

it coR\ ¢

A

AR tlt:‘Programming

ZENGRANGE

ZENROM 3B

USER’S
HANDBOOK

ZENROM 3B

USER’S
HANDBOOK

A Programmer’s Module
For Use With The HP-41 Handheld Computer

()

Zengrange Ltd, England. 1984

FOREWORD

Many veteran HP-41 programmers will feel slightly cheated by ZENROM. As one who has been hard at
it since late 79, through user, synthetic and machine code, | cannot deny at least some sympathy with that

view.

It’'s not the countless hours spent exploring the HP-41 that anyone will mind. If that wasn’t fun, why would
anyone have done it ? No, it's the painfully developed slick techniques for entering synthetic code, the carefully
thought out methods of editorless machine coding, all made suddenly, completely redundant !

One welcomes ZENROM with just a shade of regret. Like one who has survived the rigours of a wagon
train and lived on to see the trans-continental railway. A journey of months, through byte jumpers, et al,
to an understanding of synthetics, with its sunlit beaches and fertile lands, is reduced to days for any
newcomer.

Of course, you would expect me to recommend it. But, since this is a foreword and not an advertisement,
you should, if you are reading this, have already bought the module so I’'m not here to sell it.

| simply have to tell you that, although | had no part in the writing of either program or manual, | am truly
proud to present ZENROM to you.

If you’re an old timer and the analogy above strikes a chord, believe me, you'll be amazed how quickly
you overcome the regret. If you’re a newcomer, eat your heart out. You'll never know what you’ve missed !

John French
Chairman, Zengrange Limited

June 1984

Chapter

21
2.2
2.3

3A

CONTENTS

Description

Foreword
Contents
List Of lllustrations
Installing ZENROM
Nomas - An Explanation

QUICK REFERENCE GUIDE

ZENROM Function Summary
Catalogue Functions
Operating Modes
Direct-Key Synthetics

CATALOGUE FUNCTIONS

Catalogue Function Descriptions
Clearing Memory
Non-Normalised Numbers
Utility Functions

SYNTHETIC PROGRAMMING

The Theory Of Synthetic Programming
SP - Origin and Uses
Bytes and Memory
The Byte Table
Multi-Byte Instructions
Variable-Length Instruction
Register Formats
HP-41 Memory Structure
The Status Registers
Applications of S.P.
Scratch Storage
Non-Standard Output
Register Allocations
Flag Manipulation
Other Basic Applications
Summary

Page

i
ii
Vi

Vi

viii

-
0
,

—

15
15
16
20

23
24
28
28
29
33
35
37
43
47
47

49
50
51
51

4.1
4.2

43

44

5.1
5.2
53

6.1
6.2

6.3

6.4
6.5

Using ZENROM To Input Synthetic Lines
Direct-Key Synthetics
Extended Alpha and Text Entry
User Alpha Keyboards
SYNTEXT Entry
Using the RAM-Editor (RAMED)
Within Program Memory
To Replace Bytes
To Insert Bytes
Outside Program Memory
Examples Using RAMED

MACHINE LANGUAGE PROGRAMMING

An Introduction To Machine Code Programming
What Is Machine Code ?
Why Use Machine Code ?
What You Need To Program In Machine Code

Programming In HP-41 Machine Code
What You Should Know Before You Start
The HP-41 Central Processing Unit
Accumulators
Storage Registers
Status Bits

Program Counter & Return Stack
Keycode Register & Keydown Flag
Flag Out Register
The Pointers
Carry Flag
The Machine Code Instruction Set
Class 0 Instructions
Flag Instructions
Pointer Subclasses
Accumulators Manipulations
Registers G,M, ST & F
Subclass C
Memory Access Instructions
Other Class 0O Instructions
Class 1 Instructions
Time Enable Fields
Class 2 Instructions
Class 3 Instructions
The HP-41 ROM format
Examples Of Machine Coded Routines
Saving The Stack
Substituting a Character in Alpha

53
54
56
56
57
59

60
61
61
64

69

71
14
72
72

741
7.2
73
74
75

8.1
8.2
83
84
85
86

Using ZENROM To Input Machine Code
The Machine Code Editor (MCED)
Disassembling Machine Code
Writing To A Device
Editing Machine Code
Storing And Retrieving ROM Data

Advanced Machine Code Programming
Special Instructions
Display Handling
HP-82143 Thermal Printer
HP-82182 Time Module
HP-82160 HP-IL Module
Other Peripherals

APPENDICES

Owners Information

Operating Limits

Bibliography And References
User Groups
Books
Equipment

XROM Numbers

Reference Tables
ZENCODE Machine Code Mnemonics
Class 0
Class 1
Class 2
Class 2 - Time Enable Modifiers
Class 3
Display
Timer
Card Reader
Peripheral Control Instructions
Numbering Systems
Corrections

107
107
111
113
116
118

121
121
124
125
126
127
127

129

131

135

139
139
141
142

143

145
145
145
146
147
147
147
148
149
149
149
150
151

Figure

1.2.1
1.2.2

3.1
34.1
34.2

36
3.71
3.7.2
3.73
3.74
3.75
381
382
383
384
385

4.2

6.2.1
6.25
6.3.1
6.3.3
634
6.35
6.4.1
6.4.2

8.2

Vi

LIST OF ILLUSTRATIONS

Description

Machine Code Editor (MCED) Keyboard
User Alpha Keyboards

HP-41 Hexadecimal Byte Table
Byte Table Segment - Row 0, Column 4
Byte Table Extract - Row 6 & Row 7
Register Formats
HP-41 Memory Configuration Map
HP-41 Key Assignment & Global Label Keycodes
Buffer Formats
XRAM Link Register Formats
XRAM File Header Formats
HP-41 Status Register Map
Key-Assignment Bit Map (Keycodes)
Key-Assignment Bit Locations
HP-41 Flag Descriptions
Flag Bit Locations in Register ‘d’

User Alpha Keyboards

The HP-41 CPU Structure
Keycode Structure
Machine Code Word Table - Class 0
Time Enable Fields
Machine Code Word Table - Class 2
Machine Code Word Table - Class 3
ROM Paging
ROM Image Formats

Display Coded Characters

Page

26/7
29
30

36
38
37
40
4
42
44
44
46
46

57

78
78
84
92
94
96
98
98

123

INSTALLING ZENROM

Before installing or removing the ZENROM module, ensure that the HP-41 Handheld Computeris switched

off. If this is not done, damage may result to the module, the computer or its operation may be disrupted.

The ZENROM module may be plugged into any port on the HP-41, although if an HP-82106A Single Memory
Module is also plugged in (HP-41C only), then the ZENROM must be in a higher numbered port than the
memory module (Port numbers are detailed on the back of the HP-41).

After removing ZENROM, place a port cap into the unused port as protection against dust and dirt.

ZENROM has the same XROM identity, i.e. XROM 05,xx, as that of the HP-00041-15001 STANDARD AP-
PLICATIONS PAC. If both of these modules are plugged in at the same time, then only that module in the
lowest numbered port will be seen by the HP-41. To avoid conflict when you wish to use ZENROM, ensure
that the STANDARD APPLICATIONS PAC is either removed, or in a higher numbered port to the ZENROM
module.

For additional information regarding care and service of ZENROM, refer to Appendix A: OWNER'’S
INFORMATION.

vii

NOMAS

Synthetic and Machine Code programming fall into a class of activity that HP-User Groups have classified
as being ‘NOMAS"

NOMAS is an abbreviation for:

NOt MAnufacturer Supported
(Recipient Agrees Not To Contact Manufacturer) and is a term that you will come across stamped on much
of the available documentation relating to the design and implementation of the machine code instruction
set on the HP-41.

Most manufacturers put considerable effort into supporting users of their products - and Hewlett Packard
has a track record that others could do well to imitate. However, for many reasons, they are not able to
support or assist with every activity that users wish to follow. A good example of this is Machine Code Pro-
gramming. Because the HP-41 was designed many years ago, the Design Team has long since dispersed
onto other tasks. Therefore,it is not possible for HP to provide the worldwide effort needed to support such
User activities. To overcome this problem, HP have released as much information as commercially viable
to the User Groups devoted to their products. However, this has been on the understanding that the material
is accepted on an “AS IS” basis and that no further assistance can be given by HP regarding the use
of that material.

By the method of NOMAS, HP are able to release more detailed information than would otherwise have
been possible. Therefore, please respect the NOMAS status of Synthetic and Machine Code Programming
and do not contact Hewlett Packard for assistance — they just will not be able to help. If you need assistance,
contact one of the independent User Groups listed in Appendix C. Almost all the published information
on the HP-41 has come from members of these groups, and that is where the major expertise lies. For
example, even programmers of ZENROM and the authors of this ZENROM User’s Handbook are very ac-
tive in User Groups.

viii

ZENROM QUICK REFERENCE GUIDE

ZENROM FUNCTION SUMMARY

Many Users of ZENROM will already have a knowledge of synthetic and other advanced HP-41 pro-
gramming techniques, or will want to immediately gain hands-on experience ofits use. For such people,
the following provides a brief, but sufficient introduction to get you started.

However, because ZENROM provides Users with the means to access the HP-41’s operating system,
either directly via techniques of Synthetic Programming, or indirectly, by machine language programm-
ing in conjunction with a machine language device, we would urge all newcomers to read through this
handbook before using ZENROM.

Whilst the functions in ZENROM will not harm your HP-41, it is possible for the inexperienced User to
cause either:

- loss of user memory contents (MEMORY LOST)
- or a keyboard ‘lock-up’ (placing the processor into an infinite loop), thereby preven-

ting response to keystrokes. A master reset will be necessary to recover from this,
leading to a loss of programs and data in user memory.

ZENROM functions fall into three major categories:

Catalogue Functions - Language extension functions possessing an XROM identification number;

Operating Modes - New interactive modes, similar to ED (text editor on the HP-41CX) or SW (stop-
watch) and new keyboard layouts;

Direct-Key Synthetics - Extensions to the HP-41 operating system that provide new facilities and allow
the User to circumvent previous system limitations.

1.1 CATALOGUE FUNCTIONS

function description

CLMM Clear Main Memory
Clears all Main Memory and stack registers.
Resets the HP-41 status and flags to a Master Clear condition and displays

the message ‘MM LOST..

CLXM Clear Extended Memory
Clears (nulls) all Extended Memory registers — but does not check for the
existence of Extended Memory.
Displays the message ‘XM LOST’ if executed from the keyboard.

CODE Code ALPHA to X
Converts the rightmost 14 characters in ALPHA into the 14 digit Non-
Normalised Number which they specify, returned to X.
No error message is generated if non-hexadecimal digits are contained in
the ALPHA string

DECODE Decode X to ALPHA
Replaces ALPHA with the 14-character string representing the 14 digit number
in X.
If executed from the keyboard, views (and optionally prints) the decoded value.
DECODE will perform an AVIEW unless in a running program or when a
program is single stepped [SST|.

LASTP Last Program
Positions the user program counterto the first line of the last program in pro-
gram memory (i.e. the program containing the .END.).

NOP

NRCLM

NRCLX

NSTOM

TOGF

No-Operation
Inserts an empty text line (FOh) as the next program line.
May generate error messages as follows:

PACKING, TRY AGAIN - if there is no room left for the insertion;
ROM - if the insertion is attempted into a ROM program.

Can also be entered as true NOP (XROM 05,07) instruction with a one byte
and speed overhead.

Non-normalising Recall by M
Recalls to X the contents of the register whose absolute address is in the
least significant 3 digits of status register M, that is, in hex form as the last
character and a half of ALPHA.
Generates NONEXISTENT message if the register addressed is not physically
connected to the HP-41.

Non-normalising Recall by X
Overwrites X with the contents of the user data register whose register number
was specified in X before the function executed.
Saves the address to LASTX.

Generates NONEXISTENT message if the register number is greater than
or equal to the current SIZE, or ALPHA DATA error message if the number
in X is a string.

Non-normalising Store by M
Stores X into the register whose absolute address is specified in the least-
significant three digits of M, that is, the last character and a half of ALPHA.
Generates NONEXISTENT messageif the register addressed is not physically
connected to the HP-41.

Toggle Flag status
Toggles the state (from set to clear, or clear to set) of the flag whose absolute
integer value is in X.
Generates NONEXISTENT message if X>55, or ALPHA DATA message if
X contains a string.

MCED

1.2 OPERATING MODES

Machine Code Editor (non-programmable)
A full machine language programming and editing environment including
facilities for disassembly of M-Code routines and creation of new routines
using the M-Code hex-loader (when used with ‘Quasi-ROM’ (Q-ROM) in a
machine language storage device). Use of all functions, except that of
DISASSEMBLE, requires the availablility of Q-RAM.
DISASSEMBLE will only direct output to a printer or video interface respon-
ding as a printer. When a printer is connected to the system, in TRACE or
NORM modes, then all editor commands will be printed.
Executing MCED activates the Editor Keyboard and displays the Editor ‘COM-
MAND ?’ prompt. At any time, pressing [SHIFT||[CMD]| will cancel the cur-
rent prompt sequence and return you to the main editor prompt. The MCED-
keyboard is shown below.

a—— Y
1010 1011 1100 1101 1110

[__JHRERA
GT0 BST

= Y
cmp

DISASSEMALE DE V) -By =
[oe1 (8 %o]

01 1000 1001

5 6by
0100 0101 0110

B 4 =
—— -

0001 0010 0011

cerd (O} [REC R/S
Iy 3 g

FIGURE 1.2.1 MACHINE CODE EDITOR KEYBOARD

Command

IR/S|

[EXIT|

ISHIFT||[CMD|

|~

|DEV|

IDISASSEMBLE|

For most of the Editor commands, there is a common input prompt format of:

Command: Start Address , Finish Address

For example, the DISASSEMBLE prompt appears as:

os:.,_

After inputting the hexadecimal start address, the user has an option of specifying
a decimal number of words or lines in place of a hexadecimal finish address. This
is selected by pressing |DEC| and indicated by a ‘d’ appearing in the prompt:

DIS:2FO0A,d__

At this point only the decimal keypad remains active.

Certain MCEDfunctions have an ‘A’ in the prompt, or have a secondary prompt such
as:

LMT:.

(where this allows you to specify the limit address beyond which the action will not
take place.) An ‘A’ in a prompt, indicates that an absolute address input is expected.

Description

Accepts the input and begins the specified action. This provides an escape if an
incorrect input was made.

Pressing this from the main editor prompt will return you to normal HP-41 usage.
MCED is set to automatically ‘timeout’ after approximately two minutes of inactivi-
ty in a manner similar to ED in the CX.

Executing ON will prevent this.

Cancels the current prompt sequence and returns to the main editor prompt ‘COM-
MAND 7.

Deletes the last key input.

Toggles between the ProtoCODER 2 and MLDLtype device write formats. Defaults
to MLDL type devices. The '0’ annunciator is set when a ProtoCODER device is
selected.

Requires an addressfor start and finish. Only the hex-keypad is activated, but after
input of the start address, the |[DEC| key allows the option of specifying a decimal
number of words to be disassembled. |DEC| activates only the decimal keypad.

|GTO|

INS]

|DEL|

ICPY|

Allows writing of M-Code instructions into your Q-ROM device with the hex loader.
Requires input of a start address and responds with a prompt showing:

Address Current Word_
e.q: 1468 154

The hex-keypad allows input of the 3-hex digits representing the word you wish

to write to that location. Press |R/S| to accept the new word.
The |SST| and |BST]| keys are active within the hex-loader and permit forward and
backward movement without changing the word at the current address location.
If a printer device, in NORM or TRACE mode,is attached then the entered word
is also disassembled to the printer. Single Stepping a word will also cause that

word to be disassembled to the printer.

Allows insertion of a block of NOPs into Q-ROM before the specified address. A
specific decimal number of NOPs may be input by pressing the |DEC]|key instead
of specifying the end hex address. Note that specifying ‘d000’ will default to 'd001’
thus inserting one NOP.
Because INS moves all surrounding code in Q-ROM, to make way for the NOPs,
a secondary prompt allows you to specify a ‘limit address':

L™MT:.

beyond which no code will be changed.
By specifying a LMT address greater than that for the end address, the surroun-
ding code is moved up memory (to a higher address). If the LMT address is before
the start address, then surrounding code will be moved down memory (to a lower
address).
DATA ERROR messages will be issued if the end address is less than the start
address or the LMT address is between the start and end addresses.

Will delete a block of code from Q-ROM at a specified start and end address. A
specific decimal number of lines can be deleted by pressing the [DEC| key as
before. When deleted, surrounding code is moved in Q-ROM. A secondary LMT
prompt specifies a boundary beyond which no code is moved.
By specifying a LMT address greater than that for the end address, the surroun-
ding code is moved up memory (to a higher address). If the LMT address is before
the start address, surrounding code will be moved down memory (to a lower
address).
DATA ERROR messages will be issued if the end address is less than the start
address or the LMT address is between the start and end addresses.

Requires a hex start and end address of a block of code, or a specific decimal
number of words to copy. A secondary prompt requests the starting address of
the destination.
CPY allows copying to overlapping blocks.
Specifying an end addressless than the start will cause a DATA ERROR message.

ICLR|

ISVE|

IGET]

RAMED

Will clear a block of Q-ROM between the specified start and end addresses.
If the end address is less than the start, a DATA ERROR message is issued.

Allows M-Code routines to be stored in packed data format in main HP-41 memory.
The data can then be transfered to mass storage media.
\SVE| expects a hex start and end address, or decimal number of words, of code
to save. A secondary prompt requires an absolute register address, in main or
XRAM memory, into which the packed data will be stored.
If a non-existent register address is encountered, SVE will abort with the message
NONEXISTENT. Specifying an end address less than the start will cause a DATA
ERROR message.

Recalls main or XRAM memory registers and writes the data contained therein
to a Q-ROM device. Expects the first and last register absolute hex-addresses to
use, or a decimal number of registers to GET. The ZENROM data format copes
with incomplete registers, thereby allowing recall of two consecutive blocks of code
without error. A secondary prompt requests the Q-ROM destination address.
A DATA ERROR message results if the end address is less than the start address.

RAM Editor (non-programmable)
Provides an editor function, similar to that of the HP-41CX textfile editor ‘ED’, that
permits review and replacement of any bytes, or optionally insertion of bytes (pro-
gram memory only).
Redefines the HP-41 keyboard during execution to allow forward or backwards
movement through memory in byte or register increments by pressing the USER|,
IPRGM| and |SHIFT| |[USER| or |SHIFT| |PRGM| keys.
Pressing the |I| key, toggles between replace and insert mode - signified by the
1’ annunciator being lit in the display.
Takes start address from status registers M or b (the program counter), dependent
upon mode.
If not in PRGM mode, returns last reviewed address to M upon exit, or if in PRGM

mode, exits at line where it entered.
Generates PACKING, TRY AGAIN messages and quits if insertion is attempted
when there is no room left to accommodate extra bytes.
During entry of hexcode values, the back arrow key |- | will cancel the first digit
input. By pressing and holding the second digit, the whole hexcode entry is nullified
- as happens during normal HP-41 key-pressing.
To exit from RAMED, press the |ON| key.

USER ALPHA
KEYBOARDS

10

UNSHIFTED KEYS

Entry of alpha characters and text lines, whether as a program line, a postfix

to an instruction or directly into the ALPHA register has been greatly
enhanced.

ZENROM activates two additional ALPHA-mode keyboards with the
USER)| and [SHIFT| keys whilst in ALPHA-mode. These keyboards can
be activated whenever ALPHA mode is entered, e.g. even during input
of a program label, and provide every displayable HP-41 character plus
all lower-case characters defined on keys.
To make text entry easier, a keyboard overlay is included with ZENROM
and the two new alpha keyboards are shown below.

The USER ALPHA keyboards do not operate within the HP-41CX
Editor ED, nor during a PSE instruction.
Due to HP-41 system restrictions, the normal key rollover does not operate
during USER ALPHA entry — take your time typing until you are used
to the new keyboards.

SHIFTED KEYS

—A AL
R

XXX- D kKX

USER SHIFT ALPHA

(i [} (o4 (BB

1 ei

[l[Jusee|][]user] =] [[esc[]cr|

mEEEE | EEEEs
Me Ae oee
= =e
=e e
Me e e es
= = se o ss | \é%éé

= R e

FIGURE 1.2.2 USER ALPHA KEYBOARDS

SYNTEXT
ENTRY Synthetic Text entry allows any of the 256 characters available on the HP-41,

whether displayable or not, to be entered in a line of text.

Characters are entered whilst in any ALPHA-mode, by pressing the key sequence
|SHIFT||IALPHA|. Two underscore prompts appearat the right-hand edge of the
display and the keyboard is redefined so that only the hexadecimal keypad is
active, thereby allowing entry of hexcode character values from 00h through FFh.

Like the USER ALPHA keyboards, SYNTEXT entry does not operate during
the HP-41CX Text Editor ED, nor during a PSE instruction.

1.3 DIRECT-KEY SYNTHETICS

These non-catalogued functions provide the user with considerable extensions to the HP-41’s operating
system, thereby allowing access to features that have hitherto only been possible with techniques such
as S.P. (Synthetic Programming) developed by members of HP user groups world-wide.

By the use of Direct-Key Synthetics, the User has the possibility of directly accessing the remaining status

registers:

M, N, O, P. Q, R (often called ~ or append), a, b, ¢, d, e

as if they were standard user-stack registers.

All HP-41 functions that normally prompt for numeric input, e.g. RCL, STO, VIEW, FIX, etc., have been

expanded to allow entry of:

00 through 99
Extended postfix access (100 to 199) by pressing the |EEX| key
Stack register addresses by pressing the |.| key
Indirect arguments by pressing the |SHIFT| key

Note: Due to HP-41 system restrictions, the normal key rollover does not operate during extend-
ed prompt entry.

During entry of exponents in PRGM-mode, ZENROM will automatically strip a ‘1" immediately preceding
an |EEX| characterif it is the only digit in the mantissa.

1

CATALOGUE FUNCTIONS

2

CATALOGUE FUNCTIONS

This section of the handbook provides detailed explanations relating to functions appearing in the ZENROM
catalogue. MCED (Machine Code Editor) and RAMED (RAM Editor) are more correctly operating modes,
and will be detailed in following chapters.

2.1 CLEARING MEMORY

CLMM
CLEARING MAIN MEMORY

CLMM restores HP-41 Main Memory to Master Clear State by storing nulls into every register. In addition,
all status registers and flags are restored to default states;all key assignments, timer alarms and input/output
buffers are eliminated; and the stack, LASTX and ALPHA are cleared.

HP-41 flags are cleared except for flags 26, 28, 29, 37 and 40 (for a display setting of FIX 4). If a printer
is connected, flags 21 and 55 are set.

The size of program memory will be 46 (on the HP-41C and HP-41CV) or 219 on an HP-41CX.

CLMM will operate on all models of HP-41, irrespective of how many memory modules are connected
to an HP-41C. All files contained in Extended Memory - both Extended Functions Module and Extended
Memory Modules - will be retained completely untouched.

No error message is generated, but the message ‘MM LOST'is displayed when CLMM is executed from
the keyboard or a running program. Executing CLMM from a running program will cause the program

to stop (even if that program is synthetically made to run in Extended Memory, and as such is not erased),
because the program counter will be reset to point to the .END., causing the program to halt.

WARNING: Executing CLMM will irrevocably nullify contents of main memory. There is no recovery.

15

CLXM
CLEARING EXTENDED MEMORY

CLXM overwrites the contents of all existing Extended Memory registers with nulls, whilst still retaining
the contents of Main Program and Data Memory in the HP-41.

CLXM will operate on all HP-41 Models and on all valid combinations of Extended Function and Extended
Memory Modules, although an error message will not be generated if Extended Memory does not exist.

When executed from the keyboard, CLXM generates the message ‘XM LOST’. However, if executed from
within a running program this message is suppressed.

After execution, attempting |[EMDIR), or |CAT| 4| on the HP-41CX, will produce the message ‘DIR EMPTY".

WARNING: Executing CLXM will irrevocably nullify Extended Memory contents. There is no recovery.

2.2 NON-NORMALISED NUMBERS

In simple terms, a non-normalised numberis one that is in a format that the 41 is not used to. The easiest
way to describe a non-normalised numberis, in fact, to describe a normalised number and then any
exceptions to this format can be described as a non-normalised number. For the purposes of this
explanation it will be easier to call a non-normalised number a non-normalised register.

Each register comprises 14 digits (each of 4 bits) which will most often contain a real number. This number
can be in the range +/- 9999999999 E99 down to +/- 1 E-99 or 0. Whatever the numberis, it is stored
in a fixed format in the register - the fourteen digits of the register being:

S mmmmmmmmmm XS X X

where: 'S’ represents the sign of the number (0 if +ve, 9 if -ve);
‘mmmmmmmmm’ is the mantissa, ie. the body of the number;
'xs’ is the sign of the exponent, again 0 if +ve, 9 if -ve; and
xx’ are the two exponent digits.

There is an implied decimal point after the first digit of the mantissa.
Example 1: Pl = 3.141592654

0 3141592654 000

16

Example 2: -1/e = -3.678794412 E-O1

9 3678794412 999

Note that in example 2 the exponent is negative and so the magnitude of the exponent is stored in
complement notation i.e.: 1000 - EXP.

In addition, although the second example will display as -0.367... in FIX format, because the decimal
point is implied after the first digit of the mantissa, the leading O is not stored.

We can call a register non-normalised, if either:

a) the first digit of mantissa is a 0
b) the sign digit is neither 9 nor 0
c) the exponent sign is neither 9 nor 0

There is one other situation that will make a register non-normalised and thatis, if any of the digits in
that register contain a non-BCD (Binary Coded Decimal) digit - i.e.: a hexadecimal digit A thru F.

For those not familiar with NNNs, their main usages are for data packing, flag control and alpha
manipulation.

Using normal HP supported programming techniques, it is almost impossible to create a non-normalised
number and most users never even know they exist. This is mostly because the 41 has a nasty habit
of ‘normalising’ numbers. Although this sounds quite painful, it is the process used by the 41 to ensure
that a numberis in a format that, for example, the maths routines can handle. If a non-normalised number
is stored in a register, and that register is recalled using RCL then the register contents will be altered
to form a normal number.

There is one special case of NNN that the 41 does support. This is an alpha string which is stored as
a series of up to six ASCII coded characters right justified in the register and with the sign digit setto 1 i.e..

ABC=1 0000000414 243

Since it is otherwise impossible to create your own NNNSs, a function is required to enable this. When
an NNN has been created, it may be displayed in a manner that is not easily decipherable. Therefore,
a function is required that will decode an NNN to show its exact contents. Since an NNN can not be
recalled from registers without normalisation, functions are also required to allow this. Lastly, since not
all of the 41 registers can be directly stored into, a function to allow complete access to all 41 registers,

including extended memory, is required.

As a demonstration of the effect of normalisation on a register, for those unfamiliar with synthetic
programming, follow this example with the ZENROM plugged in:

CF 4)
CF 5)Ensure flags 4, 5, 6 and 7
CF 6)are clear.
CF 7)
RCLd|RCL||.[[D|) This a synthetic instruction

17

STO 00)Store two copies of the contents of
STO 01)the mythical register d (an NNN).
RCL 00)Recall the NNN from Reg 00
STOd|[STO||.||[D]|) restore to register d.

Notice that the display has now changed to SCI O format. This is because register d is the register
containing all flags and when the NNN that represented those flags was recalled from Reg 00 it was
normalised to the extent that it was changed to 0. Upon restoring to Reg d ALL the flags were cleared.
To restore the flags to their original status execute the following instructions:

1)Recall register 01 without
NRCLX Jnormalisation and restore in
STOd|STO||.]||D]|) register d.

Notice that the display has now reverted to its original format since when register 1 was recalled it was
not normalised.

CODE
CODE ALPHA TO X

Converts the rightmost 14 characters contained in ALPHA into the 14-digit Non-Normalised Number which
they specify. This number is returned to the X-register.

CODE does not generate an error message if non-hexadecimal digits are contained in the ALPHA string.

DECODE
DECODE X TO ALPHA

Converts and replaces the contents of ALPHA with the 14-characters representing the 14-digit number
in the X-register.

If executed from the keyboard, DECODE instigates an AVIEW instruction to display the returned value.
If a printer is attached to the system, DECODE will optionally print the decoded value.

If executed by a running program, DECODE will not perform an AVIEW. To cause the decoded value
to be printed insert a PRA instruction into the program following the DECODE.

If single stepped, [SST|, DECODE will not instigate an AVIEW.

18

NRCLM
NON-NORMALISED RECALL BY M

Recalls to register X the contents of the register whose absolute address is in the least significant 3
digits of status register M, i.e. in hex form as the last character and a half of ALPHA. NRCLM generates
a NONEXISTENT error message if the register addressed is not physically connected to the HP-41.

The easiest method of entering a register address is via the ZENROM 'SYNTEXT’ entry procedure. To
use this, go into Alpha mode and press |SHIFT||ALPHA|. At the two digit prompt (righthand side of display)
use the hexadecimal keypad (only the keys 0,1,2,...89 & A,B,...E,F are now active) to input the characters
representing the address of the register. For example,to recall, the Extended Memory register at address
2EFh (see Figure 3.7.1), use SYNTEXT entry in two stages. Remember, however, that NRCLM takes the
last ONE AND A HALF characters from register M. Therefore, you must input an extra zero at the front
of the address input to the SYNTEXT prompt.

E.g. to input address 2EFh, press the following keys while in Alpha mode:
|SHIFT|ALPHA| shows two prompts
0] |2] input the dummy zero before the first digit of the address. Display

shows the starburst character

|SHIFT|IALPHA| shows new prompts
E| [F| displays the second character (also starburst).

To recall the register 2EFh, simply execute NRCLM.

NRCLX
NON-NORMALISED RECALL BY X

Overwrites X register with the contents of the user data register whose register number was specified
in X before the function executed. Using NRCLX, only addresses up to the current SIZE can be recalled.

The content of register X is saved into LASTX.

Generates NONEXISTENT messageif the register number is greater than, or equal to the current SIZE,
or ALPHA DATA error if register X contains a string.

NSTOM
NON-NORMALISED STORE BY M

Stores content of register X into the register whose absolute address is specified in the least-significant
three digits of M, i.e. the last character and a half of ALPHA.

Generates NONEXISTENT message if the register addressed is not physically connected to the HP-41.

19

2.3 UTILITY FUNCTIONS

LASTP
GO TO LAST PROGRAM

LASTP positions the user program counterto the first line of the last program in program memory, which
is always that program containing the permanent END instruction (i.e. the ‘END. instruction)

In addition to being executed from the keyboard, LASTP can be inserted into a program to produce a
very fast GTO during a running program.

NOP
NO OPERATION

When used in PRGM mode, NOP is a 1-byte function that inserts an empty text line, that is an FOh byte,
into the program as the next program line.

Alternatively, the function may be entered as an XROM identity, XROM 05,07, by means of the RAM
Editor (RAMED), or by assigning NOP to a key and then entering the function into the program with
ZENROM removed from the HP-41. If used in this manner, NOP will consume 2 bytes and execute slower.

When entered as a FOh byte, NOP will enable the user stack lift, so it is not really a ‘true’ NOP. However,
when entered as an XROM identity, XROM 05,07, NOP will behave as a true NOP without enabling the
user stack lift.

Error messages will be generated as follows:
PACKING, TRY AGAIN - If there is no room left in program memory for the insertion to take

place.
ROM - If the insertion is attempted into a ROM based program.

TOGF
TOGGLE FLAG

A programmable function to toggle the current status (from set to clear or clear to set) of the HP-41 flag
whose number is specified in the X-register as an absolute integer value.

Operates on all 56 user and system flags from 0 to 55. Users should, however, be aware that certain
system flags return to a default or conditional status upon halting of the running program. In addition,
performing certain operations will also cause the status to reset.

Generates a NONEXISTENT message if the flag number in register X > 55. If register X contains an
alpha string, then the ALPHA DATA error message is displayed.

20

SYNTHETIC PROGRAMMING

3

THE THEORY OF
SYNTHETIC PROGRAMMING

To gain the most from the remainder of this User Handbook, we recommend all users to read this chapter.
The theory of Synthetic Programming covers many important concepts of the HP-41’s operation and a
good grasp of this is necessary for any user intending to begin machine language programming.

For this chapter we have assumed the reader is familiar with the HP-41, has an good grasp of User
Code (RPN) programming and has read the HP-41 Owners Manual.

It must be stressed that the purpose of this handbook is not to replace those books already written on
Synthetic Programming (See Appendix C), but to provide the User with enough information to appreciate
the vast benefits that Synthetic Programming and ZENROM provide for the HP-41 programmer. To do
this, it has been necessary to pack more than three years work, by User Groups throughout the world,

into just a few pages.

If this is your first encounter with Synthetic Programming, we would suggest you take your time reading
this chapter and not to worry if you don'’t fully grasp everything at the first reading. Time spent on this

section will be very well rewarded in the future.

Please bear in mind the statement, made at the start of this Handbook, regarding the NOMAS status
of Synthetic Programming.

23

3.1 SP - ORIGIN AND USES

Synthetic Programming (generally called ‘SP’ for short) is a technique used to enhance the power of
the HP-41 programmer. It does this by extending the limits Hewlett-Packard set on the range of instructions

executable by the computer.

Whenever a company designs a new product, they set specific limits on what the product is capable
of. Such limits may be decided for design, technological or cost reasons, but they also decide implicitly
what the product cannot do. So it is with a computer language - and the ‘User Code’ of the HP-41 is,
by any definition of the phrase, a computer language. With a computer, the designers must decide not
only what the computer is capable of, but also what the computer User should be capable of.

On the HP-41, this means how the User can manipulate the data entered into the computer, which
peripheral devices can easily be communicated with, etc. It also means that there are things which the
designers have decided, for one reason or another, that they would rather the User couldn’t do. As a
simple example; the User cannot (in theory) generate more than ten distinct TONEs, since the TONE

instruction will only accept one of ten possible arguments in the range of 0 to 9.

SP is a programming technique widely used among HP-41 users ‘in the know’ to enhance their
programming power by extending the limits set on the computer’s language by Hewlett Packard. This
is done by taking the individual bytes making up the instructions that can be entered into the HP-41’s
program memory, and combining them in ways the designers did not anticipate. By this means expanded
versions of existing instructions are created or ‘synthesised’ - which is the origin of the technique’s name.

Although there is more to SP than simply rearranging the contents of program memory, other SP
techniques (e.g. assigning complete instructions to a key for single-key execution) are best understood
once the more basic techniques are mastered. On the HP-41, a complete instruction means an instruction
(such as ‘STO’) and a single argument (such as ‘00’), combined and available with only one keypress.

As program lines are keyed in, the HP-41 is continually parsing your keystrokes and using them to assemble
sensible instructions, according to a pre-programmed dictionary of valid keystroke combinations. Thus,
the 41 knows that LBL A is a sensible instruction sequence, but that STO A is not.

Having received a sensible sequence of keystrokes, the HP-41 will store in its memory one or more bytes
which were programmed by the designers as representing your keyed-in instructions. For example, LBL
A would be stored as two bytes, one of which represents the ‘LBL part of the instruction (also called
the prefix byte), and the other representing the ‘A’ part of the instruction (also called the argument or
postfix byte). For LBL 25, the same prefix byte would be used (since this is also a LBL instruction), but
with a different postfix byte, since the argument of the instruction is 25, not A. Conversely, a STO 25
instruction would have a different prefix byte (different instruction), but the same postfix byte would be
used as for the LBL 25 (same argument).

24

Fortunately, Hewlett Packard made the instruction set for the HP-41 available to the user community soon
after the launch in 1979 - so the coding sequence is well known. Taking the instructions in the last
paragraph, we know three possible combinations:

STO 25, LBL 25, LBL A.

The question asked by inquisitive users of the HP-41 was; ‘What happens if, somehow, an extra fourth
‘illegal’ combination, STO A, could be created in program memory?’ The answeris that you have a new,
‘synthetic’ instruction which can, in a single two-byte instruction, store directly into register 102.

To understand how this instruction comes about, and to see the ramifications across all HP-41
programming, let’s now analyse the structure of instructions on the HP-41 in more detail. To do this, we
need to understand the HP-41 programmers’ Rosetta Stone, the HP-41 Byte Table (See Figure 3.1).

This fearsomely complex-looking mass of hieroglyphs contains all the prefix bytes understood by the
HP-41, as well as all the postfix bytes and their meanings. In addition, all the display and printer characters
represented by the bytes are shown. Although the table is indexed in hexadecimal (to base sixteen) a
decimal number index is also shown in each segment. Hexadecimal notation is used because the table
contains 256 entries, which nicely fit a square 16 by 16, with base sixteen numbers along the edges.

Probably the most difficult task in coming to grips with synthetic programming is understanding the
hexadecimal number system. In everyday life we count in a denary base system (to a base of ten) and
numbers increment as follows:

O) 1’ 2’ 3’ 4) 5’ 6’ 7’ 8’ 9)

10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21,i

In order to count in base 16, we need to borrow some new characters from the alphabet to represent
the equivalent of 10 through 15. Hexadecimal borrows the first six letters A through F to produce a counting

system:

00, 01, 02, 03, 04, 05 06, 07, 08 09 OA, 0B, 0C, 0D, OE, OF
10, 11, 12, 13, 14, 15 16, 17 18 19, 1A, 1B, 1C, 1D, 1E, 1F
20, 21, 22, 23, 24, 25 26, 27, 28 29, 2A, 2B, 2C, 2D, 2E, 2F
30, 31,

For practice purposes, examine the Byte Table and compare the outer index values against the decimal
values in each segment. Note that the table is indexed by row first then column numbers. For example;
the value 4Ah (where the ‘h’ indicates hexadecimal) is: row 4 and column A - which has an indicated
decimal value of 74d. For clarification, decimal values will be indicated with a letter ‘d’ following and
hexadecimal values with letter ‘h’

A cross reference chart between the commonest numbering systems is given in the Reference Tables
in Appendix E.

25

26

HP
-4
1C

QU
IC
K

RE
FE
RE
NC
E
C
A
R
D

FO
R

SY
NT
HE
TI
C
P
R
O
G
R
A
M
M
I
N
G

©
19

82
,
SY

NT
HE

TI
X

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

CA
T

¢(
GT

0.
.)

|
 D

EL
CO
PY

CL
P

R/
S

SI
ZE

BS
T

SS
T

O
N

P
A
C
K

[e
=(

PR
GM

)J
US

R/
P/
Al

2
_
_

SH
IF

T
AS

N

NU
LL

|L
BL

OO
|L

BL
O
1
|
L
B
L
02

JL
BL

03
|L

BL
04

|L
BL

O
5
|
L
B
L
0
6
|
L
B
L
O7

[L
BL

08
|L

BL
09

|L
BL

10
JL
BL

1
1
|
L
B
L

12
|L

BL
13

|L
BL

14
00

-
|0

1
%

[0
2

8
|0

3
B

JO
4

T
|0

5
%

|0
6

T
|0

7
&

JO
8

B
|0

9
8

|1
0

B
(1
1

8
12

~
|1

3
<

|1
4
|
1
5

8
]
0

0
|
1

=
|2

%
X
|
3

«
|4
a
5

B
|6

T
|7

4
|
8
A
9

o
|1

0
|
1
1
1
2

»
|1

3
&

|1
4

~
|1

5
&

0
1

2
3

4
5

6
7

8
9

.
EE
X

N
E
G

|G
TO

T™
|X

EQ
T

(
W
T

16
B

|1
7

8
(1
8
|
1
9

B
|2

0
&

|2
1

&
(2

2
B

(2
3

B
|2

4
B

|2
5

B
|2

6
8

|2
7

8
|2

8
8

|2
9

«
(3

0
&

|3
1

&
16

8
(1

7
Q0

[1
8
&
]
1
9

A
|2

0
a

|2
1
A

[2
2
&

|2
3
O

|2
4
6

|2
5
O

|2
6
U

|2
7
&

|2
8

<«
|2

9
=

|3
0

£
|3

1
¥

RC
L
O
O
(
R
C
L
O
1
|
R
C
L

02
|

RC
L

O3
]

RC
L

04
|

RC
L
O
5
|
R
C
L
0
6
|
R
C
L
O7
|R
CL

0
8
|
R
C
L
O
9
{
R
C
L

1
0
J
R
C
L
1
1
J
R
C
L
1
2
|
R
C
L

13
|{

RC
L
14

|R
CL

15
32

33
'

|3
4

"
|3

5
4

|3
6

H
|3

7
%

|3
8

LS
|3

9
'

|4
0

<
|4
1

|4
2

x
|4

3
-

|4
4,

|
4
5

-
|4

6
.
|
4
7

32
33

!
[3

4
"

|3
5
#

|3
6
%
3
7

%
|3

8
&

|3
9

'
J4

0
C

|4
1

D>
|4

2
=

|4
3

+
|4

4
-

|4
5

—
|4

6
-

|4
7
-

ST
O

00
|

ST
O
0
1
)
S
T
O

02
|

ST
O

03
}

ST
O

04
|

ST
O
O
5
(
S
T
O
0
6
|
S
T
O
07
]S
TO

0
8
S
T
O

09
|

ST
O
10
{S
TO

1
1
|
S
T
O
12
|S
TO

13
/S
TO

1
4
|
S
T
O
1
5

48
D

|4
9

|
5
0

2
|
5
1

3
|
5
2

4
|
5
3

5
|5

4
6
|
5
5

1
|
5
6

B
|5

7
9
|
5
8

'
B
[
5
9

-
J6

0
.

[6
1

=
|6

2
|
6
3

7
48

©
14

9
1

[5
0

2
|
5
1

3
|5
2

4
|
5
3

S
|5

4
6

|5
5
7

|5
6
8
|
5
7

9
|
5
8

:
|5

9
i

)6
0

<
|6
1
=
6
2

>
[
6
3

2

Figure 3.1a

+
-

%*
/

X
<
Y
?

X
>
Y
?

[X
<Y

?
|[
E+

|
-

H
M
S
+

H
M
S
-

|[
MO

D
%

%
C
H

[P
=+
R

|
R
-
P

64
P

|6
5

R|
(6

6
3
|
6
7

C
|6

8
I

|6
9

£
|7

0
F

(71
7
5
|
7
2

H
|7
3

I
|7

4
J

|7
5

kK
|7

6
|
7
7

M
|7

8
N

|7
9

O
64

@
6
5

A
[
6
6

B
|
6
7

C
|6

8
D
6
9

E
|7

0
F
[
7
)

G
|7

2
H

|7
3

1
|7

4
J

|7
5

K
]
7
6

L
|7

7
M
|
7
8

N
|7

9
O

LN
X
t
2

|S
QR

T
|Y
tX

|J
CH
S

[E
Tt

X
|L
OG

[1
0t

X
JE
tX
-1
|S
IN

C
O
S

|T
AN

JA
SI

N
|A

CO
S

|A
TA

N
|-

DE
C

80
F

|8
1
|
8
2

F
|
8
3
S
8
4

T
(8
5

Ly
|8

6
|
8
7
|
8
8

X
|8

9
v

[9
0

Z
[9
1

L
]9

2
.

(9
3

I
[9

4
(
9
5

-
80

P
[
8
1

@
[
8
2

R
[
8
3
S
8
4

T
|8

5
U

|8
6

V
|
8
7
W
8
8

X
|8

9
v

|9
0
2
|
9
1

C]
J9

2
~

|9
3

1
|
9
4

+
]
9
5

—

/
X

AB
S

FA
CT

X
#
0
?

X
>
0
?

|
L
N
1
+
X
|
X
<
0
?

|X
=0

?
|I
NT

FR
C

D
—
+
R

|[
R—
=D

|+
HM

S
|+

HR
|R
ND

|-
=O

CT
9

T
[9
7

o
(9

8
L
[
9
9

<«
J
1
0
0
O
~
4
|
1
0
V
.
|
A

8
B

B
)
C

8
|
D

B8
|E

B8
|F

8
|
G

&
(
H

B
|
I

€
(
)

8
96

*
|9
7
a

[9
8

b
|9

9
c

J
1
0
0
d
[
1
0
1
e

[1
02

£
|
1
0
3
<

J1
04
h

|1
05

i
[1
06

J
[1
07

kK
]J

10
81

[
1
0
9
m
]
[
1
1
0
n

|1
1l

0O

CL
L

X
<
>
Y

|PI
CL

ST
|R
?

R
D
N

|L
AS

TX
[C
LX

|
X
=
Y
?

[X
#Y
?

|S
IG

N
|X

<O
?

|M
EA

N
[S

DE
V

|A
VI

EW
|C

LD
T

8
|
2

e
|
Y

8
|
X

8
L

8
(
M
L
B
(
N
\
B
|
O
I
B
|
P
t
B
|
(
Q
_
B

|
F
T
B
|
c

B
]
b

B
|
c

B
|
d

[
[
e

1
1
2
|
1
1
3

1
1
4
"

|1
15

sS
J1
16

¢
|1
17
U
1
1
8
V

|1
9
w
1
2
0
%

[1
21
¥

|1
22

Z
|
1
2
3
w

J1
24

|
[
1
2
5
>
]
1
2
6
Z
1
2
7
 0

]
2

3
4

5
6

7
8

9
A

B
C

D
E

F
00
00

00
01

00
10

00
01

00
01

01
01

10
]

0
1
1
1
1
1
0
0
0

10
01

10
10

10
11

11
00

11
01

11
10

1
1
N

n

85
83

8
3
8
8
5
8
8
2
d
o
x
n
|
e
r
e
e
R
A
N
R
|
N
R
2
R

BR
AB
S[
(U
NI
L
3
5
8
8
9
5
9
2
3
9
9
S
(
9
S
R
R
N
R
~

bit
nm
be
rs

in
a

7-
by
te

re
gi

st
er

VSN
"99206

VO
'yd038

U
D
H
D
Y
U
D
W
"
3
A
Y
SMIYIDW

OFSL
‘XILIHINAS

'0}
300|3AU3

PadWID}S
PassSaIPPD-4|as

D
Puas

‘DaJD
JNOA

Ul
SIB|DBP

4O
|SI|

D
PUD

UOLDWIOJU!
31id

0
4

teee
Jotte

Jrott
Joott

Jewot
Jotot

toot
Jooot

JtitoJotto
toto

[ooto
ttoo

otoo
t000

0000
4

]
a

)
g

v
6

8
L

9
S

v
€

z
L

0
4

65z]
=z

v
s
z
|
«

e€szl
1t

zsz]
»

1sz]
z

osz|
<

evz|
x

svz|
m

vz|
~

ovz|
n

s
v
z
|
a

vvz]
S

evz|
4

zvz|
v

L1vz|
o

Ove
2

QNI
PANI|

2aNI|
9aNI]

©
aNI|.—4aNI|—DaNI{id

aNnij
coaNI{\

N
aNi|awaNI]

1aNil
X

aNIl
A

aNi|
Z

aNit|
L
aNi

SLLXAL|
viaxat|etxar|ziaxacfteaxatjorexas|

6
1xas|

8
1xar)

£
1xat|

9
1xae|

s
xat|

v
1xad

€
1xaif

z
1xa1]

t
1x31|

0
1xaL

o
6cz|

v
s
e
z
|
w

cez|
1

ogz[
A

sez]
r

vez|
v

ecz[
M

zezl
e

Lez|
#

ocz|
@

ezz|
P

szZ]
2

L2z
A

9zz|
©

szz|
vit

LLLANI|OLLANI[60LANI|{80LANIJZOLANI|90LaNI|{SOLANI|¥0LANI|€0LANI{ZOLANI|LOLANI|0OLANI]
66

ONI|
86

NI|
£6

ANI|96
QNI

--
DIx|--

DIX
|-~

BIX|--
BIX|--

BIX|--
BIX|--

BIX|--
BIX]|--

PIX|--
BIX|--

BIX[--
BIX|--

BIX|--
BIX|--

BIX|--
BIX

—¢ezzl
4

zzzl
o
e
z

~ozzl
1

61zl
z
s
z

A
1
z

X
9
z
i
M
s
i
z
]

A
8

L1z
A

o0Lz]
B

60z
@

802
S6

aNI|
#6

aNI|
€6

aNI|
z6

aNI}
L6

aNI|
06

aNi|
68

ani|
88

ani]
28

aNi
s8

aNI|
8

aNi]
€8

aNiI|
z8

aNI|
L8

aNI|
08

aNl
--

019|--
0L19|--

019|--
0L9]--

019|--
019|--

0L19]|--
019]|--

0L9|--
OL9[--

0L9]|--
OL9]|--

019|--
019(--

019(--
019

0
£0Z|

N
90Z|

W
soz|

1
voz]

A
€o0z|

r
zoz|

1
Loz]

H
ooz]

o
setL|

2
86Lf

3
LeL|

a
9sL]

D
S6L]

8
veLl

b
E6L]

@
6
L

6.
GNI|

8
Q
N
I
|
Z
L

GNI|
92

NI}
SZ

aNI|
v
£

GNI|
€2

aNif
2z

aNIf
Lz

ani|
0z

anif
69

aNi|
89

aNIf
29

aNi|
99

aNi|
$9

aNiI|
¥9

aNi
--

181
--<>X[1v8019|1v8019]1v8019|1v8019/1v8019|1v80191v8019|1v8019[1v8019|1v8019}1v8019[1v8019

[1v8019[1v8019
2

Lol]
<

o
s
l
[
=
6
8
1

>
88L]

¢
281

:
98L]

&
s8L|

B
v8lL

9
8
1
G

(8L
OSL

@
6LL|

B
BLL|

LLL
M
9
L
L

€9
aNI|

29
aNI|

L9
aNI|

09
aNI]

65
aNI|

8S
aNI|

£S
aNI|

95
aNI|SS

aNiI|
#S

aNI|
€S

ani|{
anil

LS
aNi|

0S
aNI|

GNI|
8¢

aNI
pL

OL9[€L
019]ZL

01|
LL

OL9JOL
019]60 0

1
9
(
8
0

OL9|L0
019]90

0L9[SO
OL9[¥0

OL9|€0
OL9JZ0

OL9|L0
0L9|00

OL9|
I¥VdS

2
S
I

2
v
l

=
SLL

<
T
L
L
#
+

LLL]
®

0LL]
€

691
891

L
]

99L|
%
S
O
L
|

v
o
L
l
#
€91]

291
19L]

091
Ly

ONI|
9%

NI|
sy

aNI|
v

aNI}
€¢

aNI|
Zv

aNI|
Ly

aNi|
ot

ani]
6€

aNi|
8€

aNI|
ZE

aNI|
9€

aNIl
SE

aNI|
€

aNI|
€€

GNI|
ZE

QNI
NVdS|aNI

S
|

¢
4

¢S4l
Dédd|

 Désd
D)

slie-8zx|Lz-vex|ez-0zx|6L-9Lx|S
-
z

Lx]|
LL-8¥X|

£-¥
¥X]|

E-0
¥X

#
oSl

F
s
t

=
s
s
t
f
o
o
s
t
f
w
s
s
t
[
o
v
s
i
[
o
e
s
t
/
o
z
s
i
f
o

t
s
i
f
o
o
s
i
{
e
e
r
t
]
o
s
s
v
i
]
y
o
]

o
ovt|

U
s
v
i
f
e

ppL
LE

ANI|
OE

ONI|6Z
aNI|

8Z
aNI|

£z
aNI|

9z
aniI|

sz
aNI|

vz
aNI|

€2
ani|

zz
aNi|

Lz
ani{oz

aNij
6L

ani|
8L

anif
zL

aNi|
9L

aNi
INOL|

ON3
12§

xid]
Dav|

oisv|
93¥3|

MmaAl
 38a

osil
/1s|

w1s|
-1s|

+1s|
o
1

D
Y

g
e
l

2
z
v
L
|
=

o
]

v
ovt]

<
sct]

e
8
L

0
LEL]

7
9
]

+
seL|

a
vEL]

9
ecL]

o
zEL]

5
1€L]

%
oEL|

=
6ZL]

&
8ZL

S
L
A
N
I
|
v
L
a
N
t
l
e
t

ani|zL
ant}

LL
ant|

ot
ani{

60
ani|80

aNi]
o

aNi|
90

aGNI|
SO

GNI|#0
GNIJ

€0
GNI|

ZO
GNI|

LO
GNI|

00
QNI

AQV[Ldwodd]
440

Novl
ddov]

o¥1|
 3Sd|

dHSvl
 vi1d|

4338
 NLM|

dOLsli¥3IN3|
avyo|

av¥]
9
3

4
]

a
d

g
v

6
8

L
9

S
b

€
z

1
0

XILIHLINAS
‘2861

@
O
N
I
W
W
W
I
O
0
Y
d

JILIHLNAS
¥04

Q
A
V
I

IINFAI4FY
XIIND

JL¥-dH

27
Figure 3.1b

3.2 BYTES AND MEMORY

The byte is the basic unit of HP-41 memory and in RAM consists of eight bits. Bits (binary digits) being

either 0 or 1; on or off; etc. Each byte can therefore be coded at bit level to a range of 218 entries -
which can also be represented by 255 decimal, or FF hexadecimal. It is normal to refer to these bytes
as two hexadecimal digits between 00h and FFh.

Every instruction that the 41 is capable of executing comprises one or more bytes from this byte table,
which is used by the machine to assemble and later decode these sequences. Whenever the HP-41
attempts to execute an instruction stored in its program memory,it firstly reads the first byte of that
instruction. Because many instructions only have one byte, the function can be executed immediately.
However, many others have more than one byte, and so the HP-41 must also read these before it can
execute the instruction. This is where the idea of prefix and postfix bytes comes from - with some
instructions having no postfix; some having one byte to code the postfix; some having two; and even
some special instructions having a variable number.

Those instructions that can take one or two postfix bytes have the number of bytes implicitly stored in
the prefix byte. E.g., a VIEW instruction always has one postfix byte as it is defined to be a two byte
instruction. Once the prefix byte for ‘VIEW’ has been read and decoded by the HP-41, it knows to fetch
the postfix byte before it can understand exactly what is to be executed. Those instructions taking a variable
number of bytes actually contain a piece of information telling the 41 how many more bytes to read.

3.3 THE BYTE TABLE
Let’s examine the Hexadecimal Byte Table in more detail to determine which bytes code for what and
the nature of ‘implicit storage’ should become clear.

Five rows of the table contain ‘single-byte’ functions, i.e. having no postfix bytes. These are in rows 4
to 8. There has been some attempt at functional grouping within these rows, but the very nature of the
functions makes this difficult to achieve.

Number-entry bytes - the digits 0 to 9, EEX, NEG (which is what you get when you press CHS whilst
entering a number, because CHS is also a function in row 5) and ‘Point’ (.’ or *, ’ dependent on flag
28) are in row 1, along with two special instructions of variable length (GTO‘alpha’ and XEQ‘alpha’, of
which more later), and a ‘spare’ byte (HP didn’t use it to code for any particular prefix).

Rows 0, 2 and 3 are ‘special’ single-byte functions, used as memory savers. HP realised that, in contrast
to their previous handheld machines - where the few distinct instructions allowed all possible combinations
to be coded with just 256 entries (i.e., all single bytes) - on the 41 there are so many logical combinations
of functions with allowable arguments that all functions which took such arguments would consist of more
than one byte.

28

Because, at that time, they were designing the 41C with only 445 bytes of User-programmable memory,
they decided to offer some memory saving to the User by allowing the commonest register operations

(STO and RCL) to be combined with the most frequently-used register arguments (the lowest ones) and
placed in single-byte functions. Thus, STO 00 to STO 15, and RCL 00 to RCL 15 are, single bytes when
stored in RAM. (The range of registers, 00 to 15, in these instructions, is no accident — both instructions
occupy a single row in the byte table, and use the column index digit to select the register — 0 to F).

HP also realised that their system of only allowing transfer of program control to a label, rather than
a line number, meant that a significant proportion of program memory would be taken up by LBLs and
GTOs. Normally, a local label is two bytes and a GTO to that label is three (explained later). However,
HP set aside part of the Byte Table to give the programmer the ability to trade off memory consumption

against a limited local label choice in the range 00 to 14, and maximum branch distance of 16 registers
(or 128 bytes if you are in ROM). These LBLs are shown in row 0, and are all single bytes, and the GTOs
are in row B. The arguments only have fifteen allowed entries, because one byte from row zero is used
as the ‘null’ byte (one used by the 41 as a place holder in program memory, and normally invisible to
the User). Row B was built to mimic this, with the byte BOh being ‘spare’. The GTO structure is complex,
and will be discussed after the general structure of two-byte functions is clarified.

3.4 MULTI-BYTE INSTRUCTIONS

A two-byte function, with the exception of XROMs and short-form GTOs, always consists of a prefix byte
which completely defines its function, and a postfix byte which completely defines its argument. As an
example, we'll look at how a TONE instruction can be built up. The prefix byte that defines the function
is 9Fh. The argumentis found from the argument entry within each table segment. A TONE 4 instruction
would need a byte which meant 04 when used as an argument byte. This is byte 04.

| column 4 |

Postftix | | Prefix
Argument | LBL 03 | Argument

row 0 | 04 N\ | «———— Display
| | Character

Decimal | 4 oC |

Value /I | -~ Printer
I | Character

Figure 34

29

In case you're wondering why this doesn’t code for a LBL 03, it’s because a byte is interpreted according
to the context in which it is found. So byte 04 means argument 04 when it is read in by the 41 as an
argument byte; LBL 03 if it is read in as a prefix byte; the character x (a two-legged hangman) when
it is placed into the display as part of a text string; and the Greek character « (alpha) when printed
out on an HP-82143 or 82162 Thermal Printer. It can even mean the function CLP if it is found in a key

assignment register, but we’ll come back to that later.

The TONEs 0 to 9 are coded by the byte sequences 9F00h through 9F09h. All two-byte instructions
are assembled in this format. Two-byte prefixes which operate in this form are row 9; the section of row
A from A8h to ADh; and bytes CEh and CFh. Prefix bytes 90h to 9Bh and CEh are all the 41 register
operations; 9Ch to 9Eh are display operations; 9Fh is the TONE, A8h to ADh the flag operations; and
CFh the local label instruction. According to the HP Owner’s Manuals the allowed postfixes for the HP-41
are 00d to 99d, A to J and a to e (for LBL instructions), and X, VY, Z, T, and L.

/X ABS FACT X#0? X>0? |LN1+X|X<0? |X=0? [INT FRC D—+R |R—D |-<HMS [+HR |[RND |-OCT
9 " |97 o |98 b |99 ¢ |00{101 |A B8(B EB|C BD B|E B|F B)G EB|H B8
96 * |97 a |98 b |99 c |100d|101 e |102 £ [1033 104 h |105 121|106 v |[107 K }108 1 |109m|110n |11l O

L
]

— -,

CLX X<>Y |PI CLST |R? RDN |LASTX |CLX X=Y? X#Y? [SIGN |[Xs0? |MEAN |SDEV |AVIEW |CLD
T 8|z €|y 8(x 8L B|M[B|N\B|OJE|Pt B|Q_B (F"B|ac B|b EB|c B|d I |e
1M2e]11324[114r (1155|116 t [117u 118V [119w 120> |121 > [122 Z|123 w J124 | 125>]126 £ |127 +
 C

0000 0001 00100011 0100 0101 o110] 0111 1000 | 1001 1010 1011 1700 1101 1110 11

Row 6 of the byte table contains the postfix bytes that code for postfixes A to J, and row 7 contains
those for postfixes X, Y, Z, T and L at the start, and a to e at the end. Earlier, we suggested that STO
A could be used to address register 102 directly. If you look at the decimal equivalent of the A postfix,
found at segment 66h, you'll see that it is 102. The same applies to postfixes B to J which can access
registers 103 to 111. Postfixes T to L, the order in which they appear in row 7, access stack registers
T to L in the memory of the 41. The rest of row 7 access registers M to e , but we'll come back to those
later.

Adding the two ‘unnamed’ postfixes 100 and 101, which appear simply as '00’ and ‘01’ when used with
register or LBL operations, but do access registers 100 and 101, we have 128 postfix bytes, thereby using
half the Table. The other half can also access exactly the same registers, but take an INDirect qualifier
on the postfix. So, for example, the code for STO IND 29 is 919Dh. In order to find the indirect postfix
for a known postfix value just add 80h, or 128d to the direct access coding.

Back to the structure of two byte instructions. Byte AEh is the prefix byte for a two-byte function, but
does two jobs. If the postfix byte is from the upper half (00h to 7Fh) of the Table, then the instruction
is a GTO IND xx - or whatever the register was, while, if the postfix comes from the lower half, then
the instruction is an XEQ IND xx. The argument is always INDirect, with the presence or absence of
the extra 80h choosing the function.

XROMs represent one of a class of functions which are chosen not by the prefix byte, but by the first
digit of that byte - the prefix nybble, if you prefer (a nybble being half a byte). The coding is as follows:

30

- if the first nybble is A, then the function is an XROM if the second half of the prefix
byte is in the range 0 to 7.

- if the first nybble is C, then the function is a global instruction (either an END or an alpha
LBL),

- if it is a D, the function is a normal (long-form) GTO;
- if an E, it is a numeric XEQ;
- if it is an F, then the function is a line of text.

The purpose of an XROM instruction is to code for an instruction that is 'not known’ to the 41, ie., a
catalogue two instruction. These instructions are coded by giving each possible plug-in device an identifier
number (in the range 0 to 31), and allocating each device up to 64 possible functions in its catalogue
(numbered 0 to 63). Then, taking the binary for the identifier (five bits), and the binary for the function
(6 bits), they can be assembled into the last eleven bits of the two-byte function to give the complete
XROM, thus:

1010 Oddd ddff ffff

where: - ddddd is the device number;
- fffftf the function number;
- 1010 is the A first nybble in binary;
- and 0 at the start of the second nybble is always zero.

XROM numbers can be seen if you place a plug-in device function in program memory, then remove
the device that contains it.

In general, function number ‘00’ is used as the header for the ROM or plug-in device, and is a function
that normally does nothing except execute a return. The header should be longer than seven characters
for the HP-41CX to pick up the ROM header during a CATalogue 2, as it looks for all entries longer than
7 bytes. An exception is the Math Pac 1B header, which is only seven, and can therefore be called as
a function. Place it into a program, remove the Math Pac, and see XROM 01,00 in the display. The hex-
code for the two bytes in program memory is A0,40h. Similarly, the hex-code for the printer function
PRKEYS is A74Ch , since its XROM code is 29,12 (decimal). Note that although, in theory, device 0
is possible, in practice it is not and never will be used. The reasons for this aren’t important here, but
XROM 00,nn can crash the HP-41 by locking up the keyboard, and thereby stop the User from re-gaining
control. This should be avoided.

There are two forms of local GTO instruction, called short- and long-form. Short-form GTOs save program
memory, but are restricted to GTOs of 00’ to ‘14, and are coded in two bytes. The coding is as follows:

1011 Il drrr rbbb

where: - llll is the label desired plus one;
- d is the direction in which the destination label lies
(0 means forward, the direction of increasing line numbers, 1 backwards);

- rrrr is the number of registers away;
- and bbb the number of bytes.

31

The postfix byte thus contains the jump to the label. This is added to, or subtracted from (if ‘d’ is one),
the current program counter - the datum that tells the 41 which instruction to execute next. When the
GTO is first entered, this byte is a null (zero), that tells the 41 that the instruction has yet to be ‘compiled.
Compiling is the 41’s process of finding the label and storing the branching information into it - this being
accomplished during the first execution of the program line.

If the GTO is in a ROM (a plug-in module), then the last seven bits of the GTO are the number of bytes
to the label - because in ROM there are no registers. For ROM programs, this can be up to 127 either
way, so a branch in a ROM can actually be slightly further than in RAM. Note also that the direction
bit alters in ROM - here a ‘1’ means ‘forward’ in the program, and a ‘0’ means ‘backward’. The reason
for this is that as you move forwards in a program, the actual address of the line decreases, while in
a ROM program, the address increases. Therefore, a ‘1’ in the direction bit means in the direction of
increasing addresses.

The other form of GTO, the long-form GTO, takes up three bytes of memory, and has a structure which
is almost identical with that of the numeric XEQ instruction. The coding for these two instructions is:

11tt bbbr rrer reer dlll

where: - rrrererer is the number of whole registers away;
- bbb the number of bytes in addition to the number of registers;
- d the direction;
- Ilthe label, thus allowing 128 possibilities, (all as for short-form GTOs - detailed
above).

- and tt being the bit pair.

The extra piece of information here is the tt bit-pair, which will be either 01’ - in the case of GTOs, or
10’ in the case of XEQs. Note that there are nine bits used to code for the number of registers to jump
- this being the minimum number needed to allow for jumps of 319 registers and the maximum number
you are legally supposed to be able to jump within HP-41 program memory.

The HP-41 compiles each line only as it executesit, which is why the line ‘speeds up’ after one execution.

If a short-form GTO cannot be compiled, then the HP-41 conducts a search every time. A program is
always decompiled if you:

- delete a line;
- insert a line (overwriting nulls already in a program doesn'’t cause it to decompile,
but the program wasn'’t packed then anyway if it did contain nulls);

- or delete the END of the program preceding it in memory (this includes using
CLP to clear that program.)

32

3.5 VARIABLE-LENGTH INSTRUCTIONS

Row F is used to code for text strings - these have also been called ASCII-strings by HP . If the first
byte of any program line is ‘Fn), where 'n’ may be any hex digit, then the HP-41 interprets the following
‘n’” bytes as alpha characters - quite regardless of what they may be, as absolutely any byte, from 00h
to FFh, may be found in a text line. The text characters corresponding to each byte are indicated in the
Byte Table. In fact, there are only 83 distinct display characters - one of these (the starburst character),
which is officially coded for by byte 3Ah, ‘stands-in’ for all the undisplayable bytes, and as such is the
commonest display character in the Byte Table.

Because a text string’s length is coded by a single nybble, 0 to F, this means that a string may have
up to 15 characters. It may also have none at all - e.g., in the case of the ‘empty’ string, “, which is coded
by FOh in a program. This empty string byte is used by SP’ers as a NOP (No-OPeration = an instruction
which does absolutely nothing - other than take up space in a program, and waste a little time when
you run it). In actual fact, the FOh byte does enable the stack lift - so is not quite a true NOP. The ZENROM
function NOP is a non-programmable function that inserts this line in program memory for you.

Strings also come into the coding of other instructions, namely those of GTO ‘alpha’ XEQ ‘alpha’ and
LBL ‘alpha’, where ‘alpha’ is any string. The coding of the first two of these is quite simple, while the
coding of the last is somewhat more complex. Given any string, to turn that into a corresponding alpha
GTO, place the byte 1Dh before it in program memory. This byte tells the 41 to expect a string argument
instead of a numeric one - as normally occurs on the other two- and three-byte instructions. By placing
the byte 1Eh here instead, you have an alpha XEQ line. Placing 1Fh in front of the string creates a curiosity
line, Wbut beware as this can cause system crashes.

Alpha labels are one of a category of instructions called ‘globals’, with the other instruction in this category
being the END instruction. These two instructions between them bind the HP-41’s program memory
together. The HP-41 maintains, somewhere in the dark depths of the Status registers (explained shortly)

a piece of information thattells it where in memory the .END. can be found. This is the first of a series
of instructions which form what is called a ‘linked list. The .END. contains a pointer (a relative jump,
similar to that stored in XEQ/GTO instructions) which allows the 41 to find the next global up memory.
Each global in turn points to the next one up, be it a LBL or an END, until the last global in the chain
is reached. This contains a pointer value of zero, meaning that there are no more entries in the chain.

If this ‘global chain’ sounds familiar, do a CAT 1 and watch it go by in reverse order. The simpler of the
two instructions, the END, has a structure of:

1100 bbbr rrrr rrrr Ontx pppp

33

where: - bbb and
- r rrrr rrrr are coded as for XEQ/GTO instructions above, but no direction bit is

needed, since the next global along the chain is always farther ‘up’ program
memory (nearer the start of CAT 1);

- n is a system status bit, which the HP-41 uses internally, and which shouldn’t be
altered - normally it is a 0 anyway.

- t marks the type of the END. Where: 0 is a regular END; and 1 is the .END. (the
permanent end instruction); '

- X is a ‘don’t care’ bit - as it doesn’t matter what it is in an END;
- pppp marks the packing status of the program - If it is 1001, then the program is
of packed status; if 1011, then the program has been altered and needs to be
decompiled. This is the action which takes up time when you quit program mode

after an editing session. If 1101,
then the program has already been decompiled, but still needs packing.

Should the third byte of the global be Fn (where n is any hex digit), then the line is interpreted as a
global label. The n bytes which follow the third byte contain two things; the alpha label itself (starting
in byte 5), and a byte (byte 4) containing the keycode of the key to which the label is currently assigned.
This is why a CAT 2 or CAT 3 function can be assigned anywhere on the keyboard, whereas, a User
program can only be assigned on one key location at a time, because the assignment information only

allows for one per label. Keycodes will be dealt with shortly. For the moment, however, note that the
n in Fn is the length of the label in characters (as it appears in the display) plus one to allow for the
keycode byte.

The only other byte in the Table yet to be dealt with is AEh, which serves for two lines - XEQ IND and
GTO IND. The suffix byte for this instruction is interpreted as:

trer rrrr

where: - rrrrrrr is the register which the 41 will use to supply the indirect branch;
- t is the type of instruction. A 0 here means GTO IND, or a 1 means XEQ IND.
This explains why the half of the Table, from which the suffix byte comes,
determines the choice of the instruction; either upper-half for the GTO instruction,
or the lower-half for the XEQ.

Since the HP-41 has no control over the contents of the register that is chosen to select the branch,
the instruction cannot be compiled, so no room need be reserved for this purpose.

The bytes CEh and CFh can be used to code for LBL nn and X<<> nn, despite the fact that Cn should
be a global instruction. This is because CEh and CFh cannot occurin globals, as there are only 7 bytes
per register. This means that the instructions which theoretically code for the references to byte 8 are
used for something else instead. Bytes DEh, DFh, EEh, and EFh cannot be similarly used (thus explaining
why the XEQ/GTO instructions run right to the end of those rows). The reason is that, in a ROM,all
twelve bits comprising the bbb and rrrrrrrrr fields contain instead the number of bytesto the corresponding
label - which means that a ROM program can be 4K long. This doesn't affect most normal HP-41 users,
but this discrepancy in the Byte Table is worth pointing out.

34

3.6 REGISTER FORMATS
HP-41 RAM comprises space for 1024 56-bit registers. Of these, 16 are used in the Status Registers,
320 for 41-Main Memory, 128 as base XRAM (Extended Memory inside the EXtended Functions Module)
and two blocks each of 239 registers for XRAM1 & XRAM2. The total of 942 reqisters is unlikely to be
extended as many of the currently ‘unused’ locations are used by system routines.

Each register comprises 14 digits (also called nybbles), which can be treated as 7 bytes. These digits
are numbered from the right-hand end of the register as ‘0’ through 13’ - these being the bytes ‘0’ through
‘6’. To make this clearer, let’s imagine a typical HP-41 register containing the value for ‘minus pi * 100’
(-3.141592654 * 1012).

| | | | | | | | | | | | |
Digit 13 (121t 10} 918} 7)1 6| S| 4| 3| 241140
bbbbe

Value 9| 3} 1| 4| 1| 591216 | S| 4] o0} o0]e
————dmmm—etbbb

Field s | m| a)] m|ma|m|a|mn]m>]|a]m] xs | x| x
eeebbbee

Byte 6 | 5 | 4 | 3 | 2 | 1 | 0

1 1 i 1 1 i

Fiqure 3.6, REGISTER FORMATS

Figure 36. REGISTER FORMATS

The notation used indicates that ‘s’ is the sign of the number, while ‘xs’ is the sign of the exponent.
‘mmmmmmmmmm’is the 10 digit number stored with an implicit decimal point after the first digit (between
bytes 6 & 5). The actual numberis not stored as a binary fraction - as is normal on other larger computers
- but in Binary Coded Decimal (BCD) format. This means that the number is stored a digit at a time,
with each in the range 0 to 9. The exponentis stored as a BCD integer in the range 00 to 99 for positive
numbers and 99 to 01 for negative exponents of -01 to -99. The exact reason forthis is not relevant here,
but is connected with the most advantageous method of performing mathematical functions. The sign
digit is stored as either 9 (negative numbers) or 0 (positive).

Thus the number -1.23456789 * 101-3 would be stored as 91234567890997. To find out what the exponent
field should be (including sign value), add the exponent to 1000 and take the last three digits.

Of course, registers are also used to store strings or text information. To represent these, the sign value
is 1’ and the string data are stored in bytes 5 to 0 in right-justified format with zeroes padding to the
left. E.g. the string ‘STRING’ is stored as 10535452494E47, while ‘ABC’ is stored as 10000000414243.
Note that the codes used are those for corresponding characters from the Byte Table.

HP themselves do not use any other digits in the sign field of explicitly stored numbers, although it is
possible to create such numbers. These are called Non-Normalised Numbers (NNNs), and the HP-41
has a nasty habit of changing them if it finds out that you are using them. NNN’s will be discussed
elsewhere in this handbook.

35

36

|

|
‘_,,:,-» Byte #

HX 15 5 4 3 21 0!
1FF 1 1 L l 1 1

TOP OF MEMORY
Memory

Module

4

1CO

Memory

D/fl Module

3

180 Memory

Curtain Module

REGOD_ _ _ __ _ ___ ’
1st User Program MAIN MEMORY

(HP-41CV)

140

Memory
PROGRAM ModuLe
MEMORY 1

10 TasTeren __1w
FREE REGISTERS

____I/0BUFFER
—— __ ALARMBUFFER_ _ _ __

0Co KEY ASSIGNMENT BUFFER

0BF

080 Extended

Function

(12BREGS)

File #
/-

0s0 400 ow [wo] oo] 2efFo [er

020

00F VOID

STATUS
000

3FF

3F0

3EF

3C0

380

340

301
300

2F0

2EF

2C0

280

240

201

200

VOID

S
Y
3
1
S
I
a
3
Y

6
¢
c

Extended

Memory

2

00 [oo] 02] 01]oo Jo3 Jer

VOID

2
m

21
Do
m
20
w

Extended

Memory
1

 00 [o0] 00J40 |3E [F2 | EF

01D
' 54 3" 2" 1"

Figure 3.7.1 HP-41 Memory Configuration

10,

3.7 MEMORY STRUCTURE
A detailed memory map of the contents of Main Memory is shown in Figure 3.7.1. This indicates that
HP-41 memory can be broken into five areas - these being all ‘dynamically allocated’, that is, their location
in memory will vary according to their presence and size. The only requirement is that the ordering of
the five blocks is always maintained. The topmost, or highest-addressed, area of HP-41 memory is the
user Data Register block, which is where the numbered registers are to be found. The location of R00O
(register 00) is called the ‘curtain’ This data block can be zero registers long, i.e., not actually there.

The program area comes next, with the first byte of the first program being in byte 6 of r (curtain - 1).
(Note: The manual will adopt the notation of r xyz to indicate an absolute register address as marked
on the side of the memory map - Rnn will mean the nn'th register in the User Data space). The last
register of the program area always contains the permanent .END. in bytes 2 to 0 of that register - this
is the only instruction in HP-41 program memory which always occupies the same place within a given
register.

After this comes ‘free space’. This means those registers that as yet have not been allocated to any of
the other four blocks. Their amount is the number the 41 computes for the display 00 REG nnn. This

block can be zero registers long, in which case the 41 has run out of available registers.

Next comes the buffer block, which contains buffers - a buffer, is a block of contiguous registers currently
being used to contain data for a plug-in device, for example, timer alarm information. All buffers have
a similar structure, with the lowest-addressed register in the buffer being interpreted as follows:

FIGURE 3.7.2 BUFFER FORMATS

Digit: [t3 12 |11y |10t 9 |1 8| 7} 6 | S| 4] 32|11V 0]}
$mmmpmmmbbbeb-}

I x 1t s | s | x| x| x| x]x]x}x]x]x|] x|

where: - t is the type of the buffer, and is used by plug-in devices to decide which
buffer(s) belong to it (all timer buffers have A here, HP-IL buffers are B (Plotter)
or C (IL DEV)).

- ss is the total number of registers in the buffer;
- and x digits are ‘don’t care’ digits.

Digit 13 is usually the same as for 12, but is only ever used when the HP-41 switches on to determine
if the buffer is valid (the 41 clears this digit, and then gives any plug-in devices the chance to replace
their own type digit here.If, after this, any buffer remains with a O here,it is cleared out, and the registers
used returned to free space).

If you start playing with buffers, don’t create one with an ss field of 00. The HP-41 considers this to be
an empty buffer, because it finds an ss field signifying an empty register. Switching the 41 off then on,
will cause the keyboard to ‘lock-up’ - which is a nice way of saying the machine

37

38

03 13 29 39 49

01 11 21 3 41

OA 1A 2R 3R 4A

02 12 22 32 42

0B 18 28 38 48

03 13 23 33 43

0c 2C 3C 4C

04 24 34 44

0D 1D 20 30

05 15 25 35

Ot 1E 2t 3t

06 16 26 36

OF 1F 2F 3F

07 17 27 37

10 20 30 40

08 18 28 38

Figure 3.7.2 Key Assignment & Global Label Keycodes

Hex key codes

as used in

KA registers

and in

Global LBL's

will not respond to any keystrokes you make. What is actually happening is that the HP-41 has got stuck

in its internal buffer-validating code with no hope of exiting. The only way out is with a Master Reset
(MEMORY LOST), or by interrupting the power supply for quite a while.

The highest-addressed register always contains:

FO XX XX XX XX XX XX

where XX’s sometimes are clear, but may contain a string name of the device controlling the buffer. This
is not a necessity in buffer construction, but the plug-in devices may require the string to be there, so
don’t change it.

The buffer area can be empty and it always runs right up against the last, lowest-addressed block, which
contains key assignment information. Each Key Assignment register contains two assignments, formatted
as:

FO cc cc kk cc cc kk

where: - cc cc is the one- or two-byte code representing the function. If from CAT 2, the
XROM instruction coding for the desired function is stored here. If from CAT 3,
then the first byte is On (usually 04h), and the second is the byte from the Byte
Table that codes for that particular function. COh means an END instruction, DOh
a GTO and EOh an XEQ. The non-programmable functions are coded from row 0,
according to the line above the top row of the Byte Table. For example, 04 codes
for CLP when in a key assignment register.

- kk is the field for the keycode of the assignment.

Keycodes for the HP-41 are shown in Figure 3.7.2. Note that these are also the same codes as used
for global LBL instructions.

If there are an odd number of assignments, then absolute register 0COh will contain zeroes in bytes 5
to 3 inclusive. Whenever an assignment is cleared, only the kk field is cleared immediately. However,
PACKing memory (or switching the HP-41 offlon) will cause registers with 00 keycodes in both fields to
be removed, and adjacent registers each with a single assignment to be merged into one.

There is one restriction regarding the key assignment/buffer area block. It must not contain any completely
empty registers - i.e., all zeroes. The HP-41 will consider the first empty registerit finds to be the end
of the key assignment area (it doesn’t actually look inside the buffers, but skips along the first register

of each): any further data above this point become 'detached’ information that clutters free space, but
which the HP-41 isn't intelligent enough to remove. In addition, a buffer must not contain any empty registers
because of a bug in some Card Readers. The Card Reader HP-67/97 translation function ‘borrows’ free
space, but searches from the wrong end of memory. While the 41 allocates free space from the .END.
downward, the Card Reader looks forit from r 0COh upwards and stops at the first empty register found.
It has never heard of buffers, and so may write rubbish into the buffer area.

To avoid this problem, the Time Module, and the CX, force non-null bytes into any message string stored
with an alarm if that message contains enough contiguous nulls for there to be an empty register in
the Timer alarm buffer.

39

Extended Memory on the HP-41 (XM) is a virtual memory area, which appears to the user to be a
contiguous block of registers, either 124, 367 or 600 registers long. In fact, it is composed of three separate
blocks of memory, in three uncontiguous locations, linked together by the XFM’s internal programming.
The lowest block, in the XFM itself, called the ‘base’ block, is actually 128 registers long. The other two
blocks, called XRAM1 (left-hand ports) and XRAM2 (right-hand ports) are each 239 registers long. This
gives a total of 606 registers - with 6 registers being for system use.

One of these six, called the ‘partition’ register, is a register which contains FF:FF:FF:FF:FF:FF:FFh, and
marks the end of used XM. It is never available to the User for use - XFM will replace it with its original
value at the first opportunity. Two more registers are the overhead for the next file’s header registers.
Each file uses two registers over and above the size given by EMDIR and the XFM reserves space for
the headerof the next file still to be created. The three remaining registers are the ‘link’ registers containing
information for the XFM on which XRAM blocks are available, and the order in which the modules
containing those blocks were plugged in.

Each of the three blocks has its own link register, located in the last (lowest addressed) register in that
block - locations 040h; 201h and 301h respectively. The format of the three link registers is similar:

FIGURE 3.74 XRAM LINK REGISTER FORMAT

Digit: 113 J182

Each of the three modules has a unique ‘module I.D.; which is simply the address of the first (highest-
addressed) register in that block - for the base module 0BFh; for XRAM1 201h; and for XRAM2 301h.
These module I.D.s appear in the fields TTT, NNN and PPP respectively, where:
TTT is the block I.D. (containing the link register in question);
NNN is the next block I.D. (or 000 if there is no Next block); and
PPP is the 1.D. of the Previous block in sequence - the 41 ignores what it contains in the

base block (040h), since there can be no previous blocks. But in the CX, this field is
used as a scratch area for the EMDIR function, and may be overwritten, thereby rendering
it useless to programmers, especially machine-coders, who need scratch data storage.
(By means of the PPP, NNN & TTT fields, each block points to the next block, the last
block, and to itself);

WWW is the number of the working file in hexadecimal.
XX is a ‘don’t care’ field - put anything you like here, the 41 ignores it completely.

XM files all have similar structures - consisting of a number of registers, specified either by the User
at creation (data and textfiles), or by the system at creation (program files). The size of a file, returned by

40

EMDIR, refers to the total number of registers available within that file, and is always 2 registers fewer

than the total space that file consumes because a two-register ‘header’ is also stored with the file. This

information is seen in the EMDIR listing.

The header is similar for each of the three file types:
- the first register always contains the name of the file - stored in ASCII form (as read
from ALPHA) - which is left-justified within the register with the first letter in the name
always at the ‘left’ end of the register). For a name shorter than seven characters, spaces
are added to pad out the register. One consequence of this is that, to the 41, the names
‘MYFILE’ and ‘MYFILE ’ are the same.

- the second register contains various information on the file, but although these vary
between file types, the general layout is always the same:

Digit: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I TI x| x| x}xjcjl]cl]Cc|]R]JR|R]S]|]S]|SI]

- ‘T’ is the file’s type, and is a ‘1’ for program files, ‘2’ for data files and ‘3’ for text (ASCII)
files. If this digit is ‘0’ then EMDIR will show ‘@. where the file’s type should be, and

‘@’ for all other cases.
- SSS is the size of the file, coded in hexadecimal and does not include the two header
registers. These fields are always the same for any file type.

- RRR is used in program files to store the number of bytes in the program - for data
and textfiles, it stores instead the current record number within the file (hexadecimal).

- CCC is used only by text files, and stores the current character. In fact, only digits 6

and 7 need be used for this, but all three actually are.
- XXXX is a ‘don’t care’ field; in program files this is usually left as zeroes. With data
and text files it is used as a scratch area to store the file location during file operations.
This field is never read by the 41, only written into.

Data files store data with register 0 following the header. With program files, a byte-for-byte copy is made
straight out of memory into the program file. The first seven bytes go into the first register after the header,
and so on to the end of the program. The END is also copied, but an extra checksum byte is added
- this is found by adding every byte in the file, and performing modulo 256. For some reason, HP didn't
use the header CCC field to store the checksum.In text files, data are stored in records of variable length
- indicated by a byte preceding the record.

41

42

o
NA
ME

a

Byte Byte Byte Byte Byte Byte Byte

6 | o5 | 4 | 3 | 1 1 0
- PARSE PRGM

| SHIFTED KEY ASSIGNMENTS STATUS [l 1NNumBER

User ;'1agsfi ' Sy'stem F]:ags
0.1,2,3 - FLAG REGISTER - 53,5055

TREG P%N}ER COLD START REG 00 JEND.
ABSOLUTE ADDR| "Hcace: CONSTANT ABSOLUTE ADDR JABSOLUTE ADDR

SUBROUTINE RETURN STACK PRGM POINTER
3rd | . 2nd | : . st BYTE ! REGISTER ADDR

+ T T 1 v T T T Y T T

__ 6th L 5th 1 ath i 3rd
-) ' ' ’ - v ' LAST I'KEYCODE

UNSHIFTED KEY ASSIGNMENTS INSTRUCTION ; DURING
. ——— . — EXECUTED {PASN

TEMPORARY ALPHA SCRATCH

ALPHA (REG 25-28) ALPHA (REG 22-24)
e} - ¢ ' + ' + t + 1 +

ALPHA REGISTER 15-21

ALPHA REGISTER 8-14

ot 1

ALPHA REGISTER 1-7
e —

! USER STACK REGISTERS b
+ { + 1 + t + + + + f + t

E P
E $ + + + { $ + : %' +

y % —_—— 4

S L ;'IANTI'S AS lexeyIGNE L k S 1 | ision] EXPONENT

| | 1 1 1 1 | 1 I
B 12111098 "7 el Ta T3 2T 1Ty

Digit # (also called nybbles)

 HP-41

000

00C

008B

00A

009

008

007

006

005

004

003

002

001

000

3.8 STATUS REGISTERS

At the very bottom of HP-41 memory are the System Scratch, or Status, registers. These comprise 16
registers containing a collection of permanently resident information for the 41, including which data can
be found where, and in what mode the 41 is currently. Figure 3.8.1 contains a detailed map of the Status
Register contents.

The register numbers (up the side) correspond with the postfixes given in the last row in each half of
the Table. T,Z)Y,X & L will be familiar to you as the Stack Registers. Registers M,N,O & P (3-bytes only)
form the ALPHA display. M contains the ‘rightmost’ 7 bytes of ALPHA, N the next 7, O the next, and
P contains the leftmost 3 bytes. Bytes 6 to 3 of P (also described as P|6:3]) contain scratch fields used
by the HP-41 for, amongst other things, running catalogues and controlling digit entry. They can occasionally
be used as an extension to ALPHA, as long as there are no number-entry lines or VIEW instructions
in the program.

Q is used by every function taking an alpha argument, the printer (whether you use printer functions
or not), and a number of other functions, such as digit-entry, P-R, Y1X, SDEV, SIN, COS, ASIN, ACOS
and any time the 41 must place the contents of ALPHA in the display. Provided you can avoid all these
obstacles, you can use it.

Register ‘R’ , normally known as register — (the append symbol) and register e’ contain bit-maps for
key assignments. Every key position on the keyboard has a corresponding bit in these registers. The
bit-map for each key is shown in each of the registers in Figure 38.2. If a particular bit is set in register
'R’, then that key carries an unshifted assignment. If the bit is set in register '€’ , then it represents a
shifted assignment.

Registers ‘@’ and ‘b’ contain the subroutine return stack and the User-code program counter. The latter
points to the last byte of the line just executed, while the former is simply up to six copies of previous
program counters - these point to the last byte of an XEQ that was previously executed (including XROM
executes which refer to user code programs in plug-in devices).

The format of the program counteris:

Obbb 000r rrrr rrrr

where: - rrrrrrrrr is the absolute address of the current register;
- bbb is the byte within that register which contains the first byte of the next line, when
the program currently executing is in RAM.

When pushed across onto the subroutine return stack, the format alters slightly to that of:

0000 bbbr rrrr rrrr

The reason for this, is to allow the 41 to determine whether or not the return is to a ROM or RAM location.

43

REGISTER 'R' (also called APPEND) STORING UNSHIFTED KEYS

Figure 3.8.2 Key Assignment Bit Maps

HEEEE
IERDEE
AREHEE
I 23 | 28 [-:;;] I!i!l

O EEE
49N o (%

)
w

.
H

—
_

Figure 383 Key Assignment Bit Mapping

\
clulNn]|m|lolvlolun]lsju [Nl IN|2D [N OO W N leDU\bLAN—‘\

srlouololunlelelelslu|es |88 [HWIWUIWWIW|W W]ITWIN N NN NN == =2 = -

11 10 9 8 ? 6 S { Digit #

5 4 2 Byte #

Note. Keycodes are shown in Row, Column format

ie. 53 = row 5, colum 3

REGISTER 'e' STORING SHIFTED KEYS

1

Z wlnvlelo|lvloluls Juin]|2 |loj~w oo ls |lu|N =2 |o (N o |nv w N o |[w|o| o] slu|n = l
nlojn sl |8 Bl I IHIW I IWIWIWIN IN ININ NN =] el el -

11 10 9 8 7 6 5 R Digit #

5 4 2 Byte #

Bit locations

of assigned

keys in

registers

lel & IRl

If the 41 is currently in ROM, then the program counter simply contains the absolute address of the byte
within the ROM. Since no plug-in ROM can have a first digit of 0 in its address (0 being a system ROM
address - see later for the 41 ROM page structure), if the first digit is 0, this means a RAM address.
If a non-zero digit, it means the XEQ/XROM was in a ROM, and the routine call should return to there.
The 41 processor has a flag which determines whether the pointer is interpreted as meaning RAM or
ROM. A ROM address pushed onto the return stack is consequently left unaltered.

The stack is pushed from right to left across both registers, with the last two bytes of register b being
copied into bytes 1 and 0 of register ‘a, and the last two in ‘@’ being lost. Popping the stack (at a RTN
or an END) is the converse of this operation, and its action writes 00 00 into bytes 6 and 5 of ‘a. Whenever
bytes 3 and 2 of ‘b’ contain 00 00, the return stack is said to be empty.

Register ‘c’ contains memory allocation data. It is the one status register that requires care whilst ‘playing
around’ with SP. The quickest way to destroy everything in memory is with [STO| [.| [c|. Register ‘c’ contains
the absolute address of the register containing the .END. in bytes 2 through O, the address of the
program/data register curtain in bytes 5 to 3, and the absolute address of the current statistics block.
This is the register pointed to by the last ZREG operation) in bytes 13 to 11. The printer uses bytes 10
and 9, and bytes 8 to 6 contain the HP-41’s ‘cold start constant, which must always be 169h. The 41
examines this field at switch-on, whenever a key is pressed (with no program running), and whenever

a program returns control to the User (STOP, END, RTN, PSE, etc.). If, when checked, it is not 169h,
then the HP-41 assumes that memory has been corrupted and automatically performs a MEMORY LOST.

Register ‘d’ contains all 56 User and System flags, with flag 00 at the left and flag 55 at the far right.
Figure 385 shows the bit mapping for register d, and the application/purpose of each flag is given in
Figure 384.

Finally, register ‘€’ also contains the current line number in bytes 2 through 0. When a program starts
running, this is set to FFFh, meaning ‘I don’t know the line number‘ Going into program mode, holding
down |R/S| (to start a program running) for longer than 100ms, pressing [SST| or generating an error

out of program mode (including program errors) causes the current line number to be recomputed.

45

00 - 10 general purpose 34 ADRON clr

*« 11 auto execute ADROFF set

* 12 double width print 35 disable autostart ROM

* 13 lower—-case print 36 - 39 number of digits

* 14 overwrite mag. card displayed

15 = 16 HP-IL printer modes 40 - 41 display format

0 0 MANual 0 0 SClentific
0 1 NORMal o 1 ENGineering

1 0 TRACE 1 0 FlXed

1 1 TRACE UWITH STACK 1 1 FIX & ENG
. 17 (CR) incomplete record 42 - 43 1trig modes

* 18 enable TINTR 0 0 Degrees
= 19 - 20 general use 0 1 RADians

*x 21 printer enabled 1 0 GRADians

* 22 numeric entry 1 1 RADians
* 23 ALPHA entry * 44 Continuous ON
* 24 range ignore s 45 system data entry
* 25 error ignore * 46 partial key sequence

26 audio enable s 47 SHIFT
eT USER mode * 48 ALPHA
28 decimal point/comma * 49 BATtery voltage low
29 digit grouping on/off « 50 message

* 30 CATalogue s 51 88T
31 Timer format DMY set « 52 PRGM

MDY clr s 53 Input/Output

32 Manual HP-IL 1/0 s 54 PSE
33 HP-IL absolute manual % 55 printer existence

Note: # = cleared at turn on

*s = cleared only if printer absent

Figure 3.8.4 Description of HP-41 Flags

GEIEREBIBESEEIEEIS|SEREREEEEREEREREFR]

ERIBEIRIZIBIIIBIB I = 0 |a|= o oo B RIN|GRE BINB 8|82

13 12 11 10 8 8 7 6 !

6 5 4 3

BREB @S REsEEEETe Bt
NN W Nl W N W] sl||l o |0l
NIWIEFEIOO N0 2NV WIS OO IN]ID O |D |-

5 4 3 2 1 0 Digit ¢

2 0 Byte 4

Figure 385 Flag Bit Locations in Register d

46

3.9 APPLICATIONS OF SP

There are a number of common, simple applications of SP which are quite straightforward, but which
make up the majority of applications for this set of techniques.

3.9.1 Scratch Storage
Quite often, you will find yourself writing a subroutine for a program needing one or two scratch registers
outside of the stack. Normally, you are forced to use numbered data registers to satisfy this need. However,
this can cause problems when these registers may be used by other routines as part of the main program.

The usually-adopted approach to this problem is to create a small data file. However, for a simple
application, this is not really ideal.

The easiest approach, if the function being coded allows it, is to break up the ALPHA register. Remember
that ALPHA comprises 4 registers, M through P. It is perfectly permissible to use three of them just like
any other (register P must be used with care). In fact, there are two advantages to be gained.

The first is that a RCL, VIEW or X<> from any of the sixteen Status registers is non-normalising. The
HP-41 normalises as part of a check to see if the register actually exists. However, the HP-41 knows
that the Status registers always exist, and so doesn’t need to check and normalise.

The second advantage is speed, for the very same reason - the HP-41’s check on the existence of a
register takes time (about 6ms), and this is saved for every execution of a register function addressing
the Status registers as opposed to anywhere else.

Therefore, with SP, a common place for loop-control variables to be stored (those that are used with ISG
and DSE)is in the Status registers somewhere, and similarly for any operations within the loop that access
a scratch variable.

3.9.2 Non-Standard Output
Probably the most awkward function in the HP-41 system is BLDSPEC on the system thermal printer
- either HP-82143 or 82162. You need to expend about 30 bytes of a program per special printing character,
which is hardly a good trade-off. By using SP, you can place a text line in the program that contains
exactly what BLDSPEC would have assembled in X anyway, and then simply execute RCL M, ACSPEC.
The RCL M is used to recall the last seven characters of ALPHA for sending to the printer.

This number, now in X, is probably neither formatted as a regular number, nor as a string, but rather
as a Non-Normalised Number (NNN). Be careful with these. Register access operations that talk to user
data space always check the existence of the register first. In the case of a block operation, such as
REGSWAP, only the highest-addressed register in each distinct block is checked. During the checking
process, normalisation of the contents may occur as follows:

47

- if the first byte is zero, the register is cleared,;
- if the first digit is 0 or 9, the mantissa is forced to contain only digits '0’ to ‘9" and
the exponentis forced to be either 000h through 099 (BCD only) or 999 through 901.
Digits ‘A’ to ‘F’ will be lost;

- if the first digit is other than ‘0’ or ‘9’ then it is forced to be a ‘1.

ZENROM contains functions to get around this problem, but avoid using user data register space for
storing such numbers, and be careful which numbers you extract out of memory in case you normalise
the register. Using the Status Registers gets around these problems, as these registers never get normalised

because the 41 need not check their existence.

More than one special character can be entered into ALPHA, of course, and RCL N, RCL O or RCL
P used to access it. But remember the limitations on the usage of register P.

Example Program: Accumulating Special Mathematical Characters into the Printer Buffer

LBL ‘S’ set is a subset of’ descriptor BIoLEL “EXe"
@2+LBL 5"

(1 e ., . 83 :2sT"
LBL ‘IN’ set 'inclusion’ descriptor 8 010 66

- y . 85eLBL “IN°
LBL ‘U’ set ‘union’ operator 86 "sJsSe"

87 GT0 09

LBL ‘IS’ set 'intersection’ operator 88eLBL V-
89 "eqst

s .. , _ 18 GT0 69
LBL ‘M’ set is a member of’ descriptor

11eLBL "IS*
12 =20 _e°

The hex-codes for these lines are: 13 GT0 09

03 = F6 01 32 95 2A 54 80 oL
06 = F6 01 4A 95 2A 53 00 15 "R U

09 = F6 00 FA 04 08 OF 80 169LBL 89

12 = F6 01 FO 10 20 5F 00 17 6STO ¥
15 = F6 00 71 52 A5 4A 80 19 60

Use ‘SYNTEXTentry to create these text lines. Remember, however, that you don’t need
to enter the first F6h byte (= 6 character text line) as the operating system will work this
out for you

This method can also provide a way to enter lengthy floating-point constants into a program using fewer
bytes and less time than the normal number-entry line does.

48

Example Program: Accumulating Floating Point Constants

LBL ‘e’ constant e = 2.718281828

LBL ‘H’ Planck’s constant h = 6.6262*10134

LBL ‘C’ speed of light = 299 792 459

LBL ‘u0’ permeability of free space = 1.256637*101-6

LBL ‘G’ gravitational constant = 66.73*101-12

LBL Z0’ impedence of free space = 376.730 4

LBL ‘F’ double Faraday constant
returns 2.892599*10114 into Reg. X
and 96 486.7 into Reg. Y

The hex-codes for these lines are:

03 = F7 02 71 82 81 82 80 00 21 “odeesaxiend”
06 = F7 06 62 62 00 00 09 66 22 RLL ™
09 = F7 02 99 79 24 59 00 08 23¢LBL 88

12 = F7 01 25 66 37 06 29 94 24 ROL [
15 = F7 06 67 30 00 00 09 89 25 END
18 = F7 03 76 73 04 00 00 02
21 = FE 09 64 86 70 00 00 04 02 89 25 99 00 00 14

gleLEL “EX1"
g2eLBL “e”

A7 "xa¢"
84 GTO o4

B9¢LEL “H"

86 “Tbbesof"
87 GT0 o6

@5eLEL "c”
B9 “xy$Yer-

18 GTO 08

{1eLBL -p&"
12 =exf7"
13 GTO 68

14¢LBL “G*
15 "Todeeq"

16 GTO @8

{7¢LBL -2¢"

18 "ryusqeex-

19 GTO 0@

28¢LBL “F"

SP has also been used to place non-keyable characters into the display, such as | |, (), '@+ &, etc., without
needing to use a ‘character code’ and the XTOA function from the Extended Functions Module. As these
characters are available on ZENROM USER ALPHA keyboards, this technique is now obsolete.

3.9.3 Register Allocations
This means altering the contents of register ‘c. You can force the curtain, between data and program
registers, to be any register in the HP-41. Although,if the program halts you must make sure the register
immediately below the one you address actually exists. By forcing the curtain to be register 010h it means
that you can directly access any register up to 1FFh. Altering the .END. address or the statistics register
pointer isn’t so popular, because one can be easily done with a mainframe function, and the other has
little point, but both are possible. Again, make sure the register pointed to by the .END. exists if you
don’t want the annoyance of a MEMORY LOST.

49

Another use for altering the curtain iocation is to ‘hide’ some previously allocated data registers by placing
the curtain above them, thereby effectively ‘adopting’ them into program memory. There is a danger
however. When you PACK memory, these registers will be seen as program lines and packed as well,
which will more than likely completely mess up your memory contents.

3.9.4 Flag Manipulation
The RCLFLAG/STOFLAG combination, from the Extended Function Module & 41CX, allows you to do
some things previously only the territory of SP’ers (such as entering FIXJENG mode) by directly accessing
the flag register. If you normally have a standard or default setting for the 41’s flags and wish your programs
to enforce it, then simply load a text line containing the chosen register d as a collection of characters.
Then follow this with RCL M and STO d (or ASTO d - depending on how you want to affect the first
8 flags). Using ASTO d always leaves flags 00 through 07 clear, except for 03 which will be set.

Clearing the system flag 55 is a common technique used for speed with a printer connected to the 41
- because the machine runs considerably fasterif the printer isn’t there. The fact that you may not be
printing is quite irrelevant, as the 41 polls the printer all the time to see if it needs servicing. By clearing
the printer existence flag, f55, the 41 can be madeto think there is no printer attached, so doesn’t waste
time trying to poll it. However, as with most good things, there is a catch: ‘@’ variety of operations will

restore the correct status of the flag.

WARNING: Avoid SSTing programs which modify the flag register - since this directly affects 51, (the
SST flag). Also, storing random numbers into register d can cause problems. If, by chance,
you set 52 - then executing a number entry line will cause the 41 to begin programming
itself. Flag 53 is always automatically cleared by the machine after every operation, so is
not really worth bothering with. The Timer Module will automatically clear f30 (the CAT
flag) if flags 46 (partial key sequence) and 53 (Input/Output) are set together. DO NOT store
‘junk’ into the rightmost three digits of register d - if you must temporarily store something
there, use nulls for those digits.

Example Program: Clearing Flag 55

gi¢iB “E¥ZI® This routine clears flag 55 by:
g7 ETL 4 - placing the current flag register contents into M;
g% 570 ¢ - pushing it across by a few bytes until F55 is where flag 23 usually goes and then
B “Léedsr swapping it back into place;

78 - clearing f23 (which is really 55);
AL ¥4h A - swapping it back out and restoring into M;
§7 T 91 - pushing the rest of the seven bytes so that what started in M is now in N;
Az - and then performing RCL N, and STO d to replace it into the flag register.

a3 X
18

50

However, executing this from the keyboard, then testing for FS? 55 will yield ‘YES’ since
halting a running program restores the correct status of F55.

3.9.5 Other Basic Applications
1) A 'NOP’ instruction can be very useful in conjunction with an ISG or DSE instruction

which you don’'t want to know the result of. E.g. you may simply wish to increment or
decrement a counter, but don’t need the ‘skip’ part of the instruction.

2) A Short-form Exponent can save one byte over the standard instruction. In this case,
the "1’ in exponent entry, e.g. '1 E3’ can be removed, thereby leaving just the 'E3’
remaining.

3) Non-Standard Functions can be assigned to the keyboard, e.g. the key sequences VIEW
IND X or STO IND Y could be assigned to single keys. Another interesting one is
'eGOBEEP’ , a pseudo-function which allows keyboard access to all printer, HP-IL and
mass storage functions without the devices being present.

One of the most sophisticated uses of SP (and one of the most difficult to manage) is the use of pre-
compiled GTOs and XEQs — this means instructions that already know where to jump to, and which
the HP-41 needn’t bother searching for. Compiled GTOs needn’t jump to LBLs, though. They can jump
anywhere you desire, even into the middle of anotherinstruction. A variation of this is using the long-form
version of GTOs 00 to 14, thereby allowing the use of the shorter LBL, but still allowing GTOs to reach
them from anywhere in the program, not just within the 16 registers either side limitation of local labels.

3.A SUMMARY

As can be seen, with just a little imagination, Synthetic Programming can enhance many aspeccts of
the use of the HP-41, and make it even friendlier and more powerful than before, as countless HP-41
programmers have already discovered. There is just one snag! Since the H>-41 has never heard of
Synthetic Programming — otherwise it wouldn’t be SP — it does its level best to prevent you from exploiting
the techniques and facilities available. To overcomethis, an incredible number of special keying techniques
have been devised over the years, ranging from special magnetic cards (generated on the HP-67) and
barcodes, through byte grabbers, jumpers and Q-loaders to prefix maskers and byte-loading programs.

With the advent of ZENROM,all these have been made redundant. If you know what they are, you can
quietly forget them. If you’ve never learned, then you’ll never have to. However, we would still recommend
that your read some of the many reference books on SP as these cover many interesting application
ideas. The next chapter will show you ZENROM can be used to insert all possible byte sequences into
your programs, and how to alter the contents of any byte anywhere in HP-41 memory with complete
freedom.

51

52

4

USING ZENROM TO INPUT
SYNTHETIC LINES

This chapter of the handbook assumes that you have read the previous chapter on Synthetic Programming
Theory. We would recommend that all ZENROM Users read that section as there are many valuable points
that could have been forgotten. Forthis chapter, we have also assumed you have an good practical understan-
ding of the following concepts:

HP-41 Memory Structure
Register Formats
Hexadecimal Byte Table
User Code Programming
Synthetic Programming

The facilities offered by ZENROM, provide the User with three unique ways to enter synthetic lines:

- using the Direct-Key Synthetics ability which the ROM gives your HP-41 (not available on very
early HP-41C models);

- using the new extended alpha keyboards for text entry (available on all HP-41s);

- using the insertion mode of RAMED to insert new bytes anywhere in program memory
(available on all 41s).

53

4.1 DIRECT-KEY SYNTHETICS

Many of the commonest synthetic lines are simply extended forms of regular program lines, such as RCL
M, TONE X or atext string ‘4 2°If a regular form of the line exists, and you wish to enter a synthetic form, then
ZENROM will have a directly-keyable equivalent. If an instruction has a form PREFIX plus POSTFIX(i.e., two
bytes or more), where all postfix bytes are normally numeric, then you will find the prompt for that function
will have been changed by ZENROM to a two-digit prompt— of course many have a two-digit prompt already,

so no immediate difference will be apparent.

For any two-digit prompt, ZENROM allows you to key any of the postfixes which you see in the Byte Table,
exactly as it appears there (with one exception — —(append) must be keyed as ‘R’, this being the letter which
alphabetically follows on from Q as register+follows on from register 'Q’) in the HP-41 system. All postfixes
from 00 to 99 are keyed as usual: postfixes from 100 to 111 are keyed by pressing the [EEX| key, which adds
a ‘1’ ahead of the two-digit prompt, followed by the numbers to make up the postfix you wish (up to 111): press-
ing .| places ‘ST’ in the display— you may now press any of the 16 letter keys (T,Z)Y,X,L,M,N.O,PQ,R,a,b,c.d.e)
to get the corresponding postfix byte appended as part of the function.

Atthis point, asmall note—due to a-41 operating system restriction, ZENROM is unable to validate the digits
pressed in response tothe ‘1 ____’ prompt, and thus allows you to enter anything from 100 to 199. E.g. with
RCL,responses 128 to 199, if given to the normal (non-indirect) prompt, will generate indirect RCLs from RCL
IND 00 to RCL IND 71, while such responsesto RCLIND 1 __ __ will generate RCL 00 to RCL 71 (the postfix
is value for X MOD 256) — this applies to any function which takes such an argument, not just RCL.

The extended prompting can also be used for creation of synthetic labels (not globals) of status register names

XY,ZT.L and M through R, to do this, use the key sequence:

ISHIFT| [LBL/| [.]| as you would for RCL, STO,etc., and answer the ‘LBL ST __’ prompt with the status
registerletter that you wish to use.

This will enter as a local label that behaves exactly like numeric local labels. Note however, that there is no

automatic key assignment as there would be for labels A to J and a to e).

In the case of the GTO function, which already had a use for the sequence |GTO| |.|, a functional change has
taken place:

pressing |GTO/ |.| will now give you ‘GTO ST _",
pressing |GTO| |.| |.| gives you ‘GTO. __ __ __]
and pressing [GTO| [.| |.| |.| returns the usual ‘GTO.".

Although this requires a little ‘re-learning’ of the behaviour of the GTO key,it is something which you will get
used to very quickly.

54

There are two other significant synthetic facilities which ZENROM provides on all HP-41s:
- short-form exponent entry,
- NOP instruction entry

If, while in program mode, you press the |EEX| keyas the first digit of a number-entry line, then the display
shows: 1 E__". Thisisamulti-byte instruction - with one byte being wasted on the ‘1’ character. With ZENROM
plugged-in, the Direct-Key Synthetics feature takes over and strips out this wasted byte for the ‘1’ character
-thereby leaving only the ‘E__’ prompt in the display. Should it ever be necessary to have theentire1 E____°
sequence in the program, this can be achieved by defeating ZENROM. To dothis, press and hold the |[EEX|
key, then pressthefirst digit to follow the 1 E___’ Finally, release the |EEX| key before the digit entry key.
Because the operating system does expect an extra byte to follow, back arrowing the partial exponent entry
will very briefly display the next line, before displaying the previousline.

Occasionally, you may need to have a No-OP (No Operation)instruction, e.g. after a conditional test. ZENROM
contains a function called NOP that will insert a text string of zero characters (hexcode FO) in your program.
When executed by a running program, this FOh byte acts as adummy instruction. To use, simply execute NOP,
and ZENROM will insert the FOh byte as the next program line.

95

4.2 EXTENDED ALPHA & TEXT ENTRY

Entry of non-standard, or non-keyboard characters has always been difficult on the HP-41. ZENROM has two
additionalfacilities to make keying-in any text string much easier:

-USER ALPHA keyboards, providing all lowercase characters, all displayable characters plus
other special characters available from the keyboard;

- ‘SYNTEXT’ (Synthetic Text) entry, allowing entry of any HP-41 character by input of the hexcode.

4.2.1 USER ALPHA KEYBOARDS
The User Alpha keyboards are illustrated facing (Figure 4.2), and one of the two overlays supplied with ZENROM
is for these new alpha keyboards. Normally, when you enter alpha mode,the state of the User flag remains
unchanged, as the HP-41 does not have a pre-defined User Alpha keyboard. With ZENROM plugged in,
however, entering alpha mode causes the User annunciator to switch off — you now have the normal alpha
keyboard available for use.

Whilstin Alpha mode,if you press the [USER| key, the behaviour of the keyboard alters to become the USER
ALPHA KEYBOARD: thereby making available the entire lower-case alphabet on the corresponding upper-
case keys, and every other displayable character on the shifted locations.

Although this sounds complicated, in fact, by comparing the overlay with the standard Alpha keyboard, you'll
see itis quite easy to remember character locations. Wherever possible, we have grouped characters or placed
them on locations of similar normal characters. The only one that may need explanation is ‘ESC’ which is
the the escape character (27 decimal, 1Bh) on [SHIFT|[PRGM]|. This is used quite often in printer control opera-
tions. Remember, however, that most lowercase characters are non-displayable - i.e. will only display in the
HP-41 LCD as boxed stars - they will, of course, print out as intended. By combining upper- and lowercase
characters in a single string considerable byte savings on printing applications can be made.

You may toggle between the USER ALPHA and normal ALPHA keyboards as often as you wish. When you
leave alpha mode (whichever it may be), the status of the User flag (and annunciator) is restored to whatit
was before you entered.

You will notice that some of the USER ALPHA keys are identical to the normal ALPHA keys - e.g. the digit
entry keys, AVIEW, CLA, etc. We decided to follow this convention to avoid any possible confusion and repeated
switching between the new alpha keyboards whilst keying-in commonly used characters orinstructions.

56

A word of caution regarding APPENDiIng characters. In alpha mode,if you press [SHIFT||JAPPEND| this will
allow you to attach additional characters to the alpha string. In USER alpha mode, this will insert the —character

into the display as the first character of a NEW string, thereby deleting the existing string. To append to an
existing string you must be in ALPHA mode.

UNSHIFTED KEYS SHIFTED KEYS

A A

XXX HP - D EER XXX HP -4 I KX

[eEmmaa Cadadads
MEA&AE ee e e|
=e sOaEaA
FEEa —aa
M| /8 e BER /AR

H/E s s B /e A

A EEE AR/ A
EEEERE] 28028

FIGURE 4.2 USER ALPHA KEYBOARDS

4.2.2 SYNTEXT ENTRY
No matter which alpha mode you are in, the key sequence |SHIFT|/ALPHA| enables you to input any HP-41
characterinto text lines or into LBL, XEQ or GTO functions. We have christened this ‘syntext’ - for synthetic
text entry. In this mode, two prompts appearat the far right of the display, and filling these with a two-digit hexa-
decimal number causes the character with that hexcode to be appended to the current string being entered.
This prompt behaves exactly like any other two-digit prompt, but also has the option of being able to null the
hexcode entered by holding down the second digit key for about one second — in this case, the original prompts
reappear in place of the digits entered, and you may begin again or cancel the prompt with the backarrow key.

57

The User Alpha keyboards and Syntext entry are available on any HP-41 with a ZENROM plugged in, and
operate in allmodes where alpha entry is required, including entering text into program memory or any alpha
prompt as a function argument, with two exceptions — the feature does not operate inside the CX text editor
‘ED’, nor doesit operate during the execution of a PSE instruction — both of these limitations being due to
problems with 'breaking into’ the operation of these functions while retaining 41 operating system integrity.

A point of warning to all users — all ZENROM Direct-Key Synthetics facilities, including the special exten-
sionstothe alpha keyboard, rely on the ability of ZENROM to temporarily ‘take control’ of the HP-41 operating
system to perform its tasks. This can only occur upon key-release, and will not happen if you press the next
key in a key sequence before releasing the previous one. For example, while in alpha mode, press and hold
the |SHIFT| key, then press |ALPHA|, then release | SHIFT|, and you will be switched outof alpha mode, not
into syntext entry as you would otherwise expect.

Making sure that each key has been released before hitting the next is only a minor limitation as the HP-41’s
keyboard is not designed for speed typing. Wefelt the significant increase in capability afforded by these ‘ex-
tensions’ to the HP-41 operating system will more than offset this problem.

Some HP-41 functions, as well as taking a numeric argument, can also take an alphabeticone, e.g. LBL, GTO
and XEQ. Normally, if you need a LBL A, you want a local label (i.e., it doesn’'t appearin catalogue 1), and
ZENROM does not affect this form of label entry. But suppose, instead, you want to have LBLA| which is a
global label. This can be entered by using Syntext entry to specify the character, instead of keying it directly.
For example, to get LBLA| use the key sequence:

|SHIFT| [LBL| [ALPHA| [SHIFT| |ALPHA| [4][1] |ALPHA|

(where 41 is the hexcode of character ‘A), and this will be entered as a global label instead of a local one. This
method of entry also applies to GTO and XEQ as well.

Normally in a User’s Handbook like this, there would now be several ‘how to do it’ type examples covering
all the functions introduced. But since the Direct-Key Synthetics are natural and thus, second nature to the
user, the best way of learning them is to begin experimenting.

WARNING: Make surethatyou have first stored your programs and data onto magnetic cards or other mass-
storage media. Experimenting with Synthetics can corrupt programs/data held in memory.

When entering a line of synthetic text, where the characters are given for you as hex-codes,
you do not need to enter the first value - indicating the length of the text string - as this is worked
out by the operating system. E.g. a seven character string would have the hexcodes beginn-
ing: F7 xx xx xx xx Xx xx. It is not necessary to enter the F7h byte if you are using SYNTEXT
entry. If, however, you are using RAMED to insert the sequence, you must enter the F7h byte
as part of the complete characterstring.

58

4.3 USING THE RAM-EDITOR (RAMED)

Direct-Key Synthetics will enable most synthetic program sequences to be directly entered from the keyboard.
Where you might have some difficulty is with keying significantly non-standard lines, such as functions with
alpha arguments longer that 7 characters, XROM codes for devices not connected, or a precompiled GTO.

To allow you to do these (and to provide alternative synthetic entry routines for users of early model HP-41Cs
that don’t respond to Direct-Key synthetics), ZENROM contains a function called RAMED, which is a simple
editor not unlike the HP-41CX text editor ED in its operation. RAMED allows you to alter the contents of all
HP-41 memory without restriction and to insert additional bytes anywhere in program memory only. As you
can imagine, RAMEDis a very powerful tool for programming and memory manipulation, as well as more
general exploring. Like all tools, however, it can also be dangerous (although neither RAMED nor Direct-Key
Synthetics will harm your HP-41) so keep copies of programs and treat RAMED with respect.

RAMED has two main application areas:

- to modify, replace or insert bytes within any area of HP-41 program memory;

-to modify and replace bytes held in HP-41 main memory (data, program and status registers)
or in extended memory.

4.3.1 Within Program Memory

The easiest way to modify program memory is to step through your program to the point where modification
is required, and then, whilst still remaining in PRGM mode, to execute RAMED.

Let’s look at what happens in more detail:

In PRGM-mode, when you step through a program, a RAM program counter keeps track of
the program step as you go. This counteris stored in status register ‘b’ When RAMEDis ex-
ecuted, whilst in PRGM-mode,it takes the starting address from register ‘b’ and begins the
editing process with the first byte in that program line. The exception to the rule is when the
program is not PACKed and contains nulls between the address indicated by register b and
the firstbyte inthe line. In such a case, editing will start at the null byte pointed to by the counter
and the actualline will be a few bytes further down in memory.

Once in RAMED,you will see a display of the format:

B:RRR PPICCJNN

59

where: B is the byte position in the register at address RRR,
RRR is the register address currently being edited,
CC isthe byte in RAM pointed to by address B:RRR,
PP isthe byte immediately ‘up’ memory from that byte pointed to (which would be

the previous byte in program memory),
NN is the next byte ‘down’ memory from address B:RRR.
Note: If CC, PP or NN display as ‘ - - ' then that byte either does not exist or cannot

be written to.

To facilitate and simplify movement within memory, RAMED re-assigns the HP-41’s keyboard as shown below:

keys Action taken

PRGM| to advance the address, such that NN is the current byte (Moves RAMED to the next
lowest byte in memory)

\USER)| to retreat back up memory such that byte PP becomes the current byte
[SHIFT| [PRGM| to advance a whole register down memory
ISHIFT| [USER| to retreat a whole register up memory
|A| through [F|
10| through |9 hexadecimal input keypad
| insertion mode (active only within Program memory)
ON| to exit from RAMED back to program or normal mode dependent upon mode when

RAMED was executed
[—| to delete a partial replacementorinsertion of bytes

REPLACING PROGRAM BYTES USING RAMED

At any time, the byte shown at ‘CC’ may be replaced with any new byte of your choice. To do this, simply key
the new byte in, using the hexadecimal input keypad. Upon releasing the second digit key, the substitution
will be made in memory, and the address will automatically advance by one byte, making the byte you just
keyed the ‘PP’ byte in the display.

If you have entered one digit, and want to change your mind, simply press the backarrow key to cancel the
firstdigit. If you have pressed, but have not released the second digit key, you can change your mind by holding

downthe key. After about one second, the attempted substitution will be cancelled, and the display will return
to the state it was in before you pressed the first digit key.

60

INSERTING BYTES INTO PROGRAM MEMORY

Of particular importance to those with very early model HP-41Cs - who cannot use Direct-Key Synthetics -
is the RAMED insertion function. Insertion mode is ONLY applicable within the bounds of program memory
and operates exactly as the HP-41 does by moving all information down in program memory to free up seven
extra null bytes (the size of one register) to accommodate your additional instructions. You can imagine the
havoc this would cause were ZENROM to allow you to insert bytes ANYWHERE in HP-41 memory. Null bytes
are overwritten when you enter your new instructions, while superfluous nulls are removed upon PACKing
the program.

Insert mode is toggled into, and out of, by pressing the |l| key at any time (except while RAMED is waiting
for a second digit). During insertion mode, and onlyif byte ‘CC’is not a null byte, will program memory be
moved down by one whole register and the register immediately following the current address filled with nulls.
If ‘CC’ is a null, RAMED will simply overwrite the byte just as the HP-41 does normally.

To show the effect your insertion would have on byte ‘NN’, the display ofthis byte will be changed. This up-
dating, shown ONLY IN THE DISPLAY, occurs after you press the first digit key. If you decide not to insert the
byte, then the display will be restored as it was before you pressed the first digit key.

As with replacement mode, unless and until you release the second digit key, no change is made to HP-41
RAM. Note that if you insert bytes, and this causes register(s) to be ‘opened up’ to accommodate the addi-
tional bytes you enter, then the decompile bits will be set for the program you are editing. The decompile status
of aprogram is never changed by simply replacing bytes (unless you actually change it yourself by replacing
the last byte of a program END instruction).

Because RAMED allows editing ANYWHERE in memory, nonexistent register addresses are displayed as
two hyphens, thus: ‘ - - . Aithough RAMED does not prevent you from overwriting these in the display, after
you release the second digitkey ‘ - - ’ is again displayed - thereby indicating that the byte was not accepted
into memory.

To exit RAMED, press [ON|. RAMED will position you to the start of the line you were at upon entry.

4.3.2 Outside Program Memory

RAMED can prove very useful for examination of memory and system status register structures plus provide
the possibility to directly modify or replace their byte contents. For example, you can directly modify key-
assignment information.

To use RAMEDout of program mode, the starting addressis taken from Alpha— more specifically the rightmost

61

four hex-digits of register M which are the rightmost two characters as seen in the display. By this you can
specify the exact register and byte within that register at which you wish to start editing.

This means that if you know the absolute address of the place in HP-41 memory that you want to edit (See
the Memory Map in Figure 3.6.1), then simply use the Syntext entry feature in ZENROM.

To do this: Enter Alpha-mode,
Press |[SHIFT| IALPHA(for the Syntext entry prompt),
Enter the byte number, and the first digit of the three-digit register address,

Press |SHIFT| JALPHA| again (for Syntext entry),

Enter the last two digits of the register address (this results in the address being
returned to Reg.M|3:0] in the form expected by the RAMED function).

Come back out of Alpha-mode and execute RAMED. You will be editing memory,
starting at the address specified.

As an example,let’s take a look at the key assignment registers which have a format as follows:

Byte No 6 5 4 3 c 1 0

Bytes FO AT 20 34 04 61 83

Bytes Description

Keycode of key to which assignment made

1&2 Assignment
3 Keycode of key to which next assignment made
4 &5 Assignment
6 Register ID to specify a key assignment register (FOh

Suppose you wish to edit the lowest key assignmentregister, which is at address 0CO, and you want to go
in at byte 6 (FOh) of that register. In standard RAMED notation this is address ‘6:0C0’ - where the .’ character
separates the byte from the register address.

62

To do this:

Enter alpha mode,

Press [SHIFT|IALPHA| [6//0] [SHIFT||ALPHA| [C]|0,
Exit Alpna-mode again,
Execute RAMED.

Assuming there are no key assignments, the display will now show:

6 : 0CO o0, 00, 00

You can now begin editing the assignment register. Rememberthat you will also need to set the key bit-maps
in registers R (unshifted keys) and e (shifted keys) depending upon the assignment.If you need further prac-
tice with key assignment editing refer to Example Two in the following sub-section.

63

4.4 EXAMPLES USING RAMED
Although RAMEDis very simple to use, some programming examples using RAMED should make its uses

much clearer.

4.4.1 EXAMPLE ONE
First, let’s take the following dummy program:
RCLM (recall from status register M)
XROM 05,07 (a peripheral device function)
(SYNTEXT@+# &)’ (text line with non-keyboard characters)
TONE 45 (a new tone - one of 117 new tones)

which, admittedly, doesn’'t do much that’s sensible, but it does demonstrate a reasonable variety of program
lines that you might possibly want to enter. Of these lines, only the XROM instruction cannot be keyed in directly
- assuming your HP-41 supports Direct-Key Synthetics - but for the sake of example we'll use a few different

methods to get the lines into memory.

Note that in this example, we go into RAMED quite a few times. To save finger work, assign RAMED to a key.

Firstly, we'll use direct insertion for the RCL M and XROM instructions. If you look at the Hexadecimal Byte
Table, you'll see that byte codes for RCL M are: 90h, 75h. However, XROM 05,07 is a bit more difficult. The
device ID XROM 05,xx’is found at hexcode A1h, but what about the function specifier XROM xx,07’ ? From
the chapter on S.P. theory, you’ll remember that XROM codes are specified in binary format as follows:

1010 0ddd ddff ffff

where: 10100 is standard throughout XROM codes
ddddd is the device indentifier
fffttt is the function specifier

Subsituting our XROM 05,07 into this format, we get:

format: 1 010 |
|

XROM 0S,07 1 01 0} 00O

|
| 7 hexadecimal

|
|

0100) 01 11 binary
|
|

There you are.Its easy when you know how !

64

r practi rpo nl

What is the hexcode of XROM 25,43 (which is the function

SEEKPTA from the Extended Functions Module) ? The answer

will be found at the end of this example, but no peeking !

To make it easier, the format is given below:

format: 1 010 I |
| |

XROM 25,43 1 010 | O | binary

| |
| | hexadecimal

Therefore: XROM 25,43 = A_,hexadecimal
When using RAMED, rememberit inserts ahead of the current byte, so position the program pointer to the

_line after where you wish to perform the insertion — for this example, just do a GTO... to find somefree space,
so that we're positioned before the .END. . Now, execute RAMED,press |1] to get into insert mode, and enter
90, 75, A1, 47, then quit RAMED (press |ON|), and see 01 RCL M in the display (RAMED remembersthe line
you went into memory at in program mode, and tries to restore you at that line when you quit). Step to see
NOP (XROM 05,07 is the ZENROM function ‘NOP’). An interesting pointis that, by entering NOP into a pro-
graminthis manner, the instruction is now a proper XROM instruction with the name NOP - rather than being
justa FOh byte. You can also achieve this by assigning NOP to a key, removing the ZENROM, and then press-
ing the key in PRGM-mode. However, entering NOP as an XROM instruction not only consumes an extra
byte but also takes twice as long to execute.

We'll now edit atext line in situ. In PRGM-mode key-in ‘ZSYNTEXTZZZZ', execute RAMED, and see '47,FC5A

as the three bytes displayed. The 47 is the second byte of the XROM we keyed in above, while 'FC5A’ are
the first two bytes of the text line just entered. Each “Z’ in the string is acting as a place-holderfor the characters
we want to have there eventually, and will appear as a ‘5A’ in the display - this being the hexcode for upper-
case Z. We want to alter these hexcodes to be those of the characters shown in the line above, so step to the
first ‘5A" and REPLACE this with 28’ to over write the first “Z’ in the string with a ‘(" Remember that you must
be in replace-mode and NOT insert-mode. If you wish to check the change that has taken place, then quit
RAMED and take a look. You'll see the line : 03 *(SYNTEXTZZZZ scroll across the display.

Now replace the other 5As with (in sequence) 40,23,26,29 — when you re-enter RAMED,you’ll go back in
at thefirst byte of the textline, so do [SHIFT| [PRGM] to skip a register along the string — this will position
youtoa58,thisisthe X’ in ‘SYNTEXT, so skip two bytes along before you start overwriting. When you finish,
exit from RAMED to see the replaced line: 03 *(SYNTEXT@# &) scroll across the display.

65

Now let’s try some prefix and postfix substitution — we’ll create a TONE 45 by keying-in a regular TONE 9
and later modify itinto a TONE 45. Whilstin PRGM-mode, key in TONE 9, and then execute the RAMED func-
tion. The first byte of the TONE will appearas its hexcode of 9F. Now step, using the [PRGM]| key,to the 09
postfix byte, and replace this byte with 2D - the hexcode for the 45 postfix being obtained from the Byte Table
-then exit RAMED. The replaced program line will now appear as: 04 TONE 5. However, from the S.P. theory
covered earlier, remember that functions normally expecting only one-digit arguments can only display the
units digit of their arguments - even when ZENROM allows a two digit value (higher than 9) to be entered.
Therefore, the TONE 45 instruction appears as TONE 5 in the display. Press [PRGM| to come out of PRGM-
mode and then press [SST]|to single step the TONE45 instruction. You will hear a new longer tone sounded
from the beeper.

We could, of course, have just modified the TONE by using prefix subsitution. With this method of producing
such aTONE 45, the original program line could have been entered as RCL 45 (or any similar function taking
the same postfix argument) and would then have been changed from RCL into a TONE instruction by sub-
situting the hexcodes.

Try this for yourself. As a hint: RCL 45 will appear in RAMED as ’90,2D’. The hexcode for the TONE instruction
is OF.

Answer to Practice Problem

format: 101 0| 0dddjddrfr | ff

| { |
XROM 25,43 1010} 01 1Y O0O) 01T 1T O] 1t O 111 binary

| | |
A | 6 | 6 | B hexadecimal

Therefore: XROM 25,43 = A§,6B hexadecimal

66

4.4.2 EXAMPLE TWO
Totry something alittle more sophisticated, let’s create a synthetic global label - e.g. LBLINVALID KEY’ -which
is longer than the HP-41 will normally allow, and assign itto the key | SHIFT|[SHIFT |. Following that, let’s assign
the multi-byte instruction ‘VIEW IND X’ to the VIEW| key.

Firstly, we need to establish some kind of global label in memory, so that it will be found by the label-search
mechanism that checks for assignments in labels. To be tidy and to make this example much simpler, execute
CLKEYS or manually remove any key-assignments.

Then key in LBLINVALID’ (this reduces the number of changes we need to make); then execute RAMED.
The display will show ‘Cn’ in the middle (where the ‘n’ could be any digit from 0 to D). Advance twice to the
‘F8’, and change it to ‘FC’. The reason for this is that we wish to add four text characters to the label, so we
must add fourto the label length marker- in hex addition, adding 04h to F8h gives FCh. Next change the ‘00’
in the next place to ‘0B’ which is the hex keycode for the |SHIFT| [SHIFT| key position. Figure 3.7.2 shows
the hex keycodes for HP-41 keys.

Now we need to step to the end of the label. Because itis seven characters long, we can skip a single register
by using |SHIFT||PRGM]|, and this drops usin at the right place to insert the four new bytes of the label. Tog-
gle into insert-mode, by pressing the |1| key, and insert bytes: '20’, ‘4B’ ‘45’ ‘59’ Now exit RAMED to see the
LBL ‘INVALID KEY’ scroll across the display.

Having created the extra-long label, we now need to modify one of the bits in the key assignment maps represen-
tingthe [SHIFT| [SHIFT| position. Key assignment maps are held in registers 'R’ (unshifted) and e’ (shifted).
To do this, we need to edit status register ‘€’ — in fact, we need to add 40 to byte 2:00F, as this will set the
appropriate bit. If you have forgotten the theory behind key-bit mapping refer to Figure 3.8.2.

So come out of program mode, go into alpha mode, and key | SPACE| (the character that has the hexcode
of 20h — [SHIFT| IALPHA| [2][0] would also have worked, but with more keystrokes), then press [SHIFT]
IALPHA| [0] [F| come back out of alpha mode, and execute RAMED. RAMED will start with byte 2 of register
OOF in the display — this byte is probably zero if you have no other key assignments,so just overwrite it with
40h, exit RAMED, and, in User mode, press |SHIFT|[SHIFT|, holding down the second time, tosee INVALID
KEY in the display as the function name being previewed.

We can also use RAMEDto alter key assignments stored in the assignmentregisters at the bottom of Main
Memory (from address 0CO upwards). Assign '+’ to the VIEW key; then enter alpha mode and key the ad-
dress 6:0C0 in using the syntext function |SHIFT||ALPHA|. Come back out of |ALPHA| mode and execute
RAMED — this will place the FO byte (which is at address 6:0C0) in the middle of the display, indicating the
start of the key assignment register. Step along the bytes until you come to 04,40, which are the bytes that
code for the ‘+’ function in an assignment register.

Overwrite these two bytes with 98,F3, then exit RAMED. Previewing the key shows XROM 35,51, which is the
pseudo-XROM for VIEW IND X. You might like to play with this assignment, and some otherstoo,just to get
the feel of what RAMED has allowed you to do: but please remember the warning in the previous chapter
about leaving garbage in free space registers.

67

4.4.3 EXAMPLE THREE
One of the mostdifficult lines to enter into a User Code program is a precompiled GTO, mainly because the
HP-41 insists on decompiling the program upon modification. However, because the HP-41 doesn't treat over-
writing of bytes by RAMED as being a modification, the program is not decompiled. This means that you may
quite happily alter any bytes in a packed program without penalty. Just to show this working, press |GTO|.| .||,
then key in the following lines:

LBLPRECOMP*
GTO 00
LBL d
GTO 00
RCLIND P
Y1X
EtX
SQRT
LN
SQRT
HMS+
Y1X
X>Y?
GTO 00
VIEW IND 31
. (Note this is a decimal point)
RTN
LBL 00
0

AVIEW

Now put an END on the program by: |GTO||.||.]].]
(this will also pack the program, thereby removing nulls)

Come out of PRGM mode and then go to thefirst line of the program by | GTO||ALPHA | PRECOMP |[ALPHA|
Go back into PRGM mode and execute RAMED by [XEQ||ALPHA| RAMED |ALPHA|

Then do the following:

Press |[PRGM| to step through the program until the display contains B1,00,CF as the
current three bytes,

Key-in 50 to replace the 00, step again until you see B1,00,90, and key-in 61,

Step again until the display contains B1,00,98, and key 92.

Now, exit RAMED and PRGM-mode, and then execute ‘PRECOMP’, and see what happens. We will leave
this as an exercise for the reader.

68

MACHINE LANGUAGE PROGRAMMING

S

AN INTRODUCTION
TO MACHINE CODE PROGRAMMING

In writing a program on your HP-41, you use functions found in catalogues two and three, and maybe routines
from other programs you have already written, to build up the desired piece of code. When complete,this
will allow the HP-41 to perform a task which none of the individual instructions themselves could perform.
User Code programming allows you to exert a considerable degree of control over what you wish your 41 to
do, and over how it will be done. Nevertheless, you are limited to those instructions that HP have given you
in choosing the tasks that you can do, and the manner in which they are accomplished.

This User Code instruction set represents your ‘lexicon’ of allowed words or instructions, and the ‘sentences’
which you can build up are limited by the variety of words you have available. You can, of course, buy extra
plug-in modules to expand your vocabulary, but you are still limited by what others have decided are the most
useful general-purpose words. Wouldn'tit be nice if you could descend to the next level down in the language
and devise your own words for your own special needs?

This analogy can be carried to HP-41 programming by operating at the same level as HP’s programmers operate
when they write the functions in the HP-41 and its plug-in devices, namely, machine code.

Please bear in mind the statement made in Section v regarding the NOMAS nature of Machine Code
programming.

5.1 WHAT IS MACHINE CODE ?

In your experience with the 41, you may have believed that all there was to HP-41 programming was User
Code, and that each User Code instruction was somehow automatically performed by the hardware lying
beneath the case of your machine, in a world to which you were denied access. In fact, there is a completely
separate environment operating ‘beneath’ the one with which you are familiar, and this is far more complex
than the User Code environment you have been using up until now.

In the same way that you program your 41 with User Code instructions - to be executed by the underlying
operating system - so this extra machine code level is controlled directly by the operating system. This runs
its own programs on the 41 processor chip which is programmed using the more primitive instructions that
the electronics of the 41 obey directly. These machine code instructions are the ‘letters’ of our earlier analogy,
and represent a method of obtaining as complete a control over the HP-41 as anyone can expect to have.

7

Although you program in User Code, when the |R/S| key is pressed it is not the User Code thatis run, but
rather the operating system uses the program pointer held in status register ‘b’ to fetch the next byte in pro-
gram memory. The operating system then uses this to determine the machine code routine (representing
that individual RPN "word’) that should be run. The CPU itself, can only run machine code routines.

To understand this concept, perhapsiitis best to think of every RPN word as being an individual sub-program
(written in machine code). In just the same manner as you would build up a program using smaller User Code
sub-routines, so the machine code programmer has built up his program using other machine code routines
that are in turn built up of the native instruction set of the machine.

5.2 WHY USE MACHINE CODE ?
With such alarge instruction set available in User Code (RPN), and with the expansions available using Syn-
thetic Programming techniques, one can be forgiven for wondering why one would need to learn yet another
language- for that is all Machine Code is. In much the same manner as a BASIC language user might con-
sider learning the FORTH language to gain benefits of processing speed, I/O (input/output) flexibility and ac-
cess to the operating system, so the HP-41 User might turn to 41-Machine Code language.

Machine Code programming is normally used for the following reasons:

Speed - up to 100 times faster;

Absolute Control over the operating system - allowing you to perform tasks that
would be difficult or impossible with User Code;
Creation of new functions;
Packing of data.

Onthe debit side, however, when programming in machine code you must perform your own housekeeping.
Whilst using RPN functions, the code forming those instructions has been written by HP to take care of
housekeeping and associated tasks. This means that greater care must be taken over the coding and that
debugging takes substantially longer.

72

5.3 WHAT YOU NEED TO PROGRAM
IN MACHINE CODE

To begin programming in machine code, you will need certain items of equipment and documentation:

Equipment: - A ZENROM module
- A device for storage of the machine coded instructions
- A printer for disassembling the machine code

(After a while, when you build up a library of new functions, you may wish to commit these to
blowingin EPROM or even a plug-in module. EPROMS are a much less costly option for small
quantities, but do require an interface device for the HP-41 to be able to read them. You can
of course, then also exchange your EPROMs with fellow users, and use many of the standard
41-EPROM-sets available through the User Groups.)

Documentation: - The HP-41 VASM Listings released by HP are essential for anybody considering
machine code programming.
These are annotated listings (by the original programmers) of the 41’s operating

system).

The HP-41 has two areas of independently and uniquely addressed memory RAM and ROM. User memory
is used to store and run the 8-bit RPN functions, while ROM is capable of storing and running both user code
and machine code. Because machine code can only be stored in, and run from ROM (Read Only Memory),
we need a way to read AND write our own machine code into some storage. To do this, requires a RAM (Ran-
dom Access Memory = more correctly Read And Write Memory) interface that is capable of convincing the

41 it really is ROM.

For want of a better term, we have called these Quasi-ROM (Q-ROM) units and will refer to them as such
throughout this Handbook. For more information on the many units available, see the addresses given under
Appendix D - Bibliography & References (Equipment).

73

74

6

PROGRAMMING IN HP-41 MACHINE CODE

To gain the maximum from the machine code sections of the Handbook, all Users are recommended
to read this and following chapters.

6.1. WHAT YOU SHOULD KNOW
BEFORE YOU START

Before you start to write your own machine code routine it is recommended that you should have a
reasonable understanding of synthetic programming - since many of the principles involved require such
knowledge.

In particular you should understand:

1) The use of the status registers T through e
2) The structure, organisation and addressing of RAM
3) The format of a register

Moving into the realm of machine code programming requires a rethinking of some of the concepts related
to RPN and indeed synthetic programming. We are no longer concerned with registers that contain real
numbers, but rather 56-bit integers. We must no longer be reliant on the decimal system because hex
and binary calculations are more common.

Other points to note about the following chapters are:

The mnemonics used in this handbook are the same as those employed by the ZENROM disassembler,
resident in the MCED function. These mnemonics go under the title of ZENCODE’ and a full list of
the ZENCODE mnemonics, which cover not only ‘mainframe’ instructions but also peripheral instruc-
tions, are listed in Appendix E. In some cases these mnemonics differ from those which you may be
used to. The two other sets of mnemonics which are in common use are HPs MASM set and the Jacobs/
De Arras set. The reason for the development of yet another set for ZENROM was that first time users
found the old sets both confusing and difficult to learn. We hope ZENCODE will be adopted by the user
community as the standard and that users will find them both self explanatory and consistent.

75

As an example of the confusing and misleading nature of the other mnemonics sets considerthe following:

1. The HP-MASM mnemonic for testing status bit (flag) 1 is ?S= 1 1 which stands
for: test if status is equal to 1, bit 1.

We felt that a 41 user was more at home with the word ‘flag’ rather than ’status
bit" and that a flag was either set or cleared rather than being 1 or 0 and so the
ZENCODE mnemonic for the same instruction is ?FS 1, i.e: query flag set 1.

The Jacobs/De Arras mnemonic for reading the word from a ROM address is
CXISA which stands for ‘register C eXchange with the ISA line on the 41 1/O
bus’ - which | think you will agree is fairly meaningless to someone unfamiliar

with the 41 bus architecture.

The ZENCODE mnemonic for the same instruction is ‘RDROM’ for ‘ReaD ROM
address’. | hope you need no more convincing!

It should also be noted that some of the Jacobs/De Arras set are incorrect due to the fact that they were
established before the complete instruction set was understood. In addition, this set does not include
mnemonics for peripheral instructions. ZENCODE also covers all peripheral and HP-IL instructions.

Another convention that is followed throughout this manual is that of specifying fields within a register.
Given a register ‘r’, 14 digits wide, the digits are numbered 13 to 0 from left to right, digit 13 being the

most significant.

76

_—— o ——— ———e ee == ==e =eee= —

The mantissa sign digit is referred to as r[S] or r[13].
The mantissa is referred to as r|M| or r[12:3]
The exponent sign is referred to as r[XS| or r[2]
The exponentis referred to as r[X| or r[2:0]
The whole of the register may be referred to as r|ALL|, r[13:0] or just .

If a section of the register, not conforming to one of the above fields is required,
then the format is r[h:l], where h is the high order digit and | is the low order
digit. For example r[6:3] refers to digits 6, 5, 4 and 3 of registerr.

6.2. THE HP-41 C.PU.

This section describes the HP-41 Central Processing Unit - codenamed ‘Nut’ by HP’s design staff - and
its internal register organisation.

The CPU contains:

- three main 56-bit arithmetic registers: A, B and C;
- two 56-bit storage registers M & N;
- one eight-bit register G;
- a four-level subroutine return stack and program counter;
- an eight-bit keyboard ‘buffer’ register;
- two four-bit pointers P & Q;
- a carry flag or flip-flop and a keyboard flag.
- 14 status flags
- an 8-bit output register

Figure 6.2.1 shows the organisation of these registers and their relationships to each other.

Throughout this chapter and other material relating to machine code, the Reader should be careful not
to confuse the CPU-registers, often with similar names, with the Status registers accessible by the User
using SP techniques.

6.2.1. The Accumulators (C, A and B)

The HP-41 has two main accumulators, C and A, and one main storage register, B. All three are 56 bit
registers resident inside the CPU and should not be confused with status registers a, b and c. The ac-
cumulators are the registers upon which almost all of the 41s internal operations are performed.

The ‘C’ accumulator is the most important register in the whole 41, indeed almost one quarter of all CPU
operations are affected or controlled by C. It is the C register that is used to transfer data to and from
main RAM and to talk to all peripherals. All arithmetic instructions involve either C or A and you may
find it useful to compare C and A to the stack X and Y registers in RPN; they are of similar importance
at their respective levels.

The ‘B’ register is not strictly speaking an accumulator - since although arithmetic operations can be
performed on B, the result of such an operation is never stored in B. The only method of changing its
contents is by copying or exchanging them with the contents of one of the accumulators. Register B
may, however, be referred to as an accumulator for reasons that will become apparent during later discus-
sions (see Class 2 instructions).

C

M

N

FIGURE 6.2.1. THE HP 41 CPU STRUCTURE

() () (o)) [&
M) @ @) [
[= A @ &
66 (G
) G [[
= @ @ &
i) o) () [
D& O &,

F1Gur 2.5, Y 1R R

78

6.2.2. The Storage Registers (M, N and G)

There are two CPU temporary storage registers ‘M’ and ‘N’. As with the accumulators they are both 56-bits
wide and can thus store a complete 41 register. Again they should not be confused with the status registers
Reg M and Reg N which are resident in main RAM and not in the CPU.

These storage registers can only be accessed via primary accumulator C. Drawing another analogy with
user code programming; these registers could be compared to user data registers R00 and R01 since
most Users employ these as temporary or scratch storage.

In addition to the two 56-bit storage registers, M and N, there is one eight-bit temporary storage register,
‘G’. Similar to the other storage registers, the G register can only interchange data with C. Since G is
only one byte wide, a coding method is employed to indicate which byte of C you wish G to interact
with. The technique for this will be described when the instruction set is discussed.

6.2.3. The Status Bits (ST)

As with user code programming, there are a limited number of status bits, or flags, that are available
to the machine code programmer. Once again, these flags are independent of those stored in status
register d.

In the CPU there are 14 such flags. All of which may be individually set, cleared or tested. Of the 14
flags, 8 of them can be referred to as the status register ST. This is because the lower eight flags
(7 - 0) can be transferred to or from the two leastsignificant digits of C, C[1:0]. This is an important feature,
as synthetic programmers will appreciate, because it means that more than one set of flags can be main-
tained at one time. The HP-41 operating system often uses the other 8 bit register G to store an alternate
status set. In user code programming there are user flags (29 - 00) and system flags (55 - 30), the same
is true in machine code. Flags 0 through 9 are user, or local, flags which do not have any specific mean-
ing to the system. This does also mean that all of the ST register content is ‘local’ as well as the two
other flags. However, flags 10 through flag 13 are system flags and indicate the following:

Flag 13 set - User code program running
Flag 12 set - Private program
Flag 11 set - Stack lift enabled
Flag 10 set - Program pointer (Reg b [3:0]) in ROM

6.2.4. The Program Counter and Return Stack
(PC and STK)

Essential to any CPU is the program counter, ‘PC’, which keeps track of the next machine code word
to be executed. After each machine code cycle, the instruction at the address pointed to (by the PC)
is read and the PC incremented.

Of the circumstances when the PC may be altered, the most common is that of jumps. Should the in-
struction read in be a ‘go to’ of some form, then the PC is changed to the jump destination. If a ‘go
sub’ (XQ in ZENCODE parlance) is encountered then the PC is copied onto the subroutine return stack
and then changed to the jump destination. With the CPU, the return stack is 4 levels deep. The first
address on the stack (i.e. the next return) can be transferred to or from the C register with the effect
of ‘pushing’ or ‘popping’ the stack. Although, it is also possible to write a new address to the PC from
C, it is impossible to read the PC directly, hence the single direction arrow shown on the diagram of
the CPU. The instructions that deal with the first address on the return stack refer to it as STK.

6.2.5. The Keycode Register and Keydown Flag
(KEY)

Whenever a key is pressed, the CPU requires some method of determining which key it was. This is
achieved through the ‘KEY’ register. When a key is hit, providing that another key is notstill held down,
a keycode for the key is placed in the 8-bit KEY register. The keycodes returned are not the same as
those you will be familiar with from synthetic programming but are shown in Figure 6.2.5. The KEY register
can be read into C but not the other way around. This register also has a data path to the program counter
(PC) which allows the 8 least significant bits of the PC to be overwritten by a keycode, thus enabling
branching on a key. This feature is little used in practice due to the range of the keycodes.

In addition to the KEY register, there is also a keydown flag that will be set if the KEY register contains
a keycode. This flag can only be tested.

80

6.2.6. The Flag Out Register (F)

The Flag Out, ‘F’, register is 8-bits wide and connected to an output pin on the CPU. This output pin
is used to switch the beeper on and off. The F register is accessed via the status register ST.

6.2.7. The Pointers (P, Q and PT)

The CPU has two independent pointers ‘P’ and ‘Q’ which are used to indicate digit positions in the ac-
cumulators. Each pointer can thus have a value from 0 through 13. These pointers are primarily used
in arithmetic, shift and comparison instructions to specify different fields of the accumulators to operate
on. A description of using the pointers in this fashion is given in the section dealing with Class 2 instructions.

Although there are two pointers, only one of them can be ‘active’ at any one time. This means that in
order to change the value of one of the pointers, that pointer must be selected as the active pointer.
Most instructions that use a pointer will use the active one, and refer to it as PT.

6.2.8. The Carry Flag
The ‘Carry’ (also called ‘condition’) flag is the bit that will be set if any arithmetic overflow or underflow
occurs after a given instruction. This bit will also be set if a test proves true, i.e. testing if a flag is set.
This carry flag is also generally used as a basis for branching. For example, after testing a flag, you
may wish to branch if the flag was set - i.e. the carry flag is set. Unless an instruction specifically sets
the carry flag it will, in almost all circumstances, be cleared after each instruction.

81

6.3 THE INSTRUCTION SET

The instruction set mnemonics used in this manual are called ‘ZENCODE" The ZENCODE mnemonics

are listed in APPENDIX E - Reference Tables.

In a similar mannerto that in which user code functions are stored in main memory as a series of 8-bit
bytes forming programs, so machine code instructions are stored in ROM or Quasi-ROM as series of
10-bit words to form functions. The format of these 10-bit words, however, is considerably more struc-

tured than that of their user code counterparts.

The basic format of the 10-bit CPU instruction (or word) is:

i P iicc

The instruction set is split into four distinct and separate classes of instruction. Each of these classes
is used to cover a particular type of instruction - such as short jumps or arithmetic operations. The par-
ticular class of an instruction is determined by the the least significant two bits of that instruction, in-
dicated by ‘c ¢’ in the above example. The remaining eight bits are used to determine the actual instruc-
tion within the class.

In some cases, for example: the instruction ?FS 3 (test flag 3), the 8 instruction bits can be further divid-
ed into ‘Subclass’ and ‘Modifier’ sections, where the Subclass will determine that the instruction is a
flag test type, and the Modifier will determine which flag is to be tested.

6.3.1 CLASS 0 Instructions

There are sixteen groups, or subclasses, of instruction in this category and each category has sixteen
available modifiers. Diagrammatic representation of this Class is best achieved by means of a table.
Although the concept of a byte table will be familiar to users of synthetic programming, to call it such
could cause confusion with the standard User Code Byte Table - We will therefore referto this as a ‘Word
Table’

In essence, Class 0 provides instructions for such things as pointers,flags, data storage manipulations,
some peripheral handling and other non-branch (or jump), non-arithmetic instructions. Unfortunately,
although this is the most complex of all the classes, it is important that it should be covered first - as
it includes instructions that must be understood before we introduce the other classes.

A class 0 instruction has the format:

mm mmSsSs ss00

where: - ssss is the subclass, and
- mmmm is the modifer (the 00 at the end indicate it is from class 0).

82

The 256 instructions are organised into subclasses and arranged in a Word Table as shown in Figure
6.3.1. Each instruction block has the following format:

Subclass

| |
| |
+ +

| PT= 8 | Instruction (type and parameter)

Modifier 4 | |

I |
+ +

| |

Opcode (10-bit word)

In Word Table locations where no instruction is given, only an opcode, this implies that the opcode is
unused at the current time.

You will notice from the Word Table that the instruction parameters follow one of two patterns as shown
below:

Modifier | Type ‘A’ | Type 'B’
_________oe-

0 | 3 | 0
1 | 4 | 1
2 | 5 | 2
3 | 10 | 3
4 | 8 | 4
5 | 6] 5
6 | 11 | 6
7 | Unused | 7

8 | 2 | 8
9 | 9 | 9
A | 7 | 10 C(A)
B | 13 | 11 (B)
C | 1 | 12 (C)
D | 12 | 13 (D)
E | 0 | 14 (E)
F | Special | 15 (F)

_________e—————

Flag Instructions (CF, SF, ?FS)

There are three types of flag operation:

Clear Flag (CF Subclass 1);
Set Flag (SF - Subclass 2);
Test Flag (?FS - Subclass 3).

All three instructions take a type ‘A’ parameter and can operate on any one of the 14 flags. The ?FS
instruction will set the carry bit if the flag being tested is set.

83

84

Ficure 6.3.1 MACHINE CODE WORD TABLE CLASS @

d314100W

SU
BC
LA
SS

0
8

9
A

B
E

NO
P

00
0

SF
3 00

8

7F
S

3 pa
C

L
c
o 01

0

7P
T=

3 91
4

01
8

PT
=

3 91
C

CL
RR
TN 02
0

PE
RT

CT
@

92
4

R
E
G
=
C

@

(M
p
2
8

 7
PF

3 09
2C

03
0

03
4

RD
AT
A 03
8

RC
R

3 93
C

WM
LD

L 04
0

SF
4 94

8

7
S

4 94
C

Lc
1 95

0

7P
T=

4 0
5
4

6=
C

05
6

PT
=

4 0
5
C

PO
WO
F
F

06
0

PE
RT
CT

1

06
4

R
E
G
=
C

1

(2
)
06
8

f | |

7P
F

4 96
C

97
0

07
4

C
=
R
E
G

1

@)
78

RC
R

4 g7
C

98
0

CF
SF

5 98
8

S
5 08
C

Lc
2 09

0

7P
T=

5 29
4

c=
6

0
9
8

PT
=

5 0
9
C

PT
=P

0
A
Q

PE
RT
CT

2

0A
4

R
E
G
=
C

2

™)
aa
g

7E
DA
V PA
C

C
=N

98
0

08
4

C
=
R
E
G

2

)
o8

RC
R

5 PB
C

ac
o

CF
SF

19 ac
s

7F
S

19 ac
c

L
c
3 00

0

7P
T=

19 00
4

C
<
G D
8

PT
=

19 a0
C

PT
=Q

oE
D

PE
RT

CT
3

PE
4

R
E
G
=
C

3

%)
oe
s

70
RA
V AE
C

C
O
N

o
F
0

OF
4

C
=
R
E
G

3

)
or
g

RC
R

10 oF
C

EN
BA
NK 10
0

SF
8

10
8

7
S

8 10
C

Lc
4 11

0

7P
T=

8 11
4

11
8

PT
=

8 11
C

7P
=Q

12
0

PE
RT
CT

4

12
4

R
E
G
=
C

4
L ()
47

?F
RA
V 12
C

LD
I

13
0

13
4

C
=
R
E
G

4

L)
3
3

RC
R

8 13
C

14
0

CF
SF

6

14
8

7
S

6 14
C

LC
5 15

0

7P
T=

6 15
4

M=
C

15
8

PT
=

6 15
C

7B
AT

16
0

PE
RT
CT

5

16
4

R
E
G
=
C

S

™
16
8

7I
FC

R 16
C

ST
K=
C 1
7
0

17
4

C
=
R
E
G

5

™)
47
8

RC
R

6 17
C

EN
BA

NK
2

18
0

CF
SF
1 18

8

7F
S
N 18
C

LC
6 19

9

7P
T=

11 19
4

C=
M

19
8

PT
=

11 19
C

AB
C=
9 1A
0

PE
RT
CT

6

1A
4

R
E
G
=
C

6
N ™
8

PT
FA
IL 1A
C

C=
ST
K 18

0
1B
4

C
=
R
E
G

6
N ™

15
8

RC
R
1 1B

C

1C
0

1C
4

1C
8

1C
C

L
7

10
9

1D
4

C
o
M

10
8

10
C

GT
OC

1£
0

PE
RT

CT
7

1E
4

fi
§
G
=
C

7

©
4e

g
1E
C

1F
@

1F
4

C
=
R
E
G

7

©
4r

g
1F
C

H
P
I
L
=
C

@

2
0
0

20
4

SF
2 20

8

7F
S

2 20
C

Lc
8 21

0

7P
T=

2 21
4

21
8

PT
=

2 21
C

C=
KE
Y 22
0

PE
RT
CT

8

22
4

R
E
G
=
C

8

")
58

7W
ND
B 22
0

GT
OK
EY 23

0
23
4

C
=
R
E
G

8

(P
)
)3
8

RC
R

2 23
C

HP
IL
=C

1

24
0

24
4

SF
9 24

8

7
S

9 24
C

Lc
9 25

0

P
T
=

9 2
5
4

F=
ST

25
8

PT
=

9 2
5
C

SE
TH
EX 26
0

PE
RT
CT

9

26
4

R
E
G
=
C

9
(Q

)
2
6
8

7F
RN

S 26
C

RA
MS
LC
T 27
0

27
4

C=
RE

G
9

Q
)

27
8

RC
R

9 21
C

<

HP
IL
=C

2

28
0

28
4

SF
7 28

8

7
S

7 28
C

L
C
A 29

0

P
T
=

7 29
4

ST
=F

29
8

PT
=

17 29
C

SE
TD
EC 2A
0

PE
RT
CT

A

2A
4

R
E
G
=
C

19
(R

)
2A

8

7S
RQ
R 2A
C

28
0

2B
4

C=
RE
G

10
(R
)
2B
8

RC
R

7 2B
C

HP
IL
=C

3

20
0

2C
4

2C
8

7F
S

13 2C
C

Lc
8 20

0

7P
T=

13 20
4

ST
<F

20
8

PT
=

13 20
C

DI
SO
FF 2t
0

PE
RT
CT

B

2E
4

R
E
G
=
C

11

@)
9r

g
?7
SE
RV 2E

C

WD
AT
A 2F

0
2F
4

C
=
R
E
G
1

(@
)
5r

g
RC
R

13 2F
C

HP
IL
=C

4

30
0

30
4

30
8

7
S

1 30
C

Le
ec

31
0

2P
T=

1 3
1
4

31
8

PT
=1 31

C

DI
ST
OG 32
0

PE
RT
CT

C

32
4

R
E
G
=
C

12
(b

)
3
2
8

7C
RO
R 32
C

RD
RO

M 33
0

33
4

C
=
R
E
G

1
2

b ®)
33
8

RC
R

1 33
C

m O o

HP
IL
=C

S

34
0

34
4

34
8

7F
S

12 34
C

35
0

7P
T=

12 35
4

ST
=C

35
8

PT
=

12 3
5
C

CR
TN

36
0

PE
RT
CT

D

36
4

R
E
G
=
C

13
(c

)
3
6
8

7A
LM

36
C

C=
CO
RA 37

0
37
4

C
=
R
E
G

1
3

(c
)
3
7
8

RC
R

12 37
C

LJ

HP
IL
=C

6

38
0

38
4

SF
@

38
8

7F
S

@ 38
C

L
C
E 39

0

P
T
=

@ 39
4

39
8

PT
-

@ 3
9
C

NC
RT
N 3A
0

PE
RT
CT

E

3A
4

R
E
G
=
C

14
d @

3A
8

7P
BS
Y 3A
C

C=
CA
ND
A 38
0,

 3B
4

C=
$E
G

14
(d

38
8

RC
R

@ 38
C

HP
IL
=C

7

3C
0

 ST
-

3C
4

 CL
RK
EY 3C

8
 7K

EY

3C
C

 LC
F 30

9
 -P

T

30
4

 C<
>S
T 30
8

 L

+P
T

30
C

!RT
N

3E
0

 P
E
R
T
C
T

F

3
6
4

 R
E
G
=
C

15

(e
)
3
E
8

e

3E
C

 PE
RS
LC
T 3F
0.

 C
=
R
E
G

15

3F
4

[(2
)

3r
8

 3FC
 4

&

The special instructions (modifier F) for the three subclasses are:

ST=0 which clears flags 0 to 7, i.e. the status register ST;
CLRKEY which clears the KEYDOWN flag if no key is down at the

time the instruction is executed; and
7KEY which tests the KEYDOWN flag and, if it is set (i.e. there is

a keycode in the KEY register), then the carry flag will be
set.

Note that the fact of the KEYDOWN flag being set, does not imply that a key is currently down, just
that a key has been pressed since the last keyboard reset. If the KEYDOWN flag has been reset (by
CLRKEY) then the ?KEY instruction must be issued before the flag can be set by a new key press.

The Pointer Subclasses (PT= and ?PT=)

There are two main types of pointer instruction:

Set Pointer (PT= - Subclass 7); and
Test Pointer (?PT= - Subclass 5).

Both instructions take a type ‘A’ parameter and can either set the active pointer PT (either P or Q) to
a specified digit or test if the active pointer is at a specified digit (13 through 0). Selecting an active pointer
is covered under subclass 8. The ?PT= instruction will set the carry flag if the test is true - i.e. the active
pointer is at the digit specified.

The special instruction for subclass 5 is ‘Decrement Pointer’ (-PT). If the pointer is at digit 0 and is
decremented, then it will wrap round to point to digit 13. However, this will not set the carry flag. The
special instruction for subclass 7 is ‘Increment Pointer’ (+PT). If the pointer is at digit 13 and is in-
cremented, then it will wrap around to digit O without setting the carry flag.

Accumulator Manipulations (RCR and LC)

The two accumulator manipulation operations act on the C register:

Rotate C Right (RCR - Subclass F) takes a type ‘A’ parameter and
rotates the primary accumulator, C, right by the specified
number of digits, O to 13.

Load Constant (LC - Subclass 4) takes a type ‘B’ parameter, 0 through
F, and loads that parameter value into C at the digit in-
dicated by the active pointer. Having loaded the constant,
LC then decrements the pointer, following the same rules
as for the -PT instruction, thus enabling LC instructions to
be strung together for loading more than one digit.

85

The use of LC and RCR is illustrated by the following example which could be used to load C with the
normalised number —2.5 .

Assume all digits of C are 0 and the pointer is at digit 2.

Opcode Mnemonic Comments

250 LC 9 Load the constant 9 at the current potinter position

and decrement the pointer.
c= 0 000O0OO0OOOO OO 9 00 PT @ 1

090 LC 2 Load the constant 2 at the current pointer position
and decrement the pointer.
cC= 0 000O0O0OO0O0OOODO 9 2 0 PT @ 0

150 LC 5 Load the constant § at the current pointer position
and decremant the pointer.
cC= 0 000O0O0OO0OOOODO 9 2 5 PT @ 13

03C RCR 3 Rotate the ¢ register 3 digits to the right
c= 9 2500000000 000 PT @ 13

Registers G, M, ST and F
The instructions for accessing registers G, M, ST and F are all in subclass 6. Three instructions are pro-
vided for register G:

G=C load the C register into register G;
C=G copy the G register into C;
C<>G which will exchange the contents of the C and G registers.

This would be all very well, except for the fact that C is 56 bits wide, and G is only 8 bits wide. Therefore
only two digits of C can be transferred to the G register. The method of indicating which digits of C to
use, is by means of the pointer, PT. Data transfers between G and C operate on all of the G register,
and two of the digits in C - at the active pointer position, PT, and at PT + 1. Thus if G and C
contain the following values and the pointer is at digit 5:

C= 0 3141592654 000 G= AD
PT

then the instruction C<>G would produce the result:

C= 0 314159AD54 000 G= 26
PT

86

If the pointer is at digit 13 and a transfer is done between C and G then digit 13 of C will be used, but
the other MSD will be indeterminate (see time enable).

Data transfers between C and M (M=C, C=M and C<>M) operate on all 56 bits of both registers.

The next 3 instructions in subclass 6 (F=ST, ST=F and ST<>F) are used to control the CPU output
port (the beeper), and their usage is covered in Chapter 8.1. on Special Instructions.

The instructions that transfer data between the Status register (ST) and C operate on all 8 bits of ST
(flags O through 7) and the two least significant digits of C, i.e. C[1:0.

Subclass C

This subclass includes the three instructions that deal with transfers between registers C and N. As with
register M, all the instructions operate on all 56 bits of both registers.

The LDI (LoaD Immediate) instruction comprises two consecutive words, namely, the LDI itself followed
by a constant. This means that when the processor encounters an LDI, it does not execute the word
following the LDI as if it were a stand alone instruction, but instead treats it as a data byte and uses
the word after that as the next instruction. The effect of LDI is to load the value of the next word into
C[X|. Hence the sequence:

130 LDI
325 CON 805

will place 325h into C[X]. The ‘805d’ which will be printed by the ZENROM Disassembleris the decimal
equivalent of 325h. Because each machine code instruction is only 10 bits, this means that the max-
imum value that can be loaded into C[X] using an LDI is 3FF - because the upper 2 bits of C[XS| are
cleared during an LDI instruction.

87

The method of manually pushing an address onto or popping an address off of the return stack is by
use of the instructions STK=C and C=STK.

STK=C takes an address from the address field of C, C|6:3], and places it as the first
return address on the stack, moving RTN 1 to RTN 2, RTN 2 to RTN 3, ,
until RTN 4 is pushed off the top of the stack and is lost.

C=STK on the other hand, takes the address RTN 1 and puts it into C[6:3] and drops
the stack - thus losing RTN 1 from it. The address 0000 replaces RTN 4 at the
top of the stack after the latter has been dropped to RTN 3.

GTOKEY has the effect of copying the contents of the keycode register (KEY), into the two least signifi-
cant digits of the program counter (PC). Basically, the instruction should perform a jump dependent
upon the key pressed and, as such, it would have been an extremely useful instruction - had the keycodes
been arranged more suitably. Unfortunately, all programmers have their ‘off days. GTOKEY is not used
at all by the operating system.

The Read ROM instruction, RDROM,is used for reading a location in ROM. Given an address in C|6:3],
RDROM will return to C|X| the word at that address. This instruction is used, for example, when the
41 is running a User code program in a plug in ROM. RDROM is used to fetch the user code byte from
the ROM, which can then be processed in much the same way as if the byte was in a main RAM routine.

Two boolean operations are allowed for, AND’ (C=CANDA) and ‘OR’ (C=CORA). These both operate
on all 56 bits of C and A and leave the result in C.

The instruction ‘PERSLCT’ is used for peripheral access and will be covered in Chapter 8.1 on Special
Instructions.

The two remaining instructions in this subclass, ‘RAMSLCT’ and ‘WDATA’ are used to transfer data bet-
ween the CPU and main memory.

Memory Access Instructions
In order to fully understand this section, you should make sure you are familiar with the structure and
addressing of main memory (see Chapter 3.7).

In order to read from, or write to a register in main memory, you must first select that register by using
the ‘RAM select’ (RAMSLCT) instruction. This instruction takes its argument from the least significant
10 bits of C[X]. Thus, if you wish to select the first key assignment register you might use the following
sequence of instructions

130 LDI
0CO0 CON 192 Load the address of the register
270 RAMSLCT Select the register

The selected register remains as the ‘active’ register until a different address is selected.

88

To write data to a register the WDATA instruction is used which copies the contents of C to the selected
register. To read from a register use the RDATA instruction which will copy the contents of the selected
register into C. This method of selecting, reading from and writing to a register can be used for all of
the 41’s RAM space including the status registers and extended memory. However, there is a much simpler
way of accessing the status registers (RAM addresses 000 to O0F) by using the instructions in subclass
A (for writing) and subclass E (for reading).

For the instructions in these subclasses to function correctly Chip 0 must be selected. This means that
any register between addresses 000 and O0F can be selected. (The sixteen status registers exist physically

on the same RAM chip, called Chip 0). Subclass A (REG=C) allows you to write to any of the status
registers T through e whilst subclass E (C=REG) only allows reading from register Z through e. It is
impossible to read directly from register T since the instruction, which would be C=REG O/T, is in fact
the RDATA instruction. Another point to note is that the instructions C=REG and REG=C have the effect
of selecting that register in the same way as RAMSLCT.

This means that if, for example the following instructions are executed

046 C=0 X Clear C[X| to zeroes
270 RAMSLCT Select Chip 0
OF8 C=REG 3/X Read the X register

then, not only is the X register read, but it is made the selected register and so there are now 2 ways
of writing data to X (WDATA and REG=C 3/X) and also 2 ways of reading data from X (RDATA and C=REG
3/X). A further implication of this,is that although register T (address 000) was selected, it is not possible
to read or write to T using RDATA and WDATA since the C=REG 3/X effectively deselected that register.
This means that normally you will have to select register 000 immediately prior to reading register T.

Other Class 0 instructions

The rest of the class 0 instructions covered in this section do not fall into any particular category but
are more general purpose instructions.

Subclass 8

CLRRTN (clearthe first return address) is similar to C=STK in that it drops the return stack but it differs
in that the return address is not loaded into C, but is simply lost.

PT=P and PT=Q are the instructions used to select either P or Q as the active pointer referred to as
PT. The active pointer remains active until the alternate pointer is selected.

?P=Q is a test instruction which will set the carry flag if both the pointers are pointing to the same digit.

89

?BAT is another test instruction that will set the carry flag if the battery is low. It is this instruction that
the operating system uses to determine whether or not to set the low BAT annunciator.

ABC=0 has the effect of clearing all three accumulators and is equivalent to the three class 2 instruc-
tions

A=0 ALL
B=0 ALL
C=0 ALL

GTOC is a branching instruction that takes an address in C[6:3] and loadsit into the program counter (PC).

C=KEY fetches the contents of the keycode register (KEY) and copies it into the keycode field of C,
Cla:3].

SETHEX and SETDEC are used to select the mode in which arithmetic operations are performed. The
HP-41 CPU is able, not only to work in hexadecimal, but also in BCD (Binary Coded Decimal). The only
instructions affected by the arithmetic mode are the arithmetic instructions in Class 2. The arithmetic
mode will be covered more fully in the section on Class 2 instructions.

POWOFF, DISOFF and DISTOG are used to determine the ‘power mode’ of the HP-41. There are four
possible power modes:

Deep Sleep - Display off, CPU not running
Drowsy - Display off, CPU running
Light Sleep - Display on, CPU not running

and Run mode - Display on, CPU running

The 41 is in deep sleep when it is switched off; drowsy for a short time afterit is switched on, but the
display is still off; light sleep whilst it is waiting for a key to be pressed, and in run mode whilst a key
is held down or a function is being executed.

POWOFF is a 2 word instruction the second word of which should always be the NOP (000). This in-
struction will stop the processor running. Note that this does not mean that the 41 will always switch
off as that is dependent on the state of the display.

DISOFF and DISTOG will be discussed under Display handling in Chapter 8.2.

The ‘return’ instructions (CRTN, NCRTN and RTN) are similar to their user code counterpart in that
they mark the end of a subroutine and return to either the calling routine or the operating system. RTN
is the most common and will normally mark the end of a function - it will always execute a return when
encountered. CRTN (If Carry then RelurN) will only execute a return if the carry flag is set. Note that
the carry flag only remains set for one instruction cycle after it is set and so this instruction should be
preceded by a test instruction. NCRTN (If No Carry then RelurN)is the converse of CRTN in that a return
will only be executed if the carry flag is not set.

90

Subclass 0,9, B & D

The first instruction in subclass 0 is the machine code NOP (no operation). The main use for this instruc-
tion is to ensure that the carry flag is clear.

Subclasses 9 & B are covered in Chapter 8 on Advanced Machine Code Programming along with the
other instructions in subclass 0.

All of subclass D is unused.

6.3.2 CLASS 1 Instructions

Class 1 instructions are of the ‘branching’ type and enable you to either go to, or to execute code anywhere
in the 41’s 64k address space. All of these instructions in fact comprise of 2 consecutive words. The
format for the two words of a class 1 instruction are:

Word 1 - cc ccdd ddo1
Word 2 - aa aabb bbst

where: - the two least significant bits of word 1 indicate the class of the instruction,
- the two least significant bits of word 2 (s t) indicate the type of jump.
- if bit ‘s’ is 0 then the instruction is an execute or if it is 1 the instruction is a

GQOTO.
- bit t’" indicates if the instruction should be executed on Carry (t=1) or on No
Carry (t=0).

st = 00 NCXQ - If no carry then execute
= 01 CXQ - If carry then execute
= 1 0 NCGO - If no carry then go to
= 11 CGO - If carry then go to

- the address to jump to is spread over the two words with the two least signifi-
cant digits in the 8 most significant bits of word 1 (cccc dddd); and the two most

significant digits of the address in the 8 most significant bits of word 2 (aaaa
bbbb).

Example: Work out the two words that represent the instruction NCGO 0952

First convert the address to binary:

0101 00100952h = 0000 01
bb cccc dddd)

1

(@aaa b

The instruction is an NCGO so bits st’ = 10
Therefore, the words are:

149h
026h

Word 1
Word 2 ©

o
O
a

o
o

(
@

J
=
Y

-
O

o
o

o
.
—
L

-
O

-
O

O
_
L

o

91

Try working out the words for these instructions

dd40 doc v
1. NCXQ 2CFO0 200 1DOE €
2. CGO 7D36 /4L 640 ‘2
3. NCGO 00F0 0g0 10 't
4. CXQ 3F83 Slamsuy

6.3.3 Time Enable Fields

13112111110} 9 8 7 6 5 4 3 2 1 9

L ALL
rs - m X

b mm— x5 b—B—
l— KC —

Examples of Using Pointers
(Assuming Pt=P)

Q P

Pt
PQ

(3 WPt

P Q

] Pt
P—
P

ALL - ALL of the register, digits [13:0]
S - Sign digit, digit [13]
M - Mantissa, digits [12:3]
X - eXponent, digits [2:0], includes the exponent sign
XS - eXponent Sign, digit [2]
PT - PoiriTer, at the digit indicated by the active pointer [PT]|
WPT - \[NordJ through Poinler, from digit O up to the digit indicated by the active pointer

PT.0
PQ - from pointer P to pointer Q.

If P =< Q then from P up to Q [Q:P]
If P > Q then from P up to digit 13 [13:P]

ADDR - ADDRessfield, digits [6:3]
KC - KeyCode, digits [4:3]
B - least significant Byte, digits [1:0]

Note: Class 2 instructions use only the first 8 of the above fields.

Figure 6.3.3 Time Enable Fields

92

From reading the preceding sections of this manual, you will have come across the ideas that a 41 register
is 14 digits (56-bits) wide and that it can be subdivided into various fields representing the sections of
the register, i.e. exponent, mantissa, etc. So far we have only come across the fields [S|, [M|, XS] and
X1, but now, with machine code programming, we can extend the numberof fields available by introduc-
ing the use of the pointers P and Q.

Certain machine code instructions, especially those in Class 2, operate only on specific fields of the
registers. The 41 CPU is a bit serial chip which simply means that data is sent on the bus sequentially,
one bit at a time. If we consider the process of sending a register, e.g. C, to the 1/0 bus. The data must
be sent one bit at a time, and a total of 56 bits must be sent. We must now start to think in real time.
If it takes T seconds to send the whole register, then it will take T/56 seconds to send one bit. Subdivide
T into 56 sections (t0 through t55 where t0 represents the time at which the first bit of data (i.e. bit 0
of the register) is sent and t55 is the time at which the last bit of data is sent. We can now specify the
fields in terms of time; i.e. |X| can be described as the data sent between times t0 and t11 and [M| as
the data sent between t12 and t51. Hence the term ‘time enable’ fields. In reality, the clock frequency
of the 41 is 360kHz - giving a value of t (the time to send 1 bit) of 1/360000s, thus making T = 56/360000
= 156microseconds, which is the time taken by the CPU to execute one machine code instruction.

6.3.4 CLASS 2 Instructions

This class covers the arithmetic, shift and comparison instructions of the CPU. All of the instructions
in this class operate on either one or two of the accumulators C, A and B. The format of the words represen-
ting class 2 instructions is:

i ilimm m10

The two least significant bits of the word are 1 0O, indicating that it is a class 2 instruction. The 5 most
significant bits (iiiii) are the instruction type - therefore giving 32 different types of instruction (215) - and
the remaining bits (mmm) indicate the modifier.

Class 2 instructions use what are called ‘Time Enable Modifiers’ to determine which digits of the ac-
cumulators are used for the operations. Refer to figure 6.3.4. These time enable modifiers, also called
‘fields’, allow you to specify any particular digit or group of consecutive digits in the accumulators. The
modifiers used in class 2 instructions are:

Modifier: | 00 0 | 001 | 0101011 1] 1001 1017111 1
Field: | PT | X | WPT | ALL | PQ | XS | M| s |

93

94

PT X WPT ALL PQ XS M S

A=0 002 006 OOA OOE 012 016 OlA OlE

B=0 022 026 02a 02E 032 036 03a 03E

C=0 042 046 04A O4E 052 056 05A 05E

A<>B 062 |066 |06A |O6E |072 |076 |07A 07E

B=A 082 |086 |084 |O8E |092 |096 |09aA 09E

A<>C 0A2 0A6 0AA OAE OB2 0B6 OBA OBE

C=B 0C2

|

0C6

|

OCA

|

OCE

|

OD2

|

OD6

|

ODA ODE

B<>C OE2 OE6 OEA OEE OF2 OF6 OFA OFE

A=C 102 106 |10A |10E |112 116 11A 11E

A=A+B 122 126 124

|

12E 132 136 13A 13E

A=A+C 142 146 14A 14E 152 156 15A 15E

A=A+1 162 166 16A

|

16E

|

172 176 174 17E

A=A-B 182 186 184 |18E |192 196 19 19E

A=A-1 1A2 1A6 1AA 1AE 1B2 1B6 1BA 1BE

A=A-C 1C2 1C6 1CA 1ICE

|

1D2 1D6 1DA 1DE

C=C+C 1E2 1E6 1EA 1EE 1F2 1F6 1FA IFE

C=A+C 202 |206 |20A |20E |212 |216 |21A 21E

C=C+1 222 |226 |22A |22E |232 |236 |23a 23

C=A-C 242

|

246

|

24A

|

24E

|

252

|

256

|

25A 25E

C=C-1 262 |266 |26A |26E |272 276 |27A 27E

C=-C 282 |286 |28A |28E |292 |296 |29A 29E

C=-C-1 2A2

|

2A6

|

2AA

|

2AE

|

2B2 2B6

|

2BA 2BE

?B#0 22 |26 |2cA |2CE |2p2 |2D6 |2DA 2DE

2C#0 2E2 |2E6 |2EA |2EE |2F2 |2F6 |2FA 2FE

7A<C 302 |306 |30A |30E |312 |[316 |31aA 31E

7A<B 322

|

326

|

324

|

32E [332 |33 |33 33E

7440 342

|

346

|

34A

|

34E

|

352 |356

|

35A 35E

7A4C 362

|

366

|

36A

|

36E |[372 |376 |37A 37E

ASR 382

|

386 |[38A

|

38E [392 |39 |39A 39E

BSR 3A2

|

36

|

3AA

|

3AE

|

3B2 |3B6

|

3BA 3BE

CSR 3C2 |36 |3cA |3CE |[3D2 |3D6 |3DA 3DE

ASL 3E2

[

3E6

|

3EA

|

3EE |3F2 |3F6

|

3FA 3FE

FIGURE 6.3.4 MACHINECODEWORDTABLE-CLASS2

Most of the instructions are self explanatory if you refer to Figure 6.34 (Class 2 word table). The first
3 are used to clear the individual accumulators and the next block are used to transfer data between
them. Next are the arithmetic instructions that place a result into A, followed by the arithmetic instruc-
tions that put a result into C. Of the latter, the only two that need some explanation are C=—C which
returns the 16’s complement of C if in hex mode or the 10’s complementif in decimal mode, and C=—C—1
which returns the 15’s complement if in hex and the 9’s complement if in decimal. (You are probably
more familiar with the terms 1’'s complement and 2’s complement which deal with binary numbers - these
instructions are the hexadecimal and decimal equivalent of those terms).

The next set of instructions are the comparisons followed by the shift instructions for shifting any of the
accumulators right one digit and finally the A shift left instruction.

The arithmetic instructions in this class, can all set the carry flag if either an overflow or an underflow
occurs in the field in which the operation takes place; for example, the following sequences will both
set the carry flag:

.
y

o
T

)
1
R

,
|
|
‘
|
|
-
-

|
|
|
E
:
|
|
|

I

§ ¢
iab

=1
i

T AL 1 o o[NJDE +FT ot
{E2 C=C+0 PT

Not only does the setting of the carry flag depend on the field on which the operation takes place, but
it also depends on the arithmetic mode that has been selected, hex or decimal. If in decimal mode, then
the digits are treated as BCD (Binary Coded Decimal) and additions and subtractions are performed

accordingly. Digits A - F are not valid BCD digits.

Here is an example of the difference between a hex and a decimal calculation:

268 SETHER 288 SETDEE

138 LEI 138 LE]

348 COH 28I 346 COH 21z

IFe C=C+0 EE iFe C=C+ X%

{6 £=C+0 £Z 16 C=[+0 X

Result: C[X| = C80 (carry clear) C[X] = 280 (carry set)

In brief, the carry flag is set, if either:

a) an addition causes the most significant digit of the time enable field to go from F to
0 in hex mode or from 9 to 0 in decimal mode; or

b) a subtraction causes the most significant digit of the time enable field to go from 0 to
F in hex mode or from 0 to 9 in decimal mode.

Note: If a register transfer, shift, rotate, AND or OR instruction is executed in decimal mode,
the CPU operates in hex mode long enough to do the operation and then reverts to decimal
mode. In this manner, non-BCD digits are not destroyed during the operation. Also, it is
still possible to load hex digits A - F into the C register using LDI or LC whilst the CPU

is set to decimal mode.

95

96

FIGure 6.3.5.

MACHINE CODE WORD TABLE

INC + JC + JNC + JC + JNC - JC - JNC - JC -

09 003 067 20 103 107 0o - - 20 303 307

21 0B oar 21 108 10F 21 3fFB 3FF 21 2fB 2FF

082 013 817 22 113 17 @2 3F3 3F7 22 2F3 2F17

083 018 B1F 23 118 11F 03 3E8 3CF 23 2EB 2EF

04 023 027 24 123 127 04 3E3 367 24 2E3 2E7

85 @828 @2F 25 128 12F 05 308 30F 25 208 2BF

06 @33 937 26 133 137 06 303 307 26 203 207

a7 038 @3F 217 138 13F a7 3CB 3CF 27 2CB 2CF

a8 043 p47 28 143 147 @28 3C3 3C7 28 2C3 2C7

09 0948 04r 29 148 14F 29 3BB 3BF 29 2BB 2BF

A 853 057 2A 153 157 A 383 387 2A 283 287

98 58 a5F 28 158 15F o8 3AB 3AF 28 2AB 2AF

ac 0863 067 2C 163 167 ac 3A3 3A7 2C 2A3 2A7

oD 068 06F 2D 168 16F 20 398 39F 2D 298 29F

ot @73 @77 2t 173 177 oL 393 397 2t 293 297

13 p’8 Q7F 2F 178 17F or 388 38F 2F 288 28F

10 0983 87 30 183 187 10 383 387 30 283 287

1 08B a8t 3N 188 18F 1 3’8 37F 31 278 27F

12 093 @97 32 193 197 12 373 377 32 273 2177

13 98 09F 33 198 19F 13 368 36F 33 268 26F

14 BA3 OA7 34 1A3 1A7 14 363 367 34 263 267

15 PAB OAF 35 1AB 1AF 15 358 35F 35 258 25F

16 o83 w8/ 36 183 187 16 353 347 36 253 257

17 o8B eB8F 37 188 18F 17 348 34r 37 248 24F

18 oC3 ec7 38 1C3 1C7 18 343 347 38 243 247

19 écB OCF 39 1C8 1CF 19 338 33F 39 238 23F

1A 003 @D7 3A 103 107 1A 333 337 3A 233 237

18 @08 00F 38 108 1DF 18 328 32t 3B 228 22F

1C @E3 oe7 3C 1E3 7 1C 323 321 3C 223 221

10 0EB 3 3D 1E8 1EF 1D 318 31F 30 218 21F

1t ér3 eF7 3t 1F3 17 1L 313 317 3t 213 217

1F oFB @FF 3F 1FB8 1FF 1F 308 30F 3F 208 20F

40 - - 40 203 207

CLASS 3

6.3.5 CLASS 3 Instructions

Class 3 instructions are all short jumps with a range of +63 or -64 words from the address at which
the jump occurs. The format of a class 3 instruction is:

dj Jjjj je1

The two least significant bits indicate that it is a class 3 instruction. Bit ‘c’ determines whether the jump
is On Carry (=1) or On No Carry (=0). The remaining bits d j j j j j j are the jump distance - which
is in 2’s complement form if the jump is -ve (backwards). This means that bit ‘d’ will be 0 for a forward
jump and 1 for a backward jump. The mnemonics for these are:

JNC + Jump if no carry, forwards
JNC — Jump if no carry, backwards
JC + Jump if carry, forwards
JC — Jump if carry, backwards

Refer to Figure 6.35 for a complete list of the jumps and their opcodes.

6.4 THE HP-41 ROM FORMAT
The HP-41 can address 65536 (64k) words of ROM. Each word of ROM space has a 4 digit (16 bit) ad-
dress at which it is located. The 64k of ROM is split up into 16 pages of 4k, see figure 6.4.1. The lowest
3 of these pages, internal ROMS 0, 1 and 2 are where the 12k operating system resides. Page 3 is used
for the internal extended functions module along with operating system extensions in an HP-41CX only.
Page 4 is reserved for ‘takeover’ ROMs that ignore the O/S. Hewlett-Packard’s DIAGNOSTIC ROM, used
to test 41’s returned for servicing, is addressed to this page. Page 5 is where a TIMER ROM resides
if installed in your machine. Note that in 41-CXs there are two 4k ROMs both addressed to page 5, the
primary one of which is the CXTIMER ROM, and the secondary one contains much of the code for the
extended functions. These two pages are controlled and selected by a method of ‘page switching’ which
is discussed in more detail in section 8.1 . Page 6 is reserved for the Printer ROM, either from the 82143A
or the IL module. One point to note about the HP-IL module, is that when you switch to printer disable
using the switch on the undercasing of the module is that the address of the printer rom changes to
address 4. The coding of the IL Printer ROM is so arranged thatit does nottry to take over the 41 when
it is disabled - as would normally be expected from a ROM at page 4. Page 7 is inhabited by the Mass
Storage and Control Functions of the HP-IL ROM. Certain ROMs (TIMER, HP-IL and PRINTER) are hard
configured to specific pages - irrespective of the particular port into which they are plugged. Pages 8
to F are dedicated to ROMs plugged into the 41 via the four I/O ports on the rear. Each port is allotted
8k of space to allow for both 4k and 8k ROMS. Most HP ROMs are 4k and as such occupy only the
lowest addressed page dedicated to the port into which it is plugged. 8k ROMs such as the PPC-ROM
and the HP-IL DEVELOPMENT ROM are addressed to both pages of the relevant port. If no ROMs
are present, in any particular page, then that page appears to be full of NOPs (000 words).

97

98

x
9
9

x
@
3
1

X
R
O
M

n
u
m
b
e
r

N
u
m
b
e
r

o
f

c
a
t
a
l
o
g

e
n
t
r
i
e
s

(n
)

x
@
9
2

x
P
@
3

x(
2n
)

x
(
2
n
+
1
)

x
(
2
n
+
2
)

x
(
2
n
+
3
)

A
d
d
r
e
s
s

o
f

f
i
r
s
t

f
u
n
c
t
i
o
n

A
d
d
r
e
s
s

o
f

l
a
s
t

f
u
n
c
t
i
o
n

20
0

P0
0

E
n
d

o
f

t
a
b
l
e

F
U
N
C
T
I
O
N

A
D
D
R
E
S
S

T
A
B
L
E

(
F
A
T
)

 x
(
2
n
+
4
)

.

x
F
F
3

x
F
F
4

x
F
F
5

x
F
F
6

x
F
F
7

x
F
F
8

x
F
F
9

x
F
F
A

x
F
F
B

x
F
F
C

x
F
F
D

x
F
F
E

x
F
F
F

R
O
M

f
u
n
c
t
i
o
n

c
o
d
e

I
n
t
e
r
r
u
p
t

v
e
c
t
o
r
:

R
O
M

t
r
a
i
l
e
r

C
h
e
c
k
s
u
m

P
a
u
s
e

l
o
o
p

M
a
i
n

R
u
n
n
i
n
g

L
o
o
p

D
e
e
p

S
l
e
e
p

W
a
k
e

up
,

n
o

k
e
y

d
o
w
n

O
f
f

10
S
e
r
v
i
c
e

D
e
e
p

S
l
e
e
p

W
a
k
e

u
p

C
o
l
d

S
t
a
r
t

R
O
M
s

a
t

P
a
g
e
s

3
a
n
d

5
t
h
r
o
u
g
h

F
f
o
l
l
o
w

t
h
e

a
b
o
v
e

f
o
r
m
a
t
.

F
i
c
u
r
e

6
.
4
.
2
.

RO
M

FO
RM

AT

Pa
ce

P
O
R
T

4

P
O
R
T

3

P
O
R
T

2

P
O
R
T

1

H
P
-
I
L

M
a
s
s

S
t
o
r
a
g
e

R
O
M

P
r
i
n
t
e
r

R
O
M

S
e
c
o
n
d
a
r
y

B
a
n
k

G
r
a
s

Yy
X
,
c
t
e
,

T
I
M
E
R

R
O
M

E
x
t
e
n
d
e
d

F
u
n
c
t
i
o
n

(
C
X

o
n
l
y
)

R
e
s
e
r
v
e
d

P
a
g
e

P
N
P
T

E
x
t
e
n
d
e
d

F
e
n
s

(
C
X

o
n
l
y
)

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

Fi
cu
re

6.
4.

1.
RO
M

PA
GE

ST
RU
CT
UR
E

Note that both Q-ROM and EPROM devices do not follow the above strictures, and can be addressed
to any ROM page using switches on the devices. Refer to the respective equipment manual for more
details.

Another notable exception to the above ‘rules’ is the ZENROM. When ZENROM is plugged into a port,
it occupies the upper page allotted to that port. The reason for this, is to accommodate the growing number
of users who are installing modules inside their 41s. Because ZENROM is addressed to the upper 4k
of a port, both ZENROM and another standard 4k module can be effectively plugged in to the same
port. Contact one of the User Groups (Appendix C) for information on this. Be warned that modifications
to either your HP-41 or a plug-in module (including ZENROM) are neither supported by Hewlett-Packard
nor Zengrange and will automatically nullify your warranty on the equipment. The modification is men-
tioned here for information only, and should not - under any circumstances - be taken as a recommendation.

When discussing a ROM it is generally meant as referring to a 4k page of ROM. Any ROM page, except
pages 0 through 4, can contain both user code programs and machine code functions, and must con-
form to a specified format. The format for a ROM is shown in figure 6.4.2.

The first word of a ROM, address 000, is the XROM number of that ROM coded in hex. For example
the first word of the TIMER ROM, which has an XROM number of 26, will be 01A. The maximum value
of this word is 01F, i.e. XROM 31. The second word of the ROM, address 001, is the number of catalogue
entries in that ROM. The header of a ROM, i.e: -ZENROM 3B, counts as an entry in the catalogue. Again
this word is coded in hex and can range in value from 000, for no catalogue entries, to 040, for 64 catalogue
entries.

The next section of the ROM is called the ‘Function Address Table, known as ‘FAT’. Each entry in the
catalogue requires two words in the FAT to determine the start address of the function (or program) and
other status information about that entry. Although a ROM can contain both User code and machine
code we are only concerned with machine code functions for the purposes of this manual. The O/S
needs to know where each function in a plug-in ROM is addressed in order to be able to execute that
function. Therefore, the start addresses are stored in the FAT. Each function has two consecutive words
in FAT to indicate its the first executable word of code of that function. The FAT is arranged in catalogue
order, i.e: the first pair of words point to the address of the function that will appearfirst in the catalogue,
the second pair point to the function that will appear second, etc. Given a pair of words from the FAT,
the least significant digit of the first word indicates the most significant digit of the address of function
in the ROM. The two least significant digits of the second word of the FAT entry indicate the two least
significant digits of the address of the function. The last entry in the FAT must be followed two NOPs
(000) marking the end of the FAT. Take as an example the following start of a ROM:

Address Word
000 015 XROM number 21
001 002 ROM has 2 catalogue entries
002 004
003 02F First function starts at address 42F

004 001
005 023 Second function starts at address 123

006 000
007 000 NOPs to mark the end of the FAT

99

Were this ROM at page 8, then the two functions would start at 842F and 8123 respectively.

The rest of the ROM, up to the special reserved words starting at address FF4, is available for the func-
tions contained in the ROM. Suppose the second function in the example ROM, described above, is
called TEST. Then the format of this function in the ROM would be:

Address Word

11F 094 T

120 013 S

121 005 E

122 014 T

123 fff first word of function

ZZZ 111 last word of function

Notice that the first word of the function is at the address pointed to by the FAT and that the preceding
words contain the name of the function in reverse order. The function name is stored as ‘display coded’
characters a table for which is given in figure 8.2. The last character of the label is actually in display
coded format, but has the constant 80h added to indicate it is the last character of the name.

There are various alterations to the coding of the function name and the start of the function that can
be made to tailor the operation of that function. If the first word of the function is a NOP then that function
will be non-programmable (such as MCED). If the first 2 words of the function are NOPs then the func-
tion will not only be non-programmable, but will also be ‘Immediate execute’ (if used whilst in PRGM
mode). An immediate execute function is one that cannot be nulled by holding down the key (such as SST).

You are also able to specify the function to be of the prompting variety. Changing values of the two most
significant bits in the first two characters of the function name will determine what kind of prompt is re-
quired according to the following table:

Value of top two bits

Re——Fomeee+
| CHR 2 | CHR 1 | Prompt type | Example |
$———————-P,eee|
] 0 | 0 | No prompt | SIN |
0	1	Alpha (null input valid)	CLP
0] 2	Accept 2 digits, ST, IND, IND ST, +, -, * or /	STO	
0	3	Accept 2 digits or non-null Alpha	LBL
1	1	Accept 3 Aigits	SIZE
1	2	Accept 2 Adigits, ST, IND or IND ST	RCL
1	3	Accept 2 digits, IND, IND ST or non-null Alpha	XEQ
2	1	Accept non-null Alpha	
2	2	Accept 2 Aigits, IND or IND ST	SF
2	3	Accept 2 digitg or non-null Alpha	
3	1	Accept 1 digit, IND or IND ST	FIX
3	2	Accept 2 digits, IND or IND ST	
3	3	Accept 2 digits, IND, IND ST, non-null Alpha	
		(. or C.1C.2	GTO
bm——————e———Pe-e+

100

When ZENROM is plugged in however, the type of prompts that are accepted is changed due to the
‘Direct-key Synthetics’ facility. For a full description of ‘Direct-key Synthetics’ see section 4.1 .

Thus if we change our TEST label:

Address Word

11F 094 T

120 013 S

121 205 E

122 214 T

123 000 NOP

124 XXX first word of function

the function would be non-programmable and would prompt with 2 underscores and accept either 2 digits,
IND and 2 digits or IND ST and a valid stack register.

If a numeric prompt is completed, then when the function starts executing the byte equivalent of the
input will be in A[X| or, if an Alpha prompt, then the Alpha string will be left justified in status register
Q with the characters in reverse order. For example:

CLP ‘ABC’ then Q = 0 0000000434 241

RCL IND 61 then A[X| = 0BD

See the byte table, Figure 3.1, for the byte equivalents.

Normally the first function in the ROM will be the ROM header, i.e. the name of the ROM. The header
is coded in the ROM in the same manner as any other function. A header should always be at least
8 characters in length so that it cannot be executed by ‘conventional’ methods and so that it will show

up as a ROM header during the CAT 2 function on a CX. It is customary for the first executable address
of the header to be a RTN.

Addresses FF4 to FFA are reserved for interrupt vectors which are polled by the operating system at
various times. If a one of these locations contains a non-zero word (normally a Class 3 jump) then control
is passed to the interrupt vector when that location is polled. It is recommended that you ensure that
these location are kept as NOPs in any device you are using to write your own machine code since
their misuse can cause the 41 to lock up.
After the interrupt vectors come 4 words, FFB - FFE, which contain the trailer for the ROM. The trailer
should contain 2 display coded letters followed by a display coded revision number. For example the
trailer for the plug-in timer module is:

Address Word

SFFB 003 C

S5FFC 031 1

S5FFD 00D M

SFFE 014 T Trailer is TMIC

The last word of a ROM is always the checksum. This Is calculated by summing the values of all the
other words in the 4k block, i.e. 000 - FFE, in a 10-bit field using end-around-carry, that is when the
sum overflows the field an extra 1 is added, and then taking the 2's complement of that sum.

101

6.5 MACHINE CODE EXAMPLES

By far the best way to explain machine code programming on the 41 is by giving documented examples
of machine coded functions so that you can see how things work in reality. The two examples in this
section will be useful in not only explaining what has been said in this, and previous chapters, but also
the functions might prove useful in their own right.

These examples contain instructions that call subroutines in the HP-41 operating system. It is strongly
recommended that you should have a copy of the O/S documented listings which are available from
suppliers listed in Appendix C. One of the most important contributors to efficient machine code pro-
gramming is effective use of the O/S and a good knowledge of the O/S will prove invaluable.

If you are new to machine code programming on the 41, it is recommended that you do not try and
key these programs in immediately, but rather wait for the next chapter which will give instructions on
how to store these functions into a Q-ROM device. You will, however, find it useful to follow these pro-
grams through using the comments provided.

Example 1. Saving the Stack

This short routine is designed to make a copy of the stack registers X, Y, Z, T and L and store them
in the first 5 registers of the statistic block. Hence by changing the location of the statistics registers
using ZREG, you can retain numerous different stacks.

The routine works in the following manner:

1. lines 07 - 09 Find the address of the first stats register from status register c.

2. lines OA - 1E Check that the first and last registers we are going to store into exist. If not then
exit via 'ERRNE’ which will display the ‘NONEXISTENT’ message and cope with
all the error handling.

3. lines 1F - 2D Take each of the stack registers, L to T, in turn and copy them to the statistics
block. Stop when register T has been copied.

00 OCE I
01 00B K
02 014 T

03 013 S
04 00F O
05 014 T

06 013 S

07 378 C=REG 13/c Fetch the contents of status register ¢ to C
i.e. CC13:11] = RAM address of IREG.

102

08

09

0A

11

13

14

15

16

18

19

1A

1B

1C

1E

1F

1BC

106

384

270

038

11A

2BA

2F0

038

2BA
2F0
37A
381
00B

38C

047

130

004

OA6

206

158

388

36B

0A6

070

270

038

10E

198

270

266

158

OAE

2F0

0BO

266

3A3

3E0

RCR 11

A=C X

CF 0

RAMSLCT

RDATA

A=C M

C=-C-1 M

WDATA

RDATA

C=-C-1 M

WDATA

?2A4C M
*

CGO 02E0

?FS 0

JC +8

LDI

CON 04

A<>C X

C=A+C X

M=C

SF 0

JNC -13

A<L>C X

N=C

RAMSLCT

RDATA

A=C ALL

C=M

RAMSLCT

C=C-1 X

M=C

A<>C ALL

WDATA

C=N

C=C-1 X

JNC -0C
RTN

Rotate C so address IREG is in CC[X]

Store the address of IREG in ACX]
Clear flag to indicate checking validity of
start of IREG block.

Select the register to be checked.

Read the register into C
Store register [M] in A[M] for comparison later
Take the 1’'s complement of Register [(M]

Write complemented form back to the register
Read the register again. If the register is
nonexistent then what is read will not be the
same as what was just written.

Recomplement the register mantissa
Restore the original contents to the register
Set carry if register is nonexistent

"ERRNE"

Register not there so exit via "NONEXISTENT"

Has IREG+004 been checked ?

Yes, then go on to save the stack.
No

Load 004

CIX]) = Address of IREG, A[IX] = 004
C[X1 = Address of IREG+004, ie the address of
the highest register that will be used
Store the address IREG+004 in M

Set flag to indicate checking IREG+004
Go back and check the validity of end of IREG

Recall to CI[X] the 004 which will be used as
the start address of the registers to be saved
le register L
N = address of register to be saved
Select the register to be saved
Read the data from the register to be saved
Store the data into A
Fetch the address of the stats register into
which the data is to be stored

Select the destination register
Decrement the destination address ready for
next time around and restore in M

C = Data to be stored
Write data to the destination register
Fetch address of the stack register just stored
Decrement the address, carry if decremented 000
which indicates all the stack has been saved
Not done yet, save next register

Finished.

As an exercise you might like to devise a complementary routine which
will restore the stack using the first 5 statistics registers.

103

Example 2. Substituting a character in alpha.

The function ASUB, ‘alpha substitute’ takes a character from X, either a decimal ASCII character code
or, if alpha data, then the first character of the string, and places it at the character position in alpha
specified in Y. If the character specified by X is > 256 or no characteris specified (null alpha) then
a DATA ERRORis generated. The character position in Y should be between 0 (first character) and the
length of alpha —1 (last character) otherwise a DATA ERROR will be generated.

The routine works in the following manner:

Determine if X is a number or alpha data
If X is numeric then convert to hex and check the character code is valid.
If X is alpha data then find the 1st character in X
Store the character to be substituted in

2C Initialise the search routine
3E Search for start of alpha and then for character position specified by Y.

1. lines 04 - OB

2. lines OC - 12
3. lines 13 - 1B

4. lines 1C - 1C
5. lines 1D -

6. lines 2D -

7. lines 3F - 41

00 082 B
01 015 U
02 013 S
03 001 A

04 0E0 PT=Q
05 2DC PT= 13
06 OAO0 PT=P
07 0F8 C=REG 3/X
08 10E A=C ALL

09 27E C=C-1 S

0A 27E C=C-1 S
0B 047 JC +08

oc OAE AC ALL
0D 38D +*

OE 008 NCXQ 02E3

OF 2F6 ?2C#0 XS
10 037 JC +06
11 39C PT= 0
12 053 JNC +0A

13 35C PT= 12

14 052 C=0 PQ
15 2EA ?C#o WPT

16 OBS *

17 0AO0 NCXQ 282D

104

Store the new character into alpha.

Initialise Q to digit 13

Reselect P as active pointer

Fetch character to be substituted into alpha
A = Character to substitute in

Carry if in alpha format (ie top digit = 1)

In alpha format so find first char in register

Recall character number

"BCDBIN"

Convert number to hex in CI[X]

Is character valid, ie < 256 ?

No, then DATA ERROR

Pointer to least significant digit of character
Go on to store char in G

Clear byte 6 (alpha indicator) of the register

Are there any characters in the register ?
"ERRDE"

No, then DATA ERROR

18

19

1A

1B

1C

105

3D4

3D4

2F2

3EB

058

130

005

0E6

0B38

38D

008

0SA

1BC

130

008

10E

270

038

15C

052

384

394

043

1A6

326

32F

OAG6

106

270

038

3D4

3D4

38C

027

2F2

393

388

1BA

37B

098

2F0
3E0

-PT
-PT
?7C#0 PQ
JINC -03

G=C

LDI
CON 05d
B<>C X
C=REG 2/Y
*

NCXQ O02E3
c=0 M
RCR 11
LDI
CON 008h
A=C ALL
RAMSLCT
RDATA
PT= 6
Cc=0 PQ
CF 0

2PT= 0
JNC +08
A=A-1 X
2A<B X
Jc -1B
AS>C X
A=C X
RAMSLCT
RDATA
-PT
-PT
?2FS 0
Jc +04
2C#0 PQ
JINC -0E
SF 0
A=A-1 M
JNC -11h

C=G

WDATA
RTN

Decrement pointer to next character position

Is there a character here ?

Yes, then go to save character

Store the character in G

Load test value for end of alpha

Store test in B(X)

Fetch the character position to be substituted
“"BCDBIN"

Convert to hex in CIX]
Clear out CI[M]

CIM] = Character position

Load address of Reqg P (start of search address)

Store character position and reg. address in A
Select Register P

Read Register P

Pointer to first digit of non-alpha part of P

Clear the non-alpha part of P

Clear flag to indicate search for alpha start

Finished checking this register ?

No, then go to check the next char in this reg

Yes, then decrement register address in AL[X]

Finished checking all of alpha ?

Yes, then DATA ERROR

Duplicate next register address into CIX]

Select the next register

Read the next register

Decrement pointer by one byte to check next chr

Checking for alpha start or character position?

Character position

Alpha start - is this first alpha character ?
No, then check next character

Yes, then start search for character position

Decrement position counter, carry if pos found

Posgition not found yet, carry on search

Posgition found, pointer is at the relevant byte

to recall the substitution character from G

Write the updated register back

Done.

To show the advantages that writing such a machine code routine can have when used in your user
code programs, let’s consider the following search and replace program which will search alpha for all
occurrences of the character specified in Y and replace them with the character specified in X. The pro-

gram uses functions from the extended functions module.

Bi+iBL "REPLRLE"

T
§

R
l
m
O

w
h
t
e
]
I

t
b

J
o
r
s
N

.
o

I..
:'.

.I
R
y

D
D

.
,

o
fo

ac
h
e
t

pe
et
2
R
O
R

O
B

0
5

Le
ed

U
0
l
k
e

0
0

To try this user code routine out, key into alpha the text string:

‘ZENCODE MNEMONICS'

Now key as follows:
78 ENTER! (character code for ‘N
42 (replacement character ™)
XEQ ‘REPLACFE’

Now view the Alpha Register, which will show the result: ‘ZE*CODE M*EMO*ICS®

106

7

USING ZENROM TO INPUT
MACHINE CODE

This chapter of the handbook assumes that you have read the previous chapters on Programming in HP-41
Machine Code, and understand the concepts of HP-41 User Code and Synthetic Programming.

7.1 THE MACHINE CODE EDITOR (MCED)

Machine code programming on the HP-41 involves the use of the Machine Code EDitor (MCED) function
contained in ZENROM. Executing MCED places you into a new environment with the ‘COMMAND ?’ prompt
in the display. The MCEDitor keyboard is detailed on one of the keyboard overlays provided.

To use most of the MCED functions you will need to connect the HP-41 to one of the available Quasi-ROM
devices. The exception is ‘DISASSEMBLE’ - which allows you to produce a listing of any ROM module
plugged into the 41, but only if a printer is connected to the 41 or HP-IL. A printer is not required for other
MCED functions, but to program efficiently, and be easily able to debug your routines, a printer will prove
invaluable.

Command Level:
This is the main input level and is entered when you first execute MCED. You
may also return to this level by pressing the [CMD] key at any time whilst
MCED is active. In command level, the display will show ‘COMMAND ?’ and
wait for you to select one of the active key functions detailed on the overlay.

When selected, you will find most of the Editor commands have a common in-
put prompt format of:

Command: Start Address , Finish Address

For example, the DISASSEMBLE prompt appears as:

DIS:_Y—

After inputing the hexadecimal start address, you have an option of specifying a
decimal number of words or lines in place of a hexadecimal finish address. This
is selected by pressing [DEC| and indicated by a ‘d’ appearing in the prompt:

DIS:2FO0A,d__ __

At this point only the decimal keypad remains active.

107

Certain MCED functions have a secondary prompt such as:

LMT:

(where this allows you to specify the limit address beyond which the action will not
take place.)

Certain prompts may show an ‘A’ in the prompt, thus indicating that an absolute ad-
dress input is expected.

Utility Keys:

|R/S]|

[EXIT]

ISHIFT||CMD|

[~

IDEV|

IDEC|

Pressing |R/S| accepts the input of addresses, etc., and begins the specified action.
This allows a check that the correct input was made - which can prove very useful
with MCED functions such as CLR.

Pressing |EXIT| from the main editor prompt, will return you to normal HP-41 usage.

MCED is set to automatically ‘timeout’ after approximately two minutes of inactivity
in a manner similar to ED in the CX. You can prevent this time out by executing ON.

Cancels the current prompt sequence and returns you to the main editor prompt ‘COM-
MAND ?°,

Deletes the last key input.

Pressing this key provides a toggle between the ProtoCODER 2 and MLDL type device
write formats. The default is for a MLDL type device. The '0’ annunciator will be set
whenever a ProtoCODER device has been selected.

Pressing this key before the input of the second address of a function prompt allows

the entry of a decimal value of lines or words.

Function Keys:

|GTO|

108

Allows the writing of M-Code instructions into your Q-ROM device with the hex loader.
GTO requires the input of a start address and responds with a prompt showing:

Address Current Word
eg: 1468 154

The hex-keypad allows input of the 3-hex digits representing the word you wish to
write to that location. Press [R/S| to accept the new word. Both the [SST| and
|SHIFT||BST| keys are active within the hex-loader and permit forward and backward
movement without changing the word at the current address location. If a printer device
(in NORM or TRACE mode)is attached, then the entered word is also disassembled
to the printer. Pressing [SST] will also cause that word to be disassembled to the printer.

[INS] Allows insertion of a block of NOPs into Q-ROM before the specified address. A specific
decimal number of NOPs may be input by pressing the |[DEC]| key instead of specify-
ing the end hex-address. Specifying 'd000’ will default to 'd001’ - thus inserting one
NOP instruction. Because |INS| moves all surrounding code in Q-ROM, to make way
for the NOPs, a secondary prompt allows you to specify a ‘limit address":

LMT:_

beyond which no code will be changed. By specifying a LMT address greater than
that for the end address, the surrounding code is moved up memory (to a higher
address).

Eg INS: 8106,8108 LMT:810B

Address From To

8105 001 ——>-=>-=> 001

8106 Start 002 000

8107 003 Goo

8108 End 004 000

8109 005 00e

810A Q006 003

810B Limit 007 004

810C 008 -=>=-=->=-=-> 008

If the LMT addressis before the start address then surrounding code will be moved
down memory (to a lower address)

Eg INS: 8109,d003 LMT: 8106

Address From To

8105 001 —=D==>==> 001

8106 Limit 002 005

8107 003 006

8108 Q04 007

8109 Start 005 000

810A 006 000

810B End 007 000

810C 008 —=D==D>-=> 008

DATA ERROR messages will be issued if the end address is less than the start ad-
dress or the LMT address is between the start and end addresses.

IDEL| Will delete a block of code from Q-ROM at a specified start and end address. A specific
decimal numberof lines can be deleted by pressing the [DEC| key as before. When
deleted, surrounding code is moved in Q-ROM. A secondary LMT prompt specifies
a boundary beyond which no code is moved. By specifying a LMT address greater
than that for the end address, the surrounding code is moved up memory (to a higher
address).

109

e.g. DEL: 8106,8108 LMT: 810B

Address From To

8105 001 ——>==>==> 001
8106 Limit 002 000
8107 003 000
8108 004 \\\\\\\\\i; 000
8109 Start 005 \\\\\\\\\i~‘002
810A 006 003
810B End 007 004
810C 008 -=>-=>-=> 008

If the LMT address is before the start address, surrounding code will be moved down
memory (to a lower address).

Eg. DEL: 8109,d004 LMT: 8106

e - .- m— A ow e e O e e Lian e G mth e @ - i v e MM G W PR e LA e GG S e B WS W e eNe M e Mme FRE GWR R e e SR WS e e e W v

810B Limit 007 000

810cC 008 -=>-=>-=> 008

DATA ERROR messages will be issued if the end address is less than the start ad-
dress or the LMT address is between the start and end addresses.

ICPY/| Requires a hex start and end address of a block of code, or a specific decimal number
of words to copy. A secondary prompt requests the starting address of the destina-
tion into which the code will be copied. CPY will allow copying to overlapping blocks.
Specifying an end address less than the start will cause a DATA ERROR message.

ICLR| Will clear a block of Q-ROM between the specified start and end addresses, or a
specific decimal number of words from the start address - by pressing the [DEC| key
option. If the end address is less than the start, a DATA ERROR message is issued.

ISVE| Enables Machine Code routines to be stored in packed data-format in main HP-41
memory for subsequent transfer to mass storage media. Although the format is not
the same as that for ROM>REG, the two are compatible. [SVE| expects a hex start
and end address, or decimal number of words, of code to save. A secondary prompt
requires input of absolute register address, in main or XRAM memory, into which
the packed data will be stored.

110

If a non-existent register address is encountered, SVE will abort with the message
NONEXISTENT. Specifying an end address less than the start will cause a DATA ER-
ROR message.

IGET]| Recalls main or XRAM memory registers and writes the data contained therein to

a Q-ROM device. Expects the first and last register absolute hex-addresses to use,
or a decimal number of registers to GET. A secondary prompt requests the Q-ROM
destination address. The ZENROM data format will cope with incomplete registers,
thereby allowing recall of two consecutive blocks of code without error. A DATA ER-
ROR message results if the end address is less than the start address.

7.2 DISASSEMBLING MACHINE CODE

Disassembling machine code is very much like printing or listing a program in main RAM. By this stage
you should realise that the term ‘ROM* covers both those internal to the HP-41 and those contained in a
plug-in module or Quasi-ROM device. Here we are concerned with those containing machine code pro-
grams and routines that either make the 41 behave as it does (the operating system), or add extra features
or functions (plug-ir ROMs). To understand these machine coded instructions, we need some method of
listing them - just as you would do a user code routine in main RAM using the printer/IL function ‘PRP"
The method of doing this is called ‘disassembling’ - for which we need a ‘disassembler’. A disassembler
simply takes the code from the ROM area specified and converts the otherwise meaningless hex-opcodes
into more meaningful mnemonics.

ZENROM has a disassembiler resident in the Machine Code EDitor (MCED). As a preliminary example of
how the disassembler works, lets first have a look at a section of the 41’s operating system. To use the
disassembler, however, requires a printer - either the HP-82143 or a printer attached via the HP-IL. The
printer should be set in TRACE or NORMal mode, by the switches on the front panel or by setting the
flags 15 & 16 for an HP-IL printer for the disassembler to work correctly.

Enter the machine code editor environment by: XEQ ‘MCED* The prompt ‘COMMAND ?’ indicateds that
you are now in the ‘command level’ and that it expects you to select one of the options available on the
MCED keyboard. Pressing the [DISASSEMBLE|key (situated on the |[ENTER!| key) selects the option and
returns the prompt:

DIS: —_— e—

which requests you to input a start and end address for the disassembling. At this point the hexadecimal
keypad (0 to 9 and A to F) is active.

Consider disassembling the HP-41 internal routine ‘CLA’ (CLear Alpha) which is situated at address 10D1h
- 10D6h (You should refer to the VASM listings of the operating system for details of these address loca-

tions.) Key in the starting address:

[1] o] [D] [1]

You may correct mistakes, as normal, by pressing the [—| key.

M

After keying in the start address, you may either specify an ‘end address’, or by pressing the [DEC]| (on
the decimal point key) specify the quantity of lines to be disassembled. For the former, simply input the
end address as you did for the start and then press the [R/S| key to accept and begin the disassembly.
If you are immediately returned to the command level (the ‘COMMAND ?’ prompt), then you either have
no printer attached, orit is not in the correct mode. Simply repeat the above sequence. If you wish to disassem-
ble a specific numberof lines of code, then after entering the start address, press the [DEC| key. At this
point, a ‘d’ will appear in the end address portion of the display prompt:

DIS:10D1,d_

Only the numeric keys 0 to 9 are now active and you may enter a decimal number of lines to be disassembled.

0i5: {8Ei.i8bs

1L B4E C=8 R
CLA Routine Disassembled {857 162 REG=L 5-%

1802 RS REG=L &1

1804 1EZ REG=C
1805 228 REG=C
1805 2E8 RTH

o
e
l

The disassembler produces printed listings in four columns of the format

address word instruction parameter

where the ‘address’ is given in hexadecimal and the ‘opcode’ is given as three hex digits. The instruction
mnemonics given are those in the ZENCODE set - refer to Appendix E - Reference Tables for a listing.
Some of the more esoteric instructions, such as those for the TIMER and DISPLAY codes will not be
disassembled correctly. Since the opcodes for these are the same as those used for the more basic in-
structions, it would be impossible to correctly disassemble these instructions as it would mean having to
establish exactly which peripheral is enabled when the instruction is executed.

Certain features do not follow the above standard, but, nevertheless, enable the FAT at the start of an exter-
nal ROM to be disassembled to provide useful information. To illustrate this, disassemble the FAT for the
Printer ROM, that is address 6000h to 6035h for the HP-82143 dedicated printer or to 6039h for the printer
ROM in the HP-IL Module.

Partial FAT Listing Notice that the first line tells you what the XROM number of the ROM
for IL Printer Rom is in decimal.

bHdd 410 ZRON 23 Next are pairs of words that indicate where the functions are located
ce8i BlE FORS &7 within the 4k block. The first line of each pair indicates the name
bHBZ 887 -PRINTER 2E of the function as it would appearin the catalogue. User code pro-
bRl 1BE RDDE &7EE grams have the usual ‘super tee’ as a prefix. The second line in each
nAA4 BAEZ ACH pair is the address of the first executable code of the function.

pHAS #B4 ADDE 62B4
pBAL BAC ACCHE
#@@7 B30 ABDE 6C5T

112

7.3. WRITING MACHINE CODE TO A DEVICE

In this section, Example 1 (STOSTKZ) from Section 6.5. will be used as the basis of keying a machine
code program into a Q-ROM device.

Before starting to actually key in the program, we mustfirst initialise a page of Q-ROM. To do this, firstly
plug in the Q-ROM device and set the address switches on the device as described in the owner’s manual
for the device. The address switches are used to select the ROM-page at which the device will appear
to be positioned at. For simplicity, for the remainder of this chapter we will refer to this page as digit ‘X’
This is because the exact location will depend upon the individual user.

Having plugged in the device, also attach a printer- if you have one - and set it to NORM or TRACE mode.
To make it easier to follow the example key sequence, we must firstly clear the device to get to a known
state. To do this use the following sequence :

KEY STROKES DISPLAY PRINTER LISTING

XEQ ‘MCED’ COMMAND ?

MCED allows writing to both MLDL type devices or the ProtoCODER 2. If you are using the ProtoCODER
2 then press the |DEV| key to toggle between the MLDL or ProtoCODER 2 formats. The ‘0’ annunciator

will appear in the display whenever the ProtoCODER 2 format is selected.

Now to clear the device press the [CLR| key and then enter the start and end addresses of the Q-ROM
block to be cleared, in this case x000 to xFFF.

I[CLR| cw\R: ..,

|x||0}[O][O] CLR: x000, __ __ __
|x||F][F|[F] CLR: x000,xFFF

If you make a mistake whilst keying in the addresses or you select the wrong function, then simply press
ISHIFT| [CMD| to abort the function and start again, or use the |—| key to backarrow the input. Once the
addresses have been correctly entered press the |R/S| key to accept the input.

|R/S]| CLR:x000,xFFF CLR:x000,xFFF
COMMAND?

When the display reverts to the ‘COMMAND ?’ prompt the function has been completed.

Next, we need to initialise the page with an XROM number and a FAT. To write code into the device, select
the |GTO| function and key in the address at which you wish to start writing code.

ISHIFT||GTO| ADR:_

[x/[o][0][O] ADR: x000
R/S| ADR: x000

ADR: x000

x000 000

The display will now show the address pointed to, the word currently at that location and the three underscores
which can be filled with the hex digits representing the new word to be written to that address. Let us, for
arguments sake, select the XROM number 31 (in decimal) for our Q-ROM.

113

[0][1][F] x000 000 O1F
IR/S| x001 000_ x000 01F XROM 31

Notice that if the printer is attached and it is in the correct mode, the word just written will be disassembled.

The address pointed to will be automatically incremented and you can then key in the next word to go
at the next address.

If you do not have a printer then you can verify that the word has been correctly written by pressing:

|SHIFT|[BST] x000 O1F __ __

Notice that the word at that address has now been changed to 01F. Pressing [SST| will step on to the next
address without altering the current location.

[SST| x001 000 __ x000 01F XROM 31

The number of FAT entries in the page is expected at address x001, so key:

[0][0][1] x001 000 001
IR/S| x002 000 __ x001 001 FCNS 01

Next we must input the FAT entry for the function. If we say that the function will start at address x100 this
will leave plenty of space to fill out the FAT with the maximum number of 64 entries and have plenty of
space to spare. If the function name will start at x100 then the first word of executable code will be at x107
since ‘STOSTKZ' will consume 7 words. Before keying in the FAT entry it is important to switch the printer
to MAN mode for reasons that will be explained later. Key in the FAT entry as follows:

[[o][0][1] x002 000 001
IR/S] x003 000 __ _ __
lo][0][7] x0003 000 007
IR/S| x004 000 __ __ __

Having input the FAT entry for our function, we can now switch the printer back to NORM or TRACE to
resume the printing functions. Since we know that the rest of the ROM is clearthere is no need to explicitly
key in the end of FAT marker (two NOPs).

We can now start to key in the function. To do this, hit either | —| or [SHIFT| [CMD]to get back to the com-
mand level. We now want to start entering code from address x100 :

[SHIFT]|GTO| ADR: ___
[x/[1][0][0] ADR: x100
|R/S| x100 000 ___ ADR: x100

Now refer back to the listing of the function and simply enter all the words.

0l[CI[E] x100 000 OCE
IR/S] x101 000 __ __ __ x100 OCE
[o][o][B] x101 000 00B
IR/S| x102 000 ___ x101 00B K

3/[E][O] x12D 000 30D
IR/S| x12E 000 __ _ _ x12D 30D RTN

114

When you have finished entering the function you should verify the listing and then exit MCED by returning
to the command level and pressing [ON].

Now test the function by setting EREG to a known value and then storing some data onto the stack and
XEQ ‘STOSTKE®

Recall the ZREGs and check the function has worked correctly. If there is an error, then you should verify
the code again.

Now you should enter Example 2 from 6.5 by following the same method except that the Q-ROM is already
initialised, so only the FAT needs to be updated.

To update the FAT go into MCED and key :

|SHIFT||GTO| ADR: __
[x][o][0][1] ADR: x001
R/S| x001 001 __ _ _ ADR: x001

Change the number of FAT entries to 2 by keying :

lol[o][2] x001 001 002
[R/S| x002 001 ___ x001 002 FCNS 02

Now single step over the next 2 words which contain the FAT entry for the first function.

[SST| x003 007 __ __ __ x002 001 STOSTKEL
[SST] x004 000 __ _ __ x003 007 ADDR x107

Notice that when address x002 is disassembled the function name is printed. The reason that the printer
should be switched to MAN mode whilst keying in a FAT entry is that, because at that time no function
name exists, the disassembler does not know this and assumes there is a valid function name at the ad-
dress pointed to by the FAT entry. Hence an invalid function name will be printed. (In fact, if you are unlucky,
it could result in printing a function name containing over 36000 characters.)

Now enter the new FAT entry (first switch printer to MAN mode):

[0][0][1] x004 000 001
[R/S] x005 000 ___
l0](3][2] x005 000 0032
IR/S] x006 000 __

This means that the ASUB function name will follow immediately after the RTN at the end of STOSTKE

Now key in the function starting at address x12E.

[—] COMMAND?
|SHIFT|[GTO| ADR:_
[[XH1H2HE] ADR: x12E
R/S| x12E 000 __ ADR: x12E

115

7.4 EDITING MACHINE CODE

MCED has four editing facilities, CLR (clear), CPY (copy), INS {insert) and DEL (delete).

The operation of CLR has already been demonstrated in the previous section.

ICPY|
The copy function is used to duplicate any section of ROM space into a Q-ROM device. To demonstrate
its operation let us duplicate the STOSTKE which you have already entered in the Q-ROM. To dothis,

follow the key sequence:

|CPY| cey- _.,_
[x|[11/0]|0] CPY: x100, __ _ _ __
IDEC]|0l[4][6] CPY: x100,d046
IR/S] ADR:_ CPY: x100,d046
[x][1][7][0] ADR: x170
IR/S] COMMAND? ADR: x170

What has happened is that we filled the first four underscores with the start address of the block of code
to be copied. Then, pressing the [DEC]| key followed by 0] [4] [6] specified that we wished to copy 46(decimal)
words from the start address. We could, alternatively, have keyed in the end address as: [x| [1] [2] [DI.
Having specified the block of code to be copied, we had to specify the start address to which the code
would be copied, which in this instance is [x| [1] [7] [0] - which means that the duplicate version of the
function will follow immediately after ASUB in the Q-ROM.

Now, having duplicated the function, you must alter the FAT accordingly - no help this time.

If you now exit MCED and run a full CAT 2 you will see two entries of STOSTKE

INS| and |DEL|
Now let’s use the insert and delete options to alter the duplicate copy to make it STOSTKE which will save
the stack in the first five registers below the permanent end (.END.), checking only that all five registers
are available in main memory so that the data will not disturb the first registers of extended memory.

First change the function name accordingly:

|SHIFT||GTO| ADR: __
[x1[1][7][0] ADR: x170
IR/S| xiI700CE__ ADR: x170
l0][8][5] x170 OCE 085
{R/SI x171 00B ___ x170 O8E E
—| COMMAND?

116

Now referring to the listing of STOSTKZ in Section 6.5 we can delete lines 08 to 1F and insert in their place:

266 C=C-1 X C(X) = address of .END. -1

158 M=C Store address of destination block in M

106 A=C X Steoere address in A[X]

130 LDI

0C4 CON 196

246 C=A-C X Carry if not enough room in main memory

381 =* "ERRNE"

00B CGO 02E0 No room, so exit via ‘NONEXISTENT’

130 LDI

004 CON 04 Lcad address of first register to bhe saved

To delete lines 08 to 1F key in:

IDEL] DEL: __ .,_
Ix|[1][7]/8] DEL: x178, __ _ _ __

[x][1][8][F] DEL: x178, x18F
IR/S] LMT: x19D
IR/S] COMMAND? LMT: x19D

The limit is the address beyond which no code will be changed which,in this case, is the end of the func-
tion at x19D.

Now we must make room for the new 10 words to be inserted:

[INS| INS:_
x|[1][71(8] INS: x178, __
|DEC]|0][1][0] INS: x178,d010
IR/S| LMT INS: x178,d010
Ix|[1][8][F] LMT: x18F
IR/S] COMMAND? LMT: x18F

Here we have specified the start address, the address before which the block of NOPs will be inserted,
the number of NOPs to insert (10) and the limit. The limit in this case is 10 words after the end of the func-
tion (x185), i.e. at x18F.

Now all that is left to do, is to replace the NOPs starting at x178 with the new words and finally check that
STOSTKE works.

Other points to note about INS, DEL, CPY and CLR.

If the specified end address is less that the start address then a DATA ERROR message will be generated.

If Start address <= Limit <= End address then a DATA ERROR message will be generated.

If you specify a decimal number of lines, using [DEC|, where: = d000 then it will default to d0O1 lines.

CPY is able to copy into an overlapping block of code.

117

7.5 STORING AND RETRIEVING ROM DATA

MCED has a facility for storing ROM data, i.e. your machine code programs, into the 41’'s RAM and recall-
ing it and placing the code into a Q-ROM device. Remember, however, that this does not mean you can
actually run the machine code from the 41’'s RAM, only that you can download it to RAM in the process
of transferring to, or from, mass storage media.

To demonstrate the use of these functions, [SVE| and |GET]|, let’s save the ASUB function which is located
at x12E to x16F in the Q-ROM.

Firstly, we must establish at which absolute address Reg 00 is to be found. Exit from MCED and key:

RCL c
XEQ ‘DECODE®

The address of register 00 is given by the last 3 but 3 characters displayed. We need to know the absolute
address since MCED uses absolute addresses for all its register operations; this means that we are not
restricted to which area of RAM can be used for storing ROM data and hence it is possible to store the
data directly into extended memory. The address of register 00 will be referred to as ‘pgr’ since it will vary
from user to user.

Having noted the address, now XEQ ‘MCED’ and do the following:

|SVE| SVE: .,_
(x][1][2]|E] SVE: x12E,_
[x![1]6][F] SVE: x12E,x16F
R/S| REF: A _ __ SVE: x12E, 16F

Having specified the block of code to be saved we must now key in the absolute address of the first register
into which the code will be saved.

[pllqllr] REG: Apgr
R/S| COMMAND? REG: Apgr

If the message ‘NONEXISTENTis returned then there is not enough room to save the code in, so increase
the SIZE and try again. You will require a SIZE >= 014.

MCED has now taken the code from the Q-ROM and packed it into a format that can be placed in main
memory. For more details on the exact format of the packed data, refer to the end of this section.

Now clear the block of code (from the Q-ROM) that we have just saved. You may like to verify that it has
been cleared, before we reinstate the code. To recall the code from the 41’s RAM, simply key in:

|GET)| GET A_ __,_
Ipllallr] GET ApgrA_
[DECI[0][1](4] GET Apqrdo14
IR/S| ADR: _ __ GET: Apqrdo14
(x][1][2][E] ADR: x12E
IR/S| COMMAND? ADR: x12E

118

Notice that, as with all MCED functions, we can specify a decimal quantity rather than an end address
in the initial prompt. (We recalled 14 registers since 66 words were saved and 66 words / 5 words perregister

= 13.2 registers).

ASUB will now have returned to the Q-ROM.

The ‘ROMREG+’ format

The ROMREG+ format stores 5 * 10-bit ROM words into one 56-bit register according to the following
method:

Bit [55:52| =

Bit |51]
Bit 50|

Bit [40:41|=
Bit |39:30|=
Bit [29:20|=
Bit [19:10|=
Bit [9:0] =

0001 this makes the register appear as alpha data to prevent normalisation.

0
0 if the register contains a full complement of 5 words
= 1 if the register is incomplete
first 10 bit word
second 10 bit word
third 10 bit word
fourth 10 bit word
fifth 10-bit word

If the registeris incomplete,i.e. bit 50 = 1, then the last digit of the register contains the number of words

missing from that register.

119

120

8

ADVANCED MACHINE CODE
PROGRAMMING

This chapter covers some of the more advanced instructions for machine code programming. They are
mentioned here for the sake of completeness. This chapter is not intended to be treated as an instruction
manual, but rather, presents the basic information needed by an advanced machine code programmer. The
beginner should firstly gain experience in writing machine code and contact the User Groups mentioned
in Appendix C for further information.

8.1 SPECIAL INSTRUCTIONS
This section covers the Class 0 instructions that were not mentioned in Section 6.3.1, and some extra ones

that are used with peripherals.

WMLDL (040h)

This instruction has been adopted by manufactures of some Q-ROM devices as the instruction used to
write data to their Q-ROM equipment. When this instruction is executed, the Q-ROM device will take the
ROM address to write to from C|6:3| and the 10-bit word to be written to that address from the ten least
significant bits of C[X]. Note that this instruction does not write to either the ProtoCODER 1 or ProtoCODER
2 devices. For details on how to write to ProtoCODERSsrefer to their manuals.

ENBANK1 and ENBANK2 (100h and 180h)

These two instructions are only used by the HP-41CX. The CX has 6 internal 4k ROMs - pages 0, 1 and
2 are similar to those in the CV and form the basis of the O/S; page 3 contains part of the Extended func-
tions ROM along with extensions to the O/S; page 5 is in fact two pages or banks of 4k. The primary page,
bank 1, is the TIMER section and the secondary page, bank 2, contains extra code for the extended func-
tions. The two instructions ENBANK1 and ENBANK2 are used for selecting which bank of 4k appears in
the page 5 address space. Inside the CX there are only two ROM chips, each containing 12k of the O/S.
Chip 1 contains rom pages 0, 1 and 2 and chip 2 contains pages 3, 5 and 5’. In order to switch page 5
banks the instruction has to be located at an address that is physically on the same chip. This means that
if you try executing these instructions from a Q-ROM device they will not work. The recommended method
for selecting the two banks is:

For bank 1 - NCXQ 5FC7
For bank 2 - NCXQ 5FC9

121

F=ST, ST=F and ST<>F (258h, 298h and 2D8h)

The F register is the 8-bit flag-out register which is used for controlling the beeper. Whenever there is a
non-zero value in register F, the beeper will be making a noise. When the 41 generates tones, both normal
and synthetic,it first clears F and then loads FFh into ST. The tone is then actually generated by exchang-
ing F and ST repeatedly thus switching the output port on and off. The number of instructions between
swaps is used to control how long the output port is on and off and hence controls the frequency of the
beep. The number of times the swaps are performed determines the duration of the tone.

PERTCT (Class 0, Subclass 9)

The HP-41 CPU has the ability to let an external PERipheral Take Conlrol of the instructions being process-
ed by the CPU. If control is passed to a 'smart’ peripheral (i.e. one that has a processing ability of its own)
by the PERTCT instruction, the following instructions are not observed by the 41s CPU but are rather inter-
preted in a different manner by the peripheral. Control is returned to the 41 when an instruction with least
significant bit of 1 is encountered.

When control has been passed to the peripheral, there are three types of instruction that can be executed;
test an external flag (?XF), read a peripheral register (RPREG) and write to a peripheral register (WPREG).

These instructions conform to the following bit patterns:

?XF N (N=0-F) test an external flag
nn nn00 0011

This instruction must return control, as the carry flag will be set if the external flag under test is set.

WPREG xy(xy=00-FF) write a constant xy to the selected peripheral register
XX Xxyy yyOr if r=1 then return control to 41

PREG N (N=0-F) read peripheral register N to C [1:0|

nn nn11 101r if r=1 then return control to 41

Class 0, Subclass B

The CPU has a flag input line, for use by peripherals, whose state during each of the digit times represents
one of the fourteen input flags. This line is tested during a ?PF (test peripheral flag) instruction and if the
test is true, then the carry flag will be set. Most of these instructions are dedicated to certain peripherals
such as the TIMER,printer, card reader, etc., and as such have a special mnemonic - to be covered in
later sections of this chapter. There is however one ‘general purpose’ peripheral flag, PF 13, which is the
service request flag. If this flag is set, then the 41 will service that peripheral at the next available opportuni-
ty. The mnemonic for testing the service request flat is ?SERV

122

PERSLCT (3F0h)

There are some peripherals that require data to be sent to and from them but do not have the ‘intelligent’
capabilities of peripherals that can take control (PERTCT). These peripherals, when selected, simply inter-
pret some of the read and write instructions in Class 0 (Subclasses A, C and E) and perform the peripheral
operations when these instructions are encountered.

PERSLCT takes its argument, an indentifier for the peripheral, from C[1:0]. Peripherals that use the PERSLCT
instruction are:

Peripheral Indentifier (C[1:0])

Timer FB
Card Reader FC
Display FD
Wand FE

Since peripherals that are selected using this instruction use the Class 0 instructions that are normally used
to read and write to the status register, it is important to deselect any RAM register before selecting such
a peripheral. The preferred method for selecting a peripheralis:

130 LDI
010 CON 16
270 RAMSLCT
130 LDI

Oxy CON Xy
3F0 PERSLCT

Select the nonexistent register at 010

Select peripheral xy

W
V

W
W
R

0 @iaAa|lB|C|D|E|F|G|H|T|J|K|L|M|N]O

1 Pl R|S|{TluUulVv|iw|x]|Y/|[z]T[]|N]1]Hn

ROW 2 space| ! "H |9 5| & ' ()

|

¥

|

+ |4 - |3/

3 o 1121314]5|6|7]|8[9|B||<|=1]>]7

4«

|

Fla|blclalel "

|

"

|

JTIAIAIRIp|#£]s |4

Ficure 8.2. DISPLAY CODED CHARACTERS

123

8.2 DISPLAY HANDLING
Each character in the display comprises nine bits - where bits 5 to O are the character code according
to the first four rows of Figure 8.2 (Display codes), i.e. bits 5 and 4 are the row number and bits 3 to 0
are the column number; bits 7 - 6 are used to represent the punctuation following the character and bit
8 is used to indicate a character from row 4 of the display character code table. If bit 8 is set, then bits
5 and 4 should be clear otherwise a space will be displayed. The punctuation field (bits 6 and 7) are worked
out in the following manner:

Punctuation Bit 6 Bit 7

None 0 0
. (period) 0 1
: (colon) 1 0
, (comma) 1 1

The display is in fact organised into 3 main registers A, B and C (not to be confused with the accumulators
in the CPU). Display register A contains the lowest 4 bits (bits 3 - 0) for all of the characters, register B
contains bits 7 to 4 for all twelve characters and register C contains bit 8 for all twelve characters. There
is also a twelve bit annunciator register.

The display responds to 37 instructions:

230 DISOFF Switch the display off (ie go to drowsy mode)
320 DISTOG Toggle the display on/off
3FC DISCMP
3F0 PERSLCT If c[1:0/]=FDh then display is selected else display is diselected
2F0 WRITAN Copy the bit pattern in C[X] to the annunciators
178 READAN Read the annunciator bit pattern to CE

When writing to, or reading from the annunciators, the bits in C[X| correspond to the following annunciators:

Bit: 11 10 9 8 7 6 5 4 3 2 1 0
BAT USER G RAD SHIFT 0 1 2 3 4 PRGM ALPHA

The remainder of the display instructions are used to read and write to display registers A, B and C. The
format for the ZENCODE mnemonics of these instructions are:

The first 2 letters indicate whether the instruction is either a read or a write instruc-
tion (RD or WR).

The next 1 to 3 characters indicate which display registers are to be used.
Then follows a numberindicating how many characters are to be included in the opera-
tion and the last letter indicates if the characters are to be read from or written to
the left or right hand side of the display.

124

Thus the mnemonic RDAB6L means ReaD from registers A and B six characters from the Left of the display.
Note that when writing to the display the characters are pushed on to the specified end of the display thus
rotating the display and losing characters from the other end. Reading from one end of the display causes
the display to be rotated so that the character(s) just read are taken off the end specified and pushed back
on the other end. Also when reading from or writing to the display registers one digit of accumulator C
is used for every character being accessed and each display register being used; i.e. WRAB6R uses 12
digits of C (6 characters 2 display registers).

028 WRA12L
068 WRB12L
0A8 WRC12L
OE8 WRABG6L
128 WRABCA4L
168 WRABG6R
1A8 WRABC4R
1E8 WRAIL
228 WRB1L
268 WRCI1L
2A8 WRA1R
2E8 WRB1R
328 WRC1R
368 WRAB1R
3A8 WRABC1L
3E8 WRABCI1R

038 RDA12L
078 RDB12L
0B8 RDC12L
OF8 RDAB6L
138 RDABCA4L

1B8 RDC1L
1F8 RDA1R
238 RDB1R
278 RDC1R
2B8 RDAI1L
2F8 RDB1L
338 RDABI1R
378 RDABIL
388 RDABC1R
3F8 RDABCIL

8.3 THERMAL PRINTER (HP-82143A)

The HP-82143 has the intelligent NPIC (Nut Peripheral Interface Chip) on board and is selected to ‘take
control’ with the instruction:

264 PERTCT 9

When the printer chip is in control it responds to the following instructions:

003 ?XF 0
043 ?XF 1
03A RPREG 0
007 PRINT

Is printer busy?
Is printer status valid? }
Read printer status to C|[13:10|
Add bytein C[1:0] to print buffer

The printer status bits, when read into C[13:10] are as follows:

digit 13 digit 12 digit 11 digit 10
M1 MO PRT ADV OOP LB IDLE BE LC SCO DW TEOL LEOL IGN __ __

MO and M1 indicate the mode M1 MO

Manual 0 0

Normal 0 1

Trace 1 0

125

PRT — PRINT Key is down
ADV — PAPER ADVANCE key is down
OoOoP — OUT OF PAPER
LB — Printer battery is low
IDLE — Printer is idle
BE — Buffer Empty
LC — Lower case (ie User Flag 13 set)
SCO — Special Column Out Mode
DWM — Double Wide Mode (ie User Flag 13 set)
TEOL — Type of last End of Line (O=left justified, 1=right justified)
LEOL — Last byte an End of Line
IGN — Ignore PAPER ADVANCE key

8.4 THE TIMER MODULE
The Timer chip (Phineas) contains 2 clock registers, timer A and timer B, and various other registers for

accuracy factor, status etc. It responds to 26 instructions:
36C ?ALM Set carry if an alarm is due
1AC ?TFAIL Set carry if clock register access failed
3F0 PERSLCT If C [1:0] = FBh then the timer chip is enabled else it is disabled
270 RAMSLCT Disables the timer chip
060 POWOFF Increments the time immediately if CPU will stop before the next normal

increment

The remaining 21 instructions are only obeyed if the timer chip is enabled:
028 WTIME Write C to clock register
038 RTIME Copy clock register to C
068 WTIME- Write C to clock register and set to decrement
078 RTIMEST Copy clock register to C and start correction count
0A8 WALM Write C to alarm register
0B8 RALM Copy alarm register to C
OE8 WSTS If timer A then write C to timer status register

timer B then write C to accuracy factor
OF8 RSTS If timer A then copy timer status register to C

timer B then copy accuracy factor to C
128 WSCR Write C to scratch register
138 RSCR Copy C to scratch register
168 WINTST Write C to interval timer and start
178 RINT Copy interval timer to C
1E8 STPINT Stop interval timer
228 WKUPOFF If timer A then disable seconds wake up

timer B then disable minutes wake up
268 WKUPON If timer A then enable seconds wake up

timer B then enable minutes wake up
2A8 ALMOFF Disable alarm
2E8 ALMON Enable alarm
328 STOPC Stop clock
368 STARTC Start clock
3A8 TIMER=A Select timer A
3E8 TIMER=B Select timer B

126

8.5 HP-IL
It is recommended that you read ‘The HP-IL System’ by Kane, Harper and Ushijima before writing machine

code to drive the HP-IL.

Data can be copied from C[X| into any one of the HP-IL control registers 0 - 7 using the last 8 instructions
in Class 0, subclass 0.

200 HPIL=C 0 copy C[1:0| into HP-IL register O
249 HP1L=C 1 copy C[1:0] into HP-IL register 1

3C0 HP1L=C 7 copy C[1:0] into HP-IL register 7

Data can also be read from or written to any of the HP-IL registers by selecting the register using the PERTCT
instructions and then using the instructions WPREG and RPREG as described in section 8.1 .

24 PERTCT 0 Select HP-IL register 0
064 PERTCT 1 Select HP-IL register 1

)

1E4 PERTCT 7 Select HP-IL register 7

Also HP-IL status flags can be testing using instructions in Class O, subclass B:

OEC ?0ORAV Test if Output Register AVailable
12C ?FRAV Test if FRame AVailable

16C ?IFCR Test if InterFace Clear Received
26C ?FRNS Test if Frame Received Not as Sent
2AC ?SRQR Test if Service ReQuest Received

8.6 OTHER PERIPHERALS
The HP 82153 Wand is selected using PERSLCT with C[1:0] = FEh. If the wand is selected then the in-
struction 038 RDATA will read one byte from the wand buffer into C. Also the instruction 22C ?WNDB can
be used at any time to test for data present in the wand buffer.

The card reader is selected using PERSLCT with C[1:0| = FCh. If it is selected then the following instruc-
tions are enabled:
028 ENDWRIT End write cycle
068 STWRIT Start write cycle
0OA8 ENDREAD End read cycle
OE8 STREAD Start read cycle
168 CRDWPF Fetch CaRD Write Protect Flag
1E8 CRDOHF Fetch CaRD Over Head Flag
268 CRDINF Fetch Card IN Flag
2E8 TSTBUF TeST card read/write BUFfer
328 SETCTF SET Card Trip Flag
368 TCLCTF Test and CLear Card Trip Flag
3E8 CRDEXF Fetch CaRD reader EXternal Flag

127

SFFVRETRRy

LEYSALS
AWATAITR

RSPT
TRAWTR

SRR

1st July 1984 GC FW JP DB IM DP EB

128

APPENDICES

APPENDIX A

OWNERS INFORMATION

MAINTENANCE

The Zengrange ZENROM programmer’s module does not require maintenance, and contains no ser-
viceable parts. During use there are several precautions that you should observe.

CAUTIONS

Do not place fingers, tools or other objects into the plug-in module ports of your HP-41
Computer nor into the ZENROM connector socket. Damage to the ZENROM module or
to the HP-41’s internal circuitry could result.

Turn off the computer- by pressing | ON | - before installing or removing a ZENROM module.

Modules can only be inserted one way into a port - Do not try to force a module into a
port as this could damage the port or module connector.

Although the ZENROM case is strongly constructed, it should be handled with care and
kept in the protective dust-proof bag or module holder when not installed in the HP-41 ports.

Protect the HP-41’s ports from dust by keeping a port cap installed in the empty ports.

LIMITED ONE - YEAR WARRANTY

ZENROM has been written by Zengrange Ltd and manufactured to the highest possible standards by
Hewlett Packard. With the exception of software content, ZENROM is warranted by Zengrange Ltd against
defects in materials and workmanship affecting electronic and mechanical performance for a period of
one year from the date of original purchase. If given as a gift, the warranty is transferred to a new owner
for the remainder of the period. During the warranty period, Zengrange Ltd will replace or, at our option,
repair a product that proves to be defective, provided it is returned, shipping prepaid, to Zengrange Ltd.

131

Zengrange Ltd make no expressed or implied warranty with regard to the program material offered, nor
to merchantabilty or fitness of the program material for any particular purpose. Program material is made
available to the user on an ‘as is’ basis, with the entire risk as to quality and performance resting with
the user. Whilst every effort has been made to eliminate deficiencies in the program material, the user
(and not Zengrange Ltd, nor any other party) shall bear the entire cost of all necessary correction and
all incidental or consequential damages.

ZENROM is sold on the basis of specifications as at manufacture. Zengrange Ltd shall be under no
obligation to modify or update ZENROM once manufactured.

CAUTION

ZENROM allows access to the HP-41’s operating system, both directly via techniques of
Synthetic Programming and indirectly, by allowing users to write their own machine language
routines. Whilst the functions contained in ZENROM will not harm the HP-41 itself, it is
possible for the user to cause either:

- a loss of memory contents (MEMORY LOST)
- or a ‘lock-up’ of the keyboard (placing the processor into an infinite loop) thereby preven-
ting response to commands or keystrokes. This, and the recovery method, is described
in the Owner’s Manual for the HP-41CX.

Neither of these problems will cause harm to the HP-41, nor to ZENROM. However, the
problem itself, or action taken to recover from a lock-up, may cause loss of user programs
stored in RAM. Because these problems are user dependent, Zengrange wili accept ab-
solutely no responsibility for any loss or damage - whether consequential or incidential.
It is good practice to back-up programs onto mass storage media periodically.

WARRANTY FOR CONSUMER TRANSACTIONS IN THE UNITED KINGDOM

This warranty shall not affect the statutory rights of a consumer whose rights as Buyer and the obliga-
tions of Seller are determined by statute.

LIMITATIONS OF WARRANTY

The Zengrange warranty does not, and shall not apply if ZENROM has been damaged by accident,
misuse or if attempts have been made to modify the module. No other expressed or implied warranty
is given. The repair, or replacement of ZENROM is your exclusive remedy.

132

SHIPPING FOR SERVICE

In the unlikely event that ZENROM is found defective, return the module, postage prepaid, to:

Zengrange Ltd,
Greenfield Road,
Leeds,
LS9 8DB,
England.

When returning ZENROM, be sure to include the following items:

* A sales receipt or other proof of purchase if the one-year warranty has not expired.

* A description of the problem, detailing when and how the problem occurs.

Whether ZENROM is still under warranty or not,it is your responsibility to ensure that the unit is securely
packaged to prevent damage in transit (this is not covered by the Zengrange warranty) and that postage
costs to Zengrange are paid.

TECHNICAL ASSISTANCE

The keystroke procedures, program material and operating instructions provided for using ZENROM are
supplied with the assumption that the user has a working knowledge of the concepts, terminology,
technology and equipment used. Zengrange Ltd’s technical assistance is limited to explanations of
operating procedures used in the manual and verification of results obtained in the examples.

ZENROM provides users with the means of accessing the operating system of the HP-41, and of produc-
ing their own machine language routines. As neither Synthetic Programming, nor Machine Language
Programming is supported by Hewlett Packard, users should under NO circumstances contact Hewlett
Packard for information.

133

134

APPENDIX B

OPERATING LIMITS

You will no doubt have noticed in the earlier sections that ‘limitations’ have been mentioned against cer-
tain ZENROM functions. These limitations are not ‘bugs’ in the programming of the ZENROM, but rather
limitations and restrictions forced upon the design team by the manner in which the HP-41’s operating
system handles certain requirements.

An example should make this clear:

If you switch your HP-41 into alpha mode, then press the User key, the processor in the
41 starts running continuously (as it would, for example, in StopWatch mode). This was
the only way the HP-41 could be made to respond correctly to your keystrokes while in
this mode. However, as in stopwatch mode, peripheral devices; e.g. Wand, Card Reader,
Printer or HP-IL cannot ‘interrupt’ the HP-41’s operation, as they otherwise would in normal
ALPHA mode.

This is a limitation of the HP-41’s internal programming, and is one of several such problems that face
a machine language programmer on the HP-41. Whilst it might have been possible to work-around some
restrictions, this would have greatly increased the amount of machine code needed for ZENROM routines
and also have reduced the number of useful functions we could include. We think you will agree that
our choice of powerful ZENROM routines with minor limitations was a good one!

Although there are ways to avoid the limitations in ZENROM, we have listed them below — examine
the list carefully and make sure you understand exactly what the limitations are.

DIRECT-KEY SYNTHETICS:

The prompt-expansion functions in ZENROM, that allow you to directly key |RCL| |.| [M|, etc., will not
work on early HP-41s because of an operating system change by Hewlett Packard. Such 41s will normal-
ly have internal ROMs with revision codes before ‘GFF‘ The particular ROM causing the difficulty is
ROM 0 - which must have a revision code after ‘F’. Although it is possible for a ZENROM owner to check
the ROM-revisions, we have included the relevant serial numbers below:

135

HP-41 INTERNAL ROM REVISIONS AND SERIAL NUMBERS

Rom Revisions From Serial No. To Serial No.
D, DE 1926XXXXXX 1938XXXXXX

F, D, E 1936XXXXXX 1952XXXXXX

F EE 1951XXXXXX 2034XXXXXX

G, FF 2035XXXXXX

ROM revisions up to ‘FEE’ were used only in the model HP-41C, not in the HP-41CV nor HP-41CX. Revi-
sions N, F, L are currently used in the HP-41CX. However,it is possible, if your HP-41C has been returned
to Hewlett Packard for servicing, some ROMs may also have been replaced at that time.

Using the MCED function in ZENROM, the User can check ROM revision for each of the internal ROMs.
The sequence is as follows:

XEQ ‘MCED’ display shows: COMMAND?
press |SHIFT||GTO| display shows: ADR: __
now input the address of internal ROM ‘0’ as ‘'O F F E’
using the hexadecimal keypad

display shows: ADR: OFFE
press |R/S| display shows: OFFE 0Or

The ‘r" in the second field is the revision digit. Compare this with thosein the table below:

byte ‘r’ | 41 5| 6| 7] 8] 9| A| B|] C| D| E|

ROM revision | D] E| F| G| H| 1 | J|K|L|M|N|

You can also check the other internal ROMs by inputting the address as 1 F F E' and 2 F F E.

If you feel you would like the full benefit of ZENROM, then HP will update your internal 41-ROMs- against
a specific request - for the standard service charge. Contact your local HP Service Centre for details.

136

USER ALPHA KEYBOARDS:

As mentioned in the example above, the USER ALPHA Keyboards require the 41’s processor to run con-
tinuously - including when the SYNTEXT hex promptis in the display. This prevents the HP-41 from respon-
ding to service requests from the Bar-code Wand, the Card Reader, the Timer, or the Printer |PRINT|
key. In addition, pressing the |ADVANCE | key, whilst in USER ALPHA mode during the entry of a pro-
gram, will cause the printer paper to be advanced rather than allow an ADV instruction to be entered
in the program. Simply complete the SYNTEXT prompt or switch off USER to allow these devices to
take control. To reduce battery drain during these modes, the HP-41 is set to ‘timeout’ (switch off) after
approximately 2-minutes instead of the usual 10 minutes.

ZENROM uses scratch areas in status registers R and e, to store the status of the USER flag when

entering USER ALPHA mode - so that you always enter ALPHA in normal mode and, upon exiting, return
to the mode set previously. Executing functions that store information into registers R or e whilst in USER
ALPHA mode may overwrite this.

The system routines used by ZENROM to create the ‘new’ USER ALPHA keyboards will only allow
ZENROM to operate upon key release and providing only one key is pressed at any one time.

Try this:

enter alpha mode and clear ALPHA,;

now press [USER]|, then press and hold the |a| key

- this will show ‘@’ in the display;

now, before releasing |al, press |b|, release a, and then release b..

- the result is entered as ‘aB’

To correctly use the USER ALPHA keyboards, you must make sure that a key is released before press-
ing another. This is not really a great problem for the User as the ABCDE layout of the HP-41 keyboard
is not designed for speed typing.

Neither the USER ALPHA nor SYNTEXT entry modes will operate during a PSE instruction, inside the
HP-41CX Text Editor (ED), nor during GETKEYX.

137

GENERAL:

Because of the manner in which ZENROM takes over control of the operating system at times, only one
ZENROM should be plugged into the HP-41 at any one time.

ZENROM has the same ID as the HP-STANDARD APPLICATIONS PAC. Therefore, a conflict will occur
if both modules are present at the same time. Although no harm will come to either module, the HP-41
will only see the module in the lowest numbered port. XROM 05 was chosen because the STANDARD
PAC is the only module presently using this ID. Other XROM ID’s, particularly those allocated to custom
modules, have considerably more conflict of usage.

The HP-IL DEVELOPMENT Module function ‘ROMCHKX; if applied to ZENROM, will produce an unusual
ROM label of:

05 z)-L:a.

However, the function will then append ‘TST’ (meaning Testing the ROM) and then should verify correct-
ly by displaying ‘OK’.

138

APPENDIX C

BIBLIOGRAPHY & REFERENCES

USER GROUPS

ZENROM Users interested in finding out more about both Synthetic and Machine Language programm-
ing are recommended to contact one of the well established User Groups around the world. These groups
are devoted to providing assistance and information for fellow users of Hewlett Packard’s portable and
hand-held computer ranges.

The most active groups, holding regular meetings and publishing their own reguiar magazines contain-
ing information of benefit to ZENROM Users, arelisted below. For information on the many smaller groups
in other countries, contact PPC in California, USA.

When writing to one of the User Groups, please enclose a Self Addressed Envelope together with stamps,
International Reply Coupons or the common currency of two HP-41 magnetic cards.

PPC
Personal Programming Center,
PO. Box 9599, Fountain Valley, California, CA 92728-9599, USA
English language journal ‘PPC-Calculator Journal’ supporting SP and M-Code. Back issues
provide valuable information on the development of SP and M-Code programming.

PPC(UK)
Personal Programming Club,
clo Astage, Rectory Lane, GB - Windlesham, Surrey, GU20 6BW, England. Membership
Enquires: c/o Dave Bundy, 9 Kings Court, Kings Avenue, GB - Buckhurst Hill, Essex, 1G9
5LP, England
English language journal ‘DATAFILE’ supporting SP and beginning M-Code.

PPC-DANMARK
Personal Programming Center - Danmark,
Postboks 2, DK - 3500 Vaerloese, Denmark. Danish language journal ‘USER’ supporting SP.

PPC-TOULOUSE
Personal Programming Club - Toulouse,
77 rue du Cagire, F - 31100 Toulouse, France.
French language journal ‘PPC-T’ supporting SP and active in the development of M-Code.

139

PPC-PARIS

CCD

CCA

Personal Programming Center - Paris,
56 rue J.J. Rousseau, F - 75001 Paris, France.
French language journal ‘PPC-PC’ supporting SP.

Computerclub Deutschland,
Postfach 2129, D - 6242 Kronberg 2, West Germany.
Largest European group with German language journal ‘PRISMA’ that has contributed to
the development of SP. Active in M-Code development.

Computerclub Austria,
PO.Box 50, A - 1111 Wien, Austria.
German language journal.

PPC-MELBOURNE
Personal Programming Centre - Melbourne,
PO. Box 512, Ringwood, Victoria 3134, Australia. English language Journal ‘PPC-Technical
Notes’ directed towards more technical development of SP and currently the best coverage
of M-Code.
Note: European Membership & Subscriptions are now handled by: Editions du Cagire, 77
rue du Cagire, F - 31100 Toulouse, France, to whom membership & back-issue enquiries
should be directed.

PPC-SYDNEY
Personal Programming Centre - Sydney,
PO. Box C245, Clarence St, Sydney, NSW 2000, Australia.

PPC-HOLLAND
Personal Programming Centre - Holland,
c/lo TH Boekhandel Prins, Binnenwatersloot 30, NL - 2611 BK Delft, The Netherlands.

PPC-LAUSANNE

140

Club PPC-Lausanne,
Case Postale 79, CH - 1000 Lausanne 24, Switzerland.

BOOKS

Since the introduction of the HP-41 in 1979, quite a number of books have been written by members
of the above User Groups to aid the new user to become proficient in HP-41 programming techniques.
The better of these are listed below:

Synthetic Programming on the HP-41C by Dr W.C. Wickes (1980) Larken Publications, 4517 NW. Queens
Ave, Corvallis, Oregon 97330, USA. The first book on SP. Techniques for creating SP are dated - but
the book contains some valuable information. Treatment is advanced and possibly not suitable a a first

SP book.

German edition: Synthetische Programmierung am HP-41. Heldermann Verlag Berlin, Herderstr. 6-7, D-1000
Berlin 41, West Germany.

HP-41 Synthetic Programming Made Easy by Keith Jarett (1982) Synthetix, PO.Box 1080, Berkeley, California

94701-1080, USA Good ‘beginners’ book on SP

German edition: Syntherische Programmierung - leicht gemacht. Heldermann Verlag Berlin, Herderstr.
6-7, D-1000 Berlin 41, West Germany.

PPC-ROM User’s Manual by PPC (1981) PPC, PO.Box 9599, Fountain Valley, California 92728-9599, USA.
Published originally as handbook for the PPC-Custom ROM, but available separately. Valuable source
of information and application routines.

Au Fond de la HP-41 by Jean-Daniel Dodin (1981) Editions du Cagire, 77 rue du Cagire, F - 31100 Toulouse,
France. In French. Good introduction to SP HP-41 operation and M-Code.

The HP-41 Synthetic Quick Reference Guide by Jeremy Smith (1983) CodeSmith, 2056 Maple Avenue,
Costa Mesa, California 92627, USA. Very essential pocket sized reference book for SP printed on durable

plastic paper.

Extend your HP-41 by Dr Wlodek Mier-Jedrzejowicz (Summer 1984) PPC(UK), c/o Astage, Rectory Lane,
GB - Windlesham, GU20 6BW, England. Grew out of London User meetings. Answers many questions
that trouble the user and dealer. Presents new information covering the whole spectrum of HP-41 use.

Exploring Extended Functions on the HP-41 by Frank Wales (Autumn 1984) PPC(UK), c/o Astage, Rec-
tory Lane, GB - Windlesham, GU20 6BW, England. Most compleat treatment of Extended Functions &
Memory. Additional comprehensive section about SP - Part of which was adapted, with permission, for
Chapter 4 in this handbook.

Calculator Tips & Routines - Especially for the HP-41C/CV Edited by John Dearing (1981) Corvallis Soft-
ware Inc, PO.Box 1412, Corvallis, Oregon 97339-1412, USA. Compilation of useful utility routines including
SP

Extended & Translated into German: Tricks, Tips und Routinen fuer Taschenrechner der Serie HP-41.
Heldermann Verlag Berlin, Herderstr. 6-7, D-1000 Berlin 41, West Germany.

141

HP-41C Quick Reference Card by Keith Jarett (1982) Synthetix, PO.Box 1080, Berkeley, California
94701-1080, USA. Colour-coded Hexadecimal Byte Table printed on pocket sized laminated plastic card.

A must for every serious HP-41 User.

HP-41 VASM Listings - Zengrange Ltd, Greenfield Road, GB - Leeds, WYorks, LS9 8DB, England. PPC,
PO.Box 9599, Fountain Valley, California 92728-1080, USA. Editions de Cagire, 77 rue du Cagire, F - 31100
Toulouse, France. Annotated listings of the HP-41C/V operating system, as released by H.P. - Note these
are: ‘NOMAS’ (NOt MAnufacturer Supported). Purchaser agrees not to contact manufacturer.

Most of these books, and other HP-41 related equipment, can be obtained from one of the following
specialist mail order companies:

TH Boekhandel Prins, Binnenwatersloot 30, NL - 2611 BK, Delft, The Netherlands.

EduCALC Mail Store, 27953 Cabot Road, Laguna Niguel, California 92677, USA.

EQUIPMENT
Machine code creation and storage devices are available from the following organisations:

ERAMCO Systems, Valentynkade 27-Il, NL-1094 SR Amsterdam, The Netherlands.

ProtoTECH Inc, PO. Box 12104, Bolder, CO 80303, USA.

PPC-Denmark. Available Autumn 1984. (See User Groups above).

Printed circuit boards, kits and design details for self assembly are available from:

PPC-Calculator Journal, VON3p27, PPC USA. (See User Groups above).

142

Function

-ZENROM 3B

CLMM

CLXM

CODE

DECODE

LASTP

MCED

NOP

NRCLM

NRCLX

NSTOM

RAMED

TOGF

APPENDIX D

XROM NUMBERS

XROM Number

05,00

05,01

05,02

05,03

05,04

05,05

05,06

05,07

05,08

05,09

05,10

05,11

05,12

Byte Code

A1,40

Al1,41

A1,42

A1,43

Al1,44

A1,45

A1,46

A1,47

A148

A1,49

A1,4A

A14B

A1,4C

143

144

NOP
WMLDL
ENBANKT
ENBANK2
HPIL=C
CF
ST=0
SF
CLRKEY
?7FS
7KEY
LC
7PT=
-PT
G=C
C=G
C<>G
M=C
C=M
C<>M
F=ST
ST=F
ST<>F
ST=C
C=ST
C<>ST
PT=
+PT
CLRRTN
POWOFF
PT=P
PT=Q
7P=Q
?7BAT

APPENDIX E

‘ZENCODFE’

ZENROM Machine Code Mnemonics

(hexcodes are given in the machine code byte tables)

0-7
0-13d

0-13d

0-13d

0-Fh
0-13d

0-13d

No operation
Write word in C[x| to address in C[6:3] in a MLDL device
Enable the primary bank of ROM page 5 in CX
Enable the secondary bank of ROM page 5 in CX
Write C[1:0] to HP-IL register n
Clear flag n
Clear the Status Register (Flags 0-7)

Set flag n
Clear the KEY register and KEY down flag if no key down
Test flag n
Test if key is down
Load hex digit n at pointer position in C and decrement pointer
Test if active pointer is at digit n
Decrement pointer
Copy C[PT+1:PT| into G
Copy G into C[PT+1:PT|
Exchange G with C[PT+1:PT|
Copy C into M
Copy M into C
Exchange C with M
Copy ST into F (output port)
Copy F into ST
Exchange F with ST
Copy C[1:0] into ST
Copy ST into C[1:0
Exchange C[1:0] with ST
Set active pointer to digit n
Increment pointer
Clearfirst return address from stack
Halt the CPU (should be followed by NOP)
Select P as active pointer
Select Q as active pointer
Test if P and Q are pointing to same digit
Test if Battery is low

145

ABC=0
GTOC
C=KEY
SETHEX
SETDEC
DISOFF
DISTOG
CRTN
NCRTN
RTN
PERTCT
REG=C
?PF
?EDAV
20RAV
?FRAV
?IFCR
?TFAIL
?WNDB
?FRNS
?SRQR
?SERV
?CRDR
?2ALM
?PBSY
N=C
C=N
C<>N
LD
STK=C
C=STK
GTOKEY
RAMSLCT
CLRREGS
WDATA
RDROM
C=CORA
C=CANDA
PERSLCT
RDATA
C=REG
RCR
DISCMP
UNUSED

NCXQ
CXQ
NCGO
CGO

146

0-Fh
0-15d
0-13d

1-15d
0-13d

addr
addr

addr
addr

Clear all of AB and C
GOTO the address in C|[6:3|
Copy the KEY register to C[4:3]
Set Arithmetic mode to hex
Set Arithmetic mode to decimal
Switch off the display
Toggle the state of the display
If carry then return
If no carry then return
Return
Transfer control to peripheral n
Copy C into status register n
Test peripheral flag (flag input)

Test for output register available (HP-IL)
Test for frame available (HP-IL)
Test for Interface Clear received (HP-IL)
Test for clock access failure (TIMER)
Test for data in Wand Buffer (WAND)
Test for frame received not as sent (HP-IL)
Test for service request received (HP-IL)
Test for service request
Test card reader flag (CARD READER)
Test for Alarm due (TIMER)

Copy C into N
Copy N into C
Exchange C and N
Load the next word as a data byte into C[X|
Push C[6:3] onto return stack
Pop first return address off stack in C|6:3]
Copy KEY register into least significant byte of PC
Select RAM address in C[X]

Copy C into selected RAM register
Read address in C[6:3] to C[X
Replace C with logical OR of C and A
Replace C with logical AND of C and A
Select peripheral identified by C[X]
Read contents of selected RAM register into C
Copy status register n into C
Rotate C right by n digits

CLASS 1
If no carry then execute address
If carry then execute address
If no carry then goto address
If carry then goto address

CLASS 2

A=0 TE Clear specified field of A
B=0 TE Clear specified field of B
C=0 TE Clear specified field of C
A<>B TE Exchange A and B in specified field
B=A TE Copy A into B in specified field
A<>C TE Exchange A and C in specified field
C=B TE Copy B into C in specified field
BIS>C TE Exchange B and C in specified field
A=C TE Copy C into A in specified field
A=A+B TE Add B to A in specified field
A=A+C TE Add C to A in specified field
A=A+1 TE Increment A in specified field
A=A-B TE Subtract B from A in specified field
A=AA1 TE Decrement A in specified field
A=A-C TE Subtract C from A in specified field
C=C+C TE Add C to C in specified field
C=A+C TE Add A to C in specified field
C=C+1 TE Increment C in specified field
C=AC TE Subtract C from A, result to C in specified field
C=C+1 TE Decrement C in specified field
C=-C TE Take the 2’s (or 10’s) complement of C in specified field
C=-CA1 TE Take the 1’s (or 9’s) complement of C in specified field
78B40 TE Test if B not equal to 0 in specified field
?7C+#0 TE Test if C not equal to 0 in specified field
?2A<C TE Test if A less than C in specified field
?7A<B TE Test if A less than B in specified field
?7A40 TE Test if A not equal to O in specified field
?7A+C TE Test if A not equal to C in specified field
ASR TE Shift A right 1 digit in specified field
BSR TE Shift B right 1 digit in specified field
CSR TE Shift C right 1 digit in specified field
ASL TE Shift A left 1 digit in specified field

PT At digit pointed to by active pointer
X Exponent field (digits 2:0)
WPT Word through pointer (PT:0)
ALL All of the register

|
|

I
PQ | If P<Q then Q:P If P>Q then 13:P

|
|
|

XS Exponent sign, (digit 2)
M Mantissa (12:3)
S Mantissa sign (digit 13)

JNC | +63 /- 64 If no carry jump n words
JC | +63 /- 64 If carry jump n words

147

DISPLAY
WRA12L
WRB12L
WRC12L
WRABGL
WRABCA4L
WRABGR
WRABC4R
WRA1L
WRBI1L
WRC1L
WRA1R
WRB1R
WRC1R
WRAB1R
WRABC1L
WRABCI1R
WRITAN
RDA12L
RDB12L
RDC12L
RDABG6L
RDABCA4L
READAN
RDCI1L
RDA1R
RDB1R
RDC1R
RDAIL
RDB1L
RDAB1R
RDABI1L
RDABC1R
RDABCIL

148

|
|
|

%
|
|
|
|
|
|
|
|
|
;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Write C[11:0] to Ihs display register A
Write C[11:0] to Ihs display register B
Write C[11:0| to Ihs display register C
Write C|11:0] as 6 characters to lhs display registers A and B
Write C[11:0| as 4 characters to Ihs display registers A,B and C
Write C[11:0] as 6 characters to rhs display registers A and B
Write C[11:0| as 4 characters to rhs display registers A,B and C
Write C|0| to Ihs display register A
Write C|0] to Ihs display register B
Write |.s. bit from C|0| to Ihs display register C
Write C|0] to rhs display register A
Write C|0] to rhs display register B
Write |.s. bit from C[0| to rhs display register C
Write C[1:0] to rhs display registers A and B
Write C|X| to |hs display registers A,B and C
Write C[X| to rhs display registers A,B and C
Write C[X| into the annunciators
Read 12 digits of |hs display register A into C[11:0]
Read 12 digits of Ihs display register B into C[11:0]
Read 12 bits of Ihs display register C into C[11:0]
Read 6 characters of |hs display registers A and B into C[11:0|
Read 4 characters of Ihs display registers A,B and C into C[11:0|
Copy the annunciator status into C|X|
Read 1 bit of Ihs display register C into C[0|
Read 1 digit of rhs display register A into C|0|
Read 1 digit of rhs display register B into C|0|
Read 1 bit of rhs display register C into C|O0|
Read 1 digit of lhs display register A into C|[0]
Read 1 digit of Ihs display register B into C|0]
Read 1 character of rhs display registers A and B into C[1:0|
Read 1 character of |hs display registers A and B into C[1:0]
Read 1 character of rhs display registers A,B and C into C[1:0]
Read 1 character of Ihs display registers A,B and C into C|[1:0]

TIMER
WTIME | Write C to clock register
WTIME- | Write C to clock register, set clock to decrement
WALM | Write C to Alarm register
WSTS | If timer A, write C to status reg

| if timer B, write C to accuracy factor

WSCR | Write C to scratch register
WINTST | Write C to interval timer and start
STPINT | Stop interval timer
WKUPOFF | If timer A, disable ‘seconds’ wake up

| if timer B, disable ‘minutes’ wake up
WKUPON | If timer A, enable ‘seconds’ wake up’

| if timer B, enable ‘minutes’ wake up
ALMOFF | Disable alarm
ALMON | Enable alarm
STOPC | Stop clock
STARTC | Start clock
TIMER=A | Select timer A
TIMER=B | Select timer B
RTIME | Copy clock register to C
RTIMEST | Copy clock register to C and start correction count
RALM | Copy alarm register to C
RSTS | If timer A, copy status reg to C

| if timer B, copy accuracy factor to C
RSCR | Copy scratch reg to C
RINT | Copy interval timer to C

CARD READER
ENDWRIT End write cycle
STWRIT Start write cycle
ENDREAD End read cycle
STREAD Start read cycle
CRDWPF Fetch card write protect flag

|
|
|

%
CRDOHF | Fetch card over head flag

|
|
|
|
|

CRDINF Fetch card in flag
TSTBUF Test card read/write buffer
SETCTF Set card trip flag
TCLCTF Test and clear card trip flag
CRDEXF Fetch card reader external flag

PERIPHERAL CONTROL INSTRUCTION
?XF | 0-Fh | Test external flag
WPREG | 00-FFh | Write constant to selected peripheral register
RPREG | 0-Fh | Read peripheral register n into C

149

Numbering Systems

The commonest numbering systems are shown below in an equivalent table.

Decimal Hexadecimal Binary Octal
base 10 base 16 base 2 base 8

0 0 0 0
1 1 1 1
2 2 10 2
3 3 1 3
4 4 100 4
5 5 101 5
6 6 110 6
7 7 111 7
8 8 1000 10
9 9 1001 11
10 A 1010 12
11 B 1011 13
12 C 1100 14
13 D 1101 15
14 E 1110 16
15 F 111 17
16 10 10000 20
17 11 10001 21
18 12 10010 22
19 13 10011 23
20 14 10100 24
21 15 10101 25
22 16 10110 26
23 17 10111 27
24 18 11000 30
25 19 11001 31
26 1A 11010 32
27 1B 11011 33
28 1C 11100 34
29 1D 11101 35

30 1E 11110 36
31 1F 11111 37

32 20 100000 40
33 21 100001 41
34 22 100010 42
35 23 100011 43

(Note: BCD (Binary Coded Decimal) uses the first ten values of the binary numbering system - to four
digits i.e. 0000 to 1001)

150

CORRECTIONS

After the ZENROM was sent for manufacture, the following difficulties were found:

DECODE

MCED

The DECODE function name can be entered in a program line as a global execute instruc-
tion (i.e. XEQ ‘DECODE") with ZENROM not plugged-in.
However, when the program is run with ZENROM plugged-in, the value decoded to Alpha
will not be correct.
You should therefore enter the XEQ instruction with ZENROM plugged-in. This sequence
gives a saving of 6 bytes and executes faster for all XROM instructions.

During execution of the ‘GET’ function.
The GET command prompt allows specification of absolute register start and end addresses,
or using the [DEC]| key, the start address and a decimal number of main memory or XRAM
registers from which the data will be recalled.
The | — | (backarrow) key should allow deletion of decimal input, thus changing the ‘d’
(decimal) prompt back to an ‘A’ (absolute) prompt.
This sequence does not function correctly and could allow entry of an invalid address.
If you mistakenly select the DEC option, you should cancel the complete command by
pressing: [SHIFT| [CMD|.

LOW BATTERY ANNUNCIATOR
If the battery voltage falls below the voltage set for switching of the display annunciator
‘BAT", this may not be correctly seen by the HP-41.
During RAMED, the annunciator will not be activated. If RAMED is executed in a low BAT
displayed state, then the annunciator will be turned off.
During MCED, the low BAT state is sensed by the machine, but when activated, will also
display the USER annunciator.

151

152

Leeds Booklet Printing Company
LS5 3AE England

0532 744022

	Cover
	Foreword
	Contents
	List Of lllustrations
	Installing ZENROM
	Nomas - An Explanation
	Quick Reference Guide
	1. ZENROM Function Summary
	1.1 Catalogue Functions
	1.2 Operating Modes
	1.3 Direct-Key Synthetics

	Catalogue Functions
	2. Catalogue Function Descriptions
	2.1 Clearing Memory
	2.2 Non-Normalised Numbers
	2.3 Utility Functions

	Synthetic Programming
	3. The Theory Of Synthetic Programming
	3.1 SP - Origin and Uses
	3.2 Bytes and Memory
	3.3 The Byte Table
	3.4 Multi-Byte Instructions
	3.5 Variable-Length Instruction
	3.6 Register Formats
	3.7 HP-41 Memory Structure
	3.8 The Status Registers
	3.9 Applications of S.P.
	Scratch Storage
	Non-Standard Output
	Register Allocations
	Flag Manipulation
	Other Basic Applications

	3.A Summary
	4. Using ZENROM To Input Synthetic Lines
	4.1 Direct-Key Synthetics
	4.2 Extended Alpha and Text Entry
	User Alpha Keyboards
	SYNTEXT Entry

	4.3 Using the RAM-Editor (RAMED)
	Within Program Memory
	To Replace Bytes
	To Insert Bytes
	Outside Program Memory

	4.4 Examples Using RAMED

	Machine Language Programming
	5. An Introduction To Machine Code Programming
	5.1 What Is Machine Code ?
	5.2 Why Use Machine Code ?
	5.3 What You Need To Program In Machine Code
	6. Programming In HP-41 Machine Code
	6.1 What You Should Know Before You Start
	6.2 The HP-41 Central Processing Unit
	Accumulators
	Storage Registers
	Status Bits
	Program Counter & Return Stack
	Keycode Register & Keydown Flag
	Flag Out Register
	The Pointers
	Carry Flag

	6.3 The Machine Code Instruction Set
	Class 0 Instructions
	Flag Instructions
	Pointer Subclasses
	Accumulators Manipulations
	Registers G,M, ST & F
	Subclass C
	Memory Access Instructions
	Other Class 0 Instructions
	Class 1 Instructions
	Time Enable Fields
	Class 2 Instructions
	Class 3 Instructions

	6.4 The HP-41 ROM format
	6.5 Examples Of Machine Coded Routines
	Saving The Stack
	Substituting a Character in Alpha

	7. Using ZENROM To Input Machine Code
	7.1 The Machine Code Editor (MCED)
	7.2 Disassembling Machine Code
	7.3 Writing To A Device
	7.4 Editing Machine Code
	7.5 Storing And Retrieving ROM Data
	8. Advanced Machine Code Programming
	8.1 Special Instructions
	8.2 Display Handling
	8.3 HP-82143 Thermal Printer
	8.4 HP-82182 Time Module
	8.5 HP-82160 HP-IL Module
	8.6 Other Peripherals

	Appendices
	A. Owners Information
	B. Operating Limits
	C. Bibliography And References
	User Groups
	Books
	Equipment

	D. XROM Numbers
	E. Reference Tables
	ZENCODE Machine Code Mnemonics
	Class 0
	Class 1
	Class 2
	Class 2 - Time Enable Modifiers
	Class 3
	Display
	Timer
	Card Reader
	Peripheral Control Instructions
	Numbering Systems
	Corrections

