Calculatrice graphique HP 39gII
guide de l’utilisateur

Édition 2
Référence NW249-90003
Sommaire

Conventions du manuel ... a
Avis .. b

1 Pour commencer
Allumer/éteindre, annuler une opération 1
Ecran .. 2
Clavier ... 4
Menus .. 9
Formulaires de saisie ... 10
Paramètres des modes .. 11
Définition d’un mode .. 13
Calculs mathématiques .. 14
Représentations numériques .. 20
Nombres complexes ... 21
Catalogues et éditeurs ... 22

2 Applications et vues des applications
Applications HP ... 25
 Bibliothèque d’applications .. 27
 Vues des applications ... 27
Vues d’application standard ... 30
 Présentation de la vue symbolique ... 30
 Définition d’une expression (vue symbolique) 30
 Evaluation d’expressions .. 32
 A propos de la vue graphique ... 34
 Configuration de tracé ... 35
 Exploration du graphique ... 37
 Présentation de la vue numérique .. 46
 Configuration du tableau (configuration de la vue numérique) 46
 Exploration du tableau de chiffres ... 48
 Création de votre propre tableau de chiffres 49
 Touches du tableau BuildYourOwn .. 50

3 Application Fonction
Présentation de l’application Fonction 53
 Présentation de l’application Fonction 53
 Analyse interactive de l’application Fonction 58

4 Application Résoudre
A propos de l’application Résoudre ... 65
<table>
<thead>
<tr>
<th>Sommaire</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présentation de l’application Résoudre</td>
<td>66</td>
</tr>
<tr>
<td>Interprétation des résultats</td>
<td>70</td>
</tr>
<tr>
<td>Plusieurs solutions</td>
<td>72</td>
</tr>
<tr>
<td>Utilisation de variables dans les équations</td>
<td>73</td>
</tr>
<tr>
<td>5 Application Statistiques 1Var</td>
<td></td>
</tr>
<tr>
<td>Présentation de l’application Statistiques 1Var</td>
<td>75</td>
</tr>
<tr>
<td>Présentation de l’application Statistiques 1Var</td>
<td>75</td>
</tr>
<tr>
<td>Saisie et modification de données statistiques</td>
<td>79</td>
</tr>
<tr>
<td>Statistiques calculées</td>
<td>82</td>
</tr>
<tr>
<td>Tracé</td>
<td>83</td>
</tr>
<tr>
<td>Types de tracé</td>
<td>84</td>
</tr>
<tr>
<td>Configuration du tracé (vue Configuration du tracé)</td>
<td>85</td>
</tr>
<tr>
<td>Exploration du graphique</td>
<td>86</td>
</tr>
<tr>
<td>6 Application Statistiques 2Var</td>
<td></td>
</tr>
<tr>
<td>Présentation de l’application Statistiques 2Var</td>
<td>87</td>
</tr>
<tr>
<td>Découverte de l’application Statistiques 2Var</td>
<td>87</td>
</tr>
<tr>
<td>Saisie et modification de données statistiques</td>
<td>91</td>
</tr>
<tr>
<td>Définition d’un modèle de régression</td>
<td>94</td>
</tr>
<tr>
<td>Statistiques calculées</td>
<td>96</td>
</tr>
<tr>
<td>Tracé</td>
<td>98</td>
</tr>
<tr>
<td>Configuration de tracé</td>
<td>100</td>
</tr>
<tr>
<td>Résolution d’un problème de tracé</td>
<td>100</td>
</tr>
<tr>
<td>Calcul de valeurs prévues</td>
<td>102</td>
</tr>
<tr>
<td>7 Application Inférence</td>
<td></td>
</tr>
<tr>
<td>A propos de l’application Inférence</td>
<td>103</td>
</tr>
<tr>
<td>Présentation de l’application Inférence</td>
<td>103</td>
</tr>
<tr>
<td>Importation de statistiques échantillon</td>
<td>106</td>
</tr>
<tr>
<td>Tests d’hypothèses</td>
<td>110</td>
</tr>
<tr>
<td>Test Z sur un échantillon</td>
<td>110</td>
</tr>
<tr>
<td>Test Z sur deux échantillons</td>
<td>111</td>
</tr>
<tr>
<td>Test Z sur une proportion</td>
<td>112</td>
</tr>
<tr>
<td>Test Z sur deux proportions</td>
<td>113</td>
</tr>
<tr>
<td>Test T sur un échantillon</td>
<td>115</td>
</tr>
<tr>
<td>Test T sur deux échantillons</td>
<td>116</td>
</tr>
<tr>
<td>Intervalle de confiance</td>
<td>117</td>
</tr>
<tr>
<td>Intervalle Z sur un échantillon</td>
<td>117</td>
</tr>
<tr>
<td>Intervalle Z sur deux échantillons</td>
<td>118</td>
</tr>
<tr>
<td>Intervalle Z sur une proportion</td>
<td>119</td>
</tr>
<tr>
<td>Intervalle Z sur deux proportions</td>
<td>120</td>
</tr>
<tr>
<td>Intervalle T sur un échantillon</td>
<td>120</td>
</tr>
</tbody>
</table>
Sommaire

8 Application Paramétrique
A propos de l’application Paramétrique .. 123
Présentation de l’application Paramétrique 123

9 Application Polaire
A propos de l’application Polaire .. 127
Présentation de l’application Polaire ... 127

10 Application Suite
A propos de l’application Suite ... 131
Présentation de l’application Suite ... 131

11 Application Finance
A propos de l’application Finance .. 135
Présentation de l’application Finance ... 135
Schémas de flux financiers .. 137
Valeur temporelle de l’argent (TVM) .. 138
Calculs TVM .. 139
Calcul d’amortissements ... 141

12 Application Solveur d’équation linéaire
A propos de l’application Solveur d’équation linéaire 143
Présentation de l’application Solveur d’équation linéaire 143

13 Application Solveur de triangle
A propos de de l’application Solveur de triangle 147
Présentation de l’application Solveur de triangle 147

14 Applications de type Explorateur
Application Explorateur linéaire ... 151
Application Explorateur quadratique .. 152
Application Explorateur trigo .. 154

15 Extension de votre bibliothèque d’applications
Création de nouvelles applications basées sur des applications existantes .. 157
Réinitialisation d’une application .. 159
Annotation d’une application ... 159
Envoi et réception d’applications .. 159
Gestion des applications ... 160

16 Utilisation des fonctions mathématiques
Fonctions mathématiques .. 161
17 Listes
Introduction ..191
Créer une liste dans le catalogue de listes192
 Éditeur de listes ..193
Suppression de listes..195
Listes dans la vue Home ...195
 Fonctions de listes..196
 Recherche de valeurs statistiques pour des listes200

18 Matrices
Introduction ..203
Création et stockage de matrices...204
 Utilisation des matrices ...205
 Arithmétique de matrice ...208
 Résolution de systèmes d’équations linéaires211
 Fonctions et commandes de matrice213
 Conventions relatives aux arguments214
 Fonctions de matrice ...214

19 Notes et informations
Le catalogue de notes ..219
20 Variables et gestion de la mémoire

- Introduction .. 227
- Stockage et rappel de variables.. 228
- Menu Vars ... 230
- Variables de la vue Home.. 234
- Gestionnaire de mémoire... 236

21 Programmation

- Introduction .. 239
- Catalogue des programmes... 241
- Création d’un nouveau programme Home 243
- Editeur de programmes ... 244
- Langage de programmation de la calculatrice HP 39gII 255
- Programmes d’application .. 261
- Commandes de programmation 268
- Variables et programmes ... 294
- Fonctions d’application ... 318

22 Informations de référence

- Glossaire ... 329
- Réinitialisation de la calculatrice HP 39gII.............................. 331
 - Pour effacer toute la mémoire et réinitialiser les valeurs par défaut 331
 - Si la calculatrice ne s’allume pas 332
 - Piles .. 332
- Informations de fonctionnement ... 333
- Variables ... 334
 - Variables de la vue Home ... 334
- Variables d’application .. 335
 - Variables de l’application Fonction................................. 335
 - Variables de l’application Résoudre 335
 - Variables de l’application Statistiques 1Var 336
 - Variables de l’application Statistiques 2Var 337
 - Variables de l’application Inférence 338
 - Variables de l’application Paramétrique 338
 - Variables de l’application Polaire 339
 - Variables de l’application Suite 340
 - Variables de l’application Finance 340
 - Variables de l’application Solveur d’équation linéaire 341
 - Variables de l’application Solveur de triangle 341
 - Variables de l’application Explorateur linéaire 341
 - Variables de l’application Explorateur quadratique 342
 - Variables de l’application Explorateur trigo. 342
Fonctions et commandes .. 343
Fonctions du menu Math ... 343
Fonctions des applications ... 345
Commandes des programmes .. 346
Constantes ... 347
Constantes des programmes ... 347
Constantes physiques .. 348
Messages d’état ... 349

23 Annexe : Informations relatives à la réglementation produit
Avis de la FCC (Federal Communications Commission) i
Avis de conformité de l’Union européenne iii
Préface

Conventions du manuel

Ce manuel utilise les conventions suivantes pour représenter les touches sur lesquelles vous pouvez appuyer et les options de menu que vous pouvez sélectionner pour réaliser les opérations décrites.

• Les pressions sur les touches sont représentées de la manière suivante :

 SIN, COS, etc.

• Les touches préfixes, c'est-à-dire les fonctions clés auxquelles vous pouvez accéder en appuyant d'abord sur la touche, sont représentées de la manière suivante :

 CLEAR, MODES, ACOS, etc.

• Les nombres et lettres sont représentés de manière classique :

 5, 7, A, B, etc.

• Les options de menu, c'est-à-dire les fonctions que vous sélectionnez à l'aide des touches de menu situées en haut du clavier, sont représentées de la manière suivante :

 STOP, ANNUL, OK.

• Les champs du formulaire de saisie et les éléments de liste sont représentés de la manière suivante :

 Fonction, Polaire, Paramétrique

• Vos entrées, telles qu'elles apparaissent dans la ligne de commande ou dans les formulaires de saisie, sont représentées de la manière suivante :

 2 *X^2 - 3X + 5
 Préface

Avis

Ce manuel et tous les exemples qu’il contient sont fournis en l’état et sont sujets à modification sans préavis. Sauf dans la mesure interdite par la loi, Hewlett-Packard Company n’émet aucune garantie expresse ou implicite en ce qui concerne ce manuel et décline en particulier les garanties et conditions implicites de valeur marchande et d’adéquation à une fin particulière. Hewlett-Packard Company décline toute responsabilité en cas d’erreur ou de dommage fortuit ou consécutif résultant de la mise à disposition ou de l’utilisation de ce manuel, ainsi que des exemples y figurant.

Les programmes utilisés par la calculatrice HP 39gII sont protégés par copyright et tous les droits sont réservés. La reproduction, l’adaptation ou la traduction de ces programmes sans autorisation écrite préalable de Hewlett-Packard Company est également interdite.

Pour plus d’informations sur la garantie matérielle, veuillez consulter le manuel de prise en main de la calculatrice HP 39gII.

Pour plus d’informations sur la réglementation produit ou environnementale, veuillez consulter le manuel de prise en main de la calculatrice HP 39gII.
Pour commencer

Allumer/éteindre, annuler une opération

Pour allumer

Appuyez sur ON/C pour allumer la calculatrice.

Pour annuler

Lorsque la calculatrice est allumée, la touche ON/C permet d’annuler l’opération en cours.

Pour éteindre

Appuyez sur OFF pour éteindre la calculatrice.

À des fins d’économie d’énergie, la calculatrice s’éteint automatiquement après quelques minutes d’inactivité. Toutes les informations stockées et affichées sont enregistrées.

L’indicateur IIII apparaît lorsque les piles de la calculatrice doivent être remplacées.

Vue Home

Home est la vue d’accueil de la calculatrice. Elle est commune à toutes les applications. Si vous souhaitez effectuer des calculs ou arrêter l’activité en cours (application, programme ou éditeur, par exemple), appuyez sur HOME. Toutes les fonctions mathématiques sont accessibles depuis la vue Home. Le nom de l’application actuelle apparaît dans le titre de la vue Home.

Couvercle protecteur

La calculatrice est équipée d’un couvercle coulissant pour protéger l’écran et le clavier. Retirez le couvercle en le saisissant par les deux extrémités et faites-le glisser vers le bas.

Vous pouvez renverser le couvercle coulissant et le faire glisser sur le dos de la calculatrice afin de ne pas le perdre durant l’utilisation de la calculatrice.

Pour prolonger la durée de vie de la calculatrice, replacez toujours le couvercle sur l’écran et le clavier quand vous n’utilisez pas la calculatrice.
Ecran

Pour régler le contraste

Pour régler le contraste, appuyez sur la touche ON/C en la maintenant enfoncée, puis appuyez sur les touches $\text{[+} \text{] ou [−]}$ pour augmenter ou réduire le contraste. Chaque pression sur la touche $\text{[+} \text{] ou [−]}$ modifie le contraste.

Pour effacer le contenu de l’écran

- Appuyez sur la touche CANCEL pour effacer la ligne de saisie.
- Appuyez une fois sur S/CLR pour effacer la ligne de saisie active, puis appuyez de nouveau pour effacer l’historique de l’écran.

Différentes parties de l’écran

Libellés des touches de menu. Les touches de la rangée supérieure (touches F1 à F6) du clavier de la calculatrice HP 39gII sont les touches de menu. Elles permettent d’accéder aux éléments de menu qui apparaissent en bas de l’écran. STO est le libellé de la première touche de menu de la figure ci-dessus. « Appuyez sur STO » signifie : appuyez sur la touche de menu F1.

Ligne de saisie. La ligne de la saisie en cours.

Historique. L’écran Home (Home) peut afficher jusqu’à 6 lignes d’historique : les opérations et les résultats les plus récents. Les lignes plus anciennes sortent de l’écran mais sont conservées en mémoire.

Titre. Le nom de l’application en cours s’affiche en haut de la vue Home. RAD ou DEG spécifie si le mode de mesure d’angle actuel est Radians ou Degrés. Les symboles \downarrow et \uparrow indiquent que des lignes d’historique sont disponibles dans l’affichage. Les touches \downarrow et \uparrow permettent de parcourir ces lignes.
Annonciateurs. Les annonciateurs sont des symboles qui apparaissent au-dessus de la barre de titre et fournissent des informations importantes sur l’état de la calculatrice.

<table>
<thead>
<tr>
<th>Annonciateur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Pour activer, appuyez sur [SUPR]. Préfixe activé pour la prochaine frappe. Pour annuler, appuyez de nouveau sur [SUPR].</td>
</tr>
<tr>
<td>🔖</td>
<td>Pour activer, appuyez sur [S]. Alpha activé pour la prochaine frappe. Pour verrouiller, appuyez de nouveau sur [S]. Pour annuler, appuyez une troisième fois sur [S].</td>
</tr>
<tr>
<td>🗞️</td>
<td>Pour activer, appuyez sur [A]. Alphabet en minuscules activé pour la prochaine frappe. Pour verrouiller, appuyez de nouveau sur [A]. Pour annuler, appuyez une troisième fois sur [A]. Pour passer en majuscules, appuyez sur [SUPR].</td>
</tr>
<tr>
<td>🍂</td>
<td>Piles faibles.</td>
</tr>
<tr>
<td>💻</td>
<td>Occupé.</td>
</tr>
<tr>
<td>🔄∥∥∥</td>
<td>En train de transférer des données par câble.</td>
</tr>
</tbody>
</table>
Clavier

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Fonction</th>
<th>HP 39gII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Écran 256 x 128 pixels</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Menu contextuel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Touches de menu F1 à F6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Touches d’applications HP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Modes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fonctions mathématiques et scientifiques courantes</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Touches préfixes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>On (cancel)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dernière réponse (ANS)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Touche Entrée</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Entrée alphabétique</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Catalogues et éditeurs</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Retour arrière (Effacer)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Touche d’aide</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Touches de curseur</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Connectivité USB</td>
<td></td>
</tr>
</tbody>
</table>

Touches de menu

- Les touches de la rangée supérieure du clavier (F1 à F16) sont les touches de menu. Leurs fonctions dépendent du contexte, c’est-à-dire de la vue dans laquelle vous vous trouvez.
- La ligne inférieure de l’affichage contient les libellés des fonctions actuelles des touches de menu.
Touches de contrôle d’applications

Les touches de contrôle d’applications sont les suivantes:

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>🕵️‍♀️</td>
<td>Affiche la vue symbolique de l’application actuelle.</td>
</tr>
<tr>
<td>🕵️‍♂️</td>
<td>Affiche la vue graphique de l’application actuelle.</td>
</tr>
<tr>
<td>🕵️‍♂️</td>
<td>Affiche la vue numérique de l’application actuelle.</td>
</tr>
<tr>
<td>🕵️‍♂️</td>
<td>Affiche la vue Home, pour l’exécution de calculs.</td>
</tr>
<tr>
<td>🕵️‍♀️</td>
<td>Affiche le menu Bibliothèque d’applications.</td>
</tr>
<tr>
<td>🕵️‍♀️</td>
<td>Affiche le menu VIEWS.</td>
</tr>
</tbody>
</table>

Touches de saisie et de modification

Les touches de saisie et de modification sont les suivantes:

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>🕵️‍♀️</td>
<td>Lorsque la calculatrice est allumée, la touche 🕵️‍♀️ permet d’annuler l’opération en cours. Pour éteindre la calculatrice, appuyez sur 🕵️‍♀️, puis sur OFF.</td>
</tr>
<tr>
<td>🕵️‍♀️</td>
<td>Permet d’accéder à la fonction inscrite dans le coin inférieur gauche d’une touche.</td>
</tr>
<tr>
<td>🕵️‍♀️</td>
<td>Permet d’accéder aux caractères alphabétiques inscrits dans le coin inférieur droit d’une touche. Appuyez deux fois sur 🕵️‍♀️ pour verrouiller ce préfixe et saisir une chaîne de caractères.</td>
</tr>
<tr>
<td>Touche</td>
<td>Fonction (Suite)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ENTER</td>
<td>Valide une entrée ou exécute une opération. Dans un calcul, agit comme « = ». Lorsque ON ou START apparaît comme une touche de menu, la fonction de ENTER est identique à celle de ON ou START.</td>
</tr>
<tr>
<td>–</td>
<td>Permet d’entrer un nombre négatif. Pour entrer –25, appuyez sur –25. Remarque : cette opération est différente de la soustraction (touche w).</td>
</tr>
<tr>
<td>X, T, θ, N</td>
<td>Commence la variable indépendante en insérant X, T, θ ou N dans la ligne de saisie, selon l’application active.</td>
</tr>
<tr>
<td>←</td>
<td>Retour arrière. Supprime le caractère se trouvant à gauche du curseur.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Efface toutes les données affichées. Sur un écran de configuration, par exemple Configuration graphique, CLEAR restaure tous les paramètres par défaut.</td>
</tr>
<tr>
<td></td>
<td>Déplace le curseur sur l’écran. Appuyez d’abord sur ↑ puis sur l’une de ces touches pour déplacer le curseur jusqu’au début, à la fin, en haut ou en bas.</td>
</tr>
<tr>
<td>CHAR</td>
<td>Affiche un menu contenant tous les caractères disponibles. Pour en saisir un, mettez-le en surbrillance à l’aide des touches de direction, puis appuyez sur OK. Pour en saisir plusieurs, sélectionnez chaque caractère, puis appuyez sur OK et sur OK.</td>
</tr>
</tbody>
</table>
Touches préfixées

Deux touches préfixées permettent d'accéder aux opérations et aux caractères inscrits au bas des touches :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Appuyez sur S pour accéder aux opérations inscrites au bas (ou en bas à gauche) d'une touche. Par exemple, pour accéder au formulaire de saisie Modes, appuyez sur S, puis sur S (Modes étant inscrit au bas de la touche Home).</td>
</tr>
<tr>
<td>A</td>
<td>Appuyez sur la touche A pour accéder aux caractères alphabétiques inscrits dans le coin inférieur droit d'une touche. Par exemple, pour entrer Z, appuyez sur A, puis sur S (Z étant inscrit dans le coin inférieur droit de la touche S). Pour entrer une lettre minuscule, appuyez sur A, puis sur S. Pour entrer plusieurs lettres, appuyez sur A une deuxième fois pour verrouiller le préfixe Alpha.</td>
</tr>
</tbody>
</table>

Aide

Appuyez sur **ALPHA (Help)** pour accéder au système d'aide intégré de la calculatrice HP 39gII. Le système d'aide s'ouvre systématiquement dans le contexte ou la vue en cours et fournit des informations sur cette dernière et sur ses éléments de menu. Une fois dans le système d'aide, vous avez la possibilité de parcourir les autres rubriques et d'obtenir de l'assistance sur une vue ou une commande.

Exemple :

Appuyez sur **ALPHA (Help)** et selectionnez Fonction. Appuyez sur **ALPHA (Help)** pour obtenir de l'aide sur l’utilité de l’application Fonction.
Home (Home) est l’environnement dans lequel les calculs s’effectuent.

Touches du clavier. Les opérations les plus courantes sont accessibles à partir du clavier, notamment les fonctions arithmétiques (+ par exemple) et trigonométriques (π par exemple). Pour exécuter une opération, appuyez sur : le résultat de l’opération est 16.

Menu Math. Appuyez sur pour ouvrir le menu Math. Le menu Math affiche la liste de toutes les opérations mathématiques n’apparaissant pas sur le clavier. Il comprend également des catégories incluant l’ensemble des autres fonctions et constantes. Les fonctions sont regroupées par catégories, elles-mêmes classées par ordre alphabétique de Calcul à Trigonométrie.

- Utilisez les touches de direction haut et bas pour faire défiler la liste. Utilisez les touches de direction gauche et droite pour passer des colonnes de catégories à leurs contenus.
- Appuyez sur OK pour insérer la commande sélectionnée dans la ligne de saisie à la position du curseur.
- Appuyez sur pour quitter le menu Math sans sélectionner de commande.
- Appuyez sur UNITES pour attribuer des unités à un nombre de la ligne de saisie.
- Appuyez sur PHYS pour afficher un menu comprenant les constantes physiques des domaines de la chimie, de la physique et de la mécanique quantique. Ces constantes peuvent être utilisées dans les calculs.
- Appuyez sur MATH pour revenir au menu Math.

Consultez le chapitre **Utilisation des fonctions mathématiques** pour en savoir plus.
CONSEIL

Par souci de commodité, les catégories et les éléments sont numérotés dans le menu Math ainsi que dans tous les autres menus de la calculatrice HP 39gII. Par exemple, \texttt{ITERATE} est le premier élément de \texttt{Boucle}, qui est la huitième catégorie. Dans le menu Math, appuyez sur \texttt{1 B} pour insérer la fonction \texttt{ITERATE} dans la ligne de saisie à la position du curseur. Lorsqu'une catégorie contient plus de 9 éléments, les lettres A, B, C, etc. sont utilisées. Par exemple, la catégorie Matrice utilise le nombre 8. Dans cette catégorie, la commande \texttt{RREF} utilise la lettre H. Dans le menu Math, appuyez sur \texttt{1 9} pour insérer la commande \texttt{RREF} dans la ligne de saisie. Il n'est pas nécessaire d'appuyer sur \texttt{A} pour accéder à la lettre désirée.

Commandes de programmation

Appuyez sur \texttt{CMDS} pour afficher la liste des commandes de programmation. Pour plus d'informations, reportez-vous au chapitre \textit{Programmation}.

Touches inactives

Si vous appuyez sur une touche ne fonctionnant pas dans le contexte en cours, le symbole d'avertissement \texttt{\textasciitilde} apparaît. Aucun signal sonore n'est émis.

Menus

Un menu vous permet de choisir entre plusieurs éléments. Les menus se composent d'une à trois colonnes.

- La flèche \texttt{\textasciidiagonalarrowdown} indique que d'autres éléments sont disponibles plus bas.
- La flèche \texttt{\textasciidiagonalarrowup} indique que d'autres éléments sont disponibles plus haut.

Trouver un menu

- Appuyez sur \texttt{\textasciidiagonalarrowleft} ou sur \texttt{\textasciidiagonalarrowright} pour faire défiler la liste. Il est possible d'accéder directement au début ou à la fin d'une liste en appuyant sur \texttt{\textasciidiagonalarrowleft} ou sur \texttt{\textasciidiagonalarrowright}. Après avoir mis l'élément désiré en surbrillance, appuyez sur \texttt{OK} (ou sur \texttt{\textasciitilde\textasciitilde\textasciitilde}).
• Si deux colonnes sont disponibles, la colonne de gauche affiche les catégories générales, tandis que celle de droite affiche leurs contenus respectifs. Mettez une catégorie générale de la colonne de gauche en surbrillance, puis mettez en surbrillance un élément de la colonne de droite. La liste de la colonne de droite est modifiée lorsqu’une autre catégorie est mise en surbrillance.

• Si trois colonnes sont disponibles, la colonne de gauche affiche une catégorie générale, tandis que la deuxième colonne affiche une sous-catégorie pertinente. Mettez une catégorie générale en surbrillance, puis faites de même avec la sous-catégorie qui vous intéresse. Enfin, sélectionnez un élément dans la troisième colonne.

• Pour accéder rapidement à un élément d’une liste, entrez le numéro ou la lettre de la catégorie, puis le numéro ou la lettre de l’élément désiré. Par exemple, pour trouver la catégorie liste dans [catégorie], appuyez sur [lettre numéro].

Pour sortir d'un menu

Formulaires de saisie

Un formulaire de saisie présente différents champs d’informations à examiner et à spécifier. Après avoir mise en surbrillance le champ à modifier, il est possible de saisir ou de modifier un nombre (ou une expression). Vous pouvez également sélectionner les options à partir d’une liste (). Certains formulaires de saisie comprennent des éléments à cocher (). Des exemples de formulaires de saisie sont disponibles ci-dessous.

Restaurer les formulaires de saisie par défaut
Pour restaurer les valeurs par défaut d’un formulaire de saisie, placez le curseur sur un champ, puis appuyez sur [C]. Pour restaurer toutes les valeurs par défaut du formulaire de saisie, appuyez sur [CLEAR].
Paramètres des modes

Le formulaire de saisie Modes permet de définir les modes de l'écran Home.

Conseil

Alors que le paramètre numérique de Modes a une incidence sur Home uniquement, le paramètre d’angle affecte l’écran Home ainsi que l’application en cours. Le paramètre d’angle sélectionné dans Modes est utilisé à la fois dans Home et dans l’application en cours. Pour modifier d’autres paramètres d’une application, utilisez les touches DE configuration (SY, SP, et SM).

Appuyez sur **SH** (Modes) pour accéder au formulaire de saisie Modes de la vue Home. Appuyez sur **F4** pour accéder à la deuxième page du formulaire et sur **F3** pour revenir à la première page.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure d’angle</td>
<td>Les valeurs d’angle sont les suivantes :</td>
</tr>
<tr>
<td></td>
<td>Degrés. 360 degrés sur un cercle.</td>
</tr>
<tr>
<td></td>
<td>Radians. 2π radians sur un cercle.</td>
</tr>
<tr>
<td></td>
<td>Le mode d’angle sélectionné est valable à la fois dans la vue Home et dans l’application en cours. Ainsi, les résultats des calculs trigonométriques effectués dans l’application en cours et dans la vue Home sont identiques.</td>
</tr>
<tr>
<td>Paramètre</td>
<td>Options (Suite)</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Format numérique</td>
<td>Le mode de format numérique défini sera utilisé dans tous les calculs de la vue Home.</td>
</tr>
<tr>
<td>Standard.</td>
<td>Précision maximale.</td>
</tr>
<tr>
<td>Fixe.</td>
<td>Affiche les résultats arrondis en fonction du nombre de décimales choisi. Par exemple, 123.456789 devient 123.46 si le format Fixe 2 est sélectionné.</td>
</tr>
<tr>
<td>Scientifique.</td>
<td>Les résultats affichés comprennent un exposant et un chiffre à gauche du point (ou de la virgule) décimal ainsi que le nombre de décimaleles choisi. Par exemple, en format Scientifique 2, 123.456789 devient 1.23E2.</td>
</tr>
<tr>
<td>Ingénierie.</td>
<td>Les résultats affichés comprennent un exposant qui est un multiple de 3 et le nombre de chiffres significatifs après le premier. Par exemple, en format Ingénierie 2, 123.456E7 devient 1.23E9.</td>
</tr>
<tr>
<td>Complexe</td>
<td>Si ce format est sélectionné, les opérations impliquant des nombres complexes sont autorisées (dans le cas contraire, seules les opérations incluant des nombres réels sont autorisées).</td>
</tr>
<tr>
<td>Langue</td>
<td>Sélectionnez le paramètre linguistique des menus et des formulaires de saisie.</td>
</tr>
<tr>
<td>Taille de la police</td>
<td>Paramétrez l'affichage en sélectionnant une police plus petite ou plus grande.</td>
</tr>
<tr>
<td>Nom de la calculatrice</td>
<td>Entrez un nom descriptif pour identifier votre calculatrice sur le kit de connectivité HP 39gII.</td>
</tr>
<tr>
<td>Affichage manuel scolaire</td>
<td>Désactive ou active l'affichage au format de manuel scolaire pour les expressions saisies dans les vues Home et symbolique.</td>
</tr>
</tbody>
</table>
Définition d’un mode

L’exemple suivant indique la procédure à suivre pour remplacer les radians (mesure d’angle du mode par défaut) par les degrés pour l’application en cours. La procédure de modification des modes de format numérique, de langue et de nombres complexes est la même.

1. Appuyez sur

2. Appuyez sur

3. Sélectionnez Degrés à l’aide des touches de direction haut et bas, puis appuyez sur

4. Appuyez sur

CONSEIL

Lorsque le champ d’un formulaire de saisie affiche une liste de choix, vous pouvez appuyer sur pour la parcourir sans avoir à utiliser

Calculs mathématiques

Les opérations mathématiques les plus courantes sont accessibles à partir du clavier. Le menu Math () permet d’accéder aux autres fonctions mathématiques.

Pour accéder aux commandes de programmation, appuyez sur

Pour plus d’informations, reportez-vous au chapitre Programmation.
Par où commencer ?

Home (Home) est la vue centrale de la calculatrice. Cette vue permet d’effectuer tous les calculs et d’accéder à toutes les opérations (Math).

Saisie d’expressions

• Dans la calculatrice HP 39gII, entrez une expression de gauche à droite, comme si vous la rédigiez sur papier. On appelle cela l’entrée algébrique.

• Il est possible d’entrer une fonction à partir du clavier ou du menu Math. Vous pouvez également entrer une fonction en saisissant son nom à l’aide des touches alphanumériques.

• Appuyez sur ENTER pour évaluer l’expression présente sur la ligne d’édition (au niveau du curseur clignotant). Une expression peut contenir des nombres, des fonctions et des variables.

Exemple

Calculez \(\frac{23^2 - 14}{\sqrt{8}} \ln(45) \):

\[
\frac{23^2 - 14}{\sqrt{8}} \ln(45) = \frac{529 - 14}{2.828}\ln(45) = 515.885
\]

Résultats longs

Si le résultat est trop long pour tenir sur la ligne d’affichage (ou si vous souhaitez qu’une expression apparaisse au format de manuel scolaire), appuyez sur pour le mettre en surbrillance, puis appuyez sur ALT+1.

Nombres négatifs

Appuyez sur pour commencer un nombre négatif ou pour insérer le signe opposé.

Pour élever un nombre négatif à une puissance, mettez-le entre parenthèses. Par exemple, \((-5)^2 = 25\), tandis que \(-5^2 = -25\).
Notation scientifique (puissances de 10)

Des nombres comme 5×10^4 ou 3.21×10^{-7} sont écrits en notation scientifique, c’est-à-dire avec des puissances de dix. Ces nombres sont plus faciles à manipuler que 50000 ou 0.000000321. La touche EEX permet d’entrer des nombres sous cette forme. Cette méthode est plus commode que d’utiliser 10^x.

Exemple

Calculez $\frac{(4 \times 10^{-13})(6 \times 10^{23})}{3 \times 10^{-5}}$

Une multiplication implicite se produit lorsque deux opérandes ne sont séparés par aucun opérateur. Par exemple, si vous entrez AB, le résultat est $A \times B$.

Toutefois, par souci de clarté, il est préférable d’inclure le signe multiplier pour indiquer que vous souhaitez effectuer une multiplication dans une expression. Il est en effet plus clair de saisir AB sous la forme $A \times B$.
Parenthèses

Les parenthèses sont nécessaires pour contenir les arguments d’une fonction, comme dans SIN(45). La calculatrice insère automatiquement une parenthèse à la fin de la ligne de saisie si vous l’omettez.

<table>
<thead>
<tr>
<th>Saisissez...</th>
<th>Pour calculer...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN(45 + π)</td>
<td>sin (45 + π)</td>
</tr>
<tr>
<td>SIN(45) + π</td>
<td>sin (45) + π</td>
</tr>
<tr>
<td>85 × 9</td>
<td>85 × 9</td>
</tr>
</tbody>
</table>

Priorités algébriques (ordre d’évaluation)

Les fonctions comprises dans une expression sont évaluées dans l’ordre suivant. Les fonctions ayant le même ordre de priorité sont évaluées de gauche à droite.

1. Expressions entre parenthèses. Les parenthèses emboîtées sont évaluées de l’intérieur vers l’extérieur.
2. Fonctions préfixées, comme SIN et LOG.
3. Fonctions postfixées, comme !
4. Fonction puissance, ^, NTHROOT
5. Opposé, multiplication et division.
6. Addition et soustraction.
7. AND et NOT.
8. OR et XOR.
9. Arguments à gauche de | (ou).
10. Égal, =.

Plus grand et plus petit nombres.

La calculatrice HP 39gll représente 1×10^{-499} (ainsi que tous les nombres inférieurs) par zéro. Le plus grand nombre pouvant être affiché est $9.99999999999 \times 10^{499}$. Les résultats supérieurs prendront la forme de ce nombre.
Effacement des nombres

- supprime le caractère se trouvant à gauche du curseur ; il s’agit donc d’une touche de retour.
- efface la ligne de saisie.
- efface l’ensemble des opérations et résultats, y compris ceux de l’historique.

Utilisation des derniers résultats

L’écran Home peut afficher entre 4 et 6 lignes d’historique d’opération/de résultat. Dans les limites de la mémoire disponible, il est possible de conserver et de faire défiler autant de lignes d’historique que vous le souhaitez. Vous pouvez récupérer et réutiliser l’ensemble des valeurs et expressions utilisées précédemment.

Pour copier une ligne précédente

Mettez la ligne en surbrillance (avec la touche), puis appuyez sur . L’expression ou le nombre est copié(e) dans la ligne de saisie.

Vos dernières saisies sont systématiquement copiées dans le presse-papier. Ainsi, dans la plupart des cas, il vous suffit de coller un résultat récent. Appuyez sur pour ouvrir le presse-papiers, mettez le résultat désiré en surbrillance à l’aide de et de , puis appuyez sur .

Pour réutiliser le dernier résultat

Appuyez sur (dernière réponse) pour insérer le dernier résultat de l’écran Home dans une expression. est une variable mise à jour à chaque fois que vous appuyez sur .
Pour répéter une ligne précédente

Pour répéter la toute dernière ligne, appuyez simplement sur \texttt{\textbf{\textit{ENTER}}}. Si la ligne précédente est une expression contenant \texttt{\textit{ANS}}, le calcul est répété itérativement.

Exemple

Cet exemple montre comment \texttt{\textbf{\textit{S}}HFT-\textit{ANS}} récupère et réutilise le dernier résultat (50), et comment \texttt{\textbf{\textit{ENTER}}} met à jour la variable \texttt{\textit{ANS}} (de 50 à 75, puis de 75 à 100).

\begin{align*}
50 & \texttt{\textbf{\textit{ENTER}}} & + & 25 \\
\texttt{\textbf{\textit{ENTER}}} & & & \\
\end{align*}

Il est possible d'insérer le dernier résultat comme la première expression de la ligne de saisie sans avoir à appuyer sur \texttt{\textbf{\textit{S}}HFT-\textit{ANS}}. Les touches \texttt{\textbf{\textit{+}}, \textbf{-}, \textbf{\textit{×}, \textbf{÷}}}, \texttt{\textbf{\textit{S}}HFT-\texttt{\textbf{\textit{ANS}}}} (ou tout autre opérateur nécessitant d'être précédé par un argument) insèrent automatiquement \texttt{\textit{ANS}} avant l'opérateur.

Vous pouvez réutiliser toute autre expression ou valeur de l'écran Home en mettant l'expression en surbrillance (à l'aide des touches de direction), puis en appuyant sur \texttt{\textbf{\textit{COPY}}}

La valeur de la variable \texttt{\textit{ANS}} est différente des nombres de l'historique de l'écran Home. Une valeur de variable \texttt{\textit{ANS}} est stockée dans la mémoire interne de la calculatrice avec toute la précision possible, tandis que les nombres affichés dépendent du mode d'affichage.

CONSEIL

Lorsque vous récupérez un nombre à partir de \texttt{\textit{ANS}}, vous obtenez le résultat le plus précis. Lorsque vous récupérez un nombre dans l'historique de l'écran Home, il apparaît exactement tel qu'il était affiché.

La touche \texttt{\textbf{\textit{ENTER}}} évalue (ou réévalue) la dernière entrée, tandis que la touche \texttt{\textbf{\textit{S}}HFT-\textit{ANS}} recopie le dernier résultat (par exemple \texttt{\textit{ANS}}) dans la ligne de saisie.
Copier et coller

Outre la touche de menu COPIER permettant de recopier une expression de la vue Home, vous pouvez utiliser un presse-papier plus universel. Vous pouvez mettre en surbrillance la valeur ou l'expression désirée dans la plupart des champs ou dans l'historique de la vue Home (par exemple F1(x) dans l'application Fonction), puis la coller dans la ligne de saisie ou dans un autre champ compatible. Pour copier une valeur ou une expression dans le presse-papiers, appuyez sur \[\text{Copier} \].

Pour ouvrir le presse-papiers, puis sélectionner et coller une valeur ou une expression, appuyez sur \[\text{Coller} \].

Stockage d'une valeur dans une variable

Vous pouvez enregistrer une réponse dans une variable et utiliser cette variable dans vos prochains calculs. 27 variables permettent de stocker des valeurs réelles : les variables \(A \) à \(Z \) et \(\theta \). Pour plus d'informations sur les variables, reportez-vous au chapitre Variables et gestion de la mémoire. Par exemple :

1. Effectuer un calcul.

\[
45 \times 8 \div 3
\]

2. Mémoriser le résultat dans la variable \(A \).

3. Effectuer un autre calcul en utilisant la variable \(A \).
Accès à l'historique de l'affichage

La touche active la barre de mise en surbrillance dans l'historique. Lorsqu'elle est activée, les touches de menu et les touches du clavier suivantes s'avèrent très utiles :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>, , CLEAR</td>
<td>Font défiler les lignes de l'historique. Recopie l'expression en surbrillance dans la ligne de saisie, à la position du curseur.</td>
</tr>
<tr>
<td>{align}</td>
<td>Affiche l'expression en surbrillance au format de manuel scolaire.</td>
</tr>
<tr>
<td>{align}</td>
<td>Supprime l'expression en surbrillance de l'historique, à moins que la ligne de saisie ne contienne un curseur.</td>
</tr>
<tr>
<td>{align}</td>
<td>Efface toutes les lignes de l'historique et la ligne de saisie.</td>
</tr>
</tbody>
</table>

Effacement de l'historique

Une bonne habitude à prendre est d'effacer l'historique d'affichage (CLEAR) lorsque vous avez fini de travailler dans l'écran Home car cela économise de la mémoire. Souvenez-vous que tous vos résultats et vos entrées sont conservés jusqu'à ce que vous les effaciez.

Représentations numériques

Conversion de nombres décimaux en fractions

Un résultat décimal peut être affiché sous la forme d'un nombre décimal, d'une fraction ou d'un nombre mixte. Saisissez votre expression dans la vue Home, puis appuyez sur pour basculer entre les fractions, les nombre mixtes et les représentations décimales du résultat numérique. Par exemple, entrez 18/7 pour obtenir le résultat décimal 2.5714... Appuyez une fois sur
pour obtenir $\frac{18}{7}$, puis de nouveau pour obtenir $2 + \frac{4}{7}$.
Lorsque la calculatrice 39gII n’est pas en mesure d’obtenir des résultats exacts, elle fournit une représentation approximative des fractions et des nombres mixtes. Entrez $\sqrt{5}$ pour obtenir l’approximation décimale 2.236... Appuyez une fois sur $\frac{\text{Expr}}{\text{C}}$ pour obtenir $\frac{930249}{416020}$, puis de nouveau pour obtenir $2 + \frac{98209}{416020}$.
Appuyez une troisième fois sur $\frac{\text{Expr}}{\text{C}}$ pour revenir à la représentation décimale initiale.

Conversion de nombres décimaux en degrés, en minutes et en secondes

Un résultat décimal peut être affiché en format hexadécimal, c’est-à-dire en unités subdivisées en groupes de 60. Cela concerne les degrés, les minutes et les secondes ainsi que les heures, les minutes et les secondes. Par exemple, entrez $\frac{11}{8}$ pour obtenir le résultat décimal 1.375. Appuyez sur $\frac{\text{Expr}}{\text{C}}$ pour obtenir $1^\circ 22' 30''$. Appuyez de nouveau sur $\frac{\text{Expr}}{\text{C}}$ pour revenir à la représentation décimale. Lorsqu’il est impossible d’obtenir un résultat exact, la calculatrice 39gII fournit la meilleure approximation possible. De nouveau, saisissez $\sqrt{5}$ pour obtenir l’approximation décimale 2.236... Appuyez sur $\frac{\text{Expr}}{\text{C}}$ pour obtenir $2^\circ 14' 9.844719''$.

Nombres complexes

Lorsque le paramètre de mode Complexe est activé, la calculatrice HP 39gII peut renvoyer un nombre complexe comme résultat de certaines fonctions mathématiques. Un nombre complexe apparaît sous la forme $x + iy \times i$.
Par exemple, le résultat de $\sqrt{-1}$ est i ; celui de $(4,5)$ est $4 + 5 \times i$.
Pour entrer des nombres complexes

Un nombre complexe peut être entré sous l'une des formes suivantes, où \(x \) est la partie réelle, \(y \) la partie imaginaire et \(i \) la constante imaginaire \(\sqrt{-1} \) :

- \((x, y)\)
- \(x + iy\).

Pour saisir \(i \) :

- appuyez sur \(\text{SHIFT} \) \(\text{ALPHA} \) \(\text{LOG} \) ou
- appuyez sur la touche \(\text{SHIFT} \) \(\text{CAR} \) \(\text{A} \) ou \(\text{B} \) pour sélectionner Constante, sur \(\text{C} \) pour accéder à la colonne de droite du menu, puis sur \(\text{D} \) pour sélectionner \(i \).

Stockage des nombres complexes

Il existe 10 variables permettant de stocker des nombres complexes : \(Z0 \) à \(Z9 \). Pour stocker un nombre complexe dans une variable :

- Entrez le nombre complexe, appuyez sur \(\text{STO} \) \(\text{C} \), entrez la variable dans laquelle vous souhaitez stocker le nombre, puis appuyez sur \(\text{ENTER} \).

Catalogues et éditeurs

La calculatrice HP 39gII dispose de plusieurs catalogues et éditeurs qui permettent de créer et de manipuler des objets. Ils accèdent aux objets contenant des données stockées (listes de nombres ou notes contenant du texte) indépendants des applications, ainsi qu'à des notes et à des programmes associés à l'application HP en cours.

- Un catalogue est une liste d'éléments que vous pouvez supprimer ou transmettre, par exemple une application.
Un éditeur permet de créer ou de modifier des éléments et des nombres, par exemple un texte ou une matrice.

<table>
<thead>
<tr>
<th>Catalogue/éditeur</th>
<th>Frappes</th>
<th>Pour créer et modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliothèque d'applications</td>
<td></td>
<td>Applications HP</td>
</tr>
<tr>
<td>Informations</td>
<td></td>
<td>Notes associées à l'application HP en cours</td>
</tr>
<tr>
<td>Liste</td>
<td></td>
<td>Listes</td>
</tr>
<tr>
<td>Matrice</td>
<td></td>
<td>Matrices et vecteurs</td>
</tr>
<tr>
<td>Programme</td>
<td></td>
<td>Programmes</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>Notes</td>
</tr>
</tbody>
</table>

- Liste
- Matrice
- Programme
- Notes
Applications et vues des applications

Applications HP

Les applications HP sont conçues pour l’étude et l’exploration d’une branche des mathématiques ou pour résoudre des problèmes de différents types. Le tableau suivant indique le nom de chaque application HP et fournit une description générale de son utilisation.

<table>
<thead>
<tr>
<th>Nom de l’application</th>
<th>Utilisez cette application pour explorer :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td>Fonctions rectangulaires à valeur réelle y en termes de x. Exemple : $y = 2x^2 + 3x + 5$.</td>
</tr>
<tr>
<td>Résoudre</td>
<td>Équations dans une ou plusieurs variables à valeur réelle. Exemple : $x + 1 = x^2 - x - 2$.</td>
</tr>
<tr>
<td>Statistiques 1Var</td>
<td>Données statistiques à une variable (x)</td>
</tr>
<tr>
<td>Statistiques 2Var</td>
<td>Données statistiques à deux variables (x et y)</td>
</tr>
<tr>
<td>Inférence</td>
<td>Intervales de confiance et tests d’hypothèse basés sur les distributions Normal et t de Student.</td>
</tr>
<tr>
<td>Paramétrique</td>
<td>Relations paramétriques x et y en termes de t. Exemple : $x = \cos (t)$ et $y = \sin(t)$.</td>
</tr>
<tr>
<td>Polaire</td>
<td>Fonctions polaires r en termes d’un angle θ. Exemple : $r = 2\cos(4\theta)$.</td>
</tr>
</tbody>
</table>
Outre ces applications, qui peuvent être utilisées à de nombreuses fins, la calculatrice HP 39gII est fournie avec trois applications pour l’exploration de familles de fonctions : Explorateur Linéaire, Explorateur Quadratique et Explorateur Trigo. Ces applications conservent les données de manière à ce que vous puissiez les retrouver en l’état lorsque vous les ouvrez à nouveau, mais ne peuvent pas être personnalisées et enregistrées comme les autres applications HP.

Lorsque vous utilisez une application pour explorer un cours ou résoudre un problème, vous ajoutez des données et des définitions dans les vues de l’application. Toutes ces informations sont automatiquement enregistrées dans l’application. Vous pouvez revenir à l’application à tout moment, les informations se trouvent toujours au même endroit. Vous pouvez également enregistrer l’application en la renommant et utiliser l’application d’origine pour un autre problème ou un usage différent. Pour de plus amples informations sur la personnalisation et la sauvegarde d’applications HP, consultez le chapitre Extension de votre bibliothèque d’aplets.

<table>
<thead>
<tr>
<th>Nom de l’application</th>
<th>Utilisez cette application pour explorer : (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suite</td>
<td>Fonctions de suites U en termes de n ou par rapport aux termes précédents de la même suite ou d’une autre suite, comme que U_{n-1} et U_{n-2}. Exemple : $U_1 = 0$, $U_2 = 1$ et $U_n = U_{n-2} + U_{n-1}$.</td>
</tr>
<tr>
<td>Finance</td>
<td>Problème de valeur temporelle de l’argent (TVM) et tableaux d’amortissement.</td>
</tr>
<tr>
<td>Solveur d’équation linéaire</td>
<td>Solutions pour des ensembles de deux ou trois équations linéaires.</td>
</tr>
<tr>
<td>Solveur de triangle</td>
<td>Valeurs inconnues pour les longueurs des côtés et les angles d’un triangle.</td>
</tr>
<tr>
<td>Data Streamer</td>
<td>Données réelles collectées à l’aide de capteurs scientifiques.</td>
</tr>
</tbody>
</table>
Bibliothèque d'applications

Les applications sont stockées dans la bibliothèque d'applications.

Pour ouvrir une application

Appuyez sur "App" pour afficher le menu de la bibliothèque d'applications. Sélectionnez l'application et appuyez sur "Start" ou sur "Enter".

Une fois dans l'application, vous pouvez revenir à l'écran Home à tout moment en appuyant sur "Home".

Vues des applications

Les applications HP utilisent toutes le même ensemble de vues. Cette homogénéité permet d'apprendre rapidement à se servir de ces applications. Il existe trois vues principales : Symbolique, Tracé et Numérique. Ces vues sont basées sur les représentations symbolique, graphique et numérique d'objets mathématiques.

Vous pouvez y accéder à l'aide des touches "Symb", "Plot" et "Num", situées dans la partie supérieure du clavier. Le bouton SHIFT (Maj) associé à ces touches permet d'accéder au paramétrage de la vue, afin de réaliser sa configuration. Infos est une vue supplémentaire, définie par l'utilisateur, qui permet d'ajouter des notes à une application. Enfin, la touche Views permet d'accéder à toutes les vues supplémentaires spécifiques d'une application, le cas échéant. Notez que certaines applications HP ne proposent pas l'ensemble des 7 vues standard, ni de vues supplémentaires via la touche Views. La portée et la complexité de chaque application déterminent l'ensemble de vues dont elle dispose. Toutefois, les vues proposées sont basées sur ces sept vues standard et sur les vues supplémentaires accessibles à l'aide de la touche Views. Vous trouverez ci-dessous une synthèse de ces vues, avec l’application Fonction pour exemple.
Vue symbolique

Appuyez sur [SYMB] pour afficher la vue symbolique de l’application.

Utilisez cette vue pour définir la ou les fonctions ou équations que vous souhaitez explorer.

Configuration symbolique

Appuyez sur [SETUP-SYMB] pour afficher la configuration symbolique de l’application. Cette vue vous permet d’écarter un ou plusieurs des paramètres de modes pour une application. Elle n’est pas utilisée par les solveurs et les explorateurs étant donné que les quelques paramètres de modes requis pour chaque application peuvent déjà être modifiés à l’aide des touches de menu dans l’application.

Vue Tracé

Appuyez sur [PLOT] pour afficher la vue graphique de l’application.

Dans cette vue, les relations que vous avez définies s’affichent sous forme graphique.

Configuration de tracé

Appuyez sur [SETUP-PLOT]. Définit les paramètres pour tracer un graphique.

Vue numérique

Appuyez sur [NUM] pour afficher la vue numérique de l’application.

Dans cette vue, les relations que vous avez définies s’affichent sous forme tabulaire.
Configuration numérique

Appuyez sur SETUP- NUM. Définit les paramètres pour la création d’un tableau de valeurs numériques.

Vue Infos

Appuyez sur INFO pour afficher la vue Infos de l’application HP.

Cette note est transférée avec l’application si elle est envoyée vers une autre calculatrice ou vers un ordinateur. La vue Infos contient du texte apportant des précisions sur une application HP.

Vues de menus

Outre les 7 vues utilisées par toutes les applications HP, la touche Views permet d’accéder à des vues spéciales ou à des options de mise à l’échelle d’une application, ou communes à plusieurs applications. Vous trouverez ci-dessous une synthèse de ces vues et options de mise à l’échelle.

Vue Plot-Detail

Appuyez sur Views
 Sélectionnez Plot-Detail

Divise l’écran entre tracé actuel et zoom défini par l’utilisateur.

Vue Plot-Table

Appuyez sur Views
 Sélectionnez Plot-Table

Divise l’écran entre vue graphique et vue tabulaire.

Zooms prédéfinis

Le menu Views inclut également les zooms prédéfinis du menu Zoom :

• AutoScale
• Décimale
• Nombre entier
• Trig

Ceux-ci sont décrits plus en détail ultérieurement dans la section Options de zoom de ce chapitre.

Vues d’application standard

Cette section présente les options et fonctionnalités des trois principales vues (Symbolique, Tracé et Numérique), ainsi que leur configuration, pour les applications Fonction, Polaire, Paramétrique et Suite.

Présentation de la vue symbolique

La vue symbolique est la vue déterminante pour les applications Fonction, Paramétrique, Polaire et Suite. Les autres vues sont dérivées de l’expression symbolique.

Vous pouvez créer jusqu’à 10 définitions différentes pour chacune des applications Fonction, Paramétrique, Polaire et Suite. Vous pouvez réaliser un graphique illustrant simultanément n’importe quelle relation (dans une même application) en la sélectionnant.

Définition d’une expression (vue symbolique)

 Sélectionnez l’application dans la bibliothèque.

Appuyez sur ou sur pour sélectionner une application.

START

Au démarrage, les applications Fonction, Paramétrique, Polaire et Suite affichent la vue symbolique.

Lorsqu’une expression existante est mise en surbrillance, accédez à une ligne vide (sauf si vous ne voyez pas d’inconvénient à écraser l’expression). Vous pouvez également effacer une ligne () ou toutes les lignes (CLEAR).
Les expressions sont sélectionnées (présence d'une coche) lorsqu'elles sont saisies. Pour désélectionner une expression, appuyez sur \(\sqrt{\text{O}
abla} \). Toutes les expressions sélectionnées sont tracées.

- **Pour une définition sous l'application Fonction**, entrez une expression définissant \(f(X) \). La seule variable indépendante de l'expression est \(X \).

- **Pour une définition sous l'application Paramétrique**, entrez deux expressions définissant \(X(T) \) et \(Y(T) \). La seule variable indépendante des expressions est \(T \).

- **Pour une définition sous l'application Polaire**, entrez une expression définissant \(R(\theta) \). La seule variable indépendante de l'expression est \(\theta \).

- **Pour une définition sous l'application Suite**, vous pouvez soit saisir le premier terme, soit le premier et le second termes pour \(U \). Définissez ensuite le \(n \)ième terme de la suite en termes de \(N \) ou par rapport aux termes précédents, \(U(N-1) \) et/ou \(U(N-2) \). Les expressions doivent produire des suites à valeur réelle avec domaines de nombre entier. Vous pouvez également définir le \(N \)ième terme comme une expression non récursive en termes de \(N \) uniquement.
Remarque : vous devrez saisir le second terme si
la calculatrice HP 39gII n’est pas en mesure de le
calculer automatiquement. De manière générale,
lorsque $U_x(N)$ dépend de $U_x(N–2)$, vous devez
saisir $U_x(2)$.

Evaluation d’expressions

Dans une application

Dans la vue symbolique, une variable est uniquement un
symbole ; elle ne représente pas une valeur en particulier.
Pour évaluer une fonction dans la vue symbolique,
appuyez sur EVAL. Lorsqu’une fonction en appelle une
autre, EVAL résout alors toutes les références à d’autres
fonctions en termes de leur variable indépendante.

1. Sélectionnez
 l’application Fonction.

2. Saisissez les expressions dans la vue symbolique de
 l’application Fonction.

3. Mettez en surbrillance
 $F_3(X)$.
4. Appuyez sur FV\!AL.

Notez la manière dont les valeurs $F_1(X)$ et $F_2(X)$ se transforment en $F_3(X)$.

Sur l’écran Home

Vous pouvez également évaluer une expression de fonction sur l’écran d’accueil en enregistrant cette expression dans la ligne d’édition et en appuyant sur ENTER.

Touches de la vue symbolique

Le tableau suivant présente les touches que vous pouvez utiliser avec la vue symbolique.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Copie l’expression mise en surbrillance dans la ligne d’édition pour en permettre la modification. Appuyez sur CTRL lorsque vous avez terminé.</td>
</tr>
<tr>
<td>VERIT</td>
<td>Active/désactive l’expression actuelle (ou l’ensemble d’expressions). Dans les vues graphique et numérique, seules les expressions activées sont évaluées.</td>
</tr>
<tr>
<td>X</td>
<td>Saisit la variable indépendante de l’application Fonction. Vous pouvez également utiliser la touche X du clavier.</td>
</tr>
<tr>
<td>F</td>
<td>Saisit la variable indépendante de l’application Paramétrique. Vous pouvez également utiliser la touche F du clavier.</td>
</tr>
</tbody>
</table>
A propos de la vue graphique

Après avoir entré et sélectionné l’expression (présence d’une coche) dans la vue symbolique, appuyez sur \boxed{OK}. Pour configurer l’apparence du graphique ou l’intervalle affiché, vous pouvez modifier les paramètres de la vue graphique.

Vous pouvez tracer jusqu’à dix expressions simultanément. Sélectionnez les expressions que vous souhaitez tracer ensemble.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification (suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\boxed{\text{a}}</td>
<td>Saisit la variable indépendante de l’application Polaire. Vous pouvez également utiliser la touche \boxed{\text{atan}} du clavier.</td>
</tr>
<tr>
<td>\boxed{\text{n}}</td>
<td>Saisit la variable indépendante de l’application Suite. Vous pouvez également utiliser la touche \boxed{\text{atan}} du clavier.</td>
</tr>
<tr>
<td>\boxed{\text{CHARS}}</td>
<td>Affiche l’expression actuelle dans un format de manuel scolaire.</td>
</tr>
<tr>
<td>\boxed{\text{EVAL}}</td>
<td>Résout toutes les références à d’autres définitions en termes de variables.</td>
</tr>
<tr>
<td>\boxed{\text{Vars}}</td>
<td>Affiche un menu permettant la saisie de noms de variables ou de contenus de variables.</td>
</tr>
<tr>
<td>\boxed{\text{Math}}</td>
<td>Affiche le menu permettant d’entrer des opérations mathématiques.</td>
</tr>
<tr>
<td>\boxed{\text{CHARS}}</td>
<td>Affiche des caractères spéciaux. Pour en saisir un, placez le curseur dessus et appuyez sur \boxed{\text{OK}}. Pour rester dans le menu Chars et entrer un autre caractère spécial, appuyez sur \boxed{\text{OK}}. Supprime l’expression mise en surbrillance ou le caractère actuel de la ligne d’édition.</td>
</tr>
<tr>
<td>\boxed{\text{CLEAR}}</td>
<td>Supprime toutes les expressions de la liste ou efface le contenu de la ligne d’édition.</td>
</tr>
</tbody>
</table>
Configuration de tracé

Appuyez sur Setup-Plot pour définir n’importe lequel des paramètres indiqués dans les deux tableaux qui suivent.

1. Mettez en surbrillance le champ à modifier.
 - Si un chiffre doit être entré, saisissez-le et appuyez sur ENTER ou OK.
 - Si vous devez sélectionner une option, appuyez sur + , mettez votre choix en surbrillance et appuyez sur ENTER ou OK. Pour un accès rapide à + , mettez simplement en surbrillance le champ à modifier et appuyez sur + pour faire défiler les options.
 - Si vous devez sélectionner ou désélectionner une option, appuyez sur + pour la cocher ou la décocher.

2. Appuyez sur PAGE UP pour afficher davantage de paramètres.

3. Lorsque vous avez terminé, appuyez sur Plot pour afficher le nouveau tracé.

Paramètres de la configuration du tracé

La configuration du tracé inclut les champs suivants :

<table>
<thead>
<tr>
<th>Champ</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRNG, YRNG</td>
<td>Indique les valeurs horizontales (X) et verticales (Y) minimales et maximales pour la fenêtre du tracé.</td>
</tr>
<tr>
<td>TRNG</td>
<td>Application Paramétrique : indique les valeurs t (T) pour le graphique.</td>
</tr>
<tr>
<td>θRNG</td>
<td>Application Polaire : indique la plage de valeurs de l’angle (θ) pour le graphique.</td>
</tr>
<tr>
<td>NRNG</td>
<td>Application Suite : indique les valeurs d’index (N) pour le graphique.</td>
</tr>
</tbody>
</table>
Les éléments présentant un espace pour les graduations sont des paramètres que vous pouvez activer ou désactiver. Appuyez sur **Page 2** pour afficher la deuxième page.

<table>
<thead>
<tr>
<th>Champ</th>
<th>Signification (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSTEP</td>
<td>Pour les tracés de l’application Paramétrique : l’incrément pour la variable indépendante.</td>
</tr>
<tr>
<td>ØSTEP</td>
<td>Pour les tracés de l’application Polaire : la valeur d’incrément pour la variable indépendante.</td>
</tr>
<tr>
<td>SEQPLOT</td>
<td>Pour l’application Suite : de type en escalier ou en toile d’araignée.</td>
</tr>
<tr>
<td>XTICK</td>
<td>Espacement horizontal pour les graduations.</td>
</tr>
<tr>
<td>YTICK</td>
<td>Espacement vertical pour les graduations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Champ</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXES</td>
<td>Dessine les axes.</td>
</tr>
<tr>
<td>LABELS</td>
<td>Nomme les axes selon les valeurs XRNG et YRNG.</td>
</tr>
<tr>
<td>RESEAU DE POINTS</td>
<td>Dessine le réseau de points au moyen des espacements XTICK et YTICK.</td>
</tr>
<tr>
<td>QUADRILLAGE</td>
<td>Dessine les lignes du quadrillage au moyen des espacements XTICK et YTICK.</td>
</tr>
<tr>
<td>Curseur</td>
<td>Sélectionnez le curseur Standard, Inversion ou Clignotant.</td>
</tr>
<tr>
<td>Méthode</td>
<td>Sélectionnez la méthode Adaptatif (option par défaut) pour dessiner des graphiques précis et tracer simplement des segments paliers fixes ou des points paliers fixes.</td>
</tr>
</tbody>
</table>
Réinitialisation de la configuration du tracé

Pour réinitialiser les valeurs par défaut de tous les paramètres du tracé, appuyez sur **CLEAR** dans la configuration du tracé. Pour réinitialiser la valeur par défaut d’un champ, mettez ce dernier en surbrillance et appuyez sur **C**.

Exploration du graphique

La vue graphique présente une sélection de touches et de touches de menu permettant d’explorer davantage un graphique. Les options varient d’une application à une autre.

Touches de la vue graphique

Les tableaux suivants présentent les touches que vous pouvez utiliser avec la vue graphique.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Efface le tracé et les axes.</td>
</tr>
<tr>
<td>STOP</td>
<td>Propose des vues prédéfinies supplémentaires pour diviser l’écran et redimensionner les axes (zoom).</td>
</tr>
<tr>
<td>MENU</td>
<td>Arrête l’affinage du graphique</td>
</tr>
<tr>
<td>ZOOM</td>
<td>Active ou désactive les libellés des touches de menu. Lorsque les libellés sont désactivés, vous pouvez appuyer sur MENU pour les activer à nouveau.</td>
</tr>
<tr>
<td>TRACE</td>
<td>Affiche la liste du menu Zoom.</td>
</tr>
<tr>
<td>GOTO</td>
<td>Active ou désactive le mode Trace.</td>
</tr>
<tr>
<td>Funct</td>
<td>Ouvre un formulaire de saisie vous permettant d’entrer une valeur X (ou T ou N ou θ). Entrez la valeur et appuyez sur OK. Le curseur se place sur le point du graphique que vous avez entré.</td>
</tr>
<tr>
<td>Defn</td>
<td>Application Fonction uniquement : affiche une liste des commandes pour l’analyse des fonctions (voir le chapitre Application Fonction pour plus de détails).</td>
</tr>
<tr>
<td>Defn</td>
<td>Affiche l’expression déterminante actuelle. Appuyez sur MENU pour restaurer le menu.</td>
</tr>
</tbody>
</table>
Les tableaux suivants décrivent l’utilisation des flèches directionnelles.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification (avec mode Trace désactivé)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊙ ⊙</td>
<td>Déplacent le curseur d’un pixel vers la gauche ou vers la droite, respectivement.</td>
</tr>
<tr>
<td>⊘ ⊘</td>
<td>Déplacent le curseur d’un pixel vers le haut ou vers le bas, respectivement.</td>
</tr>
<tr>
<td>⊙ ⊹</td>
<td>Déplacent le curseur à l’extrémité gauche ou à l’extrémité droite de l’écran, respectivement.</td>
</tr>
<tr>
<td>⊘ ⊹</td>
<td>Déplacent le curseur jusqu’en haut ou jusqu’en bas de l’écran, respectivement.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification (avec mode Trace activé)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊙ ⊙</td>
<td>Déplacent le curseur d’un pixel vers la gauche ou vers la droite sur le graphique actuel, respectivement.</td>
</tr>
<tr>
<td>⊘ ⊘</td>
<td>Font basculer le traceur d’un graphique au précédent ou au suivant, respectivement, dans la liste des définitions symboliques.</td>
</tr>
<tr>
<td>⊙ ⊹</td>
<td>Déplacent le traceur jusqu’au point le plus à gauche ou le plus à droite du graphique actuel.</td>
</tr>
<tr>
<td>⊘ ⊹</td>
<td>Non applicable lorsque le mode Trace est activé.</td>
</tr>
</tbody>
</table>
Tracer un graphique

Appuyez sur les touches < et > pour déplacer le curseur de trace le long du graphique actuel (vers la gauche ou vers la droite, respectivement). La position actuelle des coordonnées (x, y) du curseur est également affichée à l’écran. Le mode Trace et l’affichage des coordonnées sont activés automatiquement lors du dessin d’un tracé.

Pour naviguer entre les relations

Si plusieurs relations sont affichées, appuyez sur ou sur pour naviguer de l’une à l’autre.

Pour accéder directement à une valeur

Pour accéder directement à une valeur sans utiliser la fonction Trace, appuyez sur la touche de menu GOTO. Appuyez sur GOTO, puis entrez une valeur. Appuyez sur OK pour accéder directement à la valeur.

Pour activer ou désactiver le mode Trace

Si les libellés de menu ne s’affichent pas, appuyez en premier lieu sur MENU.
• Désactivez le mode Trace en appuyant sur TRACE.
• Activez le mode Trace en appuyant sur TRACE.

Zoom avant ou arrière dans un graphique

L’une des options de touche de menu est ZOOM. Le fait de zoomer replace le tracé sur une échelle plus grande ou plus petite. Il s’agit d’un raccourci pour modifier la configuration du tracé.

L’option Définir les facteurs... vous permet de spécifier les facteurs de zoom avant et de zoom arrière, et de déterminer si le zoom est centré par rapport au curseur ou non.

Options de zoom

Appuyez sur ZOOM, sélectionnez une option, puis appuyez sur OK. (Si ZOOM ne s’affiche pas, appuyez sur MENU.) Certaines options ne sont pas disponibles dans toutes les applications.

<table>
<thead>
<tr>
<th>Option</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrer sur curseur</td>
<td>Recentre le tracé autour de la position actuelle du curseur sans modifier l’échelle.</td>
</tr>
<tr>
<td>Zone...</td>
<td>Vous permet de dessiner une zone à l’intérieur de laquelle vous pouvez réaliser un zoom avant.</td>
</tr>
</tbody>
</table>
Entrée Divise les échelles horizontale et verticale selon les facteurs X et Y. Par exemple, si les facteurs de zoom sont de 4, le zoom avant produira un résultat correspondant à 1/4 du nombre d’unités par pixel (voir Définir les facteurs...).

Sortie Multiplie les échelles horizontale et verticale par les facteurs X et Y (voir Définir les facteurs...).

X entrée Divise l’échelle horizontale uniquement, à l’aide du facteur X.

X sortie Multiplie l’échelle horizontale uniquement, à l’aide du facteur X.

Y entrée Divise l’échelle verticale uniquement, à l’aide du facteur Y.

Y sortie Multiplie l’échelle verticale uniquement, à l’aide du facteur Y.

Carré Modifie l’échelle verticale de manière à la faire correspondre à l’échelle horizontale (utilisez cette option après réalisation d’un zoom sur zone, d’un zoom X ou d’un zoom Y).

Définir les facteurs... Définit les facteurs de X-Zoom et Y-Zoom pour le zoom avant et arrière. Comprend une option permettant de recentrer le tracé avant le zoom.
<table>
<thead>
<tr>
<th>Option</th>
<th>Signification (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Scale</td>
<td>Remet à l’échelle l’axe vertical de manière à ce que l’écran affiche une partie représentative du tracé, avec les paramètres de l’axe x définis (pour les applications Suite et Statistiques, la mise à l’échelle automatique remet à l’échelle les deux axes). Le processus de mise à l’échelle automatique utilise la première fonction sélectionnée uniquement pour déterminer l’échelle la plus appropriée.</td>
</tr>
<tr>
<td>Décimale</td>
<td>Remet les deux axes à l’échelle de manière à ce que chaque pixel = 0,1 unité. Réinitialise les valeurs par défaut pour XRNG (-12,7 à 12,7) et YRNG (-5,5 à 5,5).</td>
</tr>
<tr>
<td>Nombre entier</td>
<td>Remet à l’échelle l’axe horizontal uniquement, de manière à ce que chaque pixel = 1 unité.</td>
</tr>
<tr>
<td>Trig</td>
<td>Remet à l’échelle l’axe horizontal de manière à ce que 1 pixel = π/24 radians ou 7,58 degrés ; remet à l’échelle l’axe vertical de manière à ce que 1 pixel = 0,1 unité.</td>
</tr>
<tr>
<td>Zoom arrière</td>
<td>Revient à un affichage correspondant au facteur de zoom précédent ; si un seul facteur de zoom a été utilisé, le graphique est affiché avec les paramètres de tracé d’origine.</td>
</tr>
</tbody>
</table>

Exemples de zoom Les illustrations suivantes présentent les effets des différentes options de zoom sur un tracé de \(3 \sin x \).

Tracé de \(3 \sin x \)
Zoom avant :

Pour un accès rapide, appuyez sur + dans la vue graphique pour réaliser un zoom avant.

Zoom arrière :

Remarque : appuyez sur pour vous déplacer vers le bas de la liste Zoom.

A présent, réalisez un zoom arrière.

Pour un accès rapide, appuyez sur - dans la vue graphique pour réaliser un zoom arrière.

X-Zoom entrée :

A présent, réalisez un zoom arrière.

X-Zoom sortie :

A présent, réalisez un zoom arrière.
Pour zoomer dans une zone

L’option Zoom sur zone vous permet d’encadrer une zone sur laquelle vous souhaitez réaliser un zoom avant. Pour cela, vous devez sélectionner les extrémités d’une diagonale du rectangle de zoom.

1. Si nécessaire, appuyez sur MENU pour activer les libellés des touches de menu.
2. Appuyez sur ZOOM et sélectionnez Zone...
3. Placez le curseur sur l’un des coins du rectangle. Appuyez sur OK ;
4. Utilisez les touches du curseur (, etc.) pour le faire glisser vers le coin opposé.
5. Appuyez sur OK pour effectuer un zoom avant dans la zone encadrée.

Pour définir les facteurs de zoom

1. Dans la vue graphique, appuyez sur MENU ;
2. Appuyez sur ZOOM .
3. Sélectionnez Définir les facteurs... et appuyez sur OK.

4. Entrez les facteurs de zoom. Il existe un facteur de zoom pour l'échelle horizontale (XZOOM) et un pour l'échelle verticale (YZOOM).

Le zoom arrière multiplie l'échelle par le facteur, ce qui amplifie l'intervalle affiché à l'écran. Le zoom arrière divise l'échelle par le facteur, ce qui réduit l'intervalle affiché à l'écran.

Options du menu Views

Appuyez sur Views, sélectionnez une option, puis appuyez sur OK.

<table>
<thead>
<tr>
<th>Option</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot-Detail</td>
<td>Divise l'écran entre le tracé actuel et un zoom.</td>
</tr>
<tr>
<td>Plot-Table</td>
<td>Divise l'écran entre le tracé et un tableau numérique.</td>
</tr>
<tr>
<td>Auto Scale</td>
<td>Remet à l'échelle l'axe vertical de manière à ce que l'écran affiche une partie représentative du tracé, en fonction du facteur XRNG actuel. Pour les applications Suite et Statistiques, la mise à l'échelle automatique remet à l'échelle les deux axes. Le processus de mise à l'échelle automatique utilise la première fonction sélectionnée uniquement pour déterminer l'échelle la plus appropriée.</td>
</tr>
<tr>
<td>Décimale</td>
<td>Remet les deux axes à l'échelle de manière à ce que chaque pixel = 0,1 unité. Réinitialise les valeurs par défaut pour XRNG (-12,7 à 12,7) et YRNG (-5,5 à 5,5).</td>
</tr>
<tr>
<td>Nombre entier</td>
<td>Remet à l'échelle l'axe horizontal uniquement, de manière à ce que chaque pixel = 1 unité.</td>
</tr>
<tr>
<td>Trig</td>
<td>Remet à l'échelle l'axe horizontal de manière à ce que 1 pixel = π/48 radians ou 3,75 degrés.</td>
</tr>
</tbody>
</table>
Plot-Detail
La vue Plot-Detail vous permet d’obtenir deux vues simultanées du tracé.

1. Appuyez sur \(\text{Menu Mode} \). Sélectionnez Plot-Detail et appuyez sur \(\text{OK} \). Le graphique est tracé deux fois. Vous pouvez à présent réaliser un zoom avant sur la partie de droite.

2. Appuyez sur \(\text{Zoom} \), sélectionnez la méthode de zoom et appuyez sur \(\text{Cycle} \) ou sur \(\text{Enter} \). Le zoom est réalisé sur la partie de droite. Voici un exemple d'écran divisé avec \(\text{Zoom avant} \).
 - Les touches du menu graphique sont disponibles pour l'ensemble du tracé (tracé, affichage des coordonnées et de l'équation, etc).
 - La touche de menu \(\text{Copy} \) copie le tracé de droite sur la partie de gauche.

3. Pour supprimer la division de l'écran, appuyez sur \(\text{Menu Mode} \). La partie de gauche occupe alors l'ensemble de l'écran.

Plot-Table
La vue Plot-Table vous procure simultanément une vue du tracé et une vue du tableau.

1. Appuyez sur \(\text{Menu Mode} \). Sélectionnez Plot-Table et appuyez sur \(\text{OK} \). L'écran affiche le tracé sur la partie de gauche et un tableau de chiffres sur la partie de droite.

2. Pour vous déplacer vers le haut ou vers le bas dans le tableau, utilisez les touches du curseur \(\uparrow \) et \(\downarrow \). Ces touches déplacent le point de tracage vers la gauche ou vers la droite le long du tracé, ainsi que dans le tableau, les valeurs correspondantes étant mises en surbrillance.

3. Pour passer à d'autres fonctions, utilisez les touches du curseur \(\leftarrow \) et \(\rightarrow \) pour déplacer le curseur d'un graphique à l'autre.

4. Pour retourner à une vue numérique (ou graphique) complète, appuyez sur \(\text{Mode Num} \) (ou sur \(\text{Mode Graph} \)).
Mise à l'échelle décimale

La mise à l'échelle décimale est la mise à l'échelle par défaut. Si vous avez choisi l'option de mise à l'échelle Trig ou Nombre entier, vous pouvez revenir à Décimal.

Mise à l'échelle avec nombre entier

La mise à l'échelle avec nombre entier compresse les axes de manière à ce que chaque pixel soit de 1×1 et que l'origine soit proche du centre de l'écran.

Mise à l'échelle trigonométrique

Utilisez la mise à l'échelle trigonométrique lorsque vous tracez une expression comprenant des fonctions trigonométriques. Les tracés trigonométriques sont davantage susceptibles de couper l'axe au niveau de points déterminés par π.

Présentation de la vue numérique

Après avoir entré et sélectionné (présence d'une coche) l'expression ou les expressions que vous souhaitez explorer dans la vue symbolique, appuyez sur l'icône pour afficher un tableau des données correspondant aux variables dépendantes et indépendantes.

Configuration du tableau (configuration de la vue numérique)

Appuyez sur l'icône pour définir les paramètres du tableau. Utilisez le formulaire de saisie de la configuration numérique pour configurer le tableau.

1. Mettez en surbrillance le champ à modifier. Utilisez les flèches directionnelles pour vous déplacer d'un champ à un autre.

 - Si un chiffre doit être entré, saisissez-le et appuyez sur l'icône ou sur l'icône. Pour modifier un chiffre existant, appuyez sur l'icône.
Raccourci : appuyez sur la touche TRAC- pour copier les valeurs de la configuration du tracé dans NUMSTART et NUMSTEP. En effet, la touche de menu TRAC- vous permet de faire correspondre les valeurs du tableau aux valeurs du traceur dans le graphique.

2. Lorsque vous avez terminé, appuyez sur NUM pour afficher le tableau de chiffres.

Paramètres de la vue numérique

Le tableau suivant décrit les champs du formulaire de saisie de la configuration du tracé.

<table>
<thead>
<tr>
<th>Champ</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMSTART</td>
<td>Valeur de départ de la variable indépendante.</td>
</tr>
<tr>
<td>NUMSTEP</td>
<td>Valeur de l’incrément d’une valeur de variable indépendante à la suivante.</td>
</tr>
<tr>
<td>NUMTYPE</td>
<td>Type de tableau numérique : Automatique ou BuildYourOwn. Pour créer votre propre tableau, vous devez entrer vous-même chaque valeur indépendante dans le tableau.</td>
</tr>
<tr>
<td>NUMZOOM</td>
<td>Définit le facteur de zoom pour le zoom avant ou arrière dans une rangée du tableau.</td>
</tr>
</tbody>
</table>

Réinitialiser les paramètres numériques

Pour réinitialiser tous les paramètres par défaut du tableau, appuyez sur CLEAR.
Exploration du tableau de chiffres

Le tableau suivant décrit les touches de menu que vous pouvez utiliser pour travailler avec le tableau numérique.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOOM</td>
<td>Affiche la liste du menu Zoom.</td>
</tr>
<tr>
<td>GRAND</td>
<td>Bascule entre deux tailles de caractère.</td>
</tr>
<tr>
<td>DENN</td>
<td>Affiche l’expression de la fonction déterminante pour la colonne mise en surbrillance. Pour annuler ce mode d’affichage, appuyez sur DENN.</td>
</tr>
<tr>
<td>LARGO</td>
<td>Bascule entre les différents affichages des valeurs de variables dépendantes : 1, 2, 3 ou 4 colonnes.</td>
</tr>
</tbody>
</table>

Zoom dans un tableau

Le zoom recalcule le tableau de chiffres selon des différences plus ou moins importantes entre les valeurs X.

Options de zoom

Le tableau suivant répertorie les options de zoom :

<table>
<thead>
<tr>
<th>Option</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrée</td>
<td>Réduit la valeur Step pour la variable indépendante, de manière à ce qu’une plage plus étroite soit affichée. Utilisez le facteur NUMZOOM de la configuration numérique.</td>
</tr>
<tr>
<td>Sortie</td>
<td>Augmente la valeur Step pour la variable indépendante, de manière à ce qu’une plage plus étendue soit affichée. Utilisez le facteur NUMZOOM de la configuration numérique.</td>
</tr>
<tr>
<td>Décimale</td>
<td>Modifie les intervalles de la variable indépendante de 0,1 unité. A partir de zéro (vous pouvez utiliser les raccourcis NUMSTART et NUMSTEP).</td>
</tr>
</tbody>
</table>
L'affichage de droite correspond à un zoom avant de l'affichage de gauche. Le facteur de zoom est de 4.

CONSEIL

Pour accéder à une valeur de variable indépendante dans le tableau, utilisez les flèches directionnelles pour positionner le curseur dans la colonne de cette variable, puis saisissez la valeur à laquelle vous souhaitez accéder.

Recalcul automatique

Vous pouvez entrer n'importe quelle valeur dans la colonne X. Lorsque vous appuyez sur ENTER , les valeurs des variables dépendantes sont recalculées et le tableau est intégralement régénéré avec le même intervalle entre les valeurs X.

** Création de votre propre tableau de chiffres**

Lorsque le paramètre par défaut pour NUMTYPE est Automatique, le tableau est rempli de données pour les intervalles réguliers de la variable indépendante (X, T, θ ou N). Lorsque le paramètre pour NUMTYPE est BuildYourOwn, vous devez remplir le tableau vous-même en saisissant les valeurs de la variable indépendante souhaitées. Les valeurs dépendantes sont ensuite calculées et affichées.
Créer un tableau

1. Commencez avec une expression définie (dans la vue symbolique) dans l’application de votre choix.
 Remarque : pour les applications Fonction, Polaire, Paramétrique et Suite uniquement.

2. Dans la configuration numérique (NUM), sélectionnez NUMTYPE: BuildYourOwn.

3. Ouvrez la vue numérique (NUM).

4. Effacez les données existantes du tableau (CLEAR).

5. Entrez les valeurs indépendantes dans la colonne de gauche. Entrez un nombre et appuyez sur E.
 Vous n’êtes pas obligé de les entrer dans cet ordre ; en effet, la fonction permet de les ré-organiser.
 Pour insérer un chiffre entre deux autres, utilisez INS.

 ![Image of a table with entries X, T1, T2, X1, T3, T4, etc.]

Effacement des données
Appuyez sur CLEAR pour effacer les données d’un tableau.

Touches du tableau BuildYourOwn

Outre les touches de menu et , vous pouvez utiliser les touches suivantes pour explorer le tableau lorsque la fonction BuildYourOwn est active.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Place la valeur indépendante en surbrillance (X, T, θ ou N) dans la ligne d’édition. Le fait d’appuyer sur ENTER remplace cette variable par sa valeur actuelle.</td>
</tr>
</tbody>
</table>

Exemple : tracé d'un cercle

Tracez le cercle $x^2 + y^2 = 25$. Dans un premier temps, réorganisez-le de manière à lire $y = \pm \sqrt{25-x^2}$.

Pour tracer à la fois les valeurs y positives et négatives, utilisez les deux équations suivantes :

$y = \sqrt{25-x^2}$ et $y = -\sqrt{25-x^2}$

1. Dans l'application Fonction, indiquez les fonctions.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS</td>
<td>Insère une valeur égale à zéro pour la valeur en surbrillance. Remplacez le zéro en entrant le nombre de votre choix et appuyez sur ENTER.</td>
</tr>
<tr>
<td>TRIER</td>
<td>Trie les valeurs de variable indépendante par ordre croissant ou décroissant. Appuyez sur TRIER et sélectionnez l’option de tri croissant ou décroissant dans le menu, puis appuyez sur OK.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Supprime la ligne mise en surbrillance.</td>
</tr>
<tr>
<td></td>
<td>Efface toutes les données du tableau.</td>
</tr>
</tbody>
</table>

Selectionnez Fonction

Supprime la ligne mise en surbrillance.

Efface toutes les données du tableau.
2. Réinitialisez la configuration du graphique de manière à ce qu'il retrouve ses paramètres par défaut.

3. Tracez les deux fonctions.

4. Réinitialisez la configuration numérique de manière à retrouver les paramètres par défaut.

5. Affichez les fonctions au format numérique.
Présentation de l’application Fonction

L’application Fonction vous permet d’explorer jusqu’à 10 fonctions rectangulaires à valeur réelle y en termes de x. Par exemple, \(y = 1 - x \) et \(y = (x - 1)^2 - 3 \).

Lorsque vous avez défini une fonction, vous pouvez :

- créer des graphiques pour trouver des racines, interceptions, pentes, zones signées et extrêmes ;
- créer des tableaux pour évaluer des fonctions avec des valeurs spécifiques.

Ce chapitre présente les outils de base de l’application Fonction par le biais d’un exemple.

Présentation de l’application Fonction

L’exemple utilisé dans ce chapitre comporte deux fonctions : une linéaire, \(y = 1 - x \), et une quadratique, \(y = (x - 1)^2 - 3 \).

Ouverture de l’application Fonction

1. Ouvrez l’application Fonction.

[Image]

Fonction

L’application Fonction démarre dans la vue symbolique.

La vue symbolique est la vue déterminante de l’application Fonction. Les autres vues sont dérivées des expressions symboliques définies ici.
Définition des expressions

La vue symbolique de l’application Fonction comporte 10 champs de définition de fonction. Ils sont libellés de F1(X) à F9(X) et F0(X). Mettez en surbrillance le champ de définition de fonction que vous souhaitez utiliser, puis entrez une expression. Vous pouvez appuyer sur ▼ pour modifier une expression existante ou simplement en saisir une nouvelle. Appuyez sur ♯ pour supprimer une expression existante, ou sur ♦ pour effacer toutes les expressions.

2. Entrez la fonction linéaire dans F1(X).

1 w d ENTER

3. Entrez la fonction quadratique dans F2(X).

1 ENTER

REMARQUE Vous pouvez utiliser la touche de menu pour saisir les équations. Cela produit le même résultat qu’en appuyant sur .

Configuration du tracé

Vous pouvez modifier les échelles des axes x- et y-ainsi que l’espacement des graduations des axes.

4. Affichez les paramètres de tracé.

SETUP- PLOT
Remarque : pour notre exemple, vous pouvez conserver les paramètres de tracé par défaut. Si vos paramètres ne correspondent pas à l’exemple, appuyez sur CLEAR pour restaurer les paramètres par défaut.

Tracé des fonctions

5. Tracez les fonctions.

Tracer un graphique

6. Tracez la fonction linéaire.

Remarque : par défaut, le traceur est actif.

7. Une fois la fonction linéaire tracée, passez à la fonction quadratique.

Modification de l’échelle

Vous pouvez modifier l’échelle afin de voir votre graphique de plus ou moins près. Pour cela, vous pouvez procéder de quatre manières :

- Appuyez sur + pour réaliser un zoom avant ou sur - pour réaliser un zoom arrière à partir des coordonnées actuelles du curseur. Cette méthode utilise les facteurs de zoom définis dans le menu Zoom. Le paramètre par défaut pour x et y est 2.
- Utilisez la configuration du tracé pour définir XRNG et YRNG selon vos souhaits.
• Utilisez le menu Zoom pour réaliser un zoom avant ou arrière, horizontalement ou verticalement, ou les deux, etc.

• Utilisez le menu Views (Vues) pour sélectionner une fenêtre prédéfinie.

Vous pouvez également utiliser la fonction Autoscale, dans le menu Zoom ou dans le menu Views, afin de choisir une plage verticale pour la plage horizontale actuelle, d’après vos définitions de fonction.

Affichage de la vue numérique

1. Affichez la vue numérique.

<table>
<thead>
<tr>
<th>X</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Configuration du tableau

2. Affichez la configuration numérique.

Vous pouvez définir la valeur de départ et la valeur STEP pour la colonne x, ainsi que le facteur de zoom pour réaliser un zoom avant ou arrière sur une ligne du tableau. Vous pouvez également choisir le type de tableau. Appuyez sur CLEAR pour revenir aux valeurs par défaut.

3. Faites correspondre les paramètres du tableau aux colonnes de pixels de la vue du graphique.
Exploration du tableau

4. Affichez le tableau de valeurs.

<table>
<thead>
<tr>
<th>X</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.27</td>
<td>137</td>
<td>184.69</td>
</tr>
<tr>
<td>-1.25</td>
<td>133</td>
<td>179.25</td>
</tr>
<tr>
<td>-1.24</td>
<td>134</td>
<td>176.56</td>
</tr>
<tr>
<td>-1.23</td>
<td>133</td>
<td>173.89</td>
</tr>
</tbody>
</table>

5. Déplacez-vous jusqu'à x = -12.1.

6 fois.

Pour naviguer dans un tableau

10 OK

Pour accéder directement à une valeur

REMARQUE

Pour accéder directement à une valeur, assurez-vous que le curseur est placé dans la colonne de variables indépendante (ici : x) avant d’entrer la valeur souhaitée.

Pour accéder aux options de zoom

In (Avant)

OK

Pour modifier la taille de la police

8. Affichez les chiffres du tableau dans une police plus petite.

GRND+
Pour afficher la définition symbolique d'une colonne

9. Affichez la définition symbolique de la colonne F1.

La définition symbolique de F1 s'affiche en bas de l'écran.

Pour modifier la largeur de colonne

10. Appuyez 3 fois sur pour changer l'affichage des colonnes de fonction et passer de 3 colonnes à 4, puis à 1, puis à 2.

Analyse interactive de l'application Fonction

Dans la vue Tracé (), vous pouvez utiliser les fonctions du menu FCN pour trouver des racines, intersections, pentes, zones signées et extrêmes pour une fonction définie dans l'application Fonction (et toutes les autres applications basées sur cette dernière). Les fonctions FCN agissent sur le graphique actuellement sélectionné.

Affichage du menu Tracé

1. Affichez le menu de la vue graphique.

Pour trouver une racine de la fonction quadratique

2. Placez le curseur de façon à ce qu'il soit proche de x = 3.

ou pour sélectionner la quadratique

ou pour déplacer le curseur près de x = 3
Sélectionnez Racine.

La valeur racine s’affiche en bas de l’écran.

Remarque : lorsqu’il existe plusieurs racines (comme dans notre exemple), les coordonnées de la racine la plus proche de la position actuelle du curseur s’affichent.

Pour trouver l’intersection des deux fonctions

3. Trouvez l’intersection des deux fonctions.

4. Sélectionnez la fonction pour laquelle vous souhaitez trouver l’intersection avec la fonction quadratique.

Pour sélectionner F1 (X)

Les coordonnées du point d’intersection s’affichent en bas de l’écran.

Remarque : lorsqu’il existe plusieurs intersections (comme dans notre exemple), les coordonnées du point d’intersection le plus proche de la position actuelle du curseur s’affichent.
Pour trouver la pente de la fonction quadratique

5. Trouvez la pente de la fonction quadratique au point d'intersection.

** Sélectionnez Pente **

La valeur de la pente s'affiche en bas de l'écran. Vous pouvez utiliser les touches de curseur gauche et droite pour réaliser un tracé le long de la courbe et visualiser la pente sur d'autres points. Vous pouvez également utiliser les touches haut et bas du curseur pour accéder à une autre fonction et visualiser la pente sur des points de ce graphique. Appuyez sur **OK** pour quitter et revenir à la vue graphique.

Pour trouver la zone signée entre les deux fonctions

6. Pour trouver la zone entre les deux fonctions de la plage $-1.3 \leq x \leq 2.3$, déplacez en premier lieu le curseur sur $F1(X)$, puis sélectionnez l'option de zone signée.

- ou pour sélectionner la linéaire

** Sélectionnez Zone signée **

7. Placez le curseur sur $x = -1.3$ en appuyant sur ou pour vous placer sur $x = -1.3$

8. Appuyez sur **OK** pour accepter d'utiliser $F2(X)$ comme autre limite de l'intégrale.
9. Choisissez la valeur de fin pour x.

2,3

Le curseur accède directement à

\(x = 2.3 \) la fonction linéaire et la zone est grisée. La zone grisee affiche « + » (plus) lorsqu’elle est positive et « - » (moins) lorsqu’elle est négative.

10. Affichez la valeur numérique de l’intégrale.

11. Déplacez le curseur sur l’équation quadratique et trouvez l’extrême de la quadratique.

(pour déplacer le traceur jusqu’à la quadratique)

 Sélectionnez Extrême

Les coordonnées de l’extrême s’affichent en bas de l’écran.
CONSEIL
Les fonctions RACINE et EXTREME ne renvoient qu’une seule valeur, même lorsque la fonction présente plusieurs racines ou extrêmes. La fonction trouve la valeur la plus proche de la position du curseur. Vous devez replacer le curseur pour trouver les autres racines ou extrêmes potentielles.

Variables FCN
Les résultats des fonctions FCN sont enregistrés dans les variables suivantes :
• Racine
• Isect
• Pente
• Zone signée
• Extrême

Les fonctions FCN sont les suivantes :

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racine</td>
<td>Sélectionnez Racine pour trouver la racine de la fonction actuelle la plus proche du curseur. Si aucune racine n’est trouvée et qu’un extrême est renvoyé, le résultat est alors libellé Extrême: au lieu de Racine:. Le curseur se positionne sur la valeur racine de l’axe x, et la valeur x qui en résulte est enregistrée dans une variable appelée Root.</td>
</tr>
<tr>
<td>Extrême</td>
<td>Sélectionnez Extrême pour trouver le maximum ou le minimum de la fonction actuelle la plus proche du curseur. Le curseur se place jusqu’à l’extrême et les valeurs des coordonnées s’affichent. La valeur qui en résulte est enregistrée dans une variable appelée Extremum.</td>
</tr>
<tr>
<td>Fonction</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pente</td>
<td>Sélectionnez Pente pour trouver le dérivé numérique de la fonction actuelle (position actuelle du curseur). Le résultat est enregistré dans une variable appelée Slope.</td>
</tr>
<tr>
<td>Zone signée</td>
<td>Sélectionnez Zone signée pour trouver l'intégrale numérique. (Si plusieurs expressions sont marquées d'une coche, il vous sera demandé de choisir la seconde expression dans une liste comprenant l'axe x.) Sélectionnez un point de départ, puis déplacez le curseur pour sélectionner un point final. Le résultat est enregistré dans une variable appelée SignedArea.</td>
</tr>
<tr>
<td>Intersection</td>
<td>Sélectionnez Intersection pour trouver l'intersection du graphique que vous êtes en train de tracer avec un autre. Au moins deux expressions doivent être sélectionnées dans la vue symbolique. Trouve l'intersection la plus proche des coordonnées du traceur. Affiche les valeurs des coordonnées et déplace le curseur jusqu'à l'intersection. La valeur x qui en résulte est enregistrée dans une variable nommée Isect.</td>
</tr>
</tbody>
</table>
Pour accéder aux variables FCN

Les variables FCN se trouvent dans le menu Vars.

Pour accéder aux variables FCN dans la vue Home :

Sélectionnez Résultats des fonctions

pour choisir une variable

Vous pouvez accéder aux variables FCN et les utiliser pour définir des fonctions dans la vue symbolique de la même manière que dans la vue Home.
Application Résoudre

A propos de l'application Résoudre

L'application Résoudre résout une équation ou une expression pour l'une de ses variables inconnues. Définissez une équation ou une expression dans la vue symbolique, puis renseignez toutes les variables à l'exception de l'une d'elles dans la vue numérique. Ce processus de résolution ne fonctionne qu'avec des nombres réels.

Notez les différences entre une équation et une expression :

- Une équation contient un signe égal. Sa solution est une valeur pour la variable inconnue égale pour les deux côtés de l'équation.

- Une expression ne comporte pas de signe égal. Sa solution est une racine, une valeur pour la variable inconnue par laquelle l'expression est égale à zéro.

Vous pouvez utiliser l'application Résoudre afin de résoudre une équation pour l'une de ses variables. Par ailleurs, si l'équation ou l'expression est polynomiale dans une seule variable et qu'il existe plusieurs solutions pour cette variable, la fonction \mathcal{X} apparait alors dans le menu. Lorsque vous appuyez sur cette touche de menu, une liste de solutions réelles pour la variable s'affiche.

Vous pouvez résoudre l'équation autant de fois que nécessaire, en utilisant de nouvelles valeurs pour les variables connues et en mettant en surbrillance une variable inconnue différente.

REMARQUE

Vous ne pouvez sélectionner qu'une équation à la fois. D'autres applications permettent de sélectionner plusieurs équations, mais ce n'est pas le cas de l'application Résoudre. Une fois la résolution terminée, l'application transpose les valeurs des variables résolues en nouvelles équations. Vous pouvez alors résoudre de nouvelles variables à l'aide des valeurs que vous venez d'obtenir. Vous ne pouvez pas résoudre plusieurs variables en même temps. À titre d'exemple, les équations linéaires simultanées doivent être résolues à l'aide de l'application Solveur d'équation linéaire, de matrices ou de graphiques dans l'application Fonction.
Présentation de l’application Résoudre

Imaginons que vous souhaitiez trouver l’accélération nécessaire pour augmenter la vitesse d’une voiture et passer de 16,67 m/sec (60 km/h) à 27,78 m/sec (100 km/h) sur une distance de 100 m.

L’équation à résoudre est la suivante :

\[v^2 = u^2 + 2AD \]

Ouverture de l’application Résoudre

1. Ouvrez l’application Résoudre.

2. Définissez l’équation.

Remarque : vous pouvez utiliser la touche de menu pour entrer les équations.
Entrée des variables connues

3. Affichez l'écran Résoudre Vue Numérique.

Dans la vue numérique, indiquez les valeurs des variables connues, mettez en surbrillance la variable que vous souhaitez résoudre et appuyez sur SOLVE.

4. Saisissez les valeurs pour les variables connues.

Résolution de la variable inconnue

5. Résolvez la variable inconnue (A).

Donc, l'accélération nécessaire pour augmenter la vitesse d'une voiture et passer de 16,67 m/sec (60 km/h) à 27,78 m/sec (100 km/h) sur une distance de 100 m est d'environ 2,47 m/s².

La variable A de l'équation étant linéaire, nous savons que nous n'avons pas besoin de rechercher d'autres solutions.
La vue Tracé présente un graphique de chaque côté de l'équation sélectionnée. Vous pouvez définir n’importe quelle variable comme variable indépendante.

L'équation actuelle est \(V^2 = U^2 + 2AD \).

Sélectionnez A comme variable. La vue Tracé trace alors deux équations. L'une d'elles est \(Y = V^2 \), avec \(V = 27.78 \), c'est-à-dire \(Y = 771.7284 \). Le graphique sera une ligne horizontale. L'autre graphique sera \(Y = U^2 + 2AD \), avec \(U = 16.67 \) et \(D = 100 \), c'est-à-dire \(Y = 200A + 277.8889 \). Ce graphique est également une ligne. La solution recherchée est la valeur de A à l'intersection de ces deux lignes.

6. Tracez l'équation pour la variable A.

7. Réalisez un tracé le long du graphique représentant le côté gauche de l'équation jusqu'à ce que le curseur arrive à l'intersection.

Notez la valeur de A qui s'affiche dans le coin inférieur gauche de l'écran.

La vue Tracé permet de trouver facilement une solution approximative, en remplacement de l'option Résoudre de la vue numérique.
Les touches de la vue numérique de l’application Résoudre sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Copie la valeur mise en surbrillance dans la ligne d’édition pour en permettre la modification. Appuyez sur OK lorsque vous avez terminé.</td>
</tr>
<tr>
<td>INFO</td>
<td>Affiche des informations sur la nature de la solution trouvée.</td>
</tr>
<tr>
<td>PAGE []</td>
<td>Affiche d’autres pages de variables, le cas échéant.</td>
</tr>
<tr>
<td>ALT</td>
<td>Affiche une liste des diverses solutions pour la variable sélectionnée, le cas échéant.</td>
</tr>
<tr>
<td>DEFN</td>
<td>Affiche la définition symbolique de l’expression actuelle. Appuyez sur OK lorsque vous avez terminé.</td>
</tr>
<tr>
<td>SOLVE</td>
<td>Trouve une solution pour la variable en surbrillance, en fonction des valeurs des autres variables.</td>
</tr>
<tr>
<td>[]</td>
<td>Remet la variable en surbrillance à zéro ou supprime le caractère actuel de la ligne d’édition, lorsque celle-ci est active.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Remet toutes les variables à zéro ou supprime la ligne d’édition, lorsque le curseur se trouve dans la ligne d’édition.</td>
</tr>
</tbody>
</table>
Interprétation des résultats

Lorsque l’application Résoudre affiche une solution, appuyez sur \(\text{NEO} \) dans la vue numérique pour obtenir de plus amples informations. Vous verrez s’afficher l’un des trois messages suivants. Appuyez sur \(\text{OK} \) pour effacer le message.

<table>
<thead>
<tr>
<th>Message</th>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zéro</td>
<td>L’application Résoudre trouve un point pour lequel les deux côtés de l’équation sont égaux, ou pour lequel l’expression est zéro (racine). La précision de la calculatrice s’élève à 12 chiffres.</td>
</tr>
<tr>
<td>Inversion de signe</td>
<td>L’application Résoudre trouve deux points pour lesquels la différence entre les deux côtés de l’équation présente des signes opposés, mais elle ne peut pas trouver de point entre les deux ayant une valeur égale à zéro. Il en va de même pour une expression dans laquelle la valeur présente des signes différents mais n’est pas égale à zéro. Cela peut être dû soit au fait que les deux points sont proches (ne différant que d’un chiffre dans une série de douze chiffres), soit au fait que l’équation ne présente pas de valeur réelle entre les deux points. L’application Résoudre affiche le point pour lequel la valeur ou la différence est la plus proche de zéro. Si l’équation ou l’expression est réelle en continu, ce point consiste en la meilleure approximation d’une solution réelle par l’application.</td>
</tr>
</tbody>
</table>
Si l’application Résoudre ne peut pas trouver de solution, vous verrez s’afficher l’un des deux messages suivants.

<table>
<thead>
<tr>
<th>Message</th>
<th>Paramètres (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrème</td>
<td>L’application Résoudre trouve un point pour lequel la valeur de l’expression s’approche d’un minimum (pour les valeurs positives) ou d’un maximum local (pour les valeurs négatives). Ce point peut être une solution ou pas. Ou : l’application Résoudre arrête la recherche à 9,99999999999E499, à savoir le plus grand nombre que la calculatrice peut représenter. Notez que la valeur qui s’affiche n’est probablement pas valide.</td>
</tr>
</tbody>
</table>

Message Paramètres (Suite)

- Supposition (s) incorrecte (s)
- Constante?

L’estimation initiale est en dehors du domaine de l’équation. La solution n’était donc pas un nombre réel ou a causé une erreur.

La valeur de l’équation est la même à chaque point sélectionné.

CONSEIL Il importe de vérifier les informations relatives au processus de résolution. Par exemple, la solution trouvée par l’application Résoudre n’est pas une solution mais le résultat le plus proche que la fonction peut ramener à zéro. Vous ne pourrez en être sûr qu’en vérifiant ces informations.
Plusieurs solutions

Examinez l’équation polynomiale suivante :

\[x^2 - x - 1 = 0 \]

L’équation étant quadratique pour \(x \), il peut y avoir (et c’est le cas ici) deux solutions. Dans le cas de polynomiales, la calculatrice HP 39gII permet de trouver rapidement plusieurs solutions.

1. Sélectionnez l’application Résoudre et entrez l’équation.

2. Résolvez \(x \).

ALT apparaît dans le menu pour vous informer qu’il existe plusieurs solutions.

Appuyez sur ALT pour afficher la liste des solutions et sélectionner celle de votre choix.
Utilisation de variables dans les équations

Vous pouvez utiliser n’importe quel nom de variable réelle (A à Z et θ). N’utilisez pas de noms de variable définis pour d’autres types, tels que M1 (variable de matrice).

Variables de la vue Home

Toutes les variables de la vue Home (autres que celles pour le paramétrage des applications, telles que xmin et Ytick) sont globales, c’est-à-dire partagées par les différentes applications de la calculatrice. Une valeur affectée à une variable de l’accueil (depuis n’importe quel emplacement) reste associée à cette variable, quelle que soit l’utilisation de son nom.

Ainsi, si vous avez défini une valeur pour T (comme dans l’exemple ci-dessus) dans une autre application ou même une autre équation de l’application Résoudre, cette valeur s’affiche dans la vue numérique pour cette équation. Lorsque vous redéfinissez la valeur pour T dans cette équation de l’application Résoudre, cette valeur est appliquée à T dans tous les autres contextes (jusqu’à sa prochaine modification).

Ce partage vous permet de travailler sur un même problème dans différents emplacements (par exemple : Home et application Résoudre) sans avoir à mettre la valeur à jour lors d’un recalcul.

CONSEIL

L’application Résoudre utilisant des valeurs de variable existantes, vous devez vérifier ces dernières car elles sont susceptibles d’affecter le processus de résolution (si vous le souhaitez, vous pouvez utiliser CLEAR pour remettre toutes les valeurs à zéro dans la vue numérique de l’application Résoudre).

Variables d’application

Les fonctions définies dans d’autres applications peuvent également être référencées dans l’application Résoudre. Par exemple, si vous définissez $F_1(X)=X^2+10$ dans l’application Fonction, vous pouvez entrer $F_1(X)=50$ dans l’application Résoudre afin de résoudre l’équation $X^2+10=50$.
Présentation de l’application Statistiques 1Var

L’application Statistiques 1Var peut stocker jusqu’à dix jeux de données simultanément. Elle peut effectuer une analyse statistique à une variable d’un ou plusieurs jeux de données.

L’application Statistiques 1Var s’ouvre avec la vue numérique, qui permet d’entrer des données. La vue symbolique permet d’indiquer les colonnes contenant des données et celles contenant des fréquences.

Vous pouvez également calculer des valeurs statistiques dans la vue Home et rappeler les valeurs de variables statistiques spécifiques.

Les valeurs calculées dans l’application Statistiques 1Var sont sauvegardées dans des variables, et nombre de celles-ci sont répertoriées par la fonction \textit{STATS}, accessible depuis la vue numérique de l’application Statistiques 1Var.

Présentation de l’application Statistiques 1Var

L’exemple suivant traite des tailles des étudiants d’une classe. Nous utiliserons cet exemple pour présenter la structure et la fonction de l’application Statistiques 1Var. Vous avez relevé la taille des étudiants d’une classe pour connaître la taille moyenne. Les cinq premiers étudiants présentent les tailles suivantes : 160 cm, 165 cm, 170 cm, 175 cm, 180 cm.

1. Ouvrez l’application Stats - 1Var.

<table>
<thead>
<tr>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

160 | 165 | 170 | 175 | 180 | 5 | 9 | 9 | 2 | 1 |
2. Saisissez les valeurs mesurées.

3. Trouvez la moyenne pour l'échantillon.
 Appuyez sur <Stats> pour afficher les statistiques calculées à partir des données de l'échantillon dans D1.

Notez que le titre de la colonne de statistiques est H1. Cinq définitions de jeux de données sont disponibles pour les statistiques à une variable : H1–H5. Si les données sont entrées dans D1, H1 est automatiquement défini pour utiliser les données de D1, et la fréquence de chaque point de données est définie sur 1. Vous pouvez sélectionner d'autres colonnes de données depuis la vue symbolique de l'application.

La première colonne indique la colonne de données associée à chaque définition de jeu de données ; la seconde indique la fréquence de la constante, ou la colonne contenant les fréquences.
Touches de la vue Symbolique de l’application Statistiques 1Var

Les touches que vous pouvez utiliser à partir de cette fenêtre sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Copie la variable de la colonne (ou l’expression de la variable) dans la ligne d'édition pour permettre sa modification. Appuyez sur OK lorsque vous avez terminé.</td>
</tr>
<tr>
<td>✓ VERF</td>
<td>Coche/Décoche le jeu de données actuel. Seuls les jeux de données marqués d’une coche sont calculés et tracés.</td>
</tr>
<tr>
<td>B</td>
<td>Aide à la saisie des noms de colonnes.</td>
</tr>
<tr>
<td>MATH</td>
<td>Affiche l’expression actuelle dans un format de manuel scolaire. Appuyez sur OK lorsque vous avez terminé.</td>
</tr>
<tr>
<td>EVAL</td>
<td>Évalue l’expression mise en surbrillance et résout toutes les références aux expressions de fonctions.</td>
</tr>
<tr>
<td>Menu</td>
<td>Affiche un menu pour la saisie de noms de variables ou de contenus de variables.</td>
</tr>
<tr>
<td>Menu</td>
<td>Affiche le menu pour la saisie d’opérations mathématiques.</td>
</tr>
<tr>
<td>Suppr</td>
<td>Supprime la variable mise en surbrillance ou le caractère à gauche du curseur dans la ligne d’édition.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Rétablit les spécifications par défaut pour les jeux de données ou efface la ligne d’édition (lorsqu’elle est active).</td>
</tr>
</tbody>
</table>
Pour continuer avec le même exemple, supposons que la taille du reste des étudiants de la classe soit mesurée, mais que chaque valeur trouvée soit arrondie à la valeur la plus proche parmi les cinq premières mesures effectuées. Au lieu de saisir toutes les nouvelles données dans D1, il nous suffit d’ajouter une autre colonne, D2, contenant les fréquences de nos cinq points de données dans D1.

<table>
<thead>
<tr>
<th>Hauteur (cm)</th>
<th>Fréquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>165</td>
<td>3</td>
</tr>
<tr>
<td>170</td>
<td>8</td>
</tr>
<tr>
<td>175</td>
<td>2</td>
</tr>
<tr>
<td>180</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Déplacez la barre mise en surbrillance dans la colonne de droite de la définition H1 et saisissez le nom de variable de la colonne D2.

6. Revenez à la vue numérique.

7. Saisissez les données de fréquence indiquées dans le tableau ci-dessus.
8. Affichez les statistiques calculées.

\[\text{La taille moyenne est d'environ 167,63 cm.} \]

9. Configurez un histogramme pour les données.

\[\text{Saisissez des informations de configuration appropriées pour vos données.} \]

10. Tracez un histogramme des données.

Saisie et modification de données statistiques

La vue numérique (\(\text{Num} \)) permet d'entrer des données dans l'application Statistiques 1Var. Chaque colonne représente une variable nommée D0 à D9. Une fois les données entrées, vous devez définir le jeu de données dans la vue symbolique (\(\text{Symp} \)).

CONSEIL

Une colonne de données doit avoir au moins deux points de données pour les statistiques à une variable.

Vous pouvez également stocker des données statistiques en copiant les listes de la vue Home dans les colonnes de données statistiques. Par exemple, dans la vue Home, L1 \(\text{STO} \rightarrow \text{D1} \) stocke une copie de la liste L1 dans la variable de la colonne de données D1.
Touches de la vue numérique de l’application Statistiques 1Var

Les touches de la vue numérique de l’application Statistiques 1Var sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Copie l’élément en surbrillance dans la ligne d’édition.</td>
</tr>
<tr>
<td>INS</td>
<td>Insère une valeur égale à zéro au-dessus de la cellule en surbrillance.</td>
</tr>
<tr>
<td>THIR</td>
<td>Trie la colonne de données indépendante indiquée par ordre croissant ou décroissant et réorganise une colonne de données dépendante (ou de fréquence) spécifiée en fonction de ce tri.</td>
</tr>
<tr>
<td>GRAND</td>
<td>Bascule entre deux tailles de police.</td>
</tr>
<tr>
<td>VICC</td>
<td>Ouvre une boîte de dialogue pour la création d’une suite basée sur une expression et la stocke dans une colonne de données.</td>
</tr>
<tr>
<td>STATS</td>
<td>Calcule des statistiques descriptives pour chaque jeu de données indiqué dans la vue symbolique.</td>
</tr>
<tr>
<td>CLR</td>
<td>Supprime la valeur actuellement en surbrillance.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Efface la colonne actuelle ou toutes les colonnes de données. Appuyez sur CLEAR pour afficher une liste de menus, puis sélectionnez la colonne actuelle ou toutes les options de colonne, puis appuyez sur OK.</td>
</tr>
<tr>
<td>CURSOR KEY</td>
<td>Se déplace vers la première ligne, dernière ligne, première colonne ou dernière colonne.</td>
</tr>
</tbody>
</table>
Sauvegarde des données

Les données entrées sont automatiquement enregistrées. Lorsque vous avez fini de saisir des données, vous pouvez appuyer sur une touche pour afficher une autre vue statistiques (par exemple : \(\sigma \)), basculer sur une autre application ou revenir à la vue Home.

Modification d’un jeu de données

Dans la vue numérique de l’application Statistiques 1Var, mettez en surbrillance les données à modifier. Saisissez une nouvelle valeur et appuyez sur \(\text{entrée} \), ou appuyez sur \(\text{éditer} \) pour copier cette valeur dans la ligne d’édition pour la modifier. Appuyez sur \(\text{entrée} \) après avoir modifié la valeur dans la ligne d’édition.

Suppression de données

- Pour supprimer une seule donnée, mettez-la en surbrillance et appuyez sur \(\text{supprimer} \). Les valeurs situées en-dessous de la cellule supprimée seront transférées à la ligne du dessus.
- Pour supprimer une colonne de données, mettez en surbrillance une entrée de cette colonne et appuyez sur \(\text{supprimer clair} \). Sélectionnez le nom de la colonne et appuyez sur \(\text{ok} \).
- Pour supprimer toutes les colonnes de données, appuyez sur \(\text{supprimer clair} \). Sélectionnez Toutes les colonnes et appuyez sur \(\text{ok} \).

Insertion de données

Mettez en surbrillance l’entrée suivant le point d’insertion. Appuyez sur \(\text{insérer} \), puis entrez un nombre. Il écrasera le zéro inséré auparavant.

Tri des données

1. Dans la vue numérique, mettez en surbrillance la colonne que vous souhaitez trier et appuyez sur \(\text{tri} \).
2. Indiquez l’ordre de tri. Vous pouvez sélectionner Croissant ou Décroissant.
3. Spécifiez les colonnes de données INDEPENDANTES et DÉPENDANTES. Le tri est réalisé en fonction de la colonne indépendante. A titre d’exemple, si l’âge est en D1 et le revenu en D2 et que vous souhaitez trier par revenu, vous devez définir D2 comme colonne indépendante et D1 comme colonne dépendante.
 - Pour trier une seule colonne, choisissez Aucune pour la colonne dépendante.
 - Pour les statistiques à une variable avec deux colonnes de données, indiquez la colonne de fréquence dans le champ Fréquence.
4. Appuyez sur \(\text{ok} \).
Statistiques calculées

Appuyez sur **Stats** pour afficher les résultats dans le tableau suivant.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Nombre de points de données.</td>
</tr>
<tr>
<td>Min</td>
<td>Valeur minimale du jeu de données.</td>
</tr>
<tr>
<td>Q1</td>
<td>Premier quartile : médiane des valeurs à gauche de la médiane.</td>
</tr>
<tr>
<td>Méd</td>
<td>Valeur médiane du jeu de données.</td>
</tr>
<tr>
<td>Q3</td>
<td>Troisième quartile : médiane des valeurs à droite de la médiane.</td>
</tr>
<tr>
<td>Max</td>
<td>Valeur maximale du jeu de données.</td>
</tr>
<tr>
<td>Σ X</td>
<td>Somme des données (avec leurs fréquences).</td>
</tr>
<tr>
<td>Σ X²</td>
<td>Somme des carrés des valeurs.</td>
</tr>
<tr>
<td>x</td>
<td>Moyenne des valeurs.</td>
</tr>
<tr>
<td>sX</td>
<td>Écart-type d’échantillon de jeu de données.</td>
</tr>
<tr>
<td>σX</td>
<td>Écart-type de population du jeu de données.</td>
</tr>
<tr>
<td>seX</td>
<td>Erreur type du jeu de données.</td>
</tr>
</tbody>
</table>

Lorsque le jeu de données contient un nombre de valeurs impair, la valeur médiane du jeu n’est pas utilisée pour calculer Q1 et Q3 dans le tableau ci-dessus. Par exemple, pour le jeu de données suivant :

{3, 5, 7, 8, 15, 16, 17}

seuls les trois premiers éléments, 3, 5 et 7, sont réutilisés pour calculer Q1, et seuls les trois derniers termes, 15, 16 et 17, sont utilisés pour calculer Q3.
Vous pouvez tracer :

• des histogrammes ;
• des diagrammes de quartiles ;
• des tracés de probabilité normale ;
• des tracés de ligne ;
• des graphiques en barres ;
• des diagrammes de Pareto.

Une fois vos données entrées et votre jeu de données défini, vous pouvez réaliser un tracé de vos données. Vous pouvez tracer jusqu'à cinq diagrammes de quartiles simultanément ; en revanche, pour les autres types de graphiques, vous ne pouvez en tracer qu’un seul à la fois.

Pour tracer des données statistiques

1. Dans la vue symbolique () , sélectionnez (CHK) le jeu de données que vous souhaitez tracer.

2. Sélectionnez le type de tracé. Mettez en surbrillance le champ Tracé pour votre jeu de données, appuyez sur la touche de menu , puis accédez au type de tracé de votre choix. Une fois votre choix réalisé, appuyez sur la touche de menu .

3. Vous devez ajuster la mise à l’échelle et la plage du tracé dans la vue de configuration du tracé, et ce quel que soit le type de tracé, mais tout particulièrement pour les histogrammes. Si vous trouvez les barres d'histogramme trop larges ou trop étroites, vous pouvez les ajuster en modifiant le paramètre HWIDTH.

AutoScale (Mise à l'échelle automatique) permet d'obtenir une mise à l'échelle appropriée pour commencer, qui pourra ensuite être ajustée dans la configuration du tracé.
Types de tracé

Histogramme
Les nombres en-dessous du tracé indiquent que la barre actuelle (là où se trouve le curseur) démarre à 0 et se termine à 2 (2 étant exclu), et que la fréquence de cette colonne (à savoir le nombre d’éléments entre 0 et 2) est égale à 1. Vous pouvez afficher les informations de la barre suivante en appuyant sur ▶.

Diagramme de quartiles
La barre de gauche indique la valeur minimale. Le rectangle marque le premier quartile, la médiane (là où se trouve le curseur) et le troisième quartile. La barre de droite indique la valeur maximale. Les nombres en-dessous du tracé indiquent que la valeur minimale de la colonne est égale à 1,2.

Tracé de probabilité normale
Le tracé de probabilité normale permet de déterminer si les données de l’échantillon ont été distribuées de manière normale. Plus les données apparaissent de manière linéaire, plus les données ont des chances d’avoir été distribuées de manière normale.

Tracé de ligne
Le tracé de ligne relie les points de la forme (x, y), où x correspond au numéro de la ligne du point de données et y à la valeur du point de données.
Graphiques à barres

Le graphique à barres indique la valeur d'un point de données sous forme de barre verticale placée le long de l'axe x au niveau du numéro de ligne du point de données.

Diagramme de Pareto

Un diagramme de Pareto place les données en ordre décroissant et affiche le pourcentage de chacune par rapport à l'ensemble.

Configuration du tracé (vue Configuration du tracé)

La configuration du tracé (SETUP- PLOT) permet de définir la plupart des paramètres de tracé présents dans les autres applications HP intégrées. Les paramètres présents uniquement dans l'application Statistiques 1Var sont les suivants :

- **Largeur d'histogramme** (HWIDTH) vous permet de définir la largeur d'une barre d'histogramme. Ce paramètre détermine le nombre de barres apparaissant dans l'affichage, ainsi que le mode de distribution des données (nombre de valeurs représenté par chaque barre).

- **Plage d'histogramme** (HRNG) vous permet d'indiquer la plage de valeurs pour un ensemble de barres d'histogramme. Cette plage s'étend du bord gauche de la barre la plus à gauche jusqu'au bord droit de la barre la plus à droite. Vous pouvez limiter cette plage afin d'exclure des valeurs que vous estimez aberrantes.
Exploration du graphique

La vue Tracé dispose de touches de menu pour le zoom, le traçage et l’affichage de coordonnées. Vous pouvez également accéder à des options de mise à l’échelle en appuyant sur \(\text{Zoom} \).

Touches de la vue Tracé de l’application Statistiques 1Var

Les touches de la vue Tracé sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR</td>
<td>Supprime le tracé.</td>
</tr>
<tr>
<td>V</td>
<td>Propose des vues prédéfinies supplémentaires pour la division de l’écran et la mise à l’échelle automatique des axes.</td>
</tr>
<tr>
<td>S<</td>
<td>Déplace le curseur vers l’extrémité gauche ou l’extrémité droite.</td>
</tr>
<tr>
<td>ZOOM</td>
<td>Affiche le menu Zoom.</td>
</tr>
<tr>
<td>TRACE</td>
<td>Active ou désactive le mode Trace. La zone blanche apparaît à côté de l’option lorsque le mode Trace est actif.</td>
</tr>
<tr>
<td>DERN</td>
<td>Affiche la définition du tracé statistique actuel.</td>
</tr>
<tr>
<td>MENU</td>
<td>Active ou désactive le menu.</td>
</tr>
</tbody>
</table>
Application Statistiques 2Var

Présentation de l'application Statistiques 2Var

L'application Statistiques 2Var peut stocker jusqu'à dix jeux de données simultanément. Elle peut effectuer une analyse statistique à deux variables d'un ou plusieurs jeux de données.

L'application Statistiques 2Var s'ouvre avec la vue numérique, qui permet d'entrer des données. La vue symbolique permet d'indiquer les colonnes contenant des données et celles contenant des fréquences.

Vous pouvez également calculer des valeurs statistiques dans la vue Home et rappeler les valeurs de variables statistiques spécifiques.

Les valeurs calculées dans l'application Statistiques 2Var sont enregistrées dans des variables, et nombre de celles-ci sont répertoriées par la fonction STATS, accessible dans la vue numérique de l'application Statistiques 2Var.

Découverte de l'application Statistiques 2Var

L'exemple suivant est basé sur des données relatives à la publicité et aux ventes, indiquées dans le tableau ci-dessous. Dans cet exemple, vous devez entrer des données, calculer des statistiques récapitulatives, créer une courbe représentant les données et prévoir l'effet d'une publicité accrue sur les ventes.

<table>
<thead>
<tr>
<th>Durée de la publicité en minutes (indépendante, x)</th>
<th>Ventes qui en découlent, en $ (dépendante, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1400</td>
</tr>
<tr>
<td>1</td>
<td>920</td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>2265</td>
</tr>
<tr>
<td>5</td>
<td>2890</td>
</tr>
<tr>
<td>4</td>
<td>2200</td>
</tr>
</tbody>
</table>
Ouverture de l'application Statistiques 2Var

1. Effacez les données existantes et ouvrez l'application Statistiques 2Var.

Sélectionnez Statistiques 2Var

L'application Statistiques 2Var s'ouvre dans la vue numérique.

Saisie de données

2. Entrez les données dans les colonnes.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>200</td>
<td>920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2265</td>
<td>2200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2890</td>
<td>2265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1100</td>
<td>1150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2890</td>
<td>2200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pour passer à la colonne suivante

Choix des colonnes de données et de l'ajustement

3. Indiquez les colonnes contenant les données que vous souhaitez analyser.

Il se peut que vous ayez entré vos données dans des colonnes autres que C1 et C2.
4. Sélectionnez un ajustement.
 ✔ CHOX

Sélectionnez Linéaire

OK

Vous pouvez créer jusqu'à cinq explorations de données à deux variables, nommées S_1 à S_5. Dans cet exemple, nous allons en créer une seule : S_1.

Exploration de statistiques

5. Trouvez la corrélation, r, entre la durée de la publicité et les ventes.

La corrélation est la suivante : $r=0,8995...$

6. Trouvez la durée de publicité moyenne (\bar{x}) et les ventes moyennes (\bar{y}).

La durée de publicité moyenne, \bar{x}, est d'environ 3,3 minutes.

Les ventes moyennes, \bar{y}, sont d'environ 1 796 $.
7. Modifiez la plage du tracé afin de vous assurer que tous les points de données apparaissent (vous pouvez également sélectionner un repère différent).

```
SETUP-PILOT
```

8. Configurez le graphique.

```
Plut
```

9. Dessinez la courbe de régression (courbe représentant les points de données).

```
MENU A451
```

La ligne de régression pour l’ajustement linéaire le plus approprié est alors tracée.

10. Revenez à la vue symbolique.

```
Syms
```

La pente \(m \) est de 425,875. L’ordonnée à l’origine \(b \) est de 376,25.
Prévision de valeurs

Prévoyez le montant des ventes si la durée de publicité passait à 6 minutes.

11. Revenez à la vue Tracé.

12. Tracez jusqu'à x=6 sur l'ajustement linéaire.

pour déplacer le traceur vers l'ajustement

40 fois pour trouver x=6

Ce modèle prévoit que les ventes passeraient à 2 931,50 $ si la durée de publicité était de 6 minutes.

Saisie et modification de données statistiques

La vue numérique (M) permet d'entrer des données dans l'application Statistiques 2Var. Chaque colonne représente une variable nommée C0 à C9. Une fois les données saisies, vous devez définir le jeu de données dans la vue symbolique (Y).

CONSEIL

Une colonne de données doit avoir au moins quatre points de données pour fournir des statistiques à deux variables valides.

Vous pouvez également stocker des données statistiques en copiant les listes de la vue Home dans les colonnes de données statistiques. Par exemple, dans la vue Home, L1 et C1 stocke une copie de la liste L1 dans la variable de la colonne de données C1.
Touches de la vue numérique de l’application Statistiques 2Var

Les touches de la vue numérique de l’application Statistiques 2Var sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Copie l’élément mis en surbrillance dans la ligne d’édition.</td>
</tr>
<tr>
<td>INS</td>
<td>Insère une valeur égale à zéro au-dessus de la cellule en surbrillance.</td>
</tr>
<tr>
<td>TRIER</td>
<td>Trie la colonne de données indépendante indiquée par ordre croissant ou décroissant et réorganise une colonne de données dépendante (ou de fréquence) spécifiée en fonction de ce tri.</td>
</tr>
<tr>
<td>GRID*</td>
<td>Bascule entre deux tailles de police.</td>
</tr>
<tr>
<td>EXEC</td>
<td>Ouvre une boîte de dialogue permettant de créer une colonne de données basée sur une expression.</td>
</tr>
<tr>
<td>STATS</td>
<td>Calcule des statistiques descriptives pour chaque jeu de données indiqué dans la vue symbolique.</td>
</tr>
<tr>
<td>Del</td>
<td>Supprime la valeur actuellement mise en surbrillance.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Efface la colonne actuelle ou toutes les colonnes de données. Appuyez sur CLEAR pour afficher une liste de menus, puis sélectionnez la colonne actuelle ou toutes les options de colonne, puis appuyez sur OK.</td>
</tr>
<tr>
<td>*CURSOR KEY</td>
<td>Permet de se déplace vers la première ligne, la dernière ligne, la première colonne ou la dernière colonne.</td>
</tr>
</tbody>
</table>
Sauvegarder les données

Les données entrées sont automatiquement enregistrées. Lorsque vous avez fini de saisir des données, vous pouvez appuyer sur une touche pour une autre vue Statistiques (par exemple : \({\text{entrée}} \)), basculer sur une autre application ou revenir à la vue Home.

Modification d'un jeu de données

Dans la vue numérique de l’application Statistiques 2Var, mettez en surbrillance les données à modifier. Saisissez une nouvelle valeur et appuyez sur \({\text{entrée}} \), ou appuyez sur \({\text{entrée}} \) pour copier cette valeur dans la ligne d’édition pour permettre sa modification. Appuyez sur \({\text{entrée}} \) après avoir modifié la valeur dans la ligne d’édition.

Suppression de données

- Pour supprimer une seule donnée, mettez-la en surbrillance et appuyez sur \({\text{entrée}} \). Les valeurs situées en-dessous de la cellule supprimée seront transférées à la ligne du dessus.
- Pour supprimer une colonne de données, mettez en surbrillance une entrée de cette colonne et appuyez sur \({\text{entrée}} \) CLEAR. Sélectionnez le nom de la colonne.
- Pour supprimer toutes les colonnes de données, appuyez sur \({\text{entrée}} \) CLEAR. Sélectionnez Toutes les colonnes.

Insertion de données

Mettez en surbrillance l’entrée suivant le point d’insertion. Appuyez sur \({\text{entrée}} \), puis entrez un nombre. Il écrasera le zéro inséré auparavant.

Tri des données

1. Dans la vue numérique, mettez en surbrillance la colonne que vous souhaitez trier et appuyez sur \({\text{entrée}} \).
2. Indiquez l’ordre de tri. Vous pouvez sélectionner Croissant ou Décroissant.
3. Spécifiez les colonnes de données INDEPENDANTE, DEPENDANTE et FREQUENCE (le cas échéant). Le tri est réalisé en fonction de la colonne indépendante. A titre d’exemple, si l’âge est en \({\text{C1}} \) et le revenu en \({\text{C2}} \) et que vous souhaitez trier par revenu, vous devez définir \({\text{C2}} \) comme colonne indépendante et \({\text{C1}} \) comme colonne dépendante.
 - Pour trier une seule colonne, choisissez Aucune pour la colonne dépendante.
Pour les statistiques à une variable avec deux colonnes de données, indiquez la colonne de fréquence comme colonne dépendante.

4. Appuyez sur **OK**.

Définition d'un modèle de régression

La vue symbolique inclut une expression (Fit1 à Fit5) définissant le modèle de régression, ou « fit » (ajustement) à utiliser pour l’analyse de régression de chaque jeu de données à deux variables.

Il existe trois manières de sélectionner un modèle de régression :

- Accepter l’option par défaut pour représenter les données sur une ligne droite.
- Sélectionner l’une des options d’ajustement disponibles dans la vue symbolique.
- Entrer votre propre expression mathématique dans la vue symbolique. Cette expression sera tracée mais ne sera pas ajustée sur les points de données.

Configuration de l’angle

Vous pouvez ignorer le mode de mesure de l’angle sauf lorsque votre définition d’ajustement (dans la vue symbolique) intègre une fonction trigonométrique. Dans ce cas, vous devez préciser dans la configuration symbolique si les unités trigonométriques doivent être interprétées en degrés ou en radians.

Choix de l’ajustement

1. Appuyez sur **Symbole** pour afficher la vue symbolique. Mettez en surbrillance le numéro du Type (Type1 à Type5) que vous souhaitez définir.

2. Appuyez sur **OK** et sélectionnez un élément dans la liste. Appuyez sur **OK** lorsque vous avez terminé. La formule de régression pour l’ajustement s’affiche dans la vue symbolique.
Onze modèles d’ajustement sont disponibles :

<table>
<thead>
<tr>
<th>Modèle d’ajustement</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linéaire</td>
<td>(valeur par défaut) Ajuste les données sur une ligne droite, (y = mx + b). Utilise un ajustement de moindres carrés.</td>
</tr>
<tr>
<td>Logarithmique</td>
<td>Dessine une courbe logarithmique, (y = m \ln x + b).</td>
</tr>
<tr>
<td>Exponentiel</td>
<td>Dessine une courbe exponentielle, (y = b e^{nx}).</td>
</tr>
<tr>
<td>Puissance</td>
<td>Dessine une courbe de puissance, (y = bx^p).</td>
</tr>
<tr>
<td>Exposant</td>
<td>Dessine une courbe d’exposant, (y = ab^x).</td>
</tr>
<tr>
<td>Inverse</td>
<td>Dessine une variante inversée, (y = \frac{m}{x + b}).</td>
</tr>
</tbody>
</table>
| Logistique | Dessine une courbe logistique,
\[
 y = \frac{L}{1 + ae^{(-b)x}}
\]
 où \(L \) est la valeur de saturation pour la croissance. Vous pouvez entrer une valeur positive dans \(L \), ou (si \(L=0 \)) laisser le système calculer \(L \) automatiquement. |
| Quadratique | Dessine une courbe quadratique, \(y = ax^2 + bx + c \). Nécessite au minimum trois points. |
| Cube | Dessine une polynomiale cubique, \(y = ax^3 + bx^2 + cx + d \) |
| Quartique | Dessine une polynomiale quartique, \(y = ax^4 + bx^3 + cx^2 + dx + e \) |
Pour définir votre propre ajustement

1. Affichez la vue symbolique.
2. Mettez en surbrillance l’expression « Fit » (Fit1, etc.) correspondant au jeu de données souhaité.
3. Saisissez une expression et appuyez sur \(\text{ENTER} \).
 La variable indépendante doit être \(X \), et l’expression ne doit contenir aucune variable inconnue.
 Exemple : \(1.5 \times \cos x + 0.3 \times \sin x \).

Statistiques calculées

Lorsque vous appuyez sur \(\text{STAT} \), trois ensembles de statistiques sont disponibles. Par défaut, les statistiques relatives aux colonnes indépendante et dépendante s’affichent. Appuyez sur \(\text{X} \) pour afficher les statistiques relatives uniquement à la colonne indépendante ou sur \(\text{Y} \) pour afficher les statistiques basées uniquement sur la colonne dépendante. Appuyez sur \(\text{STAT} \) pour revenir à la vue par défaut. Les tableaux ci-dessous décrivent les statistiques affichées dans chaque vue.

<table>
<thead>
<tr>
<th>Modèle d’ajustement</th>
<th>Signification (Suite)</th>
</tr>
</thead>
</table>
| Trigonométrique | Dessine une courbe trigonométrique, \(y = a \cdot \sin(bx + c) + d \).
| | Nécessite au minimum trois points. |
| Défini par l’utilisateur | Vous permet de définir votre propre expression (dans la vue symbolique). |

\[
\begin{align*}
\text{Trigonométrique} & : y = a \cdot \sin(bx + c) + d, \\
\text{Défini par l’utilisateur} & : \text{Expression définie par l’utilisateur.}
\end{align*}
\]
Voici les statistiques calculées lorsque vous appuyez sur **STAT**.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Nombre de points de données.</td>
</tr>
<tr>
<td>r</td>
<td>Coefficient de corrélation des colonnes de données indépendante et dépendante, basé uniquement sur l’ajustement linéaire (quel que soit le type d’ajustement choisi). Renvoie une valeur comprise entre -1 et 1, où 1 et -1 indiquent les ajustements les plus appropriés.</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient de détermination, à savoir le carré du coefficient de corrélation. La valeur de ces statistiques dépend du type d’ajustement choisi.</td>
</tr>
<tr>
<td>sCOV</td>
<td>Covariance d’échantillon des colonnes de données indépendante et dépendante.</td>
</tr>
<tr>
<td>σsCOV</td>
<td>Covariance de population des colonnes de données indépendante et dépendante.</td>
</tr>
<tr>
<td>ΣXY</td>
<td>Somme des produits xy.</td>
</tr>
</tbody>
</table>

Voici les statistiques affichées lorsque vous appuyez sur **xy**.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x̄</td>
<td>Moyenne des valeurs x (indépendantes).</td>
</tr>
<tr>
<td>ΣX</td>
<td>Somme des valeurs x.</td>
</tr>
<tr>
<td>ΣX²</td>
<td>Somme des valeurs x².</td>
</tr>
<tr>
<td>sX</td>
<td>Ecart-type de l’échantillon de la colonne indépendante.</td>
</tr>
<tr>
<td>σX</td>
<td>Ecart-type de la population de la colonne indépendante.</td>
</tr>
<tr>
<td>serrX</td>
<td>Erreur type de la colonne indépendante.</td>
</tr>
</tbody>
</table>
Voici les statistiques affichées lorsque vous appuyez sur \(\gamma \).

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta)</td>
<td>Moyenne des valeurs (y) (dépendantes).</td>
</tr>
<tr>
<td>(\Sigma Y)</td>
<td>Somme des valeurs (y).</td>
</tr>
<tr>
<td>(\Sigma Y^2)</td>
<td>Somme des valeurs (y^2).</td>
</tr>
<tr>
<td>(sY)</td>
<td>Ecart-type de l’échantillon de la colonne dépendante.</td>
</tr>
<tr>
<td>(\sigma Y)</td>
<td>Ecart-type de la population de la colonne dépendante.</td>
</tr>
<tr>
<td>(serrY)</td>
<td>Erreur type de la colonne dépendante.</td>
</tr>
</tbody>
</table>

Tracé

Une fois vos données \(\{ \text{Num} \} \) entrées et votre jeu de données \(\{ \text{Nom} \} \) et votre modèle d’ajustement définis \(\{ \text{Nom} \} \), vous pouvez réaliser un tracé de vos données. Vous pouvez tracer jusqu’à cinq diagrammes de dispersion simultanément.

Pour tracer des données statistiques

1. Dans la vue symbolique \(\{ \text{Nom} \} \), sélectionnez \(\{ \text{Nom} \} \) le jeu de données que vous souhaitez tracer.
2. Ajustez la mise à l’échelle et la plage du tracé dans la vue de configuration du tracé.
3. Appuyez sur \(\{ \text{Nom} \} \). Si vous n’avez pas réglé la configuration du tracé vous-même, vous pouvez essayer \(\{ \text{Nom} \} \) et sélectionner AutoScale \(\{ \text{OK} \} \).

La mise à l’échelle automatique permet d’obtenir une mise à l’échelle appropriée pour commencer, qui pourra ensuite être ajustée dans la configuration du tracé.

Tracé d’un diagramme de dispersion

Les numéros en-dessous du tracé indiquent que le curseur est au premier point de données pour \(S1 \), à \((1, 6)\). Appuyez sur \(\{ \text{OK} \} \) pour vous déplacer jusqu’au point de données suivant et afficher des informations à son sujet.
Ajustement d'une courbe

Appuyez sur [BOUTON] pour afficher l'équation sur l'ajustement dans le champ Fit1. Pour afficher l'ensemble de l'équation, soulignez l'équation d'ajustement et appuyez sur [BOUTON].

L'expression de Fit2 indique la pente \(m = 1.98082191781 \) et l'ordonnée à l'origine \(y \) \(b = 2.26575 \).

Coefficient de corrélation, \(r \)

Le coefficient de corrélation est stocké dans la variable \(r \). Il s'agit d'une mesure d'ajustement pour la courbe linéaire uniquement. Quel que soit le modèle d'ajustement choisi, \(r \) est lié au modèle linéaire. La valeur de \(r \) est comprise entre -1 et 1, où -1 et 1 indiquent les ajustements les plus appropriés.

Coefficient de détermination \(R^2 \)

Le coefficient de détermination mesure l'adéquation de l'ajustement de votre modèle, qu'il s'agisse d'un modèle linéaire ou non. Une mesure égale à 1 indique un ajustement parfait.

CONSEIL

Pour accéder aux variables \(r \) et \(R^2 \) après tracage d'un jeu de données, vous devez appuyer sur [BOUTON] pour accéder à la vue numérique, puis sur [BOUTON] pour afficher les valeurs de corrélation. Lorsque vous accédez à la page de statistiques de la vue Numérique, les valeurs sont stockées dans des variables.
Configuration de tracé

La configuration du tracé (SETUP-PLLOT) permet de définir la plupart des paramètres présents dans les autres applications intégrées. Elle présente par ailleurs un paramètre exclusif :

Repère de tracé

S1MARK à S5MARK vous permet de spécifier l’un des cinq symboles à utiliser pour le tracé de chaque jeu de données. Appuyez sur F10X pour modifier le paramètre en surbrillance.

Résolution d’un problème de tracé

Si vous rencontrez des problèmes pour réaliser un tracé, assurez-vous :

• Que vous disposez de l’ajustement correct (modèle de régression).
• Que seuls les jeux de données à calculer ou à tracer sont marqués d’une coche (vue symbolique).
• Que vous disposez de la plage de tracé appropriée.
 Essayez d’utiliser V AutoScale (au lieu de P AUTO), ou réglez les paramètres de tracé (dans la configuration du tracé) pour les plages des axes.
• Que les deux colonnes associées contiennent des données et qu’elles sont de même longueur.
• Que la colonne de valeurs de fréquence associée présente la même longueur que la colonne de données à laquelle elle se réfère.

Exploration du graphique

La vue Tracé dispose de touches de menu pour le zoom, le traçage et l’affichage de coordonnées. Vous pouvez également accéder à des options de mise à l’échelle en appuyant sur V AUTO .
Touches de la vue Tracé de l’application Statistiques 2Var

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR</td>
<td>Supprime le tracé.</td>
</tr>
<tr>
<td>Propose des vues prédéfinies supplémentaires pour la division de l’écran et la mise à l’échelle automatique des axes.</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Propose des vues prédéfinies supplémentaires pour la division de l’écran et la mise à l’échelle automatique des axes.</td>
</tr>
<tr>
<td>Propose des vues prédéfinies supplémentaires pour la division de l’écran et la mise à l’échelle automatique des axes.</td>
<td></td>
</tr>
<tr>
<td>Déplace le curseur vers l’extrémité gauche ou l’extrémité droite.</td>
<td></td>
</tr>
<tr>
<td>Affiche le menu Zoom.</td>
<td></td>
</tr>
<tr>
<td>Active ou désactive le mode Trace. Le point blanc apparaît à côté de l’option lorsque le mode Trace est actif.</td>
<td></td>
</tr>
<tr>
<td>Active et désactive le mode d’ajustement. Le fait d’activer AUS dessine une courbe ajustant les points de données en fonction du modèle de régression actuel.</td>
<td></td>
</tr>
<tr>
<td>Vous permet d’indiquer une valeur sur la ligne pour l’ajustement le plus approprié ou le numéro de point de données auquel accéder.</td>
<td></td>
</tr>
<tr>
<td>Affiche l’équation de la courbe de régression ou la définition du tracé statistique actuel.</td>
<td></td>
</tr>
<tr>
<td>Masque et affiche les libellés des touches de menu.</td>
<td></td>
</tr>
</tbody>
</table>
Calcul de valeurs prévues

Les fonctions PREDX et PREDY évaluent (prévoient) des valeurs pour X ou Y à partir d’une valeur hypothétique attribuée à l’autre. Cette évaluation se base sur l’équation ayant été calculée pour placer les données en fonction de l’ajustement indiqué.

1. Dans la vue Tracé, dessinez la courbe de régression pour le jeu de données.
2. Appuyez sur pour accéder à la courbe de régression.
3. Appuyez sur et entrez la valeur de X. Le curseur accède au point spécifié sur la courbe et l’affichage des coordonnées indique X et la valeur prévue de Y.

Dans la vue Home :

- Saisissez PREDX(valeur y) [ENTER] afin de trouver la valeur prévue pour la variable indépendante, en fonction d’une valeur dépendante hypothétique.
- Saisissez PREDY(valeur x) afin de trouver la valeur prévue pour la variable dépendante, en fonction d’une variable indépendante hypothétique.

Vous pouvez entrer PREDX et PREDY dans la ligne d’édition, ou copier ces noms de fonction dans le menu Commands de la catégorie Applications, Statistiques 2Var.

CONSEIL
Si plusieurs courbes d’ajustement s’affichent, les fonctions PREDX et PREDY utilisent le premier ajustement actif défini dans la vue symbolique.
Application Inférence

A propos de l'application Inférence

L’application Inférence permet de calculer des intervalles de confiance et des tests d’hypothèses basés sur la distribution Z normale ou sur la distribution t de Student.

Selon les statistiques d’un ou deux échantillons, vous pouvez tester des hypothèses et trouver des intervalles de confiance pour les quantités suivantes :

• moyenne ;
• proportion ;
• différence entre deux moyennes ;
• différence entre deux proportions.

Données de démonstration

Lorsque vous accédez pour la première fois à un formulaire de saisie pour un test Inférence, ce formulaire contient, par défaut, des données de démonstration. Ces données sont conçues pour renvoyer des résultats concrets relatifs au test. Elles permettent de comprendre les fonctionnalités et le fonctionnement du test. L’aide en ligne de la calculatrice décrit ce que représentent les données de démonstration.

Présentation de l’application Inférence

Cet exemple décrit les options et les fonctionnalités de l’application Inférence à travers un exemple qui utilise les données de démonstration du test Z sur une moyenne.

Ouvrir l'application Inférence

1. Ouvrez l’application Inférence.

L’application Inférence s’ouvre dans la vue symbolique.
Options de la vue symbolique de l'application Inférence

Le tableau suivant répertorie les options de la vue symbolique.

<table>
<thead>
<tr>
<th>Tests d’hypothèses</th>
<th>Intervalles de confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Z : 1μ, le test Z sur 1 moyenne</td>
<td>Int Z : 1μ, l'intervalle de confiance pour 1 moyenne, basé sur la distribution normale</td>
</tr>
<tr>
<td>Test Z : $\mu_1 - \mu_2$, le test Z sur la différence de deux moyennes</td>
<td>Int Z : $\mu_1 - \mu_2$, l'intervalle de confiance pour la différence de deux moyennes, basé sur la distribution normale</td>
</tr>
<tr>
<td>Test Z : $1 p$, le test Z sur 1 proportion</td>
<td>Int Z : $1 p$, l'intervalle de confiance pour 1 proportion, basé sur la distribution normale</td>
</tr>
<tr>
<td>Test Z : $p_1 - p_2$, le test Z sur la différence de deux proportions</td>
<td>Int Z : $p_1 - p_2$, l'intervalle de confiance pour la différence de deux proportions, basé sur la distribution normale</td>
</tr>
<tr>
<td>Test T : 1μ, le test T sur 1 moyenne</td>
<td>Int T : 1μ, l'intervalle de confiance pour 1 moyenne, basé sur la distribution t de Student</td>
</tr>
<tr>
<td>Test T : $\mu_1 - \mu_2$, le test T sur la différence de deux moyennes</td>
<td>Int T : $\mu_1 - \mu_2$, l’intervalle de confiance pour la différence de deux moyennes, basé sur la distribution t de Student</td>
</tr>
</tbody>
</table>

Si vous choisissez l’un des tests d’hypothèses, vous pouvez choisir l’hypothèse alternative à tester par rapport à l’hypothèse nulle. Pour chaque test, il existe trois hypothèses alternatives possibles, basées sur une comparaison quantitative de deux quantités. L’hypothèse nulle se base toujours sur le fait que les deux quantités sont identiques. Ainsi, les hypothèses alternatives couvrent les cas où les deux quantités sont différentes : $<$, $>$ et \neq.

Dans cette section, nous allons utiliser les données de démonstration du test Z sur une moyenne pour illustrer le fonctionnement de l’application et les fonctionnalités de chaque vue.
Sélectionner la méthode inférentielle

2. Sélectionnez la méthode inférentielle Test d’Hypoth.

CHOIX
Sélectionnez Test d’Hypoth.

OK

3. Définissez le type de test.

CHOIX
Test Z : \(\mu \)

OK

4. Sélectionnez une hypothèse alternative.

CHOIX
\(\mu < \mu_0 \)

OK

Entrer des données

5. Accédez à la vue numérique pour consulter les données par défaut.

Le tableau ci-dessous répertorie les différents champs de cette vue pour notre exemple Test Z : \(\mu \).

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>Moyenne de l’échantillon</td>
</tr>
<tr>
<td>(n)</td>
<td>Taille de l’échantillon</td>
</tr>
</tbody>
</table>
Afficher les résultats du test

6. Affichez les résultats du test sous forme numérique.

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_0)</td>
<td>Moyenne de la population considérée</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Écart-type de la population</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Niveau alpha du test</td>
</tr>
</tbody>
</table>

La valeur de distribution du test et la probabilité associée s’affichent, ainsi que les valeurs critiques du test et celles associées à la statistique correspondante.

Afficher les résultats du test sous forme graphique

7. Affichez les résultats du test sous forme graphique.

Le graphique de la distribution s’affiche, la valeur Z du test étant indiquée. La valeur X correspondante, ainsi que la valeur Z critique, s’affichent également. Appuyez sur la touche de menu \(\alpha \) pour afficher la valeur Z critique. Une fois la touche de menu active, vous pouvez utiliser les touches de curseur gauche et droite pour augmenter et diminuer le niveau \(\alpha \).

Importation de statistiques échantillon

L’application Inférence peut calculer des intervalles de confiance et tester des hypothèses à partir de données des applications Statistiques 1Var et Statistiques 2Var. Il est possible d’importer les statistiques calculées pour un échantillon de données d’une colonne d’une application de statistiques afin de les utiliser dans l’application Inférence. L’exemple suivant illustre ce processus.

Une calculatrice génère les 6 nombres aléatoires suivants :

0.529, 0.295, 0.952, 0.259, 0.925 et 0.592
Ouvrir l'application Statistiques 1Var

1. Ouvrez l’application Statistiques 1Var, puis réinitialisez les paramètres actuels.

Sélectionnez Statistiques 1Var

L’application Statistiques s’ouvre dans la vue numérique.

Entrer des données

2. Dans la colonne D1, entrez les nombres aléatoires générés par la calculatrice.

CONSEIL Si le paramètre Marque décimale du formulaire de saisie (
moduler) est défini sur Virgule, utilisez au lieu de .

Calculer les statistiques

3. Calculez les statistiques.

La moyenne de 0.592 semble un peu élevée par rapport à la valeur attendue de 0.5. Pour voir si la différence est significative en termes de statistique, nous allons utiliser les statistiques calculées ici pour créer un intervalle de confiance pour la vraie moyenne de la population de nombres aléatoires et pour voir si 0.5 est compris ou non dans cet intervalle.

4. Appuyez sur OK pour fermer cette fenêtre.
Ouvrir l'application Inférence

5. Ouvrez l'application Inférence, puis supprimez les paramètres actuels.

Sélectionner une méthode inférentielle et un type de statistique

6. Sélectionnez une méthode inférentielle.

Configurer le calcul de l'intervalle

Importer les données

sont stockées les données. Vous pouvez afficher les données avant de les importer. Appuyez sur OK pour importer les statistiques dans l’application Inférence.

10. Indiquez un intervalle de confiance de 90 % dans le champ C.

11. Affichez l’intervalle de confiance dans la vue numérique.

12. Affichez l’intervalle de confiance dans la vue graphique.

Vous pouvez voir que la moyenne est comprise dans l’intervalle de confiance à 90 % de 0.3469814 à 0.8370186.
Tests d’hypothèses

Les tests d’hypothèses permettent de tester la validité des hypothèses par rapport aux paramètres statistiques d’une ou de deux populations. Les tests sont basés sur les statistiques calculées à partir d’échantillons de population.

Les tests d’hypothèses de la calculatrice HP 39gII utilisent la distribution Z normale ou la distribution t de Student pour calculer les probabilités.

Test Z sur un échantillon

Nom du menu
Test Z : 1 μ

Sur la base des statistiques d’un échantillon, le test Z sur un échantillon mesure la corrélation entre l’hypothèse choisie et l’hypothèse nulle, selon laquelle la moyenne de la population est égale à une valeur spécifiée : H₀: μ = μ₀.

Sélectionnez l’une des hypothèses alternatives suivantes à tester par rapport à l’hypothèse nulle :

- H₁: μ < μ₀
- H₁: μ > μ₀
- H₁: μ ≠ μ₀

Valeurs à saisir
Les valeurs à saisir sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Moyenne de l’échantillon</td>
</tr>
<tr>
<td>n</td>
<td>Taille de l’échantillon</td>
</tr>
<tr>
<td>μ₀</td>
<td>Moyenne de la population hypothétique</td>
</tr>
<tr>
<td>σ</td>
<td>Écart-type de la population</td>
</tr>
<tr>
<td>α</td>
<td>Seuil de signification</td>
</tr>
</tbody>
</table>
Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Z</td>
<td>Statistique du test Z</td>
</tr>
<tr>
<td>Test 𝜇</td>
<td>Valeur de 𝜇 associée à la valeur Z du test</td>
</tr>
<tr>
<td>𝑃</td>
<td>Probabilité associée à la statistique du test Z</td>
</tr>
<tr>
<td>Valeur Z critique</td>
<td>Valeur(s) Boundary11 de Z associée(s) au niveau α choisi</td>
</tr>
<tr>
<td>Critique 𝜇</td>
<td>Valeurs limites de 𝜇 requises par la valeur α choisie</td>
</tr>
</tbody>
</table>

Test Z sur deux échantillons

Nom du menu

Test Z : μ₁ − μ₂

Sur la base de deux échantillons, chacun d’une population différente, ce test mesure la corrélation entre l’hypothèse sélectionnée et l’hypothèse nulle selon laquelle les moyennes des deux populations sont identiques : H₀: μ₁ = μ₂.

Sélectionnez l’une des hypothèses alternatives suivantes à tester par rapport à l’hypothèse nulle :

H₁: μ₁ < μ₂
H₁: μ₁ > μ₂
H₁: μ₁ ≠ μ₂

Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>𝜇₁</td>
<td>Moyenne de l’échantillon 1</td>
</tr>
<tr>
<td>𝜇₂</td>
<td>Moyenne de l’échantillon 2</td>
</tr>
<tr>
<td>n₁</td>
<td>Taille de l’échantillon 1</td>
</tr>
<tr>
<td>n₂</td>
<td>Taille de l’échantillon 2</td>
</tr>
<tr>
<td>σ₁</td>
<td>Ecart-type de la population 1</td>
</tr>
</tbody>
</table>
Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_2</td>
<td>Ecart-type de la population 2</td>
</tr>
<tr>
<td>α</td>
<td>Seuil de signification</td>
</tr>
</tbody>
</table>

Test Z sur une proportion

Nom du menu

Test Z : 1π

Sur la base des statistiques d’un échantillon, ce test mesure la corrélation entre l’hypothèse choisie et l’hypothèse nulle selon laquelle la proportion de succès est égale à une valeur donnée : $H_0 : \pi = \pi_0$.

 Sélectionnez l’une des hypothèses alternatives suivantes à tester par rapport à l’hypothèse nulle :

$H_1 : \pi < \pi_0$
$H_1 : \pi > \pi_0$
$H_1 : \pi \neq \pi_0$
Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Nombre de succès dans l’échantillon</td>
</tr>
<tr>
<td>n</td>
<td>Taille de l’échantillon</td>
</tr>
<tr>
<td>π₀</td>
<td>Proportion de succès de la population</td>
</tr>
<tr>
<td>α</td>
<td>Seuil de signification</td>
</tr>
</tbody>
</table>

Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Z</td>
<td>Statistique du test Z</td>
</tr>
<tr>
<td>Test (\hat{p})</td>
<td>Proportion de succès de l’échantillon</td>
</tr>
<tr>
<td>P</td>
<td>Probabilité associée à la statistique du test Z</td>
</tr>
<tr>
<td>Valeur Z critique</td>
<td>Valeurs limites de Z associées au niveau (\alpha) choisi</td>
</tr>
<tr>
<td>Critique (\hat{p})</td>
<td>Proportion de succès associée au niveau choisi</td>
</tr>
</tbody>
</table>

Test Z sur deux proportions

Nom du menu

Test Z : \(π₁ - π₂ \)

Sur la base des statistiques de deux échantillons, chacun d’une population différente, ce test mesure la corrélation entre l’hypothèse choisie et l’hypothèse nulle selon laquelle les proportions de succès des deux populations sont identiques : \(H₀ : π₁ = π₂ \).

Sélectionnez l’une des hypothèses alternatives suivantes à tester par rapport à l’hypothèse nulle :

\[
\begin{align*}
H₁ : & π₁ < π₂ \\
H₁ : & π₁ > π₂ \\
H₁ : & π₁ ≠ π₂
\end{align*}
\]
Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Nombre de succès de l'échantillon 1</td>
</tr>
<tr>
<td>x_2</td>
<td>Nombre de succès de l'échantillon 2</td>
</tr>
<tr>
<td>n_1</td>
<td>Taille de l'échantillon 1</td>
</tr>
<tr>
<td>n_2</td>
<td>Taille de l'échantillon 2</td>
</tr>
<tr>
<td>α</td>
<td>Seuil de signification</td>
</tr>
</tbody>
</table>

Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Z</td>
<td>Statistique du test Z</td>
</tr>
<tr>
<td>Test $\Delta \hat{p}$</td>
<td>Différence entre les proportions de succès des deux échantillons associés à la valeur Z du test</td>
</tr>
<tr>
<td>P</td>
<td>Probabilité associée à la statistique du test Z</td>
</tr>
<tr>
<td>Valeur Z critique</td>
<td>Valeurs limites de Z associées au niveau α choisi</td>
</tr>
<tr>
<td>Critique $\Delta \hat{p}$</td>
<td>Différence entre les proportions de succès des deux échantillons associés au niveau choisi</td>
</tr>
</tbody>
</table>
Test T sur un échantillon

Nom du menu Test T : 1 μ
Le test T sur un échantillon est utilisé lorsque l’écart-type de la population n’est pas connu. Sur la base des statistiques d’un échantillon, ce test mesure la corrélation entre l’hypothèse choisie et l’hypothèse nulle selon laquelle la moyenne de l’échantillon est égale à une valeur supposée : \(H_0 : \mu = \mu_0 \).

Selectionnez l’une des hypothèses alternatives suivantes à tester par rapport à l’hypothèse nulle :
\[H_1 : \mu < \mu_0 \]
\[H_1 : \mu > \mu_0 \]
\[H_1 : \mu \neq \mu_0 \]

Valeurs à entrer Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x})</td>
<td>Moyenne de l’échantillon</td>
</tr>
<tr>
<td>(s)</td>
<td>Ecart-type de l’échantillon</td>
</tr>
<tr>
<td>(n)</td>
<td>Taille de l’échantillon</td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>Moyenne de la population hypothétique</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Seuil de signification</td>
</tr>
</tbody>
</table>

Résultats Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test T</td>
<td>Statistique du test Z</td>
</tr>
<tr>
<td>Test (\bar{x})</td>
<td>Valeur de (\bar{x}) associée à la valeur t du test</td>
</tr>
<tr>
<td>P</td>
<td>Probabilité associée à la statistique du test Z</td>
</tr>
<tr>
<td>DF</td>
<td>Degrés de liberté</td>
</tr>
</tbody>
</table>
Test T sur deux échantillons

Nom du menu

Test T : $\mu_1 - \mu_2$

Le test T sur deux échantillons est utilisé lorsque l'écart-type de la population n’est pas connu. Sur la base des statistiques de deux échantillons, chacun d’une population différente, ce test mesure la corrélation entre l’hypothèse choisie et l’hypothèse nulle selon laquelle les moyennes des deux populations sont égales : $H_0: \mu_1 = \mu_2$.

Sélectionnez l’une des hypothèses alternatives suivantes à tester par rapport à l’hypothèse nulle :

- $H_1: \mu_1 < \mu_2$
- $H_1: \mu_1 > \mu_2$
- $H_1: \mu_1 \neq \mu_2$

Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Moyenne de l’échantillon 1</td>
</tr>
<tr>
<td>x_2</td>
<td>Moyenne de l’échantillon 2</td>
</tr>
<tr>
<td>s_1</td>
<td>Ecart-type de l’échantillon 1</td>
</tr>
<tr>
<td>s_2</td>
<td>Ecart-type de l’échantillon 2</td>
</tr>
<tr>
<td>n_1</td>
<td>Taille de l’échantillon 1</td>
</tr>
<tr>
<td>n_2</td>
<td>Taille de l’échantillon 2</td>
</tr>
<tr>
<td>α</td>
<td>Seuil de signification</td>
</tr>
<tr>
<td>Regroupement</td>
<td>Cocher cette option pour regrouper les échantillons par écart-type</td>
</tr>
</tbody>
</table>
Résultats
Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test T</td>
<td>Statistique du test T</td>
</tr>
<tr>
<td>Test $\Delta \bar{x}$</td>
<td>Différence entre les moyennes associées à la valeur t du test</td>
</tr>
<tr>
<td>P</td>
<td>Probabilité associée à la statistique du test T</td>
</tr>
<tr>
<td>DF</td>
<td>Degrés de liberté</td>
</tr>
<tr>
<td>Valeur T critique</td>
<td>Valeurs limites de T associées au niveau α choisi</td>
</tr>
<tr>
<td>Critique $\Delta \bar{x}$</td>
<td>Différence entre les moyennes associées au niveau α choisi</td>
</tr>
</tbody>
</table>

Intervalles de confiance
La calculatrice HP 39gII peut calculer des intervalles de confiance en fonction de la distribution Z normale et de la distribution t de Student.

Intervalle Z sur un échantillon

Nom du menu
Int Z : 1 μ

Cette option utilise la distribution Z normale pour calculer un intervalle de confiance pour μ, moyenne exacte d’une population, lorsque l’écart-type exact de la population (σ) est connu.

Valeurs à entrer
Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}</td>
<td>Moyenne de l’échantillon</td>
</tr>
<tr>
<td>n</td>
<td>Taille de l’échantillon</td>
</tr>
<tr>
<td>σ</td>
<td>Écart-type de la population</td>
</tr>
<tr>
<td>$C*$</td>
<td>Niveau de confiance</td>
</tr>
</tbody>
</table>
Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c^*)</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>Valeur Z</td>
<td>Valeurs critiques de Z</td>
</tr>
<tr>
<td>critique</td>
<td></td>
</tr>
<tr>
<td>Inférieure</td>
<td>Limite inférieure de (\mu)</td>
</tr>
<tr>
<td>Supérieure</td>
<td>Limite supérieure de (\mu)</td>
</tr>
</tbody>
</table>

Intervalle Z sur deux échantillons

Nom du menu

\(\text{Int Z : } \mu_1 - \mu_2 \)

Cette option utilise la distribution Z normale pour calculer un intervalle de confiance pour la différence entre les moyennes de deux populations \((\mu_1 - \mu_2) \) lorsque les écart-types des deux populations \((\sigma_1 \text{ et } \sigma_2) \) sont connus.

Valeur à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>Moyenne de l'échantillon 1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>Moyenne de l'échantillon 2</td>
</tr>
<tr>
<td>(n_1)</td>
<td>Taille de l'échantillon 1</td>
</tr>
<tr>
<td>(n_2)</td>
<td>Taille de l'échantillon 2</td>
</tr>
<tr>
<td>(\sigma_1)</td>
<td>Ecart-type de la population 1</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>Ecart-type de la population 2</td>
</tr>
<tr>
<td>(c^*)</td>
<td>Niveau de confiance</td>
</tr>
</tbody>
</table>
Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c•</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>Valeur Z critique</td>
<td>Valeurs critiques de Z</td>
</tr>
<tr>
<td>Inférieure</td>
<td>Limite inférieure de Δμ</td>
</tr>
<tr>
<td>Supérieure</td>
<td>Limite supérieure de Δμ</td>
</tr>
</tbody>
</table>

Intervalle Z sur une proportion

Nom du menu

Int Z : 1π

Cette option utilise la distribution Z normale pour calculer un intervalle de confiance pour la proportion de succès d’une population dans le cas où un échantillon de taille n a obtenu x succès.

Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Nombre de succès de l’échantillon</td>
</tr>
<tr>
<td>n</td>
<td>Taille de l’échantillon</td>
</tr>
<tr>
<td>c•</td>
<td>Niveau de confiance</td>
</tr>
</tbody>
</table>

Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c•</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>Valeur Z critique</td>
<td>Valeurs critiques de Z</td>
</tr>
<tr>
<td>Inférieure</td>
<td>Limite inférieure de π</td>
</tr>
<tr>
<td>Supérieure</td>
<td>Limite supérieure de π</td>
</tr>
</tbody>
</table>
Intervalle Z sur deux proportions

Nom du menu
Int Z : \(\pi_1 - \pi_2 \)

Cette option utilise la distribution Z normale pour calculer un intervalle de confiance pour la différence entre les proportions de succès de deux populations.

Valeurs à entrer
Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>Nombre de succès de l'échantillon 1</td>
</tr>
<tr>
<td>(r_2)</td>
<td>Nombre de succès de l'échantillon 2</td>
</tr>
<tr>
<td>(n_1)</td>
<td>Taille de l'échantillon 1</td>
</tr>
<tr>
<td>(n_2)</td>
<td>Taille de l'échantillon 2</td>
</tr>
<tr>
<td>(c^*)</td>
<td>Niveau de confiance</td>
</tr>
</tbody>
</table>

Résultats
Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c^*)</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>Valeur Z critique</td>
<td>Valeurs critiques de Z</td>
</tr>
<tr>
<td>Inférieure</td>
<td>Limite inférieure de (\Delta \pi)</td>
</tr>
<tr>
<td>Supérieure</td>
<td>Limite supérieure de (\Delta \pi)</td>
</tr>
</tbody>
</table>

Intervalle T sur un échantillon

Nom du menu
Int T : \(1 \mu \)

Cette option utilise la distribution t de Student pour calculer un intervalle de confiance pour \(\mu \), moyenne exacte d'une population, lorsque l'écart-type exact de la population (\(\sigma \)) n'est pas connu.
Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{x}</td>
<td>Moyenne de l'échantillon</td>
</tr>
<tr>
<td>s</td>
<td>Écart-type de l'échantillon</td>
</tr>
<tr>
<td>n</td>
<td>Taille de l'échantillon</td>
</tr>
<tr>
<td>c</td>
<td>Niveau de confiance</td>
</tr>
</tbody>
</table>

Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>DF</td>
<td>Degrés de liberté</td>
</tr>
<tr>
<td>Valeur T critique</td>
<td>Valeurs critiques de T</td>
</tr>
<tr>
<td>Inférieure</td>
<td>Limite inférieure de μ</td>
</tr>
<tr>
<td>Supérieure</td>
<td>Limite supérieure de μ</td>
</tr>
</tbody>
</table>

Intervalle T sur deux échantillons

Nom du menu

Int $T : \mu_1 - \mu_2$

Cette option utilise la distribution t de Student pour calculer un intervalle de confiance pour la différence entre les moyennes de deux populations ($\mu_1 - \mu_2$) lorsque les écart-types des deux populations (σ_1 et σ_2) ne sont pas connus.

Valeurs à entrer

Les valeurs à entrer sont les suivantes :

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{x}_1</td>
<td>Moyenne de l'échantillon 1</td>
</tr>
<tr>
<td>\overline{x}_2</td>
<td>Moyenne de l'échantillon 2</td>
</tr>
</tbody>
</table>
Résultats

Les résultats sont les suivants :

<table>
<thead>
<tr>
<th>Résultat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C•</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>DF</td>
<td>Degrés de liberté</td>
</tr>
<tr>
<td>Valeur T critique</td>
<td>Valeurs critiques de T</td>
</tr>
<tr>
<td>Inférieure</td>
<td>Limite inférieure de $\Delta \mu$</td>
</tr>
<tr>
<td>Supérieure</td>
<td>Limite supérieure de $\Delta \mu$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nom de champ</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Ecart-type de l’échantillon 1</td>
</tr>
<tr>
<td>s_2</td>
<td>Ecart-type de l’échantillon 2</td>
</tr>
<tr>
<td>n_1</td>
<td>Taille de l’échantillon 1</td>
</tr>
<tr>
<td>n_2</td>
<td>Taille de l’échantillon 2</td>
</tr>
<tr>
<td>C•</td>
<td>Niveau de confiance</td>
</tr>
<tr>
<td>Regroupement</td>
<td>Regrouper ou non les échantillons par écart-type</td>
</tr>
</tbody>
</table>
Application Paramétrique

A propos de l'application Paramétrique

L'application Paramétrique vous permet d'explorer des équations paramétriques. Dans ces équations, \(x \) et \(y \) sont tous deux définis comme des fonctions de \(t \). Ces fonctions prennent la forme \(x = f(t) \) et \(y = g(t) \).

Présentation de l'application Paramétrique

L'exemple suivant utilise les équations paramétriques.

\[
 x(t) = 5 \sin t \\
 y(t) = 5 \cos t
\]

Remarque : cet exemple est destiné à produire un cercle. Pour que cet exemple fonctionne, la mesure de l'angle doit être définie en degrés.

Ouverture de l'application Paramétrique

1. Ouvrez l'application Paramétrique.

\[
\begin{align*}
\text{App} & \quad \text{Selectionnez} \\
\text{Paramétrique} & \quad \text{RENIT} \quad \text{OK} \quad \text{START}
\end{align*}
\]

A l'instar de l'application Fonction, l'application Paramétrique s'ouvre dans la vue Symbolique.

Définition des expressions

2. Définissez les expressions.

\[
\begin{align*}
5 & \quad \text{SIN} \\
5 & \quad \text{COS}
\end{align*}
\]
Définition de la mesure d'angle

3. Définissez la mesure de l'angle en degrés.

PLOT

 Sélectionnez Degrés OK

Configuration du tracé

4. Configurez le tracé en affichant les options graphiques.

PLOT-SETUP

Le formulaire de saisie de la configuration du tracé présente deux champs absents de l'application Fonction, à savoir les champs TRNG et TSTEP.
Le champ TRNG spécifie la plage des valeurs t.
Le champ TSTEP spécifie la valeur STEP entre les valeurs t.

5. Définissez les paramètres TRNG et TSTEP de manière à ce que t passe de 0° à 360° en 5° étapes.

360 OK

Tracé de l'expression

6. Tracez l'expression.
Exploration du graphique

7. Tracez un triangle à la place d'un cercle.

Sélectionnez Fixed-Step Segments

Un triangle s'affiche au lieu d'un cercle (sans que l'équation ne soit modifiée) du fait de la modification de la valeur TSTEP qui définit un écart de 120° entre les points tracés au lieu d'un quasi-alignement de ces derniers. Enfin, la sélection de l'option Fixed-Step Segments (segments paliers fixes) relie les points séparés de 120° par des segments de ligne.

Vous pouvez explorer le graphique à l'aide des fonctionnalités de tracé, de zoom, de division d'écran et de mise à l'échelle disponibles dans l'application Fonction.

Affichage de la vue Numérique

8. Affichez la vue Numérique.

9. Sélectionnez une valeur t et entrez une valeur de remplacement ; le tableau accède alors à cette valeur. Vous pouvez également effectuer un zoom avant ou arrière sur n'importe quelle valeur t du tableau. Vous pouvez explorer le tableau à l'aide des fonctionnalités de zoom, de création de votre propre tableau et de division d'écran disponibles dans l'application Fonction.
Application Polaire

A propos de l'application Polaire

L'application Polaire vous permet d'explorer des équations polaires. Dans ces équations, \(r \) est défini en termes de \(\theta \). Ces équations prennent la forme \(r = f(\theta) \).

Présentation de l'application Polaire

Ouverture de l'application Polaire

1. Ouvrez l'application Polaire.

Définition de l'expression

2. Définissez l'équation polaire \(r = 4\pi\cos(\theta/2)\cos(\theta)^2 \).
Définition de la mesure d’angle

3. Définissez la mesure de l’angle en radians.

G 0 K
 Sélectionnez Radians

Configuration du tracé

4. Configurez le tracé. Dans cet exemple, nous utilisons
les paramètres par défaut, sauf dans les champs
θRNG.

SETUP- PLOT
 CLEAR

Tracé de l’expression

5. Tracez l’expression.

Exploration du graphique

6. Affichez les libellés des touches de menu dans la vue
Tracé.

Les options disponibles
dans la vue Tracé sont
identiques à celles de
l’application Fonction,
à ceci près que le
menu FCN est absent.
Affichage de la vue Numérique

7. Affichez le tableau de valeurs pour θ et R1 dans la vue Numérique.

<table>
<thead>
<tr>
<th>θ</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2952.0178</td>
</tr>
<tr>
<td>2</td>
<td>2670.7931</td>
</tr>
<tr>
<td>3</td>
<td>2263.7048</td>
</tr>
<tr>
<td>4</td>
<td>1640.1981</td>
</tr>
<tr>
<td>5</td>
<td>1046.7981</td>
</tr>
<tr>
<td>6</td>
<td>5777.5504</td>
</tr>
<tr>
<td>7</td>
<td>1572.9209</td>
</tr>
</tbody>
</table>

8. Sélectionnez une valeur θ, saisissez une valeur de remplacement et appuyez sur OK ; le tableau accède alors à cette valeur. Vous pouvez également effectuer un zoom avant ou arrière sur n’importe quelle valeur θ du tableau.
A propos de l’application Suite

L’application Suite vous permet d’explorer des suites.

Par exemple, vous pouvez définir une suite nommée U1 :

• en termes de n ;
• en termes de $U_1(n-1)$;
• en termes de $U_1(n-2)$;
• en termes d’une autre séquence, par exemple, $U_2(n)$;
• selon n’importe quelle combinaison des éléments ci-dessus.

L’application Suite vous permet également de créer deux types de graphiques :

– Un graphique en escalier trace n sur l’axe horizontal et U_n sur l’axe vertical.

– Un graphique en toile d’araignée trace U_{n-1} sur l’axe horizontal et U_n sur l’axe vertical.

Présentation de l’application Suite

L’exemple suivant illustre la définition puis le tracé d’une expression dans l’application Suite. La séquence présentée est la célèbre suite de Fibonacci, dans laquelle chaque terme, à partir du troisième, correspond à la somme des deux termes précédents. Dans cet exemple, nous spécifions trois champs de la suite : le premier terme, le second terme et une règle pour la génération de tous les termes suivants.

Cependant, il est également possible de définir une suite en indiquant uniquement le premier terme et la règle pour la génération de tous les termes suivants. Toutefois, vous devrez entrer le second terme si la calculatrice HP 39gII n’est pas en mesure de le calculer automatiquement.

De manière générale, si le même terme de la suite dépend de $n-2$, vous devez entrer le second terme.
1. Ouvrez l’application Suite.

 Suite

 L’application Suite démarre dans la vue symbolique.

2. Définissez la suite de Fibonacci, dans laquelle chaque terme (après les deux premiers) correspond à la somme des deux termes précédents:

 \[
 U_1 = 1, \quad U_2 = 1, \quad U_n = U_{n-1} + U_{n-2} \quad \text{pour} \quad n > 2.
 \]

 Dans la vue symbolique de l’application Suite, mettez en surbrillance le champ \(U(1) \) et commencez à définir votre suite.

 \[
 \begin{align*}
 U(1) &= 1, \\
 (n-1) \cdot U(n) &= U(n), \\
 (n-2) \cdot U(n) &= U(n).
 \end{align*}
 \]

 Remarque : vous pouvez utiliser les touches de menu, \(N \), \((n-1) \) et \((n-2) \) pour entrer les expressions.

3. Dans la configuration du tracé, définissez le paramètre SEQPLOT sur En escalier et rétablissez les paramètres de tracé par défaut en effaçant la vue Configuration du tracé.

 \[
 \begin{align*}
 \text{SETUP- PLOT} & \quad \text{CLEAR} \\
 \downarrow & \quad 8 \quad \text{ENTER}
 \end{align*}
 \]
Tracé de l'expression

4. Tracez la suite de Fibonacci.

5. Dans la configuration du tracé, définissez le paramètre SEQPLOT sur Toile d'araignée.

Affichage de la vue numérique

6. Pour cet exemple, affichez la vue numérique.

7. Sélectionnez n'importe quelle valeur n et entrez une valeur de remplacement ; le tableau accède alors à cette valeur.
A propos de l'application Finance

L'application Finance, ou Solveur financier, vous permet de résoudre des problèmes de valeur temporelle de l'argent (TVM) et d'amortissement. Ces problèmes peuvent être utilisés dans des calculs impliquant des applications d'intérêt composé ainsi que des tableaux d'amortissement.

L'intérêt composé est un processus par lequel l'intérêt gagné sur un montant principal donné est ajouté à ce principal à des périodes déterminées. Puis, le montant combiné rapporte un intérêt à un certain taux. Les calculs financiers impliquant un intérêt composé peuvent être utilisés pour des comptes d'épargne, des hypothèques, des fonds de pension, des locations ou des rentes.

Présentation de l'application Finance

Imaginons que vous financez l'achat d'une voiture avec un prêt sur 5 ans à un taux d'intérêt annuel de 5,5 %, calculé mensuellement. Le prix d'achat de l'automobile est de 19 500 dollars. Votre apport personnel s'élève à 3 000 dollars. A combien s'élèveront les paiements mensuels requis ? Quel sera le prêt maximal que vous pourrez vous permettre de demander si votre mensualité maximale s'élève à 300 dollars ? Considérons que les paiements démarrent à la fin de la première période.

1. Démarrez l'application Finance.

L'application Finance s'ouvre dans la vue numérique.
2. Sélectionnez N, saisissez 5 × 12 et appuyez sur ENTER.

REM ARQUE
Lorsque vous avez saisi une valeur et appuyé sur ENTER ou sur OK, une autre variable est automatiquement mise en surbrillance. Pour naviguer manuellement vers le champ de votre choix, utilisez les flèches directionnelles. Assurez-vous que des valeurs sont saisies pour six des sept variables TVM : N, I%/YR, PV, P/YR, PMT, C/YR et FV.

3. La variable I%/YR étant mise en surbrillance, entrez 5,5 et appuyez sur ENTER.

4. La variable PV étant mise en surbrillance, entrez 19 500-3 000 et appuyez sur ENTER.

5. Laissez les variables P/YR et C/YR sur 12 (leur valeur par défaut). Conservez Fin comme option de paiement. Conservez également l’option Valeur capitalisée pour FV = 0,00.

6. La variable PMT étant mise en surbrillance, appuyez sur SOLVE pour obtenir un paiement de -315,17 (à savoir : PMT = -315,17 $) comme illustré.

REM ARQUE
Le paiement est négatif afin d’indiquer qu’il s’agit d’un montant dû.

7. Pour déterminer le prêt maximum lorsque les paiements mensuels sont de 300 $ seulement, saisissez la valeur -300 dans le champ PMT, mettez en surbrillance le champ PV à l’aide de , puis appuyez sur SOLVE. Le résultat est le suivant : PV = 15 705,85 $.
Schémas de flux financiers

Les transactions TVM peuvent être représentées par des schémas de flux financiers. Un schéma de flux financiers est une ligne temporelle divisée en segments égaux représentant les périodes de calcul. Les flèches représentent les flux financiers, qui peuvent être positifs (flèches vers le haut) ou négatifs (flèches vers le bas), selon le point de vue (prêteur ou emprunteur). Le schéma de flux financiers suivant illustre un prêt du point de vue de l’emprunteur :

Le schéma de flux financiers suivant illustre un prêt du point de vue du prêteur :

Un schéma de flux financiers indique également quand se produisent les paiements par rapport aux périodes de calcul. Le schéma de droite illustre les paiements de location au début de la période.

Ce schéma illustre les dépôts (PMT) sur un compte à la fin de chaque période.
Valeur temporelle de l'argent (TVM)

Comme l’indique leur nom, les calculs de valeur temporelle de l'argent (TVM) se basent sur le principe qu'un dollar d'aujourd'hui vaudra plus qu'un dollar à une date future. A ce jour, un dollar peut être investi à un certain taux d’intérêt et générer un rendement que ce même dollar dans le futur ne pourra pas produire. Ce principe de TVM sous-tend la notion de taux d’intérêt, d’intérêt composé et de taux de rendement. Il existe sept variables TVM :

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Nombre total de périodes de calcul ou de paiements.</td>
</tr>
<tr>
<td>I%YR</td>
<td>Taux d'intérêt annuel nominal (ou taux d'investissement). Ce taux est divisé par le nombre de paiements par an (P/YR) pour calculer le taux d'intérêt nominal par période de calcul. C'est ce taux d'intérêt qui est utilisé pour les calculs TVM.</td>
</tr>
<tr>
<td>PV</td>
<td>Valeur actuelle du flux financier initial. Pour un prêteur ou un emprunteur, PV correspond au montant d'un prêt. Pour un investisseur, PV est l'investissement initial. PV se produit toujours au début de la première période.</td>
</tr>
<tr>
<td>P/YR</td>
<td>Nombre de paiements effectués en un an.</td>
</tr>
<tr>
<td>PMT</td>
<td>Montant du paiement périodique. Les montants des paiements sont identiques pour chaque période ; le calcul TVM part du principe qu'aucun paiement n'est omis. Les paiements peuvent avoir lieu au début ou à la fin de chaque période de calcul. Vous pouvez gérer ce paramètre en cochant ou en décochant l'option Fin.</td>
</tr>
<tr>
<td>C/YR</td>
<td>Nombre de périodes de calcul par an.</td>
</tr>
</tbody>
</table>
Calculs TVM

1. Lancez l’application Finance comme indiqué au début de cette section. Il est conseillé de réinitialiser cette application comme indiqué avant de résoudre un problème de TVM.

2. Une variable étant mise en surbrillance, entrez les valeurs connues en commençant par N, puis appuyez sur ou sur pour enregistrer la valeur souhaitée. Pour naviguer manuellement vers le champ de votre choix, utilisez les flèches directionnelles.

3. Saisissez une valeur différente pour P/YR, comme il convient. La valeur par défaut est 12 (paiements mensuels).

4. Le champ Fin étant mis en surbrillance, appuyez sur la touche de menu CHECK pour décocher cette option lorsque les paiements sont effectués au début de chaque période, ou laissez-la cochée lorsque les paiements sont réalisés à la fin de chaque période.

5. Utilisez les flèches directionnelles pour mettre en surbrillance la variable inconnue et appuyez sur .

Exemple d’hypothèque avec versement forfaitaire

Imaginons que vous ayez pris une hypothèque immobilière sur 30 ans, de 150 000 $, à un taux d’intérêt annuel de 6,5 %. Vous envisagez de vendre la maison dans 10 ans et de rembourser le prêt au moyen d’un versement forfaitaire. Déterminez le montant du versement forfaitaire et la valeur de l’hypothèque après 10 ans de paiements.

Solution

Le schéma de flux financiers suivant illustre un exemple d’hypothèque avec versement forfaitaire :
1. Démarrez l’application Finance. Utilisez les flèches directionnelles pour mettre en surbrillance P/YR. Assurez-vous que vous avez paramétré P/YR = 12 et Fin pour des paiements se produisant à la fin de chaque période.

2. Saisissez les variables TVM connues à partir de l’exemple représenté dans la figure.

3. Mettez PMT en surbrillance et appuyez sur Solve pour obtenir un paiement de $948,10.

REMARQUE
Les valeurs négatives indiquent les paiements effectués par le propriétaire de la maison.
Calcul d'amortissements

Les calculs d'amortissements, qui utilisent également les variables TVM, déterminent les montants consacrés au principal et aux intérêts lors d'un paiement ou d'une série de paiements.

Pour calculer les amortissements :

1. Lancez l'application Solveur financier comme indiqué au début de cette section.
2. Définissez les variables TVM suivantes :
 • nombre de paiements par an (P/YR) ;
 • paiement au début ou à la fin de chaque période.
3. Entrez et enregistrez les valeurs pour les variables TVM \(I\%YR \), \(PV \), \(PMT \) et \(FV \), qui définissent l'échéancier des paiements.
4. Entrez le nombre de paiements par période d'amortissement dans le champ GSize. Par défaut, la taille du groupe est 12 afin de refléter l'amortissement annuel.
5. Appuyez sur \(\text{AMORT} \). La calculatrice affiche un tableau d'amortissement. Ce tableau contient les montants consacrés aux intérêts et au principal, ainsi que le solde restant du prêt, pour chaque période d'amortissement.

Exemple d'amortissement pour une hypothèque immobilière

A l'aide des données issues du précédent exemple d'hypothèque immobilière avec versement forfaitaire, calculez le montant consacré au principal, celui consacré aux intérêts, ainsi que le solde restant du prêt après les 10 premières années de paiements (12x10 = 120 paiements).

1. Vérifiez et comparez les données de l'exemple précédent avec celles de la figure de droite.
2. Appuyez sur \(\text{AMORT} \).
3. Faites défiler le tableau vers le bas jusqu'au Groupe 10 pour visualiser les mêmes résultats que précédemment. Au bout de 10 ans, 22 835,81 $ ont été payés au titre du principal, ainsi que 90 936,43 $ pour les intérêts, ce qui laisse un versement forfaitaire dû s'élevant à 127 164,19 $.

Graphique d'amortissement

Appuyez sur la touche de menu Plot pour afficher le plan d'amortissement sous sa forme graphique. Le traceur montre les montants du principal et des intérêts payés dans chaque groupe de paiement. Utilisez les touches gauche et droite du curseur pour passer d'un groupe de paiement à l'autre.
Application Solveur d’équation linéaire

A propos de l’application Solveur d’équation linéaire

L'application Solveur d’équation linéaire vous permet de résoudre un ensemble d’équations linéaires. L’ensemble peut contenir deux ou trois équations linéaires.

Dans un ensemble de deux équations, chaque équation doit être présentée sous la forme \(ax + by = k \). Dans un ensemble de trois équations, chaque équation doit être présentée sous la forme \(ax + by + cz = k \).

Vous fournissez des valeurs \(a, b \) et \(k \) (et \(c \) dans les ensembles de trois équations) pour chaque équation ; l’application Solveur d’équation linéaire tente alors de trouver les valeurs \(x \) et \(y \) (et \(z \) dans les ensembles de trois équations).

La calculatrice HP 39gII vous informe si aucune solution n’a été trouvée ou s’il existe un nombre infini de solutions.

Présentation de l’application Solveur d’équation linéaire

L’exemple suivant définit un ensemble de trois équations et résout les variables inconnues. Dans cet exemple, nous allons résoudre l’ensemble d’équations suivant :

\[
\begin{align*}
6x + 9y + 6z &= 5 \\
7x + 10y + 8z &= 10 \\
6x + 4y &= 6
\end{align*}
\]

Il est donc nécessaire de disposer du formulaire de saisie spécifique aux ensembles de trois équations.
1. Ouvrez l’application Solveur d’équation linéaire.

L’application Solveur d’équation linéaire s’ouvre dans la vue numérique.

REMARQUE
Si vous avez résolu deux équations lors de votre dernière utilisation de l’application Solveur d’équation linéaire, le formulaire de saisie spécifique aux ensembles de deux équations s’affiche. Pour résoudre un ensemble de trois équations, appuyez sur 3x3. Le formulaire de saisie affiche alors trois équations.

2. Vous définissez les équations que vous souhaitez résoudre en entrant les coefficients de chaque variable dans chaque équation, ainsi que la constante. Notez que le curseur est immédiatement placé au niveau du coefficient de x dans la première équation. Entrez ce coefficient, puis appuyez sur OK ou sur ENTER.

3. Le curseur passe au coefficient suivant. Entrez ce coefficient, appuyez sur OK ou sur ENTER, puis continuez ainsi jusqu’à ce que toutes les équations soient définies.

Une fois que vous avez entré suffisamment de valeurs pour que le solveur puisse générer des solutions, ces dernières s’affichent à l’écran. Dans l’exemple de droite, le solveur a trouvé des solutions pour les valeurs x, y et z dès la saisie du premier coefficient de la dernière équation.
La solution change à chaque fois que vous entrez les valeurs connues restantes.
L'exemple de droite présente la solution finale, une fois tous les coefficients et toutes les constantes entrés pour l'ensemble d'équations à résoudre.

Résoudre un système de deux équations à deux inconnues

Si le formulaire de saisie spécifique aux ensembles de trois équations s'affiche alors que vous souhaitez résoudre un ensemble de deux équations, appuyez sur 2X2.

REMARQUE

Vous pouvez entrer toute expression donnant un résultat numérique, notamment des variables, ou entrer le nom d'une variable mémorisée. Pour plus d'informations sur la procédure à suivre pour mémoriser les variables, reportez-vous au chapitre intitulé *Utilisation des fonctions mathématiques.*
Application Solveur de triangle

A propos de de l’application Solveur de triangle

L’application Solveur de triangle vous permet de déterminer la longueur du côté d’un triangle, ou la mesure de l’un de ses angles, à partir des informations que vous avez fournies relativement aux autres longueurs et/ou angles.

Vous devez indiquer au moins trois des six valeurs possibles : (longueurs des trois côtés et mesures des trois angles) pour que le solveur puisse calculer les autres valeurs. Par ailleurs, au moins l’une de ces valeurs doit être une longueur. Cela signifie que vous pouvez indiquer les longueurs de deux côtés et l’un des angles, deux angles et une longueur ou les trois longueurs. Dans tous les cas, le solveur calcule les longueurs ou mesures d’angle restantes.

La calculatrice HP 39gII vous alerte lorsqu’aucune solution ne peut être trouvée, ou si les données que vous avez fournies sont insuffisantes.

Si vous définissez les propriétés d’un triangle rectangle, vous pouvez utiliser un formulaire de saisie simplifié, accessible via la touche de menu RECT .

Présentation de l’application Solveur de triangle

L’exemple suivant calcule la longueur inconnue d’un triangle dont les deux côtés connus (présentant respectivement une longueur de 4 et de 6) forment un angle de 30 degrés.
Ouverture de l'application Solveur de triangle

1. Ouvrez l'application Solveur de triangle.

Définition de la mesure de l'angle

Assurez-vous que vous avez sélectionné le mode de mesure d'angle approprié. Par défaut, l'application démarre en mode degrés. Si les informations sur l'angle dont vous disposez sont en radians et que votre mode de mesure de l'angle est en degrés, repassez en mode degrés avant d'exécuter le solveur. La touche de menu Degrés permet de basculer d'un mode vers l'autre. Lorsque vous appuyez une fois sur cette touche, vous activez l'option Radians qui exprime les angles en radians ; appuyez à nouveau sur cette touche pour repasser en degrés.

REMARQUE

Indication des valeurs connues

2. À l’aide des flèches directionnelles, placez-vous sur un champ pour lequel vous connaissez la valeur, entrez cette dernière et appuyez sur OK ou sur ENTER. Répétez cette procédure pour chaque valeur connue.
Résoudre

3. Appuyez sur **SOLVE**. Le solveur calcule et affiche les valeurs des variables inconnues. Comme le montre l’illustration de droite, la longueur du côté inconnu de notre exemple est de 3,22967. Les deux autres angles ont également été calculés.

Remarque : pour effacer toutes les valeurs et résoudre un autre problème, appuyez sur **CLEAR**.

Choix du type de triangle

4. L’application Solveur de triangle propose deux formulaires de saisie : un formulaire général et un autre plus spécifique, pour les triangles rectangles. Si le formulaire de saisie général s’affiche et que vous étudiez un triangle rectangle, appuyez sur **RECT** pour afficher le formulaire de saisie simplifié. Pour revenir au formulaire de saisie général, appuyez sur **RECT**. Si le triangle que vous étudiez n’est pas un triangle rectangle, ou que vous n’êtes pas certain du type de triangle dont il s’agit, utilisez le formulaire de saisie général.

Cas particuliers

Cas indéterminé

Lorsque vous entrez deux côtés et un angle aigu adjacent et que deux solutions existent, une seule s’affiche initialement.

Dans ce cas, la touche de menu **ALT** s’affiche (comme dans notre exemple). Appuyez sur **ALT** pour afficher la seconde solution et sur **ALT** à nouveau pour revenir à la première solution.
Aucune solution n’est disponible pour les données fournies

Si vous utilisez le formulaire de saisie général et que vous entrez plus de 3 valeurs, celles-ci peuvent être incohérentes, ce qui signifie qu’elles ne peuvent en aucun cas former un triangle. Dans ce cas, le message Aucune solution pour les données fournies s’affiche à l’écran.

Vous serez confronté à une situation similaire si vous utilisez le formulaire de saisie simplifié (pour un triangle rectangle) et que vous entrez plus de deux valeurs.

Données insuffisantes

Si vous utilisez le formulaire de saisie général, vous devez indiquer au moins trois valeurs afin que le Solveur de triangle puisse calculer les attributs restants du triangle. Si vous indiquez moins de trois valeurs, le message Données insuffisantes s’affiche à l’écran.

Si vous utilisez le formulaire de saisie simplifié (pour un triangle rectangle), vous devez indiquer au moins deux valeurs.

Par ailleurs, il n’est pas possible d’indiquer uniquement des angles et aucune longueur.
Applications de type Explorateur

Application Explorateur linéaire

L’application Explorateur linéaire permet d’étudier le comportement des graphiques de $y = ax$ et $y = ax + b$ lorsque les valeurs a et b sont modifiées. Pour cela, elle peut manipuler le graphique et afficher les modifications dans l’équation, ou modifier l’équation et afficher les changements au niveau du graphique.

Ouverture de l’application

Appuyez sur App, sélectionnez l’option Explorateur linéaire, puis appuyez sur START. L’application s’ouvre en mode Graph (notez le point dans le libellé du menu Graph).

Mode Graph

En mode Graph, $\text{ et } \text{ déplacent le graphique verticalement et modifient l’ordonnée à l’origine } y$ de la ligne. Pour les déplacements verticaux, appuyez sur $\text{Nv} 1$ (F3) pour modifier la longueur de l’incrément utilisé pour le déplacement. Les touches $\text{ et } \text{ (ainsi que } \text{ et } \text{)}$ augmentent ou diminuent la pente. Appuyez sur $\text{Nv} 2$ (F4) pour modifier le signe de la pente.

La forme de la fonction linéaire s’affiche en haut à droite de l’écran, présentant l’équation actuelle correspondant au graphique situé juste en-dessous. Lorsque vous manipulez le graphique de la ligne, l’équation reflète les changements en temps réel. Appuyez sur $\text{Nv} 2$ (F4) pour basculer entre variante directe et formes pente-ordonnée à l’origine des fonctions linéaires.
Mode Equation

Appuyez sur (F1) pour basculer en mode Equation. Le point qui apparaît au niveau du menu EQ indique que vous avez basculé depuis le mode Graph. Par ailleurs, l’un des paramètres de l’équation est en surbrillance. En mode Equation, vous pouvez modifier un ou plusieurs paramètres de l’équation et voir ces modifications reflétées par le graphique. Appuyez sur et pour augmenter ou diminuer la valeur du paramètre sélectionné. Appuyez sur et pour sélectionner un autre paramètre. Appuyez sur pour modifier le signe de a.

Mode Test

Appuyez sur (F5) pour passer en mode Test. En mode Test, l’application affiche le graphique d’une fonction linéaire, choisie de manière aléatoire, de la forme imposée par le choix de niveau que vous avez effectué. Appuyez sur (F3) pour sélectionner la variante directe (LEV 1) ou les formes pente-ordonnée à l’origine (LEV 2) des fonctions linéaires. Le mode Test fonctionne alors comme le mode Equation. Utilisez les flèches directionnelles pour sélectionner chaque paramètre et définir sa valeur. Lorsque vous avez terminé, appuyez sur (F4) pour vérifier que votre équation correspond bien au graphique fourni. Appuyez sur (F5) pour voir la réponse correcte. Appuyez sur (F6) pour quitter le mode Test et revenir au mode Graph.

Application Explorateur quadratique

L’application Explorateur quadratique permet d’étudier le comportement de lorsque les valeurs a, h et v sont modifiées. Pour cela, elle peut manipuler l’équation et afficher les modifications dans le graphique, ou modifier le graphique et afficher les changements au niveau de l’équation.
Appuyez sur \[\text{Appuyez sur I,} \]

sélectionnez \text{Explorateur quadratique}, puis

appuyez sur \text{START}.

L’application \text{Explorateur quadratique} s’ouvre en mode \(\text{Graph} \), dans lequel les flèches directionnelles et les touches \(+, - \) et \(\text{w} \)

permettent de modifier l’apparence du graphique.

Ces modifications sont reflétées dans l’équation, affichée en haut à droite de l’écran, tandis que le graphique d’origine est conservé à des fins de comparaison.

Dans ce mode, le graphique contrôle l’équation.

Il est également possible de faire en sorte que l’équation contrôle le graphique.

Appuyez sur \(\text{Goal} \) pour passer en mode \text{Equation}.

Appuyez sur \(\rightarrow \) et sur \(\leftarrow \) pour passer d’un paramètre à l’autre et appuyez sur \(\uparrow \) et sur \(\downarrow \) pour modifier la valeur d’un paramètre. Le graphique de l’équation est mis à jour en temps réel lorsque vous modifiez les valeurs des paramètres.

Appuyez sur \(\text{Nav} \) pour faire défiler les différentes formes des fonctions quadratiques disponibles.

La touche de menu \(\text{Test} \)

permet d’évaluer les connaissances de l’étudiant.

Appuyez sur \(\text{Test} \) pour afficher un graphique quadratique cible. L’étudiant doit manipuler les paramètres de l’équation afin que celle-ci corresponde au graphique cible. Lorsque l’étudiant pense avoir choisi les paramètres appropriés, la touche de menu \(\text{Test} \) évalue la réponse et la commente. La touche de menu \(\text{Rep} \) fournit une assistance à ceux qui sèchent!
Application Explorateur trigo.

L'application Explorateur trigo permet d'étudier le comportement du graphique de \(y = a \sin(bx + c) + d \) lorsque les valeurs \(a, b, c \) et \(d \) sont modifiées. Pour cela, elle peut manipuler l'équation et afficher les modifications dans le graphique, ou modifier le graphique et afficher les changements au niveau de l'équation.

Appuyez sur, sélectionnez Explorateur trigo., puis appuyez sur START pour afficher l'écran de droite.

L'application s'ouvre en mode Graph. Notez que la première touche de menu (F1) est intitulée GRAPH. Ce mode vous permet de manipuler le graphique et de voir les modifications reflétées dans l'équation. Appuyez sur \(\uparrow, \downarrow, \leftarrow \) et \(\rightarrow \) pour modifier le graphique, les transformations étant reflétées dans l'équation.

Le bouton intitulé ORIG permet de basculer entre ORIG et EXTR. Lorsque vous sélectionnez ORIG, \(\uparrow, \downarrow, \leftarrow \) et \(\rightarrow \) contrôlent les déplacements verticaux et horizontaux.

Pour les déplacements horizontaux, la touche de menu F6 contrôle la longueur de l'incrément. Par défaut, l'incrément est défini sur \(\pi/9 \). Lorsque vous sélectionnez EXTR, \(\uparrow, \downarrow, \leftarrow \) et \(\rightarrow \) contrôlent les dilatations verticales et horizontales par rapport à leurs axes respectifs. Ainsi, les flèches directionnelles modifient l'amplitude et la fréquence du graphique. Pour bien comprendre ce processus, il est plus simple de l'expérimenter par vous-même.
Appuyez sur la touche de menu F1 pour passer du mode GRAPH au mode EQ. Dans ce mode, le graphique est contrôlé par l’équation. Lorsque vous regardez l’équation affichée en haut de l’écran, vous constatez que l’un des paramètres est en surbrillance. Appuyez sur ↑ ou sur ↓ pour augmenter ou diminuer la valeur de ce paramètre. Appuyez sur ← et sur → pour passer d’un paramètre à l’autre.

Le paramètre d’angle par défaut pour cette application est exprimé en radians. Il est possible de modifier le paramètre d’angle pour qu’il s’exprime en degrés en appuyant sur RAD.

Comme l’application Explorateur quadratique, l’application Explorateur trigo. dispose également d’une vue TEST.
Extension de votre bibliothèque d'applications

Les applications sont des environnements vous permettant d'explorer différentes catégories d'opérations mathématiques.

Vous pouvez augmenter la capacité de votre calculatrice HP 39gII en ajoutant des applications à la bibliothèque. Vous pouvez ajouter des applications à la bibliothèque de différentes manières :

• Créez de nouvelles applications, basées sur des applications existantes, au moyen de configurations spécifiques telles que des mesures d'angle, des paramètres graphiques ou tabulaires, ou des annotations.

• Transmettez des applications d'une calculatrice HP 39gII à une autre au moyen d'un câble micro USB.

• Programmez de nouvelles applications. Pour de plus amples informations, consultez le chapitre Programmation.

 Création de nouvelles applications basées sur des applications existantes

Vous pouvez créer une nouvelle application basée sur une application existante. Pour créer une nouvelle application, sauvegardez une application existante sous un nouveau nom, puis modifiez l’application pour ajouter la configuration et les fonctionnalités de votre choix.

Les informations définissant les caractéristiques d'une application sont automatiquement sauvegardées lorsqu'elles sont entrées dans la calculatrice.

Pour conserver autant de mémoire que possible, supprimez toutes les applications dont vous n'avez plus besoin.
Exemple

Cet exemple montre comment créer une nouvelle application en sauvegardant une copie de l’application Résoudre intégrée. La nouvelle application est sauvegardée sous le nom TRIANGLES et contient des formules courantes pour la résolution de problèmes relatifs à des triangles.

1. Ouvrez l’application Résoudre et sauvegardez-la sous un nouveau nom.

2. Entrez les formules :

3. Déterminez si l’application doit utiliser des Degrés ou des Radians.

Degrés
4. Affichez la bibliothèque d’applications. L’application TRIANGLES est répertoriée dans la bibliothèque d’applications.

L’application Résoudre peut à présent être réinitialisée et utilisée pour d’autres problèmes. Le stockage d’une application a pour avantage de conserver une copie d’un environnement de travail, susceptible d’être réutilisé.

Réinitialisation d’une application

La réinitialisation d’une application efface toutes les données et restaure les paramètres par défaut.

Pour réinitialiser une application, ouvrez la bibliothèque, sélectionnez l’application et appuyez sur SET.

Vous pouvez uniquement réinitialiser une application basée sur une application intégrée si le programmeur qui l’a créée a fourni une option de réinitialisation.

Annotation d’une application

La vue Infos (fn:app) permet de joindre une note à l’application actuelle. Pour de plus amples informations, consultez le chapitre Notes et informations.

Envoi et réception d’applications

La transmission (copie) d’applications directement d’une calculatrice HP 39gII à une autre permet de distribuer ou partager facilement des problèmes au sein d’une classe, ou de donner du travail à la maison. Le transfert d’applications entre calculatrices est réalisé au moyen du câble micro USB fourni avec chaque calculatrice HP 39gII.

Vous pouvez également échanger des applications avec un ordinateur grâce au kit de connectivité pour ordinateur. La calculatrice HP 39gII est fournie avec un câble USB et un connecteur micro USB pour une connexion avec un ordinateur. Ce connecteur se branche au port micro USB de la calculatrice. Le kit de connectivité pour ordinateur peut être installé au moyen du CD fourni avec la calculatrice HP 39gII.
Pour transmettre une application

1. Connectez les deux calculatrices HP 39gII au moyen du câble micro USB fourni.
2. Sur la calculatrice émettrice, ouvrez la bibliothèque d’applications et sélectionnez l’application que vous souhaitez envoyer.
3. Appuyez sur la touche de menu Envoyer.
4. Le témoin de transfert peut alors clignoter brièvement.
5. Sur l’unité réceptrice, ouvrez la bibliothèque d’applications pour visualiser la nouvelle application.

Pour envoyer une application de votre ordinateur à votre calculatrice HP 39gII, utilisez le kit de connectivité. Cette application logicielle gère le transfert de données d’un ordinateur vers votre calculatrice HP 39gII.

Gestion des applications

La bibliothèque d’applications est l’endroit à partir duquel vous pouvez gérer vos applications. Appuyez sur App. A l’aide des touches du curseur, mettez en surbrillance le nom de l’application sur laquelle vous souhaitez agir.

Pour trier la liste des applications

Dans la bibliothèque d’applications, appuyez sur Enter. Sélectionnez le mode de tri et appuyez sur Enter.
- Chronologique crée un tri chronologique en fonction de la date de dernière utilisation d’une application (la dernière application utilisée apparaît donc en premier, et ainsi de suite).
- Alphabétique crée un tri alphabétique en fonction du nom des applications.

Pour supprimer une application

Pour supprimer une application personnalisée, ouvrez la bibliothèque d’applications, mettez en surbrillance l’application à supprimer et appuyez sur Clear.
Pour supprimer toutes les applications personnalisées, appuyez sur Clear, CLEAR.

Vous ne pouvez pas supprimer une application intégrée. Vous pouvez uniquement effacer ses données et restaurer ses paramètres par défaut.
Utilisation des fonctions mathématiques

Fonctions mathématiques
La calculatrice HP 39gII dispose de nombreuses fonctions mathématiques. Pour utiliser une fonction mathématique, il suffit de l’insérer sur la ligne de commande suivie de ses arguments entre parenthèses. Les fonctions mathématiques les plus courantes ont des touches ou des suffixes de touches attitrés. Toutes les autres fonctions mathématiques sont accessibles depuis le menu Math.

Fonctions du clavier
Les fonctions les plus fréquemment utilisées sont accessibles directement à partir du clavier. La plupart de ces fonctions acceptent également les nombres complexes comme arguments.

Addition, soustraction, multiplication, division. Acceptent les nombres complexes, les listes et les matrices.

\[+, - , \times, \div \]

Exemple :
\[1+2 \]
renvoie 3

Logarithme naturel. Accepte également les nombres complexes.

\[\text{LN} \]
Exemple :
\[\text{LN}(1) \] renvoie 0

Exponentielle de base. Accepte également les nombres complexes.

\[\text{e}^x \]
Exemple :
\[\text{e}^5 \] renvoie 148.413159103
Logarithme décimal. Accepte également les nombres complexes.

\[\log(valeur) \]

Exemple :

\[\log(100) \] renvoie 2

\[10^valeur \]

Exemple :

\[10^3 \] renvoie 1000

Sinus, cosinus, tangente. Les opérations et les résultats dépendent du format d’angle (degrés, radians ou grades) actuel.

\[\sin(valeur) \]
\[\cos(valeur) \]
\[\tan(valeur) \]

Exemple :

\[\tan(45) \] renvoie 1 (mode Degrés).

Arc sinus : \(\sin^{-1}x \). Renvoie une valeur comprise entre –90° et 90° ou –\(\pi/2 \) et \(\pi/2 \). Les opérations et les résultats dépendent du format d’angle actuel. Accepte également les nombres complexes.

\[\arcsin(valeur) \]

Exemple :

\[\arcsin(1) \] renvoie 90 (mode Degrés).

Arc cosinus : \(\cos^{-1}x \). Renvoie une valeur comprise entre 0° et 180° ou 0 et \(\pi \). Les opérations et les résultats dépendent du format d’angle actuel. Accepte également les nombres complexes. Le résultat des valeurs sera complexe pour les valeurs hors du domaine de cosinus normal de \(-1 \leq x \leq 1 \).

\[\arccos(valeur) \]
Exemple :

\[\text{ACOS(1)} \] renvoie 0 (mode Degrés).

\[\text{ATAN}(\text{valeur}) \] Arc tangente : \(\tan^{-1}x \). Renvoie une valeur comprise entre –90° et 90° ou \(-\pi/2\) et \(\pi/2\). Les opérations et les résultats dépendent du format d’angle actuel. Accepte également les nombres complexes.

\[\text{ATAN}(\text{valeur}) \] Exemple :

\[\text{ATAN}(1) \] renvoie 45 (mode Degrés).

\[\sqrt{\text{valeur}} \] Carré. Accepte également les nombres complexes. \(\sqrt{\text{valeur}} \) ou \(\sqrt{(\text{expression})} \)

\[\sqrt{18^2} \] renvoie 324

\[\sqrt[\text{n}]{\text{valeur ou expression}} \] Racine carrée. Accepte également les nombres complexes.

\[\sqrt[3]{324} \] renvoie 18

\[\text{\(\sqrt[n]{\text{valeur}}\)} \] Puissance \((x \text{ à la puissance } y) \). Accepte également les nombres complexes. \(\text{valeur}^\text{puissance} \)

\[2^8 \] renvoie 256

\[\text{\(\sqrt[n]{\text{valeur ou expression}}\)} \] Nième racine \((\sqrt[n]{\text{x}}) \). Prend la nième racine de \(x \).

\[3 \text{ NTHROOT 8} \] renvoie 2
Opposé. Accepte également les nombres complexes.

\(-\text{valeur}\)

Exemple :

\(- (1+2i) \text{ renvoie } -1-2i\)

Valeur absolue. Pour un nombre complexe, il s’agit de \(\sqrt{x^2 + y^2}\).

\(\text{ABS} (\text{valeur})\)
\(\text{ABS} ((x+y^*)i)\)

Exemple :

\(\text{ABS} (-1) \text{ renvoie } 1\)
\(\text{ABS} ((1,2)) \text{ renvoie } 2.2360679775\)

Menu Math

Le menu Math donne accès aux fonctions mathématiques et aux unités et constantes de physique.

Par défaut, la touche \(\text{Math} \) ouvre le menu Fonctions mathématiques. Chacun des trois menus (Fonctions mathématiques, Unités et Constantes SI) possède sa propre touche de menu. Le menu Math est organisé en catégories. À chaque catégorie de fonctions sur la gauche correspond une liste de noms de fonctions sur la droite. La catégorie en surbrillance est la catégorie actuelle.

La touche \(\text{Math} \) fait apparaître la liste de menu des catégories mathématiques dans la colonne de gauche et les fonctions correspondant à la catégorie en surbrillance dans la colonne de droite. La touche de menu \(\mathtt{MAT}\) indique que la liste du menu Fonctions mathématiques est active.
Pour sélectionner une fonction

1. Appuyez sur \(\text{Math} \) pour afficher le menu Math. Les catégories apparaissent dans l’ordre alphabétique. Appuyez sur \(\langle \) ou sur \(\rangle \) pour faire défiler les catégories. Pour accéder directement à une catégorie, entrez son nombre (1 à 9) ou sa lettre (A à E).

2. La liste des fonctions (à droite) développe la catégorie en surbrillance (à gauche). Les touches \(\langle \) et \(\rangle \) permettent de passer de la liste de catégories à la liste de fonctions (et inversement).

3. Mettez en surbrillance le nom de la fonction désirée, puis appuyez sur \(\text{OK} \) ce qui a pour effet de recopier le nom de la fonction (et une parenthèse ouverte, le cas échéant) dans la ligne de saisie.

Catégories de fonctions

- Calcul
- Nombres complexes
- Constante
- Distribution
- Trigonométrie hyperbolique
- Nombre entier
- Liste
- Boucle
- Matrice
- Polynomial
- Probabilité
- Nombres réels (Réel)
- Tests
- Trigonométrie
Fonctions mathématiques par catégories

Syntaxe
La définition d’une fonction comprend sa syntaxe, caractérisée par l’ordre dans lequel elle est utilisée, l’orthographe exacte de son nom, ses délimiteurs (punctuation) et ses arguments. Notez que la syntaxe d’une fonction ne nécessite pas d’espacement.

Fonctions de calcul
Cette catégorie comprend les dérivés numériques et les fonctions intégrales, ainsi que la fonction Where (où) (|).

\[\frac{d}{dx} \left(x^2 - x, x=3 \right) \]

Exemple :
\[\frac{d}{dx} \left(x^2 - x, x=3 \right) \text{ renvoie } 5 \]

\[\int \]

Intègre expression entre les limites inférieure et supérieure en fonction de la variable d’intégration. Pour trouver l’intégrale définie, ces limites doivent se composer de valeurs numériques (autrement dit, de nombres ou de variables réelles).

\[\int \left(x^2 - x, x, 0, 3 \right) \text{ renvoie } 4.5 \]

\[| \]

Evalue expression lorsque chaque variable donnée est définie sur la valeur correspondante. Définit l’évaluation numérique d’une expression symbolique.

\[3 \times (x+1) \mid (x=3) \text{ renvoie } 12 \]
Fonctions de nombres complexes

Les fonctions suivantes sont uniquement destinées aux nombres complexes. Vous pouvez également utiliser les nombres complexes avec toutes les fonctions trigonométriques et hyperboliques, ainsi qu’avec quelques nombres réels et fonctions du clavier. Les nombres complexes doivent être saisis sous la forme \((x+y*i)\), où \(x\) est la partie réelle et \(y\) la partie imaginaire.

ARG

Argument. Détermine l’angle défini par un nombre complexe. Les opérations et les résultats utilisent le format d’angle actuel (défini dans Modes).

\[\text{ARG}(x+y*i) \]

Exemple :

\[\text{ARG}(3+3*i) \text{ renvoie } 45 \text{ (mode Degrés)} \]

CONJ

Conjugué complexe. La conjugaison est l’opposé (inversion de signe) de la partie imaginaire d’un nombre complexe.

\[\text{CONJ}(x+y*i) \]

Exemple :

\[\text{CONJ}(3+4*i) \text{ renvoie } (3-4*i) \]

IM

Partie imaginaire, \(y\), d’un nombre complexe \((x+y*i)\).

\[\text{IM}(x+y*i) \]

Exemple :

\[\text{IM}(3+4*i) \text{ renvoie } 4 \]

RE

Partie réelle, \(x\), d’un nombre complexe \((x+y*i)\).

\[\text{RE}(x+y*i) \]

Exemple :

\[\text{RE}(3+4*i) \text{ renvoie } 3 \]
Constantes

Les constantes disponibles dans le menu Fonctions mathématiques sont des constantes mathématiques. Elles sont décrites dans cette section. La calculatrice HP 39gII dispose de deux autres menus de constantes : les constantes de programmation et les constantes physiques. Les constantes physiques sont décrites plus loin dans ce chapitre, tandis que les constantes de programmation sont décrites dans le chapitre consacré à la programmation.

e
Base de logarithme naturel. Représenté en interne par 2.71828182846.

i
Valeur imaginaire de , le nombre complexe (0,1).

MAXREAL
Plus grand nombre réel. Représenté en interne par 9.99999999999 \times 10^{499}.

MINREAL
Plus petit nombre réel. Représenté en interne par 1 \times 10^{-499}.

π
Représenté en interne par 3.14159265359.

Distribution

Cette catégorie comprend les fonctions de densité de probabilité, ainsi que les fonctions de probabilité cumulative et leurs inverses, pour les distributions de probabilité courantes. Ces distributions incluent les distributions normale, binomiale, Khi carré, Fisher, Poisson et t de Student.

normald
Fonction de densité de probabilité normale. Calcule la densité de probabilité sur la valeur x, selon la moyenne μ et la déviation standard σ d’une distribution normale. Si une seule valeur (x) est fournie, suppose que μ=0 et que σ=1.

\[
\text{normald}([\mu, \sigma, x])
\]
Exemple :

\[
\text{normald}(0.5) \text{ et normald}(0, 1, 0,5) \text{ renvoient tous deux } 0.352065326765.
\]

normald_cdf

Fonction de distribution normale cumulative. Renvoie la partie inférieure de la fonction de densité de probabilité normale pour la valeur \(x \), selon la moyenne \(\mu \) et la déviation standard \(\sigma \) d’une distribution normale. Si une seule valeur \((x) \) est fournie, suppose que \(\mu=0 \) et que \(\sigma=1 \).

\[
\text{normald_cdf}([\mu, \sigma], x)
\]

Exemple :

\[
\text{normald_cdf}(0, 1, 2) \text{ renvoie } 0.97724986805.
\]

normald_icdf

Fonction de distribution normale cumulative inverse. Renvoie la valeur de distribution normale cumulative associée à la queue inférieure de probabilité \(p \), selon la moyenne \(\mu \) et la déviation standard \(\sigma \) d’une distribution normale. Si une seule valeur \((x) \) est fournie, suppose que \(\mu=0 \) et que \(\sigma=1 \).

\[
\text{normald_icdf}([\mu, \sigma], p)
\]

Exemple :

\[
\text{normald_icdf}(0, 1, 0.841344746069) \text{ renvoie } 1.
\]

binomial

Fonction de densité de probabilité binomiale. Calcule la probabilité des succès \(k \) sur \(n \) essais, chacun ayant une probabilité de succès \(p \). Renvoie Comb\((n,k)\) en l’absence d’un troisième argument. Notez que \(n \) et \(k \) sont des nombres entiers avec \(k \leq n \).

\[
\text{binomial}(n, k, p)
\]

Exemple :

\[
\text{binomial}(4, 2, 0.5) \text{ renvoie } 0.375.
\]

binomial_cdf

Fonction de distribution binomiale cumulative. Renvoie la probabilité d’un nombre de succès \(k \) ou inférieur sur \(n \) essais, avec une probabilité de succès \(p \) pour chaque essai. Notez que \(n \) et \(k \) sont des nombres entiers avec \(k \leq n \).

\[
\text{binomial_cdf}(n, p, k)
\]

Exemple :

\[
\text{binomial_cdf}(4, 0.5, 2) \text{ renvoie } 0.6875.
\]
binomial_icdf Fonction de distribution binomiale cumulative inverse. Renvoie le nombre de succès k sur n essais, chacun ayant une probabilité de p, de sorte que la probabilité d’un nombre de succès k ou inférieur est q.

```
binomial_icdf(n, p, q)
```

Exemple :
```
binomial_icdf(4, 0.5, 0.6875) renvoie 2.
```

chisquare χ^2 Fonction de densité de probabilité. Calcule la densité de probabilité de la distribution χ^2 sur x, selon n degrés de liberté.

```
chisquare(n, x)
```

Exemple :
```
chisquare(2, 3.2) renvoie 0.100948258997.
```

chisquare_cdf Fonction de distribution cumulative. Renvoie la probabilité de queue inférieure de la fonction de densité de probabilité χ^2 pour la valeur x, selon n degrés de liberté.

```
chisquare_cdf(n, k)
```

Exemple :
```
chisquare_cdf(2, 6.1) renvoie 0.952641075609.
```

chisquare_icdf Fonction de distribution cumulative inverse. Renvoie la valeur x de sorte que la probabilité de χ^2 queue inférieure de x, avec n degrés de liberté, est p.

```
chisquare_icdf(n, p)
```

Exemple :
```
chisquare_icdf(2, 0.952641075609) renvoie 6.1.
```

fisher Fonction de densité de probabilité de Fisher (ou de Fisher-Snedecor). Calcule la densité de probabilité sur la valeur x, selon les degrés de liberté du numérateur n et du dénominateur d.

```
fisher(n, d, x)
```
Exemple :

\[\text{fisher}(5, 5, 2) \text{ renvoie } 0.158080231095. \]

fisher_cdf Fonction de distribution de Fisher cumulative. Renvoie la partie inférieure de probabilité de la fonction de densité de probabilité de Fisher pour la valeur \(x \), selon les degrés de liberté du numérateur \(n \) et du dénominateur \(d \).

\[\text{fisher}_cdf(n, d, x) \]

Exemple :

\[\text{fisher}_cdf(5, 5, 2) \text{ renvoie } 0.76748868087. \]

fisher_icdf Fonction de distribution de Fisher cumulative inverse. Renvoie la valeur \(x \) de sorte que la probabilité de queue inférieure de Fisher de \(x \), avec les degrés de liberté du numérateur \(n \) et du dénominateur \(d \), est \(p \).

\[\text{fisher}_icdf(n, d, p) \]

Exemple :

\[\text{fisher}_icdf(5, 5, 0.76748868087) \text{ renvoie } 2. \]

poisson Fonction de masse de probabilité de Poisson. Calcule la probabilité de \(k \) occurrences d’un événement sur un intervalle temporel, selon les occurrences \(\mu \) attendues (ou la moyenne) de l’événement dans cet intervalle. Pour cette fonction, \(k \) est un entier non négatif et \(\mu \) est un nombre réel.

\[\text{poisson}(\mu, k) \]

Exemple :

\[\text{poisson}(4, 2) \text{ renvoie } 0.14652511111. \]

poisson_cdf Fonction de distribution de Poisson cumulative. Renvoie la probabilité de \(x \) occurrences ou moins d’un événement dans un intervalle de temps donné, selon les occurrences \(\mu \) attendues.

\[\text{poisson}_cdf(\mu, x) \]

Exemple :

\[\text{poisson}_cdf(4, 2) \text{ renvoie } 0.238103305554. \]
poisson_icdf Fonction de distribution de Poisson cumulative inverse. Renvoie la valeur x telle que la probabilité de x occurrences ou moins d’un événement, avec les occurrences μ attendues (ou la moyenne) de l’événement dans cet intervalle, est p.

\[
\text{poisson_icdf}(\mu, p)
\]

Exemple :

\[
\text{poisson_icdf}(4, 0.238103305554) \text{ renvoie } 2.
\]

student Fonction de densité de probabilité t de Student. Calcule la densité de probabilité de la distribution t de Student sur x, selon n degrés de liberté.

\[
\text{student}(n, x)
\]

Exemple :

\[
\text{student}(3, 5.2) \text{ renvoie } 0.00366574413491.
\]

student_cdf Fonction de distribution t de Student cumulative. Renvoie la probabilité de queue inférieure de la fonction de densité de probabilité t de Student sur x, selon n degrés de liberté.

\[
\text{student_cdf}(n, x)
\]

Exemple :

\[
\text{student_cdf}(3, -3.2) \text{ renvoie } 0.0246659214813.
\]

student_icdf Fonction de distribution t de Student cumulative inverse. Renvoie la valeur x telle que la probabilité de queue inférieure t de Student de x, avec n degrés de liberté, est p.

\[
\text{student_icdf}(n, p)
\]

Exemple :

\[
\text{student_icdf}(3, 0.0246659214813) \text{ renvoie } 3.2.
\]
Trigonométrie hyperbolique

Les fonctions de trigonométrie hyperbolique acceptent également les nombres complexes comme arguments.

ACOSH
Cosinus hyperbolique inverse : \(\cosh^{-1}x \).
ACOSH(valeur)

ASINH
Sinus hyperbolique inverse : \(\sinh^{-1}x \).
ASINH(valeur)

ATANH
Tangente hyperbolique inverse : \(\tanh^{-1}x \).
ATANH(valeur)

COSH
Cosinus hyperbolique
COSH(valeur)

SINH
Sinus hyperbolique.
SINH(valeur)

TANH
Tangente hyperbolique.
TANH(valeur)

ALOG
Antilogarithme (exponentielle). Cette fonction est plus précise que \(10^x \) en raison des limites de la fonction puissance.
ALOG(valeur)

EXP
Exponentielle de base. Cette fonction est plus précise que \(e^x \) en raison des limites de la fonction puissance.
EXP(valeur)

EXPM1
Exposant moins 1 : \(e^x - 1 \). Cette fonction est plus précise que EXP lorsque \(x \) est proche de zéro.
EXPM1(valeur)

LNP1
Logarithme naturel plus 1 : \(\ln(x+1) \). Cette fonction est plus précise que la fonction logarithme naturel lorsque \(x \) est proche de zéro.
LNP1(valeur)
Nombre entier

ichinrem
Théorème des restes chinois pour les nombres entiers (pour deux équations). Utilise deux listes \([a, p]\) et \([b, q]\) et renvoie une liste de deux entiers, \([r, n]\), de sorte que \(x = r \mod n\). Dans ce cas, \(x\) est tel que \(x = a \mod p\) et \(x = b \mod q\); et que, \(n = p \cdot q\).

\[
\text{ichinrem}([a, p], [b, q])
\]

Exemple :
\[
\text{ichinrem}([2,7], [3,5]) \text{ renvoie } [-12, 35].
\]

idivis
Diviseurs de nombres entiers. Renvoie une liste de tous les facteurs du nombre entier \(a\).

\[
idivis(a)
\]

Exemple :
\[
idivis(12) \text{ renvoie } [1,2,3,4,6,12].
\]

iegcd
Plus grand diviseur commun entier étendu. Pour les entiers \(a\) et \(b\), renvoie \([u, v, igcd]\) de sorte que
\[
a + v \cdot b = igcd(a, b).
\]

\[
\text{iegcd}(a, b)
\]

Exemple :
\[
\text{iegcd}(14, 21) \text{ renvoie } [-1,1,7].
\]

ifactor
Factorisation première. Renvoie la factorisation première du nombre entier \(a\) sous la forme d’un produit.

\[
\text{ifactor}(a)
\]

Exemple :
\[
\text{ifactor}(150) \text{ renvoie } 3 \cdot 5^2.
\]

ifactors
Facteurs premiers. Fonction similaire à la factorisation première, à la différence près qu’elle renvoie une liste de facteurs du nombre entier \(a\) avec leurs multiplicités.

\[
\text{ifactors}(a)
\]

Exemple :
\[
\text{ifactors}(150) \text{ renvoie } [2,1,3,1,5,2].
\]
igcd

Plus grand diviseur commun. Renvoie le nombre entier correspondant au plus grand diviseur commun des entiers a et b.

```
igcd(a, b)
```

Exemple :

```
igcd(24, 36) renvoie 12.
```

iquo

Quotient euclidien. Renvoie le quotient en nombre entier lorsque l'entier a est divisé par l'entier b.

```
iquo(a, b)
```

Exemple :

```
iquo(46, 21) renvoie 2.
```

iquorem

Quotient euclidien et reste. Renvoie le quotient en nombre entier et le reste lorsque l'entier a est divisé par l'entier b.

```
iquorem(a, b)
```

Exemple :

```
iquorem(46, 21) renvoie [2, 4].
```

irem

Reste euclidien. Renvoie le reste en nombre entier lorsque l'entier a est divisé par l'entier b.

```
irem(a, b)
```

Exemple :

```
irem(46, 21) renvoie 4.
```

isprime

Test du nombre entier premier. Renvoie 1 si l'entier a est un nombre premier ; ou 0 si ce n'est pas le cas.

```
isprime(a)
```

Exemple :

```
```

ithprime

Nième premier. Pour l'entier n, renvoie le nième premier inférieur à 10 000.

```
ithprime(n)
```

Exemple :

```
ithprime(5) renvoie 11.
```
nextprime Nombre premier suivant. Renvoie le nombre premier succédant à l'entier a.

nextprime(a)

Exemple :
nextprime(11) renvoie 13.

powmod Puissance et modulo. Pour les entiers a, n et p, renvoie $a^n \mod p$.

powmod(a, n, p)

Exemple :
powmod(5, 2, 13) renvoie 12.

prevprime Nombre premier précédent. Renvoie le nombre premier précédant l'entier a.

prevprime(a)

Exemple :
prevprime(11) renvoie 7.

euler Fonction (ou indicateur) Phi d'Euler. Prend un entier positif x et renvoie le nombre d'entiers positifs inférieurs ou égaux à x et copremiers de x.

euler(x)

Exemple :
euler(6) renvoie 2.

numer Numérateur simplifié. Pour les entiers a et b, renvoie le numérateur de la fraction a/b après simplification.

numer(a/b)

Exemple :
numer(10/12) renvoie 5.

denom Dénominateur simplifié. Pour les entiers a et b, renvoie le dénominateur de la fraction a/b après simplification.

denom(a/b)

Exemple :
denom(10/12) renvoie 6.
Fonctions de listes

Ces fonctions permettent de manipuler les données de listes. Pour plus d’informations, consultez le chapitre Listes.

Fonctions de boucles.

Les fonctions de boucles affichent un résultat après avoir évalué une expression un certain nombre de fois.

ITERATE

Evalue *#fois* une expression en termes de *variable*. La valeur de *variable* est mise à jour à chaque évaluation, et commence par *valeurinitiale*.

\[
\text{ITERATE(expression, variable, valeurinitiale, #fois)}
\]

Exemple :

\[
\text{ITERATE(x^2, x, 2, 3) renvoie 256}
\]

Σ

Sommation. Calcule la somme d’expression par rapport à *variable* allant de *valeurinitiale* à *valeurfinale*.

\[
\Sigma(expression, variable, valeurinitiale, valeurfinale)
\]

Exemple :

\[
\Sigma(x^2, x, 1, 5) \text{ renvoie 55.}
\]

Fonctions de matrices.

Ces fonctions sont destinées aux données de matrices stockées dans des variables de matrices. Pour plus d’informations, consultez le chapitre Matrices.

Fonctions polynomiales

Les polynômes sont des produits de constantes (coefficients) et de variables élevés à des puissances (termes).

POLYCOEF

Coefficients de polynômes. Renvoie les coefficients du polynôme ayant les racines spécifiées.

\[
\text{POLYCOEF ([racines])}
\]
Exemple :
Pour trouver le polynôme ayant pour racines 2, –3, 4, –5 :
POLYCOEF([2, –3, 4, –5]) renvoie [1, 2, –25, –26, 120], qui représente \(x^4+2x^3–25x^2–26x+120\).

POLYEVAL
Evaluation de polynômes. Évalue un polynôme de coefficients spécifiés pour la valeur de \(x\).
POLYEVAL([coefficients], valeur)
Exemple :
Pour \(x^4+2x^3–25x^2–26x+120\):
POLYEVAL([1, 2, –25, –26, 120], 8) renvoie 3432.

POLYROOT
Racines de polynômes. Renvoie les racines du polynôme d'ordre \(n\)ième avec les coefficients \(n+1\) spécifiés.
POLYROOT([coefficients])
Exemple :
Pour \(x^4+2x^3–25x^2–26x+120\):
POLYROOT([1, 2, –25, –26, 120]) renvoie \(\{4, –5, –3, 2\}\).

CONSEIL
Les résultats de POLYROOT sont souvent trop longs pour être affichés correctement dans l'écran Home (à cause du nombre de décimales), en particulier lorsqu'il s'agit de nombres complexes. Il est préférable de stocker les résultats de POLYROOT dans une matrice.
Par exemple, POLYROOT([1, 0, 0, –8]) stocke les trois racines cubiques complexes de 8 dans la matrice M1 en tant que vecteur complexe. Il vous est ensuite possible d'y accéder, soit depuis le catalogue des matrices, soit individuellement, dans les calculs, en faisant référence à M1(1), M1(2), etc.
Fonctions de probabilité

COMB
Nombre de combinaisons (sans tenir compte de l'ordre) de \(n \) éléments pris \(r \) à la fois : \(\frac{n!}{r!(n-r)!} \).

\(\text{COMB}(n, r) \)

Exemple :

\(\text{COMB}(5, 2) \) renvoie 10. Autrement dit, il existe dix façons de combiner cinq éléments deux par deux éléments.

!
Factorielle d'un entier positif. Pour les non entiers, \(! = \Gamma(x + 1) \). Cette opération calcule la fonction Gamma.

\(5! \) Renvoie 120

PERM
Nombre de permutations (en tenant compte de l'ordre) de \(n \) éléments pris \(r \) à la fois : \(\frac{n!}{r!(n-r)!} \).

\(\text{PERM}(n, r) \)

Exemple :

\(\text{PERM}(5, 2) \) renvoie 20. Autrement dit, il existe vingt permutations différentes de cinq éléments pris deux par deux.

RANDOM
Nombre aléatoire. Sans aucun argument, cette fonction renvoie un nombre aléatoire compris entre zéro et un. Avec un argument à nombres entiers \(a \), cette fonction renvoie un entier aléatoire compris entre 0 et \(a \). Avec trois arguments à nombres entiers \(n, a, b \), cette fonction renvoie \(n \) entiers aléatoires compris entre \(a \) et \(b \).

\(\text{RANDOM} \)
\(\text{RANDOM}(a) \)
\(\text{RANDOM}(n, a, b) \)

UTPC
Probabilité Khi deux sur la queue supérieure calculée à partir des degrés de liberté, évaluée sur la valeur. Renvoie la probabilité qu'une variable aléatoire \(\chi^2 \) soit supérieure à la valeur.

\(\text{UTPC}(\text{degrés}, \text{valeur}) \)
UTPF
Probabilité F de Snedecor de la queue supérieure calculée à partir des degrés de liberté du numérateur et du dénominateur de la distribution F, évaluée sur la valeur. Renvoie la probabilité que la variable aléatoire F de Snedecor soit supérieure à la valeur.

\[\text{UTPF}(\text{numérateur, dénominateur, valeur}) \]

UTPN
Probabilité normale de la queue supérieure calculée à partir d'une moyenne et d'une variance, évaluée sur la valeur. Renvoie la probabilité que la variable aléatoire normale soit supérieure à la valeur pour une distribution normale. Remarque : la variance est le carré de l'écart-type.

\[\text{UTPN}(\text{moyenne, variance, valeur}) \]

UTPT
Probabilité t de Student de la queue supérieure calculée à partir des degrés de liberté, évaluée sur la valeur. Renvoie la probabilité qu'une variable aléatoire t de Student soit supérieure à la valeur.

\[\text{UTPT}(\text{degrés, valeur}) \]

Fonctions de nombres réels
Certaines fonctions de nombres réels acceptent également les arguments complexes.

CEILING
Plus petit entier supérieur ou égal à la valeur.

\[\text{CEILING}(\text{valeur}) \]

Exemples :

CEILING(3.2) renvoie 4
CEILING(-3.2) renvoie -3

DEG→RAD
Conversion degrés/radians. Convertit la valeur au format d'angle Degrés en format d'angle Radians.

\[\text{DEG→RAD}(\text{valeur}) \]

Exemple :

DEG→RAD(180) renvoie 3.14159265359, la valeur de π.

FLOOR
Plus grand entier inférieur ou égal à la valeur.

\[\text{FLOOR}(\text{valeur}) \]

Exemple :

FLOOR(-3.2) renvoie -4
FNROOT Fonction de recherche de racine (similaire à l’application Résoudre). Trouve la valeur de la variable donnée pour laquelle l’expression est la plus proche de zéro. Utilise l’estimation comme première estimation.

\[
\text{FNROOT}(\text{expression, variable, estimation})
\]

Exemple :

\[
\text{FNROOT}(M*9.8/600-1,M,1) \text{ renvoie } 61.22489796.
\]

FRAC Partie fractionnelle.

\[
\text{FRAC}(\text{valeur})
\]

Exemple :

\[
\text{FRAC}(23.2) \text{ renvoie } .2
\]

HMS→ Conversion heures-minutes-secondes en décimales. Convertit un nombre ou une expression sous la forme \(H.MMSSs\) (temps ou angle pouvant inclure des fractions de seconde) vers le format \(x.x\) (nombre d’heures ou de degrés comprenant une fraction décimale).

\[
\text{HMS→}(H.MMSSs)
\]

Exemple :

\[
\text{HMS→}(8.30) \text{ renvoie } 8.5
\]

→HMS Conversion de décimales en heures-minutes-secondes. Convertit un nombre ou une expression sous la forme \(x.x\) (nombre d’heures ou de degrés comprenant une fraction décimale) vers le format \(H.MMSSs\) (temps ou angle, jusqu’aux fractions de seconde).

\[
\text{→HMS}(x.x)
\]

Exemple :

\[
\text{→HMS}(8.5) \text{ renvoie } 8.3
\]

INT Partie entière.

\[
\text{INT}(\text{valeur})
\]

Exemple :

\[
\text{INT}(23.2) \text{ renvoie } 23
\]

MANT Mantisse (chiffres significatifs) de valeur.

\[
\text{MANT}(\text{valeur})
\]
Exemple :
MANT(21.2E34) renvoie 2.12

MAX
Maximum. La plus grande de deux valeurs.
\[\text{MAX}(\text{valeur}_1, \text{valeur}_2) \]
Exemple :
\[\text{MAX}(210,25) \] renvoie 210

MIN
Minimum. La plus petite de deux valeurs.
\[\text{MIN}(\text{valeur}_1, \text{valeur}_2) \]
Exemple :
\[\text{MIN}(210,25) \] renvoie 25

MOD
Modulo. Reste de la division \(\text{valeur}_1 / \text{valeur}_2\).
\[\text{valeur}_1 \mod \text{valeur}_2 \]
Exemple :
\[9 \mod 4 \] renvoie 1

%
\(x\) pour cent de \(y\); c’est-à-dire, \(x/100\times y\).
\[\%(x, y) \]
Exemple :
\[\%(20,50) \] renvoie 10

%CHANGE
Modification de pourcentage entre \(x\) et \(y\), soit \(100(y-x)/x\).
\[\%\text{CHANGE}(x,y) \]
Exemple :
\[\%\text{CHANGE}(20,50) \] renvoie 150

%TOTAL
Pourcentage total : \((100)y/x\). Quel pourcentage de \(x\), est \(y\).
\[\%\text{TOTAL}(x,y) \]
Exemple :
\[\%\text{TOTAL}(20,50) \] renvoie 250

RAD–DEG
Conversion de radians en degrés. Convertit la valeur exprimée en radians en degrés.
\[\text{RAD–DEG}(\text{valeur}) \]
Exemple :

```
RAD→DEG(π) renvoie 180
```

ROUND

Arrondit la *valeur* à des *positions* décimales. Accepte les nombres complexes.

```
ROUND(valeur, positions)
```

Round peut également être utilisé pour arrondir à un nombre constitué de chiffres significatifs, comme indiqué dans le deuxième exemple ci-dessous.

Exemples :

```
ROUND(7.8676,2) renvoie 7.87
ROUND(0.0036757,-3) renvoie 0.00368
```

SIGN

Signe de *valeur*. Renvoie 1 si la valeur est positive, –1 si elle est négative, zéro si elle est nulle. Pour un nombre complexe, renvoie le vecteur unitaire de même direction que le nombre.

```
SIGN(valeur)
SIGN((x,y))
```

Exemple :

```
SIGN (-2) renvoie -1
SIGN((3,4)) renvoie (.6,.8)
```

TRUNCATE

Tronque la *valeur* à des *positions* décimales. Accepte les nombres complexes.

```
TRUNCATE(valeur, positions)
```

Exemple :

```
TRUNCATE(2.3678,2) renvoie 2.36
```

XPON

Exposant de *valeur*.

```
XPON(valeur)
```

Exemple :

```
XPON(123.4) renvoie 2
```
Fonctions de test

Les fonctions de test sont des opérateurs logiques renvoyant soit 1 (true = vrai), soit 0 (false = faux).

<
Inférieur à. Renvoie 1 si la valeur est vraie, 0 si elle est fausse.
\[\text{valeur1}<\text{valeur2} \]

≤
Supérieur ou égal à. Renvoie 1 si la valeur est vraie, 0 si elle est fausse.
\[\text{valeur1}\leq\text{valeur2} \]

=
Égal à (test logique). Renvoie 1 si la valeur est vraie, 0 si elle est fausse.
\[\text{valeur1}==\text{valeur2} \]

≠
Différent de. Renvoie 1 si la valeur est vraie, 0 si elle est fausse.
\[\text{valeur1}\neq\text{valeur2} \]

>
Supérieur à. Renvoie 1 si la valeur est vraie, 0 si elle est fausse.
\[\text{valeur1}>\text{valeur2} \]

≥
Supérieur ou égal à. Renvoie 1 si la valeur est vraie, 0 si elle est fausse.
\[\text{valeur1}\geq\text{valeur2} \]

AND
Compare \text{valeur1} et \text{valeur2}. Renvoie 1 si toutes deux sont non nulles, sinon renvoie 0.
\[\text{valeur1 AND valeur2} \]

IFTE
Si l’expression est vraie, effectue la clausevraie ; sinon, effectue clausefausse.
\[\text{IFTE} (\text{expression}, \text{clausevraie}, \text{clausefausse}) \]

Exemple :
\[\text{IFTE} (\text{X>0, X^2, X^3})\text{ avec } x=-2 \text{ renvoie } -8 \]

NOT
Renvoie 1 si la valeur est égale à zéro, sinon renvoie 0.
\[\text{NOT valeur} \]
OR
Renvoie 1 si valeur1 ou valeur2 est non nulle, sinon renvoie 0.
valeur1 OU valeur2

XOR
OR exclusif. Renvoie 1 si valeur1 ou valeur2 (mais pas les deux) est non nulle, sinon renvoie 0.
valeur1 XOR valeur2

Fonctions trigonométriques
Les fonctions trigonométriques acceptent également les nombres complexes comme arguments. Pour SIN, COS, TAN, ASIN, ACOS et ATAN, consultez la catégorie Clavier.

ACOT
Arc cotangente.
ACOT(valeur)

ACSC
Arc cosécante.
ACSC(valeur)

ASEC
Arc sécante.
ASEC(valeur)

COT
Cotangente : cosx/sinx.
COT(valeur)

CSC
Cosécante : 1/sinx
CSC(valeur)

SEC
Sécante : 1/cosx.
SEC(valeur)
Unités et constantes physiques

Lorsque vous appuyez sur \(\text{Math} \), trois menus deviennent accessibles :

• le menu Fonctions mathématiques (qui apparaît par défaut),
• le menu Unités,
• le menu Constantes physiques.

Le menu Fonctions mathématiques est décrit en détail plus tôt dans ce chapitre.

Unités

Il est possible d’attribuer une unité physique à n’importe quel calcul ou résultat numérique. Une valeur numérique à laquelle a été attribuée une unité est qualifiée de mesure. Il est possible de manipuler les mesures de la même manière que les nombres sans unités, à la différence près que les unités sont conservées dans les opérations. La fonction `usimplify` (simplification d’unité) restaure la structure d’unité simple des résultats. Les unités sont accessibles dans le menu Unités. À l’instar du menu Math, le menu Unités se compose d’un ensemble de catégories sur la gauche et des unités de chacune des catégories sur la droite. Ces catégories sont les suivantes :

Catégories d’unités

- Longueur
- Zone
- Volume
- Temps
- Vitesse
- Masse
- Accélération
- Force
- Energie
- Puissance
- Pression
- Température
- Electricité
- Lumières
- Angle
- Viscosité
- Radiation

Supposons que vous souhaitiez additionner 20 centimètres et 5 pouces.
1. Si vous voulez que le résultat apparaisse en cm, commencez par saisir 20 cm.

\[
20 \text{ cm}
\]

(pour sélectionner Longueur)

2. Ajoutez maintenant les 5 pouces.

\[
+ 5
\]

(8 fois pour _pouces)

Le résultat affiché est 32.7 cm. Si vous aviez voulu que le résultat apparaîsse en pouces, il vous aurait fallu commencer par saisir 5 pouces.

3. Toujours pour le même exemple, divisons ce résultat par 4 secondes et convertissons le résultat en kilomètres par heure.

\[
/ 4 \text{ sec}
\]

(pour sélectionner Temps)

(pour sélectionner _sec)

Le résultat affiché est 8.175 cm/s.

b = \(5 \text{ fois pour sélectionner Fonctions}\)

l = \(\text{pour sélectionner } 8.175 \text{ (cm/sec)}\)

1 = \(\text{pour sélectionner Vitesse}\)

\(\text{4 fois pour sélectionner } _{\text{km/h}}\) \(\text{ Ok}\).

Le résultat affiché est 0.2943 kilomètres/heure.

Constantes physiques

29 constantes physiques peuvent être utilisées dans les calculs. Ces constantes sont regroupées dans les catégories chimie, physique et mécanique quantique. La liste de toutes ces constantes est disponible dans la section Constantes physiques du chapitre Informations de référence.

Pour accéder au menu des constantes physiques, procédez comme suit :

1. Appuyez sur \(\text{Math}\).
2. Appuyez sur \(\text{Vale}\).

3. Utilisez les touches de direction pour parcourir les options.
4. Dans le menu Constantes physiques, appuyez sur \texttt{VAL·} pour passer de l'affichage de la valeur complète de la constante à une description de la constante (dans la ligne d'aide). Pour attribuer des unités à une constante lorsque vous la collez dans la ligne de saisie, laissez \texttt{VAL·} activé lorsque vous appuyez sur \texttt{OK} ; pour coller uniquement la valeur (sans les unités), désactivez \texttt{VAL·} avant d'appuyer sur \texttt{OK}.

5. Pour utiliser la constante sélectionnée dans un calcul, appuyez sur \texttt{OK}. La constante apparaît dans la ligne de saisie, à la position du curseur.

Exemple :

Supposons que vous souhaitiez connaître l'énergie potentielle d'une masse de 5 unités en fonction de l'équation \(E = mc^2 \).

1. Entrez la masse et la multiplication.

\[
5 \times \]

2. Accédez au menu Constantes physiques

3. Sélectionnez la vitesse de la lumière.

\textbf{\(c \)} (pour sélectionner \texttt{Physique})

\textbf{\(\uparrow \) \(\downarrow \)} (pour sélectionner \texttt{c})
4. Entrez la vitesse de la lumière dans l'expression actuelle.

5. Mettez la vitesse de la lumière au carré et évaluez l'expression.
Listes

Introduction

Vous pouvez utiliser des listes dans l'écran Home ou dans les programmes. Une liste est constituée de matrices, d'expressions ou de nombres réels ou complexes séparés par des virgules et délimités par des accolades. Une liste peut, par exemple, comprendre une séquence de nombres réels, par exemple $\{1, 2, 3\}$. Les listes constituent un moyen pratique de regrouper des objets associés.

Il existe dix variables de listes disponibles, de \(L_0 \) à \(L_9 \). Vous pouvez les utiliser dans des calculs ou des expressions dans l'écran Home ou dans un programme. Récupérez les noms des listes dans le menu Vars ou saisissez-les à l'aide du clavier.

Vous pouvez créer, modifier, supprimer, envoyer et recevoir des listes nommées dans le catalogue de listes (\(\text{SHIFT \ LIST} \)). Vous pouvez également créer et mémoriser des listes, nommées ou non, dans l'écran Home.

Les variables de liste se comportent de la même façon que les colonnes \(C_1 \) à \(C_9 \) de l'application Statistiques 2Var et les colonnes \(D_1 \) à \(D_0 \) de l'application Statistiques 1Var. Vous pouvez mémoriser une colonne statistique dans une liste (et vice versa) et utiliser des fonctions de liste sur des colonnes statistiques ou utiliser des fonctions statistiques sur des variables de liste.
Créer une liste dans le catalogue de listes

1. Ouvrez le catalogue de listes.

2. Mettez en surbrillance le nom de liste que vous souhaitez attribuer à la nouvelle liste (L1, etc.), puis appuyez sur pour afficher l’éditeur de listes.

3. Entrez les valeurs que vous souhaitez voir apparaître dans la liste, sans oublier d’appuyer sur entre chaque opération.
 Une valeur peut être un nombre réel ou complexe, ou une expression. Si vous entrez une expression, elle est évaluée et le résultat est inséré dans la liste.

4. Une fois que vous avez terminé, appuyez sur pour afficher le catalogue de listes ou sur pour revenir à l’écran Home.

Touches du catalogue de listes

Les touches du catalogue de listes sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ent</td>
<td>Ouvre la liste en surbrillance pour la modifier.</td>
</tr>
<tr>
<td>SUPPR ou C</td>
<td>Supprime le contenu de la liste sélectionnée.</td>
</tr>
<tr>
<td>Envoi</td>
<td>Envoie la liste mise en surbrillance vers une autre calculatrice HP 39gII.</td>
</tr>
</tbody>
</table>
Editeur de listes

Appuyez sur pour créer ou modifier une liste. Une fois que vous avez appuyé sur cette touche de menu, l'éditeur de listes s'ouvre. L'éditeur de listes est un environnement spécifique permettant d'entrer des données dans des listes.

Touches de modification des listes

Lorsque vous appuyez sur pour créer ou modifier une liste, les touches suivantes sont disponibles :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR</td>
<td>Efface toutes les listes.</td>
</tr>
<tr>
<td>ou</td>
<td>Déplace le curseur jusqu'à la fin ou au début du catalogue.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS</td>
<td>Insère une nouvelle valeur avant l'élément en surbrillance.</td>
</tr>
<tr>
<td></td>
<td>Copie l'élément en surbrillance dans la ligne de saisie.</td>
</tr>
<tr>
<td>NEW</td>
<td>Permet de passer de petites polices à de grandes polices, et vice versa.</td>
</tr>
<tr>
<td>GRAND</td>
<td>Permet d'afficher simultanément 1, 2, 3 ou 4 listes.</td>
</tr>
<tr>
<td>LARG1</td>
<td>Supprime l'élément en surbrillance de la liste.</td>
</tr>
<tr>
<td></td>
<td>Efface tous les éléments de la liste.</td>
</tr>
<tr>
<td></td>
<td>Déplace le curseur jusqu'à la fin ou jusqu'au début de la liste.</td>
</tr>
</tbody>
</table>
Pour modifier une liste

1. Ouvrez le catalogue de listes.

2. Appuyez sur \[\text{ENT} \] ou sur \[\text{TAB} \] pour mettre en surbrillance le nom de la liste que vous souhaitez modifier (L1, etc.), puis appuyez sur \[\text{ENT} \] pour afficher le contenu de la liste.

3. Appuyez sur \[\text{TAB} \] ou sur \[\text{UP} \] pour mettre en surbrillance l'élément que vous souhaitez modifier. Dans l'exemple suivant, modifiez le troisième élément pour que sa valeur soit 5.

Pour insérer un élément dans une liste

Supposons que vous souhaitiez insérer une nouvelle valeur (9) dans L1(2) dans la liste L1 affichée à droite.

1. Déplacez le curseur sur le point d'insertion, puis insérez la nouvelle valeur.
Suppression de listes

Pour supprimer une liste
Dans le catalogue de listes, mettez en surbrillance le nom de la liste, puis appuyez sur \[\text{Del} \].

Vous êtes invité à confirmer la suppression du contenu de la variable de liste mise en surbrillance. Appuyez sur \[\text{Enter} \] pour supprimer le contenu ou sur \[\text{On/C} \] pour annuler la suppression.

Pour supprimer toutes les listes
Dans le catalogue de listes, appuyez sur \[\text{Shift} \text{ CLEAR} \].

Listes dans la vue Home

Vous pouvez entrer et manipuler des listes directement dans la vue Home. Il est possible de nommer ou non les listes que vous utilisez dans la vue Home.

1. Entrez la liste dans la ligne de saisie. Ajoutez des accolades au début et à la fin de la liste (touche Shift+ [8] et [9]) et séparez chaque élément par une virgule.

2. Appuyez sur \[\text{Enter} \] pour évaluer et afficher la liste.

Une fois la liste saisie, vous pouvez la stocker dans une variable en appuyant sur \[2\text{Shift} \text{ nomliste ENTER} \]. Les noms possibles sont L0 à L9.

L’exemple donné stocke la liste \{25,147,8\} dans L1.

Pour afficher une liste
Pour afficher une liste dans la vue Home, entrez son nom puis appuyez sur \[\text{Enter} \].

Pour afficher un élément
Pour afficher un élément d’une liste dans la vue Home, entrez nomliste (élémentn). Par exemple, si L2 = \{3,4,5,6\}, alors L2(2) \[\text{Enter} \] renvoie 4.
Pour stocker un élément

Pour stocker une valeur dans un élément d'une liste dans la vue Home, entrez `valeur \texttt{STO \textasciitilde nomliste (élémentn°)}`. Par exemple, pour mémoriser 148 en tant que deuxième élément de L2, entrez `148 \texttt{STO \textasciitilde L2(2) ENTER}`.

Pour transmettre une liste

Vous pouvez envoyer des listes à une autre calculatrice ou à un ordinateur de la même façon que pour les applications, les programmes, les matrices et les notes. Pour transmettre des listes d'une calculatrice HP 39gII à une autre :

1. Connectez les deux calculatrices HP 39gII au moyen du câble micro USB fourni, puis allumez les deux calculatrices.
2. Ouvrez le catalogue de listes sur la calculatrice source.
3. Mettez en surbrillance la liste à envoyer.
4. Appuyez sur `\texttt{SEND}`.
5. Le transfert démarre immédiatement.
6. Ouvrez le catalogue de listes sur la calculatrice réceptrice pour afficher la nouvelle liste.

Fonctions de listes

Les fonctions de listes sont disponibles dans le menu Math. Vous pouvez les utiliser dans l'écran Home ainsi que dans les programmes.

Vous pouvez saisir le nom de la fonction ou le copier à partir de la catégorie Liste du menu MATH.

Appuyez sur \texttt{[\textasciitilde]} pour mettre en surbrillance la catégorie Liste dans la colonne de gauche du menu Math (Liste étant la septième catégorie de ce menu).

Appuyez sur \texttt{\textasciitilde} et sur \texttt{\textasciitilde} pour sélectionner la fonction de liste de votre choix, sélectionnez une fonction, puis appuyez sur \texttt{OK}.
Les fonctions de listes utilisent la syntaxe suivante :

Les fonctions présentent des arguments indiqués entre parenthèses et séparés par des virgules. Exemple : CONCAT(L1, L2). Un argument peut être le nom d’une variable de liste (L1, par exemple) ou la liste elle-même. Par exemple, REVERSE((1, 2, 3)).

Les opérateurs courants tels que +, −, × et / peuvent utiliser les listes comme arguments. S’il existe deux arguments et si ce sont deux listes, alors ces dernières doivent être de la même longueur puisque les éléments sont associés lors du calcul. S’il existe deux arguments et si l’un d’eux est un nombre réel, le nombre est associé à chaque élément de la liste lors du calcul.

Exemple :

5*{1,2,3} renvoie {5,10,15}.

Outre les opérateurs courants qui peuvent utiliser les nombres, les matrices ou les listes comme arguments, il existe des commandes qui n’acceptent que les listes.

CONCAT

Permet de concaténer deux listes en une seule.

CONCAT(liste1, liste2)

Exemple :

CONCAT((1,2,3), (4)) renvoie (1,2,3,4).

ΔLIST

Crée une nouvelle liste qui se compose des premières différences d’une liste, c’est-à-dire des différences entre les éléments séquentiels de la liste. La nouvelle liste comprend un élément de moins que celle d’origine. Les premières différences pour \(\{x_1, x_2, x_3, \ldots, x_{n-1}, x_n\} \) sont \(\{x_2-x_1, x_3-x_2, \ldots, x_n-x_{n-1}\} \).

ΔLIST(liste1)
Exemple :
Sur l’écran Home, stockez \(\{3,5,8,12,17,23\} \) dans L5, puis calculez les premières différences de la liste.

\[
\begin{array}{|c|c|}
\hline
\text{Home} & \text{EXIT} \\
\hline
\{3,5,8,12,17,23\} & \text{EXIT} \\
\hline
\end{array}
\]

\[
\text{STO} \quad \text{ALPHA} \quad \text{L}5 \quad \text{ENTER}
\]

MAKELIST
Calculé une séquence d’éléments pour une nouvelle liste. Évalue l’expression par rapport à la variable puisque la variable utilise des valeurs comprises entre les valeurs début et fin, utilisées comme pas d’incrément.

MAKELIST \((\text{expression, variable, début, fin, incrément})\)

La fonction **MAKELIST** génère une suite en produisant automatiquement une liste à partir de l’évaluation répétée d’une expression.

Exemple :
Dans la vue Home, générez une série de carrés de 23 à 27.

\[
\begin{array}{|c|c|}
\hline
\text{Math} & \text{Cosh} \\
\hline
7 & 3 \\
\hline
\end{array}
\]

\[
\text{ALPHA} \quad A \quad ^{2} \quad \text{ENTER}
\]

\[
\text{ALPHA} \quad A \quad \text{10} \quad \text{23} \quad \text{ENTER}
\]

\[
27 \quad \text{ENTER}
\]
ΠLIST
Calcule le produit de tous les éléments d’une liste.

ΠLIST(liste)

Exemple :
ΠLIST({2, 3, 4}) renvoie 24.

POS
Renvoie la position d’un élément dans une liste. Il se peut que l’élément soit une valeur, une variable ou une expression. Si l’élément apparaît plusieurs fois, c’est la position de la première occurrence qui est renvoyée. Une valeur de 0 est renvoyée s’il n’existe aucune occurrence de l’élément spécifié.

POS(liste, élément)

Exemple :
POS({3, 7, 12, 19}, 12) renvoie 3

REVERSE
Crée une liste en inversant l’ordre des éléments d’une liste.

REVERSE(liste)

Exemple :
REVERSE({1, 2, 3}) renvoie {3, 2, 1}

SIZE
Calcule le nombre d’éléments dans une liste.

SIZE(liste)

Cette commande fonctionne également avec les matrices.

Exemple :
SIZE({1, 2, 3}) renvoie 3

ΣLIST
Calcule la somme de tous les éléments d’une liste.

ΣLIST(liste)

Exemple :
ΣLIST({2, 3, 4}) renvoie 9.

SORT
Trie les éléments d’une liste par ordre croissant.

SORT(liste)

Exemple :
SORT({2, 5, 3}) renvoie {2, 3, 5}
Recherche de valeurs statistiques pour des listes

Pour trouver des valeurs telles que la moyenne, la médiane ainsi que les valeurs maximale et minimale d’une liste, utilisez l’application Statistiques 1Var.

Exemple

Dans cet exemple, utilisez l’application Statistiques 1Var pour trouver la moyenne et la médiane ainsi que les valeurs maximale et minimale des éléments de la liste L1.

1. Créez la liste L1 avec les valeurs 88, 90, 89, 65, 70 et 89.

2. Dans la vue Home, stockez L1 dans D1. Vous pouvez alors afficher les données de la liste dans la vue numérique de l’application Statistiques 1Var.

3. Lancez l’application Statistiques 1Var.

Remarque : les valeurs de votre liste apparaissent désormais dans la colonne 1 (D1).
4. Sélectionnez la colonne à utiliser pour les calculs statistiques. Cette opération s'exécute dans la vue symbolique.

Par défaut, H1 est défini pour utiliser D1 de sorte qu'il ne reste plus rien à faire dans la vue symbolique. Cependant, si les données se trouvent dans D2 ou dans toute colonne autre que D1, vous devez entrer la colonne de données de votre choix ici.

5. Calculez les statistiques récapitulatives.

6. Appuyez sur OK une fois que vous avez terminé.

Pour connaître la signification de chaque statistique calculée, reportez-vous au chapitre intitulé Statistiques 1Var.
Matrices

Introduction
Vous pouvez réaliser des calculs de matrice sur l'écran Home et dans des programmes. Une matrice et chacune de ses lignes apparaissent entre crochets, les éléments et les lignes étant séparés par des virgules. Par exemple, la matrice suivante :

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\]

apparaît dans l'historique de la manière suivante :
[[1,2,3],[4,5,6]]

Vous pouvez entrer les matrices directement dans la ligne de commande ou les créer dans l’éditeur de matrices.

Vecteurs
Les vecteurs sont des représentations à une dimension. Ils ne sont composés que d’une seule ligne. Un vecteur est représenté par des crochets simples ; par exemple [1,2,3]. Un vecteur peut être un nombre réel ou un nombre complexe, par exemple [(1,2), (7,3)].

Matrices
Les matrices sont des représentations bidimensionnelles. Elles sont composées de plusieurs lignes et d’au moins une colonne. Les matrices bidimensionnelles sont représentées par des crochets imbriqués, par exemple [[1,2,3],[4,5,6]]. Vous pouvez créer des matrices complexes, par exemple [[[1,2], [3,4]], [[4,5], [6,7]]].

Variables de matrice
Création et stockage de matrices

Le catalogue de matrices contient les variables de matrices M0 à M9. Lorsque vous sélectionnez une variable de matrice à utiliser, vous pouvez créer, modifier et supprimer des matrices dans l'éditeur de matrices. Vous pouvez alors revenir au catalogue de matrices et envoyer votre matrice à une autre calculatrice HP 39gII.

Pour ouvrir le catalogue de matrices, appuyez sur S\text{\textsc{matrix}}.

Dans le catalogue de matrices, une matrice est répertoriée avec deux dimensions, même si elle ne comporte qu'une seule ligne. Un vecteur est répertorié avec le nombre d'éléments qu'il comporte.

Vous pouvez également créer et stocker des matrices (nommées ou non) sur l'écran Home. A titre d'exemple, la commande :

\[
\text{POLYROOT}([1,0,-1,0]) \rightarrow M1
\]

stocke les racines du vecteur complexe avec une longueur 3 dans la variable M1. M1 contient à présent les trois racines de \(x^3 - x = 0\).

Touches du catalogue de matrices

Le tableau ci-dessous répertorie le rôle des différentes touches du catalogue de matrices.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTE</td>
<td>Ouvre la matrice en surbrillance pour permettre sa modification.</td>
</tr>
<tr>
<td>SUPPR or \text{\textsc{vect}}</td>
<td>Efface toutes les données de la matrice sélectionnée.</td>
</tr>
<tr>
<td>VECT</td>
<td>Transforme la matrice sélectionnée en vecteur à une dimension.</td>
</tr>
<tr>
<td>ENVOI</td>
<td>Transmet la matrice en surbrillance à une autre calculatrice HP 39gII par l'intermédiaire d'un port USB.</td>
</tr>
</tbody>
</table>
Utilisation des matrices

Pour lancer l'éditeur de matrices

Pour modifier une matrice, accédez au catalogue des matrices, mettez en surbrillance le nom de la variable de matrice que vous souhaitez utiliser, puis appuyez sur **ENT** pour entrer dans l'éditeur de matrices.

Touches de l'éditeur de matrices

Le tableau suivant répertorie les fonctions des différentes touches de l'éditeur de matrices.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR</td>
<td>Supprime toutes les matrices.</td>
</tr>
<tr>
<td>\downarrow ou \uparrow</td>
<td>Permet d'accéder directement à la fin ou au début du catalogue.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT</td>
<td>Copie l'élément mis en surbrillance dans la ligne d'édition.</td>
</tr>
<tr>
<td>INS</td>
<td>Insère une ligne de zéros au-dessus de la cellule en surbrillance, ou une colonne de zéros à sa gauche. Vous êtes invité à choisir entre ligne et colonne.</td>
</tr>
<tr>
<td>WIDTHn</td>
<td>Bascule entre les différents affichages (1, 2, 3 ou 4 colonnes) de l'éditeur de matrices.</td>
</tr>
<tr>
<td>GRAND</td>
<td>Bascule entre deux tailles de police.</td>
</tr>
<tr>
<td>GO</td>
<td>Trois touches pour le déplacement du curseur dans l'éditeur de matrices. ALPHA permet de se déplacer vers la droite, ALPHA permet de se déplacer vers le bas et GO ne réalise aucun déplacement.</td>
</tr>
<tr>
<td>C•</td>
<td>Supprime la cellule mise en surbrillance et la remplace par un zéro.</td>
</tr>
</tbody>
</table>
Pour créer une matrice dans l'éditeur de matrices

1. Appuyez sur **S MATRIX** pour ouvrir le catalogue de matrices. Le catalogue de matrices répertorie les 10 variables de matrices, M0 à M9.

2. Mettez en surbrillance le nom de la variable de matrice que vous souhaitez utiliser et appuyez sur **ENT** ou sur **F4**. Appuyez d'abord sur **F3** si vous souhaitez créer un vecteur.

3. Pour chaque élément de la matrice, entrez un chiffre ou une expression, puis appuyez sur **ENT**.

Pour les nombres complexes, entrez chaque nombre sous sa forme complexe, à savoir \((a, b)\), où \(a\) est la partie réelle et \(b\) la partie imaginaire. Vous pouvez également le saisir sous la forme \(a+bi\).

4. Une fois le nombre saisi, la surbrillance s'applique par défaut à la colonne suivante sur la même ligne. Utilisez les touches de curseur pour vous déplacer vers une autre ligne ou colonne. Vous pouvez modifier la direction de la barre mise en surbrillance en appuyant sur **F6**. La touche de menu **F6** vous permet de basculer entre les fonctions suivantes :
 - **F6**: déplace le curseur vers la cellule située en-dessous de la cellule actuelle lorsque vous appuyez sur **ENT**.
 - **F7**: déplace le curseur vers la cellule située à droite de la cellule actuelle lorsque vous appuyez sur **ENT**.
 - **F8**: maintient le curseur dans la cellule actuelle lorsque vous appuyez sur **ENT**.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR</td>
<td>Supprime la ligne ou la colonne mise en surbrillance, ou la matrice entière (vous êtes invité à faire un choix).</td>
</tr>
<tr>
<td>F4</td>
<td>Permet un déplacement, respectivement, vers la première ligne, la dernière ligne, la première colonne ou la dernière colonne.</td>
</tr>
</tbody>
</table>
5. Lorsque vous avez terminé, appuyez sur \textbf{S} \textit{MATRIX} pour afficher le catalogue de matrices, ou appuyez sur \textbf{Home} pour revenir à l’écran Home. Les entrées de matrice sont automatiquement enregistrées.

Matrices dans la vue Home

Vous pouvez entrer et utiliser des matrices directement dans la vue Home. Les matrices que vous utilisez dans la vue Home peuvent être nommées ou non.

1. Saisissez le vecteur ou la matrice dans la ligne d’édition. Placez le vecteur ou la matrice entre crochets (touches 5 et 6 + SHIFT). Démarrer également chaque ligne d’une matrice par un crochet.
2. Séparez chaque élément et chaque ligne par une virgule.
3. Appuyez sur \textbf{E} pour évaluer et afficher le vecteur ou la matrice. Immédiatement après avoir entré la matrice, vous pouvez la stocker dans une variable en appuyant sur \textbf{STO + nommatrice}. Les variables de matrice sont comprises entre M0 et M9.

Ci-dessous, l’écran de gauche illustre la matrice $\begin{bmatrix} 2 & 5 & 729 \\ 16 & 2 \end{bmatrix}$ stockée dans M5. L’écran de droite illustre le vecteur $\begin{bmatrix} 66 & 33 & 11 \end{bmatrix}$ stocké dans M6. Notez que vous pouvez saisir une expression (comme 5/2) pour un élément de la matrice, qui sera évaluée.

Pour afficher une matrice
Dans la vue Home, saisissez le nom de la variable de matrice et appuyez sur \textbf{ENTER}.

Pour afficher un élément
Dans la vue Home, saisissez \texttt{nommatrice(ligne, colonne)}. Par exemple, si M2 est $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$, alors M2(1, 2) \textbf{ENTER} renvoie 4.
Pour stocker un élément
Dans la vue Home, saisissez valeur STO nommatrice (ligne, colonne).
Par exemple, pour modifier l’élément de la première ligne et de la seconde colonne de M5, le remplacer par 728 puis afficher la matrice :

$$\begin{array}{c}
728 \\
M5
\end{array}$$

Si vous essayez de stocker un élément dans une ligne ou une colonne excédant la taille de la matrice, celle-ci est redimensionnée pour permettre son stockage. Toutes les cellules intermédiaires sont alors remplis par des zéros.

Pour transmettre une matrice
Vous pouvez envoyer des matrices d’une calculatrice à une autre, de la même manière que vous partagez des applications, programmes, listes et notes.

1. Connectez les deux calculatrices HP 39gII au moyen du câble micro USB fourni, puis allumez les deux calculatrices.
2. Ouvrez le catalogue de matrices dans la calculatrice émettrice.
3. Mettez en surbrillance la matrice ou le vecteur à envoyer.
4. Appuyez sur "Envoyer".
5. Le transfert démarre immédiatement.
6. Ouvrez le catalogue de listes dans la calculatrice réceptrice pour afficher la nouvelle liste.

Arithmétique de matrice
Pour les exemples suivants, stockez $[[1,2],[3,4]]$ dans M_1 et $[[5,6],[7,8]]$ dans M_2.

Exemple

1. Créez la première matrice.

 ![Image](image1)

2. Créez la seconde matrice.

 ![Image](image2)

3. Ajoutez les matrices que vous avez créées.

 ![Image](image3)

Pour multiplier et diviser par un scalaire

Pour réaliser une division par un scalaire, entrez en premier lieu la matrice, puis l’opérateur et enfin le scalaire. Pour la multiplication, l’ordre des opérandes n’a pas d’importance.

La matrice et le scalaire peuvent être réels ou complexes. Par exemple, pour diviser le résultat de l’exemple précédent par 2, appuyez sur les touches suivantes :

![Image](image4)
Pour multiplier deux matrices
Pour multiplier les deux matrices M1 et M2 que vous avez créées pour l’exemple précédent, appuyez sur les touches suivantes :

-\text{\quad M1} \times M2

Pour multiplier une matrice par un vecteur, saisissez la matrice en premier lieu, puis le vecteur. Le nombre d’éléments du vecteur doit être égal au nombre de colonnes de la matrice.

Pour élever une matrice à une puissance
Vous pouvez élever une matrice à n’importe quelle puissance, dans la mesure où cette puissance est un nombre entier. L’exemple suivant illustre le résultat d’une matrice M1, créée précédemment, élevée à la puissance 5.

Remarque : vous pouvez également élever une matrice à une puissance sans la stocker sous forme de variable.

Il est possible d’élever les matrices à des puissances négatives. Dans ce cas de figure, le résultat équivaut à 1/[\text{matrice}]^{\text{ABS(puissance)}}. Dans l’exemple suivant, M1 est élevée à la puissance –2.

Pour réaliser une division par une matrice carrée
Pour diviser une matrice ou un vecteur par une matrice carrée, le nombre de lignes du dividende (ou le nombre d’éléments, s’il s’agit d’un vecteur) doit être égal au nombre de lignes du diviseur.

Cette opération n’est pas une division mathématique : il s’agit d’une multiplication par la gauche par l’inverse du diviseur. M1/M2 équivaut à M2\^{-1} \times M1.
Pour diviser les deux matrices M1 et M2 que vous avez créées pour l’exemple précédent, appuyez sur les touches suivantes :

Pour inverser une matrice
Vous pouvez inverser une matrice carrée dans la vue Home en saisissant la matrice (ou son nom de variable) et en appuyant sur \(x^{-1} \). Vous pouvez également utiliser la commande \(\text{INVERSE}(-1) \) dans la catégorie Matrice du menu Math.

Pour inverser chaque élément
Vous pouvez modifier le signe de chaque élément d’une matrice en appuyant sur \(- \) avant le nom de matrice.

Résolution de systèmes d’équations linéaires
Résolvez le système linéaire suivant :

\[
\begin{align*}
2x + 3y + 4z &= 5 \\
x + y - z &= 7 \\
4x - y + 2z &= 1
\end{align*}
\]

1. Ouvrez le catalogue de matrices et créez un vecteur.
2. Créez le vecteur des constantes du système linéaire.

3. Revenez au catalogue de matrices.

Dans cet exemple, le vecteur que vous avez créé est répertorié en tant que M1.

4. Créez une nouvelle matrice.

5. Entrez les coefficients de l'équation.

Dans cet exemple, la matrice que vous avez créée est répertoriée en tant que M2.
6. Revenez à la vue Home et saisissez le calcul permettant de multiplier par la gauche le vecteur des constantes par l'inverse de la matrice des coefficients.

\[
\begin{bmatrix}
M2 \\
S
\end{bmatrix}^{-1} \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

Le résultat obtenu est un vecteur des solutions \(x = 2, \ y = 3 \) et \(z = -2 \).

Vous pouvez également utiliser la fonction RREF.

Fonctions et commandes de matrice

Présentation des fonctions

- Les fonctions peuvent être utilisées dans n'importe quelle application ou dans la vue Home. Elles sont répertoriées dans le menu Math, dans la catégorie Matrice. Elles peuvent être utilisées dans des expressions mathématiques (notamment dans la vue Home), ainsi que dans des programmes.
- Les fonctions produisent et affichent toujours un résultat. Elles ne modifient pas les variables stockées, telles les variables de matrice.
- Les fonctions présentent des arguments indiqués entre parenthèses et séparés par des virgules ; par exemple : \(\text{CROSS}(\text{vecteur}1, \text{vecteur}2) \). L'entrée de matrice peut être soit un nom de variable de matrice (par exemple : \(M1 \)) soit les données de la matrice réelle, placées entre crochets. Exemple : \(\text{CROSS}(M1, [1, 2]) \).

A propos des commandes

Les commandes de matrice sont répertoriées dans le menu CMDS (\(\text{CMDX} \)), dans la catégorie Matrice.

Pour de plus amples informations sur les commandes de matrice, voir le chapitre intitulé Programmation.

La différence entre une fonction et une commande réside dans le fait qu'une fonction peut être utilisée dans une expression. Les commandes ne peuvent pas être utilisées dans une expression.
Conventions relatives aux arguments

- Pour row# ou column#, indiquez le numéro de la ligne (à partir du haut, en comptant à partir de 1) ou le numéro de la colonne (à partir de la gauche, en comptant à partir de 1).
- L’argument matrix peut concerner un vecteur ou une matrice.

Fonctions de matrice

COLNORM
Norme de la colonne. Trouve la valeur maximale (sur toutes les colonnes) des sommes des valeurs absolues de tous les éléments d’une colonne.

```plaintext
COLNORM(matrice)
```

COND
Numéro de la condition. Trouve la norme 1 (norme de la colonne) d’une matrice carrée.

```plaintext
COND(matrice)
```

CROSS
Produit vectoriel de vecteur1 avec vecteur2.

```plaintext
CROSS(vecteur1, vecteur2)
```

DET
Déterminant d’une matrice carrée.

```plaintext
DET(matrice)
```

DOT
Produit scalaire de deux représentations, matrice1 et matrice2.

```plaintext
DOT(matrice1, matrice2)
```

EIGENVAL
Affiche les valeurs Eigen sous forme de vecteur pour matrice.

```plaintext
EIGENVAL(matrice)
```

EIGENVV
Vecteurs Eigen et valeurs Eigen pour une matrice carrée. Affiche une liste de deux représentations. La première contient les vecteurs Eigen et la seconde les valeurs Eigen.

```plaintext
EIGENVV(matrice)
```
IDENMAT
Matrice d’identité. Crée une matrice carrée aux dimensions taille × taille, dont les éléments diagonaux sont 1 et les éléments hors-diagonale zéro.

\[
\text{IDENMAT}(\text{taille})
\]

INVERSE
Inverse une matrice carrée (réelle ou complexe).

\[
\text{INVERSE}(\text{matrice})
\]

LQ
Factorisation LQ. Factorise une matrice \(m \times n \) en trois matrices :
\[
\begin{bmatrix}
\text{triangulaire inférieure} \\
\text{orthogonale} \\
\text{permutation}
\end{bmatrix}
\]
La matrice triangulaire inférieure comporte des uns sur sa diagonale.

\[
\text{LQ}(\text{matrice})
\]

LSQ
Moindres carrés. Affiche la matrice (ou le vecteur) des moindres carrés de la norme minimale.

\[
\text{LSQ}(\text{matrice1}, \text{matrice2})
\]

LU
Décomposition LU. Factorise une matrice carrée en trois matrices :
\[
\begin{bmatrix}
\text{triangulaire inférieure} \\
\text{triangulaire supérieure} \\
\text{permutation}
\end{bmatrix}
\]
Exemple

\[
\text{LU}(\text{matrice})
\]

MAKEMAT
Création de matrice. Crée une matrice aux dimensions lignes × colonnes, utilisant une expression pour calculer chaque élément. Si l’expression contient les variables \(I \) et \(J \), le calcul de chaque élément remplace alors le numéro de ligne actuel par \(I \) et le numéro de colonne actuel par \(J \).

\[
\text{MAKEMAT}(\text{expression}, \text{lignes}, \text{colonnes})
\]

Exemple

\[
\text{MAKEMAT}(0,3,3)\text{ renvoie une matrice de 3×3 zéros, }[[0,0,0],[0,0,0],[0,0,0]].
\]

QR
Factorisation QR. Factorise une matrice \(m \times n \) en trois matrices :
\[
\begin{bmatrix}
\text{orthogonale} \\
\text{trapézoidale supérieure} \\
\text{permutation}
\end{bmatrix}
\]

\[
\text{QR}(\text{matrice})
\]
<table>
<thead>
<tr>
<th>RANK</th>
<th>Rang d’une matrice rectangulaire.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{RANK} (\text{matrice}))</td>
</tr>
<tr>
<td>ROWNORM</td>
<td>Norme de la ligne. Trouve la valeur maximale (sur toutes les lignes) des sommes des valeurs absolues pour tous les éléments d’une ligne.</td>
</tr>
<tr>
<td></td>
<td>(\text{ROWNORM} (\text{matrice}))</td>
</tr>
<tr>
<td>RREF</td>
<td>Formulaire d’échelon Reduced Row. Transforme une matrice rectangulaire en formulaire d’échelon Reduced Row.</td>
</tr>
<tr>
<td></td>
<td>(\text{RREF} (\text{matrice}))</td>
</tr>
<tr>
<td>SCHUR</td>
<td>Décomposition Schur. Factorise une matrice carrée en deux matrices. Si matrice est réelle, alors le résultat obtenu est ({[[\text{orthonormale}]],[[\text{quasi-triangulaire supérieure}]]}). Si matrice est complexe, alors le résultat obtenu est ({[[\text{unitaire}]],[[\text{triangulaire supérieure}]]}).</td>
</tr>
<tr>
<td></td>
<td>(\text{SCHUR} (\text{matrice}))</td>
</tr>
<tr>
<td>SIZE</td>
<td>Dimensions de matrice. Renvoyé sous forme de liste : ({\text{lignes}, \text{colonnes}}).</td>
</tr>
<tr>
<td></td>
<td>(\text{SIZE} (\text{matrice}))</td>
</tr>
<tr>
<td>SPECNORM</td>
<td>Norme spectrale de matrice.</td>
</tr>
<tr>
<td></td>
<td>(\text{SPECNORM} (\text{matrice}))</td>
</tr>
<tr>
<td>SPECRAD</td>
<td>Rayon spectral d’une matrice carrée.</td>
</tr>
<tr>
<td></td>
<td>(\text{SPECRAD} (\text{matrice}))</td>
</tr>
<tr>
<td>SVD</td>
<td>Décomposition en valeurs singulières. Factorise une matrice (m \times n) en deux matrices et un vecteur : ({[[m \times m \text{ orthogonale carrée}]], [[n \times n \text{ orthogonale carrée}]], \text{ [réelle]}}).</td>
</tr>
<tr>
<td></td>
<td>(\text{SVD} (\text{matrice}))</td>
</tr>
<tr>
<td>SVL</td>
<td>Valeurs singulières. Renvoie un vecteur contenant les valeurs singulières de matrice.</td>
</tr>
<tr>
<td></td>
<td>(\text{SVL} (\text{matrice}))</td>
</tr>
</tbody>
</table>
TRACE

Trouve la trace d'une matrice carrée. La trace est égale à la somme des éléments diagonaux (ainsi qu'à la somme des valeurs Eigen).

\[\text{TRACE(matrice)} \]

TRN

Transpose la matrice. Pour une matrice complexe, TRN trouve le transposé conjugué.

\[\text{TRN(matrice)} \]

Exemples

Matrice d'identité

Vous pouvez créer une matrice d'identité au moyen de la fonction \text{IDENMAT}. Par exemple, \text{IDENMAT}(2) crée la matrice d'identité 2×2 \([1, 0; 0, 1]\).

Vous pouvez également créer une matrice d'identité au moyen de la fonction \text{MAKEMAT (créer matrice)}. A titre d'exemple, si vous entrez \text{MAKEMAT(I \neq J, 4, 4)}, vous créez une matrice 4×4 présentant le chiffre 1 pour tous les éléments, à l'exception des zéros sur la diagonale. L'opérateur logique (\(\neq\)) renvoie 0 lorsque I (le numéro de la ligne) et J (le numéro de la colonne) sont égaux, et renvoie 1 lorsqu'ils ne sont pas égaux.

Transposition d'une matrice

La fonction \text{TRN} permuté les éléments ligne-colonne et colonne-ligne d'une matrice. Par exemple, l'élément 1,2 (ligne 1, colonne 2) est remplacé par l'élément 2,1, l'élément 2,3 est remplacé par l'élément 3,2, et ainsi de suite.

Par exemple, \text{TRN([1,2],[3,4])} crée la matrice \([1,3],[2,4]\).

Formulaire d'échelon Reduced Row

L'ensemble d'équations suivant \(x - 2y + 3z = 14\)
\(2x + y - z = -3\)
\(4x - 2y + 2z = 14\)
peut être écrit sous la forme d'une matrice augmentée

\[
\begin{bmatrix}
1 & -2 & 3 & | & 14 \\
2 & 1 & -1 & | & -3 \\
4 & -2 & 2 & | & 14
\end{bmatrix}
\]
qui peut ensuite être stockée en tant que matrice réelle 3×4 dans n’importe quelle variable de matrice. M1 est utilisée pour cet exemple.

Vous pouvez utiliser la fonction RREF pour passer en formulaire d’échelon Reduced Row et le stocker dans n’importe quelle variable de matrice. M2 est utilisée pour cet exemple.

La matrice d’échelon Reduced Row donne la solution de l’équation linéaire dans la quatrième colonne.

La fonction RREF a pour avantage de fonctionner également avec des matrices incohérentes résultant de systèmes d’équations n’ayant pas de solution ou comportant des solutions infinies.

A titre d’exemple, l’ensemble suivant d’équations présente un nombre infini de solutions :

\[
\begin{align*}
 x + y - z &= 5 \\
 2x - y &= 7 \\
 x - 2y + z &= 2
\end{align*}
\]

La dernière ligne de zéros du formulaire d’échelon Reduced Row de la matrice augmentée révèle un système incohérent avec des solutions infinies.
Notes et informations

La calculatrice HP 39gII dispose d’éditeurs de texte pour la saisie de notes. Il existe deux éditeurs de texte :

- L’éditeur de notes est exécuté depuis le catalogue de notes, qui collecte les notes indépendantes des applications. Ces notes peuvent être envoyées à une autre calculatrice à partir du catalogue de notes.

- L’éditeur d’informations est exécuté depuis la vue Infos d’une application. Une note créée dans la vue Infos est associée à l’application. Lorsque vous sauvegardez l’application ou l’envoyez à une autre calculatrice, cette note est également sauvegardée ou envoyée.

Le catalogue de notes

En fonction de la mémoire disponible, vous pouvez stocker autant de notes que vous le souhaitez dans le catalogue de notes. Ces notes sont indépendantes de toute application. Le catalogue de notes répertorie les entrées existantes par nom. La liste ne comprend pas les notes créées dans la vue Infos d’une application, mais ces dernières peuvent être copiées et collées au moyen du presse-papiers. Dans le catalogue de notes, vous pouvez créer ou modifier des notes individuelles dans l’éditeur de notes.

Pour créer une note dans l’éditeur de notes

1. Ouvrez le catalogue de notes.

 ![Catalogue de notes](image)

 Notes
2. Créez une nouvelle note.

[Image with New Note interface]

3. Entrez un nom pour cette note.

[Image with New Note interface]

4. Rédigez votre note à l’aide des touches d’édition de note et des options de formatage indiquées dans les sections suivantes.

Appuyez sur lorsque vous avez terminé, ou sur n’importe quelle touche de l’application pour quitter l’éditeur de notes. Votre travail est automatiquement sauvegardé. Pour accéder à votre nouvelle note, revenez au catalogue de notes.

Vous pouvez utiliser les touches suivantes dans le catalogue de notes.

Touches du catalogue de notes

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Ouvre la note sélectionnée pour en permettre la modification.</td>
</tr>
<tr>
<td>NOUVE</td>
<td>Commence une nouvelle note et vous demande un nom.</td>
</tr>
<tr>
<td>IMPEDIR</td>
<td>Renomme une note existante.</td>
</tr>
<tr>
<td>ENVOY</td>
<td>Transmet la note sélectionnée à une autre calculatrice HP 39gII ou à un ordinateur.</td>
</tr>
</tbody>
</table>
Pour créer une note dans la vue Infos

1. A l’intérieur d’une application, appuyez sur `INFO` pour afficher la vue Infos et sur `NEW` pour créer une note.

2. Utilisez les touches d’édition de note et les options de formatage. Elles sont identiques à celles de l’éditeur de notes (voir section précédente). Votre travail est automatiquement sauvegardé. Pour quitter la vue Infos, appuyez sur n’importe quelle touche de la vue ou sur `QUIT`.

Touches de l’éditeur de notes

Vous pouvez utiliser les touches suivantes dans l’éditeur de notes ou d’informations :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPR or <code>CLEAR</code></td>
<td>Supprime la note sélectionnée.</td>
</tr>
<tr>
<td><code>CLEAR</code></td>
<td>Supprime toutes les notes du catalogue.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Touche</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MENU</code></td>
<td>Ouvre le menu de formatage de texte. Reportez-vous à la section Options de formatage, plus loin dans ce chapitre.</td>
</tr>
<tr>
<td><code>TAB</code></td>
<td>Fait défiler trois niveaux de puces.</td>
</tr>
<tr>
<td><code>PAGE 3/4</code></td>
<td>Se déplace de page en page dans le cas d’une note comportant plusieurs pages.</td>
</tr>
<tr>
<td><code>PAGE 1/2</code></td>
<td>Effectue un retour en arrière du curseur et supprime le caractère.</td>
</tr>
<tr>
<td><code>CLEAR</code></td>
<td>Démarrer une nouvelle ligne.</td>
</tr>
<tr>
<td><code>ENTER</code></td>
<td>Efface l’ensemble de la note.</td>
</tr>
<tr>
<td><code>CLEAR</code></td>
<td>Ouvre un menu permettant d’entrer des noms de variables et des contenus de variables.</td>
</tr>
</tbody>
</table>
Saisie de caractères alphanumériques

Une fois dans l'éditeur de notes ou d'informations, vous pouvez saisir des caractères alphabétiques en majuscules ou en minuscules. Le tableau ci-dessous décrit les différentes options disponibles pour la saisie de ces caractères.

<table>
<thead>
<tr>
<th>Objet</th>
<th>Frappe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bascule alpha en majuscule (un seul caractère)</td>
<td>ALPHA</td>
</tr>
<tr>
<td>Verrouillage alpha en majuscules</td>
<td>ALPHA ALPHA</td>
</tr>
<tr>
<td>Bascule alpha en minuscules</td>
<td>ALPHA</td>
</tr>
<tr>
<td>Verrouillage alpha en minuscules</td>
<td>ALPHA ALPHA</td>
</tr>
</tbody>
</table>

Ouvrez un menu permettant d'entrer des opérations mathématiques et des constantes.

Ouvrez un menu pour la saisie de commandes de programmation.

Affiche des caractères spéciaux. Pour en saisir un, mettez-le en surbrillance et appuyez sur "OK". Pour copier un caractère sans fermer le menu Chars, appuyez sur "ECHO".
Pour désactiver le verrouillage alpha en majuscules ou en minuscules, il vous suffit d’appuyer encore une fois sur **A**. Lorsque vous êtes en verrouillage alpha, vous pouvez changer de casse pour un caractère en appuyant sur **S** ; pour changer de casse et verrouiller, appuyez sur **SA**.

Formatage de texte

Vous pouvez formater du texte dans n’importe quelle note ou information. Pour formater du texte existant, procédez comme suit :

1. Ouvrez la note ou la vue Infos.
2. Déplacez le curseur vers le début du texte que vous souhaitez formater.
3. Appuyez sur **SI** (parenthèse de gauche) pour ouvrir le menu Copie.
4. Appuyez sur **D**.
5. Déplacez le curseur jusqu’à la fin du texte que vous souhaitez formater.
6. Appuyez sur **SI** pour ouvrir le menu Format. Sélectionnez les options de mise en forme que vous souhaitez utiliser pour le texte que vous avez sélectionné. Le texte affiché dans la zone à côté de la partie supérieure du menu reflète les options de mise en forme actuelles. Appuyez sur **CH** (touche de menu CHK) pour cocher une option ou utilisez la touche de menu **OK** pour sélectionner une taille de police, une couleur de police ou une couleur d’arrière-plan.
7. Appuyez sur **OK** pour appliquer ou sur **Annuler** pour annuler. Vous pouvez utiliser le menu Format pour sélectionner des options de formatage à utiliser également pour le texte qui sera entré ultérieurement.
Options de formatage

Les options de formatage sont répertoriées dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style de police</td>
<td>• Souligner</td>
</tr>
<tr>
<td></td>
<td>• Barrer</td>
</tr>
<tr>
<td></td>
<td>• Exposant</td>
</tr>
<tr>
<td></td>
<td>• Indice inférieur</td>
</tr>
<tr>
<td></td>
<td>• Normal</td>
</tr>
<tr>
<td>Alignement du texte</td>
<td>• Gauche</td>
</tr>
<tr>
<td></td>
<td>• Centre</td>
</tr>
<tr>
<td></td>
<td>• Droite</td>
</tr>
<tr>
<td>Taille de la police</td>
<td>• Petit</td>
</tr>
<tr>
<td></td>
<td>• Grand</td>
</tr>
<tr>
<td>Couleur de police</td>
<td>• Noir</td>
</tr>
<tr>
<td></td>
<td>• Gris foncé</td>
</tr>
<tr>
<td></td>
<td>• Gris clair</td>
</tr>
<tr>
<td></td>
<td>• Blanc</td>
</tr>
<tr>
<td>Couleur de l’arrière-pla</td>
<td>• Noir</td>
</tr>
<tr>
<td></td>
<td>• Gris foncé</td>
</tr>
<tr>
<td></td>
<td>• Gris clair</td>
</tr>
<tr>
<td></td>
<td>• Blanc</td>
</tr>
</tbody>
</table>
Touches du menu Copie

Appuyez sur Shift Copy (Maj Copier) pour afficher les touches du menu Copie.

<table>
<thead>
<tr>
<th>Touche de menu</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>À MAR</td>
<td>Démarre une sélection de texte. Utilisez les flèches directionnelles pour sélectionner un texte existant à formater.</td>
</tr>
<tr>
<td>FIN</td>
<td>Termine une sélection de texte à formater.</td>
</tr>
<tr>
<td>LIGNE</td>
<td>Sélectionne le texte ligne par ligne (utilisez les flèches directionnelles haut et bas).</td>
</tr>
<tr>
<td>TOUT</td>
<td>Sélectionne l’ensemble du texte et toutes les lignes.</td>
</tr>
<tr>
<td>COUPER</td>
<td>Coupe le texte en surbrillance.</td>
</tr>
<tr>
<td>COPIER</td>
<td>Copie le texte en surbrillance.</td>
</tr>
</tbody>
</table>

Pour importer une note

Vous pouvez importer une note à partir du catalogue de notes dans la vue Infos d’une application, et vice versa.

Supposons que vous souhaitiez copier une note appelée Affectations du catalogue de notes dans la vue Infos de l’application Fonction :

1. Ouvrez la note Affectations.
2. Déplacez le curseur jusqu’au début du texte que vous souhaitez copier et commencez à sélectionner le texte.
3. Déplacez le curseur jusqu’à la fin du texte que vous souhaitez formater.
4. Copiez le texte sélectionné dans le presse-papiers.
5. Ouvrez la vue Infos de l’application.

 Sélectionnez Fonction START

 Info

6. Appuyez sur Paste. Déplacez le curseur vers l’emplacement de destination du texte à coller et ouvrez le presse-papiers.

7. Sélectionnez le texte dans le presse-papiers et appuyez sur OK.

Pour importer une variable graphique

Vous pouvez copier le contenu d’une variable graphique dans une note ou dans la vue Infos d’une application.

1. Ouvrez la note ou la vue Infos de l’application. Placez le curseur d’insertion à l’endroit où vous souhaitez voir apparaître le graphique. Le graphique sera copié à cet emplacement.

2. Appuyez sur Vers à.

3. Mettez Graphique en surbrillance, appuyez sur V, puis mettez en surbrillance le nom de la variable (G1, etc.).

4. Appuyez sur Vale pour rappeler le contenu du graphique, puis appuyez sur OK.

Pour transmettre une note

Vous pouvez envoyer des notes d’une calculatrice à une autre, de la même manière que vous partagez des applications, programmes, matrices et listes.

1. Connectez les deux calculatrices HP 39gII au moyen du câble micro USB fourni, puis allumez les deux calculatrices.

2. Ouvrez le catalogue de notes dans la calculatrice émettrice.

3. Mettez en surbrillance le nom de la note à envoyer.

4. Appuyez sur Renvoy.

5. Le transfert démarre immédiatement.

6. Ouvrez le catalogue de notes dans la calculatrice réceptrice pour afficher la nouvelle liste.
Introduction

La calculatrice HP 39gII dispose d’environ 250 Ko de mémoire utilisateur, ainsi que de 80 Mo de mémoire flash. Vous pouvez utiliser la mémoire de l’appareil pour stocker les éléments suivants :

- des copies des applications présentant une configuration spécifique ;
- de nouvelles applications téléchargées ;
- des variables de la vue Home ;
- des variables d’application ;
- des variables définies par l’utilisateur ;
- des variables créées à l’aide d’un catalogue ou d’un éditeur, comme une matrice ou une note ;
- des programmes que vous avez créés.

Une variable est un objet que vous créez dans la mémoire afin de stocker des données. La calculatrice HP 39gII utilise trois types de variables : variables de la vue Home, variables d’application et variables définies par l’utilisateur.

- Les variables de la vue Home sont disponibles dans toutes les applications. Par exemple, vous pouvez stocker des nombres réels dans les variables A à Z et des nombres complexes dans les variables Z0 à Z9. Il peut s’agir de nombres que vous avez entrés vous-même ou de résultats de calculs. Ces variables sont disponibles dans toutes les applications et dans n’importe quel programme.

- Les variables d’application ne fonctionnent que sur une seule application. Les applications possèdent des variables spécifiques, qui varient de l’une à l’autre.
• Les variables définies par l'utilisateur sont ajoutées au menu Vars à l'aide de programmes. Ces variables peuvent être spécifiques au programme ou globales. Pour plus de détails, reportez-vous à la section Programmation.

Vous pouvez utiliser le gestionnaire de mémoire (\texttt{MEMORY}) pour afficher la quantité de mémoire disponible. Les vues du catalogue, accessibles à partir du gestionnaire de mémoire, permettent de transférer des variables telles que des listes ou des matrices entre deux calculatrices.

Stockage et rappel de variables

Vous pouvez stocker des nombres ou des expressions issus d'une précédente saisie ou d'un précédent résultat dans des variables.

Précision numérique

Un nombre stocké dans une variable prend toujours la forme d'une mantisse à 12 chiffres, avec un exposant à 3 chiffres. Toutefois, la précision numérique dépend du mode d'affichage (Standard, Fixe, Scientifique ou Ingénierie). Un nombre affiché aura la précision permise par le mode d'affichage uniquement. Si vous le copiez depuis l'historique de l'affichage de la vue Home, vous obtenez uniquement la précision affichée, et non la précision interne maximale. Par ailleurs, la variable \texttt{Ans} contient toujours le résultat le plus récent, avec la précision maximale.

Pour stocker une valeur

1. Dans la vue Home, entrez une valeur, une expression ou un objet suivi de la commande \texttt{Store}.

2. Entrez un nom de variable approprié pour l'objet en question.
Pour stocker les résultats d'un calcul

Si la valeur que vous souhaitez stocker correspond au dernier résultat calculé, appuyez simplement sur \texttt{STO} suivi du nom de la variable, puis appuyez sur \texttt{ENTER}.

Si la valeur que vous souhaitez stocker se trouve plus loin dans l'historique d'affichage de la vue Home, utilisez \texttt{R} pour la mettre en surbrillance, \texttt{CUT} pour la copier dans la ligne de commande, puis stockez-la.

L'exemple suivant illustre la procédure.

1. Effectuez le calcul produisant le résultat que vous souhaitez stocker.

```plaintext
3 \texttt{\downarrow} 8 \texttt{\downarrow} 6 \texttt{\downarrow} m \texttt{\downarrow} 3
```

2. Mettez en surbrillance le résultat que vous souhaitez stocker.

```plaintext
\texttt{R}
```

3. Copiez le résultat dans la ligne d'édition.

```plaintext
\texttt{CUT}
```

4. Stockez le résultat.

```plaintext
\texttt{STO} \texttt{A} \texttt{ENTER}
```

Les résultats de calculs peuvent également être stockés directement dans une variable. Par exemple :

```plaintext
2 \texttt{\downarrow} \texttt{\uparrow}
```

```plaintext
\texttt{\downarrow} 5 \texttt{\uparrow} 3 \texttt{\downarrow} \texttt{\uparrow}
```

```plaintext
\texttt{STO} \texttt{B} \texttt{ENTER}
```

```plaintext
\texttt{STO} \texttt{\uparrow} \texttt{B} \texttt{ENTER}
```

3.17480210384
Pour rappeler une valeur

Pour rappeler une valeur de variable, entrez le nom de la variable et appuyez sur \(\text{ENTER} \).

![Illustration de la calculatrice montrant la saisie d'une variable]

Pour utiliser des variables dans les calculs

Vous pouvez utiliser des variables dans les calculs. La calculatrice remplace la valeur de la variable dans le calcul :

\[65 + A \]

![Illustration de la calculatrice montrant l'utilisation d'une variable]

Menu Vars

Utilisez le menu Vars pour accéder à toutes les variables de la calculatrice. Vous disposez de touches de menu pour les variables de la vue Home, les variables d’application et les variables définies par l’utilisateur. Lorsque vous appuyez sur \(\text{Vars} \), le menu Vars s’ouvre et affiche par défaut le menu des variables de la vue Home. Le menu Vars est organisé en catégories. Pour chaque catégorie de variables dans la colonne de gauche, il existe une liste de variables dans la colonne de droite. Sélectionnez une catégorie, puis une variable, dans cette catégorie.

1. Ouvrez le menu Vars et appuyez sur \(\text{HOME} \)

![Illustration du menu Vars ouvert]

2. Utilisez les touches du curseur ou appuyez sur le chiffre correspondant à la catégorie (1 à 5) pour sélectionner une catégorie de variables. L’illustration de droite prend pour exemple la sélection de la catégorie Matrice.
3. Mettez la colonne de variables en surbrillance.

4. Utilisez les touches du curseur pour sélectionner la variable de votre choix. Par exemple, pour sélectionner M2, appuyez sur

5. Choisissez l’emplacement du nom ou du contenu de la variable sur la ligne de commande.
 - Appuyez sur pour indiquer votre souhait de voir apparaître le contenu de la variable sur la ligne de commande.
 - Appuyez sur pour indiquer votre souhait de voir apparaître le nom de la variable sur la ligne de commande.

6. Appuyez sur pour placer le contenu ou le nom sur la ligne de commande. L’objet sélectionné apparaît sur la ligne de commande.

Remarque : le menu Vars peut également servir à entrer les noms ou les valeurs de variables dans des programmes.
Exemple

Cet exemple illustre l'utilisation du menu Vars pour ajouter le contenu de deux variables de liste et pour stocker le résultat dans une autre variable de liste.

1. Affichez le catalogue de listes.

```
S LIST
```

pour sélectionner

```
L1
```

2. Entrez les données pour L1.

```
88  OK  90  OK
89  OK  65  OK
70  OK
```

Remarque : vous pouvez appuyer sur pour utiliser une police plus petite. Appuyez sur pour défilez vers le haut et visualiser les données que vous avez entrées.

3. Revenez au catalogue de listes pour créer L2.

```
S LIST
```

pour sélectionner

```
L2
```

4. Entrez les données pour L2.

```
55  OK  48  OK
86  OK  90  OK
77  OK
```

5. Appuyez sur pour accéder à la vue Home.
6. Ouvrez le menu des variables et sélectionnez L1.

7. Copiez-la dans la ligne de commande.

8. Insérez l’opérateur + et sélectionnez la variable L2 dans la liste de variables.

Remarque : vous pouvez également entrer des noms de liste directement à partir du clavier.
Variables de la vue Home

Le tableau suivant répertorie les catégories des variables de la vue Home ainsi que les noms de variables disponibles dans chaque catégorie.

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombres complexes</td>
<td>Z0 à Z9</td>
</tr>
<tr>
<td></td>
<td>Pour stocker un nombre complexe, saisissez-le sous la forme $a + b \times i$.</td>
</tr>
<tr>
<td></td>
<td>Par exemple, $2 + 3 \times i , \text{STO} \Rightarrow \text{Z1}$.</td>
</tr>
<tr>
<td>Listes</td>
<td>L0 à L9</td>
</tr>
<tr>
<td></td>
<td>Par exemple, {1,2,3} STO \Rightarrow L1.</td>
</tr>
<tr>
<td>Matrices</td>
<td>M0 à M9</td>
</tr>
<tr>
<td></td>
<td>Stockez les matrices et les vecteurs dans ces variables. Pour de plus amples informations sur les matrices et les vecteurs, consultez le chapitre Matrices.</td>
</tr>
<tr>
<td></td>
<td>Par exemple, [[1,2],[3,4]] STO \Rightarrow M1.</td>
</tr>
<tr>
<td>Paramètres de mode</td>
<td>Les variables de mode stockent les paramètres des modes dans shift MODES.</td>
</tr>
<tr>
<td>Programmes</td>
<td>Les variables de programme permettent de stocker des programmes.</td>
</tr>
<tr>
<td>Nombres réels</td>
<td>A à Z et θ</td>
</tr>
<tr>
<td></td>
<td>Par exemple : 7,45 STO \Rightarrow A.</td>
</tr>
</tbody>
</table>
Variables d’application

La plupart des variables d’application stockent des valeurs spécifiques à une seule application. Il peut s’agir d’expressions symboliques, d’équations, de paramètres des vues Tracé et numérique ou de résultats de calculs tels que des racines ou des intersections.

Pour la liste complète des variables d’application, consultez la section Informations de référence. Pour de plus amples informations sur l’utilisation des variables d’application dans des programmes, consultez la section Programmation.

Pour accéder à une variable d’application

1. Ouvrez l’application contenant la variable de votre choix.

2. Accédez à l’endroit où vous voulez copier la variable.

3. Ouvrez le menu Vars et accédez au menu App Vars.

4. Utilisez les touches du curseur pour sélectionner la vue et la variable de votre choix.

5. Pour copier le nom de variable dans la ligne d’édition, appuyez sur ; pour copier le contenu de la variable, appuyez sur et sur .
Vous pouvez qualifier le nom d’une variable d’application afin d’y accéder depuis n’importe quel emplacement de la calculatrice HP 39gII. A titre d’exemple, les applications Fonction et Paramétrique disposent d’une même variable, nommée Xmin. Si vous vous trouvez dans l’application Paramétrique et que vous saisissez Xmin dans la vue Home, la valeur de Xmin s’affichera depuis l’application Paramétrique. Pour accéder à la valeur de Xmin dans l’application Fonction, vous devez démarrer l’application Fonction (comme indiqué plus haut) ou qualifier le nom en saisisant Fonction::Xmin. Pour de plus amples informations sur la qualification des noms de variables, consultez le chapitre Programmation.

Variables définies par l’utilisateur

La calculatrice HP 39gII prend en charge des fonctions et variables définies par l’utilisateur. Ces deux types d’éléments peuvent être locaux (internes à une application ou à un programme) ou globaux (visibles et accessibles depuis n’importe quel emplacement de la calculatrice). Pour de plus amples informations sur la création et l’utilisation de variables et fonctions définies par l’utilisateur (ainsi que sur la détermination de leur statut local ou global), consultez le chapitre Programmation.

Gestionnaire de mémoire

Utilisez le gestionnaire de mémoire pour connaître la quantité de mémoire disponible et l’organiser. Si la quantité de mémoire disponible est faible, utilisez le gestionnaire de mémoire pour déterminer les variables à supprimer afin de libérer de l’espace. Vous pouvez également utiliser le gestionnaire de mémoire pour envoyer des ensembles de variables à une autre calculatrice HP 39gII ou pour cloner l’ensemble de votre mémoire sur une autre calculatrice HP 39gII.

Touches du gestionnaire de mémoire

Démarrer le gestionnaire de mémoire en appuyant sur MEMORY. Lorsque le gestionnaire de mémoire est ouvert, vous pouvez utiliser les touches répertoriées dans le tableau à la page suivante :
1. **Exemple**

Démarrer le gestionnaire de mémoire. Une liste des différentes catégories de variables s’affiche.

La mémoire disponible s’affiche en haut à droite, tandis que la partie principale de l’écran répertorie chaque catégorie de variables, ainsi que l’espace total utilisé par les variables de ce type.

2. Sélectionnez une catégorie et appuyez sur **A/F1**. Le gestionnaire de mémoire ouvre le catalogue ou la bibliothèque sélectionné afin que vous puissiez modifier, supprimer ou effacer des variables d’un type spécifique. Pour supprimer les variables d’une catégorie :

 - Appuyez sur **B/C1** pour supprimer la variable sélectionnée.
 - Appuyez sur **C/CLEAR** pour supprimer toutes les variables de la catégorie sélectionnée.
Pour envoyer toutes les variables d'un même type

Vous pouvez envoyer toutes les variables d'un même type (toutes les listes, toutes les matrices, tous les programmes, toutes les notes, etc.) de votre calculatrice HP 39gII à une autre ou à un ordinateur. Pour envoyer des variables d'un même type à une autre calculatrice HP 39gII :

1. Connectez les deux calculatrices HP 39gII au moyen du câble micro USB fourni, puis allumez les deux calculatrices.
2. Ouvrez le gestionnaire de mémoire dans la calculatrice émettrice.
3. Utilisez et pour mettre en surbrillance le type de variable à envoyer.
4. Appuyez sur .
5. Le transfert démarre immédiatement.
6. Ouvrez le gestionnaire de mémoire dans la calculatrice réceptrice pour afficher les nouvelles variables.

Pour cloner votre calculatrice HP 39gII

Vous pouvez cloner l'ensemble de votre calculatrice HP 39gII sur une autre en copiant l'ensemble de son contenu. Cette caractéristique s'avère utile lorsque vous souhaitez sauvegarder la mémoire de votre calculatrice, ou lorsque l'ensemble des calculatrices d'une classe ou d'un groupe nécessite une configuration similaire. Pour cloner votre calculatrice HP 39gII :

1. Connectez les deux calculatrices HP 39gII au moyen du câble micro USB fourni, puis allumez les deux calculatrices.
2. Ouvrez le gestionnaire de mémoire dans la calculatrice émettrice.
3. Appuyez sur .
4. Le témoin de transfert clignote brièvement.
5. La calculatrice HP 39gII clonée est maintenant prête à l'emploi.
Programmation

Introduction

Ce chapitre explique comment programmer votre HP 39gII. Il vous apprendra notamment à :

- Programmer des commandes
- Insérer des fonctions dans des programmes
- Utiliser des variables dans des programmes
- Exécuter des programmes
- Déboguer des programmes
- Créer des programmes pour constituer des applications personnalisées
- Envoyer un programme à une autre HP 39gII

Programmes de la calculatrice HP 39gII

Un programme de la calculatrice HP 39gII comprend une séquence de commandes s’exécutant automatiquement pour effectuer une tâche.

Structure d’une commande

Les différentes commandes sont séparées par un point-virgule (;). Lorsqu’une commande utilise plusieurs arguments, ces arguments sont placés entre parenthèses et séparés par une virgule (,). Par exemple,

\[
\text{PIXON (positionx, positiony)};
\]

Les arguments d’une commande sont parfois facultatifs. Lorsqu’un argument est omis, une valeur par défaut est utilisée à sa place. Dans le cas de la commande PIXON, un troisième argument peut être utilisé pour spécifier la couleur du pixel :

\[
\text{PIXON (positionx, positiony [, couleur])};
\]
Le dernier argument indique dans laquelle des quatre couleurs le pixel doit s’allumer. La valeur par défaut est 0 (noir). Dans ce guide, les arguments de commandes facultatifs apparaissent entre crochets, comme cela est illustré ci-dessus. Dans l’exemple PIXON, le premier argument spécifié pourrait être une variable graphique (G). La variable par défaut est GO ; elle contient toujours l’écran actuellement affiché. La syntaxe complète de la commande PIXON est donc :

PIXON([G], positionx, positiony [,couleur]);

Certaines commandes intégrées utilisent une syntaxe alternative dans laquelle les arguments des fonctions n’apparaissent pas entre parenthèses. Les commandes RETURN et RANDOM en font partie.

Structure d’un programme

Les programmes peuvent contenir un nombre indéterminé de sous-programmes, chacun correspondant à une fonction ou à une procédure. Les sous-programmes commencent par un en-tête constitué du nom, suivi entre parenthèses par une liste de paramètres et d’arguments séparés par des virgules. Le corps d’un sous-programme est une séquence d’instructions comprise dans une paire BEGIN END; (début fin). Par exemple, le corps d’un programme simple, appelé MYPROGRAM (mon programme), peut prendre cette forme :

EXPORT MYPROGRAM()
BEGIN
PIXON(1,1);
END;

Commentaires

Lorsque la ligne d’un programme commence par deux barres obliques (/\), le reste de la ligne est ignoré. Cela permet au programmeur d’insérer des commentaires dans le programme :

EXPORT MYPROGRAM()
BEGIN
PIXON(1,1);
//Cette ligne est un simple commentaire.
END;
Catalogue des programmes

Le catalogue des programmes permet d’exécuter et de débuguer des programmes, ou de les envoyer à une autre HP 39gII. De plus, il permet de renommer ou de supprimer des programmes et d’exécuter l’éditeur de programmes, grâce auquel il est possible de créer et de modifier des programmes. Un programme peut également être exécuté depuis la vue Home ou à partir d’autres programmes.

Ouvrir le catalogue de programmes

Appuyez sur **Prgm** pour ouvrir le catalogue des programmes.

Le catalogue des programmes affiche une liste de noms de programmes. Le premier élément du catalogue des programmes est une entrée intégrée portant le même nom que l’application active. Cette entrée correspond au programme d’application de l’application en cours, si ce programme existe. Consultez la section correspondante dans *Programmation d’applications*.

Avant de manipuler les programmes, prenez quelques instants pour vous familiariser avec les touches de menu du catalogue de programmes. Ces touches (de menu et du clavier) permettent d’exécuter des tâches dans le catalogue de programmes.

Touches du catalogue de programmes

Les touches du catalogue des programmes sont les suivantes :

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXIT</td>
<td>Ouvre le programme en surbrillance pour le modifier.</td>
</tr>
<tr>
<td>NOUVE</td>
<td>Demande un nouveau nom de programme, puis ouvre un programme vide.</td>
</tr>
</tbody>
</table>

241
Ouvre un dossier incluant les options suivantes pour les programmes existants :

- **SAVE** : renomme un programme existant.
- **SUPPRIMER** : supprime le programme sélectionné du catalogue des programmes.
- **EFFAC.** : supprime tous les programmes du catalogue des programmes.
- **Appuyez sur On/C pour quitter le catalogue des programmes et y revenir.**

Envoie le programme en surbrillance vers une autre HP 39gII ou vers un ordinateur.

Débogue les programmes existants.

Exécute le programme mis en surbrillance.

Déplace le curseur au début ou à la fin du catalogue des programmes.

Supprime le programme mis en surbrillance.

Supprime tous les programmes.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Fonction (Suite)</th>
</tr>
</thead>
</table>
| **ALTRE** | Ouvre un dossier incluant les options suivantes pour les programmes existants :
- **SAVE** : renomme un programme existant.
- **SUPPRIMER** : supprime le programme sélectionné du catalogue des programmes.
- **EFFAC.** : supprime tous les programmes du catalogue des programmes.
- **Appuyez sur On/C pour quitter le catalogue des programmes et y revenir.** |
| **ENVOI** | Envoie le programme en surbrillance vers une autre HP 39gII ou vers un ordinateur. |
| **DEL** | Débogue les programmes existants. |
| **EXEC** | Exécute le programme mis en surbrillance. |
| **STRE** ou **STRE** | Déplace le curseur au début ou à la fin du catalogue des programmes. |
| **STRE** | Supprime le programme mis en surbrillance. |
| **STRE** | Supprime tous les programmes. |
Création d’un nouveau programme Home

1. Ouvrez le catalogue des programmes et commencez un nouveau programme.

2. La calculatrice HP 39gII vous demande de saisir un nom.

3. Appuyez de nouveau sur OK pour valider le nom du programme. Un modèle est ensuite créé automatiquement pour ce programme.

CONSEIL
Le nom d’un programme peut uniquement contenir des caractères alphanumériques (lettres et nombres) et le caractère tiret bas (_). Le premier caractère doit être une lettre. Par exemple, NOM_CORRECT et Spin2 sont des noms de programme valides, contrairement à TROP BIEN (qui contient un espace) et à Super! (qui commence par un chiffre et se termine par un point d'exclamation).
Editeur de programmes

Jusqu’à ce que vous connaissiez les commandes de la HP 39gII, la meilleure façon de saisir des commandes est de les sélectionner dans le menu Commands ou d’utiliser la touche $	ext{CMDS}$. Utilisez les touches du clavier pour saisir des variables, des symboles, des fonctions mathématiques, des unités et des caractères.

Touches de l’éditeur de programmes

Les touches de l’éditeur de programme sont les suivantes :

<table>
<thead>
<tr>
<th>Touches</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$	ext{STO}£$</td>
<td>Insère le caractère STORE (►) à l’emplacement du curseur.</td>
</tr>
<tr>
<td>$	ext{VERIF}$</td>
<td>Analyse le programme à la recherche d’erreurs éventuelles.</td>
</tr>
<tr>
<td>Touches</td>
<td>Fonction (Suite)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Ouvre un dossier contenant les commandes de branche, de boucle et de test :</td>
<td></td>
</tr>
<tr>
<td>IFTE</td>
<td>• IF THEN ELSE END</td>
</tr>
<tr>
<td>CASE</td>
<td>• CASE IF THEN END</td>
</tr>
<tr>
<td>FOR</td>
<td>• FOR FROM TO STEP DO END</td>
</tr>
<tr>
<td>REPEAT</td>
<td>• REPEAT UNTIL END</td>
</tr>
<tr>
<td>WHILE</td>
<td>• WHILE DO END</td>
</tr>
<tr>
<td>Tests</td>
<td>• == ≠ <> ≤ ≥</td>
</tr>
<tr>
<td>Appuyez sur la touche SHIFT du menu de saut ou de boucle pour coller la structure complète de la commande dans votre programme.</td>
<td></td>
</tr>
<tr>
<td>Appuyez sur On/C pour revenir au menu CMDS.</td>
<td></td>
</tr>
<tr>
<td>Appuyez de nouveau sur On/C pour revenir à l’éditeur de programmes.</td>
<td></td>
</tr>
</tbody>
</table>
Saisie d'un programme

1. À l'aide des touches de navigation, placez le curseur à l'endroit où vous souhaitez insérer la commande.

2. Appuyez sur **VPS** pour ouvrir le menu Program Templates.

Le menu Program templates (modèles de programmes) contient des structures contrôlant le flux d'exécution, notamment les instructions **IF...THEN** et les boucles **FOR...NEXT**. Mettez une commande en surbrillance à l'aide des touches de curseur, puis appuyez sur **OK** pour coller la commande dans le programme à l'endroit où se trouve le curseur.
3. Insérez une boucle FOR.

\[\text{Sélectionnez FOR} \]

\[\text{Boucle} \]

\[\text{Sélectionnez FOR} \]

\[\text{OK} \]

De nouveau, un modèle est inséré.

Comblez les parties manquantes de la commande à l'aide du clavier, puis placez le curseur sur la ligne vierge située après la commande FOR. Dans cet exemple, complétez l'instruction "FOR N FROM 1 TO 3 DO".

Appuyez sur \(\text{Cmds} \) pour développer le menu Commandes de programmation. À gauche, mettez une catégorie de commandes en surbrillance à l'aide des touches \(\downarrow \) ou \(\uparrow \), puis appuyez sur \(\text{OK} \) pour accéder aux commandes incluses dans cette catégorie. Sélectionnez la commande de votre choix, puis appuyez sur \(\text{OK} \) pour la coller dans le programme. Vous pouvez également sélectionner rapidement une commande en utilisant les raccourcis clavier indiqués dans la barre de titre du menu Commandes de programmation.
4. Insérez la commande `MSGBOX` (Message Box).

CONSEIL Le guillemet anglais (""`) s'obtient avec la touche AN. Il est également possible de le saisir depuis le menu Chars. Appuyez sur Char, mettez le guillemet en surbrillance, puis appuyez sur ENTER ou sur OK.

CONSEIL Pour verrouiller l'alphabet minuscule, appuyez sur UPP/LOW.
Lorsque vous avez terminé, appuyez sur `Prgm` pour revenir au catalogue des programmes ou sur `Home` pour accéder à la vue Home. Vous pouvez également appuyer sur une touche de contrôle d’application pour accéder aux vues de l’application en cours. Vous êtes maintenant prêt à exécuter le programme.

Dans la vue Home, entrez le nom du programme suivi d’une parenthèse ouverte et d’une parenthèse fermée. Si le programme nécessite des arguments, insérez-les entre les parentheses en les séparant par des virgules. Appuyez sur `Enter`.

Dans le catalogue de programmes, mettez le programme que vous souhaitez exécuter en surbrillance, puis appuyez sur `EXECUT`. Lorsqu’un programme est exécuté à partir du catalogue, le système recherche une fonction nommée `START()` (sans paramètres). S’il la trouve, il l’exécute. Sinon, il recherche une autre fonction portant le même nom que le programme. S’il la trouve, il l’exécute. Sinon, rien ne se passe lorsque vous appuyez sur `EXECUT`.

Si un fichier contient plusieurs programmes « exportés », une pression sur la touche de menu `EXECUT` ou `HELP` fait apparaître une zone de choix. Pour voir cette fonction, créez un programme contenant le texte :

```plaintext
EXPORT NAME1()
BEGIN
END;

EXPORT NAME2()
BEGIN
END;
```

Vous pouvez à présent constater qu’une pression sur `EXECUT` ou sur `HELP` fait apparaître une zone de choix contenant `NAME1` et `NAME2`.

249
Lorsqu’un programme utilise des arguments, une pression sur la touche \texttt{EXEUI} fait apparaître une fenêtre vous demandant de saisir les paramètres du programme.

1. Exécutez \texttt{MYPROGRAM}.

çi

Sélectionnez \texttt{MYPROGRAM}.

\textbf{à} (pour passer d’une colonne à l’autre)

Sélectionnez \texttt{MYPROGRAM}.

Le programme s’exécute et affiche une boîte de dialogue.

2. Appuyez trois fois sur \texttt{OK} pour voir la fin de la boucle \texttt{FOR}.

\texttt{OK} \texttt{OK} \texttt{OK}

3. Une fois que le programme s’est arrêté, vous pouvez reprendre une autre activité sur la calculatrice HP 39gII.

Peu importe l’environnement à partir duquel vous lancez un programme car tous les programmes s’exécutent dans la vue Home. Toutefois, l’affichage du programme sera légèrement différent en fonction de l’environnement à partir duquel vous l’avez lancé. Si vous lancez un programme depuis l’écran Home, la calculatrice HP 39gII affiche le contenu de \texttt{Ans} (variable de Home contenant le dernier résultat) après l’arrêt du programme. Si vous lancez le programme à partir du catalogue de programmes à l’aide de la touche \texttt{EXEUI}, la calculatrice HP 39gII vous renvoie au catalogue de programmes après la fin du programme.

Déboguer un programme

Il est impossible d’exécuter un programme contenant des erreurs de syntaxe. Vous devez corriger ces erreurs de syntaxe avant de pouvoir exécuter le programme.
Si un fichier contient plusieurs programmes « exportés », une pression sur la touche de menu _EXECUT_ ou _DEBULA_ fait apparaître une zone de choix contenant les noms des programmes.

Si une erreur est détectée lors de l’exécution, par exemple une division par zéro, le programme s’arrête et un message d’erreur apparaît. Si le programme ne se comporte pas comme prévu, ou si le système a détecté une erreur d’exécution, il vous est possible d’exécuter le programme pas à pas et d’examiner les valeurs des variables locales. Pour ce faire, entrez _debug(MYPROGRAM())_ dans la ligne d’édition.

1. Lancez l’outil de débogage pour le programme que vous venez de rédiger.

Sélectionnez MYPROGRAM

Lors du débogage d’un programme, le titre du programme apparaît en haut de l’écran. En dessous se trouve la ligne actuelle du programme en cours de débogage. La valeur actuelle de chaque variable s’affiche dans la partie principale de l’écran. Dans le débogueur, les touches de menu exécutent les actions suivantes :

- **Skip** : passe à la ligne suivante du programme.
- **Step** : exécute la ligne actuelle.
- **Vars** : ouvre le menu Variables.
- **Stop** : ferme le débogueur.
- **Cont** : poursuit l’exécution du programme sans procéder au débogage.
2. Exécutez la commande de boucle FOR.

```
STOP
```

La boucle FOR commence et le haut de l'écran affiche la prochaine ligne du programme (la commande MSGBOX).

3. Exécutez la commande MSGBOX.

```
Step
```


Appuyez sur la touche de menu [Step] pour fermer le débogueur sur la ligne de programme en cours, ou appuyez sur la touche de menu [Cont] pour exécuter le reste du programme sans utiliser le débogueur.

Modifier un programme existant

Pour modifier un programme existant, utilisez le catalogue de programmes.

1. Ouvrez le catalogue de programmes.

```
Prgm
```

2. À l'aide des touches de direction, mettez en surbrillance le programme que vous souhaitez modifier, puis appuyez sur [EDIT]. La calculatrice HP 39gII ouvre l'éditeur de programmes. Le nom de votre programme apparaît dans la barre de titre de l'écran. Vous pouvez modifier votre programme à l'aide des touches suivantes.
Copier un programme ou une partie d'un programme

Vous pouvez utiliser les commandes globales Copier et Coller pour copier une partie ou la totalité d'un programme. Procédez comme suit :

1. Appuyez sur PGM pour ouvrir le catalogue de programmes.
2. Mettez en surbrillance le programme contenant les commandes que vous souhaitez copier, puis appuyez sur EDIT.
3. Déplacez le curseur au début de la commande que vous souhaitez copier.

Touches d'édition

<table>
<thead>
<tr>
<th>Touches</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑, ↓</td>
<td>Passe à la ligne précédente ou suivante.</td>
</tr>
<tr>
<td>S ou S²</td>
<td>Passe à la page précédente ou suivante.</td>
</tr>
<tr>
<td>touches de direction</td>
<td>Déplace un caractère sur la gauche ou sur la droite.</td>
</tr>
<tr>
<td>ou Enter</td>
<td>Positionne le curseur au début ou à la fin de la ligne.</td>
</tr>
<tr>
<td>Clear</td>
<td>Commence une nouvelle ligne.</td>
</tr>
<tr>
<td>ou Clear</td>
<td>Supprime le caractère se trouvant à gauche du curseur (Retour arrière)</td>
</tr>
<tr>
<td>ou Clear</td>
<td>Efface tout le programme.</td>
</tr>
</tbody>
</table>
4. Déplacez le curseur à la fin de la commande que vous souhaitez copier. Les commandes sélectionnées seront mises en surbrillance à mesure que vous déplacez le curseur. Pour sélectionner les commandes ligne par ligne, utilisez la touche de menu LIGNE.

5. Lorsque vous avez mis en surbrillance toutes les commandes de votre choix, appuyez sur la touche de menu LIGNE ou sur Copy pour copier les commandes sélectionnées dans le presse-papiers.

7. Déplacez le curseur jusqu'à la ligne sur laquelle vous souhaitez insérer les commandes copiées.

Supprimer un programme

Pour supprimer un programme :

1. Appuyez sur Prgm pour ouvrir le catalogue de programmes.

2. Mettez en surbrillance le programme à supprimer, puis appuyez sur , ou appuyez sur la touche de dossier AUTRE et sur F3.

3. À l'invite, appuyez sur OK pour supprimer, ou sur ANNUL pour annuler.

Supprimer tous les programmes

Vous pouvez supprimer tous les programmes en une seule fois.

1. Dans le catalogue de programmes, appuyez sur Clear.

2. À l'invite, appuyez sur OK pour supprimer, ou sur ANNUL pour annuler.

3. Vous pouvez également appuyer sur la touche de menu PTOC dans le dossier AUTRE pour supprimer tous les programmes. À l'invite, appuyez sur OK pour supprimer, ou sur ANNUL pour annuler.
Supprimer le contenu d'un programme

Il est possible de supprimer le contenu d'un programme tout en conservant son nom.

1. Appuyez sur

2. Mettez un programme en surbrillance, puis appuyez sur

3. Appuyez sur

4. Le texte du programme est supprimé, mais le nom du programme est conservé.

Pour transmettre un programme

Tout comme pour les applications, les notes, les matrices et les listes, il est possible d'envoyer des programmes d'une calculatrice à une autre.

1. Connectez les deux calculatrices HP 39gII avec le câble micro USB fourni, puis allumez-les.

2. Ouvrez le catalogue de programmes sur la calculatrice émettrice.

3. Mettez le nom du programme à envoyer en surbrillance.

4. Appuyez sur

5. Le transfert démarre immédiatement.

6. Ouvrez le catalogue de programmes sur la calculatrice réceptrice pour afficher la nouvelle liste.

Langage de programmation de la calculatrice HP 39gII

Variables et visibilité

Les variables d'un programme de la calculatrice HP 39gII peuvent servir à stocker des nombres, des listes, des matrices, des objets graphiques et des chaînes. Une variable doit avoir pour nom une suite de caractères alphanumériques (lettres et nombres) commençant par une lettre. Les noms sont sensibles à la casse : les variables MaxTemp et maxTemp sont donc différentes.
La calculatrice HP 39gII contient de nombreux types de variables intégrées, visibles partout. Le tableau suivant illustre la plupart de ces types de variables et fournit un exemple de la méthode à suivre pour stocker une valeur dans une variable :

<table>
<thead>
<tr>
<th>Type</th>
<th>Noms</th>
<th>Exemple de stockage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre réel</td>
<td>A-Z et θ</td>
<td>2.7 ▶ R</td>
</tr>
<tr>
<td>Nombres complexes</td>
<td>Z0-Z9</td>
<td>(2,3) ▶ Z1</td>
</tr>
<tr>
<td>Listes</td>
<td>L0-L9, C0-C9, D0-D9</td>
<td>{ 1, 2, 3, 4} ▶ L1</td>
</tr>
<tr>
<td>Matrices</td>
<td>M0-M9</td>
<td>[[1,2],[3,4],[5,6]] ▶ M1</td>
</tr>
<tr>
<td>Graphiques</td>
<td>G0-G9</td>
<td>Consultez la section Graphiques.</td>
</tr>
<tr>
<td>Fonctions</td>
<td>F0-F9</td>
<td>COS(X) ▶ F1</td>
</tr>
</tbody>
</table>

Ces noms sont réservés au système. Ces variables système (ainsi que toutes les autres) sont visibles partout et les utilisateurs ne peuvent pas utiliser leurs noms pour d’autres données. Autrement dit, il est par exemple impossible de nommer un programme L1 ou de mémoriser un nombre réel dans une variable appelée G1. La liste de toutes les variables système est disponible dans le chapitre intitulé Informations de référence. Outre ces variables réservées, chaque application HP possède ses propres variables réservées. Pour plus d’informations sur ces variables, reportez-vous à la section Variables et programmes de ce chapitre.

Dans un programme, il est possible de déclarer que certaines variables seront utilisées exclusivement avec une fonction particulière. Pour ce faire, utilisez une déclaration de type LOCAL. L’utilisation des variables de type LOCAL permet aux programmeurs de déclarer et d’utiliser des variables sans affecter le reste de la
calculatrice. Les variables de type LOCAL déclarées par le programmeur ne sont pas réservées à un type particulier. Autrement dit, vous pouvez stocker des nombre à virgule flottante, des nombres entiers, des listes, des matrices et des expressions symboliques dans une variable portant n'importe quel nom local. Bien que le système autorise le stockage de différents types de variables dans une même variable locale, il s'agit d'une pratique de programmation médiocre devant être évitée.

Qualification du nom d'une variable

Le système de la calculatrice HP 39gII comprend de nombreuses variables système portant des noms apparentemment identiques. Par exemple, l'application Fonction possède une variable nommée xmin, mais elle n'est pas la seule : les applications Polaire, Paramétrique, Suite et Résoudre en possèdent également une. Dans un programme, ou dans la vue Home, il est possible de référencer différentes versions de ces variables en « qualifiant » entièrement le nom d'une variable. Il s'agit pour ce faire d'insérer le nom du programme ou de l'application à laquelle la variable appartient, suivi par un point (.) et par le vrai nom de la variable. Par exemple, les variables qualifiées Fonction.xmin et Paramétrique.xmin renvoient à la valeur xmin de chacune des applications. Elles peuvent donc contenir différentes valeurs. De même, si vous déclarez une variable locale dans un programme, vous pouvez référencer cette variable en utilisant le nom du programme suivi par un point et par le nom de la variable.

Les noms des variables déclarées dans un programme doivent être descriptifs. Par exemple, une variable destinée à stocker le rayon d'un cercle peut être nommée RADIUS. Si cette variable est nécessaire après l'exécution du programme, elle peut être exportée à partir de ce programme à l'aide de la commande EXPORT. Pour ce faire, la première commande du programme (située avant l'en-tête du programme) doit être EXPORT RADIUS. Ensuite, si une valeur est attribuée à RADIUS, son nom apparaît dans le menu Vars et est visible partout. Cette fonction permet une interactivité avancée et performante entre les différents environnements de la calculatrice HP 39gII. Notez que si plusieurs programmes exportent une variable portant le même nom, c'est la version de la variable exportée en dernier qui sera active, à moins que le nom de variable ne soit entièrement qualifié.
Ce programme demande à l'utilisateur de spécifier la valeur de \textit{RADIUS}, puis exporte la variable afin qu'elle soit utilisée ailleurs.

\begin{verbatim}
EXPORT RADIUS;
EXPORT GETRADIUS()
BEGIN
INPUT(RADIUS);
END;
\end{verbatim}

La commande \texttt{EXPORT} de la variable \texttt{RADIUS} doit apparaître avant l'en-tête de la fonction à laquelle \texttt{RADIUS} est attribuée. Après l’exécution du programme, une nouvelle variable nommée \texttt{RADIUS} apparaît dans la section \texttt{USER GETRADIUS} du menu \texttt{Vars}.

Fonctions, arguments de fonctions et paramètres

L'environnement de programmation de la calculatrice HP 39gII possède une structure complexe. Vous pouvez définir vos propres fonctions dans un programme, et les données peuvent être communiquées à une fonction en utilisant les paramètres. Les fonctions peuvent renvoyer une valeur (à l'aide de l'instruction \texttt{RETURN}) ou ne pas la renvoyer. Lorsqu’un programme est exécuté à partir de l'écran Home, le programme renvoie la valeur renvoyée par la dernière instruction exécutée.

De plus, les fonctions peuvent être définies dans un programme et exportées pour être utilisées avec d'autres programmes (comme c'est le cas avec les variables). Cette fonction fait de la calculatrice HP 39gII une plateforme de programmation extrêmement performante.

Dans cette section, nous allons créer un petit échantillon de programmes dont chacun illustrera certains aspects de la programmation avec la calculatrice HP 39gII. Chacun de ces programmes sera l’élément constitutif d’une application personnalisée décrite dans la section suivante, \textit{Programmes d'applications}.
Voici un programme définissant une fonction nommée ROLLDIE, qui simule le lancer d’un dé unique et renvoie un entier aléatoire compris entre 1 et le nombre communiqué dans la fonction.

Tout d’abord, créez un programme nommé ROLLDIE. Entrez ensuite le programme.

Program ROLLDIE

```
EXPORT ROLLDIE(N)
BEGIN
RETURN 1 + FLOOR(N*RANDOM);
END;
```

La première ligne est l’en-tête de la fonction. Lorsque l’instruction RETURN est exécutée, un entier aléatoire compris entre 1 et N est calculé et renvoyé comme résultat de la fonction. Notez que suite à l’exécution de la commande RETURN, l’exécution de la fonction s’arrête.

Toutes les instructions comprises entre la fin de l’instruction RETURN et END sont ignorées.

Dans la vue Home (ou dans n’importe quel environnement de la calculatrice dans lequel il est possible d’utiliser un nombre), entrez ROLLDIE(6) et un entier aléatoire compris entre 1 et 6 sera renvoyé.

Un autre programme pourrait utiliser la fonction ROLLDIE et générer un nombre n de lancers (rolls) d’un dé (die) contenant un nombre de faces (sides) déterminé. Dans le programme suivant, la fonction ROLLDIE est utilisée pour générer n lancers de 2 dés, dont le nombre de faces est spécifié par le nombre de faces de la variable locale. Les résultats sont stockés dans la liste L2, de sorte que L2(1) affiche le nombre de fois où le résultat des dés a été 1, L2(2) la fréquence du résultat 2, etc. Le résultat de L2(1) devrait être 0.

Program ROLLMANY

```
EXPORT ROLLMANY(n,sides)
BEGIN
LOCAL k, roll;
// initialize list of frequencies
MAKELIST(0,X,1,2*sides,1) → L2;
FOR k FROM 1 TO n DO
```
Ce programme utilise une boucle FOR, expliquée dans la section consacrée aux boucles.

La visibilité d’une fonction peut être limitée au programme dans laquelle elle est définie en ommettant la commande EXPORT lors de la déclaration de la fonction. Par exemple, vous pouvez définir la fonction ROLLDIE à l’intérieur du programme ROLLMANY comme suit :

```plaintext
EXPORT ROLLMANY(n,sides)
BEGIN
  LOCAL k,roll;
  // initialize list of frequencies
  MAKELIST(0,X,1,2*sides,1)▶L2;
  FOR k FROM 1 TO n DO
    ROLLDIE(sides)+ROLLDIE(sides)▶roll;
    L2(roll)+1▶L2(roll);
  END;
END;
ROLLDIE(n)
BEGIN
  RETURN 1 + FLOOR(n*RANDOM);
END;
```

Dans ce scénario, partez du principe qu’aucune fonction ROLLDIE n’est exportée à partir d’un autre programme. Au lieu de cela, ROLLDIE est uniquement visible dans le contexte de ROLLMANY.

Enfin, la liste des résultats peut être renvoyée comme résultat de l’appel de ROLLMANY au lieu d’être directement stockée dans la liste globale de variables L2. À ce titre, l’utilisateur pourrait facilement stocker les résultats ailleurs.
EXPORT ROLLMANY(n,sides)
BEGIN
 LOCAL k, roll, results;
 MAKELIST(0, X, 1, 2*sides, 1)► results;
 FOR k FROM 1 TO n DO
 ROLLDIE(sides)+ROLLDIE(sides)► roll;
 results(roll)+1► results(roll);
 END;
 RETURN results;
END;
Dans la vue Home, si vous saisissez ROLLMANY(100,6)►L5, les résultats de la simulation de 100 lancers de deux dés à six faces seront stockés dans la liste L5.

Programmes d'application
Les applications sont constituées d'un ensemble de vues, de programmes, de notes et de données associées. La création d'un programme d'application permet de redéfinir les vues de l'application et le type d'interaction entre l'utilisateur et ces vues. Il existe deux procédures pour cela : des fonctions de programme dédiées comprenant des noms spéciaux et la redéfinition des vues à partir du menu Views.

Utilisation des fonctions de programme dédiées
Il existe un ensemble de noms de programmes spéciaux qui exécutent les programmes correspondants (s'ils existent). Ces programmes s'exécutent à partir des événements de clavier indiqués dans le tableau ci-dessous. Ces fonctions de programme sont destinées à être utilisées dans le contexte d'une application.

<table>
<thead>
<tr>
<th>Programme</th>
<th>Nom</th>
<th>Frappes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symb</td>
<td>Vue symbolique</td>
<td></td>
</tr>
<tr>
<td>SymbSetup</td>
<td>Configuration symbolique</td>
<td></td>
</tr>
</tbody>
</table>
Le menu Views permet à n'importe quelle application de définir des vues en plus des sept vues standard présentées dans le tableau ci-dessus. Par défaut, chaque application HP possède son propre ensemble de vues supplémentaires contenus dans ce menu. La commande \texttt{VIEWS} (vues) vous permet de redéfinir ces vues afin d'exécuter les programmes que vous avez créés pour une application. La syntaxe de la commande \texttt{VIEWS} est la suivante :

\texttt{VIEWS "texte"}

En ajoutant \texttt{VIEWS "texte"} avant la déclaration d'une fonction, la liste de vues de l'application se retrouve écrasée. Par exemple, si votre programme d'application définit les trois vues "SetSides", "RollDice" et "PlotResults", SetSides, RollDice et PlotResults apparaîtront en lieu et place de la liste de vues par défaut de l'application.
Personnalisation d'une application

Lorsqu'une application est active, son programme associé est le premier élément affiché dans le catalogue de programmes. C'est au sein de ce programme qu'il est possible de placer des fonctions permettant de créer une application personnalisée. Vous trouverez une procédure efficace de personnalisation d'une application ci-dessous :

1. Choisissez les applications HP que vous souhaitez personnaliser (les applications Fonction et Statistiques 1Var, par exemple). L'application personnalisée hérite de toutes les propriétés de l'application HP. Accédez au catalogue des applications et enregistrez l'application personnalisée sous un nom qui lui est propre.

2. Si nécessaire, personnalisez la nouvelle application en modifiant les paramètres (définissez les axes ou les mesures d'angle, par exemple).

3. Développez les fonctions qui seront utilisées par votre application personnalisée. Lors du développement des fonctions de l'application, conformez-vous aux conventions de nom décrites précédemment.

4. Insérez la commande VIEWS dans votre programme pour modifier le menu Views de l'application.

5. Décidez si votre application créera ou non de nouvelles variables globales. Si ces variables sont appropriées, utilisez EXPORT pour les exporter à partir d'un autre programme utilisateur appelé par la fonction Start() du programme d'application, afin de conserver leurs valeurs.

6. Testez l'application personnalisée et déboguez les programmes associés.

Il est possible de relier plusieurs applications via des programmes. Par exemple, un programme associé à l'application Fonction peut exécuter une commande pour lancer l'application Statistiques 1Var, et un programme associé à l'application Statistiques 1Var peut revenir à l'application Fonction (ou lancer toute autre application).

Exemple :

L'exemple suivant illustre la procédure de création d'une application personnalisée. Cette application crée un environnement permettant de simuler le lancer de deux dés, dont le nombre de faces est spécifié par l'utilisateur. Les résultats sont tabulés et peuvent être consultés sous la forme d'un tableau ou d'un graphique. Cette application est basée sur l'application Statistiques 1Var.
1. Enregistrez l’application Statistiques 1Var sous un nom qui lui est propre.

2. Nommez l’application DiceSimulation et appuyez sur la touche de menu OK.

3. Lancez la nouvelle application.

4. Ouvrez le catalogue de programmes.

Un programme initialement vide est attribué à chaque application. Pour personnaliser une application, vous devez saisir des fonctions dans ce programme.

5. Modifiez le programme DiceSimulation.

Sélectionnez DiceSimulation.
Cette zone vous permet de saisir les fonctions nécessaires à la personnalisation de l'application. C'est à ce stade que vous choisissez le type d'interaction entre l'utilisateur et l'application. Nous allons donc créer des vues pour les options suivantes :

- **START** : lance l'application.
- **SETSIDES** : spécifie le nombre de côtés (ou faces) de chaque dé.
- **SETNUMROLLS** : spécifie le nombre de lancers des dés.
- **RESET** : recommence.

L'option **START** initialise l'application et affiche une note incorporée dans l'application contenant des instructions à l'attention de l'utilisateur. L'utilisateur interagit également avec l'application dans les vues numérique et graphique. Les touches **M** et **P** activent ces vues, mais quelques configurations sont nécessaires pour que les fonctions **Num** (nombre) et **Graphique** de notre programme les lancent réellement.

Appelez de nouveau le programme pour obtenir le nombre de faces d'un dé, comme indiqué précédemment dans ce chapitre. Dans cet exemple, il a été étendu afin que les sommes possibles des deux dés soient stockées dans la liste **D1**. Entrez les sous-programmes suivants dans le programme d'application pour l'application **DiceSimulation**.

```
Programme DiceSimulation
START()
BEGIN
DICESIMVARS();
()▷D1;
()▷D2;
SETSAMPLE(H1,D1);
SETFREQ(H1,D2);
0▷H1Type;
```
END;
VIEWS "Roll Dice", ROLLMANY()
BEGIN
LOCAL k, roll;
MAKELIST(X+1, X, 1, 2*SIDES-1, 1) ▶ D1;
MAKELIST(0, X, 1, 2*SIDES-1, 1) ▶ D2;
FOR k FROM 1 TO ROLLS DO
Roll:= ROLLDIE(SIDES) + ROLLDIES(SIDES);
D2(roll-1) + 1 ▶ D2(roll-1);
END;
-1 ▶ Xmin;
MAX(D1) + 1 ▶ Xmax;
0 ▶ Ymin;
MAX(D2) + 1 ▶ Ymax;
STARTVIEW(1, 1);
END;
VIEWS "Set Sides", SETSIDES()
BEGIN
REPEAT
INPUT(SIDES, "Die Sides", "N = ", "Enter num sides", 2);
FLOOR(SIDES) ▶ SIDES;
IF SIDES<2 THEN
MSGBOX("Must be >= 2");
END;
UNTIL SIDES>=2;
END;
VIEWS "Set Rolls", SETROLLS()
BEGIN
REPEAT
INPUT(ROLLS, "Num of Rolls", "N = ", "Enter number of rolls", 2);
FLOOR(ROLLS) ▶ ROLLS;
IF ROLLS<1 THEN
MSGBOX("Must be >= 1");
END;
UNTIL ROLLS>=1;
END;
VIEWS "Roll Dice", ROLLMANY()
La routine ROLL MANY() est une autre adaptation d'un programme présenté précédemment dans ce chapitre. La communication de paramètres dans un programme appelé à la suite d'une sélection dans un menu Views personnalisé est impossible. Les variables exportées SIDES et ROLLS sont donc utilisées à la place des paramètres utilisés dans les versions précédentes.

Programme DICESIMVARS

EXPORT ROLLS, SIDES;
EXPORT DICESIMVARS();
BEGIN
10 ▶ ROLLS;
6 ▶ SIDES;
END;
Appuyez sur **V** pour afficher le menu de l’application personnalisée. Vous pouvez définir le nombre de faces des dés et le nombre de lancers, puis exécuter une simulation.

Après la simulation, appuyez sur **P** pour afficher un histogramme de vos résultats de simulation.

Commandes de programmation

Cette section contient des détails sur toutes les commandes individuelles (regroupées par catégories).

Commandes d’application

Ces commandes vous permettent de lancer une application HP, d’afficher une vue de l’application en cours et de modifier les options du menu Views.

STARTAPP

Syntaxe : `STARTAPP("nom")`

Lance l’application portant ce nom. La fonction du programme de l’application `START` est lancée si elle existe. La vue par défaut de l’application est lancée. Notez que la fonction `START` est systématiquement exécutée lorsque l’utilisateur appuie sur **START** dans la bibliothèque d’applications. Fonctionne également pour les applications définies par l’utilisateur.

Exemple : `STARTAPP("Fonction")` lance l’application Fonction.

STARTVIEW

Syntaxe : `STARTVIEW(n [,draw?])`

Lance la nième vue de l’application en cours. Si `draw?` est vrai (est différent de 0), l’écran de cette vue est immédiatement redessiné.

Les numéros de vues sont les suivants :

Symbolique : 0
Graphique : 1
Numérique : 2
Configuration symbolique : 3
Configuration graphique : 4
Configuration numérique : 5
Informations sur l'application : 6
Menu Views : 7
Première vue spéciale (Détail graphique écran scindé) : 8
Deuxième vue spéciale (Tableau graphique écran scindé) : 9
Troisième vue spéciale (Autoscale) : 10
Quatrième vue spéciale (Décimal) : 11
Cinquième vue spéciale (Entier) : 12
Sixième vue spéciale (Trigonométrie) : 13

Les vues spéciales entre parenthèses font références à l'application Fonction et peuvent être différentes pour les autres applications. Les numéros des vues spéciales des autres applications correspondent à leur position dans le menu Views de l'application. La première vue spéciale est lancée par \texttt{STARTVIEW(8)}, la deuxième par \texttt{STARTVIEW(9)}, et ainsi de suite.

Notez que si \(n < 0 \), les vues globales peuvent être lancées :

- Ecran Home : -1
- Modes de Homes : -2
- Gestionnaire de mémoire : -3
- Bibliothèque d'applications : -4
- Catalogue de matrices : -5
- Catalogue de listes : -6
- Catalogue de programmes : -7
- Catalogue de notes : -8

\textbf{VIEWS} \hspace{1cm} Syntaxe : \texttt{VIEWS("chaîne", nomprogramme)}

Ajoute une vue au menu Vues. Lorsque \texttt{chaîne} est sélectionnée, \texttt{nomprogramme} s'exécute.

\textbf{debug} \hspace{1cm} Syntaxe : \texttt{debug (nomprogramme)}

Lance le débogueur pour le nom de programme choisi. Dans un programme, \texttt{debug()} agit comme un point d'interruption et lance le débogueur à cet emplacement. Cela permet au débogueur de commencer à un emplacement de programme spécifique, au lieu de commencer au début du programme.
Commandes de blocage

Les commandes de blocage déterminent le début et la fin d'un sous-programme ou d'une fonction. La commande Return permet quant à elle de rappeler les résultats des sous-programmes ou des fonctions.

BEGIN... END

Syntaxe : BEGIN stmt1; stmt2;... stmtN; END;

Définit un ensemble de commandes à exécuter dans un bloc.

Programme d'exemple : SQM1

EXPORT SQM1(X)
BEGIN
RETURN X^2-1;
END;

Ce programme définit une fonction utilisateur nommée SQM1(X). Dans la vue Home, le fait d'entrer SQM1(8) renvoie 63.

RETURN

Syntaxe : RETURN expression;

Renvoie la valeur en cours de expression.

Instructions d'attribution

:=

Syntaxe : var := expression;

►

Syntaxe : expression ► var;

Chaque fois, c'est l'expression qui est évaluée en premier lieu, suivie par le résultat stocké dans la variable var. ► et := ne peuvent pas être utilisées avec les variables G0 à G9. A la place, consultez les informations sur la commande BLIT.

Lors de l'attribution d'une valeur à une cellule contenue dans une liste, un vecteur ou une matrice, préférez la commande ► à :=. Par exemple, la commande 73 ► L1(5) place le nombre 73 en 5e position de la liste L1.

Si vous saisissez un programme à partir d'un émulateur de calculatrice exécuté sur votre ordinateur, => peut être utilisé comme synonyme de ►.
Commandes de branche

IF…THEN…END

Syntaxe : \(\text{IF test THEN command(s) END;} \)

Evalue test. Si test a une valeur vraie (différente de 0), exécute command(s). Dans le cas contraire, il ne se passe rien.

Exemple :

IF…THEN…ELSE…END

Syntaxe : \(\text{IF test THEN command(s)1 ELSE command(s)2 END;} \)

Evalue test. Si test a une valeur vraie (différente de 0), exécute command(s)1. Dans le cas contraire, exécute command(s)2.

IFTE

Syntaxe : \(\text{IFTE(test, true_xpr, false_xpr)} \)

Evalue test. Si test a une valeur vraie (différente de 0), renvoie true_xpr. Dans le cas contraire, renvoie false_xpr.

IFERR…THEN…END

Syntaxe : \(\text{IFERR commands1 THEN commands2 [ELSE commands3] END;} \)

Exécute la séquence de commands1. Si une erreur survient lors de l’exécution des commands1, exécute la séquence de commands2. Sinon, exécute la séquence de commands3.

CASE…END

Syntaxe :

\[
\begin{align*}
\text{CASE} \\
\text{IF test1 THEN commands1 END} \\
\text{IF test2 THEN commands2 END} \\
\ldots \\
\text{[DEFAULT commands]} \\
\text{END;}
\end{align*}
\]

Evalue test1. Si la valeur est vraie, exécute commands1 et termine CASE. Dans le cas contraire, évalue test2. Si la valeur est vraie, exécute commands2. Continue d’évaluer les tests jusqu’à l’obtention d’une valeur true. Si aucun test vrai n’est trouvé, exécute commandsD, le cas échéant.
Exemple :

```plaintext
CASE
IF x<0 THEN RETURN "negative"; END
IF x<1 THEN RETURN "small"; END
DEFAULT RETURN "large";
END;
```

Commandes de dessin

Il existe 10 variables graphiques dans la calculatrice HP39gII, intitulées G0 à G9. G0 correspond toujours au graphique de l’écran actuel.

G1 à G9 peuvent être utilisées pour stocker des objets graphiques temporaires (GROB) dans le cadre de la programmation d’applications utilisant des graphiques. Les variables G1 à G9 sont temporaires. Elles sont effacées dès que vous éteignez la calculatrice.

Il existe vingt-six fonctions pouvant être utilisées pour modifier les variables graphiques. Treize d’entre elles sont basées sur des coordonnées cartésiennes avec le plan cartésien défini dans l’application actuelle par les variables Xmin, Xmax, Ymin et Ymax dans le menu de configuration graphique.

Les treize autres sont basées sur des coordonnées de pixel où le pixel 0,0 correspond au pixel supérieur gauche du GROB et le pixel 255,126 au pixel inférieur droit. Ce deuxième ensemble fonctionnel présente un suffixe _P sur le nom de fonction.

PIXON et PIXON_P

Syntaxe : PIXON([G], position_x, position_y [,color])

```plaintext
PIXON_P([G], position_x, position_y [,couleur])
```

Définit la couleur de pixel de G avec les coordonnées x,y sur la couleur. G peut être n’importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0, soit le graphique actuel. La couleur a une valeur comprise entre 0 et 3 (0 = noir, 1 = gris foncé, 2 = gris clair, 3 = blanc) et est facultative. La valeur par défaut est 0.
PIXOFF et PIXOFF_P

Syntaxe : `PIXOFF([G], position_x, position_y)`

`PIXOFF_P([G], position_x, position_y)`

Définit la couleur de pixel de G avec les coordonnées x,y sur le blanc. G peut être n'importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0, soit le graphique actuel.

GETPIX et GETPIX_P

Syntaxe : `GETPIX([G], position_x, position_y)`

`GETPIX_P([G], position_x, position_y)`

Renvoie la couleur de pixel de G avec les coordonnées x,y.

G peut être n'importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0, soit le graphique actuel.

RECT et RECT_P

Syntaxe : `RECT([G, x1, y1, x2, y2, edgecolor, fillcolor])`

`RECT_P([G, x1, y1, x2, y2, edgecolor, fillcolor])`

Trace un rectangle sur G entre les points x1,y1 et x2,y2 avec la couleur de bord pour le périmètre et la couleur de remplissage pour l'intérieur.

G peut être n'importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0, soit le graphique actuel.

x1, y1 sont des valeurs facultatives. Les valeurs par défaut correspondent à l'angle supérieur gauche du graphique.

x2, y2 sont des valeurs facultatives. Les valeurs par défaut correspondent à l'angle inférieur droit du graphique.

egecolor et fillcolor peuvent avoir des valeurs comprises entre -1 et 3 (-1 = transparent, 0 = noir, 1 = gris foncé, 2 = gris clair, 3 = blanc).

egecolor est une valeur facultative. La valeur par défaut est le blanc.

fillcolor est une valeur facultative. La valeur par défaut est la couleur de bord.

Pour effacer un GROB, exécutez `RECT(G)`. Pour effacer l'écran, exécutez `RECT()`.
Si des arguments facultatifs sont fournis dans une commande comme `RECT`, avec divers paramètres facultatifs, les arguments fournis correspondent aux paramètres les plus à gauche d'abord. Par exemple, dans le programme ci-après, les arguments 40 et 90 dans la commande `RECT_P` correspondent à x_1 et y_1. L'argument 0 correspond à `edgecolor` étant donné qu'il s'agit du seul argument supplémentaire. S'il y avait eu deux arguments supplémentaires, ils auraient fait référence à x_2 et y_2 plutôt qu'à `edgecolor` et `fillcolor`. Le programme génère la figure ci-après à droite.

```plaintext
EXPORT BOX()
BEGIN
RECT();
RECT_P(40, 90, 0);
FREEZE;
END;
```

Le programme ci-après utilise également la commande `RECT_P`. Dans ce cas, la paire d'arguments 0 et 3 correspond à x_2 et y_2. Le programme génère la figure ci-après à droite.

```plaintext
EXPORT BOX()
BEGIN
RECT(); INVERT(G0);
RECT_P(40, 90, 0, 3);
FREEZE;
END;
```

INVERT et INVERT_P

Syntaxe :

```
INVERT([G, x1, y1, x2, y2])
```

```
INVERT_P([G, x1, y1, x2, y2])
```

Inverse un rectangle sur G entre les points x_1,y_1 et x_2,y_2. Chaque pixel noir devient ainsi blanc, et vice versa. De la même manière, le gris clair et le gris foncé sont inversés. G peut être n'importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est $G0$.

274
x2, y2 sont des valeurs facultatives et, en l’absence de spécification, correspondront à l’angle inférieur droit du graphique.

x1, y1 sont des valeurs facultatives et, en l’absence de spécification, correspondront à l’angle supérieur gauche du graphique. Si une seule paire x,y est spécifiée, elle se rapporte à l’angle supérieur gauche.

ARC et ARC_P

Syntaxe : \(\text{ARC}(G, x, y, r, c, a1, a2) \)

\(\text{ARC}_P(G, x, y, r, c, a1, a2) \)

Dessine un arc ou un cercle sur \(G \), centré sur le point \(x,y \), avec le rayon \(r \) et la couleur \(c \), en partant de l’angle \(a1 \) et en terminant sur l’angle \(a2 \).

\(G \) peut être n’importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est \(G0 \).

\(r \) se mesure en pixels.

\(c \) est une valeur facultative et, en l’absence de spécification, correspond au noir.

\(a1 \) et \(a2 \) suivent le mode d’angle actuel et sont des valeurs facultatives. La valeur par défaut est un cercle complet.

LINE et LINE_P

Syntaxe : \(\text{LINE}(G, x1, y1, x2, y2, c) \)

\(\text{LINE}_P(G, x1, y1, x2, y2, c) \)

Trace une ligne de couleur \(c \) sur \(G \) entre les points \(x1,y1 \) et \(x2,y2 \).

\(G \) peut être n’importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est \(G0 \).

\(c \) peut avoir une valeur comprise entre 0 et 3 (0 = noir, 1 = gris foncé, 2 = gris clair, 3 = blanc). \(c \) est une valeur facultative. La valeur par défaut est le noir.

TEXTOUT et TEXTOUT_P

Syntaxe : \(\text{TEXTOUT}(\text{texte}, G, x, y, \text{font}, c1, \text{width}, c2) \)

\(\text{TEXTOUT}_P(\text{texte}, G, x, y, \text{font}, c1, \text{width}, c2) \)

Inscrit du texte avec la couleur \(c1 \) sur le graphique \(G \) à la position \(x, y \) avec la police. N’inscrivez pas de texte au-delà de la limite de largeur de pixels et effacez
l’arrière-plan avant d’inscrire le texte avec la couleur c2.
G peut être n’importe laquelle des variables graphiques.
Cette valeur est facultative. La valeur par défaut est G0.

La police peut avoir les valeurs suivantes :
0 : police actuellement sélectionnée dans l’écran de
mode, 1 : petite police, 2 : grande police. La police est
une valeur facultative et, en l’absence de spécification,
correspond à la police actuellement sélectionnée dans
l’écran de mode.

C1 peut avoir une valeur comprise entre 0 et 3 (0 = noir,
1 = gris foncé, 2 = gris clair, 3 = blanc). C1 est une
valeur facultative. La valeur par défaut est le noir.

width est une valeur facultative et, en l’absence de
spécification, aucune coupure n’est effectuée.

C2 peut avoir une valeur comprise entre 0 et 3 (0 = noir,
1 = gris foncé, 2 = gris clair, 3 = blanc). C2 est une
valeur facultative. En l’absence de spécification, l’arrière-
plan n’est pas effacé.

Exemple :

Ce programme affiche les estimations successives pour
avec la série pour arctangent(1).

EXPORT RUNPISERIES()
BEGIN
LOCAL sign;
2 ▶ K; 4 ▶ A;
-1 ▶ sign;
RECT();
TEXTOUT_P("N=", 0, 0);
TEXTOUT_P("PI APPROX=", 0, 30);
REPEAT
A+sign*4/(2*K-1) ▶ A;
TEXTOUT_P(K , 35, 0, 2, 0, 100, 3);
TEXTOUT_P(A , 90, 30, 2, 0 100, 3);
Le programme s'exécute jusqu'à ce que l'utilisateur appuie sur \(\text{ONC} \) pour terminer. Les espaces après \(K \) (le nombre après le terme) et \(A \) (l'estimation actuelle) dans les commandes TEXTOUT_P permettent d'écarter la valeur précédemment affichée.

BLIT et BLIT_P

Syntaxe :

\[
\text{BLIT}([\text{trgtGRB, dx1, dy1, dx2, dy2}], \\
\text{srcGRB} [,sx1, sy1, sx2, sy2, c]) \\
\text{BLIT}_P ([\text{trgtGRB, dx1, dy1, dx2, dy2}], \\
\text{srcGRB} [,sx1, sy1, sx2, sy2, c]) \\
\]

Copie la région de \(\text{srcGRB} \) entre les points \(sx1, sy1 \) et \(sx2, sy2 \) dans la région de \(\text{trgtGRB} \) entre les points \(dx1, dy1 \) et \(dx2, dy2 \). Ne copiez pas les pixels de \(\text{srcGRB} \) ayant la couleur \(c \).

\(\text{trgtGRB} \) peut être n'importe laquelle des variables graphiques. \(\text{trgtGRB} \) peut être n'importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0.

\(\text{srcGRB} \) peut être n'importe laquelle des variables graphiques.

\(dx2, dy2 \) sont des valeurs facultatives qui, en l'absence de spécification, seront calculées afin que la zone de destination soit de la même taille que la zone source.

\(sx2, sy2 \) sont des valeurs facultatives qui, en l'absence de spécification, correspondront à l'angle inférieur droit de \(\text{srcGRB} \).

\(sx1, sy1 \) sont des valeurs facultatives qui, en l'absence de spécification, correspondront à l'angle supérieur gauche de \(\text{srcGRB} \).

\(dx1, dy1 \) sont des valeurs facultatives qui, en l'absence de spécification, correspondront à l'angle supérieur gauche de \(\text{trgtGRB} \).
c peut avoir une valeur comprise entre 0 et 3 (0 = noir, 1 = gris foncé, 2 = gris clair, 3 = blanc). c est une valeur facultative. En l'absence de spécification, tous les pixels de G2 seront copiés.

Remarque
Le fait d'utiliser la même variable pour *trgtGRB* et *srcGRB* peut être imprévisible si la source et la destination se chevauchent.

DIMGROB et DIMBROB_P

Syntaxe :

\[
\text{DIMGROB}(G, w, h[, c]) \text{ ou } \text{DIMGROB}(G[, \text{line}_1, \text{line}_2,\ldots,\text{line}_h])
\]

\[
\text{DIMBROB}(G, w, h[, c]) \text{ ou } \text{DIMBROB}(G[, \text{line}_1, \text{line}_2,\ldots,\text{line}_h])
\]

Définit les dimensions de GROB G sur w*h. Initialise le graphique G avec la couleur c ou avec les données graphiques fournies dans la liste. G peut être n'importe laquelle des variables graphiques sauf G0. c peut avoir une valeur comprise entre 0 et 3 (0 = noir, 1 = gris foncé, 2 = gris clair, 3 = blanc). c est une valeur facultative. La valeur par défaut est le blanc.

Si le graphique est initialisé avec les données graphiques, la liste doit présenter autant de chiffres que la hauteur du GROB. Chaque chiffre (voir base 16) décrit une ligne. Deux parties sont utilisées pour chaque pixel (00 = noir, 01 = gris foncé, 10 = gris clair, 11 = blanc). Chaque chiffre hexadécimal décrit deux pixels.

Vous pouvez entrer le chiffre hexadécimal avec la syntaxe 0xdigits.

Le premier pixel de la ligne est défini par la 2e partie la moins significative du chiffre. Le 2e pixel par la 2e partie la moins significative, etc.

SUBGROB et SUBGROB_P

Syntaxe :

\[
\text{SUBGROB}(\text{srcGRB}[, x1, y1, x2, y2], \text{trgtGRB})
\]

\[
\text{SUBGROB}_P(\text{srcGRB}[, x1, y1, x2, y2], \text{trgtGRB})
\]

Définit trgtGRB pour qu'il s'agisse d'une copie de la zone de srcGRB entre les points x1,y1 et x2,y2.

srcGRB peut être n'importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0.

trgtGRB peut être n'importe laquelle des variables graphiques sauf G0.
x2, y2 sont des valeurs facultatives qui, en l’absence de spécification, correspondront à l’angle inférieur droit de srcGRB.

x1, y1 sont des valeurs facultatives qui, en l’absence de spécification, correspondront à l’angle supérieur gauche de srcGRB.

REMARQUE

\text{SUBGROB}(G1, G4) copiera G1 dans G4.

GROBH et GROBH_P

Syntaxe :
\begin{verbatim}
GROBH(G)
\end{verbatim}
\begin{verbatim}
GROBH_P(G)
\end{verbatim}

Renvoie la hauteur de G.

G peut être n’importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0.

GROBW et GROBW_P

Syntaxe :
\begin{verbatim}
GROBW(G)
\end{verbatim}
\begin{verbatim}
GROBW_P(G)
\end{verbatim}

Renvoie la largeur de G.

G peut être n’importe laquelle des variables graphiques. Cette valeur est facultative. La valeur par défaut est G0.

FREEZE

Syntaxe :
\begin{verbatim}
FREEZE
\end{verbatim}

Interrompt l’exécution du programme jusqu’à ce que vous appuyiez sur une touche. Cette commande empêche tout nouveau tracé sur l’écran à la fin de l’exécution du programme, ce qui permet à l’utilisateur de voir l’affichage modifié sur l’écran.

Commandes E/S

Cette section décrit les commandes permettant d’effectuer des opérations d’entrée et de sortie de données au niveau d’un programme. Grâce à ces commandes, les utilisateurs peuvent interagir avec les programmes.

Ces commandes ouvrent les éditeurs de matrices et de listes.

EDITLIST

Syntaxe :
\begin{verbatim}
EDITLIST(variable de liste)
\end{verbatim}

Ouvre l’éditeur de listes en chargeant variable de liste et affiche la liste spécifiée. En cas d’utilisation dans la programmation, revient au programme lorsque l’utilisateur appuie sur OK.

Exemple : \text{EDITLIST}(L1) modifie la liste L1.
EDITMAT

Syntaxe : EDITMAT(variable de matrice)

Ouvre l'éditeur de matrices et affiche la matrice spécifiée. En cas d'utilisation dans la programmation, revient au programme lorsque l'utilisateur appuie sur OK.

Exemple : EDITMAT(M1) modifie la matrice M1.

INPUT

Syntaxe : INPUT(var [, "title", "label", "help", default])

Ouvre une boîte de dialogue avec le texte de titre, title, comportant un champ appelé label, affichant une fonction help en bas et utilisant la valeur par défaut, soit default value. Met à jour la variable var si l'utilisateur appuie sur OK et renvoie 1. Le fait d'appuyer sur ANNUL n'entraîne aucune mise à jour de la variable et renvoie 0.

Exemple :

EXPORT SIDES;
EXPORT GETSIDES()
BEGIN
INPUT(SIDES,"Die Sides","N = ","Enter num sides",2);
END;

PRINT

Syntaxe : PRINT(expression ou chaîne);

Imprime le résultat de l'expression ou de la chaîne sur le terminal.

Le terminal est un mécanisme d'affichage de sortie de texte de programme visible uniquement lorsque les commandes PRINT sont exécutées. S'il est visible, vous pouvez utiliser ▼ et ▲ pour afficher le texte, □ pour effacer le texte et n'importe quelle autre touche pour masquer le terminal. Vous pouvez afficher le terminal à tout moment à l'aide de la combinaison ON/C (maintenez enfoncée la touche ON/C, puis appuyez sur 4 et relâchez les deux touches). Le fait d'appuyer sur EN entraîne l'interruption de l'interaction avec le terminal.
Il existe également des commandes pour la sortie de données dans la section des graphiques. Les commandes TEXTOUT et TEXTOUT_P peuvent notamment être utilisées pour la sortie de texte.

Cet exemple invite l'utilisateur à entrer une valeur pour le rayon d'un cercle et imprime la superficie du cercle sur le terminal.

```
EXPORT AREACALC()
BEGIN
    LOCAL radius;
    INPUT(rayon, "Rayon du cercle","r = ","Entrer le rayon",1);
    PRINT("La superficie est " +\pi *radius^2);
END;
```

Veuillez noter l'utilisation de la variable LOCAL pour le rayon et la convention d'appellation avec des minuscules pour la variable locale. Le respect de cette convention contribuera à une meilleure lisibilité de vos programmes.

GETKEY

Syntaxe : GETKEY

Renvoie l'ID de la première touche dans le tampon de clavier ou -1 si aucune touche n'a été actionnée depuis le dernier appel à GETKEY. Les ID de touches sont des nombres entiers compris entre 0 et 50, de l'angle supérieur gauche (touche 0) à l'angle inférieur droit (touche 50) (voir page suivante).
ISKEYDOWN

Syntaxe : `ISKEYDOWN(id_touche);`

Renvoie vrai (valeur autre que zéro) si la touche dont l'ID est indiqué est actuellement actionnée, et faux (0) si ce n'est pas le cas.

MSGBOX

Syntaxe : `MSGBOX(expression ou chaîne [, ok_cancel?]);`

Affiche une boîte de dialogue avec la valeur de l'expression ou de la chaîne donnée.

Si `ok_cancel?` a la valeur vrai, les touches de menu `OK` et `ANNUL` s'affichent. Si ce n'est pas le cas, seule la touche `OK` s'affiche. La valeur par défaut pour `ok_cancel` est faux.

Renvoie vrai (valeur autre que zéro) si l'utilisateur appuie sur `OK`, et faux (0) si l'utilisateur appuie sur `ANNUL`.
Remplacez la commande PRINT de l’exemple précédent par la commande MSGBOX :

```plaintext
EXPORT AREACALC()
BEGIN
LOCAL radius;
INPUT(rayon, "Rayon du cercle","r = ","Entrer le rayon",1);
MSGBOX("La superficie est " +π*radius^2);
END;
```

Si l’utilisateur entre 10 pour le rayon, la boîte de dialogue affiche :

CHOOSE

Syntaxe : CHOOSE(var, "titre", "élément1", "élément2",..., "élémentn")

Affiche une boîte de sélection avec le titre donné et les éléments de choix. Si l’utilisateur sélectionne un objet, la variable dont le nom est indiqué sera mise à jour de façon à présenter le numéro de l’objet sélectionné (un nombre entier, 1, 2, 3, ...) ou 0 si l’utilisateur appuie sur ANNUL.

Renvoie vrai (valeur autre que zéro) si l’utilisateur sélectionne un objet et faux (0) dans le cas contraire.

Exemple :

```plaintext
CHOOSE
(N,"PickHero","Euler","Gauss","Newton");
IF N==1 THEN PRINT("Vous avez choisi Euler") ELSE IF N==2 THEN PRINT("Vous avez choisi Gauss") ELSE PRINT("Vous avez choisi Newton")
END;
END;
```
Après l’exécution de la commande CHOOSE, la valeur de n sera mise à jour de façon à contenir 0, 1, 2 ou 3. La commande IF THEN ELSE entraîne l’impression du nom de la personne sélectionnée sur le terminal.

Commandes de boucle

FOR...FROM...TO...

DO...END

Syntaxe : FOR var FROM start TO finish [STEP increment] DO commandes END;

Définit la variable var sur la valeur de début et, tant que la valeur de cette variable est inférieure ou égale à la valeur de fin, exécute la séquence de commandes, puis ajoute 1 (incrément) à var.

Exemple 1 : ce programme détermine lequel des nombres entiers de 2 à N possède le plus grand nombre de facteurs.

EXPORT MAXFACTORS(N)
BEGIN
LOCAL cur, max, k, result;
1►max; 1►result;
FOR k FROM 2 TO N DO
SIZE(idivis(k))►cur;
IF cur > max THEN
 cur►max;
 k►result;
END;
END;
MSGBOX("Max de "+ max +" facteurs pour "+resultat);
Dans Home, entrez MAXFACTORS(100).

Exemple 2 : ce programme trace un motif intéressant sur l'écran.

EXPORT DRAWPATTERN()
BEGIN
 LOCAL xincr,yincr,color;
 STARTAPP("Fonction");
 RECT();
 xincr := (Xmax - Xmin)/254;
 yincr := (Ymax - Ymin)/110;
 FOR X FROM Xmin TO Xmax STEP xincr DO
 FOR Y FROM Ymin TO Ymax STEP yincr DO
 color := FLOOR(X^2+Y^2) MOD 4;
 PIXON(X,Y,color);
 END;
 END;
 FREEZE;
END;

REPEAT…UNTIL…

Syntaxe : REPEAT commands UNTIL test;

Répète la séquence de commandes jusqu'à ce que test présente la valeur vrai (valeur différente de 0).

Ce code exige une valeur positive pour SIDES, modifiant un programme antérieur dans ce chapitre.

Exemple :
EXPORT SIDES;
EXPORT GETSIDES()
BEGIN
 REPEAT
INPUT(SIDES,"Die Sides","N = ","Enter num sides",2);
UNTIL SIDES>0;
END;

WHILE...DO...END

Syntaxe : WHILE test DO commands END;

Évalue test. Si le résultat est vrai (valeur différente de 0), exécute les commands, et répète.
Exemple : un nombre parfait est un nombre qui est égal à la somme de tous ses propres diviseurs. Par exemple, 6 est un nombre parfait car $6 = 1+2+3$. Cette fonction renvoie vrai lorsque son argument est un nombre parfait.

Exemple :

EXPORT ISPERFECT(n)
BEGIN
 LOCAL d, sum;
 2 ▶ d;
 1 ▶ sum;
 WHILE sum < = n AND d < n DO
 IF irem(n,d)==0 THEN
 sum+d ▶ sum;
 END;
 d+1 ▶ d;
 END;
 RETURN sum==n;
END;

Ce programme affiche tous les nombres parfaits jusqu'à 1 000 :

EXPORT PERFECTNUMS()
BEGIN
 LOCAL k;
 FOR k FROM 2 TO 1000 DO
IF ISPERFECT(k) THEN

MSGBOX(k+" est parfait, appuyez sur OK");

END;

END;

END;

BREAK

Syntaxe : BREAK

Permet de quitter une boucle. L'exécution reprend avec la première instruction après la boucle.

CONTINUE

Syntaxe : CONTINUE

Transfère l'exécution au début de l'itération de boucle suivante.

Commandes de matrice

Certaines commandes de matrice prennent comme argument le nom de variable de matrice sur laquelle la commande est appliquée. Les noms valides sont les variables globales M0...M9 ou une variable locale qui contient une matrice.

ADDCOL

Syntaxe : ADDCOL

\(\text{ADDCOL} \)\((\text{nom} [, \text{value}_1,...,\text{valuen}],\text{numéro_colonne})\)

Permet d'ajouter une colonne. Insère les valeurs dans une colonne avant \text{numéro_colonne} dans la matrice spécifiée. Vous entrez les valeurs sous la forme d'un vecteur (ces arguments ne sont pas facultatifs). Les valeurs doivent être séparées par des virgules et le nombre de valeurs doit être le même que le nombre de lignes dans le nom de matrice.

ADDDRROW

Syntaxe : ADDROW

\(\text{ADDDRROW} \)\((\text{nom} [, \text{value}_1,...,\text{valuen}],\text{numéro_ligne})\)

Permet d'ajouter une ligne. Insère les valeurs dans une ligne avant \text{numéro_ligne} dans la matrice spécifiée. Vous entrez les valeurs sous la forme d'un vecteur (ces arguments ne sont pas facultatifs). Les valeurs doivent être séparées par des virgules et le nombre de valeurs doit être le même que le nombre de colonnes dans le nom de matrice.
DELCOL
Syntaxe : DELCOL(nom ,numéro_colonne)
Permet de supprimer une colonne. Supprime la colonne numéro_colonne du nom de matrice.

DELRow
Syntaxe : DELROW(nom ,numéro_ligne)
Permet de supprimer une ligne. Supprime la ligne numéro_ligne du nom de matrice.

EDITMAT
Syntaxe : EDITMAT(nom)
Ouvre l'éditeur de matrices et affiche la matrice spécifiée. En cas d'utilisation dans la programmation, revient au programme lorsque l'utilisateur appuie sur OK. Même si cette commande renvoie la matrice modifiée, il n'est pas possible d'utiliser EDITMAT comme argument pour d'autres commandes de matrice.

RANDMAT
Syntaxe : RANDMAT (nom, lignes, colonnes)
Crée une matrice aléatoire avec un nombre spécifique de lignes et de colonnes, et stocke le résultat dans nom (nom doit être M0...M9). Les entrées sont des nombres entiers compris entre -99 et 99.

REDIM
Syntaxe : REDIM(nom, taille)
Redimensionne le vecteur ou la matrice spécifique (nom) selon la taille. Pour une matrice, la taille correspond à une liste de deux nombres entiers (n1,n2). Pour un vecteur, la taille est une liste contenant un nombre entier (n). Les valeurs existantes de la matrice sont conservées. Les valeurs de remplissage seront 0.

REPLACE
Syntaxe : REPLACE(nom, début, objet)
Remplace la section d'une matrice ou d'un vecteur stockée dans nom par un objet à partir de la position de début. début correspond à une liste contenant deux chiffres pour une matrice, et un chiffre pour un vecteur. REPLACE fonctionne également avec les listes et les graphiques.

SCALE
Syntaxe : SCALE(nom, valeur, numéro_ligne)
Multiplie numéro_ligne pour la matrice spécifiée par valeur.
SCALEADD
Syntaxe : SCALEADD(nom, valeur, ligne1, ligne2)
Multiplie ligne1 pour la matrice (nom) par valeur, puis
ajoute ce résultat à ligne2 de la matrice (nom).

SUB
Syntaxe : SUB(nom, début, fin)
Extrait un sous-objet, portion de liste, matrice ou graphique
d’un objet et le stocke dans le nom. Le début et la fin sont
tous deux spécifiés à l’aide d’une liste à deux nombres
pour une matrice, à un nombre pour un vecteur ou des
listes, ou à paires ordonnées (X,Y) pour les graphiques.

SWAPCOL
Syntaxe : SWAPCOL(nom, colonne1, colonne2)
Echange les colonnes. Echange colonne1 et colonne2
pour la matrice spécifiée (nom).

SWAPROW
Syntaxe : SWAPROW(nom, ligne1, ligne2)
Echange les lignes. Echange ligne1 et ligne2 pour la
matrice spécifiée(nom).

Commandes de chaîne
Une chaîne est une séquence de caractères placée entre
guillemets (""). Pour insérer des guillemets dans une
chaîne, utilisez deux paires de guillemets consécutivement.
Le caractère \ démarre une séquence d’« échappement ».
Le ou les caractères situés juste après sont interprétés de
manière spécifique. \n insère une nouvelle ligne tandis
que deux barres obliques inverses insèrent une barre
oblique inverse. Pour insérer une nouvelle ligne dans la
chaîne, appuyez sur \INTER \ pour insérer le texte à
l’emplacement souhaité.

+
Syntaxe : chaîne1 + chaîne2 ou chaîne1 + expression
Ajoute deux chaînes.
Exemple 1 : "QUICK" + "DRAW" renvoie "QUICKDRAW".
Exemple 2 : 32 ▶ X; "X = " + X renvoie "X = 32".

asc
Syntaxe : asc(chaîne)
Renvoie un vecteur contenant les codes ASCII de la
chaîne chaîne.
Exemple : asc("AB") renvoie [65,66].
char

Syntaxe : `char(vecteur ou int)`

Renvoie la chaîne correspondant aux codes de caractères dans `vecteur`, ou au code unique `int`.

Exemples : `char(65)` renvoie "A" ; `char([82,77,72])` renvoie "RMH".

dim

Syntaxe : `dim(chaine)`

Renvoie le nombre de caractères dans la chaîne `chaine`.

Exemple : `dim("12345")` renvoie 5, `dim("")` et `dim("\n")` renvoient 1 (notez l'utilisation des deux guillemets et la séquence d'échappement).

expr

Syntaxe : `expr(chaine)`

Analyse la chaîne `chaine` sous la forme d'un nombre ou d'une expression.

Exemples : `expr("2+3")` renvoie 5. Si la variable `X` présente la valeur 90, alors `expr("X+10")` renvoie 100.

string

Syntaxe : `string(objet);`

Renvoie une représentation de chaîne de l'`objet`. Le résultat varie selon le type d'`objet`.

`string(2/3);` renvoie `string("2/3")`.

Exemples :

<table>
<thead>
<tr>
<th>Chaîne</th>
<th>Résultat</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string(2/3)</code></td>
<td>"0.666666666667"</td>
</tr>
<tr>
<td><code>string(F1), où F1(X) = COS(X)</code></td>
<td>"COS(X)"</td>
</tr>
<tr>
<td><code>string(L1) où L1 = {1,2,3}</code></td>
<td>"{1,2,3}"</td>
</tr>
<tr>
<td><code>string(M1) où M1 = [1 2 3 4 5 6]</code></td>
<td>"[[1,2,3],[4,5,6]]"</td>
</tr>
</tbody>
</table>
inString

Syntaxe : inString(chaine1, chaine2)
Renvoie l'indice de la première occurrence de chaine2 dans chaine1. Renvoie 0 si chaine2 n'apparaît pas dans chaine1. Notez que le premier caractère d'une chaîne correspond à la position 1.

Exemples :
 inString("vanille","van") renvoie 1.
 inString ("banana", "na") renvoie 3.
 inString("ab", "abc") renvoie 0.

left

Syntaxe : left(chaine, n)
Renvoie les n premiers caractères de la chaîne chaine.
Si n ≥ dim(str) ou n < 0, renvoie chaine. Si n == 0, renvoie la chaîne vide.

Exemple : left("MOMOGUMBO",3) renvoie "MOM".

right

Syntaxe : right(chaine, n)
Renvoie les n derniers caractères de la chaîne chaine.
Si n <= 0, renvoie la chaîne vide. Si n > - dim(chaine), renvoie la chaîne.

Exemple : right("MOMOGUMBO",5) renvoie "GUMBO".

mid

Syntaxe : mid(chaine, pos, [n])
Extrait n caractères de la chaîne chaine en partant de la position d'indice. n est une valeur facultative et, en l'absence de spécification, le reste de la chaîne est extrait.

Exemple : mid("MOMOGUMBO",3,5) renvoie "MOGUM", mid("PUDGE",4) renvoie "GE".

rotate

Syntaxe : rotate(chaine, n)
Permutation des caractères dans la chaîne chaine.
Si 0<=n<dim(chaine), déplace n positions vers la gauche.
Si -dim(chaine)<n<=1, déplace n espaces vers la droite.
Si n > dim(chaine) ou n < -dim(chaine), renvoie chaine.

Exemples :
 rotate("12345",2) renvoie "34512".
 rotate("12345",-1) renvoie "51234".
 rotate("12345",6) renvoie "12345".
Commandes de test
Les commandes de test comprennent les opérations booléennes et relationnelles. Les expressions booléennes et relationnelles s'évaluent par vrai ou faux. La valeur d'un nombre non nul est vrai, tandis que celle d'un nombre égal à 0 est faux. Notez qu'à l'instar des nombres réels, les nombres complexes, les chaînes, les listes et les matrices peuvent être comparés à l'aide des opérateurs relationnels ==, NOT, et (ou <>). Ces commandes ne sont pas accessibles depuis le menu Commandes. Elles apparaissent dans le menu Math mais sont répertoriées ici par souci de commodité.

Expressions relationnelles

```
==
Egalité.
Syntaxe : objet1 == objet2
Exemple : 3+1 == 4 renvoie 1.

<
Inférieur à.
Syntaxe : objet1 < objet2
Exemple : 3+1 < 4 renvoie 0.

<=
Supérieur ou égal à.
Syntaxe : objet1 <= objet2
Exemple : 3+1 <= 4 renvoie 1.

>
Supérieur à.
Syntaxe : objet1 > objet2
Exemple: 3+1 > 4 renvoie 0.

>=
Supérieur ou égal à.
Syntaxe : objet1 >= objet2
Exemple : 3+1 >= 4 renvoie 1.

!= (ou <>)
Différent de.
Syntaxe : objet1 != objet2
Exemple : 3+1 != 4 renvoie 0.
```
Expressions booléennes

AND
And (et) logique.
Syntaxe : `expr1 AND expr2`
Exemple : `3+1==4 AND 4 < 5` renvoie 1.

OR
Or (ou) logique.
Syntaxe : `expr1 OR expr2`
Exemple : `3+1==4 OR 8 < 5` renvoie 1.

XOR
Or (ou) exclusif.
Syntaxe : `expr1 XOR expr2`
Exemple : `3+1==2 XOR 8 < 5` renvoie 0.

NOT
Négation logique.
Syntaxe : `NOT(expr1)`
Exemple : `NOT(3+1==4)` renvoie 0.

Commandes de variables
Ces commandes permettent de contrôler la visibilité d'une variable ou d'une fonction définie par l'utilisateur.

EXPORT
Exporter.
Syntaxe : `EXPORT(NomFonction)`
Exporte la fonction `NomFonction` de sorte qu'elle soit disponible partout et apparaîsse dans le menu Commandes de programmation après une pression sur [UTILSA].

LOCAL
Locale.
Syntaxe : `LOCAL var1, var2,...varn;`
Spécifie que les variables var1, var2, etc. sont des variables locales de leurs programmes respectifs.
Variables et programmes

La calculatrice HP 39gII dispose de trois types de variables : les variables Home, les variables d’application et les variables d’utilisateur. Le menu Variables (Vars) permet de récupérer les variables Home, d’application et d’utilisateur.

Les variables Home s’utilisent pour les nombres réels, les nombres complexes, les graphiques, les listes et les matrices (entre autres). Les valeurs des variables Home sont identiques dans l’écran Home et dans les applications.

Les variables d’application sont celles dont les valeurs dépendent de l’application en cours. En programmation, les variables d’application servent à représenter les définitions et les paramètres créés à partir d’une interaction avec les applications.

Les variables d’utilisateur sont exportées à partir d’un programme d’utilisateur. Elles fournissent un ou plusieurs processus permettant aux programmes de communiquer avec le reste de la calculatrice ou avec d’autres programmes. Une fois qu’une variable a été exportée à partir d’un programme, elle figure dans les variables d’utilisateur du menu Vars, à côté de son programme source.

Ce chapitre est consacré aux variables d’application et d’utilisateur. Pour plus d’informations sur les variables Home, consultez le chapitre Variables et gestion de la mémoire.

Variables d’application

Toutes les applications n’utilisent pas la totalité des variables d’application. Par exemple, S1fit s’utilise uniquement dans l’application Statistiques 2Var. Cependant, la plupart des variables sont communes aux applications Fonction, Paramétrique, Polaire, Suite, Résoudre, Statistiques 1Var et Statistiques 2Var. Lorsqu’une variable est indisponible dans l’ensemble de ces applications, ou lorsqu’elle est disponible uniquement dans d’autres applications, une liste des applications dans lesquelles elle peut être utilisée apparaît sous le nom de la variable.

Les sections suivantes énumèrent les variables d’application en fonction de la vue dans laquelle elles sont utilisées.
Variables de la vue graphique

Axes
Active ou désactive les axes. Dans Configuration graphique, cochez (ou décochez) AXES.

Ou, dans un programme, saisissez :

- 0 ▶ Axes—pour activer les axes (par défaut).
- 1 ▶ Axes—pour désactiver les axes.

** Curseur**
Définit le type de pointeurs. (Un pointeur inversé ou clignotant s’avère utile lorsque l’arrière-plan est uni).

Dans Configuration graphique, sélectionnez Curseur.

Ou, dans un programme, saisissez :

- 0 ▶ CrossType—pour des pointeurs unis (par défaut).
- 1 ▶ CrossType—pour inverser les pointeurs.
- 2 ▶ CrossType—pour obtenir des pointeurs clignotants.

GridDots
Active ou désactive la grille de points dans la vue graphique.

Dans Configuration graphique, cochez (ou décochez) RESEAU de POINTS.

Ou, dans un programme, saisissez :

- 0 ▶ GridDots—pour activer le réseau de points (par défaut).
- 1 ▶ GridDots—pour désactiver le réseau de points.

GridLines
Active ou désactive le quadrillage dans la vue graphique.

Dans Configuration graphique, cochez (ou décochez) QUADRILLAGE.

Ou, dans un programme, saisissez :

- 0 ▶ GridLines—pour activer le quadrillage (par défaut).
- 1 ▶ GridLines—pour désactiver le quadrillage.
Hmin/Hmax
Statistiques 1Var
Définit les valeurs minimale et maximale des barres d'histogrammes.
Dans le menu Configuration graphique pour les statistiques une variable, définissez les valeurs de HRNG.
Ou, dans un programme, entrez :

 \[n_1 \rightarrow \text{Hmin} \]
 \[n_2 \rightarrow \text{Hmax} \]

où \(n_1 < n_2 \)

Hwidth
Statistiques 1Var
Définit la largeur des barres d'histogramme.
Dans le menu Configuration graphique pour les statistiques une variable, définissez la valeur de Hwidth.
Ou, dans un programme, entrez :

 \[n \rightarrow \text{Hwidth} \]

Etiquettes
Dessine des étiquettes dans la vue graphique pour indiquer les étendues X et Y.
Dans Configuration graphique, cochez (ou décochez) Labels.
Ou, dans un programme, entrez :

 \[1 \rightarrow \text{Labels} \]—pour activer les étiquettes (par défaut)
 \[0 \rightarrow \text{Labels} \]—pour désactiver les étiquettes.

Nmin/Nmax
Suite
Définit les valeurs minimale et maximale des variables indépendantes.
Apparaît en tant que champs NRNG dans le formulaire de saisie Configuration graphique. Dans Configuration graphique, saisissez les valeurs de NRNG.
Ou, dans un programme, entrez :

 \[n_1 \rightarrow \text{Nmin} \]
 \[n_2 \rightarrow \text{Nmax} \]

où \(n_1 < n_2 \)

Recentrer
Recentre l'écran sur l'emplacement du curseur lors du zoom.
Dans Graphique-Zoom- Définir facteurs, cochez (ou décochez) Recentrer.
Ou, dans un programme, entrez :

0 ▶ Recenter — pour activer le recentrage (par défaut).

1 ▶ Recenter — pour désactiver le recentrage.

S1mark-S5mark

Statistiques 2Var

Définit les repères à utiliser dans les diagrammes de dispersion.

Dans le menu Configuration graphique pour les statistiques deux variables, surlignez une valeur comprise dans S1mark-S5mark et sélectionnez un repère.

Ou, dans un programme, entrez :

\[n ▶ S1mark \]

où \(n \) est 1,2,3,...5

SeqPlot

Suite

Vous permet de choisir entre des graphiques de suite en escalier ou en toile d’araignée.

Dans Configuration graphique, sélectionnez SeqPlot, puis choisissez Escalier ou Toile d’araignée.

Ou, dans un programme, entrez :

0 ▶ SeqPlot—pour Escalier.

1 ▶ SeqPlot—pour Toile d’araignée.

θmin/θmax

Polaire

Définit les valeurs indépendantes minimale et maximale.

Apparaît en tant que champ RNG dans le formulaire de saisie Configuration graphique. Dans Configuration graphique, saisissez les valeurs de RNG.

Ou, dans un programme, entrez :

\[n_1 ▶ θ min \]

\[n_2 ▶ θ max \]

où \(n_1 < n_2 \)

θstep

Polaire

Définit la taille du pas d’une variable indépendante.

Dans Configuration graphique, saisissez une valeur pour STEP.

Ou, dans un programme, entrez :

\[n ▶ θ step \]

où \(n > 0 \)
Tmin/Tmax
Paramétrique
Définit les valeurs de variables indépendantes minimale et maximale.

Apparaît en tant que champ **TRNG** dans le formulaire de saisie **Configuration graphique**. Dans **Configuration graphique**, saisissez les valeurs de **TRNG**.

Ou, dans un programme, entrez :

\[n_1 \rightarrow \text{Tmin} \]
\[n_2 \rightarrow \text{Tmax} \]

où \(n_1 < n_2 \)

Tstep
Paramétrique
Définit la taille du pas d’une variable indépendante.

Dans **Configuration graphique**, saisissez une valeur pour **TSTEP**.

Ou, dans un programme, saisissez :

\[n \rightarrow \text{Tstep} \]

où \(n > 0 \)

Xtick
Définit la distance entre les marques de graduation de l’axe horizontal.

Dans **Configuration graphique**, saisissez une valeur pour **Xtick**.

Ou, dans un programme, entrez :

\[n \rightarrow \text{Xtick} \text{ où } n > 0 \]

Ytick
Définit la distance entre les marques de graduation de l’axe vertical.

Dans **Configuration graphique**, saisissez une valeur pour **Ytick**.

Ou, dans un programme, entrez :

\[n \rightarrow \text{Ytick} \text{ où } n > 0 \]

Xmin/Xmax
Définit les valeurs horizontales minimale et maximale de l’écran de tracé.

Apparaît en tant que champs **XRNG** (étendue horizontale) dans le formulaire de saisie **Configuration graphique**. Dans **Configuration graphique**, saisissez les valeurs de **XRNG**.
Ou, dans un programme, entrez :

\[n_1 \rightarrow X_{\min} \]

\[n_2 \rightarrow X_{\max} \]

où \(n_1 < n_2 \)

Ymin/Ymax

Définit les valeurs verticales minimale et maximale de l'écran de tracé.

Apparaît en tant que champs YRNG (étendue verticale) dans le formulaire de saisie Configuration graphique. Dans Configuration graphique, saisissez les valeurs de YRNG.

Ou, dans un programme, entrez :

\[n_1 \rightarrow Y_{\min} \]

\[n_2 \rightarrow Y_{\max} \]

où \(n_1 < n_2 \)

Xzoom

Définit le facteur de zoom horizontal.

Dans Configuration graphique (\[\frac{X}{\text{zoom}} \]), appuyez sur \[\text{MENU} \], puis sur \[\text{ZOOM} \]. Faites défiler jusqu'à Définir les facteurs, sélectionnez-le, puis appuyez sur \[\text{OK} \]. Entrez la valeur de Zoom X, puis appuyez sur \[\text{OK} \].

Ou, dans un programme, entrez :

\[n \rightarrow X_{\text{zoom}} \]

où \(n > 0 \)

La valeur par défaut est 4.

Yzoom

Dans Configuration graphique (\[\frac{Y}{\text{zoom}} \]), appuyez sur \[\text{MENU} \], puis sur \[\text{ZOOM} \]. Faites défiler jusqu'à Définir les facteurs, sélectionnez-le, puis appuyez sur \[\text{OK} \]. Saisissez la valeur de Zoom Y, puis appuyez sur \[\text{OK} \].

Ou, dans un programme, entrez :

\[n \rightarrow Y_{\text{zoom}} \]

La valeur par défaut est 4.
Variables de la vue symbolique

AltHyp

Inference

Détermine l’hypothèse alternative utilisée lors d’un test d’hypothèses. Sélectionnez une option dans la vue symbolique.

Ou, dans un programme, entrez :

0 ▶ AltHyp — pour μ < μ₀

1 ▶ AltHyp — pour μ > μ₀

2 ▶ AltHyp — pour μ ≠ μ₀

E0...E9

Résoudre

Peut contenir n’importe quelle équation ou expression. Pour sélectionner une variable indépendante, mettez-la en surbrillance dans la vue numérique.

Exemple :

X + Y * X - 2 = Y ▶ E₁

F0...F9

Fonction

Peut contenir n’importe quelle expression. La variable indépendante est X.

Exemple :

SIN(X) ▶ F₁

H1...H5

Statistiques 1Var

Contient les valeurs des données d’une analyse statistique une variable. Par exemple, H1(n) renvoie la valeur nième des valeurs définies pour l’analyse H1.

H1Type...H5Type

Statistiques 1Var

Définit le type de tracé utilisé pour représenter graphiquement les analyses statistiques H1 à H5. Dans la vue Configuration symbolique, spécifiez le type de tracé dans les champs Type 1, Type 2, etc.

Sinon, dans un programme, mémorisez l’un des entiers ou noms de constantes suivants dans les variables H1Type, H2Type, etc.

0 Histogramme (par défaut)

1 Diagramme de quartiles

2 Graphique à échelle fonctionnelle normale

3 Graphique en lignes
4 Graphique en barres
5 Diagramme de Pareto

Exemple :

2 ► H3Type

Méthode

Inférence

Détermine si l’application Inférence est configurée pour calculer les résultats des tests d’hypothèses ou les intervalles de confiance.

Ou, dans un programme, saisissez :

0 ► Méthode pour Test d’hypothèse
1 ► Méthode pour Intervalle de confiance

R0...R9

Polaire

Peut contenir n’importe quelle expression. La variable indépendante est θ.

Exemple :

$2 \cdot \sin(2 \cdot \theta) \ ► R1$

S1...S5

Statistiques 2Var

Contient les valeurs des données d’une analyse statistique à 2 variables. Par exemple, S1(n) renvoie la nième paire de données du jeu de données de l’analyse S1. Sans aucun argument, cette fonction renvoie une liste contenant le nom de la colonne indépendante, celui de la colonne dépendante et le numéro du type d’ajustement.

S1Type...S5Type

Statistiques 2Var

Définit le type d’ajustement à utiliser avec l’opération FIT pour représenter la ligne de régression. Dans la vue Configuration symbolique, spécifiez l’ajustement dans les champs Type1, Type2, etc.

Ou, dans un programme, mémorisez l’un des entiers ou noms de constantes suivants dans une variable S1Type, S2Type, etc.

0 Linéaire
1 Logarithmique
2 Exponentiel
3 Puissance
4 Exposant
5 Inverse
6 Logistique
7 Quadratique
8 Cube
9 Quartique
10 Défini par l'utilisateur

Exemple :

Cube ▶ S2type

ou

8 ▶ S2type

Détermine le type de test d'hypothèse ou d'intervalle de confiance et dépend de la valeur de la variable Méthode. Faites un choix dans la vue symbolique.

Ou, dans un programme, mémorisez la constante de la liste ci-dessous dans la variable Type. Si Méthode = 0, les valeurs de constantes et leurs significations sont les suivantes :

0 Z-Test:1 μ
1 Z-Test: μ₁ – μ₂
2 Z-Test: 1 π
3 Z-Test: π₁ – π₂
4 T-Test:1 μ
5 T-Test: μ₁ – μ₂

Si Méthode = 1, les constantes et leurs significations sont les suivantes :

0 Z-Int:1 μ
1 Z-Int: μ₁ – μ₂
2 Z-Int: 1 π
3 Z-Int: π₁ – π₂
4 T-Int: 1 \(\mu \)

5 T-Int: \(\mu_1 - \mu_2 \)

X0, Y0...X9,Y9
Paramétrique

Peut contenir n’importe quelle expression. La variable indépendante est \(T \).

Exemple :

\[\text{SIN}(4*T) \rightarrow Y1; 2 \ast \text{SIN}(6*T) \rightarrow X1 \]

U0...U9
Séquence

Peut contenir n’importe quelle expression. La variable indépendante est \(N \).

Exemple :

\[\text{RECURSE} \ (U, U(N-1) \ast N, 1, 2) \rightarrow U1 \]

Variables de la vue numérique

C0...C9
Statistiques 2Var

Les colonnes de données sont intitulées C0 à C9. Ces variables peuvent contenir des listes.

Entrez les données dans la vue numérique.

Ou, dans un programme, entrez :

\[\text{LIST} \quad \text{Cn} \]

où \(n = 0, 1, 2, 3 \ldots 9 \) et \(\text{LIST} \) représente une liste ou le nom d’une liste.

D0...D9
Statistiques 1Var

Les colonnes de données sont intitulées D0 à D9. Ces variables peuvent contenir des listes.

Entrez les données dans la vue numérique.

Ou, dans un programme, entrez :

\[\text{LIST} \quad \text{Dn} \]

où \(n = 0, 1, 2, 3 \ldots 9 \) et \(\text{LIST} \) représente une liste ou le nom d’une liste.
NumIndep
Fonction
Paramétrique
Polaire
Suite
Spécifie la liste de valeurs indépendantes à utiliser avec l'option Création de votre propre tableau. Entrez vos valeurs une par une dans la vue numérique.

Ou, dans un programme, entrez :

```
LIST ▶ NumIndep
```
List peut représenter une liste ou le nom d'une liste.

NumStart
Fonction
Paramétrique
Polaire
Suite
Définit la valeur initiale d'un tableau dans la vue numérique.
Dans la vue Configuration numérique, entrez une valeur pour NUMSTART.
Ou, dans un programme, entrez :

```
n ▶ NumStart
```

NumStep
Fonction
Paramétrique
Polaire
Suite
Définit la taille du pas (valeur incrémentielle) d'une variable indépendante dans la vue numérique.
Dans la vue Configuration numérique, entrez une valeur pour NUMSTEP.
Ou, dans un programme, entrez :

```
n ▶ NumStep
```
 où \(n > 0 \)

NumType
Fonction
Paramétrique
Polaire
Suite
Définit le format du tableau.
Dans la vue Configuration numérique, entrez 0 ou 1.
Ou, dans un programme, entrez :

```
0 ▶ NumType pour Automatique par défaut)
1 ▶ NumType pour Votre propre création
```

NumZoom
Fonction
Paramétrique
Polaire
Suite
Définit le facteur de zoom dans la vue numérique.
Dans la vue Configuration numérique, saisissez une valeur pour NUMZOOM.
Ou, dans un programme, entrez :

```
n ▶ NumZoom
```
 où \(n > 0 \)
Variables de l'application Inférence

Les variables suivantes sont utilisées par l'application Inférence : Elles correspondent aux champs de la vue numérique de l'application Inférence. L'ensemble de variables de cette vue dépend du test d'hypothèse ou de l'intervalle de confiance sélectionné dans la vue symbolique.

Alpha
Définit le niveau alpha du test d'hypothèse. Dans la vue numérique, définissez la valeur de Alpha.

Ou, dans un programme, entrez :

\[n \rightarrow \text{Alpha} \]

où \(0 < n < 1\)

Conf
Définit le niveau de confiance de l'intervalle de confiance. Dans la vue numérique, définissez la valeur de Conf.

Ou, dans un programme, entrez :

\[n \rightarrow \text{Conf} \]

où \(0 < n < 1\)

Mean1
Définit la valeur de la moyenne d'un échantillon pour un intervalle de confiance ou un test d'hypothèse à une moyenne. Pour un test ou un intervalle à deux moyennes, cette variable définit la valeur de la moyenne du premier échantillon. Dans la vue numérique, définissez la valeur de Mean1.

Ou, dans un programme, entrez :

\[n \rightarrow \text{Mean1} \]

Mean2
Pour un test ou un intervalle à deux moyennes, cette variable définit la valeur de la moyenne du deuxième échantillon. Dans la vue numérique, définissez la valeur de Mean2.

Ou, dans un programme, entrez :

\[n \rightarrow \text{Mean2} \]

Les variables suivantes sont utilisées pour configurer le calcul des tests d'hypothèses ou des intervalles de confiance dans l'application Inférence.
μ0
Définit la valeur donnée de la moyenne de la population d'un test d'hypothèse. Dans la vue numérique, définissez la valeur de μ0.

Ou, dans un programme, entrez :

```
n ▶ μ0
```

où 0 < μ0 < 1

n1
Définit la taille de l'échantillon d'un test d'hypothèse ou d'un intervalle de confiance. Pour un test ou un intervalle impliquant la différence de deux moyennes ou de deux proportions, cette variable définit la taille du premier échantillon. Dans la vue numérique, définissez la valeur de n1.

Ou, dans un programme, entrez :

```
n ▶ n1
```

n2
Pour un test ou un intervalle impliquant la différence de deux moyennes ou de deux proportions, cette variable définit la taille du deuxième échantillon. Dans la vue numérique, définissez la valeur de n2.

Ou, dans un programme, entrez :

```
n ▶ n2
```

π0
Définit la proportion de succès donnée du test Z sur une proportion. Dans la vue numérique, définissez la valeur de π0.

Ou, dans un programme, entrez :

```
n ▶ π0
```

où 0 < π0 < 1

Regroupement
Détermine s'il faut regrouper ou non les échantillons des tests ou des intervalles utilisant la distribution T de Student et impliquant deux moyennes. Dans la vue numérique, définissez la valeur de Regroupement.

Ou, dans un programme, entrez :

```
0 ▶ Regroupement - sans regroupement (par défaut)
1 ▶ Regroupement - avec regroupement
```
Définit l’écart-type de l’échantillon d’un test d’hypothèse ou d’un intervalle de confiance. Pour un test ou un intervalle impliquant la différence de deux moyennes ou de deux proportions, cette variable définit l’écart-type du premier échantillon. Dans la vue numérique, définissez la valeur de s_1.

Ou, dans un programme, entrez :

\[
n \rightarrow s_1
\]

σ_2

Définit l’écart-type de la population d’un test d’hypothèse ou d’un intervalle de confiance. Pour un test ou un intervalle impliquant la différence de deux moyennes ou de deux proportions, cette variable définit l’écart-type de la population du deuxième échantillon. Dans la vue numérique, définissez la valeur de σ_2.

Ou, dans un programme, entrez :

\[
n \rightarrow \sigma_2
\]

x_1

Définit le nombre de succès d’un intervalle de confiance ou d’un test d’hypothèse sur une proportion. Pour un test ou un intervalle impliquant la différence de deux proportions, cette variable définit le nombre de succès du premier échantillon. Dans la vue numérique, définissez la valeur de x_1.

Ou, dans un programme, entrez :

\[
n \rightarrow x_1
\]
Ou, dans un programme, entrez :

\[n \cdot x_1 \]

x2

Pour un test ou un intervalle impliquant la différence de deux proportions, cette variable définit le nombre de succès du deuxième échantillon. Dans la vue numérique, définissez la valeur de x2.

Ou, dans un programme, entrez :

\[n \cdot x_2 \]

Variables de l'application Finance

Les variables suivantes sont utilisées par l'application Finance : Elles correspondent aux champs de la vue numérique de l'application Finance.

CPYR

Périodes de calcul par an. Définit le nombre de période de calcul par an pour un calcul de flux financier. Dans la vue numérique de l'application Finance, entrez une valeur pour C/YR.

Ou, dans un programme, entrez :

\[n \cdot \text{CPYR} \]

où \(n > 0 \)

FIN

Détermine si l'intérêt est calculé au début ou à la fin de la période de calcul. Dans la vue numérique de l'application Finance, cochez ou décochez FIN.

Ou, dans un programme, entrez :

\[1 \cdot \text{FIN} \] pour effectuer le calcul à la fin de la période (par défaut)

\[0 \cdot \text{FIN} \] pour effectuer le calcul au début de la période

FV

Valeur capitalisée. Définit la valeur capitalisée d'un investissement. Dans la vue numérique de l'application Finance, entrez une valeur pour FV.

Ou, dans un programme, entrez :

\[n \cdot \text{FV} \]

Remarque : les valeurs positives représentent un retour sur investissement ou prêt.
IPYR Intérêt par an. Définit le taux d’intérêt annuel d’un flux financier. Dans la vue numérique de l’application Finance, entrez une valeur pour I%YR.
Ou, dans un programme, entrez :

\[n \downarrow \text{IPYR} \]

où \(n > 0 \)

NbPmt Nombre de paiements. Définit le nombre de paiements pour un flux financier. Dans la vue numérique de l’application Finance, entrez une valeur pour N.
Ou, dans un programme, entrez :

\[n \downarrow \text{NbPmt} \]

où \(n > 0 \)

PMT Valeur de paiement. Définit la valeur de chaque paiement d’un flux financier. Dans la vue numérique de l’application Finance, entrez une valeur pour PMT.
Ou, dans un programme, entrez :

\[n \downarrow \text{PMT} \]

Notez que les valeurs de paiement sont négatives si vous effectuez le paiement et sont positives si vous le recevez.

PPYR Paiements par an. Définit le nombre de paiements effectués par an pour un calcul de flux financier. Dans la vue numérique de l’application Finance, entrez une valeur pour P/YR.
Ou, dans un programme, entrez :

\[n \downarrow \text{PPYR} \]

où \(n > 0 \)

PV Valeur actualisée. Définit la valeur actualisée d’un investissement. Dans la vue numérique de l’application Finance, entrez une valeur pour PV.
Ou, dans un programme, entrez :

\[n \downarrow \text{PV} \]

Remarque : les valeurs négatives représentent un investissement ou un prêt.
GSize
Taille du groupe. Définit la taille de chaque groupe pour le tableau d’amortissement. Dans la vue numérique de l’application Finance, entrez une valeur pour Taille du groupe.

Ou, dans un programme, entrez :

\[n \rightarrow \text{GSize} \]

Variables de l’application Solveur d’équation linéaire

LSys\text{tem}
Contient une matrice 2x3 ou 3x4 représentant un système linéaire 2x2 ou 3x3. Dans la vue numérique de l’application Solveur d’équation linéaire, entrez les coefficients et les constantes du système linéaire.

Ou, dans un programme, entrez :

\begin{align*}
\text{matrix} &\rightarrow \text{LSys}\text{tem} \\
\text{matrix} &\text{représente une matrice ou le nom d’une des variables de matrices (M0-M9).}
\end{align*}

Size
Contient la taille du système linéaire. Dans la vue numérique de l’application Solveur d’équation linéaire, appuyez sur \(2 \) ou \(3 \).

Ou, dans un programme, saisissez :

\begin{align*}
2 &\rightarrow \text{Size pour un système linéaire 2x2} \\
3 &\rightarrow \text{Size pour un système linéaire 3x3}
\end{align*}

Variables de l’application Solveur de triangle

SideA
Longueur du côté A. Définit la longueur du côté opposé à l’angle A. Dans la vue numérique de l’application Solveur de triangle, entrez une valeur positive pour A.

Ou, dans un programme, entrez :

\[n \rightarrow \text{SideA} \]

\[\text{où } n > 0 \]
SideB
Longueur du côté B. Définit la longueur du côté opposé à l'angle B. Dans la vue numérique de l'application Solveur de triangle, entrez une valeur positive pour B.
Ou, dans un programme, entrez :
\[n \rightarrow \text{SideB} \]
où \(n > 0 \)

SideC
Longueur du côté C. Définit la longueur du côté opposé à l'angle C. Dans la vue numérique de l'application Solveur de triangle, entrez une valeur positive pour C.
Ou, dans un programme, entrez :
\[n \rightarrow \text{SideC} \]
où \(n > 0 \)

AngleA
Mesure de l'angle A. Définit la mesure de l'angle \(\alpha \). La valeur de cette variable sera interprétée en fonction du paramètre de mode d'angle (Degrés ou Radians). Dans la vue numérique de l'application Solveur de triangle, entrez une valeur positive pour l'angle \(\alpha \).
Ou, dans un programme, entrez :
\[n \rightarrow \text{AngleA} \]
où \(n > 0 \)

AngleB
Mesure de l'angle B. Définit la mesure de l'angle \(\beta \). La valeur de cette variable sera interprétée en fonction du paramètre de mode d'angle (Degrés ou Radians). Dans la vue numérique de l'application Solveur de triangle, entrez une valeur positive pour l'angle \(\beta \).
Ou, dans un programme, entrez :
\[n \rightarrow \text{AngleB} \]
où \(n > 0 \)

AngleC
Mesure de l'angle C. Définit la mesure de l'angle \(\delta \). La valeur de cette variable sera interprétée en fonction du paramètre de mode d'angle (Degrés ou Radians). Dans la vue numérique de l'application Solveur de triangle, entrez une valeur positive pour l'angle \(\delta \).
Ou, dans un programme, entrez :
\[n \rightarrow \text{AngleC} \]
où \(n > 0 \)
RECT

Correspond à l’état de **RECT** dans la vue numérique de l’application Solveur de triangle. Détermine si un solveur de triangle quelconque ou un solveur de triangle rectangle est utilisé. Dans la vue Solveur de triangle, appuyez sur **RECT**.

Ou, dans un programme, entrez :

- 0►RECT pour le solveur de triangle quelconque
- 1►RECT pour le solveur de triangle rectangle

Variables de modes

Les variables suivantes sont disponibles dans le formulaire de saisie Modes de Home. Il est possible d’écarter ces variables dans la configuration symbolique d’une application.

Ans

Contient le dernier résultat calculé dans la vue Home.

HAngle

Définit l’unité d’angle dans la vue Home. Dans la vue Modes, choisissez Degrés ou Radians pour la mesure d’angle. Ou, dans un programme, entrez :

- 0►HAngle pour Degrés
- 1►HAngle pour Radians

HDigits

Définit le nombre de chiffres pour un format numérique autre que Standard dans la vue Home. Dans la vue Modes, entrez une valeur dans le deuxième champ de Format numérique.

Ou, dans un programme, entrez :

- n►HDigits, où 0<n<11.

HFormat

Définit le format numérique utilisé dans la vue Home. Dans la vue Modes, choisissez Standard, Fixe, Scientifique ou Ingénierie dans le champ Format numérique.

Ou, dans un programme, stockez l’un des numéros (ou noms) de constantes suivants dans la variable HFormat :

- 0 Standard
- 1 Fixe
- 2 Scientifique
- 3 Ingénierie
HComplex
Définit le mode de nombre complexe pour la vue Home. Dans la vue Modes, cochez ou décochez le champ Complex. Ou, dans un programme, entrez :

- 0 > HComplex pour désactiver l’option
- 1 > HComplex pour activer l’option

Langue
Définit la langue. Dans la vue Modes, choisissez une langue dans le champ Langue.

Ou, dans un programme, stockez l’un des numéros de constantes suivants dans la variable Langue :

- 1 Anglais
- 2 Chinois
- 3 Français
- 4 Allemand
- 5 Espagnol
- 6 Néerlandais
- 7 Italien

Les variables suivantes sont disponibles dans la configuration symbolique d’une application. Il est possible de les utiliser pour écarter la valeur de la variable correspondante dans la vue Modes de Home.

AAngle
Définit le mode d’angle.

Dans la configuration symbolique, choisissez Système, Degrés ou Radians pour la mesure d’angle. Système (par défaut) force la mesure d’angle à concorder avec celle définie dans la vue Modes.

Ou, dans un programme, entrez :

- 0 > AAngle pour Système (par défaut)
- 1 > AAngle pour Degrés
- 2 > AAngle pour Radians

AComplex
Définit le mode de nombre complexe.

Dans la configuration symbolique, choisissez Système, Marche ou Arrêt. Système (par défaut) force ce paramètre à concorder avec celui correspondant dans l’écran Modes de Home.
Ou, dans un programme, entrez :

0 ➤ AComplex pour Système (par défaut)
1 ➤ AComplex pour Marche
2 ➤ AComplex pour Arrêt

ADigits

Définit le nombre de décimales à utiliser pour le format numérique Fixe dans la configuration symbolique de l’application. Affecte les résultats dans la vue Home.

Dans la configuration symbolique, entrez une valeur dans le deuxième champ de Format numérique.

Ou, dans un programme, entrez :

\[n \Rightarrow \text{ADigits} \]

où \(0 < n < 11\)

AFormat

Définit le format d’affichage utilisé pour le format numérique dans la vue Home et pour étiqueter les axes dans la vue graphique.

Dans la configuration symbolique, choisissez Standard, Fixe, Scientifique ou Ingénierie dans le champ Format numérique.

Ou, dans un programme, mémorisez le numéro (ou nom) de constante dans la variable AFormat :

0 Système
1 Standard
2 Fixe
3 Scientifique
4 Ingénierie

Exemple :

Scientifique ➤ AFormat
ou

3 ➤ AFormat

Variables de résultats

Ces variables sont disponibles dans chaque vue. Elles capturent les résultats des calculs, tels que ceux effectués lorsque vous appuyez sur la touche de menu \(\text{STATS}\) dans la vue numérique de l’application Statistiques 1Var.
Les variables de résultats suivantes mémorisent les calculs de l'application Fonction. Elles mémorisent les résultats des commandes du menu FCN de la vue graphique.

Zone
Contient la dernière valeur trouvée par la fonction Zone signée dans le menu FCN de la vue graphique.

Extrême
Contient la dernière valeur trouvée par l'opération Extrème dans le menu FCN de la vue graphique.

Isect
Contient la dernière valeur trouvée par la fonction Intersection dans le menu FCN de la vue graphique.

Racine
Contient la dernière valeur trouvée par la fonction Racine dans le menu FCN de la vue graphique.

Pente
Contient la dernière valeur trouvée par la fonction Pente dans le menu FCN de la vue graphique.
La variable de résultat suivante mémorise les calculs de l'application Solveur d'équation linéaire. Ces calculs correspondent à la solution à un système linéaire 2x2 ou 3x3.

LSolution
Contient un vecteur avec la dernière solution trouvée par l'application Solveur d'équation linéaire ou par la fonction d'application LSolve.

Les variables de résultats suivantes mémorisent les calculs de l'application Statistiques 1Var. Ces calculs sont effectués lorsque vous appuyez sur STAT dans la vue numérique ou lorsque la commande Do1VarStats est exécutée.

NbItem
Contient le nombre de points de données de l'analyse à une variable actuelle (H1−H5).

Min
Contient la valeur minimale du jeu de données de l'analyse à une variable actuelle (H1−H5).

Q1
Contient la valeur du premier quartile de l'analyse à une variable actuelle (H1−H5).

Med
Contient la médiane de l'analyse à une variable actuelle (H1−H5).

Q3
Contient la valeur du troisième quartile de l'analyse à une variable actuelle (H1−H5).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>Contient la valeur maximale de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
<tr>
<td>ΣX</td>
<td>Contient la somme du jeu de données de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
<tr>
<td>ΣX²</td>
<td>Contient la somme des carrés du jeu de données de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
<tr>
<td>MeanX</td>
<td>Contient la moyenne du jeu de données de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
<tr>
<td>sX</td>
<td>Contient l’écart-type de l’échantillon du jeu de données de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
<tr>
<td>σX</td>
<td>Contient l’écart-type de la population du jeu de données de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
<tr>
<td>serrX</td>
<td>Contient l’erreur type du jeu de données de l’analyse à une variable actuelle (H1-H5).</td>
</tr>
</tbody>
</table>

Les variables de résultats suivantes mémorisent les calculs de l’application Statistiques 2Var. Ces calculs sont effectués lorsque vous appuyez sur la touche **STAT** dans la vue numérique ou lorsque la commande Do2VarStats est exécutée.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NbItem</td>
<td>Contient le nombre de points de données de l’analyse à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>Corr</td>
<td>Contient le coefficient de corrélation du dernier calcul de statistiques récapitulatives. Cette valeur dépend de l’ajustement linéaire uniquement, quel que soit le type d’ajustement choisi.</td>
</tr>
<tr>
<td>CoefDet</td>
<td>Contient le coefficient de détermination du dernier calcul de statistiques récapitulatives. Cette valeur dépend du type d’ajustement choisi.</td>
</tr>
<tr>
<td>sCov</td>
<td>Contient la covariance de l’échantillon de l’analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>σCov</td>
<td>Contient la covariance de la population de l’analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>ΣXY</td>
<td>Contient la somme des produits X Y de l’analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>MeanX</td>
<td>Contient la moyenne des valeurs indépendantes (X) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>ΣX</td>
<td>Contient la somme des valeurs indépendantes (X) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>ΣX²</td>
<td>Contient la somme des carrés des valeurs indépendantes (X) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>sX</td>
<td>Contient l'écart-type de l'échantillon des valeurs indépendantes (X) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>σX</td>
<td>Contient l'écart-type de la population des valeurs indépendantes (X) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>serrX</td>
<td>Contient l'erreur type des valeurs indépendantes (X) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>MeanY</td>
<td>Contient la moyenne des valeurs dépendantes (Y) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>ΣY</td>
<td>Contient la somme des valeurs dépendantes (Y) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>ΣY²</td>
<td>Contient la somme des carrés des valeurs dépendantes (Y) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>sY</td>
<td>Contient l'écart-type de l'échantillon des valeurs dépendantes (Y) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>σY</td>
<td>Contient l'écart-type de la population des valeurs dépendantes (Y) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
<tr>
<td>serrY</td>
<td>Contient l'erreur type des valeurs dépendantes (Y) de l'analyse statistique à deux variables actuelle (S1-S5).</td>
</tr>
</tbody>
</table>

Les variables de résultats suivantes mémorisent les calculs de l'application Inférence. Ces calculs sont effectués lorsque vous appuyez sur CALC dans la vue numérique.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CritScore</td>
<td>Contient la valeur de la distribution Z ou t associée à la valeur α.</td>
</tr>
</tbody>
</table>
CritVal1 Contient la valeur critique inférieure de la variable expérimentale associée à la valeur TestScore négative calculée à partir du niveau α.

CritVal2 Contient la valeur critique supérieure de la variable expérimentale associée à la valeur TestScore positive calculée à partir du niveau α.

DF Contient les degrés de liberté des tests t.

Prob Contient la probabilité associée à la valeur TestScore.

Result Pour des tests d’hypothèses, cette variable contient 0 ou 1 pour indiquer le rejet ou non de l’hypothèse nulle.

TestScore Contient la valeur de la distribution Z ou t calculée à partir des opérations du test d’hypothèse ou de l’intervalle de confiance.

TestValue Contient la valeur de la variable expérimentale associée à la valeur TestScore.

Fonctions d’application
Les fonctions d’application sont utilisées par plusieurs applications HP pour effectuer les calculs courants. Par exemple, dans l’application Fonction, le menu FCN de la vue graphique comprend une fonction SLOPE qui calcule la pente d’une fonction donnée à un point donné. Il est possible d’utiliser la fonction SLOPE, dans la vue Home ou dans un programme, pour obtenir les mêmes résultats que si vous étiez dans la vue graphique de l’application Fonction. Il est possible d’utiliser les fonctions d’application dans un programme, dans la vue Home ou ailleurs pour obtenir les mêmes résultats que si vous étiez dans l’application. Les fonctions d’application décrites dans cette section sont regroupées par application.

Fonctions de l’application Fonction
Les fonctions de l’application Fonction proposent les mêmes fonctionnalités que celles de la vue graphique de l’application Fonction, sous le menu FCN. Toutes ces opérations sont basées sur les fonctions. Les fonctions peuvent être des expressions dans X ou les noms des variables de l’application Fonction (F0 à F9).
AREA
Zone sous une courbe ou entre deux courbes. Détermine une zone signée sous une fonction ou entre deux fonctions. Détecte la zone située sous la fonction \(F_n \) ou entre la fonction \(F_n \) et la fonction \(F_m \), de la valeur \(x_{\text{inférieure}} \) à la valeur \(x_{\text{supérieure}} \).

\[
\text{AREA}(F_n, [F_m], \text{inférieure, supérieure})
\]

Exemple :
\[
\text{AREA}(x, x^2-2, -2, 1) \text{ renvoie } 4.5
\]

EXTREMUM
Extrême d’une fonction. Détermine l’extrême (s’il en existe un) de la fonction \(F_n \), le plus proche de la valeur \(x \) d’essai.

\[
\text{EXTREMUM}(F_n, \text{supposition})
\]

Exemple :
\[
\text{EXTREMUM}(x^2-x-2, 0) \text{ renvoie } 0.5
\]

ISECT
Intersection de deux fonctions. Détermine l’intersection (s’il en existe une) des fonctions \(F_n \) et \(F_m \), la plus proche de la valeur \(x \) d’essai.

\[
\text{ISECT}(F_n, F_m, \text{supposition})
\]

Exemple :
\[
\text{ISECT}(x, 3-x^2) \text{ renvoie } 1.5
\]

ROOT
Racine d’une fonction. Détermine la racine de la fonction \(F_n \) (s’il en existe une), la plus proche de la valeur \(x \) d’essai.

\[
\text{ROOT}(F_n, \text{supposition})
\]

Exemple :
\[
\text{ROOT}(3-x^2, 2) \text{ renvoie } 1.732…
\]

SLOPE
Pente d’une fonction. Renvoie la pente de la fonction \(F_n \) pour la valeur \(x \) (si elle existe).

\[
\text{SLOPE}(F_n, \text{valeur})
\]

Exemple :
\[
\text{SLOPE}(3-x^2, 2) \text{ renvoie } -4
\]
Fonctions de l'application Résoudre

L’application Résoudre comprend une fonction unique qui résout une expression ou une équation donnée pour l’une de ses variables. **En** peut être une équation ou une expression, ou bien le nom de l’une des variables (E0-E9) de la vue symbolique de l’application Résoudre.

SOLVE

Résoudre. Résout une équation pour l’une de ses variables. Résout l’équation **En** pour la variable **var**, en utilisant la valeur de **supposition** comme valeur initiale pour la valeur de la variable **var**. Si **En** est une expression, la valeur de la variable **var** qui définit l’expression sur zéro est renvoyée.

SOLVE(En, var, supposition)

Exemple :

SOLVE(X^2-X-2, X, 3) renvoie 2

Cette fonction renvoie également un entier présentant le type de solution trouvée, comme suit :

0 : une solution exacte a été trouvée.
1 : une solution approximative a été trouvée.
2 : un extrême a été trouvé, aussi proche d’une solution que possible.
3 : aucune solution, aucune approximation, ni aucun extrême n’a été trouvé.

Pour plus d’informations sur les types de solutions renvoyées par cette fonction, reportez-vous au chapitre **Application Résoudre**.

Fonctions de l’application Statistiques 1Var

L’application Statistiques 1Var dispose de trois fonctions conçues pour fonctionner ensemble afin de calculer des statistiques récapitulatives, en fonction de l’une des analyses statistiques (**H1-H5**) définies dans la vue symbolique de l’application Statistiques 1Var.

Do1VStats

Do1:statistiques de variables. Effectue les mêmes calculs que lorsque vous appuyez sur **STATS** dans la vue numérique de l’application Statistiques 1Var et stocke les résultats dans les variables de résultats appropriées de l’application Statistiques 1Var. **Hn** doit être l’une des variables (**H1-H5**) de la vue symbolique de l’application Statistiques 1Var.

Do1VStats(Hn)
SETFREQ

Définition de la fréquence. Définit la fréquence de l’une des analyses statistiques (H1-H5) définies dans la vue symbolique de l’application Statistiques 1Var. La fréquence peut être l’une des variables de colonnes (D0-D9) ou un entier positif. Hn doit être l’une des variables (H1-H5) de la vue symbolique de l’application Statistiques 1Var. Si vous l’utilisez, Dn doit être l’une des variables de colonnes (D0-D9). Sinon, valeur doit être un entier positif.

\[\text{SETFREQ}(Hn, Dn) \]

ou

\[\text{SETFREQ}(Hn, \text{valeur}) \]

SETSAMPLE

Définition des données d’échantillon. Définit les données d’échantillon de l’une des analyses statistiques (H1-H5) définies dans la vue symbolique de l’application Statistiques 1Var. Définit la colonne de données pour l’une des variables de colonnes (D0-D9) de l’une des analyses statistiques (H1-H5).

\[\text{SETSAMPLE}(Hn, Dn) \]

Fonctions de l’application Statistiques 2Var

L’application Statistiques 2Var comprend plusieurs fonctions. Certaines sont conçues pour calculer des statistiques récapitulatives, en fonction de l’une des analyses statistiques (S1-S5) définies dans la vue symbolique de l’application Statistiques 2Var. D’autres prévoient les mesures X et Y en fonction de l’ajustement spécifié dans l’une des analyses.

Do2VStats

Do2: statistiques de variables. Effectue les mêmes calculs que lorsque vous appuyez sur \[\text{STATS} \] dans la vue numérique de l’application Statistiques 2Var et stocke les résultats dans les variables de résultats appropriées de l’application Statistiques 2Var. Sn doit être l’une des variables (S1-S5) de la vue symbolique de l’application Statistiques 2Var.

\[\text{Do2VStats}(Sn) \]

PredX

Prévision de la valeur X. Utilise l’ajustement de la première analyse active (S1-S5) détectée pour prévoir une valeur x en fonction de la valeur y.

\[\text{PredX}(\text{valeur}) \]
PredY
Prévision de la valeur Y. Utilise l’ajustement de la
première analyse active (S1-S5) détectée pour prévoir
une valeur y en fonction de la valeur x.

PredY(valeur)

Resid
Résidus. Calcule une liste de résidus, selon les données
de colonne et l’ajustement défini dans la vue symbolique
via S1-S5.

Resid(Sn) ou Resid()

Resid() recherche la première analyse définie dans la vue
symbolique (S1-S5).

SetDepend
Définition d’une colonne dépendante. Définit la colonne
dépendante de l’une des analyses statistiques (S1-S5)
pour l’une des variables de colonnes (C0-C9).

SetDepend(Sn, Cn)

SetIndep
Définition d’une colonne indépendante. Définit la
colonne indépendante de l’une des analyses statistiques
(S1-S5) pour l’une des variables de colonnes (C0-C9).

SetIndep(Sn, Cn)

Fonctions de
l’application
Inférence
L’application Inférence comprend une fonction unique qui
renvoie les mêmes résultats que lorsque vous appuyez sur
Calc dans la vue numérique de l’application Inférence.
Les résultats dépendent du contenu des variables
Méthode, Type et AltHyp de l’application Inférence.

DoInference
Calcule l’intervalle de confiance ou le test d’hypothèse.
Effectue les mêmes calculs que lorsque vous appuyez sur
Calc dans la vue numérique de l’application Inférence
et stocke les résultats dans les variables de résultats
appropriées de l’application Inférence.

DoInference()

Fonctions de
l’application
Finance
L’application Finance utilise un ensemble de fonctions
correspondant au même ensemble de variables de
l’application Finance. Il existe cinq variables TVM
principales, dont quatre sont obligatoires pour chacune
des ces fonctions (sauf DoFinance). Il existe trois autres
variables qui sont facultatives et qui disposent de valeurs
par défaut. Ces variables surviennent comme des
arguments pour les fonctions de l’application Finance et ce, dans l’ordre suivant :
- NbPmt : nombre de paiements
- IPYR : taux d’intérêt annuel
- PV : valeur actualisée d’un investissement ou d’un prêt
- PMTV : valeur de paiement
- FV : valeur capitalisée d’un investissement ou d’un prêt
- PPYR : nombre de paiement par an (12 par défaut)
- CPYR : nombre de périodes de calcul par an (12 par défaut)
- FIN : paiements effectués à la fin de la période

Les arguments PPYR, CPYR et FIN sont facultatifs. S’ils ne sont pas fournis, PPYR = 12, CPYR = PPYR et FIN = 1.

CalcFV
Résout la valeur capitalisée d’un investissement ou d’un prêt.
CalcFV(NbPmt, IPYR, PV, PMTV[,PPYR, CPYR, FIN])

CalcIPYR
Résout le taux d’intérêt par an d’un investissement ou d’un prêt.
CalcIPYR(NbPmt, PV, PMTV, FV[,PPYR, CPYR, FIN])

CalcNbPmt
Résout le nombre de paiements pour un investissement ou un prêt.
CalcNbPmt(IPYR, PV, PMTV, FV[,PPYR, CPYR, FIN])

CalcPMTV
Résout la valeur d’un paiement pour un investissement ou un prêt.
CalcPMTV(NbPmt, IPYR, PV, FV[,PPYR, CPYR, FIN])

CalcPV
Résout la valeur actualisée d’un investissement ou d’un prêt.
CalcPV(NbPmt, IPYR, PMTV, FV[,PPYR, CPYR, FIN])

DoFinance
Calcule les résultats TVM. Résout un problème TVM pour la variable TVMVar. La variable doit être l’une des variables de la vue numérique de l’application Finance. Effectue les mêmes calculs que lorsque vous appuyez sur SOLVE dans la vue numérique de l’application Finance et lorsque la variable TVMVar est mise en surbrillance.
DoFinance(TVMVar)
Exemple :

DoFinance(FV) renvoie la valeur capitalisée d'un investissement comme lorsque vous appuyez sur SOLVE dans la vue numérique de l'application Finance et lorsque la variable FV est en surbrillance.

Fonctions de l'application Solveur d'équation linéaire

L'application Solveur d'équation linéaire comprend trois fonctions qui permettent aux utilisateurs de résoudre des systèmes d'équations linéaires 2x2 ou 3x3.

Solve2x2

Résout un système linéaire d'équations 2x2.

Solve2x2(a, b, c, d, e, f)

Résout le système linéaire représenté sous la forme suivante :

\[
\begin{align*}
ax + by &= c \\
dx + ey &= f
\end{align*}
\]

Solve3x3

Résout un système linéaire d'équations 3x3.

Solve3x3(a, b, c, d, e, f, g, h, i, j, k, l)

Résout le système linéaire représenté sous la forme suivante :

\[
\begin{align*}
ax + by + cz &= d \\
x + fy + gz &= h \\
x + jy + kz &= l
\end{align*}
\]

LinSolve

Résout un système linéaire. Résout le système linéaire 2x2 ou 3x3 représenté sous la forme d'une matrice.

LinSolve(matrice)

Exemple :

LinSolve([[A, B, C], [D, E, F]]) résout le système linéaire :

\[
\begin{align*}
ax + by &= c \\
dx + ey &= f
\end{align*}
\]
<table>
<thead>
<tr>
<th>Fonctions de l’application Solveur de triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’application Solveur de triangle comprend un groupe de fonctions qui permet de résoudre un triangle entier à partir de la saisie de trois parties consécutives du triangle. Les noms de ces commandes utilisent A pour signifier un angle et S pour spécifier la longueur d’un côté. Pour utiliser ces commandes, entrez trois opérations dans l’ordre spécifié par le nom de la commande. Toutes ces commandes renvoient une liste de 6 éléments comprenant les trois arguments entrés avec la commande et les trois valeurs inconnues (longueurs des côtés et mesures des angles).</td>
</tr>
<tr>
<td>AAS</td>
</tr>
<tr>
<td>AAS(angle, angle, côté)</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>ASA(angle, côté, angle)</td>
</tr>
<tr>
<td>SAS</td>
</tr>
<tr>
<td>SAS(côté, angle, côté)</td>
</tr>
<tr>
<td>SSA</td>
</tr>
<tr>
<td>SSA(côté, côté, angle)</td>
</tr>
<tr>
<td>SSS</td>
</tr>
<tr>
<td>SSS(côté, côté, côté)</td>
</tr>
<tr>
<td>DoSolve</td>
</tr>
</tbody>
</table>
DoSolve()

Exemple :

En mode Degrés, \(S\alpha S(2, 90, 2) \) renvoie \{ 45, 2.82...45 \}.

Dans le cas indéterminé \(\alpha\alpha S \), où deux solutions sont possibles, \(\alpha\alpha S \) peut renvoyer une liste comprenant les deux résultats.

Fonctions d'application communes

En plus des fonctions d'application spécifiques à chaque application, il existe deux fonctions communes aux applications suivantes :

- Fonction
- Résoudre
- Statistiques 1Var
- Statistiques 2Var
- Paramétrique
- Polaire
- Suite

CHECK

Coche la variable \(S\text{ymbn} \) de la vue symbolique. \(S\text{ymbn} \) peut être l'une des propositions suivantes :

- \(F0-F9 \) pour l'application Fonction
- \(E0-E9 \) pour l'application Résoudre
- \(H1-H5 \) pour l'application Statistiques 1Var
- \(S1-S5 \) pour l'application Statistiques 2Var
- \(X0/Y0-X9/Y9 \) pour l'application Paramétrique
- \(R0-R9 \) pour l'application Polaire
- \(U0-U9 \) pour l'application Suite

CHECK(\text{Symbn})

Exemple :

CHECK(\text{F1}) coche la variable F1 de la vue symbolique de l'application Fonction. Résultat : F1(X) est représenté dans la vue graphique et comprend une colonne de valeurs de fonction dans la vue numérique de l'application Fonction.
Décroche la variable $Symbn$ de la vue symbolique.

\texttt{UNCHECK}(Symbn)

Exemple :

\texttt{UNCHECK(R1)} décroche la variable $R1$ de la vue symbolique de l’application Polaire. Résultat : $R1(\theta)$ n’est pas représenté dans la vue graphique et n’apparaît pas dans la vue numérique de l’application Polaire.
Informations de référence

Glossaire

<table>
<thead>
<tr>
<th>term</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>Petit programme conçu pour étudier un ou plusieurs sujets liés ou résoudre des problèmes d’un type spécifique. Les applications intégrées sont les suivantes : Fonction, Résoudre, Statistiques 1Var, Statistiques 2Var, Inférence, Paramétrique, Polaire, Suite, Finance, Solveur d’équation linéaire, Solveur de triangle, Explorateur linéaire, Explorateur quadratique et Explorateur trigo. Une application peut contenir les données et solutions relatives à un problème spécifique. À l’instar d’un programme, elle est réutilisable (mais est plus facile à utiliser) et enregistre tous vos paramètres et définitions.</td>
</tr>
<tr>
<td>Bibliothèque</td>
<td>Utilisée pour la gestion des applications : démarrage, enregistrement, réinitialisation, envoi et réception.</td>
</tr>
<tr>
<td>commande</td>
<td>Opération conçue pour être utilisée dans un programme. Les commandes peuvent stocker des résultats dans des variables, mais ne les affichent pas.</td>
</tr>
<tr>
<td>expression</td>
<td>Nombre, variable, ou expression algébrique (nombres plus fonctions) produisant une valeur.</td>
</tr>
<tr>
<td>fonction</td>
<td>Opération, parfois accompagnée d’arguments, renvoyant un résultat. Une fonction ne stocke pas de résultats dans des variables. Les arguments doivent être entre parenthèses et séparés par des virgules.</td>
</tr>
<tr>
<td>Home</td>
<td>Point de démarrage de base de la calculatrice. Accédez à la vue Home pour réaliser des calculs.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>liste</td>
<td>Ensemble de valeurs séparées par des virgules et placées entre crochets. Les listes sont fréquemment utilisées pour saisir des données statistiques et évaluer une fonction avec plusieurs valeurs. Elles sont créées et traitées par l'éditeur de listes et le catalogue de listes.</td>
</tr>
<tr>
<td>menu</td>
<td>Choix d'options affiché. Il peut apparaître sous forme de liste ou d'un ensemble de libellés de touches de menu en bas de l'écran.</td>
</tr>
<tr>
<td>note</td>
<td>Texte entré dans l'éditeur de notes ou dans la vue Infos d'une application.</td>
</tr>
<tr>
<td>programme</td>
<td>Ensemble d'instructions réutilisable, enregistré au moyen de l'éditeur de programmes.</td>
</tr>
<tr>
<td>variable</td>
<td>Nom d'un nombre, d'une liste, d'une matrice ou d'un graphique stocké en mémoire. Utilisez pour le stockage et pour l'extraction.</td>
</tr>
<tr>
<td>vecteur</td>
<td>Représentation unidimensionnelle de valeurs séparées par des virgules et placées entre crochets simples. Elles sont créées et traitées par le catalogue de matrices et l'éditeur de matrices.</td>
</tr>
</tbody>
</table>
Réinitialisation de la calculatrice HP 39gII

Si la calculatrice « se verrouille » et semble bloquée, vous devez la réinitialiser. Cela ressemble au redémarrage d’un ordinateur. La réinitialisation annule certaines opérations, rétablit certaines conditions et efface les emplacements de mémoire temporaire. Toutefois, elle n’efface pas les données stockées (variables, bases de données d’applications, programmes) sauf lorsque vous suivez la procédure décrite dans la section « Pour effacer toute la mémoire et réinitialiser les valeurs par défaut » ci-dessous.

Pour réinitialiser
Appuyez simultanément sur les touches ON/C et F3 et maintenez-les enfoncées, puis relâchez-les.

Pour effacer toute la mémoire et réinitialiser les valeurs par défaut

Si la calculatrice ne répond pas aux procédures de réinitialisation mentionnées ci-dessus, vous devrez la redémarrer en effaçant toute sa mémoire. Vous perdrez alors toutes les données stockées. Tous les paramètres d’usine par défaut seront restaurés.

1. Appuyez simultanément sur les touches ON/C, n et F6 et maintenez-les enfoncées.
2. Relâchez toutes les touches dans l’ordre inverse.
Si la calculatrice ne s'allume pas

Si la calculatrice HP 39gII ne s'allume pas, suivez la procédure ci-dessous jusqu’à obtenir l’allumage. Il est possible que la calculatrice s’allume avant la fin de la procédure. Si elle ne s’allume toujours pas une fois la procédure achevée, veuillez contacter le Service clientèle pour plus d’informations.

1. Appuyez sur \(\text{ON/C} \) en maintenant la touche enfoncée pendant 10 secondes, puis relâchez-la.
2. Appuyez sur les touches \(\text{ON/C} \) et \(\text{F3} \) simultanément en les maintenant enfoncées, puis relâchez \(\text{F3} \), et enfin \(\text{ON/C} \).
3. Appuyez simultanément sur les touches \(\text{ON/C} \), \(\text{F1} \) et \(\text{F6} \) et maintenez-les enfoncées. Relâchez \(\text{F6} \), puis \(\text{F1} \), et enfin \(\text{ON/C} \).
4. Retirez les piles, appuyez sur \(\text{ON/C} \) en maintenant la touche enfoncée pendant 10 secondes, puis replacez les piles et appuyez sur \(\text{ON/C} \).

Piles

Les 4 piles AAA (LR03) constituent la principale source d’alimentation de la calculatrice.

Pour installer les piles

Avertissement : lorsque le témoin indique un niveau de piles faible, vous devez changer les piles dès que possible.
Installez les piles selon la procédure suivante :

1. Eteignez la calculatrice.
2. Faites coulisser le capot du compartiment des piles.
3. Insérez 4 piles AAA (LR03) neuves dans le compartiment.
4. Assurez-vous que chaque pile est insérée dans le sens indiqué.
5. Une fois les piles installées, appuyez sur [ON/C] pour allumer la calculatrice.

Avertissement ! Il existe un risque d’explosion dans le cas d’un remplacement inadéquat des piles. Remplacez les piles uniquement par le même type ou un type équivalent recommandé par le fabricant. Mettez les piles usagées au rebut conformément aux instructions du fabricant. N’ouvrez pas les piles, ne les perforez pas et ne les jetez pas au feu. Les piles risquent d’exploser, en relachant des produits chimiques dangereux.

Informations de fonctionnement

Température de fonctionnement : 0° à 45 °C (32° à 113 °F).

Température de stockage : -20° à 65 °C (-4° à 149 °F).

Humidité de fonctionnement et de stockage : 90 % d’humidité relative à 40 °C (104 °F) maximum. Evitez de mouiller la calculatrice.

Les piles fonctionnent à 6 V CC, 80 mA maximum.
Variables

Variables de la vue Home

Les variables de la vue Home sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexe</td>
<td>Z1...Z9, Z0</td>
</tr>
<tr>
<td>Graphique</td>
<td>G1...G9, G0</td>
</tr>
<tr>
<td>Bibliothèque</td>
<td>Fonction, Résoudre, Statistiques 1Var, Statistiques 2Var, Inférence, Paramétrique, Polaire, Suite, Finance, Solveur d'équation linéaire, Solveur de triangle</td>
</tr>
<tr>
<td></td>
<td>Programmes nommés par l'utilisateur</td>
</tr>
<tr>
<td>Liste</td>
<td>L1...L9, L0</td>
</tr>
<tr>
<td>Matrice</td>
<td>M1...M9, M0</td>
</tr>
<tr>
<td>Modes</td>
<td>Ans, HAngle, HDigits, HFormat, HComplex, Langue</td>
</tr>
<tr>
<td>Programme</td>
<td>Fonction, Résoudre, Statistiques 1Var, Statistiques 2Var, Inférence, Paramétrique, Polaire, Suite, Finance, Solveur d'équation linéaire, Solveur de triangle</td>
</tr>
<tr>
<td></td>
<td>Programmes nommés par l'utilisateur</td>
</tr>
<tr>
<td>Réel</td>
<td>A...Z, θ</td>
</tr>
</tbody>
</table>
Variables d’application

Variables de l’application Fonction

Les variables de l’application Fonction sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résultats</td>
<td>Zone, Extrême, Isect, Racine, Pente</td>
</tr>
<tr>
<td>Symbolique</td>
<td>F1, F2, F3, F4, F5, F6, F7, F8, F9, F0</td>
</tr>
<tr>
<td>Tracé</td>
<td>Axes, Xmax, Xmin, Xtick, Xzoom, Labels, Ymax, Ymin, Ytick, Yzoom, Recentrer, Traçage</td>
</tr>
<tr>
<td>Numérique</td>
<td>NumStart, NumStep, NumType, NumZoom</td>
</tr>
<tr>
<td>Modes</td>
<td>AAngle, AComplex, ADigits, AFormat</td>
</tr>
</tbody>
</table>

Variables de l’application Résoudre

Les variables de l’application Résoudre sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolique</td>
<td>E1, E2, E3, E4, E5, E6, E7, E8, E9, E0</td>
</tr>
</tbody>
</table>
Variables de l’application Statistiques 1Var

Les variables de l’application Statistiques 1Var sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résultats</td>
<td>NbItem, ΣX, ΣX2, MeanX, sX, α, σX, σerrX</td>
</tr>
<tr>
<td>Symbolique</td>
<td>H1, H1Type, H2, H2Type, H3, H3Type, H4, H4Type, H5, H5Type</td>
</tr>
<tr>
<td>Tracé</td>
<td>Axes, Xmax, Curseur, Xmin, GridDots, Xtick, GridLines, Xzoom, Labels, Ymax, Méthode, Ymin, Recentrer, Ytick, Traçage, Yzoom</td>
</tr>
<tr>
<td>Numérique</td>
<td>D1, D6, D2, D7, D3, D8, D4, D9, D5, D0</td>
</tr>
<tr>
<td>Modes</td>
<td>AAngle, ADigits, AComplex, AFormat</td>
</tr>
</tbody>
</table>
Variables de l’application Statistiques 2Var

Les variables de l’application Statistiques 2Var sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résultats</td>
<td></td>
</tr>
<tr>
<td>NbItem</td>
<td>sX</td>
</tr>
<tr>
<td>Corr</td>
<td>σ</td>
</tr>
<tr>
<td>CoefDet</td>
<td>serrX</td>
</tr>
<tr>
<td>sCov</td>
<td>MeanY</td>
</tr>
<tr>
<td>Cov</td>
<td>ΣY</td>
</tr>
<tr>
<td>ΣXY</td>
<td>ΣY2</td>
</tr>
<tr>
<td>MeanX</td>
<td>sY</td>
</tr>
<tr>
<td>ΣX</td>
<td>σX</td>
</tr>
<tr>
<td>ΣX2</td>
<td>serrY</td>
</tr>
<tr>
<td>Symbolique</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>S1Type</td>
</tr>
<tr>
<td>S2</td>
<td>S2Type</td>
</tr>
<tr>
<td>S3</td>
<td>S3Type</td>
</tr>
<tr>
<td>S4</td>
<td>S4Type</td>
</tr>
<tr>
<td>S5</td>
<td>S5Type</td>
</tr>
<tr>
<td>Tracé</td>
<td></td>
</tr>
<tr>
<td>Axes</td>
<td>Xmax</td>
</tr>
<tr>
<td>Curseur</td>
<td>Xmin</td>
</tr>
<tr>
<td>GridDots</td>
<td>Xtick</td>
</tr>
<tr>
<td>GridLines</td>
<td>Xzoom</td>
</tr>
<tr>
<td>Labels</td>
<td>Ymax</td>
</tr>
<tr>
<td>Méthode</td>
<td>Ymin</td>
</tr>
<tr>
<td>Recenterre</td>
<td>Ytick</td>
</tr>
<tr>
<td>Traçage</td>
<td>Yzoom</td>
</tr>
<tr>
<td>Numérique</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>C6</td>
</tr>
<tr>
<td>C2</td>
<td>C7</td>
</tr>
<tr>
<td>C3</td>
<td>C8</td>
</tr>
<tr>
<td>C4</td>
<td>C9</td>
</tr>
<tr>
<td>C5</td>
<td>C0</td>
</tr>
<tr>
<td>Modes</td>
<td></td>
</tr>
<tr>
<td>AAngle</td>
<td>ADigits</td>
</tr>
<tr>
<td>AComplex</td>
<td>AFormat</td>
</tr>
</tbody>
</table>
Variables de l'application Inférence

Les variables de l’application Inférence sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résultats</td>
<td></td>
</tr>
<tr>
<td>TestScore</td>
<td>CritScore</td>
</tr>
<tr>
<td>TestValue</td>
<td>CritVal1</td>
</tr>
<tr>
<td>Prob</td>
<td>CritVal2</td>
</tr>
<tr>
<td>DF</td>
<td></td>
</tr>
<tr>
<td>Symbolique</td>
<td></td>
</tr>
<tr>
<td>AltHyp</td>
<td>Type</td>
</tr>
<tr>
<td>Méthode</td>
<td></td>
</tr>
<tr>
<td>Numérique</td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>Regroupemen</td>
</tr>
<tr>
<td>Conf</td>
<td>t</td>
</tr>
<tr>
<td>Mean1</td>
<td>s1</td>
</tr>
<tr>
<td>Mean2</td>
<td>s2</td>
</tr>
<tr>
<td>n1</td>
<td>α1</td>
</tr>
<tr>
<td>n2</td>
<td>α2</td>
</tr>
<tr>
<td>μ0</td>
<td>x1</td>
</tr>
<tr>
<td>π0</td>
<td>x2</td>
</tr>
<tr>
<td>Modes</td>
<td></td>
</tr>
<tr>
<td>AAngle</td>
<td>ADigits</td>
</tr>
<tr>
<td>AComplex</td>
<td>AFormat</td>
</tr>
</tbody>
</table>

Variables de l'application Paramétrique

Les variables de l’application Paramétrique sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolique</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>X6</td>
</tr>
<tr>
<td>Y1</td>
<td>Y6</td>
</tr>
<tr>
<td>X2</td>
<td>X7</td>
</tr>
<tr>
<td>SY2</td>
<td>Y7</td>
</tr>
<tr>
<td>X3</td>
<td>X8</td>
</tr>
<tr>
<td>Y3</td>
<td>Y8</td>
</tr>
<tr>
<td>X4</td>
<td>X9</td>
</tr>
<tr>
<td>Y4</td>
<td>Y9</td>
</tr>
<tr>
<td>X5</td>
<td>X0</td>
</tr>
<tr>
<td>Y5</td>
<td>Y0</td>
</tr>
</tbody>
</table>
Variables de l'application Polaire

Les variables de l’application Polaire sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>R2</td>
</tr>
<tr>
<td></td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td>R4</td>
</tr>
<tr>
<td></td>
<td>R5</td>
</tr>
<tr>
<td></td>
<td>R6</td>
</tr>
<tr>
<td></td>
<td>R7</td>
</tr>
<tr>
<td></td>
<td>R8</td>
</tr>
<tr>
<td></td>
<td>R9</td>
</tr>
<tr>
<td></td>
<td>R0</td>
</tr>
<tr>
<td>Tracé</td>
<td>Axes</td>
</tr>
<tr>
<td></td>
<td>Xmax</td>
</tr>
<tr>
<td></td>
<td>Curseur</td>
</tr>
<tr>
<td></td>
<td>Xmin</td>
</tr>
<tr>
<td></td>
<td>GridDots</td>
</tr>
<tr>
<td></td>
<td>Xtick</td>
</tr>
<tr>
<td></td>
<td>GridLines</td>
</tr>
<tr>
<td></td>
<td>Xzoom</td>
</tr>
<tr>
<td></td>
<td>Labels</td>
</tr>
<tr>
<td></td>
<td>Ymax</td>
</tr>
<tr>
<td></td>
<td>Méthode</td>
</tr>
<tr>
<td></td>
<td>Ymin</td>
</tr>
<tr>
<td></td>
<td>Recenter</td>
</tr>
<tr>
<td></td>
<td>Ytick</td>
</tr>
<tr>
<td></td>
<td>Traçage</td>
</tr>
<tr>
<td></td>
<td>Yzoom</td>
</tr>
<tr>
<td>Numérique</td>
<td>NumStart</td>
</tr>
<tr>
<td></td>
<td>NumType</td>
</tr>
<tr>
<td></td>
<td>NumStep</td>
</tr>
<tr>
<td></td>
<td>NumZoom</td>
</tr>
<tr>
<td>Modes</td>
<td>AAngle</td>
</tr>
<tr>
<td></td>
<td>ADigits</td>
</tr>
<tr>
<td></td>
<td>AComplex</td>
</tr>
<tr>
<td></td>
<td>AFormat</td>
</tr>
</tbody>
</table>
Variables de l'application Suite

Les variables de l'application Suite sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolique</td>
<td>U1, U6</td>
</tr>
<tr>
<td>U2</td>
<td>U7</td>
</tr>
<tr>
<td>U3</td>
<td>U8</td>
</tr>
<tr>
<td>U4</td>
<td>U9</td>
</tr>
<tr>
<td>U5</td>
<td>U0</td>
</tr>
<tr>
<td>Tracé</td>
<td>Axes, Xmax</td>
</tr>
<tr>
<td>U6</td>
<td>Xmin</td>
</tr>
<tr>
<td>U7</td>
<td>GridDots, Xtick</td>
</tr>
<tr>
<td>U8</td>
<td>GridLines, Xzoom</td>
</tr>
<tr>
<td>U9</td>
<td>Labels, Ymax</td>
</tr>
<tr>
<td>U0</td>
<td>Métode, Ymin</td>
</tr>
<tr>
<td></td>
<td>Recentrer, Ytick</td>
</tr>
<tr>
<td></td>
<td>Traçage, Yzoom</td>
</tr>
<tr>
<td>Fonctions</td>
<td>NumStart, NumType</td>
</tr>
<tr>
<td></td>
<td>NumStep, NumZoom</td>
</tr>
<tr>
<td>Modes</td>
<td>AAngle, ADigits</td>
</tr>
<tr>
<td></td>
<td>AComplex, AFormat</td>
</tr>
</tbody>
</table>

Variables de l'application Finance

Les variables de l'application Finance sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numérique</td>
<td>CPYR, NbPmt</td>
</tr>
<tr>
<td>FIN</td>
<td>PMT</td>
</tr>
<tr>
<td>FV</td>
<td>PPYR</td>
</tr>
<tr>
<td>FSize</td>
<td>NBV</td>
</tr>
<tr>
<td>IPYR</td>
<td>V</td>
</tr>
</tbody>
</table>
Variables de l'application Solveur d'équation linéaire

Les variables de l'application Solveur d'équation linéaire sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résultats</td>
<td>LSolution</td>
</tr>
<tr>
<td>Numérique</td>
<td>LSystem Taille</td>
</tr>
<tr>
<td>Modes</td>
<td>AAngle ADigits</td>
</tr>
<tr>
<td></td>
<td>ACComplex AFormat</td>
</tr>
</tbody>
</table>

Variables de l'application Solveur de triangle

Les variables de l'application Solveur de triangle sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numérique</td>
<td>AngleA SideA</td>
</tr>
<tr>
<td></td>
<td>AngleB SideB</td>
</tr>
<tr>
<td></td>
<td>AngleC SideC</td>
</tr>
<tr>
<td></td>
<td>Rect</td>
</tr>
<tr>
<td>Modes</td>
<td>AAngle ADigits</td>
</tr>
<tr>
<td></td>
<td>ACComplex AFormat</td>
</tr>
</tbody>
</table>

Variables de l'application Explorateur linéaire

Les variables de l'application Explorateur linéaire sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modes</td>
<td>AAngle ADigits</td>
</tr>
<tr>
<td></td>
<td>ACComplex AFormat</td>
</tr>
</tbody>
</table>
Variables de l'application Explorateur quadratique

Les variables de l'application Explorateur quadratique sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modes</td>
<td>AAngle</td>
</tr>
<tr>
<td></td>
<td>AComplex</td>
</tr>
<tr>
<td></td>
<td>ADigits</td>
</tr>
<tr>
<td></td>
<td>AFormat</td>
</tr>
</tbody>
</table>

Variables de l'application Explorateur trigo.

Les variables de l'application Explorateur trigo. sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modes</td>
<td>AAngle</td>
</tr>
<tr>
<td></td>
<td>AComplex</td>
</tr>
<tr>
<td></td>
<td>ADigits</td>
</tr>
<tr>
<td></td>
<td>AFormat</td>
</tr>
</tbody>
</table>
Fonctions et commandes

Fonctions du menu Math

Les fonctions du menu Math sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Fonctions disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcul</td>
<td>(\partial)</td>
</tr>
<tr>
<td></td>
<td>(\int)</td>
</tr>
<tr>
<td></td>
<td>((\text{Where}))</td>
</tr>
<tr>
<td>Complexes</td>
<td>ARG</td>
</tr>
<tr>
<td></td>
<td>CONJ</td>
</tr>
<tr>
<td></td>
<td>IM</td>
</tr>
<tr>
<td></td>
<td>RE</td>
</tr>
<tr>
<td>Constantes</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>MAXREAL</td>
</tr>
<tr>
<td></td>
<td>MINREAL</td>
</tr>
<tr>
<td>Distribution</td>
<td>normald</td>
</tr>
<tr>
<td></td>
<td>normald_cdf</td>
</tr>
<tr>
<td></td>
<td>normald_icdf</td>
</tr>
<tr>
<td></td>
<td>binomial</td>
</tr>
<tr>
<td></td>
<td>binomial_cdf</td>
</tr>
<tr>
<td></td>
<td>binomial_icdf</td>
</tr>
<tr>
<td></td>
<td>chisquare</td>
</tr>
<tr>
<td></td>
<td>chisquare_cdf</td>
</tr>
<tr>
<td></td>
<td>chisquare_icdf</td>
</tr>
<tr>
<td>Hyperboliques</td>
<td>ACOSH</td>
</tr>
<tr>
<td></td>
<td>ASINH</td>
</tr>
<tr>
<td></td>
<td>ATANH</td>
</tr>
<tr>
<td></td>
<td>ATANH</td>
</tr>
<tr>
<td></td>
<td>ACOSH</td>
</tr>
<tr>
<td></td>
<td>ASINH</td>
</tr>
<tr>
<td>Nombre entier</td>
<td>ichinrem</td>
</tr>
<tr>
<td></td>
<td>idivis</td>
</tr>
<tr>
<td></td>
<td>iegcd</td>
</tr>
<tr>
<td></td>
<td>ifactor</td>
</tr>
<tr>
<td></td>
<td>ifactors</td>
</tr>
<tr>
<td></td>
<td>igcd</td>
</tr>
<tr>
<td></td>
<td>iguo</td>
</tr>
<tr>
<td></td>
<td>igeu</td>
</tr>
<tr>
<td></td>
<td>iguorem</td>
</tr>
<tr>
<td></td>
<td>irem</td>
</tr>
<tr>
<td>Liste</td>
<td>CONCAT</td>
</tr>
<tr>
<td></td>
<td>(\Delta \text{LIST})</td>
</tr>
<tr>
<td></td>
<td>(\text{MAKELIST})</td>
</tr>
<tr>
<td></td>
<td>(\text{πLIST})</td>
</tr>
<tr>
<td></td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>REVERSE</td>
</tr>
<tr>
<td></td>
<td>SIZE</td>
</tr>
<tr>
<td></td>
<td>(\Sigma \text{LIST})</td>
</tr>
<tr>
<td></td>
<td>(\text{SORT})</td>
</tr>
</tbody>
</table>

343
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Fonctions disponibles (Suite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boucle</td>
<td>ITERATE</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
</tr>
<tr>
<td>Matrice</td>
<td>COLNORM</td>
</tr>
<tr>
<td></td>
<td>QR</td>
</tr>
<tr>
<td></td>
<td>COND</td>
</tr>
<tr>
<td></td>
<td>RANK</td>
</tr>
<tr>
<td></td>
<td>CROSS</td>
</tr>
<tr>
<td></td>
<td>ROWNORM</td>
</tr>
<tr>
<td></td>
<td>DET</td>
</tr>
<tr>
<td></td>
<td>RREF</td>
</tr>
<tr>
<td></td>
<td>DOT</td>
</tr>
<tr>
<td></td>
<td>SCHUR</td>
</tr>
<tr>
<td></td>
<td>EIGENVAL</td>
</tr>
<tr>
<td></td>
<td>SIZE</td>
</tr>
<tr>
<td></td>
<td>EIGENUV</td>
</tr>
<tr>
<td></td>
<td>SPECNORM</td>
</tr>
<tr>
<td></td>
<td>IDENMAT</td>
</tr>
<tr>
<td></td>
<td>SPECRAD</td>
</tr>
<tr>
<td></td>
<td>INVERSE</td>
</tr>
<tr>
<td></td>
<td>SVD</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
</tr>
<tr>
<td></td>
<td>LSQ</td>
</tr>
<tr>
<td></td>
<td>TRACE*</td>
</tr>
<tr>
<td></td>
<td>LU</td>
</tr>
<tr>
<td></td>
<td>TRN</td>
</tr>
<tr>
<td></td>
<td>MAKEMAT</td>
</tr>
<tr>
<td>Polynom.</td>
<td>POLYCOEF</td>
</tr>
<tr>
<td></td>
<td>POLYROOT</td>
</tr>
<tr>
<td></td>
<td>POLYEVAL</td>
</tr>
<tr>
<td>Prob.</td>
<td>COMB</td>
</tr>
<tr>
<td></td>
<td>UTPC</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>UTPF</td>
</tr>
<tr>
<td></td>
<td>PERM</td>
</tr>
<tr>
<td></td>
<td>UTPN</td>
</tr>
<tr>
<td></td>
<td>RANDOM</td>
</tr>
<tr>
<td></td>
<td>UTPS</td>
</tr>
<tr>
<td>Réel</td>
<td>CEILING</td>
</tr>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td></td>
<td>DEG→RAD</td>
</tr>
<tr>
<td></td>
<td>MOD</td>
</tr>
<tr>
<td></td>
<td>FLOOR</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>FNROOT</td>
</tr>
<tr>
<td></td>
<td>%CHANGE</td>
</tr>
<tr>
<td></td>
<td>FRAC</td>
</tr>
<tr>
<td></td>
<td>%TOTAL</td>
</tr>
<tr>
<td></td>
<td>HMS→</td>
</tr>
<tr>
<td></td>
<td>RAD→DEG</td>
</tr>
<tr>
<td></td>
<td>→HMS</td>
</tr>
<tr>
<td></td>
<td>ROUND</td>
</tr>
<tr>
<td></td>
<td>INT</td>
</tr>
<tr>
<td></td>
<td>SIGN</td>
</tr>
<tr>
<td></td>
<td>MANT</td>
</tr>
<tr>
<td></td>
<td>TRUNCATE</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td>XPON</td>
</tr>
<tr>
<td>Tests</td>
<td><</td>
</tr>
<tr>
<td></td>
<td>ET</td>
</tr>
<tr>
<td></td>
<td>≤</td>
</tr>
<tr>
<td></td>
<td>IFTE</td>
</tr>
<tr>
<td></td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>NOT</td>
</tr>
<tr>
<td></td>
<td>≠</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>XOR</td>
</tr>
<tr>
<td></td>
<td>≥</td>
</tr>
</tbody>
</table>
Fonctions des applications

Les fonctions des applications sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Fonctions disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trig</td>
<td>ACOT, ACOT, ACSC, ACSC, ASEC, ASEC</td>
</tr>
</tbody>
</table>

Catégorie Fonctions disponibles (Suite)

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Catégorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA(Fn, [Fm, inférieure, supérieure])</td>
<td>Fonction</td>
</tr>
<tr>
<td>EXTRENUM(Fn, estimation)</td>
<td>Résoudre</td>
</tr>
<tr>
<td>ISECT(Fn, Fm, estimation)</td>
<td></td>
</tr>
<tr>
<td>ROOT(Fn, estimation)</td>
<td></td>
</tr>
<tr>
<td>SLOPE(Fn, valeur)</td>
<td></td>
</tr>
<tr>
<td>SOLVE(En, var, estimation)</td>
<td></td>
</tr>
<tr>
<td>Do1VStats(Hn)</td>
<td>Statistiques 1Var</td>
</tr>
<tr>
<td>SETFREQ(Hn, Dn) or SETFREQ(Hn, value)</td>
<td></td>
</tr>
<tr>
<td>SETSAMPLE(Hn, Dn)</td>
<td></td>
</tr>
<tr>
<td>Do2VStats(Sn)</td>
<td>Statistiques 2Var</td>
</tr>
<tr>
<td>PredX(valeur)</td>
<td></td>
</tr>
<tr>
<td>PredY(valeur)</td>
<td></td>
</tr>
<tr>
<td>SetDepend(Sn, Cn)</td>
<td></td>
</tr>
<tr>
<td>SetIndep(Sn, Cn)</td>
<td></td>
</tr>
<tr>
<td>DoInference()</td>
<td>Inférence</td>
</tr>
<tr>
<td>RECURSE(Un, nièmterme[, terme 1, terme 2])</td>
<td>Suite</td>
</tr>
<tr>
<td>DoFinance(TVMVar)</td>
<td>Finance</td>
</tr>
<tr>
<td>LinSolve(matrice)</td>
<td>Solveur d’équation linéaire</td>
</tr>
<tr>
<td>AAS(angle, angle, côté)</td>
<td>Solveur de triangle</td>
</tr>
<tr>
<td>ASA(angle, côté, angle)</td>
<td></td>
</tr>
<tr>
<td>SAS(côté, angle, côté)</td>
<td></td>
</tr>
<tr>
<td>SSA(côté, côté, angle)</td>
<td></td>
</tr>
<tr>
<td>SSS(côté, côté, côté)</td>
<td></td>
</tr>
</tbody>
</table>
Commandes des programmes

Les commandes des programmes sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Fonctions disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>CHECK STARTVIEW</td>
</tr>
<tr>
<td></td>
<td>UNCHECK VIEWS</td>
</tr>
<tr>
<td></td>
<td>STARTAPP</td>
</tr>
<tr>
<td>Bloc</td>
<td>BEGIN RETURN</td>
</tr>
<tr>
<td></td>
<td>END</td>
</tr>
<tr>
<td>Branche</td>
<td>IF END</td>
</tr>
<tr>
<td></td>
<td>THEN CASE</td>
</tr>
<tr>
<td></td>
<td>ELSE IFERR</td>
</tr>
<tr>
<td>Dessin</td>
<td>PIXON TEXTOUT</td>
</tr>
<tr>
<td></td>
<td>PIXON_P TEXTOUT_P</td>
</tr>
<tr>
<td></td>
<td>PIXOFF BLIT</td>
</tr>
<tr>
<td></td>
<td>PIXOFF_P BLIT_P</td>
</tr>
<tr>
<td></td>
<td>GETPIX DIMGROB</td>
</tr>
<tr>
<td></td>
<td>GETPIX_P DIMGROB_P</td>
</tr>
<tr>
<td></td>
<td>RECT SUBGRB</td>
</tr>
<tr>
<td></td>
<td>RECT_P SUBGRB_P</td>
</tr>
<tr>
<td></td>
<td>INVERT FREEZE</td>
</tr>
<tr>
<td></td>
<td>INVERT_P GROB</td>
</tr>
<tr>
<td></td>
<td>ARC GROB_P</td>
</tr>
<tr>
<td></td>
<td>ARC_P GROBW</td>
</tr>
<tr>
<td></td>
<td>LINE GROBW_P</td>
</tr>
<tr>
<td></td>
<td>LINE_P</td>
</tr>
<tr>
<td>E-S</td>
<td>CHOOSE MSGBOX</td>
</tr>
<tr>
<td></td>
<td>EDITMAT PRINT</td>
</tr>
<tr>
<td></td>
<td>GETKEY WAIT</td>
</tr>
<tr>
<td></td>
<td>ISKEYDOWN debug</td>
</tr>
<tr>
<td></td>
<td>INPUT</td>
</tr>
<tr>
<td>Boucle</td>
<td>FOR UNTIL</td>
</tr>
<tr>
<td></td>
<td>FROM WHILE</td>
</tr>
<tr>
<td></td>
<td>TO REPEAT</td>
</tr>
<tr>
<td></td>
<td>STEP BREAK</td>
</tr>
<tr>
<td></td>
<td>END CONTINUE</td>
</tr>
<tr>
<td></td>
<td>DO</td>
</tr>
<tr>
<td>Matrice</td>
<td>ADDCOL REDIM</td>
</tr>
<tr>
<td></td>
<td>ADDROW REPLACE</td>
</tr>
<tr>
<td></td>
<td>DELCOL SCALE</td>
</tr>
<tr>
<td></td>
<td>DELROW SCALEADD</td>
</tr>
<tr>
<td></td>
<td>EDITMAT SUB</td>
</tr>
<tr>
<td></td>
<td>RANDMAT SWAPCOL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaînes</td>
<td>asc left</td>
</tr>
<tr>
<td></td>
<td>char right</td>
</tr>
<tr>
<td></td>
<td>expr mid</td>
</tr>
<tr>
<td></td>
<td>string rotate</td>
</tr>
<tr>
<td></td>
<td>inString dim</td>
</tr>
<tr>
<td>Variable</td>
<td>EXPORT LOCAL</td>
</tr>
</tbody>
</table>
Constantes

Constantes des programmes

Les constantes des programmes sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>Degrés</td>
</tr>
<tr>
<td></td>
<td>Radians</td>
</tr>
<tr>
<td>H1Type...H5Type</td>
<td>Hist</td>
</tr>
<tr>
<td></td>
<td>BoxW</td>
</tr>
<tr>
<td></td>
<td>NormalProb</td>
</tr>
<tr>
<td></td>
<td>LineP</td>
</tr>
<tr>
<td></td>
<td>BarP</td>
</tr>
<tr>
<td></td>
<td>ParetoP</td>
</tr>
<tr>
<td>Formatage</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Sci</td>
</tr>
<tr>
<td></td>
<td>Fixe</td>
</tr>
<tr>
<td></td>
<td>Eng</td>
</tr>
<tr>
<td>SeqPlot</td>
<td>Toile</td>
</tr>
<tr>
<td></td>
<td>d'araignée</td>
</tr>
<tr>
<td></td>
<td>Escalier</td>
</tr>
<tr>
<td>S1Type...S5Type</td>
<td>Linéaire</td>
</tr>
<tr>
<td></td>
<td>Logistique</td>
</tr>
<tr>
<td></td>
<td>ExpFit</td>
</tr>
<tr>
<td></td>
<td>QuadFit</td>
</tr>
<tr>
<td></td>
<td>Puissance</td>
</tr>
<tr>
<td></td>
<td>Cube</td>
</tr>
<tr>
<td></td>
<td>Inverse</td>
</tr>
<tr>
<td></td>
<td>Quartique</td>
</tr>
<tr>
<td></td>
<td>Exposant</td>
</tr>
<tr>
<td></td>
<td>Trig</td>
</tr>
<tr>
<td></td>
<td>Utilisateur</td>
</tr>
<tr>
<td>Stat1VPlot</td>
<td>Hist</td>
</tr>
<tr>
<td></td>
<td>BoxW</td>
</tr>
<tr>
<td></td>
<td>NormalProb</td>
</tr>
<tr>
<td></td>
<td>LineP</td>
</tr>
<tr>
<td></td>
<td>BarP</td>
</tr>
<tr>
<td></td>
<td>ParetoP</td>
</tr>
</tbody>
</table>
Constantes physiques

Les constantes physiques sont les suivantes :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Noms disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimie</td>
<td>Avogadro NA</td>
</tr>
<tr>
<td></td>
<td>Boltmann, k</td>
</tr>
<tr>
<td></td>
<td>volume molaire, Vm</td>
</tr>
<tr>
<td></td>
<td>gaz universel, R</td>
</tr>
<tr>
<td></td>
<td>température standard, StdT</td>
</tr>
<tr>
<td></td>
<td>pression standard, StdP</td>
</tr>
<tr>
<td>Physique</td>
<td>Stefan-Boltzmann, σ</td>
</tr>
<tr>
<td></td>
<td>vitesse lumière, c</td>
</tr>
<tr>
<td></td>
<td>permittivité, Σ₀)</td>
</tr>
<tr>
<td></td>
<td>perméabilité, μ₀</td>
</tr>
<tr>
<td></td>
<td>accélération gravité, g</td>
</tr>
<tr>
<td></td>
<td>gravitation, G</td>
</tr>
<tr>
<td>Quantum</td>
<td>Planck, h</td>
</tr>
<tr>
<td></td>
<td>Dirac h</td>
</tr>
<tr>
<td></td>
<td>charge électronique, q</td>
</tr>
<tr>
<td></td>
<td>masse de l'électron, me</td>
</tr>
<tr>
<td></td>
<td>rapport q/me, qme</td>
</tr>
<tr>
<td></td>
<td>masse du proton, mp</td>
</tr>
<tr>
<td></td>
<td>rapport mp/me, mpme</td>
</tr>
<tr>
<td></td>
<td>structure fine, α</td>
</tr>
<tr>
<td></td>
<td>flux magnétique, Φ₀)</td>
</tr>
<tr>
<td></td>
<td>Faraday, F</td>
</tr>
<tr>
<td></td>
<td>Rydberg, R∞</td>
</tr>
<tr>
<td></td>
<td>rayon de Bohr, a₀</td>
</tr>
<tr>
<td></td>
<td>magnéton de Bohr, μB</td>
</tr>
<tr>
<td></td>
<td>magnéton nucléaire, μN</td>
</tr>
<tr>
<td></td>
<td>longueur d'onde du photon, λ₀</td>
</tr>
<tr>
<td></td>
<td>fréquence photon, f₀</td>
</tr>
<tr>
<td></td>
<td>longueur d'onde de Compton, λc</td>
</tr>
</tbody>
</table>
Messages d'état

<table>
<thead>
<tr>
<th>Message</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d'argument incorrect</td>
<td>Entrée incorrecte pour l'opération.</td>
</tr>
<tr>
<td>Valeur d'argument incorrecte</td>
<td>Valeur hors plage pour l'opération.</td>
</tr>
<tr>
<td>Erreur (infini)</td>
<td>Exception mathématique, telle que 1/0.</td>
</tr>
<tr>
<td>Mémoire insuffisante</td>
<td>Vous devez libérer de la mémoire avant de poursuivre l'opération. Supprimez une ou plusieurs matrices, listes, notes ou programmes (à l'aide des catalogues), ou des applications personnalisées (et non intégrées) (via SMEMORY).</td>
</tr>
<tr>
<td>Données statistiques insuffisantes</td>
<td>Nombre de points de données insuffisant pour réaliser le calcul. Pour les statistiques à deux variables, vous devez disposer de deux colonnes de données, chacune devant contenir au moins quatre nombres.</td>
</tr>
<tr>
<td>Dimension non valide</td>
<td>L'argument présente des dimensions incorrectes.</td>
</tr>
<tr>
<td>Données statistiques non valides</td>
<td>Vous devez disposer de deux colonnes, contenant un nombre égal de données.</td>
</tr>
<tr>
<td>Message</td>
<td>Signification (Suite)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Syntaxe incorrecte</td>
<td>La fonction ou commande que vous avez saisie ne contient pas les arguments appropriés, ou les présente dans un ordre incorrect. Les délimiteurs (parenthèses, virgules, points et points-virgules) doivent également être corrects. Consultez l’index pour connaître la syntaxe correcte du nom de la fonction.</td>
</tr>
<tr>
<td>Conflit de nom</td>
<td>La fonction</td>
</tr>
<tr>
<td>Aucune équation vérifiée</td>
<td>Vous devez entrer une équation dans la vue symbolique et la vérifier avant de passer en vue Tracé.</td>
</tr>
<tr>
<td>(OFF SCREEN)</td>
<td>La valeur de fonction, la racine, l’extréme ou l’intersection n’est pas visible sur l’écran actuel.</td>
</tr>
<tr>
<td>Erreur de réception</td>
<td>Problème de réception des données d’une autre calculatrice. Envoyez à nouveau les données.</td>
</tr>
<tr>
<td>Message</td>
<td>Signification (Suite)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nombre d'arguments</td>
<td>La commande nécessite davantage d'arguments que ceux que vous avez fournis.</td>
</tr>
<tr>
<td>insuffisant</td>
<td></td>
</tr>
<tr>
<td>Nom non défini</td>
<td>Le nom de la variable globale n'existe pas.</td>
</tr>
<tr>
<td>Résultat non défini</td>
<td>Le calcul présente un résultat non défini mathématiquement (par exemple : 0/0).</td>
</tr>
<tr>
<td>Mémoire saturée</td>
<td>Vous devez libérer beaucoup de mémoire avant de poursuivre l'opération. Supprimez une ou plusieurs matrices, listes, notes ou programmes (à l'aide des catalogues), ou des applications personnalisées (et non intégrées) (via MEMORY).</td>
</tr>
</tbody>
</table>
Avis de la FCC (Federal Communications Commission)

Cet appareil a été testé et déclaré conforme aux limites imposées aux appareils électroniques de classe B, définies à la section 15 de la réglementation de la FCC. Ces limites ont été établies afin de fournir une protection raisonnable contre les interférences nuisibles en cas d'utilisation de cet équipement en environnement résidentiel. Cet appareil produit, utilise et peut émettre des fréquences radio et, s'il n'est pas installé et utilisé conformément aux instructions, provoquer des interférences gênantes pour les communications radio. Cependant, tout risque d'interférences ne peut être totalement exclu. Si cet appareil provoque des interférences lors de la réception d'émissions de radio ou de télévision (il suffit, pour le constater, de mettre l'appareil successivement hors, puis à nouveau sous tension), l'utilisateur devra prendre les mesures nécessaires pour les éliminer. À cette fin, il devra :

- réorienter ou déplacer l'antenne réceptrice ;
- accroître la distance entre l'équipement et l'appareil récepteur ;
- brancher le matériel sur un autre circuit que celui du récepteur ;
- consulter le revendeur ou un technicien de radio/ télévision expérimenté.

Modifications

La FCC (Federal Communications Commission) exige que l'utilisateur soit averti de ce que toute modification apportée au présent matériel et non approuvée explicitement par Hewlett Packard Company est de nature à le priver de l'usage de l'appareil.
Câbles
Pour être conformes à la réglementation FCC, les connexions de cet appareil doivent être établies à l'aide de câbles blindés dotés de protections de connecteur RFI/EMI. Applicable uniquement pour les produits dotés d'une connectivité vers PC/ordinateur portable.

Déclaration de conformité pour les produits portant le logo FCC, Etats-Unis uniquement
Cet appareil est conforme à la section 15 de la réglementation FCC. Son utilisation est soumise aux deux conditions suivantes : (1) cet appareil ne doit pas causer d'interférences nuisibles et (2) doit supporter toutes les interférences reçues y compris les interférences qui peuvent entraîner un mauvais fonctionnement.

Si vous avez des questions concernant le produit et non relatives à cette déclaration, veuillez écrire à l'adresse suivante :
Hewlett-Packard Company
P.O. Box 692000, Mail Stop 530113
Houston, TX 77269-2000, ETATS-UNIS

En cas de question relative à cette déclaration FCC, veuillez écrire à :
Hewlett-Packard Company
P.O. Box 692000, Mail Stop 510101 Houston,

Pour identifier ce produit, utilisez le numéro de pièce, de série ou de modèle indiqué sur le matériel.

Avis canadien
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Avis canadien
Cet appareil numérique de la classe B respecte toutes les exigences de la réglementation canadienne sur le matériel produisant des interférences.
Avis de conformité de l'Union européenne

Les produits portant le label CE sont conformes aux directives suivantes de l'UE :

- Directive sur les basses tensions 2006/95/EC
- Directive EMC 2004/108/EC
- Directive sur l'écoconception 2009/125/EC, le cas échéant

La conformité CE de ce produit est valable s'il est alimenté avec l'adaptateur secteur correct de marquage CE fourni par HP.

La conformité avec ces directives implique la conformité aux normes européennes harmonisées applicables (normes européennes) qui sont énumérées dans la Déclaration de conformité de l'Union européenne délivrée par HP pour ce produit ou cette famille de produits et disponible (en anglais uniquement) dans la documentation du produit ou sur le site Web HP suivant : www.hp.eu/certificates (entrez le numéro de produit dans le champ de recherche).

La conformité est indiquée par l'un des labels de conformité placés sur le produit :

![CE](image)

Pour les produits autres que de télécommunication et les produits de télécommunication harmonisés de l’UE, tels que Bluetooth® au sein d’une classe de puissance inférieure à 10 mW.

![CE](image)!

Pour les produits de télécommunication non harmonisés de l’UE (si applicable, un numéro d’organisme notifié à 4 chiffres est inséré entre CE et !).

Veuillez vous reporter aux informations réglementaires indiquées sur le produit.

Pour toute question liée à la réglementation, veuillez contacter :
Hewlett-Packard GmbH, Dept./MS: HQ-TRE, Herrenberger Strasse 140, 71034 Boeblingen, ALLEMAGNE.
Informations relatives à la réglementation produit

Avis japonais

この装置は、クラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。取り扱い説明書に従って正しい取り扱いをして下さい。

Avis de classe pour la Corée

이 기기는 가정용(무선설비 등록)으로 전자파적합등록을 한 기기로서 주로 가정에서 사용하는 것을 목적으로 하며, 모든 지역에서 사용할 수 있습니다.

Elimination des appareils mis au rebut par les ménages dans l’Union européenne

Le symbole apposé sur ce produit ou sur son emballage indique que ce produit ne doit pas être jeté avec les déchets ménagers ordinaires. Il est de votre responsabilité de mettre au rebut vos appareils en les déposant dans les centres de collecte publique désignés pour le recyclage des équipements électriques et électroniques. La collecte et le recyclage de vos appareils mis au rebut indépendamment du reste des déchets contribue à la préservation des ressources naturelles et garantit que ces appareils seront recyclés dans le respect de la santé humaine et de l’environnement. Pour plus d’informations sur le centre de recyclage le plus proche de votre domicile, contactez votre mairie, le service d’élimination des ordures ménagères ou le magasin où vous avez acheté le produit.
Informations relatives à la réglementation produit

Substances chimiques

HP s’engage à informer ses clients sur les substances chimiques utilisées dans ses produits conformément aux obligations légales telles que REACH (Réglementation européenne EC N° 1907/2006 sur les substances chimiques du Parlement et du Conseil Européen).
Un rapport d’informations chimiques relatif à ce produit est disponible à l’adresse suivante :

http://www.hp.com/go/reach

Matériau composé de perchlorate – Recommandations spéciales pour la manipulation

La pile de secours de la mémoire de cette calculatrice peut contenir du perchlorate et peut nécessiter une manipulation particulière lors des opérations de recyclage ou d’élimination en Californie.
Index

A
accueil
 catégories de variables 234
affichage
 annonciateurs 3
 effacement 2
 fixe 12
 historique 17
 libellés des touches de menu 2
 matrices 207
 navigation dans l'historique 20
 parties de 2
 réglage du contraste 2
 scientifique 12
 un élément dans une liste 195
 un élément dans une matrice 207
ajout 161
ajustement linéaire 95
ajustement quadratique 95
annonciateurs 3
annulation d'opérations 1
antilogarithme
 commun 162
 naturel 161
application
 applications HP 25
 bibliothèque 27
 commandes 268
 définition d' 329
 envoi et réception 159
 Explorateur 151
 Finance 135
 Fonction 53
 fonctions 318
 Inférence 103
 notes jointes 159
 Paramétrique 123
 Polaire 127
 réinitialisation 159
 Résoudre 65
 Solveur de triangle 147
 solveur linéaire 143
 Stats 1Var 75
 Stats 2Var 87
 Suite 131
 suppression 160
 touches de contrôle 5
 tri de la liste des applications 160
application Finance 135
application Fonction 53
application Inférence 103
application Paramétrique 123
définition de l'expression 123
exploration du graphique 125
application Polaire 127
application Résoudre 65
application Solveur de triangle 147
application Stats 1Var 75
application Stats 2Var 87
application Suite 131
 graphiques 131
applications Explorateur 151
arc-cosinus 162
arc-sinus 162
arc-tangente 163
argument incorrect 349
arguments
 conventions 214
aucune équation vérifiée 350
augmentation du contraste de l'écran 2
axes
 options 35, 36
B
bas niveau de charge 1
bibliothèque, gestion des
applications 160
C
caractères alphabétiques 7, 222
catalogues et éditeurs 22
clavier
 liste
 touches du catalogue 193
 pressions de touches
 préfixées 7
touches d'édition 5
touches de menu 4
touches de saisie 5
touches inactives 9
touches mathématiques 8
clone
 mémoire 238
coefficient de corrélation 99
coefficient de détermination 99
commande Where (|) 166
commandes
 affectation 270
 application 268
 bloc 270
 boucle 284
 branche 271
 chaîne 289
 définition de 268, 329
dessin 272
 E/S 279
 matrice 287
 test 292
 variable 293
commandes de bloc 270
commandes de boucle 284–287
commandes de branche 271
commandes E/S 279
configuration symbolique 28
conflit de nom 350
Connectivité USB 4
constantes 168
 mathématiques 168
 physiques 188, 348
 programme 347
 constantes physiques 188, 348
copie
 copier et coller 17–19
de l'affichage 17
 notes 225
 programmes 253
covariance 97
 création de votre propre tableau 49
D
 de 161
débogage de programmes 250
décimale
 mise à l'échelle 44, 46
défilement
 navigation entre les relations
 en mode Trace 39
défini par l'utilisateur
 ajustement de régression 96
définies par l'utilisateur
 fonctions 258
 variables 257
definition d'un jeu de données
 78, 88
definition de votre propre
 ajustement 96
dérivés
 définition de 166
dessin de commandes 272–279
déterminant 214
diminution du contraste de l'écran
 2
division 161
données statistiques
 deux variables 98
données statistiques insuffisantes
 349
E
 éditeurs 23
 édition
 listes 191
 matrices 204
notes 219
programmes 241
effacement
affichage de l'historique 20
d'une application 159
ligne d'édition 17
e élément
stockage 208
entrée algébrique 14
envoi
applications 159
listes 196
matrices 208
notes 226
programmes 253
equations
definition d' 65
resolution 67
erreur de reception 350
exponentiel naturel 161, 173
exposant
ajustement 95
elevation a 163
moins 1 173
expression
definition d' 329
definition dans la vue
symbolique 30
entree dans la vue Home 14
evaluation dans les
applications 32
extréme 61
F
factorielle (!) 179
fonction
definition de 329
syntaxe 166
fonctions
analyse avec outils FCN 58
definition de 53
entree 54
extréme 61
menu Math 343
pente 60
point d'intersection 59
traitage 55
zone 60
fonctions de boucle 177
fonctions de calcul 166
fonctions de l'application
Fonction 318
fonctions de l'application
Résoudre 320
fonctions de l'application Solveur
de triangle 325
fonctions de nombre complexe
167
fonctions de nombre entier
174–176
fonctions de nombre reel
180–183
fonctions de probabilité 179–180
fonctions des applications
Communes 326
Finance 322
Fonction 318
Inférence 322
Solveur d'équation linéaire
324
Solveur de triangle 325
Stats 1Var 320
Stats 2Var 321
fonctions mathématiques
boucle 177
calcul 166
distribution 168–172
liste 177
nombre complexe 167
nombre reel 180
opérateurs logiques 184
polynomials 177
probabilité 179
récapitulatif du menu Math
343
sur le clavier 161
test 184–185
trig hyperbolique 173
trigonométrie 185
format de nombre
 fixe 12
 scientifique 12
standard 12
format de nombre fixe 12
format de nombre scientifique 12
formulaire d’échelon Reduced Row 217
formulaires de saisie
 définition des modes 13
 réinitialisation des valeurs par défaut 10
fractions 20
G
glossaire 329
graduations pour tracé 36
graphique
 axes 36
 barre 85
 boîte à moustache 84
 comparaison 34
 copie dans une application 226
 division entre tracé et tableau 44
 division entre tracé et zoom 44
données statistiques
 à une variable 83
 en escalier 131
 en toile d’araignée 131
 exploration au moyen de touches de menu 100
 graduations 36
 histogramme 84
 ligne 84
 lignes de la grille 36
 mise à l’échelle automatique 44
 Pareto 85
points de la grille 36
points reliés 37
probabilité normale 84
stockage et rappel 272
traitement 39
taux vers 35
vue simultanée 45
vues avec division d’écran 29
graphique en escalier 131
graphique en toile d’araignée 131
guillemets dans des chaînes 289
H
heure
 hexadécimale 21
histogramme 83, 84
historique 2
 effacement de l’affichage 20
Home 1
 évaluation d’expressions 33
 variables 227, 334
horizontale 40
hors tension
 alimentation 1
 automatique 1
hypothèse
 hypothèse alternative 104
 tests 104
I
importation de graphique 226
inférence
 intervalles de confiance 117
 One-Proportion Z-Interval 119
 One-Proportion Z-Test 112
 One-Sample T-Interval 120
 One-Sample T-Test 115
 One-Sample Z-Interval 117
 One-Sample Z-Test 110
 tests d’hypothèses 110
 Two-Proportion Z-Interval 120
 Two-Proportion Z-Test 113
 Two-Sample T-Interval 121
Two-Sample T-Test 116
Two-Sample Z Test 111
Two-Sample Z-Interval 118
intégrale
définie 166
intégrale définie
définition d’ 166
intervalle de confiance 104
intervalles de confiance 117
invalide
dimension 349
inversion de signe 70
L
ligne d’édition 2
liste
affichage d’un élément 195
création 192
édition 193, 194
envoi et réception 196, 238
évaluation 195
fonctions 196
stockage d’éléments 192
stockage d’un élément 196
suppression 195
syntaxe 197
variables 191
variables de liste 191
listes de menu
recherche 9
log naturel plus 1 173
logarithme 162
logarithme naturel 161
logarithmique
ajustement 95
logarithmiques
fonctions 162
M
mantisse 181
mappage
clavier 4
mappage du clavier 4
matrices
addition et soustraction 208
affichage 207
affichage d’éléments de
matrice 207
ajout de lignes 205
calculs de matrice 203
commandes 287–289
création 206
création d’identité 217
décomposition en valeurs
singulières 216
déterminant 214
division par une matrice
carrée 210
édition 206
elevées à une puissance 210
envoi ou réception 208
fonctions 213–217
inversion 211
inversion sur éléments 211
multiplication et division par
scalaire 209
multiplication par vecteur 210
norme de colonne 214
numéro de condition 214
opérations arithmétiques
dans 208
permutation de colonne 289
permutation de ligne 289
produit scalaire 214
stockage d’éléments 206
stockage d’éléments de
matrice 208
suppression 204
suppression de colonnes 206
suppression de lignes 206
taille 216
transposition 217
variables 203
mémoire
affichage de la mémoire
disponible 228
effacer tout 331
gestion de la mémoire 157
saturée 351
mémoire insuffisante 349
menu Vars 230
mesure d'angle 11
definition 13
mesure de l'angle
dans les statistiques 94
minuscules 7
mise à l'échelle
automatique 44
décimale 44
nombre entier 41, 44, 46
options 44
trigonométrique 44
mise à l'échelle automatique 44
mise à l'échelle avec nombre entier 44, 46
modes
affichage manuel scolaire 13
complexe 12
format de nombre 12
langue 12
mesure d'angle 11
taille de police 12
multiplication 161
multiplication implicite 15
N
négation 164
nombre complexe 167
nombre d'arguments insuffisant 351
nombre réel
maximal 168
minimal 168
nombre réel maximal 16, 168
nombre réel minimal 168
 nombres aléatoires 179
nombres complexes 21
saisie 22
stockage 22
nombres négatifs 15
non défini
nom 351
résultat 351
non valide
syntaxe 350
non valides
données statistiques 349
notation scientifique 15
note
copie 225
création 219
création dans une application 221
édition 221–226
importation depuis le
catalogue de notes 225
O
One-Proportion Z-Interval 119
One-Proportion Z-Test 112
One-Sample T-Interval 120
One-Sample T-Test 115
One-Sample Z-Interval 117
One-Sample Z-Test 110
opérateurs logiques 184–185
opérations mathématiques 14
dans une notation scientifique 15
délimitation d'arguments 16
nombres négatifs 15
OR exclusif (XOR) 185
ordre de priorité 16
P
\(\pi \) 168
parenthèses
pour définir l'ordre des
opérations 16
pour délimiter des arguments 16
permutations 179
piles 332
plot-detail
division entre tracé et zoom 44
vues simultanées 45
priorité
 algébrique 16
priorité algébrique 16
probabilité Upper-Tail Chi-Square 179
probabilité Upper-Tail Normal 180
probabilité Upper-Tail Snedecor’s F 180
probabilité Upper-Tail t de Student 180
puissance (x élevé à y) 163
R
racine
 nème 163
racine carrée 163
racine nème 163
recalcul pour le tableau 49
recherche
 listes de menu 9
 recherche rapide 9
recherche de valeurs statistiques 200
régression 94
réinitialisation
 application 159
 calculatrice 331
 mémoire 331
rép (dernière réponse) 18
résolution
 interprétation de résultats 70
 messages d’erreur 71
résultat
 copie dans la ligne d’édition 17
 réutilisation 17
résultat infini 349
S
séquence

définition 31
sinus 162
solveur linéaire
 application 143
sous tension/annuler 1
soustraction 161
Stats 1Var
 définition d’un jeu de données 76
 édition de données 81
 histogramme
 largeur 85
 plage 85
 insertion de données 81
 sauvegarde de données 81
 suppression de données 81
 tri de données 81
 types de tracés 84
Stats 2Var
 ajustement de courbe 94
 ajustement de la mise à l’échelle du tracé 98
 analyse de tracés 100
 choix de l’ajustement 94
 configuration du tracé 100
 découverte 87
 définition d’un ajustement 94
 définition d’un modèle de régression 94
 définition de l’angle 94
 définition de votre propre ajustement 96
 édition de données 93
 insertion de données 93
 modèles d’ajustement 95, 96
 modèles de courbe de régression
 (ajustement) 94
 sauvegarde de données 93
 spécification de la définition de l’angle 94
 suppression de données 93
 tracage d’un diagramme de
Index

dispersion 98
tracés de dépannage 100
tri de données 93
valeurs prévues 102
zoom et traçage dans les tracés 100
stockage
 élément de liste 196
 éléments de matrice 208
 une valeur dans la vue Home 228
suppression
 caractères 17
 d'une application 160
 données statistiques 81
 listes 195
 matrices 204
 notes 221
 programmes 242
symbole d'avertissement 9
syntaxe des fonctions 166
T
 tableau
 automatique 49
 configuration de la vue numérique 46
 création de votre propre 49
taille de police 12
tangente 162
tangente sinus cosinus 162
traçage
 graphique actuel 39
 plusieurs courbes 39
tracé
 analyse de données statistiques 100
 boîte à moustache 84
 comparaison 34
 dispersion 98
 division entre tracé et tableau 44
 données statistiques à une variable 83
deux variables 98
 en escalier 131
 en toile d'araignée 131
graduations 36
 histogramme 84
 ligne 84
 lignes de la grille 36
 mise à l'échelle automatique 44
 mise à l'échelle avec nombre entier 44
 mise à l'échelle décimale 44
 mise à l'échelle trigonométrique 44
 Pareto 85
 points de la grille 36
 points reliés 37
 SEQPLOT 36
 statistiques à une variable 83
 traçage 39
 valeurs t 35
 vue Plot-Detail 45
tracé boîte à moustache 84
tracé de barre 84
tracé de ligne 84
tracé de Pareto 85
tracé de probabilité normale 84
tracer
dessiner les axes 36
transmission
 applications 160
 listes 196
 matrices 208
 notes 226
 programmes 254
 trig hyperbolique 173
 trig hyperbolique inversé 173
 trigonométrique
 ajustement 96
 mise à l'échelle 44, 46
 trigonométriques
 fonctions 185
 Two-Proportion Z-Interval 120
Two-Proportion Z-Test 113
Two-Sample T-Interval 121
Two-Sample T-Test 116
Two-Sample Z-Interval 118
Two-Sample Z-Test 111

U
unités et constantes physiques 186

V
valeur
rappel 230
stockage 19
valeur absolue 164
valeur(s) critique(s) affichée(s) 106
valeurs Eigen 214
variable
définition de 330
variables
application 294
catégories 227, 234
dans la vue symbolique 32
dans les équations 73
Home 234
Modes 313
Résultats 314–318
types en programmation 294
utilisateur 294
utilisation dans les calculs 230
vue numérique 303
vue symbolique 300–303
vue Tracé 295
variables d’application
Mode 313
Résultats 314
vue numérique 303
vue Tracé 295
variables d’application dans la vue numérique 294
variables d’application dans la vue Tracé 295–299

variables de l’application Finance récapitulatif 340/vue numérique 308–310
variables de l’application Fonction récapitulatif 335
résultats 314
variables de l’application Inférence récapitulatif 338
Résultats 318
vue numérique 305
variables de l’application Modes 313
variables de l’application Paramétrique 338
variables de l’application Polaire 339
variables de l’application Résoudre 335
variables de l’application Solveur d’équation linéaire récapitulatif 341
Résultats 315
vue numérique 310
variables de l’application Solveur de triangle récapitulatif 341
vue numérique 310
variables de l’application Stats 1Var récapitulatif 336
Résultats 314
variables de l’application Stats 2Var récapitulatif 337
Résultats 316
variables de l’application Suite dans le plan des menus 340
vecteurs
définition de 203, 330
vecteurs Eigen 214
vue Home 1
<table>
<thead>
<tr>
<th>affichage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcul dans 14</td>
</tr>
<tr>
<td>vue numérique</td>
</tr>
<tr>
<td>configuration 46</td>
</tr>
<tr>
<td>création de votre propre</td>
</tr>
<tr>
<td>tableau 49</td>
</tr>
<tr>
<td>dans les applications 46</td>
</tr>
<tr>
<td>recalcul 49</td>
</tr>
<tr>
<td>tableau automatique 49</td>
</tr>
<tr>
<td>vue symbolique 32</td>
</tr>
<tr>
<td>vues</td>
</tr>
<tr>
<td>définition de 331</td>
</tr>
<tr>
<td>vues des applications</td>
</tr>
<tr>
<td>configuration du tracé 28, 35</td>
</tr>
<tr>
<td>configuration numérique 46</td>
</tr>
<tr>
<td>configuration symbolique 28</td>
</tr>
<tr>
<td>Infos 29</td>
</tr>
<tr>
<td>vue numérique 46, 47</td>
</tr>
<tr>
<td>vue symbolique 30</td>
</tr>
<tr>
<td>vue Tracé 28, 34</td>
</tr>
<tr>
<td>vues spécifiques 44</td>
</tr>
</tbody>
</table>

Z

Z-distribution normale, intervalles de confiance 117

Z-Intervals 117–120

zone

entre les courbes 60

zoom

dans la vue numérique 48
definition des facteurs 44
exemples de 41
options 39
zoom X 40
zoom Y 40
zoom horizontal 39, 42