Serie HP 48G
Guía de Usuario
Información sobre Regulaciones

Europa

Declaración de Conformidad (de acuerdo con la Guía 22 de ISO/IEC y EN45014)

Nombre del fabricante: Hewlett-Packard Co. 
Dirección del fabricante: 1000 NE Circle Blvd.
Corvallis, OR 97330

Hewlett-Packard Co. 
72 Bendemeer Rd.
Singapore 1233

declara que los siguientes productos:

Nombre del producto: Calculadoras Serie HP 48G

cumplen con las siguientes especificaciones de producto:

EMC: 
CD, 8 kV AD,

Seguridad: 

Departamento de Calidad
Hewlett-Packard Company
Corvallis Division

EE.UU.

La calculadora HP48 genera y utiliza energía de frecuencia que puede interferir en la recepción radiofónica y televisiva. La HP48 ha sido verificada y cumple con las limitaciones para los dispositivos de Clase B especificados en las Normas FCC, Parte 15, que proporcionan la protección adecuada contra dichas interferencias en una instalación doméstica.
Guía del Usuario de la Calculadora HP 48G
Aviso

Este manual y los ejemplos contenidos en el mismo se proporcionan "tal como están" y se encuentran sujetos a cambios sin previo aviso. La compañía Hewlett-Packard no ofrece garantía de ninguna clase sobre este manual, incluyendo, pero no limitándose a las garantías implícitas de comercialización y aptitud para fines específicos. Hewlett-Packard no se hará responsable por ningún error que pueda contener este documento ni por los daños accidentales que puedan producirse en relación con el suministro, funcionamiento o utilización de este manual o de los ejemplos aquí expuestos.

© Propiedad literaria perteneciente a la compañía Hewlett-Packard, 1993. Todos los derechos son reservados. Queda prohibida la reproducción, adaptación o traducción de este manual sin el consentimiento previo por escrito de la compañía Hewlett-Packard, salvo en los casos contemplados en las leyes de derechos de autor.

Los programas que controlan este producto están protegidos por los derechos de autor y todos los derechos son reservados. La reproducción, adaptación o traducción de estos programas sin el consentimiento previo por escrito de Hewlett-Packard está también prohibida.

© Fideicomisarios de la Universidad de Columbia de la ciudad de Nueva York, 1989. Se otorga el permiso de utilización, copia o redistribución del software Kermit a cualquier individuo o institución siempre y cuando no se venda con fines lucrativos y a condición de que se posea esta nota de propiedad literaria.

Hewlett-Packard Company
Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Nota de Agradecimiento

Hewlett-Packard quiere expresar su agradecimiento a los miembros del Education Advisory Committee—Comité Consultivo de Educación (Dr. Thomas Dick, Dr. Lynn Garner, Dr. John Kenelly, Dr. Don LaTorre, Dr. Jerold Mathews y Dr. Gil Proctor) por su ayuda en el desarrollo de este producto. También queremos expresar nuestro agradecimiento a Donald R. Asmus, Scott Burke, Bhushan Gupta y a sus alumnos del Instituto de Tecnología de Oregón y a Carla Randall y a sus alumnos del AP Calculus.

Historial de Edición

Edición 1 ........................................ Junio 1993
Edición 2 ........................................ Febrero 1994
Tabla de Contenidos

1. El Teclado y la Pantalla
   Organización de la Pantalla ............................................. 1-1
   Área de Estado, Indicadores y Mensajes .............................. 1-1
   La Pila .................................................................. 1-3
   La Línea de Comandos ..................................................... 1-4
   Etiquetas de Menú .......................................................... 1-4
   Organización del Teclado .................................................. 1-5
   Aplicaciones y Menús de Comandos ................................. 1-6
   Las Teclas del Cursor ..................................................... 1-8
   La Tecla CANCEL ......................................................... 1-9
   Menús: Cómo Extender el Teclado ...................................... 1-10
   Cómo Trabajar con los Menús ............................................ 1-11

2. Cómo Introducir y Editar Objetos
   Cómo Escribir Números .................................................... 2-1
   Cómo Escribir Caracteres (Teclado Alfabético) .................... 2-2
   Cómo Escribir Caracteres Especiales ................................... 2-4
   Cómo Escribir Objetos con Delimitadores ......................... 2-6
   Cómo Utilizar la Línea de Comandos ................................... 2-8
   Cómo Acumular Datos en la Línea de Comandos .................. 2-8
   Cómo Seleccionar los Modos de Entrada de la Línea de
   Comandos ........................................................................ 2-10
   Cómo Recuperar las Líneas de Comandos Anteriores ............. 2-12
   Cómo Visualizar y Editar Objetos ...................................... 2-12
   Cómo Utilizar el Menú EDIT ............................................. 2-14
3. **La Pila**
- Cómo Utilizar la Pila para Operaciones de Cálculo .... 3-1
- Cómo Efectuar Operaciones de Cálculo ............... 3-1
- Cómo Manipular la Pila ................................ 3-4
- Cómo Recuperar los Últimos Argumentos ............... 3-6
- Cómo Restaurar la Última Pila (UNDO) ................. 3-6
- La Pila Interactiva .................................... 3-7
- Menú de Comandos de la Pila .......................... 3-12

4. **Modos**
- Cómo Utilizar la Aplicación MODES .................. 4-1
- Cómo Fijar el Modo de la Pantalla .................... 4-2
- Cómo Fijar el Modo de Angulo ....................... 4-3
- Cómo Fijar el Modo de Coordenadas ................. 4-4
- Cómo Fijar el Emisor el Pitido ...................... 4-6
- Cómo Fijar la Pantalla del Reloj .................... 4-6
- Cómo Fijar el Símbolo Decimal ...................... 4-6
- Cómo Utilizar los Indicadores del Sistema .......... 4-7
- Cómo Utilizar el Localizador de Indicadores ........ 4-7
- Cómo Utilizar el Submenú de Comandos de FLAG .... 4-8
- Indicadores del usuario ................................ 4-10
- Submenús de MODES .................................... 4-10

5. **Memoria**
- HOME: Variables y Directorios ........................ 5-3
- Dónde Almacenar las Variables ....................... 5-5
- Cómo Utilizar la Aplicación Localizador de Variables 5-5
- Cómo Crear Nuevas Variables ....................... 5-6
- Cómo Seleccionar, Editar y Recuperar Variables ..... 5-8
- Cómo Copiar, Desplazar y Borrar Variables .......... 5-9
- Cómo Determinar el Tamaño de las Variables ....... 5-11
- Cómo Utilizar Variables: Menú VAR .................. 5-12
- Cómo Definir Variables ............................... 5-14
- Cómo Evaluar Variables .............................. 5-15
- Nombres de Variables Delimitados y Variables .............................. 5-16
- Formales .............................................. 5-16
- Operaciones Especiales de la Memoria ............... 5-17
- Interrupción del Sistema ............................. 5-18
- Reconfiguración de la Memoria ...................... 5-19
- Cómo responder a Bajas Condiciones de la Memoria 5-20
6. Plantillas de Entrada y Listas de Opciones
   Plantillas de Entrada .................................. 6-1
   Cómo Seleccionar los Campos en las Plantillas de Entrada ........................................ 6-2
   Cómo Introducir Datos en las Plantillas de Entrada .................................................. 6-3
   Cómo Seleccionar las Opciones en las Plantillas de Entrada ......................................... 6-4
   Otras Operaciones de las Plantillas de Entrada ....................................................... 6-5
   Cuando se Finaliza la Introducción de Datos en una Plantilla de Entrada ................... 6-7
   Comandos de las Plantillas de Entrada ................................................................ 6-9

7. El EquationWriter (Escritor de Ecuaciones)
   Cómo Está Organizada la Aplicación EquationWriter .................................................. 7-2
   Cómo Construir Ecuaciones ......................................................................................... 7-3
   Cómo Introducir Ecuaciones ....................................................................................... 7-3
   Cómo Controlar Paréntesis Implicítos ........................................................................ 7-7
   Ejemplos del EquationWriter ..................................................................................... 7-9
   Cómo Editar Ecuaciones .............................................................................................. 7-11
   Cómo Editar con Subexpresiones ............................................................................... 7-11
   Sumario de las Operaciones del EquationWriter ...................................................... 7-14

8. El MatrixWriter (Escrítor de Matrices)
   Cómo Aparecen los Sistemas en la HP 48 .................................................................. 8-1
   Cómo Introducir Sistemas ............................................................................................ 8-2
   Cómo Editar Sistemas .................................................................................................. 8-5
   Operaciones del MatrixWriter ..................................................................................... 8-5

9. Objetos Gráficos
   El entorno PICTURE .................................................................................................. 9-2
   Utilización del Picture Editor (Editor Gráfico) ........................................................... 9-2
   Cómo Activar y Desactivar los Puntos ........................................................................ 9-3
   Cómo Añadir Elementos Mediante el Entorno de Gráficos .......................................... 9-3
   Cómo Editar y Borrar un Dibujo .................................................................................. 9-4
   Cómo Archivar y Visualizar Objetos Gráficos ............................................................. 9-7
   Coordenadas de Objetos Gráficos .............................................................................. 9-8
   Comandos de Objetos Gráficos ................................................................................... 9-9

Tabla de Contenidos-3
10. **Objetos de Unidades de Medida**
   - Descripción General de la Aplicación Units ............... 10-1
   - Unidades de Medida y Objetos de unidades de medida 10-2
   - El Menú del Catálogo UNITS .................................. 10-3
   - Cómo Crear un Objeto de Unidades de Medida .......... 10-3
   - Prefijos de Unidades de Medida ......................... 10-5
   - Cómo Convertir Unidades de Medida ....................... 10-7
   - Cómo Utilizar el menú del Catálogo UNITS ............ 10-7
   - Cómo Utilizar CONVERT ......................................... 10-7
   - Cómo Utilizar UBASE (para Unidades Básicas del SI) .... 10-8
   - Cómo Convertir Unidades Angulares ..................... 10-8
   - Cómo Efectuar Operaciones de Cálculo con Unidades de Medida ............... 10-9
   - Cómo Factorizar Expresiones de Unidades de Medida .... 10-11
   - Cómo Utilizar Objetos de Unidades de Medida en Operaciones Algebraicas ......................... 10-11
   - Cómo Trabajar con Unidades de Temperatura ............. 10-12
   - Cómo Convertir Unidades de Temperatura ............... 10-12
   - Cómo Efectuar Operaciones de Cálculo con Unidades de Temperatura ...................... 10-13
   - Cómo Crear Unidades Definidas por el Usuario .......... 10-16
   - Comandos Adicionales para Objetos de Unidades de Medida ........................................... 10-17

11. **Cómo Utilizar Funciones Matemáticas**
   - Funciones y Comandos Incorporados .................... 11-1
   - Cómo Expresar Funciones: Sintaxis Algebraica ........ 11-2
   - Cómo Expresar Funciones: Sintaxis de la Pila ....... 11-3
   - Expresiones y Ecuaciones ..................................... 11-4
   - Constantes Simbólicas ......................................... 11-4
   - Cómo Controlar el Modo de Cálculo de las Constantes Simbólicas ................................. 11-5
   - Cómo Utilizar Funciones Matemáticas Incorporadas ... 11-5
   - Funciones Definidas por el Usuario ..................... 11-7
   - Cómo Crear una Función Definida por el Usuario .... 11-7
   - Cómo Ejecutar una Función Definida por el Usuario .. 11-8
   - Cómo Utilizar los Paréntesis en Funciones Definidas por el Usuario ........................... 11-9

Tabla de Contenidos-4
12. **Funciones de Números Reales y Complejos**

Funciones Matemáticas del Teclado Principal ........................................... 12-1
  Funciones Matemáticas Aritméticas y Generales .............................. 12-1
  Funciones Exponenciales y Logarítmicas ........................................ 12-2
  Funciones Trigonométricas .......................................................... 12-2
  Funciones hiperbólicas ............................................................... 12-3
Probabilidades y Estadísticas de Prueba ............................................... 12-4
  Cómo Calcular Estadísticas de Prueba ........................................... 12-4
Funciones de Números Reales .............................................................. 12-7
  Funciones de Conversión de Angulos ............................................. 12-7
  Funciones de Porcentajes ................................................................ 12-9
Otras Funciones de Números Reales ....................................................... 12-9
Números Complejos ................................................................................... 12-11
  Cómo Visualizar Números Complejos .............................................. 12-11
  Cómo Introducir Números Complejos .............................................. 12-12
Operaciones de Cálculo Reales con Resultados Complejos ....................... 12-13
  Otros Comandos de Números Complejos .......................................... 12-13

13. **Vectores y Transformadas**

Cómo Visualizar Vectores Bidimensionales y Tridimensionales .................. 13-1
Cómo Introducir Vectores Bidimensionales y Tridimensionales .................. 13-3
Comandos Matemáticos de Vectores ....................................................... 13-4
  Ejemplos: Cómo Efectuar Operaciones de Cálculo con Vectores
  Bidimensionales y Tridimensionales .............................................. 13-6
Transformadas Rápidas de Fourier ......................................................... 13-7

14. **Matrices y Algebra Lineal**

Creación y Ensamblado de Matrices ....................................................... 14-1
Cómo Descomponer Matrices ............................................................... 14-5
Cómo Insertar Columnas y Filas .......................................................... 14-6
Eliminación de Columnas y Filas ......................................................... 14-7
Cómo Conmutar Columnas y Filas ........................................................ 14-7
Cómo Eliminar y Sustituir Elementos de Matrices .................................. 14-8
Cómo Caracterizar las Matrices ........................................................... 14-8
Cómo Transformar las Matrices ........................................................... 14-11
Cómo Efectuar Operaciones de Cálculo con Elementos de Matrices .......... 14-12
Cómo Utilizar Sistemas y Elementos de Sistemas en Expresiones
  Algebraicas ........................................................................... 14-13
Cómo Transformar Matrices Complejas ................. 14-15
Soluciones Matriciales para Sistemas de Ecuaciones
Lineales ........................................... 14-16
Matrices Raras y Malcondicionadas .................. 14-17
Cómo Determinar la Exactitud de la Solución de una
Matriz ............................................. 14-19
Eliminación Gaussiana y Operaciones Elementales de
Filas ................................................ 14-20
Temas Adicionales de Algebra Lineal ............... 14-22

15. Operaciones Aritméticas y Bases Numéricas
Enteros Binarios y Bases .................................. 15-1
Cómo Utilizar Operadores Booleanos ..................... 15-4
Cómo Manipular los Bits y los Bytes .................... 15-5

16. Fecha, Hora y Fracciones Aritméticas
Cómo Efectuar Operaciones de Cálculo con Fechas .......... 16-1
Cómo Efectuar Operaciones de Cálculo con Horas ........... 16-3
Cómo Efectuar Operaciones de Cálculo con Fracciones ...... 16-5

17. Listas y Secuencias
Cómo Crear Listas ........................................ 17-1
Procesamiento de Listas ................................... 17-2
Comandos de Múltiples Argumentos con Listas ............. 17-3
Cómo Aplicar una Función o un Programa a una Lista
(DOLIST) ........................................ 17-4
Cómo Aplicar Repetidamente una Función a una Lista ....... 17-6
Manipulaciones de Listas .................................. 17-7
Secuencias ............................................ 17-8

18. Resolución de Ecuaciones
Cómo Resolver una Variable Incógnita de una Ecuación ... 18-1
Cómo Interpretar los Resultados ............................ 18-4
Cómo Resolver Opciones .................................. 18-6
SOLVR: Un Entorno Alternativo de Resolución ............. 18-7
Opciones de Resolución Adicionales de SOLVR .......... 18-9
Cómo Hallar Todas las Raíces de un Polinomio ............ 18-11
Cómo Resolver un Sistema de Ecuaciones Lineales ......... 18-12
Cómo Utilizar la Resolución Financiera .................... 18-14
Cómo Calcular Amortizaciones ............................ 18-21
19. Ecuaciones Diferenciales
   Cómo Resolver Ecuaciones Diferenciales .................. 19-1
   Cómo Resolver un Problema de Valor Inicial Estándar .... 19-2
   Cómo Resolver un Problema de Valor Inicial "Stiff" ...... 19-4
   Cómo Resolver una Ecuación Diferencial con Valor de Vector ................................................. 19-5
   Cómo Representar Gráficamente las Soluciones de Ecuaciones Diferenciales .................................. 19-7
   Cómo Representar Gráficamente una Ecuación Diferencial "Stiff" .............................................. 19-10
   Cómo Representar Gráficamente un Plano de Fase de una Solución con Valor de Vector .................... 19-12

20. Cálculo y Manipulación Simbólica
   Integración ............................................. 20-1
   Integración Numérica ................................... 20-1
   El Factor de Exactitud y la Incertidumbre de la Integración Numérica ........................................ 20-6
   Integración Simbólica .................................. 20-8
   Diferenciación ........................................... 20-10
   Cómo Crear Derivadas Definidas por el Usuario .......... 20-11
   Diferenciación Implicita ................................ 20-12
   Aproximación del Polinomio de Taylor .................. 20-13
   Cómo Hallar Soluciones Simbólicas para las Ecuaciones .................................................. 20-15
   Cómo Despejar una Variable Sencilla .................... 20-15
   Cómo Resolver Ecuaciones Cuadráticas .................. 20-16
   Cómo Obtener Soluciones Generales y Principales ...... 20-17
   Cómo Mostrar las Variables Ocultas ...................... 20-18
   Cómo Reorganizar Expresiones Simbólicas ............... 20-19
   Cómo Manipular Expresiones Completas ................ 20-19
   Cómo Manipular las Subexpresiones ...................... 20-20
   Cómo Efectuar Transformaciones Definidas por el Usuario .................................................. 20-31
   Patrones de Integración Simbólica ........................ 20-34

Tabla de Contenidos-7
21. Análisis de Datos y Estadísticas
   Cómo Introducir Datos Estadísticos .......................... 21-1
   Cómo Editar Datos Estadísticos .............................. 21-5
   Cómo Calcular Estadísticas de una Sola Variable .......... 21-7
   Cómo Generar Frecuencias .................................... 21-9
   Cómo Ajustar un Modelo a un Conjunto de Datos .......... 21-11
   Cómo Calcular Estadísticas de Sumas Algebraicas ......... 21-13
   Cómo Utilizar la Variable Reservada PAR ................. 21-14

22. Representaciones Gráficas
   Cómo Utilizar la Aplicación PLOT ............................ 22-1
   Coordenadas del Cursor: Modos Standard y TRACE ........ 22-4
   Operaciones del Teclado en el Entorno PICTURE ........... 22-6
   Cómo Utilizar Operaciones de Zoom ........................... 22-7
      Cómo Fijar los Valores por Defecto del Zoom ............ 22-8
      Cómo Seleccionar un Zoom .................................. 22-9
   Cómo Analizar Funciones ...................................... 22-10
   Variables Reservadas de PLOT ............................... 22-13
      EQ .................................................. 22-13
      DAT ............................................... 22-13
      ZPAR ............................................. 22-14
      PPAR ............................................. 22-14
      VPAR ............................................. 22-15
      PAR .............................................. 22-17

23. Tipos de Representaciones Gráficas
   Representaciones Gráficas del Tipo Function (Función) 23-1
   Representaciones Gráficas del Tipo Polar .................. 23-5
   Representaciones Gráficas del Tipo Paramétrico
      (Paramétrico) ........................................ 23-8
   Representaciones Gráficas del Tipo Ecuación Differencial 23-12
   Representaciones Gráficas del Tipo Conic (Cónico) ....... 23-13
   Representaciones Gráficas del Tipo Truth (Verdadero) .... 23-16
   Representaciones Gráficas de Estadísticas .................. 23-20
   Representaciones Gráficas del Tipo Histogram
      (Histograma) ......................................... 23-20
   Representaciones Gráficas del Tipo Bar (Barras) .......... 23-22
   Representaciones Gráficas del Tipo Scatter (Dispersion) 23-23
   Cómo Representar Gráficamente Funciones de Dos
      Variables ............................................. 23-25
      Enrejado de Muestra .................................... 23-25
      Enrejado de Salida ..................................... 23-26

Tabla de Contenidos-8
Representaciones Gráficas del Tipo Slopefield (Campo de Pendientes) ........................................ 23-29
Representaciones Gráficas del Tipo Wireframe
 (Estructura Lineal) ........................................ 23-32
Representaciones Gráficas del Tipo Pseudo-Contour
 (Pseudo-Contorno) ........................................ 23-34
Representaciones Gráficas del Tipo Y-Slice (Corte-Y) 23-36
Representaciones Gráficas del Tipo Gridmap (Mapa de Red) ..................................................... 23-38
Representaciones Gráficas del Tipo Parametric Surface
 (Superficie Paramétrica) .................................... 23-40

24. Opciones de Representaciones Gráficas Avanzadas
Cómo Etiquetar y Localizar los Ejes ........................................ 24-1
Cómo Representar Gráficamente Programas y Funciones
Definidas por el Usuario ....................................... 24-2
Rango de Representación Gráfica frente a Rango de
Visualización .................................................... 24-3
Cómo Archivar y Recuperar Representaciones Gráficas 24-6

25. La Biblioteca de Ecuaciones
Cómo Resolver un Problema con la Biblioteca de
Ecuaciones ........................................................ 25-1
Cómo Utilizar la Resolución ....................................... 25-2
Cómo Utilizar las Teclas del Menú ............................. 25-3
Cómo Localizar Información en la Biblioteca de
Ecuaciones ........................................................ 25-4
Cómo Visualizar las Ecuaciones ................................ 25-4
Cómo Visualizar Variables y Seleccionar Unidades ......... 25-5
Cómo Visualizar la Imagen ....................................... 25-5
Cómo Utilizar la Resolución de Ecuaciones Múltiples ..... 25-6
Cómo Definir un Conjunto de Ecuaciones ..................... 25-8
Cómo Interpretar los Resultados a Partir de la
Resolución de Ecuaciones Múltiples ......................... 25-10
Cómo Utilizar la Biblioteca de Constantes .................... 25-13
Juego de Buscaminas ........................................... 25-16
Unidades Definidas por el Usuario .............................. 25-17

Tabla de Contenidos-9
26. Organización del Tiempo
   Cómo Utilizar el Reloj (Fecha y Hora) .................. 26-1
   Cómo Programar las Alarmas ............................. 26-2
   Cómo responder a las Alarmas ........................... 26-4
   Cómo Visualizar y Editar Alarmas ...................... 26-6

27. Cómo Transmitir e Imprimir Datos
   Cómo Transferir Datos Entre Dos HP 48 ................. 27-1
   Cómo Imprimir ............................................ 27-2
      Cómo Instalar la Impresora ........................... 27-3
      Cómo Imprimir Tareas .................................. 27-3
   Cómo Transferir Datos Entre la HP 48 y un Ordenador  27-7
   Cómo Preparar el Ordenador y la HP 48 .................. 27-7
   Cómo Utilizar Kermit ..................................... 27-10
   Cómo Transferir Variables con Kermit .................. 27-10
   Cómo Elegir y Utilizar los Nombres de Archivos ....... 27-12
   Cómo Realizar una Copia de Seguridad de la Memoria de la HP 48 .............................. 27-12
   Cómo Enviar Comandos Kermit ............................ 27-14
   Cómo Utilizar XMODEM .................................... 27-15
   Cómo Utilizar Otros Protocolos Serie .................. 27-16

28. Bibliotecas, Puertas y Tarjetas Insertables
   Memoria de Puerta Lógica y Ranuras de Tarjetas
      Insertables ............................................. 28-1
      Puerta Lógica 0 ....................................... 28-2
      Ranura de Tarjeta 1 ................................... 28-2
      Ranura de Tarjeta 2 ................................... 28-3
   Cómo Utilizar Objetos de Seguridad ..................... 28-3
   Cómo Realizar una Copia de Seguridad de Toda la Memoria ............................................. 28-5
   Cómo Utilizar las Bibliotecas .......................... 28-7
   Cómo Instalar y Retirar Tarjetas Insertables .......... 28-10
   Cómo Ampliar la Memoria de Usuario con Tarjetas
      RAM Insertables ....................................... 28-16

Tabla de Contenidos-10
29. Cómo Programar la HP 48

Fundamentos de Programación ........................................... 29-1
El Contenido de un Programa .......................................... 29-2
Cálculos en un Programa ............................................. 29-4
Programación Estructurada ............................................. 29-5
Cómo Introducir y Ejecutar Programas .................................. 29-6
Cómo Visualizar, Depurar y Editar Programas ......................... 29-8
Cómo Utilizar las Estructuras de Programación ...................... 29-10
Estructuras Condicionales .............................................. 29-10
Estructuras de Bucle .................................................. 29-12
Estructuras de Detección deErrores .................................... 29-15
Cómo Utilizar Variables Locales ....................................... 29-17
Cómo Crear Variables Locales ......................................... 29-17
Cómo Evaluar Nombres Locales ....................................... 29-18
Cómo Utilizar las Variables Locales dentro de las Subrutinas .... 29-19
Variables Locales y Funciones Definidas por el Usuario ............ 29-20
Cómo Explorar los Programas en el Directorio
EXAMPLES .......................................................... 29-20
Cómo Utilizar programas de HP 48S/SX con la HP 48G/GX ........ 29-22
Dónde Puede Encontrar Más Información ............................. 29-23

30. Cómo Personalizar la HP 48

Cómo Personalizar los Menús .......................................... 30-1
Cómo Mejorar los Menús Personalizados ............................... 30-3
Cómo Personalizar el Teclado .......................................... 30-5
Modos de Usuario .................................................... 30-5
Cómo Asignar y Desasignar las Teclas de Usuario ................... 30-5
Cómo Desactivar las Teclas de Usuario ............................... 30-7
Cómo Recuperar y Editar las Asignaciones de las Teclas de Usuario ............................................................................. 30-8

A. Asistencia Técnica, Pilas y Servicio de Reparaciones

Respuestas a Preguntas Habituales ....................................... A-1
Límites Medioambientales .............................................. A-4
Especificaciones Para Usuarios en México .......................... A-5
Cuándo Cambiar las Pilas .............................................. A-5
Cómo Cambiar las Pilas ................................................ A-6
Cómo Comprobar el Funcionamiento de la Calculadora .......... A-10
Auto-Test ................................................................. A-11
Comprobación del Teclado ............................................. A-12
Test de la RAM de las Puertas .......... A-13
Prueba en Bucle de IR (Puerto de Infrarrojos) .......... A-15
Prueba en Bucle de Serie .......... A-16
Garantía Limitada de Un Año .......... A-17
Póliza de Garantía Para Usuarios en México .......... A-18
                   Hewlett-Packard de México, S.A. de C.V. con
domicilio en: .......... A-18
Condiciones: .......... A-18
Si la Calculadora Necesita Reparación .......... A-20

B. Mensajes de Error

C. Menús

D. Indicadores del Sistema

E. Tabla de Unidades

F. Tabla de Ecuaciones Incorporadas

G. Índice de Operaciones

H. Diagramas de la pila para comandos seleccionados

Índice
El Teclado y la Pantalla

Organización de la Pantalla

En la mayoría de las operaciones, la pantalla aparecerá dividida en tres secciones, como se muestra en el siguiente gráfico. Esta configuración se denomina pantalla de pila. Los siguientes apartados presentan una descripción de cada una de estas secciones.

![Diagrama de la pantalla](image)

**Area de Estado, Indicadores y Mensajes**

El área de estado presenta los elementos siguientes:

- **Indicadores.** Muestran el estado de la calculadora.

- **Ruta del directorio actual.** Cuando se encienda por primera vez la calculadora, la ruta del directorio actual será {$HOME$}. Los directorios dividen la memoria en partes, al igual que los archivos en un archivador. (Los directorios se tratan detalladamente en el capítulo 5.)

- **Mensajes.** Informan cuando se produce un error o proporcionan otras informaciones para ayudar al usuario a utilizar la calculadora de un modo más eficaz.
En la siguiente tabla se presenta una descripción de los indicadores. Los seis primeros aparecen en la parte superior de la pantalla y el resto (además de la ruta del directorio) comparten su “territorio” con los mensajes. Los mensajes sustituyen a los indicadores y a la ruta del directorio. Cuando se borre el mensaje, volverán a aparecer los indicadores y la ruta del directorio.

![Diagrama de pantallas HP HEWLETT PACKARD](image)

### Indicadores

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>←</td>
<td>La tecla de cambio izquierda está activada (se ha pulsado ⇈).</td>
</tr>
<tr>
<td>→</td>
<td>La tecla de cambio derecha está activada (se ha pulsado →).</td>
</tr>
<tr>
<td>α</td>
<td>El teclado alfabético está activado (es posible escribir letras y otros caracteres).</td>
</tr>
<tr>
<td>(••)</td>
<td>(Aviso) Ha llegado el momento de una cita o se ha detectado un rendimiento bajo de las pilas. La información se proporcionará en el mensaje del área de estado (si no aparece ningún mensaje, deberá apagarse la calculadora y volverla a encender. Se mostrará un mensaje que describe el motivo del aviso).</td>
</tr>
</tbody>
</table>

1-2 El Teclado y la Pantalla
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Ocupada—no está lista para procesar nuevas entradas. De todos modos, la calculadora es capaz de recordar hasta 15 pulsaciones de teclas mientras está ocupada para procesarlas en cuanto esté libre.</td>
</tr>
<tr>
<td></td>
<td>Transmitiendo datos a un dispositivo externo.</td>
</tr>
<tr>
<td>RAD</td>
<td>El modo de ángulo en Radianes está activado.</td>
</tr>
<tr>
<td>GRAD</td>
<td>El modo de ángulo en Grados Centesimales está activado.</td>
</tr>
<tr>
<td>R→Z</td>
<td>El modo de coordenadas Polar/Cilíndrico está activado.</td>
</tr>
<tr>
<td>R→E</td>
<td>El modo de coordenadas Polar/Esférico está activado.</td>
</tr>
<tr>
<td>HALT</td>
<td>Se ha interrumpido la ejecución del programa.</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>Están fijados los indicadores de usuario señalados.</td>
</tr>
<tr>
<td>1USR</td>
<td>El teclado de usuario está activado para una operación.</td>
</tr>
<tr>
<td>USER</td>
<td>El teclado de usuario estará activado hasta que se pulse ( \leftarrow \text{USER} ).</td>
</tr>
<tr>
<td>ALG</td>
<td>El modo de entrada de Operaciones Algebraicas está activado.</td>
</tr>
<tr>
<td>PRG</td>
<td>El modo de entrada de Programas está activado.</td>
</tr>
</tbody>
</table>

**La Pila**

La pila es una serie de ubicaciones de almacenamiento en la memoria para los números y otros objetos. Dichas ubicaciones se llaman nivel 1, 2, 3, etc. El número de niveles varía de acuerdo con la cantidad de objetos almacenados en la pila—desde ninguno hasta varios cientos.

A medida que se introducen números u otros objetos en la pila, ésta crece para dar cabida a todos: los datos nuevos aparecerán en el nivel 1, mientras que los datos viejos se “desplazan” a niveles superiores. A medida que se utilizan los datos de la pila, el número de niveles decrece y los datos pasan a niveles inferiores.
La pantalla de la pila muestra el nivel 1 y hasta 3 niveles adicionales. Los demás niveles adicionales se mantienen en la memoria pero normalmente no aparecen en pantalla.

Para conocer la información sobre la pila y la línea de comandos, consulte “Cómo Utilizar la Pila para Operaciones de Cálculo” en la página 3-1.

**La Línea de Comandos**

La línea de comandos aparecerá siempre que se escriba o se edite texto. Las líneas de la pila se desplazarán hacia arriba para dejar sitio. Si se escriben más de 21 caracteres, la información desaparecerá por la parte izquierda de la pantalla y se mostrarán tres puntos (...) que indican que existe más información “en esa dirección”.

La línea de comandos está íntimamente relacionada con la pila. Se utiliza para escribir o editar texto y procesarlo a continuación, transfiriendo los resultados a la pila.

Cuando se ha dejado de utilizar la línea de comandos, la pantalla de la pila vuelve a situarse en el área de la línea de comandos.

Para conocer la información sobre la pila y la línea de comandos, consulte “Cómo Utilizar la Línea de Comandos” en la página 2-8.

**Etiquetas de Menú**

Las etiquetas de menú situadas en la parte inferior de la pantalla muestran las operaciones correspondientes a las seis teclas de menú blancas de la parte superior del teclado. Estas etiquetas varían de acuerdo con el menú seleccionado. Consulte “Cómo Trabajar con los Menús” en la página 1-11 para conocer la información sobre la utilización de los menús.
Organización del Teclado

El teclado de la HP 48 tiene seis niveles (o “estratos”) de funciones, cada uno de los cuales contiene un conjunto diferente de teclas:

- **Teclado primario.** Representado por los caracteres que aparecen escritos sobre las teclas; por ejemplo, [ónico], [7], [ENTER], [TAN] y [A] están en el teclado primario.

- **Teclado de cambio izquierdo.** Se activa pulsando la tecla morada (♀). Los caracteres de las teclas de cambio izquierdo están escritos en morado y localizados en la parte superior izquierda de las teclas primarias correspondientes. Para ejecutar ASIN, por ejemplo, se pulsará la tecla (♀) y a continuación la tecla (SIN).

- **Teclado de cambio derecho.** Se activa pulsando la tecla verde (♂). Los caracteres de las teclas de cambio derecho están escritos en verde y localizados en la parte superior derecha de las teclas primarias correspondientes. Para ejecutar LN, por ejemplo, se pulsará la tecla (♂) y a continuación la tecla (1/x).

- **Teclado alfabético.** Se activa pulsando la tecla (α). Los caracteres alfabéticos están escritos en blanco y localizados en la parte derecha de las teclas primarias correspondientes. Las teclas alfabéticas son todas mayúsculas. Para generar “N”, por ejemplo, se pulsará (α) y a continuación la tecla (STO). Obsérvese que cuando está activado el teclado alfabético, aparece el indicador α. Obsérvese asimismo que el teclado numérico sigue generando números.

- **Teclado alfabético de cambio izquierdo.** Se activa pulsando (α) y a continuación (♀). Los caracteres alfabéticos de cambio izquierdo incluyen letras minúsculas, junto a algunos caracteres especiales (los caracteres alfabéticos de cambio izquierdo no aparecen en el teclado). Para escribir “n”, por ejemplo, se pulsará (α), después (♀) y, por último, (STO).

- **Teclado alfabético de cambio derecho.** Se activa pulsando (α) y a continuación (♂). Los caracteres alfabéticos de cambio derecho incluyen letras griegas y otros caracteres especiales (los caracteres alfabéticos de cambio derecho no aparecen en el teclado). Para generar λ, por ejemplo, se pulsará (α), después (♂) y, por último (NXT).
Los teclados alfabéticos con tecla o sin tecla de cambio se muestran en la página 2-3. Obsérvese asimismo que se puede acceder fácilmente a todos los caracteres posibles de la HP48 mediante la aplicación CHARS (consulte la página 2-4).

Cuando se pulse ← (tecla de cambio izquierda) o → (tecla de cambio derecha), aparecerán los indicadores ← o → en la pantalla.

**Para cancelar una tecla de cambio:**
- Para borrar la tecla de cambio, púlsela de nuevo.
- Para cambiar a la otra tecla de cambio, pulse la otra tecla de cambio.

**Aplicaciones y Menús de Comandos**
Algunas teclas tienen caracteres impresos tanto para combinación con la tecla de cambio derecha como para combinación con la tecla de cambio izquierda, aunque muchas sólo tienen uno de los dos.
Las teclas que tienen solamente caracteres impresos en color verde representan aplicaciones. Cada una de estas teclas inicia una aplicación con interfases de usuario especialmente diseñadas que hacen más fácil interactuar con esa aplicación. La HP 48 tiene doce teclas de aplicaciones:

- **CHARS** Muestra un catálogo de los 256 caracteres utilizados por la HP 48 (consulte el capítulo 2).
- **EQ LIB** Proporciona acceso a más de 300 ecuaciones científicas, diagramas de acompañamiento y conjuntos de variables, a 40 constantes físicas y a la Resolución de Ecuaciones Múltiples (consulte el capítulo 25).
- **I/O** Facilita la transferencia de datos entre la HP 48 y ordenadores, impresoras u otras HP 48 (consulte el capítulo 27).
- **LIBRARY** Permite acceder a comandos y programas existentes en tarjetas insertables o en la memoria de puerta lógica (consulte el capítulo 28).
- **MEMORY** Proporciona acceso a la aplicación Localizador de Variables para organizar y gestionar las variables almacenadas (consulte el capítulo 5).
- **MODES** Proporciona acceso a la pantalla Calculator Modes (Modos de la Calculadora) y al Flag Browser (Localizador de Indicadores) (consulte el capítulo 4).
- **PLOT** Proporciona acceso a la aplicación PLOT y a sus 15 tipos de representaciones gráficas (consulte los capítulos 22, 23 y 24).
- **SOLVE** Proporciona acceso a la aplicación SOLVE y a sus 5 tipos de funciones de resolución de ecuaciones (consulte el capítulo 18).
- **STACK** Accede a la aplicación Pila Interactiva. (Consulte el capítulo 3.)
- **STAT** Accede a la aplicación STAT (ESTADISTICAS) y a sus análisis de datos y operaciones de ajuste de curvas (consulte el capítulo 21).
- **SYMBOLIC** Accede a las características de operaciones de cálculo y algebraicas simbólicas de la HP 48 (consulte el capítulo 20).
- **TIME** Accede a las características Alarm Browser (Localizador de Alarmas) y configuración del reloj de la HP 48 (consulte el capítulo 26).
Cada una de estas aplicaciones tiene asimismo una versión con la tecla de cambio izquierda que muestra el menú de comandos adjunto de esa aplicación. Por ejemplo, al pulsar \[ \text{STAT} \] aparecerá un menú de comandos que pertenece al análisis estadístico.

Los menús de comandos proporcionan un acceso adecuado a los comandos para entrar en los programas o cuando se utilizan funciones directamente desde la pantalla de la pila en vez de desde una aplicación.

**Las Teclas del Cursor**

Las seis teclas del cursor se diferencian de las demás teclas porque su comportamiento depende de que aparezca actualmente en pantalla o no un cursor. A continuación se resume su comportamiento cuando aparece un cursor en pantalla:

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Sin Tecla de Cambio</th>
<th>Con Tecla de Cambio Derecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ \text{←} ]</td>
<td>Desplaza el cursor a la izquierda.</td>
<td>Desplaza el cursor al principio.</td>
</tr>
<tr>
<td>[ \text{→} ]</td>
<td>Desplaza el cursor a la derecha.</td>
<td>Desplaza el cursor al final.</td>
</tr>
<tr>
<td>[ \text{↓} ]</td>
<td>Desplaza el cursor hacia abajo.</td>
<td>Desplaza el cursor a la parte inferior (o final).</td>
</tr>
<tr>
<td>[ \text{↑} ]</td>
<td>Desplaza el cursor hacia arriba.</td>
<td>Desplaza el cursor a la parte superior (o principio).</td>
</tr>
<tr>
<td>[ \text{DEL} ]</td>
<td>Borra el carácter actual.</td>
<td>Borra todos los caracteres hasta el final.</td>
</tr>
<tr>
<td>[ \text{←} ]</td>
<td>Borra el carácter anterior.</td>
<td>Borra todos los caracteres anteriores hasta el principio.</td>
</tr>
</tbody>
</table>
Cuando no aparezca el cursor en pantalla, al pulsar cualquiera de estas seis teclas, se ejecutará la operación indicada por los caracteres coloreados escritos sobre ellas:

- (o **PICTURE**) muestra en pantalla el dibujo actual.
- (o **SWAP**) intercambia los objetos de los niveles 1 y 2 de la pila.
- (o **STACK**) entra en la aplicación Pila Interactiva.
- (o **VIEW**) coloca el objeto del nivel 1 de la pila en su “mejor” modo de visualización (consulte la página 2-11).
- (o **CLEAR**) despeja la pila.
- (o **DROP**) elimina el objeto del nivel 1 de la pila.

**La Tecla CANCEL**

Cuando la HP 48 está encendida, (se convierte en la tecla **CANCEL**. Generalmente, **CANCEL** interrumpe la actividad actual—de modo que es posible el inicio inmediato de la tarea siguiente o recuperarse de una situación inesperada.

**Para detener la calculadora:**

- Para borrar la línea de comandos, pulse **CANCEL**.
- Para cancelar un entorno especial y restaurar la pantalla de la pila, pulse **CANCEL**.
- Para cancelar un programa que se está ejecutando, pulse **CANCEL**.
Menús: Cómo Extender el Teclado

La HP 48 utiliza menús de un modo extendido para acomodar a los cientos de comandos y funciones incorporados.

Un menú es un conjunto de operaciones definidas para las seis teclas de menú en blanco de la parte superior del teclado. Las operaciones actuales aparecen descritas en las seis etiquetas de menú de la parte inferior de la pantalla.

Algunos menús tienen múltiples conjuntos de etiquetas, llamados páginas. Si una etiqueta de menú tiene una lengüeta en su parte superior izquierda como una carpeta de archivos, seleccionará otro menú llamado submenú.
Cómo Trabajar con los Menús

Para visualizar un menú:

1. Pulse la tecla o teclas correspondientes al menú deseado.
2. Los menús con más de seis entradas aparecen en dos o más páginas. Si fuera necesario, cambie a la página del menú deseada:
   - Para pasar a la página siguiente, pulse \text{NXT}.
   - Para pasar a la página anterior, pulse \text{PREV}.

Obsérvese que cuando se efectúa el ciclo completo, se vuelve a la primera página.

Cuando desee ir a otro menú, pulse simplemente las teclas de dicho menú—no es necesario “retroceder” o “salir” de un menú para ir a otro—sencillamente vaya al nuevo.

Para visualizar el menú anterior:

- Pulse \text{MENU}.

En ocasiones se puede estar trabajando principalmente con un menú concreto y necesitar utilizar comandos de otro menú. Por ejemplo, puede ser necesario salir brevemente de la segunda página del menú SYMBOLIC para utilizar un comando de la segunda página del menú MTH PROB.

Cuando se cambia de un menú a otro, la HP 48 archiva la identidad y el número de página del último menú en el que estaba. Al pulsar \text{MENU} (que se encuentra sobre la tecla \text{NXT}) se vuelve al menú anterior. Los menús que muestran \text{solamente} menús adicionales (como MTH y PRG) no se almacenan como último menú.

Para seleccionar una función desde un menú:

- Pulse la tecla de menú que lleve impresa la etiqueta de la operación.
Cómo Introducir y Editar Objetos

Los elementos básicos de información utilizados por la HP 48 se denominan objetos. Por ejemplo, un número real, una ecuación y un programa son cada uno de ellos un objeto. Un objeto ocupa un solo nivel de la pila y puede almacenarse en una variable.

La HP 48 puede almacenar y manipular muchos tipos de objetos, incluidos números reales y complejos, números enteros binarios, sistemas, expresiones algebraicas, programas, gráficos, secuencias de texto y listas. Muchas de las operaciones de la HP 48 son las mismas para todos los tipos de objetos mientras que otras solamente se aplican a tipos específicos de objetos.

Cómo Escribir Números

Para escribir un número sencillo:
1. Pulse el número y las teclas adecuadas.
2. Si el número es negativo, pulse $\text{~}^\sim$.

Para corregir un error de escritura:
- Pulse (la tecla de retroceso) para borrar el error y a continuación escriba el dato correctamente.

Para borrar el número completo de la línea de comandos:
- Pulse CANCEL.

Ejemplo: Introduzca el número $-123.4$ en la línea de comandos.
**Paso 1:** Escribe los dígitos.

123 4

**Paso 2:** Convierta el número en negativo.

-123.4

Pulse **CANCEL** (la tecla **ON**) para borrar la línea de comandos.

**Para escribir un número como una mantisa y un exponente:**

1. Escriba la mantisa. Si es negativa, pulse **+/-** para cambiarla de signo.
2. Pulse **EEEX** (escribe una E de “exponente”)
3. Escriba el exponente—la potencia de 10. Si es negativo, pulse **+/-**.

---

**Cómo Escribir Caracteres (Teclado Alfabético)**

La HP 48 posee un teclado “alfabético” mediante el cual es posible escribir letras y otros caracteres en los datos. El teclado alfabético se activa por medio de la tecla **α** (el indicador α aparecerá en pantalla mientras el teclado alfabético esté activado).

Cuando se pulsa la tecla **α**, pueden introducirse letras mayúsculas. Las letras disponibles están impresas en blanco en la parte inferior derecha de las teclas. Por otro lado, las teclas de cambio izquierda y derecha proporcionan caracteres adicionales:

- El teclado alfabético utilizado con la tecla de cambio izquierda escribe letras minúsculas.
- El teclado alfabético de la tecla de cambio derecha escribe letras griegas y símbolos diversos.

Para que el teclado de la HP 48 no aparezca demasiado sobrecargado, la mayoría de los caracteres utilizados con las teclas de cambio derecha e izquierda no aparecen en él. Como referencia, la siguiente ilustración muestra cómo interpretar las teclas cuando el indicador α está activado.

---

2-2 **Cómo Introducir y Editar Objetos**
Para escribir un carácter sencillo:

- Pulse \( \alpha \) y escriba el carácter.
  
- Mantenga pulsada la tecla \( \alpha \), escriba el carácter y suelte \( \alpha \).

Para escribir varios caracteres:

- Pulse \( \alpha \alpha \), escriba los caracteres y pulse \( \alpha \) de nuevo.
  
- Mantenga pulsada la tecla \( \alpha \), escriba los caracteres y suelte \( \alpha \).

Si se pulsa \( \alpha \) una vez, se activará el modo de entrada alfabética solamente para un carácter. Si se pulsa \( \alpha \) dos veces, se fijará el modo de entrada alfabética para varios caracteres. Este permanecerá activado hasta que se vuelva a pulsar \( \alpha \) de nuevo o hasta que se pulse ENTER (o CANCEL). Se puede mantener pulsada \( \alpha \) mientras se escriben varios caracteres de una fila. Si lo prefiere, puede fijar el
Indicador -60 para que mediante una pulsación sencilla de α quede establecido el modo de entrada alfabética.

**Para bloquear o desbloquear el teclado de las minúsculas:**

- Si α está activado, pulse ←α para fijar el modo de las minúsculas.
- Si α está desactivado, pulse α α ←α para fijar el modo de las minúsculas.
- Para desbloquear las minúsculas, pulse ←α. Asimismo, el hecho de finalizar el proceso de entrada—pulsando ENTER o CANCEL o ejecutando un comando—desbloquea automáticamente el modo de las minúsculas.

Cuando esté en el modo de entrada alfabética de las minúsculas, deberá utilizar ← para escribir en mayúsculas. El modo de las minúsculas se desbloqueará automáticamente al pulsar ENTER o CANCEL o al ejecutar un comando.

---

**Cómo Escribir Caracteres Especiales**

Aunque la mayoría de los 256 caracteres que pueden visualizarse en la HP 48 se encuentran en el teclado alfabético, resulta fácil olvidar la secuencia de teclas concreta necesaria para los caracteres utilizados con menor frecuencia.

La aplicación CHARS (CARACTERES) está diseñada para evitar este problema, pues permite seleccionar caracteres directamente desde la pantalla e insertarlos en el lugar en el que se encuentra el cursor. CHARS muestra los caracteres de la HP 48 de 64 en 64, junto al número de cada uno de los caracteres y la tecla utilizada para escribirlo desde el teclado alfabético.
Las Cuatro Pantallas de CHARS

Para utilizar CHARS para ver o escribir caracteres:

1. Pulse \( \rightarrow \) CHARS. Aparecerá una pantalla de 64 caracteres.

2. Utilice \( \rightarrow -64 \) y \( \rightarrow +64 \) para pasar de una página de caracteres a otra.

3. Utilice las teclas del cursor (\( \leftarrow \), \( \rightarrow \), \( \uparrow \) y \( \downarrow \)) para seleccionar un carácter. Observe que el número del carácter se muestra en la parte inferior derecha y la tecla correspondiente en la parte inferior izquierda.

4. Para insertar el carácter seleccionado en el lugar en el que se encuentra el cursor, pulse \( \rightarrow \) ECHO\( \rightarrow \).

5. Repita los pasos 2, 3 y 4 para insertar caracteres adicionales.

6. Cuando haya terminado, pulse \( \rightarrow \) ENTER o \( \rightarrow \) CANCEL para salir de CHARS.
Cómo Escribir Objetos con Delimitadores

Los números reales representan un tipo de objeto. La mayoría de los demás tipos de objetos necesitan delimitadores especiales para indicar de qué tipo de objetos se trata.

A continuación presentamos una lista parcial de los diferentes tipos de objetos y los delimitadores correspondientes.

<table>
<thead>
<tr>
<th>Objetos</th>
<th>Delimitadores</th>
<th>Teclas</th>
<th>Ejemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Números reales</td>
<td>ninguno</td>
<td>14.75</td>
<td></td>
</tr>
<tr>
<td>Números complejos</td>
<td>(&lt;, &gt;)</td>
<td>8.25, 12.1</td>
<td></td>
</tr>
<tr>
<td>Secuencias</td>
<td>&quot; &quot;</td>
<td>&quot;Hello&quot;</td>
<td></td>
</tr>
<tr>
<td>Sistemas</td>
<td>[ ]</td>
<td>[ 4.8 - 1.3 2.1 ]</td>
<td></td>
</tr>
<tr>
<td>Unidades</td>
<td>_</td>
<td>11.5 ft</td>
<td></td>
</tr>
<tr>
<td>Programas</td>
<td>« »</td>
<td>« »</td>
<td></td>
</tr>
</tbody>
</table>
| Operaciones Algebraicas | _ _ | _ _ '
| Listas        | ( )          | ( 6.85 "FIVE" ) |
| Comandos      | ninguno      | FIX          |
| incorporados  |               |              |
| Nombres       | ' '          | 'VOL o'      |

Para escribir un objeto utilizando delimitadores:

- Para escribir datos dentro de delimitadores de apertura y de cierre, pulse la tecla del delimitador y a continuación escriba los datos (la tecla del delimitador escribirá ambos delimitadores).

- Para insertar un delimitador sencillo dentro de los datos, pulse la tecla del delimitador donde sea necesario y, a continuación, borre el que no desee que aparezca.

En la línea de comandos pueden introducirse incluso objetos a gran escala como operaciones algebraicas y sistemas.
Para escribir un objeto algebraico mediante la línea de comandos:

1. Pulse [ para escribir los delimitadores.
2. Escriba los números, las variables, los operadores y los paréntesis de la expresión o ecuación en orden de izquierda a derecha. Pulse para salir del paréntesis.

Para escribir una matriz mediante la línea de comandos:

2. Escriba la primera fila. Pulse entre cada uno de los elementos.
3. Pulse para desplazar el cursor fuera del delimitador de fila ].
4. Opcional: Pulse (nueva línea) para iniciar una fila nueva en la pantalla.
5. Escriba el resto de la matriz. No es necesario añadir los delimitadores [ ] para las filas siguientes—se añadirán automáticamente.
Para escribir un vector mediante la línea de comandos.

1. Pulse \( \text{[←]} \) para iniciar el sistema. Como un vector es equivalente a una matriz de columna sencilla, no es necesario agrupar los elementos en filas utilizando delimitadores adicionales, a menos que desee explícitamente crear un vector de fila.

2. Escriba los elementos del vector. Pulse \( \text{[SPC]} \) para separar los elementos.

3. Pulse \( \text{[ENTER]} \).


Cómo Utilizar la Línea de Comandos

La línea de comandos es esencialmente un espacio de trabajo para escribir y editar los objetos que se desean introducir en la HP 48. La línea de comandos aparece siempre que se escribe o se edita texto (excepto cuando se utiliza la aplicación EquationWriter).

Cómo Acumular Datos en la Línea de Comandos

Es posible escribir cualquier número de caracteres en la línea de comandos utilizando hasta la mitad de la memoria disponible. Para introducir más de un objeto en la línea de comandos, utilice espacios, líneas nuevas (\( \text{[→]} \) \( \text{[→]} \)) o delimitadores para separar los objetos. Por ejemplo, para introducir dos números, se puede escribir 12 \( \text{[SPC]} \) 34.
Si se introduce un carácter @ fuera de una secuencia de la línea de comandos, tanto el carácter @ como el texto adyacente serán tratados como un “comentario” y desaparecerán cuando se pulse [ENTER].

Cuando se escribe en la línea de comandos, los caracteres se insertan normalmente en la posición del cursor y los caracteres posteriores se desplazan a la derecha. Por otro lado, se pueden utilizar las siguientes teclas para editar datos en la línea de comandos:

**Operaciones de la Línea de Comandos**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>← →</td>
<td>Desplazan el cursor a derecha e izquierda de la línea de comandos ([←] y [→] desplazan el cursor a los extremos izquierdo y derecho).</td>
</tr>
<tr>
<td>▲ ▼</td>
<td>Si la línea de comandos tiene más de una línea, desplazan el cursor una línea hacia arriba o hacia abajo ([←▲] y [→▼] desplazan el cursor a la primera y a la última línea).</td>
</tr>
<tr>
<td></td>
<td>Si la línea de comandos tiene una sola línea, ▲ selecciona la Pila Interactiva y ▼ muestra en pantalla el menú EDIT (EDITAR).</td>
</tr>
<tr>
<td></td>
<td>Borra el carácter situado a la izquierda del cursor.</td>
</tr>
<tr>
<td></td>
<td>Borra el carácter en el que se encuentra el cursor.</td>
</tr>
<tr>
<td>[←]EDIT</td>
<td>Muestra en pantalla el menú EDIT, que contiene operaciones adicionales de edición.</td>
</tr>
</tbody>
</table>
### Operaciones de la Línea de Comandos (continuación)

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>☍ ENTRY</td>
<td>Cambia el modo de entrada de línea de comandos al modo de entrada de Programas o al modo de entrada de Operaciones Algebraicas/Programas, como se describe a continuación.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Procesa el texto de la línea de comandos—desplaza los objetos a la pila y ejecuta comandos.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Anula toda la línea de comandos.</td>
</tr>
</tbody>
</table>

### Cómo Seleccionar los Modos de Entrada de la Línea de Comandos

La HP 48 tiene cuatro modos de entrada de la línea de comandos que facilitan la escritura de objetos.

- **Modo de Entrada Inmediata.** Se activa automáticamente y no está indicado mediante ningún indicador de modo de entrada. En el modo de entrada inmediata, el contenido de la línea de comandos se introduce y se procesa inmediatamente al pulsar una tecla de función o de comando (como ++, SIN o STO). El modo de entrada inmediata es el modo por defecto.

- **Modo de Entrada de Operaciones Algebraicas.** Se activa al pulsar ℨ y está indicado mediante el indicador ‐ALG. El modo de entrada de operaciones algebraicas se utiliza principalmente para escribir nombres y expresiones algebraicas de uso inmediato. En el modo de entrada de operaciones algebraicas, las teclas de funciones actúan como auxiliares de escritura (por ejemplo, SIN escribe SIN(())). Otros comandos se ejecutan inmediatamente (por ejemplo, STO o ← PURGE).

- **Modo de Entrada de Programas.** Se activa cuando se pulsa ← « » o ← () y está indicado mediante el indicador PRG. El modo de entrada de programas se utiliza primordialmente para introducir programas y listas. También se utiliza para editar la línea de comandos (← EDIT). En el modo de entrada de programas, las teclas de funciones y de comandos actúan como auxiliares de escritura (por ejemplo, SIN escribe SIN y STO escribe STO). Sólo
las operaciones no programables se ejecutaran al pulsar una tecla
(por ejemplo, ENTER, VAR o ➞ ENTRY).

■ Modo de Entrada de Operaciones Algebraicas/Programas. Se activa
al pulsar ➞ cuando se está en el modo de entrada de programas
y está indicado mediante los indicadores ALG y PRG. El modo de
entrada de Operaciones Algebraicas/Programas se utiliza para
escribir objetos algebraicos en los programas.

Para cambiar los modos de entrada manualmente:

■ Pulse ➞ ENTRY.

Al pulsar ➞ ENTRY se cambia del modo de Entrada Inmediata al
modo de Entrada de Programas y viceversa y del modo de Entrada de
Programas al de Operaciones Algebraicas/Programas y viceversa.

 ENTRY permite acumular comandos en la línea de comandos para
su ejecución posterior. Por ejemplo, es posible entrar manualmente en
el modo de Entrada de Programas para introducir 4 5 + en la línea
de comandos y a continuación pulsar ENTER para calcular √4 + 5.
 ENTRY también facilita la edición de objetos algebraicos en los
programas.

Ejemplo: Calcule 12 − log(100) mediante la inclusión del comando
LOG en la línea de comandos.

Paso 1: Introduzca la línea de comandos.

```
12 SPC 100 ➞ ENTRY ➞ LOG
```

Paso 2: Procese la línea de comandos para completar la operación de
cálculo.

```
ENTER ➞
```

Cómo Introducir y Editar Objetos 2-11
Cómo Recuperar las Líneas de Comandos Anteriores

La HP 48 archiva automáticamente una copia de las cuatro últimas líneas de comandos ejecutadas.

Para recuperar una línea de comandos reciente

1. Pulse (CMD) (que se encuentra sobre la tecla +/-).
2. Seleccione el comando que desea recuperar mediante las teclas ▲ y ▼ y pulse OK.

Cómo Visualizar y Editar Objetos

No siempre se pueden ver todos los objetos de la pila—sólo se ve el principio de los objetos grandes y no se pueden ver los objetos que han cambiado de nivel y que han salido de la pantalla.

Para permitir la visión de cualquier objeto de la pantalla, en la HP 48 se pueden elegir entornos para visualizar y editar objetos. Un entorno define una pantalla concreta y el comportamiento del teclado—determina el modo de visualizar y cambiar el objeto.

Para visualizar o editar un objeto:

1. Dependiendo de la localización del objeto y del entorno deseado, pulse las teclas que aparecen en la lista de la siguiente tabla.
2. Visualice o edite el objeto de acuerdo con las reglas del entorno.
3. Salga del entorno:
   - Para salir después de la visualización, pulse CANCEL.
   - Para archivar los cambios efectuados, pulse ENTER.
   - Para descartar los cambios efectuados, pulse CANCEL.
La línea de comandos es el entorno más sencillo de visualización y de edición:

- Aparecerá en pantalla el menú EDIT, que proporciona operaciones que facilitan la edición de objetos grandes (consulte “Cómo Utilizar el menú EDIT” en la continuación de este capítulo).
- Los números reales y complejos aparecen con total precisión (formato estándar), sin importar el modo de pantalla actual.
- Los programas, las listas, las operaciones algebraicas, las unidades, los directorios y las matrices aparecen en un formato de múltiples líneas.
- Se muestran todos los dígitos de los números binarios, todos los caracteres de las secuencias y las expresiones algebraicas completas.

El “mejor” entorno de edición será aquel que la HP 48 determine como el más adecuado basándose en el tipo de objeto.

- Los objetos algebraicos y los objetos de unidades se copian en el entorno EquationWriter en el modo de desplazamiento. Para editar la ecuación, entre en el modo de selección pulsando (consulte el capítulo 7).
- Las matrices se copian en el entorno MatrixWriter (consulte el capítulo 8).
- Todos los demás tipos de objetos se copian en la línea de comandos.

La Pila Interactiva es un entorno para visualizar, editar y manipular todos los objetos de la pila (consulte “La Pila Interactiva” en la página 3-6).
Cómo Utilizar el Menú EDIT

Siempre que esté presente la línea de comandos, se puede pulsar \( \text{EDIT} \) para entrar en el menú EDIT. El menú EDIT también aparecerá en pantalla siempre que se efectúe una operación de visualización o edición según se describe en el apartado anterior.

Algunas operaciones del menú EDIT utilizan el concepto de una \textit{palabra}—una serie de caracteres entre los espacios o las líneas nuevas. Por ejemplo, el hecho de pulsar \( \text{SKIP} \) salta al principio de una \textit{palabra}. La siguiente tabla presenta una lista de las operaciones disponibles en el menú EDIT:

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{EDIT} )</td>
<td>Desplaza el cursor al principio de la palabra actual.</td>
</tr>
<tr>
<td>( \text{SKIP} )</td>
<td>Desplaza el cursor al principio de la palabra siguiente.</td>
</tr>
<tr>
<td>( \text{DEL} )</td>
<td>Borra los caracteres comprendidos entre el principio de la palabra y el lugar donde se encuentra el cursor.</td>
</tr>
<tr>
<td>( \text{DEL} )</td>
<td>Borra los caracteres comprendidos entre el lugar donde está situado el cursor y el final de la palabra.</td>
</tr>
<tr>
<td>( \text{INS} )</td>
<td>Borra los caracteres comprendidos entre el principio de la línea y el cursor.</td>
</tr>
<tr>
<td>( \text{INS} )</td>
<td>Borra todos los caracteres comprendidos entre el cursor y el final de la línea.</td>
</tr>
<tr>
<td>( \text{INS} )</td>
<td>Cambia el modo de entrada de la línea de comandos del modo \textit{Insertar} (cursor ( \uparrow )) al modo \textit{Sustituir} (cursor ( \downarrow )) y viceversa. Un ( \star ) en la etiqueta de menú indica que el modo Insertar está activado.</td>
</tr>
<tr>
<td>( \text{INS} )</td>
<td>Activa la Pila Interactiva. Consulte “La Pila Interactiva” en el capítulo 3.</td>
</tr>
</tbody>
</table>

2-14 Cómo Introducir y Editar Objetos
La Pila

La pila está compuesta por una serie de ubicaciones de almacenamiento para números y otros objetos. En general, la HP 48 se utiliza mediante la introducción de números y otros objetos en la pila y la ejecución de los comandos que operan sobre los datos.

Cómo Utilizar la Pila para Operaciones de Cálculo

Normalmente, las operaciones de cálculo se realizan mediante la introducción de objetos en la pila y, a continuación, la ejecución de los comandos y funciones apropiados. Los conceptos fundamentales de las operaciones de la pila son los siguientes:

- Un comando que necesita argumentos (objetos sobre los que actúa el comando) y que toma sus argumentos de la pila. Por tanto, éstos deberán estar presentes antes de ejecutar el comando.
- Los argumentos de un comando se borran de la pila cuando se ejecuta el comando.
- Los resultados se devuelven a la pila para que puedan verse y utilizarse de nuevo en otras operaciones.

Cómo Efectuar Operaciones de Cálculo

Cuando se ejecuta un comando, todos los argumentos de la línea de comandos pasan automáticamente a la pila antes de ejecutarse el comando. Esto significa que no es necesario pulsar siempre Enter para colocar los argumentos en la pila—pueden dejarse uno o más argumentos en la línea de comandos cuando se ejecuta un comando (aunque deberá tenerse en cuenta que los argumentos siguen estando en la pila).
Para utilizar un comando de un argumento:

1. Introduzca el argumento en el nivel 1 (o en la línea de comandos).
2. Ejecute el comando.

**Ejemplo:** Utilice los comandos de un argumento LN (\(\rightarrow\) LN) y INV (\(1/x\)) para calcular 1/ln 3.7.

\[
\begin{align*}
3.7 \rightarrow \text{LN} & \quad 1: \quad 0.764331510286 \\
\frac{1}{x} & \quad \text{VECTR MATS LIST HYP REAL BASE}
\end{align*}
\]

Para utilizar un comando de dos argumentos:

1. Introduzca el primer argumento y a continuación el segundo. El primer argumento deberá estar en el nivel 2 y el segundo en el nivel 1 (o en la línea de comandos).
2. Ejecute el comando.

Un comando de dos argumentos actúa sobre los argumentos (objetos) de los niveles 1 y 2 y devuelve el resultado en el nivel 1. El resto de la pila cae un nivel—por ejemplo, el contenido anterior del nivel 3 pasa al nivel 2. Las funciones aritméticas (+, −, ×, / y ^) y los cálculos de porcentajes (%, %CH y %T) son ejemplos de comandos de dos argumentos.

**Ejemplo:** Calcule 85 – 31.

\[
\begin{align*}
85 \text{ ENTER} & \quad 31 \quad 1: \quad 54 \\
\text{VECTR MATS LIST HYP REAL BASE}
\end{align*}
\]

**Ejemplo:** Calcule \(\sqrt{45} \times 12\).

\[
\begin{align*}
45 \sqrt{x} & \quad 12 \quad \times \quad 1: \quad 88.40844719 \\
\text{VECTR MATS LIST HYP REAL BASE}
\end{align*}
\]

**Ejemplo:** Calcule 4.7^2.1.

\[
\begin{align*}
4.7 \text{ ENTER} & \quad 2.1 \quad y^x \quad 1: \quad 25.7872779682 \\
\text{VECTR MATS LIST HYP REAL BASE}
\end{align*}
\]
Para introducir más de un argumento en la línea de comandos:
- Pulse (SPC) para separar los argumentos.

Ejemplo: Calcule $\sqrt{2401}$.

$$2401 \text{ SPC } 4 \div 7$$

Como la pila de la HP 48 conserva los resultados anteriores, es muy fácil efectuar operaciones de cálculo en cadena.

Para utilizar los resultados anteriores (cálculo en cadena):

1. Si fuera necesario, desplace los resultados anteriores al nivel de la pila adecuado para el comando (consulte “Cómo Manipular la Pila” en la continuación del presente capítulo).
2. Ejecute el comando.

Ejemplo: Calcule $(12 + 3) \times (7 + 9)$.

**Paso 1:** Efectúe las sumas.

$$12 \text{ ENTER } 3 +$$

$$7 \text{ ENTER } 9 +$$

**Paso 2:** Observe que los dos resultados intermedios permanecen en la pila. Ahora, multiplíquelos.

$$\times$$

**Ejemplo:** Calcule $23^2 - (13 \times 9) + \frac{5}{7}$.

**Paso 1:** En primer lugar, calcule $23^2$ y el producto $13 \times 9$.

$$23 \leftarrow \times^2$$

$$13 \text{ ENTER } 9 \times$$
**Paso 2:** Reste los dos resultados intermedios y calcule $\frac{5}{7}$.

\[
\begin{array}{c}
\text{-} \\
5 \text{ ENTER} 7 \\ +
\end{array}
\]

\[
\begin{array}{c}
2: \quad .714285714286 \\
1: \quad 412 \\
\text{VECTR MATR LIST HYP REAL BASE}
\end{array}
\]

**Paso 3:** Sume los dos resultados.

\[
\begin{array}{c}
+ \\
\end{array}
\]

\[
\begin{array}{c}
1: \quad 412.714285714 \\
\text{VECTR MATR LIST HYP REAL BASE}
\end{array}
\]

**Cómo Manipular la Pila**

La HP 48 permite reordenar, duplicar y borrar objetos específicos de la pila.

**Para intercambiar los objetos de los niveles 1 y 2:**

- Pulse (SWAP) (o [ [ ] cuando no esté presente la línea de comandos).

El comando SWAP resulta útil con los comandos en los que el orden es importante, como $-,$, $/$ y $^\wedge$.

**Ejemplo:** Utilice (SWAP) para calcular $\sqrt{\frac{9}{13+8}}$.

**Paso 1:** En primer lugar, calcule $\sqrt{13+8}$.

\[
\begin{array}{c}
13 \text{ ENTER} 8 \quad + \quad \sqrt{x} \\
\end{array}
\]

\[
\begin{array}{c}
1: \quad 4.58257569496 \\
\text{VECTR MATR LIST HYP REAL BASE}
\end{array}
\]

**Paso 2:** Introduzca 9 e intercambie los niveles 1 y 2.

\[
\begin{array}{c}
9 \quad \text{SWAP} \\
\end{array}
\]

\[
\begin{array}{c}
2: \quad 4.58257569496 \\
1: \quad 9 \\
\text{VECTR MATR LIST HYP REAL BASE}
\end{array}
\]

3-4 La Pila
Paso 3: Divida los dos valores.

![Image](1: 1.96396101212 || Vectra Math List Hyp Real Base)

Para duplicar el objeto del nivel 1:

- Pulse **STACK** **NXT** **DUP** (o pulse **ENTER** si la línea de comandos no está presente).

El comando DUP duplica el contenido del nivel 1 y desplaza el resto de la pila a un nivel superior.

Ejemplo: Calcule \( \frac{1}{47.5} + \left( \frac{1}{47.5} \right)^4 \).

Paso 1: En primer lugar, calcule el inverso de 47.5 y duplique el valor.

\[
47.5 \frac{1}{x} \text{ ENTER}
\]

![Image](2: 2.10526315789E-2 || Vectra Math List Hyp Real Base)

Paso 2: Eleve el valor a la 4\(^{a}\) potencia.

\[
4 \text{ x}^2
\]

![Image](2: 2.10526315789E-2 || Vectra Math List Hyp Real Base)

Paso 3: Sume el resultado al valor original.

![Image](1: 2.10528280169E-2 || Vectra Math List Hyp Real Base)

Para borrar el objeto del nivel 1:

- Pulse **HT** **DROP** (o **DROP** cuando no esté presente la línea de comandos).

Cuando ejecute el comando DROP, el resto de los objetos de la pila descendrán un nivel.

La Pila 3-5
Para borrar la totalidad de la pila:
- Pulse \( \text{\texttt{CLEAR}} \) (o \( \text{\texttt{DEL}} \) cuando no esté presente la línea de comandos).

Cómo Recuperar los Últimos Argumentos
El comando LASTARG (\( \text{\texttt{ARG}} \)) coloca los argumentos del último comando ejecutado en la pila para que puedan utilizarse de nuevo. Esto resulta especialmente útil para argumentos complicados como operaciones algebraicas y matrices.

Para recuperar los argumentos del último comando:
- Pulse \( \text{\texttt{\textbf{\textit{ARG}}}} \).

Ejemplo: Utilice \( \text{\texttt{\textbf{\textit{ARG}}}} \) para calcular \( \ln 2.3031 + 2.3031 \).

\( \text{\textbf{\textit{Paso 1:}}} \) Calcule \( \ln 2.3031 \) y a continuación recupere el argumento de \( \text{\texttt{LN}} \) (\( \text{\texttt{ARG}} \) se encuentra sobre la tecla \( \text{\texttt{EEX}} \)).

\[
\begin{array}{c}
2.3031 \quad \text{\texttt{\textbf{\textit{LN}}}} \\
\text{\texttt{\textbf{\textit{ARG}}}}
\end{array}
\]

\( 2.3031 \quad .83425604152 \)

\( 1: \quad 2.3031 \)

\( 2: \quad .83425604152 \)

\( \text{\textsc{VECTOR MATA LIST NIP REAL BASE}} \)

\( \text{\textbf{\textit{Paso 2:}}} \) Sume los dos números.

\( \text{\textbf{\textit{Paso 2:}}} \)

\( \text{\texttt{\textbf{\textit{+}}}} \)

\( 1: \quad 3.13735604152 \)

\( \text{\textsc{VECTOR MATA LIST NIP REAL BASE}} \)

Cómo Restaurar la Ultima Pila (UNDO)
El comando UNDO \( \text{\texttt{\textbf{\textit{UNDO}}}} \) restaura la pila al modo en el que estaba antes de ejecutar el último comando.

Para restaurar la pila a su estado anterior:
- Pulse \( \text{\texttt{\textbf{\textit{UNDO}}}} \).
La Pila Interactiva

La pantalla normal de la pila es una “ventana” que muestra el nivel 1 y todos los niveles superiores que quepan en la pantalla. La HP 48 posee asimismo la característica de Pila Interactiva, un entorno especial en el que se vuelve a definir el teclado para un conjunto específico de operaciones de manipulación de la pila. La Pila Interactiva permite hacer lo siguiente:

- Desplazar la ventana para ver el resto de la pila.
- Copiar y desplazar objetos a niveles diferentes.
- Copiar el contenido de cualquier nivel de la pila a la línea de comandos.
- Borrar objetos de la pila.
- Editar objetos de la pila.
- Visualizar objetos de la pila en un entorno adecuado.

Cuando se activa la Pila Interactiva, el puntero de pila también se activa (señalando al nivel actual de pila), se vuelve a definir el teclado y aparece en pantalla el menú de Pila Interactiva. Es necesario salir de la Pila Interactiva antes de poder efectuar cualquier otra operación de cálculo.

![Diagrama de la pila interactiva](image)

Para utilizar la Pila Interactiva:

1. Pulse "STACK" (o pulse "STK" en el menú EDIT) para activar la Pila Interactiva. (Si no aparece la línea de comandos, pulse \( \text{ } \)).

2. Utilice las teclas que se describen en la siguiente tabla para visualizar o manipular la pila.
3. Pulse **ENTER** (o **CANCEL**)) para salir de la Pila Interactiva y mostrar la pila modificada.

4. Opcional: Para cancelar los cambios efectuados en la Pila Interactiva, pulse **(UND0)**.

   Si está presente la línea de comandos cuando se selecciona la Pila Interactiva, solamente aparecerá la tecla **ECHO** en el menú porque la única operación posible es copiar (**echo**) un objeto desde un nivel superior de la pila a la posición del cursor en la línea de comandos.

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>STACK</strong> (o <strong>A</strong> cuando no esté presente ningún comando):</td>
<td></td>
</tr>
<tr>
<td><strong>ECHO</strong></td>
<td>Copia el contenido del nivel actual a la posición del cursor de la línea de comandos.</td>
</tr>
<tr>
<td><strong>VIEW</strong></td>
<td>Visualiza o edita el objeto del nivel actual utilizando el entorno más adecuado. Pulse <strong>ENTER</strong> cuando haya terminado la edición (o <strong>CANCEL</strong> para cancelar).</td>
</tr>
<tr>
<td><strong>VIEW</strong></td>
<td>Visualiza o edita el objeto especificado mediante el nombre o el número de nivel utilizando el entorno más adecuado. Pulse <strong>ENTER</strong> cuando haya terminado la edición (o <strong>CANCEL</strong> para cancelar).</td>
</tr>
<tr>
<td><strong>PICK</strong></td>
<td>Copia el contenido del nivel actual al nivel 1 (equivalente a n PICK).</td>
</tr>
<tr>
<td><strong>ROLL</strong></td>
<td>Mueve el contenido del nivel actual al nivel 1 y desplaza hacia arriba la parte de la pila que se encuentra por debajo del nivel actual (equivalente a n ROLL).</td>
</tr>
<tr>
<td><strong>ROLLD</strong></td>
<td>Mueve el contenido del nivel 1 al nivel actual y desplaza hacia abajo la parte de la pila que se encuentra por debajo del nivel actual (equivalente a n ROLLD).</td>
</tr>
</tbody>
</table>

3-8  La Pila
### Operaciones de Pila Interactiva (continuación)

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{LIST})</td>
<td>Crea una lista que contiene todos los objetos desde el nivel 1 hasta el nivel actual (equivalente a (n \rightarrow \text{LIST})).</td>
</tr>
<tr>
<td>(\text{DUPN})</td>
<td>Duplica los niveles comprendidos entre el nivel 1 y el nivel actual (equivalente a (n \text{ DUPN})). Por ejemplo, si el puntero está en el nivel 3, los niveles 1, 2 y 3 se copiarán en los niveles 4, 5 y 6.</td>
</tr>
<tr>
<td>(\text{DROPN})</td>
<td>Borra todos los niveles desde el nivel 1 hasta el nivel actual (equivalente a (n \text{ DROPN})).</td>
</tr>
<tr>
<td>(\text{KEEP})</td>
<td>Borra todos los niveles superiores al nivel actual.</td>
</tr>
<tr>
<td>(\text{LEVEL})</td>
<td>Introduce el número de nivel actual en el nivel 1.</td>
</tr>
<tr>
<td>(\uparrow)</td>
<td>Desplaza el puntero de pila al nivel superior. Si va precedida por (\downarrow), desplaza el puntero de la pila al cuarto nivel superior. ((\leftarrow \text{PgUp}) en la siguiente ilustración del teclado); cuando va precedida por (\rightarrow), desplaza el puntero de pila a la parte superior de la pila ((\rightarrow \uparrow) en la siguiente ilustración del teclado).</td>
</tr>
<tr>
<td>(\downarrow)</td>
<td>Desplaza el puntero de pila al nivel inferior. Si va precedida de (\uparrow), desplaza el puntero de pila al cuarto nivel inferior ((\leftarrow \text{PgDn}) en la siguiente ilustración del teclado); cuando va precedida de (\rightarrow), desplaza el puntero de pila a la parte inferior de la pila ((\rightarrow \downarrow) en la siguiente ilustración del teclado).</td>
</tr>
<tr>
<td>(\leftarrow \text{EDIT})</td>
<td>Copia el objeto del nivel actual en la línea de comandos para su edición. Pulse Enter cuando haya terminado la edición (o (\text{CANCEL}) para cancelar).</td>
</tr>
<tr>
<td>(\ast)</td>
<td>Borra el objeto del nivel actual.</td>
</tr>
<tr>
<td>(\text{NXT})</td>
<td>Selecciona la página siguiente de las operaciones de la Pila Interactiva.</td>
</tr>
<tr>
<td>Enter</td>
<td>Sale de la Pila Interactiva.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Sale de la Pila Interactiva.</td>
</tr>
</tbody>
</table>

La mayoría de las operaciones del menú de Pila Interactiva tienen comandos programables equivalentes (consulte “Menú de Comandos de la Pila” en la página 3-11).
El teclado redefinido para la Pila Interactiva presenta el siguiente aspecto:

---

Para copiar un objeto de la pila en la línea de comandos:

1. Coloque el cursor en el punto de la línea de comandos en el que desea situar el objeto.
2. Pulse \texttt{EDIT} \#\texttt{STK}.
3. Pulse ▲ y ▼ para desplazar el puntero de la Pila Interactiva al objeto deseado y, a continuación, pulse ECHO.

4. Pulse ENTER (o CANCEL) para salir de la Pila Interactiva.

**Ejemplo:** Utilice la Pila Interactiva para insertar el número 1.2345 en la línea de comandos, creando la lista `{ A 1.2345 }.

**Paso 1:** Introduzca los siguientes números en la pila.

1.2345 ENTER
2.3456 ENTER
3.4567 ENTER

**Paso 2:** Introduzca la lista.

![Lista introducida](image)

**Paso 3:** seleccione la Pila Interactiva.

![Selección de la lista](image)

**Paso 4:** Desplace el puntero al nivel 3, copie el objeto y salga de la Pila Interactiva.

![Puntero nivel 3](image)

**Paso 5:** Coloque la lista en la pila.

![Colocación de la lista](image)
Menú de Comandos de la Pila

En la siguiente tabla se describen los comandos programables que manipulan la pila. Estos comandos están disponibles desde el menú de comandos \( \text{STACK} \).

<table>
<thead>
<tr>
<th>Comando/Descripción</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Entrada</strong></td>
<td><strong>Salida</strong></td>
</tr>
<tr>
<td><strong>DEPTH</strong> Devuelve el número de objetos en la pila.</td>
<td>2: 16</td>
</tr>
<tr>
<td></td>
<td>1: 'X1'</td>
</tr>
<tr>
<td><strong>DROP2</strong> Borra los objetos de los niveles 1 y 2.</td>
<td>2: 12</td>
</tr>
<tr>
<td></td>
<td>1: 10</td>
</tr>
<tr>
<td></td>
<td>1: 8</td>
</tr>
<tr>
<td><strong>DROPN</strong> Borra los primeros objetos ( n + 1 ) de la pila (( n ) está en el nivel 1). En el menú aparece como ( \text{DRPN} ).</td>
<td>2: 123</td>
</tr>
<tr>
<td></td>
<td>2: 456</td>
</tr>
<tr>
<td></td>
<td>1: 789</td>
</tr>
<tr>
<td></td>
<td>1: 2</td>
</tr>
<tr>
<td><strong>DUP</strong> Duplica el objeto del nivel 1.</td>
<td>2: 232</td>
</tr>
<tr>
<td></td>
<td>1: 543</td>
</tr>
<tr>
<td><strong>DUP2</strong> Duplica los objetos de los niveles 1 y 2.</td>
<td>2: 'A'</td>
</tr>
<tr>
<td></td>
<td>1: (2,3)</td>
</tr>
<tr>
<td></td>
<td>3:</td>
</tr>
<tr>
<td><strong>DUPN</strong> Duplica ( n ) objetos en la pila, comenzando por el nivel 2 (( n ) está en el nivel 1).</td>
<td>5: 123</td>
</tr>
<tr>
<td></td>
<td>4: 456</td>
</tr>
<tr>
<td></td>
<td>2: 789</td>
</tr>
<tr>
<td></td>
<td>1: 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Comando/Descripción</td>
<td>Ejemplo</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **OVER** Devuelve una copia del objeto del nivel 2. | 3: 3: 'AB'
|                     | 2: 2: 1234
|                     | 1: 1: 'AB'
| **PICK** Devuelve una copia del objeto del nivel n + 1 al nivel 1 (n está en el nivel 1). | 4: 4: 123
|                     | 3: 3: 456
|                     | 2: 2: 789
|                     | 1: 1: 3
| **ROLL** Desplaza el objeto del nivel n + 1 al nivel 1 (n está en el nivel 1). | 5: 5: 555
|                     | 4: 4: 444
|                     | 3: 3: 333
|                     | 2: 2: 222
|                     | 1: 1: 4
| **ROLLD** Desplaza hacia abajo una parte de la pila entre el nivel 2 y el nivel n + 1 (n está en el nivel 1). | 6: 6: 12
|                     | 5: 5: 34
|                     | 4: 4: 56
|                     | 3: 3: 78
|                     | 2: 2: 90
|                     | 1: 1: 4
| **ROT** Hace girar los tres primeros objetos en la pila (equivalente a 3 ROLL). | 3: 3: 34
|                     | 2: 2: 56
|                     | 1: 1: 12

La Pila 3-13
Modos

La HP 48 funciona con muchos modos diferentes, dependiendo de la naturaleza de la operación que esté realizando. Muchos de estos modos se controlan automáticamente mediante los comandos seleccionados por el usuario; otros están determinados por las opciones seleccionadas.

La aplicación MODES y el menú de comandos correspondiente proporcionan acceso a aquellos modos que se pueden controlar.

Cómo Utilizar la Aplicación MODES

La aplicación MODES proporciona una forma adecuada para controlar los modos utilizados por la HP 48.

Para utilizar la aplicación MODES:

- Pulse ☐️ MODES.

![Pantalla de Modos de la Calculadora]

Esta pantalla permite fijar los siguientes modos de la calculadora:

- Modo de la pantalla para el número de formato
- Modo de ángulo
Modo de coordenadas
Modo de pitido
Modo de visualización del reloj
Modo de símbolo decimal

Cómo Fijar el Modo de la Pantalla

El modo de la pantalla controla la forma de mostrar los números de la HP 48. (Observese que los números pueden aparecer en pantalla de un modo distinto al de su almacenamiento.) Los números se almacenan siempre según su signo, sin tener en cuenta el modo de la pantalla; las mantisnas con signo de 12 dígitos con los exponentes con signo de 3 dígitos.

La HP 48 presenta cuatro modos de pantalla:

- **Modo Estándar** (Std)—Muestra los números con total precisión. Se muestran todos los dígitos significativos situados a la derecha del símbolo decimal hasta un total de 12 dígitos.

- **Modo Fijar** (Fix)—Muestra los números redondeados a un número concreto de lugares decimales. Los números reales de la pila aparecen con separadores de dígitos (separando los dígitos en grupos de tres): comas (si se utiliza un punto como símbolo decimal) o puntos (si se utiliza una coma como símbolo decimal).

- **Modo Científico** (Sci)—Muestra un número como una mantisa (con un dígito a la izquierda del símbolo decimal y un número específico de lugares decimales) y un exponente.

- **Modo Técnico** (Eng)—Muestra un número como una mantisa con un número específico de dígitos, seguido por un exponente que sea múltiplo de 3.

Para fijar el modo de la pantalla:

- Pulse <MODES>.
- Resalte el campo NUMBER FORMAT:.
- Pulse <CHOOSE> (o pulse < “ varias veces para ver la lista fija de las opciones y deténgase cuando aparezca la opción deseada en el campo).
**Recuadro de Elección de Formato de Números**

- Seleccione un formato de números y pulse **OK**.
- Si el formato es Fix, Sci o Eng, pulse **DSR**, escriba el número de dígitos de la pantalla y pulse **ENTER**.
- Pulse **OK**.

**Cómo Fijar el Modo de Ángulo**

El modo de ángulo determina la forma con la que la calculadora interpreta los argumentos del ángulo y de qué forma devuelve los resultados del ángulo.

**Modos de Ángulo**

<table>
<thead>
<tr>
<th>Modo</th>
<th>Definición</th>
<th>Indicador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grados Sexagesimales</td>
<td>$\frac{1}{360}$ de un círculo</td>
<td>(ninguno)</td>
</tr>
<tr>
<td>Radianes</td>
<td>$\frac{1}{2\pi}$ de un círculo</td>
<td>RAD</td>
</tr>
<tr>
<td>Grados Centesimales</td>
<td>$\frac{1}{400}$ de un círculo</td>
<td>GRAD</td>
</tr>
</tbody>
</table>

**Para fijar el modo de ángulo desde la aplicación MODES:**

1. Pulse **MODES**.
2. Utilice las teclas del cursor para resaltar el campo **ANGLE MEASURE**.
3. Haga una de las dos cosas siguientes:
   - Pulse **CHOOS** para visualizar la lista de opciones, seleccione la opción deseada y pulse **OK**.
   - Pulse ** +/-** varias veces hasta que aparezca la opción deseada en el campo.
4. Pulse **OK** para confirmar la elección o **CANCEL** para cancelarla.
Para fijar el modo de ángulo directamente desde el teclado:
- Pulse $\text{RAD}$ para cambiar del modo Radianes a modo Grados Sexagesimales o viceversa (si se ha seleccionado previamente el modo Grados Centesimales en la aplicación MODES, estas teclas cambiarán del modo Radianes al modo Grados Centesimales o viceversa).

Cómo Fijar el Modo de Coordenadas

El modo de coordenadas afecta a la forma de visualización de los números complejos y los vectores. Los números complejos y los vectores bidimensionales pueden aparecer tanto en modo rectangular ($<X, Y>$ o $[X, Y]$) como en modo polar ($<R, \angle>$ o $[R, \angle]$).


Obsérvese que sea cual sea la forma en la que aparecen en pantalla estos objetos, siempre se almacenan en el modo rectangular y las operaciones de cálculo se basan en esta representación rectangular interna.

<table>
<thead>
<tr>
<th>Modos de Visualización Bidimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
</tr>
<tr>
<td>$[a \ b]$</td>
</tr>
</tbody>
</table>

Sistemas de Coordenadas para Números Complejos y Vectores Bidimensionales

4-4 Modos
Sistemas de Coordenadas para Vectores Tridimensionales

Para fijar el modo de coordenadas desde la aplicación MODES:

1. Pulse \( \text{MODES} \).
2. Utilice las teclas del cursor para resaltar el campo \text{COORD SYSTEM}.
3. Haga una de las dos cosas siguientes:
   - Pulse \text{CHDilos} para visualizar la lista de opciones, seleccione una de ellas y pulse \text{OK}.
   - Pulse \( \pm \) varias veces hasta que aparezca la opción deseada en el campo. Observe que \text{Polar} significa “polar cilíndrico” cuando en pantalla se muestran vectores tridimensionales.
4. Pulse \text{OK} para confirmar la elección o \text{ENTRE} para cancelarla.

Para cambiar el modo de coordenadas directamente desde el teclado:

- Pulse \( \text{POLAR} \) para pasar del modo Rectangular al modo Polar (cilíndrico) o viceversa. Si se ha seleccionado previamente el modo Esférico en la aplicación MODES, estas teclas cambian del modo Rectangular al modo Esférico o viceversa.
Cómo Fijar el Emisor el Pitido

Por defecto, la HP 48 emite un “pitido” siempre que se produce un error. El pitido puede activarse o desactivarse.

Para activar el pitido utilizando la aplicación MODES:

1. Pulse (MODES).
2. Resalte el campo BEEP y pulse ✅CHK o ✅-) hasta que aparezca la opción deseada (marcada—el emisor de pitidos está activado; no marcada—el emisor de pitidos está desactivado).
3. Pulse ✅OK para confirmar la opción elegida o CANCEL para cancelarla.

Cómo Fijar la Pantalla del Reloj

La HP 48 puede mostrar en pantalla un reloj que incluye la fecha y la hora.

Para visualizar el reloj:

1. Pulse (MODES).
2. Resalte el campo CLOCK y pulse ✅CHK o ✅-) hasta que aparezca la opción deseada (marcada—aparece el reloj en pantalla; no marcada—no aparece el reloj).
3. Pulse ✅OK para confirmar la opción elegida o CANCEL para cancelarla.

Cómo Fijar el Símbolo Decimal

Un símbolo decimal es el signo de puntuación que aparece en pantalla y que separa la parte entera de la decimal en un número real (el “signo decimal”). Como en los distintos países se utilizan símbolos decimales diferentes, la HP 48 permite dos formas de signos decimales: el punto (.) y la coma (,). Como se indica en la siguiente tabla, el símbolo decimal supone asimismo el cambio de la puntuación utilizada para separar los dígitos y los argumentos:
<table>
<thead>
<tr>
<th>Símbolo Decimal</th>
<th>Separador de Dígitos</th>
<th>Separador de Argumentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>. (3,456)</td>
<td>, (34,300,54)</td>
<td>; (3,4)</td>
</tr>
<tr>
<td>; (3,456)</td>
<td>. (34,300,54)</td>
<td>; (3;4)</td>
</tr>
</tbody>
</table>

**Para fijar el símbolo decimal:**

1. Pulse **MODES**.
2. Resalte el campo FM, y pulse **CH<** o **+/−** hasta que aparezca la opción deseada (marcada—el símbolo decimal es una coma; no marcada—el símbolo decimal es un punto).
3. Pulse **OK** para confirmar la opción elegida o **CANCEL** para cancelarla.

**Cómo Utilizar los Indicadores del Sistema**

La mayoría de los modos están controlados por *indicadores del sistema*. La HP 48 posee 64 indicadores del sistema, numerados del −1 al −64. Cada indicador tiene dos estados: fijado (valor de 1) o no fijado (valor de 0). Los indicadores del sistema y los modos que controlan se describen en el Apéndice D.

Es posible controlar los modos mediante la manipulación directa de los indicadores del sistema. Se puede acceder a los indicadores mediante la utilización del Localizador de Indicadores (Flag Browser), que es una parte de la aplicación MODES, o mediante el submenú de comandos **FLAG**.

**Cómo Utilizar el Localizador de Indicadores**

La HP 48 utiliza dos tipos de indicadores del sistema: los indicadores que por sí solos determinan un modo y los indicadores que funcionan combinados con otros para determinar un modo. El Localizador de Indicadores permite visualizar y fijar los indicadores de “utilización simple”.

**Modos 4-7**
Para visualizar o cambiar las opciones de los indicadores mediante el Localizador de Indicadores:

1. Pulse 🔈 **MODES**.
2. Pulse **FLHG** para entrar en el Localizador de Indicadores.

![System Flags](image)

El Localizador de Indicadores

3. Utilice las teclas del cursor para desplazarse por los indicadores. Una señal de comprobación a la izquierda del número del indicador señala que el indicador está **fijado**. El texto describe de qué modo afecta la configuración del indicador a la función de la calculadora.

4. Pulse **CHK** para cambiar la configuración del indicador. Obsérvese que la descripción cambiará para reflejar la nueva configuración.

5. Cuando haya terminado, pulse **OK** para confirmar los cambios (si se ha efectuado alguno) o **CANCEL** para cancelarlos.

**Cómo Utilizar el Submenú de Comandos de FLAG**

Los comandos para fijar, borrar y comprobar los indicadores se encuentran en el menú **MODES FLAGS (**(MODES) **FLAG)**. También aparecen duplicados en el menú **PRG TEST**. Estos comandos toman números de indicadores como argumentos.

**Para utilizar un comando de indicadores:**

1. Introduzca el número de indicador (negativo para un indicador del sistema).
2. Ejecute el comando (consulte la siguiente tabla).
Comandos de Indicadores

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>SF</td>
<td>Fija el indicador.</td>
</tr>
<tr>
<td>CF</td>
<td>CF</td>
<td>Borra el indicador.</td>
</tr>
<tr>
<td>FS?</td>
<td>FS?</td>
<td>Devuelve verdadero (1) si está fijado el indicador y falso (0) si no está fijado.</td>
</tr>
<tr>
<td>FC?</td>
<td>FC?</td>
<td>Devuelve verdadero (1) si no está fijado el indicador y falso (0) si está fijado.</td>
</tr>
<tr>
<td>FS?C</td>
<td>FS?C</td>
<td>Comprueba el indicador (devuelve verdadero (1) si el indicador está fijado y falso (0) si no está fijado) y a continuación lo borra.</td>
</tr>
<tr>
<td>FC?C</td>
<td>FC?C</td>
<td>Comprueba el indicador (devuelve verdadero (1) si el indicador no está fijado y falso (0) si está fijado) y a continuación lo borra.</td>
</tr>
</tbody>
</table>

Ejemplo: Configure Automatic Alpha Lock (Fijación Alfabética Automática) para que se active con una pulsación sencilla de (en vez de dos pulsaciones). Para hacerlo, fije el indicador del sistema —60, que controla la fijación alfabética: 60 +/- [MODES] FLAC SF.

Para fijar o borrar varios indicadores a la vez:

1. Desde la pila, introduzca en el nivel 1 una lista de los números de los indicadores que desea fijar o borrar.
2. Haga una de las dos cosas siguientes:
   - Para fijar los indicadores, pulse [MODES] FLAC SF.
   - Para borrar los indicadores, pulse [MODES] FLAC CF.

Para visualizar todas las configuraciones de los indicadores en la pila:

- Pulse [MODES] FLAC NXT RCLF.

Este comando devuelve una lista que contiene dos enteros binarios de 64 bits que representan los estados actuales del sistema y los
indicadores de usuario. El bit situado en el extremo de la derecha (el menos significativo) corresponde al indicador del sistema -1 o indicador de usuario 1.

**Para reconfigurar todos los indicadores con sus valores por defecto:**
- Pulse \( \text{MODES} \) \( \text{FLAGS} \) \( \text{NXT} \) \( \text{RESET} \).

**Indicadores del usuario**

Los *indicadores del usuario* están numerados de 1 al 64 y no los utiliza el sistema. Su significado depende de cómo los utiliza el programa del usuario y se pueden establecer, borrar y probar igual que los indicadores del sistema.

Los indicadores de usuario del 1 al 5 se visualizan como números cuando están activados.

**Submenús de MODES**

El menú de comandos MODES contiene tres submenús cuyos comandos actúan como atajos del teclado para cambiar los estados de modos concretos y como comandos programables. Cada uno de estos submenús contiene etiquetas de menú especiales que indican el estado de los modos representados. Cuando una etiqueta de menú contiene un «», ese modo está activado.

**Operaciones de MODES**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>STD</strong></td>
<td>Fija el modo de la pantalla en Estándar.</td>
</tr>
<tr>
<td><strong>FIX</strong></td>
<td>Fija el modo de la pantalla en Fijar, utilizando el número del nivel 1 para el número de lugares decimales.</td>
</tr>
<tr>
<td><strong>SCI</strong></td>
<td>Fija el modo de la pantalla en Científico, utilizando el número del nivel 1 para el número de lugares decimales.</td>
</tr>
</tbody>
</table>
### Operaciones de MODES (continuación)

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>Fija el modo de pantalla en Técnico, utilizando el número del nivel 1 para el número de dígitos de la mantisa que van a aparecer en pantalla después del primer dígito significativo.</td>
</tr>
<tr>
<td>FM</td>
<td>Cambia el símbolo decimal de un punto a una coma o viceversa.</td>
</tr>
<tr>
<td>ML</td>
<td>Cambia la visualización del nivel 1 multilineal en forma de múltiples líneas (*= en la etiqueta) a una línea simple seguida de tres puntos o viceversa.</td>
</tr>
</tbody>
</table>

**Modos de Medida de Ángulos**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEG</td>
<td>Fija el modo de ángulo en Grados Sexagesimales.</td>
</tr>
<tr>
<td>RAD</td>
<td>Fija el modo de ángulo en Radianes.</td>
</tr>
<tr>
<td>GRAD</td>
<td>Fija el modo de ángulo en Grados Centesimal.</td>
</tr>
<tr>
<td>RECT</td>
<td>Fija el modo de coordenada en Rectangular.</td>
</tr>
<tr>
<td>CYLIN</td>
<td>Fija el modo de coordenada en Cilíndrico.</td>
</tr>
<tr>
<td>SPHER</td>
<td>Fija el modo de coordenada en Esférico.</td>
</tr>
</tbody>
</table>

**Modos Misceláneos**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEEP</td>
<td>Cambia de emisor de pitidos de errores activado (= en la etiqueta) a desactivado o viceversa.</td>
</tr>
<tr>
<td>CLK</td>
<td>Cambia de visualización del reloj (= en la etiqueta) a no visualización o viceversa.</td>
</tr>
<tr>
<td>SYM</td>
<td>Cambia de cálculo simbólico (= en la etiqueta) de expresiones simbólicas a numérico y viceversa.</td>
</tr>
<tr>
<td>STK</td>
<td>Cambia de archivar la última pila (= en la etiqueta) a no archivarla y viceversa. Afecta a la acción de [undo].</td>
</tr>
<tr>
<td>ARG</td>
<td>Cambia de archivar los últimos argumentos (= en la etiqueta) a no archivarlos y viceversa. Afecta a la acción de [arg].</td>
</tr>
<tr>
<td>CMD</td>
<td>Cambia de archivar en la memoria la última línea de comandos (= en la etiqueta) a no archivarla y viceversa. Afecta a la acción de [cmd].</td>
</tr>
<tr>
<td>INFO?</td>
<td>Cambia de mostrar en pantalla mensajes y datos automáticamente (= en la etiqueta) a no mostrarlos y viceversa.</td>
</tr>
</tbody>
</table>
Memoria

La HP 48 dispone de dos tipos de memoria:

- **Memoria de sólo lectura (ROM).** La ROM es una memoria dedicada a operaciones específicas y que no puede alterarse. La HP 48 posee 512 KB (kilobytes) de ROM interna que contiene su propio conjunto de comandos. Se puede ampliar la ROM de la calculadora, salvo en el modelo HP 48G, mediante la instalación de tarjetas de aplicaciones insertables (descritas en el capítulo 28).

- **Memoria de acceso aleatorio (RAM).** La RAM es una memoria que puede modificarse. En la RAM se almacenan datos, se modifica su contenido y se borran. Salvo en el modelo HP 48G, es posible ampliar la RAM de la calculadora mediante tarjetas de memoria adicionales (descritas en el capítulo 28).

La RAM es conocida también como *memoria de usuario*, pues es una memoria a la que tiene acceso el usuario. La memoria se utiliza o se manipula cuando se introduce un objeto en la pila, cuando se archiva un objeto en una variable, cuando se borra una variable, cuando se crea una ecuación o una matriz, cuando se ejecuta un programa, etc. Por otro lado, la HP 48 efectúa periódicamente un sistema de limpieza para dejar la memoria libre para su utilización.

La siguiente figura muestra de qué modo está organizada la memoria RAM en la HP 48. Obsérvese que la figura no aparece a escala.
<table>
<thead>
<tr>
<th>Sistema</th>
<th>Memoria Disponible</th>
<th>Memoria de Usuario</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>Home</td>
</tr>
<tr>
<td>Puerta 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las particiones varían en su tamaño dependiendo de la distribución actual de la memoria

**Presentación Esquemática de la RAM Interna de la HP 48**

Cuando se efectúa una reconfiguración completa de la memoria, ésta vuelve al estado en el que estaba al salir de la fábrica. Los únicos elementos archivados en la memoria en ese momento son las variables del sistema incorporadas (sección A). El resto de la memoria es memoria disponible (C).

Cuando se trabaja con la calculadora, la memoria disponible se distribuye automáticamente entre las distintas regiones que aparecen en la figura anterior y que se describen a continuación:

- **Memoria del Sistema:** Este espacio está reservado para el sistema RPL. No se tiene control directo sobre este espacio. Está dividido en secciones no ampliables y secciones ampliables:
  - Almacenamiento de Variables del Sistema (A): Sección no ampliable que contiene los valores de todas las variables del sistema RPL (como `PICT`) y las ubicaciones actuales de los "límites" entre las restantes secciones ampliables de la RAM.
  - Almacenamiento Temporal del Sistema (B): Sección ampliable que contiene copias temporales de los objetos que se están manipulando y la "pila de devolución" (una lista de las operaciones pendientes actualmente).

- **Memoria Disponible (C):** Sección ampliable que contiene toda la RAM que aún no ha sido asignada una vez sustraída la Memoria de Usuario y del Sistema del total de la memoria configurada.
Memoria de Usuario: Memoria disponible para la utilización por parte del usuario. La memoria de usuario se divide en cinco secciones ampliables:

- La Pila (D): Contiene los objetos existentes actualmente en la pila.

- ULTIMO Almacenamiento de Variables (E): Contiene las tres variables temporales—LAST CMD, LAST STACK y LAST ARG—que archivan copias de los comandos, de la pila y de los argumentos anteriores para que puedan recuperarse si fuera necesario. Para ahorrar memoria, se pueden desactivar estas variables (consulte la página 4-11).

- Almacenamiento de Variables Locales (F): Contiene todas las variables locales creadas por los programas que se están ejecutando actualmente. Las variables locales existen únicamente mientras se ejecuta el programa.

- HOME (G): Contiene todos los objetos nombrados (almacenados). Se puede organizar y controlar HOME mediante el Localizador de Variables (consulte la página 5-5). En la mayor parte del resto del este capítulo se presenta una descripción de HOME.

- Puerta Lógica 0 (H): Contiene objetos y bibliotecas de seguridad almacenadas por el usuario en la Puerta Lógica 0.

**HOME: Variables y Directorios**

La sección HOME de la memoria funciona de un modo muy similar al de un disco en un ordenador personal. Cada uno de los objetos nombrados en HOME o variable de HOME equivale a un archivo en un disco de ordenador.

Al igual que los archivos, las variables de HOME permiten almacenar y recuperar información utilizando nombres significativos. Por ejemplo, puede archivarse la aceleración de la gravedad, 9.81 m/s², en una variable llamada G y a continuación utilizar un nombre para indicar el contenido de la variable. A menos que se especifique de otro modo, todas las variables que se creen (mediante la asignación de un nombre) serán variables de HOME.
Del mismo modo, al igual que los archivos, las variables de HOME pueden distribuirse de un modo jerárquico en directorios y organizarse para que se adecúen a las necesidades particulares de cada usuario. Obsérvese que los nombres de los directorios se almacenan en variables.

Unicamente podrá estar activado un directorio al mismo tiempo (el directorio actual). El directorio maestro (o directorio raíz) de la HP 48 se llama directorio HOME, que será el directorio actual a menos que lo cambie el usuario. La ruta del directorio actual (la ruta actual) aparecerá en el área de estado de la pantalla.

<table>
<thead>
<tr>
<th>HOME</th>
<th>PROG</th>
<th>MATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:</td>
<td>ARRAY</td>
<td>TRIG</td>
</tr>
</tbody>
</table>

El usuario siempre tiene acceso inmediato desde el teclado a las variables almacenadas en el directorio actual. Al pulsar la tecla VAR aparecerá un menú (el menú VAR) de las seis últimas variables almacenadas en el directorio actual (si se pulsa NXT se entrará en las “páginas” adicionales de dichas variables). Como los nombres de directorios se almacenan normalmente en las variables, también aparecerán en el menú VAR, con barras sobre la parte superior izquierda (“lengüetas”) de las etiquetas de menú correspondientes para mostrar que se trata de directorios.

El directorio HOME es el único directorio existente cuando se enciende la calculadora por primera vez. Los demás directorios los creará el usuario de acuerdo con sus necesidades mediante el Localizador de Variables.
Dónde Almacenar las Variables

Cuando se calcula una variable, la HP 48 busca en el directorio actual el nombre de la variable. Si el nombre no lo encuentra allí, la HP 48 buscará en la ruta superior, hasta que encuentre la variable, o buscará en el directorio HOME. Obsérvese que calculará la primera variable que encuentre con ese nombre, que puede ser o no la que se había pensado. Esto nos sugiere algunas indicaciones para organizar las variables:

- Coloque las variables a las que desea acceder desde cualquier directorio en el directorio HOME.
- Coloque las variables a las que no desea tener acceso desde todos los directorios en un directorio que no se encuentre en la ruta actual.
- Es posible duplicar los nombres de las variables, siempre que no se encuentren en el mismo directorio.

Cómo Utilizar la Aplicación Localizador de Variables

El Localizador de Variables es una aplicación diseñada para facilitar el modo de visualización y de organización de la sección de la memoria HOME y de los directorios, subdirectorios y variables que se encuentran en ella.

Para seleccionar el Localizador de Variables, pulse MEM: 

![Localizador de Variables—Pantalla Principal](image)

Esta sección describe las tareas que pueden llevarse a cabo mediante el Localizador de Variables:
Cómo Crear Nuevas Variables

Los nombres de variables pueden contener hasta 127 caracteres, que pueden ser letras, dígitos o cualquier otro carácter a excepción de los siguientes:

- Caracteres que separan objetos: espacio, punto, coma, @
- Delimitadores de objetos # [ ] " ' < > ( ) « » : ...
- Símbolos de funciones matemáticas: + - * / ^ \ = < > \le \ge \ne \exists \forall !

Obsérvese que las letras mayúsculas y minúsculas no son equivalentes, aunque aparezcan del mismo modo en las etiquetas de menú.

Los nombres de variables deberán sufrir también las siguientes limitaciones:

- Los nombres no podrán comenzar por un dígito.
- No podrán utilizarse los nombres de comandos (por ejemplo, SIN, i o π).
- No podrá utilizarse el nombre PICT, utilizado por la HP 48 para el objeto de gráficos actual.
- Algunos nombres son nombres de variables correctos, pero la HP 48 los utiliza para fines específicos. Se pueden utilizar estos nombres, pero recuerde que algunos comandos los usan como argumentos implícitos: si se altera su contenido, tal vez estos comandos no funcionen correctamente. Estas variables se llaman variables reservadas:
  - $EQ$ se refiere a la ecuación utilizada actualmente por las aplicaciones SOLVE y PLOT.
  - $CST$ contiene datos de menús personalizados.
  - $ΣDAT$ contiene la matriz estadística actual.
  - $ALRMDAT$ contiene los datos de una alarma que se está construyendo o editando.
  - $ΣPAR$ contiene una lista de los parámetros utilizados por los comandos de STAT.
- **PPAR** contiene una lista de los parámetros utilizados por los comandos de PLOT.
- **VPAR** contiene una lista de los parámetros utilizados por los comandos de 3D PLOT.
- **PRTPAR** contiene una lista de los parámetros utilizados por los comandos de PRINT.
- **IOPAR** contiene una lista de los parámetros utilizados por los comandos de IO.
- **s1, s2, ...** se crean mediante ISOL y QUAD para representar signos arbitrarios obtenidos en soluciones simbólicas.
- **n1, n2, ...** se crean mediante ISOL para representar enteros arbitrarios obtenidos en soluciones simbólicas.
- Los nombres que comienzan por "der" indican derivadas definidas por el usuario.

**Para crear una nueva variable con el Localizador de Variables:**

1. Pulse **MEMORY**.
2. Seleccione **NEW** en el menú.

![Pantalla de NEW VARIABLE](image)

3. Introduzca el nuevo objeto en el campo **OBJECT**: Esto se puede hacer de varios modos:
   - Escriba el objeto en la línea de comandos y pulse **ENTER**.
   - Utilice el entorno Equation Writer (consulte el capítulo 7) para introducir un objeto algebraico.
   - Utilice el entorno Matrix Writer (consulte el capítulo 8) para introducir un objeto de sistemas.
   - Pulse **CHOOSE** y seleccione un objeto.
   - Pulse **NXT** **HELP**, coloque el objeto deseado en el nivel 1 de la pila y pulse **OK** (consulte el capítulo 3).
4. Introduzca un nombre en el campo **NAME**: (con o sin comillas simples).
5. Pulse **OK**.
Observe que si el nombre de variable utilizado es demasiado largo para que quepa en una etiqueta de menú, sólo aparecerá el principio del nombre en la etiqueta de menú correspondiente.

Para crear un nuevo subdirectorio en el directorio actual:
1. Pulse \[→\] MEMORY.
2. Pulse \[NEW\].
3. Pulse \[▼\] e introduzca un nombre en el campo NAME:.
4. Resalte de campo de comprobación DIRECTORY y pulse \[✓\] CHK (o \[+/−\]).
5. Pulse \[OK\].

Cómo Seleccionar, Editar y Recuperar Variables

El Localizador de Variables facilita la selección de una o más variables desde cualquier directorio y la realización de operaciones en distintas variables al mismo tiempo. También pueden editarse variables existentes y recuperar variables en la pila.

Para seleccionar una variable en el directorio actual:
- Pulse \[→\] MEMORY.
- Utilice las teclas \[▲\] y \[▼\] para resaltar la variable deseada.

Para seleccionar un grupo de variables en el directorio actual:
1. Pulse \[→\] MEMORY.
2. Utilice las teclas \[▲\] y \[▼\] para resaltar una variable o pulse \[✓\] y una tecla de letras para resaltar la siguiente variable del directorio actual que comience por dicha letra y repita la operación hasta que aparezca resaltada la variable deseada.
3. Pulse \[✓\] CHK (o pulse \[+/−\]) para incluir la variable en el grupo que está seleccionando.
4. Repita los pasos 2 y 3 para cada una de las variables adicionales que desee incluir.

Una vez marcadas las variables deseadas, podrá efectuar una operación sobre todo el grupo al mismo tiempo.
Para seleccionar variables de un directorio diferente (cambiar el directorio actual):

1. Pulse \( \rightarrow \) MEMORY.
2. Pulse CHOOSE para que aparezca el Localizador de Directorios, que mostrará los directorios y subdirectorios de la sección de la memoria HOME.

3. Use the \( \uparrow \) and \( \downarrow \) keys (or \( \alpha \) and the first letter of the subdirectory) to highlight the subdirectory you want, and press OK.
4. Seleccione la variable o las variables deseadas.

Para editar una variable:

1. Pulse \( \rightarrow \) MEMORY.
2. Seleccione la variable que desee editar.
3. Pulse EDIT EDIT.
4. Edite el objeto mediante el entorno Edit y pulse OK OK cuando haya terminado.

Para recuperar una variable en la pila:

1. Pulse \( \rightarrow \) MEMORY.
2. Seleccione la variable que desee recuperar.
3. Pulse \( \text{NXT} \) \( \text{REL} \).
4. Salga del Localizador cuando haya terminado (pulse \( \text{CANCEL} \)).

Cómo Copiar, Desplazar y Borrar Variables

El Localizador de Variables resulta también apropiado para organizar las variables en el modo adecuado para el usuario.
Para copiar variables:

1. Pulse (MEMC). 
2. Seleccione la variable o las variables que desee copiar. 
3. Pulse COPY.

4. Introduzca uno de los siguientes elementos en el campo COPY TO:
   - Un nuevo nombre de variable (para archivar una copia de la variable seleccionada con un nuevo nombre)
   - Un nombre de variable existente (para sustituir el contenido de la variable nombrada por el objeto seleccionado)
   - Una lista de rutas de directorios (para archivar una copia de la variable seleccionada bajo el mismo nombre pero en un directorio distinto)
5. Pulse OK.

Para desplazar una variable:

1. Pulse (MEMORY).
2. Seleccione la variable o variables que desea desplazar.
3. Pulse MOVE.

4. Introduzca uno de los siguientes elementos en el campo **MOVE TO**:  
   - Un nuevo nombre de variable (para renombrar el objeto seleccionado)  
   - Un nombre de variable existente (para sustituir el contenido de la variable nombrada por el objeto seleccionado y borrar el objeto seleccionado)  
   - Una lista de rutas de directorios (para desplazar la variable seleccionada a un directorio distinto)

5. Pulse **OK**.

**Para borrar variables:**

1. Pulse **MEMORY**.  
2. Seleccione la variable o las variables que desee borrar.  
3. Pulse **NXT** **PUPG**.

**Cómo Determinar el Tamaño de las Variables**

El Localizador de Variables permite averiguar la cantidad de memoria de almacenamiento utilizada por una variable.

**Para determinar el tamaño de las variables:**

1. Pulse **MEMORY**.  
2. Seleccione la variable o las variables que desee “medir”.  
3. Pulse **SIZE** en la segunda página del menú (pulse **NXT** si fuera necesario). Verá un recuadro de mensaje como el que se presenta a continuación:

![Recuadro de Mensaje SIZE](image)

4. Pulse **OK** para borrar el recuadro de mensaje.
Cómo Utilizar Variables: Menú VAR

El menú VAR proporciona acceso a las variables globales que se han creado en el directorio actual.

Mientras que el Localizador de Variables resulta más adecuado para organizar y manipular las variables que se han creado, el menú VAR es una herramienta especialmente útil para usar variables en operaciones de cálculo, incorporarlas a ecuaciones y como atajo para un determinado número de tareas normales de la memoria:

- **Crear una nueva variable.** Coloque el objeto deseado en el nivel 1 de la pila, escriba el nombre de la variable y pulse \( \text{STO} \). La nueva variable se colocará en el directorio actual y se mostrará en el menú VAR.

- **Calcular una variable.** Pulse la tecla del menú VAR de la variable.

- **Recuperar el contenido de una variable en la pila.** Pulse \( \text{↺} \) y a continuación la tecla del menú VAR de la variable.

- **Recuperar el nombre de una variable en la pila.** Pulse \( \text{↺} \) y a continuación la tecla de menú de la variable.

- **Actualizar el contenido de una variable.** Coloque el contenido que se acaba de editar de la variable en el nivel 1 de la pila y pulse \( \text{↺} \) y a continuación la tecla de menú de la variable.

- **Borrar una variable (nombre y contenido) de la memoria.** Recupere el nombre de la variable en la pila y pulse \( \text{↺} \) \( \text{PURG} \).

- **Borrar un grupo de variables a la vez.** Coloque en el nivel 1 de la pila una lista (con delimitadores \( \langle \rangle \)) que contenga los nombres \( \text{sin comillas} \) de las variables que desee borrar y pulse \( \text{↺} \) \( \text{PURG} \).

- **Incluir el nombre de una variable en una operación algebraica o en un programa.** Asumiendo que se han introducido los delimitadores apropiados (comillas simples para las operaciones algebraicas o guiones para los programas), pulse la tecla del menú VAR de la variable.
- Cambiar al directorio HOME. Pulse \( \text{HOME} \).
- Cambiar al directorio superior. Pulse \( \text{UP} \).

**Ejemplo:** Practique la utilización del menú VAR creando una variable denominada \( OPTION \) que contenga 6.05.

**Paso 1:** Cree la variable \( OPTION \) y visualice el menú VAR.

\[
\begin{align*}
6.05 \text{ ENTER} & \quad 1 \quad \alpha \, \alpha \\
\text{OPTION} \quad \alpha \, \text{STO} \, \text{VAR}
\end{align*}
\]

**Paso 2:** Recupere el valor de la variable.

\[
\begin{align*}
\text{OPTIO} & \quad 1: \\
& \quad 6.05
\end{align*}
\]

**Paso 3:** Recupere el nombre de la variable.

\[
\begin{align*}
\text{OPTIO} \, \text{ENTER} & \quad 2: \\
& \quad 1: \quad 'OPTION'
\end{align*}
\]

**Paso 4:** Cambie el valor de \( OPTION \) a 6.15. Recupere el contenido de nuevo para confirmar el cambio.

\[
\begin{align*}
6.15 \, \text{OPTIO} & \quad 3: \\
\text{OPTIO} & \quad 2: \quad 'OPTION' \\
& \quad 1: \quad 6.15
\end{align*}
\]

**Paso 5:** Despeje la pantalla y borre \( OPTION \) de la memoria.

\[
\begin{align*}
\text{CLEAR} & \quad 1:
\end{align*}
\]
Cómo Definir Variables

El comando DEFINE de la HP 48 puede crear variables a partir de ecuaciones (consulte el capítulo 7 para obtener información sobre la creación de ecuaciones). Si el nivel 1 de la pila tiene una ecuación con la forma 'nombre = expresión', al ejecutar DEFINE se almacenará dicha expresión en ese nombre.

Para crear una variable a partir de una definición simbólica:

1. Introduzca una ecuación con la forma 'nombre = expresión'.
2. Pulse "DEF" (el comando DEFINE).

Ejemplo: Utilice DEFINE para archivar \(\text{M}\times\text{C}^2\) en la variable \(E\).

Paso 1: Pulse \(\alpha\alpha\alpha\) E \(\rightarrow\) M \(\times\) C \(\alpha\) \(\y^2\) 2 \(\text{ENTER}\).

Paso 2: Pulse "DEF".

Obsérvese que si el indicador -3 no está fijado (su estado por defecto) DEFINE almacenará la expresión sin efectuar el cálculo. Si se ha fijado el indicador -3, la expresión que se va a almacenar se calculará numéricamente, si fuera posible, antes de ser archivada. Por ejemplo, la secuencia de teclas 'A=10+10' "DEF" creará la variable \(A\) y almacenará '10+10' en ella si el indicador -3 no está fijado y 20 si se ha fijado el indicador -3.
Cómo Evaluar Variables

Para utilizar el *contenido* de una variable en una operación de cálculo, deberá *evaluarse* la variable. Esto se realiza pulsando la tecla del menú de la variable en el menú VAR.

Al evaluar el nombre de una variable se recuperará el objeto almacenado en la variable:

- **Nombre.** Se evalúa el nombre (recuperando su objeto).
- **Programa.** Se ejecuta el programa.
- **Directorio.** El directorio se convierte en el directorio actual.
- **Otro Objeto.** Se devuelve una copia del objeto a la pila.

**Ejemplo:** Suponga que existen cuatro variables en el directorio actual—*A* que contiene 2, *B* que contiene 5, *ALG* que contiene la expresión 'A+B' y *ADD2* que contiene el programa breve «+ ». Evalúe las desde el menú VAR.

**Paso 1:** Desde la pila, visualice el menú VAR.

```
2:  1:
    ADD2 ALG B A
```

**Paso 2:** Evalúe *ALG, B* y *A*. Como ninguna de estas variables contiene programas o directorios, sus contenidos aparecerán en la pila.

```
3:  2:
    'A+B'
```

**Paso 3:** Evalúe *ADD2*. Observe que se ejecuta el programa, no aparece simplemente en la pila.

```
1:  2:
    'A+B+7'
```
Nombres de Variables Delimitados y Variables Formales

El delimitador ' es muy importante cuando se introduce el nombre de una variable: determina si el nombre va a ser evaluado automáticamente o no al pulsar ENTER. Si el delimitador ' está presente, no se evaluará el nombre.

Para introducir un nombre de variable en la pila:

- Si existe una variable con ese nombre (o pudiera existir), pulse (i) y a continuación escriba el nombre o pulse la tecla del menú VAR correspondiente. Los nombres de variables que forman parte de una expresión algebraica están entre comillas simples y no se evaluarán hasta que no se evalúe la expresión algebraica.

- Si no existe ninguna variable con ese nombre, escribalo sin comillas y pulse ENTER. Como la HP 48 no encuentra ningún objeto correspondiente al nuevo nombre, se tratará al nombre como una variable formal y se colocará en la pila entre comillas simples. El hecho de evaluar una variable formal devuelve simplemente el nombre de la variable formal de nuevo.

Aunque aparezcan con idéntica forma en la pantalla, existen dos diferencias importantes entre los nombres de variables formales (que no tienen objetos asociados) y los nombres de variables delimitados por comillas simples (que tienen objetos asociados):

- La evaluación de una variable formal parece no hacer nada, pues ésta vuelve de nuevo a la pila. La evaluación de un nombre delimitado por comillas simples de una variable que contenga un objeto evaluará efectivamente ese objeto.

- Las variables formales nunca aparecen en el menú VAR. Todas las variables que aparecen en el menú VAR tienen un objeto asociado. De todos modos, se puede archivar un nombre de variable formal en una variable de VAR con un nombre diferente.

Ejemplo: Introduzca el nombre ADD2 en la pila utilizando comillas simples.

\[
\begin{array}{c}
\text{\(1\) \(\text{\#} \) \(\text{\#} \) ADD2 ENTER} \\
\end{array}
\]

5-16 Memoria
Ejemplo: Introduzca el nombre de la variable formal C en la pila sin comillas. Si realmente existe una variable C en algún lugar de la ruta actual, verá su contenido en vez del nombre de la variable.

```
α C ENTER
```

Ejemplo: Archive la variable formal 'C' en la variable C2. A continuación, evalúe C2 utilizando el menú VAR.

**Paso 1:** Archive 'C' en C2.

```
< CLEAR MEMORY NEW α C ENTER α C2 ENTER OK NXT OK
```

**Paso 2:** Evalúe C2 utilizando el menú VAR. Asegúrese de que 'C' es una variable formal pulsando [EVAL].

```
VAR C2
```

---

**Operaciones Especiales de la Memoria**

En algunas ocasiones se puede tener la sensación de que la HP 48 se ha quedado bloqueada mientras está ejecutando algo y que no responde a la tecla [CANCEL]. Esto puede ocurrir si se altera la memoria o si el sistema está "confuso" durante la ejecución.

Si esto ocurre, existen dos modos para intentar corregirlo: la **interrupción del sistema** y la **reconfiguración de la memoria**.

**Precaución** Si tiene que reconfigurar la calculadora, intente siempre una interrupción del sistema en primer lugar. Considere el hecho de reconfigurar la memoria solamente en el caso de que falle la interrupción del sistema.
Interrupción del Sistema

La interrupción del sistema hace lo siguiente:

- Interrumpe y cancela todos los programas en ejecución y todas las operaciones del sistema.
- Borra la pila, todas las variables locales, las tres ULTIMAS variables, la pantalla PICTURE y la sección de almacenamiento temporal del sistema de la memoria.
- Desactiva el teclado de usuario (borra el indicador -62).
- Elimina todas la bibliotecas del directorio HOME y reconfigura todas las bibliotecas de todas las puertas lógicas disponibles (consulte “Cómo Configurar las Bibliotecas” en el capítulo 28 para obtener más detalles).
- Convierte al directorio HOME en el directorio actual.
- Activa el menú principal de MTH.

Obsérvese que la interrupción del sistema no afecta a los objetos almacenados en HOME y en la Puerta Lógica 0.

Para interrumpir el sistema desde el teclado:

1. Pulse y mantenga pulsada la tecla [ON].
2. Pulse la tecla de menú [C].

La interrupción del sistema se efectúa también automáticamente cuando se enciende la calculadora, si se ha añadido, eliminado o cambiado la posición de la patilla de protección contra escritura de cualquier tarjeta insertable, desde que se encendió la calculadora por última vez.

Algunas veces la HP 48 puede quedarse bloqueada y no responder a [ON]-[C] porque no acepta la entrada desde el teclado. En dichas ocasiones será necesario ejecutar la interrupción del sistema directamente, sin utilizar el teclado.

Para interrumpir el sistema sin utilizar el teclado:

1. Déle la vuelta a la calculadora y quite el pie de goma que se encuentra en parte superior derecha (mirando de frente la parte posterior de la máquina). Verá un agujero pequeño que tiene al lado la letra R.
2. Inserte la punta de un clip normal de metal en el agujero hasta que haga tope. Manténgalo presionado durante unos segundos y sáquelo.
3. Pulse **ON**.
4. Si fuera necesario, pulse **ON**. Si esto no funciona, será necesario intentar una reconfiguración de la memoria.

**Reconfiguración de la Memoria**

La reconfiguración de la memoria puede reconfigurar la IIP 48 a su estado por defecto de fábrica borrando toda la información almacenada. Tenga mucho cuidado al utilizar esta función.

**Para efectuar una reconfiguración de la memoria:**

1. Pulse y mantenga pulsadas a la vez las tres teclas siguientes: **ON**, la tecla de menú **A** y la tecla de menú **F**.
2. Suelte las dos teclas de menú, pero mantenga pulsada **ON**:
   - Si desea *continuar* con la reconfiguración de la memoria, suelte **ON**.
   - Si desea *cancelar* la reconfiguración de la memoria, pulse la tecla de menú **B** y a continuación suelte **ON**.

Una vez iniciada la reconfiguración de la memoria, la calculadora emitirá un pitido y mostrará la siguiente pantalla:
3. Pulse **YES** si desea intentar la recuperación de las variables que se habían almacenado en HOME y en la Puerta Lógica 0. No existe garantía alguna de que puedan recuperarse todas las variables. Pulse **NO** para efectuar una reconfiguración completa de la memoria. Esto devolverá a la HP 48 sus valores por defecto de fábrica y borrará toda la memoria de usuario.

**Cómo Responder a Bajas Condiciones de la Memoria**

Las operaciones de la HP 48 comparten la memoria con los objetos que se crean. Esto significa que la calculadora puede llegar a funcionar de un modo muy lento o incluso no funcionar si la memoria de usuario está sobrecargada. Si se diera este caso, la HP 48 presentará una serie de mensajes de aviso de memoria insuficiente. Estos mensajes aparecen descritos a continuación en orden creciente de importancia.

- **No Room for Last Stack** (Espacio Insuficiente para la Ultima Pila)—Si no existe suficiente memoria para archivar una copia de la pila actual, aparecerá este mensaje cuando se ejecute ENTER. La operación UNDO (ANULAR) se desactiva cuando aparece este mensaje.

  **Solución:** Borre las variables no utilizadas o los objetos innecesarios de la pila.

- **Insufficient Memory** (Memoria Insuficiente)—Este mensaje aparecerá si no existe memoria suficiente para ejecutar una operación en su totalidad. Si está activado el comando LASTARG (el indicador -55 no está fijado), se restaurarán los argumentos originales en la pila. Si el comando LAST ARG está desactivado (el indicador -55 está fijado), los argumentos se perderán.

  **Solución:** Borre las variables no utilizadas o los objetos innecesarios de la pila.
No Room To Show Stack (Espacio Insuficiente para Mostrar la Pila)—Este mensaje aparece cuando la HP 48 completa todas las operaciones pendientes pero no tiene suficiente memoria libre para mostrar la pila. Cuando esto se produce, la pila muestra los objetos solamente por tipos: Real Number, Algebraics (Números Reales, Operaciones Algebraicas), etc. La cantidad de memoria requerida para mostrar un objeto de la pila varía de acuerdo con el tipo de objeto.

Solución: Borre de la pila las variables innecesarias y los objetos no utilizados o archive los objetos de la pila en variables para que no tengan que mostrarse en pantalla.

Out of Memory (No Existe Memoria)—En casos extremos, la calculadora se queda totalmente sin memoria y es incapaz de hacer nada. En esta situación, deberá despejar parte de la memoria antes de poder continuar. La HP 48 activa un procedimiento especial para llevar a cabo esta operación y muestra la siguiente pantalla:

![Out of Memory](attachment:image)

Cuando se inicia este procedimiento, la HP 48 le preguntará si desea borrar el objeto del nivel 1 (descrito mediante el tipo de objeto—en la figura anterior, un sistema real). Si lo borra, la calculadora le preguntará a continuación sobre el nuevo objeto del nivel 1. Esta operación continúa hasta que la pila quede vacía o hasta que se responda a la pantalla pulsando **NO**. Entonces, la calculadora le pregunta si desea eliminar el contenido de LAST CMD, y a continuación le preguntará si quiere borrar otros objetos en el orden siguiente:

1. Nivel 1 de la pila (reiteradamente)
2. El contenido de LAST CMD
3. El contenido de LAST STACK (si está activa)
4. El contenido de LAST ARG (si está activo)
5. La variable PICT (si está presente)
6. Todas las asignaciones de teclas de usuario
7. Todos los avisos de alarma
8. La totalidad de la pila (a menos que ya esté vacía)
9. Cada una de las variables globales por su nombre
10. Cada uno de los objetos de puerta lógica 0 por nombre de etiqueta

Para responder a los mensajes de “Out Of Memory”:

- Para borrar el objeto indicado, pulse \textit{YES}.
- Para mantener el objeto indicado, pulse \textit{NO}.
- Para detener el procedimiento y ver si se ha arreglado la condición, pulse \textit{CANCEL}.

\textbf{Nota}

La secuencia de borrado puede iniciarse con la línea de comandos y \textit{a continuación} efectuar su recorrido por la pila, el contenido de LAST CMD, etc. Si responde \textit{NO} al mensaje de borrado de la línea de comandos, volverá a la línea de comandos cuando finalice el procedimiento de Out of Memory.

Los mensajes para las variantes globales empiezan por el objeto más reciente del directorio HOME y siguen con los objetos progresivamente más viejos. Si la variable que se va a borrar es un directorio vacío, \textit{YES} lo borrará. Si el directorio no está vacío, \textit{YES} efectúa un ciclo progresivo de borrado por todas las variables (empezando por la más nueva) de ese directorio.

Siempre que lo desee, podrá finalizar el procedimiento de Out of Memory y pulsando \textit{CANCEL}. Si existe suficiente memoria disponible, la calculadora volverá a la pantalla normal; si no, emitirá pitidos y continuará con la secuencia de borrado. Tras un recorrido completo por todas las opciones, la HP 48 intentará volver al funcionamiento normal. Si continúa existiendo memoria insuficiente, el procedimiento comenzará de nuevo.
Plantillas de Entrada y Listas de Opciones

Aunque la pantalla de la HP 48 es pequeña comparándola con una pantalla estándar de ordenador, es aproximadamente del tamaño medio de una "ventana de diálogo". Las Plantillas de Entrada son el equivalente de la HP 48 de dichas ventanas de diálogo.

La mayoría de las aplicaciones de la HP 48 tienen sus correspondientes plantillas de entrada, que facilitan al usuario recordar la información que necesita introducir y fijar las opciones deseadas.

Plantillas de Entrada

Todas las plantillas de entrada presentan un aspecto similar. En la siguiente figura se utiliza la plantilla de entrada principal de la aplicación PLOT para mostrar los principales componentes.

Cada una de las plantillas de entrada tiene un título, un conjunto de campos (algunos con etiquetas) una línea de mensajes (situada encima del menú) y un menú que muestra las opciones relevantes para el campo seleccionado actualmente (la línea de mensajes también muestra un mensaje que pertenece al campo actual). Cuando se pasa de un campo a otro, el mensaje y el menú cambian para reflejar el campo que se acaba de seleccionar.
Las plantillas de entrada utilizan cuatro tipos básicos de campos:

- **Campos de datos.** Aceptan datos de un tipo concreto directamente desde el teclado. Los campos llamados INDEF:; H-\nVIEW:; y V-\nVIEW de la plantilla de PLOT son ejemplos de campos de datos.

- **Campos de datos extendidos.** Estos campos amplían la capacidad de los campos de datos, permitiéndole introducir un objeto almacenado previamente (siempre y cuando se trate de un tipo adecuado para dicho campo). El campo EQ: de la plantilla de PLOT es un ejemplo de campo de datos extendidos.

- **Campos de listas.** Estos campos poseen un conjunto limitado, predeterminado, de posibles valores entre los que debe elegirse uno. Los campos TYPE: y \(<\) de la plantilla de PLOT son ejemplos de campos de listas.

- **Campos de comprobación.** Estos campos controlan las distintas opciones de las aplicaciones (una señal de comprobación en el campo activa dicha opción). El campo AUTOSCALE de la plantilla de PLOT es un ejemplo de campo de comprobación.

### Cómo Seleccionar los Campos en las Plantillas de Entrada

En las plantillas de entrada, las teclas del cursor constituyen el medio primordial para la selección de los campos:

- **Selecciona el siguiente campo,** desplazándose de izquierda a derecha y de arriba a abajo. Desde el último campo de la plantilla, \(\uparrow\) “da la vuelta” y selecciona el primer campo de la parte superior de la plantilla.

- **Selecciona el campo anterior.** Desde el primer campo de la plantilla, \(\downarrow\) “da la vuelta” y selecciona el último campo de la parte inferior de la plantilla.

- **Selecciona el campo correspondiente de la línea anterior.** Desde el campo de la línea superior de la plantilla, \(\uparrow\) “da la vuelta” y selecciona el campo correspondiente de la línea inferior de la plantilla.

- **Selecciona el campo correspondiente de la siguiente línea.** Desde el campo de la línea inferior de la plantilla, \(\downarrow\) “da la vuelta” y selecciona el campo correspondiente de la línea superior de la plantilla.
Selecciona el primer campo de la plantilla.

Selecciona el primer campo de la plantilla.

Selecciona el último campo de la plantilla.

Selecciona el último campo de la plantilla.

Cuando se pulsa ENTER o OK para introducir datos que se han escrito en la línea de comandos, se seleccionará automáticamente el siguiente campo. De otro modo, deberá desplazar la barra de selección utilizando las teclas del cursor.

Cómo Introducir Datos en las Plantillas de Entrada

La HP 48 proporciona varios métodos para introducir datos en las plantillas de entrada.

Para introducir información en un campo de datos:

1. Seleccione el campo de datos (o de datos extendidos).
2. Escriba el objeto. Se puede utilizar la línea de comandos para todos los tipos de objetos (recuerde que deberán usarse los delimitadores adecuados). También puede utilizarse el EquationWriter para objetos algebraicos (consulte el capítulo 7) o el MatrixWriter para sistemas (consulte el capítulo 8). Para cambiar al Equation o Matrix Writer, consulte “Para activar paralelamente una segunda plantilla de entrada” en la página .
3. Pulse ENTER o OK.

Para introducir un objeto archivado previamente en un campo de datos extendidos:

1. Seleccione el campo de datos extendidos.
2. Pulse CHOOSE. Aparecerá una versión en miniatura del Localizador de Variables, que contiene todas las variables del directorio actual que el campo seleccionado puede utilizar.
3. Utilice las teclas del cursor △ y ▼ para resaltar el objeto deseado.
4. Pulse ENTER o OK.

Algunos campos de datos extendidos permiten también introducir múltiples objetos agrupados en una lista.
Para introducir una lista de objetos en un campo de datos extendidos:

1. Seleccione el campo de datos extendidos que acepte listas de objetos.
2. Pulse CHOOS. Aparecerá una versión en miniatura del Localizador de Variables, que contiene todas las variables del directorio actual que el campo seleccionado puede utilizar.
3. Utilice las teclas del cursor ▲ y ▼ para seleccionar un objeto que pertenezca a la lista.
4. Pulse □CHK□ para colocar una señal de comprobación al lado del objeto.
5. Repita los pasos 3 y 4 para los demás objetos de la lista.
6. Una vez que todos los objetos de la lista tengan señales de comprobación, pulse ENTER o OK.

Cómo Seleccionar las Opciones en las Plantillas de Entrada

Para seleccionar una opción desde un campo de listas:

1. Seleccione el campo de listas.
2. Seleccione una opción para dicho campo utilizando uno de los siguientes métodos:
   - Utilice una lista desplegable.
     a. Pulse CHOOS para visualizar una lista desplegable de las opciones disponibles.

   
<table>
<thead>
<tr>
<th>TYPE</th>
<th>Function</th>
<th>Polar</th>
<th>Parametric</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ:</td>
<td>-</td>
<td></td>
<td>Diff Eq</td>
</tr>
<tr>
<td>INDE</td>
<td>Conic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOO</td>
<td></td>
<td></td>
<td>OK</td>
</tr>
</tbody>
</table>

   Lista Desplegable de Muestra: Tipos de PLOT

   b. Utilice las teclas del cursor ▲ y ▼ para seleccionar una opción.
   c. Pulse ENTER o OK.

6-4 Plantillas de Entrada y Listas de Opciones
- Pulse $\text{(7/)}$ varias veces para ver todas las opciones. Deténgase cuando aparezca la opción deseada.
- Pulse $\text{(a)}$ y a continuación la primera letra de la opción deseada. Aparecerá la siguiente opción que comience por esa letra. Si existen varias opciones que empiecen por la misma letra, se puede repetir el procedimiento una o dos veces hasta que aparezca la opción deseada.

**Para seleccionar una opción en un campo de comprobación:**

1. Seleccione el campo de comprobación.
2. Haga una de las dos cosas siguientes:
   - Pulse $\text{(aCHK)}$ una o dos veces para marcar o quitar la señal de comprobación del campo.
   - Pulse $\text{(7/)}$ una o dos veces para marcar o quitar la señal de comprobación del campo.

**Otras Operaciones de las Plantillas de Entrada**

**Para editar un campo de datos:**

1. Seleccione el campo de datos (o de datos extendidos).
2. Pulse $\text{EDIT}$ (o $\text{(aEDIT)}$). Se copiará el objeto en la línea de comandos.
3. Edite el objeto utilizando los procedimientos de edición estándar de la línea de comandos.
4. Pulse $\text{ENTER}$ o $\text{(aOK)}$.

**Para efectuar una operación de cálculo “paralela” mientras se está en la plantilla de entrada:**

1. Seleccione el campo de datos (o de datos extendidos).
2. Pulse $\text{NXT}$ $\text{CALC}$. Aparecerá una versión de la pila (obsérvese que tanto el título de la plantilla como el mensaje del campo son todavía visibles) y cualquier objeto que estuviera en el campo seleccionado estará ahora en el nivel 1. Si lo desea, pulse $\text{STS}$ para visualizar u ocultar la línea de estado.
3. Efectúe la operación de cálculo de la pila que desee, introduciendo objetos adicionales o seleccionando comandos de otros menús. El resultado que quiera introducir en el campo de datos deberá estar en el nivel 1 cuando termine.
4. Si no puede verse **OK** en el menú (porque se han utilizado otros menús), pulse **CONT** para que pueda verse de nuevo.

5. Pulse **OK** para introducir el resultado del cálculo en el campo de datos seleccionado o **CANCEL** para volver sin introducir el resultado.

---

Para activar paralelamente una segunda plantilla de entrada:

1. Seleccione un campo de datos (o de datos extendidos).
2. Pulse **NXT** **CANCEL**. Aparecerá una versión de la pila (obsérvese que tanto el título de la plantilla como el mensaje del campo son todavía visibles) y cualquier objeto que estuviera en el campo seleccionado estará ahora en el nivel 1.
3. Entre en la segunda plantilla de entrada.
4. Complete la(s) tarea(s) de la segunda plantilla de entrada y salga de ella pulsando **OK** o **CANCEL** o ejecutando una tarea que salga de esa plantilla concreta.
5. Si no puede verse **OK** en el menú (porque se han utilizado otros menús de comandos), pulse **CONT** para que pueda verse de nuevo.
6. Asegúrese de que el objeto del nivel 1 de la pila es el que quiere almacenar en el campo de datos seleccionado en la plantilla original (puede haber cambiado de acuerdo con lo que se haya hecho en la segunda plantilla de entrada).
7. Pulse **OK** para volver a la plantilla de entrada original e introduzca el objeto del nivel 1 en el campo de datos seleccionado en la plantilla de entrada o **CANCEL** para volver sin introducir el objeto del nivel 1.

Para reconfigurar el valor de un campo a su valor por defecto:

1. Seleccione el campo.
2. Haga una de las dos cosas siguientes:
   - Pulse **NXT** **RESET**.
   - Pulse **DEL**.
3. Seleccione *Delete value* (Borrar Valor) o *Reset Value* (Reconfigurar Valor) en la lista desplegable.
4. Pulse **ENTER** o **OK**.

Para reconfigurar los valores de todos los campos a sus valores por defecto:

1. Seleccione un campo.
2. Haga una de las dos cosas siguientes:
   - Pulse **NXT** **RESET**.
   - Pulse **DEL**.

3. Seleccione **Reset all** (Reconfigurar todos) en la lista desplegable. En algunas aplicaciones (PLOT es una de ellas) esta expresión puede variar ligeramente, pues uno o más campos deben reconfigurarse individualmente (como precaución contra una pérdida de datos no intencionada).

4. Pulse **ENTER** o **OK**.

**Para determinar qué tipos de objetos son válidos para un campo de datos:**

1. Seleccione el campo de datos (o de datos extendidos).
2. Pulse **NXT** **TYPES**. Aparecerá una ventana con los tipos de objetos que pueden utilizarse en ese campo.

![Lista Desplegable de Muestra de TYPES](image)

3. Haga una de las siguientes cosas:
   - Para introducir un tipo concreto de datos, seleccione el tipo en la lista desplegable y pulse **NEW**. Los delimitadores adecuados aparecerán en la línea de comandos.
   - Si no desea introducir datos, pulse **OK**.

**Cuando se Finaliza la Introducción de Datos en una Plantilla de Entrada**

Las plantillas de entrada están diseñadas para ayudarle a introducir datos y preparar la ejecución de una tarea más importante. Los datos introducidos y las opciones seleccionadas pueden utilizarse solamente dentro del contexto de una plantilla de entrada concreta y de sus tareas propias o bien pueden provocar cambios **globales** en todas
las aplicaciones. Los cambios en variables reservadas (como E\textit{Q}) e indicadores del sistema son ejemplos de cambios globales.

Que estos cambios globales se archiven o no, dependerá del modo en que se salga de la plantilla de entrada. Los siguientes procedimientos muestran las opciones posibles:

**Para ejecutar la acción principal de una plantilla de entrada:**

1. Asegúrese de que se han introducido los datos necesarios y se han marcado las opciones adecuadas.
2. Pulse la tecla de la acción apropiada (especial para cada una de las plantillas). Se archivarán los cambios globales y se ejecutará la acción, mostrándose la pantalla adecuada. Con esta operación no se sale de la plantilla de entrada.

**Para salir de la plantilla de entrada después de archivar todos los cambios globales:**

- Pulse \textbf{OK} en el menú. A veces sólo aparece en la segunda página (pulse \textbf{NXT} si fuera necesario).

**Para salir de la plantilla de entrada y descartar todos los cambios globales:**

- Pulse \textbf{CANCEL} o \textbf{CANCEL}. A veces \textbf{CANCEL} aparece sólo en la segunda página (pulse \textbf{NXT}, si es necesario.)

**Para salir de la plantilla de entrada y abrir la plantilla de entrada de PLOT (y viceversa):**

- Entre en la nueva plantilla de entrada. Los cambios globales se archivarán, se descartarán todos los datos no globales antes de salir de la plantilla de entrada actual y se abrirá la nueva plantilla de entrada.

6-8  **Plantillas de Entrada y Listas de Opciones**
Comandos de las Plantillas de Entrada

La HP 48 dispone de varios comandos programables que pueden utilizarse para crear sus propias plantillas de entrada personalizadas. Estos comandos, ubicados en el menú de comandos PRG IN, se presentan brevemente en el apéndice G y detalladamente en la *HP 48G Series Advanced User’s Reference*.

**Para crear una plantilla de entrada:**

1. Introduzca el título de la plantilla de entrada (utilice `F h`) 2.
2. Introduzca una lista de especificaciones de campo. Si especifica más de un campo, incluya cada especificación entre corchetes.
3. Introduzca una lista de opciones de formato.
4. Introduzca una lista de valores de reconfiguración (valores que aparecen cuando se pulsa `RESET`).
5. Introduzca una lista de valores por defecto.
6. Ejecute el comando `INFORM`.

**Ejemplo:** Cree una plantilla de entrada.

Introduzca un título, una especificación de campo, las opciones de formato, una lista en blanco para los valores de reconfiguración y un valor por defecto.

```plaintext
(7) "" α α FIRST SPC
ONE (ENTER) ⌡ ⌘ ENTER ""
α α F (ENTER) ⌡ ⌘ ENTER ""
ENTER ⌡ ⌘ 1 SPC 5
ENTER ⌡ ⌘ ENTER (ENTER) ⌡ ⌘ ENTER ""
α α WENDY
ENTER
PRG NXT IN INFOR
```

![Image of HP 48 calculator interface showing a plantilla de entrada](image)
El EquationWriter (Escritor de Ecuaciones)

Una de las características más importantes de la HP 48 es la aplicación EquationWriter, que facilita la entrada de expresiones y ecuaciones en su forma normal—la forma en la que aparecen normalmente en los libros y la forma en la que se escriben con lápiz y papel.

Por ejemplo, esta es una ecuación de física:

\[ v = v_0 + \int_{t_1}^{t_2} a \, dt \]

Y este es el aspecto que presentaría la ecuación en la pila:

'v=v0+∫(t1,t2,a,t)'

He aquí la misma ecuación escrita utilizando la aplicación EquationWriter:
Cómo Está Organizada la Aplicación EquationWriter

En la aplicación EquationWriter, las teclas que corresponden a las funciones algebraicas introducen el nombre de la función o el símbolo de la función gráfica en la ecuación. Por ejemplo, al pulsar $\sqrt{}$ aparecerá el signo de una raíz cuadrada. Es posible visualizar cualquier menú de comandos—aunque sólo funcionarán las teclas correspondientes a funciones algebraicas. Al igual que las teclas de funciones del teclado, las teclas de menú no ejecutarán la función correspondiente—simplemente introducen el nombre de la función en la ecuación.

La aplicación EquationWriter consta de tres modos, cada uno de ellos con una función especial:

- **Modo de entrada**—para introducir y editar ecuaciones
- **Modo de desplazamiento**—para visualizar ecuaciones grandes
- **Modo de selección**—para editar expresiones dentro de ecuaciones

---

7-2 El EquationWriter (Escritor de Ecuaciones)
Cómo Construir Ecuaciones

Para entrar en la aplicación EquationWriter:

- Pulse \[\text{EQUATION}\]. Se puede acceder al EquationWriter desde la pila o desde cualquier campo de una plantilla de entrada que pueda aceptar objetos algebraicos.

Una vez que se ha entrado en la aplicación EquationWriter, podrá escribirse una ecuación o expresión (u objeto de unidad, número o nombre) por medio de las operaciones disponibles en este entorno. Consulte "Cómo Introducir Ecuaciones" a continuación.

Para salir de la aplicación EquationWriter:

- Para colocar la ecuación en la pila y salir, pulse \[\text{ENTER}\].
- Para descartar la ecuación actual y salir, pulse \[\text{CANCEL}\].

Cómo Introducir Ecuaciones

En determinadas ocasiones, tal vez el EquationWriter no sea capaz de mostrar la ecuación en pantalla con la misma rapidez con la que se está escribiendo. De todos modos, se puede continuar escribiendo y la HP 48 recordará hasta 15 pulsaciones de teclas y las mostrará en cuanto las "capture".

Para introducir números y nombres:

- Escriba los números y nombres exactamente del mismo modo que lo haría en la línea de comandos. También se pueden utilizar las teclas de menú del menú VAR como auxiliares de escritura de nombres de variables.

Para incluir sumas, restas y multiplicaciones:

- Para introducir +, − y *, pulse \[\text{+}, \text{-}, \text{x}\].
- Para efectuar multiplicaciones implicitas, no pulse \[\text{x}\]. En algunas situaciones, se pueden realizar multiplicaciones implícitas (sin pulsar \[\text{x}\])—se inserta automáticamente un signo de multiplicación (∗) entre:
  - Un número seguido de un carácter alfabético, un paréntesis o una función con prefijo (una función cuyo argumento o argumentos aparecen después de su nombre)—por ejemplo, pulse 6 \[\text{SIN}\].
□ Un carácter alfabético y una función con prefijo—por ejemplo, \( x^2 \).
□ Un paréntesis derecho seguido de un paréntesis izquierdo.
□ Un número o un carácter alfabético y una barra de división, 
  un símbolo de raíz cuadrada o el término de una raíz \( x^2 \)—por
  ejemplo, B \( A \).

Nota

Todas las multiplicaciones (incluida la multiplicación 
implícita) deberán mostrar un operador de 
multiplicación \( \times \) o \( \cdot \). Concretamente, una expresión 
como \( X(y+z) \) no contiene multiplicación. La 
forma \( X( ) \) es una función definida por el usuario 
(consulte la página 11-7) cuyos paréntesis contienen 
el argumento. Por el contrario, las expresiones como 
\( X(y+z) \) o \( X \cdot (y+z) \) incluyen multiplicaciones 
válidas.

Para incluir divisiones y fracciones:

1. Pulse \( A \) para iniciar el numerador.
2. Pulse \( \downarrow \) para finalizar el numerador e iniciar el denominador (\( \uparrow \) 
también funciona).
3. Pulse \( \rightarrow \) para finalizar el denominador.

A continuación se presenta otro modo de introducir fracciones cuyo 
n numerador conste de un término o de una secuencia de términos con 
operadores de mayor o igual prioridad que la división:

1. Escriba el numerador (sin pulsar \( A \)).
2. Pulse \( \uparrow \) para iniciar el denominador.
3. Pulse \( \rightarrow \) para finalizar el denominador (\( \downarrow \) también funciona).
Para incluir exponentes:
1. Pulse \(^{\text{y}^{\text{a}}\text{a}}\) para iniciar el exponente.
2. Pulse \(\text{ent} \) para finalizar el exponente (\(\text{ent} \) también funciona).

Para incluir raíces:
- Para incluir una raíz cuadrada, pulse \(\sqrt{x} \) para dibujar el símbolo \(\sqrt{\) e iniciar el término y pulse \(\text{ent} \) para finalizarlo.
- Para incluir una raíz \(x^a\), pulse \(\begin{array}{c} \text{ent} \\
\text{ent} \end{array}\) para iniciar el término \(x\) (fuera del símbolo \(\sqrt{\)), pulse \(\text{ent} \) para dibujar el símbolo \(\sqrt{\) iniciar el término \(y\) dentro del símbolo \(\sqrt{\). A continuación, pulse \(\text{ent} \) para finalizar el término de la \(x^a\) raíz.

Para incluir funciones con argumentos entre paréntesis:
1. Pulse la tecla de la función o escriba el nombre y pulse \(\begin{array}{c} \text{ent} \\
\text{ent} \end{array}\).
2. Pulse \(\text{ent} \) para finalizar el argumento y visualizar el paréntesis derecho.

Para incluir términos entre paréntesis:
1. Pulse \(\begin{array}{c} \text{ent} \\
\text{ent} \end{array}\) para visualizar el paréntesis izquierdo.
2. Pulse \(\text{ent} \) para finalizar el término y visualizar el paréntesis derecho.

Para incluir potencias de 10:
1. Pulse \(\text{EE}\) para visualizar E.
2. Si la potencia es negativa, pulse \(\text{ent} \) para visualizar –.
3. Escriba los dígitos de la potencia.
4. Pulse cualquier tecla de función para finalizar la potencia.
Para incluir derivadas:

1. Pulse \( \text{\textup{R} \textup{O} \textup{O}} \) para visualizar \( \frac{\partial}{\partial} \).
2. Escriba la variable de diferenciación y a continuación pulse \( \text{\textup{O}} \) para finalizar el término de diferenciación y visualizar el paréntesis izquierdo.
3. Escriba la expresión.
4. Pulse \( \text{\textup{O}} \) para finalizar la expresión y visualizar el paréntesis derecho.

Para incluir integrales:

1. Pulse \( \text{\textup{R} \textup{O} \textup{O} \textup{O}} \) para visualizar el símbolo de integrales \( \int \) con el cursor colocado en el límite inferior.
2. Escriba el límite inferior y pulse \( \text{\textup{O}} \).
3. Escriba el límite superior y pulse \( \text{\textup{O}} \).
4. Escriba el integrando y pulse \( \text{\textup{O}} \) para visualizar \( d \).
5. Escriba la variable de integración.
6. Pulse \( \text{\textup{O}} \) para completar la integral.

Para incluir sumas:

1. Pulse \( \text{\textup{R} \textup{O} \textup{O} \textup{O}} \) para visualizar el símbolo de suma algebraica \( \sum \) con el cursor colocado debajo.
2. Escriba el índice de suma algebraica.
3. Pulse \( \text{\textup{O}} \) (o \( \text{\textup{G} \textup{R}} \)) para escribir el signo igual.
4. Escriba el valor inicial del índice y pulse \( \text{\textup{O}} \).
5. Escriba el valor final del índice y pulse \( \text{\textup{O}} \).
6. Escriba el sumando.
7. Pulse \( \text{\textup{O}} \) para finalizar la suma algebraica.
Para incluir unidades de medida:

1. Escriba la parte numérica.
2. Pulse para iniciar la expresión de unidad de medida.
3. Escriba la expresión de unidad de medida.
4. Pulse para finalizar la expresión.

También se pueden construir objetos de unidades de medida (descritos en el capítulo 10) en la aplicación EquationWriter. Para las unidades compuestas, pulse o para separar cada una de las unidades individuales en la expresión de unidad de medida. Se pueden escribir nombres de unidades con una tecla pulsando la tecla de menú correspondiente en el menú del Catálogo UNITS.

Para incluir funciones | (donde):

1. Escriba una expresión parentética con argumentos simbólicos.
3. Escriba las ecuaciones que definen cada uno de los argumentos, pulsando o para escribir = para introducir el separador entre cada una de las ecuaciones.
4. Pulse para finalizar la función.

La función | (donde) sustituye los nombres por valores en las expresiones. Se describe en “Cómo Mostrar las Variables Ocultas” en la página 20-18.

Cómo Controlar Paréntesis Implicitos

Los paréntesis implícitos se activan cuando se entra en la aplicación EquationWriter. Esto significa que los argumentos de , , y van incluidos normalmente entre paréntesis “invisibles”, de tal modo que solamente (o ) finalizan el argumento.

Si se desactivan los paréntesis implícitos, el argumento finalizará cuando se introduzca la siguiente función—o pulse .

Para activar o desactivar los paréntesis implícitos:

- Pulse . Un mensaje mostrará brevemente el estado actual.
Resulta útil desactivar los paréntesis implícitos para introducir polinomios, por ejemplo, donde los exponentes se completan cuando se introduce la función que inicia el siguiente término.

Si se sale y se vuelve a entrar en la aplicación EquationWriter, se activarán los paréntesis implícitos. Si se desactivan los paréntesis implícitos después de escribir $x$, $\sqrt{x}$ o $y^2$ pero antes de suministrar el argumento, los paréntesis implícitos no se aplicarán a dichos argumentos.

**Ejemplo:** Escriba la expresión $X^3 + 2X^2 - \frac{1}{X}$, en primer lugar con paréntesis implícitos y a continuación sin ellos.

**Paso 1:** Escriba la expresión con paréntesis implícitos (valor por defecto).

$$X^3 + 2X^2 - \frac{1}{X}$$

**Paso 2:** Despeje la pantalla y desactive los paréntesis implícitos.

$$\text{Implicit } () \text{ off}$$

**Paso 3:** Vuelva a escribir la expresión.

$$X^3 + 2X^2 - \frac{1}{X}$$

Pulse $\{\}$ para volver a activar los paréntesis implícitos.

7-8 El EquationWriter (Escritor de Ecuaciones)
Ejemplos del EquationWriter

Al final de cada ejemplo se puede pulsar ENTER para colocar la ecuación en la pila o CLEAR para despejar la pantalla para el ejemplo siguiente. Si hace esto último, no tenga en cuenta la instrucción EQUATION al principio de cada nuevo ejemplo.

Si comete un error en la escritura de una ecuación, pulse CLEAR para borrar el error o pulse CLEAR y comience de nuevo.

Ejemplo: Escriba la siguiente ecuación:

\[ X^\frac{2}{3} + Y^\frac{2}{3} = A^{\frac{2+y}{3}} \]

Paso 1: Escriba la ecuación.

\[ \begin{array}{c}
\text{EQUATION} \\
\alpha X \ y^x \ 2 \ \div \ 3 \ \alpha \ Y \ y^x \ 2 \ \div \ 3 \ \alpha \ A \ y^x \ 2 \ + \ \alpha \ Y \ y^x \ 3 \\
\end{array} \]

Ejemplo: Escriba la siguiente expresión:

\[ X^2 - 2XY \cos \left( \frac{2\pi N}{2N+1} \right) + Y^2 \]

\[ \begin{array}{c}
\text{EQUATION} \\
\alpha X \ y^x \ 2 \ \alpha \ Y \ y^x \ 2 \ \alpha \ N \ + \ 1 \ \alpha \ \pi \ x \ \alpha \ Y \ \text{COS} \\
\end{array} \]
Ejemplo: Escriba la siguiente expresión:

\[ \sqrt{Y} \frac{d}{dX} 2\cos^2(\pi X) \]

Ejemplo: Escriba la siguiente expresión:

\[ \int_0^1 \frac{X^{P-1}}{X^{2M+1} - A^{2M+1}} \, dx \]

Ejemplo: Escriba la siguiente expresión:

\[ 1.65 \times 10^{-12} \text{kg} \cdot \text{m}^2 / \text{s}^2 \]
Cómo Editar Ecuaciones

La aplicación EquationWriter proporciona varias opciones para editar ecuaciones:

- Edición con la tecla de retroceso
- Edición de una expresión completa en la línea de comandos
- Edición de una subexpresión en la línea de comandos
- Inserción de un objeto (subexpresión) de la pila en la ecuación
- Sustitución de una subexpresión por una operación algebraica de la pila

Para editar mediante la tecla de retroceso:

1. Pulse $\leftarrow$ hasta borrar el error.
2. Complete la expresión correctamente.

Para editar la ecuación completa:

1. Si la ecuación termina en una subexpresión incompleta, completéla.
2. Pulse $\leftarrow$ EDIT.
3. Edite la ecuación en la línea de comandos.
4. Pulse ENTER para archivar los cambios (o CANCEL para descartarlos) y vuelva a la aplicación EquationWriter.

Para visualizar una ecuación de gran tamaño o un objeto de unidad de medida:

1. Pulse $\leftarrow$ PICTURE para activar el modo de desplazamiento.
2. Pulse $\leftarrow$ $\rightarrow$ $\uparrow$ $\downarrow$ para mover la “ventana” de visualización.
3. Pulse $\leftarrow$ PICTURE para volver al modo anterior.

Cómo Editar con Subexpresiones

El entorno Selección es una parte especial de la aplicación EquationWriter que se utiliza para especificar una subexpresión dentro de una ecuación.

Una subexpresión consiste en una función y sus argumentos. La función que define una subexpresión se llama función de más alto nivel de esa subexpresión. La función de más alto nivel es esencialmente la última función que se va a evaluar siguiendo las reglas normales de prioridad algebraica.
Por ejemplo, en la expresión 'A+B*C/D', la función de más alto nivel de la subexpresión 'B*C' será *, la de 'B*C/D' será / y la de 'A+B*C/D' será +. Es posible especificar un objeto individual (un nombre, por ejemplo) como la subexpresión.

También se puede utilizar el entorno Selección para especificar una subexpresión que se va a reorganizar mediante las transformaciones de Reglas—consulte “Cómo Manipular las Subexpresiones” en la página 20-20.

**Para editar una subexpresión de una ecuación:**

1. Si la ecuación termina con una subexpresión incompleta, compleétela.
2. Pulse para activar el entorno Selección.
3. Pulse para desplazar el cursor de selección a la función de más alto nivel de la subexpresión que desea editar.
4. Opcional: Pulse en el momento que lo desee para resaltar la subexpresión actual (pulse de nuevo para desactivar el resaltado).
5. Pulse para colocar la subexpresión actual en la línea de comandos.
6. Edite la subexpresión en la línea de comandos.
7. Pulse para introducir la subexpresión revisada en la ecuación (o para descartarla).
8. Pulse para salir del entorno Selección (Si no aparece en pantalla, pulse para volver al menú de Selección).

**Para insertar un objeto del nivel 1 en una ecuación:**

1. Cree el objeto que desea insertar y colóquelo en el nivel 1. El objeto puede ser un nombre, un número real, un número complejo, una operación algebraica o una secuencia.
2. Entre en el EquationWriter y cree la ecuación.
3. Pulse para insertar el objeto del nivel 1 en el lugar de la expresión del EquationWriter en el que se encuentra el cursor.

**Ejemplo:** Introduzca la siguiente expresión:

\[ \int_{0}^{10} x^2 - y \, dx + \frac{x^2 - y}{2} \]
Paso 1: Introduzca la expresión $x^2 - y$ en el nivel 1 y duplíquela.

Paso 2: Seleccione la aplicación EquationWriter y escriba el signo de la integral y los límites de integración.

Paso 3: Inserte el integrando en la expresión.

Paso 4: Complete la subexpresión. A continuación, escriba el resto de la expresión insertando el segundo término de la pantalla.

Para sustituir una subexpresión por una operación algebraica del nivel 1:

1. Si la ecuación termina con una subexpresión incompleta, compleétela.
2. Pulse ▼ para activar el entorno Selección.
3. Pulse ▲, ▼, ◀ y ▶ para desplazar el cursor de selección a la función de más alto nivel de la subexpresión que desee sustituir (consulte “CÓMO EDITAR CON SUBEXPRESIONES” en la página 7-10.)
4. Opcional: Pulse **EXPR** en el momento que lo desee para resaltar la subexpresión asociada (pulse **EXPR** de nuevo para desactivar el resultado).

5. Pulse **REPL**.

6. Pulse **EXIT** para salir del entorno Selección.

La operación algebraica se borrará de la pila.

---

**Sumario de las Operaciones del EquationWriter**

**Operaciones de la Aplicación EquationWriter**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>Inicia un numerador.</td>
</tr>
<tr>
<td>▶ o ▼</td>
<td>Finalizan una subexpresión. ▶ ▶ o ▶ ▼ finaliza todas las subexpresiones pendientes.</td>
</tr>
<tr>
<td>⬅</td>
<td>Entra en el modo selección, en el que está activado el entorno Selección.</td>
</tr>
<tr>
<td>▬(()</td>
<td>Inicia un término entre paréntesis. ▶ o ▼ finalizan el término.</td>
</tr>
<tr>
<td>SPC</td>
<td>Introduce el separador actual (, o ;) de múltiples argumentos o funciones parentéticos y los términos de los números complejos.</td>
</tr>
<tr>
<td>EVAL</td>
<td>Sale de la aplicación EquationWriter y calcula la ecuación.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Devuelve la ecuación a la pila y sale de la aplicación EquationWriter.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Sale de la aplicación EquationWriter sin archivar la ecuación.</td>
</tr>
<tr>
<td>Tecla</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>← PICTURE</td>
<td>Cambia al modo desplazamiento. En el modo de desplazamiento, se borrarán las teclas de menú. Si la ecuación es mayor que la pantalla, ↑ ↓ ← → desplazarán la ventana de visualización hacia la dirección indicada de la ecuación. Pulse ← PICTURE de nuevo (o CANCEL) para volver al modo anterior. Excepción: si se pulsa ↓ con una operación algebraica en la pila, se entrará en el EquationWriter en el modo de desplazamiento y cuando se salga—con CANCEL o ← PICTURE—se entrará en el modo de selección.</td>
</tr>
<tr>
<td>← EDIT</td>
<td>En el modo de entrada, devuelve la ecuación a la línea de comandos para su edición.</td>
</tr>
<tr>
<td>STO</td>
<td>Devuelve la ecuación a la pila como un objeto de gráficos (consulte el capítulo 9 para obtener más detalles sobre objetos de gráficos).</td>
</tr>
<tr>
<td>← CLEAR</td>
<td>Borra la pantalla sin salir de la aplicación EquationWriter.</td>
</tr>
<tr>
<td>↑ RCL</td>
<td>Inserta el objeto del nivel 1 en el lugar de la ecuación en el que está situado el cursor (consulte “Cómo Editar Ecuaciones” en la página 7-10).</td>
</tr>
<tr>
<td>← (</td>
<td>Desactiva el modo paréntesis implícitos. Pulse ← ( de nuevo para volver a activar el modo paréntesis implícitos (consulte “Cómo Controlar Paréntesis Implicitos” en la página 7-7.)</td>
</tr>
<tr>
<td>↑ &quot;</td>
<td>Devuelve la ecuación a la pila como una secuencia.</td>
</tr>
</tbody>
</table>
El MatrixWriter (Escritor de Matrices)

La aplicación MatrixWriter de la HP 48 proporciona una gran capacidad para la introducción y la manipulación de sistemas (tanto unidimensionales como bidimensionales).

Cómo Aparecen los Sistemas en la HP 48

La pila muestra los sistemas en forma de números dentro de delimitadores [ ]. Un par de delimitadores [ ] encierra el sistema completo y cada fila de la matriz va entre pares de delimitadores adicionales. Por ejemplo, he aquí el modo en el que podría aparecer en la pila una matriz de $3 \times 3$ matrix:

$$
\begin{bmatrix}
1 & 2 & 3 \\
3 & 4 & 5 \\
7 & 8 & 9
\end{bmatrix}
$$

Los vectores (también llamados vectores de columna o matrices de una columna) aparecen en la pila en forma de números dentro de un solo nivel de delimitadores [ ]:

$$
[2 \ 4 \ 6 \ 8]
$$

Los vectores de fila (matrices de una fila) aparecen en la fila en forma de números dentro de dos pares de delimitadores [ ]:

$$
\begin{bmatrix}
1 & 3 & 5 & 7 & 9
\end{bmatrix}
$$

Por otro lado, el modo de coordenadas actual y el modo de ángulo afectan a la forma en que los vectores bidimensionales y tridimensionales aparecen en la pantalla. Consulte “Cómo Visualizar Vectores Bidimensionales y Tridimensionales” en la página 13-1 para obtener más detalles.
Cómo Introducir Sistemas

La aplicación MatrixWriter proporciona un entorno especial para introducir, visualizar y editar sistemas. Se puede acceder al MatrixWriter seleccionándolo desde la pila o desde cualquier campo de una plantilla de entrada que acepte objetos de sistemas.

La pantalla del MatrixWriter muestra los elementos del sistema en celdas individuales dispuestas en columnas y filas.

Para introducir una matriz mediante la aplicación MatrixWriter:

1. Pulse \( \rightarrow \) \( \text{MATRIX} \).
2. Escriba los números de la primera fila y pulse \( \text{ENTER} \) después de cada uno de ellos.
3. Pulse \( \text{▼} \) para señalar el final de la primera fila.
4. Escriba los números del resto de la matriz y pulse \( \text{ENTER} \) después de cada uno de ellos. Observe que cuando se introduce el último número de la fila, el cursor vuelve automáticamente al principio de la fila siguiente.
5. Una vez introducidos todos los números de la matriz, pulse \( \text{ENTER} \) para colocar la matriz en la pila.

Ejemplo: Introduzca la siguiente matriz:

\[
\begin{bmatrix}
2 & -2 & 0 \\
1 & 0 & 3 \\
-3 & 5 & 1
\end{bmatrix}
\]
Paso 1: Seleccione la aplicación MatrixWriter y escriba el primer elemento (celda 1-1):

Paso 2: Introduzca el primer elemento y el resto de la primera fila.

Paso 3: Utilice \( \downarrow \) para finalizar la primera fila e introduzca el resto de la matriz.

Paso 4: Introduzca la matriz en la pila.

Cuando se introduce un número, se sustituyen las coordenadas de celda por la línea de comandos. Cuando se pulsa \( \text{ENTER} \) para almacenar el valor dentro de la celda, el cursor de celda pasa normalmente a la siguiente celda.

Cuando se pulsa \( \downarrow \) al final de la primera fila, se fija el número de columnas de la matriz y el cursor se desplaza al principio de la fila siguiente. No es necesario pulsar \( \downarrow \) de nuevo—el cursor de celda pasa automáticamente a la fila nueva.
Si el número mostrado es mayor que la anchura de la celda, tres puntos indicarán “más a la derecha” (como en 1.2...). La anchura de celda por defecto es de cuatro caracteres.

Obsérvense los dos usos de [ENTER]: Cuando se está utilizando la línea de comandos para entrada de datos, [ENTER] introduce los datos en la celda. Cuando aparece una coordenada de celda, [ENTER] introduce la matriz completa en la pila.

**Para introducir un vector mediante la aplicación MatrixWriter:**

1. Pulse [Damage] para visualizar la pantalla y el menú del MatrixWriter.
2. Escriba los números del vector y pulse [ENTER] después de cada uno de ellos.
3. Una vez introducidos todos los números del vector, pulse [ENTER] para colocar el vector en la pila.

Los vectores utilizan normalmente una sola fila de datos, de modo que no será necesario pulsar [Down].

**Para introducir números en más de una celda a la vez:**

1. Introduzca la serie de números en la línea de comandos, pulsando [Space] entre cada uno de los números.

**Para calcular los elementos de la línea de comandos a medida que se introducen:**

1. Introduzca los argumentos y pulse las teclas de comandos necesarias para la ejecución del cálculo (pulse [Space] para separar los argumentos).
2. Pulse [ENTER] para finalizar la operación de cálculo e introducir el resultado en la celda actual.

**Ejemplo:** Introduzca $2.2^4$ en la celda.

```
2.2 [Space] 4 [Exponent] [ENTER]
```

![Imagen de la celda mostrando $2.2^4$]
Cómo Editar Sistemas

El MatrixWriter proporciona funciones que facilitan la edición de los sistemas que se han introducido.

Para editar un sistema que se está visualizando con la aplicación MatrixWriter:

1. Pulse ( , , , ) para desplazar el cursor de celda (utilícelas con para desplazar el cursor al final).
2. Utilice las operaciones del MatrixWriter que se presentan a continuación para añadir o editar celdas.
3. Pulse (ENTER) para archivar los cambios (o (CANCEL) para descartarlos) y volver a la pila.

Operaciones del MatrixWriter

Para editar el contenido de una celda:

1. Desplace el cursor a la celda que desee editar.
2. Pulse (EDIT).
4. Efectúe los cambios que desee y pulse (ENTER) para archivarlos (o (CANCEL) para descartarlos).

Para ensanchar o estrechar las celdas que aparecen en pantalla:

- Pulse (HID) para estrechar las celdas y mostrar una columna adicional.
- Pulse (HID+) para ensanchar las celdas y mostrar una columna menos.

Para controlar el modo de avance del cursor después de una entrada:

- Para que el cursor se desplace a la siguiente columna después de una entrada, pulse (STF) de modo que aparezca un •.
- Para que el cursor se desplace a la siguiente fila después de una entrada, pulse (STF) de modo que aparezca un •.
Para que el cursor permanezca en el mismo sitio después de una entrada, pulse \[ \text{GO+} \] y \[ \text{GO=} \] hasta que no aparezca un \( \text{=}. \)

**Para insertar una columna:**

1. Desplace el cursor al lugar en el que desea insertar la nueva columna.
2. Pulse \[ \text{+COL} \]. Se insertará una columna de ceros.

**Ejemplo:** Cambie la matriz del primer ejemplo de este capítulo de

\[
\begin{pmatrix}
2 & -2 & 0 \\
1 & 0 & 3 \\
-3 & 5 & 1
\end{pmatrix}
\]

a

\[
\begin{pmatrix}
2 & -2 & 4 & 0 \\
1 & 0 & 1 & 3.1 \\
-3 & 5 & 3 & 1
\end{pmatrix}
\]

**Paso 1:** Si la matriz está en la pila, colóquela en el nivel 1—si no, introduzca la matriz en el nivel 1. A continuación visualice la matriz en el entorno MatrixWriter (en este ejemplo se da por hecho que \[ \text{GO+}= \] está activado.)

\[ \text{▼} \] (or enter the matrix)

\[
\begin{pmatrix}
1 & 2 & -2 & 0 \\
1 & 0 & 3 & 1 \\
-3 & 5 & 1
\end{pmatrix}
\]

**Paso 2:** Edite el elemento 2-3:

\[ \text{▼ ▶ ▶} \]

\[ \text{EDIT} \] \[ .1 \text{ ENTER} \]
Paso 3: Inserte una nueva columna en el lugar de la columna 3 y desplace el cursor de celda a la parte superior de la nueva columna.

Paso 4: Fije el modo de entrada de arriba a abajo. Rellene la nueva columna.

Paso 5: Restaure el modo de entrada de izquierda a derecha y a continuación introduzca la matriz editada.

Para borrar una columna:
1. Desplace el cursor a la columna que desee borrar.
2. Pulse \texttt{|-COL|}.

Para añadir una columna a la derecha de la última columna:
1. Desplace el cursor a la derecha de la última columna.
2. Introduzca un valor. El resto de la columna se rellenará con ceros.

Para insertar una fila:
1. Desplace el cursor a la fila en la que desee insertar la nueva fila.
2. Pulse \texttt{+ROW}. Se insertará una fila de ceros.
Para borrar una fila:
1. Desplace el cursor a la fila que desee borrar.
2. Pulse **-ROW**.

Para añadir una fila debajo de la última fila:
1. Desplace el cursor a la parte inferior de la última fila.
2. Introduzca un valor. El resto de la fila se rellenará con ceros.

**Sumario de las Operaciones del MatrixWriter**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EDIT</strong></td>
<td>Coloca el contenido de la celda actual en la línea de entrada de datos para su edición (pulse <strong>←EDIT</strong> para entrar en el menú EDIT). Pulse <strong>ENTER</strong> para archivar los cambios o <strong>CANCEL</strong> para descartarlos.</td>
</tr>
<tr>
<td><strong>VEC</strong></td>
<td>En sistemas de una sola fila, conmuta entre la entrada de vectores y la entrada de matrices. Si esta tecla está &quot;activada&quot; (<strong>VECD</strong>), los sistemas de una sola fila se introducirán en la línea de comandos como vectores (por ejemplo: [[ 1 2 3 ]]); si está &quot;desactivada&quot; (<strong>VECE</strong>), los sistemas de una sola fila se introducirán como matrices (por ejemplo: [[ 1 2 3 ]]).</td>
</tr>
<tr>
<td><strong>WID</strong></td>
<td>Estrecha todas las celdas para que aparezca una columna más.</td>
</tr>
<tr>
<td><strong>WID-</strong></td>
<td>Ensancha todas las celdas para que aparezca una columna menos.</td>
</tr>
<tr>
<td><strong>GO+</strong></td>
<td>Fija el modo de izquierda a derecha. El cursor de celda se desplazará a la siguiente columna tras la entrada de datos.</td>
</tr>
<tr>
<td><em><em>GD</em>+</em>*</td>
<td>Fija el modo de arriba a abajo. El cursor de celda se desplazará a la siguiente fila tras la entrada de datos.</td>
</tr>
<tr>
<td>Tecla</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>+ROW</td>
<td>Inserta una fila de ceros en la posición actual del cursor.</td>
</tr>
<tr>
<td>-ROW</td>
<td>Borra la fila actual.</td>
</tr>
<tr>
<td>+COL</td>
<td>Inserta una columna de ceros en la posición actual del cursor.</td>
</tr>
<tr>
<td>-COL</td>
<td>Borra la columna actual.</td>
</tr>
<tr>
<td>#STK</td>
<td>Copia la celda actual en el nivel 1 de la pila.</td>
</tr>
<tr>
<td>+STK</td>
<td>Activa la Pila Interactiva, que puede copiar (eco) objetos de la pila en la línea de comandos.</td>
</tr>
<tr>
<td>🔄 MATRIX</td>
<td>Recupera el menú de MatrixWriter si se visualiza otro menú.</td>
</tr>
</tbody>
</table>
Objetos Gráficos

Los objetos gráficos (o grobs) codifican los datos de "dibujos" de la HP 48 que incluyen representaciones gráficas de datos matemáticos, imágenes gráficas personalizadas y representaciones de la propia pantalla de la pila. La HP 48 dispone de un entorno PICTURE para visualizar y editar objetos gráficos.

Al igual que los demás objetos de la HP 48, los objetos gráficos pueden colocarse en la pila y archivarse dentro de variables. En la pila, un objeto gráfico aparecerá con la siguiente forma:

\[
\text{Graphic } n \times m
\]

donde \( n \) y \( m \) son la anchura y la altura en puntos (un punto es un elemento del dibujo o un "pixel" de la pantalla).

La HP 48 utiliza dos tipos de objetos gráficos:

- **Representaciones gráficas.** Representan gráficamente funciones, ecuaciones y conjuntos de datos generados automáticamente por la aplicación PLOT. En la HP 48 se pueden ver mediante zoom las representaciones gráficas de 15 modos distintos y se pueden analizar numéricamente representaciones gráficas de funciones.

- **Dibujos.** Son representaciones gráficas libres creadas "punto por punto"—bien automáticamente mediante comandos "fotográficos" o bien manualmente mediante el Picture Editor (Editor Gráfico).
El entorno PICTURE

Para entrar en el entorno PICTURE directamente:

- Desde la pila, pulse (PICTURE).

Para salir del entorno PICTURE:

- Pulse (CANCEL). Obsérvese que esto no cancela el objeto de gráficos mostrado sino que simplemente vuelve a la pantalla en la que se estaba antes de entrar en el entorno PICTURE.

Utilización del Picture Editor (Editor Gráfico)

El Picture Editor permite crear y modificar gráficos mediante la utilización de elementos definidos (líneas, recuadros y círculos) o punto por punto. También permite copiar o borrar parte o la totalidad de un dibujo y superponer un dibujo sobre otro.

Para entrar en el Picture Editor:

- Desde la pila, pulse (PICTURE EDIT).

Para volver al entorno principal de PICTURE desde el Editor:

- Pulse PICT en la tercera página del Picture Editor o pulse (MENU).

Para volver a la pila desde el Picture Editor:

- Pulse (CANCEL).
Cómo Activar y Desactivar los Puntos

Dos operaciones, \texttt{DOT+} y \texttt{DOT-}, permiten la activación y la desactivación de los puntos. Si está activada una de estas teclas, mostrará un “recuadro” (⃝) en su etiqueta.

- Si hay un ⃝ en la etiqueta \texttt{DOT+}, se activarán los puntos por debajo del cursor.
- Si hay un ⃝ en la etiqueta \texttt{DOT-}, se desactivarán los puntos por debajo del cursor.

Cómo Añadir Elementos Mediante el Entorno de Gráficos

El Picture Editor permite añadir tres elementos geométricos—segmentos de línea, recuadros y círculos—a los objetos gráficos:

Cada uno de estos elementos requiere dos posiciones del cursor. Esto significa que se deberá decir al Editor que recuerde la primera posición del cursor cuando se desplaza a la segunda. Esto se hace marcando la primera posición.

Para marcar la posición actual del cursor:

- Pulse \texttt{MARK} en la segunda página del menú del Picture Editor o \texttt{X}. Pulse \texttt{MARK} o \texttt{X} de nuevo para quitar la marca. Por otro lado, todas las operaciones que requieran una marca, la crearán cuando se pulse la tecla correspondiente por primera vez y a continuación ejecutarán la operación cuando se pulse dicha tecla por segunda vez.

Para dibujar un segmento de línea en el objeto gráfico actual:

1. Desde el interior del Picture Editor, desplace el cursor al lugar donde desee situar un extremo del segmento.
2. Pulse \texttt{X} (o \texttt{MARK} o \texttt{LINE}).
3. Desplace el cursor al otro extremo y pulse \texttt{LINE}.

Para dibujar un recuadro en el objeto gráfico actual:

1. Desde el interior del Picture Editor, desplace el cursor al lugar en el que desee situar una esquina del recuadro.
2. Pulse \texttt{X} (o \texttt{MARK} o \texttt{BOX}).
3. Desplace el cursor a la esquina \textit{opuesta} del recuadro deseado y pulse \texttt{BOX}.

\textbf{Para dibujar un círculo en el objeto gráfico actual:}

1. Desde el interior del Editor, desplace el cursor al lugar en el que quiere situar el centro del círculo.
2. Pulse \texttt{\textbf{X}} (o \texttt{MARK} o \texttt{CIRCLE}).
3. Desplace el cursor a cualquier punto del perímetro del círculo deseado y pulse \texttt{CIRCLE}.

\textbf{Para comutar un segmento de línea del objeto gráfico actual:}

1. Desde el interior del Picture Editor, desplace el cursor a un extremo del segmento.
2. Pulse \texttt{X} (o \texttt{MARK} o \texttt{TLINE}).
3. Desplace el cursor al otro extremo y pulse \texttt{TLINE}. Se conmutarán todos los punto entre la marca y el cursor—los que estaban activados, estarán desactivados y viceversa.

\textbf{Cómo Editar y Borrar un Dibujo}

\textbf{Para borrar un dibujo completo:}

- Cuando visualice el dibujo, pulse \texttt{NXT} \texttt{ERASE} (o \texttt{CLEAR} como atajo).

\textbf{Para borrar un área rectangular del dibujo:}

1. Desplace el cursor a una esquina del área rectangular que desea borrar y pulse \texttt{\textbf{X}} (o \texttt{DEL}) para marcarla.
2. Desplace el cursor a la esquina opuesta del área rectangular.
3. Pulse \texttt{NXT} \texttt{DEL} (o \texttt{DEL} como atajo).

\textbf{Para copiar un área rectangular del dibujo en la pila:}

1. Desplace el cursor a una esquina del área rectangular que desee copiar y pulse \texttt{\textbf{X}} (o \texttt{SUB}) para marcarla.
2. Desplace el cursor a la esquina opuesta de dicho área.
3. Pulse \texttt{NXT NXT SUB}. El área se copiará en el nivel 1 y el dibujo permanecerá en la pantalla.
Para superponer un segundo objeto gráfico sobre el actual:

1. Coloque el segundo objeto gráfico en el nivel 1 de la pila.
2. Entre en el Picture Editor (\texttt{\textless\phantom{}\textgreater\ PICTURE\ EDIT\textgreater\}) y desplace el cursor a la esquina superior izquierda de la región rectangular en la que desea superponer el objeto gráfico.
3. Pulse \texttt{NXT\ NXT\ REPL\textgreater\).

Para copiar el dibujo completo (el contenido de \texttt{PICT}) en la pila:
- Cuando visualice el dibujo, pulse \texttt{STO} (o \texttt{PICT*}). Se introducirá una copia de \texttt{PICT} en el nivel 1 y el dibujo permanecerá en pantalla.

Ejemplo: Cree y edite un pequeño dibujo. Esto ilustrará algunas de las operaciones del Picture Editor que hemos presentado anteriormente.

\textit{Paso 1:} Entre en el Picture Editor y borre \texttt{PICT}. A continuación utilice \texttt{DOT+} para trazar una línea horizontal desde el centro de la pantalla hasta la mitad del lado izquierdo.

\texttt{\textless\phantom{}\textgreater\ PICTURE\ CLEAR\ EDIT\ DOT+\ (mantenga pulsada)}

\textit{Paso 2:} Desactive el trazado de líneas y a continuación utilice \texttt{LINE} para trazar una línea vertical desde la posición del cursor actual hasta la mitad del lado superior.

\texttt{DOT+\ DOT-\ LINE\ TLINE\ BOX\ CIRCL\ DOT+\ DOT-\ LINE\ TLINE\ BOX\ CIRCL}
Paso 3: Desplace el cursor al extremo inferior de la línea y desactive la línea.

▼ (mantenga pulsada)

Línea

Paso 4: Dibuje un círculo utilizando la marca existente y la posición actual del cursor.

Círculo

Paso 5: Borre el semicírculo inferior.

झ (desplácese a la izquierda del círculo)

△ (desplace a la mitad superior del círculo)

× (para marcar)

▼ (sitúese debajo del círculo)

► (desplácese a la derecha del círculo)

DEL
Cómo Archivar y Visualizar Objetos Gráficos

El entorno PICTURE muestra en pantalla y utiliza un objeto gráfico cada vez. El objeto gráfico actual se almacena siempre en la variable reservada PICT. Considere PICT como la "pizarra" incorporada de la HP 48 donde se representan gráficamente funciones y se realizan dibujos. Los objetos gráficos (representaciones gráficas y dibujos) pueden archivarse utilizando cualquier nombre válido elegido por el usuario, pero para visualizarlas el nombre evaluado deberá copiarse en PICT.

Para archivar el objeto gráfico mostrado actualmente:

1. Cuando visualice el objeto gráfico en el entorno PICTURE, pulse \textit{(STO)}. El objeto gráfico se copiará en el nivel 1 de la pila.

2. Pulse \textit{(CANCEL)} una o más veces para salir del entorno PICTURE y volver a la pila.

3. Utilizando delimitadores ' ', escriba un nombre.

4. Pulse \textit{(STO)}. El objeto gráfico se almacenará en el directorio actual.

Para visualizar un objeto gráfico que no aparece actualmente en pantalla:

1. Archive el objeto gráfico mostrado actualmente (véase el punto anterior) si desea conservarlo.

2. Recupere el objeto gráfico deseado (no utilice los delimitadores ' ') en el nivel 1.

3. Escriba PICT en la línea de comandos (no utilice delimitadores ' )

4. Pulse \textit{(STO)}.

5. Pulse \textit{←(PICTURE)}.
Coordenadas de Objetos Gráficos

Los puntos de un objeto gráfico pueden especificarse o bien mediante coordenadas de puntos o bien mediante coordenadas de unidades de usuario.

<table>
<thead>
<tr>
<th>Coordenadas de unidades de usuario</th>
<th>Coordenadas de puntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-6.5, 3.2)</td>
<td>(#0, #0)</td>
</tr>
<tr>
<td>(6.5, 3.2)</td>
<td>(#130, #0)</td>
</tr>
<tr>
<td>(-6.5, -3.1)</td>
<td>(#0, #63)</td>
</tr>
<tr>
<td>(6.5, -3.1)</td>
<td>(#130, #63)</td>
</tr>
</tbody>
</table>

Coordenadas de Unidades de Usuario y Coordenadas de Puntos

Las coordenadas de puntos (valor por defecto) de un objeto gráfico de PICT de tamaño estándar van numeradas de (#0 #0) en la esquina superior izquierda a (#130 #63) en la esquina inferior derecha. Obsérvese que las coordenadas de puntos se dan en forma de una lista que contiene dos enteros binarios—el primero de ellos designa la columna y el segundo la fila. Las coordenadas de puntos son las más adecuadas para la manipulación de dibujo.

Las coordenadas de unidades de usuario dependen de las opciones actuales de PPAR (consulte el capítulo 22) pero sus valores por defecto están entre (-6.5, 3.2) en la esquina superior izquierda y (6.5, -3.1) en la esquina inferior derecha. Las coordenadas de unidades de usuario se dan en forma de un número complejo (par ordenado), donde la parte real representa la coordenada horizontal y la parte imaginaria representa la coordenada vertical. Las coordenadas de unidades de usuario son las más adecuadas para las representaciones gráficas.
Comandos de Objetos Gráficos

Los menús de comandos de PRG contienen dos submenús, `GRUB` y `PICT` en los que se encuentran comandos programables útiles para la manipulación de dibujos y de elementos de dibujos.

**Comandos de Objetos Gráficos**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRG <code>PICT</code></td>
<td>PICT</td>
<td>Coloca el nombre <code>PICT</code> en la pila de modo que pueda accederse al objeto de gráficos de <code>PICT</code> como si estuviera archivado en una variable.</td>
</tr>
<tr>
<td><code>PICT</code></td>
<td>PDIM</td>
<td>Redimensiona <code>PICT</code> a las dimensiones dadas en los niveles 2 y 1. Las dimensiones son o bien la anchura y la altura (dadas en puntos) o bien las coordenadas máxima y mínima (dadas en unidades de usuario).</td>
</tr>
<tr>
<td><code>LINE</code></td>
<td>LINE</td>
<td>Traza una línea en <code>PICT</code> entre las coordenadas de los niveles 2 y 1.</td>
</tr>
<tr>
<td><code>TLINE</code></td>
<td>TLINE</td>
<td>Igual que LINE excepto que los puntos de la línea se activan o se desactivan en vez de estar activados.</td>
</tr>
<tr>
<td><code>BOX</code></td>
<td>BOX</td>
<td>Dibuja un recuadro en <code>PICT</code> utilizando dos argumentos de coordenadas como esquinas opuestas.</td>
</tr>
<tr>
<td><code>ARC</code></td>
<td>ARC</td>
<td>Traza un arco en <code>PICT</code> centrado en una coordenada (en el nivel 4) con un radio dado (en el nivel 3) en el sentido contrario de las agujas del reloj desde ( \theta_1 ) (en el nivel 2) hasta ( \theta_2 ) (en el nivel 1). Tanto las coordenadas como el radio deberán utilizar o bien unidades de usuario o bien puntos.</td>
</tr>
<tr>
<td>Tecla</td>
<td>Comando Programable</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PIXON</td>
<td>PIXON</td>
<td>Activa el punto de PICT especificado en el nivel 1.</td>
</tr>
<tr>
<td>PIXOFF</td>
<td>PIXOFF</td>
<td>Desactiva el punto de PICT especificado en el nivel 1.</td>
</tr>
<tr>
<td>PIX?</td>
<td>PIX?</td>
<td>Da como resultado 1 si el punto especificado por la coordenada del nivel 1 está activado o 0 si el punto está desactivado.</td>
</tr>
<tr>
<td>PVIEW</td>
<td>PVIEW</td>
<td>Visualiza PICT con las coordenadas especificadas en la esquina superior izquierda de la pantalla de gráficos.</td>
</tr>
<tr>
<td>PX→C</td>
<td>PX→C</td>
<td>Convierte una coordenada de puntos \langle #n_x #n_y \rangle en una coordenada de unidades de usuario \langle x, y \rangle.</td>
</tr>
<tr>
<td>C→PX</td>
<td>C→PX</td>
<td>Convierte una coordenada de unidades de usuario \langle x, y \rangle en una coordenada de puntos \langle #n_x #n_y \rangle.</td>
</tr>
</tbody>
</table>

### PrOg GroB:

<table>
<thead>
<tr>
<th>PrOg</th>
<th>GroB</th>
<th>(Para objeto de gráficos) Convierte un objeto (nivel 2) en un objeto de gráficos que utiliza un número real ( n ) (0 a 3 del nivel 1) para especificar el tamaño de los caracteres. El objeto de gráficos resultante será una secuencia de caracteres pequeños ( n=1 ), medios ( n=2 ) o grandes ( n=3 ). Para ( n=0 ), el tamaño de los caracteres será el mismo que para ( n=3 ), excepto que para los objetos algebraicos y de unidades el objeto de gráficos resultante será el dibujo del EquationWriter.</th>
</tr>
</thead>
</table>

| BlAn    | Blank               | Crea un objeto de gráficos en blanco en la pila del tamaño \#n_x (en el nivel 2) por \#n_y (en el nivel 1). |

9-10 Objetos Gráficos
<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOR</td>
<td>GOR</td>
<td>(Objeto de Gráficos OR.) Superpone el objeto de gráficos del nivel 1 sobre el objeto de gráficos del nivel 3. La esquina superior izquierda del objeto de gráficos del nivel 1 se situará en las coordenadas especificadas en el nivel 2.</td>
</tr>
<tr>
<td>GXOR</td>
<td>GXOR</td>
<td>(Objeto de Gráficos XOR.) Igual que GOR a excepción de que el objeto de gráficos del nivel 1 aparece normal sobre un fondo claro e inverso sobre un fondo oscuro.</td>
</tr>
<tr>
<td>SUB</td>
<td>SUB</td>
<td>(Subconjunto) Extrae y devuelve a la pila una parte de un objeto de gráficos (nivel 3) definida mediante dos coordenadas ( niveles 2 y 1) que marcan las esquinas diagonales del rectángulo que se va a extraer.</td>
</tr>
<tr>
<td>REPL</td>
<td>REPL</td>
<td>(Sustituir) Igual que GOR a excepción que el objeto de gráficos del nivel 1 sobreescribe el objeto de gráficos del nivel 3 donde está localizado el objeto de gráficos del nivel 1.</td>
</tr>
<tr>
<td>→LCD</td>
<td>→LCD</td>
<td>(Pila para LCD) Muestra el objeto de gráficos del nivel 1 en la pantalla de la stack con su punto superior izquierdo en la esquina superior izquierda de la pantalla. Sobreescribe toda la pantalla salvo las etiquetas de menús.</td>
</tr>
<tr>
<td>LCD→</td>
<td>LCD→</td>
<td>(LCD para la pila) Devuelve al nivel 1 un objeto de gráficos que represente la pantalla actual de la pila.</td>
</tr>
<tr>
<td>SIZE</td>
<td>SIZE</td>
<td>Devuelve la anchura (nivel 2) y la altura (nivel 1) en puntos del objeto de gráficos del nivel 1.</td>
</tr>
</tbody>
</table>
### Comandos de Objetos Gráficos (continuación)

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIM</td>
<td>ANIMATE</td>
<td>Toma una secuencia de objetos gráficos de los niveles del 2 al $n+1$ y del nivel 1 o bien: a) el número de objetos gráficos ($n$) o b) una lista que contenga cuatro elementos: el número de objetos gráficos ($n$), una lista que contenga las coordenadas en pixel ($c #n_x #n_y 3$) de la esquina superior izquierda de la zona donde se situará la animación, el tiempo de retardo transcurrido (en segundos) entre cada una de las &quot;tramas&quot; de la animación y el número de periodos para repetir la secuencia de animación ($0 =$ repetir indefinidamente hasta que se interrumpa pulsando cualquier tecla). A continuación muestra cada uno de los objetos gráficos secuencialmente en la situación especificada durante el número de segundos fijado.</td>
</tr>
</tbody>
</table>
Objetos de Unidades de Medida

La aplicación Units (Unidades de Medida) contiene un catálogo de 147 unidades de medida que pueden combinarse con números reales para crear objetos de unidades. La aplicación Units le permitirá hacer lo siguiente:

- Convertir unidades de medida. Por ejemplo, se puede convertir el objeto de unidad de medida \( \text{10}_\text{ft} \) a \( \text{120}_\text{in} \) o \( \text{3}_\text{.048}_\text{m} \).

- Factorizar unidades de medida. Por ejemplo, es posible factorizar \( \text{20}_\text{W} \) con respecto a \( \text{1}_\text{N} \) y obtener \( \text{20}_\text{N}\times\text{s} \).

- Calcular con unidades de medida. Por ejemplo, se puede sumar \( \text{10}_\text{ft}/\text{s} \) a \( \text{10}_\text{mph} \) y obtener \( \text{24.67}_\text{ft}/\text{s} \).

Descripción General de la Aplicación Units

La aplicación Units consta de dos menús:

- El menú del Catálogo UNITS (DATABASES), que contiene las unidades de medida de la HP 48 organizadas por temas. Este menú le permitirá la creación de objetos de unidades de medida y la conversión entre unidades relacionadas del catálogo.

- El menú de Comandos UNITS (COMMANDS), que contiene los comandos para convertir unidades y para controlar objetos de unidades de medida.
Unidades de Medida y Objetos de unidades de medida

La aplicación Units está basada en el Sistema Internacional de Unidades de Medida (SI). El Sistema Internacional especifica siete unidades de medida básicas: \( \text{m} \) (metro), \( \text{k}\text{g} \) (kilogramo), \( \text{s} \) (segundo), \( \text{A} \) (amperio), \( \text{K} \) (kelvin), \( \text{cd} \) (candela) y \( \text{mol} \) (mol). La HP 48 utiliza dos unidades básicas adicionales: \( \text{r} \) (radián) y \( \text{sr} \) (estereoradián). El menú del Catálogo UNITS contiene estas nueve unidades básicas y 141 unidades compuestas derivadas de las unidades básicas. Por ejemplo, \( \text{in} \) (pulgada) se define como \( 0.0254 \text{ m} \) y \( \text{Fdl} \) (Faraday) se define como \( 96487 \text{ A s} \) (consulte el Apéndice E si desea obtener una lista completa de las unidades de medida incorporadas y sus valores en el SI).

Un objeto de unidades de medida tiene dos partes: un número (un número real) y una expresión de unidades de medida (una unidad de medida sencilla o una combinación multiplicativa de unidades de medida). Las dos partes están unidas mediante un guión de subrayado \( _{-} \). Por ejemplo, \( 2 \_\text{in} \) (2 pulgadas) y \( 8.303\_\text{gal}/\text{h} \) (8.303 galones por hora de EEUU), son objetos de unidades de medida. Al igual que los demás tipos de objetos, un objeto de unidades de medida puede colocarse en la pila, archivarse en una variable y utilizarse en expresiones algebraicas y programas.

Cuando se efectúa una conversión de unidades de medida, la HP 48 sustituirá la antigua expresión de unidades de medida por la nueva expresión de unidades de medida especificada y multiplicará automáticamente el número por el factor de conversión adecuado.

Los operadores de los objetos de unidades de medida siguen el siguiente orden de prioridad:

1. \( \circ \) (prioridad superior)
2. \(^\wedge\)
3. \(*\) y \(\slash\)

Por ejemplo, \( 7\_\text{m}/\text{s}^2 \) es 7 metros por segundo al cuadrado y \( 7\_\langle\text{m}/\text{s}\rangle^2 \) es 7 metros cuadrados por segundo al cuadrado.
El Menú del Catálogo UNITS

El menú del Catálogo UNITS (UNITS) muestra en pantalla un menú de tres páginas de teclas “temáticas” que, al pulsarse, muestran un submenú de unidades de medida relacionadas. Por ejemplo, UNITS NXT PRESS muestra un menú de dos páginas de unidades de presión.

Las teclas individuales de cada submenú se comportan de un modo diferente al de las teclas de menú estándar, según se describe en la continuación del presente capítulo. En el modo de Entrada Inmediata se pueden utilizar las teclas de cambio conjuntamente con las teclas de menú de la forma siguiente:

- Una tecla de menú utilizada sin tecla de cambio crea un objeto de unidad de medida combinando el número real del nivel 1 con la expresión de unidad de medida que corresponde a dicha tecla (en el modo de entrada de Operaciones Algebraicas o de Programas, las teclas utilizadas sin tecla de cambio actúan como auxiliares de escritura, copiando el nombre correspondiente en la línea de comandos).

- Una tecla de menú utilizada con la tecla de cambio izquierda convierte el objeto de unidades de medida de la línea de comandos o del nivel 1 a la unidad correspondiente.

- Una tecla de menú combinada con la tecla de cambio derecha divide entre la unidad de medida correspondiente. Esto le ayudará a crear expresiones de unidades de medida con unidades en el denominador.

Cómo Crear un Objeto de Unidades de Medida

El menú del Catálogo UNITS proporciona un método sencillo para crear un objeto de unidad de medida.

Para crear un objeto de unidades de medida en la pila:

1. Escriba la parte numérica del objeto de unidades de medida.
2. Pulse UNITS y seleccione el menú temático adecuado.
3. Pulse la tecla de menú de la unidad que desee (si quiere la unidad inversa, pulse y la tecla de menú).
4. Para unidades de medida compuestas, repita los pasos 2 y 3 para cada una de las unidades individuales de la expresión de unidades de medida.

Cuando se pulsa una tecla de menú en el menú del Catálogo UNITS, la HP 48 introduce en primer lugar un objeto de unidades de medida correspondiente con el valor numérico 1. A continuación, para una tecla utilizada sin tecla de cambio, ejecutará \( \times \) (multiplicación) o, para una tecla utilizada con la tecla de cambio derecha, ejecutará \( \div \) (división).

Para crear un objeto de unidades de medida en la línea de comandos:

1. Escriba el número.
2. Escriba el carácter _ (pulse \( \rightarrow \)). Esto activará el modo de entrada de Operaciones Algebraicas.
3. Escriba la expresión de unidades de medida igual que lo haría si se tratara de una expresión algebraica:
   - Para escribir un nombre de unidad de medida, pulse la tecla de menú correspondiente o bien escriba letra a letra el nombre de la unidad.
   - Para crear unidades compuestas, pulse \( \times \), \( \div \), \( ^{\circ} \) y \( \leftarrow \) si fuera necesario.

Observe que en los nombres de unidades de medida hay que respetar las letras mayúsculas y minúsculas. Por ejemplo, Hz (hertz) deberá escribirse con la mayúscula H y la minúscula z (para una mejor legibilidad, todas las letras de las teclas de menú aparecen en mayúsculas. No confunda la representación de las teclas de menú de una unidad de medida con su nombre).

Mediante la escritura letra por letra de los nombres de las unidades de medida se puede crear un objeto de unidades de medida sin tener que cambiar de submenús del menú del Catálogo UNITS. De todas formas, las teclas de menú eliminan los errores resultantes de una escritura incorrecta o del uso incorrecto de las mayúsculas o las minúsculas.

Ejemplo: Cree el objeto de unidades de medida \( \text{g}_\text{Etu}/(\text{ft}^{\circ}2\text{h}^{\circ}\text{F}) \) en la línea de comandos.
Paso 1: Escriba el número y el carácter _ . A continuación escriba la expresión de unidades de medida mediante la utilización de caracteres alfabéticos e introduzca el objeto de unidades de medida.

\[ 8 \text{ Btu/(ft}^2\text{h°F)} \]

Para crear un objeto de unidades de medida mediante la aplicación EquationWriter (Escritor de Ecuaciones):

1. Pulse \( \text{EQUATION} \).

2. Introduzca el número, pulse \( \text{ alphanumeric character} \) e introduzca la expresión de unidad de medida utilizando la escritura estándar del EquationWriter.

3. Pulse \( \text{ENTER} \).

La aplicación EquationWriter permite construir operaciones algebraicas que contengan objetos de unidades de medida, mostrando la expresión de unidades de medida del mismo modo que si se escribiera en papel. Las unidades inversas se muestran de modo fraccional y los exponentes aparecen en forma de superíndices.

Prefijos de Unidades de Medida

También puede insertarse un prefijo de unidad de medida delante de una unidad para indicar la potencia de diez. En la siguiente tabla se presenta una lista de los prefijos disponibles (para escribir \( \mu \), pulse \( \text{ alphanumeric character} \) \( \text{N} \))
### Prefijos de Unidades de Medida

<table>
<thead>
<tr>
<th>Prefijo</th>
<th>Nombre</th>
<th>Exponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>yotta</td>
<td>+24</td>
</tr>
<tr>
<td>Z</td>
<td>zetta</td>
<td>+21</td>
</tr>
<tr>
<td>E</td>
<td>exa</td>
<td>+18</td>
</tr>
<tr>
<td>P</td>
<td>peta</td>
<td>+15</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>+12</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>+9</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>+6</td>
</tr>
<tr>
<td>k o K</td>
<td>kilo</td>
<td>+3</td>
</tr>
<tr>
<td>h o H</td>
<td>hecto</td>
<td>+2</td>
</tr>
<tr>
<td>D</td>
<td>deka</td>
<td>+1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefijo</th>
<th>Nombre</th>
<th>Exponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>deci</td>
<td>-1</td>
</tr>
<tr>
<td>c</td>
<td>cent</td>
<td>-2</td>
</tr>
<tr>
<td>m</td>
<td>mili</td>
<td>-3</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>-6</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>-9</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>-12</td>
</tr>
<tr>
<td>f</td>
<td>femto</td>
<td>-15</td>
</tr>
<tr>
<td>a</td>
<td>atto</td>
<td>-18</td>
</tr>
<tr>
<td>z</td>
<td>zepto</td>
<td>-21</td>
</tr>
<tr>
<td>y</td>
<td>yocto</td>
<td>-24</td>
</tr>
</tbody>
</table>

La mayoría de los prefijos usados por la HP 48 utilizan la escritura estándar del SI, con una excepción: “deka” es “D” en la HP 48 y “da” en el SI.

### Nota

No se puede utilizar un prefijo con una unidad de medida incorporada si la unidad resultante es igual a otra unidad incorporada. Por ejemplo, no se puede utilizar min para indicar milipulgadas porque min es una unidad incorporada que indica “minutos”. Otras combinaciones que son igual a las unidades incorporadas son Pa, da, cd, ph, ftm, nmi, mph, kph, ct, pt, ft, au, cu, yd, yr.
Cómo Convertir Unidades de Medida

La HP 48 proporciona varios modos para convertir objetos de unidades de medida a las diferentes unidades:

- El menú del Catálogo UNITS—convierte sólo unidades de medida incorporadas.
- El comando CONVERT—convierte a cualquier unidad de medida.
- El comando UBASE (unidades básicas)—convierte sólo a unidades básicas de medida del SI.

Si trabaja con unidades de medida de temperatura, consulte “Cómo Trabajar con Unidades de Temperatura” en la página 10-12.

Cómo Utilizar el menú del Catálogo UNITS

El menú del Catálogo UNITS permite convertir el objeto de unidades de medida del nivel 1 de la pila en cualquier unidad de medida del menú dimensionamente coherente.

Para convertir unidades de medida a una unidad incorporada:

1. Introduzca el objeto de unidades de medida con las unidades originales.
2. Pulse \[ \text{ENT} \text{UNITS} \] y seleccione el menú temático que contenga la unidad de medida deseada.
3. Pulse \[ \text{ENT} \] y la tecla de menú de la unidad deseada.

Cómo Utilizar CONVERT

El comando CONVERT pude utilizarse para convertir objetos de unidades de medida entre cualquier expresión de unidades de medida dimensionalemente coherente.

Para convertir a cualquier unidad de medida:

1. Introduzca el objeto de unidades de medida con las unidades originales.
2. Introduzca cualquier número (como 1) y añada las unidades de medida a las que desea hacer la conversión.
3. Pulse \[ \text{ENT} \text{UNITS} \text{CONV} \].
CONVERT convierte el objeto de unidades de medida del nivel 2 utilizando las unidades del objeto del nivel 1. No tiene en cuenta la parte numérica del objeto de unidades de medida del nivel 1.

Cómo Utilizar UBASE (para Unidades Básicas del SI)

El comando UBASE convierte una unidad de medida compuesta a su equivalente de las unidades de medida básicas del SI.

Para convertir unidades de medida a unidades de medida básicas del SI:

1. Introduzca el objeto de unidades de medida con las unidades originales.
2. Pulse UNITS UBASE.

Cómo Convertir Unidades Angulares

Los ángulos planares y cúbicos están asociados con unidades de medida reales. De todos modos, aunque esto los distingue de los escalares (números no dimensionales), la HP 48 permite la conversión entre unidades de angulares y escalares. La conversión interpretará el escalar de acuerdo con la opción de modo de ángulo actual (grados sexagesimales, radianes o grados centesimales).

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Símbolo</th>
<th>Definición</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minuto de Arco</td>
<td>arcmin</td>
<td>(1/21600) de unidad de círculo</td>
<td>(2.90888208666 \times 10^{-4}) r</td>
</tr>
<tr>
<td>Segundo de Arco</td>
<td>arcsec</td>
<td>(1/1296000) de unidad de círculo</td>
<td>(4.8481368111 \times 10^{-6}) r</td>
</tr>
<tr>
<td>Grado</td>
<td>°</td>
<td>(1/360) de unidad de círculo</td>
<td>(1.74532925199 \times 10^{-2}) r</td>
</tr>
<tr>
<td>Sexagesimal</td>
<td>grad</td>
<td>(1/400) de unidad de círculo</td>
<td>(1.57079632679 \times 10^{-2}) r</td>
</tr>
<tr>
<td>Grado</td>
<td>grad</td>
<td>(1/400) de unidad de círculo</td>
<td>(1.57079632679 \times 10^{-2}) r</td>
</tr>
<tr>
<td>Centesimal</td>
<td>°sr</td>
<td>(1/4\pi) de unidad de esfera</td>
<td>1 sr</td>
</tr>
</tbody>
</table>
Cómo Efectuar Operaciones de Cálculo con Unidades de Medida

La HP 48 permite ejecutar muchas operaciones aritméticas con objetos de unidades del mismo modo que si se tratara de números reales:

- Adición y sustracción (sólo unidades de medida dimensionalmente coherentes)
- Multiplicación y división
- Inversión
- Elevación a una potencia
- Cálculo de porcentajes (sólo unidades de medida dimensionalmente coherentes)
- Comparaciones de valores (sólo unidades de medida dimensionalmente coherentes)
- Operaciones Trigonométricas (sólo unidades planares angulares)

Existen varias operaciones matemáticas adicionales disponibles, pero trabajan solamente con la parte numérica del objeto de unidades de medida.

Para efectuar operaciones de cálculo con objetos de unidades de medida:

1. Introduzca los objetos de unidades.
2. Ejecute los comandos.

Las unidades de medida se convertirán y se combinarán automáticamente durante el proceso de cálculo, aunque algunas operaciones requieren unidades de medida dimensionalmente coherentes. Dichas operaciones convierten los resultados con unidades de medida a las unidades del objeto del nivel 1.

Las unidades de temperatura requieren un trato especial: consulte "Cómo Trabajar con Unidades de Temperatura" en la página 10-12.

Las operaciones trigonométricas SIN (SENO), COS (COSENO) y TAN (TANGENTE) funcionan solamente con unidades planares angulares de objetos de unidades de medida: radianes (r), grados sexagesimales (°), grados centesimales (g), minutos de arco (arcmin) o segundos de arco (arcseg). El resultado será un número real no dimensional.
Ejemplo: Sustracción. Reste 39 in (pulgadas) a 4 ft (pies).

\[
\begin{array}{r}
\text{(UNITS) LENG} \\
4 \text{ FT} \\
39 \text{ IN}
\end{array}
\]

Ejemplo: Multiplicación y División de unidades. Multiplique 50 ft por 45 ft y a continuación divida entre 3.2 d (días).

\[
\begin{array}{r}
\text{(UNITS) LENG} \\
50 \text{ FT} \\
45 \text{ FT} \\
\times
\end{array}
\]

Paso 1: En primer lugar, multiplique los dos objetos de unidades de medida.

\[
\begin{array}{r}
\text{(UNITS) TIME} \\
3.2 \text{ D}
\end{array}
\]

Paso 2: Introduzca el tercer objeto de unidades de medida y divida.


\[
\begin{array}{r}
\text{(UNITS) SPEED} \\
6 \text{ YP}
\end{array}
\]

Paso 1: Introduzca el objeto de unidades de medida y élévelo a la sexta potencia.

\[
\begin{array}{r}
\text{(UNITS) SPEED} \\
6 \text{ YP}
\end{array}
\]

Paso 2: Ahora hale la raíz cuadrada del resultado.

\[
\begin{array}{r}
\text{(UNITS) SPEED} \\
3 \text{ YP}
\end{array}
\]

Paso 3: Halle la raíz cúbica del resultado.

\[
\begin{array}{r}
\text{(UNITS) SPEED} \\
3 \text{ YP}
\end{array}
\]

10-10 Objetos de Unidades de Medida
Ejemplo: Porcentaje. ¿Qué tanto por ciento es $4.2 \text{cm}^3$ de $1 \text{in}^3$?

\[
\begin{array}{c}
\text{UNITS} & \text{VOL} & \text{IN}^3 & \text{1: 25.6299725198} \\
\end{array}
\]

Cómo Factorizar Expresiones de Unidades de Medida

El comando UFACT factoriza una unidad de medida que está dentro de una expresión de unidades de medida, devolviendo un objeto de unidades de medida cuya expresión consta de la unidad factorizada y de las unidades restantes básicas del SI.

Para factorizar unidades que están dentro de una expresión de unidades de medida:

1. Introduzca el objeto de unidades de medida con las unidades originales.
2. Introduzca cualquier número (como 1) y añada las unidades de medida que desee factorizar.
3. Pulse \( \text{UNITS} \text{ UFACT} \).

UFACT factorizará las unidades del objeto del nivel 1 a partir del objeto de unidades de medida del nivel 2.

Cómo Utilizar Objetos de Unidades de Medida en Operaciones Algebraicas

Los objetos de unidades de medida están permitidos en operaciones algebraicas—se introducen igual que en la línea de comandos. Por otro lado, la línea de comandos permite números simbólicos en vez de números reales, convirtiendo '\( Y \_f t \)' , por ejemplo, a 'Y*1_f t' cuando se introduce en la pila.

Se permiten $+ y -$ en el número. De todos modos, el carácter _ tiene prioridad sobre $+ y -$ . Así ' (4+5)_f t' EVAL devolverá 9_f t pero '4+5_f t' EVAL devolverá + Error: Inconsistent Units (Error de +: Unidades de Medida Incoherentes).
Cómo Trabajar con Unidades de Temperatura

La HP 48 permite trabajar con unidades de temperatura del mismo modo que con las demás unidades—*a excepción* de que se deberá reconocer y anticipar la diferencia entre el *nivel* de temperatura y la *diferencia* de temperatura. Por ejemplo, un *nivel* de temperatura de 0 °C indica “congelación,” pero una *diferencia* de temperatura de 0 °C indica que “no se han producido cambios”.

Cuando °C o °F representan un *nivel* de temperatura, la temperatura es una unidad de medida con una constante aditiva: 0 °C = 273.15 K y 0 °F = 459.67 °R. Pero cuando °C o °F representan una *diferencia* de temperatura, la temperatura será una unidad sin constante aditiva: 1 °C = 1 K y 1 °F = 1 °R.

Cómo Convertir Unidades de Temperatura

Las conversiones entre las cuatro escalas de temperatura (K, °C, °F y °R) implican constantes aditivas así como factores multiplicativos. Las constantes aditivas se *incluyen* en una conversión cuando las unidades de temperatura reflejan *niveles* de temperatura reales y *no se tienen en cuenta* cuando las unidades de temperatura reflejan *diferencias* de temperatura:

- **Unidades de temperatura puras (niveles).** Si ambas expresiones de unidades de medida constan de una unidad de temperatura simple, no prefijada, sin exponente, el menú del Catálogo UNITS o CONVERT efectuarán una conversión de escalas de temperatura *absoluta* que incluya las constantes aditivas.

- **Unidades de temperatura combinadas (diferencias).** Si cualquiera de las expresiones de unidades de medida incluyen un prefijo, un exponente o cualquier otra unidad distinta a la unidad de temperatura, CONVERT efectuará una conversión de unidades de temperatura *relativa* que no tenga en cuenta las constantes aditivas.

**Ejemplo:** Convierta 25 °C a °F.

![Imagen de conversión de temperatura](image)

**Ejemplo:** Convierta 25 °C/min a °F/min.
Paso 1: En primer lugar, cree el objeto de unidades de medida 25 °C/min.

Paso 2: Introduzca el objeto de unidades de medida que contenga las unidades nuevas.

Paso 3: Efectúe la conversión.

Cómo Efectuar Operaciones de Cálculo con Unidades de Temperatura

Las unidades de temperatura se convierten y se combinan automáticamente durante las operaciones de cálculo.

- Unidades de temperatura puras (niveles o diferencias). Los operadores relacionales (<, >, ≤, ≥, ==, ≠) interpretan las temperaturas puras como niveles de temperatura con base cero absoluto para todas las escalas de temperaturas. Antes de efectuar el cálculo, la HP 48 convertirá todas las temperaturas Celsius o Fahrenheit a temperaturas absolutas.

Los operadores + y – y las funciones %CH y %T requieren que los argumentos de temperatura pura sean ambos temperaturas absolutas (K o °R), ambos °C o ambos °F. Esto asegurará que dichas operaciones mantengan las propiedades algebraicas correctas.

En todas las demás funciones, las unidades de temperatura puras se interpretarán como diferencias de temperatura—no se convertirán antes del cálculo.

- Unidades de temperatura combinadas (diferencias). Las unidades de temperatura con prefijos, exponentes u otras unidades se interpretarán como diferencias de temperatura—no se convertirán antes del cálculo.
Ejemplo: Determine si 12 °C es mayor que 52 °F (el operador > interpreta las temperaturas como niveles).

El resultado muestra que la prueba es cierta (12 °C es mayor que 52 °F).

Ejemplo: Calcule la temperatura final para un incremento de 18 °F de la temperatura actual de 74 °F.

Ejemplo: Para un coeficiente de expansión lineal α de 20 × 10⁻⁶ 1/°C y un cambio de temperatura ΔT de 44 °C, calcule el cambio fraccional de longitud dado por α ΔT (el comando × interpreta las temperaturas como diferencias).

Siempre que tenga que utilizar temperaturas absolutas en una unidad o expresión compuesta, asegúrese de introducir las temperaturas utilizando la escala absoluta. La HP 48 no convierte correctamente de °C a °F a la escala absoluta una vez que la temperatura ha pasado a formar parte de una expresión combinada.

Ejemplo: La ecuación del estado de gas ideal es \( PV = nRT \), donde \( P \) es la presión ejercida por el gas (en atmósferas), \( V \) es el volumen del gas (en litros), \( n \) es la cantidad de gas (en moles), \( R \) es la constante del gas ideal (0.082057 litro-atmósferas/kelvin-moles) y \( T \) es la temperatura del gas (en kelvins).

Teniendo en cuenta el comportamiento del gas ideal, calcule la presión ejercida por 0.305 moles de oxígeno en un volumen de 0.950 litros a 150 °C.
Paso 1: En primer lugar, introduzca la temperatura.

1: 150.0°C

Paso 2: Convierta las unidades a kelvins. Esta conversión funcionará correctamente en este momento porque la temperatura es todavía "pura" y todavía no forma parte de una unidad compuesta.

1: 423.15 K

Paso 3: Multiplique $T$ (ya en el nivel 1) por $n$ (0.305 moles).

1: 129.06075 K.mol⁻¹

Paso 4: Multiplique $nT$ por $R$, la constante del gas ideal. Recupere $R$ de la Biblioteca de Constantes antes de multiplicar.

1: 1073.07689648 mol·J⁻¹ g⁻¹

Paso 5: Divida entre $V$ (0.950 litros) para calcular $P$.

1: 1129.55462787 mol·J⁻¹ (g·mol⁻¹)

Paso 6: Convierta las unidades de presión a atmósferas.

1: 11.1478374327 atm

Paso 7: Convierta la presión (en atmósferas) a unidades básicas de medida del SI.

1: 1129554.62787 kg/(m²·s²)

Objetos de Unidades de Medida 10-15
Cómo Crear Unidades Definidas por el Usuario

Si utiliza una unidad no contenida en el menú del Catálogo de UNITS, puede crear una unidad *definida por el usuario* que se comporte como unidad interna. (La Biblioteca de Ecuaciones contiene cuatro unidades definidas por el usuario; consulte la página .)

**Para crear una unidad definida por el usuario:**

1. Introduzca un objeto de unidad, utilizando unidades internas o previamente definidas, equivalente a un valor de 1 unidad nueva.
2. Grabe el objeto de unidad en una variable—el nombre de variable se utiliza como nombre de una unidad nueva.
3. Opcional: Añada un objeto de unidad que tenga la unidad definida por el usuario al menú CST—vea más abajo. La parte del número se ignora. (Los menús de usuario se describen en la página 30-1.)

*No puede* utilizar la tecla de unidades en el menú VAR como lo hace en los menús de UNITS, ya que almacenan y recuperan objetos. Sin embargo, si añade una unidad definida por el usuario al menú CST, puede utilizar la tecla del menú CST para introducir y convertir sus unidades de usuario—al igual que con las teclas del menú UNITS.

**Ejemplo:** Utilice la unidad interna d (día) para crear la unidad definida por el usuario WEEK. Para ello, almacene el objeto de unidad 7_d en la variable WEEK. Introduzca una lista que contenga un objeto con las unidades nuevas: {1_WEEK}. Almacene la lista en el menú de usuario y visualice el menú—pulse \[\text{\textasciitilde} \text{MODES} \text{\textasciitilde} \text{MENU} \]

**10-16 Objetos de Unidades de Medida**
Comandos Adicionales para Objetos de Unidades de Medida

<table>
<thead>
<tr>
<th>Tecla Programable</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>[UNITS]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVAL</td>
<td>UVAL</td>
<td>Devuelve la parte numérica del objeto de unidades de medida del nivel 1 al nivel 1.</td>
</tr>
<tr>
<td>→UNIT</td>
<td>→UNIT</td>
<td>Combina un número del nivel 2 con un objeto de unidades de medida del nivel 1, sin tener en cuenta la parte numérica del objeto del nivel 1, para formar un objeto de unidades de medida en el nivel 1.</td>
</tr>
</tbody>
</table>
Cómo Utilizar Funciones Matemáticas

Funciones y Comandos Incorporados

Las funciones y comandos incorporados son subconjuntos de operaciones de la HP 48. Una operación es cualquier función que la calculadora sea capaz de realizar (cada vez que se pulsa una tecla, se ejecuta una operación). Pero no todas las operaciones son equivalentes entre sí. Se clasifican en las siguientes categorías:

- **Operación.** Cualquier acción incorporada representada por un nombre o una tecla.

- **Comando.** Cualquier operación programable.

- **Función.** Cualquier comando que pueda incluirse en objetos algebraicos.

- **Función Analítica.** Cualquier función para la que la HP 48 proporcione una inversa y una derivada.

Las funciones analíticas son un subconjunto de funciones—las funciones son un subconjunto de comandos—y los comandos son un subconjunto de operaciones.

SIN, por ejemplo, es una función analítica—tiene una inversa y una derivada, puede incluirse en un objeto algebraico y es programable. Por el contrario, SWAP (el comando para intercambiar los niveles 1 y 2 de la pila) es un comando—puede incluirse en un programa pero no puede ir en una operación algebraica y no tiene ni derivada ni inversa.

El índice de operaciones del apéndice G presenta la clasificación de todas las operaciones. Asimismo, a lo largo del presente manual, se hace referencia a las actividades de la HP 48 como operaciones, comandos, funciones o funciones analíticas donde sea el caso.
Los objetos de funciones incorporadas o de comandos incorporados describen el conjunto de comandos de la HP 48. Pueden considerarse como objetos de programas incorporados (las operaciones que no son comandos no son objetos—no se pueden incluir en programas).

Cómo Expresar Funciones: Sintaxis Algebraica

La diferencia entre las funciones y los demás comandos es que las funciones pueden incluirse en expresiones algebraicas. La sintaxis utilizada por una función determina el modo en que ésta interpreta sus entradas (o argumentos). Las funciones pueden clasificarse, basándose en su sintaxis, en tres tipos:

- **Funciones de Prefijos.** Funciones como 'SIN<X>' y 'MAX<X,Y>', cuyo nombre (u operador) viene antes de su(s) argumento(s) (que aparecen entre paréntesis y separados por comas).
- **Funciones de Infixos.** Funciones como + y ≥ que vienen entre sus dos argumentos.
- **Funciones de Sufijos.** Funciones como ! (factorial) que vienen después de su argumento.

**Nota**

En la expresión 'A(B*C)', A es tratada como una función de prefijo y no como un argumento de multiplicación. La HP 48interpreta la expresión como “aplicar la función A al producto de B y C” en vez de “multiplicar A por el producto de B y C”. Si piensa efectuar una multiplicación, asegúrese de incluir el operador de la multiplicación * (o · en el EquationWriter).

Los objetos algebraicos utilizan una sintaxis algebraica y, por tanto, usan las reglas normales de prioridad algebraica para determinar el orden en el que se ejecutan las funciones. Las funciones de mayor prioridad se efectuarán en primer lugar y las funciones con la misma prioridad se efectuarán de izquierda a derecha. Las funciones de la HP 48 tienen la siguiente prioridad algebraica, de mayor (1) a menor (11):

1. Expresiones entre paréntesis. Las expresiones entre paréntesis se calculan de dentro a afuera.
2. Funciones de prefijos (como SIN, INV o LOG).
3. Funciones de sufijos (como !).
4. Potencias (^).
5. Negación (¬), multiplicación (*) y división (÷).
6. Adición (+) y sustracción (−).
7. Operadores de comparación (==, ≠, <, >, ≤ o ≥).
8. Operadores lógicos AND y NOT.
9. Operadores lógicos OR y XOR.
11. Símbolos de igual (=).

Ejemplo:

'A^3+B'  Eleva A al cubo y a continuación añade B a dicha
cantidad, puesto que ^ tiene mayor prioridad que +.

'A^(3+B)'  Eleva A a la potencia 3+B puesto que una expresión
entre paréntesis tiene mayor prioridad que ^.

Cómo Expresar Funciones: Sintaxis de la Pila

Aunque existen muy pocas funciones algebraicas de sufijos, todas
las funciones de la HP 48 pueden ejecutarse en la forma de sufijos
mediante la utilización de la pila. La sintaxis de la pila es una sintaxis
de sufijos, donde los argumentos se introducen en primer lugar,
seguidos por el nombre de comando o función. La sintaxis de sufijos es
frecuentemente un medio más eficaz de de utilización de una serie de
funciones que la sintaxis algebraica estándar.

Así pues, la HP 48 permite la utilización de las funciones de dos
modos distintos: sintaxis algebraica en objetos algebraicos o sintaxis
de sufijos ejecutada directamente en la pila. Por ejemplo, la función de
seno puede utilizarse o bien como 'SIN(X)' o 'X' SIN y la suma
puede ser 'X+Y' o 'X' 'Y' +.

Recuerde: A menos que introduzca las funciones entre comillas simples
(delimitadores ' '), la HP 48 sobreentenderá que se está usando una
sintaxis de sufijos siempre que se invoque el nombre de una función
y por tanto utilizará (o intentará utilizar) objetos de la pila como
argumentos de la función.
Expresiones y Ecuaciones

Una expresión es una operación algebraica que no contiene una función =. Una ecuación es una operación algebraica que contiene una función =. Por ejemplo, '$\sin(x) - \tan(2\pi x) + 6\pi x$' es una expresión y '$y = \tan(2\pi x) + 6\pi x$' es una ecuación.

Cuando se utiliza una ecuación como argumento de una función, la función se aplica a ambas partes y el resultado será también una ecuación. Por ejemplo, '$x=y$' $\sin$ devolverá '$\sin(x) = \sin(y)$'.

En la HP 48, = generalmente significa una igualdad de dos expresiones. El comando DEFINE (►DEF) interpreta = de un modo diferente — almacena la expresión en la parte derecha del signo igual en el nombre de la parte izquierda (consulte la página 11-7 si desea obtener más detalles).

Constantes Simbólicas

La HP 48 dispone de cinco constantes incorporadas que pueden incluirse en expresiones algebraicas o bien como constantes simbólicas o bien como aproximaciones numéricas de 12 dígitos. Las cinco constantes son las siguientes:

- $\pi$ (3.14159265359), razón del perímetro de un círculo respecto a su diámetro.
- $e$ (2.71828182846), base de logaritmo natural.
- $i$ (0, 1), raíz cuadrada de (-1).
- $\max$ (9.99999999999E499), mayor número real positivo que se puede representar en la HP 48.
- $\min$ (1.E-499), menor número real positivo que se puede representar en la HP 48.

Las cinco constantes están disponibles tanto en forma simbólica como en forma numérica en el menú MTH CONSTANTS, al que se accede pulsando [MTH] [NXT] [CONS]. Tres de estas constantes se pueden introducir también directamente desde el teclado principal:

- Pulse $\leftarrow \pi$ para obtener $\pi$.
- Pulse $\alpha \leftarrow E$ para obtener $e$.
- Pulse $\alpha \leftarrow I$ para obtener $i$.

11-4 Cómo Utilizar Funciones Matemáticas
La HP 48 también proporciona 40 constantes físicas (con sus unidades) en su Biblioteca de Constantes. La función CONST permite utilizar estas constantes en la forma simbólica. Consulte la página 28-16 para obtener más detalles.

Cómo Controlar el Modo de Cálculo de las Constantes Simbólicas

Los indicadores del sistema -2 (Constantes Simbólicas) y -3 (Resultados Simbólicos) controlan si el cálculo de constantes simbólicas devuelve resultados simbólicos o numéricos. El valor por defecto para ambos indicadores es borrado.

Para controlar el cálculo de constantes simbólicas:

- Para dejar una constante simbólica igual durante una operación de cálculo, bórre los indicadores -3 y -2 (sus estados por defecto).
- Para sustituir una constante simbólica por su valor numérico durante una operación de cálculo, fije el indicador -3.
- Para sustituir una constante simbólica por su valor numérico a excepción de cuando es el argumento de una función, borre el indicador -3 y fije el indicador -2. Si se pulsa [EVAL] se utilizará el valor numérico pero no se ejecutará otra función (/, SIN, LOG, etc.).
- Para forzar el cálculo numérico de todas las constantes sin tener en cuenta las opciones del indicador, pulse [NUM].

Cómo Utilizar Funciones Matemáticas Incorporadas

Los siguientes seis capítulos (12-17) están dedicados a las funciones matemáticas incorporadas disponibles en la HP 48. Las funciones están agrupadas en capítulos y divididas en secciones.

La mayoría de las funciones aritméticas y científicas comunes están ubicadas en el teclado principal. Pero hay muchas más localizadas en submenús accesibles mediante la tecla [MTH]. En la siguiente tabla se describe cómo encontrar cada uno de los grupos de funciones en la HP 48 y en qué lugar del manual se estudia.
<table>
<thead>
<tr>
<th>Tema o Grupo</th>
<th>Acceso</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operaciones Aritméticas</td>
<td>Teclado</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones Exponenciales</td>
<td>Teclado</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones Logarítmicas</td>
<td>Teclado</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones Trigonométricas</td>
<td>Teclado</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones Hiperbólicas</td>
<td>MTH HYP</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones de</td>
<td>MTH PROG</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Probabilidades</td>
<td>MTH REAL</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Porcentajes</td>
<td>MTH REAL</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Constantes Incorporadas</td>
<td>MTH NXT CDNS</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones de Números Reales</td>
<td>MTH REAL</td>
<td>Capítulo 25</td>
</tr>
<tr>
<td>Funciones Complejas</td>
<td>MTH NXT CMPL</td>
<td>Capítulo 12</td>
</tr>
<tr>
<td>Funciones Vectoriales</td>
<td>MTH VECTR</td>
<td>Capítulo 13</td>
</tr>
<tr>
<td>Transformadas Fourier</td>
<td>MTH NXT FFT</td>
<td>Capítulo 13</td>
</tr>
<tr>
<td>Funciones de Matrices</td>
<td>MTH MATR</td>
<td>Capítulo 14</td>
</tr>
<tr>
<td>Algebra Lineal</td>
<td>MTH MATR</td>
<td>Capítulo 14</td>
</tr>
<tr>
<td>Conversiones de Bases</td>
<td>MTH BASE</td>
<td>Capítulo 15</td>
</tr>
<tr>
<td>Numéricas</td>
<td>MTH BASE</td>
<td>Capítulo 15</td>
</tr>
<tr>
<td>Operaciones Aritméticas Binarias</td>
<td>MTH BASE</td>
<td>Capítulo 15</td>
</tr>
<tr>
<td>Operaciones Lógicas</td>
<td>MTH BASE LOGIC</td>
<td>Capítulo 15</td>
</tr>
<tr>
<td>Booleanas</td>
<td>MTH BASE LOGIC</td>
<td>Capítulo 15</td>
</tr>
<tr>
<td>Operaciones Aritméticas de Fecha y Hora</td>
<td>MTH TIME</td>
<td>Capítulo 16</td>
</tr>
<tr>
<td>Operaciones Aritméticas de Fracciones</td>
<td>MTH SYMBOLIC</td>
<td>Capítulo 16</td>
</tr>
<tr>
<td>Cómo Aplicar Funciones a Listas</td>
<td>MTH LIST Teclado</td>
<td>Capítulo 17</td>
</tr>
<tr>
<td>Secuencias y Series</td>
<td>MTH LIST</td>
<td>Capítulo 17</td>
</tr>
<tr>
<td>Procedimientos de Listas de Recursos</td>
<td>PRG LIST</td>
<td>Capítulo 17</td>
</tr>
</tbody>
</table>
Funciones Definidas por el Usuario

Es posible añadir funciones definidas por el usuario propias. Una función definida por el usuario se comporta como una función incorporada en varios sentidos:

- Toma los argumentos de la pila o se escribe con sintaxis algebraica.
- Toma argumentos simbólicos.
- Puede diferenciarse.

Cómo Crear una Función Definida por el Usuario.

El comando DEFINE permite crear una función definida por el usuario directamente a partir de una ecuación. La ecuación deberá tener la forma 'nombre(argumentos)=expresión'.

Para crear una función definida por el usuario:

1. Introduzca una ecuación que especifique el nombre de la función y los argumentos de la parte izquierda y la expresión que defina la operación de cálculo de la parte derecha. En la parte izquierda, utilice comas para separar múltiples argumentos.
2. Pulse (DEF) (el comando DEFINE).

Ejemplo: Utilice DEFINE para crear CMB, una función definida por el usuario que calcule el número de combinaciones \( C \) de \( n \) diferentes elementos tomados de 1, 2, 3, ... \( n \) en 1, 2, 3, ... \( n \): \( C = 2^n - 1 \).

Paso 1: Introduzca la ecuación de CMB.

<table>
<thead>
<tr>
<th>1</th>
<th>α</th>
<th>α</th>
<th>CMB</th>
<th>(</th>
<th>)</th>
<th>N</th>
</tr>
</thead>
</table>

Paso 2: Ejecute DEFINE. Seleccione el menú VAR y observe que ahora contiene la función definida por el usuario CMB.
Cómo Ejecutar una Función Definida por el Usuario

Una función definida por el usuario se ejecuta igual que una función incorporada—puede tomar argumentos numéricos o simbólicos, bien de la pila o bien en sintaxis algebraica.

Para ejecutar una función definida por el usuario:

- Para utilizar la pila, coloque los argumentos en la pila en el mismo orden en el que aparecen en la parte izquierda de la definición de la función (el último argumento debería estar en el nivel 1 de la pila) y a continuación pulse la tecla de función del menú VAR (o escriba el nombre de la función y pulse ENTER).
- Para utilizar la sintaxis algebraica, pulse [1], pulse la tecla de función del menú VAR (o escriba el nombre de la función) pulse [2 0], introduzca los argumentos algebraicos en el orden apropiado y separados por comas y a continuación pulse ENTER (o EVAL para calcular la expresión).

Ejemplo: Ejecute la función definida por el usuario CMB del ejemplo anterior para efectuar las siguientes operaciones de cálculo.

Paso 1: Calcule el número total de combinaciones de uno o más de cuatro elementos \((n = 4)\).

\[
4 \text{ CMB } \rightarrow 15
\]

Paso 2: Con el mismo valor de \(n\), calcule las combinaciones con sintaxis algebraica.

\[
\text{CMB } \rightarrow (4) \rightarrow \text{EVAL}\]

\[
1: \quad 15
\]

Paso 3: Calcule \(CMB(Z)\) con sintaxis algebraica, donde \(Z\) es una variable formal (borre \(Z\) para asegurarse de que no contenga ningún objeto).

\[
\text{Z } \rightarrow \text{PURG}\]

\[
CMB \rightarrow (4) \rightarrow \text{EVAL}\]

\[
1: \quad 15
\]

11-8 Cómo Utilizar Funciones Matemáticas
Cómo Utilizar los Paréntesis en Funciones Definidas por el Usuario

Al igual que las funciones incorporadas, las funciones definidas por el usuario pueden incluirse en la expresión definidora de una función definida por el usuario.

Ejemplo: Escriba una función definida por el usuario para calcular la razón del área de la superficie de una caja respecto al volumen. La fórmula de esta operación de cálculo es:

\[
\frac{A}{V} = \frac{2(hw + hl + wl)}{hwl}
\]

donde \( h \), \( w \) y \( l \) son la altura, la anchura y la longitud de la caja.

Paso 1: En primer lugar, cree una función definida por el usuario \texttt{BOXS} para calcular el área de la superficie de la caja. Utilice la aplicación EquationWriter para escribir la ecuación.

Paso 2: Introduzca la ecuación y cree la función definida por el usuario.
Paso 3: Ahora cree una función definida por el usuario BOXR para calcular la razón del área de la superficie respecto al volumen. Utilice la aplicación EquationWriter para escribir la ecuación.

\[ xR(x, y, z) = \frac{BOXS(x, y, z)}{x \cdot y \cdot z} \]

Paso 4: Introduzca la ecuación y cree la función definida por el usuario.

Paso 5: Utilice BOXR para calcular la razón del área de la superficie respecto al volumen de una caja de 9 pulgadas de altura, 18 pulgadas de anchura y 21 pulgadas de longitud. Introduzca la altura, la anchura y la longitud y a continuación ejecute BOXR.

Observe que se definió BOXS utilizando \( h, w \) y \( l \) como variables y que BOXS toma \( x, y \) y \( z \) como argumentos en la definición de BOXR. Esto no diferencia si las variables de las dos definiciones son iguales o no—cada conjunto de variables es independiente de los demás.
Funciones Matemáticas del Teclado Principal

En la siguiente tabla se describen los comandos incorporados que aparecen en el teclado.

**Funciones Matemáticas Aritméticas y Generales**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/x</td>
<td>INV</td>
<td>Prefijo. Inversa (recíproca).</td>
</tr>
<tr>
<td>√</td>
<td></td>
<td>Prefijo. Raíz cuadrada.</td>
</tr>
<tr>
<td>x²</td>
<td>SQ</td>
<td>Prefijo. Cuadrado.</td>
</tr>
<tr>
<td>+/-</td>
<td>NEG</td>
<td>Infijo. Cambiar el signo. Cambia el signo del número de la línea de comandos. Cuando no está presente la línea de comandos, +/- ejecuta un comando NEG (cambia el signo del argumento del nivel 1).</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>Infijo. Nivel 2 + nivel 1.</td>
</tr>
<tr>
<td>✕</td>
<td></td>
<td>Infijo. Nivel 2 × nivel 1.</td>
</tr>
<tr>
<td>÷</td>
<td></td>
<td>Infijo. Nivel 2 ÷ nivel 1.</td>
</tr>
<tr>
<td>y^x</td>
<td></td>
<td>Infijo. Nivel 2 elevado a la potencia del nivel 1. La sintaxis algebraica para el comando ^ será 'y^x'.</td>
</tr>
<tr>
<td>√y</td>
<td>XROOT</td>
<td>Prefijo. La raíz xª (del nivel 1) de un valor real del nivel 2. La sintaxis algebraica para el comando XROOT será 'XROOT(x, y)'.</td>
</tr>
</tbody>
</table>
Funciones Exponenciales y Logarítmicas

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>←10^x</td>
<td>ALOG</td>
<td>Prefijo. Antilogaritmo común (base 10).</td>
</tr>
<tr>
<td>→LOG</td>
<td>LOG</td>
<td>Prefijo. Logaritmo de base 10.</td>
</tr>
<tr>
<td>←e^x</td>
<td>EXP</td>
<td>Prefijo. Antilogaritmo natural (base e).</td>
</tr>
<tr>
<td>→LN</td>
<td>LN</td>
<td>Prefijo. Logaritmo natural (base e).</td>
</tr>
</tbody>
</table>

Funciones Trigonométricas

En las funciones trigonométricas, los argumentos de ángulo y los resultados se interpretan como grados sexagesimales, radianes o grados centesimales, dependiendo del modo de ángulo actual.

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN</td>
<td>SIN</td>
<td>Prefijo. Seno.</td>
</tr>
<tr>
<td>←ASIN</td>
<td>ASIN</td>
<td>Prefijo. Arco seno.</td>
</tr>
<tr>
<td>COS</td>
<td>COS</td>
<td>Prefijo. Coseno.</td>
</tr>
<tr>
<td>←ACOS</td>
<td>ACOS</td>
<td>Prefijo. Arco coseno.</td>
</tr>
<tr>
<td>TAN</td>
<td>TAN</td>
<td>Prefijo. Tangente.</td>
</tr>
<tr>
<td>←ATAN</td>
<td>ATAN</td>
<td>Prefijo. Arco tangente.</td>
</tr>
</tbody>
</table>
## Funciones hiperbólicas

Las funciones hiperbólicas se encuentran en el menú MTH HYP (MTH HYP).

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH HYP</td>
<td>SINH</td>
<td>Prefijo. Seno hiperbólico: ((e^x - e^{-x})/2).</td>
</tr>
<tr>
<td></td>
<td>ASINH</td>
<td>Prefijo. Seno hiperbólico inverso: (\sinh^{-1} x).</td>
</tr>
<tr>
<td></td>
<td>COSH</td>
<td>Prefijo. Coseno hiperbólico: ((e^x + e^{-x})/2).</td>
</tr>
<tr>
<td></td>
<td>ACOSH</td>
<td>Prefijo. Coseno hiperbólico inverso: (\cosh^{-1} x).</td>
</tr>
<tr>
<td></td>
<td>TANH</td>
<td>Prefijo. Tangente hiperbólica: (\sinh x/\cosh x).</td>
</tr>
<tr>
<td></td>
<td>ATANH</td>
<td>Prefijo. Tangente hiperbólica inversa: (\sinh^{-1}(x/\sqrt{1 - x^2})).</td>
</tr>
<tr>
<td></td>
<td>EXPM</td>
<td>Prefijo. (e^x - 1). El argumento de (x) está en el nivel 1. EXPM es más exacto que EXP cuando el argumento de (e^x) es próximo a 0.</td>
</tr>
<tr>
<td></td>
<td>LNP1</td>
<td>Prefijo. (\ln (x + 1)). El argumento de (x) está en el nivel 1. LNP1, (\ln\ plus\ 1), es más exacto que LN cuando el argumento de ln es próximo a 1.</td>
</tr>
</tbody>
</table>
Probabilidades y Estadísticas de Prueba

Utilice los comandos del menú PROB (probabilidades) (MTH NXT PROB) para calcular combinaciones, permutaciones, productos factoriales, números aleatorios o probabilidades superiores de las distintas estadísticas de prueba.

**Comandos de Probabilidades**

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH NXT PROB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMB</td>
<td>COMB</td>
<td>Prefijo. Número de combinaciones de n elementos (en el nivel 2) tomados de m en m (en el nivel 1).</td>
</tr>
<tr>
<td>PERM</td>
<td>PERM</td>
<td>Prefijo. Número de permutaciones de n elementos (en el nivel 2) tomados de m en m (en el nivel 1).</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>Sufijo. Producto factorial de un entero positivo. Para números no enteros, ! devolverá Γ(x + 1).</td>
</tr>
<tr>
<td>RAND</td>
<td>RAND</td>
<td>Comando. Devuelve el siguiente número real n (0 ≤ n &lt; 1) en una secuencia de números pseudo-aleatorios. Cada uno de los números aleatorios se convierte en la semilla del siguiente número aleatorio.</td>
</tr>
<tr>
<td>RDZ</td>
<td>RDZ</td>
<td>Comando. Toma un número real del nivel 1 como semilla para el siguiente número aleatorio (de RAND). 0 en el nivel 1 crea una semilla basada en la hora del reloj. Se puede repetir una secuencia de números aleatorios empezando con la misma semilla distinta a cero.</td>
</tr>
</tbody>
</table>

Cómo Calcular Estadísticas de Prueba

Las estadísticas de prueba se calculan utilizando valores introducidos en la pila—no utilizan los datos estadísticos almacenados en ΣDAT de la aplicación STAT. Consulte la tabla de la página siguiente.
<table>
<thead>
<tr>
<th>Teclas</th>
<th>Comandos Programables</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MTH (NXT)</strong></td>
<td><strong>PROB (NXT)</strong></td>
<td><strong>UTPC</strong></td>
</tr>
<tr>
<td><strong>UTPF</strong></td>
<td><strong>UTPF</strong></td>
<td>Distribución superior de ( F ). <em>Prefijo</em>. Toma los grados de exención del nivel 3, los grados de exención del denominador del nivel 2 y un número real ( x ) del nivel 1 y devuelve las probabilidades de que una variable aleatoria ( F ) de Snedecor sea mayor que ( x ).</td>
</tr>
<tr>
<td><strong>UTPN</strong></td>
<td><strong>UTPN</strong></td>
<td>Distribución superior normal. <em>Prefijo</em>. Toma la media del nivel 3, la variación del nivel 2 y un número real ( x ) del nivel 1 y devuelve las probabilidades de que una variable aleatoria normal sea mayor que ( x ) en una distribución normal.</td>
</tr>
<tr>
<td><strong>UTPT</strong></td>
<td><strong>UTPT</strong></td>
<td>Distribución superior de ( t ). <em>Prefijo</em>. Toma los grados de exención del nivel 2 y un número real ( x ) del nivel 1 y devuelve las probabilidades de que la variable aleatoria ( t ) de Student sea mayor que ( x ).</td>
</tr>
<tr>
<td><strong>NDIST</strong></td>
<td><strong>NDIST</strong></td>
<td>Distribución normal. <em>Prefijo</em>. Toma la media del nivel 3, la variación del nivel 2 y un número real ( x ) del nivel 1 y devuelve las probabilidades de que una variable aleatoria normal sea igual a ( x ) en una distribución normal.</td>
</tr>
</tbody>
</table>
Obsérvese que cuando se utilice como un argumento para estos comandos, el número de grados de exenciones deberá estar entre 0 y 499. Asimismo, en operaciones de cálculo, los grados de exenciones se deberán redondear al número entero más próximo.

**Ejemplo:** Las notas de un examen final se aproximan a una curva normal con una media de 71 y una desviación estándar de 11. ¿Cuál será el porcentaje de estudiantes con una puntuación de 70 a 89?

**Paso 1:** En primer lugar, calcule las probabilidades de que un estudiante elegido al azar tenga una puntuación superior a 70 (eleve al cuadrado la desviación estándar para obtener las variaciones).

\[
\begin{align*}
\text{MTH} & \quad \text{NXT} & \quad \text{PROB} & \quad \text{NXT} \\
71 & \quad \text{ENTER} \\
11 & \quad (\times^2) \\
70 & \quad \text{UTPN}
\end{align*}
\]

**Paso 2:** Ahora, efectúe la misma operación de cálculo para una puntuación de 89 después de recuperar el último argumento utilizado.

\[
\begin{align*}
\text{PRB} & \quad \text{ARG} & \quad \text{NXT} \\
89 & \quad \text{UTPN}
\end{align*}
\]

**Paso 3:** Reste los dos valores. Casi un 49% de los estudiantes han tenido una puntuación de entre 70 y 80.

\[
\begin{align*}
\text{MTH} & \quad \text{NXT} & \quad \text{PROB} & \quad \text{NXT} \\
\text{MTH} & \quad \text{NXT} & \quad \text{PROB} & \quad \text{NXT}
\end{align*}
\]

12-6 Funciones de Números Reales y Complejos
Funciones de Números Reales

Algunas funciones sólo pueden utilizar números reales como argumentos. Entre ellas están las conversiones de ángulos, los porcentajes y varias funciones que redondean, truncan o extraen partes de números reales.

Funciones de Conversión de Angulos.

Existen dos comandos en el menú MTH REAL que convierten los valores entre grados sexagesimales decimales y radianes. Otros dos comandos del menú TIME permiten efectuar operaciones de cálculo de grados sexagesimales-minutos-segundos utilizando el formato horas-minutos-segundos (HMS).

En el modo Degrees (Grados Sexagesimales) los argumentos y resultados de ángulo utilizan grados decimales.

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH REAL NXT NXT</td>
<td>D→R</td>
<td><em>Prefijo.</em> Grados sexagesimales a radianes. Convierte un número con valor en grados decimales a su equivalente en radianes.</td>
</tr>
<tr>
<td></td>
<td>R→D</td>
<td><em>Prefijo.</em> Radianes a grados sexagesimales. Convierte un número con valor en radianes a su equivalente en grados decimales.</td>
</tr>
<tr>
<td>TIME NXT</td>
<td>→HMS</td>
<td>Decimal a HMS. Convierte un número con grados decimales al formato HMS.</td>
</tr>
<tr>
<td></td>
<td>HMS→</td>
<td>HMS a decimal. Convierte un número con formato HMS a grados decimales.</td>
</tr>
<tr>
<td></td>
<td>HMS+</td>
<td>Suma dos ángulos en el formato HMS.</td>
</tr>
<tr>
<td></td>
<td>HMS−</td>
<td>Resta dos ángulos en el formato HMS.</td>
</tr>
</tbody>
</table>
A continuación se ilustra la conversión a y desde el formato HMS:

<table>
<thead>
<tr>
<th>Formato Decimal</th>
<th>Formato Horas-Minutos-Segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas (o grados sex.)</td>
<td>Horas (o grados sex.) Segundos</td>
</tr>
<tr>
<td>1.42673</td>
<td>1.2536228</td>
</tr>
<tr>
<td>Fracciones de horas (o grados sex.)</td>
<td>Minutos Fracciones de segundos</td>
</tr>
</tbody>
</table>

**Ejemplo:** Convierta $1.79\pi$ radianes a grados sexagesimales.

**Paso 1:** En primer lugar, introduzca $1.79\pi$.

1.79 [ENTER]  
π [ENTER]  
\[ \text{1: } '1.79\pi' \]

**Paso 2:** Utilice la función R→D (la función actúa independientemente, del modo de ángulo actual).

MTH REAL NXT NXT  
\[ \text{1: } 'R\rightarrow D(1.79\pi)' \]

**Paso 3:** Utilice →NUM para obtener un resultado numérico.

[ENTER] →NUM  
\[ \text{1: } 322.2 \]

**Ejemplo:** Convierta 25.2589 grados sexagesimales a grados, minutos y segundos.

25.2589 [ENTER] TIME NXT  
\[ \text{1: } 25.153204 \]

12-8 Funciones de Números Reales y Complejos
## Funciones de Porcentajes

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="https://via.placeholder.com/150" alt="Image" /></td>
<td>%</td>
<td>Prefijo. Porcentaje A de B o porcentaje B de A (A está en el nivel 2, B está en el nivel 1): ((A \times B)/100).</td>
</tr>
<tr>
<td><img src="https://via.placeholder.com/150" alt="Image" /></td>
<td>%CH</td>
<td>Prefijo. El cambio de porcentaje de A a B, como un porcentaje de A (A está en el nivel 2, B está en el nivel 1):(((B - A)/A) \times 100).</td>
</tr>
<tr>
<td><img src="https://via.placeholder.com/150" alt="Image" /></td>
<td>%T</td>
<td>Prefijo. El porcentaje del total (el total, A, está en el nivel 2 y el valor, B, está en el nivel 1): ((B/A) \times 100).</td>
</tr>
</tbody>
</table>

## Otras Funciones de Números Reales

Las funciones de la siguiente tabla se encuentran en el menú MTH REAL (\(\text{MTH REAL}\)).

<table>
<thead>
<tr>
<th>Comando/Descripción</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entrada</td>
</tr>
<tr>
<td><strong>ABS</strong> Prefijo. Valor absoluto.</td>
<td>1: -12</td>
</tr>
<tr>
<td><strong>CEIL</strong> Prefijo. Entero más pequeño mayor o igual que el argumento.</td>
<td>1: -3.5</td>
</tr>
<tr>
<td></td>
<td>1: 3.5</td>
</tr>
<tr>
<td><strong>FLOOR</strong> Prefijo. Entero más grande menor o igual que el argumento.</td>
<td>1: 6.9</td>
</tr>
<tr>
<td></td>
<td>1: -6.9</td>
</tr>
<tr>
<td><strong>FP</strong> Prefijo. Parte fraccional del argumento.</td>
<td>1: 5.234</td>
</tr>
<tr>
<td></td>
<td>1: -5.234</td>
</tr>
<tr>
<td><strong>IP</strong> Prefijo. Parte entera del argumento.</td>
<td>1: -5.234</td>
</tr>
<tr>
<td></td>
<td>1: 5.234</td>
</tr>
<tr>
<td>Comando/Descripción</td>
<td>Ejemplo</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Entrada</td>
</tr>
<tr>
<td><strong>MANT Prefijo. Mantisa del argumento.</strong></td>
<td>1: 1.23E12</td>
</tr>
<tr>
<td><strong>MAX Prefijo. Máximo; el mayor de dos argumentos.</strong></td>
<td>2: 5</td>
</tr>
<tr>
<td></td>
<td>1: -6</td>
</tr>
<tr>
<td><strong>MIN Prefijo. Mínimo; el menor de dos argumentos.</strong></td>
<td>2: 5</td>
</tr>
<tr>
<td></td>
<td>1: -6</td>
</tr>
<tr>
<td><strong>MOD Prefijo. Módulo; resto de ( \frac{A}{B} ). A MOD B = A - B FLOOR (( \frac{A}{B} )).</strong></td>
<td>2: 6</td>
</tr>
<tr>
<td></td>
<td>1: 4</td>
</tr>
<tr>
<td><strong>RND Prefijo. Redondea los números de acuerdo con el argumento: ( n = 0 ) a 11 se redondea a n FIX, ( n = -11 ) a -1 se redondea a n dígitos significativos y ( n = 12 ) se redondea al formato de la pantalla actual.</strong></td>
<td>2: 1.2345678</td>
</tr>
<tr>
<td></td>
<td>1: 5</td>
</tr>
<tr>
<td></td>
<td>2: 1.2345678</td>
</tr>
<tr>
<td></td>
<td>1: -5</td>
</tr>
<tr>
<td><strong>SIGN Prefijo. Devuelve +1 para argumentos positivos, -1 para argumentos negativos y 0 para argumentos de 0.</strong></td>
<td>1: -2.7</td>
</tr>
<tr>
<td><strong>TRNC Prefijo. Trunca los números de acuerdo con el argumento: ( n = 0 ) a 11 se trunca a n FIX, ( n = -11 ) a -1 se trunca a n dígitos significativos y ( n = 12 ) se trunca al formato de la pantalla actual.</strong></td>
<td>2: 1.2345678</td>
</tr>
<tr>
<td></td>
<td>1: 5</td>
</tr>
<tr>
<td></td>
<td>2: 1.2345678</td>
</tr>
<tr>
<td></td>
<td>1: -5</td>
</tr>
<tr>
<td><strong>XPON Prefijo. Exponente del argumento.</strong></td>
<td>1: 1.23E45</td>
</tr>
</tbody>
</table>
Números Complejos

La mayoría de las funciones que trabajan con números reales también trabajan con números complejos. Por tanto, el modo de utilización de los números complejos es similar al modo de usar los números reales.

En los ejemplos de esta sección se da por entendido que la calculadora está configurada en el modo Degrees (Grados Sexagesimales). Pulse \( \rightarrow \text{MODES} \) \( \text{HNG} \) \( \text{DEC} \) para fijar el modo Degrees.

Cómo Visualizar Números Complejos

Los números complejos pueden visualizarse o bien como coordenadas rectangulares o bien como coordenadas polares—en el modo Rectangular o en el Polar.

Para visualizar coordenadas rectangulares de números complejos:

- Pulse \( \rightarrow \text{POLAR} \) hasta que no no esté activado ningún indicador de coordenadas.
  - o
- Pulse \( \rightarrow \text{MODES} \) \( \uparrow \) \( \downarrow \) y a continuación pulse \( +/- \) hasta que aparezca Rectangular en el campo \text{COORD SYSTEM}\. Confirme la selección pulsando \( \text{OK} \).

Para visualizar coordenadas polares de números complejos

- Pulse \( \rightarrow \text{POLAR} \) hasta que esté activado el indicador de coordenadas \( R \times Z \) o \( R \times \alpha \) esté activado.
  - o
- Pulse \( \rightarrow \text{MODES} \) \( \uparrow \) \( \downarrow \) y a continuación pulse \( +/- \) hasta que aparezca Polar en el campo \text{COORD SYSTEM}\. Confirme la selección pulsando \( \text{OK} \).

Aunque sólo se necesitan los modos de dos coordenadas para los números complejos, en la HP 48 hay modos de tres coordenadas disponibles (para los vectores tridimensionales)—modo Rectangular, modo Polar (cilíndrico) y modo Esférico.

Los números complejos aparecen entre paréntesis. En la forma rectangular, la parte real e imaginaria están separadas por una coma (si el símbolo decimal está fijado en coma, se separarán mediante un punto y coma). En la forma polar, la magnitud y el ángulo de fase...
están separados por una coma y un signo de ángulo (\(\angle\)). El ángulo está basado en el modo de ángulo actual: Grados Sexagesimales, Radianes o Grados Centesimales. La HP 48 archiva internamente los números complejos en forma rectangular, sin tener en cuenta la forma con la que aparecen en pantalla.

![Diagrama de números complejos](image)

<table>
<thead>
<tr>
<th>Modos de Visualización</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>Polar</td>
</tr>
<tr>
<td>((a,b))</td>
<td>((r, \angle \theta))</td>
</tr>
</tbody>
</table>

### Cómo Introducir Números Complejos

Se pueden introducir números complejos utilizando bien coordenadas rectangulares o bien coordenadas polares.

**Para introducir un número complejo:**

- Para introducir coordenadas rectangulares, pulse \(\mathbb{R}()\), introduzca las coordenadas separadas por \((\mathbb{S})\) o \(\mathbb{R}()\) y pulse \(\text{ENTER}\).
- Para introducir coordenadas polares, pulse \(\mathbb{P}()\), introduzca las coordenadas separadas por \(\mathbb{P}()\) y pulse \(\text{ENTER}\).

La representación rectangular interna de todos los números complejos tiene los siguientes efectos sobre los números polares:

- \(\theta\) es normalizada al rango \(\pm 180^\circ\) (\(\pm \pi\) radianes, \(\pm 200\) grados centesimales).
- Si se escribe una \(r\) negativa, el valor se convertirá en positivo y \(\theta\) se incrementará en 180° y se normalizará.
- Si se escribe una \(r\) de 0, \(\theta\) también se reducirá a 0.
Operaciones de Cálculo Reales con Resultados Complejos

Las características de números complejos de la HP 48 pueden afectar a los resultados de las operaciones con números reales. Algunas operaciones de cálculo que darían error en la mayoría de las calculadoras, producen resultados complejos válidos en la HP 48. Por ejemplo, la HP 48 devuelve un número complejo para la raíz cuadrada de $-4$. Asimismo, el arco seno de 5 arroja un resultado complejo.

Descubrirá que la HP 48 muestra el tipo de resultado esperado (real o complejo) para la mayoría de las operaciones de cálculo. De todos modos, si observa que se obtienen resultados complejos cuando se esperan resultados reales, compruebe el programa o las secuencias de teclas para las siguientes causas potenciales:

- Los datos suministrados a la calculadora pueden estar fuera del rango de la fórmula que se está calculando.
- La fórmula (o su ejecución) puede ser incorrecta.
- Tal vez un error de redondeo en un punto crítico de la fórmula haya desconcertado a la operación de cálculo.
- Un resultado complejo del problema puede ser no esperado pero correcto.

Otros Comandos de Números Complejos

La mayoría de los comandos que operan con números reales también lo hacen con números complejos (como SIN, INV, ^ y LN). En la siguiente tabla se presenta una descripción de los comandos adicionales que resultan especialmente útiles para números complejos.

Los comandos restantes se encuentran en el menú MTH CMPL (pulse MTH (NXT) CMPL).
<table>
<thead>
<tr>
<th>Comando/Descripción</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ABS</strong> Prefijo. Valor absoluto; $\sqrt{x^2 + y^2}$.</td>
<td>$1: (3, 4)$</td>
</tr>
<tr>
<td><strong>ARG</strong> Prefijo. Ángulo polar de un número complejo.</td>
<td>$1: (1, 1)$</td>
</tr>
<tr>
<td><strong>CONJ</strong> Prefijo. Conjugado complejo de un número complejo.</td>
<td>$1: (2, 3)$</td>
</tr>
<tr>
<td><strong>C→R</strong> Comando. Complejo a real; descompone un número complejo en dos números reales, las coordenadas rectangulares $x$ e $y$.</td>
<td>$1: (2, 3)$</td>
</tr>
<tr>
<td><strong>IM</strong> Prefijo. Parte imaginaria ($y$) de un número complejo.</td>
<td>$1: (4, -3)$</td>
</tr>
<tr>
<td><strong>NEG</strong> Infijo. Negativo de su argumento.</td>
<td>$1: (2, -1)$</td>
</tr>
<tr>
<td><strong>RE</strong> Prefijo. Parte real ($x$) de un número complejo.</td>
<td>$1: (4, -3)$</td>
</tr>
<tr>
<td><strong>R→C</strong> Comando. Real a complejo; combina dos números reales en un número complejo $(x, y)$.</td>
<td>$2: -7$</td>
</tr>
<tr>
<td><strong>SIGN</strong> Prefijo. Vector de unidades en la dirección del argumento del número complejo; $\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$</td>
<td>$1: (3, 4)$</td>
</tr>
</tbody>
</table>
Vectores y Transformadas

Todos los vectores son objetos de sistemas. Los casos generales de vectores \( n \)-dimensionales se estudian en el capítulo 14, "Matrices y Algebra Lineal"—este capítulo presenta en primer lugar vectores bidimensionales y tridimensionales.

Cómo Visualizar Vectores Bidimensionales y Tridimensionales

Los vectores bidimensionales se pueden visualizar o bien como componentes rectangulares \((X, Y)\) o bien como componentes polares \((r, \theta)\)—en modo Rectangular o en modo Polar.

\[
\begin{align*}
\begin{array}{|c|c|}
\hline
\text{Rectangular} & \text{Polar} \\
\hline
[a, b] & [r, \theta] \\
\hline
\end{array}
\end{align*}
\]

Componentes de Vectores Bidimensionales

Los vectores tridimensionales pueden visualizarse como componentes rectangulares \((X, Y, Z)\), componentes cilíndricos \((r, \theta, Z)\) o
componentes esféricos ([R θ φ])—en modo Rectangular, en modo Cilíndrico o en modo Esférico.

<table>
<thead>
<tr>
<th>Modos de Visualización Tridimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
</tr>
<tr>
<td>[a b c]</td>
</tr>
</tbody>
</table>

**Componentes de Vectores Tridimensionales**


**Para visualizar los componentes rectangulares:**
- Pulse \(\text{POLAR}\) hasta que no esté activado ningún indicador de coordenadas.
- Pulse \(\text{MTH} \ 	ext{VECTR} \ 	ext{NXT} \ 	ext{RECT}\).

**Para visualizar componentes polares (cilíndricos o esféricos):**
- Pulse \(\text{POLAR}\) hasta que el indicador de coordenadas R<Z o R<φ esté activado.
- Pulse \(\text{MTH} \ 	ext{VECTR} \ 	ext{NXT} \ 	ext{CYLIN}\) (para cilíndricos/polares) o \(\text{SPHER}\) (para esféricos/polares).

El \(\ast\) de la etiqueta de menú y le indicador de coordenadas indican el modo de coordenadas activo:
- Modo Rectangular: \(\text{RECT}\), sin indicador
- Modo Cilíndrico: \(\text{CYLIN}\), indicador R<Z
- Modo Esférico: \(\text{SPHER}\), indicador R<φ

13-2 *Vectores y Transformadas*
Los vectores aparecen en pantalla dentro de delimitadores [I]. En la forma rectangular, los componentes se separan mediante espacios. En la forma polar (cilíndrica o esférica), los ángulos van precedidos por un signo de ángulo (\( \phi \)). El ángulo se basa en el modo de ángulo actual: Grados Sexagesimales, Radianes o Grados Centesimales. La HP 48 almacena los vectores internamente en la forma rectangular, sin tener en cuenta el modo en el que aparecen en pantalla.

Si se introduce un tipo de coordenadas, se puede cambiar simplemente el modo de coordenadas para convertir los vectores al nuevo modo.

### Cómo Introducir Vectores Bidimensionales y Tridimensionales

Los componentes de vectores bidimensionales y tridimensionales pueden introducirse utilizando la forma rectangular, cilíndrica/polar o esférica/polar.

**Para introducir un vector bidimensional o tridimensional:**

- Para introducir componentes específicos, pulse \( \text{[SPC]} \), introduzca los componentes separados por \( \text{[SPC]} \) o \( \text{[+] \( \phi \)} \) y pulse \( \text{[ENTER]} \). Pulse \( \text{[+] \( \phi \)} \) antes de cada componente angular.
- Para utilizar el modo de coordenadas actual, introduzca los dos o tres valores de los componentes y pulse \( \text{[MTH]} \text{[VECTR]} \text{[+V2]} \) o \( \text{[+] \( \phi \)} \). No introduzca \( \phi \).

La representación rectangular interna de todos los vectores tiene los siguientes efectos sobre los vectores que aparecen en forma polar (cilíndrica y esférica):

- \( \theta \) se normaliza a \( \pm 180^\circ \) (\( \pm \pi \) radianes, \( \pm 200 \) grados centesimales).
- \( \phi \) se normaliza a \( 0 \) a \( 180^\circ \) (\( 0 \) a \( \pi \) radianes, \( 0 \) a \( 200 \) grados centesimales).

- Si se escribe una \( r \) negativa, el valor se convertirá en positivo; \( \theta \) se incrementará en \( 180^\circ \), \( \phi \) se resta a \( 180^\circ \) y todos se normalizan.
- Si \( \phi \) es \( 0^\circ \) o \( 180^\circ \), \( \theta \) se reducirá a \( 0^\circ \).
- Si se escribe una \( r \) de \( 0 \), \( \theta \) y \( \phi \) se reducirán a \( 0^\circ \).
Para formar un vector bidimensional o tridimensional a partir de los componentes de la pila:

- Para un vector bidimensional, introduzca un componente en el nivel 1 y uno en el nivel 2 y pulse \[ \text{MTH VECTR \rightarrow V2} \]. Los componentes se interpretarán de acuerdo con el modo de coordenadas actual.

- Para un vector tridimensional, introduzca un componente en el nivel 1, uno en el nivel 2 y otro en el nivel 3 y pulse \[ \text{MTH VECTR \rightarrow V3} \]. Los componentes se interpretarán de acuerdo con el modo de coordenadas actual.

Para descomponer un vector bidimensional o tridimensional en la pila:

- Pulse \[ \text{MTH VECTR \rightarrow V} \]. Los valores devueltos son los mismos que los componentes mostrados en pantalla.

---

Comandos Matemáticos de Vectores

Un vector, al igual que un número real, es un objeto sencillo. Por tanto se pueden utilizar vectores como argumentos de comandos. Se pueden sumar y restar vectores—se pueden multiplicar y dividir vectores entre productos escalares—y se pueden ejecutar comandos especiales de vectores (DOT—PUNTO, CROSS—CRUZ y ABS). Estos comandos especiales interpretan sus argumentos y devuelven los resultados utilizando el modo de coordenadas actual y se encuentran en el menú MTH VECTR (\[ \text{MTH VECTR} \]).
<table>
<thead>
<tr>
<th>Comando/Descripción</th>
<th>Entrada</th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ABS</strong> <em>Prefijo.</em> Devuelve la magnitud escalar de vector, calculada según la norma de Frobenius—definida como la raíz cuadrada de la suma de los cuadrados del <em>valor absoluto</em> de cada uno de los elementos.</td>
<td>1: [ 2 -3 4 ]</td>
<td>1: 5.3851648</td>
</tr>
<tr>
<td><strong>DOT</strong> <em>Comando.</em> Devuelve el producto interno o de puntos (un escalar) de dos vectores de iguales dimensiones.</td>
<td>2: [ 2 -3 4 ] 1: [ -1 2 8 ]</td>
<td>1: 24</td>
</tr>
<tr>
<td><strong>CROSS</strong> <em>Comando.</em> Devuelve el producto de cruces (un vector tridimensional) de dos vectores. Dos vectores de elementos tendrán un tercer elemento cero añadido durante la ejecución.</td>
<td>2: [ 2 3 4 ] 1: [ -1 2 1 ]</td>
<td>1: [-5 -6 7 ]</td>
</tr>
</tbody>
</table>

En el capítulo 14 se presentan los comandos adicionales para la manipulación de los vectores y de los elementos de los vectores.
Ejemplos: Cómo Efectuar Operaciones de Cálculo con Vectores Bidimensionales y Tridimensionales

Para calcular con vectores:
- Introduzca los vectores el la pila y ejecute el comando.

Ejemplo:  **Cómo Hallar el Vector de Unidades.** Un vector de unidades paralelo a un vector dado se halla dividiendo el vector entre su magnitud:

\[
\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}
\]

1. Introduzca el vector.
2. Duplique el vector (pulse **ENTER** una segunda vez).
3. Pulse **MTH** **VECTR** **ABS** para calcular la magnitud del vector.
4. Pulse **÷** para dividir el vector entre su magnitud para obtener el vector de unidades.

Ejemplo:  **Cómo Hallar el Ángulo entre dos Vectores.** El ángulo entre dos vectores viene dado por

\[
\text{ángulo} = \cos^{-1}\left(\frac{\mathbf{V}_1 \cdot \mathbf{V}_2}{|\mathbf{V}_1||\mathbf{V}_2|}\right)
\]

1. Introduzca los vectores en la pila.
2. Pulse **MTH** **VECTR** **DOT** para tomar el producto de puntos (interno).
3. Pulse **ARG** para devolver los dos vectores a la pila.
4. Pulse **ABS** **SWAP** **ABS** para hallar la magnitud de cada vector.
5. Pulse **×** para multiplicar las magnitudes.
6. Pulse **÷** para dividir el producto de las magnitudes entre el producto de puntos.
7. Pulse **ACOS** para hallar el ángulo entre los vectores.

Ejemplo:  **Cómo Hallar el Componente de una Dirección.**
El siguiente diagrama representa tres vectores bidimensionales. Halle la suma y a continuación utilice DOT para resolverlos sobre la línea de 175° (en este ejemplo se da por supuesto que está activado el modo Degrees—Grados Sexagesimales).
**Paso 1:** Fije el modo Polar-cilíndrico, introduzca los tres vectores y halle su suma.

\[
\begin{align*}
&\text{MTH VECTR NXT CYLIN} \\
&\downarrow 170 \rightarrow 143 \text{ ENTER} \\
&\downarrow 185 \rightarrow 62 \text{ ENTER} \\
&\downarrow 100 \rightarrow 261 \text{ + + }
\end{align*}
\]

1: [ 178.937160532 4111.148894255 ]

**Paso 2:** Introduzca el vector de unidades de 175° y halle la magnitud de el vector resultante sobre la línea de 175°.

\[
\begin{align*}
&\downarrow 1 \rightarrow 175 \text{ ENTER} \\
&MTH VECTR DOT
\end{align*}
\]

1: 78.8585649505

---

**Transformadas Rápidas de Fourier**

Un proceso físico puede describirse de dos formas distintas:

- El cambio de una cantidad, \( h \), como una función de tiempo, \( t \) (\( h(t) \)).
- El cambio de una amplitud, \( H \), como una función de frecuencia, \( f \) (\( H(f) \)).

En muchas situaciones resulta útil considerar \( h(t) \) y \( H(f) \) como dos representaciones diferentes de la misma función. Las transformadas de Fourier se utilizan para conmutar entre estas representaciones o ámbitos.
La HP 48 puede efectuar discretas transformadas de Fourier, mediante las cuales una secuencia de datos de muestra discretos pueden transformarse a “otro” ámbito. La HP 48 efectúa transformadas “Rápidas” de Fourier que hacen uso de características computacionales que requieren que el número de filas y el número de columnas de la muestra sean una potencia integral de 2.

Las Transformadas Rápidas de Fourier se utilizan especialmente en el análisis de señales unidimensionales o de imágenes bidimensionales. Los comandos de la HP 48 pueden controlar ambos casos. En el primer caso se deberán introducir los datos como un vector de N elementos, donde N es una potencia integral de 2 (2, 4, 8, 16, 32, ...). En el segundo caso, los datos deberán introducirse como una matriz de M filas y N columnas, donde tanto M como N son potencias integrales de 2.

La transformada “hacia adelante” (FFT) traza un sistema de \( M \times N \) números reales o complejos \( (h_k) \) en el ámbito de tiempo para un sistema de \( M \times N \) números reales o complejos \( (H_n) \) en el ámbito de frecuencia:

\[
H_k \equiv \sum_{n=0}^{N-1} h_n e^{-2\pi i kn/N}
\]

La transformada “inversa” (IFFT) traza un sistema de \( M \times N \) números reales o complejos \( (H_n) \) en el ámbito de frecuencia para un sistema de \( M \times N \) números reales o complejos \( (h_k) \) en el ámbito de tiempo:

\[
h_n \equiv \frac{1}{N} \sum_{k=0}^{N-1} H_k e^{2\pi i kn/N}
\]

Para preparar un sistema para las transformadas rápidas de Fourier:

1. Coloque el sistema de datos en la pila.
2. Si fuera necesario, añada ceros al sistema de modo que todas las dimensiones sean iguales a una potencia integral de dos. Consulte el capítulo 14 para obtener información sobre los modos eficaces para añadir columnas o filas de ceros a las matrices.
Para utilizar una transformada rápida de Fourier:

1. Introduzca el sistema de datos que desea transformar (o su nombre) en la pila. Asegúrese de que sus dimensiones son potencias integrales de 2 (véase la información anterior).

2. Pulse [MTH] [NXT] [FFT] [IFFT] para transformar los datos del ámbito de tiempo al ámbito de frecuencia.

   o

   Pulse [MTH] [NXT] [FFT] [IFFT] para transformar los datos del ámbito de frecuencia al ámbito de tiempo.

Ejemplo: Uso de FFT y IFFT para transformadas de Fourier directas e inversas. En el ejemplo se utilizan los elementos de un vector aleatorio para representar una señal de muestra.

1. Cree un vector aleatorio de 16 elementos en la pila: introduzca \{(16) \text{ RANM} \}.

2. Calcule la transformada de Fourier discreta unidimensional de esta señal: execute FFT. Los elementos del vector resultante representan los componentes de frecuencia de la señal original.

3. Reconstruya la señal original calculando la transformada de Fourier discreta inversa unidimensional: execute IFFT. El resultado será el mismo que el de la señal original, sujeta a pequeños errores de redondeo.

Puede calcular transformadas de Fourier bidimensionales utilizando matrices como argumentos. Por ejemplo, utilice una matriz de 16×16 aleatoria en el ejemplo anterior: \{(16 16) \text{ RANM} \}.
Matrices y Algebra Lineal

La HP 48 dispone de un gran capacidad para introducir y manipular sistemas. Los objetos de sistemas representan tanto a los vectores como a las matrices. Muchas de las operaciones descritas en este capítulo se aplican también a los vectores. Siempre que sea el caso, se utilizará el término más general de *sistema* en lugar de *matriz*.

---

Creación y Ensamblado de Matrices

Una matriz se puede introducir de dos modos:

- **Aplicación MatrixWriter.** Método visual para introducir, visualizar y editar elementos de sistemas.
- **Línea de comandos.** Método básico de entrada de objetos.

**Para introducir una nueva matriz mediante el MatrixWriter:**

1. Pulse [MATH][0] para visualizar la pantalla y el menú del MatrixWriter.
2. Haga lo siguiente para cada uno de los elementos de la primera fila.
   - Escriba el número real o complejo y pulse [ENTER]. No se pueden mezclar elementos reales y complejos en la misma matriz.
   - Calcule el elemento mediante la línea de comandos y pulse [ENTER]. Para calcular un elemento, escriba los argumentos (pulse [SPC] para separarlos) y pulse las teclas de la función deseada.
3. Pulse [▼] para marcar el final de la primera fila (lo que especifica el número de columnas de la matriz).
4. Para cada uno de los elementos del resto de la matriz, o bien escriba un valor o bien calcúlelo en la línea de comandos y a continuación pulse \textbf{(ENTER)}. O, si lo desea, introduzca los números en más de una celda a la vez escribiéndolos en la línea de comandos (pulse \textbf{SPC} para separar los números) y a continuación pulse \textbf{(ENTER)} una vez para introducirlos todos al mismo tiempo.

5. Una vez que se han introducido todos los números de la matriz, pulse \textbf{(ENTER)} para colocar la matriz en la pila.

Para obtener más detalles sobre la utilización del MatrixWriter, consulte el capítulo 8.

14 Para introducir una matriz mediante la línea de comandos:

1. Pulse \textbf{[回][回]} y \textbf{[回][回]} para escribir los delimitadores de la matriz y de la primera fila.

2. Escriba la primera fila. Pulse \textbf{SPC} para separar los elementos.

3. Pulse \textbf{[▶]} para desplazar el cursor al exterior del delimitador de fila 1.

4. Opcional: Pulse \textbf{[►][◄]} (otra línea) para iniciar una nueva fila en la pantalla.

5. Escriba el resto de la matriz. No son necesarios los delimitadores \textbf{[↑][↓]} para las siguientes filas—se añadirán automáticamente.

6. Pulse \textbf{(ENTER)}.

La HP 48 dispone de comandos incorporados para crear automáticamente matrices especiales que se utilizan con frecuencia conjuntamente con matrices creadas elemento por elemento.

Para crear un sistema que contenga una constante dada:

1. Introduzca una de las siguientes opciones en la pila:
   - Una lista que contenga las dimensiones del sistema de constante deseado: \textbf{[filas columnas]}.
   - Un sistema cuyos elementos no le importe cambiar.

2. Introduzca la constante deseada en el sistema.

3. Pulse \textbf{[MTH][MATR][MAKE][CON]}. Esto devolverá un sistema con las mismas dimensiones del introducido (o que el sistema de argumentos tenía) y que contiene la constante elegida.
Para crear una matriz de identidad:

1. Introduzca una de las siguientes opciones en la pila:
   - Un número real que represente el número de filas y columnas que desea que tenga la matriz de identidad cuadrada (los valores fraccionales se redondearán).
   - Cualquier matriz cuadrada cuyos elementos no le importe cambiar.

2. Pulse [MTH] [MATR] [MAKE] [IDN]. Esto devolverá una matriz de identidad cuadrada con las dimensiones dadas.

Para crear un sistema que contenga enteros aleatorios:

1. Introduzca una de las siguientes opciones en la pila:
   - Una lista que contenga las dimensiones del sistema aleatorio deseado: {filas columnas}.
   - Cualquier sistema cuyos elementos no le importe cambiar.

2. Pulse [MTH] [MATR] [MAKE] [RANN]. Esto devolverá un sistema aleatorio con las dimensiones especificadas en la lista o en el argumento del sistema. Los elementos del sistema serán todos enteros dentro del rango [-9 9]. Cada entero tiene las mismas probabilidades que los demás, excepto el 0, que tiene el doble de probabilidades.

Para formar una matriz por filas a partir de una serie de vectores:

1. Introduzca cada uno de los vectores en la pila en el orden en el que desea que aparezcan en la matriz. Introduzca en primer lugar el vector de la fila 1, a continuación el de la fila 2 y así sucesivamente, introduciendo el vector de la última fila en último lugar.

2. Introduzca el número de filas de la matriz deseada.

3. Pulse [MTH] [MATR] [RUN] [RUL] para ensamblar los vectores en la matriz.
Para formar una matriz por columnas a partir de una serie de vectores:

1. Introduzca cada uno de los vectores en la pila en el orden en el que desea que aparezcan en la matriz. Introduzca en primer lugar el vector de la columna 1, a continuación el de la columna 2 y así sucesivamente, introduciendo el vector de la última columna de la derecha en último lugar.

2. Introduzca el número de columnas de la matriz deseada.

3. Pulse MTH MATR COL COL* para ensamblar los vectores en la matriz.

Para formar una matriz con una diagonal concreta a partir de un vector:

1. Introduzca el vector que contenga los elementos de la diagonal.

2. Introduzca una de las opciones siguientes:
   - Una lista que contenga las dimensiones de la matriz deseada: <filas columnas>.
   - Un número real que represente el número de filas y columnas de la matriz cuadrada deseada.

3. Pulse MTH MATR NXT DIAG* para crear una matriz con las dimensiones deseadas utilizando los elementos del vector de la diagonal como elementos de la diagonal de la matriz. Si el vector contiene más elementos de diagonales de los necesarios para crear la matriz, los elementos no necesarios serán descartados. Si el vector no contiene suficientes elementos para completar la matriz, los elementos de diagonales no definidos se fijarán en cero.
Cómo Descomponer Matrices

La HP 48 reúne y descompone los elementos de una matriz bidimensional de acuerdo con el orden de *fila principal*. Comenzando por el primer elemento, (el elemento de la fila 1 y de la columna 1), el orden de fila principal da por hecho que el "siguiente" elemento es el siguiente de la *fila*. Si no existen más elementos en la fila, el "siguiente" elemento será el primero de la siguiente fila. Así pues, el sistema de fila principal funciona de un modo muy similar al sistema de derecha a izquierda de un procesador de textos que rellena (o borra) una línea antes de "saltar automáticamente" al principio de la siguiente línea.

**Para descomponer una matriz en sus elementos:**

1. Introduzca la matriz en la pila.
2. Pulse [PRG] [TYPE] [OBJ]. La matriz se descompondrá según el orden de fila principal, dejando cada uno de los elementos en su nivel de la pila. El nivel 1 contiene una lista de las dimensiones originales de la matriz.

**Para formar una matriz a partir de una secuencia de elementos:**

1. Introduzca los elementos en la pila según el orden de fila principal.
2. Introduzca una lista que contenga las dimensiones de la matriz deseada: {filas, columnas}.
3. Pulse [PRG] [TYPE] [ARR] para ensamblar la matriz.

**Para descomponer una matriz en vectores de fila:**

1. Introduzca la matriz en la pila.
2. Pulse [MTH] [MATR] [ROW] [ROW]. La matriz se descompondrá en vectores de filas (de la primera a la última fila). El nivel 1 de la pila contendrá un número real que representa el número de filas de la matriz original.

**Para descomponer una matriz en vectores de columnas:**

1. Introduzca la matriz en la pila.
2. Pulse [MTH] [MATR] [COL] [COL]. La matriz se descompondrá en vectores de columnas (de la primera a la última columna). El nivel 1 de la pila contendrá un número real que representa el número de columnas de la matriz original.
Para extraer el vector de diagonales a partir de una matriz:

1. Introduzca la matriz en la pila.
2. Pulse \textbf{MTH MATR \ NXT \ +OHC} para extraer los elementos de las diagonales en forma de vector.

Cómo Insertar Columnas y Filas

Para insertar una o más filas nuevas en una matriz:

1. Introduzca el sistema destino—el que se quiere modificar—en la pila.
2. Introduzca el vector, la matriz o el elemento (cuando el sistema destino es un vector) que desee insertar. El sistema en el que se efectúa la inserción deberá tener el mismo número de columnas que la matriz destino.
3. Introduzca el número de fila de la primera (o única) fila que desee insertar. Los elementos que se encuentran actualmente en esa y en las demás filas siguientes se desplazarán hacia abajo para acomodar la inserción. Los números de fila comienzan en 1, no en 0.
4. Pulse \textbf{MTH MATR \ ROW \ ROW+} para insertar la(s) nueva(s) fila(s).

Para insertar una o más columnas en un sistema:

1. Introduzca el sistema destino—el que se quiere modificar—en la pila.
2. Introduzca el vector, la matriz o el elemento (cuando el sistema destino es un vector) que desee insertar. El sistema en el que se efectúa la inserción deberá tener el mismo número de filas que el sistema destino.
3. Introduzca el número de columna de la primera (o única) columna que desee insertar. Los elementos que se encuentran actualmente en esa columna y en las siguientes columnas de la derecha se desplazarán a la derecha para acomodar la inserción. Los números de columna empiezan en 1 y no en 0.
4. Pulse \textbf{MTH MATR \ COL \ COL+} para insertar la(s) nueva(s) columna(s).
Eliminación de Columnas y Filas

Para eliminar una fila completa de un sistema:

1. Introduzca el sistema en la pila.
2. Introduzca el número de la fila (o el número de elemento si el sistema es un vector) que desee eliminar.
3. Pulse \texttt{MTH MATR \underline{ROW} \underline{ROW}}. El vector de filas (o elemento) eliminado volverá al nivel 1 y el sistema contraído—con una fila o elemento menos—volverá al nivel 2.

Para eliminar una columna concreta de un sistema:

1. Introduzca el sistema en la pila.
2. Introduzca el número de la columna (o el número de elemento si el sistema es un vector) que desee eliminar.
3. Pulse \texttt{MTH MATR \underline{COL} \underline{COL}}. El vector de columnas (o elemento) eliminado volverá al nivel 1 y el sistema contraído—con la columna (o elemento) borrado—vuelve al nivel 2.

Cómo Conmutar Columnas y Filas

Para conmutar la ubicación de dos columnas de una sistema:

1. Introduzca el sistema en la pila. Si el sistema es un vector, se considerará como un vector de columnas.
2. Introduzca los dos números de las filas que se van a intercambiar.
3. Pulse \texttt{MTH MATR \underline{ROW} \underline{NXT} \underline{RSHP}}. El sistema modificado volverá al nivel 1.

Para conmutar la ubicación de dos columnas en un sistema:

1. Introduzca el sistema en la pila. Si el sistema es un vector, se considerará como un vector de filas.
2. Introduzca el número de las columnas que desee intercambiar.
3. Pulse \texttt{MTH MATR \underline{COL} \underline{CSHP}}. El sistema modificado volverá al nivel 1.
Cómo Eliminar y Sustituir Elementos de Matrices

Para eliminar un elemento de un sistema en una posición específica:

1. Introduzca el sistema en la pila.
2. Introduzca una de las dos opciones siguientes:
   - Una lista que contenga el número de columna y de fila del elemento que desee borrar: `{ fila, columna }`.
   - El número de posición del elemento que desee borrar (en las matrices, esto se interpretará como orden de fila principal).
3. Pulse `[MTH][MTR][MAKE][NXT][GET]` para borrar el elemento especificado del sistema.

Para sustituir un elemento de un sistema en una posición específica:

1. Introduzca el sistema en la pila.
2. Introduzca una de las siguientes opciones:
   - Una lista que contenga el número de columna y de fila del elemento que desee sustituir: `{ fila, columna }`.
   - El número de posición del elemento que desee sustituir (en las matrices, esto se interpreta como orden de fila principal).
3. Introduzca el nuevo elemento de sustitución.
4. Pulse `[MTH][MTR][MAKE][NXT][PUT]` para sustituir el elemento de la ubicación especificada por el elemento nuevo.

Cómo Caracterizar las Matrices

Las operaciones de cálculo de matrices son normalmente sensibles a las características especiales de las matrices utilizadas. La HP 48 dispone de un determinado número de comandos que devuelven las características de las matrices. Obsérvese que algunos comandos están definidos solamente para matrices cuadradas y algunos para todas las matrices rectangulares.
### Comandos para Caracterizar las Matrices

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MTH</strong> <strong>MATR</strong> <strong>MAKE</strong>:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SIZE</strong></td>
<td>SIZE</td>
<td><em>Comando.</em> Devuelve las dimensiones del sistema del nivel 1 de la pila.</td>
</tr>
<tr>
<td><strong>MTH</strong> <strong>MATR</strong> <strong>NORM</strong>:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ABS</strong></td>
<td>ABS</td>
<td><em>Prefijo.</em> Devuelve la norma de Frobenius de una matriz y la longitud Euclidea de un vector: la raíz cuadrada de la suma de los cuadrados de los valores absolutos de los elementos.</td>
</tr>
<tr>
<td><strong>SNRM</strong></td>
<td>SRNM</td>
<td><em>Comando.</em> Devuelve la norma espectral de un sistema. La norma espectral de una matriz es igual al mayor valor específico de la matriz. Igual que ABS para un vector.</td>
</tr>
<tr>
<td><strong>RNRM</strong></td>
<td>RNRM</td>
<td><em>Comando.</em> Devuelve la norma de filas de un sistema. La norma de filas de una matriz es el valor máximo (de todas las filas) de las sumas de los valores absolutos de todos los elementos de una fila. La norma de filas de un vector es el valor absoluto máximo de sus elementos.</td>
</tr>
<tr>
<td><strong>CNRM</strong></td>
<td>CNRM</td>
<td><em>Comando.</em> Devuelve la norma de columnas de un sistema. La norma de columnas de una matriz es el valor máximo (de todas las columnas) de las sumas de los valores absolutos de todos los elementos de una columna. La norma de columnas de un vector es la suma de los valores absolutos de sus elementos.</td>
</tr>
</tbody>
</table>
## Comandos para Caracterizar las Matrices (continuación)

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SRAD</strong></td>
<td>SRAD</td>
<td><em>Comando.</em> Devuelve el radio espectral de una matriz cuadrada. El radio espectral es el valor absoluto del mayor valor propio de la matriz.</td>
</tr>
<tr>
<td><strong>COND</strong></td>
<td>COND</td>
<td><em>Comando.</em> Devuelve una condición de norma de columnas de una matriz cuadrada. El número de la condición se define como el producto de la norma de columnas de una matriz cuadrada y la norma de columnas de su inversa.</td>
</tr>
<tr>
<td><strong>RANK</strong></td>
<td>RANK</td>
<td><em>Comando.</em> Devuelve una estimación del rango de una matriz. El rango de una matriz es igual al número de valores individuales distintos a cero de la matriz. Si el indicador $-54$ no está fijado (valor por defecto) RANK tratará como cero todos los valores individuales menores a $10^{-14}$ veces el tamaño del mayor valor individual calculado. Si el indicador $-54$ está fijado, RANK contará todos los valores individuales distintos a cero sin importar su tamaño.</td>
</tr>
<tr>
<td><strong>DET</strong></td>
<td>DET</td>
<td><em>Comando.</em> Devuelve el determinante de una matriz cuadrada. DET comprueba el indicador $-54$ y depura su valor de cálculo sólo si $-54$ no está fijado (valor por defecto).</td>
</tr>
<tr>
<td><strong>TRACE</strong></td>
<td>TRACE</td>
<td><em>Comando.</em> Devuelve el trazado de una matriz cuadrada. El trazado de una matriz es igual a la suma de los elementos de las diagonales y también igual a la suma de los valores propios de la matriz.</td>
</tr>
</tbody>
</table>
Cómo Transformar las Matrices

Para transponer una matriz:

1. Introduzca la matriz en la pila.

2. Pulse \texttt{\textbf{MTH \ MATR \ MAKE \ TRN}} para transponer la matriz.
   La primera fila de la matriz original estará ahora en la primera columna, la segunda en la segunda columna y así sucesivamente.
   Esto conjuga la transposición conjugada de las matrices complejas.

Para invertir una matriz cuadrada:

1. Introduzca la matriz cuadrada.

2. Pulse \texttt{\textbf{1/X}} para invertir la matriz. Obsérvese que la inversión de matrices puede producir resultados erróneos si se utilizan matrices malcondicionadas. (Consulte “Matrices Raras y Malcondicionadas” en la página 14-17.)

Para cambiar las dimensiones de un sistema:

1. Introduzca el sistema en la pila.

2. Introduzca una lista que contenga las nuevas dimensiones del sistema: ¿filas columnas?

3. Pulse \texttt{\textbf{MTH \ MATR \ MAKE \ RDM}} para redimensionar el sistema. Los elementos del sistema original se colocarán según el orden de fila principal en el nuevo sistema redimensionado. Si existen menos elementos en el sistema nuevo que en el original, se borrarán los elementos sobrantes. Si existen más elementos en el sistema nuevo que en el original, los elementos perdidos serán sustituidos por ceros (o \(0,0\) si el sistema es complejo).
Cómo Efectuar Operaciones de Cálculo con Elementos de Matrices

Para sumar o restar dos matrices:

1. Introduzca las dos matrices en la pila en el mismo orden que si se tratara de sumar o restar números reales. Deberán tener las mismas dimensiones.
2. Pulse \(+\) para sumar o \(-\) para restar. La matriz resultante sencilla tendrá elementos que son la suma o diferencia de los elementos correspondientes de las matrices con los argumentos originales.

Para multiplicar o dividir una matriz entre un producto escalar:

1. Introduzca la matriz en la pila.
2. Introduzca el producto escalar (un número real o complejo).
3. Pulse \(\times\) o \(\div\). Cada uno de los elementos de la matriz resultante será el producto o cociente del producto escalar y el elemento correspondiente de la matriz con los argumentos originales.

Para cambiar el signo de cada uno de los elementos de una matriz:

1. Introduzca la matriz en la pila.
2. Pulse \(\pm\) para cambiar el signo de cada uno de los elementos de la matriz.

Para hallar el producto matricial \((AB)\) de dos matrices:

1. Introduzca las dos matrices en la pila. Tenga cuidado con el orden de entrada porque la multiplicación de matrices \(no\) es conmutativa. Introduzca la matriz \(A\) en primer lugar y la matriz \(B\) segundo lugar. Recuerde también que el número de columnas de \(A\) deberá ser igual al número de filas de \(B\).
2. Pulse \(\times\). El resultado será una matriz con el mismo número de filas que \(A\) y el mismo número de columnas que \(B\).

Para multiplicar una matriz y un vector:

1. Introduzca la matriz en la pila.
2. Introduzca el vector. El número de elementos del vector deberá ser igual al número de columnas de la matriz.
3. Pulse \(\times\). El resultado será un vector con los mismos elementos que el número de filas de la matriz original.
Para dividir un sistema entre una matriz cuadrada:

1. Introduzca el sistema en la pila.
2. Introduzca la matriz cuadrada. El número de filas de la matriz deberá ser igual al número de filas del sistema (elementos en un vector).
3. Pulse  para calcular $Y \cdot X^{-1}$. El resultado será un vector del mismo tamaño que el original. Obsérvese que la división de sistemas puede producir resultados erróneos si se usan matrices malcondicionadas. Consulte "Matrices Raras y Malcondicionadas" en la página 14-17.

Cómo Utilizar Sistemas y Elementos de Sistemas en Expresiones Algebraicas

Pueden efectuarse operaciones de cálculo con elementos de sistemas utilizando sintaxis algebraica. El sistema deberá estar representado por un nombre en la expresión o ecuación simbólica.

Para utilizar un elemento de una matriz en una expresión algebraica:

1. Asegúrese que el sistema está almacenado en una variable con un nombre asignado.
2. Cree la expresión algebraica y, en el lugar en el que se va a utilizar el elemento de una matriz, escriba el nombre del sistema y pulse .
3. Introduzca los subíndices del elemento:
   - Para un vector, introduzca un subíndice (número de posición del elemento).
   - Para una matriz, introduzca dos subíndices separados por  (números de fila y de columna del elemento).

Ejemplo: Introduzca una expresión simbólica para la suma de todos los elementos de una matriz de $2 \times 5$ almacenada en $MATR$. 
Paso 1: Escriba la expresión.

\[
\sum_{j=1}^{2} \sum_{k=1}^{5} \begin{bmatrix} \alpha & \beta \end{bmatrix}
\]

Paso 2: Introduzca el nombre de la matriz y los subíndices.

\[
\text{(mantenga pulsada)MATR} \rightarrow \text{(suelte)} \rightarrow \text{(k)} \rightarrow \text{(j)} \rightarrow \text{MATR(j,k)0}
\]

Paso 3: Pulse \text{ENTER} para colocar la expresión en la pila. Sabiendo que la matriz de \(2 \times 5\) ya está almacenada en \text{MATR}, pulse \text{EVAL} para hallar la suma de sus elementos.

Para aplicar una función matemática a cada uno de los elementos de un sistema:

1. Introduzca un sistema.
2. Introduzca un programa que contenga una función. El programa deberá tomar un argumento y producir un resultado.
3. Escriba \text{TEACH} y pulse \text{ENTER}.
4. Pulse \text{VAR} \text{EXE} \text{PROC} \text{HELP}. La función se aplicará a cada uno de los elementos y el resultado sustituirá a esos elementos. Si la función aplicada devuelve una operación algebraica para uno de los elementos, se devolverá el sistema en formato de lista.
Cómo Transformar Matrices Complejas

Para combinar dos matrices en una matriz compleja:
1. Introduzca la matriz real que va a ser la parte real de la matriz compleja.
2. Introduzca la matriz real que va a ser la parte imaginaria de la matriz compleja.
3. Pulse \textbf{MTH NXT CMPL R+C} para combinar las dos matrices reales en una matriz compleja.

Para descomponer una matriz compleja en dos matrices reales:
1. Introduzca la matriz compleja en la pila.
2. Pulse \textbf{MTH NXT CMPL C+R} para descomponer la matriz compleja en sus partes real e imaginaria.

Para conjugar cada uno de los elementos de una matriz compleja:
1. Introduzca la matriz compleja en la pila.
2. Pulse \textbf{MTH NXT CMPL NXT CONJ} para conjugar cada uno de los elementos complejos de la matriz.

Para extraer una matriz de las partes reales de una matriz compleja:
1. Introduzca la matriz compleja en la pila.
2. Pulse \textbf{MTH NXT CMPL RE} para obtener una matriz que contenga sólo las partes reales de cada uno de los elementos de la matriz compleja original.

Para extraer una matriz de las partes imaginarias de una matriz compleja:
1. Introduzca al matriz compleja en la pila.
2. Pulse \textbf{MTH NXT CMPL IM} para obtener una matriz que contenga sólo las partes imaginarias de cada uno de los elementos de la matriz compleja original.
Soluciones Matriciales para Sistemas de Ecuaciones Lineales

Los sistemas de ecuaciones lineales se dividen en tres categorías:

- **Sistemas Supra-determinados.** Estos sistemas tienen más ecuaciones linealmente independientes que variables independientes. No existe una solución exacta para los sistemas supra-determinados, por tanto se contemplará la “mejor” solución (mínimos cuadrados).

- **Sistemas infra-determinados.** Estos sistemas tienen más variables independientes que ecuaciones linealmente independientes. No existen soluciones o un número infinito de soluciones para los sistemas infra-determinados. Si existe una solución, podrá hallarla con la norma del mínimo Euclídeo o con los mínimos cuadrados de la norma mínima.

- **Sistemas exactamente determinados.** Estos sistemas tienen igual número de variables y de ecuaciones independientes. Normalmente (aunque no siempre) existe una solución exacta para los sistemas exactamente determinados (consulte “Matrices Raras y Malcondicionadas” en la página 14-17).

**Para calcular la “mejor” solución para cualquier sistema de ecuaciones lineales:**

1. Pulse \( \boxed{\text{SOLVE}} \) \( \boxed{A} \) \( \boxed{A} \) \( \boxed{OK} \) para entrar en la plantilla de entrada \( \text{SOLVE SYSTEM A \cdot X = B} \).
2. Introduzca la matriz de coeficientes en el campo \( A \).
3. Introduzca el sistema (vector o matriz) de constantes en el campo \( B \).
4. Pulse \( \text{SOLVE} \) para calcular la “mejor” solución y visualicela en el campo \( X \). Si el sistema que se va a resolver es exactamente determinado, la solución será una aproximación de 12 dígitos a la solución exacta. Si es supra o infra-determinado, la solución será la de los mínimos cuadrados de la norma mínima (para 12 dígitos).

**Para estimar la solución para un sistema supra-determinado de ecuaciones lineales:**

1. Introduzca el sistema (vector o matriz) de constantes en la pila.
2. Introduzca la matriz de coeficientes. Normalmente tendrá más filas que columnas.
3. Pulse MTH MATRX LSQ para calcular la “solución de los mínimos cuadrados” (X) que minimice el residual (AX−B) (la norma Euclídea minimizada de las columnas).

Para estimar la solución para un sistema infra-determinado de ecuaciones lineales:

1. Introduzca el sistema (vector o matriz) de constantes en la pila.
2. Introduzca la matriz de coeficientes. Normalmente tendrá más columnas que filas.
3. Pulse MTH MATRX LSQ para calcular una “solución de los mínimos cuadrados” (X) de las múltiples soluciones posibles de mínimos cuadrados que tiene la norma mínima de Frobenius.

Para resolver un sistema exactamente determinado de ecuaciones lineales:

1. Introduzca el vector de constantes en la pila.
2. Introduzca la matriz cuadrada de coeficientes. El número de columnas (“variables”) de la matriz deberá ser igual al número de elementos del vector.
3. Pulse 2. El resultado será un vector de solución del mismo tamaño que el vector de constantes. Obsérvese que la división de sistemas puede producir resultados erróneos si se están utilizando matrices malcondicionadas. Consulte “Matrices Raras y Malcondicionadas” a continuación.

Matrices Raras y Malcondicionadas

Una matriz rara es una matriz cuadrada que no tiene una inversa. Normalmente se obtiene un error cuando se utiliza 1/x para hallar la inversa de una matriz rara—o cuando se utiliza 2 para resolver un sistema de ecuaciones lineales con una matriz rara de coeficientes.

La causa más normal es que las matrices raras son ecuaciones situadas dentro de un sistema de ecuaciones lineales que son combinaciones lineales respecto a las demás. Es decir, los coeficientes de una ecuación pueden calcularse de un modo exacto a partir de los coeficientes de las demás. Dos ecuaciones así relacionadas son
**linealmente dependientes** y el conjunto de ecuaciones es globalmente dependiente.

Si un conjunto de ecuaciones es independiente, pero al efectuarse pequeños cambios en sus coeficientes se convierten en dependientes, se dice que el conjunto de ecuaciones (y su matriz correspondiente A) son **malcondicionadas**.

**Para determinar si una matriz es malcondicionada:**

1. Introduzca la matriz en la pila.
2. Calcule el número de su condición: Pulse MTH MATR NORM CND. Si es muy grande, entonces será malcondicionada. Si el número de condición está en el orden de $10^{12}$, quizás la HP 48 no sea capaz de distinguirla de una matriz rara.

**Para utilizar matrices malcondicionadas en la resolución de sistemas de ecuaciones lineales:**

1. Fije el indicador -22: Pulse (MODES) 22 Σ- Σ+ SF. Este es el indicador de Infinite Result Exception (Excepción de Resultado Infinito) que le evitará obtener un error al utilizar una matriz rara.
2. Resuelva el sistema de ecuaciones lineales. La HP 48 modificará la matriz rara en una cantidad que es normalmente pequeño comparado con el error de redondeo. El resultado de cálculo corresponderá a una matriz cercana a la matriz malcondicionada original.
3. Determine la exactitud de la solución de cálculo utilizando el número de condición del mismo modo que se hace para cualquier matriz malcondicionada (consulte “Cómo Determinar la Exactitud de la Solución de una Matriz” a continuación).
4. Calcule el residual para comprobar los resultados.
5. Resuelva el sistema de ecuaciones lineales utilizando LSQ.
Cómo Determinar la Exactitud de la Solución de una Matriz

Existen dos métodos para determinar la exactitud de una solución de cálculo de una matriz cuando se sospeche que se pueden estar utilizando matrices raras o malcondicionadas:

- **Calcular el sistema residual.** Este sistema es el resultado de sustituir la solución del cálculo en la ecuación original. Cuanto más cerca esté el sistema residual de un sistema de cero elementos, más exacta será la solución.

- **Utilice el número de condición.** Se puede utilizar el número de condición para estimar el número de dígitos exactos que se pueden esperar utilizando una matriz dada.

**Para encontrar los residuales de una solución de cálculo para un sistema de ecuaciones lineales ($AX=B$):**

1. Introduzca el sistema (vector o matriz) de constantes ($B$) en la pila.
2. Introduzca la matriz de coeficientes ($A$).
3. Introduzca el sistema de la solución de cálculo (deberá ser del mismo tipo y dimensiones que el sistema de constantes) ($X$).
4. Pulse [MTH] [MATR] [NXT] [RSD] (o [SOLVE] [SYS] [RSD]). El sistema resultante de residuales ($AX-B$) muestra lo próxima que era la solución de cálculo respecto a una solución real—cuanto menor sea el valor absoluto de los elementos, mejor será la solución.

**Para aproximarse al número de dígitos exactos en una solución de cálculo:**

1. Si los elementos de la matriz $A$ son exactos, introduzca 15, el número máximo de dígitos calculados internamente por la HP 48, en la pila. Si los elementos de la matriz $A$ se han redondeado a 12 dígitos (a raíz de las operaciones de cálculo anteriores, por ejemplo), introduzca 12.
2. Introduzca la matriz de coeficientes ($A$).
3. Pulse [MTH] [MATR] [NORM] [COND] para hallar el número de condición de la matriz.
4. Pulse [LOG] [LOG] para hallar el número aproximado de dígitos exactos de una solución de cálculo utilizando la matriz de coeficientes dada. Esta será una estimación tosca, a grandes rasgos, de la exactitud de una solución y no un cálculo preciso de la misma.
Eliminación Gaussiana y Operaciones Elementales de Filas

El proceso sistemático, conocido como eliminación gaussiana es uno de los métodos más normales para resolver sistemas de ecuaciones lineales y para invertir matrices. Utiliza la matriz aumentada del sistema de ecuaciones, que se forma incluyendo el vector (o vectores) de constantes ([b₁ ... bₘ]) como columna o columnas situadas más a la derecha de la matriz de coeficientes ([a₁₁ ... aₘₙ]):

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_2 \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} & b_3 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} & b_m
\end{bmatrix}
\]

Para crear una matriz aumentada:

1. Introduzca la matriz que desea aumentar (la matriz de coeficientes del contexto de eliminación gaussiana).
2. Introduzca el sistema que desea insertar (el sistema de constantes del contexto de eliminación gaussiana). Deberá tener el mismo número de filas que la matriz.
3. Introduzca el número, n, de la última columna de la matriz en orden para indicar donde insertar el sistema.
4. Pulse \textbf{MTH} \textbf{MATR} \textbf{COL} \textbf{COL} \textbf{C}.

Una vez que se ha aumentado la matriz que representa un sistema lineal de ecuaciones, podrá realizarse el proceso de eliminación gaussiana. El proceso tratará de eliminar automáticamente las variables de las ecuaciones (reduciendo sus coeficientes a cero) para que la matriz aumentada se transforme en una matriz equivalente en la que se pueda calcular fácilmente la solución.

Cada uno de los pasos de la eliminación de coeficientes depende de tres operaciones de filas elementales para las matrices:

- Intercambio de dos filas.
- Multiplicación de una fila por una constante distinta a cero.
- Adición de una constante múltiple de una fila a otra fila.
La eliminación gaussiana utiliza operaciones de pila elementales para convertir la matriz aumentada a la equivalente matriz de **escalón de fila reducida**, desde donde puede calcularse la solución mediante sustitución.

La HP 48 dispone de comandos para cada una de las operaciones de fila y de uno que utiliza estas operaciones de fila repetidamente hasta que se genera la forma de escalón de fila reducida:

- **RSWP** intercambia dos filas de una matriz.
- **RCI** multiplica cada elemento de una fila dada de la matriz aumentada por un producto escalar de libre elección.
- **RCIJ** multiplica cada elemento de una fila dada por un producto escalar y añade el resultado a otra fila de la matriz.
- **RREF** convierte una matriz aumentada a la forma equivalente de nivel de fila reducida.

**Para intercambiar dos filas de una matriz:**

1. Introduzca la matriz en la pila.
2. Introduzca los números de las dos filas que desee intercambiar.
3. Pulse **MTH** **MATR**: **ROW**: **NXT** **RSWP**.

**Para multiplicar los elementos de una fila de una matriz por un factor distinto a cero:**

1. Introduzca el sistema en la pila.
2. Introduzca el factor distinto a cero.
3. Introduzca el número de la fila que desee multiplicar.
4. Pulse **MTH** **MATR**: **ROW**: **RCI**.

**Para añadir el producto de un factor distinto a cero y una fila de un sistema a otra fila:**

1. Introduzca el sistema en la pila.
2. Introduzca el factor distinto a cero.
3. Introduzca el número de la fila que desee multiplicar por el factor.
4. Introduzca el número de la fila a la que desee añadir el producto.
5. Pulse **MTH** **MATR**: **ROW**: **RCIJ**.
Para calcular la forma de escalón de fila reducida de una matriz:

1. Introduzca la matriz en la pila. Cuando se quiere resolver un sistema de ecuaciones lineales, la matriz deberá ser la representación de la matriz aumentada del sistema (véase la descripción anterior).

2. Opcional: Fije el indicador -54 si no quiere que los elementos "minúsculos" sean sustituidos por cero durante la operación de cálculo: Pulse \(\text{MODES}\) \(\Rightarrow\) \(\text{54}\) \(\Rightarrow\) \(\text{SF-}\). Los elementos "diminutos" que pueden generarse debido a errores de falta de redondeo durante una operación de cálculo son aquellos elementos menores a \(1 \times 10^{-14}\) veces el tamaño del mayor elemento de su columna. A menos que se fije el indicador -54, la HP 48 sustituirá todos los elementos "diminutos" por cero.

3. Pulse \(\text{MTH}\) \(\text{MATRX}\) \(\text{FACTR}\) \(\text{RREF}\).

---

**Temas Adicionales de Algebra Lineal**

La HP 48 dispone de una selección de otros comandos de algebra lineal que ofrecen una potencia y flexibilidad adicionales para la solución de problemas.

**Valores y Vectores Propios**

Se dice que una matriz cuadrada de \((n \times n)\), \(A\), tiene un valor propio \(\lambda\) y un correspondiente vector propio \(x\) si \(Ax = \lambda x\).

Los valores propios son las raíces de la ecuación característica, \(\text{det}(A - \lambda I) = 0\), que es un polinomio de grado \(n\). Así pues, \(A\) tiene \(n\) valores propios, aunque no siempre serán distintos. Cada valor propio tiene un vector propio correspondiente.

La HP 48 permite calcular solamente los valores propios (una operación de cálculo más rápida) o los valores propios y sus correspondientes vectores propios al mismo tiempo.

**Para calcular los valores propios de una matriz cuadrada:**

1. Introduzca la matriz cuadrada \((n \times n)\) en la pila.
2. Pulse \(\text{MTH}\) \(\text{MATRX}\) \(\text{NXT}\) \(\text{EGVL}\) para calcular un vector de \(n\) valores propios.
Para calcular los valores y vectores propios de una matriz cuadrada:

1. Introduzca la matriz cuadrada \((n \times n)\) en la pila.
2. Pulse \([\text{MTH}] \text{ MTR \ (NXT) EGY}\). Se devolverá al nivel 2 una matriz \(n \times n\) de vectores propios y al nivel 1 un vector de \(n\) elementos de valores propios. Las columnas de la matriz del nivel 2 representan los vectores propios correspondientes a los valores propios del nivel 1.

Para descomponer el factor de una matriz:

La HP 48 ofrece un conjunto de descomposiciones y factorizaciones de matrices que se pueden utilizar o bien solas o bien en rutinas programadas para resolver problemas especializados. Todas estas factorizaciones se encuentran en el menú \([\text{MTH}] \text{ MTR \ FACTR}\):

- **Descomposición LU de Crout.** Este procedimiento se utiliza en el proceso de resolución de un sistema exactamente determinado de ecuaciones lineales, invirtiendo una matriz y calculando el determinante de una matriz cuadrada. Factoriza la matriz cuadrada \((A)\) en una matriz triangular inferior \(L\) (que se devuelve en el nivel 3), una matriz triangular superior \(U\) que contiene unos en su diagonal (devuelta en el nivel 2) y una matriz de permutación \(P\) (que se devuelve en el nivel 1) de modo que \(PA = LU\).

- **Factorización LQ.** Este procedimiento factoriza una matriz de \(m \times n\), \(A\), en una matriz trapezoidal inferior de \(m \times n\), \(L\), (devuelta en el nivel 3), una matriz ortogonal de \(n \times n\), \(Q\), (devuelta en el nivel 2) y una matriz de permutación de \(m \times m\), \(P\), (devuelta en el nivel 1) de modo que \(PA = LQ\).

- **Factorización QR.** Este procedimiento factoriza una matriz de \(m \times n\), \(A\), en una matriz ortogonal de \(m \times m\), \(Q\), (devuelta en el nivel 3), una matriz trapezoidal superior de \(m \times n\), \(R\), (devuelta en el nivel 2) y una matriz de permutación de \(n \times n\), \(P\), (devuelta en el nivel 1) de modo que \(AP = QR\).
**SCHUR**

**Descomposición de Schur.** Este procedimiento factoriza una matriz cuadrada A en una matriz ortogonal Q (devuelta al nivel 2) y una matriz triangular superior U (devuelta en el nivel 1) (o, si A tiene valor real, una matriz quasi-triangular superior) de modo que: $A = QUQ^T$ ($Q^T$ es la transposición de la matriz Q).

**Descomposición de los Valores Individuales.** Este procedimiento factoriza una matriz de $m \times n$, A, en una matriz ortogonal de $m \times m$, U, (devuelta en el nivel 3), una matriz ortogonal de $n \times n$, V, (devuelta en el nivel 2) y un vector S de los valores individuales de A de modo que: $A = USV^*$ ($S^*$ es la matriz de $m \times n$ formada mediante los elementos de S como sus elementos diagonales).

**Para calcular los valores individuales de una matriz:**

1. Introduzca la matriz en la pila.
2. Pulse $\text{MTH MATR FACTR NXT SVD}$ para obtener un vector real de los valores individuales en orden decreciente.

**Para reconstruir una matriz a partir de sus valores individuales y de las matrices ortogonales de factores:**

1. Introduzca la matriz ortogonal U en la pila.
2. Introduzca el vector S.
3. Introduzca las dimensiones de la matriz $\{m \ n\}$.
4. Pulse $\text{MTH MATR NXT DIAG+}$ para construir una matriz utilizando los valores individuales como sus elementos diagonales.
5. Pulse $\times$.
6. Introduzca la matriz ortogonal de factores (V) con el mismo número de columnas que la matriz original.
7. Pulse $\times$ para volver a calcular la matriz original. El grado en el que la matriz calculada de nuevo se acerque a la matriz original reflejará la exactitud de la descomposición.
Operaciones Aritméticas y Bases Numéricas

La HP 48 permite efectuar operaciones aritméticas binarias, es decir, operaciones que trabajan con enteros binarios.

Enteros Binarios y Bases Numéricas

En la HP 48, los objetos de enteros binarios contienen entre 1 y 64 bits, dependiendo del tamaño de palabra actual. Es posible introducir y visualizar enteros binarios en base decimal (base 10), hexadecimal (base 16), octal (base 8) o binaria (base 2). La base actual determina la base utilizada para mostrar enteros binarios en la pila.

Un entero binario va precedido por el delimitador #. Una d, h, o o b detrás del entero binario indica la base—por ejemplo, # 182d, # 86h, # 266o o # 10110110b.

Para fijar la base actual:

1. Pulse [MTH] [BASE].
2. Pulse una de las secciones siguientes: [HEX] (hexadecimal), [DEC] (decimal), [OCT] (octal) o [BIN] (binaria).

HEX, DEC, OCT y BIN se pueden programar. Las configuraciones de los indicadores -11 y -12 corresponden a la base actual (para obtener más información sobre los indicadores -11 y -12, consulte el apéndice D, “Indicadores del Sistema”).

La elección de la base actual no tiene efecto sobre la representación interna de los enteros binarios.
Para visualizar la base actual:

1. Pulse \( \text{MTH} \) \( \text{BASE} \).
2. Visualice las etiquetas de menú. El \( \# \) en una de las etiquetas de menú identifica la base actual.

La elección de la base actual no tiene efecto sobre la representación interna de los enteros binarios.

Para configurar el tamaño de palabra:

1. Escriba un número del 1 al 64.
2. Pulse \( \text{MTH} \) \( \text{BASE} \) \( \text{NXT} \) \( \text{STWS} \) (el comando STWS) (un número fraccional se redondeará al entero más próximo).

Para recuperar el tamaño de palabra actual:

- Pulse \( \text{MTH} \) \( \text{BASE} \) \( \text{NXT} \) \( \text{RCWS} \) (el comando RCWS).

**Nota**

Si el argumento de un entero binario sobrepasa el tamaño de palabra actual, los bits de exceso más significativos (los más importantes) se eliminarán antes de la ejecución del comando. Si fuera necesario, se truncarán también los resultados. Si una operación de cálculo produce un resto, sólo se conservará la parte entera del resultado.

Para introducir un número binario:

1. Pulse \( \rightarrow \) \( \# \).
2. Introduzca el valor del entero binario—los caracteres válidos dependerán de la base utilizada.
3. Opcional: Para especificar la base, escriba un registro de base: \( d \), \( h \), \( o \) o \( b \) (si no se especifica, se utilizará la base actual).
4. Pulse \( \text{ENTER} \).

**Nota**

Si un argumento de entero binario supera el tamaño de palabra actual, los bits (iniciales) más significativos en exceso caen antes de que se ejecute el comando. Si es necesario, también se truncan los resultados. Si un cálculo genera un resto, se mantendrá sólo el entero del resultado.
Para sumar o restar dos enteros binarios:
1. Introduzca los objetos de enteros binarios.
2. Pulse ➕ o ➖.

Para hallar el negativo de un entero binario:
1. Introduzca el entero binario en la pila.
2. Pulse ➖ para hallar el “negativo” de un número binario. El negativo de un número binario es su complemento de dos (todos los bits invertidos y 1 añadido), puesto que no existen enteros binarios “negativos” en el mismo sentido que existen enteros reales negativos. Restar un entero binario es lo mismo que añadir su complemento de dos.

Para multiplicar o dividir dos enteros binarios:
1. Introduzca los dos enteros binarios.
2. Pulse ✖ o ➆. Recuerde que cualquier resto de una división se perderá y la respuesta se truncará para que sea un entero.

Para convertir un entero binario a una base numérica diferente:
1. Introduzca el entero binario en la pila.
2. Pulse MTH BASE y a continuación la tecla de menú correspondiente a la base numérica deseada.

Para convertir un entero binario en un número real:
1. Introduzca el entero binario en la pila. Puede ser cualquiera de las cuatro bases numéricas.
2. Pulse MTH BASE B>R para convertir el entero en un entero decimal real.

Para convertir un número real en un entero binario:
1. Introduzca el número real en la pila.
2. Pulse MTH BASE R>B para convertir el número real en un entero binario. Si fuera necesario, el número real se redondeará en primer lugar a un entero antes de efectuarse la conversión. Los números reales negativos se convertirán al # 0 y los números reales ≥ 1.84467440738 × 10^19 se convertirán al mayor entero binario (# FFFFFFFFFFFFFFH, por ejemplo).
Cómo Utilizar Operadores Booleanos

La siguiente tabla contiene los comandos del menú MTH BASE LOGIC que efectúan operaciones Booleanas con enteros binarios. A menos que se especifique de otro modo, en cada uno de los ejemplos se sobreentiende que el tamaño de palabra está fijado en 24.

<table>
<thead>
<tr>
<th>Comando/Descripción</th>
<th>Entrada</th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AND</strong> bit por bit lógico Y de dos argumentos.</td>
<td>2: # 1100b</td>
<td>1: # 1000b</td>
</tr>
<tr>
<td><strong>NOT</strong> Devuelve el complemento uno del argumento. Cada uno de los bits del resultado será el complemento del bit correspondiente del argumento.</td>
<td>1: # FF00FFh</td>
<td>1: # FF00h</td>
</tr>
<tr>
<td><strong>OR</strong> Bit por bit lógico O de dos argumentos.</td>
<td>2: # 1100b</td>
<td>1: # 1110b</td>
</tr>
<tr>
<td><strong>XOR</strong> Bit por bit lógico exclusivo O de dos argumentos.</td>
<td>2: # 1101b</td>
<td>1: # 110b</td>
</tr>
</tbody>
</table>
Cómo Manipular los Bits y los Bytes

La siguiente tabla contiene los comandos de los menús MTH BASE BIT y MTH BASE BYTE (MTH BASE NXT BIT y ... BYTE) que resultan útiles para la manipulación de enteros binarios de bit en bit o de byte en byte. A menos que se especifique de otro modo, se asumirá, para cada uno de los ejemplos, que el tamaño de palabra está fijado en 24.

<table>
<thead>
<tr>
<th>Comando/Descripción</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entrada</td>
</tr>
<tr>
<td><strong>ASR</strong> Cambio Aritmético a la Derecha. Efectúa un cambio aritmético a la derecha de un bit. El bit más significativo se regenera.</td>
<td>1: # 11000100b</td>
</tr>
<tr>
<td></td>
<td>1: # 800000h</td>
</tr>
<tr>
<td><strong>RL</strong> Rotación a la Izquierda. El entero binario gira a la izquierda un bit (en este ejemplo se asume que el tamaño de palabra es 4.)</td>
<td>1: # 1100b</td>
</tr>
<tr>
<td><strong>RLB</strong> Rotación de un Byte a la Izquierda. El entero binario gira un byte a la izquierda.</td>
<td>1: # FFFFh</td>
</tr>
<tr>
<td><strong>RR</strong> Rotación a la Derecha. El entero binario gira un bit a la derecha (en el ejemplo se asume que el tamaño de palabra es 4).</td>
<td>1: # 1101b</td>
</tr>
<tr>
<td><strong>RRB</strong> Rotación de un Byte a la Derecha. El entero binario gira un byte a la derecha.</td>
<td>1: # A0B0C0h</td>
</tr>
<tr>
<td>Comando/Descripción</td>
<td>Ejemplo</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **SL** Cambio a la Izquierda. El entero binario se desplaza un bit a la izquierda. | Entrada: #1101b  
Salida: #11010b |
| **SLB** Cambio de un Byte a la Izquierda. El entero binario se desplaza un byte a la izquierda. | Entrada: #A0B0h  
Salida: #A0B00h |
| **SR** Cambio a la Derecha. El entero binario se desplaza un bit a la derecha. | Entrada: #11011b  
Salida: #1101b |
| **SRB** Cambio de un Byte a la Derecha. El entero binario se desplaza un byte a la derecha. | Entrada: #A0B0C0h  
Salida: #A0B0h |
Fecha, Hora y Fracciones Aritméticas

La HP 48 dispone de un calendario y un reloj sofisticados incorporados. Utiliza el calendario gregoriano que sustituyó al calendario juliano el 15 de octubre de 1582. Las fechas anteriores a ésta (o posteriores al 31 de diciembre del 9999) no se considerarán válidas.

Cómo Efectuar Operaciones de Cálculo con Fechas

El comando TIME contiene comandos especiales que permiten calcular intervalos del calendario y del reloj.

En la siguiente tabla se muestran los formatos de fecha y hora disponibles en la HP 48. La hora y la fecha presentada es las 4:31 PM del 21 de febrero de 1992.

<table>
<thead>
<tr>
<th>Pantalla del Reloj</th>
<th>Formato</th>
<th>Forma de los Números</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/21/1992</td>
<td>formato mes/día/año</td>
<td>2.211992</td>
</tr>
<tr>
<td>Hora:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:31:04P</td>
<td>formato de 12 horas</td>
<td>16.3104</td>
</tr>
<tr>
<td>16:31:04</td>
<td>formato de 24 horas</td>
<td>16.3104</td>
</tr>
</tbody>
</table>

Para establecer o cambiar el formato de fecha actual:

1. Pulse \( \text{TIME} \) \( \text{OK} \).
2. Pulse \( \text{ROTATE} \) para resaltar el campo de formato de fecha.
3. Pulse [+/-] hasta que aparezca en pantalla el formato de fecha deseado.

**Para colocar la fecha actual en la pila (en forma numérica):**

- Pulse [< TIME DATE].

**Para sumar o restar un número dado de días a una fecha dada:**

1. Introduzca una fecha en la forma numérica correspondiente al formato de fecha actual.
2. Introduzca un número real que represente el número de días que desee sumar o restar. Utilice números negativos si quiere restar días.
3. Pulse [< TIME NXT DATE+] La fecha modificada se devolverá en la forma numérica del formato de fecha actual.

**Ejemplo:** Halle la fecha correspondiente a 239 días a partir de hoy (en este ejemplo se sobreentiende que la fecha actual es el 30 de abril de 1993).

**Paso 1:** Coloque la fecha actual en el nivel 1.

```
< TIME DATE
1: 4.301993
```

**Paso 2:** Introduzca el número de días y calcule la fecha futura. El resultado será el 25 de diciembre de 1993.

```
239 NXT DATE+
1: 12.251993
```

**Para determinar el número de días existentes entre dos fechas:**

1. Introduzca el primer número de fecha en la pila.
2. Introduzca el segundo número de fecha en la pila.
3. Pulse [< TIME NXT D/DAYS.

**Ejemplo:** Halle el número de días existentes entre el 20 de abril de 1982 y el 2 de agosto de 1986.

```
4.201982 ENTER 8.021986
< TIME NXT D/DAYS
1: 1565
```

16-2 Fecha, Hora y Fracciones Aritméticas
Cómo Efectuar Operaciones de Cálculo con Horas

Para fijar o cambiar el formato de hora actual:

1. Pulse \( \text{OK} \) \( \text{TIME} \) \( \text{OK} \).
2. Pulse \( \text{TIME} \) para resaltar el campo de formato de hora.
3. Pulse \( +/- \) una o más veces hasta que aparezca en pantalla el formato deseado.
4. Pulse \( \text{OK} \) para confirmar la elección.

Para colocar la hora actual en la pila (en forma numérica):

- Pulse \( \text{TIME} \).

Un número con formato HMS (horas-minutos-segundos) se representa como \( H.MMSSs \):

- \( H \) Cero o más dígitos que representan el número de las horas.
- \( MM \) Dos dígitos que representan el número de los minutos.
- \( SS \) Dos dígitos que representan el número de los segundos.
- \( s \) Cero o más dígitos que representan la parte fraccional decimal de los segundos.

Para convertir un número de hora de horas decimales al formato HMS:

1. Introduzca el número de hora en forma decimal.
2. Pulse \( \text{TIME} \text{NXT} \text{HMS} \).

Para convertir un número de hora del formato HMS a horas decimales:

1. Introduzca el número de la hora en la forma HMS.
2. Pulse \( \text{TIME} \text{NXT} \text{HMS} \).

Para sumar dos números de horas en formato HMS:

1. Introduzca los dos números de horas en el formato HMS.
2. Pulse \( \text{TIME} \text{NXT} \text{HMS} \). El número de la hora se devolverá también en el formato HMS.
Para restar dos números de horas en formato HMS:

1. Introduzca los dos números de horas en el formato HMS.
2. Pulse \(\text{TIME}\ \text{NXT}\ \text{HMS-}\). El número de la hora se devolverá también en el formato HMS.

Para convertir una fecha y una hora en una secuencia de texto:

1. Introduzca el número de la fecha en la pila.
2. Introduzca el número de la hora.
3. Pulse \(\text{TIME}\ \text{NXT} \text{NXT} \text{TSTR}\). Se devolverá una secuencia de texto que muestra el día de la semana, la fecha (en el formato de fecha actual) y la hora (en el formato de hora actual).

Para colocar la hora del sistema en la pila:

1. Pulse \(\text{TIME}\ \text{TICKS}\). La hora del sistema se mantiene en “tic-tacs” del reloj. Cada tic-tac es 1/8192 de la duración de un segundo. El número total de tic-tacs aparece en forma de un entero binario. TICKS resulta útil para medir el tiempo transcurrido y puede convertirse al número de hora estándar, bien en formato decimal o en formato HMS.

Para convertir una hora del sistema (tic-tacs) al formato HMS:

1. Introduzca la hora del sistema. Deberá ser un número binario.
2. Pulse \(\text{MTH}\ \text{BASE}\ \text{B>R}\) para convertir la hora del sistema en un número real.
3. Pulse 29491200 \(\div\) para convertir a horas decimales.
4. Pulse \(\text{TIME}\ \text{NXT} \text{HMS}\) para convertir las horas decimales al formato HMS.

Para calcular el tiempo transcurrido en segundos:

- Pulse \(\text{TIME}\ \text{TICKS}\) para iniciar la temporización.
- Pulse \(\text{TICKS}\) para detener la temporización.
- Pulse \(\text{SWAP}\ \text{SWAP}\) para obtener el tiempo transcurrido en segundos del reloj.
- Pulse \(\text{MTH}\ \text{BASE}\ \text{B>R} 8192 \div\) para calcular el tiempo transcurrido en segundos.
Cómo Efectuar Operaciones de Cálculo con Fracciones

Una fracción es una representación algebraica de una operación aritmética que aún no se ha calculado. Por ejemplo, la fracción $\frac{4}{3}$ es un medio de representar el resultado de una operación de división $4 \div 3$ sin efectuar realmente la división. La fracción mixta $4\frac{5}{6}$ representa la operación algebraica $4 + (5 \div 6)$. La HP 48 utiliza dichas representaciones algebraicas para mostrar fracciones en pantalla:

'4/3' '4+5/6'

Para introducir una fracción:
- Utilizando el EquationWriter:
  1. Pulse \texttt{(EQUATION)}.
  2. Escriba la fracción. Pulse \texttt{▲} para iniciar el numerador y \texttt{▼} (o \texttt{◄}) para pasar del numerador al denominador.
  3. Pulse \texttt{ENTER}.
- Utilizando la línea de comandos:
  1. Pulse \texttt{¡} (pues la fracción es un objeto algebraico).
  2. Escriba la fracción en la línea de comandos.
  3. Pulse \texttt{ENTER}.

Para sumar, restar, multiplicar y dividir con fracciones:

1. Introduzca las fracciones en la pila en el mismo orden que si se tratara de números decimales.
2. Ejecute la operación ($\pm$, $\times$, $\div$) o $\equiv$.
3. Pulse \texttt{(EVAL)} para convertir la expresión en una respuesta decimal.

Para convertir un decimal en una fracción:

1. Coloque el decimal en el nivel 1 de la pila.
2. Si fuera necesario, cambie el modo de la pantalla. La exactitud de la aproximación fraccional depende del modo de la pantalla. Si el modo de la pantalla es \texttt{Std} (Estándar), la aproximación es exacta en 11 dígitos significativos. Si el modo de la pantalla es \texttt{n Fix} (Fijar), la aproximación es exacta en \texttt{n} dígitos significativos.
3. Pulse \texttt{◄SYMBOLOC NXT ±1±}. 

Fecha, Hora y Fracciones Aritméticas 16-5
Para convertir una fracción en un decimal:

- Coloque la fracción en el nivel 1 de la pila.
- Pulse [EVAL].

Para convertir un decimal en una fracción que contenga π:

1. Coloque el decimal en el nivel 1 de la pila.
2. Si fuera necesario, cambie el modo de la pantalla para que indique la exactitud de la aproximación fraccional deseada.
3. Pulse \( \left[\text{SYMBO} \right] \left[\text{NXT} \right] \rightarrow \text{Q} \pi \). \( \rightarrow \text{Q} \pi \) calcula tanto el equivalente fraccional de el número original como el equivalente fraccional del número original dividido entre π y, a continuación, compara los denominadores. Devuelve la fracción con el menor denominador—esta fracción podría ser la misma que la devuelta por \( \rightarrow \text{Q} \) o podría ser una fracción diferente multiplicada por π.

Ejemplo: Convierte 7.896 en una fracción pura mediante \( \rightarrow \text{Q} \).

\[
\begin{array}{c}
7.896 \left[\text{SYMBO} \right] \left[\text{NXT} \right] \\
\rightarrow \text{Q} \rightarrow \text{Q} \rightarrow \text{Q} \\
\end{array}
\]

16-6 Fecha, Hora y Fracciones Aritméticas
Listas y Secuencias

Cómo Crear Listas

Para introducir una lista desde el teclado:
1. Utilice para indicar el principio y el final de una lista.
2. Introduzca los elementos de la lista. Utilice para separar cada uno de los elementos.

Para reunir una serie de elementos en una lista:
1. Introduzca los elementos en la pila.
2. Introduzca el número de elementos en el primer nivel de la pila.
3. Utilice para convertir los elementos de la pila en una lista.

Ejemplo: Cree una lista con los elementos 7 11 13 mediante .

Paso 1: Introduzca los elementos y el número de los mismos en la pila.

Paso 2: Convierta la pila en una lista.
Para incorporar un elemento nuevo al principio de una lista:
1. Introduzca el elemento nuevo.
2. Introduzca la lista.
3. Pulse \(+\).

Para incorporar un elemento nuevo al final de una lista:
1. Introduzca la lista.
2. Introduzca el elemento nuevo.
3. Pulse \(+\).

---

**Procesamiento de Listas**

El modo en el que la calculadora efectúa operaciones con listas se llama procesamiento de listas.

**Para aplicar un comando de un argumento a cada uno de los elementos de una lista:**
1. Introduzca una lista.
2. Ejecute el comando.

**Ejemplo:** Halle el producto factorial de 3, 4 y 5.

**Paso 1:** Introduzca los números de una lista.

![Introducción de números y ejecución de comando](image1)

**Paso 2:** Halle los productos factoriales de los elementos.

![Productos factoriales](image2)

**Para ejecutar un comando de dos argumentos utilizando una lista y un número:**
1. Introduzca la lista.
2. Introduzca el número.
3. Ejecute el comando.

Observe que deberá utilizarse \(\text{MTH} \, \text{LIST} \, \text{ADD}\) en vez de \(+\) para sumar un número a cada de los elementos de una lista.

---

**17-2 Listas y Secuencias**
Ejemplo: ¿Cuántas combinaciones pueden hacerse con 4 objetos tomados de 3 en 3? ¿Cuántas con 5 objetos? ¿Cuántas con 6 objetos?

Paso 1: Introduzca una lista que contenga los objetos e introduzca el número de objetos que se toman cada vez en el nivel 1.

Paso 2: Halle el número de combinaciones.

Comandos de Múltiples Argumentos con Listas

Las operaciones que se efectúan sobre dos objetos pueden efectuarse también sobre los elementos individuales correspondientes de dos listas.

Para sumar elementos correspondientes de dos listas:

1. Introduzca ambas listas.
2. Ejecute el comando ADD (SUMAR).

Ejemplo: Sume \{ 3 2 1 \} y \{ 4 5 6 \}.

Paso 1: Introduzca las dos listas.

Paso 2: Sume los elementos correspondientes de las listas.

Listas y Secuencias 17-3
Para concatenar dos listas:

1. Introduzca la lista cuyos elementos formarán la primera parte de la lista concatenada.
2. Introduzca la lista cuyos elementos formarán la última parte de la lista concatenada.
3. Pulse +.

Ejemplo: Concatene \{ 3 \ 2 \ 1 \} y \{ 4 \ 5 \ 6 \}.

**Paso 1:** Introduzca las dos listas.

\begin{align*}
&\{\} \ 3 \ \text{SPC} \ 2 \ \text{SPC} \ 1 \\
&\text{ENTER} \ \leftarrow \ \{\} \ 4 \ \text{SPC} \ 5 \ \text{SPC} \\
&6 \ \text{ENTER}
\end{align*}

**Paso 2:** Concatene las listas.

\begin{align*}
\therefore \ &\{\} \ 3 \ \text{SPC} \ 2 \ \text{SPC} \ 1 \\
\therefore \ &\{\} \ 4 \ \text{SPC} \ 5 \ \text{SPC}
\end{align*}

\begin{align*}
&2: \ \{ \ 3 \ 2 \ 1 \ \} \\
&1: \ \{ \ 4 \ 5 \ 6 \ \}
\end{align*}

**Para restar, multiplicar o dividir los elementos correspondientes de dos listas:**

1. Introduzca ambas listas.
2. Ejecute la operación.

**Cómo Aplicar una Función o un Programa a una Lista (DOLIST)**

Es posible ejecutar programas o funciones sobre grupos de listas.

**Para ejecutar un programa o funciones con listas:**

1. Introduzca las listas.
2. Introduzca el número de listas sobre las que desee operar. Este número es realmente el número de elementos sobre los que se opera en cada iteración de la función o programa.
3. Introduzca un programa o una función.
4. Ejecute DOLIST.

Ejemplo: Cree 3 listas \( (a, b y c) \) y ejecute una función que haga lo siguiente a cada uno de los elementos: \( a_n + (b_n \times c_n) \).
Paso 1: Introduzca las listas y el número de listas sobre las que se va a operar (3).

{ HOME }
4:  { 1 2 3 }
3:  { 4 5 6 }
2:  { 7 8 9 }
1:  3

Para aplicar secuencialmente un procedimiento a los elementos de una lista:

1. Introduzca la lista.
2. Introduzca el índice de trama. Este es el número de elementos afectados por cada iteración de la función. Por ejemplo, si se introduce 3, se tomarán 3 elementos de la lista y se utilizarán como argumentos de la función.
3. Introduzca la función.
4. Ejecute DOSUB.

Ejemplo: Halle el movimiento medio de 2 elementos de 
{ 1 2 3 4 5 }.

Paso 1: Introduzca la lista, el índice de trama y la función.

Paso 2: Ejecute DOSUB
Cuando se escriben programas con DOSUB, el número de trama (la posición del primer objeto de la trama) es NSUB y el número de trama es ENDSUB.

**Cómo Aplicar Repetidamente una Función a una Lista**

El comando STREAM permite aplicar repetidamente una función a todos los elementos de una lista.

**Para ejecutar una función sobre todos los elementos de una lista:**

1. Introduzca la lista.

2. Introduzca un programa. Será más fácil con un programa o función que tome dos argumentos y devuelva un resultado.

3. Ejecute STREAM. STREAM está diseñado para tomar los dos primeros elementos, ejecutar la operación, tomar el resultado y el siguiente elemento, y ejecutarlos de nuevo. Este proceso continúa hasta que se hayan utilizado todos los elementos como argumentos.

**Ejemplo:** Multiplique todos los elementos de \{1 2 3 4 5\} juntos.

**Paso 1:** Introduzca la lista y la función.

| < | { | 1 | SPC | 2 | SPC | 3 | SPC | 4 | SPC | 5 | ENTER | ← | « | « | » | X |
| ENTER |

| 2: | \{1 2 3 4 5\} |
| 1: | ← | « | « | » |

| DOSUB | NSUB | ENDS | STREAM | KEVL |

**Paso 2:** Ejecute la función.

| PRG | LIST | PROC | STREAM |

| 120 |

| DOSUB | NSUB | ENDS | STREAM | KEVL |
Manipulaciones de Listas

Las siguientes funciones proporcionan medios para manipular los elementos de una lista:

- **MTH LIST SORT** clasifica los elementos de una lista en orden ascendente. La lista deberá estar en el nivel 1.

- **MTH LIST REVLT** invierte los elementos de una lista. La lista deberá estar en el nivel 1.

- **+** añade elementos al principio o final de una lista o concatena dos listas. Para añadir un elemento al principio de una lista, introduzca el elemento, introduzca la lista y a continuación pulse **+**. Para añadir un elemento al final de una lista, introduzca la lista, introduzca el elemento y a continuación pulse **-**.

- **PRG LIST ELEM NXT HEAD** sustituye la lista del nivel 1 por el primer elemento de la lista.

- **PRG LIST ELEM NXT TAIL** sustituye la lista del nivel 1 por todos los elementos de la lista menos el primero.

- **PRG LIST ELEM GET** sustituye la lista del nivel 2 y el índice de posición del nivel 1 por el elemento de dicha posición de la lista.

- **PRG LIST ELEM GETI** igual que GET, pero además incrementa un índice de posición. El nuevo índice se colocará en el nivel 2. La lista original se colocará en el nivel 3.

- **PRG LIST ELEM PUT** toma un objeto del nivel 1 y sustituye un objeto existente en una lista. Se deberá suministrar un índice de posición en el nivel 2 y una lista en el nivel 3. La lista resultante estará en el nivel 1.

- **PRG LIST ELEM PUTI** igual que PUT, pero además incrementa un índice de posición. El nuevo índice se colocará en el nivel 1. La nueva lista estará en el nivel 2.

- **PRG LIST ELEM SIZE** sustituye la lista del nivel 1 por el número de elementos de la lista.

- **PRG LIST ELEM POS** sustituye una lista del nivel 2 y un elemento de esa lista en el nivel 1 por un índice de posición de la primera aparición de dicho elemento. Si no se encuentra el elemento, se devolverá 0.
- **PRG LIST OBJ** pone cada objeto de una lista del nivel 1 de la pila, además pone el número de objetos en el nivel 1.

- **PRG LIST SUB** devuelve una lista de elementos de la lista del nivel 3 especificado por las posiciones inicial y final en los niveles 2 y 1.

- **PRG LIST REPL** sustituye los elementos de una lista del nivel 3 con los elementos de una lista del nivel 1, comenzando por el elemento especificado en el nivel 2.

---

**Secuencias**

Los comandos de secuencias generan automáticamente una lista a partir de la ejecución repetida de una función o un programa.

**Para generar una secuencia:**

1. Introduzca la función o el programa (o su nombre).
2. Introduzca el nombre de la variable de índice.
3. Introduzca el valor inicial de la variable.
4. Introduzca el valor final de la variable.
5. Introduzca el tamaño de paso del incremento. El número de elementos generados será la parte entera de \( \frac{(final - inicial)}{paso} + 1 \).
6. Ejecute **SEQ**.

**Ejemplo:** Genere una lista de los cuadrados del 23 al 27.

**Paso 1:** Introduzca la función, el nombre de la variable, el valor inicial y el valor final.

```
1 \( \rightarrow \) \( x^2 \) \( \alpha \) \( X \) \( \text{ENTER} \) \( \alpha \) \( X \) \( \text{ENTER} \) 23 \( \text{ENTER} \) 27 \( \text{ENTER} \)
```

---

17-8 Listas y Secuencias
**Paso 2:** Introduzca el tamaño de paso y genere la secuencia.

1. \texttt{(ENTER) PRG LIST}
2. \texttt{PROC (NXT) SEQ}

Para hallar la suma de una secuencia finita expresada en forma de lista:

1. Introduzca la lista.
2. Ejecute \texttt{(MTH) LIST 2LIST}.

También puede hallar la suma de una secuencia finita utilizando la función $\Sigma$ en una expresión algebraica—consulte el Capítulo 7.

**Para hallar el producto de una secuencia finita expresada en forma de lista:**

1. Introduzca la lista.
2. Pulse \texttt{(MTH) LIST #LIST}.

**Para hallar el conjunto de las diferencias principales de una secuencia finita:**

1. Introduzca la secuencia como una lista.
2. Pulse \texttt{(MTH) LIST (NXT) ALIST}. 

Listas y Secuencias 17-9
Resolución de Ecuaciones

Cómo Resolver una Variable Incógnita de una Ecuación

Para resolver una ecuación con respuestas numéricas a mano, se debería usar el siguiente procedimiento general:

1. Escribir la ecuación que se desee resolver.
2. Si es posible, manipular la ecuación para resolver la variable incógnita.
3. Sustituir los valores conocidos de las variables dadas.
4. Calcular el valor de la variable incógnita.

Cuando se utiliza la aplicación SOLVE se sigue un procedimiento similar—excepto que no es necesario efectuar el paso 2, lo cual simplifica el proceso.

Para resolver una variable incógnita de una ecuación:

1. Pulse \( \text{SOLVE} \) \( \text{OK} \).
2. Introduzca o seleccione la ecuación que desee resolver.
3. Introduzca los valores de todas las variables conocidas.
4. Opcional: Introduzca un valor probable de la variable incógnita.
   Esto puede agilizar la búsqueda o guiar al solucionador de raíces hacia una o varias raíces posibles de una ecuación dada.
5. Desplace el área resaltada a la variable incógnita y pulse SOLVE.

La aplicación SOLVE puede hallar el valor numérico de una variable de una ecuación, de una expresión o de un programa:

- **Ecuación.** Una ecuación es un objeto algebraico que contiene el signo = (por ejemplo, \( A+B=C \)). La solución será un valor de la variable incógnita que supone que ambas partes tengan el mismo valor numérico.
- **Expresión.** Una expresión es un objeto algebraico que no contiene el signo = (por ejemplo, ‘A+B+C’). La solución será una raíz de la expresión—un valor de la variable incógnita para el que la expresión tiene un valor de 0.

- **Programa.** Un programa que se va a resolver deberá devolver un número real. La solución será un valor de la variable incógnita para el que el programa devuelva 0.

**Para introducir una nueva ecuación que se desee resolver:**

1. Entre en la aplicación SOLVE, si fuera necesario pulsando \( \text{SOLVE} \). Es posible que haya ya una ecuación introducida en la plantilla.

   ![SOLVE EQUATION](image)

   ENTER FUNCTION TO SOLVE
   EDIT CHOOSE VARS EXPRE

2. Asegúrese de que el área resaltada esté colocada sobre el campo \( \text{EQ:} \) y escoja entre una de las siguientes opciones:
   - Escriba la ecuación, expresión o programa (con los delimitadores adecuados) en la línea de comandos y a continuación pulse \( \text{ENTER} \).
   - Pulse \( \text{EQUATION} \), escriba la ecuación o expresión en el EquationWriter y a continuación pulse \( \text{ENTER} \).

**Para seleccionar una ecuación ya creada que se desee resolver:**

1. Entre en la aplicación SOLVE, si fuera necesario, pulsando \( \text{SOLVE} \).

2. Asegúrese de que el área resaltada esté colocada sobre el campo \( \text{EQ:} \) y pulse \( \text{CHOOSE} \).

3. Utilice las teclas del cursor para buscar la variable deseada. Si no está en el directorio actual, pulse \( \text{CHOOSE} \) de nuevo, seleccione el directorio adecuado y pulse \( \text{OK} \). A continuación busque la variable deseada y pulse \( \text{OK} \) una vez más para introducir la variable en el campo \( \text{EQ:} \).
Siempre que se introduzca una ecuación en el campo Ecu. se mostrarán asimismo los nombres de las variables. Existirá una identificación para cada una de las variables de la ecuación actual, excepto si la variable contiene un objeto algebraico, en cuyo caso las etiquetas de identificación de dichas variables se incluirán en la propia operación algebraica. Por ejemplo, si la ecuación actual es 'A=B+C' y B contiene la expresión 'D+\tan(E)' , se verán las identificaciones de A, D, E y C.

**Nota**

En las ecuaciones que utilizan una variable de soporte, como una integral, una suma algebraica o una derivada, se mostrará una identificación para la variable de soporte. De todos modos, no podrá resolver una variable de soporte.

Si una o más variables no existen previamente, se crearán y se añadirán al directorio actual cuando resuelva la ecuación por vez primera.

**Para introducir un valor de una variable conocida:**

1. Desplace el área resaltada al campo identificado con el nombre de la variable conocida.
2. Escriba el valor y pulse **ENTER**.

**Para almacenar un valor de estimación de una variable incógnita:**

1. Desplace el área resaltada al campo identificado con el nombre de la variable incógnita.
2. Escriba el valor supuesto y pulse **ENTER**.

**Para resolver una variable incógnita:**

1. Desplace la barra resaltada al campo identificado con el nombre de la variable incógnita.
2. Pulse **SOLVE**. Se mostrará el resultado en el campo y se colocará una copia identificada en la pila.
Cómo Interpretar los Resultados

La aplicación SOLVE devuelve un mensaje que describe el resultado del proceso de resolución de raíces. Este mensaje y otras informaciones pueden utilizarse para juzgar si el resultado es una raíz de la ecuación.

Para interpretar el resultado calculado:

- Una vez calculado el resultado, pulse INFO. Pulse OK para borrarlo cuando haya finalizado su visualización.

El mensaje está basado en el valor de la ecuación—la diferencia entre la parte izquierda y derecha de una ecuación o el valor devuelto por una expresión o programa.

Si se halla una raíz, la aplicación SOLVE devolverá un mensaje en el que se describa la raíz:

18 Zero
La aplicación SOLVE ha encontrado un punto en el que el valor de la ecuación es 0, dentro de la precisión de 12 dígitos de la calculadora.

Sign Reversal
La aplicación SOLVE ha encontrado dos puntos en los que el valor de la ecuación tiene signos opuestos, pero es incapaz de encontrar un punto intermedio que tenga un valor de 0. Esto puede deberse a que:

- Los dos puntos estén próximos (diferen en 1 de los 12 dígitos).
- La ecuación no tenga un valor real entre los dos puntos. La aplicación SOLVE devolverá el punto en el que el valor sea lo más próximo posible a 0. Si el valor de la ecuación es una función real continua, dicho punto será la mejor aproximación de la aplicación SOLVE a una raíz real.

Extremum
Ha ocurrido una de las cosas siguientes:

- La aplicación SOLVE ha encontrado un punto en el que el valor de la ecuación está próximo al mínimo local (para valores positivos) o a
un máximo local (para valores negativos). El punto puede representar o no una raíz.

- La aplicación SOLVE ha interrumpido la búsqueda en ±9.9999999999E499, los números máximo o mínimo del rango de números de la calculadora.

**Para obtener más información sobre la solución:**

- Escoja entre una de las opciones siguientes o todas:
  - Desplace el área resaltada al campo EQ y pulse **EXPR** (ENTER). Cuanto más próximo sea el resultado a 0 en una expresión o programa (Expr*), o cuanto más próximos sean los dos resultados entre sí en una ecuación (Left: — Izquierdo y Right: — Derecho) más probabilidades tendrá la aplicación SOLVE de encontrar una raíz. Se deberán juzgar y considerar los resultados.
  - Represente gráficamente la expresión o ecuación del área de la respuesta. La aplicación PLOT mostrará todos los mínimos locales, los máximos o la discontinuidad.
  - Compruebe los indicadores del sistema que detectan errores matemáticos (consulte elapéndice B para obtener una lista de dichos errores). Por ejemplo, el indicador —25 indica si ha tenido lugar un desbordamiento.

Si la aplicación SOLVE no puede devolver un resultado, mostrará un mensaje que indique la razón:

**Bad Guess(es)** Una o más de las suposiciones iniciales está fuera del ámbito de la ecuación—o las unidades de la variable incógnita no son coherentes con las unidades de las demás variables. Por tanto, al calcular una ecuación no se ha devuelto un número real o se ha generado un error.

**Constant?** El valor de la ecuación es el mismo en todos los puntos de muestra.
Cómo Resolver Opciones

Para visualizar el solucionador de raíces trabajando:

1. Inmediatamente después de pulsar **SOLVE** para iniciar el solucionador de raíces, pulse **ENTER**. Se verán dos suposiciones intermedias y el signo de la expresión calculada para cada una de las suposiciones (mostrado a la izquierda de cada suposición).

   \[-2.19330555745\]
   
   \[+1.811111149\]

El hecho de observar las suposiciones intermedias puede informarle sobre la progresión del solucionador de raíces—si éste ha encontrado una inversión de signo (las suposiciones tendrán signos opuestos), si converge hacia un máximo o mínimo local (las suposiciones tendrán el mismo signo) o si no converge en absoluto. En este último caso, tal vez desee interrumpir el solucionador de raíces y reiniciarlo con una nueva suposición.

Para interrumpir y reinariciar el solucionador de raíces:

1. Mientras esté funcionando el solucionador de raíces, pulse **CANCEL**. Este se detendrá y mostrará la suposición actual en el campo de la variable incógnita.
2. Para reiniciar el solucionador de raíces, escoja entre una de las siguientes opciones:
   - Pulse **SOLVE** para continuar donde se había dejado.
   - Introduzca una suposición en el campo de la variable incógnita y pulse **SOLVE** para reiniciar la búsqueda del solucionador de raíces en un área diferente.

Para utilizar unidades mientras se resuelve una variable incógnita:

1. Para archivar un valor con **unidades** en una variable, introduzca el objeto de unidades en el campo de la variable deseada. Obsérvese que todas las variables deberán contener un conjunto consistente de unidades—**que incluya la variable incógnita**—antes de la resolución (de otro modo, se generará un error de **Bad Guess**—Suposición Incorrecta).
2. Para cambiar el valor de una variable **y mantener las unidades anteriores**, introduzca solamente el número.
3. Para devolver una solución con unidades adjuntas, introduzca una suposición para la variable incógnita que incluya las unidades deseadas, antes de pulsar SOLVE.

**Para reorganizar el orden de aparición de las variables:**

1. Desde la pantalla principal de SOLVE EQUATION (SOLUCIONAR ECUACION), pulse VARS y elija una de las siguientes opciones:
   - Pulse **EDIT**, edite la lista de variables en el orden que desee y pulse **ENTER**
   - Pulse **(**{**)}**, escriba las variables en el orden que desee que aparezcan y pulse **ENTER**.
2. Pulse **OK** para grabar los cambios y volver a la pantalla principal de SOLVE. Verá las variables en su nuevo orden.

---

**SOLVR: Un Entorno Alternativo de Resolución**

Existe un entorno de resolución alternativo en las calculadoras de la serie HP 48G que funciona como el entorno de resolución de sus predecesoras, la HP 48S y la HP 48SX. Este entorno, SOLVR, utiliza el mismo solucionador de raíces incorporado que la aplicación SOLVE, pero permite seguir viendo y utilizando la pila mientras se está “en” el entorno.

Aunque el método para resolver ecuaciones es igual para ambos entornos de resolución, los procedimientos utilizados son diferentes en ciertos aspectos.

**Para introducir una ecuación que se desea resolver:**

1. Coloque la ecuación (o el programa adecuadamente diseñado) en el nivel 1 de la pila. Se puede escribir mediante la línea de comandos o el EquationWriter o recuperarla de una variable.
2. Pulse **SOLVE ROOT**.
3. Pulse **EQ** (o escriba STEQ y pulse **ENTER**) para convertir la ecuación del nivel 1 en la ecuación actual.
Para entrar en el entorno solucionador de raíces SOLVR:

- Pulse $\boxed{\text{SOLVE ROOT SOLVR}}$ para entrar en el entorno SOLVR. Verá las variables de la ecuación actual mostradas como etiquetas de menú blancas en la fila inferior de la pantalla y la ecuación actual (almacenada en $\text{EQ:}$) mostrada en la fila superior. Por ejemplo:

![Equación SOLVR](image)

Para introducir los valores de variables conocidas mediante SOLVR:

1. Si fuera necesario, entre en el entorno SOLVR.
2. Escriba el valor de la variable conocida y pulse la tecla de menú correspondiente a la etiqueta de menú blanca de la variable.

Para recuperar el valor de una variable conocida:

- Pulse $\boxed{\text{SOLVE}}$ y a continuación la tecla de menú correspondiente a la etiqueta de menú blanca de la variable.

Para resolver una variable incógnita con SOLVR:

1. Asegúrese de que todas las variables conocidas tengan valores almacenados en ellas.
2. Opcional: Introduzca una estimación de suposición para el valor de la variable incógnita escribiendo la suposición y pulsando la tecla del menú blanca de la variable.
3. Pulse $\boxed{\text{SOLVE}}$ y a continuación la tecla del menú blanca de la variable. El resultado identificado se devolverá al nivel 1 de la pila y en la parte superior de la pantalla se mostrará un mensaje que interpreta el resultado.
4. Opcional: Pulse $\boxed{\text{EXPR=}}$ para calcular la ecuación actual utilizando el valor que se acaba de obtener para la variable incógnita. Consulte “Cómo Interpretar los Resultados” en la página 18-4 para obtener más detalles sobre la interpretación de los resultados del solucionador de raíces.
Opciones de Resolución Adicionales de SOLVR

Aparte de proporcionar un entorno diferente para solucionar raíces de ecuaciones, expresiones y programas, SOLVR permite algunas opciones que no se encuentran disponibles en la aplicación SOLVE.

Para resolver secuencialmente una serie de ecuaciones mediante SOLVR:

1. Introduzca las ecuaciones que desee utilizar en la pila en el orden en el que las quiera resolver. Empiece por la ecuación que contenga sólo una variable incógnita. Las demás ecuaciones pueden comenzar por variables incógnitas adicionales, aunque deberán tener una sola variable incógnita tras haber sido solucionadas las ecuaciones precedentes.
2. Pulse (varias veces hasta que el puntero de pila indique la primera ecuación que desee resolver.
3. Pulse $\text{LIST} \rightarrow \text{ENTER}$ para reunir las ecuaciones en una lista.
4. Pulse $\text{SOLVE} \rightarrow \text{ROOT} \rightarrow \text{EQ}$ para almacenar la lista en EQ como la “ecuación” actual.
5. Entre en el entorno SOLVR, introduzca los valores de las variables conocidas y resuelva la variable incógnita de la primera ecuación del mismo modo que si existiera una sola ecuación.
6. Pulse $\text{NXT} \rightarrow \text{EQ}$ (tal vez tenga que pulsar $\text{NXT}$ una o más veces si existen muchas variables) para convertir la “siguiente” ecuación de la lista en la ecuación actual. Las ecuaciones rotarán realmente en la pila, de modo que la primera ecuación será ahora la última, la segunda será ahora la primera, la tercera será ahora la segunda y así sucesivamente.
7. Introduzca los valores adicionales conocidos y resuelva la variable incógnita restante de la ecuación.
8. Repita los pasos 6 y 7 hasta que haya resuelto todas las variables incógnitas de la serie de ecuaciones.

Tal vez prefiera utilizar la Resolución de Ecuaciones Múltiples en vez de SOLVR para este tipo de tarea (consulte la página 25-6).

Para crear un menú SOLVR personalizado:

1. Introduzca una lista solucionadora en el nivel 1 de la pila. La sintaxis de una lista solucionadora es $\ell \text{ ecuación} \ell \text{ definiciones de teclas}$, donde:
Ecuación

Especifica la ecuación. Puede ser una ecuación o una expresión (con delimitadores '), un objeto de programas (con delimitadores «») o el nombre de una ecuación, expresión o programa.

Definiciones de teclas

Especifica las teclas de menú—cada entrada define una tecla. Cada una de las entradas puede ser un nombre de una variable u otro tipo de objeto. Los nombres de variables pueden mostrarse con etiquetas de menú blancas, los demás objetos aparecerán con etiquetas de menú negras. Para incluir un programa que se pueda ejecutar, introduzca su nombre en la definición de las teclas como una sublista con la forma

{ "etiqueta" « nombre» }

2. Pulse $\text{SOLVE ROOT} \text{ED}$ para convertir la ecuación de la lista solucionadora en la ecuación actual y visualizar el menú SOLVR, personalizado de acuerdo con las definiciones de las teclas.

Ejemplo:

La ecuación $I = 2\pi^2 f^2 \rho v a^2$ calcula la intensidad de una onda de sonido. Supongamos que se calcula siempre el valor de $\rho$ y éste se almacena en la variable correspondiente antes de utilizar dicha ecuación y que se desea eliminar $\rho$ del menú de SOLVR. Además, supongamos que se quiere que el comando IP se encuentre disponible en el menú de SOLVR de modo que se puedan almacenar valores enteros en las variables del menú SOLVR. La siguiente lista solucionadora incluye dos teclas adicionales: una tecla en blanco y una tecla que ejecuta IP (la parte entera) y elimina $\rho$.

{ 'I=2*\pi^2*f^2*\rho*v*a^2' ( I f v a ( ) IP ) }

Esta lista, cuando se almacena en EQ, crea el siguiente menú de variables y funciones:
Cómo Hallar Todas las Raíces de un Polinomio

Un polinomio simbólico, como $x^3 + 4x^2 - 7x + 9$, puede expresarse también como un vector de sus coeficientes: $[1\ 4\ -7\ 9]$. En esta forma de vector, pueden aplicarse técnicas numéricas muy eficaces para hallar un vector de sus raíces.

**Para utilizar el solucionador de raíces de polinomios:**

- Pulse $\rightarrow$ **SOLVE** $\uparrow$ $\uparrow$ **OK** para visualizar:

![Solve Coefficients](image)

**Para hallar todas las raíces de un polinomio:**

1. Entre en el solucionador de raíces de polinomios.
2. Desplace el área resaltada al campo COEFFICIENTS, si fuera necesario.
3. Introduzca el polinomio en forma de coeficiente. Utilice la línea de comandos (no olvide los delimitadores [ ]) o bien el MatrixWriter. Obsérvese que el primer elemento del vector deberá ser el coeficiente del término de orden más alto y el último elemento deberá ser el término constante. Recuerde incluir ceros donde se localicen términos “perdidos” del polinomio.
4. Con la barra resaltada ubicada sobre el campo ROOTS:, pulse **SOLVE**. Aparecerá un sistema complejo de raíces en el campo ROOTS: y se enviará una copia identificada a la pantalla.

**Para resolver un polinomio, dado un conjunto de raíces:**

1. Entre en el solucionador de raíces de polinomios.
2. Desplace el área resaltada al campo ROOTS:, si fuera necesario.
3. Introduzca el conjunto de raíces en forma de un vector. Recuerde que si alguna de las raíces es compleja, deberá introducir todas las raíces como complejas (las raíces reales se introducen como $\langle real, 0 \rangle$).
4. Desplace el área resaltada al campo COEFFICIENTS y pulse SOLVE.

Para calcular un polinomio en un valor dado:
1. Introduzca el polinomio en forma de coeficiente en la pila.
2. Introduzca el valor dado en el que desea calcular el polinomio.
3. Pulse \texttt{SOLVE POLY PEVAL}.

Para convertir un polinomio de forma de coeficiente a forma algebraica:
1. Entre en el solucionador de raíces de polinomios.
2. Si todavía no contiene el polinomio en forma de coeficiente, intodúzcalo en el campo COEFFICIENTS.
3. Con el área resaltada sobre el campo COEFFICIENTS, pulse \texttt{SYMB}. Se enviará el polinomio simbólico a la pila utilizando $x$ como variable.

Cómo Resolver un Sistema de Ecuaciones Lineales

La HP 48 puede resolver un sistema de ecuaciones lineales. Para crear un sistema de ecuaciones, pueden seleccionarse entre las que se han archivado previamente o introducirlas directamente.

Cuando resueltva un sistema de ecuaciones, recuerde que éste puede representarse mediante una ecuación de matriz simple de la forma $A \cdot X = B$:

<table>
<thead>
<tr>
<th>Forma de Ecuación</th>
<th>Forma de Matriz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ax + by + cz = k_1$</td>
<td>$\begin{bmatrix} a &amp; b &amp; c \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} k_1 \end{bmatrix}$</td>
</tr>
<tr>
<td>$dx + ey - fz = k_2$</td>
<td>$\begin{bmatrix} d &amp; e &amp; -f \end{bmatrix} \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} k_2 \end{bmatrix}$</td>
</tr>
<tr>
<td>$gx + hy + iz = k_3$</td>
<td>$\begin{bmatrix} g &amp; h &amp; i \end{bmatrix} \begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} k_3 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

La HP 48 utiliza esta representación para resolver sistemas de ecuaciones lineales de un modo rápido y eficaz.
Para resolver un sistema de ecuaciones lineales:

1. Pulse \( \text{SOLVE} \) para iniciar la Resolución de Sistemas Lineales.
2. Introduzca la matriz de coeficientes en el campo \( \mathbf{A} \). Se podrá utilizar o bien el MatrixWriter o bien la línea de comandos.
3. Introduzca el sistema de constantes en el campo \( \mathbf{B} \).
4. Desplace el área resultada (si fuera necesario) al campo \( \mathbf{x} \) y pulse \( \text{SOLVE} \). El sistema resultante (con las mismas dimensiones que el sistema de constantes, \( \mathbf{B} \)) aparecerá en el campo \( \mathbf{x} \) y se colocará una copia identificada en la pila.
5. Opcional: Pulse \( \text{EDIT} \) para visualizar el resultado en el MatrixWriter.

El Resolución de Sistemas Lineales devolverá un sistema resultante para cada uno de los siguientes sistemas:

- **Sistemas Exactamente Determinados.** El número de ecuaciones es igual al número de variables independientes del sistema. El resultado devuelto será exacto (dentro de los límites de precisión de la HP 48), siempre que la matriz de coeficientes no sea malcondicionada (consulte “Matrices Raras y Malcondicionadas” en la página 14-17).

- **Sistemas Supra-Determinados.** El número de ecuaciones es mayor que el número de variables del sistema. Normalmente, no existe una solución exacta para los sistemas supra-determinados, por tanto se devolverá la solución de los mínimos cuadrados.

- **Sistemas Infra-Determinados.** El número de ecuaciones es menor que el número de variables independientes del sistema. Generalmente, existe un número infinito de soluciones para los sistemas infra-determinados, por tanto se devolverá el de la norma mínima Euclideana.

Preste mucha atención a la naturaleza del sistema lineal que trata de resolver porque influirá en el modo en el que se deberá interpretar el sistema resultante. En algunos casos, tal vez desee comprobar si se trata de un sistema malcondicionado (consulte la página 14-17) antes de aceptar incluso una solución exacta como una solución “verdadera”.

Otro método para comprobar la validez de una respuesta es hallar el valor residual de la solución \( \mathbf{A} \cdot \mathbf{x} - \mathbf{B} \). Las soluciones exactas deberán tener valores residuales próximos a cero.
Para hallar el valor residual \((A \cdot X - B)\) de una solución:

1. Asegúrese de que el sistema de la solución calculada se encuentra en el nivel 1 de la pila y pulse \(\text{ENTER}\) para duplicarlo.
2. Introduzca el sistema de constantes \((B)\) en la pila.
3. Introduzca la matriz de coeficientes \((A)\).
4. Pulse \(\text{STACK} \rightarrow \text{PLOT}\) para volver a desplazar el sistema de la solución al nivel 1.
5. Pulse \(\text{SOLVE} \rightarrow \text{SYS} \rightarrow \text{RSD}\) para calcular el valor residual de la solución.

Consulte la página 14-19 para obtener los métodos adicionales para comprobar la exactitud de una solución calculada de un sistema.

Cómo Utilizar la Resolución Financiera

La aplicación Resolución Financiera proporciona las características de valor del dinero en función del tiempo (TVM) y de amortización. Se puede utilizar para operaciones de cálculo de interés compuesto y amortizaciones.

El interés compuesto se produce cuando el interés ganado se añade al capital en períodos compuestos especificados y a continuación dicha cantidad combinada gana interés. Muchos cálculos financieros son cálculos de interés compuesto—por ejemplo, las cuentas de ahorro, las hipotecas, los fondos de pensiones, los créditos hipotecarios y las rentas vitalicias.

Las operaciones de cálculo de Valor del Dinero en Función del Tiempo, implican la utilización de la noción de que el “tiempo es dinero”—que un dólar ahora es mejor que un dólar en el futuro. Un dólar ahora puede invertirse y generar un dividendo que un dólar del futuro no podría generar. Este principio de TVM es la razón fundamental de los tipos de interés, el interés compuesto y los dividendos.

Las transacciones de TVM pueden representarse y entenderse mediante la utilización de diagramas de flujo de efectivo. Un diagrama de flujo de efectivo es una línea temporal dividida en segmentos iguales que representan los períodos compuestos. Las flechas representan los flujos de efectivo. El dinero recibido es un valor positivo y el dinero pagado es un valor negativo.
El diagrama del flujo de efectivo de una transacción depende del punto de vista que se tome en la concepción del problema. Por ejemplo, un préstamo es un flujo de efectivo inicial positivo para el prestatario, pero será un flujo de efectivo inicial negativo para el prestamista.

El siguiente diagrama de flujo de efectivo muestra un préstamo desde el punto de vista del prestatario.

El siguiente diagrama de flujo de efectivo muestra un préstamo desde el punto de vista del prestamista.

Por otro lado, los diagramas de flujo de efectivo especifican **cuándo** tienen lugar los pagos relativos a los periodos compuestos: al **principio** de dicho período o al **final**. La aplicación Resolución Financiera

Resolución de Ecuaciones 18-15
proporciona ambos modos de pago: el modo Begin (Principio) y el modo End (Final).

El siguiente diagrama de flujo de efectivo muestra los pagos de un crédito hipotecario al principio de cada período.

Como implican los diagramas de flujo de efectivo anteriores, existen cinco variables de TVM:

\[
\begin{align*}
N & \quad \text{Número total de períodos compuestos o pagos.} \\
I/YR & \quad \text{Tipo de interés nominal anual (o tipo de inversión).} \\
\text{Este tipo se divide entre el número de pagos por año (P/YR)} & \quad \text{para calcular el tipo de interés nominal por} \\
\end{align*}
\]

18-16 Resolución de Ecuaciones
periodo compuesto—que es el tipo de interés que se utiliza realmente en los cálculos de TVM.

PV
Presente valor del flujo de efectivo inicial. Para un prestamista o un prestatario, PV será la cantidad del préstamo. Para un inversor, PV será la inversión inicial. El PV siempre se mide al principio del primer período.

PMT
Cantidad de pago periódico. Los pagos son de la misma cantidad para cada período y en los cálculos de TVM se sobreentiende que no se van a producir saltos en los pagos. Los pagos pueden tener lugar al principio o al final de cada período compuesto—una opción que puede controlarse configurando el modo Payment (Pago) en Beg o End.

FV
Futuro valor de la transacción: cantidad del flujo de efectivo final o valor compuesto de la serie de los flujos de efectivo anteriores. Para un préstamo, éste es el tamaño del pago progresivo final (por encima de los pagos normales). Para una inversión, éste es el valor en efectivo de una inversión al final del período de inversión.

Para efectuar una operación de cálculo de TVM:

1. Pulse → SOLVE ▲ OK para entrar en la aplicación Resolución Financiera.

2. Traslade el área resaltada a un campo identificado como una variable de TVM, escriba el valor adecuado y pulse ENTER. Asegúrese que introduce los valores de al menos cuatro de las cinco variables de TVM.
3. Si fuera necesario, introduzca un valor diferente para P/YR.
4. Si fuera necesario, pulse +/- para cambiar el modo Payment (Begin o End) según sea el caso.
5. Desplace el área resaltada a la variable de TVM que desee resolver y pulse SOLVE.

Ejemplo: Antonio Alonso va a financiar la compra de un coche con un préstamo a 3 años y un interés anual del 10.5%, compuesto mensualmente. El precio de compra del coche es de $11,250 y la entrada es de $2500. ¿De cuánto serán los pagos mensuales? ¿Cuál es el mayor préstamo que Antonio puede permitirse, siendo el pago máximo mensual de $225? (se sobreentiende que los pagos empiezan al final del primer periodo).

\[ PV = 11,250 - 2,500 \]
\[ FV = 0 \]
\[ I\%{\text{YR}} = 10.5 \]
\[ N = 3 \times 12 \]
\[ PYR = 12; \text{Modo final} \]

\[ PMT = ? \]

Paso 1: Entre en la Resolución Financiera y asegúrese de que existen 12 pagos/año (pagos mensuales) y que los pagos se efectúan al final de cada período compuesto.

TIME VALUE OF MONEY

N: 0  I%YR: 0
PV: 0.00  PMT: 0.00  P/YR: 12
FV: 0.00  END

CHOOSE WHEN PAYMENTS ARE MADE

18-18 Resolución de Ecuaciones
Paso 2: Introduzca las variables conocidas de TVM. Asegúrese de fijar FV a 0 para que el préstamo esté completamente pagado después de los 3 años (3 x 12 pagos).

Paso 3: Resuelva el pago.

Paso 4: Introduzca -225.00 para el pago y halle la solución de PV para ver qué cantidad se puede permitir pedir prestada Antonio.

Ejemplo: Una hipoteca con Pago Creciente. Angel Martín ha suscrito una hipoteca de una casa de $75,250 a 25 años al 13.8% de interés anual. Espera vender la casa al cabo de 4 años, pagando el préstamo en pagos crecientes. Halle la cantidad de los pagos crecientes—el valor de la hipoteca al cabo de 4 años de pagos.
**Paso 1:** Entre en la Resolución Financiera (si fuera necesario) e introduzca los valores de las variables conocidas de TVM.

\[
PV = 75,250
\]
\[
\%
YR = 13.8
\]
\[
N = 4 \times 12
\]
\[
PYR = 12; \text{ Modo final}
\]

\[
PMT = ?
\]
\[
Pagaré \text{ creciente}
\]
\[
FV = ?
\]

**Paso 2:** Halle el pago mensual para la hipoteca a 25 años.

\[
\text{TIME VALUE OF MONEY}
\]
\[
N: 300 \quad I/YR: 13.8
\]
\[
PV: 75,250.00
\]
\[
PMT: 0.00 \quad FV: 0.00
\]
\[
\text{CHOOSE WHEN PAYMENTS ARE MADE}
\]
\[
\text{CHOOS} \quad \text{AMOR}
\]

**Paso 3:** Calcule el pago creciente necesario tras 4 años de pagos.

\[
\text{TIME VALUE OF MONEY}
\]
\[
N : 48 \quad I/YR: 13.8
\]
\[
PV: 75,250.00
\]
\[
PMT: -894.33 \quad FV: -73.498.73
\]
\[
\text{ENTER FUTURE VALUE OR SOLVE}
\]
\[
\text{EDIT} \quad \text{AMOR SOLVE}
\]

18-20 Resolución de Ecuaciones
Cómo Calcular Amortizaciones

Los cálculos de amortizaciones, que también utilizan las variables de TVM, determinan las cantidades aplicadas al capital y al interés en un pago o en una serie de pagos.

Para calcular la amortización:

1. Cambie el modo de la pantalla a la exactitud que desee, como al modo 2 Fix (Fijar).
2. Entre en la Resolución Financiera.
3. Compruebe y fije las siguientes condiciones de TVM:
   - Número de pagos por año.
   - Pagos al principio o final de los períodos.
4. Valores de almacenamiento para cuatro variables de TVM: I%YR, PV, PMT y FV. Dichas variables definen la planificación de los pagos (éstos se pueden calcular utilizando el menú TVM).
5. Pulse [AMOR] e introduzca el número de pagos que se van a amortizar en dicho lote.

Para continuar la amortización de un préstamo:

1. Pulse [B=FV] para archivar el nuevo rédito tras la amortización anterior como PV.
2. Introduzca el número de pagos a amortizar en el nuevo grupo.
3. Pulse [AMOR].
4. Repita los pasos del 1 al 3 cuantas veces sea necesario.

Para amortizar unos pagos futuros empezando por el pago p:

1. Calcule el rédito del préstamo en el pago p−1.
2. Archive el nuevo rédito de PV utilizando [B=FV].
3. Amortice la serie de pagos que empieza por el nuevo PV.

La operación de amortización lee los valores de las variables de TVM, redondea los números de PV y PMT al modo de la pantalla actual y a continuación calcula la amortización redondeada a la misma opción. Las variables originales no se cambiarán, excepto PV, que se actualiza mediante [B=FV] después de cada amortización.
Ecuaciones Diferenciales

La HP 48 puede hallar una solución, \( y(t) \), para una ecuación diferencial expresada como \( y'(t) = f(t, y) \), donde el valor inicial de la solución se da como \( y(t_0) = y_0 \).

Cómo Resolver Ecuaciones Diferenciales

El solucionador de ecuaciones diferenciales es una parte de la aplicación SOLVE.

Para utilizar el solucionador de ecuaciones diferenciales de SOLVE:

1. Pulse \( \text{SOLVE} \)
2. Seleccione \text{Solve diff eq}...

Esta pantalla contiene los siguientes campos y teclas de menú:

\text{F:} \quad \text{Contiene la parte derecha de la ecuación diferencial que se desea resolver.}

\text{INDEP:} \quad \text{Especifica la variable independiente (por defecto, X).}

\text{INIT:} \quad \text{Contiene el valor inicial de la variable independiente \( (t_0) \). El valor inicial de la variable independiente deberá}
corresponder al valor inicial de la variable de solución:
\[ y(t_0) = y_0. \]

**FINAL:** Contiene el valor final de la variable independiente, \( t_{FINAL} \). Se está intentando resolver \( y(t_{FINAL}) = (\text{alguna incógnita}). \)

**SOLN:** Especifica la variable de solución (por defecto, \( Y \)).

**INIT:** Contiene el valor inicial de la variable de solución \( (y_0 = y(t_0)) \).

**FINAL:** Contiene el valor final de la variable. Esto es lo que se está intentando resolver. No se puede introducir ningún valor en este campo.

**TOL:** Contiene el nivel aceptable de error absoluto. En un modelo físico, seleccione la tolerancia para que se adecúe a la exactitud de los datos (por defecto 0.0001).

**STEP:** Contiene el tamaño inicial de paso utilizado para calcular la solución. La calculadora utiliza el método de Runge-Kutta-Fehlberg para calcular \( y_{FINAL} \). Este método calcula la solución pasando automáticamente de punto a punto y manteniendo la exactitud en cada uno de los puntos.

**STIFF:** Selecciona la resolución "stiff".

**EDIT:** Permite editar un campo.

**CHOOSE:** Permite seleccionar una variable.

**INIT+:** Sustituye los valores iniciales por los valores finales. Utilícelo para calcular la solución en otro punto utilizando la solución actual como punto de partida.

**SOLVE** Resuelve la ecuación diferencial.

**Cómo Resolver un Problema de Valor Inicial Estándar**

Los problemas de valor inicial estándar son ecuaciones diferenciales que no requieren la resolución STIFF. Para determinar la estabilidad de una ecuación diferencial, intente representarla gráficamente antes de resolverla. Si el trazado gráfico es muy lento, esto puede indicar que la ecuación es "stiff" y que deberá utilizarse la resolución "stiff".
Para resolver un problema de valor inicial estándar:

1. Introduzca una ecuación o pulse \texttt{CHOOS} para seleccionar una ecuación.
2. Especifique la variable independiente.
3. Introduzca el valor inicial de la variable independiente.
4. Introduzca el valor final de la variable independiente.
5. Especifique la variable de solución.
6. Introduzca el valor inicial de la variable de solución.
7. Introduzca una tolerancia de error acceptable.
8. (Opcional:) Introduzca un tamaño de paso. Normalmente, el solucionador calcula un tamaño de paso adecuado.
9. Pulse \texttt{SOLVE}.

\textbf{Ejemplo:} Resuelva la ecuación para $y(1)$ dado que $y(0) = 2$:

$$ y' = t + y $$

\texttt{SOLVE 'Y\prime(T)=F(T,Y)'}
\begin{align*}
\alpha T & \alpha Y \ \text{ENTER} \ \texttt{SOLVE} \\
\alpha T & \ \text{ENTER} \ 0 \ \text{ENTER} \ 1 \ \text{ENTER} \ 2 \ \text{ENTER} \ \texttt{SOLVE}
\end{align*}

¿Cuál es la exactitud de la respuesta? La solución general para la ecuación diferencial

$$ y' = t + y $$

es

$$ y = ce^t - t - 1 $$

Donde $c$ es una constante arbitraria. Las condiciones iniciales dadas eran $2 = ce^0 - 0 - 1$. Cuando se resuelve $c$ y se sustituye en la solución general, la ecuación de solución es

$$ y = 3e^t - t - 1 $$

Cuando se resuelve $y(1)$, se devolverá $3e - 1 - 1 = 6.15484548538$. Comparando los resultados, se verá que existe un error de aproximadamente 0.000068, que entra dentro de la tolerancia de error especificada de 0.0001.
Cómo Resolver un Problema de Valor Inicial “Stiff”

Algunas ecuaciones diferenciales parece que van a llevar muchísimo tiempo para resolverlas. Si esto ocurre, puede que las ecuaciones sean “stiff”. Utilice la función “stiff” para resolver la ecuación.

Para utilizar una función “stiff”:

1. Pulse \( \text{SOLVE} \)
2. Seleccione Solve diff eq...
3. Resalte _STIFF_ y pulse \( \text{CHK} \)

\[
\text{SOLVE } y'(t) = f(t,y) \\
F: \quad \Delta f_1 \quad \Delta f_2 \\
\text{INDEP}: x \quad \text{INIT}: 0 \quad \text{FINAL}: 6.5 \\
\text{SOLN}: y \quad \text{INIT}: 0 \quad \text{FINAL}: \\
\text{TOL: } 0.0001 \quad \text{STEP: } 0.01 \text{ STIFF} \\
\text{CALCULATE STIFF DIFFERENTIAL?}
\]

Esta pantalla contiene los siguientes campos adicionales:

- \( \Delta f_1 \): Derivada parcial respecto a \( y \) de la expresión de \( F \).
- \( \Delta f_2 \): Derivada parcial respecto a \( t \) de la expresión de \( F \).

Para resolver un problema de valor inicial “stiff”:

1. Resalte STIFF y pulse \( \text{CHK} \).
2. Introduzca una ecuación o pulse CHOS para seleccionar una ecuación previamente almacenada en la memoria.
3. Introduzca las derivadas parciales de la ecuación respecto a \( y \) y \( t \) (o pulse CHOS para seleccionarlas si están archivadas en la memoria).
4. Especifique la variable independiente.
5. Introduzca el valor inicial de la variable independiente.
6. Introduzca el valor final de la variable independiente.
7. Especifique la variable de solución.
8. Introduzca el valor inicial de la variable de solución.
9. Introduzca una tolerancia de error aceptable.
10. (Opcional:) Introduzca un tamaño de paso. Normalmente es mejor aceptar el tamaño de paso calculado por defecto.
11. Pulse SOLVE.
Ejemplo: Resuelva la siguiente ecuación para $y(1)$ con $y(0) = 1$:

$$y' = -1000 \cdot (y - \sin(t)) + \cos(t)$$

En este ejemplo se sobreentiende que la calculadora está fijada en radianes.

El problema tardará en resolverse en torno a un minuto (si se hubiera utilizado el método estándar se tardaría más de cinco minutos).

¿Qué exactitud tiene la respuesta? Con las condiciones iniciales dadas, la ecuación de solución será:

$$y = e^{-1000t} + \sin(t)$$

Al resolver $y(1)$ dará $e^{-1000} + \sin(1) = 0.841470984808$. Comparando los resultados, se verá que existe un error de aproximadamente 0.000098, lo que entra dentro de la tolerancia de error especificada de 0.0001.

Cómo Resolver una Ecuación Diferencial con Valor de Vector

Es posible utilizar ecuaciones con valor de vectores para resolver ecuaciones diferenciales de segundo orden (o más alto) dados dos o más valores iniciales.

Otra forma de escribir una ecuación de segundo orden

$$y'' = a_1(t)y' + a_0(t)y + g(t)$$

es

$$\begin{bmatrix} y \\ y' \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ a_0(t) & a_1(t) \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} g(t)$$
A continuación se puede sustituir $w$ por $\begin{bmatrix} y \\ y' \end{bmatrix}$, $fw$ por $\begin{bmatrix} 0 & 1 \\ a_0(t) & a_1(t) \end{bmatrix}$, y $c$ por $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, lo que da

$$w' = fw * w + c * g(t)$$

que es una ecuación diferencial de primer orden.

**Ejemplo:** Resuelva la siguiente ecuación para $w(1)$ con $y(0) = 0$ e $y'(0) = 0$ ($w(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}$):

$$y'' = .5y' + .5y + .5t + 1$$

**Paso 1:** Convierta la ecuación en una ecuación de primer orden:

$$\begin{bmatrix} y \\ y' \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ .5 & .5 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (.5t + 1)$$

**Paso 2:** Almacene los valores de $fw$ ($\begin{bmatrix} 0 & 1 \\ .5 & .5 \end{bmatrix}$) y $c$ ($\begin{bmatrix} 0 \\ 1 \end{bmatrix}$):

`\[ \left( \begin{array}{c} 1 \\ 1 \end{array} \right) 0 \text{ SPCE } 1 \]

`\[ .5 \text{ SPCE } .5 \text{ ENTER } \]

`\[ \alpha \alpha \text{ FW } \alpha \text{ STO} \]

`\[ \left( \begin{array}{c} 1 \\ 0 \end{array} \right) \text{ SPCE } 1 \text{ ENTER } \]

`\[ \alpha \alpha \text{ C } \text{ STO} \]

**Paso 3:** Introduzca los valores inicial y final de la ecuación, fije la variable de solución en $w$ y resuelva $w(1)$:

`\[ \rightarrow \text{ SOLVE } \downarrow \text{ OK} \]

`\[ \alpha \alpha \text{ FW } \alpha \text{ W } \leftarrow \alpha \times \]

`\[ \rightarrow (\text{ .5 } \alpha \times \alpha \text{ T } \leftarrow \alpha \times \]

`\[ \rightarrow \text{ ENTER} \]

`\[ \rightarrow \text{ ENTER } 1 \text{ ENTER } \alpha \text{ W } \]

`\[ \text{ ENTER } \left( \begin{array}{c} 1 \\ 0 \end{array} \right) \text{ SPCE } 0 \]

`\[ \text{ ENTER } \text{ SOLVE} \]

Pulse `EDIT` para visualizar el vector resultante, $w(1)$, $[.718262064225 1.71826206422 ]$. El primer valor será $y(1)$, el segundo valor será $y'(1)$.
¿Qué exactitud presenta la respuesta? Las ecuaciones originales son

\[ y = e^t - t - 1 \]

\[ y' = t + y \]

Al evaluar las ecuaciones a 1 y comparar los resultados, podrá verse que existe un error de aproximadamente 0.0000198, lo que entra dentro de la tolerancia de error especificada de 0.0001.

Cómo Representar Gráficamente las Soluciones de Ecuaciones Diferenciales

Es posible representar gráficamente la solución para un valor inicial mediante la selección de la opción de ecuaciones diferenciales de la ventana de diálogo de PLOT.

Esta pantalla contiene los siguientes campos y teclas de menú:

**TYPE:** Tipo de representación gráfica (deberá ser Diff Eq—Ecuación Diferencial).

\[ \theta \]: Modo de ángulo.

**F:** Parte derecha de la ecuación que se desea representar gráficamente.

**INDEP:** Variable independiente (por defecto, X).

**INIT:** Valor inicial de la variable independiente \((t_0)\).

**FINAL:** Valor final de la variable independiente.

**SOLN:** Variable de solución (por defecto, Y).

**INIT:** Valor inicial de la variable de solución.
STIFF: Selecciona la representación gráfica de la resolución “stiff”.
EDIT: Permite editar un campo.
CHOOS: Permite editar una variable.
OPTS: Permite controlar las variables de la representación gráfica.
ERASE: Borra las representaciones gráficas anteriores.
DRAW: Crea la representación gráfica.

Pulse [OPTS] y aparecerán las siguientes opciones:

```
PLOT OPTIONS
TOL: 0.0001 STEP: Deflt. X AXES
H-VAR: 0 H-VIEW: -6.5 6.5
V-VAR: 1 V-VIEW: -3.1 3.2
H-TICK: 10 V-TICK: 10 X PIXELS
```

Esta pantalla contiene los campos siguientes:

TOL: Tolerancia de error aceptable.
STEP: Tamaño de paso.
AXES: Si se trazan los ejes o no.
H-VAR: Variable representada gráficamente en el eje horizontal.
V-VAR: Variable representada gráficamente en el eje vertical.
H-VIEW: Parte del eje horizontal que se desea ver.
V-VIEW: Parte del eje vertical que se desea ver.
H-TICK: Comillas simples horizontales.
V-TICK: Comillas simples verticales.
PIXELS: Si las comillas simples van espaciadas en unidades de usuario o puntos.

19-8 Ecuaciones Diferenciales
Para representar gráficamente problemas de valor inicial estándar:

1. Introduzca una ecuación o pulse \texttt{CHOOS} para seleccionar una ecuación.
2. Especifique la variable independiente.
3. Introduzca el valor inicial de la variable independiente.
4. Introduzca el valor final de la variable independiente.
5. Especifique la variable de solución.
6. Introduzca el valor inicial de la variable de solución.
7. Fije las opciones deseadas y los parámetros de visualización.
8. Pulse \texttt{ERASE DRAW}.

\textbf{Ejemplo:} Trace el gráfico $y' = t + y$, $y(0) = 2$, sobre el intervalo $[0, 1]$.

\textbf{Paso 1:} Seleccione el modo PLOT Diff Eq (REPRESENTACION GRAFICA de Ecuaciones Diferenciales), introduzca la ecuación, fije la variable independiente en T y establezca los valores inicial y final.

\begin{verbatim}
 PLOT A alpha D v
 T + alpha Y ENTER alpha T
 ENTER 0 ENTER 1 ENTER
 2 ENTER

 PLOT Y(T)=F(T,Y)
 TYPE: Diff Eq alpha: Deg
 F: 'T+Y'
 INDEP: T INIT: 0 FINAL: 1
 SOLN: Y INIT: 2 STIFF
 USE STIFF DIFF EQ SOLVER?

 PLOT OPTIONS
 TOL: .0001 STEP: Dflt AXES
 H-VAR: 0 H-VIEW: -1 2
 V-VAR: 1 Y-VIEW: -2 8
 H-TICK: 1 Y-TICK: 1 PIXELS
 TICK SPACING UNITS ARE PIXELS?

\end{verbatim}

\textbf{Paso 2:} Fije la visualización horizontal entre el rango -1 y 2, fije la visualización vertical entre el rango -2 y 8 y marque los ejes en todas las unidades de usuario.
Paso 3: Trace el gráfico.

Podrá ver que \( y(1) \) es aproximadamente 6. Esto coincide con el resultado del primer ejemplo de este capítulo.

**Cómo Representar Gráficamente una Ecuación Diferencial “Stiff”**

Utilice el método de representación gráfica “stiff” cuando se emplee mucho tiempo en la representación gráfica de ecuaciones o cuando las ecuaciones se representen de un modo erróneo. El hecho de representar gráficamente ecuaciones diferenciales “stiff” requiere la introducción de derivadas parciales en la ecuación por parte del usuario.

**Para utilizar la función de representación gráfica “stiff”:**

1. Pulse \( \text{PLOT} \)
2. Seleccione \( \text{Diff Eq} \)
3. Resalte \( \text{STIFF} \) y pulse \( \text{CHK} \)

Esta pantalla tiene los mismos elementos que la representación gráfica estándar más los siguientes:

\[ \partial F/\partial y: \] Derivada parcial respecto a \( y \) de la expresión de \( F \).

\[ \partial F/\partial t: \] Derivada parcial respecto a \( t \) de la expresión de \( F \).

19-10 Ecuaciones Diferenciales
Para representar gráficamente un problema de valor inicial "stiff":

1. Seleccione STIFF.
2. Introduzca una ecuación o pulse CHOOSE para seleccionar una ecuación.
3. Introduzca las derivadas parciales de la ecuación con respecto a y y t (o pulse CHOOSE para seleccionarlas si están archivadas en la memoria).
4. Especifique la variable independiente.
5. Introduzca el valor inicial de la variable independiente.
6. Introduzca el valor final de la variable independiente.
7. Especifique la variable de solución.
8. Introduzca el valor inicial de la variable de solución.
9. Fije las opciones deseadas y los parámetros de visualización.
10. Pulse ERASE DRAW.

Ejemplo: Represente gráficamente la ecuación dado que \( y(0) = 1 \):

\[
y' = -1000 * (y - \sin(t)) + \cos(t)
\]

**Paso 1:** Seleccione "stiff", seleccione radianes, introduzca la función, las derivadas parciales y los valores iniciales:

```
PLOT CHK D R
( ) Y = SIN T ENTER
+/- ENTER 1000 X COS T ENTER
T - SIN T ENTER
T ENTER 0 ENTER 1 ENTER
1 ENTER
```

**Paso 2:** Fije la visualización horizontal en la escala entre el rango -1 y 2 y la vertical entre -1 y 1, y marque los ejes cada 10 puntos.

```
PLOTS D 1 +/- ENTER
2 ENTER 1 +/- ENTER 1
ENTER 10 ENTER 10 ENTER
CHK
```

Ecuaciones Diferenciales 19-11
Paso 3: Trace el gráfico.

Cómo Representar Gráficamente un Plano de Fase de una Solución con Valores de Vector

La HP 48 también permite representar gráficamente ecuaciones con valor de vectores y seleccionar el valor de vector que se va a representar sobre cada uno de los ejes. Como se ha descrito anteriormente, otro modo de escribir la ecuación de segundo orden

\[ y'' = a_1(t)y' + a_0(t)y + g(t) \]

es

\[ w' = fw \times w + c \times g(t) \]

Donde \( w \) es \( \begin{bmatrix} y \\ y' \end{bmatrix} \), \( f \) es \( \begin{bmatrix} 0 & 1 \\ a_0(t) & a_1(t) \end{bmatrix} \), y \( c \) es \( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \).

La condición inicial \( y'(t_0) = y_0 \) y \( y(t_0) = y_1 \) puede escribirse \( w'(t_0) = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \). Esta es una condición inicial con valor de vector.

Ejemplo: Represente gráficamente la siguiente ecuación para \( w(1) \) con \( y(0) = 0 \) e \( y'(0) = 0 \) (\( w(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)):

\[ y'' = .5y' + .5y + .5t + 1 \]

donde \( y(0) = 0 \) e \( y'(0) = 0 \) (\( w(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)).

Paso 1: Convierta la ecuación en una ecuación de primer orden.

\[
\begin{bmatrix} y' \\ y \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ .5 & .5 \end{bmatrix} \begin{bmatrix} y' \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (.5t + 1)
\]

19-12 Ecuaciones Diferenciales
**Paso 2:** Almacene los valores de \( f'w \) y \( c \).

\[
\begin{align*}
\text{STO} & \quad 0 \quad \text{SPC} 1 \\
\text{STO} & \quad \text{SPC} 0 \quad \text{SPC} 1 \\
\text{STO} & \quad \text{SPC} 0
\end{align*}
\]

**Step 3:** Introduzca la ecuación y los valores iniciales y fije la variable de solución en \( w \).

\[
\begin{align*}
\text{PLOT} & \quad D \quad \text{SPC} 1 \\
\text{STO} & \quad \text{SPC} 0 \\
\text{STO} & \quad T \quad \text{SPC} 0 \\
\text{STO} & \quad W \quad \text{SPC} 0
\end{align*}
\]

**Paso 4:** Fije la visualización horizontal entre el rango -1 y 2 y la vertical entre -1 y 2 y marque los ejes cada 0.5 unidades de usuario.

\[
\begin{align*}
\text{OPTS} & \quad 1 \quad \text{SPC} 0 \\
\text{OPTS} & \quad 2 \quad \text{SPC} 0 \\
\text{OPTS} & \quad .5 \quad \text{SPC} 0
\end{align*}
\]

**Paso 5:** Trace el gráfico.

\[
\begin{align*}
\text{OK} & \quad \text{ERASE} \quad \text{DRAW}
\end{align*}
\]
Paso 6: Vuelva a dibujar el gráfico con el segundo valor de vector en el eje vertical.
Cálculo y Manipulación Simbólica

Integración

Es posible calcular integrales *simbólicas* de expresiones con antiderivadas conocidas (integrales indeterminadas). También se puede estimar el valor *numérico* de estas y otras integrales.

Integración Numérica

La integración numérica permite aproximarse a una integral determinada—incluso cuando la integración simbólica no puede generar un resultado de forma cerrada. La integración numérica emplea un procedimiento numérico iterativo para obtener la aproximación.

Para hallar el valor de una integral con límites numéricos:

1. Pulse **SYMBO**IC para entrar en la plantilla INTEGRATE.
2. Introduzca la expresión que desee integrar en el campo **EXPR**. (sin el signo de la integral).
3. Introduzca la variable de integración en el campo **VAR**.
4. Introduzca los límites de la integración en los campos **LO** y **HI**.
   Para integraciones numéricas, los límites deberán ser números o expresiones algebraicas que se evalúen en números.
5. Asegúrese de que en el campo **RESULT** aparezca **Numeric** (pulse **/\** si fuera necesario). Verá que aparece el campo **NUMBER FORMAT** cuando el tipo de resultado es **Numeric**. Esto es importante porque el formato numérico de la pantalla determina el factor de exactitud de la integración numérica.
6. Fije el formato numérico de la pantalla para indicar el factor de exactitud que desee para el cálculo. El formato **Std** (Estándar) produce el factor de exactitud más alto (y consecuentemente el mayor tiempo de cálculo) mientras que **Fix 0** (o **Sci 0** o **Eng 0**) producen el factor de exactitud más bajo (y el menor tiempo de cálculo). Consulte “El Factor de Exactitud y la Incertidumbre de la Integración Numérica” en la página 20-6.

7. Pulse **OK** para calcular la integral.

Las integrales _impropias_ son aquéllas en las que uno o ambos límites son el infinito (∞). La HP 48 es una calculadora con límites de cálculo finitos y, por tanto, debe siempre emplear límites _finitos_ cuando se calculan integrales numéricas. De todos modos, mediante una transformación de las variables, se puede trazar el mapa de un ámbito ilimitado sobre uno limitado.

Una transformación útil, \[ y = \arctan x, \] traza el eje real completo \( x \) sobre el intervalo limitado \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \). Esta es la transformación:

\[
\int_{-\infty}^{\infty} f(x)dx \rightarrow \int_{\arctan-\infty}^{\arctan\infty} f(\tan y) \cdot (1 + \tan^2 y)dy
\]

**Para calcular una integral impropia:**

1. **Asegúrese de que está en el modo Radian—radianes (pulse **RAD** si fuera necesario).**
2. Pulse **SYM** para entrar en la plantilla **INTEGRATE**.
3. Introduzca el integrando de la integral impropia en el campo **EXPR**.
4. Con el campo EXPRL resaltado, pulse \[ \text{NXT} \] y \[ \text{CALC} \] e introduzca la expresión de transformación en la pila. Por ejemplo, si la variable de integración de la integral impropia es \( x \), introduzca \( \tan(y) \) para efectuar la transformación \( x = \tan y \) mostrada anteriormente. Haga una copia de la expresión de la transformación pulsando \[ \text{ENTER} \] por segunda vez.

5. Introduzca el nombre de la variable de integración original en la integral impropia y pulse \[ \text{STO} \].

6. Introduzca el nombre de la nueva variable de integración y pulse \[ \text{R} \] para calcular la derivada de la expresión de transformación respecto a la nueva variable de integración.

7. Pulse \[ \text{X} \] \[ \text{EVAL} \] \[ \text{OK} \] para calcular el integrando transformado y devolverlo al campo EXPR:

8. Introduzca la nueva variable de integración en el campo \( \text{V\,INR} \).

9. Introduzca el límite inferior de la integración en el campo \( \text{LD} \). Utilice \( '\text{MAXR}' \) donde sea necesario incluir \( \infty \).

10. Pulse \[ \text{CALC} \], transforme el límite y pulse \[ \text{OK} \] para volver. Para la transformación de la arcotangente anterior, \( y = \arctan x \), deberá hallar la arcotangente del límite para transformarla. Obsérvese que esta función es la inversa de la utilizada para transformar la expresión anterior.

11. Repita los dos pasos anteriores para el límite superior, empezando y terminando en el campo \( \text{HI} \).

12. Asegúrese que el tipo de resultado es \text{Numeric} y fije el formato numérico deseado.

13. Pulse \[ \text{OK} \] para calcular la integral numérica.

\textbf{Ejemplo:} Calcule la siguiente integral impropia:

\[ \int_{1}^{\infty} \frac{1}{x(x+1)} \, dx \]

\textbf{Paso 1:} Entre en la plantilla \text{INTEGRATE} e introduzca el integrando de la integral impropia.
**Paso 2:** Utilice CALC para acceder a la pila, introduzca y duplique la expresión de transformación.

```
NXT CALC \tan \alpha \text{Y}
ENTER ENTER
```

```
| 3: | '1/(X*(X+1))' |
| 2: | 'TAN(Y)' |
| 1: | 'TAN(Y)' |
```

**Paso 3:** Transforme la variable de integración, elimine Y para asegurar un resultado simbólico y calcule la derivada de la expresión de transformación.

```
\alpha \text{X STO}
\alpha \text{Y ENTER ENTER}
\boxed{\text{PURG \arrow C}}
```

```
| 3: | '1/(X*(X+1))' |
| 2: | '1+TAN(Y)^2' |
| 1: | 'TAN(Y)' |
```

**Paso 4:** Multiplique la derivada de la expresión de transformación por el integrando, evalúe para efectuar la transformación y devuelva el resultado al campo \text{EXPR*}.

```
\times \text{EVAL OK}
```

```
\boxed{\text{INTEGRATE \hfill RESULT: Symbolic}}
```

**Paso 5:** Introduzca la nueva variable de integración y a continuación calcule e introduzca los límites transformados.

```
\downarrow \alpha \text{Y ENTER}
\boxed{CALC 1 \downarrow \text{ATAN} OK}
\boxed{CALC MTH NXT}
\boxed{CONS NXT MAXR}
\boxed{ATAN \downarrow \text{CONT} OK}
```

```
\boxed{\text{INTEGRATE \hfill RESULT: Symbolic}}
```

**Paso 6:** Cambie el tipo del resultado a \text{Numeric}, fíjese la pantalla en \text{Std} (Estándar) y calcule la integral.

```
\downarrow +/- \downarrow
+/-(hasta que aparezca \text{Std})
```

```
| 1: | .69314718055 |
```

20-4 Cálculo y Manipulación Simbólica
Para calcular una integral múltiple numéricamente:

1. Pulse \( \text{(EQUATION)} \), escriba la integral múltiple (incluya todos los signos de la integral) y pulse \( \text{(ENTER)} \). Todos los límites deberán evaluarse en un número.

2. Fije el formato numérico de la pantalla para que refleje la exactitud deseada.

3. Pulse \( \text{(NUM)} \) para calcular el resultado.

**Ejemplo:** Halle el área de la región encerrada por el cardiode \( r = 1 - \cos \theta \). Esta región puede expresarse mediante la doble integral:

\[
\int_{0}^{2\pi} \int_{0}^{1-\cos \theta} r \ dr \ d\theta
\]

**Paso 1:** Escriba la doble integral mediante el EquationWriter.

**Paso 2:** Introduzca la doble integral en la pila y fije en modo de la pantalla en Fix 3 y el modo de ángulo en Radianes.

**Paso 3:** Calcule la doble integral. A continuación compruebe si \( \pi \) puede ser un factor del resultado.
El Factor de Exactitud y la Incertidumbre de la Integración Numérica

La integración numérica calcula la integral de una función \( f(x) \) hallando la media ponderada de los valores de la función en los distintos valores de \( x \) (puntos de muestra) dentro del intervalo de integración. La exactitud del resultado depende del número de puntos de muestra considerados: generalmente, cuantos más puntos de muestra existan mayor será la exactitud. Existen dos razones por las que se puede desear limitar la exactitud de la integral:

- La cantidad de tiempo empleado para calcular la integral aumenta a medida que se incrementa el número de puntos de muestra.
- Existen inexactitudes inherentes en cada uno de los valores calculados de \( f(x) \):
  - Las constantes derivadas experimentalmente de \( f(x) \) pueden ser inexactas. Por ejemplo, si \( f(x) \) contiene constantes derivadas experimentalmente que son exactas sólo para dos lugares decimales, no merece la pena calcular la integral para la precisión total (12 dígitos) de la calculadora.
  - Si \( f(x) \) tiene como modelo un sistema físico, pueden existir inexactitudes en el modelo.
  - La propia calculadora introduce errores de redondeo en cada cálculo de \( f(x) \).

Para limitar indirectamente la exactitud de la integral, se puede especificar el factor de exactitud del integrando \( f(x) \), definido como:

\[
\text{factor de exactitud} \leq \left| \frac{\text{valor verdadero de } f(x) - \text{valor calculado de } f(x)}{\text{valor calculado de } f(x)} \right|
\]

El valor de exactitud es la estimación en forma decimal del error de cada uno de los valores calculados de \( f(x) \). El factor de exactitud se especifica fijando el modo de la pantalla en \( n \, \text{Fix} \). Por ejemplo, si se fija el modo de la pantalla en \( 2 \, \text{Fix} \), el factor de exactitud será de 0,01 ó del 1%. Si se fija el modo de la pantalla en \( 5 \, \text{Fix} \), el factor de exactitud será de 0,00001 ó del 0,001%.
El factor de exactitud está relacionado con la *incertidumbre de integración* (una medida de la exactitud de la *integral*) mediante:

\[ \text{incertidumbre de integración} \leq \text{factor de exactitud} \times \int |f(x)| \, dx \]

El área rayada es el valor de la integral. El área sombreada es el valor de la incertidumbre de integración. Como puede verse, en cualquier punto \( x \), la incertidumbre de integración es proporcional a \( f(x) \).

El algoritmo de integración numérica utiliza un método iterativo, doblando el número de los puntos de muestra en cada iteración sucesiva. Cuando el algoritmo se detiene, el valor actual de la integral se devuelve al nivel 1 y la incertidumbre de integración se archiva en la variable \( IERR \). El error del valor final será casi con toda seguridad menor que la incertidumbre de integración.

**Para comprobar la incertidumbre de los resultados numéricos:**

- Una vez calculados los resultados numéricos, pulse [VAR] \( IERR \) (tal vez necesite pulsar [NXT] una o más veces antes de que \( IERR \) aparezca en el menú).
Integración Simbólica

La integración simbólica significa calcular una integral hallando una antiderivada conocida y a continuación sustituyendo los límites de integración especificados. El resultado será una expresión simbólica.

La HP 48 puede integrar los siguientes modelos:

- Todas las funciones incorporadas cuyas antiderivadas contienen solamente funciones incorporadas (y cuyos argumentos son lineales). Consulte las funciones analíticas identificadas mediante "A" en el apéndice G. Por ejemplo, \( \sin(x) \rightarrow \cos(x) \).

- Sumas, diferencias, negaciones y otros modelos seleccionados de dichas funciones. Por ejemplo, \( \sin(x) - \cos(x) \rightarrow -\sin(x) - \cos(x) \) y \( 1/(\cos(x) * \sin(x)) \rightarrow \ln(\tan(x)) \).

- Derivas de todas las funciones incorporadas. Por ejemplo, \( \text{INV}: 1 + x^2 \rightarrow \text{ATAN}(x) \).

- Polinomios cuyo término de base es lineal. Por ejemplo, \( (x-3)^3 + 6 \rightarrow 6x + (x-3)^4/4 \).

Para hallar la integral determinada con límites simbólicos:

1. Pulse \( \text{\textit{\text{OK}}} \) para entrar en la plantilla \textit{INTEGRATE}.

2. Introduzca la expresión que desee integrar en el campo \textit{EXPR}:(sin el signo de la integral).

3. Introduzca la variable de integración en el campo \textit{VAR}:

4. Introduzca los límites de integración en los campos \textit{LO}: y \textit{HI}:. Si desea utilizar variables formales para los límites, asegúrese de que dichas variables no existen en el directorio actual.
5. Asegúrese de que en el campo RESULT aparece Symbolic (pulse +/- si fuera necesario).

6. Pulse \(\text{OK}\) para calcular la integral. Si el resultado es una expresión de forma cerrada—si no existe el signo \(\int\) en el resultado—la integración simbólica se ha efectuado con éxito. Si el resultado sigue conteniendo \(\int\), se puede intentar reorganizar la expresión y calcularla de nuevo. Si esta reorganización no produce un resultado de forma cerrada, se puede efectuar una estimación de la respuesta con una integración numérica o hacer una aproximación a la integración simbólica mediante el polinomio de Taylor (véase "Aproximación del Polinomio de Taylor" en la página 20-13).

7. Pulse \(\text{EVAL}\) para simplificar el resultado de forma cerrada.

Para hallar la integral indeterminada de una función:

1. Pulse \(\text{SYMBO\,\,LIC}\) \(\text{OK}\) para entrar en la plantilla \text{INTEGRATE}.

2. Introduzca la expresión que desee integrar en el campo EXPRT \(\text{}\) (sin el signo de la integral).

3. Introduzca la variable de integración en el campo \(\text{VAR}\). Asegúrese de que esta variable es formal—que no existe en el directorio actual.

4. Introduzca 0 como el límite inferior y la variable de integración como el límite superior.

5. Asegúrese de que el campo RESULT aparece Symbolic (pulse +/- si fuera necesario).

6. Pulse \(\text{OK}\) para calcular la expresión de forma cerrada.

7. Con la expresión de forma cerrada en el nivel 1 de la pila, pulse \(\text{PRG}\) \(\text{TYPE}\) \(\text{OBJ}\) \(3\) \(\text{STACK}\) \(\text{NXT}\) \(\text{DRPN}\) para descartar los límites inferiores.

8. Pulse \(\text{EVAL}\) para calcular el resultado en el límite superior.

Para integrar simbólicamente una expresión que no es integrable:

1. Derive una aproximación del polinomio de Taylor al integrando.

2. Halle la integral simbólica del polinomio de Taylor.
Diferenciación

Una expresión simbólica se puede diferenciar paso por paso, de modo que puedan verse las sustituciones—o completamente en un solo paso para ir directo al resultado final. Si la expresión contiene solamente funciones analíticas (las identificadas con “A” en el apéndice G), se obtendrá una derivada explícita.

Para hallar la derivada de una función en un punto específico:

1. Pulse [SYM] para entrar en la plantilla
   DIFFERENTIATE.
2. Introduzca la función en el campo EXP:
3. Introduzca la variable de diferenciación en el campo VAR:
4. Pulse ÷, si fuera necesario, para cambiar el tipo de resultado a Numeric:

   EXP: 
   VAR: 
   RESULT: Numeric
   VALUE:

   ENTER EXPRESSION
   [EDITOR] [STEP] [CANCEL] [OK]

   Pantalla DIFFERENTIATE Numérica

5. Introduzca el valor en el que desee calcular la derivada en el campo VALUE:
6. Pulse [OK].

Para diferenciar simbólicamente una expresión completamente en un solo paso:

1. Pulse [SYM] para entrar en la plantilla
   DIFFERENTIATE.

   EXP: 
   VAR: 
   RESULT: Symbolic

   ENTER EXPRESSION
   [EDITOR] [STEP] [CANCEL] [OK]

   Pantalla DIFFERENTIATE Simbólica

20-10 Cálculo y Manipulación Simbólica
2. Introduzca la expresión en el campo EXP:.
3. Introduzca la variable de diferenciación en el campo VAR:.
4. Pulse OK.

**Para diferenciar simbólicamente una expresión paso por paso:**

1. Pulse \( \text{SYMBOIC} \) y OK para entrar en la plantilla \text{DIFFERENTIATE}.
2. Introduzca la función en el campo \text{EXPR:}.
3. Introduzca la variable de diferenciación en el campo \text{VAR:}.
4. Pulse \text{STEP}. Se calculará el primer paso de la derivada y se devolverá a la pila.
5. Pulse \text{EVAL} repetidamente para que la evaluación de la derivada avance paso a paso.
6. Repita el paso 4 hasta que la derivada esté calculada totalmente.

**Cómo Crear Derivadas Definidas por el Usuario**

Si se ejecuta \( \partial \) para una función que no tiene derivada incorporada, \( \partial \) devolverá una nueva función cuyo nombre es \text{der} seguido por el nombre de la función original. Los argumentos de la nueva función son los argumentos de la función original más las derivadas de dichos argumentos (se puede hacer una mayor diferenciación mediante la creación de una función definida por el usuario para representar la nueva función de derivadas).

Si se ejecuta \( \partial \) para una función formal de usuario (un nombre seguido por argumentos entre paréntesis para el que no existe ninguna función definida por el usuario en la memoria de usuario), \( \partial \) devolverá una variable formal cuyo nombre es \text{der} seguido por el nombre de la función de usuario original más los argumentos y sus derivadas.

**Ejemplo:** La definición del \% de la HP 48 no incluye ninguna derivada. Si se introduce \text{''dZ(\%X,\%Y)''} y se pulsa \text{EVAL}, se obtendrá

\[
\text{''der(\%X,\%Y, dZ(\%X), dZ(\%Y) )''}
\]
Cada uno de los argumentos de la función $\%$ dará como resultado dos argumentos para la función der$\%$ function—$\times$ dará como resultado $\times$ y $\partial Z(\times)$ e $\gamma$ darán como resultado $\gamma$ y $\partial Z(\gamma)$.

Para definir la función derivada de $\%$, puede introducirse
\[
\text{der}\% (x, y, dx, dy) = (x*dy + y*dx) / 100
\]
y pulsar $\text{DEF}$. Aparecerá $\text{DER}\%$ en el menú VAR.

Ahora se puede obtener la derivada de '$\%$($x$, $2*x$)' introduciendo la expresión y la variable '$\times$' y a continuación pulsando $\text{DE} \rightarrow \text{ALGEBRA} \rightarrow \text{COLCT}$. El resultado será '$\partial4*\times$'.

**Ejemplo:** Introduzca la derivada de una función formal de usuario, '$\partial x (f (x1, x2, x3))$'. A continuación calcúlela pulsando $\text{EVAL}$. El resultado será:

\[
\text{der} f (x1, x2, x3, \partial x (x1), \partial x (x2), \partial x (x3))
\]

**Diferenciación Implícita**

Una función implícita de, digamos, $x$ e $y$ es una función en la que una de las variables ($y$) no está directamente expresada en función de la otra variable ($f$). Esto puede deberse a que o bien sea imposible, difícil o bien que no sea en absoluto obvio cómo puede resolverse la expresión para una variable en términos de la otra. Cuando esto ocurra, todavía será posible diferenciar la expresión utilizando las reglas normales de diferenciación (y la regla de la cadena).

**Para efectuar una diferenciación implícita:**

1. Introduzca la función implícita en la pila. En vez de utilizar dos variables independientes (tales como $x$ e $y$), convierta la segunda variable en dependiente de la primera (como $x$ e $y(x)$). Esto une las dos variables del modo adecuado para que la diferenciación trate la función como implícita en vez de eliminar una de las variables como una constante.

TAYLR siempre evalúa la función y sus derivadas en cero. Si se está interesado en el comportamiento de una función en una región distinta a cero, el polinomio de Taylor resultará más útil si se traslada el punto de evaluación a dicha región, según se describe a continuación. Por otro lado, si la función no tiene derivada en cero, su polinomio de Taylor no tendrá sentido a menos que se traslade el punto del cálculo a un lugar distinto a cero.

Para derivar la aproximación del polinomio de Taylor en torno a \( x = a \):

1. Pulse \( \text{SYMBO} \text{LIC} \) \( \text{OK} \) para entrar en la plantilla \( \text{TAYLOR POLYNOMIAL} \).
2. Introduzca la función a la que desee aproximarse en el campo \( \text{EXPR} \).
3. Pulse \( \text{CALC} \) e introduzca \( 'Y+a' \) en la pila, donde \( a \) es el punto en el que se va a derivar el polinomio. Obsérvese que \( Y \) (o el nombre que se quiera utilizar) no deberá existir en la ruta del directorio actual.
4. Pulse \( \text{STO} \) \( X \) \( \text{OK} \) para almacenar la traslación, volver a evaluar la función utilizando dicha traslación y devolver el resultado al campo \( \text{EXPR} \).
5. Introduzca el nombre de la nueva variable \( (Y) \) que se va a utilizar en el polinomio de Taylor en el campo \( \text{VAR} \).
6. Introduzca el orden del polinomio de Taylor en el campo \( \text{ORDER} \). Obsérvese que cuanto más alto sea el orden del polinomio, más tiempo se empleará para calcularlo, pero más exactas serán las aproximaciones.
7. Pulse \( \text{OK} \) para derivar el polinomio de Taylor del punto trasladado.
8. Pulse \( \text{VAR} \) \( \text{PURG} \) para eliminar la variable \( X \).
9. Introduzca \( 'X-a' \) en la pila y pulse \( \text{STO} \) \( Y \) \( Y \) para almacenarla en \( Y \) (si se ha utilizado un nombre de variable diferente, utilicelo en lugar de \( Y \)).
10. Pulse \( \text{CALC} \) \( \text{OK} \) para volver a cambiar la variable a la \( X \) original. También se puede \( \text{SYMBOLIC} \) \( \text{COLLECT} \) para simplificar los resultados.
Cómo Hallar Soluciones Simbólicas para las Ecuaciones

Un objetivo común de la manipulación simbólica de una expresión o ecuación es “resolver” una variable simbólicamente—es decir, expresar una variable en términos de las demás variables y números de dicha expresión o ecuación. Esta resolución simbólica se puede efectuar mediante los siguientes comandos:

- **ISOL.** Resuelve una variable que aparece solamente una vez en cualquier tipo de expresión o ecuación.
- **QUAD.** Resuelve una variable que aparece en una expresión o ecuación cuadrática.

### Comparación de los Comandos de Soluciones Simbólicas

<table>
<thead>
<tr>
<th>Comando ISOL</th>
<th>Comando QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>La variable aparece solamente una vez.</td>
<td>La variable puede aparecer varias veces—no es necesaria la reorganización.</td>
</tr>
<tr>
<td>La variable puede ser de cualquier orden.</td>
<td>La variable no deberá tener un orden superior al segundo para una solución exacta.</td>
</tr>
<tr>
<td>La variable puede ser el argumento de una función no lineal (como SIN—SENO).</td>
<td></td>
</tr>
</tbody>
</table>

### Cómo Despejar una Variable Sencilla

**Para resolver una variable que solamente aparece una vez:**

1. Pulse `Symbolic` y luego `OK` para entrar en la plantilla ISOLATE A VARIABLE.
2. Introduzca la expresión o ecuación que desee resolver en el campo `EXPR:`. Si la operación algebraica es una expresión (no tiene el signo `=`), se tratará como una ecuación con la forma `expresión=0`.
3. Introduzca la variable que desee resolver en el campo `VAR:`. La variable que se va a despejar podrá ser el argumento de una función *solamente si la HP 48 tiene una inversa para dicha función*. Las funciones para las que la HP 48 tiene inversas se llaman funciones analíticas en este manual. Por ejemplo, se puede despejar X en una
operación algebraica que contenga \( \tan(x) \) o \( \ln(x) \) porque \( \tan \) y \( \ln \) tienen inversas (ATAN y EXP). De todos modos, no se puede despejar \( x \) en una operación algebraica que contenga \( \tan(x) \). El índice de operaciones del apéndice H identifica las funciones analíticas de la HP 48.

4. Opcional: Seleccione el tipo de resultado que desee (Numeric intentará buscar una solución numérica y generará un mensaje de error si no la encuentra).

5. Opcional: Compruebe el campo PRINCIPAL si sólo desea ver la solución principal (consulte "Cómo Obtener Soluciones Generales y Principales" en la página 20-17).

6. Pulse \( \text{OK} \) para resolver la variable.

\[ \text{Cómo Resolver Ecuaciones Cuadráticas} \]

Para resolver una variable de una ecuación o expresión cuadrática:

1. Pulse \( \text{SYMBO}\text{LIC} \) \( \text{A} \) \( \text{A} \) \( \text{OK} \) para entrar en la plantilla \( \text{SOLVE} \text{\text{QUADRATIC}} \).

2. Introduzca la ecuación o expresión cuadrática que desee resolver en el campo \( \text{EXPR:} \). Si la operación algebraica es una expresión, se tratará como una ecuación de la forma \( 'expresión=0' \). Si se introduce una ecuación que \( no \) sea de primer o de segundo orden en la variable que se va a resolver, se transformará en una \( \text{aproximación} \) del polinomio de segundo orden antes de resolverse como cuadrática.

3. Introduzca la variable que desee resolver en el campo \( \text{VAR:} \). Si la operación algebraica contiene otras variables, \( no \) deberán existir en el directorio actual si quiere que dichas variables se incluyan en la solución como variables formales (simbólicas). Si existen en el directorio actual, se calcularán cuando se solucione la ecuación o expresión cuadrática (elimine la variable para convertirla en formal).

4. Opcional: Seleccione el tipo de resultado deseado (Numeric intentará hallar una solución numérica y generará un mensaje de error si no la encuentra).

5. Opcional: Compruebe el campo PRINCIPAL si solamente desea ver la solución principal (véase a continuación).

6. Pulse \( \text{OK} \) para resolver la ecuación o expresión cuadrática.
Cómo Obtener Soluciones Generales y Principales

Las funciones de la HP 48 siempre devuelven un resultado—la solución principal. Por ejemplo, $\sqrt{4}$ siempre devuelve $+2$ y ASIN(.5) siempre devuelve 30 grados sexagesimales o 0.524 radianes.

De todos modos, cuando se soluciona una variable de una operación algebraica, puede existir más de una solución—y tal vez desee saber cuáles son. Por eso, los comandos ISOL y QUAD normalmente devuelven una solución general. Una solución general representa las múltiples soluciones, incluyendo variables especiales que pueden tomar múltiples valores:

- $s1$ representa un signo arbitrario $+0 - (\pm1 \pm-1)$. Los signos arbitrarios adicionales del resultado se indican mediante $s2, s3, \ldots$. El valor “principal” de los signos arbitrarios es $+1$.

- $n1$ representa un entero arbitrario $-0, \pm1, \pm2, \ldots$. Los enteros arbitrarios adicionales están representados por $n2, n3, \ldots$. El valor “principal” de los enteros arbitrarios es $0$.

Para especificar soluciones generales o principales mientras se visualiza la pila:

1. Pulse \textsf{Modes Flag}.
2. Pulse \textsf{CHK} hasta que aparezca la opción deseada para el indicador -1.

Ejemplo: Cuando se utiliza ISOL para despejar $x$ en la ecuación $y = x^2$, se producen los siguientes resultados si se escogen las opciones de solución general y principal (en el modo Radianes):

Solución Principal: $'x=\Phi\text{ASIN}(Y)'$.

Solución General: $'x=\pm1\pm\Phi\text{ASIN}(Y)\pm(-1^\pm n1+n1)'$
Cómo Mostrar las Variables Ocultas

Quizás alguna vez se desee resolver una variable almacenada dentro de otra variable. Para poder hacerlo, se tendrá que convertir la expresión algebraica de modo que la variable oculta se haga visible.

En algunas ocasiones puede desearse acelerar el cálculo convirtiendo una operación algebraica de modo que se calculen todas las variables excepto algunas.

Para calcular sólo las variables especificadas de una expresión:

1. Introduzca la expresión en la pila.
2. Escoja entre una de las siguientes opciones:
   - Introduzca el nombre de la variable (con los delimitadores ‘’ ) en la expresión que desee calcular.
   - Introduzca una lista que contenga los nombres de las variables en la expresión que no desee calcular.
3. Pulse \textbf{SYMBO}LIC \textbf{SHOW}. La expresión se calculará parcialmente de acuerdo con la opción elegida en el paso 2.

Para calcular una operación algebraica con valores de variables temporales:

1. Introduzca la operación algebraica en la pila.
2. Introduzca una lista que contenga todos los nombres de las variables seguidos por el valor de sustitución. Por ejemplo: \texttt{< nombre_i expr_i ... nombre_n expr_n>} donde \texttt{expr} puede ser un número o una expresión simbólica.
3. Pulse \textbf{SYMBO}LIC \textbf{NXT} para efectuar el cálculo. Si una variable de la lista existe actualmente (en el menú VAR), su contenido no cambiará mediante la función \texttt{|} ("donde").
Cómo Reorganizar Expresiones Simbólicas

Cómo Manipular Expresiones Completas

A veces se pueden simplificar las operaciones algebraicas ampliando las subexpresiones o juntando los términos iguales. Por ejemplo, si una variable aparece más de una vez en una operación algebraica, puede simplificarse para que la variable aparezca una sola vez—permitiéndole utilizar ISOL para solucionar la variable.

Una subexpresión consiste en una función y sus argumentos. La subexpresión que define una subexpresión se llama función de más alto nivel de dicha subexpresión—es la función que se ejecuta en último lugar. Por ejemplo, en la expresión \( A+B\times C/D \), la función de más alto nivel de la subexpresión \( B\times C \) es \( \times \), la función de más alto nivel de \( B\times C/D \) es \( \div \) y la función de más alto nivel de \( A+B\times C/D \) es \( + \).

Para juntar los términos iguales de una operación algebraica:

- Introduzca la expresión en la pila y pulse \( \text{Symbolic COLCT} \). COLCT simplifica una operación algebraica del modo siguiente:
  - Calcula las subexpresiones numéricas. Por ejemplo, \( '1+2+\log(10)' \) COLCT devuelve 4.
  - Junta los términos numéricos. Por ejemplo, \( '1+x+2' \) COLCT devuelve \( '3+x' \).
  - Ordena los factores (argumentos de \( \times \)) y combina los factores parecidos. Por ejemplo, \( 'x^z*y*x^t*y' \) COLCT devuelve \( 'x^*(t+z)*y^2' \).
  - Ordena los sumandos (argumentos de \( + \ o \ - \)) y combina los términos parecidos que se diferencian solamente por un coeficiente. Por ejemplo, \( 'x+x+y+3*x' \) COLCT devuelve \( '5*x+y' \).

COLCT opera por separado sobre las dos partes de una ecuación, por tanto los términos iguales de las partes opuestas de una ecuación no se combinarán.
Para expandir los productos y las potencias en una operación algebraica:

- Introduzca la expresión en la pila y pulse $\textit{SYMBO}\textit{LIC}$ $\textit{EXPR}$ EXPAN reescribe una operación algebraica del modo siguiente:
  - Distribuye la multiplicación y la división sobre la suma. Por ejemplo, $'a*(b+c)'$ $\textit{EXPR}$ devuelve $'a*b+a*c'$.
  - Expande las potencias sobre las sumas. Por ejemplo, $'a^(b+c)'$ $\textit{EXPR}$ devuelve $'a^b*a^c'$.
  - Expande los enteros de potencias positivas. Por ejemplo, $'x^5'$ $\textit{EXPR}$ devuelve $'x*x^4'$ y $'(x+y)^2'$ $\textit{EXPR}$ devuelve $'x^2+2*x*y+y^2'$.

EXPAN no efectúa todas las posibles expansiones en una sola ejecución. Por el contrario, EXPAN trabaja sobre las expresiones jerárquicamente, deteniéndose en cada una de las ramas de la jerarquía cuando encuentra una subexpresión que se puede expandir. En primer lugar, examina la subexpresión de más alto nivel (la subexpresión de más alto nivel es la propia operación algebraica). Si es adecuada para la expansión, EXPAN la expande y se detiene—si no es así, EXPAN examinará todas las subexpresiones del segundo nivel. Este proceso continúa hasta que tenga lugar una expansión en algún nivel—los niveles inferiores no se comprobarán.

Cómo Manipular las Subexpresiones

Es posible reorganizar una operación algebraica en estadios específicos de paso por paso, lo que permite obtener el resultado en la forma descida. Las transformaciones de Rules (Reglas) son operaciones de reorganización algebraica de un alcance más reducido que EXPAN y COLCCT. Las transformaciones de Rules permiten direccionar la ruta de acceso de una reorganización algebraica.

Para reorganizar algebraicamente una subexpresión concreta:

1. Coloque la operación algebraica en la aplicación EquationWriter:
   - Para introducir una operación algebraica nueva, pulse $\textit{EQUATIO}\textit{N}$ y escribala.
   - Para utilizar una operación algebraica en el nivel 1, pulse $\textit{VAR}$.
   - Para utilizar una operación algebraica almacenada en una variable, pulse la tecla del menú VAR correspondiente a la variable y pulse $\textit{VAR}$.
2. Entre en el entorno Selection:
   ■ Desde el modo de entrada, pulse \( \text{Enter} \).
   ■ Desde el modo de desplazamiento, pulse \( \text{Left} \) \( \text{[PICTURE]} \) \( \text{Right} \).
3. Pulse \( \text{Up} \) \( \text{Down} \) \( \text{Left} \) \( \text{Right} \) para desplazar el cursor de selección a la
   \( \text{función de más alto nivel} \) de la subexpresión que desee reorganizar
   (véase a continuación).
4. Opcional: Pulse \( \text{EXPR} \) en el momento que lo desee para resaltar
   la subexpresión actual en su totalidad (el resaltado se activará o se
   desactivará).
5. Pulse \( \text{RULES} \) para entrar en el menú RULES—REGLAS (se puede
   pulsar \( \text{Enter} \) para volver al menú Selection).
6. Pulse la tecla de menú de la transformación deseada (o desplace
   simplemente el cursor para \( \text{no} \) efectuar ninguna transformación).
   Pulse \( \text{Enter} \) antes de cualquier tecla de transformación para ejecutar
   dicha transformación reiteradamente hasta que no se produzcan
   más cambios.
7. Repita el paso 6 para cada una de las transformaciones deseadas (si
   se desplaza el cursor, tendrá que volver al paso 3).
8. Pulse \( \text{ENTER} \) para archivar la operación algebraica transformada
   (o pulse \( \text{CANCEL} \) para no archivarla).

En esta sección, la definición de \( \text{subexpresión} \) de la sección anterior
se amplía para incluir objetos individuales. Por ejemplo, se puede
especificar un nombre como subexpresión.

Una vez activado el entorno Selection, desplace el cursor de selección—
éste especifica tanto un objeto de la operación algebraica como la
subexpresión correspondiente.
<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULES</td>
<td>Selecciona un menú de transformaciones de reorganización relevantes para la subexpresión especificada.</td>
</tr>
<tr>
<td>EDIT</td>
<td>Devuelve la subexpresión especificada a la línea de comandos para su edición.</td>
</tr>
<tr>
<td>EXPR</td>
<td>Resalta la subexpresión especificada.</td>
</tr>
<tr>
<td>SUB</td>
<td>Devuelve la subexpresión especificada al nivel 1 de la pila.</td>
</tr>
<tr>
<td>REPL</td>
<td>Sustituye la subexpresión especificada por la operación algebraica del nivel 1 de la pila (consulte “Cómo Sustituir una Subexpresión por un Objeto Algebraico” en la página 7-12).</td>
</tr>
<tr>
<td>EXIT</td>
<td>Sale del entorno Selection, restaurando el cursor de modo de entrada al final de la ecuación.</td>
</tr>
<tr>
<td>▲ ▼</td>
<td>Desplaza el cursor de selección al siguiente objeto de la dirección indicada. Cuando se prefija mediante ▶, desplaza el cursor de selección al objeto más lejano en la dirección indicada.</td>
</tr>
<tr>
<td>← →</td>
<td>Resalta la subexpresión especificada (simplemente como EXPR), pero está también activado cuando aparece el menú RULES en pantalla.</td>
</tr>
</tbody>
</table>

El menú RULES puede incluir transformaciones que no son aplicables a la subexpresión especificada—las teclas de menú emitirán un pitido. Una vez ejecutada una transformación, el cursor de selección resaltará el nuevo objeto de más alto nivel. El menú RULES desaparecerá cuando se pulse cualquiera de las teclas siguientes: ◄ ► ▲ ▼, (para volver al menú Selection), ENTER o CANCEL.

En las tablas de las páginas siguientes se describen las transformaciones de Rules y se muestran ejemplos. De todos modos, las tablas no incluyen todos los modelos a los que se pueden aplicar dichas transformaciones.
Nota

En las siguientes tablas se incluyen ejemplos de transformaciones con la forma

antes → después

Las operaciones algebraicas antes y después se muestran en su forma de la línea de comandos—aunque se efectúen transformaciones de Rules en el entorno EquationWriter. Si quiere probar con un ejemplo, pulse (ENTER) para ver la nueva expresión en la forma de la línea de comandos.

### Menú RULES—Transformaciones Universales

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNEG</td>
<td>Doble negación. ( A \rightarrow \overline{A} )</td>
</tr>
<tr>
<td>DINV</td>
<td>Doble inversión. ( A \rightarrow \overline{\overline{A}} )</td>
</tr>
<tr>
<td>*1</td>
<td>Multiplicar por 1. ( A \rightarrow A \times 1 )</td>
</tr>
<tr>
<td></td>
<td>( A + B \times 1 \rightarrow A + B )</td>
</tr>
<tr>
<td>^1</td>
<td>Elevar a la potencia de 1. ( A \rightarrow A \times 1 )</td>
</tr>
<tr>
<td>/1</td>
<td>Dividir entre 1. ( A \rightarrow A \div 1 )</td>
</tr>
<tr>
<td></td>
<td>( A + B \div 1 \rightarrow A + B )</td>
</tr>
<tr>
<td>+1-1</td>
<td>Sumar 1 y restar 1. ( A \rightarrow A + 1 - 1 )</td>
</tr>
</tbody>
</table>
| COLCT   | Juntar. Ejecuta una forma limitada del comando COLCT del menú SYMBOLIC. Opera solamente sobre la subexpresión definida mediante el objeto especificado y deja los coeficientes de los términos reunidos como sumas o diferencias. \( (2 \times 3) \times \bar{x} \rightarrow 5 \times \bar{x} \)
|         | \( 2 \times \bar{x} + 3 \times \bar{x} \rightarrow (2+3) \times \bar{x} \)                                                            |
### Menú RULES—Desplazamiento de Términos

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
</table>
A+B+ (C+D) → A+ C+ (B+D)  
A+B+ (C+D) → A+ B+ (D+C)  
A+ (B+C) *1+D → A+D+ (B+C)*1  
A* B+ C+D → A* B+ C=D |
A+B+ (D+E) → A= B+ (D+E)  
A* B+ (X+Y) → A=INV (B) * (X+Y) |

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(C)</td>
<td>Meter los términos más próximos entre Paréntesis. Coloca entre paréntesis los términos más próximos a + o *. No tiene efecto si la función especificada es la primera (o única) de la expresión, pues estos paréntesis se encuentran ya presentes, aunque ocultos. A+B(C+D) → A+(B+C)+D</td>
</tr>
<tr>
<td>C+</td>
<td>Ampliar la subexpresión a la izquierda. Amplía la subexpresión correspondiente a la función especificada para que incluya el siguiente término de la izquierda. Obsérvese que puede desaparecer una pareja de paréntesis iguales. A+B+(C+D)+E → A+(B+C+D)+E</td>
</tr>
<tr>
<td>C−</td>
<td>Ampliar la subexpresión a la derecha. Amplía la subexpresión correspondiente a la función especificada para que incluya el siguiente término de la derecha. A+(B+C)+D+E → A+(B+C+D)+E</td>
</tr>
<tr>
<td>Tecla</td>
<td>Descripción</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **×** | Conmutar. Conmuta los argumentos de la función especificada.  
A*B → B*A  
INV(A)×B → B×A |
| **+** | Asociar a la izquierda.  
A+(B+C) → A+B+C  
A+(B/C) → A+B/C  
A+(B×C) → A+B×C |
| **+** | Asociar a la derecha.  
(A+B)+C → A+(B+C)  
(A*B)+C → A+B*C  
(A×B)+C → A×B+C |
| **+** | Distribuir función de prefijo.  
*(A+B) → -A×B  
INV(A/B) → INV(A)×B  
IM(A×B) → RE(A)×IM(B)+IM(A)×RE(B) |
<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| **D** | Distribuir a la izquierda.  
\((A+B)\times C \rightarrow A\times C\times B\times C\)  
\((A\div B)\div C \rightarrow A\div C\div B\div C\) |
| **R** | Distribuir a la derecha.  
\((A\times (B+C)) \rightarrow A\times B\times A\times C\)  
\((A\div (B-C)) \rightarrow A\div B\div A\div C\)  
\((L\ln(A\times B)) \rightarrow L\ln(A)\times L\ln(B)\) |
| **M** | Unir los factores de la izquierda. Funde los argumentos de \(+, -, \times y \div\), donde los argumentos tienen un factor común o una función de un solo argumento EXP, ALOG, LN o LOG. En factores comunes, \(\times\) indica que los factores de la izquierda son comunes. También fusiona sumas en las que sólo un argumento es un producto.  
\((A\times B)\times (A\times C) \rightarrow A\times (B+C)\)  
\(\text{EXP}(A)\times \text{EXP}(B) \rightarrow \text{EXP}(A+B)\)  
\(A\times A\times B \rightarrow A\times (1+B)\) |
| **M** | Unir los factores de la derecha. Funde los argumentos de \(+, -, \times y \div\), donde los argumentos tienen un factor común. \(\div\) indica que los factores de la derecha son comunes. También fusiona las sumas en las que sólo un argumento es un producto.  
\((A\times C)\times (B\times C) \rightarrow (A+B)\times C\)  
\(A\times B\div 1\times B \rightarrow (A+1)\times B\) |
| **C** | Doble negación y distribución. Equivale a \(\text{DNEG}\) seguido por \(\text{\#X}\) en la negación interna resultante.  
\(A\div B \rightarrow \div (-A\div B)\)  
\(\text{LOG}(\text{INV}(A)) \rightarrow \text{LOG}(A)\) |
| **C** | Doble inversión y distribución. Equivale a \(\text{DINV}\) seguido de \(\text{\#X}\) en la inversión interna resultante.  
\(A\times B \rightarrow \text{INV}(\text{INV}(A)\div B)\)  
\(\text{EXP}(A) \rightarrow \text{INV}(\text{EXP}(-A))\) |
### Menú RULES—Reorganización de Funciones Exponenciales

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>Sustituir un logaritmo de potencias por un logaritmo de productos. &lt;br&gt;( \log(A^B) \rightarrow \log(A) \times B )</td>
</tr>
<tr>
<td>L&lt;</td>
<td>Sustituir un logaritmo de productos por un logaritmo de potencias. &lt;br&gt;( \ln(A)^B \rightarrow \ln(A^B) )</td>
</tr>
<tr>
<td>E&lt;</td>
<td>Sustituir un producto de potencias por una potencia de potencias. &lt;br&gt;( \text{ALOG}(A^B) \rightarrow \text{ALOG}(A)^B )</td>
</tr>
<tr>
<td>EQ</td>
<td>Sustituir una potencia de potencias por un producto de potencias. &lt;br&gt;( \text{EXP}(A)^B \rightarrow \text{EXP}(A^B) )</td>
</tr>
<tr>
<td>*TRG</td>
<td>Sustituye las funciones exponenciales por funciones trigonométricas (en este ejemplo que está fijado el modo de radianes). &lt;br&gt;( \text{EXP}(A) \rightarrow \cos(A/i) + \sin(A/i) \times i )</td>
</tr>
</tbody>
</table>

### Menú RULES—Suma de Fracciones

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Sumar fracciones. Combina los términos en un común denominador (si el denominador ya es común entre dos fracciones, utilice ( M+ )). &lt;br&gt;( \frac{A}{B} + \frac{C}{D} \rightarrow \frac{(A \times C + B) \times D}{B} ) &lt;br&gt;( \frac{A}{B} - \frac{C}{D} \rightarrow \frac{(A - B \times C) \times D}{B} )</td>
</tr>
</tbody>
</table>
### Menú RULES Menu—Ampliación de Funciones Trigonométricas

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DEF</strong></td>
<td>Ampliar definición trigonométrica. Sustituye las funciones trigonométricas, hiperbólicas, trigonométricas inversas e hiperbólicas inversas por sus definiciones en términos de EXP y LN (en estos ejemplos se asume que está fijado el modo de radianes). [ \cos(x) \rightarrow (\exp(x\cdot i)+\exp(-x\cdot i))\div2 ] [ \text{ASINH}(u) \rightarrow \frac{1}{\sqrt{1+u^2}} \ln(u) ]</td>
</tr>
<tr>
<td><strong>TRG</strong></td>
<td>Ampliar como producto de funciones trigonométricas. Amplía funciones trigonométricas de sumas y diferencias. [ \sin(x+y) \rightarrow \sin(x)\cdot \cos(y) + \cos(x)\cdot \sin(y) ]</td>
</tr>
</tbody>
</table>

### Menú RULES—Ejecución Automática Múltiple

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D+</strong></td>
<td>Multiple-distribute-right.</td>
</tr>
<tr>
<td><strong>-D</strong></td>
<td>Múltiple distribución a la izquierda. [ (A+B+C)\cdot D \rightarrow A\cdot D+B\cdot D+C\cdot D ]</td>
</tr>
<tr>
<td><strong>A+</strong></td>
<td>Múltiple asociación a la derecha.</td>
</tr>
<tr>
<td><strong>+A</strong></td>
<td>Múltiple asociación a la izquierda. [ A+(B+(C+D)) \rightarrow A+B+C+D ]</td>
</tr>
<tr>
<td><strong>M+</strong></td>
<td>Múltiple fusión de factores a la derecha. [ A\cdot B+C\cdot B+D\cdot B \rightarrow (A+C+D)\cdot B ]</td>
</tr>
<tr>
<td><strong>+M</strong></td>
<td>Múltiple fusión de factores a la izquierda.</td>
</tr>
<tr>
<td><strong>T+</strong></td>
<td>Múltiple desplazamiento de términos a la derecha. [ A+B+C+D=E \rightarrow B+C+D=E-A ]</td>
</tr>
<tr>
<td><strong>+T</strong></td>
<td>Múltiple desplazamiento de términos a la izquierda.</td>
</tr>
<tr>
<td><strong>+E</strong></td>
<td>Múltiple ampliación de subexpresiones a la derecha. [ A+(B+C)+D+E \rightarrow A+(B+C+D+E) ]</td>
</tr>
<tr>
<td><strong>+E</strong></td>
<td>Múltiple ampliación de subexpresiones a la izquierda.</td>
</tr>
</tbody>
</table>
Ejemplo: Resuelva la variable $x$ en la ecuación

$$ax = bx + c$$

Hágalo reorganizando la ecuación de modo que $x$ aparezca solamente una vez, a continuación utilice ISOL.

**Paso 1:** Seleccione la aplicación EquationWriter y escriba la expresión.

$A \cdot X = B \cdot X + C$

**Paso 2:** Active el entorno Selection. A continuación desplace el cursor de selección al signo $=$ y entre en el menú RULES.

**Paso 3:** Desplace el término $B \cdot X$ a la parte izquierda del signo $=$.

**Paso 4:** Fusione los dos términos de la parte izquierda del signo $=$.

$(A-B) \cdot X = C$

20-30 Cálculo y Manipulación Símbólica
Paso 5: Ahora que $x$ solamente aparece una vez en la ecuación, coloque la ecuación en la pila y despeje $x$.

\[
\begin{align*}
\text{ENTER} & \quad \text{SYMBO} \quad \alpha \quad \text{X}\leftarrow \text{ISOL}\quad \text{1:} \quad \text{'X=C/(A-B)'}
\end{align*}
\]

\section*{Cómo Efectuar Transformaciones Definidas por el Usuario}

Si el conjunto incorporado de transformaciones de Rules no reorganiza una operación algebraica en la forma deseada, se pueden efectuar transformaciones propias: Mediante la realización de una transformación “personalizada” se pueden sustituir las apariciones de un modelo por un modelo nuevo. El modelo puede ser específico—o puede contener “comodines” que equivalen a cualquier subexpresión y que se pueden reinsertar en la sustitución. Se le informará si se ha efectuado una sustitución o no.

También se pueden efectuar transformaciones condicionales—la transformación tendrá lugar o no dependiendo de la condición que se especifique.

\section*{Para sustituir una subexpresión por una subexpresión diferente:}

1. Pulse \text{SYMBO} \quad \alpha \quad \text{OK} \quad \text{MANIPULATE EXPRESSION.}

2. Pulse \text{MATCH} \quad \text{MATCH EXPRESSION.}

3. Introduzca o inserte la expresión que desee modificar en el campo \text{EXPR:} (se puede insertar una expresión en el nivel 1 de la pila pulsando \text{NXT} \quad \text{CALC} \quad \text{OK} \quad \text{NXT}).

4. Introduzca el modelo simbólico que desee sustituir en el campo \text{PATTERN:}. En las transformaciones generalizadas, el modelo de búsqueda puede contener nombres de “comodines” que equivalen a cualquier subexpresión. Un nombre de un comodín consiste en un carácter & (\text{ENT} \quad \alpha \quad \text{ENTER}) y un nombre de variable válido (\&A, \&B y \&nombre son ejemplos).

5. Introduzca la nueva expresión simbólica de sustitución en el campo \text{REPLACEMENT:}. Generalmente, si se han utilizado comodines en la expresión modelo, se deberán utilizar también comodines en la expresión de sustitución. Se puede utilizar un comodín en la
expresión de sustitución que no se ha utilizado en la expresión modelo.

6. Opcional: Coloque una señal de comprobación en el campo SUBEXPR FIRST si desea que el proceso de búsqueda y sustitución empiece por el nivel más bajo y "suba" por toda la expresión. Esta es una buena opción si la sustitución simplifica la expresión. No ponga la señal de comprobación en el campo si desea iniciar la búsqueda en la totalidad de la expresión y quiere "descender" a los niveles inferiores de las subexpresiones (una buena opción si la sustitución amplía la expresión). Obsérvese que una expresión que se ha equiparado una vez (y por tanto se ha sustituido) no será candidata a más equiparaciones. Lo mismo ocurre con las subexpresiones cuyos argumentos se han equiparado y sustituido.

7. Opcional. Introduzca una expresión que represente una prueba condicional (como \( \& x \leq 0 \)). Si se utiliza esta prueba, la sustitución solamente tendrá lugar si la prueba es verdadera.

8. Pulse \( \text{OK} \) para ejecutar la búsqueda y sustitución en la "dirección" elegida de acuerdo con la prueba condicional, si es que existe alguna.

**Ejemplo:** Una extensión de la fórmula de la mitad del ángulo del seno es

\[
(2z) = 2(z) \cos(z)
\]

Cree una transformación basada en esta fórmula y utilícela para transformar la expresión \( \sin(2x(x+1)) \).

**Paso 1:** Entre en la plantilla MATCH EXPRESSION e introduzca la expresión destino en el campo EXPR:.

![Imagen de la interfaz de usuario con la plantilla MATCH EXPRESSION]

20-32 Cálculo y Manipulación Simbólica
**Paso 2:** Introduzca la expresión modelo y la de sustitución, utilizando un comodín para $z$ en las fórmulas.

![Operaciones de la calculadora]

**Paso 3:** No ponga la señal de comprobación en el campo SUBEXPR FIRST y tampoco incluya ninguna prueba condicional. Ejecute la búsqueda y sustitución.

![Operaciones de la calculadora]
**Patrones de Integración Simbólica**

En esta tabla se muestra la lista de patrones de integración simbólica utilizados por la HP 48. Estos son los integrandos que la HP 48 puede integrar simbólicamente.

φ es una función lineal de la variable de integración. Las antiderivadas deben dividirse por el coeficiente de primer orden en φ para reducir la expresión a su forma más simple. Asimismo, los patrones que empiezan con 1/ coinciden con INV: por ejemplo, 1/φ es lo mismo que INV(φ).

### Integración Simbólica

<table>
<thead>
<tr>
<th>Patrón</th>
<th>Antiderivada</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOS(φ)</td>
<td>φ x ACOS(φ) - √(1 - φ^2)</td>
</tr>
<tr>
<td>ALOG(φ)</td>
<td>4.3429481904 x ALOG(φ)</td>
</tr>
<tr>
<td>ASIN(φ)</td>
<td>φ x ASIN(φ) + √(1 - φ^2)</td>
</tr>
<tr>
<td>ATAN(φ)</td>
<td>φ x ATAN(φ - LN(1 + φ^2)/2)</td>
</tr>
<tr>
<td>COS(φ)</td>
<td>SIN(φ)</td>
</tr>
<tr>
<td>1/(COS(φ) x SIN(φ))</td>
<td>LN(TAN(φ))</td>
</tr>
<tr>
<td>COSH(φ)</td>
<td>SINH(φ)</td>
</tr>
<tr>
<td>1/(COSH(φ) x SINH(φ))</td>
<td>LN(TANH(φ))</td>
</tr>
<tr>
<td>1/(COSH(φ)^2)</td>
<td>TANH(φ)</td>
</tr>
<tr>
<td>EXP(φ)</td>
<td>EXP(φ)</td>
</tr>
<tr>
<td>EXPM(φ)</td>
<td>EXP(φ) - φ</td>
</tr>
<tr>
<td>LN(φ)</td>
<td>φ x LN(φ) - φ</td>
</tr>
<tr>
<td>LOG(φ)</td>
<td>4.34294481904 x φ x LN(φ) - φ</td>
</tr>
<tr>
<td>SIGN(φ)</td>
<td>ABS(φ)</td>
</tr>
<tr>
<td>SIN(φ)</td>
<td>-COS(φ)</td>
</tr>
<tr>
<td>1/(SIN(φ) x COS(φ))</td>
<td>LN(TAN(φ))</td>
</tr>
<tr>
<td>1/(SIN(φ) x TAN(φ))</td>
<td>-INV(SIN(φ))</td>
</tr>
<tr>
<td>1/(SIN(φ)^2)</td>
<td>-INV(TAN(φ))</td>
</tr>
<tr>
<td>SINH(φ)</td>
<td>COSH(φ)</td>
</tr>
<tr>
<td>1/(SINH(φ) x 2)</td>
<td>-INV(SINH(φ))</td>
</tr>
</tbody>
</table>
### Integración Simbólica (continuación)

<table>
<thead>
<tr>
<th>Patrón</th>
<th>Antiderivada</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/(\text{SINH}(\phi) \times \text{COSH}(\phi))$</td>
<td>$\text{LN}(\text{TANH}(\phi))$</td>
</tr>
<tr>
<td>$1/(\text{SINH}(\phi) \times \text{TANH}(\phi))$</td>
<td>$-\text{INV}(\text{SINH}(\phi))$</td>
</tr>
<tr>
<td>$\text{SQ}(\phi)$</td>
<td>$\phi^3/3$</td>
</tr>
<tr>
<td>$\text{TAN}(\phi)^2$</td>
<td>$\text{TAN}(\phi) - \phi$</td>
</tr>
<tr>
<td>$\text{TAN}(\phi)$</td>
<td>$-\text{LN}(\text{COS}(\phi))$</td>
</tr>
<tr>
<td>$\text{TAN}(\phi)/\text{COS}(\phi)$</td>
<td>$\text{INV}(\text{COS}(\phi))$</td>
</tr>
<tr>
<td>$1/\text{TAN}(\phi)$</td>
<td>$\text{LN}(\text{SIN}(\phi))$</td>
</tr>
<tr>
<td>$1/\text{TAN}(\phi) \times \text{SIN}(\phi))$</td>
<td>$-\text{INV}(\text{SIN}(\phi))$</td>
</tr>
<tr>
<td>$\text{TANH}(\phi)$</td>
<td>$\text{LN}(\text{COSH}(\phi))$</td>
</tr>
<tr>
<td>$\text{TANH}(\phi)/\text{COSH}(\phi)$</td>
<td>$\text{INV}(\text{COSH}(\phi))$</td>
</tr>
<tr>
<td>$1/\text{TANH}(\phi)$</td>
<td>$\text{LN}(\text{SINH}(\phi))$</td>
</tr>
<tr>
<td>$\sqrt{\phi}$</td>
<td>$2 \times \phi^{1.5}/3$</td>
</tr>
<tr>
<td>$1/\sqrt{\phi}$</td>
<td>$2 \times \sqrt{\phi}$</td>
</tr>
<tr>
<td>$1/(2 \times \sqrt{\phi})$</td>
<td>$2 \times \sqrt{\phi} \times 0.5$</td>
</tr>
<tr>
<td>$\phi^z$ ($z$ symbolic)</td>
<td>$\text{IFTE}(z=-1, \text{LN}(\phi), \phi^{z+1}/(z+1))$</td>
</tr>
<tr>
<td>$\phi^z$ ($z$ real, $\neq 0, -1$)</td>
<td>$\phi^{z+1}/(z+1)$</td>
</tr>
<tr>
<td>$\phi^0$</td>
<td>$\phi$</td>
</tr>
<tr>
<td>$\phi^{-1}$</td>
<td>$\text{LN}(\phi)$</td>
</tr>
<tr>
<td>$1/\phi$</td>
<td>$\text{LN}(\phi)$</td>
</tr>
<tr>
<td>$1/(1-\phi^2)$</td>
<td>$\text{ATANH}(\phi)$</td>
</tr>
<tr>
<td>$1/(1+\phi^2)$</td>
<td>$\text{ATAN}(\phi)$</td>
</tr>
<tr>
<td>$1/(\phi^2+1)$</td>
<td>$\text{ATAN}(\phi)$</td>
</tr>
<tr>
<td>$1/(\sqrt{(\phi-1)} \times \sqrt{(\phi+1)})$</td>
<td>$\text{ACOSH}(\phi)$</td>
</tr>
<tr>
<td>$1/\sqrt{1-\phi^2}$</td>
<td>$\text{ASIN}(\phi)$</td>
</tr>
<tr>
<td>$1/\sqrt{1+\phi^2}$</td>
<td>$\text{ASINH}(\phi)$</td>
</tr>
<tr>
<td>$1/\sqrt{\phi^2+1}$</td>
<td>$\text{ASINH}(\phi)$</td>
</tr>
</tbody>
</table>
Análisis de Datos y Estadísticas

Cómo Introducir Datos Estadísticos

Los datos pueden acumularse en la HP 48 en dos diferentes tipos de objetos: sistemas y listas. Generalmente, las listas son más adecuadas para estadísticas de una variable y los sistemas para estadísticas de muchas variables. Los sistemas pueden contener solamente datos numéricos; las listas pueden contener cualquier tipo de datos.

La aplicación incorporada STAT utiliza siempre sistemas—concretamente, utiliza los datos almacenados actualmente en la variable de sistemas llamada $\Sigma DAT$.

De todos modos, para aplicar funciones estadísticas programadas distintas a las incorporadas en la aplicación STAT, descubrirá que las listas son un tipo de objeto más flexible que los sistemas.

Para introducir datos estadísticos en forma de lista:

1. Pulse (para iniciar la lista.
2. Escriba cada uno de los datos seguidos por SPC. Pulse ENTER una vez escrito el último dato.
3. Opcional: Almacene la lista de datos en una variable con nombre para archivarla para futura utilización. Tenga cuidado y no almacene la lista en una variable reservada de HP, como $\Sigma DAT$.

Para introducir datos estadísticos directamente en $\Sigma DAT$:

1. Pulse STAT OK para entrar en la plantilla SINGLE-VARIABLE STATISTICS (realmente, se puede utilizar cualquiera de las plantillas de entrada de la aplicación STAT).
2. Opcional: Si ya existen datos en el campo $\Sigma DAT$, o bien bórrelos (pulse DEL OK) o bien archive los datos almacenándolos en una variable (véase el siguiente procedimiento) en un primer momento y borrándolos a continuación.
3. Con el área de resaltado sobre el campo $\Sigma$DAT, pulse $\text{EDIT}$ para entrar en el MatrixWriter (tal vez necesite pulsar $\text{NXT}$ antes).

4. Introduzca los datos. Utilice una fila para cada uno de los registros individuales y una columna para cada una de las variables de un registro. Por ejemplo, un conjunto de datos que contenga la altura, el peso y la edad de 100 personas se introducirá en forma de 100 filas y tres columnas.

5. Pulse $\text{ENTER}$ cuando haya terminado. La matriz de datos estará ahora almacenada temporalmente en $\Sigma$DAT. Para confirmar que la quiere dejar archivada aquí, pulse $\text{OK}$; para cancelar la totalidad de la operación, pulse $\text{CANCEL}$ y para editarla, pulse $\text{EDIT}$ de nuevo.

Para almacenar la matriz de $\Sigma$DAT en una variable diferente:

1. Pulse $\Sigma$ STAT $\text{OK}$ para entrar en la plantilla $\text{SINGLE-VARIABLE STATISTICS}$ (realmente, se puede utilizar cualquier plantilla de entrada del menú STAT). Deberá verse la matriz de estadísticas actual mostrada parcialmente en el campo $\Sigma$DAT.

2. Pulse $\text{NXT}$ $\text{CALC}$ para ver la pila.

3. Introduzca un nombre para la matriz en el nivel 1 (utilizando delimitadores ‘) y pulse $\text{STO}$.

4. Pulse $\text{OK}$ para volver a $\text{SINGLE-VARIABLE STATISTICS}$.

Para introducir datos estadístico en una matriz:

1. Pulse $\Sigma$ MATRIX para entrar en el MatrixWriter.

2. Introduzca los datos. Utilice una fila para cada uno de los registros individuales de un registro. Por ejemplo, un conjunto de datos que contenga la altura, el peso y la edad de 100 personas se introducirá con 100 filas y tres columnas.

3. Pulse $\text{ENTER}$ cuando haya finalizado la introducción de los datos.

4. Introduzca un nombre para la matriz de datos en el nivel 1 de la pila y pulse $\text{STO}$.

Para convertir una matriz en la matriz de estadísticas actual:

1. Pulse $\Sigma$ STAT $\text{OK}$ para entrar en la plantilla $\text{SINGLE-VARIABLE STATISTICS}$ (realmente, se puede utilizar cualquier plantilla de entrada de la aplicación STAT).
2. Opcional: Si ya existen datos en el campo ΣDAT.*, o bien bórrelos (pulse DEL OK) o archive los datos almacenándolos en primer lugar en una variable y a continuación bórrelos.

3. Con el área de resaltado sobre el campo ΣDAT.*, pulse CHOOSS y utilice las teclas del cursor para resaltar la matriz que desee convertir en matriz de estadísticas actual.

4. Pulse OK para almacenar temporalmente la matriz en ΣDAT. Para confirmar esta acción, pulse OK; para cancelar la acción, pulse CANCEL. También se puede utilizar la matriz de la plantilla de entrada actual antes de pulsar OK o CANCEL.

**Ejemplo:** Introduzca los datos siguientes en una matriz y archívea en la variable TEST. A continuación, convierta TEST en la matriz de estadísticas actual. Los datos comparan las puntuaciones medias de curso de 12 empleados corporativos con las puntuaciones del examen para ayudante de dirección.

<table>
<thead>
<tr>
<th>PMC</th>
<th>Puntuación del Examen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>76</td>
</tr>
<tr>
<td>2.4</td>
<td>89</td>
</tr>
<tr>
<td>3.1</td>
<td>83</td>
</tr>
<tr>
<td>2.5</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>95</td>
</tr>
<tr>
<td>2.5</td>
<td>82</td>
</tr>
<tr>
<td>2.0</td>
<td>69</td>
</tr>
<tr>
<td>2.2</td>
<td>66</td>
</tr>
<tr>
<td>2.6</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>88</td>
</tr>
</tbody>
</table>
Paso 1: Entre en el MatrixWriter e introduzca los datos (12 filas, 2 columnas)

$\begin{bmatrix}
2.2 & \text{ENTER} & 76 & \text{ENTER} & \downarrow \\
2.4 & \text{ENTER} & 89 & \text{ENTER} & 3.1 \\
\text{ENTER} & 83 & \text{ENTER} & 2.5 & \text{ENTER} \\
79 & \text{ENTER} & 3.5 & \text{ENTER} & 91 \\
\text{ENTER} & 3.6 & \text{ENTER} & 95 & \text{ENTER} \\
2.5 & \text{ENTER} & 82 & \text{ENTER} & 2.0 \\
\text{ENTER} & 69 & \text{ENTER} & 2.2 & \text{ENTER} \\
66 & \text{ENTER} & 2.6 & \text{ENTER} & 75 \\
\text{ENTER} & 2.7 & \text{ENTER} & 80 & \text{ENTER} \\
3.3 & \text{ENTER} & 88 & \text{ENTER} & \text{ENTER}
\end{bmatrix}$

Paso 2: Archive la matriz como TEST y entre en la aplicación STAT.

21 (mantenga pulsada) TEST (suelte) STO

Paso 3: Seleccione TEST como la matriz de estadísticas actual ($\Sigma$DAT).

CHOOS OK

Paso 4: La matriz TEST ha sobrescrito los datos almacenados anteriormente en $\Sigma$DAT. Pulse OK para proceder o CANCEL para eliminar TEST y restaurar los contenidos anteriores de $\Sigma$DAT.
Cómo Editar Datos Estadísticos

Para editar un elemento de la matriz estadística actual:

1. Pulse `STAT` OK para entrar en la plantilla SINGLE-VARIABLE STATISTICS (realmente, se puede utilizar cualquiera de las plantillas de entrada de la aplicación STAT).
2. Pulse `EDIT` para llevar la matriz de estadísticas actual al MatrixWriter.
3. Utilice las teclas del cursor para resaltar el elemento que desee cambiar, escriba su sustitución y pulse `ENTER`.
4. Pulse `ENTER` para archivar los cambios y volver a la aplicación STAT.

Para transformar una columna de la matriz estadística actual:

1. Pulse `STAT` OK para entrar en la plantilla SINGLE-VARIABLE STATISTICS (realmente, se puede utilizar cualquiera de las plantillas de la aplicación STAT).
2. Pulse `NXT` `CALC` para copiar la matriz en la pila.
3. Introduzca el nombre de la columna que desee transformar.
4. Pulse `MTH` MATR COL COL para extraer la columna elegida de la matriz.
5. Pulse `PRG` TYPE OBJ+ EVAL LIST para convertir los datos en una lista.
6. Ejecute la transformación de datos deseada en la lista. Por ejemplo, para ejecutar la transformación \[ x' = 3\ln x \], pulse \[ \ln 3 \times \].
7. Pulse `PRG` TYPE OBJ+ +ARR para convertir la lista en un sistema.
8. Introduzca el número de columna donde se situará la variable transformada y pulse `MTH` MATR COL COL+
9. Pulse `CONT` OK para volver a la aplicación STAT con la matriz transformada.

Para transformar una fila, utilice `ROW-` y `ROW+` en los pasos 4 y 8.
Para añadir una nueva columna a la matriz estadística actual:

1. Pulse [STAT] [OK] para entrar en la plantilla SINGLE-VARIABLE STATISTICS (realmente, se puede utilizar cualquiera de las plantillas de entrada de la aplicación STAT).

2. Resalte el campo ΣDAT:.


4. Desplace el área de resaltado a la ubicación de la nueva columna.

5. Pulse [NXT] [COL]. Se insertará una columna de ceros.

6. Pulse [NXT] [DEL]. Ahora podrá reemplazar los ceros por datos.

7. Pulse [ENTER] para devolver la matriz modificada a la aplicación STAT.

Para borrar una columna de la matriz estadística actual:

1. Pulse [STAT] [OK] para entrar en la plantilla SINGLE-VARIABLE STATISTICS (realmente, se puede utilizar cualquiera de las plantillas de entrada de la aplicación STAT).

2. Resalte el campo ΣDAT:.


4. Desplace el área de resaltado a la columna que desee borrar.

5. Pulse [NXT] [COL]. La columna se borrará.

6. Pulse [ENTER] para devolver la matriz modificada a la aplicación STAT.

Para transformar matemáticamente los datos de una lista:

1. Coloque la lista de datos en la pila.

2. Efectúe la operación aritmética necesaria para transformar cada uno de los datos de la lista. Por ejemplo, para llevar a cabo la transformación \( x' = 3 \ln x - 4 \), pulse [LN] 3 [X] 4 [–] (recuerde utilizar [MTH] [LIST] [ADD] para la suma de los elementos de una lista en lugar de [+].)
Cómo Calcular Estadísticas de una Sola Variable

Si sus datos estadísticos miden una muestra de una población, estará calculando estadísticas de muestra. Si, por el contrario, sus datos miden la totalidad de una población, estará calculando estadísticas de población.

Las estadísticas de una sola variable que se realizan en la aplicación STAT son:

- **MEAN**: Devuelve la media aritmética de los datos de la columna seleccionada.
- **STD DEV**: Devuelve la desviación estándar de los datos de la columna seleccionada. Calcula la versión de la desviación estándar indicada mediante el campo TYPE: (muestra o población).
- **VARIANCE**: Devuelve la variación de los datos de la columna seleccionada. Calcula la versión de la variación indicada mediante el campo TYPE: (muestra o población).
- **TOTAL**: Devuelve la suma de los datos de la columna seleccionada.
- **MAXIMUM**: Devuelve el valor del mayor de los datos de la columna seleccionada.
- **MINIMUM**: Devuelve el valor del menor de los datos de la columna seleccionada.

Para calcular una estadística de una variable:

1. Pulse **STAT OK** para entrar en la plantilla SINGLE-VARIABLE STATISTICS.
2. Introduzca o seleccione la matriz de datos que contenga los datos de la variable.
3. Resalte el campo COL: e introduzca el número de la columna que contenga los datos de la variable.
4. Seleccione Sample o Population en TYPE: para indicar la versión de la estadística que necesite calcular.
5. Coloque señales de comprobación en uno o más de los campos de comprobación de estadísticas.
6. Pulse **OK**. Aparecerá en la pila un resultado identificado para cada una de las estadísticas.
Para calcular una estadística de todas las variables de los datos actuales:

1. Pulse \( \text{STAT} \rightarrow \text{VAR} \) para visualizar el menú de comandos de estadísticas de una sola variable.

2. Pulse la tecla de menú correspondiente a la estadística que desee calcular. Por ejemplo, pulse \( \text{MEAN} \) para calcular todas las medias de cada una de las variables (columnas) de la matriz de estadísticas actual. El resultado será un vector cuyos elementos son las medias de cada una de las columnas de la matriz de datos.

Para calcular una mediana para cada una de las variables de los datos actuales:

1. Escriba \( \text{TEACH} \) y pulse \( \text{ENTER} \) para colocar una copia del directorio incorporado EXAMPLES en el directorio HOME.

2. Pulse \( \text{VAR} \rightarrow \text{EXAM} \rightarrow \text{GRGS} \rightarrow \text{MED} \). El resultado será un vector que contenga las medianas de cada una de las variables (columnas) de la matriz de estadísticas actual.

Para trazar una representación gráfica de barras de los datos de una variable:

1. Utilice la plantilla \( \text{SINGLE-VARIABLE STATISTICS} \) para seleccionar la matriz de estadísticas actual y la columna de dicha matriz que contenga los datos que desee representar gráficamente.

2. Pulse \( \text{NXT} \rightarrow \text{OK} \) para aceptar las opciones elegidas y volver a la pila.

3. Pulse \( \text{STAT} \rightarrow \text{PLOT} \rightarrow \text{BARPL} \) para trazar la representación gráfica de barras utilizando escala automática (consulte 23-22 para obtener más detalles).
Cómo Generar Frecuencias

En muchos casos, el aspecto más significativo de un conjunto de datos es su distribución. Las frecuencias y las distribuciones de frecuencia constituyen un método normal para analizar la distribución de un conjunto de datos.

Las frecuencias se crean dividiendo un intervalo (normalmente el que se encuentra entre el mayor de los datos y el menor) en un número arbitrario de subintervalos iguales o cubos, cuya cantidad viene dada por los datos y por la precisión con la que se quiere estudiar la distribución. Esto se ilustra en el siguiente diagrama.

![Diagrama de frecuencias](image)

Para convertir un conjunto de datos en un conjunto de frecuencias:

1. Pulse (STAT) para entrar en la plantilla FREQUENCIES.

![Pantalla FREQUENCIES](image)

Análisis de Datos y Estadísticas 21-9
2. Introduzca o seleccione la matriz de datos que contenga los datos del campo **DAT**:.

3. Introduzca el número de la columna donde se encuentren los datos que desee convertir.

4. Resalte el campo **MIN**: e introduzca el valor mínimo que pueda tener un dato y pueda seguir siendo considerado dentro de un cubo. Todos los valores menores se considerarán **externos**.

5. Introduzca el número de cubos que desee utilizar en el campo **BIN COUNT**.

6. Introduzca la anchura de cada uno de los cubos en el campo **BIN WIDTH**. Todos los cubos serán de la misma anchura.

7. Pulse **OK** para efectuar la conversión. En el nivel 2 de la pila se verá un sistema con elementos enteros, cada uno de los cuales representa el número de puntos de datos que entran dentro de cada cubo (en orden de menor a mayor). En el nivel 1 de la pila se verá un vector de dos elementos que muestra el número de valores externos. El primer elemento representa los valores externos que se encuentran por debajo del cubo menor y el segundo elemento representa los valores externos que se encuentran por encima del cubo mayor.

**Para representar gráficamente un histograma utilizando frecuencias:**

1. Convierta el conjunto de datos en frecuencias según el procedimiento anterior.

2. Pulse **<** para borrar el vector de valor externo.

3. Pulse **STAT DATA** para almacenar los datos de frecuencia en **DAT**.

4. Pulse **STAT PLOT BARPL** para trazar las frecuencias.
Cómo Ajustar un Modelo a un Conjunto de Datos

La HP 48 puede utilizar cualquiera de los cuatro modelos generales de regresión para intentar cuantificar la relación entre los datos de dos columnas de la matriz estadística actual ($\Sigma DAT$):

**Linear Fit**  \[ y = b + mx \]

**Logarithmic Fit**  \[ y = b + m \ln x \]

**Exponential Fit**  \[ y = be^{mx} \; o \; \ln y = \ln b + mx \]

**Power Fit**  \[ y = bx^m \; o \; \ln y = \ln b + m \ln x \]

Para cada uno de estos modelos generales, la herramienta de regresión hallará una interceptación ($b$) y una pendiente ($m$) que corresponde al ajuste de los mínimos cuadrados de ese modelo. También calcula y devuelve la covariancia (muestra o población) y el coeficiente de correlación de la regresión.

**Para efectuar una regresión de dos variables de los datos actuales:**

1. Pulse [STAT] [▼ ▼ ▼ OK] para entrar en la plantilla FIT DATA.

```
ΣDAT: ________________________________
X-COL: 1        Y-COL: 2
MODEL: Linear Fit

ENTER STATISTICAL DATA
[EDIT MODES][PREL][XNXL][BK]
```

Pantalla FIT DATA

2. Introduzca o seleccione la matriz de datos que contenga los datos que desee ajustar.

3. Introduzca la variable independiente de X-COL: y la variable dependiente de Y-COL:.

4. Seleccione uno de los cuatro modelos de regresión (o Best Fit—Mejor Ajuste, que selecciona automáticamente el modelo con el coeficiente de correlación con el mayor valor absoluto).
5. Pulse **OK**. Verá el modelo de regresión calculado en el nivel 3, el coeficiente de correlación en el nivel 2 y la covariación en el nivel 1.

**Para utilizar la regresión calculada para pronosticar el valor de una variable:**

1. Pulse **STAT** para entrar en la plantilla FIT DATA.

2. Introduzca o seleccione la matriz de datos que contenga los datos que desee ajustar.

3. Introduzca la variable independiente en \textit{X-COL} y la variable dependiente en \textit{Y-COL}.

4. Seleccione uno de los cuatro modelos de regresión (o \textit{Best Fit}, que selecciona automáticamente el modelo con el coeficiente de correlación con el mayor valor absoluto).

5. Pulse **PRED** para visualizar la plantilla PREDICT VALUES.

6. Introduzca el valor supuesto bien en el campo \textit{X} o en el \textit{Y}.

7. Desplace el área de resaltado, si fuera necesario, al campo de la variable cuyo valor desee pronosticar y pulse **PRED**. El valor calculado aparecerá ahora en el campo. Pulse **EDIT** para visualizar el número completo.

**Para representar gráficamente una dispersión de los datos y la curva de regresión:**

1. Efectúe la regresión según se describe anteriormente.

2. Pulse **STAT** \textit{PLOT} \textit{SCATR} para representar gráficamente los datos mediante escala automática (consulte la página 23-23 para obtener más detalles).

3. Una vez trazada la representación gráfica, pulse **STAT** para superponer el modelo de regresión más reciente sobre los datos.
Cómo Calcular Estadísticas de Sumas Algebraicas

Existen seis estadísticas de sumas algebraicas disponibles que pueden utilizarse para analizar las peculiaridades estadísticas de un conjunto de datos o para calcular estadísticas distintas a las que se efectuaban mediante la aplicación STAT.

<table>
<thead>
<tr>
<th>SUMMARY STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣDAT:</td>
</tr>
<tr>
<td>X-COL: 1</td>
</tr>
<tr>
<td>Y-COL: 2</td>
</tr>
<tr>
<td>CALCULATE:</td>
</tr>
<tr>
<td>_ΣX _ΣY _ΣX² _ΣY² _ΣXY _NΣ</td>
</tr>
<tr>
<td>ENTER STATISTICAL DATA</td>
</tr>
<tr>
<td>EDIT CH O O C K N AL</td>
</tr>
</tbody>
</table>

Pantalla SUMMARY STATISTICS

Las seis estadísticas de sumas algebraicas son:

- ΣX: Suma de los datos de la X-COL de ΣDAT.
- ΣY: Suma de los datos de la Y-COL de ΣDAT.
- ΣX²: Suma de los cuadrados de los datos de la X-COL de ΣDAT.
- ΣY²: Suma de los cuadrados de los datos de la Y-COL de ΣDAT.
- ΣXY: Suma de los productos de los datos correspondientes de X-COL e Y-COL. ΣDAT.
- NΣ: Número de filas de ΣDAT.

Para calcular una estadística de sumas algebraicas:

1. Pulse STAT para visualizar la plantilla SUMMARY STATISTICS.
2. Introduzca o seleccione la matriz de datos que contenga los datos con los que desee efectuar el cálculo.
3. Introduzca los números de columna de las variables independientes (X-COL) y dependientes (Y-COL).
4. Coloque una señal de comprobación en cada una de las estadísticas de sumas algebraicas que desee calcular.
5. Pulse OK. Los resultados identificados se colocarán en la pila.
Cómo Utilizar la Variable Reservada \( \Sigma PAR \)

La HP 48 utiliza una variable de parámetros de estadísticas incorporada llamada \( \Sigma PAR \) para almacenar los parámetros de estadísticas. \( \Sigma PAR \) contiene una lista con los siguientes objetos:

\[
\langle \text{col independiente col dependiente interceptación pendiente modelo} \rangle
\]

Para visualizar las opciones actuales de \( \Sigma PAR \):

- Haga una de las cosas siguientes:
  - Pulse \( \langle \leftarrow \text{STAT} \rangle \Sigma PAR \langle \text{INFO} \rangle \). Los valores por defecto se indican a continuación.

```
\text{RAD}
\langle \text{HOME} \rangle
\begin{align*}
  \text{Xcol:} & \quad 1 \\
  \text{Ycol:} & \quad 2 \\
  \text{Intercept:} & \quad 0 \\
  \text{Slope:} & \quad 0 \\
  \text{Model:} & \quad \text{LINFIT}
\end{align*}
```

- Pulse \( \langle \leftarrow \text{STAT} \rangle \Sigma PAR \langle \text{INFO} \rangle \) para mostrar la forma de la lista. La lista por defecto es \( \langle 1 \ 2 \ 0 \ 0 \ \text{LINFIT} \rangle \).

Normalmente, los parámetros se controlan automáticamente mediante la aplicación STAT. Como \( \Sigma PAR \) es una variable, se puede tener una variable \( \Sigma PAR \) diferente en cada uno de los directorios.
Representaciones Gráficas

Cómo Utilizar la Aplicación PLOT

La aplicación PLOT permite trazar gráficos de una o más funciones en distintos formatos, calcular raíces y otros parámetros, efectuar representaciones gráficas de datos estadísticos en varios formatos y embellecer los gráficos con elementos adicionales.

La HP 48 puede representar gráficamente una ecuación, una expresión o, en algunos tipos de representaciones gráficas, un programa:

- **Ecuación.** Una ecuación es un objeto algebraico que contiene el signo = (por ejemplo, 'A+B=C').

- **Expresión.** Una expresión es un objeto algebraico que no contiene el signo = (por ejemplo, 'A+B').

- **Programa.** Un programa que se vaya a representar gráficamente deberá devolver un número real (o un número complejo en representaciones gráficas PARAMETRIC).

*En este capítulo, a menos que se especifique de otro modo, el término “ecuación” se referirá a todos los objetos utilizados para crear representaciones gráficas: ecuaciones, expresiones, programas y listas de ecuaciones, de expresiones o de programas.*

Las representaciones gráficas se trazan siempre en el objeto de gráficos almacenado actualmente en la variable reservada *PICT*. Para visualizar el “dibujo” almacenado actualmente en *PICT*, se puede pulsar [PICTURE].

Para representar gráficamente una expresión sencilla:

1. Pulse [PLOT] para entrar en la aplicación PLOT. Verá la pantalla principal de PLOT mostrando el tipo de representación gráfica actual en TYPE: y la ecuación actual en EQ: (si es que existe alguna). Las tres representaciones gráficas de estadísticas
( Scatter, Bar e Histogram—Dispersión, Barras e Histograma) utilizan el campo $\Sigma$DAT: en lugar de EQ:.

Pantalla por Defecto de PLOT

2. Si fuera necesario, pulse $\Box$ y cambie el tipo de representación gráfica mediante cualquiera de las siguientes opciones:
   - Pulse $+/-$ varias veces hasta que aparezca la opción deseada en el campo.
   - Pulse $\text{CHOOS}$, resalte la opción deseada de la lista de selección y pulse $\Box$OK$.$
   - Pulse $\Box$ seguida por la primera letra de la opción deseada. Tal vez necesite repetir este paso una o varias veces para los tipos de representaciones gráficas que empiecen por la misma letra que otras (por ejemplo, Polar, Parametric, Pr-Surface, Ps-Contour).

3. Introduzca los valores nuevos (o acepte los valores actuales) de los distintos parámetros de representaciones gráficas disponibles para el tipo de representación gráfica seleccionada. El capítulo 23, “Tipos de Representaciones Gráficas”, estudia detalladamente los 15 tipos de representaciones gráficas disponibles así como los parámetros de representaciones gráficas y las opciones de visualización. La mayoría de los tipos de representaciones gráficas tienen una segunda pantalla, a la que se accede pulsando $\text{OPTS}$ y que contiene las opciones de visualización del tipo de representación gráfica elegido.

4. Una vez fijados todos los valores, parámetros y opciones, haga una de las cosas siguientes:
   - Pulse $\text{ERASE} \text{DRAW}$ para “borrar” cualquier dibujo previamente existente en $\text{PICT}$ y trace la representación gráfica de acuerdo con las especificaciones establecidas. Verá cómo se traza el gráfico y tendrá acceso a él una vez que se haya completado su trazado. En el capítulo 22, “Representaciones Gráficas” se estudian los tipos de análisis y las mejoras que
pueden introducirse en las representaciones gráficas una vez dibujadas.

- Pulse DRAKE para trazar la representación gráfica superpuesta al dibujo anterior de PICT.
- Pulse NXT OK para archivar las configuraciones y opciones u volver a la pila sin trazar la representación gráfica.
- Pulse NXT CANCL (o CANCL) para restaurar las configuraciones y opciones existentes antes de efectuar los cambios y volver a la pila sin trazar la representación gráfica.

**Para representar gráficamente una ecuación sencilla:**

1. Utilice el mismo procedimiento general utilizado para representar gráficamente una expresión, pero observe que existen las siguientes diferencias cuando el tipo de representación gráfica es Function—Función:
   - En las ecuaciones cuya parte izquierda consiste solamente en el nombre de la variable dependiente (como \( y = 4x^2 - 7x + 29 \)), únicamente se representará gráficamente la expresión del lado derecho.
   - En las ecuaciones cuya parte izquierda consiste en una expresión distinta al nombre de la variable dependiente (como \( \sin x = \cos x \)), se representarán gráficamente tanto el lado izquierdo como el derecho.

**Para representar gráficamente un grupo de expresiones o de ecuaciones:**

1. Pulse PLOT para entrar en la aplicación PLOT.
2. Elija entre una de las siguientes opciones para introducir una lista de las expresiones o ecuaciones del campo EQ:
   - Si todas las expresiones o ecuaciones están almacenadas en variables, pulse CHGS, desplace la tecla del cursor para resaltar por orden cada una de las expresiones o ecuaciones y pulse CHK para seleccionarlas. Devuelva la lista de todas las ecuaciones señaladas a EQ pulsando OK.
   - Escriba { } para iniciar una lista y a continuación escriba cada una de las expresiones o ecuaciones como un elemento de la lista. Pulse ENTER para introducir la lista en EQ.
Combine las dos opciones anteriores seleccionando para una lista aquellas expresiones y ecuaciones que están almacenadas en variables utilizando CHOOS, introduciéndola en EQ: y editándola mediante EDIT. En una lista se pueden añadir, insertar o modificar ecuaciones.

Obsérvese que cada una de las expresiones o ecuaciones del grupo deberá ser adecuada para el tipo de representación gráfica dado (consulte el capítulo 23 para obtener más detalles). Asimismo, cuando se incluyen ecuaciones (que contienen el signo =) en una lista que se va a representar gráficamente utilizando el tipo de representación gráfica Function, sólo se representará gráficamente las expresiones de la parte derecha de cada una de las ecuaciones. No se tendrán en cuenta las expresiones del lado izquierdo. Tal vez desee reorganizar algunas ecuaciones de modo que se conviertan en expresiones (o ecuaciones cuya parte izquierda sea cero).

3. Introduzca los valores de los parámetros y opciones de visualización de la representación gráfica si fuera necesario.

4. En los tipos de representación gráfica Function, Polar y Parametric—Función, Polar y Paramétrico, coloque una señal de comprobación en el campo SIMULT (en la pantalla PLOT OPTIONS) si desea trazar las representaciones gráficas de todas las expresiones y ecuaciones de la lista al mismo tiempo. Si este campo se deja sin señalar, las representaciones gráficas se trazarán secuencialmente (como se hace siempre en los demás tipos de representaciones gráficas).

5. Pulse ERASE DRAW (o simplemente DRAW si no desea borrar la representación gráfica o dibujo anterior).

---

Coordenadas del Cursor: Modos Standard y TRACE

Para visualizar las coordenadas del cursor actuales:

- Mientras ve la representación gráfica, pulse para ocultar el menú y visualizarlo los valores de las coordenadas (en unidades de usuario) de la posición del cursor actual. Pulse para volver a visualizar el menú y cancelar la visualización de las coordenadas.

Representaciones Gráficas
Siempre que se traza una representación gráfica—ya sea originalmente o como parte de una operación de zoom—el cursor empieza en el modo de gráficos estándar. En el modo estándar, si se pulsa ←, →, ▲ o ▼ el cursor se desplazará en la dirección indicada sin tener en cuenta la representación gráfica actual. En el modo estándar, los "centros" horizontales y verticales del punto que se encuentra actualmente en la intersección del retículo son considerados como las coordenadas actuales.

Algunos tipos de representaciones gráficas también ofrecen el modo TRACE—TRAZAR como un modo alternativo del desplazamiento del cursor. En el modo TRACE, el cursor salta de punto a punto de la representación gráfica en vez de desplazarse sobre filas y columnas de puntos. TRACE aparecerá en el menú si el tipo de representación gráfica actual utiliza el modo TRACE.

**Para activar y desactivar el modo TRACE:**

- Mientras visualiza la representación gráfica, pulse TRACE para activar el modo TRACE. Siempre que esté activado TRACE, aparecerá un ■ en la etiqueta del menú. Pulse TRACE para desactivar el modo TRACE. Obsérvese que cuando se ejecuta un zoom u otra función que vuelva a trazar un gráfico, se desactivará asimismo el modo TRACE.

En los tipos de representaciones gráficas Function, Polar y Parametric (Función, Polar y Paramétrico), el modo TRACE volverá a definir las teclas del cursor. ← y → desplazarán el cursor hacia atrás y hacia adelante sobre la representación gráfica de la ecuación actual. Si se representan gráficamente múltiples funciones, ▲ y ▼ "saltarán" el cursor entre las diferentes funciones. Se puede pulsar TRACE cuando está activado el modo TRACE para visualizar las coordenadas de puntos del gráfico.
Operaciones del Teclado en el Entorno PICTURE

El entorno PICTURE redefine el teclado de modo que solamente funcionan algunas teclas. Estas se describen en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teclas de Menú</td>
<td>Se comportan igual que siempre—ejecutando la operación indicada en la etiqueta de menú correspondiente.</td>
</tr>
<tr>
<td>NXT</td>
<td>Muestra en pantalla la siguiente página del menú.</td>
</tr>
<tr>
<td>A D B</td>
<td>Desplazan el cursor en la dirección indicada. Cuando está activado el modo TRACE, el movimiento del cursor se restringe de acuerdo con el contenido y el tipo de representación gráfica (consulte el capítulo 23 para obtener más detalles).</td>
</tr>
<tr>
<td>$\leftarrow$ PICTURE</td>
<td>Activa y desactiva el modo de desplazamiento. El modo desplazamiento oculta el menú y el cursor y, si PICT es mayor que la pantalla, permite desplazarse utilizando las teclas del cursor.</td>
</tr>
<tr>
<td>$\leftarrow$ CLEAR</td>
<td>Borra el dibujo. Es un atajo de EDIT NXT ERASE.</td>
</tr>
<tr>
<td>$\leftarrow$ VIEW</td>
<td>Muestra en pantalla la ecuación actual mientras se mantiene pulsada la tecla. Si está activado el modo TRACE, mostrará la función que se está trazando actualmente.</td>
</tr>
<tr>
<td>DEL</td>
<td>Borra la región rectangular definida por el cursor y la marca. Es un atajo de EDIT NXT DEL.</td>
</tr>
<tr>
<td>STO</td>
<td>Coloca una copia del dibujo actual en la pila en forma de un objeto de gráficos. Es un atajo para EDIT NXT NXT PICT.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Introduce las coordenadas actuales del cursor en la pila en forma de un número complejo. Es un atajo para EDIT NXT NXT X, Y.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Vuelve a la pantalla desde la que se entró al entorno PICTURE.</td>
</tr>
<tr>
<td>Tecla</td>
<td>Descripción</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>✗</td>
<td>Fija la marca en la ubicación actual del cursor. Es un atajo para EDIT NXT MARK. La marca se utiliza para delinear un extremo de un rango. Una vez fijada la marca, se puede desplazar el cursor y delinear el otro extremo.</td>
</tr>
<tr>
<td>−</td>
<td>Activa y desactiva las etiquetas de menús, mostrando en pantalla la parte de la representación gráfica ocultada por las etiquetas. Es un atajo para EDIT NXT MENU.</td>
</tr>
<tr>
<td>+</td>
<td>Activa y desactiva la visualización de las coordenadas del cursor. Es igual que XR, YY.</td>
</tr>
<tr>
<td>+/-</td>
<td>Cambia el aspecto del cursor. El cursor es o bien siempre oscuro (valor por defecto) o bien oscuro sobre un fondo claro o claro sobre un fondo oscuro.</td>
</tr>
</tbody>
</table>

**Cómo Utilizar Operaciones de Zoom**

Las operaciones de zoom del entorno PICTURE permiten ver una región concreta de una representación gráfica más detalladamente (mediante la activación del zoom) o ver más cantidad de representación gráfica de la que aparece normalmente en pantalla (mediante la desactivación del zoom).

Un *zoom*, u operación de zoom, vuelve a dibujar la representación gráfica actual mediante el cálculo de nuevos parámetros de visualización. Los zooms son un atajo del proceso de volver a la aplicación PLOT, cambiar los valores de la visualización y volver a dibujar el dibujo. Obsérvese que no en todos los tipos de representaciones gráficas puede utilizarse el zoom.
Cómo Fijar los Valores por Defecto del Zoom

Algunas de las operaciones de zoom pueden utilizar las configuraciones de factor de zoom actual y opción más reciente, que se pueden controlar por parte del usuario.

Para fijar los factores de zoom:

1. Pulse ZOOM ZFACT para entrar en la plantilla ZOOM FACTORS.

![Pantalla ZOOM FACTORS]

2. Introduzca los factores multiplicadores de los ejes que desee utilizar en Zoom Dentro y Zoom Fuera (y otros muchos zooms). Obsérvese que Zoom Fuera multiplica la escala por el factor mientras Zoom Dentro divide la escala entre el factor.

3. Fije la opción más reciente que desee que se utilice en los zooms. El hecho de dejar el campo RECENTER AT CROSSHAIRS sin señalar supone que la pantalla posterior al zoom esté centrada en el mismo punto que la pantalla anterior al zoom. Si se coloca una señal de comprobación en el campo, la pantalla posterior al zoom se centrará en torno al punto donde estaba ubicado el cursor de retículo en el momento de ejecutar el zoom.

4. Pulse OK.
Cómo Seleccionar un Zoom

Para efectuar un enfoque de zoom:

1. Mientras visualiza la representación gráfica, desplace el cursor al lugar deseado (si es necesario para el zoom que desee utilizar) y pulse **ZOOM**.

2. Seleccione el zoom deseado (véase a continuación para obtener más detalles sobre cada uno).

**Zoom de Recuadro.** Permite dibujar un recuadro en torno a la región de interés y luego enfocarla de modo que la región situada dentro del recuadro llene la pantalla. Desplace el cursor a una esquina de la región antes de seleccionar este zoom.

**Zoom-Dentro.** Disminuye tanto la escala horizontal como la vertical por los factores de zoom actual.

**Zoom-Fuera.** Aumenta tanto la escala horizontal como la vertical por los factores de zoom actual.

**Zoom de Cuadrado.** Cambia la escala vertical para equipararla con la escala horizontal.

**Zoom por Defecto.** Vuelve a mostrar en pantalla la representación gráfica utilizando los rangos incorporados de visualización por defecto. No tiene en cuenta la opción volver a centrar.

**Zoom Horizontal Dentro.** Disminuye la escala horizontal por el factor de zoom actual sin afectar a la escala vertical.

**Zoom Horizontal Fuera.** Incrementa la escala horizontal por el valor de zoom actual sin afectar a la escala vertical.

**Zoom Vertical Dentro.** Disminuye la escala vertical por el factor de zoom actual sin afectar a la escala horizontal.

**Zoom Vertical Dentro.** Incrementa la escala vertical por el factor de zoom actual sin afectar a la escala horizontal.

**Volver a Centrar en el Cursor.** Vuelve a mostrar en pantalla la representación gráfica en torno al punto donde estaba situado el cursor de retículo cuando se pulsó **CHTR**. is pressed. No tiene en cuenta la opción de volver a centrar por defecto.
Zoom de Escala Automática. Vuelve a efectuar la escala del eje vertical mediante el cálculo de escala automática incorporado sin afectar a la escala horizontal.

Zoom Decimal. Vuelve a efectuar la escala del eje horizontal de modo que cada uno de los puntos sea exactamente de 0.1 unidades. No afecta al eje vertical.

Zoom Entero. Vuelve a efectuar la escala del eje horizontal de modo que cada uno de los puntos sea exactamente de 1 unidad. No afecta al eje vertical.

Zoom Trigonométrico. Vuelve a efectuar la escala del eje horizontal de modo que 10 puntos sean igual a \( \frac{\pi}{2} \) unidades y traza de nuevo el eje vertical de modo que 10 puntos sean igual a una unidad.

Último Zoom. Vuelve a trazar la visualización en el mismo modo que estaba antes del zoom más reciente. No tiene en cuenta la opción más reciente.

Cómo Analizar Funciones

El menú PICTURE FCN permite analizar el comportamiento matemático de las funciones representadas gráficamente. El cursor de gráficos se utiliza para indicar la región o punto de interés del gráfico y a continuación se ejecuta el cálculo deseado del menú. Es posible calcular valores de funciones, pendientes, áreas bajo curvas, raíces, extremos y otros puntos críticos así como intersecciones de dos curvas. También pueden representarse gráficamente derivadas de las funciones representadas.

Para efectuar análisis de funciones, el tipo de representación actual deberá ser Function. Por otro lado, \( EQ \) deberá contener una ecuación o una lista de ecuaciones o expresiones—no podrá contener un programa.

Si \( EQ \) es una lista de expresiones, las operaciones del menú FCN utilizarán solamente el primer (o el primero y el segundo) elemento(s) de la lista. La operación \( \text{RED} \) se utiliza para hacer rotar los elementos de la lista de modo que las diferentes expresiones sean “primera” y “segunda”.

22-10 Representaciones Gráficas
Para analizar una función representada gráficamente:

1. Mientras visualiza la representación gráfica, pulse **FCN**.
2. Pulse ** navigator** para desplazar el cursor al punto que desee analizar (en algunas operaciones, el cursor deberá estar tan sólo cerca del punto).
3. Pulse la tecla de menú de la operación de análisis de funciones que desee. Véase la siguiente tabla.
4. Pulse ** PICT** (en la segunda página del menú FCN) para volver al menú principal de PICTURE.

Cuando se efectúa una operación de análisis de funciones, la HP 48 hace lo siguiente:

- Desplaza el cursor al punto correspondiente de la función (si dicho punto está en la pantalla).
- Muestra un mensaje con el resultado en la esquina inferior izquierda de la pantalla.
- Devuelve el resultado a la pila como un objeto con etiqueta de identificación.

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ... FCN ]</td>
<td>(en el menú PICTURE):</td>
</tr>
<tr>
<td>[ ROOT ]</td>
<td>Raíz. Desplaza el cursor a una raíz (intersección de la función y el eje <em>x</em>) y muestra el valor de la raíz. Si la raíz no está en la ventana de la pantalla, aparecerá brevemente el mensaje OFF SCREEN antes de mostrar el valor de la raíz. Si existen múltiples raíces, el solucionador de raíces hallará la raíz más próxima a la ubicación actual del cursor. En las ecuaciones, busca la raíz de la expresión de la parte derecha de la ecuación.</td>
</tr>
<tr>
<td>[ ISECT ]</td>
<td>Intersección. Si solamente se representa gráficamente una función, desplaza el cursor a una raíz (igual que [ ROOT ]). Si se representan dos o más funciones, desplaza el cursor a la intersección más próxima de dos funciones y muestra las coordenadas (<em>x, y</em>). Si la intersección más próxima no está en la ventana de la pantalla, aparecerá brevemente el mensaje OFF SCREEN antes de mostrarse las coordenadas de la intersección.</td>
</tr>
<tr>
<td>Tecla</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>SLOPE</td>
<td>Pendiente. Calcula y muestra en pantalla la pendiente de la función en el valor ( x ) del cursor y desplaza el cursor al punto de la función en el que se ha calculado la pendiente.</td>
</tr>
<tr>
<td>AREA</td>
<td>Area. Calcula y muestra en pantalla el área que se encuentra por debajo de la curva entre dos valores ( x ) definidos por la marca y el cursor (antes de ejecutar esta operación, pulse ( \times ) para marcar un extremo del intervalo ( x ) y desplace el cursor al otro extremo).</td>
</tr>
<tr>
<td>SHADE</td>
<td>Sombra. Si solamente se representa gráficamente una función, sombrea la región entre los valores ( x ) definidos por la marca y el cursor que se encuentra entre la función y sobre el eje ( x ). Si se representan gráficamente dos funciones, sombreo la región que se encuentra entre las dos funciones, por encima de la primera y entre los valores ( x ) definidos por la marca y el cursor.</td>
</tr>
<tr>
<td>EXTR</td>
<td>Extremo. Desplaza el cursor a un extremo (mínimo o máximo local) u otro punto crítico y muestra en pantalla las coordenadas ( (x, y) ). Si el extremo más próximo o punto de inflexión no se encuentra en la ventana de la pantalla, aparecerá brevemente el mensaje OFF SCREEN antes de mostrarse el valor.</td>
</tr>
<tr>
<td>ECXY</td>
<td>Valor de la Función. Muestra en pantalla el valor de la función en el valor actual ( x ) del cursor y desplaza el cursor a ese punto de la curva de la función.</td>
</tr>
<tr>
<td>P'</td>
<td>Representación Gráfica de la Derivada. Representa gráficamente la primera derivada de la función y vuelve a trazar el gráfico de la función original. Además añade la expresión simbólica de la segunda derivada al contenido de ( EQ ). Si ( EQ ) es una lista, ( F' ) añade la expresión al principio de la lista; si ( EQ ) no es una lista, ( F' ) crea una lista e inserta la expresión al principio de la lista.</td>
</tr>
<tr>
<td>TANL</td>
<td>Línea Tangente. Traza la línea tangente a la función actual en el valor ( x ) representado por el cursor. Devuelve la ecuación de la línea tangente a la pila.</td>
</tr>
<tr>
<td>NEQ</td>
<td>Siguiente Ecucación. Hace rotar la lista de ( EQ ) y muestra en pantalla la ecuación al principio de la lista (la segunda ecuación pasa al principio de la lista y la primera pasa al final).</td>
</tr>
</tbody>
</table>
Variables Reservadas de PLOT

La aplicación PLOT facilita la definición de los rangos de la visualización y de la representación gráfica, la escala, la resolución y otras muchas características de gráficos.

Toda la información sobre referente a una representación gráfica se almacena automáticamente en un pequeño conjunto de variables reservadas a las que se tiene acceso directo siempre que se desee. Al tratarse de variables, archivadas en directorios, es posible tener una versión diferente de dichas variables reservadas en cada uno de los directorios.

EQ

EQ contiene la ecuación actual o el nombre de la variable que contiene la ecuación actual.

Concretamente, la "ecuación" contenida en EQ puede ser cualquiera de las siguientes de la aplicación PLOT:

- Un objeto algebraico sencillo o un nombre que contenga una operación algebraica sencilla.
- Un número real (o un número complejo en el tipo de representación gráfica Parametric) o un nombre que contenga un número real.
- Un programa que no tome ningún elemento de la pila y produzca exactamente un resultado real (o complejo en el tipo de representación gráfica Parametric) o un nombre que contenga dicho programa.
- Una lista que contenga cualquier combinación de las tres posibilidades anteriores o el nombre de dicha lista. Aunque se representarán gráficamente todos los elementos, se considerará siempre como la ecuación "actual" al primer elemento de la lista.

ΣDAT

ΣDAT contiene la matriz estadística actual o el nombre de la matriz estadística actual. Se utiliza en lugar de EQ en los tres tipos de representaciones gráficas de estadísticas—Scatter, Bar e Histogram (Dispersión, Barras e Histograma).
ZPAR

ZPAR almacena la información del zoom: los factores de escala horizontal y vertical, el indicador más reciente y (a veces) una copia de PPAR que se va a utilizar en la operación Último Zoom (ZLAST). ZPAR contiene una lista con los siguientes objetos:

\[ \langle \text{factor } h \text{ factor } v \text{ indicador cent } \rangle \text{ PPAR anterior } (si \text{ hay}) \]

PPAR

La HP 48 utiliza una variable de parámetros de representaciones gráficas incorporada llamada PPAR para almacenar los parámetros de los gráficos. Estos parámetros se controlan normalmente mediante los comandos de las plantillas PLOT y PLOT OPTIONS. PPAR contiene una lista con los siguientes objetos:

\[ \langle \langle x_{\text{min}}, y_{\text{min}} \rangle \langle x_{\text{max}}, y_{\text{max}} \rangle \text{ indep } \text{ res } \text{ axes } \text{ ptype. depend } \rangle \]

### Contenido de la Lista PPAR

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
<th>Defecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{\text{min}}, y_{\text{min}})</td>
<td>Un número complejo que representa las coordenadas de la esquina inferior izquierda del rango de la visualización.</td>
<td>((-6.5,-3.1))</td>
</tr>
<tr>
<td>(x_{\text{max}}, y_{\text{max}})</td>
<td>Un número complejo que representa las coordenadas de la esquina superior derecha del rango de la visualización</td>
<td>((6.5,3.2))</td>
</tr>
<tr>
<td>indep</td>
<td>Variable independiente. Nombre de la variable o una lista que contiene el nombre y dos números reales (el rango horizontal de la representación gráfica).</td>
<td>(X)</td>
</tr>
<tr>
<td>res</td>
<td>Resolución. En las ecuaciones, un número real o un entero binario que representa el intervalo entre los puntos representados gráficamente. En datos estadísticos, el significado varía.</td>
<td>0 (puntos trazados en cada columna de puntos)</td>
</tr>
</tbody>
</table>
### Contenido de la Lista PPAR (continuación)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
<th>Defecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>axes</td>
<td>Un número complejo que representa las coordenadas de la intersección de los ejes o una lista que contenga la intersección y las etiquetas de identificación (secuencias) de ambos ejes. El tipo de representación gráfica Diff Eq utiliza este elemento de un modo especial (consulte la página 23-12). Este elemento puede contener también información sobre el espaciado de las comillas simples de cada eje.</td>
<td>(0,0)</td>
</tr>
<tr>
<td>ptype</td>
<td>Nombre de comando que especifica el tipo de representación gráfica.</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>depend</td>
<td>Variable dependiente. Nombre de la variable o una lista que contenga el nombre y dos números reales (el rango vertical de la representación gráfica). El tipo de representación gráfica Diff Eq utiliza este elemento de un modo especial (consulte el capítulo 23).</td>
<td>Y</td>
</tr>
</tbody>
</table>

### Para reconfigurar PPAR a su valor por defecto:

- Pulse PLOT PPAR RESET. La operación RESET reconfigura todos los parámetros de PPAR a sus estados por defecto—excepto el tipo de representación gráfica—, borra PICT y lo restaura a su tamaño por defecto.

### VPAR

VPAR contiene las configuraciones que determinan el Voluemm de Visualización, el punto de vista y la densidad de representación gráfica de los seis tipos de representaciones gráficas para las funciones de dos variables. Para más información sobre la relación entre la visualización de la representación gráfica y sus parámetros consulte la página 23-25.

VPAR es una lista de números reales:

\[
\{ X_{\text{left}}, X_{\text{right}}, Y_{\text{near}}, Y_{\text{far}}, Z_{\text{low}}, Z_{\text{high}}, X_{\text{Xleft}}, X_{\text{Xright}}, Y_{\text{Yleft}}, Y_{\text{Yright}}, X_{\text{eyept}}, Y_{\text{eyept}}, Z_{\text{eyept}}, N_X, N_Y, Y \}\]
<table>
<thead>
<tr>
<th>Elemento</th>
<th>Descripción</th>
<th>Defecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{left}$</td>
<td>Menor valor de salida (Volumen de Visualización) del eje $x$ (anchura) que se va a representar gráficamente.</td>
<td>-1</td>
</tr>
<tr>
<td>$X_{right}$</td>
<td>Mayor valor de salida (Volumen de Visualización) del eje $x$ (anchura) que se va a representar gráficamente.</td>
<td>1</td>
</tr>
<tr>
<td>$Y_{near}$</td>
<td>Menor valor de salida (Volumen de Visualización) del eje $y$ (profundidad) que se va a representar gráficamente.</td>
<td>-1</td>
</tr>
<tr>
<td>$Y_{far}$</td>
<td>Mayor valor de salida (Volumen de Visualización) del eje $y$ (profundidad) que se va a representar gráficamente.</td>
<td>1</td>
</tr>
<tr>
<td>$Z_{low}$</td>
<td>Menor valor de salida (Volumen de Visualización) del eje $z$ (altura) que se va a representar gráficamente.</td>
<td>-1</td>
</tr>
<tr>
<td>$Z_{high}$</td>
<td>Mayor valor de salida (Volumen de Visualización) del eje $z$ (altura) que se va a representar gráficamente.</td>
<td>1</td>
</tr>
<tr>
<td>$XX_{left}$</td>
<td>Menor valor del eje horizontal del plano de entrada.</td>
<td>-1</td>
</tr>
<tr>
<td>$XX_{right}$</td>
<td>Mayor valor del eje horizontal del plano de entrada.</td>
<td>1</td>
</tr>
<tr>
<td>$YY_{left}$</td>
<td>Menor valor del eje vertical del plano de entrada.</td>
<td>-1</td>
</tr>
<tr>
<td>$YY_{right}$</td>
<td>Mayor valor del eje vertical del plano de entrada.</td>
<td>1</td>
</tr>
<tr>
<td>$X_{eyept}$</td>
<td>Coordenadas del eje $x$ del punto de vista.</td>
<td>0</td>
</tr>
<tr>
<td>$Y_{eyept}$</td>
<td>Coordenadas del eje $y$ del punto de vista. Deberá ser siempre al menos de uno menos que el valor de $Y_{near}$.</td>
<td>-3</td>
</tr>
<tr>
<td>$Z_{eyept}$</td>
<td>Coordenadas del eje $z$ del punto de vista.</td>
<td>0</td>
</tr>
<tr>
<td>$N_X$</td>
<td>Número de columnas del enrejado trazado. Se utiliza en vez del elemento $res$ de PPAR o en combinación con él.</td>
<td>10</td>
</tr>
<tr>
<td>$N_Y$</td>
<td>Número de filas del enrejado trazado. Se utiliza en vez del elemento $res$ de PPAR o en combinación con él.</td>
<td>8</td>
</tr>
</tbody>
</table>
ΣPAR

ΣPAR es utilizado conjuntamente con ΣDAT por los tipos de representaciones gráficas de estadísticas. Contiene o bien la lista de parámetros de estadísticas actuales o el nombre de la variable que contenga dicha lista. Consulte la página 21-14 para obtener una explicación detallada de esta variable reservada.
Tipos de Representaciones Gráficas

Representaciones Gráficas del Tipo Function (Función)

El tipo de representaciones gráficas Function traza gráficos de ecuaciones que devuelven una única $f(x)$ para cada uno de los valores de $x$. Es el tipo de representación gráfica por defecto y el único que utiliza las herramientas de análisis PICTURE FCN (consulte el capítulo 22).

Pantallas por Defecto del Tipo de Representación Gráfica

**FUNCTION**

<table>
<thead>
<tr>
<th>TYPE:</th>
<th>Function</th>
<th>$\alpha$:</th>
<th>Deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEP:</td>
<td>$X$</td>
<td>$H$-VIEW $-6.5$ $6.5$</td>
<td></td>
</tr>
<tr>
<td>_AUTOSCALE:</td>
<td>$V$-VIEW $-3.1$ $3.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTER FUNCTION(S) TO PLOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDIT</td>
<td>CHOOSE</td>
<td>OPTS</td>
<td>ERASE</td>
</tr>
</tbody>
</table>

| PLOT OPTIONS: |
|------|---------|------|
| INDEP: | $X$ | $LO$: $-6.5$ | $HI$: $6.5$ |
| $\alpha$: | $\alpha$: | CONNECT | SIMULT |
| STEP: | Defl | _PIXELS | |
| $H$-TICK: | $10$ | $V$-TICK: $10$ | _PIXELS |
| ENTER INDEPENDENT VAR NAME | |
| EDIT | _ | _ | KANAL | OK |

Plantilla de PLOT Function

$\alpha$: Muestra el modo de ángulo actual. Este se cambia pulsando $\alpha$ una o más veces o utilizando CHOOSE.

EQ: Introduzca la expresión, ecuación o programa actual que se va a representar gráficamente. Puede contener una lista de expresiones, ecuaciones o programas si se representan gráficamente múltiples funciones. Se pueden utilizar nombres de variables que contengan expresiones, ecuaciones o programas (o listas de los mismos) en lugar de los objetos en sí.

INDEP: Introduzca el nombre de la variable independiente.
**H-VIEW:** Introduzca el rango de la visualización horizontal en los dos campos, el extremo inferior a la izquierda y el extremo superior a la derecha. Para introducir extremos calculados, utilice \((\text{NXT} \text{ CALC})\) (consulte la página 24-6).

**V-VIEW:** Introduzca el rango de visualización vertical en los dos campos, el extremo inferior izquierdo y superior derecho. Para introducir extremos calculados, utilice \((\text{NXT} \text{ CALC})\) (consulte la página 24-6).

**AUTOSCALE** Cuando tiene una señal de comprobación, el rango de visualización vertical se escala automáticamente basándose en 40 valores de muestra igualmente espaciados sobre el rango de visualización horizontal. Cuando se deja sin señalar, el rango de visualización vertical está determinado por los valores introducidos en los dos campos de **V-VIEW**.

**OPTS** Entra en la plantilla PLOT OPTIONS.

**ERASE** Borra la pantalla PICT (sin mostrarla).

**DRAW** Almacena todos los valores en los lugares apropiados de las variables reservadas \(EQ\) y \(PPAR\) y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

### Plantilla de Funciones de PLOT OPTIONS

**INDEP:** Introduzca el nombre de la variable independiente, si fuera necesario.

**LO:** Introduzca el menor valor de la variable independiente que desee representar gráficamente. El rango de la representación puede ser distinto al rango de visualización (consulte la página 24-3). Para utilizar un extremo calculado, utilice \((\text{NXT} \text{ CALC})\) (véase la página 24-6).

**HI:** Introduzca el mayor valor de la variable independiente que desee representar gráficamente. El rango de la representación puede ser distinto al rango de visualización (consulte la página 24-3). Para utilizar un extremo calculado, utilice \((\text{NXT} \text{ CALC})\) (véase la página 24-6).
AXES: Cuando tiene señal de comprobación (valor por defecto), se trazan los ejes de coordenadas conjuntamente con la representación gráfica. Si no tiene señal de comprobación, no se trazarán los ejes.

CONNECT: Cuando tiene señal de comprobación (valor por defecto), los puntos de la representación se conectarán mediante pequeños segmentos de línea. Si no tiene señal de comprobación, sólo se mostrarán en pantalla los puntos representados gráficamente.

SIMULT: Cuando tiene una señal de comprobación, se representarán múltiples funciones simultáneamente—se representará gráficamente un punto para cada función en un valor de muestra dado antes de pasar al siguiente valor de muestra. Si no está señalado (valor por defecto), se representarán gráficamente múltiples funciones de un modo secuencial—se representarán todos los puntos de la primera función antes de trazarse el gráfico del primer punto de la segunda función y así sucesivamente.

STEP: Determina la resolución de la representación gráfica. Es la distancia horizontal (en unidades o puntos—véase el siguiente campo) entre dos puntos de la representación gráfica. Cuanto mayores son los pasos, mayor es la velocidad del trazado de las representaciones gráficas, pero menos detalles se muestran. Por el contrario, cuanto menores son los pasos, más detalles se proporcionan pero más tiempo lleva su trazado. El tamaño de paso por defecto para Function es 0.1 unidades.

PIXELS: Cuando tiene señal de comprobación, el tamaño de paso se interpretará como representación por puntos. Cuando no está señalado (valor por defecto), el tamaño de paso se interpretará como representación por unidades.

H-TICK: Introduzca el espaciado entre las comillas simples que desee para el eje horizontal. Puede definirse en puntos o en unidades, dependiendo del estado de su campo PIXELS (véase a continuación). El valor por defecto es una comilla simple cada 10 puntos.
Introduzca el espaciado entre las comillas simples que desee para el eje vertical. Puede definirse en puntos o en unidades, dependiendo del estado de su campo PIXELS (véase a continuación). El valor por defecto es una comilla simple cada 10 puntos.

Cuando tiene señal de comprobación (valor por defecto), el espaciado de H-TICK y de V-TICK se interpretará como representación por puntos. Si no tiene señal de comprobación, se interpretará como representación por unidades.

**Modo TRACE**

- [ ] y [ ] desplazan el cursor por la representación gráfica de la función actual.
- [ ] y [ ] saltan el cursor entre las distintas funciones cuando se representan gráficamente múltiples funciones.

**Observaciones Especiales**

- Las expresiones algebraicas de EQ: pueden contener cualquier número de variables. De todos modos, todas las variables a excepción de la variable independiente deberán evaluarse en un número real para que EQ: pueda representarse gráficamente. Si no es así, aparecerá el mensaje de error Undefined Name (Nombre no Definido).

**Ejemplo:** Visualice la representación gráfica de ejemplo de una función XSIN: \( x + \sin x \). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

![Pantalla del programa con los comandos de ejemplo](image)

Una vez trazada la representación gráfica, pulse [CANCEL] [PLOT] para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a dibujar la representación gráfica.
Representaciones Gráficas del Tipo Polar

El tipo de representaciones gráficas Polar traza gráficos de funciones descritas de acuerdo con el sistema de coordenadas polar $f(\theta)$. La variable independiente es el ángulo polar $\theta$.

Pantallas de Representaciones Gráficas POLAR Por Defecto

Plantilla de PLOT Polar

$\theta$: Muestra el modo de ángulo actual. Cámbielo pulsando $\pm$ una o más veces o utilizando CHOOOS.

EQ: Introduzca la expresión, ecuación o programa actual que se va a representar gráficamente.

INDEP: Introduzca el nombre de la variable independiente. Obsérvese que la variable polar normalmente utilizada, $\theta$, se introduce pulsando $\Theta$.

H-VIEW: Introduzca el rango de la visualización horizontal en los dos campos, el extremo inferior a la izquierda y el extremo superior a la derecha.

V-VIEW: Introduzca el rango de visualización vertical en los dos campos, el extremo inferior a la izquierda y el extremo superior a la derecha.

AUTOSCALE: Cuando tiene una señal de comprobación, el rango de visualización vertical se escala automáticamente basándose en 40 valores de muestra igualmente espaciados sobre el rango de visualización horizontal. Obsérvese que como la HP 48 calcula un rango de visualización adecuado de los ejes $x$ e $y$ basándose en el rango de $\theta$, las escalas resultantes de los ejes $x$ e $y$ pueden diferir entre sí. Cuando se deja sin señalar este campo, el rango de visualización vertical está determinado por los valores introducidos en los dos campos de V-VIEW.
Entra en la plantilla PLOT OPTIONS.
Borra la pantalla PICT (sin mostrarla).
Almacena todos los valores en los lugares apropiados de las variables reservadas EQ y PPAR y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

**Plantilla de PLOT OPTIONS Polar**

**INDEP:** Introduzca el nombre de la variable independiente.
**LO:** Introduzca el menor valor de la variable independiente que desee **representar gráficamente**. En las representaciones gráficas del tipo Polar el rango de la representación es diferente al rango de visualización.
**HI:** Introduzca el mayor valor de la variable independiente que desee **representar gráficamente**. El rango de la representación es siempre diferente al rango de visualización en las representaciones gráficas polares porque la variable independiente es distinta a la variable del eje horizontal.
**AXES** Véase el tipo de representación gráfica Function.
**CONNECT** Véase el tipo de representación gráfica Function.
**SIMULT** Véase el tipo de representación gráfica Function.
**STEP:** Determina la **resolución** de la representación gráfica. Es el intervalo entre dos puntos de la representación gráfica. El tamaño de paso por defecto en el tipo Polar es 2 grados sexagesimales o π/90 radianes.
**PIXELS** Déjelo sin señal de comprobación para las representaciones gráficas del tipo polar.
**H-TICK** Véase el tipo de representación gráfica Function.
**V-TICK** Véase el tipo de representación gráfica Function.
**PIXELS** Véase el tipo de representación gráfica Function.
Modo TRACE

- \( \leftarrow \) y \( \rightarrow \) desplazan el cursor por la representación gráfica de la función actual. \( \leftarrow \) desplaza el cursor al siguiente valor inferior de la variable independiente y \( \rightarrow \) desplaza el cursor al siguiente valor superior de la variable independiente. Esto puede dar como resultado un desplazamiento direccional contrario a la “dirección” implícita de las teclas del cursor. Una representación gráfica polar puede trazarse en el rango \( \theta \geq 0 \), de modo que se pueda pulsar \( \uparrow \) indefinidamente en el modo TRACE, incluso más allá del intervalo representado gráficamente.

- \( \uparrow \) y \( \downarrow \) saltan el cursor entre las distintas funciones polares cuando se representan gráficamente múltiples funciones.

Observaciones Especiales

- A menos que se especifique de otro modo, las representaciones gráficas polares se trazan para un círculo completo de la variable independiente \( \theta \) (0 a 360 grados sexagesimales, \( 2\pi \) radianes o 400 grados centesimales, de acuerdo con el modo de ángulo actual).

Ejemplos

Ejemplo 1: Visualice la representación gráfica de ejemplo ROSE:
\[ r = 2 \cos 4\theta \]. Si fuera necesario, escriba \textbf{TEACH} para instalar el directorio \textbf{EXAMPLES} y a continuación:

Pulse \textbf{VAR} \textbf{EXAM PLOTS} \textbf{ROSE}

\[ \begin{array}{c}
\text{Zoom (X-Y) Trace} \\
\text{Edit Cancel}
\end{array} \]

Una vez trazada la representación gráfica, pulse \textbf{CANCEL} \textbf{PLOT} para volver a visualizar las plantillas de \textbf{PLOT} generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a dibujar la representación gráfica.
Representaciones Gráficas del Tipo Paramétrico (Paramétrico)

Pantallas por Defecto del Tipo de Representación Gráfica PARAMETRIC

<table>
<thead>
<tr>
<th>PLOT X(T)+i*Y(T)</th>
<th>PLOT OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE: Parametric</td>
<td>INDEP: X</td>
</tr>
<tr>
<td>EQ: Deg</td>
<td>LO: -6.5</td>
</tr>
<tr>
<td>INDEP: X</td>
<td>HI: 6.5</td>
</tr>
<tr>
<td>H-VIEW: -6.5</td>
<td>✓ AREAS</td>
</tr>
<tr>
<td>_AUTOSCALE V-VIEW: 3.1</td>
<td>✓ CONNECT</td>
</tr>
<tr>
<td>✓ SIMULT</td>
<td>Y-VIEW: 3.2</td>
</tr>
<tr>
<td>ENTER COMPLEX-VALUED FUNC(S)</td>
<td>STEP: Df 1 10 _PIELOX</td>
</tr>
<tr>
<td>EDIT OK</td>
<td>H-TICK: 10</td>
</tr>
<tr>
<td>ENTER DRAW</td>
<td>✓ PIXELS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plantilla de PLOT Paramétrico

**α:** Muestra el modo de ángulo actual. Se cambia pulsando (+/-) una o más veces o mediante CHIUS.

**EQ:** Introduzca la expresión, ecuación o programa que desee representar gráficamente. El tipo de representación Paramétrico requiere que se devuelva un número complejo cuando se calcule EQ (consulte Observaciones Especiales a continuación). EQ puede contener una lista de expresiones, ecuaciones o programas cuando se representan gráficamente múltiples funciones. Es posible utilizar nombres de variables que contengan expresiones, ecuaciones o programas (o listas de los mismos) en lugar de los objetos en sí.

**INDEP:** Introduzca el nombre de la variable independiente (normalmente T).

**H-VIEW:** Introduzca el rango de visualización horizontal en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.

**V-VIEW:** Introduzca el rango de visualización vertical en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.

**AUTOSCALE** Cuando tiene una señal de comprobación, se efectúa automáticamente la escala del rango de visualización vertical basándose en 40 valores de muestra igualmente espaciados sobre el rango de visualización horizontal. Cuando se deja sin señalar, el rango de visualización vertical está determinado por los valores introducidos en los dos campos de V-VIEW.
Entra en la plantilla PLOT OPTIONS.
Borra la pantalla PICT (sin mostrársela).
Almacena todos los valores en los lugares apropiados de las variables reservadas EQ y PPAR y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

Plantilla de PLOT OPTIONS Parametric

INDEP: Introduzca el nombre de la variable independiente.

LO: Introduzca el menor valor de la variable independiente que desee representar gráficamente. El rango de la representación gráfica del tipo Parametric es normalmente distinto al rango de visualización (consulte la página 24-3).

HI: Introduzca el mayor valor de la variable independiente que desee representar gráficamente. El rango de la representación gráfica del tipo Parametric es normalmente distinto al rango de visualización (consulte la página 24-3).

AXES Consulte el tipo de representación gráfica Function.
CONNECT Consulte el tipo de representación gráfica Function.
SIMULT Consulte el tipo de representación gráfica Function.
STEP: Determina la resolución de la representación gráfica. Es la distancia horizontal (en unidades o puntos—véase el siguiente campo) entre dos puntos representados. El tamaño de paso por defecto para el tipo Parametric es un intervalo igual a \( \frac{1}{120} \) avo de la diferencia entre los valores de LO y HIGH del rango de la representación (en unidades).

PIXELS Cuando tiene una señal de comprobación, el tamaño de paso se interpreta como representación por puntos. Cuando no está señalado (valor por defecto), el tamaño de paso se interpreta como representación por unidades.

H-TICK Consulte el tipo de representación gráfica Function.
V-TICK Consulte el tipo de representación gráfica Function.
PIXELS Consulte el tipo de representación gráfica Function.
Modo TRACE

- ☞ y ☞ desplazan el cursor por la representación gráfica de la función actual. ☞ desplaza el cursor al siguiente valor inferior de la variable independiente y ☞ desplaza el cursor al siguiente valor superior de la variable independiente. Esto puede resultar en un desplazamiento direccional contrario a la “dirección” implícita de las teclas del cursor. Una representación gráfica paramétrica puede trazarse en un rango ilimitado de la variable independiente, de modo que se puedan pulsar ☞ o ☞ indefinidamente en el modo TRACE, incluso más allá del intervalo representado gráficamente.
- ▲ y ▼ saltan el cursor entre las distintas funciones cuando se representan gráficamente múltiples funciones.

Observaciones Especiales

- Las expresiones algebraicas deberán introducirse en forma compleja, '(F, G) ', donde F y G son individualmente expresiones que contienen la variable independiente.
- Los programas no deberán tomar ningún elemento de la pila y devolver un resultado con un número complejo.

Ejemplos

Ejemplo 1: Visualice la representación gráfica de tipo paramétrico de ejemplo LISSA: \( x(t) = 3 \sin 3t, y(t) = 2 \sin 4t \). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Pulse VAR EXAM PLOTS LISSA

![Gráfica de TRACE](image)

Una vez trazada la representación gráfica, pulse CANCEL o PLOT para volver a ver las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.

23-10 Tipos de Representaciones Gráficas
Ejemplo 2: ¿Las dos partículas que se describen a continuación chocan de verdad paramétricamente entre $t = 0$ y $t = 6.5$ o simplemente se cruzan sus trazados?

Partícula 1: $x(t) = \frac{16}{3} - \frac{8}{3}t$, $y(t) = 4t - 5$.
Partícula 2: $x(t) = 2\sin\frac{\pi}{2}t$, $y(t) = -3\cos\frac{\pi}{2}t$.

Paso 1: En la plantilla de PLOT Parametric, introduzca una lista que contenga las dos expresiones paramétricas en EQ:

```
'(16/3-8/3*T,4*T-5)' '(2*SIN(pi/2*T),-3*COS(pi/2*T))'
```

Paso 2: Fije la variable independiente, los rangos de la representación y de la visualización, la representación gráfica simultánea y el espaciado de las comillas simples según se muestra a continuación:

```
INDEP: T  LO: 0  HI: 6.5
H-VIEW: -3 3
V-VIEW: -5 5  V SIMULT
H-TICK: 1  V-TICK: 1
_PIXELS
```

Paso 3: Borre PICT y trace la representación gráfica. Observe si las dos representaciones gráficas activan el mismo punto al mismo tiempo—una posible colisión.

---

Tipos de Representaciones Gráficas  23-11
Paso 4: Tras observar la representación gráfica, sospecha que el punto (0,3) es probablemente un lugar de choque. Active TRACE y el visor de las coordenadas y desplace el cursor al punto de sospecha. Observe que tiene lugar en \( t = 2 \), lo que restituido a las ecuaciones originales demuestra que existe una colisión.

`TRACE \( xy \)` según sea necesario

---

Representaciones Gráficas del Tipo Ecuación Diferencial

La representación gráfica del tipo ecuación diferencial se estudia detalladamente en el capítulo 19. Si desea ver un ejemplo adicional de una representación gráfica del tipo ecuación diferencial, instale TEACH (si fuera necesario) y a continuación pulse `EXAM PLOTS DEQ`:

---

Observaciones Especiales

- El tipo de representación gráfica Diff Eq utiliza el elemento `axes` (ejes) de PPAR de un modo especial. Supone que las dos secuencias que normalmente contienen las identificaciones de los ejes contengan un número entero. Los enteros indican qué componente de la solución se va a representar gráficamente sobre cada uno de los ejes (`0` indica la variable independiente, `1` indica el primer (o único) componente de la solución, `2` indica el segundo componente de la solución (en una solución con valor de vector) y así sucesivamente.

23-12 Tipos de Representaciones Gráficas
Representaciones Gráficas del Tipo Conic (Cónico)

La ecuación de una sección cónica es de segundo grado o menor tanto en $x$ como en $y$. Por ejemplo, las siguientes ecuaciones son todas válidas para representar gráficamente secciones cónicas:

$$x^2 - y^2 + 4x + 2y - 5 = 0$$  (círculo)
$$5x^2 + 3y^2 - 18 = 0$$  (elipse)
$$x^2 - 4x + 3y + 2 = 0$$  (parábola)
$$2x^2 - 3y^2 + 3y - 5 = 0$$  (hipérbola)

Pantallas por Defecto de Representaciones Gráficas CONIC

Plantailla de PLOT Conic

$\theta$: Muestra el modo de ángulo actual. Se cambia pulsando $+/-$ una o más veces o utilizando CHOO.  

EQ: Introduzca la expresión, ecuación o programa que desee representar gráficamente.  

INDEP: Introduzca el nombre de la variable independiente.  

H-VIEW: Introduzca el rango de visualización horizontal en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.  

V-VIEW: Introduzca el rango de visualización vertical en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.  

OPTS Erase: Entra en la plantilla PLOT OPTIONS. Borra la pantalla PICT (sin mostrarla).
Almacena todos los valores en los lugares apropiados de las variables reservadas \textit{EQ} y \textit{PPAR} y traza el gráfico de acuerdo con ellos, dejándole en el entorno \textit{PICTURE} cuando ha terminado.

\textbf{Plantilla de PLOT OPTIONS Conic}

\textbf{INDEP:} \hspace{1cm} Introduzca el nombre de la variable independiente.

\textbf{LO:} \hspace{1cm} Introduzca el menor valor de la variable independiente que desee representar gráficamente.

\textbf{HI:} \hspace{1cm} Introduzca el mayor valor de la variable independiente que desee representar gráficamente. El rango de la representación puede ser diferente al rango de visualización (consulte la página 24-3).

\textbf{AXES} \hspace{1cm} Consulte el tipo de representación gráfica Function.

\textbf{CONNECT} \hspace{1cm} Consulte el tipo de representación gráfica Function.

\textbf{DEPND:} \hspace{1cm} Introduzca la variable dependiente (o segunda variable independiente).

\textbf{STEP:} \hspace{1cm} Determina la \textit{resolución} de la representación gráfica. Es la distancia horizontal (en unidades o puntos—véase el siguiente campo) entre dos puntos de una representación gráfica. El tamaño de paso por defecto de \textit{Conic} es un intervalo igual a 1 punto.

\textbf{PIXELS} \hspace{1cm} Cuando tiene señal de comprobación, el tamaño de paso se interpreta como representación por puntos. Si no está señalado (valor por defecto), el tamaño de paso se interpreta como representación por unidades.

\textbf{H-TICK} \hspace{1cm} Consulte el tipo de representación gráfica Function.

\textbf{V-TICK} \hspace{1cm} Consulte el tipo de representación gráfica Function.

\textbf{PIXELS} \hspace{1cm} Consulte el tipo de representación gráfica Function.

\textbf{Observaciones Especiales}

- En las representaciones gráficas cónicas, la HP 48 traza realmente los gráficos de las dos ramas de la sección cónica por separado. Esto puede introducir una o dos discontinuidades en el gráfico conectado. El hecho de especificar un menor tamaño de paso (disminuyendo el intervalo entre los puntos de la representación) ayuda a eliminar las discontinuidades visuales.
- Si se fija el indicador -1 (Valores Principales), la representación gráfica Conic mostrará solamente su rama principal (la mitad de la representación gráfica). Elimine el indicador -1 y trace de nuevo el gráfico para que aparezca la sección cónica completa.

- Las ecuaciones superiores al segundo orden de la variable independiente o dependiente se convertirán a sus aproximaciones de segundo orden de Taylor antes de efectuarse su representación gráfica.

- El tipo de representaciones gráficas Conic es un tipo especialmente útil para representar sistemas de ecuaciones que contengan dos variables y en los que ninguna ecuación sea superior al segundo orden en ninguna de las variables (consulte el ejemplo 2 de “Representaciones Gráficas del Tipo Truth (Verdadero)” para obtener una aplicación de muestra).

**Ejemplo:** Visualice la representación gráfica de ejemplo de tipo cónico ELLIP: $5x^2 + 3y^2 - 18 = 0$. Si es necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Pulse **VAR** EXAM PLOTS ELLIP

Una vez efectuada la representación gráfica, pulse **CANCEL** (PLOT) para volver a ver las plantillas de PLOT generadas por la representación. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.
Representaciones Gráficas del Tipo Truth (Verdadero)

Las representaciones gráficas del tipo Truth calculan expresiones que devuelven resultados verdaderos (cualquier número real distinto a cero) o falsos (0). En las coordenadas de cada uno de los puntos, el punto se activa si la expresión es verdadera—permanece invariable si la expresión es falsa.

**Pantallas por Defecto del Tipo de Representación Gráfica**

**TRUTH**

<table>
<thead>
<tr>
<th>PLOT OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEP: X LO: -6.5 HI: 6.5</td>
</tr>
<tr>
<td>DEPND: Y LO: -3.1 HI: 3.2</td>
</tr>
<tr>
<td>STEP: Dflt 10 PIXELS X4ARES</td>
</tr>
<tr>
<td>H-TICK: 10 V-TICK: 10 X4PIXELS</td>
</tr>
</tbody>
</table>

**ENTER INDEPENDENT VAR NAME**

**EDIT**

23

---

**Plantilla de PLOT Truth**

\[ \angle: \]
Muestra el modo de ángulo actual. Cámbielo pulsando \([+/-]\) una o más veces o utilizando CHOOSE.

**EQ:**
Introduzca la expresión con valor verdadero, la desigualdad o el programa que desee representar gráficamente.

**INDEP:**
Introduzca el nombre de la variable independiente. Se representará sobre el eje horizontal.

**H-VIEW:**
Introduzca el rango de visualización horizontal en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.

**V-VIEW:**
Introduzca el rango de visualización vertical en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.

**OPTS**
Entra en la plantilla PLOT OPTIONS.

**ERASE**
Borra la pantalla PICT (sin mostrarla).

**DRAW**
Almacena todos los valores en los lugares adecuados de las variables reservadas EQ y PPAR y traza el gráfico de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

23-16 **Tipos de Representaciones Gráficas**
Plantilla de PLOT OPTIONS Truth

INDEP: Introduzca el nombre de la variable independiente.

LO: Introduzca el menor valor de la variable independiente que desee representar gráficamente. El rango de representación de gráficos del tipo Truth es normalmente distinto al rango de visualización (véase la página 24-3).

HI: Introduzca el mayor valor de la variable independiente que desee representar gráficamente. El rango de la representación puede ser distinto al rango de visualización (consulte la página 24-3).

DEPND: Introduzca la variable dependiente (o la segunda variable independiente). Se representará sobre el eje vertical.

LO: Introduzca el menor valor de la variable dependiente que desee representar gráficamente.

HI: Introduzca el mayor valor de la variable dependiente que desee representar gráficamente.

STEP: Determina la resolución de la representación gráfica. Es la distancia horizontal (en unidades o puntos—véase el siguiente campo) entre dos puntos de un gráfico. El tamaño de paso por defecto de Truth es un intervalo igual a 1 punto.

PIXELS Cuando tiene señal de comprobación, el tamaño de paso se interpreta como representación por puntos. Si no está señalado (valor por defecto), el tamaño de paso se interpreta como representación por unidades.

AXES Consulte el tipo de representación gráfica Function.

H-TICK Consulte el tipo de representación gráfica Function.

V-TICK Consulte el tipo de representación gráfica Function.

PIXELS Consulte el tipo de representación gráfica Function.

Observaciones Especiales

- A menos que se especifique de otro modo, se calculará cada uno de los puntos de la representación gráfica. En una visualización total, esto significa que EQ deberá calcularse 8,384 veces (comparadas con las 131 veces de una representación gráfica de funciones de tipo medio). Es posible acelerar el trazado del gráfico especificando un rango de representación de x e y menor (véase el ejemplo 2).
Ejemplos

Ejemplo 1: Visualice la representación gráfica de ejemplo de tipo cónico PTRN: \((x^2 + y^3) \mod 2 \geq 4\). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Pulse [VAR] EXAM PLOTS PTRN

Una vez trazada la representación gráfica, pulse CANCEL \(\leftrightarrow\) PLOT para volver a ver las plantillas de PLOT generadas por el gráfico. Experimente cambiando los valores o las opciones y volviendo a trazar la representación gráfica.

Ejemplo 2: Represente gráficamente el conjunto de soluciones del siguiente sistema de desigualdades: \(x + y \geq 2, 4y \leq x + 8, 2y \geq 3x - 6\).

**Paso 1:** Cree una expresión sencilla verdadera: \(\{x+y \geq 2 \ \text{AND} \ \ 4y \leq x + 8 \ \text{AND} \ \ 2y \geq 3x - 6\\}. \) Almacénela en la variable INEQ.

**Paso 2:** Cree una lista de las tres desigualdades con los signos de desigualdad convertidos en signos de igual (=): \(\{ 'x+y=2' \ '4y=x+8' \ '2y=3x-6' \}\). Archive la lista en la variable NEQL.

**Paso 3:** Entre en la aplicación PLOT, cambie el tipo de la representación gráfica a Conic, reconfigure los valores por defecto de la representación y seleccione NEQL para el campo Eq.

---

23-18 Tipos de Representaciones Gráficas
Paso 4: Borre PICT y represente gráficamente las tres líneas. (Asegúrese de que dichas ecuaciones cumplen los requerimientos de las representaciones gráficas del tipo Conic.) Una vez efectuado el gráfico, utilice \( \text{DRAW} \) para determinar la región de interés de las desigualdades.

\[ \text{ERASE DRAW} \quad (x,y) \]
\[ \Delta \nabla < \circ \nabla \text{ según sea necesario} \]

\[ \text{\textbf{\( x: 4.3, y: 1.9 \)}} \]

Paso 5: Vuelva a la plantilla de PLOT, cambie el tipo de representación gráfica a Truth, seleccione la expresión verdadera INEQ en el campo EQ: y reduzca el rango de la representación para la región de interés que se determinó en la visualización de la representación gráfica del tipo Conic.

\[ \text{\textbf{\( \nabla \nabla \nabla \nabla \nabla \text{OK} \)}} \]
\[ \text{\textbf{\( \nabla \nabla \text{OK} \)}} \]

Paso 6: Trace la representación gráfica verdadera \textit{sin borrar antes PICT}. La representación gráfica verdadera se superpondrá sobre las líneas trazadas anteriormente.

\[ \text{\textbf{\( \text{OK} \quad \text{DRAW} \)}} \]
Representaciones Gráficas de Estadísticas

Es posible representar gráficamente datos estadísticos en tres modos distintos:

- **Representación Gráfica de Dispersión.** Para dos variables, los valores en cada uno de los puntos de datos se describen mediante un punto en el plano \(x-y\).

- **Gráfico de Barras.** Para una variable, se muestra su valor en cada uno de los puntos de datos secuenciales mediante una barra vertical.

- **Histograma.** Para una variable, se describe el número de veces que cae su valor dentro de ciertos rangos—llamados *cubos*—mediante una barra vertical.

Las representaciones gráficas de estadísticas utilizan datos almacenados en la variable de matriz reservada \(\Sigma DAT\), que juega un papel en las estadísticas análogo a \(EQ\) en la representación gráficas y resolución de funciones.

Representaciones Gráficas del Tipo Histograma (Histograma)

Un histograma divide el rango de los valores de una variable en un número de *cubos* y muestra para cada cubo el número de puntos de datos en los que el valor de la variable cae en el cubo. Muestra la **frecuencia relativa**—el máximo valor de \(y\) es el número total de puntos de datos.

**Pantallas por Defecto de la Representación Gráfica del Tipo HISTOGRAM**

---

23-20 Tipos de Representaciones Gráficas
Plantilla de PLOT Histogram

**ΣDAT:** Introduzca la matriz de datos o el nombre de la matriz de datos que contenga los datos que desee representar gráficamente.

**COL:** Introduzca el número de columna de ΣDAT que contenga los datos que desee representar gráficamente.

**WID:** Introduzca la anchura de barras deseada. El valor por defecto para la anchura de las barras es de una unidad de usuario.

**H-VIEW:** Introduzca el rango de visualización horizontal (en unidades de usuario) en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.

**V-VIEW:** Introduzca el rango de visualización vertical (en unidades de usuario) en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el derecho.

**AUTOSCALE:** Cuando tiene una señal de comprobación, el rango de visualización horizontal se equipará al rango de los datos de la columna seleccionada de ΣDAT y el rango de visualización vertical se fijará para que todas las barras quepan verticalmente en la pantalla, sin tener en cuenta la distribución actual. Cuando no tiene señal de comprobación, la pantalla utilizará los rangos de visualización indicados en los campos H-VIEW y V-VIEW.

**OPTS** Entra en la plantilla PLOT OPTIONS.

**ERASE** Borra la pantalla PICT (sin mostrarla).

**DRAW** Almacena todos los valores en los lugares apropiados de las variables reservadas ΣDAT, PPAR y ΣPAR y traza el gráfico de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

Plantilla de PLOT OPTIONS Histogram

**AXES** Consulte el tipo de representaciones gráficas Function.

**H-TICK** Consulte el tipo de representaciones gráficas Function.

**V-TICK** Consulte el tipo de representaciones gráficas Function.

**PIXELS** Consulte el tipo de representaciones gráficas Function.
Representaciones Gráficas del Tipo Bar (Barras)

Un gráfico de barras muestra los valores de una variable en el orden en el que aparecen en la matriz de estadísticas.

Pantallas por Defecto de las Representaciones Gráficas del Tipo BAR

<table>
<thead>
<tr>
<th>TYPE:</th>
<th>Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAT:</td>
<td></td>
</tr>
<tr>
<td>WID:</td>
<td>Dflt H-VIEW: -6.5 6.5</td>
</tr>
<tr>
<td>_AUTOSCALE V-VIEW: -3.1 3.2</td>
<td></td>
</tr>
<tr>
<td>ENTER DATA TO PLOT</td>
<td>EDIT CAXES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLOT OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXES</td>
</tr>
<tr>
<td>H-TICK: 10</td>
</tr>
<tr>
<td>DRAW AXES BEFORE PLOTTING?</td>
</tr>
</tbody>
</table>

23

Plantilla de PLOT Bar

<table>
<thead>
<tr>
<th>IDAT:</th>
<th>Introduzca la matriz de datos o el nombre de la matriz de datos que contenga los datos que desee representar gráficamente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL:</td>
<td>Introduzca el número de columna de IDAT que contenga los datos que desee representar gráficamente.</td>
</tr>
<tr>
<td>WID:</td>
<td>Introduzca la anchura de barras deseada. El valor por defecto para la anchura de las barras es de una unidad de usuario.</td>
</tr>
<tr>
<td>H-VIEW:</td>
<td>Introduzca el rango de visualización horizontal (en unidades de usuario) en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.</td>
</tr>
<tr>
<td>V-VIEW:</td>
<td>Introduzca el rango de visualización vertical (en unidades de usuario) en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el derecho.</td>
</tr>
<tr>
<td>AUTOSCALE:</td>
<td>Cuando tiene una señal de comprobación, el rango de visualización horizontal se fijará entre 0 y n, donde n es el número de puntos de datos de IDAT y el rango de visualización vertical se fijará para que todas las barras quepan verticalmente en la pantalla y WID: se fijará en su valor por defecto (1 unidad por barra). Cuando no tiene señal de comprobación, la pantalla</td>
</tr>
</tbody>
</table>

23-22 Tipos de Representaciones Gráficas
utilizará los rangos de visualización indicados en los campos H-VIEW y V-VIEW.

Entra en la plantilla PLOT OPTIONS.
Borra la pantalla PICT (sin mostrarl)
Almacena todos los valores en los lugares apropiados de las variables reservadas $\Sigma$DAT, $P$PAR y $\Sigma$PAR y traza el gráfico de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

**Plantilla de PLOT OPTIONS Bar**

- **AXES**: Consulte el tipo de representaciones gráficas Function.
- **H-TICK**: Consulte el tipo de representaciones gráficas Function.
- **V-TICK**: Consulte el tipo de representaciones gráficas Function.
- **PIXELS**: Consulte el tipo de representaciones gráficas Function.

---

## Representaciones Gráficas del Tipo Scatter (Dispersion)

Una representación gráfica del tipo dispersión muestra la relación entre dos variables mediante la representación gráfica de un punto en cada uno de los pares de coordenadas $x$-$y$. En las variables que están estadísticamente relacionadas, los puntos deberán agruparse en torno a una curva que represente el modelo estadístico.

---

### Pantallas por Defecto de Representaciones Gráficas del Tipo SCATTER

![Plantilla PLOT OPTIONS](image)

---

**Tipos de Representaciones Gráficas**  23-23
Plantilla de PLOT Scatter

ΣDAT: Introduzca la matriz de datos o el nombre de la matriz de datos que contenga los datos que desee representar gráficamente.

COLS: Introduzca los números de columnas de ΣDAT que contengan los datos que desee representar gráficamente. El campo izquierdo indica la columna que se va a representar sobre el eje horizontal y el campo derecho indica la columna que se va a representar sobre el eje vertical.

H-VIEW: Introduzca el rango de visualización horizontal (en unidades de usuario) en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el lado derecho.

V-VIEW: Introduzca el rango de visualización vertical (en unidades de usuario) en los dos campos, el extremo inferior en el lado izquierdo y el extremo superior en el derecho.

AUTOSCALE: Cuando tiene una señal de comprobación, los rangos de visualización horizontal y vertical se fijarán para que se muestren en pantalla todos los puntos de la representación gráfica con el máximo espacio posible. Cuando no tiene señal de comprobación, la pantalla utilizará los rangos de visualización indicados en los campos H-VIEW y V-VIEW.

OPTS Entra en la plantilla PLOT OPTIONS.

ERASE Borra la pantalla PICT (sin mostrarla).

DRAW Almacena todos los valores en los lugares apropiados de las variables reservadas ΣDAT, PPAR y ΣPAR y traza el gráfico de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

Plantilla de PLOT OPTIONS Scatter

AXES Consulte el tipo de representaciones gráficas Function.
H-TICK Consulte el tipo de representaciones gráficas Function.
V-TICK Consulte el tipo de representaciones gráficas Function.
PIXELS Consulte el tipo de representaciones gráficas Function.
Observaciones Especiales

- Una vez efectuada la representación gráfica del tipo Scatter, pulse **STAT** para superponer un gráfico del modelo de regresión actual sobre la representación gráfica del tipo Scatter. Esto cambiará temporalmente el tipo de representación gráfica a **Function** de modo que al ejecutarse un zoom se vuelva a trazar la curva de regresión pero no los datos de la dispersión.

Cómo Representar Gráficamente Funciones de Dos Variables

Existen seis tipos diferentes de representaciones gráficas que se pueden utilizar como soporte en la visualización de funciones de dos variables. Algunos muestran superficies tridimensionales simuladas; otros proporcionan distintas visualizaciones bidimensionales de una función “tridimensional” de base (aunque no mostrada).

Enrejado de Muestra

Las funciones de dos variables independientes necesitan dos entradas para poder generar una salida. La HP 48 utiliza un **enrejado de muestra** bidimensional de los puntos cuyas coordenadas proporcionan las dos entradas requeridas.

Los seis tipos de representaciones gráficas que utilizan funciones de dos variables permiten determinar el tamaño del enrejado de muestra. Por defecto consiste en 80 puntos—10 columnas por 8 filas. Si se incrementa el número de los puntos del enrejado de muestra, aumentará el tiempo de trazado de la representación gráfica—y los detalles de la función representada.

De todos modos, en las representaciones gráficas de dos variables, una mayor pormenorización de los detalles no siempre se traduce en un gráfico más significativo. Cada una de las combinaciones de función y tipo de representación gráfica tiene su propio tamaño de enrejado de muestra óptimo incorporado, que no es ni demasiado pequeño para que se refleje adecuadamente la función ni demasiado amplio para que se oscurezcan los aspectos importantes. Probablemente necesite experimentar un poco con las dimensiones del enrejado de muestra cuando represente gráficamente una función por primera vez.
Enrejado de Salida

Los seis tipos representaciones gráficas transforman el enrejado de muestra en un enrejado de salida, utilizando la función como guía de la transformación. De todos modos, cada uno de los tipos de representaciones gráficas utiliza el enrejado de muestra de modo distinto.

Tres de ellos—Slopeat, Ps-Contour y Gridmap (Campo de Pendientes, Pseudo-Contorno y Mapa de Red)—toman cada uno de los conjuntos de coordenadas de muestra y utilizan la ecuación actual para transformarlos en un nuevo enrejado de salida bidimensional que le permita visualizar la naturaleza de la ecuación que se está transformando. La representación gráfica que se ve no es más que el enrejado de salida bidimensional.

Cómo Transformar un Enrejado de Muestra en un Enrejado de Salida

Un cuarto tipo de representación gráfica, YSlice (Corte-Y), efectúa la misma transformación que Wireframe (Estructura Lineal), pero muestra la salida de un modo totalmente distinto. En vez de mostrar la superficie de salida completa al mismo tiempo, YSlice representa, uno tras otro, los cortes transversales de la superficie perpendicular al eje y. Traza un gráfico para cada una de las filas del enrejado de muestra. Una vez que ha terminado el trazado de todos los “cortes”, crea y ejecuta una animación utilizando cada uno de los “cortes” como
una trama. Esto le permitirá visualizar un corte en movimiento sobre la superficie calculada.

Visualización de YSLICE

Los dos últimos, Wireframe y Pr-Surface (Estructura Lineal y Superficie Paramétrica), transforman el enrejado de muestra bidimensional en una superficie de salida tridimensional. La representación gráfica que puede verse es la superficie de salida vista desde un punto panorámico—el punto de vista. La única parte de la superficie representada será la que esté dentro de una región interior de un espacio tridimensional llamado Volumen de Visualización, definido por los rangos de cada uno de los tres ejes de coordenadas.
Obsérvese que el sistema de coordenadas de la HP 48 está de algún modo limitado con respecto a su homólogo matemático, abstracto. Concretamente:

- La pantalla de visualización de la representación gráfica no gira en el espacio; siempre permanece paralela al plano \(xz\) y perpendicular al eje \(y\). Esto significa que, visualmente, la “altura” aparece siempre sobre el eje \(z\), la “anchura” sobre el eje \(x\) y la “profundidad” sobre el eje \(y\).
- El eje \(y\) siempre está orientado de modo que los valores negativos de \(y\) estén “más próximos” y los valores positivos de \(y\) estén más “alejados” en la visualización de la representación gráfica.
- El punto de vista deberá estar al menos una unidad “más próximo” que \(y_{near}\) \((y_e \leq y_{near} - 1)\) y nunca puede existir “dentro” del Volumen de Visualización. Siempre que se mueva el punto de vista, también se desplazará la pantalla de visualización de la representación gráfica, de modo que permanecerá exactamente una unidad alejada en la dirección del eje \(y\).
- No se puede representar gráficamente una vista “superior” de una función (mirando hacia abajo sobre el plano \(xy\)) desplazando simplemente el punto de vista (aunque puede simularse transformando las coordenadas).
Representaciones Gráficas del Tipo Slopefield (Campo de Pendientes)

El tipo de representación gráfica Slopefield traza un enrejado de segmentos de línea cuyas pendientes representan el valor de la función \( f(x, y) \) en su punto central. La utilización de Slopefield permite al ojo percibir curvas integrales de la ecuación diferencial \( y' = F(x, y) \). Resulta bastante útil para la comprensión de la “constante arbitraria” de las antiderivadas.

Pantallas por Defecto de Representaciones Gráficas del Tipo SLOPEFIELD

Plantilla de PLOT Slopefield

\( \alpha: \) Muestra el modo de ángulo actual. Cámbielo pulsando +/- una o más veces o utilizando CHOOS.

EQ: Introduzca la expresión, ecuación o función definida por el usuario actual que desee representar gráficamente. Se pueden utilizar nombres de variables que contengan expresiones, ecuaciones o funciones definidas por el usuario en lugar de los objetos en sí.

INDEP: Introduzca el nombre de una de las variables independientes.

STEPS: Introduzca el número de columnas del enrejado de muestra.

DEPND: Introduzca el nombre de la segunda variable independiente.

STEPS: Introduzca el número de filas del enrejado de muestra.

OPTS: Entra en la plantilla PLOT OPTIONS.

ERASE: Borra la pantalla de PICT (sin mostrarla).

DRAW: Almacena todos los valores en los lugares adecuados de las variables reservadas—EQ, PPAR y VPAR—y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.
Plantilla de PLOT OPTIONS Slopefield

X-LEFT: Introduzca el rango de visualización horizontal correspondiente a la primera variable independiente (introducida en INDEP).

X-RIGHT: Introduzca el rango de visualización vertical correspondiente a la segunda variable independiente (introducida en DEPND).

Ejemplos

Ejemplo 1: Visualice la representación gráfica de ejemplo del tipo Slopefield SPFLD: \( y' = \frac{(x^2 - 1)}{(y^2 - 1)} \). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Pulse [VAR] [EXAM] [PLOTS] [NXT] [SPFLD]

Una vez efectuada la representación gráfica, pulse [CANCEL] [PLOT] para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.

Ejemplo 2: Trace el Slopefield (Campo de Pendientes) de la ecuación diferencial \( y'(x) = x^2 \). A continuación superponga la solución de la ecuación con una condición inicial concreta.

Paso 1: En la plantilla de PLOT Slopefield, introduzca la expresión ('x^2') en EQ: y fije los rangos de visualización en [-3 3] (horizontal) y [-1 5] (vertical). Deje los demás campos con sus estados por defecto.
Paso 2: Represente gráficamente el campo de pendientes.

Paso 3: Active el modo TRACE, salte a un punto de la esquina inferior izquierda de la pantalla y pulse ENTER para colocar las coordenadas en la pila.

Paso 4: Vuelva a la plantilla PLOT y cambie el tipo de representación gráfica a Diff Eq. A continuación resalte el campo INIT: de la variable de solución y pulse NXT CALC DROP de modo que el punto de coordenadas (una lista marcada) se sitúe en el nivel 1 de la pila.

Paso 5: Pulse PRG LIST OBJ DROP para quitar el valor INPUT.Pulse OBJ DROP para separar las dos coordenadas, y a continuación CONT OK para almacenar la coordenada y como el valor de solución inicial.

Paso 6: Resalte el campo INIT: de la variable independiente y pulse CALC DROP OK para recuperar la coordenada x como el valor independiente inicial. Seguidamente, fije el valor FINAL: en 3.

Paso 7: Fije el tamaño de paso en 0.1, el espaciado de las comillas simples en 1 unidad en ambos ejes y asegúrese de que se trazan los ejes.

Paso 8: Trace la representación gráfica sin borrar antes de modo que se superponga la representación gráfica Diff Eq sobre el gráfico de Slopefield anterior.
Representaciones Gráficas del Tipo Wireframe (Estructura Lineal)

El tipo de representación gráfica Wireframe traza un gráfico tridimensional visto de modo oblicuo, en perspectiva, de un modelo de estructura lineal de la superficie determinada por \( Z = F(x, y) \). Cada uno de los puntos del enrejado de muestra se proyecta en perspectiva en la pantalla de visualización sobre la línea que une la muestra y el punto de vista \((X_e, Y_e, Z_e)\).

**Proyección en Perspectiva**

Las muestras próximas están conectadas mediante líneas rectas. El enrejado de muestra está determinado por la "base" del Volumen de Visualización \((X_{left}, X_{right}, Y_{near}, Y_{far})\).

**Pantallas por Defecto del Tipo de Representaciones Gráficas Wireframe**

<table>
<thead>
<tr>
<th>TYPE: Wireframe 4:Deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ:</td>
</tr>
<tr>
<td>INDEP: X</td>
</tr>
<tr>
<td>DEPND: Y</td>
</tr>
<tr>
<td>ENTER FUNCTION(S) TO PLOT</td>
</tr>
</tbody>
</table>

Pantallas de Visualización

Pantalla de Vista

Punto de Vista \((X_e, Y_e, Z_e)\)
Plantilla de PLOT Wireframe

AX: Muestra el modo de ángulo actual. Cámbiolo pulsando +/- una o más veces o utilizando CHOOS.

EQ: Introduzca la expresión, ecuación o función definida por el usuario actual que desee representar gráficamente. Se pueden utilizar nombres de variables que contengan expresiones, ecuaciones o funciones definidas por el usuario en lugar de los objetos en sí.

INDEP: Introduzca el nombre de una de las variables independientes.

STEPS: Introduzca el número de columnas del enrejado de muestra.

DEPND: Introduzca el nombre de la segunda variable independiente.

STEPS: Introduzca el número de filas del enrejado de muestra.

OPTS: Entra en la plantilla PLOT OPTIONS.

ERASE: Borra la pantalla de PICT (sin mostrarla).

DRAW: Almacena todos los valores en los lugares adecuados de las variables reservadas—EQ, PPAR y VPAR—y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

Plantilla de PLOT OPTIONS Wireframe

X-LEFT: Introduzca el rango del eje x ("anchura") del Volumen de Visualización.

X-RIGHT: Introduzca el rango del eje x ("anchura") del Volumen de Visualización.

Y-NEAR: Introduzca el rango del eje y ("profundidad") del Volumen de Visualización.

Y-FAR: Introduzca el rango del eje y ("profundidad") del Volumen de Visualización.

Z-LOW: Introduzca el rango del eje z ("altura") del Volumen de Visualización.

Z-HIGH: Introduzca el rango del eje z ("altura") del Volumen de Visualización.

XE: Introduzca la coordenada x del punto de vista. Utilice el punto medio del rango del eje x para el Volumen de Visualización si desea que la representación gráfica esté "centrada" horizontalmente en la pantalla.

YE: Introduzca la coordenada y del punto de vista. Deberá ser al menos una unidad menor que el valor de Y-NEAR. Cuanto mayor es la diferencia entre YE e Y-NEAR, más "lejos" aparecerá la representación gráfica.
**ZE:** Introduzca la coordenada $z$ del punto de vista. Utilice el punto medio del rango del eje $z$ para el Volumen de Visualización si desea que la representación gráfica esté “centrada” verticalmente en la pantalla.

**Ejemplo:** Visualice la representación gráfica de ejemplo del tipo Wireframe WIRE : $z = x^3 y - xy^3$. Si fuera necesario, escriba TERCH para instalar el directorio EXAMPLES y a continuación:

```
Pulse VAR EXAM PLOTS
NXT WIRE
```

Una vez trazada la representación gráfica, pulse CANCEL PLOT para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.

---

**Representaciones Gráficas del Tipo Pseudo-Contour (Pseudo-Contorno)**

El tipo de representación gráfica Ps-Contour representa un enrejado de segmentos de línea, cada uno de ellos tangente a un contorno de la función (una curva que satisface $F(x,y) =$ constante). Calcula una tangente para cada uno de los puntos del enrejado de muestra. Ps-Contour produce una representación gráfica “rápida” de un contorno, que permite al ojo captar las curvas integrales (contornos) sin representarlas realmente.
Pantallas por Defecto del Tipo de Representación Gráfica

PS-CONTOUR

Plantilla de PLOT Ps-Contour

$\theta$:
Muestra el modo de ángulo actual. Cámbielo pulsando $\pm$ una o más veces o utilizando CH00S.

EQ:
Introduzca la expresión, ecuación o función definida por el usuario actual que desee representar gráficamente. Se pueden utilizar nombres de variables que contengan expresiones, ecuaciones o funciones definidas por el usuario en lugar de los objetos en sí.

INDEP:
Introduzca el nombre de una de las variables independientes.

STEPS:
Introduzca el número de columnas del enrejado de muestra.

DEPND:
Introduzca el nombre de la segunda variable independiente.

STEPS:
Introduzca el número de filas del enrejado de muestra.

OPTS:
Entra en la plantilla PLOT OPTIONS.

ERASE:
Borra la pantalla de PICT (sin mostrarla).

DRAW:
Almacena todos los valores en los lugares adecuados de las variables reservadas—$EQ$, $PPAR$ y $VPAR$—y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

Plantilla de PLOT OPTIONS Ps-Contour

X-LEFT:
Introduzca el rango de visualización horizontal correspondiente a la primera variable independiente (introducida en INDEP).

Y-NEAR:
Introduzca el rango de visualización vertical correspondiente a la segunda variable independiente (introducida en DEPND).

Tipos de Representaciones Gráficas 23-35
Ejemplo: Visualice la representación gráfica de ejemplo del tipo Ps-Contour PSCN: \( z = \frac{(x^2 - 1)}{(y^2 - 1)} \). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Una vez trazada la representación gráfica, pulse CANCEL \( \rightarrow \) PLOT para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.

Representaciones Gráficas del Tipo Y-Slice (Corte-Y)

El tipo de representaciones gráficas YSLICE traza una serie de cortes transversales (cada uno de ellos perpendiculares al eje y) de la superficie determinada por la ecuación actual. Traza una representación gráfica para cada una de las filas del enrejado de muestra. Una vez que ha finalizado el trazado de todos los “cortes”, crea y ejecuta una animación utilizando cada “corte” como una trama. Esto permite visualizar el movimiento del corte a través de la superficie calculada.
Plantillas de PLOT Y-Slice

**EQ:** Introduzca la expresión, ecuación o función definida por el usuario actual que desee representar gráficamente. Se pueden utilizar nombres de variables que contengan expresiones, ecuaciones o funciones definidas por el usuario en lugar de los objetos en sí.

**INDEP:** Introduzca el nombre de una de las variables independientes.

**STEPS:** Introduzca el número de columnas del enrejado de muestra.

**DEPN:** Introduzca el nombre de la segunda variable independiente.

**STEPS:** Introduzca el número de filas del enrejado de muestra.

**OPTS** y **ERASE** y **DRAW**

Almacena todos los valores en los lugares adecuados de las variables reservadas—**EQ**, **PPAR** y **VPAR**—y traza la serie de representaciones gráficas de acuerdo con ellos. Una vez que ha trazado todos los cortes, los anima en un bucle de repetición continuo. Pulse **CANCEL** para detener la animación.

Plantillas de PLOT OPTIONS YSlice

**X-LEFT:** Introduzca el rango del eje **x** ("anchura") del Volumen de Visualización.

**X-RIGHT:** Introduzca el rango del eje **x** ("anchura") del Volumen de Visualización.

**Y-NEAR:** Introduzca el rango del eje **y** ("profundidad") del Volumen de Visualización.

**Y-FAR:** Introduzca el rango del eje **y** ("profundidad") del Volumen de Visualización.
Z-LOW: Introduzca el rango del eje z ("altura") del Volumen de Visualización.

Z-HIGH: Cuando tiene una señal de comprobación, las series de "cortes" utilizadas en la animación se colocan en la pila y el número de cortes aparecerá en el nivel 1 de la pila. Cuando no tiene señal de comprobación, todos los "cortes" a excepción del actual se borrarán en cuanto se salga del entorno PICTURE.

Ejemplo 1: Visualice la representación gráfica de ejemplo del tipo YSlice SLICE: \( z = x^3y - xy^3 \). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Pulse \( \text{VAR} \) EXAM PLOTS
\( \text{NXT SLICE} \)

Pulse \( \text{CANCEL} \) para interrumpir la animación.

Una vez trazada la representación gráfica, pulse \( \text{CANCEL} \) \( \Rightarrow \) PLOT para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.

**Representaciones Gráficas del Tipo Gridmap (Mapa de Red)**

El tipo de representación gráfica GRIDMAP transforma (traza el mapa) el enrejado de muestra especificado mediante la función de valor complejo actual. Las coordenadas (un número complejo) de cada uno de los puntos del enrejado de muestra son las entradas de la función que a continuación traza el mapa de las coordenadas en el enrejado de salida. Es posible controlar qué parte del enrejado de salida aparece en la pantalla mediante el ajuste de los rangos de \( x \) e \( y \) del Volumen de Visualización.
Plantilla de PLOT Gridmap

\( \angle \) : Muestra el modo de ángulo actual. Cámbielo pulsando una o más veces o utilizando CHOOSE.

EQ: Introduzca la expresión, ecuación o función definida por el usuario actual que desee representar gráficamente. Se pueden utilizar nombres de variables que contengan expresiones, ecuaciones o funciones definidas por el usuario en lugar de los objetos en sí. La función o expresión de EQ deberá utilizar un argumento de un número complejo.

INDEP: Introduzca el nombre de una de las variables independientes.

STEP: Introduzca el número de columnas del enrejado de muestra.

DEPND: Introduzca el nombre de la segunda variable independiente.

STEP: Introduzca el número de filas del enrejado de muestra.

OPTS: Entra en la plantilla PLOT OPTIONS.

ERASE: Borra la pantalla de PICT (sin mostrarla).

DRAW: Almacena todos los valores en los lugares adecuados de las variables reservadas—EQ, PPAR y VPAR—y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.

Plantilla de PLOT OPTIONS Gridmap

X-LEFT: Introduzca el rango de visualización horizontal.

X-RIGHT: Introduzca el rango de visualización vertical.

Y-NEAR: Introduzca el rango de visualización vertical.

Y-FAR:
XX-LEFT: Introduzca el rango horizontal del enrejado de muestra de entrada correspondiente a la primera variable independiente (introducida en INDEP).

YY-NEAR: Introduzca el rango vertical del enrejado de muestra de entrada correspondiente a la segunda variable independiente (introducida en DEPND).

Ejemplo 1: Visualice la representación gráfica de ejemplo del tipo Gridmap GRID: \( x + yi \Rightarrow \sin(x + yi) \). Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

```
Pulse VAR EXAH PLOTS
NXT GRID
```

Una vez trazada la representación gráfica, pulse CANCEL \( \rightarrow \) PLOT para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.

---

**Representaciones Gráficas del Tipo Parametric Surface (Superficie Paramétrica)**

El tipo de representación gráfica Pr-Surface traza un gráfico tridimensional de visualización oblicua, en perspectiva, de un modelo de estructura de red de la superficie determinada por \( F(u, v) = x(u, v)i + y(u, v)j + z(u, v)k \) donde \( u \) y \( v \) se trazan a partir del enrejado de muestra (rangos XX- e YY-). Pr-Surface combina la aproximación del mapa de coordenadas de Gridmap con la representación gráfica tridimensional en perspectiva de Wireframe.
Pantallas por Defecto del Tipo de Representación Gráfica

PR-SURFACE

**TYPE:** Pr-Surface 4:Deg

**EQ:**

**INDEP:** X  
**STEPS:** 10

**DEPND:** Y  
**STEPS:** 8

**ENTER FUNCTION(S) TO PLOT**

**EDIT**  **CHOOOS**  **OPTS**  **ERASE**  **DRAW**

**PLOT OPTIONS**

**X-LEFT:** -1  
**X-RIGHT:** 1

**Y-NEAR:** -1  
**Y-FAR:** 1

**Z-LOW:** -1  
**Z-HIGH:** 1

**XE:** 0  
**YE:** -3  
**ZE:** 0

**ENTER MINIMUM X VIEW-VOLUME VAL**

**EDIT**  **OK**

**XX AND YY PLOT OPTIONS**

**XX-LEFT:** -1  
**XX-RIGHT:** 1

**YY-NEAR:** -1  
**YY-FAR:** 1

**ENTER MINIMUM XX RANGE VALUE**

**EDIT**  **OK**

---

**Plantilla de PLOT Pr-Surface**

**Æ:** Muestra el modo de ángulo actual. Cámbielo pulsando +/- una o más veces o utilizando CHOOOS.

**EQ:** Introduzca la función como una lista que contenga los tres objetos algebraicos que representan los componentes paramétricos del vector.

**INDEP:** Introduzca el nombre de una de las variables independientes.

**STEP:** Introduzca el número de columnas del enrejado de muestra.

**DEPND:** Introduzca el nombre de la segunda variable independiente.

**STEP:** Introduzca el número de filas del enrejado de muestra.

**OPTS** Entra en la plantilla PLOT OPTIONS.

**ERASE** Borra la pantalla de PICT (sin mostrarla).

**DRAW** Almacena todos los valores en los lugares adecuados de las variables reservadas —EQ, PPAR y VPAR— y traza la representación gráfica de acuerdo con ellos, dejándole en el entorno PICTURE cuando ha terminado.
Plantilla de PLOT OPTIONS Pr-Surface

X-LEFT: Introduzca el rango del eje x ("anchura") del Volumen de Visualización.

X-RIGHT: Introduzca el rango del eje y ("profundidad") del Volumen de Visualización.

Z-LOW: Introduzca el rango del eje z ("altura") del Volumen de Visualización.

Z-HIGH: Introduzca la coordenada x del punto de vista. Utilice el punto medio del rango del eje x para el Volumen de Visualización si desea que la representación gráfica esté "centrada" horizontalmente en la pantalla.

Y-E: Introduzca la coordenada y del punto de vista. Deberá ser al menos una unidad menor que el valor de Y-NEAR:. Cuanto mayor es la diferencia entre Y-E: e Y-NEAR:, más "lejos" aparecerá la representación gráfica.

Z-E: Introduzca la coordenada z del punto de vista. Utilice el punto medio del rango del eje z para el Volumen de Visualización si desea que la representación gráfica esté "centrada" verticalmente en la pantalla.

XX-YY: Entra en la plantilla XX AND YY PLOT OPTIONS para introducir los rangos del enrejado de muestra.
Plantilla de XX AND YY PLOT OPTIONS Pr-Surface

XX-LEFT: Introduzca el rango horizontal del enrejado de muestra de entrada.

YY-NEAR: Introduzca el rango vertical del enrejado de muestra de entrada.

Ejemplo 1: Visualice la representación gráfica de ejemplo del tipo Pr-Surface PSUR: 
\[ F(u, v) = x(u, v)i + y(u, v)j + z(u, v)k \]
donde \[ x(u, v) = u \cos v, \ y(u, v) = u \sin v \ y \ z(u, v) = u. \] Si fuera necesario, escriba TEACH para instalar el directorio EXAMPLES y a continuación:

Pulse VAR EXAM PLOTS

NXT PSUR

Una vez trazada la representación gráfica, pulse CANCEL PLOT para volver a visualizar las plantillas de PLOT generadas por la representación gráfica. Experimente cambiando los valores o las opciones y volviendo a trazar el gráfico.
Opciones de Representaciones Gráficas Avanzadas

Cómo Etiquetar y Localizar los Ejes

Para etiquetar los ejes de coordenadas con los nombres de variables:

- Una vez trazada la representación gráfica, pulse EDIT NXT LABEL. Los nombres de las variables independientes y dependientes, y las coordenadas (en unidades de usuario) de los valores visualizados mayores y menores de cada variable, se añaden a la representación gráfica. La figura siguiente muestra las etiquetas añadidas a la representación gráfica de $x^2 - 2$ utilizando los valores por defecto.

![Gráfica con etiquetas](image)

Para etiquetar los ejes con etiquetas definidas por el usuario:

1. Pulse CANCEL para volver a la pila, si fuera necesario.
2. Introduzca una lista que contenga las etiquetas de los ejes horizontales y verticales (como cadenas):
   `( "h-etiqueta" "v-etiqueta" )`
3. Pulse PLOT PAR NXT AXES para archivar las etiquetas.
4. Pulse PICTURE para volver a visualizar la representación gráfica.
5. Pulse EDIT NXT LABEL.
Para intersectar los ejes en algún punto distinto a (0,0):

1. Desde la pila, pulse \( \mathrm{PLOT} \{ \mathrm{PAR} \mathrm{NXT} \mathrm{AXES} \) para almacenar el punto de intersección.

2. Escriba el número complejo que contenga el punto de intersección deseado y pulse \( \mathrm{ENTER} \).

3. Pulse \( \mathrm{PLOT} \) \( \mathrm{ERASE} \, \mathrm{DEFN} \) para volver a trazar la representación gráfica con el nuevo punto de intersección de ejes.

Cómo Representar Gráficamente Programas y Funciones Definidas por el Usuario

Las representaciones gráficas pueden realizarse a partir de expresiones, ecuaciones e incluso programas. Las expresiones, ecuaciones y programas pueden incluir funciones definidas por el usuario.

Un programa puede representarse gráficamente si no toma ningún dato de la pila, si utiliza la variable independiente en el programa y si devuelve exactamente un número no definido a la pila:

- **Resultado real.** Equivalente a las expresiones \( f(x) \) (representación gráfica tipo Función) y \( r(\theta) \) (representación gráfica tipo Polar). Por ejemplo, el programa

\[
\text{« IF 'X<0' THEN '3*X^3-45*X^2+350' ELSE 1000 END»}
\]

representa gráficamente

\[
f(x) = \begin{cases} 
3x^3 - 45x^2 + 350 & \text{if } x < 0 \\
1000 & \text{if } x \geq 0
\end{cases}
\]

Almacene el programa en \( EQ \), seleccione la autoescala y trace la representación gráfica.

- **Resultado complejo.** Equivalente a \((x(t), y(t))\) (representación gráfica tipo Parametric). Por ejemplo, el programa

\[
\text{« 't^2-2' \rightarrow NUM 't^3-2*t+1' \rightarrow NUM R\rightarrow C »}
\]

representa gráficamente las ecuaciones paramétricas

\[
x = t^2 - 2 \quad y \quad y = t^3 - 2t + 1
\]

Almacene el programa en \( EQ \), convierta la variable independiente en \('T'\), seleccione la autoescala y trace la representación gráfica.
Rango de Representación Gráfica frente a Rango de Visualización

El rango de representación gráfica es el rango de la variable (o variables) independiente que sirve para evaluar la ecuación actual. Si no se especifica el rango de representación gráfica, la HP 48 utiliza el rango de visualización del eje x (especificado mediante XRNG en \texttt{[PLOT]} o mediante \texttt{H-VIEW} en \texttt{[PLOT]}) como rango de representación gráfica. Sin embargo, puede especificarse un rango de representación gráfica que sea diferente del rango de visualización del eje x:

- Para las representaciones gráficas Polar y Parametric, la variable independiente no está relacionada con la variable del eje x—por lo que se especifica el rango de representación gráfica para controlar el rango de la variable independiente.

- Para las representaciones gráficas Truth y Conic, puede reducir el tiempo de representación gráfica especificando rangos más pequeños que los rangos de visualización de los ejes x e y. Estos tipos de representación gráfica requieren que se especifique la variable dependiente—puede especificarse que su rango de representación gráfica sea diferente del rango de visualización del eje y.

El tamaño de PICT puede aumentarse respecto a su tamaño por defecto (131 por 64 pixels)—manteniendo los mismos factores de escala x e y (lo cual amplía el rango de visualización), o manteniendo el mismo rango de visualización (lo cual amplía la escala y parece que “alarga” la representación gráfica).

Para verificar el tamaño actual de PICT:

- Pulse \texttt{[PRG] PICT PICT RCL}. Verá \texttt{Graphic ancho} \texttt{alto}—las dimensiones actuales de PICT.
Para modificar el tamaño de PICT:

- Para mantener la misma escala, introduzca dos números complejos (con los delimitadores < >) especificando las coordenadas de las esquinas diagonalmente opuestas en unidades de usuario, a continuación pulse [PRG] PICT PDIM.

- Para mantener los mismos rangos de visualización, introduzca dos números enteros binarios (con el delimitador #) especificando la medida horizontal y vertical en pixels, a continuación pulse [PRG] PICT PDIM.

El resultado del comando PDIM (PICT dimensión) depende del tipo de coordenadas—unidades de usuario o pixels—aunque ambas formas modifican el tamaño de PICT.

Ejemplo: Suponga que PICT tiene el tamaño por defecto, tal como se muestra en la figura (a) siguiente.

Para duplicar el rango x de PICT en la dirección horizontal y mantener las mismas escalas (unidades por pixel), introduzca (-10,-1) y (20,2) y pulse PDIM. (PICT pasa a tener #261 de ancho por #54 de alto en unidades pixel.) Si vuelve a trazar el gráfico, se produce el efecto de añadir más puntos por ambos lados, como se muestra en la figura (c).
Cambio del Tamaño de PICT

Para ampliar el rango de representación gráfica más allá de los límites de visualización:

1. Modifique el tamaño de PICT de forma que abarque el rango de representación gráfica. Introduzca dos números completos (con los delimitadores ( )) especificando las coordenadas de las esquinas diagonalmente opuestas en unidades de usuario, a continuación pulse [PRG] [PICT] [PDIM].
2. Entre en la aplicación PLOT y active los rangos de representación gráfica y los rangos de visualización. Puede que el rango de visualización sea más pequeño que el rango de representación gráfica.
3. Una vez activados todos los parámetros de representación gráfica, pulse ERASE DRAW para trazar dicha representación. En pantalla verá sólo una parte de la misma.
4. Pulse (PICTURE) y utilice las teclas del cursor para desplazar la imagen y ver la representación gráfica más grande. Vuelva a pulsar (PICTURE) para salir del modo de desplazamiento.

Para utilizar valores calculados para rangos de representación gráfica o de visualización:

1. En la plantilla PLOT o PLOT OPTIONS, resalte el campo del rango cuyo valor desea calcular.
2. Pulse (NXT) (CALC) para preparar un cálculo paralelo en la pila.
3. Efectúe el cálculo deseado. Por ejemplo, si desea utilizar 3π/4 como un punto final, debe pulsar 3 (PI) (X) 4 (x).
4. Si no lo es todavía, convierta el resultado del nivel 1 en un número real pulsando (NUM).
5. Pulse (QUIT) para devolver el resultado al campo original.

Cómo Archivar y Recuperar Representaciones Gráficas

Una representación gráfica puede estar formada por varios componentes:

- La imagen de la representación gráfica, un objeto gráfico.
- La ecuación o ecuaciones actuales, almacenadas en la variable reservada EQ.
- Los parámetros de representación gráfica actuales, establecidos en las plantillas PLOT y almacenados en la variable reservada PPAR y, en el caso de tipos de representaciones gráficas tridimensionales, VPAR.
- Configuraciones de indicadores que determinan las opciones de representación gráfica o visualización.
Dispone de la opción de archivar todos o algunos de estos componentes de representación gráfica en una variable con el fin de poder recuperarlos más adelante. Para ello, tiene dos métodos:

1. Archive sólo la imagen de la representación gráfica—el “resultado”—en una variable. El procedimiento es sencillo (véase a continuación), pero cada imagen de representación gráfica utiliza aproximadamente un Kilobyte de memoria.

2. Archive los $EQ$, $PPAR$, $VPAR$ actuales (si fuera necesario) y las configuraciones de indicadores en una lista. La representación gráfica puede reconstruirse recuperándolos todos en los valores contenidos en la lista.

La siguiente lista de procedimientos ilustra cómo se ejecutan estos métodos de archivo y recuperación de representaciones gráficas.

**Para archivar la imagen de la representación gráfica actual en una variable:**

1. Una vez trazada la representación gráfica y mientras se visualiza en PICTURE, pulse $\text{STO}$ para enviar una copia de la representación gráfica a la pila como objeto de gráfico. Pulse $\text{CANCEL}$ para volver a la pila.

2. Introduzca un nombre para la representación gráfica ($'P1'$, por ejemplo) y pulse $\text{STO}$.

**Para ver la imagen de una representación gráfica previamente almacenada en una variable:**

1. Pulse $\text{VAR}$ y, a continuación, $\uparrow$ y la tecla del menú correspondiente a la variable que contiene la imagen de la representación gráfica ($'P1'$, por ejemplo) para que vuelva a la pila.

2. Pulse $\text{PRG} \ PICT \ PICT \ \text{STO}$ para almacenar la imagen de la representación gráfica en $PICT$.

3. Pulse $\leftarrow \text{PICTURE}$ para ver la imagen de la representación gráfica.
Para archivar una versión "reconstruible" de la representación gráfica actual:

1. Una vez trazada la representación gráfica, pulse [CANCEL] para volver a la pila.
2. Recupere el contenido actual de EQ, PPAR y VPAR (si la representación gráfica actual es tridimensional) en la pila pulsando [VAR] y a continuación [EQ] PPAR y VPAR (si fuera necesario). Puede que necesite utilizar [NXT] para cambiar las páginas del menú con el fin de hallar cada una de estas variables.
3. Pulse [MODES] [LIST] [NXT] [LIST] para recuperar las configuraciones de indicadores actuales en la pila.
4. Debe tener tres 0, si incluyó VPAR, cuatro nuevos objetos en la pila. Introduzca el número (3 ó 4) y pulse [PRG] [LIST] [LIST] para agrupar estos objetos en una lista.
5. Introduzca un nombre para la lista y pulse [STO].

Para reconstruir una representación gráfica a partir de su versión almacenada:

1. Pulse [VAR] y a continuación la tecla del menú asociada con la variable que contiene la versión almacenada (en forma de lista) de la representación gráfica.
2. Pulse [PRG] [TYPE] [OBJ] [DROP] para descomponer la lista y poner los componentes en la pila.
3. Pulse [MODES] [STOF] para recuperar las configuraciones de indicadores. Tenga en cuenta que las configuraciones de indicadores actuales se perderán.
4. Si la representación gráfica es tridimensional, pulse [ ], escriba VPAR y pulse [STO] para recuperar VPAR.
5. Pulse [ ], escriba PPAR y pulse [STO] para recuperar PPAR.
6. Pulse [PLOT] [EQ] para recuperar EQ.
7. Pulse [PLOT] [ERASE] [DRAIT] para volver a trazar la representación gráfica.
La Biblioteca de Ecuaciones

La Biblioteca de Ecuaciones es un conjunto de ecuaciones y comandos que le permiten resolver problemas técnicos y científicos sencillos. La biblioteca consta de más de 300 ecuaciones agrupadas en 15 temas técnicos que contienen más de 100 títulos de problemas. Cada problema contiene una o más ecuaciones que le ayudan a resolver ese tipo de problemas. El Apéndice G contiene un cuadro de los grupos y títulos de problemas que pueden encontrarse en la Biblioteca de Ecuaciones. En la HP 48G Series Advanced User’s Reference se ofrece información más detallada sobre cada conjunto de ecuaciones.

Cómo Resolver un Problema con la Biblioteca de Ecuaciones

Siga estos pasos para resolver un problema utilizando la Biblioteca de Ecuaciones:

2. Establezca las opciones de unidad que desee pulsando las teclas del menú SI, ENGL y UNITS.
3. Resalte el tema que desee y pulse [ENTER].
4. Resalte el título que desee.
5. Opcional—si quiere obtener más información más sobre las ecuaciones de este conjunto, pulse otras teclas, como se describe en las secciones siguientes.
7. Pulse [SOLVE] para empezar a resolver el problema.
9. Opcional: Proporcione una estimación para la(s) variable(s) incógnita(s). Esto puede acelerar el proceso de solución o ayudar a centrarse en una de las diversas soluciones. Introduzca una estimación al igual que lo hace con el valor de una variable conocida. Si trabaja con ecuaciones múltiples, pulse [ ] y a continuación la tecla de menú de la variable MAX1 después de haber introducido la estimación (volviendo a poner la etiqueta del menú en blanco).

10. Pulse [ ] seguido por la tecla del menú de la variable que está resolviendo. Si está resolviendo un conjunto de ecuaciones, puede pulsar [ ] ALL para resolver todas las demás variables incógnitas—todas las variables que no ha definido con anterioridad.

Cómo Utilizar la Resolución

Cuando elige un tema y un título de la Biblioteca de Ecuaciones, especifica un conjunto de una o más ecuaciones. A continuación, pulsando SOLV sale de los catálogos de la Biblioteca de Ecuaciones y comienza a resolver las ecuaciones que ha elegido.

Al pulsar SOLV en la Biblioteca de Ecuaciones, la aplicación hace lo siguiente:

- El conjunto de ecuaciones se almacena en la variable apropiada: EQ para una ecuación, EQ y Mpar para más de una ecuación. (Mpar es el nombre de una variable reservada utilizada por la Resolución de Ecuaciones Múltiples.)
- Cada variable se crea y se establece en cero a menos que ya exista. (Si el nombre de la variable lo ha utilizado antes la Resolución, será una variable global, por lo que ya existe—hasta que la borre.)
- Las unidades de cada variable están sujetas a las condiciones que ha especificado—unidades SI o inglesas, y unidades utilizadas o no utilizadas—a no ser que la variable ya exista y tenga unidades dimensionalmente coherentes con lo que ha especificado. (Para cambiar de unidades inglesas a SI o viceversa, depuere primero las variables ya existentes o introduzca explícitamente las unidades con los valores.)
- Se inicia la Resolución apropiada: la aplicación SOLVR (véase la página 18-7) para una ecuación, la Resolución de Ecuaciones Múltiples para más de una ecuación.
Como $EQ$ y $Mpar$ son variables, puede tener un $EQ$ y $Mpar$ diferentes para cada directorio de la memoria.

**Cómo Utilizar las Teclas del Menú**

Las funciones de las teclas normales y de cambio del menú Variable de las dos Resoluciones son idénticas. Tenga en cuenta que la Resolución de Ecuaciones Múltiples utiliza dos formas de etiquetas de menú: blancas y negras. La tecla $\text{[NXT]}$ muestra las etiquetas de menú adicionales, si se solicita. Además, cada Resolución posee teclas de menú especiales, que se describen en la tabla siguiente. Puede saber qué Resolución se ha activado mirando las etiquetas de menú especiales. (O puede verificar el título—el título de una ecuación de biblioteca en la aplicación HP Resol comienza con $EQ_\ast.$)

<table>
<thead>
<tr>
<th>Operación</th>
<th>Aplicación SOLVE</th>
<th>Resolución de Ecuaciones Múltiples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenar valor</td>
<td>$\times$</td>
<td>$\times$</td>
</tr>
<tr>
<td>Resolver valor</td>
<td>$\leftarrow \times$</td>
<td>$\leftarrow \times$</td>
</tr>
<tr>
<td>Recuperar valor</td>
<td>$\Rightarrow \times$</td>
<td>$\Rightarrow \times$</td>
</tr>
<tr>
<td>Evaluar ecuación</td>
<td>$\text{EXPR=}$</td>
<td></td>
</tr>
<tr>
<td>Ecuación siguiente (si es aplicable)</td>
<td>$\text{NEXEO}$</td>
<td></td>
</tr>
<tr>
<td>Dejar todas sin definir</td>
<td></td>
<td>$\text{ALL}$</td>
</tr>
<tr>
<td>Resolver todas</td>
<td>$\leftarrow \text{ALL}$</td>
<td></td>
</tr>
<tr>
<td>Avanzar catálogo</td>
<td>$\Rightarrow \text{ALL}$</td>
<td></td>
</tr>
<tr>
<td>Establecer estados</td>
<td>$\text{MUSE MCAL}$</td>
<td></td>
</tr>
</tbody>
</table>

La Biblioteca de Ecuaciones 25-3
Cómo Localizar Información en la Biblioteca de Ecuaciones

Cuando selecciona un tema y un título en la Biblioteca de Ecuaciones, especifica un conjunto de una o más ecuaciones. La siguiente información sobre el conjunto de ecuaciones puede obtenerse en los catálogos de la Biblioteca de Ecuaciones:

- Las ecuaciones propiamente dichas y el número de ecuaciones.
- Las variables utilizadas y sus unidades—puede modificar asimismo las unidades.
- Una imagen del sistema físico (para la mayoría de los conjuntos de ecuaciones).

Cómo Visualizar las Ecuaciones

Todas las ecuaciones tienen una forma de visualización—algunas ecuaciones tienen asimismo una forma de cálculo. La forma de visualización presenta la ecuación en su forma básica—la forma que se ve en los libros. La forma de cálculo incluye un factor computacional. Si la ecuación tiene forma de cálculo, aparece un * en la esquina superior izquierda de la pantalla de la ecuación.

Operaciones para Visualizar Ecuaciones e Imágenes

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Acción</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>EON</td>
<td>Muestra la forma de visualización de la ecuación actual o siguiente en formato EquationWriter.</td>
<td></td>
</tr>
</tbody>
</table>
| NSETU   | Muestra la forma de visualización de la ecuación actual o siguiente como objeto algebraico. ENTER o ▼ muestra la ecuación siguiente, ▲ muestra la anterior. | B = \( \frac{\mu_0 \mu_r I}{2 \pi r} \)
| ENTER   |                                             | 'B=(\mu0*\mu*r*I)/(2*pi*r)'                  |
| STK     | Muestra las formas de cálculo presentando una lista que contiene el conjunto actual de ecuaciones en la pila. | { 'B=IFTE(r<w, CONSTR(\mu0)*\mu*r*I \*r/(2*pi*r*w^2), CONSTR(\mu0)*\mu*r*I /(2*pi*r))' } |

25-4 La Biblioteca de Ecuaciones
Cómo Visualizar Variables y Seleccionar Unidades

Una vez seleccionado un tema y un título, puede visualizar el catálogo de nombres, descripciones y unidades de las variables del conjunto de ecuación pulsando \texttt{VARS}. La tabla siguiente resume las operaciones disponibles en los catálogos de variables.

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{NXT}</td>
<td>Conmuta entre catálogo de descripciones y catálogo de unidades.</td>
</tr>
<tr>
<td>\texttt{SI ENG}</td>
<td>Activa las unidades inglesas o SI.</td>
</tr>
<tr>
<td>\texttt{UNITS}</td>
<td>Conmuta entre unidades utilizadas o unidades no utilizadas.</td>
</tr>
<tr>
<td>\texttt{VAR}</td>
<td>Crea o modifica todas las variables de las ecuaciones para indicar tipo y uso de unidad.</td>
</tr>
<tr>
<td>\texttt{PURG}</td>
<td>Elimina todas las variables de las ecuaciones de este título en el directorio actual.</td>
</tr>
</tbody>
</table>

Cómo Visualizar la Imagen

Una vez seleccionado un tema y un título, puede visualizar la imagen del problema—pero sólo si el título posee una imagen. Para ver la imagen, pulse \texttt{PICT}. Mientras se visualiza la imagen, puede hacer lo siguiente:

- Pulse \texttt{PICT} para archivar la imagen en la memoria de gráficos \texttt{PICT}—a continuación puede utilizar \texttt{PICTURE} para visualizar la imagen después de haber salido de los catálogos de la Biblioteca de Ecuaciones.

- Pulse las teclas del menú o \texttt{ENTER} para mostrar otra información sobre ecuaciones.

Para más información sobre la visualización y manipulación de objetos gráficos, consulte el capítulo 9, “Objetos Gráficos”.

La Biblioteca de Ecuaciones 25-5
Cómo Utilizar la Resolución de Ecuaciones Múltiples

La Biblioteca de Ecuaciones activa la Resolución de Ecuaciones Múltiples si el conjunto de ecuaciones contiene más de una ecuación. Sin embargo, puede activarlo de forma explícita utilizando su propio conjunto de ecuaciones (consulte “Cómo Definir un Conjunto de Ecuaciones” en la página 25-8).

Cuando la Biblioteca de Ecuaciones activa la Resolución de Ecuaciones Múltiples, almacena en primer lugar el conjunto de ecuaciones en $EQ$ y almacena una copia del conjunto de ecuaciones, la lista de variables e información adicional en $Mpar$. A continuación se utiliza $Mpar$ para configurar el menú de la Resolución en función del conjunto de ecuaciones actual. (Tenga en cuenta que, aunque pueda visualizar y editar $EQ$ directamente como cualquier otra variable, $Mpar$ sólo puede editarse indirectamente (ejecutando los comandos que lo modifican) ya que su estructura es de datos de biblioteca, dedicados a la aplicación Resolución de Ecuaciones Múltiples.)

La tabla siguiente resume las funciones de las teclas del menú de la Resolución. La tecla $\text{NXT}$ muestra las etiquetas de menú adicionales.

**Teclas del Menú de la Resolución**

<table>
<thead>
<tr>
<th>Operación</th>
<th>Tecla</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenar el valor</td>
<td>![Icono]</td>
<td>Crea una variable si es necesario, almacena el valor en la variable y la convierte en variable definida por el usuario. Si el valor carece de unidades, se añaden las unidades del valor anterior, si hubiera.</td>
</tr>
<tr>
<td>Resolver el valor</td>
<td>![Icono]</td>
<td>Crea una variable si es necesario, resuelve el valor de la variable y la convierte en variable no definida por el usuario.</td>
</tr>
<tr>
<td>Recuperar valor</td>
<td>![Icono]</td>
<td>Recupera el valor de la variable en pila.</td>
</tr>
<tr>
<td>Operación</td>
<td>Tecla</td>
<td>Acción</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Dejar todas sin definir</td>
<td>ALL</td>
<td>Convierte todas las variables en no definidas por el usuario, pero no modifica sus valores.</td>
</tr>
<tr>
<td>Resolver todas</td>
<td>ALL</td>
<td>Crea variables si es necesario y resuelve todas las variables no definidas por el usuario (o tantas como sea posible).</td>
</tr>
<tr>
<td>Avanzar catálogo</td>
<td>ALL</td>
<td>Muestra información sobre la última solución.</td>
</tr>
<tr>
<td>Definida por el usuario</td>
<td>MUSE</td>
<td>Establece el estado de definición de usuario en las variables o lista de variables de la pila.</td>
</tr>
<tr>
<td>Calculadas</td>
<td>MCAL</td>
<td>Establece el estado de no definición de usuario (resultado calculado) en la variable o lista de variables de la pila.</td>
</tr>
</tbody>
</table>

Las etiquetas de menú de las teclas de variables son blancas al principio—cambian de color durante el proceso de solución tal como se describe a continuación.

El proceso de resolución a muchas ecuaciones y variaciones, por lo que la Resolución de Ecuaciones Múltiples debe controlar las variables que son definidas o no definidas por el usuario—las que puede modificar y las que no, además de llevar un control de las variables que ha utilizado o encontrado durante el proceso de resolución.

Las etiquetas de menú indican los estados de las variables. Se ajustan de forma automática a medida que los valores se almacenan y las variables se resuelven. Los estados correctos de las variables pueden comprobarse cuando se proporcionan estimaciones y hallan soluciones.

Observe que ■ marca las variables que se utilizaron en la última solución—sus valores son compatibles entre sí. Puede que otras variables no tengan valores compatibles debido a que no figuraban en la solución.
### Significado de las Etiquetas del Menú

<table>
<thead>
<tr>
<th>Etiqueta</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Etiqueta X0" /></td>
<td>Valor (x0) no definido por el usuario y no utilizado en la solución final—puede cambiar en la solución siguiente.</td>
</tr>
<tr>
<td><img src="image" alt="Etiqueta X0m" /></td>
<td>Valor (x0) no definido por el usuario, pero hallado en la solución final—puede cambiar en la solución siguiente.</td>
</tr>
<tr>
<td><img src="image" alt="Etiqueta X0" /></td>
<td>Valor (x0) definido por el usuario, pero no utilizado en la solución final—no puede cambiar en la solución siguiente (a no ser que resuelva sólo esta variable).</td>
</tr>
<tr>
<td><img src="image" alt="Etiqueta X0m" /></td>
<td>Valor (x0) definido por el usuario y utilizado en la solución final—no puede cambiar en la solución siguiente (a no ser que resuelva sólo esta variable).</td>
</tr>
</tbody>
</table>

### Cómo Definir un Conjunto de Ecuaciones

Al crear un sistema de ecuaciones, debe hacerlo con un cierto conocimiento de la forma en que la Resolución de Ecuaciones Múltiples utiliza las ecuaciones para resolver los problemas.

La Resolución de Ecuaciones Múltiples utiliza el mismo proceso que Vd. utiliza para resolver una variable incógnita—suponiendo que no pueda crear ecuaciones adicionales. En el conjunto de ecuaciones busca una con una sola variable incógnita y utiliza el solucionador de raíces de la HP 48 para hallar su valor, repitiendo la misma operación hasta hallar la variable deseada.

Las ecuaciones debe elegirlas de forma que las variables probablemente incógnitas aparezcan de forma individual en las ecuaciones. Debe evitar que haya dos o más variables incógnitas en todas las ecuaciones. Puede especificar asimismo las ecuaciones en el orden que sea más adecuado para los problemas.

Por ejemplo, las tres ecuaciones siguientes definen la aceleración y velocidad inicial en función de dos distancias y tiempos observados. Sólo las dos primeras ecuaciones son matemáticamente suficientes para resolver el problema, pero cada ecuación contiene dos variables...
incógnitas. Añadir la tercera ecuación permite hallar una solución adecuada ya que contiene sólo una de las variables incógnitas.

\[
x_1 = v_0 + a \cdot t_1 \\
x_2 = v_0 + a \cdot t_2 \\
(x_2 - x_1) = a \cdot (t_2 - t_1)
\]

Para crear ecuaciones más completas, puede incluir funciones que aseguran cálculos acérrados y más rápidos—por ejemplo CONST y TDELT, UBASE, EXP e IFTE. Consulte la HP 48G Series Advanced User’s Reference para conocer información detallada y ejemplos.

Si las ecuaciones utilizan alguna de las siguientes funciones: Σ, ∫, δ, |, QUOTE, APPLY, TVMROOT, y CONST, la Resolución de Ecuaciones Múltiples no detectará sus variables necesariamente.

La lista de ecuaciones en EQ puede contener definiciones de menú, pero MINIT pasa por alto esas definiciones cuando crea Mpar.

Sin embargo, puede reordenar las unidades de etiquetas de menú utilizando MITM, como se describe en la sección “Cómo Cambiar el Título y el Menú” de este capítulo.

**Para crear un conjunto de ecuaciones para la Resolución de Ecuaciones Múltiples:**

1. Introduzca cada ecuación en la ecuación en la pila.
2. Pulse [A] para activar la Pila Interactiva y a continuación desplace el cursor hasta el nivel que contiene la primera ecuación que ha introducido.
4. Pulse [A] [E] [Q] [STO] (o [SOLVE] [ROOT] [←] [EQ]) para almacenar la lista en la variable EQ.
5. Pulse [EQ LIB] [HES] MINIT para crear Mpar y preparar el conjunto de ecuaciones para utilizarlo con la Resolución de Ecuaciones Múltiples.
6. Pulse [MSOL] para entrar en la Resolución con el nuevo conjunto de ecuaciones.
Para cambiar el título y el menú de un conjunto de ecuaciones:

1. Asegúrese de que el conjunto de ecuaciones es el conjunto actual (son los que se van a utilizar cuando se active el Resolución de Ecuaciones Múltiples).
2. Introduzca una cadena de texto que contenga el nuevo título en la pila.
3. Introduzca una lista que contenga los nombres de variables en el orden en que desee que aparezcan en el menú. Utilice " " para introducir una etiqueta en blanco. En el menú original debe incluir *todas* las variables, pero ninguna más; las mayúsculas y minúsculas de los nombres deben coincidir.
4. Pulse $\Rightarrow$ [EQ LIB] [MES] [MITH].

Cómo Interpretar los Resultados a Partir de la Resolución de Ecuaciones Múltiples

la Resolución de Ecuaciones Múltiples resuelve las variables examinando de forma repetida el conjunto de ecuaciones en busca de una que contenga sólo una variable "incógnita" (no definida por el usuario y no hallada por la Resolución durante esta solución)—a continuación utiliza el solucionador de raíces de la HP 48 para hallar ese valor. Continúa eliminando las variables "incógnitas" hasta que resuelve la variable que ha especificado—o hasta que no puede resolver ningún otra variable. Cada vez que la Resolución de Ecuaciones Múltiples empieza a resolver una variable, las variables conocidas son sólo las que tienen etiquetas de menú negras.

Durante el proceso de solución, la Resolución de Ecuaciones Múltiples muestra la variable que está resolviendo. Muestra asimismo el tipo de raíz hallada por el solucionador de raíces de la HP 48 (cero, inversión de signo o extremo)—o el problema si no se halla raíz alguna (estimaciones erróneas o constante). Puede observar las iteraciones si pulsa cualquier tecla excepto [CANCEL] durante el proceso de resolución de la raíz. Para más información sobre el solucionador de raíces, véase el capítulo 18.
Los mensajes siguientes indican errores en la estructuración del problema:

- **Bad Guess(es)**. Puede que falten unidades o que sean incoherentes para una variable. En una lista de estimaciones, al menos uno de los elementos debe tener unidades coherentes.

- **Too Many Unknowns**. La Resolución ha hallado finalmente sólo ecuaciones que tienen al menos dos incógnitas. Introduzca otros valores conocidos o modifique el conjunto de ecuaciones—dependiendo del que sea más apropiado para el problema. Véase “Cómo Modificar las Ecuaciones” en este mismo capítulo.

- **Constant**. El valor inicial de una variable puede llevar al solucionador de raíces en la dirección equivocada. Proporcione una estimación en la dirección opuesta de un valor negativo—si los valores negativos son válidos, pruebe con uno.

**Cómo Verificar las Soluciones**

Las variables que tienen una marca ■ en sus etiquetas de menú están relacionadas con la solución más reciente—forman un conjunto de valores compatible válido para las ecuaciones utilizadas. Los valores de las variables sin marca puede que no sean válidos para las ecuaciones porque esas variables no figuraban en el proceso de solución.

Si toda solución parece inadecuada, verifique los problemas siguientes:

- **Unidades incorrectas**. Una variable conocida o hallada puede tener unidades diferentes de las que uno ha supuesto. Estas son variables globales. Si la variable existía antes del cálculo, entonces su sistema de unidades (SI o inglés) tiene prioridad. Para corregir las unidades, borre las variables antes de resolver la ecuación o introduzca las unidades específicas que desea.

- **Inexistencia de unidades**. Si no utiliza unidades, las unidades supuestas pueden ser compatibles entre las variables o con las unidades supuestas de constantes o funciones. El modo de ángulo actual ordena las unidades supuestas por ángulos.
- Raíces múltiples. Una ecuación puede tener raíces múltiples, y la Resolución puede que haya hallado una inapropiada. Proporcione una estimación para que la variable concentre la búsqueda en el rango apropiado.

- Estados de variables incorrectos. Puede que una variable conocida o desconocida no tenga el estado apropiado. Una variable conocida debe tener una etiqueta de menú negra y una variable desconocida debe tener una etiqueta blanca.

- Condiciones incoherentes. Si introduce valores que son matemáticamente incoherentes para las ecuaciones, la aplicación puede dar resultados que satisfagan a algunas ecuaciones, pero no a todas. Esto incluye la especificación excesiva del problema, es decir, se introducen valores para más variables de las que son necesarias para definir un problema físicamente realizable—los valores adicionales pueden crear un problema imposible o ilógico. (La solución satisface las ecuaciones que la Resolución ha utilizado, pero la Resolución no intenta verificar si la solución es válida para todas las ecuaciones.)

- No relacionadas. Puede que una variable no figure en la solución (sin en su etiqueta de menú), por lo que no es compatible con las variables que sí figuraban.

- Dirección incorrecta. El valor inicial de una variable puede llevar al solucionador de raíces por la dirección incorrecta. Proporcione una estimación en la dirección opuesta de un valor crítico—si los valores negativos son válidos, haga la prueba con uno.
Cómo Utilizar la Biblioteca de Constantes

La Biblioteca de Constantes contiene un grupo de cantidades y constantes físicas sencillas. Puede utilizarlas en ecuaciones y programas. (La Biblioteca de Ecuaciones utiliza varias de estas constantes.) La tabla siguiente las muestra en el orden en que aparecen en la Biblioteca de Constantes.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Descripción</th>
<th>Valor (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>Número de Avogadno</td>
<td>6.0221367E23 g mol⁻¹</td>
</tr>
<tr>
<td>k</td>
<td>Constante de Boltzmann</td>
<td>1.380658E−23 J/K</td>
</tr>
<tr>
<td>Vm</td>
<td>Volumen molar</td>
<td>22.4141 l/gmol</td>
</tr>
<tr>
<td>R</td>
<td>Constante de gas universal</td>
<td>8.31451 J/(g mol·K)</td>
</tr>
<tr>
<td>StdT</td>
<td>Temperatura estándar</td>
<td>273.15 K</td>
</tr>
<tr>
<td>StdP</td>
<td>Presión estándar</td>
<td>101.325 kPa</td>
</tr>
<tr>
<td>σ</td>
<td>Constante de Stefan-Boltzmann</td>
<td>5.67051E−8 W/(m²·K⁴)</td>
</tr>
<tr>
<td>c</td>
<td>Velocidad de la luz en vacío</td>
<td>299792458 m/s</td>
</tr>
<tr>
<td>ε0</td>
<td>Permittividad de vacío</td>
<td>8.85418781761E−12 F/m</td>
</tr>
<tr>
<td>μ0</td>
<td>Permeabilidad del vacío</td>
<td>1.25663706144E−6 H/m</td>
</tr>
<tr>
<td>g</td>
<td>Aceleración de la gravedad</td>
<td>9.80665 m/s²</td>
</tr>
<tr>
<td>G</td>
<td>Constante de gravedad</td>
<td>6.67259E−11 m³/(s²·kg)</td>
</tr>
<tr>
<td>h</td>
<td>Constante de Planck</td>
<td>6.6260755E−34 J·s</td>
</tr>
<tr>
<td>hbar</td>
<td>Constante de Dirac</td>
<td>1.05457266E−34 J·s</td>
</tr>
<tr>
<td>q</td>
<td>Carga del electrón</td>
<td>1.60217733E−19 C</td>
</tr>
<tr>
<td>me</td>
<td>Masa del electrón en reposo</td>
<td>9.1093897E−31 kg</td>
</tr>
<tr>
<td>qme</td>
<td>q/me</td>
<td>17588.1962000 C/kg</td>
</tr>
<tr>
<td>mp</td>
<td>Masa del protón en reposo</td>
<td>1.6726231E−27 kg</td>
</tr>
</tbody>
</table>
### Biblioteca de Constantes (continuación)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Descripción</th>
<th>Valor (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpme</td>
<td>mp/me</td>
<td>1836.152701</td>
</tr>
<tr>
<td>α</td>
<td>Constante de estructura fina</td>
<td>0.00729735308</td>
</tr>
<tr>
<td>φ</td>
<td>Quantum de flujo magnético</td>
<td>2.06783461E−15 Wb</td>
</tr>
<tr>
<td>F</td>
<td>Constante de Faraday</td>
<td>96485.309 C/gmol</td>
</tr>
<tr>
<td>R∞</td>
<td>Constante de Rydberg</td>
<td>10973731.534 m⁻¹</td>
</tr>
<tr>
<td>a0</td>
<td>Radio de Bohr</td>
<td>0.0529177249 nm</td>
</tr>
<tr>
<td>μB</td>
<td>Magnetón de Bohr</td>
<td>9.2740154E−24 J/T</td>
</tr>
<tr>
<td>μN</td>
<td>Magnetón nuclear</td>
<td>5.0507866E−27 J/T</td>
</tr>
<tr>
<td>λ0</td>
<td>Longitud de onda de fotón (ch/e)</td>
<td>1239.8425 nm</td>
</tr>
<tr>
<td>f0</td>
<td>Frecuencia de fotón (e/h)</td>
<td>2.4179883E14 Hz</td>
</tr>
<tr>
<td>λc</td>
<td>Longitud de onda de Compton</td>
<td>0.00242631058 nm</td>
</tr>
<tr>
<td>rad</td>
<td>1 radián</td>
<td>1 radian</td>
</tr>
<tr>
<td>twoπ</td>
<td>2π radianes</td>
<td>6.28318530718 radians</td>
</tr>
<tr>
<td>angl</td>
<td>Δ en modo trig</td>
<td>180°</td>
</tr>
<tr>
<td>c3</td>
<td>Constante de desplazamiento de Wien</td>
<td>0.002897756 m·K</td>
</tr>
<tr>
<td>kq</td>
<td>k/q</td>
<td>0.00008617386 J/(K·C)</td>
</tr>
<tr>
<td>ε0q</td>
<td>ε0/q</td>
<td>55263469.6 F/(m·C)</td>
</tr>
<tr>
<td>qε0</td>
<td>q*ε0</td>
<td>1.4185979E−30 F·C/m</td>
</tr>
<tr>
<td>εsi</td>
<td>Constante dieléctrica</td>
<td>11.9</td>
</tr>
<tr>
<td>εox</td>
<td>SiO₂ constante dieléctrica</td>
<td>3.9</td>
</tr>
<tr>
<td>l0</td>
<td>Intensidad de referencia</td>
<td>0.00000000001 W/m²</td>
</tr>
</tbody>
</table>

Para visualizar la Biblioteca de Constantes:
- Pulse **EN LIBRE** COLECCION.

25-14 La Biblioteca de Ecuaciones
Para visualizar el valor completo de una constante concreta:

1. Mientras visualiza la Biblioteca de Constantes, resalte la constante deseada. Puede utilizar las teclas del cursor ▲ y ▼ o pulsar @ seguida del primer carácter de la constante.

2. Pulse VALUE y UNITS (si fuera necesario) de forma que  aparezca en la etiqueta del menú con el fin de visualizar el valor numérico y las unidades de la constante.

3. Pulse ENTER. Si el valor de la constante es demasiado largo para ser visualizado al completo en una sola línea, lo verá entonces visualizado de forma más completa en una pantalla exclusiva para el valor.

Para introducir una constante de la biblioteca en la pila:

1. Pulse ←EQ LIB COLIB CONST para entrar en la Biblioteca de Constantes.

2. Resalte la constante deseada.

3. Opcional: Si desea incluir las unidades, asegúrese de que  aparece en la etiqueta UNITS.

4. Pulse 8STK QUIT.

Para incluir una constante en una expresión algebraica:

1. Comience introduciendo la operación algebraica en la línea de comandos.

2. Pulse ←EQ LIB COLIB CONST. Verá CONST introducida en la operación algebraica.

3. Escriba el símbolo de la constante. Tenga en cuenta que el valor devuelto por la función CONST puede incluir o no unidades, dependiendo de la forma en que ha activado UNITS.
Juego de Buscaminas

El juego de Buscaminas es una aventura que se desarrolla en un campo de batalla. Comience en la esquina superior izquierda de una cuadrícula de 8 x 16 que representa el campo de batalla. La misión consiste en llegar a salvo a la esquina inferior derecha, sorteando minas invisibles a lo largo del camino. El juego indica la cantidad de minas que hay debajo de los ocho cuadrados adyacentes a la posición que uno ocupa.

Para jugar al Buscaminas:

- Pulse **EQ LIB UTILS MINE**.

- Utilice las teclas de números o del cursor para desplazarse. Las teclas de números de la “esquina” permiten desplazarse en diagonal. Salga cuando lo desee pulsando **CANCEL**.
Unidades Definidas por el Usuario

La Biblioteca de Ecuaciones proporciona cuatro unidades definidas por el usuario: “gmol” (gramo-moles, mol), “lbmol” (libra-moles, aproximadamente 454 moles), “rpm” (revoluciones por minuto, 1/min) y “dB” (decibelios, sin medidas). Puede utilizar las teclas del menú como ayuda. Para utilizar complamente estas unidades, añádelas en el menú del usuario. (Las unidades definidas por el usuario se describen el Capítulo 10.)

Ejemplo: Introduzca las unidades de la Biblioteca de Ecuaciones en un menú del usuario.

Paso 1: Introduzca esta lista de objetos de unidades (uno por unidad): {1_gmol 1_lbmol 1_rpm 1_dB}.

Paso 2: Almacénelo en un menú del usuario y visualice el menú. (Los menús de usuario se describen en la página 30-1.)

El menú del usuario se puede visualizar en cualquier momento pulsando [CST]. En los siguientes ejemplos se muestra cómo utilizar las unidades definidas por el usuario en el menú del cliente:

- Pulse [GMOl] para añadir unidades al número que está introduciendo o adjuntar unidades al numerador de unidad del objeto del nivel 1.
- Pulse [GMOl] para adjuntar unidades al denominador de unidad del objeto del nivel 1.
- Pulse [GMOl] para convertir el objeto de unidad del nivel 1 en “gmol.”
Organización del Tiempo

Cómo Utilizar el Reloj (Fecha y Hora)

Cuando se visualiza el reloj, éste aparece en la esquina superior derecha de la pantalla. Muestra la fecha y la hora actuales en el formato que se ha seleccionado, como se muestra en la tabla siguiente. Los formatos determinan asimismo la forma en que se introducen las fechas y horas en la línea de comandos. La tabla siguiente ilustra la forma en que el reloj muestra las 4:31:04 PM del 21 de Febrero, 1994.

<table>
<thead>
<tr>
<th>Visualización del Reloj</th>
<th>Formato</th>
<th>Forma de los Números</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fecha:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/21/1994</td>
<td>Formato mes/día/año</td>
<td>2.211994</td>
</tr>
<tr>
<td><strong>Hora:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:31:04P</td>
<td>Formato 12-horas</td>
<td>16.3104</td>
</tr>
<tr>
<td>16:31:04</td>
<td>Formato 24-horas</td>
<td>16.3104</td>
</tr>
</tbody>
</table>

Para visualizar la fecha y la hora:

1. Pulse [MODES].
2. Resalte el campo CLOCK y pulse [CHK] para poner una marca de verificación en el campo.
3. Pulse [OK].

Para cambiar la fecha o la hora:

1. Pulse [TIME] para activar la ventana de diálogo SET TIME AND DATE.
2. Resalte el campo de las horas y escriba la hora, minutos y segundos, pulsando [ENTER] después de cada uno de ellos.

3. Opcional. Si desea que el reloj indique la hora utilizando el formato de 24 horas, pulse [+] hasta que se visualice 24-hr.

4. Resalte el primer campo de fecha y escriba el día, mes y año en sus campos respectivos, pulsando [ENTER] después de cada uno de ellos. Los años van de 1991 a 2090.

5. Opcional. Si desea que el reloj indique la fecha utilizando el formato día-mes-año, pulse [-] hasta que se visualice D.M.Y.

6. Pulse [OK] para confirmar los cambios y volver a la pila.

**Cómo Programar las Alarmas**

Pueden programarse dos tipos de alarmas, que realizan funciones diferentes cada vez que se activan:

- **Alarma de cita.** Muestra el mensaje que ha especificado cuando programaba la alarma. Asimismo emite una secuencia de pitidos durante aproximadamente 15 segundos—o hasta que se pulsa una tecla. Cuando se active la alarma de cita, reconózcala pulsando la tecla correspondiente.

- **Alarma de control.** Ejecuta el programa u otro objeto que se ha especificado al programar la alarma—no produce ninguna otra función. No es necesario reconocer la alarma de control.

Cuando se programa una alarma, ésta se archiva en la lista de alarmas del sistema, donde puede volver a visualizarse y editarse ("localizarse").
Para programar una alarma de cita:

1. Pulse \( \text{TIME} \) \( \text{OK} \) para iniciar el diálogo SET ALARM.

![SET ALARM Window]

2. Pulse \( \text{EDIT} \), escriba el mensaje que desea visualizar cuando se active la alarma y pulse \( \text{ENTER} \).
3. Introduzca la hora (horas, minutos, segundos) y el formato (AM, PM, o 24-hr) de la alarma.
4. Introduzca la fecha de la alarma. Se visualiza con el formato de fecha actual (D.M.Y o M/D/Y).
5. Resalte el campo REPEAT e introduzca el número y período del intervalo de repetición. Por ejemplo, pulse 15 \( \text{ENTER} \) \( \text{D} \) para introducir 15 días como intervalo de repetición. Pulse 0 \( \text{ENTER} \) para una alarma no repetitiva.
6. Pulse \( \text{OK} \) para establecer la alarma y volver a la pila.

Para programar una alarma de control:

1. Pulse \( \text{TIME} \) \( \text{OK} \) para entrar en la ventana de diálogo SET ALARM.
2. Introduzca el programa u otro objeto que desee ejecutar cuando se active la alarma en el campo MESSAGE:
3. Introduzca la hora y fecha de la alarma.
4. Resalte el campo REPEAT e introduzca el número y período del intervalo de repetición. Pulse 0 \( \text{ENTER} \) para una alarma no repetitiva.
5. Pulse \( \text{OK} \) para establecer la alarma.
Cómo Responder a las Alarmas

Cuando se activa una alarma de cita, aparece el indicador (●●), suena el pitido en intervalos cortos durante aproximadamente 15 segundos y se visualiza el mensaje de la alarma. La alarma se reconoce y se desactiva la cita actual.

Si no reconoce una alarma cuando durante la emisión de los pitidos, éstos pararán y el mensaje desaparecerá de la pantalla. Una alarma repetitiva normalmente se vuelve a programar para que se suene.

Si no se reconoce una alarma durante la emisión de los pitidos, el emisor de los mismos deja de sonar y se borra el mensaje de la pantalla. Una alarma repetitiva se anula por regla general de forma automática y se vuelve a programar. Una alarma no repetitiva se convierte en “atrasada”, pero no se anula—el indicador (●●) sigue conectado para mostrar que se tiene una alarma atrasada a la que hay que responder.

Si tiene varias alarmas atrasadas, puede visualizarlas pulsando 🔔 TIME 🔍 OK. Pulse PURG para anular una alarma. Cada vez que pulse 🔔 TIME 🔍 ALRM 🔍 ACK, la primera alarma atrasada en el tiempo se anula. El indicador (●●) se desconecta cuando no queda ninguna alarma atrasada.

Para responder a una alarma de cita:

- Mientras suene la alarma, pulse cualquier tecla, por ejemplo CANCEL.
- Después de que deje de sonar, aparece el mensaje. Pulse 🔔 TIME 🔍 ALRM 🔍 ACK. (A continuación puede pulsar CANCEL para volver a la pila.)

Para responder a una alarma de control:

- No haga nada. No es necesario reconocer una alarma de control cuando se activa—se considera reconocida de forma automática. Cuando se activa una alarma de control, se devuelve una copia del índice de alarma al nivel 1 y se ejecuta el objeto especificado. El índice de alarma es un número real que identifica la alarma basándose en el orden cronológico de la lista de alarmas del sistema—puede utilizarse con comandos de alarma programables (descritos en la HP 48G Series Advanced User’s Reference.)

26-4 Organización del Tiempo
Para reconocer todas las alarmas atrasadas a la vez:

- Pulse **TIME ALAR ACKA**.

Es posible que una alarma repetitiva tenga un intervalo de repetición tan breve que se reprogramue y ejecute antes de poder anularla de la lista de alarmas. Esto puede suceder si se activa por error una alarma de cita repetitiva durante un intervalo muy corto. Asimismo puede ocurrir con una alarma de control que ejecute un programa de toma medidas en intervalos cortos.

Para recuperar desde una alarma repetitiva de intervalos cortos:

- Pulse las teclas ON y 4 simultáneamente y suéltelas; de esta manera se activa un estado en la calculadora que cancela la reprogramación de la siguiente alarma (probablemente la alarma repetitiva de intervalo corto). Cuando se activa esa alarma—o cuando se pulsa la tecla siguiente—se cancela el estado especial de “no reprogramación” de la calculadora para que no afecte a futuras alarmas. Puesto que al pulsar una tecla se cancela el estado de “no reprogramación”, debe esperarse hasta que se active la alarma antes de pulsar cualquier tecla.

Para archivar o anular las alarmas repetitivas que se reconocen:

- Para anular las alarmas reconocidas, pulse 44 +/- **MODES FLAR CF**. Esta es la definición por defecto. Todas las alarmas de control (repetitivas o no) que se activan, se archivan en la lista de alarmas del sistema, sin tener en cuenta la definición del indicador –44.

- Para archivar las alarmas reconocidas, pulse 44 +/- **MODES FLAR SF**. Las alarmas atrasadas no se archivan.
Cómo Visualizar y Editar Alarmas

Para visualizar, editar o anular una alarma:

- Entre en la ventana de diálogo Browse alarms... (TIME) OK. Se visualizan todas las alarmas existentes.

- Para editar una alarma, resalte la alarma que desea editar y pulse EDIT.

- Para anular una alarma, resalte la alarma que desea eliminar y pulse PURG.

Utilice HEW para crear alarmas múltiples (una vez creada una alarma se vuelve al diálogo ALARMS).

Para cambiar la programación de las alarmas repetitivas:

- Para anularlas automáticamente y volver a programarlas, pulse 43 +/- (Modes) FLAG CF.

- Para convertirlas en atrasadas y no volver a programarlas, pulse 43 +/- (Modes) FLAG SF.

Para controlar el pitido de la alarma:

- Para activar el pitido de la alarma, pulse 57 +/- (Modes) FLAG CF.

- Para suprimir el pitido de la alarma, pulse 57 +/- (Modes) FLAG SF.
Cómo Transmitir e Imprimir Datos

Cómo Transferir Datos Entre Dos HP 48

Para transferir objetos de una HP 48 a otra:

1. Alinee los puertos de infrarrojos colocando una frente a otra las marcas ▲ (situadas cerca del logotipo Hewlett-Packard justo encima de la pantalla). La separación máxima entre las calculadoras no debe superar los 5 centímetros.

2. Receptor.
   a. Entre en el directorio donde desee almacenar los objetos.
   b. Pulse (I/O).
   c. Seleccione Get from HP 48 en el menú y pulse OK.

3. Emisor.
   a. Pulse (I/O).
   b. Seleccione Send to HP 48... en el menú y pulse OK.
   c. Pulse CHOOSE y seleccione los nombres de los objetos que desea transferir al campo NAME. Pulse OK.
   d. Pulse SEND.
Cómo Imprimir

Con determinadas excepciones, los comandos de impresión imprimen objetos según estas directrices:

- Un objeto se imprime con sus delimitadores.

- Un objeto que no cabe en una línea de salida continúa en las líneas siguientes.

- Un objeto de sistemas se imprime en forma alargada.

Cuando se imprime un sistema en forma alargada, se etiqueta cada fila y columna. Por ejemplo, el sistema $2 \times 3$

\[
\begin{bmatrix}
  1 & 2 & 3 \\
  4 & 5 & 6
\end{bmatrix}
\]

se imprime así:

- Un objeto de gráfico se imprime en su forma de pila.

Puede realizar cualquier operación de impresión con cualquier impresora compatible—con estas excepciones:

- Puede que los caracteres especiales de la HP 48 no se impriman de forma adecuada en una impresora serie.

- No puede imprimir un objeto de gráfico o la visualización en una impresora serie.
Cómo Instalar la Impresora

Para instalar la impresora de infrarrojos HP 82240B:

1. Sitúe la HP 48 y la impresora sobre una superficie plana. Coloque el ▲ (situado cerca del logotipo Hewlett-Packard que hay justo encima de la pantalla) frente a la ventana de la impresora. Manténgalas a una distancia de 18 pulgadas (45 centímetros).
2. Pulse 34 (+/−) MODES FLAG CF para asegurarse de que el indicador −34 está borrado (su estado por defecto).
3. Si pulsó con anterioridad OLDPR por alguna razón, reactive la variable PRTPAR—pulse ←(I/O) PRINT PRTPAR RESET.

Para instalar una impresora serie:

1. Conecte el extremo de 9 pines de un cable serie de la HP 48 a la impresora serie. Si fuera necesario, utilice un adaptador que tenga de 9 a 25 pines.
2. Mantenga el logotipo HP sobre el conector de 4 pines uno frente al otro, a continuación introduzca el cable en la HP 48. Debe sentir que encaja mediante un ligero chasquido.
3. Si la impresora utiliza intercambio de señales XON/XOFF: Pulse ←(I/O) NXT SERIA OPENI (NXT) I/O CLOSE para crear IOPAR. A continuación pulse VAR ←(I/O) IOPAR ←(EDIT) y cambie el cuarto número a 1—por ejemplo, ⟨9600 0 0 1 3 1⟩. Pulse (ENTER).
4. Si la impresora requiere una secuencia fin-de-línea distinta de retorno-de-carro/avance-de-línea, pulse ←(I/O) PR1 para crear PRTPAR, edite el parámetro fin-de-línea (el cuarto elemento de la lista PRTPAR).

Cómo Imprimir Tareas

Para imprimir un objeto por medio de infrarrojos:

1. Asegúrese de que la impresora está bien instalada y conectada.
2. Pulse ←(I/O) ▼ ▼ ▼ OK para entrar en la plantilla ‘PRINT”.
3. Si fuera necesario, pulse ▲ (+/−) para cambiar el puerto de comunicaciones a Infrared.
La Pantalla PRINT por Infrarrojos

4. Pulse **CHOOSE**, resalte la variable que desea imprimir y pulse **OK**.

5. Opcional: Ajuste cualquier parámetro de impresión que desee.
   - **DBL-SPACE**: Ponga una marca de verificación para producir una salida de doble espacio.
   - **DELAY**: Introduzca el número de segundos (no pueden ser más de 6.9) que la HP 48 ha de esperar entre el envío de líneas de información a una impresora de infrarrojos. Para mejorar la eficacia de la impresión, haga que el retraso tarde más que el tiempo que necesita la cabeza de impresión para imprimir una línea de información (por defecto es 1.8 segundos).
   - **LINEF**: Por regla general (marca de verificación *activada*), cada comando de impresión completa la transmisión de datos ejecutando de forma *automática* el comando CR (*retorno de carro*), que ordena a la impresora que imprima los datos que tiene en ese momento en su memoria intermedia y que deje la cabeza de impresión en el extremo derecho de la línea de impresión. A modo de alternativa (marca de verificación *desactivada*) puede suprimir el comando CR automático y acumular varios comandos de impresión en la memoria intermedia de impresión, que se imprimen sólo cuando se ejecuta manualmente CR (**I/O PRINT** CR**).  

6. Pulse **PRINT**.

**Para imprimir una variable por medio del cable de Interfase Serie:**

1. Asegúrese de que la impresora está bien instalada y de que el cable está bien conectado.
2. Pulse 🔄 I/O ▼ ▼ ▼ OK para entrar en la plantilla PRINT.

La Pantalla PRINT por Cable

3. Si fuera necesario, pulse ▲ +/- para cambiar el puerto de comunicaciones a Wire.

4. Pulse CHOOS, resalte la variable que desea imprimir y pulse OK.

5. Opcional: Ajuste cualquiera de los parámetros de impresión que desee.

   DBL-SPACE: Ponga una marca de verificación para producir una salida de doble espacio.

   XLAT: Elija cuál de las cuatro opciones diferentes de conversión de caracteres desea utilizar. Vea la página 27-17 para conocer más detalles sobre estas opciones.

   LINEF: Por regla general (marca de verificación activada), cada comando de impresión completa la transmisión de datos ejecutando de forma automática el comando CR (retorno de carro), que ordena a la impresora que haga un retorno-de-carro/avance-de- línea. A continuación la impresora imprime los datos que haya en ese momento en su memoria intermedia. A modo de alternativa (marca de verificación desactivada), puede suprimirse el comando CR automático y acumular varios comandos de impresión en la memoria intermedia de impresión, que sólo se imprimen cuando se ejecuta manualmente CR (↺ I/O PRINT CR).
BAUD: Introduzca o elija la velocidad de transferencia. La impresora y la HP 48 deben tener la misma configuración.

PARITY: Introduzca o elija la configuración de paridad para la transferencia. La impresora y la HP 48 deben tener la misma configuración.

LEN: Introduzca la longitud de línea de la impresora (en caracteres).

6. Pulse PRINT.

Para imprimir el objeto del nivel 1:

1. Asegúrese de que la impresora y la HP 48 tienen una configuración de impresión correcta.

2. Si los parámetros de impresión y puerto están bien configurados, pulse →I/O PRINT.

3. Si necesita cambiar los parámetros de impresión y puerto, entonces:
   a. Pulse →I/O v v v OK.
   b. Pulse NXT CHLC OK para introducir el objeto del nivel 1 de la pila.
   c. Active los parámetros de impresión y puerto cuando sea necesario (véanse los dos procedimientos anteriores para más detalles).
   d. Pulse PRINT.

Para imprimir la imagen de pantalla actual:

1. Asegúrese de que la impresora y la HP 48 tienen la configuración de impresión correcta.

2. Pulse →I/O v v OK. La pantalla que se ve después de haber pulsado OK es la pantalla que se ha impreso. (Si no se produce la impresión, puede que necesite cambiar el puerto de comunicaciones u otros parámetros de impresión para volver a intentarlo de nuevo.)

3. Si no puede seleccionar Print display sin cambiar o alterar la pantalla que desea imprimir, prepare la pantalla de la forma que desee, pulse y mantenga pulsada la tecla ON, pulse y suelte 1, y suelte ON.
Para imprimir todos los objetos de la pila:
- Pulse \( \text{I/O PRINT PREST} \).

Para imprimir un grupo de variables:
1. Active los parámetros de impresión y puerto cuando sea necesario.
2. Ponga la lista de variables en el nivel 1 de la pila.
3. Pulse \( \text{I/O PRINT PREVAR} \). Se imprimirá el nombre y el contenido de cada variable.

Cómo Transferir Datos Entre la HP 48 y un Ordenador

Cómo Preparar el Ordenador y la HP 48

Utilice un Cable de Interfase Serie para conectar la HP 48 y el ordenador. El cable va incluido con el Kit de la Interfase Serie suministrado por Hewlett-Packard. (Para más información sobre estos productos, acuda al distribuidor de HP.)

Para conectar un ordenador y una HP 48:
1. Conecte el extremo del cable serie del ordenador al puerto serie del ordenador. Si fuera necesario, utilice un adaptador para el conector. (El diagrama siguiente muestra el cableado utilizado por la versión para PC del Cable de Interfase Serie y su adaptador. Para más información, consulte la documentación de su ordenador.)
2. Mantenga el logotipo HP sobre el conector de 4 pines uno enfrente del otro e introduzca el cable en la HP 48. Debe sentir que encaja mediante un ligero chasquido.
Para activar las transferencias de HP 48 a ordenador:

1. Asegúrese de que el cable serie esté bien conectado al ordenador y a la HP 48.
2. **HP 48.** Pulse (→) I/O A A OK para visualizar la pantalla TRANSFER.

   ![La Pantalla TRANSFER por Cable](image)

3. **HP 48** Active los parámetros de E/S:
   - **PORT:** Seleccione el puerto de comunicaciones (por regla general Wire para transferencias entre la HP 48 y un ordenador).
   - **TYPE:** Seleccione el protocolo de transferencias, Kermit o XModem.
   - **FMT:** Seleccione el formato de transferencias, o bien ASCII o bien Binary (sólo disponible para Kermit).
   - **XLAT:** Seleccione una de las cuatro opciones de conversión de caracteres (sólo disponible para Kermit). Para más información, consulte la página 27-17.
   - **CHK:** Seleccione uno de los tres protocolos de detección de errores (sólo disponible para Kermit).
   - **BAUD:** Introduzca o elija la velocidad de transferencia. La definición debe coincidir con la del ordenador.
   - **PARITY:** Introduzca o elija la paridad de transferencia (sólo disponible para Kermit). La definición debe coincidir con la del ordenador.
   - **OVRW** Ponga una marca de verificación aquí si desea que los objetos recibidos sobreescriban los objetos con el mismo nombre. Cuando no se verifica, los conflictos entre nombres se resuelven añadiendo extensiones numéricas al objeto de entrada.
Cómo Utilizar Kermit

Por defecto, la HP 48 utiliza el protocolo de transferencia del archivo Kermit para transferir los datos y corregir los errores de transmisión. Asimismo, la HP 48 facilita comandos para XMODEM y otras transferencias de datos serie que no sean Kermit, como el envío de datos a un instrumento o impresora serie. El protocolo Kermit fue creado en el Columbia University Center for Computing Activities y puede utilizarse en la mayoría de los ordenadores.

Cómo Transferir Variables con Kermit


**Para transferir variables de la HP 48 a un ordenador:**

1. **Ordenador.** Entre en el directorio en el que se van a almacenar los objetos.
2. **Ordenador.** Ejecute el programa que tenga Kermit. Sitúe el formato de transferencia en Binary o ASCII de forma que coincida con la configuración actual de HP 48. Binary es mucho más rápido, pero si desea editar objetos en el ordenador utilice ASCII.
3. **Ordenador.** Ejecute el comando Kermit para convertirlo en servidor, como SERVER.
4. **HP 48.** Pulse [Underscore] [I/O] [A] [A] [OK].
5. **HP 48.** Introduzca o elija los nombres de la variable o variables de HP 48 que se van a transferir. Pulse [Menu] [OK] para leer el directorio actual, ponga una marca junto a cada variable que desee transferir al ordenador. Si fuera necesario, entre en un directorio diferente para elegir las variables (aunque sólo puede transferir variables desde un único directorio cada vez). Pulse [OK] para introducir la lista de nombres en la plantilla TRANSFER.
6. **HP 48.** Asegúrese de que los parámetros de E/S tengan la configuración correcta para la transferencia (consulte la página 27-9 para más detalles).
7. **HP 48.** Pulse [Send].
8. **HP 48.** Termine el modo servidor pulsando [Underscore] [I/O] [SERVER] [FINS].
Para transferir archivos de un ordenador a la HP 48 utilizando la HP 48:

1. **Ordenador.** Ejecute el programa que tenga Kermit. Establezca el formato de transferencia en Binary o ASCII para que coincida con la definición actual de HP 48.

2. **Ordenador.** Ejecute el comando Kermit para convertirlo en servidor, como SERVER.

3. **HP 48.** Pulse  

4. **HP 48.** Pulse  para que aparezca un listado del directorio actual del ordenador. (Observe que esto sólo funcionará en ordenadores personales compatibles.) Seleccione los archivos que desea transferir colocando marcas de verificación junto a sus nombres. Puede cambiar de directorio pulsando CHOOS, al igual que con el Localizador de Variables, si los archivos están situados en otro directorio. Pulse  una vez que estén seleccionados todos los archivos para devolver la lista al campo NAME: de la plantilla TRANSFER.

5. **HP 48.** Asegúrese de que los parámetros de E/S tienen la configuración correcta para la transferencia (consulte la página 27-9 para más detalles).

6. **HP 48.** Pulse KGET.

7. **HP 48.** Termine el modo servidor pulsando  SRVR

Para transferir un archivo a la HP 48 desde un ordenador utilizando el ordenador:

1. **Ordenador.** Entre en el directorio en el que se van a almacenar los archivos.

2. **Ordenador.** Ejecute el programa que tenga Kermit.

3. **HP 48.** Pulse  

4. **HP 48.** Asegúrese de que los parámetros de E/S tienen la configuración correcta para la transferencia (consulte las páginas 27-9 para más detalles).

5. **HP 48.** Pulse RECVR.

6. **Ordenador.** Ejecute el comando Kermit para enviar el archivo, como archivo SEND.


8. **Ordenador.** Para terminar la sesión, ejecute el comando Kermit que finaliza el servidor, como FINISH.
Cómo Elegir y Utilizar los Nombres de Archivos

Los archivos de ordenador siguen convenciones diferentes de los de las variables de la HP 48 en lo que a nombres respecta.

Cuando la HP 48 recibe un archivo de un ordenador, puede que surjan determinadas dificultades debido al nombre del archivo del ordenador.

- Si el nombre del archivo contiene caracteres no permitidos en un nombre de variable (como #ABC o ABC), la HP 48 termina la transferencia y envía un mensaje de error al ordenador.

- Si el nombre del archivo coincide con un comando incorporado (como SIN o DUP), la HP 48 añade una extensión numérica al nombre (como SIN.1).

- Si el nombre coincide con un nombre de variable en el directorio actual y el indicador -36 no está activado (para proteger variables existentes), se añade una extensión numérica al nombre (como NAME.1).

Cuando la HP 48 envía una variable a un ordenador, su nombre puede ser incompatible con los convenios de asignación de nombres del software del ordenador. Transferir un archivo así puede dar como resultado un error de transferencia. (Puede evitarse este problema asignando otro nombre a la variable antes de enviarla.)

Cómo Realizar una Copia de Seguridad de la Memoria de la HP 48

Puede realizar una copia de seguridad y restaurar el contenido de todo el directorio HOME en un archivo de su ordenador. El directorio HOME incluye todas las variables, asignaciones de claves del usuario y alarmas. Asimismo puede incluir todas las configuraciones de indicadores si lo desea.

Los pasos siguientes presuponen que se ha preparado el ordenador y la HP 48 para la transferencia de datos—Consulte “Cómo Preparar el Ordenador y la HP 48” en la página 27-7.
Para realizar la copia de seguridad de toda la memoria de usuario en un archivo del ordenador:

**Precaución**

> Cuando realice la copia de seguridad, asegúrese de que el reloj no se está visualizando en pantalla, ya que podría corromper los datos de seguridad.

1. **Ordenador.** Ejecute el comando Kermit para activar la transferencia binaria, si está disponible.
2. **Ordenador.** Ejecute el comando Kermit para convertirlo en el servidor, como SERVER.
3. **HP 48.** Opcional: Asimismo, para realizar copias de seguridad de las configuraciones de indicadores, pulse 
   ![MODES](COMMAND) [FLAG] [NXT] 
   [RCL], introduzca un nombre de variable de indicador (con los delimitadores ' ) y pulse [STO].
4. **HP 48.** Introduzca el objeto definido : IO:nombre en la pila, donde nombre es el nombre del archivo que se va a crear en el ordenador.
5. **HP 48.** Pulse ![MEMORY](COMMAND) [NXT] [ARCHIT].
6. **HP 48.** Para finalizar la sesión, pulse ![I/O](COMMAND) [SRVR] [FINES].
7. **HP 48.** Opcional: Para conservar la potencia de la batería, pulse ![I/O](COMMAND) [NXT] [CLOSE].

ARCHIVE siempre utiliza transferencia binaria, sin tener en cuenta la definición ASCII/Binary de la HP 48.

**Precaución**

> Utilice el comando RESTORE con cuidado; recuperar por completo la memoria de usuario con copia de seguridad borra la memoria de usuario actual y la sustituye con la copia de seguridad.

Para recuperar la memoria de usuario de HP 48 desde un archivo de ordenador:

1. Transfiera el archivo del ordenador a una variable de HP 48 utilizando uno de los métodos de transferencia de datos explicados con anterioridad. Asegúrese de que el modo de transferencia sea Binary.
2. **HP 48.** Introduzca el nombre de variable recibido (con los delimitadores ' ) en la pila y pulse ![RCL](COMMAND) para recuperar el objeto de la copia de seguridad.
3. **HP 48.** Pulse ←**MEMORY** **NXT** **RESTO**.
4. **HP 48.** Opcional: Para recuperar las configuraciones de indicadores archivadas con anterioridad, introduzca el nombre de la variable de indicador (con los delimitadores '), pulse ←**RCL** y pulse ←**MODES** ←**RCL** ←**NXT** ←**STOF**.

**Ejemplo:** Para realizar una copia de seguridad de la memoria dentro de un archivo llamado AUGH1, introduzca el objeto definido :IO: AUGH1 como el nombre de la copia de seguridad. Si posteriormente recupera este dato en la HP 48, puede introducir 'AUGH1' y pulsar ←**RCL** para poner **Backup HOMEDIR** en la pila—listo para el comando **RESTORE**.

**Cómo Enviar Comandos Kermit**

Puede utilizar una HP 48 para enviar comandos Kermit a un servidor Kermit, a otra HP 48 o a un ordenador. Si la HP 48 es un **servidor**, puede enviar a ella comandos Kermit (aunque sólo responde a **GET** (KGET) **SEND**, **REMOTE DIR**, **REMOTE HOST**, **FINISH** y **LOGOUT**). Los siguientes pasos presuponen que el dispositivo receptor está ya instalado como servidor.

**Para enviar un comando Kermit desde una HP 48:**

1. Introduzca el comando como cadena (con los delimitadores " ").
2. Introduzca el tipo de paquete como cadena (con los delimitadores " ").
3. Pulse ←**I/O** ←**SRVR** ←**PKT**.

El servidor envía una de las respuestas siguientes al comando **PKT**:

- Un mensaje de reconocimiento. La respuesta al paquete se devuelve como cadena al nivel 1; se devuelve una cadena vacía si ninguna de las respuestas es apropiada.
- Un paquete de errores. La HP 48 visualiza brevemente el contenido del paquete de errores. Para recuperarlo, pulse ←**I/O** ←**NXT** ←**KERR**.

**Ejemplo:** Para solicitar un listado del directorio, introduzca "D" y "G" y pulse ←**PKT**. El directorio es devuelto como cadena.
Cómo Utilizar XMODEM

El protocolo XMODEM incorporado a la HP 48 no realiza ninguna verificación CRC, pero funciona con un programa XMODEM de ordenador que sí la hace. En esta situación, puede que tenga que esperar unos instantes antes de que el programa del ordenador deje de intentar realizar la verificación CRC y vuelva a XMODEM.

Para transferir una variable a un ordenador utilizando XMODEM:

1. **HP 48.** Pulse [Graph] [I/O] [OK] para entrar en la plantilla TRANSFER.
2. **HP 48.** Coloque el puerto en Wire, el tipo en XModem y asegúrese de que la velocidad en baudios coincide con la del ordenador.
3. **HP 48.** Resalte el campo NAME:, pulse CHOS para seleccionar una variable e introduzca.
4. **Ordenador.** Si fuera necesario, entre en el directorio en el que se va a almacenar la variable, entre en el programa XMODEM y seleccione Receive.
5. **Ordenador.** Introduzca el nombre del archivo y active Receive.
6. **HP 48.** Pulse SEND.

Para transferir una variable desde un ordenador utilizando XMODEM:

1. **Ordenador.** Entre en el directorio en el que se va a almacenar la variable.
2. **Ordenador.** Entre en el programa XMODEM.
3. **HP 48.** Entre en el directorio en el que desea introducir la variable de entrada y a continuación pulse [Graph] [I/O] [OK] para entrar en la plantilla TRANSFER.
4. **HP 48.** Coloque el puerto en Wire, el tipo en XModem y asegúrese de que la velocidad en baudios coincide con la del ordenador.
5. **HP 48.** Escriba un nombre para la variable que se va a recibir. Ponga una marca de verificación en el campo OVRH si desea sobreescribir una variable con el mismo nombre.
6. **HP 48.** Pulse AUTO.
7. **Ordenador.** Active Send.
Cómo Utilizar Otros Protocolos Serie

Puede enviar y recibir datos y comandos con dispositivos serie que no utilizan el protocolo Kermit, como instrumentos e impresoras serie. Esto se hace utilizando los comandos de E/S serie generales.

Para volver a visualizar los parámetros de E/S actuales de la HP 48:

- Pulse \[I/O\] \[IOPAR\]. Si lo parámetros no se visualizan, pulse \[NXT\] \[INFO\].

Para cambiar los parámetros de E/S de la HP 48:

1. Escriba -58 y pulse \[MODES\] \[FLAGS\] \[CF\]. Esto permite ver las definiciones actuales mientras se cambian.
2. Pulse \[I/O\] \[IOPAR\]
3. Modifique el parámetro o parámetros deseados como se indica a continuación:
   - Pulse \[IR\] \[H\] para seleccionar IR o Wi-re como puerto de comunicaciones actual.
   - Escriba 1200, 2400, 4800 ó 9600 y pulse \[BAUD\] para seleccionar la velocidad de transferencia actual.
   - Escriba 1 (impar), 2 (par), 3 (marca), 4 (espacio) o 0 (ninguno) y pulse \[PARIT\] para seleccionar la definición de paridad actual. De forma opcional, puede introducir el negativo de cualquiera de estas opciones si desea utilizar la definición de paridad únicamente para transmitir y desactivar la verificación de paridad en recepción.
   - Si está utilizando impresión o transferencia ASCII, escriba el número de la opción de conversión que desea (vea la tabla siguiente) y pulse \[TRAN\]. En la tabla siguiente, “10 →10,13” debe interpretarse por “carácter 10 se convierte en caracteres 10 y 13”. Seleccione 0 significa que no se desea ninguna conversión.
### Resumen de Opciones de Conversión de Datos ASCII

<table>
<thead>
<tr>
<th>Opción 1</th>
<th>Opción 2</th>
<th>Opción 3</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Datos Enviados por la HP 48</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 → 10,13</td>
<td>10 → 10,13</td>
<td>10 → 10,13</td>
</tr>
<tr>
<td>\→ | \→ |</td>
<td>\→ conv</td>
<td>\→ conv</td>
</tr>
<tr>
<td>\128 → conv</td>
<td>\128 → conv</td>
<td></td>
</tr>
<tr>
<td>\159 → conv</td>
<td>\255 → conv</td>
<td></td>
</tr>
<tr>
<td><strong>Datos Recibidos en la HP 48</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,13 → 10</td>
<td>10,13 → 10</td>
<td>10,13 → 10</td>
</tr>
<tr>
<td>\→ \</td>
<td>\→ \</td>
<td>\→ \</td>
</tr>
<tr>
<td>\128 → car</td>
<td>\128 → car</td>
<td></td>
</tr>
<tr>
<td>\000 → car</td>
<td>\000 → car</td>
<td></td>
</tr>
<tr>
<td>\159 → car</td>
<td>\255 → car</td>
<td></td>
</tr>
</tbody>
</table>

### Conversiones de Caracteres ASCII (Códigos de Caracteres 128–255)

<table>
<thead>
<tr>
<th>HP 48 Código</th>
<th>HP 48 Car</th>
<th>Conv</th>
<th>HP 48 Código</th>
<th>HP 48 Car</th>
<th>Conv</th>
<th>HP 48 Código</th>
<th>HP 48 Car</th>
<th>Conv</th>
</tr>
</thead>
</table>

Cómod Transmirtir e Imprimir Datos 27-17
Para transferir datos serie con un dispositivo serie que no sea Kermit:

1. Pulse \( \mathbf{\text{I/O TOPAR}} \) y active los parámetros de E/S para que coincidan con el dispositivo serie. Si fuera necesario, pulse \( \mathbf{\text{INFO NXT}} \) para ver las definiciones actuales.

2. Si el dispositivo serie utiliza el control de velocidad de recepción o transmisión (señales XON/XOFF) durante las transferencias, pulse \( \mathbf{\text{TOPAR \rightarrow (EDIT)}} \):
   - Para recibir datos utilizando el control de velocidad, cambie el tercer número a 1.
   - Para enviar datos utilizando el control de velocidad, cambie el cuarto número a 1—por ejemplo, \( \text{9600 0 0 1 1} \). Pulse \( \mathbf{\text{ENTER I/O TOPAR STO}} \).

3. Opcional: Pulse \( \mathbf{\text{IZE NXT SERIA OPENI NXT}} \) para iniciar el puerto serie de la HP 48. (Este paso no es necesario para la mayoría de las conexiones, pero evita dificultades causadas por la incapacidad de determinados dispositivos de comunicarse con un puerto cerrado.)

4. Para enviar o recibir comandos o datos serie, utilice las teclas del menú de E/S para realizar las operaciones deseadas; consulte la tabla siguiente.

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \mathbf{\text{I/O}} ) SERIA:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| XMIT      | XMIT                | Envía la cadena del nivel 1 sin protocolo Kermit. Una vez enviada toda la cadena, se devuelve 1 al nivel 1. Si no lograra transmitirse toda la cadena, se devuelve 0 al nivel 1 y se devuelve la parte no enviada de la cadena de entrada al nivel 2—ejecute ERM para ver el mensaje de errores.
### El Menú de E/S—Comandos de E/S Serie (continuación)

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Comando Programable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRECV</td>
<td>SRECV</td>
<td>Recibe los caracteres especificados en el nivel 1. En una transferencia correcta, se devuelven los caracteres al nivel 2 como cadena, y se devuelve 1 al nivel 1. En una transferencia incorrecta, se devuelve una cadena vacía o incompleta al nivel 2 y se devuelve 0 al nivel 1—ejecute ERRM para devolver el mensaje de error. (Se produce una transferencia incorrecta si los caracteres contienen un error de paridad, error de comunicación o error de desbordamiento, o si se reciben menos caracteres de los especificados antes de que expire el período de espera, 10 segundos por defecto.) Se toman los caracteres de la memoria intermedia de entrada—no se produce ninguna espera si se especifica el número de caracteres de la memoria intermedia, que se devuelve mediante BUFLE.</td>
</tr>
<tr>
<td>STIME</td>
<td>STIME</td>
<td>Ajusta la espera de transmisión/recepción serie al número de segundos especificado en el nivel 1. El valor de la espera puede ser de 0 a 25.4 segundos. Si se especifica 0, la HP 48 espera de forma indefinida, lo que podría dar como resultado un consumo excesivo de la pila.</td>
</tr>
<tr>
<td>SBREK</td>
<td>SBREK</td>
<td>Envía una señal BREAK serie.</td>
</tr>
<tr>
<td>Tecla</td>
<td>Comando Programable</td>
<td>Descripción</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>BUFLE</td>
<td>BUFLEN</td>
<td>Devuelve el número de caracteres de la memoria intermedia de entrada al nivel 2, y el estado de errores al nivel 2 (1=ningún error de comunicación ni de desbordamiento UART, o 0=error de comunicación o de desbordamiento UART). Si se devuelve 0 al nivel 1, el número de caracteres devuelto al nivel 2 representa la parte de los datos recibidos antes del error—puede utilizarlo para determinar dónde se ha producido el error.</td>
</tr>
</tbody>
</table>

**Nota**

Aunque XMIT, SRECV y BUFLEN verifican los mecanismos de emisión y recepción, no se verifica la integridad de los datos. Un método para verificar la integridad de la transmisión de datos es que el dispositivo de emisión añada una suma de verificación al extremo de los datos que se van a enviar, y que el dispositivo receptor compruebe la suma de verificación.

OPENIO, XMIT, SRECV y SBRK inician el puerto IR/serie de forma automática utilizando los valores actuales de los cuatro primeros parámetros IOPAR (baudio, paridad, control de velocidad de recepción y control de velocidad de transmisión) y la definición IR/cable actual (que se activa utilizando IR-94 en el menú I/O SETUP). Si abre el puerto, la memoria intermedia de entrada puede recibir datos de entrada (hasta 255 caracteres), incluso antes de ejecutar SRECV.
Bibliotecas, Puertas y Tarjetas Insertables

Memoria de Puerta Lógica y Ranuras de Tarjetas Insertables

La memoria de puerta lógica, también denominada memoria independiente, se estructura de forma diferente a la memoria de usuario:

- La memoria de usuario puede subdividirse en directorios; no así la memoria de puerta lógica.
- Las variables (globales) de la memoria de usuario son activas y pueden desplazarse físicamente en la memoria. Las variables (puerta lógica) de la memoria de puerta lógica son inactivas y mantienen una situación física permanente en la memoria.

La memoria de puerta lógica contiene dos clases de objetos:

- **Objetos de seguridad.** Los objetos de seguridad son objetos regulares que adoptan una forma “inactiva” adecuada para la memoria de puerta lógica.
- **Bibliotecas.** Las bibliotecas son grupos de objetos con nombre que funcionan para ampliar el sistema de comandos incorporados. Deben almacenarse en la memoria de puerta lógica y unirse a un directorio de usuario para poder ser útiles. Puede ejecutar un objeto con nombre desde una biblioteca, pero no visualizarlo ni editarlo, de la misma forma que puede utilizar un comando incorporado, pero no editarlo.

Para visualizar el menú de objetos almacenados en una puerta:

1. Pulse \( \text{LIBRARY} \) \( \text{PORTS} \).
2. Pulse la tecla del menú asociada con la puerta que desea visualizar.

Para visualizar el menú de bibliotecas accesible desde el directorio actual:

- Pulse \( \text{LIBRARY} \).
Puerta Lógica 0

La puerta lógica 0 es la única memoria de puerta lógica de que disponen todas las HP 48. La memoria de la puerta lógica 0 se toma de la memoria del usuario—por lo que los objetos almacenados en la puerta lógica 0 hacen disminuir la cantidad de memoria de usuario disponible. El tamaño de la puerta lógica 0 es dinámico—aumenta y disminuye en función de su contenido. Este diagrama muestra cómo la puerta lógica 0 toma la memoria necesaria de la memoria del usuario.

Si no tiene o no desea utilizar tarjetas insertables, puede utilizar la puerta lógica 0 para archivar objetos de seguridad y objetos de biblioteca.

Ranura de Tarjeta 1

La HP 48GX tiene dos ranuras de tarjeta. Estas ranuras de tarjeta no son idénticas. La Ranura de Tarjeta 1 puede aceptar una tarjeta insertable que no supere los 128 KBytes. Toda memoria RAM de una tarjeta conectada en la Ranura de Tarjeta 1 puede fusionarse con la memoria de usuario incorporada para ampliar la cantidad de memoria activa disponible o puede permanecer como memoria de puerta habitual. La Ranura de Tarjeta 1 es idéntica a las ranuras de tarjetas disponibles en su predecesora, la HP 48SX. Cuando la memoria de puerta lógica se utiliza en la Ranura de Tarjeta 1, se designa Puerta 1. Las tarjetas insertadas en la Ranura de Tarjeta 1 pueden ser RAM o ROM.
Ranura de Tarjeta 2

La Ranura de Tarjeta 2 puede contener una tarjeta insertable con una capacidad no superior a 4 MBytes. ( Esto se traduce en 4096 KBytes, de los que a sólo 3968 se puede acceder.) La memoria RAM de una tarjeta conectada en la Ranura de Tarjeta 2 no puede fusionarse con la memoria de usuario incorporada. En su lugar, la memoria de puerta lógica ofrecida en la Ranura de Tarjeta 2 se divide en puertas distintos de 128 KBytes cada uno. Así, una tarjeta insertable de MByte ofrece las Puertas de 2 a 9, conteniendo cada uno hasta 128 MBytes de objetos de seguridad y bibliotecas. Una tarjeta insertable de 4 MBytes ofrece las Puertas de 2 a 33. Las tarjetas insertadas en la Ranura de Puerta 2 pueden ser o RAM o ROM.

Cómo Utilizar Objetos de Seguridad

La HP 48 utiliza un tipo de objeto especial, el objeto de seguridad, para almacenar datos de seguridad. Un objeto de seguridad contiene otro objeto, su nombre y su suma de verificación. Los objetos de seguridad pueden existir sólo en la memoria de puerta lógica:

- Puerta 0.
- Puerta 1 si contiene tarjetas RAM instaladas como memoria de puerta lógica (es decir, no fusionada). Cuando se instala una tarjeta por primera vez, se instala como memoria de puerta lógica. (La Puerta 1 no existe en la HP 48G.)
- Puertas de 2 a 32, si existen. (No existen en la HP 48G).

Para realizar una copia de seguridad de un objeto en una tarjeta:

1. Ponga el objeto en la pila.
2. Introduzca un identificador de seguridad para el objeto de seguridad que se va a crear—véase a continuación.
3. Pulse [STO].
4. Opcional: Elimine el objeto original de la memoria de usuario.

El comando STO crea la copia de seguridad utilizando la puerta y el nombre especificado por el identificador de seguridad—tiene la forma

:puerta:nombre
donde puerta es el número de puerta (de 0 a 32) y nombre es el nombre donde se almacena la copia de seguridad. Si utiliza la puerta 1, no debe fusionarse con la memoria de usuario. El nombre del objeto de seguridad puede ser diferente del nombre original.

Puede hacer una copia de seguridad de un directorio entero (y sus subdirectorios) en un objeto de seguridad poniendo el objeto del directorio en la pila y haciendo una copia de seguridad.

**Para recuperar un objeto de la puerta lógica a la pila:**

- Visualice el menú PORT apropiado, a continuación pulse (→) y la tecla del menú para el objeto.
  - o
- Introduzca el identificador de seguridad del objeto y pulse (→) RCL.

**Para evaluar un objeto de seguridad:**

- Visualice el menú PORT apropiado, a continuación pulse la tecla del menú del objeto.
  - o
- Introduzca el identificador de seguridad del objeto y pulse (EVAL).

Para evaluar varios objetos de seguridad en una fila, introduzca una lista (con los delimitadores {, }) que contenga identificadores de seguridad y pulse (EVAL) para cada objeto de seguridad.

**Para borrar un objeto de seguridad:**

- Introduzca el identificador de seguridad del objeto y pulse (←) PURG. No puede eliminar un objeto de seguridad que ha recuperado e introducido en la pila—aparece el mensaje Object in Use. Si borra el objeto de la pila o almacena el objeto en una variable, entonces puede eliminar el objeto de seguridad.

**Para borrar simultáneamente varios objetos de seguridad:**

1. Introduzca una lista (con los delimitadores {, }) que contenga los identificadores de seguridad.
2. Pulse (←) PURG.

**Para obtener una lista de los objetos de seguridad de una puerta:**

1. Introduzca el identificador de seguridad del objeto y utilice & para el número de puerta. (Pulse (→) ENTER para escribir &.)

28-4 Bibliotecas, Puertas y Tarjetas Insertables
2. Ejecute RCL, EVAL, o PURGE. Siempre que utilice el “comodín” & para el número de puerta, la HP 48 busca en las puertas en orden numérico invertido empezando por los más altos que existan (32, 31, ..., 2, 1, 0) y, a continuación, la memoria principal para encontrar el objeto de seguridad; utiliza el primer nombre que aparece.

**Ejemplo:** Si introduce  && BPG1 y pulsa PURG, se elimina la primera aparición de BPG1 en la puerta 32, 31, ..., 2, 1, 0, o en la memoria principal.

**Para conseguir una lista de objetos de seguridad de una puerta:**

- Introduzca el número de puerta y pulse LIBRARY P VARS. El comando P VARS presenta realmente dos resultados. El nivel 1 indica el tipo de memoria que hay en la puerta: "ROM" (tarjeta de aplicación), "SYSRAM" (memoria fusionada), o un número (el número de bytes disponible en la memoria de usuario de la puerta 0, o en la memoria independiente de otra puerta). El nivel 2 contiene una lista de identificadores de seguridad e identificadores de biblioteca.

**Para copiar objetos de seguridad desde una tarjeta a otra HP 48:**

1. Desconecte la HP 48 e instale la tarjeta; consulte “Cómo Instalar y Eliminar Tarjetas Insertables” en la página 28-10.
2. Conecte la HP 48.
3. Recupere el objeto en la pila; consulte “Para recuperar un objeto de puerta en la pila” en la página 28-4.

Asimismo puede transferir objetos entre dos HP 48s utilizando sus puertos de infrarrojos; consulte “Cómo Transferir Datos entre Dos HP 48s” en la página 27-1.

**Cómo Realizar una Copia de Seguridad de Toda la Memoria**

Puede hacer una copia de seguridad y recuperar el contenido de todo el directorio HOME en un objeto de seguridad. El directorio HOME incluye todas las variables, asignaciones de claves de usuario y alarmas. Puede asimismo incluir todas las configuraciones de indicadores si lo desea.
Asimismo puede hacer una copia de seguridad de la memoria en un archivo del ordenador. Para más información, consulte “Cómo Realizar una Copia de Seguridad de la Memoria de la HP 48” en la página 27-12.

**Precaución**

Cuando haga una copia de seguridad de la memoria, asegúrese de que el reloj que está en funcionamiento no aparece en pantalla. Si el reloj aparece en pantalla, puede alterar los datos de la copia de seguridad.

---

**Para realizar una copia de seguridad de toda la memoria de usuario en un objeto de seguridad:**

1. Opcional: Para hacer una copia de seguridad de las configuraciones de indicadores, pulse \( \text{MODES} \, \text{FLAG} \, \text{NXT} \, \text{RELF} \), introduzca un nombre de variable (con los delimitadores ’) y pulse \( \text{STO} \).
2. Introduzca un especificador de copia de seguridad para el objeto de seguridad que va a crear.
3. Pulse \( \text{MEMORY} \, \text{NXT} \, \text{ARCHI} \).

**Precaución**

Al ejecutar RESTORE se sobrescribe todo el contenido de la memoria de usuario con el contenido del objeto de seguridad. Para archivar la pila, puede archivarla en otro objeto de seguridad.

---

**Para recuperar la memoria de usuario de la HP 48 desde un objeto de seguridad:**

1. Introduzca el identificador del objeto de seguridad (con los delimitadores ::) en la pila. (Recuerde que el nombre incluye el número de puerta.)
2. Pulse \( \text{MEMORY} \, \text{NXT} \, \text{RESTO} \).
3. Opcional: Para recuperar las configuraciones de indicadores previamente archivadas, recupere el contenido de la variable que contenga los datos de indicador y pulse \( \text{MODES} \, \text{FLAG} \, \text{NXT} \, \text{STOF} \).

28-6 Bibliotecas, Puertas y Tarjetas Insertables
Cómo Utilizar las Bibliotecas

Una biblioteca es un objeto que contiene objetos que tienen asignado un nombre y que pueden funcionar como extensiones del conjunto de comandos incorporados. La función principal de una biblioteca es servir como vehículo para una aplicación con base RAM o ROM. Una biblioteca con base ROM reside en una tarjeta de aplicación insertable y se instala introduciendo la tarjeta en una de las ranuras de la tarjeta. (La HP 48G no dispone de ranuras de tarjeta insertable.) Una biblioteca con base RAM puede residir en una tarjeta RAM insertable, o puede transferirse a la memoria de usuario desde el puerto de E/S serie o de infrarrojos. (Para más información, consulte la documentación sobre las bibliotecas).

Precaución

Las bibliotecas originariamente creadas para ser utilizadas con los primeros modelos HP 48S y HP 48SX no son compatibles con la HP 48G y HP 48GX. Se puede producir una pérdida de memoria. Debe hacer una copia de seguridad de su memoria de usuario (consulte la página 28-5) antes de intentar utilizar dichas bibliotecas. Póngase en contacto con el distribuidor o autor de la biblioteca para obtener más detalles sobre su compatibilidad.

Las bibliotecas ofrecen varias ventajas sobre los programas:

- Las aplicaciones que se escriben están protegidas contra copias debido a que el contenido de una biblioteca no puede visualizarse, editarse ni recuperarse en la pila.
- Las bibliotecas ofrecen acceso más rápido a las variables utilizadas por las aplicaciones.
- Las variables utilizadas en aplicaciones pueden designarse variables “ocultas” (sin nombre asignado), lo que evita desordenar el menú de la biblioteca.

Cada biblioteca se identifica de dos maneras:

- Un identificador de biblioteca, que tiene la forma \texttt{:puerta:número}, donde \texttt{número} es un número único asociado con la biblioteca. Si pulsa \texttt{LIBR\_PORT} y la tecla del menú de la puerta donde ha almacenado la biblioteca, aparece el número de biblioteca en el menú.
- Un *nombre de biblioteca*, que es una secuencia de caracteres.
  Si pulsa ![LIBRARY](#) en el directorio donde ha incorporado la biblioteca o algunos de sus subdirectorios, aparece el nombre de la biblioteca en el menú.

La HP 48 no dispone de la capacidad de crear bibliotecas. Por regla general, se crean en un ordenador y se cargan en la HP 48 mediante un cable o tarjeta insertable. Si está interesado en crear bibliotecas, póngase en contacto con el Soporte Técnico de Calculadoras o el servicio BBS (consulte la parte interna de la contraportada) para obtener más información sobre dónde hallar las herramientas de programación necesarias.

**Para instalar una biblioteca:**

1. Instale la biblioteca en una puerta:
   - Para una biblioteca de tarjetas de aplicación, *apague la HP 48* e introduzca la tarjeta en la puerta 1 ó 2.
   - Para una biblioteca con base RAM, almacénela en la memoria de puerta lógica.

2. Incorpore la biblioteca (véase a continuación). Algunas bibliotecas se "autoincorporan" solas, pero otras deben incorporarse manualmente. Puede incorporar sólo una biblioteca a cada directorio—*excepción* puede incorporar cualquier número al directorio HOME. (Véase asimismo la documentación que acompaña la tarjeta de aplicación o la biblioteca con base RAM para obtener cualquier otra información sobre la incorporación de la biblioteca).

Para utilizar una biblioteca, debe instalarse en una puerta e incorporarse a un directorio de la memoria de usuario. La incorporación puede realizarse de forma automática al instalar una tarjeta de aplicación—o puede que tenga que hacerlo usted mismo.

**Para almacenar una biblioteca con base RAM en la memoria de puerta lógica:**

1. Ponga el objeto de la biblioteca en la pila. (Observe su nombre y número de biblioteca.)

2. Introduzca el número de puerta donde almacenar la biblioteca. Si utiliza la puerta 0, la biblioteca está siempre disponible, incluso aunque elimine las tarjetas insertables. Si utiliza una puerta de una de las ranuras de tarjeta, la ranura apropiada debe contener
una tarjeta RAM instalada como memoria de puerta lógica no fusionada.

3. Pulse \textbf{[STO]}.

4. Opcional: Elimine el objeto de biblioteca original de la memoria de usuario, si todavía no lo ha hecho.

\textbf{Para incorporar una biblioteca que se “autoincorpora” por sí sola al directorio HOME:}

- Desconecte y conecte la HP 48. Todas las bibliotecas autoincorporables almacenadas en la memoria de puerta lógica se incorporarán por sí solas al directorio HOME (si no lo están ya).

\textbf{Para incorporar manualmente una biblioteca en un directorio:}

1. Entre en el directorio deseado:
   - Para tener acceso desde todos los directorios, entre en el directorio \textit{HOME}.
   - Para tener acceso limitado, entre en el directorio deseado. La biblioteca estará disponible sólo en este directorio y en sus subdirectorios.

2. Introduzca el \textit{identificador de biblioteca} de esa biblioteca, con el formato \textit{:puerta:número}.

3. Pulse \textbf{[LIBRARY] \textbf{NXT} \textbf{DELETE}}.

\textbf{Para separar una biblioteca de un directorio:}

1. Entre en el directorio donde ha incorporado la biblioteca.

2. Introduzca el \textit{número de biblioteca} correspondiente a la biblioteca que desea separar.

3. Pulse \textbf{[LIBRARY] \textbf{DELETE}} para separarla del directorio.

\textbf{Para eliminar una biblioteca de la memoria:}

1. Asegúrese de que se ha separado la biblioteca de todos los directorios donde se había incorporado.

2. Introduzca el \textit{identificador de biblioteca} de esa biblioteca de la memoria independiente con el formato \textit{:puerta:número}.

3. Pulse \textbf{[LIBRARY] \textbf{PURGE}} para eliminar la biblioteca de la memoria independiente. Si recibe el error \texttt{Object In Use}, indica que la biblioteca sigue existiendo en algún directorio.
Cómo Instalar y Retirar Tarjetas Insertables

Las dos ranuras donde se pueden instalar tarjetas insertables se denominan Ranura de Tarjeta 1 y Ranura de Tarjeta 2. La Ranura de Tarjeta 1 es la más cercana a la parte delantera de la calculadora—la Ranura de Tarjeta 2 es la más cercana a la parte posterior. Estas ranuras no son idénticas. Para más información sobre las diferencias, consulte la página 28-2.

Precaución

Las tarjetas insertables y los accesorios no autorizados pueden producir daños a la HP 48. Puede distinguir una tarjeta o accesorio insertable potencialmente nocivo de una tarjeta HP autorizada mirando la parte posterior de la tarjeta por donde se introduce en la HP 48. Una tarjeta autorizada tiene un cierre metálico para proteger la HP 48 de cargas estáticas. Las tarjetas y accesorios no autorizados, que HP ha analizado hasta la fecha, carecen de este cierre, pero en su lugar poseen contactos de oro al descubierto.

Para instalar la pila en una tarjeta RAM nueva:

1. No utilice este procedimiento para cambiar la pila en una tarjeta RAM—podría producir pérdida de memoria en la tarjeta RAM. Para cambiar una pila, consulte “Para cambiar una pila de tarjeta RAM” en la página A-9.

2. Suelte el soporte de la pila de la tarjeta introduciendo la uña del dedo pulgar o un pequeño destornillador en la estrión y tire.
3. El lado estriado del soporte de la pila tiene marcado el símbolo + y la palabra UP. Introduzca la pila en el soporte con su lado + hacia arriba y, a continuación, introduzca el soporte en la tarjeta.

4. Escriba la fecha de instalación sobre la tarjeta utilizando un rotulador de punta fina indeleble. La fecha es importante para determinar cuándo debe cambiarse la pila.
5. Instale una alarma en la calculadora durante 1 año a partir de la fecha de instalación que le haga recordar que debe cambiar la pila. (Dependiendo del uso, la pila debe durar entre 1 y 3 años.) Cuando la pila necesite ser cambiada, aparecerá un mensaje en pantalla—pero sólo si la tarjeta está dentro de la calculadora. Instale esta alarma que le haga recordar, en caso de que la tarjeta no esté en la calculadora, cuando se va agotando la pila.) Para instalar una alarma, consulte “Cómo Instalar Alarmas” en la página 26-2. Para cambiar una pila de tarjeta RAM, consulte “Para cambiar una pila de tarjeta RAM” en la página A-9.
Para instalar una tarjeta insertable:

1. Almacene cualquier objeto que exista actualmente en la pila que desea archivar. (Al instalar o retirar cualquier tarjeta insertable se borra la pila).

2. Si la tarjeta que desea instalar contiene alguna biblioteca o aplicaciones creadas para el modelo anterior HP 48SX, haga entonces una copia de seguridad de toda la memoria de usuario a modo de precaución antes de instalar la tarjeta (consulte las instrucciones de la página 28-5). No todas las bibliotecas anteriores son compatibles con la HP 48GX y pueden producir pérdida de memoria de usuario.

3. Desconecte la calculadora. De lo contrario, podría borrarse toda la memoria de usuario.

4. Si la tarjeta es una tarjeta RAM nueva, instale su pila (véase arriba).

5. Para una tarjeta RAM, verifique o active el selector de protección de escritura. *Para una tarjeta RAM nueva, póngalo en Lectura/Escritura.* (Desconecte siempre la calculadora antes de cambiar el selector de protección contra escritura.)

- **Sólo Lectura.** Puede leer el contenido de la tarjeta, pero no puede cambiar, borrar o almacenar datos. Protege el contenido de la tarjeta RAM contra la sobreescribir o el borrado por accidente. No utilice *nunca* esta definición en una tarjeta RAM que contenga memoria fusionada.

- **Lectura/Escritura.** Puede leer, cambiar, borrar el contenido y borrar datos, de la misma forma que se hace con la memoria de usuario incorporada.
6. Retire la tapa de los puertos situada en la parte superior de la calculadora presionando contra la zona de agarre y a continuación empujando en la dirección que se muestra en el recuadro. Al retirar la tapa aparecen las dos puertas insertables.

7. Seleccione la ranura vacía para la tarjeta.
8. Coloque la tarjeta insertable tal como se muestra en el recuadro. La flecha triangular que hay en la tarjeta debe apuntar hacia abajo, es decir hacia la calculadora. Asegúrese de que la tarjeta está bien alineada con una abertura de ranura y que no está colocada mitad en una ranura y mitad en la otra.

9. Introduzca la tarjeta con firmeza en la ranura hasta que se pare. Al sentir resistencia por primera vez, a la tarjeta le queda aproximadamente $\frac{1}{4}$ de pulgada para quedar plenamente instalada.

10. Vuelva a colocar la tapa de los puertos introduciéndola hasta que ajuste el pestillo.


<table>
<thead>
<tr>
<th>Nota</th>
</tr>
</thead>
</table>

Cuando instale una tarjeta RAM nueva (o una de las puertas que no ha utilizado nunca) y encienda la calculadora, aparecerá el mensaje `Invalid Card Data`. Puede hacer caso omiso de este mensaje, ya que las puertas se inicializan automáticamente la primera vez que se utilizan. Si lo prefiere, también puede pulsar [LIBRARY] [NXT] [PINIT] para inicializar todas las puertas RAM disponibles. El comando PINIT no afectará a ninguno de los datos almacenados en cualquiera de las puertas.
Para retirar una tarjeta insertable:

Precaución

No retire nunca una tarjeta RAM que contenga memoria fusionada—se producirá probablemente una pérdida de los datos almacenados en la memoria de usuario. Antes de retirar la tarjeta RAM, debe liberar la memoria fusionada. Consulte la página 28-16.

Si de forma accidental retira una tarjeta con memoria fusionada y ve el mensaje Replace RAM, Press ON, puede reducir al mínimo la pérdida de memoria dejando la calculadora conectada, reintroduciendo la tarjeta en la misma puerta y pulsando a continuación ON.

1. *Si retira una tarjeta RAM de la Ranura de Tarjeta 1, asegúrese de que contenga memoria liberada, no fusionada*—tenga en cuenta la precaución siguiente y consulte la página 28-16.

2. Desconecte la calculadora. *No pulse ON hasta que haya retirado la tarjeta.*

3. Retire la tapa de los puertos.

4. Presione contra el agarre y saque la tarjeta de la puerta.

5. Vuelva a colocar la tapa de los puertos.

Cómo Ampliar la Memoria de Usuario con Tarjetas RAM Insertables

Puede ampliar la memoria de usuario incorporada de HP 48GX instalando una tarjeta RAM en la Ranura de Tarjeta 1 y fusionando su memoria con la memoria de usuario. (El modelo HP 48G no dispone de ranuras para tarjetas insertables.)

Cada tarjeta RAM contiene una pila que conserva su contenido mientras está desconectada la calculadora y después de que se haya retirado la tarjeta de la calculadora. (Las pilas de la calculadora alimentan la tarjeta RAM sólo cuando la calculadora está conectada.)
Se instala una tarjeta RAM como uno de dos tipos de memoria—cada uno con sus ventajas. Puede cambiar entre los dos tipos—pero no puede utilizar una tarjeta como ambos tipos al mismo tiempo.

- **Memoria de usuario fusionada.** La parte de la memoria de usuario contenida en una tarjeta RAM—la memoria de la tarjeta está *fusionada* con la memoria del usuario incorporada. Esto permite ampliar la cantidad de memoria de usuario para crear variables y directorios, y para introducir objetos en la pila.

- **Memoria de puerta libre.** La memoria RAM que es *independiente* de la memoria de usuario—en la memoria incorporada (en la puerta 0) o en una tarjeta RAM (en las puertas de 1 a 32). Esto permite hacer copias de seguridad de objetos individuales o directorios enteros, de la misma forma que se hacen copias de seguridad de archivos del ordenador en un disco, para almacenarlo en un lugar seguro. Puede asimismo utilizarla para transferir datos a otra HP 48 instalándola y copiando los objetos que contenga. Consulte “Cómo Realizar Copia de Seguridad de Datos” en la página 28-3.

**Para verificar el tipo de memoria en una puerta:**

- Introduzca el número de la puerta y pulse \( \text{LIBRARY} \) \( \text{PURGE} \). El resultado en el nivel 1 indica el tipo de memoria:
  - "ROM" ROM en una tarjeta de aplicación.
  - "SYSRAM" Memoria de usuario fusionada en una tarjeta RAM.
  - número Memoria de puerta libre en una tarjeta RAM.

**Para fusionar memoria de la tarjeta RAM en la Ranura de Tarjeta 1 con memoria de usuario:**

1. Desconecte la calculadora y asegúrese de que la tarjeta *no está protegida contra escritura*.
2. Vuelva a conectar la calculadora y pulse \( \text{LIBRARY} \) \( \text{MERGE} \). Si la tarjeta contenía previamente algunas bibliotecas u objetos con copia de seguridad, el comando MERGE 1 las desplaza de forma automática a una parte especial de la memoria llamada puerta 0. Consulte “Cómo Utilizar la Puerta 0” en la página 28-2.
Para liberar una tarjeta RAM en la Ranura de Tarjeta 1 que esté fusionada con la memoria de usuario:

1. Pulse (ENTER) para introducir una lista vacía.
2. Pulse (LIBRARY) FREE1. Si la tarjeta RAM está libre (memoria de puerta), aparecerá un error Port Not Available al ejecutar FREE1. Si no hay suficiente memoria disponible para liberar la tarjeta RAM, aparecerá un error de memoria al ejecutar FREE1 (véase a continuación).
3. Opcional: Desconecte la HP 48 y haga lo propio con la tarjeta—consulte “Para retirar una tarjeta conectable” en la página 28-16.

Para verificar la cantidad de memoria de usuario disponible, pulse (MEMORY) —el número devuelto es la cantidad en bytes de memoria de usuario no utilizada. Para poder soldar la tarjeta RAM, debe tener una cantidad sin utilizar que sea mayor que el tamaño de la tarjeta RAM o igual al mismo—en caso contrario, la HP 48 carece de suficiente memoria sin utilizar para asignar a la tarjeta.

Si existe insuficiente memoria de usuario para liberar una tarjeta RAM:

- Elimine las variables innecesarias de la memoria de usuario.
- Haga una copia de seguridad de los datos en otra tarjeta RAM instalada en la ranura de la otra tarjeta y, a continuación, elimine las variables originales.
- Haga una copia de seguridad de los datos en la puerta 0, elimine los originales y, a continuación, desplace los objetos de seguridad a la tarjeta RAM a medida que se libera (véase a continuación).

Para liberar una tarjeta RAM fusionada y desplazar allí los objetos con copia de seguridad:

1. Haga una copia de seguridad de los objetos deseados en la puerta 0; consulte “Para hacer una copia de seguridad de un objeto” en la página 28-3.
2. Introduzca una lista (con los delimitadores Ç 3) que contenga los nombres de los objetos de seguridad de la puerta 0.
3. Pulse (MEMORY) FREE1. Los objetos nombrados en la lista se retiran de la puerta 0 y se almacenan en la tarjeta RAM recién liberada (en la memoria de puerta).
4. Opcional: Desconecte la HP 48 y haga lo propio con la tarjeta; consulte “Para retirar una tarjeta insertable” en la página 28-16.
Para cambiar el selector de protección contra escritura con la tarjeta instalada:

1. Asegúrese de que la tarjeta contiene memoria de puerta sin fusionar, libre; consulte "Para verificar el tipo de memoria en una puerta" en la página 28-17.
2. Desconecte la HP 48.
3. Desplace el selector a la posición correcta:
   - Para Sólo Lectura, el selector está cerca de la esquina de la tarjeta.
   - Para Lectura/Escritura, el selector está alejado de la esquina de la tarjeta.
Cómo Programar la HP 48

Este capítulo presenta una introducción a algunas de las posibilidades de programación que ofrece la HP 48. Para conocer la lista de comandos completa y las técnicas de programación en profundidad, consulte la HP 48G Series Advanced User’s Reference (número de parte 00048-90136).

Fundamentos de Programación

Un programa de la HP 48 es un objeto definido por los delimitadores « »; que contiene una secuencia de números, comandos y otros objetos que se desean ejecutar de forma automática para realizar una tarea.

Por ejemplo, si desea hallar la raíz cuadrada negativa de un número que está en el nivel 1, puede pulsar \(\sqrt{\text{NEG}}\). El programa siguiente ejecuta los mismos comandos:

« \(\sqrt{}\) NEG »

Sin cambiar el programa, podríamos mostrarlo con un comando por línea—similar a otros lenguajes de programación:

«
\(\sqrt{}\)
NEG
»
El Contenido de un Programa

Como se ha mencionado con anterioridad, un programa contiene una secuencia de objetos. Como cada objeto se procesa en un programa, la acción producida depende del tipo de objeto, como se resume a continuación.

<table>
<thead>
<tr>
<th>Objeto</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comando</td>
<td><em>Ejecutado</em></td>
</tr>
<tr>
<td>Número</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Operación algebraica</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Cadena</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Lista</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Programa</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Nombre global (entre comillas)</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Nombre global (sin comillas)</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td></td>
<td>- Programa <em>ejecutado</em>.</td>
</tr>
<tr>
<td></td>
<td>- Nombre evaluado.</td>
</tr>
<tr>
<td></td>
<td>- El directorio se convierte en actual.</td>
</tr>
<tr>
<td></td>
<td>- Otro objeto puesto en la pila.</td>
</tr>
<tr>
<td>Nombre local (entre comillas)</td>
<td>Puesto en la pila.</td>
</tr>
<tr>
<td>Nombre local (sin comillas)</td>
<td>Contenido puesto en la pila.</td>
</tr>
</tbody>
</table>

Como puede verse en esta tabla, la mayoría de los tipos de objetos se ponen en la pila—pero se *ejecutan* los programas y comandos incorporados llamados por su nombre. Los ejemplos siguientes muestran los resultados de la ejecución de programas que contienen secuencias de objetos diferentes.
Ejemplos de Acciones del Programa

<table>
<thead>
<tr>
<th>Programa</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>« 1 2 »</td>
<td>2: 1 1: 2</td>
</tr>
<tr>
<td>« &quot;Hello&quot; { A B } »</td>
<td>2: &quot;Hello&quot; 1: { A B }</td>
</tr>
<tr>
<td>« '1+2' »</td>
<td>1: '1+2'</td>
</tr>
<tr>
<td>« '1+2' →NUM »</td>
<td>1: 3</td>
</tr>
<tr>
<td>« « 1 2 + » »</td>
<td>1: « 1 2 + »</td>
</tr>
<tr>
<td>« « 1 2 + » EVAL »</td>
<td>1: 3</td>
</tr>
</tbody>
</table>

En realidad, los programas pueden contener algo más que simples objetos—pueden asimismo contener *estructuras*. Una estructura es un segmento de programa con una organización definida. Se puede disponer de dos tipos básicos de estructuras:

- **Estructura de variable local.** El comando → define los nombres de las variables locales y un objeto algebraico o del programa correspondiente que se evalúa utilizando esas variables.

- **Estructuras de bifurcación.** Las palabras de la estructuras (como DO...UNTIL...END) definen estructuras condicionales o de bucle para controlar el orden de ejecución dentro de un programa.

Una *estructura de variable local* tiene una de las organizaciones siguientes dentro de un programa:

- « → nombre_1 ... nombre_n 'operación algebraica' »
- « → nombre_1 ... nombre_n « programa » »

El comando → retira n objetos de la pila y los almacena en las variables locales nombradas. El objeto algebraico o de programa de la estructura se evalúa de forma automática, ya que es un elemento de la estructura—aunque los objetos algebraicos y de programa se pongan en la pila en otras situaciones. Cada vez que un nombre de variable local aparece en el objeto algebraico o de programa, se sustituye el contenido de la variable.
Así el programa siguiente toma dos números de la pila y devuelve un resultado numérico:

```
« → a b 'ABS(a-b)' »
```

**Cálculos en un Programa**

Muchos cálculos de programas toman datos de la pila—a veces introducidos por el usuario o por otro programa. A continuación se ofrecen dos formas típicas de manipular esos datos:

- **Comandos de pila.** Operan directamente sobre los objetos de la pila.
- **Estructura de variable local.** Almacena los objetos de la pila en variables locales temporales, a continuación utiliza los nombres de las variables para representar los datos en el objeto algebraico o de programa siguiente.

Los cálculos numéricos proporcionan ejemplos muy útiles de estos métodos. Los tres programas siguientes utilizan dos números de la pila para calcular la hipotenusa de un triángulo recto utilizando la fórmula $\sqrt{x^2 + y^2}$.

```
« SQ SWAP SQ + √ »
« → x y « × SQ y SQ + √ » »
« → x y ' √(x^2+y^2)' »
```

El primer programa utiliza comandos de pila para manipular los números de la pila—el cálculo utiliza sintaxis de pila. El segundo programa utiliza una estructura de variable local para almacenar y recuperar los números—el cálculo utiliza sintaxis de pila. El tercer programa utiliza asimismo una estructura de variable local—el cálculo utiliza una sintaxis algebraica. Observe que la fórmula subyacente es más evidente en el tercer programa.

Muchos programadores prefieren las estructuras de variables locales con objetos algebraicos porque son fáciles de escribir, leer y depurar.
Programación Estructurada

La HP 48 facilita la programación estructurada. Cada programa tiene sólo un punto de entrada—el principio del programa. Tiene asimismo sólo un punto de salida—el final del programa. No existen etiquetas dentro de un programa donde haya que entrar—no existen comandos GOTO de los que salir. Desde un punto de vista externo, el flujo de programas es extremadamente sencillo—empieza al principio y acaba al final. (Claramente, dentro del programa pueden utilizarse estructuras de bifurcación para controlar el flujo de la ejecución.)

Puede sacar provecho de la programación estructurada creando programas de “bloque constitutivo”. Cada programa de bloque constitutivo puede permanecer solo—y puede funcionar como una subrutina en un programa más grande. Por ejemplo, tome en consideración el programa siguiente:

```
« GETVALUE CALCULATE SHOWANSWER »
```

Este programa se divide en tres tareas principales, cada una con una subrutina. El flujo es previsible. Sólo importan la entrada y la salida de cada subrutina—el funcionamiento interno no importa a este nivel.

Dentro de cada subrutina, su tarea puede ser sencilla, o puede seguir subdividiéndose en otras subrutinas que realizan tareas más pequeñas. Esto permite tener subrutinas relativamente sencillas, incluso si el programa principal es de gran tamaño.

Por lo tanto, los programas se convierten en extensiones del conjunto de comandos incorporados, tal como se ha mencionado con anterioridad. Se ejecutan por su nombre. Toman determinadas entradas y producen determinados resultados.
Cómo Introducir y Ejecutar Programas

Un programa es un objeto que ocupa un nivel de la pila y puede almacenarse en una variable.

Para introducir un programa:

1. Pulse \( \leftarrow \rightarrow \) \( \leftarrow \rightarrow \). Aparece el indicador PRG, señalando que el modo de entrada de programa está activo.
2. Introduzca los comandos y otros objetos (con los delimitadores apropiados) en el orden requerido para las operaciones que desea que el programa ejecute.
   - Pulse \( \text{SPC} \) para separar números consecutivos.
   - Pulse \( \text{OK} \) para pasar los delimitadores de cierre.
3. Opcional: Pulse \( \rightarrow \rightarrow \) \( \rightarrow \rightarrow \) (interlínea) para iniciar una línea nueva en la línea de comandos en cualquier momento.
4. Pulse \( \text{ENTER} \) para poner el programa en la pila.

En el modo de entrada de programa (indicador PRG activado), no se ejecutan las teclas de comandos—sino que se introducen en la línea de comandos. Sólo se ejecutan las operaciones no programables (como \( + \) y \( \text{VAR} \)).

Los cortes de línea se omiten cuando se pulsa \( \text{ENTER} \).

Para introducir comandos y otros objetos en un programa:

- Pulse la tecla del menú o teclado correspondiente al comando u objeto.
  - o
- Escriba los caracteres utilizando el teclado alfabético.

Para almacenar o asignar nombre a un programa:

1. Introduzca el programa en la pila.
2. Introduzca el nombre de la variable (con los delimitadores \( ' \)) y pulse \( \text{STO} \).

Para ejecutar un programa:

- Pulse \( \text{VAR} \) y, a continuación, la tecla del menú correspondiente al nombre del programa.
  - o
Introduzca el nombre del programa (sin ningún delimitador) y pulse ENTER.

Ponga el nombre del programa en el nivel 1 y pulse EVAL.

Para detener un programa en ejecución:
- Pulse CANCEL.

Ejemplo: Introduzca un programa que tome un valor de radio de la pila y calcule el volumen de una esfera de radio $r$ utilizando

$$V = \frac{4}{3} \pi r^3$$

Paso 1: Si fuese a calcular el volumen de forma manual después de introducir el radio en la pila, podría pulsar estas teclas:

3 $y^x$ $\pi$ $\times$ 4 $\times$ 3 $+$ $\leftarrow$ $\rightarrow$ NUM

Introduzca las mismas pulsaciones en un programa. ($\leftarrow$ $\rightarrow$ inicia una línea nueva.)

Paso 2: Ponga el programa en la pila.

Paso 3: Almacene el programa en la variable VOL. A continuación ponga un radio de 4 en la pila y execute el programa VOL.

Cómo Programar la HP 48 29-7
Ejemplo: Sustituya el programa del ejemplo anterior con uno que sea más fácil de leer. Introduzca un programa que utilice una estructura de variable local para calcular el volumen de una esfera. El programa es

\[ \texttt{\textless{} \textgreater{} } 4 \times 3 \times \pi \times r^3 \texttt{ \textgreater{} \texttt{num}} \]  

(Debe incluir \texttt{\textgreater{}num}, ya que \pi produce un resultado simbólico. Pruebe el programa con y sin el comando \texttt{\textgreater{}num}.)

Paso 1: Introduzca el programa.

Paso 2: Ponga el programa en la pila, almacénelo en \texttt{vol} y calcule el volumen con un radio de 4.

Cómo Visualizar, Depurar y Editar Programas

Para visualizar o editar un programa:

1. Visualice el programa:
   - Si el programa está en el nivel 1, pulse \( \text{ENTER} \).  
   - Si el programa está almacenado en una variable, ponga el nombre de la variable en el nivel 1 y pulse \( \text{EDIT} \).

2. Realice las modificaciones que desee.

3. Pulse \( \text{ENTER} \) para archivar cualquier modificación (o pulse \( \text{CANCEL} \) para eliminar las modificaciones) y regrese a la pila.

Resulta más fácil comprender cómo funciona un programa si lo ejecuta paso a paso, observando el efecto de cada paso. El hacerlo así puede ayudarle a "depurar" sus propios programas o a comprender los programas escritos por otros.
Para realizar la operación paso a paso desde el principio de un programa:

1. Ponga todos los datos requeridos por el programa en la pila en los niveles apropiados.
2. Ponga el programa o el nombre del programa en el nivel 1 (o la línea de comandos).
3. Pulse PRG NXT RUN DEBUG para empezar e inmediatamente suspenda la ejecución. El indicador HALT se visualiza en el área de estado.
4. Realice la acción que estime oportuna:
   - Para ver el paso de programa siguiente visualizado en el área de estado y posteriormente ejecutado, pulse SST.
   - Para visualizar, pero no ejecutar el paso o los dos pasos siguientes del programa, pulse NEXT.
   - Para continuar con la ejecución normal, pulse CONT.
   - Para abandonar otra ejecución, pulse KILL.
5. Repita el paso 4 cuando desee hacerlo.

Para realizar la operación paso a paso desde la mitad de un programa:

1. Introduzca un comando HALT en el programa en el lugar en que desee empezar el funcionamiento paso a paso.
2. Ejecute el programa con normalidad. El programa se detiene al ejecutarse el comando HALT y se visualiza el indicador HALT.
3. Realice la acción que estime oportuna:
   - Para ver el paso de programa siguiente visualizado en el área de estado y posteriormente ejecutado, pulse SST.
   - Para visualizar, pero no ejecutar el paso o los dos pasos siguientes, pulse NEXT.
   - Para continuar con la ejecución normal, pulse CONT.
   - Para abandonar otra ejecución, pulse KILL.
4. Repita el paso 3 cuando desee hacerlo.

Cuando desee que el programa vuelva a ejecutarse normalmente, retire el comando HALT del programa.

Para realizar la operación paso a paso cuando el paso siguiente es una subrutina:

- Para ejecutar la subrutina en un paso, pulse SST.
- Para ejecutar la subrutina paso a paso, pulse SST.
ejecuta el paso siguiente de un programa—si el paso siguiente es una subrutina, ejecuta la subrutina en un paso. Funciona igual que , excepto si el paso de programa siguiente es una subrutina, en cuyo caso va avanzando paso a paso hacia el primer paso de la subrutina.

Para desactivar el indicador HALT en cualquier momento:

- Pulse \( \text{PRG} \) \( \text{CTRL} \) \( \text{KILL} \).

Cómo Utilizar las Estructuras de Programación

Una estructura de programación permite que un programa decida sobre ha de realizar la ejecución, dependiendo de las condiciones existentes o de los valores de argumentos concretos. Una utilización adecuada de estas estructuras hace que sea posible crear programas extraordinariamente flexibles.

Estructuras Condicionales

Las estructuras condicionales permiten que un programa tome una decisión basada en el resultado de una o más pruebas. A continuación se ofrece un resumen de las estructuras condicionales disponibles en la HP 48:

**IF...THEN...END**

Introduzca esta estructura en un programa pulsando \( \text{PRG} \) \( \text{BRCH} \) \( \rightarrow \) \( \text{IF} \). Su sintaxis es:

```
< ... IF cláusula-prueba THEN cláusula-verdadera END ... >
```

IF...THEN...END ejecuta la secuencia de comandos en la cláusula-verdadera sólo si la cláusula-prueba es verdadera. La cláusula-prueba puede ser una secuencia de comandos (por ejemplo, \( A \leq B \)) o una operación algebraica (por ejemplo, \( 'A\leq B' \)). Si la cláusula-prueba es una operación algebraica, da automáticamente como resultado un número—no se necesita \( \rightarrow \text{NUM} \) ni \( \text{EVAL} \).
IF inicia la cláusula-prueba, la cual deja un resultado de prueba en la pila. THEN retira el resultado de prueba de la pila. Si el valor es distinto a cero, se ejecuta la cláusula-verdadera; de lo contrario, la ejecución del programa se reanuda después de END.

**IF...THEN...ELSE...END**

Introduzca esta estructura en un programa pulsando [PRG] [BRCH] [IF]. Su sintaxis es:

```
< ... IF cláusula-prueba
    THEN cláusula-verdadera ELSE cláusula-falsa END > ...
```

IF...THEN...ELSE...END ejecuta la secuencia de comandos cláusula-verdadera si la cláusula-prueba es verdadera, o bien la secuencia de comandos cláusula-falsa si la cláusula-prueba es falsa. Si la cláusula-prueba es una operación algebraica, da automáticamente como resultado un número; no se necesita →NUM o EVAL.

IF inicia la cláusula-prueba, la cual deja un resultado de prueba en la pila. THEN retira el resultado de prueba de la pila. Si el valor es nulo, se ejecuta la cláusula-verdadera; de lo contrario, se ejecuta la cláusula-falsa. Una vez ejecutada la cláusula apropiada, la ejecución se reanuda después de END.

**CASE...END**

Para introducir CASE...END en un programa:

1. Pulse [PRG] [BRCH] [CASE] para introducir CASE...THEN...END...END.
2. Para cada cláusula-prueba adicional, ponga el cursor detrás de una cláusula-prueba END y pulse [CASE] para introducir THEN...END.

La sintaxis para la estructura CASE...END es:

```
CASE
    cláusula-prueba_1 THEN cláusula-verdadera_1 END
    cláusula-prueba_2 THEN cláusula-verdadera_2 END
    ... 
    cláusula-prueba_n THEN cláusula-verdadera_n END
    cláusula-por defecto (opcional)
END
```
Esta estructura le permite ejecutar una serie de comandos cláusula-prueba, y a continuación ejecutar la secuencia apropiada de comandos cláusula-verdadera. La primera prueba que devuelve un resultado verdadero produce la ejecución de la cláusula-verdadera correspondiente, finalizando la estructura CASE...END. A modo de opción, puede incluir después de la última prueba una cláusula por defecto que se ejecuta si todas las pruebas dan falso como resultado. Si una cláusula-prueba es una operación algebraica, da automáticamente como resultado un número; no se necesita →NUM o EVAL.

Al ejecutarse CASE, se evalúa la cláusula-prueba1. Si la prueba es verdadera, se ejecuta la cláusula-prueba1, y la ejecución salta a END. Si la cláusula-prueba1 es falsa, la ejecución pasa a la cláusula-prueba2. La ejecución dentro de la estructura CASE continúa hasta que se ejecuta una cláusula-prueba o hasta que todas las cláusulas-prueba dan falso como resultado. Si se incluye una cláusula por defecto y todas las cláusulas-prueba dan falso como resultado, se ejecuta la cláusula por defecto.

**Estructuras de Bucle**

Las estructuras de bucle permiten que un programa ejecute una secuencia de comandos varias veces. Para especificar por adelantado cuántas veces ha de repetirse el bucle, utilice un bucle definido. Para utilizar una prueba que determine si hay que repetir o no el bucle, utilice un bucle indefinido.

**START...NEXT**

Introduzca esta estructura en un programa pulsando PRG BRCH START. Su sintaxis es:

« ... inicio final START cláusula-bucle NEXT ... »

START...NEXT ejecuta la secuencia de comandos cláusula-bucle una vez por cada número entre inicio y final. La cláusula-bucle siempre se ejecuta al menos una vez.

START toma dos números (inicio y final) de la pila y los almacena como los valores inicial y final de un contador de bucle. A continuación, se ejecuta la cláusula-bucle. NEXT incrementa el contador por 1 y comprueba si su valor es menor que o igual a final.
Si lo es, se vuelve a ejecutar la cláusula-bucle; de lo contrario, se reanuda la ejecución con NEXT, que viene a continuación.

**START...STEP**

Introduzca esta estructura en un programa pulsando `PRG` `BRCH` `START`. Su sintaxis es:

```plaintext
« ... inicio final START cláusula-bucle
    incremento STEP ... »
```

START...STEP ejecuta la secuencia `cláusula-bucle` de la misma forma que lo hace START...NEXT, sólo que el programa especifica el valor de incremento para el contador, en vez de incrementarlo por 1. La cláusula-bucle se ejecuta siempre al menos una vez.

START toma dos números (`inicio` y `final`) de la pila y los almacena como los valores inicial y final del contador de bucle. A continuación se ejecuta la cláusula-bucle. STEP toma el valor de incremento de la pila e incrementa el contador por ese valor. Si el argumento de STEP es una operación algebraica o un nombre, da automáticamente como resultado un número.

El valor del incremento puede ser positivo o negativo. Si es positivo, se vuelve a ejecutar el bucle si el contador es menor que o igual a `final`. Si el valor del incremento es negativo, se ejecuta el bucle si el contador es mayor que o igual a `final`. De lo contrario, se reanuda la ejecución con STEP, que viene a continuación.

**FOR...NEXT**

Introduzca esta estructura en un programa pulsando `PRG` `BRCH` `FOR`. Su sintaxis es

```plaintext
« ... inicio final FOR contador cláusula-bucle NEXT
    ... »
```

FOR...NEXT ejecuta el segmento del programa `cláusula-bucle` una vez por cada número entre `inicio` y `final`, utilizando el `contador` de la variable local como contador de bucle. Puede utilizar esta variable en la cláusula-bucle. La cláusula-bucle se ejecuta siempre al menos una vez.
FOR toma *inicio y final* de la pila como los valores inicial y final para el contador de bucle y crea el *contador* de la variable local como contador de bucle. A continuación se ejecuta la cláusula-bucle—el *contador* puede aparecer dentro de la cláusula-bucle. NEXT incrementa el *nombre-contador* por uno y, a continuación, comprueba si su valor es menor que o igual a *final*. Si lo es, se repite la cláusula-bucle (con el nuevo valor del *contador*)—de lo contrario, se reanuda la ejecución con NEXT, que viene a continuación. Cuando no existe el bucle, se elimina el *contador*.

**FOR...STEP**

Introduzca esta estructura pulsando **PRG** [ERCH] [FOR]. Su sintaxis es:

```
« ... inicio final FOR contador cláusula-contador incremento STEP ...

FOR...STEP ejecuta la secuencia cláusula-bucle de la misma forma que lo hace FOR...NEXT, sólo que el programa especifica el valor del incremento del contador, en vez de incrementar por 1. La cláusula-bucle siempre se ejecuta al menos una vez.

FOR toma *inicio y final* de la pila como los valores inicial y final del contador de bucle y crea el *contador* de la variable local como contador de bucle. A continuación se ejecuta la cláusula-iteración; *contador* puede aparecer dentro de la cláusula-bucle. STEP toma el valor de incremento de la pila e incrementa el *contador* por ese valor. Si el argumento de STEP es una operación algebraica o un nombre, da automáticamente como resultado un número.

El valor de incremento puede ser positivo o negativo. Si el incremento es positivo, se vuelve a ejecutar el bucle si el *contador* es menor que o igual a *inicio*. Si el incremento es negativo, se ejecuta el bucle si el *contador* es mayor que o igual a *final*. De lo contrario, se elimina el *contador* y se reanuda la ejecución después de STEP.

**DO...UNTIL...END**

Introduzca esta prueba en un programa pulsando **PRG** [ERCH] [DO]. Su sintaxis es:

```
« ... DO cláusula-bucle UNTIL cláusula-prueba END ...

29-14 Cómo Programar la HP 48
DO...UNTIL...END ejecuta la secuencia cláusula-bucle de forma repetida hasta que la cláusula-prueba devuelve un resultado verdadero (distinto a cero). Como la cláusula-prueba se ejecuta después de la cláusula-iteración, ésta se ejecuta siempre al menos una vez.

DO inicia la ejecución de la cláusula-bucle. UNTIL marca el final de la cláusula-bucle. La cláusula-bucle deja un resultado de prueba en la pila. END retira el resultado de prueba de la pila. Si su valor es cero, la cláusula-bucle se vuelve a ejecutar; de lo contrario, se reanuda la ejecución después de END. Si el argumento de END es una operación algebraica o un nombre, da automáticamente como resultado un número.

**WHILE...REPEAT...END**

Introduzca esta estructura en un programa pulsando PRG BRCH WHILE. Su sintaxis es:

```
« ... WHILE cláusula-prueba REPEAT cláusula-bucle END ... »
```

WHILE...REPEAT...END evalúa de forma repetida la cláusula-prueba y ejecuta la secuencia de la cláusula-bucle si la prueba es verdadera. Como la cláusula-prueba se ejecuta antes de la cláusula-bucle, ésta no se ejecuta si la prueba es inicialmente falsa.

WHILE inicia la ejecución de la cláusula-prueba, la cual devuelve un resultado de prueba a la pila. REPEAT toma el valor de la pila. Si el valor es distinto a cero, continúa la ejecución con la cláusula-bucle; de lo contrario, se reanuda la ejecución después de END. Si el argumento de REPEAT es una operación algebraica o un nombre, da automáticamente como resultado un número.

**Estructuras de Detección de Errores**

La HP 48 reconoce de forma automática gran cantidad de situaciones, como las de error y las trata automáticamente como tales en los programas. Un comando con uno o varios argumentos inadecuados produce un error en un programa. Un resultado fuera-de-rango puede producir un error. Una condición de cálculo no válida puede producir un error.
Las estructuras de detección de errores permiten que los programas detecten (o intercepten) las situaciones de error que, de lo contrario, provocarían la suspensión de la ejecución del programa.

IFERR...THEN...END

Introduzca esta estructura en un programa pulsando PRG NXT ERROR IFERR. Su sintaxis es:

« ... IFERR cláusula-detección THEN cláusula-error END ... »

Los comandos de la cláusula-error se ejecutan sólo si se produce un error durante la ejecución de la cláusula-detección. Si se produce un error en la cláusula-detección, se pasa por alto el error, se salta el resto de la cláusula-detección y la ejecución del programa salta a la cláusula-detección. Si no se produce ningún error en la cláusula-detección, se salta la cláusula-error y se reanuda la ejecución después del comando END.

IFERR...THEN...ELSE...END

Introduzca esta estructura en un programa pulsando PRG NXT ERROR IFERR. Su sintaxis es:

« ... IFERR cláusula-detección THEN cláusula-error ELSE cláusula-normal END ... »

Los comandos de la cláusula-error se ejecutan sólo si se produce un error durante la ejecución de la cláusula-detección. Si se produce un error en la cláusula-detección, se pasa por alto el error, se salta el resto de la cláusula-detección y la ejecución del programa salta a la cláusula-error. Si no surge ningún error en la cláusula-detección, la ejecución salta a la cláusula-normal a la conclusión de la cláusula-detección.
Cómo Utilizar Variables Locales

Hay ciertas desventajas en la utilización de las variables globales en los programas:

- Después de la ejecución del programa, las variables globales que ya no se necesitan deben eliminarse si se quiere borrar el menú VAR y dejar espacio en la memoria de usuario.
- Los datos deben archivarse explícitamente en las variables globales antes de ejecutar el programa, o bien hacer que el programa execute STO.

Las variables locales compensan las desventajas de las variables globales de los programas. Las variables locales son variables provisionales creadas por un programa. Existen sólo mientras se ejecuta el programa y no pueden utilizarse fuera del programa. Nunca aparecen en el menú VAR. Además, a las variables locales se accede más rápidamente que a las variables globales. (Siguiendo el convenio establecido, este manual utiliza nombres en minúscula para las variables locales.)

Cómo Crear Variables Locales

En un programa, una estructura de variables locales crea variables locales.

Para introducir una estructura de variables locales en un programa:

1. Introduzca el comando \( \rightarrow \) (pulse \( \overleftarrow{1} \overrightarrow{1} \)).
2. Introduzca uno o más nombres de variables.
3. Introduzca un procedimiento de definición (una operación algebraica y objeto de programas) que utilice los nombres.

\[ \leftarrow \text{nombre}_1 \text{nombre}_2 \ldots \text{nombre}_n \ 'operación\ algebraica' \]  

o

\[ \leftarrow \text{nombre}_1 \text{nombre}_2 \ldots \text{nombre}_n \ \text{«} \text{programa} \text{»} \]  

Cuando se ejecuta el comando \( \rightarrow \) en un programa, se toman \( n \) valores de la pila y se asignan a las variables \( \text{nombre}_1, \text{nombre}_2, \ldots \text{nombre}_n \). Por ejemplo, si la pila presenta lo siguiente:
entonces

→ a crea la variable local $a = 20$.
→ a b crea las variables locales $a = 6$ y $b = 20$.
→ a b c crea las variables locales $a = 10$, $b = 6$ y $c = 20$.

El procedimiento de definición utiliza a continuación las variables locales para realizar los cálculos.

Las estructuras de las variables locales tienen estas ventajas:

■ El comando 
almacena los valores de la pila en las variables correspondientes; no es necesario que ejecute explícitamente STO.

■ Las variables locales desaparecen automáticamente cuando el procedimiento de definición por el que se crean ha finalizado la ejecución. En consecuencia, las variables locales no aparecen en el menú VAR y ocupan la memoria de usuario sólo durante la ejecución del programa.

■ Las estructuras de variables locales diferentes pueden utilizar los mismos nombres de las variables sin problema alguno.

**Cómo Evaluar Nombres Locales**

Los nombres locales se evalúan de forma diferente a los nombres globales. Cuando se evalúa un nombre global, el objeto almacenado en la variable correspondiente se evalúa por sí mismo. (Ya se ha visto cómo los programas almacenados en las variables locales se evalúan de forma automática cuando se evalúa el nombre.)

Cuando se evalúa un nombre local, el objeto almacenado en la variable correspondiente se devuelve a la pila, pero no se evalúa. Cuando una variable local contiene un número, el efecto es idéntico a la evaluación de un nombre global, ya que poner un nombre en la pila es equivalente
a evaluarlo. Sin embargo, si una variable local contiene un programa, expresión algebraica o nombre de variable local—y quiere que se evalúe—el programa debe ejecutar EVAL una vez que el objeto se haya introducido en la pila.

**Cómo Utilizar las Variables Locales dentro de las Subrutinas**

Dado que un problema es en sí mismo un objeto, puede utilizarse en otro programa como una subrutina. Cuando el programa A utiliza al programa B, el programa A llama al programa B y el programa B es una subrutina del programa A.

Por regla general, las variables locales existen sólo dentro del procedimiento de definición (y no dentro de alguna subrutina que haya llamado el procedimiento de definición). Por eso, las variables locales normales sólo pueden utilizarse dentro de una subrutina si ésta está incorporada o anidada en el procedimiento de definición de la variable local.

Sin embargo, la HP 48 ofrece una forma de incluir las variables locales en las subrutinas que no están anidadas en el procedimiento de definición de la variable local.

**Para utilizar una variable local que ha llamado el procedimiento de definición de variable:**

- Al definir la variable local, nómbrala utilizando $ (C) <$ como primer carácter. Esto crea una variable local *compilada*.
- Al llamar a la variable local dentro de una subrutina, especifique su nombre utilizando $ <$ como primer carácter.

Una variable locale compilada está al alcance de cualquier subrutina activada por el procedimiento de definición de la variable local. Sin embargo, las variables locales compiladas siguen siendo variables *locales* y se eliminan cuando termina el procedimiento de definición.
Variables Locales y Funciones Definidas por el Usuario

El procedimiento de definición de una estructura de variable local puede ser una operación algebraica o bien un objeto de programa.

Una función definida por el usuario es de hecho un programa que se compone únicamente de una estructura de variable local, cuyo procedimiento de definición es una expresión algebraica. La sintaxis es:

```
« \rightarrow nombre_1 \, nombre_2 \ldots \, nombre_n
' expresión' »
```

Toma un número ilimitado de argumentos (puede utilizar un número ilimitado de variables locales), pero devuelve un resultado a la pila.

Si un programa empieza con una estructura de variable local y tiene un programa como el procedimiento de definición que devuelve exactamente un resultado, el programa completo actúa como una función definida por el usuario de dos formas:

- Toma argumentos numéricos o simbólicos.
- Toma sus argumentos o bien de la pila o bien en sintaxis algebraica.

Sin embargo, aunque dicho programa puede contener comandos no permitidos en expresiones algebraicas, no posee una derivada.

---

Cómo Explorar los Programas en el Directorio EXAMPLES

Para utilizar y explorar el directorio EXAMPLES:

1. Escriba TEACH en la línea de comandos y pulse [ENTER]. Esto hace que el directorio EXAMPLES se cargue desde la memoria incorporada en el directorio HOME, donde puede acceder.
2. Pulse [VAR] EXAMPLES para iniciar el directorio EXAMPLES.
Todos los objetos contenidos en EXAMPLES (aparte los subdirectorios PRGS, PLOTS y EQNS) son programas u objetos algebraicos. Los objetos algebraicos del subdirectorio EQNS son los que se han utilizado como ejemplos en la Guía de Iniciación Rápida de la Serie HP 48G. Los programas breves contenidos en PLOTS son cada uno un ejemplo de un tipo de representación gráfica diferente. Los objetos restantes son programas de ejemplos que realizan tareas diferentes.

MEDIAN Devuelve un vector que contiene los valores medios de cada columna en la matriz de estadística actual.

FIBON Utilizando el contenido de la variable \(n\), devuelve el \(n\) elemento de la secuencia de Fibonacci.

APLY Aplica un programa a cada elemento de un sistema. El programa aplicado debe tomar exactamente una entrada y devolver exactamente una salida. Si la salida es simbólica, se devuelve el resultado como “sistema simbólico” (es decir, una lista de listas de “filas” en lugar de un sistema de vectores de filas).

\(\rightarrow\)RPN Convierte un objeto algebraico en una lista de comandos RPN equivalentes. Al evaluar la lista resultante se devuelve la operación algebraica original. Ilustra la equivalencia entre procedimientos RPN y algebraicos.

\%TILE Toma una lista de datos en el nivel 2 y un número percentil en el nivel 1 y devuelve el valor del percentil a la lista. Por ejemplo, al escribir \(\text{dataList} \times 50\) y al pulsar \(\%TILE\) devuelve la mediana (percentil quincuagésimo) de la lista.

Quizá desee trabajar con estos programas avanzando paso a paso (consulte la página 29-9).
Cómo Utilizar programas de HP 48S/SX con la HP 48G/GX

Hoy en día existen muchos programas distribuidos (comercialmente y por otras vías) que originariamente fueron escritos para la HP 48S y HP 48SX, y que son las predecesoras de la Serie HP 48G.

**Precaución**  
Antes de activar una biblioteca creada para las calculadoras de la serie HP 48G Series, *haga una copia de seguridad* del contenido de la memoria y pásela a un dispositivo externo (ordenador o tarjeta insertable). Las incompatibilidades entre la biblioteca y la calculadora de la serie HP 48G pueden producir una pérdida de memoria.

No existen garantías de que dichos programas funcionen sin error en las calculadoras de la serie HP 48G. Sin embargo, la mayoría de los primeros programas que utilizan sólo comandos *User-RPL*—el sistema de comandos que se reconocen cuando se escriben sus nombres en el teclado—funcionará en las calculadoras más modernas de la serie HP 48G.

Existen algunas diferencias entre la serie HP 48S, más antigua, y la serie HP 48G, más moderna, que pueden (o tal vez no) afectar a los programas más antiguos:

- Los programas de la serie HP 48S, que utilizan el comando SYSEVAL, pueden producir pérdida de memoria, cuando funcionan en una calculadora de la serie HP 48G, debido a cambios introducidos en la planificación de la memoria interna.
- Los programas de la serie HP 48S, que utilizan nombres de variables que son idénticos a los comandos introducidos recientemente en las calculadoras de la serie HP 48G, darán resultados imprevisibles debido al problema de los nombres. Se evitará este problema modificando los nombres utilizados en los programas más antiguos.
- Los programas de la serie HP 48S, que utilizan el comando MENU para visualizar un menú incorporado, pueden dar resultados no esperados, ya que las calculadoras de la serie HP 48G utilizan una estructura de menú diferente (véase el Apéndice C).
Los programas de la serie HP 48S, que utilizan los indicadores -14, -28, -29 ó -54, causarán problemas con los significados incorporados para estos indicadores en las calculadoras de la serie HP 48G.

Algunas bibliotecas distribuidas comercialmente y creadas para la serie HP 48S quizá no funcionen en la serie HP 48G y, de hecho, pueden ser la causa de pérdida de memoria. Además, algunas bibliotecas de tarjetas insertables puede que sólo funcionen cuando la tarjeta está almacenada en la Ranura de Tarjeta 1; otras puede que sólo funcionen cuando la tarjeta está almacenada en la Ranura de Tarjeta 2. Asegúrese de hacer una copia de seguridad de la memoria de usuario antes de experimentar con una biblioteca no comprobada.

Dónde Puede Encontrar Más Información

- La HP 48G Series Advanced User’s Reference (número de 00048-90136) contiene información sobre programación e información sobre la sintaxis de todos los comandos de la serie HP 48G, con formato de referencia.

- El Servicio BBS para Calculadoras de HP (véase el interior de la contraportada) proporciona un foro para el intercambio de información sobre la existencia y compatibilidad de software creado para calculadoras de la serie S o G. Es asimismo una fuente muy valiosa de consejos sobre programación y de programas de interés.
Cómo Personalizar los Menús

Un menú personalizado es un menú que uno mismo crea. Puede contener etiquetas de menú para operaciones, comandos y otros objetos que uno mismo crea o agrupa para mayor utilidad.

Un menú personalizado se define mediante el contenido de una variable reservada, denominada CST. Así, la forma de crear un menú personalizado exige crear una variable CST que contenga los objetos que se desean en el menú.

Para crear y visualizar un menú (CST) personalizado:

1. Introduzca una lista que contenga los objetos que desee en el menú. (Los tipos de objetos diferentes sirven para propósitos diferentes.)
2. Pulse \(\text{MODES} \text{MENU} \text{MENU}\).

Para visualizar el menú CST actual:

- Pulse \(\text{CST}\).

Los objetos del menú CST tienen, por lo general, la misma funcionalidad que tienen en los menús incorporados:

- **Nombres.** Los nombres funcionan como las teclas del menú VAR. Así, si ABC es un nombre de variable, \(\text{REC}\) evalúa \(ABC\), \(\text{REC}\) recupera su contenido y \(\text{REC}\) almacena el nuevo contenido en \(ABC\). Asimismo, la etiqueta del menú para el nombre de un directorio tiene una barra sobre la esquina izquierda de la etiqueta—al pulsar la tecla del menú se entra en ese directorio.

- **Unidades.** Los objetos de las unidades actúan como las entradas del Catálogo UNITIS. Por ejemplo, tienen capacidad de conversión de cambio izquierdo.
Cadenas. Los objetos de cadenas repiten el contenido de la cadena, como una ayuda para escribir.

Comandos. Casi todos los nombres de comandos funcionan como claves de comandos normales.

Puede incluir objetos de seguridad en la lista que define un menú personalizado, identificando el nombre del objeto de seguridad con su ubicación de puerta. Por ejemplo, si se incluyese \( 2 \cdot TOM \) en la lista de menú personalizado, una etiqueta de menú \( \text{ 要 TOM } \) representaría el objeto de seguridad \( TOM \) de la puerta 2.

Si desea crear ayudas para escribir para determinados comandos que afectan al flujo del programa (como HALT, PROMPT, IF...THEN...END y otras estructuras de control de programas), incluyalas como objetos de cadenas, no como nombres de comandos.

Ejemplo: Cree un menú personalizado que contenga el comando incorporado \( \rightarrow \text{TAG} \), el objeto de unidad \( 1\_m^3 \), una cadena para servir como ayuda para escribir a \( \text{VOLUME} \) y el nombre de variable \( CST \).

Paso 1: Introduzca la lista de objetos.

```
\( \leftarrow \{ \text{PRG} \text{ TYPE: TAG} \}
\)
1 \( \leftarrow \alpha \alpha \alpha \leftarrow m \alpha \alpha \alpha \leftarrow \beta \beta \beta \alpha \alpha \alpha \)
\( \leftarrow \text{""}"" \alpha \alpha \alpha \text{VOLUME} \alpha \alpha \alpha \)
\( \leftarrow \text{""}"" \)
\( \alpha \alpha \alpha \leftarrow \text{(mantenga) CST (suelte)} \)
\( \leftarrow \text{ENTER} \)
```

Paso 2: Cree y visualice el menú CST.

```
\( \leftarrow \text{MODES} \) \( \text{MENU} \) \( \text{MENU} \)
```

Paso 3: Convierta 1075 cm\(^3\) en m\(^3\).

```
1075 \( \leftarrow \alpha \alpha \alpha \leftarrow c \alpha \alpha \alpha \leftarrow \beta \beta \beta \alpha \alpha \alpha \leftarrow m \alpha \alpha \alpha \)
\( \leftarrow \beta \beta \beta \alpha \alpha \alpha \leftarrow \text{ENTER} \)
\( \leftarrow \text{M\(^3\)} \)
```

30-2 Cómo Personalizar la HP 48
Paso 4: Introduzca la cadena "VOLUME".

```
2:
1: .001075 m^3
```

Paso 5: Cree un objeto definido a partir del contenido de los niveles 2 y 1.

```
1: VOLUME: .001075 m^3
```

Paso 6: Visualice el contenido actual de CST.

```
2: VOLUME: .001075 m^3
1: { "TAG 1 m^3
"VOLUME" CST }
```

Puede crear un CST en cada directorio de la memoria, al igual que otras variables. Esto le permite tener un menú personalizado diferente en cada directorio.

Asimismo, en lugar de almacenar la lista de objetos en CST, puede a modo de opción almacenar el nombre de otra variable que contenga la lista. Esto le ofrece la posibilidad de tener en un directorio diversas variables que contienen listas de menús personalizados diferentes. De esa forma, puede fácilmente cambiar el menú CST desde un menú personalizado a otro almacenando simplemente un nuevo nombre en CST.

**Cómo Mejorar los Menús Personalizados**

Puede mejorar el menú CST creando etiquetas de menús especiales y especificando funciones diferentes para las teclas de cambio y normales.

**Para crear una etiqueta de menú especial para un objeto:**

- Dentro de la lista CST, sustituya el objeto por una lista incorporada de la plantilla "etiqueta" objeto 3.

La etiqueta por defecto para un objeto del menú CST es el nombre, comando, unidad o ayuda para escribir subyacente—tantos caracteres como quepan en el espacio disponible.
Ejemplo: Almacenar \( \texttt{TAG 1 \_m} \texttt{3 \"VOL\ "VOLUME\} \) \( \texttt{\"CUST\ CST \}} \) en CST ofrece las mismas funciones del menú CST que el ejemplo anterior, pero las etiquetas son \texttt{TAG}, \texttt{M\_m}, \texttt{VOL} y \texttt{CUST}.

Para especificar la funcionalidad de las teclas de cambio:

- Dentro de la lista de CST, sustituya el objeto por una lista anidada de objetos:
  \( \llbracket \texttt{objeto}_{\text{sin-cambio}} \texttt{objeto}_{\text{cambio-izquierdo}} \texttt{objeto}_{\text{cambio-derecho}} \rrbracket \). (Puede omitir el último o últimos dos objetos si lo desea.)

Debe especificar la función normal con el fin de tener las funciones de cambio. Además, puede combinar la mejora de la etiqueta-especial y la mejora de la funcionalidad-de cambio; véase el ejemplo siguiente.

Ejemplo: Supongamos que desea que la tecla del menú CST \texttt{VOL} proporcione las tres funciones siguientes:

- \texttt{VOL} evalúa un programa que almacena el valor en el nivel 1 en una variable llamada \texttt{VBOX}.

- \texttt{\textarrow{VOL}} evalúa un programa que calcula el producto de los niveles 1, 2 y 3.

- \texttt{\textshorten{VOL}} escribe \texttt{VOLUME}.

La lista CST siguiente proporciona el menú personalizado deseado. El menú contiene sólo una etiqueta: \texttt{VOL}.

\[
\llbracket \llbracket \texttt{\"VOL\ \{\ \\ \texttt{\textarrow{VBOX}} \texttt{STO} \}} \llbracket \lceil \texttt{\textshorten{VOLUME}} \rrbracket \rrbracket \rrbracket
\]

Para crear un menú provisional:

1. Introduzca la lista del menú como lo hace con CST.
2. Pulse \texttt{\textshorten{MODES} MENU T\_MEN}.
Cómo Personalizar el Teclado

La HP 48 le permite asignar funcionalidad alterna a cualquier tecla del teclado (incluso a las teclas de cambio y del alfabeto), permitiendo personalizar el teclado según las necesidades particulares. El teclado personalizado se denomina teclado de usuario y se activa siempre que la calculadora está en el modo de Usuario.

Modos de Usuario

Para activar el modo Usuario:

- Si desea ejecutar varias operaciones (1USR), pulse \( \leftarrow \text{USER} \). (Se desactiva después de la operación.)

- Si desea ejecutar varias operaciones (USER), pulse \( \leftarrow \text{USER} \). (Pulse \( \leftarrow \text{USER} \) una tercera vez para desactivar el modo de Usuario.)

La tecla \( \leftarrow \text{USER} \) es un conmutador de tres vías, muy parecida a la tecla [A]. Pulsar la tecla una vez activa el modo sólo para la operación siguiente, mientras que pulsarla dos veces de forma consecutiva bloquea el modo, necesitándose una tercera pulsación para desactivar el modo. Si lo prefiere, establezca el Indicador -61 para activar una sola pulsación de \( \leftarrow \text{USER} \) para bloquear el modo de Usuario.

Cómo Asignar y Desasignar las Teclas de Usuario

Puede asignar comandos u otros objetos a cualquier tecla de usuario (incluyendo las teclas de cambio). El funcionamiento de los tipos de objetos diferentes es el mismo que el de los menús personalizados; consulte “Cómo Personalizar los Menús” en la página 30-1.

Para asignar un objeto a una tecla de usuario:

1. Introduzca el objeto que va a ser asignado en la tecla.
2. Introduzca el número de ubicación de tres dígitos que especifica la tecla. (Véase el diagrama siguiente.)
3. Pulse \( \leftarrow \text{MODES KEYS RSN} \).
Para asignar un comando incorporado a una tecla de usuario:

1. Introduzca una lista que contenga dos parámetros—el comando que se va a asignar a la tecla seguido por el número de ubicación de la tecla de tres dígitos (véase arriba).
2. Pulse \[ Modes \ Keys \ Stok \].

Para asignar varias teclas de usuario:

1. Introduzca una lista que contenga dos parámetros de asignación de tecla para cada tecla—el objeto que se va a asignar a la tecla seguido por el número de ubicación de la tecla de tres dígitos (véase arriba).
2. Pulse \[ Modes \ Keys \ Stok \].

Este es un ejemplo de una lista de asignaciones de tecla para STOKEYS:

\[ \langle \text{SINH} \ 41 \ "3.14" \ 94.2 \ \text{ABC} \ 11.4 \ \rangle \]

Puede utilizar 'SKEY' como objeto de asignación. Significa la definición de tecla "estándar" (sin asignar).

Al pulsar una tecla de usuario, se ejecuta su objeto asignado—o, si la tecla está sin asignar, se lleva a cabo la operación estándar. (Puede asimismo desactivar las teclas, tal como se describe en el tema siguiente.)

Una vez haya asignado una tecla de usuario, la asignación permanece efectiva hasta que reasigne la tecla utilizando ASN o STOKEYS, o hasta que desasigne la tecla. Una tecla de usuario sin asignar vuelve a su definición estándar—la misma que la del teclado estándar.
Para desassignar teclas de usuario asignadas con anterioridad:

- Para desassignar una tecla de usuario, introduzca el número de tecla de tres dígitos, a continuación pulse `MODES KEYS DELK`. Una tecla de usuario sin asignar vuelve a su definición estándar—la misma que la del teclado estándar.
- Para desassignar varias teclas de usuario, introduzca una lista que contenga los números de teclas de tres dígitos, a continuación pulse `MODES KEYS DELK`.
- Para desassignar todas las teclas de usuario, pulse 0 `MODES KEYS DELK`. Se desasignan todas las teclas de usuario y se activan todas las teclas desactivadas (véase el tema siguiente.)

Cómo Desactivar las Teclas de Usuario

Puede desactivar las teclas de usuario que estén sin asignar—por lo que no realizan ninguna función. Esto le permite controlar las teclas de usuario que están activas, incluyendo las teclas asignadas y las teclas estándar (sin asignar). Si asigna una tecla de usuario desactivada, se convierte en activa.

Para desactivar todas las teclas de usuario sin asignar:

- Introduzca 'S' y pulse `MODES KEYS DELK`.

Para reactivar las teclas de usuario desactivadas, sin asignar:

- Para activar una tecla sin asignar, introduzca 'SKEY', introduzca el número de tecla de tres dígitos, a continuación pulse `MODES KEYS ASH`.
- Para activar varias teclas sin asignar, introduzca una lista que contenga 'SKEY' y el número de la tecla de tres dígitos para cada tecla, a continuación pulse `MODES KEYS STDK`. (Incluya una SKEY para cada tecla.)
- Para activar y desasignar todas las teclas de usuario, pulse 0 `MODES KEYS DELK`.

Para reactivar y asignar las teclas de usuario desactivadas:

- Para activar y asignar una tecla de usuario, introduzca el objeto que se va a asignar a la tecla, introduzca el número de la tecla de tres dígitos, a continuación pulse `MODES KEYS ASH`. 

Cómo Personalizar la HP 48 30-7
Para activar todas las teclas de usuario y asignar varias teclas, introduzca una lista con S como primer objeto, seguida por el objeto asignado y el número de tecla de tres dígitos para cada asignación de tecla y, a continuación, pulse \[ \text{MODES KEYS RCLK} \].

Cómo Recuperar y Editar las Asignaciones de las Teclas de Usuario

Para recuperar las asignaciones de las teclas de usuario:

- Pulse \[ \text{MODES KEYS RCLK} \] (el comando RCLKEYS).

El comando RCLKEYS devuelve al nivel 1 una lista de todas las asignaciones de las teclas de usuario actuales—pares de objetos de asignaciones y números de tecla de tres dígitos. Si el primer carácter de la lista es la letra S, se activan entonces las teclas de usuario sin asignar—de lo contrario, se desactivan las teclas sin asignar.

Para editar las asignaciones de las teclas de usuario:

1. Pulse \[ \text{MODES KEYS RCLK} \] (el comando RCLKEYS).
2. Pulse \[ \text{EDIT} \] y edite la lista de la asignación de teclas.
3. Pulse \[ \text{MODES KEYS DELK STOK} \] (el comando STOKEYS) para borrar las antiguas asignaciones y activar las editadas.

Nota

Si se encuentra bloqueado en el modo de Usuario, probablemente con un teclado “bloqueado”, debido a que ha reasignado o desactivado las teclas para cancelar el modo de Usuario, mantenga pulsada la tecla \[ \text{ON} \] y pulse la tecla C y, a continuación, suelte primero la tecla C.

Las asignaciones de las teclas de usuario eliminadas siguen ocupando de 2,5 a 15 bytes de memoria cada una. Puede liberar esta memoria agrupando las asignaciones de las teclas de usuario; pulse \[ \text{MODES KEYS RCLK 0 DELK STOK} \].
Asistencia Técnica, Pilas y Servicio de Reparaciones

Respuestas a Preguntas Habituales

Nuestro departamento de Asistencia Técnica es el encargado de responder a las preguntas del usuario sobre la utilización de la calculadora. De todos modos, nuestra experiencia nos ha demostrado que muchos clientes hacen las mismas preguntas sobre nuestros productos, lo que nos ha llevado a crear la presente sección para contestar a muchas de estas preguntas. Si no encuentra una respuesta a su pregunta aquí, póngase en contacto con nosotros en la dirección o número de teléfono que se proporciona en la parte interior de la contraportada.

Q: Algunas veces, mi calculadora HP 48 centellea al encenderla ¿Es normal?
A: Es algo normal en la HP 48.

Q: No estoy seguro si la calculadora no funciona bien o si hago algo que no es correcto. ¿Cómo puedo comprobar si la calculadora funciona del modo adecuado?
A: Consulte “Cómo Comprobar el Funcionamiento de la Calculadora” en la página A-11.

Q: El indicador (■) no desaparece cuando apago la calculadora, ¿cuál es el problema?
A: Esto puede indicar que las pilas están gastadas, que está insertada una tarjeta RAM o que se ha producido una alarma anteriormente. Para averiguar cuál es la causa para que el indicador (■) continúe en la pantalla, apague y encienda la calculadora. Aparecerá un mensaje que identifica el problema. Consulte “Cuándo Cambiar las Pilas” en la página A-5 o “Cómo Programar las Alarmas” en la página 26-2.

Q: ¿Cómo puedo saber la cantidad de memoria libre de la calculadora?
A: Pulse \emph{MEM} \emph{MEM}. En la esquina inferior derecha aparecerá el número de bytes de la memoria disponible. Por ejemplo,
la memoria vacía de la HP 48GX deberá mostrar aproximadamente 127000 bytes de RAM interna (sin tarjetas RAM instaladas).

Q: ¿Qué significa una E en un número (por ejemplo, 2.51E-13)?
A: Exponente de 10 (por ejemplo, 2.51 × 10^{-13}). Consulte “Cómo Escribir Números” en la página 2-1 y “Cómo Fijar el Modo de la Pantalla” en la página 4-2.

Q: ¿Por qué las funciones trigonométricas producen resultados no esperados?
A: Tal vez el modo de ángulo no sea el adecuado para el problema. Compruebe el indicador de ángulo: RAD significa radianes, GRAD significa grados centesimales y ninguno indica grados sexagesimales. Pulse (RAD) o utilice la pantalla (MODES) para cambiar el modo de ángulo.

Q: Cuando tomo el seno de π en el modo Degrees (grados sexagesimales), ¿por qué aparece 'SIN(π)' en vez de un número?
A: La calculadora está en el modo Symbolic Result (Resultado Simbólico); 'SIN(π)' es su respuesta simbólica. Pulse (NUM) para convertir 'SIN(π)' en su equivalente numérico de 0.548... hasta 11 lugares decimales (sin 3.14°). También se puede pulsar (MODES) [MISC] [SYM] para cambiar el modo a Numeric Results (Resultados Numéricos) e impedir de esta forma el cálculo simbólico.

Q: Cuando calculo 'SIN(π)' no obtengo cero, ¿por qué?
A: La HP 48, al igual que las demás calculadoras, sólo puede efectuar operaciones de cálculo utilizando un número finito de lugares decimales. Como π contiene un número infinito de lugares decimales, cualquier resultado que contenga π deberá redondearse necesariamente. Algunas veces, como en este caso, el número redondeado es diferente a la respuesta teórica en 10^{-12} (una millonésima de una millonésima) más o menos.

Q: Al diferenciar o integrar, aparece un mensaje de error Undefined Name (nombre no definido). ¿Cuál es el problema?
A: No está fijado el modo de solución Symbolic (Simbólico) y la calculadora está intentando (sin éxito) hallar una respuesta numérica utilizando tan sólo variables simbólicas. Pulse (MODES) [MISC] [SYM] o asegúrese de que el campo RESULTS: de las plantillas de entrada Integrate o Differentiate (Integrar o Diferenciar) muestre Symbolic e inténtelo de nuevo.

A-2 Asistencia Técnica, Pilas y Servicio de Reparaciones
Q: Cuando calculo \((-1)\frac{2}{3}\) aparece un número complejo en lugar de 1. ¿Cuál es el problema?
A: La HP 48 está diseñada para devolver la solución principal compleja para cualquier exponente fraccional. Para obtener la raíz de números reales, utilice el operador \(\sqrt[3]{y}\) (la tecla \(\sqrt[3]{y}\) o el comando XROOT) en su lugar.

Q: ¿Qué significa “objeto”?
A: “Objeto” es el término general para todos los elementos de datos con los que trabaja la HP 48. Los números, las expresiones, los sistemas, los programas, etc. son todos ellos tipos de objetos.

Q: ¿Qué significan los tres puntos (…) en cualquiera de los los extremos de una línea de la pantalla?
A: Los tres puntos (llamados ellipse) indican que el objeto mostrado es demasiado largo para que pueda aparecer en una sola línea. Para visualizar las partes del objeto no mostradas en la pantalla, utilice las teclas del cursor \(\leftarrow\) o \(\rightarrow\).

Q: ¿Cómo se desactiva el indicador HALT?
A: Pulse \(\text{PRG NXT RUN KILL}\).

Q: La calculadora pita y muestra el mensaje Bad Argument Type (Tipo de Argumento Incorrecto). ¿Cuál es el problema?
A: Los objetos de la pila no son del tipo correcto para el comando utilizado. Por ejemplo, si se ejecuta \(\text{UNH T}\) (en el menú PRG TYPE) con un número en los niveles 1 y 2 de la pila, se producirá este error.

Q: La calculadora pita y muestra el mensaje Too Few Arguments (Argumentos Insuficientes). ¿Cuál es el problema?
A: No existen suficientes argumentos en la pila para el comando utilizado. Por ejemplo, si se ejecuta \(\text{T}\) con sólo un argumento o un número en la pila, se producirá este error.

Q: La calculadora pita y muestra un mensaje diferente a los dos anteriores. ¿Cómo puedo saber cuál es el problema?
A: Consulte el apéndice B, “Mensajes”.

Q: No puedo encontrar algunas variables que he utilizado anteriormente. ¿Dónde se encuentran?
A: Quizás haya utilizado las variables de un directorio diferente. Si no recuerdas el directorio que estaba utilizando, necesitarás comprobar todos los directorios de la calculadora.
Q: Algunas veces, la HP 48 parece detenerse momentáneamente durante una operación de cálculo. ¿Cuál es el problema?
A: No existe ningún problema. La calculadora efectúa limpiezas del sistema de vez en cuando para eliminar objetos temporales creados durante el funcionamiento normal. Este proceso de limpieza libera memoria para las operaciones actuales. Esto ocurre con menor frecuencia si se tiene más memoria disponible.

Q: La Resolución de la Biblioteca de Ecuaciones utiliza unidades SI incluso cuando específico ENG (o viceversa).
A: La Resolución utiliza y crea variables globales. Si las variables en cuestión se habían creado antes, entonces es que siguen existiendo (hasta que las borre). Sus definiciones de unidad también siguen existiendo. Para sobreescibir el antiguo sistema de unidades, elimine las variables antes de obtener la solución o introduzca las unidades específicas que desea (como _f t).

**Límites Medioambientales**

Para mantener la fiabilidad del producto, evite la humedad en la calculadora y en las tarjetas insertables y observe los siguientes límites de temperatura y humedad:

**Calculadora:**
- Temperatura de funcionamiento: 0° a 45°C (32° a 113°F).
- Temperatura de almacenamiento: -20° a 65°C (-4° a 149°F).
- Humedad de almacenamiento y funcionamiento: 90% de humedad relativa a 40°C (104°F) como máximo.

**Tarjetas Insertables:**
- Temperatura de funcionamiento: 0° a 45°C (32° a 113°F).
- Temperatura de almacenamiento: -20° a 60°C (-4° a 140°F).
- Temperatura de almacenamiento para retención de datos de tarjetas RAM: 0° a 60°C (32° a 140°F).
- Humedad de funcionamiento y almacenamiento: 90% de humedad relativa a 40°C (104°F) como máximo.
Especificaciones Para Usuarios en México

Especificaciones ambientales:

- Temperatura durante operación: de $+0^\circ$ a $45^\circ$C
- Temperatura en almacenamiento: de $-20^\circ$ a $65^\circ$C
- Humedad Relativa: de 40 a 95%
- Pruebas condicionales: 22
- Señales indicadoras: 128
- Número máximo de registros: 23 caracteres por línea 8 líneas
- Rango de caracteres: A-Z, a-c, 0-9 más 37 caracteres especiales
- Memoria Principal: 512K

Condiciones eléctricas:

- Alimentación: Tres baterías de 1.5 V tamaño AA reemplazable por el usuario.
- Respaldo de memoria: Una batería de litio de 3V reemplazable por el usuario.

Cuándo Cambiar las Pilas

Cuando existen unas condiciones bajas de las pilas, el indicador (●) permanece activado, aunque se apague la calculadora. Cuando se enciende la calculadora y existen unas condiciones bajas de las pilas, aparecerá el mensaje Warning: LowBat< > (Aviso: Pilas en bajas condiciones) durante aproximadamente 3 segundos:

- LowBat<P1> se refiere a la puerta 1.
- LowBat<P2> se refiere a la puerta 2.
- LowBat<S> se refiere a las pilas de la calculadora (sistema).

Nota

Sustituya la pila de la tarjeta RAM o las pilas de la calculadora en cuanto aparezca el indicador de bajas condiciones de las pilas (●) y un mensaje de aviso. Si se sigue utilizando la calculadora cuando está activado el indicador (●), la pantalla se difuminará y los datos de la calculadora y de la tarjeta RAM pueden perderse.
Bajo condiciones normales de uso, una pila de una tarjeta RAM, deberá durar entre 1 y 3 años. Asegúrese de anotar la fecha de instalación de la pila sobre la tarjeta y, en caso de que la tarjeta RAM no esté introducida en la calculadora cuando sea necesario cambiar la pila, configure una alarma para 1 año a partir de dicha fecha para recordarle el cambio de la pila. Las tarjetas RAM no vienen con la pila instalada.

Cómo Cambiar las Pilas

La HP 48 utiliza los siguientes tipos de pilas:

- **Pilas de la Calculadora.** Cualquier marca de pilas de tamaño AAA. 
  *Asegúrese de que las tres pilas sean de la misma marca y del mismo tipo* (no se recomienda la utilización de pilas recargables por su baja capacidad y por el poco tiempo de aviso de bajas condiciones).

- **Pilas de Tarjetas RAM Insertables.** Tipo botón 2016 de 3 voltios (no utilizadas en la HP 48G).

Para cambiar las pilas de la calculadora, siga los pasos que se describen a continuación. Para cambiar las pilas de las tarjetas RAM, consulte “Para cambiar la pila de una tarjeta RAM” en la página A-9.

Precaución

Cuando vaya a quitar las pilas de la calculadora, asegúrese de que está apagada y no pulse la tecla **ON** hasta que no estén instaladas las pilas nuevas.
Si se pulsa **ON** cuando las pilas no están puestas en la calculadora, se puede perder toda la memoria de la calculadora.

Para cambiar las pilas de la calculadora:

1. Apague la calculadora. Se puede perder la memoria de la calculadora y las tarjetas RAM insertables si se quitan las pilas con la calculadora encendida.
2. Tenga a mano tres pilas nuevas del tamaño AAA (de la misma marca y el mismo tipo). Limpie los extremos de las pilas con un paño limpio y seco.

4. Dé la vuelta a la calculadora y extraiga las pilas. Una vez que ha sacado las pilas, recámbielas por las nuevas dentro de un período de 2 minutos para evitar pérdidas de memoria.

**Aviso**

No corte, pinche ni queme las pilas. Pueden reventar o explotar, desprendiendo materias químicas peligrosas. Deshágase de las pilas de acuerdo con las instrucciones del fabricante.

5. Coloque las pilas de acuerdo con las instrucciones que aparecen en el fondo del compartimento de las mismas. *Evite tocar los extremos de las pilas*. La instalación resulta más fácil si se introduce en primer lugar el extremo negativo (plano) y si la pila del centro se introduce en último lugar. Véase la siguiente ilustración.
6. Coloque la puerta del compartimento de las pilas deslizando las lengüetas por las ranuras de la calculadora.
7. Pulse **ON** para encender la calculadora.

**Para cambiar la pila de una tarjeta RAM:**

1. Dé la vuelta a la calculadora y quite la cubierta de plástico de las puertas de tarjetas insertables (en el extremo de la pantalla de la calculadora).

![Imagen de cómo cambiar la pila de una tarjeta RAM]

2. Con la tarjeta RAM en la puerta 1 ó 2, **encienda la calculadora**.

**Precaución**

Asegúrese de que **enciende la calculadora** antes de cambiar la pila de una tarjeta RAM. Las tarjetas RAM dejan de funcionar con las pilas de la calculadora sólo cuando la calculadora está encendida. La memoria RAM puede perderse si se quita la pila de una tarjeta RAM cuando está apagada la calculadora o cuando la tarjeta no está instalada en la calculadora.

3. Coloque el dedo índice en el hueco que se encuentra junto al extremo de la tarjeta RAM—esto impedirá que la tarjeta se salga de la calculadora cuando se saque el soporte de la pila de la tarjeta. Ahora inserte la uña del pulgar de la mano libre en la ranura para colocar la uña del plástico negro situado en el lado izquierdo del extremo de la tarjeta y saque de la tarjeta el soporte de la pila.
4. Saque la pila vieja del soporte de plástico.

Aviso
No corte, pinche ni queme las pilas. Pueden reventar o explotar, desprendiendo materias químicas peligrosas. Deshágase de las pilas de acuerdo con las instrucciones del fabricante.

5. Instale una pila de botón nueva 2016 de 3 voltios en el soporte de plástico e introduzca el soporte (con la pila) en la tarjeta. Asegúrese de que instala la pila con el lado “+” mirando a la parte frontal de la tarjeta.

6. Anote en la tarjeta la fecha de instalación de la pila y configure una alarma para 1 año a partir de dicha fecha para que le recuerde cambiar la pila (si no se inserta la tarjeta, la HP 48 no podrá comprobar el nivel de la pila de la misma).

7. Vuelva a colocar la cubierta de la puerta insertable.
Cómo Comprobar el Funcionamiento de la Calculadora

Utilice las siguientes instrucciones para determinar si la calculadora funciona del modo adecuado. Compruebe la calculadora después de cada uno de los pasos para ver si se ha recuperado el funcionamiento normal. Si la calculadora necesita reparación, consulte “Si la Calculadora Necesita Reparación” en la página A-21.

Si la calculadora no enciende o no responde cuando se pulsan las teclas:

1. Asegúrese de que se han instalado tres pilas nuevas en la calculadora.

2. Pulse y suelte [ON].

3. Si no aparece nada en la pantalla, pulse y mantenga presionada [ON] pulse y suelte (+) varias veces hasta que los caracteres se hagan visibles y a continuación suelte [ON]. Si siguen sin aparecer caracteres en la pantalla, la calculadora necesita reparación.

4. Si un programa interrumpido no responde cuando se pulsa [CANCEL], inténtelo pulsando [CANCEL] de nuevo.

5. Si el teclado está “bloqueado”, efectúe una interrupción del sistema:
   a. Pulse y mantenga pulsada [ON].
   b. Pulse y suelte la tecla “C” (la tecla que tiene C al lado).
   c. Suelte [ON]. Deberá aparecer la pantalla de la pila vacía.
   d. Si el problema continúa, efectúe una interrupción manual del sistema (consulte la página 5-18).

6. Si el problema no desaparece, lleve a cabo una reconfiguración de la memoria. Cuando se efectúa una reconfiguración de la memoria se pueden perder los datos; por tanto, contemple esta posibilidad solamente en casos extremos:
   a. Pulse y mantenga pulsada [ON].
   b. Pulse y mantenga pulsadas las teclas “A” y “F” (las teclas que tienen A y F a su lado).
   c. Suelte las tres teclas.
La calculadora emitirá un pitido y mostrará el mensaje Try To Recover Memory? (¿Intentar recuperar la memoria?). Pulse \texttt{YES} para recuperar la máxima cantidad de memoria posible.

Si estos pasos no tienen como resultado la recuperación del funcionamiento, la calculadora necesitará reparación.

**Si la calculadora responde a las teclas pero se sospecha que no funciona del modo adecuado:**

1. Ejecute el auto-test que se describe en la siguiente sección.
   - Si la calculadora no es capaz de efectuar el auto-test, necesitará reparación.
   - Si la calculadora efectúa el auto-test, es posible que se haya cometido un error al trabajar con la calculadora. Lea de nuevo las partes correspondientes del manual y compruebe “Respuestas a Preguntas Habituales” en la página A-1.
2. Póngase en contacto don el departamento de Asistencia Técnica de la Calculadora. La dirección y el teléfono aparecen en la parte interior de la contraportada.

---

**Auto-Test**

Si la calculadora se enciende pero parece no funcionar en el modo adecuado, execute el auto-test de diagnóstico.

**Para ejecutar el auto-test:**

1. Encienda la calculadora.
2. Pulse y mantenga pulsada \texttt{ON}.
3. Pulse y suelte la tecla “E” (la tecla que tiene E al lado).
4. Suelte \texttt{ON}.

El auto-test de diagnóstico comprueba la ROM y la RAM internas y genera diferentes modelos en la pantalla. La comprobación se efectúa de un modo continuo hasta que se lleva a cabo una interrupción del sistema.
Para interrumpir el auto-test (interrupción del sistema):

1. Pulse y mantenga pulsada ON.
2. Pulse y suelte la tecla “C” (la tecla que tiene C al lado).
3. Suelte ON. Deberá aparecer la pantalla de la pila vacía.

Si el auto-test indica un fallo de la ROM o la RAM internas (si no aparecen en pantalla IROM OK y IRAM OK), la calculadora necesitará reparación.

El auto-test de diagnóstico deberá completarse con éxito antes de ejecutarse cualquiera de las demás pruebas que se describen en las siguientes secciones.

Comprobación del Teclado

Este test comprueba si todas las teclas de la calculadora funcionan correctamente.

Para ejecutar la prueba de teclado interactivo:

1. Encienda la calculadora.
2. Pulse y mantenga pulsada ON.
3. Pulse y suelte la tecla “D” (la tecla que tiene D al lado).
4. Suelte ON.
5. Pulse y suelte la tecla “E” (la tecla que tiene E al lado). Aparecerá KBD1 en la esquina superior izquierda de la pantalla.
6. Empezando por la esquina superior izquierda y desplazándose de izquierda a derecha, pulse las 49 teclas del teclado.

Si se pulsan las teclas en el orden adecuado y funcionan de forma correcta, la calculadora emitirá un pitido prolongado cada vez que se pulse una tecla. Cuando se pulse la tecla 49, +, el mensaje de la pantalla deberá cambiar a KBD1 OK.

Si se pulsa una tecla fuera de la secuencia, aparecerá un número hexadecimal de cinco dígitos junto a KBD1. Vuelva a ejecutar la prueba repitiendo los pasos del 2 al 6.
Si una tecla no funciona correctamente, la siguiente pulsación de una tecla mostrará la localización hexadecimal de ubicación esperada y recibida. Si se pulsan las teclas en orden y se obtiene este mensaje, la calculadora necesitará reparación. Recuerde adjuntar una copia del mensaje de error cuando embale y envíe la calculadora para su reparación.

**Para salir del test del teclado (interrupción del sistema):**

1. Pulse y mantenga pulsada **ON**.
2. Pulse y suelte la tecla “C” (la tecla que tiene una C al lado).
3. Suelte **ON**. Deberá aparecer la pantalla de la pila vacía.

---

**Test de la RAM de las Puertas**

Este test comprueba la RAM de las puertas (en aquellas calculadoras que las tienen) y las tarjetas RAM insertables instaladas (no afecta a la memoria de la tarjeta RAM insertable).

**Para ejecutar el test de la RAM de las puertas:**

1. Compruebe que existe una tarjeta RAM insertable correctamente instalada en la puerta 1 o en la puerta 2.
2. Verifique que la pestaña de cada una de las tarjetas esté en la posición lectura/escritura.
3. Encienda la calculadora.
4. Pulse y mantenga pulsada **ON**.
5. Pulse y suelte la tecla “D” (la tecla que tiene D al lado).
6. Suelte **ON**. Aparecerá una línea vertical a ambos lados y en el centro de la pantalla.
7. Pulse y suelte **OK**.

Aparecerá RAM1 o RAM2 en la esquina superior izquierda de la pantalla y el tamaño de la tarjeta RAM insertable correspondiente (32K o 128K) se mostrará en la esquina superior derecha de la pantalla. Si la prueba de puertas de RAM se ha efectuado con éxito, aparecerá **OK** a la derecha de RAM1 o RAM2.

Se mostrará un mensaje de fallo (por ejemplo, RAM1 00002) para cada una de las puertas que no contengan una tarjeta RAM insertable o cuando la pestaña de escritura/lectura de la tarjeta esté en la posición “protección contra escritura”. Este mensaje no debe tenerse en cuenta.

Si no aparece **OK** para una tarjeta de RAM con la pestaña fijada en lectura/escritura, se deberá trasladar la tarjeta a la otra puerta y volver a ejecutar la prueba. Si sigue sin aparecer **OK**, deberá sustituirse la tarjeta RAM por una nueva.
Para volver al funcionamiento normal de la calculadora (interrupción del sistema):

1. Pulse y mantenga pulsada $\text{ON}$.
2. Pulse y suelte la tecla “C” (la tecla que tiene C al lado).
3. Suelte $\text{ON}$. Deberá aparecer la pantalla de la pila vacía.

---

Prueba en Bucle de IR (Puerto de Infrarrojos)

Esta prueba comprueba el funcionamiento de los sensores de infrarrojos de emisión y recepción y de sus circuitos correspondientes.

Para ejecutar la prueba en bucle de IR:

1. Encienda la calculadora.
2. Pulse y mantenga pulsada $\text{ON}$.
3. Pulse y suelte la tecla “D” (la tecla que tiene D al lado).
4. Suelte $\text{ON}$. Aparecerá una línea vertical a ambos lados y en el centro de la pantalla.
5. Asegúrese que la cubierta de plástico de la tarjeta insertable está en su lugar y que cubre las bombillas claras del extremo superior de la calculadora.
6. Pulse $\text{EVAL}$.

Aparecerá $\text{IRLB}$ en la esquina superior izquierda de la pantalla. Si aparece $\text{SI}$ aparece $\text{OK}$ a la derecha de $\text{IRLB}$, la calculadora pasa con éxito la prueba. Si no aparece $\text{OK}$, la calculadora necesita reparación.

Para volver al funcionamiento normal de la calculadora (interrupción del sistema):

1. Pulse y mantenga pulsada $\text{ON}$.
2. Pulse y suelte la tecla “C” (la tecla con la C al lado).
3. Suelte $\text{ON}$. Deberá aparecer la pantalla de la pila vacía.
Prueba en Bucle de Serie

Esta prueba comprueba el funcionamiento de los circuitos de emisión y recepción de la interfase serie de la parte superior de la calculadora.

Para ejecutar la prueba en bucle de serie:

1. Encienda la calculadora.
2. Pulse y mantenga pulsada (ON).
3. Pulse y suelte la tecla “D” (la tecla que tiene D al lado).
4. Suelte (ON). Aparecerá una línea vertical a ambos lados y en el centro de la pantalla.
5. Conecte (cortocircuite) temporalmente los dos pines medios (pines 2 y 3) del conector serie de 4 pines del extremo superior de la calculadora. Tenga cuidado con no doblar o forzar los pines. Deberá mantener este puente de conexión durante todo el transcurso de la prueba.
6. Pulse (PRG).

Aparecerá U_LB en la esquina superior izquierda de la pantalla. Si aparece OK a la derecha de U_LB, la calculadora pasa con éxito la prueba. Si no aparece OK, la calculadora necesita reparación.

Nota

Si se cortocircuitan sin darse cuenta los pines 1 y 2 o los pines 3 y 4 del conector serie, la prueba en bucle devolverá U_LB 00001 o U_LB 00002 (mensajes de fallo de la prueba), pero no le pasará nada a la calculadora.

Para volver al funcionamiento normal de la calculadora (interrupción del sistema):

1. Pulse y mantenga pulsada (ON).
2. Pulse y suelte la tecla “C” (la tecla que tiene C al lado).
Garantía Limitada de Un Año

Qué Cubre. *La calculadora* (a excepción de las pilas o los daños causados por las pilas) y los *accessorios de la calculadora* están garantizados por Hewlett-Packard en lo que se refiere a materiales defectuosos y de mano de obra durante un año a partir de la fecha de adquisición original. Si se vende la calculadora o se regala, la garantía queda transferida automáticamente al nuevo propietario y permanece en efecto durante el período original de un año. Durante dicho período de garantía, nos comprometemos a reparar o, si lo prefiere, cambiar sin carga alguna el producto que ha demostrado ser defectuoso con tan sólo devolverlo, pagando por adelantado los gastos de envío, a un centro de reparaciones de Hewlett-Packard (el cambio puede efectuarse por un modelo más reciente de igual o mejor rendimiento).

Esta garantía le concede derechos legales concretos, y se pueden tener otros derechos que varíen de un estado a otro, de una provincia a otra o de un país a otro.

Qué No Se Cubre. *Las pilas así como los daños provocados por las mismas no están contemplados en la garantía de Hewlett-Packard. Compruebe con el fabricante de las pilas las garantías de éstas y de los daños causados por las mismas.*

*Los daños causados a la HP 48 como resultado de la utilización de tarjetas insertables y accesorios insertables no aprobados no están cubiertos por la garantía de Hewlett-Packard.*

Esta garantía tampoco se aplicará si el producto ha sido dañado por accidente, por una mala utilización o como resultado de una reparación o modificación efectuada en un lugar distinto a un centro de reparaciones autorizado de Hewlett-Packard.

No se expresa ninguna otra garantía. La reparación o la sustitución del producto es la única solución. **CUALQUIER OTRA GARANTÍA IMPLÍCITA DE MERCADO O ADAPTABILIDAD A UN FIN DETERMINADO QUEDA LIMITADA A LA DURACIÓN DE UN AÑO DE ESTA GARANTÍA POR ESCRITO.** Algunos estados, provincias o países permiten limitaciones sobre la duración de las garantías implícitas, por lo que tal vez la limitación anterior no le afecte. **EN NINGÚN CASO, LA COMPAÑÍA HEWLETT-PACKARD SE HARÁ RESPONSABLE DE LOS DAÑOS INDIRECTOS.** Algunos estados, provincias o países no
permiten la exclusión o limitación de daños incidentales o indirectos, por lo que tal vez no le afecte la limitación o exclusión anterior.

Los productos se venden sobre la base de las especificaciones aplicables en el momento de la fabricación. Hewlett-Packard no tendrá obligación de modificar o actualizar los productos una vez vendidos.

**Transacciones entre Consumidores en Australia y el Reino Unido.** Las observaciones y limitaciones anteriores no se aplicarán a las transacciones entre consumidores de Australia y el Reino Unido y no afectarán a los derechos de los consumidores.

---

**Póliza de Garantía Para Usuarios en México**

Hewlett-Packard de México, S.A. de C.V. con domicilio en:

México, D.F.
Monte Pelvoux No. 111
Lomas de Chapultepec, 11000
Tel. 202 01 55

Garantiza este producto por el término de doce meses en todas sus partes y mano de obra contra cualquier defecto de fabricación y funcionamiento a partir de la fecha de entrega al consumidor final. En el caso de productos que requieran de enseñanza o adiestramiento en su manejo o en su instalación, a partir de la fecha en que hubiere quedado operando normalmente el producto después de su instalación en el domicilio que señale el consumidor.

**Condiciones:**

1. **Centros de Servicio, Refacciones y Partes**

   Para hacer efectiva esta garantía, no podrán exigirse mayores requisitos que la presentación de esta póliza junto con el producto en el lugar donde fue adquirido o en cualquiera de los centros de servicio ubicados en los domicilios de la parte superior de esta hoja, mismos en los que se pueden adquirir refacciones y partes.

2. **Cobertura**

   La Empresa se compromete a reparar o cambiar el producto, así como las piezas y componentes defectuosos del mismo, sin ningún cargo
para el consumidor. Los gastos de transportación que se deriven de su cumplimiento serán cubiertos por Hewlett Packard de México, S.A. de C.V.

3. Tiempo de Reparación

El tiempo de reparación en ningún caso será mayor a treinta días contados a partir de la recepción del producto en cualquiera de los sitios en donde pueda hacerse efectiva la garantía.

4. Limitaciones

Esta garantía no es válida en los siguientes casos:

a. Cuando el producto ha sido utilizado en condiciones distintas a las normales.
b. Cuando el producto no ha sido operado de acuerdo con el instructivo de uso en idioma Español proporcionado.
c. Cuando el producto ha sido alterado o reparado por personas no autorizadas por Hewlett Packard de México, S.A. de C.V.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Marca</th>
<th>Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de Serie</td>
<td>Nombre Distribuidor</td>
<td></td>
</tr>
<tr>
<td>Dirección</td>
<td>(Calle y número, Colonia y Poblado, Delegación o Municipio)</td>
<td></td>
</tr>
<tr>
<td>C.P.</td>
<td>Ciudad</td>
<td>Estado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fecha Entrega o Instalación

**Notas**

El consumidor podrá solicitar que se haga efectiva la garantía ante la propia casa comercial donde adquirió el producto.

En caso de que la presente garantía se extraviara, el consumidor puede recurrir a su proveedor para que se le expida otra póliza de garantía, previa presentación de la nota de compra o factura respectiva.
Si la Calculadora Necesita Reparación

Hewlett-Packard dispone de centros de servicio de reparaciones en muchos países. Estos centros reparan las calculadoras o las cambian por el mismo modelo o por uno de igual o mejor rendimiento, estén en período de garantía o no. Existe una tasa de servicio para las reparaciones posteriores al período de garantía. Las calculadoras se reparan y se vuelven a enviar al usuario dentro de un período de 5 días laborables.

Nota

Si el contenido de la memoria de su calculadora es importante, le aconsejamos efectuar una copia de seguridad en una tarjeta RAM insertable, en otra HP 48 o en un ordenador antes de enviar la calculadora a reparar.

- **En los Estados Unidos:** Envíe la calculadora al Corvallis Service Center que aparece en la parte interior de la contraportada.

- **En Europa:** Póngase en contacto con la oficina de ventas o con el vendedor autorizado de Hewlett-Packard o con la oficina central de Hewlett-Packard (cuya dirección aparece a continuación) para averiguar la localización del centro de servicio de reparaciones más próximo. *No envíe la calculadora a reparar sin ponerse en contacto previamente con una oficina de Hewlett-Packard.*

  Hewlett-Packard S.A.
  150, Route du Nant-d’Avril
  P.O. Box CH 1217 Meyrin 2
  Ginebra, Suiza
  Teléfono: 022 780.81.11

- **En otros países:** Póngase en contacto con la oficina de ventas o vendedor autorizado de Hewlett-Packard o escriba al Corvallis Service Center (cuya dirección aparece en la parte interior de la contraportada) para conocer la localización de otros centros de servicio de reparaciones. Si no dispone de servicio local, puede enviar la calculadora al Corvallis Service Center para su reparación.

  Todos los gastos de envío y embalaje, derechos de aduanas y de reimportación correrán a su cargo.
Tasa de Servicio de Reparaciones. Póngase en contacto con el Corvallis Service Center (cuya dirección aparece en la parte interior de la contraportada) para conocer las tasas de reparaciones estándar fuera del período de garantía. Esta tasa queda sujeta al impuesto sobre las ventas local o al impuesto del valor añadido del cliente donde sea aplicable.

Los productos de calculadoras dañados por accidente o por una mala utilización no están cubiertos en las tasas fijas. Estos costes se determinarán individualmente dependiendo del tiempo y de los materiales utilizados.

Instrucciones de Envío. Si su calculadora necesita reparación, envíela al centro de servicio de reparaciones o punto de recogida más cercano.

- Incluya su dirección y una descripción detallada del problema, así como información sobre las tarjetas ROM/RAM instaladas, los mensajes de error y los dispositivos periféricos que estaban conectados cuando el funcionamiento comenzó a ser defectuoso.
- Incluya una prueba de la fecha de compra si la garantía no ha caducado.
- Incluya una orden de compra, un cheque o el número de su tarjeta de crédito con su fecha de caducidad (VISA o MasterCard) para cubrir la tasa estándar de la reparación.
- Envíe la calculadora con los gastos de envío pagados por adelantado en un embalaje protector apropiado para impedir que se produzcan daños. Los daños de envío no están cubiertos por la garantía, por lo que recomendamos asegurar la mercancía.

Garantía de Servicio de Reparaciones. Queda garantizado el servicio de reparación contra defectos de materiales y de mano de obra durante 90 días a partir de la fecha de la reparación.

Acuerdos de Servicio de Reparaciones. En los Estados Unidos existe un acuerdo de servicio técnico de reparaciones y servicio. Para obtener más información, póngase en contacto con el Corvallis Service Center (véase la dirección en la parte interior de la contraportada).
Mensajes de Error

En este apéndice se presenta la lista de los mensajes seleccionados de la HP 48, en orden alfabético.

### Mensajes en Orden Alfabético

<table>
<thead>
<tr>
<th>Mensaje</th>
<th>Significado</th>
<th># (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Alarma no reconocida.</td>
<td>(ninguno)</td>
</tr>
<tr>
<td>All Variables Known</td>
<td>No existen variables incógnitas por resolver.</td>
<td>E405</td>
</tr>
<tr>
<td>Bad Argument Type</td>
<td>Uno o varios argumentos de la pila no son correctos para la operación.</td>
<td>202</td>
</tr>
<tr>
<td>Bad Argument Value</td>
<td>El valor del argumento está fuera del rango de la operación.</td>
<td>203</td>
</tr>
<tr>
<td>Bad Guess(es)</td>
<td>Las estimaciones suministradas a la aplicación HP Resol o ROOT sobrepasan el ámbito de la ecuación.</td>
<td>A01</td>
</tr>
<tr>
<td>Bad Packet Block check</td>
<td>Error Kermit: La suma de verificación del paquete calculada no coincide con la suma de verificación del paquete.</td>
<td>C01</td>
</tr>
<tr>
<td>Can't Edit Null Char</td>
<td>Se ha intentado editar una cadena con carácter cuyo código es 0.</td>
<td>102</td>
</tr>
</tbody>
</table>
### Mensajes en Orden Alfabético (continuación)

<table>
<thead>
<tr>
<th>Mensaje</th>
<th>Significado</th>
<th># (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular Reference</td>
<td>Se ha intentado archivar un nombre de variable en sí mismo.</td>
<td>129</td>
</tr>
<tr>
<td>Constant?</td>
<td>La aplicación HP Resol o ROOT han devuelto el mismo valor en cada punto de muestra de la ecuación actual.</td>
<td>A02</td>
</tr>
<tr>
<td>Directory Not Allowed</td>
<td>El nombre de la variable del directorio existente se ha utilizado como argumento.</td>
<td>12A</td>
</tr>
<tr>
<td>Directory Recursion</td>
<td>Se ha intentado archivar un directorio en sí mismo.</td>
<td>002</td>
</tr>
<tr>
<td>EQ Invalid for MINIT</td>
<td><em>EQ</em> debe contener al menos dos ecuaciones (o programas) y dos variables.</td>
<td>E403</td>
</tr>
<tr>
<td>Extremum</td>
<td>El resultado dado por HP Resol o ROOT es un extremo más que una raíz.</td>
<td>A06</td>
</tr>
<tr>
<td>HALT Not Allowed</td>
<td>Se ha ejecutado un programa que contiene HALT mientras MatrixWriter, DRAW o HP Resol están activos.</td>
<td>126</td>
</tr>
<tr>
<td>Illegal During MROOT</td>
<td>Se ha intentado ejecutar el comando de la Resolución de Ecuaciones Múltiples durante la ejecución de MROOT.</td>
<td>E406</td>
</tr>
<tr>
<td>Inconsistent Units</td>
<td>Se ha intentado convertir una unidad con unidades incompatibles.</td>
<td>B02</td>
</tr>
<tr>
<td>Infinite Result</td>
<td>Excepción matemática: Un cálculo como 1/0 tiene infinitos resultados.</td>
<td>305</td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Insufficient Memory</td>
<td>No hay memoria suficiente para ejecutar la operación.</td>
<td>001</td>
</tr>
<tr>
<td>Insufficient Σ Data</td>
<td>Se ha ejecutado un comando de Estadística cuando ΣDAT no contenía puntos de datos suficientes para el cálculo.</td>
<td>603</td>
</tr>
<tr>
<td>Interrupted</td>
<td>La aplicación HP Resol o ROOT se ha interrumpido mediante CANCEL.</td>
<td>A03</td>
</tr>
<tr>
<td>Invalid Array Element</td>
<td>ENTER ha devuelto un objeto del tipo equivocado para la matriz actual.</td>
<td>502</td>
</tr>
<tr>
<td>Invalid Card Data</td>
<td>HP 48 no reconoce los datos de la tarjeta insertable o al menos una puerta de la tarjeta no se ha utilizado nunca.</td>
<td>008</td>
</tr>
<tr>
<td>Invalid Date</td>
<td>El argumento de fecha no es un número real con el formato correcto o estaba fuera de rango.</td>
<td>D01</td>
</tr>
<tr>
<td>Invalid Definition</td>
<td>Estructura equivocada del argumento de la ecuación para DEFINE.</td>
<td>12C</td>
</tr>
<tr>
<td>Invalid Dimension</td>
<td>El argumento de la matriz tiene dimensiones equivocadas.</td>
<td>501</td>
</tr>
<tr>
<td>Invalid EQ</td>
<td>Se ha intentado la operación desde el menú GRAPHICS FCN o DRAW con el tipo de representación gráfica CONIC, cuando EQ no contenía operaciones algebraicas.</td>
<td>607</td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Invalid IOPAR</td>
<td><em>IOPAR</em> no es una lista, o uno o varios objetos de la lista faltan o no son válidos.</td>
<td>C12</td>
</tr>
<tr>
<td>Invalid Mpar</td>
<td>La variable de <em>Mpar</em> no la ha creado MINIT.</td>
<td>E401</td>
</tr>
<tr>
<td>Invalid Name</td>
<td>El nombre de fichero recibido no es válido o el servidor ha solicitado enviar un nombre de fichero no válido.</td>
<td>C17</td>
</tr>
<tr>
<td>Invalid PPAR</td>
<td><em>PPAR</em> no es una lista, o uno o varios objetos de la lista faltan o no son válidos.</td>
<td>12E</td>
</tr>
<tr>
<td>Invalid PRTPAR</td>
<td><em>PRTPAR</em> no es una lista, o uno o varios objetos de la lista faltan o no son válidos.</td>
<td>C13</td>
</tr>
<tr>
<td>Invalid PTYPE</td>
<td>Tipo de gráfico no válido para la ecuación actual.</td>
<td>620</td>
</tr>
<tr>
<td>Invalid Repeat</td>
<td>Intervalo de repetición de la alarma fuera de rango.</td>
<td>D03</td>
</tr>
<tr>
<td>Invalid Server Cmd</td>
<td>Recepción de comando no válido mientras se estaba en el modo Server.</td>
<td>C08</td>
</tr>
<tr>
<td>Invalid Syntax</td>
<td>HP 48 no puede ejecutar OBJ→, ENTER o STR→ debido a la sintaxis errónea del objeto.</td>
<td>106</td>
</tr>
<tr>
<td>Invalid Time</td>
<td>El argumento de hora no es un número real con el formato correcto o está fuera de rango.</td>
<td>D02</td>
</tr>
<tr>
<td>Invalid Unit</td>
<td>Se ha intentado realizar una operación de unidad con una unidad de usuario no definida o no válida.</td>
<td>B01</td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Invalid User</td>
<td>El tipo o estructura del objeto ejecutado como función definida por el usuario no es correcto.</td>
<td>103</td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid Σ Data</td>
<td>Comando de estadística ejecutado con un objeto no válido almacenado en ΣDAT.</td>
<td>601</td>
</tr>
<tr>
<td>LN(Neg)</td>
<td>Se ha intentado ajustar una curva no lineal cuando la matriz de ΣDAT contenía un elemento negativo.</td>
<td>605</td>
</tr>
<tr>
<td>Invalid Σ Data</td>
<td>Se ha intentado ajustar una curva no lineal cuando la matriz de ΣDAT contenía un elemento 0.</td>
<td>606</td>
</tr>
<tr>
<td>LN(Ø)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid ΣPAR</td>
<td>ΣPAR no es una lista, o uno o varios objetos de la lista faltan o no son válidos.</td>
<td>604</td>
</tr>
<tr>
<td>LAST STACK Disabled</td>
<td>Se ha pulsado [UND] mientras esa característica de recuperación estaba desactivada.</td>
<td>124</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LASTARG Disabled</td>
<td>Se ha ejecutado LASTARG mientras esa característica de recuperación estaba desactivada.</td>
<td>205</td>
</tr>
<tr>
<td>LowBat()</td>
<td>Sustituya las pilas de la calculadora (S) o sustituya las pilas de la tarjeta insertable (P1) o (P2).</td>
<td>(ninguno)</td>
</tr>
<tr>
<td>Low Battery</td>
<td>Pilas del sistema demasiado bajas para imprimir o realizar la E/S.</td>
<td>C14</td>
</tr>
</tbody>
</table>

Mensajes de Error  B-5
<table>
<thead>
<tr>
<th>Mensaje</th>
<th>Significado</th>
<th># (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Clear</td>
<td>Se ha borrado la memoria de la HP 48.</td>
<td>005</td>
</tr>
<tr>
<td>Name Conflict</td>
<td>Se ha intentado la función</td>
<td>(donde) para asignar un valor a la variable de integración o índice sumatorio.</td>
</tr>
<tr>
<td>Negative Underflow</td>
<td>Excepción matemática: El cálculo ha devuelto un resultado negativo, entre 0 y –MINR.</td>
<td>302</td>
</tr>
<tr>
<td>No Current Equation</td>
<td><strong>SOLVE, DRAW o RCEQ</strong> se ha ejecutado con <strong>EQ</strong> inexistente.</td>
<td>104</td>
</tr>
<tr>
<td>No current equation</td>
<td>HP Resol o Representación Gráfica ejecutados con <strong>EQ</strong> inexistente.</td>
<td>609</td>
</tr>
<tr>
<td>No Room in Port</td>
<td>Memoria disponible insuficiente en la puerta RAM especificada.</td>
<td>00B</td>
</tr>
<tr>
<td>No Room to Save Stack</td>
<td>Memoria insuficiente para archivar la copia de la pila. LAST STACK se desactiva automáticamente.</td>
<td>101</td>
</tr>
<tr>
<td>No Room to Show Stack</td>
<td>Objetos de la pila visualizados sólo por tipo, debido a la falta de memoria disponible.</td>
<td>131</td>
</tr>
<tr>
<td>No stat data to plot</td>
<td>No existen datos archivados en <strong>ΣDAT</strong>.</td>
<td>60F</td>
</tr>
<tr>
<td>Non-Empty Directory</td>
<td>Se ha intentado borrar un directorio que no está vacío.</td>
<td>12B</td>
</tr>
<tr>
<td>Non-Real Result</td>
<td>La ejecución de HP Resol, ROOT, DRAW o $\int$ ha dado un resultado distinto a una unidad o número real.</td>
<td>12F</td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Nonexistent Alarm</td>
<td>La lista de alarma no contenía la alarma especificada por el comando de alarma.</td>
<td>D04</td>
</tr>
<tr>
<td>Nonexistent ZDAT</td>
<td>El comando de estadística se ha ejecutado cuando ZDAT no existía.</td>
<td>602</td>
</tr>
<tr>
<td>Object Discarded</td>
<td>El emisor ha enviado un paquete con EOF (Z) con una &quot;D&quot; en el campo de datos.</td>
<td>C0F</td>
</tr>
<tr>
<td>Object In Use</td>
<td>Se ha intentado PURGE o STO en un objeto de seguridad cuando el objeto almacenado se estaba utilizando.</td>
<td>009</td>
</tr>
<tr>
<td>Object Not in Port</td>
<td>Se ha intentado acceder a una biblioteca u objeto de seguridad inexistente.</td>
<td>00C</td>
</tr>
<tr>
<td>(OFF SCREEN)</td>
<td>El valor de la función, raíz, extremo o intersección no era visible en la pantalla actual.</td>
<td>61F</td>
</tr>
<tr>
<td>Out of Memory</td>
<td>Debe eliminarse uno o varios objetos para poder continuar con la operación de la calculadora.</td>
<td>135</td>
</tr>
<tr>
<td>Overflow</td>
<td>Excepción matemática: El resultado del cálculo ha sido mayor en el valor absoluto que MAXR.</td>
<td>303</td>
</tr>
<tr>
<td>Parity Error</td>
<td>El bit de paridad de los bytes recibidos no coincide con el valor de paridad actual.</td>
<td>C05</td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Port Closed</td>
<td>Posible fallo del hardware serie o IR. Ejecute el autotest.</td>
<td>C09</td>
</tr>
<tr>
<td>Port Not Available</td>
<td>Comando de puerta utilizado en una puerta vacía o inexistente, o en una que contiene ROM en vez de RAM. (Las puertas 1 y 2 no existen en la HP 48G.)</td>
<td>00A</td>
</tr>
<tr>
<td></td>
<td>Se ha intentado ejecutar un comando de servidor que por sí mismo utiliza el puerto de E/S.</td>
<td></td>
</tr>
<tr>
<td>Positive Underflow</td>
<td>Excepción matemática: El cálculo ha dado un resultado positivo, entre 0 y MINR.</td>
<td>301</td>
</tr>
<tr>
<td>Power Lost</td>
<td>Calculadora encendida después de una pérdida de potencia. La memoria puede haberse corrompido.</td>
<td>006</td>
</tr>
<tr>
<td>Protocol Error</td>
<td>Se ha recibido un paquete cuya longitud es menor que la de un paquete nulo.</td>
<td>C07</td>
</tr>
<tr>
<td></td>
<td>El parámetro de longitud máxima del paquete procedente de otra máquina no es válido.</td>
<td></td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Receive Buffer Overrun</td>
<td>Kermit: Se han enviado más de 255 bytes de reintentos antes de que la HP 48 recibiera otro paquete.</td>
<td>C04</td>
</tr>
<tr>
<td></td>
<td>SRECV: Los datos recibidos han desbordado el buffer.</td>
<td></td>
</tr>
<tr>
<td>Receive Error</td>
<td>Desbordamiento de UART o error de comunicación.</td>
<td>C03</td>
</tr>
<tr>
<td>Sign Reversal</td>
<td>HP Resol o ROOT no pueden encontrar el punto donde la ecuación actual se iguala a cero, pero han encontrado dos puntos cercanos donde la ecuación ha cambiado de signo.</td>
<td>A05</td>
</tr>
<tr>
<td>Single Equation</td>
<td>Se ha suministrado sólo una ecuación a la Resolución de Ecuaciones Múltiples.</td>
<td>E402</td>
</tr>
<tr>
<td>Timeout</td>
<td>Imprimiendo en puerto serie: Se ha recibido XOFF y ha expirado el tiempo de espera de XON.</td>
<td>C02</td>
</tr>
<tr>
<td></td>
<td>Kermit: Ha expirado el tiempo de espera de la recepción del paquete.</td>
<td></td>
</tr>
<tr>
<td>Too Few Arguments</td>
<td>El comando requiere más argumentos de los que había en la pila.</td>
<td>201</td>
</tr>
<tr>
<td>Transfer Failed</td>
<td>Diez intentos sucesivos de recibir un paquete correcto no han sido satisfactorios.</td>
<td>C06</td>
</tr>
<tr>
<td>Mensaje</td>
<td>Significado</td>
<td># (hex)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Unable to Isolate</td>
<td>Fallo de ISOL porque el nombre especificado no existía o contenía un argumento de función sin inverso.</td>
<td>130</td>
</tr>
<tr>
<td>Undefined Constant</td>
<td>El nombre suministrado a CONST no está en la Biblioteca de Constantes.</td>
<td>E129</td>
</tr>
<tr>
<td>Undefined Local Name</td>
<td>Se ha ejecutado o llamado un nombre local cuya variable local correspondiente no existe.</td>
<td>003</td>
</tr>
<tr>
<td>Undefined Name</td>
<td>Se ha ejecutado o llamado un nombre global cuya variable correspondiente no existe.</td>
<td>204</td>
</tr>
<tr>
<td>Undefined Result</td>
<td>Un cálculo como 0/0 ha generado un resultado matemáticamente no definido.</td>
<td>304</td>
</tr>
<tr>
<td>Undefined XLIB Name</td>
<td>Se ha ejecutado un nombre de XLIB cuando la biblioteca especificada no existía.</td>
<td>004</td>
</tr>
<tr>
<td>Wrong Argument Count</td>
<td>La función definida por el usuario se ha calculado con un número equivocado de argumentos parentéticos.</td>
<td>128</td>
</tr>
<tr>
<td>Zero</td>
<td>El resultado devuelto por HP Resol o ROOT es una raíz (un punto donde la ecuación actual se iguala a cero).</td>
<td>A04</td>
</tr>
</tbody>
</table>
Menús

<table>
<thead>
<tr>
<th>No.</th>
<th>Nombre</th>
<th>No.</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ultimo Menú</td>
<td>18</td>
<td>MTH BASE BYTE</td>
</tr>
<tr>
<td>1</td>
<td>CST</td>
<td>19</td>
<td>MTH FFT</td>
</tr>
<tr>
<td>2</td>
<td>VAR</td>
<td>20</td>
<td>MTH CMPL</td>
</tr>
<tr>
<td>3</td>
<td>MTH</td>
<td>21</td>
<td>MTH CONS</td>
</tr>
<tr>
<td>4</td>
<td>MTH VECTR</td>
<td>22</td>
<td>PRG</td>
</tr>
<tr>
<td>5</td>
<td>MTH MATR</td>
<td>23</td>
<td>PRG BRCH</td>
</tr>
<tr>
<td>6</td>
<td>MTH MATR MAKE</td>
<td>24</td>
<td>PRG BRCH IF</td>
</tr>
<tr>
<td>7</td>
<td>MTH MATR NORM</td>
<td>25</td>
<td>PRG BRCH CASE</td>
</tr>
<tr>
<td>8</td>
<td>MTH MATR FACTR</td>
<td>26</td>
<td>PRG BRCH START</td>
</tr>
<tr>
<td>9</td>
<td>MTH MATR COL</td>
<td>27</td>
<td>PRG BRCH FOR</td>
</tr>
<tr>
<td>10</td>
<td>MTH MATR ROW</td>
<td>28</td>
<td>EDIT</td>
</tr>
<tr>
<td>11</td>
<td>MTH LIST</td>
<td>29</td>
<td>PRG BRCH DO</td>
</tr>
<tr>
<td>12</td>
<td>MTH HYP</td>
<td>30</td>
<td>SOLVE ROOT SOLVR</td>
</tr>
<tr>
<td>13</td>
<td>MTH PROB</td>
<td>31</td>
<td>PRG BRCH WHILE</td>
</tr>
<tr>
<td>14</td>
<td>MTH REAL</td>
<td>32</td>
<td>PRG TEST</td>
</tr>
<tr>
<td>15</td>
<td>MTH BASE</td>
<td>33</td>
<td>PRG TYPE</td>
</tr>
<tr>
<td>16</td>
<td>MTH BASE LOGIC</td>
<td>34</td>
<td>PRG LIST</td>
</tr>
<tr>
<td>17</td>
<td>MTH BASE BIT</td>
<td>35</td>
<td>PRG LIST ELEM</td>
</tr>
<tr>
<td>No.</td>
<td>Nombre</td>
<td>No.</td>
<td>Nombre</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>36</td>
<td>PRG LIST PROC</td>
<td>58</td>
<td>UNITS VISC</td>
</tr>
<tr>
<td>37</td>
<td>PRG GROB</td>
<td>59</td>
<td>UNITS, Comandos</td>
</tr>
<tr>
<td>38</td>
<td>PRG PICT</td>
<td>60</td>
<td>PRG ERROR IFERR</td>
</tr>
<tr>
<td>39</td>
<td>PRG IN</td>
<td>61</td>
<td>PRG ERROR</td>
</tr>
<tr>
<td>40</td>
<td>PRG OUT</td>
<td>62</td>
<td>CHAR</td>
</tr>
<tr>
<td>41</td>
<td>PRG RUN</td>
<td>63</td>
<td>MODES</td>
</tr>
<tr>
<td>42</td>
<td>UNITS, Catálogo</td>
<td>64</td>
<td>MODES FMT</td>
</tr>
<tr>
<td>43</td>
<td>UNITS LENG</td>
<td>65</td>
<td>MODES ANGL</td>
</tr>
<tr>
<td>44</td>
<td>UNITS AREA</td>
<td>66</td>
<td>MODES FLAG</td>
</tr>
<tr>
<td>45</td>
<td>UNITS VOL</td>
<td>67</td>
<td>MODES KEYS</td>
</tr>
<tr>
<td>46</td>
<td>UNITS TIME</td>
<td>68</td>
<td>MODES MENU</td>
</tr>
<tr>
<td>47</td>
<td>UNITS SPEED</td>
<td>69</td>
<td>MODES MISC</td>
</tr>
<tr>
<td>48</td>
<td>UNITS MASS</td>
<td>70</td>
<td>MEMORY</td>
</tr>
<tr>
<td>49</td>
<td>UNITS FORCE</td>
<td>71</td>
<td>MEM DIR</td>
</tr>
<tr>
<td>50</td>
<td>UNITS ENRG</td>
<td>72</td>
<td>MEM ARITH</td>
</tr>
<tr>
<td>51</td>
<td>UNITS POWR</td>
<td>73</td>
<td>STACK</td>
</tr>
<tr>
<td>52</td>
<td>UNITS PRESS</td>
<td>74</td>
<td>SOLVE</td>
</tr>
<tr>
<td>53</td>
<td>UNITS TEMP</td>
<td>75</td>
<td>SOLVE ROOT</td>
</tr>
<tr>
<td>54</td>
<td>UNITS ELEC</td>
<td>76</td>
<td>SOLVE DIFFE</td>
</tr>
<tr>
<td>55</td>
<td>UNITS ANGL</td>
<td>77</td>
<td>SOLVE POLY</td>
</tr>
<tr>
<td>56</td>
<td>UNITS LIGHT</td>
<td>78</td>
<td>SOLVE SYS</td>
</tr>
<tr>
<td>57</td>
<td>UNITS RAD</td>
<td>79</td>
<td>SOLVE TVM</td>
</tr>
</tbody>
</table>

C-2 Menús
<table>
<thead>
<tr>
<th>No.</th>
<th>Nombre</th>
<th>No.</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>SOLVE TVM SOLVR</td>
<td>99</td>
<td>STAT $\Sigma$ PAR MODL</td>
</tr>
<tr>
<td>81</td>
<td>PLOT</td>
<td>100</td>
<td>STAT 1VAR</td>
</tr>
<tr>
<td>82</td>
<td>PLOT PTYPE</td>
<td>101</td>
<td>STAT PLOT</td>
</tr>
<tr>
<td>83</td>
<td>PLOT PPAR</td>
<td>102</td>
<td>STAT FIT</td>
</tr>
<tr>
<td>84</td>
<td>PLOT 3D</td>
<td>103</td>
<td>STAT SUMS</td>
</tr>
<tr>
<td>85</td>
<td>PLOT 3D PTYPE</td>
<td>104</td>
<td>I/O</td>
</tr>
<tr>
<td>86</td>
<td>PLOT 3D VPAR</td>
<td>105</td>
<td>I/O SRVR</td>
</tr>
<tr>
<td>87</td>
<td>PLOT STAT</td>
<td>106</td>
<td>I/O IOPAR</td>
</tr>
<tr>
<td>88</td>
<td>PLOT STAT PTYPE</td>
<td>107</td>
<td>I/O PRINT</td>
</tr>
<tr>
<td>89</td>
<td>PLOT STAT $\Sigma$ PAR</td>
<td>108</td>
<td>I/O PRINT PRTPA</td>
</tr>
<tr>
<td>90</td>
<td>PLOT STAT $\Sigma$ PAR MODL</td>
<td>109</td>
<td>I/O SERIA</td>
</tr>
<tr>
<td>91</td>
<td>PLOT STAT DATA</td>
<td>110</td>
<td>LIBRARY, Comandos</td>
</tr>
<tr>
<td>92</td>
<td>PLOT FLAG</td>
<td>111</td>
<td>LIBRARY PORTS</td>
</tr>
<tr>
<td>93</td>
<td>SYMBOLIC</td>
<td>112</td>
<td>LIBRARY, Catálogo</td>
</tr>
<tr>
<td>94</td>
<td>TIME</td>
<td>113</td>
<td>EQLIB</td>
</tr>
<tr>
<td>95</td>
<td>TIME ALRM</td>
<td>114</td>
<td>EQLIB EQLIB</td>
</tr>
<tr>
<td>96</td>
<td>STAT</td>
<td>115</td>
<td>EQLIB COLIB</td>
</tr>
<tr>
<td>97</td>
<td>STAT DATA</td>
<td>116</td>
<td>EQLIB MES</td>
</tr>
<tr>
<td>98</td>
<td>STAT $\Sigma$ PAR</td>
<td>117</td>
<td>EQLIB UTILS</td>
</tr>
</tbody>
</table>
En este apéndice se presenta la lista de los indicadores del sistema de la HP 48, en grupos funcionales. Todos los indicadores se pueden fijar, anular y probar. El estado por defecto de los mismos es *fijado*, excepto en el caso de los indicadores Tamaño de Palabra Entero Binario (los indicadores del -5 al -10).

### Indicadores del sistema

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| -1        | Solución Principal.  
*No Fijado*: QUAD y ISOL devuelven un resultado que representa todas las soluciones posibles.  
*Fijado*: QUAD y ISOL devuelve sólo la solución principal. |
| -2        | Constantes Simbólicas.  
*No Fijado*: Las constantes simbólicas (e, i, π, MAXR y MINR) mantienen su forma simbólica cuando se calculan, a menos que se haya fijado el indicador de Resultados Numéricos -3.  
*Fijado*: Las constantes simbólicas devuelven números, independientemente del estado del indicador de Resultados Numéricos -3. |
| -3        | Resultados Numéricos.  
*No Fijado*: Las funciones con argumentos simbólicos, incluidas las constantes simbólicas, hallan resultados simbólicos.  
*Fijado*: Las funciones con argumentos simbólicos, incluidas las constantes simbólicas, hallan números. |
| -4        | Sin utilizar. |
### Indicadores del sistema (continuación)

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5 a</td>
<td>Tamaño de Palabra Entero Binario. Los estados combinados de los indicadores del -5 al -10 fijan el tamaño de palabra entre 1 y 64 bits.</td>
</tr>
<tr>
<td>-11 y</td>
<td>Base Entero Binario.</td>
</tr>
<tr>
<td></td>
<td>HEX: -11 fijado, -12 fijado.</td>
</tr>
<tr>
<td></td>
<td>DEC: -11 no fijado, -12 no fijado.</td>
</tr>
<tr>
<td></td>
<td>OCT: -11 fijado, -12 no fijado.</td>
</tr>
<tr>
<td></td>
<td>BIN: -11 no fijado, -12 fijado.</td>
</tr>
<tr>
<td>-13</td>
<td>Sin utilizar.</td>
</tr>
<tr>
<td>-14</td>
<td>Modo de Pago Financiero.</td>
</tr>
<tr>
<td></td>
<td><em>No Fijado</em>: Los cálculos de TVM asumen los pagos al final del periodo.</td>
</tr>
<tr>
<td></td>
<td><em>Fijado</em>: Los cálculos de TVM asumen los pagos al principio del periodo.</td>
</tr>
<tr>
<td>-15</td>
<td>Rectangular: -16 no fijado.</td>
</tr>
<tr>
<td></td>
<td>Polar/Cilíndrico: -15 no fijado, -16 fijado.</td>
</tr>
<tr>
<td>-17 y -18</td>
<td>Grados Sex.: -17 no fijado, -18 no fijado.</td>
</tr>
<tr>
<td></td>
<td>Radianes: -17 fijado.</td>
</tr>
<tr>
<td></td>
<td>Grados Cent.: -17 no fijado, -18 fijado.</td>
</tr>
<tr>
<td>-19</td>
<td><em>No Fijado</em>: V2 y [2D] crean un vector bidimensional a partir de 2 números reales</td>
</tr>
<tr>
<td></td>
<td><em>Fijado</em>: V2 y [2D] crean un número complejo a partir de 2 números reales.</td>
</tr>
<tr>
<td>-20</td>
<td>Excepción de Subdesbordamiento.</td>
</tr>
<tr>
<td></td>
<td><em>No Fijado</em>: La excepción de subdesbordamiento da como resultado 0 y fija el indicador -23 ó -24.</td>
</tr>
<tr>
<td></td>
<td><em>Fijado</em>: La excepción de subdesbordamiento se considera un error.</td>
</tr>
<tr>
<td>-21</td>
<td>Excepción de Desbordamiento.</td>
</tr>
<tr>
<td></td>
<td><em>No Fijado</em>: La excepción de desbordamiento da como resultado ±9.999999999999E499 y fija el indicador -25.</td>
</tr>
<tr>
<td></td>
<td><em>Fijado</em>: La excepción de desbordamiento se considera un error.</td>
</tr>
<tr>
<td>Indicador</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| -22       | Excepción de Resultado Infinito.  
   *No Fijado:* La excepción de resultado infinito se considera un error.  
| -23       | Indicador de Subdesbordamiento Negativo. |
| -24       | Indicador de Subdesbordamiento Positivo. |
| -25       | Indicador de Desbordamiento. |
| -26       | Indicador de Resultado Infinito.  
   Cuando se produce una excepción, el indicador correspondiente (de -23 a -26) se fija sólo si la excepción no se considera un error. |
| -27       | Visualización de números simbólicos complejos.  
   *No Fijado:* Visualiza los números simbólicos complejos en forma de coordenada (es decir, '('x, y')').  
   *Fijado:* Visualiza los números simbólicos complejos utilizando 'i' (es decir, 'x+yi'). |
| -28       | Representación Gráfica Simultánea de Múltiples Funciones.  
   *No Fijado:* Múltiples ecuaciones se representan gráficamente en serie.  
   *Fijado:* Múltiples ecuaciones se representan gráficamente de forma simultánea. |
| -29       | Ejes de Trazado.  
   *No Fijado:* Se trazan los ejes de representaciones gráficas estadísticas y bidimensionales.  
   *Fijado:* No se trazan los ejes de representaciones gráficas estadísticas y bidimensionales. |
| -30       | Sin utilizar. |
| -31       | Llenado de Curva.  
   *No Fijado:* El llenado de curva entre los puntos trazados está activado.  
   *Fijado:* El llenado de curva entre los puntos trazados está desactivado. |
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| -32       | Cursor de Gráficos.  
\textit{No Fijado}: El cursor de gráficos es siempre oscuro.  
\textit{Fijado}: El cursor de gráficos es oscuro sobre fondo claro y claro sobre fondo oscuro. |
| -33       | Dispositivo de E/S.  
\textit{No Fijado}: E/S dirigida a puerto serie.  
\textit{Fijado}: E/S dirigida a puerto IR. |
| -34       | Dispositivo de Impresión.  
\textit{No Fijado}: Salida de la impresora dirigida a impresora IR.  
\textit{Fijado}: Salida de impresora dirigida a puerto serie si el indicador -33 no está fijado. |
| -35       | Formato de Datos de E/S.  
\textit{No Fijado}: Los objetos se transmiten en formato ASCII.  
\textit{Fijado}: Los objetos se transmiten en formato binario (imagen de memoria). |
| -36       | Sobreescribir Recepción de E/S.  
\textit{No Fijado}: Si el nombre recibido en la HP 48 coincide con un nombre de variable de la HP 48 ya existente, se crea un nuevo nombre de variable con extensión numérica para evitar la sobreescritura.  
\textit{Fijado}: Si el nombre recibido en la HP 48 coincide con un nombre de variable de la HP 48 ya existente, la variable ya existente se sobreescribe. |
| -37       | Impresión a Doble Espacio.  
\textit{No Fijado}: Impresión a un espacio.  
\textit{Fijado}: Impresión a doble espacio. |
| -38       | Avance de Línea.  
\textit{No Fijado}: Avance de línea al final de cada línea impresa.  
\textit{Fijado}: Sin avance de línea al final de cada línea impresa. |
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| -39      | Mensajes de E/S.  
*No Fijado*: Mensajes de E/S activados.  
*Fijado*: Mensajes de E/S desactivados. |
| -40      | Visualización del Reloj.  
*No Fijado*: El reloj no visualiza.  
*Fijado*: El reloj se visualiza constantemente. |
| -41      | Formato de Hora.  
*No Fijado*: Formato de 12 horas.  
*Fijado*: Formato de 24 horas. |
| -42      | Formato de Fecha.  
*No Fijado*: Formato de MM/DD/YY (mes/día/año).  
*Fijado*: Formato de DD.MM.YY (día/mes/año). |
| -43      | Alarmas Repetitivas No se Reprograman.  
*No Fijado*: Las alarmas repetitivas de cita no reconocidas vuelven a programarse automáticamente.  
*Fijado*: Las alarmas repetitivas de cita no reconocidas no se vuelven a programar. |
| -44      | Archivo de Alarmas Reconocidas.  
*No Fijado*: Las alarmas de cita reconocidas se borran de la lista de alarmas.  
*Fijado*: Las alarmas de cita reconocidas se archivan en la lista de alarmas. |
| -45      | Número de Dígitos Decimales.  
*a* El estado combinado de los indicadores entre -45 y -48 establece el número de dígitos decimales en los modos Fijo, Científico y Técnico. |
| -49      | Formato de Visualización del Número.  
*y* Estándar: -49 *no fijado*, -50 *no fijado*.  
-50      | Fijo: -49 *fijado*, -50 *no fijado*.  
Científico: -49 *no fijado*, -50 *fijado*.  
Técnico: -49 *fijado*, -50 *no fijado*. |
| -51      | Puntuación Decimal.  
*No Fijado*: La puntuación decimal es . (punto).  
*Fijado*: La puntuación decimal es , (coma). |
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| -52 | Visualización de Una Sola Línea.  
*No Fijado*: Se da preferencia al objeto del nivel 1, ocupando hasta cuatro líneas de la pila  
*Fijado*: La visualización del objeto del nivel 1 se restringe a una línea. |
| -53 | Precedencia.  
*No Fijado*: Se suprimen determinados paréntesis de la expresión algebraica para facilitar la lectura.  
*Fijado*: Se visualizan todos los paréntesis de las expresiones algebraicas. |
| -54 | Pequeños Elementos de Matriz.  
*No Fijado*: Los valores singulares calculados mediante RANK (y otros comandos que calculan el rango de una matriz) que son más de $1 \times 10^{-14}$ veces menores que el valor singular calculado más alto de la matriz, se igualan a cero. Se activa el redondeo automático de DET.  
*Fijado*: Los valores singulares calculados más pequeños (véase arriba) no se convierten. Se desactiva el redondeo automático de DET. |
| -55 | Ultimos Argumentos.  
*No Fijado*: Los argumentos de comando se archivan.  
*Fijado*: Los argumentos de comando no se archivan. |
| -56 | Pitido de Error.  
*No Fijado*: Los pitidos de error y del comando BEEP están activados.  
*Fijado*: Los pitidos de error y del comando BEEP no están activados. |
| -57 | Pitido de Alarma.  
*No Fijado*: El pitido de alarma está activado.  
*Fijado*: El pitido de alarma no está activado. |
| -58 | Mensajes Completos.  
*No Fijado*: Los datos de la variable de parámetros se visualizan automáticamente.  
*Fijado*: Los datos de variables de parámetros no se visualizan. |
<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| -59       | Visualización del Localizador Rápido.  
*No Fijado*: Localizador de Variables muestra el nombre y el contenido de las variables.  
*Fijado*: Localizador de Variables muestra sólo el nombre de las variables. |
| -60       | Bloqueo del Alfabeto.  
*No Fijado*: El alfabeto para escribir un solo carácter se activa pulsando α una vez. El alfabeto completo se activa pulsando α dos veces.  
*Fijado*: El alfabeto completo se activa pulsando α una vez. (La activación del alfabeto para escribir un solo carácter no está disponible.) |
| -61       | Bloqueo del Modo de Usuario.  
*No Fijado*: El modo de usuario 1 se activa pulsando ← USER una vez. El modo de usuario se activa pulsando ← USER dos veces.  
*Fijado*: El modo de usuario se activa pulsando ← USER una vez. (El modo de usuario 1 no está disponible.) |
| -62       | Modo de Usuario.  
*No Fijado*: El modo de usuario no está activo.  
*Fijado*: El modo de usuario está activo. |
| -63       | ENTER vectorizado.  
*No Fijado*: ENTER evalúa la línea de comandos.  
*Fijado*: Se activa el ENTER definido por el usuario. |
| -64       | Indicador de Ajuste del Índice.  
*No Fijado*: La última ejecución de GETI o PUTI no incrementa el índice al primer elemento.  
*Fijado*: La última ejecución de GETI o PUTI incrementa el índice al primer elemento. |
# Tabla de Unidades

## Unidades de la HP 48

<table>
<thead>
<tr>
<th>Unidad (Nombre Completo)</th>
<th>Valor en Unidades SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Area)</td>
<td>100 m²</td>
</tr>
<tr>
<td>A (Amperio)</td>
<td>1 A</td>
</tr>
<tr>
<td>acre (Acre)</td>
<td>4046.87260987 m²</td>
</tr>
<tr>
<td>arcmin (Minuto de arco)</td>
<td>2.90888208666 x 10⁻⁴ r</td>
</tr>
<tr>
<td>arcs (Segundo de arco)</td>
<td>4.8481368111 x 10⁻⁶ r</td>
</tr>
<tr>
<td>atm (Atmósfera)</td>
<td>101325 kg/m·s²</td>
</tr>
<tr>
<td>au (Unidad Astronómica)</td>
<td>1.495979 x 10¹¹ m</td>
</tr>
<tr>
<td>Å (Angstrom)</td>
<td>1 x 10⁻¹⁰ m</td>
</tr>
<tr>
<td>b (Barnio)</td>
<td>1 x 10⁻²⁸ m²</td>
</tr>
<tr>
<td>bar (Bara)</td>
<td>100000 kg/m·s²</td>
</tr>
<tr>
<td>bbl (Barril)</td>
<td>.158987294928 m³</td>
</tr>
<tr>
<td>Bq (Bequerelio)</td>
<td>1 1/s</td>
</tr>
<tr>
<td>Btu (Btu, Tabla Internacional)</td>
<td>1055.05585262 kg·m²/s²</td>
</tr>
<tr>
<td>bu (Fanega)</td>
<td>.03523907 m³</td>
</tr>
<tr>
<td>°C (Grados Celsius)</td>
<td>1 K o 274.15 K</td>
</tr>
<tr>
<td>c (Velocidad de la luz)</td>
<td>299792458 m/s</td>
</tr>
<tr>
<td>C (Culombio)</td>
<td>1 A·s</td>
</tr>
<tr>
<td>cal (Caloría)</td>
<td>4.1868 kg·m²/s²</td>
</tr>
<tr>
<td>cd (Candela)</td>
<td>1 cd</td>
</tr>
<tr>
<td>chain (Cadena)</td>
<td>20.1168402337 m</td>
</tr>
<tr>
<td>Ci (Curio)</td>
<td>3.7 x 10¹⁰ 1/s</td>
</tr>
<tr>
<td>ct (Quilate)</td>
<td>.0002 kg</td>
</tr>
<tr>
<td>cu (Cubeta, EE.UU.)</td>
<td>2.365882365 x 10⁻⁴ m³</td>
</tr>
<tr>
<td>° (Grado Sexagesimal)</td>
<td>1.74532925199 x 10⁻² r</td>
</tr>
<tr>
<td>d (Día)</td>
<td>86400 s</td>
</tr>
<tr>
<td>dB (Decibelio)</td>
<td>1</td>
</tr>
</tbody>
</table>
## Unidades de la HP 48 (continuación)

<table>
<thead>
<tr>
<th>Unidad (Nombre Completo)</th>
<th>Valor en Unidades SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>dyn (Dina)</td>
<td>0.00001 kg·m/s²</td>
</tr>
<tr>
<td>erg (Ergio)</td>
<td>0.000001 kg·m²/s²</td>
</tr>
<tr>
<td>eV (Voltio Electrónico)</td>
<td>1.60217733 x 10^{-10} kg·m²/s²</td>
</tr>
<tr>
<td>F (Faradio)</td>
<td>1 A·s²/kg·m²</td>
</tr>
<tr>
<td>°F (Grados Fahrenheit)</td>
<td>0.5555555555556 K o 255.927777778 K</td>
</tr>
<tr>
<td>fath (Braza)</td>
<td>1.82880365761 m</td>
</tr>
<tr>
<td>fbm (Pie Tablar)</td>
<td>0.002359737216 m³</td>
</tr>
<tr>
<td>fc (Buñía-pie)</td>
<td>10.7639104167 cd·sr/m²</td>
</tr>
<tr>
<td>Fdy (Faraday)</td>
<td>96487 Å·s</td>
</tr>
<tr>
<td>fermi (Fermio)</td>
<td>1 x 10^{-15} m</td>
</tr>
<tr>
<td>flam (Pie-lambert)</td>
<td>3.42625909964 cd/m²</td>
</tr>
<tr>
<td>ft (Pie Internacional)</td>
<td>0.3048 m</td>
</tr>
<tr>
<td>ftUS (Pie Survey)</td>
<td>0.304800609601 m</td>
</tr>
<tr>
<td>g (Gramo)</td>
<td>0.001 kg</td>
</tr>
<tr>
<td>ga (Caída Libre Estándar)</td>
<td>9.80665 m/s²</td>
</tr>
<tr>
<td>gal (Galón, EE.UU.)</td>
<td>0.003785411784 m³</td>
</tr>
<tr>
<td>galC (Galón, Canadá)</td>
<td>0.00454609 m³</td>
</tr>
<tr>
<td>galUK (Galón, Reino Unido)</td>
<td>0.004546092 m³</td>
</tr>
<tr>
<td>gf (Fuerza-gramo)</td>
<td>0.00980665 kg·m/s²</td>
</tr>
<tr>
<td>gmol (Gramo-mol)</td>
<td>1 mol</td>
</tr>
<tr>
<td>grad (Grado Centesimal)</td>
<td>1.57079632679 x 10^{-2} r</td>
</tr>
<tr>
<td>grain (Grano)</td>
<td>0.00006479891 kg</td>
</tr>
<tr>
<td>Gy (Gray)</td>
<td>1 m²/s²</td>
</tr>
<tr>
<td>H (Henrio)</td>
<td>1 kg·m²/A²·s²</td>
</tr>
<tr>
<td>ha (Hectárea)</td>
<td>10000 m²</td>
</tr>
<tr>
<td>h (Hora)</td>
<td>3600 s</td>
</tr>
<tr>
<td>hp (Potencia en C.V.)</td>
<td>745.699871582 kg·m²/s³</td>
</tr>
<tr>
<td>Hz (Hertzio)</td>
<td>1 1/s</td>
</tr>
<tr>
<td>Hz (Hertzio)</td>
<td>1/s</td>
</tr>
<tr>
<td>in (Pulgada)</td>
<td>0.0254 m</td>
</tr>
<tr>
<td>inHg (Pulgadas de mercurio, 0°C)</td>
<td>3386.38815789 kg/m·s²</td>
</tr>
<tr>
<td>inH20 (Pulgadas de agua, 60°F)</td>
<td>248.84 kg/m·s²</td>
</tr>
<tr>
<td>J (Julio)</td>
<td>1 kg·m²/s²</td>
</tr>
<tr>
<td>K (Kelvins)</td>
<td>1 K</td>
</tr>
<tr>
<td>kg (Kilogramo)</td>
<td>1 kg</td>
</tr>
<tr>
<td>Unidad (Nombre Completo)</td>
<td>Valor en Unidades SI</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>kip (Fuerza-kilopondio)</td>
<td>4448.22161526 kg·m/s²</td>
</tr>
<tr>
<td>knot (Millas náuticas por hora)</td>
<td>.514444444444 m/s</td>
</tr>
<tr>
<td>kph (Kilómetros por hora)</td>
<td>.277777777778 m/s</td>
</tr>
<tr>
<td>l (Litro)</td>
<td>.001 m³</td>
</tr>
<tr>
<td>lam (Lambert)</td>
<td>3183.09886184 cd/m²</td>
</tr>
<tr>
<td>lb (Libra Avoirdupois)</td>
<td>.45359237 kg</td>
</tr>
<tr>
<td>lbf (Fuerza-libra)</td>
<td>4.44822161526 kg·m/s²</td>
</tr>
<tr>
<td>lbf·mol (Libra-mol)</td>
<td>453.59237 mol</td>
</tr>
<tr>
<td>lb·t (Libra Troy)</td>
<td>.3732417216 kg</td>
</tr>
<tr>
<td>lm (Lumen)</td>
<td>1 cd·sr</td>
</tr>
<tr>
<td>1x (Lux)</td>
<td>1 cd·sr/m²</td>
</tr>
<tr>
<td>lyr (Año de luz)</td>
<td>9.46052840488 x 10¹⁵ m</td>
</tr>
<tr>
<td>m (Metro)</td>
<td>1 m</td>
</tr>
<tr>
<td>μ (Micra)</td>
<td>1 x 10⁻⁶ m</td>
</tr>
<tr>
<td>mho (Mho)</td>
<td>1 A²·s³/kg·m²</td>
</tr>
<tr>
<td>mi (Milla Internacional)</td>
<td>1609.344 m</td>
</tr>
<tr>
<td>mil (Mil)</td>
<td>.0000254 m</td>
</tr>
<tr>
<td>min (Minuto)</td>
<td>60 s</td>
</tr>
<tr>
<td>miUS (Milla terrestre, EE.UU.)</td>
<td>1609.34721869 m</td>
</tr>
<tr>
<td>mmHg (Milímetro de mercurio (torr), 0°C)</td>
<td>133.322368421 kg/m·s²</td>
</tr>
<tr>
<td>mol (Mol)</td>
<td>1 mol</td>
</tr>
<tr>
<td>mph (Millas por hora)</td>
<td>.44704 m/s</td>
</tr>
<tr>
<td>N (Newton)</td>
<td>1 kg·m/s²</td>
</tr>
<tr>
<td>nmi (Milla náutica)</td>
<td>1852 m</td>
</tr>
<tr>
<td>Ω (Ohmio)</td>
<td>1 kg·m²/A²·s³</td>
</tr>
<tr>
<td>oz (Onza)</td>
<td>.028349523125 kg</td>
</tr>
<tr>
<td>ozfl (Onza líquida, EE.UU.)</td>
<td>2.95735295625 x 10⁻⁵ m³</td>
</tr>
<tr>
<td>ozt (Onza Troy)</td>
<td>.0311034768 kg</td>
</tr>
<tr>
<td>ozUK (Onza líquida, Reino Unido)</td>
<td>2.8413075 x 10⁻⁵ m³</td>
</tr>
<tr>
<td>P (Poise)</td>
<td>.1 kg/m·s</td>
</tr>
<tr>
<td>Pa (Pascal)</td>
<td>1 kg/m·s²</td>
</tr>
<tr>
<td>pc (Parsec)</td>
<td>3.08567818585 x 10¹⁶ m</td>
</tr>
<tr>
<td>pdl (Poundal)</td>
<td>.138254954376 kg·m/s²</td>
</tr>
<tr>
<td>ph (Fotio)</td>
<td>10000 cd·sr/m²</td>
</tr>
<tr>
<td>Unidad (Nombre Completo)</td>
<td>Valor en Unidades SI</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>pk (Peck)</td>
<td>.0088097675 m³</td>
</tr>
<tr>
<td>psi (Libras por pulgada cuadrada)</td>
<td>6894.75729317 kg/m-s²</td>
</tr>
<tr>
<td>pt (Pinta)</td>
<td>.000473176473 m³</td>
</tr>
<tr>
<td>qt (Cuarto)</td>
<td>.000946352946 m³</td>
</tr>
<tr>
<td>r (Radián)</td>
<td>1 r</td>
</tr>
<tr>
<td>R (Roentgenio)</td>
<td>.000258 A·s/kg</td>
</tr>
<tr>
<td>°R (Grados Rankine)</td>
<td>0.555555555556 K</td>
</tr>
<tr>
<td>rad (Rad)</td>
<td>.01 m²/s²</td>
</tr>
<tr>
<td>rd (Rod)</td>
<td>5.02921005842 m</td>
</tr>
<tr>
<td>rem (Rem)</td>
<td>.01 m²/s²</td>
</tr>
<tr>
<td>rpm (Revoluciones por minuto)</td>
<td>.0166666666667 1/s</td>
</tr>
<tr>
<td>s (Segundo)</td>
<td>1 s</td>
</tr>
<tr>
<td>§ (Siemens)</td>
<td>1 A²·s³/kg·m²</td>
</tr>
<tr>
<td>sb (Stilb)</td>
<td>10000 cd/m²</td>
</tr>
<tr>
<td>slug (Slug)</td>
<td>14.5939029372 kg</td>
</tr>
<tr>
<td>sr (Estereoradián)</td>
<td>1 sr</td>
</tr>
<tr>
<td>st (Kilolitro)</td>
<td>1 m³</td>
</tr>
<tr>
<td>St (Estokesio)</td>
<td>.0001 m²/s</td>
</tr>
<tr>
<td>Sv (Sievert)</td>
<td>1 m²/s²</td>
</tr>
<tr>
<td>t (Tonelada métrica)</td>
<td>1000 kg</td>
</tr>
<tr>
<td>T (Tesla)</td>
<td>1 kg/A·s²</td>
</tr>
<tr>
<td>tbsp (Cucharada)</td>
<td>1.47867647813 x 10⁻⁵ m³</td>
</tr>
<tr>
<td>therm (Termia, CEE)</td>
<td>105506000 kg·m²/s²</td>
</tr>
<tr>
<td>ton (Tonelada corta)</td>
<td>907.18474 kg</td>
</tr>
<tr>
<td>tonUK (Larga (Reino Unido))</td>
<td>1016.0469088 kg</td>
</tr>
<tr>
<td>torr (Torr (mmHg))</td>
<td>133.322368421 kg/ms²</td>
</tr>
<tr>
<td>tsp (Cucharadita)</td>
<td>4.92892159375 x 10⁻⁶ m³</td>
</tr>
<tr>
<td>u (Masa atómica unificada)</td>
<td>1.6605402 x 10⁻²⁷ kg</td>
</tr>
<tr>
<td>V (Voltio)</td>
<td>1 kg·m²/A·s³</td>
</tr>
<tr>
<td>W (Vatio)</td>
<td>1 kg·m²/s³</td>
</tr>
<tr>
<td>Wb (Weberio)</td>
<td>1 kg·m²/A·s²</td>
</tr>
<tr>
<td>yd (Yarda Internacional)</td>
<td>.9144 m</td>
</tr>
<tr>
<td>yr (Año)</td>
<td>31556925.9747 s</td>
</tr>
</tbody>
</table>

**E-4 Tabla de Unidades**
Tabla de Ecuaciones Incorporadas

La Biblioteca de Ecuaciones consta de 15 temas (correspondientes a las secciones de la tabla siguiente) y más de 100 títulos. Los números entre paréntesis indican el número de ecuaciones del conjunto y el número de variables del conjunto. Existen en total 315 ecuaciones y se utilizan 396 variables.

**Temas y Títulos**

<table>
<thead>
<tr>
<th>1: Columnas y Vigas (14,20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Bucle Elástico (4,8)</td>
</tr>
<tr>
<td>2: Columnas Excéntricas (2,11)</td>
</tr>
<tr>
<td>3: Desviación Simple (1,9)</td>
</tr>
<tr>
<td>4: Pendiente Simple (1,10)</td>
</tr>
<tr>
<td>5: Momento Simple (1,8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2: Electricidad (42,56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Ley de Coulomb (1,5)</td>
</tr>
<tr>
<td>2: Potencia y Ley de Ohm (4,4)</td>
</tr>
<tr>
<td>3: Divisor de Tensión (1,4)</td>
</tr>
<tr>
<td>4: Divisor de Corriente (1,4)</td>
</tr>
<tr>
<td>5: Resistencia de Alambre (1,4)</td>
</tr>
<tr>
<td>6: R Serie y Paralelo (2,4)</td>
</tr>
<tr>
<td>7: C Serie y Paralelo (2,4)</td>
</tr>
<tr>
<td>8: L Serie y Paralelo (2,4)</td>
</tr>
<tr>
<td>9: Energía Capacitiva (1,3)</td>
</tr>
<tr>
<td>10: Energía Inductiva (1,3)</td>
</tr>
<tr>
<td>11: Desfase de Corriente RLC (5,9)</td>
</tr>
<tr>
<td>12: Corriente del Condensador de CC (3,8)</td>
</tr>
<tr>
<td>13: Carga del Condensador (1,3)</td>
</tr>
<tr>
<td>14: Tensión del Inductor de CC (3,8)</td>
</tr>
<tr>
<td>15: Variación de RC (1,6)</td>
</tr>
<tr>
<td>16: Variación de RL (1,6)</td>
</tr>
<tr>
<td>17: Frecuencia de Resonancia (4,7)</td>
</tr>
<tr>
<td>18: Condensador de Placa (1,4)</td>
</tr>
<tr>
<td>19: Condensador Cilíndrico (1,5)</td>
</tr>
<tr>
<td>20: Inductancia del Solenoide (1,5)</td>
</tr>
<tr>
<td>21: Inductancia del Toroide (1,6)</td>
</tr>
<tr>
<td>22: Tensión Sinusoidal (2,6)</td>
</tr>
<tr>
<td>23: Corriente Sinusoidal (2,6)</td>
</tr>
<tr>
<td>Temas y Títulos (continuación)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td><strong>3: Fluidos (29,29)</strong></td>
</tr>
<tr>
<td>1: Presión y Profundidad (1,4)</td>
</tr>
<tr>
<td>2: Ecuación de Bernoulli (10,15)</td>
</tr>
<tr>
<td>3: Caudal con Pérdidas (10,17)</td>
</tr>
<tr>
<td>4: Caudal en Tuberías Llenas (8,19)</td>
</tr>
<tr>
<td><strong>4: Fuerzas y Energía (31,36)</strong></td>
</tr>
<tr>
<td>1: Mecánica Lineal (8,11)</td>
</tr>
<tr>
<td>2: Mecánica Angular (12,15)</td>
</tr>
<tr>
<td>3: Fuerza Centripeta (4,7)</td>
</tr>
<tr>
<td>4: Ley de Hooke (2,4)</td>
</tr>
<tr>
<td>5: Colisiones Elásticas 1D (2,5)</td>
</tr>
<tr>
<td>6: Fuerza de Arrastre (1,5)</td>
</tr>
<tr>
<td>7: Ley de Gravedad (1,4)</td>
</tr>
<tr>
<td>8: Relación Masa-Energía (1,3)</td>
</tr>
<tr>
<td><strong>5: Gases (18,26)</strong></td>
</tr>
<tr>
<td>1: Ley de los Gases Perfectos (2,6)</td>
</tr>
<tr>
<td>2: Cambio de Estado del Gas Perfecto (1,6)</td>
</tr>
<tr>
<td>3: Expansión Isotérmica (2,7)</td>
</tr>
<tr>
<td>4: Procesos Polítropicos (2,7)</td>
</tr>
<tr>
<td>5: Flujo Isentrópico (4,10)</td>
</tr>
<tr>
<td>6: Ley de los Gases Reales (2,8)</td>
</tr>
<tr>
<td>7: Cambio de Estado del Gas Real (1,8)</td>
</tr>
<tr>
<td>8: Teoría Cinética (4,9)</td>
</tr>
<tr>
<td><strong>6: Transmisión de Calor (17,31)</strong></td>
</tr>
<tr>
<td>1: Capacidad Térmica (2,6)</td>
</tr>
<tr>
<td>2: Expansión Térmica (2,6)</td>
</tr>
<tr>
<td>3: Conducción (2,7)</td>
</tr>
<tr>
<td>4: Convección (2,6)</td>
</tr>
<tr>
<td>5: Conducción + Convección</td>
</tr>
<tr>
<td>6: Radiación del Cuerpo Negro</td>
</tr>
<tr>
<td>7: <strong>Magnetismo (4,14)</strong></td>
</tr>
<tr>
<td>1: Conductor Rectilíneo (1,5)</td>
</tr>
<tr>
<td>2: Fuerza entre Conductores (1,6)</td>
</tr>
<tr>
<td>3: Campo B en Solenoide (1,4)</td>
</tr>
<tr>
<td>4: Campo B en Toroide (1,6)</td>
</tr>
<tr>
<td><strong>8: Movimiento (22,24)</strong></td>
</tr>
<tr>
<td>1: Movimiento Líreal (4,6)</td>
</tr>
<tr>
<td>2: Objeto en Caída Libre (4,5)</td>
</tr>
<tr>
<td>3: Movimiento de Proyectil (5,10)</td>
</tr>
<tr>
<td>4: Movimiento Angular (4,6)</td>
</tr>
<tr>
<td>5: Movimiento Circular (3,5)</td>
</tr>
<tr>
<td>6: Velocidad Terminal (1,5)</td>
</tr>
<tr>
<td>7: Velocidad de Escape (1,14)</td>
</tr>
</tbody>
</table>

F-2 Tabla de Ecuaciones Incorporadas
<table>
<thead>
<tr>
<th>Temas y Títulos (continuación)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>9: Optica (11,14)</strong></td>
</tr>
<tr>
<td>1: Ley de Refracción (1,4)</td>
</tr>
<tr>
<td>2: Angulo Crítico (1,3)</td>
</tr>
<tr>
<td>3: Ley de Brewster (2,4)</td>
</tr>
<tr>
<td>4: Reflexión Esférica (3,5)</td>
</tr>
<tr>
<td>5: Refracción Esférica (1,5)</td>
</tr>
<tr>
<td>6: Lente Fina (3,7)</td>
</tr>
<tr>
<td><strong>10: Oscilaciones (17,17)</strong></td>
</tr>
<tr>
<td>1: Sistema Masa-Muelle (3,5)</td>
</tr>
<tr>
<td>2: Péndulo Simple (3,4)</td>
</tr>
<tr>
<td>3: Péndulo Cónico (4,6)</td>
</tr>
<tr>
<td>4: Péndulo Torsional (3,7)</td>
</tr>
<tr>
<td>5: Armónico Simple (4,8)</td>
</tr>
<tr>
<td><strong>11: Geometría Plana (31,21)</strong></td>
</tr>
<tr>
<td>1: Circunferencia (5,7)</td>
</tr>
<tr>
<td>2: Elipsis (5,8)</td>
</tr>
<tr>
<td>3: Rectángulo (5,8)</td>
</tr>
<tr>
<td>4: Polígono Regular (6,8)</td>
</tr>
<tr>
<td>5: Anillo Circular (4,7)</td>
</tr>
<tr>
<td>6: Triángulo (6,10)</td>
</tr>
<tr>
<td><strong>12: Geometría Sólida (18,12)</strong></td>
</tr>
<tr>
<td>1: Cono (5,9)</td>
</tr>
<tr>
<td>2: Cilindro (5,9)</td>
</tr>
<tr>
<td>3: Paralelepípedo (4,9)</td>
</tr>
<tr>
<td>4: Esfera (4,7)</td>
</tr>
<tr>
<td><strong>13: Elementos de Estado Sólido (33,53)</strong></td>
</tr>
<tr>
<td>1: Uniones PN Discretas (8,19)</td>
</tr>
<tr>
<td>2: Transistores NMOS (10,23)</td>
</tr>
<tr>
<td>3: Transistores Bipolares (8,14)</td>
</tr>
<tr>
<td>4: JFETs (7,15)</td>
</tr>
<tr>
<td><strong>14: Análisis de Esfuerzos (16,28)</strong></td>
</tr>
<tr>
<td>1: Esfuerzo Normal (3,7)</td>
</tr>
<tr>
<td>2: Esfuerzo Cortante (3,8)</td>
</tr>
<tr>
<td>3: Esfuerzo sobre un Elemento</td>
</tr>
<tr>
<td>4: Círculo de Mohr (7,10)</td>
</tr>
<tr>
<td><strong>15: Ondas (12,15)</strong></td>
</tr>
<tr>
<td>1: Ondas Transversales (4,9)</td>
</tr>
<tr>
<td>2: Ondas Longitudinales (4,9)</td>
</tr>
<tr>
<td>3: Ondas Sonoras (4,8)</td>
</tr>
</tbody>
</table>
Indice de Operaciones

Este índice contiene información de referencia de todas las operaciones de la HP 48. Para cada una de las operaciones, este índice presenta:

- **Nombre.** Es el nombre correspondiente a la operación. Todas las operaciones que se pueden incluir en programas (comandos) aparecen en mayúsculas.

- **Descripción.** Es lo que hace la operación. Si la operación necesita argumentos de la pila, la descripción incluirá las variables que representan los argumentos de los niveles 1 \( (x) \), 2 \( (y) \), 3 \( (z) \), 4 \( (t) \) y 5 \( (v) \).

- **Tipo.** El tipo de operación se indica con uno de los códigos siguientes:

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td><strong>Operación.</strong> Cualquier acción incorporada en la calculadora y que está representada por un nombre o una tecla.</td>
</tr>
<tr>
<td>C</td>
<td><strong>Comando.</strong> Cualquier operación programable.</td>
</tr>
<tr>
<td>F</td>
<td><strong>Función.</strong> Cualquier objeto que se pueda incluir en objetos algebraicos.</td>
</tr>
<tr>
<td>A</td>
<td><strong>Función Analítica.</strong> Una función para la que la HP 48 proporciona una inversa y una derivada.</td>
</tr>
</tbody>
</table>

- **Teclas.** Son las teclas para acceder a la operación. Las operaciones a las que no se puede acceder por medio de las teclas están identificadas por “Deberá escribirse”.

- **Página.** Lugar donde se puede encontrar una descripción de la operación.
Las operaciones cuyo nombre contiene tanto caracteres alfabéticos como especiales se presentan por orden alfabético. Los nombres de operaciones que contienen solamente caracteres especiales aparecen en la parte final del índice.

<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>←A</td>
<td>Asociar a la izquierda.</td>
<td>20-25</td>
</tr>
<tr>
<td>O</td>
<td>(EQUATION) &lt; RULES +H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ejecuta +H hasta que no se produzcan cambios.</td>
<td>20-28</td>
</tr>
<tr>
<td>( pts) A←</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EQUATION) &lt; RULES +H</td>
<td></td>
</tr>
<tr>
<td>A→</td>
<td>Asociar a la derecha.</td>
<td>20-25</td>
</tr>
<tr>
<td>O</td>
<td>(EQUATION) &lt; RULES +H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ejecuta +H hasta que no se produzcan cambios.</td>
<td>20-28</td>
</tr>
<tr>
<td>( pts) A→</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(EQUATION) &lt; RULES +H</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>Valor absoluto de un objeto (x).</td>
<td>12-9</td>
</tr>
<tr>
<td></td>
<td>MTH REAL NXT ABS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTH MATR NORM ABS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTH NXT CMPL ABS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F MTH VECTR ABS</td>
<td></td>
</tr>
<tr>
<td>ACK</td>
<td>Reconoce la última alarma mostrada.</td>
<td>26-4</td>
</tr>
<tr>
<td></td>
<td>C (TIME) ALRM ACK</td>
<td></td>
</tr>
<tr>
<td>ACKALL</td>
<td>Reconoce todas las alarmas producidas.</td>
<td>26-5</td>
</tr>
<tr>
<td></td>
<td>C (TIME) ALRM ACK</td>
<td></td>
</tr>
<tr>
<td>ACOS</td>
<td>Arco coseno de un número (x).</td>
<td>12-2</td>
</tr>
<tr>
<td></td>
<td>A (ACOS)</td>
<td></td>
</tr>
<tr>
<td>ACOSH</td>
<td>Arco coseno hiperbólico de un número (x).</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>A MTH HYP ACOSH</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td>Suma dos listas (x e y) elemento por elemento.</td>
<td>17-3</td>
</tr>
<tr>
<td></td>
<td>C MTH LIST ADD</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Suma fracciones.</td>
<td>20-27</td>
</tr>
<tr>
<td></td>
<td>O (EQUATION) &lt; RULES AF</td>
<td></td>
</tr>
<tr>
<td>ALOG</td>
<td>Antilogaritmo común (base 10) de un número (x).</td>
<td>12-2</td>
</tr>
<tr>
<td></td>
<td>A 10^x</td>
<td></td>
</tr>
</tbody>
</table>

G-2  Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMORT</td>
<td>Calcula la cantidad de capital, interés y rédito de un número de pagos del escenario financiero almacenado actualmente en las variables de TVM (%YR, PMT, FV y PV). O ➜ SOLVE Solve finance... AMDR</td>
<td>18-21</td>
</tr>
<tr>
<td>AMORT</td>
<td>Calcula la cantidad de capital, interés y rédito de un número de pagos (x) del escenario financiero almacenado actualmente en las variables de TVM (%YR, PMT, FV y PV). C ➜ SOLVE TVM AMDR</td>
<td>H-1</td>
</tr>
<tr>
<td>AMRT</td>
<td>Calcula la cantidad de capital, interés y rédito de un número de pagos (x) de la situación financiera introducida en el solucionador interactivo. O ➜ SOLVE TVM SOLVR AMRT</td>
<td>18-21</td>
</tr>
<tr>
<td>AND</td>
<td>AND (Y) lógico de dos expresiones (x e y) que se evalúan en 1 o 0, o Y binaria que combina dos enteros (x e y) o dos secuencias (x e y). MTH ▼ BARE ▼ NXT LOGIC ▼ AND</td>
<td>H-1</td>
</tr>
<tr>
<td>ANIMATE</td>
<td>Muestra sucesivamente en pantalla un número especificado (x) de GROBs—OBJETOS GRAFICOS (y, z . . . ) que están en la pila. C ▼ PRG ▼ GROB ▼ NXT ▼ ANIM</td>
<td>9-12</td>
</tr>
<tr>
<td>APPLY</td>
<td>Crea una expresión no evaluada combinando un nombre de función no evaluado (x) con una lista (y) de argumentos evaluados. F ➜ SYMBOLIC ▼ NXT ▼ APPLY</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ARG</td>
<td>Devuelve el ángulo polar (θ) de un número complejo (x).</td>
<td>12-14</td>
</tr>
<tr>
<td>F (<strong>MTH</strong> <strong>NXT</strong> <strong>CMPL</strong> <strong>ARG</strong>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRY→</td>
<td>Devuelve los elementos de un sistema a la pila. C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>→ARRY</td>
<td>Combina los números en un sistema. C <strong>PRG</strong> <strong>TYPE</strong> →<strong>RPR</strong></td>
<td>14-5</td>
</tr>
<tr>
<td>ASIN</td>
<td>Arco seno de un número (x). A <strong>←</strong> <strong>ASIN</strong></td>
<td>12-2</td>
</tr>
<tr>
<td>ASINH</td>
<td>Arco seno hiperbólico de un número (x). A <strong>MTH</strong> <strong>HYP</strong> ASINH</td>
<td>12-3</td>
</tr>
<tr>
<td>ASN</td>
<td>Asigna un objeto (y) a una tecla de usuario (x). C <strong>←</strong> <strong>MODES</strong> <strong>KEYS</strong> ASIN</td>
<td>30-5</td>
</tr>
<tr>
<td>ASR</td>
<td>Desplaza un entero binario (x) un bit a la derecha. C <strong>MTH</strong> <strong>BASE</strong> <strong>NXT</strong> <strong>BIT</strong> ASR</td>
<td>15-5</td>
</tr>
<tr>
<td>ATAN</td>
<td>Arco tangente de un número (x). A <strong>←</strong> <strong>ATAN</strong></td>
<td>12-2</td>
</tr>
<tr>
<td>ATANH</td>
<td>Arco tangente hiperbólico de un número (x). A <strong>MTH</strong> <strong>HYP</strong> ATANH</td>
<td>12-3</td>
</tr>
<tr>
<td>ATICK</td>
<td>Fija la representación por comillas simples de los ejes mediante una lista (x) que contenga el intervalo de las comillas simples de los ejes en unidades de usuario o puntos. C <strong>←</strong> <strong>PLOT</strong> <strong>PPAR</strong> <strong>NXT</strong> ATICK</td>
<td>H-2</td>
</tr>
<tr>
<td>ATTACH</td>
<td>Añade una biblioteca (x) al directorio actual. C <strong>←</strong> <strong>LIBRARY</strong> <strong>NXT</strong> ATTAC</td>
<td>28-9</td>
</tr>
<tr>
<td>AUTO</td>
<td>Escala automáticamente el eje y. C <strong>←</strong> <strong>PLOT</strong> <strong>NXT</strong> AUTO</td>
<td></td>
</tr>
<tr>
<td>AXES</td>
<td>Especifica los ejes de una representación gráfica utilizando una lista (x) que contenga las coordenadas de la intersección de los ejes, el intervalo de las comillas simples, las indicaciones de los ejes o cualquier combinación de los anteriores. C <strong>←</strong> <strong>PLOT</strong> <strong>PPAR</strong> <strong>NXT</strong> AXES</td>
<td>24-1</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>BAR</td>
<td>Selecciona el tipo de representación gráfica BAR (barras). C ↹ PLOT NXT STAT PTYP  EHR</td>
<td>23-22</td>
</tr>
<tr>
<td>BARPLOT</td>
<td>Traza una representación gráfica de barras de los datos de ΣDAT. C ↹ STAT PLOT EHRF</td>
<td>21-8</td>
</tr>
<tr>
<td>BAUD</td>
<td>Fija la tasa de baudios en x. C ↹ I/O IOPAR BAUD</td>
<td>27-16</td>
</tr>
<tr>
<td>BEEP</td>
<td>Emite pitidos a una frecuencia de (y Hz) durante x segundos. C PRG NXT OUT NXT BEEP</td>
<td>4-11</td>
</tr>
<tr>
<td>BEG</td>
<td>Conmuta el modo de pago entre Beginning- o End-of-Month (Principio o Final de Mes). Consulte TVMBEG y TVMEND para la forma de los comandos de esta operación. O ↹ SOLVE TVM BEG</td>
<td></td>
</tr>
<tr>
<td>BESTFIT</td>
<td>Selecciona el modelo de estadísticas produciendo el mayor coeficiente de correlación (valor absoluto) y ejecuta LR. C ↹ STAT ZPFR MODL BESTF</td>
<td></td>
</tr>
<tr>
<td>BIN</td>
<td>Fija la base binaria. C MTH BASE BIN</td>
<td>15-1</td>
</tr>
<tr>
<td>BINS</td>
<td>Clasifica los elementos de una columna de una variable independiente de ΣDAT en un número (x + 2) de &quot;cubos&quot; con una anchura establecida (y), empezando por un valor de datos mínimo (x). C ↹ STAT ZVAR BINS</td>
<td>H-2</td>
</tr>
<tr>
<td>BLANK</td>
<td>Crea un objeto de gráficos en blanco con y puntos de anchura por x puntos de altura. C PRG GRPH BLANK</td>
<td>9-10</td>
</tr>
<tr>
<td>BOX</td>
<td>Traza un recuadro con las esquinas opuestas definidas por las coordenadas x e y. C PRG PICT BOX</td>
<td>9-9</td>
</tr>
<tr>
<td>BOX</td>
<td>Traza un recuadro con las esquinas opuestas definidas por la marca y el cursor. O ↹ PICTURE EDIT BOX</td>
<td>9-3</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>BOXZ</td>
<td>Activa y desactiva el modo de trazado de recuadro expandido.</td>
<td>22-9</td>
</tr>
<tr>
<td></td>
<td>O ↓[PICTURE] ZOOM BOXZ</td>
<td></td>
</tr>
<tr>
<td>BUFLEN</td>
<td>Devuelve el número de caracteres en la memoria intermedia serie.</td>
<td>27-20</td>
</tr>
<tr>
<td></td>
<td>C ←[I/O] NXT SERIA BUFE</td>
<td></td>
</tr>
<tr>
<td>BYTES</td>
<td>Devuelve el tamaño (en bytes) y la comprobación de un objeto (x).</td>
<td>H-2</td>
</tr>
<tr>
<td></td>
<td>C ←[MEMORY] BYTES</td>
<td></td>
</tr>
<tr>
<td>B→PV</td>
<td>Transfiere el rédito restante tras una amortización a la variable PV que se está preparando para amortizar el siguiente grupo de pagos.</td>
<td>18-21</td>
</tr>
<tr>
<td></td>
<td>O ←[SOLVE] Solve finance... AMOR B+PV</td>
<td></td>
</tr>
<tr>
<td>B→R</td>
<td>Convierte un entero binario (x) en un número real.</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td>C MTH BASE B+R</td>
<td></td>
</tr>
<tr>
<td>CALC</td>
<td>Copia el contenido del campo actual a la pila y muestra la pila en pantalla. Se utiliza para efectuar operaciones de cálculo paralelas o para realizar “viajes paralelos” a otras partes de la calculadora mientras se trabaja dentro de una plantilla de entrada.</td>
<td>6-5</td>
</tr>
<tr>
<td></td>
<td>O [plantilla de entrada] NXT CALC</td>
<td></td>
</tr>
<tr>
<td>CANCL</td>
<td>Borra la línea de comandos y cancela la entrada del proceso o sale de una plantilla de entrada sin ejecutar su acción principal.</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td>[plantilla de entrada] CANCEL</td>
<td></td>
</tr>
<tr>
<td>CASE</td>
<td>Entra en la estructura CASE (MAYUSCULAS).</td>
<td>29-11</td>
</tr>
<tr>
<td></td>
<td>C [PRG] BRCH CASE CASE</td>
<td></td>
</tr>
<tr>
<td>CASE</td>
<td>Escribe CASE THEN END END.</td>
<td>29-11</td>
</tr>
<tr>
<td></td>
<td>O [PRG] BRCH CASE</td>
<td></td>
</tr>
<tr>
<td>CASE</td>
<td>Escribe THEN END.</td>
<td>29-11</td>
</tr>
<tr>
<td></td>
<td>O [PRG] BRCH ←CASE</td>
<td></td>
</tr>
<tr>
<td>CEIL</td>
<td>Devuelve el siguiente entero mayor que x.</td>
<td>12-9</td>
</tr>
<tr>
<td></td>
<td>F MTH REAL NXT NXT CEIL</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>CENTR</td>
<td>Fija el centro de visualización de una representación gráfica en las coordenadas especificadas ((x, y)).&lt;br&gt;C (\mathbf{\text{PLOT}} \mathbf{\text{PPAR}} \mathbf{\text{NXT}} \mathbf{\text{CENT}})</td>
<td>H-3</td>
</tr>
<tr>
<td>CF</td>
<td>Elimina el indicador (x).&lt;br&gt;C (\mathbf{\text{PRG}} \mathbf{\text{TEST}} \mathbf{\text{NXT}} \mathbf{\text{NXT}} \mathbf{\text{CF}})</td>
<td>4-9</td>
</tr>
<tr>
<td>%CH</td>
<td>Devuelve el cambio en (%) de (y) a (x).&lt;br&gt;F (\mathbf{\text{MTH}} \mathbf{\text{REAL}} \mathbf{\text{CH}})</td>
<td>12-9</td>
</tr>
<tr>
<td>%CHK</td>
<td>Activa y desactiva el campo de señal de comprobación.&lt;br&gt;O (\text{[plantilla de entrada]} \mathbf{\text{CH}})</td>
<td>6-5</td>
</tr>
<tr>
<td>CHOOS</td>
<td>Muestra un recuadro de selección con posibles entradas adicionales relevantes para el campo actual.&lt;br&gt;O (\text{[plantilla de entrada]} \mathbf{\text{CHOOS}})</td>
<td>6-3</td>
</tr>
<tr>
<td>CHOOSE</td>
<td>Crea un recuadro de selección definido por el usuario a partir secuencia de títulos ((z)), una lista de objetos ((y)) y el número de objetos por defecto ((x)) que se van a resaltar.&lt;br&gt;C (\mathbf{\text{PRG}} \mathbf{\text{NXT}} \mathbf{\text{EXEC}} \mathbf{\text{CHOOS}})</td>
<td>H-3</td>
</tr>
<tr>
<td>CHR</td>
<td>Convierte un código de caracteres ((x)) a una secuencia de un carácter.&lt;br&gt;C (\mathbf{\text{PRG}} \mathbf{\text{TYPE}} \mathbf{\text{NXT}} \mathbf{\text{CHR}})</td>
<td>H-3</td>
</tr>
<tr>
<td>CIRCL</td>
<td>Traza un círculo con el centro en la marca y un radio igual a la distancia existente entre la marca y el cursor.&lt;br&gt;O (\mathbf{\text{PICTURE}} \mathbf{\text{EDIT}} \mathbf{\text{CIRCL}})</td>
<td>9-4</td>
</tr>
<tr>
<td>CKSM</td>
<td>Selecciona el esquema de comprobación de detección de errores ((x)).&lt;br&gt;C (\mathbf{\text{I/O}} \mathbf{\text{OPAR}} \mathbf{\text{CKSM}})</td>
<td>H-3</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Despeja la pila.&lt;br&gt;C (\mathbf{\text{CLEAR}}) o (\mathbf{\text{CLEAR}})</td>
<td>3-5</td>
</tr>
<tr>
<td>CLK</td>
<td>Activa y desactiva la visualización del reloj.&lt;br&gt;O (\mathbf{\text{MODES}} \mathbf{\text{MISC}} \mathbf{\text{CLK}})</td>
<td>4-11</td>
</tr>
<tr>
<td>CLKADJ</td>
<td>Añade (x) tic-tacs del reloj ((1\ \text{tic-tac} = \frac{1}{512} \text{segundos})) a la hora del sistema.&lt;br&gt;C (\mathbf{\text{TIME}} \mathbf{\text{NXT}} \mathbf{\text{NXT}} \mathbf{\text{CLK}})</td>
<td>H-3</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>CLLCD</td>
<td>Despeja la pantalla de la pila (pero no borra la pila en sí). C [PRG NXT OUT CLLCD]</td>
<td></td>
</tr>
<tr>
<td>CLOSEIO</td>
<td>Cierra el puerto I/O (entrada/salida). C [I/O NXT CLOSE]</td>
<td></td>
</tr>
<tr>
<td>CLΣ</td>
<td>Elimina los datos estadísticos de ΣDAT. C [STAT DATA CLZ]</td>
<td></td>
</tr>
<tr>
<td>CLUSR</td>
<td>Borra todas las variables de usuario del directorio actual. C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>CLVAR</td>
<td>Borra todas las variables de usuario del directorio actual. C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>CNCT</td>
<td>Conmuta el indicador que controla si los puntos de una representación gráfica están conectados o no con segmentos de línea. O [PLOT NXT FLAG CHCT]</td>
<td></td>
</tr>
<tr>
<td>CNRM</td>
<td>Calcula la norma de columnas de un sistema (x). C [MTH MATR NORM CNRM]</td>
<td>14-9</td>
</tr>
<tr>
<td>CNTR</td>
<td>Traza de nuevo un gráfico con el centro en la posición actual del cursor. O [PICTURE ZOOM NXT CHTR]</td>
<td>22-9</td>
</tr>
<tr>
<td>→COL</td>
<td>Transforma una matriz (x) en una serie de vectores de columna. C [MTH MATR COL →COL]</td>
<td>14-4</td>
</tr>
<tr>
<td>+COL</td>
<td>Inserta una fila de ceros en la columna actual en la aplicación MatrixWriter. O [MATRIX NXT +COL]</td>
<td>8-8</td>
</tr>
<tr>
<td>COL+</td>
<td>Inserta un vector de columna (y) en un sistema (x) como la columna x. C [MTH MATR COL COL+]</td>
<td>14-6</td>
</tr>
<tr>
<td>-COL</td>
<td>Borra la columna actual en la aplicación MatrixWriter. O [MATRIX NXT COL -]</td>
<td>8-8</td>
</tr>
<tr>
<td>COL-</td>
<td>Borra la columna x de un sistema y. C [MTH MATR COL COL]</td>
<td>14-7</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>COL→</td>
<td>Transforma una serie de (x) vectores de columna ((y, z, \text{etc.})) en una matriz que contenga dichos vectores como columnas.</td>
<td>14-5</td>
</tr>
<tr>
<td>COL∞</td>
<td>Especifica las columnas dependientes e independientes de (\Sigma \text{DAT}).</td>
<td>H-4</td>
</tr>
<tr>
<td>COLCT</td>
<td>Recoge los términos pareados de la expresión ((x)).</td>
<td>20-19</td>
</tr>
<tr>
<td></td>
<td>C (\rightarrow) \text{SYMBOLIC} \text{ COLCT}</td>
<td></td>
</tr>
<tr>
<td>COLCT</td>
<td>Recoge los términos pareados de la subexpresión especificada.</td>
<td>20-23</td>
</tr>
<tr>
<td></td>
<td>O (\rightarrow) \text{EQUATION} (\rightarrow) \text{RULES} (\rightarrow) \text{NXT} \text{ COLCT}</td>
<td></td>
</tr>
<tr>
<td>COLCT</td>
<td>Recoge los términos pareados de la expresión del campo actual.</td>
<td>20-30</td>
</tr>
<tr>
<td></td>
<td>O (\rightarrow) \text{SYMBOLIC} \text{Manip expr...} \text{ COLCT}</td>
<td></td>
</tr>
<tr>
<td>COMB</td>
<td>Devuelve el número de combinaciones de (y) elementos tomados de (x) en (x).</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>F (\text{MTH} \rightarrow \text{NXT} \rightarrow \text{PROB} \rightarrow \text{COMB} )</td>
<td></td>
</tr>
<tr>
<td>CON</td>
<td>Crea un sistema constante a partir de una lista de dimensiones ((y)) y el número de constante ((x)).</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>C (\text{MTH} \rightarrow \text{MATR} \rightarrow \text{MAKE} \rightarrow \text{CON} )</td>
<td></td>
</tr>
<tr>
<td>COND</td>
<td>Estima el número de condición de una matriz cuadrada ((x)).</td>
<td>14-10</td>
</tr>
<tr>
<td></td>
<td>C (\text{MTH} \rightarrow \text{MATR} \rightarrow \text{HORN} \rightarrow \text{COND} )</td>
<td></td>
</tr>
<tr>
<td>CONIC</td>
<td>Selecciona el tipo de representación gráfica CONIC (CONICA).</td>
<td>23-13</td>
</tr>
<tr>
<td></td>
<td>C (\rightarrow) \text{PLOT} \rightarrow \text{ETYPE} \rightarrow \text{CONIC} )</td>
<td></td>
</tr>
<tr>
<td>CONJ</td>
<td>Devuelve el conjugado complejo de (x).</td>
<td>12-14</td>
</tr>
<tr>
<td></td>
<td>F (\text{MTH} \rightarrow \text{NXT} \rightarrow \text{COMPL} \rightarrow \text{NXT} \rightarrow \text{CONJ} )</td>
<td></td>
</tr>
<tr>
<td>CONLIB</td>
<td>Abre el catálogo de la Biblioteca de Constantes.</td>
<td>25-13</td>
</tr>
<tr>
<td></td>
<td>C (\rightarrow) \text{LIB} \rightarrow \text{LIB} \rightarrow \text{CONLIB} )</td>
<td></td>
</tr>
<tr>
<td>CONST</td>
<td>Devuelve el valor de la constante especificada ((x)).</td>
<td>25-15</td>
</tr>
<tr>
<td></td>
<td>F (\rightarrow) \text{LIB} \rightarrow \text{LIB} \rightarrow \text{CONS} )</td>
<td></td>
</tr>
<tr>
<td>CONT</td>
<td>Continúa el programa interrumpido.</td>
<td>29-9</td>
</tr>
<tr>
<td></td>
<td>C (\rightarrow) \text{CONT}</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>CONVERT</td>
<td>Convierte un objeto de unidades de medida ( y ) a las dimensiones de una unidad compatible diferente ( x ).</td>
<td>10-7</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{UNITS} \rightarrow \text{CONV} ]</td>
<td></td>
</tr>
<tr>
<td>COPY</td>
<td>Copia el objeto resaltado a una nueva ubicación.</td>
<td>5-10</td>
</tr>
<tr>
<td></td>
<td>[ O \rightarrow \text{MEMORY} \rightarrow \text{COPY} ]</td>
<td></td>
</tr>
<tr>
<td>CORR</td>
<td>Calcula el coeficiente de correlación de los datos estadísticos de ( \Sigma \text{DAT} ).</td>
<td>H-4</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{STAT} \rightarrow \text{FIT} \rightarrow \text{CORR} ]</td>
<td></td>
</tr>
<tr>
<td>COS</td>
<td>Coseno de un ángulo ( x ).</td>
<td>12-2</td>
</tr>
<tr>
<td></td>
<td>[ A \rightarrow \text{COS} ]</td>
<td></td>
</tr>
<tr>
<td>COSH</td>
<td>Coseno hiperbólico de un ángulo ( x ).</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>[ A \rightarrow \text{MTH} \rightarrow \text{HYP} \rightarrow \text{COSH} ]</td>
<td></td>
</tr>
<tr>
<td>COV</td>
<td>Calcula la covariación de los datos estadísticos de ( \Sigma \text{DAT} ).</td>
<td>H-4</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{STAT} \rightarrow \text{FIT} \rightarrow \text{COV} ]</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>Provoca el retorno de carro/alimentación de línea de la impresora.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{I/O} \rightarrow \text{PRINT} \rightarrow \text{CR} ]</td>
<td></td>
</tr>
<tr>
<td>CRDIR</td>
<td>Crea un directorio llamado ( z ).</td>
<td>H-4</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{MEMORY} \rightarrow \text{DIR} \rightarrow \text{CRDIR} ]</td>
<td></td>
</tr>
<tr>
<td>CROSS</td>
<td>Producto de cruz de dos vectores ( y \times x ).</td>
<td>13-5</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{MTH} \rightarrow \text{VECTR} \rightarrow \text{CROSS} ]</td>
<td></td>
</tr>
<tr>
<td>CST</td>
<td>Devuelve el contenido de la variable ( \text{CST} ).</td>
<td>30-1</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{MODES} \rightarrow \text{MENU} \rightarrow \text{CST} ]</td>
<td></td>
</tr>
<tr>
<td>CSWP</td>
<td>Cambia la columna ( y ) por la columna ( x ) de una matriz ( z ).</td>
<td>14-7</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{MTH} \rightarrow \text{MATR} \rightarrow \text{COL} \rightarrow \text{CSWP} ]</td>
<td></td>
</tr>
<tr>
<td>CYLIN</td>
<td>Selecciona el modo de vector cilíndrico.</td>
<td>13-2</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{MTH} \rightarrow \text{VECTR} \rightarrow \text{NXT} \rightarrow \text{CYLIN} ]</td>
<td></td>
</tr>
<tr>
<td>C→PX</td>
<td>Convierte las coordenadas de unidades de usuario ( x ) a coordenadas de puntos.</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>[ C \rightarrow \text{PRG} \rightarrow \text{PIC} \rightarrow \text{NXT} \rightarrow \text{C→PX} ]</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>C→R</td>
<td>Descompone un número complejo ((x)) en dos números reales.</td>
<td>12-14</td>
</tr>
<tr>
<td></td>
<td>[\text{MTH} \ \text{NXT} \ \text{CMPL} \ \text{C→R}] [\text{C} \ \text{PRG} \ \text{TYPE} \ \text{NXT} \ \text{C→R}]</td>
<td></td>
</tr>
<tr>
<td>←D</td>
<td>Distribución a la izquierda.</td>
<td>20-26</td>
</tr>
<tr>
<td></td>
<td>[O \ \text{EQUATION} \ \text{RULES} \ \text{←D}]</td>
<td></td>
</tr>
<tr>
<td>←D</td>
<td>Ejecuta (→D) hasta que no se produzcan cambios en la subexpresión.</td>
<td>20-28</td>
</tr>
<tr>
<td></td>
<td>[O \ \text{EQUATION} \ \text{RULES} \ \text{←D}]</td>
<td></td>
</tr>
<tr>
<td>D→</td>
<td>Distribución a la derecha.</td>
<td>20-26</td>
</tr>
<tr>
<td></td>
<td>[O \ \text{EQUATION} \ \text{RULES} \ \text{D→}]</td>
<td></td>
</tr>
<tr>
<td>←D</td>
<td>Ejecuta (D→) hasta que no se produzcan cambios en la subexpresión.</td>
<td>20-28</td>
</tr>
<tr>
<td></td>
<td>[O \ \text{EQUATION} \ \text{RULES} \ \text{←D}]</td>
<td></td>
</tr>
<tr>
<td>D→</td>
<td>Calcula el factor de rozamiento de Darcy del flujo de un fluido como una función de la desigualdad relativa de la tubería ((y)) y el número de Reynolds ((x)) del flujo.</td>
<td>H-4</td>
</tr>
<tr>
<td></td>
<td>[F \ \text{EQUATION} \ \text{RULES} \ \text{D→}]</td>
<td></td>
</tr>
<tr>
<td>DARCY</td>
<td>Devuelve el contenido de la variable de reserva (ΣDAT) a la pila.</td>
<td>21-1</td>
</tr>
<tr>
<td></td>
<td>[C \ \text{STAT} \ \text{DATA} \ \text{ΣDAT}]</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>Devuelve la fecha del sistema.</td>
<td>16-2</td>
</tr>
<tr>
<td></td>
<td>[C \ \text{TIME} \ \text{DATE}]</td>
<td></td>
</tr>
<tr>
<td>DATE+</td>
<td>Suma o resta un número de días ((x)) de una fecha ((y)).</td>
<td>16-2</td>
</tr>
<tr>
<td></td>
<td>[C \ \text{TIME} \ \text{NXT} \ \text{DATE+}]</td>
<td></td>
</tr>
<tr>
<td>←DATE</td>
<td>Fija la fecha del sistema en la fecha especificada ((x)).</td>
<td>H-5</td>
</tr>
<tr>
<td></td>
<td>[C \ \text{TIME} \ \text{DATE}]</td>
<td></td>
</tr>
<tr>
<td>DBUG</td>
<td>Interrumpe la ejecución de un programa ((x)) antes del primer objeto.</td>
<td>29-9</td>
</tr>
<tr>
<td></td>
<td>[O \ \text{PRG} \ \text{NXT} \ \text{RUN} \ \text{DBG}]</td>
<td></td>
</tr>
<tr>
<td>DDAYS</td>
<td>Devuelve el número de días entre la fecha(_1) ((y)) y la fecha(_2) ((x)).</td>
<td>16-2</td>
</tr>
<tr>
<td></td>
<td>[C \ \text{TIME} \ \text{NXT} \ \text{DDAYS}]</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>DEC</td>
<td>fija la base decimal.</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>C MTH BASE DEC</td>
<td></td>
</tr>
<tr>
<td>DECR</td>
<td>Reduce en 1 el valor de una variable (x).</td>
<td>H-5</td>
</tr>
<tr>
<td></td>
<td>C MEMORY ARITH DECR</td>
<td></td>
</tr>
<tr>
<td>DEFINE</td>
<td>Crea una variable o una función definida por el usuario a partir de la ecuación (x)..&lt;</td>
<td>5-14</td>
</tr>
<tr>
<td></td>
<td>C DEF</td>
<td>11-7</td>
</tr>
<tr>
<td>→DEF</td>
<td>Amplía las funciones trigonométricas e hiperbólicas en términos de EXP y LN,</td>
<td>20-28</td>
</tr>
<tr>
<td></td>
<td>O EQUATION RULES →DEF</td>
<td></td>
</tr>
<tr>
<td>DEG</td>
<td>Fija el modo Degrees (Grados Sexagesimales).</td>
<td>4-4</td>
</tr>
<tr>
<td></td>
<td>C MODES ANG DEG</td>
<td></td>
</tr>
<tr>
<td>DEL</td>
<td>Borra un área cuyas esquinas opuestas están definidas por la marca y el cursor.</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td>C PICTURE DEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O PICTURE EDIT NXT DEL</td>
<td></td>
</tr>
<tr>
<td>←DEL</td>
<td>Borra todos los caracteres existentes entre la posición del cursor y el principio de la palabra.</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>C EDIT DEL</td>
<td></td>
</tr>
<tr>
<td>←→DEL</td>
<td>Borra todos los caracteres existentes entre la posición del cursor y el principio de la línea.</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>C EDIT DEL</td>
<td></td>
</tr>
<tr>
<td>DEL→</td>
<td>Borra todos los caracteres existentes entre la posición del cursor y el principio de la siguiente palabra.</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>C EDIT DEL</td>
<td></td>
</tr>
<tr>
<td>→DEL→</td>
<td>Borra todos los caracteres existentes entre el cursor y el final de la línea.</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>C EDIT DEL</td>
<td></td>
</tr>
<tr>
<td>DELALARM</td>
<td>Borra una alarma (x) de la lista de alarmas del sistema.</td>
<td>H-5</td>
</tr>
<tr>
<td></td>
<td>C TIME ALARM DELAL</td>
<td></td>
</tr>
<tr>
<td>DELAY</td>
<td>Fija el tiempo de retardo (x segundos) entre las líneas de la impresión.</td>
<td>27-4</td>
</tr>
<tr>
<td></td>
<td>C I/O PRINT PPRPA DELAY</td>
<td></td>
</tr>
</tbody>
</table>

G-12  Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELKEYS</td>
<td>Borra la asignación de la tecla de usuario especificada de una o más teclas (x).</td>
<td>30-7</td>
</tr>
<tr>
<td></td>
<td>C (\text{{MODES}} \text{{KEYS}} \text{{DELK}})</td>
<td></td>
</tr>
<tr>
<td>DEPEND</td>
<td>Especifica el nombre (x) de la variable de representaciones gráficas dependiente.</td>
<td>H-5</td>
</tr>
<tr>
<td></td>
<td>C (\text{{PLOT}} \text{{DEPN}})</td>
<td></td>
</tr>
<tr>
<td>DEPTH</td>
<td>Devuelve el número de objetos de la pila.</td>
<td>3-11</td>
</tr>
<tr>
<td></td>
<td>C (\text{{DEPTH}})</td>
<td></td>
</tr>
<tr>
<td>DET</td>
<td>Halla el determinante de una matriz cuadrada (x).</td>
<td>14-10</td>
</tr>
<tr>
<td></td>
<td>C (\text{{MTH}} \text{{MATR}} \text{{NORM}} \text{{NXT}} \text{{DET}})</td>
<td></td>
</tr>
<tr>
<td>DETACH</td>
<td>Elimina la biblioteca especificada (x) del directorio actual.</td>
<td>28-9</td>
</tr>
<tr>
<td></td>
<td>C (\text{{LIBRARY}} \text{{DETHC}})</td>
<td></td>
</tr>
<tr>
<td>(\rightarrow)DIAG</td>
<td>Devuelve el vector de diagonales principal de una matriz (x).</td>
<td>14-4</td>
</tr>
<tr>
<td></td>
<td>C (\text{{MTH}} \text{{MATR}} \text{{NXT}} \text{{DIAG}})</td>
<td></td>
</tr>
<tr>
<td>DIAG(\rightarrow)</td>
<td>Crea una matriz a partir de un vector de elementos diagonales (y) y una lista de dimensiones (x).</td>
<td>14-6</td>
</tr>
<tr>
<td></td>
<td>C (\text{{MTH}} \text{{MATR}} \text{{NXT}} \text{{DIAG}})</td>
<td></td>
</tr>
<tr>
<td>DIFEQ</td>
<td>Selecciona el tipo de representación gráfica de ecuación diferencial.</td>
<td>23-12</td>
</tr>
<tr>
<td></td>
<td>C (\text{{PLOT}} \text{{TYPE}} \text{{DIFEQ}})</td>
<td></td>
</tr>
<tr>
<td>DINV</td>
<td>Doble inversión.</td>
<td>20-23</td>
</tr>
<tr>
<td></td>
<td>O (\text{{EQUATION}} \text{{RULES}} \text{{DINV}})</td>
<td></td>
</tr>
<tr>
<td>DISP</td>
<td>Muestra en pantalla un objeto (y) en la (z^3) línea de visualización.</td>
<td>H-5</td>
</tr>
<tr>
<td></td>
<td>C (\text{{PRG}} \text{{NXT}} \text{{OUT}} \text{{DISP}})</td>
<td></td>
</tr>
<tr>
<td>DNEG</td>
<td>Doble negación.</td>
<td>20-23</td>
</tr>
<tr>
<td></td>
<td>O (\text{{EQUATION}} \text{{RULES}} \text{{DNEG}})</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>Inicia una iteración indeterminada.</td>
<td>29-14</td>
</tr>
<tr>
<td></td>
<td>C (\text{{PRG}} \text{{BRCH}} \text{{DO}} \text{{DO}})</td>
<td></td>
</tr>
<tr>
<td>(\leftarrow)DO</td>
<td>Escribe DO UNTIL END.</td>
<td>29-14</td>
</tr>
<tr>
<td></td>
<td>O (\text{{PRG}} \text{{BRCH}} \text{{DO}})</td>
<td></td>
</tr>
<tr>
<td>DOERR</td>
<td>Cancela la ejecución del programa y muestra en pantalla el mensaje específico (x).</td>
<td>H-6</td>
</tr>
<tr>
<td></td>
<td>C (\text{{PRG}} \text{{NXT}} \text{{ERROR}} \text{{DOERR}})</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>DOLIST</td>
<td>Ejecuta un programa o comando ((x)) sobre un número especificado de listas ((y)) que están en la pila.</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td>\texttt{C PRG LIST PROC DOLIS}</td>
<td></td>
</tr>
<tr>
<td>DOSUBS</td>
<td>Ejecuta un programa o comando ((x)) sobre un número especificado de elementos a la vez ((y)) dentro de una lista ((z)).</td>
<td>17-5</td>
</tr>
<tr>
<td></td>
<td>\texttt{C PRG LIST PROC DOSUB}</td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>Producto de punto ((y \times x)) de dos vectores.</td>
<td>13-5</td>
</tr>
<tr>
<td></td>
<td>\texttt{C MTH VECTR DOT}</td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>Activa los puntos a medida que se desplaza el cursor.</td>
<td>9-3</td>
</tr>
<tr>
<td></td>
<td>\texttt{O PICTURE EDIT DOT}</td>
<td></td>
</tr>
<tr>
<td>DOT–</td>
<td>Desactiva los puntos a medida que se desplaza el cursor.</td>
<td>9-3</td>
</tr>
<tr>
<td></td>
<td>\texttt{O PICTURE EDIT DOT}</td>
<td></td>
</tr>
<tr>
<td>DRAW</td>
<td>Representa gráficamente una ecuación sin los ejes.</td>
<td>22-1</td>
</tr>
<tr>
<td></td>
<td>\texttt{C PLOT DRAW}</td>
<td></td>
</tr>
<tr>
<td>DRAW</td>
<td>Representa gráficamente una función según se ha especificado en la plantilla de entrada actual.</td>
<td>22-1</td>
</tr>
<tr>
<td></td>
<td>\texttt{O [plantilla de entrada de representaciones gráficas]}</td>
<td></td>
</tr>
<tr>
<td>DRAx</td>
<td>Traza los ejes.</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>\texttt{C PLOT DRAx}</td>
<td></td>
</tr>
<tr>
<td>DROP</td>
<td>Elimina el objeto ((x)) del nivel 1; desplaza todos los objetos restantes a un nivel inferior.</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>\texttt{C DROP}</td>
<td></td>
</tr>
<tr>
<td>DROPN</td>
<td>Elimina (x) objetos de la pila.</td>
<td>3-11</td>
</tr>
<tr>
<td></td>
<td>\texttt{C [STACK NXT] DRPN}</td>
<td></td>
</tr>
<tr>
<td>DRPN</td>
<td>Elimina todos los objetos de la pila que se encuentran en la posición actual del puntero de pila y por debajo de ésta.</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>\texttt{O [STACK NXT] DRPN}</td>
<td></td>
</tr>
<tr>
<td>DROP2</td>
<td>Elimina los dos primeros objetos ((y y x)) de la pila.</td>
<td>3-11</td>
</tr>
<tr>
<td></td>
<td>\texttt{C [STACK NXT] DROP2}</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| DTAG                     | Elimina todas las etiquetas de identificación de un objeto \((x)\).  
C \[ PRG \text{ TYPE } \text{ NXT } \text{ DTAG } \] | H-6    |
| DUP                      | Duplica el objeto \((x)\).  
C \[ \text{ENTER} \text{ (cuando no existe línea de comandos) o } \leftarrow \text{STACK} \text{ NXT } \text{ DUP } \] | 3-4    |
| DUPN                     | Duplica \(x\) objetos de la pila.  
C \[ \leftarrow \text{STACK} \text{ NXT } \text{ DUPN } \] | 3-11   |
| DUPN                     | Duplica todos los objetos de la pila desde la posición actual del puntero de pila hasta el nivel 1.  
O \[ \rightarrow \text{STACK} \text{ NXT } \text{ DUPN } \] | 3-8    |
| DUP2                     | Duplica los objetos de los niveles 1 y 2 de la pila.  
C \[ \leftarrow \text{STACK} \text{ NXT } \text{ DUP2 } \] | 3-11   |
| D\(\rightarrow\)R        | Conversión de grados sexagesimales a radianes.  
F \[ \text{MTH} \text{ REH} \text{ NXT} \text{ NXT } \text{ D+R } \] | 12-7   |
| e                        | Devuelve la constante simbólica \(e\) (\(6.71828182846\) dependiendo del indicador \(-2\)).  
F \[ \alpha \leftrightarrow \text{E} \text{ MTH} \text{ NXT } \text{ CONS } \text{ E } \] | 11-4   |
| ECHO                     | Copia el objeto del nivel de la pila actual a la línea de comandos.  
O \[ \rightarrow \text{STACK} \text{ ECHO } \] | 3-7    |
| EDIT                     | Copia el objeto seleccionado en la línea de comandos y selecciona el menú EDIT.  
O \[ \text{[plantilla de entrada]} \text{ EDIT } \] | 6-5    |
| EDIT                     | Copia la subexpresión en la línea de comandos y selecciona el menú EDIT.  
O \[ \leftarrow \text{EQUATION} \leftarrow \text{EDIT } \] | 7-11   |
| EDIT                     | Edita la celda de matriz actual.  
O \[ \rightarrow \text{MATRIX} \text{ EDIT } \] | 8-8    |
| EEX                      | Escribe E o desplaza el cursor al exponente existente en la línea de comandos.  
O \[ \text{EEX} \] | 2-2    |
| EGV                      | Calcula los vectores y valores propios de una matriz cuadrada \((x)\).  
C \[ \text{MTH} \text{ MATR} \text{ NXT } \text{ EGV } \] | 14-23  |
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGVL</td>
<td>Calcula los valores propios de una matriz cuadrada ( x ).</td>
<td>14-22</td>
</tr>
<tr>
<td>C [MTH][MTH][NXT][EGVL]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELSE</td>
<td>Inicia una operación falsa.</td>
<td>29-11</td>
</tr>
<tr>
<td>[PRG][BRCH][IF][ELSE]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C [PRG][NXT][ERROR][IFERR][ELSE]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>END</td>
<td>Finaliza las estructuras del programa.</td>
<td>29-10</td>
</tr>
<tr>
<td>[PRG][BRCH][IF][END]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PRG][BRCH][CASE][END]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PRG][BRCH][DO][END]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PRG][BRCH][WHILE][END]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C [PRG][NXT][ERROR][IFERR][END]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDSUB</td>
<td>Contador de índice de trama de DOSUBS.</td>
<td>17-6</td>
</tr>
<tr>
<td>C [PRG][LIST][PROC][ENDS]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG</td>
<td>Fija el modo de pantalla en Ingeniería, mostrando en pantalla ( x + 1 ) dígitos significativos.</td>
<td>4-2</td>
</tr>
<tr>
<td>C [MODES][FMT][ENG]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td>Devuelve el contenido de la variable reservada ( EQ ).</td>
<td>22-13</td>
</tr>
<tr>
<td>C [PLOT][NXT][EQ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C [PLOT][EQ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ→</td>
<td>Descompone la ecuación ( x ) en sus partes derecha e izquierda.</td>
<td>H-6</td>
</tr>
<tr>
<td>C [PRG][TYPE][NXT][EQ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQNLIB</td>
<td>Extra en la Biblioteca de Ecuaciones.</td>
<td></td>
</tr>
<tr>
<td>C [EQ][LIB][EQN][LIB][LIB]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>Borra ( PICT ).</td>
<td>22-1</td>
</tr>
<tr>
<td>C [PICTURE][EDIT][NXT][ERASE]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C [PICTURE][CLEAR]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>Borra ( PICT ).</td>
<td>22-1</td>
</tr>
<tr>
<td>O [PLOT][ERASE]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRM</td>
<td>Devuelve el último mensaje de error.</td>
<td>H-6</td>
</tr>
<tr>
<td>C [PRG][NXT][ERROR][ERRM]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRN</td>
<td>Devuelve el último número de error.</td>
<td>H-7</td>
</tr>
<tr>
<td>C [PRG][NXT][ERROR][ERRN]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ERR0</td>
<td>Borra el último número de error. C [PRG][NXT]ERROR[ERROR]</td>
<td>7-13</td>
</tr>
<tr>
<td>EVAL</td>
<td>Evalúa el objeto (x). C [EVAL]</td>
<td></td>
</tr>
<tr>
<td>EXIT</td>
<td>Sale del entorno de opciones del EquationWriter. O [EQUATION][EXIT]</td>
<td>20-22</td>
</tr>
<tr>
<td>EXP</td>
<td>Constante e elevada a la potencia del objeto (x). A [e^x]</td>
<td>12-2</td>
</tr>
<tr>
<td>EXPAN</td>
<td>Amplía un objeto algebraico (x). C [SYMBOLIC][EXPR]</td>
<td>20-20</td>
</tr>
<tr>
<td>EXPND</td>
<td>Amplía el objeto algebraico del campo actual. O [SYMBOLIC][Manip expr...][EXPR]</td>
<td>20-30</td>
</tr>
<tr>
<td>EXPFIT</td>
<td>Fija el modelo de ajuste de curvas en exponencial. C [STAT][EXPR][MODEL][EXPR]</td>
<td></td>
</tr>
<tr>
<td>EXPM</td>
<td>Exponencial natural menos 1 (e^x - 1). A [MTH][HYP][NXT][EXPR]</td>
<td>12-3</td>
</tr>
<tr>
<td>EXPR</td>
<td>Resalta la subexpresión en la que el objeto especificado es la función de más alto nivel. O [EQUATION][EXPR]</td>
<td>7-13</td>
</tr>
<tr>
<td>EXTR</td>
<td>Desplaza el cursor de gráficos al extremo más cercano. Muestra en pantalla las coordenadas y las devuelve a la pila. O [PICTURE][ECH][EXTR]</td>
<td>22-12</td>
</tr>
<tr>
<td>EYEP</td>
<td>Especifica las coordenadas x (z), y (y) y z (x) del punto de vista en una representación gráfica de perspectiva. C [PLOT][NXT][30][VP][NXT][EYEP]</td>
<td>H-7</td>
</tr>
<tr>
<td>E^</td>
<td>Sustituye el producto de las potencias por potencia de potencias. O [EQUATION][RULES][E^x]</td>
<td>20-27</td>
</tr>
<tr>
<td>E()</td>
<td>Sustituye potencia de potencias por producto de potencias. O [EQUATION][RULES][E()]</td>
<td>20-27</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>F0λ</td>
<td>Calcula la fracción del poder emisivo de cuerpo negro total a una temperatura dada (x) entre longitudes de onda entre 0 y (λ) ((y)). F (→) EQ LIB UTILS FDλ</td>
<td>H-7</td>
</tr>
<tr>
<td>FACT</td>
<td>Halla el producto factorial de (x). Igual que (!). C Deberá escribirse.</td>
<td>H-7</td>
</tr>
<tr>
<td>FANNING</td>
<td>Calcula el factor de rozamiento de distribución del flujo de un fluido como una función de la desigualdad relativa de la tubería ((y)) y el número de Reynolds ((x)) del fluido. F (→) EQ LIB UTILS FANN</td>
<td>H-8</td>
</tr>
<tr>
<td>FC?</td>
<td>Comprueba si no está fijado el indicador especificado ((x)). PRG TEST NXT NXT FC?</td>
<td>4-9</td>
</tr>
<tr>
<td>C MODES FC?</td>
<td>Comprueba si no está fijado el indicador especificado ((x)) y a continuación lo elimina. PRG TEST NXT NXT FC?C</td>
<td>4-9</td>
</tr>
<tr>
<td>FFT</td>
<td>Calcula la Transformada Discreta de Fourier de un sistema ((x)). C MTH NXT FFT FFT</td>
<td>13-9</td>
</tr>
<tr>
<td>FINDALARM</td>
<td>Devuelve la primera alarma producida después de la hora especificada ((x)). C (←) TIME HRT FINDA</td>
<td>H-8</td>
</tr>
<tr>
<td>FINISH</td>
<td>Sale del modo de servidor Kermit. C (←) I/O SRVR FINIS</td>
<td>27-11</td>
</tr>
<tr>
<td>FIX</td>
<td>Selecciona el modo de la pantalla Fix (Fijar) para (x) lugares decimales. C (←) MODES MFT FIX</td>
<td>4-2</td>
</tr>
<tr>
<td>FLOOR</td>
<td>Devuelve el siguiente entero menor que (x). F MTH REAL NXT NXT FLOOR</td>
<td>12-9</td>
</tr>
<tr>
<td>FM</td>
<td>Selecciona la coma como símbolo decimal. O (←) MODES MFT FM</td>
<td>4-10</td>
</tr>
<tr>
<td>FOR</td>
<td>Inicia una iteración determinada mediante los valores de contrainteración inicial ((y)) y final ((x)). C PRG BRCH FOR FOR</td>
<td>29-13</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>←FOR</td>
<td>Escribe FOR NEXT.</td>
<td>29-13</td>
</tr>
<tr>
<td>O</td>
<td>PRG BRCH ←FOR</td>
<td></td>
</tr>
<tr>
<td>→FOR</td>
<td>Escribe FOR STEP.</td>
<td>29-14</td>
</tr>
<tr>
<td>O</td>
<td>PRG BRCH →FOR</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>Devuelve la parte fraccional de un número (x).</td>
<td>12-9</td>
</tr>
<tr>
<td>F</td>
<td>MTH REAL NXT FP</td>
<td></td>
</tr>
<tr>
<td>FREE1</td>
<td>Libera la RAM anteriormente fundida en la puerta 1 y desplaza una lista de objetos (x) de la puerta lógica 0 a la puerta 1.</td>
<td>28-18</td>
</tr>
<tr>
<td>C</td>
<td>LIBRARY FREE1</td>
<td></td>
</tr>
<tr>
<td>FREEZE</td>
<td>Congela un área de la pantalla (x) hasta que se pulsa una tecla.</td>
<td>H-8</td>
</tr>
<tr>
<td>C</td>
<td>PRG NXT OUT FREEZE</td>
<td></td>
</tr>
<tr>
<td>FS?</td>
<td>Comprueba si el indicador especificado (x) está fijado.</td>
<td>4-9</td>
</tr>
<tr>
<td></td>
<td>PRG TEST NXT NXT FS?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C MODES FLAG FS?</td>
<td></td>
</tr>
<tr>
<td>FS?C</td>
<td>Comprueba si el indicador especificado (x) está fijado y a continuación lo elimina.</td>
<td>4-9</td>
</tr>
<tr>
<td></td>
<td>PRG TEST NXT NXT FS?C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C MODES FLAG FS?C</td>
<td></td>
</tr>
<tr>
<td>FUNCTION</td>
<td>Selecciona el tipo de representación gráfica FUNCTION (FUNCTION).</td>
<td>23-1</td>
</tr>
<tr>
<td></td>
<td>C PLOT PTYPE FUHC</td>
<td></td>
</tr>
<tr>
<td>FV</td>
<td>Fija la futura cantidad del valor del solucionador de amortizaciones.</td>
<td>18-17</td>
</tr>
<tr>
<td></td>
<td>C SOLVE FVM SOLVR FSV</td>
<td></td>
</tr>
<tr>
<td>F(X)</td>
<td>Muestra en pantalla el valor de la función para un valor x especificado mediante el cursor. Devuelve el valor de la función a la pila.</td>
<td>22-12</td>
</tr>
<tr>
<td>O</td>
<td>PICTURE FCN NXT F(X)</td>
<td></td>
</tr>
<tr>
<td>F'</td>
<td>Representa gráficamente la primera derivada de la función, representa de nuevo la función y añade la derivada a EQ.</td>
<td>22-12</td>
</tr>
<tr>
<td>O</td>
<td>PICTURE FCN NXT F'</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>GET</td>
<td>Toma el elemento de la posición especificada ((x)) del sistema o de la lista ((y)).</td>
<td>14-8</td>
</tr>
<tr>
<td></td>
<td>C [PRG] LIST ELEM GET</td>
<td></td>
</tr>
<tr>
<td>GETI</td>
<td>Toma el elemento de la posición especificada ((x)) del sistema o de la lista ((y)) e incrementa el índice.</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>C [PRG] LIST ELEM GETI</td>
<td></td>
</tr>
<tr>
<td>GOR</td>
<td>Superpone un objeto de gráficos ((x)) sobre otro ((z)) con unas coordenadas especificadas ((y)), mediante una OR lógica para determinar el estado de los puntos.</td>
<td>9-11</td>
</tr>
<tr>
<td></td>
<td>C [PRG] GROB GOR</td>
<td></td>
</tr>
<tr>
<td>GO†</td>
<td>Fija el modo de entrada de arriba a abajo.</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>O [M] MATRIX G0</td>
<td></td>
</tr>
<tr>
<td>GO→</td>
<td>fija el modo de entrada de izquierda a derecha.</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>O [M] MATRIX G0+</td>
<td></td>
</tr>
<tr>
<td>GRAD</td>
<td>Selecciona el modo de ángulo Grads (Grados centísimos).</td>
<td>4-4</td>
</tr>
<tr>
<td></td>
<td>C [M] MODES RNG GRAD</td>
<td></td>
</tr>
<tr>
<td>GRAPH</td>
<td>Entra en el entorno de Gráficos. Esto es sólo por compatibilidad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>GRIDMAP</td>
<td>Selecciona el tipo de representación gráfica GRIDMAP (MAPA DE RED).</td>
<td>23-38</td>
</tr>
<tr>
<td></td>
<td>C [M] PLOT NXT SD PTYPE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[GRID]</td>
<td></td>
</tr>
<tr>
<td>→GROB</td>
<td>Convierte el objeto ((y)) en un objeto de gráficos de un tamaño especificado ((x)).</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>C [PRG] GROB →GRO</td>
<td></td>
</tr>
<tr>
<td>GXOR</td>
<td>Sobreponer un objeto de gráficos ((x)) sobre otro ((z)) en la ubicación especificada ((y)), utilizando la XOR lógica para determinar el estado de los puntos.</td>
<td>9-11</td>
</tr>
<tr>
<td></td>
<td>C [PRG] GROB GXOR</td>
<td></td>
</tr>
<tr>
<td>*H</td>
<td>Multiplica la escala vertical de la representación gráfica por un factor ((x)).</td>
<td>H-8</td>
</tr>
<tr>
<td></td>
<td>C [M] PLOT PPAR NXT *H</td>
<td></td>
</tr>
</tbody>
</table>

G-20 Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALT</td>
<td>Interrumpe la ejecución de un programa. C [PRG][NXT][RUN][HALT]</td>
<td>29-10</td>
</tr>
<tr>
<td>HEAD</td>
<td>Toma el primer elemento de una lista (x). C [PRG][LIST][ELEM][NXT][HEAD]</td>
<td>H-9</td>
</tr>
<tr>
<td>HEX</td>
<td>Fija la base hexadecimal. C [MTH][BASE][HEX]</td>
<td>15-1</td>
</tr>
<tr>
<td>HISTOGRAM</td>
<td>Selecciona el tipo de representación gráfica. HISTOGRAM (HISTOGRAMA). C [PLOT][NXT][STAT][PTYPE][HISTO]</td>
<td>23-20</td>
</tr>
<tr>
<td>HISTPLOT</td>
<td>Traza un histograma de datos en ( \Sigma DAT ). C [STAT][PLOT][HISTP]</td>
<td>21-10</td>
</tr>
<tr>
<td>HMS+</td>
<td>Suma dos horas ((y, x)) en formato HMS. C [TIME][NXT][HMS+]</td>
<td>12-7</td>
</tr>
<tr>
<td>HMS-</td>
<td>Resta una hora ((x)) de otra ((y)) en formato HMS. C [TIME][NXT][HMS-]</td>
<td>16-3</td>
</tr>
<tr>
<td>HMS→</td>
<td>Convierte una hora ((x)) de formato HMS a decimal. C [TIME][NXT][HMS→]</td>
<td>12-7</td>
</tr>
<tr>
<td>→HMS</td>
<td>Convierte una hora ((x)) de formato decimal a HMS. C [TIME][NXT][→HMS]</td>
<td>16-3</td>
</tr>
<tr>
<td>HOME</td>
<td>Convierte al directorio HOME en el directorio actual. C [HOME]</td>
<td>5-13</td>
</tr>
<tr>
<td>HZIN</td>
<td>Zoom horizontal dentro. O [PICTURE][ZOOM][NXT][HZIN]</td>
<td>22-9</td>
</tr>
<tr>
<td>HZOUTN</td>
<td>Zoom horizontal fuera. O [PICTURE][ZOOM][NXT][HZOUT]</td>
<td>22-9</td>
</tr>
<tr>
<td>i</td>
<td>Devuelve la constante simbólica (i = (\sqrt{-1})) o ((0,1))). F [I]</td>
<td>11-4</td>
</tr>
<tr>
<td>IDN</td>
<td>Crea una matriz de identidad cuadrada del tamaño especificado ((x)). C [MTH][MATR][MAKE][IDN]</td>
<td>14-3</td>
</tr>
</tbody>
</table>

**Indice de Operaciones**  G-21
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF</td>
<td>Inicia una operación de prueba.</td>
<td>29-10</td>
</tr>
<tr>
<td>C</td>
<td><strong>PRG</strong> <strong>ERCH</strong> <strong>IF</strong> <strong>IF</strong></td>
<td></td>
</tr>
<tr>
<td>← IF</td>
<td>Escribe IF THEN END.</td>
<td>29-10</td>
</tr>
<tr>
<td>O</td>
<td><strong>PRG</strong> <strong>ERCH</strong> ← <strong>IF</strong></td>
<td></td>
</tr>
<tr>
<td>→ IF</td>
<td>Escribe IF THEN ELSE END.</td>
<td>29-10</td>
</tr>
<tr>
<td>O</td>
<td><strong>PRG</strong> <strong>ERCH</strong> → <strong>IF</strong></td>
<td></td>
</tr>
<tr>
<td>IFERR</td>
<td>Inicia una operación de prueba.</td>
<td>29-16</td>
</tr>
<tr>
<td>C</td>
<td><strong>PRG</strong> <strong>NXT</strong> <strong>ERROR</strong> IFERR IFERR</td>
<td></td>
</tr>
<tr>
<td>← IFERR</td>
<td>Escribe IFERR THEN END.</td>
<td>29-16</td>
</tr>
<tr>
<td>O</td>
<td><strong>PRG</strong> <strong>NXT</strong> <strong>ERROR</strong> ← <strong>IFERR</strong></td>
<td></td>
</tr>
<tr>
<td>→ IFERR</td>
<td>Escribe IFERR THEN ELSE END.</td>
<td>29-16</td>
</tr>
<tr>
<td>O</td>
<td><strong>PRG</strong> <strong>NXT</strong> <strong>ERROR</strong> → <strong>IFERR</strong></td>
<td></td>
</tr>
<tr>
<td>IFFT</td>
<td>Calcula la Transformada Discreta Inversa de Fourier de un sistema (x).</td>
<td>13-9</td>
</tr>
<tr>
<td>C</td>
<td><strong>MTH</strong> <strong>NXT</strong> <strong>FFT</strong> <strong>IFFT</strong></td>
<td></td>
</tr>
<tr>
<td>IFT</td>
<td>Calcula un objeto (x) si el valor de prueba (y) es un número real distinto a cero.</td>
<td>H-9</td>
</tr>
<tr>
<td>C</td>
<td><strong>PRG</strong> <strong>ERCH</strong> <strong>NXT</strong> <strong>IFT</strong></td>
<td></td>
</tr>
<tr>
<td>IFTE</td>
<td>Calcula un objeto (y) si el valor de prueba (z) es un número real distinto a cero u otro objeto (x) si el valor de prueba es cero.</td>
<td>H-9</td>
</tr>
<tr>
<td>F</td>
<td><strong>PRG</strong> <strong>ERCH</strong> <strong>NXT</strong> <strong>IFTE</strong></td>
<td></td>
</tr>
<tr>
<td>IM</td>
<td>Devuelve la parte imaginaria de un número complejo o de un sistema (x).</td>
<td>12-14</td>
</tr>
<tr>
<td>F</td>
<td><strong>MTH</strong> <strong>NXT</strong> <strong>EMPL</strong> <strong>IM</strong></td>
<td></td>
</tr>
<tr>
<td>INCR</td>
<td>Incrementa el valor de una variable especificada (x).</td>
<td>H-9</td>
</tr>
<tr>
<td>C</td>
<td>← <strong>MEMORY</strong> <strong>ARITH</strong> <strong>INCR</strong></td>
<td></td>
</tr>
<tr>
<td>INDEP</td>
<td>Especifica la variable independiente (x) de una representación gráfica.</td>
<td>H-10</td>
</tr>
<tr>
<td>C</td>
<td>← <strong>PLOT</strong> <strong>PPAR</strong> <strong>INDEP</strong></td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| INFO                     | Muestra en pantalla la información sobre las variables reservadas.  
O  \[ \text{PLOT} \text{ NX} \text{ INFO} \]  
O  \[ \text{PLOT} \text{ PPAR} \text{ NXT} \text{ INFO} \]  
O  \[ \text{PLOT} \text{ NXT} \text{ 3D} \text{ VPAR} \text{ INFO} \]  
O  \[ \text{PLOT} \text{ NXT} \text{ 3D} \text{ VPAR} \text{ INFO} \]  
O  \[ \text{PLOT} \text{ NXT} \text{ STAT} \text{ 2PAR} \text{ INFO} \]  
O  \[ \text{STAT} \text{ 2PAR} \text{ INFO} \]  
O  \[ \text{I/O} \text{ IOPAR} \text{ NXT} \text{ INFO} \]  
O  \[ \text{I/O} \text{ PRINT} \text{ PRPAR} \text{ INFO} \] | 27-16 |
| INFO                     | Muestra en pantalla la información sobre la última operación de cálculo efectuada por el solucionador de raíces.  
O  \[ \text{SOLVE} \text{ INFO} \] | 18-4 |
| INFO?                    | Commuta la visualización automática de la información de los parámetros de las variables.  
O  \[ \text{MODES} \text{ MISC} \text{ INFO} \text{ INFO?} \] | 4-11 |
| INFORM                   | Muestra en pantalla una plantilla de entrada definida por el usuario.  
C  \[ \text{PRG} \text{ INFO} \text{ INFO} \] | |
| INIT+                    | Almacena los valores de la solución de una ecuación diferencial como los nuevos valores iniciales preparados para otra iteración.  
O  \[ \text{SOLVE} \text{ Solve diff eq... INIT+} \] | 19-2 |
| INPUT                    | Suspender la ejecución del programa, muestra el mensaje \( y \) en la parte superior de la pila e indica \( x \) que se introduzcan datos en la línea de comandos.  
C  \[ \text{PRG} \text{ INPUT} \] | H-10 |
| INS                      | Commuta entre carácter de inserción y carácter de sustitución.  
O  \[ \text{EDIT} \text{ INS} \] | 2-13 |
| INV                      | Recíproco de un número o sistema \( x \).  
A  \[ 1/x \] | 12-1 |
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPAR</td>
<td>Devuelve el contenido de la variable reservada IOPAR.</td>
<td>27-3</td>
</tr>
<tr>
<td></td>
<td>C ⇩I/O IOPAR NXT IOPAR</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>Parte entera de números reales de x.</td>
<td>12-9</td>
</tr>
<tr>
<td></td>
<td>F MTH REAL NXT IP</td>
<td></td>
</tr>
<tr>
<td>ISECT</td>
<td>Desplaza el cursor de gráficos a la intersección más próxima en una representación gráfica de dos funciones, muestra las coordenadas de intersección y devuelve las coordenadas a la pila.</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>O ⇩PICTURE FOR ISECT</td>
<td></td>
</tr>
<tr>
<td>ISOL</td>
<td>Aísla la variable (x) de una parte de una ecuación (y).</td>
<td>20-15</td>
</tr>
<tr>
<td></td>
<td>C ⇩SYMBOLIC ISOL</td>
<td></td>
</tr>
<tr>
<td>KEEP</td>
<td>Borra todos los niveles superiores al nivel actual.</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>O ⇩STACK NXT KEEP</td>
<td></td>
</tr>
<tr>
<td>KERRM</td>
<td>Devuelve el texto del último paquete de errores KERMIT recibido.</td>
<td>H-10</td>
</tr>
<tr>
<td></td>
<td>C ⇩I/O NXT KERR</td>
<td></td>
</tr>
<tr>
<td>KEY</td>
<td>Devuelve un número que indica la última tecla pulsada.</td>
<td>H-10</td>
</tr>
<tr>
<td></td>
<td>C PRG NXT IN KEY</td>
<td></td>
</tr>
<tr>
<td>KGET</td>
<td>Toma una lista de objetos (x) de otro dispositivo.</td>
<td>27-11</td>
</tr>
<tr>
<td></td>
<td>C ⇩I/O SFRV KGET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⇩I/O Transfer... KGET</td>
<td></td>
</tr>
<tr>
<td>KILL</td>
<td>Cancela todos los programas suspendidos.</td>
<td>29-9</td>
</tr>
<tr>
<td></td>
<td>C PRG NXT RUH KILL</td>
<td></td>
</tr>
<tr>
<td>LABEL</td>
<td>Define los ejes con nombres de variables y rangos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ⇩PLOT NXT LABEL</td>
<td></td>
</tr>
<tr>
<td>LABEL</td>
<td>Define los ejes con nombres de variables y rangos.</td>
<td>24-1</td>
</tr>
<tr>
<td></td>
<td>O ⇩PICTURE EDIT NXT LABEL</td>
<td></td>
</tr>
<tr>
<td>LAST</td>
<td>Devuelve el (los) argumento(s) anterior(es) a la pila.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>LASTARG</td>
<td>Devuelve el (los) argumento(s) anterior(es) a la pila.</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>C PRG NXT ERROR LASTA</td>
<td></td>
</tr>
</tbody>
</table>

G-24 Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD→</td>
<td>Devuelve el objeto de gráficos a la pila que representa la pantalla de la pila. &lt;br&gt; C PRG GRUB NXT LCD→</td>
<td>9-11</td>
</tr>
<tr>
<td>→LCD</td>
<td>Muestra el objeto de gráficos especificado (x) en la pantalla de la pila. &lt;br&gt; C PRG GRUB NXT LCD</td>
<td>9-11</td>
</tr>
<tr>
<td>LEVEL</td>
<td>Introduce el nivel actual en el nivel 1. &lt;br&gt; O STACK NXT LEVEL</td>
<td>3-8</td>
</tr>
<tr>
<td>LIBEVAL</td>
<td>Evalúa un objeto de bibliotecas del sistema (x). Utilícese solamente según se especifica en las aplicaciones de la HP. &lt;br&gt; C Deberá escribirse.</td>
<td>H-11</td>
</tr>
<tr>
<td>LIBS</td>
<td>Muestra una lista de todas las bibliotecas del directorio actual. &lt;br&gt; C (LIBRARY LIST</td>
<td>H-11</td>
</tr>
<tr>
<td>LINE</td>
<td>Traza una línea entre dos coordenadas (x e y). &lt;br&gt; C PRG PICT LINE</td>
<td>9-9</td>
</tr>
<tr>
<td>LINE</td>
<td>Traza una línea desde la marca hasta el cursor. &lt;br&gt; O PICTURE EDIT LINE</td>
<td>9-3</td>
</tr>
<tr>
<td>ΣLINE</td>
<td>Devuelve la línea más adecuada para los datos de ΣDAT de acuerdo con el modelo de estadísticas seleccionado. &lt;br&gt; C (STAT FIT ΣLINE</td>
<td>H-11</td>
</tr>
<tr>
<td>LINFIT</td>
<td>Fija el modo de ajuste de curvas en lineal. &lt;br&gt; C (STAT SPAR MOD LINFIT</td>
<td>H-11</td>
</tr>
<tr>
<td>LININ</td>
<td>Comprueba si una expresión (x) es una función lineal de una variable (y). &lt;br&gt; F PRG TEST ṭ (PREV LININ</td>
<td>H-11</td>
</tr>
<tr>
<td>LIST→</td>
<td>Descompone una lista (x) en sus elementos constituyentes. &lt;br&gt; C Deberá escribirse.</td>
<td>H-11</td>
</tr>
<tr>
<td>→LIST</td>
<td>Combina x objetos (y, z, etc.) en una lista. &lt;br&gt; C PRG TYPE #LIST</td>
<td>17-1</td>
</tr>
<tr>
<td>→LIST</td>
<td>Combina los objetos entre el nivel 1 y el nivel actual en una lista. &lt;br&gt; O STACK #LIST</td>
<td>3-8</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ΣLIST</td>
<td>Suma juntos todos los elementos de una lista ((x)). C [MTH] LIST ΣLIST</td>
<td>17-8</td>
</tr>
<tr>
<td>IILIST</td>
<td>Multiplica juntos todos los elementos de una lista ((x)). C [MTH] LIST ΣLIST</td>
<td>17-9</td>
</tr>
<tr>
<td>ΔLIST</td>
<td>Encuentra el conjunto de las primeras diferencias de una secuencia finita en una lista ((x)). C [MTH] LIST ΔLIST</td>
<td>17-9</td>
</tr>
<tr>
<td>LN</td>
<td>Logaritmo natural (base e) de (x). A [→] LN</td>
<td>12-2</td>
</tr>
<tr>
<td>LNP1</td>
<td>Logaritmo natural de ((x + 1)). A [MTH] HYP ΝX LNP1</td>
<td>12-3</td>
</tr>
<tr>
<td>LOG</td>
<td>Logaritmo común (base 10) de (x). A [→] LOG</td>
<td>12-2</td>
</tr>
<tr>
<td>LOGFIT</td>
<td>Fija el modelo de ajustes de curvas en logarítmico. C [STAT] EXP MODE LOGFIT</td>
<td></td>
</tr>
<tr>
<td>LQ</td>
<td>Devuelve la factorización LQ de una matriz ((x)). C [MTH] MATR FACTR LQ</td>
<td>14-23</td>
</tr>
<tr>
<td>LR</td>
<td>Calcula la regresión lineal. C [STAT] FIT [] LR</td>
<td>H-12</td>
</tr>
<tr>
<td>LSQ</td>
<td>Calcula la solución de los mínimos cuadrados de la norma mínima de un sistema de ecuaciones lineales supradeterminado o infradeterminado (AX = B), donde (A) ((y)) es la matriz de coeficientes y (B) ((x)) es el vector de las constantes derechas. C [STAT] SOLVE SYS LSQ</td>
<td>14-16</td>
</tr>
<tr>
<td>LU</td>
<td>Devuelve la factorización LU de Crout LU de una matriz cuadrada ((x)). C [MTH] MATR FACTR LU</td>
<td>14-23</td>
</tr>
<tr>
<td>L*</td>
<td>Sustituye el logaritmo de potencia por el producto de logaritmo. O [EQUATION] [RULES] L*</td>
<td>20-27</td>
</tr>
<tr>
<td>L()</td>
<td>Sustituye el producto de logaritmo por el logaritmo de potencia. O [EQUATION] [RULES] L^O</td>
<td>20-27</td>
</tr>
</tbody>
</table>

G-26 Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>←M</td>
<td>Fusiona los factores de la izquierda. O EQUATION RULES *M</td>
<td>20-26</td>
</tr>
<tr>
<td>(M)←M</td>
<td>Ejecuta ←M hasta que no se produzcan cambios en la subexpresión. O EQUATION RULES *M</td>
<td>20-28</td>
</tr>
<tr>
<td>M→</td>
<td>Fusiona los factores de la derecha. O EQUATION RULES M*</td>
<td>20-26</td>
</tr>
<tr>
<td>(M)M→</td>
<td>Ejecuta M* hasta que no se produzcan cambios en la subexpresión. O EQUATION RULES M*</td>
<td>20-28</td>
</tr>
<tr>
<td>MANT</td>
<td>Mantisa (parte decimal) de un número (x). F MTH REAL NXT MANT</td>
<td>12-10</td>
</tr>
<tr>
<td>MARK</td>
<td>Fija la marca en la posición del cursor. O PICTURE X</td>
<td>9-3</td>
</tr>
<tr>
<td>MATCH</td>
<td>Accede a las funciones de equiparación de modelos en la plantilla de entrada simbólica. O SYMBOLIC Manip expr... MATCH</td>
<td>20-30</td>
</tr>
<tr>
<td>↑MATCH</td>
<td>Reescribe una expresión (y) utilizando una lista de equiparación de modelos (x) para sustituir subexpresiones concretas, buscando en primer lugar las subexpresiones más protegidas entre los paréntesis. C SYMBOLIC NXT ↑MATCH</td>
<td>H-12</td>
</tr>
<tr>
<td>↓MATCH</td>
<td>Reescribe una expresión (y) utilizando una lista de equiparación de modelos (x) para sustituir subexpresiones concretas, buscando en primer lugar las expresiones de más alto nivel. C SYMBOLIC NXT ↓MATCH</td>
<td>H-12</td>
</tr>
<tr>
<td>MAX</td>
<td>Máximo de dos números reales (x y y): F MTH REAL MAX</td>
<td>12-10</td>
</tr>
<tr>
<td>MAXR</td>
<td>Devuelve la constante simbólica MAXR, el número real más alto que puede representar la máquina (9.99999999999E499). F MTH NXT CONS NXT MAXR</td>
<td>11-4</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>MAXΣ</td>
<td>Valores de columna máximos de la matriz de estadísticas de $\Sigma DAT$.</td>
<td>H-12</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MCALC</td>
<td>Declara la variable especificada o la lista de variables ($z$) que se va a “calcular solamente”. Se utiliza conjuntamente con MROOT.</td>
<td>H-13</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MEAN</td>
<td>Calcula la media de los datos estadísticos de $\Sigma DAT$.</td>
<td>H-13</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MEM</td>
<td>Bytes de memoria disponible.</td>
<td>H-13</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MENU</td>
<td>Muestra en pantalla el menú personalizado o incorporado ($x$) especificado.</td>
<td>30-1</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MENU</td>
<td>Activa y desactiva el menú de teclas.</td>
<td>22-7</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MERGE1</td>
<td>Fusiona la memoria RAM incorporada de la puerta 1 con la memoria principal.</td>
<td>28-17</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MIN</td>
<td>Mínimo de dos números reales ($y$ y $z$).</td>
<td>12-10</td>
</tr>
<tr>
<td>F</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MINEHUNT</td>
<td>Entra en el juego Minehunt (Buscaminhas).</td>
<td>25-15</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MINIT</td>
<td>Crea un nuevo $Mpar$ a partir de $EQ$.</td>
<td>25-9</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MINR</td>
<td>Devuelve la constante simbólica $MINR$, el número real mínimo que puede representar la máquina (1.0000000000E-499).</td>
<td>11-4</td>
</tr>
<tr>
<td>F</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>MINΣ</td>
<td>Halla los valores de columna mínimos de la matriz de estadísticas de $\Sigma DAT$.</td>
<td>H-13</td>
</tr>
<tr>
<td>C</td>
<td>ationship</td>
<td>H-13</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>MITM</td>
<td>Personaliza el menú de la Resolución utilizando una secuencia de títulos (y) y una lista de variables (x).</td>
<td>25-10</td>
</tr>
<tr>
<td></td>
<td>C ➔ EQ LIB MES MITM</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>Selecciona una pantalla de una sola línea o de múltiples líneas para resultados multilineales.</td>
<td>4-10</td>
</tr>
<tr>
<td></td>
<td>O ➔ MODES FMT ML</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>Devuelve el resto de módulo de y dividido entre x.</td>
<td>12-10</td>
</tr>
<tr>
<td></td>
<td>F MTH REAL MOD</td>
<td></td>
</tr>
<tr>
<td>MOVE</td>
<td>Desplaza la(s) variable(s) seleccionada(s) a un nuevo directorio.</td>
<td>5-10</td>
</tr>
<tr>
<td></td>
<td>O ➔ MEMORY MOVE</td>
<td></td>
</tr>
<tr>
<td>MSGBOX</td>
<td>Crea un recuadro de mensajes definido por el usuario a partir de una secuencia (x).</td>
<td>H-14</td>
</tr>
<tr>
<td></td>
<td>C PRG NXT OUT MSGB</td>
<td></td>
</tr>
<tr>
<td>MROOT</td>
<td>Resuelve un conjunto de ecuaciones para la variable especificada (x) empezando por los valores definidos por el usuario (véase MUSER y MCALC).</td>
<td>H-14</td>
</tr>
<tr>
<td></td>
<td>C ➔ EQ LIB MES MROOT</td>
<td></td>
</tr>
<tr>
<td>MSOLVR</td>
<td>Inicia la Resolución utilizando el contenido actual de la variable reservada EQ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ➔ EQ LIB MES MSOLV</td>
<td></td>
</tr>
<tr>
<td>MUSER</td>
<td>Convierte la variable o lista de variables especificada (x) en definida por el usuario. Se utiliza conjuntamente con MROOT.</td>
<td>H-14</td>
</tr>
<tr>
<td></td>
<td>C ➔ EQ LIB MES MUSE</td>
<td></td>
</tr>
<tr>
<td>NDIST</td>
<td>Devuelve la distribución normal de probabilidades (curva de campana) en x basándose en la variación (y) y la media (z) de la distribución normal.</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>C MTH NXT PROB NXT NDIST</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>Devuelve el número de filas de ΣDAT.</td>
<td>H-14</td>
</tr>
<tr>
<td></td>
<td>C ➔ STAT SUMS Σ</td>
<td></td>
</tr>
<tr>
<td>NEG</td>
<td>Niega x.</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>A +/- o MTH NXT MEQ NXT NEG</td>
<td></td>
</tr>
<tr>
<td>NEW</td>
<td>Crea un nuevo objeto con un nombre.</td>
<td>5-7</td>
</tr>
<tr>
<td></td>
<td>O ➔ MEMORY NEW</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>NEW</td>
<td>Crea una nueva alarma.</td>
<td>26-6</td>
</tr>
</tbody>
</table>
|                          | O 
|                          | TIME | Browse alarms... NEW |        |
| NEWOB                    | Convierte el objeto (x) tomado de un objeto compuesto o de una variable en un objeto nuevo e independiente. | H-14   |
|                          | C 
|                          | MEMORY | NEWOB |        |
| NEXT                     | Finaliza una estructura de iteración determinada. | 29-12  |
|                          | PRO | BPCH | START | NEXT |        |
|                          | G 
|                          | PRO | BPCH | FOR   | NEXT |        |
| NEXT                     | Muestra en pantalla, aunque no ejecuta a continuación, uno o dos objetos del programa suspendido. | 29-9   |
|                          | O 
|                          | PRO | NXT | RUN  | NEXT |        |
| NOT                      | Devuelve el NOT (NO) binario o lógico de x. | 15-4   |
|                          | PRO | TEST | NXT  | NOT |        |
|                          | F 
|                          | MTH | BASE | NXT  | LOGIC | NOT |        |
| NOVAL                    | Soporte para reconfigurar los valores iniciales de las ventanas de diálogo definidas por el usuario. Cuando un campo está vacío, NOVAL volverá a la pila. | 17-6   |
|                          | G 
|                          | PRO | NXT | IN  | NOVA |        |
| NSUB                     | Proporciona una vía de acceso al número de trama actual durante la iteración de un programa o comando aplicado mediante DOSUBS. | 15-6   |
|                          | C 
|                          | PRO | LIST | PROC | NSUB |        |
| NUM                      | Devuelve el código del primer carácter de la secuencia (x). | H-15   |
|                          | C 
|                          | PRO | TYPE | NXT | NUM |        |
| NUMX                     | Fija el número de pasos x para cada uno de los pasos y en las representaciones gráficas de perspectiva tridimensionales. | H-15   |
|                          | C 
|                          | PLOT | NXT | 3D   | VPAR |        |
|                          | NXT | NUMX |        |        |
| NUMY                     | Fija el número de pasos y de un volumen de visualización en representaciones gráficas de perspectiva tridimensionales. | H-15   |
|                          | C 
<p>|                          | PLOT | NXT | 3D   | VPAR |        |
|                          | NXT | NUMY |        |        |</p>
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>→NUM</td>
<td>Convierte un objeto simbólico ((x)) en un número, siempre que sea posible.</td>
<td>11-5</td>
</tr>
<tr>
<td>C ←(→NUM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NXEQ</td>
<td>Cambia la ecuación actual mediante rotación de los elementos de la lista de (EQ).</td>
<td>22-12</td>
</tr>
<tr>
<td>O ←(PICTURE) ←(ECN) ←(NXT) ←(NXEQ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJ→</td>
<td>Descompone un objeto compuesto ((x)) en sus componentes.</td>
<td>H-16</td>
</tr>
<tr>
<td>PRG ←(TYPE) ←(OBJ→)</td>
<td></td>
<td>17-7</td>
</tr>
<tr>
<td>PRG ←(LIST) ←(OBJ→)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C ←(CHARS) ←(NXT) ←(OBJ→)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td>Fija la base octal.</td>
<td>15-1</td>
</tr>
<tr>
<td>C ←(MTH) ←(BASE) ←(OCT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Acepta los valores de todos los campos tal y como se muestran normalmente en la pantalla o efectúa la acción principal de la plantilla de entrada.</td>
<td>6-8</td>
</tr>
<tr>
<td>[plantilla de entrada] ←(ENTER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O [plantilla de entrada] ←(OK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLDPRT</td>
<td>Vuelve a trazar el mapa de caracteres de la HP 48 para equipararlos a los de la impresora de infrarrojos HP 82240A.</td>
<td></td>
</tr>
<tr>
<td>C ←(I/O) ←(PRINT) ←(PRTPA) ←(OLDPRT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPENIO</td>
<td>Abre el puerto serie.</td>
<td>27-3</td>
</tr>
<tr>
<td>C ←(I/O) ←(NXT) ←(SERIA) ←(OPENI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTS</td>
<td>Selecciona las opciones de representaciones gráficas.</td>
<td>22-2</td>
</tr>
<tr>
<td>O ←(PLOT) ←(all plot types) ←(OPTS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>OR lógica de dos expresiones ((x \text{ y } y)) que se evaluaban en 1 ó 0 u OR binaria que combina dos enteros ((x \text{ y } y)) o dos secuencias ((x \text{ y } y)).</td>
<td>15-4</td>
</tr>
<tr>
<td>MTH ←(BASE) ←(NXT) ←(LOGIC) ←(OR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F ←(PRG) ←(TEST) ←(NXT) ←(OR)</td>
<td></td>
<td>H-16</td>
</tr>
<tr>
<td>ORDER</td>
<td>Reorganiza el menú \VAR\ según el orden especificado en la lista ((x)).</td>
<td>H-16</td>
</tr>
<tr>
<td>C ←(MEMORY) ←(DIR) ←(ORDER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVER</td>
<td>Duplica el objeto del nivel 2 en el nivel 1.</td>
<td>3-12</td>
</tr>
<tr>
<td>C ←(STACK) ←(OVER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ΣPAR</td>
<td>Variable reservada que almacena datos estadísticos de regresiones. C STAT ΣPAR ΣPAR</td>
<td>21-14</td>
</tr>
<tr>
<td>PARAMETRIC</td>
<td>Selecciona el tipo de representación gráfica PARAMETRIC (PARAMETRICO). C PLOT PTYPE ΣPAR</td>
<td>23-8</td>
</tr>
<tr>
<td>PARITY</td>
<td>Fija el valor de paridad especificado (x). C I/O IOPAR ΣPAR</td>
<td>H-17</td>
</tr>
<tr>
<td>PARSURFACE</td>
<td>Selecciona el tipo de representación gráfica PARSURFACE (SUPERFICIE PARAMETRICA). C PLOT NXT 3D PTYPE PHSU</td>
<td>23-40</td>
</tr>
<tr>
<td>PATH</td>
<td>Devuelve una lista que contiene la ruta de acceso del directorio actual. C MEMORY DIR PATH</td>
<td>H-17</td>
</tr>
<tr>
<td>PCOEFF</td>
<td>Halla los coeficientes del polinomio con el sistema de raíces especificado (x). C SOLVE POLY PCOEFF</td>
<td>18-11</td>
</tr>
<tr>
<td>PCONTOUR</td>
<td>Selecciona el tipo de representación gráfica PCONTOUR (PSEUDO-CONTORNO). C PLOT NXT 3D PTYPE PCON</td>
<td>23-34</td>
</tr>
<tr>
<td>PCOV</td>
<td>Calcula la covariedad de población. C STAT FIT NXT PCOV</td>
<td>H-17</td>
</tr>
<tr>
<td>PDIM</td>
<td>Sustituye PICT (DIBUJO) por un PICT en blanco con las dimensiones especificadas (y) y (x). C PRG PICT PDIM</td>
<td>9-9</td>
</tr>
<tr>
<td>PERM</td>
<td>Devuelve las permutaciones de y elementos tomados de x en x. F MTH NXT PROB PERM</td>
<td>12-4</td>
</tr>
<tr>
<td>PEVAL</td>
<td>Calcula un polinomio con el sistema de coeficientes especificado (y) con un valor dado (x). C SOLVE POLY PEVAL</td>
<td>18-12</td>
</tr>
<tr>
<td>PGDIR</td>
<td>Elimina el directorio especificado (x) y la totalidad de su contenido. C MEMORY DIR PGDIR</td>
<td>H-17</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>PICK</td>
<td>Copia el objeto del nivel x en el nivel 1. C ( \rightarrow ) STACK PICK</td>
<td>3-12</td>
</tr>
<tr>
<td>PICK</td>
<td>Copia el objeto del nivel actual en el nivel 1. O ( \rightarrow ) STACK PICK</td>
<td>3-7</td>
</tr>
<tr>
<td>PICT</td>
<td>Coloca el nombre PICT en la pila. C PRG PICT PICT</td>
<td>9-9</td>
</tr>
<tr>
<td>PICT( \rightarrow )</td>
<td>Copia el PICT (DIBUJO) actual como un objeto gráfico y lo coloca en la pila. O ( \rightarrow ) PICTURE EDI NXT NXT PICT*</td>
<td>22-6</td>
</tr>
<tr>
<td>PICTURE</td>
<td>Entra en el entorno Graphics (Gráficos). C ( \rightarrow ) PICTURE</td>
<td>9-2</td>
</tr>
<tr>
<td>PINIT</td>
<td>Inicializa todas las puertas que contengan RAM sin borrar los datos. C ( \rightarrow ) LIBRARY NXT PINIT</td>
<td>28-15</td>
</tr>
<tr>
<td>PIXOFF</td>
<td>Desactiva el punto especificado (x) de PICT. C PRG PICT NXT PIXOFF</td>
<td>9-10</td>
</tr>
<tr>
<td>PIXON</td>
<td>Activa el punto especificado (x) de PICT. C PRG PICT NXT PIXON</td>
<td>9-10</td>
</tr>
<tr>
<td>PIX?</td>
<td>Comprueba si el punto especificado (x) de PICT está activado o desactivado. C PRG PICT NXT PIX?</td>
<td>9-10</td>
</tr>
<tr>
<td>PKT</td>
<td>Se utiliza para enviar una secuencia de comandos (y) de un tipo dado (x) a un servidor Kermit. C ( \rightarrow ) I/O SRV PKT</td>
<td>27-14</td>
</tr>
<tr>
<td>PMAX</td>
<td>Fija las coordenadas de la parte superior derecha de una representación gráfica (x). C Deberán escribirse.</td>
<td>H-17</td>
</tr>
<tr>
<td>PMIN</td>
<td>Fija las coordenadas de la parte inferior izquierda de una representación gráfica (x). C Deberán escribirse.</td>
<td>H-18</td>
</tr>
<tr>
<td>PMT</td>
<td>Variable de los pagos del solucionador de amortizaciones. C ( \rightarrow ) SOLVE TVM SOLVR PMT</td>
<td>18-17</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>POLAR</td>
<td>Selecciona el tipo de representación gráfica POLAR. C <code>PLOT</code> <code>TYPE POLAR</code></td>
<td>23-5</td>
</tr>
<tr>
<td>POS</td>
<td>Devuelve la posición de una subsecuencia (x) en la secuencia (y) o en el objeto (x) de la lista (y). C <code>PRG LIST ELEM POS</code></td>
<td>17-7</td>
</tr>
<tr>
<td>PRED</td>
<td>Utilizando el modelo de regresión actual, calcula el valor pronosticado de una variable dado el valor de las demás. O <code>STAT Fit Data... PRED PRED</code></td>
<td>21-12</td>
</tr>
<tr>
<td>PREDV</td>
<td>Devuelve el valor pronosticado para una variable dependiente dado el valor de la variable independiente (x). C Deberá escribirse.</td>
<td>H-18</td>
</tr>
<tr>
<td>PREDX</td>
<td>Devuelve el valor pronosticado para una variable independiente dado el valor de la variable dependiente (x). C <code>STAT FIT PREDX</code></td>
<td>H-18</td>
</tr>
<tr>
<td>PREDY</td>
<td>Devuelve el valor pronosticado para una variable dependiente dado el valor de la variable independiente (x). C <code>STAT FIT PREDY</code></td>
<td>H-18</td>
</tr>
<tr>
<td>PRINT</td>
<td>Imprime un objeto. O <code>I/O Print... PRINT</code></td>
<td>27-4</td>
</tr>
<tr>
<td>PRLCD</td>
<td>Imprime la pantalla actual. C <code>I/O PRINT PRLCD</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>I/O Print display</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse simultáneamente <code>(ON </code>y (1`))</td>
<td></td>
</tr>
<tr>
<td>PROMPT</td>
<td>Muestra una secuencia de mensajes (x) en el área de estado e interrumpe la ejecución del programa. C <code>PRG NXT IN NXT PROM</code></td>
<td>H-19</td>
</tr>
<tr>
<td>PROOT</td>
<td>Calcula todas las raíces de un polinomio con el sistema de coeficientes especificado (x). C <code>SOLVE PULL PROOT</code></td>
<td>18-11</td>
</tr>
<tr>
<td>PRST</td>
<td>Imprime todos los objeto de la pila. C <code>I/O PRINT PRST</code></td>
<td>27-7</td>
</tr>
</tbody>
</table>

G-34 Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRSTC</td>
<td>Imprime todos los objetos de la pila en formato compacto.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow I/O ) PRINT PRSTC</td>
<td></td>
</tr>
<tr>
<td>PRTPAR</td>
<td>Variable reservada que contiene las actuales opciones de impresoras.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow I/O ) PRINT PRTPA PRTPA</td>
<td>27-3</td>
</tr>
<tr>
<td>PRVAR</td>
<td>Imprime el nombre y el contenido de una o más variables ((x)), incluidos los nombres de los puertos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow I/O ) PRINT PRVAR</td>
<td>27-7</td>
</tr>
<tr>
<td>PR1</td>
<td>Imprime el objeto del nivel 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow I/O ) PR1</td>
<td>27-6</td>
</tr>
<tr>
<td>PSDEV</td>
<td>Calcula la desviación estándar de población.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) STAT LVAR NXT PSDEV</td>
<td>H-19</td>
</tr>
<tr>
<td>PURGE</td>
<td>Elimina una o más variables especificadas ((x)).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) PURG</td>
<td>5-12</td>
</tr>
<tr>
<td>PURG</td>
<td>Elimina los objetos o alarmas seleccionados.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) MEMORY NXT PURG</td>
<td>5-11</td>
</tr>
<tr>
<td></td>
<td>O ( \leftarrow ) TIME Browse Alarms... PURG</td>
<td>26-5</td>
</tr>
<tr>
<td></td>
<td>Borra todas las variables con el título actual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O ( \leftarrow ) EQ LIB ... VERS NXT PURG</td>
<td>26-5</td>
</tr>
<tr>
<td>PUT</td>
<td>Sustituye el elemento de la posición especificada ((y)) de un sistema o una lista ((z)) por otro elemento ((x)).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) PRG LIST ELEM PUT</td>
<td>14-8</td>
</tr>
<tr>
<td>PUTI</td>
<td>Sustituye el elemento de la posición especificada ((y)) de un sistema o de una lista ((z)) por otro elemento ((x)) e incrementa el índice.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) PRG LIST ELEM PUTI</td>
<td>17-7</td>
</tr>
<tr>
<td>PV</td>
<td>Valor actual de un préstamo en el solucionador de amortizaciones.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) SOLVE TVM SOLVR PV</td>
<td>18-17</td>
</tr>
<tr>
<td>PVAR</td>
<td>Calcula la variación de población.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) STAT LVAR NXT PVAR</td>
<td>H-19</td>
</tr>
<tr>
<td>PVARS</td>
<td>Devuelve un lista de los objetos y bibliotecas de seguridad que se encuentran en la puerta ((x)).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ( \leftarrow ) LIBRARY PVARS</td>
<td>28-5</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>PVIEW</td>
<td>Muestra PICT en pantalla con las coordenadas de puntos especificadas ((x)) como la esquina superior izquierda.</td>
<td>H-19</td>
</tr>
<tr>
<td></td>
<td>C [PRG] [NXT] [OUT] PVIEW</td>
<td></td>
</tr>
<tr>
<td>PWRFIT</td>
<td>Fija el modelo de ajuste de curvas en Power (Potencias).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C [] [STAT] [XPR] [MODL] PWRFIT</td>
<td></td>
</tr>
<tr>
<td>PYR</td>
<td>Pagos al año en el solucionador de amortizaciones.</td>
<td>18-17</td>
</tr>
<tr>
<td></td>
<td>C [] [SOLVE] [TVM] [SOLVR] [NXT] PYR</td>
<td></td>
</tr>
<tr>
<td>PX→C</td>
<td>Convierte las coordenadas de puntos ((x)) en coordenadas de unidades de usuario.</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>C [PRG] [PICT] [NXT] PX→C</td>
<td></td>
</tr>
<tr>
<td>→Q</td>
<td>Convierte el número ((x)) en un número fraccional equivalente.</td>
<td>16-5</td>
</tr>
<tr>
<td></td>
<td>C [] [SYMBOLIC] [NXT] →Q</td>
<td></td>
</tr>
<tr>
<td>QR</td>
<td>Calcula la factorización QR de una matriz ((x)).</td>
<td>14-23</td>
</tr>
<tr>
<td></td>
<td>C [MTH] [MTR] [FCTR] [QR]</td>
<td></td>
</tr>
<tr>
<td>QUAD</td>
<td>Resuelve una ecuación de primer o segundo orden ((y)) para una variable dada ((x)).</td>
<td>20-16</td>
</tr>
<tr>
<td></td>
<td>C [] [SYMBOLIC] QUAD</td>
<td></td>
</tr>
<tr>
<td>QUOTE</td>
<td>Devuelve la expresión de argumentos ((x)) sin evaluar.</td>
<td>H-20</td>
</tr>
<tr>
<td></td>
<td>F [] [SYMBOLIC] [NXT] [NXT] QUOT</td>
<td></td>
</tr>
<tr>
<td>→Qπ</td>
<td>Calcula y compara los cocientes de un número ((x)) y un número/π, devolviendo el que tiene menor denominador.</td>
<td>16-6</td>
</tr>
<tr>
<td></td>
<td>C [] [SYMBOLIC] [NXT] →Qπ</td>
<td></td>
</tr>
<tr>
<td>RAD</td>
<td>Fija el modo Radians (Radianes).</td>
<td>4-4</td>
</tr>
<tr>
<td></td>
<td>C [] [MODES] [HNGL] RAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[] [RAD]</td>
<td></td>
</tr>
<tr>
<td>RAND</td>
<td>Devuelve el número aleatorio y actualiza la semilla del mismo.</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>C [MTH] [NXT] [PRB] RAND</td>
<td></td>
</tr>
<tr>
<td>RANK</td>
<td>Calcula el rango de una matriz rectangular ((x)).</td>
<td>14-10</td>
</tr>
<tr>
<td></td>
<td>C [MTH] [MATR] [NORM] [NXT] RANK</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>RANM</td>
<td>Crea una matriz con elementos aleatorios a partir de una lista con las dimensiones especificadas (z).</td>
<td>14-3</td>
</tr>
<tr>
<td></td>
<td>C <strong>MTH</strong> <strong>MTR</strong> <strong>MAK</strong> <strong>RANM</strong></td>
<td></td>
</tr>
<tr>
<td>RATIO</td>
<td>Forma de prefijo / utilizada internamente por la aplicación EquationWriter (Escriptor de Ecuaciones).</td>
<td>H-20</td>
</tr>
<tr>
<td></td>
<td>F Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>RCEQ</td>
<td>Devuelve la(s) ecuación(es) de EQ al nivel 1.</td>
<td>H-20</td>
</tr>
<tr>
<td></td>
<td>C <strong>PLOT</strong> <strong>EQ</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C <strong>PLOT</strong> <strong>NXT</strong> <strong>3D</strong> <strong>EQ</strong></td>
<td></td>
</tr>
<tr>
<td>RCI</td>
<td>Multiplica la fila especificada (z) de un sistema (x) por un factor (y).</td>
<td>14-21</td>
</tr>
<tr>
<td></td>
<td>C <strong>MTH</strong> <strong>MTR</strong> <strong>ROW</strong> <strong>RCI</strong></td>
<td></td>
</tr>
<tr>
<td>RCIJ</td>
<td>Multiplica la fila especificada (y) de un sistema (t) por un factor (z) y añade el resultado a otra fila (x).</td>
<td>14-21</td>
</tr>
<tr>
<td></td>
<td>C <strong>MTH</strong> <strong>MTR</strong> <strong>ROW</strong> <strong>RCIJ</strong></td>
<td></td>
</tr>
<tr>
<td>RCL</td>
<td>Recupera el objeto almacenado en una variable especificada (z) en la pila.</td>
<td>7-11</td>
</tr>
<tr>
<td></td>
<td>C <strong>RCL</strong></td>
<td></td>
</tr>
<tr>
<td>RCL</td>
<td>Recupera el objeto seleccionado en la pila.</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td>O <strong>MEMORY</strong> <strong>NXT</strong> <strong>RCL</strong></td>
<td></td>
</tr>
<tr>
<td>RCLALARM</td>
<td>Recupera la alarma especificada (z) de una lista de alarmas del sistema.</td>
<td>H-21</td>
</tr>
<tr>
<td></td>
<td>C <strong>TIME</strong> <strong>ALRM</strong> <strong>RCLAL</strong></td>
<td></td>
</tr>
<tr>
<td>RCLF</td>
<td>Devuelve el entero binario que representa los estados de los indicadores del sistema.</td>
<td>24-8</td>
</tr>
<tr>
<td></td>
<td>C <strong>MODES</strong> <strong>FLAG</strong> <strong>NXT</strong> <strong>RCLF</strong></td>
<td></td>
</tr>
<tr>
<td>RCLKEYS</td>
<td>Devuelve una lista de las asignaciones actuales de las teclas de usuario</td>
<td>30-8</td>
</tr>
<tr>
<td></td>
<td>C <strong>MODES</strong> <strong>KEYS</strong> <strong>RCLK</strong></td>
<td></td>
</tr>
<tr>
<td>RCLMENU</td>
<td>Devuelve el número de menú del menú actual.</td>
<td>H-21</td>
</tr>
<tr>
<td></td>
<td>C <strong>MODES</strong> <strong>MENU</strong> <strong>RCLM</strong></td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>RCLΣ</td>
<td>Recupera la matriz de estadísticas actual de ( \Sigma DAT ).</td>
<td>H-21</td>
</tr>
</tbody>
</table>
| | \[
| \( \text{\texttt{PLOT\ NXT\ STAT\ DATA}} \) \\
| \( \text{\texttt{\Sigma DAT}} \) \] | |
| C | \[
| \( \text{\texttt{\textbar\ STAT\ DATA\ \Sigma DAT}} \) \] | |
| RCWS | Recupera el entero binario del tamaño de palabra. | 15-2 |
| C | \[
| \( \text{\texttt{MTH\ BASE\ NXT\ RCWS}} \) \] | |
| RDM | Redimensiona los elementos de un sistema \((y)\) de acuerdo con las dimensiones especificadas \((x)\). | 14-11 |
| C | \[
| \( \text{\texttt{MTH\ MAKE\ MAKE\ RDM}} \) \] | |
| RDZ | Fija el número aleatorio de semilla. | 12-4 |
| C | \[
| \( \text{\texttt{MTH\ NXT\ PROB\ RDZ}} \) \] | |
| RE | Devuelve la parte real de un número complejo o de un sistema \((x)\). | 12-14 |
| F | \[
| \( \text{\texttt{MTH\ NXT\ CMPL\ RE}} \) \] | |
| RECN | Espera los datos especificados \((x)\) desde un origen remoto durante la ejecución del software Kermit. | H-21 |
| C | \[
| \( \text{\texttt{\textbar\ I/O\ NXT\ RECN}} \) \] | |
| RECT | Fija el modo Rectangular. | 13-2 |
| C | \[
| \( \text{\texttt{MTH\ VECTR\ NXT\ RECT}} \) \] | |
| RECV | Espera los datos especificados por el emisor desde un origen remoto durante la ejecución del software Kermit. | |
| C | \[
| \( \text{\texttt{\textbar\ I/O\ RECV}} \) \] | |
| RECV | Prepara la HP 48 para recibir datos. | 27-11 |
| O | \[
| \( \text{\texttt{\textbar\ I/O\ Transfer\ ...\ RECV}} \) \] | |
| REPEAT | Inicia una operación de iteración si el resultado de la operación de prueba \((x)\) es distinto a cero; si no es así, la ejecución se reanuda de acuerdo con el END (FIN) correspondiente. | 29-15 |
| C | \[
| \( \text{\texttt{PRG\ BRCH\ WHILE\ REPEAT}} \) \] | |
| REPL | Sustituye una parte del objeto \((z)\) por otro objeto similar \((x)\) empezando en la posición especificada \((y)\). | 7-12 |
| | \[
| \( \text{\texttt{PRG\ LIST\ REPL}} \) \] | |
| | \[
<p>| ( \text{\texttt{PRG\ GROB\ REPL}} ) ] | H-22 |</p>
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPL</td>
<td>Sustituye una parte de <em>PICT</em> por el objeto de gráficos del nivel 1.</td>
<td>9-5</td>
</tr>
<tr>
<td></td>
<td>O 📐 PICTURE EDIT NXT NXT REPL</td>
<td></td>
</tr>
<tr>
<td>REPL</td>
<td>Sustituye un modelo simbólico por otro de una expresión.</td>
<td>20-30</td>
</tr>
<tr>
<td></td>
<td>O 📐 EQUATION REPL</td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>Fija el espaciado (x) entre los puntos de una representación gráfica.</td>
<td>H-22</td>
</tr>
<tr>
<td></td>
<td>C 📐 PLOT PPAR RES</td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td>Reconfigura el valor del campo actual (o, si lo desea el usuario, todos los valores de los campos de la plantilla de entrada actual) a su configuración por defecto.</td>
<td>6-6</td>
</tr>
<tr>
<td></td>
<td>O 📐 PLOT NXT RESET</td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td>Reconfigura los parámetros de las representaciones gráficas a sus valores por defecto.</td>
<td>22-15</td>
</tr>
<tr>
<td></td>
<td>📐 PLOT NXT 3D NXT VPAR NXT RESET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O 📐 PLOT PPAR RESET</td>
<td></td>
</tr>
<tr>
<td>RESTORE</td>
<td>Sustituye el directorio <em>HOME</em> por la copia de seguridad especificada (x).</td>
<td>28-6</td>
</tr>
<tr>
<td></td>
<td>C 📐 MEMORY NXT RESTORE</td>
<td></td>
</tr>
<tr>
<td>REVLIST</td>
<td>Invierte todos los elementos de una lista (x).</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>C MTH LIST REVLI PRG LIST PROC REVLI</td>
<td></td>
</tr>
<tr>
<td>RKF</td>
<td>Utiliza una lista (x)—que contiene el nombre de la variable de tiempo, el nombre de la variable de la solución y la función diferencial—y la tolerancia de error absoluto (y) para calcular la solución del problema del valor inicial en un punto (x) mediante el método de Runge-Kutta-Fehlberg (4,5).</td>
<td>H-22</td>
</tr>
<tr>
<td></td>
<td>C 📐 SOLVE DIFFE RKF</td>
<td></td>
</tr>
<tr>
<td>Nombre, Teda o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>RKFERR</td>
<td>Utiliza una lista ((y)) — que contiene el nombre de la variable de tiempo, el nombre de la variable de la solución y la función diferencial — y un posible tamaño de paso ((x)) para calcular el cambio en la solución y una estimación del error absoluto para dicho paso mediante el método de Runge-Kutta-Fehlberg ((4,5)). C (\texttt{SOLVE DIFE RKFE})</td>
<td>H-23</td>
</tr>
<tr>
<td>RKFSTEP</td>
<td>Utiliza una lista ((z)) — que contiene el nombre de la variable de tiempo, el nombre de la variable de la solución y la función diferencial — y un posible tamaño de paso ((x)) para calcular el siguiente paso de la solución del problema del valor inicial mediante el método de Runge-Kutta-Fehlberg ((4,5)) de tal modo que se satisfaga la tolerancia de error absoluto especificada ((y)). C (\texttt{SOLVE DIFE RKFS})</td>
<td>H-23</td>
</tr>
<tr>
<td>RL</td>
<td>Gira el entero binario ((x)) un bit a la izquierda. C (\texttt{MTH BASE NXT BIT RL})</td>
<td>15-5</td>
</tr>
<tr>
<td>RLB</td>
<td>Gira el entero binario ((x)) un byte a la izquierda. C (\texttt{MTH BASE NXT BYTE RLB})</td>
<td>15-5</td>
</tr>
<tr>
<td>RND</td>
<td>Redondea el objeto numérico ((y)) al número especificado ((x)) de lugares decimales o dígitos significativos. F (\texttt{MTH REAL NXT NXT RND})</td>
<td>12-10</td>
</tr>
<tr>
<td>RNRM</td>
<td>Calcula la norma de filas de un sistema ((x)). C (\texttt{MTH MATH NORM RNRM})</td>
<td>14-9</td>
</tr>
<tr>
<td>ROLL</td>
<td>“Enrolla” (x) niveles de la pila, de modo que el nivel (x+1) se desplaza al nivel 1. C (\texttt{STACK ROLL})</td>
<td>3-12</td>
</tr>
<tr>
<td>ROLL</td>
<td>“Enrolla” la pila de modo que el nivel del puntero se desplaza al nivel 1, el nivel 1 se desplaza al nivel 2 y así sucesivamente. O (\texttt{STACK ROLL})</td>
<td>3-8</td>
</tr>
<tr>
<td>ROLLD</td>
<td>“Desenrolla” (x) niveles de la pila, de modo que el nivel 2 ((y)) se desplaza al nivel (x). C (\texttt{STACK ROLLD})</td>
<td>3-12</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ROLLD</td>
<td>&quot;Desenrolla&quot; pila, de modo que el nivel 1 se desplaza al nivel del puntero, el nivel 2 se desplaza al nivel 1 y así sucesivamente. O (\Rightarrow) STACK (\Rightarrow) ROLLD</td>
<td>3-8</td>
</tr>
<tr>
<td>ROOT</td>
<td>Resuelve una variable de incógnita (y) en una ecuación (z), empezando la búsqueda de la solución a partir de una suposición inicial (x). C (\Rightarrow) SOLVE (\Rightarrow) ROOT</td>
<td>H-23</td>
</tr>
<tr>
<td>ROOT</td>
<td>Desplaza el cursor de gráficos a la intersección de la representación gráfica de una función y el eje (x), muestra en pantalla el valor de la raíz y devuelve el valor a la pila. O (\Rightarrow) PICTURE FCH (\Rightarrow) ROOT</td>
<td>22-11</td>
</tr>
<tr>
<td>ROT</td>
<td>Desplaza el objeto del nivel 3 al nivel 1, subiendo los objetos de los niveles 1 y 2. C (\Rightarrow) STACK (\Rightarrow) ROT</td>
<td>3-12</td>
</tr>
<tr>
<td>ROW(\uparrow)</td>
<td>Amplía un sistema (z) mediante la inserción de un vector de fila (y) en el número de fila especificada (x). C (\text{MTH} ) MATR (\Rightarrow) ROW (\Rightarrow) ROW(\uparrow)</td>
<td>14-6</td>
</tr>
<tr>
<td>+ROW</td>
<td>Inserta una fila de ceros en la fila actual en el Matrix Writer. O (\Rightarrow) MATRIX (\Rightarrow) NXT (\Rightarrow) +ROW</td>
<td>8-8</td>
</tr>
<tr>
<td>ROW(\rightarrow)</td>
<td>Borra la fila especificada (x) de un sistema (y). C (\text{MTH} ) MATR (\Rightarrow) ROW (\Rightarrow) ROW(\rightarrow)</td>
<td>14-7</td>
</tr>
<tr>
<td>-ROW</td>
<td>Borra la fila actual en el Matrix Writer. O (\Rightarrow) MATRIX (\Rightarrow) NXT (\Rightarrow) -ROW</td>
<td>8-8</td>
</tr>
<tr>
<td>(\rightarrow)ROW</td>
<td>Descompone un sistema (z) en sus vectores de fila componentes. C (\text{MTH} ) MATR (\Rightarrow) ROW (\Rightarrow) (\rightarrow)ROW</td>
<td>14-3</td>
</tr>
<tr>
<td>ROW(\rightarrow)</td>
<td>Ensambla una secuencia de vectores de fila ((\ldots, z, y)) en una matriz que contenga (x) filas. C (\text{MTH} ) MATR (\Rightarrow) ROW (\Rightarrow) ROW(\rightarrow)</td>
<td>14-5</td>
</tr>
<tr>
<td>RR</td>
<td>Gira un entero binario (x) un bit a la derecha. C (\text{MTH} ) BASE (\Rightarrow) NXT (\Rightarrow) BIT (\Rightarrow) RR</td>
<td>15-5</td>
</tr>
<tr>
<td>RRB</td>
<td>Gira un entero binario (x) un byte a la derecha. C (\text{MTH} ) BASE (\Rightarrow) NXT (\Rightarrow) BYTE (\Rightarrow) RRB</td>
<td>15-5</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>RREF</td>
<td>Calcula la forma de escalón de fila reducida de una matriz rectangular (x).&lt;br&gt;C [MTH MATR FACTR RREF]</td>
<td>14-22</td>
</tr>
<tr>
<td>RRK</td>
<td>Utiliza una lista (z)—que contiene el nombre de la variable de la solución, la función diferencial y sus dos derivadas—y la tolerancia de error absoluto (y) para calcular la solución del problema del valor inicial en un punto (x) mediante el método de the Rosenbrock y Runge-Kutta. (3,4).&lt;br&gt;C [SOLVE DIFE RRK]</td>
<td>H-23</td>
</tr>
<tr>
<td>RRKSTEP</td>
<td>Utiliza una lista (t)—que contiene el nombre de la variable de tiempo, el nombre de la variable de la solución y la función diferencial y sus primeras dos derivativas—la tolerancia de error absoluto, un posible tamaño de paso (y) y un valor (x) que indique el método de solución utilizado en el paso anterior. Calcula el siguiente paso de la solución del problema del valor inicial mediante una combinación de los métodos de Rosenbrock y de Runge-Kutta.&lt;br&gt;C [SOLVE DIFE RRKS]</td>
<td>H-24</td>
</tr>
<tr>
<td>RSBERR</td>
<td>Utiliza una lista (y)—que contiene el nombre de la variable de tiempo, el nombre de la variable de la solución, la función diferencial y sus dos derivadas—y un posible tamaño de paso (x) para calcular el cambio en la solución y una estimación del error absoluto para ese paso mediante una combinación de los métodos de Rosenbrock y de Runge-Kutta.&lt;br&gt;C [SOLVE DIFE RSBER]</td>
<td>H-24</td>
</tr>
<tr>
<td>RSD</td>
<td>Calcula el valor residual z-xy de tres sistemas.&lt;br&gt;C [MTH MATR NXT RSD]</td>
<td>14-19</td>
</tr>
<tr>
<td>RSWP</td>
<td>Conmuta dos filas especificadas (y y x) de un sistema (z).&lt;br&gt;C [MTH MATR ROW NXT RSWP]</td>
<td>14-7</td>
</tr>
<tr>
<td>R→B</td>
<td>Convierte un entero real positivo (z) a su entero binario equivalente.&lt;br&gt;C [MTH BASE R→B]</td>
<td>15-3</td>
</tr>
</tbody>
</table>

G-42  Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>R→C</td>
<td>Combina los componentes separados real (y) e imaginario (x) para formar un número complejo (o sistema).</td>
<td>12-14</td>
</tr>
<tr>
<td></td>
<td><strong>PRG</strong> TYPE <strong>NXT</strong> R+L</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>C MTH</strong> <strong>NXT</strong> CMPL R+C</td>
<td></td>
</tr>
<tr>
<td>R→D</td>
<td>Convierte una medida de ángulos (x) de radianes a grados sexagesimales.</td>
<td>12-7</td>
</tr>
<tr>
<td></td>
<td><strong>F MTH</strong> REAL <strong>NXT</strong> <strong>NXT</strong> R→D</td>
<td></td>
</tr>
<tr>
<td>SAME</td>
<td>Comprueba dos objetos (y y x) para su igualdad.</td>
<td>H-24</td>
</tr>
<tr>
<td></td>
<td><strong>C PRG</strong> TEST <strong>NXT</strong> SAME</td>
<td></td>
</tr>
<tr>
<td>SBRK</td>
<td>Envía una comunicación serie.</td>
<td>27-19</td>
</tr>
<tr>
<td></td>
<td><strong>C (I/O)</strong> <strong>NXT</strong> SERIA SBRK</td>
<td></td>
</tr>
<tr>
<td>SCALE</td>
<td>Fija la escala horizontal (y) y vertical (x) de los ejes de PLOT (REPRESENTACIONES GRAFICAS).</td>
<td>H-24</td>
</tr>
<tr>
<td></td>
<td><strong>C PLOT</strong> PPAR <strong>NXT</strong> SCALE</td>
<td></td>
</tr>
<tr>
<td>SCATRPLOT</td>
<td>Traza una representación de dispersión de los datos estadísticos de ΣDAT.</td>
<td>21-12</td>
</tr>
<tr>
<td></td>
<td><strong>C (STAT)</strong> <strong>PLOT</strong> SCATR</td>
<td></td>
</tr>
<tr>
<td>SCATTER</td>
<td>Selecciona el tipo de representación gráfica SCATTER (DISPERSION).</td>
<td>23-23</td>
</tr>
<tr>
<td></td>
<td><strong>C PLOT</strong> <strong>NXT</strong> STAT P-TYPE SCATT</td>
<td></td>
</tr>
<tr>
<td>SCHUR</td>
<td>Calcula la descomposición de Schur de una matriz cuadrada (x)</td>
<td>14-24</td>
</tr>
<tr>
<td></td>
<td><strong>C MTH</strong> MTR FACTR SCHUR</td>
<td></td>
</tr>
<tr>
<td>SCI</td>
<td>Fija el modo de pantalla Scientific (Científico) con x lugares decimales.</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td><strong>C (MODES)</strong> FMT SCI</td>
<td></td>
</tr>
<tr>
<td>SCLÆ</td>
<td>Traza automáticamente la escala de los datos de ΣDAT de la representación gráfica de dispersión.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>C</strong> Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>SCONJ</td>
<td>Conjuga el contenido de la variable (x).</td>
<td>H-24</td>
</tr>
<tr>
<td></td>
<td><strong>C (MEMORY)</strong> ARITH <strong>NXT</strong> SCON</td>
<td></td>
</tr>
<tr>
<td>SDEV</td>
<td>Calcula la desviación estándar de cada una de las columnas de ΣDAT.</td>
<td>H-2</td>
</tr>
<tr>
<td></td>
<td><strong>C (STAT)</strong> TVAR SDEV</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>SEND</td>
<td>Envía una copia de una variable ($x$) a un dispositivo Kermit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>H-25</td>
</tr>
<tr>
<td>SEND</td>
<td>Envía el (los) objeto(s) especificado(s) del modo indicado en la plantilla de entrada.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>27-10</td>
</tr>
<tr>
<td>SEQ</td>
<td>Genera una secuencia (una lista) a partir de una expresión ($v$) que contiene una variable ($t$) cuyo valor se incrementa de $z$ a $y$ pasos de un tamaño $x$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>17-8</td>
</tr>
<tr>
<td>SERVER</td>
<td>Coloca la HP 48 en el modo de Kermit Server (Servidor Kermit).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>Fija el indicador especificado ($x$).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRG, TEST, NXT, NXT, SF</td>
<td>4-9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>SHADE</td>
<td>Ensombrece el área existente entre los gráficos de una función y el eje $x$ o dos gráficos, entre los valores definidos de $x$ mediante la marca y el cursor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>22-12</td>
</tr>
<tr>
<td>SHOW</td>
<td>Reconstruye la expresión ($y$) para dejar claras las referencias a una variable ($x$).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>20-18</td>
</tr>
<tr>
<td>SIDENS</td>
<td>Calcula la densidad intrínseca del silicio como una función de temperatura ($x$).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>H-25</td>
</tr>
<tr>
<td>SIGN</td>
<td>Devuelve el signo de un número ($x$).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>12-10</td>
</tr>
<tr>
<td></td>
<td>Devuelve el vector de unidades de un número complejo ($x$).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>12-14</td>
</tr>
<tr>
<td>SIMU</td>
<td>Conmuta entre la representación gráfica simultánea y secuencial de múltiples funciones.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>23-2</td>
</tr>
<tr>
<td>SIN</td>
<td>Seno de $x$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>12-2</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>SINH</td>
<td>Seno hiperbólico de $x$.</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>A MTH HYP SINH</td>
<td></td>
</tr>
<tr>
<td>SINV</td>
<td>Sustituye el contenido de una ($x$) por su inversa.</td>
<td>H-25</td>
</tr>
<tr>
<td></td>
<td>C MEMOR Y ARITH NXT SINV</td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>Halla las dimensiones de una lista, un sistema, una secuencia un objeto algebraico o un objeto de gráficos ($x$).</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>PRG LIST ELEM SIZE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C PRG GRUB NXT SIZE</td>
<td>9-11</td>
</tr>
<tr>
<td>SIZE</td>
<td>Muestra en pantalla el tamaño del objeto seleccionado en bytes y la cantidad de memoria disponible.</td>
<td>5-11</td>
</tr>
<tr>
<td></td>
<td>LIBRARY Browse ports... NXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O MEMORY NXT SIZE</td>
<td></td>
</tr>
<tr>
<td>←SKIP</td>
<td>Desplaza el cursor a la izquierda al siguiente espacio lógica.</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>EDIT SKIP</td>
<td></td>
</tr>
<tr>
<td>SKIP→</td>
<td>Desplaza el cursor a la derecha al siguiente espacio lógica.</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>EDIT SKIP</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Traslada un entero binario ($x$) un bit a la izquierda.</td>
<td>15-6</td>
</tr>
<tr>
<td></td>
<td>MTH BASE NXT BIT SL</td>
<td></td>
</tr>
<tr>
<td>SLB</td>
<td>Traslada el entero binario ($x$) un byte a la izquierda.</td>
<td>15-6</td>
</tr>
<tr>
<td></td>
<td>MTH BASE NXT BYTE SLB</td>
<td></td>
</tr>
<tr>
<td>SLOPE</td>
<td>Calcula y muestra en pantalla la pendiente de una función en la posición del cursor y devuelve la pendiente a la pila.</td>
<td>22-12</td>
</tr>
<tr>
<td></td>
<td>PICT DIRECT SLOPE</td>
<td></td>
</tr>
<tr>
<td>SLOPEFIELD</td>
<td>Selecciona el tipo de representación gráfica SLOPEFIELD (CAMPO DE PENDIENTES).</td>
<td>23-29</td>
</tr>
<tr>
<td></td>
<td>PLOT NXT 3D TYPE SLOPE</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>SNEG</td>
<td>Niega el contenido de una variable ((x)). C (\text{MEMORY}] \text{ARITH} \text{NXT} \text{SNEG})</td>
<td>H-26</td>
</tr>
<tr>
<td>SNRM</td>
<td>Calcula la norma espectral de un sistema ((x)). C (\text{MTH} \text{MATR} \text{NORM} \text{SNRM})</td>
<td>14-9</td>
</tr>
<tr>
<td>SOLVE</td>
<td>Inicia el procedimiento de resolución para el problema actual. O (\Rightarrow \text{SOLVE} [\text{varios}] \text{SOLVE})</td>
<td>18-1</td>
</tr>
<tr>
<td>SOLVEQN</td>
<td>Configura la Resolución con un conjunto de ecuaciones incorporadas—identificadas mediante un tema ((z)) y un título ((y))—y carga el diagrama de acompañamiento ((x)), si se especifica, en \text{PICT}. C (\Rightarrow \text{EQ LIB} \text{EQLIB} \text{SOLVE})</td>
<td>H-26</td>
</tr>
<tr>
<td>SORT</td>
<td>Clasifica los elementos de una lista ((x)) en orden ascendente. C (\text{MTH} \text{LIST} \text{SORT})</td>
<td>17-7</td>
</tr>
<tr>
<td>SPHERE</td>
<td>Fija el modo de coordenadas esférico. C (\text{MTH} \text{VECTR} \text{NXT} \text{SPHER})</td>
<td>13-2</td>
</tr>
<tr>
<td>SQ</td>
<td>Devuelve el cuadrado de (x). A (\Rightarrow x^2)</td>
<td>12-1</td>
</tr>
<tr>
<td>SR</td>
<td>Desplaza un entero binario ((x)) un bit a la derecha. C (\text{MTH} \text{BASE} \text{NXT} \text{BIT} \text{SR})</td>
<td>15-6</td>
</tr>
<tr>
<td>SRAD</td>
<td>Calcula el radio espectral de una matriz cuadrada ((x)). C (\text{MTH} \text{MATR} \text{NORM} \text{SRAD})</td>
<td>14-10</td>
</tr>
<tr>
<td>SRB</td>
<td>Desplaza un entero binario ((x)) un byte a la derecha. C (\text{MTH} \text{BASE} \text{NXT} \text{BYTE} \text{SRB})</td>
<td>15-6</td>
</tr>
<tr>
<td>SRECV</td>
<td>Lee un número especificado ((x)) de caracteres del puerto serie. C (\Rightarrow \text{I/O} \text{NXT} \text{SERIA} \text{SRECV})</td>
<td>27-19</td>
</tr>
<tr>
<td>SST</td>
<td>Recorre paso a paso el programa suspendido. O (\text{PRG} \text{NXT} \text{RUN} \text{SST})</td>
<td>29-9</td>
</tr>
<tr>
<td>SST↓</td>
<td>Recorre paso a paso el programa suspendido y sus subrutinas. O (\text{PRG} \text{NXT} \text{RUN} \text{SST↓})</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>START</td>
<td>Inicia la iteración determinada. C PRG BRCH START START</td>
<td>29-12</td>
</tr>
<tr>
<td>← START</td>
<td>Escribe START NEXT. O PRG BRCH ← START</td>
<td></td>
</tr>
<tr>
<td>↑ START</td>
<td>Escribe START STEP. O PRG BRCH ↑ START</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>Fija el modo de pantalla Standard (Estándar). C ← MODES ← STD</td>
<td>4-2</td>
</tr>
<tr>
<td>STEP</td>
<td>Finaliza la iteración determinada. PRG BRCH FOR STEP</td>
<td>29-13</td>
</tr>
<tr>
<td></td>
<td>C PRG BRCH START STEP</td>
<td>29-13</td>
</tr>
<tr>
<td>STEP</td>
<td>Ejecuta el siguiente paso de una diferenciación de pasos. O ← SYMBOLIC Differentiate... STEP</td>
<td>20-11</td>
</tr>
<tr>
<td>STEQ</td>
<td>Almacena la ecuación ( (x) ) en ( EQ ). C ← PLOT ← EQ</td>
<td>18-7</td>
</tr>
<tr>
<td></td>
<td>C ← PLOT ← EQ, 3D ← EQ</td>
<td></td>
</tr>
<tr>
<td>STIME</td>
<td>Configura la temporización de transmisión/recepción serie ( (x ) segundos). C ← I/O ← XT ←:Set ←STIME</td>
<td>27-19</td>
</tr>
<tr>
<td>↑STK</td>
<td>Selecciona la Pila Interactiva. C ← EDIT ← STK</td>
<td>3-7</td>
</tr>
<tr>
<td></td>
<td>O ← MATRIX ← XT ← STK</td>
<td>8-8</td>
</tr>
<tr>
<td>→STK</td>
<td>Copia el elemento resaltado actualmente en el MatrixWriter a la pila. O ← MATRIX ← XT ← STK</td>
<td>8-8</td>
</tr>
<tr>
<td>→STK</td>
<td>Copia el conjunto de ecuaciones a la pila. O ← EQ ← LIB ← ENTER ← STK</td>
<td>25-4</td>
</tr>
<tr>
<td>STO</td>
<td>Almacena el objeto ( (y) ) en la variable ( (x) ). C STO</td>
<td>5-12</td>
</tr>
<tr>
<td>STOALARM</td>
<td>Almacena la alarma ( (x) ) en la lista de alarmas del sistema. C ← TIME ← ALRM ← STOAL</td>
<td>H-26</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------------------------------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>STOF</td>
<td>Utiliza un entero binario (x) para fijar el estado de los indicadores del sistema o una lista de dos enteros binarios (x) para fijar el estado de los indicadores del sistema y los indicadores de usuario. C ( \text{MODES} \ 	ext{FLAG} \ 	ext{NXT} \ 	ext{STUF} )</td>
<td>24-8</td>
</tr>
<tr>
<td>STOKEYS</td>
<td>Utiliza una lista (x) para efectuar múltiples asignaciones de las teclas de usuario.</td>
<td>30-6</td>
</tr>
<tr>
<td>STO+</td>
<td>Suma un número u otro objeto al contenido de una variable especificada.</td>
<td>H-27</td>
</tr>
<tr>
<td></td>
<td>C ( \text{MEMORY} \ 	ext{ARITH} \ 	ext{STO+} )</td>
<td></td>
</tr>
<tr>
<td>STO−</td>
<td>Calcula la diferencia entre el contenido de una variable especificada y el número especificado u otro objeto, y almacena el resultado en una variable especificada. C ( \text{MEMORY} \ 	ext{ARITH} \ 	ext{STO−} )</td>
<td>H-27</td>
</tr>
<tr>
<td>STO*</td>
<td>Multiplica el contenido de una variable especificada mediante un número u otro objeto especificado. C ( \text{MEMORY} \ 	ext{ARITH} \ 	ext{STO*} )</td>
<td>H-27</td>
</tr>
<tr>
<td>STO/</td>
<td>Calcula el cociente del contenido de una variable especificada y un número u otro objeto especificado, y almacena el resultado en una variable especificada. C ( \text{MEMORY} \ 	ext{ARITH} \ 	ext{STO/} )</td>
<td>H-27</td>
</tr>
<tr>
<td>STOΣ</td>
<td>Almacena la matriz de estadísticas actual (x) en ( \Sigma \text{DAT} ).</td>
<td>H-28</td>
</tr>
<tr>
<td></td>
<td>C ( \underline{\text{STAT}} \ 	ext{DATA} \ \underline{\text{ΣDAT}} )</td>
<td></td>
</tr>
<tr>
<td>STR→</td>
<td>Evalúa una secuencia (x) como si su texto se introdujera desde la línea de comandos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>→STR</td>
<td>Convierte un objeto (x) en una secuencia.</td>
<td>H-28</td>
</tr>
<tr>
<td></td>
<td>C ( \text{PRG} \ 	ext{TYPE} \ 	ext{→STR} )</td>
<td></td>
</tr>
<tr>
<td>STREAM</td>
<td>Toma un objeto (x) (normalmente un programa o comando) y lo aplica a todos los elementos de una lista (y). C ( \text{PRG} \ 	ext{LIST} \ 	ext{PROC} \ 	ext{STREAM} )</td>
<td>17-6</td>
</tr>
<tr>
<td>STS</td>
<td>Visualiza una línea de estado con el directorio actual, los modos e indicadores establecidos, y la fecha y hora actual. O [input form] ( \text{NXT} \ 	ext{CALC} \ 	ext{STS} )</td>
<td>6-5</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>STWS</td>
<td>Fija el tamaño de entero binario en x bits. C MTH BASE NXT STWS</td>
<td>15-2</td>
</tr>
<tr>
<td>SUB</td>
<td>Extrae la parte de una lista, cadena o matriz, o un objeto de gráficos especificado (z) definida por las posiciones inicial (y) y final (x). PRG LIST SUB</td>
<td>20-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-11</td>
</tr>
<tr>
<td>SUB</td>
<td>Devuelve la parte especificada de PICT a la pila. O (\text{PICTURE \ EDIT \ NXT \ NXT} ) \text{SUB}</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB</td>
<td>Devuelve la subexpresión especificada a la pila. O (\text{EQUATION} ) (\text{SUB} )</td>
<td>20-22</td>
</tr>
<tr>
<td>SVD</td>
<td>Efectúa la descomposición de los valores individuales de una matriz rectangular (x). C MTH MATR FACTR SVD</td>
<td>14-24</td>
</tr>
<tr>
<td>SVL</td>
<td>Calcula los valores individuales de una matriz rectangular (x). C MTH MATR FACTR NXT SVL</td>
<td>14-24</td>
</tr>
<tr>
<td>SWAP</td>
<td>Intercambia los objetos de los niveles 1 y 2. C (\text{SWAP} )</td>
<td>3-4</td>
</tr>
<tr>
<td>SYM</td>
<td>Selecciona si las constantes simbólicas se van a evaluar o no numéricamente. O (\text{MODES MISCE SYM} )</td>
<td>4-11</td>
</tr>
<tr>
<td>SYSEVAL</td>
<td>Evalúa un objeto del sistema (z). Utilícese sólo según se especifique en las aplicaciones de la HP. C Deberá escribirse.</td>
<td>H-28</td>
</tr>
<tr>
<td>(\leftarrow T)</td>
<td>Desplaza el término a la izquierda. O (\text{EQUATION} ) (\text{RULES} ) (\leftarrow T )</td>
<td>20-24</td>
</tr>
<tr>
<td>(\rightarrow T)</td>
<td>Ejecuta (\rightarrow T ) hasta que no se produzcan cambios en la subexpresión. O (\text{EQUATION} ) (\text{RULES} ) (\rightarrow T )</td>
<td>20-28</td>
</tr>
<tr>
<td>T(\rightarrow)</td>
<td>Desplaza el término a la derecha. O (\text{EQUATION} ) (\text{RULES} ) (T\rightarrow)</td>
<td>20-24</td>
</tr>
<tr>
<td>(\rightarrow T)</td>
<td>Ejecuta (T\rightarrow) hasta que no se produzcan cambios en la subexpresión. O (\text{EQUATION} ) (\text{RULES} ) (\rightarrow T\rightarrow)</td>
<td>20-28</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>%T</td>
<td>Devuelve la parte porcentual que representa $x$ respecto a $y$. F  <strong>MTH</strong>  <strong>REAL</strong>  <strong>%T</strong></td>
<td>12-9</td>
</tr>
<tr>
<td>→TAG</td>
<td>Define (etiqueta) un objeto ($y$) mediante un nombre o una secuencia descriptiva ($x$). C  <strong>PRG</strong>  <strong>TYPE</strong>  →TAG</td>
<td>H-28</td>
</tr>
<tr>
<td>TAIL</td>
<td>Devuelve todo menos el primer elemento de una lista o todos menos el primer carácter de una cadena. C  <strong>PRG</strong>  <strong>EIST</strong>  <strong>ELEM</strong>  <strong>NXT</strong>  <strong>TAI</strong></td>
<td>17-7</td>
</tr>
<tr>
<td>TAN</td>
<td>Tangente de $x$. A  <strong>TAN</strong></td>
<td>12-2</td>
</tr>
<tr>
<td>TANH</td>
<td>Tangente hiperbólica de $x$. A  <strong>MTH</strong>  <strong>HYP</strong>  TANH</td>
<td>12-3</td>
</tr>
<tr>
<td>TANL</td>
<td>Traza la línea tangente de la función actual con un valor del cursor $x$ y devuelve la ecuación de la línea tangente a la pila. O  <strong>PIC</strong>  <strong>TURE</strong>  <strong>ECH</strong>  <strong>NXT</strong>  <strong>TAI</strong></td>
<td>22-12</td>
</tr>
<tr>
<td>TAYLR</td>
<td>Calcula el $x^2$ orden simbólico de la aproximación polinómica de Taylor a una expresión ($z$) de una variable especificada ($y$). C  <strong>SYMBOLIC</strong>  TAYLR</td>
<td>20-13</td>
</tr>
<tr>
<td>TDELTAL</td>
<td>Devuelve el aumento entre una temperatura final ($y$) y una temperatura inicial ($x$). Esta es una versión especial de la temperatura de la función de resta normal. F  <strong>EQ</strong>  <strong>LIB</strong>  <strong>UTILS</strong>  <strong>NXT</strong>  <strong>DEL</strong></td>
<td>H-28</td>
</tr>
<tr>
<td>TEACH</td>
<td>Carga los ejemplos incorporados. C  Deberá escribirse.</td>
<td>29-20</td>
</tr>
<tr>
<td>TEXT</td>
<td>Muestra la pila cuando se actualiza la pantalla. C  <strong>PRG</strong>  <strong>NXT</strong>  <strong>OUT</strong>  <strong>TEXT</strong></td>
<td></td>
</tr>
<tr>
<td>THEN</td>
<td>Inicia una operación verdadera. <strong>PRG</strong>  <strong>NXT</strong>  <strong>ERROR</strong>  <strong>IFERR</strong>  <strong>THEN</strong>  <strong>PRG</strong>  <strong>BRCH</strong>  <strong>CASE</strong>  <strong>THEN</strong>  <strong>PRG</strong>  <strong>BRCH</strong>  <strong>TE</strong>  <strong>THEN</strong></td>
<td>29-10</td>
</tr>
<tr>
<td>TICKS</td>
<td>Devuelve la hora del sistema en forma de un entero binario en unidades de tic-tac del reloj ($1$ tic-tac = $\frac{1}{512}$ segundos). C  <strong>TIME</strong>  <strong>TICKS</strong></td>
<td>16-4</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| TIME                     | Devuelve la hora actual en formato de 24 horas HH.MMSS.  
                          | C (TIME) TIME               | 16-3   |
| →TIME                    | Fija la hora del sistema en una hora especificada (x) en formato de 24 horas HH.MMSS.  
                          | C (TIME) →TIME              | H-29   |
| TINC                     | Incrementa o disminuye una temperatura dada (y) en un aumento de temperatura especificado (x).  
                          | F (NEWLIB UTILS NXT) TINC  | H-29   |
| TLINE                    | En PICT, commuta los puntos de la línea definida mediante dos coordenadas (y y x).  
                          | C PROG PICT TLINE           | 9-9    |
| TLINE                    | Activa y desactiva los puntos de la línea existente entre la marca y el cursor.  
                          | O (PICTURE) EDIT TLINE     | 9-4    |
| TMENU                    | Muestra en pantalla el menú personalizado de listas definidas (x) pero no cambia el contenido de CST.  
                          | C (MODES MENU TMENU)       | 30-4   |
| TOT                      | Suma cada una de las columnas de una matriz de ΣDAT.  
                          | C (STAT ΣVAR TOT)          | H-29   |
| TRACE                    | Calcula la suma de los elementos diagonales (trazado) de una matriz cuadrada (x).  
                          | C MTH MATR HOM NXT TRACE   | 14-10  |
| TRACE                    | Activa y desactiva el modo TRACE (TRAZADO).  
                          | O (PICTURE TRACE)          | 22-5   |
| TRANSIO                  | Selecciona las opciones de traducción de caracteres especificadas (x).  
                          | C (I/O IOPAR TRAN)         | H-29   |
| TRG*                     | Aumenta las funciones trigonométricas e hiperbólicas de sumas y diferencias.  
                          | O (EQUATION RULES TRG*)    | 20-28  |
| →TRG                     | Sustituye las funciones exponentiales por las trigonométricas.  
<pre><code>                      | O (EQUATION RULES →TRG)    | 20-27  |
</code></pre>
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRN</td>
<td>Transpone la matriz ((x)). C <strong>MTH</strong> <strong>MATR</strong> <strong>MAKE</strong> <strong>TRN</strong></td>
<td>14-11</td>
</tr>
<tr>
<td>TRNC</td>
<td>Truncar un número ((y)) en el número especificado ((x)) de lugares decimales o dígitos significativos. F <strong>MTH</strong> <strong>REAL</strong> <strong>NX</strong> <strong>NX</strong> <strong>TRNC</strong></td>
<td>12-10</td>
</tr>
<tr>
<td>TRUTH</td>
<td>Selecciona el tipo de representación gráfica TRUTH (VERDADERO). C <strong>PLOT</strong> <strong>TYPE</strong> <strong>TRUTH</strong></td>
<td>23-16</td>
</tr>
<tr>
<td>TSTR</td>
<td>Convierte la fecha ((y)) y la hora ((x)) de la forma numérica a la forma de una secuencia que incluya el día calculado de la semana. C <strong>TIME</strong> <strong>NX</strong> <strong>NX</strong> <strong>STR</strong></td>
<td>16-4</td>
</tr>
<tr>
<td>TVARS</td>
<td>Devuelve las variables que contengan el tipo de objeto especificado ((x)). C <strong>MEMORY</strong> <strong>DIR</strong> <strong>TVARS</strong></td>
<td>H-30</td>
</tr>
<tr>
<td>TVM</td>
<td>Muestra el menú TVM. C <strong>SOLVE</strong> <strong>TVM</strong></td>
<td>18-14</td>
</tr>
<tr>
<td>TVM BEG</td>
<td>Fija el modo de pagos en Beginning-of-Period (Principio del Período). C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>TVMEND</td>
<td>Fija el modo de pagos en End-of-Period (Final del Período). C Deberá escribirse.</td>
<td></td>
</tr>
<tr>
<td>TVMROOT</td>
<td>Resuelve la variable especificada de TVM ((x)) utilizando los valores almacenados en las restantes variables de TVM. C <strong>SOLVE</strong> <strong>TVM</strong> <strong>TVMP</strong></td>
<td>H-30</td>
</tr>
<tr>
<td>TYPE</td>
<td>Devuelve el número del tipo de un objeto ((x)). <strong>PRG</strong> <strong>TYPE</strong> <strong>NX</strong> <strong>NX</strong> <strong>TYPE</strong> C <strong>PRG</strong> <strong>TEST</strong> <strong>NX</strong> <strong>TYPE</strong></td>
<td>H-30</td>
</tr>
<tr>
<td>TYPES</td>
<td>Muestra en pantalla una lista de los tipos de objetos válidos del campo seleccionado. O [plantilla de entrada] <strong>NX</strong> <strong>TYPES</strong></td>
<td>6-7</td>
</tr>
<tr>
<td>UBASE</td>
<td>Convierte el objeto de unidades de medida ((x)) a las unidades de medida básicas del SI. F <strong>UNITS</strong> <strong>UBASE</strong></td>
<td>10-8</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td><strong>UFACT</strong></td>
<td>Factoriza una unidad de medida ((x)) a partir de la expresión de unidades de otro objeto de unidades de medida((y)).</td>
<td>10-11</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{[UNITS] UFACT}</td>
<td></td>
</tr>
<tr>
<td><strong>→UNIT</strong></td>
<td>Crea un objeto de unidades de medida a partir de un número real ((y)) y la parte de la unidad de un objeto de unidades de medida ((x)).</td>
<td>10-14</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{[UNITS] →UNIT}</td>
<td></td>
</tr>
<tr>
<td><strong>UNTIL</strong></td>
<td>Inicia una operación de prueba.</td>
<td>29-14</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{[PRG] BRCH DO UNTIL}</td>
<td></td>
</tr>
<tr>
<td><strong>UPDIR</strong></td>
<td>Convierte el directorio superior en el directorio actual.</td>
<td>5-13</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{[UP]}</td>
<td></td>
</tr>
<tr>
<td><strong>UTPC</strong></td>
<td>Devuelve las probabilidades de que la variable aleatoria (F) al cuadrado sea mayor que (x), dados los grados de exención ((y)) de la distribución.</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{MTH NXT PROB NXT UTPC}</td>
<td></td>
</tr>
<tr>
<td><strong>UTPF</strong></td>
<td>Devuelve las probabilidades de que la variable aleatoria (F) de Snedecor sea mayor que (x), dados los grados de exención del numerador ((z)) y del denominador ((y)) de la distribución.</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{MTH NXT PROB NXT UTPF}</td>
<td></td>
</tr>
<tr>
<td><strong>UTPN</strong></td>
<td>Devuelve las probabilidades de que una variable aleatoria normal sea mayor que (x), dada la media ((z)) y la variación ((y)) de la distribución.</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{MTH NXT PROB NXT UTPN}</td>
<td></td>
</tr>
<tr>
<td><strong>UTPT</strong></td>
<td>Devuelve las probabilidades de que la variable aleatoria de Student sea mayor que (x), dados los grados de exención ((y)) de la distribución.</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{MTH NXT PROB NXT UTPT}</td>
<td></td>
</tr>
<tr>
<td><strong>UVAL</strong></td>
<td>Elimina la parte de la unidad de un objeto especificado de unidades de medida ((x)).</td>
<td>10-16</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{[UNITS] UVAL}</td>
<td></td>
</tr>
<tr>
<td><strong>VAR</strong></td>
<td>Calcula la variación de las columnas de datos estadísticos de (\Sigma)DAT.</td>
<td>H-31</td>
</tr>
<tr>
<td></td>
<td>( \text{C} ) \text{[STAT] LVAR NXT VAR}</td>
<td></td>
</tr>
</tbody>
</table>

**Indice de Operaciones**  G-53
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARS</td>
<td>Devuelve una lista de las variables del directorio actual. C</td>
<td>H-31</td>
</tr>
<tr>
<td>VEC</td>
<td>Conmuta entre los modos de vectores y de sistemas. O</td>
<td>8-8</td>
</tr>
<tr>
<td>VIEW</td>
<td>Copia el objeto del nivel actual en el entorno adecuado para su visualización. O</td>
<td>3-7</td>
</tr>
<tr>
<td>VIEW</td>
<td>Muestra las palabras clave del menú para el menú actual. Si estas claves son variables, se mostrarán sus valores. O</td>
<td>3-7</td>
</tr>
<tr>
<td>VIEW</td>
<td>Muestra el rango y la ecuación actual mientras se mantiene pulsada la tecla. O</td>
<td>22-6</td>
</tr>
<tr>
<td>VPAR</td>
<td>Devuelve la variable reservada VPAR. C</td>
<td>22-15</td>
</tr>
<tr>
<td>VTYPE</td>
<td>Devuelve el número de tipo de un objeto almacenado con un nombre local o global (x). C</td>
<td>H-31</td>
</tr>
<tr>
<td>VZIN</td>
<td>Zoom vertical dentro. O</td>
<td>22-9</td>
</tr>
<tr>
<td>VZOUT</td>
<td>Zoom vertical fuera. O</td>
<td>22-9</td>
</tr>
<tr>
<td>→V2</td>
<td>Combina dos números reales (y y x) para formar un vector bidimensional o un número complejo. O</td>
<td>13-4</td>
</tr>
<tr>
<td>→V3</td>
<td>Combina tres números reales para formar un vector tridimensional de acuerdo con el modo actual Coordinate System (Sistema de Coordenadas). C</td>
<td>13-4</td>
</tr>
<tr>
<td>V→</td>
<td>Descompone un vector o un número complejo (x) en sus elementos componentes de acuerdo con el modo de ángulo actual. C</td>
<td>13-4</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>+W</td>
<td>Multiplica la escala horizontal de una representación gráfica por un factor ( x ). C [ PLOT ] [ PPAR ] [ NXT ] [ x ]</td>
<td>H-31</td>
</tr>
<tr>
<td>WAIT</td>
<td>Interrumpe la ejecución de un programa durante el número especificado de segundos ( x ) o hasta que se pulse una tecla. C [ PRG ] [ NXT ] [ IN ] [ HRT ]</td>
<td>H-32</td>
</tr>
<tr>
<td>WHILE</td>
<td>Inicia una iteración indeterminada. C [ PRG ] [ BRCH ] [ WHILE ] [ WHILE ]</td>
<td>29-15</td>
</tr>
<tr>
<td>( \rightarrow ) WHILE</td>
<td>Escribe WHILE REPEAT END O [ PRG ] [ BRCH ] [ \rightarrow ] [ WHILE ]</td>
<td>H-32</td>
</tr>
<tr>
<td>WID( \rightarrow )</td>
<td>Aumenta la anchura de las columnas y reduce el número de las mismas. O [ MTRX ] [ WID ]</td>
<td>8-8</td>
</tr>
<tr>
<td>( \leftarrow ) WID</td>
<td>Reduce la anchura de las columnas y aumenta el número de las mismas. O [ MTRX ] [ \leftarrow ] [ WID ]</td>
<td>8-8</td>
</tr>
<tr>
<td>WIREFRAME</td>
<td>Selecciona el tipo de representación gráfica WIREFRAME (ESTRUCTURA LINEAL). C [ PLOT ] [ NXT ] [ BD ] [ PTYPE ] [ WIRE ]</td>
<td>23-32</td>
</tr>
<tr>
<td>WSLOG</td>
<td>Devuelve una serie de secuencias que tienen grabada la fecha, la hora y la causa de todos los inicios de calentamiento. C Deberá escribirse.</td>
<td>H-32</td>
</tr>
<tr>
<td>( \Sigma x )</td>
<td>Devuelve la suma de los datos de una columna independiente de ( \Sigma DAT ). C [ STAT ] [ SUMS ] [ \Sigma x ]</td>
<td>H-32</td>
</tr>
<tr>
<td>( \Sigma x^2 )</td>
<td>Devuelve la suma de los cuadrados de los datos de una columna independiente de ( \Sigma DAT ). C [ STAT ] [ SUMS ] [ \Sigma x^2 ]</td>
<td>H-33</td>
</tr>
<tr>
<td>XCOL</td>
<td>Especifica la columna de la variable independiente ( x ) de la matriz de ( \Sigma DAT ). C [ STAT ] [ ZPAR ] [ XCOL ]</td>
<td>H-33</td>
</tr>
<tr>
<td>XMIT</td>
<td>Envía la secuencia dada ( x ) a través del puerto serie sin utilizar el protocolo Kermit. C [ I/O ] [ NXT ] [ SERIE ] [ XMIT ]</td>
<td>27-18</td>
</tr>
</tbody>
</table>

**Indice de Operaciones G-55**
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOR</td>
<td>XOR lógica de dos expresiones ((x \text{ e } y)) que se evalúan como (1 \text{ o } 0) o XOR binaria que combina dos enteros ((x \text{ e } y)) o dos secuencias ((x \text{ e } y)).</td>
<td>15-4</td>
</tr>
<tr>
<td>F</td>
<td>MTH BASE NXT LOGIC XOR</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>PRG TEST NXT XOR</td>
<td></td>
</tr>
<tr>
<td>XPON</td>
<td>Devuelve el exponente de un número ((x)).</td>
<td>12-10</td>
</tr>
<tr>
<td>F</td>
<td>MTH REAL NXT XPON</td>
<td></td>
</tr>
<tr>
<td>XRECV</td>
<td>Recibe un objeto por vía xmodem.</td>
<td>H-33</td>
</tr>
<tr>
<td>C</td>
<td>I/O NXT XRECV</td>
<td></td>
</tr>
<tr>
<td>XRNG</td>
<td>Especifica rango de visualización del eje horizontal de una representación gráfica (entre (y) y (x)).</td>
<td>H-33</td>
</tr>
<tr>
<td>C</td>
<td>PLOT PPAR XENG</td>
<td></td>
</tr>
<tr>
<td>XROOT</td>
<td>Devuelve la (x^2) raíz de un número real (y).</td>
<td>12-1</td>
</tr>
<tr>
<td>A</td>
<td>(\rightarrow y)</td>
<td></td>
</tr>
<tr>
<td>XSEND</td>
<td>Envía un objeto por vía xmodem.</td>
<td>H-33</td>
</tr>
<tr>
<td>C</td>
<td>I/O NXT XSEND</td>
<td></td>
</tr>
<tr>
<td>XVOL</td>
<td>Fija las coordenadas izquierda y derecha, (X_{\text{left}}(y)) y (X_{\text{right}}(x)), que establecen la anchura del volumen de una representación gráfica tridimensional.</td>
<td>H-34</td>
</tr>
<tr>
<td>C</td>
<td>PLOT NXT 3D VPAR XVOL</td>
<td></td>
</tr>
<tr>
<td>XXRNG</td>
<td>Fija las coordenadas izquierda y derecha (XX_{\text{left}}(y)) y (XX_{\text{right}}(x)) que establecen la anchura del rango del trazado destino tridimensional (para los tipos de representaciones gráficas GRIDMAP—MAPA DE RED y PARSURFACE—SUPERFICIE PARAMETRICA).</td>
<td>H-34</td>
</tr>
<tr>
<td>C</td>
<td>PLOT NXT 3D VPAR XXRNG</td>
<td></td>
</tr>
<tr>
<td>sXsY</td>
<td>Devuelve la suma de los productos de los datos que se encuentran en las columnas independientes y dependientes de (\Sigma DAT).</td>
<td>H-34</td>
</tr>
<tr>
<td>C</td>
<td>STAT SUMS (\Sigma xy)</td>
<td></td>
</tr>
<tr>
<td>(X,Y)</td>
<td>Activa y desactiva las coordenadas actuales del cursor en la parte inferior izquierda de la pantalla.</td>
<td>22-4</td>
</tr>
<tr>
<td>O</td>
<td>PICTURE +</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>PICTURE X,Y</td>
<td></td>
</tr>
</tbody>
</table>

G-56 Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y→</td>
<td>Introduce en la pila las coordenadas actuales del cursor en forma de un número complejo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O ↩ PICTURE ENTER</td>
<td>22-6</td>
</tr>
<tr>
<td></td>
<td>↩ PICTURE EDIT NXT NXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y,Y→</td>
<td></td>
</tr>
<tr>
<td>ΣY</td>
<td>Devuelve la suma de los datos de una columna dependiente de ΣDAT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ STAT SUMS ΣY</td>
<td>H-34</td>
</tr>
<tr>
<td>ΣY^2</td>
<td>Devuelve la suma de los cuadrados de los datos que se encuentran en una columna dependiente de ΣDAT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ STAT SUMS ΣY^2</td>
<td>H-34</td>
</tr>
<tr>
<td>YCOL</td>
<td>Selecciona la columna indicada (x) de ΣDAT como una columna de variables dependientes de estadísticas de dos variables.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ STAT SPAR YCOL</td>
<td>H-35</td>
</tr>
<tr>
<td>YRNG</td>
<td>Especifica rango de visualización del eje vertical de una representación gráfica (entre y y x).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ PLOT SPAR YRNG</td>
<td>H-35</td>
</tr>
<tr>
<td>YSLICE</td>
<td>Selecciona el tipo de representación gráfica YSLICE (Corte y).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ PLOT NXT 3D PTYPE</td>
<td>23-36</td>
</tr>
<tr>
<td></td>
<td>YSLICE</td>
<td></td>
</tr>
<tr>
<td>YVOL</td>
<td>Fija las coordenadas lejana y cercana, (Y_{far}(y)) e (Y_{near}(x)) que establecen la anchura del volumen de una representación gráfica tridimensional.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ PLOT NXT 3D VPAR</td>
<td>H-35</td>
</tr>
<tr>
<td></td>
<td>YVOL</td>
<td></td>
</tr>
<tr>
<td>YYRNG</td>
<td>Fija las coordenadas lejana y cercana (YY_{far}(y)) y (XX_{near}(x)) que establecen la anchura del rango del trazado destino tridimensional (para las representaciones gráficas GRIDMAP—MAPA DE RED y PARSURFACE—SUPERFICIE PARAMETRICA).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C ↩ PLOT NXT 3D VPAR YYRNG</td>
<td>H-35</td>
</tr>
<tr>
<td>ZAUTO</td>
<td>Escala automáticamente y vuelve a dibujar el gráfico.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O ↩ PICTURE ZOOM NXT ZAUTO</td>
<td>22-10</td>
</tr>
</tbody>
</table>

Indice de Operaciones  G-57
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDECI</td>
<td>Escala el eje horizontal de modo que todos los puntos representen 0.1.</td>
<td>22-10</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [NXT] [NXT] [ZDECI]</td>
<td></td>
</tr>
<tr>
<td>ZDFLT</td>
<td>Reconfigura PPAR con las opciones de escala actuales.</td>
<td>22-9</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [ZDFLT]</td>
<td></td>
</tr>
<tr>
<td>ZFACT</td>
<td>Muestra en pantalla la plantilla de entrada para fijar los factores de Zoom por defecto.</td>
<td>22-8</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [ZFACT]</td>
<td></td>
</tr>
<tr>
<td>ZFACTOR</td>
<td>Calcula del factor Z de compresibilidad del gas utilizando la razón de reducción de la temperatura (y) y la razón de reducción de la presión (x).</td>
<td>H-35</td>
</tr>
<tr>
<td></td>
<td>F [EQ LIB] UTILS ZFACT</td>
<td></td>
</tr>
<tr>
<td>ZIN</td>
<td>Zoom dentro por un factor estándar.</td>
<td>22-9</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [ZIN]</td>
<td></td>
</tr>
<tr>
<td>ZINTG</td>
<td>Fija la escala horizontal y las escalas verticales de modo que cada uno de los puntos represente 1.</td>
<td>22-10</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [NXT] [NXT] [ZINTG]</td>
<td></td>
</tr>
<tr>
<td>ZLAST</td>
<td>Le devuelve al factor de Zoom anterior.</td>
<td>22-10</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [NXT] [NXT] [ZLAST]</td>
<td></td>
</tr>
<tr>
<td>ZOOM</td>
<td>Amplía un área rectangular (dibujada por el usuario) hasta llenar la totalidad de la pantalla.</td>
<td>22-9</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [BOXZ] [fija un recuadro] [ZOOM]</td>
<td></td>
</tr>
<tr>
<td>ZOUT</td>
<td>Desactiva el Zoom mediante un factor estándar.</td>
<td>22-9</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [ZOUT]</td>
<td></td>
</tr>
<tr>
<td>ZSQR</td>
<td>Reconfigura la escala vertical para equipararla a la escala horizontal.</td>
<td>22-9</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [ZSQR]</td>
<td></td>
</tr>
<tr>
<td>ZTRIG</td>
<td>Fija la escala horizontal de modo que cada diez puntos representen $\pi/2$ y fija la escala vertical de modo que cada diez puntos representen 1.</td>
<td>22-10</td>
</tr>
<tr>
<td></td>
<td>O [PICTURE] [ZOOM] [NXT] [NXT] [ZTRIG]</td>
<td></td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ZVOL</td>
<td>Fija las coordenadas inferior y superior ( Z_{low} ) ( y ) y ( Z_{high} ) ( x ) que establecen la altura del volumen de una representación gráfica tridimensional.</td>
<td>H-36</td>
</tr>
<tr>
<td>+</td>
<td>Suma dos objetos ( y ) ( x ).</td>
<td>12-1</td>
</tr>
<tr>
<td>+/−</td>
<td>Commuta el estilo del cursor entre una cruz invertida o superpuesta.</td>
<td>22-7</td>
</tr>
<tr>
<td>+/1−</td>
<td>Suma y resta 1.</td>
<td>20-23</td>
</tr>
<tr>
<td>−</td>
<td>Resta un objeto ( x ) a otro ( y ).</td>
<td>12-1</td>
</tr>
<tr>
<td>−()</td>
<td>Distribución y negación doble.</td>
<td>20-26</td>
</tr>
<tr>
<td>*</td>
<td>Multiplica dos objetos ( y ) ( x ).</td>
<td>12-1</td>
</tr>
<tr>
<td>*1</td>
<td>Multiplica por 1.</td>
<td>20-23</td>
</tr>
<tr>
<td>/</td>
<td>Divide un objeto ( y ) entre otro ( x ).</td>
<td>12-1</td>
</tr>
<tr>
<td>/1</td>
<td>Divide entre 1.</td>
<td>20-23</td>
</tr>
<tr>
<td>^</td>
<td>Eleva un número ( y ) a la potencia especificada ( x ).</td>
<td>12-1</td>
</tr>
<tr>
<td>^1</td>
<td>Eleva a la potencia 1.</td>
<td>20-23</td>
</tr>
<tr>
<td>&lt;</td>
<td>Comprueba si ( y &lt; x ).</td>
<td>H-36</td>
</tr>
<tr>
<td>≤</td>
<td>Comprueba si ( y \leq x ).</td>
<td>H-36</td>
</tr>
<tr>
<td>Nombre, Tecla o Etiqueta</td>
<td>Descripción, Tipo y Teclas</td>
<td>Página</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>&gt;</td>
<td>Comprueba si ( y &gt; x ).</td>
<td>H-37</td>
</tr>
<tr>
<td></td>
<td>F  PRG TESTrequently</td>
<td></td>
</tr>
<tr>
<td>≥</td>
<td>Comprueba si ( y \geq x ).</td>
<td>H-37</td>
</tr>
<tr>
<td></td>
<td>F  PRG TESTrequently</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>Devuelve una ecuación compuesta por dos expresiones ( (y\ y \ x) ).</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td>A  ( \leftrightarrow ) =</td>
<td></td>
</tr>
<tr>
<td>==</td>
<td>Comprueba si ( y = x ).</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td>F  PRG TESTrequently</td>
<td></td>
</tr>
<tr>
<td>≠</td>
<td>Comprueba si ( y \neq x ).</td>
<td>H-38</td>
</tr>
<tr>
<td></td>
<td>F  PRG TESTrequently</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>Producto factorial de ( x ).</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>F  MTH NXT PROB</td>
<td></td>
</tr>
<tr>
<td>( \int )</td>
<td>Integra una expresión ( (y) ) entre ( t ) y ( z ) con respecto a la variable de integración especificada ( (x) ).</td>
<td>H-38</td>
</tr>
<tr>
<td></td>
<td>A  ( \rightarrow ) ( \int )</td>
<td></td>
</tr>
<tr>
<td>( \theta )</td>
<td>Toma la derivada de una expresión ( (y) ) con respecto a la variable de diferenciación especificada ( (x) ).</td>
<td>H-38</td>
</tr>
<tr>
<td></td>
<td>A  ( \rightarrow ) ( \theta )</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Calcula el tanto por ciento ( y ) de ( x ).</td>
<td>12-9</td>
</tr>
<tr>
<td></td>
<td>A  MTH REAL</td>
<td></td>
</tr>
<tr>
<td>( \pi )</td>
<td>Devuelve la constante simbólica ( \pi ) (6 3.14159265359 dependiendo del indicador -2).</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td>F  ( \rightarrow ) ( \pi )</td>
<td></td>
</tr>
<tr>
<td>( \Sigma )</td>
<td>Calcula la suma de una expresión ( (x) ) evaluada una serie de veces como una variable de índice ( (t) ) que se desplaza de ( z ) a ( y ).</td>
<td>H-39</td>
</tr>
<tr>
<td></td>
<td>F  ( \rightarrow ) ( \Sigma )</td>
<td></td>
</tr>
<tr>
<td>( \Sigma + )</td>
<td>Añade un punto de datos ( (x) ) a la matriz de ( \Sigma DAT ).</td>
<td>H-39</td>
</tr>
<tr>
<td></td>
<td>C  ( \rightarrow ) STAT DATA ( \Sigma + )</td>
<td></td>
</tr>
<tr>
<td>( \Sigma - )</td>
<td>Resta un punto de datos ( (x) ) de la matriz de ( \Sigma DAT ).</td>
<td>H-39</td>
</tr>
<tr>
<td></td>
<td>C  ( \rightarrow ) STAT DATA ( \Sigma - )</td>
<td></td>
</tr>
</tbody>
</table>

G-60  Índice de Operaciones
<table>
<thead>
<tr>
<th>Nombre, Tecla o Etiqueta</th>
<th>Descripción, Tipo y Teclas</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>Devuelve la raíz cuadrada de (x). A (\sqrt{\text{ }})</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>Utiliza una lista de nombres y de valores ((x)) para sustituir los valores por nombres en una expresión ((y)). F (\leftarrow\text{SYMBOLIC}) (\text{NXT}) (\rightarrow)</td>
<td>20-18</td>
</tr>
<tr>
<td>1/()</td>
<td>Distribución e inversión doble. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\text{NXT}) (\rightarrow)</td>
<td>20-26</td>
</tr>
<tr>
<td>(( ))</td>
<td>Paréntesis juntos. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\rightarrow)</td>
<td>20-25</td>
</tr>
<tr>
<td>(←)</td>
<td>Amplía la subexpression a la izquierda. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\text{NXT}) (\rightarrow)</td>
<td>20-25</td>
</tr>
<tr>
<td>(→)</td>
<td>Ejecuta (\leftarrow) (\rightarrow) hasta que no se producen cambios en la subexpresión. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\text{NXT}) (\rightarrow)</td>
<td>20-28</td>
</tr>
<tr>
<td>−()</td>
<td>Distribuye la función de prefijo. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\text{NXT}) (\rightarrow)</td>
<td>20-25</td>
</tr>
<tr>
<td>−)</td>
<td>Amplía la subexpression a la derecha. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\text{NXT}) (\rightarrow)</td>
<td>20-25</td>
</tr>
<tr>
<td>(→)</td>
<td>Ejecuta (\leftarrow) (\rightarrow) hasta que no se producen cambios en la subexpresión. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\text{NXT}) (\rightarrow)</td>
<td>20-28</td>
</tr>
<tr>
<td>←→</td>
<td>Conmuta los argumentos. O (\leftarrow\text{EQUATION}) (\leftarrow\text{RULES}) (\rightarrow)</td>
<td>20-25</td>
</tr>
<tr>
<td>→</td>
<td>Inicia una estructura de variables locales. C (\rightarrow)</td>
<td>29-17</td>
</tr>
</tbody>
</table>
Diagramas de la pila para comandos seleccionados

**Comando AMORT:** Amortiza un préstamo o inversión basándose en las opciones de amortización actuales.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n$</td>
<td>capital</td>
<td>interés</td>
<td>rédito</td>
</tr>
</tbody>
</table>

**Función AND:** Devuelve la Y lógica y dos argumentos.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_n_1$</td>
<td>$n_n_2$</td>
<td>$n_n_3$</td>
</tr>
<tr>
<td>&quot;secuencia_1&quot;</td>
<td>&quot;secuencia_2&quot;</td>
<td>&quot;secuencia_3&quot;</td>
</tr>
<tr>
<td>$T/F_1$</td>
<td>$T/F_2$</td>
<td>$0/1$</td>
</tr>
<tr>
<td>$T/F$</td>
<td>'símb'</td>
<td>'$T/F \ Y \ símb$'</td>
</tr>
<tr>
<td>'símb'</td>
<td>$T/F$</td>
<td>'$símb \ Y \ T/F$'</td>
</tr>
<tr>
<td>'símb_1'</td>
<td>'símb_2'</td>
<td>'$símb_1 \ Y \ ? \ símb_2$'</td>
</tr>
</tbody>
</table>

**Función APPLY:** Crea una expresión a partir del nombre y los argumentos de la función especificada.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ símb_1 \ldots símb_n }</td>
<td>'nombre'</td>
<td>'$nombre(símb_1 \ldots \ símb_n)$'</td>
</tr>
</tbody>
</table>
Comando **ARRY**—: Toma un sistema y devuelve sus elementos como números reales o complejos independientes. También devuelve una lista de las dimensiones del sistema.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel nm+1</th>
<th>→</th>
<th>Nivel 2</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ vector ]</td>
<td>→</td>
<td>$z_1$ ... $z_n$</td>
<td>{ n_{elemento} }</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[[ matriz ]]</td>
<td>→</td>
<td>$z_{11}$ ... $z_{nm}$</td>
<td>{ n_{fil} m_{col} }</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comando **ATICK**: Establece la marca de anotación de los ejes de la variable reservada **PPAR**.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x$</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>$nn$</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ $x,y$ }</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ $nn$ $nm$ $}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

Comando **BINS**: Clasifica los elementos de la columna independiente (XCOL) de la matriz de estadísticas actual (la variable reservada $\Sigma DAT$) en $(n_{cubos} + 2)$, donde el límite izquierdo del cubo 1 comienza en el valor $x_{min}$ y cada cubo tiene una anchura $x_{anchura}$.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 2</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{m \leq n}$</td>
<td>$x_{anchura}$</td>
<td>$n_{cubos}$</td>
<td>→</td>
<td>[[ $n_{cubol}$ ... $n_{cubon}$ ]]</td>
<td>[ $n_{cubol}$ $n_{cubor}$ ]</td>
<td></td>
</tr>
</tbody>
</table>

Comando **BYTES**: Devuelve el número de bytes y la suma de comprobación del objeto dado.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 2</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$obj$</td>
<td>→</td>
<td>$#n_{sumcomp}$</td>
<td>$x_{tamaño}$</td>
<td></td>
</tr>
</tbody>
</table>

H-2 Diagramas de la pila para comandos seleccionados
**Comando CENTR:** Ajusta los dos primeros parámetros de la variable reservada \( PPAR \), \( \langle x_{\text{min}}, y_{\text{min}} \rangle \) y \( \langle x_{\text{max}}, y_{\text{max}} \rangle \), de modo que el punto representado por el argumento \( \langle x, y \rangle \) sea el centro de la representación gráfica.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x, y )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando CHOOSE:** Crea una ventana de opciones definidas por el usuario.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;indicador&quot; { ( c_1 \ldots c_n ) }</td>
<td>( n_{\text{pos}} )</td>
<td>→</td>
<td>obj o resultado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>&quot;indicador&quot; { ( c_1 \ldots c_n ) }</td>
<td>( n_{\text{pos}} )</td>
<td>→</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Comando CHR:** Devuelve una secuencia que representa el carácter de la HP 48 que corresponde al código de caracteres \( n \).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n )</td>
<td>→</td>
<td>&quot;secuencia&quot;</td>
</tr>
</tbody>
</table>

**Comando CKSM:** Especifica un esquema de detección de errores.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n_{\text{sumcomp}} )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando CLKADJ:** Ajusta la hora del sistema en \( x \) tic-tacs del reloj, donde 8192 tic-tacs del reloj son igual a 1 segundo.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando COLΣ:** Especifica las columnas de variables independientes y variables dependentes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x_{icol} )</td>
<td>( x_{jcol} )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando CORR:** Devuelve el coeficiente de correlación de las columnas de datos independientes y dependientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>( x_{corr\text{e}lación} )</td>
<td></td>
</tr>
</tbody>
</table>

**Comando COV:** Devuelve la covarianza de muestra de las columnas de datos independientes y dependientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>( x_{covar\text{iación}} )</td>
<td></td>
</tr>
</tbody>
</table>

**Comando CRDIR:** Crea un subdirectorio vacío con el nombre especificado dentro del directorio actual.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'global'</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Función Darcy:** Calcula el factor de fricción Darcy de determinados flujos de fluidos.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x_{z/D} )</td>
<td>( y_{Re} )</td>
<td>→</td>
<td>( x_{Darcy} )</td>
</tr>
</tbody>
</table>

H-4 Diagramas de la pila para comandos seleccionados
**Comando DATE**: Fija la fecha del sistema para *fecha*.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>fecha</em></td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando DECR**: Toma una variable del nivel, le resta 1, vuelve a almacenar el nuevo valor en la variable original y devuelve el nuevo valor al nivel 1.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>nombre</em></td>
<td>→</td>
<td>x nuevo</td>
</tr>
</tbody>
</table>

**Comando DELALARM**: Borra la alarma especificada en el nivel 1.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n índice</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando DEPND**: Especifica la variable dependiente (y su rango de representación gráfica para las representaciones gráficas VERDAD).

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>global</em></td>
<td>→</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ <em>global</em> }</td>
<td>→</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ <em>global</em> y inicial y final }</td>
<td>→</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ y inicial y final }</td>
<td>→</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y inicial</td>
<td>y final</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando DISP**: Muestra el *obj* de la *n* línea de la pantalla.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>obj</em></td>
<td><em>n</em></td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando DOERR:** Ejecuta un error "especificado por el usuario," lo que hace que un programa se comporte exactamente como si se hubiera producido un error durante la ejecución del programa.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_{\text{error}}$</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>$nn_{\text{error}}$</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>&quot;error&quot;</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando DTAG:** Elimina todas las etiquetas (señas de identidad) de un objeto.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>:etiq:obj</td>
<td>→</td>
<td>obj</td>
</tr>
</tbody>
</table>

**Comando EQ→:** Divide una ecuación en sus partes derecha e izquierda.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'símb$_1$ =símb$_2$'</td>
<td>→</td>
<td>'símb$_1$'</td>
<td>'símb$_2$'</td>
</tr>
<tr>
<td>z</td>
<td>→</td>
<td>z</td>
<td>0</td>
</tr>
<tr>
<td>'nombre'</td>
<td>→</td>
<td>'nombre'</td>
<td>0</td>
</tr>
<tr>
<td>x$_{-}$unid</td>
<td>→</td>
<td>x$_{-}$unid</td>
<td>0</td>
</tr>
<tr>
<td>'símb'</td>
<td>→</td>
<td>'símb'</td>
<td>0</td>
</tr>
</tbody>
</table>

**Comando ERRM:** Devuelve una secuencia que contiene el mensaje de error más reciente de la calculadora.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>&quot;mensaje de error&quot;</td>
</tr>
</tbody>
</table>
**Comando ERRN:** Devuelve el número de error del último error de la calculadora.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$n_{error}$</td>
</tr>
</tbody>
</table>

**Comando EYEPT:** Especifica las coordenadas del punto de vista en una representación gráfica de perspectiva.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{punto}$</td>
<td>$y_{punto}$</td>
<td>$z_{punto}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Función F0λ:** Devuelve la fracción de la potencia emisora total de cuerpos negros.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_{\lambda m b da}$</td>
<td>$x_T$</td>
<td>→</td>
<td>$x_{potencia}$</td>
</tr>
<tr>
<td>$y_{\lambda m b da}$</td>
<td>'símb'</td>
<td>→</td>
<td>'F0λ(y_{\lambda m b da},símb)'</td>
</tr>
<tr>
<td>'símb'</td>
<td>$x_T$</td>
<td>→</td>
<td>'F0λ(símb,x_T)'</td>
</tr>
<tr>
<td>'símb_1'</td>
<td>'símb_2'</td>
<td>→</td>
<td>'F0λ(símb_1,símb_2)'</td>
</tr>
</tbody>
</table>

**Función FACT:** Se proporciona para compatibilidad con la HP 28. FACT es lo mismo que !.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n$</td>
<td>→</td>
<td>$n!$</td>
</tr>
<tr>
<td>$x$</td>
<td>→</td>
<td>$\Gamma(x+1)$</td>
</tr>
<tr>
<td>'símb'</td>
<td>→</td>
<td>'!(símb)!'</td>
</tr>
</tbody>
</table>
**Función FANNING:** Calcula el factor de fricción de Fanning de determinados flujos de fluidos.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{	ext{i}/D}$</td>
<td>$y_{\text{Re}}$</td>
<td>→</td>
<td>$x_{\text{fanning}}$</td>
</tr>
<tr>
<td>$x_{	ext{i}/D}$</td>
<td>'símb'</td>
<td>→</td>
<td>'FANNING($x_{	ext{i}/D},$símb)'</td>
</tr>
<tr>
<td>'símb'</td>
<td>$y_{\text{Re}}$</td>
<td>→</td>
<td>'FANNING(símb,$y_{\text{Re}}$)'</td>
</tr>
<tr>
<td>'símb$_1$'</td>
<td>'símb$_2$'</td>
<td>→</td>
<td>'FANNING(símb$_1$,símb$_2$)'</td>
</tr>
</tbody>
</table>

**Comando FINDALARM:** Devuelve el índice de alarma $n_{\text{índice}}$ de la primera alarma producida tras la hora especificada.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>fecha</td>
<td>→</td>
<td>$n_{\text{índice}}$</td>
</tr>
<tr>
<td>{ fecha hora }</td>
<td>→</td>
<td>$n_{\text{índice}}$</td>
</tr>
<tr>
<td>0</td>
<td>→</td>
<td>$n_{\text{índice}}$</td>
</tr>
</tbody>
</table>

**Comando FREEZE:** Congela la parte de la pantalla especificada mediante $n_{\text{área visual}}$, de modo que no se actualizará hasta que no se pulse una tecla.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_{\text{área visual}}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando *H:** Multiplica la escala de representación vertical por $x_{\text{factor}}$.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{\text{factor}}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando HEAD:** Devuelve el primer elemento de una lista o secuencia.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ obj₁ \ldots objₙ }</td>
<td>→</td>
<td>obj₁</td>
</tr>
<tr>
<td>&quot;secuencia&quot;</td>
<td>→</td>
<td>&quot;elemento₁&quot;</td>
</tr>
</tbody>
</table>

**Comando IFT:** Ejecuta el obj si T/F es diferente a cero. Descarta el obj si T/F es cero.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/F</td>
<td>obj</td>
<td>→</td>
<td>¡Depende!</td>
</tr>
</tbody>
</table>

**Función IFTE:** Ejecuta el obj del nivel 2 si T/F es diferente a cero. Ejecuta el obj del nivel 1 si T/F es cero.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/F</td>
<td>obj_{verd}</td>
<td>obj_{falso}</td>
<td>→</td>
<td>¡Depende!</td>
</tr>
</tbody>
</table>

**Comando INCR:** Toma una variable del nivel 1, le suma 1, vuelve a almacenar el nuevo valor en la variable original y devuelve el nuevo valor al nivel 1.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td>( x_{\text{incremento}} )</td>
</tr>
</tbody>
</table>
**Comando INDEP:** Especifica la variable independiente y su rango de representación gráfica.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'global'</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ global }</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ global $x_{in}$ $x_{fin}$ }</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ $x_{in}$ $x_{fin}$ }</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>$x_{in}$</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>$x_{fin}$</td>
<td></td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando INPUT:** Solicita una entrada de datos a la línea de comandos e impide al usuario acceder a las operaciones de la pila.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;indicador pila&quot;</td>
<td>&quot;indicador línea de comandos&quot;</td>
<td>→</td>
<td>&quot;resultado&quot;</td>
</tr>
<tr>
<td>&quot;indicador pila&quot;</td>
<td>{ lista_donde_termino }</td>
<td>→</td>
<td>&quot;resultado&quot;</td>
</tr>
</tbody>
</table>

**Comando KERRM:** Devuelve el texto del último error del paquete de errores de Kermit.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>&quot;mensaje de error&quot;</td>
</tr>
</tbody>
</table>

**Comando KEY:** Devuelve al nivel 1 un resultado de prueba y, si se pulsa una tecla, devuelve al nivel 2 la ubicación de la fila-columna $x_{nm}$ de dicha tecla.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$x_{nm}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

H-10  Diagramas de la pila para comandos seleccionados
**Comando LIBEVAL:** Evalúa las funciones sin nombre de la biblioteca.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>#n_función</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando LIBS:** Efectúa una lista del título, número y puerta de cada una de las bibliotecas relacionadas con el directorio actual.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>{ &quot;título&quot; n_bib n_puerta ... &quot;título&quot; n_bib n_puerta }</td>
</tr>
</tbody>
</table>

**Comando ΣLINE:** Devuelve una expresión que representa la línea más adecuada de acuerdo con el modelo de estadísticas actual, utilizando $X$ como nombre de la variable independiente y valores explícitos de la pendiente y de la interceptación tomados de la variable reservada $ΣPAR$.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>'simb$_{fórmula}$'</td>
</tr>
</tbody>
</table>

**Función LININ:** Comprueba si una expresión algebraica es estructuralmente lineal para una variable dada.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'simb'</td>
<td>'nombre'</td>
<td>→</td>
<td>0/1</td>
</tr>
</tbody>
</table>

**Comando LIST→:** Toma una lista de $n$ objetos, los devuelve a niveles independientes y devuelve el número total de objetos al nivel 1.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel n+1 ...</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ obj$_1$ ... obj$_n$ }</td>
<td>→</td>
<td>obj$_1$ ...</td>
<td>obj$_n$</td>
<td>$n$</td>
</tr>
</tbody>
</table>
**Comando LR:** Utiliza el modelo de estadísticas seleccionado actualmente parar calcular los coeficientes de regresión lineal (interceptación y pendiente) de las variables dependientes e independientes seleccionadas de la matriz de estadísticas actual (la variable reservada \( \Sigma DAT \)).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>( \rightarrow )</th>
<th>Nivel 2</th>
<th>( \rightarrow )</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( \rightarrow )</td>
<td>Intercept: ( x_1 )</td>
<td>Pendiente: ( x_2 )</td>
<td></td>
</tr>
</tbody>
</table>

**Comando \( \uparrow \text{MATCH} \):** Reescribe una expresión. \( \uparrow \text{MATCH} \) funciona de abajo a arriba, es decir, comprueba en primer lugar las subexpresiones del nivel más bajo (el más profundamente encajado).

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>( \rightarrow )</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'( \text{símb}_1 )'</td>
<td>{ '( \text{símb}<em>{\text{pat}} )' '( \text{símb}</em>{\text{sust}} )' }</td>
<td>( \rightarrow )</td>
<td>'( \text{símb}_2 )'</td>
<td>0/1</td>
</tr>
<tr>
<td>'( \text{símb}_1 )'</td>
<td>{ '( \text{símb}<em>{\text{pat}} )' '( \text{símb}</em>{\text{sust}} )' '( \text{símb}_{\text{cond}} )' }</td>
<td>( \rightarrow )</td>
<td>'( \text{símb}_2 )'</td>
<td>0/1</td>
</tr>
</tbody>
</table>

**Comando \( \downarrow \text{MATCH} \):** Reescribe una expresión. \( \downarrow \text{MATCH} \) funciona de arriba a abajo, es decir, comprueba en primer lugar la expresión completa.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>( \rightarrow )</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'( \text{símb}_1 )'</td>
<td>{ '( \text{símb}<em>{\text{pat}} )' '( \text{símb}</em>{\text{sust}} )' }</td>
<td>( \rightarrow )</td>
<td>'( \text{símb}_2 )'</td>
<td>0/1</td>
</tr>
<tr>
<td>'( \text{símb}_1 )'</td>
<td>{ '( \text{símb}<em>{\text{pat}} )' '( \text{símb}</em>{\text{sust}} )' '( \text{símb}_{\text{cond}} )' }</td>
<td>( \rightarrow )</td>
<td>'( \text{símb}_2 )'</td>
<td>0/1</td>
</tr>
</tbody>
</table>
**Comando MAXΣ:** Halla el valor máximo de las coordenadas de cada una de las columnas \( m \) de la matriz de estadísticas actual (la variable reservada \( \Sigma DAT \)).

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
& \rightarrow & x_{\max} \\
& \rightarrow & [x_{\max1} \ x_{\max2} \ldots x_{\max m}] \\
\end{array}
\]

**Comando MCALC:** Designa una variable como un valor calculado (no definido por el usuario) para el Solucionador de ecuaciones múltiples.

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
'nombre' & \rightarrow & \\
\{ \text{lista} \} & \rightarrow & \\
"TODO" & \rightarrow & \\
\end{array}
\]

**Comando MEAN:** Devuelve la media de cada una de las columnas \( m \) de valores de coordenadas de la matriz de estadísticas actual (la variable reservada \( \Sigma DAT \)).

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
& \rightarrow & x_{\text{media}} \\
& \rightarrow & [x_{\text{media1}} \ x_{\text{media2}} \ldots x_{\text{mediam}}] \\
\end{array}
\]

**Comando MEM:** Devuelve el número de bytes disponibles de la RAM.

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
& \rightarrow & x \\
\end{array}
\]
**Comando MIN**: Halla el valor mínimo de las coordenadas de cada una de las columnas \( m \) de la matriz de estadísticas actual (la variable reservada \( \Sigma \text{DAT} \)).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>( x_m \cap n )</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td>([ x_m \cap n_1 \ x_m \cap n_2 \ldots \ x_m \cap n_m ])</td>
</tr>
</tbody>
</table>

**Comando MROOT**: Utiliza el Solucionador de ecuaciones múltiples para resolver una o más variables utilizando el conjunto de ecuaciones de \( Mpar \).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td>( x )</td>
</tr>
<tr>
<td>&quot;TODO&quot;</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando MSGBOX**: Crea una ventana de mensajes definida por el usuario.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;mensaje&quot;</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando MUSER**: Designa una variable como definida por el usuario para el Solucionador de ecuaciones múltiples.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ lista }</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>&quot;TODO&quot;</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
Comando NEWOB: Crea una nueva copia del objeto especificado.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>→</td>
<td>obj</td>
</tr>
</tbody>
</table>

Comando NOT: Devuelve el complemento de uno o el inverso lógico del argumento.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( nn_1 )</td>
<td>→</td>
<td>( nn_2 )</td>
</tr>
<tr>
<td>( T/F )</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>&quot;secuencia_1&quot;</td>
<td>→</td>
<td>&quot;secuencia_2&quot;</td>
</tr>
<tr>
<td>'símb'</td>
<td>→</td>
<td>'NO símb'</td>
</tr>
</tbody>
</table>

Comando NUM: Devuelve el código de caracteres \( n \) del primer carácter de la secuencia.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;secuencia&quot;</td>
<td>→</td>
<td>( n )</td>
</tr>
</tbody>
</table>

Comando NUMX: Establece el número de pasos \( x \) para cada paso y en las representaciones gráficas de perspectiva tridimensionales.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n_x )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

Comando NUMY: Establece el número de pasos para la visualización de volumen de las representaciones gráficas de perspectiva tridimensionales.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n_y )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando NΣ:** Devuelve el número de filas de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(n_{\text{filas}})</td>
</tr>
</tbody>
</table>

**Comando OBJ→:** Divide un objeto en sus componentes sobre la pila. Para algunos tipos de objetos, el número de componentes se devuelve al nivel 1.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel n+1</th>
<th>→</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x,y))</td>
<td>→</td>
<td>(x)</td>
<td>(y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ obj_1 ... obj_n }</td>
<td>→</td>
<td>obj_1</td>
<td>obj_n</td>
<td>(n)</td>
<td></td>
</tr>
<tr>
<td>[ x_1 ... x_n ]</td>
<td>→</td>
<td>x_1</td>
<td>x_n</td>
<td>{ (n) }</td>
<td></td>
</tr>
<tr>
<td>[ [ x_11 ... x_mn ] ]</td>
<td>→</td>
<td>x_11</td>
<td>x_mn</td>
<td>{ (m\ n) }</td>
<td></td>
</tr>
<tr>
<td>&quot;obj&quot;</td>
<td>→</td>
<td>objeto evaluado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'sím_b'</td>
<td>→</td>
<td>arg_1 ... arg_n</td>
<td>(n)</td>
<td>'función'</td>
<td></td>
</tr>
<tr>
<td>x_unid</td>
<td>→</td>
<td>(x)</td>
<td>1_unid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:etiq;obj</td>
<td>→</td>
<td>obj</td>
<td>&quot;etiq&quot;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Función OR:** Devuelve la O lógica de dos argumentos.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{n1})</td>
<td>(n_{n2})</td>
<td>→</td>
<td>(n_{n3})</td>
</tr>
<tr>
<td>&quot;secuencia_1&quot;</td>
<td>&quot;secuencia_2&quot;</td>
<td>→</td>
<td>&quot;secuencia_3&quot;</td>
</tr>
<tr>
<td>(T/F_1)</td>
<td>(T/F_2)</td>
<td>→</td>
<td>(0/1)</td>
</tr>
<tr>
<td>(T/F)</td>
<td>'sím_b'</td>
<td>→</td>
<td>'T/F (\lor) sím_b'</td>
</tr>
<tr>
<td>'sím_b'</td>
<td>(T/F)</td>
<td>→</td>
<td>'sím_b (\lor) T/F'</td>
</tr>
<tr>
<td>'sím_b_1'</td>
<td>'sím_b_2'</td>
<td>→</td>
<td>'sím_b_1 (\lor) sím_b_2'</td>
</tr>
</tbody>
</table>

H-16  Diagramas de la pila para comandos seleccionados
Comando ORDER: Reordena las variables del directorio actual (mostrado en el menú VAR) de acuerdo con el orden especificado.

\[
\begin{array}{cc}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\{ \text{global}_1 \ldots \text{global}_n \} & \rightarrow & \\
\end{array}
\]

Comando PARITY: Establece el valor de paridad de la variable reservada \( IOPAR \).

\[
\begin{array}{cc}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\eta_{\text{paridad}} & \rightarrow & \\
\end{array}
\]

Comando PATH: Devuelve una lista que especifica el path (ruta de acceso) para el directorio actual.

\[
\begin{array}{cc}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\rightarrow \{ \text{nombre de directorio}_1 \text{HOME} \ldots \text{nombre de directorio}_n \} & \\
\end{array}
\]

Comando PCOV: Devuelve la covariación de población de las columnas de datos independientes y dependientes de la matriz de estadísticas actual (la variable reservada \( \Sigma DAT \)).

\[
\begin{array}{cc}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\rightarrow \chi^{PCOV} & \\
\end{array}
\]

Comando PGDIR: Purga el directorio nombrado (tanto si está vacío como si no lo está).

\[
\begin{array}{cc}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
'\text{global}' & \rightarrow & \\
\end{array}
\]
**Comando PMAX:** Especifica \((x, y)\) como las coordenadas de la esquina superior derecha de la pantalla.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x, y))</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando PMIN:** Especifica \((x, y)\) como las coordenadas de la esquina inferior izquierda de la pantalla.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x,y))</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando PREDV:** Devuelve el valor previsto de la variable dependiente \(y_{dependiente}\), basándose en el valor de la variable independiente \(x_{independiente}\), el modelo de estadísticas seleccionado actualmente y los coeficientes de regresión actuales de la variable reservada \(\Sigma PAR\).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{independiente})</td>
<td>→</td>
<td>(y_{dependiente})</td>
</tr>
</tbody>
</table>

**Comando PREDX:** Devuelve el valor previsto de la variable independiente \(x_{independiente}\), basándose en el valor de la variable dependiente \(y_{dependiente}\), el modelo de estadísticas seleccionado actualmente y los coeficientes de regresión actuales de la variable reservada \(\Sigma PAR\).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{dependiente})</td>
<td>→</td>
<td>(x_{independiente})</td>
</tr>
</tbody>
</table>
Comando PREDY: Devuelve el valor previsto de la variable dependiente \( y_{\text{dependiente}} \), basándose en el valor de la variable independiente \( x_{\text{independiente}} \), el modelo de estadísticas seleccionado actualmente y los coeficientes de regresión actuales de la variable reservada \( \Sigma PAR \).

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
x_{\text{independiente}} & \rightarrow & y_{\text{dependiente}} \\
\end{array}
\]

Comando PROMPT: Muestra en pantalla el contenido de "indicador" en el área de estado e interrumpe la ejecución del programa.

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
"\text{indicador}" & \rightarrow & \\
\end{array}
\]

Comando PSDEV: Calcula la desviación estándar de población de cada una de las columnas \( m \) de valores de coordenadas de la matriz de estadísticas actual (la variable reservada \( \Sigma DAT \)).

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
\rightarrow & x_{\text{desv_est}} \\
\rightarrow & [ x_{\text{desv_est}1} x_{\text{desv_est}2} \ldots x_{\text{desv_est}m} ] \\
\end{array}
\]

Comando PVAR: Calcula la variación de población de los valores de coordenadas de cada una de las columnas \( m \) de la matriz de estadísticas actual (\( \Sigma DAT \)).

\[
\begin{array}{c|c}
\text{Nivel 1} & \rightarrow & \text{Nivel 1} \\
\hline
\rightarrow & x_{\text{variaciòn}} \\
\rightarrow & [ x_{\text{variaciòn}1} \ldots x_{\text{variaciòn}m} ] \\
\end{array}
\]
**Comando PVIEW:** Muestra en pantalla el DIBUJO con la coordenada especificada en la esquina superior izquierda de la pantalla de gráficos.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y)</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ nn nm }</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>{ }</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Función QUOTE:** Devuelve su argumento sin evaluar.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'símb'</td>
<td>→</td>
<td>'símb'</td>
</tr>
<tr>
<td>obj</td>
<td>→</td>
<td>obj</td>
</tr>
</tbody>
</table>

**Función RATIO:** Forma de prefijo de / (dividir) generada por la aplicación EquationWriter.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>z₁</td>
<td>z₂</td>
<td>→</td>
<td>z₁ / z₂</td>
</tr>
<tr>
<td>[ sistema]</td>
<td>[[ matriz ]]</td>
<td>→</td>
<td>[ sistema x matriz⁻¹ ]</td>
</tr>
<tr>
<td>[ sistema]</td>
<td>z</td>
<td>→</td>
<td>[ sistema/z ]</td>
</tr>
<tr>
<td>'símb'</td>
<td>z</td>
<td>→</td>
<td>'símb/z'</td>
</tr>
<tr>
<td>'símb₁'</td>
<td>'símb₂'</td>
<td>→</td>
<td>'símb₁ / símb₂'</td>
</tr>
<tr>
<td>nn₁</td>
<td>n₂</td>
<td>→</td>
<td>nn₃</td>
</tr>
<tr>
<td>n₁</td>
<td>nn₂</td>
<td>→</td>
<td>nn₃</td>
</tr>
<tr>
<td>nn₁</td>
<td>nn₂</td>
<td>→</td>
<td>nn₃</td>
</tr>
<tr>
<td>x_unid₁</td>
<td>y_unid₂</td>
<td>→</td>
<td>(x/y) unid₁ / unid₂</td>
</tr>
<tr>
<td>x</td>
<td>y_unid</td>
<td>→</td>
<td>(x/y) -1 / unid</td>
</tr>
<tr>
<td>x_unid</td>
<td>y</td>
<td>→</td>
<td>(x/y) unid</td>
</tr>
<tr>
<td>'símb'</td>
<td>x_unid</td>
<td>→</td>
<td>'símb / x_unid'</td>
</tr>
<tr>
<td>x_unid</td>
<td>'símb'</td>
<td>→</td>
<td>'x_unid / símb'</td>
</tr>
</tbody>
</table>
Comando RCEQ: Devuelve el contenido sin evaluar de la variable reservada EQ del directorio actual.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>obj_EQ</td>
</tr>
</tbody>
</table>

Comando RCLALARM: LLama a una alarma especificada.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_Indices</td>
<td>→</td>
<td>{ fecha hora obj_accion x_repet }</td>
</tr>
</tbody>
</table>

Comando RCLMENU: Devuelve el número de menú del menú actualmente en pantalla.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>x_menu</td>
</tr>
</tbody>
</table>

Comando RCLΣ: Devuelve la matriz de estadísticas actual (el contenido de la variable reservada ΣDAT) del directorio actual.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>obj</td>
</tr>
</tbody>
</table>

Comando RECN: Prepara la HP 48 para recibir un archivo desde otro dispositivo de Kermit y para almacenar el archivo en una variable especificada.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>&quot;nombre&quot;</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando REPL:** Sustituye una parte del objeto elegido del nivel 3 por el objeto del nivel 1, comenzando en una posición especificada en el nivel 2.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1 ➔ Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ matriz ]_1</td>
<td>[ n posición ]</td>
<td>[ matriz ]_2 ➔ [ matriz ]_3</td>
</tr>
<tr>
<td>[ matriz ]_2</td>
<td>{ n fila n columna }</td>
<td>[ matriz ]_2 ➔ [ matriz ]_3</td>
</tr>
<tr>
<td>[ vector ]_1</td>
<td>[ n posición ]</td>
<td>[ vector ]_2 ➔ [ vector ]_3</td>
</tr>
<tr>
<td>{ lista }</td>
<td>[ n posición ]</td>
<td>{ lista } ➔ { lista result }</td>
</tr>
<tr>
<td>&quot;secuen_result&quot;</td>
<td>[ n posición ]</td>
<td>&quot;secuen_result&quot; ➔ &quot;secuen_result&quot;</td>
</tr>
<tr>
<td>obgr_result</td>
<td>{ #n #m }</td>
<td>obgr_result ➔ obgr_result</td>
</tr>
<tr>
<td>DIBUJO</td>
<td>( (x,y) )</td>
<td>obgr_result ➔ obgr_result</td>
</tr>
<tr>
<td></td>
<td>{ #n #m }</td>
<td>obgr_result ➔ obgr_result</td>
</tr>
<tr>
<td></td>
<td>( (x,y) )</td>
<td>obgr_result ➔ obgr_result</td>
</tr>
</tbody>
</table>

**Comando RES:** Especifica la resolución de representaciones gráficas matemáticas y estadísticas, donde la resolución es el intervalo entre los valores de la variable independiente utilizada para generar la representación gráfica.

<table>
<thead>
<tr>
<th>Nivel 1 ➔ Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n_{intervalo} ) ➔</td>
</tr>
<tr>
<td>#n_{intervalo} ➔</td>
</tr>
</tbody>
</table>

**Comando RKF:** Calcula la solución de un problema de valor inicial de una ecuación diferencial utilizando el método de Runge-Kutta-Fehlberg (4,5).

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1 ➔ Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ lista }</td>
<td>( x_{tol} )</td>
<td>( x_{final} ) ➔ { lista }</td>
<td>( x_{tol} )</td>
</tr>
<tr>
<td>{ lista }</td>
<td>{ ( x_{tol} ) ( x_{pasoh} ) }</td>
<td>( x_{final} ) ➔ { lista }</td>
<td>( x_{tol} )</td>
</tr>
</tbody>
</table>

H-22 Diagramas de la pila para comandos seleccionados
**Comando RKFERR:** Devuelve la estimación de error absoluto para un paso dado $h$ cuando se soluciona un problema de valor inicial de una ecuación diferencial utilizando el método de Runge-Kutta-Fehlberg.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 4</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ lista }</td>
<td>$h$</td>
<td>→</td>
<td>{ lista }</td>
<td>$h$</td>
<td>$y_{delta}$</td>
<td>error</td>
</tr>
</tbody>
</table>

**Comando RKFSTEP:** Calcula el siguiente paso de la solución ($h_{sig}$) para un problema de valor inicial de una ecuación diferencial.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ lista }</td>
<td>$x_{tol}$</td>
<td>$h$</td>
<td>→</td>
<td>{ lista }</td>
<td>$x_{tol}$</td>
<td>$h_{sig}$</td>
</tr>
</tbody>
</table>

**Comando ROOT:** Devuelve un número real $x_{raz}$ que es un valor de la variable especificada global para la que el programa u objeto algebraico especificado hace un cálculo lo más cerca posible a cero o a un extremo local.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>« programa »</td>
<td>'global'</td>
<td>supos</td>
<td>→</td>
<td>$x_{racz}$</td>
</tr>
<tr>
<td>« programa »</td>
<td>'global'</td>
<td>{ supos }</td>
<td>→</td>
<td>$x_{racz}$</td>
</tr>
<tr>
<td>'símb'</td>
<td>'global'</td>
<td>supos</td>
<td>→</td>
<td>$x_{racz}$</td>
</tr>
<tr>
<td>'símb'</td>
<td>'global'</td>
<td>{ supos }</td>
<td>→</td>
<td>$x_{racz}$</td>
</tr>
</tbody>
</table>
**Comando RRK:** Calcula la solución de un problema de valor inicial de una ecuación diferencial con derivadas parciales conocidas.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ lista }</td>
<td>( x_{\text{tol}} )</td>
<td>( x_{T_{\text{final}}} )</td>
<td>→</td>
<td>{ lista }</td>
<td>( x_{\text{tol}} )</td>
</tr>
<tr>
<td>{ lista }</td>
<td>( x_{\text{tol}} )</td>
<td>( x_{\text{paso}, h} )</td>
<td>( x_{T_{\text{final}}} )</td>
<td>→</td>
<td>{ lista }</td>
</tr>
</tbody>
</table>

**Comando RRKSTEP:** Calcula el siguiente paso de la solución \( h_{\text{sig}} \) de un problema de valor inicial de una ecuación diferencial y muestra en pantalla el método utilizado para llegar a dicho resultado.

<table>
<thead>
<tr>
<th>Nivel 4</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 4</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ lista }</td>
<td>( x_{\text{tol}} )</td>
<td>( h )</td>
<td>( \text{ult} )</td>
<td>→</td>
<td>{ lista }</td>
<td>( x_{\text{tol}} )</td>
<td>( h_{\text{sig}} )</td>
<td>( \text{actual} )</td>
</tr>
</tbody>
</table>

**Comando RSBERR:** Devuelve una estimación de error para un paso dado \( h \) cuando se soluciona un problema de valores iniciales de una ecuación diferencial utilizando el método de Rosenbrock.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 4</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ lista }</td>
<td>( h )</td>
<td>→</td>
<td>{ lista }</td>
<td>( h )</td>
<td>( y_{\text{delta}} )</td>
<td>\text{error}</td>
</tr>
</tbody>
</table>

**Comando SAME:** Compares dos objetos y devuelve un resultado verdadero (1) si son idénticos y un resultado falso (0) si no lo son.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{obj}_1 )</td>
<td>( \text{obj}_2 )</td>
<td>→</td>
<td>0/1</td>
</tr>
</tbody>
</table>

H-24  Diagramas de la pila para comandos seleccionados
**Comando SCALE:** Ajusta los dos primeros parámetros de $PPAR$, $<x_{\text{min}}, y_{\text{min}}>$ y $<x_{\text{max}}, y_{\text{max}}>$, de modo que $x_{\text{escala}}$ e $y_{\text{escala}}$ sean las nuevas escalas horizontal y vertical de la representación gráfica y el punto central no cambie.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x_{\text{escala}}$</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_{\text{escala}}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando SCONJ:** Conjuga el contenido de un objeto nombrado.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'nombre'</td>
<td>→</td>
</tr>
</tbody>
</table>

**Comando SDEV:** Calcula la desviación estándar de muestra de cada una de las columnas $m$ de valores de coordenadas de la matriz de estadísticas actual (variable reservada $\Sigma DAT$).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x_{\text{desvest}}$</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>$[ x_{\text{desvest}}, x_{\text{desvest}}, \ldots, x_{\text{desvest}} ]$</td>
<td>→</td>
</tr>
</tbody>
</table>

**Comando SEND:** Envía una copia de los objetos nombrados a un dispositivo de Kermit.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>'nombre'</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>${ \text{nombre}_1, \ldots, \text{nombre}_n }$</td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>${ { \text{nombre}<em>\text{viejo}, \text{nombre}</em>\text{nuevo} }, \text{nombre}, \ldots }$</td>
<td>→</td>
</tr>
</tbody>
</table>

**Comando SIDENS:** Calcula la densidad intrínseca de la silicona como una función de temperatura, $x_T$.

Diagramas de la pila para comandos seleccionados H-25
<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_T$</td>
<td>→</td>
<td>$x_{densidad}$</td>
</tr>
<tr>
<td>$x_{unid}$</td>
<td>→</td>
<td>$x_{1/cm^3}$</td>
</tr>
<tr>
<td>'símbl'</td>
<td>→</td>
<td>'DENSSI(símbl)'</td>
</tr>
</tbody>
</table>

**Comando SINV:** Sustituye el contenido de la variable nombrada por su inverso.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando SNEG:** Sustituye el contenido de una variable por su negativo.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando SOLVEQN:** Pone en marcha el solucionador de ecuaciones múltiples para un conjunto especificado de ecuaciones.

<table>
<thead>
<tr>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n$</td>
<td>$m$</td>
<td>0/1</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando START:** Inicia las estructuras de bucle determinado  
INICIO ... SIGUIENTE e INICIO ... PASO.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INICIO</strong></td>
<td>$x_{inicio}$</td>
<td>$x_{fin}$</td>
<td>→</td>
</tr>
<tr>
<td><strong>SIGUIENTE</strong></td>
<td></td>
<td></td>
<td>→</td>
</tr>
<tr>
<td><strong>PASO</strong></td>
<td></td>
<td>$x_{incremento}$</td>
<td>→</td>
</tr>
<tr>
<td><strong>PASO</strong></td>
<td></td>
<td>'símbl_{incremento}'</td>
<td>→</td>
</tr>
</tbody>
</table>

H-26  Diagramas de la pila para comandos seleccionados
**Comando STOALARM:** Almacena una alarma en la lista de alarmas del sistema y devuelve su número de índice de alarma.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x_{\text{hora}} )</td>
<td>→</td>
<td>( n_{\text{indice}} )</td>
</tr>
<tr>
<td>{ \text{fecha hora} }</td>
<td>→</td>
<td>( n_{\text{indice}} )</td>
</tr>
<tr>
<td>{ \text{fecha hora } \text{obj}_{\text{acción}} }</td>
<td>→</td>
<td>( n_{\text{indice}} )</td>
</tr>
<tr>
<td>{ \text{fecha hora } \text{obj}<em>{\text{acción}} \text{x}</em>{\text{repet}} }</td>
<td>→</td>
<td>( n_{\text{indice}} )</td>
</tr>
</tbody>
</table>

**Comando STO+:** Añade un número u otro objeto al contenido de una variable especificada.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{obj}</td>
<td>\text{'nombre'}</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>\text{'nombre'}</td>
<td>\text{obj}</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando STO−:** Calcula la diferencia entre un número (u otro objeto) y el contenido de una variable especificada y almacena el nuevo valor en la variable especificada.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{obj}</td>
<td>\text{'nombre'}</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>\text{'nombre'}</td>
<td>\text{obj}</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando STO×:** Multiplica el contenido de una variable especificada por un número u otro objeto.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{obj}</td>
<td>\text{'nombre'}</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>\text{'nombre'}</td>
<td>\text{obj}</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando STO/:** Calcula el cociente de un número (u otro objeto) y el contenido de una variable especificada y almacena el nuevo valor en la variable especificada.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>'nombre'</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>'nombre'</td>
<td>obj</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando STOΣ:** Almacena el obj en la variable reservada $\Sigma DAT$.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando →STR:** Convierte un objeto a la forma de secuencia.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>→</td>
<td>&quot;obj&quot;</td>
</tr>
</tbody>
</table>

**Comando SYSEVAL:** Evalúa objetos no nombrados del sistema operativo especificados mediante sus direcciones de memoria.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$nn_{dirección}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando →Tag:** Combina objetos de los niveles 1 y 2 para crear un objeto etiquetado (con señas de identidad).

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>&quot;etiq&quot;</td>
<td>→</td>
<td>:etiq:obj</td>
</tr>
<tr>
<td>obj</td>
<td>'nombre'</td>
<td>→</td>
<td>:nombre:obj</td>
</tr>
<tr>
<td>obj</td>
<td>x</td>
<td>→</td>
<td>:x:obj</td>
</tr>
</tbody>
</table>

H-28 Diagramas de la pila para comandos seleccionados
**Función TDELTA:** Calcula un cambio de temperatura.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x$</td>
<td>$y$</td>
<td>→</td>
<td>$x_{\text{delta}}$</td>
</tr>
<tr>
<td>$x_{\text{unid1}}$</td>
<td>$y_{\text{unid2}}$</td>
<td>→</td>
<td>$x_{\text{unid1, delta}}$</td>
</tr>
<tr>
<td>$x_{\text{unid}}$</td>
<td>'símb'</td>
<td>→</td>
<td>'TDELTA($x_{\text{unid}}$, símb)'</td>
</tr>
<tr>
<td>'símb'</td>
<td>$y_{\text{unid}}$</td>
<td>→</td>
<td>'TDELTA(símb, $y_{\text{unid}}$)'</td>
</tr>
<tr>
<td>'símb$_1$'</td>
<td>'símb$_2$'</td>
<td>→</td>
<td>'TDELTA(símb$_1$, símb$_2$)'</td>
</tr>
</tbody>
</table>

**Comando TIME:** Devuelve la hora del sistema con la forma HH.MMSS.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>hora</td>
</tr>
</tbody>
</table>

**Comando TINC:** Calcula un incremento de la temperatura.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{\text{inicial}}$</td>
<td>$y_{\text{delta}}$</td>
<td>→</td>
<td>$x_{\text{final}}$</td>
</tr>
<tr>
<td>$x_{\text{unid1}}$</td>
<td>$y_{\text{unid2, delta}}$</td>
<td>→</td>
<td>$x_{\text{unid1, final}}$</td>
</tr>
<tr>
<td>$x_{\text{unid}}$</td>
<td>'símb'</td>
<td>→</td>
<td>'INCT($x_{\text{unid}}$, símb)'</td>
</tr>
<tr>
<td>'símb'</td>
<td>$y_{\text{unid, delta}}$</td>
<td>→</td>
<td>'INCT(símb, $y_{\text{unid}}$, delta)'</td>
</tr>
<tr>
<td>'símb$_1$'</td>
<td>'símb$_2$'</td>
<td>→</td>
<td>'INCT(símb$_1$, símb$_2$)'</td>
</tr>
</tbody>
</table>

**Comando TOT:** Calcula la suma de cada una de las columnas $m$ de valores de coordenadas de la matriz de estadísticas actual (la variable reservada $\Sigma DAT$).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$x_{\text{suma}}$</td>
</tr>
<tr>
<td></td>
<td>→</td>
<td>$[x_{\text{suma}<em>1}, x</em>{\text{suma}<em>2}, \ldots, x</em>{\text{suma}_m}]$</td>
</tr>
</tbody>
</table>
**Comando TRANSIO:** Especifica la opción de traducción de caracteres. Dichas traducciones afectan solamente a las transferencias Kermit de ASCII y a los archivos imprimidos en un puerto serie.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n_{opción} )</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando TVARS:** Efectúa una lista de todas las variables globales del directorio actual que contienen objetos de los tipos especificados.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n_{tipo} )</td>
<td>→</td>
<td>{ global \ ... }</td>
</tr>
<tr>
<td>{ ( n_{tipo} ) \ ... }</td>
<td>→</td>
<td>{ global \ ... }</td>
</tr>
</tbody>
</table>

**Comando TVMROOT:** Resuelve la variable especificada TVM utilizando valores de las restantes variables TVM.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>('variable TVM')</td>
<td>→</td>
<td>( x_{variable,TVM} )</td>
</tr>
</tbody>
</table>

**Comando TYPE:** Devuelve el número de tipo de un objeto.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( obj )</td>
<td>→</td>
<td>( n_{tipo} )</td>
</tr>
</tbody>
</table>
Números de tipo de objetos

<table>
<thead>
<tr>
<th>Tipo de objeto</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetos de usuario:</td>
<td></td>
</tr>
<tr>
<td>Número real</td>
<td>0</td>
</tr>
<tr>
<td>Número complejo</td>
<td>1</td>
</tr>
<tr>
<td>Secuencia de caracteres</td>
<td>2</td>
</tr>
<tr>
<td>Sistema real</td>
<td>3</td>
</tr>
<tr>
<td>Sistema complejo</td>
<td>4</td>
</tr>
<tr>
<td>Lista</td>
<td>5</td>
</tr>
<tr>
<td>Nombre global</td>
<td>6</td>
</tr>
<tr>
<td>Nombre local</td>
<td>7</td>
</tr>
<tr>
<td>Programa</td>
<td>8</td>
</tr>
<tr>
<td>Objeto algebraico</td>
<td>9</td>
</tr>
<tr>
<td>Entero binario</td>
<td>10</td>
</tr>
<tr>
<td>Objeto de gráficos</td>
<td>11</td>
</tr>
<tr>
<td>Objeto etiquetado</td>
<td>12</td>
</tr>
<tr>
<td>Objeto de unidades</td>
<td>13</td>
</tr>
<tr>
<td>Nombre de XLIB</td>
<td>14</td>
</tr>
<tr>
<td>Directorio</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de objeto</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biblioteca</td>
<td>16</td>
</tr>
<tr>
<td>Objeto de seguridad</td>
<td>17</td>
</tr>
<tr>
<td>Comandos</td>
<td></td>
</tr>
<tr>
<td>incorporados:</td>
<td></td>
</tr>
<tr>
<td>Función incorporada</td>
<td>18</td>
</tr>
<tr>
<td>Comando incorporado</td>
<td>19</td>
</tr>
<tr>
<td>Objetos del sistema:</td>
<td></td>
</tr>
<tr>
<td>Sistema binario</td>
<td>20</td>
</tr>
<tr>
<td>Real extendido</td>
<td>21</td>
</tr>
<tr>
<td>Complejo extendido</td>
<td>22</td>
</tr>
<tr>
<td>Sistema relacionado</td>
<td>23</td>
</tr>
<tr>
<td>Carácter</td>
<td>24</td>
</tr>
<tr>
<td>Objeto de código</td>
<td>25</td>
</tr>
<tr>
<td>Datos de biblioteca</td>
<td>26</td>
</tr>
<tr>
<td>Objeto externo</td>
<td>26-31</td>
</tr>
</tbody>
</table>

**Comando VAR:** Calcula la variación de muestra de los valores de coordenadas de cada una de las columnas $m$ de la matriz de estadísticas actual ($\Sigma\text{DAT}$).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>$x_{\text{variación}}$</td>
<td></td>
</tr>
<tr>
<td>→</td>
<td>$[x_{\text{variación}1} \ldots x_{\text{variación}m}]$</td>
<td></td>
</tr>
</tbody>
</table>

**Comando VARS:** Devuelve una lista de todos los nombres de variables del menú VAR (el directorio actual).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>${global_1 \ldots global_n}$</td>
<td></td>
</tr>
</tbody>
</table>
**Comando VTYPE:** Devuelve el número de tipo del objeto contenido en la variable nombrada.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td>( n_{\text{tipo}} )</td>
</tr>
<tr>
<td>( n_{\text{puerta}} : \text{nombre} )</td>
<td>→</td>
<td>( n_{\text{tipo}} )</td>
</tr>
<tr>
<td>( n_{\text{puerta}} : \text{nombre} )</td>
<td>→</td>
<td>( n_{\text{tipo}} )</td>
</tr>
</tbody>
</table>

**Comando **\(*W*: Multiplica la escala horizontal de una representación gráfica por \( x_{\text{factor}} \).**

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x_{\text{factor}} )</td>
<td>→</td>
<td>→</td>
</tr>
</tbody>
</table>

**Comando WAIT:** Detiene la ejecución del programa durante el tiempo especificado o hasta que se pulse una tecla.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>0</td>
<td>→</td>
<td>( x_{\text{tecla}} )</td>
</tr>
<tr>
<td>-1</td>
<td>→</td>
<td>( x_{\text{tecla}} )</td>
</tr>
</tbody>
</table>

**Comando WHILE:** Inicia la estructura de bucle indeterminado MIENTRAS ... REPETICION ... FIN.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIENTRAS</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>REPETICION</td>
<td>( T/F )</td>
<td>→</td>
</tr>
<tr>
<td>FIN</td>
<td>→</td>
<td>→</td>
</tr>
</tbody>
</table>
**Comando WSLOG:** Devuelve cuatro secuencias que registran la fecha, la hora y la causa de los cuatro casos de calentamiento más recientes.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 4</th>
<th>...</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>&quot;registro₄&quot;</td>
<td>...</td>
<td>&quot;registro₁&quot;</td>
</tr>
</tbody>
</table>

**Comando ΣX:** Suma los valores de la columna de variables independientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$x_{ suma }$</td>
</tr>
</tbody>
</table>

**Comando ΣX^2:** Suma los cuadrados de los valores de columna de variables independientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$x_{ suma }$</td>
</tr>
</tbody>
</table>

**Comando XCOL:** Especifica la columna de variables independientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$n_{ col }$</td>
</tr>
</tbody>
</table>

**Comando XRECV:** Prepara la HP 48 para recibir un objeto vía XModem. El objeto recibido se almacena en el nombre de la variable dada.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>'nombre'</td>
</tr>
</tbody>
</table>
**Comando XRNG:** Especifica el rango de visualización del eje $x$.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_m \subset n$</td>
<td>$x_{max}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando XSEND:** Envía una copia del objeto especificado vía XModem.

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'nombre'</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando XVOL:** Establece la anchura de la visualización de volumen de la variable reservada $VPAR$.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{izq}$</td>
<td>$x_{dcna}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando XXRNG:** Especifica el rango $x$ de un plano de entrada (ámbito) para las representaciones gráficas MAPA DE RED y SUPERFICIE PARAMETRICA.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_m \subset n$</td>
<td>$x_{max}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando $\Sigma X*Y$:** Suma los productos de cada uno de los valores correspondientes de las columnas de variables independientes y dependientes de la matriz de estadísticas actual (la variable reservada $\Sigma DAT$).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>$x_{suma}$</td>
</tr>
</tbody>
</table>
**Comando ΣY:** Suma los valores de la columna de variables dependientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>x_suma</td>
</tr>
</tbody>
</table>

**Comando ΣY^2:** Suma los cuadrados de los valores de la columna de variables dependientes de la matriz de estadísticas actual (la variable reservada ΣDAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>x_suma</td>
</tr>
</tbody>
</table>

**Comando YCOL:** Especifica la columna de variables dependientes de la matriz de estadísticas actual (la variable reservada Σ;DAT).

<table>
<thead>
<tr>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→</td>
<td>n_col</td>
</tr>
</tbody>
</table>

**Comando YRNG:** Especifica el rango de visualización del eje y.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_m≤n</td>
<td>y_max</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando YVOL:** Establece la profundidad de la visualización de volumen de la variable reservada VPAR.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_cerca</td>
<td>y_lejos</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Comando YRNG:** Especifica el rango y de un plano de entrada (ámbito) para las representaciones gráficas MAPA DE RED y SUPERFICIE PARAMETRICA.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_{cerc}$</td>
<td>$y_{lejos}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Función ZFACTOR:** Calcula el factor de corrección de compresibilidad del gas para un comportamiento no ideal de un gas de hidrocarburo.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{Tr}$</td>
<td>$y_{Pr}$</td>
<td>→</td>
<td>$x_{factorZ}$</td>
</tr>
<tr>
<td>$x_{Tr}$</td>
<td>'símb'</td>
<td>→</td>
<td>'FACTORZ($x_{Tr}$, 'símb')'</td>
</tr>
<tr>
<td>'símb'</td>
<td>$y_{Pr}$</td>
<td>→</td>
<td>'FACTORZ('símb', $y_{Pr}$)'</td>
</tr>
<tr>
<td>'símb$_1$'</td>
<td>'símb$_2$'</td>
<td>→</td>
<td>'FACTORZ('símb$_1$, 'símb$_2$')'</td>
</tr>
</tbody>
</table>

**Comando ZVOL:** Establece la altura de la visualización de volumen de la variable reservada VPAR.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{baja}$</td>
<td>$x_{alta}$</td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>
**Función <:** Comprueba si un objeto es menor que otro objeto.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>( y )</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>( nn_1 )</td>
<td>( nn_2 )</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>&quot;secuencia_1&quot;</td>
<td>&quot;secuencia_2&quot;</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>( x )</td>
<td>'símb'</td>
<td>→</td>
<td>'x&lt;símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>( x )</td>
<td>→</td>
<td>'símb&lt;x'</td>
</tr>
<tr>
<td>'símb_1'</td>
<td>'símb_2'</td>
<td>→</td>
<td>'símb_1&lt;símb_2'</td>
</tr>
<tr>
<td>( x_unid_1 )</td>
<td>( y_unid_2 )</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>( x_unid )</td>
<td>'símb'</td>
<td>→</td>
<td>'x_unid&lt;símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>( x_unid )</td>
<td>→</td>
<td>'símb&lt;x_unid'</td>
</tr>
</tbody>
</table>

**Función ≤:** Comprueba si un objeto es menor o igual que otro objeto.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>( y )</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>( nn_1 )</td>
<td>( nn_2 )</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>&quot;secuencia_1&quot;</td>
<td>&quot;secuencia_2&quot;</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>( x )</td>
<td>'símb'</td>
<td>→</td>
<td>'x \leq símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>( x )</td>
<td>→</td>
<td>'símb \leq x'</td>
</tr>
<tr>
<td>'símb_1'</td>
<td>'símb_2'</td>
<td>→</td>
<td>'símb_1 \leq símb_2'</td>
</tr>
<tr>
<td>( x_unid_1 )</td>
<td>( y_unid_2 )</td>
<td>→</td>
<td>( 0/1 )</td>
</tr>
<tr>
<td>( x_unid )</td>
<td>'símb'</td>
<td>→</td>
<td>'x_unid \leq símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>( x_unid )</td>
<td>→</td>
<td>'símb \leq x_unid'</td>
</tr>
</tbody>
</table>
**Función >**: Comprueba si un objeto es mayor que otro objeto.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>nn₁</td>
<td>nn₂</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>&quot;secuencia₁&quot;</td>
<td>&quot;secuencia₂&quot;</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>x</td>
<td>'símb'</td>
<td>→</td>
<td>'x&gt;símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>x</td>
<td>→</td>
<td>'símb&gt;x'</td>
</tr>
<tr>
<td>'símb₁'</td>
<td>'símb₂'</td>
<td>→</td>
<td>'símb₁&gt;símb₂'</td>
</tr>
<tr>
<td>x_unid₁</td>
<td>y_unid₂</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>x_unid</td>
<td>'símb'</td>
<td>→</td>
<td>'x_unid&gt;símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>x_unid</td>
<td>→</td>
<td>'símb&gt;x_unid'</td>
</tr>
</tbody>
</table>

**Función ≥**: Comprueba si un objeto es mayor o igual que otro objeto.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>nn₁</td>
<td>nn₂</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>&quot;secuencia₁&quot;</td>
<td>&quot;secuencia₂&quot;</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>x</td>
<td>'símb'</td>
<td>→</td>
<td>'x ≥ símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>x</td>
<td>→</td>
<td>'símb ≥ x'</td>
</tr>
<tr>
<td>'símb₁'</td>
<td>'símb₂'</td>
<td>→</td>
<td>'símb₁ ≥ símb₂'</td>
</tr>
<tr>
<td>x_unid₁</td>
<td>y_unid₂</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>x_unid</td>
<td>'símb'</td>
<td>→</td>
<td>'x_unid ≥ símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>x_unid</td>
<td>→</td>
<td>'símb ≥ x_unid'</td>
</tr>
</tbody>
</table>
**Función ==:** Comprueba si dos objetos son iguales.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj₁</td>
<td>obj₂</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>(x,0)</td>
<td>x</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>x</td>
<td>(x,0)</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>z</td>
<td>'símb'</td>
<td>→</td>
<td>'z==símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>z</td>
<td>→</td>
<td>'símb==z'</td>
</tr>
<tr>
<td>'símb₁'</td>
<td>'símb₂'</td>
<td>→</td>
<td>'símb₁==símb₂'</td>
</tr>
</tbody>
</table>

**Función ≠:** Comprueba si dos objetos no son iguales.

<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj₁</td>
<td>obj₂</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>(x,0)</td>
<td>x</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>x</td>
<td>(x,0)</td>
<td>→</td>
<td>0/1</td>
</tr>
<tr>
<td>z</td>
<td>'símb'</td>
<td>→</td>
<td>'z ≠ símb'</td>
</tr>
<tr>
<td>'símb'</td>
<td>z</td>
<td>→</td>
<td>'símb ≠ z'</td>
</tr>
<tr>
<td>'símb₁'</td>
<td>'símb₂'</td>
<td>→</td>
<td>'símb₁ ≠ símb₂'</td>
</tr>
</tbody>
</table>

**Función ∫:** Integra un integrando del límite inferior al límite superior con respecto a una variable especificada de integración.

<table>
<thead>
<tr>
<th>Nivel 4</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1 → Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>límite inferior</td>
<td>límite superior</td>
<td>integrando</td>
<td>'nombre' → 'símb_{integral}'</td>
</tr>
</tbody>
</table>

**Función ∂:** Toma una derivada de una expresión, un número o un objeto de unidades con respecto a una variable especificada de diferenciación.
<table>
<thead>
<tr>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>'simb₁'</td>
<td>'nombre'</td>
<td>→</td>
<td>'simb₂'</td>
</tr>
<tr>
<td>z</td>
<td>'nombre'</td>
<td>→</td>
<td>0</td>
</tr>
<tr>
<td>x...unid</td>
<td>'nombre'</td>
<td>→</td>
<td>0</td>
</tr>
</tbody>
</table>

**Función \( \Sigma \):** Calcula el valor de una serie finita.

<table>
<thead>
<tr>
<th>Nivel 4</th>
<th>Nivel 3</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>' índice'</td>
<td>( x_{íníc} )</td>
<td>( x_{final} )</td>
<td>smnd</td>
<td>→</td>
<td>( x_{suma} )</td>
</tr>
<tr>
<td>' índice'</td>
<td>'inic'</td>
<td>( x_{final} )</td>
<td>smnd</td>
<td>→</td>
<td>( \Sigma(\text{indice=inic},x_{final},\text{smnd}) )</td>
</tr>
<tr>
<td>' índice'</td>
<td>( x_{inic} )</td>
<td>'final'</td>
<td>smnd</td>
<td>→</td>
<td>( \Sigma(\text{indice}=x_{inic},\text{final},\text{smnd}) )</td>
</tr>
<tr>
<td>' índice'</td>
<td>'inic'</td>
<td>'final'</td>
<td>smnd</td>
<td>→</td>
<td>( \Sigma(\text{indice}=\text{inic},\text{final},\text{smnd}) )</td>
</tr>
</tbody>
</table>

**Comando \( \Sigma+ \):** Añade uno o más puntos de datos a la matriz de estadísticas actual (la variable reservada \( \Sigma\text{DAT} \)).

<table>
<thead>
<tr>
<th>Nivel ( m )</th>
<th>. . .</th>
<th>Nivel 2</th>
<th>Nivel 1</th>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td></td>
<td></td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>[ x_1 x_2 \ldots x_m ]</td>
<td></td>
<td></td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>[ [ x_{11} \ldots x_{1m} ] [ x_{n1} \ldots x_{nm} ] ]</td>
<td></td>
<td></td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>( x_1 \ldots x_{m-1} )</td>
<td></td>
<td>( x_m )</td>
<td></td>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

**Comando \( \Sigma- \):** Devuelve un vector de \( m \) números reales (o un número \( x \) si \( m = 1 \)) correspondiente a los valores de coordenadas del último punto de datos introducido mediante \( \Sigma+ \) en la matriz de estadísticas actual (la variable reservada \( \Sigma\text{DAT} \)).

<table>
<thead>
<tr>
<th>→</th>
<th>Nivel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>( x )</td>
</tr>
<tr>
<td>→</td>
<td>[ x_1 x_2 \ldots x_m ]</td>
</tr>
</tbody>
</table>

H-40  Diagramas de la pila para comandos seleccionados
Indice

Caracteres especiales

indicador \( \mathbf{X} \), 1-3
indicadores \( \leftrightarrow \), 1-3, 1-6
indicador \( \alpha \), 1-3, 2-2
indicador \( \mathbf{(*)} \), 1-3, 26-4, A-1,
A-5
indicador \( \Rightarrow \), 1-3
indicador \( \text{USR} \), 1-3, 30-5
indicador \( \mathbb{R} \times \overline{Z} \), 1-3, 12-11, 13-2
indicador \( \mathbb{R} \times \underline{Z} \), 1-3, 12-11, 13-2
cursor \( \Phi \), 2-14
cursor \( \mathbb{B} \), 2-14
carácter \( \mathbb{Z} \), 2-9
carácter \( \triangle \)
separador de números complejos, 12-12
separador de vectores, 4-4, 13-3
carácter \( = \), 11-4, 18-1, 22-1
comodín \( \& \), 20-31, 28-5
carácter \( \ldots \), A-3
[ ]

delimitadores de sistemas, 8-1
delimitador \( \# \), 15-1
delimitador \( \_ \), 10-2
\( \pi \)
constante simbólica, A-2
en conversiones de fracciones, 16-6
valor numérico, A-2
\( \Sigma \text{DAT} \)

variable reservada, 5-7
\( \Sigma \text{PAR} \)
parámetros estadísticos, 21-14
variable reservada, 5-7
y representaciones gráficas,
22-17

A

alaramas
archivo, 26-5
atasadas, 26-4, 26-5
cómo reconocer, 26-4
cómo responder a, 26-4
control del pitido, 26-6
indicador, 26-4
interrupción de la repetición,
26-5
no responder, 26-4
no se necesita respuesta, 26-4
número de índice, 26-4
reconocimiento, 26-4
reptición, 26-6
respuesta a, 26-4, 26-5
tipo de cita, 26-2
tipo de control, 26-2
tipos, 26-2
alarmas atrasadas, 26-4, 26-5
alarmas de cita, 26-2
alarmas de control, 26-2
alarmas repetitivas, 26-5
aleatorios
numeros, 12-4
algebraicas
subexpresiones, 20-20
algebraicos
delimitadores, 2-7
introducir, 2-7
almacenamiento
objetos en variables, 5-7, 5-13
programas, 29-6
almacenar
asignaciones de tecla de
usuario, 30-6
memoria en ordenador, 27-12
ALRMDAT
variable reservada, 5-7
amortización (TVM)
cálculos, 18-14, 18-21
modo de la pantalla, 18-21
modos de pago, 18-15, 18-21
análisis de funciones, 22-10
ángulos
conversión, 12-7
formato HMS, 12-7
unidades no dimensionales,
10-8, 10-9
animación
objetos de gráficos, 9-12
representaciones gráficas del
tipo YSLICE, 23-38
antiderivadas, 20-34
aplicación CHARS, 2-4
aplicaciones, 1-7
CHARS, 1-7
EQ LIB, 1-7
I/O (Entrada/Salida), 1-7
LIBRARY, 1-7
MEMORY, 1-7
menús de comandos y
aplicaciones, 1-8
MODES, 1-7
PLOT, 1-7
SOLVE, 1-7
STACK, 1-7
STAT, 1-7
SYMBOLIC, 1-7
TIME, 1-7
UNITS, 10-1
aplicación PLOT
opción de ecuaciones
diferenciales, 19-7
aplicación Resolución Financiera,
18-14
amortización, 18-21
modos de pago, 18-15
aplicación SOLVE, 18-1
comparada con Resolución
de Ecuaciones Múltiples,
25-3
ecuaciones de valor constante,
18-5
entorno SOLVR, 18-7
funciones del menú, 25-3
interpretación de resultados,
18-4, 18-5
interpretación de suposiciones
intermedias, 18-6
interrupción y reinicialización
del solucionador de raíces,
18-6
inversión de signo, 18-4
mensajes, 18-4
obtención de soluciones con
unidades, 18-7
reorganización de variables,
18-7
suposiciones incorrectas, 18-5
utilización de unidades, 18-6
utilizada por Biblioteca de
Ecuaciones, 25-2
visualización del solucionador
de raíces, 18-6
archivo
memoria en objeto de seguridad, 28-5
archivos
elección de nombres, 27-12
recuperar memoria, 27-14
arcos
trazado, 9-9
área de estado, 1-1, 5-4
argumentos, 3-1
incorrectos, A-3
insuficientes, A-3
múltiples, 3-3
pila, 3-1
recuperación de los últimos, 3-6
sintaxis de la pila, 3-1
argumentos insuficientes, A-3
aritméticas
funciones, 12-2
auto-test, A-11
aviso de bajas condiciones de las pilas, A-5
ayudas para escribir, 30-2

B
b (registro de base binaria), 15-1
bajas condiciones de la memoria, 5-20
base (binaria)
cómo afecta a la visualización, 15-1
configuración, 15-1
opciones, 15-1
base (binarios)
escritura, 15-2
Biblioteca de Constantes, 25-13
Biblioteca de Ecuaciones, 25-1
activación de opciones de unidades, 25-5
aplicación SOLVE y, 25-2
catálogo de unidades, 25-5
catálogos, 25-1
catálogos de variables, 25-5
eliminación de variables, 25-5
eliminar variables, A-4
imágenes en, 25-5
información sobre ecuaciones, 25-4
iniciar las Resoluciones, 25-2
interpretación de resultados, 25-10
introducción de valores para variables, 25-3
Juego del Buscaminazas, 25-16
nombres de variables, 25-5
opciones de unidades, 25-5
referencia, F-1
Resolución de Ecuaciones Múltiples, 25-2
resolución de problemas, 25-1
resolución de variables, 25-3
resultados no esperados, 25-10
selección de opciones de unidades, 25-1
selección de resoluciones, 25-2
temas, 25-4, F-1
títulos, 25-4, F-1
unidades definidas por el usuario, 25-17
usos de la Resolución de Ecuaciones Múltiples, 25-6
visualización de ecuaciones, 25-4
bifurcación “case”, 29-11
bifurcación “if”, 29-10, 29-11, 29-16
borrado
memoria, 5-19
pila, 3-6
variables, 5-11
borrar
indicadores, 4-9
objetos de seguridad, 28-4
teclas de usuario, 30-7
BREAK (serie), 27-19
bucle “do”, 29-14
bucle “for”, 29-13, 29-14
bucle “while”, 29-15
bytes
de memoria interna, 5-1
memoria disponible, A-2

C
cable serie, 27-7
cable (serie), 27-7
cadenas
en menús personalizados, 30-2
envío a puerto serie, 27-18
función en programas, 29-2
calculadora
garantía, A-17
interrupción, 5-18
límites medioambientales, A-4
no se enciende, A-10
preguntas, A-1
resolución de problemas, A-1
servicio de reparaciones, A-20
tipo de pilas, A-6
cálculo
de constantes simbólicas, 11-5
de operaciones algebraicas, 11-2
cálculos de interés compuesto (TVM), 18-14
cálculos de TVM
realización, 18-17
cálculos TVM, 18-14
modos de pago, 18-15
cambio (enteros binarios), 15-5
campos (plantillas de entrada), 6-1
comprobación, 6-2, 6-5
datos, 6-2, 6-3, 6-5
data extendidos, 6-2, 6-3
determinar los tipos de objetos válidos, 6-7
listas, 6-2, 6-4
reconfiguración, 6-6
selección, 6-2, 6-4
tipos, 6-2
caracteres
conversiones, 27-17
diagrama de teclado alfabético, 2-3
escritura, 2-2
mayúsculas y minúsculas, 2-4
tamaño en objetos de gráficos, 9-10
visualización de las teclas, 2-5
visualización de los números, 2-5
caracteres especiales
escritura, 2-4
visualización, 2-4
catálogo de unidades
Biblioteca de Ecuaciones, 25-5
catálogos
Biblioteca de Ecuaciones, 25-1
catálogos de variables
Biblioteca de Ecuaciones, 25-5
Catálogo UNITS
menús, 10-1
CHARS
   aplicaciones, 1-7
Científico
   modos de la pantalla, 4-2
Cilíndrico
   modos de coordenadas, 12-11, 13-2
círculos
   representación gráfica, 23-13
   trazado, 9-9
códigos de caracteres
   conversiones, 27-17
coherencia dimensional, 25-11
coma
   separador de números
   complejos, 12-12
   símbolo decimal, 4-6
comandos
   aplicación a listas, 17-2, 17-3
   conversión de fracciones, 16-5
   en menús personalizados, 30-2
   en programas, 29-2
   matemáticas generales, 12-2
   sintaxis de la pila, 3-1
   subconjunto de operaciones, 11-1
tipo de objetos, 11-2
comandos de probabilidades, 12-4
comandos de prueba
   en estructuras condicionales, 29-10
   en estructuras de bucle, 29-14, 29-15
comando SOLVEQN, F-1
combinaciones, 12-4
comentarios en la línea de
   comandos, 2-9
comodines
   en transformaciones definidas
   por el usuario, 20-31
   objetos de seguridad, 28-5
   cómo liberar la memoria
   fusionada, 28-18
   complejos conjugados, 12-14
   complemento de dos, 15-2, 15-3
   comprobación
   calculadora, A-10
   estados de los indicadores, 4-9
   puntos, 9-10
   condición out-of-memory, 5-22
   configuración de indicadores, 4-9
CONIC
   representaciones gráficas, 23-13
   conjugadas (matrices), 14-15
   conjugados
   números complejos, 12-14
   constantes
   en ecuaciones, 25-13
   incorporadas, 11-4
   lista de, 25-13
   numéricas, 11-4
   simbólicas, 11-4, 11-5
   constantes simbólicas
   cálculo, 11-5
   cómo afectan a los indicadores, 11-5
contadores
   estructuras de bucle, 29-13, 29-14
   pasos negativos, 29-13, 29-14
   continuación de la ejecución del
   programa, 29-9
conversión
   enteros binarios a enteros
   reales, 15-3
   fechas a números, 16-2
fechas a secuencias, 16-4
formato decimal a HMS, 12-7, 16-3
formato HMS a decimal, 12-7, 16-3
grados sexagesimales a radianes, 12-7
números a fracciones, 16-5
números complejos a números reales, 12-14
números reales a enteros binarios, 15-3
números reales a números complejos, 12-14
objetos a objetos de gráficos, 9-10
operaciones algebraicas a objetos de gráficos, 7-15
operaciones algebraicas a secuencias, 7-15
pantallas de la pila a objetos de gráficos, 9-11
puntos a unidades de usuario, 9-10
radianes a grados sexagesimales, 12-7
sistemas complejos a sistemas reales, 14-15
sistemas reales a sistemas complejos, 14-15
unidades angulares, 10-8
unidades de medida, 10-7, 10-8
unidades de temperatura, 10-12
unidades de usuario en puntos, 9-10
conversiones, 27-17
convertir
fechas a números, 16-1
horas a números, 16-1
coordenadas
puntos, 9-8
unidades de usuario, 9-8
coordenadas de unidades de usuario, 9-8
coordenadas (representación gráfica), 9-8, 9-10
"cortes" de salida
representaciones gráficas del tipo YSLICE, 23-27
CST
variable reservada, 5-7, 30-1
cursor
desplazamiento, 1-8
insertar, 2-14
línea de comandos, 2-14
modos de coordenadas, 22-4
sustituir, 2-14
visualización de las coordenadas, 22-4
D
d (registro de base decimal), 15-1
datos estadísticos
datos de muestra, 21-7
datos de población, 21-7
edición, 21-5
en $\Sigma DAT$, 21-1
estadísticas de prueba, 12-4
introducción, 21-1, 21-2
probabilidades, 12-4
probabilidades superiores, 12-4
representación gráfica, 21-8, 21-12, 23-20
tipos de representaciones gráficas, 23-20
 definición
funciones definidas por el usuario a partir de ecuaciones, 11-7
variables a partir de ecuaciones, 5-14, 11-4
definición de procedimientos
variables locales en, 29-19
delimitadores
' de algebraicos, 2-7
[ ] de sistema, 2-7
[ ] de matrices, 8-1
[ ] de vectores, 8-1
[ ] de vectores, 2-8, 13-3
[ ] de matrices, 2-7
impedimento de evaluación de nombres, 5-16
introducción, 2-6
lista, 2-6
# para enteros binarios, 15-1
< > para números complejos, 12-12
para programas, 29-1
_ para objetos de unidades de medida, 10-2
[ ] para vectores, 4-4, 13-3
depuración programas, 29-8, 29-9
depurar
variables, 25-5
variables de la Biblioteca de Ecuaciones, 25-5
derivadas
cálculo numérico, 20-10
cálculo simbólico, 20-10, 20-11
definidas por el usuario, 20-11
en el entorno PICTURE, 22-12
en el EquationWriter, 7-6
variables “der”, 5-7, 20-11
derivadas definidas por el usuario, 20-11
descripciones de menús
Catálogo UNITS, 10-1, 10-3, 10-7
Comandos UNITS, 10-1
CST, 30-1
EDIT, 2-14
E/S, 27-18
MATRIX, 8-8
MTH BASE, 15-1, 15-4, 15-5
MTH HYP, 12-3
MTH PARTS, 12-9
MTH PROB, 12-4
MTH REAL, 12-7, 12-9
MTH VECTR, 13-2, 13-4
PICTURE FCN, 22-11
Pila Interactiva, 3-8
PRG STK, 3-12
RULES, 20-23
VAR, 5-13
desplazamiento en el
EquationWriter, 7-2, 7-11, 7-15
diferenciación
de operaciones algebraicas, 20-10
implícita, 20-12
dígitos significativos
mostrados, 4-2
redondeo, 12-10
directorio actual
cambio, 5-9
determinación del menú VAR, 5-4
mostrado en el área de estado, 1-1
ruta, 1-1, 5-4
variables creadas, 5-7
visualización en el área de estado, 5-4
directorio HOME
cambio al mismo, 5-13
copia de seguridad, 27-12, 28-5
recuperar, 27-14, 28-6
directorios, 5-4
almacenados en variables, 5-4
Biblioteca de Ecuaciones, 25-3
cambio del directorio actual, 5-9
copia de seguridad, 28-4
creación, 5-8
directorio actual, 5-4
directorio raíz, 5-4
en menús personalizados, 30-1
evaluación de variables que contienen directorios, 5-15
menú personalizado en, 30-3
rutas, 5-4
variables en directorios, 5-5
distribución de f, 12-5
Distribución de F de Snedecor, 12-5
distribución de ji al cuadrado, 12-5
distribución de t, 12-5
distribución de t de Student, 12-5
distribución normal, 12-5
duplicación de las entradas de la pila, 3-5
aproximaciones de polinomios, 20-16
argumentos para funciones, 11-4
cálculo de la pendiente, 22-12
comparadas con expresiones, 11-4, 18-1, 22-1
creación, 2-7
creación a partir de variables, 11-4
creación de funciones definidas por el usuario a partir de ecuaciones, 11-7
creación de variables a partir de ecuaciones, 5-14
creación en el EquationWriter, 7-3
pendiente, 22-12
puntos críticos, 22-12
reorganización, 20-19, 20-31
representaciones gráficas, 22-1
resolución, 18-2
resolución de ecuaciones cuadráticas, 20-16
resolución de sistemas lineales, 14-13, 14-16, 14-17, 14-19, 14-20
resolución de una variable incógnita, 18-1
resolución gráfica, 22-11
resolución numérica, 22-11
resolución simbólica, 20-15, 20-16
soluciones generales, 20-17
soluciones principales, 20-17
ecuaciones (Biblioteca de Ecuaciones) completas, 25-9
creación, 25-8
demasiadas incógnitas, 25-8, 25-11
forma de cálculo, 25-4
forma de visualización, 25-4
imágenes, 25-5
limitaciones de función, 25-9
no utilizadas, 25-11, 25-12
raíces múltiples, 25-12
resolución, 25-1
soluciones no esperadas, 25-11
variables en, 25-8
visualización, 25-4
ecuaciones cuadráticas
resolución, 20-16
ecuaciones diferenciales
con valor de vectores, 19-5, 19-12
problemas de valor inicial, 19-2
reducción de orden, 19-5, 19-12
representación gráfica de ecuaciones con valor de vectores, 19-12
representación gráfica de ecuaciones de segundo orden, 19-12
representación gráfica de las soluciones, 19-7
representación gráfica “stiff”, 19-10
resolución, 19-1
segundo orden, 19-5
“stiff”, 19-4
ecuaciones diferenciales de valor inicial
resolución, 19-2
“stiff”, 19-4
ecuaciones diferenciales de valor inicial “stiff”
resolución, 19-4
ecuaciones lineales, 14-13, 14-17, 14-19, 14-20
cómo hallar la “mejor” solución, 14-16
ecuaciones de matrices y ecuaciones lineales, 18-12
resolución de sistemas de ecuaciones lineales, 14-16, 18-12, 18-13
sistemas solucionables, 18-13
edición
asignaciones de teclas de usuario, 30-8
cancelar cambios, 2-12
datos estadísticos, 21-5
en el EquationWriter, 7-11
en el MatrixWriter, 8-5
inscripción de objetos en operaciones algebraicas, 7-12
objetos de la pila, 2-12
operaciones algebraicas, 7-11
programas, 29-8
sistemas, 8-5
subexpresiones, 7-12, 7-13, 20-22
variables, 2-12
 ejecución de programas paso a paso, 29-9
eliminación de programas, 29-9
eliminación gaussiana, 14-20
eliminar
variables, A-4
variables de la Biblioteca de Ecuaciones, A-4
elipse (...) en la pantalla, A-3
elipses
representación gráfica, 23-13
emisor de pitidos
control, 4-11
Enlace de Desarrollo de
Programas, 27-7
enrejado de salida
representaciones gráficas del
tipo GRIDMAP, 23-38
enrejados de muestra, 23-25
enteros binarios
bases, 15-1
bits mostrados, 15-2
bits perdidos, 15-2
bits visualizados, 15-2
cálculos, 15-2, 15-3
cambio, 15-5
cómo coordenadas de puntos, 9-8
conversión a enteros reales, 15-3
delimitadores, 15-1
introducción, 15-2
operaciones de cálculo, 15-2
operaciones lógicas, 15-4, 15-5
representación interna, 15-1, 15-2
rotación, 15-5
visualización, 15-1
entorno de gráficos
adición de elementos, 9-3
entorno Gráficos
operaciones de puntos, 9-10
entorno PICTURE
análisis de funciones, 22-10
derivadas, 22-12
integrales, 22-12
resolución de la ecuación
actual, 22-11
teclado, 22-6
zoom, 22-7
entornos
edición, 2-12
EquationWriter, 7-2
MatrixWriter, 8-2
mejor, 2-13, 3-8
Pila Interactiva, 3-7
salida, 1-9
Selección, 7-11, 20-21
entorno Selección
edición de subexpresiones, 7-12, 7-14
modo del EquationWriter, 7-2, 7-14
transformaciones de Rules, 20-21
entorno SOLVR
comparado con la aplicación
SOLVE, 18-7
creación de menús
personalizados, 18-9
opciones que no se encuentran
en SOLVE, 18-9
resolución de una serie de
ecuaciones, 18-9
utilización, 18-7, 18-8
y Resolución de Ecuaciones
Múltiples), 18-9
EQ
creado por Biblioteca de
Ecuaciones, 25-2, 25-6
variable reservada, 5-7
y representaciones gráficas
del tipo FUNCTION, 23-1, 23-4
y representaciones gráficas
del tipo GRIDMAP, 23-39
y representaciones gráficas
del tipo PARAMETRIC, 23-8, 23-10
y representaciones gráficas
del tipo POLAR, 23-5
y representaciones gráficas del tipo PR-SURFACE,
23-41
y representaciones gráficas del tipo SLOPEFIELD,
23-29
y representaciones gráficas del tipo TRUTH, 23-16

EQ LIB

aplicaciones, 1-7
EquationWriter, 7-2
creación de ecuaciones, 7-3
creación de objetos de unidades de medida,
7-7, 10-5
edición con la tecla de retroceso, 7-11
edición de subexpresiones, 7-12
edición en la línea de comandos, 7-11, 7-12
ejemplos, 7-9
entornos, 7-2
entorno Selección, 7-2, 7-12, 7-14, 20-21
entrada, 7-3
inserción de objetos de la pila, 7-12
introducción de derivadas, 7-6
introducción de exponentes, 7-5
introducción de fracciones, 7-4
introducción de funciones donde, 7-7
introducción de integrales, 7-6
introducción de nombres, 7-3
introducción de números, 7-3
introducción de operadores matemáticos, 7-4
introducción de paréntesis, 7-5
introducción de potencias, 7-5
introducción de raíces, 7-5
introducción de sumas algebraicas, 7-6
introducción de unidades de medida, 7-7
introducción de variables, 7-3
modo de desplazamiento, 7-2, 7-11, 7-15
modo de entrada, 7-2
modos, 7-2
operaciones, 7-14
paréntesis implícitos, 7-7
salir, 7-3
subexpresiones, 7-12
sustitución de subexpresiones, 7-13
transformaciones de Rules (Reglas), 20-21

errores
control del emisor de pitidos, 4-11
detección, 29-16
durante la solución de la ecuación, 25-10
E/S serie, 27-19, 27-20
estructuras condicionales, 29-16
lista de mensajes, B-1
números de, B-1

E/S
cableado serie, 27-7
comandos distintos a Kermit, 27-16
comandos Kermit, 27-14
comandos serie, 27-16
conexión del ordenador, 27-7
control de velocidad
   XON/XOFF, 27-3, 27-18
copia de seguridad de
memoria, 27-12
errores, 27-19, 27-20
HP 48 a HP 48, 27-1
HP 48 a ordenador, 27-7, 27-12
HP 48-PC, 27-10
memoria intermedia de
entrada, 27-19, 27-20
nombres de archivos, 27-12
parámetros para impresora
serie, 27-3
protección de variables, 27-12
protocolo Kermit, 27-10
recuperar memoria, 27-14
Esférico
   modos de coordenadas, 12-11, 13-2
espera (serie), 27-19
Estadísticas
   datos de $\Sigma DAT$, 21-1
   parámetros $\Sigma PAR$, 21-14
datos estadísticos, 21-1
de muestra, 21-7
de una sola variable, 21-7
edición de datos, 21-5
estadísticas de prueba, 12-4
estructura de los datos, 21-1
introducción de datos, 21-1, 21-2
matriz actual, 21-1, 21-2
población, 21-7
probabilidades, 12-4
probabilidades superiores, 12-4
representaciones gráficas del
tipo BAR, 23-22
representaciones gráficas del
tipo HISTOGRAM, 23-20
representaciones gráficas del
tipo SCATTER, 23-23
representación gráfica de
datos, 23-20
tipos de representaciones
gráficas, 23-20
estadísticas de muestra, 21-7
estadísticas de población, 21-7
estadísticas de prueba, 12-4
estadísticas de una sola variable, 21-7
Estándar
   modos de la pantalla, 4-2
estructuras condicionales
   bifurcación “case”, 29-11
   bifurcación de errores, 29-16
   bifurcación “if”, 29-10, 29-11, 29-16
   comandos de prueba en, 29-10
   elemento de programa, 29-3
   estructuras de bifurcación
     elemento de programa, 29-3
     estructuras condicionales, 29-10
     estructuras de bucle, 29-12
   estructuras de bucle
   bucle “do”, 29-14
   bucle “for”, 29-13, 29-14
   bucle “while”, 29-15
   comandos de bucle en, 29-15
   comandos de prueba en, 29-14
   contadores, 29-13, 29-14
   definidas, 29-12
   indefinidas, 29-12
   “inicio” de bucle, 29-12, 29-13
   pasos negativos, 29-13, 29-14
   estructuras de iteración
     elemento de programa, 29-3
estructuras de variables locales

cálculos con, 29-4
cómo funciones definidas por
el usuario, 29-20
creación de variables locales,
29-17
definición de procedimiento,
29-19
elemento de programa, 29-3
en funciones definidas por el
usuario, 29-20
funcionamiento, 29-3, 29-17
introducción, 29-17
procedimiento de definición,
29-17
sintaxis, 29-3, 29-17
ventajas, 29-18
etiquetas de menú, 1-4
barra que indica un submenú,
5-4
blancas y negras, 25-8
colores equivocados, 25-12
en Biblioteca de Ecuaciones,
25-3
indicación de submenú, 1-10
indican estados de variable,
25-8
indican variables relacionadas,
25-8, 25-11, 25-12
parte inferior de la pantalla,
1-10
personalización, 30-3
evaluación
de cláusulas-prueba, 29-10,
29-11, 29-12, 29-15
de nombres de variables, 5-15
de objetos de seguridad, 28-4
de variables locales, 29-18
prevención para los nombres,
5-16
exactitud
de soluciones lineales, 14-19
en integrales, 20-6
exponenciales
funciones, 12-2
exponentes
en el EquationWriter, 7-5
formato de visualización, 4-3
fraccionales, A-3
exponentes fraccionales, A-3
expresiones, 11-4, 18-1, 22-1
comparadas con ecuaciones,
11-4, 18-1, 22-1
diferenciación, 20-10
integración numéricamente,
20-1
integración simbólica, 20-8
reorganización, 20-19, 20-31
representaciones gráficas,
22-1
resolución, 18-2
resolución simbólica, 20-15
extremo
de un gráfico, 22-12
en la aplicación SOLVE, 18-4

F
fecha
configuración de la fecha
actual, 16-2
conversión a números, 16-2
conversión a secuencia, 16-4
convertir a número, 16-1
opciones de formato, 16-1,
26-1
visualización, 4-11
ficheros
copia de seguridad de
memoria, 27-12
Fijar
modos de la pantalla, 4-2
forma de cálculo (Biblioteca de Ecuaciones)
ecuaciones, 25-4
forma de visualización
(Biblioteca de Ecuaciones)
ecuaciones, 25-4
forma negativa
de los números, 12-14
formato decimal
conversión a HMS, 12-7, 16-3
formato HMS
conversión a decimal, 12-7, 16-3
para ángulos, 12-7
fracciones
conversión de números reales a fracciones, 16-5
en el EquationWriter, 7-4
función de más alto nivel, 7-11, 20-19
función donde en el EquationWriter, 7-7
funciones
análisis de representaciones gráficas de funciones, 22-10
aplicación a listas, 17-6
aplicación a sistemas, 14-14
aritméticas (sumario), 11-5
científicas (sumario), 11-5
conversión a fracciones, 16-5
conversión de ángulos, 12-7
conversión de fracciones, 16-5
definidas por el usuario, 11-7, 24-2
ecuaciones como argumentos, 11-4
exponentiales, 12-2
logarítmicas, 12-2
matemáticas generales, 12-2
partes numéricas, 12-9
porcentajes, 12-9
subconjunto de comandos, 11-1
tipo de objetos, 11-2
trigonométricas, 10-9, 12-2, A-2
funciones analíticas, 11-1
funciones de dos variables
representación gráfica, 23-25
funciones definidas por el usuario, 11-7
argumentos, 11-7, 11-8
creación, 11-7
diferenciación, 20-11
ejecutar, 11-8
estructura interna, 29-20
paréntesis, 11-9
representación gráfica, 24-2
funciones de porcentajes, 12-9
funciones hiperbólicas, 12-3
funciones inversas, 20-16
funciones lógicas, 15-4, 15-5
funciones representadas gráficamente
análisis, 22-10
funciones trigonométricas, 10-9, A-2
Función Gamma, 12-4
futuro valor (TVM), 18-21
G
garantía, A-17
grados sexagesimales
conversión a radianes, 12-7
H
h (registro de base hexadecimal), 15-1
hipérbolas
representación gráfica, 23-13
hiperbólicas
teclas de cambio ☞ ◀, 1-3, 1-6
USER, 1-3
usuario, 4-10
indicadores del sistema
comprobación de errores
matemáticos, 18-5
indicador GRAD, 1-3, 4-3
indicador HALT, 1-3, 29-10, A-3
indicador PRG, 1-3
indicador PRG, 29-6
indicador RAD, 1-3, 4-3
indicador USER, 1-3, 30-5
indicador 1USR, 1-3, 30-5
infra-determinados
sistemas, 14-16, 14-19
“inicio” de bucle, 29-12, 29-13
insertar cursor, 2-14
integración
expresiones simbólicas legales, 20-8
numérica, 20-1
simbólica, 20-8
integrales
de expresiones no integrables, 20-9
determinadas, 20-1, 20-8
en el entorno PICTURE, 22-12
en el EquationWriter, 7-6
exactitud, 20-6
IERR contiene incertidumbre, 20-7
impropias, 20-2
incertidumbre, 20-6
indeterminadas, 20-9
limitación de la exactitud, 20-6
múltiples, 20-5
resolución numéricamente, 20-1
resolución simbólica, 20-8
y polinomios de Taylor, 20-9
intercambiado de señales
XON/XOFF, 27-18
intercambio de los niveles de la
pila, 3-4
intercambio de señales
XON/XOFF, 27-3
interrupción del sistema, 5-18
Interrupción del sistema de la
calculadora, 5-18
interrupción de programas, 29-9
intersecciones, 22-11
introducción
matrices, 2-7
inversión
matrices, 14-11
inversión de signo
en la aplicación SOLVE, 18-4
I/O (Entrada/Salida)
aplicaciones, 1-7
comprobación de puertos,
A-15, A-16
IOPAR
variable reservada, 5-7
J
Juego del Buscaminias, 25-16
K
Kermit
envío de comandos, 27-14
paquetes, 27-14
protocolo de transferencia de
archivos, 27-10
L
letras
escritura, 2-2
mayúsculas y minúsculas, 2-4
letras griegas
conversiones, 27-17
escritura, 1-5
letras mayúsculas
en unidades de medida, 10-4
escritura, 1-5, 2-4
letras minúsculas
en unidades de medida, 10-4
escritura, 1-5, 2-4
liberar memoria fusionada,
28-18
LIBRARY
aplicaciones, 1-7
límites de humedad, A-4
límites medioambientales, A-4
línea de comandos
borrado, 1-9
comentarios, 2-9
edición, 2-1, 2-10
entorno de edición, 2-14
escritura de caracteres especiales, 2-4
funcionamiento, 1-4, 2-8
inserción de un objeto de la pila, 3-10
introducción de objetos, 2-6
los argumentos siguen en la pila, 3-1
modos de entrada, 2-10
modos de insertar y sustituir, 2-14
múltiples argumentos, 3-3
múltiples objetos, 2-8
pila y línea de comandos, 1-4
procesamiento, 2-10
recuperación, 2-12
teclas del cursor, 2-10
utilización en el EquationWriter, 7-11,
7-12
líneas
trazado, 9-9
líneas nuevas, 29-6
listas, 17-1
adición de elementos de dos listas, 17-3
anexión, 17-2
aplicación de comandos, 17-2
aplicación de funciones, 17-4,
17-6
aplicación de procedimientos,
17-5
aplicación de programas, 17-4
búsqueda de elementos, 17-7
clasificación, 17-7
colocación de elementos en la pila, 17-7
colocación del primer elemento en la pila, 17-7
comandos de múltiples argumentos, 17-3
concatenación, 17-4, 17-7
creación desde el teclado,
17-1
creación desde la pila, 17-1
división de dos listas, 17-4
función en programas, 29-2
introducción, 2-6
inversión, 17-7
manipulación, 17-7
multiplicación de dos listas,
17-4
procesamiento, 17-2
recuento de los elementos,
17-7
resta de dos listas, 17-4
sustitución de elementos,
17-7
utilización con las plantillas de entrada, 6-3
logarítmicas
funciones, 12-2
lugares decimales
número de lugares decimales mostrados, 4-3

M
mantisas, 4-3
matrices, 8-1
aumentadas, 14-20
caracterización, 14-8
conjugación, 14-15
datos estadísticos, 21-1
descomposición, 14-23
descomposición en sus elementos, 14-5
descomposición en vectores, 14-5
determinantes, 14-10
eliminación gaussiana, 14-20
ensamblado a partir de secuencias, 14-5
escalón de fila reducida, 14-21, 14-22
extracción de elementos de las diagonales, 14-6
factorización, 14-23
formación a partir de vectores, 14-3, 14-4
identidad, 14-3
inserción de filas, 14-6
introducción, 2-7
introducción mediante el MatrixWriter, 8-2, 14-1
inversas, 14-17
inversión, 14-11, 14-20
malcondicionadas, 14-17
número de condición, 14-10
operaciones de cálculo, 14-10
operaciones de filas, 14-21
radio espectral, 14-10
rango, 14-10
raras, 14-17
reconstrucción a partir de valores individuales, 14-24
resolución de ecuaciones lineales, 14-16
transformación, 14-20
transposición, 14-11
trazado, 14-10
valores individuales, 14-24
valores propios, 14-22
vectores propios, 14-23
MatrixWriter
borrado de columnas, 8-9
borrado de filas, 8-9
borrar columnas, 8-7
borrar filas, 8-8
configuración de la anchura de celda, 8-5, 8-8
datos estadísticos, 21-5
edición de sistemas, 8-5
inserción de columnas, 8-9
inserción de filas, 8-9
insertar columnas, 8-6
insertar filas, 8-7
introducción de sistemas, 8-2, 14-1
introducción de vectores, 8-8
menú MATRIX, 8-8
orden de entrada de celda, 8-5, 8-8
utilización, 8-2
y datos estadísticos, 21-2
matriz estadística actual, 21-1
máximo de un gráfico, 22-12
en la aplicación SOLVE, 18-4
mejor entorno de edición, 2-13, 3-8
memoria
ampliación, 5-1, 28-17
bajas condiciones de la memoria, 5-20
borrado, 5-19
borrado total, 5-19
cantidad disponible, A-2
condición out-of-memory, 5-22
copia de seguridad al ordenador, 27-12
copia de seguridad en el objeto de seguridad, 28-5
eliminar, 28-16
limpieza automática, 5-1, A-4
memoria de usuario definida, 5-1
objetos de seguridad en, 28-3
RAM definida, 5-1
recuperación, 5-19
recuperar desde el ordenador, 27-14
recuperar desde un objeto de seguridad, 28-6
ROM definida, 5-1
tarjetas insertables, 5-1
memoria de puerta
desplazamiento de objetos a, 28-18
memoria de usuario, 5-1
ampliación, 28-17
memoria independiente
ampliación, 28-17
bibliotecas en, 28-9
objetos de seguridad en, 28-3
puerta lógica 0, 28-2, 28-3
memoria intermedia (serie), 27-19, 27-20
MEMORY
aplicaciones, 1-7
mensajes
en la aplicación SOLVE, 18-4
lista de, B-1
memoria insuficiente, 5-20
mostrados en el área de estado, 1-1
números de, B-1
menú anterior
visualización, 1-11
menú BASE, 15-1, 15-4, 15-5
menú CST, 30-1
menú de Comandos UNITS, 10-1
menú de E/S, 27-18
menú de la Resolución (Biblioteca de Ecuaciones)
funciones, 25-7
Menú de la Resolución (Biblioteca de Ecuaciones)
funciones, 25-3
menú del Catálogo UNITS, 10-3, 10-7
menú EDIT, 2-14
menú HYP, 12-3
menú MATRIX, 8-8
menú MTH BASE, 15-1, 15-4, 15-5
menú MTH HYP, 12-3
menú MTH PARTS, 12-9
menú MTH PROB, 12-4
menú MTH REAL, 12-7, 12-9
menú MTH VECTR, 13-2, 13-4
menú PARTS, 12-9
menú PICTURE FCN, 22-11
menú PRG STK, 3-12
menú PROB, 12-4
menú REAL, 12-7, 12-9
menú RULES, 20-23
menús
etiquetas en la pantalla, 1-4
lista de, C-1
menú anterior, 1-11
números de, C-1
páginas, 1-11
personalización, 30-1
selección de funciones, 1-11
utilización, 1-11
visualización, 1-11
menús de comandos
aplicaciones y menús de
comandos, 1-8
menús del usuario
unidades definidas por el
usuario, 25-17
menús de usuario
unidades definidas por el
usuario, 10-16
menús personalizados
ayudas para escribir en, 30-2
cambio, 30-3
creación, 30-1
en cada directorio, 30-3
en el entorno SOLVR, 18-9
etiquetas personalizadas, 30-3
objetos en, 30-1
teclas de cambio, 30-4
menú STK, 3-12
menú TVM, 18-21
menú VAR, 5-4, 5-13
visualización de directorios,
5-4
menú VECTR, 13-2, 13-4
mínimo
de un gráfico, 22-12
en la aplicación SOLVE, 18-4
MODES
aplicaciones, 1-7
modo Begin (TVM), 18-15,
18-21
Modo Cilíndrico, 4-11
modulo de ángulo Grados
Centesimales, 4-3
modulo de ángulo Grados
Sexagesimales, 4-3
modo de ángulo Radianes, 4-3
modo de coordenadas Cilíndrico,
4-5
modulo de coordenadas Esférico,
4-5
modulo de coordenadas Polar,
4-4
modo de coordenadas
Rectangular, 4-4
modulo de entrada
EquationWriter, 7-2
modulo de entrada alfabética, 2-2
modulo de entrada de Operaciones
Algebraicas, 2-10
modo de entrada de Operaciones
Algebraicas/Programas,
2-11
modulo de entrada de programa,
29-6
modulo de entrada de programas,
2-10
modulo de entrada Inmediata,
2-10
modo End (TVM), 18-15, 18-21
Modo Esférico, 4-11
Modo Grados Centesimales,
4-11
Modo Grados Sexagesimales,
4-11
Modo Radianes, 4-11
Modo Rectangular, 4-11
modos
ángulo, 4-3
configuración, 4-7
coordenadas, 4-4, 12-11, 13-1
del EquationWriter, 7-2
entrada de la línea de
comandos, 2-10
entrada de programa, 29-6
formato de pantalla, 4-2
reconfiguración total, 4-10
modos de ángulo, 4-3
 cambio, 4-4
 cómo afectan a las funciones trigonométricas, A-2
 cómo afectan a los números complejos, 12-12
 cómo afectan a los vectores, 4-4, 13-3
 Grados Centesimales, 4-3
 Grados Sexagesimales, 4-3
 indicadores, 1-3
 Radianes, 4-3
 modos de ángulos
 afectan unidades supuestas, 25-11
 modos de coordenadas
 cambio, 12-11, 13-2
 Cilíndrico, 4-5, 12-11, 13-2
 cómo afectan a los números complejos, 12-11
 cómo afectan a los vectores, 4-4, 13-1, 13-4
 Esférico, 4-5, 12-11, 13-2
 indicadores, 1-3
 Polar, 4-4, 12-11, 13-1
 Rectangular, 4-4, 12-11, 13-1
 modos de entrada
 Alfabética, 2-2
 cambio manual, 2-11
 indicadores, 1-3
 Inmediata, 2-10
 línea de comandos, 2-10
 Operaciones Algebraicas, 2-10
 Operaciones
 Algebraicas/Programas, 2-11
 Programas, 2-10
 modos de la pantalla
 cambio, 4-3
 Científico, 4-2
 cómo afectan a las conversiones de fracciones, 16-5
 cómo afectan al redondeo, 12-10
 cómo afectan al truncado, 12-10
 Estándar, 4-2
 Fijar, 4-2
 formatos de números de control, 4-2
 Técnico, 4-2
 modos de pago (TVM), 18-15, 18-21
 modos de transmisión
 HP 48 a HP 48, 27-1
 modos de usuario
 activar, 30-5
 asignación, 30-5
 desactivación de teclas, 30-7, 30-8
 desasignar teclas, 30-7
 funcionamiento, 30-5
 indicadores, 1-3
 salida de, 30-8
 modo TRACE
 representaciones gráficas del tipo FUNCTION, 23-4
 representaciones gráficas del tipo PARAMETRIC, 23-10
 representaciones gráficas del tipo POLAR, 23-7
 y coordenadas del cursor, 22-5

Mpar
 creado por Biblioteca de Ecuaciones, 25-2, 25-6

N

n1
soluciones generales (enteros), 20-17
variable reservada, 5-7
negativo
de sistemas, 14-12
nombres
búsqueda, 5-5
duplicar, 5-5
en el EquationWriter, 7-3
en menús personalizados, 30-1
evaluación, 5-15, 5-16
evaluación de variables que contienen nombres, 5-15
función en programas, 29-2
introducción, 5-16
limitaciones, 5-6
menú, 5-13
prevención de evaluación, 5-16
nombres de “der”, 20-11
variables, 5-7
nombres de modos
Científico, 4-2
Cilíndrico, 4-5, 12-11, 13-2
desplazamiento
(EquationWriter), 7-2
entrada Alfabética, 4-9
entrada de Operaciones Algebraicas, 2-10
entrada de Operaciones Algebraicas/Programas, 2-11
entrada de programa, 29-6
entrada de programas, 2-10
entrada (EquationWriter), 7-2
entrada Inmediata, 2-10
Esférico, 4-5, 12-11, 13-2
Estándar, 4-2
Fijar, 4-2
Grados Centesimales, 4-3
Grados Sexagesimales, 4-3
Polar, 4-4, 12-11, 13-1
Radianes, 4-3
Rectangular, 4-4, 12-11, 13-1
selección (EquationWriter), 7-2
Técnico, 4-2
 Usuario, 30-5
 Usuario 1, 30-5
normas (sistemas), 14-9
número de índice (alarma), 26-4
números
aleatorios, 12-4
aspecto, 4-2
con unidades de medida, 10-2
conversión a fracciones, 16-5
conversión de números complejos a números reales, 12-14
correción de números reales a números complejos, 12-14
descomposición de números complejos en reales, 12-14
en el EquationWriter, 7-3
escritura, 2-1
formación de números complejos a partir de reales, 12-14
forma exponencial, 2-2
función en programas, 29-2
redondeo, 12-10
representación interna, 4-2
truncado, 12-10
números complejos
a partir de cálculo de números reales, 12-13
como coordenadas de representaciones gráficas, 9-8
componentes polares, 12-11
cOMPONENTES RECTANGulares, 12-11
Conversión a números reales, 12-14
delimitadores < >, 12-12, 13-3
descomposición en números reales, 12-14
Formación a partir de números reales, 12-14
introducción, 12-12
modos de coordenadas, 12-11
normalizados, 12-12
operaciones de cálculo, 12-13
representación interna, 12-12
visualización, 12-11
números complejos conjugados, 12-14
numeros de ubicación de las teclas, 30-5
números reales
conversion a enteros binarios, 15-3
corversion a fracciones, 16-5
corversion a números complejos, 12-14
resultados complejos, 12-13
o (registro de base octal), 15-1
objetos, 2-1, A-3
almacenamiento en variables, 5-7, 5-13
borrado de la pila, 3-5
corversion a objetos de gráficos, 9-10
creados desde la línea de comandos, 2-10
delimitadores, 2-6
determinar los tipos de objetos válidos para las plantillas de entrada, 6-7
edición, 2-12
en menús personalizados, 30-1
E/S entre HP 48 y HP 48, 27-1
funciones en programas, 29-2
HP 48-PC I/O, 27-10
impresión, 27-2
introducción, 2-6
introducción en programas, 29-6
numeros de tipo, H-30
utilización en las plantillas de entrada, 6-3
utilización en plantillas de entrada, 6-4
visualización, 2-12
objetos con copia de seguridad en puerta lógica 0, 28-3
objetos de biblioteca
amplían conjunto de comandos, 28-7
basados en RAM o ROM, 28-7
comparados con programas, 28-7
contienen objetos, 28-7
desplazamiento a la puerta 0, 28-17
eliminación, 28-9
en memoria independiente, 28-9
identificadores, 28-7
incorporación, 28-8, 28-9
instalación, 28-8
limitación de acceso, 28-9
nombres, 28-7
separación, 28-9
objetos de gráfico
impresión, 27-2
objetos de gráficos
creación a partir de objetos, 9-10
creación a partir de
operaciones algebraicas, 7-15
extracción de imágenes, 9-11
superposición, 9-11
tamaño, 9-11
tamaño de los caracteres, 9-10
visualización en la pantalla
de la pila, 9-11
objetos de seguridad
borrar, 28-4
comodines, 28-5
creación, 28-3
desplazamiento a la puerta
0, 28-17
desplazamiento en la tarjeta
RAM, 28-18
directorios, 28-4
en memoria independiente ,
28-3
en menús personalizados, 30-2
evaluación, 28-4
identificadores, 28-3
lista, 28-5
recuperar, 28-4
recuperar memoria desde, 28-6
toda la memoria de usuario, 28-5
objetos de unidades de medida
conversión de unidades, 10-7,
10-8
conversión de unidades
angulares, 10-8
conversión de unidades de
temperatura, 10-12
creación, 10-3, 10-4, 10-5,
10-17
creación de objetos de gráficos
a partir de objetos de
unidades, 9-10
creación en el EquationWriter, 7-7
delimitadores, 10-2
en menús personalizados, 30-1
en operaciones algebraicas, 10-11
factorización de unidades, 10-11
operaciones de cálculo, 10-9
operaciones de cálculo con
temperaturas, 10-13
parte numérica, 10-17
prefijos de unidades, 10-5
prioridad de delimitador, 10-11
prioridad de operadores de
unidades, 10-2
unidades de medida
coherentes, 10-9
unidades inversas, 7-7, 10-4
opciones de unidades (Biblioteca
de Ecuaciones), 25-1
afectan solución de ecuación, 25-11
efecto de inexistencia de
unidades, 25-11
operación algebraica
en estructura de variable
local, 29-3
función en programas, 29-2
operaciones
  categoría, 11-1
operaciones algebraicas
cálculo, 11-2
cálculo selectivo, 20-18
cómo objetos de gráficos,
  7-15
cómo secuencias, 7-15
conversión a objetos de
gráficos, 7-15
conversión a secuencias, 7-15
creación de objetos de gráficos
da partir de operaciones
gráficas, 9-10
diferenciación, 20-10
edición de subexpresiones,
  7-12
edición en el EquationWriter,
  7-11
edición en la línea de
comandos, 7-11
elementos de sistemas, 14-13
en estructura de variable
local, 29-17
expansión de los términos,
  20-20
exposición de las variables
ocultas, 20-18
inserción de objetos de la
pila, 7-12
integración numéricamente,
  20-1
integración simbólica, 20-8
introducción, 7-3
modos de entrada, 2-10, 2-11
objetos de unidades de medida,
  10-11
prioridad de operadores, 11-2
reorganización, 20-19, 20-31
representaciones gráficas,
  22-1
resolución gráfica, 22-11
resolución numérica, 22-11
resolución simbólica, 20-15,
  20-16
reunión de términos, 20-19
soluciones generales, 20-17
soluciones principales, 20-17
subexpresiones, 7-13, 20-19
sustitución de subexpresiones,
  7-13
tipos, 11-4, 18-1
Operaciones algebraicas
subexpresiones, 7-12
operaciones aritméticas
con horas, 16-3
con sistemas, 14-12
con temperaturas, 10-13
con unidades, 10-13
con unidades de medida, 10-9
operaciones de cálculo en cadena,
  3-3
operaciones matemáticas, 12-2
ordenador
  conexión con la HP 48, 27-7
  nombres de archivos, 27-12
  recuperar memoria de la
    HP 48, 27-14
organización
  pantalla, 1-1

páginas (menús)
  visualización, 1-11
pagos (TVM)
  cantidad de los pagos, 18-21
  número de pagos, 18-21
pantalla
  área de estado, 1-1
  cómo mostrar el reloj, 26-1
formato de números, 4-2
indicadores, 1-1, 1-2
línea de comandos, 1-4
mensajes, 1-1
niveles de la pila, 1-3
ruta actual, 1-1
pantalla de la pila
cómo volver, 1-9
conversión a objetos de gráficos, 9-11
organización, 1-1
visualización de objetos de gráficos, 9-11
paquetes (Kermit), 27-14
parábolas
representación gráfica, 23-13
parámetros de representaciones gráficas
configuración, 22-14
reconfiguración, 22-15
paréntesis
en el EquationWriter, 7-5, 7-7.
en números complejos, 12-12
en operaciones algebraicas, 11-3
implícitos, 7-7
paréntesis implícitos, 7-7
parte entera de números reales, 12-9
parte fraccional de números reales, 12-9
parte imaginaria
de las matrices complejas, 14-15
de números complejos, 12-14
patrones de integración simbólica, 20-34
patrones de integración simbólica, 20-34
pendiente
cálculo, 22-12
permutaciones, 12-4
PICT, 9-7
archivo de imagen en, 25-5
copia en la pila, 9-5
reconfiguración, 22-15
pila
archivo como objeto de gráficos, 9-11
borrado de objetos, 3-5, 3-6, 3-8, 3-12
cálculos en, 29-4
colocación de objetos en operaciones algebraicas, 7-12, 7-13, 20-22
desplazamiento de objetos, 3-8, 3-12
diagramas, 29-4
duplicación de las entradas, 3-5
funcionamiento, 1-3, 3-1
intercambio de niveles, 3-4
línea de comandos y pila, 1-4
manipulación, 3-8, 3-12
movimiento de objetos, 3-8
operaciones de cálculo, 3-1
operaciones de cálculo en cadena, 3-3
Pila Interactiva, 3-7
puntero, 3-7
recuperación de los últimos argumentos, 3-6
restauración de la última, 3-6
tamaño, 3-12
tamaño dinámico, 1-3
última, 3-6
visualización, 1-9, 3-7
y plantillas de entrada, 6-5
Pila Interactiva en entorno de edición, 3-7
funcionamiento, 3-7, 3-8
menú, 3-8
puntero, 3-7
teclado, 3-10

pilas
aviso de bajas condiciones, A-5
calculadora, A-5
colocación, A-7, A-9
conservan tarjeta RAM, 28-16
cuándo cambiarlas, 28-12, A-5
en tarjetas RAM nuevas, 28-10
recambio (calculadora), A-6
recambio (tarjeta RAM), A-8
tarjetas RAM, A-5
tipos, A-6

pitido
para alarmas, 26-6

plantillas de entrada, 6-1
cambios globales, 6-8
campos, 6-1
comandos, 6-9
creación, 6-9
determinar los tipos de objetos válidos, 6-7
edición de datos, 6-5
ejecución, 6-8
etiquetas, 6-1
introducción de datos desde el teclado, 6-3
introducción de listas, 6-3
introducción de objetos archivados, 6-3
línea de mensajes, 6-1
moverse dentro de ellas, 6-2
reconfiguración de campos, 6-6
salir, 6-8
selección de campos, 6-2

selección de opciones, 6-4
títulos, 6-1
utilización de una segunda plantilla de entrada, 6-6
y operaciones de cálculo de la pila, 6-5

PLOT
aplicaciones, 1-7
Polar
modos de coordenadas, 12-11, 13-1
polinomio de Taylor
cálculo, 20-13
y derivadas, 20-14
polinomios
búsqueda de todas las raíces, 18-11
cálculo, 18-12
cómo aproximaciones, 20-13, 20-16
conversión a forma algebraica, 18-12
de Taylor, 20-13
en el EquationWriter, 7-8
resolución a partir de raíces, 18-11
serie de Maclaurin, 20-13
utilización del solucionador de raíces, 18-11

PPAR
parámetros de representaciones gráficas, 22-14
reconfiguración, 22-15
variable reservada, 5-7
precisión, 4-2
presente valor (TVM), 18-21
prioridad
operadores de unidades de medida, 10-2, 10-11
operadores simbólicos, 11-2
y función de más alto nivel, 7-11
probabilidades superiores, 12-4
problemas, A-1
procedimiento de definición
estructuras de variables locales, 29-17
procedimientos
aplicación a listas, 17-5
cómo definir, 29-17
definición, 29-19
productos de cruces, 13-4
productos factoriales, 12-4
programación estructurada, 29-5
programas, 22-1, 29-1
almacenamiento, 29-6
ámbito de variables locales en, 29-19
aplicación a listas, 17-4
“bloque constitutivo”, 29-5
comparados con bibliotecas, 28-7
denominación, 29-6
depuración, 29-8
detección de errores, 29-16
detención, 29-7
ducción, 29-8
edición, 29-7
 ejecución, 29-7
 ejecución paso a paso, 29-9
 eliminación, 29-9
 en estructura de variable local, 29-3, 29-17
 en la pila, 29-6
 estilos de cálculo, 29-4
 estructurados, 29-5
 estructuras condicionales, 29-10, 29-16
 estructuras de bucle, 29-12
 estructuras de variables locales, 29-3, 29-17
 estructuras en, 29-3
evaluación de variables locales, 29-18
evaluación de variables que contienen programas, 5-15
flujo de, 29-5
funciones definidas por el usuario, 29-20
funciones para tipos de objeto, 29-2
indicador HALT, 29-10
interrupción, 1-9, 29-9
introducción, 29-6
introducción de operaciones algebraicas, 2-11
líneas nuevas en, 29-6
modos de entrada, 2-10, 2-11, 29-6
no evaluación de variables locales, 29-18
objetos in, 29-2
reanudar, 29-9
representaciones gráficas, 22-1, 24-2
resolución, 18-2
secuencias de objetos, 29-1, 29-2
subrutinas, 29-5
tiempo transcurrido, 16-4
visualización, 29-8
programas de “bloque constitutivo”, 29-5
PRTPAR
variable reservada, 5-7
puerta copia de seguridad de memoria en, 28-5
puerta lógica 0
ampliación de los objetos en, 28-17
bibliotecas, 28-9
memoria independiente
    incorporada, 28-2, 28-3
    recuperar memoria desde,
    28-6
puertas insertables
    búsqueda, 28-5
comodines, 28-5
comprobación, A-13
instalación de tarjetas, 28-10
lista de objetos de seguridad,
    28-5
    retirar tarjetas, 28-16
tipo de memoria en, 28-5,
    28-17
puerto de infrarrojos
    comprobación, A-15
puerto serie
cableado, 27-7
comprobación, A-16
conexión de impresora, 27-3
    para imprimir, 27-3
puntero (Pila Interactiva), 3-7
punto
    símbolo decimal, 4-6
punto de vista, 23-27
    representaciones gráficas del
tipo PR-SURFACE, 23-42
    representaciones gráficas del
    tipo WIREFRAME, 23-33
    requerimientos, 23-28
puntos, 9-10
    activación y desactivación,
    9-10
    conversión a unidades de
    usuario, 9-10
    coordenadas, 9-8
    puntos críticos
visualización en un gráfico, 22-12
punto y coma
    separador de números
    complejos, 12-12
R
    indicador $\approx$, 12-11, 13-2
    indicador $\ll$, 12-11, 13-2
radianes
    conversión a grados
    sexagesimales, 12-7
raíces, 18-2
    en el entorno PICTURE, 22-11
    en el EquationWriter, 7-5
múltiples, 25-12
rangos de representación gráfica
rangos de visualización y, 24-3
    representaciones gráficas del
tipo PARAMETRIC, 23-9
    representaciones gráficas del
tipo POLAR, 23-6, 23-7
    representaciones gráficas del
tipo TRUTH, 23-17
rangos de visualización
    rangos de representación
gráfica y, 24-3
    representaciones gráficas del
tipo PARAMETRIC, 23-9
    representaciones gráficas del
tipo POLAR, 23-5, 23-6
    representaciones gráficas del
tipo TRUTH, 23-17
reconfiguración
campos de plantillas de
    entrada, 6-6
indicadores, 4-10
memoria, 5-19
parámetros de
representaciones gráficas, 22-15
PICT, 22-15
PPAR, 22-15
reconocimiento de alarmas, 26-5
Rectangular
modos de coordenadas, 12-11, 13-1
rectángulos
dibujado, 9-9
recuadros
dibujado, 9-9
recuperar
asignaciones de teclas de usuario, 30-8
memoria de la HP 48 desde el ordenador, 27-14
memoria desde objeto de seguridad, 28-6
objetos de seguridad, 28-4
últimas líneas de comandos, 2-12
últimos argumentos, 3-6
redondeo de números, 12-10
reloj
opciones de formato, 16-1, 26-1
tic-tacs, 16-4
visualización, 4-11
representaciones gráfica y PPAR, 22-14
representaciones gráficas y ŚDAT, 22-2, 22-13 y ŚPAR, 22-17
adición de elementos gráficos, 9-3
análisis, 22-10
análisis de funciones, 22-10
archivo, 24-6
archivo de representaciones gráficas “reconstruibles”, 24-8
archivo en variables, 24-7
configuración de parámetros de representaciones gráficas, 22-14
CONIC, 23-13
conversión de coordenadas, 9-10
coordenadas de puntos, 9-8
coordenadas de unidades de usuario, 9-8
ecuaciones, 22-1
enrejado de muestra, 23-25
etiquetar ejes de coordenadas, 24-1
etiquetar los ejes de coordenadas, 24-1
expresiones, 22-1
funciones de dos variables, 23-25
funciones definidas por usuario, 24-2
operaciones de puntos, 9-10
programas, 22-1, 24-2
rangos, 24-3
reconfiguración de los parámetros, 22-15
reconstruir, 24-8
recuperar, 24-6
representaciones gráficas de salida de dos variables, 23-26
resolución de la ecuación actual, 22-11
tipos de coordenadas, 9-8
tipos de representación gráfica, 24-3
visualizar representaciones gráficas almacenadas en variables, 24-7
y $PPAR$, 22-15
y $VPAR$, 22-15
zoom, 22-7
representaciones gráficas del tipo $BAR$, 23-20
a partir de estadísticas, 23-22
representaciones gráficas del tipo $CONIC$
ecuaciones válidas, 23-13
rangos de representación gráfica, 24-3
tamaño de paso por defecto, 23-14
representaciones gráficas del tipo $DIFF\,EQ$, 23-12
representaciones gráficas del tipo $FUNCTION$, 23-1
ecuaciones válidas, 23-1
en $EQ$, 23-1, 23-4
modulo $TRACE$, 23-4
tamaño de paso por defecto, 23-3
y herramientas $PICTURE\,FCN$, 23-1
representaciones gráficas del tipo $GRIDMAP$, 23-38
control de la pantalla de salida, 23-38
en $EQ$, 23-39
enrejado de salida, 23-26, 23-38
representaciones gráficas del tipo $HISTOGRAM$, 23-20
a partir de estadísticas, 23-20
representaciones gráficas del tipo $PARAMETRIC$, 23-8
en $EQ$, 23-8, 23-10
modulo $TRACE$, 23-10
rangos de la representación gráfica, 23-9
rangos de representación gráfica, 24-3
rangos de visualización, 23-9
tamaño de paso por defecto, 23-9
representaciones gráficas del tipo $POLAR$, 23-5
en $EQ$, 23-5
modulo $TRACE$, 23-7
rangos de representaciones gráficas, 23-6, 23-7, 24-3
rangos de visualización, 23-5, 23-6
tamaño de paso por defecto, 23-6
representaciones gráficas del tipo $PR-SURFACE$, 23-40
en $EQ$, 23-41
punto de vista, 23-42
superficies de salida, 23-27
volumen de visualización, 23-42
representaciones gráficas del tipo $PS-CONTOUR$, 23-34
enrejado de salida, 23-26
representaciones gráficas del tipo $SCATTER$, 23-20
a partir de estadísticas, 23-23
comparadas con regresión, 23-25
representaciones gráficas del tipo $SLOPEFIELD$, 23-29
en $EQ$, 23-29
enrejado de salida, 23-26
representaciones gráficas del tipo $TRUTH$, 23-16
en $EQ$, 23-16
rangos de la representación, 23-17
rango de representación gráfica, 24-3
rango de visualización, 23-17
tamaño de paso por defecto, 23-17
representaciones gráficas del tipo WIREFRAME, 23-32
punto de vista, 23-33
superficies de salida, 23-27
volumen de visualización, 23-32, 23-33
representaciones gráficas del tipo YSLICE, 23-36
animación, 23-38
salida, 23-27
volumen de visualización, 23-38
representaciones gráficas de tipo DIFF EQ, 19-7
valores iniciales, 19-8
variables, 19-8
representaciones gráficas tridimensionales
coordenadas relativas a la visualización, 23-28
GRIDMAP, 23-38
PR-SURFACE, 23-40
PS-CONTOUR, 23-34
restricciones, 23-28
SLOPEFIELD, 23-29
WIREFRAME, 23-32
YSLICE, 23-36
representación gráfica de soluciones
ecuaciones diferenciales, 19-7
ecuaciones diferenciales “stiff”, 19-10
Resolución de Ecuaciones Múltiples
colores de etiqueta del menú, 25-3, 25-8
comparado con aplicación SOLVE, 25-3
funciones del menú, 25-3, 25-7
interpretación de resultados, 25-10
limitaciones de función, 25-9
mensajes, 25-10
no puede hallar solución, 25-11
proceso interno, 25-8, 25-10
uso de unidades, 25-7
usos del solucionador de raíces, 25-8
utilizado por Biblioteca de Ecuaciones, 25-2, 25-6
resolución de problemas, A-1
Resolución de Sistemas Lineales
comprobación de las soluciones, 18-13
interpretación de los resultados, 18-13
sistemas admisibles, 18-13
utilización, 18-12
Resoluciones (Biblioteca de Ecuaciones)
comparados, 25-3
iniciar, 25-2
selección, 25-2
restauración última pila, 3-6
resultados intermedios
textos de explico en la pila, 3-3
retroceso en la línea de comandos, 2-10
rotación (enteros binarios), 15-5
rutina, 4-4
S
Sf
soluciones generales (+ o -), 20-17
variable reservada, 5-7
secuencias, 17-1
creación a partir de
operaciones algebraicas, 7-15
generación, 17-8
resolución de las diferencias
principales, 17-9
resolución del producto de
los elementos, 17-9
selector de protección contra
escritura, 28-13, 28-19
servicio de reparaciones, A-20
signo igual, 11-4, 18-1, 22-1
símbolo decimal, 4-6
coma, 4-6
cómo afecta a los números
complexos, 12-12
configuración, 4-6
punto, 4-6
símbolos (teclado alfabético), 2-3
sintaxis
algebraica, 11-2
pila, 11-3
sintaxis algebraica, 11-2
en estructuras de variables
locales, 29-4
funciones definidas por el
usuario, 11-8
sintaxis de la pila, 3-1
en estructuras de variables
locales, 29-4
funciones definidas por el
usuario, 11-8
Sistema Internacional de
Unidades de Medida,
10-2, 10-8
sistemas
aleatorios, 14-3
aplicación de funciones, 14-14
combinación, 14-15
conmutación de columnas,
14-7
conmutación de filas, 14-7
constantes, 14-2
conversión de complejos a
reales, 14-15
conversión de reales a
complejos, 14-15
creación de sistemas especiales,
14-2
descomposición, 14-15
de una columna, 8-1, 8-8
de una fila, 8-8
dimensiones, 14-9
edición, 8-5
eliminación de columnas,
14-7
eliminación de elementos,
14-8
eliminación de filas, 14-7
en operaciones algebraicas,
14-13
extracción de la parte real,
14-15
extraer elementos, 8-9
imposición, 27-2
inserción de columnas, 14-6
introducción mediante el
 MatrixWriter, 8-2, 14-1
norma de columnas, 14-9
norma de filas, 14-9
norma de Frobenius, 14-9
norma espectral, 14-9
normas, 14-9
operaciones aritméticas, 14-12
operaciones de cálculo, 14-12
redimensionamiento, 14-11
sustitución de elementos, 14-8
una fila, 8-1
vectores, 8-1
sistemas de ecuaciones
eliminación gaussiana, 14-20
exactitud de las soluciones, 14-19
infra-determinados, 14-16, 14-17, 14-19
"mejor" solución, 14-16
resolución, 14-13, 14-16, 14-17, 14-20
 supra-determinados, 14-16, 14-19
sistemas infra-determinados
estimación de soluciones, 14-17
sistemas supra-determinados
estimación de soluciones, 14-16
solucionador de ecuaciones diferenciales de SOLVE
exactitud de los resultados, 19-5
solucionador STIFF, 19-4
solucionador de raíces
interrupción y reinicialización, 18-6
utilizado por la Resolución de Ecuaciones Múltiples, 25-8
utilizado por Resolución de Ecuaciones Múltiples, 25-10
visualización, 18-6
soluciones generales
ecuaciones y operaciones algebraicas, 20-17
e ISOL y QUAD, 20-17
especificación, 20-17
y n1, 20-17
y s1, 20-17
y soluciones principales, 20-17
soluciones principales
ecuaciones y operaciones algebraicas, 20-17
especificación, 20-17
y soluciones generales, 20-17
soluciones supuestas
aplicación SOLVE, 18-1, 18-3, 18-5
ayudan a encontrar solución, 25-11, 25-12
SOLVE
aplicaciones, 1-7
STACK
aplicaciones, 1-7
STAT
aplicaciones, 1-7
subdirectorios
en menús personalizados, 30-1, 30-3
subexpresiones, 7-12, 20-19, 20-21
colocación en la pila, 20-22
edición, 7-12, 20-22
reorganización, 20-20, 20-21
sustitución, 7-13, 20-22
submenús
indicados por una lengüeta sobre la etiqueta, 5-4
selección, 1-10
subrutinas
depuración, 29-9
ejecución paso a paso, 29-9
en programas, 29-5
sumas algebraicas
en el EquationWriter, 7-6
sumas de verificación
HP 48 a HP 48, 27-1
verificar objetos de seguridad, 28-3
superficies de salida
representaciones gráficas del tipo PR-SURFACE, 23-27
representaciones gráficas del tipo WIREFRAME, 23-27
 supra-determinados
sistemas, 14-16, 14-19
sustituir cursor, 2-14
SYMBOLIC
aplicaciones, 1-7

T

tamaño
de la memoria, 5-1, A-2
de la pila, 3-12
de las variables, 5-11
de ROM interna, 5-1
tamaño de palabra (binario)
bits perdidos, 15-2
tamaño de palabra (binarios)
bits perdidos, 15-2
configuración, 15-2
re recuperación, 15-2
tamaño de paso de las
representaciones gráficas
representaciones gráficas del tipo FUNCTION, 23-3
tamaño de paso de
representaciones gráficas
representaciones gráficas del tipo CONIC, 23-14
representaciones gráficas del tipo POLAR, 23-6
representaciones gráficas del tipo TRUTH, 23-17
tamaño de paso por defecto
representaciones gráficas del tipo PARAMETRIC, 23-9
tarjetas de aplicación
bibliotecas basadas en ROM, 28-7
instalación, 28-10, 28-13
retirar, 28-16
tarjetas de aplicaciones
ampliación de la ROM, 5-1
tarjetas insertables
ampliación de la RAM, 5-1
ampliación de la ROM, 5-1
aplicaciones, 5-1
instalación, 28-10, 28-13
límites medioambientales,
A-4
no autorizadas, 28-10
retirar, 28-16
tarjetas RAM nuevas, 28-10
tarjetas RAM
ampliación de la memoria de usuario, 5-1, 28-17
como memoria fusionada, 28-17
como memoria independiente, 28-17
comprobación, A-13
copia de seguridad de memoria, 28-5
desplazamiento de objetos a,
28-18
inicialización, 28-15
instalación, 28-10, 28-13
liberar, 28-18
nuevas, 28-10
para objetos de seguridad,
28-3
pila conserva memoria, 28-16
pila (inicial), 28-10
recambio de la pila, A-8
recuperar memoria, 28-6
retirar, 28-16
selector de protección contra escritura, 28-19
selector de protección de escritura, 28-13
soltar antes de retirar, 28-16
tipo de memoria en, 28-5, 28-17
tipo de pilas, A-6
tipos de memoria, 28-17
tecla de retroceso en el EquationWriter, 7-11
teclado
alfabético, 1-5, 2-2
alfabético de cambio derecho, 1-5
alfabético de cambio izquierdo, 1-5
asignación de teclas de usuario, 30-5
bloqueado, 30-8
bloqueo, A-10
comprobación del funcionamiento, A-12
de cambio derecho, 1-5
de cambio izquierdo, 1-5
desactivación de teclas de usuario, 30-7, 30-8
desasignar teclas de usuario, 30-7
diagrama alfabético, 2-3
en el entorno PICTURE, 22-6
EquationWriter, 7-2
escritura de caracteres, 2-2
escritura de números, 2-1
funciones matemáticas, 12-2
introducción de caracteres especiales, 2-4
introducción de delimitadores, 2-6
introducción de objetos, 2-6
múltiples funciones, 1-5
organización, 1-5
Pila Interactiva, 3-10
primario, 1-5
retroceso, 2-1
teclas combinadas, 1-3
teclas de cambio, 1-5, 1-6
teclas de menú, 1-10
teclas de usuario, 30-5
teclado alfabético
bloqueo, 2-4
bloqueo de las minúsculas, 2-4
configuración de fijación automática, 4-9
diagrama, 2-3
funcionamiento, 1-5, 2-2
teclas combinadas, 1-3
visualización, 2-5
teclas de cambio
cancelar, 1-6
en menús personalizados, 30-4
funcionamiento, 1-5
indicadores, 1-6
tecclado y teclas de cambio, 1-5
teclas del cursor
utilización, 1-8
teclas de menú
aplicación SOLVE, 25-3
etiquetas, 1-4
Resolución de Ecuaciones Múltiples, 25-3, 25-7
utilización, 1-10
teclas de usuario
activar, 30-5
agrupamiento de asignaciones, 30-8
asignación, 30-5
desactivación, 30-7, 30-8
desasignar, 30-7
edición de asignaciones, 30-8
funcionamiento, 30-5
recuperación de asignaciones, 30-8

Técnico
  modos de la pantalla, 4-2
temperaturas
  conversión, 10-12
diferencias, 10-12, 10-13, 10-14
límites de la calculadora, A-4
límites para tarjetas
  insertables, A-4
niveles, 10-12, 10-13
operaciones de cálculo, 10-13
unidades de medida, 10-12
tic-tacs (reloj del sistema), 16-4
tiempo
tiempo transcurrido, 16-4
tiempo transcurrido
cálculo, 16-4

TIME
  aplicaciones, 1-7
tipo de interés (TVM), 18-21
tipos de representaciones gráficas
  BAR, 23-22
  CONIC, 24-3
  DIFF EQ, 19-7, 23-12
  FUNCTION, 23-1
  GRIDMAP, 23-26, 23-38
  HISTOGRAM, 23-20
  PARAMETRIC, 23-8, 24-3
  POLAR, 23-5, 24-3
  PR-SURFACE, 23-27, 23-40
  PS-CONTOUR, 23-26, 23-34
  SCATTER, 23-23
  SLOPEFIELD, 23-26, 23-29
  TRUTH, 23-16, 24-3
  WIREFRAME, 23-27, 23-32
  YSLICE, 23-27, 23-36
transformaciones algebraicas
  comodines en transformaciones
    definidas por el usuario, 20-31
  condicionales, 20-31
  definidas por el usuario, 20-31
  incorporadas, 20-20
  transformaciones definidas por
    el usuario, 20-31
  transformaciones de Rules, 20-31
  transformar columnas, 21-5
  trigonométricas
    funciones, 12-2
    truncado de números, 12-10

U
  última línea de comandos
    archivo, 4-11
    recuperación, 2-12
última pila
  archivo, 4-11
  restauración, 3-6
últimos argumentos
  archivo, 4-11
  recuperación, 3-6
unidades
  afectan resultados, 25-11
  Biblioteca de Ecuaciones, 25-17
  coherentes, 25-11
  conversión, 10-7, 10-8
  definidas por el usuario, 10-16, 25-17
  erróneas, A-4
  no dimensionales, 10-8
  no esperadas, 25-11
resolución de variables
incógnitas con unidades, 18-6
selección en la Biblioteca de
Ecuaciones, 25-2
SI contra inglesas, 25-2, 25-5,
25-11, A-4
supuestas, 25-11
unidades angulares
conversión, 10-8
unidades definidas por el usuario,
10-16, 25-17
unidades de medida
basadas en las unidades del
SI, 10-2
borrado, 10-17
coherentes, 10-9
conversión, 10-7, 10-8
conversión de ángulos, 10-8
conversión de temperaturas,
10-12
diferencias de temperatura,
10-14
dimensionalmente coherentes,
10-9
en menús personalizados,
30-1
en operaciones de cálculo,
10-9, 10-13
factorización, 10-11
introducción en el
EquationWriter, 7-7
inversas, 7-7, 10-4
nombres con mayúsculas o
minúsculas, 10-4
operadores, 10-2
prefijos, 10-5
unidades de temperatura,
10-12, 10-13
unidades de medida del SI
conversión, 10-8
unidades básicas, 10-2
unidades de usuario
conversión a puntos, 9-10
unidades no dimensionales, 10-8
UNITs
aplicaciones, 10-1
$\Sigma\text{DAT}$
y representaciones gráficas,
22-2, 22-13
V
valor absoluto, 12-9, 12-14
valor cero
en la aplicación SOLVE, 18-4
valores por defecto de zoom
y $Z\text{PAR}$, 22-14
variable dependiente
rango de representación
gráfica, 24-3
variable independiente
rango de representación
gráfica, 24-3
variables
almacenamiento de objetos,
5-13
almacenamiento de objetos
en variables, 5-7
archivo de representaciones
gráficas en, 24-7
asignación de nombre, 5-6
borrar, 5-12
búsqueda, 5-5, A-3
cálculo, 5-13
cálculo selectivo, 20-18
creación, 5-7, 5-14, 11-4
depurar, 25-5
despeje en operaciones
algebraicas, 20-15
directorios en variables, 5-4
distribución en directorios,
5-4
duplicar nombres, 5-5
edición, 2-12
eliminar, A-4
en el EquationWriter, 7-3
en menús personalizados, 30-1
en otros directorios, 5-5
E/S entre HP 48 y HP 48, 27-1
evaluación, 5-15, 5-16
evaluación de variables que contienen variables, 5-15
exposición de las variables ocultas, 20-18
función en programas, 29-2
HP 48-PC I/O, 27-10
introducción de nombres, 5-16
menú, 5-13
nombres delimitados, 5-16
nombres no delimitados, 5-16
nombres reservados, 5-6
prevención de evaluación, 5-16
protección para E/S, 27-12
recuperación del contenido, 5-13
resolución de valores, 22-11
resolución simbólica, 20-15, 20-16
soporte, 18-3
visualización, 2-12
visualizar representaciones gráficas almacenadas en, 24-7
variables (Biblioteca de Ecuaciones)
creación de ecuaciones, 25-8
demasiadas conocidas, 25-12
demasiadas incógnitas, 25-11
estados, 25-8
estados incorrectos, 25-12
figura en solución, 25-12
incluidas en la solución, 25-8, 25-11
inicializar, 25-2
no detectadas, 25-9
soluciones no esperadas, 25-11
variables de soporte
en la aplicación SOLVE, 18-3
variables globales, 25-2, 25-5, 25-11, A-4
desventajas en programas, 29-17
función en programas, 29-2
menú VAR, 5-12
variables locales, 29-4
compiladas, 29-19
creación, 29-3, 29-17
denominación, 29-17
en subrutinas, 29-19
evaluación, 29-18
existen provisionalmente, 29-17, 29-18, 29-19
función en programas, 29-2
utilización al margen del procedimiento de definición, 29-19
variables ocultas
exposición, 20-18
variables reservadas, 5-6
variables (Resolución) global, 25-2, 25-5, A-4
vectores, 8-1
ángulo entre vectores, 13-6
de columna, 8-1
delimitadores, 13-3
descomposición, 13-4
depensa, 13-4
fila, 8-1
introducción, 2-8, 8-4, 8-8, 13-3
modos de coordenadas, 4-4, 13-1
mostrados, 4-4
normalizados, 13-3
operaciones de cálculo, 13-4
representación interna, 4-4, 13-3
vector de unidades, 13-6
visualización, 13-1
vectores de columna, 8-1, 8-8
vectores de fila, 8-1, 8-8
volumen de visualización, 23-27
representaciones gráficas del tipo PR-SURFACE, 23-42
representaciones gráficas del tipo WIREFRAME, 23-32, 23-33
representaciones gráficas del tipo YSLICE, 23-38
VPAR
y representaciones gráficas, 22-15
Z
zoom, 22-7
configuraciones por defecto, 22-8
selección de zoom, 22-9
ZPAR
parámetros de zoom, 22-14
Póliza de garantía para usuarios en México

Hewlett-Packard de México, S.A. de C.V. con domicilio en

Prolongación Reforma No. 470
Lomas de Sta. Fé
Delegación Alvaro Obregón 01210
México, D.F.
Tel. 326 46 00

Garantiza este producto por el término de doce meses en todas sus partes y mano de obra contra cualquier defecto de fabricación y funcionamiento a partir de la fecha de entrega al consumidor final. En el caso de productos que requieran de enseñanza o adiestramiento en su manejo o en su instalación, lo garantiza a partir de la fecha en que hubiere quedado operando normalmente el producto después de su instalación en el domicilio que señale el consumidor.

Condiciones

1. Centros de servicio, refacciones y partes
Para hacer efectiva esta garantía, no podrán exigirse mayores requisitos que la presentación de esta póliza junto con el producto en el lugar donde fue adquirido o en cualquiera de los centros de servicio ubicados en los domicilios de la parte superior de esta hoja, donde también se pueden adquirir refacciones y partes.

2. Cobertura
La Empresa se compromete a reparar o cambiar el producto, así como las piezas y componentes defectuosos del mismo, sin ningún cargo para el consumidor. Los gastos de transporte que surjan de su cumplimiento serán cubiertos por Hewlett Packard de México, S.A. de C.V.

3. Tiempo de reparación
El tiempo de reparación en ningún caso será mayor a treinta días contados a partir de la recepción del producto en cualquiera de los sitios en donde pueda hacerse efectiva la garantía.

4. Limitaciones
Esta garantía no es válida en los siguientes casos:
a. Cuando el producto ha sido utilizado en condiciones distintas a las normales.
b. Cuando el producto no ha sido operado de acuerdo con el instructivo de uso en idioma Español proporcionado.
c. Cuando el producto ha sido alterado o reparado por personas no autorizadas por Hewlett Packard de México, S.A. de C.V.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Marca</th>
<th>Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de serie</td>
<td>Nombre distribuidor</td>
<td></td>
</tr>
<tr>
<td>Dirección</td>
<td>(Calle y número, Colonia y Poblado, Delegación o Municipio)</td>
<td></td>
</tr>
<tr>
<td>C.P.</td>
<td>Ciudad</td>
<td>Estado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecha entrega o instalación</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notas**

El consumidor podrá solicitar que se haga efectiva la garantía ante la propia casa comercial donde adquirió el producto.

En caso de que la presente garantía se extraviara, el consumidor puede recurrir a su proveedor para que se le expida otra póliza de garantía, previa presentación de la nota de compra o factura respectiva.
Cómo Ponerse en Contacto con Hewlett-Packard

Para solicitar información sobre la utilización de la calculadora.
Si desea hacer preguntas sobre la utilización de la calculadora que no tengan respuesta en esta guía, compruebe en primer lugar la tabla de contenidos, el índice temático y el capítulo “Respuestas a Preguntas Habituales” del Apéndice A de la Guía del Usuario de la Serie HP 48G. Si no encontrara una respuesta en ningún manual, póngase en contacto con el Departamento de Soporte de Calculadoras:

Hewlett-Packard
Calculator Support
1000 N.E. Circle Blvd.
Corvallis, OR 97330, EEUU
(503) 715-2004 (Lunes a viernes de 8:00am a 3:00pm—Hora del Pacífico)
(503) 715-5488 FAX

En España:
Hewlett-Packard Española S.A.
Ctra de la Coruña, Km 16.500
28230 Las Rozas
Tel. 900 123 123

Servicio para Hardware. Consulte el Apéndice A de la Guía del Usuario de la Serie HP 48G para ver las instrucciones sobre el modo de llevar a cabo un diagnóstico y la información sobre cómo obtener un servicio. Antes de enviar la unidad, llame al Soporte de Calculadoras de HP, al número indicado a continuación.

Hewlett-Packard
Corvallis Service Center
1030 N.E. Circle Blvd.
Corvallis, OR 97330, EEUU
(503) 715-2004

En España:
Hewlett-Packard Española S.A.
Ctra de la Coruña, Km 16.500
28230 Las Rozas
Tel. 900 123 123

Si no vive en los Estados Unidos, consulte el Apéndice A para una mayor información sobre la localización del distribuidor de servicio autorizado más cercano.

Servicio BBS para Calculadoras HP. El BBS proporciona intercambios de software y de información entre los usuarios, técnicos y distribuidores de las calculadoras HP. Es un servicio que se realiza vía módem y que opera a 300/1200/2400 baudios, dúplex completo, sin paridad, 8 bits y 1 bit de parada. El teléfono es (503) 715-4448. El BBS es un servicio gratuito—solamente se pagan las tasas de teléfono de larga distancia.
Parte 1: Conceptos Básicos
1: El Teclado y la Pantalla
2: Cómo Introducir y Editar Objetos
3: La Pila
4: Modos
5: Memoria

Parte 2: Entornos de Entrada Especiales
6: Plantillas de Entrada y Listas de Opciones
7: El EquationWriter
8: El MatrixWriter
9: Objetos Gráficos
10: Objetos de Unidades de Medida

Parte 3: Comandos Matemáticos
11: Cómo Utilizar Funciones Matemáticas
12: Funciones de Números Reales y Complejos
13: Vectores y Transformadas
14: Matrices y Algebra Lineal
15: Operaciones Aritméticas y Bases Numéricas
16: Fecha, Hora y Fracciones Aritméticas
17: Listas y Secuencias

Parte 4: Aplicaciones Matemáticas Interactivas
18: Resolución de Ecuaciones
19: Ecuaciones Diferenciales
20: Cálculo y Manipulación Simbólica
21: Análisis de Datos y Estadística
22: Representaciones Gráficas
23: Tipos de Representaciones Gráficas
24: Opciones de Representaciones Gráficas Avanzadas
25: La Biblioteca de Ecuaciones

Parte 5: Ampliación y Personalización de la HP 48
26: Organización del Tiempo
27: Cómo Transmitir e Imprimir Datos
28: Bibliotecas, Puertas y Tarjetas Insertables
29: Cómo Programar la HP 48
30: Cómo Personalizar la HP 48

Parte 6: Apéndices
A: Asistencia Técnica, Pilas y Servicio de Reparaciones
B: Mensajes de Error
C: Menús
D: Indicadores del Sistema
E: Tabla de Unidades
F: Tabla de Ecuaciones Incorporadas
G: Índice de Operaciones
H: Diagramas de la Pila para Comandos Seleccionados

Sólo para utilización interna:
00048-90108 (Español)
Impreso en Singapur 11/94

Nº de Parte 00048-90129 Edición 2