HP 12C Platinum

Solutions Handbook

HP would like to thank the following for their contribution:

Tony Hutchins, Wellington, NZ

Luiz Vieira, UNIPAC, Brazil
Gene Wright, Lipscomb University, USA

Abstract

NOTICE Hewlett-Packard Company makes no express or implied warranty with regard to the keystroke procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material prove defective, the user (and not Hew lett-Packard Company nor any other party) shall bear the entire cost of all necessary correction and all incidental and consequential damages. Hewlett-Packard Company shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

Introduction

About This Handbook

This HP 12C Platinum Solutions Handbook has been designed to supplement the HP 12C Platinum Owner's Handbook by providing a variety of applications in the financial area. Programs and/or step-by-step keystroke procedures with corresponding examples in each specific topic are explained. We hope that this book will serve as a reference guide to many of your problems and will show you how to redesign our examples to fit your specific needs.

This book expands the original HP-12C Solutions handbook with additional solutions in algebraic mode. It contains the same RPN program keystrokes and RPN step-by-step procedure keystrokes, in columns headed "12c platinum / 12C RPN Keystrokes". The alternative algebraic keystrokes are tablulated under "12c platinum ALG Keystrokes". In program listings the "Display" columns show the keycodes as seen on the HP 12C Platinum.
Appendix A also contains algebraic listings for all the RPN programs given in Part III of the HP 12C Platinum Owner's Handbook.

Presentation of Algebraic and RPN

The conventions used to differentiate between RPN and ALG mode are:

1. Program Listings

Complete and separate listings are given for all programs. They appear side by side in two columns with RPN on the left and Algebraic on the right.
2. Step-by-Step Keystroke Procedures

As for programs separate columns are used, with the RPN keystrokes on the left and the Algebraic keystrokes on the right.
3. Program Instructions

Program instruction steps are generally the same for both modes. Any differences are shown by clearly framing alternative steps and annotating the step or steps in the first frame as RPN, and those in the second as ALG.
4. Text

Occasionally there are small differences which need to be indicated in the text
itself and the ALG alternative is then indicated parenthetically.

5. Usage of $\mathbb{E N T E R}(\square)$

To activate the $=$ key it is sufficient just to press ENTER, with the HP 12C
Platinum in ALG mode. In step-by-step and program instructions where the only difference between the modes is that ENTER is used in RPN mode and $=$ is used in ALG mode, ENTER $(=)$ has been used to indicate both alternatives.

Using the RPN Programs on the HP-12C

Apart from GTO instructions, the keystrokes given in this book are exactly the same for the HP 12C Platinum and the HP-12C. There are two notational differences to bear in mind when typing the RPN programs into the HP-12C:

1. One keycode, for LSTX, is different.
2. Line numbers tabulated as 000 to 099 refer to lines displayed as 00 to 99 on the HP-12C. The relevant two digit line numbers should be used when typing GTO instructions on the HP-12C.

Notes:

1. All display columns in the examples this book show 2 decimals. This is set by pressing $f 2$.
All programs that do rounding, amortization or depreciation will give slightly different answers if other than 2 decimals are showing.
2. Three of the original programs have been updated:
a. The last program in the Real Estate section $(A T N C P R)$ now takes the capital gains tax rate as a separate input, and an extra example has been added showing a different type of tax basis.
b. In the Personal Finance section the IRA program now handles explicit inflation input and withdrawal tax rate input and the Stock Portfolio program handles stock prices with decimal fractions rather than fractions expressed in terms of eighths.
3. Market data (i.e.: interest rates; real estate values, growth rates and rents; taxes; expenses; etc.) used in the examples in this book do not necessarily represent typical current actual data, or reflect recent market trends.

Contents

Introduction 2
About This Handbook 2
Presentation of Algebraic and RPN 2
Using the RPN Programs on the HP-12C 3
Contents 4
Real Estate 7
Refinancing 7
Wrap-Around Mortgage 8
Income Property Cash Flow Analysis 12
Before-Tax Cash Flows 12
Before-Tax Reversions (Resale Proceeds) 13
After-Tax Cash Flows 14
After-Tax Net Cash Proceeds of Resale 19
Lending 24
Loan With a Constant Amount Paid Towards Principal 24
Add-On Interest Rate Converted to APR 25
APR Converted to Add-On Interest Rate 26
Add-On Rate Loan with Credit Life 27
Interest Rebate - Rule of 78's 30
Graduated Payment Mortgages 32
Variable Rate Mortgages 36
Skipped Payments. 38
Savings 40
Initial Deposit with Periodic Deposits 40
Number of Periods to Deplete a Savings Account or to Reach a Specified Balance 41
Periodic Deposits and Withdrawals 42
Savings Account Compounded Daily 44
Compounding Periods Different From Payment Periods 46
Investment Analysis 49
Lease vs. Purchase 49
Break-Even Analysis 53
Operating Leverage 59
Profit and Loss Analysis 61
Securities and Options 65
After-Tax Yield 65
Discounted Notes 67
Black-Scholes Formula for Valuing European Options 69
Forecasting 74
Simple Moving Average 74
Seasonal Variation Factors Based on Centered Moving Averages 78
Gompertz Curve Trend Analysis 83
Forecasting with Exponential Smoothing 87
Pricing Calculations 92
Markup and Margin Calculations 92
Calculations of List and Net prices With Discounts 95
Statistics 98
Curve Fitting 98
Exponential Curve Fit 98
Logarithmic Curve Fit 102
Power Curve Fit 104
Standard Error of the Mean 105
Mean, Standard Deviation, Standard Error for Grouped Data 106
Chi-Square Statistics 109
Normal Distribution 112
Covariance 114
Permutations 116
Combinations 117
Random Number Generator 119
Personal Finance 121
Homeowners Monthly Payment Estimator 121
Tax-Free Individual Retirement (IRA) or Keogh Plan 124
Stock Portfolio Evaluation and Analysis 127
Canadian Mortgages 131
Periodic Payment Amount 131
Number of Periodic Payments to Fully Amortize a Mortgage 132
Effective Interest Rate (Yield) 132
Balance Remaining at End of Specified Period. 132
Miscellaneous 134
Learning Curve for Manufacturing Costs 134
Queuing and Waiting Theory 138
Appendix A : Programs from Part III of the Owner's Handbook 145
About this Appendix 145
Algebraic Mode Programs 146
Section 12: The Rent or Buy Decision 146
Section 13: Straight-Line Depreciation 147
Section 13: Declining-Balance Depreciation 148
Section 13: Sum-of-the-Years-Digits Depreciation 149
Section 13: Full- and Partial- Year Depreciation with Crossover 150
Section 14: Lease with Advance Payments - Solving For Payment 151
Section 14: Lease with Advance Payments - Solving For Yield 151
Section 14: Advance Payments With Residual - Solving for Payment 152
Section 15: Nominal Rate Converted to Effective Rate 152
Section 16: 30/360 Day Basis Bonds 153
Section 16: Annual Coupon Bonds 154
Appendix B: Formulas Used. 155
Real Estate 155
Wrap-Around Mortgage 155
After-Tax Cash Flows. 155
After-Tax Net Cash Proceeds of Resale 155
Lending 156
Loans With a Constant Amount Paid Towards Principal. 156
Add-On Interest Rate to APR 156
Add-On to APR with Credit Life 156
Rule of 78's Rebate 156
Graduated Payment Mortgage 157
Skipped Payments. 157
Savings 158
Compounding Periods Different From Payment Periods 158
Investment Analysis. 158
Lease vs. Purchase 158
Break-Even Analysis and Operating Leverage 158
Profit and Loss Analysis 158
Securities and Options 159
Discounted Notes 159
Black-Scholes Formula for Valuing European Options 159
Forecasting 160
Simple Moving Average 160
Seasonal Variation Factors Based on a Centered Moving Average 160
Gompertz Curve Trend Analysis 160
Forecasting With Exponential Smoothing 161
Pricing Calculations 161
Markup and Margin Calculations 161
Calculations of List and Net Prices with Discounts 162
Statistics 162
Exponential Curve Fit 162
Logarithmic Curve Fit 163
Power Curve Fit 163
Standard Error of the Mean. 163
Mean, Standard Deviation, Standard Error for Grouped Data 163
Personal Finance 164
Tax-Free Retirement Account (IRA) or Keogh Plan 164
Stock Portfolio Evaluation and Analysis 164
Portfolio beta coefficient: 164
Canadian Mortgages 164
Miscellaneous 165
Learning Curve for Manufacturing Cost 165
Queuing and Waiting Theory 165
Subject Index 166

Real Estate

Refinancing

It can be mutually advantageous to both borrower and lender to refinance an existing mortgage which has an interest rate substantially below the current market rate, with a loan at a below-market rate. The borrower has the immediate use of tax-free cash, while the lender has substantially increased debt service on a relatively small cash outlay.
To find the benefits to both borrower and lender:

1. Calculate the monthly payment on the existing mortgage.
2. Calculate the monthly payment on the new mortgage.
3. Calculate the net monthly payment received by the lender (and paid by the borrower) by adding the figure found in Step 1 to the figure found in Step 2.
4. Calculate the Net Present Value (NPV) to the lender of the net cash advanced.
5. Calculate the yield to the lender as an IRR.
6. Calculate the NPV to the borrower of the net cash received.

Example: An investment property has an existing mortgage which originated 8 years ago with an original term of 25 years, fully amortized in level monthly payments at 6.5% interest. The current balance is $\$ 133,190$.
Although the going current market interest rate is 11.5%, the lender has agreed to refinance the property with a $\$ 200,000,17$ year, level-monthly-payment loan at 9.5% interest.
What are the $N P V$ and effective yield to the lender on the net amount of cash actually advanced?
What is the $N P V$ to the borrower on this amount if he can earn a 15.25% equity yield rate on the net proceeds of the loan?

8 Real Estate

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$9.5 \mathrm{~g} 12 \div$	$9.5 \mathrm{~g} 12 \div$		
200000 CHS PV	200000 CHS PV		
PMT	PMT	1,979.56	Monthly payment on new mortgage.
RCL $0+$ PMT	+ RCL) 0 PMT	899.23	Net monthly payment (to lender).
$\begin{aligned} & \mathrm{RCL} \mathrm{PV} \\ & 133190+\mathrm{STO} 0 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { RCL\|PV } \\ \hline+133190=\text { STO } 0 \end{array}$	-66,810.00	Net amount of cash advanced (by lender).
11.5 g 12* PV	11.5 g 12 \div PV PV	-80,425.02	Present value of net monthly payment.
RCL) -	- RCL $0=$	-13,615.02	$N P V$ to lender of net cash advanced.
$\begin{aligned} & \mathrm{RCL} 0 \mathrm{PV} \mathrm{I} \\ & 12 \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline \text { RCL0 PV } \mathrm{B} \\ & \mathrm{x} 12== \end{aligned}$	14.83	\% nominal yield (IRR).
15.25 g 12\% PV	15.25 g 12: PV PV	-65,376.72	Present value of net monthly payment at 15.25%.
RCL) 0	- $\mathrm{RCL} 0=$	1,433.28	$N P V$ to borrower.

Wrap-Around Mortgage

A wrap-around mortgage is essentially the same as a refinancing mortgage, except that the new mortgage is granted by a different lender, who assumes the payments on the existing mortgage, which remains in full force. The new (second) mortgage is thus "wrapped around" the existing mortgage. The "wrap-around" lender advances the net difference between the new (second) mortgage and the existing mortgage in cash to the borrower, and receives as net cash flow, the difference between debt service on the new (second) mortgage and debt service on the existing mortgage.
When the terms of the original mortgage and the wrap-around are the same, the procedures in calculating NPV and IRR to the lender and NPV to the borrower are exactly the same as those presented in the preceding section on refinancing.

Example 1: A mortgage loan on an income property has a remaining balance of $\$ 200,132.06$. When the load originated 8 years ago, it had a 20 year term with full amortization in level monthly payments at 6.75% interest.
A lender has agreed to "wrap" a $\$ 300,000$ second mortgage at 10%, with full amortization in level monthly payments over 12 years. What is the effective yield (IRR) to the lender on the net cash advanced?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$\begin{aligned} & \hline \mathrm{g} \mid \text { END } \\ & \hline \mathrm{f} \text { CLEAR FIN } \end{aligned}$	$\begin{aligned} & \hline g \text { END } \\ & \hline \mathrm{f} \text { CLEAR FIN } \end{aligned}$		
	$20-1$		
$8-912 \mathrm{x}$	$8=912 \mathrm{x}$	144.00	Total number of months remaining in original loan (into n).
6.75 g 12:	6.75 g 12 -	0.56	Monthly interest rate (into i).
200132.06 PV	200132.06 PV	200,132.06	Loan amount (into PV).
PMT STO 0	PMT STO 0	-2,031.55	Monthly payment on existing mortgage (calculated).
$10 \mathrm{~g} 12 \div$	10 $912 \div$	0.83	Monthly interest on wraparound.
300000 CHS PV	300000 CHS PV	-300,000.00	Amount of wrap-around (into PV).
PMT	PMT	3,585.23	Monthly payment on wraparound (calculated).
RCL 0 - PMT	\pm RCL 0 PMT	1,553.69	Net monthly payment received (into PMT).
$\mathrm{RCL} \mathrm{PV}$	$\mathrm{RCL} \mathrm{PV}$		
200132.06+ PV	$+200132.06 \mathrm{PV}$	-99,867.94	Net cash advanced (into PV).
i12 X	i X $12=$	15.85	Nominal yield (IRR) to lender (calculated).

Sometimes the wrap around mortgage will have a longer payback period than the original mortgage, or a balloon payment may exist.

Where:
$n_{l}=$ number of years remaining in original mortgage
$P M T_{1}$ = yearly payment of original mortgage
$P V_{I}=$ remaining balance of original mortgage
$n_{2}=$ number of years in wrap-around mortgage
$P M T_{2}$ = yearly payment of wrap-around mortgage
$P V_{2}=$ total amount of wrap-around mortgage
$B A L=$ balloon payment

Example 2: A customer has an existing mortgage with a balance of $\$ 125,010$, a remaining term of 200 months, and a $\$ 1051.61$ monthly payment. He wishes to obtain a $\$ 200,000,91 / 2 \%$ wrap-around with 240 monthly payments of $\$ 1681.71$ and a balloon payment at the end of the 240th month of $\$ 129,963.35$. If you, as a lender, accept the proposal, what is your rate of return?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END	-74,990.00	Net investment.
f CLEAR FIN	f CLEAR FIN		
200000 CHS ENTER	200000CHS		
125010 + G CF0	+125010 g CF0		
1051.61 CHS ENTER	1051.61 CHS		
1681.71 +	$\pm 1681.71 \mathrm{~g}$ CFi	630.10	Net cash flow received by lender.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g CFi 99 g N ${ }^{\text {d }}$	99 N		
	X y Y g CFi		
$\begin{array}{lllll} & x \geqslant y & & & \\ & \end{array}$	$\begin{array}{lllll}x \geqslant y & g & N i\end{array}$		
 $x \geqslant y$ CFj	$\mathrm{x} \geqslant \mathrm{y}$ g $1 F_{i}$		
2 g N	2 g Ni		The above cash flow occurs 200 times.
g LSTx g CFi	1681.71 g CFj	1,681.71	Next cash flow received by lender.
39 g Ni	39 g Ni	39.00	Cash flow occurs 39 times.
x<y 129963.35 +	$x \geqslant y+129963.35$		
g CFi	g CFi	131,645.06	Final cash flow.
f IRR 12 X	f IRR X 12 =	11.84	Rate of return to lender.

If you, as a lender, know the yield on the entire transaction, and you wish to obtain the payment amount on the wrap-around mortgage to achieve this yield, use the following procedure. Once the monthly payment is known, the borrower's periodic interest rate may also be determined.

1. Press the g END and press f CLEAR FIN.
2. Key in the remaining periods of the original mortgage and press n.
3. Key in the desired annual yield and press $912 \div$.
4. Key in the monthly payment to be made by the lender on the original mortgage and press CHS PMT.
5. Press PV .
6. RPN: Key in the net amount of cash advanced and press +CHS PV .
7. ALG: Press $+ \pm$, key in the net amount of cash advanced and press $=$ CHS PV.
8. Key in the total term of the wrap-around mortgage and press n.
9. If a balloon payment exists, key it in and press FV.
10. Press PMT to obtain the payment amount necessary to achieve the desired yield.
11. Key in the amount of the wrap-around mortgage and press CHS PV i to obtain the borrower's periodic interest rate.

Example 3: Your firm has determined that the yield on a wrap-around mortgage should be 12% annually. In the previous example, what monthly payment must be received to achieve this yield on a $\$ 200,000$ wrap-around? What interest rate is the borrower paying?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
$200 \mathrm{n} 12 \mathrm{~g} 12 \div$	200 - 12 g 12\%		Number of periods and monthly interest rate.
1051.61 CHS PMT	1051.61 CHS PMT		Monthly payment.
PV 74990 +	PV $+74990=$		
CHS PV	CHS PV	-165,776.92	Present value of
			payments plus cash advanced.
240 n	240 n		
129963.35 FV PMT	129963.35 FV PMT	1,693.97	Monthly payment received by lender.
200000 CHS PV i	200000 CHS PV i		
12 X	X12 $=$	9.58	Annual interest rate paid by borrower.

Income Property Cash Flow Analysis

Before-Tax Cash Flows

The before-tax cash flows applicable to real estate analysis and problems are:

- Potential Gross Income
- Effective Gross Income
- Net Operating Income (also called Net Income Before Recapture)
- Cash Throw-off to Equity (also called Gross Spendable Cash)

The derivation of these cash flows follows a set sequence:

1. Calculate Potential Gross Income by multiplying the rent per unit times the number of units, times the number of rental payment periods per year. This gives the rental income the property would generate if it were fully occupied.
2. Deduct Allowance for Vacancy and Rental Loss. This is usually expressed as a percentage. The result is Rent Collections (which is also Effective Gross Income if there is no "Other Income").
3. Add "Other Income" such as receipts from concessions (laundry equipment, etc.), produced from sources other than the rental office space. This is Effective Gross Income.
4. Deduct Operating Expenses. These are expenditures the landlord-investor must make, by contract or custom, to preserve the property and keep in capable of producing the gross income. The result is the Net Operating Income.
5. Deduct Annual Debt Service on the mortgage. This produces Cash Throw-Off to Equity.

Thus:
Effective Gross Income =Potential Gross Income - Vacancy Loss + Other Income.
Net Operating Income $=$ Effective Gross Income - Operating Expenses.
Cash Throw-Off =Net Operating Income - Annual Dept Service.
Example: A 60 unit apartment building has rentals of $\$ 250$ per unit per month. With a 5% vacancy rate, the annual operating cost is $\$ 76,855$.

The property has just been financed with a $\$ 700,000$ mortgage, fully amortized in a level monthly payments at 11.5% over 20 years.
a. What is the Effective Gross Income?
b. What is the Net Operating Income?
c. What is the Cash Throw-Off to Equity?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
60 ENTER	$60 \times$		
250 X 12 X	250 X 12-	180,000.00	Potential Gross Income.
5\% -	5\% -	171,000.00	Effective Gross Income.
76855-	76855 =	94,145.00	Net Operating Income.
20 9 12x	20 g 12x Rd		
$11.5 \mathrm{~g} 12 \div$	11.5 g 12\% $R \downarrow$		
700000 PV	700000 PV		
PMT 12 X	PMT $\times 12+$	-89,580.09	Annual Debt Service.
\pm	$x \geqslant y=$	4,564.91	Cash Throw-Off.

Before-Tax Reversions (Resale Proceeds)

The reversion receivable at the end of the income projection period is usually based on forecast or anticipated resale of the property at that time. The before tax reversion amount applicable to real estate analysis and problems are:

- Sale Price.
- Cash Proceeds of Resale.
- Outstanding Mortgage Balance.
- Net Cash Proceeds of Resale to Equity.

The derivation of these reversions is as follows:

1. Forecast or estimate Sales Price. Deduct sales and Transaction Costs. The result is the Proceeds of Resale.
2. Calculate the Outstanding Balance of the Mortgage at the end of the Income Projection Period and subtract it from Proceeds of Resale. The result is Net Cash Proceeds of Resale.

Thus:
Cash Proceeds of Resale $=$ Sales Price - Transaction Costs.
Net Cash Proceeds of Resale $=$ Cash Proceeds of Resale - Outstanding Mortgage Balance.

Example: The apartment property in the preceding example is expected to be resold in 10 years. The anticipated resale price is $\$ 800,000$. The transaction costs are expected to be 7% of the resale price. The mortgage is the same as that indicated in the preceding example.

- What will the Mortgage Balance be in 10 years?
- What are the Cash Proceeds of Resale and Net Cash Proceeds of Resale?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
20 9 12x	20.12 x	240.00	Mortgage term.
11.5 g 12*	11.5 9 12	0.96	Mortgage rate.
700000 PV	700000 PV		Property value.
PMT	PMT	-7,465.01	Monthly payment.
10 g 12x	10 g 12x	120.00	Projection period.
FV	FV FV	-530,956.57	Mortgage balance in 10 years.
800000 ENTER	800000-		Estimated resale.
7% -	7% +	744,000.00	Cash Proceeds of Resale.
\pm	$x \geqslant y=$	213,043.43	Net Cash Proceeds of Resale.

After-Tax Cash Flows

The After-Tax Cash Flow (ATCF) is found for the each year by deducting the Income Tax Liability for that year from the Cash Throw Off.

Where Taxable Income $=$ Net Operating Income - interest - depreciation,
Tax Liability = Taxable Income x Marginal Tax Rate,
and After Tax Cash Flow = Cash Throw Off - Tax Liability.

The After-Tax Cash Flow for the initial and successive years may be calculated by the following HP 12C Platinum program. This program calculates the Net Operating Income using the Potential Gross Income, operational cost and vacancy rate. The Net Operating
income is readjusted each year from the growth rates in Potential Gross Income and operational costs．
The user is able to change the method of finding the depreciation from declining balance to straight line．To make the change，key in f SL at line 032 （ALG：026）of the program in place of $f D B$ ．

12c platinum／12C RPN KEYSTROKES	DISPLAY		
f P／R			
f CLEAR PRGM			
0	001，		0
n	002，		11
STO 1	003，	44	1
RCL 7	004，	45	7
EEX	005，		26
2	006，		2
\div	007，		10
STO 7	008，	44	7
1	009，		1
STO +1	010，44	40	1
1	011，		1
2	012，		2
f AMORT	013，	42	11
STO 0	014，	44	0
RCL 5	015，	45	5
n	016，		11
RCL i	017，	45	12
RCL 6	018，	45	6
i	019，		12
R】	020，		33
STO 6	021，	44	6
R】	022，		33
RCL PV	023，	45	13
RCL 4	024，	45	4
PV	025，		13
R】	026，		33
STO 4	027，	44	4
R \downarrow	028，		33
g $\mathrm{x}=0$	029，	43	35
g GTO 036	030，43，33， 036		
RCL1	031，	45	1
f DB	032，	42	25
STO－ 0	033，44	30	0
0	034，		0
g GTO 017	035，43，33，017		

12c platinum ALG KEYSTROKES	DISPLAY		
f P／R			
f CLEAR PRGM	$000 \text {, }$		
0	001，		0
n	002，		11
1	003，		1
2	004，		2
f AMORT	005，	42	11
STO 0	006，	44	0
RCL 5	007，	45	5
n	008，		11
RCL i	009，	45	12
RCL 6	010，	45	6
i	011，		12
R \downarrow	012，		33
STO 6	013，	44	6
R】	014，		33
RCL PV	015，	45	13
RCL 4	016，	45	4
PV	017，		13
R \downarrow	018，		33
STO 4	019，	44	4
R \downarrow	020，		33
g $\mathrm{x}=0$	021，	43	35
g GTO 030	022，43，33，030		
1	023，		
STO +1	024，44	40	1
RCL 1	025，	45	1
f DB	026，	42	25
STO－ 0	027，44	30	0
0	028，		0
9 GTO 009	029，43，33，009		
RCL 2	030，	45	2
－	031，		30
RCL $\cdot 0$	032，45	48	0
\％	033，		25
－	034，		30
RCL 3	035，	45	3

	REGISTERS		
$\mathrm{n}:$ Used	$\mathrm{i}:$ Annual \%	PV: Used	PMT: Monthly
$\mathrm{FV}: 0$	$\mathrm{R}_{6}:$ Used	$\mathrm{R}_{1}:$ Counter	$\mathrm{R}_{2}: P G I$
$\mathrm{R}_{3}:$ Oper. cost	$\mathrm{R}_{4}:$ Dep. value	$\mathrm{R}_{5}:$ Dep. Life	$\mathrm{R}_{6}:$ Factor (DB)
$\mathrm{R}_{7}:$ Tax Rate	$\mathrm{R}_{8}:$ \% gr. (PGI)	$\mathrm{R}_{9}:$ \% gr. (op)	$\mathrm{R}_{.0}:$ Vacancy rt.

Program Instructions:

1. Press g END and press f CLEAR REG.
2. Key in loan values:

- Key in annual interest rate and press $g 12 \div$
- Key in principal to be paid and press PV
- Key in monthly payment and press CHS PMT
(If any of the values are not known, they should be solved for.)

3. Key in Potential Gross Income (PGI) and press STO2.
4. Key in Operational cost and press STO 3.
5. Key in depreciable value and press STO 4.
6. Key in depreciable life and press STO 5.
7. Key in factor (for declining balance only) and press STO 6.
8. Key in the Marginal Tax Rate (as a percentage) and press STO 7.
9. Key in the growth rate in Potential Gross Income (0 for no growth) and press STO 8.
10. Key in the growth rate in operational cost (0 if no growth) and press STO 9.
11. Key in the vacancy rate (0 for no vacancy rate) and press STO $\bullet 0$.
12. RPN: Key in the desired depreciation function at line 032 in the program.
13. ALG: Key in the desired depreciation function at line 026 in the program.
14. Press R/S to compute $A T C F$. The display will pause showing the year and then will stop with the $A T C F$ for that year. The Y-register contains the year.
15. Continue pressing R/S to compute successive After-Tax Cash Flows.

Example 1: A triplex was recently purchased for $\$ 100,000$ with a 30 year loan at 12.25% and a 20% down payment. Not including a 5% annual vacancy rate, the potential gross income is $\$ 9,900$ with an annual growth rate of 6%. Operating expenses are $\$ 3,291.75$ with a 2.5% growth rate. The depreciable value is $\$ 75,000$ with a projected useful life of $\$ 20$ years. Assuming a 125% declining balance depreciation, what are the After-Tax Cash Flows for the first 10 years if the investors Marginal Tax Rate is 35% ?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR REG	f CLEAR REG		
100000 ENTER	100000-		
20 \% - ${ }^{\text {PV }}$	20 \% PV	80,000.00	Mortgage amount.
12.25 9 12\%	$12.25 \mathrm{~g} 12 \div$	1.02	Monthly interest rate.
30 9 12x	30.912 x	360	Mortgage term.
PMT	PMT PMT	-838.32	Monthly payment.
9900STO2	9900STO2	9,900.00	Potential Gross Income.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
3291.75STO3	3291.75STO 3	3,291.75	1 st year operating cost.
75000 STO 4	75000STO 4	75,000.00	Depreciable value.
20STO 5	20 STO 5	20.00	Useful life.
125 STO 6	125STO6	125.00	Declining balance factor.
35 STO 7	35 STO 7	35.00	Marginal Tax Rate.
6STO8	6STO8	6.00	Potential Gross Income growth rate.
2.5STO9	2.5STO9	2.50	Operating cost growth.
5STO - 0	5STO - 0	5.00	Vacancy rate.
R/S	R/S	$\begin{aligned} & 1.00 \\ & -1,020.88 \end{aligned}$	$\begin{aligned} & \text { Year 1 } \\ & A T C F_{1} \end{aligned}$
R/S	R/S	$\begin{aligned} & 2.00 \\ & -822.59 \end{aligned}$	$\begin{aligned} & \text { Year } 2 \\ & A T C F_{2} \end{aligned}$
R/S	R/S	$\begin{aligned} & \hline 3.00 \\ & -598.85 \end{aligned}$	$\begin{aligned} & \text { Year 3 } \\ & \mathrm{ATCF}_{3} \\ & \hline \end{aligned}$
R/S	R/S	$\begin{aligned} & \hline 4.00 \\ & -348.94 \end{aligned}$	Year 4 ATCF $_{4}$
R/S	R/S	$\begin{aligned} & \hline 5.00 \\ & -72.16 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Year 5 } \\ & A T C F_{5} \\ & \hline \end{aligned}$
R/S	R/S	$\begin{aligned} & 6.00 \\ & 232.35 \end{aligned}$	$\begin{aligned} & \text { Year } 6 \\ & A T C F_{6} \end{aligned}$
R/S	R/S	$\begin{array}{\|l\|} \hline 7.00 \\ 565.48 \end{array}$	$\begin{aligned} & \text { Year } 7 \\ & \text { ATCF }_{7} \\ & \hline \end{aligned}$
R/S	R/S	$\begin{aligned} & \hline 8.00 \\ & 928.23 \end{aligned}$	$\begin{aligned} & \text { Year } 8 \\ & \text { ATCF }_{8} \end{aligned}$
R/S	R/S	$\begin{array}{\|l\|} \hline 9.00 \\ 1,321.62 \end{array}$	$\begin{aligned} & \text { Year } 9 \\ & A T C F_{9} \\ & \hline \end{aligned}$
R/S	R/S	$\begin{array}{\|l\|} \hline 10.00 \\ 1,746.81 \\ \hline \end{array}$	$\begin{aligned} & \text { Year } 10 \\ & A T C F_{10} \end{aligned}$

Example 2: An office building was purchased for $\$ 1,400,000$. The value of depreciable improvements is $\$ 1,200,000$ with a 35 year economic life. Straight line depreciation will be used. The property is financed with a $\$ 1,050,000$ loan. The terms of the loan are 9.5% interest and $\$ 9,173.81$ monthly payments for 25 years. The office building generates a Potential Gross Income of $\$ 175,200$ which grows at a 3.5% annual rate. The operating cost is $\$ 40,296.00$ with a 1.6% annual growth rate. Assuming a Marginal Tax Rate of 50% and a vacancy rate of 7%, what are the After-Tax Cash Flows for the first 5 years?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR REG	f CLEAR REG		
1050000 PV	1050000 PV		
9173.81 CHS PMT	9173.81 CHS PMT		
$9.5 \mathrm{~g} 12 \div$	$9.5 \mathrm{~g} 12 \div$		
25 g 12 x	25 g 12 x		
175200 STO 2	175200 STO 2	175,200.00	Potential Gross
			Income.
40296 STO 3	40296 STO 3	40,296.00	1st year operating cost.
1200000 STO 4	1200000STO4	1,200,000.00	Depreciable value.
35 STO 5	35 STO 5	35.00	Depreciable life.
50 STO 7	50 STO 7	50.00	Marginal tax rate.
$3.5 \bigcirc$ STO 8	3.5 STO 8	3.50	Potential Gross Income growth rate.
1.6 STO 9	1.6 STO 9	1.60	Operating cost growth rate.
7STO - 0	7 STO - 0	7.00	Vacancy rate.
g GTO 031	g GTO 025	7.00	Go to dep. step.
f P/R f SL	f P/R f SL	032, 42 23 026, 42 23	RPN:Change to SL
f P / R R/S	f P / R R/S	1.00	
		$18,021.07$	ATCF_{1}
R/S	R/S	2.00	Year 2
		$20,014.26$	ATCF_{2}
R/S	R/S	3.00	Year 3
		22,048.90	ATCF_{3}
R/S	R/S	4.00	Year 4
		$24,123.14$	ATCF_{4}
R/S	R/S	5.00	Year 5
		26,234.69	ATCF_{5}

After-Tax Net Cash Proceeds of Resale

The After-Tax Net Cash Proceeds of Resale ($A T N C P R$) is the after-tax reversion to equity; generally, the estimated resale price of the property less commissions, outstanding debt and any tax claim.

The After-Tax Net Cash Proceeds can be found using the HP 12C Platinum program which follows.

This program uses declining balance depreciation to find the amount of depreciation from purchase to sale. This amount is used to determine the excess depreciation (which is equal to the amount of actual depreciation minus the amount of the straight line depreciation).
The Marginal Tax Rate (MTR) that the user inputs is applied to this excess depreciation.
The Capital Gains Tax Rate (CGTR) that the user inputs is applied to the capital gain from purchase to sale less the expenses of sale (i.e. the NCPR or Net cash Proceeds of Resale), plus the straight line depreciation.
The user may change to a different depreciation method by keying in the desired function at line 026 (ALG: 029) in place of f DB.
In addition the user may nullify the straight line depreciation by keying in a 0 at line 035 (ALG: 039) in place of f SL. This means that all of the actual depreciation from purchase to sale is then treated as "excess" or unrecaptured depreciation. This is illustrated below in Example 2.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM			
g END	001,	43	8
STO2	002,	44	2
g 12 x	003,	43	11
R L	004,		33
\%	005,		25
-	006,		30
STO 0	007,	44	0
X< ${ }^{\text {a }}$	008,		34
-	009,		30
RCL 7	010,	45	7
\%	011,		25
STO 1	012,	44	1
RCL PMT	013,	45	14
f RND	014,	42	14
PMT	015,		14
FV	016,		15
STO +0	017,44	40	0
f CLEAR FIN	018,	42	34
RCL 3	019,	45	3
PV	020,		13
RCL 4	021,	45	4
n	022,		11
RCL5	023,	45	5
-	024,		12
RCL 2	025,	45	2
¢ f DB	026,	42	25
R】	027,		33

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM			
9 END	001,	43	8
STO2	002,	44	2
g 12x	003,	43	11
R \downarrow	004,		33
X 2 y	005,		34
-	006,		30
x 2 y	007,		34
\%	008,		25
-	009,		30
STO 0	010,	44	0
x x y	011,		34
X	012,		20
RCL 7	013,	45	7
$=$	014,		36
STO 1	015,	44	1
RCL PMT	016,	45	14
f RND	017,	42	14
PMT	018,		14
FV	019,		15
STO +0	020,44	40	0
f CLEAR FIN	021,	42	34
RCL 3	022,	45	3
PV	023,		13
RCL 4	024,	45	4
n	025,		11
RCL 5	026,	45	5
i	027,		12

12c platinum / 12C RPN KEYSTROKES	DISPLAY	
RCL3	028,	453
X ${ }^{\text {y }}$	029,	34
-	030,	30
RCL) 6	031,	456
\%	032,	25
STO +1	033,44	$40 \quad 1$
RCL 2	034,	$45 \quad 2$
f SL	035,	$42 \quad 23$
RCL) 2	036,	$45 \quad 2$
X	037,	20
RCL7	038,	457
RCL) 6	039,	456
-	040,	30
\%	041,	25
STO +1	042,44	$40 \quad 1$
RCL) 0	043,	450
RCL1	044,	451
-	045,	30
g GTO 000	046,43	33,000
f P/R		

12c platinum ALG KEYSTROKES	DISPLAY	
RCL2	028,	$45 \quad 2$
f DB	029,	$42 \quad 25$
x 2 y	030,	34
RCL 3	031,	$45 \quad 3$
-	032,	30
x 2 y	033,	34
X	034,	20
RCL 6	035,	456
$=$	036,	36
STO +1	037,44	40
RCL 2	038,	$45 \quad 2$
f SL	039,	$42 \quad 23$
X	040,	20
RCL 2	041,	$45 \quad 2$
=	042,	36
RCL 7	043,	$45 \quad 7$
-	044,	30
RCL 6	045,	$45 \quad 6$
X	046,	20
x x ¢ y	047,	34
+	048,	40
RCL1	049,	45
X	050,	20
1	051,	1
\%	052,	25
-	053,	30
STO 1	054,	44
RCL) 0	055,	450
X X y	056,	34
$=$	057,	36
9 GTO 000	058,43	33,000
f P/R		

	REGISTERS		
$\mathrm{n}:$ Used	i: Used	PV: Used	PMT: Used
FV: Used	$\mathrm{R}_{0}: N C P R$	$\mathrm{R}_{1}:$ Tax paid	$\mathrm{R}_{2}:$ Desired yr.
$\mathrm{R}_{3}:$ Dep. value	$\mathrm{R}_{4}:$ Dep. life	$\mathrm{R}_{5}:$ Factor	$\mathrm{R}_{6}:$ MTR
$\mathrm{R}_{7}:$ CGTR	R_{8} - $\mathrm{R}_{3}:$ Unused		

Program Instructions:

1. Key in the program and press f CLEAR REG.
2. Key in the loan values:

- Key in annual interest rate and press $g 12 \div$.
- Key in mortgage amount and press PV.
- Key in monthly payment and press CHS PMT.
(If any of the values are unknown, they should be solved for and if one has to be solved for then the correct payment mode needs to be set)

3. Key in depreciable value and press STO 3.
4. Key in depreciable life in years and press STO 4.
5. Key in accelerated depreciation factor for the declining balance method and press STO 5.
6. Key in your Marginal Tax Rate as a percentage and press STO 6.
7. Key in the Capital Gains Tax Rate as a percentage and press STO7.
8. Key in the purchase price and press ENTER (\square).
9. Key in the sale price and press ENTER $(=$
10. Key in the $\%$ commission charged on the sale and press ENTER ($\triangle=$).

RPN: If a dollar value is desired instead of a commission rate, key in g END, which does not affect the register values, at line 005 of the program.
ALG: If a dollar value is desired instead of a commission rate, key in g END, which does not affect the register values, at line 008 of the program.
11. Key in the number of years after purchase and press R / S. The $A T N C P R$ is displayed.
12. To see the $N C P R$ press RCL 0 and to see the tax due press RCL 1 .

Example 1: An apartment complex, purchased for $\$ 900,000$ ten years ago, is sold for $\$ 1,750,000$. The closing cost is 8% of the sale price, the income tax rate is 48% and the capital gains tax rate is 19.2%.
A $\$ 700,000$ loan for 20 years at 9.5% annual interest was used to purchase the complex. When it was purchased the depreciable value was $\$ 750,000$ with a useful life of 25 years. Using 125\% declining balance depreciation, what are the After-Tax Net Cash Proceeds in year 10 ?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR REG	f CLEAR REG	0.00	
700000 PV	700000 PV	700,000.00	Mortgage.
$9.5912 \div$	$9.5912 \div$	0.79	Monthly interest.
20.12 x	20.12 x	240.00	Number of payments.
PMT	PMT PMT	-6,524.92	Monthly payment.
750000 STO 3	750000STO 3	750,000.00	Depreciable value.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
25STO4	25STO 4	25.00	Depreciable life.
125STO 5	125 STO 5	125.00	Factor.
48 STO 6	48STO6	48.00	Marginal Tax Rate.
19.2STO7	19.2STO7	19.20	Capital Gains Tax Rate.
900000 ENTER	900000 =	900,000.00	Purchase price.
1750000 ENTER	$1750000=$	1,750,000.00	Sale price.
8 ENTER	$8=$	8.00	Commission rate.
10R/S	10 R/S	911,372.04	ATNCPR.
RCL 0	RCL) 0	1,105,746.74	NCPR.
RCL1	RCL 1	194,374.70	Tax due on resale.

Example 2: Now, re-do the previous example assuming all depreciation is treated as excess or unrecaptured depreciation, with MTR $=25 \%$ and CGTR $=15 \%$.
First the $f S L$ in the program must be replaced with 0 . This may be done as follows:

The data stored in registers $\mathrm{R}_{3}-\mathrm{R}_{5}$ need not be re-entered.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR FIN	f CLEAR FIN	0.00	
700000 PV	700000 PV	700,000.00	Mortgage.
9.5 g 12 ${ }^{-}$	9.5 9 12\%	0.79	Monthly interest.
20 g 12x	20 g 12 x	240.00	Number of payments.
PMT	PMT PMT	-6,524.92	Monthly payment.
25 STO6	25STO6	25.00	Marginal Tax Rate.
15STO7	15 STO 7	15.00	Capital Gains Tax Rate.
900000 ENTER	900000 $=$	900,000.00	Purchase price.
1750000 ENTER	$1750000=$	1,750,000.00	Sale price.
8 ENTER	$8=$	8.00	Commission rate.
10 R/S	10 R/S	924,009.92	ATNCPR.
RCL)	RCL) 0	1,105,746.74	$N C P R$.
RCL1	RCL 1	181,736.83	Tax due on resale.

Lending

Loan With a Constant Amount Paid Towards Principal

This type of loan is structured such that the principal is repaid in equal installments with the interest paid in addition. Therefore each periodic payment has a constant amount applied toward the principle and a varying amount of interest.

Loan Reduction Schedule

If the constant periodic payment to principal, annual interest rate, and loan amount are known, the total payment, interest portion of each payment, and remaining balance after each successive payment may be calculated as follows:

RPN Mode:

1. Key in the constant periodic payment to principal and press STO 0 .
2. Key in periodic interest rate and press ENTER ENTER ENTER.
3. Key in the loan amount. If you wish to skip to another time period, press ENTER. Then key in the number of payments to be skipped, and press RCL $0 \times \square$.
4. Press $x \geqslant y$ \% to obtain the interest portion of the payment.
5. Press RCL $0+$ to obtain the total payment.
6. Press CLx RCL 0 to obtain the remaining balance of the loan.
7. Return to step 4 for each successive payment.

ALG Mode:

1. Key in the constant periodic payment to principal and press STO 0 .
2. Key in the loan amount and press STO 1.
3. Key in periodic interest rate and press STO2.

If you wish to skip to another time period, key in the number of payments to be
skipped, and press $X R C L=S T O-1$.
4. Press RCL $1 \times \operatorname{RCL} 2 \% \pm$ to obtain the interest portion of the payment.
5. Press RCL 0 STO $-1=$ to obtain the total payment.
6. Press RCL 1 to obtain the remaining balance of the loan.
7. Return to step 4 for each successive payment.

Example 1: A $\$ 60,000$ land loan at 10% interest calls for equal semi-annual principal payments over a 6-year maturity. What is the loan reduction schedule for the first year? (Constant payment to principal is $\$ 5000$ semi-annually). What is the fourth year's schedule (skip 4 payments)?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
5000STO 0	5000STO 0		
10ENTER2 \div ENTER	60000 STO 1		
ENTER ENTER	$10 \div 2=$ STO 2	5.00	Semi-annual interest rate.
60000 $\mathrm{x} \geqslant \mathrm{y}$ \%	RCL $1 \times \mathrm{RCL} 2$ \% +	3,000.00	First payment's interest.
RCL $0+$	RCL OSTO - 1 =	8,000.00	Total first payment.
CLx RCL $0-$	RCL1	55,000.00	Remaining balance.
x y y \%	X RCL 2 \% +	2,750.00	Second payment's interest.
RCL $0+$	RCL 0STO - 1 =	7,750.00	Total second payment.
CLx RCL $0-$	RCL1	50,000.00	Remaining balance after the first year.
$4 \mathrm{RCL} 0 \times \mathrm{X}$ -	$4 \times \mathrm{RCL} 0=$ STO -1		
$x \geqslant y$ \%	RCL 1 X RCL 2\% + +	1,500.00	Seventh payment's interest.
RCL) $0+$	RCL 0 STO-11 =	6,500.00	Total seventh payment.
CLx RCL $0-$	RCL1	25,000.00	Remaining balance.
x y y \%	\times RCL 2% +	1,250.00	Eighth payment's interest.
RCL) $0+$	RCL 0STO - 1 =	6,250.00	Total eighth payment.
CLx RCL) -	RCL1	20,000.00	Remaining balance after fourth year.

Add-On Interest Rate Converted to APR

An add-on interest rate determines what portion of the principal will be added on for repayment of a loan. This sum is then divided by the number of months in a loan to determine the monthly payment. For example, a 10% add-on rate for 36 months on $\$ 3000$ means add one-tenth of $\$ 3000$ for 3 years (300×3) - usually called the "finance charge" for a total of $\$ 3900$. The monthly payment is $\$ 3900 / 36$.
This keystroke procedure converts an add-on interest rate to a annual percentage rate when the add-on rate and number of months are known.

RPN Mode:

1. Press g END and press f CLEAR FIN.
2. Key in the number of months in the loan and press n ENTER RCL $g 12 x$.
3. Key in the add-on rate and press X.
4. Key in the amount of the loan and press $\mathrm{PV}^{*} x \geqslant y$ \% + .
5. Press $x \geqslant y \quad \div$ CHS PMT.
6. Press i 12 X to obtain the APR.

ALG Mode:

1. Press g END and press f CLEAR FIN.
2. Key in the number of months in the loan and press $n=R C 12 x, x$.
3. Key in the add-on rate and press $\quad=$.
4. Key in the amount of the loan and press $\left.\mathrm{PV}^{*} \pm \mathrm{x} \geqslant \mathrm{y}\right) \div$.
5. Press $x \geqslant y$ CHS PMT .
6. Press $i \times 12=$ to obtain the APR.

Example 1: Calculate the APR and monthly payment of a $12 \% \$ 1000$ add-on loan which has a life of 18 months.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
18 n ENTER	$18 \mathrm{n}=$		
RCL g 12x 12 x	RCL 9 12x $\times 12=$		
1000 PV $x \geqslant y$ \% +	1000 PV $+x \geqslant y$ \% \div	1,180.00	Amount of loan.
$\underline{x} \geq y$ CHS PMT	$x \geqslant y=$ CHS PMT	-65.56	Monthly payment.
i $12 \times$	i $\times 12$ =	21.64	Annual Percentage Rate.

APR Converted to Add-On Interest Rate

Given the number of months and annual percentage rate, this procedure calculates the corresponding add-on interest rate.

1. Press g END and press f CLEAR FIN.

[^0]2. Enter the following information:
a. Key in number of months of loan and press n.
b. Key in APR and press $912 \div$.
c. Key in 100 and press PV PMT.
3. RPN: Press $R C L$ PV RCL $n \div$ CHS $12 x$ to obtain the add-on rate.

Example 1: What is the equivalent add-on rate for an 18 month loan with an APR of 14% ?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
9 END	g END		
f CLEAR FIN	f CLEAR FIN		
18 n 14 g 12\%	18 n 14 g 12\%		
100 PV PMT RCL PV	100 PV PMT RCL PV		
$\mathrm{RCL} \mathrm{n} \div+\mathrm{CHS}$	$\square \mathrm{RCL} \mathrm{n}$ + X ¢ y		
12 x	$X 12=\mathrm{CHS}$	7.63	Add-On Interest Rate.

Add-On Rate Loan with Credit Life

This HP 12C Platinum program calculates the monthly payment amount, credit life amount (an optional insurance which cancels any remaining indebtedness at the death of the borrower), total finance charge, and annual percentage rate (APR) for an add-on interest rate (AIR) loan. The monthly payment is rounded (in normal manner) to the nearest cent. If other rounding techniques are used, slightly different results may occur.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g END	001,	43	8
1	002,		1
RCL) 0	003,	45	0
1	004,		1
2	005,		2
0	006,		0
0	007,		0
\div	008,		10
STO 4	009,	44	4
RCL2	010,	45	2

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g END	001,	43	8
RCL 0	002,	45	0
n	003,		11
RCL 9 12x	004,	43	11
\%	005,		25
STO 4	006,	44	4
X	007,		20
RCL2	008,	45	2
$=$	009,		36
RCL 4	010,	45	4

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
\bullet -	055,		48
0	056,		0
1	057,		1
\pm	058,		40
f RND	059,	42	14
STO 5	060,	44	5
RCL5	061,	45	5
R/S	062,		31
RCL PV	063,	45	13
$x \geqslant y$	064,		34
-	065,		30
RCL3	066,	45	3
-	067,		30
CHS	068,		16
R/S	069,		31
RCL 5	070,	45	5
RCL 3	071,	45	3
+	072,		40
PV	073,		13
RCL) 0	074,	45	0
n	075,		11
i	076,		12
RCL 9 12;	077,4	43	12
g GTO 000	078,43	33,	
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY
RCL 3	055, 453
PV	056, 13
FV	057, 15
CHS	058, 16
R/S	059, 31
0	060, 0
FV	061, 15
i	062, 12
RCL 9 12-	063,45,43 12
g GTO 000	064,43,33,000
f P/R	

	REGISTERS		
$\mathrm{n}: N$	$\mathrm{i}: i$	PV: Used	PMT: $: M T$
$\mathrm{FV}: 0$	$\mathrm{R}_{0}: N$	$\mathrm{R}_{1}: A I R$	$\mathrm{R}_{2}: C L(\%)$
$\mathrm{R}_{3}:$ Loan	$\mathrm{R}_{4}: N / 1200$	$\mathrm{R}_{5}:$ Used	$\mathrm{R}_{6}-\mathrm{R}_{9}:$ Unused

Program Instructions:

1. Key in the program.
2. Press f CLEAR FIN.
3. Key in the number of monthly payments in the loan and press STO 0.
4. Key in the annual add-on interest rate as a percentage and press STO 1.
5. Key in the credit life as a percentage and press STO 2.
6. Key in the loan amount and press STO 3.
7. Press R/S to find the monthly payment amount.
8. Press R/S to obtain the amount of credit life.
9. Press R/S to calculate the total finance charge.
10. Press R/S to calculate the annual percentage rate.
11. For a new loan return to step 3.

Example 1: You wish to quote a loan on a $\$ 3100$ balance, payable over 36 months at an add-on rate of 6.75%. Credit life (CL) is 1%. What are the monthly payment amount, credit life amount, total finance charge, and APR?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR FIN	f CLEAR FIN		
36 STO 0	36 STO 0	36.00	Months.
6.75STO1	6.75STO1	6.75	Add-on interest rate.
1 STO 2	1 STO 2	1.00	Credit life (\%).
3100 STO 3	3100 STO 3	3100.00	Loan.
R/S	R/S	-107.42	Monthly payment.
R/S	R/S	116.02	Credit life.
R/S	R/S	-651.10	Total finance charge.
R/S	R/S	12.39	APR.

Interest Rebate - Rule of 78's

This procedure finds the unearned interest rebate, as well as the remaining principal balance due for a prepaid consumer loan using the Rule of 78's. The known values are the current installment number, the total number of installments for which the loan was written, and the total finance charge (amount of interest). The information is entered as follows:

RPN Mode:

1. Key in number of months in the loan and press STO 1.
2. Key in payment number when prepayment occurs and press - STO $21 \pm$.
3. Key in total finance charge and press $X R$ RCL 1 ENTER $X R 1+\div R C L$ obtain the unearned interest (rebate).
4. Key in periodic payment amount and press $R C L 2 x x \geqslant y--$ to obtain the amount of principal outstanding.
ALG Mode:
5. Key in number of months in the loan and press STO $1-1$.
6. Key in payment number when prepayment occurs and press $=$ STO $2 \pm 1 X$.
7. Key in total finance charge and press $=R C 1 / x^{2}+R C L 1 \div x \geqslant y \quad x \geqslant y, R C L 2$ $=$ to obtain the unearned interest (rebate).
8. Key in periodic payment amount and press $x R 2-x \geqslant y=$ to obtain the amount of principal outstanding.

Example 1: A 30 month $\$ 1000$ loan having a finance charge of $\$ 180$, is being repaid at $\$ 39.33$ per month. What is the rebate and balance due after the 25 th regular payment?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
30STO 1	30STO1		
$25-$ STO 2	$-25=$ STO 2		
$1{ }^{+180}$ X	+1 $\times 180=$		
RCL 1 ENTER	RCL 1 g $x^{2}+$ RCL 1		
X RCL1 $1+$	$\div x \geqslant y \quad x \geqslant y$		
$\square \mathrm{RCL} 2 \mathrm{X}$	RCL 2 =	5.81	Rebate.
39.33 RCL 2 X	$39.33 \times$ RCL 2		
x<y -	- $x \geqslant y=$	190.84	Outstanding principal.

The following HP 12C Platinum program can be used to evaluate the previous example.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			f P/R			
f CLEAR PRGM	000,		f CLEAR PRGM	000,		
STO 0	001,	440	STO 0	001,	44	0
R】	002,	33	R \downarrow	002,		33
STO2	003,	$44 \quad 2$	$x \geqslant y$	003,		34
R】	004,	33	STO 1	004,	44	1
STO 1	005,	44	STO 2	005,	44	2
RCL 2	006,	$45 \quad 2$	X 2 y	006,		34
-	007,	30	STO -2	007,44	30	2
STO2	008,	$44 \quad 2$	RCL 1	008,	45	1
1	009,	1	$9 x^{2}$	009,	43	20
+	010,	40	+	010,		40
RCL 0	011,	$45 \quad 0$	RCL 1	011,	45	1
\times	012,	20	=	012,		36
RCL1	013,	45	RCL 2	013,	45	2
ENTER	014,	36	9 (x^{2}	014,	43	20
X	015,	20	+	015,		40
RCL1	016,	45	RCL) 2	016,	45	2
\pm	017,	40	\div	017,		10
\div	018,	10	$x \geqslant y$	018,		34
RCL) 2	019,	$45 \quad 2$	\times	019,		20
X	020,	20	RCL 0	020,	45	0
R/S	021,	31	=	021,		36
RCL) 2	022,	$45 \quad 2$	R/S	022,		31
X	023,	20	X	023,		20
X x y	024,	34	RCL 2	024,	45	2
-	025,	30	-	025,		30

12c platinum / 12C RPN KEYSTROKES	DISPLAY
g GTO 000	$\mathbf{0 2 6 , 4 3 , 3 3 , 0 0 0}$
$f(P / R$	

12c platinum ALG KEYSTROKES	DISPLAY
$x \gtrless y$	$\mathbf{0 2 6 ,}$
$=$	$\mathbf{0 2 7 ,}$
g GTO 000	$\mathbf{0 2 8}, \mathbf{4 3}, 33,000$
f P/R	

	REGISTERS		
$\mathrm{N}:$ Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	R_{0} : Fin. charge	$\mathrm{R}_{1}:$ \# months	$\mathrm{R}_{2}:$ Payment \#
R_{3} - $\mathrm{R}_{6}:$ Unused			

Program Instructions:

1. Key in the program.
2. Key in the number of months in the loan and press ENTER (\square).
3. Key in the payment number when prepayment occurs and press ENTER $(=$
4. Key in the total finance charge and press R/S to obtain the unearned interest (rebate).
5. Key in the periodic payment amount and press R / S to find the amount of principal outstanding.
6. For a new case return to step 2.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
30ENTER	30 $=$		
25 ENTER	$25=$		
$180 \mathrm{R} / \mathrm{S}$	$180 \mathrm{R} / \mathrm{S}$	5.81	Rebate.
39.33R/S	39.33 R/S	190.84	Outstanding principal.

Graduated Payment Mortgages

The Graduated Payment Mortgage is designed to meet the needs of young home buyers who currently cannot afford high mortgage payments, but who have the potential of increasing earning in the years to come.
Under the Graduated Payment Mortgage plan, the payments increase by a fixed percentage at the end of each year for a specified number of years. Thereafter, the payment amount remains constant for remaining life of the mortgage.
The result is that the borrower pays a reduced payment (a payment which is less than a traditional mortgage payment) in the early years, and in the later years makes larger payments than he would with a traditional loan. Over the entire term of the mortgage, the borrower would pay more than he would with conventional financing.

Given the term of the mortgage (in years), the annual percentage rate, the loan amount, the percentage that the payments increase, and the number of years that the payments increase, the following HP 12C Platinum program determines the monthly payments and remaining balance for each year until the level payment is reached.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			f P/R			
f CLEAR PRGM	000,		f CLEAR PRGM	000,		
g END	001,	438	9 END	001,	43	8
STO2	002,	$44 \quad 2$	STO 2	002,	44	2
$x \geqslant y$	003,	34	x 2 y	003,		34
1	004,	1	\%	004,		25
\%	005,	25	+	005,		40
1	006,	1	1	006,		1
+	007,	40	=	007,		36
STO 0	008,	$44 \quad 0$	1/x	008,		22
RCL n	009,	$45 \quad 11$	STO 0	009,	44	0
RCL) 2	010,	$45 \quad 2$	RCL n	010,	45	11
-	011,	30	-	011,		30
9 12x	012,	$43 \quad 11$	RCL 2	012,	45	2
RCL i	013,	4512	=	013,		36
9 12-	014,	4312	g 12x	014,	43	11
RCL PV	015,	$45 \quad 13$	RCL i	015,	45	12
STO 3	016,	443	g 12 -	016,	43	12
1	017,	1	RCL PV	017,	45	13
CHS	018,	16	STO 3	018,	44	3
PMT	019,	14	STO 4	019,	44	4
PV	020,	13	1	020,		1
CHS	021,	16	PMT	021,		14
FV	022,	15	PV	022,		13
1	023,	1	CHS	023,		16
9 12x	024,	4311	FV	024,		15
RCL PMT	025,	$45 \quad 14$	1	025,		1
RCL) 0	026,	450	9 12x	026,	43	11
\div	027,	10	RCL PMT	027,	45	14
PMT	028,	14	X	028,		20
PV	029,	13	RCL 0	029,	45	0
CHS	030,	16	PMT	030,		14
FV	031,	15	PV	031,		13
1	032,	1	CHS	032,		16
STO +1	033,44	$40 \quad 1$	FV	033,		15
RCL1	034,	45	1	034,		1
RCL 2	035,	$45 \quad 2$	STO +1	035,44	40	1
-	036,	30	RCL 1	036,	45	1

12c platinum / 12C RPN KEYSTROKES	DISPLAY	12c platinum ALG KEYSTROKES	DISPLAY
g $\mathrm{x}=0$	037, 4335	-	037, 30
g GTO 040	038,43,33,040	RCL 2	038, 45 2
g GTO 025	039,43,33,025	$=$	039, 36
RCL 3	040, 453	$9 \mathrm{x}=0$	040, 4335
RCL PV	041, 4513	g GTO 043	041, 43, 33, 043
\div	042, 10	g GTO 027	042,43,33,027
STO 4	043, 44 4	RCL PV	043, 4513
RCL 3	044, 45 3	STO $\div 4$	044,44 10 4
PV	045, 13	RCL 3	045, 45 3
1	046, 1	PV	046, 13
STO 3	047, 44 3	1	047, 1
RCL 3	048, 45 3	STO 3	048, 44 3
R/S	049, 31	RCL 3	049, 45 3
RCL 4	050, 45 4	R/S	050, 31
1	051,	RCL) 0	051, 450
RCL 0	052, 45 0	y^{x}	052, 21
RCL 1	053, 45 1	RCL 1	053, 45 1
y^{x}	054, 21	X	054, 20
\square	055, 10	RCL 4	055, 45 4
X	056, 20	$=$	056, 36
CHS	057, 16	f RND	057, 4214
f RND	058, 4214	R/S	058, 31
PMT	059, 14	PMT	059, 14
R/S	060, 31	FV	060, 15
FV	061, 15	f RND	061, 4214
FV	062, 15	R/S	062, 31
f RND	063, 4214	CHS	063, 16
R/S	064, 31	PV	064, 13
CHS	065, 16	1	065, 1
PV	066, 13	STO +3	066,44 40 3
1	067, 1	STO - 1	067,44 30 1
STO +3	068,44 40 3	RCL 1	068, 45 1
STO - 1	069,44 30 1	$9 \mathrm{x}=0$	069, 4335
RCL 1	070, 451	9 GTO 072	070,43,33,072
$9 \mathrm{x}=0$	071, 4335	g GTO 049	071,43,33,049
9 GTO 074	072,43,33,074	RCL 4	072, 45 4
g GTO 048	073,43,33,048	R/S	073, 31
RCL 4	074, 45 4	g GTO 073	074,43,33,073
CHS	075, 16	f P/R	
R/S	076, 31		
g GTO 076	077,43,33,076		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Used	$\mathrm{i}: \mathrm{i} / 12$	PV: Used	PMT: Used
FV: Used	$\mathrm{R}_{9}:$ Used	$\mathrm{R}_{l}:$ Used	$\mathrm{R}_{2}:$ Used
$\mathrm{R}_{3}:$ Used	$\mathrm{R}_{4}:$ Level Pmt.	$\mathrm{R}_{5}-\mathrm{R}_{9}:$ Unused	

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG.
3. Key in the term of the loan and press n.
4. Key in the annual interest rate and press i.
5. Key in the total loan amount and press PV.
6. Key in the rate of graduation (as a percent) and press ENTER $(=$
7. Key in the number of years for which the loan graduates and press R/S. The following information will be displayed for each year until a level payment is reached.
a. The current year.

Then press R/S to continue.
b. The monthly payment for the current year.

Then press R/S to continue.
c. The remaining balance to be paid on the loan at the end of the current year. Then press R/S to return to step a. unless the level payment is reached. If the level payment has been reached, the program will stop, displaying the monthly payment over the remaining term of the loan.
8. For a new case press g GTO 000 and return to step 2.

Example: A young couple recently purchased a new house with a Graduated Payment Mortgage. The loan is for $\$ 50,000$ over a period of 30 years at an annual interest rate of 12.5%. The monthly payments will be graduating at an annual rate of 5% for the first 5 years and then will be level for the remaining 25 years. What are the monthly payment amount for the first 6 years?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG	0.00	
30 n	30 n	30.00	Term
12.5 ${ }^{\text {i }}$	12.5 i	12.50	Annual interest rate
50000 PV	50000 PV	50,000.00	Loan amount
5 ENTER	$5=$	5.00	Rate of graduation
$5 \mathrm{R} / \mathrm{S}$	$5 \mathrm{R} / \mathrm{S}$	1.00	Year 1
R/S	R/S	-448.88	1 st year monthly payment.
R/S	R/S	-50,914.67	Remaining balance after 1st year.
R/S	R/S	2.00	Year 2
R/S	R/S	-471.33	2nd year monthly payment.
R/S	R/S	-51,665.07	Remaining balance after 2nd year.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
R/S	R/S	3.00	Year 3
R/S	R/S	-494.89	3rd year monthly payment.
R/S	R/S	-52,215.34	Remaining balance after 3rd year.
R/S	R/S	4.00	Year 4
R/S	R/S	-519.64	4th year monthly payment.
R/S	R/S	-52,523.86	Remaining balance after 4th year.
R/S	R/S	5.00	Year 5
R/S	R/S	-545.62	5th year monthly payment.
R/S	R/S	-52,542.97	Remaining balance after 5th year.
R/S	R/S	-572.90	Monthly payment for remainder of term.

Variable Rate Mortgages

As its name suggests, a variable rate mortgage is a mortgage loan which provides for adjustment of its interest rate as market interest rates change. As a result, the current interest rate on a variable rate mortgage may differ from its origination rate (i.e., the rate when the loan was made). This is the difference between a variable rate mortgage and the standard fixed payment mortgage, where the interest rate and the monthly payment are constant throughout the term.
Under the agreement of the variable rate mortgage, the mortgage is examined periodically to determine any rate adjustments. The rate adjustment may be implemented in two ways:

1. Adjusting the monthly payment.
2. Modifying the term of the mortgage.

The period and limits to interest rate increases vary from state to state.
Each periodic adjustment may be calculated by using the HP 12C Platinum with the following keystroke procedure. The original terms of the mortgage are assumed to be known.

1. Press g END and press f CLEAR FIN.
2. Key in the remaining balance of the loan and press PV .

The remaining balance is the difference between the loan amount and the total principal from the payments which have been made.
To calculate the remaining balance, do the following:
a. Key in the previous remaining balance. If this is the first mortgage adjustment, this value is the original amount of the loan. Press PV.
b. Key in the annual interest rate before the adjustment (as a percentage) and press g $12 \div$.
c. Key in the number of years since the last adjustment. If this is the first mortgage adjustment, then key in the number of years since the origination of the mortgage. Press 912 x .
d. Key in the monthly payment over this period and press CHS PMT.
e. Press FV to find the remaining balance, then press f CLEAR FIN CHS PV.
3. Key in the adjusted annual interest rate (as a percentage) and press $g 12 \div$.

To calculate the new monthly payment:
a. Key in the remaining life of the mortgage (years) and press $g 12 \mathrm{x}$.
b. RPN: Press PMT to find the new monthly payment.
b. ALG: Press PMT PMT to find the new monthly payment.

To calculate the revised remaining term of the mortgage:
a. Key in the present monthly payment and press PMT.
b. RPN: Press $n 12 \div$ to find the remaining term of the mortgage in years.
b. ALG: Press $n \div 12=$ to find the remaining term of the mortgage in years.

Example: A homeowner purchased his house 3 years ago with a $\$ 50,000$ variable rate mortgage. With a 30 year term, his current monthly payment is $\$ 495.15$. When the interest rate is adjusted from 11.5% to 11.75%, what will the monthly payment be? If the monthly payment remained unchanged, find the revised remaining term on the mortgage.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
50000 PV	50000 PV	50,000.00	Original amount of loan.
$11.5912 \div$	11.5 g 12\%	0.96	Original monthly interest rate.
3 9 12x	3 9 12x	36.00	Period.
495.15 CHS PMT	495.15 CHS PMT	-495.15	Previous monthly payment.
FV	FV	-49,316.74	
f CLEAR FIN	f CLEAR FIN		
CHS PV	CHS PV	49,316.74	Remaining balance.
11.75 g 12;	11.75 g 12 ${ }^{-}$	0.98	Adjusted monthly interest.
30ENTER 3-	$30-3=$	27.00	Remaining life of mortgage.
g 12 x	g 12 x	324.00	
PMT	PMT PMT	-504.35	New monthly payment.
495.15 CHS PMT	495.15 CHS PMT	-495.15	Previous monthly payment.
$\square 12 \div$	$\mathrm{n} \div 12=$	31.67	New remaining term (years).

Skipped Payments

Sometimes a loan (or lease) may be negotiated in which a specific set of monthly payments are going to be skipped each year. Seasonally is usually the reason for such an agreement. For example, because of heavy rainfall, a bulldozer cannot be operated in Oregon during December, January, and February, and the lessee wishes to make payments only when his machinery is being used. He will make nine payments per year, but the interest will continue to accumulate over the months in which a payment is not made.

To find the monthly payment amount necessary to amortize the loan in the specified amount of time, information is entered as follows:

1. Press g END and press f CLEAR FIN.
2. Key in the number of the last payment period before payments close the first time and press n .
3. Key in the annual interest rate as a percentage and press $98 \div 12 \mathrm{PMT}$ FV.

RPN Mode:

4. Press CHS PV $12 \mathrm{RCL} \cap-\mathrm{n} 0 \mathrm{PMT} \mathrm{FV}$ STO 0 RCL n .
5. Key in the number of payments which are skipped and press -
n 1 PMT 0 PV FV STO +0 .
6. Press 0 PMT 12 n 100 PV FV RCL PV +CHS f CLEAR FIN i
7. Key in the total number of years in the loan and press n.
8. Key in the loan amount and press $\mathrm{PV} \mathrm{PMT} \mathrm{RCL} 0 \div$ to obtain the monthly payment amount when the payment is made at the end of the month.
9. Press CHS FV 0 PMT 1 n .
10. Key in the annual interest rate as a percent and press $g 12 \div \mathrm{PV}$ to find the monthly payment amount when the payment is made at the beginning of the month.

ALG Mode:

4. Press CHS PV $12-R C L \cap 0$ PMT $F V S T O 0 R C L \square$.
5. Key in the number of payments which are skipped and press
n 1 PMT 0 PV FV STO +0 .
6. Press 0 PMT 12 $\mathrm{n} 100 \mathrm{PV} \mathrm{FV}+\mathrm{RCL} \mathrm{PV}=\mathrm{CHS} \mathrm{f}$ CLEAR FIN i
7. Key in the total number of years in the loan and press n.
8. Key in the loan amount and press $\mathrm{PV} \mathrm{PMT} \div \mathrm{RCL} 0=1$ to obtain the monthly payment amount when the payment is made at the end of the month.
9. Press CHS FV 0 PMT 1 n .
10. Key in the annual interest rate as a percent and press $g 12 \div \mathrm{PV}$ PV to find the monthly payment amount when the payment is made at the beginning of the month.

Example: A bulldozer worth $\$ 100,000$ is being purchased in September. The first payment is due one month later, and payments will continue over a period of 5 years. Due to the weather, the machinery will not be used during the winter months, and the purchaser does not wish to make payments during January, February, and March (months 4 thru 6). If the current interest rate is 14%, what is the monthly payment necessary to amortize the loan?

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
(END (CLEAR FIN 3 n	$\begin{aligned} & \hline g \text { END } \\ & \hline \mathrm{f} \text { CLEAR FIN } \\ & 3 \mathrm{n} \end{aligned}$	3.00	Number of payments made before a group of payments is skipped.
14 $912 \div$	$14 \mathrm{~g} 12 \div$	1.17	Monthly interest rate.
$\begin{aligned} & \hline 1 \text { PMT } \\ & \hline 12 \\ & 12 \\ & \hline \text { RCL } \\ & 0 \\ & \hline \end{aligned}$		-3.37	FV of 3 monthly unit PMTs.
$\begin{aligned} & \text { RCL } \mathrm{n} 3-\mathrm{n} \\ & 1 \mathrm{PMT} 0 \mathrm{PV} \mathrm{FV} \\ & \text { STO }+0 \end{aligned}$	$\begin{aligned} & \text { RCL } \mathrm{n}=3 \mathrm{n} \\ & 1 \mathrm{PMT} 0 \mathrm{PV} \mathrm{FV} \\ & \text { STO }+0 \end{aligned}$	-6.18	FV of 6 monthly unit PMTs.
0 PMT 12 n 100 PV FV RCL PV C CHS (CLEAR FIN i		14.93	Effective annual interest rate
$\begin{aligned} & \hline 5 \mathrm{n} \\ & \hline 100000 \times \mathrm{PV} \\ & \hline \mathrm{PMT} \\ & \mathrm{RCL} \\ & 0 \\ & \div \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \text { n } 100000 \text { PV } \\ & \text { PMT } \div \text { RCL } 0= \\ & \hline \end{aligned}$	3,119.89	Monthly payment in arrears.

Savings

Initial Deposit with Periodic Deposits

Given an initial deposit into a savings account, and a series of periodic deposits coincident with the compounding period, the future value (or accumulated amount) may be calculated as follows:

1. Press g END and press f CLEAR FIN.
2. Key in the initial investment and press CHS PV .
3. Key in the number of additional periodic deposits and press n.
4. Key in the periodic interest rate and press i.
5. Key in the periodic deposit and press CHS PMT.
6. Press FV to determine the value of the account at the end of the time period.

Example: You have just opened a savings account with a $\$ 200$ deposit. If you deposit $\$ 50$ a month, and the account earns $5 \frac{1}{4} \%$ compounded monthly, how much will you have in 3 years?

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
200 CHS PV	200 CHS PV		
3 g 12X	3 g 12X		
$5.25 \mathrm{~g} 12 \div$	5.25 g 12:		
50 CHS PMT FV	50 CHS PMT FV	2,178.94	Value of the account.

Note: If the periodic deposits do not coincide with the compounding periods, the account must be evaluated in another manner. First, find the future value of the initial deposits and store it. Then use the procedure for compounding periods different from payment periods to calculate the future value of the periodic deposits. Recall the future value of the initial deposit and add to obtain the value of the account.

Number of Periods to Deplete a Savings Account or to Reach a Specified Balance

Given the current value of a savings account, the periodic interest rate, the amount of the periodic withdrawal, and a specified balance, this procedure determines the number of periods to reach that balance (the balance is zero if the account is depleted).

1. Press g END and press f CLEAR FIN.
2. Key in the value of the savings account and press CHS PV .
3. Key in the periodic interest rate and press i.
4. Key in the amount of the periodic withdrawal and press PMT.
5. Key in the amount remaining in the account and press FV.

This step may be omitted if the account is depleted ($\mathrm{FV}=0$).
6. Press n to determine the number of periods to reach the desired balance.

Example: Your savings account presently contains $\$ 18,000$ and earns $51 / 2 \%$ compounded monthly. You wish to withdraw $\$ 300$ a month until the account is depleted. How long will this take? If you wish to reduce the account to $\$ 5000$, how many withdrawals can you make?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
18000 CHS PV	18000 CHS PV		
5.5 g 12\%	$5.5 \mathrm{~g} 12 \div$		
300 PMT n	300 PMT n	71.00	Months to deplete account.
5000 FV n	5000 FV n	53.00	Months to reduce the account to $\$ 5000$.

Periodic Deposits and Withdrawals

This section is presented as a guideline for evaluating a savings plan when deposits and withdrawals occur at irregular intervals. One problem is given, and a step by step method for setting up and solving the problem is presented:
Example: You are presently depositing $\$ 50$ and the end of each month into a local savings and loan, earning $5 \frac{1}{2} \%$ compounded monthly. Your current balance is $\$ 1023.25$. How much will you have accumulated in 5 months?
The cash flow diagram looks like this:

1	2	3	4	5
-50	-50	-50	-50	-50

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
50 CHS PMT	50 CHS PMT		
$5.5 \mathrm{~g} 12 \div$	5.5 g 12\%		
1023.25 CHS PV	1023.25 CHS PV		
5 n FV	5 n FV	1,299.22	Amount in account.

Now suppose that at the beginning of the 6th month you withdrew $\$ 80$. What is the new balance?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$80--$	$-80=$	$1,219.22$	New balance.

You increase your monthly deposit to $\$ 65$. How much will you have in 3 months? The cash flow diagram looks like this:

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
CHS PV	CHS PV		
$65 \triangle \mathrm{CHS}$ PMT	65 CHS PMT		
3 n FV	3 n FV	$1,431.95$	Account balance.

Suppose that for 2 months you decide not to make a periodic deposit. What is the balance in the account?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
CHS PV 2 n	CHS PV 2 n		
0 PMT FV	OPMT FV	$1,445.11$	Account balance.

This type of procedure may be continued for any length of time，and may be modified to meet the user＇s particular needs．

Savings Account Compounded Daily

This HP 12C Platinum program determines the value of a savings account when interest is compounded daily，based on a 365 day year．The user is able to calculate the total amount remaining in the account after a series of transactions on specified dates．

12c platinum／12C RPN KEYSTROKES	DISPLAY		
f P／R			
f CLEAR PRGM			
CHS	001，		16
PV	002，		13
R】	003，		33
3	004，		3
6	005，		6
5	006，		5
\div	007，		10
i	008，		12
R \downarrow	009，		33
STO 0	010，	44	0
RCL PV	011，	45	13
CHS	012，		16
R／S	013，		31
STO2	014，	44	2
R】	015，		33
STO 1	016，	44	1
RCL） 0	017，	45	0
RCL1	018，	45	1
9 \triangle DVS	019，	43	26
n	020，		11
FV	021，		15
f RND	022，	42	14
FV	023，		15
ENTER	024，		36
RCL PV	025，	45	13
\pm	026，		40
STO +3	027，44	40	3
RCL FV	028，	45	15
RCL） 2	029，	45	2
＋	030，		40
CHS	031，		16

12c platinum ALG KEYSTROKES	DISPLAY		
f P／R			
f CLEAR PRGM			
CHS	001，		16
PV	002，		13
R \downarrow	003，		33
\div	004，		10
3	005，		3
6	006，		6
5	007，		5
i	008，		12
R】	009，		33
STO 0	010，	44	0
RCL PV	011，	45	13
CHS	012，		16
R／S	013，		31
STO 2	014，	44	2
R】	015，		33
STO 1	016，	44	1
RCL 0	017，	45	0
RCL 1	018，	45	1
$\mathrm{g} \triangle \mathrm{DYS}$	019，	43	26
n	020，		11
FV	021，		15
f RND	022，	42	14
FV	023，		15
＋	024，		40
RCL PV	025，	45	13
$=$	026，		36
STO +3	027，44	40	3
RCL FV	028，	45	15
CHS	029，		16
－	030，		30
RCL2	031，	45	2

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
PV	032,		13
RCL1	033,	45	1
STO 0	034,	44	0
RCL PV	035,	45	3
CHS	036,		16
g GTO 013	037, 43, 33, 013		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
PV	032,		13
RCL 1	033,	45	1
STO 0	034,	44	0
RCL PV	035,	45	13
CHS	036,		16
g GTO 013	037, 43, 33, 013		
f P/R			

	REGISTERS		
$\mathrm{N}: \Delta$ days	$\mathrm{i}: \mathrm{i} / 365$	PV: Used	PMT: 0
$\mathrm{FV}:$ Used	$\mathrm{R}_{0}:$ Initial date	$\mathrm{R}_{l}:$ Next date	$\mathrm{R}_{2}: \$$ amount
$\mathrm{R}_{3}:$ Interest	$\mathrm{R}_{4}-\mathrm{R}_{4}:$ Unused		

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG and press g M.DY.
3. Key in the date (MM.DDYYYY) of the first transaction and press ENTER $(=$
4. Key in the annual nominal interest rate as a percentage and press ENTER $(=$
5. Key in the amount of the initial deposit and press R/S.
6. Key in the date of the next transaction and press ENTER $(=$
7. Key in the amount of the transaction (positive for money deposited, negative for cash withdrawn) and press R/S to determine the amount in the account.
8. Repeat steps 6 and 7 for subsequent transactions.
9. To see the total interest to date, press RCL 3 .
10. For a new case press f GTO 000 and go to step 2.

Example: Compute the amount remaining in this 5.25\% account after the following transactions:

1. January 19, 2003 deposit $\$ 125.00$
2. February 24, 2003 deposit $\$ 60.00$
3. March 16, 2003 deposit $\$ 70.00$
4. April 6, 2003 withdraw $\$ 50.00$
5. June 1, 2003 deposit $\$ 175.00$

6 July 6, 2003 withdraw $\$ 100.00$

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG		
g M.DY	g M.DY		
1.192003 ENTER	$1.192003=$		
5.25 ENTER	$5.25=$		
$125 \mathrm{R} / \mathrm{S}$	125 R/S	125.00	Initial Deposit.
2.242003ENTER	$2.242003=$		
60R/S	60R/S	185.65	Balance in account,
			February 24, 2003.
3.162003ENTER	$3.162003=$		
70R/S	70R/S	256.18	Balance in account,
			March 16, 2003.
4.062003 ENTER	$4.062003=$		
50 CHS R/S	$50 \mathrm{CHS} \mathrm{R} / \mathrm{S}$	206.95	Balance in account,
			April 6, 2003.
6.012003ENTER	$6.012003=$		
$175 \mathrm{R} / \mathrm{S}$	175 R/S	383.62	Balance in account,
			June 1, 2003.
7.062003 ENTER	$7.062003=$		
100 CHS R/S	100 CHS R/S	285.56	Balance in account,
			July 6, 2003.
RCL 3	RCL) 3	5.56	Total interest.

Compounding Periods Different From Payment Periods

In financial calculations involving a series of payments equally spaced in time with periodic compounding, both periods of time are normally equal and coincident. This assumption is preprogrammed into the HP 12C Platinum.
In savings plans however, money may become available for deposit or investment at a frequency different from the compounding frequencies offered. The HP 12C Platinum can easily be used in these calculations. However, because of the assumptions mentioned the periodic interest rate must be adjusted to correspond to an equivalent rate for the payment period.
Payments deposited for a partial compounding period will accrue simple interest for the remainder of the compounding period. This is often the case, but may not be true for all institutions.

These procedures present solutions for future value, payment amount, and number of payments. In addition, it should be noted that only annuity due (payments at the beginning of payment period) calculations are shown since this is the most common in savings plan calculations.

To calculate the equivalent payment period interest rate, information is entered as follows:

1. Press g BEG and press f CLEAR FIN.

RPN Mode:

2. Key in the annual interest rate (as a percent) and press ENTER.
3. Key in the number of compounding periods per year and press $n \rightarrow i$.

ALG Mode:

2. Key in the number of compounding periods per year and press n.
3. Key in the annual interest rate (as a percent) and press \div RCL n.
4. Key in 1 and press PV FV.
5. Key in the number of payments (deposits) per year and press

$$
\mathrm{n} \text { i } f \text { CLEAR FIN } \mathrm{i} .
$$

The interest rate which corresponds to the payment period is now in register "i" and you are ready to proceed.

Example 1: Solving for future value.
Starting today you make monthly deposits of $\$ 25$ into an account paying 5% compounded daily (365 -day basis). At the end of 7 years, how much will you receive from the account?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g BEG	g BEG		
f CLEAR FIN	f CLEAR FIN		
5 ENTER	365 n		
365 n \div	$5 \div$ RCL n		
1 PV FV	1 PV FV		
12 n i	12 n i		
f CLEAR FIN i	f CLEAR FIN i	0.42	Equivalent periodic interest rate.
7 g 12x	7 g 12 x		
25 CHS PMT	25 CHS PMT		
FV	FV	2,519.61	Future value.

Example 2: Solving for payment amount.

For 8 years you wish to make weekly deposits in a savings account paying 5.5\% compounded quarterly. What amount must you deposit each week to accumulate $\$ 6000$.

$\begin{array}{c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
g BEG	g BEG		
f CLEAR FIN	f CLEAR FIN		
5.5ENTER	4 n		
$4 \mathrm{n} \div \mathrm{i}$	$5.5 \div \mathrm{RCL} \mathrm{n}$ i		
1 PV FV	1 PV FV		
52 n i	52 n i		
f CLEAR FIN i	f CLEAR FIN i	0.11	Equivalent periodic interest rate.
8ENTER 52 X n	$8 \times 52 \mathrm{n}$		
6000 FV PMT	6000 FV PMT	-11.49	Periodic payment.

Example 3: Solving for number of payment periods.

You can make weekly deposits of $\$ 10$ in to an account paying 5.25% compounded daily (365-day basis). How long will it take you to accumulate $\$ 1000$?

$\begin{array}{c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
g BEG	g BEG		
f CLEAR FIN	f CLEAR FIN		
5.25ENTER	365 n		
365 n \div	$5.25 \div \mathrm{RCL} \mathrm{n}$ i		
1 PV FV	1 PV FV		
52 n i	52 n i		
f CLEAR FIN i	f CLEAR FIN i	0.10	Equivalent periodic interest rate.
10 CHS PMT	10 CHS PMT		
1000 FV n	1000 FV n	96.00	Weeks.

Investment Analysis

Lease vs. Purchase

An investment decision frequently encountered is the decision to lease or purchase capital equipment or buildings. Although a thorough evaluation of a complex acquisition usually requires the services of a qualified accountant, it is possible to simplify a number of the assumptions to produce a first approximation.
The following HP 12C Platinum program assumes that the purchase is financed with a loan and that the loan is made for the term of the lease. The tax advantages of interest paid, depreciation, and the investment credit which accrues from ownership are compared to the tax advantage of treating the lease payment as an expense. The resulting cash flows are discounted to the present at the firm's after-tax cost of capital.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
-	001,		30
1	002,		1
STO +0	003,44		0
RCL 3	004,	45	3
-	005,		30
X	006,		20
STO 8	007,	44	8
1	008,		1
f AMORT	009,	42	11
STO 1	010,	44	1
RCL PV	011,	45	13
STO 9	012,	44	9
RCL PMT	013,	45	14
STO - 0	014,44	48	0
RCL n	015,	45	11
STO - 1	016,44	48	1
RCL i	017,	45	12
STO - 2	018,44	48	2
RCL 5	019,	45	5
PV	020,		13
RCL 6	021,	45	6
n	022,		11

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
-	001,		30
X X y	002,		34
$=$	003,		36
STO 8	004, 44		8
1	005,		1
STO +0	006,44 40		0
f AMORT	007, 42		11
STO 1	008, 44		1
RCL PV	009, 45		13
STO 9	010, 44		9
RCL i	011, 45		12
STO - 2	012,44 48		2
RCL 5	013, 45		5
PV	014,		13
RCL) 6	015, 45		6
n	016,		11
RCL 7	017, 45		7
i	018,		12
RCL)	019,	45	0
f SOYD	020,	42	24
STO + 1	021,44	40	1
RCL 9	022,	45	9

12c platinum / 12C RPN KEYSTROKES	DISPLAY	
RCL7	023,	457
i	024,	12
RCL 0	025,	450
f SOYD	026,	$42 \quad 24$
STO +1	027,44	401
RCL 9	028,	459
PV	029,	13
RCL - 0	030,45	480
PMT	031,	14
RCL) - 1	032,45	481
n	033,	11
RCL) $\cdot 2$	034,45	482
i	035,	12
RCL 1	036,	45
RCL3	037,	453
X	038,	20
RCL PMT	039,	$45 \quad 14$
-	040,	30
RCL 8	041,	458
-	042,	30
RCL 4	043,	$45 \quad 4$
RCL 0	044,	45
$y^{\text {y }}$	045,	21
\div	046,	10
STO +2	047,44	$40 \quad 2$
g GTO 000	048,43	33,000
f P/R		

12c platinum ALG KEYSTROKES	DISPLAY	
PV	023,	13
RCL $\cdot 2$	024,45	482
i	025,	12
RCL 1	026,	$45 \quad 1$
-	027,	30
RCL 8	028,	458
X	029,	20
RCL 3	030,	45 3
+	031,	40
RCL 8	032,	458
-	033,	30
RCL PMT	034,	$45 \quad 14$
$=$	035,	36
RCL 4	036,	$45 \quad 4$
y^{x}	037,	21
RCL 0	038,	450
\div	039,	10
$x \geqslant y$	040,	34
X 2 y	041,	34
$=$	042,	36
STO +2	043,44	$40 \quad 2$
g GTO 000	044,43	,33,000
f P/R		

	REGISTERS		
$\mathrm{n}:$ Used	i: Used	PV: Used	PMT: Used
$\mathrm{FV}: 0$	$\mathrm{R}_{0}:$ Used	$\mathrm{R}_{1}:$ Used	$\mathrm{R}_{2}:$ Purch. Adv.
$\mathrm{R}_{3}:$ Tax	$\mathrm{R}_{4}:$ Discount	$\mathrm{R}_{5}:$ Dep. Value	$\mathrm{R}_{6}:$ Dep. life
$\mathrm{R}_{7}:$ Factor (DB)	$\mathrm{R}_{8}:$ Used	$\mathrm{R}_{9}:$ Used	$\mathrm{R}_{.0}:$ Used
$\mathrm{R}_{. l}:$ Used	$\mathrm{R}_{.2}:$ Used	$\mathrm{R}_{3.3}:$ Unused	

Program Instructions:

1. Key in the program.

RPN: - Select the depreciation function and key in at line 26.
ALG: - Select the depreciation function and key in at line 20.
2. Press g END and press f CLEAR REG.
3. Input the following information for the purchase of the loan:

- Key in the number of years for amortization and press n.
- Key in the annual interest rate and press i.
- Key in the loan amount (purchase price) and press CHS PV.
- Press PMT to find the annual payment.

4. Key in the marginal effective tax rate ${ }^{*}$ and press STO 3.
5. RPN: Key in the discount rate or cost of capital ${ }^{*}$ and press ENTER 1 + + STO 4.
6. ALG: Key in the discount rate or cost of capital ${ }^{*}$ and press $+1==$ STO 4 .
7. Key in the depreciable value and press STO 5.
8. Key in the depreciable life and press STO 6.
9. For declining balance depreciation, key in the depreciation factor (as a percentage) and press STO 7 .
10. RPN: Key in the total first lease payment (including any advance payments) and press ENTER 1 RCL $3-\triangle$ STO 2.
11. ALG: Key in the total first lease payment (including any advance payments) and press $=1-\operatorname{RCL} 3 \times X \geqslant y=S T O 2$.
12. Key in the first year's maintenance expense that would be anticipated if the asset was owned and press ENTER ($=$) . If the lease contract does not include maintenance, then it is not a factor in the lease vs. purchase decision and 0 expense should be used.
13. Key in the next lease payment and press R/S. During any year in which a lease payment does not occur (e.g. the last several payments of an advance payment contract) use 0 for the payment.
14. Repeat steps 10 and 11 for all maintenance expenses and lease payments over the term of the analysis.
Optional - If the investment tax credit is taken, key in the amount of the credit after finishing steps 10 and 11 for the year in which the credit is taken and press g GTO 043 (ALG:036) R/S. Continue steps 10 and 11 for the remainder of the term.
15. RPN: After all the lease payments and expenses have been entered (steps 10 and 11), key in the lease buy back option and press ENTER 1 RCL $3-X$ GTO 043 R/S. If no buy back option exists, use the estimated salvage value of the purchased equipment at the end of the term.
16. ALG: After all the lease payments and expenses have been entered (steps 10 and 11), key in the lease buy back option and press $=1 \square$
RCL $3 \times x \geqslant y=g$ GTO 036 R/S. If no buy back option exists, use the estimated salvage value of the purchased equipment at the end of the term.
17. To find the net advantage of owning press RCL 2 . A negative value represents a net lease advantage.

Example: Home Style Bagel Company is evaluating the acquisition of a mixer which can be leased for $\$ 1700$ a year with the first and last payments in advance and a $\$ 750$ buy back option at the end of 10 years (maintenance is included).
The same equipment could be purchased for $\$ 10,000$ with a 12% loan amortized over 10 years. Ownership maintenance is estimated to be 2% of the purchase price per year for the first for years. A major overhaul is predicted for the 5th year at a cost of $\$ 1500$.
Subsequent yearly maintenance of 3% is estimated for the remainder of the 10 year term. The company would use sum of the years digits depreciation on a 10 year life with $\$ 1500$

[^1]salvage value. An accountant informs management to take the 10% capital investment tax credit at the end of the second year and to figure the cash flows at a 48% tax rate. The after tax cost of capital (discounting rate) is 5 percent.
Because lease payments are made in advance and standard loan payments are made in arrears the following cash flow schedule is appropriate for a lease with the last payment in advance.

Year	Maintenance	Lease Payment	Tax Credit	Buy Back
0		$1700+1700$		
1	200	1700		
2	200	1700	1000	
3	200	1700		
4	200	1700		
5	1500	1700		
6	300	1700		
7	300	1700		
8	300	1700		750
9	300	0		
10	300	0		

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR REG	f CLEAR REG	0.00	
10 n 12 i	10 n 12 i		
10000 CHS PV	10000 CHS PV	-10,000.00	Always use negative loan amount.
PMT	PMT	1,769.84	Purchase payment.
48STO 3	48STO3	0.48	Marginal tax rate.
05ENTER 1 + STO 4	05 + 1 = STO 4	1.05	Discounting factor.
$\begin{aligned} & 10000 \text { ENTER } \\ & 1500-\text { STO } 5 \end{aligned}$	$\begin{aligned} & 10000-= \\ & 1500=\mathrm{STO} 5 \end{aligned}$	8,500.00	Depreciable value.
10STO 6	10 STO 6	10.00	Depreciable life.
1700 ENTER +	$1700+=$	3,400.00	1st lease payment.
1RCL 3-X STO2	$\begin{aligned} & 1-\mathrm{RCL} 3 \mathrm{X} \quad \mathrm{X} \geqslant \mathrm{y} \\ & =\mathrm{STO} 2 \end{aligned}$	1,768.00	After-tax expense.
$\begin{aligned} & 200 \text { ENTER } \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{aligned} & 200= \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	312.36	Present value of 1st year's net purchase.
$\begin{aligned} & \text { 200ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 200== \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	200.43	2nd year's advantage.
1000 g GTO 043	1000 9 GTO 036	1,000.00	Tax credit.
R/S	R/S	907.03	Present value of tax credit.
$\begin{aligned} & 200 \text { ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 200= \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	95.05	3rd year.
$\begin{aligned} & 200 \text { ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 200= \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	-4.38	4th year.

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
$\begin{aligned} & 1500 \text { ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 1500 \text { = } \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	-628.09	5th year.
$\begin{aligned} & 300 \text { ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 300= \\ & 1700 \mathrm{R} / \mathrm{S} \end{aligned}$	-226.44	6th year.
$\begin{aligned} & 300 \text { ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 300= \\ & 1700 \text { R/S } \end{aligned}$	-309.48	7th year.
$\begin{aligned} & 300 \text { ENTER } \\ & 1700 \text { R/S } \end{aligned}$	$\begin{aligned} & 300= \\ & 1700 \text { R/S } \end{aligned}$	-388.81	8th year.
300 ENTER 0 R/S	$300=0 \mathrm{R} / \mathrm{S}$	-1,034.72	9th year.
300ENTER 0 R/S	$300=0 \mathrm{R} / \mathrm{S}$	-1,080.88	10th year.
750 ENTER	750 =	750.00	Buy back.
1 RCL 3- x	$1-1$ RCL $3 \times X \geqslant y=$	390.00	After tax buy back expense.
g GTO 043 R/S	g GTO 036 R/S	239.43	Present value.
RCL 2	RCL2	-150.49	Net lease advantage.

Break-Even Analysis

Break-even analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached at the intersection of the total sales revenue and total cost lines, the producer operates at a loss. After the break-even point each unit produced and sold makes a profit. Break-even analysis may be represented as follows.

The variables are: fixed costs (F), Sales price per unit (P), variable cost per unit (V), number of units sold (U), and gross profit (GP). One can readily evaluate $G P, U$ or P given the four other variables. To calculate the break-even volume, simply let the gross profit equal zero and calculate the number of units sold (U).

To calculate the break-even volume:

RPN Mode:

1. Key in the fixed costs and press ENTER.
2. Key in the unit price and press ENTER.
3. Key in the variable cost per unit and press - .
4. Press \div to calculate the break-even volume.

ALG Mode:

1. Key in the fixed costs and press $=$
2. Key in the unit price and press - .
3. Key in the variable cost per unit and press \div.
4. Press $x \geqslant y \quad x \geqslant y=$ to calculate the break-even volume.

To calculate the gross profit at a given volume:

RPN Mode:

1. Key in the unit price and press ENTER.
2. Key in the variable cost per unit and press $-\square$.
3. Key in the number of units sold and press X.
4. Key in the fixed cost and press - to calculate the gross profit.

ALG Mode:

1. Key in the unit price and press - .
2. Key in the variable cost per unit and press X.
3. Key in the number of units sold and press $-\square$.
4. Key in the fixed cost and press $=$ to calculate the gross profit.

To calculate the sales volume needed to achieve a specified gross profit:

RPN Mode:

1. Key in the desired gross profit and press ENTER.
2. Key in the fixed cost and press + .
3. Key in sales price per unit and press ENTER.
4. Key in the variable cost per unit and press $-\quad$.
5. Press \div to calculate the sales volume.

ALG Mode:

1. Key in the desired gross profit and press \pm.
2. Key in the fixed cost and press $=$.
3. Key in sales price per unit and press - .
4. Key in the variable cost per unit and press \div.
5. Press $x \geqslant y \quad x \geqslant y=$ to calculate the sales volume.

To calculate the required sales price to achieve a given gross profit at a specified sales volume:

RPN Mode:

1. Key in the fixed costs and press ENTER.
2. Key in the gross desired and press $+ \pm$.
3. Key in the specified sales volume in units and press \div.
4. Key in the variable cost per unit and press \pm to calculate the required sales price per unit.

ALG Mode:

1. Key in the fixed costs and press $+ \pm$.
2. Key in the gross desired and press \div.
3. Key in the specified sales volume in units and press + .
4. Key in the variable cost per unit and press $=$ to calculate the required sales price per unit.

Example 1: The E.Z. Sells company markets textbooks on salesmanship. The fixed cost involved in setting up to print the books are $\$ 12,000$. The variable cost per copy, including printing and marketing the books are $\$ 6.75$ per copy. The sales price per copy is $\$ 13.00$. How many copies must be sold to break even?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
12000 ENTER	12000=	12,000.00	Fixed cost.
13ENTER	13-	13.00	Sales price.
6.75- - -		1,920.00	Break-even volume.

Find the gross profit if 2500 units are sold.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
13 ENTER	$13--$	$\mathbf{1 3 . 0 0}$	Sales price.
$6.75-$	$6.75 \times$	6.25	Profit per unit.
$2500 \times$	$2500-$	$15,625.00$	
$12000-$	$12000=$	$3,625.00$	Gross profit.

If a gross profit of $\$ 4500$ is desired at a sales volume of 2500 units, what should the sales price be?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
12000 ENTER	$12000 \square$	$\mathbf{1 2 , 0 0 0 . 0 0}$	Fixed cost.
$4500 \square$	$4500 \div$	$\mathbf{1 6 , 5 0 0 . 0 0}$	
$2500 \div$	$2500 \square$	$\mathbf{6 . 6 0}$	Sales price per unit to achieve desired gross profit.
	$6.75=$	$\mathbf{1 3 . 3 5}$	

For repeated calculation the following HP 12C Platinum program can be used.

12c platinum / 12C RPN KEYSTROKES	DISPLAY	12c platinum ALG KEYSTROKES	DISPLAY
f P/R		f P/R	
f CLEAR PRGM	000,	f CLEAR PRGM	000,
RCL 3	001, 453	RCL 3	001, $45 \quad 3$
RCL) 2	002, $45 \quad 2$	-	002, 30
-	003, 30	RCL 2	003, 45 2
9] GTO 000	004,43,33,000	=	004, 36
RCL 4	005, 454	g GTO 000	005, 43, 33, 000
X	006, 20	X	006, 20
RCL1	007, 45	RCL 4	007, 45 4
-	008, 30	-	008, 30
9 GTO 000	009,43,33,000	RCL 1	009, $45 \quad 1$
RCL) 5	010, 455	$=$	010, 36
RCL 1	011, 451	g GTO 000	011, 43, 33,000
+	012, 40	RCL 5	012, $45 \quad 5$
X P y	013, 34	+	013, 40
\div	014, 10	RCL 1	014, 451
g GTO 000	015, 43, 33, 000	\div	015, 10
RCL 1	016, 451	$x \geqslant y$	016, 34
RCL 5	017, 45 5	$=$	017, 36
\pm	018, 40	g GTO 000	018, 43, 33, 000

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
RCL 4	019,	45	4
$\div \cdot$	020,		10
RCL2	021,	45	2
+	022,		40
g GTO 000	023,43,33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
RCL1	019,	45	1
+	020,		40
RCL 5	021,	45	5
\div	022,		10
RCL 4	023,	45	4
+	024,		40
RCL 2	025,	45	2
=	026,		36
9 GTO 000	027,43,33,000		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	$\mathrm{I}:$ Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{l}: F$	$\mathrm{R}_{2}: V$
$\mathrm{R}_{3}: P$	$\mathrm{R}_{4}: U$	$\mathrm{R}_{5}: G P$	$\mathrm{R}_{6}-\mathrm{R}_{6}:$ Unused

Program Instructions:

1. Key in the program and store the known variables as follows:
a. Key in the fixed costs, F and press STO 1.
b. Key in the variable costs per unit, V and press STO 2.
c. Key in the unit price, P (if known) and press STO 3.
d. Key in the sales volume, U, in units (if known) and press STO 4.
e. Key in the gross profit, GP, (if known) and press STO 5.
2. To calculate the sales volume to achieve a desired gross profit:
a. Store values as shown in $1 \mathrm{a}, 1 \mathrm{~b}$, and 1 c .
b. Key in the desired gross profit (zero for break even) and press STO 5.
c. RPN: Press R/S g GTO 010 R/S to calculate the required volume.
c. ALG: Press R/S gTO 012 R/S to calculate the required volume.
3. To calculate the gross profit at a given sales volume.
a. Store values as shown in $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d .
b. RPN: Press R/S g GTO 005 R/S to calculate gross profit.
b. ALG: Press R/S gTO 006 R/S to calculate gross profit.
4. To calculate the sales price per unit to achieve a desired gross profit at a specified sales volume:
a. Store values as shown in $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{~d}$, and 1 e .
b. RPN: Press g GTO 016 R/S to calculate the required sales price.
b. ALG: Press g GTO 019 R/S to calculate the required sales price.

Example 2: A manufacturer of automotive accessories produces rear view mirrors. A new line of mirrors will require fixed costs of $\$ 35,000$ to produce. Each mirror has a variable cost of $\$ 8.25$. The price of mirrors is tentatively set at $\$ 12.50$ each. What volume is needed to break even?

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
35000STO1	35000STO 1	35,000.00	Fixed cost.
8.25 STO 2	8.25 STO 2	8.25	Variable cost.
12.5STO3	12.5STO3	12.50	Sales price.
0 STO 5	0 STO 5	0.00	
R/S 9 GTO 010R/S	R/S 9 GTO 012R/S	8,235.29	Break-even volume is between 8,235 and 8,236 units.

What would be the gross profit if the price is raised to $\$ 14.00$ and the sales volume is 10,000 units?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
14STO3	14STO3	14.00	Sales price. F and V are already stored.
10000 STO 4	10000 STO 4	10,000.00	Volume.
R/S g GTO 005R/S	R/S 9 GTO 006 R/S	22,500.00	Gross Profit.

Operating Leverage

The degree of operating leverage $(O L)$ at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the break-even point where a small change in sales may produce a very large increase in profits. Likewise, firms with a small degree of operating leverage are operating farther form the break-even point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage and fixed costs (F), sales price per unit (P), variable cost per unit (V) and number of units (U).
The operating leverage may be readily calculated as follows:

RPN Mode:

1. Key in the sales price per unit and press ENTER.
2. Key in the variable cost per unit and press $-\square$.
3. Key in the number of units and press X ENTER ENTER.
4. Key in the fixed cost and press $-\square$ to obtain the operating leverage.

ALG Mode:

1. Key in the sales price per unit and press -
2. Key in the variable cost per unit and press X.
3. Key in the number of units and press $=$.
4. Key in the fixed cost and press $\Delta \% \%$ CHS $1 / x$ to obtain the operating leverage.

Example 1: For the data given in example 1 of the Break-Even Analysis section, calculate the operating leverage at 2000 units and at 5000 units when the sales price is $\$ 13$ a copy.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
13ENTER	13-	13.00	Price per copy.
6.75-	6.75 X	6.25	Profit per copy.
$\begin{aligned} & 2000 \times \text { ENTER } \\ & \text { ENTER } 12000-\div \end{aligned}$		25.00	Close to break-even point.
13ENTER	13-	13.00	Price per copy.
6.75-	6.75 X	6.25	Profit per copy.
$\begin{aligned} & 5000 \times \text { ENTER } \\ & \text { ENTER } 12000-\div \end{aligned}$	$\begin{aligned} & 5000=12000 \\ & \Delta \% \text { CHS } 1 / x \end{aligned}$	1.62	Operating further from the breakeven point and less sensitive to changes in sales volume.

For repeated calculations the following HP 12C Platinum program can be used:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 3	001,	45	3
RCL 2	002,	45	2
\square	003,		30
X	004,		20
ENTER	005,		36
ENTER	006,		36
RCL 1	007,	45	1
-	008,		30
\div	009,		10
g GTO 000	010, 43, 33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 3	001,	45	3
-	002,		30
RCL 2	003,	45	2
X	004,		20
X X ¢ y	005,		34
$=$	006,		36
RCL1	007,	45	1
-\%	008,		24
\%	009,		25
CHS	010,		16
$1 / x$	011,		22
9 GTO 000	012,43,33,000		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{1}: F$	$\mathrm{R}_{2}: V$
$\mathrm{R}_{3}: P$	$\mathrm{R}_{4}-\mathrm{R}_{.8}:$ Unused		

Program Instructions:

1. Key in the program.
2. Key in and store input variables F, V and P as described in the Break-Even Analysis program.
3. Key in the sales volume and press R / S to calculate the operating leverage.
4. To calculate a new operating leverage at a different sales volume, key in the new sales volume and press R/S.

Example 2: For the figures given in example 2 of the Break-Even Analysis section, calculate the operating leverage at a sales volume of 9,000 and 20,000 units if the sales price is $\$ 12.50$ per unit.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
35000 STO1	35000 STO 1	$\mathbf{3 5 , 0 0 0 . 0 0}$	Fixed costs.
$8.25 S T O 2$	8.25 STO 2	8.25	Variable cost.
12.5 STO 3	12.5 STO 3	$\mathbf{1 2 . 5 0}$	Sales price.
$9000 \mathrm{R} / \mathrm{S}$	$9000 \mathrm{R} / \mathrm{S}$	$\mathbf{1 1 . 7 7}$	Operating leverage near break- even.
$20000 \mathrm{R} / \mathrm{S}$	$20000 \mathrm{R} / \mathrm{S}$	$\mathbf{1 . 7 0}$	Operating leverage further from break-even.

Profit and Loss Analysis

The HP 12C Platinum may be programmed to perform simplified profit and loss analysis using the standard profit income formula and can be used as a dynamic simulator to quickly explore ranges of variables affecting the profitability of a marketing operation.
The program operates with net income return and operating expenses as percentages. Both percentage figures are based on net sales price.
It may also be used to simulate a company wide income statement by replacing list price with gross sales and manufacturing cost with cost of goods sold.

Any of the five variables: a) list price, b) discount (as a percentage of list price), c) manufacturing cost, d) operating expense (as a percentage), e) net profit after tax (as a percentage) may be calculated if the other four are known.
Since the tax rage varies from company to company, provision is made for inputting your applicable tax rate. The example problem uses a tax rate of 48%.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 5	001,	45	5
RCL 6	002,	45	6
\div	003,		10
RCL 4	004,	45	4
+	005,		40
CHS	006,		16
RCL 0	007,	45	0
+	008,		40
RCL) 0	009,	45	0
\div	010,		10
9 GTO 000	011,43,33,000		
RCL3	012,	45	3
RCL1	013,	45	1
RCL) 2	014,	45	2
RCL 0	015,	45	0
\div	016,		10
CHS	017,		16
1	018,		1
+	019,		40
X	020,		20
R/S	021,		31
\div	022,		10
CHS	023,		16
1	024,		1

12c platinum ALG KEYSTROKES	DISPLAY	
f P/R		
f CLEAR PRGM	$000 \text {, }$	
RCL 5	001,	$45 \quad 5$
\div	002,	10
RCL 6	003,	$45 \quad 6$
+	004,	40
RCL 4	005,	$45 \quad 4$
-	006,	30
1	007,	1
x x y	008,	34
\%	009,	25
$=$	010,	36
9 GTO 000	011,43,33,000	
RCL 3	012,	453
RCL 1	013,	451
RCL 2	014,	$45 \quad 2$
$x \geqslant y$	015,	34
-	016,	30
$x \geqslant y$	017,	34
\%	018,	25
$=$	019,	36
R/S	020,	31
9 GTO 027	021,43,33,027	
X 2 y	022,	34
\div	023,	10
x 2	024,	34

12c platinum / 12C RPN KEYSTROKES	DISPLAY	
+	025,	40
RCL 0	026,	450
\times	027,	20
g GTO 000	028, 43, 33, 000	
\div	029,	10
CHS	030,	16
RCL 1	031,	$45 \quad 1$
+	032,	40
RCL1	033,	$45 \quad 1$
\div	034,	10
RCL) 0	035,	450
\times	036,	20
g GTO 000	037,43,33,000	
RCL 5	038,	$45 \quad 5$
RCL 6	039,	456
\div	040,	10
-	041,	30
g GTO 000	042,43,33,000	
RCL 4	043,	$45 \quad 5$
-	044,	30
RCL 6	045,	456
\times	046,	20
g GTO 000	047,43	33,000
f P/R		

12c platinum ALG KEYSTROKES	DISPLAY		
=	025,		36
RCL 1	026,	45	1
$x \geqslant y$	027,		34
¢\%	028,		24
CHS	029,		16
9 GTO 000	030,43,33,000		
RCL5	031,	45	5
\div	032,		10
RCL 6	033,	45	6
-	034,		30
$x \geq y$	035,		34
$x \geq y$	036,		34
$=$	037,		36
9 GTO 000	038,43,33,000		
-	039,		30
RCL 4	040,	45	4
X	041,		20
RCL 6	042,	45	6
$=$	043,		36
9 GTO 000	044,	33	00
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}: 100$	$\mathrm{R}_{1}:$ list price	$\mathrm{R}_{2}: \%$ discount
$\mathrm{R}_{3}:$ mfg. cost	$\mathrm{R}_{4}: \%$ op. exp.	$\mathrm{R}_{5}: \%$ net profit	$\mathrm{R}_{6}: 1-\%$ tax
$\mathrm{R}_{7}-\mathrm{R}_{3}:$ Unused			

Program Instructions:

1. Key in the program and press f CLEAR REG, then key in 100 and press STO 0 .
2. RPN: Key in 1 and press ENTER, then key in your appropriate tax rate as a decimal and press - - STO 6.
3. ALG: Key in 1 and press - , then key in your appropriate tax rate as a decimal and press $=$ STO 6.
4. a. Key in the list price in dollars (if known) and press STO 1.
b. Key in the discount in percent (if known) and press STO 2.
c. Key in the manufacturing cost in dollars (if known) and press STO 3.
d. Key in the operating expense in percent (if known) and press STO4.
e. Key in the net profit after tax in percent (if known) and press STO 5.
5. To calculate list price:
a. Do steps 2 and 3b, c, d, e above.
b. RPN: Press RCL 3 R/S $\div 1 \mathrm{~g}$ GTO 014 R/S $\div \mathrm{g}$ GTO 000.
b. ALG: Press RCL $3 R / S x \geqslant y \div x \geqslant y=1$ GTO $014 R / S$

$$
x \geqslant y=x \geqslant y=g \text { GTO } 000 .
$$

5. To calculate discount:
a. Do steps 2 and 3a, c, d, e above.
b. RPN: Press RCL 3 R/S g GTO $029 R / S$.
b. ALG: Press RCL 3 R/S g GTO 022 R/S.
6. To calculate manufacturing cost:
a. Do steps 2 and 3a, b, d, e, above.

7. To calculate operating expense:
a. Do steps 2 and 3a, b, c, e, above.
b. RPN: Press g GTO $012 R / S$ R/S g GTO $038 R / S$.
b. ALG: Press g GTO 012 R/S R/S g GTO 031 R/S.
8. To calculate net profit after tax:
a. Do steps 2 and 3a, b, c, d, above.
b. RPN: Press g GTO 012 R/S R/S g GTO 043 R/S.
b. ALG: Press g GTO 012 R/S R/S g GTO 039 R/S.

Example: What is the net return on an item that is sold for $\$ 11.98$, discounted through distribution an average of 35% and has a manufacturing cost of $\$ 2.50$? The standard company operating expense is 32% of net shipping (sales) price and tax rate is 48%.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG 100 STO 0 1 ENTER. $48-$ STO 6	f CLEAR REG 100 STO 0 $1-.48=$ STO 6	$\begin{aligned} & 100.00 \\ & 0.52 \\ & \hline \end{aligned}$	48\% tax rate.
11.98 STO 1	11.98 STO 1	11.98	List price (\$).
35 STO 2	35 STO 2	35.00	Discount (\%).
2.50 STO 3	2.50 STO 3	2.50	Manufacturing cost (\$).
32 STO 4	32 STO 4	32.00	Operating expenses (\%).
g GTO $012 \mathrm{R} / \mathrm{S}$ R/S	9 GTO 012 R/S R/S	67.90	
g GTO 043 R/S	g GTO 039 R/S	18.67	Net profit (\%).

If manufacturing expenses increase to $\$ 3.25$, what is the effect on net profit?

12c platinum / 12C RPN Keystrokes			12c platinum ALG Keystrokes			Display	Comments
3.25STO 3			3.25STO3			3.25	Manufacturing cost.
9	GTO012 R/S	R/S	9	GTO012 R/S	R/S	58.26	
g	GTO 043R/S		9	GTO039 R/S		13.66	Net profit reduced to 13.66\%

If the manufacturing cost is maintained at $\$ 3.25$, how high could the overhead (operating expense) be before the product begins to lose money?

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
0 STO 5	0 STO 5	0.00	
g GTO 012 R/S R/S	g GTO 012 R/S R/S	58.26	
g GTO 038 R/S	g GTO 031 R/S	58.26	Maximum operating expense (\%).

At 32% operating expense and $\$ 3.25$ manufacturing cost, what should the list price be to generate 20% net profit?

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes					Display	Comments
20ST0 5	20ST0 5					$\begin{aligned} & \hline 20.00 \\ & 11.00 \\ & 16.93 \\ & \hline \end{aligned}$	List price (\$).
RCL $3 \mathrm{R} / \mathrm{S} \div$		$3 \mathrm{R} / \mathrm{S}$ x y -	$x \geqslant y$	=			
1 g GTO 014 R/S \div	19	GTO 014R/S	$x \geqslant y$	$\div x \geqslant y$	$=$		

What reduction in manufacturing cost would achieve the same result without necessitating an increase in list price above $\$ 11.98$?

Securities and Options

After-Tax Yield

The following HP 12C Platinum program calculates the after-tax yield to maturity of a bond held for more than one year. The calculation assumes an actual/actual day basis. For after-tax computations, the interest or coupon payments are considered income, while the difference between the bond's face value and its purchase price is considered capital gains.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM			
f CLEAR FIN	001,		34
STO 7	002,	44	7
R】	003,		33
STO 6	004,	44	6
RCL2	005,	45	2
RCL1	006,	45	1
-	007,		30
RCL 4	008,	45	4
\%	009,		25
RCL2	010,	45	2
X X y	011,		34
-	012,		30
EEX	013,		26
2	014,		2
\div	015,		10
STO 0	016,	44	0
RCL 3	017,	45	3
RCL5	018,	45	5
\%	019,		25
-	020,		30
RCL) 0	021,	45	0
\div	022,		10
PMT	023,		14
RCL1	024,	45	1
RCL) 0	025,	45	0
\div	026,		10
PV	027,		13
RCL 6	028,	45	6
RCL 7	029,	45	7

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
f CLEAR FIN	001,	42	34
STO 7	002,	44	7
R】	003,		33
STO 6	004,	44	6
RCL2	005,	45	2
-	006,		30
RCL 1	007,	45	1
-	008,		30
RCL 4	009,	45	4
\%	010,		25
+	011,		40
RCL 1	012,	45	1
$=$	013,		36
\%	014,		25
STO 0	015,	44	0
RCL 3	016,	45	3
-	017,		30
RCL5	018,	45	5
\%	019,		25
\div	020,		10
RCL 0	021,	45	0
PMT	022,		14
RCL 1	023,	45	1
\div	024,		10
RCL 0	025,	45	0
PV	026,		13
RCL 6	027,	45	6
RCL 7	028,	45	7
f YTM	029,	42	22

12c platinum / 12C RPN KEYSTROKES	DISPLAY
f YTM	030, 4222
g GTO 000	031,43,33,000
f P/R	

12c platinum ALG KEYSTROKES	DISPLAY
g GTO 000	$\mathbf{0 3 0 , 4 3 , 3 3 , 0 0 0}$
$\mathrm{f} P / \mathrm{P}$	

	REGISTERS		
$\mathrm{n}:$ Unused	i: Yield	PV: Used	PMT: Used
FV: 0	$\mathrm{R}_{0}:$ Used	$\mathrm{R}_{1}:$ Purchase price	$\mathrm{R}_{2}:$ Sales price
$\mathrm{R}_{3}:$ Coupon rate	$\mathrm{R}_{4}:$ Capital rate	$\mathrm{R}_{5}:$ Income rate	$\mathrm{R}_{6}:$ Used
$\mathrm{R}_{7}:$ Used	$\mathrm{R}_{8}-\mathrm{R}_{5}:$ Unused		

Program Instructions:

1. Key in the program.
2. Key in the purchase price and press STO 1.
3. Key in the sales price and press STO 2 .
4. Key in the annual coupon rate (as a percentage) and press STO 3.
5. Key in capital gains tax rate (as a percentage) and press STO4.
6. Key in the income tax rate (as a percentage) and press STO 5.
7. Press g M.DY.
8. Key in the purchase date (MM.DDYYYY) and press ENTER ($=$
9. Key in the assumed sell date (MM.DDYYYY) and press R/S to find the after-tax yield (as a percentage).
10. For the same bond but different date return to step 8 .
11. For a new case return to step 2.

Example: You can buy a 7% bond on October 1, 2003 for $\$ 70$ and expect to sell it in 5 years for $\$ 90$. What is your net (after-tax) yield over the 5 -year period if interim coupon payments are considered as income, and your tax bracket is 50% ?
(One-half of the long term capital gain is taxable at 50%, so the tax on capital gains alone is 25%)

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
70 STO 1	70 STO 1	70.00	Purchase price.
90 STO 2	90 STO 2	90.00	Selling price.
7 STO 3	7STO 3	7.00	Annual coupon rate.
25 STO 4	25 STO 4	25.00	Capital gains tax rate.
50STO 5	50STO 5	50.00	Income tax rate.
g M.DY	g M.DY		
10.012003ENTER	10.012003 =	10.01	Purchase Date.
$10.012008 \mathrm{R} / \mathrm{S}$	10.012008R/S	8.53	\% after tax yield.

Discounted Notes

A note is a written agreement to pay a sum of money plus interest at a certain rate. Notes do not have periodic coupons, since all interest is paid at maturity.
A discounted note is a note that is purchased below its face value. The following HP 12C Platinum program finds the price and/or yield ${ }^{*}$ of a discounted note.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 1	001,		1
RCL) 2	002,		2
$9 \triangle$ DYS	003,		26
RCL 3	004,		3
\div	005,		10
RCL 5	006,		5
\%	007,		25
1	008,		1
X 2 y	009,		34
-	010,		30
RCL 4	011,		4
X	012,		20
STO 5	013,		5
R/S	014,		31
RCL1	015,		1
RCL) 2	016,		2
g \triangle DYS	017,	43	26
RCL 3	018,		3
X 2 y	019,		34
\div	020,		10
RCL 4	021,		4
RCL5	022,		5
\div	023,		10
1	024,		1
-	025,		30
X	026,		20
EEX	027,		26
2	028,		2
X	029,		20
g GTO 000	030,43, 33, 000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 1	001,	45	1
RCL 2	002,	45	2
g \triangle DYS	003,	43	26
\div	004,		10
RCL 3	005,	45	3
X	006,		20
RCL 5	007,	45	5
$=$	008,		36
RCL 4	009,	45	4
-	010,		30
$x \geqslant y$	011,		34
\%	012,		25
$=$	013,		36
STO 5	014,	44	5
R/S	015,		31
RCL 1	016,	45	1
RCL 2	017,	45	2
g \triangle DYS	018,	43	26
RCL 5	019,	45	5
RCL 4	020,	45	4
$\Delta \%$	021,		24
X 2 y	022,		34
R】	023,		33
\div	024,		10
x y y	025,		34
X	026,		20
RCL 3	027,	45	3
$=$	028,		36
g GTO 000	029,43,33,000		
f P/R			

[^2]| | REGISTERS | | |
| :--- | :--- | :--- | :--- |
| n: Unused | i: Unused | PV: Unused | PMT: Unused |
| FV: Unused | $\mathrm{R}_{0}:$ Unused | $\mathrm{R}_{1}:$ Settl. date | $\mathrm{R}_{2}:$ Mat. Date |
| $\mathrm{R}_{3}: 360$ or 360 | $\mathrm{R}_{4}:$ redemp. Value | $\mathrm{R}_{5}:$ dis./price | R_{6} - $\mathrm{R}_{.5}:$ Unused |

Program Instructions:

1. Key in the program.
2. Press g M.DY.
3. Key in the settlement date (MM.DDYYYY) and press STO 1.
4. Key in the maturity date (MM.DDYYYY) and press STO2.
5. Key in the number of days in a year (360 or 365) and press STO 3.
6. Key in the redemption value per $\$ 100$ and press STO 4 .
7. To calculate the purchase price:
a. Key in the discount rate and press STO 5 .
b. Press R/S to calculate the purchase price.
c. Press R/S to calculate the yield.
d. For a new case, go to step 3.
8. To calculate the yield when the price is known:
a. Key in the price and press STO 5.
b. RPN: Press g GTO 015 R/S to calculate the yield.
b. ALG: Press g GTO 016 R/S to calculate the yield.
c. For a new case, go to step 3.

Example 1: Calculate the price and yield on this bill: settlement date October 8, 2002; maturity date March 21, 2003; discount rate 7.80%. Compute on a 360 day basis.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
g M.DY	g M.DY		
10.082002 STO 1	10.082002 STO 1	10.08	Settlement date.
3.212003 STO 2	3.212003 STO2	3.21	Maturity date.
360STO 3	360ST0 3	360.00	360 day basis.
100 STO 4	100 STO 4	100.00	Redemption value per \$100.
7.8 STO 5	7.8 STO 5	7.80	Discount rate.
R/S	R/S	96.45	Price.
R/S	R/S	8.09	Yield.

Example 2: Determine the yield of this security; settlement date June 25, 2002; maturity date September 10, 2002; price $\$ 99.45$; redemption value $\$ 101.33$. Assume 360 day basis.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
6.252002STO1	6.252002STO 1	6.25	Settlement date.
9.102002STO2	9.102002STO2	9.10	Maturity date.
360STO3	360STO 3	360.00	360 day basis.
101.33STO 4	101.33STO 4	101.33	Redemption value per \$100.
99.45 STO 5	99.45 STO 5	99.45	Price.
9 GTO 015 R/S	g GTO 016 R/S	8.84	Yield.

Black-Scholes Formula for Valuing European Options

This program implements the Black-Scholes formula which has been used extensively in option markets worldwide since its publication in the early 1970's. The five inputs are simply keyed into the five financial variables and then R/S displays the call option value, and $x \geqslant y$ shows the put option value. The option values produced are accurate to at least the nearest cent for asset and strike prices under $\$ 100$.

Reference: Hutchins, 2003, Black-Scholes takes over the HP12C, HPCC (www.hpcc.org) DataFile,V22,N3 pp13-21.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL n	001,	45	11
RCL i	002,	45	12
\%	003,		25
CHS	004,		16
g $\mathrm{e}^{\text {x }}$	005,	43	22
RCL FV	006,	45	15
X	007,		20
STO 4	008,	44	4
$x \geqslant y$	009,		34
$\mathrm{g} \sqrt{x}$	010,	43	21
RCL PMT	011,	45	14
\%	012,		25
STO 3	013,	44	3
RCL PV	014,	45	13
RCL 4	015,	45	4
\div	016,		10

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM			
RCL n	001,	45	11
X	002,		20
RCL i	003,	45	12
\%	004,		25
$=$	005,		36
CHS	006,		16
g [e^{x}	007,	43	22
X	008,		20
RCL FV	009,	45	15
$=$	010,		36
STO 4	011,	44	4
RCL n	012,	45	11
$g \sqrt{x}$	013,	43	21
X	014,		20
RCL PMT	015,	45	14
\%	016,		25

12c platinum / 12C RPN KEYSTROKES	DISPLAY		12c platinum ALG KEYSTROKES	DISPLAY		
g LN	017,	$43 \quad 23$	$=$	017,		36
X 2 y	018,	34	STO 3	018,	44	3
\div	019,	10	RCL PV	019,	45	13
g LSTx	020,	$43 \quad 40$	\div	020,		10
2	021,	2	RCL 4	021,	45	4
STO 5	022,	445	=	022,		36
\div	023,	10	9 LN	023,	43	23
$+$	024,	40	\div	024,		10
STO 6	025,	446	X X ¢	025,		34
RCL 3	026,	$45 \quad 3$	=	026,		36
-	027,	30	RCL 3	027,	45	3
STO 3	028,	443	\div	028,		10
ENTER	029,	36	2	029,		2
X	030,	20	STO 5	030,	44	5
$9 \sqrt{x}$	031,	$43 \quad 21$	+	031,		40
g LSTX	032,	$43 \quad 40$	X 2 y	032,		34
2	033,	2	-	033,		30
\div	034,	10	STO 6	034,	44	6
CHS	035,	16	RCL 3	035,	45	3
g e e^{x}	036,	$43 \quad 22$	$=$	036,		36
X X \%	037,	34	STO 3	037,	44	3
3	038,	3	g x^{2}	038,	43	20
\bullet	039,	48	\div	039,		10
0	040,	0	2	040,		2
0	041,	0	$=$	041,		36
6	042,	6	CHS	042,		16
\div	043,	10	g e^{x}	043,	43	22
1	044,	1	RCL 3	044,	45	3
\pm	045,	40	$9 x^{2}$	045,	43	20
1/x	046,	22	$\mathrm{g} \sqrt{x}$	046,	43	21
\times	047,	20	\div	047,		10
g LSTx	048,	$43 \quad 40$	3	048,		3
9 LSTX	049,	4340	\bullet	049,		48
1	050,	1	0	050,		0
8	051,	8	0	051,		0
7	052,	7	6	052,		6
X	053,	20	+	053,		40
2	054,	2	1	054,		1
4	055,	4	$=$	055,		36
-	056,	30	1/x	056,		22
X	057,	20	STO 2	057,	44	2
8	058,	8	X	058,		20
7	059,	7	X x y	059,		34
\pm	060,	40	$=$	060,		36

12c platinum / 12C RPN KEYSTROKES	DISPLAY	12c platinum ALG KEYSTROKES	DISPLAY	
X	061, 20	1	061,	1
-	062, 48	8	062,	8
2	063, 2	7	063,	7
\%	064, 25	X	064,	20
RCL 3	065, 45 3	RCL2	065,	$45 \quad 2$
X X y	066, 34	-	066,	30
STO 3	067, 44 3	2	067,	2
CLx	068, 35	4	068,	4
X 2 y	069, 34	X	069,	20
g $x \leqslant y$	070, 43 34	RCL2	070,	$45 \quad 2$
(g GTO077	071,43,33,077	+	071,	40
1	072, 1	8	072,	8
STO - 3	073,44 30 3	7	073,	7
CHS	074, 16	X	074,	20
STO X \times	075,44 20 3	$x \geqslant y$	075,	34
$x \geqslant y$	076, 34	X	076,	20
RCL 5	077, 45	\bullet	077,	48
g $\mathrm{x}=0$	078, 43 35	2	078,	2
g GTO 089	079,43,33,089	\%	079,	25
RCL 6	080, 456	$=$	080,	36
RCL 3	081, 45	RCL 3	081,	453
RCL 4	082, 454	X ${ }^{\text {y }}$	082,	34
X	083, 20	STO 3	083,	443
STO6	084, 446	CLx	084,	35
CLX	085, 35	$x \geqslant y$	085,	34
STO 5	086, 445	9 x ¢ y	086,	$43 \quad 34$
X 2 y	087, 34	g GTO 093	087, 43,	33,093
g GTO 028	088,43,33,028	1	088,	1
X 2 y	089, 34	STO - 3	089,44	$30 \quad 3$
RCL 3	090, 45 3	CHS	090,	16
RCL PV	091, 4513	STO X 3	091,44	203
STO -4	092,44 30 4	$x \geqslant y$	092,	34
X	093, 20	RCL5	093,	$45 \quad 5$
RCL 6	094, 45 6	9 $\mathrm{x}=0$	094,	$43 \quad 35$
-	095, 30	g GTO 106	095,43,	33,106
STO +4	096,44 40 4	RCL 6	096,	456
RCL 4	097, 45	RCL 3	097,	453
X 2 y	098, 34	X	098,	20
STO 5	099, 445	RCL 4	099,	$45 \quad 4$
f P / R		$=$	100,	36

12c platinum / 12C RPN KEYSTROKES

12c platinum ALG KEYSTROKES	DISPLAY		
STO 6	101,	44	6
CLX	102,		35
STO 5	103,	44	5
$x \geqslant y$	104,		34
g GTO 037	105, 43, 33, 037		
X ${ }^{\text {y }}$	106,		34
RCL PV	107,	45	13
STO - 4	108, 44	30	4
X	109,		20
RCL3	110,	45	3
-	111,		30
RCL 6	112,	45	6
=	113,		36
STO + 4	114,44	40	4
RCL 4	115,	45	4
X 2 y	116,		34
STO 5	117,	44	5
g GTO 000	118,43,	33	00
f P/R			

	REGISTERS		
n: Term to expiry	i : Interest rate (\%)	PV: Stock price	PMT: Volatility (\%)
FV: Strike price	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{1}:$ Unused	R_{2} : Unused
$\mathrm{R}_{3}: \mathrm{N}\left(\mathrm{d}_{1}\right)$	R_{4} : Put value	R_{5} : Call value	$\mathrm{R}_{6}: \mathrm{Q} \cdot \mathrm{N}\left(\mathrm{d}_{2}\right)$
R_{7} - R_{9} : Unused			

Note: The n , i and PMT values must all be based on the same time unit (for example: n is measured in years or months and i and PMT are rates per year or per month). i is a continuous percentage rate. PMT is the standard deviation of the continuous percentage stock return (as observed over the time unit). For sensible output, all inputs should be positive. The PMT $=0$ case can be simulated by using a PMT arbitrarily close to 0 .

Program Instructions

1. Key in the program.
2. Enter the five inputs into the five financial registers. These values are preserved by the program.
a. Key in the unexpired term of the option and press n.
b. Key in the risk-free interest rate as a percentage and press i.
c. Key in the current (or spot) stock price and press PV.
d. Key in the volatility assumption as a percentage and press PMT.
e. Key in the strike price and press FV.
3. Press R/S. The Call value is displayed. Press $x \geqslant y$ to see the Put value.

Example 1: An option has 6 months to run and a strike price of $\$ 45$. Find Call and Put values assuming a spot price of $\$ 52$, return volatility of 20.54% per month and a risk-free interest rate of $1 / 2 \%$ per month. Show how to re-scale n, i and PMT to use a yearly time unit, and how to re-scale them back again to the original monthly basis.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
6 n	6 n	6.00	Time to expiry (months).
. 5 i	. 5 i	0.50	Interest rate (\% per month).
52 PV	52 PV	52.00	Stock price.
20.54 PMT	20.54 PMT	20.54	Volatility (\% per month).
45 FV	45 FV	45.00	Strike price.
R/S	R/S	14.22	Call value.
X 2 y	X y Y	5.89	Put value.
RCL 9 12x n	RCL 9 12x n	0.50	Years to expiry.
RCL 9 12\% i	RCL 9 12 i	6.00	Yearly interest rate \%.
RCL PMT	RCL PMT X		
$12 \mathrm{~g} \sqrt{x} \times$ PMT	$12 \mathrm{~g} \sqrt{x}$ PMT	71.15	Yearly volatility \%.
R/S	R/S	14.22	Call value (unchanged).
RCL n - 9 12x	RCL n , g 12x	6.00	Months to expiry.
RCL i (g 12 12	RCL i (9 12\%	0.50	Monthly interest rate \%.
RCL PMT	RCL PMT \div		
$12 \mathrm{~g} \sqrt{x} \div$ PMT	$12 \mathrm{~g} \sqrt{x}$ PMT	20.54	Monthly volatility \%.

The next example is Example 12.7 from Options, Futures, and Other Derivatives (5th Edition) by John C. Hull (Prentice Hall, 2002).
Example 2: The stock price six months from the expiration of an option is $\$ 42$, the exercise price of the option is $\$ 40$, the risk-free interest rate is 10% per annum, and the volatility is 20% per annum. Find Call and Put values.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
. n	. 5 n	0.50	Time to expiry (years).
10 i	10 i	10.00	Interest rate (\% per year).
42 PV	42 PV	42.00	Stock price.
20 PMT	20 PMT	20.00	Volatility (\% per year).
40 FV	40 FV	40.00	Strike price.
R/S	R/S	4.76	Call value.
x x y	x X y	0.81	Put value.

Forecasting

Simple Moving Average

Moving averages are often useful in recording of forecasting sales figures, expenses or manufacturing volume. There are many different types of moving average calculations. An often used, straightforward method of calculation is presented here.
In a moving average a specified number of data points are averaged. When there is a new piece of input data, the oldest piece of data is discarded to make room for the latest input. This replacement scheme makes the moving average a valuable tool in following trends. The fewer the number of data points, the more trend sensitive the average becomes. With a large number of data points, the average behaves more like a regular average, responding slowly to new input data.
A simple moving average may be calculated with your HP 12C Platinum as follows.

1. Press f CLEAR REG.
2. Key in the first m data points (where m is the number of data points in the average) and press $\Sigma+$ after each entry.
3. Press $\overline{\mathrm{X}}$ to obtain the first average.
4. Key in the oldest (first value) entered in step 2 and press $g \Sigma-$
5. Key in the newest data point $(m+1)$ and press $\Sigma+$.
6. Press $g \overline{\mathrm{x}}$ to obtain the next value of the moving average.
7. Repeat steps 4 through 5 for the remaining data.

Example 1: An electronics sales firm wished to calculate a 3-month moving average for the dollar volume of components sold each month. Sales for the first six months of this year were:

January	$\$ 211,570$	April	131,760
February	112,550	May	300,500
March	190,060	June	271,120

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG	0.00	
211570 E+	211570 E+	1.00	
112550 [+	112550 [+	2.00	
190060 E+	190060 £	3.00	
g ($\overline{\mathrm{x}}$	g $\overline{\mathrm{x}}$	171,393.33	3-month average for March.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
211570 g [211570 g E	2.00	
131760 โ+	131760 E+	3.00	
g $\overline{\mathrm{x}}$	g $\overline{\mathrm{x}}$	144,790.00	3-month average for April.
112550 g [Σ	112550 g [2.00	
300500 £	300500 E+	3.00	
g $\overline{\mathrm{x}}$	g $\overline{\mathrm{x}}$	207,440.00	3-month average for May.
190060 g Σ	190060 g	2.00	
271120 E+	271120 E+	3.00	
g $\overline{\mathrm{x}}$	g $\overline{\mathrm{x}}$	234,460.00	3-month average for June.

For repeated calculations the following HP 12C Platinum program can be used for up to a 12 element moving average:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL1	001,	45	1
RCL2	002,	45	2
STO1	003,	44	1
\pm	004,		40
RCL 3	005,	45	3
STO2	006,	44	2
\square^{3}	007,		40
RCL 4	008,	45	4
STO 3	009,	44	3
$+^{4}$	010,		40
RCL 5	011,	45	5
STO 4	012,	44	4
\square^{5}	013,		40
RCL 6	014,	45	6
STO 5	015,	44	5
\square^{+6}	016,		40
RCL 7	017,	45	7
STO 6	018,	44	6
$+^{+1}$	019,		40
RCL 8	020,	45	8
STO 7	021,	44	7
\square^{8}	022,		40
RCL) 9	023,	45	9
STO	024,	44	8
\square^{9}	025,		40
RCL $\cdot 0$	026,45	48	0

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 1	001,	45	1
+	002,		40
RCL 2	003,	45	2
STO 1	004,	44	1
+	005,		40
RCL 3	006,	45	3
STO 2^{3}	007,	44	2
+	008,		40
RCL 4	009,	45	4
STO 3^{4}	010,	44	3
+	011,		40
RCL 5	012,	45	5
STO 4^{5}	013,	44	4
+	014,		40
RCL 6	015,	45	6
STO 5^{6}	016,	44	5
+	017,		40
RCL 7	018,	45	7
STO 6^{\prime}	019,	44	6
+	020,		40
RCL 8	021,	45	8
STO $7{ }^{8}$	022,	44	7
+	023,		40
RCL 9	024,	45	9
STO 8^{9}	025,	44	8
+	026,		40

12c platinum / 12C RPN		
STO	KEYSTROKES	

12c platinum ALG KEYSTROKES	DISPLAY
RCL - 0	027,45 48 0
STO 9^{10}	028, 449
+	029, 40
RCL - 1	030,45 48 1
STO • 0^{11}	031,44 48 0
+	032, 40
RCL - 2	033,45 48 2
STO $\cdot 1^{12}$	034,44 48 1
\div	035, 10
RCL 0	036, 45 0
=	037, 36
R/S	038, 31
STO m*	039, 44
g GTO 001	040,43,33,001
f P/R	

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	$\mathrm{PV}:$ Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}: m$	$\mathrm{R}_{1}: X_{1}$	$\mathrm{R}_{2}: X_{2}$
$\mathrm{R}_{3}: X_{3}$	$\mathrm{R}_{4}: X_{4}$	$\mathrm{R}_{5}: X_{5}$	$\mathrm{R}_{6}: X_{6}$
$\mathrm{R}_{7}: X_{7}$	$\mathrm{R}_{8}: X_{8}$	$\mathrm{R}_{9}: X_{9}$	$\mathrm{R}_{9}: X_{.0}$
$\mathrm{R}_{I l}: X_{11}$	$\mathrm{R}_{2}: X_{12}$	$\mathrm{R}_{.3}-\mathrm{R}_{4}:$ Unused	

This program can be used for a moving average of 2 to 12 elements. It may be shortened considerably for moving averages with less than 12 elements. To do this, key in the program, as shown, from line 01 until you reach a + (ALG: a STO command) superscripted with the number of elements you desire. Key in this line, then skip the rest of the program down to line 35 . Then key in lines 035 through 039 (ALG:040), being sure to specify the register number at line 038 (ALG:039), STO m, corresponding to the number of elements you are using. (For instance, for a 5 element moving average, key in lines 01 through 13 then go to line 35 in the listing and key in the balance of the program. Obviously the program listing line 38 (ALG:039), STO m becomes the displayed line 017, STO 5 in RPN and 018, STO 5 in ALG).

[^3]
Program Instructions:

1. Key in the program.
2. Press f CLEAR REG. Key in the number of elements, m, and press STO 0 .
3. Key in the first data point and press STO 1.
4. Key in the second data point and press STO 2.
5. Continue as above, keying in and storing each data point in its appropriate register until m data points have been stored.
6. Press g GTO 000 R/S to calculate the first moving average.
7. Key in the next data point and press R/S to calculate the next moving average.
8. Repeat step 7 for each new data point.

Example 2: Calculate the 3-element moving average for the data given in example 1.
Your modified program listing will look like this:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL1	001,	45	1
RCL 2	002,	45	2
STO 1	003,	44	1
\pm	004,		40
RCL 3	005,	45	3
STO 2	006,	44	2
+	007,		40
RCL)	008,	45	0
\div	009,		10
R/S	010,		31
STO 3	011,	44	3
g GTO 001	012, 43, 33, 001		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL1	001,	45	1
+	002,		40
RCL 2	003,	45	2
STO 1	004,	44	1
+	005,		40
RCL 3	006,	45	3
STO 2	007,	44	2
\div	008,		10
RCL 0	009,	45	0
$=$	010,		36
R/S	011,		31
STO 3	012,	44	3
g GTO 001	013,43,33,001		
f P/R			

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEARREG	0.00	
3 STO 0	3STO 0	3.00	
211570STO 1	211570STO1	211,570.00	
112550 STO 2	112550 STO 2	112,550.00	
190060 STO 3	190060 STO 3	190,060.00	
9 GTO 000 R/S	g GTO 000 R/S	171,393.33	3-month average for March.
131760 R/S	131760 R/S	144,790.00	3 -month average for April.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
300500[R/S	300500[R/S	207,440.00	3-month average for May.
271120[R/S	271120[R/S	234,460.00	3-month average for June.

Seasonal Variation Factors Based on Centered Moving Averages

Seasonal variation factors are useful concepts in many types of forecasting. There are several methods of developing seasonal moving averages, on the of more common ways being to calculate them as a ratio of the periodic value to a centered moving average for the same period.
For instance, to determine the sales for the 3rd quarter of a given year a centered moving average for that quarter would be calculated from sales figures from the 1st, 2nd, 3rd and 4th quarters of the year and the 1st quarter of the following year. The seasonal variation factor for that 3 rd quarter would then be the ratio of the actual sales in the 3rd quarter to the centered moving average for that quarter.
While quarterly seasonal variations are commonly used, the HP 12C Platinum can also be programmed to calculate monthly seasonal variations using a centered 12 month moving average. Programs for both of these calculations are represented here:
An HP 12C Platinum program to calculate the quarterly seasonal variations based on a centered 4-point moving average is:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL1	001,	45	1
2	002,		2
\div	003,		10
RCL 2	004,	45	2
STO1	005,	44	1
+	006,		40
RCL 3	007,	45	3
STO 2	008,	44	2
+	009,		40
RCL 4	010,	45	4
STO 3	011,	44	3
+	012,		40
RCL 5	013,	45	5
STO 4	014,	44	4
2	015,		2
\div	016,		10
\pm	017,		40

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	$000 \text {, }$		
RCL1	001,	45	1
\div	002,		10
2	003,		2
+	004,		40
RCL 2	005,	45	2
STO 1	006,	44	1
+	007,		40
RCL 3	008,	45	3
STO 2	009,	44	2
+	010,		40
RCL 4	011,	45	4
STO 3	012,	44	3
$=$	013,		36
RCL 5	014,	45	5
STO 4	015,	44	4
\div	016,		10
2	017,		2

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
4	018,		4
\div	019,		10
R/S	020,		31
RCL 2	021,	45	2
\%T	022,		23
R/S	023,		31
STO 5	024,	44	5
g GTO 001	025,43, 33, 001		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY	
+	018,	40
x x y	019,	34
\div	020,	10
4	021,	4
$=$	022,	36
R/S	023,	31
RCL 2	024,	$45 \quad 2$
\%T	025,	23
R/S	026,	31
STO 5	027,	445
g GTO 001	028,	33,001
f P/R		

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}: n$	$\mathrm{R}_{7}: X_{I}$	$\mathrm{R}_{2}: X_{2}$
$\mathrm{R}_{3}: X_{3}$	$\mathrm{R}_{4}: X_{4}$	$\mathrm{R}_{5}: X_{5}$	$\mathrm{R}_{6}-\mathrm{R}_{6}:$ Unused

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG.
3. Key in the quarterly sales figures starting with the first quarter:
a. Key in 1st quarter sales and press STO 1 .
b. Key in 2nd quarter sales and press STO 2.
c. Key in 3rd quarter sales and press STO 3 .
d. Key in 4th quarter sales and press STO 4.
e. Key in the 1st quarter sales for the next year and press STO 5 .
4. Press g GTO 000 R/S to calculate the centered moving average for the 3rd quarter of the first year.
5. Press R/S to calculate the seasonal variation for this quarter.
6. Key in the next quarter's sales and press R/S to calculate the moving average for the next quarter.
7. Press R/S to calculate the seasonal variation.
8. Repeat steps 6 and 7 for the balance of the data.

Example: Econo-Wise Home Appliance Company had quarterly sales for the years 2000 thru 2002 as follows:

Sales (IN \$K)				
Quarterly	1st	2nd	3rd	4th
2000	397	376	460	501
2001	455	390	530	560
2002	513	434	562	593

Find the centered 4-quarter moving average and seasonal variation factor for each quarter.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG	0.00	
397STO1	397STO 1	397.00	
376 STO 2	376 STO 2	376.00	
460 STO 3	460 STO 3	460.00	
501 STO 4	501 STO 4	501.00	
455 STO 5	455 STO 5	455.00	
g GTO 000 R/S	g GTO 000 R/S	440.75	Centered 4-element average for 3rd quarter, 2000.
R/S	R/S	104.37	Seasonal variation factor.
390 R/S	390 R/S	449.75	4th quarter, 2000.
R/S	R/S	111.40	
530 R/S	530 R/S	460.25	1st quarter, 2001.
R/S	R/S	98.86	
560 R/S	560R/S	476.38	2nd quarter, 2001.
R/S	R/S	81.87	
513 R/S	513R/S	491.00	3rd quarter, 2001.
R/S	R/S	107.94	
$434 \mathrm{R} / \mathrm{S}$	434 R/S	503.75	4th quarter, 2001.
R/S	R/S	111.17	
562 R/S	562 R/S	513.25	1st quarter, 2002.
R/S	R/S	99.95	
593 R/S	593R/S	521.38	2nd quarter, 2002.
R/S	R/S	83.24	

Now, what is the average of each quarter's seasonal variation for the two years?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR Σ	f CLEAR[Σ	0.00	
98.86 E+	98.86 [1.00	
99.95 E+	99.95 [+	2.00	
g $\overline{\mathrm{x}}$	g $\overline{\mathrm{X}}$	99.41	1st quarter average seasonal variation, $\%$.

Forecasting

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR [fCLEAR[0.00	
81.87 [${ }^{\text {+ }}$	81.87 [[1.00	
83.24 [+	83.24 E+	2.00	
g $\overline{\mathrm{x}}$	9 $\overline{\mathrm{x}}$	82.56	2nd quarter average seasonal variation, $\%$.
f CLEAR [fleLEAR [0.00	
104.37 [E $^{\text {c }}$	104.37 [$5+$	1.00	
107.94 [$\mathrm{\Sigma}$	107.94 इ+	2.00	
g $\overline{\mathrm{x}}$	g $\overline{\mathrm{x}}$	106.16	3rd quarter average seasonal variation, $\%$.
f CLEAR $\mathrm{\Sigma}$	fCLEAR Σ	0.00	
111.4 [+	111.4 [t	1.00	
111.17 [5	111.17 [+	2.00	
g $\overline{\mathrm{X}}$	g $\overline{\mathrm{x}}$	111.29	4th quarter average seasonal variation, $\%$.

An HP 12C Platinum program to calculate a centered 12 month moving average and seasonal variation factor is as follows:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL1	001,	45	1
2	002,		2
\div	003,		10
RCL 2	004,	45	2
STO1	005,	44	1
+	006,		40
RCL 3	007,	45	3
STO 2	008,	44	2
+	009,		40
RCL 4	010,	45	4
STO 3	011,	44	3
+	012,		40
RCL 5	013,	45	5
STO 4	014,	44	4
+	015,		40
RCL) 6	016,	45	6
STO 5	017,	44	5
+	018,		40
RCL7	019,	45	7
STO 6	020,	44	6

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL 1	001,	45	1
\div	002,		10
2	003,		2
+	004,		40
RCL 2	005,	45	2
STO 1	006,	44	1
+	007,		40
RCL 3	008,	45	3
STO 2	009,	44	2
+	010,		40
RCL 4	011,	45	4
STO 3	012,	44	3
+	013,		40
RCL 5	014,	45	5
STO 4	015,	44	4
+	016,		40
RCL 6	017,	45	6
STO 5	018,	44	5
+	019,		40
RCL7	020,	45	7

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
+	021,	40	
RCL 8	022,	45	8
STO7	023,	44	7
+	024,	40	
RCL 9	025,	45	9
STO 8	026,	44	8
+	027,		40
RCL $\cdot 0$	028,45	48	0
STO 9	029,	44	9
+	030,		40
RCL $\cdot 1$	031,45	48	1
STO $\cdot 0$	032,44	48	0
+	033,		40
RCL - 2	034,45	48	2
STO $\cdot 1$	035,44	48	1
+	036,		40
RCL - 3	037,45	48	3
STO - 2	038,44	48	2
2	039,		2
\div	040,		10
+	041,		40
RCL) 0	042,	45	0
\div	043,		10
R/S	044,		31
RCL 6	045,	45	6
\%T	046,		23
R/S	047,		31
STO - 3	048,44	48	3
g GTO 001	048,43	33,	001
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
STO6	021,	44	6
+	022,		40
RCL 8	023,	45	8
STO 7	024,	44	7
+	025,		40
RCL 9	026,	45	9
STO8	027,	44	8
+	028,		40
RCL - 0	029,45	48	0
STO 9	030,	44	9
+	031,		40
RCL - 1	032,45	48	1
STO - 0	033,44	48	0
+	034,		40
RCL - 2	035,45	48	2
STO - 1	036,44	48	1
$=$	037,		36
RCL - 3	038,45	48	3
STO • 2	039,44	48	2
\div	040,		10
2	041,		2
\pm	042,		40
x 2 y	043,		34
\div	044,		10
RCL 0	045,	45	0
$=$	046,		36
R/S	047,		31
RCL 6	048,	45	6
\%T	049,		23
R/S	050,		31
STO - 3	051, 44	48	3
g GTO 001	052,43,	33,	01
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}: n$	$\mathrm{R}_{1}: X_{1}$	$\mathrm{R}_{2}: X_{2}$
$\mathrm{R}_{3}: X_{3}$	$\mathrm{R}_{4}: X_{4}$	$\mathrm{R}_{5}: X_{5}$	$\mathrm{R}_{6}: X_{6}$
$\mathrm{R}_{7}: X_{7}$	$\mathrm{R}_{8}: X_{8}$	$\mathrm{R}_{9}: X_{9}$	$\mathrm{R}_{.0}: X_{10}$
$\mathrm{R}_{I}: X_{I 1}$	$\mathrm{R}_{2}: X_{12}$	$\mathrm{R}_{3}: X_{13}$	

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG.
3. Key in 12 and press STO 0 .
4. Key in the values for the first 13 months, storing them one at a time in registers 1 through .3; i.e.
Key in the 1st month and press STO 1.
Key in the 2nd month and press STO 2, etc.,
Key in the 10 th month and press STO $\cdot 0$, etc.,
Key in the 13 th month and press STO $\cdot 3$.
5. Press $g G T O 000 R / S$ to calculate the centered moving average for the 7 th month.
6. Press R/S to calculate the seasonal variation for that month.
7. Key in the value for the next month (14th) and press R/S to calculate the moving average for the next month (8th).
8. Repeat steps 6 and 7 for the balance of the data.

These programs may be customized by the user for different types of centered moving averages. Inspection of the programs will show how they can be modified.

Gompertz Curve Trend Analysis

A useful curve for evaluating sales trends, etc., is the Gompertz curve. This is a "growth" curve having a general " S " shape and may be used to describe series of data where the early rate of growth is small, then accelerates for a period of time and then slows again as the time grows long. The sales curve for many products follow this trend during the introductory, growth and maturity phases.
The data points to be fit to a Gompertz curve should be equally spaced along the x (or time) axis and all the data points must be positive. The points are divided serially into 3 groups for data entry.
The following HP 12C Platinum program processes the data, fits it to a Gompertz curve and calculates estimated values for future data points. The 3 constants which characterize the curve are available to the user if desired.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g LN	001,	43	23
STO +3	002,44	40	3
R】	003,		33

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g LN	001,	43	23
STO +3	002,44	40	3
R \downarrow	003,		33

12c platinum / 12C RPN KEYSTROKES	DISPLAY		12c platinum ALG KEYSTROKES	DISPLAY		
g LN	004,	$43 \quad 23$	g LN	004,	43	23
STO +2	005,44	$40 \quad 2$	STO +2	005,44	40	2
R \downarrow	006,	33	R】	006,		33
g LN	007,	$43 \quad 23$	g LN	007,	43	23
STO + 1	008, 4	401	STO + 1	008,44	40	1
1	009,	1	1	009,		1
STO +4	010,4	$40 \quad 4$	STO +4	010,44	40	4
RCL 4	011,	$45 \quad 4$	RCL 4	011,	45	4
g GTO 000	012,4	,33,000	g GTO 000	012,43,	33,	000
RCL3	013,	$45 \quad 3$	RCL) 2	013,	45	2
RCL2	014,	$45 \quad 2$	-	014,		30
-	015,	30	RCL 1	015,	45	1
RCL2	016,	$45 \quad 2$	=	016,		36
RCL 1	017,	45	STO 8	017,	44	8
-	018,	30	RCL 3	018,	45	3
\div	019,	10	-	019,		30
RCL 4	020,	$45 \quad 4$	RCL 2	020,	45	2
1/x	021,	22	\div	021,		10
y^{x}	022,	21	STO 9	022,	44	9
STO 6	023,	446	$x \geqslant y$	023,		34
RCL1	024,	451	$=$	024,		36
RCL 3	025,	$45 \quad 3$	y^{x}	025,		21
X	026,	20	RCL 4	026,	45	4
RCL2	027,	$45 \quad 2$	1/x	027,		22
ENTER	028,	36	$=$	028,		36
X	029,	20	STO 6	029,	44	6
-	030,	30	RCL 9	030,	45	9
RCL1	031,	$45 \quad 1$	-	031,		30
RCL 3	032,	453	RCL 8	032,	45	8
\pm	033,	40	$=$	033,		36
RCL2	034,	$45 \quad 2$	RCL 1	034,	45	1
2	035,	2	X	035,		20
X	036,	20	RCL 3	036,	45	3
-	037,	30	-	037,		30
\div	038,	10	RCL 2	038,	45	2
RCL 4	039,	$45 \quad 4$	g (\boldsymbol{x}^{2}	039,	43	20
\div	040,	10	\div	040,		10
9] e^{x}	041,	$43 \quad 22$	$x \geqslant y$	041,		34
STO 7	042,	44	\div	042,		10
RCL 6	043,	456	RCL 4	043,	45	4
1	044,	1	$=$	044,		36
-	045,	30	$9 e^{\text {x }}$	045,	43	22
RCL 6	046,	456	STO 7	046,	44	7

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
RCL 4	047,	45	4
y^{x}	048,		21
1	049,		1
-	050,		30
ENTER	051,		36
X	052,		20
\div	053,		10
RCL) 6	054,	45	6
\div	055,		10
RCL) 2	056,	45	2
RCL 1	057,	45	1
-	058,		30
X	059,		20
g e^{x}	060,	43	22
STO 5	061,	44	5
R/S	062,		31
RCL) 6	063,	45	6
$x \geqslant y$	064,		34
y^{x}	065,		21
RCL 5	066,	45	5
$x \geqslant y$	067,		34
y^{x}	068,		21
RCL 7	069,	45	7
X	070,		20
g GTO 062	071,	33	
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
RCL 6	047,	45	6
y^{x}	048,		21
RCL 4	049,	45	4
-	050,		30
1	051,		1
$=$	052,		36
g x^{2}	053,	43	20
1	054,		1
-	055,		30
RCL 6	056,	45	6
1/x	057,		22
X	058,		20
RCL 8	059,	45	8
\div	060,		10
x 2 y	061,		34
$=$	062,		36
g $e^{\text {x }}$	063,	43	22
STO 5	064,	44	5
R/S	065,		31
RCL 6	066,	45	6
$y^{y^{x}}$	067,		21
X 2 y	068,		34
$=$	069,		36
RCL5	070,	45	5
$y^{y^{x}}$	071,		21
X x y	072,		34
X	073,		20
RCL 7	074,	45	7
$=$	075,		36
9 GTO 065	076,	33,	65
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{!}: S_{l}$	$\mathrm{R}_{2}: S_{2}$
$\mathrm{R}_{3}: S_{3}$	$\mathrm{R}_{4}: n$	$\mathrm{R}_{5}: a$	$\mathrm{R}_{6}: b$
$\mathrm{R}_{7}: c$	$\mathrm{R}_{8}-\mathrm{R}_{0}:$ Unused		

Program Instructions:

1. Key in the program and press f CLEAR REG.
2. Divide the data points to be input into 3 equal consecutive groups. Label them Groups I, II and III for convenience.
3. Key in the first point of group I and press ENTER (\square)
4. Key in the first point of group II and press ENTER ($=$).
5. Key in the first point of group III and press R/S.
6. Repeat steps 3,4 , and 5 for the balance of the data in each group. After executing step 5 the display shows how many sets of data have been entered.
7. To fit the data to a Gompertz curve, press g GTO 013 R/S. The resultant display is the curve constant " a ". Constants " b " and " c " may be obtained by pressing RCL 6 and RCL 7 respectively. The display may need adjusting to see significant digits.
8. To calculate a projected value, key in the number of the period and press R/S.
9. Repeat step 8 for each period desired.

Example: The X-presso Company marked a revolutionary new coffee brewing machine in 1990. Sales grew at a steady pace for several years, then began to slow. The sales records for the first 9 years of the product's life were as follows.

Year	Sales(\$K)	Year	Sales(\$K)
1	18	6	260
2	41	7	282
3	49	8	322
4	151	9	340
5	188		

What are the projected sales volumes for this product in its 10th and 12th year? What is the maximum yearly sales volume for this product if the present trend continues? What annual sales rate would the curve have predicted for the 5th year of the product's life? (Arrange the data as follows:)

Group I	Group II	Group III
18	151	282
41	188	322
49	260	340

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG	0.00	
18 ENTER	$18=$	18.00	
151 ENTER	$151=$	151.00	
282 R/S	282 R/S	1.00	
41 ENTER	$41=$	41.00	
188ENTER	$188=$	188.00	
322 R/S	$322 \mathrm{R} / \mathrm{S}$	2.00	
49 ENTER	$49=$	49.00	
260 ENTER	$260=$	260.00	
340 R/S	340R/S	3.00	Total number of entries.

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
g GTO013 R/S	g GTO 013 R/S	0.004	a
RCL 6	RCL 6	0.65	b
RCL 7	RCL 7	373.92	c
10R/S	10R/S	349.09	Sales in 10th year, (in \$K).
12R/S	12R/S	363.36	Sales in 12th year, (in \$K).
$100 \mathrm{R} / \mathrm{S}$	100 R/S	373.92	Maximum annual sales (after very long product life).
$5 \mathrm{R} / \mathrm{S}$	$5 \mathrm{R} / \mathrm{S}$	202.60	Sales in 5th year (actual sales were $\$ 188 \mathrm{~K}$).

Forecasting with Exponential Smoothing

A common method for analyzing trends in sales, inventory and securities is the moving average. Exponential smoothing is a version of the weighted moving average which is readily adaptable to programmable calculator forecasting.

Exponential smoothing is often used for short term sales and inventory forecasts. Typical forecast periods are monthly or quarterly. Unlike a moving average, exponential smoothing does not require a great deal of historical data. However, it should not be used with data which has more than a moderate amount of up or down trend.

When using exponential smoothing, a smoothing factor is chosen which affects the sensitivity of the average much the same way as the length of the standard moving average period. The correspondence between the two techniques can be represented by the formula:

$$
\alpha=\frac{2}{n+1}
$$

where α is the exponential smoothing factor (with values from 0 to 1) and n is the length of the standard moving average. As the equation shows, the longer the moving average period, the smaller the equivalent and the less sensitive the average becomes to fluctuations in current values.

Forecasting with exponential smoothing involves selecting the best smoothing factor based on historical data and then using the factor for updating subsequent data and forecasting. This procedure uses the following HP 12C Platinum program:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			f P/R			
f CLEAR PRGM	000,		f CLEAR PRGM	000,		
ENTER	001, 36		STO7	001,	44	7
ENTER	002, 36		-	002, 30		
RCL 6	003, 456		RCL 6	003, 456		
-	004, 30		$=$	004, 3		
ENTER	005, 36		R/S	005, 31		
X	006, 20			006, 4	$43 \quad 20$	
STO +4	007,44 40 4		$\text { STO }+4$	007,44 40 4		
g LSTx	008, 4340		RCL 7	008,	$45 \quad 7$	
R/S	009, 31		X	009, 20		
R \downarrow	010, 33		RCL 0	010,	450	
R \downarrow	011, 33		$=$	011, 36		
RCL 0	012, 450		RCL 2	012,	$45 \quad 2$	
X	013, 20		X	013, 20		
RCL2	014, 452		RCL1	014, 451		
RCL1	015, 45 1		\pm	015, 4		
X	016, 20		x 2 y	016, 3		
+	017, 40		-	017, 3		
RCL2	018, 452		RCL 2	018, 45 2		
CHS	019, 16		X	019, 20		
X 2 y	020, 34		STO +2	020,44 40		
STO2	021, 442		RCL) 0	021, 45 0		
+	022, 40		$=$	022, 36		
RCL 0	$\begin{array}{\|lll\|} \hline 023, & 45 & 0 \\ \hline 024, & 20 \\ \hline \end{array}$		RCL 3	023, 45		
X			X	024, 20		
RCL1	025, $45 \quad 1$		RCL1	025, 45		
RCL 3			$\pm+$	026, 40		
X	027, 20		x 2 y	027, 34		
+			\div	028, 1		40 34 10
STO 3	029,	443	STO 3 RCL 0 -	029,	44	
RCL1	030, 45			030, 45		
X	031, 20		+	031, 40	40	
RCL 0	032, $45 \quad 0$		RCL 2	032, $45 \quad 2$		
\div			-	033,		30
RCL2	033, $\quad 1010$		STO 6	034,	44	6
+	035, 40		RCL 3	035,	45	3
STO 5	036, $44 \quad 4 \quad 5$		$=$	036, 36	36	
RCL 3			STO 5	037,	44	5

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
RCL) 0	038,	45	0
\div	039,		10
RCL 2	040,	45	2
+	041,		40
STO 6	042,	44	6
9 GTO 000	043,43,33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY
RCL 6	038, 456
g GTO 000	039,43,33,000
f P/R	

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: \alpha$	$\mathrm{R}_{l}: 1-\alpha$	$\mathrm{R}_{2}: S_{t-1}$
$\mathrm{R}_{3}: T_{t-1}$	$\mathrm{R}_{4}: \Sigma e^{2}$	$\mathrm{R}_{5}: D_{t}$	$\mathrm{R}_{6}: \hat{D}_{\mathrm{t}+1}$
$\mathrm{R}_{7}-\mathrm{R}_{4}:$ Unused			

Program Instructions:

Selecting the "best" smoothing constant (α):

1. Key in the program and press f CLEAR REG.

RPN Mode:

2. Key in the number 1 and press ENTER.
3. Key in the "trial " and press STO $0-$ STO 1.

ALG Mode:

2. Key in the number 1 and press $-\square$.
3. Key in the "trial " and press STO $0==$ STO 1 .
4. Key in the first historical value $\left(\mathrm{X}_{1}\right)$ and press STO 2.
5. Key in the second historical value $\left(\mathrm{X}_{2}\right)$ and press STO6R/S. The result is the error between the forecast value $\left(\hat{D}_{\mathrm{t}+1}\right)$ and the true value $\left(\mathrm{X}_{\mathrm{t}+1}\right)$.
6. Press R/S; the display shows the next forecast $\left(\hat{D}_{t+2}\right)$.
7. Optional: Press RCL5 to display the smoothed estimate of current demand.
8. Continue steps 5 and 6 for $X_{3}, X_{4}, \ldots X_{n}$ until all historical values have been entered. When doing step 5 merely key in the value and press R/S (do not press STO 6).
9. Press RCL4. This value represents the cumulative forecasting error $\left(\sum \mathrm{e}^{2}\right)$. Record the value and the following additional values; press $\operatorname{RCL} 0(\alpha), \operatorname{RCL} 2$ (smoothed average $\mathrm{S}_{\mathrm{t}-1}$), RCL 3 (trend $\mathrm{T}_{\mathrm{t}-1}$) and RCL 6 (forecast $\hat{D}_{\mathrm{t}+1}$).
10. Press f CLEAR REG.
11. Repeat steps 2 through 10 until a "best" α is selected based on the lowest cumulative forecasting error (Register 4).

Forecasting:

RPN Mode:

1. Key in the number 1 and press ENTER.
2. Key in the selected α and press STO $0-$ STO 1 .

ALG Mode:

1. Key in the number 1 and press - .
2. Key in the selected α and press STO $0=$ STO 1 .
3. From the selection routine or from a previous forecast:

Key in the smoothed average $\mathrm{S}_{\mathrm{t}-1}$ and press STO2.
Key in the trend $\mathrm{T}_{\mathrm{t}-1}$ and press STO 3.
Key in the forecast \hat{D}_{t+1} and press STO 6.
4. Key in the current data value and press R/S. The output is the error in forecasting the value just entered.
5. Press R/S. The displayed value represents the forecast for the next period.
6. Record the following values: $\mathrm{RCL} 0(\alpha), \mathrm{RCL} 2\left(\mathrm{~S}_{\mathrm{t}-1}\right), \mathrm{RCL} 3\left(\mathrm{~T}_{\mathrm{t}-1}\right)$ and $\mathrm{RCL} 6\left(\hat{D}_{\mathrm{t}+1}\right)$ for use as initial values in the next forecast. You may also wish to record RCL5 (D_{t}).
7. Repeat steps 4,5 , and 6 for the next forecast if available.

Example: Select the best smoothing constant based on sales (in thousands of dollars) of $22,23,23,25,23,27,25$. Given the current sales in month 8 of 26 , forecast the following month.
Select the smoothing constant (α):

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEARREG	f CLEARREG	0.00	
1 ENTER	$1-$	1.00	
.5STO 0	.5ST0 $=$	0.50	
STO 1	STO 1	0.50	
22 STO 2	22 STO 2	22.00	
23ST0 6R/S	23ST0 6R/S	0.00	
R/S	R/S	23.00	
$23 \mathrm{R} / \mathrm{S}$ R/S	$23 \mathrm{R} / \mathrm{S}$ R/S	23.25	
$25 \mathrm{R} / \mathrm{S}$ R/S	$25 \mathrm{R} / \mathrm{S}$ R/S	25.25	
$23 \mathrm{R} / \mathrm{S}$ R/S	$23 \mathrm{R} / \mathrm{S}$ R/S	23.69	
$27 \mathrm{R} / \mathrm{S}$ R/S	$27 \mathrm{R} / \mathrm{S}$ R/S	27.13	
$25 \mathrm{R} / \mathrm{S}$ R/S	$25 \mathrm{R} / \mathrm{S}$ R/S	25.95	
RCL 4	RCL 4	23.61	Cumulative error ($\sum e^{2}$).
RCL 0	RCL) 0	0.50	Smoothing constant (α).

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$R C L 2$	RCL 2	$\mathbf{2 5 . 1 1}$	Smoothing average $\left(S_{t-1}\right)$.
$R C L 3$	$R C L 3$	$\mathbf{0 . 4 2}$	Trend $\left(T_{t-1}\right)$.
$R C L 6$	$R C L 6$	$\mathbf{2 5 . 9 5}$	Last forecast $\left(\hat{D}_{t+1}\right)$.

The procedure is repeated for several α 's.

Smoothing Constant (α)	.5	.1	.25	.2
Cumulative Error $\left(\Sigma \mathrm{e}^{2}\right)$	23.61	25.14	17.01	18.03
For the selected $\alpha=.25$	$S_{\mathrm{t}+1}=$	24.28		
	$T_{\mathrm{t}-1}=$	0.34		
	$\hat{D}_{\mathrm{t}+1}=$	25.64		

Forecasting:

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG	0.00	
1 ENTER	$1-$	1.00	
.25 STO $0-$.25ST0 $0=$	0.75	
STO1	STO 1	0.75	
24.28 STO2	24.28 STO2	24.28	
. 34 STO 3	. 34 STO 3	0.34	
25.64STO 6	25.64 STO 6	25.64	
26R/S	26 R/S	0.36	
R/S	R/S	26.16	Forecast for month 9, (\hat{D}_{t+1}).
RCL 5	RCL5	25.80	Expected usage for current (month 8) period, (Smoothed D_{t}.
RCL) 0	RCL) 0	0.25	α
RCL 2	RCL2	24.71	Record for initial values when
RCL 3	RCL 3	0.36	month 9 actual figures become
RCL 6	RCL 6	26.16	available.

Note: At least 4 periods of current data should be entered before forecasting is attempted.

Pricing Calculations

Markup and Margin Calculations

Sales work often involves calculating the various relations between markup, margin, selling price and costs. Markup is defined as the difference between selling price and cost, divided by the cost. Margin is defined as the difference between selling price and cost, divided by selling price. In other words, markup is based on cost and margin is based on selling price.
The following keystroke sequences are given to readily make these calculations on the HP 12C Platinum.

CALCULATE	GIVEN	RPN KEYSTROKES	ALG KEYSTROKES
Selling Price	Cost \& Markup	Key in cost, ENTER, key in markup (in \%), \% + .	Key in cost, + , key in markup (in \%), \% = .
Selling Price	Cost \& Margin	Key in cost, ENTER 1 ENTER key in margin (in \%), $\%-\div$.	Key in cost, \square key in margin (in \%), $\%=1 / x .$
Cost	Selling Price \& Markup	Key in selling price, ENTER 1 ENTER, key in markup (in \%), $\%+\div$.	Key in selling price, $1 / x+$, key in markup (in \%), $\%=1 / x .$
Cost	Selling Price \& Margin	Key in selling price, ENTER, key in margin $\text { (in \%), \% } \quad \text {. }$	Key in selling price, - , key in margin $\text { (in } \% \text {), } \%=$
Markup	Cost and Selling Price	Key in cost, ENTER, key in selling price, $\Delta \%$.	Key in cost, $=$, key in selling price, $\Delta \%$.
Markup	Margin	Key in margin, ENTER ENTER 1 $x \geqslant y$ \% $-\div$.	Key in margin, $\begin{aligned} & -1 / x \mid \\ & x \geqslant y \%=1 / x . \end{aligned}$
Margin	Selling Price \& Cost	Key in selling price, ENTER, key in cost, $\Delta \%$ CHS.	Key in selling price, $=$, key in cost, $\Delta \%$ CHS.
Margin	Markup	Key in markup, ENTER ENTER 1 $x \geqslant y \%+\div$.	Key in markup, $\begin{aligned} & +1 / x \\ & x \geqslant y \% \\ & \% \end{aligned}=1 / x .$

Example 1: If the cost of an item is $\$ 160$ and the margin is 20%, what is the selling price? What is the markup?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes			Display	Comments
160 ENTER 1 ENTER 20	160 $1 / x$	- 20		20.	Margin(\%).
\% $-\quad \div$	\% =	1/x		200.00	Selling price.
20 ENTER ENTER	20-			20.00	Margin(\%)
$1 \times \geqslant \mathrm{x}$ \% - \div	$1 / x \mathrm{x}$ X	\% =	1/x	25.00	Markup (\%).

Example 2: If an item sells for $\$ 21.00$ and has a markup of 50%, what is its cost? What is the margin?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes					Display		Comments
21ENTER 1 ENTER 50	$21[1 / x+50$					50.00	Markup (\%)	
\% $+\div$		\% $=$	$1 / x$			14.00	Cost.	
50ENTER ENTER	$50+$					50.00	Markup(\%)	
$1 \mathrm{x} \geqslant \mathrm{y}$ \% $+\div$		x x x y	\%	$=$	$1 / x$	33.33	Margin (\%)	

The following HP 12C Platinum program may be helpful for repetitive calculations of selling price and costs as well as conversions between markup and margin.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM			
ENTER	001,		36
g GTO 004	002,43,33, 004		
CHS	003,		16
1	004,		1
x 2 y	005,		34
\%	006,		25
\pm	007,		40
\div	008,		10
R/S	009,		31
g LSTX	010,	43	40
X	011,		20
g LSTX	012,	43	40
\times	013,		20
9 GTO 000	014,43,33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
=	001,		36
9 GTO 004	002, 43, 33, 004		
CHS	003,		16
X२y	004,		34
+	005,		40
x ${ }^{\text {y }}$	006,		34
\%	007,		25
$=$	008,		36
g LSTX	009,	43	40
g x^{2}	010,	43	20
\div	011,		10
$x \geqslant y$	012,		34
$=$	013,		36
R/S	014,		31
9 LSTX	015,	43	40
9 GTO 000	016,43,33,000		
f P/R			

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}-\mathrm{R}_{8}:$ Unused		

Program Instructions:

1. Key in the program.
2. To calculate selling price, given the markup, key in the cost, press ENTER $(=$ the markup and press g GTO 000 R/S R/S.
3. To calculate cost, given the markup, key in the selling price, press ENTER $(=$ the markup and press g GTO 000 R/S.
4, To calculate selling price, given the margin, key in the cost, press ENTER (\square), key in the margin and press g GTO 003 R/S.
4. To calculate cost, given the margin, key in the selling price, press ENTER $(=)$, key in the margin and press g GTO 003 R/S R/S.

RPN Mode:

6. To calculate markup from the margin, key in the margin and press ENTER 9 GTO 003 R/S.
7. To calculate margin from the markup, key in the markup and press ENTER g GTO 000 R/S.

ALG Mode:

6. To calculate markup from the margin, key in the margin and press $=$, re-key margin, g GTO 003 R/S.
7. To calculate margin from the markup, key in the markup and press $=$, re-key markup, g GTO 000 R/S.

Example: Find the cost of an item selling for $\$ 38.00$ with a margin of 30%. What is the markup on the item? If the markup is raised to 50%, what will the selling price be?

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
38 ENTER	38=	38.00	Selling price.
309 GTO 003	30 GTO 003	30.00	Margin (\%).
R/S R/S	R/S R/S	26.60	Cost.
30 ENTER	$30=$	30.00	Margin (\%).
g GTO 003 R/S	30 g GTO 003 R/S	42.86	Markup (\%).
26.6 ENTER	26.6 =	26.60	Cost.
50 9 GTO 000	50 GTO 000	50.00	New markup.
R/S R/S	R/S R/S	39.90	New selling price.

Calculations of List and Net prices With Discounts

It is often useful to be able to quickly calculate a list or net price when the other price and a series of discount rates are known. Alternatively, if the list and net price and several discounts are known it may be desirable to calculate a missing discount. The following series of keystrokes may be used:

RPN Mode:

1. Key in 1, press ENTER ENTER STO 1.
2. Key in the first discount (as a percentage) and press \% $\quad-$ STO $X 1 R \downarrow$.
3. Repeat step 2 for each of the remaining known discount rates.
4. To calculate the list price, key in the net price and press $\operatorname{RCL} 1 \div$.
5. To calculate the net price, key in the list price and press $R C L 1$.
6. To calculate an unknown discount rate, immediately after step 3 (display should show 1.00), key in the net price, press ENTER and key in the list price.
7. Press $R C L 1 \times \div-(100 \times$.

ALG Mode:

1. Key in 1, press STO 1.
2. Key in $1 \square$, key in the first discount (as a percentage) and press $\%=$ STO x.
3. Repeat step 2 for each of the remaining known discount rates.
4. To calculate the list price, key in the net price and press \div RCL $1=$.
5. To calculate the net price, key in the list price and press $X R C 1=$.
6. To calculate an unknown discount rate, immediately after doing step 3 , key in the list price, press $X R C L=$, then key in the net price.
7. Press $\triangle \%$ CHS.

Example: The list price of an item is $\$ 3.28$ and the net price is $\$ 1.45$. Two of the discount rates are 48% and 5%. What is the third discount rate?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
1 ENTER ENTER	1		
STO 1	STO 1	1.00	
48\% - STO X 1	$1-48 \%=$ STO x 1	0.52	
R】 5\% - STO X 1	$1-5 \%=$ STO $X 1$	0.95	
R $\downarrow 1.45$ ENTER			
3.28 RCL1	$3.28 \times$ RCL 1	0.49	
$x \div$ - $\times 100 \times$	$=1.45 \triangle \% \mathrm{CHS}$	10.51	3rd discount rate (\%).

The following program for the HP 12C Platinum will be helpful in performing the calculations:

12c platinum / 12C RPN KEYSTROKES	DISPLAY
f P/R	
f CLEAR PRGM	000,
1	001,
x 2 y	002, 34
\%	003, 25
-	004, 30
STO X 1	005,44 20
g GTO 000	006,43,33,000
RCL 1	007, 45
X	008, 20
\div	009, 10
1	010,
X 2 y	011, 34
-	012, 30
EEX	013, 26
2	014,
\times	015, 20
g GTO 000	016,43,33,000
f P/R	

12c platinum ALG KEYSTROKES	DISPLAY
f P/R	
f CLEAR PRGM	000,
1	001,
-	002, 30
x 2 y	003, 34
\%	004, 25
$=$	005, 36
STO X 1	006,44 20
g GTO 000	007,43,33,000
RCL 1	008, 45
X	009, 20
X 2 y	010, 34
$=$	011, 36
x 2 y	012, 34
$\Delta \%$	013, 24
CHS	014, 16
9 GTO 000	015,43,33,000
f P/R	

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	R_{0} : Unused	$\mathrm{R}_{I}: D^{\prime}{ }_{1} \mathrm{x} D^{\prime}{ }_{2} \ldots$	$\mathrm{R}_{2}-\mathrm{R}_{7}:$ Unused

Program Instructions:

1. Key in the program.
2. Key in 1 and press STO 1.
3. Key in the first discount rate (as a percentage) and press R/S.
4. Repeat step 2 for each of the remaining discount rates.

RPN Mode:

5. To calculate the list price, key in the net price and press $\mathrm{RCL} 1 \div$.
6. To calculate the net price, key in the list price and press $R C L 1 X$.
7. To calculate the unknown discount rate, key in the net price, press ENTER, key in the list price and press g GTO 007 R/S.

ALG Mode:

5. To calculate the list price, key in the net price and press \div RCL $1=$.
6. To calculate the net price, key in the list price and press $X R 1==$.
7. To calculate the unknown discount rate, key in the net price, press $=$, key in the list price and press g GTO 008 R/S.

Example: Calculate the unknown discount rate for the previous example. If the list price is now raised to $\$ 3.75$ what is the new net price?

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
1 STO 1	1 STO 1	1.00	
$48 \mathrm{R} / \mathrm{S}$	$48 \mathrm{R} / \mathrm{S}$	0.52	
$5 \mathrm{R} / \mathrm{S}$	$5 \mathrm{R} / \mathrm{S}$	0.95	
1.45 ENTER	$1.45=$		
3.28 g GTO 007 R/S	3.28 g GTO 008R/S	10.51	3rd discount rate (\%).
R/S	R/S	0.89	Include 3rd discount rate in calculation.
3.75 RCL $1 \times$	$3.75 \times \mathrm{RCL} 1 \times$	1.66	New net price.

Statistics

Curve Fitting

Exponential Curve Fit

Using the LN function of the HP 12C Platinum, a least squares exponential curve fit may be easily calculated according to the equation $\mathrm{y}=A e^{B x}$. The exponential curve fitting technique is often used to determine the growth rate of a variable such as a stock's value over time, when it is suspected that the performance is non-linear. The value for B is the decimal value of the continuous growth rate. For instance, assume after keying in several end-of-month price quotes for a particular stock it is determined that the value of B is 0.10. This means that over the measured growth period the stock has experienced a 10% continuous growth rate.
If $B>0$, you will have a growth curve. If $B<0$, you will have a decay curve.
Examples of these are given below.

The procedure is as follows:

1. Press f CLEAR REG.
2. For each input pair of values, key in the y-value and press g LN, key in the corresponding x-value and press $\Sigma+$.
3. After all data pairs are input, press $g \widehat{y}, r x \geqslant y$ to obtain the correlation coefficient (between $\ln \mathrm{y}$ and x).
4. Press $1\left[g \hat{y}, r g e^{x} 0 g \hat{y}, r g e^{x}\right.$ to obtain A in the equation above.

RPN Mode:

5. Press $x \geqslant y$ R $\div g$ LN to obtain B.
6. Press $g e^{x} 1--$ to obtain the effective growth rate (as a decimal).

ALG Mode:

5. Press $\div X \geqslant y, R \downarrow=G L N$ to obtain B.
6. Press $g e^{x}-1==$ to obtain the effective growth rate (as a decimal).
7. To make a y-estimate, key in the x-value and press $g \hat{y}, r, e^{x}$.

Example 1: A stock's price in history is listed below. What effective growth rate does this represent? If the stock continues this growth rate, what is the price projected to be at the end of 2004 (year 7)?

End of Year	Price
$1998(1)$	45
$1999(2)$	51.5
$2000(3)$	53.75
$2001(4)$	80
$2002(5)$	122.5
$2003(6)$	210
$2004(7)$	$?$

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG		
45 g LN $1 \mathrm{\Sigma+}$	45 g LN 1 ミ+	1.00	First data pair input.
51.5 9 LN 2 $\Sigma+$	51.5 9 LN $2 \mathrm{~L}+$	2.00	Second data pair input.
53.75 9 LN 3 โ+	53.75 9 LN $3 \mathrm{L+}$	3.00	Third data pair input.
80 9 LN 4 ⿺+	80 9 LN 4 $\Sigma+$	4.00	Fourth data pair input.
122.5 9 LN 5 [+	122.5 9 LN $5 \mathrm{L+}$	5.00	Fifth data pair input.
210 g LN 6 E+	210 g LN 6 [+	6.00	Sixth data pair input.
g $\hat{y}, \mathrm{r} x \geqslant y$	g \hat{y}, r x x y	0.95	Correlation coefficient (between $\ln y$ and x).
$\begin{array}{llll}10 & g \\ y\end{array}$	1 g (\hat{y}, r g e^{x}		
0 g y, y g e^{x}	0 g y, y , $g \mathrm{e}^{x}$	27.34	A
	$\div x \geqslant y$ R $\quad=\mathrm{g}$ LN	0.31	B
	g] $\left.\mathrm{e}^{\mathrm{x}}\right]-11=$	0.36	Effective growth rate.
7 g ¢ \hat{y}, r g e^{x}	$7 \mathrm{~g} \hat{\mathrm{y}}, \mathrm{r}$ g e^{x}	232.35	Projected price at end of year 7 (2004).

For repeated use of this routine, the following HP 12C Platinum program will be useful.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
X 2 y	001,		34
g LN	002,	43	23
x 2 y	003,		34
S+	004,		49
g GTO 000	005, 43, 33, 000		
$\mathrm{g} \hat{\mathrm{y}, \mathrm{r}}$	006,	43	2
X \quad ¢ ${ }^{\text {P }}$	007,		34
R/S	008,		31
1	009,		1
g \hat{y}, r	010,	43	2
g [e^{x}	011,	43	22
0	012,		0
g \hat{y}, r	013,	43	2
g [e^{x}	014,	43	22
R/S	015,		31
X $\geqslant \mathrm{y}$	016,		34
R \downarrow	017,		33
\div	018,		10
g LN	019,	43	23
R/S	020,		31
g [e^{x}	021,	43	22
1	022,		1
-	023,		30
R/S	024,		31
g $\hat{\text { 人, }} \mathrm{r}$	025,	43	2
g [e^{x}	026,	43	22
g GTO 000	027, 43, 33, 000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
X 2 y	001,		34
g LN	002,	43	23
x $\geqslant \mathrm{y}$	003,		34
$\Sigma+$	004,		49
9 GTO 000	005,43,33,000		
g \hat{y}, r	006,	43	2
X 2 y	007,		34
R/S	008,		31
0	009,		0
g ¢ $\hat{\mathrm{y}}, \mathrm{r}$	010,	43	2
g e^{x}	011,	43	22
R/S	012,		31
1	013,		1
g \hat{y}, r	014,	43	2
g [e^{x}	015,	43	22
$x \geqslant y$	016,		34
R \downarrow	017,		33
\div	018,		10
$x \geqslant y$	019,		34
$=$	020,		36
9 LN	021,	43	23
R/S	022,		31
g $\mathrm{e}^{\text {x }}$	023,	43	22
-	024,		30
1	025,		1
$=$	026,		36
R/S	027,		31
$g \hat{y}, r$	028,	43	2
9 e $\mathrm{e}^{\text {x }}$	029,	43	22
9 GTO 000	030,43,33,000		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{7}: n$	$\mathrm{R}_{2}: \Sigma x$
$\mathrm{R}_{3}: \Sigma x^{2}$	$\mathrm{R}_{4}: \Sigma y$	$\mathrm{R}_{5}: \Sigma y^{2}$	$\mathrm{R}_{6}: \Sigma x y$
$\mathrm{R}_{7}-\mathrm{R}_{6}:$ Unused			

Program Instructions:

1. Key in the program and press f CLEAR REG.
2. For each input pair of values, key in the y-value and press $\operatorname{ENTER}(=)$, key in the corresponding x-value and press R/S.
3. After all data pairs are input, press g GTO 006 R/S to obtain the correlation coefficient (between $\ln y$ and x).
4. Press R/S to obtain A.
5. Press R/S to obtain B.
6. Press R/S to obtain the effective growth rate as a decimal.
7. RPN: To make a y-estimate, key in the x-value and press R/S. For subsequent estimates, key in the x-value and press g GTO 025 R/S.
8. ALG: To make a y-estimate, key in the x-value and press R/S. For subsequent estimates, key in the x-value and press g GTO 028 R/S.
9. For a different set of data, press f CLEAR REG and go to step 2.

Example 2: Repeat example 1 using the program.

$\begin{array}{c}\text { 12c platinum /12C } \\ \text { RPN Keystrokes }\end{array}$	$\begin{array}{c}\text { 12c platinum } \\ \text { ALG Keystrokes }\end{array}$	Display	Comments
f CLEAR[REG	f CLEAR REG		

Logarithmic Curve Fit

If your data does not fit a line or an exponential curve, try the following logarithmic curve fit. This is calculated according to the equation $y=A+B(\ln x)$, and all x values must be positive.
A typical logarithmic curve is shown below.

The procedure is as follows:

1. Press f CLEAR REG.
2. Key in the first y-value and press $\operatorname{ENTER}(\square)$. Key in the first x-value and press $g \quad L N \leq+$. Repeat this step for each data pair.
3. After all data pairs are input, press $g \hat{y}, r x \geqslant y$ to obtain the correlation coefficient (between y and $\ln x$).
4. Press $1 \hat{g} \hat{y}, r 0 \hat{y}, r$ to obtain A in the equation above.
5. RPN: Press $x \geqslant y$ R \downarrow - to obtain B.
6. ALG: Press $-x \geqslant y$ R $==$ to obtain B.
7. To make a y-estimate, key in the x-value and press $g \operatorname{LN} g \hat{y}, r$.

Example 1: A manufacturer observes declining sales of a soon-to-be obsolete product, of which there were originally 10,000 units in inventory. The cumulative sales figures over a number of months, given below, may be approximated by a logarithmic curve of the form $y=A+B(\ln x)$, where y represents cumulative sales in units and x the number of months since the beginning. How many units will be sold by the end of the eighth month?

	1	2	3	4	5	6
Month						
Cumulative Sales (units)	1431	3506	5177	6658	7810	8592

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
A CLEAR REG 1431 ENTER 1 g LN $\Sigma+$ 3506 E	$\begin{aligned} & \hline f \text { CLEAR REG } \\ & 1431= \\ & 19 \mathrm{gN} \Sigma+ \end{aligned}$	1.00	First pair data input.
$\begin{aligned} & 3506 \text { ENTER } \\ & 2 \mathrm{~g} \text { LN } \Sigma+ \end{aligned}$	$\begin{array}{l\|l} 3506 & = \\ 2 & \text { LN } \\ \hline \end{array}$	2.00	Second pair data input.
$\begin{aligned} & \text { 5177ENTER } \\ & 3 \text { g LN } \Sigma+ \end{aligned}$	$\begin{aligned} & \hline 5177 \\ & 3 \mathrm{E} \\ & 3 \mathrm{~g} \text { LN } \Sigma+ \\ & \hline \end{aligned}$	3.00	Third pair data input.
$\begin{aligned} & \text { 6658ENTER } \\ & 4 \mathrm{~g} \text { LN } \Sigma+ \end{aligned}$	$\begin{aligned} & 6658= \\ & 4 \mathrm{~g} \text { LN } \Sigma+ \end{aligned}$	4.00	Fourth pair data input.
$\begin{aligned} & 7810 \text { ENTER } \\ & 5 \mathrm{~g} \text { LN } \Sigma+ \end{aligned}$	$\begin{aligned} & 7810== \\ & 5 \mathrm{~g} \text { LN } \mathrm{\Sigma+} \end{aligned}$	5.00	Fifth pair data input.
$\begin{aligned} & 8592 \text { ENTER } \\ & 6 \mathrm{~g} \text { LN } \Sigma+ \end{aligned}$	$\begin{aligned} & 8592== \\ & 6 \mathrm{~g} \text { LN } \Sigma+ \end{aligned}$	6.00	Sixth pair data input.
g $\hat{y}, \mathrm{r} x \geqslant y$	g $\hat{y}, \mathrm{r} x \geqslant y$	0.99	Correlation coefficient (between y and $\ln x$).
	$10 \mathrm{~g} \hat{\mathrm{y}}, \mathrm{r} 0 \mathrm{~g} \hat{\mathrm{y}}, \mathrm{r}$	1,066.15	Value of A.
	$-X \geqslant y$, $R \downarrow=$	4,069.93	Value of B.
8 g LN g 人, y	8 ¢ LN 9 y \hat{y}	9,529.34	Total units sold by end of eighth month.

Power Curve Fit

Another method of analysis is the power curve or geometric curve. The equation of the power curve is $y=A x^{B}$, and the values for A and B are computed by calculations similar to linear regression. Some examples of power curves are shown below.

The following keystrokes fit a power curve according to the equation $\ln y=\ln A+B(\ln x)$:

1. Press f CLEAR REG.
2. Key in the first y-value and press g LN. Key in the first x-value and press g LN $\Sigma+$. Repeat this step for all data pairs.
3. Press $g \hat{y}, r \quad x \geqslant y$, to obtain the correlation coefficient (between $\ln y$ and $\ln x$).
4. Press $0, g \hat{y}, r) e^{x}$ to obtain A in the above equation.
5. RPN: Press $1, g \hat{y}, r 00 \hat{y}, r) \quad x \geqslant y-\quad$ to obtain B.
6. ALG: Press $1 \quad g \hat{y}, r 0 g \hat{y}, r-x \geqslant y \quad R \downarrow=$ to obtain B.
7. To make a y-estimate, key in the x-value and press $g \operatorname{LN}(\hat{y}, r) e^{x}$.

Example: If Galileo had wished to investigate quantitatively the relationship between the time (t) for a falling object to hit the ground and the height (h) it has fallen, he might have released a rock from various levels of the Tower of Pisa (which was leaning even then) and timed its descent by counting his pulse. The following data are measurements Galileo might have made.

t (pulses)	2	2.5	3.5	4	4.5
h (feet)	30	50	90	130	150

Find the power curve formulas that best expresses h as a function of $\mathrm{t}\left(h=A t^{B}\right)$.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$\begin{aligned} & \hline \mathrm{f} \text { CLEAR REG } \\ & 30 \mathrm{~g} / \mathrm{LN} \\ & 2 \mathrm{~g} / \mathrm{LN} \mathrm{\Sigma}+ \\ & \hline \end{aligned}$	f CLEAR REG 30 g LN 2 g LN $\Sigma+$	1.00	First pair data input.
$\begin{aligned} & 50 \mathrm{~g} / \mathrm{LN} \\ & 2.5 \mathrm{~g} / \mathrm{LN} \mathrm{\Sigma+} \end{aligned}$		2.00	Second pair data input.
$\begin{aligned} & 90 \mathrm{~g} \text { LN } \\ & 3.5 \mathrm{~g} \mathrm{LN} \end{aligned}$		3.00	Third pair data input.
$\begin{aligned} & \hline 130 \\ & \hline 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 130 \mathrm{~g} \\ & \hline 4 \mathrm{LN} \\ & 4 \mathrm{~g} \\ & \hline \mathrm{LN} \times \mathrm{\Sigma+} \\ & \hline \end{aligned}$	4.00	Fourth pair data input.
$\begin{array}{l\|l\|l} \hline 150 & \mathrm{gN} \\ 4.5 & \mathrm{~g} & \mathrm{LN} \\ \mathrm{IN} \end{array}$	$\begin{array}{l\|l\|l\|} \hline 150 & \mathrm{~g} & \mathrm{LN} \\ \hline 4.5 & \mathrm{~g} & \mathrm{LN} \\ \hline \end{array}$	5.00	Fifth pair data input.
g $\hat{y}, r x \geqslant y$	g \hat{y}, r x x y	1.00	Correlation coefficient (between $\operatorname{In} y$ and $\ln x$).
0 g y, r (e e ${ }^{\text {x }}$	$0 \mathrm{~g} \hat{\mathrm{y}}, \mathrm{r}$ g e^{x}	7.72	Value of A.
	$\begin{aligned} & 1 \mathrm{~g} \hat{\mathrm{y}, \mathrm{r}} 0 \mathrm{~g} \hat{\mathrm{y}, \mathrm{r}} \\ & -\mathrm{x} \geqslant \mathrm{y} \text { Rป}= \\ & \hline \end{aligned}$	1.99	Value of B.

The formula that best expresses h as a function of t is

$$
h=7.72 t^{1.99}
$$

We know, as Galileo did not, that in fact h is proportional to t^{2}.

Standard Error of the Mean

The standard error of the mean is a measure of how reliable the mean of a sample (X) is as an estimator of the mean of the population from which the sample was drawn.
To calculate the standard error of the mean:

1. Press f CLEAR REG.
2. If you are summing one set of numbers, key in the first number and press $\Sigma+$. Continue until you have entered all of the values.
3. If you are summing two sets of numbers, key in the y-value and press $\operatorname{ENTER}(\square)$, key in the x-value and press $\Sigma+$. Continue until you have entered all of the values.
4. Press $g \overline{\mathrm{x}}$ to obtain the mean of the x-values.

RPN Mode:

5. Press $g S R C D / g \sqrt{x} \div$ to obtain the standard error of the mean of the x-values.
6. Alternatively, press $g S x \geqslant y / R C L 1 / \sqrt{x} \div$ to obtain the standard error for the mean of the y-values.

ALG Mode:

5. Press $g \Omega \div \operatorname{RCL} 1 g \sqrt{x}=$ to obtain the standard error of the mean of the x values.
6. Alternatively, press $g=x \geqslant y \rightarrow R C L 1-\sqrt{x}=$ to obtain the standard error for the mean of the y-values.

Example: A sample of 6 one-bedroom apartment rentals reveals that one rents for $\$ 190$ per month unfurnished, one rents for $\$ 200$ per month, two rent for $\$ 205$ per month, one rents for $\$ 216$ per month, and one rents for $\$ 220$ per month. What are the mean monthly rental and the standard deviation? What is the standard error of the mean?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEARREG	fCLEAR REG		
190 E+200 $\Sigma+$	190 [+200 इt		
205 इ+205 $\mathrm{\Sigma}+$	205 E+205 $\mathrm{\Sigma}+$		
216 [+ 220 [+	216 [$2+220$ [+	6.00	Total number of inputs.
9 X $\overline{\text { x }}$	9] \bar{X}	206.00	Average monthly rent.
9 s	g ${ }^{\text {s }}$	10.86	Standard deviation.
RCL1 9 [\sqrt{x} -	\rightarrow RCL $1[9] \sqrt{x}=$	4.43	Standard error of the mean.

Mean, Standard Deviation, Standard Error for Grouped Data

Grouped data are presented in frequency distributions to save time and effort in writing down (or entering) each observation individually. Given a set of data points

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

with respective frequencies

$$
f_{1}, f_{2}, \ldots, f_{n}
$$

this procedure computes the mean, standard deviation, and standard error of the mean.

1. Press f CLEAR REG.

RPN Mode:

2. Key in the first value and press ENTER ENTER.
3. Key in the respective frequency and press STO $+0 \boxed{\Sigma+\text {. The display shows the }}$ number of data points entered.

ALG Mode:

2. Key in the first value and press $=$.
3. Key in the respective frequency and press STO $D 0 \times x \geqslant y=g$ LSTx $x \geqslant y ~ \Sigma+$. The display shows the number of data points entered.
4. Repeat steps 2 and 3 for each data point.
5. To calculate the mean (average) press $R C L 0 S T 01 / R C L 6 S T 03 \overline{\mathrm{X}}$.
6. Press g, s to find the standard deviation.
7. RPN: Press $\operatorname{RCL} 0 \sqrt{ } \sqrt{x} \div$ to find the standard error of the mean.
8. ALG: Press $\div \operatorname{RCL} 0 g \sqrt{x}=$ to find the standard error of the mean.

Example 1: A survey of 266 one-bedroom apartment rentals reveals that 54 rent for $\$ 190$ a month unfurnished, 32 rent for $\$ 195$ per month, 88 rent for $\$ 200$ per month, and 92 rent for 206 per month. What are the average monthly rental, the standard deviation, and the standard error of the mean?

Use the following HP 12C Platinum program for the previous example:

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
STO +0	001, 44	40	0
X	002,		20
$x \geqslant y$	003,		34
$=$	004,		36
g LSTX	005,	43	40
$x \geqslant y$	006,		34
¢ +	007,		49
g GTO 000	008, 43, 33, 000		
RCL) 0	009,	45	0
STO1	010,	44	1

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
9 S	011,	43	48
R/S	012,		31
RCL 0	013,	45	0
g \sqrt{x}	014,	43	21
\div	015,		10
g GTO 000	016,43,33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
RCL 6	011,	45	6
STO 3	012,	44	3
g $\overline{\mathrm{x}}$	013,	43	0
R/S	014,		31
g S	015,	43	48
R/S	016,		31
\div	017,		10
RCL) 0	018,	45	0
$9 \sqrt{x}$	019,	43	21
$=$	020,		36
9 GTO 000	021,43,33,000		
f P/R			

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: \Sigma f_{i}$	$\mathrm{R}_{l}: \Sigma f_{i}$	$\mathrm{R}_{2}: \Sigma f_{i} x_{i}$
$\mathrm{R}_{3}: \Sigma f_{i} x_{i}^{2}$	$\mathrm{R}_{4}: \Sigma x_{i}$	$\mathrm{R}_{5}: \Sigma x_{i}^{2}$	$\mathrm{R}_{6}: \Sigma f_{i} x_{i}^{2}$
$\mathrm{R}_{7}-\mathrm{R}_{7}:$ Unused			

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG.
3. RPN: Key in the first value and press ENTER ENTER.
4. ALG: Key in the first value and press $=$
5. Key in the respective frequency and press R/S. The display shows the number of data points entered.
6. Repeat steps 3 and 4 for each data point.
7. RPN: To calculate the mean, press g GTO 005 R/S.
8. ALG: To calculate the mean, press g GTO 009 R/S.
9. Press R / S to find the standard deviation.
10. Press R/S to find the standard error of the mean.
11. For a new case, go to step 2.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	fCLEAR REG		
190 ENTER ENTER	$190=$		
$54 R / S$	$54 R / S$	1.00	First data pair.

$\begin{array}{\|c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
195 ENTER ENTER	195=		
32R/S	$32 \mathrm{R} / \mathrm{S}$	2.00	Second data pair.
200 ENTER ENTER	200 =		
88R/S	88R/S	3.00	Third data pair.
206 ENTER ENTER	206 =		
$92 \mathrm{R} / \mathrm{S}$	92 R/S	4.00	Total number of data sets.
g GTO 005R/S	g GTO 009 R/S	199.44	Average monthly rent (mean).
R/S	R/S	5.97	Standard deviation.
R/S	R/S	0.37	Standard error of the mean.

Chi-Square Statistics

The chi-square statistic is a measure of the goodness of fit between two sets of frequencies. It is used to test whether a set of observed frequencies differs from a set of expected frequencies sufficiently to reject the hypothesis under which the expected frequencies were obtained.
In other words, you are testing whether discrepancies between the observed frequencies $\left(O_{i}\right)$ and the expected frequencies $\left(E_{i}\right)$ are significant, or whether they may reasonable be attributed to chance. The formula generally used is:

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

If there is a close agreement between the observed and expected frequencies, χ^{2} will be small. If the agreement is poor, χ^{2} will be large.
The following keystrokes calculate the χ^{2} statistic:

1. Press f CLEAR REG .

RPN Mode:

2. Key in the first O_{i} value and press ENTER .
3. Key in the first E_{i} value and press STO $0-\square$ ENTER X RCL $0 \div+$.

ALG Mode:

2. Key in the first O_{i} value and press - .
3. Key in the first E_{i} value and press $\mathrm{STO} 0=\mathrm{g}=x^{2} \div \mathrm{RCL} 0+x \geqslant y=$.
4. Repeat steps 2 and 3 for all data pairs. The χ^{2} value is displayed.

Example 1: A suspect die from a Las Vegas casino is brought to an independent testing firm to determine its bias, if any. The die is tossed 120 times and the following results obtained.

Number	1	2	3	4	5	6
Observed Frequency	25	17	15	23	24	16

The expected frequency $=120$ throws $/ 6$ sides, or $E=20$ for each number, 1 thru 6 . (Since E is a constant in this example, there is no need to store it in R_{0} each time.)

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes			Display		Comments
fCLEAR REG		fCLEARREG				
25 ENTER						
20 STO O-ENTER		0 STO 0 =	g x^{2}			
$\times \mathrm{RCL} 0 \div \square$	\div	$\div \mathrm{RCL} 0+x$	$x \geqslant y=$	1.25		
17 ENTER20-		$7-20=$	g x^{2}			
ENTER \times RCL $0 \div+$	\div	$\div \mathrm{RCL} 0 \rightarrow x$	$x \geqslant y=$	1.70		
15ENTER20-		$5-20=$	g x^{2}			
ENTER \times RCL $0 \div+$	\div	$\div \mathrm{RCL} 0+x \geq y$	$x \geqslant y=$	2.95		
23 ENTER $20-$	23	$3-20=$	g x^{2}			
ENTER X RCL $0 \div+$	\div	$\div \mathrm{RCL} 0+x \geq y$	$x \geqslant y=$	3.40		
24 ENTER $20-$	24	$4-20=$	g x^{2}			
ENTER \times RCL $0 \div \square$	\div	\div RCL $0+x$	$x \geqslant y=$	4.20		
16ENTER 20-		$6-20=$	g x^{2}			
ENTER \times RCL $0 \div+$	\div	$\div \mathrm{RCL} 0+x$	$x \geqslant y=$	5.00	χ^{2}	

The number of degrees of freedom is $(n-1)$. Since $n=6$, the degrees of freedom $=5$.

Consulting statistical tables, you look up χ^{2} to a 0.05 significance level with 5 degrees of freedom, and see that $\chi^{2}{ }_{0.05,5}=11.07$. Since $\chi^{2}=5$ is within 11.07 , we may conclude that to a 0.05 significance level (probability $=.95$), the die is fair.

Try the following HP 12C Platinum program with the same example.

12c platinum / 12C RPN KEYSTROKES	DISPLAY
f P/R	
f CLEAR PRGM	000,
STO 0	001, 440
-	002, 30
ENTER	003, 36
X	004, 20
RCL) 0	005, 450
\div	006, 10
+	007, 40
9 GTO 000	008,43,33,000
f P/R	

12c platinum ALG KEYSTROKES	DISPLAY	
f P/R		
f CLEAR PRGM	000,	
X 2 y	001,	34
-\%	002,	24
\%	003,	25
g (\boldsymbol{x}^{2}	004,	$43 \quad 20$
X	005,	20
x ${ }^{\text {¢ }}$ y	006,	34
+	007,	40
$x \geqslant y$	008,	34
$=$	009,	36
g GTO 000	010,43,33,000	
f P/R		

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: E_{i}$	$\mathrm{R}_{I}-\mathrm{R}_{9}:$ Unused	

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG.
3. Key in the first O_{i} value and press ENTER (\square).
4. Key in the first E_{i} value and press R/S.
5. Repeat steps 3 and 4 for all data pairs. The χ^{2} value is displayed.
6. For a new case, go to step 2 .

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEARREG	f CLEAR REG		
25 ENTER	$25=$		
$20 \mathrm{R} / \mathrm{S}$	$20 \mathrm{R} / \mathrm{S}$	1.25	
17 ENTER	$17=$		
20R/S	$20 \mathrm{R} / \mathrm{S}$	1.70	
15 ENTER	$15=$		
20R/S	20 R/S	2.95	
23ENTER	$23=$		
20 R/S	$20 \mathrm{R} / \mathrm{S}$	3.40	
24 ENTER	$24=$		
20R/S	20 R/S	4.20	
16 ENTER	$16=$	5.00	
$20 \mathrm{R} / \mathrm{S}$	20R/S	5.00	χ^{2}

Normal Distribution

The normal (or Gaussian) distribution is an important tool in statistics and business analysis. The following HP 12C Platinum program gives an approximation to the upper tail area Q under a standardized normal distribution curve, given x. The upper tail area signifies the probability of occurrence of all values $\geq x$.

$Q(x) \cong \frac{1}{2} E X P\left[-\frac{(83 x+351)+562}{703 / x+165}\right]$
Relative error less than 0.042% over the range $0<x<5.5$

Reference:

Stephen E. Derenzo, "Approximations for Hand Calculators Using Small Integer
Coefficients," Mathematics of Computation, Vol. 31, No. 137, page 2014,225; Jan 1977.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
STO 0	001,	44	0
8	002,		8
3	003,		3
X	004,		20
3	005,		3
5	006,		5
1	007,		1

12c platinum ALG KEYSTROKES	DISPLAY	
f P/R		
f CLEAR PRGM	000,	
STO 0	001,	$44 \quad 0$
7	002,	7
0	003,	0
3	004,	3
\square	005,	10
$x \geqslant y$	006,	34
+	007,	40

12c platinum / 12C RPN KEYSTROKES	DISPLAY	12c platinum ALG KEYSTROKES	DISPLAY	
+	008, 40	1	008,	1
RCL 0	009, 450	6	009,	6
X	010, 20	5	010,	5
5	011, 5	$=$	011,	36
6	012, 6	RCL) 0	012,	450
2	013, 2	X	013,	20
\square	014, 40	8	014,	8
7	015, 7	3	015,	3
0	016, 0	+	016,	40
3	017, 3	3	017,	3
RCL 0	018, 450	5	018,	5
\square	019, 10	1	019,	1
1	020, 1	X	020,	20
6	021, 6	RCL 0	021,	$45 \quad 0$
5	022, 5	+	022,	40
\pm	023, 40	5	023,	5
\div	024, 10	6	024,	6
CHS	025, 16	2	025,	2
g e^{x}	026, 4322	\div	026,	10
2	027, 2	$x \geqslant y$	027,	34
\div	028, 10	$=$	028,	36
g GTO 000	029,43,33,000	9 e ${ }^{\text {x }}$	029,	$43 \quad 22$
ff P/R		+	030,	40
		$=$	031,	36
		1/x	032,	22
		9 GTO 000	033,	33,000
		f P/R		

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: x$	$\mathrm{R}_{l}-\mathrm{R}_{6}:$ Unused	

Program Instructions:

1. Key in the program.
2. Key in x and press R/S to compute $Q(x)$.
3. Repeat step 2 for each new case.

Example: Find $Q(x)$ for $x=1.18$ and $x=2.1$.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$1.18 R / S$	$1.18 R / S$	$\mathbf{0 . 1 2}$	$\mathrm{Q}(1.18)$
$2.1 R / S$	$2.1 R / S$	$\mathbf{R} / 02$	$\mathrm{Q}(2.1)$

Covariance

Covariance is a measure of the interdependence between paired variables (x and y). Like standard deviation, covariance may be defined for either a sample ($\mathrm{S}_{x y}$) or a population ($\mathrm{S}^{\prime} x y$) as follows:

$$
\begin{aligned}
\mathrm{S}_{x y} & =r \cdot s_{x} \cdot s_{y} \\
\mathrm{~S}_{x y}^{\prime} & =r \cdot s_{x}^{\prime} \cdot s_{y}^{\prime}
\end{aligned}
$$

The following procedure finds the covariance of a sample $\left(S_{x y}\right)$ and of a population $\left(S_{x y}^{\prime}\right)$:

1. Press f CLEAR REG.
2. Key in the y-values and press $\operatorname{ENTER}(\square)$.
3. Key in the x-values and press $\Sigma+$.
4. Repeat steps 2 and 3 for all data pairs.

RPN Mode:

5. Press $g S X \operatorname{SNTER} g \hat{y}, r \downarrow X$ to obtain the value of $S_{x y}$.
6. Press RCL $11-\operatorname{RCL} 1 \div X$ to obtain $S_{x y}^{\prime}$.

ALG Mode:

6. Press $1,-R C L 1 / 1 / x, x \geqslant y=$ to obtain $S_{x y}^{\prime}$.

Example 1: Find the sample covariance ($S_{x y}$) and population covariance $\left(S_{x y}^{\prime}\right)$ for the following paired variables:

x_{i}	26	30	44	50	62	68	74
y_{i}	92	85	78	81	54	51	40

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG		
92ENTER $26 \Sigma+$	$92=26 \Sigma+$		
85ENTER $30 \Sigma+$	$85=30 \Sigma+$		
78 ENTER $44 \Sigma+$	$78=44 \sum$		
81 ENTER 50 £	$81=50 \mathrm{\Sigma+}$		
54 ENTER $62 \mathrm{\Sigma}+$	$54=62 \Sigma$		
51 ENTER 68 £	$51=68 \Sigma$		
40ENTER 74 【+	$40=74 \sum+$	7.00	Total number of entries.
g S X ENTER	g 51		
$\mathrm{g} \hat{\mathrm{y}, \mathrm{r}}$	g y,r R R X		
R \downarrow X	$x \geqslant y \quad x \geqslant y=$	-354.14	$\mathrm{S}_{x y}$
RCL1 1-- RCL 1	$1-\mathrm{RCL} 11 / x$		
\cdots	$x \quad x \geqslant y=$	-303.55	$\mathrm{S}^{\prime}{ }_{x y}$

Try the previous example using the following HP 12C Platinum program:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
S+	001,		49
g GTO 000	002,	33,	000
g S	003,	43	48
X	004,		20
ENTER	005,		36
g \hat{y}, r	006,	43	2
R】	007,		33
X	008,		20
R/S	009,		31
RCL1	010,	45	1
1	011,		1
-	012,		30
RCL	013,	45	1
\div	014,		10
X	015,		20
(g GTO 000	016,	33,	000
f P/R			

ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
L+	001,		49
g GTO 000	002,	33,	000
g S	003,	43	48
1	004,		1
g \hat{y},r	005,	43	2
R \downarrow	006,		33
x	007,		20
$x \geqslant y$	008,		34
X	009,		20
$x \geqslant y$	010,		34
$=$	011,		36
R/S	012,		31
1	013,		1
-	014,		30
RCL 1	015,	45	1
1/x	016,		22
X	017,		20
x x y	018,		34
$=$	019,		36
9 GTO 000	020,	33,	000
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	$\mathrm{PV}:$ Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{l}: n$	$\mathrm{R}_{2}: \Sigma x$
$\mathrm{R}_{3}: \Sigma x^{2}$	$\mathrm{R}_{4}: \Sigma y$	$\mathrm{R}_{5}: \Sigma y^{2}$	$\mathrm{R}_{6}: \Sigma x y$
$\mathrm{R}_{7}-\mathrm{R}_{7}:$ Unused			

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG.
3. Key in the y-value and press ENTER $(=)$.
4. Key in the x-value and press R/S. Repeat steps 3 and 4 for all data pairs.
5. Press g GTO 003 R/S to obtain the value of $S_{x y}$.
6. Press R/S to obtain $\mathrm{S}_{x y}^{\prime}$.
7. For a new case, go to step 2.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR REG	f CLEAR REG		
92ENTER 26 R/S	$92=26 \mathrm{R} / \mathrm{S}$		
85 ENTER 30 R/S	$85=30 \mathrm{R} / \mathrm{S}$		
78 ENTER 44 R/S	78 = 44R/S		
81 ENTER 50 R/S	$81=50 \mathrm{R} / \mathrm{S}$		
54 ENTER 62 R/S	$54=62 \mathrm{R} / \mathrm{S}$		
51 ENTER 68 R/S	$51=68 \mathrm{R} / \mathrm{S}$		
40 ENTER 74 R/S	$40=74 \mathrm{R} / \mathrm{S}$	7.00	Total number of entries.
g GTOO03[R/S	9]GTO003[R/S	-354.14	S_{xy}
R/S	R/S	-303.55	$\mathrm{S}_{\text {xy }}{ }^{\text {r }}$

Permutations

A permutation is an ordered subset of a set of distinct objects. The number of possible permutations, each containing n objects, that can be formed from a collection of m distinct objects is given by:

$$
{ }_{m} P_{n}=\frac{m!}{(m-n)!}
$$

where m, n are integers and $69 \geq m \geq n \geq 0$.
Use the following HP 12C Platinum program to calculate the number of possible permutations.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
STO 0	001,	44	0
X $\geqslant \mathrm{y}$	002,		34
g n!	003,	43	3
9 LSTX	004,	43	40
RCL) 0	005,	45	0
-	006,		30
g n!	007,	43	3
\div	008,		10
g GTO 000	009,43,33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g LSTX	001,	43	40
-	002,		30
$x \geqslant y$	003,		34
$=$	004,		36
$x \geqslant y$	005,		34
g n!	006,	43	3
\div	007,		10
$x \geqslant y$	008,		34
g n!	009,	43	3
$=$	010,		36
9 GTO 000	011,	33	00
f P/R			

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: n$	$\mathrm{R}_{l}-\mathrm{R}_{8}:$ Unused	

Program Instructions:

1. Key in the program.
2. Key in m and press $\operatorname{ENTER}(\square)$.
3. Key in n and press R/S to calculate ${ }_{m} P_{n}$.
4. For a new case go to step 2.

Example: How many ways can 10 people be seated on a bench if only 4 seats are available?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$10 E \mathbb{E N T E R}$	$10=$	$5,040.00$	
$4 R / S$	$4 R / S$		

Combinations

A combination is a selection of one or more of a set of distinct objects without regard to order. The number of possible combinations, each containing n objects, that can be formed from a collection of m distinct objects is given by:

$$
{ }_{m} C_{n}=\frac{m!}{(m-n)!n!}
$$

Where m, n are integers and $69 \geq m \geq n \geq 0$.

Use the following HP 12C Platinum to calculate the number of possible combinations.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
STO 0	001,	44	0
x 2 y	002,		34
$\mathrm{g} n$!	003,	43	3
9 LSTX	004,	43	40
RCL) 0	005,	45	0
-	006,		30
9 n!	007,	43	3
RCL) 0	008,	45	0
g n!	009,	43	3
X	010,		20
\square	011,		10
g GTO 000	012,	33,	000
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g LSTX	001,	43	40
-	002,		30
$x \geqslant y$	003,		34
$=$	004,		36
$x \geq y$	005,		34
g n!	006,	43	3
\div	007,		10
$x \geqslant y$	008,		34
g n!	009,	43	3
\div	010,		10
9 LSTX	011,	43	40
g n!	012,	43	3
$=$	013,		36
9 GTO 000	014,	, 33,	000
f P/R			

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: n$	$\mathrm{R}_{I}-\mathrm{R}_{8}:$ Unused	

Program Instructions:

1. Key in the program.
2. Key in m and press $\operatorname{ENTER}(\square)$.
3. Key in n and press R/S to calculate ${ }_{m} C_{n}$.
4. For a new case, go to step 2.

Example: A manager wants to choose a committee of three people from the seven engineers working for him. In how many different ways can the committee be selected?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
7 7ENTER	$7 \boxed{=}$	35.00	${ }_{7} \mathrm{C}_{3}$.
$3 \mathrm{R} / \mathrm{S}$			

Random Number Generator

This HP 12C Platinum program calculates uniformly distributed pseudo-random numbers u_{i} in the range

$$
0<u_{i}<1
$$

The following method is used:

- $u_{i+1}=$ fractional part of $\left(997 u_{i}\right)$
- where $i=0,1,2, \ldots$
- $u_{0}=0.5284163^{*}$ (seed)

The period of this generator has a length of 500,000 numbers and the generator passes the frequency test (chi square) for uniformity, the serial test and the run test. The most significant digits (the left hand digits) are the most random digits. The right most digits are significantly less random.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	$000 \text {, }$		
\bullet -	001,		48
5	002,		5
2	003,		2
8	004,		8
4	005,		4
1	006,		1
6	007,		6
3	008,		3
STO 0	009,	44	0
9	010,		9
9	011,		9
7	012,		7
X	013,		20
9 FRAC	014,	43	24
STO 0	015,	44	0
R/S	016,		31
9 GTO 010	017, 43, 33, 010		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	$\mathrm{i}:$ Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: U_{i}$	$\mathrm{R}_{l}-\mathrm{R}_{7}:$ Unused	

[^4]
Program Instructions:

1. Key in the program.
2. To generate a random number, press R/S.
3. Repeat step 2 as many times as desired.

Example: Generate a sequence of 5 random numbers.

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
R / S	R / S	0.83	Random number.
R / S	R / S	0.56	
R / S	R / S	0.27	
R / S	R / S	0.04	
R / S	R / S	0.20	

Personal Finance

Homeowners Monthly Payment Estimator

It is often useful, when comparison shopping for a mortgage or determining the appropriate price range of houses to consider, to be able to quickly estimate the monthly payment given the purchase price, tax rate per $\$ 1000$, percent down, interest rate and term of the loan.

The calculation assumes that the assessed value is 100% of the sales price and does not take into account financing of the closing costs.
A simple keystroke procedure may be used to calculate the monthly payment:

1. Press g END and press f CLEAR FIN.
2. Key in the annual interest rate and press $g 12 \div$.
3. Key in the term of the loan (in years) and press $g 12 x$.
4. Key in the purchase prices and press STO 1.

RPN Mode:

5. Key in the percent down and press \% -PV .
6. Key in the tax rate in dollars per thousand and press

RCL $1 \times 12000 \div$ CHS ENTER PMT PMT + .
(A negative sign is the convention for cash paid out).

ALG Mode:

5. Press $-\square$, key in the percent down and press
\% PV PMT RCL 1 X.
6. Key in the tax rate in dollars per thousand and press CHS $\div 12000+\mathrm{x} \geqslant \mathrm{y}=$.
(A negative sign is the convention for cash paid out).

Example: What would your monthly payments be on a $\$ 65,000$ house in a neighborhood with a $\$ 25$ per thousand tax rate and a $103 / 4 \%$ interest rate on a 35 year loan with 10% down?

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
g END	g END		
f CLEAR FIN	f CLEAR FIN		
10.75 $912 \div$	10.75 g $12 \div$	0.90	Monthly interest rate.
35 9 12x	35 g 12x	420.00	Months of loan.
65000STO1	65000ST0 1	65,000.00	Purchase price.

$\begin{array}{c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
10\% - PV	-10 \% PV	58,500.00	Mortgage balance.
25 RCL 1 X	PMT RCL $1 \times$		
$12000 \div$ CHS	25 CHS $\div 12000+$	-135.42	Approximate monthly taxes.
ENTER PMT PMT	X2\%		
+	$=$	-672.16	Approximate monthly payment.

The following HP 12C Platinum program may be used instead of the above.

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM			
g END	001,	43	8
RCL 1	002,	45	1
-	003,		30
RCL 2	004,	45	2
\%	005,		25
PV	006,		13
PMT	007,		14
RCL 1	008,	45	1
X	009,		20
RCL 3	010,	45	3
\div	011,		10
1	012,		1
2	013,		2
EEX	014,		26
3	015,		3
-	016,		30
$x \geqslant y$	017,		34
$x \geqslant y$	018,		34
$=$	019,		36
9 GTO 000	020,43,33,000		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Term	i: Interest	PV: Loan	PMT: Loan PMT
$\mathrm{FV}: 0$	$\mathrm{R}_{0}:$ Unused	$\mathrm{R}_{l}:$ Purch. Price	$\mathrm{R}_{2}: \%$ Down
$\mathrm{R}_{3}:$ Tax rate	$\mathrm{R}_{4}-\mathrm{R}_{7}:$ Unused		

Program Instructions:

1. Key in the program.
2. Press f CLEAR FIN.
3. Key in the annual interest rate and press $g 12 \div$.
4. Key in the term of the loan in years and press 912 x .
5. Key in the purchase price and press STO 1 .
6. Key in the percent down and press STO2.
7. Key in the tax rate in dollars per thousand and press STO 3.
8. To calculate the approximate monthly payment, press R/S.
9. For a new case, store only the new variables by performing steps 3 thru 7 as needed. Press R/S for the new approximate monthly payment.

Example: Solve the previous example using the HP 12C Platinum program.

$\begin{array}{c}\text { 12c platinum / 12C } \\ \text { RPN Keystrokes }\end{array}$	$\begin{array}{c}\text { 12c platinum } \\ \text { ALG Keystrokes }\end{array}$	Display	Comments
f CLEAR FIN	f CLEAR FIN		

What would the approximate payment be if the loan was at 10% interest?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$10[g \mid 12 \div R / S$	$10 g[12 \div R / S$	-638.33	Approximate monthly payment.

What if the down payment is increased to 20% ?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
$20 S T 02 R / S$	$20 S T 02 R / S$	-582.45	Approximate monthly payment.

Tax-Free Individual Retirement (IRA) or Keogh Plan

The advent of tax-free retirement accounts (IRA or Keogh) has resulted in considerable benefits for many persons who are not able to participate in group profit sharing or retirement plans. The savings due to the tax-free status are often considerable, but complex to calculate. Required data are: the years to retirement, the total annual investment, the compound annual interest rate of the investment, and an assumed tax rate (the dividend tax rate) which would be paid on a similar but taxable investment. This program calculates:

1. The future cash value of the tax-free investment (the dividend tax rate does not apply).
2. The total cash paid in.
3. The total dividends paid (the tax-free status means these dividends are tax-free).
4. The future value of the investment at retirement, assuming that after retirement you make withdrawals at a rate which causes the money to be taxed at the withdrawal tax rate. This rate is often assumed to be one half of the dividend tax rate.
5. The diminished purchasing power assuming a given annual inflation rate.
6. The future value of a comparable taxable investment (the dividend tax rate applies).
7. The diminished purchasing power of a comparable taxable investment.

Notes:

- The calculations run from the beginning of the first year to the end of the last year.
- The interest (annual yield), i, should be entered to as many significant figures as possible for maximum accuracy.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL n	001,	45	11
RCL PMT	002,	45	14
X	003,		20
R/S	004,		31
+	005,		40
R/S	006,		31
RCL FV	007,	45	15
RCL 2	008,	45	2
\%	009,		25
-	010,		30
R/S	011,		31
1	012,		1

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
RCL n	001,	45	11
X	002,		20
RCL PMT	003,	45	14
+	004,		40
R/S	005,		31
X P y	006,		34
$=$	007,		36
R/S	008,		31
RCL FV	009,	45	15
-	010,		30
RCL 2	011,	45	2
\%	012,		25

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
RCL 3	013,	45	3
\%	014,		25
+	015,		40
RCL n	016,	45	11
y^{x}	017,		21
\div	018,		10
R/S	019,		31
RCL i	020,	45	12
RCL 1	021,	45	1
\%	022,		25
-	023,		30
i	024,		12
FV	025,		15
R/S	026,		31
(9 GTO 012	027,	33	
f P/R			

12c platinum ALG KEYSTROKES		LA	
$=$	013,		36
R/S	014,		31
1	015,		1
+	016,		40
RCL 3	017,	45	3
\%	018,		25
$=$	019,		36
y^{x}	020,		21
RCL n	021,	45	11
\div	022,		10
x x y	023,		34
X C y	024,		34
$=$	025,		36
R/S	026,		31
RCL i	027,	45	12
-	028,		30
RCL1	029,	45	1
\%	030,		25
i	031,		12
FV	032,		15
R/S	033,		31
9 GTO 015	034,43,33,015		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Years	i: Used	PV: 0	PMT: Yearly Pmt
FV: Used	R_{0} : Unused	R_{l} : Dividend Tax $\%$	R_{2} : Withdrawal Tax $\%$
R_{3} : Inflation $\%$	$\mathrm{R}_{4}-\mathrm{R}_{.5}$: Unused		

Program Instructions:

1. Key in the program.
2. Press f CLEAR REG and press g BEG.
3. Key in the dividend tax rate as a percentage and press STO 1.
4. Key in the withdrawal tax rate as a percentage and press STO 2.
5. Key in the inflation rate as a percentage and press STO 3.
6. Key in years to retirement and press n.
7. Key in the interest rates as a percentage and press i.
8. Key in the annual payment and press CHS PMT.
9. Press FV to calculate the future value of the tax free investment.
10. Press R/S to compute the total cash paid in.
11. Press R/S to compute the total dividends paid.
12. Press R/S to compute the future value when, after retirement, money is withdrawn at a rate causing the tax rate to equal $1 / 2$ the rate paid during the pay in period.
13. Press R/S to compute the diminished purchasing power, in terms of today's dollars, of the future value assuming a 10% annual inflation rate.
14. Press R/S to compute the future value of an ordinary tax investment.
15. Press R/S to compute the diminished purchasing power of the ordinary tax investment.

Example: Assuming a 35 year investment period with a dividend rate of 8.175% and an income tax rate of 40% :

1. If you invest $\$ 1500$ each year in a tax free account, what will its value be at retirement?
2. How much cash will be paid in?
3. What will be the value of the earned dividends?
4. After retirement, if you withdraw cash form the account at a rate such that it will be taxed at a rate equal to one-half the rate paid during the pay-in period, what will be the after-tax value?
5. What is the diminished purchasing power of that amount, in today's dollars, assuming 10% annual inflation?
6. If you invest the same amount (\$1500 after taxes for a non-Keogh or non-IRA account) each year with dividends taxed as ordinary income, what will be the total tax-paid cash at retirement?
7. What is the purchasing power of that figure in terms of today's dollars?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEARREG	f CLEARREG		
g BEG	g BEG		
40 STO 1	40 STO 1	40.00	Dividend tax rate.
20 STO 2	20 STO 2	20.00	Withdrawal tax rate.
10 STO 3	10 STO 3	10.00	Inflation rate.
35 n	35 n	35.00	Years to retirement.
8.175 i	8.175 i	8.18	Dividend rate.
1500 CHS PMT	1500 CHS PMT	-1,500.00	Annual payment.
FV	FV	290,730.34	Future value at retirement.
R/S	R/S	-52,500.00	Cash paid in.
R/S	R/S	238,230.34	Earned dividends (untaxed).
R/S	R/S	232,584.27	After-tax value.
R/S	R/S	8,276.30	Diminished purchasing power.
R/S	R/S	139,360.09	Tax-paid cash at retirement.
R/S	R/S	4,959.00	Purchasing power of tax-paid cash at retirement.

Stock Portfolio Evaluation and Analysis

This program evaluates a portfolio of stocks given the current market price per share and the annual dividend. The user inputs the initial purchase price of a stock, the number of shares, the beta coefficient ${ }^{*}$, the annual dividend, and the current market price for a portfolio of any size.
The program returns the percent change in value of each stock and the valuation and beta coefficient* of the entire portfolio. Output includes the original portfolio value, the new portfolio value, the percent change in the value and the annual dividend and yield as a percent of the current market value. The overall beta coefficient of the portfolio is also calculated.

Note:

The beta coefficient analysis is optional. Key in 1.00 if beta is not to be analyzed.

12c platinum ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
STO6	001,	44	6
RCL 4	002,	45	4
$9 \mathrm{x}=0$	003,	43	35
g GTO 026	004, 43, 33, 026		
STO -4	005,44 $30 \quad 4$		
R】	006, 33		
X	007, 20		
RCL 7	008, 457		
$=$	009, 36		
STO +0	010,44 40		
X x y	011, 34		
X	012, 20		
RCL 7	013, 457		
$=$	014, 36		
STO +1	015,44 401		
R】	016, 33		
X	017, 20		
$x \geq y$	018, 34		
$=$	019, 36		

[^5]| 12c platinum / 12C RPN KEYSTROKES | DISPLAY | |
| :---: | :---: | :---: |
| g GTO 001 | 020,43,33,001 | |
| + | 021, | 40 |
| X 2 y | 022, | 34 |
| STO 7 | 023, | 44 |
| \times | 024, | 20 |
| STO 5 | 025, | $44 \quad 5$ |
| STO +2 | 026,44 | 402 |
| 1 | 027, | 1 |
| STO 4 | 028, | 44 |
| R/S | 029, | 31 |
| g GTO 001 | 030,43 | ,33,001 |
| RCL 2 | 031, | 45 |
| R/S | 032, | 31 |
| RCL) 0 | 033, | 450 |
| R/S | 034, | 31 |
| | | |
| % | 035, | 24 |
| R/S | 036, | 31 |
| RCL 0 | 037, | 45 |
| RCL1 | 038, | 45 |
| R/S | 039, | 31 |
| \%T | 040, | 23 |
| R/S | 041, | 31 |
| RCL 3 | 042, | $45 \quad 3$ |
| RCL) 0 | 043, | $45 \quad 0$ |
| \div | 044, | 10 |
| 9 GTO 000 | 045,43 | ,33,000 |
| f P/R | | |

12c platinum ALG KEYSTROKES	DISPLAY		
STO + 3	020,44	40	3
RCL 5	021,	45	5
RCL 6	022,	45	6
$\Delta \%$	023,		24
R/S	024,		31
9 GTO 001	025,43, 33, 001		
R \downarrow	026,		33
STO 5	027,	44	5
X	028,		20
X x y	029,		34
STO 7	030,	44	7
$=$	031,		36
STO +2	032,44	40	2
1	033,		1
STO 4	034,	44	4
R/S	035,		31
g GTO 001	036,43,33,001		
RCL2	037,	45	2
R/S	038,		31
RCL 0	039,	45	0
R/S	040,		31
-\%	041,		24
R/S	042,		31
RCL 0	043,	45	0
RCL 1	044,	45	1
R/S	045,		31
\%T	046,		23
R/S	047,		31
RCL 3	048,	45	3
\div	049,		10
RCL) 0	050,	45	0
=	051,		36
9 GTO 000	052,43,33,000		
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: \Sigma P V$	$\mathrm{R}_{l}: \Sigma D I V$	$\mathrm{R}_{2}: \Sigma$ Orig. Val.
$\mathrm{R}_{3}: \Sigma P_{i} S_{i} \beta_{i}$	$\mathrm{R}_{4}:$ Flag	$\mathrm{R}_{5}: P_{i} n_{i}$	$\mathrm{R}_{6}: P_{i}$
$\mathrm{R}_{7}: S_{i}$	$\mathrm{R}_{8}-\mathrm{R}_{I}:$ Unused		

Program Instructions:

1. Key in the program.
2. Initialize the program by pressing f CLEAR REG.
3. Key in the number of shares of a stock and press ENTER ($=$
4. Key in the initial purchase of the stock and press R/S.
5. Key in the beta coefficient of the stock and press ENTER (\square).
6. Key in the annual dividend of the stock and press ENTER ($=$
7. Key in the present price of the stock and press R/S. The display will show the percent change in the stock value.
8. Repeat steps 3 through 7 until all the stocks are entered.
9. Next, to evaluate the entire portfolio, press :

RPN: g GTO 031
ALG: G GTO 037
10. Press R/S to see the initial portfolio value.
11. Press R/S to see the present portfolio value.
12. Press R/S to see the percent change in value.
13. Press R/S to see the total yearly dividend.
14. Press R/S to see the annual dividend yield as a percent of the current market value.
15. Press R/S to see the beta coefficient of the portfolio.
16. For a new case return to step 2.

Example: Evaluate the following portfolio:

Number of Shares Held	Initial Purchase Price	Beta Coefficient	Annual Dividend	Present Market Price	Stock
100	25.63	.8	$\$ 1.70$	27.25	Int'l Heartburn
200	30.25	1.2	$\$ 2.10$	33.50	P. D. Q.
50	89.88	1.3	$\$ 4.55$	96.13	Datacrunch
500	65.25	.6	$\$ 3.50$	64.38	N.W. Sundial

12c platinum / 12C RPN Keystrokes A	12c platinum ALG Keystrokes	Display	Comments
f CLEARREG	f CLEAR REG	0.00	Int'l Heartburn
100ENTER	$100=$	100.00	
25.63 R/S	$25.63 \mathrm{R} / \mathrm{S}$	1.00	
. 8 ENTER	. $8=$	0.80	
1.70 ENTER	$1.70=$	1.70	
$27.25 \mathrm{R} / \mathrm{S}$	27.25 R/S	6.32	Percent change in Stock's value.

$\begin{gathered} \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{gathered}$	12c platinum ALG Keystrokes	Display	Comments
200ENTER	200 =	200.00	P. D. Q.
30.25 R/S	30.25 R/S	1.00	
1.2 ENTER	$1.2=$	1.20	
2.10ENTER	$2.10=$	2.10	
$33.5 \mathrm{R} / \mathrm{S}$	$33.5 \mathrm{R} / \mathrm{S}$	10.74	Percent change in Stock's value.
50 ENTER	$50=$	50.00	Datacrunch
89.88 R/S	89.88 R/S	1.00	
1.3 ENTER	$1.3=$	1.30	
4.55 ENTER	$4.55=$	4.55	
$96.13 \mathrm{R} / \mathrm{S}$	$96.13 \mathrm{R} / \mathrm{S}$	6.95	Percent change in Stock's value.
500 ENTER	500 =	500.00	N. W. Sundial
$65.25 \mathrm{R} / \mathrm{S}$	$65.25 \mathrm{R} / \mathrm{S}$	1.00	
. 6 ENTER	. $6=$	0.60	
3.50 ENTER	$3.50=$	3.50	
64.38R/S	64.38 R/S	-1.33	Percent change in Stock's value.
g GTO 031	g GTO 037		
R/S	R/S	45,732.00	Original value.
R/S	R/S	46,421.50	Present value.
R/S	R/S	1.51	Percent change in value.
R/S	R/S	2,567.50	Total yearly dividend.
R/S	R/S	5.53	Annual dividend yield.
R/S	R/S	0.77	Portfolio beta coefficient.

Canadian Mortgages

In Canada, interest is compounded semi-annually with payments made monthly. This results in a different monthly mortgage factor than is used in the United States and preprogrammed into the HP 12C Platinum. This difference can be easily handled by the addition of a few keystrokes. For any problem requiring an input for i, the Canadian mortgage factor is calculated first and then this value is entered in for in in the calculation to give the answer for Canada.

The keystrokes to calculate the monthly Canadian mortgage factor are:

RPN Mode:
1.
Press f CLEAR FIN g END.
2. Key in 6 and press n.
3. Key in 200 and press ENTER PV.
4. Key in the annual interest rate as a percentage and press $\square \mathrm{CHS} \mathrm{FV}$.
5. Press i.
ALG Mode:
1. Press f CLEAR FIN g END.
2. Key in 2 and press n.
3. Key in the annual interest rate as a percentage and press $\div 2 \mathrm{i}$.
4. Key in 1 and press PV FV.
5. Press 12 n i.

The Canadian mortgage factor is now stored in for future use. The examples below show how this factor is used for i in Canadian mortgage problems. Example 3 shows how to reverse this procedure and obtain the annual Canadian interest rate from the monthly Canadian mortgage factor.

Periodic Payment Amount

Example 1: What is the monthly payment required to fully amortize a 30 -year, $\$ 30,000$ Canadian mortgage if the interest rate is 9% ?

$\begin{array}{c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
f CLEAR FIN	f CLEAR FIN		
g END	9 END		
6 n 200 ENTER PV	$2 \square 9 \div 2$		
$9+\mathrm{CHS} \mathrm{FV}$ i	1 PV FV 12 n i	0.74	Canadian mortgage factor.
30 912 x	30 g 12 x	360.00	Total monthly periods in mortgage life.
$\begin{aligned} & 30000 \mathrm{PV} 0 \mathrm{FV} \\ & \text { PMT } \end{aligned}$	$\begin{aligned} & 30000 \mathrm{PV} 0 \mathrm{FV} \\ & \text { PMT } \end{aligned}$	-237.85	Monthly payment.

Number of Periodic Payments to Fully Amortize a Mortgage

Example 2: An investor can afford to pay $\$ 440$ per month on a $\$ 56,000$ Canadian mortgage. If the annual interest rate is $91 / 4 \%$, how long will it take to completely amortize this mortgage?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
fCLEAR FIN	f CLEAR FIN		
9 END	g END		
6 n 200 ENTER PV	2 п $9.25 \div 2$ i		
$9.25+\mathrm{CHS}$ FV ${ }^{\text {i }}$	1 PV FV 12 n i	0.76	Canadian mortgage factor.
440 [HS PMT	440 CHS PMT	-440.00	Monthly payment.
56000 PV 0 FV n	56000[PV 0 FV [437.00	Total number of monthly payments.

Effective Interest Rate (Yield)

Example 3: A Canadian mortgage has monthly payments of $\$ 612.77$ with a maturity of 25 years. The principal amount is $\$ 75,500$. What is the annual interest rate?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR FIN	f CLEAR FIN		
9 END	g END		
25 912 x	25 g 12x		
612.77 CHS PMT	612.77 CHS PMT		
75500 PV i	75500 PV i	0.72	Canadian mortgage factor.
6 n 0 PMT	0 PMT		
200 CHS PV	12 n FV		
FV RCL PV +	2 n i $\times 2=$	8.75	Annual interest rate.

Balance Remaining at End of Specified Period

Example 4: A Canadian mortgage has monthly payments of $\$ 612.77$ at 8.75% interest. The principal amount is $\$ 75,500$. What will be the outstanding balance remaining at the end of 10 years?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEAR FIN	f CLEAR FIN		
9 END	g END		
6 n 200 ENTER PV	$2 \mathrm{n} 8.75 \div 2 \mathrm{i}$		
$8.75+$ CHS FV i	1 PV FV 12 n i	0.72	Canadian mortgage factor.
612.77 CHS PMT	612.77 CHS PMT		
10 g 12 x	10 g 12 x		
75500 PV FV	75500 PV FV	-61,877.18	Outstanding balance remaining at the end of 10 years.

Miscellaneous

Learning Curve for Manufacturing Costs

Many production process costs vary with output according to the "learning curve" equation. The production team becomes more proficient in manufacturing a given item as more and more of them are fabricated and costs may be expected to decrease by a predictable amount. The learning factor, r, characterizes the learning curve. For instance, if $r=.80$ the curve is called an 80% learning curve.
It is readily apparent that the learning, or experience curve, has many uses in setting production standards, forecasting costs, setting prices, etc. Note, however, that the learning factor may change, especially after large numbers have been produced.
It the cost of the first unit of a run, C_{1}, and the learning curve factor, r, are known, the following procedure can be used to calculate the cost of the nth item:

1. Key in the cost of the first item, C_{I} and press $\operatorname{ENTER}(=)$).
2. Key in the number of units produced, n, and press $\operatorname{ENTER}(=)$.

RPN Mode:

3. Key in the learning factor, r, and press $g \in 2 \rightarrow L N \div$.
4. Then press $y^{x} x$ to calculate the cost of the nth unit, $C n$.

ALG Mode:

3. Key in the learning factor, r, and press $g \operatorname{LN} \div 2 \square \mathrm{LN} y^{x}$.
4. Then press $x \geqslant y, x \geqslant y, x \geqslant y=$ to calculate the cost of the nth unit, $C n$.

Example 1: An electronic manufacturer begins a pilot run on a new instrument. From past experience he expects the process to have a learning factor, r, or 0.90 . If the first unit costs $\$ 875$ to produce, what is the expected cost of the 100th unit?

If the cost of the first unit, C_{1}, and the nth unit, C_{n}, are known the learning factor may be calculated. In addition, it is possible to calculate $C_{i j}$, the average cost of the i th thru j th
unit. These calculations may be rapidly done with the following HP 12C Platinum program:

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
g LN	001,	43	23
2	002,		2
9 LN	003,	43	23
\div	004,		10
STO2	005,	44	2
R】	006,		33
X 2 y	007,		34
STO1	008,	44	1
\div	009,		10
9 LN	010,	43	23
RCL 2	011,	45	2
\div	012,		10
g e^{x}	013,	43	22
STO 2	014,	44	2
9 GTO 000	015,	33,	000
RCL 2	016,	45	2
g LN	017,	43	23
2	018,		2
g LN	019,	43	23
\div	020,		10
y^{x}	021,		21
RCL 1	022,	45	1
\times	023,		20
g GTO 000	024,	33,	000
STO 3	025,	44	3
X 2 y	026,		34
STO 4	027,	44	4
RCL 2	028,	45	2
g LN	029,	43	23
2	030,		2
9 LN	031,	43	23
\div	032,		10
1	033,		1
+	034,		40
STO 0	035,	44	0
y^{x}	036,		21
RCL 3	037,	45	3
RCL) 0	038,	45	0

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
$y^{\text {y }}$	039,		21
-	040,		30
RCL) 0	041,	45	0
\div	042,		10
RCL 4	043,	45	4
RCL 3	044,	45	3
-	045,		30
\div	046,		10
RCL 1	047,	45	1
\times	048,		20
9 GTO 000	049, 43, 33,000		
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
g LN	039,	43	23
+	040,		40
1	041,		1
$=$	042,		36
STO 0	043,	44	0
$x \geqslant y$	044,		34
y^{x}	045,		21
$x \geqslant y$	046,		34
$=$	047,		36
RCL 3	048,	45	3
y^{x}	049,		21
RCL 0	050,	45	0
$=$	051,		36
$x \geqslant y$	052,		34
-	053,		30
$x \geqslant y$	054,		34
\div	055,		10
RCL) 0	056,	45	0
$=$	057,		36
RCL 4	058,	45	4
-	059,		30
RCL 3	060,	45	3
$=$	061,		36
$x \geqslant y$	062,		34
\div	063,		10
$x \geqslant y$	064,		34
X	065,		20
RCL1	066,	45	1
$=$	067,		36
f P/R			

	REGISTERS		
n: Unused	i: Unused	PV: Unused	PMT: Unused
FV: Unused	$\mathrm{R}_{0}: K+1$	$\mathrm{R}_{1}: C_{l}$	$\mathrm{R}_{2}: r$
$\mathrm{R}_{3}: i$	$\mathrm{R}_{4}: j$	$\mathrm{R}_{5}-\mathrm{R}_{3}:$ Unused	

Program Instructions:

1. Key in the program.

Note: If the average costs are not going to be calculated:

RPN: lines 25 through 48 need not be keyed in
ALG: lines 32 through 67 need not be keyed in

2. To calculate r, the learning factor, if C_{I} and C_{n} are known:
a. Key in C_{l}, the cost of the first unit and press $\operatorname{ENTER}(\square)$.
b. Key in C_{n}, the cost of the nth unit and press ENTER $(=)$.
c. Key in n, the number of units and press R/S to calculate r, the learning factor.
3. To calculate the cost of the nth unit when C_{l} and r are known:
a. Key in C_{I} and press STO 1. Key in r and press STO 2. (Note: This step may be skipped if step 2 has just been done).
b. Key in the number of units, n and calculate C_{n}, the cost of the nth unit by pressing

RPN: g GTO 016R/S.
ALG: g GTO 019R/S.
4. To calculate the average cost per unit of the i th through j th unit, $C_{i j}$, if C_{l} and r are known.
a. Key in C_{I} and press STO 1. Key in r and press STO 2. (Note: This step may be skipped if step 2 has just been done).
b. Key in the number of the last unit of the batch, j and press $\mathbb{E N T E R}(\square)$.
c. Key in the number of the first unit of the batch, i, and calculate the average cost per unit by pressing

RPN: g GTO 025 R/S..
ALG: g GTO $032 \mathrm{R} / \mathrm{S}$.

Example 2: The electronic manufacturer cited in example 1 found that the 100th instrument actually cost $\$ 395$ to manufacture. Find the actual learning factor, r, the cost of the 500th unit and the average cost of units 500 thru 1000. (Recall that C_{1} was $\$ 875$).

$\begin{array}{c\|} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \end{array}$	12c platinum ALG Keystrokes	Display	Comments
875 ENTER	875=	875.00	
395 ENTER	$395=$	395.00	
$100 \mathrm{R} / \mathrm{S}$	100 R/S	0.89	Actual r.
500 9 GTO 016R/S	500 g GTO 019R/S	299.14	Cost of the 500th unit.
1000 ENTER	1000 =	1000.00	
500 9 GTO 025 R/S	500 g GTO 032 R/S	280.00	Average cost of the 500th thru 1000th unit.

Queuing and Waiting Theory

Waiting lines, or queues, cause problems in many marketing situations. Customer goodwill, business efficiency, labor and space considerations are only some of the problems which may be minimized by proper application of queuing theory.

Although queuing theory can be complex and complicated subject, handheld calculators can be used to arrive at helpful decisions.

One common situation that we can analyze involves the case of several identical stations serving customers, where the customers arrive randomly in unlimited numbers. Suppose there are n (1 or more) identical stations serving the customers. λ is the arrival rate (Poisson input) and μ is the service rate (exponential service). We will assume that all customers are served on a first-come, first-served basis and wait in a single line (queue) then are directed to whichever station is available. We also will assume that no customers are lost from the queue. This situation, for instance, would be closely approximated by customers at some banking operations.

The formulas for calculating some of the necessary probabilities are too complex for simple keystroke solution. However, tables listing these probabilities are available and can be used to aid in quick solutions. Using the assumptions outlined above and a suitable table giving mean waiting time as a multiple of mean service (see page 512 of the Reference) the following keystroke solutions may be obtained:

RPN Mode:

1. Key in the arrival rate of customers, λ, and press ENTER.
2. Key in the service rate, μ, and press \div to calculate ρ, the intensity factor. (Note ρ must be less than n for valid results, otherwise the queue will lengthen without limit).
3. Key in n, the number of servers and press \div to calculate ρ / n.
4. For a given n and ρ / n find the mean waiting time as a multiple of mean service time from the table. Key it in and press ENTER.
5. Calculate the average waiting time in the queue by keying in the service rate, μ, and pressing STO $1 \div$ STO 2 .
6. Calculate the average waiting time in the system by pressing RCL $1 / 1 / x+$.
7. Key in λ and press $\operatorname{RCL} 2 X$ to calculate the average queue length.
8. Key in ρ, the intensity factor (from step 2 above) and press + to calculate the average number of customers in the system.

ALG Mode:

1. Key in the arrival rate of customers, λ, and press \div.
2. Key in the service rate, μ, and press \div to calculate ρ, the intensity factor. (Note ρ must be less than n for valid results, otherwise the queue will lengthen without limit).
3. Key in n, the number of servers and press $=$ to calculate ρ / n.
4. For a given n and ρ / n find the mean waiting time as a multiple of mean service time from the table. Key it in and press \div.
5. Calculate the average waiting time in the queue by keying in the service rate, μ, and pressing STO $1+$ STO 2.
6. Calculate the average waiting time in the system by pressing $R C L 1 / x==$.
7. Key in λ and press $X \operatorname{RCL} 2 \square$ to calculate the average queue length.
8. Key in ρ, the intensity factor (from step 2 above) and press $=$ to calculate the average number of customers in the system.

Reference:

Richard E Trueman, "An Introduction to Quantitative Methods for Decision Making," Holt, Rinehart and Winston, New York, 1977

Example 1: Bank customers arrive at a bank on an average of 1.2 customers per minute. They join a common queue for three tellers. Each teller completes a transaction at the rate of one customer every 2 minutes (0.5 customers per minute). What is the average waiting time in the queue? In the system? What is the average number of customers in the queue? In the system?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
1.2 ENTER	$1.2 \square$	1.20	
$5 \div$	$.5 \div$	2.40	ρ, intensity factor.
$3 \div$	$3 \div$	0.80	ρ / n

From Table 12.2, page 512 of the reference, the mean waiting time as a multiple of mean service time for $n=3, \rho / n=0.8$ is 1.079 . (Note S is used instead of n in the reference's notation).

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
1.079ENTER	$1.079 \div$	1.08	
.5STO 1 \div STO2	.5STO $1+$ STO2	2.16	Average wait in queue (min).
RCL 1 $1 / x$ - +	RCL 1 $11 / x=$	4.16	Average wait in system (min).
1.2 RCL 2 X	$1.2 \times \mathrm{RCL} 2+$	2.59	Average queue length.
$2.4+$	$2.4=$	4.99	Average \# of customers in system.

If the number of servers is limited to one, with other conditions remaining the same (unlimited queue, Poisson arrival, exponential service), the average queue length can be readily calculated without reference to tables:

RPN Mode:

1. Key in the arrival rate, λ and press STO 1 .
2. Key in the service rate, μ and press STO 2
\div ENTER ENTER $2 y^{x} x \geqslant y 1 x \geqslant y-\quad \div$ to calculate the average number of customers waiting in queue at any one time.
3. Press $\mathrm{RCL} 1 \div$ to calculate the average waiting time.
4. Press RCL $21 / x+$ to calculate the average total time the customer spends in the system.
5. Press RCL $1 X$ to calculate the average number of customers in the system.

ALG Mode:

1. Key in the arrival rate, λ and press $\mathrm{STO} 1 \div$.
2. Key in the service rate, μ and press STO $2 \rightarrow=1 / x \rightarrow-x^{2} \mid x \geqslant y=1 / x$ to calculate the average number of customers waiting in queue at any one time.
3. Press \div RCL $1+$ to calculate the average waiting time.
4. Press RCL $21 / x \times X$ to calculate the average total time the customer spends in the system.
5. Press RCL $1=$ to calculate the average number of customers in the system.

Example 2: A small grocery store has but a single check-out counter. Customers arrive at a rate of 1 every 2 minutes ($\lambda=.5$) and, on the average, customers can be checked out at a rate of .9 per minute (μ). What is the average number of customers in the waiting line at any time? The average waiting time? What is the average total time for a customer to wait and be checked out? The average number of customers in the system?

$\begin{array}{\|c} \hline \text { 12c platinum / 12C } \\ \text { RPN Keystrokes } \\ \hline \end{array}$	12c platinum ALG Keystrokes	Display	Comments
.5STO 1	.5STO 1 \div	0.50	
. 9 STO $2 \div$ - ENTER	.9STO2		
ENTER2 y^{x} x $x \geqslant y$	$=$	0.56	(intensity factor, ρ)
$1 \mathrm{x} \geqslant \mathrm{y}$			
$\square \square$	$x \geqslant y=1 / x$	0.69	Average \# customers waiting in queue.
RCL 1 $-\div$	\div RCL $1+$	1.39	Average waiting time.
RCL $21 / x \rightarrow+$	RCL $21 / x$ X	2.50	Average total time in the system.
RCL 1 X	RCL 1 $=$	1.25	Average \# customers in system.

With an HP 12C Platinum program one can readily calculate the necessary probabilities for this type of problem (dispensing with the use of tables) and perform additional calculations as well.

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
1	001,		1
STO - 0	002,44	33	0
RCL - 0	003,45	48	0
RCL) 0	004,	45	0
0	005,		0
9 x ¢ y	006,	43	34
9 GTO 009	007,43,33,009		
g GTO 016	008, 43, 33, 016		
+	009,		40
y^{x}	010,		21
g LSTX	011, 43		40
g n!	012, 43		3
\div	013,		10
E+	014,		49
g GTO 001	015,43,33,001		
RCL - 0	016,45 48		0
RCL7	017, 45		7
$y^{\text {y }}$	018,		21
1	019,		1
RCL - 0	020,45 48		0
RCL7	021, 45		7
\div	022,		10
-	023,		30
\div	024,		10
RCL 7	025, 45		7
g n!	026, 43		3
\div	027,		10
STO 6	028,	44	6
RCL 2	029,	45	2
+	030,		40
1/x	031,		22
STO1	032,	44	1
RCL) 6	033,	45	6
X	034,		20
STO2	035,	44	2
RCL $\cdot 0$	036,45 4	48	0

12c platinum ALG KEYSTROKES	DISPLAY	
f P/R		
f CLEAR PRGM	000,	
1	001,	1
STO - 0	002,44	$30 \quad 0$
RCL 0	003,	450
0	004,	0
g $x \leq y$	005,	$43 \quad 34$
g GTO 008	006,43, 33, 008	
g GTO 017	007, 43, 33, 017	
RCL - 0	008,45 48 0	
y^{x}	009, 21	
RCL 0	010, 450	
\div	011, 10	
RCL 0	012, 45 0	
	013, 43 3	
$=$	014, 36	
5+	015, 49	
g GTO 001	016,43,33, 001	
RCL $\cdot 0$	017,45 48 0	
\div	018, 10	
RCL 7	019, 457	
-	020, 30	
1	021,	
$=$	022, 36	
CHS	023, 16	
RCL - 0	024,45 48 0	
$y^{y^{x}}$	025, 21	
RCL 7	026, 45	
\div	027, 10	
x C ¢	028, 34	
\div	029, 10	
RCL7	030, 457	
g n!	031, 43 3	
$=$	032, 36	
STO 6	033, 446	
+	034, 40	
RCL 2	035, 452	
$=$	036,	36

12c platinum / 12C RPN KEYSTROKES	DISPLAY		
X	037,		20
RCL 7	038,	45	7
RCL $\cdot 0$	039,45	48	0
-	040,		30
\div	041,		10
STO 3	042,	44	3
RCL - 0	043,45	48	0
+	044,		40
STO 4	045,	44	4
RCL 8	046,	45	8
\div	047,		10
STO 5	048,	44	5
RCL 3	049,	45	3
RCL 8	050,	45	8
\div	051,		10
STO 6	052,	44	6
R/S	053,		31
RCL 8	054,	45	8
RCL7	055,	45	7
RCL 9	056,	45	9
X	057,		20
-	058,		30
X	059,		20
g [$\mathrm{e}^{\text {x }}$	060,	43	22
RCL 2	061,	45	2
X	062,		20
g GTO 053	063,43	33,	053
f P/R			

12c platinum ALG KEYSTROKES	DISPLAY		
1/x	037,		22
STO 1	038,	44	1
STO 2	039,	44	2
RCL 6	040,	45	6
STO X 2	041, 44	20	2
RCL 7	042,	45	7
-	043,		30
RCL $\cdot 0$	044,45	48	0
$=$	045,		36
RCL - 0	046,45	48	0
\div	047,		10
$x \geqslant y$	048,		34
X	049,		20
RCL 2	050,	45	2
+	051,		40
STO 3	052,	44	3
RCL $\cdot 0$	053,45	48	0
\div	054,		10
STO 4	055,	44	4
RCL 8	056,	45	8
$=$	057,		36
STO 5	058,	44	5
RCL 3	059,	45	3
\div	060,		10
RCL 8	061,	45	8
=	062,		36
STO 6	063,	44	6
R/S	064,		31
RCL 7	065,	45	7
X	066,		20
RCL 9	067,	45	9
-	068,		30
RCL 8	069,	45	8
X	070,		20
$x \geqslant y$	071,		34
$=$	072,		36
CHS	073,		16
g e e^{x}	074,	43	22
X	075,		20
RCL 2	076,	45	2
=	077,		36
9 GTO 064	078,43	33,	64
f P/R			

	REGISTERS		
$\mathrm{n}:$ Unused	i: Unused	$\mathrm{PV}:$ Unused	PMT: Unused
$\mathrm{FV}:$ Unused	$\mathrm{R}_{0}: \mathrm{K}$	$\mathrm{R}_{1}: \mathrm{P}_{0}$	$\mathrm{R}_{2}: P_{b}$
$\mathrm{R}_{3}: L_{q}$	$\mathrm{R}_{4}: \mathrm{L}$	$\mathrm{R}_{5}: \mathrm{T}$	$\mathrm{R}_{6}:$ Used, T_{q}
$\mathrm{R}_{7}: n$	$\mathrm{R}_{8}: \lambda$	$\mathrm{R}_{9}: \mu$	$\mathrm{R}_{.0}: \rho$
$\mathrm{R}_{1}:$ Unused			

Program Instructions:

1. Key in the program and press f CLEAR REG.
2. Key in the number of servers, n and press STO 0 STO 7 .

RPN Mode:

3. Key in the arrival rate of customers, λ and press STO 8 .
4. Key in the service rate of each server, μ and press STO 9 .
5. Press \div STO $\bullet 0$ to calculate and store ρ the intensity factor.

ALG Mode:

3. Key in the arrival rate of customers, λ and press STO $8 \div$.
4. Key in the service rate of each server, μ and press STO 9.
5. Press $=$ STO $\bullet 0$ to calculate and store ρ the intensity factor.
6. Press R/S to see T_{q}, the average waiting time in the queue. Display P_{0}, probability that all servers are idle, by pressing RCL 1. Display P_{b}, probability that all servers are busy by pressing RCL 2 . Display L_{q}, average number waiting in the queue by pressing RCL 3. Display L, the average number in the system (waiting and being served), by pressing RCL 4.
Display T, average total time through the system, by pressing RCL 5. T_{q}, the average waiting time in the queue, may again be displayed by pressing RCL6.
7. If desired, calculate $\mathrm{P}(t)$, the probability of waiting longer than a given time, by keying in the time and pressing R/S.
8. Repeat step 7 for other times of interest.

Example 3: Using the data from example 1 of the keystroke solutions verify the data obtained. In addition, obtain P_{0}, the probability that none of the tellers are busy, and P_{b} the probability that all the tellers are busy. What is the probability that a customer will have to wait 2 minutes or more?

12c platinum / 12C RPN Keystrokes	12c platinum ALG Keystrokes	Display	Comments
f CLEARREG	f CLEARREG	0.00	
3STO 0STO 7	3STO0STO7	3.00	n
1.2 STO 8	1.2 STO $8 \div$	1.20	λ
5 STO 9	5STO 9	0.50	μ
\div STO $\cdot 0$	$=$ STO $\cdot 0$	2.40	ρ
R/S	R/S	2.16	T_{q} average waiting time in queue.
RCL 1	RCL 1	0.06	P_{0} probability all servers are idle.
RCL 2	RCL 2	0.65	P_{b} probability all servers are busy.
RCL 3	RCL 3	2.59	L_{q} average \# waiting in queue.
RCL 4	RCL 4	4.99	L, average \# waiting in system.
RCL 5	RCL 5	4.16	T, average total time in system.
$2 \mathrm{R} / \mathrm{S}$	$2 \mathrm{R} / \mathrm{S}$	0.36	Probability of having to wait 2 minutes or more.

Appendix A

Algebraic Versions of Programs from Part III of the Owner's Handbook

About this Appendix

This appendix contains algebraic versions of the eleven programs found in Part III of the HP12C Platinum Owner's Handbook and Problem-Solving Guide. It does not cover the step-by-step examples given in Part III.

These programs are solely for the HP 12C Platinum, and work properly only when the calculator is set to ALG mode.

They should be tested by running the corresponding program examples given in the HP12C Platinum Owner's Handbook and Problem-Solving Guide. They work exactly the same as the RPN versions. The instructions for running these programs are not included here. They are simply listed with reference to the relevant section in the HP12C Platinum Owner's Handbook and Problem-Solving Guide. The register usage is the same as in the RPN versions.

In order to execute miscellaneous side calculations which are done during the program examples, these additional steps are required in algebraic mode:

1. The first three depreciation programs specify a side calculation to calculate the total depreciation through the current year - the algebraic version of this is:

$$
\mathrm{RCL} \mathrm{PV}+\mathrm{RCL} 3-\mathrm{x} \geqslant \mathrm{y}-\mathrm{RCL} \mathrm{FV}=
$$

2. Section 14 - the Advance Payments with Residual-Solving for Payment program Example 1 stores 15/12 in R_{1} and Example 2 stores 18/12 in R_{1}. The algebraic keystrokes are: $15 \div 12==$ STO 1 and $18 \div 12==$ STO 1 .
3. At the end of the bond programs the total price is obtained by pressing: $\pm x \geqslant y=$.
4. Section 16 - the 30/360 Day Basis Bonds program Example 2 stores $933 / 8$ in R_{1}. The algebraic keystrokes are: $3 \div 8+93=$ STO 1 .

The program listings have been formatted in double columns and apart from one instance the listings do not span pages, thus making key entry convenient.

Algebraic Mode Programs

Section 12: The Rent or Buy Decision

ALG KEYSTROKES	DISPLAY		ALG KEYSTROKES	DISPLAY	
f P/R			-	032,	30
f CLEAR PRGM	000,		RCL 4	033, 45	4
FV	001,	15	-	034,	30
FV	002,	15	RCL 5	035, 45	5
RCL n	003,	4511	+	036,	40
STO 0	004,	440	RCL 8	037, 45	8
RCL 2	005,	$45 \quad 2$	-	038,	30
g 12 x	006,	4311	X $\geqslant \mathrm{y}$	039,	34
RCL 3	007,	453	PMT	040,	14
g 12-	008,	4312	R】	041,	33
RCL PV	009,	$45 \quad 13$	CHS	042,	16
-	010,	30	-	043,	30
RCL 1	011,	$45 \quad 1$	RCL 7	044, 45	7
PV	012,	13	\%	045,	25
RCL FV	013,	$45 \quad 15$	-	046,	30
0	014,	0	RCL PV	047, 45	13
FV	015,	15	FV	048,	15
PMT	016,	14	R/S	049,	31
R \downarrow	017,	33	RCL 0	050, 45	0
RCL 0	018,	450	g 12x	051, 43	11
g 12 x	019,	4311	RCL 1	052, 45	1
f AMORT	020,	4211	CHS	053,	16
x 2 y	021,	34	-	054,	30
R \downarrow	022,	33	RCL 6	055, 45	6
\div	023,	10	PV	056,	13
X $\mathrm{y}^{\text {y }}$	024,	34	i	057,	12
-	025,	30	RCL g (12*	058,45,43	12
RCL 4	026,	$45 \quad 4$	R/S	059,	31
X	027,	20	RCL 9	060, 45	9
RCL $\cdot 0$	028,45	$48 \quad 0$	g 12-	061, 43	12
\%	029,	25	FV	062,	15
=	030,	36	FV	063,	15
RCL PMT	031,	$45 \quad 14$	f P/R		

Section 13: Straight-Line Depreciation

ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
\div	001,		10
1	002,		1
2	003,		2
=	004,		36
STO 1	005,	44	1
X $\geqslant \mathrm{y}$	006,		34
STO 2	007,	44	2
--	008,		30
1	009,		1
$=$	010,		36
STO 0	011,	44	0
1	012,		1
	013,	42	23
	014,		20
RCL1	015,	45	1
$=$	016,		36
STO 3	017,	44	3
RCL PV	018,	45	13
-	019,		30
X 2 y	020,		34
PV	021,		13
RCL n	022,	45	11

ALG KEYSTROKES	DISPLAY	
-	023,	30
RCL 1	024,	$45 \quad 1$
n	025,	11
RCL 0	026,	450
$9 \mathrm{x}=0$	027,	$43 \quad 35$
g GTO 038	028,43	33,038
RCL2	029,	$45 \quad 2$
9 PSE	030,	$43 \quad 31$
RCL 0	031,	450
f SL	032,	$42 \quad 23$
R/S	033,	31
1	034,	1
STO +0	035,44	$40 \quad 0$
STO +2	036,44	$40 \quad 2$
g GTO 029	037,43,	33,029
RCL2	038,	$45 \quad 2$
g PSE	039,	$43 \quad 31$
RCL PV	040,	4513
-	041,	30
RCL FV	042,	$45 \quad 15$
$=$	043,	36
RCL 3	044,	$45 \quad 3$
9 GTO 033	045,43	33,033
f P/R		

Section 13: Declining-Balance Depreciation

ALG KEYSTROKES	DISPLAY		ALG KEYSTROKES	DISPLAY	
f P/R			PV	021,	13
f CLEAR PRGM	000,		RCL 0	022,	450
\div	001,	10	$9 \mathrm{x}=0$	023,	$43 \quad 35$
1	002,	1	g GTO 034	024,43	33,034
2	003,	2	RCL2	025,	$45 \quad 2$
=	004,	36	9 PSE	026,	4331
STO 1	005,	44	RCL) 0	027,	450
x 2 y	006,	34	f DB	028,	$42 \quad 25$
STO2	007,	$44 \quad 2$	R/S	029,	31
-	008,	30	1	030,	1
1	009,	1	STO +0	031,44	$40 \quad 0$
$=$	010,	36	STO +2	032,44	$40 \quad 2$
STO 0	011,	$44 \quad 0$	9] GTO 025	033,43	33,025
1	012,	1	RCL2	034,	$45 \quad 2$
f DB	013,	$42 \quad 25$	9 PSE	035,	4331
X	014,	20	RCL PV	036,	$45 \quad 13$
RCL 1	015,	45	-	037,	30
=	016,	36	RCL FV	038,	$45 \quad 15$
STO 3	017,	$44 \quad 3$	=	039,	36
RCL PV	018,	$45 \quad 13$	RCL 3	040,	$45 \quad 3$
-	019,	30	9 GTO 029	041,43	33,029
$x \geqslant y$	020,	34	f P/R		

Section 13: Sum-of-the-Years-Digits Depreciation

ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
\div	001,		10
1	002,		1
2	003,		2
$=$	004,		36
STO 1	005,	44	1
x $\geqslant \mathrm{y}$	006,		34
STO2	007,	44	2
-	008,		30
1	009,		1
$=$	010,		36
STO 0	011,	44	0
1	012,		1
f SOYD	013,	42	24
X	014,		20
RCL1	015,	45	1
$=$	016,		36
STO 3	017,	44	3
RCL PV	018,	45	13
-	019,		30
$x \geqslant y$	020,		34
PV	021,		13
RCL n	022,	45	11

ALG KEYSTROKES	DISPLAY	
-	023,	30
RCL1	024,	$45 \quad 1$
n	025,	11
RCL 0	026,	450
9 $\mathrm{x}=0$	027,	$43 \quad 35$
9 GTO 038	028,43	33,038
RCL 2	029,	$45 \quad 2$
g PSE	030,	$43 \quad 31$
RCL 0	031,	450
f SOYD	032,	$42 \quad 24$
R/S	033,	31
1	034,	1
STO +0	035,44	$40 \quad 0$
STO +2	036,44	$40 \quad 2$
g GTO 029	037,43	33,029
RCL 2	038,	$45 \quad 2$
9 PSE	039,	4331
RCL PV	040,	4513
-	041,	30
RCL FV	042,	$45 \quad 15$
=	043,	36
RCL 3	044,	$45 \quad 3$
g GTO 033	045,43	33,033
f P/R		

Section 13: Full- and Partial- Year Depreciation with Crossover

Full- and partial-Year Depreciation with Crossover (continued)

ALG KEYSTROKES	DISPLAY	
1	081,	1
STO -0	082,44	$30 \quad 0$
STO +2	083,44	402
STO +3	084,44	403
R \downarrow	085,	33
RCL 0	086,	45
	087,	1
g $\mathrm{x} \leq \mathrm{y}$	088,	$43 \quad 34$
g GTO 078	089,43,	33,078
R】	090,	33

ALG KEYSTROKES	DISPLAY		
R】	091,		33
RCL2	092,	45	2
9 PSE	093,	43	31
R \downarrow	094,		33
R/S	095,		31
RCL 6	096,	45	6
$9 \mathrm{x}=0$	097,	43	35
9 GTO 078	098,43,33,078		
g GTO 062	099,43, 33, 062		
f P/R			

Section 14: Lease with Advance Payments - Solving For Payment

ALG KEYSTROKES	DISPLAY		
f P/R	DISPLAY		
f CLEAR PRGM	000,		
9 END	001,	43	8
f CLEAR FIN	002,	42	34
RCL 0	003,	45	0
-	004,		30
RCL 1	005,	45	1
n	006,		11
RCL 2	007,	45	2
i	008,		12
1	009,		1

ALG KEYSTROKES	DISPLAY	
CHS	010,	16
PMT	011,	14
PV	012,	13
+	013,	40
RCL 1	014,	45
\div	015,	10
RCL 3	016,	$45 \quad 3$
X $\mathrm{X}^{\text {¢ }}$	017,	34
$=$	018,	36
f P/R		

Section 14: Lease with Advance Payments - Solving For Yield

ALG KEYSTROKES f P/R 1	DISPLAY		
f CLEAR PRGM	000,		
g END	001,	43	8
f CLEAR FIN	002,	42	34
RCL) 0	003,	45	0
-	004,		30
RCL1	005,	45	1
n	006,		11
RCL) 2	007,	45	2

ALG KEYSTROKES	DISPLAY	
PMT	008,	14
X	009,	20
RCL1	010, 45	1
-	011,	30
RCL 3	012, 45	3
PV	013,	13
i	014,	12
RCL 9 12 \div	015,45,43	12
f P/R		

Section 14: Advance Payments With Residual - Solving for Payment

ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
9 END	001,	43	8
f CLEAR FIN	002,	42	34
RCL) 0	003,	45	0
n	004,		11
RCL 1	005,	45	1
i	006,		12
RCL 3	007,	45	3
FV	008,		15
PV	009,		13
+	010,		40
RCL) 2	011,	45	2
$=$	012,		36
STO 5	013,	44	5
0	014,		0

ALG KEYSTROKES	DISPLAY		
FV	015,		15
RCL n	016,	45	11
-	017,		30
RCL 4	018,	45	4
n	019,		11
1	020,		1
CHS	021,		16
PMT	022,		14
PV	023,		13
+	024,		40
RCL 4	025,	45	4
\div	026,		10
RCL 5	027,	45	5
$x \geqslant y$	028,		34
$=$	029,		36
$f \mathrm{P} / \mathrm{R}$			

Section 15: Nominal Rate Converted to Effective Rate

ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
f CLEAR FIN	001,	42	34
n	002,		11
$x \geqslant y$	003,		34
\div	004,		10
$x \geqslant y$	005,		34
i	006,		12

ALG KEYSTROKES	DISPLAY	
1	007,	1
PV	008,	13
FV	009,	15
1	010,	1
n	011,	11
i	012,	12
$\mathrm{f} \mid \mathrm{P} / \mathrm{R}$		

Section 16: 30/360 Day Basis Bonds

ALG KEYSTROKES	DISPLAY		
f P/R			
f CLEAR PRGM	000,		
f CLEAR FIN	001,	42	34
9 BEG	002,	43	7
RCL) 2	003,	45	2
\div	004,		10
2	005,		2
PMT	006,		14
STO 6	007,	44	6
+	008,		40
RCL 5	009,	45	5
FV	010,		15
RCL 3	011,	45	3
RCL 4	012,	45	4
g \triangle DYS	013,	43	26
R \downarrow	014,		33
\div	015,		10
1	016,		1
8	017,		8
0	018,		0
n	019,		11
9 FRAC	020,	43	24
1	021,		1
-	022,		30
$x \geqslant y$	023,		34
X	024,		20
RCL 6	025,	45	6

ALG KEYSTROKES	DISPLAY		
=	026,		36
STO 6	027,	44	6
RCL 6	028,	45	6
RCL 0	029,	45	0
$9 \mathrm{x}=0$	030,	43	35
g GTO 041	031,43,33, 041		
\div	032,		10
2	033,		2
i	034,		12
PV	035,		13
CHS	036,		16
-	037,		30
X 2 y	038,		34
$=$	039,		36
9 GTO 000	040, 43, 33, 000		
R \downarrow	041,		33
+	042,		40
RCL 1	043,	45	1
$=$	044,		36
CHS	045,		16
PV	046,		13
i	047,		12
X	048,		20
2	049,		2
$=$	050,		36
f P/R			

Section 16: Annual Coupon Bonds

	DISPLAY		
$\begin{array}{\|l\|} \hline \text { ALG KEYSTROKES } \\ \hline f P / R \\ \hline \end{array}$			
f CLEAR PRGM	000,		
f CLEAR FIN	001,	42	34
g END	002,	43	8
RCL 0	003,	45	0
n	004,		11
RCL 2	005,	45	2
PMT	006,		14
RCL 1	007,	45	1
i	008,		12
RCL 3	009,	45	3
FV	010,		15
PV	011,		13
RCL 5	012,	45	5
-	013,		30
EEX	014,		26
6	015,		6
CHS	016,		16
$=$	017,		36
STO 6	018,	44	6
RCL5	019,	45	5

ALG KEYSTROKES	DISPLAY		
g \triangle DYS	020,	43	26
STO 7	021,	44	7
RCL 6	022,	45	6
RCL 4	023,	45	4
g \triangle DYS	024,	43	26
\div	025,		10
RCL7	026,	45	7
n	027,		11
0	028,		0
PMT	029,		14
FV	030,		15
RCL n	031,	45	11
X	032,		20
RCL 2	033,	45	2
CHS	034,		16
+	035,		40
R/S	036,		31
X 2 y	037,		34
$=$	038,		36
CHS	039,		16
f P/R			

Appendix B

Formulas Used

Real Estate

Wrap-Around Mortgage

$n_{l}=$ number of years remaining in original mortgage.
$P M T_{l}=$ yearly payment of original mortgage.
$P V_{I}=$ remaining balance of original mortgage.
$n_{2}=$ number of years in wrap-around mortgage.
$P M T_{2}$ = yearly payment of wrap-around mortgage.
$P V_{2}=$ total amount of wrap-around mortgage.
$r=$ interest rate of wrap-around mortgage as a decimal.
$F V=$ balloon payment.

$$
P V_{2}-P V_{l}=\frac{P M T_{2}\left[1-(1+r)^{-n_{2}}\right]}{r}-\frac{P M T_{l}\left[1-(1+r)^{-n_{l}}\right]}{r}+F V(1+r)^{-n_{2}}
$$

After-Tax Cash Flows

$A T C F_{k}=$ After-Tax Cash Flow for k th year.
Int $t_{k}=$ interest for $k t h$ year.
$D e p_{k}=$ depreciation for k th year.
$r=$ appropriate tax rate.
$N O I=$ Net Operating Income.
$A T C F_{k}=N O I(1-\mathrm{r})-12 \times P M T+r \times\left(\right.$ Int $_{k}+$ Dep $\left._{k}\right)$.

After-Tax Net Cash Proceeds of Resale

$C O=$ capital purchase.
$C P R=$ sales price - closing costs.
$r=$ marginal tax rate.
$c=$ capital gains tax rate.
$N C P R=C P R-$ remaining balance of mortgage.

$$
\begin{aligned}
A T N C P R & =N C P R-r \times(\text { Total Dep. }- \text { SL Dep. })-c \mathrm{x}(C P R-C O+\text { SL Dep. }) \\
& =N C P R-[c \mathrm{x}(C P R-C O)+r \times(\text { Total Dep. })+(c-r) \times(\text { SL Dep. })]
\end{aligned}
$$

Lending

Loans With a Constant Amount Paid Towards Principal

$B A L_{k}=$ remaining balance after time period k.
$C P M T=$ Constant payment to principal.
$B A L_{k}=\mathrm{PV}-(k \times C P M T)$
k th payment to interest $=i\left(B A L_{k}\right)=\left(P M T_{i}\right)_{k}$
k th total payment $=C P M T+\left(P M T_{i}\right)_{k}$

Add-On Interest Rate to APR

$r=$ add-on rate as a decimal.
$n=$ number of monthly payments.
$A P R=1200 i$, where i is the solution in the following equation:
$\frac{n}{1+\frac{n}{12} r}=\frac{1-(1+i)^{-n}}{i}$

Add-On to APR with Credit Life

$C L=$ credit life as decimal.
$A M T=$ loan amount.
$F C=$ finance charge.
$\left[\frac{1+\left(\frac{n}{12}\right) r}{1-\left(\frac{n}{12}\right) \times C L-\left(\frac{n}{12}\right)^{2} \times C L \times r}\right] \times A M T=G$
$\frac{G}{n}=P M T$
$\frac{G \times C L \times n}{12}=$ amount of credit life

$$
F C=(G-A M T-C L)
$$

Rule of 78's Rebate

$P V=$ finance charge.
$I_{k}=$ interest charged at month k.
$n=$ number of months in loan.

$$
I_{k}=\frac{2(n-k+1)}{n(n+1)} P V
$$

Rebate $=\frac{(n-k) I_{k}}{2}$
$B A L_{k}=(n-k) \times P M T-$ Rebate $_{k}$

Graduated Payment Mortgage

$n=$ total number of payments in the loan
$I=$ interest rate per payment period, as a decimal
$A=$ number of payments per year
$B=$ number of years that payments increase
$C=$ percentage increase in periodic payments (as a decimal)
$P M T_{1}=$ amount of the first payment
$P V=$ amount of the loan.

$$
P V=P M T_{1}\left\{\left[\frac{1-(1+I)^{-A}}{I}\right]\left[\frac{(1+Q)^{B}-1}{Q}\right]+\frac{(1+C)^{B}\left[\frac{1-(1+I)^{-(n-A B)}}{I}\right]}{(1+I)^{A B}}\right\}
$$

where:
$Q=\frac{1+C}{(1+I)^{4}}-1$

Skipped Payments

$A=$ number of payments per year.
$B=$ number of years.
$C=$ annual percentage rate as decimal.
$D=$ periodic payment amount.
$E=$ loan amount.
$K=$ number of last payment before payments close the first time.
$L=$ number of skipped payment.

$$
\begin{aligned}
D_{\mathrm{END}} & =\frac{E}{\left[1-\left(1+\frac{C}{A}\right)^{-A B}\right]} \times \frac{\left[\left(1+\frac{C}{A}\right)^{A}-1\right] \frac{C}{A}}{\left[\left(1+\frac{C}{A}\right)^{A}-\left(1+\frac{C}{A}\right)^{A-K}+\left(1+\frac{C}{A}\right)^{A-L-K}-1\right]} \\
D_{\mathrm{BEGIN}} & =\frac{D_{\mathrm{END}}}{1+\frac{C}{A}}
\end{aligned}
$$

Savings

Compounding Periods Different From Payment Periods

$C=$ number of compounding periods per year.
$P=$ number of payment periods per year.
$i=$ periodic interest rate, expressed as a percentage.
$r=i / 100$, periodic interest rate expressed as a decimal.
$i_{P M T}=\left((1+r / C)^{\mathrm{C/P}}-1\right) 100$

Investment Analysis

Lease vs. Purchase

$P M T_{p}=$ loan payment for purchase.
$P M T_{L}=$ lease payment.
$I_{n}=$ interest portion of $P M T_{p}$ for period n.
$D_{n}=$ depreciation for period n.
$M_{n}=$ maintenance for period n.
$T=$ marginal tax rate.
Net purchase advantage $=\sum_{n=1}^{k} \frac{\operatorname{cost} \text { of leasing }(n)-\operatorname{cost} \text { of owning }(n)}{(1+i)^{n}}$
Cost of leasing $(n)=(1-T) P M T_{L}$
Cost of owning $(n)=P M T_{p}-T\left(I_{n}+D_{n}\right)+(1-T) M_{n}$

Break-Even Analysis and Operating Leverage

$G P=$ Gross Profit.
$P=$ Price per unit.
$V=$ Variable costs per unit.
$F=$ Fixed costs.
$U=$ number of Units.
$O L=$ Operating Leverage.
$G P=U(P-V)-F$
$O L=\frac{U(P-V)}{U(P-V)-F}$

Profit and Loss Analysis

Net income $=(1-\operatorname{tax})($ net sales price - manufacturing expense - operating expense $)$
Net sales price $=$ list price $(1-$ discount rate $)$
where operating expense represents a percentage of net sales price.

Securities and Options

Discounted Notes

Price (given discount rate)

$B=$ number of days in year (annual basis).
$D R=$ discount rate (as a decimal).
$D S M=$ number of days from settlement date to maturity date.
$P=$ dollar price per $\$ 100$ per value.
$R V=$ redemption value per $\$ 100$ par value.
$P=[R V]-\left[D R \times R V \times \frac{D S M}{B}\right]$

Yield (given price)

$B=$ number of days in year (annual basis).
$D S M=$ number of days from settlement date to maturity date.
$P=$ dollar price per $\$ 100$ par value.
$R V=$ redemption value per $\$ 100$ par value.
$Y=$ annual yield of investment with security held to maturity (as a decimal).

$$
Y=\left[\frac{R V-P}{P}\right] \times\left[\frac{B}{D S M}\right]
$$

Black-Scholes Formula for Valuing European Options

$P=$ current asset price.
$r \%=$ risk-free rate (continuous, per time unit).
$s \%=$ volatility (continuous, per time unit).
$T=$ term of option (same time unit as $r \%$ and $s \%$).
$X=$ exercise price of option.
$N(z)=$ probability that a unit normal random variable is less than z.
Call Value $=P \times N\left(d_{1}\right)-Q \times N\left(d_{2}\right)$
Put Value $=$ Call Value $+Q-P$
where:

$$
\begin{aligned}
& d_{1}=L N(P / Q) / v+v / 2, d_{2}=d_{1}-v \\
& Q=X e^{(-T \times r \% / 100)}, v=s \% / 100 \times \sqrt{T}
\end{aligned}
$$

Forecasting

Simple Moving Average

$\bar{x}=$ moving average.
$m=$ number of elements in moving average.
$\bar{x}_{1}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{m}}{m}$
$\bar{x}_{2}=\frac{x_{2}+x_{3}+x_{4}+\ldots+x_{m-1}}{m}$
etc.

Seasonal Variation Factors Based on a Centered Moving Average

$\bar{x}_{\mathrm{c}}=$ centered moving average
$m=$ number of elements in the centered moving average.
$\bar{x}_{c}=\frac{\frac{x_{1}}{2}+\left(x_{2}+x_{3}+\ldots+x_{m}\right)+\frac{x_{m+1}}{2}}{m}$
$S V=$ Seasonal variation factor.
$x_{i}=$ value of the i th data point.
$\bar{x}_{i}=$ centered moving average of the i th data point.
$S V=\frac{x_{i}}{\bar{x}_{i}}$

Gompertz Curve Trend Analysis

$$
y=c a^{\left(b^{x}\right)}
$$

where x, y, a, b, and c are positive.

$$
\begin{aligned}
& b=\left(\frac{S_{3}-S_{2}}{S_{2}-S_{1}}\right)^{1 / n} \\
& c=\exp \left[\frac{1}{n}\left(\frac{S_{1} S_{3}-S_{2}^{2}}{S_{1}+S_{3}-2 S_{2}}\right)\right] \\
& a=\exp \left[\frac{(b-1)\left(S_{2}-S_{1}\right)}{b\left(b^{n}-1\right)^{2}}\right]
\end{aligned}
$$

where S_{1}, S_{2}, and S_{3} are:
$S_{1}=\sum_{i=1}^{n} \ln y_{i}=n \ln c+b(\ln a) \frac{b^{n}-1}{b-1}$
$S_{2}=\sum_{i=n+1}^{2 n} \ln y_{i}=n \ln c+b^{n+1}(\ln a) \frac{b^{n}-1}{b-1}$
$S_{3}=\sum_{i=2 n+1}^{3 n} \ln y_{i}=n \ln c+b^{2 n+1}(\ln a) \frac{b^{n}-1}{b-1}$
a, b and c are determined by solving the three equations above simultaneously.

Forecasting With Exponential Smoothing

$\alpha=$ smoothing constant $(0<\alpha<1)$
$X_{t}=$ actual current period usage
Smoothed average, $S_{t}=\alpha X_{t}+(1-\alpha) S_{t-1}$
Change, $C_{t}=S_{t}-S_{t-1}$
Trend, $T_{t}=\alpha X_{t}+(1-\alpha) T_{t-1}$
Current period expected usage, $D_{t}=S_{t}+\frac{(1-\alpha)}{\alpha} T_{t}$
Forecast of next period expected usage, $\hat{D}_{t+1}=S_{t}+\left(\frac{1}{\alpha}\right) T_{t}$
Error, $e_{t}=\hat{D}_{t}-X_{t}$
Cumulative error $=\sum_{t=1}^{m} e_{t}{ }^{2}$
Initial conditions : $S_{t-1}=X_{t-1}$ and $T_{t-1}=0$

Pricing Calculations

Markup and Margin Calculations

$M a=\operatorname{margin}(\%)$.
$M u=\operatorname{markup}(\%)$.
$S=$ selling price.
$C=$ cost.
$M a=100 \frac{S-C}{S}$
$M u=100 \frac{S-C}{C}$

$$
\begin{aligned}
& S=\frac{C}{1-\frac{M a}{100}} \\
& S=C\left(1+\frac{M u}{100}\right) \\
& C=S\left(1-\frac{M a}{100}\right) \\
& C=\frac{S}{1+\frac{M u}{100}} \\
& M a=\frac{M u}{1+\frac{M u}{100}} \\
& M u=\frac{M a}{1-\frac{M a}{100}}
\end{aligned}
$$

Calculations of List and Net Prices with Discounts

$$
L=\text { List price. }
$$

$N=$ Net price.
$D=\operatorname{Discount(\%)}$.

$$
D^{\prime}=1-\frac{D}{100}
$$

$$
L=\frac{N}{D_{1}^{\prime} \times D_{2}^{\prime} \times \ldots \times D_{x}^{\prime}}
$$

$$
D_{x}=100\left(1-\frac{N}{L\left(D_{1}^{\prime} \times D_{2}^{\prime} \times \ldots \times D_{x-1}^{\prime}\right)}\right)
$$

Statistics

Exponential Curve Fit

$$
\begin{aligned}
& y=A e^{B x} \\
& \ln y=\ln A+B x \\
& B=\frac{\sum x_{i} \ln y_{i}-\frac{1}{n}\left(\sum x_{i}\right)\left(\sum \ln y_{i}\right)}{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& A=\exp \left[\frac{\sum \ln y_{i}}{n}-B \frac{\sum x_{i}}{n}\right] \\
& \hat{y}=A e^{B x}
\end{aligned}
$$

Logarithmic Curve Fit

$$
\begin{aligned}
& y=A+B(\ln x) \\
& B=\frac{\sum y_{i} \ln x_{i}-\frac{1}{n}\left(\sum y_{i}\right)\left(\sum \ln x_{i}\right)}{\sum\left(\ln x_{i}\right)^{2}-\frac{1}{n}\left(\sum \ln x_{i}\right)^{2}} \\
& A=\frac{1}{n}\left(\sum y_{i}-B \sum \ln x_{i}\right) \\
& \hat{y}=A+B(\ln x)
\end{aligned}
$$

Power Curve Fit

$$
\begin{aligned}
& y=A x^{B} \quad(A>0) \\
& \ln y=\ln A+B(\ln x) \\
& B=\frac{\sum\left(\ln x_{i}\right)\left(\ln y_{i}\right)-\frac{1}{n}\left(\sum \ln x_{i}\right)\left(\sum \ln y_{i}\right)}{\sum\left(\ln x_{i}\right)^{2}-\frac{1}{n}\left(\sum \ln x_{i}\right)^{2}} \\
& A=\exp \left[\frac{\sum \ln y_{i}}{n}-B \frac{\sum \ln x_{i}}{n}\right] \\
& \hat{y}=A x^{B}
\end{aligned}
$$

Standard Error of the Mean

$$
S_{\bar{x}}=\frac{S_{x}}{\sqrt{n}} \quad S_{\bar{y}}=\frac{S_{y}}{\sqrt{n}}
$$

Mean, Standard Deviation, Standard Error for Grouped Data
mean, $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
standard deviation, $S_{x}=\sqrt{\frac{\sum f_{i} x_{i}{ }^{2}-\left(\sum f_{i}\right) \bar{x}^{2}}{\sum f_{i}-1}}$
standard error, $S_{\bar{x}}=\frac{S_{x}}{\sqrt{\sum f_{i}}}$

Personal Finance

Tax-Free Retirement Account (IRA) or Keogh Plan

$n=$ the number of years to retirement.
$i=$ the compounded annual interest.
$P M T=$ the total annual investment.
$F V=$ future value, after applicable taxes.
$r=$ the assumed tax rate on interest expressed as a decimal.
$w=$ the withdrawal tax rate expressed as a decimal.

For ordinary taxable investment:

$$
F V=\frac{P M T}{i(1-r)}[1+i(1-r)]\left\{[1+i(1-r)]^{n}-1\right\}
$$

For tax-free investment:

$$
F V=\frac{P M T \times(1-w)}{i}(1+i)\left[(1+i)^{n}-1\right]
$$

Stock Portfolio Evaluation and Analysis

$n=$ the number of issues held.
$P_{i}=$ the current market price / share of a stock.
$S_{i}=$ the number of shares of a stock held.
$\beta_{i}=$ the beta coefficient of an individual stock.
$T=$ the total present value of a portfolio.

Portfolio beta coefficient:

$$
\beta=\sum_{i=1}^{n} \frac{P_{i} S_{i} \beta_{i}}{T}
$$

Canadian Mortgages

$r=$ annual interest rate expressed as a decimal.
monthly factor $=\left[\left(1+\frac{r}{2}\right)^{1 / 6}-1\right] \times 100$

Miscellaneous

Learning Curve for Manufacturing Cost

$C_{\mathrm{n}}=$ Cost of the nth unit, $C_{I}=$ Cost of the first unit.
$n=$ number of units, $r=$ learning factor.
$k=\ln r / \ln 2, C_{n}=C_{1} n^{k}$
$\bar{C}_{i j}=$ the average cost of the i th through j th unit.
$\bar{C}_{i j}=\frac{C_{1}}{j-i}\left[\frac{j^{k+1}-i^{k+1}}{k+1}\right]$
This formula is only approximate and may give appreciable error at small i.

Queuing and Waiting Theory

$n=$ number of servers.
$\lambda=$ arrival rate of customers (Poisson input).
$\mu=$ service rate for each server (exponential service).
$\rho=$ Intensity factor $=\lambda / \mu$ ($\rho<n$ for valid results $)$.
$P_{0}=$ Probability that all servers are idle.
$P_{b}=$ Probability that all servers are busy.
$L_{q}=$ Average number of customers in queue.
$L=$ Average number of customers in the system (waiting and being served).
$T_{q}=$ Average waiting time in queue.
$T=$ Average total time through the system.
$P(t)=$ Probability of waiting longer than time t .
$P_{0}=\left[\sum_{k=0}^{n-1} \frac{\rho^{k}}{k!}+\frac{\rho^{n}}{n!\left(1-\frac{\rho}{n}\right)}\right]^{-1}$
$P_{b}=\frac{\rho^{n} P_{0}}{n!\left(1-\frac{\rho}{n}\right)}$
$L_{q}=\frac{\rho P_{b}}{n-\rho}, \quad L=L_{q}+\rho, \quad T=L / \lambda, \quad T_{q}=\frac{L_{q}}{\lambda}$
$P(t)=P_{b} e^{-(n \mu-\lambda) t}$

Subject Index

Page numbers in bold type indicate primary references: page numbers in regular type indicate secondary references.
A
About This Handbook 2
Add-On Interest Rate Converted to APR 25, 156
Add-On Rate Loan with Credit Life 27, 156
After-Tax Cash Flows 14, 155
After-Tax Net Cash Proceeds of Resale 19, 155
After-Tax Yield 65
Algebraic Versions of Programs from Part III of the Owner's Handbook 145
APR Converted to Add-On Interest Rate 26
B
Balance Remaining at End of Specified Period 132
Before-Tax Cash Flows 12
Before-Tax Reversions (Resale Proceeds) 13
Black-Scholes Formula for Valuing European Options 69, 159
Bonds: 30/360 Day Basis Bonds 153
Bonds: Annual Coupon Bonds 154
Break-Even Analysis 53, 158
CCalculations of List and Net prices With Discounts95, 162
Canadian Mortgages 131, 164
Chi-Square Statistics 109
Combinations 117
Compounding Periods Different From Payment Periods 46, 158
Covariance 114
Curve Fitting 98
D
Depreciation: Declining-Balance Depreciation 148
Depreciation: Full- and Partial- Year Depreciation with Crossover 150
Depreciation: Straight-Line Depreciation 147
Depreciation: Sum-of-the-Years-Digits Depreciation 149
Discounted Notes 67, 159
E
Effective Interest Rate (Yield) 132
Exponential Curve Fit 98, 162
F
Forecasting 74, 160
Forecasting with Exponential Smoothing 87, 161
Formulas Used 155
G
Gompertz Curve Trend Analysis 83, 160
Graduated Payment Mortgage 157, 32
H
Homeowners Monthly Payment Estimator 121
I
Income Property Cash Flow Analysis 12
Initial Deposit with Periodic Deposits 40
Interest Rebate - Rule of 78's 30, 156
Introduction 2
Investment Analysis 49, 158
L
Learning Curve for Manufacturing Cost 134, 165
Lease vs. Purchase 49, 158
Leasing: Advance Payments With Residual - Solving for Payment 152
Leasing: Lease with Advance Payments - Solving For Payment 151
Leasing: Lease with Advance Payments - Solving For Yield 151
Lending 24, 156
Loan With a Constant Amount Paid Towards Principal 24, 156
Logarithmic Curve Fit 102, 163
M
Markup and Margin Calculations 92, 161
Mean, Standard Deviation, Standard Error for Grouped Data 106, 163
Miscellaneous 134, 165
N
Normal Distribution 112
Number of Periodic Payments to Fully Amortize a Mortgage 132
Number of Periods to Deplete a Savings Account or to Reach a Specified Balance 41
0Operating Leverage59, 158
P
Periodic Deposits and Withdrawals 42
Periodic Payment Amount 131
Permutations 116
Personal Finance 121, 164
Portfolio beta coefficient 164
Power Curve Fit 104, 163
Presentation of Algebraic and RPN 2
Pricing Calculations 92, 161
Profit and Loss Analysis 61, 158
Q
Queuing and Waiting Theory 138, 165
R
Random Number Generator 119
Real Estate 7, 155
Real Estate: The Rent or Buy Decision 146
Refinancing 7
Rule of 78's Rebate 156
S
Savings 40, 158
Savings Account Compounded Daily 44, 160
Savings: Nominal Rate Converted to Effective Rate 152
Seasonal Variation Factors Based on a Centered Moving Average 160
Securities and Options 65, 159
Simple Moving Average 74, 160
Skipped Payments 38, 157
Standard Error of the Mean 105, 163
Statistics 98, 162
Stock Portfolio Evaluation and Analysis 127, 164
T-W
Tax-Free Individual Retirement (IRA) or Keogh Plan 124, 164
Using the RPN Programs on the HP-12C 3
Variable Rate Mortgages 36
Wrap-Around Mortgage 8, 155

[^0]: * Positive for cash received; negative for cash paid out.

[^1]: * Key in as a decimal (e.g., 5% as .05).

[^2]: * The yield is a reflection of the return on an investment.

[^3]: * At step 038 (ALG:039), $m=$ number of elements in the moving average, i.e. for a 5 element moving average line 038 (ALG:039) would be STO 5 and for a 12 element average line 38 (ALG:039) would be STO $\cdot 2$

[^4]: *Other seeds may be selected but the quotient of (seed x 10^{7}) divided by two or five must not be an integer. Also, it would be wise to statistically test other seeds before using them.

[^5]: * The beta coefficient is a measure of a stock variability (risk) compared to the market in general. Beta values for individual stocks can be acquired from brokers, investment publications or the local business library.

