ZENROM

' The HP - 41 PROGRAMMERS MODULE

o @iy

ti{;;l&‘etiit;:‘ ‘Programming

% Machine I;fa*nguage Programming

& \;
Xi % <
¥

ZENGRANGE

ZENROM 3B

USER’S
HANDBOOK

ZENROM 3B

USER’S
HANDBOOK

A Programmer’s Module
For Use With The HP-41 Handheld Computer

(©)
Zengrange Ltd, England. 1984

FOREWORD

Many veteran HP-41 programmers will feel slightly cheated by ZENROM. As one who has been hard at
it since late ‘79, through user, synthetic and machine code, | cannot deny at least some sympathy with that
view.

It’s not the countless hours spent exploring the HP-41 that anyone will mind. If that wasn’t fun, why would
anyone have done it ? No, it's the painfully developed slick techniques for entering synthetic code, the carefully
thought out methods of editorless machine coding, all made suddenly, completely redundant !

One welcomes ZENROM with just a shade of regret. Like one who has survived the rigours of a wagon
train and lived on to see the trans-continental railway. A journey of months, through byte jumpers, et al,
to an understanding of synthetics, with its sunlit beaches and fertile lands, is reduced to days for any
newcomer.

Of course, you would expect me to recommend it. But, since this is a foreword and not an advertisement,
you should, if you are reading this, have already bought the module so I'm not here to sell it.

| simply have to tell you that, although | had no part in the writing of either program or manual, | am truly
proud to present ZENROM to you.

If you're an old timer and the analogy above strikes a chord, believe me, you’ll be amazed how quickly
you overcome the regret. If you're a newcomer, eat your heart out. You’ll never know what you’ve missed !

John French
Chairman, Zengrange Limited

June 1984

Chapter

1.1
12
13

21
2.2
23

3.1
32
33
34
35
36

38
39

3A

CONTENTS

Description

Foreword

Contents

List Of lllustrations
Installing ZENROM
Nomas - An Explanation

QUICK REFERENCE GUIDE

ZENROM Function Summary
Catalogue Functions
Operating Modes

Direct-Key Synthetics

CATALOGUE FUNCTIONS

Catalogue Function Descriptions
Clearing Memory
Non-Normalised Numbers
Utility Functions

SYNTHETIC PROGRAMMING

The Theory Of Synthetic Programming
SP - Origin and Uses
Bytes and Memory

The Byte Table

Multi-Byte Instructions
Variable-Length Instruction
Register Formats

HP-41 Memory Structure
The Status Registers
Applications of S.P.
Scratch Storage
Non-Standard Output
Register Allocations

Flag Manipulation

Other Basic Applications
Summary

Page

ii
iii
Vi

vii
viii

- o0 P WO

—

15
15
16
20

23
24
28
28
29
33
35
37
43
47
47

49
50
51
51

41
42

43

44

51
52
53

6.1
6.2

6.3

6.4
6.5

Using ZENROM To Input Synthetic Lines
Direct-Key Synthetics

Extended Alpha and Text Entry
User Alpha Keyboards
SYNTEXT Entry

Using the RAM-Editor (RAMED)
Within Program Memory

To Replace Bytes

To Insert Bytes

Outside Program Memory
Examples Using RAMED

MACHINE LANGUAGE PROGRAMMING

An Introduction To Machine Code Programming

What Is Machine Code ?
Why Use Machine Code ?

What You Need To Program In Machine Code

Programming In HP-41 Machine Code
What You Should Know Before You Start
The HP-41 Central Processing Unit
Accumulators

Storage Registers

Status Bits

Program Counter & Return Stack
Keycode Register & Keydown Flag
Flag Out Register

The Pointers

Carry Flag

The Machine Code Instruction Set
Class 0 Instructions

Flag Instructions

Pointer Subclasses

Accumulators Manipulations

Registers G,M, ST & F

Subclass C

Memory Access Instructions

Other Class 0 Instructions

Class 1 Instructions

Time Enable Fields

Class 2 Instructions

Class 3 Instructions

The HP-41 ROM format

Examples Of Machine Coded Routines
Saving The Stack

Substituting a Character in Alpha

53
54
56
56
57
59

60
61
61
64

69

71
4
72
72

741

7.2
7.3
74
75

8.1
8.2
83
84
85
86

Using ZENROM To Input Machine Code
The Machine Code Editor (MCED)
Disassembling Machine Code

Writing To A Device

Editing Machine Code

Storing And Retrieving ROM Data

Advanced Machine Code Programming
Special Instructions

Display Handling

HP-82143 Thermal Printer

HP-82182 Time Module

HP-82160 HP-IL Module

Other Peripherals

APPENDICES
Owners Information
Operating Limits

Bibliography And References
User Groups

Books

Equipment

XROM Numbers

Reference Tables

ZENCODE Machine Code Mnemonics
Class 0

Class 1

Class 2

Class 2 - Time Enable Modifiers
Class 3

Display

Timer

Card Reader

Peripheral Control Instructions
Numbering Systems

Corrections

107
107
11
113
116
118

121
121
124
125
126
127
127

129

131

135

139
139
141
142

143

145
145
145
146
147
147
147
148
149
149
149
150
151

LIST OF ILLUSTRATIONS

Figure Description Page
1.241 Machine Code Editor (MCED) Keyboard 6
12.2 User Alpha Keyboards 10
3.1 HP-41 Hexadecimal Byte Table 2617
341 Byte Table Segment - Row 0, Column 4 29
34.2 Byte Table Extract - Row 6 & Row 7 30
36 Register Formats 35
3.71 HP-41 Memory Configuration Map 36
372 HP-41 Key Assignment & Global Label Keycodes 38
373 Buffer Formats 37
374 XRAM Link Register Formats 40
375 XRAM File Header Formats 4
381 HP-41 Status Register Map 42
38.2 Key-Assignment Bit Map (Keycodes) 44
383 Key-Assignment Bit Locations 44
384 HP-41 Flag Descriptions 46
385 Flag Bit Locations in Register ‘d’ 46
4.2 User Alpha Keyboards 57
6.2.1 The HP-41 CPU Structure 78
6.25 Keycode Structure 78
6.3.1 Machine Code Word Table - Class 0 84
6.33 Time Enable Fields 92
6.34 Machine Code Word Table - Class 2 94
6.35 Machine Code Word Table - Class 3 96
6.4.1 ROM Paging 98
6.4.2 ROM Image Formats 98

82 Display Coded Characters 123

vi

INSTALLING ZENROM

Before installing or removing the ZENROM module, ensure that the HP-41 Handheld Computer is switched
off. If this is not done, damage may result to the module, the computer or its operation may be disrupted.

The ZENROM module may be plugged into any port on the HP-41, although if an HP-82106A Single Memory
Module is also plugged in (HP-41C only), then the ZENROM must be in a higher numbered port than the
memory module (Port numbers are detailed on the back of the HP-41).

After removing ZENROM, place a port cap into the unused port as protection against dust and dirt.

ZENROM has the same XROM identity, i.e. XROM 05,xx, as that of the HP-00041-15001 STANDARD AP-
PLICATIONS PAC. If both of these modules are plugged in at the same time, then only that module in the
lowest numbered port will be seen by the HP-41. To avoid conflict when you wish to use ZENROM, ensure
that the STANDARD APPLICATIONS PAC is either removed, or in a higher numbered port to the ZENROM
module.

For additional information regarding care and service of ZENROM, refer to Appendix A: OWNER’S
INFORMATION.

vii

NOMAS

Synthetic and Machine Code programming fall into a class of activity that HP-User Groups have classified
as being ‘NOMAS:

NOMAS is an abbreviation for:

NOt MAnufacturer Supported

(Recipient Agrees Not To Contact Manufacturer) and is a term that you will come across stamped on much
of the available documentation relating to the design and implementation of the machine code instruction
set on the HP-41.

Most manufacturers put considerable effort into supporting users of their products - and Hewlett Packard
has a track record that others could do well to imitate. However, for many reasons, they are not able to
support or assist with every activity that users wish to follow. A good example of this is Machine Code Pro-
gramming. Because the HP-41 was designed many years ago, the Design Team has long since dispersed
onto other tasks. Therefore, it is not possible for HP to provide the worldwide effort needed to support such
User activities. To overcome this problem, HP have released as much information as commercially viable
to the User Groups devoted to their products. However, this has been on the understanding that the material
is accepted on an “AS IS” basis and that no further assistance can be given by HP regarding the use
of that material.

By the method of NOMAS, HP are able to release more detailed information than would otherwise have
been possible. Therefore, please respect the NOMAS status of Synthetic and Machine Code Programming
and do not contact Hewlett Packard for assistance — they just will not be able to help. If you need assistance,
contact one of the independent User Groups listed in Appendix C. Aimost all the published information
on the HP-41 has come from members of these groups, and that is where the major expertise lies. For
example, even programmers of ZENROM and the authors of this ZENROM User’s Handbook are very ac-
tive in User Groups.

viii

ZENROM QUICK REFERENCE GUIDE

ZENROM FUNCTION SUMMARY

Many Users of ZENROM will already have a knowledge of synthetic and other advanced HP-41 pro-
gramming techniques, or will want to immediately gain hands-on experience of its use. For such people,
the following provides a brief, but sufficient introduction to get you started.

However, because ZENROM provides Users with the means to access the HP-41’s operating system,
either directly via techniques of Synthetic Programming, or indirectly, by machine language programm-
ing in conjunction with a machine language device, we would urge all newcomers to read through this
handbook before using ZENROM.

Whilst the functions in ZENROM will not harm your HP-41, it is possible for the inexperienced User to
cause either:
- loss of user memory contents (MEMORY LOST)
- or a keyboard ‘lock-up’ (placing the processor into an infinite loop), thereby preven-
ting response to keystrokes. A master reset will be necessary to recover from this,
leading to a loss of programs and data in user memory.

ZENROM functions fall into three major categories:
Catalogue Functions - Language extension functions possessing an XROM identification number;

Operating Modes - New interactive modes, similar to ED (text editor on the HP-41CX) or SW (stop-
watch) and new keyboard layouts;

Direct-Key Synthetics - Extensions to the HP-41 operating system that provide new facilities and allow
the User to circumvent previous system limitations.

1.1 CATALOGUE FUNCTIONS

function description

CLMM Clear Main Memory

Clears all Main Memory and stack registers.
Resets the HP-41 status and flags to a Master Clear condition and displays
the message ‘MM LOST".

CLXM Clear Extended Memory

Clears (nulls) all Extended Memory registers — but does not check for the
existence of Extended Memory.
Displays the message ‘XM LOST’ if executed from the keyboard.

CODE Code ALPHA to X

Converts the rightmost 14 characters in ALPHA into the 14 digit Non-
Normalised Number which they specify, returned to X.

No error message is generated if non-hexadecimal digits are contained in
the ALPHA string

DECODE Decode X to ALPHA

Replaces ALPHA with the 14-character string representing the 14 digit number
in X.

If executed from the keyboard, views (and optionally prints) the decoded value.
DECODE will perform an AVIEW unless in a running program or when a
program is single stepped [SST|.

LASTP Last Program

Positions the user program counter to the first line of the last program in pro-
gram memory (i.e. the program containing the .END.).

NOP

NRCLM

NRCLX

NSTOM

TOGF

No-Operation
Inserts an empty text line (FOh) as the next program line.
May generate error messages as follows:
PACKING, TRY AGAIN - if there is no room left for the insertion;
ROM - if the insertion is attempted into a ROM program.
Can also be entered as true NOP (XROM 05,07) instruction with a one byte
and speed overhead.

Non-normalising Recall by M

Recalls to X the contents of the register whose absolute address is in the
least significant 3 digits of status register M, that is, in hex form as the last
character and a half of ALPHA.

Generates NONEXISTENT message if the register addressed is not physically
connected to the HP-41.

Non-normalising Recall by X

Overwrites X with the contents of the user data register whose register number
was specified in X before the function executed.

Saves the address to LASTX.

Generates NONEXISTENT message if the register number is greater than
or equal to the current SIZE, or ALPHA DATA error message if the number
in X is a string.

Non-normalising Store by M

Stores X into the register whose absolute address is specified in the least-
significant three digits of M, that is, the last character and a half of ALPHA.
Generates NONEXISTENT message if the register addressed is not physically
connected to the HP-41.

Toggle Flag status

Toggles the state (from set to clear, or clear to set) of the flag whose absolute
integer value is in X.

Generates NONEXISTENT message if X>55, or ALPHA DATA message if
X contains a string.

1.2 OPERATING MODES

MCED Machine Code Editor (non-programmable)
A full machine language programming and editing environment including

facilities for disassembly of M-Code routines and creation of new routines
using the M-Code hex-loader (when used with ‘Quasi-ROM’ (Q-ROM) in a
machine language storage device). Use of all functions, except that of
DISASSEMBLE, requires the availablility of Q-RAM.

DISASSEMBLE will only direct output to a printer or video interface respon-
ding as a printer. When a printer is connected to the system, in TRACE or
NORM modes, then all editor commands will be printed.

Executing MCED activates the Editor Keyboard and displays the Editor ‘COM-
MAND ?’ prompt. At any time, pressing [SHIFT||CMD]| will cancel the cur-
rent prompt sequence and return you to the main editor prompt. The MCED-
keyboard is shown below.

L R

(exiT []]

A
1010 1011 1100 1101 1110

===

m
GTo BST

=)
Yy C_ Y (O 3

cmD
e [(4 (5
(() L)

===

0111 1000 1001

Ins) (5
0100 0101 0110
2 3

N —

0001 0010 0011

By

F

FIGURE 1.2.1 MACHINE CODE EDITOR KEYBOARD

Command

IR/S|

|EXIT|

|SHIFT|[CMD|

|~

IDEV|

|DISASSEMBLE|

For most of the Editor commands, there is a common input prompt format of:
Command: Start Address , Finish Address
For example, the DISASSEMBLE prompt appears as:
pis: .,

After inputting the hexadecimal start address, the user has an option of specifying
a decimal number of words or lines in place of a hexadecimal finish address. This
is selected by pressing |[DEC| and indicated by a ‘d’ appearing in the prompt:

DIS:2FO0A,d__ _

At this point only the decimal keypad remains active.

Certain MCED functions have an ‘A’ in the prompt, or have a secondary prompt such
as:
LMT .

(where this allows you to specify the limit address beyond which the action will not
take place.) An ‘A’ in a prompt, indicates that an absolute address input is expected.

Description

Accepts the input and begins the specified action. This provides an escape if an
incorrect input was made.

Pressing this from the main editor prompt will return you to normal HP-41 usage.
MCED is set to automatically ‘timeout’ after approximately two minutes of inactivi-
ty in a manner similar to ED in the CX.

Executing ON will prevent this.

Cancels the current prompt sequence and returns to the main editor prompt ‘COM-
MAND ?.

Deletes the last key input.

Toggles between the ProtoCODER 2 and MLDL type device write formats. Defaults
to MLDL type devices. The '0’ annunciator is set when a ProtoCODER device is
selected.

Requires an address for start and finish. Only the hex-keypad is activated, but after
input of the start address, the |DEC]| key allows the option of specifying a decimal
number of words to be disassembled. |DEC| activates only the decimal keypad.

|GTO|

[INS|

|DEL|

ICPY|

Allows writing of M-Code instructions into your Q-ROM device with the hex loader.
Requires input of a start address and responds with a prompt showing:

Address Current Word __ __ __
eq: 1468 154 __ _

The hex-keypad allows input of the 3-hex digits representing the word you wish
to write to that location. Press |R/S| to accept the new word.

The |SST| and |BST| keys are active within the hex-loader and permit forward and
backward movement without changing the word at the current address location.
If a printer device, in NORM or TRACE mode, is attached then the entered word
is also disassembled to the printer. Single Stepping a word will also cause that
word to be disassembled to the printer.

Allows insertion of a block of NOPs into Q-ROM before the specified address. A
specific decimal number of NOPs may be input by pressing the [DEC| key instead
of specifying the end hex address. Note that specifying ‘d000’ will default to 'd001’
thus inserting one NOP.

Because INS moves all surrounding code in Q-ROM, to make way for the NOPs,
a secondary prompt allows you to specify a ‘limit address’”:

LMT. _ _ _
beyond which no code will be changed.
By specifying a LMT address greater than that for the end address, the surroun-
ding code is moved up memory (to a higher address). If the LMT address is before
the start address, then surrounding code will be moved down memory (to a lower
address).
DATA ERROR messages will be issued if the end address is less than the start
address or the LMT address is between the start and end addresses.

Will delete a block of code from Q-ROM at a specified start and end address. A
specific decimal number of lines can be deleted by pressing the [DEC| key as
before. When deleted, surrounding code is moved in Q-ROM. A secondary LMT
prompt specifies a boundary beyond which no code is moved.

By specifying a LMT address greater than that for the end address, the surroun-
ding code is moved up memory (to a higher address). If the LMT address is before
the start address, surrounding code will be moved down memory (to a lower
address).

DATA ERROR messages will be issued if the end address is less than the start
address or the LMT address is between the start and end addresses.

Requires a hex start and end address of a block of code, or a specific decimal
number of words to copy. A secondary prompt requests the starting address of
the destination.

CPY allows copying to overlapping blocks.

Specifying an end address less than the start will cause a DATA ERROR message.

|CLR]

|SVE|

\GET|

RAMED

Will clear a block of Q-ROM between the specified start and end addresses.
If the end address is less than the start, a DATA ERROR message is issued.

Allows M-Code routines to be stored in packed data format in main HP-41 memory.
The data can then be transfered to mass storage media.

ISVE| expects a hex start and end address, or decimal number of words, of code
to save. A secondary prompt requires an absolute register address, in main or
XRAM memory, into which the packed data will be stored.

If a non-existent register address is encountered, SVE will abort with the message
NONEXISTENT. Specifying an end address less than the start will cause a DATA
ERROR message.

Recalls main or XRAM memory registers and writes the data contained therein
to a Q-ROM device. Expects the first and last register absolute hex-addresses to
use, or a decimal number of registers to GET. The ZENROM data format copes
with incomplete registers, thereby allowing recall of two consecutive blocks of code
without error. A secondary prompt requests the Q-ROM destination address.

A DATA ERROR message results if the end address is less than the start address.

RAM Editor (non-programmable)

Provides an editor function, similar to that of the HP-41CX text file editor ‘ED’, that
permits review and replacement of any bytes, or optionally insertion of bytes (pro-
gram memory only).

Redefines the HP-41 keyboard during execution to allow forward or backwards
movement through memory in byte or register increments by pressing the USER],
IPRGM| and [SHIFT| [USER| or [SHIFT| [PRGM]| keys.

Pressing the |1| key, toggles between replace and insert mode - signified by the
‘1’ annunciator being lit in the display.

Takes start address from status registers M or b (the program counter), dependent
upon mode.

If notin PRGM mode, returns last reviewed address to M upon exit, or if in PRGM
mode, exits at line where it entered.

Generates PACKING, TRY AGAIN messages and quits if insertion is attempted
when there is no room left to accommodate extra bytes.

During entry of hexcode values, the back arrow key |— | will cancel the first digit
input. By pressing and holding the second digit, the whole hexcode entry is nullified
- as happens during normal HP-41 key-pressing.

To exit from RAMED, press the |ON| key.

USER ALPHA
KEYBOARDS

UNSHIFTED KEYS

Entry of alpha characters and text lines, whether as a program line, a postfix
to an instruction or directly into the ALPHA register has been greatly
enhanced.

ZENROM activates two additional ALPHA-mode keyboards with the
|USER| and [SHIFT| keys whilst in ALPHA-mode. These keyboards can
be activated whenever ALPHA mode is entered, e.g. even during input
of a program label, and provide every displayable HP-41 character plus
all lower-case characters defined on keys.

To make text entry easier, a keyboard overlay is included with ZENROM
and the two new alpha keyboards are shown below.

The USER ALPHA keyboards do not operate within the HP-41CX
Editor ED, nor during a PSE instruction.

Due to HP-41 system restrictions, the normal key rollover does not operate
during USER ALPHA entry — take your time typing until you are used
to the new keyboards.

SHIFTED KEYS

10

FEX T D kX
==y e
(ma e Yo Wav s e s
= e ==y
FEEe — = = =
(o B/ A
(xR e e s
(Ex e Ry s
M E e e s

FIGURE 1.2.2 USER ALPHA KEYBOARDS

SYNTEXT

ENTRY Synthetic Text entry allows any of the 256 characters available on the HP-41,
whether displayable or not, to be entered in a line of text.

Characters are entered whilst in any ALPHA-mode, by pressing the key sequence
ISHIFT||ALPHA|. Two underscore prompts appear at the right-hand edge of the
display and the keyboard is redefined so that only the hexadecimal keypad is
active, thereby allowing entry of hexcode character values from 00h through FFh.

Like the USER ALPHA keyboards, SYNTEXT entry does not operate during
the HP-41CX Text Editor ED, nor during a PSE instruction.

1.3 DIRECT-KEY SYNTHETICS

These non-catalogued functions provide the user with considerable extensions to the HP-41’s operating
system, thereby allowing access to features that have hitherto only been possible with techniques such
as S.P. (Synthetic Programming) developed by members of HP user groups world-wide.

By the use of Direct-Key Synthetics, the User has the possibility of directly accessing the remaining status
registers:

M, N, O, P Q, R (often called ~ or append), a, b, ¢, d, e
as if they were standard user-stack registers.

All HP-41 functions that normally prompt for numeric input, eg. RCL, STO, VIEW, FIX, etc., have been
expanded to allow entry of:

00 through 99

Extended postfix access (100 to 199) by pressing the |[EEX| key
Stack register addresses by pressing the |.| key

Indirect arguments by pressing the [SHIFT| key

Note: Due to HP-41 system restrictions, the normal key rollover does not operate during extend-
ed prompt entry.

During entry of exponents in PRGM-mode, ZENROM will automatically strip a ‘1’ immediately preceding
an |EEX| character if it is the only digit in the mantissa.

1

CATALOGUE FUNCTIONS

2
CATALOGUE FUNCTIONS

This section of the handbook provides detailed explanations relating to functions appearing in the ZENROM
catalogue. MCED (Machine Code Editor) and RAMED (RAM Editor) are more correctly operating modes,
and will be detailed in following chapters.

2.1 CLEARING MEMORY
CLMM

CLEARING MAIN MEMORY

CLMM restores HP-41 Main Memory to Master Clear State by storing nulls into every register. In addition,
all status registers and flags are restored to default states; all key assignments, timer alarms and input/output
buffers are eliminated; and the stack, LASTX and ALPHA are cleared.

HP-41 flags are cleared except for flags 26, 28, 29, 37 and 40 (for a display setting of FIX 4). If a printer
is connected, flags 21 and 55 are set.

The size of program memory will be 46 (on the HP-41C and HP-41CV) or 219 on an HP-41CX.
CLMM will operate on all models of HP-41, irrespective of how many memory modules are connected
to an HP-41C. All files contained in Extended Memory - both Extended Functions Module and Extended
Memory Modules - will be retained completely untouched.

No error message is generated, but the message ‘MM LOST’ is displayed when CLMM is executed from
the keyboard or a running program. Executing CLMM from a running program will cause the program
to stop (even if that program is synthetically made to run in Extended Memory, and as such is not erased),
because the program counter will be reset to point to the .END., causing the program to halt.

WARNING: Executing CLMM will irrevocably nullify contents of main memory. There is no recovery.

15

CLXM

CLEARING EXTENDED MEMORY

CLXM overwrites the contents of all existing Extended Memory registers with nulls, whilst still retaining
the contents of Main Program and Data Memory in the HP-41.

CLXM will operate on all HP-41 Models and on all valid combinations of Extended Function and Extended
Memory Modules, although an error message will not be generated if Extended Memory does not exist.

When executed from the keyboard, CLXM generates the message ‘XM LOST'. However, if executed from
within a running program this message is suppressed.

After execution, attempting [EMDIR)|, or |CAT| [4| on the HP-41CX, will produce the message ‘DIR EMPTY’.

WARNING: Executing CLXM will irrevocably nullify Extended Memory contents. There is no recovery.

2.2 NON-NORMALISED NUMBERS

In simple terms, a non-normalised number is one that is in a format that the 41 is not used to. The easiest
way to describe a non-normalised number is, in fact, to describe a normalised number and then any
exceptions to this format can be described as a non-normalised number. For the purposes of this
explanation it will be easier to call a non-normalised number a non-normalised register.

Each register comprises 14 digits (each of 4 bits) which will most often contain a real number. This number
can be in the range +/- 9999999999 E99 down to +/- 1 E-99 or 0. Whatever the number is, it is stored
in a fixed format in the register - the fourteen digits of the register being:

s mmmmmmmmmm XS X X
where: 's’ represents the sign of the number (0 if +ve, 9 if -ve);
‘mmmmmmmmm’ is the mantissa, ie. the body of the number;
'xs’ is the sign of the exponent, again 0 if +ve, 9 if -ve; and
XX’ are the two exponent digits.

There is an implied decimal point after the first digit of the mantissa.
Example 1: Pl = 3.141592654

0 3141592654 000

16

Example 2: -1/le = -3678794412 E-01

9 3678794412 999

Note that in example 2 the exponent is negative and so the magnitude of the exponent is stored in
complement notation i.e.: 1000 - EXP.

In addition, although the second example will display as -0.367... in FIX format, because the decimal
point is implied after the first digit of the mantissa, the leading O is not stored.

We can call a register non-normalised, if either:
a) the first digit of mantissa is a 0
b) the sign digit is neither 9 nor 0
c) the exponent sign is neither 9 nor 0

There is one other situation that will make a register non-normalised and that is, if any of the digits in
that register contain a non-BCD (Binary Coded Decimal) digit - i.e.: a hexadecimal digit A thru F.

For those not familiar with NNNs, their main usages are for data packing, flag control and alpha
manipulation.

Using normal HP supported programming techniques, it is almost impossible to create a non-normalised
number and most users never even know they exist. This is mostly because the 41 has a nasty habit
of ‘normalising’ numbers. Although this sounds quite painful, it is the process used by the 41 to ensure
that a number is in a format that, for example, the maths routines can handle. If a non-normalised number
is stored in a register, and that register is recalled using RCL then the register contents will be altered
to form a normal number.

There is one special case of NNN that the 41 does support. This is an alpha string which is stored as
a series of up to six ASCII coded characters right justified in the register and with the sign digit setto 1 i.e.:

ABC=1 0000000414 243

Since it is otherwise impossible to create your own NNNs, a function is required to enable this. When
an NNN has been created, it may be displayed in a manner that is not easily decipherable. Therefore,
a function is required that will decode an NNN to show its exact contents. Since an NNN can not be
recalled from registers without normalisation, functions are also required to allow this. Lastly, since not
all of the 41 registers can be directly stored into, a function to allow complete access to all 41 registers,
including extended memory, is required.

As a demonstration of the effect of normalisation on a register, for those unfamiliar with synthetic
programming, follow this example with the ZENROM plugged in:

CF 4)

CF 5)Ensure flags 4, 5, 6 and 7
CF 6)are clear.

CF 7)

RCLd|RCL||.|[D]) This a synthetic instruction

17

STO 00)Store two copies of the contents of
STO 01)the mythical register d (an NNN).

RCL 00 JRecall the NNN from Reg 00
STOd|[STO||.][D|) restore to register d.

Notice that the display has now changed to SCI 0 format. This is because register d is the register
containing all flags and when the NNN that represented those flags was recalled from Reg 00 it was
normalised to the extent that it was changed to 0. Upon restoring to Reg d ALL the flags were cleared.
To restore the flags to their original status execute the following instructions:

1)Recall register 01 without
NRCLX Jnormalisation and restore in
STOd|[STO||.]|[D|) register d.

Notice that the display has now reverted to its original format since when register 1 was recalled it was
not normalised.

CODE

CODE ALPHA TO X

Converts the rightmost 14 characters contained in ALPHA into the 14-digit Non-Normalised Number which
they specify. This number is returned to the X-register.

CODE does not generate an error message if non-hexadecimal digits are contained in the ALPHA string.

DECODE

DECODE X TO ALPHA

Converts and replaces the contents of ALPHA with the 14-characters representing the 14-digit number
in the X-register.

If executed from the keyboard, DECODE instigates an AVIEW instruction to display the returned value.
If a printer is attached to the system, DECODE will optionally print the decoded value.

If executed by a running program, DECODE will not perform an AVIEW. To cause the decoded value
to be printed insert a PRA instruction into the program following the DECODE.

If single stepped, [SST|, DECODE will not instigate an AVIEW.

18

NRCLM

NON-NORMALISED RECALL BY M

Recalls to register X the contents of the register whose absolute address is in the least significant 3
digits of status register M, i.e. in hex form as the last character and a half of ALPHA. NRCLM generates
a NONEXISTENT error message if the register addressed is not physically connected to the HP-41.

The easiest method of entering a register address is via the ZENROM *SYNTEXT’ entry procedure. To
use this, go into Alpha mode and press [SHIFT|IALPHA|. At the two digit prompt (righthand side of display)
use the hexadecimal keypad (only the keys 0,1,2,...89 & A,B,...E,F are now active) to input the characters
representing the address of the register. For example, to recall, the Extended Memory register at address
2EFh (see Figure 3.7.1), use SYNTEXT entry in two stages. Remember, however, that NRCLM takes the
last ONE AND A HALF characters from register M. Therefore, you must input an extra zero at the front
of the address input to the SYNTEXT prompt.

E.g. to input address 2EFh, press the following keys while in Alpha mode:

|SHIFT|ALPHA| shows two prompts

0] 2] input the dummy zero before the first digit of the address. Display
shows the starburst character

[SHIFT||ALPHA| shows new prompts

E| [F| displays the second character (also starburst).

To recall the register 2EFh, simply execute NRCLM.

NRCLX

NON-NORMALISED RECALL BY X
Overwrites X register with the contents of the user data register whose register number was specified
in X before the function executed. Using NRCLX, only addresses up to the current SIZE can be recalled.
The content of register X is saved into LASTX.

Generates NONEXISTENT message if the register number is greater than, or equal to the current SIZE,
or ALPHA DATA error if register X contains a string.

NSTOM

NON-NORMALISED STORE BY M

Stores content of register X into the register whose absolute address is specified in the least-significant
three digits of M, i.e. the last character and a half of ALPHA.

Generates NONEXISTENT message if the register addressed is not physically connected to the HP-41.

19

2.3 UTILITY FUNCTIONS
LASTP

GO TO LAST PROGRAM

LASTP positions the user program counter to the first line of the last program in program memory, which
is always that program containing the permanent END instruction (i.e. the “END. instruction)

In addition to being executed from the keyboard, LASTP can be inserted into a program to produce a
very fast GTO during a running program.

NOP
NO OPERATION

When used in PRGM mode, NOP is a 1-byte function that inserts an empty text line, that is an FOh byte,
into the program as the next program line.

Alternatively, the function may be entered as an XROM identity, XROM 05,07, by means of the RAM
Editor (RAMED), or by assigning NOP to a key and then entering the function into the program with
ZENROM removed from the HP-41. If used in this manner, NOP will consume 2 bytes and execute slower.

When entered as a FOh byte, NOP will enable the user stack lift, so it is not really a ‘true’ NOP. However,
when entered as an XROM identity, XROM 05,07, NOP will behave as a true NOP without enabling the
user stack lift.

Error messages will be generated as follows:

PACKING, TRY AGAIN - If there is no room left in program memory for the insertion to take
place.
ROM - If the insertion is attempted into a ROM based program.

TOGF

TOGGLE FLAG

A programmable function to toggle the current status (from set to clear or clear to set) of the HP-41 flag
whose number is specified in the X-register as an absolute integer value.

Operates on all 56 user and system flags from 0 to 55. Users should, however, be aware that certain
system flags return to a default or conditional status upon halting of the running program. In addition,
performing certain operations will also cause the status to reset.

Generates a NONEXISTENT message if the flag number in register X > 55. If register X contains an
alpha string, then the ALPHA DATA error message is displayed.

20

SYNTHETIC PROGRAMMING

3

THE THEORY OF
SYNTHETIC PROGRAMMING

To gain the most from the remainder of this User Handbook, we recommend all users to read this chapter.
The theory of Synthetic Programming covers many important concepts of the HP-41’s operation and a
good grasp of this is necessary for any user intending to begin machine language programming.

For this chapter we have assumed the reader is familiar with the HP-41, has an good grasp of User
Code (RPN) programming and has read the HP-41 Owners Manual.

It must be stressed that the purpose of this handbook is not to replace those books already written on
Synthetic Programming (See Appendix C), but to provide the User with enough information to appreciate
the vast benefits that Synthetic Programming and ZENROM provide for the HP-41 programmer. To do
this, it has been necessary to pack more than three years work, by User Groups throughout the world,
into just a few pages.

If this is your first encounter with Synthetic Programming, we would suggest you take your time reading
this chapter and not to worry if you don't fully grasp everything at the first reading. Time spent on this
section will be very well rewarded in the future.

Please bear in mind the statement, made at the start of this Handbook, regarding the NOMAS status
of Synthetic Programming.

23

3.1 SP - ORIGIN AND USES

Synthetic Programming (generally called ‘SP’ for short) is a technique used to enhance the power of
the HP-41 programmer. It does this by extending the limits Hewlett-Packard set on the range of instructions
executable by the computer.

Whenever a company designs a new product, they set specific limits on what the product is capable
of. Such limits may be decided for design, technological or cost reasons, but they also decide implicitly
what the product cannot do. So it is with a computer language - and the ‘User Code’ of the HP-41 is,
by any definition of the phrase, a computer language. With a computer, the designers must decide not
only what the computer is capable of, but also what the computer User should be capable of.

On the HP-41, this means how the User can manipulate the data entered into the computer, which
peripheral devices can easily be communicated with, etc. It also means that there are things which the
designers have decided, for one reason or another, that they would rather the User couldn’t do. As a
simple example; the User cannot (in theory) generate more than ten distinct TONEs, since the TONE
instruction will only accept one of ten possible arguments in the range of 0 to 9.

SP is a programming technique widely used among HP-41 users ‘in the know’ to enhance their
programming power by extending the limits set on the computer’s language by Hewlett Packard. This
is done by taking the individual bytes making up the instructions that can be entered into the HP-41’s
program memory, and combining them in ways the designers did not anticipate. By this means expanded
versions of existing instructions are created or ‘synthesised’ - which is the origin of the technique’s name.

Although there is more to SP than simply rearranging the contents of program memory, other SP
techniques (e.g. assigning complete instructions to a key for single-key execution) are best understood
once the more basic techniques are mastered. On the HP-41, a complete instruction means an instruction
(such as ‘STO’) and a single argument (such as ‘00’), combined and available with only one keypress.

As program lines are keyed in, the HP-41 is continually parsing your keystrokes and using them to assemble
sensible instructions, according to a pre-programmed dictionary of valid keystroke combinations. Thus,
the 41 knows that LBL A is a sensible instruction sequence, but that STO A is not.

Having received a sensible sequence of keystrokes, the HP-41 will store in its memory one or more bytes
which were programmed by the designers as representing your keyed-in instructions. For example, LBL
A would be stored as two bytes, one of which represents the ‘LBL part of the instruction (also called
the prefix byte), and the other representing the ‘A’ part of the instruction (also called the argument or
postfix byte). For LBL 25, the same prefix byte would be used (since this is also a LBL instruction), but
with a different postfix byte, since the argument of the instruction is 25, not A. Conversely, a STO 25
instruction would have a different prefix byte (different instruction), but the same postfix byte would be
used as for the LBL 25 (same argument).

24

Fortunately, Hewlett Packard made the instruction set for the HP-41 available to the user community soon
after the launch in 1979 - so the coding sequence is well known. Taking the instructions in the last
paragraph, we know three possible combinations:

STO 25, LBL 25, LBL A.

The question asked by inquisitive users of the HP-41 was; ‘What happens if, somehow, an extra fourth
‘illegal’ combination, STO A, could be created in program memory?’ The answer is that you have a new,
‘synthetic’ instruction which can, in a single two-byte instruction, store directly into register 102.

To understand how this instruction comes about, and to see the ramifications across all HP-41
programming, let’s now analyse the structure of instructions on the HP-41 in more detail. To do this, we
need to understand the HP-41 programmers’ Rosetta Stone, the HP-41 Byte Table (See Figure 3.1).

This fearsomely complex-looking mass of hieroglyphs contains all the prefix bytes understood by the
HP-41, as well as all the postfix bytes and their meanings. In addition, all the display and printer characters
represented by the bytes are shown. Although the table is indexed in hexadecimal (to base sixteen) a
decimal number index is also shown in each segment. Hexadecimal notation is used because the table
contains 256 entries, which nicely fit a square 16 by 16, with base sixteen numbers along the edges.

Probably the most difficult task in coming to grips with synthetic programming is understanding the
hexadecimal number system. In everyday life we count in a denary base system (to a base of ten) and
numbers increment as follows:

0O 1, 2, 3 4 5 6 7 8 9
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, oo

In order to count in base 16, we need to borrow some new characters from the alphabet to represent
the equivalent of 10 through 15. Hexadecimal borrows the first six letters A through F to produce a counting
system:

00, 01, 02, 03, 04, 05 06, 07, 08 09, OA, 0B, 0C, 0D, OE, OF
10, 11, 12, 13, 14, 15 16, 17, 18 19, 1A, 1B, 1C, 1D, 1E, 1F
20, 21, 22, 23, 24, 25 26, 27, 28 29, 2A, 2B, 2C, 2D, 2E, 2F

For practice purposes, examine the Byte Table and compare the outer index values against the decimal
values in each segment. Note that the table is indexed by row first then column numbers. For example;
the value 4Ah (where the ‘h’ indicates hexadecimal) is: row 4 and column A - which has an indicated
decimal value of 74d. For clarification, decimal values will be indicated with a letter ‘d’ following and
hexadecimal values with letter ‘h’

A cross reference chart between the commonest numbering systems is given in the Reference Tables
in Appendix E.

25

4048100, 84Aq-£

ousequiuyg = |FRESZEEB|IRSL SR2B(LLR KRUR(2LIP INNN|BRNNY 33I3[(c258 =528 (223% 8828
LLee f ottt ot footl JtioL [otol | LoOL [oool JLLLO [OLLO | LOLO [0OLO J LLOO | OLOO | LOOO | 0000
) 3 a J 8 v 6 8 L 9 S 14 £ [4 L 0
AL 2L «STL 1 TLYRETL|ZTTL| ALTL x0Tl moLL|nBLL{NLLL[39LL]sSLL{ubll]wELL|a TLL
4 0 2 p|l@®@ @ 4|18 o/, 4 @°D|@IdOLO|B\NBSIW|E |8 X8 Al Z|8 |

Q10| MIIAV| A3QS| NVIW] éOSX| NOIS| dA#X| éA=X] X1D[XiSV1] NQ¥ Jd] 1S1 Id| A<>X I
OLlll|YOllfweéoL]| T8OL[d LOL|~90L|T SOL|Y ¥OL] &€OL|# Z0L| 2 LOL(P OOL] 2 66(Q 86| © Lb| 2 96
@ 18 |8 HI® 98 i@ 3|8 aj@ Jd|@ 8@ V| IO0L[POOLf > 66| B6[™ L6] . 96
1J0«| GONY¥| ¥He| SWHe] de¥] ¥+a ¥ INI] ¢0=X] ¢0>X[X+LNI| ¢0<X] ¢0#X| LOvd[Sav X/1
- S6(+ vo L €6~ T6| I L6 2 06| A 68| X 88| M (B[A 98] N S8|L v8]S €B(y Z8(DO L8[d 08
T S6|le P6[LC €6 TO) D L6 2 06) 4 68| x 88 M L8| .1 98 M SB| . ¥8] S €8|y UB[O 8|4 OB
J3Q«~] NVIV| SOJV| NISV] Nvli| SO0J NIS| L-X43] X40L] 901 X43] SHOJ] XIA[L¥DS| ZiX N1
O 6LIN 8L|W LL(T LA SL{r #L| T € H ZL O IL|F 0|3 69|a 89]D 9|8 99|V S9(® +9
O 6L N BLw LL[7 9Ly SLY T vl I €L H TLY WLy 0Ll 2 690 89) 3 £9]€ 99| S9|a ¥9
de¥| ¥&d| HI% %] QOW] -SWH [+SWH = 3] +3] EASX[LA<X | éA>X / %* — +
& B9[< T = 19> 09] ¢ 6S| : B8S|6 LS| 8 95| £ SS| 2 ¥S| S €S|P TS| E IS|2 0S| T 6v| @ 8F
o €91 T = L9[7 09 ¢« 6S|@ 8S| B LS| B 9S|L SS| 9 ¥S[S €S| m TS| E LS| 2 OS|/ v 8Y
SLOLS|PL OLS[EL OLS|ZL OLSPLL OLS|OL OLS |60 OLS)80 01S]Z0 OLS[90 OLS|{SO OLS {¥0 OLSJ€E0 OLS|Z0 OLS|LO OLS |00 OLS
2oLy |- SP| - bh)+ EV| o TV C LV > OV] . 6E|8 BE[% LE|® 9E| # SE| . HE| i €€ (A%
A A R) Sv|> " bv] + v ¥ TH[Lv[> Ov] . 6E| S BE| N LE|G 9E| A SE| . PE[! EE it
SLY[YL DAEL DA[ZL DAJLL IA|0L 18 {60 10¥ |80 134 £0 1Y |90 12450 1Y {0 1D¥ J€0 1D {20 10¥| L0 103]00 10¥
B IE|F 0| = 62| BZ| ¥ LZ|D 92|00 ST| 2 vZ|Q €T| 2 22| ¥ 1Z|© OZ] ¥ 6L (2 8L| U LL|B 91
@ LE| @ OE| 7 62| 8 82| @ LZ|® 92| @ S| @ vZ| @ €C| @ 22| 8 12| @ OZ) @ oL@ 8L| @ LL| @ 91

1 M| 2D3X| L1019 93N X33 ‘ 6 8 L 9 S 14 € [4 L 0
S|4 VL P ELla T~ LLfe Ol o 6% 8]t L] d 9] g S|° ¢]>» €| X T] = L|[* 0

0]8 SL| & vL| ” €l|~ TL| @ LL|® OL| @ 60| ® 80| ® £O| ~ 90 ¥ SO| ¥ ¥O| @ €0| & 2O x LO| - 00
vlLig1jeL181{zL 181 L1 187§ 0L 19760 187180 181| £0 187} 90 181/ S0 181 ¥0 181 €0 181] 20 181] L0 181/00 181] 711NN

NSV LIIHS —= 7 |v/d/asn](wodd)—[ovd NO 155 159 3215 S/¥ dn Ad0J 130 [("019) 2 1v)
3 3 a J 9 v b 8 L 9 S 14 € [4 L 0

XILIHINAS ‘2861 @

ONIWWWEOO0¥d JILIHLINAS 304 QAVI 3ONIAI4FY XDIND D Lv-dH

Figure 3.1a

26

VSN ‘99206 VD ‘Y2098 UDHDYUDW ‘'BAY SMAYDW 0S| ‘XILIHINAS

0} 3d0|aAUR padwDys PasSaIPPD-43s D Puas ‘DAJID INOA Ul SJB|DBP 4O 4SI| D PUD UOLDWLIOJU! 8d1ud JO4

LLLL f ottt | tott jooLL j Liot | oLtoL | Loot [ooOL j LLLO | OLLO | LOLO | OOLO | LLOO | OLOO | LOOO | 0000

| 3 a J 8 v 6 8 L 9 S v £ [4 L 0
< GSZ| 2 vSZ| € €ST| 1 TST] M LST| Z 0ST| ~ 6¥T| x 8HT] ™ LYT| » VT SPT| 3 ¥¥T] S EVT| 4 TV ® LV o OV
@ ONI| P ANI| 2ANI| 9QNIJ ©QaNIj .4AONIf{ "DANIjid ONIJ COANI|\ N ONI|JWANI| 1 aNIf X ONIf A QNI| Z ONI| 1 QNI
SULXIL P LIX3L € LAX3L S LLXIL LLIX3L)OLLX3L] 6 1X3L] 8 AX3L] £ 1X3L| 9 LX3L[{ S LX3L1] ¥ 1X3L) € LX3L| ¢ 1X31) L 1X31f{ 0 1X3L
O 6ET|Y BEZ|W LET| T 9ET] A SET| C VEL| T EET|M TEL|© LET| # OEZ| @ 6ZT| P BLT| 2 LTL| A 9TL| © STL| & VLT
LLLANI{OLLANI|60LANI{80LANIJZ0LANI{90LANI|SOLANI{¥OLANI|E0LANI{ZOLANI|LOLANI{O0LANI} 66 ANI| 86 ANI| L6 ANI| 96 ONI
== 03X| -~ 03X |-~ D3IX]| -~ DIX] - DIX| -~ DIX[-- BIX[-- BIX] -~ OIX]| -~ BIX| -~ BIX]| -~ VIX] -~ OIX] -~ DIX]| -~ DIX| -~ DIX
T ETT 4 TTL L LTL N 0ZZ) T 61| Z 8L A LIZ| X I MSIZ| A VI BEIZ| AT 8 LIT| B OLL| B 60| 4 802
S6 QONI| v6 ONI| €6 GNI| Z6 QNI L6 GNI| 06 QNI| 68 ANI| 88 NI £8 NI 98 ANI| S8 ANI| ¥8 ANIJ €8 ANIf Z8 GNI| L8 ANI| 08 QNI
~~ 019|~- 019[~~ 019[{-~ 019}~ O19[-~ 0L9|-- 0L9[-- 0L9]-- 019]|-- 0L9{~~ 0L19|-- 019~ 019|-- 019[-- 019|-- 019
O LOZ| N 90| W SOZ| 1 ¥0Z) A €0Z(r Z0Z| I LOZ| H 00Z] D661 4 861) 3 L6L| T 961 D S6L| A v6L| B €61 @ T6L
6/ ANI| 8/ ANI|ZL ONI[9L ONIJSL ONI{ #£ ONIf €2 ANI| 2 ANIJ LZ NI| 0Z ANI| 69 GNI| 89 ANIJ £9 ANI| 99 ANI| S9 ANI| ¥9 QNI
-- 181 --<>X [{1v8019/1v8019]1v8019]1v8019/1v8019]1v8019[1v8019{1v8019{1v8019{1¥8019]1v80191v8019{1¥8019{1Vv8019
Z L6l £ 061 =68l > 88L) ¢ (8| : 98| 6 S8L | B VBL| L EBL(D Z8L(% LSL(P OBL| & 6LL| & BLL(B LLL| B 9LL
€9 GNI| Z9 aNI| L9 ANI| 09 ANIJ 6S ANI| 85 ANI| LS ANI| 95 ANIJ SS ONI| ¥S GNI| €S GNI|{ ZS NI LS ONI| 0S GNI| 6% ANIf 8% ANI
vL OL9[€L OL9(ZL OLOfLL OLOJOL 019[60 0L9|80 019]£0 019]90 0L9{S0 0L9{¥0 0L9[€0 OL9JZ0 0L9]L0 019(00 OL9| IYVdS
A SLL 2 PLL| = ELL ¢ TLL A4 LLL % OLL[€ 691 2 89L) . L9L| " 99| % SOL| # v9L| # €91 9L 4 19l 091
Ly GNI{ 97 ANI| Sy ONI| v¥ ONIJ €7 ANI| Z¥ QNI| Lt ANI| 0% ANI| 6€ ANI| 8€ ANI| ZE ANI| 9€ ANI| SE€ ANI| ¥E ANI| EE€ QNI| ZE QNI
33vdS| ONI B3 ¢4 dSdf Jédd| ¢S D) IS|LE-8TX| LT-PTX|ET-0TX|6L-9LX]SL-TLX] LL-BdX] L-¥ ¥X] €-0 dX
#OGL| F BSL| = LSL| @SB SSL| D HSL| O ESL{ IS Q LSL| 2 0SL| ¥ 6vL| O 8YI]Y LVL| @ 9VL| U SYL[B PP
LE ANI| OE ANI[6Z GNI| 8Z ANI} LT ANI|{ 9Z ONI| ST ANI| ¥ ANI] €C ANIf ZZ ANI| LZ ANI|OZ ANIJ 6L GNI{ 8L ANIf ZL ONI{ 9L ONI
INOL| 9N3 12S Xld] 10¥V| OLSv] 93| MIIA 35 os| /1S] % 1S} -—1S| +1S 01S o)
B EPL| A TVL|™ VLl 7OVl < 6EL[» BEL| 0 LEL| 7 9EL] + SEL| J VEL| S EEL| 0 ZEL] » IEL| X OEL| = 6ZL| & 8ZI
SLANI|#L ONIJEL ANI{ZL ANIJ LL ONI|OL GNI| 60 ANI| 80 ANI| £O ANI{ 90 ANI|SO ANI|¥0 GNI| €0 ANI{ ZO ANI{ LO ANI| 00 QNI
AQV[1dWOd 440/ NOV] 3d0V{ 9¥1D 3Sd] JHSV V)| d338] NI¥| dOISII¥3IN3[avy¥9| avy[93d

3 3 a Jd] v 6 8 L 9 S 4 £ [4 L 0

XILIHLINAS ‘2861 O

ONIWWWIO0Yd JILIHINAS 304 Q¥VI IONFA3A XIND JLP-dH

27

Figure 3.1b

3.2 BYTES AND MEMORY

The byte is the basic unit of HP-41 memory and in RAM consists of eight bits. Bits (binary digits) being
either 0 or 1; on or off; etc. Each byte can therefore be coded at bit level to a range of 218 entries -
which can also be represented by 255 decimal, or FF hexadecimal. It is normal to refer to these bytes
as two hexadecimal digits between 00h and FFh.

Every instruction that the 41 is capable of executing comprises one or more bytes from this byte table,
which is used by the machine to assemble and later decode these sequences. Whenever the HP-41
attempts to execute an instruction stored in its program memory, it firstly reads the first byte of that
instruction. Because many instructions only have one byte, the function can be executed immediately.
However, many others have more than one byte, and so the HP-41 must also read these before it can
execute the instruction. This is where the idea of prefix and postfix bytes comes from - with some
instructions having no postfix; some having one byte to code the postfix; some having two; and even
some special instructions having a variable number.

Those instructions that can take one or two postfix bytes have the nhumber of bytes implicitly stored in
the prefix byte. E.g., a VIEW instruction always has one postfix byte as it is defined to be a two byte
instruction. Once the prefix byte for ‘VIEW’ has been read and decoded by the HP-41, it knows to fetch
the postfix byte before it can understand exactly what is to be executed. Those instructions taking a variable
number of bytes actually contain a piece of information telling the 41 how many more bytes to read.

3.3 THE BYTE TABLE

Let’s examine the Hexadecimal Byte Table in more detail to determine which bytes code for what and
the nature of ‘implicit storage’ should become clear.

Five rows of the table contain ‘single-byte’ functions, i.e. having no postfix bytes. These are in rows 4
to 8. There has been some attempt at functional grouping within these rows, but the very nature of the
functions makes this difficult to achieve.

Number-entry bytes - the digits 0 to 9, EEX, NEG (which is what you get when you press CHS whilst
entering a number, because CHS is also a function in row 5) and ‘Point’ (.’ or *, * dependent on flag
28) are in row 1, along with two special instructions of variable length (GTO‘alpha’ and XEQ‘alpha, of
which more later), and a ‘spare’ byte (HP didn’t use it to code for any particular prefix).

Rows 0, 2 and 3 are ‘special’ single-byte functions, used as memory savers. HP realised that, in contrast
to their previous handheld machines - where the few distinct instructions allowed all possible combinations
to be coded with just 256 entries (i.e., all single bytes) - on the 41 there are so many logical combinations
of functions with allowable arguments that all functions which took such arguments would consist of more
than one byte.

28

Because, at that time, they were designing the 41C with only 445 bytes of User-programmable memory,
they decided to offer some memory saving to the User by allowing the commonest register operations
(STO and RCL) to be combined with the most frequently-used register arguments (the lowest ones) and
placed in single-byte functions. Thus, STO 00 to STO 15, and RCL 00 to RCL 15 are, single bytes when
stored in RAM. (The range of registers, 00 to 15, in these instructions, is no accident — both instructions
occupy a single row in the byte table, and use the column index digit to select the register — 0 to F).

HP also realised that their system of only allowing transfer of program control to a label, rather than
a line number, meant that a significant proportion of program memory would be taken up by LBLs and
GTOs. Normally, a local label is two bytes and a GTO to that label is three (explained later). However,
HP set aside part of the Byte Table to give the programmer the ability to trade off memory consumption
against a limited local label choice in the range 00 to 14, and maximum branch distance of 16 registers
(or 128 bytes if you are in ROM). These LBLs are shown in row 0, and are all single bytes, and the GTOs
are in row B. The arguments only have fifteen allowed entries, because one byte from row zero is used
as the ‘null’ byte (one used by the 41 as a place holder in program memory, and normally invisible to
the User). Row B was built to mimic this, with the byte BOh being ‘spare’. The GTO structure is complex,
and will be discussed after the general structure of two-byte functions is clarified.

3.4 MULTI-BYTE INSTRUCTIONS

A two-byte function, with the exception of XROMs and short-form GTOs, always consists of a prefix byte
which completely defines its function, and a postfix byte which completely defines its argument. As an
example, we'll look at how a TONE instruction can be built up. The prefix byte that defines the function
is 9Fh. The argument is found from the argument entry within each table segment. A TONE 4 instruction
would need a byte which meant 04 when used as an argument byte. This is byte 04.

| column 4 |
Postfix | | Prefix
Argument | LBL 03 | Argument

row 0 | 04 N | «—— Display

| | Character
Decimal | 4 o |
Value /l I N —— printer

| | Character

Figure 34

29

In case you're wondering why this doesn'’t code for a LBL 03, it's because a byte is interpreted according
to the context in which it is found. So byte 04 means argument 04 when it is read in by the 41 as an
argument byte; LBL 03 if it is read in as a prefix byte; the character X (a two-legged hangman) when
it is placed into the display as part of a text string; and the Greek character « (alpha) when printed
out on an HP-82143 or 82162 Thermal Printer. It can even mean the function CLP if it is found in a key
assignment register, but we’ll come back to that later.

The TONEs 0 to 9 are coded by the byte sequences 9F00h through 9F09h. All two-byte instructions
are assembled in this format. Two-byte prefixes which operate in this form are row 9; the section of row
A from A8h to ADh; and bytes CEh and CFh. Prefix bytes 90h to 9Bh and CEh are all the 41 register
operations; 9Ch to 9Eh are display operations; 9Fh is the TONE, A8h to ADh the flag operations; and
CFh the local label instruction. According to the HP Owner’s Manuals the allowed postfixes for the HP-41
are 00d to 99d, A to J and a to e (for LBL instructions), and X, Y, Z, T, and L.

/X ABS FACT | X#0? |X>0? [LN1+X|X<0? |X=0? JINT FRC D—+R [R—=D |[<HMS |*HR |RND |-OCT

96 T 197 o |98 b |99 < Jioosf{101 . |A BB EB|C E|D B|E B|F B8|GC B|H B|I &) 8
96 * |97 a [98 b |99 c |100 d|101 e |102 £ {103 J104 h |105 1 [106 4 |107 kJ108 1 |109m[110 n i1l O
CLI X<>Y |PI CLST |R? RDN |LASTX | CLX X=Y? |X#Y? |SIGN |Xs0? |MEAN |SDEV |AVIEW |CLD

T 8|2 8|y B|X 8L E|/M[B|N\B|OIJEB|PT B|Q_B |[F"8(ac B|b Bfc B|d [|e
112211324114 [1155 116 ¢ [117u 118V]119w J120 < {121 > |122 Z {123 w }124 | [125>]126 £ |127 +

C
0000 | 0001 | 0010 0011] 0100 | 0101 | o110] 0111] 1000 | 1001 | 1010 | 1011 | 1100 [1101 | 1110 | 1111

Row 6 of the byte table contains the postfix bytes that code for postfixes A to J, and row 7 contains
those for postfixes X, Y, Z, T and L at the start, and a to e at the end. Earlier, we suggested that STO
A could be used to address register 102 directly. If you look at the decimal equivalent of the A postfix,
found at segment 66h, you'll see that it is 102. The same applies to postfixes B to J which can access
registers 103 to 111. Postfixes T to L, the order in which they appear in row 7, access stack registers
T to L in the memory of the 41. The rest of row 7 access registers M to e , but we'll come back to those
later.

Adding the two ‘unnamed’ postfixes 100 and 101, which appear simply as ‘00’ and ‘01’ when used with
register or LBL operations, but do access registers 100 and 101, we have 128 postfix bytes, thereby using
half the Table. The other half can also access exactly the same registers, but take an INDirect qualifier
on the postfix. So, for example, the code for STO IND 29 is 91,9Dh. In order to find the indirect postfix
for a known postfix value just add 80h, or 128d to the direct access coding.

Back to the structure of two byte instructions. Byte AEh is the prefix byte for a two-byte function, but
does two jobs. If the postfix byte is from the upper half (00h to 7Fh) of the Table, then the instruction
is a GTO IND xx - or whatever the register was, while, if the postfix comes from the lower half, then
the instruction is an XEQ IND xx. The argument is always INDirect, with the presence or absence of
the extra 80h choosing the function.

XROMs represent one of a class of functions which are chosen not by the prefix byte, but by the first
digit of that byte - the prefix nybble, if you prefer (a nybble being half a byte). The coding is as follows:

30

- if the first nybble is A, then the function is an XROM if the second half of the prefix
byte is in the range 0 to 7.
- if the first nybble is C, then the function is a global instruction (either an END or an alpha
LBL);
- if it is a D, the function is a normal (long-form) GTO;
- if an E, it is a numeric XEQ;
- if it is an F, then the function is a line of text.

The purpose of an XROM instruction is to code for an instruction that is 'not known’ to the 41, ie., a
catalogue two instruction. These instructions are coded by giving each possible plug-in device an identifier
number (in the range 0 to 31), and allocating each device up to 64 possible functions in its catalogue
(numbered 0 to 63). Then, taking the binary for the identifier (five bits), and the binary for the function
(6 bits), they can be assembled into the last eleven bits of the two-byte function to give the complete
XROM, thus:

1010 Oddd ddff ffff

where: - ddddd is the device number;
- ffffff the function number;
- 1010 is the A first nybble in binary;
- and O at the start of the second nybble is always zero.

XROM numbers can be seen if you place a plug-in device function in program memory, then remove
the device that contains it.

In general, function number ‘00’ is used as the header for the ROM or plug-in device, and is a function
that normally does nothing except execute a return. The header should be longer than seven characters
for the HP-41CX to pick up the ROM header during a CATalogue 2, as it looks for all entries longer than
7 bytes. An exception is the Math Pac 1B header, which is only seven, and can therefore be called as
a function. Place it into a program, remove the Math Pac, and see XROM 01,00 in the display. The hex-
code for the two bytes in program memory is A0,40h. Similarly, the hex-code for the printer function
PRKEYS is A74Ch , since its XROM code is 29,12 (decimal). Note that although, in theory, device 0
is possible, in practice it is not and never will be used. The reasons for this aren’t important here, but
XROM 00,nn can crash the HP-41 by locking up the keyboard, and thereby stop the User from re-gaining
control. This should be avoided.

There are two forms of local GTO instruction, called short- and long-form. Short-form GTOs save program
memory, but are restricted to GTOs of ‘00’ to ‘14, and are coded in two bytes. The coding is as follows:

1011 1l drrr rbbb

where: - llil is the label desired plus one;
- d is the direction in which the destination label lies
(0 means forward, the direction of increasing line numbers, 1 backwards);
- rrrr is the number of registers away;
- and bbb the number of bytes.

31

The postfix byte thus contains the jump to the label. This is added to, or subtracted from (if ‘d’ is one),
the current program counter - the datum that tells the 41 which instruction to execute next. When the
GTO is first entered, this byte is a null (zero), that tells the 41 that the instruction has yet to be ‘compiled’
Compiling is the 41’s process of finding the label and storing the branching information into it - this being
accomplished during the first execution of the program line.

If the GTO is in a ROM (a plug-in module), then the last seven bits of the GTO are the number of bytes
to the label - because in ROM there are no registers. For ROM programs, this can be up to 127 either
way, so a branch in a ROM can actually be slightly further than in RAM. Note also that the direction
bit alters in ROM - here a ‘I’ means ‘forward’ in the program, and a ‘0’ means ‘backward’. The reason
for this is that as you move forwards in a program, the actual address of the line decreases, while in
a ROM program, the address increases. Therefore, a ‘1’ in the direction bit means in the direction of
increasing addresses.

The other form of GTO, the long-form GTO, takes up three bytes of memory, and has a structure which
is almost identical with that of the numeric XEQ instruction. The coding for these two instructions is:

11tt bbbr rrer rrer dlll

where: - rrrrrrerr is the number of whole registers away;
- bbb the number of bytes in addition to the number of registers;
- d the direction;
- NI the label, thus allowing 128 possibilities, (all as for short-form GTOs - detailed
above).
- and tt being the bit pair.

The extra piece of information here is the tt bit-pair, which will be either 01’ - in the case of GTOs, or
10’ in the case of XEQs. Note that there are nine bits used to code for the number of registers to jump
- this being the minimum number needed to allow for jumps of 319 registers and the maximum number
you are legally supposed to be able to jump within HP-41 program memory.

The HP-41 compiles each line only as it executes it, which is why the line ‘speeds up’ after one execution.
If a short-form GTO cannot be compiled, then the HP-41 conducts a search every time. A program is
always decompiled if you:
- delete a line;
- insert a line (overwriting nulls already in a program doesn’t cause it to decompile,
but the program wasn’t packed then anyway if it did contain nulls);
- or delete the END of the program preceding it in memory (this includes using
CLP to clear that program.)

32

3.5 VARIABLE-LENGTH INSTRUCTIONS

Row F is used to code for text strings - these have also been called ASCII-strings by HP . If the first
byte of any program line is ‘Fn’, where 'n’ may be any hex digit, then the HP-41 interprets the following
‘n’ bytes as alpha characters - quite regardless of what they may be, as absolutely any byte, from 00h
to FFh, may be found in a text line. The text characters corresponding to each byte are indicated in the
Byte Table. In fact, there are only 83 distinct display characters - one of these (the starburst character),
which is officially coded for by byte 3Ah, ‘stands-in’ for all the undisplayable bytes, and as such is the
commonest display character in the Byte Table.

Because a text string’s length is coded by a single nybble, 0 to F, this means that a string may have
up to 15 characters. It may also have none at all - e.g., in the case of the ‘empty’ string, “, which is coded
by FOh in a program. This empty string byte is used by SP’ers as a NOP (No-OPeration = an instruction
which does absolutely nothing - other than take up space in a program, and waste a little time when
you run it). In actual fact, the FOh byte does enable the stack lift - so is not quite a true NOP. The ZENROM
function NOP is a non-programmable function that inserts this line in program memory for you.

Strings also come into the coding of other instructions, namely those of GTO ‘alpha; XEQ ‘alpha’ and
LBL ‘alpha), where ‘alpha’ is any string. The coding of the first two of these is quite simple, while the
coding of the last is somewhat more complex. Given any string, to turn that into a corresponding alpha
GTO, place the byte 1Dh before it in program memory. This byte tells the 41 to expect a string argument
instead of a numeric one - as normally occurs on the other two- and three-byte instructions. By placing
the byte 1Eh here instead, you have an alpha XEQ line. Placing 1Fh in front of the string creates a curiosity
line, W*, but beware as this can cause system crashes.

Alpha labels are one of a category of instructions called ‘globals’ with the other instruction in this category
being the END instruction. These two instructions between them bind the HP-41’s program memory
together. The HP-41 maintains, somewhere in the dark depths of the Status registers (explained shortly)
a piece of information that tells it where in memory the .END. can be found. This is the first of a series
of instructions which form what is called a ‘linked list. The .END. contains a pointer (a relative jump,
similar to that stored in XEQ/GTO instructions) which allows the 41 to find the next global up memory.
Each global in turn points to the next one up, be it a LBL or an END, until the last global in the chain
is reached. This contains a pointer value of zero, meaning that there are no more entries in the chain.

If this ‘global chain’ sounds familiar, do a CAT 1 and watch it go by in reverse order. The simpler of the
two instructions, the END, has a structure of:

1100 bbbr rrrr rrrr Ontx pppp

33

where: - bbb and

- r rrer rerr are coded as for XEQ/GTO instructions above, but no direction bit is
needed, since the next global along the chain is always farther ‘up’ program
memory (nearer the start of CAT 1);

- n is a system status bit, which the HP-41 uses internally, and which shouldn't be
altered - normally it is a 0 anyway.

- t marks the type of the END. Where: 0 is a regular END; and 1 is the .END. (the
permanent end instruction);

- x is a ‘don'’t care’ bit - as it doesn’'t matter what it is in an END;

- pppp marks the packing status of the program - If it is 1001, then the program is
of packed status; if 1011, then the program has been altered and needs to be
decompiled. This is the action which takes up time when you quit program mode

after an editing session. If 1101,
then the program has already been decompiled, but still needs packing.

Should the third byte of the global be Fn (where n is any hex digit), then the line is interpreted as a
global label. The n bytes which follow the third byte contain two things; the alpha label itself (starting
in byte 5), and a byte (byte 4) containing the keycode of the key to which the label is currently assigned.
This is why a CAT 2 or CAT 3 function can be assigned anywhere on the keyboard, whereas, a User
program can only be assigned on one key location at a time, because the assignment information only
allows for one per label. Keycodes will be dealt with shortly. For the moment, however, note that the
n in Fn is the length of the label in characters (as it appears in the display) plus one to allow for the
keycode byte.

The only other byte in the Table yet to be dealt with is AEh, which serves for two lines - XEQ IND and
GTO IND. The suffix byte for this instruction is interpreted as:
trer rrrr

where: - rrrrrrr is the register which the 41 will use to supply the indirect branch;
- t is the type of instruction. A 0 here means GTO IND, or a 1 means XEQ IND.
This explains why the half of the Table, from which the suffix byte comes,
determines the choice of the instruction; either upper-half for the GTO instruction,
or the lower-half for the XEQ.

Since the HP-41 has no control over the contents of the register that is chosen to select the branch,
the instruction cannot be compiled, so no room need be reserved for this purpose.

The bytes CEh and CFh can be used to code for LBL nn and X<<> nn, despite the fact that Cn should
be a global instruction. This is because CEh and CFh cannot occur in globals, as there are only 7 bytes
per register. This means that the instructions which theoretically code for the references to byte 8 are
used for something else instead. Bytes DEh, DFh, EEh, and EFh cannot be similarly used (thus explaining
why the XEQ/GTO instructions run right to the end of those rows). The reason is that, in a ROM, all
twelve bits comprising the bbb and rrrrrrrrr fields contain instead the number of bytes to the corresponding
label - which means that a ROM program can be 4K long. This doesn't affect most normal HP-41 users,
but this discrepancy in the Byte Table is worth pointing out.

34

3.6 REGISTER FORMATS

HP-41 RAM comprises space for 1024 56-bit registers. Of these, 16 are used in the Status Registers,
320 for 41-Main Memory, 128 as base XRAM (Extended Memory inside the EXtended Functions Module)
and two blocks each of 239 registers for XRAM1 & XRAM2. The total of 942 registers is unlikely to be
extended as many of the currently ‘unused’ locations are used by system routines.

Each register comprises 14 digits (also called nybbles), which can be treated as 7 bytes. These digits
are numbered from the right-hand end of the register as ‘0’ through ‘13’ - these being the bytes ‘0’ through
‘6. To make this clearer, let’s imagine a typical HP-41 register containing the value for ‘minus pi * 100’
(-3141592654 * 1012).

| | | | | | | | | | | | |
Digit 13 (12111 10| 9| 8| T7T|6| S| 4| 3| 2a|1}|o0
s Rt EEEEE SRR R B e e anet SOLI EEEE EEE LT L e L P e
Value 91 3| 1] 4| 1|5)]9|2]|]6|5S5| 4] o01]0]¢2
B T o e e B e e St et SRR EEE S T e
Field s | m| a|] m|m|m|@a]m|m]a|m~n] xs] x| x
e i Sttt Sttt Sttt et T LY EEE Ll et
Byte 6 | S | 4 | 3 | 2 | 1 | 0
1 1 i] 1 1
re - R STER FORMATS

Figure 36. REGISTER FORMATS

The notation used indicates that ‘s’ is the sign of the number, while ‘xs’ is the sign of the exponent.
‘mmmmmmmmmm’ is the 10 digit number stored with an implicit decimal point after the first digit (between
bytes 6 & 5). The actual number is not stored as a binary fraction - as is normal on other larger computers
- but in Binary Coded Decimal (BCD) format. This means that the number is stored a digit at a time,
with each in the range 0 to 9. The exponent is stored as a BCD integer in the range 00 to 99 for positive
numbers and 99 to 01 for negative exponents of -01 to -99. The exact reason for this is not relevant here,
but is connected with the most advantageous method of performing mathematical functions. The sign
digit is stored as either 9 (negative numbers) or O (positive).

Thus the number -1.23456789 * 101-3 would be stored as 91234567890997. To find out what the exponent
field should be (including sign value), add the exponent to 1000 and take the last three digits.

Of course, registers are also used to store strings or text information. To represent these, the sign value
is ‘1’ and the string data are stored in bytes 5 to 0 in right-justified format with zeroes padding to the
left. E.g. the string ‘STRING’ is stored as 10535452494E47, while ‘ABC’ is stored as 10000000414243.
Note that the codes used are those for corresponding characters from the Byte Table.

HP themselves do not use any other digits in the sign field of explicitly stored numbers, although it is
possible to create such numbers. These are called Non-Normalised Numbers (NNNs), and the HP-41
has a nasty habit of changing them if it finds out that you are using them. NNN'’s will be discussed
elsewhere in this handbook.

35

a——Byte #

HEX v 5 4 3 21 0!
1FF 1 | L 1 1 1
TOP__OF MEMORY
Memory
Module
4
1C0
Memory
.D_ALA. Module
3
180 Memory
Curtain Module
REGO0_ ___ _ _ __ ?
1st User Program MAIN MEMORY
(HP-41CV)
140
Memory
PROGRAM i
MEMORY :
"0 Yesteron ___T__ W,
FREE REGISTERS
____ I/0BUFFER
_____ ALARM BUFFER_ _ _ __
0Co KEY ASSIGNMENT BUFFER
0BF
080 Extended
Function
(128REGS)
File #
/-
i 400 [ow Jwo | oo] 2e[ro [eF
020
00F VOID
STATUS
000

36

3FF

3F0
3EF

3C0

380

340

301
300

2F0
2EF

2C0

280

240

201
200

VOID

SY3LSITFY
6¢¢C

Extended
Memory
2
00 Joo[02] o1]oo o3 [EF
VOID
2
m
S
Qo
=
ps)
w
Extended
Memory

00 Joo [0040 J3E JF2TEF
VOID

1

T T T

6 5 4

32170

Figure 3.7.1 HP-41 Memory Configuration

3.7 MEMORY STRUCTURE

A detailed memory map of the contents of Main Memory is shown in Figure 3.7.1. This indicates that
HP-41 memory can be broken into five areas - these being all ‘dynamically allocated’, that is, their location
in memory will vary according to their presence and size. The only requirement is that the ordering of
the five blocks is always maintained. The topmost, or highest-addressed, area of HP-41 memory is the
user Data Register block, which is where the numbered registers are to be found. The location of R00
(register 00) is called the ‘curtain’ This data block can be zero registers long, i.e., not actually there.

The program area comes next, with the first byte of the first program being in byte 6 of r (curtain - 1).
(Note: The manual will adopt the notation of r xyz to indicate an absolute register address as marked
on the side of the memory map - Rnn will mean the nn'th register in the User Data space). The last
register of the program area always contains the permanent .END. in bytes 2 to 0 of that register - this
is the only instruction in HP-41 program memory which always occupies the same place within a given
register.

After this comes ‘free space’ This means those registers that as yet have not been allocated to any of
the other four blocks. Their amount is the number the 41 computes for the display 00 REG nnn. This
block can be zero registers long, in which case the 41 has run out of available registers.

Next comes the buffer block, which contains buffers - a buffer, is a block of contiguous registers currently
being used to contain data for a plug-in device, for example, timer alarm information. All buffers have
a similar structure, with the lowest-addressed register in the buffer being interpreted as follows:

FIGURE 3.7.2 BUFFER FORMATS

Digit: jt3 |12 |11 (10 9 | 8| 716 S| 4} 32| 1] 0]}
D e e R A e et T L B P P Pty e T E T T T
Il x| vt s s | x| x] x| x| x| x|}x]|x] x| x|
where: - t is the type of the buffer, and is used by plug-in devices to decide which

buffer(s) belong to it (all timer buffers have A here, HP-IL buffers are B (Plotter)
or C (IL DEV)).

- ss is the total number of registers in the buffer;

- and x digits are ‘don’t care’ digits.

Digit 13 is usually the same as for 12, but is only ever used when the HP-41 switches on to determine
if the buffer is valid (the 41 clears this digit, and then gives any plug-in devices the chance to replace
their own type digit here. If, after this, any buffer remains with a O here, it is cleared out, and the registers
used returned to free space).

If you start playing with buffers, don’t create one with an ss field of 00. The HP-41 considers this to be

an empty buffer, because it finds an ss field signifying an empty register. Switching the 41 off then on,
will cause the keyboard to ‘lock-up’ - which is a nice way of saying the machine

37

38

03 19 23 33 49
01 1 21 31 41
oA 1A 2A 3A 4A
02 12 |22 [32] |42
08 1B 28 3B 4B
03 13 | 23] [33] |43
ac 2c L 4C
04 24 36 | | s
aly 1D 20 3D
0s 15 25 35
OF 1E 2E 3E
06 16 26 36
OF 1F 2F 3F
07 17 27 37
10 20 30 40
08 18 28 38

Figure 3.7.2 Key Assignment & Global Label Keycodes

Hex key codes
as used in

KA registers
and in

Global LBL's

will not respond to any keystrokes you make. What is actually happening is that the HP-41 has got stuck
in its internal buffer-validating code with no hope of exiting. The only way out is with a Master Reset
(MEMORY LOST), or by interrupting the power supply for quite a while.

The highest-addressed register always contains:
FO XX XX XX XX XX XX

where XX’s sometimes are clear, but may contain a string name of the device controlling the buffer. This
is not a necessity in buffer construction, but the plug-in devices may require the string to be there, so
don’t change it.

The buffer area can be empty and it always runs right up against the last, lowest-addressed block, which
contains key assignment information. Each Key Assignment register contains two assignments, formatted
as:

FO cc cc kk cc cc kk

where: - cc cc is the one- or two-byte code representing the function. If from CAT 2, the
XROM instruction coding for the desired function is stored here. If from CAT 3,
then the first byte is On (usually 04h), and the second is the byte from the Byte
Table that codes for that particular function. COh means an END instruction, DOh
a GTO and EOh an XEQ. The non-programmable functions are coded from row 0,
according to the line above the top row of the Byte Table. For example, 04 codes
for CLP when in a key assignment register.

- kk is the field for the keycode of the assignment.

Keycodes for the HP-41 are shown in Figure 3.7.2. Note that these are also the same codes as used
for global LBL instructions.

If there are an odd number of assignments, then absolute register 0COh will contain zeroes in bytes 5
to 3 inclusive. Whenever an assignment is cleared, only the kk field is cleared immediately. However,
PACKing memory (or switching the HP-41 off/on) will cause registers with 00 keycodes in both fields to
be removed, and adjacent registers each with a single assignment to be merged into one.

There is one restriction regarding the key assignment/buffer area block. It must not contain any completely
empty registers - i.e., all zeroes. The HP-41 will consider the first empty register it finds to be the end
of the key assignment area (it doesn’t actually look inside the buffers, but skips along the first register
of each): any further data above this point become 'detached’ information that clutters free space, but
which the HP-41 isn't intelligent enough to remove. In addition, a buffer must not contain any empty registers
because of a bug in some Card Readers. The Card Reader HP-67/97 translation function ‘borrows’ free
space, but searches from the wrong end of memory. While the 41 allocates free space from the .END.
downward, the Card Reader looks for it from r 0OCOh upwards and stops at the first empty register found.
It has never heard of buffers, and so may write rubbish into the buffer area.

To avoid this problem, the Time Module, and the CX, force non-null bytes into any message string stored

with an alarm if that message contains enough contiguous nulls for there to be an empty register in
the Timer alarm buffer.

39

Extended Memory on the HP-41 (XM) is a virtual memory area, which appears to the user to be a
contiguous block of registers, either 124, 367 or 600 registers long. In fact, it is composed of three separate
blocks of memory, in three uncontiguous locations, linked together by the XFM’s internal programming.
The lowest block, in the XFM itself, called the ‘base’ block, is actually 128 registers long. The other two
blocks, called XRAM1 (left-hand ports) and XRAM2 (right-hand ports) are each 239 registers long. This
gives a total of 606 registers - with 6 registers being for system use.

One of these six, called the ‘partition’ register, is a register which contains FF:FF:FF:FF:FF:FF:FFh, and
marks the end of used XM. It is never available to the User for use - XFM will replace it with its original
value at the first opportunity. Two more registers are the overhead for the next file’s header registers.
Each file uses two registers over and above the size given by EMDIR and the XFM reserves space for
the header of the next file still to be created. The three remaining registers are the ‘link’ registers containing
information for the XFM on which XRAM blocks are available, and the order in which the modules
containing those blocks were plugged in.

Each of the three blocks has its own link register, located in the last (lowest addressed) register in that
block - locations 040h; 201h and 301h respectively. The format of the three link registers is similar:

FIGURE 3.74 XRAM LINK REGISTER FORMAT

Digit: J13 |12 |11 |10 | 9 | 8 | T] 6 | S| 4
|===1===|===|=== === | === === === | === | ===

I X1 X | W]lW]W]IP|]P]P]|NIN

'——

W

Each of the three modules has a unique ‘module |.D’; which is simply the address of the first (highest-
addressed) register in that block - for the base module 0BFh; for XRAM1 201h; and for XRAM2 301h.
These module |.D.s appear in the fields TTT, NNN and PPP respectively, where:

TTT is the block 1.D. (containing the link register in question);
NNN is the next block I.D. (or 000 if there is no Next block); and
PPP is the 1.D. of the Previous block in sequence - the 41 ignores what it contains in the

base block (040h), since there can be no previous blocks. But in the CX, this field is
used as a scratch area for the EMDIR function, and may be overwritten, thereby rendering
it useless to programmers, especially machine-coders, who need scratch data storage.
(By means of the PPP, NNN & TTT fields, each block points to the next block, the last
block, and to itself);

Wwww is the number of the working file in hexadecimal.

XX is a ‘don’t care’ field - put anything you like here, the 41 ignores it completely.

XM files all have similar structures - consisting of a number of registers, specified either by the User
at creation (data and text files), or by the system at creation (program files). The size of a file, returned by

40

EMDIR, refers to the total number of registers available within that file, and is always 2 registers fewer
than the total space that file consumes because a two-register ‘header’ is also stored with the file. This
information is seen in the EMDIR listing.

The header is similar for each of the three file types:

- the first register always contains the name of the file - stored in ASCII form (as read
from ALPHA) - which is left-justified within the register with the first letter in the name
always at the ‘left’ end of the register). For a name shorter than seven characters, spaces
are added to pad out the register. One consequence of this is that, to the 41, the names
‘MYFILE’ and ‘MYFILE ’ are the same.

- the second register contains various information on the file, but although these vary
between file types, the general layout is always the same:

Digit: 13 12 11 10 9 8 7 6 5 4 3 e 1 0

I TI XX] Xx|xj|]clcl]C|]R]JR|R|]S]|]S]|SI

[===l===|===|===|===|===|===| === | === === | === === | ===]-=-|

- ‘T’ is the file’s type, and is a ‘1’ for program files, ‘2’ for data files and ‘3’ for text (ASCII)
files. If this digit is ‘0’ then EMDIR will show ‘@. where the file’s type should be, and
‘@’ for all other cases.

- SSS is the size of the file, coded in hexadecimal and does not include the two header
registers. These fields are always the same for any file type.

- RRR is used in program files to store the number of bytes in the program - for data
and text files, it stores instead the current record number within the file (hexadecimal).

- CCC is used only by text files, and stores the current character. In fact, only digits 6
and 7 need be used for this, but all three actually are.

- XXXX is a ‘don’t care’ field; in program files this is usually left as zeroes. With data
and text files it is used as a scratch area to store the file location during file operations.
This field is never read by the 41, only written into.

Data files store data with register O following the header. With program files, a byte-for-byte copy is made
straight out of memory into the program file. The first seven bytes go into the first register after the header,
and so on to the end of the program. The END is also copied, but an extra checksum byte is added
- this is found by adding every byte in the file, and performing modulo 256. For some reason, HP didn't
use the header CCC field to store the checksum. In text files, data are stored in records of variable length
- indicated by a byte preceding the record.

4

42

o NAME

a

Byte

b

Byte

Byte Byte

> | 4 | 3

]

Byte By

te Byte

| 1 0

mJ

SHIFTED KEY ASSIGNMENTS

T

PARSE
STATUS

PRGM
LINE NUMBER

User Flags
0,1,2,3 »

e

FLAG REGISTER

L

System Flags
- 53,54,55
4 1

ZREG
ABSOLUTE ADDR

SSEE
PRINTER
USAGE

COLD START
CONSTANT

T

REG 00
ABSOLUTE ADDR

T

LEND.
ABSOLUTE ADDR

3rd '

T

SUBROUTINE RETURN STACK

., 2nd !

} I |
t t

Y

PRGM
t BYTE !

POINTER
REGISTER RQDR

T

6th

T

T
|
|
'
'
'

Sth

4

M T

4th

L

v T

'
1
|
|
n

3rd

e

UNSHIFTED KEY ASSIGNMENTS

4

LAST
INSTRUCTION

EXECUTED

Il

TKEYCODE
{ DURING

4 PASN

I

- ¥

TEMPORARY ALPHA SCRATCH

Il " Il It +
T T t +

L

i
T T

T

ALPHA (REG 25-28)

ALPHA (REG 2

2-24)

+

"
g

ALPHA REGISTER 15-21

i \ Il +
+ + +

4 " I
+ +

T t

4 4 +
T + t

I
T

ALPHA REGISTER 8-14

"

-+

I 1 I

ALPHA REGISTER 1-7

& " 4

T T T

T

USER STACK

L

REGISTERS

:

+

" +
t +

-+

"
T

+
R F R R e o

Y SR DEPRRR S o

SIGN:

MANTISSA

|

+

R e .

EXP.

‘SIGNEEXPONENT

13712 " 11

1079 "g "7 T

Digit #

f

54" 3"

(also called nybbles)

Eicure 3.8.1 HP-41 OSTATUS REGISTERS

I

2170

00D

00C

0oB

00A

009

008

007

006

005

004

003

002

001

000

3.8 STATUS REGISTERS

At the very bottom of HP-41 memory are the System Scratch, or Status, registers. These comprise 16
registers containing a collection of permanently resident information for the 41, including which data can
be found where, and in what mode the 41 is currently. Figure 3.8.1 contains a detailed map of the Status
Register contents.

The register numbers (up the side) correspond with the postfixes given in the last row in each half of
the Table. T,Z)Y,X & L will be familiar to you as the Stack Registers. Registers M,N,O & P (3-bytes only)
form the ALPHA display. M contains the ‘rightmost’ 7 bytes of ALPHA, N the next 7, O the next, and
P contains the leftmost 3 bytes. Bytes 6 to 3 of P (also described as P|[6:3]) contain scratch fields used
by the HP-41 for, amongst other things, running catalogues and controlling digit entry. They can occasionally
be used as an extension to ALPHA, as long as there are no number-entry lines or VIEW instructions
in the program.

Q is used by every function taking an alpha argument, the printer (whether you use printer functions
or not), and a number of other functions, such as digit-entry, P-R, Y1X, SDEV, SIN, COS, ASIN, ACOS
and any time the 41 must place the contents of ALPHA in the display. Provided you can avoid all these
obstacles, you can use it.

Register ‘R’ , normally known as register — (the append symbol) and register ‘e’ contain bit-maps for
key assignments. Every key position on the keyboard has a corresponding bit in these registers. The
bit-map for each key is shown in each of the registers in Figure 3.8.2. If a particular bit is set in register
'R’, then that key carries an unshifted assignment. If the bit is set in register e’ , then it represents a
shifted assignment.

Registers ‘@’ and ‘b’ contain the subroutine return stack and the User-code program counter. The latter
points to the last byte of the line just executed, while the former is simply up to six copies of previous
program counters - these point to the last byte of an XEQ that was previously executed (including XROM
executes which refer to user code programs in plug-in devices).

The format of the program counter is:
Obbb 000r rrrr rrrr

where: - rrrrerrer is the absolute address of the current register;
- bbb is the byte within that register which contains the first byte of the next line, when
the program currently executing is in RAM.
When pushed across onto the subroutine return stack, the format alters slightly to that of:

0000 bbbr rrrr rrrr

The reason for this, is to allow the 41 to determine whether or not the return is to a ROM or RAM location.

43

44

REGISTER 'R' (also called APPEND) STORING UNSHIFTED KEYS

\
srluinNn]2,|lolvlo|lnlsju N |lo|NO|0]ls W (N2 D[N 0|0 W N[N 0]Es W D= \
srlonloju|sle|elslu|s |88 [UWWW]IW W W ITWIN NN N N (NN = === ==

13 11 10 9 8 7 6 5 { Digit #
5 4 3 2 Byte #
Note. Keycodes are shown in Row, Column format
ie. 53 = row 5, column 3
REGISTER 'e' STORING SHIFTED KEYS
1
:: wiN o|Njon s W N2 |o|N 0 |n s WIN|= D (N0 |un WIN |2 D[N]O]] &N = 1
(O, Re slels|nju |8 |80 WU [WH|W W W W W IN N ININ NININ=2 == 2222

13 1M1 10 9 8 7 6 S \ Digit #
5 4 3 2 Byte #

Figure 3.8.2 Key Assignment Bit Maps

BEEEE
HEDEE
Bit locations
DEREBEE | -
keys in
|23 l |47l registers
'E'&lRl
=) (o) Le]
=] L) [e]
6 @ &)
aNniea

Figure 383 Key Assignment Bit Mapping

If the 41 is currently in ROM, then the program counter simply contains the absolute address of the byte
within the ROM. Since no plug-in ROM can have a first digit of 0 in its address (0 being a system ROM
address - see later for the 41 ROM page structure), if the first digit is 0, this means a RAM address.
If a non-zero digit, it means the XEQ/XROM was in a ROM, and the routine call should return to there.
The 41 processor has a flag which determines whether the pointer is interpreted as meaning RAM or
ROM. A ROM address pushed onto the return stack is consequently left unaltered.

The stack is pushed from right to left across both registers, with the last two bytes of register b being
copied into bytes 1 and 0 of register ‘a, and the last two in ‘@’ being lost. Popping the stack (at a RTN
or an END) is the converse of this operation, and its action writes 00 00 into bytes 6 and 5 of ‘a. Whenever
bytes 3 and 2 of ‘b’ contain 00 00, the return stack is said to be empty.

Register ‘¢’ contains memory allocation data. It is the one status register that requires care whilst ‘playing
around’ with SP. The quickest way to destroy everything in memory is with [STO| || [c|. Register ‘c’ contains
the absolute address of the register containing the .END. in bytes 2 through O, the address of the
program/data register curtain in bytes 5 to 3, and the absolute address of the current statistics block.
This is the register pointed to by the last ZREG operation) in bytes 13 to 11. The printer uses bytes 10
and 9, and bytes 8 to 6 contain the HP-41’s ‘cold start constant, which must always be 169h. The 41
examines this field at switch-on, whenever a key is pressed (with no program running), and whenever
a program returns control to the User (STOP, END, RTN, PSE, etc.). If, when checked, it is not 169h,
then the HP-41 assumes that memory has been corrupted and automatically performs a MEMORY LOST.

Register ‘d’ contains all 56 User and System flags, with flag 00 at the left and flag 55 at the far right.
Figure 385 shows the bit mapping for register d, and the application/purpose of each flag is given in
Figure 384.

Finally, register ‘€’ also contains the current line number in bytes 2 through 0. When a program starts
running, this is set to FFFh, meaning ‘I don’t know the line number’. Going into program mode, holding
down [R/S]| (to start a program running) for longer than 100ms, pressing [SST| or generating an error
out of program mode (including program errors) causes the current line number to be recomputed.

45

00 - 10 general purpose 34 ADRON clr
*« 11 auto execute ADROFF set
* 12 double width print 35 disable autostart ROM
s 13 lower—-case print 36 - 39 number of digits
* 14 overwrite mag. card displayed
1S5 - 16 HP-IL printer modes 40 - 41 display format
0 0 MANual 0 0 SClentific
0 1 NORMal 0 1 ENGineering
1 0 TRACE 1 0 FlXed
1 1 TRACE WITH STACK 1 1 FIX & ENG
. 17 (CR) incomplete record 42 - 43 trig modes
= 18 enable TINTR 0 0 Degrees
* 19 - 20 general use 0 1 RADians
s 21 printer enabled 1 0 GRADians
s 22 numeric entry 1 1 RADians
* 23 ALPHA entry * 44 Continuous ON
* 24 range ignore s 45 system data entry
* 25 error ignore * 46 partial key sequence
26 audio enable s 47 SHIFT
27 USER mode * 48 ALPHA
28 decimal point/comma * 49 BATtery voltage low
29 digit grouping on/off *« 50 message
* 30 CATalogue s 51 88T
31 Timer format DMY set « 52 PRGM
MDY clr * 53 Input/Output
32 Manual HP-IL 1/0 s 54 PSE
33 HP-IL absolute manual »% 55 printer existence
Note: # = cleared at turn on
*s = cleared only if printer absent
Figure 384 Description of HP-41 Flags
BEEREBIEIE|SEE[EESEEBESEE]S ERBERE®F]
SRIRIRIRIZIBISIBIBIG|= [v|a|= & JlojloBRINISIRBIBINB (8|82
13 12 11 10 9 7 6 !
6 5 4 3
BRRE @ e EERE e e e B
dlalglalglg s sls s |aE (555663288 €5
5 4 3 2 1 0 Digit ¢
2 1 0 Byte 4

46

Figure 385 Flag Bit Locations in Register d

3.9 APPLICATIONS OF SP

There are a number of common, simple applications of SP which are quite straightforward, but which
make up the majority of applications for this set of techniques.

3.9.1 Scratch Storage

Quite often, you will find yourself writing a subroutine for a program needing one or two scratch registers
outside of the stack. Normally, you are forced to use numbered data registers to satisfy this need. However,
this can cause problems when these registers may be used by other routines as part of the main program.

The usually-adopted approach to this problem is to create a small data file. However, for a simple
application, this is not really ideal.

The easiest approach, if the function being coded allows it, is to break up the ALPHA register. Remember
that ALPHA comprises 4 registers, M through P. It is perfectly permissible to use three of them just like
any other (register P must be used with care). In fact, there are two advantages to be gained.

The first is that a RCL, VIEW or X<<> from any of the sixteen Status registers is non-normalising. The
HP-41 normalises as part of a check to see if the register actually exists. However, the HP-41 knows
that the Status registers always exist, and so doesn’t need to check and normalise.

The second advantage is speed, for the very same reason - the HP-41’s check on the existence of a
register takes time (about 6ms), and this is saved for every execution of a register function addressing
the Status registers as opposed to anywhere else.

Therefore, with SP, a common place for loop-control variables to be stored (those that are used with ISG
and DSE) is in the Status registers somewhere, and similarly for any operations within the loop that access

a scratch variable.
3.9.2 Non-Standard Output

Probably the most awkward function in the HP-41 system is BLDSPEC on the system thermal printer
- either HP-82143 or 82162. You need to expend about 30 bytes of a program per special printing character,
which is hardly a good trade-off. By using SP, you can place a text line in the program that contains
exactly what BLDSPEC would have assembled in X anyway, and then simply execute RCL M, ACSPEC.
The RCL M is used to recall the last seven characters of ALPHA for sending to the printer.

This number, now in X, is probably neither formatted as a regular number, nor as a string, but rather
as a Non-Normalised Number (NNN). Be careful with these. Register access operations that talk to user
data space always check the existence of the register first. In the case of a block operation, such as
REGSWAP, only the highest-addressed register in each distinct block is checked. During the checking
process, normalisation of the contents may occur as follows:

47

- if the first byte is zero, the register is cleared,;
- if the first digit is 0 or 9, the mantissa is forced to contain only digits ‘0’ to ‘9’ and
the exponent is forced to be either 000h through 099 (BCD only) or 999 through 901.
Digits ‘A’ to ‘F’ will be lost;
- if the first digit is other than ‘0’ or ‘9) then it is forced to be a ‘1.
ZENROM contains functions to get around this problem, but avoid using user data register space for
storing such numbers, and be careful which numbers you extract out of memory in case you normalise

the register. Using the Status Registers gets around these problems, as these registers never get normalised
because the 41 need not check their existence.

More than one special character can be entered into ALPHA, of course, and RCL N, RCL O or RCL
P used to access it. But remember the limitations on the usage of register P.

Example Program: Accumulating Special Mathematical Characters into the Printer Buffer

LBL ‘S’ set is a subset of descriptor BLeLBL “ER2"
B24LBL -S°
LBL ‘IN’ set ‘inclusion’ descriptor ol
LBL ‘U’ set 'union’ operator BSEL?EJ;?::
87 GT0 89

LBL ‘IS’ set ‘intersection’ operator #8eLBL U
89 “eqat”

LBL ‘M’ set ‘is a member of’ descriptor e
1leLBL °IS*
The hex-codes for these lines are: Bew

03 = F6 01 32 95 2A 54 80 LeoLL K-
06 = F6 01 4A 95 2A 53 00 15wk

09 = F6 00 FA 04 08 OF 80 16oLBL 88

12 = F6 01 FO 10 20 5F 00 17 fsto x

15 = F6 00 71 52 A5 4A 80 19 END

Use ‘SYNTEXT’ entry to create these text lines. Remember, however, that you don’t need
to enter the first F6h byte (= 6 character text line) as the operating system will work this
out for you

This method can also provide a way to enter lengthy floating-point constants into a program using fewer
bytes and less time than the normal number-entry line does.

48

Example Program: Accumulating Floating Point Constants

LBL e’ constant e = 2.718281828

84 GT0 &n
LBL ‘H’ Planck’s constant h = 6.6262*10!34 850‘[:§L “H-
86 "bbeeof"
LBL ‘¢’ speed of light = 299 792 459 7 &10 %
88eLEL "c”
LBL ‘u0’ permeability of free space = 1.256637*10!-6 ?g G;;’;g‘
LBL ‘G’ gravitational constant = 66.73*101-12 L1eLBL "
12 =«%f "
LBL ‘Z0’ impedence of free space = 376.730 4 1T e
14¢LBL "G
LBL ‘F’ double Faraday constant }? r§ ;“;g“'
returns 2.892599*10114 into Reg. X v
and 96 486.7 into Reg. Y 17¢LBL 28"
18 "+rysaeex”
The hex-codes for these lines are: 19 C10 e
20¢LBL °F"
03 = F7 02 71 82 81 82 80 00 21 '023’;‘;5":’0’
06 = F7 06 62 62 00 00 09 66 ‘
09 = F7 02 99 79 24 59 00 08 23¢LBL 88
12 = F7 01 25 66 37 06 29 94 24 RCL
15 = F7 06 67 30 00 00 09 89 2 B
18 = F7 03 76 73 04 00 00 02
21 = FE 09 64 86 70 00 00 04 02 89 25 99 00 00 14

gleLBL “EX1"

GzeLBL "e”

A7 "xqe-

SP has also been used to place non-keyable characters into the display, such as | |, (), '@+ &, etc., without
needing to use a ‘character code’ and the XTOA function from the Extended Functions Module. As these

characters are available on ZENROM USER ALPHA keyboards, this technique is now obsolete.

3.9.3 Register Allocations

This means altering the contents of register ‘c. You can force the curtain, between data and program
registers, to be any register in the HP-41. Although, if the program halts you must make sure the register
immediately below the one you address actually exists. By forcing the curtain to be register 010h it means
that you can directly access any register up to 1FFh. Altering the .END. address or the statistics register
pointer isn’t so popular, because one can be easily done with a mainframe function, and the other has
little point, but both are possible. Again, make sure the register pointed to by the .END. exists if you

don’t want the annoyance of a MEMORY LOST.

49

Another use for altering the curtain iocation is to ‘hide’ some previously allocated data registers by placing
the curtain above them, thereby effectively ‘adopting’ them into program memory. There is a danger
however. When you PACK memory, these registers will be seen as program lines and packed as well,
which will more than likely completely mess up your memory contents.

3.9.4 Flag Manipulation

The RCLFLAG/STOFLAG combination, from the Extended Function Module & 41CX, allows you to do
some things previously only the territory of SP’ers (such as entering FIXJENG mode) by directly accessing
the flag register. If you normally have a standard or default setting for the 41’s flags and wish your programs
to enforce it, then simply load a text line containing the chosen register d as a collection of characters.
Then follow this with RCL M and STO d (or ASTO d - depending on how you want to affect the first
8 flags). Using ASTO d always leaves flags 00 through 07 clear, except for 03 which will be set.

Clearing the system flag 55 is a common technique used for speed with a printer connected to the 41
- because the machine runs considerably faster if the printer isn’t there. The fact that you may not be
printing is quite irrelevant, as the 41 polls the printer all the time to see if it needs servicing. By clearing
the printer existence flag, f55, the 41 can be made to think there is no printer attached, so doesn’'t waste
time trying to poll it. However, as with most good things, there is a catch: ‘a’ variety of operations will
restore the correct status of the flag.

WARNING: Avoid SSTing programs which modify the flag register - since this directly affects 51, (the
SST flag). Also, storing random numbers into register d can cause problems. If, by chance,
you set 152 - then executing a number entry line will cause the 41 to begin programming
itself. Flag 53 is always automatically cleared by the machine after every operation, so is
not really worth bothering with. The Timer Module will automatically clear f30 (the CAT
flag) if flags 46 (partial key sequence) and 53 (Input/Output) are set together. DO NOT store
‘junk’ into the rightmost three digits of register d - if you must temporarily store something
there, use nulls for those digits.

Example Program: Clearing Flag 55
a This routine clears flag 55 by:

- placing the current flag register contents into M;

- pushing it across by a few bytes until F55 is where flag 23 usually goes and then
swapping it back into place;

- clearing f23 (which is really 55);

- swapping it back out and restoring into M;

- pushing the rest of the seven bytes so that what started in M is now in N;

- and then performing RCL N, and STO d to replace it into the flag register.

Do IO e~

g

Lt i L ~ L ~ I~ <]

RS I S

50

However, executing this from the keyboard, then testing for FS? 55 will yield ‘YES’, since
halting a running program restores the correct status of F55.

3.9.5 Other Basic Applications

1) A 'NOP’ instruction can be very useful in conjunction with an ISG or DSE instruction
which you don’t want to know the result of. E.g. you may simply wish to increment or
decrement a counter, but don’t need the ‘skip’ part of the instruction.

2) A Short-form Exponent can save one byte over the standard instruction. In this case,
the "1’ in exponent entry, eg. '1 E3’ can be removed, thereby leaving just the 'E3’
remaining.

3) Non-Standard Functions can be assigned to the keyboard, e.g. the key sequences VIEW

IND X or STO IND Y could be assigned to single keys. Another interesting one is
'eGOBEEP’ , a pseudo-function which allows keyboard access to all printer, HP-IL and
mass storage functions without the devices being present.

One of the most sophisticated uses of SP (and one of the most difficult to manage) is the use of pre-
compiled GTOs and XEQs — this means instructions that already know where to jump to, and which
the HP-41 needn’t bother searching for. Compiled GTOs needn’t jump to LBLs, though. They can jump
anywhere you desire, even into the middle of another instruction. A variation of this is using the long-form
version of GTOs 00 to 14, thereby allowing the use of the shorter LBL, but still allowing GTOs to reach
them from anywhere in the program, not just within the 16 registers either side limitation of local labels.

3.A SUMMARY

As can be seen, with just a little imagination, Synthetic Programming can enhance many aspeccts of
the use of the HP-41, and make it even friendlier and more powerful than before, as countless HP-41
programmers have already discovered. There is just one snag! Since the H?-41 has never heard of
Synthetic Programming — otherwise it wouldn’t be SP — it does its level best to prevent you from exploiting
the techniques and facilities available. To overcome this, an incredible number of special keying techniques
have been devised over the years, ranging from special magnetic cards (generated on the HP-67) and
barcodes, through byte grabbers, jumpers and Q-loaders to prefix maskers and byte-loading programs.

With the advent of ZENROM, all these have been made redundant. If you know what they are, you can
quietly forget them. If you’ve never learned, then you'll never have to. However, we would still recommend
that your read some of the many reference books on SP as these cover many interesting application
ideas. The next chapter will show you ZENROM can be used to insert all possible byte sequences into
your programs, and how to alter the contents of any byte anywhere in HP-41 memory with complete
freedom.

51

52

4

USING ZENROM TO INPUT
SYNTHETIC LINES

This chapter of the handbook assumes that you have read the previous chapter on Synthetic Programming
Theory. We would recommend that all ZENROM Users read that section as there are many valuable points
that could have been forgotten. For this chapter, we have also assumed you have an good practical understan-
ding of the following concepts:

HP-41 Memory Structure
Register Formats
Hexadecimal Byte Table

User Code Programming
Synthetic Programming

The facilities offered by ZENROM, provide the User with three unique ways to enter synthetic lines:

-usingthe Direct-Key Synthetics ability which the ROM gives your HP-41 (not available on very
early HP-41C models);

- using the new extended alpha keyboards for text entry (available on all HP-41s);

- using the insertion mode of RAMED to insert new bytes anywhere in program memory
(available on all 41s).

53

4.1 DIRECT-KEY SYNTHETICS

Many of the commonest synthetic lines are simply extended forms of regular program lines, such as RCL
M, TONE X or atext string ‘+ 2* If a regular form of the line exists, and you wish to enter a synthetic form, then
ZENROM will have a directly-keyable equivalent. If an instruction has a form PREFIX plus POSTFIX (i.e., two
bytes or more), where all postfix bytes are normally numeric, then you will find the prompt for that function
will have been changed by ZENROM to a two-digit prompt — of course many have a two-digit prompt already,
so no immediate difference will be apparent.

For any two-digit prompt, ZENROM allows you to key any of the postfixes which you see in the Byte Table,
exactly as it appears there (with one exception — (append) must be keyed as ‘R’, this being the letter which
alphabetically follows on from Q as register +follows on from register 'Q’) in the HP-41 system. All postfixes
from 00 to 99 are keyed as usual: postfixes from 100 to 111 are keyed by pressing the |[EEX| key, which adds
a ‘1’ ahead of the two-digit prompt, followed by the numbers to make up the postfix you wish (up to 111): press-
ing .| places ‘ST’ in the display — you may now press any of the 16 letter keys (T.Z,Y,X,L,LM,N.O,PQ,R,a,b,cd.e)
to get the corresponding postfix byte appended as part of the function.

Atthis point, a small note — due to a-41 operating system restriction, ZENROM is unable to validate the digits
pressed in response tothe 1 __ __" prompt, and thus allows you to enter anything from 100 to 199. E.g. with
RCL, responses 12810 199, if given to the normal (non-indirect) prompt, will generate indirect RCLs from RCL
IND 00 to RCL IND 71, while such responses to RCLIND 1 ____ will generate RCL 00 to RCL 71 (the postfix
is value for X MOD 256) — this applies to any function which takes such an argument, not just RCL.

The extended prompting can also be used for creation of synthetic labels (not globals) of status register names
XY,ZTL and M through R, to do this, use the key sequence:

ISHIFT| [LBL|[.| as you would for RCL, STO, etc., and answer the ‘LBL ST __’ prompt with the status
register letter that you wish to use.

This will enter as a local label that behaves exactly like numeric local labels. Note however, that there is no
automatic key assignment as there would be for labels A to J and a to e).

In the case of the GTO function, which already had a use for the sequence |GTO| |.|, a functional change has
taken place:

pressing |GTO| |.| will now give you ‘GTO ST _’,

pressing |GTO| |.| |.| gives you ‘GTO. __
and pressing (GTO| || [.| [.] returns the usual ‘GTO...

Although this requires a little ‘re-learning’ of the behaviour of the GTO key, it is something which you will get
used to very quickly.

54

There are two other significant synthetic facilities which ZENROM provides on all HP-41s:
- short-form exponent entry,
- NOP instruction entry

If, while in program mode, you press the |[EEX| key as the first digit of a number-entry line, then the display
shows: "1 E__". Thisis amulti-byte instruction - with one byte being wasted on the ‘1’ character. With ZENROM
plugged-in, the Direct-Key Synthetics feature takes over and strips out this wasted byte for the ‘1’ character
-thereby leaving only the ‘E__’ prompt in the display. Should it ever be necessary to have the entire 1 E___°
sequence in the program, this can be achieved by defeating ZENROM. To do this, press and hold the |EEX|
key, then press the first digit to follow the ‘1 E___" Finally, release the [EEX| key before the digit entry key.
Because the operating system does expect an extra byte to follow, back arrowing the partial exponent entry
will very briefly display the next line, before displaying the previous line.

Occasionally, you may need to have a No-OP (No Operation) instruction, e.g. after a conditional test. ZENROM
contains a function called NOP that will insert a text string of zero characters (hexcode FO0) in your program.
When executed by a running program, this FOh byte acts as adummy instruction. To use, simply execute NOP,
and ZENROM will insert the FOh byte as the next program line.

55

4.2 EXTENDED ALPHA & TEXT ENTRY

Entry of non-standard, or non-keyboard characters has always been difficult on the HP-41. ZENROM has two
additional facilities to make keying-in any text string much easier:

-USER ALPHA keyboards, providing all lowercase characters, all displayable characters plus
other special characters available from the keyboard;

-‘SYNTEXT’ (Synthetic Text) entry, allowing entry of any HP-41 character by input of the hexcode.

4.2.1 USER ALPHA KEYBOARDS

The User Alpha keyboards are illustrated facing (Figure 4.2), and one of the two overlays supplied with ZENROM
is for these new alpha keyboards. Normally, when you enter alpha mode, the state of the User flag remains
unchanged, as the HP-41 does not have a pre-defined User Alpha keyboard. With ZENROM plugged in,
however, entering alpha mode causes the User annunciator to switch off — you now have the normal alpha
keyboard available for use.

Whilstin Alpha mode, if you press the [USER| key, the behaviour of the keyboard alters to become the USER
ALPHA KEYBOARRD: thereby making available the entire lower-case alphabet on the corresponding upper-
case keys, and every other displayable character on the shifted locations.

Althoughthis sounds complicated, in fact, by comparing the overlay with the standard Alpha keyboard, you'll
see itis quite easy to remember character locations. Wherever possible, we have grouped characters or placed
them on locations of similar normal characters. The only one that may need explanation is ‘ESC’ which is
the the escape character (27 decimal, 1Bh) on [SHIFT|[PRGM|. This is used quite often in printer control opera-
tions. Remember, however, that most lowercase characters are non-displayable - i.e. will only display in the
HP-41 LCD as boxed stars - they will, of course, print out as intended. By combining upper- and lowercase
characters in a single string considerable byte savings on printing applications can be made.

You may toggle between the USER ALPHA and normal ALPHA keyboards as often as you wish. When you
leave alpha mode (whichever it may be), the status of the User flag (and annunciator) is restored to what it
was before you entered.

You will notice that some of the USER ALPHA keys are identical to the normal ALPHA keys - e.g. the digit

entry keys, AVIEW, CLA, etc. We decided to follow this convention to avoid any possible confusion and repeated
switching between the new alpha keyboards whilst keying-in commonly used characters or instructions.

56

Aword of caution regarding APPENDiIng characters. In alpha mode, if you press [SHIFT|[APPEND/ this will
allow you to attach additional characters to the alpha string. In USER alpha mode, this will insert the —character
into the display as the first character of a NEW string, thereby deleting the existing string. To append to an
existing string you must be in ALPHA mode.

UNSHIFTED KEYS SHIFTED KEYS

XXX - D RER

'l|
EEEEE EEEEE
M8 SI=TSI=I=
=aEEE - e e
—Eag —EAE
Ex s s == = e s
=S ==y == =y sy
BAEAA BB /A
| F3 B S sy

FIGURE 4.2 USER ALPHA KEYBOARDS

4.2.2 SYNTEXT ENTRY

No matter which alpha mode you are in, the key sequence |SHIFT||[ALPHA| enables you to input any HP-41
character into text lines or into LBL, XEQ or GTO functions. We have christened this ‘syntext’ - for synthetic
text entry. In this mode, two prompts appear at the far right of the display, and filling these with a two-digit hexa-
decimal number causes the character with that hexcode to be appended to the current string being entered.
This prompt behaves exactly like any other two-digit prompt, but also has the option of being able to null the
hexcode entered by holding down the second digit key for about one second — in this case, the original prompts
reappear in place of the digits entered, and you may begin again or cancel the prompt with the backarrow key.

57

The User Alpha keyboards and Syntext entry are available on any HP-41 with a ZENROM plugged in, and
operate in all modes where alpha entry is required, including entering text into program memory or any alpha
prompt as a function argument, with two exceptions — the feature does not operate inside the CX text editor
‘ED’, nor does it operate during the execution of a PSE instruction — both of these limitations being due to
problems with 'breaking into’ the operation of these functions while retaining 41 operating system integrity.

A point of warning to all users — all ZENROM Direct-Key Synthetics facilities, including the special exten-
sionsto the alpha keyboard, rely on the ability of ZENROM to temporarily ‘take control’ of the HP-41 operating
system to perform its tasks. This can only occur upon key-release, and will not happen if you press the next
key in a key sequence before releasing the previous one. For example, while in alpha mode, press and hold
the |SHIFT| key, then press |ALPHA|, then release | SHIFT|, and you will be switched out of alpha mode, not
into syntext entry as you would otherwise expect.

Making sure that each key has been released before hitting the next is only a minor limitation as the HP-41’s
keyboard is not designed for speed typing. We felt the significant increase in capability afforded by these 'ex-
tensions’ to the HP-41 operating system will more than offset this problem.

Some HP-41 functions, as well as taking a numeric argument, can also take an alphabetic one, e.g. LBL, GTO
and XEQ. Normally, if you need a LBL A, you want a local label (i.e., it doesn’t appear in catalogue 1), and
ZENROM does not affect this form of label entry. But suppose, instead, you want to have LBLA, which is a
global label. This can be entered by using Syntext entry to specify the character, instead of keying it directly.
For example, to get LBLA, use the key sequence:

|SHIFT| [LBL| [ALPHA| [SHIFT| [ALPHA| [4][1] [ALPHA|

(where 41 is the hexcode of character ‘A’), and this will be entered as a global label instead of alocal one. This
method of entry also applies to GTO and XEQ as well.

Normally in a User’s Handbook like this, there would now be several ‘how to do it’ type examples covering
all the functions introduced. But since the Direct-Key Synthetics are natural and thus, second nature to the
user, the best way of learning them is to begin experimenting.

WARNING: Make sure that you have first stored your programs and data onto magnetic cards or other mass-
storage media. Experimenting with Synthetics can corrupt programs/data held in memory.

When entering a line of synthetic text, where the characters are given for you as hex-codes,
you do not need to enter the first value - indicating the length of the text string - as this is worked
out by the operating system. E.g. a seven character string would have the hexcodes beginn-
ing: F7 xx xx xx xx xx Xx. It is not necessary to enter the F7h byte if you are using SYNTEXT
entry. If, however, you are using RAMED to insert the sequence, you must enter the F7h byte
as part of the complete character string.

58

4.3 USING THE RAM-EDITOR (RAMED)

Direct-Key Synthetics will enable most synthetic program sequences to be directly entered from the keyboard.
Where you might have some difficulty is with keying significantly non-standard lines, such as functions with
alpha arguments longer that 7 characters, XROM codes for devices not connected, or a precompiled GTO.

To allow you to do these (and to provide alternative synthetic entry routines for users of early model HP-41Cs
that don’t respond to Direct-Key synthetics), ZENROM contains a function called RAMED, which is a simple
editor not unlike the HP-41CX text editor ED in its operation. RAMED allows you to alter the contents of all
HP-41 memory without restriction and to insert additional bytes anywhere in program memory only. As you
can imagine, RAMED is a very powerful tool for programming and memory manipulation, as well as more
general exploring. Like all tools, however, it can also be dangerous (although neither RAMED nor Direct-Key
Synthetics will harm your HP-41) so keep copies of programs and treat RAMED with respect.

RAMED has two main application areas:
- to modify, replace or insert bytes within any area of HP-41 program memory;

-to modify and replace bytes held in HP-41 main memory (data, program and status registers)
or in extended memory.

4.3.1 Within Program Memory

The easiest way to modify program memory is to step through your program to the point where modification
is required, and then, whilst still remaining in PRGM mode, to execute RAMED.

Let’s look at what happens in more detail:

In PRGM-mode, when you step through a program, a RAM program counter keeps track of
the program step as you go. This counter is stored in status register ‘b When RAMED is ex-
ecuted, whilstin PRGM-mode, it takes the starting address from register ‘b’ and begins the
editing process with the first byte in that program line. The exception to the rule is when the
program is not PACKed and contains nulls between the address indicated by register b and
the first bytein theline. In such a case, editing will start at the null byte pointed to by the counter
and the actual line will be a few bytes further down in memory.

Once in RAMED, you will see a display of the format:

B : RRR PP, CC, NN

59

where: B is the byte position in the register at address RRR,
RRR is the register address currently being edited,
CC s the byte in RAM pointed to by address B:RRR,
PP s the byte immediately ‘up’ memory from that byte pointed to (which would be
the previous byte in program memory),
NN is the next byte ‘down’ memory from address B:RRR.
Note: If CC, PP or NN display as ‘ - - ’ then that byte either does not exist or cannot
be written to.

To facilitate and simplify movement within memory, RAMED re-assigns the HP-41’s keyboard as shown below:

keys Action taken

'PRGM| to advance the address, such that NN is the current byte (Moves RAMED to the next
lowest byte in memory)

|USER| to retreat back up memory such that byte PP becomes the current byte

|SHIFT| [PRGM| to advance a whole register down memory

|SHIFT| [USER| to retreat a whole register up memory

|A| through [F|

10| through [9] hexadecimal input keypad

[insertion mode (active only within Program memory)

[ON| to exit from RAMED back to program or normal mode dependent upon mode when
RAMED was executed
[—] to delete a partial replacement or insertion of bytes

REPLACING PROGRAM BYTES USING RAMED

At any time, the byte shown at ‘CC’ may be replaced with any new byte of your choice. To do this, simply key
the new byte in, using the hexadecimal input keypad. Upon releasing the second digit key, the substitution

will be made in memory, and the address will automatically advance by one byte, making the byte you just
keyed the ‘PP’ byte in the display.

If you have entered one digit, and want to change your mind, simply press the backarrow key to cancel the
firstdigit. If you have pressed, but have not released the second digit key, you can change your mind by holding
downthe key. After about one second, the attempted substitution will be cancelled, and the display will return
to the state it was in before you pressed the first digit key.

60

INSERTING BYTES INTO PROGRAM MEMORY

Of particular importance to those with very early model HP-41Cs - who cannot use Direct-Key Synthetics -
is the RAMED insertion function. Insertion mode is ONLY applicable within the bounds of program memory
and operates exactly as the HP-41 does by moving all information down in program memory to free up seven
extra null bytes (the size of one register) to accommodate your additional instructions. You can imagine the
havoc this would cause were ZENROM to allow you to insert bytes ANYWHERE in HP-41 memory. Null bytes
are overwritten when you enter your new instructions, while superfluous nulls are removed upon PACKing
the program.

Insert mode is toggled into, and out of, by pressing the |1 key at any time (except while RAMED is waiting
for a second digit). During insertion mode, and only if byte ‘CC’ is not a null byte, will program memory be
moved down by one whole register and the registerimmediately following the current address filled with nulls.
If ‘CC’ is a null, RAMED will simply overwrite the byte just as the HP-41 does normally.

To show the effect your insertion would have on byte ‘NN, the display of this byte will be changed. This up-
dating, shown ONLY IN THE DISPLAY, occurs after you press the first digit key. If you decide not to insert the
byte, then the display will be restored as it was before you pressed the first digit key.

As with replacement mode, unless and until you release the second digit key, no change is made to HP-41
RAM. Note that if you insert bytes, and this causes register(s) to be ‘opened up’ to accommaodate the addi-
tional bytes you enter, then the decompile bits will be set for the program you are editing. The decompile status
of aprogram is never changed by simply replacing bytes (unless you actually change it yourself by replacing
the last byte of a program END instruction).

Because RAMED allows editing ANYWHERE in memory, nonexistent register addresses are displayed as

two hyphens, thus: * - - *. Although RAMED does not prevent you from overwriting these in the display, after
you release the second digit key * - - " is again displayed - thereby indicating that the byte was not accepted
into memory.

To exit RAMED, press [ON|. RAMED will position you to the start of the line you were at upon entry.

4.3.2 Outside Program Memory

RAMED can prove very useful for examination of memory and system status register structures plus provide
the possibility to directly modify or replace their byte contents. For example, you can directly modify key-
assignment information.

To use RAMED out of program mode, the starting address is taken from Alpha — more specifically the rightmost

61

four hex-digits of register M which are the rightmost two characters as seen in the display. By this you can
specify the exact register and byte within that register at which you wish to start editing.

This means that if you know the absolute address of the place in HP-41 memory that you want to edit (See
the Memory Map in Figure 3.6.1), then simply use the Syntext entry feature in ZENROM.

To do this: Enter Alpha-mode,
Press |SHIFT| [ALPHA| (for the Syntext entry prompt),
Enter the byte number, and the first digit of the three-digit register address,
Press |SHIFT| JALPHA| again (for Syntext entry),

Enter the last two digits of the register address (this results in the address being
returned to Reg.M|3:0] in the form expected by the RAMED function).

Come back out of Alpha-mode and execute RAMED. You will be editing memory,
starting at the address specified.

As an example, let’s take a look at the key assignment registers which have a format as follows:

Byte No 6 5 4 3 2 1 0
Bytes FO A7 20 34 04 61 83
Bytes Description
Keycode of key to which assignment made
1&2 Assignment
3 Keycode of key to which next assignment made
4 &5 Assignment
6 Register ID to specify a key assignment register (FOh

Suppose you wish to edit the lowest key assignment register, which is at address 0CO, and you want to go
in at byte 6 (FOh) of that register. In standard RAMED notation this is address ‘6:0CO’ - where the *:’ character
separates the byte from the register address.

62

To do this:
Enter alpha mode,
Press [SHIFT|/ALPHA| [6/|0] [SHIFT||ALPHA| [C]|0],
Exit Alpha-mode again,
Execute RAMED.

Assuming there are no key assignments, the display will now show:

6 : 0CO o0, 00, 00

You can now begin editing the assignment register. Remember that you will also need to set the key bit-maps
in registers R (unshifted keys) and e (shifted keys) depending upon the assignment. If you need further prac-
tice with key assignment editing refer to Example Two in the following sub-section.

63

4.4 EXAMPLES USING RAMED

Although RAMED is very simple to use, some programming examples using RAMED should make its uses
much clearer.

4.4.1 EXAMPLE ONE

First, let’s take the following dummy program:

RCLM (recall from status register M)

XROM 05,07 (a peripheral device function)
(SYNTEXT@+# &) (text line with non-keyboard characters)
TONE 45 (a new tone - one of 117 new tones)

which, admittedly, doesn’t do much that’s sensible, but it does demonstrate a reasonable variety of program
lines that you might possibly want to enter. Of these lines, only the XROM instruction cannot be keyed in directly
- assuming your HP-41 supports Direct-Key Synthetics - but for the sake of example we'll use a few different
methods to get the lines into memory.

Note that in this example, we go into RAMED quite a few times. To save finger work, assign RAMED to a key.
Firstly, we'll use direct insertion for the RCL M and XROM instructions. If you look at the Hexadecimal Byte
Table, you'll see that byte codes for RCL M are: 90h, 75h. However, XROM 05,07 is a bit more difficult. The
device ID XROM 05,xx’ is found at hexcode A1h, but what about the function specifier ‘’XROM xx,07’ ? From
the chapter on S.P. theory, you’ll remember that XROM codes are specified in binary format as follows:

1010 0ddd ddff ffff

where: 10100 is standard throughout XROM codes
ddddd is the device indentifier
ftffff is the function specifier

Subsituting our XROM 05,07 into this format, we get:

format: 101 0 | | |
| | |
XROM 05,07 1010} 00O0TtT] 0100} 0111 binary
| | |
| ! |

7 hexadecimal
There you are. Its easy when you know how !

64

r_practi rpo nl
What is the hexcode of XROM 25,43 (which i{s the function
SEEKPTA from the Extended Functions Module) ? The answer

will be found at the end of this example, but no peeking !
To make it easier, the format is given below:

format: {1 0 1 0 | |

| |

XROM 25,43 101 0| O | binary
| I
! |

hexadecimal

Therefore: XROM 25,43 = A_, hexadecimal

When using RAMED, remember it inserts ahead of the current byte, so position the program pointer to the

_line after where you wish to perform the insertion — for this example, just do a GTO... to find some free space,
so that we're positioned before the .END. . Now, execute RAMED, press |I| to get into insert mode, and enter
90, 75, A1, 47, then quit RAMED (press |ONJ), and see 01 RCL M in the display (RAMED remembers the line
you went into memory at in program mode, and tries to restore you at that line when you quit). Step to see
NOP (XROM 05,07 is the ZENROM function ‘NOP"). An interesting point is that, by entering NOP into a pro-
graminthis manner, the instruction is now a proper XROM instruction with the name NOP - rather than being
justa FOh byte. You can also achieve this by assigning NOP to a key, removing the ZENROM, and then press-
ing the key in PRGM-mode. However, entering NOP as an XROM instruction not only consumes an extra
byte but also takes twice as long to execute.

We'll now edit atext line in situ. In PRGM-mode key-in ‘ZSYNTEXTZZZZ' execute RAMED, and see '47,FC5A
as the three bytes displayed. The 47 is the second byte of the XROM we keyed in above, while 'FC5A" are
the first two bytes of the text line just entered. Each ‘Z’ in the string is acting as a place-holder for the characters
we want to have there eventually, and will appear as a ‘5A’ in the display - this being the hexcode for upper-
case Z. We want to alter these hexcodes to be those of the characters shown in the line above, so step to the
first ‘5A’ and REPLACE this with '28’ to over write the first ‘Z’ in the string with a ‘(" Remember that you must
be in replace-mode and NOT insert-mode. If you wish to check the change that has taken place, then quit
RAMED and take a look. You'll see the line : 03 *(SYNTEXTZZZZ scroll across the display.

Now replace the other 5As with (in sequence) 40,23,26,29 — when you re-enter RAMED, you'll go back in
at the first byte of the text line, so do [SHIFT| [PRGM| to skip a register along the string — this will position
youto a 58, thisisthe X’ in ‘SYNTEXT, so skip two bytes along before you start overwriting. When you finish,
exit from RAMED to see the replaced line: 03 *(SYNTEXT @+ &) scroll across the display.

65

Now let’s try some prefix and postfix substitution — we’'ll create a TONE 45 by keying-in a regular TONE 9
and later modify itinto a TONE 45. Whilstin PRGM-mode, key in TONE 9, and then execute the RAMED func-
tion. The first byte of the TONE will appear as its hexcode of 9F. Now step, using the [PRGM| key, to the 09
postfix byte, and replace this byte with 2D - the hexcode for the 45 postfix being obtained from the Byte Table
-then exit RAMED. The replaced program line will now appear as: 04 TONE 5 . However, from the S.P. theory
covered earlier, remember that functions normally expecting only one-digit arguments can only display the
units digit of their arguments - even when ZENROM allows a two digit value (higher than 9) to be entered.
Therefore, the TONE 45 instruction appears as TONE 5 in the display. Press [PRGM| to come out of PRGM-
mode and then press [SST]| to single step the TONE 45 instruction. You will hear a new longer tone sounded
from the beeper.

We could, of course, have just modified the TONE by using prefix subsitution. With this method of producing
such a TONE 45, the original program line could have been entered as RCL 45 (or any similar function taking
the same postfix argument) and would then have been changed from RCL into a TONE instruction by sub-
situting the hexcodes.

Try this for yourself. As a hint: RCL 45 will appear in RAMED as '90,2D’. The hexcode for the TONE instruction
is OF.

Answer to Practice Problem

format: 1010} 0ddd | ddrfrfr | rfrfTf
| | |
XROM 25,43 1 010)011 0]} 01 10])] 1011 binary
| | |
A | 6 | 6 | B hexadecimal
Therefore: XROM 25,43 = A§,6B hexadecimal

66

4.4.2 EXAMPLE TWO

Totry somethingalittle more sophisticated, let’s create a synthetic global label - e.g. LBLINVALID KEY’ -which
islonger than the HP-41 will normally allow, and assign itto the key | SHIFT| |[SHIFT|. Following that, let’s assign
the multi-byte instruction ‘VIEW IND X’ to the [VIEW| key.

Firstly, we need to establish some kind of global label in memory, so that it will be found by the label-search
mechanism that checks for assignments in labels. To be tidy and to make this example much simpler, execute
CLKEYS or manually remove any key-assignments.

Then key in LBLINVALID’ (this reduces the number of changes we need to make); then execute RAMED.
The display will show ‘Cn’ in the middle (where the ‘n’ could be any digit from 0 to D). Advance twice to the
‘F8’, and change it to ‘FC’. The reason for this is that we wish to add four text characters to the label, so we
must add four to the label length marker - in hex addition, adding 04h to F8h gives FCh. Next change the ‘00’
in the next place to ‘0B’ which is the hex keycode for the [SHIFT| [SHIFT] key position. Figure 3.7.2 shows
the hex keycodes for HP-41 keys.

Now we needto step to the end of the label. Because it is seven characters long, we can skip a single register
by using [SHIFT| [PRGM), and this drops us in at the right place to insert the four new bytes of the label. Tog-
gle into insert-mode, by pressing the |I| key, and insert bytes: 20’ ‘4B’, ‘45’ ‘59’ Now exit RAMED to see the
LBL ‘INVALID KEY’ scroll across the display.

Having created the extra-long label, we now need to modify one of the bits in the key assignment maps represen-
tingthe [SHIFT| [SHIFT| position. Key assignment maps are held in registers 'R’ (unshifted) and e’ (shifted).
To do this, we need to edit status register ‘©* — in fact, we need to add 40 to byte 2:00F, as this will set the
appropriate bit. If you have forgotten the theory behind key-bit mapping refer to Figure 3.8.2.

So come out of program mode, go into alpha mode, and key |SPACE] (the character that has the hexcode
of 20h — [SHIFT| IALPHA| [2]|0] would also have worked, but with more keystrokes), then press [SHIFT)|
IALPHA| (0] [F|, come back out of alpha mode, and execute RAMED. RAMED will start with byte 2 of register
0OF in the display — this byte is probably zero if you have no other key assignments, so just overwrite it with
40h, exit RAMED, and, in User mode, press | SHIFT|[SHIFT|, holding down the secondtime, tosee INVALID
KEY in the display as the function name being previewed.

We can also use RAMED to alter key assignments stored in the assignment registers at the bottom of Main
Memory (from address 0CO upwards). Assign '+’ to the VIEW key; then enter alpha mode and key the ad-
dress 6:0C0 in using the syntext function [SHIFT||ALPHA|. Come back out of |ALPHA| mode and execute
RAMED — this will place the FO byte (which is at address 6:0C0) in the middle of the display, indicating the
start of the key assignment register. Step along the bytes until you come to 04,40, which are the bytes that
code for the ‘+’ function in an assignment register.

Overwrite these two bytes with 98,F3, then exit RAMED. Previewing the key shows XROM 35,51, whichis the
pseudo-XROM for VIEW IND X. You might like to play with this assignment, and some others too, just to get
the feel of what RAMED has allowed you to do: but please remember the warning in the previous chapter
about leaving garbage in free space registers.

67

4.4.3 EXAMPLE THREE

One of the most difficult lines to enter into a User Code program is a precompiled GTO, mainly because the
HP-41 insists on decompiling the program upon modification. However, because the HP-41 doesn't treat over-
writing of bytes by RAMED as being a modification, the program is not decompiled. This means that you may
quite happily alter any bytes in a packed program without penalty. Just to show this working, press |GTO||.|[.|.],
then key in the following lines:

LBLPRECOMP"

GTO 00

LBLd

GTO 00

RCLIND P

YiX

EtX

SQRT

LN

SQRT

HMS+

YtX

X>Y?

GTO 00

VIEW IND 31

. (Note this is a decimal point)
RTN
LBL 00
o
AVIEW

Now put an END on the program by: |GTO||.|.||.|
(this will also pack the program, thereby removing nulls)

Come out of PRGM mode and then go to the first line of the program by |GTO||ALPHA | PRECOMP |ALPHA|
Go back into PRGM mode and execute RAMED by [XEQ||ALPHA| RAMED |ALPHA|

Then do the following:

Press |PRGM] to step through the program until the display contains B1,00,CF as the
current three bytes,

Key-in 50 to replace the 00, step again until you see B1,00,90, and key-in 61,
Step again until the display contains B1,00,98, and key 92.

Now, exit RAMED and PRGM-mode, and then execute ‘PRECOMP’, and see what happens. We will leave
this as an exercise for the reader.

68

MACHINE LANGUAGE PROGRAMMING

5

AN INTRODUCTION
TO MACHINE CODE PROGRAMMING

Inwriting a program on your HP-41, you use functions found in catalogues two and three, and maybe routines
from other programs you have already written, to build up the desired piece of code. When complete, this
will allow the HP-41 to perform a task which none of the individual instructions themselves could perform.
User Code programming allows you to exert a considerable degree of control over what you wish your 41 to
do, and over how it will be done. Nevertheless, you are limited to those instructions that HP have given you
in choosing the tasks that you can do, and the manner in which they are accomplished.

This User Code instruction set represents your ‘lexicon’ of allowed words or instructions, and the ‘sentences’
which you can build up are limited by the variety of words you have available. You can, of course, buy extra
plug-in modules to expand your vocabulary, but you are still limited by what others have decided are the most
useful general-purpose words. Wouldn'tit be nice if you could descend to the next level down in the language
and devise your own words for your own special needs?

This analogy can be carried to HP-41 programming by operating at the same level as HP’s programmers operate
when they write the functions in the HP-41 and its plug-in devices, namely, machine code.

Please bear in mind the statement made in Section v regarding the NOMAS nature of Machine Code
programming.

5.1 WHAT IS MACHINE CODE ?

In your experience with the 41, you may have believed that all there was to HP-41 programming was User
Code, and that each User Code instruction was somehow automatically performed by the hardware lying
beneath the case of your machine, in a world to which you were denied access. In fact, there is a completely
separate environment operating ‘beneath’ the one with which you are familiar, and this is far more complex
than the User Code environment you have been using up until now.

In the same way that you program your 41 with User Code instructions - to be executed by the underlying
operating system - so this extra machine code level is controlled directly by the operating system. This runs
its own programs on the 41 processor chip which is programmed using the more primitive instructions that
the electronics of the 41 obey directly. These machine code instructions are the ‘letters’ of our earlier analogy,
and represent a method of obtaining as complete a control over the HP-41 as anyone can expect to have.

7

Although you program in User Code, when the |R/S| key is pressed it is not the User Code that is run, but
rather the operating system uses the program pointer held in status register ‘b’ to fetch the next byte in pro-
gram memory. The operating system then uses this to determine the machine code routine (representing
that individual RPN 'word’) that should be run. The CPU itself, can only run machine code routines.

To understand this concept, perhaps it is best to think of every RPN word as being an individual sub-program
(written in machine code). In just the same manner as you would build up a program using smaller User Code
sub-routines, so the machine code programmer has built up his program using other machine code routines
that are in turn built up of the native instruction set of the machine.

5.2 WHY USE MACHINE CODE ?

With such alarge instruction set available in User Code (RPN), and with the expansions available using Syn-
thetic Programming techniques, one can be forgiven for wondering why one would need to learn yet another
language - for that is all Machine Code is. In much the same manner as a BASIC language user might con-
sider learningthe FORTH language to gain benefits of processing speed, I/O (input/output) flexibility and ac-
cess to the operating system, so the HP-41 User might turn to 41-Machine Code language.

Machine Code programming is normally used for the following reasons:

Speed - up to 100 times faster;

Absolute Control over the operating system - allowing you to perform tasks that
would be difficult or impossible with User Code;

Creation of new functions;

Packing of data.

Onthe debit side, however, when programming in machine code you must perform your own housekeeping.
Whilst using RPN functions, the code forming those instructions has been written by HP to take care of
housekeeping and associated tasks. This means that greater care must be taken over the coding and that
debugging takes substantially longer.

72

5.3 WHAT YOU NEED TO PROGRAM
IN MACHINE CODE

To begin programming in machine code, you will need certain items of equipment and documentation:

Equipment: - A ZENROM module
- A device for storage of the machine coded instructions
- A printer for disassembling the machine code

(After a while, when you build up a library of new functions, you may wish to commit these to
blowingin EPROM or even a plug-in module. EPROMS are a much less costly option for small
quantities, but do require an interface device for the HP-41 to be able to read them. You can
of course, then also exchange your EPROMs with fellow users, and use many of the standard
41-EPROM-sets available through the User Groups.)

Documentation: - The HP-41 VASM Listings released by HP are essential for anybody considering
machine code programming.
These are annotated listings (by the original programmers) of the 41’s operating
system).

The HP-41 has two areas of independently and uniquely addressed memory RAM and ROM. User memory
is used to store and run the 8-bit RPN functions, while ROM is capable of storing and running both user code
and machine code. Because machine code can only be stored in, and run from ROM (Read Only Memory),
we need a way to read AND write our own machine code into some storage. To do this, requires a RAM (Ran-
dom Access Memory = more correctly Read And Write Memory) interface that is capable of convincing the
41 it really is ROM.

For want of a better term, we have called these Quasi-ROM (Q-ROM) units and will refer to them as such

throughout this Handbook. For more information on the many units available, see the addresses given under
Appendix D - Bibliography & References (Equipment).

73

74

6
PROGRAMMING IN HP-41 MACHINE CODE

To gain the maximum from the machine code sections of the Handbook, all Users are recommended
to read this and following chapters.

6.1. WHAT YOU SHOULD KNOW
BEFORE YOU START

Before you start to write your own machine code routine it is recommended that you should have a
reasonable understanding of synthetic programming - since many of the principles involved require such
knowledge.

In particular you should understand:

1) The use of the status registers T through e
2) The structure, organisation and addressing of RAM
3) The format of a register

Moving into the realm of machine code programming requires a rethinking of some of the concepts related
to RPN and indeed synthetic programming. We are no longer concerned with registers that contain real
numbers, but rather 56-bit integers. We must no longer be reliant on the decimal system because hex
and binary calculations are more common.

Other points to note about the following chapters are:

The mnemonics used in this handbook are the same as those employed by the ZENROM disassembler,
resident in the MCED function. These mnemonics go under the title of ZENCODE’ and a full list of
the ZENCODE mnemonics, which cover not only ‘mainframe’ instructions but also peripheral instruc-
tions, are listed in Appendix E. In some cases these mnemonics differ from those which you may be
used to. The two other sets of mnemonics which are in common use are HPs MASM set and the Jacobs/
De Arras set. The reason for the development of yet another set for ZENROM was that first time users
found the old sets both confusing and difficult to learn. We hope ZENCODE will be adopted by the user
community as the standard and that users will find them both self explanatory and consistent.

75

As an example of the confusing and misleading nature of the other mnemonics sets consider the following:

1. The HP-MASM mnemonic for testing status bit (flag) 1 is ?S= 1 1 which stands
for: test if status is equal to 1, bit 1.

We felt that a 41 user was more at home with the word ‘flag’ rather than ’status
bit' and that a flag was either set or cleared rather than being 1 or 0 and so the
ZENCODE mnemonic for the same instruction is ?FS 1, i.e: query flag set 1.

2 The Jacobs/De Arras mnemonic for reading the word from a ROM address is
CXISA which stands for ‘register C eXchange with the ISA line on the 41 I/O
bus’ - which | think you will agree is fairly meaningless to someone unfamiliar
with the 41 bus architecture.

The ZENCODE mnemonic for the same instruction is ‘RDROM’ for ‘ReaD ROM
address’. | hope you need no more convincing!

It should also be noted that some of the Jacobs/De Arras set are incorrect due to the fact that they were
established before the complete instruction set was understood. In addition, this set does not include
mnemonics for peripheral instructions. ZENCODE also covers all peripheral and HP-IL instructions.

Another convention that is followed throughout this manual is that of specifying fields within a register.
Given a register ‘r’, 14 digits wide, the digits are numbered 13 to 0 from left to right, digit 13 being the
most significant.

The mantissa sign digit is referred to as r[S] or r[13].

The mantissa is referred to as r[M| or r[12:3]

The exponent sign is referred to as r[XS]| or r[2]

The exponent is referred to as r(X| or r[2:0]

The whole of the register may be referred to as r|ALL|, r[13:0] or just .

If a section of the register, not conforming to one of the above fields is required,
then the format is r[h:l], where h is the high order digit and | is the low order
digit. For example r[6:3] refers to digits 6, 5, 4 and 3 of register r.

76

6.2. THE HP-41 C.PU.

This section describes the HP-41 Central Processing Unit - codenamed ‘Nut’ by HP’s design staff - and
its internal register organisation.

The CPU contains:
- three main 56-bit arithmetic registers: A, B and C;
- two 56-bit storage registers M & N;
- one eight-bit register G;
- a four-level subroutine return stack and program counter;
- an eight-bit keyboard ‘buffer’ register;
- two four-bit pointers P & Q;
- a carry flag or flip-flop and a keyboard flag.
- 14 status flags
- an 8-bit output register

Figure 6.2.1 shows the organisation of these registers and their relationships to each other.

Throughout this chapter and other material relating to machine code, the Reader should be careful not
to confuse the CPU-registers, often with similar names, with the Status registers accessible by the User
using SP techniques.

6.2.1. The Accumulators (C, A and B)

The HP-41 has two main accumulators, C and A, and one main storage register, B. All three are 56 bit
registers resident inside the CPU and should not be confused with status registers a, b and c. The ac-
cumulators are the registers upon which almost all of the 41s internal operations are performed.

The ‘C’ accumulator is the most important register in the whole 41, indeed almost one quarter of all CPU
operations are affected or controlled by C. It is the C register that is used to transfer data to and from
main RAM and to talk to all peripherals. All arithmetic instructions involve either C or A and you may
find it useful to compare C and A to the stack X and Y registers in RPN; they are of similar importance
at their respective levels.

The ‘B’ register is not strictly speaking an accumulator - since although arithmetic operations can be
performed on B, the result of such an operation is never stored in B. The only method of changing its
contents is by copying or exchanging them with the contents of one of the accumulators. Register B
may, however, be referred to as an accumulator for reasons that will become apparent during later discus-
sions (see Class 2 instructions).

RIN 4

RN 3 B
RIN 2 | A -] (o |
RINT | {7 C . =
PC__|— XSTJ [ST
F
KEY M |
I N]
F1GuRr 2.1, THE HP 41 CPU STRUCTUR

) () ()) [&
W () () (@ (&
elalalele
G IEEE
[G0 [[
= = @ =
B G 3 =)
= &

35

37

77 [87]‘

Ficur Y TR R

78

6.2.2. The Storage Registers (M, N and G)

There are two CPU temporary storage registers ‘M’ and ‘N’ As with the accumulators they are both 56-bits
wide and can thus store a complete 41 register. Again they should not be confused with the status registers
Reg M and Reg N which are resident in main RAM and not in the CPU.

These storage registers can only be accessed via primary accumulator C. Drawing another analogy with
user code programming; these registers could be compared to user data registers RO0 and RO1 since
most Users employ these as temporary or scratch storage.

In addition to the two 56-bit storage registers, M and N, there is one eight-bit temporary storage register,
‘G’ Similar to the other storage registers, the G register can only interchange data with C. Since G is
only one byte wide, a coding method is employed to indicate which byte of C you wish G to interact
with. The technique for this will be described when the instruction set is discussed.

6.2.3. The Status Bits (ST)

As with user code programming, there are a limited number of status bits, or flags, that are available
to the machine code programmer. Once again, these flags are independent of those stored in status
register d.

In the CPU there are 14 such flags. All of which may be individually set, cleared or tested. Of the 14
flags, 8 of them can be referred to as the status register ST. This is because the lower eight flags
(7 - 0) can be transferred to or from the two least significant digits of C, C[1:0]. This is an important feature,
as synthetic programmers will appreciate, because it means that more than one set of flags can be main-
tained at one time. The HP-41 operating system often uses the other 8 bit register G to store an alternate
status set. In user code programming there are user flags (29 - 00) and system flags (55 - 30), the same
is true in machine code. Flags 0 through 9 are user, or local, flags which do not have any specific mean-
ing to the system. This does also mean that all of the ST register content is ‘local’ as well as the two
other flags. However, flags 10 through flag 13 are system flags and indicate the following:

Flag 13 set - User code program running

Flag 12 set - Private program

Flag 11 set - Stack lift enabled

Flag 10 set - Program pointer (Reg b [3:0]) in ROM

6.2.4. The Program Counter and Return Stack
(PC and STK)

Essential to any CPU is the program counter, ‘PC’, which keeps track of the next machine code word
to be executed. After each machine code cycle, the instruction at the address pointed to (by the PC)
is read and the PC incremented.

Of the circumstances when the PC may be altered, the most common is that of jumps. Should the in-
struction read in be a ‘go to’ of some form, then the PC is changed to the jump destination. If a ‘go
sub’ (XQ in ZENCODE parlance) is encountered then the PC is copied onto the subroutine return stack
and then changed to the jump destination. With the CPU, the return stack is 4 levels deep. The first
address on the stack (i.e. the next return) can be transferred to or from the C register with the effect
of ‘pushing’ or ‘popping’ the stack. Although, it is also possible to write a new address to the PC from
C, it is impossible to read the PC directly, hence the single direction arrow shown on the diagram of
the CPU. The instructions that deal with the first address on the return stack refer to it as STK.

6.2.5. The Keycode Register and Keydown Flag
(KEY)

Whenever a key is pressed, the CPU requires some method of determining which key it was. This is
achieved through the ‘KEY’ register. When a key is hit, providing that another key is not still held down,
a keycode for the key is placed in the 8-bit KEY register. The keycodes returned are not the same as
those you will be familiar with from synthetic programming but are shown in Figure 6.2.5. The KEY register
can be read into C but not the other way around. This register also has a data path to the program counter
(PC) which allows the 8 least significant bits of the PC to be overwritten by a keycode, thus enabling
branching on a key. This feature is little used in practice due to the range of the keycodes.

In addition to the KEY register, there is also a keydown flag that will be set if the KEY register contains
a keycode. This flag can only be tested.

80

6.2.6. The Flag Out Register (F)

The Flag Out, ‘F’, register is 8-bits wide and connected to an output pin on the CPU. This output pin
is used to switch the beeper on and off. The F register is accessed via the status register ST.

6.2.7. The Pointers (P, Q and PT)

The CPU has two independent pointers ‘P’ and ‘Q’ which are used to indicate digit positions in the ac-
cumulators. Each pointer can thus have a value from 0 through 13. These pointers are primarily used
in arithmetic, shift and comparison instructions to specify different fields of the accumulators to operate
on. A description of using the pointers in this fashion is given in the section dealing with Class 2 instructions.

Although there are two pointers, only one of them can be ‘active’ at any one time. This means that in
order to change the value of one of the pointers, that pointer must be selected as the active pointer.
Most instructions that use a pointer will use the active one, and refer to it as PT.

6.2.8. The Carry Flag

The ‘Carry’ (also called ‘condition’) flag is the bit that will be set if any arithmetic overflow or underflow
occurs after a given instruction. This bit will also be set if a test proves true, i.e. testing if a flag is set.
This carry flag is also generally used as a basis for branching. For example, after testing a flag, you
may wish to branch if the flag was set - i.e. the carry flag is set. Unless an instruction specifically sets
the carry flag it will, in almost all circumstances, be cleared after each instruction.

81

6.3 THE INSTRUCTION SET

The instruction set mnemonics used in this manual are called ‘ZZENCODE" The ZENCODE mnemonics
are listed in APPENDIX E - Reference Tables.

In a similar manner to that in which user code functions are stored in main memory as a series of 8-bit
bytes forming programs, so machine code instructions are stored in ROM or Quasi-ROM as series of
10-bit words to form functions. The format of these 10-bit words, however, is considerably more struc-
tured than that of their user code counterparts.

The basic format of the 10-bit CPU instruction (or word) is:
i Qi iicc

The instruction set is split into four distinct and separate classes of instruction. Each of these classes
is used to cover a particular type of instruction - such as short jumps or arithmetic operations. The par-
ticular class of an instruction is determined by the the least significant two bits of that instruction, in-
dicated by ‘c ¢’ in the above example. The remaining eight bits are used to determine the actual instruc-
tion within the class.

In some cases, for example: the instruction ?FS 3 (test flag 3), the 8 instruction bits can be further divid-
ed into ‘Subclass’ and ‘Modifier’ sections, where the Subclass will determine that the instruction is a
flag test type, and the Modifier will determine which flag is to be tested.

6.3.1 CLASS 0 Instructions

There are sixteen groups, or subclasses, of instruction in this category and each category has sixteen
available modifiers. Diagrammatic representation of this Class is best achieved by means of a table.
Although the concept of a byte table will be familiar to users of synthetic programming, to call it such
could cause confusion with the standard User Code Byte Table - We will therefore refer to this as a ‘Word
Table'.

In essence, Class 0 provides instructions for such things as pointers, flags, data storage manipulations,
some peripheral handling and other non-branch (or jump), non-arithmetic instructions. Unfortunately,
although this is the most complex of all the classes, it is important that it should be covered first - as
it includes instructions that must be understood before we introduce the other classes.
A class 0 instruction has the format:

mm mmss ss00

where: - ssss is the subclass, and
- mmmm is the modifer (the 00 at the end indicate it is from class 0).

82

The 256 instructions are organised into subclasses and arranged in a Word Table as shown in Figure
6.3.1. Each instruction block has the following format:

Subclass

|
|
+
PT= 8 | Instruction (type and parameter)
I
|
+
I

Opcode (10-bit word)

|
|
+
|
Modifier 4 |
l
+
|

In Word Table locations where no instruction is given, only an opcode, this implies that the opcode is
unused at the current time.

You will notice from the Word Table that the instruction parameters follow one of two patterns as shown
below:

Modifier | Type ‘A’ | Type 'B’
_________ e ——— e — e ——————
0 I 3 |]

1 | 4 | 1
2 | 5 | 2
3 I 10 | 3
4 | 8 | 4
5 | 6 | 5
6 | 11 | 6
7 | Unused | 7
8 | 2 | 8
9 | 9 | 9

A] 7 | 10 (A)
B | 13 | 11 (B)
C | 1 | 12 (C)
D | 12 | 13 (D)
E | 0 | 14 (E)
F | Special | 15 (F)
_________ o ————— g ———————

Flag Instructions (CF, SF, ?FS)

There are three types of flag operation:

Clear Flag (CF Subclass 1);
Set Flag (SF - Subclass 2);
Test Flag (?FS - Subclass 3).

All three instructions take a type ‘A’ parameter and can operate on any one of the 14 flags. The ?FS
instruction will set the carry bit if the flag being tested is set.

83

24€ 8€ (o] VIE (PJE [03€ |83 (s VIE 03¢ 006 [8Q¢ | ¥aE @ac 006 8Of pOE 00€ 4
SL 93y=) _ 1315434 S J=934 | 4 10143d NL1Y 1d+ 15<>) 1d- i AL AINYTD @ =1S|L I=11dH
o8 88 [vec 0@ We e Ve @vE | 06E |86 | W6E 06 |osc |88€ |v8E | O8E 3
@ 404 (vl 93¥=D VONVI=) AS8dé |¥L 2=93¥ |3 101¥3d NLY¥ON @ =1d 1S=) @ =1d¢ in @ Si¢ @ IS @ 42(9 2=11dH
OE [BIE o) VLE 0LE 03¢ [89E ;) VOt @9¢ |ose |ese [wse |ese |ove [8wE |pwE [OVE a
2L ¥O¥ (€L 93¥=) vy02=) WIVe €1 2=934 | @ 1J1¥3d N1¥D| ct =ld 2=1S | 2l =1d¢ Q01| 2L sS4 2L 4S 2L 34215 2=11dH
OFE | BEE | ¥EE 0EE e [8zE o TveE @2€ |0IE |BlE |wle |@ie |0 [see [vec |olc 9
L 404 |2l 93¥=) WOYQY ¥0¥Ié |21 2=93¥ | D 121¥3d| 901SIa L =1d L =1di 20 L Sde L3S L 40|% 2=1IdH
REZNNNE T2 2T 21 B3[BT, v 03¢ |00z |84z |¥Gz |@Q¢ [|8z [¥dz [ede g
€L ¥y |LL 93¥=) ViVOM A¥3Sé 'L D=93¥ |8 101¥3d| 440SI0| €L =Id 4<>1S | €L =1di 907] €L S4¢ €L 3S €L 42[€ I=1IdH
O8c |eac [vec eeC vz [eve | 1vve ovZ |06 |86 |v6Z | @6z |08Z |88C [¥8Z |@8Z v
L ¥y Bl wummu 30ySE (@l unuwx vV 1J133d| 23013S L =1d 3=1S L =1di vVl L S3i L 43S L 4312 I=11dH
oz 8L [vl oLt 09z 1892y V92 @9z | os¢ eS¢ |¥Sz |esz [owz [ewz [y |eve 6
6 44| 6 93¥=) 1I7SKWVY SNY4é | 6 =934 |6 101¥3d| X3HI3S 6 =1d 18=4 6 =1dé 6 01 6 Sdi 6 i3S 6 40|l 2=1IdH
06 [8T [vET 0T diz |, [vee @2z |0lz |8l |wlz |eiz |06z [sec [vez |@eC g
2 ¥J¥| 8 93y=) A3INOL9 90NM: | 8 D=93¥ |8 1J1d3d AIN=D Z =Id 2 =1di 8 1 2 Sdi IEN 2 12]0@ 2=11dH
24l CETIS 2 TR 2Tt OB 183, [v3L @3l [oat [sat [¥al @aL (001 [8dl yOL |@dl /
L 93¥=) L J=93¥ | L 121¥3d 2019 W<>) LN
|l [eel ., [v8L o8l Wi fevi vl evi [06L |86l |6l @6l |08l [ssl vl |esl 9
LL 30¥| 9 93¥=) NLS=J| 1Ivile |9 J=93¥ |9 101¥3d @=28v| LL =Id W=D | Ll =1di 901 Ll S4¢ LL 3S LL 40| 2XNVEN3
TR E TN T _SN_ 9L 891 , [V9L @9L [0St (8sL |¥Sl est (oL [apl wL (ol G
9 ¥4y | § 93¥=) | I=X1S ¥J4I6 |6 2=93d |S 121¥3d 1vee 9 =1d =W 9 =1di SN 9 Sii 9 i3S 9 4
(L |8l fvEL j0El ST TN 121 @zt (oLl [slL ¥l TR TR T voL |00l p
8 ¥ | ¥ 93¥=) 101 AVd4¢ | ¥ =938 | ¥ 1D1¥3d 0=di 8 =1d 8 =1di v 8 Sdi 8 iS 8 3)| LINVEN3
010|840 ,,[vi0 040 030 (830, (v30 030 000 |8a@ |v0@ |06 (000 [80@ |¥0@ |000 €
@L ¥0¥| € 93¥=) N<>) AVY¥0¢ | € 0=93d | € 101¥3d O=1d| @l =1d 9<>) | BL =1di € 01| @L S ["]9EN gL 1)
8 880 ,,| v80 080 Ve |sva ., [vve Ov0 | 060 868 |60 |06 [08@ [88@ |v8@ |08@ z
S ¥y 2 93¥=) N=) AV@3¢ | 2 2=93¥ |2 101¥3d d=1d S =1d 9=) S =1di 2N S S4¢ FREN S
06 |80 | vl0 0.0 090 1898 ,, (V90 @90 | 050 |95@ |vS@ |@se |ove [sv@ [vv@ |ovO _
b 33| L 934D =N ¥ 4dé A L 2=934 (L 121¥3d| J30MOd v =1d =9 v =1di L0 v S4i v iS ¥ 4 107TWM
€0 BE@ |veo |oco a0 820, |ve @ze |01@ |8l0 [vie@ @l0 |[J0@ |s6@ |ve@ |000 0
€ ¥y vivay € 4di ;@ 0=934 | @ 101¥3d| NI4T € =1d € =1d¢ ¢ € Sd¢ € 3 €4 dON
4 3 a J 8 v 6 8 L 9 S 14 £ 4 I 0
SSY108NnS

d314100W

CLASS 0

MACHINE CODE WORD TABLE

Fieure 6.3.1

84

The special instructions (modifier F) for the three subclasses are:

ST=0 which clears flags 0 to 7, i.e. the status register ST:

CLRKEY which clears the KEYDOWN flag if no key is down at the
time the instruction is executed; and

?KEY which tests the KEYDOWN flag and, if it is set (i.e. there is
a keycode in the KEY register), then the carry flag will be
set.

Note that the fact of the KEYDOWN flag being set, does not imply that a key is currently down, just
that a key has been pressed since the last keyboard reset. If the KEYDOWN flag has been reset (by
CLRKEY) then the ?KEY instruction must be issued before the flag can be set by a new key press.

The Pointer Subclasses (PT= and ?PT=)

There are two main types of pointer instruction:
Set Pointer (PT= - Subclass 7); and
Test Pointer (?PT= - Subclass 5).

Both instructions take a type ‘A’ parameter and can either set the active pointer PT (either P or Q) to
a specified digit or test if the active pointer is at a specified digit (13 through 0). Selecting an active pointer
is covered under subclass 8. The ?PT= instruction will set the carry flag if the test is true - i.e. the active
pointer is at the digit specified.

The special instruction for subclass 5 is ‘Decrement Pointer’ (-PT). If the pointer is at digit 0 and is
decremented, then it will wrap round to point to digit 13. However, this will not set the carry flag. The
special instruction for subclass 7 is ‘Increment Pointer’ (+PT). If the pointer is at digit 13 and is in-
cremented, then it will wrap around to digit O without setting the carry flag.

Accumulator Manipulations (RCR and LC)

The two accumulator manipulation operations act on the C register:

Rotate C Right (RCR - Subclass F) takes a type ‘A" parameter and
rotates the primary accumulator, C, right by the specified
number of digits, 0 to 13.

Load Constant (LC - Subclass 4) takes a type ‘B’ parameter, 0 through
F, and loads that parameter value into C at the digit in-
dicated by the active pointer. Having loaded the constant,
LC then decrements the pointer, following the same rules
as for the -PT instruction, thus enabling LC instructions to
be strung together for loading more than one digit.

85

The use of LC and RCR is illustrated by the following example which could be used to load C with the
normalised number —25 .

Assume all digits of C are 0 and the pointer is at digit 2.

Opcode Mnemonic Comments
250 LC 9 Load the constant 9 at the current pointer postition
and decrement thse pointer.
c= 0 0000O0OO0OOOUOO 9 00 PT @ 1
090 LC 2 Load the constant 2 at the current pointer position
and decrement the pointer.
c= 0 0000O0O0O0COOO 9 20 PT @ O
150 LC 5 Load the constant § at the current pointer position
and decremant the pointer.
cC= 0 000O0OOOOO OO 9 25 PT @ 13
03C RCR 3 Rotate the C register § digits to the right
c= 9 2500000000 000O0 PT @ 13

Registers G, M, ST and F

The instructions for accessing registers G, M, ST and F are all in subclass 6. Three instructions are pro-
vided for register G:

G=C load the C register into register G;
C=G copy the G register into C;
C<>G which will exchange the contents of the C and G registers.

This would be all very well, except for the fact that C is 56 bits wide, and G is only 8 bits wide. Therefore
only two digits of C can be transferred to the G register. The method of indicating which digits of C to
use, is by means of the pointer, PT. Data transfers between G and C operate on all of the G register,
and two of the digits in C - at the active pointer position, PT, and at PT + 1. Thus if G and C
contain the following values and the pointer is at digit 5:

cC= 0 3141592?54 000 G= AD
PT
then the instruction C<>G would produce the result:
cC= 0 314159AADS4 000 G= 26
PT

86

If the pointer is at digit 13 and a transfer is done between C and G then digit 13 of C will be used, but
the other MSD will be indeterminate (see time enable).

Data transfers between C and M (M=C, C=M and C<>M) operate on all 56 bits of both registers.

The next 3 instructions in subclass 6 (F=ST, ST=F and ST<>F) are used to control the CPU output
port (the beeper), and their usage is covered in Chapter 8.1. on Special Instructions.

The instructions that transfer data between the Status register (ST) and C operate on all 8 bits of ST
(flags O through 7) and the two least significant digits of C, i.e. C[1:0].

Subclass C

This subclass includes the three instructions that deal with transfers between registers C and N. As with
register M, all the instructions operate on all 56 bits of both registers.

The LDI (LoaD Immediate) instruction comprises two consecutive words, namely, the LDI itself followed
by a constant. This means that when the processor encounters an LDI, it does not execute the word
following the LDI as if it were a stand alone instruction, but instead treats it as a data byte and uses
the word after that as the next instruction. The effect of LDl is to load the value of the next word into
C[X]. Hence the sequence:

130 LDI
325 CON 805

will place 325h into C[X]. The ‘805d’ which will be printed by the ZENROM Disassembler is the decimal
equivalent of 325h. Because each machine code instruction is only 10 bits, this means that the max-
imum value that can be loaded into C[X] using an LDI is 3FF - because the upper 2 bits of C[XS] are
cleared during an LDI instruction.

87

The method of manually pushing an address onto or popping an address off of the return stack is by
use of the instructions STK=C and C=STK.

STK=C takes an address from the address field of C, C[6:3], and places it as the first
return address on the stack, moving RTN 1 to RTN 2, RTN 2 to RTN 3, ,
until RTN 4 is pushed off the top of the stack and is lost.

C=STK on the other hand, takes the address RTN 1 and puts it into C[6:3] and drops
the stack - thus losing RTN 1 from it. The address 0000 replaces RTN 4 at the
top of the stack after the latter has been dropped to RTN 3.

GTOKEY has the effect of copying the contents of the keycode register (KEY), into the two least signifi-
cant digits of the program counter (PC). Basically, the instruction should perform a jump dependent
upon the key pressed and, as such, it would have been an extremely useful instruction - had the keycodes
been arranged more suitably. Unfortunately, all programmers have their ‘off days. GTOKEY is not used
at all by the operating system.

The Read ROM instruction, RDROM, is used for reading a location in ROM. Given an address in C|6:3],
RDROM will return to C[X| the word at that address. This instruction is used, for example, when the
41 is running a User code program in a plug in ROM. RDROM is used to fetch the user code byte from
the ROM, which can then be processed in much the same way as if the byte was in a main RAM routine.

Two boolean operations are allowed for, AND’ (C=CANDA) and ‘OR’ (C=CORA). These both operate
on all 56 bits of C and A and leave the result in C.

The instruction ‘PERSLCT’ is used for peripheral access and will be covered in Chapter 8.1 on Special
Instructions.

The two remaining instructions in this subclass, ‘RAMSLCT’ and ‘WDATA are used to transfer data bet-
ween the CPU and main memory.

Memory Access Instructions

In order to fully understand this section, you should make sure you are familiar with the structure and
addressing of main memory (see Chapter 3.7).

In order to read from, or write to a register in main memory, you must first select that register by using
the ‘RAM select’ (RAMSLCT) instruction. This instruction takes its argument from the least significant
10 bits of C[X]. Thus, if you wish to select the first key assignment register you might use the following
sequence of instructions

130 LDI
0CO0 CON 192 Load the address of the register
270 RAMSLCT Select the register

The selected register remains as the ‘active’ register until a different address is selected.

88

To write data to a register the WDATA instruction is used which copies the contents of C to the selected
register. To read from a register use the RDATA instruction which will copy the contents of the selected
register into C. This method of selecting, reading from and writing to a register can be used for all of
the 41’s RAM space including the status registers and extended memory. However, there is a much simpler
way of accessing the status registers (RAM addresses 000 to 00F) by using the instructions in subclass
A (for writing) and subclass E (for reading).

For the instructions in these subclasses to function correctly Chip 0 must be selected. This means that
any register between addresses 000 and O0F can be selected. (The sixteen status registers exist physically
on the same RAM chip, called Chip 0). Subclass A (REG=C) allows you to write to any of the status
registers T through e whilst subclass E (C=REG) only allows reading from register Z through e. It is
impossible to read directly from register T since the instruction, which would be C=REG 0/T, is in fact
the RDATA instruction. Another point to note is that the instructions C=REG and REG=C have the effect
of selecting that register in the same way as RAMSLCT.

This means that if, for example the following instructions are executed
046 C=0 X Clear C[X| to zeroes

270 RAMSLCT Select Chip 0
OF8 C=REG 3/X Read the X register

then, not only is the X register read, but it is made the selected register and so there are now 2 ways
of writing data to X (WDATA and REG=C 3/X) and also 2 ways of reading data from X (RDATA and C=REG
3/X). A further implication of this, is that although register T (address 000) was selected, it is not possible
to read or write to T using RDATA and WDATA since the C=REG 3/X effectively deselected that register.
This means that normally you will have to select register 000 immediately prior to reading register T.

Other Class 0 instructions

The rest of the class 0 instructions covered in this section do not fall into any particular category but
are more general purpose instructions.

Subclass 8

CLRRTN (clear the first return address) is similar to C=STK in that it drops the return stack but it differs
in that the return address is not loaded into C, but is simply lost.

PT=P and PT=Q are the instructions used to select either P or Q as the active pointer referred to as
PT. The active pointer remains active until the alternate pointer is selected.

?P=Q is a test instruction which will set the carry flag if both the pointers are pointing to the same digit.

89

?BAT is another test instruction that will set the carry flag if the battery is low. It is this instruction that
the operating system uses to determine whether or not to set the low BAT annunciator.

ABC=0 has the effect of clearing all three accumulators and is equivalent to the three class 2 instruc-
tions

0 ALL
0 ALL
0 ALL

A
B
C

GTOC is a branching instruction that takes an address in C[6:3] and loads it into the program counter (PC).

C[=KE]EY fetches the contents of the keycode register (KEY) and copies it into the keycode field of C,
Cl4:3].

SETHEX and SETDEC are used to select the mode in which arithmetic operations are performed. The
HP-41 CPU is able, not only to work in hexadecimal, but also in BCD (Binary Coded Decimal). The only
instructions affected by the arithmetic mode are the arithmetic instructions in Class 2. The arithmetic
mode will be covered more fully in the section on Class 2 instructions.

POWOFF, DISOFF and DISTOG are used to determine the ‘power mode’ of the HP-41. There are four
possible power modes:

Deep Sleep - Display off, CPU not running

Drowsy - Display off, CPU running

Light Sleep - Display on, CPU not running
and Run mode - Display on, CPU running

The 41 is in deep sleep when it is switched off; drowsy for a short time after it is switched on, but the
display is still off; light sleep whilst it is waiting for a key to be pressed, and in run mode whilst a key
is held down or a function is being executed.

POWOFF is a 2 word instruction the second word of which should always be the NOP (000). This in-
struction will stop the processor running. Note that this does not mean that the 41 will always switch
off as that is dependent on the state of the display.

DISOFF and DISTOG will be discussed under Display handling in Chapter 8.2.

The ‘return’ instructions (CRTN, NCRTN and RTN) are similar to their user code counterpart in that
they mark the end of a subroutine and return to either the calling routine or the operating system. RTN
is the most common and will normally mark the end of a function - it will always execute a return when
encountered. CRTN (If Carry then ReTurN) will only execute a return if the carry flag is set. Note that
the carry flag only remains set for one instruction cycle after it is set and so this instruction should be
preceded by a test instruction. NCRTN (If No Carry then ReTurN) is the converse of CRTN in that a return
will only be executed if the carry flag is not set.

90

Subclass 0,9, B & D

The first instruction in subclass 0 is the machine code NOP (no operation). The main use for this instruc-
tion is to ensure that the carry flag is clear.

Subclasses 9 & B are covered in Chapter 8 on Advanced Machine Code Programming along with the
other instructions in subclass O.

All of subclass D is unused.

6.3.2 CLASS 1 Instructions

Class 1 instructions are of the ‘branching’ type and enable you to either go to, or to execute code anywhere
in the 41’s 64k address space. All of these instructions in fact comprise of 2 consecutive words. The
format for the two words of a class 1 instruction are:

Word 1 - cc ccdd ddo1
Word 2 - aa aabb bbst
where: - the two least significant bits of word 1 indi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>