الآلة الحاسبة العلمية + HP 300s+
دليل المستخدم
المعلومات الواردة في هذا الدليل عرضة للتغيير دون إشعار مسبق. الضمانات الوحيدة لمنتجات وخدمات HP تم عرضها ضمن بنود بيان الضمان الصريحة المرفق مع هذه المنتجات والخدمات. يجب عدم تفسير أي شيء هنا على أنه يشكل ضماناً إضافياً. تخلية شركة HP مسؤوليتها عن أية حذرات أو أخطاء فنية أو تحريرية وردت في هذا المستند.

الطبعة الأولى: سبتمبر 2012

رقم الجزء: 171-63563-171
جدول المحتويات

1. حول هذا الدليل
2. تهيئه الآلة الحاسبة
3. احتياطات السلامة
4. التخلص من الآلة الحاسبة
5. احتياطات أخرى
6. قبل استخدام الحاسبة
7. حول الشاشة
8. مؤشرات الشاشة
9. أوضاع العملية الحسابية و إعداد الحاسبة
10. أوضاع العملية الحسابية
11. تحميل وضع العملية الحسابية
12. تحديد صيغة الإدخال/الإخراج
13. تحديد وحدة الزاوية الإقليدية
14. تحديد عدد الأرقام المعروضة على الشاشة
15. أمثلة على أسباب نتائج العملية الحسابية
16. تحديد شكل الكسر
17. تحديد صيغة العرض الإحصائي
18. تحديد صيغة عرض العلامة العشرية
19. تهيئة وضع العملية الحسابية و الإعدادات الأخرى
20. إدخال التعبيرات والقيم
21. إدخال مقادير العمليات الحسابية باستخدام الشكل المعياري
22. إدخال دالة عامة
23. حذف علامة الضرب
24. القوس النهائي المعلق
25. عرض تعبير طويل
26. عدد رموز الإدخال (بوحدة البليت)
27. تصحيح عدد التعبيرات
28. حول أوضاع إدخال الإدراج والإحلال
29. تغيير الرمز أو الدالة التي أدخلتها لتوك
30. حذف رمز أو دالة
31. تصحيح عملية حسابية
32. إدراج قيمة إدخال في عملية حسابية
33. عرض موقع أحد الأخطاء
34. الإدخال بصيغة رياضية
35. الدوال والرموز الدائمة لإدخال الصيغة الحسابية
36. أمثلة على إدخال الصيغة الرياضية
37. إدخال قيمة في دالة.
عرض نتائج العملية الحسابية في شكل $\sqrt{2}$، ... الخ،

16. (صيغة الأعداد اللاكسرية)

العمليات الحسابية الأساسية (حساب)

19. العمليات الحسابية
19. عدد المنازل العشرية وعدد الأرقام الدالة
19. حذف قوس نهائي مغلق
20. العمليات الحسابية على الكسور
21. التبديل ما بين صيغتي الكسر غير الصحيح والكسر المختلط
21. الإنتقل ما بين صيغة الكسر الاعتيادي والصيغة العشرية
21. العمليات الحسابية (السنونية) بالدرجات والدقائق والثوانى
22. إدخال القيم السنونية
22. التحويل بين القيم السنونية والعشرية
23. استخدام العبارات المتعددة في العمليات الحسابية
24. استخدم ذاكرة تاريخ سجلات العملية الحسابية
24. وإعادة تشغيل (COMP)

24. استعادة محتويات ذاكرة سجلات العمليات الحسابية
25. خاصية إعادة التشغيل

26. استخدام ذاكرة الحاسبة
26. اسم الدالة
26. الوصف
27. ذاكرة الحل (الحل)
27. الذاكرة المستقلة (ذ)
28. المتغيرات (أ، ب، ج، ه، و، خ، ذ)
29. محمض محتويات جميع الذاريات

العمليات الحسابية للدوال
29. باي (π)، وقاعة الوغاريتمات الطبيعية
29. الدوال المثلثية والمثلثية العكسية
30. الدوال الزائدية والزائدية العكسية
30. تحويل قيمة الإدخال لوحدة الزاوية الافتراضية بالحاسبة
31. الدوال الأسية والوغاريتمية
31. الدوال المضاعفة ودوال الجذور المضاعفة
32. تحويل إحداثيات القطبي إلى إحداثيات القطبية
33. التحويل إلى الإحداثيات المتعادلة (متعادل)
34. القائم المشترك الأكبر والمضاعف المشترك الأصغر
34. حالة العدد الصحيح وحالة العدد الصحيح الأكبر
35. القسمة على خارج القسمة والباقي
36. حالة تبسيط كسر اعتيادي
37. استخدام الحاسبة
38. التحويل المتميّز
39. عدد صحيح عشوائي
39. الدوال الأخرى
المضروب (!).
العمليات الحسابية للقيمة المطلقة (مطلق).
الرقم العشوائي (# عشوائي).
التبديل (nPr) والتوفيق (nCr).
دالة التقریب (تقريب).
تحويل القيم المعرضة على الشاشة.
استخدام رمز هنديسة.
S-D معلومات تحويل.
S-D دعم التسبيقات لتحويل.
S-D أمثلة على تحويل.
تحويل القيم المعرضة على الشاشة.
عمليات الحسابية الإحصائية (إحصائي).
تحديد نوع العمليات الحسابية الإحصائية.
أنواع العمليات الحسابية الإحصائية.
إدخال عبوات البيانات المعرضة على شاشة المحرر الإحصائي.
شاشة تحويل الإحصاء.
خانة الفرد.
قواعد إدخال عبوات البيانات من شاشة تحويل الإحصاء.
تدابير الإدخال في شاشة التحويل الإحصائية.
التدابير الخاصة بتحويل عبوات البيانات.
الوين عبوات البيانات.
إدراج سطر واحد.
حذف جميع محتويات التحويل الإحصائي.
شاشة العمليات الحسابية الإحصائية.
استخدام القائمة الإحصائية.
عناصر القائمة الإحصائية.
أوامر العمليات الحسابية الإحصائية للمنغول المتفرد (1-VAR).
قائمة الفرعي للمتغير.
قائمة الفرعي للمتغير.
قائمة الفرعي للمتغير.
أوامر العدالة الإحصائية للحدود الفردية (A+Bx).
الوين عبوات البيانات من شاشة المحرر الإحصائي.
إنشاء جدول أرقام من دالة (جدول).
أنواع الدوال المدروسة.
قواعد قيم البداية والنهائية والقيمة السليمة.
شاشة جدول الأرقام.
تدابير وضع الجدول.
<table>
<thead>
<tr>
<th>صفحة</th>
<th>النص العربي</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>استخدام الأمر المحقّق</td>
</tr>
<tr>
<td>73</td>
<td>إدخال وتحرير</td>
</tr>
<tr>
<td>76</td>
<td>العمليات الحسابية النسبيّة (نصيّ)</td>
</tr>
<tr>
<td>76</td>
<td>إدخال وتحرير معاملات</td>
</tr>
<tr>
<td>78</td>
<td>شاشة الحل النسبي</td>
</tr>
<tr>
<td>80</td>
<td>المعلومات الفنية</td>
</tr>
<tr>
<td>80</td>
<td>ترتيب العمليّات</td>
</tr>
<tr>
<td>80</td>
<td>سعة الذاكرة المؤقتة</td>
</tr>
<tr>
<td>81</td>
<td>نطاق العمليّات الحسابيّة وعدّد الأرقام المستخدمة فيها ودقتها</td>
</tr>
<tr>
<td>81</td>
<td>نطاق العملية الحسابيّة ودقتها</td>
</tr>
<tr>
<td>81</td>
<td>نطاقات الإدخال والدقة الخاصة بالعمليّات الحسابيّة للدوال</td>
</tr>
<tr>
<td>84</td>
<td>رسائل الخطأ</td>
</tr>
<tr>
<td>84</td>
<td>عند ظهور رسالة خطأ</td>
</tr>
<tr>
<td>84</td>
<td>خطأ في العملية الحسابيّة</td>
</tr>
<tr>
<td>85</td>
<td>خطأ في الذاكرة المؤقتة</td>
</tr>
<tr>
<td>85</td>
<td>خطأ في التركيّب</td>
</tr>
<tr>
<td>85</td>
<td>خطأ عدم كفاية الذاكرة</td>
</tr>
<tr>
<td>85</td>
<td>قبل اقتراح الخلل الوظيفي للحاسبة</td>
</tr>
<tr>
<td>86</td>
<td>المراجع</td>
</tr>
<tr>
<td>86</td>
<td>متطلبات الطاقة واستبدال البطارية</td>
</tr>
<tr>
<td>86</td>
<td>استبدال البطارية</td>
</tr>
<tr>
<td>87</td>
<td>إيقاف التشغيل التلقائي</td>
</tr>
<tr>
<td>87</td>
<td>المواصفات</td>
</tr>
<tr>
<td>88</td>
<td>إشاعات تنظيمية</td>
</tr>
<tr>
<td>88</td>
<td>الإشاع التنظيمي للاتحاد الأوروبي</td>
</tr>
<tr>
<td>88</td>
<td>إشاع بانافي</td>
</tr>
<tr>
<td>88</td>
<td>إشاع كوري من الفئة B</td>
</tr>
<tr>
<td>89</td>
<td>مادة البيكركلورات - يتم التعامل معها بعناية خاصة</td>
</tr>
<tr>
<td>89</td>
<td>التخلص من مخازن الأجهزة التلفيّة بواسطة المستخدمين</td>
</tr>
<tr>
<td>89</td>
<td>في SOFTWARE المنتشرة الخاصة بالاتحاد الأوروبي</td>
</tr>
<tr>
<td>89</td>
<td>المواد الكيميائيّة</td>
</tr>
<tr>
<td>89</td>
<td>التنظيم الصيني لتفتيح المواد الخطرة (RoHS)</td>
</tr>
</tbody>
</table>
 حول هذا الدليل

تشير علامة [MATH] (حساب) إلى مثال يستخدم الشكل الحسابي، بينما تشير علامة [LINE] (خطي) للشكل الخطي. للحصول على تفاصيل حول الأنواع المختلفة من منافذ Input/Output، انظر "تحديد صيغة الإدخال/الخروج".

تشير أغطية المفاتيح القيم المدخلة لهذا المفتاح أو الوظيفة التي يقوم بها المفتاح.

على سبيل المثال:

أما إذا وضع المفتاح أو المفتاح متغيرة بالمفتاح الثاني لأداء الوظيفة البديلة للمفتاح الثاني. تتضح الوظيفة البديلة من خلال النص المطبوع على المفتاح.

ويمكن أن يشير ما يلي ما تعلني الألوان المختلفة لمفاتح الوظيفة البديلة.

<table>
<thead>
<tr>
<th>الوظيفة</th>
<th>اللون التالي:</th>
</tr>
</thead>
<tbody>
<tr>
<td>أزرق</td>
<td>الرموز المدخلة على الوظيفة البديلة.</td>
</tr>
</tbody>
</table>
| برتقالي | المفتاح المتغير أو الثابت أو الرمز المطبق.

نورات ما يلي فهما مثالًا واضحًا على كيفية تشغيل الوظيفة البديلة في دليل المستخدم.

على سبيل المثال:

بين المفتاح "(ج)" الوظيفة التي يمكن الوصول إليها من خلال تشغيل المفتاح (أ) قبله. يرجى الملاحظة أن ذلك لا يعد جزءًا من الوظيفة الفعلية للمفتاح تقوم بإجرائها.

يشير ما يلي كمثال واضح إلى كيفية تشغيل وظيفة المفتاح لتحديد أن قائمة المعلومات المعرضة على الشاشة موضحة في دليل المستخدم.

على سبيل المثال:

تتيح خاصية "Setup" (الإعداد) إلى عنصر القائمة المحدد بواسطة تشغيل المفتاح العددي (1).
تهيئة الآلة الحاسبية

قم بعمل الإجراء التالي عندما تري ثغيل الآلة الحاسبة والعودة إلى وضع الحساب وإعداد الإعدادات الإفتراضية الأولية. لاحظ أن هذا التشغيل يمسك كذلك كل البيانات الموجودة في ذاكرة الحساب الحالية.

لا بحث على معلومات حول أوضاع العمليات الحسابية وإعدادات الضبط، انظر

لحصول على مزيد من المعلومات حول الذاكرة، انظر استخدام ذاكرة الحاسبة.

الاحتياطات السلامة

قبل استخدام الآلة الحاسبية، يرجى قراءة الاحتياطات السلامة التالية بعناية. احتفظ بهذا الدليل في مكان يسهل الوصول إليه حتى يمكنك الرجوع إليه عند الحاجة.

الصور التمثيلية للشاشة والمفاتيح في هذا الدليل لأغراض توضيحية فقط وقد لا تكون مطابقة تمامًا لما تراه على الآلة الحاسبة.

تنبيه

يُشير هذا الرمز إلى وجود خطر الإصابة أو الضرار في حالة تجاهل احتياطات السلامة المحددة.

البطارية

احفظ البطارية بعيدًا عن متناول الأطفال. في حالة إبتلاع البطارية، اطلب المشورة الطبية العاجلة.

لا تشحن البطارية، أو تحاول تعطيلها، أو تقوم بإنشاء دائرة قصر بها، أو تقوم بتسخينها.

عند تركيب بطارية جديدة، وجهها بحيث تكون إشارة الموجب متجهة لأعلى.

استخدم البطارية المحددة في هذا الدليل فقط.
التخلص من الآلة الحاسة
لا تتخلص من هذه الآلة الحاسة في موعد إحرق القمامه. فقد تنفجر وتتسبب في حدوث إصابة أو نشوب حريق.

احتياطات أخرى
قبل استخدام هذه الآلة الحاسة للمرة الأولى، اضغط على المفتاح ٪.
قد تتفقد البطارية بعض الطاقة في الفترة ما بين وقت خروج الآلة الحاسة من المصنع ووقت شرائها. ومن ثم قد لا تدوم البطارية الأصلية لفترة طويلة مثل البطارية الجديدة.

حينما تكون طاقة البطارية ضعيفة للغاية، فقد نتصبح ذاكرة الآلة الحاسة تألقة أو تفقد تمامًا. لتجنب فقدان المعلومات الهامة، احتفظ بنسخة منها في مكان آخر.

تجنب تتخزين الآلة الحاسة أو استخدامها في ظروف جوية قاسية.
بترتب على انخفاض درجة الحرارة ببطء زمن استجابة الآلة الحاسة، مما يسبب في ظهور بيانات غير كاملة على الشاشة وقصر عمر البطارية. كذلك، لا تعرض الآلة الحاسة للشمس مباشرة أو تضعها بالقرب من جهاز تسخين. قد تسبب درجة الحرارة المرتفعة في بهوت لون الهيكل الخارجي أو تشوها أو تلف الدائرة الداخلية.

تجنب تخزين الآلة الحاسة أو استخدامها في أجواء رطبة أو في حالة ارتفاع نسبة الرطوبة أو زيادة الأذرية. يترتب على ذلك تلف الدائرة الداخلية.
لا تضغط الآلة الحاسة أو تعرضها لقوة مفرطة.
لا تثبي الآلة الحاسة أو تثبتها بأي طريقة أخرى.

ملاحظة: قد يترتب على حمل الآلة الحاسة في الجيب انتفاخها أو التواءها.
لا تستخدم قلمًا أو أي شيء آخر معين للضغط على مفاتيح الآلة الحاسة.
استخدم مسحكة ناعمة وحافة لتنظيف الآلة الحاسة. يؤدي فتح الإطار الخارجي للآلة الحاسة إلى إبطال الضمان.

إذا كانت الآلة الحاسة متسخة جداً، فيمكن استخدام منظف منزلي غير حمضي أو قادعي محفّز بالباء لنظفها. أغس المسحكة في المحلول واعرمها قبل وضعها على الآلة الحاسة. لا تستخدم البنزين أو عامل ترقق أو أي مذيب آخر متطاب لتنظيف الآلة الحاسة. قد يؤدي ذلك إلى تلف الإطار الخارجي والمفاتيح.

قبل استخدام الحاسة
استخدام الحافظة الواقية
1. قبل استخدام الآلة الحاسة، أصحب الوحدة خارج الحافظة الواقية كما هو موضح في الخطوة 1.
2. بعد استخدام الآلة الحاسبة، اسحب الوحدة خارج الغطاء كما هو موضح في الخطوة 2. لاستخدام الحافظة الواقية، أدفعها من أعلى الجانب الذي يحتوي على لوحة المفاتيح بالوحدة.

تشغيل وإيقاف التشغيل الطاقة

• اضغط على ON لتشغيل الحاسبة
• اضغط على (OFF) AC SHIFT لإيقاف تشغيل الحاسبة.

ضبط تباين الشاشة

(ضبط) (Setup) (SETUP) مكون بعرض شاشة ضبط التباين. استخدم مفاتيح الأسهم لضبط تباين الشاشة، ثم اضغط على AC.

CONTRAST LIGHT DARK []

كما يمكنك أيضًا ضبط التباين باستخدام [] و [] عند عرض قائمة الوضع (التي تظهر عند الضغط على NODE). هام: في حالة عدم تحسين ضبط تباين الشاشة لإمكانية القراءة من على الشاشة، فربما يكون بسبب انخفاض مستوى البطارية. أعد تركيب البطارية.
حول الشاشة

تتميز شاشة الحاسوب بأنها شاشة LCD 31-نقطة X 96-نقطة.

المقدار الجبري للمدخلات

نتيجة الحساب

مؤشرات الشاشة

عينة من الشاشة:

<table>
<thead>
<tr>
<th>المؤشر</th>
<th>يعني ما يلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>يتم التبديل بلوحة المفاتيح من خلال الضغط على المفتاح. لن يتم التبديل بلوحة المفاتيح وسيخفي هذا المؤشر عند الضغط على المفتاح.</td>
</tr>
<tr>
<td>A</td>
<td>يتم الدخول إلى وضع إدخال أليا بالضغط على المفتاح. سيتم الخروج من وضع إدخال أليا وسيخفي هذا المؤشر عند الضغط على المفتاح.</td>
</tr>
<tr>
<td>M</td>
<td>يوجد قيمة مخزنة في الذاكرة المستقلة.</td>
</tr>
<tr>
<td>STO</td>
<td>تعد الحاسة Jáهزة لإدخال اسم متغير لتحديد قيمة المتغير. يظهر المؤشر بعد الضغط على STO.</td>
</tr>
<tr>
<td>RCL</td>
<td>تعد الحاسة Jáهزة لإدخال اسم متغير لإستعادة قيمة المتغير. يظهر المؤشر بعد الضغط على RCL.</td>
</tr>
<tr>
<td>STAT</td>
<td>الحاسة في وضع إحصائي.</td>
</tr>
<tr>
<td>Fix</td>
<td>الزاوية الافتراضية هي بالدرجات.</td>
</tr>
<tr>
<td>SCI</td>
<td>الزاوية الافتراضية هي بالتقديرات الدائرية.</td>
</tr>
<tr>
<td>Math</td>
<td>الزاوية الافتراضية هي بالتقديرات الجزئية.</td>
</tr>
<tr>
<td>Disp</td>
<td>الرقم الثانوي من الأجزاء العشرية هو المستخدم.</td>
</tr>
<tr>
<td>ST</td>
<td>الرقم الثانوي من الرقم الدال هو المستخدم.</td>
</tr>
<tr>
<td>▲▼</td>
<td>يتم اختيار طريقة الحساب في شكل الإدخال/الإخراج.</td>
</tr>
<tr>
<td>▲▼</td>
<td>تكون بيانات ذاكرة تاريخ الحساب متاحة ويمكن إعادة تشغيلها، أو يوجد المزيد من البيانات أكثر/أقل من الشاشة القائمة.</td>
</tr>
<tr>
<td>▲▼</td>
<td>تعرض الشاشة حاليًا نتيجة متوسطة حساب القيم المتعددة العبارات.</td>
</tr>
</tbody>
</table>

هام: الإشارات التنظيمية للاختلاف الأوروبي وبالنسبة للحسابات المعقدة أو الحسابات الأخرى التي تستغرق وقتًا طويلاً لليقييم بها، ربما تعرض الشاشة المؤشرات المذكورة أعلاه فقط (بدون أي قيمة) وذلك أثناء إجراء الحسابات داخلية.
أوضاع العملية الحسابية و إعداد الحاسبة

أوضاع العلمية الحسابية

<table>
<thead>
<tr>
<th>حدد هذا الوضع:</th>
<th>حتى تؤد القيام بهذا النوع من العمليات:</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>الحسابات العامة</td>
</tr>
<tr>
<td>STAT (إحصائي)</td>
<td>الحسابات الإحصائية والإحصادية</td>
</tr>
<tr>
<td>EQN</td>
<td>المعادلات الخطية</td>
</tr>
<tr>
<td>TABLE</td>
<td>توليد جداول الأرقام بالاعتماد على المقدر الجبري.</td>
</tr>
<tr>
<td>VERIF</td>
<td>صواب/خطأ</td>
</tr>
<tr>
<td>PROP</td>
<td>القيمة "س"</td>
</tr>
</tbody>
</table>

تحديد وضع العملية الحسابية

1. اضغط على MODE لعرض قائمة الأوضاع.
2. اضغط على مفتاح الرقم الذي يتصل بالوضع الذي تود أن تحدده.
(إحصائي)، اضغط على 2.

تهيئة إعداد الحاسبة

بالضغط على MODE (ضبط) تظهر قائمة الضبط، والتي يمكنك استخدامها للتحكم في طريقة تنفيذ العمليات الحسابية ثم عرضها. يوجد بقائمة الضبط شاشتان، يمكنك الانتقال فيما بينهما باستخدام و .

تحديد صيغة الإدخال/الإخراج

<table>
<thead>
<tr>
<th>إجراء هذه العملية الرئيسي:</th>
</tr>
</thead>
<tbody>
<tr>
<td>بالنسبة لشكل الإدخال/الإخراج هذا:</td>
</tr>
<tr>
<td>(MthIO) 1 (حسبي د/خ)</td>
</tr>
<tr>
<td>(LineIO) 2 (خطي د/خ)</td>
</tr>
<tr>
<td>(حسبي Math)</td>
</tr>
</tbody>
</table>

انظر ضبط تباين الشاشة للحصول على طريقة استخدام CONT.
ينتج عن تطبيق التنسيق الحسابي ظهور الكسور، والأعداد اللاكسرية والمقادير الجبرية الأخرى ليتم عرضها كما هي مكتوبة على الورق.

ينتج عن التنسيق الخطي ظهور الكسور والمقادير الجبرية الأخرى ليتم عرضها في خط فردي.

الصيغة الخطية

الصيغة الرياضية

تحديد وحدة الزاوية الافتراضية

<table>
<thead>
<tr>
<th>الدراجات (درجة)</th>
<th>التقديرات الدائرية (تدير داير)</th>
<th>التدريجات الجزئية (تدير جزئي)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Deg) 3 MODE SHIFT</td>
<td>(Rad) 4 MODE SHIFT</td>
<td>(Gra) 5 MODE SHIFT</td>
</tr>
</tbody>
</table>

لتحديد هذا كوحدة زاوية الافتراضية:

\[\frac{\pi}{2} = 90^\circ \]

تحديد عدد الأرقام المعروضة على الشاشة

<table>
<thead>
<tr>
<th>إجراء هذه العملية الرئيسية:</th>
<th>لتحديد ذلك:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(العلمي (Fix) 6 MODE SHIFT</td>
<td>عدد المنزال العشرية</td>
</tr>
<tr>
<td>(العلمي (Sci) 7 MODE SHIFT</td>
<td>عدد الأرقام الدالة</td>
</tr>
<tr>
<td>(عادي) (Norm) 8 MODE SHIFT</td>
<td>مدى العرض الأسي</td>
</tr>
<tr>
<td>(عادي) (Norm1) 2 (عادي) (Norm2)</td>
<td></td>
</tr>
</tbody>
</table>

أمثلة لعرض نتائج العملية الحسابية

- (ثابت): يتحكم العدد الذي حدده (من 0 إلى 9) في عدد المنزال العشرية الخاصة بنتائج العمليات الحسابية المعروضة. يتم تقريب نتائج العمليات الحسابية لأقرب رقم صحيح محدد قبل أن يتم العرض.

على سبيل المثال: 100 ÷ 7 = 14.286 (Fix3) 14.29 (Fix2)

- (علمى): تتحكم القيمة التي حددها (من 0 إلى 10) في عدد الأرقام الدالة الخاصة بنتائج العمليات الحسابية المعروضة. يتم تقريب نتائج العمليات الحاسبية لأقرب رقم صحيح محدد قبل أن يتم العرض.

على سبيل المثال: 100 ÷ 7 = 14.286 (Sci3) 14.29 (Sci2)

\[\sqrt{3} + 2 = 4.15 \]

\[\frac{4}{5} + \frac{2}{3} = \frac{22}{15} \]
(Sci5) 10^{-1} \times 1.4286 = 7
(Sci4) 10^{-1} \times 1.429
(عادي): نختار إعداد من الإعدادين المتاحين (1 (عادي1), Norm (عادي2)) لتحديد المدى الذي يتم عرض النتائج خارجه في شكل لا أسي. ويتعرض عرض النتائج خارج المدى المحدد باستخدام شكل أسي.

\[\text{Norm 1: } 10^{-2} > |\chi|, \geq |\chi| 10^{10} \]
\[\text{Norm 2: } 10^{-9} > |\chi|, \geq |\chi| 10^{10} \]

(عادي1) (Norm1) 10^{-3} \times 5 = 200
(عادي1) (Norm2) 0.005

تحديد شكل الكسر

إجراء هذه العملية الرئيسية:

<table>
<thead>
<tr>
<th>لتحديد شكل الكسر:</th>
<th>مختلط</th>
<th>غير صحيح</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (ب/ج)</td>
<td>MODE</td>
<td>SHIFT</td>
</tr>
<tr>
<td>2 (ب/ج)</td>
<td>MODE</td>
<td>SHIFT</td>
</tr>
</tbody>
</table>

تحديد صيغة العرض الإحصائي

استخدم الإجراء التالي لتشغيل أو إيقاف تشغيل شاشة عمود التكرار (تكرار الخاصة بالمحرر الإحصائي لوضع STAT (إحصائي)).

<table>
<thead>
<tr>
<th>إجراء هذه العملية الرئيسية:</th>
<th>لتحديد ذلك:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT (إحصائي) 1</td>
<td>أظهر عمود التكرار (التكرار)</td>
</tr>
<tr>
<td>3 (تشغيل) (شنغيل) (ON)</td>
<td>FREQ</td>
</tr>
<tr>
<td>STAT (إحصائي) 2</td>
<td>FREQ (التكرار)</td>
</tr>
<tr>
<td>3 (تشغيل) (شنغيل) (ON)</td>
<td></td>
</tr>
</tbody>
</table>

تحديد صيغة عرض العلامة العشرية

إجراء هذه العملية الرئيسية:

<table>
<thead>
<tr>
<th>لتحديد شكل عرض العلامة العشرية:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Disp) (عرض) (نقطة) (Dot) 4</td>
</tr>
<tr>
<td>(Disp) (عرض) (فواصلة) (Comma) 4</td>
</tr>
</tbody>
</table>

يشمل النص البرمجي التالى تطبيق الإعداد الذي تقوم بهبنته على نتائج العمليات الحسابية فقط، ودائم ما يتم تمثيل العلامة العشرية بالقيادة (.)

تهيئة وضع العملية الحسابية و الإعدادات الأخرى

تنفيذ الإجراء التالي يعمل على تشغيل وضع العمليات الحسابية وإعدادات الضبط الأخرى كما هو موضح أدناه.

(Yes) (Setup) 1 (CLR) 9 (نعم) (إعداد) (Setup) (CLR) (نعم)
إدخال التعبيرات والقيم

إدخال مقدار العملية الحسابية باستخدام الشكل المعياري

لتتبث الحاسة إدخال مقدار العملية الحسابية بنفس الشكل المكتوبية به تمامًا. ضغط على المفتاح لتنفيذ الإجراء. تقدر الحاسة تلقائيًا تسلسل أواليات العمليات الحسابية المتعلقة بعملية الجمع والطرح والضرب والقسمة والأقواس.

على سبيل المثال: (4 + 5) - (3-2)x = 2

LINE

إدخال دالة عامة

عندما تقوم بإدخال أي دوال عامة من الموضوعة أدناه، فإنه يتم إدخال الدالة تلقائيًا برمز القوس المفتوح (()), ثم إدخال المتغير وأقواس الإغلاق ()).

\[\sinh^{-1}(t), \tanh(t), \cosh(t), \sinh^{-1}(t), \tan^{-1}(t), \cos^{-1}(t), \sin(t), 10^x, e^x, \ln(x), \log(x), \tanh^{-1}(t), \cosh^{-1}(t), \text{IntG}(x), \text{Int}(x), \text{LCM}(x), \text{GCD}(x), \text{Rnd}(x), \text{Rec}(x), \text{Pol}(x), \text{Abs}(x), \sqrt{x}, \sqrt[3]{x} \]

على سبيل المثال: sin(30) = sin(30)

LINE

بالضغط على يتم إدخال sin

لاحظ أن إجراء الإدخال يختلف إذا أردت استخدام الصيغة الرياضية. للحصول على مزيد من المعلومات، انظر الإدخال بالصيغة الرياضية.
حذف علامة الضرب

يمكن حذف علامة الضرب (×) بأي طريقة من الطرق التالية:
- قبل فتح الأقواس (4 + 5)×(\(\frac{1}{2}\)), الإخ...
- قبل الدالة العامة: (30)×2, الإخ...
- قبل اسم المتغير، أو العدد الثابت، أو العدد العشوني: A×20, الإخ...

القوس النهائي المغلق

يمكن حذف قوس أو أكثر من أقواس الإغلاق التي تأتي في نهاية العملية الحسابية قبل الضغط على المفتاح (\(\equiv\)). للحصول على تفاصيل، انظر حذف أقواس الإغلاق الختامية.

عرض تعبير طويل

يمكن للشاشة أن تعرض ما يصل إلى 15 رقمًا في المرة الواحدة. إدخال 16 رقم يتسبب في إزاحة المقدار الجبري ناحية اليسار. يظهر المؤشر ▼ ناحية اليسار من المقدار الجبري، ووضحًا أنه يظهر في الناحية اليسرى من الشاشة.

المقدار الجبري للمدخلات: 1111 + 2222 + 3333 + 4444

النسبة المعروضة:

\[\begin{align*}
\text{Math} & \quad \text{غير محدد}
\end{align*}\]

• في حالة عرض المؤشر ▼ على الشاشة، يمكن الانتقال ناحية اليسار لعرض الرموز المخفية من خلال الضغط على المفتاح (\(\equiv\))، وسيتسبب ذلك في تغيير المؤشر ▼ ناحية اليمين من المقدار الجبري. استخدم المفتاح (\(\equiv\)) للرجوع للخلف.

عدد رموز الإدخال (وحدة البایت)

يمكن إدخال ما يصل إلى 99 بایت من البيانات الخاصة بالمقدار الجبري الفردٌ.

• تستخدم كل عملية رئيسية بایت واحد فقط. والدالة التي تتطلب عمليتين رئيسيتين لإدخال (٢٠) على سبيل المثال (\(\sin^{-1}\)) تستخدم كذلك بایت واحد. يرجى ملاحظة أنه عند إدخال الدوال المتعلقة بالصيغة الحسابية، فإنه يستخدم ما يزيد على بایت واحد. للحصول على مزيد من المعلومات، انظر الإدخال بالصيغة الرياضية.

• يظهر على الشاشة مؤشر الإدخال بشكل طبيعي كخط مستقيم مضيء رأسي (١) أو أفقي (٢) عندما يوجد ١٠ بایت أو أقل للإدخال المتبقِي في التقدير الجبري الحالي، فإن المؤشر يشير إلى (١) وفي حالة ظهر المؤشر (٢)، أكمل المقدار الجبري عند علامة مناسبة وفق باختبار النتيجة.
تصحيح أحد التعبيرات

يشرح هذا الاسم طريقة تصحيح المقدار الجبري على النحو الذي تدخله إياه. يعتمد الإجراء الذي ينبغي أن تستخدمه على ما إذا أدخلت أو استبدلت القيمة المحددة في وضع الإدخال.

حول أوضاع إدخال الإدراج والإحلال

في وضع الإدخال، يتم إزالة الرموز المعروضة ناحية اليسار لإجراء مساحة عندما تستبدل القيمة التي أدخلتها الرمز الموجود في موضع المؤشر الحالي. يتم إدخال وضع الإدخال الافتراضي للتشغيل. يمكنك عمل تغيير في وضع الاستدال بالحد المطلوب.

• يعد المؤشر (​) عبارة عن خط مضيء رأسي عند تحديد وضع الإدخال. يعد المؤشر (​) عبارة عن خط مضيء أفقي عند تحديد وضع الاستدال.

• يعد وضع الإدراج هو القيمة الافتراضية الأولى المتعلقة بإدخال الصيغة الخطية. كما يمكن التبديل إلى وضع الاستدال بالضغط على (INS) (إدخال) في الصيغة الرياضية. يمكن استخدام وضع الإدخال فقط. بالضغط على (INS) (إدخال) عندما تكون الصيغة الرياضية محددة، فإنه لا يتم التبديل إلى وضع الاستدال. للحصول على المزيد من المعلومات، انظر إدراج قيمة في دالة

• تقوم الحاسبة لتقاليًا بالتغيير إلى وضع الإدخال عندما تقوم بتغيير صيغة الإدخال/الإخلاء من الوضع الخارجية إلى الوضع الحسابي.

تخزين الرمز أو الدالة التي أدخلتها لتوك

مثال: لتصحيح المقدار الجبري 369 × 13 ليصبح 369 × 12.

369×12

| 3 | 1 | × | 9 | 6 | 3 |

369×11

DEL

369×12

| 2 | 0 |
حذف رمز أو دالة
على سبيل المثال: لتصحيح المقدار الجبري 369 × 12 ليصبح 369 × 12.

وضع الإدخال:

\[
\begin{array}{c}
369 \times 12 \\
369 \times 12 \\
369 \times 12 \\
\end{array}
\]

تصحيح عملية حسابية
على سبيل المثال: لتصحيح الزاوية (60) (\(\cos(60)\)) (جا (60))، (\(\sin(60)\)).

وضع الإدخال:

\[
\begin{array}{c}
\cos(60) \\
60) \\
\sin(60) \\
\end{array}
\]
وضع الاستبدال:

إدراج قيمة إدخال في عملية حسابية

استخدم دومًا وضع الإدخال مع هذه العملية. استخدم ل訪れ المؤشر إلى المكان الذي تريد إدخال القيمة الجديدة فيه.

عرض موقع أحد الأخطاء

في حالة ظهور رسالة الخطأ (مثل Math ERROR "خطأ حسابي" أو ERROR "خطأ في بناء الجملة") عند الضغط على، أو الضغط على ، فإن ذلك يعرض جزء من العملية الحسابية التي وقع بها الخطأ بالمؤشر في مكان الخطأ.

على سبيل المثال: عند تقوم بإدخال $14 = 2 \times 10 + 14$

استخدم وضع الإدخال مع العملية التالية.

```
Math ERROR
[AC] : Cancel
[1] [4] ÷ [0] : Goto

14 ÷ 0 × 2
```

اضغط على أو .

يتسبب ذلك في رفع الخطأ.

```
14 ÷ 10 × 2
```

```
14 ÷ 10 × 2
```

```
14 ÷ 10 × 2
```

```
```

كما يمكنك مسح الشاشة بالضغط على AC لمسح العملية الحسابية.
الإدخال بصيغة رياضية

عند إدخال بيانات الصيغة الحسابية، يمكن إدخال الكسور وعرضها وكذلك نفس الأمر مع الدوال باستخدام الصيغة ذاتها بمجرد ظهورهم في الكتاب الإرشادي.

هم:
- من الممكن أن تسبب أنواع معينة من المقادير الجبرية في ارتفاع الصيغة الحسابية بحيث يصبح أكبر من أن يحتويها سطر عرض واحد، أقصى ارتفاع مسموح به.
- تخفي ارتفاع العملية الحسابية الحد المسموح به.

يمكن القيام بعمل تداخل بين الدوال والأقواس، ومع ذلك، إذا فُقدت بعمل تداخل للكثير من الدوال وأو الأقواس حتى يتم الوصول إلى الحد المسموح به الذي لا يمكن إدخال قيمة بعده، فإننا تقسيم العملية الحسابية لأن جزء عدد واحتراب كل جزء منها بشكل منفصل.

الدوال والرموز الداعمة لإدخال الصيغة الحسابية

يُظهر عمود (البيت) عدد وحدات البيات بالذاكرة المستخدمة في عملية الإدخال.

<table>
<thead>
<tr>
<th>الدالة / الرمز</th>
<th>العملية الرئيسية</th>
<th>الرايتي</th>
</tr>
</thead>
<tbody>
<tr>
<td>كسر غير صحيح</td>
<td>()</td>
<td>9</td>
</tr>
<tr>
<td>الكسر المختلط</td>
<td>()</td>
<td>13</td>
</tr>
<tr>
<td>لوغ (أ،ب) (لوغاريتم)</td>
<td>(log)</td>
<td>6</td>
</tr>
<tr>
<td>(10^x)</td>
<td>(log)</td>
<td>4</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(log)</td>
<td>4</td>
</tr>
<tr>
<td>الجذر التربيعي</td>
<td>()</td>
<td>4</td>
</tr>
<tr>
<td>الجذر التكعيبي</td>
<td>()</td>
<td>9</td>
</tr>
<tr>
<td>تربيعي، تكعيبي</td>
<td>()</td>
<td>4</td>
</tr>
<tr>
<td>عكسية</td>
<td>()</td>
<td>5</td>
</tr>
<tr>
<td>مرفوع إلى قوة</td>
<td>()</td>
<td>4</td>
</tr>
<tr>
<td>المرفوع لقوة</td>
<td>()</td>
<td>9</td>
</tr>
<tr>
<td>القيمة المطلقة</td>
<td>(Abs)</td>
<td>4</td>
</tr>
<tr>
<td>الأقواس</td>
<td>()</td>
<td>1</td>
</tr>
</tbody>
</table>

أمثلة على إدخال الصيغة الرياضية

إجراءات العمليات التالية بالصيغة الرياضية المحددة.

يرجى مراعاة موقع المؤشر وجمعه على الشاشة عند إدخال القيم بالصيغة الرياضية.

14
المثال الأول: لإدخال القيمة $2^3 + 1$

المثال الثاني: لإدخال القيمة $1 + \sqrt{2} + 3$

المثال الثالث: لإدخال القيمة $(1 + \frac{3}{2})^2 \times 2$

على الضغط، فإن جزءاً من التعبير الذي أدخلته يتم تجزئته كما هو موضح في لقطة الشاشة في المثال 3، لعرض المقدار الجبري للإدخال بأكمله مرة أخرى، اضغط على AC، ثم اضغط على AC

إدخال قيمة في دالة

عند استخدام الصيغة الحسابية، يمكن إدراج جزء من المقدار الجبري (كقيمة أو مقدار جبري بين الأقواس...إلخ) في الدالة.

على سبيل المثال: لإدراج المقدار الجبري داخل الأقواس الخاصة $\sqrt{1 + (2 + 3) + 4}$ في الدالة $\sqrt{}$.

وضع المؤشر قبل $(3+2)$
هنا يتغير شكل المؤشر كما هو موضح.

وعمل ذلك على إدراج المقدار الجبري داخل الأقواس في الدالة √.

• إذا كان المؤشر إلى يسار قيمة أو كسر (بدلاً من الأقواس المفتوحة)، فإن هذه القيمة أو هذا الكسر سيدخل في الدالة المحددة هنا.
• إذا كان المؤشر إلى يسار الدالة، فإن هذا الدالة ستدخل في الدالة المحددة هنا.
• الأمثلة التالية توضح الدوال الأخرى التي يمكن استخدامها في الإجراء السابق، والعمليات الأساسية المطلوبة استخدامها.

المقدار الجبري الأصلي: 1 + (3 + 2)/4

<table>
<thead>
<tr>
<th>Function</th>
<th>Key Operation</th>
<th>Resulting Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction</td>
<td></td>
<td>1 + (\frac{(2+3)}{4})</td>
</tr>
<tr>
<td>log(a, b)</td>
<td>log</td>
<td>1 + logₐ((2+3))/4</td>
</tr>
<tr>
<td>Power Root</td>
<td>(SHIFT) (\sqrt[\alpha]{\beta})</td>
<td>1 + (\sqrt[\alpha]{(2+3)+4})</td>
</tr>
</tbody>
</table>

كما يمكن إدخال قيم في الدوال التالية.

\(\text{SHIFT} \log (10^a), \text{SHIFT} \ln (e^a), \sqrt[\alpha]{\beta}, x^a, \text{SHIFT} \sqrt[\alpha]{\beta} (\frac{\pi}{2}), \text{Abs} \)

عرض نتائج العملية الحسابية في شكل 2√π، … إلخ، (صيغة الأعداد اللاكسرية)

يمكنك تحديد صيغة الإدخال الإخراج، ويمكن تحديد ما إذا كان ينبغي عرض النتائج العملية الحسابية في صيغة تشتمل على مقدار جبري مثل √π و صيغة الأعداد اللاكسرية، أو عرضهم في صورة قيمة عشري بعد استخدام صيغة الأعداد اللاكسرية.

• الضغط على و يعرض النتيجة في صيغة الأعداد اللاكسرية.
• الضغط على و يعرض النتيجة في صيغة الأعداد اللاكسرية.

في الأمثلة التالية، (1) يوضح النتيجة عند الضغط على , بينما يوضح (2) النتيجة عند الضغط على .
ملاحظة: عند تحديد π لـ lineLO، يتم دومًا عرض نتائج
العمليات الحسابية باستخدام القيمة العشرية (لا يوجد صيغة للأعداد اللاإكسيرية) بغض
النظر عم إذا تم الضغط على أو أو

ملاحظة: θ أو π أو π، تؤكل عمدة عرض صيغة (الصيغة التي تتضمن
لاكسير) هي نفس الطراف الخاص بتحويل S-D. للحصول على تفاصيل,
S-D انظر استخدام تحويل

المثال الأول: \(\sqrt{2} + \sqrt{8} = 3 \)

المثال الثاني: \(\frac{\sqrt{3}}{2} = \sin(60) \)

المثال الثالث: \(\pi \frac{1}{6} = \sin^{-1}(0.5) \)

للحصول على تفاصيل بشأن العمليات الحسابية باستخدام π، انظر: العمليات
الحسابية للدوال

العمليات الحسابية التالية هي عمليات حسابية خاصة بنتائج الصيغة π (هذه
الصيغة التي تتضمن π). داخل عرض الأعداد اللاإكسيرية) التي يمكن عرضها.
أ - العمليات الحسابية للقيم ذات رمز الجذر التربيعي (π، π)، x^1، x^2، x^3
ب- نتائج الصيغة π. يمكن تحقيقها عن طريق الدالة المثلثية سوى في الحالات
الثانية فقط.

في جميع الحالات، يمكن عرض نتائج العمليات الحسابية في صيغة عشرية.
العلاقة الحسابية لصيغة √

<table>
<thead>
<tr>
<th>مدى قيمة الإدخال النتيجة</th>
<th>إنزال قيمة الإزاوية</th>
<th>إعداد وحدة الإزاوية</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$	x	< 9 \times 10^9$	15°	Deg
$	x	= 20\pi$	$\frac{\pi}{12}$	Rad
$	x	< 10000$	$\frac{50}{3}$	Gra

مدى العملية الحسابية لصيغة √

- بمد ما يلي صيغة البيانات الداخلية ومدى القيم المطبقة للنتائج المأخوذة عن طريق استخدم $\sqrt{\cdot}$

\[
\frac{b}{c} \pm \frac{d}{e} = \frac{a \cdot f}{c \cdot f}
\]

- وهو هذا الاسم، يمكن أن تكون القيم المعروضة بالفعل أكثر من النطاق الموضح بال волн. على سبيل المثال:

\[
11 \sqrt{2} + 10 \sqrt{3} = \frac{\sqrt{2}}{10} + \frac{\sqrt{3}}{11}
\]

يمكن أن تحتوي النتائج التي تشمل على رمز الجذر التربيعية على حدين (حيث يحسب الجذر الصحيح على أنه حد)، وفي حالة احتواء الناتج على ثلاثة حدود أو أكثر، فسنتم عرضها في صيغة عشية، ويتكون الناتج من ثلاث حدود أو أكثر، فسنتم عرضها في صيغة عشية.

مثال:

\[
\sqrt[3]{2} + \sqrt[3]{3} + \sqrt[3]{2} = 5.595754113
\]

حتى في حالة احتواء الناتج على ثلاثة حدود أو أكثر، فسنتم عرضها في صيغة عشية.

مثال:

\[
\sqrt[3]{2 - 4} = 8.898979486
\]
العمليات الحسابية الأساسية (حاسب)

يوضح هذا القسم كيفية إجراء العمليات الحسابية على الكسور والنسب المئوية فضلاً عن العمليات الحسابية الستونية.

يتم إجراء كل العمليات الحسابية في هذا القسم في وضع COMP (حساب) (1 MODE).

العمليات الحسابية

استخدم المفاتيح + و - و × و ÷ لإجراء العمليات الحسابية.

على سبيل المثال: 7 × 8 - 4 × 5 = 36

تقدر الحاسبة تلقائيًا تسلسل أولويات العمليات الحسابية. للحصول على مزيد من المعلومات، انظر تسلسل أولويات العمليات الحسابية.

عدد المنازل العشرية وعدد الأرقام الدالة

يمكن تحديد عدد ثابت للمنازل العشرية والأرقام الدالة الخاصة بنتائج العملية الحسابية.

على سبيل المثال: 6 = 1 + 6

الإعدادات الافتراضية الأولية (عادي1)

3 منازل عشرية (Fix3) (ثابت3)

3 أرقام دالة (Sci3) (علمي3)

للمزيد من المعلومات، انظر تحديد عدد الأرقام المعروضة على الشاشة.

حذف قوس نهائي مغلق

يمكنك حذف أي من أقواس الإغلاق () التي تسبق عملية مفتاح مباشرة عند نهاية العملية الحسابية في حالة استخدام الصيغة الخطية فقط.
العمليات الحسابية على الكسور

كيف ينبغي عليك إدخال الكسور باستخدام صيغة الإدخال/الإخراج المحددة حالياً.

<table>
<thead>
<tr>
<th>Math Format</th>
<th>Improper Fraction</th>
<th>Mixed Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Format:</td>
<td>(\frac{7}{3})</td>
<td>(2 \frac{1}{3})</td>
</tr>
<tr>
<td></td>
<td>Numerator</td>
<td>Denominator</td>
</tr>
</tbody>
</table>

- تعرض الإعدادات الاقتراعية الأولية الكسور في صيغة كسور غير دقيقة.
- تُختصر نتائج العمليات الحسابية على الكسور دوماً قبل عرضها.

على سبيل المثال:

\(\frac{7}{6} = \frac{1}{2} + \frac{2}{3} \)

يمكن إدخال الكسور المختلطة فقط عندما تكون محددة لصيغة الكسر.

في وضع الكسور (الحساب)، اضغط على MATH للإدخال الكسور المختلفة.

في حالة تجاوز إجمالى عدد الأرقام المستخدمة في الكسر المختلط (بما في ذلك الأعداد الصحيحة والبسط والمقام ورموز الفواصل) 10 أرقام، تعرض القيمة تلقائياً في صيغة عشرية.

يتم عرض نتائج العملية الحسابية الذي يتضمن القيم الكسرية والعشرية في صيغة عشرية.
التبديل ما بين صيغتي الكسر غير الصحيح والكسر المختلط

يتبع الضغط على $a (\frac{b}{c} \Rightarrow \text{S-D} \text{ SHIFT})$ مختلط وصيغة الكسر غير الصحيح.

الانتقال ما بين صيغة الكسر الاعتيادي والصيغة العشرية

<table>
<thead>
<tr>
<th>3 ÷ 2</th>
<th>S-D</th>
<th>3 ÷ 2</th>
<th>S-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td></td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>

- تعتمد صيغة الكسر على إعداد صيغة الكسر المحدد حالياً (كسر غير صحيح أو كسر مختلط).
- يتضمن التبديل من الصيغة العشرية إلى الصيغة الكسرية المختلطة في حالة تجاوز إجمالي عدد الأرقام المستخدمة في الكسر المختلط (بما في ذلك الأعداد الصحيحة والبسط والمقام) رقمما 10 أرقام.
- للحصول على تفاصيل حول مفتاح S-D، انظر استخدام تحويل.

العمليات الحسابية بالنسبة المنوية

إدخال قيمة وضغط على $(\% \text{ SHIFT})$ ببيان تحويل قيمة الإدخال إلى نسبة منوية.

على سبيل المثال: $2 = 0.02 \text{ (} \frac{2}{100} \text{)}$.

\[
2 \% \\
\text{LINE}
\]

\[
\left(\frac{20}{100} \times 150 \right) 30 = 20 \% \times 150 \\
\text{LINE}
\]

\[
150 \times 20 \% \\
\text{LINE}
\]

\[
30 \\
\text{LINE}
\]

احسب النسبة المنوية التي تمثلها القيمة 660 من القيمة 880 (75%).

\[
660 \div 880 \% \\
\text{LINE}
\]

\[
75 \\
\text{LINE}
\]
قم بزيادة القيمة 2500 بنسبة 15%. (2875)

\[
\begin{align*}
2500 + 2500 \times 15% &= 2875 \\
\end{align*}
\]

قم بخفض القيمة 3500 بنسبة 25%. (2625)

\[
\begin{align*}
3500 - 3500 \times 25% &= 2625 \\
\end{align*}
\]

قم بخفض القيمة 168، و98، و734 بنسبة 80% (20%).

\[
\begin{align*}
168 + 98 + 734 &= 1000 \\
\end{align*}
\]

فما هي نسبة الزيادة في الوزن؟ (160%)

\[
\begin{align*}
\frac{(500+300)}{500} \times 160 &= 160 \\
\end{align*}
\]

ما قدر التغير في النسبة المئوية عند زيادة القيمة من 40 إلى 46؟ أو إلى 48؟ (20%، 15%)

\[
\begin{align*}
\frac{(46-40)}{40} &= 15 \\
\frac{(48-40)}{40} &= 20 \\
\end{align*}
\]
العمليات الحسابية (الستونية) بالدرجات والدقائق والثواني

يمكنك إجراء العمليات الحسابية باستخدام القيم السtonية، كما تستطيع التحويل من الصيغة السtonية إلى الصيغة العشرية والعكس.

إدخال القيم السTONية

فيما يلي الترتيب المناسب لإدخال القيمة السTONية:

{درجات} {دقائق} {ثواني}

على سبيل المثال: أدخل 2° 0´ 30´

يرجى مراعاة ضرورة إدخال قيمة للدرجات والدقائق حتى وإن كانت صفرًا.

العمليات الحسابية السTONية

 عند إجراء الأنواع التالية من العمليات الحسابية السTONية ستحصل على ناتج سTONي.

- جمع أو طرح قيمتين سTONيتين.
- قملا أو ضرب قيمة سTONية وقيمة عشرية.

مثال: 2° 20´ 30´ + 39° 30´ = 3° 00´ 00´

التحويل بين القيم السTONية والعشرية

يمكن التبديل بين السTONية والعشرية بالضغط على أثناء عرض ناتج العملية الحسابية.

تحويل قيمة 2.255 إلى ما يعادلها بالصيغة السTONية.

الناتج: 2° 15´ 18´
استخدام العبارات المتعددة في العمليات الحسابية

للربط بين مقدارين جبريين أو أكثر وتنفيذهم بسلسل يبدأ من اليسار إلى اليمين عندما تقوم بالضغط على \(\boxed{=} \)

على سبيل المثال: لإنشاء قيمة متعددة العبارات لإجراء العمليتين الحسابيتين التاليةين:

\[3 \times 3 + 3 \]

بالضغط على مشغل (COMP)

تشغيل

تحفظ ذاكرة سجلات العمليات الحسابية يسجل لكل تعبير حسابي تم إدخاله واستخدامه إلى جانب نتائجه.

يمكن استخدام ذاكرة تاريخ سجلات العملية الحسابية في وضع (MODE) فحسب.

استعادة محتويات ذاكرة سجلات العمليات الحسابية

اضغط على رجوع للخلف لمحتويات ذاكرة تاريخ سجلات العملية الحسابية.

تظهر ذاكرة سجلات العمليات الحسابية كل ما من المقدار الجبرية ونتائج العمليات الحسابية.

على سبيل المثال:
لاحظ أنه يتم مسح محتويات ذاكرة تاريخ سجلات العملية الحسابية عند إيقاف تشغيل الحاسبة، اضغط على المفتاح ON، ثم بالتغيير إلى وضع العملية الحسابية. أو إلى صيغة الإدخال/الإخراج، أو إجراء أي عملية إعادة تعيين، ذاكرة تاريخ سجلات العملية الحسابية محدودة. فعندما تؤدي العملية الحسابية التي تجريها إلى مساحة الذاكرة، تُحذَف العملية الحسابية القديمة تلقائيًا لإسقاط مساحة للعملية الحسابية الجديدة.

خاصية إعادة التشغيل

أثناء عرض نتائج العملية الحسابية على الشاشة، يمكنك الضغط على AC ثم | لتحرير المقدار الجبري الذي قمت باستخدامه مع العملية الحسابية السابقة. إذا كنت تستخدم الصيغة الخطية، يمكنك عرض المقدار الجبري بالضغط على AC أو |، بدون الضغط على AC أولاً.

على سبيل المثال: 4 × 3 + 2.5 = 14.5
4.9 = 7.1 - 3 × 4
استخدام ذاكرة الحاسبة

<table>
<thead>
<tr>
<th>الوصف</th>
<th>الاسم الذاكرة</th>
</tr>
</thead>
<tbody>
<tr>
<td>تخزين أخر نتيجة تم الحصول عليها للعملية الحاسبية.</td>
<td>ذاكرة الإجابة</td>
</tr>
<tr>
<td>يمكن إضافة نتائج العمليات الحسابية أو طرحها من الذاكرة المستقلة M</td>
<td>المخزنة المستقلة</td>
</tr>
<tr>
<td>يشير مؤشر الشاشة إلى وجود بيانات في الذاكرة المستقلة</td>
<td></td>
</tr>
<tr>
<td>هناك ثماني متغيرات تحمل الحروف التالية A و Y و F و D و C و B</td>
<td>المتغيرات</td>
</tr>
<tr>
<td>يمكن استخدامها لتخزين القيم الفردية.</td>
<td></td>
</tr>
</tbody>
</table>

يستخدم هذا القسم وضع COMP (1 MODE) إلى إظهار طريقة استخدام الذاكرة.

ذاكرة الحل (الحل)

نظرية شاملة على ذاكرة الإجابة

- تحدث محتويات ذاكرة الحل مع كل عملية حسابية تجريها باستخدام أي من المفاتيح التالية: (M+ M-) . تستغرق ذاكرة الحل ما يصل إلى 15 رقمًا (STO).
- لا تتغير محتويات ذاكرة الحل في حالة حدوث أخطاء أثناء إجراء العملية الحالية.
- يتم الاحتفاظ بمحتويات ذاكرة الإجابة حتى في حالة الضغط على المفتاح AC، قم بتغيير وضع الحساب، أو قم بإيقاف تشغيل الحاسبة.

استخدام ذاكرة الحل لإجراء سلسلة من العمليات الحسابية

على سبيل المثال: نقسم 3 × 4 على 30.

<table>
<thead>
<tr>
<th>3×4</th>
<th>3</th>
<th>×</th>
<th>4</th>
<th>=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
لا يمكن إضافة نتائج العمليات الحسابية أو طرحها من الذاكرة المستقلة، يظهر على الشاشة عندما تشمل الذاكرة المستقلة على قيمة.

نظرة شاملة على الذاكرة المستقلة

فيما يلي موجز للعمليات المختلفة الممكن إجرائها باستخدام الذاكرة المستقلة.

<table>
<thead>
<tr>
<th>إجراء هذه العملية الرئيسية:</th>
<th>لإجراء هذه الخطوة:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M+</td>
<td>إضافة قيمة أو ناتج المقدار الجبري المعروض إلى الذاكرة المستقلة.</td>
</tr>
<tr>
<td>SHIFT M+ (M-)</td>
<td>طرح قيمة أو ناتج المقدار الجبري المعروض من الذاكرة المستقلة.</td>
</tr>
<tr>
<td>RCL M+ (M)</td>
<td>استعادة محتويات الذاكرة المستقلة الحالية.</td>
</tr>
</tbody>
</table>

يمكن أيضًا إدخال المتغير "M" في عملية حسابية، مما يترتب عليه إخطار الحاسة باستخدام محتويات الذاكرة المستقلة الحالية الموجودة في ذلك الموقع، بعد ما يلي بملاحظة العملية الأساسية لإدراج المتغير "M": "M".
يظهر المؤشر M في الجزء العلوي الأيسر من الشاشة عند وجود أية قيمة خلاف الصفر مخزنة في الذاكرة المستقلة.

إمثالة على العمليات الحسابية باستخدام الذاكرة المستقلة

إذا ظهر المؤشر M على الشاشة، قم بتنفيذ الإجراء التالى لمسح الذاكرة المستقلة قبل تنفيذ هذا المثال.

على سبيل المثال: 9 + 23 = 32
47 - 6 = 41
90 ÷ 2 = 45
99 + 3 = 92
32 ÷ 9 = 3.5

مسح الذاكرة المستقلة

إضغط على M+ (STO) وجعل مؤشر M يختفي من الشاشة.

المتغيرات (A, B, C, D, هـ, خ، ذ)

نظرة شاملة على المتغير

يمكنك تعيين قيمة محددة أو ناتج عملية حسابية للمتغير. على سبيل المثال: لتعيين

الناتج 5+3 للمتغير A

A = 8

اتبع الإجراء التالي عندما تريد التحقق من محتويات المتغير A.

على سبيل المثال: استعادة محتويات المتغير A

B = 3

بوضوح ما يلي كيف يمكنك تضمين المتغيرات داخل المقدار الجبري.

مثال: لضرب محتويات المتغير A في متغيرات المتغير B

وضع الحساب، أو قم بإيقاف تشغيل الحاسة.
على سبيل المثال: \[
\frac{3 + 6 \times 9}{5 \times 5} = 1.425
\]

LINE

\[
9 \times 6 + 3 \rightarrow B
\]

\[
\begin{array}{c}
9 \times 6 \times 3 \rightarrow (B)
\end{array}
\]

\[
5 \times 8 \rightarrow C
\]

\[
\begin{array}{c}
5 \times 8 \times \text{SHIFT RCL (STO)} \rightarrow (C)
\end{array}
\]

\[
B \div C
\]

\[
\begin{array}{c}
\text{ALPHA} \sqrt{} \times (B) \div \text{ALPHA} \rightarrow (C) \rightarrow
\end{array}
\]

لمسح محتويات متغير معين

ثم اضغط على المفتاح لتحديث اسم المتغير الذي

تريد مسح محتوياته. فمثلًا لمسح محتويات المتغير A، اضغط على (STO) (A).

مسح محتويات جميع الذاكرة

اتبع الإجراء التالي لمسح محتويات ذاكرة الإجابة، والذاكرة المستقلة وجميع المتغيرات.

اضغط على (STO) (الذاكرة) (Memory) 2 (CLR) 9 (نعم) (Yes)

للإلغاء عملية المسح دون عمل أي شيء، اضغط على (إلغاء) (Cancel) AC من

العمليات الحسابية للدول

يوضح هذا القسم كيفية استخدام الدول المضمونة في الحاسبة.

النوعية: تُعد الدول المتاحة على وضيع العملية الحسابية المستخدم، ويتناول هذا

بالشرح، في المقام الأول، الدول المتوفرة في مختلف أوضاع العمليات الحسابية. جميع

الأمثلة في هذا القسم تبين العمليات في وضع

قد تستغرق بعض العمليات الحسابية الورقًا أطول لعرض نتائج العمليات الحسابية.

ولذا قبل إجراء أي عملية، يرجى الانتظار حتى ينتهي تنفيذ العملية الجارية، يمكنك

تعطيل عملية جارية بالضغط على (AC)

باي (π) وقاعدة اللوغاريتمات الطبيعية

يمكنك إدخال باي (π) أو قاعدة اللوغاريتمات الطبيعية e في العملية الحسابية.
يجب أن يكون النواتج الأساسية المطلوبة والقيم التي تستخدمها هذه الحاسبة مع باي وثي:

\[
\begin{align*}
\text{SHIFT} \times 10^8(\pi) &= 3.14159265358980 = \pi \\
\text{ALPHA} \times 10^8(e) &= 2.71828181845904 = e
\end{align*}
\]

الدوال المثلثية والمتقاطعة العكسية

تعد وحدة الزاوية المطلوبة من قبل الدوال المثلثية والمتقاطعة العكسية أحد الوحدات المحددة كوحدة زاوية إفتراضية للحساب. قبل إجراء العملية الحسابية، تأكد من تحديد وحدة الزاوية الإفتراضية التي تريد استخدامها. للمزيد من المعلومات، انظر تحديد وحدة الزاوية الإفتراضية.

على سبيل المثال:

\[30 = \sin^{-1} 0.5, \ 0.5 = \sin 30\]

الدوال الزائدية والزائدة العكسية

بالضغط على مفتاح يتم عرض قيمة الدالة. اضغط على مفتاح الرقم الذي يتصل بالدالة التي تود إدخالها.

\[0 = \cosh^{-1} 1, \ 1.175201194 = \sinh 1\]

تحويل قيمة الإدخال لوحدة الزاوية الإفتراضية بالحساب

بعد إدخال القيمة، يرجى الضغط على (DRG) لعرض قيمة مكملات وحدة الزاوية الموضحة أدناه. اضغط على مفتاح الرقم الذي يتصل بوحدة الزاوية لقيمة الإدخال. تقوم الحاسبة بتحويل القيمة إلى وحدة زاوية إفتراضية للحساب.
المثال الأول: لتحويل القيم التالية إلى درجات:

\[\text{تُقدر درجات} = 90, \text{50 درجات جزئي} = 45° \]

يقوم الإجراء التالي بحساب وحدة الزاوية الافتراضية كدرجات.

[math]
\text{LINE}
\[
(\pi/2)r
\]

\[\begin{array}{c|c}
\text{SHIFT} & \times 10^\circ \\
\text{Ans} & \text{DRG} & 2 (\text{f}) \\
\end{array}
\]

\[\begin{array}{c|c}
90 \\
\end{array}
\]

المثال الثاني: (100 درجات جزئي) = 0

\[\cos(\pi r) = \cos(-1) \]

[math]
\text{LINE}
\[
\cos(\pi r)
\]

\[\begin{array}{c|c}
\cos & \text{SHIFT} \times 10^\circ \\
\text{Ans} & \text{DRG} & 2 (r) \\
\end{array}
\]

\[\begin{array}{c|c}
-1 \\
\end{array}
\]

المثال الثالث: (180) = \cos^{-1}(-1)

\[\pi = \cos^{-1}(-1) \]

[math]
\text{MATH}
\[
\cos^{-1}(-1)
\]

\[\begin{array}{c|c}
\text{Deg} & \text{SHIFT} \cos \text{ (cos-1)} \text{ (-)} \text{ 1} \\
\end{array}
\]

\[\begin{array}{c|c}
180 \\
\end{array}
\]

المثال الرابع: (180) = \cos^{-1}(-1)

[math]
\text{MATH}
\[
\cos^{-1}(-1)
\]

\[\begin{array}{c|c}
\text{Rad} & \text{SHIFT} \cos \text{ (cos-1)} \text{ (-)} \text{ 1} \\
\end{array}
\]

الدوال الأسية واللوغاريتمية

- بالنسبة للدالة اللوغاريتمية (يمكنك تحديد القاعدة \(m\) باستخدام التركيب \(\log(m,n\ log)\)
- في حال إدخال قيمة فردية فقط، تستخدم القاعدة 10 لإجراء العملية الحسابية.
• هي دالة لوغاريتم طبيعي مع القاعدة e.

• يمكن كذلك استخدام المفتاح \log عند إدخال مقدار جبري بصيغة

$4 = \log_2 16$: Example

$\log_2(16)$

4

$\log(2,16)$

4

يرجى مراعاة ذلك أنه يجب إدخال القاعدة (m) عند استخدام المفتاح \log للإدخال.

$1.204119983 = \log_{16}$

$\log(16)$

1.204119983

ملاحظة: تستخدم القاعدة 10 (اللوغاريتمات الاعتيادية) لا يتم تحديد قاعدة معينة.

$4.49980967 = \ln 90 (=\log_e 90)$

$\ln(90)$

4.49980967

$1 = \ln e$

$\ln(e)$

1

e^{10}

22026.4659
الدوال المضاعفة ودوال الجذور المضاعفة

\[x^2, x^3, x^{-1}, x^{\frac{1}{2}}, \sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x} \]

المثال الأول: 1.2 × 10^3

\[1200 = 310 \times 1.2 \]

\[16 = (1 + 1 + 1) \times 2 + 2 \]

المثال الثاني: 3^2

\[8 = \frac{1}{2} \]

\[1 = (\sqrt{2} - 1)(\sqrt{2} + 1) \]

\[2 = 5\sqrt{32} \]

المثال الثالث: (2/3)^2

\[1.587401052 = \frac{2}{3}(-2) \]

\[1.290024053 = 3\sqrt{27} + 3\sqrt{5} \]

المثال الرابع:

\[21 = \frac{1}{\frac{1}{4} - \frac{1}{3}} \]
تحويل إحداثي القطب المتعامد

يتم إجراء تنفيذ الإحداثيات في أوضاع العمليات الحسابية (حسابي) COMP و (إحصائي) STAT.

التحويل إلى الإحداثيات القطبية (قطبي)

• X القطب (X,Y): تحديد قيمة الإحداثي المتعامد
• Y: تحديد قيمة الإحداثي المتعامد

نتيجة الحساب θ باستخدام المدى 180° < θ ≤ 180°

• نتيجة الحساب يتم عرض نتيجة العملية الحسابية θ باستخدام وحدة الزاوية الافتراضية بالحاسة.
• يتم تحصيص نتيجة العملية الحسابية r للمتغير X، بينما العملية y لمتغير Y.
• التحويل إلى الإحداثيات المتعامدة (متعامد)

صيغة الإحداثي القطبي

r: حدد قيمة الإحداثي القطبي
θ: حدد قيمة الإحداثي القطبي

قيمة الإدخال θ يتم احترامها كقيمة الزاوية بما يتوافق مع إعداد وحدة الزاوية الافتراضية بالحاسة.
• يتم تحصيص نتيجة العملية الحسابية x للمتغير X، بينما θ يتم تحصيصها للمتغير Y.

إذا قمت بإجراء تحويل إحداثي داخل المقدار الجبري بدلاً من العملية المستقلة، فإنه يتم إجراء العملية الحسابية باستخدام القيمة الأولى فقط (إما القيمة r أو القيمة x) التي تم الحصول عليها نتائج عملية التحويل.

Pol: Example

7 = 5 + 2 = 5 + (√2, √2) = (X,Y) deg

(3-1-4-1)⁻¹

12

\[(3^{-1}-4^{-1})^{-1}\]
القاسم المشترك الأكبر والمضاعف المشترك الأصغر

- توجد هذه الدوال في كل الأوضاع.
- القاسم المشترك الأكبر (GCD): لحساب القاسم المشترك الأكبر لعدين صحيحين موجبين.
- المضاعف المشترك الأصغر (LCM): لحساب المضاعف المشترك الأصغر لعدين صحيحين موجبين.
- يمكن أن تكون قيمة المتحول إما عدد و/أو مقدار جبري.
- نطاق الإدخال:

المضاعف المشترك الأصغر: $0 \leq \min(|b|,|a|) \leq 10^{10}$
cالقاسم المشترك الأكبر: $1 \times 10^{-10} < 10^{10}$

رسالة الخطأ:

خطأ في العملية الحسابية: في حالة إدخال المستخدمين للأعداد الصحيحة السالبة أو العشرينية، تظهر رسالة الخطأ.

ابحث عن المضاعف المشترك الأصغر لكلا من 5 و10.

Example

- على سبيل المثال: ابحث عن القاسم المشترك الأكبر لكلا من 35 و60.
على سبيل المثال: عندما يشتمل المتحرك على مقدار جبري.

الدالة العدد الصحيح ودالة العدد الصحيح الأكبر

- (عدد صحيح): تقوم دالة العدد الصحيح باستخراج جزء العدد الصحيح من القيمة بإزالة الأرقام الموجودة على الجانب الأيمن من العلامة العشرية.
- (عدد صحيح أكبر): تقوم دالة العدد الصحيح الأكبر بتقريب القيمة لأقرب عدد صحيح.

القسمة على خارج القسمة والباقي

يمكنك استخدام الدالة

\[
\frac{\text{القسمة}}{\text{الباقي}}
\]

للحصول على خارج القسمة والباقي في عملية حساب القسمة.

- عند عملية حساب

\[
\frac{\text{القسمة}}{\text{الباقي}}
\]

، يتم تخزين خارج القسمة فقط في الذاكرة

\[\text{Ans}\]

يحدد إتمام العملية عدد خارج القسمة 1 بـ

\[\text{[X] [STO] 3 [+R]}\]

قيمة خارج القسمة 1 بـ

\[\text{[X]}\]
في حالة كون R جزء من سلسلة عبارات المضاعفات، فسوف يتم تحويل خارج القسمة فقط العملية التالية.

$$\frac{1 \div 0}{1 + 2} = \frac{1}{2} (2) = 10$$

على سبيل المثال:

أثناء عرض ناتج العملية مع العملية الحسابية وعرض المتتفي يتم تعطيل

أزرار العملية في حالة حدوث أحد الحالات التالية عند إجراء العملية الحسابية فسيتم معاملتها كعملية قيمة عادية بدون العملية الحسابية وعرض المتتفي.

أ. عندما يكون المقسم أكبر من 10^1.

ب. عندما يكون خارج القسمة ليس بقيمة موجبة أو أن المتتفي ليس عدد صحيح موجب تمامًا أو كسر موجب.

على سبيل المثال:

$$\frac{5}{2} \div R \quad \frac{6}{2} =$$

مكملة كسر اعتيادي

تسطب هذه الدالة الكسر باستخدام القاسم الأصغر. ويمكن تحديد القاسم كذلك، عند الضرورة.

هذا الإعداد صالح في حالة وضع (الحساب) فقط.

COMP يتم تعطيل هذه الدالة إذا تم تعيين تلقائي (SIMP) على AUTO.

في قائمة الضبط.

الرسالة:

أ. تدل شاشة "Fraction irreducible" أن تبعثر إجراء المزيد من التبسيط.

ب. تظهر شاشة "Non simplifiable" (لا يوجد قيمة قابلة لتسييس) عندما تكون القيمة التي حددتها غير صالحة كقاسم لتسييس.

على سبيل المثال: تبسيط $\frac{234}{678}$ على 3.

LINE

Simp
استخدام الحاسبة

يمكنك تخزين مقدار حسابي بما يصل إلى 99 خطوة. لاحظ أن الأمر (حساب) يمكن CALC استخدامه فقط في الوضع COMP.

يسمح لك الأمر CALC مؤقتاً بتخزين مقدار حسابي يحتاج إلى إجراءه مرات متعددة. وبمجرد تخزين المقدار الجبري، يمكنك استعادته وإدخال المتغيرات والاحتساب بسرعة.

بينما يلي نوع المقادير الجبرية التي يمكنك حفظها مع الدالة:

A. المقدار الجبري: 2X + 3Y, 2AX + 3BY + C

B. تعيين المتغيرات المضاعفات:

ج. المعادلات ذات المتغير الوحيد على اليسار ومقدار جبري واحد يحتوي متغيرات على اليمين: (يرجى ملاحظة: يجب استخدام متغير [X] محدد لإدخال رمز المساواة الخاص بالمعادلة).

 وبينما يبدأ عملية حسابية جديدة، تأكد من أن المقدار الجبري المخزن تم تسجيله بتفعيل الوضع ON على سبيل المثال: لتخزين 3A + B ثم تبديل المتغيرات بالقيم التالية على سبيل المثال: A:B = (5:10).

التحويل المتري

تسهّل أومر التحويل المتري الموجودة بالحاسة تحويل القيم من وحدة إلى وحدة أخرى. يمكنك استخدام أومر التحويل المتري في أي وضع حسابي باستثناء TABLE و BASE-N.
يبيّن الجدول التالي الأعداد المكونة من رقمين لكل أمر من أوامير التحليل المترلي:

<table>
<thead>
<tr>
<th>رقم</th>
<th>الوحدة</th>
<th>القيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>بوصة</td>
<td>_cm</td>
</tr>
<tr>
<td>2.03</td>
<td>قدم</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>ميل</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>فدان</td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>فدان</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>فدان</td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>رطل</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>رطل</td>
<td></td>
</tr>
<tr>
<td>0.28</td>
<td>رطل</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>رطل</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td>رطل</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>جول</td>
<td></td>
</tr>
<tr>
<td>0.41</td>
<td>جول</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>جول</td>
<td></td>
</tr>
<tr>
<td>0.43</td>
<td>جول</td>
<td></td>
</tr>
</tbody>
</table>

NIST Special Publication 151995

تعتمد بيانات معادلة التحويل على نشرة "M60" (1995). ملاحظة: يقوم أمر جودية بعمل تحليل للفهم عند درجة حرارة 15°C.

عدد صحيح عشوائي

يمكن الحصول على عدد صحيح عشوائي من دالة العدد الصحيح العشوائي (a,b) في نطاق a إلى b.

على سبيل المثال: للحصول على عدد صحيح عشوائي من 1 إلى 6.

الدوال الأخرى

يوضح هذا القسم كيفية استخدام الدوال الموضحة أدناه.
المضروب (!)

تجمع هذه الدالة مضروب القيمة التي تساوي صفر أو عدد صحيح موجب.

على سبيل المثال: \((5 + 3)! = 40320\)

العمليات الحسابية للقيمة المطلقة (مطلق)

عندما تقوم بحساب عدد حقيقي، تحصل هذه الدالة ببساطة على القيمة المطلقة.

على سبيل المثال: \(\text{Abs}(2 - 7) = 5\)

الرقم العشوائي (# عشوائي)

تنتج هذه الدالة عددًا عشوائيًا غير حقيقي مكون من 3 أرقام أقل من 1.

نتج ثلاثة أعداد عشوائية مكونة من ثلاثة أرقام. حيث تتحول القيم العشرية المكونة من ثلاثة أرقام عشوائية إلى قيم صحيحة تتألف من ثلاثة أرقام وذلك عن طريق ضربها في 1000.

يرجى مراعاة أن القيم الموضحة هنا ليست إلا أمثلة فقط، حيث تختلف عنها القيم التي تنتجها الحاسبة خاصتك.
التباديل (nCr) والتوقيف (nP_r):

تتولَّد هذه الدوال إمكانية إجراء عمليات التباديل والتوقيف الحسابية. يجب أن تكون r و n في النطاق $0 \leq r \leq n$.

أعداد صغيرة في النطاق $10^{15} = 10^{15}$ كم عدد عناصر التباديل والتوقيف المكونة من أربعة أشخاص الممكنة لمجموعة مكونة من 10 أفراد؟

دالة التقريب (تقريب)

تعمل هذه الدالة على تقريب قيمة المقدار الجبري أو ناتجة في إزاحة الدالة إلى عدد الأرقام المفيدة المحدد برمج إعداد الأرقام المعروضة على الشاشة.

إعداد الأرقام المعروضة على الشاشة: 1 (عادي 1) أو 2 (عادي 2) (Norm1) أو 2 (عادي 2) (Norm2).

يمكن أن يكون الجزء العشري إلى 10 أرقام.

إعداد الأرقام المعروضة على الشاشة: 3 (عادي 3) أو 4 (عادي 4) (كلمة) (Sci) 10^3.

يتم تقريب القيمة إلى العدد المحدد من الأرقام.

على سبيل المثال: $200 + 57 = 400$

(يحدد ثلاثة منازل عشرية).

(بمجرد إجراء العمليات الحسابية داخلياً باستخدام 15 رقمًا)
يقوم الإجراء التالي بنفس العملية الحسابية مع التقريب.

\[
\text{200} \div 7 = 28.571
\]

(قم بتقريب القيمة إلى العدد المحدد من الأرقام).

\[
\text{Rnd(Ans) = 28.571}
\]

(التحقق من النتيجة المقررة).

\[
\text{Ans} \times 14 = 399.994
\]

تحويل القيم المعروضة على الشاشة

يمكنك اتباع الإجراءات الموضحة في هذا القسم لتحويل القيمة المعروضة إلى رموز هندسية، أو تحويلها إلى صيغة بين القياسية والعشريّة.

استخدام رموز هندسية

تقوم العملية الرئيسية البسيطة بتحويل القيمة المعروضة إلى رموز هندسية، ثم قم بتحويل القيمة 1,234 إلى رمز هندسي، وإزاحة العلامة العشرية للليمين.

\[
1234 \times 10^3 = 1.234 \times 10^3
\]

ثم قم بتحويل القيمة 1234 إلى رمز هندسي، وإزاحة العلامة العشرية لليسار.
استخدام تحويل S-D

يمكنك استخدام تحويل S-D لتحويل القيمه بين صيغتها العشريه (D) وصيغتها الاعتيادية (S).

دعم التقنيات لتحويل S-D

يمكن استخدام تحويل S-D لتحويل ناتج عصري لعملية حسابية إلى واحدة من الصيغ الموصية فيما يلي، ويودي إجراء عملية التحويل مرة أخرى إلى الرجوع ذاتية إلى القيمه العشريه الأصلية.

ملاحظه: عندما تقوم بالتحويل من الصيغة العشريه إلى الصيغة الاعتياديه، تختار الحاسبه تلقائيا استخدام الصيغه الاعتيادية. مع العلم بأنه ليس بإمكانك تحديد الصيغه القياسية.

الكسر: يحدد إعداد صيغة الكسر الحالي إذا ما كان الناتج عبارة عن كسر غير حقيقي أو كسر مختصر.

الصيغه التالية هي صيغ الرياضية. لا ينطبق هذا إلا في حال استخدام الصيغه المدموعه (n π).

\[\frac{b}{c} \cdot \frac{a}{b} \]
(يعتمد على إعداد صيغة الكسر).

التحويل إلى صيغه S-D. ويتم التعبير عنها بشكل طبيعي في صورة تقديرات دائرية.

بعد الحصول على ناتج العملية الحسابية في صيغه S-D، يمكنك تحويلها إلى صيغة عصريه بالضغط على المفتاح S-D. عندما يكون ناتج العملية الحسابية الأصلي في صيغة عصريه، فإنه يتم تحديد التحويل إلى صيغه S-D.

أمثلة على تحويل S-D

يرجى مراعاة أن تنفيذ تحويل S-D قد يستغرق بضع الوقت.

على سبيل المثال: الكسر — الصيغة العشريه

كل ضغطة على المفتاح S-D تقوم بالتبديل بين الصيغتين.
العمليات الحسابية الإحصائية (إحصائي).

يتم إجراء كافة العمليات الحسابية في هذا القسم من خلال وضع STAT (إحصائي).

تحديد نوع العمليات الحسابية الإحصائية
في الوضع الإحصائي، يتم عرض خيارات اختيار نوع العمليات الحسابية الإحصائية.

أنواع العمليات الحسابية الإحصائية

<table>
<thead>
<tr>
<th>العمليات الحسابية الإحصائية</th>
<th>عنصر القائمة</th>
<th>المفتاح</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغير-فردي</td>
<td>1-VAR</td>
<td>1</td>
</tr>
<tr>
<td>انحدار خطي</td>
<td>A+BX</td>
<td>2</td>
</tr>
<tr>
<td>الانحدار التربيعي</td>
<td>+CX²</td>
<td>3</td>
</tr>
<tr>
<td>انحدار لوغاريتمي</td>
<td>ln X</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>e^X</td>
<td>5</td>
</tr>
<tr>
<td>ab</td>
<td>A•B^X</td>
<td>6</td>
</tr>
<tr>
<td>انحدار مرفوع إلى القوة</td>
<td>A•X^B</td>
<td>7</td>
</tr>
<tr>
<td>انحدار عكسي</td>
<td>1/X</td>
<td>8</td>
</tr>
</tbody>
</table>
إدخال عينات البيانات المعروضة على شاشة المحرر الإحصائي

تحتفي شاشة المحرر الإحصائي بعد الدخول في وضع STAT (احصائي) من وضع أخرى، باستخدام قائمة STAT (احصائي) لتحديد نوع العمليات الحسابية الإحصائية.

1 2

(بيانات) (بيانات)

(البيانات)

شاشة تحرير الإحصاء

يوجد صيغتان لشاشة المحرر الإحصائي حسب نوع العمليات الحسابية الإحصائية التي قمت بها اختيارها.

إحصائيات المتغير الزوجي

إحصائيات المتغير المفرد

يوضح النص الأول من شاشة المحرر الإحصائي قيمة العينة الأولى أو قيمة العينات الزوجية الأولى.

خانة التردد

في حالة تشفير عنصر العرض الإحصائي الموجود بشاشة إعداد الحاسة، يتضمن خانة تحكم عنوان تردد بشاشة المحرر الإحصائي. يمكنك استخدام عمود التردد لتحديد تردد (عدد المرات التي تظهر فيها نفس العينة في مجموعة البيانات) كافة قيم العينات.

قواعد إدخال عينات البيانات من شاشة تحرير الإحصاء

• يتم إدراج البيانات التي أدخلتها في الخلية الموجودة بها مؤشر السهم. استخدام مفاتيح المؤشر لتحريك السهم بين الخلايا. يقع المؤشر الموجود بالصورة التالية أسفل الحرف.

• تعتمد القيم واليقياد الجبرية التي تقوم بإدخالها في شاشة المحرر الإحصائي هي نفسها التي تقوم بإدخالها في وضع COMP (حساب).

• بالضغط على أثناء إدخال البيانات، يتم تسجيل البيانات التي تقوم بإدخالها في الوقت الحالي.

• بعد إدخال القيمة، برجم الضغط على حيث يقوم بتسجيل القيمة التي أدخلتها.

• ويتم عرض ستة أرقام بعد أقصى في الخلية المحددة حاليًا.
على سبيل المثال: لإدخال القيمة 123.45 في الخلية (حرف المؤشر إلى الخلية X1)

| 1 | 2 | 3 | 4 | 5 |

تظهر القيمة التي قمت بإدخالها في حقل المعادلة (123.45).

ويؤدي تسجيل القيمة إلى تحريك السهم لأسفل بمقدار خلية واحدة.

تداوير الإدخال في شاشة التحرير الإحصائية

يعتمد عدد الأسطر الموجود بشاشة المحرر الإحصائي (عدد قيم البيانات التي قمت بإدخالها) على نوع البيانات الإحصائية التي قمت بتحديدها وعلى إعداد العرض الإحصائي لشاشة إعداد الحاسة.

<table>
<thead>
<tr>
<th>العرض الإحصائي</th>
<th>نوع البيانات الإحصائية</th>
</tr>
</thead>
<tbody>
<tr>
<td>On (لا توجد خانة تردد)</td>
<td>متغير فردي 40 سطر</td>
</tr>
<tr>
<td>OFF</td>
<td>متغير زوجي 40 سطر</td>
</tr>
</tbody>
</table>

لا تتوافر أنواع المدخلات التالية في شاشة المحرر الإحصائي:

- العمليات الحسابية (M-) (M+ SHIFT M+)
- تعيين قيم للمتغيرات (STO)

التدابير الخاصة بتخزين عينات البيانات

 يتم حذف عينات البيانات التي قمت بإدخالها تلقائيًا متي تقوم بالتبديل إلى وضع آخر من الوضع الإحصائي أو تغيير إعداد العرض الإحصائي (الذي يؤدي إلى ظهور أو إخفاء خانة التردد) من شاشة إعداد الحاسة.

تحرير عينات البيانات

استبدل البيانات في أحد الخلايا:

1. من شاشة المحرر الإحصائي، حرك المؤشر إلى الخلية التي ترغب في تحريرها.

2. أدخل قيمة البيانات أو التعديلات الجديدة، ثم اضغط على [إ].

هام: يرجى ملاحظة أنه يجب عليك استبدال بيانات الخلية الحالية تمامًا بمدخل جديد.

ولا يمكنك تحرير أي جزء من البيانات الحالية.
حذف سطر واحد
(1) من شاشة المحرر الإحصائي، حرك المؤشر إلى السطر المراد حذفه.
(2) أضغط على [DEL].

إدراج سطر
(1) من شاشة المحرر الإحصائي، حرك المؤشر إلى السطر الموجود أسفل السطر المراد إدراجه.
(2) اضغط على (الإحصائي) 3 (Edit) (الإحصائي) 1 (STAT) 1 SHIF.(tras). (Ins)
(3) اضغط على 1.

هام: يرجى ملاحظة أنه لن يتم عملية الإدراج في حالة استخدام أقصى عدد من الأساطير المسموح بها لشاشة المحرر الإحصائي بفعل.

حذف جميع محتويات التحرير الإحصائي
(1) اضغط على (الإحصائي) 3 (Edit) (الإحصائي) 1 (STAT) 1 SHIF.(tras).
(2) اضغط على 2.

وهذا يؤدي بدوره إلى مسح جميع عناصر البيانات من شاشة المحرر الإحصائي.

ملاحظة: بمقدورك تنفيذ الإجراءات من إدراج سطر واحد وحذف جميع محتويات المحرر الإحصائي فقط عند ظهور شاشة المحرر الإحصائي.

شاشة العمليات الحسابية الإحصائية

تستخدم شاشة العمليات الحسابية الإحصائية لإجراء العمليات الحسابية الإحصائية باستخدام البيانات التي تقوم بإدخالها من شاشة المحرر الإحصائي. بالضغط على مفتاح أثناء عرض شاشة المحرر الإحصائي، يتم التبديل إلى شاشة العمليات الحسابية الإحصائية.

كما تستخدم شاشة العمليات الحسابية الإحصائية الصيغة الخطية بغض النظر عن إعداد صيغة الإدخال/الإفراج، وتشير إعداد الحاسبة.

استخدام القائمة الإحصائية

عند عرض عرض شاشة المحرر الإحصائي أو العمليات الحسابية الإحصائية، اضغط على (الإحصائي) لعرض قائمة (الإحصائي).

يعتمد محتوى القائمة الإحصائية على ما إذا كان نوع العملية الإحصائية المحددة في الوقت الحالي يستخدم متغيرًا واحدًا أو متغيرين زوجين.

<table>
<thead>
<tr>
<th>إحصائيات المتغير المفرد</th>
<th>إحصائيات المتغير الزوجي</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:Type 2:Data</td>
<td>1:Type 2:Data</td>
</tr>
<tr>
<td>3:Sum 4:Var</td>
<td>3:Sum 4:Var</td>
</tr>
<tr>
<td>5:Quartl</td>
<td>6:MinMax</td>
</tr>
</tbody>
</table>
عناصر القائمة الإحصائية

العناصر المشتركة

| عناصر القائمة | عدد عنصر
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (النوع)</td>
<td>1</td>
</tr>
<tr>
<td>Data (البيانات)</td>
<td>2</td>
</tr>
<tr>
<td>Sum (المجموع)</td>
<td>3</td>
</tr>
<tr>
<td>Var (المتغير)</td>
<td>4</td>
</tr>
<tr>
<td>Reg (الحد)</td>
<td>5</td>
</tr>
<tr>
<td>MinMax (الحد الأقصى/الأدنى)</td>
<td>6</td>
</tr>
</tbody>
</table>

أوامر العمليات الحسابية الإحصائية للمتغير المفرد (1-VAR)

فيما يلي الأوامر التي تظهر عند اختيار (Sum) (المجموع) أو (Var) (المتغير) أو (MinMax) (الحد الأقصى/الأدنى) من قائمة (الإحصائي) (1-VAR)

وذلك في حال اختيار نوع العمليات الحسابية الإحصائية لمتغير مفرد.

\[
\bar{x} = \frac{\sum x}{n}
\]

\[
x\sigma_n = \frac{\sum(x - \bar{x})^2}{n}
\]

\[
x\sigma_{n-1} = \frac{\sum(x - \bar{x})^2}{n - 1}
\]

القائمة الفرعية للمجموع (المجموع) (STAT (الإحصائي) (Sum) 1) (shift)

| عدد عنصر القائمة | عدد عنصر
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>حاصل تربيع عينات البيانات</td>
<td>1 (\sum x^2)</td>
</tr>
<tr>
<td>مجموع عينات البيانات</td>
<td>2 (\sum x)</td>
</tr>
</tbody>
</table>
القائمة الفرعية للمتغير (إحصائي)

(Var)

<table>
<thead>
<tr>
<th>عدد الرغبة في الحصول على:</th>
<th>حدد عنصر القائمة:</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد العينات</td>
<td>1 (n)</td>
</tr>
<tr>
<td>متوسط عينات البيانات</td>
<td>2 (\bar{x})</td>
</tr>
<tr>
<td>الانحراف المعياري للمجتمع الإحصائي</td>
<td>3 (x\sigma_n)</td>
</tr>
<tr>
<td>الانحراف المعياري للعينة</td>
<td>4 (x\sigma_{n-1})</td>
</tr>
</tbody>
</table>

القائمة الفرعية للحد الأقصى/الأدنى (إحصائي)

(MinMax)

(1)

<table>
<thead>
<tr>
<th>عدد الرغبة في الحصول على:</th>
<th>حدد عنصر القائمة:</th>
</tr>
</thead>
<tbody>
<tr>
<td>قيمة الحد الأدنى</td>
<td>1 (\text{min} X)</td>
</tr>
<tr>
<td>قيمة الحد الأقصى</td>
<td>2 (\text{max} X)</td>
</tr>
</tbody>
</table>

العمليات الحسابية الإحصائية لمتغير مفرد

إحصائي (1-VAR) (إحصائي).getLong()

البيانات: \{1,2,3,4,5,6,7,8,9,10\}

التكرد: تشغيل

قم بتحرير البيانات إلى ما يلي، مستخدمًا الإدخال والحذف:

(التكرد: تشغيل)
قم بتعديل بيانات التردد إلى ما يلي:
\{1, 2, 1, 2, 2, 2, 3, 4, 2, 1\}

أمثلة:
احسب حاصل تربيع عينات البيانات ومجموعهم.

\[\sum x^2 = 102\]
\[\sum x = 672\]

احسب عدد العينات والمتوسط والانحراف المعياري للمجتمع الإحصائي.

\[\sum x = 672\]
\[\sum x^2 = 102\]
الأوامر التي يتم إصدارها عند اختيار حساب الانحدار الخطي (A+Bx)

في حالة اختيار الانحدار الخطي، يتم إجراؤه وفقًا للمعادلة التالية.

\[y = A + BX \]

فيما يلي الأوامر التي تظهر على القائمة الفرعية عند اختيار (Sum) أو (Reg) (المجموع) (المنغبر) أو (MinMax) (الحد الأقصي/الأدنى) أو (Var) (الإحصائي) أثناء اختيار الانحدار الخطي كنوع للعمليات الحسابية الإحصائية.

\[
\bar{y} = \frac{\sum y}{n} \quad \bar{x} = \frac{\sum x}{n}
\]

\[
y\sigma_n = \sqrt{\frac{\sum (y - \bar{y})^2}{n}} \quad x\sigma_n = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}
\]

\[
y\sigma_{n-1} = \sqrt{\frac{\sum (y - \bar{y})^2}{n-1}} \quad x\sigma_{n-1} = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}
\]

\[
A = \frac{\sum y - B \cdot \sum x}{n}
\]
القائمة الفرعية للمجموع (المجموع)

\[
B = \frac{n \cdot \sum xy - \sum x \cdot \sum y}{n \sum x^2 - (\sum x)^2}
\]

\[
r = \frac{n \cdot \sum xy - \sum x \cdot \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 + (-\sum y)^2}}
\]

\[
\hat{x} = \frac{y - A}{B} \quad \hat{y} = A + Bx
\]

القائمة الفرعية للمتغير (المتغير)

<table>
<thead>
<tr>
<th>حدد عنصر القائمة:</th>
<th>حدد عنصر القائمة:</th>
</tr>
</thead>
<tbody>
<tr>
<td>حاصل تربيع بيانات القيمة X</td>
<td>1 (\sum x^2)</td>
</tr>
<tr>
<td>مجموع بيانات القيمة X</td>
<td>2 (\sum x)</td>
</tr>
<tr>
<td>حاصل تربيع بيانات القيمة Y</td>
<td>3 (\sum y^2)</td>
</tr>
<tr>
<td>مجموع بيانات القيمة Y</td>
<td>4 (\sum y)</td>
</tr>
<tr>
<td>مجموع حاصل ضرب بيانات القيمة X وبيانات القيمة Y</td>
<td>5 (\sum xy)</td>
</tr>
<tr>
<td>حاصل تكعيب بيانات القيمة X</td>
<td>6 (\sum x^3)</td>
</tr>
<tr>
<td>حاصل تربيع بيانات القيمة X وبيانات القيمة Y (X Y)</td>
<td>7 (\sum x^2 y)</td>
</tr>
<tr>
<td>حاصل ثنائي التربيع لبيانات القيمة X</td>
<td>8 (\sum x^4)</td>
</tr>
</tbody>
</table>

القائمة الفرعية للمتغير (المتغير)

<table>
<thead>
<tr>
<th>حدد عنصر القائمة:</th>
<th>حدد عنصر القائمة:</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد العينات</td>
<td>1 (n)</td>
</tr>
<tr>
<td>متوسط بيانات القيمة X</td>
<td>2 (\bar{x})</td>
</tr>
<tr>
<td>الانحراف المعياري للمجمع الإحصائي لبيانات القيمة X</td>
<td>3 (\sigma_x)</td>
</tr>
<tr>
<td>الانحراف المعياري لعينة بيانات القيمة X</td>
<td>4 (\sigma_{x n-1})</td>
</tr>
<tr>
<td>متوسط بيانات القيمة Y</td>
<td>5 (\bar{y})</td>
</tr>
<tr>
<td>الانحراف المعياري للمجمع الإحصائي لبيانات القيمة Y</td>
<td>6 (\sigma_y)</td>
</tr>
<tr>
<td>الانحراف المعياري لعينة بيانات القيمة Y</td>
<td>7 (\sigma_{y n-1})</td>
</tr>
</tbody>
</table>
القائمة الفرعية للحد الأقصى/الأدنى (إحصائي) (MinMax) | (الحد الأقصى/الأدنى)
---|---
| عدد الرغبة في الحصول على: |
| قيمة الحد الأدنى للبيانات القيمة X | 1 MinX |
| قيمة الحد الأدنى للبيانات القيمة Y | 3 MinY |
| قيمة الحد الأدنى للبيانات القيمة X | 2 MaxX |
| قيمة الحد الأدنى للبيانات القيمة Y | 4 MaxY |

القائمة الفرعية للالتحدا (إحصائي) (الالتحدا) (Reg) |
---|---
| عدد عنصر القائمة: |
الحد الثابت لمعامل الالتحدا A	1 A
معامل الالتحدا B	2 B
معامل الارتباط r	3 r
القيمة المقدرة للقيمة X	4 x
القيمة المقدرة للقيمة Y	5 y

حساب الالتحدا الخطي:

تستخدم الأمثلة جميع مدخلات البيانات الواردة بهذا الجدول:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>2.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

53
محاسبة القيم الإحصائية

<table>
<thead>
<tr>
<th>عمليات</th>
<th>نتائج</th>
</tr>
</thead>
<tbody>
<tr>
<td>المجموع</td>
<td>11.8</td>
</tr>
<tr>
<td>مجموع مربعات</td>
<td>30.96</td>
</tr>
<tr>
<td>المتوسط</td>
<td>2.14</td>
</tr>
<tr>
<td>معيار معيار</td>
<td>0.63</td>
</tr>
<tr>
<td>الحد الأقصى</td>
<td>6.6</td>
</tr>
<tr>
<td>الحد الأدنى</td>
<td>2.7</td>
</tr>
</tbody>
</table>

الإحصائيات الإجمالية:

- المجموع: 11.8
- مجموع مربعات: 30.96
- المتوسط: 2.14
- معيار معيار: 0.63
- الحد الأقصى: 6.6
- الحد الأدنى: 2.7

الخطوات

1. **المجموع (Sum)**
2. **العوامل المتغير (Var)**
3. **الحد الأقصى والأدنى (MinMax)**
4. **الحد الأقصى لقيم Y (Max Y)**
5. **الحقل الإحصائي (Reg)**

النتائج الفردية

- الحقل الإحصائي: 0.5043587805
الأوامر التي يتم إصدارها عند اختيار حساب الانحدار التربيعي

\[(\text{CX+)}

في حالة اختيار الانحدار التربيعي، يتم إجراؤه وفقًا للمعادلة التالية.

\[y = A + BX + CX^2\]

على سبيل المثال:

\[A = \frac{\sum y}{n} - B\left(\frac{\sum x}{n}\right) - C\left(\frac{\sum x^2}{n}\right)\]

\[B = \frac{Sxy \cdot Sx^2 - Sx^2 \cdot Sy - Sxx^2}{Sxx \cdot Sx^2 - (Sxx^2)^2}\]

\[C = \frac{Sx^2 \cdot Sy - Sxy \cdot Sxx^2}{Sxx \cdot Sx^2 - (Sxx^2)^2}\]

\[Sxx = \sum x^2 - \left(\frac{\sum x}{n}\right)^2\]

\[Sxy = \sum xy - \frac{\sum x \cdot \sum y}{n}\]

\[Sxx^2 = \sum x^3 - \frac{\sum x \cdot \sum x^2}{n}\]
\[Sx^2 x^2 = \sum x^4 - \left(\frac{\sum x^2}{n}\right)^2 \]
\[Sx^2 y = \sum x^2 y - \frac{\sum x^2 \cdot \sum y}{n} \]
\[\hat{x}1 = \frac{-B + \sqrt{B^2 - 4C(A - y)}}{2C} \]
\[\hat{x}2 = \frac{-B - \sqrt{B^2 - 4C(A - y)}}{2C} \]
\[\hat{y} = A + Bx + Cx^2 \]

(الإحصائي)
(الانحدار)

القانونة الفرعية للانحدار

<table>
<thead>
<tr>
<th>عدد الرغبة في الحصول على:</th>
<th>عدد عنصر القانونة:</th>
</tr>
</thead>
<tbody>
<tr>
<td>الحد الثابت لمعامل الانحدار A</td>
<td>1</td>
</tr>
<tr>
<td>المعامل الخطي ومعاملات الانحدار B</td>
<td>2</td>
</tr>
<tr>
<td>المعامل التربيعي ومعاملات الانحدار C</td>
<td>3</td>
</tr>
<tr>
<td>القيمة المقدرة لـ (\hat{x}_1)</td>
<td>4</td>
</tr>
<tr>
<td>القيمة المقدرة لـ (\hat{x}_2)</td>
<td>5</td>
</tr>
<tr>
<td>القيمة المقدرة للقيمة (y)</td>
<td>6</td>
</tr>
</tbody>
</table>

العمليات الخاصة بالقانونة الفرعية للمجموع (المجموع)، والقانونة الفرعية للمتغير (عدد العينات والمعدل والانحراف المعياري)، والقانونة الفرعية للحد الأقصى/الدني (أعلى قيمة وأقل قيمة) هي نفس العمليات الخاصة بحسابات الانحدار الخطي.

حساب الانحدار التربيعي

على سبيل المثال:

جميع البيانات المستخدمة كما هو وارد بالجدول التالي:

<table>
<thead>
<tr>
<th>(y)</th>
<th>(x)</th>
<th>(y)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>2.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.6</td>
<td>2.4</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.7</td>
<td>2.5</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>1.8</td>
<td>2.7</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>
\[1: \text{VAR} \quad 2: \text{A+B} \quad 3: \text{ACX}^2 \quad 4: \text{ln}\ X \quad 5: \text{A}\cdot B \quad 6: 1/X \]

Type (بالنوع)

1

+CX^2

3

SHIFT 1 (STAT) 1 (Type)

SHIFT 1 (STAT) 1 (Type)

2

SHIFT 1 (STAT) 1 (Type)

0

3

SHIFT 1 (STAT) 1 (Type)

4

SHIFT 1 (STAT) 1 (Type)

5

SHIFT 1 (STAT) 1 (Type)

6

SHIFT 1 (STAT) 1 (Type)

7

SHIFT 1 (STAT) 1 (Type)

5

SHIFT 1 (STAT) 1 (Type)

3

SHIFT 1 (STAT) 1 (Type)

2

SHIFT 1 (STAT) 1 (Type)

1

SHIFT 1 (STAT) 1 (Type)

0

SHIFT 1 (STAT) 1 (Type)

0

SHIFT 1 (STAT) 1 (Type)

0

SHIFT 1 (STAT) 1 (Type)

3

SHIFT 1 (STAT) 1 (Type)

4

SHIFT 1 (STAT) 1 (Type)

5

SHIFT 1 (STAT) 1 (Type)

2

SHIFT 1 (STAT) 1 (Type)

1

SHIFT 1 (STAT) 1 (Type)

6

SHIFT 1 (STAT) 1 (Type)

%
تعليقات على أنواع أخرى من الانحدار
لمزيد من التفاصيل حول الصيغة الحسابية للأوامر المشتملة في كل نوع من أنواع الانحدار، يرجى الرجوع إلى الصيغة الحسابية المشار إليها.

على سبيل المثال:

الانحدار اللوغاريتمي (ln X)

\[y = A + B \ln X \]

\[A = \frac{\sum y - B \sum \ln x}{n} \]

\[B = \frac{\frac{n \sum (\ln x) y - \sum \ln x \sum y}{n \sum (\ln x)^2 - (\sum \ln x)^2}}{n \sum (\ln x) y - \sum \ln x \sum y} \]

\[r = \sqrt{\frac{n \sum (\ln x)^2 - (\sum \ln x)^2}{n \sum y^2 - (\sum y)^2}} \]

\[\hat{x} = e^{\frac{y - A}{B}} \]

\[\hat{y} = A + B \ln x \]

الانحدار الأسّي للقيمة e (e^X)

\[y = Ae^{Bx} \]

\[A = \exp \left(\frac{\sum \ln y - B \sum x}{n} \right) \]

\[B = \frac{n \sum x \ln y - \sum x \sum \ln y}{n \sum x^2 - (\sum x)^2} \]

\[r = \sqrt{\frac{n \sum \ln y - \sum x \sum \ln y}{n \sum x^2 - (\sum x)^2}} \]

\[\hat{x} = \frac{\ln y - \ln A}{B} \]

\[\hat{y} = Ae^{Bx} \]

الانحدار الأسّي للقيمة ab (A \cdot B^X)

\[y = AB^x \]
\[
A = \exp \frac{\sum \ln y - B \cdot \sum x}{n} \\
B = \frac{n \cdot \sum x \ln y - \sum x \cdot \sum \ln y}{n \cdot \sum x^2 - (\sum x)^2} \\
r = \frac{n \cdot \sum x \ln y - \sum x \cdot \sum \ln y}{\left\{n \cdot \sum x^2 - (\sum x)^2\right\}\left\{n \cdot \sum (\ln y)^2 - (\sum \ln y)^2\right\}} \\
\hat{y} = ABx \\
\hat{x} = \frac{\ln y - \ln A}{B} \\
\text{(A \cdot X^B)} \\
y = A \cdot X^B \\
A = \exp \frac{\sum \ln y - B \cdot \sum \ln x}{n} \\
B = \frac{n \cdot \sum x \ln y - \sum \ln x \cdot \sum \ln y}{n \cdot \sum (\ln x)^2 - (\sum \ln x)^2} \\
r = \frac{n \cdot \sum \ln x \ln y - \sum \ln x \cdot \sum \ln y}{\left\{n \cdot \sum (\ln x)^2 - (\sum \ln x)^2\right\}\left\{n \cdot \sum (\ln y)^2 - (\sum \ln y)^2\right\}} \\
\hat{y} = e^{\frac{\ln y - \ln A}{B}} \\
\hat{x} = A \cdot x^B \\
\text{الانحدار العكسي (1/X)} \\
y = A + \frac{B}{x} \\
A = \frac{\sum y - B \cdot \sum x^4}{n} \\
B = \frac{S_{xy}}{S_{xx}} \\
r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \\
S_{xx} = \frac{1}{n} \left(\sum x^{-1}\right)^2 - \frac{\left(\sum x^4\right)}{n}
\]
\[S_{yx} = \sum (x^{-1})y - \frac{\sum x^{-1} \cdot \sum y}{n} \]
\[S_{yy} = \sum y^2 - \left(\frac{\sum y}{n} \right)^2 \]
\[\hat{x} = \frac{B}{y - A} \]
\[\hat{y} = A + \frac{B}{x} \]

منحنى أنحدار المقارنة

يستخدم المثال التالي مدخلات البيانات كما هو وارد بالجدول التالي:

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>2.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.6</td>
<td>2.4</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.7</td>
<td>2.5</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>1.8</td>
<td>2.7</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

يُعمل على مقارنة معامل الارتباط الخاص بالانخفاض اللوغاريتمي والانخفاض الأساسي للقيمة والمتحول الأساسي لقيمة ab والانخفاض المفرّع إلى القوة والانخفاض العكسي للقيمة.

\[r = 0.9753724902 \]
\[r = 0.9967116738 \]
\[r = 0.9967116738 \]
\[r = 0.9917108781 \]
أنواع أخرى لحساب الانحدار:

\[y = A + B \ln x \]

<table>
<thead>
<tr>
<th>(y)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>29</td>
</tr>
<tr>
<td>23.5</td>
<td>50</td>
</tr>
<tr>
<td>38.0</td>
<td>74</td>
</tr>
<tr>
<td>46.4</td>
<td>103</td>
</tr>
<tr>
<td>48.9</td>
<td>118</td>
</tr>
</tbody>
</table>

\[x = 80 \rightarrow \hat{y} = ? \]

\[80 \quad 0 \quad \text{SHIFT} \quad 1 \quad \text{(STAT)} \quad 7 \quad \text{(Reg)} \]

\[\hat{y} = 37.94879482 \]

\[y = 73 \rightarrow \hat{x} = ? \]

\[73 \quad 3 \quad \text{SHIFT} \quad 1 \quad \text{(STAT)} \quad 5 \quad \text{(Reg)} \]

\[\hat{x} = 224.1541313 \]
\[y = Ae^{bx} \]

<table>
<thead>
<tr>
<th>(y)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4</td>
<td>6.9</td>
</tr>
<tr>
<td>15.7</td>
<td>12.9</td>
</tr>
<tr>
<td>12.1</td>
<td>19.8</td>
</tr>
<tr>
<td>8.5</td>
<td>26.7</td>
</tr>
<tr>
<td>5.2</td>
<td>35.1</td>
</tr>
</tbody>
</table>

Calculations:

\[x = 16 \rightarrow \hat{y} = ? \]
\[y = 20 \rightarrow \hat{x} = ? \]
\[y = ABx \]

| \(| x | \) | \(| y | \) |
|---|---|
| 0.24 | -1 |
| 4 | 3 |
| 16.2 | 5 |
| 513 | 10 |

\[y = A x^8 \]

| \(| x | \) | \(| y | \) |
|---|---|
| 2410 | 28 |
| 3033 | 30 |
| 3895 | 33 |
| 4491 | 35 |
| 5717 | 38 |
$y = A + \frac{B}{x}$

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>1.1</td>
</tr>
<tr>
<td>9.7</td>
<td>2.1</td>
</tr>
<tr>
<td>6.8</td>
<td>2.9</td>
</tr>
<tr>
<td>4.9</td>
<td>4.0</td>
</tr>
<tr>
<td>4.1</td>
<td>4.9</td>
</tr>
</tbody>
</table>
التلميحات بشأن استخدام الأوامر
قد تستغرق الأوامر المتضمنة في القائمة الفرعية للانحدار فترة طويلة لإجراء حساب الانحدار اللوغاريتمي أو الانحدار الأولي للقيمة أو ab و الانحدار الأساسي لقيمة e.

العمليات الحسابية للمعادلات (EQN)
استخدم مفتاح $	ext{MODE}$ للدخول إلى وضع $	ext{EQN}$ (المعادلة) عند الرغبة في حل أي معادلة. يمكنك في وضع $	ext{EQN}$ حل المعادلات الخطية الأصلية باستخدام نحو ثلاثة قيم مجهولة.

$3.5 \rightarrow y = ?$
5.697158557

$15 \rightarrow x = ?$
1.342775158

0.09344061817

20.26709711

0.9998526953
المعادلات الخطية الآنية

1. المعادلات الخطية الآنية باستخدام مجهولان:
 \[a_1x + b_1y = c_1 \]
 \[a_2x + b_2y = c_2 \]

2. المعادلات الخطية الآنية باستخدام ثلاثة مجايل:
 \[a_1x + b_1y + c_1z = d_1 \]
 \[a_2x + b_2y + c_2z = d_2 \]
 \[a_3x + b_3y + c_3z = d_3 \]

استخدم شاشة مححر المعامل لإدخال معاملي أحد المعاملات وتعرض شاشة مححر المعامل خلايا الدخل لكافة المعاملات اللازمة حسب نوع المعادلة التي تم تحديدها حالياً.

عندما يتم تحديد المعاملات الخطية الآنية باستخدام ثلاثة مجايل كنوع للمعادلة، يحتوي العود من الشاشة عند عرض شاشة مححر المعامل للمرة الأولى. وسيظهر العمود عند تحريك المؤشر تجاهه وهو ما يؤدي إلى تبديل الشاشة.

على سبيل المثال: لحل المعاملات التالية
\[x + 2y = 5 \]
\[3x - 2y = 3 \] (المعادلة) \((x = 2, y = 1.5) \)
على سبيل المثال: لحل المعادلات الآتية التالية:

\[2x + 3y - z = 15\]
\[3x - 2y + 2z = 4\]
\[5x + 3y - 4z = 9\]
(x = 2, y = 5, z = 4)

(المعادلة)
إدخال المعاملات وتحريرها:

1. قواعد إدخال المعاملات وتحريرها:
 - إدراج البيانات في الخلية التي يوجد بها مؤشر اليسار. عند تسجيل الدخل في أحد الخلايا، يتحرك المؤشر إلى الخلية التالية إلى اليمين.
 - تعتبر القيم والمقدار الجبرية التي تقوم بإدخالها من شاشة محرر المعامل COMP هي نفسها التي تقوم بإدخالها في وضع穴 استخدام الصيغة الخطية.

بالضغط على أثناء إدخال البيانات، يتم تسجيل البيانات التي تقوم بإدخالها.

في الوقت الحالي.

- بعد إدخال القيمة، يرجى الضغط على حيث يقوم بتسجيل القيمة التي أدخلتها ويتم عرض ستة أرقام بعد أقصى في الخلية المحددة حاليًا.
- لتغيل محوليات أحد الخلايا، استخدم مفاتيح المؤشر لتحريك المؤشر إلى الخلية ثم إدخال البيانات الجديدة.

يمكنك تحويل كافة المعاملات إلى قيمة الصغرى بالضغط على مفتاح أثناء إدخال القيم من شاشة محرر المعامل.

2. لا يدعم محرر المعاملات الحسابية التالية:
 - كما لا يمكن إدخال محرر المعامل.
 - العبارات المتعددة باستخدام

على سبيل المثال: حل المعادلات الخطية التالية:

\[x - y + z = 2; \quad x + y - z = 0; \quad -x + y + z = 4 \]

\[MATH \]

\[1: anx + bny = cn \]
\[2: anx + bny + cmz = dn \]

\[(EQN) \] (المعادلة)
عرض الحل

بعد إدخال القيم وتسلسلها في شاشة محرر المعادلة، اضغط على لعرض حل (حلول) المعادلة.

وفي كل مرة تقوم فيها بالضغط على يتم عرض الحل التالي إذا كان هناك حل آخر. وبالضغط على أثناء عرض الحل النهائي يتم الرجوع إلى شاشة محرر المعامل.

وفي حالة المعادلات الخطية الآتية، يمكنك استخدام لتبديل العرض بين حلول القيم و .

للعودة إلى طريقة محرر المعامل:

1) اضغط على أثناء عرض أحد الحلول.
2) اضغط على أثناء عرض الحل النهائي.

تتوافق صيغة عرض الحلول مع إعدادات صيغة الإدخال/الإخراج لشاشة إعداد الحاسة.

ليس بمقدورك تحويل القيم إلى رموز هندسية أثناء عرض أحد حلول المعادلة.

عرض الحلول المتزامنة

بظهر "عدد لا نهائي من الحلول" على شاشة الحل عندما يكون حل أحد المعادلات في شكل أرقام.

ويظهر "لا يوجد حل" على شاشة الحل عند عدم الحصول على حل للمعادلة.

اضغط على ثم حدد نوع المعادلة من القائمة التي تظهر. فقذا يؤدي تغيير نوع المعادلة إلى تغيير قيمة جميع المعاملات إلى الصفر.
يتم إجراء كافة العمليات الحسابية في هذا القسم من خلال وضع (الجدول) TABLE.

إعداد دالة إنشاء جدول أرقام يقوم الإجراء أدناه بإعداد دالة إنشاء جدول الأرقام من خلال الإعدادات التالية.

الدالة: \(f(x) = \frac{1}{2}x^2 \)

قيمة البدء: 1، قيمة الإنهاء: 5، قيمة الخطوة: 1

(الجدول) TABLE

(1) اضغط على

\[f(x) = \]
(2) أدخل الدالة:

\[f(x) = x^2 + 1_\frac{1}{2} \]

(3) بعد التأكد أن الدالة أصبحت كما تريدها، اضغط على [≈]. ويعرض هذا شاشة

١

بحث قيمة البدء.

يشير هذا إلى قيمة البدء

الاقتصادية الأولية التي

هي 1.

إذا لم تكن القيمة الأولية 1، اضغط على [١] لتحديد قيمة البدء الأولية لهذا

المثال.

(4) بعد تحديد قيمة البدء، اضغط على [≈].

ويعرض هذا شاشة إدخال قيمة الإنتهاء.

٥

تحديد قيمة الإنتهاء.

(5) بعد تحديد قيمة الإنتهاء، اضغط على [≈].

ويعرض هذا شاشة إدخال قيمة الخطوة.

١

تحديد قيمة الخطوة.

لمزيد من التفاصيل حول تحديد قيم البدء والإنتهاء وقيمة الخطوة، انظر قواعد قيمة

البدء والإنتهاء والخطوة.

(6) بعد تحديد قيمة الخطوة، اضغط على [≈].

بالضغط على مفتاح AC يتم الرجوع إلى شاشة محرر الدالة.

أنواع الدوال المدعومة

• يتم احتساب جميع المتغيرات على أنها قيم باستثناء متغير القيمة X والمتغيرات

التالية المستقلة (المتغير الحالي مخصص

بمجرد المحدد أو مخزن في ذاكرة مستقلة).

• لا يمكن استخدام سوى متغير القيمة X كمتغير لأحد الدوال.
لا يمكن استخدام دوال (القطب والانحدار) التحول الإحداثي لإعداد دالة إنشاء جدول أرقام.

يرجى ملاحظة أنه ينتج عن عملية إنشاء جدول أرقام تغيير متغير القيمة X.

قواعد قيم البداية والنتيجة والقيم السليمة

- يتم استخدام الصيغة الخطية دائمًا لإدخال القيمة.
- يمكن تأكيد القيم أو مقادير العمليات الحسابية (التي يجب أن تقدم نتيجة رقمية).
- قيم البدء والإنهاء وقيمة الخطوة.
- ينتج عن تحت قيم البدء التي هي أقل من قيمة البدء خطأً ما، لذا لا يتم إنشاء جدول الأرقام.

يرجى أن تنتج قيم البدء والإنهاء وقيمة الخطوة قيم بعد أقصى 30 للقيمة X وذلك لإنشاء جدول الأرقام. ينتج عن تنفيذ إنشاء جدول أرقام باستخدام مجموعات قيمة البدء والإنهاء وقيمة الخطوة التي تقدم أكثر من 30 قيمة لـ X خطاً ما.

ملاحظة: قد تسبب دوال مفيدة ومجموعات من قيم البدء والإنهاء وقيمة الخطوة في استغراق وقت طويل لإنشاء جدول الأرقام.

شاشة جدول الأرقام

تعرض شاشة جدول الأرقام قيم X التي يتم حسابها باستخدام قيمة البدء والإنهاء المحددة $f(x)$ في الدالة.

يرجى ملاحظة أنه لا يمكن استخدام شاشة جدول الأرقام إلا لعرض القيم. وعندئذ يتعذر تحرير محتملات الجدول.

بالضغط على مفتاح [AC] يتم الرجوع إلى شاشة محرر الدالة.

تدابير وضع الجدول

يرجى ملاحظة أنه ينتج عن تغيير إعدادات صيغة الدخول/الخرج (الصيغة الرياضية أو الصيغة الخطية) من شاشة إعداد الحاسة في وضع TABLEخلاصة دالة إنشاء جدول الأرقام.

استخدام الأمر المحقق

استخدم المفتاح VERIF (التاكيد) عند الرغبة في مقارنة قيمتان والتحقق منها.

<table>
<thead>
<tr>
<th>العرض</th>
<th>المفتاح</th>
</tr>
</thead>
</table>

[MODE]

TRUE/FALSE
إدخال وتحرير

- يمكنك إدخال المقادير الجبرية التالية لتحقيق من وضع VERIFY
 أو يتطلب عمليات المسار أو التباين وجود عامل أرتباك
 أخ: \(\frac{\sqrt{16}}{4} = 4 \neq 3; \pi > 3; 1 + 2 \leq 5; (3 \times 6) \neq (2 + 6) \times 2; \)
 ب: يتطلب عمليات المسار أو التباين وجود عوامل أرتباك متعددة
 أخ: \(1 \leq 1 + 1 < 3 < \pi < 4; 2^2 = 2 + 2 = 4; 2 + 2 = 4 < 6; 2 + 3 = 5 \neq 2 + 5 = 8; \)

- تعتبر القيم والمقايد الجبرية التي تقوم بإدخالها في الشاشة هي نفسها التي تقوم
 بإدخالها في وضع COMP (حساب).

- يصل مدخل المقادير الجبرية إلى 99 بايت بما في ذلك الجانب الأيسر والأيمن
 وعوامل الارتباط.

- يتم عرض قائمة الدوال. اضغط على مفتاح الرقم بالضغط على مفتاح الدوال. اضغط على مفتاح الرقم الذي يتصل بالدالة التي تود إدخالها.

<table>
<thead>
<tr>
<th>العرض</th>
<th>المفتاح</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neq)</td>
<td>2</td>
</tr>
<tr>
<td>(>)</td>
<td>4</td>
</tr>
<tr>
<td>(\geq)</td>
<td>6</td>
</tr>
</tbody>
</table>

- في المقادير الجبرية التي ليس لها معامل ارتباط، اضغط على = وسيتم ربط
 النظام نظائياً مع =\(\frac{\pi}{2} \) كنقطة للمقادير الجبرية.

- فيما يلي العمليات الحسابية غير المدعومة:
 كما لا يمكن إدخالها

- محرر المعالج.

- يحدث نوع المقادير الجبرية التالية خطاً في التركيب:
 أ. المقادير الجبرية التي ليس لها نهاية من اليسار أو اليمين (مثال: \(\frac{7}{5} \))
 ب. المقادير الجبرية التي فيها معامل الارتباط كسر أو دالة (مثال: \(\frac{1}{2}, \cos (8 \cdot 9) \))

- ج. المقادير الجبرية التي تكون فيها معاملاً ارتباط متعددة غير موجهة في نفس
 الاتجاه (مثال: \(\frac{4}{5} \geq 6 \))

- د. المقادير الجبرية التي تكون فيها معاملاً ارتباط متعددة غير موجهة في نفس
 مجموعة (مثال: \(8 \cdot 6 = 4 \))

- إ. المقادير الجبرية التي تحتوي على اثنان من معاملاً الارتباط التالية في أي
 مجموعة (مثال: \(8 > 4 \))

- ف. المقادير الجبرية التي تحتوي على معاملاً ارتباط متتالية (مثال: \(4 \geq 5 \))
على سبيل المثال: للتأكد أن $9 + 14 > 9 + 7$ (صحيحة)

$$7 \div 9 \quad TRUE/FALSE$$

$$1 \div 3 \quad TRUE/FALSE$$

$$8 \times^{-1} =$$

على سبيل المثال: خطاً في التركيب - المقادير الجبرية التي ليس لها نهاية من اليسار أو اليمين.

$$56 > 9 \quad TRUE$$
على سبيل المثال: خطاً في التركيب - المقادير الجبرية التي تكون فيها معاملات
الارتباط بين الأقواس.

5 < (6 < 7) -> TRUE

على سبيل المثال: خطاً في التركيب.

9 # 6 = 5

false
العمليات الحسابية النسبية (نسبي)

استخدم المفتاح للدخول إلى وضع PROP (نسبي) عند الرغبة في حل أي مقدار جبرية نسبية.

في وضع PROP (نسبي)، يمكن حل قيمة X في المقدار الجبرية النسبية.

<table>
<thead>
<tr>
<th>الأصوات النسبية (نسبي)</th>
<th>المفتاح</th>
</tr>
</thead>
<tbody>
<tr>
<td>a/b = c/x</td>
<td>1: COMP 2: STAT 3: EQN 4: TABLE 5: VERIF 6: PROP</td>
</tr>
<tr>
<td>a/b = x/d</td>
<td>1: COMP 2: STAT 3: EQN 4: TABLE 5: VERIF 6: PROP</td>
</tr>
</tbody>
</table>

إدخال وتحرير معاملات

بتيح لك وضع PROP (نسبي) تحديد قيمة X في المقدار الجبرية النسبية

\(\frac{a}{b} = \frac{c}{d} \) عند معرفة قيم a و b و c و d.

- استخدم شاشة محرك المعامل لإدخال معاملات أحد المقدارين الجبرية النسبية.
- تعرض شاشة محرك المعامل خلايا الدخل لكافة المعاملات اللازمة حسب نوع المقدار الجبرية النسبية التي تم تحميتها حالياً.

قواعد إدخال المعاملات وتحريرها

- يتم إدراج البيانات التي أدخلتها في الخلية الموجودة بها مؤشر السهم. عند تسجيل الدخل في أحد الخلايا، يتحرك المؤشر إلى الخلية التالية إلى اليمين.
- تعتبر القيم والمقدار النسبية التي تقوم بإدخالها من شاشة محرك المعامل هي نفسها التي تقوم بإدخالها في وضع COMP (حساب) باستخدام الصيغة الخطية.

بالضغط على AC في الوقت الحالي.

- بعد إدخال القيمة، يرجى الضغط على AC. حيث يقوم بتسجيل القيمة التي أدخلتها ويتم عرض ستة أرقام بعد أصيص في الخلية المحددة حالياً.
- لتغيير محتويات أحد الخلايا، استخدم مفاتيح المؤشر لتحريك المؤشر إلى الخلية ثم إدخال البيانات الجديدة.

مفتاح تحويل كافة المعاملات إلى قيمة الصفر بالضغط على مفتاح AC أثناء إدخال القيم من شاشة محرك المعامل.

76
لا يدعم محرر المعامل العمليات الحسابية التالية: كما لا يمكن إدخال
والعبارات المتعددة باستخدام محرر المعامل.

على سبيل المثال: 5: $\frac{x}{2} = 1:2$

MODE 6 (PROP) (نسبي) 1

\[
\frac{a}{b} = \frac{x}{d} = 1 = 2 = 5 = \]

\[
\frac{x}{2} = 2.5 =
\]

\[
\frac{x}{5} = 5.2 = S\cdot D
\]

علي سبيل المثال: 10: $\frac{x}{2} = 1:2$

MODE 6 (PROP) (نسبي) 2

\[
\frac{a}{b} = \frac{c}{x} = 1 = 2 = 10 = 0 =
\]

\[
\frac{x}{10} = 20 =
\]

علي سبيل المثال: 12: $\frac{x}{3} = 8:3 = 3:8$

MODE 6 (PROP) (نسبي) 1

Math ERROR

\[
[AC] : \text{Cancel} \quad [\downarrow] [\uparrow] : \text{Goto}
\]

\[
\frac{a}{b} = \frac{x}{d} = 3 = M+ = =
\]

\[
\frac{x}{d} = 12 =
\]

علي سبيل المثال: 12: $\frac{x}{12} = \frac{8}{3} = 1:2$

\[
\frac{1}{\frac{8}{3}} = x = 12
\]
شاشة الحل النسبي

بعد إدخال القيم وتسجيلها من شاشة محرر المعامل، اضغط على لعرض حل المقدار الجبرية النسبي.

إلا، اضغط على أثناء عرض أحد الحلول.

ب. اضغط على أثناء عرض الحل النهائي.

تتوافق صيغة عرض الحلول مع إعدادات صيغة الإدخال/الإخراج لشاشة إعداد الحاسبة.

ليس بمقدورك تحويل القيم إلى رموز هندسية أثناء عرض أحد حلول المقدار النسبي.

اضغط على (نسمى) ثم حدد نوع المقدار الجبرية النسبي من القائمة التي تظهر. فقد يؤدي تغيير نوع المقدار الجبرية النسبي إلى تغيير قيمة جميع المعاملات إلى الصفر.

سيحدث خطأ رياضي في حالة إجراء العملية الحسابية بقيمة صفر باعتباره معامل.

على سبيل المثال:
على سبيل المثال:

```
\[
\begin{align*}
\text{MODE} & \quad 6 \quad 1 \quad 1 \quad \div \quad 4 \quad \equiv \\
& \quad 2 \quad \div \quad 3 \quad \equiv \quad 7 \quad x^{-1} \quad \equiv \\
\end{align*}
\]
```

```
[ \begin{align*}
0.25 & \quad 0.6666 & \quad 0.125 \\
\end{align*} \]
```

```
[ \begin{align*}
0.25 & \quad 0.6428 \\
\end{align*} \]
```

```
X = 
3.56
```

```
X = 
53.57142857 \times 10^8
```
المعلومات الفنية

ترتيب العمليات

تقدم الحاسبة بإجراء العمليات الحسابية من اليسار إلى اليمين حسب الترتيب التالي:
1. المقادير الجبرية داخل الأقواس.
2. الدوال خارج الأقواس: $\cos^{-1}, \sin^{-1}, \tan^{-1}, \sec^{-1}, \csc^{-1}, \cot^{-1}, \log, \ln, \exp, \sqrt{\cdot}$
3. الدوال التي تسبقاً في ومضاعفات وجزور مضاعفة، على سبيل المثال: $\cos, \sin, x^2, x^3, x^{-1}, x!, \frac{\cdot}{\cdot}$
4. الأكسور: $a/b, c/d, \ldots$
5. رمز البادئة: (-) (علامة سالب)
6. حساب القيمة الإحصائية المقدرة: $x^2, y^2, 1x^2, 2x^2$
7. عملية الضرب مع إهمال العلامه.
8. nPr, nCr, \ldots
9. $X, \div, \div R, \ldots$
10. $+, -, \ldots$

سعة الذاكرة المؤقتة

تشتمل الحاسة مساحات من الذاكرة تسمى (وحدات تخزين) للتخزين المؤقت للقيم والأوامر والدوال ذات الأولوية الأقل في العمليات الحسابية. ويتضمن 10 مستويات للذاكرة المؤقتة الرقمية، بينما يتوفر 24 مستويات للذاكرة المؤقتة للأوامر كما هو مبين بالرسم التوضيحي أدناه.

$$2 \times ((3 + 4 \times (5 + 4) \div 3) \div 5) + 8 =$$

1 1 2 3 4 3 5 6 4 7
الذاكرة المؤقتة الرقمية

<table>
<thead>
<tr>
<th>x</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>(2)</td>
</tr>
<tr>
<td>(</td>
<td>(3)</td>
</tr>
<tr>
<td>+</td>
<td>(4)</td>
</tr>
<tr>
<td>X</td>
<td>(5)</td>
</tr>
<tr>
<td>(</td>
<td>(6)</td>
</tr>
<tr>
<td>+</td>
<td>(7)</td>
</tr>
</tbody>
</table>

قد يحدث خطأ في الذاكرة المؤقتة عندما تزيد سعة إحدى الذاكرتين على الأخرى نتيجة العملية الحسابية التي يتم إجراها.

نطاق العمليات الحسابية وعدد الأرقام المستخدمة فيها ودقتها

يعتمد نطاق العملية الحسابية عدد الأرقام المستخدمة في العمليات الحسابية الداخلية، فضلاً عن الدقة على نوعية العمليات التي يتم إجراها.

<table>
<thead>
<tr>
<th>نطاق العملية الحسابية</th>
<th>عدد الأرقام المستخدمة للعمليات الحسابية الداخلية</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1×10^{-99} to ±9.999999999×10^{-99} or 0</td>
<td>15 رقمًا</td>
</tr>
</tbody>
</table>

الدقة

بصفة عامة، تكون الدقة ±1 عدد القيمة العشرة في العمليات الحسابية الفردية. أما الدقة بالنسبة للعرض الأساسي فتكون ±1 عدد القيمة الأقل قيمة مع ملاحظة تراكم الأخطاء في حالة العمليات الحسابية المتسلسلة.

نطاقات الإدخال والدقة الخاصة بالعمليات الحسابية للدوال

<table>
<thead>
<tr>
<th>نطاق الإدخال</th>
<th>الدوال</th>
<th>sin x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤</td>
<td>x</td>
<td>< 9 × 10^9</td>
</tr>
<tr>
<td>0 ≤</td>
<td>x</td>
<td>< 157079632.7</td>
</tr>
<tr>
<td>0 ≤</td>
<td>x</td>
<td>< 1 × 10^{10}</td>
</tr>
<tr>
<td>[0 \leq</td>
<td>x</td>
<td>< 9 \times 10^9]</td>
</tr>
<tr>
<td>[0 \leq</td>
<td>x</td>
<td>< 157079632.7]</td>
</tr>
<tr>
<td>[0 \leq</td>
<td>x</td>
<td>< 1 \times 10^{10}]</td>
</tr>
</tbody>
</table>

- مثل تمام اگر |\(|x| = (2n - 1) \times 90\) |
- مثل تمام اگر |\(|x| = (2n - 1) \times \frac{\pi}{2}\) |
- مثل تمام اگر |\(|x| = (2n - 1) \times 100\) |

\(0 \leq	x	\leq 1\)	\(\sin^{-1} x\)	\(\cos^{-1} x\)
\(0 \leq	x	\leq 9.999999999 \times 10^{99}\)	\(\tan^{-1} x\)	
\(0 \leq	x	\leq 230.2585092\)	\(\sinh x\)	
\(0 \leq	x	\leq 4.999999999 \times 10^{99}\)	\(\cosh x\)	
\(0 \leq	x	\leq 9.999999999 \times 10^{99}\)	\(\sinh^{-1} x\)	
\(0 \leq x \leq 4.999999999 \times 10^{99}\)	\(\cosh^{-1} x\)			
\(0 \leq	x	\leq 4.999999999 \times 10^{-1}\)	\(\tanh x\)	
\(0 \leq	x	\leq 9.999999999 \times 10^{99}\)	\(\tanh^{-1} x\)	
\(0 <	x	\leq 4.999999999 \times 10^{-1}\)	\(\log x / \ln x\)	
\(-9.999999999 \times 10^{99} \leq x \leq 99.999999999\)	\(10^x\)			
\(-9.999999999 \times 10^{99} \leq x \leq 230.2585092\)	\(e^x\)			
\(0 \leq x < 1 \times 10^{100}\)	\(\sqrt{x}\)			
\(x	< 1 \times 10^{50}\)	\(x^2\)	
\(x	< 1 \times 10^{100}; x \neq 0\)	\(1/x\)	
$	x	< 1 \times 10^{10}$	$3\sqrt{x}$		
$0 \leq x \leq 69$, x عدد صحيح	$x!$				
$0 \leq n < 1 \times 10^{10}$, $0 \leq r \leq n$ (أعداد صحيحة)	n^P_r				
$1 \leq \frac{n!}{(n-r)!} < 1 \times 10^{100}$	n^C_r				
$0 \leq n < 1 \times 10^{10}$, $0 \leq r \leq n$ (أعداد صحيحة)	$\text{Pol}(x, y)$				
$1 \leq \frac{n!}{r!(n-r)!} < 1 \times 10^{100}$	$\text{Rec}(r, \theta)$				
$	x	,	y	\leq 9.999999999 \times 10^{48}$	$\text{Rec}(r, \theta)$
$(x^2 + y^2) \leq 9.999999999 \times 10^{98}$	$\sin x$				
$0 \leq r \leq 9.999999999 \times 10^{99}$	$\sin x$				
$\text{تمامًا مثل } \theta$:	θ				
$	a	, b, c < 1 \times 10^{100}$	$0 \leq b, c$		
$0 \leq 0.1$, $0 \leq	x	\leq 999999999999$	$\sqrt{x^y}$		
$x > 0$; $-1 \times 10^{100} < y \log x < 100$	$y > 0$; $-1 \times 10^{100} < 1/y \log	x	< 100$		
$x = 0; y > 0$	$x = 0; y > 0$				
$-1 \times 10^{100} < 1/y \log	x	< 100$	$-1 \times 10^{100} < 1/y \log	x	< 100$
$(أعداد صحيحة)$	$(أعداد صحيحة)$				
$x < 0; y = n, \frac{m}{2n+1}$ (أعداد صحيحة)	$y > 0; x = 2n + 1, \frac{2n+1}{m}$ (أعداد صحيحة)				
$y < 0; x = 2n + 1, \frac{2n+1}{m}$ (أعداد صحيحة)	$y < 0; x = 2n + 1, \frac{2n+1}{m}$ (أعداد صحيحة)				
ومع ذلك، فإن $100 <	x	< 100$	ومع ذلك، فإن $100 <	x	< 100$
يجب أن يكون إجمالي عدد الأرقام الصحيحة والبسط والمقام هو 10	يجب أن يكون إجمالي عدد الأرقام الصحيحة والبسط والمقام هو 10				
$a \ b/c$	GCD				
تشبه الدقة إلى حد كبير ما هو وارد تحت عنوان "نطاق العملية الحسابية ودقتها" المذكور سابقًا. عمليات حسابية داخلية A^y, \sqrt{y}, $\sqrt[3]{r}$, x^k, nPr, nCr متسلسلة، مما قد يتسبب في تراكم الأخطاء التي تحدث مع كل عملية حسابية. تتراكم الأخطاء وتبدو كبيرة مقارنة بالنقطة الفردية للدالة ونقطة انتقال إحدى الدوال.

رسائل الخطأ

ستعرض الحاسة رسالة خطأ عند زيادة النتيجة عن نطاق العملية الحسابية، أو عند محاولة إدخال مدخل غير مسموح به، أو عند حدوث أية مشكلة أخرى مشابهة.

أينما يلي بعض الإجراءات العامة التي يمكنك القيام بها عند ظهور أية رسالة خطأ.

1. بالضغط على [] أو [] يتم عرض شاشة تحرير المقادير الجبرية للعملية الحسابية التي كانت تستخدمها قبل ظهور رسالة الخطأ، حيث يركز المؤشر على موقع الخطأ. لمزيد من المعلومات، انظر "عرض موقع الخطأ".

2. بالضغط على [AC] يتم مسح المقادير الجبرية التي كانت تستخدمها قبل ظهور رسالة الخطأ، وبمكانتها إزالة إدخال وإعادة تنفيذ العملية الحسابية إذا كانت ترغب في ذلك. لاحظ أنه في تلك الحالة، لن يتم الاحتفاظ بالعملية الحسابية الأصلية في سجل الذاكرة الخاص بالعمليات الحسابية.

خطأ في العملية الحسابية

1. تجاوز نتائج عملية الحسابية المتوسطة أو النهائية التي تقوم بإجرائها نطاق العمليات الحسابية المسموح بها.

2. تجاوز المدخل نطاق الإدخال المسموح به (خاصة عند استخدام الدوال).

3. الاحتفاظ العملية الحسابية التي تجريها على عمليات حسابية غير صحية (مثل القسمة على صفر).
الإجراء
• التأكد من قيم الإدخال وتقليل عدد الأرقام ثم إعادة المحاولة.
• عند استخدام ذاكرة مستقلة أو متغيرة كمعامل دالة، تأكد أن الذاكرة أو القيمة المتغيرة ضمن النطاق المسموح به للدالة.

خطأ في الذاكرة المؤقتة

السبب
• تجاوز العملية الحسابية التي تجريها سعة الذاكرة المؤقتة الخاصة بالأرقام أو الأوامر.

الإجراء
• قم بتبسيع المقادير الجبرية للعملية الحسابية حتى لا تتجاوز سعة الذاكرة المؤقتة.
• حاول تقسيم العمليات الحسابية إلى جزئين أو أكثر.

خطأ في التركيب

السبب
• وجود مشكلة في صيغة العملية الحسابية التي تجريها.

الإجراء
• عمل التصحيحات اللازمة.

خطأ عدم كفاية الذاكرة

السبب
• لا توجد ذاكرة كافية لتنفيذ العملية الحسابية.

الإجراء
• قم بتضييق نطاق العملية الحسابية بالجدول من خلال تغيير قيمة البدء والإنهاء والخطوة، ثم أعد المحاولة مرة أخرى.

قبل افتراض الخلل الوظيفي للحاسبة

قم بإجراء الخطوات التالية عند ظهور خطأ أثناء إجراء العملية الحسابية أو عند خروج نتائج غير متوقعة للعملية الحسابية. وإذا لم يتم إصلاح المشكلة من خلال خطوة معينة، انتقل إلى الخطوة التي تليها.
لاحتظ أنه ينبغي عمل نسخ منفصلة للبيانات المهمة قبل إجراء تلك الخطوات.
1. قد يفحص المقادير الجبرية للعملية الحسابية للتأكد من عدم احتوائها على أي خطأ.
2. تأكد من استخدام الوضع المناسب ل نوعية العملية الحسابية التي تحاول إجرائها.
3. إذا تم تسجيل الخطوات السابقة عن إصلاح المشكلة، اضغط على مفتاح %.
4. مما سيعمل الحاسة تقوم روتينًا يفحص وظائف العمليات الحسابية والتاكيد من عملها على نحو سليم.

وفي حالة اكتشاف الحاسة أية أومر غير طبيعي، فإنها تقوم تلقائيًا بتهيئة وضع العملية الحسابية ومسح محتويات الذاكرة.

لمزيد من التفاصيل حول إعدادات التهيئة، يرجى الرجوع إلى "تهيئة وضع العملية الحسابية والإعدادات الأخرى للحاسة".

5. قم بتهيئة جميع الأوضاع والإعدادات للإجراء العمليات التالية:

المراجع

مططلبات الطاقة واستبدال البطارية

تُطلَب الحاسة بالطاقة الشمسية وبطارية (LR44) الاحتياطية.

استبدال البطارية

عندما تعرض شاشة الحاسة أرقام غير واضحة، فإن ذلك يشير إلى انخفاض مستوى طاقة البطارية. مع ملاحظة أنه ربما يؤدي استمرار استخدام الحاسة عند انخفاض طاقة البطارية إلى تشغيلها على نحو غير سليم. ومن ثم يجب استبدال البطارية في أقرب وقت ممكن بعد ملاحظة عدم وضوح الأرقام على شاشة الحاسة. ومع ذلك فإنه يوصي باستبدال البطارية على الأقل مرة كل عامين حتى في حالة عمل الحاسة بشكل طبيعي.

هذا: يتم مسح محتويات الذاكرة المستقلة والقيم المحددة للتغييرات عند إزالة البطارية من الحاسة.

(1) اضغط على (إيقاف التشغيل) (OFF) (AC) (SHIFT)
(3) أدخل بطارية جديدة في الحاسة مع توجيه قطبيها الموجب + والسلب − على النحو الصحيح.
(4) أعد غطاء البطارية إلى مكانه.
(5) قم بإجراء عملية التشغيل الأساسية التالية:

| ON | SHIFT | 9 (CLR) | (الكل) (All) (Yes) |

تأكد من إجراء عملية التشغيل الأساسية.

إيقاف التشغيل التلقائي

في حالة عدم إجراء أية عملية حسابية لمدة ثماني دقائق، سيتم إيقاف الحاسة تلقائيا.
وفي حالة حدوث ذلك، اضغط على المفتاح ON لتشغيل الحاسة مرة ثانية.

المواصفات

متطلبات الطاقة

بطارية: (LR44)

عام واحد (في حالة استخدامها لمدة ساعة يوميًا)

درجة حرارة التشغيل: من 0 إلى 40 درجة منوية

العناصر المرفقة: حاوية صلبة
الإشعارات التنظيمية

الإشعار التنظيمي للاتحاد الأوروبي

المنتجات التي تمتلك علامات المطابقة للجودة الأوروبية CE مع توجيهات الاتحاد الأوروبي التالية:

- توجيه الجهد الكهربائي المنخفض: EC/2006/95
- زوجية رقم 108 EMC
- توجيه التصميم البيئي رقم 2009/125 EC، إن وجد
- Zوجية رقم 65 RoHS

التوافق مع الجودة الأوروبية CE بالنسبة لهذا المنتج صارخًا إذا كان محور التيار المتردد المتوفأ من قبل HP مزودًا بالعلامة الصحية لمطابقة الجودة الأوروبية CE يتضمن الإمتثال لهذه التوجيهات التوافق مع المعايير الأوروبية التوافقية المعمول بها HP (المبادئ الأولية) والمدرجة في إعلان توافق الاتحاد الأوروبي الصادر عن لهذا المنتج أو علامة المنتج المتوفأ (باللغة الإنجليزية فقط) إما في وثائق المنتج أو (أكتب رقم المنتج في حقل www.hp.eu/certificates) على موقع الويب التالي:

المحتوى:

يرجى الرجوع إلى ملخص البيانات التنظيمية المتوفأ على المنتج.

 نقطة الاتصال بشأن الأمور التنظيمية هي:

Hewlett-Packard GmbH, Dept./MS: HQ-TRE, Herrenberger Strasse 140, 71034 Boeblingen, GERMANY.

إشعار ياباني

الجهاز هو جهاز من نوع B تكنولوجيا ب. هذا الجهاز، يمكن أن يستخدم في الأوضاع الكهربائية ب والفصيلة B ب. هذه الأجهزة تستخدم في الأوضاع الكهربائية B، وتشمل الأجهزة الكهربائية B.
مادة البيركلورات – يتم التعامل معها بعناية خاصة

يمكن أن تحتوي بطارية الذاكرة الاحتفالية بهذه الآلة الحاسة على البيركلورات وتحتاج إلى تعامل خاص عند إعادة تدويرها أو التخلص منها في ولاية كاليفورنيا.

التخلص من نفايات الأجهزة التالية بواسطة المستخدمين في

النفايات المنزلية الخاصة بالاتحاد الأوروبي

المواد الكيميائية

تلتزم شركة HP بتقديم المعلومات اللازمة لعملائها حول المواد الكيميائية التي تحتوي عليها منتجاتها حسب الحاجة للالتزام بالمتطلبات القانونية مثل لائحة REACH الصادرة عن البرلمان والمجلس الأوروبيين. يمكن العثور على تقرير المعلومات الكيميائية لهذا المنتج على الموقع .www.hp.com/go/reach

 التنظيم الصيني لتقييد المواد الخطرة (RoHS)

<table>
<thead>
<tr>
<th>جزء</th>
<th>مniest (Cd)</th>
<th>مبي (Hg)</th>
<th>مكسي (Pb)</th>
<th>ألك (As)</th>
<th>بيب (PBB)</th>
<th>بيب (PBDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O: يشير إلى قيود المواد الخطرة التي تجدها في جزء معين من المنتج.

X: يشير إلى أن المنتج لا يحتوي على المواد الخطرة المذكورة.

(RoHS)