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The biggest revolution in navigation
has been the hand-held or pocket cal-
culator. For under a hundred dollars,
you can now banish the tedium of
manual calculation.
The object of this text is to introduce

the small-boat navigator to hand-held
calculators, to help him select one
suited to his needs, to discuss operating
procedures, and to present sample
programs—designed for a minimum
practical calculator—to solve most of
the common navigational exercises.
The list of programs includes the

principal exercises encountered by the
small-boat navigator under way, as well
as some additional ones useful in
deriving auxiliary and planning infor-
mation. The programs themselves have
been designed with the yachtsman in
mind, and were selected, developed
and thoroughly tested in the course of a
transpacific voyage undertaken by the
author.
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Foreword

The elements of coastwise and celestial navigation have

been described in my two preceding books in the Yachts-
man’s Guide series, The Yachtsman’s Guide to Coastwise

Navigation and The Yachtsman’s Guide to Celestial Navi-
gation. The present text is intended to translate those fun-

damentals into mathematical form, and to explain how to

perform the solutions rapidly and simply on a modern,

hand-held, electronic calculator.

The list of programs includes the principal exercises

encountered by the small-boat navigator under way, as

well as some additional ones useful in deriving auxiliary

and planning information. The programs themselves
have been designed primarily with the yachtsman in

mind, and were selected, developed, and tested in the

course of a transpacific voyage aboard the containership
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S.S. President Eisenhower. The cooperation and encour-
agement of the ship’s officers is gratefully acknowledged.
While the program selection, design, and subsequent

testing is as thorough as I know how to make it, the mate-
rial in this text is presented without representation or war-
ranty of any kind, and the author and publisher assume no
responsibility or liability, consequential or otherwise,
arising from its use.

S.C.
May, 1979



Introduction

The rapidity with which the hand-held, or “personal,”
calculator has evolved is one of the technical phenomena
of our times. The quiet revolution has had its impact on all
of us, perhaps even greater than we realize, in substituting
almost instantaneous, accurate computation for the error-
prone tedium of traditional mathematical methods. In

fact, those who make no pretense of their mathematical
abilities can now solve problems that were customarily
within the province of the highly trained specialist.
The hand-held calculator is an outgrowth of the prog-

ress in solid-state electronic technology—that which saw

the vacuum tube and hand-wired circuitry replaced with
miniaturized transistors and printed circuits. Today, for

example, you can carry more computing power in your

pocket than was available in the largest instruments be-

fore the 1950s, and at a price about one ten-thousandth as
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much. There is little wonder that people in all walks of
life, and navigators among them, are using hand-held cal-
culators to ease the tasks of their trades.
For the navigator, the major advantage to be gained

from a calculator is the reduction in both the time re-
quired and the possibilities for error inherent in tedious
manual computations, freeing the operator to undertake a
greater number of exercises and thereby improving his
technical capability.
The object of this text is to introduce the small-boat

navigator to hand-held calculators, to help him select one

suited to his needs, to discuss the operating aspects, and to
present sample programs—designed for a minimum prac-
tical calculator—to solve most of the common naviga-
tional exercises. While these programs constitute a basic
library, after you have become familiar with the tech-
niques involved it should be possible for you to add more
programs of your own, or to reorganize those presented
here, in order to best serve your personal requirements.

It is not practicable to deal with the individual operating
details of every model or manufacture of calculator. The
instruction book or owner’s manual is the proper source
for that. It follows, too, that the advantage of the calculator
over manual or tabular methods can be maximized only
when the operator has gained familiarity and facility with
his particular instrument. “Know your calculator” may
seem elementary, but it is not-to-be-overlooked advice.

It should be recognized at the outset that a calculator,

just like the old-fashioned adding machine, doesn’t alter

the mathematical principles in a problem but simply
facilitates its numerical computation. The practical navi-
gator, consequently, will be well grounded in the princi-
ples of the art, and will benefit from his calculator in the
convenience and speed of the computation, but not as a
substitute for knowledge. Remember, too, that a delicate
electronic instrument in the environment of a small boat
at sea is not immune to failure, and the navigator who is
totally reliant on his calculator may one day be in for an
unpleasant surprise.
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Consistent with these thoughts, this book presupposes
that you understand the fundamentals of the common evo-
lutions in navigation—not necessarily every mathemati-
cal formula and detail, but at least the underlying princi-
ples. Should you be rusty in this area, you can refer to the
earlier texts in this series, mentioned in the Foreword, or

to one of the classic navigation references—Bowditch,
American Practical Navigator (Defense Mapping Agency

Hydrographic/Topographic Center, Washington) or Dut-
ton, Dutton’s Navigation and Piloting (Naval Institute
Press, Annapolis).
On the other hand, a graduate degree in mathematics is

not at all necessary either. Many of us will have had an
introduction to geometry and to the natural trigonometric

functions at the secondary school level, and that is about
as complex as most navigation problems become. Most

problems are solved simply by applying the basic princi-
ples step by step, letting the calculator perform the tedious
operations.

This is not, therefore, primarily a mathematical text.
The range of navigation problems has been organized ac-
cording to the nature of the mathematical operation in-
volved, and arranged in an ascending order of complexity.
In the more advanced solutions, the formulae and method
of approach have been noted where it might contribute to
better understanding, but for practical purposes the pro-
grams can be utilized just by following the steps as out-
lined. It is recommended to the new arrival on the calcula-
tor scene that the programs be reviewed in the order

presented the first time through. After familiarization, the
individual sequences can be consulted directly as a refer-

ence whenever the need arises.
Let’s start at the beginning and consider what kind of an

instrument you will want for your practice of calculator
navigation.



1. Selecting a
Calculator

The first problem facing the navigator who wants to
take advantage of modern calculator technology is the

very basic one of selecting an instrument most practicable

for his needs. Since the multiplicity of models currently
available encompasses such a wide spectrum of perform-
ance—not to mention price—some organized thinking is

in order before rushing out to make the purchase. The best
way to go about this preparatory step is to identify the
types of problems you expect to solve with your calcula-
tor, and then review the equipment that can handle them.
In other words, what combination of functions or features
should your calculator possess?
To guide you toward the answer, Figure 1-1 classifies the

mathematical level of the various types of navigation

problems, with examples of each, and, in the third col-

umn,lists the incremental calculator functions used in the
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solution. Each function listed, you will notice, is 77 addi-
tion to those preceding, one or more of which may also be
required in the computation. To solve a problem involving
sextant corrections, for example, you would want the sex-
agesimal/decimal conversion feature in addition to the
arithmetic functions required for the first level of compu-
tations. One point should be clarified, however; the listings

in the table are not absolute. That is to say it may be en-
tirely possible to solve certain problems without the ben-
efit of all the listed functions, although doing so may be
much more cumbersome. On the other hand, some solu-
tions may be madestill easier or quicker with more calcu-
lator features. The objective of the table, therefore, is to
suggest the minimum practical functions to solve the
problem with a minimum number of keystrokes. Where
the keypunch sequence is performed automatically, as in
the more sophisticated programmable calculators, the
number of steps may not be as important, but in the man-
ual models, on which almost everyone learns, features
that contribute to the shortest solution will be those you
will want.
A fact to remember in the selection process is that most

calculators—except, perhaps, for those prewired ex-
pressly for navigation—are designed for a wide range of
problem solving of which navigation is only one small
part. As a consequence, a general-purpose calculator with

features to handle the more complex navigation exercises
will generally have the capability to solve a vast number
of nonnavigational problems, and will very likely offer
some functions that will never be used in navigation.

Adding somewhat further to the possibility of confusion
is the terminology, which, in the rapidly developing mar-
ket for small calculators, has not yet seen complete stand-
ardization. Happily, however, common nomenclature is
starting to become evident among the major suppliers,
and it is increasingly practicable to relate one manufac-
turer’s product to another’s. The best advice, in any case,

is to identify your range of problems in the navigational
hierarchy, noting the features or functions needed to ac-
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commodate them, and to start with the simplest model

calculator embodying those minimum functions, moving
up to the more sophisticated equipment as you progress.
Calculators are offered in several different categories

with which you should be familiar before your shopping

expedition starts. Should you plan to confine your use to
arithmetical applications, a simple four-function (add,
subtract, multiply, and divide) model, some of which are

available for under $10, is really all you need. As you in-
crease the complexity of the navigation problems you
want to solve, you will advance to the next plateau—the
“slide rule” or scientific types that add the capability to
perform trigonometric and other higher functions. Man-
ual, “slide rule” models, so called because they are rapidly
replacing that venerable device, can be had for under $50,
and quite fine ones for under $100. Many of this type have

additional capabilities, such as multiple memories, which
can store intermediate data in a long calculation, saving
a number of duplicate keystrokes and considerable time in
the process.
In essence, the solution of any calculator problem con-

sists of a sequence of keypunches. The fewer of these the
operator has to perform, the shorter the time required,
and, usually, the smaller the chance for error. Accord-
ingly, as the complexity of the problems and the corre- /
sponding number of keystrokes increased (often into the
hundreds), calculator manufacturers met the challenge

with an advanced level of instruments they called “pre-
programmed” and “programmable” calculators. These

adhere to exactly the same mathematical principles as
their less sophisticated kin, but their capabilities save the
operator many keystrokes.

The “preprogrammed” group is capable of performing
certain sequences with the depression of a single key. Most
scientific calculators have at least some preprogrammed

functions, such as square roots or the value of =, while

other, special-purpose models, may be “hard-wired” to
perform complex sequences such as great-circle computa-

tions or other navigational specialties. These special-pur-
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pose instruments, which are themselves in a period of
rapid development, may be of particular interest to the
navigator who uses his calculator exclusively for the solu-
tion of a preselected set of navigation problems. Special-
ized navigation calculators are discussed in more detail
later in this chapter.
Among the general-purpose calculators, the program-

mable group is the ultimate in sophistication and versatil-
ity. Their outstanding feature is the ability to accept an
entire keystroke sequence for storage in a program mem-
ory before the solution begins. The operator has only to
enter the initial data and start the program, which will
then step through the prearranged keystroke routine in-
ternally. This is a particularly attractive feature for the
navigator who must solve multiple-step problems repeti-
tiously, and it explains why this kind of instrument is seen
more and more frequently in the navigation departments
of merchant ships.
The programmable category is further subdivided into

two types. The first acquires its program by punching the
keystroke sequence into a program memory, and the mem-
ory is engaged, after the variable data is entered, to com-

plete the computation. Only one program at a time can be
handled by these “keyboard programmable” instruments,
and it is lost when another program replaces it or, with the
exception of a few recent models that will retain a se-

quence for some time, when the calculator is turned off.
Some of the better keyboard programmables sell today for
under $200, and the range of problems they can handle
extends well beyond the needs of the practicing navigator.
The most advanced of the programmable calculators is

the type that can store keystroke sequences on magnetic
tapes or modular chips. They are referred to as “fully pro-
grammable,” or, more properly, as card- or chip-pro-
grammed. On some models the operator can even create
his own programs to be stored permanently on the mag-
netic strips. In operation, the program is selected, fed into
the calculator’s program memory, and the variable input
data introduced. The calculator then steps through the
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preset sequence automatically, displaying within a few
seconds the numerical solution. These fully programma-
ble calculators have the potential of offering the most sig-

nificant reduction in computation time, as well as in error
possibility, and, where the economics are justifiable, are
often the choice of professional navigators.
To give you an idea of the economics involved, as well

as the rapidity of change in the field, the Hewlett-Packard
Model HP-65 fully programmable calculator cost about
$800 in the mid-1970s. It accommodates programs up to
one hundred steps long on magnetic strips. Fantastic?
Consider that less than three years later, Hewlett-Pack-
ard’s HP-67 offered the ability to store more than twice the
program-steps at less than half the cost. And Texas Instru-

ments, another leader in the field, offers a still greater

program-step capability, if that is your key criterion, at a
competitive price. You can be sure that still further ad-
vances are on the way.
Naturally, all the elementary grade problems can be

handled with great ease on the advanced, general-purpose

instruments, so it really comes down to a question of pay-

ing your money and taking your choice of arithmetic or
scientific, manual or programmable, single or fully pro-
grammable—all depending on the classes of problems you
expect to solve and how much the convenience of making
fewer keypunches manually is worth to you.

You may be quite decided as to what level of capability
you want in your hand-held calculator, but you have still
one more choice to make—the choice between the two
competing logics, or “languages,” that modern calculators

employ. The two are called “algebraic logic” (or “entry”),

and “Reverse Polish Notation” (RPN). The difference in
operation between these two forms of address is discussed

in Chapter 2. Hewlett-Packard, probably the first company

to achieve widespread distribution of scientific calcula-
tors, employs RPN, while most of the other manufacturers

today espouse algebraic logic. In my opinion, for the types

of problems normally encountered by the practicing navi-
gator, the logic employed by a particular calculator is less
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important than its list of functions. As a result, the decid-
ing factor in selecting the form of logic is primarily sub-
jective—which form of address you can work with most
readily. Even more important is the choice of a well-made
instrument capable of withstanding the rigors of ship-
board life. An inoperative calculator, regardless ofits fea-
tures, is less than useless.

The “hard-wired” navigational calculators represent a

special class, and one that is evolving rapidly in itself. The
principal entries in the field today are the Tamaya NC-2
and NC-77 models and the Plath Navicomp. The NC-2 was
the first widely sold specialized navigation instrument on
the American market. It comes prewired for the quick and
automatic solution of some nine programs preselected by
the manufacturer. In addition, many navigation problems
that cannot be solved by one of the built-in programs can

be computed manually in the “normal calculator mode.”
A noteworthy feature of this instrument is its dialogue
system, which calls for entries in the proper order by
means of symbols in the display and similarly identifies
the answers. The NC-2 system has definite advantages

over general-purpose instruments when the navigator is
inexperienced or if he is not dealing with navigational
problems on a calculator regularly.

A newer version of the Tamaya calculator is the NC-77,

which has retained all the desirable features of the NC-2,
has increased the number of prewired programs to about
twenty, and has expanded the capability for problem solv-
ing in the manual calculator mode. The preselected pro-
grams in the NC-77 are most of those the small-boat navi-
gator would be called on to solve, and the calculator also
provides built-in astronomical data for GHA of Aries and
for GHA and declination of the sun. These, together with
the Equation of Time, are programs otherwise reserved to
the most sophisticated, fully programmable instruments.
Going a step further, Plath has introduced the Navi-

comp, which is primarily a celestial navigation instru-
ment, although some other navigation exercises can be
solved on its manual keyboard. The particular feature of
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the Plath, in addition to its preprogrammed astronomical
data for most of the navigational bodies, is the use of an
internal quartz chronometer that can be accessed at the
moment of an observation to enter automatically the cor-
rect almanac data in the sight-reduction solution. The day

may be coming when the sextant reading can be fed elec-

tronically into such a navigation calculator and the entire
process from sight taking to fix automatized.
In the meantime, specialized navigation calculators are

affected by one circumstance that may have influence on
the navigator’s purchase decision. Existing in a special-
ized and limited market, such instruments’ prices can

hardly be expected to be competitive with the mass-mar-
keted, general-purpose calculators, and this is usually the

case. On the other hand, the hard-wired instruments may

often speed up your computations and, through the reduc-
tion in keypunching, reduce the chance for error.
Have we seen the ultimate level of development in the

hand-held calculator? Considering the rapidity of the evo-
lution to date, I'm sure we have not, and when a further

breakthrough is made in the amount of data these little
marvels can absorb and display, a new generation of in-
struments, approaching a true pocket computer, will be-
come available. The happy circumstance has been that
with each new generation calculators have increased in
capability while becoming more competitive in cost. To
postpone your involvement, however, is to postpone the
day you are able to enjoy the benefits offered. As a conse-

quence, I strongly encourage interested navigators to ac-
quire, master, and utilize the present generation of hand-

held calculators as a tool for learning, for its immediate

convenience, and as a leg up on the advances to come.



2. Calculator

Operation

Having considered the selection of a hand-held calcula-
tor, let’s turn our attention to the operation, with particu-

lar regard to the solution of navigation problems. Al-

though no two makes or models are exactly alike, some
standardization, as has been pointed out earlier, has taken

place in the industry, and a number of operations are com-

mon to all instruments.
To illustrate, there are shown in Figures 2-1 through 2-4

the keyboards of four currently popular models: the Radio
Shack EC-495, Texas Instruments TI-55, Hewlett-Packard

HP-67, and Tamaya NC-77. You can see at a glance that

the numerical portion of the keyboard, called the digit
entry keys, is similar in all models, with the four arithme-

tic function keys arranged in a vertical column at the
right, intheorder[ = | X |[ — ][ + [for the calcula-
tors using algebraic logic, and in the reverse order, at the

 



 
  
Figure 2-1. Radio Shack Model EC-495. A budget-priced,
manually operated, scientific calculator having all the
Junctions necessary to perform navigation solutions.



 
Figure 2-2. Texas Instruments Model TI-55. An advanced
scientific calculator with 10 memories, a wide range of

mathematicalfunctions, and keyboard programming ca-
pability. A single program ofup to 32 steps can be estab-
lished by the operator and retained in the calculator’s
program memory while the instrument is on.



 [ [+ }]HEWLETT-PACKARD

Figure 2-3. Hewlett-Packard Model HP-67. Any program of
up to 224 steps can be established by the operator and

stored permanently on a magnetic strip for use at any
time. A series of navigational programs prepared by the
manufacturer is available on a “software package” of
magnetic strips.



 
Figure 2-4. Tamaya Model NC-77. Twentyfrequently used
navigation solutions areprewired into the calculator and
are executedfrom the keyboard. Other problems may be
solved manually by using the instrument in the normal
calculator mode.
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left of the number bank, on the Hewlett-Packard models
that employ Reverse Polish Notation.
You should understand the difference between the two

logic systems, which manifests itself principally in the

order in which the keys for adding, subtracting, multiply-

ing, and dividing are pressed during the solution of a prob-

lem. A short example will help to explain. In algebraic
logic, a simple arithmetic exercise would be keypunched
in the following sequence, 2 || X || 3 |[ = | and,
at the press of the “equals” key, the answer, 6, would ap-

pear in the display. In RPN, so-named after the Polish
logician who developed the system, the same problem

would be solved by pressing2|, then [=m==T] to enterit,
then X|. When the “times” sign, [X|, is
pressed, the answer, 6, is shown in the display. Inciden-
tally, the display is also known as the “X register” in calcu-
lator parlance, to distinguish it from the “Y register,”

which is the working register within the machine.
You can see that for simple problems the number of

keystrokes is not materially different. Only in complex
exercises, especially those with multiple levels of paren-
theses, does the difference in logic become significant. In
virtually all navigation problems that difference is not of
major consequence. It is more important that you are com-
fortable with the logic you select and develop facility in
using it.

Returning to the keyboard, you will find that the special-
function keys are almost always clustered at the top, but
here the similarity ends. In order to remain within pocket
size and still have a keyboard of practical operating di-
mensions, the physical number of keys is limited, most
manufacturers having settled on about thirty-five to forty-

five keys. In order to accommodate more functions than

there are keys, secondary functions—and in the case of the

most powerful models, tertiary functions—are assigned to

individual keys. These are brought into use by first press-
ing a “function change” key, which is identified by various

symbols according to the manufacturer’s choice. I can

only emphasize the requirement that you understand fully
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all the functions you have available and the scheme em-
ployed for handling multifunction keys on your chosen
instrument.

For example, to convert an angular measurement ex-

pressed in degrees, minutes, and seconds (the sexagesimal
system) to degrees and decimal degrees (the decimal sys-
tem), you could perform the arithmetic operation

Minutes x 60+Seconds )
Degrees+ ( 3600

by pressing the individual keys in the proper sequence.
Since this is an operation that is repeated frequently in
navigation problems, it is useful to have this special func-
tion incorporated in your calculator (see Program A.3).
The Radio Shack EC-495 performs the task with the single
key bkc ; the TI-55 by pressing [2nd| PMs-pD (the last
being the secondary function shown above the “equals”

key, =I); the HP-67 by pressing [&|p=twms (the terti-
ary function found below the3|key); while theNC-77
requires pressing only the primary function key, [hhh],
For the sake of clarity and consistency in the programs

presented in the succeeding chapters, all of the keystroke
sequences are based on the TI-55 style keyboard (Figure
2-2), utilizing algebraic logic. To minimize confusion, the

key symbol shown immediately following the secondary

 

secondary function, which appears on the keyboard above
the key, rather than the symbol on the face of the key

itself. To illustrate, the symbol [¥=¥|, not preceded by the
secondary function key [2nd| in one of our programs, is
understood to call for the primary function of the register-
exchange key (exchanging the values in the X and Y regis-
ters). If, on the other hand, the symbols [2nd |[P-R] are
shown in a sequence, the secondary function of the regis-

ter-exchange key (changing coordinates from Polar to

Rectangular form), appearing above the key as P—R,is
the one utilized in the program.
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Another point to note is the use of the key marked
on the TI-55 keyboard. That symbol in a program

indicates that the primary or secondary function that fol-
lows is being called on to perform in the reverse. Thus,
pressing and the register-exchange key calls
for changing Rectangular coordinates back to Polar—the
reverse of the operation previously described. To avoid
confusion, however, I have arbitrarily adopted the proce-
dure of showing a sequence like this in the form

[P>R)], listing the primary or secondary function as
it appears on the keyboard, although it is understood that
after you are utilizing the listed function in inverse
form.
Remember that the procedure for employing a second-

ary (or tertiary) function often varies according to the in-
dividual manufacturer’s keyboard design. Since these al-
ternate functions are used frequently in solving
navigation problems, it is to your interest to develop
fluency in their use. The extent to which you can take
advantage of all the features of your instrument will affect
the rapidity and ease with which you can solve problems.
Regardless of the keyboard involved, the solution of any

problem on a calculator is set up by identifying the appro-
priate mathematical formula and then, according to the

form of logic used by your instrument, establishing a key-
punch sequence, or “program,” to solve it. I should point
out that there is sometimes more than one formula that
can be applied, or more than one keystroke sequence capa-
ble of solving a given formula. This is particularly true in

some of the more complex exercises. In this book, because

I have chosen to present them for learning purposes in a
form suitable for a manual calculator, the programs have

been set up to be executed in the fewest possible steps or
in a sequence to make them most understandable. As you
develop facility with a particular instrument, you may be
able to reduce the steps still further or otherwise make
improvements that utilize your instrument’s special
capabilities. That’s half the fun of experimenting with

these marvelous little devices.
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As you work your way up to the more advanced calcula-
tors, you may wish to adapt these programs to your model
—recasting the sequence, for example, if you are going to
shift from algebraic logic to Reverse Polish. You will un-
doubtedly become interested in tackling other types of
problems to solve on your calculator. This can be accom-
plished by acquiring preestablished programs from the
manufacturer of your instrument or, most interesting of

all, by creating your own programs. More will be said
about this in the last chapter.
In connection with the programs presented here, an-

other arbitrary convention—that of signs—has been
adopted. North latitudes and East longitudes are consid-
ered as positive values; South latitudes and West longi-
tudes carry a minus sign. In the celestial navigation pro-
grams, intercepts that are “toward” are considered to be

labeled +, while intercepts “away” are negative. Positive
or negative signs applying to the display after the calcula-
tion of computed altitudes are only to indicate how the
rules for changing azimuth angle to true azimuth are to be
put to use; the value itself is normally positive. Courses
which appear in the display with a negative prefix require
the addition of 360°. It isn’t necessary to memorize all this
now; the use of signs in the individual programs and ex-

amples should be quite obvious, and after a short time
you'll be using the proper signs automatically.

In most cases, our navigational programs are presented
in terms of a practical example and its solution, with the
entries suitably identified. To perform other, similar solu-
tions, you need only substitute the appropriate entering
values, using the proper signs where called for, and step
through the sequence to display the correct answer. In this

way, this text can also serve as a reference when you wish

to solve an infrequently encountered navigation problem.
In some of the hard-wired, specialized navigational cal-

culators, as well as in some of the program libraries of-
fered with the more sophisticated, programmable ma-
chines, certain of the astronomical data used in celestial

navigation are incorporated, thus reducing, if not elimi-
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nating, the need for an almanac. The Nautical Almanac
is so easy to use, however, that for the celestial programs
in this text, I have elected to utilize the data from that
source.

If, as an astronomy or mathematics buff, you feel short-
changed by this, you may wish to obtain the Almanacfor
Computers, published by the Nautical Almanac Office of
the United States Naval Observatory. Instead of the famil-
iar tabulations, this almanac presents the astronomical
data in the form of polynomial series, valid for prescribed
time spans. The difficulty is that some of the series are
quite involved, even though only representational of the
fundamental equations of celestial mechanics that are
used for the American Ephemeris, from which the Naut:-
cal Almanac is subtabulated, and which themselves are
far too cumbersome for practical use with a hand-held
calculator. The navigation section does contain fairly
short representations of the Greenwich Hour Angle and
declination of the sun, moon, and planets, as well as the

GHA of Aries, to a precision of +£0.1 minutes, so if you want

to use your calculator only, and have the mathematical
background to make use of the information, that is your
source.



3. Arithmetic

Solutions

The most elementary of the problems in navigation re-
quire solution by the application of one or more of the four

arithmetic functions, | + || — |[ X |[ = | In this
chapter, common navigational exercises in this category

will be discussed, and, in keeping with our format, the

solutions will be presented in terms of suggested program
sequences based on the TI-55 type algebraic logic key-
board (Figure 2-2).

 

A.1 Arithmetic Conversions

Let's start with a fundamental navigation problem,
using nautical charts for our example. Charted depths

may be expressed in feet or fathoms, or, as metrication

advances, in meters. Suppose, for example, you wanted to
convert, by means of your calculator, a sounding appear-
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ing on the chart in either of the latter two forms to its
equivalent in feet. Knowing the mathematical relation-
ship by definition—1 fathom = 6 feet; 1 foot = .3048 meters
—the conversion is a straightforward exercise in multi-

plication or division. Feet will equal six times fathoms, or
meters divided by .3048 equals feet.
Turning to the calculator, for a charted depth of 8 fath-

oms, the sequence to determine feet would be
[ X 16 _1[=_1 and, at the press of the “equals” key,
the answer, 48, would appear in the display. If the sound-
ing had read 8 meters, you would press 8 +
[3 J oJ 4 I[ 8 ][ = |toderive the answer,
26.2467, or for practical purposes, 26.2 feet.
Don’t proceed until you have this type of exercise with

your calculator down pat.

 

 

A.2 Time-Speed-Distance

Another common problem for the navigator, and a good
one on which to practice your basic calculator technique,
is the relationship between time, speed, and distance. The
arithmetical formula for solving these problems is, “Time
times Speed equals Distance.” Given any two of the quan-
tities you can solve for the third. Thus, Distance divided
by Speed equals Time, or Distance divided by Time equals
Speed, and so forth.

As a practical exercise, let’s see how far you will go in
2 hours at 3 knots. The calculator is punched |2 |
[xX J 3 J[ = 1, and the answer is displayed—86 nauti-
cal miles.

Answering the question, “How long will it take to go 17.5

miles at 5 knots?” the sequence would be | 1 |[ 7|
L - [5 [+ J[ 5 J[_ = I, and the final figure ap-
pearing in the X register or display, 3.5, is the solution

expressed in hours. Knots, of course, mean nautical miles

per hour.

Fuel consumption and similar problems for which a di-

rect arithmetical relationship can be preestablished, are

worked with the same type of keyboard sequence, and very
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quickly and easily even though the numbers, or their deci-
mal parts, may be large.

A.3 Time/Arc Decimal Conversions

Most of us are accustomed to working with the decimal
system, and our usual arithmetic computations are made
in that mode. In navigational operations, however, time
(expressed in hours, minutes, and seconds) and arc (in

degrees, minutes, and seconds) utilize a system called
“sexagesimal,” in which 60 seconds equal a minute and 60
minutes equal an hour or degree.
In our second time-speed-distance example (Program

A.2), the decimal answer, you will recall, was 3.5 hours.
Suppose you want to express this in hours and minutes?
You can, of course, multiply the decimal hours by 60 to
obtain minutes, and any decimal minutes by 60 to figure

seconds. But this, as discussed in Chapter 2, is cumber-
some, and many scientific calculators provide a built-in
conversion function that transforms a time or arc mea-
surement expressed in hours or degrees, minutes, and se-
conds to its decimal equivalent, or vice versa, with just two
or three keystrokes.

A typical calculator routine, and one used frequently in
the examples in this text, is to enter the time, or arc, in the
sexagesimal mode in the form, hours (or degrees), decimal
point, minutes, and seconds, press the conversion keys,

and read the answer in the decimal format. In the reverse,

enter with the decimal form, call on the inverse function,

and read the sexagesimal notation directly. In the exam-

ple under discussion, the sequence would be the reverse
one and the keys pressed on the TI-55 would be
L_- I 5 J[INV][2nd |fpms-DD|, displaying the answer, 3
hours, 30 minutes, and no seconds, in the form, 3.3 (or, if

four decimal places were displayed, 3.3000).
Let’s take another example. Nine hours, 14 minutes, and

42 seconds is keyed in as follows: [ 9 |[ - J[ 1 |
L 4 |[ 4 |[ 2 | and when is pressed, the
display, 9.245, represents the time in hours and decimal
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parts. Conversely, entering with 152.2° and pressing
INV] [2nd | pms-DD—the reverse conversion on this key-
board—the answer, 152°12'00”, is displayed in the form,
152.12. This is a system used by many calculators, the first
two digits to the right of the decimal point in the sexagesi-
mal form indicating minutes, and the next two, the sec-
onds. Familiarize yourself with the conversion technique
on your instrument since you will be calling on it often.

In celestial navigation, it is common to indicate arc

measurements in the form, degrees, minutes, and tenths

of minutes (rather than in seconds)—a slight further com-
plication. With all but the specialized navigational cal-
culators that have been prewired to accept that form,it is
usually simplest to express the tenths of minutes as sec-
onds by mentally multiplying the decimal figure by 6. In
the reverse operation, the seconds can be converted to

tenths of minutes by dividing by 6. Fifteen point 6 minutes
thus becomes 15'36”, while 10 minutes, 24 seconds equals
10.4 minutes of arc. In all of our celestial examples you
will notice that the calculator accepts and displays min-
utes and seconds although the problem or the solution
may be expressed in minutes and tenths—that conversion
having been handled mentally. Don’t confuse this, how-
ever, with the conversion of the sexagesimal expression

into hours and decimal hours, or degrees and decimal de-
grees, which is the form in which the arithmetical compu-
tation must be carried out by the calculator.

 

A.4 Sexagesimal Arithmetic

There are a number of cases in navigation where arith-

metic computations are required to be made with figures

expressed in the sexagesimal system. A common instance

in celestial navigation is in adding or subtracting incre-
ments of arc. For example, if the Greenwich Hour Angle
of the sun for 16 hours is 60°52.0’, and the increment for 35

minutes and 8 seconds is 8°47.0’, what is the total GHA at

16h35m(08s, the time of the observation?

The calculator procedure is to change each value to de-
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grees and decimal degrees, perform the addition, and con-
vert the answer back to the sexagesimal form. The se-
quence for the particular keyboard we are using would be:

[6 JLo Jl - 15 J[ 2 ]J[2nd]pmsDO[+[8
GHA for 16h Incre-

L - Il 4 J[ 7 ][2nd]pws-D0j[ = |[INV][2nd ]fPus-pD)
ment for 35M08S

 

 
 

 

 

The answer, 69°39’, is displayed after the last keypunch as
69.39. Some advanced calculators are equipped with a spe-
cial key to perform addition or subtraction of sexagesimal
expressions and to display the answer in that mode with-
out having to make the individual conversions and final
reconversion. The keyboard that this text uses for demon-
strating, however, does not have that feature.
Another typical exercise in sexagesimal arithmetic is

the determination of ETA (Estimated Time of Arrival).
This combines time-speed-distance arithmetic with sex-
agesimal/decimal conversion. For example, departing at
2:15 in the morning (0215), a vessel expects to proceed at
5 knots to its destination 17.5 miles away. At what time
does the navigator expect to arrive?

First, solving for the elapsed time of the run, the se-

quence is pressed, | 1 |[ 7 J - [5 J[ = |[ 5 ]
[=1], and the answer, 3.5 hours, is displayed. Next, the
starting time is entered, converted to decimal hours by
pressing [2 |[ - |[ 1 ]J[ 5 ][2nd]pMspD and that
figure added to the elapsed time to produce the estimated
time of arrival. Since that result will be in the decimal
form, the final step is to reconvert it to the sexagesimal
system in order to express the ETA as watch time. As a
continuous program, the keystroke sequence would be:

 

 

 

 

  

 

(1 JL7 JL - Js JL=1JCs5 [+ J2 J]
Distance Time, h Starting

1 || 5 |[2nd]|pusoof| = |[INV][2nd ][pMs-DD) 

time, h.m
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The answer, displayed as 5.45, indicates that the ETA will
be 0545, or 5:45 a.m.

A.5 Time of Sunrise, Sunset, Twilight

The navigator may wish from time to time to precalcu-
late the local or zone time of the rising and setting
phenomena, or of twilight itself in order to plan his morn-

ing or evening observations.

As an example, the Nautical Almanac indicates that
sunset at Latitude 40° North on May 8, 1979, will occur at

1901. What time will it occur on that date at the vessel’s
estimated position, Latitude 40° North, Longitude 72°
West?
Recognizing that the almanac times are, for practical

purposes, equivalent to the zone time at any standard me-
ridian (the standard, or “zone” meridian, is the nearest

one exactly divisible by 15), it is necessary to convert the
difference in longitude between the vessel’s position and
its standard meridian to a difference in time (15° of arc =
1 hour of time) and to apply that correction to the tabular
time. Following this procedure, the calculator program to
solve our example would be:

 
    

 
  

 

7 [2 J+/=][2nd|pmsDD[ — |[ 7 |[ 5 [[+/—]
DR A (West) Std. Meridian (West)

[ond |pmsoo[ =] + [1 |[ 5 JF/=] + [1 |
Tabu-

[9 I[ - Jo I[ 1 |[2nd]pmsbD[ = 1[INV]|[ 2nd]  
lated Time of Sunset

pms-pD The final display indicates the time of the phe-
nomenon, 1849, as it occurs at 72° West longitude, in terms

of the local zone time. In extracting the published time
from the Nautical Almanac, if the position of the vessel is
at a latitude between those tabulated, a simple interpola-
tion by eye will usually suffice. Otherwise, the degrees of
latitude from the nearest one tabulated, divided by the
number of degrees difference between successive tabula-
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tions (usually 10 degrees), multiplied by the minutes of
difference between the respective tabulated times, will
yield the correction in minutes. Inspection will tell you
which way to apply it.
You will notice in this keyboard sequence that the de-

grees of longitude in the first two entries (DR A and zone
meridian) were transformed by the keys into
degrees and decimals. Strictly speaking, since in this in-
stance the values were in whole degrees, that conversion
step could have been omitted. It was included here so that
you can use the same sequence with values entered as
degrees, minutes, and seconds if you wish. Notice also the
use of the sign-change key to make the displayed
value negative as is our convention for West longitudes.

A.6 Distance to Horizon

The navigator may be called upon to determine the dis-
tance to his visible horizon from the elevation of his view-
point, or “height of eye.” This exercise is useful for decid-
ing whether or not there is a true horizon for making
celestial observations when land or haze intervenes, or for
estimating the “visibility” of objects of known height—the
distance from which they can be seen at sea. The formula
is a simple one:

Horizon distance in nautical miles = 1.144 Vv Height of eye, feet

The calculator program is equally straightforward, util-
izing the instrument’s square root function. For example,

what is the distance to the horizon for an observer whose

height of eye is 15 feet? The program, []
1 J 4 [4 [x11 [5 Wx I[ =], pro-

duces the answer, 4.43 nautical miles.

Should there be an object beyond the horizon whose
height is, say, 100 feet, its distance to the horizon cal-
culated in a similar manner would be 11.44 miles. Then its
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distance, added to the distance to the observer’s horizon,
produces the maximum range (15.87 nautical miles) at
which any part of the object can be seen from the 15-foot
height of eye.

A.7 Sextant Corrections

There are three principal corrections that have to be
made to an altitude as measured by sextant (hs) to obtain
the “Observed Altitude” (Ho) that is used in a celestial
sight solution.
The first two adjustments, Index Correction and Dip, are

determined and added algebraically to the Sextant Alti-
tude to produce an intermediate value called “Apparent
Altitude” (ha). The Index Correction is found by making
an observation of the horizon with the sextant to deter-
mine the error, if any, in the index. It will usually be a
small number of minutes or fractions of a minute, and
either positive or negative. Dip, which is the angle be-
tween the true horizontal and the observer’s line of sight
to the horizon, can be calculated by the formula:

Dip, in minutes of arc = 0.97 VV Height of eye, feet

or from the inspection tables inside the cover of the Naut:-
cal Almanac. The value of the Dip Correction is always
negative.

To apply the first two corrections by calculator it is nec-
essary to change each value to decimal form, add them
algebraically, and return the answer to the sexagesimal

expression. As an example, what would the Apparent Alti-
tude be after correcting a Sextant Altitude of 45°21.5' for an

I.C. of +1.4' and a height of eye of 15.4 feet? Starting with
the Dip, the keystroke sequence would be,
[a Iva JIL xX J[- [9 J[ 7 |[ = | display-
ing the Dip Correction, (—) 3.8. Then the entire program
can be run in order as follows:
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[4 J[ 5 J - J 2 J 1 J[ 3 I[ 0 |[2nd |pwvs-pD
Sextant Altitude

[+ 1 - JLo J 1 12 J[ 4 ][2nd|pms-DD| — |]
 

 

Index Correction, +1.4'

[- JLo JL 3 J 4 ]J[ 8 J][2nd]puspy| = |[INV]
Dip Correction, —3.8’

pms-pD|, producing the answer, 45°19'06”, or, if you
prefer, 45°19.1', the Apparent Altitude (ha).
You will note in this exercise that the original values

expressed in minutes and tenths were transformed men-
tally and entered in the form, degrees, decimalpoint, min-
utes, and seconds, and then changed to decimal degrees on
the calculator before the arithmetic was performed. At the
conclusion of the program, the answer was displayed in
sexagesimal form, which can be restated in degrees, min-
utes, and tenths, if desired, by the reverse mental process.
For clarity, the Dip calculation was made separately and
entered in the normal order, but it would have been per-
fectly correct to apply the negative sign to the value com-
puted and to add the Sextant Altitude and Index Correc-
tion to it. The result would have been the same. You will
discover in many programs that the order in which the
variables are entered is not inviolable, although applica-
tion of the proper signs, positive or negative, always is.

Repeat this exercise until you understand it thoroughly,
as it is a typical example of the sexagesimal algebraic
addition made in numerous cases in celestial navigation
computations.

Apparent Altitude (ha) is used for obtaining the third, or
“Refraction,” Correction, which is found for the sun, stars
and planets inside the front cover of the Nautical Alma-

nac, and for the moon, in two parts, inside the back cover.
The second of the moon’s corrections also requires the
horizontal parallax value, which is found on the Alma-
nac’s daily pages.

The Refraction Correction is applied according to its
sign to the Apparent Altitude to obtain the Observed Alti-

 

 



Arithmetic Solutions 31

tude (Ho). On the calculator this can be accomplished by
leaving the Apparent Altitude in decimal form at the
“equals” sign (after the= key is pressed in the previ-
ous sequence), adding, algebraically, the Refraction Cor-

rection—also expressed in decimal degrees—and convert-
ing the sum back to the sexagesimal form at the

conclusion.
The refraction corrections given in the Almanac tables

are based on a surface temperature of 50° F (10° C) and an
atmospheric pressure of 29.33 inches (1010 millibars).
Should conditions vary significantly from these standards,
a small additional correction may be found in the Nauti-
calAlmanac Table A4, which is included in the calculator
arithmetic in the same way as all the others. It is, however,
seldom called for in normal yachting weather.
Refraction can also be determined directly by calculator

by the following formula:

Refraction Correction, in decimal degrees=

0.97 tan (ha—tan-'12 [ha+3%)

60
 

where ha is the Apparent Altitude expressed in decimal

degrees.

This formula may be useful if you are programming a

calculator to perform the sextant corrections automati-

cally, as it produces the answer, with the proper negative
sign, in convenient form for combining with the rest of the
program. On a manual calculator, however, using the for-

mula is much more involved than using the Almanac ta-
bles, the quickest and simplest approach. The use of trigo-

nometric functions on a calculator, which this formula

requires, is explained in Chapter 5.

A.8 Time of Local Apparent Noon

One of the classic exercises in celestial navigation, and
one of the easiest to perform, is the determination of lati-
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tude from the altitude of the sun at Local Apparent Noon
—that moment when the sun’s path crosses the meridian
of the observer and attainsits highest altitude for the day.
The Greenwich Hour Angle of the sun and the longitude
(A) of the observer at that instant are the same if the longi-
tude is West (or 360°—\ if East), making the Local Hour
Angle zero. The procedure for determining latitude in this
special case is contained in the next program, A.9, but first

the navigator needs to estimate the time at which LAN
will occur so that he can schedule his arrival on deck to
start taking a series of sights shortly before the maximum
altitude is expected.
The object of this program is the calculation of the time

of LAN. It has been figured in terms of Greenwich Mean
Time (GMT), since you will want that form to enter the
Almanac for the declination information in the subse-

quent latitude computation. You can adjust to the local
zone time by mentally adding or subtracting the number
of hours your time zone is fast or slow of Greenwich.
The program steps, which are a combination of degree

and decimal conversions and arithmetic, start by your en-
tering an estimate of your noon longitude (directly, if
West, or 360°—A, if East) and converting that longitude to

decimal degrees. From that figure is subtracted the next

smaller value for the sun’s GHA from the SuN column in
the daily pages of the Almanac for your (Greenwich) date;

converting the GHA to decimal degrees, of course, before
making the subtraction. At this juncture, incidentally, you
can also note and record the declination value alongside
the GHA for use in the latitude calculation later.
The difference in arc between the sun’s next smaller

GHA from the table and the observer’s estimated longi-

tude is divided by 15 to convert it to decimal hours. That
figure is further transformed by the use of the

routine to express the difference as minutes
and seconds of time. The Greenwich Mean Time of LAN,
then, will be the hours opposite the GHA selected in the
Almanac, and the minutes and seconds from the calcula-

tion.
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Let me demonstrate this sequence with an example. On

June 9, 1979, a navigator estimates his longitude at the

approximate time of LAN to be 65°45.0' W. The next

smaller value in the sun’s GHA column in the Nautical

Almanac, on June 9, is 60°13.6' at 16 hours GMT (see Figure

3-1). What is the estimated time of LAN?

 

JUNE 9, 1979
 

 

SUN
GMT.

GHA. Dec.

d h ° ’ ° ’

900] 180 15.5 N22 516 Bigure 3-1. Excerpt from SUN col-
02] 210 15.2 520 umn, Nautical Almanac, June 9,
03] 225 15.1 -- 523
04] 240 150  s25| 1979.
05] 255 149 527
06] 270 14.8 N22 529
07] 285 146 531
08] 300 145 534
09] 315 14.4 -- 536
10] 330 143 5338
11] 345 142 540

0 14.0 N22 54.2
13] 15139 544
14] 30 138 546
15] 45137 -- 548
] 55.1

55.3
90 13.3 N22 55.5
105 13.2 55.7
120 13.1 55.9
135 130 -- 56.1
150 12.8 56.3
165 12.7 56.5
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The calculator keypunch sequence is as follows:

 
   

 

[6 Il 5 J[ - J[ 4 J[ 5 |[2nd|PwsDD| — 6
Estimated A at LAN Next

[Co JL J1 J[L3 J 3 J[ 6 |[2nd]pMsDD[= 
 

smaller GHA from Almanac for date

[= 11 J[ 5 J[ = J[INV][2nd |[pms-DD|
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The answer, displayed as .2205 reads, “22 minutes, 05 se-

conds,” which, when appended to the hours of GMT
(16h) corresponding to the sun’s GHA value selected, pro-
duces the Greenwich Mean Time of 16h22mQ05s as the es-
timated time of LAN. Since the vessel is in the time zone

four hours slow of Greenwich, the local time of LAN
would be 12-22-05. You should note in this program that

because we are dealing with differences measured in a
westerly direction, we have departed from our usual con-
vention of signs. The longitude, in this case, is always dealt
with as a positive value.
Another popular way to approximate the time of LAN in

terms of local time is to take the listing for the time of
Meridian Passage (Figure 3-2) from the daily pages of the

Nautical Almanac for the proper (Greenwich) date and
adjust it by the difference between the estimated longitude
of the observer and the nearest standard, or “zone” merid-
ian expressed in time (just as you did in Program A.5).

Since 15 degrees of longitude is equal to one hour of time,
4 minutes of time are the equivalent of one degree of longi-
tude, and 4 seconds of time equal to one minute of arc.
Positions to the east of the standard meridian will experi-
ence earlier occurrence of LAN, while those to the west
will find it later.

 

SUN
Eqn. of Time Mer. . ] .

PY 100" 12% |Pass, Figure 3-2. Equation of Time
 n and Time ofMeridian Passage

po mSa s

9] C1 0210 00 51 Jrom Nautical Almanac for
11] oo 39 June 9, 1979.

 

      

Returning to the practical example, the time of the sun’s
Meridian Passage, as shown in the Almanac for June 9,
1979, is 1159. The vessel's position is west of the nearest

standard meridian (at 60°W), making LAN later than the
listed time. Running this on the calculator, the program is

as follows:
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6 | 5 Jl - Jl 4 J 5 |[2nd]pmsDD[ — |[ 6 |

Estimated A at LAN Zone Me-

Lo Jl=10=Jl1 Ils J+J J[1 JC. |
ridian Time of Meridian Pas-

| 5 |[ 9 |[2nd]pmson[ = |[INV][2nd |[pMs-DD
sage from Almanac

  

 

  

 

The answer displayed, 1222, is the approximate time of
LAN expressed as local time. It is close to, but not quite as

precise as the first method, since the Meridian Passage
listed in the Almanac is only given to the nearest minute.
It is, however, adequate for planning your LAN observa-
tion. In this program you will also notice that as the stan-
dard meridian (60°) is expressed in whole degrees, the con-
version to decimal degrees wasnot necessary.

Still another method, yielding precision to seconds,
utilizes the Equation of Time (for 12h) that also appears
in the Nautical Almanac (see Figure 3-2). On the same
June 9, for example, the Equation of Time was noted to be
00m56s. The formula for this method of solution is:

GMT of LAN = Estimated longitude —~ 15 + 12 + Equation of Time

the last value being subtractive if the Meridian Passage
occurs before noon and additive if after. The longitude
used is expressed positively and is the estimated longitude
if West, or 360°—A if East. For our same practical example,
the calculator would be keyed as follows:

 
  

 
  

 

L 6 |[ 5 I[ - J][ 4 [5 |[2nd]|pMsDD[ + |[ 1 |
Estimated A at LAN

Ls JIL+ Jl Jl Jl=1J- -Jlo]Jlo][5]
Equation of

6 2nd |pMsoD/| = |[INV][2nd |[PMs-DD)  
Time
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The answer displayed, 16-22-04 (GMT), compares closely

with the first calculator method, which I personally prefer
since it requires one less step, avoids the question as to
whether to add or subtract the Equation of Time, and ena-
bles the sun’s declination to be extracted at the same time

as the next smaller GHA.
In any of these methods, if the time calculated for LAN

is quite different from that you used in selecting the es-
timated longitude, the longitude should be reestimated to

correspond more closely with the calculated time, and the

program rerun with the improved longitude estimate.

A.9 Position by Meridian Transit—Noon Sight

The “noon sight,” which is an observation of the sun’s

altitude at the time of upper meridian transit (Local Ap-
parent Noon), is both an ancient tradition and an easy

calculator exercise, requiring only sexagesimal/decimal
conversions and simple arithmetic.
The procedure for solving a noon sight for latitude is

accomplished in five steps:
* Correct the Sextant Altitude (hs) to obtain the Observed
Altitude (Ho). (See Program A.7.)
Subtract Ho from 90°, noting the sun’s bearing, N or S,

and identify the difference (z) with a negative sign if the
sun bore North.

Enter the sun’s declination for the GMT of LAN (see
Program A.8), marking it negative if South.

Add z and declination.
The answer will be the latitude, North if positive, South
if negative.

Let’s look at two examples to illustrate these steps. The
Observed Altitude of the sun on the meridian, bearing

South, is 49°27.0'. The declination at the approximate time
of LAN is 17°59.0’ S. What is the latitude? The keystroke
sequence starts as follows:

 

Ll 9 jlo ll — 14 19 J - J[2 [7 J[2nd]
Observed Altitude, Ho
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[=1, and since the sun’s bearing is South, the pro-
gram continues without changing the sign of the value in

the display to negative: [ + |[ 1 1[ 7 |[ - [5 |
Decli-

[9 |[+/—][2nd]pmsDD| = |[INV][2nd |[PMs-DD)
nation (South)

 

  

 

The answer shown is the latitude, 22°34.0' North (because

the sign was positive).
Suppose the Ho had been 80°21.0' and the sun bore

North, while the declination was 8°50.0'N. Then the pro-
gram would require changing the sign to negative after
the first subtraction and would look like this:

 

  

 

   

Lo JLo JL =TJC8 JLo Jl J[2 J[ 1 ]J[2nd]
Observed Altitude, Ho

pmsoo| = J[+/—-][ + |[ 8 |[ - J[ 5 |J[ 0 |[2nd]
chg. sign Declination (North)

 
pms-oD|[ = |[INV][ 2nd |[PMs-DD) 

The final display shows the latitude, 0°49.0’, and it would
be South because the sign is negative.

Since, as it was pointed out in Program A.8, the Local
Hour Angle of the sun is zero at the time of LAN,it follows
that if you can determine the exact GMT of the Meridian
Passage, you could find the corresponding GHA for that
time in the Almanac and it would be equal to your longi-
tude West of Greenwich (or 360° — A if East). The practical
problem here is determining the exact time of the Merid-

ian Passage. If the precise moment at which the sun bore
exactly North or South, or the instant the sun attained its
highest altitude, could be determined with accuracy, this

solution for longitude would be simple. Unfortunately,
sufficiently accurate azimuths are almost impossible to
obtain at sea, so the altitude method is the only one at-

tempted. The most practical approach is to make a series
of observations both before and after the Meridian Pas-
sage, trying, to the extent possible, to pair up altitudes
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observed during the sun’s ascendancy with corresponding

readings after the maximum altitude has passed. Then, by

plotting all the sextant readings against time on a graph,

you may be able to come reasonably close to the correct
time of LAN, although it is not easy.

The calculator program, on the other hand, is quite sim-

ple. The sun’s GHA for the hour of GMTis taken from the
SUN column in the daily pages of the Nautical Almanac,
transformed to decimal degrees and added to the incre-
ment for minutes and seconds (the increment having been
taken from the Almanac or calculated by multiplying the
minutes and seconds of time, expressed in decimal hours,

by the hourly increase in the sun’s GHA, 15°).
For example, given an exact time of LAN on June 9,

1979, of 16h22m05s GMT, what is the observer’s longitude?
In the Almanac (Figure 3-1), we find that the sun’s GHA
at 16 hours on that date is 60°13.6'. The calculator program,

following the steps outlined, then looks like this:

 

 

 

 

 

 

 

(6 [0 J[ - J 1 J[ 3 I[ 3 [[ 6 |[2nd |pwsnpn
Sun’s GHA for hours of GMT

| + JL - Ll 2 Jl 2 [lo Jl 5 |[2nd]|pvsDD| X |
Minutes and seconds of time

| 1 J[ 5 |[ = |[INV][2nd |[pms-bn 
Hourly incr. GHA

The answer, 65°44'51", or 65°44.8', is expressed as West lon-

gitude. Had it been greater than 180°, the value displayed

should be subtracted from 360° to read East longitude.
Although the data in this sequence are entered in the

order given, the incremental minutes and seconds of time,

converted to decimal hours, are actually multiplied in the

calculation by 15 degrees (the sun’s hourly increase in
GHA) before the addition is performed with the tabular
GHA. The TI-55 calculator has the feature of automati-

cally following the classic rule of mathematical hierar-

chy, “Multiplication and division before addition and sub-

traction.” In models that don’t have this feature, use may

be made of the parentheses keys to insure performing the
operations in the proper order.



 

POLARIS (POLE STAR) TABLES, 1979 275
FOR DETERMINING LATITUDE FROM SEXTANT ALTITUDE AND FOR AZIMUTH
 

180 - 190 - 200 - 210°- 220"- 230°-

189 |199 |209 |219° |229°| 239°

 

  

1053|1138|1 21'8|1 291 1 354 I 407 1 4471 474 1 48's 1 482 I 46's

06:2 146 22°§ 297 36:0 41-2 450 47's 48:6 481 46-2

; 416  454| 477| 486| 480] 459
420| 457| 479| 486| 479| 456

4 I 001 08:7 17-0 248 317 377 42'5 459 48-0 486 47'7| 453

5 1010/1096 179|1255|1324|1382|1429|1 462|1 4811 486/|1 475/|1 450

6 or-9 10:4 18:6 26-2 330 387 433 46'S 482 48's 47'3| 447
7
8

9

  07:9 16-2 240

027| 1r3| 194| 270| 336| .393| 437| 467| 483| 485| 471| 444
036 121| 202| 277| 342| 398| 440| 469| 484| 484] 469] 440
04'S 130) 210 284 349| 402| 444| 472| 485| 483| 467| 436

10 10531 138|1218|1201|1354(1407|1447|1474|1 485|1 4821 46'5|1 432
 

 

  

 

 

  

              

Lat a, a, a, a a a, a a a, a a,

° 02 02 02 03 04 04 o's 06 06 0'6 06 os
10 2 2 ‘3 ‘3 4 5 ‘5 6 6 -6 6 ‘5

20 ‘3 3 ‘3 4 ‘4 ‘Ss ‘Ss ‘6 6 6 6 ‘6
30 ‘4 4 ‘4 4 ‘5 ‘Ss 6 6 6 6 ‘6 6

40 [3] [=] o's o's o's 06 06 06 06 06 06 06
‘5 5 ‘5 6 6 6 6 6 6 ‘6 ‘6 6

‘6 6 6 6 6 6 6 6 6 6 6

‘8 8 ‘8 7 7 7 6 6 6 6 6 6

62 o8 o8 08 o8 07 07 07 06 06 06 06 06

64 09 09 ‘9 ‘8 ‘8 7 i ‘6 6 6 6 6
66 10 1-0 09 ‘9 ‘8 7 7 6 6 6 6 7

68 II 1-0 10 09 : 08 07 06 0-6 06 06 07

Month a; a; a; a; a a; a a; a a; a

06 06 06 o's o's o's o's o's 04 04 04 04

8 7 7 7 6 6 5 5 5 4 ‘4 4
09 09 09 ‘8 8 7 7 6 6 5 ‘5 4

10 1-0 10 09 08 o8 07 07 06 o's
09 10 10 10 09 09 09 -8 7 7
8 09 09 1-0 1-0 10 10 09 ‘9 8

07 07 o8 o8 09 09 09 10 10 10 09 09
‘5 6 -6 7 7 -8 -8 09 09 09 ‘9 9

03 03 03 03 04 04 os o's 06 06 07 07

‘3 2 ‘2 2 2 ‘3 ‘3 ‘3 ‘4 ‘4 ‘5 6
03 03 02 02 02 02 02 02 02 03 03 [}

 

 

Figure 3-3. Extract of the Polaris Tables from Nautical
Almanac.

A.10 Latitude by Polaris

Although it is not employed very frequently, the method
of working an observation of Polaris, the Pole Star, is an-

other “shortcut” way of determining latitude—always

North, of course, since Polaris is visible only in the North-

ern Hemisphere.

The steps in the calculator solution are to correct the

Sextant Altitude (hs) to the Observed Altitude (Ho) (see

Program A.7) and then, entering the Polaris Tables in the

back of the Nautical Almanac (Figure 3-3), first with the
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LHA of Aries at the time of the observation, next with the

approximate latitude of the observer, and then with the
month, extract the three corrections and apply them ac-
cording to the formula:

Ho+a,+a;+a,—1°=Latitude

Here is a practical example to illustrate the procedure.
On April 21, 1979, at GMT 23h18m56s, in longitude 37°14.0
W, and in the approximate latitude of 50° N, an observa-
tion of Polaris (corrected for IC, Dip, and Refraction as in

Program A.7) produced an Ho of 49°31.6'. From the daily
pages of the Almanac, the GHA of Aries was extracted
and, by applying the estimated longitude, the LHA of Aries
was found to be 161°55.8'. Entering the Polaris Tables (Fig-
ure 3-3), the first correction, a,, was 1°30.4’, a, was 0.6’, and
a,, 0.9’. With this information at hand, the calculator se-

quence goes as follows:

[4 JLo J[ - JL 3 J[ 1 J['3 J[6 ][2nd]pms-pp
Observed Altitude, Ho

L+ JL 1 JL - JL3 JLo J[ 2 J[ 4 |[2nd |pms-DD
ao

L+ JL - JLo JLo JL 3 J[ 6 |[2nd]pmsDD|+
a

0 JL 0 I/[ 5 |[ 4 J[2nd]pmsDDj| — J[ 1 |
az

  

 

 

 

 

 

 

 

 

= J[INV][ 2nd |pms-pD|

The final display, 50.0330, or 50°03.5', is the (North) lati-
tude.
Using the Almanac this way, this is an instance in

which the calculator solution may show little or no time
advantage over simple inspection. It will be up to you, and
to the facility you develop with your instrument, to decide
whether or not, in cases like this, the solution by calculator

is really to your benefit.



4. Vector Arithmetic

A branch of mathematics of frequent use to the naviga-
tor is vector arithmetic. A vector, simply stated, is a

straight line representing direction by its orientation and
magnitude by its length. Courses and distances plotted on
a chart, or courses and speeds shown on a current triangle,

are examples of vectors in everyday use.
Positions located by bearing and distance from a point

of origin, or “pole,” are said to be located by their “polar
coordinates.” The identical position can also be located by
its distance east or west and its distance north or south of
the point of origin. These latter two components are called
its “rectangular coordinates.” You will see in Figure 4-1

that Point A can be located from Point P either by its polar
coordinates, Course Angle Cr and Distance D, or by its
rectangular coordinates, e and 7.

In vector arithmetic, as commonly used in navigational
calculations, each vector, expressed in polar form, is con-
verted into its rectangular equivalent, the algebraic sums
of the respective E-W and N-S components computed, and
the totals reconverted to the polar representation—the
form for sailing actual courses at sea. The capability to
make this conversion automatically is a most desirable
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NORTH

 
Figure 4-1. Polar and Rectangular Coordinates—Point
A can be located either by the Course Angle Cn and
Distance D, or the E-W component e and the N-S com-
ponent n.

feature in a navigational calculator, and the programs to

follow are so conceived.

V.1 Current Sailing—Course and Speed Made
Good

In sailing through a current, a vessel will be diverted
from its intended course by the action of the current. But
by how much? Thatis the question we shall solve by calcu-
lator in the next two exercises.

Almost always, the navigator knows the course his ves-
sel is steering and its speed through the water. If he also
knows, or can make a good estimate from tables or obser-
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vations, of the direction, or “set,” in which the current is
flowing and the rate of flow, or “drift,” he can compute the
actual course and speed made good. Figure 4-2 shows, dia-
grammatically, the relationship between the elements of
the current triangle. B

   Course made good 083°

Speed made good 13 kts
 

Figure 4-2. The current triangle illustrating the relation-
ship between its component parts.

The calculator solution of this type of problem involves
vector arithmetic, and a practical example will serve to
illustrate the procedure. A vessel on Course 075° at 12 knots
sails through a current setting toward 139° with a drift rate
of 2 knots. What is the actual course and speed made good?
In the program to follow, we will change the polar coor-

dinates of the vessel’s and the current’s vectors into their
rectangular components, add those components algebrai-

cally, and return the sums to the polar mode. New ele-
ments to note here are the use of the [STO] key to store a
value in one of the calculator’s memory registers and the
[RCL] key to recall the contents of the memory to the dis-

play. This is a standard way for calculators to retain inter-

mediate data without having to record it and reenter it

when needed.
This program will also serve to introduce you to the use

of register arithmetic, in which a value displayed in the X

register can be applied at any time to the contents of one
of the addressable memories by employing the primary,
secondary, or inverse function of theSUMkey followed by
the number of the memory register. You will bemeeting
for the first time,too, the register-exchange key, *=¥|, the
purpose of which is to exchange the value in the display,
or X register, with that in the “working,” or Y register. It
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is necessary to have the registers in proper juxtaposition

before pressing the function so that the calculator
can perform the polar-rectangular conversion correctly.
Check this positioning requirement on your own instru-
ment. Some models operate in reverse fashion to the TI-55.
You will notice that courses have been entered as three-
figure numbers for consistency, although the calculator
accepts 75, say, exactly the same way it does 075.
Returning to our practical example, the actual key-

punch program to solve it would proceed as follows:

Lo J[ 7 J[5 J[*=¥%[1 [2 J[*=%][2nd][P~R
 

 

Course Boat Speed

ISTO1 J[*=%][STOI[ 2 [1 |[ 3 |[ 9 |[*=%]
Store Memory 1 Store Memory 2 Set of Current

2 1[*=%][2nd |[P-RI[SUMI|[1 [*¥=%][SUM][2
Drift Add to Memory 1 Add to Memory 2

[RCL][2 J[*=%][RCL][ 1 |[INV][2nd|[P-R|[X=¥]

 

 

 

 

You will see that this program produces two answers.
The course made good, 083°, is displayed at the next-to-last
keystroke after the rectangular mode is reconverted to
polar, and the speed made good, 13 knots, after the last key
is pressed, reversing the X and Y registers. Should the

course appearing in the display be a negative number,
simply add 360° to arrive at the correct course.
A variation of this program is the determination of the

current’s direction and velocity from the vessel's course
and speed through the water and the course and speed it
actually makes good. In this case, the rectangular compo-
nents of the first known vector are subtracted from those
of the second to derive the resultant vector—the set and
drift of the current.
As an example, if you steered a course of 075° at speed

12 knots but actually made good 13 knots on course 083°,
what would the set and drift of the current be? The calcu-
lator program would look like this:
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Lo JL 8 J[ 3 J[*=% 1 |[ 3 |[*=¥][2nd]|[P-R]
Course and Speed made good

STO 1 |[*=%|[STO|l 2 |[ 0 |[ 7 |[ 5 [[*¥=¥]
Course and Speed through

L1 ][ 2 [[*=%][2nd |[P-RI[INV][SUM] 1 |[*¥=%]
water Subtract from Memory 1

INV]SUMI|[ 2 J[RCL][ 2 ][*=%|[RCLI[ 1 [INV]
Subtract from Memory 2

2nd ||[P-R||X¥ =¥]| Following the procedure in the previ-
ous problem, the direction of the set, 139°, is displayed
after the next-to-last keypunch, and the drift rate, 2 knots,
after the registers have been exchanged.

It is also possible to determine set and drift from the
difference between a fix and the corresponding Dead
Reckoning position. This will be discussed in connection
with Program P.7. In small boats, however, the character-
istics of the current are most often determined by tables,

current charts, or simply by observation.

 

 

 

 

 

 

 

V.2 Current Sailing—Course and Speed Required

Another version of the current sailing problem occurs
when the course and speed to be made good are known,
together with the current’s set and drift, and the navigator
wants to determine the course and speed required to make
good his objectives. In this case, the rectangular compo-
nents of the current vector are subtracted from those of the

vector representing the intended track, resulting in the

course to steer and the speed required.
Follow this practical example: The course and speed to

be made good are 083° at 13 knots. The current is flowing

toward 139° at 2 knots. What course and speed are required
to make good the intended track? The calculator sequence

would be:
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[0 [8 J[ 3 ]J[*=%[ 1 |[3 |[*=¥%][2nd][P-R

Course and Speed made good

[STOI[ 1 |[*=%[[STOJ[ 2 J[ 1 J[ 3 J[ 9|[*¥=¥
Current’s set and

2 |[*=%][2nd |[P~-R|/[INV][SUM|[ 1 |[¥=¥%]|[INV]
drift

SUM] 2 J[RCL][ 2 |[*=%][RCL][ 1 |[INV][2nd]

 

 

 

 

 

As in the preceding examples, the course the
vessel is required to steer, 075°, is displayed after the recon-
version from rectangular to polar, and the speed required,
12 knots, after the final register exchange. Again, 360°

should be added if the course displayed is negative.
The third case in current sailing—that in which the

course to steer and the actual speed made good are found
from the course to be made good, the vessel’s speed
through the water, and the set and drift—requires a some-
what different solution involving trigonometric functions.
This will be discussed in Program P.1 in Chapter 5.

V.3 Direction and Velocity of True Wind

Vector arithmetic is also the process used for solving
true/apparent wind problems. Knowing the vessel's

course and speed, and the direction and velocity of the
apparent wind, the navigator can readily determine the
true wind direction and speed by subtracting the N-S and
E-W components of the vessel’s track vector from those of
the apparent wind.

If, for example, a ship on course 045° at 10 knots records

an apparent wind of 18 knots from the north (000°), what
is the velocity and direction of the true wind? The vector
arithmetic is performed on the calculator as follows:
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Lo JLo JLo J[x=9][ 1 |[ 8 |[*=%[2nd][P-RI

Apparent Wind Direction and Velocity

[STOJ[ 1 |[*=%|[STOI[ 2 J][ 0 J[ 4 |[ 5 |J[x=¥]
Vessel’s Course and

L 1 J[ 0 J[*=¥%][2nd |[P~RI[INV][SUM|[ 1 |[*¥=¥]
Speed

[INV][SUM|[ 2 J[RCL|[ 2 |[*=%][RCL][ 1 [INV]

  

 

  

 
 

 

 

 
[2nd |[P-R][*¥ =¥] You will see displayed after the next-
to-last step a negative value requiring the addition of 360°
to yield the true wind direction, 327°. The true wind veloc-
ity, 13 knots, appears after the final step in the sequence.
Should you wish to perform this exercise in reverse, you

would simply add the vessel’s vector components to those
of the true wind to obtain the direction and velocity of the

apparent wind.

 

V.4 Traverse Sailing

Traverse sailing is a method of determining the single

course and distance equivalent to a series of courses and
distances actually sailed. Since the solution is based on the
assumption that the surface is a plane,it loses its practical
accuracy with distances of more than a few hundred
miles. As an example, illustrated in Figure 4-3, the naviga-
tor’s log of a particular voyage reads, “From Point A,
steered course 116° for 1 mile; changed course to 084° for

0.5 miles; changed course to 013° for 1 mile, arriving at

Point D.” What is the equivalent course and distance di-
rectly from A to D?
The calculator solution, just like the preceding exam-

ples in current sailing, involves changing each leg to its

rectangular components and, after finding their algebraic

sums, changing back to the polar mode to express the

equivalent, direct course and distance. The keypunch pro-

gram, which you will find quite similar to those that have

gone before, is as follows:



 Course 084°

0.5 mile

 

Figure 4-3. The geometry of a traverse.

 

[1 [1 1[ 6 J[*=¥%[ 1 |[*=%][2nd]|[P~R|[STO|
First Course and Distance

1 J[x=%][sTOI[ 2 [0 J[ 8 J[ 4 |[*=¥] - |
Second Course and Dis-

5 |[*=%][2nd|[P>RISUM]|[ 1 |[*=¥][SUMI|[ 2 |
tance

[Lo [1 [3 J[*=%[ 1 |[*=%][2nd][P~RISUM]
Third Course and Distance

1 |[*x=¥%][SUM][ 2 |[RCL][ 2 J[*=%][RCLI[1

[INV|[ 2nd |[P-R|[X¥ = ¥]

 

 

 

 

 

 

 

 

 

 

As in the previous examples, the display after the recon-
version from rectangular to polar represents the direct
course, 070°, while the final display, after reversing the
registers, indicates the equivalent direct distance between

points A and D, 1.7244 miles. In any case in which the
course display is a negative value, add 360° to obtain the
proper figure.
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V.5 Bearing and Distance to Destination

An alternate use of a traverse is the determination of the
course and distance remaining to a mark, or other destina-

tion, having known the direct course and distance from

the starting point and the respective values of each of the

intermediate legs.
Referring again to Figure 4-3, if it was known that the

course and distance from Starting Point A to Destination

D was 070° and 1.7244 miles, the navigator could deter-

mine after sailing the first two legs (116° for 1 mile, and
084° for 0.5 miles) that the bearing and distance remaining
to Destination D from his location C was 013° and 1 mile
by using a calculator program like this:

 

Lo JL 7 JLo Jx=9[1 J[ - J[ 7 J[2 J[ 4]
Original Course and Distance to Destination

4 |[x=%|[2nd |[P-R|[STO][ 1 ][*=¥][STO]|[ 2 |

L1 [1 ][ 6 J[*=%[ 1 |[*=¥%][2nd]|[P->R|[INV]
First Leg, Course and Distance

SUMI[ 1 |[*=%][INV]SUM][ 2 J[ 0 J[ 8 I[ 4 ]
Second Leg, Course

x=] - || 5 |[*=¥][2nd]|[P~R|[INV][SUMI| 1
and Distance

(X=%|[INV]ISUM|[ 2 |[RCL][ 2 |[*=¥][RCLI|[ 1

 

 

 

 

 

 

 

 

 

 

INV [2nd ||[P-R||*¥ =¥| The bearing is displayed after
the next-to-last step and the remaining distance after the
last. The 360° rule also applies if the bearing display is
negative. You will notice a repetitive pattern in all the
vector arithmetic exercises. It is a worthwhile pattern to
master as the technique is widely applicable in the solu-
tion of navigation problems.



5. Solutions
Involving Plane
Trigonometry

The mathematical procedures of plane trigonometry
and the natural trig functions—sine, cosine, tangent, and
their inverses—are used in solving a number of navigation
problems, usually dealing with the properties of triangles.
As in the case of Traverse Sailing, Program V.4, the as-

sumption is made that the triangle lies in a plane. Since

the earth’s surface is spherical, however, the practical ac-
curacy of the plane solution decreases as the dimensions
exceed a few hundred miles. As a consequence, for very
long distances, such as those involved in celestial naviga-
tion, the somewhat more complicated spherical trigonom-
etry procedures may be required. These are discussed in
Chapter 6.
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P.1 Current Sailing—Course to Steer;
Speed Made Good

One case in current sailing most expeditiously solved by
the use of trig functions is that in which the navigator

knows the course he wants to make good and the vessel’s

available speed through the water in addition to his esti-
mate of the current’s set and drift. What he wishes to cal-
culate is the course he should steer and the resulting speed

made good over his intended track. Assume, for example,
that a navigator wishes to make good a course of 083°
through a current setting toward 139° at 2 knots, while his

boatspeed will be 12 knots. What course should he steer,

and what speed will actually be made good over his in-
tended track of 083°? Try this program, which, as you can
see, is shortened by taking advantage of five memory reg-

isters. It could be solved with fewer memories, however,

by recording and reentering the intermediate data as it is

called for.

 
[1 J 2 J[sTOI[ 1 J[ 0 [8 |[ 3 |[STOI[ 2 |
 

 

  

 

  

 
 

 

 

Boat Speed Course to Make Good

F/I + 11 J 3 19 [I[ = J[STOJ[ 3 || sin |
Set of Current

[STOI[ 4 J[ x J[ 2 J[ = J[RCLI[ 1 [[ = [[INV]
Drift

| sin J[STOI[ 5 || + J[RCL|[ 3 || = [[+/-] + |

(1 Jl 8 jlo J[=llsin![ X J[RCLI[ 1 J[ = |

RCLI[4|[=| The answer, 13 knots, represents the 

speed made good along the intended track, 083°. The pro-

gram continues: (RCL|[ 5 |[+/—]| + |[RCL|[ 2 |
= |, and the final display, 075°, is the course to steer.

Should that display be negative, 360° is added to yield the
proper course. Your answers can be double-checked by

testing through the first current sailing program, V.1, en-
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tering that program with the steering course, the vessel’s
speed, and the set and drift of the current. The answers
should coincide with the intended track and the speed

made good along it.
Some navigators prefer to solve this current problem for

the “course correction angle”’—the amount to change
course to arrive at the proper course to steer. This can be
done in three steps:
e Estimate the current’s velocity and divide it into the ves-
sel’s speed to obtain the ratio:

Vessel Speed

Current Velocity

which we’ll call “Current Ratio.”

Estimate the relative angle of the current’s set to the
ship’s heading, which we’ll call “Current Angle.”

* Apply the formula:

Sin Current Angle)1(
Sin Current Ratio

to obtain the “Course Correction Angle” to be applied to
the intended track to determine the course to steer.

When this procedure is completed, by then applying the

formula:

Sin (180°— Course Correction Angle— Current Angle)
 

Sin Current Angle

a “speed factor” is derived, which, when multiplied by the

vessel's speed, yields the speed made good.

Returning to the practical example in the first part of
this program, the calculator sequence would proceed as

follows:

1 J 2 J[ = 1 [2] [=] displays the “Cur-
Vessel Speed Current Velocity

rent Ratio,” 6.
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(1[3 Jo J[=J[o J[8 [3 [=]
Current Set Vessel Course

displays the “Current Angle,” 56°.

5 | 6 Ilsin][ = | [ 6 | [= [[INV]sin |
Current Angle Current ratio

displays the “Course Correction Angle,” 8° (7.942),

which, applied to the track of 083°, yields the course to

steer, 075°.

Next, by keying:

 

 

 

1 8 Lo—1[8]J[—=—1Jl5 16 l=]

[sin] = [5 |[ 6 ][sin][ = | the calculator will
 

Current Angle

compute and display the “speed factor,” 1.08, which, mul-

tiplied by the vessel’s speed of 12 knots, produces the

speed, 13 knots, made good over the intended track.

The virtue of this solution is that it requires somewhat

fewer keypunches and may be slightly easier to follow at

the outset, although I prefer the first method, since it

eliminates any ambiguity as to the direction in which the

course correction angle should be applied.

P.2 Sailing Tactics—Extra Distance Traveled

An interesting challenge facing the sailing yachtsman

is the decision as to how far he can afford to deviate from

the course he is sailing to gain extra speed. Both on the

wind, where bearing off will add to boatspeed, and tacking

downwind, to take advantage of the fact that most sail-

boats reach faster than they run, the navigator must make

a compromise between the extra speed gained and the

extra distance traveled.
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The formula which applies is:

1

Cosine, Angle of Deviation
 Distance Ratio =

Thus, if a vessel on a downwind leg alters course 20° to

increase boatspeed, the calculator program 1 |[+|

[2J[0J[cos][= ]indicates that the distance trav-
eled will be 1.06 times, or just 6 percent more than the
distance by the direct course. Accordingly, if the speed
resulting from the course alteration is more than 1.06
times the former speed, the navigator will have profitably
shortened his time to the mark.
Tacking upwind, a sailboat may already be deviating

from the direct course to a windward mark by 45 degrees,
which, by calculation, represents a ratio of 1.41, or 41 per-

cent extra distance to be sailed. Bearing off another 10

degrees (then 55 degrees off the direct line) produces a
distance ratio of 1.74, or 33 percent additional distance to
be traveled. Thus, the calculator program shows that the

boatspeed must be increased by more than one-third,
under these circumstances, to make the tactic of bearing

off beneficial.

P.3 Distance-off by Vertical Angle

The sextant, primarily used for measuring altitudes in

celestial navigation, may also be used to measure the

angle between the lines of sight to the top of an object of
known height and to its base or, if its base is beyond the
visible horizon, to the visible horizon.

The vertical angle measured by the sextant must, in

each instance, be corrected for index error (see Program
A.7, Sextant Corrections), and in the latter case, where the

base is beyond the horizon, also for the height of eye—the

Dip Correction. The approximate distance-off, normally
expressed in nautical miles, can be determined by calcula-

tor following the programs illustrated in each of the fol-

lowing examples:
(a) A tower 92 feet high, whose waterline can be seen, is
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subtended by a vertical Sextant Angle, corrected for index
error, of 0°15.0’. What is the distance-off? The keypunch
sequence is:

 

Lo Jl 2 Ji x JL - JLo Jlo JLo [1] 6]
Height of Object Empirical Constant

[=I - Jl 1 J[ 5 [2nd ]pms-DDj[ tan |[ = |
Sextant Angle

 

 

 

The last display indicates the distance, 3.37 nautical miles.
(b) The same 92-foot tower, with its base beyond the

horizon, is observed from a height of eye of 12 feet. The
Sextant Angle, measured from the top of the tower to the
horizon, and corrected for index error and Dip, is 0°07.0’.

What is the distance-off? The program in this case follows
these steps:

 - IL 0 Jl 7 |[2nd|pvspDj|tan || X |[ 4 |[ 0 ]
Sextant Angle

 

 

 
   

 
  

 

L6 Il 5 Il =1STOJ[ 1 [[ 22 ][ + J[ CJ[ 9 |
Ht. of

L2 JL =1Jl1 [2 [HO JLxJ[1 J - J[3]
Object Height of Eye

3 [[ 8 |[[ = lve |[ = J[RCL][ 1 = 

The answer displayed, 4.97, is the distance-off in nautical

miles.

Note the use of the word approximate in first describing

the distance-off solutions. This is because atmospheric
aberrations, and a moving deck, can make exact low-alti-
tude readings difficult to obtain on the sextant, and the

constants used, which have been arrived at empirically,

are approximations in themselves.
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P.4 Distance-off by Two Bearings

Distance-off problems involving the measurement of
horizontal angles, solved conventionally by plotting or by
Bowditch tables, lend themselves to calculator solutions
based on the properties of right and oblique plane trian-
gles. One typical example is illustrated in Figure 5-1.

 

Course 090°

V

p12miles———Pp Hp

A B Cc

Figure 5-1. Distance-off by two bearings, same object.

In this example, a navigator on course 090° takes a bear-
ing of an object from Point A (reading 055°) and, having
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run 1.2 miles to Point B, takes another bearing of the same
object (this time reading 020°). How far will the navigator
be from the object at the time of the second bearing, at
Point B, and how far off will he be when the object is
abeam, at Point C? The answers can be obtained by key-
stroking as follows:

Lo JL 9 jlo llstoll 1 Jl = JLo [5 J[5]
Course First Bearing

| = J[STOJ[ 2 [sin |[STOIJ[ 3 J[ 1 |[ 8 |[ 0 |

 

  

 

 
  

 
 

 

  

 

L+ JLo Jl 2 Jl oll —=JRCLI[L1 |J[ = |[STO]
Second Bearing

L1 Jl + [RCL] 2 J[ = J++ [1 J[ 8 ]

0 = Jlsin](sTOJ[ 2 J[ 1 J[ - J[ 2 J[ = |
Distance Travelled

[RCL] 2 J[ = J[STOJ[ 2 J X J[RCL][ 3 J[ =]  

The answer displayed, 1.2 miles, is the distance-off at the
second bearing. Sharp-eyed navigators will recognize this
as the classic case of “doubling the angle on the bow” and
can confirm that the answer is correct. To find the dis-
tance-off when the object is abeam, the program continues

(RCL][2X J[RCL]J[1 |[sin][=X |[RCL]
[3[=1]. The final display, 1.1276 miles, is the distance
off the observed object at the time it is abeam.

 

P.5 Height of Tide at any Time

The determination of the height of the tide at any time
is an exercise requiring natural trig functions in addition

to sexagesimal/decimal conversions and the four arith-
metic functions. It is a good test of your facility in combin-
ing a number of the calculator features to which you have
been introduced so far.
A common problem for navigators traversing tidal wa-
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ters in which the ship’s draft is critical, the tide level is
based on the assumption that the relationship between
time and the height of the tide takes the form of a sine
curve. Given the predicted times and heights of the near-
est high and low waters from the T%de Tables, the solution
can be found by calculator, by graphic diagram (such as
given in Bowditch, Vol. I, 1977, Art. 1206), or by using
Table 3 in the Tide Tables—the latter two methods being
approximate.

In the calculator solution, the input data can be entered
when called for in the program or, if the instrument has.

sufficient memory registers (five is ideal), it is much easier
to enter all the information at the outset. That is what has
been done in the following sequence.

Enter the time of the nearest low water (in the usual
form: hours, decimal point, minutes), convert it to deci-
mal hours by pressing pms-pD|, and store the result
in memory register 1, [1]

Enter the time of the nearest high water, press 2nd
[DMS.-DD| ST ) 2 .

Enter the height of low water (in feet, from the Tide
Tables), press if negative, [3|

Enter the height of high water, [4]

 

When you are ready to run the program, enter the time
at which the height is to be determined, press
pms-oDl [STO] 5 | and proceed with the following key-
stroke sequence:

[RCLI[4—J[RCLI[ 3 [= ][STO][ 4 ][RCL]

 

 

 
 

 

[5[= JRrcLi[1 1 =1[= 1 CJRCLI[ 2 ]

[= J[RCLI[ 1 1 J[=1[sToll 2 J[ = J[ - |]  
 
[1 Jo J[5JX JL CJ3 16 JO X
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RCLI[ 2 Jl ) [sin] = J[ X |[RCLI| 4 =

[+ |[RCLI[ 3 [= ] The final display will show the
height of the tide in feet above the chart datum at the
selected time.

Let’s try a practical example. On March 27, 1975, Low
Water at The Battery in New York occurred at 1416, with
the following High Water at 2025. The heights were —1.2

and +5.7 feet, respectively, from the chart sounding
datum. What would the height have been at 1620? The
answer, which you can confirm by Table 3 of the Tide

Tables, or, if you prefer, by tide graph, should be 0.5 feet
above datum (which represents a 1.7-foot rise over the
Low Water height of —1.2 feet).

P.6 Dead Reckoning Position

The object of this program is to obtain the latitude and
longitude of the Dead Reckoning position by applying the
course and distance sailed to the latitude and longitude of
the point of departure. The procedure is to convert the
course-distance vector to its rectangular components,
change those to their latitude and longitude equivalents,
and add them algebraically to the respective coordinates
of the initial position.
In the case of the latitude, the computation is straight-

forward, adopting the convention that one nautical mile is
equivalent to one minute of latitude anywhere on earth.
Longitude, on the other hand, is a different matter, since

the length of a minute of longitude becomes progressively

less with increasing latitude, as the meridians converge at
the poles. “Mid-latitude sailing,” which is used in this pro-

gram, utilizes the relationship between the E-W distance

and the units of longitude as it exists at the middle latitude
between the departure point and the final position. The
correct difference in longitude, so obtained, is the one ap-

plied to the initial longitude to produce the longitudinal
coordinate of the Dead Reckoning position.
For navigators interested in the mathematics, the for-

mula used in mid-latitude sailing is: Difference in longi-
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. 1
tude equals “departure” times the secant (gz) of the
middle latitude, where “departure” equals distance times

the sine of the course (in other words, “departure” is the
E-W component of the course-distance vector).
The calculator program can be illustrated by a practical

example. Starting from a point at Latitude 26°45.0'N, Lon-
gitude 60°15.0'W, a vessel sails 98 miles on course 135°.

What will its position be then?

 

  
L1 J 3 J[ 5 |[*=%][ 9 |[ 8 |[¥*=¥][2nd]|[P-R]

Course Distance

STOI[ 1 J[*=% = 1[ 1 [2 [0J[ + ][STO

 

 

 

  
 

 

  

 

L2 Jl 2 J[ 6 JL - 1 4 JL 5 |[2nd]pws-oD[STO]
Initial Latitude (Negative if South)

[3 J[ = Jlecos [17x] xX J[RCLI[ 1 [= ][6 ]

Lo JL +16 JLo JL - J[1 J[5 J+/=I[2nd]
 

 

Initial Longitude (Negative if West)

pms-o[ = [[INV][2nd |PpMs-pD[STOJ[ 1 J[RCL][ 2

x [2 J[ + J[RCLI[ 3 |[ = ][INV][2nd |[pms-pD|

 

 

The last display represents the Dead Reckoning Latitude,

25°35.7'N. To produce the DR Longitude, press
and display that answer, 58°57.8'W. Note that it is

West because the value displayed was negative.
If several courses and speeds are sailed between the

point of origin and the DR position, after the third register

exchange, 2¥] (keypunch number twelve), store the
contents of the display in memory register 2 by pressing

[2|. Then, following the procedure of Program
V.4, Traverse Sailing, convert each subsequent leg into its
rectangular components and add them to the respective
memories, using the key. When all the legs have
been accumulated, recall the contents of memory register

2 by pressing and, starting with the division
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sign[_+ ](keypunch number thirteen in the original pro-
gram), follow the sequence to its conclusion.
You will find this program works without error when

proceeding either way across the equator as long as you
observe the convention that North latitudes are displayed
positively and South latitudes with a negative sign. Pro-
ceeding easterly across the International Date Line (180° E
or W), 360° should be subtracted from East longitudes
(rendering the equivalent West longitude) to produce a
correct result. Proceeding westbound, the answer dis-
played will be in terms of West longitude, and it should be
added algebraically to 360° to produce the correct East lon-
gitude.

P.7 Rhumb-line Navigation—Course & Distance

The reverse of the previous program, P.6, is the determi-
nation of the course and distance between two points
whose geographic coordinates are known, using mid-lati-
tude sailing.

If, for example, a navigator fixes his position at Latitude
25°35.7'N, Longitude 58°57.8'W, having departed from Lati-
tude 26°45.0'N, Longitude 60°15.0'W, what is the course and
distance sailed between those two points? The keystroke
sequence would be:

 

 

 

 

  
 

 

 

 

 

 

 

 

 

L2 JL5 J - JI. 315 J[4 ][2 ][2nd]pwspp
Latitude of Destination (Negative if South)

[STO1 J[ = J[ 2 J[C6 J[- 14 1[ 5 ][2nd
Latitude of Origin (Negative if South)

pms-ooj[STOJ[ 2 J[ = J[ X J[ 6 J[ 0 J[ = [STO

[3CIRCELIL 1 J+ J[RCLI[ 2 J[ DO J[ =]

[2 J[ = Jlecos][ X J[ CJ[ 5 J[ 8 J[ - J[ 5 ]
Longitude of Destination

L 7 Jl 4 Jl 8 Jl+/=][2nd]pmsDD[ — |[ 6 |[ 0 |
 

 

(Negative if West) Longitude of
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L- J[1 J[ 5 J+/=][2nd]|pmMsDdf[ > J[ X [[ 6 ]

Origin (Negative if West)

[0[= 1[RCLI[ 3 ][*x=¥][INV][2nd |[P=R][*=7]

 

 

As in the vector arithmetic programs, the course, 135°, is
displayed at the next-to-last step after returning to the
polar mode and the distance, 98 miles, after the registers
are reversed. Should a course shown be negative, add
360° to display the correct course. If the two positions strad-
dle the International Date Line, East longitudes should be

entered as East longitude minus 360°.
This program also provides a means of determining the

current’s set and drift. By using a fix as the destination and
the corresponding DR position as the point of origin, the
resulting course will represent the set, while the distance
found, divided by the hours elapsed since the previous fix,
will indicate the current’s drift in knots.



6. Solutions
Involving Spherical
Trigonometry

The very mention of spherical trig is enough to frighten
most mortals, even though it only extends the concepts of
plane trigonometry to the properties of triangles on a
spherical surface. It is the highest branch of mathematics
normally used by the navigator, and lends itself to the

solution of a variety of problems in celestial navigation as

well as those dealing with the curved surface of the globe
where large distances are involved.

S.1 Great-Circle Sailing—Course and Distance

The shortest distance between two points on the surface
of a sphere is a great-circle—the curve formed by the in-

tersection of the surface with a plane on which the two
points are located, passing through the center of the
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sphere. Meridians of longitude are examples of great-cir-
cles on earth.
A navigator planning a long sea voyage may elect to

follow the great-circle route rather than the longer rhumb
line, even though the latter appears as a straight line on
the usual nautical (Mercator) chart. Since the great-circle
track is constantly changing direction as the vessel pro-
ceeds and would appear as a curve on a Mercator chart,it
is common practice to calculate the distance and initial
course, which this program does, the vertex, found in Pro-
gram S.2, and a series of intermediate points along the
track. These intermediate points are then plotted on the
chart, connected by straight lines, and provide the succes-
sion of rhumb-line courses the vessel actually sails. The
process is called “Composite Sailing” and, if the legs are
reasonably short, particularly in the higher latitudes, the
resulting track will closely approximate the great-circle.

Great-circle tracks can also be found by plotting on a
special (gnomonic) great-circle chart. The track appears
as a straight line connecting the departure and destina-
tion. Intermediate points may be taken off at the intersec-
tion of the track with selected longitudes. The ease of mak-
ing a gnomonic plot on a great-circle chart, and the
advantage of being able to visualize the relationship of the
track with the surrounding geographical features, recom-
mends the method, although the distance and initial

course are most accurately checked by the calculator solu-
tion.

This first great-circle program computes the distance
between two geographical points by the great-circle
(shortest) route. This can be compared with the rhumb-
line distance calculated by mid-latitude sailing, Program

P.7, to get an idea of the saving. This program then pro-
ceeds to determine the initial course to steer from the
point of departure.
The computation itself involves the solution of an

oblique spherical triangle, and any of the methods of
spherical trigonometry for solving such triangles can be
used. Care must always be taken to apply the rules cor-
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rectly to avoid ambiguity, which may arise when the trigo-
nometric function used does not indicate the quadrant in
which the solution applies. You must also avoid the selec-
tion of points exactly opposite on the globe (antipodal) for
which the solution is indeterminate. In cases where the
longitude of the two points, departure and destination, are
identical, the initial course will be 000° or 180° and, al-
though the calculator solution in that circumstance is also
indeterminate, it is of little import since the answer is
obvious.
Because of the number of steps involved, this program,

like P.5, is easier to run if the entering data are punched
in and stored in the memory registers before the actual
sequence begins. If sufficient memories are not available
in your instrument, the information can be entered asit is
called for in the program, simply slowing down your exe-
cution time. Latitudes and longitudes, consistent with our
preselected convention, are punched in, their signs
changed to negative (pressing/—)) in case of South lati-
tudes or West longitudes, and converted to degrees and
decimals by pressing pms-pD|, With these comments
in mind, let’s look at a practical problem.
A vessel departs from Chesapeake Bay Entrance, Lati-

tude 36°57.7'N, Longitude 75°42.2'W, bound for Bordeaux,
France, Latitude 45°39.1'N, Longitude 1°29.8'W. Whatis the
distance and the initial course on the great-circle track?
The variable inputs are loaded into the memories as

follows:

 

 

 

L 3 JL 6 J[ - IL 5 J[ 7 [4 ][ 2 ][2nd]Ppvs-pD
Latitude of Origin (Negative if South)

 

7 5 JL 4a 02 0112 J+/-][2nd]
Longitude of Origin (Negative if West)

pms-ool [STO] 2 |
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L4 J[ 5 I[ - Jl 3 [9 JLo | 6 |[2nd]pmsDo
Latitude of Destination (Negative if South)

[1 J - [2 J[ 9 J[ 4 |[ 8 |[+/=][2nd |pms-DD
Longitude of Destination (Negative if West)

[4

Then the program is run:

[RCLI[2— J[RCLI[ 4 = ][STOI[ 4 [cos]

[ X J[RCLI[ 3 J[ecos ][ X J[RCLI[ 1 l[lcos | = |

 

 

 

[ + J[RCL][ 1 [sin] X J[RCLI[ 3 [sin] = ]

 

[INV][ cos |[STOI 5 |J[ X |[ 6 J[ 0 |[ =]

The answer displayed is the distance, 3264.5 nautical
miles, along the great-circle route. The distance in degrees
of arc and the difference in the longitudes have been
stored, in the course of the program, in memory registers
5 and 4, respectively, so the next stage—the determination
of initial course—continues without having to reenter

these values.

RCL|| 1 [cos |[ X |[RCL|lL 5 sin | = |[1/x

[x CJRCLI[1 [sin] X J[RCLI[ 5 ][ cos |

+/=1+J[RCLI[3 [sin ][ ) |[ = J[INV][ cos]

 

 

 

Rules must now be applied to the “course angle,” C,
which is displayed at the end of the program, to find the
correct course, Cn, to steer. With the calculator still on,

press [4sin|, and if the value displayed is neg-
ative, Cn equals C. If, on the other hand, the sine of the
contents of memory 4 is positive, Cn = 360°—C. Common



Solutions Involving Spherical Trigonometry 67

sense will usually tell you if your answeris logical, even

without your having to apply the test.

In our practical example, the answer displayed, 55.8069,

or 55.8’, is the “course angle,” and since the sine of the

longitude difference in memory 4 is negative, the initial

course to steer, Cn, is the same.

If you are going to proceed with Program S.2, the longi-

tude of the destination should be restored to memory 4 and

the correct initial course, Cn, entered into memory regis-

ter 5. In this way, the input data will all be in the ma-

chine’s memories preparatory to starting the next se-

quence. If you are able to utilize more than five memories

on your calculator—as you can on the TI-55—you can store

the difference in longitude at the eighth program step in

register 6, and the correct initial course in register 7, sub-

stituting those register numbers in the appropriate places

in Program S.2, thereby eliminating the reentry step.
For those readers interested in the mathematical as-

pects of the great-circle solution, there is a comprehensive

treatise in Bowditch. From that source the formula for
determining distance has been derived:

60 cos— (sin L,; sin Ly+cos L, cos L, cos DLo)

and, for finding “course angle,” C:

(en L,—sin L, cos 2
—_1 -_—

Cos cos L, sin D°

S.2 Great-Circle Sailing—Vertex and Points Along
Track

If it is desired to locate the vertex (the point of maxi-

mum latitude) and intermediate points along a great-cir-

cle route by computation, the following program may be

used. To demonstrate, the same departure and destination
as used in S.1 will apply (L, 36°57.7'N, A, 75°42.2'W; L, 45°

39.1'N, A, 1°29.8'W), with initial course 055.8° (55.8069 is in
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the calculator in memory 5 if carried forward from S.1).
If the calculator is not already loaded with all the input

data, as would be the case if Program S.1 was followed to
its conclusion and the instrument left on, it should be re-
loaded as follows:

Latitude of origin in degrees and decimals (negative if
South) in memory 1;

Longitude of origin in degrees and decimals (negative if
West) in memory 2;

Latitude of destination in degrees and decimals (nega-
tive if South) in memory 3;

Longitude of destination in degrees and decimals (nega-
tive if West) in memory 4;

Course, Cn, in degrees and decimals in memory 5.

The keystroke sequence, which first finds the longitude
of the vertex, proceeds like this:

[RCLI[5[sinX J[RCL][ 1 Ilcos J[ = [INV]

[cos || sin |[1/2x][ X [RCL] 5 [cos || = ]J[INV]

 

 

 

 
[sin |[ + J[RCL][ 2 ][ = J[INV][ 2nd |jpms-0p)

In this example, the longitude of the vertex is 27°12.7’

W. Had the value in the display exceeded 180° it would
have been necessary to apply 360° with the proper sign to
identify the correct hemisphere.
To find the latitude corresponding to any longitude

along the great-circle track (including the latitude of the
vertex whose longitude you have just determined), the se-
lected longitude is keyed in, changed to degrees and deci-

mals, marked with a negative sign if West, and stored in
Memory 5. The keypunch sequence then proceeds:
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[RCLI[ 3 [tan |[ X |[ C [[RCLI[ 5 I[ — I[RCL]

L 2 JL) Jlsin|l = [[RCLI[ 1 [tan] xX J[ (|

[RCLI[ 5 J[ — I[RCLI[ 4 [[ OD [[sin][==

CJRreL][ 4 JT = JRCLI[2)[sini=] 

 
[INV] | tan | [INV] [2nd | pMs-DD displaying the latitude
sought (in the case of the vertex in our example, 48°37.8'
N). By leaving the calculator on, as many different points
as desired can be determined by entering the selected lon-

gitude and solving for the corresponding latitude. In this
exercise, for example, the latitude of the intersection of

the great-circle track with the meridian of 60°W is 43°40.1’

N; with 40°W, 47°54.9'N; and with 20°W, 48°24.2'N.
The longitude corresponding to any selected latitude

along the great-circle route can also be found, and this

may be usefulif, for example, the navigator does not wish

to exceed a certain maximum latitude and wants to know

the first point at which the track will intersect it. Natu-
rally, the latitude selected must be within the limits of
the points of origin and destination and the vertex—
greater latitudes will simply produce an indeterminate
solution.

Noting that L, represents the selected latitude, with a

negative sign if South; L, the latitude of the vertex found

in the earlier part of the program, also negative if South;
and A, the longitude of the vertex, negative if West, the

calculator sequence goes as follows:

L, [2nd |PMSDD | tan |[ + | L,[ 2nd |PMS-DD tan
Selected Latitude (Neg. if S.) Latitude Vertex (Neg. if S.)

= JUINV][ cos |[+/=][ + |r, [*+/=][2nd |Pus-DD
Longitude Vertex (Neg. if W.)

  

  

 

 
= J[INV][ 2nd |[pms-DD|
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As before, if the display is greater than 180°, subtract
360° if it is positive, or add 360° if the sign is negative,
thereby yielding the correct longitude corresponding to
the selected latitude. In our example, latitude 42°N is
crossed by the great-circle track at 64°44.8'W; and latitude
47°N at longitude 46°24.2'W.
To the nonmathematicians who may have found this

exercise a little more that they had bargained for, take
heart. Not only is this the most difficult program in the
text, and one that many navigators would never even un-
dertake until calculators came on the scene, but, as

pointed out earlier, its principal elements can be deter-
mined graphically and, with a gnomonic chart at hand,
most navigators prefer that solution.

S.3 Sight Reduction

The area in which hand-held calculators of the scien-
tific variety have probably made their greatest impact on
the practice of navigation is in the solution of celestial
observations—the process called “sight reduction.” The
computation, as in the case of the great-circle problems,is
based on the trigonometric solution of a spherical triangle,
the “navigational triangle.”
A great number of methods for accomplishing this solu-

tion have been advanced over the years. Bowditch devotes
an entire chapter of some fifty-seven pages to a compari-
son of the various techniques, and virtually any of the
formulae can be worked on a modern calculator. For a
manual calculator, however, a sequence requiring the

minimum number of keystrokes is most desirable, and to
this end the method described in Bowditch, Vol. I, 1977,
Art. 2111, produces such formulae.

It is assumed that you are already familiar with the
sight reduction procedure that is discussed in detail in The
Yachtsman’s Guide to Celestial Navigation, and that with
the Nautical Almanac and our earlier programs (notably
A.7, Sextant Corrections, and A.4, Sexagesimal Arithme-

tic) you will have been able to arrive at the point where the
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inspection tables, such as Pub. No. 249, begin. That is, you
will have established the Local Hour Angle (LHA), the
declination (Dec), and the latitude (LL), and are ready to
proceed with the reduction. You will, of course, be solving
for the same Computed Altitude (Hc), which will be com-
pared with your Observed Altitude (Ho) to obtain the in-
tercept (a) and the azimuth angle (Z), which, when ad-
justed for the proper quadrant, produces the true azimuth
(Zn), providing all the information needed to complete the

plotting of the line of position.
An attractive feature of the calculator solution is that

your DR latitude and longitude can be used instead of
an assumed position, since neither LHA nor latitude
have to be entered in whole degrees the way they do in

the inspection tables. This has the great advantage of
your being able to plot the intercept from the DR posi-
tion on the chart, and, if a line of position has to be ad-

vanced (or retired) for a running fix, its intercept and
azimuth can simply be replotted from the new DR. At
the same time, by knowing the coordinates of the Dead

Reckoning position at the time of the second sight, the
two lines of position can be utilized to arrive at the
coordinates of a running fix by calculation (see Pro-
gram S.4, Fix from Two Sights).

The calculator procedure for a sight reduction begins
with loading the variable information into the memory
registers.

Key in the Local Hour Angle, converting it to degrees
and decimals if it is not in whole degrees, and store it in

memory 1.

e Enter the declination, convert it to decimal degrees, and,

if it is of contrary name to the latitude (but only Zf, and
this is an exception to our convention), change its sign in

the display to negative. Store the declination in memory

2.
The latitude, like the LHA,is entered on the keyboard,

changed to the degree-decimal form if not in whole de-

grees, and stored in memory 3. Here again, the usual rule
of expressing South latitudes as negative values is re-
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placed by the scheme for handling the declination sign
and the quadrant rules at the end of the program.
You are then ready to proceed with the keystroke se-

quence, which is as follows:

 

 

  
 

 

[RCL|[ 1 [cos ][ = J[RCLI[ 2 J[tan][ = ][INV]

[tan |ISUM]|[3[sin |[ X |J[RCLI[ 1 [tan] = ]

[RCLI[ 3 1[cos |[ = J[INV][ tan | At the conclusion,
 

the display will indicate the azimuth angle (Z). Be sure to

note it as well as its sign, + or —. Then continue with the
steps: [cos|[ X |[RCLI[ 3 |[tan]|[ = |[INV][ tan]
INV 2nd |pms-pD displaying the Computed Altitude (Hc)
in the conventional form, degrees, decimal point, min-
utes, and seconds. Changing this mentally, if you wish, to

degrees, minutes, and tenths, you are ready to compare the
Hc with your Ho to determine the intercept. Note the sign

in the final display and then establish the true azimuth
(Zn) from the previously noted azimuth angle (Z), accord-
ing to these two rules: If the final display is positive, Zn in
North latitudes is 360° — Z, and in South latitudes, 180°+

Z. If the display is negative, Zn in North latitudes is 180°
—Z, and in South latitudes, 360°+Z. Just be careful, if Z
was displayed as a negative number, to apply correctly the
usual mathematical rules for adding and subtracting neg-

ative numbers.

Let’s review this program with a practical example. A

navigator in DR position, Latitude 41°00'N, Longitude 70°

27'W, observes the sun’s lower limb at Sextant Altitude

(hs) 66°34.8' at 17h18m(07s GMT on May 17, 1979. With data
from the Nautical Almanac, the Sextant Altitude is cor-
rected to the Observed Altitude (Ho) of 66°46.0' (see Pro-
gram A.7 for the calculator procedure). The daily pages

and the incremental tables of the Nautical Almanac are
entered with the time, and the sun’s GHA and increment

are extracted along with the sun’s declination. Finally, the
Local Hour Angle is calculated, by applying the DR longi-

tude to the GHA in the usual way, and the latitude of the
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DR position entered directly. This then gives you the three
values, LHA (10°00), Declination (19°18.2', same name as
Lat), and Latitude (41°00"), needed for either the calculator
program or to enter the inspection tables. Try it both ways
and see if you don’t agree with the answer, Computed Alti-
tude 66°41.0', and Azimuth 204°.
A workbook form, slightly shortened for the calculator

solution, is shown in Figure 6-1. Thisis quite similar to the

form used in The Yachtsman’s Guide to Celestial Naviga-
tion for the tabular reduction and you will be able to fol-
low the exercise step by step with both methods in order
to make your own comparison.
The sight reduction program can, of course, be used as

a way of determining the true azimuth of the sun for
checking compass error at sea. LHA, declination, and DR
latitude are used in the same way as the entering argu-
ments, and the calculator program is worked through to
determine the sign (although the value isn’t needed) of the
final display so that the rules to obtain Zn from Z can be
applied correctly. A more conventional formula for deter-
mining true azimuth is contained in Program S.7.

S.4 Fix from Two Sights

It is possible, if a navigator does not wish to plot the
lines of position from his sights, to compute the coordi-
nates of the intersection of two lines either from simul-
taneous observations or from sights adjusted to the
same time, as in a running fix. There is a separate cal-

culator program for the latitude and for the longitude

of the fix. Each is based on the respective coordinate of
the DR position (arrived at by plotting or by the Dead
Reckoning Position program, P.6), and the intercepts

and azimuths of the two sights.

Latitude is determined first, since it will be used in cal-
culating the longitude difference. All our regular conven-
tions will apply, with North latitudes and East longitudes

expressed as positive values, while an intercept “toward”
is positive and an intercept “away” is negative.
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Date May 17, 1979

Body Sun, LL.

hs Ct - 34. g

IC =I. ¥

D -2.9 #

ha 66 -30.5

R +/5.5 *

Ho 6644.0

Ww 17-18 -07

corr 00

GMT 17-18-07

gha 75-55. 2 *

incr 4-3l. g *

GHA go0-27.0

DR A 70-2727. oW

LHA 1

Dec 9 -18. 2 N *

DR L 41 N
He C6 -tH. 0

Ho cL-46C.0

a 5T

Zn 20 4  
 

Figure 6-1. Workform for calculator sight reduction, Pro-
gram S.8. Asterisked values are obtained from Nautical
Almanac; computation and solution for Hc and Z per-
Jormed on calculator.
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The formula for the latitude of the fix is:

Latitudeg;, — Latitudepp — (Ftercept sin Zn, — Intercept, sin Zn)

60 sin (Zn,—Zn,)
 

The formula for finding the longitude is:

 
Longitudeg;, — Longitudepg + (Ftercept, cos Zn, —Intercept, cos Zn:

sin (Zn,—7Zn,) x60 cos Latitudeg;y

The calculator program is demonstrated with a practi-

cal example. From DR position, Latitude 45°20.0'N, Longi-

tude 60°08.0'W, two simultaneous sights were taken. After

reduction, the solutions were: sight one, intercept 8 miles
“away,” azimuth 230° sight two, intercept 4 miles “to-

ward,” azimuth 350°. The sequence of keystrokes to deter-
mine the latitude of the fix is:

L4 JL x [2 J[3 J[ oo J[STOJ[ 1 [[sin][ —
 

  

 

  

 

 

 

  

 

Int, Azimuth,

[8 +7x 13 J[5 J[ 0 J[STOIl 2 || sin |
Intercept, Azimuth,

[= J = 1 CJRCLI[2 J[ = JRrecL][ 1 J[ DO |

| sin [[STOJ[ 3 || = JL 6 [0 |+/-][ + 4
DR

[5 J - J 2 J[ 0 |[2nd]Pp™sp[ = [[STOI[ 4 |   
Latitude (Negative if South)

 
INV] 2nd pms-pDl The display, 45°25.1'N, indicates the
latitude of the fix. It would have read “South” if the display
had been preceded by a negative sign. In the course of the
program, you will notice that the azimuths, as well as the
sine of the difference in azimuths and the latitude of
the fix (in degrees and decimals), have all been stored
in the memory registers in preparation for continuing

with the computation of the longitude of the fix, which
proceeds as follows:
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4 J xX J[RCL][_1 J[cos][ = J[ 8 J[+/=J[ XxX]
Int, Azimuth, Intercept,

[RCLI[ 2 [cos] = | = J[RCLJ[ 3 + |[RCL
Azimuth,

[4 J[cos][ = J[ 6 J[ 0 J[ + [6 J[ 0 J[ - ]
DR Longitude

_ 0 |[ 8 J[+/-]l2nd|pms-pD| = |[INV][ 2nd ][PMs-DD
  

(Negative if West)

The longitude of the fix, 59°59. 3’, is displayed with a nega-

tive sign and, consequently, is West.
As discussed in Program S.3, the advantage of working

from the DR position is that the two sights, even if taken
at different times, can be applied to the same DR to pro-
duce, with this just-completed routine, the coordinates of
a running fix. As a general rule, however, most navigators

prefer to plot their lines of position, particularly if the
lines intersect at small angles (30° or less), since the fix will
vary widely under that circumstance with small errors in

azimuth. The ability to visualize the situation from the
plot is especially valuable in confined waters.

S.5 Planet Identification

While the Planet Notes in the opening pages of the Nau-
tical Almanac usually enable you to identify the planet
you are observing, it may sometimes be desirable, espe-

cially in conditions where only one quick sight is possible,
to make an observation and confirm the identity of the

body by computation afterward. In the case of the planets,
it is normally sufficient to solve for just the declination in
order to make a positive identification. This calculator
program does that, using the DR latitude, the Sextant Alti-

tude, and the approximate azimuth as entering argu-
ments. The answer is then compared with the declinations
shown in the planet listings in the Almanac’s daily pages
for the date and time of the sight. Figure 6-2 is an excerpt
of the planet columns from the NauticalAlmanac for May
31, 1979, in which this procedure can be followed.



 

110 MAY 31,1979
 

 »
w
o
C
c
I
—
A

 

08 8 13.6] 324 08.1 17.31 329 11.1 42.0 240 36.0 38.3] 208 19.6 324
09] 23 16.1339 07.6 -- 18.2] 344 11.7 -- 42.6] 255 38.0 -- 382] 223 219 -- 323
10] 38 18.5] 354 07.0 19.1] 359 124 43.2] 270 40.0 38.1] 238 24.3 32.3
11] 53 21.0 9 06.5 200] 14 131 43.8] 285 42.1 38.0] 253 26.7 32.3

12] 68 23.5] 24 06.0 N15 21.0] 29 13.7 N14 44.3] 300 44.1 N19 37.9] 268 29.1 N10 32.2

VENUS -3.3| MARS +1.5| JUPITER —1.5] SATURN +1.0
 

G.H.A. Dec. GHA. Dec. GHA. Dec. G.H.A. Dec.

N 209 05.8 NE 88 00.5!

11.8 10.8 224 06.5 37.8135 21.7 39.01 103 02.9

11.2 11.7] 239 07.2 38.4] 150 23.7 38.9] 118 05.3 32.6

10.7 -- 126]254 078 -- 39.0] 165 25.8 -- 38.8] 133 07.7 -- 326

10.2 13.6] 269 08.5 39.6] 180 27.8 38.7] 148 10.1 325

09.7 145] 284 09.1 40.2 195 29.8 38.6] 163 12.4 32.5

09.1 N15 15.4] 299 09.8 N14 40.8] 210 31.9 N19 38.5| 178 14.8 N10 32.5
08.6 16.4] 314 104 41.4] 225 33.9 38.4] 193 17.2 32.4

 

’

    

       
 

SHA Mer. Pass
’ h m

Venus 315 06.5 10 24

Mars 320 28.6 10 02

15 53

18 01

 

   
Figure 6-2. Excerpts of daily pages from Nautical Alma-
nac listing planet declinations and SHAs.

The calculator is “loaded” at the outset by entering the
variable input data as follows:

DR Latitude ([+/—]if Lat. is S) [2nd ]pms-o0 [STO[ 1 |

Sextant Altitude (hs) [2nd |[pMs-pD [STO] 2 |

Azimuth (Zn) (an estimate will suffice)

Then the program proceeds:

[RCLI[ 1 J[sin|[ X [[RCL][ 2 |[sin][ + |[RCL]

L 1 Jlcos|[ X J[RCLI[ 2 J[cos|[ X |[[RCL][ 3 |

[cos I[ = J[INV][ sin |[INV][2nd ]pms-pp
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The answer displayed is the declination, with the proper
sign, ready for comparison with the Almanac data, Figure
6-2.

Let's review a practical problem. On Greenwich date
May 31, 1979, at a position near 41°N, 62°W, at 00h GMT an
observation of an unidentified planet is made with a sex-
tant reading of 36°25.8' at an approximate bearing of 265°.
What planet is it? Running the data through the calculator
program, the display indicates the body has a declination
of 19°40'N, which compares, at 00h GMT, only withJupiter,
thus identifying that planet.
Should the declination alone not provide positive iden-

tification, it is further possible, knowing the DR longitude
and the GHA of Aries for the date and time of the observa-
tion, to find the approximate Sidereal Hour Angle (SHA)
of the planet by using the same program as that for finding
the SHA of a star, S.6. The figures for comparison, in this
case, will be found in the box at the bottom of the Alma-
nac’s daily pages, which lists the planets’ sidereal hour
angles and times of meridian passage. An excerpt of this
table is also shown in Figure 6-2.

If, as is the more common routine, the navigator wishes
to locate one or more of the navigational planets before
making his observations, it is only necessary to enter the
LHA, declination, and latitude at the approximate time of
twilight (Program A.5) in the Sight Reduction Program,
S.3. The resulting Hc and Zn will indicate the area in the
sky in which the planet will be found.
This planet-identification program can also be used for

the stars if only the declination is needed. It has the virtue
of being short and simple. In most cases, however, you will
require both declination and SHA for the positive identifi-
cation of a star, and the next program, S.6, is designed for
that purpose.

S.6 Star Identification

A common problem in making celestial observations of
stars is the correct identification of the body observed. Be-
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fore going on deck, and knowing what his approximate
position will be at twilight, the navigator usually makes a
list of the altitudes and azimuths of the stars he expects to
shoot. These can be determined approximately by using a
device such as a Rude Star Finder (described in Bowditch,
Vol. I, 1977, Art. 2210) or, if using Vol. I of Pub. No. 249, by
entering it with the estimated DR latitude and the LHA of

Aries at the time of twilight, and extracting the Hc’s and

Zn’s of the seven selected stars (see Figure 6-3). For a more
complete explanation of these methods, the reader is re-
ferred to The Yachtsman’s Guide to Celestial Navigation
in this series.

 

 

 

LAT 41°N
LNA Hc Zn] Hc Zn| Hc Zn| Hc Zn| Hc Zn| Hc Zn] Hc Zn

VEGA Rasalhague ARCTURUS *SPICA REGULUS *POLLUX Dubhe

195] 28 08 06224 23 094] 63 04 138| 37 39 173| 4229 245] 2551 286| 62 43 330
19628 48 062| 2508 095] 63 33 140|37 44 174| 41 48 246] 25 08 286| 62 20 329
19729 28 063| 2553 096] 64 02 14237 49 175| 41 06 247| 24 24 287| 61 56 329
1983009 063] 2638 097] 6429 1443752 176| 40 24 248/23 41 287| 61 32 328
19913049 063|27 23 097| 6456 146|37 55 177|39 42 249{ 22 58 288| 61 08 327

200] 3130 064] 2808 098] 6521 148/37 56 179(39 00 250| 22 15 289 60 44 327
2013210 064| 2853 099| 6544 150/37 57 180| 3817 251| 21 32 289{ 60 19 327
2023251 065/29 37 099|66 06 152| 37 56 181| 37 35 251| 20 49 290 59 54 326
2033332 0653022 100| 6627 154| 37 55 182| 36 52 252| 20 07 290 59 28 326
2043413 066/3107 101|66 46 156|37 52 184| 36 08 253| 19 24 291| 59 03 325

205] 34 55 066| 3151 102| 67 03 159| 37 49 185| 3525 254| 18 42 291| 58 37 325
206|3536 0673235 102|6719 161|37 44 186( 34 41 255|18 00 292( 58 11 325
207 |36 18 0673319 103(67 33 163|37 39 187|33 58 255(17 18 292( 57 44 324
20837 00 067(34 03 104| 67 45 166|37 33 18933 14 256] 16 36 293| 57 18 324
20937 41 0683447 105|67 55 168[37 26 190| 32 30 257| 1555 294| 56 51 324         
 

Figure 6-3. Excerptfrom Pub. No. 249 listingHc andZnfor
selected stars.

Stars can also be located ahead of time with your calcu-
lator, using the Sight Reduction Program, S.3, precomput-

ing the approximate altitude and azimuth of any star just
as though a celestial sight were being solved.
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It happens, from time to time, that you shoot a star with-
out the benefit of preidentification, and you need to deter-
mine exactly which star it is in order to complete the sight
reduction. In this situation the reduction program is re-
versed, entering with the estimated latitude, the Sextant
Altitude, and the approximate azimuth to obtain a decli-
nation and Sidereal Hour Angle (SHA), which can be com-
pared with those given in the daily pages of the Nautical
Almanac (see Figure 6-4).

 

JUNE 10, 1979
 

STARS
 

Name SHA. Dec.

Acamar 315 38.3 S40 23.2 ; 3 ;
Achernar 335 46.4 S57 20.3 Figure 6-4. Excerpt from daily
Acrux 173 37.9 S62 59.4 pages of Nautical Almanac,
Adhara 255 33.1 S28 56.8 oy ;
Aldebaran 291 19.4 N16 27.9 June 10, 1979, listing Sidereal

Hour Angles and declinations
Alioth 166 43.2 N56 04.6 : :ory 153 196 Nag 252 of all the navigational stars.
Al Na'ir 28 16.0 S47 03.4

Alnilam 276 129 S 1 13.0

Alphard 218 216 S 8 34.3

Alphecca 126 32.5 N26 47.2
Alpheratz 358 10.3 N28 58.4
Altair 62 33.1 N 8 48.9
Ankaa 353 41.3 S42 249

Antares 112 57.6 S26 23.1

 

 
Atria 108 22.0 59.4

Avior 234 28.9 26.9

Bellatrix 279 00.0 19.7

Betelgeuse 271 29.6 24.1   
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Variations of most common sight-reduction formulae
can be used for this exercise, solving first for the declina-
tion and, if that isn’t sufficient—as it usually isn’t—for the

SHA to complete the identification. The formula for the
first (declination) calculation is:

Sin—1(sin L sin hs+cos L cos hs cos Zn)

The program steps can be demonstrated by a practical
example: In DR position 41°00'N, 70°30'W, an unidentified
star is observed at Sextant Altitude 65°54’, bearing 151°.
The time of the observation was 00h56m34s GMT, on June
10, 1979. The GHA of Aries on that date was 257°45.3' at
00h, and its hourly increase 15.041 degrees. Identify the
star. The calculator sequence proceeds:

L 4 |[ 1 J[ - J[ 0 ][ 0 ][2nd]pmsDD[ sin |[STO
DR Latitude

L1 [xJe JL 5 J[- [5 4 |[2nd |[p™ms-po|
Sextant Altitude

[sin J[STOI[ 2 ][ + J[RCLI[ 1 J[INV][ sin J[ cos |

ISTO|[ 3 J X J[RCLI[ 2 J[INV][ sin cos ][ X

 

 

 

 

 

 

 

 
 

 

 

lL 1 J[ 5 J[ 1 Jlcos][STOI[ 4 J[ = J[INV][ sin |
Azimuth (Zn)

INV || 2nd [pms-DD|

The final display is the declination of the observed star,
and, if the display after the= key was pressed was
negative, the declination will be of opposite name to the
latitude. In this example, the intermediate display was
positive, so the final declination, 19°13.7’, is North, the
same name as the latitude.
In this sequence you will notice the extensive use of the

memory registers, even to the extent of recalling a natural

function, inverting it, and then finding a second function
—all to avoid having to enter the input data more than
once. At the end of the first calculation, the contents of the

four memory registers in use are:
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Memory 1, sine of latitude

Memory 2, sine of sextant altitude

Memory 3, cosine of latitude
Memory 4, cosine of azimuth

By following this procedure, if the declination alone has
not been sufficient for a positive identification of the star,
the program can proceed to the second part, finding the

Sidereal Hour Angle (SHA) of the star for comparison with
the Almanac’s listings. The formula for this second calcu-
lation is:

sin Zn

cos Zn sin L—tan hs cos LL
 SHA=tan—1 ( )+360°~LHA Aries

For our practical example, the keypunch sequence con-
tinues:

[RCLI[ 4 J[ xX J[RCL][_1 J[ = J[RCLI[2 J[INV]

sin |[[ tan |[ X J[RCLI[ 3 |[ = J[1/x][ X J[RCL

[ 4 J[INV][cos |[sin|[ = |[INV][tan || + |[ 3 |

 

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

Le JLo Jl =1Jl7 JLo J[ - [3 JLo |+/-
DR Longitude (Negative if West)

[2nd pmsoD | — [[ 2 J[ 5 J[ 7 |[ - |[ 4 |[ 5 |
GHA of Aries at 00" GMT

1 8 [[2nd]pmspD| — |[ 1 J[ 5 |[ - |[ 0 |
Hourly increase in GHA of

[4 [1 JL x J J 5 16 [3 [4 |[2nd]
Aries Minutes and Seconds of Time

pms-oDj | = |[INV][ 2nd |[PMs-DD) 

The final display, 146°27.7', represents the approximate
SHA of the unidentified star. Referring to the Almanac
star listing in Figure 6-4, it can be seen that, with a cal-
culated SHA of 146°27' and a declination of 19°14'N, the
star must be Arcturus.
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S.7 Sun’s Azimuth

One method of determining the sun’s true azimuth, a

procedure practiced regularly at sea to check the accuracy
of the compass, is by means of a sight-reduction calcula-
tion as explained in Program S.3. Another method, the
traditional “time azimuth,” obtains a direct solution and
employs the formula:

 

sin LHA )
_ —1

Z=tan (& L tan d—sin L cos LHA

The following rules must be observed with this formula:

«If the Local Hour Angle (LHA) is greater than 180°, sub-
tract it from 360° and enter the remainder;

oIf the declination (d) and latitude (L) are of opposite
names, enter declination with a negative sign (as in Pro-

gram S.3);

oIf the computed azimuth angle (7) is negative, add 180°
before applying the rules to convert Z to Zn (shown
below).
Looking at a practical example: What would the sun’s

true azimuth be at 17h18mQ7s GMT on May 17, 1979, at

Latitude 41°00’'N, Longitude 70°27'W? From the Almanac
we determine that GHA (80°27) minus longitude West
(7027) equals LHA, which is 10°00’. By inspection, the
declination is found to be 19°18.2'N. The calculator se-
quence is then:
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The answer displayed, —24.5, being negative, is cor-
rected by adding 180° to obtain the azimuth angle (Z) of
155.5°. The following rules then apply to convert Z to Zn,
the true azimuth:

North latitude LHA greater than 180°, Zn = Z

LHA less than 180°, Zn = 360° — Z

. LHA greater than 180°, Zn = 180° — Z

South latitude LHA less than 180", Zn = 180° + Z

Since, in our example, the latitude is North, and the LHA
(at 10°) is less than 180°, Zn = 360°—155.5°, or 204.5".



7. Practical Wrinkles

Until now our discussion has concentrated on the tech-
nical aspects of selecting and using a hand-held calculator
for navigation, but we must not overlook the practical as-

pects of working with a calculator, particularly in the en-
vironment of a small boat.

First of all you should remember that your instrument
is a fine electronic device and the environment of a small
boat at sea is anything but ideal. It is important, therefore,
to choose a place to operate where the calculator will be
least subject to shock and moisture and where it will be
suitably protected when not in use. One good idea is to
make a holder that can be fastened to a convenient place
on the chart table so that it will be handy to operate the
calculator with one hand. Then, if you leave it for a mo-
ment, the instrument is not likely to fall to the deck. Some

of the specialized navigational calculators are furnished

with carrying cases, and these, affixed to a chart table,

serve the purpose well. It goes without saying that protec-

tion from spray and spilled liquids is equally important in
selecting your operating location, often easier said than

found on a very small boat.
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Despite the remarkable performance on a few low-
capacity batteries, calculators do require energy, and usu-
ally the more sophisticated the instrument, the greater the
power requirement. As a consequence, it is always a good
idea to carry an extra set of batteries and a recharging
device, too, if your manufacturer offers one for your boat’s
voltage. Some of the major suppliers offer 12 vdc chargers
in addition to the standard 110 vac model, and these are
particularly suited to small yachts.

I have found that a practical and efficient way to remem-
ber my programsis to list the steps in a convenient short-
hand form on a left page of a pocket-size, loose-leaf note-
book. Figure 7-1 shows a specimen page for Program S.5,
Planet Identification. By leaving the right-hand page of
the notebook blank, I can make notes as necessary of the
variable input data, step through the program sequence
following the notes on the left page, and record my an-
swers in brief form with the input information. Since most
hand-held calculators used aboard boats are not of the
printing type, this is a useful way to keep track of a series
of exercises, such as sight reductions, to which you might
like to refer later. Some navigators prefer horizontal rows
to vertical columns to lay out their programs, and some
even reduce their memory aids to a single-column strip.
The form is not important but the idea is useful if you need
to recall the details of programs which you are not accus-

tomed to working regularly.
Before undertaking a voyage during which you expect to

rely in large part on your calculator for navigational infor-
mation, it is wise to review your programs and, if they are

new or if you are rusty, pretest them with some dry runs
before you leave home. This way you will enjoy your full
facility once you are under way.
In the course of your calculator exercises, you may well

discover improvements in the approach or in the order of
presentation of the sequences that will make the program
shorter, more accurate, or easier to understand. You

shouldn’t hesitate to do this and even to attempt the crea-

tion of programs of your own because this is a great learn-



S.5 Planet(dentification

(Algebraic Entry)

—>DR latitude, 2nd, DMS-DD, (1- if S), STO |

—>Sextantalfifude, 2nd, DMS-DD, STO 2

—>Azimuth, S70 3

Ree RCL 2
Sin cos

X x.
RCL 2 RCL 3
sin cos
+ =

RCL / INV Sin
Cos INV, 2nd, DMS-DD
X

Figure 7-1. Specimen notebook page for Algebraic Entry,
Program 8.5, Planet Identification (compare with Figure
7-2).
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ing device and part of the fascination of working with
calculators. But test any and every program thoroughly.
Errors can occur and no machine can relieve you of the
responsibility for the safe navigation of your vessel.
On the subject of programming, I am sure you will find

as I have that an organized approach saves time and frus-
tration. The usual steps in planning an original keystroke
sequence are, first, to identify the information available
and the terms in which you would like to express the an-
swer. Next, the elements of the problem are stated in the
form of a mathematical expression and the program of
keystrokes worked out to solve it. Remember, there may be
several ways to solve a given equation and you’ll have an
interesting time discovering the best one for you.

If your calculator has the capability of accepting a
preestablished sequence in its program memory—the
TI-55, for example, is keyboard programmable for up to
thirty-two steps—you will also want to experiment with
programming it yourself. Using S.5, Planet Identification,
as an exercise, the TI-55 would be programmed with the
following keystrokes:

ond Lrn [RCL] 1 sin || X |[RCL|[ 2 |[ sin

To Enter Program

+ J[RCLI[ 1 Jlcos J[ X JI[RCL][ 2 Jl cos J[ X ]

[RCL][ 3 [cos |[ =]J[INV][ sin |[INV][2nd |[pms-DD

 

 

 

 

12nd |[R/S][ 2nd Rst [2nd |[ Lrn
Displays Answer Resets Program Returns to Keyboard

 

At the conclusion of the loading operation, press
to reset to the start, enter the variable data into the

appropriate memory registers, and press [R/S],
causing the program to be executed automatically. With
the calculator on and programmed, try entering the data
used in the S.5 practical problem and see if you don’t get
the same answer. The resetting step has been built into our



S$ 5 Planet Identification

(Reverse lish Notation)

—>DR lafrivde £7,>D.MS, (CHS iS), STO 1

—>Sextant altitvde £7—>DMS, STO 2

—> Azimuth? 5703

RcL 1 f CoS

f, sin X

RCL 2 RclL 3

f sin f, cos
X X

Rel / +

{, cos £75 sin

RCL 2 f —D MS

Figure 7-2. Specimen notebook pagefor Reverse Polish No-
tation, Program S.5, Planet Identification (compare with
Figure 7-1).
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sequence, so each time you wish to run the program again
you need only correct any variable data that has changed
and press [R/Sthe calculator does the rest. While
you will find that most navigation problems require more
programming capacity than the TI-55 has because of the
number of steps involved, the general principles apply to
the more powerful instruments as well.
You may, in the process of developing programs, wish to

work from the navigational formulae published in some
detail in the classic texts, Bowditch and Dutton, or you
may simply wish to restate existing programs, set up for
operation with an algebraic entry machine, so they can be
worked with the Reverse Polish Notation logic. The logics
were discussed in Chapter 2 and, to offer a comparison for
a complete program, the sequence from Program S.5,
shown in notebook form for an algebraic entry calculator
in Figure 7-1, is repeated in a form for an RPN instrument
(this particular one for the Hewlett-Packard HP-65) in
Figure 7-2. The mathematics are the same in each case—
it is simply a question of the order of entry of data and the
order in which the mathematical operations take place.
In either choice of logic it is also possible, and often

useful, to “string” programs together—thatis, to leave in-
formation from one program in the machine’s memory
registers so that the succeeding, allied program can be run
without having to reenter repetitious data. This technique
is used often in the programmable calculators when the
steps in a large computation exceed the capacity of one
unit “card.” You will notice that our great-circle programs
S.1 and S.2 are “linked” in this fashion.

Finally, no matter how much enthusiasm one expresses
for the wonderful and extraordinary hand-held calcula-
tor, it must never be forgotten that calculators are elec-
tronic instruments and inevitably failures do occur—usu-
ally at the most inconvenient time. Every prudent
navigator who goes to sea with a calculator carries the

necessary tables or other equipment as a backup, and
knows how to use them if the need should ever arise. Make
sure your name appears among the prudent.
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