTENTS OF THE STACK REGISTERS

 

 

. \

| |
| i

| i
! INPUT OUTFUT :
' :
i i
i t t t '

| z z z }

i y vy y |
} x x x i
} L L L '

i File Name ALPHA File Name |
' '
: !

4.18 UNPICT

(Unprotect a File)

This function removes from a file the protected status conferred by PICT.

After its execution the file may be written to, overwritten or cleared.

 

EFFECT OF UNPICT ON THE CONTENTS OF THE STACK REGISTERS

INPUT OUTRUT

 

t t t
z Zz z

vy y vy
x b3 x
L L L

File Name ALPHA File Name

 



5. FERROR MESSAGES
AND THEIR MEANINGS

ERROR WHICH ABORTED EXECUTIONFUNCTION ATTEMPTEDALPHA DISPLAY

 

DATA ERROR BUFLNG? The specified buffer identification
code was <1 or > 14.

CRDIR A register number <1 or > 9,999 was
specified

CRFLBUF Specified file size was < 1 or > 255

CRFLDTA Specified file size was < 1 or > 670

CRFLEEY Specified file size was < 1 or > 42

FNC? or INTTFG An XROM number < 0 or > 31 was
entered

Any function that A page number < 5 was entered
accesses a block
of RAM

ALPHA DATA Any function for An ALPHA string was entered instead
which a mumber is of a numerical quantity
expected as input

NONEXISTENT FNC? No function exists having the XROM
number input to x

GTREG The data registers specified do not
GTREGX exist
GTREGXY
LDREG
LDREGX
LDREGXY

PG? The page addressed is empty

PICT No file exists with the name speci-
UNPTCT fied in ALPHA

SETPRV No program exists with the name spe-
XQXR cified in ALPHA

Any function that

accesses a block
of RAM

33

A page number > 15 was entered



34

ALPHA DISPLAY

RAM BOX Ovmer’s Manual

FUNCTION ATTEMPTED ERROR WHICH ABORTED EXECUTION

 

NO NAMR

PAGE CLOSED

NO ACCESS

DUB XROM #

NO RAM

ILLEGAL CHAR

NO HPIL

Any file manage-
ment function

FRBY1?; any func-
tion BESIDES CLPG

and INITPG which
performs a storage
or clearing func-

tion on a RAM page

PICT
UNPTCT

LDPGM
SETPRV

Any function that
performs a storage
or clearing opera-
tion on a RAM page

INITPG

Any function that

performs a storage

or clearing opera-
tion on a RAM page

CRDIR
READPG

No file name was input to ALPHA

ENDPG has already been used to close

the specified block of RAM, prevent-
ing execution of the function called

The program specified resides only in
main memory RAM

The program specified resides in ROM

An attempt was made to use the func-
tion to access the page containing
the operating system of the RAM BOX

The XROM number specified duplicates
one already in use on another page

The desired page cannot be written to

The specified ROM header or file name
contains one or more nonallowed char-
acters; these include ASCII codes 0 -

OFn, 2E, 3A or any value > 66n

(decimal equivalents are 0 - 16. 46,

58, > 102)

There is no HP-IL present in the
HP-41 system you are using



ALPHA DISPLAY

ERROR MESSAGES AND THEIR MEANINGS 35

FUNCTION ATTEMPTED ERROR WHICH ABORTED EXECUTION

 

PACKING-
TRY AGAIN

NO ALPHA LABEL

FAT FULL

ROM FULL

NO FILE

DUB NAME

NO KEYS

NO BUFFER LDBUF

1) The program you tried to load did
have its own END, or

2) The attempt to load the program

failed because of insufficient
free memory on the page specified

The program you tried to load has no
global label by which it can be de-

tected

The directory space on the page you
addressed does not contain sufficient
room to accept the desired entry

The page addressed does not have suf-
ficient room to create the desired
file or load the desired program

No files are present on the page ad-
dressed

The file you tried to access has pro-
tected status and may not be manipu-
lated by these functions

The name given for the file you tried

to create duplicates the name of an
already existing file

No key assignments currently exist

No buffer exists with the specified
identification number



36 RAM BOX Owner’s Mamml

ALPHA DISPLAY FUNCTION ATTEMPTED ERROR WHICH ABORTED EXECUTION

 

FL NOT FOUND GTBUF The specified file was not found

END OF FILE LDBUF You attempted to load more registers

LDERY into the specified file than there

LDREG was room to accept

All HP-IL error CRDIR See the HP-IL Owner’s Manual for a
messages READPG detailed eplanation of error messages

 

&. DESCRIPTION OF THE WARRANTY

WW Software Products warrants that your RAM BOX will be free of manufactur-

ing defects for six months from the date of purchase. To submit a warranty
claim, complete the enclosed warranty card, have it stamped by the dealer

from whom you purchased the RAM BOX, and send it to us. When this is done,
you will receive prompt service. If the lithium battery fails, we shall
replace it at our expense.

We shall assume no responsibility for consequential damages, or for damage
resulting from improper use of the RAM BOX.

You should always maintain backup copies of the data you enter into your RAM

BOX, to gaurd against the irretrievable loss of this data which could result

even from very minor damage to the equipment. Under no circumstances shall

we accept responsibility for the loss of data or for consequential damages
resulting from data loss.

For questions about your RAM BOX or information about our other products,

write
Waw Software Products/S.0.S. Company
1850 Rast Seventeenth Street, Suite 102

Santa Ana, California 92701

or telephone
(714) 558-1806


	Cover
	Table of Contents
	1. Introduction
	1.1 Installation
	1.2 General Remarks
	1.2.1 Page Headers
	1.2.2 XROM Numbers
	1.2.3 EPROM Programming Service

	1.3 The Organization of ROM
	1.4 I/O Buffers

	2. General Control Functions
	2.1 BUFLNG? (Buffer Length?)
	2.2 KEYAS? (Number of Key Assignment Registers?)
	2.3 PG? {Page Contents?)
	2.4 FNC? (Function Description?)
	2.5 XQ>XR (Transform XEQ to XROM)
	2.6 CRDIR {Create Directory Entry)
	2.7 SETPRV (Set Private)

	3. "Housekeeping" Routines
	3.1 CLPG (Clear Page)
	3.2 INITPG (Initialize Page)
	3.3 FRBYT? (Number of Free Bytes in Page?)
	3.4 COPYPG (Copy Page)
	3.5 WRTPG (Write Page)
	3.6 READPG (Read Page)
	3.7 PGSM (Page Sum)
	3.8 ENDPG (End Page)

	4. Functions for File Management
	4.1 LDPGM (Load Program)
	4.2 CLLSTFL (Clear Last File)
	4.3 CRFLDTA (Create Data File)
	4.4 LDREG {Load Registers)
	4.5 LDREGX (Load Registers by X)
	4.6 LDREGXY (Load Registers by X and Y)
	4.7 GTREG (Get Registers)
	4.8 GTREGX (Get Registers by X)
	4.9 GTREGXY (Get Registers by X and Y)
	4.10 CLRFL (Clear File)
	4.11 CLRFLEEY (Clear Key File)
	4.12 LDEEY (Load Key Assignments)
	4.13 GTEEY (Get Key Assignments)
	4.14 CRFLBUF {Create Buffer File)
	4.15 LDBUF (Load Buffer)
	4.16 GTBUF (Get Buffer)
	4.17 PICT (Protect a File)
	4.18 UNPTCT (Unprotect a File)

	5. Error Messages and Their Meanings
	6. Description of the Warranty

